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Thesis abstract 

Convective clouds are key components of the global hydrological cycle with important roles 

in atmospheric energy and heat transfer. Within the mixed-phase region of convective clouds, 

ice crystals can form when an aerosol particle, termed an ice-nucleating particle (INP), 

catalyses the freezing of supercooled liquid droplets, or when existing ice hydrometeors 

facilitate the formation of new ice crystals via secondary ice production mechanisms (SIP). A 

large number of parameterisations of INP number concentrations are used in atmospheric 

models but the effect on convective cloud properties of INP parameterisation choice is not 

known. Firstly, I test the effect of INP parameterisation choice on a tropical convective cloud 

field in a regional model with advanced microphysics. The daytime domain outgoing radiation 

is sensitive to INP parameterisation choice and the differences between parameterisations can 

be as large as the effect of removing INP altogether. In particular, the temperature dependence 

of the INP parameterisation is important and determines cloud microphysical properties even 

in the presence of SIP via the Hallett-Mossop process. Next, I examine the effect of INP and 

the Hallett-Mossop process on the properties of an idealised deep convective cloud using a 

Latin hypercube sampling method and statistical emulation. At high INP number 

concentrations, the anvil ice crystal number concentration decreases sharply. At weak INP 

temperature dependencies, which increase INP number concentrations at warm mixed-phase 

temperatures, significant increases in anvil extent and anvil ice crystal size occur as a result of 

enhanced Hallett-Mossop ice production and more extensive cloud glaciation. Finally, INP 

transport across the tropical Atlantic, the region of interest for this thesis, is found to be 

overestimated in a global aerosol model. Overall, the results further our understanding of the 

effects of INP in convective clouds and indicate the importance of quantifying INP number 

concentrations at all mixed-phase temperatures and improving the representation of cloud 

glaciation in climate models.  
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Chapter 1: Motivation and background 

information 

1.1. Weather and climate prediction 

Understanding the Earth’s atmosphere is critical for the daily life and future planning of 

civilians, organisations and governments. Accurate weather forecasts are vital for issuing 

advance warning of, and ensuring safety during, extreme weather events, mitigating the impact 

of weather such as very heavy rainfall, and informing civilians and economic sectors of 

imminent weather conditions for planning of commercial and leisure activities (Bauer et al., 

2015). Furthermore, accurate representation of the Earth System in climate models is important 

for planning for future changes in climate that may require mitigation, such as sea level rise. 

Models are theoretical representations of real or imaginary processes and systems. In the early 

20th century it was proposed that the laws of physics could be used to predict the weather (Abbe, 

1901; Bauer et al., 2015; Bjerknes, 1904). This suggestion prompted the birth and subsequent 

development of numerical weather prediction and in the 1950s, an electronic computer was 

used for the first time to predict the weather in hindcasts (Bauer et al., 2015; Charney et al., 

1950) and not long afterwards, the first real-time forecasts were produced (Bauer et al., 2015; 

Bolin, 1955).  

Today, numerical models can simulate most components of the Earth System including the 

atmosphere, ocean, sea ice and vegetation (Neumann et al., 2019). Every day numerical 

weather models (NWPs) solve a complex system of non-linear differential equations at 

approximately half a billion points per timestep, allowing the prediction of the weather on 

scales from 100s of metres to 1000s of kilometres in the immediate future to weeks or months 

ahead (Bauer et al., 2015). Advances in weather modelling have typically been incremental 
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with steady advances in understanding and enhancing forecast accuracy and affordability over 

time: for example today’s 6 day forecast is as accurate as the 5 day forecast 10 years ago (Bauer 

et al., 2015).  

The complex systems of equations in numerical weather prediction and climate models don’t 

encapsulate the full complexity of the real-world atmosphere or Earth System due to, for 

example, computational affordability restrictions, and therefore rely on many simplifications 

or parameterisations to represent processes that cannot be resolved within model grid boxes 

(Bauer et al., 2015). Deciding which atmospheric and Earth System processes to parameterise 

and to what extent is a major challenge for modellers, most significantly because finding the 

optimal balance between ‘physical realism, linearity and computational affordability’ (Lopez, 

2007) is extremely difficult. This is particularly true when trying to represent processes and 

systems for which there is a lack of fundamental physical understanding or where observational 

data is sparse or non-existent (Bauer et al., 2015).  

Atmospheric processes operate at scales from the molecular to 1000s of kilometres so at all 

grid resolutions, some processes will require parameterisation. As grid resolution increases, the 

complexity of the model generally increases on the assumption that more realistic and complex 

representations of all atmospheric processes will lead to greater accuracy in model predictive 

power. However, where processes must be simplified in some way, the decisions about which 

aspects of the real-world complexity to represent in detail are often made without a systematic 

‘investment gain’ analysis (Yano et al., 2018). This leads to models representing huge 

complexity in some processes with consequences for computational time and cost without this 

additional complexity adding any value to the model forecast or predictive power compared to 

a simple parameterisation (Yano et al., 2018).  

Addition of complexity to NWP models can be justified if it leads to direct improvement in the 

model predictive power or enhances our understanding of the climate and weather system 
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which can indirectly lead to forecasting improvement in the future. Making informed decisions 

about the complexity required for each process in numerical weather and climate models 

requires both an understanding of the underlying physical process and the impact of different 

representations of the process in question on the system of interest. This thesis examines the 

effects of the parameterisation of ice-nucleating particles (INP), aerosols with the ability to 

catalyse ice formation (Vali et al., 2015), on tropical convective clouds with the aim to 

understand the potential benefits of an enhanced understanding of INP properties for the 

representation of these climatically important clouds.  

 

1.2. Clouds 

1.2.1. Why do clouds matter? 

Clouds are suspensions of liquid droplets and frozen crystals in the atmosphere. They are 

essential components of the global hydrological cycle and play an important role in energy and 

heat transfer in the atmosphere. They provide the majority of the Earth’s freshwater in the form 

of liquid or solid precipitation and, as such, are vital to the planet’s habitability. They are a part 

of our everyday life due to the role they play in weather, for example, in determining how much 

sunlight and rain we experience.  

Clouds are key aspects of the global radiative budget through the reflection and absorption of 

incoming and outgoing radiation. Clouds reflect incoming shortwave radiation, i.e. from 

sunlight, inducing cooling, and absorb outgoing longwave radiation from the Earth’s surface, 

causing warming.  The balance between how much shortwave radiation is reflected by clouds 

(cloud albedo), and how much clouds reduce outgoing longwave radiation (a greenhouse 

effect) determines whether clouds have an overall cooling or warming effect on the Earth’s 
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atmosphere and is the most important cloud property for climate prediction. It is estimated that 

overall the cloud albedo effect outweighs the cloud greenhouse effect and thus clouds cause a 

net cooling of the Earth’s atmosphere of ~18 W m-2 relative to a cloud free atmosphere (Zelinka 

et al., 2017).  

However, clouds present challenges for both numerical weather prediction in the present and 

for prediction of future climates. For example, cloud processes operate across multiple scales, 

from nanometres to areas spanning 1000s of kilometres across the Earth’s surface. Accurately 

representing processes at all relevant scales is extremely challenging in any model and one has 

to rely on simplified statistical representations of processes occurring at scales smaller than 

those resolved by the model numerics. Furthermore, our observational records of clouds 

remains relatively scarce making validation of climate and numerical weather model 

representations of clouds difficult. While forecasts produced by numerical weather models 

have been assessed against observations for accuracy for decades, clouds are generally not 

included in these assessments because their spatial and temporal heterogeneity makes 

verification against observations challenging (Pincus et al., 2008). Where cloudiness and 

precipitation are evaluated (e.g. by the ECMWF), performance remains much poorer than for 

the "larger-scale" dynamics variables, such as, for example, geopotential height. 

Changes in atmospheric composition due to anthropogenic activity, in the form of global 

warming due to enhanced carbon dioxide concentrations or changes in aerosol sources, can 

cause changes in cloudiness and the amount of cooling they induce. The impact of 

anthropogenic activity on clouds is very uncertain because both the effect of warmer 

atmospheric temperatures, and the effect of altered aerosol concentrations and composition on 

cloud properties, are complicated and difficult to quantify. Cloud feedbacks, changes in cloud 

properties due to rising global temperatures that can amplify or dampen the global temperature 

increase, may be as large as 2.0 W m-2 °C (Zelinka et al., 2017). In idealised simulations of an 
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aquaplanet, i.e. simulations that didn’t have to account for the interactions of clouds with land, 

ice, the biosphere or aerosols, the uncertainties in the response of clouds to global warming 

remained as large as they were in comprehensive Earth System Models (Medeiros et al., 2008; 

Stevens and Bony, 2013).  The effect of aerosol-cloud interactions is currently the largest 

source of uncertainty in the IPCC Assessment of the eventual magnitude of the atmospheric 

temperature increase due to climate change (Boucher et al., 2013).  

 

1.2.2. Cloud phase 

The balance of liquid and ice in mixed-phase clouds is important for cloud development, 

precipitation, lifetime and radiative properties.  Ice particles tend to be more efficient collectors 

of liquid drops than cloud droplets, meaning frozen particles grow faster than liquid particles 

resulting in faster precipitation development in clouds with higher glaciation. Enhanced 

precipitation formation can result in the faster dissipation of a cloud with more ice and thus a 

shorter lifetime and lower overall cloud cover. Clouds with higher ice fraction tend to be thinner 

and to reflect less sunlight due to a reduction in the number of particles and an increase in 

particle size relative to a clouds containing more supercooled liquid water (Tan et al., 2016).  

Tan et al. (2016) found that accurate representation of cloud phase in GCMs is important for 

constraining the equilibrium climate sensitivity to climate change. Cloud phase is an important 

component of potential ‘cloud opacity feedbacks’, the changes in cloud reflectivity to incoming 

shortwave or cloud absorption of outgoing longwave radiaiton due to global temperature rises. 

These cloud opacity feedbacks are ‘highly uncertain’ (Boucher et al., 2013) due in part to 

difficulty representing cloud phase and cloud microphysics in climate models (Zelinka et al., 

2017).  
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Despite its climatic importance and its relevance for precipitation forecasts, cloud phase is not 

well constrained in weather or climate models in part due a lack of understanding of mixed-

phase ice processes (Komurcu et al., 2014; Murray et al., 2020). Komurcu et al. (2014) found 

that there were large differences in the representation of cloud phase in six global climate 

models, and that all the models tested produced too much cloud glaciation at mixed-phase 

temperatures. Cloud phase is notoriously poorly represented in weather and climate models for 

a number of reasons including a lack of physical understanding of ice formation, strongly 

simplified representation of cloud glaciation in models, and difficulties observing and therefore 

validating mode representation of cloud phase (e.g. Cesana et al., 2015; Komurcu et al., 2014). 

 

1.2.3. Convective clouds in weather and climate models 

Convective clouds are formed by warm, buoyant air rising relative to its surroundings. Unequal 

thermal heating of the air at the Earth’s surface by solar radiation can cause an air parcel to 

become warmer and less dense than its surrounds. As this less dense air rises, it cools and water 

can form creating a cloud. The latent heat release from condensation, and freezing at higher 

altitudes, can further increase the buoyancy of a rising air parcel. Deep convective clouds in 

the tropics can extend from temperature greater than 30 °C to temperatures lower than -50 °C, 

i.e. from the boundary layer to beyond the tropopause, and can have horizontal radii greater 

than 1000 km2. Deep convective clouds are characterised by a convective core where air rises 

in strong updrafts of up to 50 m s-1 (Frank, 1977; Musil et al., 1986; Xu et al., 2001), and 

powerful downdrafts at the edges of the convective cell caused by falling precipitation and 

evaporative cooling. Some cloud mass may be ‘overshot’ into the stratosphere by the 

momentum of the convective core’s vertical motion, but the majority of cloud will spread out 

where the cloud hits the tropopause to form an optically thin layer of cloud called an anvil. At 
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the surface, air is pulled into the convective core due to displacement from the rising thermals, 

while very strong surface winds, called cold pool outflows, can occur where downdrafts hit the 

surface (e.g. Trzeciak et al., 2017). 

Stevens and Bony (2013) assert that “an inadequate representation of clouds and moist 

convection is the main limitation in current representations of the climate system”, due to the 

fact that these processes operate on scales well below the GCM spatial resolution. These 

processes are particularly problematic in the tropics where they are especially dominant. The 

tropics are the largest contributor to uncertainty between models in CMIP5 simulations of 

global aquaplanet precipitation and radiation responses to climate change, with not only the 

magnitude, but the sign of precipitation responses differing between models (Medeiros et al., 

2008; Stevens and Bony, 2013). The accurate representation of tropical convection is important 

for understanding weather and climate. For example, tropical Atlantic deep convective clouds 

are important for the development of tropical storms and hurricanes, and may play a role in the 

modulation of sea surface temperatures (Ramanathan and Collins, 1991), changes to which 

have been linked to changes in the African and Indian monsoon (Kucharski et al., 2007, 2009), 

precipitation over North America (e.g. Kushnir et al., 2010), Antarctic sea ice distribution (Li 

et al., 2014), and Amazon rainfall (Yoon and Zeng, 2010) and wildfire anomalies (Fernandes 

et al., 2011).  

1.2.3.1. Unresolved convection 

The dilemma of representing unresolved processes on the resolved scale is encapsulated by the 

challenge of representing convective clouds in numerical weather prediction and climate 

models. At grid spacings greater than 10 km, convection is represented by so called convection 

parameterisations because processes triggering convection as well as the dynamics of these 

clouds occur at the micro- to mesoscale (Prein et al., 2015). In these cases, as many of the 
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governing processes occur in small fractions of the gridscale, it is assumed that all convection 

is unresolved (Bauer et al., 2015). However, these parameterisations are relatively ‘crude’ 

(Prein et al., 2015) and involve strong simplification of processes that are highly variable in 

space and time (Lopez, 2007) with implications for the physical properties, such as moisture 

and momentum transport, precipitation generation and cloud cover, that the parameterisations 

represent.  

Uncertainty in convective representation has consequences for many aspects of weather and 

climate prediction. Parameterisations of updraft triggering, entrainment and detrainment of 

convective plumes (de Rooy et al., 2013) and convective precipitation efficiency (Renno et al., 

1994) cause some of the largest uncertainties in projected large-scale parameters such as 

climate sensitivity (Knight et al., 2007; Prein et al., 2015; Sanderson et al., 2008; Sherwood et 

al., 2014). Furthermore, they interact with other parameterisations of microphysical and 

radiative processes causing further uncertainty (Prein et al., 2015). As a result, there is 

increasing interest in moving towards operational weather prediction modelling at a grid 

spacing of 1 km (Neumann et al., 2019; Prein et al., 2015) both globally and in regional 

simulations, where parameterisation of convection becomes unnecessary as most of the 

transient dynamics are resolved (Neumann et al., 2019).  

1.2.3.2. Resolved convection 

However, even at 1 km grid spacing, not all convective processes, such as embedded small 

scale convective plumes, are resolved (Bauer et al., 2015). Furthermore, at 1 km grid spacing, 

the parameterisation of cloud microphysical processes becomes critical to accurate 

representation of cloud processes. The microphysics in convective clouds is particularly 

complex relative to stratiform clouds (Prein et al., 2015; Pruppacher and Klett, 1978), and 

therefore challenging to parameterise, due to stronger updrafts in convective clouds supporting 
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mixed-phase (ice and liquid) processes and a wide variety of hydrometeor types including ice 

crystals, snow, graupel, cloud droplets, rain and hail (Prein et al., 2015).  

The microphysics of deep convective clouds are particularly difficult to accurately represent in 

climate and weather models due to the amount, complexity and variety of scales of processes 

occuring within them. Cloud droplets can form rapidly as the air in the convective core rises 

and cools. These cloud droplets contribute to the warm rain process whereby collision-

coalescense between cloud, rain and drizzle drops can rapidly form precipitation-sized droplets. 

Once formed and eleveated to colder altitudes cloud droplets can undergo heterogeneous or 

homogeneous freezing to form ice crystals. In water subsaturated cloud regions, such as the 

downdrafts of deep convective clouds, ice crystals can grow rapidly at the expense of cloud 

droplets via the Wegener-Bergeron-Findeisen process (e.g. Cui et al., 2006). 

Ice crystals can grow rapidly to form graupel, where further riming of cloud droplets can cause 

rime splintering and the production of more ice crystals. Ice crystals can also coagulate to form 

snow particles. Rain, graupel and snow particles are heavier and will precipitate more readily 

than cloud or small ice particles producing sometimes very intese precipitation. Convective 

clouds can have multiple regions of updraft which can facilitate or enhance secondary ice 

production. Falling graupel and large droplets are also important for enhancing secondary ice 

production. Many microphysical processes parameterised in a global or convection permitting 

model can add considerable uncertainty to the simulated cloud state, and this uncertainty is 

compounded by process interactions. Furthermore, the accurate representation of dynamics is 

critical for the accurate representation of cloud microphysics. For example, Wellmann et al. 

(2018) found very large differences in the contribution of various microphysical and 

environmental parameters to the uncertainty in the development of an idealised deep 

convective cloud depending on whether the cloud was initiated using a warm bubble, a cold 

pool, or a mountain ridge. The relative importance of dynamics, environmental conditions and 
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cloud microphysics, and their interactions, in convective clouds is an ongoing area of research 

(e.g. Fan et al., 2016; Miltenberger et al., 2018a, 2018b; Miltenberger and Field, 2020; 

Wellmann et al., 2020). 

 

1.3. Processes affecting the amount of ice in convective 

clouds 

1.3.1. Aerosol-cloud interactions 

Aerosols are particles suspended in the atmosphere that are either emitted from the Earth’s 

surface (primary aerosol) or formed in situ from precursor gases which can nucleate forming 

new particles (secondary aerosol) (Pruppacher and Klett, 1978). Primary aerosols can be 

emitted naturally in the form of, for example, mineral dust from deserts (Knippertz and Todd, 

2012), ash and sulphates from volcanic eruptions (Marshall et al., 2019; Mills et al., 2016; 

Sawyer et al., 2011) or organic matter and sea salt from sea spray (Vignati et al., 2010). Primary 

aerosol particles can also be emitted from anthropogenic activity in the form of, for example, 

black carbon from combustion (Streets et al., 2001), organic carbon from biomass burning 

(Bond et al., 2004), and sulphate and nitrate aerosols from shipping (Matthias et al., 2010). 

Fossil fuel burning (Huang et al., 2015), biogenic emissions of volatile organic compounds 

such as isoprene (Carlton et al., 2009) and volcanoes (Cole-Dai, 2010) are important sources 

of the precursor gases for secondary aerosol formation. 

Aerosols are important drivers of climate. Aerosols can scatter and absorb incoming and 

outgoing short-wave and long-wave radiation, affecting the Earth’s energy balance and 

changing albedo (Carslaw et al., 2013; Twomey, 1991). The impact of aerosol scattering and 

absorption on climate is known as the aerosol direct effect. For example, changes in the Earth’s 
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albedo due to increased sulphate aerosols following large volcanic eruptions has been cited as 

a trigger for large scale climate change including periods of glaciation (Macdonald and 

Wordsworth, 2017).   

Aerosols can also affect climate by affecting cloud radiative properties which in turn alters the 

Earth’s albedo (Feingold and McComiskey, 2016; Twomey, 1991). These aerosol affects are 

called adjustments to aerosol-cloud interactions (previously termed the indirect effect) 

(Boucher et al., 2013). Specifically, aerosols can act as cloud condensation nuclei (CCN) and 

an increase in the number of aerosol particles in a cloud with no changes in the available 

moisture for condensation will increase the cloud droplet number concentration and decrease 

cloud droplet size. A cloud with more  smaller droplets will scatter and reflect incoming solar 

radiation more effectively than a cloud with less larger droplets leading to a cooling effect 

(Carslaw et al., 2013). Cloud lifetime can also be increased in clouds with more small cloud 

droplets due to the suppression of the warm rain process (Lohmann, 2006) which can prolong 

this cooling effect.  

Aerosols can also cause changes in atmospheric temperature and relative humidity which can 

affect cloud formation in what are called cloud adjustments to aerosol radiative forcing 

(previously termed the semi-direct effect) (Boucher et al., 2013). For example, absorption of 

solar radiation by soot particles and consequently reduced relative humidity reduced daytime 

cloud cover by trade cumulus clouds over the Indian Ocean by between 25 and 40% (Ackerman 

et al., 2000). The same effect has been demonstrated for marine stratocumulus clouds (Johnson 

et al., 2004).  

Aerosol cloud interactions via the indirect and the semi-direct effect are currently the largest 

source of uncertainty in climate forcing estimates by the IPCC (Boucher et al., 2013), and these 

interactions become even more complicated than described above when we consider mixed-

phase clouds and the potential for aerosol to affect ice formation processes. As well as acting 



12 

 

as CCN, aerosols can act as INP (Lohmann et al., 2016), aerosols that can initiate the freezing 

of a cloud droplet between 0 and ~-38°C. Given the important implications of aerosol-cloud 

interactions for climate and potentially also for weather prediction, understanding the role of 

aerosols in controlling mixed-phase cloud processes, including in ice formation, is an important 

challenge for atmospheric scientists. This thesis focuses on understanding the impact of INP, 

and particularly mineral dust, in determining the properties of tropical convective clouds. 

1.3.1.1. Mineral dust 

Mineral dust from the world’s deserts is an important global aerosol type (Choobari et al., 2014; 

DeMott et al., 2003; Prospero, 1996; Tang et al., 2016) with an atmospheric dust loading of 

approximately 19.2 Tg, compared to 7.5 Tg for the next largest loading, sea spray (Tang et al., 

2016; Textor et al., 2006). Dust uplift in summer is associated with a wide range of 

meteorological conditions. Both dry (e.g. African Easterly Jet, Harmattan winds), and moist 

wind systems (e.g. monsoon circulation, cold pools) are known to be important (Knippertz and 

Todd, 2012; Schwendike et al., 2016a). Summertime dust events tend to reach heights of 4 to 

6 km due to a tall boundary layer, high insolation, and the upward shift of the Intertropical 

Convergence Zone (ITCZ) (Gläser et al., 2015).   

The tropical Atlantic, the region of interest in this thesis, is particularly influenced by high dust 

loading from the Sahara; North Africa accounts for 55% of global dust emissions (Ginoux et 

al., 2012). Saharan dust contributes 30-40% of Caribbean summertime aerosol volume (Groß 

et al., 2016) and has been observed acting as efficient INP over Florida (DeMott et al., 2003) 

demonstrating that dust can influence cloud properties thousands of kilometres from source 

(Tang et al., 2016; Vergara-Temprado et al., 2017). 
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1.3.2. Cloud droplet formation 

Atmospheric droplet formation relies on the presence of deliquesced soluble aerosol particles 

(Lohmann et al., 2016). CCN are aerosol particles upon which cloud droplets can form. CCN 

particles provide a liquid surface upon which water vapour can condense removing the need 

for formation of a liquid critical nucleus from the vapour phase, and thus reducing the 

condensation energy barrier. These particles take up liquid water in sub-saturated conditions 

via hygroscopic growth. 

The potential for an aerosol to act as a CCN depends on both size and solute concentration. 

The Kelvin effect states that the smaller the droplet, the larger the equilibrium vapour pressure 

due to increased surface tension associated with curved surfaces. The Raoult effect refers to 

the decrease in equilibrium vapour pressure due to solute effects. Kohler Theory describes the 

competing nature of these two effects.  

Models use parameterisations to represent droplet activation. The primary determinant of these 

schemes is generally updraft velocity (e.g. Abdul-Razzak and Ghan, 2000; Fountoukis and 

Nenes, 2005; Shipway and Abel, 2010; Twomey, 1959).  A hygroscopicity parameter is used 

to describe effect of particle composition via the solute effect (Petters and Kreidenweis, 2007). 

Completely insoluble particles have a hygroscopicity parameter of 0, representing an inability 

to grow in size via deliquescence.  

1.3.2.1. Dust as CCN 

In mixed-phase clouds, most INP are expected to be subject to immersion freezing and 

therefore activate as CCN prior to heterogeneous nucleation (Ansmann et al., 2008; De Boer 

et al., 2011; Kanji et al., 2017). Therefore, for dust particles to be atmospherically relevant as 

INP particles, they should also act as CCN. In models, dust is normally assumed to be insoluble 

but small fractions of soluble components can enhance the ability of dust particles to act as 
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CCN by increasing their hygroscopicity parameters (Kelly et al., 2007). However, these soluble 

components have been deemed insufficient explanation for the demonstrated ability of dust to 

act as CCN (Karydis et al., 2012) and as a result, Kumar et al. (2009) highlighted the 

importance of including adsorption effects in consideration of CCN activity. Kumar et al. 

(2011) developed a new activation parametrisation that considers both Kohler Theory and 

adsorption effects via the Frenkel-Halsey-Hill adsorption activation theory (FHH). Dry 

generated dust samples, generally the larger of a bimodal dust size distribution, are expected 

to follow activation by FHH, while the smaller of the dust size modes, made up predominately 

of wet generated clays and minerals, will be dominated by solute effects (Kumar et al., 2011) 

The effects of dust on CCN concentration depends on both dust concentration and its impact 

on other CCN species. Karydis et al. (2017) found that dust particles increased cloud droplet 

number concentration (CDNC) by up to 20% over the Sahara, but decreased CDNC by a 

comparable amount over areas with high anthropogenic aerosol loading. Dust particles with a 

high FHH contribution to activation are less prevalent CCN in low saturation environments 

(Karydis et al., 2012), because they are not subject to sub-saturated deliquescence on the same 

scale as small soluble particles. Due to their large size, dust particles require more water 

condensation onto their surface for activation than smaller droplets. Their presence in an 

aerosol population can thus reduce supersaturation and cloud droplet number, particularly if 

they take up considerable amounts of water but do not activate (Barahona et al., 2010).  The 

effect of dust on CCN concentrations can have implications for cloud properties. For example, 

increased CCN number concentrations are understood to suppress the warm rain process by 

reducing the size of cloud droplets (e.g. Campos Braga et al., 2017; Konwar et al., 2012). 

However, if dust particles large enough to act as giant CCN are present in an aerosol population, 

they can form large drizzle droplets and form precipitation earlier (Posselt and Lohmann, 

2008). 
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Karydis et al. (2017) report that global average CDNC decreases by 10% when adsorption is 

accounted for, while changes are less for particle solubility effects. Kelly et al. (2007) found 

that the impact of dust particle addition to CDNC in an airmass predominantly containing fine 

ammonium sulphate varied depending on updraft speeds.  Sulfate uptake on the surface of dust 

particles increases CCN ability because of an increase in solubility (e.g. Gibson et al., 2007), 

but can reduce the overall CCN sized particles available due to a concurrent reduction in fine 

sulfate (Manktelow et al., 2009). In deep convective clouds, updrafts are often high enough to 

reduce water vapour competition and increase dust’s contribution to activation (Anderson et 

al., 2005; LeMone et al., 1980).  

 

Figure 1.1. Mechanisms of primary ice nucleation in clouds from Kanji et al. (2017) (Fig 1-1, 

page 1.2, © American Meteorological Society. Used with permission). 
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1.3.3. Homogeneous ice nucleation 

Ice nucleation in the atmosphere can be homogeneous or heterogeneous. Homogeneous 

nucleation occurs below ~-33°C (Herbert et al., 2015). It involves the spontaneous growth of 

an ice germ within a droplet that leads to instantaneous freezing of the entire droplet. 

Nucleation of the initial cluster occurs when the thermodynamic conditions cause the Gibbs 

free energy barrier to drop low enough for phase transition. In the case of homogeneous droplet 

freezing, a thermodynamically stable cluster of ice forms within a metastable droplet. This 

subsequently causes freezing of the whole droplet (Lohmann et al., 2016).  

 

1.3.4. Heterogeneous ice nucleation 

Heterogeneous ice nucleation occurs at temperatures between 0 and ~-38°C in the presence of 

INP. INP are generally rare in aerosol populations. INPs lower the energy barrier required for 

critical cluster formation by providing a surface upon which ice embryos can form.  

Theoretically, if an ice embryo forms on a solid surface, its shape will resemble that of a 

spherical cap rather than a full sphere, therefore its volume for the same radius is reduced, thus 

reducing the number of water molecules needed to join the embryo before it reaches its critical 

radius (Lohmann et al., 2016). Commonly known INPs are mineral dust particles (e.g. DeMott 

et al., 2003), bioaerosols (e.g. Diehl et al., 2002) and marine organics (Wilson et al., 2015). 

Heterogeneous ice nucleation can occur via immersion, contact, condensation, and deposition 

freezing. Immersion freezing occurs when an INP is enclosed in a water droplet which then 

freezes when ambient conditions change to allow it. In the atmosphere, immersion freezing can 

occur after an aerosol particle has been activated as a CCN. Contact freezing occurs when 

collision of an INP with a water droplet initiates freezing at the INP-water interface. 

Condensation freezing takes place when freezing occurs simultaneously with the formation of 
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liquid water on the surface of an INP (Vali et al., 2015). Deposition nucleation occurs when 

water vapour is directly deposited as ice on the surface of an INP. This does not generally occur 

in mixed phase or low level clouds, and there is speculation as to the mechanism's existence. 

Condensation of liquid in unobservable quantities may occur prior to ice formation, or liquid 

may  be present in cavities of the INP (Campbell and Christenson, 2018; Marcolli, 2014; Vali 

et al., 2015). Within mixed phase clouds, the majority of INP are expected to activate as CCN 

prior to ice formation and be subject to immersion freezing (Ansmann et al., 2008; De Boer et 

al., 2011; Westbrook and Illingworth, 2013). Mechanisms of primary ice formation in mixed-

phase clouds are illustrated in Figure 1.1 (Kanji et al., 2017). 

1.3.4.1. Variability in atmospheric INP number concentrations 

INP number concentrations in the atmosphere are extremely variable and difficult to predict. 

The spread in INP number concentrations from observational measurements spans between 

three and six orders of magnitude at any one temperature (Kanji et al., 2017) (Figure 1.2), and 

large variability persists even in measurements of individual regions or aerosol populations 

(Boose et al., 2016b; Kanji et al., 2017; Lacher et al., 2018). For example, measurements of 

INP in the Saharan Air Layer at -33°C have 4 orders of magnitude variation in number 

concentrations (Boose et al., 2016b) and measurements of INP number concentration in cloud 

and precipitation samples at -5°C, i.e. a temperature very relevant for secondary ice production 

by the Hallett-Mossop process (Section 1.3.5), can vary from 10-6 to 0.1 L-1 (Kanji et al., 2017; 

Petters and Wright, 2015). The large spread in observational INP data would not be problematic 

if INP number concentrations were easy to predict based on well-constrained atmospheric or 

aerosol properties. However, specific INP concentrations show only limited predictability from 

some aerosol size descriptors, such as aerosol surface area (Lacher et al., 2018), and very little 

predictability from meteorological variables such as pressure and temperature (Boose et al., 

2016a; Lacher et al., 2018) and aerosol composition descriptors (Lacher et al., 2018). INP 
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number concentration of 1 L-1 have been recorded in coastal and open ocean mid- to high-

latitudes at temperatures as cold as -35°C and as warm as -10°C (Murray et al., 2020), i.e. 

despite temperature being one of the strongest predictors of INP number concentration that is 

readily available in atmospheric models, similar INP number concentrations can occur at nearly 

all mixed-phase temperatures in remote locations with few aerosol sources. 

 

Figure 1.2. Variability in atmospheric ice-nucleating particle number concentrations from 

Kanji et al. (2017) (Fig 1-10, page 1.18, © American Meteorological Society. Used with 

permission). 

Even for materials of similar and known minerology, measurements of ice nucleating 

efficiency can span several orders of magnitude: There is seven orders of magnitude variation 

in laboratory measurements of ice nucleation active site densities (ns) for different types of 

feldspar at -15°C (Atkinson et al., 2013; Harrison et al., 2016; Peckhaus et al., 2016). While 

K-feldspar has been shown to more ice-active than other feldspars explaining this variability 

(Harrison et al., 2016), most models do not contain detailed information about the composition 
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of mineral dusts (in fact, many don’t track information about broader aerosol type separating 

mineral dusts from for example, black carbon) meaning this variability in ice-nucleating ability 

between aerosols of different composition cannot currently be easily represented.  

1.3.4.2. Characteristics of ice nucleating particles 

INP are rarer in the atmosphere than CCN particles. The characteristics that make an aerosol 

particle capable of or efficient at nucleating ice is not well understood. Most INP, including 

mineral dusts (DeMott et al., 2003; Niemand et al., 2012), components of mineral dust such as 

K-feldspar (Atkinson et al., 2013; Harrison et al., 2016) and volcanic ash (Maters et al., 2019), 

are insoluble owing to the requirement for a solid surface on which an ice embryo can form 

(Lohmann et al., 2016). There is growing evidence that ice nucleation on solid surfaces favours 

imperfections or deformations on the particle surface. Locations on an aerosol particle where 

ice nucleation is favoured are termed active sites. These sites have been theorised to be, for 

example, surface pits (Holden et al., 2019), hydrophilic sites (Freedman, 2015), or lattice 

mismatches (Kulkarni et al., 2015) that reduce the contact angle between the INP surface and 

the spherical ice cap that must form for heterogeneous ice nucleation to occur (Lohmann et al., 

2016).  

It has also been theorised that the ability of an INP surface to hydrogen bond with water 

molecules can enhance ice-nucleating ability in, for example, aluminosilicate clay particles 

(Freedman, 2015). Particle structure is likely an important component driving the distribution 

of active sites. For example, the crystallinity of tephra was found to be of importance for the 

ice-nucleating activity of volcanic ash (Maters et al., 2019) and surface defects in K-feldspars 

were found to be preferential locations for active sites (Kiselev et al., 2016). The exact 

mechanism by which these sites facilitate ice nucleation is not understood limiting our ability 
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to predict the ice-nucleating ability of specific aerosol types without explicit testing and 

measurement. 

It has recently been demonstrated that soluble particles in the form of small biological 

macromolecules, for example, pollen (Pummer et al., 2012), organics from soil (O′Sullivan et 

al., 2015), and marine organic aerosol (McCluskey et al., 2018; Wilson et al., 2015) can be 

efficient INP. This ice-nucleating ability may be attributed to hydrogen bonds between the 

water molecules and the macromolecule functional groups (e.g. –OH or amino groups) (Kanji 

et al., 2017). These macromolecules may also play a role in the ice-nucleating ability of 

insoluble aerosols such as soil or dust particles via adsorption on the insoluble surface 

(O’Sullivan et al., 2016) and the resultant formation of an active site that facilitates ice 

nucleation (Kanji et al., 2017).  

1.3.4.3. Mineral dust as INP 

The atmospheric importance of INP particles depends both on their ability to nucleate ice as 

well as their prevalence in the atmosphere. Aerosols which comprise only a minor component 

of atmospheric aerosols are unlikely to be atmospherically relevant regardless of their ice-

nucleating ability. Mineral dust is an important INP due to both its demonstrated efficiency at 

nucleating ice particularly at low temperatures (e.g. Atkinson et al., 2013; Niemand et al., 2012) 

and a dominant presence in the atmosphere (Ginoux et al., 2012; Vergara-Temprado et al., 

2017).  

The nucleation efficiency of dust has been related to surface characteristics, or active sites 

(Harrison et al., 2016; Holden et al., 2019; Kiselev et al., 2016) and varies between 

mineralologies (Atkinson et al., 2013; Harrison et al., 2016). Ice nucleating ability can also be 

affected by atmospheric processing; the coating of dust with soluble material during processing 

may obscure ice active sites (Möhler et al., 2008). Acid processing has been reported to both 
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reduce (Sullivan et al., 2010b) and enhance INP efficiency (Sullivan et al., 2010a). Material 

can be accumulated on the surface of dust particles prior to emission, during transport or during 

cloud processing. Such materials can affect the particle ice–nucleating ability. If the 

accumulated materials have higher ice-nucleating efficiency than dust, they can increase the 

temperature at which heterogeneous freezing occurs, as has been shown for biological materials 

such as pollen, bacteria and fungi (Augustin-Bauditz et al., 2016; Chen et al., 2021; O’Sullivan 

et al., 2016). These effects are not well understood and are often not represented in models. 

Dust’s ice nucleating ability has been argued to have a global impact on cloud phase with less 

supercooled liquid in dusty regimes (Tan et al., 2014). Furthermore, several studies suggest 

convective invigoration due to dust acting as CCN and INP; the release of latent heat from 

condensation or freezing increases buoyancy and updrafts (e.g. Corr et al., 2016; Van Den 

Heever et al., 2011) leading to deeper clouds (Altaratz et al., 2014). This invigoration can 

increase cloud cover in the subtropical Atlantic (Koren et al., 2005, 2010). Kishcha et al. (2016) 

find that Saharan dust is responsible for an asymmetrical cloud cover with 20% higher values 

in the Northern tropical Atlantic than in the Southern tropical Atlantic.  

 

1.3.5. Secondary ice production and tropical cloud glaciation 

Ice crystal concentrations in clouds have been recorded at much greater concentrations than the 

concentrations of INPs (Fridlind et al., 2007; Heymsfield and Willis, 2014; Ladino et al., 2017; 

Lawson et al., 2015; Mossop, 1985; Pruppacher and Klett, 1978).  Lasher-Trapp et al. (2016) 

found INP concentrations were three to four orders of magnitude lower than graupel 

concentrations in tropical convective clouds between -5 and -8°C in the Western tropical 

Atlantic. In the same campaign (ICE-T) some ice crystal concentrations exceeded 100L-1 at 

sampling temperatures between -6 and –10°C in multithermal clouds with tops of around -



22 

 

14°C. This implies the existence of secondary ice production (SIP) (Field et al., 2017). A SIP 

is 'a mechanism or process that produces new ice crystals in the presences of pre-existing ice 

without requiring the action of an ice nucleating particle (or homogeneous freezing) (Field et 

al., 2017).   

The most well-known SIP is the Hallett-Mossop process, or rime splintering (HM) (Hallett and 

Mossop, 1974). HM occurs between -3 and -8°C. During riming of snowflakes or graupel 

particles, splinters are produced. Debated explanations for splintering include a thermal shock 

induced by the temperature difference between the original drop and the rimed particle (Dong 

and Hallett, 1989; Field et al., 2017), or the protrusion of liquid from the main droplet through 

cracks caused by pressure build-up (Field et al., 2017; Mossop et al., 1974).   

Other suggested SIP mechanisms include large droplet shattering, sublimation fragmentation, 

the break-up of ice-crystals following crystal-crystal collisions, fragmentation due to thermal 

shock and activation of INPs in transient supersaturation (Field et al., 2017; Korolev and 

Leisner, 2020). A detailed description of all of these suggested mechanisms is beyond the scope 

of this thesis but a schematic showing their general theorised operation is shown in Figure 1.3 

(Korolev and Leisner, 2020). Collision fragmentation has been demonstrated between needles 

(Knight, 2012) and between graupel particles (Takahashi et al., 1995). Droplet shattering via 

bubble bursting, jetting, cracking, and breakup has been demonstrated in experiments where 

droplets were levitated in an electrodynamic balance (EDB) and secondary ice production upon 

contact with a small ice particle was observed with a high-speed camera (Lauber et al., 2018).  

These mechanisms are less understood than the Hallett-Mossop process, and are only recently 

beginning to be represented in a limited number of cloud resolving models (Sullivan et al., 

2018). Their representation may be important for accurate representation of clouds in which 

the conditions for the Hallett-Mossop process are not met (Korolev et al., 2020) or where ICNC 

exceed INP number concentrations at temperatures lower than 8°C (Lauber et al., 2018).  
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Figure 1.3. Diagram of SIP mechanisms thought to be relevant for mixed-phase clouds from 

Korolev and Leisner (2020): droplet fragmentation (a), the Hallett-Mossop process (b) 

fragmentation ice–ice collisions (c), ice fragmentation due to thermal shock (d), sublimation 

fragmentation (e), and activation of INPs in the transient supersaturation (f). Blue indicates 

ice phase and pink indicates liquid phase. Reproduced from (Korolev and Leisner, 2020). 

The relative importance of INP number concentrations and ice production by SIP is not well 

quantified and likely varies between cloud types. The large discrepancy between observed 

ICNC and INP number concentrations has led to the suggestion that INP are not important for 

ice formation in tropical convective clouds or are only relevant up to a certain threshold needed 

to initiate ice formation (Beard, 1992; Crawford et al., 2012; Huang et al., 2017; Sullivan et 

al., 2018). The concentration of INP needed to initiate SIP in tropical maritime clouds is not 

certain. Very low concentrations of homogeneously or heterogeneously frozen crystals frozen 

in-situ or sedimented from upper levels may be enough (Beard, 1992; Field et al., 2017). An 

ICNC as low as 0.01 L-1 and 0.002 L-1 have been cited as enough to initiate the Hallett-Mossop 

process (Crawford et al., 2012; Huang et al., 2017) and ice-ice collisional breakup (Sullivan et 
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al., 2018) respectively. In deep convective clouds, these low thresholds may be reached by 

sedimenting homogeneously frozen crystals in the absence of INP. Conversely, Sullivan et al. 

(2018) found that there was no meaningful threshold of ice needed for initiation of the Hallett-

Mossop process or droplet shattering with CCN concentrations and thermodynamic conditions 

being more important. However, the impact of INP may be more in deep convective clouds 

where stronger updrafts limit the dominance of SIP mechanisms and the anvil is susceptible to 

cold temperature INP number concentrations (Sullivan et al., 2018). Owing to the difficulty 

sampling deep convective clouds with updrafts strong enough to present difficulties for aircraft, 

most of the observational data of the Hallett-Mossop process was measured in comparatively 

shallow convective clouds with cloud top temperatures above -20°C (e.g. Lasher-Trapp et al., 

2016; Lloyd et al., 2019).  

 

1.4. Parameterisation of ice-nucleating particles 

1.4.1. Measurement and quantification of ice-nucleating particle 

number concentrations 

The representation of ice nucleation in models relies on parameterisations developed from 

measurements of the ice-nucleating ability of aerosols or materials relevant for atmospheric 

aerosols. In order to measure INP number concentrations, some studies introduce an aerosol 

sample to a water saturation in, for example, cloud chambers (e.g. DeMott et al., 2015; 

Niemand et al., 2012) or continuous flow diffusion chambers (CFDCs) (e.g. Welti et al., 2009) 

and then observe number concentration of ice crystals formed at each temperature. These types 

of studies are advantageous because each cloud droplet contains a single aerosol particle 
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meaning the instruments are efficient in detecting INP particles active at very low temperatures 

(Kanji et al., 2017; Vergara Temprado, 2017).  

Other studies suspend the aerosol sample in water, forming droplets containing numerous 

aerosol particles. These droplets are cooled down on a cold stage and the fraction of frozen 

droplets at each temperature is used to calculate an INP number concentration for the aerosol 

sample (Atkinson et al., 2013; Harrison et al., 2016, 2019; Price et al., 2018; Wilson et al., 

2015). These suspension techniques are more effective at detecting low INP efficiencies at high 

temperatures owing to the large amount of aerosol suspended in each droplet (Kanji et al., 

2017; Vergara Temprado, 2017).  

INP parameterisations have been developed both from field samples of in-situ aerosols and 

also from components of aerosols with atmospheric relevance. For example, the behaviour of 

mineral dusts as INP has been parameterised from samples of surface dust or soil particles 

(Field et al., 2006; Kulkarni and Dobbie, 2010) sedimented atmospheric dust (Niemand et al., 

2012), dusty airmasses measured in-situ (Price et al., 2018) as well as from dust ‘surrogates’ 

such as Arizona Test Dust (Möhler et al., 2006), and pure mineral dust components such as 

kaolinite, montmorillonite or illite (Welti et al., 2009). Parameterisations can also be based on 

multiple particle types; the parameterisation developed by DeMott et al. (2010) is based on 

long-term INP in-situ field measurements from predominately continental regions. 

Representing the large variability in INP number concentrations (Section 1.3.4.1.) is a 

substantial challenge for weather and climate modellers. The chosen parameterisation of ice 

nucleation may impact cloud properties and resultant radiative forcing, even if aerosol 

concentrations are unchanged (Eidhammer et al., 2009; Fan et al., 2010b; Liu et al., 2018; 

Takeishi and Storelvmo, 2018).  The most commonly used parameterisations can be divided 

into two categories based on whether they treat ice nucleation as a time-dependent, stochastic 
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process or as a time-independent, deterministic process. Table 1 summarises a few well-known 

parameterisations. 

1.4.2. Time-dependent/stochastic heterogeneous freezing 

parameterisations 

Parameterisations that account for the time-dependence of ice nucleation are stochastic and can 

be based on classical nucleation theory (CNT). The stochastic approach attempts to account for 

the dependence of ice nucleation on temperature, aerosol characteristics, and time. CNT was 

originally developed to describe homogeneous ice nucleation and related the nucleation rate 

coefficient, i.e. ‘the probability, or observed frequency, of ice nucleation events in unit volume 

of supercooled liquid or supersaturated vapor within a unit of time’, to the properties of 

supercooled water and the rate at which molecules were added to the ice embryos (Vali et al., 

2015).  

CNT has been adapted to describe heterogeneous freezing by accounting for a contact angle 

which describes the ability of the aerosol surface to nucleate ice (Hoose et al., 2010; Seinfeld 

and Pandis, 2006; Vali et al., 2015). The contact angle parameter allows the formation of ice 

at warmer temperatures than those of homogeneous freezing by lowering the energy barrier for 

the formation of a critical germ size by the addition of molecules to small agglomerates of ice 

(subcritical germs) on the ice nucleus surface (Hoose et al., 2010). The smaller the contact 

angle, the more efficient the aerosol sample at nucleating ice. CNT derived stochastic 

parameterisations of ice nucleation have been developed for multiple aerosol types to account 

for differences in nucleating ability between samples. For example, Hoose et al. (2010) 

developed CNT based parameterisations for mineral dust, soot, bacteria, and fungal spores 

using different contact angles for each species and accounting for their different activation 

energies required for critical germ formation. Mineral dust was assigned a contact angle of 
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30.98°, while soot was assigned an angle of 40.17° in the immersion freezing parameterisations 

to represent the higher ice-nucleating ability of mineral dust (Hoose et al., 2010).  

Stochastic descriptions of ice nucleation using CNT representing single or multiple contact 

angles have been developed. When parameterisations use a single contact angle, it is assumed 

that droplets containing the same number of particles from a sample of aerosol, each droplet 

has the exact same probability of freezing in time if left long enough. A disadvantage of using 

a single contact angle is an inability to account for differences in ice-nucleating ability between 

particles from the same sample. For example, there is mounting evidence that ice-nucleating 

ability of mineral dusts and insoluble aerosols is determined by randomly distributed sites, such 

as surface pits (Holden et al., 2019), hydrophilic sites (Freedman, 2015), or lattice mismatches 

(Kulkarni et al., 2015), on the aerosol surface (Hiranuma et al., 2014; Holden et al., 2019; 

Kiselev et al., 2016). These ice active sites and their random, or at least not well understood or 

quantified, distribution means that two droplets containing the equal numbers of particles from 

the same aerosol population can have very different probabilities of freezing based on their 

particle specific concentration of active sites (Vergara Temprado, 2017). The stochastic 

approach using a single contact angle does not account for this difference in freezing 

probabilities.  

Multi-component stochastic models were developed to address this issue and use a frequency 

distribution of contact angles to account for particle-to-particle variability in ice-nucleating 

ability (Eidhammer et al., 2009; Marcolli et al., 2007; Niedermeier et al., 2015; Vali et al., 

2015). However these parameterisations typically add a large amount of computational expense 

and complexity to model simulations (Kanji et al., 2017). 
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1.4.3. Time independent/deterministic heterogeneous freezing 

parameterisations 

Most atmospheric models describe ice nucleation using a deterministic approach that neglect 

the time dependence of nucleation. All simulations presented in this thesis were conducted 

using deterministic parameterisations. Some widely employed parameterisations base the ice 

nucleating particle concentration of an aerosol population on temperature only (Cooper, 1986; 

Meyers et al., 1992). These solely temperature dependent parameterisations were developed by 

fitting a function to INP or ice-crystal number concentrations and neglect any dependence on 

aerosol number, surface area or surface characteristics when used in atmospheric models. Other 

deterministic parameterisations account for the aerosol size distribution or aerosol properties 

in their calculation of INP number concentrations. For example, DeMott et al. (2010) calculates 

the INP number concentrations from the number of aerosol particles with diameters greater 

than 0.5 µm using a parameterisation fitted to CFDC measurements. Most recently developed 

parameterisations generally account for the site specificity of ice nucleation whereby there are 

preferred locations (or active sites) on the surface of the ice-nucleating aerosol with a higher 

probability of inducing freezing than the rest of the surface (Atkinson et al., 2013; Holden et 

al., 2019; Kiselev et al., 2016; Niemand et al., 2012; Vali et al., 2015). Such site specific 

deterministic parameterisations have been developed for, for example, feldspar (Atkinson et 

al., 2013), desert dust (Niemand et al., 2012) and Arizona test dust (Niedermeier et al., 2010). 

The assumed active site density of these parameterisations is then multiplied with the surface 

area of the modelled aerosol population to obtain an INP number concentration. 

  



29 

 

Table 1.1. Summary of a selection of ice nucleation parameterisations available for use in 

numerical weather prediction models. 

Parameterisation Samples and 

measurement 

instruments 

Reported 

freezing 

mechanism* 

Parameterisation 

equation is dependent on 

Temperature 

range 

Cooper, 1986 Literature data of 

in-cloud ice 

concentrations 

Immersion, 

contact and 

condensation 

- Temperature ≈-5 to -30 °C 

Meyers et al., 

1992 

Aircraft 

measurements, 

CFDC 

Deposition 

and 

condensation 

- Ice super saturation 

- Temperature 

-7 to -20 °C 

DeMott et al., 

2010 

Aircraft and 

ground-based. 

CFDC 

Immersion, 

deposition, 

condensation 

- Temperature 

- Aerosol number 

concentration (d>0.5um) 

-9 to -35 °C 

Hoose et al., 

2010 

Classical 

Nucleation Theory 

Immersion, 

contact and 

deposition 

- Ambient parameters 

- Temperature 

- Particle radius and 

nucleation ability 

- Activation energy 

0 to -38 °C 

Niemand et al., 

2012 

Surface dust 

samples. 

AIDA chamber. 

Immersion - Temperature 

- Aerosol number 

concentration per size bin 

- Particle surface area 

-12 to -36 °C 

Atkinson et al., 

2013 

Pure minerals. 

Droplet freezing 

and microscopy 

Immersion - Temperature (used to 

calculate ns in 

parametrisation) 

- Aerosol size distribution. 

-5 to -25 °C 

Niedermeier et 

al., 2015 

1 pure feldspar 

sample, Leipzig 

Aerosol Cloud 

Interaction 

Simulator 

Immersion - Particle surface area.  

- Average active sites per 

droplet  

- Temperature  

- Probability of a drop 

being liquid.  

- Time  

- Material characteristics 

-20 to -40 °C 

Peckhaus et al., 

2016 

Surface feldspar 

samples, droplet 

freezing technique 

(cooling ramp and 

isothermal 

experiments) 

Immersion - Particle surface area  

- Temperature  

- Probability of a drop 

being liquid. 

- Time 

- Material characteristics 

-2 to -38 °C 

*reported freezing mechanism may differ from measured freezing mechanism as understanding 

of heterogeneous ice nucleation has improved (Vali et al., 2015). 

The site-specific deterministic approach assumes that there is a surface density of active sites 

on a particle that can initiate freezing below a characteristic temperature. Freezing will always 

occur as soon as the particle is cooled to this characteristic temperature regardless of particle 

history (Kanji et al., 2017). There is no time dependence. The simplicity of excluding a time 
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dependence means that such deterministic parameterisations are more common than stochastic 

parameterisations in atmospheric models. However, when applied in atmospheric models, 

extrapolation beyond their measured range from which they were calculated is required for 

many common deterministic parameterisations (Table 1.1) to represent all altitudes and 

temperatures, something which has been shown to produce unreliable results (Hoose and 

Möhler, 2012).  

Site-specific deterministic approaches also assume that site density remains constant over the 

entire size distribution, i.e. small particles have the same probability of having an active site as 

large particles. However, some materials with high ice-nucleating ability show variations in 

composition with size (Perlwitz et al., 2015b) that may affect the ability of the deterministic 

approach to describe their site density (Kanji et al., 2017). Furthermore, while time is thought 

to be of secondary importance relative to temperature and aerosol properties for nucleation 

(Atkinson et al., 2013; Marcolli, 2014; Niemand et al., 2012; Wilson et al., 2015), it is known 

to play some role in determining when nucleation occurs and as such neglecting it completely 

is undesirable.  

There are other issues with commonly used deterministic parameterisations, the impact of 

which is not understood. Parameterisations based on in cloud ice-crystal number 

concentrations, such as Cooper (1986) may be affected by ice precipitating from higher 

altitudes or ice produced via secondary ice production mechanisms (see Section 1.3.5). This 

would cause an overestimation of atmospheric INP number concentrations. The 

parameterisation of Meyers et al. (1992) is described as a deposition and condensation freezing 

parameterisation and is often used as such alongside an immersion freezing parameterisation 

in modelling studies (Deng et al., 2018; Fan et al., 2010b, 2010a; Gibbons et al., 2018). 

However, the method by which this parameterisation was derived, from aircraft continuous 

flow diffusion chamber measurements (Meyers et al., 1992), means that there is no reason to 
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believe the concentrations measured were from any particular mechanism of heterogeneous ice 

nucleation. As most ice crystals in convective clouds are generated from immersion freezing 

(Ansmann et al., 2008; De Boer et al., 2011; Westbrook and Illingworth, 2013), it is likely that 

the parameterisation actually describes immersion freezing. Studies that have used the Meyers 

et al. (1992) parameterisation alongside another immersion freezing parameterisation (Deng et 

al., 2018; Fan et al., 2010b, 2010a; Gibbons et al., 2018) may have inadvertently doubled their 

INP concentrations. 

 

1.5. Effect of INP in convective clouds 

The effect of INP and changing INP number concentrations on convective clouds is poorly 

quantified. Studies finding both only minor and also major impacts on convective clouds have 

been reported. Some observational and modelling studies suggest that INP concentrations are 

not a key determinant of convective cloud properties, and the influence of secondary and 

homogeneous freezing far outweighs that of heterogeneous freezing. Observed ICNC has often 

exceeded INP number concentrations by orders of magnitude in clouds with warm (> -16 °C) 

cloud top temperatures (Fridlind et al., 2007; Heymsfield and Willis, 2014; Ladino et al., 2017; 

Lawson et al., 2015) implying that INP concentrations are not a key determinant of cloud ICNC 

(Korolev et al., 2020; Ladino et al., 2017). In such cases secondary ice production has been 

cited as the most likely dominant ice production process. A ‘buffering’ effect is suggested 

whereby INP number concentrations are irrelevant beyond the threshold needed to initiate 

secondary freezing (Ladino et al., 2017; Phillips et al., 2007; Sullivan et al., 2018).  

Some studies have shown that the concentration of primary ice needed to initiate the Hallett-

Mossop process (Hallett and Mossop, 1974), the most well-known secondary production 

mechanism, is as low as 0.01 L-1 (Crawford et al., 2012; Huang et al., 2017), a concentration 
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that could be achieved via INP or homogeneous freezing. In deep convective clouds, where ice 

production by homogeneous freezing dominates (Phillips et al., 2005), secondary production 

may be primarily initiated by sedimenting homogeneously frozen crystals. Many field 

campaigns aiming to measure SIP target young convective clouds where sedimenting ice 

crystals are assumed not to be present (e.g. Lasher-Trapp et al., 2016; Lloyd et al., 2019) so the 

extent to which INP are important for initiating SIP in deep convective clouds is not known. 

Modelling by Sullivan et al. (2018) with a parcel model found that INP number concentration 

were much less important than CCN concentrations and thermodynamic conditions for the 

initiation of the Hallett-Mossop process and the consequent multiplication of cloud ice number 

concentrations. 

On the other hand, some modelling studies indicate that changes in INP concentrations can 

cause substantial changes to cloud properties (Deng et al., 2018; Fan et al., 2010b; Gibbons et 

al., 2018). Heterogeneous freezing rates have been shown to contribute uncertainty to some 

cloud microphysical properties including ICNC along with updraft speed (Johnson et al., 

2015b) and precipitation rates (Wellmann et al., 2018). Where changes to INP concentrations 

have been found to have a substantive impact on cloud properties, the results have frequently 

been conflicting. For example, increases in INP concentration have been shown to both 

increase (Fan et al., 2010b; Gibbons et al., 2018) and decrease (Gibbons et al., 2018) deep 

convective anvil extent, discrepancies which stem from INP having different microphysical 

effects in different case studies.  

Increasing INP concentrations can lead to enhanced updrafts with greater freezing rates in the 

mixed-phase regime (Fan et al., 2010b; Gibbons et al., 2018) increasing transport of moisture 

to the anvil region. Conversely, increased INP freezing can consume liquid at lower altitude 

levels causing a reduction in transport of liquid to the homogeneous temperature regime with 

increased INP number concentration (van den Heever et al., 2006; Phillips et al., 2005, 2007). 
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Similarly, increases in INP concentration in deep convective clouds have been found to both 

increase or decrease anvil ICNCs (Fan et al., 2010b; Gibbons et al., 2018; van den Heever et 

al., 2006; Phillips et al., 2005, 2007), convective rainfall (Gibbons et al., 2018; Rosenfeld et 

al., 2011), the size and number of snow particles (Gibbons et al., 2018) and cloud radar 

reflectivity (Gibbons et al., 2018; Min et al., 2009).  

The effect of INP in deep convective clouds can be dependent on other cloud and 

environmental properties. The CCN number concentration can affect both the availability of 

supercooled droplets for heterogeneous freezing, and their droplet size, which affects the 

efficiency of heterogeneous freezing, and subsequently the riming efficiency of frozen 

hydrometeors (Altaratz et al., 2014). Higher CCN number concentrations lead to a reduced 

warm rain process and a subsequent reduction of rain drops available to become instant rimers 

within the heterogeneous and Hallett-Mossop ice production regimes (Phillips et al., 2002). A 

stronger warm rain process and the resultant enhancement in latent heat release from rain 

freezing, riming and ice depositional growth can also cause cloud invigoration, which can 

increase rates of heterogeneous and homogeneous freezing at upper cloud altitudes (Altaratz et 

al., 2014; Fan et al., 2007).  

The interaction of cloud dynamics, microphysics and different freezing mechanisms can also 

be important for deep convectively generated anvils causing implications for climate (due to 

the persistence of anvil clouds in the atmosphere long after the convective clouds that forms 

them have decayed (Luo and Rossow, 2004)). For example, Heymsfield et al. (2005) found 

that different ice particle size distributions exist in the anvil and convective core of a deep 

convective cloud depending on whether cloud updrafts are low enough to allow the suppression 

of homogeneous ice formation due to the diffusional and accretional growth of large graupel 

or ice crystals formed at mixed-phase temperatures.  

 



34 

 

The global radiative effect of INP due to impacts on cloud phase has been estimated globally, 

the results have been inconclusive with different results for different models (DeMott et al., 

2010; Komurcu et al., 2014; Shi and Liu, 2019; Storelvmo et al., 2011) and the radiative impact 

of changing INP number concentrations in convective clouds is not well understood. Analysis 

of observational satellite data suggests that outgoing longwave radiation in the maritime tropics 

may be reduced by up to 16 W m-2 due to INP particles shifting cloud glaciation to higher 

temperatures, but this may not be the case in deep convective clouds with ice water paths 

exceeding 40 g m-2 (Min and Li, 2010). 

Furthermore, most studies of INP impacts on deep convective clouds have focused on the 

impact of increasing INP number concentrations (Carrió et al., 2007; Connolly et al., 2006; 

Deng et al., 2018; Ekman et al., 2007; Fan et al., 2010a; Gibbons et al., 2018; van den Heever 

et al., 2006; Phillips et al., 2005) but global simulations and experiments on Antarctic mixed-

phase clouds indicate that INP parameterisation choice can have a large impact on cloud 

radiative effects (e.g. DeMott et al., 2010; Vergara-Temprado et al., 2018). The differences 

between parameterisations that use the same aerosol number concentrations are the intercept 

term (the ice-nucleating ability or particle number at 0°C) and the temperature dependence of 

the INP number concentrations, i.e. dlog10[INP]/dT (referred throughout this thesis as the slope 

of the INP parameterisation).  

Aerosol type and efficiency determines the INP parameterisation slope: marine organic INP 

are more efficient at warm temperatures than mineral dust INP and as a result have a shallower 

slope (Atkinson et al., 2013; Niemand et al., 2012; Wilson et al., 2015). In a simulated cloud, 

different temperature dependencies between INP parameterisations causes changes in the ice 

crystal formation and droplet depletion with altitude with implication for cloud microphysical 

responses (Takeishi and Storelvmo, 2018). The role of INP temperature dependence in deep 

convective clouds is not well understood despite its potential importance for cloud properties. 
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For example, INP with high efficiencies at warm temperatures (or shallow INP 

parameterisation slopes), such as marine organics (Wilson et al., 2015) , may exert substantial 

control over cloud properties via their role in initiating SIP mechanisms (Crawford et al., 2012; 

Huang et al., 2017; Sullivan et al., 2018) despite these aerosol types having a lower atmospheric 

prevalence than mineral dust (Vergara-Temprado et al., 2017) 

 

1.6. Research questions 

1.6.1. Chapter 2: The effect of INP parameterisation choice on the 

radiative properties of a complex deep convective cloud field 

Firstly, this thesis will address the effect of INP and INP parameterisation choice on tropical 

convection. Convective cloud systems in the maritime tropics play a critical role in global 

climate and weather, but accurately representing mixed–phase ice processes within these 

clouds persists as a major challenge for weather and climate modelling. In Chapter 2, I use a 

regional model with an advanced double-moment microphysics scheme to quantify the effect 

of INP on the radiative properties of a complex tropical Atlantic deep convective cloud field. 

This work aims to elucidate the relative importance of heterogeneous and secondary ice 

production for tropical convective clouds. The specific questions addressed by Chapter 2 are: 

a) What is the radiative effect of INP and INP parameterisation choice in a complex 

tropical convective cloud field? 

b) What is the effect of SIP (via the Hallett-Mossop process) and its interaction with INP 

parameterisation choice on the outgoing radiation of the cloud field? 

c) What is the relative importance of INP and SIP (via the Hallett-Mossop process) for 

the radiative properties of a complex convective cloud field? 
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1.6.2. Chapter 3: Influence of ice-nucleating particles and Hallett-

Mossop ice production rates on anvil cirrus from deep convection 

Secondly, this thesis will examine the relative importance of absolute INP number 

concentration, the temperature dependency of INP number concentration (or INP 

parameterisation slope), and the rate of splinter production by the Hallett-Mossop process in 

determining the anvil properties of an idealised deep convective cloud. The formation of ice 

crystals in the mixed phase cloud region is important for deep convective cloud glaciation and 

anvil properties (Deng et al., 2018; Fan et al., 2013; Gibbons et al., 2018), which are crucial in 

determining the overall cloud radiative effect of deep convective clouds. New ice-crystals are 

formed in the mixed-phase cloud region by heterogeneous ice nucleation and SIP, for example, 

by the Hallett-Mossop process. The representation of these ice formation processes is highly 

uncertain. In this study, I use Latin hypercube sampling and statistical emulation to investigate 

the joint impact of INP absolute number concentration, INP temperature dependence, and the 

Hallett-Mossop ice production rate for the anvil properties of an idealised deep convective 

cloud. This work aims to further our fundamental understanding of mixed-phase ice processes 

in deep convective clouds and determine the potential importance of accurate representation of 

these processes for cloud anvil and radiative properties. The specific questions addressed by 

Chapter 3 are: 

a) How does INP number concentration, INP parameterisation slope, and Hallett-

Mossop splinter production rate affect the anvil properties of an idealised deep 

convective cloud? 

b) What is the relative importance of INP number concentration, INP parameterisation 

slope, and Hallett-Mossop splinter production rate for the development and resultant 

anvil properties of an idealised deep convective cloud? 
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c) Are statistical emulation and variance-based sensitivity analysis useful tools for the 

assessment of uncertainty in parameterisations of mixed-phase ice formation in deep 

convective clouds? 

 

1.6.3. Chapter 4: Simulation of dust and K-feldspar INP transport 

across the tropical Atlantic by a global aerosol model 

Lastly, this thesis will examine the ability of the Global Model of Aerosol Processes 

(GLOMAP), a global aerosol model, to represent dust and INP transport across the tropical 

Atlantic. The accurate representation of heterogeneous ice nucleation in global models relies 

on accurate emission and transport of ice-nucleating aerosols such as mineral dust. In Chapter 

4, INP number and dust mass concentrations simulated by GLOMAP are compared to field 

measurements and possible sources of error within the model are explored. Specifically, 

Chapter 4 will address the following questions: 

a) How well does the GLOMAP aerosol model simulate the INP number concentrations 

measured during the 2017 Barbados Ice-nucleating particle Concentration Experiment 

field campaign at Ragged Point, Barbados? 

b) Can discrepancies between measured and GLOMAP simulated INP number 

concentrations be attributed to discrepancies between measured and simulated dust 

export from North Africa over the tropical Atlantic? 

c) Can discrepancies between measured and GLOMAP simulated INP number 

concentrations be attributed to discrepancies between the measured and simulated 

feldspar content of aerosol?  



38 

 

  



39 

 

Chapter 2: The effect of INP parameterisation 

choice on the radiative properties of a complex 

deep convective cloud field 

Chapter 2 is based on collaborative work from the journal article “Hawker, R., Miltenberger, A., 

Wilkinson, J., Hill, A., Shipway, B., Cui, Z., Cotton, R., Carslaw, K., Field, P. and Murray, B.: The 

temperature dependence of ice-nucleating particle concentrations affects the radiative properties of 

tropical convective cloud systems, Atmos. Chem. Phys., 21(7), 5439–5461, doi:10.5194/acp-21-5439-

2021, 2021.” which is published in the journal ‘Atmospheric Chemistry and Physics’. The candidate is 

the lead author and the full author list is as follows: 

Rachel E. Hawker*1, Annette K. Miltenberger2, Jonathan M. Wilkinson3, Adrian A. Hill3, Ben J. 

Shipway3, Zhiqiang Cui1, Richard J. Cotton3, Ken S. Carslaw1, Paul R. Field1, 3, Benjamin J. 

Murray1 

1. Institute for Climate and Atmospheric Science, University of Leeds, Leeds, LS2 9JT, United 

Kingdom. 

2. Institute for Atmospheric Physics, Johannes Gutenberg University Mainz, Mainz, 55128, Germany. 

3. Met Office, Exeter, EX1 3PB, United Kingdom. 

Author contributions: Rachel E. Hawker, Annette K. Miltenberger, Ken S. Carslaw, Paul R. Field and 

Ben J. Murray contributed to the design, development and direction of the study. Rachel E. Hawker and 

Annette K. Miltenberger set up and ran the UM-CASIM simulations presented in the paper. Rachel E. 

Hawker processed and analysed the UM-CASIM datasets and compared the simulation data to 

observations. Jonathan M. Wilkinson, Adrian A. Hill and Ben J. Shipway built and maintained the Met-

Office CASIM model used to run the simulations. Zhiqiang Cui and Richard J. Cotton provided 

processed aircraft data from the ICE-D b933 flight and helped with the comparison of model data with 

aircraft measurements. Rachel E. Hawker wrote the chapter and the associated paper. Rachel E. Hawker, 

Annette K. Miltenberger, Jonathan M. Wilkinson, Adrian A. Hill, Zhiqiang Cui, Richard J. Cotton, Ken 

S. Carslaw, Paul R. Field and Ben J. Murray edited the manuscript. 
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2.1. Abstract 

Convective cloud systems in the maritime tropics play a critical role in global climate, but 

accurately representing aerosol interactions within these clouds persists as a major challenge 

for weather and climate modelling. We quantify the effect of ice-nucleating particles (INP) on 

the radiative properties of a complex tropical Atlantic deep convective cloud field using a 

regional model with an advanced double-moment microphysics scheme. Our results show that 

the domain-mean daylight outgoing radiation varies by up to 18 W m-2 depending on the chosen 

INP parameterisation. The key distinction between different INP parameterisations is the 

temperature dependence of ice formation, which alters the vertical distribution of cloud 

microphysical processes. The controlling effect of the INP temperature dependence is 

substantial even in the presence of Hallett-Mossop secondary ice production and the effects of 

secondary ice formation depend strongly on the chosen INP parameterisation. Our results have 

implications for climate model simulations of tropical clouds and radiation, which currently do 

not consider a link between INP particle type and ice water content. The results also provide a 

challenge to the INP measurement community, since we demonstrate that INP concentration 

measurements are required over the full mixed-phase temperature regime, which covers around 

10 orders of magnitude in INP concentration. 
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2.2. Introduction 

Deep convective clouds are important drivers of local, regional and global climate and weather 

(Arakawa, 2004; Lohmann et al., 2016). They produce substantial precipitation (Arakawa, 

2004) and the associated phase changes release latent heat that helps to drive global 

atmospheric circulation (Fan et al., 2012). Convective clouds have a direct impact on climate 

through interactions with incoming shortwave and outgoing longwave radiation (Lohmann et 

al., 2016), for example by producing radiatively important long-lived cirrus clouds (Luo and 

Rossow, 2004). The clouds extend from the warmer lower levels of the atmosphere where only 

liquid exists to the top of the troposphere where only ice exists (Lohmann et al., 2016). Between 

these levels is the mixed-phase region where both liquid and ice coexist and interact (Seinfeld 

and Pandis, 2006). Within the mixed-phase region, primary ice particles can form 

heterogeneously through the freezing of cloud droplets by ice-nucleating particles (INP). The 

importance and relative contribution of heterogeneous freezing to ice crystal number 

concentrations (ICNC) and resultant cloud properties, such as cloud reflectivity, is very 

uncertain (Cantrell and Heymsfield, 2005; Kanji et al., 2017). This uncertainty stems from the 

difficulty of predicting INP number concentrations (Kanji et al., 2017; Lacher et al., 2018) as 

well as the difficulty of quantifying complex interactions between heterogeneous freezing and 

other ice production mechanisms (Crawford et al., 2012; Huang et al., 2017; Phillips et al., 

2005). 

Understanding the effects of INP on convective clouds presents substantial challenges. 

Measurements indicate that INP number concentrations can vary by as much as six orders of 

magnitude at any one temperature due to variations in, for example, aerosol source, chemical 

or biological composition, surface morphology and degree of chemical weathering (DeMott et 

al., 2010; Kanji et al., 2017). Large variability exists even in measurements of individual 

regions or aerosol populations (Boose et al., 2016b; Kanji et al., 2017; Lacher et al., 2018). For 
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example, there are four orders of magnitude variation in summertime measurements of INP 

number concentrations in the Saharan Air Layer at -33°C (Boose et al., 2016b). Even for 

particles of similar and known mineralogy, measurements of ice-nucleation efficiency can span 

several orders of magnitude: The spread in laboratory measurements of ice nucleation active 

site densities (ns) for different types of feldspar spans seven orders of magnitude at -15°C 

(Atkinson et al., 2013; Harrison et al., 2016, 2019; Peckhaus et al., 2016). Our ability to 

understand and quantify such variability in INP concentrations has improved as more 

measurements have been made. Although INP concentrations do not simply correlate with 

meteorological variables such as pressure and temperature (Boose et al., 2016a; Lacher et al., 

2018; Price et al., 2018), aerosol surface area (Lacher et al., 2018) and diameter (DeMott et al., 

2015) provide some predictability and global models based on known INP-active materials 

show reasonable skill in simulating global INP concentrations (Shi and Liu, 2019; Vergara-

Temprado et al., 2017). 

It is known from model simulations that changes in INP number concentration affect the 

microphysical properties and behaviour of deep convective clouds (Deng et al., 2018; Fan et 

al., 2010a, 2010b; Gibbons et al., 2018; Takeishi and Storelvmo, 2018). However, in these 

model studies perturbations to INP number concentrations have predominantly involved 

uniform increases in aerosol or INP concentrations with all simulations using the same INP 

parameterisation (Carrió et al., 2007; Connolly et al., 2006; Deng et al., 2018; Ekman et al., 

2007; Fan et al., 2010a; Gibbons et al., 2018; van den Heever et al., 2006; Phillips et al., 2005), 

i.e. the temperature dependence of INP number concentrations has not been altered. Where 

different INP parameterisations have been used (Eidhammer et al., 2009; Fan et al., 2010b; Liu 

et al., 2018; Takeishi and Storelvmo, 2018), the results have in most cases been interpreted in 

terms of the overall increase in INP number concentration (Fan et al., 2010b; Liu et al., 2018; 

Takeishi and Storelvmo, 2018).  
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However, there are important structural differences between different INP parameterisations 

that have not yet been explored in detail. For example, currently available and regularly used 

parameterisations of INP vary substantially in the dependence of INP activity on temperature. 

We hypothesise that the difference in the temperature dependence of INP number 

concentrations between parameterisations will be particularly important for deep convective 

clouds because heterogeneous ice formation occurs over a very wide temperature range from 

just below 0 to around -38oC in the mixed-phase region of these clouds.  For the same dust 

particle concentration, predicted INP concentrations can increase by up to three orders of 

magnitude from -15 to -20°C (corresponding to approximately 1 km altitude change) using an 

INP parameterisation with a steep temperature dependence (lower INP concentrations at high 

temperatures and higher INP concentrations at low temperatures) (Atkinson et al., 2013), but 

by less than one order of magnitude using an INP parameterisation with a shallower 

dependence (DeMott et al., 2010; Meyers et al., 1992). We hypothesise that such large 

differences in ice production rates between INP parameterisations are likely to affect cloud 

properties. In simulations of deep convective clouds over North America (Takeishi and 

Storelvmo, 2018) there were differences in the magnitude and altitude of droplet depletion 

depending on INP parameterisation choice (Bigg, 1953; DeMott et al., 2010, 2015).  

Uncertainty in mixed-phase cloud properties is compounded further by a lack of quantification 

of the interaction of heterogeneous freezing with other ice production mechanisms. Ice crystals 

in the mixed-phase region can also be formed by secondary ice production (SIP) from existing 

hydrometeors (Field et al., 2017) and droplets can freeze homogeneously below around -33°C 

(Herbert et al., 2015). In observations of convective clouds with relatively warm cloud-top 

temperatures (Fridlind et al., 2007; Heymsfield and Willis, 2014; Ladino et al., 2017; Lasher-

Trapp et al., 2016; Lawson et al., 2015), ICNC has frequently exceeded INP number 

concentrations by several orders of magnitude, suggesting that secondary ice production is the 
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dominant small-ice formation mechanism in mixed-phase regions (Ladino et al., 2017). The 

importance of heterogeneous ice production relative to secondary and homogeneous freezing 

has therefore been questioned (Ladino et al., 2017; Phillips et al., 2007) and it has been 

proposed that INP concentrations may only be relevant up to a threshold needed to initiate SIP 

(Ladino et al., 2017; Phillips et al., 2007), a value that may be as low as 0.01 L-1 (Crawford et 

al., 2012; Huang et al., 2017) for the Hallett-Mossop process (Hallett and Mossop, 1974). If 

this is the case, in clouds where SIP may also be initiated by the primary freezing of a few large 

(~1 mm) droplets in a rising parcel (Field et al., 2017), INP number concentrations may be 

largely irrelevant to cloud ice properties. The effect of INP and INP parameterisation on 

convective cloud properties must therefore be examined with consideration for the presence of, 

and interactions with, SIP.  

Here we explore how the choice of INP parameterisation affects the properties of a large and 

realistic cloud field containing clouds at all levels as well as deep convective systems in the 

eastern tropical Atlantic with a focus on the top of atmosphere (TOA) outgoing radiation. The 

eastern tropical Atlantic is an ideal location in which to examine the role of INP concentrations 

in convective cloud systems because, owing to its position at the interface between the Saharan 

Air Layer and the Inter Tropical Convergence Zone, it is subject to both high levels of 

convective activity and high loadings of desert dust, a relatively well-defined INP type (e.g. 

DeMott et al., 2003; Niemand et al., 2012; Price et al., 2018).   

The chapter is structured as follows: Section 2.3 details our model set-up and the case study 

our simulations are based on. Section 2.4 presents our results. First, we determine how the 

presence of INP alters the radiative properties of the cloud field (Section 2.4.1). We then 

examine how the properties of the simulated cloud field, including cloud shortwave reflectivity 

(Section 2.4.2), cloud fraction (Section 2.4.3) and anvil extent (Section 2.4.4), depend on the 

choice of INP parameterisation. In particular, we examine the importance of the dependence 
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of INP number concentration on temperature, referred to as INP parameterisation slope herein, 

as a major factor that determines cloud properties. We also examine the effect on cloud 

properties of the inclusion of SIP due to the Hallett-Mossop process (Section 2.4.5). Section 

2.5 details the limitations of this study and Section 2.6 discusses the study conclusions and the 

outlook for the future. 

 

2.3. Methods 

2.3.1. Model set-up 

2.3.1.1. Regional domain and initial conditions 

Simulations described in this chapter were performed using the Unified Model (UM) version 

10.8 (GA6 configuration) (Walters et al., 2017). The UM is a numerical weather prediction 

model developed by the UK Met Office. We use a regional nest within the global model 

simulation (Figure 2.1a), which has a grid spacing of 1 km (900*700 grid points) and 70 vertical 

levels. Meteorology of the driving global model is based on operational analysis data. Within 

the nested domain, the Cloud AeroSol Interacting Microphysics scheme (CASIM) is employed 

to handle cloud microphysical properties. A global model simulation (UM vn 8.5, GA6 

configuration, N512 resolution (Walters et al., 2017)) is used to initialise the nested simulation 

at 00:00 on the 21st of August 2015 and is used throughout the simulation for the boundary 

conditions.  
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Figure 2.1. Modelled domain location and resolution details (a), observed (black line) and 

modelled (red lines) aerosol concentrations (b), and mean modelled domain-mean 

temperature and relative humidity profiles (c). The observed aerosol profile shown in b was 

measured using the Passive Cavity Aerosol Spectrometer Probe (PCASP) which captures 

aerosols between 0.1 and 3µm in size. The insoluble aerosol profile shown in b is extracted 

from a regional UM vn 10.3 simulation (8 km grid spacing, CLASSIC dust scheme). The 

modelled aerosol profiles are applied throughout the regional domain shown in (a) at the 

start of the simulation (00:00 21st August 2015) and at the boundaries throughout. INP 

concentrations in the D10, N12 and A13 simulations are linked to the insoluble aerosol 

profile shown in b. The image shown in (a) is moderate resolution imaging 

spectroradiometer (MODIS) Corrected Reflectance imagery produced using the MODIS 

Level 1B data and downloaded from the NASA Worldview website. 

The 21st of August 2015 was chosen for simulation to coincide with flight b933 of the Ice in 

Clouds Experiment – Dust (ICE-D) July-August 2015 field campaign that targeted convective 

clouds extending to and beyond the freezing level. The aerosol profile measured during flight 

b933 (Figure 2.1b) was used to derive the aerosol profiles prescribed over the nested domain 

at the beginning of the simulation and are constantly applied at the boundaries. Model profiles 

were calculated as follows: The UM vn 10.3 was used to simulate a domain comprising the 

entire tropical Atlantic and West Africa. This simulation was initiated on the 18th August 2015 



47 

 

with a grid spacing of 8 km using the UM operational one-moment microphysics (i.e. not 

CASIM) and the CLASSIC aerosol scheme with a 6-bin dust model (Johnson et al., 2015a). 

On the day of the b933 flight (21st August 2015), a dust layer was present between 2 and 3 km 

altitude. Comparison to MODIS AOD data indicates agreement between the model and 

observations (not shown). This UM vn 10.3 simulation was used to calculate the average dust 

profile (mass and number concentration) over the CASIM domain on the 21st of August 2015 

and these dust profiles are applied in the nested domain as the insoluble aerosol profiles (Figure 

2.1b). The approximate difference between the dust aerosol profile provided by the UM 

regional simulation and the observed aerosol profile measured during flight b933 (comprising 

both insoluble and soluble particles) is used as the soluble aerosol profile (Figure 2.1b). The 

profiles shown in Figure 2.1b and applied in our simulations represent our best estimate of the 

aerosol environment within which the clouds sampled during flight b933 of the ICE-D 

campaign formed. However, as the atmosphere is heterogeneous with many coexisting air 

masses, it is possible that the aerosol profiles were measured in a separate air mass to those in 

which the clouds formed. The inability to sample the exact air mass in which sampled clouds 

formed, due to instrumental limitations and the fact that the aerosol environment is disturbed 

by the cloud formation, is a key limitation of modelling studies linked to observational 

campaigns. The simulations are 24 hours in length. 

 

2.3.1.2. CASIM microphysics 

CASIM is a multi-moment bulk scheme, which is configured to be two-moment in this work. 

Both number concentration and mass concentration for each of the five hydrometeor classes 

(cloud droplets, rain droplets, ice crystals (or cloud ice), graupel, snow) are prognostic 

variables.  The model set-up is very similar to that used in Miltenberger et al. (2018) including 



48 

 

the parameter choices within CASIM. CASIM has been used and tested previously in 

simulations of coastal mixed-phase convective clouds (Miltenberger et al., 2018b), South-East 

Pacific stratocumulus clouds (Grosvenor et al., 2017), Southern Ocean supercooled shallow 

cumulus (Vergara-Temprado et al., 2018), midlatitude cyclones (McCoy et al., 2018) and 

CCN-limited Arctic clouds (Stevens et al., 2018). 

Cloud droplet activation is parameterised according to Abdul-Razzak and Ghan (2000). The 

soluble accumulation mode aerosol profile shown in Figure 2.1b is used for cloud droplet 

activation and a simplistic CCN activation parameterisation is included for the insoluble 

aerosol mode (Abdul-Razzak and Ghan, 2000) that assumes a 5% soluble fraction on dust. 

Scavenging of CCN or INP is not represented. Condensation is represented using saturation 

adjustment meaning that where liquid is present at the end of a timestep, the specific humidity 

is adjusted to be the equilibrium saturation over water and the grid box temperature and liquid 

mass is adjusted accordingly. If only frozen hydrometeors are present in a grid box, saturation 

is treated explicitly. Collision-coalescence, riming of ice crystals to graupel and aggregation of 

ice crystals to snow is represented. Rain drop freezing is described using the parameterisation 

of Bigg (1953). Deposition onto ice is treated explicitly allowing ice particles to grow in the 

presence of liquid. However, due to the saturation adjustment treatment of condensation, the 

Wegener-Bergeron-Findeisen process is not present in exactly the same way as one would 

expect in a real cloud. For reference, the modelled domain-mean out-of-cloud temperature and 

relative humidity are shown in Figure 2.1c. The model time-step is 5 seconds.  

Heterogeneous ice nucleation is represented using 5 different parameterisations: Cooper (1986) 

(C86), Meyers et al. (1992) (M92), DeMott et al. (2010b) (D10), Niemand et al. (2012) (N12) 

and Atkinson et al. (2013) (A13) (Figure 2.2). C86 and M92 calculate an INP number 

concentration based on temperature and are independent of aerosol concentration. D10 

calculates an INP number concentration from temperature and the number concentration of 
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insoluble dust aerosol with a diameter greater than 0.5 µm. N12 and A13 calculate an INP 

concentration from the temperature dependent active surface site density and the surface area 

of insoluble dust aerosol (ns). For A13, a potassium-feldspar fraction of 0.25 is assumed. This 

is the upper recommended fraction (Atkinson et al., 2013) which was deemed appropriate 

because of the study region’s exposure to Saharan dust outflow.  

 

Figure 2.2. The five heterogeneous freezing parameterisations tested in this study (C86, M92, 

D10, N12, A13) compared to INP number concentrations measured in the eastern tropical 

Atlantic (Price et al., 2018; Welti et al., 2018). Parameterisations are shown for the aerosol 

concentrations at approximately the first freezing level in our simulations (~ 8 cm-3). D10, 

N12 and A13 are dependent on aerosol concentrations, while C86 and M92 are not 

dependent on aerosol concentration.  

M92 is described as a deposition and condensation freezing parameterisation (Meyers et al., 

1992) and is often used alongside an immersion freezing parameterisation in modelling studies 

(Deng et al., 2018; Fan et al., 2010b, 2010a; Gibbons et al., 2018). However, the M92 
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parameterisation is based on aircraft continuous flow diffusion chamber measurements and 

those measurements should capture all relevant nucleation mechanisms (see Vali et al., 2015). 

To represent nucleation at conditions relevant for clouds with liquid water present, we have set 

the saturation term in the M92 parameterisation to water saturation.  One simulation is 

conducted with no active heterogeneous ice nucleation representation (NoINP).  

The INP parameterisations inspect the conditions (temperature, cloud droplet number, ICNC) 

and aerosol concentrations within a gridbox and use that information to predict an ice 

production rate via heterogeneous freezing. The supercooled droplets are depleted by the 

freezing parameterisation, but scavenging of INPs is not represented. Homogeneous freezing 

of cloud droplets is parameterised according to Jeffery and Austin (1997). Secondary ice 

production (SIP) is represented using an approximation of the Hallett-Mossop process which 

occurs between -2.5 and -7.5°C. The efficiency of the Hallett-Mossop process increases from 

-2.5 and -7.5°C to 100% at -5°C.  The ice splinters produced by the representation of the 

Hallett-Mossop process are the smallest allowable size of ice in the model (i.e. 10-18 kg, volume 

radius ~0.11 µm). Splinters are produced from rime mass of snow and graupel. 

The rate of splinter production per rimed mass is prescribed with 350 new ice splinters 

produced per milligram of rime at -5°C. This rate of splinter production by the Hallett-Mossop 

process is based on the best available estimate of the efficacy of the mechanism (Connolly et 

al., 2006; Hallett and Mossop, 1974; Mossop, 1985). A maximum splinter production rate of 

350 per milligram of rimed material has been measured in a number of laboratory studies 

(Hallett and Mossop, 1974; Mossop, 1985) and has been applied as the best estimate of Hallett-

Mossop ice production in previous modelling studies (Connolly et al., 2006), although other 

rates have also been measured (Heymsfield and Mossop, 1984; Saunders and Hosseini, 2001).  

In-situ cloud observations have frequently observed ICNC that could be explained by the 

Hallett-Mossop process, but the mechanism underlying the Hallett-Mossop process as well as 
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the ice particle production rate remain uncertain and not well quantified (Field et al., 2017). 

Uncertainties regarding the rate of splinter production by Hallett-Mossop are an important 

consideration that will be investigated in Chapter 3; this chapter however study only explores 

the structural uncertainty of the presence/absence of the Hallett-Mossop process as currently 

understood. Other mechanisms of SIP such as collision fragmentation, droplet shattering and 

sublimation fragmentation  have been proposed (Field et al., 2017), but are not represented in 

these simulations, in part because they are very poorly defined and it is not clear how important 

they are.  Other studies have attempted to model some of these additional SIP processes 

(Phillips et al., 2018; Sullivan et al., 2018) but that was beyond the scope of this study. 

 

2.3.1.3. Cloud radiation 

The radiative processes are represented by the Suite of Community RAdiative Transfer codes 

based on Edwards and Slingo (SOCRATES) (Edwards and Slingo, 1996; Manners et al., 2017), 

which considers cloud droplet number and mass, as well as ice crystal and snow water paths 

for the calculation of cloud radiative properties. It does not explicitly consider changes in ice 

crystal or snow number concentration or size (though changes in number and size will affect 

mass concentrations which are considered), and does not consider any changes to rain or 

graupel species. The cloud droplet single scattering properties are calculated from the cloud 

droplet mass and effective radius in each gridbox using the equations detailed in Edwards and 

Slingo (1996). Snow and ice are combined to form one ice category for the purposes of the 

radiation calculations. The single scattering properties of this snow and ice category are 

calculated from their combined mass and the ambient temperature. The parameterisation of 

bulk optical properties of snow and ice used in the model is detailed in Baran et al. (2014). 
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The radiative properties (shortwave, longwave and total radiation) are calculated for daylight 

hours only, i.e. 10:00-17:00 UTC. This is because owing to the length of our simulation (24 

hours), when spin-up time is excluded from the analysis, there isn’t a full night-time period 

available. Therefore, we felt it was fairest to calculate the radiative effects from the simulation 

period comprising the daylight hours only. For all other modelled properties presented, except 

when plotted against a corresponding radiative property, values are calculated for the last 14 

hours of the simulation, i.e. from 10:00 - 24:00. The sensitivity of analysis to time period 

selection was tested and found to have little impact.  

Changes to outgoing radiation from cloudy regions and changes in cloud fraction both 

contribute to the total overall change in outgoing radiation between two simulations. The 

contributions from changes in outgoing radiation from cloudy regions and cloud fraction to the 

overall radiative differences between simulations were calculated separately as described 

below. The cloudy regions contribution, i.e. the difference in outgoing radiation between two 

cloudy regions due to changes in cloud albedo or thickness ignoring any changes in cloud 

fraction, (∆𝑅𝑎𝑑𝑅𝐸𝐹𝐿) to a domain radiative difference between a sensitivity simulation (s) and 

a reference simulation (r) (s – r) is calculated using Eq. (1). 

∆𝑅𝑎𝑑𝑅𝐸𝐹𝐿 = 𝑐𝑓𝑟 × ∆𝑅𝑎𝑑𝑐𝑙   (1) 

where 𝑐𝑓𝑟 is the cloud fraction of simulation r and ∆𝑅𝑎𝑑𝑐𝑙 is the change in outgoing radiation 

from cloudy areas only between simulations (s – r). The reference run (r) in Sections 2.4.1 – 

2.4.4 refers to the NoINP simulation while the sensitivity run (s) are simulations which include 

an INP parameterisation. In Section 2.4.5, the reference run (r) refers to a simulation which has 

no representation of SIP and the sensitivity run (s) to a simulation which includes SIP due to 

the Hallett-Mossop process.  The contribution of cloud fraction changes, i.e. the change in 

radiation that can be attributed to an area of clear sky in simulation s becoming cloudy in 
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simulation r or vice versa, to the total change in domain outgoing radiation (∆𝑅𝑎𝑑𝐶𝐹) is 

calculated using Eq. (2). 

∆𝑅𝑎𝑑𝐶𝐹 = (𝑅𝑎𝑑𝑟,𝑐𝑙 − 𝑅𝑎𝑑𝑟,𝑐𝑠) × ∆𝑐𝑓  (2) 

Where 𝑅𝑎𝑑𝑟,𝑐𝑙 is the mean outgoing radiation from cloudy regions in simulation r and 𝑅𝑎𝑑𝑟,𝑐𝑠 

is the mean outgoing radiation from clear sky regions in simulation r and ∆𝑐𝑓 is the difference 

in domain cloud fraction between simulations s and r (s-r). There is interaction between the 

outgoing radiation from cloudy regions and cloud fraction changes (∆𝑅𝑎𝑑𝐼𝑁𝑇) which is 

calculated in Eq (3). 

∆𝑅𝑎𝑑𝐼𝑁𝑇 = ∆𝑅𝑎𝑑𝑐𝑙 × ∆𝑐𝑓 + ∆𝑅𝑎𝑑𝑐𝑠 × (1 − 𝑐𝑓𝑠)  (3) 

Where ∆𝑅𝑎𝑑𝑐𝑠 is the change in mean outgoing radiation from clear sky areas between 

simulations s and r and 𝑐𝑓
𝑠 is the cloud fraction of simulation s. 

The total outgoing radiation difference between simulations s and r (∆𝑅𝑎𝑑𝑠−𝑟) is therefore 

calculated as shown in Eq. (4). 

∆𝑅𝑎𝑑𝑠−𝑟 = 𝑅𝑎𝑑𝑠 − 𝑅𝑎𝑑𝑟 = ∆𝑅𝑎𝑑𝑅𝐸𝐹𝐿 + ∆𝑅𝑎𝑑𝐶𝐹 + ∆𝑅𝑎𝑑𝐼𝑁𝑇  (4) 

The interaction term ∆𝑅𝑎𝑑𝐼𝑁𝑇 was found to be negligible and was therefore ignored for the 

purpose of this paper. 

 

2.3.1.4. Model simulations 

The conducted simulations are as follows: 

 Five simulations with different heterogeneous ice nucleation parameterisations (C86, 

M92, D10, N12 and A13) ((Figure 2.2) with a representation of the Hallett-Mossop 

process (SIP active). 
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 One simulation with no heterogeneous ice nucleation (NoINP), but with a 

representation of the Hallett-Mossop process (SIP active). 

 Five simulations with different heterogeneous ice nucleation parameterisations (C86, 

M92, D10, N12 and A13) (Figure 2.2.) without a representation of the Hallett-Mossop 

process (SIP inactive). 

The INP number concentration ([INP]) predicted by the five INP parameterisations (C86, M92, 

D10, N12, A13) are compared with the available measurements from the study region (Price 

et al., 2018; Welti et al., 2018) in Figure 2.2, including those taken during the ICE-D field 

campaign (Price et al., 2018). All parameterisations are in reasonable agreement with the 

measurements (and with each other) at around -17°C, but deviate strongly at higher and lower 

temperatures. It should be noted that all parameterisations tested in this work were developed 

between specific temperature ranges and extrapolation beyond these temperatures adds 

uncertainty. However, for the purposes of this paper and to allow a direct comparison between 

parameterisations, all parameterisations have been applied between 0 and -37°C. Importantly, 

the INP parameterisation slopes of the chosen parameterisations span the range used within 

regional models (from a shallow dlog10[INP (m-3)]/dT(°C) = -0.07  in M92 (Meyers et al., 1992) 

to a steep dlog10[INP(m-3)]/dT (°C)= -0.45 in A13 (Atkinson et al., 2013)). For the correlation 

analysis where model outputs were plotted against parameterisation slope (dlog10[(m
-

3)]/dT(°C)), a straight line was fitted to the D10 parameterisation between -3 and -37°C to 

obtain an approximate INP parameterisation slope. Other temperature ranges were tested and 

were found to have no notable effect on results. 

When analysing the simulation output, cloudy grid boxes were classed as those containing 

more than 10-5 kg kg-1 condensed water from cloud droplets, ice crystals, graupel and snow. 

Rain was not included to ensure analysis did not include areas below cloud base. Other cloud 

thresholds were tested and found to have no notable effect on the results. For cloud 
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categorisation into low, mid and high clouds, model vertical columns containing cloudy grid 

boxes were categorised by cloud altitude. Low cloud occurs below 4km, mid cloud between 4 

and 9 km and high cloud above 9 km. Columns with cloudy grid boxes in two or more cloud 

categories were classified as mixed category columns according to the vertical placement of 

the cloudy grid boxes, e.g. low/high for columns containing cloud below 4 km and above 9 km. 

4 and 9 km were chosen as the low/mid and mid/high division points because they are just 

below two well-defined peaks in cloud base heights (not shown) and roughly correspond to the 

beginning of the heterogeneous and homogeneous freezing regions, respectively. 

 

Figure 2.3.  Cloud field evolution. MODIS Terra (a) and Aqua (b) corrected reflectance 

images of the modelled domain for the 21st of August 2015 and the corresponding simulated 

top of atmosphere outgoing longwave radiation for the N12 simulation (c, d). Note that the 

colour bar relates to panels c and d only. Images shown in (a) and (b) are moderate 

resolution imaging spectroradiometer (MODIS) Corrected Reflectance imagery produced 

using the MODIS Level 1B data and downloaded from the NASA Worldview website. 
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Figure 2.4. Comparison of observed conditions from the b933 ICE-D field campaign flight on 

the 21st August 2015 and the modelled conditions. Vertical wind speed from the model and 

aircraft data (a), a 2D histogram of modelled vertical wind against cloud droplet number 

concentration (CDNC) (b) and altitude plotted against ice crystal number concentration 

(ICNC) (c) with the aircraft data overlaid. Modelled values are selected from clouds between 

10 and 150 km2 in size from the N12 simulation. 
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2.3.2. The observed case 

MODIS visible images of the 21st August 2015 are shown in Figure 2.3 (a, b) alongside 

snapshots of the TOA outgoing longwave radiation in one of our simulations (c, d). The 

simulated cloud field has more cloud-free areas than the satellite images but in general 

produces clouds similar to those shown in the satellite image and in approximately the correct 

location. Overall the simulations produce a complex and realistic cloud field. Snapshots of the 

simulated model TOA outgoing shortwave radiation are shown in Figure A2.1 of the appendix 

(Section 2.7).  

In-situ measurements of cloud and aerosol properties were made using the UK FAAM Bae-

146 research aircraft, which was flown from Praia, Cape Verde Islands. An extensive suite of 

in-situ aerosol and cloud particle instruments were operated onboard the aircraft and are 

described in detail in Lloyd et al. (2019). The aircraft penetrated the growing convective clouds 

at a range of altitudes from just below the freezing level up to -20°C.  In order to show that the 

model reproduces the observed conditions, the observational data were compared to the 

conditions in modelled clouds of similar size to those the aircraft flew in (10 – 150 km2) where 

a comparison was thought appropriate.  

Comparisons of a selection of simulated cloud properties with aircraft data are shown in Figure 

2.4. In-cloud measurements from the aircraft were selected using the same total water content 

threshold as for the model data (10-5 kg kg-1). Note that observational data only samples clouds 

along the 1D flight path, while model results include all grid points inside the selected clouds.  

The vertical wind and cloud droplet and ice number concentrations are shown Figure 2.4. The 

vertical wind speeds from the model and aircraft measurements agree well (Figure 2.4a). The 

aircraft data exhibit less measurements of vertical wind speeds above 10 m s-1 but that is 

expected since the aircraft was purposefully not flown in very high updraft speeds. The aircraft 
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cloud droplet number concentration (CDNC), measured using a Droplet Measurement 

Technique (DMT) cloud droplet probe, falls predominantly in the regions of parameter space 

most highly populated by model data when plotted against vertical wind speed (Figure 2.4b). 

Note that the simulated points in Figure 2.4b represent values of CDNC and updraft speed in 

all cloudy gridboxes, not just those at cloud base. The updraft speed is collocated with CDNC 

and therefore does not necessarily represent the updraft speed at which the cloud droplets were 

activated. The higher CDNC values exhibited in the model data may be due to the higher 

updraft speeds which were not measured by the aircraft. The observed ICNC was derived from 

measurements using the DMT Cloud Imaging Probes (CIP-15 and CIP-100) and the Stratton 

Park Engineering Company Stereoscopic optical array probe covering a size range from 10 to 

6200 µm using the SODA2 (System for OAP Data Analysis) processing code to reconstruct 

ice particle images that are fully contained within the probe sample volume. Because of 

uncertainties in the optical array probe sample volume for very small images, only ice particle 

images greater than 100 µm were included. The aircraft ICNC fall almost entirely within the 

range of the model values (Figure 2.4c).  

 

2.4. Results 

2.4.1. Effect of INP and INP parameterisation on outgoing radiation  

We first examine the effect of INP parameterisation on the outgoing radiation relative to the 

simulation where the only source of primary ice production was through homogeneous freezing 

(NoINP). Ice crystals formed via homogeneous freezing, which have been sedimented to lower 

levels can indirectly initiate ice production via the Hallett-Mossop process once converted to 

snow or graupel. When contrasting the effect of different INP parameterisations in Section 

2.4.1 to Section 2.4.5, the Hallett-Mossop process was always active including in the NoINP 
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simulation. As stated in Section 2.3.1.3, the radiation code is represented by SOCRATES 

(Edwards and Slingo, 1996; Manners et al., 2017), and responds to changes in cloud droplet 

number and cloud droplet, ice crystal and snow mass. The results detailed below relate to either 

the domain-wide properties or all in-cloud regions within the domain. This means that the 

results describe the direct and indirect changes, for example changes to the Hallett-Mossop ice 

production, occurring due to the presence of INP across all cloud present in the domain, 

including low-level liquid clouds, mixed-phase clouds without a convective anvil and very 

deep convective clouds with an anvil. The effects of INP parameterisation and SIP on 

convective anvils are discussed in Section 2.4.4 and 2.4.5. 

Domain-mean TOA outgoing radiation (daylight hours, shortwave plus longwave) is enhanced 

by the inclusion of INP in all cases (Figure 2.5a).  The enhancement in outgoing radiation 

varies between 2.6 W m-2 for D10 and 20.8 W m-2 for A13 relative to the NoINP simulation. 

There is a variation of up to 18.2 W m-2 depending on the chosen representation of 

heterogeneous ice nucleation, which shows that the INP parameterisation can affect outgoing 

radiation as much as excluding or including heterogeneous freezing altogether.  

Bear in mind that SIP was active (SIP active) in the simulations summarised in Figure 2.5a, 

including in the NoINP simulation in which the Hallett-Mossop process can be initiated by 

settling ice-phase hydrometeors (either by settling homogeneously frozen ice crystals 

subsequently converted to snow or graupel, or by settling snow or graupel formed from 

homogeneously frozen ice crystals at upper cloud levels), indicating that these cloud systems 

are sensitive to INP even in the presence of SIP. This is consistent with a comparatively small 

change in TOA radiation when SIP is active relative to when it is inactive (Figure 2.5b and 3c) 

(we discuss the role of SIP in more detail in Section 2.4.5). 
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Figure 2.5. Effect of INP and secondary production on TOA outgoing radiation. Effect of INP 

parameterisation (a) and SIP (a representation of the Hallett-Mossop process) (b) on 

domain-mean daytime TOA outgoing radiation and total domain-mean daytime TOA 

outgoing radiation plotted against INP parameterisation slope (c). In (a), the change from 

the NoINP simulation is shown (INP - NoINP) with SIP active. In (b), the change from SIP 

active to SIP inactive is shown (SIP active – SIP inactive). A positive value indicates more 

TOA outgoing radiation when INP or SIP are active. In (a) and (b), the relative contributions 

of changes in outgoing radiation from cloudy regions (left) and cloud fraction (middle) to the 

total radiative effect (right) are shown (calculation described in Section 2.3.1.3). In addition 

to the simulated values, a regression line (n=10) is shown in (c) along with its associated 

statistical descriptors. 
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Figure 2.6. Effect of INP on domain-mean daytime outgoing TOA shortwave and longwave 

radiation. The change from the NoINP simulation is shown (INP - NoINP). A positive value 

indicates more outgoing radiation when INP are present. The contributions of changes in 

outgoing radiation from cloudy regions (left) and cloud fraction (middle) to the total 

radiative forcing (right) are also shown. 

The slope of the INP parameterisation (i.e. the dependence of INP number concentration on 

temperature, dlog10[INP]/dT) is a key determinant of the outgoing radiation. There is a 

statistically significant correlation between INP parameterisation slope and total TOA outgoing 

radiation (r2 = 0.75, p < 0.01, n = 10) (Figure 2.5c). The difference in radiation between the 

NoINP and the simulations where INP are present are caused mainly by changes to outgoing 

shortwave radiation (Figure 2.6a). The inclusion of INP enhances outgoing shortwave radiation 

by between 5.3 W m-2 for D10 and 26.6 W m-2 for A13 (Figure 2.6a). Differences in outgoing 



62 

 

longwave radiation are comparatively small (-2.7 W m-2 for D10 to -5.8 W m-2 for A13; Figure 

2.6b) due to similar cloud top heights between simulations of these thermodynamically limited 

clouds.  

Changes in outgoing radiation due to the presence of INP are caused by a combination of 

changes to the outgoing radiation from cloudy regions, caused by changes in cloud structure 

and microphysical properties, and changes to domain cloud fraction, whose contributions to 

the total radiative difference are shown in Figure 2.5a (left and centre). In order to appreciate 

the reasons for these trends, we will now take a closer look at the effect of INP on outgoing 

radiation from cloudy regions only (Section 2.4.2) and changes to the domain cloud fraction 

(Section 2.4.3). 

2.4.2. Effect of INP and INP parameterisation on outgoing radiation from 

cloudy regions 

Here we discuss the changes in outgoing radiation from cloudy regions only due to INP 

parameterisation choice. Daytime outgoing radiation from cloudy regions increases due to INP 

for all but one INP parameterisation (Figure 2.7a). The absolute change in outgoing radiation 

from cloudy regions is between –0.8 (D10) and +28.1 (A13) W m-2, and the larger values are 

a result of large increases in reflected shortwave (up to +37.2 W m-2) and relatively moderate 

decreases in outgoing longwave radiation (up to –11.1 W m-2) from cloudy regions. The above 

absolute changes in outgoing radiation from cloudy regions contribute between –0.7 and +11.4 

W m-2 to the domain-mean change in outgoing radiation due to the presence of INP (Figure 

2.5a, cloudy regions contribution).  

The enhancement of outgoing radiation from cloudy regions due to INP is caused primarily by 

increases in cloud condensate relative to the NoINP simulation (Figure 2.7b). When INP are 
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included in a simulation, snow and cloud droplet water path are enhanced, causing increases in 

total cloud condensate, despite decreases (in all except A13) in ice crystal water path due to a 

reduction in ice crystal number and mass concentrations caused by a reduction in the 

availability of cloud droplets for homogeneous freezing. Snow, cloud droplets and ice crystals 

are the hydrometeors that affect outgoing radiation in CASIM and the combined water path of 

these three species is significantly positively correlated with cloud shortwave reflectivity (r2 = 

0.62, p < 0.01, n = 11) (Figure 2.7c).  In-cloud microphysical profiles of secondary and 

homogeneous ice particle production, ICNC and ice crystal, snow and graupel mass 

concentrations are shown in Figure 2.8. Profiles of the difference in out-of-cloud temperature 

and relative humidity, and in in-cloud updraft speed, between simulations including INP and 

the NoINP simulation are shown in Figure 2.9. 

The mechanism for the INP induced increase in cloud condensate and consequently cloud 

shortwave reflectivity shown in Figure 2.7 is as follows: When heterogeneous ice nucleation 

is active, liquid is consumed in the warmer regions of mixed-phase clouds because of increased 

heterogeneous ice nucleation (Figure 2.2) and SIP (Figure 2.8a). The resultant additional ice 

crystals in mixed-phase regions (Figure 2.8c, d) facilitate riming causing increases in snow and 

graupel (Figure 2.8e, f), increasing snow water path and reflectivity in mixed-phase and ice 

clouds. At the same time, the enhanced production of relatively heavy snow and graupel 

increases precipitation which on melting to form rain below the freezing level and subsequent 

evaporation below 4 km, reduces out-of-cloud temperature and increases relative humidity 

(Figure 2.9a, b). This leads to increases in water path in low-level liquid clouds and thus an 

enhancement in their shortwave reflectivity.  
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Figure 2.7. INP and outgoing radiation from cloudy regions. Absolute change in outgoing 

shortwave, longwave and total radiation from cloudy regions relative to the NoINP 

simulation (a), the percentage change in water path (WP) associated with snow (S), ice 

crystals (IC) and cloud droplets (CD) relative to the NoINP simulation (b), and mean 

daytime outgoing shortwave from cloudy regions plotted against the sum of S, IC and CD 

water paths (c). Note different scale for CD water path in (b). In addition to the simulated 

values, a regression line (n=11) is shown in (c) along with its associated statistical 

descriptors. 
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Figure 2.8. Profiles of some microphysical properties of the simulated clouds.  Mean in-cloud 

ice particle production rates from secondary (a) and homogeneous (b) freezing, ICNC (c), ice 

crystal (d), snow (e), and graupel (f) mass concentrations. 
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However, increases in total cloud condensate alone cannot account for the differences in 

outgoing radiation from cloudy regions between simulations using different INP 

parameterisations, which are caused by a combination of cloud microphysical responses. We 

find that outgoing radiation from cloudy regions is significantly negatively correlated with INP 

parameterisation slope (r2 = 0.63, p < 0.01, n = 10) (Figure 2.10a), i.e. simulations using a steep 

INP parameterisation have a higher outgoing radiation from cloudy regions. This result makes 

sense when we consider the relationships between INP parameterisation slope and a multitude 

of cloud microphysical properties affecting cloud radiative properties.  

In particular, a steep INP parameterisation results in a mixed-phase cloud region characterised 

by a higher ice crystal water path aloft (r2 = 0.80, p < 0.01, n = 10; Figure 2.10b) and higher 

cloud droplet number concentrations at the bottom of the mixed-phase region (r2 = 0.89, p < 

0.01, n = 10; Figure 2.10c) when compared to shallower parameterisations. A steeper INP 

parameterisation slope allows increased transport of liquid to upper cloud levels due to lower 

rates of heterogeneous freezing at the mid-bottom region of the mixed-phase cloud (lower 

supercooling, Figure 2.2) and SIP at high temperatures (Figure 2.8a). This, combined with 

higher INP concentrations at low temperatures (Figure 2.2), increases ICNC and ice crystal 

mass concentrations at upper mixed-phase altitudes, as well as enhancing the lifetime of liquid 

cloud droplets at lower altitudes in the mixed-phase region when compared to shallower INP 

parameterisations.  
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Figure 2.9. Effect of INP on domain-mean out of cloud temperature (a) and relative humidity 

(b), and in-cloud updraft speed (c). The difference from the NoINP simulation is shown, a 

positive value indicates a higher value when INP is present.   
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Figure 2.10. Outgoing radiation from cloudy regions and INP parameterisation slope. 

Scatter plots of INP parameterisation slope and total daytime outgoing radiation from cloudy 

regions (a), in-cloud mean ice crystal (cloud ice only) water path (b), and in-cloud cloud 

droplet number concentrations at the start of the mixed-phase region (5 km) (c). Also shown 

are the respective regression lines (n=10) and associated statistical descriptors. 
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2.4.3. Effect of INP and INP parameterisation on cloud fraction 

Overall cloud fraction is increased by INP for all INP parameterisations and these increases in 

cloud fraction contribute about as much to changes in domain-mean radiation as the changes 

in outgoing radiation from cloudy regions (Figure 2.5a, cloud fraction contribution). Increases 

in domain cloud fraction due to INP are driven by cloud cover increases in the warm and mixed-

phase regions of the cloud (~ 4 -6 km), offset somewhat by decreases in the cloud fraction due 

to reduced homogeneous freezing in the ~ 10 - 14 km regime (Figure 2.11a).  

Cloud fraction increases at mid-levels (4-9 km) occur because heterogeneous ice nucleation 

induces an increase in precipitation-sized particles (snow and graupel) which sediment to lower 

levels and moisten the atmosphere by evaporation (Figure 2.9a, b). This increases new cloud 

formation and may prolong the lifetime of existing cloud cells. Additionally, increased droplet 

freezing and riming in the mixed-phase cloud region releases latent heat and invigorates cloud 

development with increases in updraft speed just above 4 km (Figure 2.9c). The increased cloud 

fraction at mid-levels due to INP are partially offset by a reduced cloud fraction above 10 km 

(Figure 2.11a) which is caused by an INP induced enhancement in freezing and riming in the 

mixed-phase region reducing moisture transport to the homogeneous freezing regime and 

consequently ICNC (Figure 2.9c). 

The effects of INP on the altitude profile of cloud fraction are strongest for shallow INP 

parameterisation slopes, which have a freezing profile most different to that of the NoINP 

simulation (Figure 2.11a). At 5 km, the shallowest parameterisation (M92) causes the largest 

increase in cloud fraction, while the steepest parameterisation (A13) causes the smallest (r2 = 

0.83, p < 0.05, n = 5). At 12 km, the order is reversed, and steep parameterisations exhibit the 

highest cloud fraction of simulations with active INP (r2 = 0.94, p < 0.01, n = 5).  
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Figure 2.11. Cloud fraction and INP parameterisation slope. Domain-mean cloud fraction 

profile (a), INP parameterisation slope plotted against ice crystal number concentration at 

10 km (b) and mass ratio of ice crystals to snow plus graupel at 12 km (c). Also shown in (b) 

and (c) are the respective regression lines (n=10) and associated statistical descriptors. 
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The largest cloud fraction-induced increases in outgoing radiation relative to the NoINP 

simulation (Figure 2.5a) are seen in simulations using steeper INP parameterisations because 

these simulations exhibit higher cloud fractions at high altitudes (~12 km), translating into the 

higher total cloud fraction. These slope dependent changes in cloud fraction are explained by 

a relationship between cloud fraction and several microphysical properties affecting cloud 

fraction. For example, steeper INP parameterisations produce higher ICNC at the top of the 

mixed-phase region (10 km) as well as higher ratios of ice crystal mass to snow and graupel 

mass within the homogeneous freezing region (12 km) (Figure 2.11b, c). A higher number and 

mass of ice crystals relative to those of larger precipitation-sized hydrometeors with the 

steepest parameterisations results in lower frozen hydrometeor sedimentation, a longer cloud 

lifetime and a higher cloud fraction. 

 

2.4.4. Effect of INP and INP parameterisation on cirrus anvils 

Our results show that the INP parameterisation affects the properties and spatial extent of cirrus 

anvils. We define cirrus anvils to be regions where cloud is present above 9 km only (further 

details available in Sect. 2.3.1.4). 2D aerial images of cloud categorisation (Figure 2.12a-f) 

show well-defined regions of anvil cloud (light blue - H) surrounding a large convective system 

containing clouds at a range of altitudes from <4 km to >9 km. There are clearly differences in 

the extent and position of cloud categories between simulations (Figure 2.12a -f). 
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Figure 2.12. Vertical composition of cloud. 2D distribution of cloud type at 20:00 for all six 

SIP active simulations (a-f), as well as anvil and domain cloud fraction change due to INP 

(g) and due to SIP (h). Clouds are categorised according to their altitude into low (L, <4 

km), mid (M, 4-9 km) and high (H, >9 km) levels and mixed category columns if cloud 

(containing more than 10-5 kg kg-1 condensed water from cloud droplets, ice crystals, snow 

and graupel) was present in more than one of these levels (a more detailed description can be 

found in Sect. 2.1.4). A positive value in (g) or (h) indicates higher values when INP (g) or 

SIP (h) are active. 



73 

 

The presence of INP reduces convective anvil extent by between 2.1 and 4.1% of the domain 

area depending on the choice of INP parameterisation (Figure 2.12 g), corresponding to a 

decrease in anvil cloud of between 22 and 53% relative to the NoINP simulation (not shown). 

The reduction in anvil extent in the presence of INP is caused by increased liquid consumption 

at all mixed-phase levels, due to heterogeneous freezing, enhanced SIP and increased graupel 

and snow production, reducing the availability of cloud droplets for homogeneous freezing 

(Figure 2.8b), reducing ICNC at cloud-top, and reducing cloud fraction at high altitudes (Figure 

2.11a) and cloud anvil extent (Figure 2.12g).  

Reductions in anvil extent caused by INP are somewhat offset by the overall increases in cloud 

fraction across the domain (Figure 2.12g). However, it is possible that the effect of INP and 

INP parameterisation choice on anvil cloud fraction, and the contribution of anvil cloud to 

overall cloud fraction and radiative changes, would become larger with a longer analysis 

period. This is because detrained convective anvils can persist longer in the atmosphere than 

the convective core that creates them (e.g. Luo and Rossow, 2004; Mace et al., 2006), but this 

is beyond the scope of the current study.  

 

2.4.5. Importance of secondary ice production 

It has been argued that the observed (or derived) primary ice particle production rate is 

unimportant for convective cloud properties when secondary ice production (SIP) is active (e.g. 

Fridlind et al., 2007; Heymsfield and Willis, 2014; Ladino et al., 2017; Lawson et al., 2015) 

because primary ice crystal concentrations are often overwhelmed by ice crystals formed via 

SIP (Field et al., 2017). However, the results shown in Figure 2.5a (in which the simulations 

included SIP) do not support this argument. We find that the microphysical and radiative 
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properties of the cloud field depend strongly on the properties of the INP even when SIP due 

to the Hallett-Mossop process occurs. Furthermore, the effect of including SIP on daylight 

domain-mean outgoing radiation varies between –2.0 W m-2 and +6.6 W m-2 (Figure 2.5b), 

showing that the presence of the Hallett-Mossop process has a smaller effect than the INP 

parameterisation and that the sign and magnitude of this effect depends on the INP 

parameterisation. The mean effect on daylight domain-mean outgoing radiation of including 

INP is +9.8 W m-2 whereas the mean effect of including SIP via the Hallett-Mossop process is 

+2.9 W m-2. Therefore, rather than primary ice being simply overwhelmed by SIP, it actually 

determines how SIP affects cloud microphysics. The changes in domain-mean outgoing 

shortwave and longwave due to the inclusion of the Hallett-Mossop process can be seen in 

Figure A2.2 in the appendix (Section 2.7). Other mechanisms of SIP have been proposed (Field 

et al., 2017; Korolev and Leisner, 2020; Lauber et al., 2018) and the impact of INP on cloud 

properties in the presence of these mechanisms, particularly those present at temperatures 

below 10°C such as droplet shattering (Lauber et al., 2018), should be tested in future but was 

beyond the scope of the present study. 

The effect of SIP on the radiative properties of the cloud field is dependent on INP 

parameterisation choice, both in magnitude and sign of change (Figure 2.5b). SIP makes the 

clouds more reflective independent of the chosen parameterisation (Figure 2.5b, cloudy regions 

contribution) due to increases in snow and cloud droplet water path. N12 and A13 have the 

largest overall radiative response to SIP because changes to the radiative forcing from cloudy 

regions and cloud fraction contributions act to increase outgoing radiation (Figure 2.5b). 

However, the cloud fraction response to SIP is opposite for C86, M92 and D10 meaning the 

cloudy regions and cloud fraction contributions act in opposite directions, reducing the total 

radiative forcing. 
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The different response of the domain cloud fraction to the presence of SIP is caused by 

substantial variation between simulations in the anvil cloud extent (Figure 2.12h), from an 

increase of 10% (+0.9% of the domain area) in N12 to a decrease of 40% (-3.6% of the domain 

area) in M92 (Figure 2.12h). These non-uniform changes in cloud fraction and outgoing 

radiation can be explained by differences in the response of cloud freezing profiles to SIP due 

to variations in INP parameterisation slope. For all INP parameterisations, the Hallett-Mossop 

process consumes liquid in the Hallett-Mossop cloud region and therefore reduces the 

availability of liquid at higher altitudes. For shallower parameterisations such as M92 this 

causes a reduction in the amount of cloud droplets reaching the homogeneous freezing regime 

and thereby reduces ICNC and cloud anvil spatial extent.  

However, in simulations using a steep parameterisation, almost all available droplets are frozen 

heterogeneously before they reach the homogeneous regime (see reduced homogeneous ice 

production rates in N12 and A13 in Figure 2.8b). Therefore, in simulations using a steeper 

parameterisation, such as N12, a reduction in liquid availability due to SIP occurs at the top of 

the heterogeneous freezing regime, reducing the availability of liquid for riming, causing a 

reduction in frozen hydrometeor size at high altitudes, a reduction in hydrometeor 

sedimentation and an increase in anvil extent.  

The effects of INP parameterisation slope and the Hallett-Mossop process on the simulated 

cloud field properties are summarised in Figure 2.13. Overall, our simulations show that INP 

parameterisation choice, and particularly the temperature dependence of the INP 

parameterisation, are important determinants of cloud field micro- and macrophysical 

properties, even when SIP is active. We also find that the choice of INP parameterisation affects 

the cloud field response to SIP. 
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Figure 2.13. Schematic of the main effects of INP parameterisation slope (i.e. a steep (a) or 

shallow (b) temperature dependence of INP number concentrations) and the role of the 

Hallett-Mossop process on the simulated cloud field (c). 

 

2.5. Limitations of this modelling study 

The lack of consideration of ice and snow particle number by the SOCRATES radiation scheme 

is an important limitation of the results presented here. Changes to ICNC (Figure 2.8c), without 

a co-occurring change in ice crystal mass concentrations, will not be reflected in modelled 

radiative fluxes. However, our results are still very relevant for climate model simulations as 

climate models do not typically account for ICNC in their radiation calculations and have 

frequently been shown to poorly represent ice crystal mass concentrations (Baran et al., 2014; 
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Waliser et al., 2009). The SOCRATES representation of radiation with a dependence on ice 

mass is a more accurate and realistic representation of radiation than is seen in many climate 

models which often derive bulk optical properties using empirically derived deterministic 

relationships between ice particle size and environmental temperature and/or ice water content 

(Baran et al., 2014; Edwards et al., 2007; Fu et al., 1999; Gu et al., 2011). However, the effect 

of INP parameterisation on deep convective clouds radiative properties using a radiation code 

that considers ice particle number should be explored in future studies. The sensitivity of the 

cloud field to the chosen INP parameterisation and SIP indicates the importance of accurately 

representing ice water content in climate models and linking this ice water content to ice-

nucleating particle type. 

Another limitation of the SOCRATES radiation code is its lack of consideration of rain and 

graupel particles. The effects of these hydrometeors are expected to be less than that of ice, 

snow and cloud droplets as they precipitate faster and therefore have a shorter lifetime. 

Furthermore, the effect of graupel on the tropical longwave radiative effect has been found to 

be negligible and dwarfed by that of snow (Chen et al., 2018). The global radiative effect of 

rain has also been found to be small in the vast majority of cases even at high temporal and 

spatial resolution (Hill et al., 2018). The effect of the incorporation of these hydrometeors into 

radiative transfer parameterisations should however be tested in future studies. 

Future work should also conduct a similar experiment including the night-time radiative fluxes 

in the analysis. This would enhance the importance of changes in the longwave outgoing 

radiation relative to the shortwave radiation. Our simulation length prohibited us from 

including all night-time hours in our analysis once spin-up was excluded, and therefore the 

radiative effects of INP and SIP presented apply only to the daytime hours. The effect of 

including the night-time hours in the calculation of the effect of INP and SIP on outgoing 

longwave radiation was tested and found to cause no notable differences. 
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The use of both aerosol-dependent (D10, N12, A13) and solely-temperature dependent (C86, 

M92) parameterisations in this study means that we have examined the radiative sensitivity of 

a complex cloud field to a larger variety of INP parameterisations used in weather and climate 

models than if we had exclusively used parameterisations that consider aerosol concentration. 

However, this experimental design has limitations. For example, due to the lack of aerosol 

dependence of the C86 and M92 schemes a ‘presumed ’dust concentration is implicitly present 

in these two cases and remains uniform throughout the simulation period. The effect of INP 

parameterisation choice on convective cloud field properties should also be examined with the 

inclusion of aerosol scavenging but this was beyond the scope of this study. 

Raindrop freezing was parameterised according to Bigg (1953). This parameterisation is 

volume and temperature based, and is therefore inconsistent with the changes in the 

heterogeneous freezing parameterisation of cloud droplets detailed in this chapter. Ideally the 

treatment of raindrops would be consistent with that of cloud droplets and this should be 

addressed in future studies. In studies, such as this, where processing is inactive, the rate of 

raindrop freezing should be linked to the interstitial aerosol concentration. Where processing 

is active, raindrop freezing would ideally take into account the accumulation of INP in large 

droplets due to the collision and accumulation of multiple aerosol-containing cloud droplets. 

For example, Paukert et al. (2017) developed a two-moment microphysical scheme that allows 

for the aerosol dependent heterogeneous freezing of raindrops by tracking the number of 

aerosol particles accumulated in raindrops by accretion, self-collection, and auto-conversion. 

This was beyond the scope of the current study but would be the ‘gold standard’ approach for 

future studies. 

Our results showed that an enhancement in cloud updraft strength due to increased freezing 

was partly responsible for cloud fraction increases in the mixed-phase region.  Cloud 

invigoration due to aerosols has been documented previously (e.g. Fan et al., 2010a, 2010b, 
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2012; van den Heever et al., 2006; Tao et al., 2012) and is most frequently discussed in relation 

to increased CCN concentrations or an overall aerosol increase (i.e. affecting both CCN and 

INP concentrations) (e.g. Altaratz et al., 2014; Fan et al., 2012; Lerach et al., 2008; Seifert and 

Beheng, 2006; Wang, 2005). However, cloud invigoration due to enhanced INP concentrations 

and the associated increased latent heat release of heterogeneous freezing has also been 

documented (Altaratz et al., 2014; Fan et al., 2010a, 2010b; van den Heever et al., 2006). Here, 

we see an invigoration effect due to changes in the altitude of ice formation with different 

heterogeneous ice formation parameterisations. The relative importance and strength of this 

invigoration relative to changes that would be induced from CCN changes should be examined 

in future studies. 

This study utilised our best estimate of ice production by the Hallett-Mossop process (Connolly 

et al., 2006; Hallett and Mossop, 1974; Mossop, 1985), the most well-studied SIP mechanism, 

to try and understand the effect of the process, as currently understood, on deep convective 

cloud properties. The work indicates that INP concentrations at all mixed phase temperatures 

can be important for cloud properties even in the presence of the Hallett-Mossop process, and 

that the impact of the Hallett-Mossop process depends on INP number concentrations. The 

dependence of the rate of ice production by the Hallett-Mossop process on INP number 

concentrations (Figure 2.8a) in particular highlights that the role of SIP in clouds may be 

dependent on INP. However, the rate of ice production by the Hallett-Mossop process is very 

uncertain and other mechanisms of SIP have also been proposed (Field et al., 2017). We 

recommend that similar studies examining the effect of INP should be conducted with the 

inclusion of other proposed SIP mechanisms. In particular, Lloyd et al. (2019) suggests that 

droplet shattering may be occurring in the clouds sampled during the ICE-D field campaign. 

However, this was beyond the scope of the present study due in part to the lack of quantification 

and parameterisations for these other mechanisms (Field et al., 2017). The work presented in 
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Chapter 3 will attempt to overcome some of the above caveats by using statistical emulation 

(Johnson et al., 2015b) to examine the interacting effects of dust number concentration, INP 

parameterisation slope and SIP in an idealised deep convective cloud.  

 

2.6. Conclusions 

We quantified the effect of INP parameterisation choice on the radiative properties of a deep 

convective cloud field using a regional model with advanced double-moment capabilities. The 

simulated domain exceeds 600,000 km2 and therefore captures the effects of INP and INP 

parameterisation on a typical large, complex and heterogeneous convective cloud field. The 

presence of INP increases domain-mean daylight TOA outgoing radiation by between 2.6 and 

20.8 W m-2 and the choice of INP parameterisation can have as large an effect on cloud field 

properties as the inclusion or exclusion of INP. These effects are evident even in the presence 

of SIP due to the Hallett-Mossop process, refuting the hypothesis that INP is irrelevant beyond 

a minimum concentration needed to initiate the Hallett-Mossop process (Crawford et al., 2012; 

Ladino et al., 2017; Phillips et al., 2007). Furthermore, the effects of SIP on the cloud field 

properties are strongly dependent on INP parameterisation choice. Both the magnitude and 

direction of change in cloud fraction and total outgoing radiation due to SIP varies according 

to INP parameterisation choice. Microphysical alterations to cloud properties are important 

contributors to radiative differences between simulations, in agreement with previous studies 

documenting the effect of aerosol-cloud interactions to the radiative forcing by deep convective 

clouds (Fan et al., 2013). For example, increasing cloud condensation nuclei concentrations, 

with no perturbations to INP, was shown to increase cloud albedo and cloud fraction, deepen 

clouds and increase TOA outgoing radiation by 2-4 W m-2 (Fan et al., 2013). Here we find that 

even for the same aerosol and CCN concentrations, just altering the relationship between 
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aerosol concentration and ice-nucleating ability can cause changes in daylight TOA outgoing 

radiation of up to 18.2 W m-2 in our domain.  

Our results indicate that the slope of the INP parameterisation with respect to temperature 

(dlog10[INP]/dT) is particularly important: Outgoing total radiation, along with many cloud 

field and microphysical properties affecting radiation, were significantly correlated with INP 

parameterisation slope. Best practise for accurately representing INP number concentrations 

based on current knowledge is to utilise parameterisations that link aerosol number and particle 

size to INP number concentration (e.g. D10, N12, A13) but that is not enough without also 

using a parameterisation in which the temperature dependence of the INP number 

concentrations matches reality; the largest differences in domain outgoing radiation existed in 

this study between simulations using aerosol dependent parameterisations (D10 and A13). 

These large variations in outgoing radiation between simulations using different aerosol 

dependent INP parameterisations justifies investment in observational campaigns to more 

effectively constrain the range of expected INP concentrations and parameterisation slopes in 

the Saharan dust outflow region, and other regions dominated by maritime deep convective 

activity.   

The significance of the slope of the INP parameterisation indicates the potential importance of 

accounting for differences in aerosol composition in modelling studies. For example, INP 

derived from marine organics (Wilson et al., 2015) have a shallower slope than mineral dust 

INP (Atkinson et al., 2013; Niemand et al., 2012). Furthermore, real-world INP concentrations 

are known to have complex temperature dependencies with biological INP, such as soil borne 

fungus and plant related bacteria, making significant contributions at the warmest temperatures 

and mineral components being more important at lower temperatures (O’Sullivan et al., 2018). 

The ice-nucleating temperature dependence of mineral dust (and other aerosol types) can also 

be substantially altered by the adsorbtion of biological material such as ice-nucleating 
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macromolecules from fungi, pollen and bacteria on particle surfaces complicating the picture 

further (Augustin-Bauditz et al., 2016; Chen et al., 2021; O’Sullivan et al., 2016). The vast 

majority of models do not account for the complex multi-component composition of aerosol 

populations and individual aerosol particles which determines the real world ice-nucleating 

temperature dependence. The work here suggests that the presence of biological INP might be 

to reduce liquid water transport to the upper levels of the cloud, reducing cirrus anvil extent, 

but also to increase low cloud fraction. Nevertheless, measurements in the eastern tropical 

Atlantic indicate that biological INP in the Saharan dust plumes is at most a minor contribution 

and that the parameterisations with shallow slopes in Figure 2.2 likely produce too much 

glaciation at warm temperatures (e.g. Price et al., 2018).  

The results presented here also present a new framework for understanding the effect of SIP 

by identifying a potential relationship between the effect of the Hallett-Mossop process and 

INP parameterisation slope. The significance of INP parameterisation slope also highlights the 

importance of characterising the INP concentration across the entirety of the mixed-phase 

temperature range rather than just at one temperature, or in a narrow temperature range, as is 

common in many field campaigns. For example, in the ICE-D field campaign, INP 

concentrations at temperatures above -7 and below -27°C were not measurable due to 

experimental and sampling constraints (Price et al., 2018). Measuring INP over the entire 

mixed-phase temperature range, throughout which deep convective clouds extend, conceivably 

covering around 10 orders of magnitude in INP number concentration, represents a major 

experimental challenge. This issue is compounded by the fact that INP spectra cannot reliably 

be extrapolated to higher or lower temperatures since our underpinning physical understanding 

of what makes an effective nucleation site is lacking (Coluzza et al., 2017; Holden et al., 2019; 

Kanji et al., 2017; Kiselev et al., 2016).  This work demonstrates the importance of solving 

these problems and measuring INP number concentrations across the entirety of the mixed-
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phase temperature spectrum, as has been demonstrated in previous work (e.g. Liu et al., 2018; 

Takeishi and Storelvmo, 2018). 

 

2.7. Appendix 

 

Figure A2.1. The cloud field. Simulated top of atmosphere outgoing shortwave radiation for 

the N12 simulation at 10:30 (a) and 13:30 (b). 
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Figure A2.2. Effect of the Hallett-Mossop process on domain-mean daytime outgoing TOA 

shortwave and longwave radiation. The change from the SIP inactive simulation is shown 

(SIP active – SIP inactive). A positive value indicates more outgoing radiation when the 

Hallett-Mossop process is active. The contributions of changes in outgoing radiation from 

cloudy regions (left) and cloud fraction (middle) to the total radiative forcing (right) are also 

shown. 
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Chapter 3: Influence of ice-nucleating particles 

and Hallett-Mossop ice production rates on anvil 

cirrus from deep convection 

Chapter 3 is based on collaborative work from the manuscript ‘Effect of ice-nucleating particles and 

Hallett-Mossop ice production rates on anvil cirrus from deep convection” which is in preparation for 

submission. The candidate is the lead author and the full author list is as follows: 

Rachel E. Hawker*1, Annette K. Miltenberger2, Jill S. Johnson1, Jonathan M. Wilkinson3, Adrian 

A. Hill3, Ben J. Shipway3, Paul R. Field1, 3, Benjamin J. Murray1, Ken S. Carslaw1 

1. Institute for Climate and Atmospheric Science, University of Leeds, Leeds, LS2 9JT, United 

Kingdom. 

2. Institute for Atmospheric Physics, Johannes Gutenberg University Mainz, Mainz, 55128, Germany. 

3. Met Office, Exeter, EX1 3PB, United Kingdom. 

 

Author contributions: Rachel E. Hawker, Annette K. Miltenberger, Jill S. Johnson, Ken S. Carslaw, 

Paul R. Field and Benjamin J. Murray contributed to the design, development and direction of the study. 

Annette K. Miltenberger and Rachel E. Hawker set up a default deep convective simulation in the 

MONC-CASIM model. Jill S. Johnson provided the base R code needed for the uncertain input 

parameter combination selection and to carry out the statistical emulation and uncertainty analysis, and 

provided advice about statistical emulation and uncertainty analysis throughout. Rachel E. Hawker 

carried out the model development in the MONC-CASIM code to build the base case simulation and 

allow for the perturbations to the uncertain input parameters determined by the sampling design, used 

and modified the R code to select the uncertain input parameter combinations, ran all MONC-CASIM 

simulations presented here, conducted all analysis and wrote the manuscript. Jonathan M. Wilkinson, 

Adrian A. Hill and Ben J. Shipway built and maintained the Met-Office CASIM model used to run the 

simulations. Rachel E. Hawker, Annette K. Miltenberger, Jill S. Johnson, Ken S. Carslaw, Paul R. Field 

and Benjamin J. Murray edited the manuscript.  
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3.1. Abstract 

The formation of ice crystals in the mixed-phase region of deep convective clouds is important 

for cloud glaciation and anvil properties, which in turn affect cloud radiative properties. Small 

ice crystals in the mixed-phase cloud region can be formed by two mechanisms: heterogeneous 

ice nucleation by ice-nucleating particles (INP) and secondary ice production (SIP) by, for 

example, the Hallett-Mossop process. The representation of these ice formation processes in 

cloud and numerical weather prediction models is highly uncertain. We we use a Latin 

hypercube sampling method and statistical emulation to quantify the effect of varying INP 

number concentration, INP parameterisation slope (i.e. the temperature dependence of the INP 

number concentration in the mixed-phase temperature region) and the Hallett-Mossop splinter 

production rate on the anvil properties of an idealised deep convective cloud. Overall, the anvil 

ICNC is substantially reduced at high INP number concentrations owing to a reduction in 

homogeneous ice production when heterogeneous freezing becomes the dominant mechanism 

for primary ice production. Furthermore, at shallow INP parameterisation slopes, there is a 

sharp transition to a cloud regime with larger anvil ice crystals and a more extensive anvil. This 

regime shift is driven by more extensive cloud glaciation which is in part caused by higher INP 

number concentrations at warm mixed-phase temperatures in simulations with shallow INP 

parameterisations slopes enhancing the ice particle production by the Hallett-Mossop process. 

These enhanced ice particle production rates by the Hallett-Mossop process cause more 

extensive cloud glaciation and  an invigoration effect due to enhanced latent heat release from 

Hallett-Mossop freezing and the resultant enhancement in riming, deposition, and snow and 

graupel formation. This enhances the vertical mass flux and condensate divergence at the 

outflow level. This work highlights the importance of quantifying the full spectrum of INP 

number concentrations across all mixed-phase altitudes, and furthers our understanding of the 

interactions of INP with secondary ice production mechanisms. 
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3.2. Introduction 

Deep convective clouds are an important component of the global hydrological cycle and 

radiative budget (Lohmann et al., 2016; Massie et al., 2002). The anvil cirrus cloud they 

produce can persist in the atmosphere for several hours to a few days and therefore impact 

outgoing radiation for long after the deep convection has decayed (Luo and Rossow, 2004). 

However, accurately representing the spatial and temporal complexity of large convective 

systems and therefore convectively generated cirrus presents extensive challenges for 

atmospheric modelling (Prein et al., 2015). 

Deep convective cloud systems extend vertically from the boundary layer to the tropopause 

and can have a horizontal radius of over 1000 km. They are dynamic and powerful systems 

with updraft speeds of up to 50 m s-1 (Frank, 1977; Musil et al., 1986; Xu et al., 2001). In 

addition, a multitude of different thermodynamic and microphysical conditions can exist within 

the same system. There is a scarcity of measurements of these climatically important clouds, 

particularly profile measurements within the convective core (Fan et al., 2016), and thus a 

scarcity of data with which to validate representations of deep convective clouds in models.  

The myriad of competing microphysical processes operating within deep convective clouds, 

along with the difficulty in validating model simulations against observations, cause the 

simulation of deep convective clouds to be subject to a large number of parametric and 

structural uncertainties (Johnson et al., 2015b; Wellmann et al., 2018). In particular, mixed-

phase microphysics presents a challenge for cloud modelling because it is critical for deep 

convective cloud properties and very poorly understood (Prein et al., 2015). 

One of the largest uncertainties in quantifying aerosol-cloud interactions and the resultant 

climate impacts is the amount of, and balance between, liquid and ice in mixed-phase clouds. 

In particular, the representation of microphysical processes affecting cloud phase in tropical 
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convection contributes substantial uncertainty to the simulated climate response to global 

warming in climate models (Medeiros et al., 2008; Stevens and Bony, 2013). The 

representation of the amount of ice within deep convective clouds is also important for the 

representation of the amount and intensity of precipitation, the prediction of which is one of 

the most socially and economically important roles of numerical weather forecasting 

(Arakawa, 2004; Prein et al., 2015).  

Within the mixed-phase region of deep convective clouds, the region between 0 and ~-38°C 

where both liquid and ice can coexist, we hypothesise that three variables controlling ice 

production strongly influence the partitioning of condensate into cloud liquid and ice. These 

are the total number concentration of potential INP (aerosol particles with the ability to initiate 

the freezing of cloud droplets at temperatures between 0 and -38°C), the temperature 

dependence of INP number concentration (the rate of increase in ambient INP number 

concentrations as temperature decreases from ~0 to ~-38°C) and the presence/absence or rate 

of ice production by secondary ice production mechanisms (SIP, whereby small ice particles 

are produced from existing hydrometeors). 

The number concentration of potential INP in the atmosphere is extremely variable and 

depends on several interacting factors. For example, the export of Saharan dust, an efficient 

INP at temperatures below -15°C, and the largest component by mass of the global aerosol 

budget (Tang et al., 2016; Textor et al., 2006), across the Atlantic Ocean varies hugely, 

depending on factors such as season (Ridley et al., 2012), desert soil moisture (Laurent et al., 

2008), local wind speed (Grini et al., 2005; Laurent et al., 2008) and the occurrence and 

intensity of convection (Bou Karam et al., 2014; Marsham et al., 2011; Provod et al., 2016) 

both in source (Heinold et al., 2013) and transport regions (Sauter et al., 2019; Twohy and 

Twohy, 2015). As a result of variations in dust emission and transport, summertime INP 
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number concentrations in the Saharan Air Layer can vary by up to four orders of magnitude at 

-33°C (Boose et al., 2016b).  

Variations in INP number concentrations can impact cloud properties and cloud radiative 

forcing (Shi and Liu, 2019; Solomon et al., 2018). However, the reported effect of changes to 

INP number concentrations on cloud properties can be non-linear, counterintuitive or 

conflicting depending on the environmental conditions, magnitude of the tested perturbation, 

or study methodology (Deng et al., 2018; Fan et al., 2010b, 2010a; Gibbons et al., 2018; 

Hawker et al., 2021; van den Heever et al., 2006; Phillips et al., 2005, 2007).  

A large number of aerosol types have been shown to have the ability to act as INP, including 

mineral dust (Atkinson et al., 2013; Niemand et al., 2012; Price et al., 2018; Welti et al., 2018), 

organic material in sea spray (McCluskey et al., 2018; Wilson et al., 2015), bacteria (Šantl-

Temkiv et al., 2015), and pollen (Diehl et al., 2002).  The temperature dependence of INP 

number concentration, which determines the concentration of INP at lower mixed-phase 

altitudes, depends, amongst other factors, on the aerosol type providing INP in a given scenario. 

For example, INP comprised of marine organics emitted with sea spray tend to have a shallower 

temperature dependence than INP comprised of mineral dusts which means they have a higher 

ice-nucleating ability at warm temperatures, but lower ice-nucleating ability at colder 

temperatures (DeMott et al., 2016; McCluskey et al., 2018; Wilson et al., 2015) (Atkinson et 

al., 2013; Niemand et al., 2012; Vergara-Temprado et al., 2017).  

In numerical weather and climate models, which represent heterogeneous ice nucleation using 

parameterisations, the temperature dependence of INP number concentrations can be described 

by the slope of the INP parameterisation (i.e. d(log10[INP])/dT as described in Hawker et al. 

(2021)). The INP parameterisation slope depends on aerosol type (DeMott et al., 2010; 

Harrison et al., 2016, 2019) and any aging the aerosol has been subjected to (Boose et al., 

2016b; Brooks et al., 2014) as well as aerosol properties yet to be fully understood, such as 
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surface morphology (Holden et al., 2019). The INP slope of any one aerosol population 

(composed of different INP types) is extremely uncertain and difficult to accurately predict 

without specific measurements. Variation in ice nucleation active site densities (ns) of even 

materials of similar mineralogy can span several orders of magnitude at any one temperature 

(Atkinson et al., 2013; Harrison et al., 2016, 2019). Also, variations in the temperature 

dependence of INP number concentration can affect the cloud development and the altitude at 

which liquid depletion occurs, as was noted by Takeishi and Storelvmo (2018). This difference 

in liquid depletion altitude has been shown to cause differences in hail amount, intensity, and 

size (Liu et al., 2018), anvil ice crystal number concentration (ICNC) (Takeishi and Storelvmo, 

2018), and radiative forcing (Hawker et al., 2021) of convective clouds.  

The formation of ice crystals within the mixed-phase regions in deep convective clouds occurs 

not only via heterogeneous freezing but also via SIP, whereby ice is produced from processes 

operating on existing ice particles (Field et al., 2017). Observational campaigns have long 

documented the existence of ice crystals at concentrations vastly exceeding the concentration 

of INP in clouds with relatively warm cloud top temperatures, indicating the presence of SIP 

mechanisms (Crawford et al., 2012; Field et al., 2017; Huang et al., 2017; Ladino et al., 2017; 

Lasher-Trapp et al., 2016). SIP can occur via processes such as rime splintering (i.e. the Hallett-

Mossop process), droplet shattering, collision fragmentation, and sublimation fragmentation 

(Field et al., 2017; Korolev et al., 2020).  

The most well-studied SIP mechanism is the Hallett-Mossop process by which small ice 

splinters are produced during the riming of liquid drops onto existing frozen hydrometeors 

(Crawford et al., 2012; Field et al., 2017; Hallett and Mossop, 1974; Ladino et al., 2017; 

Manton et al., 2008; Phillips et al., 2007). However, even the Hallett-Mossop process is 

relatively poorly defined and its importance disputed. A recent laboratory study failed to 

observe rime-splintering in conditions designed to stimulate the Hallett-Mossop process 
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(Emersic and Connolly, 2017), and some recent literature suggests that previous observations 

of ICNC attributed to the Hallett-Mossop process may have been indicative of other secondary 

ice formation mechanisms (Korolev et al., 2020). Nevertheless, as it is the only SIP mechanism 

that is currently represented in most numerical weather prediction (NWP) models, we focus on 

the uncertainty associated with the Hallett-Mossop process in this study. 

In addition to the individual uncertainties in INP number concentration, ice-nucleating ability 

temperature dependence, and SIP rates, these three variables can also interact causing non-

linear or counterintuitive changes in cloud properties, further motivating the exploration of 

their combined effects here. For example, the highest ice crystal production rate was shown to 

occur at intermediate INP concentrations and Hallett-Mossop rates (Crawford et al., 2012; 

Sullivan et al., 2017).  

We use Latin hypercube sampling and an idealised cloud model coupled to a double-moment 

microphysics scheme to investigate the individual and interacting effects of the INP number 

concentration, the temperature dependence of INP number concentration across the full 

spectrum of mixed-phase temperatures, and the Hallett-Mossop ice production rate on the 

micro- and macro-physical properties of an idealised deep convective cloud. We use statistical 

emulation where appropriate to investigate the importance of these uncertain input parameters 

and their interactions with one another for the anvil properties of the simulated deep convective 

cloud. Statistical emulation is a powerful tool for analysing and understanding the behaviour 

of complex systems (Johnson et al., 2015b; Lee et al., 2011; Marshall et al., 2019; Wellmann 

et al., 2018) because it enables dense sampling over a defined parameter uncertainty space, 

leading to detailed response surfaces of system behaviour.  

This chapter is structured as follows: Section 3.3 describes the idealised cloud model and the 

simulation set-up, as well as the methods used in our analysis. In Section 3.4, we examine the 

role of the uncertain input parameters in determining the ice crystal number concentration, ice 
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crystal size, and the cloud fraction of the simulated deep convective anvil cirrus. In Section 

3.5, we detail the limitations of our study. Section 3.6 summarises the main findings and 

implications of this study. 

 

3.3. Methods 

3.3.1. Model set-up and simulation design 

This work utilised the Met Office NERC Cloud Model (MONC) which is an idealised cloud 

model developed from the Met Office Large Eddy Model (LEM) (Gray et al., 2001). Here, 

MONC is coupled to the Met Office Cloud AeroSol Interacting Microphysics (CASIM) 

module, which is a multi-moment bulk scheme that allows simulations of aerosol cloud 

interactions with advanced microphysical capabilities. MONC-CASIM has been used to 

investigate aerosol cloud interactions in nocturnal fog (Poku et al., 2019) and low-level clouds 

during the West African monsoon season (Dearden et al., 2018). CASIM has also been used 

with the Met Office Unified Model in regional simulations of coastal mixed-phase convective 

clouds (Miltenberger et al., 2018b, 2018a), South-East Pacific stratocumulus clouds 

(Grosvenor et al., 2017), Southern Ocean supercooled shallow cumulus (Vergara-Temprado et 

al., 2018), midlatitude cyclones (McCoy et al., 2018), and CCN-limited Arctic clouds (Stevens 

et al., 2018). 

The simulations presented in this chapter use a grid box spacing of 250 m (500*500 grid boxes) 

and 138 vertical levels. The model diagnostics are output every 5 minutes and the timestep is 

flexible to maintain model stability with a maximum value of 2 seconds and a minimum value 

of 0.01 seconds. MONC has a number of prognostic variables including u, v and w velocity 
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scalars, potential temperature and water vapour content. MONC-CASIM is configured to be 

two-moment in this work. The number and mass concentrations for cloud droplets, rain 

droplets, ice crystals (or cloud ice), graupel, and snow are prognostic variables. The prognostic 

aerosol variables utilised in this work are the soluble accumulation-mode aerosol mass and 

number concentrations and the coarse dust mass and number concentrations. The aerosol can 

be advected around but is not scavenged. The model boundary conditions are cyclical and as 

such scavenging the aerosol would result in a rapid removal of all aerosol from the simulation.  

 

Figure 3.1. Initial conditions. The potential temperature and specific humidity (a), and wind 

speed and direction (b) profiles used to initiate the model. The profiles shown were extracted 

from a Met-Office Unified Model simulation of a large deep convective cloud field in the 

maritime tropical Atlantic (described in Hawker et al. (2021)). The profiles were averaged 

over out-of-cloud areas between 1200 and 1800 UTC. 
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Figure 3.2. Cloud evolution. The cloud base height (CBH, a, c, e) and cloud top height (CTH, 

b, d, f) of the simulated convective cloud for the base case simulation. 
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The CASIM model configuration is very similar the that of Chapter 2 and Miltenberger et al. 

(2018a). Cloud droplet activation is parameterised according to Abdul-Razzak and Ghan, 

(2000). The soluble accumulation mode aerosol is used for cloud droplet activation and a 

simplistic CCN activation parameterisation is included for the insoluble aerosol mode (Abdul-

Razzak and Ghan, 2000) that assumes a 5% soluble fraction on dust.  

Condensation is represented using saturation adjustment meaning that where liquid is present 

at the end of a timestep, the specific humidity is adjusted to be the equilibrium saturation over 

water and the grid box temperature and liquid mass is adjusted accordingly. If only frozen 

hydrometeors are present in a grid box, saturation is treated explicitly.  Collision-coalescence, 

riming of ice crystals to graupel and aggregation of ice crystals to snow is represented. Rain 

drop freezing is described using the parameterisation of Bigg (1953). Deposition onto ice is 

treated explicitly allowing ice particles to grow in the presence of liquid. However due to the 

saturation adjustment treatment of condensation, the Wegener-Bergeron-Findeisen process is 

not present in exactly the same way as one would expect in a real cloud.   

We simulate a single deep convective cloud using the MONC-CASIM model. The cloud 

formation is initiated using a single warm bubble with a radius of 20 km, a height of 500 m and 

a temperature perturbation of 1.5°C. The model was initiated using mean profiles (u, v, w, 

theta, qv, and soluble accumulation aerosol number and mass concentration) extracted from a 

Met-Office Unified Model simulation of a deep convective cloud field sampled during the Ice 

in Clouds-Dust flight campaign on the 21st of August 2015 (out of cloud values between 12:00 

and 15:00) (Hawker et al., 2021). Details of this simulation including comparisons to 

observations are available in Hawker et al. (2021). The environmental conditions used to 

initiate the model are shown in Figure 3.1.  
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Figure 3.3. Simulated cloud properties. Evolution of surface precipitation (a) and maximum 

cloud top height (b) over time for all simulations included in this analysis. The convective 

and anvil cloud stages defined for the purposes of analysis are highlighted.  

The simulation produces a large convective cloud with an extensive anvil (Figure 3.2). Figure 

3.3 shows that the cloud evolution for all simulations is similar with a large increase in surface 

precipitation (Figure 3.3a) from 60 minutes to up to 90 minutes and a decline that begins 

between 70 and 90 minutes. Similarly, the maximum cloud top height for most simulations 

peaks at around 120 minutes after which is declines slightly indicating a reduction in 

convective strength after this time (Figure 3.3b). It is important for statistical emulation 

(Section 3.3.5), where one value for each cloud response is extracted from the model, that the 

clouds in each simulation undergo similar lifecycles. We can see from Figure 3.3 that this is 

the case for the simulated deep convective cloud.  



98 

 

Table 3.1. Target output variables. List of target output variables discussed in this study and 

the criteria used to extract their values from the simulation output. 

 Output variables Criteria 

Anvil cloud 

stage 

Anvil ICNC, anvil ice crystal 

effective radius 

Cloud condensate > 1x10-6 kg-1 kg-1 (i.e. in-

cloud) 

Ice water path > 0.04 kg m-2, 

Cloud base height > 9 km, 

Time period in simulation: 150-240 

minutes. 

Cloud fraction Mean peak in cloud fraction profile where 

cloud is where cloud condensate > 1x10-6 

kg-1 kg-1, 

Time period in simulation: 150-240 

minutes. 

Convective 

cloud stage 

Ice particle production rates, 

accretion rates, hydrometeor 

water paths and column number 

concentrations, updraft speed 

Cloud condensate > 1x10-6 kg-1 kg-1 (i.e. in-

cloud), 

Time period in simulation: 60-180 minutes. 

When extracting the diagnostic variables and single values to be used for analysis, results from 

60 minutes to 180 minutes into the simulation are used to represent the convective cloud state. 

Sixty minutes is approximately the time when the cloud first reaches the mixed-phase cloud 

level where freezing can first occur (~4 km, Figure 3.2b) and therefore where the perturbations 

to the chosen uncertain input parameters (Section 3.3.2) start to cause divergence between 

simulations. When isolating the anvil stages of cloud development, we use the results from 

between 150 and 240 minutes into the simulation. Table 3.1 lists the target output response 

variables that are investigated and the time period from which they are extracted. 
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3.3.2. Input parameters and their uncertainty ranges 

In this work, we investigate the effect of variations in absolute potential INP number concentration, 

INP parameterisation slope and the rate of ice production by the Hallett-Mossop process. For the 

purposes of this study, the magnitude of these three variables are varied using the following uncertain 

input parameters:  

 Absolute potential INP number concentration or the total number of aerosol capable of 

nucleating ice is varied using [INP]MAX. [INP]max is the factor by which the profile of INP 

concentration at -38°C in the base case is multiplied. 

 INP parameterisation slope, termed λ[INP] herein is the change in the log10 of the INP number 

concentration per degree Celsius increase in temperature between -38 and -3°C, i.e. 

d(log10[INP (m-3) ])/dT( °C) which is shortened to units of °C-1 herein. 

 Rate of ice production by the Hallett-Mossop process, termed HM-rate herein. This is the 

number of secondary ice splinters produced by the Hallett-Mossop process for every 

milligram of rimed material, shortened to units of mg-1 herein.  

The representation of these uncertain input parameters in MONC and their range of potential values are 

described in the following Sections 3.3.2.1 to 3.3.2.3. The base case, minimum and maximum values 

of λ[INP] and the INP concentration achieved by varying [INP]MAX can be seen in Figure 3.4a, along with 

the base case INP number concentration profile which is perturbed using [INP]MAX (Figure 3.4b). The 

combined perturbations of [INP]MAX and λ[INP] produce an INP parameterisation that is applied in the 

cloud model. 

 

3.3.2.1. Absolute potential INP concentration – [INP]MAX 

The base case coarse dust number aerosol profile applied in MONC is shown in Figure 3.4b. 

In the MONC model, the coarse dust aerosol can act as INP, and for the purposes of these 
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simulations, the ambient concentration of these particles is fixed as the INP concentration at -

38°C. The profile shown in Figure 3.4b is the mean daily aerosol concentration, assumed to be 

predominately dust, in Cape Verde extracted from a 2015 Global Model of Aerosol Processes 

model (GLOMAP-mode; (Mann et al., 2010)) simulation run scaled to be approximately equal 

to the mean daily K-feldspar INP concentration from the same simulation (Vergara-Temprado 

et al., 2017). We use the scaled mean daily aerosol profile rather than the INP from the 

GLOMAP-mode itself, because the aerosol profile has both mass and number concentration 

information and this is not available for the GLOMAP-mode INP profile. The absolute INP 

number concentration is perturbed by multiplying the profile in Figure 3.4b by [INP]MAX values 

between 1x10-4 and 200 to vary the potential INP number concentration. The minimum and 

maximum INP number concentrations the chosen [INP]MAX values produce for the height of 

maximum aerosol concentrations in the base case (~3 km, Figure 3.4b) are shown in Figure 

3.4a (black triangles) and correspond to the minimum and maximum values of observed INP 

from numerous collated field and laboratory measurements (Kanji et al., 2017).  

3.3.2.2. INP parameterisation slope – λ[INP] 

λ[INP] is perturbed by varying the exponent (P) in equation (1) below, which determines the 

number of active sites (ns) per unit area of an aerosol population at temperature T, from -1.3 

and -0.1. For this study, we define the number of active sites, ns, as: 

ns = ePxT+i   (1) 

where i is the intercept of the natural log of ns at 0°C  and T is the ambient temperature in 

degrees Celcius. The equation is a basic form of ns-based INP parameterisations and is adapted 

from Niemand et al. (2012). In the Niemand et al. (2012) parameterisation, P is -0.517 and 

results in a λ[INP] of ~-0.22 °C-1 shown as the base case λ[INP] in Figure 3.4a. The minimum 

(steepest) value of λ[INP] is -0.5646 °C-1 (P=-1.3) which is slightly steeper than that of the 
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Atkinson et al. (2013) parameterisation based on K-feldspar. The maximum (shallowest) value 

of λ[INP] is -0.0434 °C-1 (P=-0.1) which is slightly shallower than that of the Meyers et al. (1992) 

parameterisation. The minimum (steepest) and maximum (shallowest) slopes simulated in this 

work are shown in Figure 3.4a for an insoluble aerosol concentration of 1 cm-3 with a mean 

radius of 1 µm.  

In addition to varying the exponent, the original Niemand et al. (2012) parameterisation was 

altered to allow the INP number concentration at -38°C (determined by [INP]MAX) to be exactly 

equal to the insoluble aerosol number concentration. This avoids interdependence between the 

[INP]MAX and λ[INP]  which can occur at low temperatures where the INP concentration plateaus 

at low temperatures at the aerosol concentration. This plateau can be seen in the Niemand et 

al. (2012) line in Figure 3.4a. Modification of the original Niemand et al. (2012) 

parameterisation allows the intercept (i in Equation 1) of the INP parameterisation to be 

calculated as follows: 

 i = (ln N – ln S) – (P x (-38))   (2) 

Where N is the number of potential INP in m-3 and S is the surface area of the available INP in 

m-2. The INP concentration at temperature T is therefore:  

INP = ns x S    (3) 

Heterogeneous freezing is active between -38 and -3°C in the MONC-CASIM model used in 

this work. 
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Figure 3.4. INP parameterisation slopes (λ[INP])  and potential INP profile (varied using 

[INP]MAX). The base case (black solid line), minimum or steepest (black dash-dotted line) and 

maximum or shallowest (black dashed line) perturbations to λ[INP] are shown in (a) for an 

aerosol concentration of 1cm -3 and a radius of 1 µm, and the Niemand et al. (2012) 

parameterisation (light green solid line). The INP parameterisations are overlain on Figure 

1-10 from Kanji et al. (2017) (© American Meteorological Society. Used with permission). 

showing observed INP concentrations along with some recent measurements from Cape 

Verde in grey (Price et al., 2018; Welti et al., 2018). Figure 3.1b shows the base case INP 

number concentration (at a temperature of -38°C) perturbed in this study. Also shown in 

Figure 3.1a is the maximum and minimum INP concentration at -38°C, achieved by 

perturbing the profile shown in Figure 3.1b using [INP]MAX (up- and downward pointing 

black triangles). 

 

3.3.2.3. The Hallett-Mossop process ice production rate/HM-rate 

The HM-rate in the model is varied from 1 to 1000 splinters per milligram of rimed liquid. The 

default value of ice production from the Hallett-Mossop process in MONC-CASIM is 350 mg-

1. This value is the best estimate of ice production based on a number of laboratory studies, and 

was frequently used in previous modelling studies (Connolly et al., 2006; Hallett and Mossop, 

1974; Mossop, 1985). However, other rates have been reported. An upper limit of 1000 mg-1 

aligns with previous modelling studies where the rate of ice production by the Hallett-Mossop 
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process was varied (Connolly et al., 2006). This upper limit also allows us to account somewhat 

for the possibility that the Hallett-Mossop process operating in real clouds is stronger than that 

observed in laboratory studies (Field et al., 2017; Korolev et al., 2020; Takahashi et al., 1995).  

 

3.3.4. Selection of uncertain input parameter combinations  

MONC was run with combinations of values of [INP]MAX, λ[INP] and HM-rate from within the 

ranges shown in Table 3.2. These combinations of uncertain input parameters input into the 

cloud model were selected using a maximin Latin hypercube design algorithm. Latin hypercube 

sampling is based on the Latin Square and ensures optimum space filling (Johnson et al., 2015b; 

Lee et al., 2011; Mckay et al., 2000) by maximising the minimum distance between points in 

the cube (Lee et al., 2011). The values of the uncertain input parameters used in every MONC 

simulation are shown in Figure 3.5. In total 73 simulations of the deep convective cloud were 

carried out. The values of λ[INP] and HM-rate are selected by sampling on a linear scale while 

the values of [INP]MAX are selected by sampling on a logarithmic scale. This is because INP 

number concentrations vary over multiple orders of magnitude (Figure 3.4a) and sampling 

[INP]MAX on a linear scale would bias the design to higher INP number concentrations.  

The INP parameterisations input to the cloud model as a result of the perturbations to the 

[INP]MAX and λ[INP] are shown in Figure 3.5d. As a result of not representing the plateauing of 

the parameterisation (as can be seen in the Niemand et al. (2012) line in Figure 3.4a) in order 

to avoid codependence between λ[INP] and [INP]MAX, we have large coverage of a region of 

parameter space with unrealistically low INP concentrations (light grey and pink dots in Figure 

3.5a and light grey and pink lines in Figure 3.5d). Additional simulations in the ‘realistic’ 

regions of parameter space (shown by the red and black dots in Figure 3.5a and red and black 
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lines in Figure 3.5d) were conducted to compensate for this, and the values of the additional 

simulations were selected by augmenting points into the largest gaps in the realistic section of 

the original design. 

Table 3.2. Experiment design. The base case, minimum and maximum values of the variables 

perturbed in this study. 

Uncertain parameter Estimated 

base case 

Minimum 

value of 

perturbation 

Maximum 

value of 

perturbation 

Perturbed on 

a log or linear 

scale? 

λ[INP] (d(log10[INP (m-

3)])/dT(°C)) [value of P 

in Eq. 1] 

-0.2245 [-

0.517] 

-0.5646 [-1.3] -0.0434 [-0.1] Linear 

[INP]MAX [approximate 

INP number 

concentration at peak 

aerosol layer (cm-3)] 

1 [0.82] 1e-4  

[8.2 x 10-3] 

200 [164] Log (base 10) 

HM-rate (splinters 

produced per milligram 

rimed) 

350 1 1000 Linear 

 

The use of a maximin Latin hypercube to design the parameter combinations for the 

simulations cover the 3-d parameter space in an optimum manner. As a result we can evaluate 

the full effects of the parameters (individual and interacting) using traditional analysis on just 

the simulation data itself, as well as employing statistical emulation (described in Section 3.3.5) 

to analyse a more dense sampling of the uncertainty space.   
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3.3.5. Statistical emulation of the model output 

Statistical emulation is a “process by which the computer model is replaced by a statistical 

surrogate model that can be run more efficiently” (Lee et al., 2011). This approach has 

previously been used to look at deep convective cloud microphysical properties in a 3D model 

(Johnson et al., 2015), hail formation (Wellmann et al., 2018), nocturnal stratocumulus 

(Glassmeier et al., 2019) and aerosol forcing from volcanic eruptions (Marshall et al., 2019).  

In this study, as well as using traditional methods of analysis, we explore the usefulness of 

statistical emulation as a tool to understand the interacting effects of mixed-phase ice 

production mechanisms.  

Statistical emulation involves creating a mapping from the input space (where the inputs have 

been sampled to ensure good coverage of the multi-dimensional parameter space) to an output 

variable of interest so that the values of the output variable in question can be estimated at all 

regions of parameter space within the input parameter ranges (Lee et al., 2011). In this study, 

we use a Gaussian process as the basis for the emulator (Johnson et al., 2015; Lee et al., 2011; 

Marshall et al., 2019).  
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Figure 3.5. Experiment design. Values of the uncertain input parameter combinations used in 

the cloud model for the three uncertain input parameters ([INP]MAX and λ[INP] (a), λ[INP] and 

HM-rate (b) and [INP]MAX and HM-rate (c)). Shown in (d) is the resultant INP 

parameterisations arising due to the combination of perturbations to λ[INP] and [INP]MAX 

overlain on Figure 1-10 of Kanji et al. (2017) (© American Meteorological Society. Used 

with permission). The parameterisations shown in (d) are calculated for an INP number 

concentration of 0.82 cm-3 which is the peak INP number concentration for the base case 

([INP]MAX =1) profile shown in Figure 3.4d. Output from the simulations shown in red, pink 

and orange are used to build the emulator while output from the simulations shown in black 

or grey are used to validate the emulator results. 
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Statistical emulation has advantages over traditional one-at-a-time tests (where one variable is 

varied at predictable values from a control or base case while all other variables are held 

constant). Firstly, it allows the exploration of the effects of simultaneously perturbing multiple 

uncertain input parameters on output variables of interest across the entirety of reasonable 

parameter space for a much reduced number of complex simulations. Secondly, dense sampling 

via statistical emulation enables techniques such as variance-based sensitivity analysis to be 

applied, through which we can identify the input parameters that are contributing the most 

uncertainty to important output responses. This subsequently allows for the direction of 

resources towards quantifying and accurately representing those key parameters that contribute 

large amounts of uncertainty to output variables of interest. 

An underlying assumption of the Gaussian process emulator is that the output of the cloud 

model varies smoothly and continuously. Based on this assumption, the emulator fits a smooth 

response surface that passes directly through each training point. To test whether the emulator 

can accurately predict the output of the cloud model, it is necessary to validate the prediction 

against output from simulations that have not been used to train the emulator. The simulations 

used to train and validate the emulator are shown in Figure 3.5 (a-c). Fifty-two simulations are 

used to train each emulator. This is well in excess of the thirty simulations recommended by 

Loeppky et al. (2009), who states that 10 times the number of variable parameters is required. 

Eighteen additional simulations are used to validate the emulator. The model’s output from 

these 18 simulations is compared with the mean and 95% confidence interval predicted by the 

emulator at those combinations of the uncertain input parameters.  

Variance-based sensitivity analysis is used to measure the sensitivity of the cloud model 

outputs to the three uncertain input parameters and their interaction effects (Johnson et al., 

2015b; Saltelli et al., 2000). The overall variance attributed to each input can be separated into 

the individual or main effect index of each input parameter and the total effect index which 
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comprises the variation attributed to the input parameter in question including due to 

interactions with other input parameters (Saltelli et al., 2000). The main effect index tells us 

the proportion of variance in the value of an output variable that could be minimized if the 

value of each individual input parameter was known exactly. The difference between the total 

and main effect indices of a parameter tells us how much variance in the output variable is 

determined by the input parameter in question interacting with other input parameters (Johnson 

et al., 2015b). In this work, the variance-based sensitivity analysis is carried out using the 

extended‐FAST (Fourier Amplitude Sensitivity Test) approach detailed in Saltelli et al. (1999). 

 

3.4. Results 

3.4.1. Anvil cloud properties 

We first examine the effect of variations in [INP]MAX, λ[INP] and HM-rate on anvil cloud 

properties. We focus on the anvil ice properties in Sections 3.4.1.1 and 3.4.1.2 because anvil 

cloud can persist in the atmosphere longer than the deep convective cloud that forms it (and 

beyond the simulation period here) and is therefore climatically more important for cloud-

radiation interactions. Tropical convectively produced cirrus can persist in the atmosphere for 

1-2 days (Luo and Rossow, 2004) while the convective stage of the deep convective cloud 

simulated here has decayed after ~3 hours. An anvil with more numerous, smaller crystals will 

persist longer in the atmosphere than one with fewer, larger crystals. In Section 3.4.1.3, we 

examine the simulated anvil cloud fraction and the microphysical properties controlling it. The 

anvil region of the cloud is defined as the cloudy regime occurring between 150 and 240 

minutes in the simulations with a cloud base height greater than 9 km and an ice water path 

less than 0.04 kg m-2. Other thresholds were tested and did not change the results substantially. 
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Figure 3.6. Anvil ICNC and ice particle production rates. Dependence of anvil ice crystal 

number concentration (a-d), ice particle production by heterogeneous freezing (e-h), and ice 

particle production by homogeneous freezing (i-l) on the three uncertain input parameters: 

λ[INP] (a, e, i), [INP]MAX (b, f, j), and HM-rate (c, g, k). In-cloud profiles of anvil ICNC (d), ice 

particle production by heterogeneous freezing (h), and ice particle production by 

homogeneous freezing (l) in all simulations coloured by [INP]MAX. For panels (a), (e), and 

(i), the colour of the markers indicate [INP]MAX and the marker size indicates HM-rate. For 

panels (b), (f), and (j), the colour of the markers indicate λ[INP] and the marker size indicates 

the HM-rate. For panels (c), (g), and (k), the colour of the markers indicate [INP]MAX and the 

marker size indicates the λ[INP] value. Panels (a-d) are the average of the cloud property 

between 150 and 240 minutes (anvil stage) in the simulation, while panels (e-l) are the 

average of the relevant cloud property between 60 and 180 minutes (convective stage) in the 

simulations. 
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3.4.1.1. Anvil ice crystal number concentration 

The integrated anvil ICNC (defined as the mean ICNC in cloudy columns occurring between 

150 and 240 minutes with a cloud base height > 9 km and an ice water path < 0.04 kg m-2) from 

all simulations is shown in Figure 3.6 (a-c). Figure 3.6d shows the associated mean anvil ICNC 

profile in each simulation. Anvil ICNCs are predominately controlled by the value of [INP]MAX 

(Figure 3.6 a-d), with a higher [INP]MAX causing lower anvil ICNCs (Figure 3.6 b, d). Figure 

3.6 d shows that the higher the [INP]MAX, the lower the anvil ICNC at all anvil altitudes. This 

is because the higher the [INP]MAX, the higher the rate of heterogeneous freezing at the top of 

the mixed phase cloud (Figure 3.6 e-h) which reduces homogeneous freezing rates (Figure 3.6 

i-l).  

The homogeneous and heterogeneous ice particle production rates shown in Figure 3.6 (e-l) 

are the mean values from cloudy columns (e-g, i-k) or cloudy grid boxes (h, l) between 60 and 

180 minutes of the simulation. Homogeneous freezing is a stronger mechanism of ice crystal 

production than heterogeneous freezing with peak ice particle production rates of ~14 x 104 m-

3 s-1 (Figure 3.6 l) compared to ~3.5 x 104
 m-3 s-1 by heterogeneous freezing (Figure 3.6 h). 

Note that these rates are occurring in different simulations so the peak rates of heterogeneous 

and homogeneous ice particle production do not occur concurrently in the parameter 

uncertainty space.  

INP parameterisation slope, λ[INP], plays a very minor secondary role in controlling anvil ICNC 

(Figure 3.6 a). Simulations with a high [INP]MAX (more yellow markers in Figure 3.6a) have 

slightly lower anvil ICNC at shallow λ[INP]. The chosen Hallett-Mossop splinter production rate 

has no notable impact on anvil ICNC regardless of the value of [INP]MAX or λ[INP]. 
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Figure 3.7. Emulator validation and uncertain input contributions to output uncertainty. 

Validation of emulator results (a - c) and results of the variance-based sensitivity analysis (d 

- f) for anvil ICNC (a, b), ice particle production by heterogeneous freezing (c, d), and ice 

particle production by homogeneous freezing (e, f). In (a) - (c), the dots show the value of the 

validation run on the x-axis and the corresponding emulator mean prediction on the y-axis. 

95% confidence intervals on the emulator predictions are also shown. An emulator that 

validates well will have dots close to the 1:1 line and small error bars. 
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We now use statistical emulation to further examine the effects of our three uncertain input 

parameters (λ[INP], [INP]MAX, HM-rate) on anvil ICNC and convective heterogeneous and 

homogeneous ice particle production. Figure 3.7 (a - c) shows a comparison of the output from 

the validation simulations (shown in black and grey in Figure 3.5 a - d) with the corresponding 

emulator predictions at the same location in parameter space for anvil ICNC and convective 

heterogeneous and homogeneous ice crystal number production, along with 95% confidence 

intervals on the emulator predictions. All three outputs validate well with points close to or on 

the 1:1 line and small 95% confidence intervals that overlap the 1:1 line most of the time. This 

indicates that the emulator can capture the variability in the idealised cloud model well for the 

output variables in question.  

Figure 3.7 (d - f) shows the results of variance-based sensitivity analysis and indicates the 

relative importance of the uncertain input parameters in controlling the variance in the value of 

the output variable in question. As was inferred from Figure 3.6, [INP]MAX  is the dominant 

input parameter controlling the variance of anvil ICNC and heterogeneous and homogeneous 

ice particle production rates, while λ[INP] and interaction effects contribute a non-negligible, but 

secondary amount to the variance in anvil ICNC. Figure 3.7d indicates that [INP]MAX is the key 

parameter driving the uncertainty in the anvil ICNC of the simulated deep convective cloud, 

contributing to over 60% of this output’s uncertainty. Hence, the uncertainty in the anvil ICNC 

could be significantly reduced if the value of [INP]MAX was to be known exactly. Similarly, 

this parameter is almost completely controlling the uncertainty in the column integrated 

heterogeneous ice particle production (Figure 3.7e), with no real contribution from the other 

parameters here. The interaction effects are relatively small for all three output variables 

accounting for only 30% of the variance in the anvil ICNC and less than 10% for the ice particle 

production by heterogeneous and homogeneous freezing. 
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Figure 3.8. Emulator response surfaces. Prediction of ice particle production by 

homogeneous freezing (a, b, c), heterogeneous freezing (d, e, f), and anvil ICNC (g, h, i) by 

the emulator. Shown in (a), (d), and (g) are emulated response surfaces at a fixed HM-rate of 

350 splinters mg-1 rimed. The colours indicate output values and are the same range and 

units as the z-axis. The line plots show the variation in predicted output value (y-axis) from 

these response surfaces for fixed λ[INP]  (b, e, h) and fixed [INP]MAX (c, f, i).  

Figure 3.8 (a, d, g) shows the emulator surfaces for homogeneous (a) and heterogeneous (d) 

ice particle production and anvil ICNC (g) at a fixed HM-rate of 350 mg-1. We hold the HM-

rate constant because it had a minimal effect on the variance in the output variables (Figure 

3.7d-f) and as such variations in its value do not alter the shape of the emulated surface 

substantially. It is important to note that the emulator response surface tracks through each 

cloud model point exactly and as such doesn’t allow for ‘noise’ due to internal variability in 
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the cloud model output. As a result the emulator surfaces should be interpreted by examining 

the general smoothly varying trends rather than individual bumps which may be an artefact of 

the emulator fitting around a particular point. 

Homogeneous freezing ice particle production is high and relatively constant between an 

[INP]MAX of 10-4 and 1 before decreasing rapidly when [INP]MAX increases further (Figure 

3.8a). The emulator response surface shows very little dependence on INP parameterisation 

slope apart from a slight decrease in homogeneous freezing rates at very shallow slopes above 

a λ[INP] of -0.2 °C-1. Heterogeneous ice particle production increases relatively uniformly with 

increasing [INP]MAX. At low [INP]MAX, the heterogeneous ice particle production is highest for 

shallow λ[INP] values, while at high [INP]MAX, the heterogeneous ice particle production rates 

are highest at steep λ[INP] values. The emulated anvil ICNC surface (Figure 3.8g) is very similar 

to that of homogeneous ice particle production (Figure 3.8a) with relatively uniform and high 

concentrations at [INP]MAX values below 1 and sharp decreases as it moves towards higher 

[INP]MAX.  

Figure 3.8 (b, e, h) shows the average (mean) emulator response across the uncertainty range 

of [INP]MAX of homogeneous (b) and heterogeneous (e) ice particle production and anvil ICNC 

(h) for different settings of λ[INP] values (distinguished by line colours). In each line, the point 

where the rates of ice particle production by heterogeneous freezing first exceeds that of 

homogeneous freezing is marked. Homogeneous freezing is the dominant mechanism of cloud 

ice crystal production at [INP]MAX values below 1 (Figure 3.8b) corresponding to an absolute 

INP number concentration of ~0.82 cm-3 in the peak aerosol layer (Figure 3.4b) above which 

heterogeneous freezing becomes the dominant mechanism of ice crystal production for all λ[INP] 

values (Figure 3.8e).  

Homogeneous freezing is essentially completely shut off at an [INP]MAX between 1 and 2 

(Figure 3.8 b) meaning that at very high [INP]MAX values all primary ice crystals in the 
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simulated deep convective cloud are formed via heterogeneous freezing. This is because 

heterogeneous freezing and subsequent processes in the mixed-phase region of the cloud 

significantly reduce the amount of cloud liquid reaching the homogeneous freezing altitude. 

Anvil ICNC decreases sharply as INP concentration increases as soon as heterogeneous 

freezing becomes the dominant mechanism of primary cloud ice production (Figure 3.8h). 

Based on the value of the peak INP number concentration shown in Figure 3.4b and assuming 

that the dust at 3 km of the applied profile is lifted to all levels of the simulated deep convective 

cloud, an INP number concentration of 1 cm-3 at any upper mixed-phase level may be enough 

to shut down homogeneous freezing. 

Figure 3.8 (c, f, i) shows the average (mean) emulator response across the uncertainty range of 

λ[INP] of homogeneous (c) and heterogeneous (f) ice particle production and anvil ICNC (i) for 

different settings of [INP]MAX (distinguished by line colours). The ice particle production by 

homogeneous freezing is sensitive to λ[INP] only at intermediate-high [INP]MAX values between 

1 and 10 (Figure 3.8c). Ice particle production by heterogeneous freezing is insensitive to 

changing λ[INP] values except for a slight increase in heterogeneous freezing at low [INP]MAX 

values where the rate of ice production is highest at shallow λ[INP] (Figure 3.8f). Anvil ICNC is 

relatively insensitive to λ[INP] values, except at high [INP]MAX (>10) where the highest anvil 

ICNCs occur at steep λ[INP] values (Figure 3.8i). 

Overall anvil ICNC is controlled predominately by INP number concentration ([INP]MAX) with 

a minor effect from the INP parameterisation slope (λ[INP]). The higher the [INP]MAX, the lower 

the anvil ICNC. A shallow λ[INP] can further reduce anvil ICNC, particularly at high [INP]MAX 

values. The anvil ICNC is reduced substantially when the number of heterogeneously frozen 

ice crystals exceeds the number of homogeneously frozen ice crystals due to the efficient 

consumption of liquid at upper mixed-phase cloud levels before droplets can be frozen 

homogeneously.  
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Figure 3.9. Anvil ice crystal size and driving processes. Dependence of anvil ice crystal 

effective radius (a-c), ice particle production by heterogeneous freezing between 5 and 7.5 

km altitude (d-f), ice particle production by the Hallett-Mossop process (g-i), and the 

accretion of water by ice crystals (j-l) on the three uncertain input parameters: λ[INP] (a, d, g, 

j), [INP]MAX (b, e, h, k), and HM-rate (c, f, i, l). For the leftmost column, the colour of the 

markers indicates [INP]MAX and the marker size indicates HM-rate. For the middle column, 

the colour of the markers indicate λ[INP] and the marker size indicates the HM-rate. For the 
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rightmost column, the colour of the markers indicate [INP]MAX and the marker size indicates 

λ[INP]. Panels (a-c) are the average of the cloud property between 150 and 240 minutes (anvil 

stage) in the simulation, while panels (d-l) are the average of the relevant cloud property 

between 60 and 180 minutes (convective stage) in the simulations. 

 

3.4.1.2. Anvil ice crystal size 

We now examine the impact of uncertainty in [INP]MAX, λ[INP] and HM-rate on the anvil ice 

crystal effective radius (defined here as the ratio of the third to the second moments of the ice 

crystal size distribution). A larger ice crystal effective radius indicates that anvil ice particles 

will have a higher fall speed and lower lifetime, theoretically reducing the lifetime of the anvil 

cloud and reducing its radiative effect. The simulated ice crystal effective radius in the anvil 

cloud region at 14 km can be seen in Figure 3.9 (a-c). We used the effective radius at 14 km 

because it is the altitude of peak ICNC shown in Figure 3.6d.  

Anvil ice crystal size exhibits two distinct regimes depending on the value of λ[INP] which can 

be seen in Figure 3.9 (a-b).  Simulations with a λ[INP] shallower than approximately -0.3 °C-1 

(Figure 3.9a) exhibit a large jump in ice crystal effective radius from under 25 µm to between 

27 and 45 µm. In simulations with a shallow λ[INP] and consequent jump in ice crystal size, the 

value of the effective radius is dependent on the [INP]MAX, with simulations with larger 

[INP]MAX values having a larger ice crystal size (Figure 3.9b). This indicates that while anvil 

ICNC was determined predominately by [INP]MAX, ice crystal size is determined 

predominately by λ[INP] with [INP]MAX having a secondary role. This is because ice crystal size 

is more strongly affected than ICNC by the altitude of ice formation, the amount of liquid 

available for riming and the time available for deposition growth, and therefore is affected by 

the the INP number concentration at warm temperatures which is determined by λ[INP]. 
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The mechanism for the increased ice crystal size at shallow λ[INP] and high [INP]MAX values is 

as follows: Ice crystals in clouds with higher [INP]MAX and shallower λ[INP] values have larger 

numbers of heterogeneously frozen crystals at warm mixed-phase temperatures (Figure 3.9 d-

f). This increase in heterogeneously frozen ice crystals in the Hallett-Mossop region leads to 

an increase in ice particle production by the Hallett-Mossop process (Figure 3.9 g-i). We see a 

large increase of approximately one order of magnitude in ice particle production by the 

Hallett-Mossop process at shallow λ[INP] (Figure 3.9g) and a bifurcation in the data because of 

this enhancement. The output data is split into two populations based on the λ[INP] value, with 

each population or regime having a linear dependence on HM-rate (Figure 3.9i). Within the 

warmer temperature mixed-phase cloud region liquid is still available when crystals are frozen 

for riming. Therefore, with more heterogeneously frozen ice crystals at lower cloud altitude 

levels, there are higher riming rates (Figure 3.9 j-l), more ice crystal growth and larger ice 

crystal sizes. 

Figure 3.9 (a, g, j) illustrate a regime change at shallow λ[INP] values with large increases in 

anvil ice crystal size (a), Hallett-Mossop ice particle production (g) and accretion of water by 

ice (j) at values of λ[INP] above approximately -0.3 °C-1. This regime change is further illustrated 

in Figure 3.10 which shows the variation in anvil ice crystal effective radius (a), convective 

Hallett-Mossop ice particle production (b) and accretion of water by ice (c) with changing λ[INP] 

and [INP]MAX values. The value of all three output variables substantially increases in the upper 

right corner of parameter space which indicates simulations with shallow λ[INP] and high 

[INP]MAX values. The [INP]MAX determines at what λ[INP] the regime change occurs: At an 

[INP]MAX of 10-4, λ[INP] must be greater than -0.1 °C-1 for the regime change to occur. At an 

[INP]MAX greater than 101, the regime change occurs when λ[INP] is greater than -0.3 °C-1. The 

regime change occurs in the same location of parameter space in all three variables (Figure 

3.10). Simulations in the shallow λ[INP] regime with a HM-rate above 600 mg-1 are highlighted 
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with a black outline and the lack of distinction in colour between simulations with a high HM-

rate in the low [INP]MAX and steep λ[INP] regions indicate that a high HM-rate does not have the 

same effect in the cloud as a shallow λ[INP]. However, simulations on the border of the regime 

transition seem more likely to have elevated ice effective radius and thus be in the shallow 

λ[INP] regime if they have a high HM-rate. 

 

Figure 3.10. Regime change in anvil ice crystal effective radius and driving processes. 

Variation in anvil ice crystal effective radius (a), ice particle production by the Hallett-

Mossop process (b), and the accretion of water by ice crystals (c) due to variation in λ[INP] 

and [INP]MAX. Marker colours indicate the value of anvil ice crystal effective radius (a), ice 

particle production by the Hallett-Mossop process (b), and the accretion of water by ice 

crystals (c). Circular markers indicate an ice crystal effective radius above 25 µm (a), an ice 

particle production rate by Hallett-Mossop over 2 x 104 m-2 s-1 (b), and a rate of water 

accretion by ice over 1 x 10-5.5 kg m-2 s-1 (c). Simulations with a HM-rate above 600 splinters 

mg-1 are indicated with a black outline. 
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Statistical emulation of anvil ice crystal effective radius at 14 km, Hallett-Mossop ice particle 

production and accretion of water by ice crystals was attempted. Figure 3.11 (a - c) shows the 

validation of the emulator surface against the cloud model validation points. In all three cases 

the emulator does not validate as well as was seen in Figure 3.7 with larger 95% confidence 

intervals. Applying a nugget, or noise term, to allow the emulator to pass nearby to, rather than 

directly through, the training points (Johnson et al., 2011)was tested as a means to improve the 

validation. However, because the poorer validation occurs mainly as a result of the emulator 

struggling with the sharp transitions at shallow λ[INP] values seen in Figure 3.9 (a, g, j), a nugget 

term did not change the results. Nevertheless in most cases the points are relatively close to the 

1:1 line indicating that the emulator has some skill in predicting ice crystal size and the cloud 

development properties that control ice crystal size.  

Figure 3.11 (d - f) shows the results of variance-based sensitivity analysis and indicates that for 

all three output variables here, λ[INP] accounts for a large proportion of the variance with a main 

effect index of 30 to 60%. Interaction effects between the λ[INP] and the [INP]MAX account for 

around 20% of the uncertainty or variance in the anvil ice crystal size. This is in contrast to the 

emulated outputs shown in Figure 3.8 for anvil ICNC and heterogeneous and homogeneous ice 

particle production rates, in which [INP]MAX accounted for nearly all of the uncertainty in the 

output value. The uncertainty in the anvil ice crystal size and the accretion of water by ice of 

the simulated cloud would be substantially reduced by knowing the values of λ[INP] and 

[INP]MAX exactly, while the uncertainty in the ice particle production rate by the Hallett-

Mossop process would be substantially reduced by knowing the values of λ[INP] and HM-rate 

exactly. 
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Figure 3.11. Emulator validation and uncertain input contributions to output uncertainty. 

Validation of emulator results (a - c) and results of the variance-based sensitivity analysis (d 

- f) for anvil effective radius at 14 km (a, b), ice particle production by the Hallett-Mossop 

process (c, d), and water accretion by ice (e, f). In (a) – (c) the dots show the value of the 

validation run on the x-axis and the corresponding emulator mean prediction on the y-axis. 

95% confidence intervals of the emulator mean predictions are also shown. An emulator that 

validates well will have dots close to the 1:1 line and small error bars. 
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Figure 3.12 shows emulator response surfaces for anvil ice crystal effective radius at 14 km 

(a), ice particle production by the Hallett-Mossop process (b) and accretion of water by ice 

crystals (c). In (a) and (c), the Hallett-Mossop splinter production rate is held constant at 350 

splinters mg-1 rimed. In (b), the [INP]MAX is held constant at 1. The emulator response surfaces 

are noisier with more bumps than those shown in Figure 3.8. This is expected due to the larger 

95% confidence intervals on the emulator predictions shown in Figure 3.11 (a – c). Emulation 

using a Gaussian process assumes that the uncertain input parameters cause changes in output 

variables that vary smoothly over the parameter space. This is not the case for the three 

variables emulated in Figure 3.12. For example, the ice particle production rate by the Hallett-

Mossop process shows a distinct regime change at shallow λ[INP] values with a sharp upwards 

bend in the emulator surface occurring at a λ[INP] of approximately -0.2 °C-1 (Figure 3.11b). 

However, in general the response surfaces represent the trends seen in Figures 3.9 and 3.10 

reasonably well. For example, the emulated response surfaces show increases with high 

[INP]MAX and shallow λ[INP] values that are also evident in Figures 3.9 and 3.10. 
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Figure 3.12. Emulator response surfaces. Prediction of ice effective radius (a), Hallett-

Mossop ice production (b), and accretion of water (c) by the emulator. Shown in (a) and (c) 

are the emulated response surfaces at a fixed HM-rate of 350 splinters mg-1 rimed. Shown in 

(b) is the emulated response surface at a fixed [INP]MAX  of 1. The colours indicate output 

values and are the same range and units as the z-axis. 



124 

 

3.4.1.3. Anvil cloud fraction 

Figure 3.13 shows the dependence of observed anvil cloud fraction (a-d), in-cloud updraft 

speed (e-h) and total cloud condensate amount (i-l) on the uncertain input parameters. Anvil 

cloud fraction is the mean of the peak cloud fraction that occurs between 180 and 240 minutes 

of the simulations (i.e. the peak of the profile shown in Figure 3.13d). A similar regime shift at 

shallow λ[INP] values as was seen in the anvil ice crystal size is seen in all three of these output 

variables (Figure 3.13a, d, g) with simulations with a shallow λ[INP] having an elevated cloud 

fraction. A small secondary dependence of cloud fraction on [INP]MAX is evident with 

simulations in the shallow λ[INP] regime, exhibiting reductions in cloud fraction from ~32% at 

low [INP]MAX values to ~28% at higher [INP]MAX values. The regime shift to high cloud 

fractions, updraft speed and cloud condensate occurs in the same shallow λ[INP] and high 

[INP]MAX region of parameter space (Figure 3.14) as was seen in anvil ice crystal size, Hallett-

Mossop ice particle production and ice accretion rates (Figure 3.10). 

Anvil cloud fraction is enhanced at shallow λ[INP] values due to an invigoration effect caused 

by enhanced heterogeneous (Figure 3.9, d-f) and secondary freezing (Figure 3.9, g-i) and 

increased riming (Figure 3.9, j-l) in the mixed phase cloud region, and the resultant 

enhancement in latent heat release, updraft speeds (Figure 3.13, e, h), and vertical condensate 

mass transport (Figure 3.13 i, l). The enhancement in convective strength and the resultant 

increase in anvil size at shallow λ[INP] values is large enough to compensate for the effect of 

increased ice crystal sizes (which would be expected to reduce anvil size due to increased ice 

fall speed) at shallow λ[INP] values within the simulated time period. The importance of the 

anvil ice properties relative to the convective invigoration effect for anvil cloud fraction may 

change with a longer simulation period owing to the persistence of the anvil cloud after the 

decay of the convection that forms it. 
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Figure 3.13. Anvil cloud fraction and driving processes. Dependence of anvil cloud fraction 

(a-d), in-cloud updraft speed at 7 km (e-h), and total cloud condensate (i-l) on the three 

uncertain input parameters: λ[INP] (a, e, i), [INP]MAX (b, f, j), and HM-rate (c, g, k). In-cloud 

profiles of anvil cloud fraction (d), in cloud updraft speed (h), and total cloud condensate (l) 

in all simulations are coloured by λ[INP]. For panels (a), (e), and (i), the colour of the markers 

indicate [INP]MAX and the marker size indicates the HM-rate. For panels (b), (f), and (j), the 

colour of the markers indicate λ[INP] and the marker size indicates HM-rate. For panels (c), 

(g), and (k), the colour of the markers indicate [INP]MAX and the marker size indicates λ[INP]. 

Panels (a-d) are the average of the cloud property between 150 and 240 minutes (anvil stage) 

in the simulation, while panels (e-l) are the average of the relevant cloud property between 

60 and 180 minutes (convective stage) in the simulations. 
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Figure 3.14. Regime change in anvil cloud fraction and driving processes. Variation in anvil 

cloud fraction (a), in-cloud updraft speed at 7 km (b), and total cloud water path (c) due to 

variation in λ[INP] and [INP]MAX. Marker colours indicate the value of the mean peak anvil 

cloud fraction (a), in-cloud updraft speed at 7 km (b) and total cloud water path (c). Circular 

markers indicate a cloud fraction above 27% (a), a mean in-cloud updraft speed above 1.35 

m s-1 (b), and a water path over 9.6 kg m-2 (c). Simulations with a HM-rate above 600 

splinters mg-1 are indicated with a black outline. 

The small reduction of anvil cloud fraction within the shallow λ[INP] regime with increasing 

[INP]MAX (Figure 3.13b) can be attributed to the changes in anvil ice properties reported in 

Sections 3.4.1.1 and 3.4.1.2. At high [INP]MAX values, ICNC is reduced (Figure 3.6b) and ice 

crystal size is increased (Figure 3.9b). Fewer and larger crystals will sediment out faster and 

therefore will spread out over a smaller horizontal area, reducing anvil fraction in simulations 

with high [INP]MAX values. The chosen Hallett-Mossop splinter production rate has very little 
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impact on anvil cloud fraction (Figure 3.13c), updraft speeds (Figure 3.13g) or cloud 

condensate amount (Figure 3.13k). 

Statistical emulation of anvil cloud fraction was attempted but the bifurcation of the output data 

into two distinct regimes depending on the value of λ[INP] proved impossible to capture with 

the emulator, and validation of the emulation showed little predictive power (not shown). This 

indicates that although emulation is a powerful tool to aid in our understanding of cloud 

processes, traditional methods of analysis are still needed where there are sharp transitions such 

as those seen in Figure 3.14. It is not clear why the emulation of some variables with a two 

distinct regimes (such as ice crystal effective radius) worked relatively well and emulation of 

anvil cloud fraction did not. It may be because simulations exhibited both a sharp transition to 

a larger cloud fraction at high [INP]MAX and shallow λ[INP] values and within this regime there 

was a decrease with increasing [INP]MAX and the emulator struggles to capture the complicated 

dependence on [INP]MAX. Furthermore there is a notable outlier with one simulation with the 

highest [INP]MAX and shallowest λ[INP] having the lowest cloud fraction (Figures 3.13, 3.14) 

which may affect the emulation. 

 

3.4.2. The importance of the Hallett-Mossop process and its 

interaction with λ[INP]. 

One notable feature of the results presented so far is the apparent lack of impact of uncertainty 

in the HM-rate on most output variables. For example, the results of the variance based 

sensitivity analysis shown in Figures 3.7 and 3.11 indicate that the HM-rate makes no 

significant contribution to the uncertainty in the value of anvil ICNC, heterogeneous or 

homogeneous freezing rates, anvil effective radius or ice accretion of water. Ice particle 
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production by the Hallett-Mossop process was the only output variable shown to have a notable 

dependence on the HM-rate, and up to 40% of the uncertainty in its value was attributed to 

variation in the λ[INP] value owing to the role of λ[INP] in determining the regime shift evident 

in Figures 3.9g and 3.10b. This regime shift induces an enhancement in the ice particle 

production by the Hallett-Mossop process of about 1 order of magnitude at shallow λ[INP] values 

regardless of the value of HM-rate.  

In most simulations over 99% of ice crystals in the Hallett-Mossop region (5 – 7.5 km) are 

formed via the Hallett-Mossop process and not via heterogeneous ice formation (Appendix 

Section 3.7: Figure A3.1). Figure A3.1 shows that only 7 of 73 simulations conducted have 

more than 10% of the ice particle production between 5 and 7.5 km occurring via heterogeneous 

ice nucleation rather than via the Hallett-Mossop process. Despite the apparent unimportance 

of the chosen HM-rate for the simulated cloud properties detailed in Section 3.4.1, many output 

variables, particularly those exhibiting a regime shift at shallow λ[INP] and high [INP]MAX, show 

a strong correlation with ice particle production in the Hallett-Mossop region of the cloud 

(Figure 3.15). This correlation indicates that the key role of INP slope in determining cloud 

properties can be partly attributed to its role in enhancing Hallett-Mossop ice particle 

production rates (Figure 3.9 g-i) which dominate ice production in the Hallett-Mossop regime 

(Section 3.7: Figure A3.1). Note that the simulations and correlation analysis shown Figure 

3.15 comprise only simulations from the realistic region of parameter space (Figure 3.5). 

Ice particle production by the Hallett-Mossop process is greatly enhanced at shallow λ[INP] 

values due to both the larger availability of ‘seed’ ice crystals and the enhanced riming events 

that accompany these increased ICNCs. This indicates that INP particles can exert strong 

control over deep convective cloud properties even when heterogeneous freezing is not the 

dominant mechanism of ice production because they can alter the rate of ice production by SIP 

mechanisms (Figure 3.9 g-I, Figure 3.15 and Section 3.7: Figure A3.1).  
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Figure 3.15. Importance of ice production by the Hallett-Mossop process. Dependence of 

cloud properties on ice particle production in the Hallett-Mossop regime (5 - 7.5 km) in the 

convective stage of cloud development (60 - 180 minutes). Shown is ICNC at 7 km (a), 

column cloud droplet number concentration (b), accretion of water by ice (c), graupel mass 

(d), snow mass (e), in-cloud updraft speed at 7 km (f), cloud condensate from cloud droplets, 

rain, ice crystals, snow and graupel (g), anvil ice crystal effective radius at 14 km (h), and 

anvil cloud fraction (i). The colour of the markers indicate λ[INP]  and the marker size indicate 

the HM-rate. Panels (a - g) are the average of the cloud property between 60 and 180 

minutes (convective stage), while panels (h - i) are the average of the relevant cloud property 

in the simulations between 150 and 240 minutes (anvil stage) in the simulation. Simulations 

deemed as having unrealistically high or unrealistically low INP concentrations due to the 

combined perturbations of λ[INP] and [INP]MAX (as indicated in Figure 3.5) are not shown in 

this plot or included in the correlation analysis. 
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In particular, we note that high rates of ice particle production by the Hallett-Mossop process 

do not occur unless the λ[INP] is shallow. This is evident from the lack of distinction between 

simulations with a HM-rate above or below 600 splinters mg-1 in Figures 3.10 and 3.14. This 

indicates that a steep λ[INP] and a high HM-rate cannot have the same effect on the cloud 

properties as a shallow λ[INP] regardless of the HM-rate. Furthermore, ICNCs at lower mixed 

phase altitudes, regardless of the freezing mechanism in question, can be key determinants of 

deep convective cloud properties and the properties of the convectively generated anvil (Figure 

3.15). 

Figure 3.15 indicates that as ice production by the Hallett-Mossop process increases due to 

increased INP number concentrations at shallow λ[INP] values, mixed-phase ICNCs (Figure 

3.15a) are increased and column cloud droplet number concentrations are reduced (Figure 

3.15b). Due to the enhancement in ICNC in the lower mixed-phase region with shallower λ[INP]  

and higher resultant Hallett-Mossop ice particle production, increases are seen in all mixed-

phase freezing mechanisms including accretion of ice by water (Figure 3.15c), snow (Figure 

3.13d) and graupel (Figure 3.15e) mass concentrations due to the well-documented enhanced 

effectiveness of liquid collection by frozen hydrometeors relative to liquid ones (Johnson, 

1987; Phillips et al., 2005). Enhanced latent heat release by the increased freezing events from 

multiple pathways leads to increased updraft speeds (Figure 3.15f) and an overall increase in 

cloud formation (Figure 3.15g). Enhanced riming in the mixed phase region increases anvil ice 

crystal effective radius (Figure 3.15h) as more anvil ice crystals are formed via heterogeneous 

freezing and subject to riming than are formed via homogeneous freezing. The increased 

convective strength also leads to increased anvil cloud fraction (Figure 3.15i). The correlations 

shown in Figure 3.15 are particularly evident in simulations in the shallow λ[INP] cloud regime 

indicating that the sensitivity of deep convective cloud properties to mixed-phase ice processes 
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may vary depending on ambient aerosol concentrations and the number and efficiency of the 

available ice-nucleating aerosol.  

 

3.5. Limitations of this modelling study 

The role of λ[INP] in determining the ice particle production by the Hallett-Mossop process 

highlights the importance of the interaction of INP number concentrations with SIP 

mechanisms. However the Hallett-Mossop process is not the only SIP mechanism that has been 

identified in convective clouds (Field et al., 2017; Korolev et al., 2020). Other SIP mechanisms, 

such as droplet shattering (Lauber et al., 2018), are not represented in our simulations and their 

impact has not been tested. We recommend that the effect of other SIP mechanisms, including 

those occurring at temperatures below -10°C (Field et al., 2017; Lauber et al., 2018) on deep 

convective clouds be tested in similar studies as parameterisations become available.  

The simulated cloud is single idealised case and as such the results cannot be directly 

extrapolated to more realistic convective cloud cases, where less idealised triggering 

mechanisms are at play (Wellmann et al., 2018, 2020) and different clouds in the population 

can interact (e.g. Chapter 2 and Hawker et al. (2021)). It was not feasible to conduct the 

necessary number of simulations required to study the impact of three uncertain input 

parameters on a larger more complicated cloud field due to time and cost restrictions. However, 

we believe the results presented here provide an interesting stepping stone to understanding the 

interacting effects of INP number concentrations, INP efficiency, and SIP on deep convective 

anvil properties and recommend similar studies be undertaken with more realistic cases in the 

future.  

The chosen uncertain input parameters are just three of a multitude of microphysical parameters 

that contribute uncertainty to convective cloud processes which should be considered in future 
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work. For example, uncertainty in ice crystal number and mass concentrations were strongly 

affected by ice crystal shape in simulations of a continental deep convective cloud simulated 

using the 3D MAC3 model (Johnson et al., 2015b). Changes in CCN number concentrations 

have also been shown to have large effects on many microphysical processes, such as cloud 

invigoration, and resultant cloud properties, including the anvil extent, in deep convective 

clouds (e.g. Altaratz et al., 2014; Fan et al., 2010a, 2010b, 2012; Wang, 2005), none of which 

have been examined here. Uncertainty in environmental conditions that may affect the cloud 

properties, for example, the size and temperature perturbation value of the warm bubble 

initiating our deep convective cloud, or the potential temperature profile (Wellmann et al., 

2018), have also not been addressed here.  

In order to effectively decouple the [INP]MAX and λ[INP], the INP number concentration at -

38°C was fixed to be equal to the coarse dust number concentration. This was necessary 

because a key assumption of the variance-based sensitivity analysis shown in Figures 3.7 and 

3.11 is that the uncertain input parameters are independent of one another. However, 

decoupling the λ[INP] and [INP]MAX in this way means that the plateauing of the INP number 

concentrations at low temperatures and high aerosol concentrations, as can be seen in the 

Niemand et al. parameterisation in Figure 3.4a, is not represented in the simulations in this 

study (Atkinson et al., 2013; Niedermeier et al., 2015; Niemand et al., 2012). Therefore, the 

effect of a high [INP]MAX and steep λ[INP] on the cloud properties may be larger in reality than 

was found in this idealised study because of this design feature. This feature of our experiment 

design also means that combinations of INP number concentration and INP parameterisation 

slope causing unrealistically low INP concentrations at temperatures above -35°C are very 

common in our sampling design. To compensate for this we conducted 22 additional 

simulations for use in the emulator design and 6 additional validation simulations in the 

realistic region of parameter space (red and black lines in Figure 3.5d). Our variance-based 
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sensitivity analysis is conducted over all simulated parameter space, including the unrealistic 

space shown in Figure 3.5. 

It should also be borne in mind that INP concentration spectra often do not follow a simple 

logarithmic relationship. Instead, different INP species can contribute to different temperature 

regimes and different INP tend to have different temperature dependencies. For example, 

mineral dust tends to have a steep slope and dominates INP populations below around -15°C, 

whereas, biological material can enhance the INP concentration in the HM regime (e.g. 

O’Sullivan et al., 2018). Hence, the INP concentration spectra in real clouds can be much more 

complex than those used in this model.  

As in Chapter 2, raindrop freezing was parameterised according to Bigg (1953). This means 

the raindrop freezing is temperature and volume based and disconnected from the perturbations 

in [INP]MAX and λ[INP]. In a future study, the importance of raindrop freezing should at the very 

least be linked to the [INP]MAX value or, if processing is active, perturbed using both [INP]MAX 

and λ[INP] using a two-moment scheme that accounts for the accumulation of aerosol in 

raindrops during collision (e.g. Paukert et al., 2017).  

The ice properties of the convectively generated anvil were analysed and the implications for 

anvil lifetime and radiative effect theorised. However, the short length of our simulations due 

to computational limitations meant we did not examine the full lifecycle of the generated anvil. 

Conducting similar simulations covering a longer time period would address this limitation and 

is recommended for the future. 

 

3.6. Discussion and Conclusions 

We quantify the impact of varying INP number concentration (via the [INP]MAX uncertain input 

parameter), INP parameterisation slope (λ[INP]=dlog10[INP(m-3)]/dT(°C)) and the Hallett-
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Mossop splinter production rate (HM-rate, splinters produced per milligram rimed) on the anvil 

properties of an idealised deep convective cloud. A schematic of the main effects identified in 

this study is shown in Figure 3.16. Overall, the anvil ICNC is substantially reduced at high 

[INP]MAX owing to a reduction in homogeneous ice production when heterogeneous freezing 

becomes the dominant mechanism for primary ice production. Furthermore, at shallow λ[INP] 

values, there is a sharp transition to a cloud regime with larger anvil ice crystals and a more 

extensive anvil. This regime shift is driven by more extensive cloud glaciation which is in part 

caused by shallow λ[INP] values enhancing the ice particle production by the Hallett-Mossop 

process. 

We infer the possible implications of the uncertain input parameters on anvil lifetime based on 

the anvil ice crystal properties. Tropical cirrus can typically persist, and therefore affect 

radiation, in the atmosphere for days after the convective cloud that formed them has decayed 

(e.g. Luo and Rossow, 2004). An anvil with more numerous, smaller crystals will persist longer 

in the atmosphere than one with fewer, larger crystals. Our results indicate that a higher INP 

number concentration leads to both fewer and larger anvil ice crystals and a reduced cloud 

fraction. This implies that deep convection generated in an environment with a high 

concentration of ice-nucleating aerosol, such as in heavy dust events, may be less long-lived 

than those generated in pristine environments. Statistical emulation demonstrated that anvil 

ICNC declines sharply as soon as heterogeneous ice production becomes the dominant 

mechanism of ice crystal production in the cloud. This is due to the suppression of 

homogeneous freezing when liquid is consumed at lower altitudes by high heterogeneous 

freezing rates and subsequent mixed-phase processes, such as riming and deposition.  

Uncertainty in the INP parameterisation slope (λ[INP]) had the largest effect on the properties of 

the simulated deep convective cloud out of the three uncertain input parameters. A regime shift 

occurs at a shallow λ[INP] of between -0.3 and -0.1 °C-1 (the exact value of the transition depends 



135 

 

on the [INP]MAX) above which the deep convective cloud generates a larger anvil with bigger 

ice crystals (Figures 3.10, 3.14). At shallow λ[INP] values, the anvil ice crystals are larger 

indicating that a cloud anvil formed in the presence of an INP population with high efficiency 

at warmer temperatures, e.g. marine organics (Wilson et al., 2015), will have a shorter lifetime 

than that formed in the presence of an INP population with a steeper temperature dependence. 

However, this effect is compensated for by the invigoration effect driven by higher rates of 

mixed-phase ice formation in simulations with shallow λ[INP] values, which leads to larger 

condensate mass divergence in the upper troposphere and a larger anvil in the timescale 

simulated in this study. Future studies should cover the entire lifecycle of the generated deep 

convective cloud and anvil cirrus in order to quantify the resultant lifetime of the convective 

anvil due to compensation between these two effects of λ[INP]. 

The microphysical effects of the variations in INP number concentrations and INP 

parameterisation slope detailed here build on the results of Chapter 2 (also in Hawker et al. 

(2021)) and further our understanding of the role of these two uncertain inputs on deep 

convection. In both the complex cloud-field simulation of Hawker et al. (2021) and the 

idealised deep convective cloud presented here, INPs in the mixed-phase region enhance 

Hallett-Mossop ice particle production, and increase snow and graupel formation leading to an 

invigoration effect, more cloud condensate and an increased cloud fraction at mixed-phase 

cloud levels. INPs in the mixed-phase region also reduce homogeneous ice production leading 

to reduced overall column integrated ICNCs in both studies. Conversely, in the Hawker et al. 

(2021) study, shallow λ[INP] values led to a reduced cloud fraction above 9 km due to reduced 

ice particle production by homogeneous freezing. In the deep convective cloud simulated here, 

a shallow λ[INP] leads to an increased anvil cloud fraction due to an invigoration effect caused 

by enhanced ice formation and latent heat release in the mixed-phase cloud region. This 

indicates that the microphysical effects of INP and the interaction of INP with the Hallett-
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Mossop process are relatively consistent between realistic and idealised case studies. However, 

the consequences of microphysical changes due to INP on the cloud macro-physical properties 

such as cloud fraction and outgoing radiation can be different depending on the specific 

conditions of the simulation and the type of cloud being perturbed. For example, the deep 

convective cloud simulated here was initiated with a relatively strong warm bubble perhaps 

predisposing the cloud fraction to be more sensitive to enhancements in an already strong 

convective updraft strength than the more realistic clouds in the Hawker et al. (2021) study 

indicating that this aspect still requires more clarification. 

The regime shift at shallow λ[INP] values could be in part attributed to the substantial 

enhancement of the rate of ice production in the lower mixed-phase region by the Hallett-

Mossop process which induces more riming, higher snow and graupel production and stronger 

updrafts as a result of the increased freezing and latent heat release (Figure 3.15, Section 3.7: 

Figure A3.1). Ice particle production by the Hallett-Mossop process is enhanced at shallower 

λ[INP] values due to both the larger availability of ‘seed’ ice crystals and the enhanced riming 

events that accompany these increased ICNC.  Interestingly, the Hallett-Mossop ice particle 

production rate is controlled by both the HM-rate and λ[INP]. A shallow λ[INP] provides a large 

jump in Hallett-Mossop ice particle production of up to an order of magnitude, while the impact 

of the chosen HM-rate has an incremental, linear effect. Whether the interaction of INP with 

other SIP mechanisms that operate over different temperature ranges has a similar effect on 

SIP ice particle production rates should be explored in the future. 

Statistical emulation is a powerful tool for helping to visualise and understand the relationships 

between cloud responses (Figure 3.8). However, the emulation struggles to accurately model 

cloud responses where there is a significant regime shift at shallow λ[INP] (Figure 3.10,14). We 

therefore suggest that emulation be used alongside traditional analysis methods for the further 

study of the complex processes occurring within deep convective clouds, particularly where 
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sudden transitions or regime shifts are evident or likely. The use of Latin hypercube sampling 

to capture cloud responses in all realistic parameter space to multiple uncertain input 

parameters is very effective, even without undertaking statistical emulation of the simulation 

data.   

 

Figure 3.16. Summary of results. Schematic showing the key effects of the perturbations to 

absolute INP number concentration at -38 °C ([INP]MAX) and INP parameterisation slope 

(λ[INP]) on the deep convective cloud simulated in this study. Output variables written along 

the x and y-axes in black indicate that they are primarily controlled by the uncertain input 

variable on that axes while grey writing indicates a secondary or smaller effect of the 

uncertain input variable in question. 
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This work highlights the complexity of interactions between mixed-phase ice processes and 

the challenge of representing them accurately in numerical weather prediction models. The 

potential for ice particle production by INP and SIP to impact anvil cirrus ice properties also 

presents a challenge for climate models. Climate models do not typically use INP number 

concentrations to determine ice water path and the resultant outgoing radiation, and this is an 

important area for future work (Baran et al., 2014; Waliser et al., 2009). The role of the 

temperature dependence of INP number concentration in determining the observed cloud 

properties indicates the importance of quantifying the concentration of INP at all mixed-phase 

temperatures, adding to work by, for example, Hawker et al. (2021), Liu et al. (2018), Shi and 

Liu (2019), and Takeishi and Storelvmo (2018). The importance of the temperature dependence 

of INP number concentrations indicates that accurately representing species accumulated on 

the surface of mineral dust may be of particular importance for the representation of the 

glacitation of deep convective clouds in the Saharan outflow regions: The ice-nucleating ability 

of mineral dust particles can be substantially enhanced by the accumulation of biological 

material from fungi, pollen and bacteria (Augustin-Bauditz et al., 2016; Chen et al., 2021; 

O’Sullivan et al., 2016). Furthermore, the temperature dependence of the INP parameterisation 

had a substantial effect on Hallett-Mossop ice particle production rates, indicating that 

heterogeneous freezing can be an important determinant of deep convective cloud properties 

even when it is not the dominant mechanism of ice formation. 
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3.7. Appendix 

 

Figure A3.1. Source of ice crystals in the Hallett-Mossop region of the simulated deep 

convective cloud. Percentage of ice crystals produced between 5 and 7.5 km altitude that are 

produced from the Hallett-Mossop process [i.e. (Hallett-Mossop ice crystals / Hallett-Mossop 

and INP produced ice crystals) x 100]. Simulations with a HM-rate above 600 splinters mg-1 

are indicated with a black outline. 
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Chapter 4: Simulation of dust and K-feldspar 

INP transport across the tropical Atlantic in a 

global aerosol model 
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4.1. Abstract 

Mineral dust aerosol from the world’s arid and semi-arid regions have important effects on 

climate through their direct effect on incoming and outgoing radiation and through their 

interactions with clouds. Dust aerosol can act as ice-nucleating particles (INP), initiating ice 

formation in the mixed-phase temperature regime. This ability has been attributed to mineral 

components of dust, such as potassium feldspar (K-feldspar), which have demonstrated 

efficiency at nucleating ice. Measurements of INP number concentration in Barbados provide 

a useful dataset to evaluate the transport of dust and K-feldspar INP from the Sahara across the 

tropical Atlantic to the Caribbean in the Global Model of Aerosol Processes (GLOMAP). 

GLOMAP is a global aerosol model that has previously been used to draw conclusions about 

the sources of INP when compared to field measurements. We find that GLOMAP 

overestimates the concentration of K-feldspar INP at Barbados but underpredicts the dust mass 

concentration relative to surface-based measurements, profiles of dust mass measured by lidar, 

and the MERRA-2 reanalysis dataset. The overprediction of K-feldspar INP can be explained 

by an overprediction of the K-feldspar aerosol fraction, perhaps driven by the model placing 

too much K-feldspar in the accumulation size mode relative to the coarse size mode. INP and 

dust mass prediction by GLOMAP are affected by the choice of driving meteorological 

reanalysis used in the model. Differences in INP number concentration at -10°C can be as large 

as 200% in some places between simulations using the ERA-interim rather than the ERA-40 

reanalysis dataset. Overall, a combination of direct atmospheric observations, measurements 

derived from satellite and remote sensing data, and model simulations are used to build a better 

understanding of the representation of dust and INP in GLOMAP. 
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4.2. Introduction 

Mineral dusts emitted from the world’s arid and semi-arid regions are a dominant component 

of global aerosol budgets with important effects on global radiative energy fluxes, climate, and 

weather. Mineral dust aerosol can directly affect global radiative fluxes through the scattering 

and absorption of incoming and outgoing radiation (e.g. Evan and Mukhopadhyay, 2010). It 

can affect cloud properties such as precipitation and albedo through its role as cloud 

condensation nuclei (CCN) (Karydis et al., 2012, 2017; Kumar et al., 2009) and ice-nucleating 

particles (INP) (e.g. Harrison et al., 2016; Niemand et al., 2012; Vergara-Temprado et al., 

2018). These effects can include interaction with tropical storms and cyclones causing 

invigoration (Herbener et al., 2014; Khain et al., 2016; Lynn et al., 2016) or weakening (Fan et 

al., 2013; Lynn et al., 2016; Zhang et al., 2007). Upon sedimentation, through dry deposition 

or wet nucleation and impaction scavenging, mineral dust can alter ocean or soil 

biogeochemistry and productivity (Jickells et al., 2005; Mahowald et al., 2005) or alter the 

albedo of the surfaces it is deposited on, for example by darkening the surface of sea ice 

(Wittmann et al., 2017). The atmospheric dust cycle is complex with large and difficult to 

measure uncertainties across multiple spatial and temporal scales (Huneeus et al., 2011; Shao 

et al., 2011; Wu et al., 2020).  

Dust emission from the surface occurs when the surface wind speed exceed a surface-specific 

threshold which depends on surface roughness, material grain size, and the amount of soil 

moisture (Engelstaedter et al., 2006). The difficulty of quantifying emission fluxes, the primary 

determinant of the atmospheric burden of mineral dust in the atmosphere, highlights the 

complexity and challenge of accurately representing the dust cycle in global models. 

Quantification of emission fluxes is challenging because of the heterogeneity of emission 

regions which have large changes in mineral composition and surface erodibility across short 

distances (Nickovic et al., 2012; Sweeney et al., 2011), the short lifetime of most emitted 
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mineral dust particles, and the remote desert location of most dominant emission regions 

making installation and monitoring of measurement equipment challenging (Engelstaedter et 

al., 2006). Estimations of global dust emissions from climate models are extremely variable 

with estimates from 15 different CMIP5 (Coupled Model Intercomparison Project Phase 5) 

models spanning from 735 to 8186 Tg yr-1 (Wu et al., 2020). This large variation is attributable 

in part to some models considering only particles smaller than 16 µm and others considering 

particles as large as 63 µm. However, even among models considering only particles between 

0.2 and 20 µm  the dust emission flux ranges from 735 to 3598 Tg yr-1 (Wu et al., 2020). The 

range of global estimated dust emissions from 15 Aerosol Model Intercomparison 

(AEROCOM) models are similarly varied (500 to 4400 Tg yr-1) (Huneeus et al., 2011).  

Owing to the dearth of direct measurements, constraint of emission fluxes relies on the 

validation of variables such as aerosol optical depth (AOD) which are dependent on dust 

emission and observable via remote sensing techniques (Engelstaedter et al., 2006; Huneeus et 

al., 2011) or on reanalysis datasets which are produced using a combination of satellite and 

observed atmospheric conditions and model simulations (Randles et al., 2017; Wu et al., 2020). 

These remotely sensed or reanalysis datasets are subject to their own, often large, uncertainties 

further complicating the quantification of global dust emission fluxes (Huneeus et al., 2011).  

The global atmospheric dust burden depends on the amount of dust emitted into the 

atmosphere, the lifetime of atmospheric dust, and the amount removed via dry and wet 

deposition (Shao et al., 2011). The magnitude of all of these dust cycle components are very 

uncertain, leading to an unconstrained atmospheric dust flux estimated to be between 8 and 

35.9 Tg yr-1 (Shao et al., 2011). One thing that is not uncertain however is that the majority of 

the global atmospheric dust burden is emitted from North Africa (e.g. Ginoux et al., 2012; 

Huneeus et al., 2011) before being transported westwards across the tropical Atlantic towards 

the Caribbean (e.g. Gläser et al., 2015; Huneeus et al., 2011; Wu et al., 2020). Ginoux et al. 
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(2012) estimate that Northern Africa accounts for 55% of global dust emissions. In the summer, 

dust outbreaks can occur every 3-5 days and the emitted dust reaches the Caribbean in 1-2 

weeks (Gläser et al., 2015; Huang et al., 2010; Prospero and Lamb, 2003); Huang et al. (2010) 

estimates using Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data that 

dust in the Saharan Air Layer (SAL), a typically dry and dusty air mass situated between 2 and 

6 km that transports dust from North Africa to the Carribean (Chiapello et al., 1995; Dunion 

and Velden, 2004; Huang et al., 2010; Prospero and Carlson, 1972) travels at a speed of 1000 

km day-1.  

Emission and transport of dust from North Africa to the Caribbean is complicated but in 

general, the SAL is developed as follows: Dust is emitted via a number of pathways including 

synoptic scale systems, nocturnal low level jets, boundary layer convection, cold pool outflows 

and dust devils (Marsham et al., 2011). Solar heating over Africa leads to the generation of 

convection and subsequently a hot, dry and dusty mixed layer. As this air is transported over 

the tropical Atlantic, the moist, cold sea air undercuts it. The dusty layer is warm enough to 

allow the formation of an inversion above the moist trade winds leading to the persistence of 

the SAL across the entirety of the tropical Atlantic (Prospero and Carlson, 1972). There SAL 

is generally understood to have low relative humidity, but there is some evidence of dust 

transport over the Atlantic in moist air masses, particularly where emission is related to cold 

pools (Schwendike et al., 2016b; Trzeciak et al., 2017), as well as a low level transport route 

in Easterly trade winds which is strongest in the wintertime (Chiapello et al., 1995). 

During transport, dust particles can interact with clouds affecting their cloud droplet number 

concentration (e.g. Karydis et al., 2017), glaciation state (e.g. Tan et al., 2014), updraft strength 

(e.g. Van Den Heever et al., 2011; Lynn et al., 2016), and precipitation (e.g. Min et al., 2009; 

Yin et al., 2002). However, the effect of mineral dust particles on clouds is not well understood. 

For example, the addition of large and predominately insoluble dust particles can increase 
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CDNC in  relatively pristine air masses or decrease CDNC in polluted and continental air 

masses (Karydis et al., 2017), as well as potentially preventing cloud formation if they take up 

considerable amounts of water, lowering supersaturation, without activating to cloud droplets 

(Barahona et al., 2010).  

Mineral dust is also an efficient and globally dispersed INP (Atkinson et al., 2013; Niemand et 

al., 2012; Vergara-Temprado et al., 2017) meaning it can affect cloud phase with implications 

for cloud opacity  and lifetime  1000s of kilometres from source (e.g. Komurcu et al., 2014; 

Murray et al., 2020; Zelinka et al., 2017). For example, observations by Sassen et al. (2003) 

indicate that Saharan dust is capable of glaciating altocumulus clouds over Florida with 

relatively warm cloud top temperatures of -8.8°C and the accurate representation of K-feldspar 

INP number concentrations was shown to be important in representing the lifetime and 

radiative forcing of mixed-phase clouds in the Southern Ocean (Vergara-Temprado et al., 

2018) 

The ice-nucleating ability of mineral dust is thought to be related to characteristics of the 

particle surface, known as active sites, and varies depending on the aerosol mineralogy 

(Atkinson et al., 2013; Harrison et al., 2016). The most ice-active mineral in desert dust is 

potassium feldspar (K-feldspar) (Atkinson et al., 2013; Harrison et al., 2016; Niedermeier et 

al., 2015) and the contribution of K-feldspar-containing particles to global INP number 

concentrations has been used as a proxy to estimate the contribution of desert dust to global 

INP (Vergara-Temprado et al., 2017). Quantifying both the ice-nucleating ability of mineral 

dust and the number concentration of dust particles in the atmosphere is a challenge for 

atmospheric modelers with implications for the glaciation state of the simulated clouds. There 

are several orders of magnitude difference in ice nucleation active site densities for different 

types of feldspar, a component of mineral dust that has been shown to have particularly high 

ice-nucleating ability, at any one temperature (Harrison et al., 2016; Peckhaus et al., 2016), and 
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measurements of INP number concentrations in the SAL show similar variation due to the 

variability of dust export (Boose et al., 2016b). 

The Global Model of Aerosol Processes (GLOMAP) is a global aerosol model that has a bin 

(GLOMAP-bin) or a modal (GLOMAP-mode) representation of aerosol distributions. The 

GLOMAP-bin model has previously been used to estimate the role of dust on the sulfate burden 

of East Asian dust storms (Manktelow et al., 2009) and on the role of dust transport in supplying 

soluble iron to the ocean (Shi et al., 2011). More recently, the GLOMAP-mode model was used 

to predict the global concentration of mineral dust and marine organic INP (Vergara-Temprado 

et al., 2017) and this model version has been used to evaluate the sources of INP number 

concentrations measured in the Saharan outflow region (Price et al., 2018) and in Northern 

England (O’Sullivan et al., 2018). However, the representation of dust concentrations in the 

Saharan outflow region in either of the GLOMAP models (GLOMAP-mode or GLOMAP-bin) 

has not been assessed. 

Global climate models have been shown to have varying degrees of accuracy in predicting 

surface dust concentrations with observations frequently up to, and in some cases exceeding, 

an order of magnitude difference to the observed values (Huneeus et al., 2011; Wu et al., 2020). 

In Manktelow et al. (2009), the wind-dependent emissions in the East Asian dust source region 

in GLOMAP-bin needed to be increased by a factor of 6-14 to match the dust concentrations 

observed by the flight campaign. The accuracy of the representation of dust in the version of 

GLOMAP-mode used to estimate K-feldspar INP number concentrations has not been tested 

and whether a similar scaling factor is required for accurate dust transport and concentrations 

is not known.  

Furthermore, there are a number of uncertainties in the representation of the feldspar fraction 

of mineral dust in GLOMAP and therefore in the parameterisation of K-feldspar INP number 

concentrations that have not been explored. For example, the accumulation mode feldspar 
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fraction (including all feldspar types, e.g. K, Na and Ca rich feldspars) of mineral dust in 

GLOMAP is based on the coarse mode ratio of feldspar to quartz despite differences between 

the two minerals that may cause discrepancies in the distribution of mass between size modes 

(Nickovic et al., 2012). These include susceptibility of feldspar to chemical reactions (e.g. 

Augustin-Bauditz et al., 2014; Harrison et al., in prep) and fragmentation during wet-sieving 

(Perlwitz et al., 2015a) compared to quartz. Measured INP number concentrations from the 

2017 Barbados Ice-nucleating particle Concentration Experiment (B-ICE) campaign (Harrison 

et al., in prep) and collocated long-term measurements of surface dust mass concentrations 

(Zuidema et al., 2019), both at Ragged Point, Barbados, present an opportunity to assess the 

representation of dust and K-feldspar INP transport from North Africa across the tropical 

Atlantic. Barbados is ideally situated for this task as the location is generally representative of 

the year to year variability in dust export from the Sahara (Chiapello et al., 2005). 

This chapter is structured as follows: In Section 4.3, I describe the methods, model and 

observational datasets used in this thesis chapter. In Section 4.4.1, I compare the INP number 

concentrations measured during B-ICE to the INP number concentrations predicted by 

GLOMAP. The model overestimates the measured INP number concentrations. I therefore 

examine two possible explanations: that GLOMAP overestimates dust export from the Sahara 

(Section 4.4.1.1) and that GLOMAP overestimates the K-feldspar fraction of dust exported to 

the Western tropical Atlantic (Section 4.4.1.2). Section 4.4.2 examines the relative importance 

of marine organic INP over the tropical Atlantic and Section 4.4.3 quantifies the effect of a 

change in driving meteorology on the simulated INP number concentrations over the tropical 

Atlantic. Conclusions and recommendations for further study are detailed in Section 4.5. 
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4.3. Methods 

4.3.1. Overall approach 

This thesis chapter evaluates the ability of Global Model of Aerosol Processes (GLOMAP-

mode) to predict the INP concentrations observed in the 2017 B-ICE campaign at Ragged 

Point, Barbados. GLOMAP-mode, referred to as GLOMAP herein, is a global aerosol model, 

the original version of which is detailed in Mann et al. (2010) and was adapted by Vergara-

Temprado et al. (2017) to represent INP from the K-feldspar component of desert dust and 

marine organics in sea spray.   

Potential explanations for discrepancies between the observed and simulated INP 

concentrations are explored. The model output is compared to several observations and 

reanalysis products, including: 

 INP number concentrations observed during the 2017 B-ICE campaign. 

 Observed surface dust concentrations from Barbados and Miami observed and reported 

in Zuidema et al. (2019). 

 Integrated column dust and surface dust mass concentrationsfrom the Modern-Era 

Retrospective analysis for Research and Applications (MERRA-2) reanalysis product 

(Randles et al., 2017). 

 Profile dust measurements from lidar observations during the 2013 Saharan Aerosol 

Long-range Transport and Aerosol–Cloud Interaction Experiment (SALTRACE) 

(Ansmann et al., 2017; Rittmeister et al., 2017; Weinzierl et al., 2017). 

As the primary purpose of this chapter is to evaluate the model performance in simulating the 

INP concentrations observed at Barbados in July and August of 2017, the results mainly use a 

2017 GLOMAP run for comparison to observations or MERRA-2 products. However, 
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GLOMAP was also run for May 2013 in order to compare the simulation output to lidar dust 

profile measurements presented in Ansmann et al. (2017).  

Table 4.1. GLOMAP simulations carried out and discussed in this chapter. 

Time 

period for 

analysis 

Spin-up 

time 

Driving 

meteorology 

data-set 

Purpose of simulation Compared to 

July-

August 

2017 

July 2016-

July 2017 

ERA-interim Determine the ability of 

GLOMAP to predict 

INP number 

concentrations at 

Barbados 

INP number 

concentrations from 

the B-ICE 

campaign 

MERRA-2 

reanalysis of 

surface and column 

dust concentrations 

Surface dust 

observations from 

Zuidema et al. 

(2019) 

May 2013 May 2012-

May 2013 

ERA-interim Determine the skill of 

GLOMAP in predicting 

the vertical distribution 

of dust  

Dust mass profiles 

from lidar 

measurements 

during SALTRACE 

(Ansmann et al., 

2017) 

Entirety of 

2001 

January 

2000-

January 

2001 

ERA-interim Determine the effect of 

the driving meteorology 

reanalysis dataset on 

INP and dust 

representation in 

GLOMAP 

Surface dust 

observations from 

Zuidema et al. 

(2019) 

Entirety of 

2001 

January 

2000-

January 

2001 

ERA-40 
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In Price et al. (2018) and Vergara-Temprado et al. (2017), INP number concentrations from a 

2001 GLOMAP simulation were compared to field measurements from multiple years and 

from the 2015 Ice in Clouds-Dust (ICE-D) field campaign, respectively. This simulation used 

the ERA-40 reanalysis dataset to determine the model meteorology including wind, 

temperature, humidity and large-scale precipitation. However, the ERA-40 reanalysis dataset 

is unavailable after 2002 and the ERA-interim reanalysis dataset is used in the simulations 

detailed here instead to allow the use of year-specific meteorology. Two simulations of the 

entirety of 2001 using the ERA-40 and the ERA-interim reanalysis datasets are carried out to 

determine the effect of the change in driving meteorology dataset on INP and dust 

concentrations. The GLOMAP simulations carried out and reported in this chapter are shown 

in Table 4.1.  

 

4.3.2. Model Description 

GLOMAP has a grid spacing of 2.8° and 31 pressure levels (Vergara-Temprado et al., 2017). 

In all simulations at least a year of spin-up is conducted prior to the analysis period. GLOMAP 

represents dust, K-feldspar, sea salt, black carbon, particulate organic matter, and sulphate. 

GLOMAP aerosol processes comprise seven internally mixed lognormal modes (soluble 

nucleation (mean diameter <10 nm), soluble and insoluble Aitken (10-100 nm), soluble and 

insoluble accumulation (100-1000 nm), and soluble and insoluble coarse (>1000 nm) modes).  

The mass concentrations of each of these aerosol components are represented individually in 

prognostic variables for each mode. The number concentrations are represented with a 

prognostic variable for each mode representing lognormal size distributions corresponding to 

the modal diameter ranges given above (Mann et al., 2010). GLOMAP represents new particle 

formation by gas-to-particle conversion, growth by coagulation and condensation of low-
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volatility gases, scavenging by impaction below cloud and nucleation in cloud, and dry 

deposition. Ice clouds are assumed to glaciate at -15°C and nucleation scavenging of soluble 

aerosol is suppressed in these clouds. Insoluble aerosol can be scavenged in glaciated clouds. 

Aerosol scavenging in GLOMAP is detailed in Browse et al. (2012). Ice-nucleation by the K-

feldspar component of mineral dust (Atkinson et al., 2013) and by marine organics in sea spray 

(Wilson et al., 2015) are represented in GLOMAP (Vergara-Temprado et al., 2017). 

 

4.3.2.1. Representation of mineral dust INP  

GLOMAP dust emissions are derived from daily-varying emission fluxes provided by 

AEROCOM emissions data-base  (Dentener et al., 2006; Mann et al., 2010; Vergara-Temprado 

et al., 2017). Emissions are based on simulations using near-surface winds from the year 2000 

from the NASA Goddard Earth Observing System Data Assimilation System and prescribed 

to take place in the lowest model layer (Dentener et al., 2006) after which they can be advected 

around by the winds of the GLOMAP run in question. This means that dust emissions are not 

specific to the year in question and annual variations in mineral dust export due to 

meteorological variation is not fully represented in GLOMAP simulations. The effect of this 

has not previously been tested to my knowledge.  

Both feldspar and dust are emitted into the insoluble accumulation and coarse modes and can 

then move into the soluble accumulation and coarse modes upon aging by condensation of 

sulphates and secondary organic aerosol. Feldspar is emitted as a fraction of the dust mass 

concentration based on a global dataset of soil mineral composition compiled by Nickovic et 

al. (2012). This global database provides soil feldspar content for the coarse particle mode. The 

fraction of feldspar in the accumulation mode is calculated by assuming the ratio of feldspar to 
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quartz is the same in both the accumulation and coarse modes of mineral dust (Nickovic et al., 

2012).  

INP number concentrations are parameterised based on the K-feldspar component of mineral 

dust as detailed in Vergara-Temprado et al. (2017). The INP parameterisation assumes that 

35% of feldspar is K-feldspar and capable of nucleating ice. The value of ns, the number of 

active sites per unit particle surface area (Vali et al., 2015), is calculated based on either the 

Atkinson et al. (2013) (A13) or the Harrison et al. (2019) (H19) parameterisation. The soluble 

accumulation aerosol mode is the only mode used in the calculation of INP number 

concentrations. The inclusion of the other feldspar modes was tested and found to make very 

little difference to INP number concentrations, particularly far from source where most 

particles have been aged (and are therefore in the soluble category) and larger coarse particles 

have largely been removed from the atmosphere. 

4.3.2.1. Representation of marine organic INP 

Sea salt aerosols are emitted in GLOMAP as a function of the simulated 10 m wind speed based 

on Gong (2003). Sea salt emissions, unlike dust emissions, are specific to the year in question 

and not fixed to year 2000 emissions. The sea spray particles are emitted into the soluble 

accumulation mode and can be removed by nucleation scavenging in precipitating clouds. An 

organic mass fraction of the sea spray is calculated from the wind speed and the chlorophyll 

content of seawater in a parameterisation described in Vergara-Temprado et al. (2017). The 

INP number concentration from marine organics is then calculated from this organic mass 

fraction using the parameterisation of Wilson et al. (2015) as is described in Vergara-Temprado 

et al. (2017).  
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4.3.2.3. GLOMAP driving meteorology by ERA-interim and ERA-40 reanalysis datasets 

The driving meteorology including winds and precipitation in GLOMAP is based on European 

Centre for Medium-Range Weather Forecasts (ECMWF) model reanalysis datasets. Depending 

on the year of simulation, GLOMAP can use the ERA-interim or ERA-40 reanalysis datasets. 

Reanalysis datasets assimilate observational data into model simulations to provide global 

coverage of best-guess atmospheric conditions (Mooney et al., 2011).  ERA-interim dataset 

covers the period 1979-2019 and ERA-40 datasets covers the period 1957-2002. ERA-interim 

was developed to replace the ERA-40 dataset and uses 4-dimensional, rather than 3-

dimensional, variational assimilation (Dee et al., 2011). One of the primary aims of the ERA-

interim reanalysis dataset was to address problems with the ERA-40 hydrological cycle, 

including large overestimates of rainfall over the tropical oceans (Dee et al., 2011; Uppala et 

al., 2005). The horizontal resolution of ERA-interim corresponds to a grid spacing of 79 km, 

compared to 125 km in ERA-40), on a reduced Gaussian grid (Dee et al., 2011). The vertical 

resolution of ERA-40 and ERA-interim are the same with 60 vertical levels up to 0.1 hPa (Dee 

et al., 2011).  

 

4.3.3. Observational data 

4.3.3.1. Barbados Ice-nucleating particle Concentration Experiment (B-ICE) 

The B-ICE sampling campaign was carried out from the 24th July to the 24th August 2017 at 

Ragged Point, Barbados. Ragged Point is the most easterly point of Barbados and is therefore 

a prime location to sample air masses that may have been influenced by Saharan dust and have 

since been transported across the tropical Atlantic. The Ragged Point measurement site is home 

to an Advanced Global Atmospheric Gases Experiment (AGAGE) measurement location and 
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a 17 m sampling tower belonging to the University of Miami (Zuidema et al., 2019). Aerosol 

measurements were taken from the top of the sampling tower. The INP measurement 

techniques are detailed in Harrison et al. (in prep).  

Aerosols were sampled on polycarbonate filters using MESA PQ100 aerosol samplers. The 

samples were analysed for ice-nucleating ability on site within a portable laboratory. Ice-

nucleating experiments were carried out using the μL-NIPI which uses an immersion mode 

drop assay technique (as detailed in Harrison et al., 2016; O’Sullivan et al., 2018). The aerosol 

sample is immersed in water and μL liquid droplets from this suspension are cooled and the 

temperature of first ice formation is recorded using a high-definition webcam. The INP number 

concentration of the suspension and consequently the aerosol sample can then be calculated. 

 

4.3.3.2. Surface-level dust measurements 

The GLOMAP-simulated dust mass concentrations are compared to long-term observations 

from Barbados and Miami presented in Zuidema et al. (2019). The Barbados measurements 

were taken from the same University of Miami sampling tower at Ragged Point as the INP 

measurements in B-ICE. In Miami, sampling occurs at the top of a 16 m tower on a 12 m 

building at Biscayne Bay. In both locations, sampling occurs every day (weather permitting). 

Samples are collected on 20 cm × 25 cm Whatman-41 (W-41) filters with pumps at a flow rate 

of 1 m3 min–1 (Zuidema et al., 2019). This dataset only comprises samples when the airflow is 

from the open ocean to the East at speed greater than 1 m s-1 to remove the influence of local 

sources (Zuidema et al., 2019) allowing us to assume that the sampled air comprises 

predominately of dust transported from North Africa. 
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4.3.3.3. Dust mass concentration profiles 

Saharan dust transported across the tropical Atlantic is the source of 30-40% of the summertime 

aerosol volume in the Caribbean (Groß et al., 2016). An important transport route for North 

African dust is through the SAL, a dust-laden air mass situated between 2 and 6 km (e.g. Gläser 

et al., 2015). Therefore, in order to understand dust transport and concentration representations 

in GLOMAP, it is important to investigate the vertical distribution of dust over the tropical 

Atlantic.  

In order to assess the vertical distribution of dust in GLOMAP, I compare profiles of dust mass 

concentrations from the model to observations of dust made using a polarization/Raman lidar 

during the 2013 SALTRACE campaign (Ansmann et al., 2017; Rittmeister et al., 2017; 

Weinzierl et al., 2017). An additional GLOMAP model run covering May of 2013 is carried 

out for direct comparison to these observations (Table 4.1). The SALTRACE profile 

measurements use the so called POLIPHON (Polarization Lidar Photometer Networking) 

method to firstly identify different aerosol types in a column and also to estimate the mass of 

fine and coarse mode dust in any identified dust layers. A full description of this method is 

beyond the scope of this thesis but is detailed in full in Ansmann et al. (2017) and Mamouri 

and Ansmann (2017; 2014).  

Polarization lidar allows for the identification of different aerosol types (e.g. dust, urban haze 

or smoke from biomass burning) using profiles of the particle backscatter coefficient and linear 

depolarization ratios. The POLIPHON method distinguishes between dust and non-dust 

particles, as well as between fine and coarse mode dust, using their different depolarization 

ratios at 532 nm (Ansmann et al., 2017; Mamouri and Ansmann, 2017). Next the measured 

backscatter coefficients are converted into light extinction coefficients allowing the calculation 

of height profiles of the dust extinction coefficient at 532 nm. These extinction coefficient 

profiles are then converted into mass concentrations using extinction-to-volume conversion 
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factors determined using a combination of observations from the Aerosol Robotic Network 

(AERONET) sun photometer and field campaigns with lidar/photometer in Mamouri and 

Ansmann (2017) and an assumed dust density of 2.6 g cm-3 (Ansmann et al., 2017). The 2013 

SALTRACE POLIPHON dust profile observations are used alongside the MERRA-2 

integrated column dust concentrations to determine the skill of GLOMAP in representing the 

vertical distribution of dust globally and particularly over the tropical Atlantic. The division 

between the fine and coarse mode aerosol by the POLIPHON method corresponds exactly to 

the division between the GLOMAP accumulation and coarse mode aerosol (1 µm).  

 

4.3.4. MERRA-2 dust reanalysis dataset 

The Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-

2) is an atmospheric reanalysis dataset produced by NASA’s Global Modeling and Assimilation 

Office (Gelaro et al., 2017; Mccarty et al., 2016). The dataset spans from 1980 to the present 

day and uses combinations of observations (including direct ground-based observations, 

ground-based remotely sensed observations, satellite retrievals, derivations, and radiances), 

and model simulations to calculate global values for a number of environmental and climate 

properties that are not readily observed by satellites directly (Mccarty et al., 2016) . MERRA-

2 has an aerosol analysis dataset which includes dust. The Goddard Chemistry, Aerosol, 

Radiation, and Transport (GOCART) model aerosol module (Chin et al., 2002; Colarco et al., 

2010) is coupled to the  Goddard Earth Observing System, version 5 Data Assimilation System 

which allows the inclusion of aerosol mass tracers for dust, sea-salt, black and organic carbon, 

and sulphate (Randles et al., 2017). The Goddard Aerosol Assimilation System is used to 

assimilate bias-corrected AOD from a number of sources including AVHRR (Advanced very-

high-resolution radiometer), MODIS (Moderate Resolution Imaging Spectroradiometer) Terra 
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and Aqua datasets, MISR (Multi-angle Imaging Spectroradiometer), and AERONET (Randles 

et al., 2017).  

Dust is represented in GOCART with five non-interacting size bins. The dust mass mixing 

ratio tracers in GOCART are externally mixed. The dust emissions are dependent on wind 

speed and use a map of dust source locations (Ginoux et al., 2001). Dust is removed via dry 

deposition (including gravitational settling), large-scale wet removal, and convective 

scavenging (Randles et al., 2017). The MERRA-2 dust dataset utilised in this study are the 

monthly surface dust concentrations and integrated column dust mass which were sourced from 

the NASA Worldview website. These products are produced on a 0.5° × 0.625° latitude by 

longitude grid (Randles et al., 2017). For comparison to the dust mass concentrations simulated 

by GLOMAP, the MERRA-2 datasets were regridded using linear interpolation to the 

GLOMAP grid of 2.8° × 2.8° latitude by longitude. It should be noted that regridding may 

cause some error in the regridded dataset due to differences in the resolution of the two grids 

but in the examples presented in Section 4.4.1.1 the differences between the MERRA-2 and 

GLOMAP datasets were in general large enough that the regridding method would not have a 

large effect on the results. MERRA-2 surface dust concentrations and AOD has been 

previously compared to observed dust concentrations in a large Saharan dust event in April 

2010 and over the entirety of the year 2010 and was found to compare well with high 

correlation between the MERRA-2 and observed values (Buchard et al., 2017). The MERRA-

2 dataset surface dust concentrations were also found to have good agreement to observations 

at a number of other locations globally (Wu et al., 2020). 
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4.4. Results 

4.4.1. Simulation of INP number concentrations by GLOMAP during B-ICE 

A GLOMAP simulation was conducted to coincide with the 2017 B-ICE INP measurement 

campaign at Ragged Point, Barbados. The output of this simulation is compared to measured 

INP concentrations in the following section. 

 

Figure 4.1. Measured and simulated INP number concentrations at Ragged Point, Barbados 

between the 20th July and the 24th August 2017, i.e. during the 2017 B-ICE campaign. Shown 

is the model prediction of INP number concentration due to marine organics (Wilson et al., 

2015) and due to K-feldspar in dust based on both the A13 parameterisation (Atkinson et al., 

2013; Vergara-Temprado et al., 2017) and the H19 parameterisation (Harrison et al., 2019). 
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Figure 4.1 shows a comparison between INP number concentrations measured in the field 

campaign and those simulated by GLOMAP using two INP parameterisations based on the K-

feldspar content of mineral dust (A13, H19) (Atkinson et al., 2013; Harrison et al., 2019) and 

the Wilson et al. (2015) parameterisation based on marine organics emitted in sea spray. The 

shaded areas in Figure 4.1 represent the range of values simulated by GLOMAP for the time 

period of the B-ICE field campaign. The K-feldspar INP parameterisations have higher 

predicted INP concentrations than were measured in the field campaign. The A13 

parameterisation over predicts INP concentrations at most temperatures by 1-2 orders of 

magnitude.  

The simulated INP number concentrations overlaps with the new H19 parameterisation but 

appear to be biased high: the measured values extend to approximately one order of magnitude 

lower than the range simulated by GLOMAP. GLOMAP predicts that at high temperature 

above ~10°C, marine organic INP will become important relative to K-feldspar INP. However 

within the temperatures where INP were measured during the B-ICE campaign, particularly 

between -20°C and -30°C, K-feldspar INP will dominate. 

Figure 4.2 shows the simulated global distribution of total INP and the K-feldspar and marine 

INP from the A13 and the Wilson et al. (2015) parameterisations at a temperature of -20°C 

over the time period of the Barbados field campaign. Regions of dust emission have the highest 

INP concentrations owing to the high dust, and consequently K-feldspar, concentrations in 

those regions. Barbados and the rest of the tropical Atlantic are in the dust export region of the 

Saharan desert and therefore have relatively high INP concentrations relative to other oceanic 

regions around the world, which are dominated by marine organic INP. The over-prediction of 

the measured INP by both the A13 and H19 parameterisations during B-ICE (Figure 4.1) 

indicates that the model is predicting too many K-feldspar-containing particles.  
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Figure 4.2. Global distribution of total INP number concentrations (the sum of INP from 

marine organics and K-feldspar from the A13 parameterisation) (a), INP from K-feldspar 

based on the A13 parameterisation (b), and INP from marine organics (c) at the surface for a 

temperature of -20°C. 
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I will now explore potential reasons for the over-prediction of the B-ICE K-feldspar INP 

number concentrations by GLOMAP. There are two potential explanations for the discrepancy 

between measured and simulated INP number concentrations: 

1. The INP number concentration at Barbados is over-predicted by the A13 and H19 

parameterisations due an over-prediction of dust concentrations at Barbados caused by 

the model exporting too much Saharan dust across the tropical Atlantic. An over-

prediction of dust would result in an excess of feldspar particles (which are emitted as 

a fraction of the dust emissions) and consequently an over-prediction of K-feldspar INP 

particles. We test this theory by comparing the GLOMAP dust mass predictions to 

ground based measurements at Barbados and Miami (Zuidema et al., 2019), surface and 

column integrated dust mass predictions by the MERRA-2 satellite reanalysis dataset 

and to dust mass profiles calculated from lidar measurements during the SALTRACE 

ship-based field campaign (Ansmann et al., 2017). 

The results show that the dust mass concentrations simulated by GLOMAP at Barbados 

are below or within the variability of all observational and reanalysis datasets examined 

and as such an over export of dust from North Africa cannot explain the over-prediction 

of INP number concentrations during B-ICE. 

2. The INP number concentration at Barbados is over-predicted by the A13 and H19 

parameterisations due an over-prediction of the K-feldspar content of dust. An over-

prediction of K-feldspar could be caused by an overestimation of the K-feldspar content 

of dust at emission or an overestimate of the transport of dust particles containing K-

feldspar across the tropical Atlantic Ocean. I examine this theory by comparing the 

GLOMAP predicted K-feldspar content of aerosol at Barbados to that measured during 
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B-ICE and to values available in the literature, as well as examining the relative content 

of K-feldspar in the accumulation and coarse mode dust at Barbados. 

The results show that the K-feldspar content of mineral dust predicted by GLOMAP by 

B-ICE is larger than observations and literature values and as such may explain the 

over-prediction of K-feldspar INP number concentrations. However there are a number 

of other uncertainties and structural components of the GLOMAP model that 

complicate the picture and may compensate for one another. A schematic depicting the 

competing aspects of GLOMAP INP representation and the unquantified uncertainties 

is shown in Figure 4.3. 

 

 

Figure 4.3. Schematic depiction of the model behaviour and uncertainties that may be 

contributing to the overestimation of INP number concentrations at Barbados by GLOMAP. 
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4.4.1.1. Hypothesis 1: GLOMAP is overestimating dust export across the tropical 

Atlantic. 

In this section, dust mass concentrations predicted by GLOMAP are compared to a number of 

observational and reanalysis datasets to determine whether the over-prediction of INP number 

concentrations during B-ICE is due to an over-prediction of dust export from North Africa 

across the tropical Atlantic. 

Comparison to ground-based measurements 

The mean aerosol mass concentration measured during the B-ICE field campaign using an 

Aerosol Particle Sizer (APS) was 20.8 ± 11.2 µg m-3. The mean is higher than the aerosol mass 

of 14.8  ±8.2 µg m-3 simulated by GLOMAP and within the variability. This gives us a first 

indication that dust mass is not over-predicted at Barbados. The GLOMAP simulated surface 

dust concentrations were also compared to ground-based observations for July and August 

2017 at both Barbados and Miami presented in Zuidema et al. (2019). Miami is situated at the 

northern edge of the SAL and thus provides a broader picture of the GLOMAP representation 

of Saharan dust export than if we look at Barbados alone. 

A time series of daily surface dust concentrations simulated by the model and measured using 

filters at ground based stations at Barbados and Miami are shown in Figure 4.4. Also shown is 

the range of values measured throughout the entirety of the ground based stations lifetimes 

(1973-2017 for Barbados, and 1974-2018 for Miami) (Zuidema et al., 2019) for the time-period 

of the field campaign. In general the model has lower surface dust concentrations than the 

observations at Barbados and Miami.  

In Barbados (Figure 4.4a),GLOMAP simulated some of the variability shown in the 

observations but generally fails to capture the magnitude of the peaks, e.g. between the 10th 

and the 20th of August, the observations show a peak of 100 µg m-3 while GLOMAP shows a 



165 

 

peak of 25 µg m-3. In Miami (Figure 4.4b), peaks in dust concentrations in the observations 

between the 5th and 110ths of July and the 5th and 12th of August are not represented at all in 

the model simulations. 

 

Figure 4.4. Observed and simulated daily surface dust concentrations in July and August 

2017. Surface dust mass concentrations at Barbados (a) and Miami (b) simulated by 

GLOMAP and observed at ground based stations (Zuidema et al., 2019). The range of dust 

mass concentrations observed between 1973 and 2017 (a) and between 1974 and 2018 (b) is 

also shown. 

This underestimate of surface dust concentrations by GLOMAP relative to the ground-based 

measurements is illustrated further in Figure 4.5, which shows the July and August median and 

interquartile ranges of the daily GLOMAP 2017 simulation alongside the interquartile ranges 

of  the   observations for 2017, 2000, and for all years within the database (1973-2017 for 

Barbados and 1974-2018 for Miami). The surface dust concentration at Barbados in the 2017 
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MERRA-2 reanalysis dataset is also shown. The MERRA-2 data are monthly means so there 

is only one value shown for each location in Figure 4.5.  

 

Figure 4.5. Observed and simulated daily surface dust mass concentrations in July and 

August. Box plots showing the median, interquartile ranges, and outliers of surface dust mass 

concentrations in July and August at Barbados (a) and at Miami (b) from a 2017 GLOMAP 

simulation, from ground-based stations in 2017, 2000 and in all years from 1973 to 2017 (a), 

and from 1974 to 2018 (b). The surface dust mass concentration from MERRA-2 reanalysis 

for July and August 2017 is also shown. As the used MERRA-2 dataset is a monthly dataset it 

only contains one value for each month and as such does not have a median or an 

interquartile range. 

In Barbados (Figure 4.5a), the 2017 GLOMAP simulated values are within the range of the 

observations but with lower median and interquartile ranges for both July and August. The 

MERRA-2 values at Barbados are very close to the median GLOMAP simulated values. In 
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Miami (Figure 4.5b), the GLOMAP median and interquartile ranges are within the range of the 

observations for 2017 in August. However, in July, the GLOMAP simulated values are biased 

low, with the median sitting just inside the edge of the lower interquartile range indicating an 

underestimate of dust concentrations relative to the observations (as was also seen in Figure 

4.5b) 

The GLOMAP dust concentrations at Barbados show better agreement with the observed 

ground-based values from 2000 than those from 2017. This indicates that the GLOMAP 

representation of dust transport maybe more accurate if it used dust emission data from the year 

in question. Presently, the model uses AERONET emissions from 2000 for every year of 

simulation. However, the agreement with the 2000 observations is not universal. For example, 

in August at Miami, GLOMAP agrees better with the 2017 observations than the 2000 

observations. Wet deposition becomes increasingly important for dust removal on the edge of 

the Saharan dust layer and in the Western SAL as the inversion that maintains the SAL is 

weakened by radiational cooling and convection becomes more common (Prospero and 

Carlson, 1972). Therefore, the position of Miami at the Northern edge of the SAL means that 

changes in dust removal by wet scavenging, which is specific to the simulated year, may be 

more important for the observed dust concentrations than dust emissions. 

 

Comparison to the MERRA-2 reanalysis dataset  

The surface dust mass concentration simulated by GLOMAP for July and August was 

compared to the MERRA-2 reanalysis dataset. The surface dust concentrations of MERRA-2 

and GLOMAP in August are shown in Figure 4.6. In most locations GLOMAP has a lower 

surface dust concentration than MERRA-2. The largest absolute differences (Figure 4.6c) are 

seen in regions of emission. For example, Northern Africa has low biases of up to 600 µg m-3 



168 

 

in some areas in the GLOMAP simulation relative to the MERRA-2 values. The largest relative 

differences (Figure 4.6d) between the two datasets are seen at low latitudes far from source 

where MERRA has higher concentrations than GLOMAP.  

Regions of emission in GLOMAP, such as Australia, the African Sahel and the Southern tip of 

South America have dust concentrations over 100% higher than that of the MERRA-2 dataset. 

However, the dominant global signal is a strong negative bias of nearly 100% in almost all 

regions in the GLOMAP simulation relative to MERRA-2. This is particularly obvious in the 

Arctic and Antarctic all of which exhibit low biases in surface dust mass of greater than 80% 

relative to MERRA-2. However, at Barbados, Figures 4.5 and 4.6(c, d) indicate near agreement 

between the GLOMAP and MERRA-2 datasets in Barbados with GLOMAP exhibinging a 

small negative bias of ~ 10% relative to MERRA-2 (Figure 4.6d). The smallest relative 

differences between GLOMAP and the MERRA-2 dataset are in dust export regions where 

differences are generally less than 20%, for example, over the tropical Atlantic, including 

Barbados, and to the North West of Australia.  

The picture is largely the same for the column integrated dust concentrations predicted by 

MERRA-2 (Figure 4.7a) and GLOMAP (Figure 4.7b). GLOMAP has higher column-

integrated dust concentrations over regions of emission such as North Africa and Australia, but 

the global picture is one of large negative biases of nearly 100% in all regions, particularly far 

from dust emission regions (Figure 4.7c, d). Over the tropical Atlantic, the column-integrated 

dust mass concentrations are up to 25% lower than in the MERRA-2 dataset. Overall, 

comparison to the MERRA-2 monthly surface and column integrated dust concentration 

dataset does not support the hypothesis that an over export of dust from North Africa causes 

the over-prediction of INP number concentrations by GLOMAP relative to the B-ICE 

measurements 
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Figure 4.6. Comparison of global surface dust mass concentrations in MERRA-2 satellite 

reanalysis and GLOMAP for August 2017. MERRA-2 surface dust mass concentrations (a), 

GLOMAP surface dust concentrations (b), absolute difference between GLOMAP and 

MERRA-2 (c), and the percentage difference between GLOMAP and MERRA-2 (d). The 

location of Cape Verde and Barbados are marked by yellow stars. 
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Figure 4.7. Comparison of global column integrated dust mass concentrations in MERRA-2 

satellite reanalysis and GLOMAP for August 2017. MERRA-2 column integrated dust mass 

concentrations (a), GLOMAP column-integrated dust concentrations (b), absolute difference 

between GLOMAP and MERRA-2 (c) and the percentage difference between GLOMAP and 

MERRA-2 (d). The location of Cape Verde and Barbados are marked by yellow stars. 
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Comparison to dust mass concentration profiles measured by lidar 

In order to further assess the vertical distribution of dust in GLOMAP, the modelled dust mass 

concentration profiles from a  simulation of May 2013 are compared to observations of dust 

made using a polarization/Raman lidar during the 2013 Saharan Aerosol Long-range Transport 

and Aerosol–Cloud Interaction Experiment (SALTRACE) (Ansmann et al., 2017; Rittmeister 

et al., 2017; Weinzierl et al., 2017) (Figure 4.8). The cruise travelled from the Western tropical 

Atlantic to Cape Verde (marked with a star in Figures 4.6 and 4.7) and undertook four lidar 

measurements of the dust mass profiles using the POLIPHON method along the way. The 

locations and dates of the measured profiles are shown on a contour plot of the integrated 

column dust measurements from GLOMAP between the 5th and 23rd of May 2013 in Figure 

A4.1 (Appendix Section 4.6). Figure 4.8 shows the lidar-observed and GLOMAP-simulated 

fine (or accumulation) mode (Figure 4.8, left column) and coarse mode (Figure 4.8, right 

column) dust mass concentration profiles. The GLOMAP profiles are the average value (red 

dotted line) and the range (red shading) of mass concentrations for the exact location and time 

of the dust profiles and the two grid boxes and daily time steps either side of this. This range 

is shown because exact point-to-point comparisons between modelled and observed values can 

be misleading if for example, GLOMAP is simulating observed dust events relatively well but 

with a slightly different trajectory or timing. 
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Figure 4.8. Comparison of GLOMAP dust mass concentration profiles to lidar observations 

from the 2013 SALTRACE ship campaign (Ansmann et al., 2017). Profiles of accumulation 

(a, g, e, g) and coarse (b, d, f, h) mode dust from the lidar observations (blue, with error bars 

shows), and GLOMAP (red line depicts mean from the 2 grid boxes and days either side of 

the observation location and time, while the shaded area indicates the range over this region 

and time). Locations of the profiles shown in a-h can be seen Figure A4.1 (Appendix Section 

4.6). 
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The observed profiles (blue lines in Figure 4.8) indicate a relatively well-defined dust layer at 

all four measurement locations. The altitude and peak values of the dust layer increase at 

locations closer to the Sahara indicating that the Eastern tropical Atlantic is characterized by a 

very concentrated dust layer of over 500 µg m-3 and extending from under 0.5 km to over 4 km 

in altitude (Figure 4.8g, h). As the dust is transported towards the Americas the dust is removed 

and the dust concentrations reduced due to wet and dry deposition, although it is expected that 

dry deposition will dominate in the SAL (Prospero and Carlson, 1972). The dust layer also 

descends to a maximum altitude of 2 km in the profiles taken in the Western tropical Atlantic 

(Figure 4.8a, b). It should be noted that the SALTRACE campaign travelled form West to East 

and as such the profiles shown in Figure 4.8 were likely not from the same dust event. 

At all locations and dates, and for both coarse and fine mode dust, GLOMAP fails to capture 

the magnitude of the dust layer and consistently under-predicts the dust concentration in the 

SAL. The modeled values are closer to the observations in the Eastern tropical Atlantic (Figure 

4.8e-h) than in the Western tropical Atlantic (Figure 4.8a-d) where no notable dust layer is 

observed in either coarse or fine mode dust. This indicates that dust removal processes in 

GLOMAP may be too strong. However the magnitude of the dust layer is also too small on the 

23rd May profile close to North Africa indicating that dust emissions may also be too low. 

It is obvious from Figure 4.8 that GLOMAP is failing to accurately capture the formation of 

and persistence of the SAL. This indicates that the model is not representing some of the 

complex emission and transport pathways of Saharan dust (Chiapello et al., 1995; Heinold et 

al., 2013; Marsham et al., 2011, 2013; Prospero and Carlson, 1972). Dust uplift can occur in 

numerous ways, including via nocturnal low level jets, haboobs and boundary layer convection, 

and most of these processes are extremely variable and occur in fractions of grid boxes of many 

climate and aerosol models (Heinold et al., 2013). For example, cold pool outflows can 

potentially generate up to 50% of summertime uplift and are poorly represented in coarse 
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resolution models (Marsham et al., 2011). The use of AEROCOM emissions from the year 

2000 regardless of the year being simulated by GLOMAP likely inhibits the model from 

capturing much of the spatial and temporal heterogeneity of dust emission and SAL generation.  

Comparison to a number of observation and reanalysis datasets (Zuidema et al. (2019) ground-

based measurements (Figure 4.4, 4.5), APS measurements conducted within the B-ICE 

campaign, MERRA-2 reanalysis datasets (Figure 4.6, 4.7) and observations of dust made using 

a polarization/Raman lidar (Figure 4.8) (Ansmann et al., 2017; Rittmeister et al., 2017; 

Weinzierl et al., 2017)) does not support the hypothesis that an over export of dust from the 

Sahara to Barbados is causing the observed over-prediction of INP number concentrations 

during B-ICE.  

 

4.4.1.2. Hypothesis 2: GLOMAP is over-estimating the K-feldspar content of dust at 

Barbados 

Model Prediction of K-feldspar content and comparison to observations and literature values 

Figure 4.1 shows that GLOMAP overestimates the observed INP concentrations at Barbados 

using both the A13 and H19 parameterisations. I now examine the hypothesis that the 

overestimation of INP concentrations during B-ICE by GLOMAP is due to an overestimation 

of K-feldspar content of dust at Barbados. GLOMAP estimates that 80% of aerosol mass at 

Barbados is composed of mineral dust (Figure 4.9a). It predicts that feldspar and K-feldspar 

comprise 15-25 % and 7-10 % of aerosol mass, respectively, at Barbados (Figure 4.9b, c).  

A feldspar content of aerosol of 15-25% is relatively high compared to previous observations. 

Kandler et al. (2018) found that feldspar comprised 2-4% of silicate particles measured at 

Ragged Point in Barbados in the summers of 2013 and 2016, although this is likely an 
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underestimate as it only accounts for particles comprised solely of feldspar and not particles 

with mixed minerology. Atkinson et al. (2013) found that GLOMAP overestimated the feldspar 

content of dust relative to observations in regions far from source. This was attributed to the 

model not representing wet scavenging and thus not removing enough feldspar particles, 

something, which is remedied in the GLOMAP version used here (Atkinson et al., 2013; 

Vergara-Temprado et al., 2017). However, scavenging by ice clouds, which in GLOMAP 

glaciate at -15°C, is not represented.  

Evaluation of the modelled feldspar fraction in the GLOMAP simulations presented here 

difficult because many previous observations including those used by Atkinson et al. (2013), 

likely overestimated the feldspar fraction found in the accumulation mode aerosol. This is 

because feldspar and phyllosilicates are difficult to distinguish in observations based on X-ray 

diffraction (XRD) analysis (Perlwitz et al., 2015b) meaning the same volume fraction is often 

applied to both species (Kandler et al., 2009). Recent measurements suggest that the mass of 

feldspar increases relative to phyllosilicates at larger silt (coarse mode) sizes meaning that such 

observations and the measurements they are based on may over-predict the amount of feldspar 

in the clay (accumulation mode) and consequently their transport from source (Perlwitz et al., 

2015b).  An over-prediction of feldspar in the accumulation rather than the coarse mode will 

lead to increased transport of feldspar from source (Perlwitz et al., 2015b) . 

XRD and Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM-EDS) 

analysis of the aerosol measured throughout the study period estimate the K-feldspar content 

of aerosol to be ~1% (Harrison et al., in prep). This observation is in agreement with previous 

studies (Kandler et al., 2018). Adjusting the assumed K-feldspar content to aerosol mass 

simulated by GLOMAP from ~7% to ~1% greatly improves the agreement of the observed INP 

concentrations with the INP concentrations estimated by the H19 and A13 parameterisations 

(Figure 4.10). 
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Figure 4.9. Composition of global surface aerosol. Global distribution of the mass fraction of 

dust in aerosol (a) and the mass fraction of K-feldspar in aerosol (b), and a timeseries of 

volume fractions of feldspar and K-feldspar in dust and aerosol at Ragged Point, Barbados 

throughout the time period of the 2017 observational campaign. The location of Cape Verde 

and Barbados are marked by yellow stars in b and c. 
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Figure 4.10. Measured and simulated INP number concentrations at Ragged Point, Barbados 

between the 20th July and the 24th August 2017 adjusted from that shown in Figure 4.1 

assuming a 1% volume fraction of K-feldspar in aerosol. Shown is the model prediction of 

INP number concentration due to marine organics (Wilson et al., 2015) and due to K-

feldspar in dust based on both the A13 parameterisation (Atkinson et al., 2013; Vergara-

Temprado et al., 2017) and the H19 parameterisation (Harrison et al., 2019) . 

 

Model behaviour and structure affecting simulated K-feldspar content 

I now explore how to reconcile an underestimate of dust concentrations in the boundary layer 

with an overestimate of feldspar and K-feldspar content (which are emitted as a fraction of 

mineral dust). In GLOMAP, feldspar is emitted based on a global dataset of soil mineral 

composition compiled by Nickovic et al. (2012) . However, the global database only provides 

a soil feldspar content for the coarse (or silt) aerosol mode. The accumulation (or clay) mode 
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fraction of feldspar in soil is not specified. The fraction of feldspar in dust in the accumulation 

mode aerosol is therefore calculated by assuming that the ratio of feldspar to quartz is the same 

in both the accumulation and coarse modes (the percentage quartz in soil is reported for both 

clay and silt by (Nickovic et al., 2012)). This may introduce some error in the emitted feldspar 

fraction in dust if the percentage of feldspar in the accumulation mode relative to quartz differs 

to that of the coarse mode.  

Harrison et al. (in prep) suggests that feldspar is more easily broken down by chemical reactions 

than quartz, likely leading to a lower feldspar than quartz fraction in accumulation mode dust 

than in the coarse mode (which is larger and more difficult to break down). Thus it is likely 

that the methodology used to predict feldspar emission over-predicts the feldspar content in the 

accumulation mode aerosol. At Barbados, 60-70% of K-feldspar INP particles are in the 

accumulation mode (Figure 4.11). With a more accurate distribution of feldspar between the 

coarse and accumulation modes, with more in the coarse mode, we would expect less feldspar 

INP to be transported to Barbados owing to the larger sizes of the coarse particles. It seems 

possible that, despite the under-prediction of dust mass, the K-feldspar INP are over-predicted 

at Barbados due to the model overestimating the accumulation mode feldspar. 

However, other sources of error in the estimation of feldspar content have been documented 

and contribute further uncertainty to the values predicted by GLOMAP. The mineralogical 

database used to predict feldspar emission is predominately based on wet sieved samples 

(Perlwitz et al., 2015a, 2015b). Wet sieving is a fully dispersive technique which can 

disintegrate aggregates found in the original soil, which when emitted naturally due to wind 

erosion would not undergo this fragmentation. This leads to discrepancies between the fractions 

of minerals found in wet-sieved soil samples and those found in emitted aerosol populations 

(Perlwitz et al., 2015b). These discrepancies are not represented in aerosol models such as 
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GLOMAP that assume the soil mineral fractions correspond to the emitted fractions (Atkinson 

et al., 2013; Hoose et al., 2008; Perlwitz et al., 2015b) .  

 

Figure 4.11. Contribution of accumulation mode aerosol to K-feldspar INP number 

concentrations. Percentage contribution of INP particles from the accumulation mode 

aerosol to the total INP number attributed to K-feldspar using the A13 parameterisation. 

The use of wet-sieved measurements to determine emission fractions of minerals is likely to 

overestimate the fractions found in the clay or accumulation size mode. However, it is unlikely 

that this is causing any overestimate in the feldspar fraction because as stated above, the 

feldspar fraction in the clay mode is based on the ratio of feldspar to quartz found in the silt 

mode (Nickovic et al., 2012). Perlwitz et al. (2015b) suggests that quartz is the only mineral 

not requiring re-aggregation treatment as it’s large size means it is likely to survive wet sieving 

without disintegration. This means the ratio of feldspar and quartz from samples in the coarse 

mode (of which only the feldspar has had aggregates broken up and therefore measured in the 

accumulation mode while the quartz aggregates remain intact) would lead to an 

underestimation of the feldspar fraction in the accumulation mode. Therefore, while the K-

feldspar concentration at Barbados is over-predicted by GLOMAP, it may be that this is 

compensated for by additional uncertainties in the feldspar fraction emissions dataset. 
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There is additional uncertainty in both dust and feldspar estimation due to the use of non-time 

specific dust emissions in GLOMAP. GLOMAP uses emissions prescribed from AEROCOM 

recommendations for 2000, regardless of the year being simulated (Atkinson et al., 2013; 

Vergara-Temprado et al., 2017). The source regions of feldspar are extremely heterogeneous, 

particularly in Northern Africa, and strong and sudden changes in the feldspar content of soil 

from >16% to ~2% can occur over very short distances (Nickovic et al., 2012) . This means 

that small changes in emission locations due to the large variability in emission processes 

(Heinold et al., 2013; Marsham et al., 2011) may have a large effect on atmospheric feldspar 

and K-feldspar contents. There is also large uncertainty in dust removal processes such as wet 

scavenging, the examination of which is beyond the scope of this chapter. 

To summarize, the overestimation of INP concentrations at Barbados may be attributed to the 

over-prediction of K-feldspar in the accumulation aerosol mode. This is supported by a 

predicted value of ~7 wt% K-feldspar in GLOMAP (Figure 4.9) compared to a measured value 

of ~1 wt% measured by XRD and SEM-EDS analysis throughout the study period (Harrison 

et al., in prep) and previous literature values (Kandler et al., 2018) This may be due to an over-

prediction of the K-feldspar mass in the accumulation mode at emission due to structural 

uncertainties in the model. However there are many competing uncertainties and possible 

sources of error in the GLOMAP computation of atmospheric K-feldspar and these should 

ideally be addressed or quantified before the model is used in future studies to validate 

measured atmospheric INP number concentrations. At the very least, scientists making use of 

the GLOMAP model for comparison to observations of dust, K-feldspar or INP should be 

aware of the uncertainties inherent in the GLOMAP prediction and these should be clearly 

stated in any papers. A schematic depicting the competing uncertainties contributing to the 

over-prediction of K-feldspar INP by the GLOMAP model is shown in Figure 4.3. 

 



181 

 

4.4.2. Importance of marine organic INP for the INP number concentrations 

at Barbados 

Analysis thus far has focussed on K-feldpar INP because the INP measured by the B-ICE 

campaign were predominately K-feldspar INP. We can infer this because the temperature 

dependence of the measured INP number concentrations matches the A13 and H19 

parameterisations (Figure 4.1). Furthermore, at temperatures between -20 and -30°C, the 

temperature range measured by B-ICE, GLOMAP predicts that K-feldspar INP comprise 

greater than 90% of all INP using the A13 parameterisation. This is the case even when the K-

feldspar content used to predict INP number concentrations is scaled to be 1% (as in Figure 

4.10). However, marine organic INP may become more important at warm and possibly cold 

temperatures (Figure 4.1). Here, I examine the prevalence of marine organic INP predicted by 

GLOMAP in the atmosphere over the tropical Atlantic. 

Figure 4.12 shows the vertical distribution of total INP concentrations for a temperatures -10 

°C over North Africa and the tropical Atlantic both when the default GLOMAP predicted value 

of the K-feldspar content of aerosol is used and when it is scaled to match observations (see 

Figure 4.10). The location of Ragged Point, Barbados is marked by the black dotted line. The 

INP emitted from Africa (-20 – 0°W) is transported over the tropical Atlantic at relatively high 

concentrations between 3 and 4 km altitude in the SAL.  The SAL moves to lower altitudes the 

further west it goes towards Barbados. At temperatures above -10°C, as seen in Figures 4.1, 

4.10 and 4.12, marine organic INP are more important than K-feldspar INP. In the boundary 

layer at Barbados, >70% of INP at -10°C are comprised of marine organic material on sea spray 

(Figure 4.12a). This rises to >90% when the K-feldspar content of aerosol is scaled to match 

observations over Barbados (Figure 4.12b). More interestingly, at all altitudes up to 10 km 

above Barbados, and for both values of K-feldspar aerosol content, marine organics comprise 
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>50% of all INP at a temperature of -10°C. This is important because it means that at ambient 

temperatures above Barbados, marine organics will play a significant role in heterogeneous ice 

formation particularly in the warmer mixed phase regime where secondary ice production 

mechanisms may be important. 

 

Figure 4.12. Importance of marine organic INP. Proportion of INP number concentrations 

over the tropical Atlantic that are comprised of marine organic INP for a temperature of  -

10°C when using the default GLOMAP prediction of K-feldspar content of aerosol of 7-8% 

(a) and when the K-feldspar content is scaled to be ~1% in line with literature values and 

those measured during the B-ICE campaign  (b). Shown is the mean values for latitudes 10-

20°N. The K-feldspar INP in the above plots are calculated using the A13 parameterisation. 

The location of Barbados is shown by the black line. 
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Furthermore, at -37°C, while the model predicts that nearly all INP above 3 km and over North 

Africa are comprised of K-feldspar (Section 4.6: Figure A4.2a), near the surface in the middle 

and Western tropical Atlantic, including over Barbados, up to 25% of INP are comprised of 

marine organics on sea spray aerosol (Section 4.6: Figure A4.2a). This rises to ~50% when the 

K-feldspar content of aerosol is scaled to match observations over Barbados (Section 4.6: 

Figure A4.2b). This finding is caveated by the fact that the Wilson et al. (2015) marine organics 

INP parameterisation is unconstrained below -27.5°C and therefore the above interpretation is 

relatively uncertain. 

Marine organics will induce most heterogeneous freezing at warm temperatures, and may 

contribute a substantial amount at very low temperatures (owing to the plateauing of the K-

feldspar parameterisation (Figure 4.1, 4.10)) meaning they can be important at the lower and 

upper levels of mixed phase cloud formation). This indicates that the accurate representation 

of marine organic INP may be as important as the representation of K-feldspar and should be 

explored in more detail in future studies. 

 

4.4.3. Impact of driving meteorology on GLOMAP INP and dust predictions 

Previously, when comparing predicted INP number concentrations from GLOMAP to 

atmospheric observations, a simulation using meteorology from the year 2000 (Atkinson et al., 

2013) or 2001 (Price et al., 2018; Vergara-Temprado et al., 2017) has been used regardless of 

the time period that the measurements in question were taken. It is more accurate to simulate 

the atmospheric state using the driving meteorology from the year of interest as there can be 

large variations in meteorology on annual, seasonal, and daily timescales. For the work detailed 

thus far the GLOMAP model was run using a driving meteorology specific to the year in 



184 

 

question. ERA-40 reanalysis datasets have been used to determine meteorology, including 

wind speed, temperature, humidity and precipitation, in previous GLOMAP simulations 

discussed in the literature (Atkinson et al., 2013; Price et al., 2018; Vergara-Temprado et al., 

2017). However ERA-40 datasets are not available for years later than 2002 and as a result, 

GLOMAP was altered for this work to use the ERA-interim dataset to determine meteorology 

in the 2017 and 2013 simulations presented thus far. In order to test the effect, if any, of this 

change, I simulate the year 2001 with the ERA-interim dataset and compare the output of this 

simulation to that of a 2001 simulation which used ERA-40 dataset run by Vergara-Temprado 

et al. (2017).  

 

Figure 4.13. Sensitivity of simulated INP number concentrations to driving wind dataset. 

Comparison of GLOMAP INP predictions for Barbados in July and August 2001 from 

simulations using ERA-40 and ERA-interim reanalysis winds datasets. 
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4.4.3.1. Sensitivity of INP spatial distribution to driving meteorology dataset 

The range of INP number concentrations at the surface at Ragged Point, Barbados simulated 

by GLOMAP for July and August of 2001 are different depending on which driving wind 

dataset is used (Figure 4.13). The ERA-40 wind dataset predicts a larger range of INP 

concentrations over the time period for K-feldspar INP, particularly a higher maximum K-

feldspar INP concentration at all temperatures and a lower minimum K-feldspar concentration 

at low temperatures. Conversely, the simulation using ERA-interim winds has a larger range 

of marine organic INP concentrations particularly a lower minimum marine organic INP 

concentration at all temperatures.  

The surface INP number concentrations in July and August vary, not only at Barbados but 

globally, depending on which ERA dataset is used to determine the meteorology in GLOMAP 

(Figure 4.14). Figure 4.14a shows mean percentage difference in surface INP concentrations 

at  -10 °C between latitudes 10 and 20°N between GLOMAP simulations using ERA-40 and 

ERA-interim wind datasets. We see increases in total and K-feldspar INP number 

concentrations in dust export regions, such as the Sahara, of up to three orders of magnitude 

when using the ERA-40 wind dataset. Over the tropical Atlantic, there is an increase in surface 

INP of between 10 and 100%. The simulation using ERA-40 winds seems to export more dust 

and therefore K-feldspar from source regions, with more K-feldspar INP (not shown) over the 

tropical Atlantic, and to the South East of Australia.  

Figure 4.14b shows the vertical distribution of the percentage change in mean INP number 

concentrations between the ERA-40 and the ERA-interim wind dataset (ERA-40 - ERA-

interim) for a temperature of -10°C at latitudes between 10 and 20 °N. We see increases in INP 

number concentrations in the ERA-40 simulation at all shown altitudes over the Sahara and the 

east and middle of the tropical Atlantic. These increases are as large as 300%. We see similar 

enhancements in dust mass in Figure 4.14c which shows the percentage difference in mean 
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mass concentration of accumulation soluble dust mass. Increases in dust mass in ERA-40 

simulation relative to the ERA-interim simulation are as large as 50% in the Saharan export 

region. Figure 4.14 indicates that more dust and therefore K-feldspar INP are exported from 

the Sahara over the tropical Atlantic in the ERA-40 simulation relative to the ERA-interim 

simulation. 

 

4.4.3.2. Comparison of surface dust mass in simulations with different driving 

meteorology to observations 

We now use the ground based observations of surface dust concentrations (Zuidema et al., 

2019), discussed above, to assess whether simulations using ERA-40 or ERA-interim driving 

meteorology give a better representation of dust export over the tropical Atlantic. In Figure 

4.15, we compare the GLOMAP prediction of surface dust mass in both the ERA-40 and ERA-

interim simulations to the ground based observations for each month of 2001 at Barbados (a) 

and Miami (b). In both locations the median and upper quartiles of the ground-based 

observations are nearly always higher than the GLOMAP simulations, in agreement with the 

2017 comparison to surface dust mass concentrations shown in Figure 4.5. Particularly at 

Miami, GLOMAP underestimates the dust concentration from March to November. The 

difference between the observations and the nearest model prediction is nearly always greater 

than the difference between the two models. However, at Miami, the ERA-interim simulation 

seems to have higher and therefore more accurate dust mass concentrations between May and 

August. As Miami is situated on the outer edge of the Saharan dust outflow region, it is likely 

more sensitive to dust removal via wet scavenging and the more accurate representation of dust 

by ERA-interim in Miami is consistent with the well documented excessive precipitation over 
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tropical oceans in ERA-40 (Uppala et al., 2005). Conversely at Barbados the simulations are 

relatively similar in both the ERA-interim and ERA-40 simulations in most months.  

 

Figure 4.14. Sensitivity to driving meteorology. Shown is the mean percentage difference in 

surface INP concentrations (a), vertical distribution of INP concentrations between latitudes 

10 and 20°N (b) both  at  -10 °C, and vertical distribution of soluble accumulation dust mass 

concentrations between latitudes 10 and 20°N between GLOMAP simulations using ERA-40 

and ERA-interim meteorology datasets. A positive value indicates the ERA-40 simulation has 

a higher value than the ERA-interim simulation. 
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Figure 4.15. Comparison of monthly simulated and observed dust mass concentrations at 

Barbados and Miami for 2001. Shown is the median and interquartile ranges for dust mass 

simulated by GLOMAP in two simulations using ERA-40 and ERA-interim wind datasets and 

observed dust concentrations from ground based measurement stations (Zuidema et al., 

2019) for each month in 2001. 
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This analysis shows a notable effect of driving wind dataset on the INP and particle number 

concentrations and on the dust mass concentrations predicted globally by GLOMAP. The 

results indicate that changes to model structure (e.g. a switch from ERA-40 to ERA-interim 

reanalysis datasets when modelling 2013 instead of 2001) can have a large effect on aerosol 

transport and model output. While the differences caused by the wind datasets were relatively 

small compared to other uncertainties in the case of INP number concentrations, this may not 

be the case for model diagnostics that are more easily quantified and less uncertain. This work 

highlights the importance of validating model output against observations or previous 

simulations for structural changes to the model prior to using output to interpret atmospheric 

processes. 

 

4.5. Conclusions 

An extensive comparison between INP number and dust mass concentration predictions by 

GLOMAP and a range of observational and reanalysis datasets in the tropical Atlantic were 

carried out. INP number concentrations are over-predicted in Barbados by GLOMAP in 

simulations using both the A13 and H19 INP parameterisations. This occurs in spite of the fact 

that GLOMAP under-predicts dust concentrations both at the surface and in the SAL compared 

to long-term surface measurements, dust mass profiles measured by lidar and relative to the 

MERRA-2 reanalysis dataset. The over-prediction of INP at Barbados may be explained by an 

over-prediction of the K-feldspar fraction of aerosol in the accumulation mode leading to too 

many INP particles being transported across the Atlantic. Figure 4.3 summarizes the competing 

model uncertainties that are affecting the predicted INP number concentrations.  

Comparison to lidar measurements that span the entirety of the tropical Atlantic from Cape 

Verde to Barbados, and comparison to column integrated dust concentrations from the 
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MERRA-2 dataset, indicate that dust mass concentrations in GLOMAP at all altitudes of the 

SAL in both the Eastern and Western tropical Atlantic are underestimated relative to 

observations. The modelled dust concentration profiles are closer to observations in the Eastern 

tropical Atlantic, potentially inferring that over-removal of dust via wet or dry deposition is a 

larger problem than underestimation of emissions. In fact, comparison of GLOMAP surface 

and column integrated dust mass measurements to the MERRA-2 reanalysis dataset show that 

GLOMAP has substantially higher dust concentrations than MERRA-2 in source regions, such 

as over North Africa.  

The enhanced GLOMAP dust concentrations relative to MERRA-2 reanalysis data in source 

locations may be due to the 2000 AEROCOM emissions used in all simulations presented here 

and in previous GLOMAP simulations analysing INP number concentrations (Dentener et al., 

2006; Price et al., 2018; Vergara-Temprado et al., 2017) being higher than those of the years 

2017 and 2013 analysed here. Future work should use interactive dust emissions dependent on 

wind speed from the year of simulation to reduce the uncertainty in INP and dust concentrations 

caused by the use of 2000 AEROCOM emissions.  

The reasons for underestimations in dust concentrations over the tropical Atlantic relative to 

observations in GLOMAP are difficult to identify. The ERA-interim reanalysis dataset used to 

determine GLOMAP humidity, temperature, winds, and precipitation was shown to have 

higher precipitation rates in 1990 relative to Global Precipitation Climatology Project (a 

satellite reanalysis product with precipitation derived from geostationary infrared satellite 

imagery) values in the Western tropical Atlantic (Dee et al., 2011) which, if indicative of a 

systematic overestimate of precipitation in GLOMAP, may explain the large reduction in dust 

concentrations in GLOMAP profiles from the 14th and 23rd May 2013 relative to lidar 

measurements. However, this is challenging to verify owing to the uncertainties associated with 

all reanalysis datasets and the scarcity of direct measurements over the tropical Atlantic 
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(Uppala et al., 2005). The comparison to dust mass profiles measured over the tropical Atlantic 

during May 2013 indicates that the SAL in GLOMAP is not well developed relative to 

observations. This indicates that the model is not representing some of the complex and 

spatially variable emission and transport pathways of Saharan dust (Chiapello et al., 1995; 

Heinold et al., 2013; Marsham et al., 2011, 2013; Prospero and Carlson, 1972), e.g. nocturnal 

low level jets, haboobs or boundary layer convection (Heinold et al., 2013). The may be partly 

due to the use of AEROCOM emissions from the year 2000 regardless of the year being 

simulated. The exact reasons for the underdevelopment of the SAL by GLOMAP should be 

examined in more detail in the future. 

The over-prediction of K-feldspar INP at Barbados in GLOMAP is likely attributable to the 

over-prediction of the feldspar fraction in the accumulation size mode. This is because the 

feldspar fraction of accumulation mode dust is derived from the feldspar to quartz ratio in 

coarse mode dust owing to a lack of observations. Uncertainty in the sparse existing 

measurements of the K-feldspar fraction in mineral dust means that quantifying the exact 

reason for the model overestimation of K-feldspar INP is difficult (Figure 4.3). Direct 

observations of size mode specific feldspar and K-feldspar fractions in dust would assist in 

assessing the accuracy of modelled K-feldspar fractions. This work makes clear how 

uncertainties can have compensating effects in global climate and numerical weather models. 

Tuning the K-feldspar fraction of aerosol to be 1% instead of 7-8% improved the model 

prediction of K-feldspar INP number concentration but the same adjustment would likely 

worsen the estimate of INP number concentrations close to dust emission sources where the K-

feldspar fraction of dust is higher. 

Sensitivity of INP and dust number concentrations to driving reanalysis dataset highlights the 

importance of testing the sensitivity of model output to changes that may be unrelated to the 

system or feature of interest. A change from the ERA-40 to the ERA-interim reanalysis dataset 
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was necessary to simulate the year in question. In particular, a change to the ERA-interim 

dataset improved the representation of the dust mass concentrations at Miami, perhaps because 

the ERA-interim dataset is not subject to the same excessive precipitation in the tropical 

Atlantic as the ERA-40 dataset (Uppala et al., 2005). 

This chapter highlights the importance of the integration of direct atmospheric observations, 

measurements derived from satellite and remote sensing data, and model simulations for 

building a representative picture of atmospheric processes and particularly aerosol transport. 

Multiple datasets were used to examine the INP and dust concentrations over the tropical 

Atlantic and each one contributes information that helps us to understand dust export from 

Northern Africa. One of the most challenging aspects of atmospheric research is building a 

model that accurately represents the Earth system and proving that this is the case through 

extensive comparison to direct observations. Due to the lack of direct observational data in 

many parts of the world, modellers must rely on remotely sensed, satellite or reanalysis datasets 

for validation of model simulations even though many of these datasets come with their own 

range of biases, assumptions, and errors (Engelstaedter et al., 2006). Many regions of 

atmospheric importance, such as the main dust emission regions of the Sahara, are remote with 

limited observations available with which model data can be validated against (Engelstaedter 

et al., 2006). Further observations from ship campaigns such as the 2013 SALTRACE cruise 

(Weinzierl et al., 2017) and from flight campaigns such as the 2015 ICE-D campaign (Lloyd 

et al., 2019; Price et al., 2018) are critical to enhancing our understanding of atmospheric 

composition as well as for validating and building trust in model simulations, as well as in 

reanalysis datasets such as MERRA-2. This work demonstrates how observations can be used 

alongside remotely sensed, satellite, and reanalysis datasets to validate and examine issues in 

atmospheric models. 
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4.6. Appendix 

 

Figure A4.1. Locations of the profiles shown in Figure 4.8 over a contour map of integrated 

dust mass concentrations simulated by GLOMAP for the month of May 2013. 
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Figure A4.2. Importance of marine organic INP. Proportion of INP number concentrations 

over the tropical Atlantic that are comprised of marine organic INP for a temperature of  -

37°C when using the default GLOMAP prediction of K-feldspar content of aerosol of 7-8% 

(a) and when the K-feldspar content is scaled to be ~1% in line with literature values and 

those measured during the B-ICE campaign  (b). Shown is the mean values for latitudes 10-

20°N. The K-feldspar INP in the above plots are calculated using the A13 parameterisation. 

The location of Barbados is shown by the black line. 
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Chapter 5: Conclusions 

5.1. Summary of major findings 

A number of models have been used to further our understanding of the effect of INP in 

convective clouds over the tropical Atlantic. First, a regional numerical weather prediction 

model with advanced microphysics (UM-CASIM) was used to test the effect of INP 

parameterisation choice on a large and complex tropical convective cloud field (Chapter 2). 

Second, a large eddy simulation cloud model with the same advanced microphysics (MONC-

CASIM) was used to examine the interacting roles of INP number concentration, INP 

temperature dependence, and Hallett-Mossop splinter production rate in an idealised deep 

convective cloud (Chapter 3). Extensive coverage of realistic parameter space was achieved 

using a Latin hypercube sampling method and the importance of the three uncertain variables 

on the cloud properties were examined using statistical emulation and variance-based 

sensitivity analysis. Finally, INP transport across the tropical Atlantic, the region of interest for 

this thesis, was examined using a global aerosol model (GLOMAP-mode) (Chapter 4). Overall, 

the results further our understanding of the effects of INP in convective clouds and indicate the 

importance of quantifying INP number concentrations at all mixed-phase temperatures and 

improving the representation of cloud glaciation in climate models. A summary of the major 

findings of this thesis are presented below in response to the questions raised in Section 1.6. 

 

5.1.1. Chapter 2: The effect of INP parameterisation choice on the radiative 

properties of a complex deep convective cloud field 

a) What is the radiative effect of INP and INP parameterisation choice in a complex 

tropical convective cloud field? 
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The presence of INP enhances the daylight domain-mean top-of-atmosphere (TOA) outgoing 

radiation (shortwave + longwave) of a complex tropical convective cloud field spanning over 

600,000 km2 by between 2.6 and 20.8 W m-2 depending on the choice of INP parameterisation. 

The mean effect of including INP across all tested INP parameterisations on the daylight 

outgoing radiation is +9.8 W m-2. This is due to enhancements in the reflection of shortwave 

radiation by existing clouds (increases in cloud albedo) and increases in domain cloud fraction 

(predominantly due to increases in low and mid-level clouds).  

The choice of INP parameterisation causes a variation of 18 W m-2 in the mean outgoing 

radiation of the cloud field, i.e. INP parameterisation choice can have as large an impact on 

outgoing radiation as the exclusion of INP altogether. The difference in cloud field properties 

between simulations was attributed to the different temperature dependencies of INP number 

concentrations (dlog10[INP]/dT), i.e. the INP parameterisation slope. Outgoing radiation, along 

with many other macro- and microphysical properties, e.g. ice crystal water path, were 

significantly correlated with INP parameterisation slope, with steeper parameterisations having 

both a higher cloud albedo and a larger cloud fraction. This indicates that it is important to 

accurately represent, not only the number of aerosol particles capable of nucleating ice as 

indicated by Vergara-Temprado et al. (2018), but also the temperature dependence of INP 

number concentration which depends on aerosol composition. For example, marine organic 

INP (Wilson et al., 2015) have a shallower slope than mineral dust INP (e.g. Atkinson et al., 

2013; Niemand et al., 2012).  

 

b) What is the effect of SIP (via the Hallett-Mossop process) and its interaction with INP 

parameterisation choice on the outgoing radiation of the cloud field? 

The effect of including SIP on daylight domain-mean TOA outgoing radiation varies between 

-2.0 W m-2 and +6.6 W m-2 depending on INP parameterisation choice, i.e. the sign and 
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magnitude of the effect of the Hallett-Mossop process on the simulated cloud field depends on 

the INP parameterisation choice. Whether the Hallett-Mossop process causes increases or 

decreases in the domain-mean outgoing radiation depends on the cloud fraction response. 

Steeper INP parameterisations see an increase in anvil cloud fraction of up to 10% (+0.9% of 

the domain area) and thus an increase in domain outgoing radiation. This is relative to a 

decrease in anvil cloud of up to 40% (-3.6% of the domain area) for shallow parameterisations 

and a corresponding decrease in daylight domain-mean outgoing radiation.  

 

c) What is the relative importance of INP and SIP (via the Hallett-Mossop process) for 

the radiative properties of a complex convective cloud field? 

The presence of the Hallett-Mossop process has a smaller effect than the INP parameterisation 

on the simulated cloud field. The mean effect on daylight domain-mean TOA outgoing 

radiation of including INP is +9.8 W m-2 whereas the mean effect of including SIP via the 

Hallett-Mossop process is +2.9 W m-2. However the effect of the Hallett-Mossop process is 

dependent on the choice of INP parameterisation indicating that the interaction between SIP 

mechanism and INP is important for convective cloud properties. The effects of INP and INP 

parameterisation choice on outgoing radiation described above are evident even in the presence 

of the Hallett-Mossop process, refuting the hypothesis that INP is irrelevant beyond a minimum 

concentration needed to initiate the Hallett-Mossop process (e.g. Crawford et al., 2012; Ladino 

et al., 2017; Phillips et al., 2007) at least in deep convective clouds.  
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5.1.2. Chapter 3: Influence of ice-nucleating particles and Hallett-Mossop ice 

production rates on anvil cirrus from deep convection 

a) How does INP number concentration, INP parameterisation slope, and Hallett-

Mossop splinter production rate affect the anvil properties of an idealised deep 

convective cloud? 

Anvil ice crystal number concentration, anvil ice crystal effective radius, and anvil extent show 

different sensitivities to INP number concentration, INP parameterisation slope (the 

temperature dependence of INP number concentration between -38 and 0°C, dlog10[INP]/dT), 

and Hallett-Mossop splinter production rate. At high INP number concentrations, when the 

total number of heterogeneously formed ice crystals exceeds the number of cloud droplets 

reaching the homogeneous freezing level, the anvil ICNC is substantially reduced. This 

threshold is reached at a critical value of the peak concentration in the aerosol layer of 

approximately 1 cm-3.  

The anvil ice crystal effective radius and the anvil extent are substantially enhanced at shallow 

INP parameterisation slopes. This is due to a regime transition at shallow INP slopes (and to 

some extent at high INP number concentrations) to a cloud with more extensive glaciation, 

stronger updraft speeds, and higher vertical mass flux and condensate divergence at the outflow 

level. This regime transition is driven in part by Hallett-Mossop ice production rates 

approximately an order of magnitude larger than those in simulations with steep INP 

parameterisation slopes. This increase in the Hallett-Mossop ice particle production rate occurs 

as a result of increased heterogeneously frozen ice crystals ‘seeding’ secondary ice production 

within the Hallett-Mossop region. Large anvil ice crystal effective radii in simulations with 

shallow INP parameterisation slopes are increased further at high INP number concentrations 

due an enhancement of heterogeneous freezing at the top of the mixed-phase region which 
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allows for further ice crystal growth relative to crystals frozen by homogeneous freezing. 

Conversely, a high anvil cloud fraction caused by a shallow INP parameterisation is reduced 

at high INP number concentrations due to reduced anvil ICNC and increased ice crystal size. 

 

b) What is the relative importance of INP number concentration, INP parameterisation 

slope, and Hallett-Mossop splinter production rate for the development and resultant 

anvil properties of an idealised deep convective cloud? 

INP number concentration is the primary determinant of anvil ICNC which will have 

implications for anvil longevity beyond the simulated time period because an anvil with a lower 

ICNC should have a shorter lifetime. INP number concentration is also the primary determinant 

of column integrated heterogeneous and homogeneous ice particle production, and plays a 

secondary role in determining anvil ice crystal size and anvil cloud fraction. INP 

parameterisation slope is the primary determinant of anvil ice crystal size, anvil cloud fraction, 

cloud updraft enhancements, and changes in overall cloud condensate from graupel, snow, 

cloud droplets, and rain. INP parameterisation slope also plays a minor role in determining 

anvil ICNC. The only output variable affected by the Hallett-Mossop splinter production rate 

is the ice particle production by the Hallett-Mossop process itself, the largest changes to which 

occur as a result of the INP parameterisation slope. Although most cloud properties are not 

sensitive to the Hallett-Mossop splinter production rate, the ice particle production by the 

Hallett-Mossop process (determined by both the INP parameterisation slope and the Hallett-

Mossop splinter production rate) is of substantial importance to many cloud properties 

highlighting the importance of SIP and INP interactions. 
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c) Are statistical emulation and variance-based sensitivity analysis useful tools for the 

assessment of uncertainty in parameterisations of mixed-phase ice formation in deep 

convective clouds? 

Statistical emulation is a powerful tool for helping to visualise and understand the relationships 

between cloud responses for cloud properties that vary smoothly with the uncertain input 

parameters. For example, statistical emulation shows excellent predictive power for parameters 

such as anvil ICNC and column integrated homogeneous and heterogeneous ice particle 

production rates which all show a strong and smooth dependence on INP number 

concentrations. Variance-based sensitivity analysis is also useful in these cases for identifying 

which input variables contribute uncertainty to the value of the cloud property in question and 

therefore could benefit from quantification or uncertainty reduction using observational 

measurements or further modelling.  

Conversely, the emulator is less able to represent the variability in output variables that do not 

vary smoothly with the uncertain input parameters, and particularly those with sharp regime 

transitions. The emulator predicts the general trends of anvil ice crystal effective radius, 

Hallett-Mossop ice particle production, and accretion of water by ice but the surface is bumpy 

and the 95% confidence intervals are large so the output must be interpreted with caution. The 

emulator shows no predictive power for anvil cloud fraction. This is likely because the output 

has a complicated pattern with (i) a sharp transition to a cloud with a larger anvil at shallow 

INP parameterisation slopes and high INP number concentrations, (ii) a reduction in anvil 

extent at very high INP number concentrations within the shallow slope/high cloud fraction 

regime and (iii) the presence of an outlier at the corner of the parameter space with a low cloud 

fraction despite a high [INP]MAX and shallow λ[INP]. Therefore traditional methods of analysis 

should be used alongside statistical emulations where large regime shift or sharp transitions are 

possible in cloud output variables. Sampling using a Latin hypercube method allows insightful 
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use of both traditional analysis methods and statistical analysis because of the extensive 

coverage of parameter space that it provides relative to one-at-a-time tests. 

 

5.1.3. Chapter 4: Simulation of dust and K-feldspar INP transport across the 

tropical Atlantic by a global aerosol model 

a) How well does the GLOMAP aerosol model simulate the INP number concentrations 

measured during the 2017 Barbados Ice-nucleating particle Concentration Experiment 

(B-ICE) field campaign at Ragged Point, Barbados? 

GLOMAP overestimates the INP number concentrations measured during the 2017 B-ICE 

Barbados field campaign using both the Atkinson et al. (2013) and Harrison et al. (2019) 

feldspar based parameterisations. The INP number concentrations in GLOMAP predicted by 

the Atkinson et al. (2013) are about 1-2 orders of magnitude above the measured values. The 

Harrison et al. (2019)  parameterisation captures approximately the upper half of the measured 

INP number concentrations. 

 

b) Can discrepancies between measured and GLOMAP simulated INP number 

concentrations be attributed to discrepancies between measured and simulated dust 

export from North Africa over the tropical Atlantic? 

GLOMAP does not overestimate dust concentrations over the tropical Atlantic, including at 

Barbados, based on comparison to a variety of observational and reanalysis datasets. As such, 

the overestimation of INP number concentrations at Barbados during the 2017 B-ICE campaign 

cannot be explained by an over-prediction of dust transport from North Africa to Barbados. 

Surface dust mass concentrations simulated by GLOMAP at Barbados and Miami are lower 
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than surface-based dust measurements (Zuidema et al., 2019) in July and August 2017 and over 

the entirety of 2001. Comparison to the MERRA-2 reanalysis dataset supports this finding with 

MERRA-2 having higher surface dust mass concentrations than GLOMAP in all regions 

globally except regions close to source, such as North Africa. Comparison to profiles of dust 

mass concentrations in the Saharan Air Layer at four locations between Cape Verde and the 

Caribbean (Ansmann et al., 2017) indicate that GLOMAP underestimates the dust mass 

concentration in the dust layer at all locations over the tropical Atlantic. This is true for both 

accumulation and coarse mode dust mass concentrations. The GLOMAP simulated dust 

profiles are closer to the observed profiles in the Easter tropical Atlantic indicating that over 

removal of dust, rather than weak emission, is a particular problem. Comparison to MERRA-

2 integrated column dust measurements support this with lower column-integrated dust mass 

concentrations in all regions except dust emission source regions. 

 

c) Can discrepancies between measured and GLOMAP simulated INP number 

concentrations be attributed to discrepancies between the measured and simulated 

feldspar content of aerosol? 

The K-feldspar content of mineral dust simulated by GLOMAP during B-ICE is larger than 

observations and as such may explain the over-prediction of K-feldspar INP number 

concentrations. XRD and SEM-EDS analysis of the aerosol measured throughout the study 

period estimate the K-feldspar content of aerosol at Ragged Point Barbados to be ~1% 

compared to a value of ~7-8% simulated by GLOMAP. Adjusting the assumed K-feldspar 

content in GLOMAP from ~7 to ~1% greatly improves the agreement of the observed INP 

concentrations with the INP concentrations estimated by the Atkinson et al. (2013) and 

Harrison et al. (2019) parameterisations. The overestimation of the K-feldspar fraction of 

aerosol at Barbados by GLOMAP is likely due to an over-prediction of the fraction of feldspar 



204 

 

in accumulation mode dust relative to coarse mode dust. This can be attributed to the fact that 

the fraction of feldspar in the accumulation mode dust is calculated from the ratio of feldspar 

to quartz in the coarse mode (because the global database of soil mineral composition on which 

feldspar emission is based does not provide a value for accumulation mode feldspar but does 

provide one for coarse mode feldspar, and accumulation and coarse mode quartz) (Nickovic et 

al., 2012). However there are a number of other uncertainties and structural components of the 

GLOMAP model that complicate the picture and may compensate for one another. Figure 4.3 

depicts the competing aspects of GLOMAP INP representation including unquantified 

uncertainties.  

 

5.1.4. Overall influence of INP on convective clouds from both regional 

(Chapter 2) and idealised (Chapter 3) simulations 

The use of both a regional numerical weather prediction model and an idealised large eddy 

simulation model allows us to build a picture of the systematic ways the micro- and macro-

physical convective cloud properties are affected by changes in INP number concentrations 

and the Hallett-Mossop process. There are a large number of similarities in the cloud response 

to changing INP number concentrations, and the microphysical cloud responses in particular 

are relatively systematic between the two studies. In both the complex cloud-field detailed in 

Chapter 2 and the idealised deep convective cloud described in Chapter 3, increased INP in the 

mixed-phase region enhance Hallett-Mossop ice particle production, snow and graupel 

formation and riming rates, leading to an invigoration effect, increased cloud condensate, and 

a higher cloud fraction at mixed-phase levels. In both regional and idealised simulations 

homogeneous ice particle production rates, and therefore overall ICNCs, are reduced by high 

INP number concentrations at the top of the mixed-phase regime.  
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The anvil cloud response to changes in INP is different between the two studies due to the 

dominance of different microphysical responses and different degrees of enhancement in mass 

flux between the two simulations. In the regional model, the reduction in homogeneous ice 

particle production and therefore anvil ICNC, along with increased consumption of liquid at 

lower cloud levels due to enhanced heterogeneous and secondary freezing, and more snow and 

graupel formation, leads to a reduction in anvil cloud fraction at shallow INP parameterisation 

slopes. While the idealised cloud simulated in Chapter 3 sees similar microphysical responses, 

the cloud invigoration effect at shallow INP parameterisation slopes due to increased mixed-

phase freezing and riming events dominates over the consumption of liquid from these freezing 

events and leads to an increased anvil cloud fraction. This indicates that INP can have different 

effects depending on the environmental conditions, case study or simulation type and highlights 

the need for accurately representing all thermodynamic and microphysical conditions as 

accurately as possible to capture the cloud specific responses to perturbations. 

The observed microphysical effects of INP in both the regional and idealised simulations are 

consistent with previous studies of deep convective clouds. For example, increased 

heterogeneous freezing in the mixed-phase cloud region has frequently been shown to reduce 

the rates of homogeneous ice production by consuming liquid at lower cloud levels (Fan et al., 

2010b; Gibbons et al., 2018; van den Heever et al., 2006) which can reduce cloud anvil extent 

(e.g. Gibbons et al., 2018; van den Heever et al., 2006). An invigoration effect due to increased 

INP number concentrations has also been frequently observed (Ekman et al., 2007; Fan et al., 

2010a; Gibbons et al., 2018; van den Heever et al., 2006) which can in some cases increase the 

availability of droplets for homogeneous ice nucleation and lead to a larger cloud anvil (e.g. 

Ekman et al., 2007).  

In both regional and idealised simulations, the interaction of INP with SIP was important. In 

both cases, the rate of ice production by the Hallett-Mossop process was partly driven by the 
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temperature dependence of the INP parameterisation with shallow parameterisations having 

higher rates of secondary ice production. This indicates that INP number concentrations can be 

important determinants of mixed-phase ice production even when the ICNC vastly exceed the 

number concentration of INP (e.g. Korolev et al., 2020; Ladino et al., 2017; Lasher-Trapp et 

al., 2016).  

In the idealised simulation, high rates of ice particle production by the Hallett-Mossop process 

with shallow INP parameterisations caused more extensive cloud glaciation, cloud 

invigoration, and a larger anvil cloud fraction. In the regional simulations, the invigoration 

effect is not as dominant and increased Hallett-Mossop rates reduce the availability of liquid 

to upper cloud levels. In simulations with shallow INP parameterisation, this reduced droplet 

availability causes reductions in anvil cloud fractions due to reduced droplet availability for 

homogeneous freezing. Conversely, in simulations with steep INP parameterisations, it causes 

reduced droplet availability for riming just below the homogeneous freezing level causing a 

reduction in ice crystal size and a consequent increase in anvil extent. The complexity and 

variety of these micro- and macro-physical responses to the Hallett-Mossop process depending 

on INP properties is consistent with non-linear interactions between the freezing mechanisms 

reported in the literature (e.g. Crawford et al., 2012) and highlights the importance of the 

interactions between INP and SIP mechanisms. 

 

5.2. Key limitations of this thesis 

Both Chapter 2 and 3 examine the role of INP parameterisation and particularly that of the 

slope of the INP parameterisation in determining convective cloud properties. In Chapter 2, the 

effect of INP parameterisations commonly used in atmospheric models is tested. As such the 

slope of the parameterisation at low temperatures for the A13 and N12 parameterisations can 
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be flat because the parameterisations plateau once they reach the number concentration of dust 

represented in the model gridbox in question. This means that the absolute number 

concentration of aerosols capable of nucleating ice is not decoupled from the INP 

parameterisation slope in some INP parameterisations and that some cloud responses attributed 

to changes in the INP parameterisation slope may have in fact been caused by the absolute INP 

number concentration at cold temperatures. 

I address this problem in Chapter 3 by treating the absolute INP number concentration and INP 

parameterisation slope as separate uncertain input variables and by fixing the absolute number 

concentration of aerosols capable of nucleating ice to be the INP number concentration at -

38°C. This allows the calculation of parameterisations that have decreasing INP number 

concentrations at every temperature interval from -38 and 0°C based on the chosen 

parameterisation slope (i.e. no plateau at cold temperatures). However, this approach means 

that the realistic plateau of INP number concentrations at low temperatures is not represented. 

It also means that the simulation design is biased to representing INP parameterisations with 

very low INP number concentrations at temperatures above -38°C. Additional simulations with 

realistic number concentrations at warmer mixed-phase temperature were added to account for 

this.  

Future work could address both the above caveats of the work presented here by conducting a 

study similar to Chapter 3 using Latin hypercube sampling over four dimensions and including 

the temperature where INP number concentrations begin to plateau as an uncertain input 

parameter. This would allow for the examination of the relative importance of all aspects of 

the INP parameterisations and therefore which properties of the aerosol populations they are 

based on most require quantification for accurate representation of cloud properties. 

Additionally, altering the INP number concentrations within specific temperature ranges would 
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allow for the assessment of whether a particular temperature regime is particularly crucial for 

cloud development. 

In both Chapters 2 and 3, the role of SIP, via the Hallett-Mossop process, was tested. However 

the Hallett-Mossop process is not the only SIP mechanism that has been identified in 

convective clouds (Field et al., 2017; Korolev et al., 2020). Other SIP mechanisms, such as 

droplet shattering (Lauber et al., 2018), are not represented in our simulations and their impacts 

have not been tested. Although comparisons to observations in Chapter 2 show good agreement 

between observed and simulated ICNC, the effect of other SIP mechanisms, including those 

occurring at temperatures below -10°C (Field et al., 2017; Korolev et al., 2020; Lauber et al., 

2018) on deep convective clouds should be tested in future studies as parameterisations become 

available. In particular, Lloyd et al. (2019) suggest that droplet shattering may have been 

occurring in the clouds sampled during the ICE-D field campaign, including those on which 

the simulations in Chapter 2 and 3 are based. However, as the Hallett-Mossop process is the 

most observed, quantified, and parameterised SIP mechanism, the results presented here give 

a good indication of the importance of the interaction of INP and SIP.  

Chapters 2 and 3 are limited by the model representation of supersaturation with respect to 

liquid (using saturation adjustment) and rain freezing (using the Bigg (1953) parameterisation). 

While ice is allowed grow in the presence of liquid, treating supersaturation with respect to 

liquid explicitly in future work would allow a more accurate representation of the Wegener-

Bergeron-Findeisen process. Treating rain with the same heterogeneous freezing 

parameterisation as cloud droplets would be more consistent with the perturbations to INP in 

Chapters 2 and 3 and should be examined as a possibility for future similar studies. 

Chapters 2 and 3 address the effect that changes in the parameterisation of mixed-phase ice 

formation (through heterogeneous and Hallett-Mossop ice production) have on specific 

simulations of a convective cloud field and an idealised deep convective cloud. However, 
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convective clouds are sensitive to both meteorological and microphysical perturbations (e.g. 

Miltenberger et al., 2018; Miltenberger and Field, 2020; Posselt et al., 2019)and perturbations 

to microphysical variables that cause changes in cloud properties in one case may not have the 

same effects when reasonable variation in meteorological variables occurs. For example, in an 

ensemble of moderately deep convective clouds measured over South West England, aerosol-

induced changes to the instantaneous and mean precipitation rates were only statistically 

significant when ensemble members were paired according to meteorological conditions but 

not when ensemble members with slightly different meteorological conditions are included in 

the analysis (Miltenberger et al., 2018a), i.e. the observed changes in precipitation rates in 

meteorologically paired simulations would not be evident in clouds subject to observational 

uncertainty or simulations with slightly varying initial or boundary conditions..  

Uncertainty in initial conditions is not examined in this thesis and as such the magnitude of the 

reported changes due to INP and SIP relative to meteorological perturbations is not known. 

Future work should seek to address this with ensembles of tropical deep convective clouds with 

varying meteorology as well as perturbations to mixed-phase ice processes. For example, 

Miltenberger and Field (2020) expanded the study detailed in Chapter 2 (also in Hawker et al. 

(2021)) to the moderately deep convective clouds measured over South West England 

discussed above and found that the sensitivity of hydrometeor profiles to mixed-phase ice 

processes exceeds the spread of a meteorological ensemble but that the ensemble spread in 

cloud fraction, radiative properties, and precipitation is larger than the effects of INP and 

Hallett-Mossop perturbations. In particular, studies of the sensitivity of complex deep 

convective cloud fields, such as that of Chapter 3, to perturbations in both meteorological and 

microphysical ice processes should be conducted using methods such as statistical emulation 

and variance-based sensitivity analysis detailed in Chapter 3. To date most deep convective 
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studies of this nature, including that of Chapter 3, have focused on idealised simulations (e.g. 

Posselt et al., 2019; Wellmann et al., 2020). 

In both Chapter 2 and 3, analysis is limited by the short time of the simulations. In Chapter 2, 

the cloud field radiative properties were analysed for the daylight hours only because the length 

of our simulation meant there was not a full 24 hours of simulation available once the spin up 

period had been removed. Ideally, the analysis would be repeated with an extended simulation 

that includes at least one night-time. This would mean that the observed effect of changes to 

the outgoing longwave radiation would be increased as outgoing shortwave radiation is zero in 

darkness. Furthermore, the changes in the anvil cloud detailed in Chapter 2 are opposite to the 

domain cloud fraction signal, with strong reductions in anvil cloud due to the presence of INP 

compared to increases in most other cloud types. As convectively generated anvils can persist 

for longer in the atmosphere than the convective clouds that form them (e.g. Luo and Rossow, 

2004), it is possible that the effect of reduced anvil cloud fraction would influence the cloud 

field radiative properties more with a longer simulation. 

In Chapter 3, the effect of the uncertain input variables on the number and size of the anvil ice 

crystals gives us an indication of the potential lifetime of the anvil and therefore its long-term 

radiative effect. Specifically, an anvil with fewer and larger ice crystals will not persist in the 

atmosphere as long as an anvil with more and smaller ice crystals and therefore will not affect 

outgoing radiation as much. However, because our simulation length is only 4 hours in length, 

the effects of changes in the anvil ice crystal number and size on anvil extent may not have 

taken full effect. For example, a shallow INP parameterisation slope causes a large increase in 

anvil ice crystal size and a decrease in ICNC, effects that over the anvil lifetime, and 

particularly once all deep convection has decayed, would be expected to decrease anvil lifetime 

and extent. However, at the end of the simulated time period, the effect of these anvil ice crystal 

changes has not been fully realised. In fact, the stronger updrafts generated by increased 
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freezing in the Hallett-Mossop region in simulations with shallow INP parameterisation slopes 

lead to increased transport of cloud mass to the top of the troposphere and a larger anvil. Ideally, 

the simulation would be extended to comprise the full life cycle of the generated convective 

anvil so that the overarching balance between the cloud invigoration and the enhanced ice 

crystal size effects of shallow INP parameterisations on the anvil cloud lifetime could have 

been assessed. Future work should seek to address this. 

Both Chapters 2 and 3 showed increased updraft strength and cloud invigoration due to enhance 

mixed–phase freezing.  Cloud invigoration due to aerosols is most frequently discussed in 

relation to increased CCN concentrations or an overall aerosol increase (i.e. affecting both CCN 

and INP concentrations) (e.g. Altaratz et al., 2014; Fan et al., 2012; Lerach et al., 2008; Seifert 

and Beheng, 2006; Wang, 2005) and the relative importance and strength of cloud invigoration 

due to CCN and INP should be examined in future studies. Specifically, increases in CCN and 

INP number concentrations concurrently can have counterintuitive effects as is discussed in 

detail in Altaratz et al. (2014). For example, CCN concentration can increase latent heat release 

from condensation causing an enhancement in the flux of droplets to above the freezing level 

where they can freeze heterogeneously or homogeneously. However, whether this increased 

upward flux of droplets results in increased freezing and therefore further cloud invigoration 

depends on the balance between the increased availability of cloud droplets and INP and the 

reduced freezing efficiency of the smaller droplets (Altaratz et al., 2014; Rosenfeld and 

Woodley, 2000).  

In Chapter 4, the model was compared to a number of observations and reanalysis datasets. 

Comparisons to ground-based (Zuidema et al., 2019) and lidar measurements (Ansmann et al., 

2017) must be caveated with the fact that the observations presented represent the mean of 

multiple measurements at one point in time and space while the model values represent the 

mean of an average over the model grid box and timestep. Furthermore, comparisons of the 
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GLOMAP simulated dust mass concentrations to the MERRA-2 satellite reanalysis dataset 

were carried out by regridding the MERRA-2 dataset onto the GLOMAP grid, this may 

introduce some error into the comparison. However in most cases, the differences between the 

datasets were large enough for these errors to be inconsequential.  

Additionally, the GLOMAP representation of dust and INP emission and transport differs from 

reality in a number of ways. The GLOMAP simulations presented here use AEROCOM 

emissions from the year 2000, regardless of the year being simulated (Dentener et al., 2006; 

Vergara-Temprado et al., 2017). This likely introduces errors into the dust flux, particularly 

because dust emissions are spatially heterogeneous based on very localised and high resolution 

changes in wind speed across source regions with large changes in both erodibility and mineral 

composition over very short distances (Nickovic et al., 2012; Sweeney et al., 2011). For 

example, comparison to dust mass profiles measured over the tropical Atlantic during May 

2013 (Ansmann et al., 2017) shows that the Saharan Air Layer in GLOMAP is not well 

developed relative to observations. This implies that aspects of the complex processes that 

control dust uplift and transport (e.g. Heinold et al., 2013; Marsham et al., 2011; Prospero and 

Carlson, 1972) are not accurately captured by GLOMAP. Determining the exact reasons for 

differences in the Saharan Air Layer represnetation in GLOMAP and that observed by lidar 

was beyond the scope of this thesis but should be explored in future studies. Dust emission and 

atmospheric loading is something that is highly uncertain across most climate models (Huneeus 

et al., 2011; Wu et al., 2020). For example, coarse resolution models struggle to capture dust 

uplift by cold pools/haboobs which can account for up to 50% of summertime Saharan dust 

uplift (Heinold et al., 2013; Marsham et al., 2013). 
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5.3. Main implications of this research 

All three research chapters of this thesis make clear the importance of quantification of INP 

number concentrations across the entirety of the mixed-phase temperature spectrum rather than 

just at one temperature, or in a narrow temperature range, as is common in many field 

campaigns. In Chapter 2, the temperature dependence of INP number concentrations has large 

effects on the outgoing radiation of a complex tropical convective cloud field. In Chapter 3, 

both the absolute INP number concentration and the temperature dependence of INP number 

concentrations, which determines the amount of heterogeneous ice nucleation in the Hallett-

Mossop region, have large effects on the properties of a convectively generated anvil. In 

Chapter 4, we see that both K-feldspar and marine organic INP contribute to ambient INP 

number concentrations over Barbados and the tropical Atlantic. K-feldpsar INP dominates INP 

number concentrations at mid-level mixed-phase temperatures between -20 and -30°C while 

marine organic INP are critical at warm (~-10°C) and very low (~-35°C) mixed-phase 

temperatures. Measuring INP over the entire mixed-phase temperature range throughout which 

deep convective clouds extend, from ~-3 to -38°C, covering around 10 orders of magnitude in 

INP number concentration (e.g. Kanji et al., 2017), is a major experimental challenge. For 

example, in the ICE-D field campaign, INP concentrations at temperatures above -7 and below 

-27°C were not measurable due to experimental and sampling constraints (Price et al., 2018). 

This issue is compounded by the fact that INP spectra cannot reliably be extrapolated to higher 

or lower temperatures (though by necessity that is what occurs in most model simulations 

including those presented here) since our underpinning physical understanding of what makes 

an effective nucleation site is lacking (e.g. Coluzza et al., 2017; Holden et al., 2019; Kiselev et 

al., 2016). The large effect INP number concentrations can have on anvil cloud properties as 

well as the outgoing radiation of complicated deep convective cloud fields demonstrates the 
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importance of addressing this challenge and quantifying INP number concentrations and 

properties at all mixed-phase temperatures in regions dominated by deep convection. 

The importance of the temperature dependence of INP number concentrations in Chapters 2 

and 3 indicates that accurately representing both aerosol number and aerosol composition in 

atmospheric models is important for the accurate representation of deep convective cloud 

glaciation. Real-world INP populations will be composed of a mixture of aerosol types with 

biological INP, such as soil borne fungus and plant related bacteria, making significant 

contributions to INP number concentrations at the warmest temperatures and mineral 

components being more important at lower temperatures (O’Sullivan et al., 2018). 

Furthermore, the ice-nucleating ability of aerosols can be substantially altered by the 

accumulation of other species on particle surfaces, e.g. the adsorption of biological material 

from fungi, pollen and bacteria on mineral dust enhances particle ice-nucleating ability  

(Augustin-Bauditz et al., 2016; Chen et al., 2021; O’Sullivan et al., 2016). 

An important finding of this thesis is the large effect that mixed-phase ice processes can have 

on the anvil and radiative properties of tropical convective clouds. Climate models persistently 

predict a glaciation of clouds at much warmer temperatures than is observed (e.g. Cesana et 

al., 2015; Komurcu et al., 2014). Many climate models use a simple temperature function to 

represent cloud glaciation and although there is suggestion that complex microphysics 

improves the performance of climate models in this regard, vast differences between observed 

and simulated glaciation temperatures in models with many different representations of cloud 

microphysics persist. For example, differences in the temperature where 90% of cloud is 

glaciated can be as large as 20°C in the tropics even when complex microphysics and 

prognostic liquid and ice are represented (Cesana et al., 2015). Chapters 2 and 3 highlight that 

changes to the mixed-phase ice processes in tropical convective clouds can substantially affect 

cloud fraction and outgoing radiation. Thus improvement of the representation of mixed-phase 
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ice processes in climate models is necessary for accurate simulation of cloud radiative forcing. 

Tropical convection in climate models is represented by convection parameterisations and 

therefore the representation of cloud glaciation is of even more simplistic than that of large-

scale cloud. The results presented in this thesis indicate that as the resolution of climate models 

becomes finer and it becomes more common to include convective clouds in models explicitly 

(Neumann et al., 2019), mixed-ice processes and the effects of INP will need to be represented 

to accurately represent the cloud radiative effect. 

Chapter 2 and 3 highlight that INP can affect the radiative properties of deep convective clouds, 

however many of the microphysical changes in deep convective clouds caused by INP will not 

be represented in the radiation schemes of climate models. Climate models do not typically 

represent ICNC in radiation calculations and have frequently been shown to poorly represent 

ice crystal mass concentrations (Baran et al., 2014; Waliser et al., 2009). The sensitivity of the 

cloud field in Chapter 2 and the deep convective cloud in Chapter 3 to the INP properties and 

the Hallett-Mossop process indicates the importance of accurately representing cloud ice 

properties in climate models.  

This study particularly highlights the importance of the interaction of INP with SIP 

mechanisms, in this case the Hallett-Mossop process. In Chapter 2, the effect of the Hallett-

Mossop process on the anvil cloud fraction and the domain-mean outgoing radiation was 

dependent on the choice of INP parameterisation. In general, cloud properties of the complex 

cloud field simulated in Chapter 2 and the idealised cloud in Chapter 3 were predominately 

altered by changes to INP rather than changes to the Hallett-Mossop process disputing the 

commonly held assertion that INP are only relevant in convective clouds up to a minimum 

threshold needed to initiate the Hallett-Mossop process (e.g. Beard, 1992; Crawford et al., 

2012; Ladino et al., 2017; Phillips et al., 2007). However, initiating and ‘seeding’ the Hallett-

Mossop process was an important effect of changes to INP concentrations in the Hallett-
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Mossop regime in Chapters 2 and 3. In Chapter 2, parameterisations with shallower 

temperature dependencies and therefore more INP at warm temperatures had higher ice particle 

production rates by the Hallett-Mossop process. In Chapter 3, many cloud properties were 

controlled by the rate of ice production by the Hallett-Mossop process which in turn was 

determined by the temperature dependence of the INP parameterisation and the INP number 

concentrations within the Hallett-Mossop region. This indicated that INP could have an 

important role in determining cloud properties even when heterogeneous freezing is not the 

dominant freezing mechanism. 

In summary, I find that INP parameterisation choice can have a substantial effect on the 

radiative properties of a large and complex tropical convective cloud field. I find that both 

absolute INP number concentrations and the temperature dependence of INP number 

concentrations at all mixed-phase temperatures are important for the anvil properties of an 

idealised deep convective cloud. In both a complex convective cloud-field and an idealised 

deep convective cloud, the interaction of INP with SIP is critically important to the cloud 

development. The importance of accurate representation of INP and dust export over the 

tropical Atlantic is also highlighted. The results presented in this thesis further our 

understanding of the effects of INP in convective clouds and indicate the importance of 

quantifying INP number concentrations at all mixed-phase temperatures and improving the 

representation of cloud glaciation in climate models. 
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