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Abstract

In this thesis the nested algebraic Bethe ansatz technique is applied to various orthogonal and

symplectic closed and open spin chain models. Each spin chain considered is regarded as a rep-

resentation of an underlying quantum group algebra, and expressions for eigenvectors of transfer

matrices associated to these models are constructed using the algebra relations, reducing the prob-

lem to a set of Bethe equations. The specific models considered are the Ol’shanskii twisted Yangian

spin chain, where gln bulk symmetry is broken to orthogonal or symplectic symmetry; the MacKay

twisted Yangian spin chain, an open spin chain with bulk orthogonal or symplectic symmetry and

various boundary types; and the q-deformed orthogonal or symplectic closed spin chain. For the

first and third cases, a closed ‘trace formula’ expression for the eigenvector is also provided.
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Chapter 1

Introduction

Perfectly balanced between the simplicity of completely solvable models and the complexity of

many body interactions, spin chains appear in many, often surprising, physical contexts—not just

the original quantum statistical mechanics but also, as we shall see, the classical counterparts

[On44] [Ba82], as well as quantum field theory [MZ03] and even certain Markov chains [Sa94]. The

quest to understand these models gave birth to new algebras which underpin the theory and are

today an active area of investigation. The algebraic Bethe ansatz and spin chains lie at the heart

of this story of solvable physics that has come together over the last 90 years, from the dawn of

quantum mechanics to the present day.

An appropriate starting point for this story is the very first spin chain model. Now often referred

to as the Heisenberg model [He28], it is an attempt at modelling the interactions between electrons

in a lattice of ions. Consider a lattice of static atoms, each with a single free electron, so that

the resulting Schrödinger equation contains an interaction term for each pair of charged particles.

Following earlier work of Heitler and London [HL27] on the H2 bond, Heisenberg approached this

problem perturbatively, considering the case in which all free electrons are paired to individual

ions—or rather, the case in which atoms are infinitely separated from one another—to be the order

zero approximation to the model. In this case the energy eigenfunctions of the electrons are identical

to those of the hydrogen atom, each localised about a single ion. Interactions between electrons are

introduced at first order but, from calculations of Heitler and London, the ‘exchange integral’—the

amplitude for the exchange of electrons at different sites—was found to decay exponentially with

distance. With this, the resulting interaction Hamiltonian for this ‘first order’ model consists solely

of interactions between electrons at neighbouring sites, with opposite spins. In other words, we

arrive at a ‘first order’ Hamiltonian given essentially by

H = −J
2

∑
<i,j>

(I − Pij),

where the sum is taken over all neighbouring pairs of atoms, and Pij is the operator that exchanges

states at positions i and j.
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Heisenberg in his paper laments that the model is in general not solvable and resorts to a

statistical analysis of the energy levels. However, Bloch [Bl30] made some progress towards an

exact solution. When considering the simplest possible lattice—a finite one-dimensional chain of

L atoms with periodic boundary conditions—Bloch showed that the translational invariance of

the model naturally led to wave-like eigenstates. These spin waves, or magnons in their particle

interpretation, describe a single down spin in a sea of up spins. That is, for a chain of length L,

|k〉 =

L∑
x=1

eikx|↑〉1 · · · |↓〉x · · · |↑〉L

describes the spin wave with wavenumber k, the allowed values of which are quantised by the

periodic boundary conditions. The number of magnons is a symmetry of the Hamiltonian, and so

these states provide a basis for constructing the eigenstates of the chain.

This idea was developed further by Bethe [Be31], who solved the model using his now-famous

ansatz. Bethe began his analysis by calculating all possible two-magnon states, including the states

with interacting spins, as well as an additional set of solutions with complex conjugate wavenumbers.

With a two-magnon state of the form

|k1, k2〉 =
∑
x1<x2

(
A1e

ik1x1+ik2x2 +A2e
ik2x1+ik1x2

)
|↑〉1 · · · |↓〉x1 · · · |↓〉x2 · · · |↑〉L,

Bethe found that this would be an eigenstate only if the wavenumbers satisfied

A1

A2
=
z1 − z2 + i

z1 − z2 − i
, where zj =

1

2
cot

(
kj
2

)
.

Then, with the two magnon states fully mapped out, he gave an ansatz for the general r-magnon

state which, crucially, had built-in the hypothesis that the phase difference between each r-magnon

state depended only on phase differences between the two-magnon interacting states. Incredibly,

he found that this method gave all possible eigenstates to arbitrary precision and for any number

of atoms, provided the wave numbers satisfied a set of algebraic equations, now known as Bethe

equations.

The theory of spin waves persisted, but significant developments in solution techniques for spin

chains would not occur until much later, and would come from other, seemingly unrelated, areas of

physics. We turn our attention to the Ising model—an earlier, classical version of Heisenberg’s spin

chain where ‘spins’ may only take one of two possible values (rather than a linear combination), and

the simplest example in a broader theory of lattice models. The one-dimensional case was solved

by Ising himself [Is25], and attention turned to more general lattice types in the 1940s. From this

theory emerged the transfer matrix method, which allows one to write the partition function for

the entire lattice in terms of a product of identical transfer matrices, each acting only on a single

row or column. The full partition function can then be well-approximated in terms of the highest

eigenvalue of this transfer matrix. Kramers and Wannier made use of this technique in their study
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of the 2D Ising model [KW41], which was built on by Onsager in [On44], who was able to find all

transfer matrix eigenvectors.

In the 1950s and 60s the Bethe ansatz re-emerged, initially to solve the anisotropic Heisenberg

spin chain (XXZ model) [Or58]. However, again, the significant developments in the theory came

from a different area of physics, this time in the scattering of quantum particles with a delta-

function interaction. Since the collisions between particles are completely elastic, there are only

two possible outcomes for a single collision: the particles either retain their momenta, or they

completely exchange momenta. Moreover, it was shown by McGuire [Mc64] that the full scattering

matrix for N particles could be calculated exactly from these 2-particle interactions, given that

the two possible factorisations of the 3-particle scattering were equal. Essentially, this particular

model admitted ‘factorised scattering’ into the individual 2-particle interactions. This was built on

by Yang [Ya67], who wrote the 2-particle S-matrix,

Sij ∝ I −
icPij
pi − pj

,

where Pij permutes the two states and pi and pj are the momenta of the two particles, and showed

that it satisfied the relation

SjkSikSij = SijSikSjk. (1.0.1)

Following Lieb and Liniger [LL63] before him, Yang showed that the spectral problem for this

model was identical to that of a spin chain model and was thus able to apply the Bethe ansatz.

Lieb also made use of the Bethe ansatz in studying the ice model [Li67], a simplified lattice model

of the hydrogen bonding in ice. Connections were rapidly being found between these three theories,

and this culminated in Baxter’s solution of the eight-vertex model [Ba72]. In this paper Baxter

introduced a transfer matrix which depended on a free parameter, and showed that, by tuning this

parameter, previously studied solvable models including the XYZ (fully anisotropic) spin chain and

the ice model appeared as specific cases. The model consisted of a directed graph on the square

lattice, with each configuration of edges around a vertex assigned a certain energy level. This eight-

vertex model allowed eight of the possible 16 energy levels to be nonzero. Summarising this data in

a matrix R, Baxter was able to construct the transfer matrix as a partial trace of a product of these

R matrices. He then showed that transfer matrices of different parameters would commute, and

thus would be simultaneously diagonalisable, only if the R matrices satisfied a version of (1.0.1),

the Yang-Baxter equation.

Before arriving at the quantum inverse scattering theory, we must first introduce its classical

counterpart. The inverse scattering transform began as a novel solution to the Korteweg-de Vries

equation, which governs the evolution of shallow water waves [GGKM67]. It was known [ZK65]

that the equation yielded solitary wave, or soliton, solutions: travelling waves which are localised

in space and do not dissipate. The method makes use of the already known inverse problem of

reconstructing a potential from scattering data in quantum mechanics, due to [GL51], but in this

case the ‘potential’ is the soliton solution itself. It was then Lax [La68] who showed how to generalise
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the method to other PDEs, and this was put into practice throughout the 70s as various solvable

PDEs were put into this framework, including the nonlinear Schrödinger equation [SZ72] and the

sine-Gordon field theory [AKNS73].

The quantisation of this theory was investigated throughout the 70s. It was discovered [Za77]

that interaction between sine-Gordon solitons obeyed factorised scattering in the sense of Yang and

McGuire which, in the process, revealed a new solution of the Yang-Baxter equation. The task of

quantising the inverse scattering method itself was then undertaken by the Leningrad school, and

from it came the quantum inverse scattering method [STF79] [TF79], or algebraic Bethe ansatz.

Linking Baxter’s theory to the theory of inverse scattering, the technique makes use of the Yang-

Baxter equation not just to show the commutation of transfer matrices, but also in the construction

of their joint eigenvectors. Indeed, it was shown that the eigenvector could be written in a form

hardly more complicated than an expression for a harmonic oscillator eigenstate, with matrix

elements of the monodromy matrix playing the role of the magnonic creation and annihilation

operators.

The algebraic Bethe ansatz saw a lot of interest in the following decades, as it provided a

framework for solving physical models that relied mainly on algebraic relations stemming from

the Yang-Baxter equation, rather than particular physical properties of the models themselves.

Indeed, any model for which an R-matrix—that is, a solution of the Yang-Baxter equation—had

been found was a candidate for solution by the algebraic Bethe ansatz. As a result, the technique

was quickly generalised to models with higher rank symmetry algebras compared to, for example,

the su2 symmetry of the XXX model. One of these developments was Kulish and Reshetikhin’s

nested algebraic Bethe ansatz (NABA) solution of the gl3 [KR82] and, soon after, gln spin chains

[KR83]. It was found that the transfer matrix diagonalisation problem for gln could be reduced to

that for gln−1 and, inductively, down to the gl2 problem, which is identical to the su2 chain.

Through the study of the algebraic Bethe ansatz and factorised scattering, it became clear that

solutions of the Yang-Baxter equation led directly to solvable physical models and, while many of

these solutions had been uncovered via the physical theory, no formal mathematical classification

had been achieved. The task of classifying these solutions was undertaken by Drinfel’d. First, in

a paper with Belavin, Drinfel’d was able to classify non-degenerate solutions of the classical Yang-

Baxter equation [BD82]. They showed that these corresponded to representations of simple Lie

algebras, as well as belonging to one of three categories: rational, trigonometric or elliptic. Drinfel’d

then showed that these classical solutions could be deformed to give solutions of the quantum Yang-

Baxter equation. In doing this, Drinfel’d [D88] built up a new algebraic theory of ‘quantum groups’,

in which the Lie algebra itself was deformed by this process. He named the rational quantum groups

Yangians, while the trigonometric case, which was discovered independently by Jimbo [J85], became

known as quantised enveloping algebras. The elliptic case had been studied by Sklyanin [Sk82] in

the sl2 case, and was extended to any simple Lie algebra by Felder [Fe94].

Spin chains based on these R-matrices were studied using the nested algebraic Bethe ansatz

in the following works. For rational spin chains, the even orthogonal case was solved in [DVK87]
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for the vector representation. The symplectic case in the vector representation, as well as the odd

orthogonal case in the spinor representation was solved in [Rs85]. A number of cases were studied

in [MR97], including the orthosymplectic Lie superalgebra. Nevertheless, the gln case is by far the

most well-understood. In [TV94] (see also [TV13]), a non-recursive ‘trace’ formula was given for

the eigenvector in terms of its Bethe roots. The gln results were revisited in [BR08], where the

super-rational and super-trigonometric cases in any representation were studied together, and a

trace formula was given.

The investigation of boundary conditions would also be initiated during the 80s. Cherednik

[Ch84] looked at the factorised scattering problem on the half-line, introducing a matrix to encode

the boundary conditions of the model. He then went on to show that factorised scattering could be

preserved so long as this matrix satisfied another Yang-Baxter-type equation with the R-matrix,

now known as the boundary Yang-Baxter equation or reflection equation. Sklyanin [Sk88] applied

this to the context of spin chains, and extended the idea to a system with two boundaries, a

bounded chain of spins. He then went on to apply this theory to the XXZ spin chain, showing how

an appropriate Hamiltonian with suitable boundary interaction terms could be extracted from this

construction, and ultimately be diagonalised it using the algebraic Bethe ansatz.

Sklyanin’s method gave a way of constructing commuting transfer matrices for these bounded

systems starting from an R-matrix of the type used in the periodic chain and the reflection matrices

which encoded the left and right boundary conditions, the K-matrix and dual K-matrix. Moreover,

Sklyanin introduced the algebraic framework for understanding these models in the same paper,

defining in the process boundary analogues of quantum groups. Following this, another type of

algebra with similar properties to Sklyanin’s, known as the twisted Yangian, was introduced by

Ol’shanskii [Ol92]. From an mathematical perspective, the construction of these algebras mimicked

a common construction of a Lie subalgebra from a Lie algebra using one of its involutions, which

results in a symmetric pair. For the rational case, the K-matrices for the remaining symmetric

pairs of simple Lie algebras were found in [MS01], and the corresponding twisted Yangian algebras

were studied in a follow up work [M02].

Sklyanin’s algebraic Bethe ansatz was extended to a nested algebraic Bethe ansatz for a gln

chain in [DVG94] and further to the supersymmetric cases in [BR09]. The orthogonal [GP16,

Go18] and symplectic [GKR05] cases were studied. However, certain boundary conditions did not

admit an algebraic Bethe ansatz solution due to the problem of defining a suitable vacuum vector

from which to build the eigenstates. Use of gauge transformations allowed this problem to be

mitigated somewhat [GM05], but in general an analytical Bethe ansatz-type approach [CYSW14]

was necessary to find expressions for eigenvalues and Bethe equations for these systems.

In this thesis we solve some of the outstanding rational open spin chains using a nested algebraic

Bethe ansatz method. We will start by reviewing the original algebraic Bethe ansatz for the rational

Heisenberg spin chain before introducing the rational quantum groups which underpin the theory

of closed chains, the Yangians associated with the Lie algebras gln, so2n and sp2n, as well as their

representation theory. We then describe the construction of the transfer matrix and Hamiltonian
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for open chains, and list the symmetric pairs for simple Lie algebras in preparation for Chapters 2

and 3.

In the remaining Chapters we systematically introduce quantum groups and their associated

spin chains, and then proceed to solve them using the nested algebraic Bethe ansatz. In Chapter 2

we start with the closed gln spin chain before repeating this process for the Ol’shanskii twisted

Yangian spin chain, in the even cases. Similarly for Chapter 3 we focus first on the gln reflection

algebra and its spin chain before leading into the MacKay twisted Yangian spin chains, in the even

cases. Finally, in Chapter 4 we give the NABA for a trigonometric (q-deformed) closed Uq(so2n)

or Uq(sp2n) spin chain.

1.1 The algebraic Bethe ansatz

1.1.1 Construction of the transfer matrix

We begin by reviewing the algebraic Bethe ansatz for the original Heisenberg spin chain, in order to

explain the general argument, set some of the notation and, moreover, to motivate the introduction

of the underlying algebraic structures of spin chains. Despite the problems this causes for the

completeness of the Bethe ansatz, we will choose to introduce the simplest possible spin chain,

forgoing generalisations such as quasi-periodic boundary conditions, the higher spin case, or spectral

parameter shifts, as these are unnecessary for understanding the overall method. This will largely

follow Faddeev’s lecture notes on the algebraic Bethe ansatz [Fa96].

The space of quantum states of the spin chain is an `-fold tensor product of individual spin

sites, spin-1
2 representations of su2,

H = C2 ⊗ C2 ⊗ · · · ⊗ C2 = (C2)⊗`.

Denote by ei, for i = 1, 2 in this case, the basis vectors of each individual C2 space. We will denote

by eij the elementary matrices, with the i, j entry being 1, and all other entries being zero.

We then define the permutation operator by the relation P (a ⊗ b) = (b ⊗ a) for any a, b ∈ C2.

With respect to our basis, this is given as a matrix by

P :=

2∑
i,j=1

eij ⊗ eji ∈ End(C2 ⊗ C2).

We also introduce here the subscript notation to denote the tensor factors on which a matrix acts

nontrivially. For example, P23 = I ⊗ P ∈ End((C2)⊗3), and P13 =
∑

i,j eij ⊗ I ⊗ eji. In general

numerical subscripts will denote spin chain sites, while we will also use subscripts a, ai etc. to

denote certain auxiliary spaces, which are crucial to the algebraic Bethe ansatz technique. From its

defining property, the permutation operator satisfies P 2 = I, PM1P = M2 for any M ∈ End(C2)

and tr1 P = I, where tr1 denotes the partial trace over the first space.
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With this, we define Yang’s R-matrix

R(u) = I − P u−1 ∈ End(C2 ⊗ C2)[u−1],

which is invertible and satisfies the Yang-Baxter equation

R12(u− v)R13(u− w)R23(v − w) = R23(v − w)R13(u− w)R12(u− v). (1.1.1)

The parameter u here is referred to as the spectral parameter and at this point we consider it to

be indeterminate, but it may be thought of as a complex number throughout. The R-matrix also

has various other important symmetry properties which will be discussed in later chapters. On the

basis {e1 ⊗ e1, e1 ⊗ e2, e2 ⊗ e1, e2 ⊗ e2}, this R-matrix is given by

R(u) =


1− u−1 0 0 0

0 1 −u−1 0

0 −u−1 1 0

0 0 0 1− u−1

 . (1.1.2)

We now introduce an auxiliary space Va ≡ C2, and construct the monodromy matrix for the

fundamental chain,

Ta,1...`(v) = Ra1(v)Ra2(v) · · ·Ra`(v) ∈ End(Va ⊗H)[v−1].

This is best understood from the perspective of factorised scattering theory: the monodromy matrix

is the factorised S-matrix for the interaction between a test particle, represented by the auxiliary

space Va, and ` particles in a line, where the 2-particle S-matrix is given simply by the R-matrix.

The test particle travels in a loop around the closed chain, arriving back at its original location,

completing the full monodromy to give the above matrix. As a result of the Yang-Baxter equation

(1.1.1), the monodromy matrix satisfies the RTT relation,

Ra1a2(u− v)Ta1(u)Ta2(v) = Ta2(v)Ta1(u)Ra1a2(u− v). (1.1.3)

Note that above we have omitted the subscripts 1 . . . ` from the monodromy matrix; we will adopt

this convention throughout. The RTT relation is the cornerstone of the algebraic Bethe ansatz

technique and we will return to it shortly.

We now define the transfer matrix, in the sense of Baxter, by taking the trace over the auxiliary

space of the monodromy matrix to obtain an operator which acts on End(H) only:

t(v) := tra Ta(v) ∈ End(H)[v−1].

Crucially, as a result of the RTT relation (1.1.3), transfer matrices of different parameter values

mutually commute. This can be seen simply by multiplying from the left of (1.1.3) by (Ra1a2(u−
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v))−1, taking the partial trace over Va1⊗Va2 , and using its cyclicity. This implies that the coefficients

of t(v) all mutually commute, and can therefore be simultaneously diagonalised. For example, from

the transfer matrix we can recover the Heisenberg spin chain Hamiltonian, arriving back at the

spin chain interpretation of the model:

H = t(`−1)(t(`))−1 =
`−1∑
k=1

Pk,k+1 + P`,1,

where here t(j) is the coefficient of v−j in the polynomial expansion of t(v).

1.1.2 Diagonalisation of the transfer matrix

The eigenvectors will be constructed from the action of monodromy matrix elements on a vacuum

state, similar in spirit to the construction of the energy eigenstates of the harmonic oscillator. We

decompose the monodromy matrix in the auxiliary space,

T (v) =

(
a(v) b(v)

c(v) d(v)

)
.

Here we are viewing the operators a(v), b(v), c(v), d(v) as operators which act on the spin chain

only—that is, they act on a one-dimensional subspace of the auxiliary space, which may be ignored.

In terms of these operators, the transfer matrix is t(v) = a(v) + d(v).

The remaining elements b(v) and c(v) will be thought of as creation and annihilation operators

respectively. However, we must first define a ‘vacuum’ state from which to construct our eigenstates.

That is, a state in H that is annihilated by c(v), while also a simultaneous eigenstate of a(v) and

d(v). The RTT relation and the existence of the vacuum state may be thought of as the two

necessary ingredients for applying the algebraic Bethe ansatz to closed spin chains. In this case,

we may define such a state simply by η := (e1)⊗` ∈ H, the state in which all spins are aligned.

The properties of η are

c(v)η = 0 a(v)η = λ1(v)η d(v)η = λ2(v)η, (1.1.4)

where λ1(v) = (1− v−1)`, and λ2(v) = 1. To see this, consider first the action of T (v) on e1 ⊗ η =

(e1)⊗`+1. Since this state is completely symmetric, the permutation operator acts as the identity

and the result is

T (v)(e1 ⊗ η) = (1− v−1)`(e1 ⊗ η),

giving the first two identities above.

The action on e2⊗η is slightly more complicated but, thinking again of the monodromy matrix

as T (v) = (I − Pa1v
−1) · · · (I − Pa`v−1), there can be only one term in the resulting expression

which leaves the e2 in the auxiliary space, namely the one in which we take the identity matrix

from each factor. Hence, η is also unchanged, and so we obtain the required eigenvalue for d(v).
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With this, we are ready to construct our transfer matrix eigenvectors. Pick m ∈ N and let

u = (u1, . . . , um) ∈ Cm be a tuple of distinct nonzero parameters. We then define the Bethe vector

Φ(u) := b(u1) · · · b(um)η. (1.1.5)

This constitutes the Bethe ‘ansatz’ for the transfer matrix eigenstates, and the goal is now to show

how the transfer matrix acts on this vector. We will use the relations between the monodromy

matrix elements to move a(v) and d(v) rightward through the creation operators. These relations

are obtained from the RTT relation (1.1.3) and the relevant ones will be, for u 6= v,

a(v)b(u) =

(
1− 1

u− v

)
b(u)a(v) +

1

u− v
b(v)a(u) (1.1.6)

d(v)b(u) =

(
1 +

1

u− v

)
b(u)d(v)− 1

u− v
b(v)d(u) (1.1.7)

b(v)b(u) = b(u)b(v). (1.1.8)

The general method may be illustrated by the m = 1 case. Here we simply act with a(v) and

d(v) individually on the Bethe vector Φ(u1) = b(u1)η, commute these operators with the single

creation operator and act diagonally on the vacuum state via (1.1.4). That is,

a(v)Φ(u1) = λ1(v)

(
1− 1

u1 − v

)
Φ(u1) +

λ1(u1)

u1 − v
b(v)η

d(v)Φ(u1) = λ2(v)

(
1 +

1

u1 − v

)
Φ(u1)− λ2(u1)

u1 − v
b(v)η.

We see that the right hand side contains two terms: one which is proportional to the Bethe vector

with its parameter u1 unchanged, and another term in which the parameters have been swapped.

Since we require this process to diagonalise the transfer matrix for any value of the parameter v,

these terms, or rather their sum, must vanish. The equation resulting from this condition is the

Bethe equation for u1, in this case given simply by λ1(u1) = λ2(u1), which is a sufficient condition

for Φ(u1) to be an eigenvector of the transfer matrix.

The exchange relations (1.1.6-1.1.7) therefore each contain both a wanted term, in which the

two operators retain their parameters, and a single unwanted term, in which the parameters are

swapped. We will make use of this terminology in the m > 1 case below.

Indeed, we begin by extrapolating the exchange relations (1.1.6–1.1.8) to the case of multiple

creation operators. Starting with expression a(v)b(u1) · · · b(um), and repeatedly applying the ex-

change relation (1.1.6), we can move the operator a(·) through the creation operators until it is the

rightmost operator. The terms of the resulting expression may then be grouped according to the

spectral parameter of a(·). Indeed, the term containing a(v) is given by

m∏
i=1

(
1− 1

ui − v

)
b(u1) · · · b(um)a(v).
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There can only be one such term, as we can allow no parameter swaps at each exchange of a(v)

and b(ui). That is, we take the ‘wanted term’ from each exchange.

All other terms contain a(ui) for some 1 ≤ i ≤ m, and are all unwanted terms. In other words,

we have, introducing notation b(u) := b(u1) · · · b(um),

a(v)b(u) =

m∏
i=1

(
1− 1

ui − v

)
b(u)a(v) +

m∑
i=1

Ui(v;u)a(ui), (1.1.9)

where Ui(v;u) belongs to the algebra spanned by the creation operators, noting that the exchange

relation (1.1.8) ensures that this algebra is closed. This is important, as it ensures that the unwanted

terms are unique up to reordering of the creation operators.

To calculate an expression for the unwanted terms, it is common to use the following argument.

Consider first the result of applying the exchange relation a single time:

a(v)b(u) =

((
1− 1

u1 − v

)
b(u1)a(v) +

1

u1 − v
b(v)a(u1)

)
b(u2) · · · b(um).

The first term above will lead to the wanted term as before. However, by the same logic, the only

contribution to U1(v;u)a(u1) is obtained in the same way, by starting with the second term in the

above expression and again taking the term from each subsequent exchange in which a(u1) retains

its parameter. Therefore,

U1(v;u) =
1

u1 − v

m∏
i=2

(
1− 1

ui − u1

)
b(v)b(u2) · · · b(um).

The remaining unwanted terms may be calculated by symmetry. Indeed, let σ ∈ Sm, and

denote uσ = (uσ(1), . . . , uσ(m)). The commutation of the creation operators (1.1.8) implies that

b(uσ) = b(u). Further, let σj denote the cyclic permutation defined by σj(i) = j + i − 1 mod `.

We may apply the previous logic to the creation operators with permuted parameters:

a(v)b(u) = a(v)b(uσj ) =

((
1− 1

uj − v

)
b(uj)a(v) +

1

uj − v
b(v)a(uj)

)
b(uj+1) · · · b(uj−1),

resulting in an expression for Uj(v;u):

Uj(v;u) =
1

uj − v

m∏
i=2

(
1− 1

ui − uj

)
b(v)b(uj+1) · · · b(uj−1).

Hence, we arrive at

a(v)b(u) =

m∏
i=1

(
1− 1

ui − v

)
b(u)a(v) +

m∑
i=1

1

ui − v
∏
j 6=i

(
1− 1

uj − ui

)
b(v)b(uσi(2)) · · · b(uσi(m))a(ui).

(1.1.10)
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An equivalent relation for d(v) may be found in the same way, yielding

d(v)b(u) =
m∏
i=1

(
1 +

1

ui − v

)
b(u)d(v)−

m∑
i=1

1

ui − v
∏
j 6=i

(
1 +

1

uj − ui

)
b(v)b(uσi(2)) · · · b(uσi(m))d(ui).

(1.1.11)

We now have enough information to give the full action of the transfer matrix on the Bethe vector

Φ(u). Acting with (1.1.10) and (1.1.11) directly on the vacuum vector, we recall that the vacuum

vector is an eigenvector of the diagonal elements of the monodromy matrix (1.1.4). Hence,

a(v)Φ(u) = λ1(v)
m∏
i=1

(
1− 1

ui − v

)
Φ(u) +

m∑
i=1

λ1(ui)

ui − v
∏
j 6=i

(
1− 1

uj − ui

)
Φ((uσ)ui→v),

d(v)Φ(u) = λ2(v)

m∏
i=1

(
1 +

1

ui − v

)
Φ(u)−

m∑
i=1

λ2(ui)

ui − v
∏
j 6=i

(
1 +

1

uj − ui

)
Φ((uσ)ui→v),

where the subscript in (uσ)ui→v denotes the replacement of ui with v. Summing these expressions

gives

t(v)Φ(u) = Λ(v;u)Φ(u)+
m∑
i=1

[
λ1(ui)

ui − v
∏
j 6=i

(
1− 1

uj − ui

)
− λ2(ui)

ui − v
∏
j 6=i

(
1+

1

uj − ui

)]
Φ((uσ)ui→v),

(1.1.12)

where

Λ(v;u) = λ1(v)

m∏
i=1

(
1− 1

ui − v

)
+ λ2(v)

m∏
i=1

(
1 +

1

ui − v

)
.

It is now clear that Φ(u) is an eigenvector of the transfer matrix, with eigenvalue Λ(v;u), if the

terms in square brackets in (1.1.12) vanish for each i. This condition results in the Bethe equations

λ1(ui)

λ2(ui)
=
∏
j 6=i

uj − ui + 1

uj − ui − 1
for 1 ≤ i ≤ m,

or, inserting the expressions for λ1(ui) and λ2(ui),(
1− 1

ui

)`
=
∏
j 6=i

uj − ui + 1

uj − ui − 1
for 1 ≤ i ≤ m.

1.2 Yang-Baxter algebras

As we saw in the previous section, almost all steps of the algebraic Bethe ansatz, as well as the

commutation of the transfer matrices, stemmed from the RTT relation, itself a generalisation of

the Yang-Baxter equation. This naturally leads to the idea of a Yang-Baxter algebra, an algebra

generated by T -matrices, with the RTT relation as its defining property. Let R(u, v) be an invertible
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solution of the Yang-Baxter equation

Rab(u, v)Rac(u,w)Rbc(v, w) = Rbc(v, w)Rac(u,w)Rab(u, v).

Then we regard the Yang-Baxter algebra to be the associative unital algebra generated by T (u),

with relations

Rab(u, v)Ta(u)Tb(v) = Tb(v)Ta(u)Rab(u, v)

and no others. Specifically, we will regard the Yang-Baxter algebra A to be generated by t
(r)
ij , where

r ∈ Z≥0 and i, j = 1, . . . n, which form the coefficients of formal power series in u−1, which in turn

are considered to be the matrix elements of T (u). That is,

tij(u) :=
∑
r≥0

t
(r)
ij u

−r ∈ A[[u−1]],

and the generating matrix is defined by

T (u) =

n∑
i,j=1

eij ⊗ tij(u) ∈ End(Cn)⊗A[[u−1]].

Any representation of this algebra then could be said to define a monodromy matrix, the trace

of which trT (u) defines commuting transfer matrices. Any R matrix may be used to define a Yang-

Baxter algebra, and the map Ta(u) 7→ Rab(u, v) even provides a representation of the algebra,

due to the Yang-Baxter equation. Therefore any solution of the Yang-Baxter equation defines

commuting transfer matrices, and a classification of these solutions provides a list of potentially

solvable models.

As an example of a Yang-Baxter algebra, we introduce the Yangian Y (gln), adhering closely to

[Mo07].

1.2.1 The Yangian Y (gln)

We begin by briefly reviewing the definition and representation theory of U(gln), the universal

enveloping algebra of gln.

Definition 1.2.1. The universal enveloping algebra of gln, U(gln), is the unital associative C-

algebra generated by elements 1 and Eij for 1 ≤ i, j ≤ n, satisfying relations

EijEkl − EklEij = δkjEil − δilEkj . (1.2.1)

For any Lie algebra, representations of U(g) may be thought of as representations of g and vice

versa; we will tend to refer to them in the latter manner.

First, we introduce finite dimensional highest weight representations of gln. A gln-module V is

a highest weight module if there exists a vector η ∈ V such that V is generated by the action of gln
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on η, and

Eiiη =λiη, for 1 ≤ i ≤ n and

Eijη = 0, for 1 ≤ i < j ≤ n.

Then η is the highest weight vector and λ = (λ1, . . . , λn) ∈ Cn is the highest weight. Highest weight

representations may be defined abstractly as quotients of the Verma module for any λ ∈ Cn, but will

be finite dimensional if and only if λi−λi+1 ∈ Z≥0 for each 1 ≤ i ≤ n−1. This reflects the condition

that these are dominant integral weights. These finite dimensional modules are irreducible and we

denote the gln-module with highest weight λ ∈ Cn by L(λ).

There is another way of defining U(gln), which will help introduce some of the concepts which

will be valuable when studying the Yangian.

We first construct a matrix of generators

E :=

n∑
i,j=1

eij ⊗ Eij ∈ End(Cn)⊗ U(gln).

This may be viewed as an n × n matrix of U(gln) elements through the isomorphism End(Cn) ⊗
U(gln)

∼−→ Matn×n(U(gln)) as C-algebras. The defining relations for U(gln) may then be written

in terms of this E. First, recall the permutation matrix P ∈ End(Cn) ⊗ End(Cn), which satisfies

P (a⊗ b) = b⊗ a for all a, b ∈ Cn, given explicitly by

P :=

n∑
i,j=1

eij ⊗ eji.

Then the defining relation of U(gln) is equivalent to

E1E2 − E2E1 = E1P − P E1 ∈ End(Cn)⊗ End(Cn)⊗ U(gln). (1.2.2)

The subscripts here denote the tensor factor in which the matrix acts nontrivially.

We now proceed to introduce the Yangian Y (gln) in its RTT presentation.

Definition 1.2.2. The gln-Yangian, Y (gln) is a unital associative C-algebra generated by 1 and

t
(r)
ij for 1 ≤ i, j ≤ n and r ∈ N, satisfying relations

[t
(r+1)
ij , t

(s)
kl ]− [t

(r)
ij , t

(s+1)
kl ] = t

(r)
kj t

(s)
il − t

(s)
kj t

(r)
il , (1.2.3)

for each 1 ≤ i, j, k, l ≤ n, r, s ∈ Z≥0 with the convention that t
(0)
ij = δij1.

For each 1 ≤ i, j ≤ n, define the formal power series tij(u) :=
∑∞

r=0 t
(r)
ij u

−r ∈ Y (gln)[[u−1]].

Then the defining relation of the Yangian (1.2.3) is equivalent to

(u− v)[tij(u), tkl(v)] = tkj(u)til(v)− tkj(v)til(u). (1.2.4)
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This form of the defining relations can be thought of as analogous to the relations (1.1.6–1.1.8)

which we used in the algebraic Bethe ansatz. However, we will also apply the same treatment to

these formal series generators of Y (gln) that we did earlier for the generators of U(gln). First, recall

Yang’s R-matrix

R(u) := I − u−1P ∈ End(Cn)[u−1].

Define now the generating matrix for Y (gln)

T (u) :=
n∑

i,j=1

eij ⊗ tij(u) ∈ End(Cn)⊗ Y (gln)[[u−1]].

Then the relation (1.2.4) is equivalent to the RTT relation,

R12(u− v)T1(u)T2(v) = T2(v)T1(u)R12(u− v) (1.2.5)

which is now a relation in End(Cn)⊗ End(Cn)⊗ Y (gln)[[u−1, v−1]].

The Yangian generating matrix is therefore an abstraction of the monodromy matrix for spin

chains, and the spin chain defines a particular representation of the Yangian. Much of the argument

of the algebraic Bethe ansatz, as well as the commutation of the transfer matrices, depends only

on the RTT relation. The exception to this is the existence of the vacuum vector (1.1.4) which

depends on the spin chain itself, or, in other words, the representation of Y (gln).

Before defining these representations, it will be useful to first introduce some automorphisms

and anti-automorphisms of the Yangian. Working from Molev [Mo07], we have the following result.

Lemma 1.2.3. The following define automorphisms of Y (gln):

τc : T (u) 7→ T (u− c) for c ∈ C

µf : T (u) 7→ f(u)T (u) for f(u) = 1 + · · · ∈ C[[u−1]]

gA : T (u) 7→ AT (u)A−1 for A ∈ GL(n)

Proof. For τc, the elements tij(u − c) may be constructed as a formal series in (u − c)−1 with the

same coefficients as tij(u). Then, the fact that these shifted elements satisfy relations (1.2.4) is a

consequence of the relations depending only on the difference (u− v). However, it remains to show

that τc actually defines a map between elements of the Yangian. For this we make use the formal

series identity 1
1−c/u = (1 + c/u+ (c/u)2 + . . .), which allows us to view tij(u− c) as a series in u−1

with zeroth coefficient equal to δij .

For µf , multiplying the RTT relation on both sides by f(u)f(v) yields the necessary result.

For gA we use the fact that the R-matrix commutes with A ⊗ A, which amounts to the fact

that P (A ⊗ A) = (A ⊗ A)P . Conjugating the RTT relation by (A ⊗ A) then yields the required

result.
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Lemma 1.2.4. The following define anti-automorphisms of Y (gln):

sign : T (u) 7→ T (−u), (1.2.6)

tran : T (u) 7→ (T (u))T, (1.2.7)

S : T (u) 7→ T−1(u). (1.2.8)

Proof. We need to show that these satisfy the relations of Y (gln) with the multiplication in the

Yangian algebra reversed.

R12(u− v)T̃2(v)T̃1(u) = T̃1(u)T̃2(v)R12(u− v) (1.2.9)

The first we obtain by conjugating by the permutation operator, swapping spaces 1 and 2. Note

however that we have R12(u) = R21(u) from the definition of the permutation operator. Then

R12(u− v)T2(u)T1(v) = T1(v)T2(u)R12(u− v).

Setting u = −v′ and v = −u′, we obtain (1.2.9).

For the transpose, applying the transpose to both spaces in the RTT relation, we have

T1(u)T1T2(v)T2R12(u− v)T1T2 = R12(u− v)T1T2T2(v)T2T1(u)T1 .

Then, as the permutation operator and therefore R-matrix is symmetric, we see that this is identical

to (1.2.9).

The existence of (left and right) inverses of T (u) is a consequence of the fact that the zeroth

coefficient of T (u), as a formal series in u−1, is the identity in End(Cn) ⊗ Y (gln). Indeed, by

expanding the relations TL(u)T (u) = I ⊗ 1 and T (u)TR(u) = I ⊗ 1 as formal series in u−1 we

may build the left and right inverses TL(u) and TR(u) inductively. For example, at level-0 we have

(TL)(0) = I⊗1, and at level-1, (TL)(0)T (1) +(TL)(1)T (0) = 0, giving (TL)(1) = −T (1). Then, the left

and right inverses can be shown to be identical by TL(u)T (u)TR(u) = TL(u) = TR(u) =: T−1(u).

To show that this defines an anti-automorphism, from the RTT relation (1.2.5) we need only

multiply from the left by T−1
1 (u)T−1

2 (v) to arrive at (1.2.9).

Remark 1.2.5. The inverse T−1(u) may also be constructed in manner analogous to the cofactor

construction for matrices. Indeed, we introduce the quantum determinant qdetT (u) of the matrix

T (u) as (see Definition 1.6.5 and Proposition 1.6.6 in [Mo07])

qdetT (u) =
∑
σ∈Sn

sgn(σ)t1σ(1)(u− n+ 1) · · · tnσ(n)(u).

It is a formal power series in u−1 with coefficients in Y (gln). In fact, it can be shown ([Mo07]

Theorem 1.7.5) that these coefficients generate the centre of Y (gln). Going further, one may define

Y (sln) as the quotient of Y (gln) by the relation qdetT (u) = 1, which then has trivial centre.
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We then construct the quantum comatrix (adjugate matrix) elementwise by taking the quantum

determinant of the generating matrix with one row and column missing. Specifically,

t̂ij(u) = (−1)i+jqdet |T |ji(u),

where |T |ji(u) denotes the (n−1)×(n−1) matrix obtained by removing the jth row and ith column

from the matrix T (u). It then follows by [Mo07] Proposition 1.9.2 that

T̂ (u)T (u− n+ 1) = qdetT (u).

The inverse matrix T−1(u) with matrix elements t′ij(u) is then given by

t′ij(u) = (qdetT (u+ n− 1))−1 · t̂ij(u+ n− 1).

Consider now the relation (1.2.3) with r = 0 and s = 1. We find

[t
(1)
ij , t

(1)
kl ] = δkjt

(1)
il − δilt

(1)
kj .

Comparing with the defining relations of U(gln) (1.2.1) we see that the level 1 generators, with

the identity, form U(gln) as a subalgebra within Y (gln). That is, the map Eij 7→ t
(1)
ij defines

an embedding U(gln) ↪→ Y (gln). We can also go in the other direction, from the Yangian to

U(gln). This map is called the evaluation homomorphism, and is defined by tij(u) 7→ δij + u−1Eij

The evaluation homomorphism allows us to extend any representation of U(gln) (that is, any

representation of gln) to a representation of the Yangian. Please note that throughout this work,

we will instead use the homomorphism

ev : tij(u) 7→ δij − u−1Eji, (1.2.10)

which is a composition of the above map with the anti-automorphisms (1.2.6) and (1.2.7). This

is sometimes referred to as the twisted evaluation homomorphism. We will also make use of the

homomorphism evc = ev ◦ τc.
While this does define an action of the Yangian, one might wonder what we have gained by

throwing out all the higher levels of the Yangian algebra. The key is what lies at the heart of all

quantum groups: the coproduct.

We first introduce these ideas in the context of U(gln). In the context of associative algebras,

the coproduct is a homomorphism from the algebra to the tensor product of the algebra with itself.

In U(gln) the standard choice is ∆ : U(gln) → U(gln) ⊗ U(gln), ∆(Eij) = Eij ⊗ 1 + 1 ⊗ Eij , and

∆(1) = 1⊗ 1. This is recognisable as the “addition of spin” rule in quantum mechanics.

For the Yangian, we make the following choice of coproduct:

∆(tij(u)) =
n∑
k=1

tik(u)⊗ tkj(u). (1.2.11)
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This defines a map on the formal series; the action on the original generators can be found by

expanding the series and using the coproduct’s linearity. In particular, we have

∆(t
(1)
ij ) = t

(1)
ij ⊗ 1 + 1⊗ t(1)

ij ,

showing that the Yangian coproduct is a deformation of the standard U(gln) coproduct.

One crucial property of the Yangian coproduct is its lack of cocommutativity. That is, swapping

the ordering of the tensor factors gives a different coproduct

∆opp(tij(u)) =
n∑
k=1

tkj(u)⊗ tik(u).

This is in contrast to U(gln), and is the property which makes the Yangian a ‘quantum group’.

If we define also the counit ε(tij(u)) = δij and the antipode S(T (u)) = T−1(u), the Yangian

becomes a Hopf algebra. These will not see active use in the construction of spin chains, but do

show that the tensor product defined by the coproduct satisfies standard properties that we might

expect.

With this coproduct we see that, while the action of the Yangian through the evaluation homo-

morphism is not different than the action of U(gln) on a single module, the action of the Yangian on

a tensor product of modules is more interesting, and this will allow us to make use of the Yangian’s

unique properties in the study of spin chains.

We now proceed to introduce the representation theory of the Yangian. Crucially we are inter-

ested in representations which contain a vector with properties (1.1.4).

Definition 1.2.6. A representation V of Y (gln) is called a lowest weight representation if there

exists a nonzero vector η ∈ V such that V = Y (gln)η and

tij(u)η = 0 for 1 ≤ j < i ≤ n and

tii(u)η = λi(u)η for 1 ≤ i ≤ n,

where λi(u) is a formal power series in u−1 with a constant term equal to 1. The vector η is called

the lowest vector of V , and the n-tuple λ(u) = (λ1(u), . . . , λn(u)) is called the lowest weight of V .

The distinction of lowest weight here, rather than highest weight, is due to the choice of which

generators annihilate the lowest weight vector. Choosing elements below the diagonal for this gives

the lowest weight module definition, whereas a module in which elements above the diagonal play

this role would be a highest weight module. Due to our earlier choice of evaluation homomorphism

which includes a transpose, these lowest weight modules are connected to highest weight modules

of U(gln).

Indeed, we now proceed to construct the spin chain from U(gln) modules, and use the evaluation

homomorphism to define a Yangian action on it. Recall L(λ), the finite dimensional irreducible

highest weight U(gln)-module with weight λ = (λ1, . . . , λn) and highest weight vector η. Applying
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the evaluation homomorphism (1.2.10), L(λ) is a Yangian lowest weight module with lowest weight

vector η and lowest weight λ(u) = (λ1(u), . . . , λn(u)) where

λi(u) = 1− λiu−1. (1.2.12)

We will refer to this as an evaluation module.

We may then build the spin chain out of these modules, with Yangian action defined via the

coproduct and evaluation homomorphism. We also include the shift automorphism to allow for

more generality, and this will be relevant for the nested Bethe ansatz in Chapter 2. Fix ` ∈ N and

consider the tensor product of finite dimensional irreducible gln modules

L(λ(1))⊗ L(λ(2))⊗ . . .⊗ L(λ(`)), (1.2.13)

denoting their highest weight vectors by η(k) for 1 ≤ k ≤ `. We define a Yangian action on this

space as follows. First, define recursively ∆(k) = (id⊗ · · ·⊗ id⊗∆) ◦∆(k−1) with ∆(2) := ∆. Then,

the action is defined by

tij(u) 7→ (evc1 ⊗ · · · ⊗ evc`) ◦∆(`)(tij(u))

where ck ∈ C for 1 ≤ k ≤ `. This is a Yangian lowest weight module with lowest weight vector

η := η(1) ⊗ · · · ⊗ η(`), and lowest weight λ(u) = (λ1(u), . . . , λn(u)) given by

λi(u) =
∏̀
k=1

(
1−

λ
(k)
i

u− ck

)
.

As a Yangian module, we will denote this by

L := L(λ(1))c1 ⊗ L(λ(2))c2 ⊗ . . .⊗ L(λ(`))c` , (1.2.14)

including the parameter shifts in the notation. The binary property of the tensor products of

Yangian modules states that, for a suitable choice of weights λ
(k)
i and parameters ck, the Y (gln)-

module L is irreducible, see Theorem 6.5.8 in [Mo07].

Defining the Lax operators as

L(u− c) := (id⊗ evc)(T (u)) =
n∑

i,j=1

eij ⊗
(
δij −

Eji
u− c

)
, (1.2.15)

the generating matrix T (u) acts on the space L by

Ta(u) · L =

(∏̀
i=1

Lai(u− ci)

)
L ∈ End(Cn)⊗ L [[u−1]]. (1.2.16)

In particular, in the case of n = 2 with vector representations at each site, that is, λ = (1, 0), we

arrive at the Heisenberg spin chain.
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Note that in the product of non-commuting operators in (1.2.16), and in what follows, we use

the convention that the operators are ordered left to right—that is, the leftmost operator above is

La1(u − c1). In order to denote the reversed product we will make use of a decreasing index, for

example
∏1
i=`.

Finally, it will be necessary to define the action of T−1(u) on lowest weight modules. Indeed, it

follows (see the proof of Theorem 4.2 in [MR02]) from the definitions of qdetT (u), T̂ (u) and η that

t′ij(u)η = 0 for 1 ≤ j < i ≤ n and t′ii(u)η = λ′i(u)η for 1 ≤ i ≤ n

with the “inverse-weights” λ′i(u) defined by

λ′i(u) =
λ1(u+ 1) · · ·λi−1(u+ i− 1)

λ1(u) · · ·λi(u+ i− 1)
. (1.2.17)

1.2.2 Orthogonal and symplectic Yangians

In this section we give equivalent results for the even orthogonal and symplectic Yangians. We will

largely follow [AMR06], which also contains results for the odd orthogonal case. We again begin by

introducing the universal enveloping algebras U(so2n) and U(sp2n). In fact, we may study both at

once by introducing U(g2n), which is equal to U(so2n) or U(sp2n) depending on a choice of sign. In

what follows, we will use ± or ∓ to denote this choice of sign; the upper sign being the orthogonal

case and the lower sign being the symplectic case. Additionally, let

θi =

±1 for 1 ≤ i ≤ n,

1 for i > n,

and let θij = θiθj .

Definition 1.2.7. The universal enveloping algebra of g2n, U(g2n), is the unital associative C-

algebra generated by elements 1, Fij for 1 ≤ i, j ≤ 2n, satisfying relations

[Fij , Fkl] = δjkFil − δilFkj + θij(δjl̄Fkı̄ − δik̄F̄ l), (1.2.18)

Fij + θijF̄ ı̄ = 0, (1.2.19)

with ı̄ = 2n− i+ 1 and ̄ = 2n− j + 1.

We may regard this as a subalgebra of U(gl2n) by setting Fij = Eij − θijE̄ ı̄. Going further, we

define a particular transpose t by

etij = θije̄̄ı. (1.2.20)

This is identical to a regular matrix transpose followed by conjugation by the matrix J =
∑

i θieīı.

As this is an anti-automorphism, following it by multiplication by −1 gives an (involutive) au-

tomorphism of U(gl2n). Then, we may regard the U(g2n) subalgebra as generated by elements
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of U(gl2n) that are symmetric with respect to this automorphism. That is, F = E − Et, where

F :=
∑

ij eij ⊗ Fij .
The matrix form of the defining relations is then

F1F2 − F2F1 = F1(P −Q)− (P −Q)F1 and F + F t = 0, (1.2.21)

where

Q := P t1 = P t2 =
2n∑
i,j=1

θijeij ⊗ eı̄ ∈ End(C2n ⊗ C2n). (1.2.22)

The matrix Q has properties which we will frequently make use of in later chapters. First,

PQ = QP = ±Q and Q2 = 2nQ,

implying that Q is a projector. Additionally, recall that PM1 = M2P for any M ∈ End(C2n).

Taking the transpose of this, we obtain a pair of relations for Q:

QM1 = QM t
2, M1Q = M t

2Q. (1.2.23)

For any n-tuple λ = (λ1, . . . , λn) ∈ Cn there exists an irreducible highest weight representation

V (λ) of the Lie algebra g2n. In particular, V (λ) is generated by a non-zero vector η such that

Fij η = 0 for 1 ≤ i < j ≤ 2n and

Fiiη = λiη for 1 ≤ i ≤ n.

The representation V (λ) is finite-dimensional if and only if

λi − λi+1 ∈ Z+ for i = 1, . . . , n− 1 and

λn−1 + λn ∈ Z+ if g2n = so2n,

λn ∈ Z+ if g2n = sp2n.

We now introduce the extended Yangian X(g2n) and its representation theory, adhering closely

to [AMR06]. First we introduce the Zamolodchikov R-Matrix [ZZ78],

R(u) = I − 1

u
P − 1

κ− u
Q, where κ = n∓ 1, (1.2.24)

acting on C2n ⊗ C2n. Note that the distinction between the orthogonal and symplectic cases is

contained within the operator Q and the parameter κ, which is the dual Coxeter number.

The R-matrix is of course a solution of the Yang-Baxter equation,

R12(u− v)R13(u− z)R23(v − z) = R23(v − z)R13(u− z)R12(u− v), (1.2.25)
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but also satisfies R(u)t = R(κ− u), where R(u)t := R(u)t1 = R(u)t2 , and

R(u)Rt(u+ κ) = Rt(u+ κ)R(u) = (1− u−2)I. (1.2.26)

Following this, we may define the Yang-Baxter algebra associated to this R-matrix, which is

known as the extended Yangian X(g2n). Introduce elements t
(r)
ij with 1 ≤ i, j ≤ 2n and r ≥ 0 such

that t
(0)
ij = δij . Combining these into formal power series tij(u) =

∑
r≥0 t

(r)
ij u

−r, we can then form

the generating matrix T (u) =
∑2n

i,j=1 eij ⊗ tij(u).

Definition 1.2.8. The extended Yangian X(g2n is the unital associative C-algebra generated by

elements t
(r)
ij with 1 ≤ i, j ≤ 2n and r ∈ Z≥0 satisfying the relation

R(u− v)T1(u)T2(v) = T2(v)T1(u)R(u− v). (1.2.27)

The Hopf algebra structure of X(g2n) is given by

∆ : tij(u) 7→
2n∑
k=1

tik(u)⊗ tkj(u), S : T (u) 7→ T−1(u), ε : T (u) 7→ I. (1.2.28)

We now collect several useful facts about the algebra X(g2n). The matrix T (u) satisfies the

matrix form of the cross-unitarity relation (1.2.26),

T (u)T t(u+ κ) = T t(u+ κ)T (u) = z(u)I, (1.2.29)

where z(u) is a formal series in u−1 with coefficients that can be shown to be central in X(g2n)

[AMR06]. In this sense, this relation plays a similar role to the quantum determinant for Y (gln).

Going further, one may define the g2n Yangian Y (g2n) by taking the quotient of X(g2n) by the

relations T (u)T t(u + κ) = T t(u + κ)T (u) = I, setting z(u) = 1, and it can be shown that this

resulting algebra has trivial centre.

Let G(2n) denote the Lie group associated to g2n, and let c ∈ C and f(u) ∈ C[[u−1]]. The

following are also automorphisms of X(g2n),

τc : T (u) 7→ T (u− c), for c ∈ C (1.2.30)

µf : T (u) 7→ f(u)T (u) for f(u) = 1 + · · · ∈ C[[u−1]] (1.2.31)

gB : T (u) 7→ BT (u)Bt for B ∈ GL(2n) with BBt = 1. (1.2.32)

The proofs are identical to those for Lemma 1.2.4. The proof for gB requires that B⊗B commutes

with R(u), in particular with Q. Indeed, B1B2Q = B1B
t
1Q = Q = QB1B2.

The following define anti-automorphisms of X(g2n):

T (u) 7→ T (−u), T (u) 7→ T t(u), T (u) 7→ (T (u))−1. (1.2.33)
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Note that in this case, the inverse anti-automorphism can be built from the transpose due to the

cross-unitarity relation (1.2.29).

We may define lowest weight representations for X(g2n) analogously to those for Y (gln).

Definition 1.2.9. A representation V of X(g2n) is called a lowest weight representation if there

exists a non-zero vector η ∈ V such that V = X(g2n)η and

tij(u)η = 0 for 1 ≤ j < i ≤ 2n and tii(u)η = λi(u)η for 1 ≤ i ≤ 2n, (1.2.34)

where λi(u) is a formal power series in u−1 with a constant term equal to 1. The vector η is called

the lowest vector of V and the 2n-tuple λ(u) = (λ1(u), . . . , λ2n(u)) is called the lowest weight of V .

The Yangian X(g2n) contains the universal enveloping algebra U(g2n) as a Hopf subalgebra.

An embedding U(g2n) ↪→ X(g2n) is given by

Fij 7→ 1
2(t

(1)
ij − θijt

(1)
̄̄ı ) (1.2.35)

for all 1 ≤ i, j ≤ 2n. However, in contrast to Y (gln), there is no surjective homomorphism

from X(g2n) onto the algebra U(g2n), that is, there is no evaluation homomorphism [D85]. As a

consequence, not every irreducible finite-dimensional representation of g2n can be extended to a

representation of X(g2n). In Chapter 3 we tackle the problem of defining suitable representations

with which to build a spin chain using the R-matrix fusion procedure.

This concludes this chapter’s discussion of RTT algebras, however, this will be resumed in

Chapter 4, where we will introduce the quantum loop algebras Uq(Lgln) and Uq(Lg2n). These

algebras are the trigonometric equivalents to the rational Yangian algebras introduced above, and

share a similar representation theory.

1.3 Open spin chains

In this section we give a brief introduction to open spin chains. We construct the open Heisenberg

spin chain with reflective boundary conditions using a transfer matrix, and then proceed to describe

the challenges associated with the algebraic Bethe ansatz for an open spin chain. The underlying

algebras of these spin chains will be introduced in their respective chapters, but we conclude with

a table of symmetric pairs for simple Lie algebras over C, which will correspond to the different

types of reflective boundary conditions we will be interested in.

1.3.1 The open Heisenberg spin chain

The techniques discussed so far are relevant for closed chains, those with periodic and quasi-periodic

boundary conditions. However, we may also introduce reflective boundary conditions to the theory.
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Consider once again the quantum state space

H = (C2)⊗`.

Our open spin chain will make use of the same state space. However, while the bulk of the

spin chain will have the same nearest neighbour interaction as the closed Heisenberg spin chain,

the interaction Hamiltonian will include terms which describe the interaction of the leftmost and

rightmost sites with fixed boundaries. This Hamiltonian will be obtained from a transfer matrix,

which will again be the partial trace of a monodromy matrix, the construction of which now follows.

Working once again from the perspective of scattering theory, we will construct the monodromy

matrix by sending a test particle through the spin chain. The particle interacts with each spin site

before reflecting off the right boundary, returning back through the spin chain with a reversed

momentum. It then reflects off the left boundary to return to its original position, completing the

monodromy of the chain.

We therefore introduce matrices K(u), K̃(u) ∈ End(C2)[u−1] to represent the interaction of the

test particle with the right and left boundaries respectively, and the full monodromy of the chain

is given by

Sa,1...`(v) = Ra1(v) . . . Ra`(v)Ka(v)Ra`(v) . . . Ra1(v)K̃a(v),

where once again R(u) = 1− Pu−1. This construction was first introduced by Sklyanin in [Sk88].

In his paper, Sklyanin showed that the partial trace of a monodromy matrix constructed in this

way τ1...`(v) = tra Sa,1...`(v) gave a transfer matrix which enjoyed properties analogous to those of

a transfer matrix for a periodic chain, which we outline below.

First, a nearest neighbour Hamiltonian may be extracted from this transfer matrix. Assuming

that the constant part of K(u) is equal to the identity matrix, the Hamiltonian can be found by

taking the coefficient of u−2`−1 of the transfer matrix. Indeed,

τ (2`+1) = −2 tr K̃(0)

[
`−1∑
k=1

Pi,i+1 − 1
2K

(1)
` +

K̃
(0)
1

tr K̃(0)

]
+ trK(1).

Then, stripping the constant terms and scalar multiples, we arrive at a Hamiltonian given by the

terms in square brackets above. This describes nearest neighbour interaction in the ‘bulk’ of chain,

but also includes two terms which describe interactions with the left and right boundaries.

Second, these transfer matrices will commute, provided the matrices K(u) and K̃(u) satisfy the

reflection equation

Ra1a2(u− v)Ka1(u)Ra1a2(u+ v)Ka2(v) = Ka2(v)Ra1a2(u+ v)Ka1(u)Ra1a2(u− v),

and the dual reflection equation

Ra1a2(−u+ v)K̃t
a1(u)Ra1a2(−u− v + 2)K̃t

a2(v) = K̃t
a2(v)Ra1a2(−u− v + 2)K̃t

a1(u)Ra1a2(−u+ v)
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respectively. These equations are analogous to the Yang-Baxter equation for periodic chains.

The algebraic Bethe ansatz may also be applied to this chain, in a way that is detailed in

Sklyanin’s original work, where he considered the XXZ version of the chain. Recall that in the

periodic case, the starting point for the algebraic Bethe ansatz was the RTT relation (1.1.3) that

was satisfied by the monodromy matrix, and this gave the relations between its matrix elements

which were used to construct the ansatz.

In this case, however, we focus not on the full monodromy matrix, but instead on the matrix

given by

S̃(v) := Ra1(v) . . . Ra`(v)Ka(v)Ra`(v) . . . Ra1(v),

the monodromy matrix without the left boundary. The reason for this is a property of the re-

flection equation: solutions of the reflection equation may extended to give further solutions using

representations of Yang-Baxter algebras, that is, solutions of the RTT relations. Indeed, for any

T (u) that satisfies the RTT relation (1.1.3) and is invertible, the matrix given by

T (u)K(u)T−1(−u) (1.3.1)

can be shown to satisfy the reflection equation. This is related to the co-ideal property of reflection

algebras, which will be discussed in later chapters. For now we see that the monodromy matrix is

an example of this, as R−1(−u) ∝ R(u).

We then write

S̃(u) =

(
a(u) b(u)

c(u) d(u)

)
,

and extract relations between the matrix elements a(u), b(u), c(u) and d(u). The eigenstate is built

from b(u) operators, in a similar way to the periodic case. The details of the calculation will not

be given here, but there are two remaining crucial factors that will be relevant in future chapters.

First is the dual K-matrix. The dual K-matrix may be reinstated as a modification to the

relations between matrix elements of S̃(v). For the Heisenberg chain the algebraic Bethe ansatz

is still possible, however, this freedom does not extend to higher rank symmetry algebras such as

gln. Indeed, it was shown in [BR09] that the n× n dual K-matrix could have not more degrees of

freedom than the 2× 2 one used in the Heisenberg chain. For this reason, in later chapters we will

work only with the case K̃(u) = I, the trivial solution of the dual reflection equation. As such, we

drop the notation S̃, as S(u) = S̃(u).

The second matter is that of the vacuum vector. For this system, the vacuum vector is un-

changed from the closed chain, equal to (e1)⊗`. However, the existence of the vacuum vector is

not guaranteed: it depends on the extent to which the symmetry of the spin chain is broken by

the boundary conditions. In particular, off-diagonal terms within the K-matrix cause a mixing of

creation and annihilation operators, preventing the existence of an appropriate vacuum [GM05].

For this reason, we consider only diagonal K-matrices in later chapters.

Despite these restrictions, we are left with a considerable number of possible boundary types.
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We will be interested in those that may be described by symmetric pairs, which describe the

bulk Lie symmetry of the chain—that is, the choice of R-matrix—along with the resulting Lie

symmetry after symmetry breaking by the boundary. We therefore conclude this section with a

brief introduction to symmetric pairs.

1.3.2 Symmetric pairs

Let g be a simple Lie algebra over C, and let θ be an involutive automorphism of g. In fact, we will be

interested in only the classical Lie algebras—the infinite families of simple Lie algebras. Discussion

of the exceptional cases can be found in [He01]. As θ is involutive it must have eigenvalues of ±1,

and hence g may be decomposed into the positive and negative eigenspaces of θ:

g = gθ ⊕ f.

Here gθ is the fixed point subalgebra of θ in g, that is, the +1 eigenspace. We then denote by (g, gθ)

the symmetric pair of the Lie algebra and its fixed point subalegebra.

These involutions will almost all be inner automorphisms: conjugation by an element of the Lie

group associated to the Lie algebra. Any outer automorphisms can be characterised as automor-

phisms of the Lie algebra’s Dynkin diagram and, for classical Lie algebras, exist only in the cases of

sln (reflective symmetry of the entire diagram) and so2n (exchange of branched nodes), see [He01]

pp. 514 Table II. A list of symmetric pairs and the associated involutive automorphisms is given

in Table 1.3.2, adapted from [GR16].

In subsequent Chapters we will study rational quantum groups associated with these symmetric

pairs. In Chapter 2 we study the Ol’shanskii twisted Yangian [Ol92], associated with symmetric

pairs of type AI and AII. In Chapter 3 we study both the Molev-Ragoucy (extended) reflection

algebra [MR02], associated to type AIII, and the MacKay twisted Yangians [M02] associated to

types CI, CII, DI(a) and DIII.
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Name g θ gθ

AI (a) sl2n E 7→ −Et+ so2n

AI (b) sl2n+1 E 7→ −Et+ so2n+1

AII sl2n E 7→ −Et− sp2n

AIII sln E 7→ GEG−1, G =

 Ip

−In−p

 slp ⊕ sln−p ⊕ C

BI so2n+1 F 7→ GFG−1, G =


Ip

−I2n−2p+1

Ip

 so2p ⊕ so2n−2p+1

CI sp2n F 7→ GFG−1, G =

 In

−In

 gln

CII sp2n F 7→ GFG−1, G =


Ip

−I2n−2p

Ip

 sp2p ⊕ sp2n−2p

DI (a) so2n F 7→ GFG−1, G =


Ip

−I2n−2p

Ip

 so2p ⊕ so2n−2p

DI (b) so2n F 7→ GFG−1, G =


J2p+1

I2n−4p−2

J2p+1

 so2p+1 ⊕ so2n−2p−1

DIII so2n F 7→ GFG−1, G =

 In

−In

 gln

Table 1.1: Table of classical symmetric pairs, adapted from [He01] and [GR16], where Ir is the r×r
identity matrix and Jr is the matrix with ones on the anti-diagonal and zeros elsewhere.
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Chapter 2

Nested algebraic Bethe ansatz for the

even twisted Yangian spin chain

In this chapter we first review the nested algebraic Bethe ansatz for a closed gln spin chain. We

then recall the definition of Ol’shanskii’s twisted Yangian Y ±(gl2n) as well as its representation

theory, and use this to define an open spin chain and commuting transfer matrices which act on

the spin chain. We use the nested algebraic Bethe ansatz to construct eigenvectors for this transfer

matrix, finding the eigenvalues and Bethe equations. Finally, we give a ‘trace formula’ closed form

expression for the constructed eigenvectors in terms of the Bethe roots.

2.1 Nested algebraic Bethe ansatz for a closed Y (gln) spin chain

Recall Y (gln) in its RTT presentation as defined in Definition 1.2.2, as well as the Y (gln) module

L defined by (1.2.14),

L := L(λ(1))c1 ⊗ L(λ(2))c2 ⊗ . . .⊗ L(λ(`))c` , (2.1.1)

which is a lowest weight Y (gln) module with lowest weight

λi(u) =
∏̀
k=1

(
1−

λ
(k)
i

u− ck

)
. (2.1.2)

We will assume that the weights λ(k) and shifts ck are such that this forms an irreducible represen-

tation of Y (gln). Recall also that the RTT relation implies that t(u) := trT (u) satisfies

[t(u), t(v)] = 0.

The goal of the nested algebraic Bethe ansatz is to construct eigenvectors of t(u) in L. The approach

follows that of Kulish and Reshetikin’s original paper from 1983 [KR83], and more recently that of

Belliard and Ragoucy [BR08] in which generalisations are given.

If we recall the algebraic Bethe ansatz from Chapter 1, we used a product of creation operators

27



b(u) to construct an ansatz for the transfer matrix eigenstates. In doing so, we appeal to a version

of the Poincaré-Birkhoff-Witt theorem, see Theorem 1.4.1 of [Mo07] for its proof.

Theorem 2.1.1. Given an arbitrary linear order on the set of generators t
(r)
ij , any element of

Y (gln) can be uniquely written as a linear combination of ordered monomials in these generators.

Combining this result with the properties of the lowest weight modules, for which the spin chain

is an example, we see that any element of such a module may be constructed by acting on the lowest

vector by the above-diagonal generators of the Yangian—those which sit above the diagonal in the

generating matrix. Put more precisely, we have the following result.

Corollary 2.1.2. Let L be a finite dimensional lowest weight Y (gln)-module with lowest weight

vector η. Then, as a vector space, L is spanned by vectors of the form

t
(r1)
i1j1
· · · t(rm)

imjm
η,

with m ∈ N, and rk ∈ N and 1 ≤ ik < jk ≤ n for each k.

To see this, we simply pick an ordering for the generators which place the ‘below-diagonal’

generators—the t
(r)
ij with i > j—as the rightmost operators, followed by the diagonal generators,

and finally the above-diagonal generators as the leftmost operators. Since the lowest weight vector

is by definition an eigenvector of all below-diagonal and diagonal generators, those generators play

no part in generating the remaining vectors and thus we need only consider the above-diagonal

elements.

Of course, this result alone does not prove that the eigenvectors of the transfer matrix can

be written in the form used in the algebraic Bethe ansatz. However, it justifies the use of gen-

erators above the diagonal in the generating matrix—that is, creation operators—in constructing

eigenvectors without the need of involving the diagonal or below-diagonal elements.

In the case of Y (gl2) this led to a unique creation operator, with which we constructed eigenvec-

tors of the transfer matrix. Moving to Y (gln), however, there are 1
2n(n−1) creation operators, and

the approach is no longer so simple: which ordering and linear combinations of creation operators

will facilitate the steps of the algebraic Bethe ansatz, that is, the rightward movement of diagonal

generators which make up the transfer matrix?

Kulish and Reshetikhin’s nested algebraic Bethe ansatz [KR83] gives an answer to this question

which makes use of a convenient property of the Yangian: namely that any p×p diagonal submatrix

of Y (gln) defines a Y (glp) subalgebra within Y (gln). It can then be shown that, by taking the

creation operators one row at a time, the Y (gln) problem can be reduced to another transfer

matrix diagonalisation problem for Y (gln−1). Using the chain of subalgebras Y (gln) ⊃ Y (gln−1) ⊃
· · · ⊃ Y (gl2), we arrive at the Y (gl2) case, to which a regular ABA may be applied.
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2.1.1 Exchange relations

Recall the Yang R-matrix R(u) = I − u−1P ∈ End(Cn ⊗ Cn)[[u−1]], and the Yangian generating

matrix Ta(u) ∈ End(Va)⊗Y (gln)[[u−1]], where Va = Cn is an auxiliary space. We will refer to Ta(v)

as the monodromy matrix, although strictly this name should be reserved for the representative of

the Ta(v) on the spin chain module.

As with the gl2 case we begin by splitting the monodromy matrix into four operators. Crucially,

however, in the gln case these operators will be matrices in the auxiliary space rather than the

scalars a(v), b(v), c(v), d(v). We denote this ‘reduced’ auxiliary space by V ′a = Cn−1 and further

reductions by V
(k)
a = Cn−k for any 0 ≤ k < n, so that Va = V

(0)
a and V ′a = V

(1)
a . Accordingly, the

monodromy matrix Ta(u) splits into block matrices as follows:

Ta(u) =

 a(u) Ba(u)

Ca(u) Da(u)

 , (2.1.3)

where a(u) = t11(u) and

Ba(u) = (t12(u), . . . , t1n(u)) ∈ (V ′a)∗ ⊗ Y (gln)[[u−1]],

Ca(u) = (t21(u), . . . , tn1(u))T ∈ V ′a ⊗ Y (gln)[[u−1]],

Da(u) =


t22(u) . . . t2n(u)

...
. . .

...

tn2(u) . . . tnn(u)

 ∈ End(V ′a)⊗ Y (gln)[[u−1]].

In particular, Ba(u) is a row-vector and Ca(u) is a column-vector. It will be convenient to denote

the matrix entries of Ba(u) by bi(u) with 1 ≤ i ≤ n − 1, and similarly for Ca(u) and Da(u).

Additionally, we introduce a reduced R-matrix R′(u) acting on Cn−1 ⊗ Cn−1,

R′(u) := I − u−1
n−1∑
i,j=1

e′ij ⊗ e′ji = I − u−1P ′.

The defining relations of Y (gln) imply the following exchange relations for a(v), Ba(v) and Da(v):

a(v)Ba1(u) =
v − u+ 1

v − u
Ba1(u)a(v)− 1

v − u
Ba1(v)a(u), (2.1.4)

Da(v)Ba1(u) = Ba1(u)Da(v)R′aa1(v − u) +
1

v − u
Ba1(v)Da(u)P ′aa1 , (2.1.5)

Ba1(v)Ba2(u) =
v − u

v − u− 1
Ba2(u)Ba1(v)R′a1a2(v − u), (2.1.6)

along with an RTT relation

R′a1a2(u− v)Da1(u)Da2(v) = Da2(v)Da1(u)R′a1a2(u− v). (2.1.7)

29



In particular, the coefficients of the matrix entries ofDa(v) generate a subalgebra Y (gln−1) ⊂ Y (gln)

(note, however, that this is not a Hopf subalgebra). Two additional relations will be used, which

can be stated more clearly in terms of individual matrix entries of Ta(u). For any 1 ≤ i, j, k ≤ n−1,

ck(u)dij(v) = dij(v)ck(u)− 1

u− v
(
dkj(u)ci(v)− dkj(v)ci(u)

)
, (2.1.8)

[a(v), dij(u)] =
1

v − u
(
bj(u)ci(v)− bj(v)ci(u)

)
. (2.1.9)

2.1.2 Exchange relations for multiple excitations

The exact construction of the Bethe vector, that is, the ansatz for the eigenvector of the transfer

matrix will be given in a later section. However, largely it will involve a product of creation

operators just as in the gl2 case and, anticipating this, we first establish the exchange relations

between the diagonal operators and the multiple product of creation operators which will appear

in the ansatz.

Choose m ∈ N and introduce an m-tuple u = (u1, . . . , um) of formal parameters. Let the spaces

V ′a1 , . . . , V
′
am be copies of V ′a ≡ Cn−1. The creation operator for m excitations is

Ba1...am(u) := Ba1(u1) · · ·Bam(um).

This is a row-vector, which lives in the tensor product of dual-spaces (V ′a1)∗ ⊗ . . . ⊗ (V ′am)∗ with

entries in Y (gln)[[u−1
1 , . . . , u−1

m ]]. Note that we will also use a as a shorthand for action on the

auxiliary spaces a1, . . . , am.

The parameters carried by Ba(u) may be exchanged by the braided R-matrix defined by

Ř′(u) :=
u

u− 1
R′(u)P ′. (2.1.10)

Indeed, from (2.1.6) we have

Ba1(u1)Ba2(u2) = Ba1(u2)Ba2(u1)Ř′a1a2(u1 − u2).

Consequently, for m excitations, we have that

Ba(u) = Ba(ui↔i+1)Ř′aiai+1
(ui − ui+1) for 1 ≤ i ≤ m− 1, (2.1.11)

where ui↔i+1 is the m-tuple (u1, . . . , ui+1, ui, . . . um). Going further, as any permutation σ ∈ Sm is

a sequence of transpositions, we may realise any permutation of the parameters u on the creation

operator by a product of Ř′ matrices:

Ba(u) = Ba(uσ)Ř′a[σ](u), (2.1.12)

where uσ = (uσ(1), . . . , uσ(m)) and Ř′a[σ](u) is the product of Ř′ matrices required to enact this
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permutation. In what follows we will make use of the cyclic permutations σj ∈ Sm with σj(i) =

i + j − 1 modm. Another consequence of this relation is that the coefficients of bi(u) for each i

combined form a closed subalgebra B of Y (gln).

We are now ready to establish the exchange relations for the a(v) and Da(v) operators, which

generalise (2.1.4) and (2.1.5) to m excitations.

Lemma 2.1.3. The following identities hold

a(v)Ba(u) =

( m∏
i=1

v − ui + 1

v − ui

)
Ba(u)a(v)

−
m∑
j=1

1

v − uj
Ba(uσj ,uj→v) Res

w→uj

[( m∏
i=1

w − ui + 1

w − ui

)
a(w)

]
Ř′a[σj ](u),

(2.1.13)

traDa(v)Ba(u) = Ba(u) tra T
′
a;a(v;u)

−
m∑
j=1

1

v − uj
Ba(uσj ,uj→v) Res

w→uj
tra T

′
a;a(w;uσj )Ř

′
a[σj ](u), (2.1.14)

where

T ′a;a(v;u) := Da(v)R′aam(v − um) · · ·R′aa1(v − u1) (2.1.15)

and uσj ,uj→v = (v, uj+1, . . . , uj−1).

Proof. The approach is the same as that for the gl2 case: we divide the problem into the ‘wanted’

and ‘unwanted’ terms, first calculating the wanted terms, then extending this to the unwanted

terms using symmetry.

Consider (2.1.4). The wanted term in each exchange is the term in which the a(v) operator

retains its parameter, and it is clear that there will be a single wanted term after m exchanges.

Additionally, by repeatedly applying the exchange relation, the unwanted terms may be categorised

by the parameter ui held by a(·) after all exchanges have been made. This may be summarised in

the equation

a(v)Ba(u) =

( m∏
i=1

v − ui + 1

v − ui

)
Ba(u)a(v) +

m∑
j=1

U1,j(v;u).

where U1,j(v;u) denotes the unwanted terms containing a(ui) as the rightmost operator, or more

specifically, U1,j(v;u) is of the form Ba(uj) for some product of operators B ∈ (V ′a1)∗ ⊗ · · · ⊗
(V ′am)∗ ⊗ B((v−1, u−1

1 , . . . , u−1
m )).

To find U1,1(v;u), we begin by acting on Ba(u) with a(v). From (2.1.4), we have

a(v)Ba(u) =

(
v − u1 + 1

v − u1
Ba1(u1)a(v)− 1

v − u1
Ba1(v)a(u1)

)
Ba2(u2) · · ·Bam(um).

Now, moving a(v) through the remaining creation operators, we note that the only contribution to
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U1,1(v;u) will be from the second term in the above expression, in the instance when there are no

further parameter swaps in the remaining commutations. Therefore,

U1,1(v;u) = − 1

v − u1

m∏
j=2

u1 − uj + 1

u1 − uj
Ba1(v)Ba2(u2) · · ·Bam(um)a(u1).

The U1,j(v;u) may be found by first applying a permutation to the parameters u via (2.1.12), then

utilising the same argument as above. Indeed,

a(v)Ba(u) = a(v)Ba(uσj )Ř
′
a[σj ](u)

=

( m∏
i=1

v − uσj(i) + 1

v − uσj(i)

)
Ba(uσj )Ř

′
a[σj ](u)a(v) +

m∑
k=1

U1,k(v;u),

and we find

U1,j(v;u) = − 1

v − uj

(∏
k 6=j

uj − uk + 1

uj − uk

)
Ba1(v)Ba2(uj+1) · · ·Bam(uj−1)Ř′a[σj ](u)a(uj).

Finally, we note that we may write this expression as a residue, so that the unwanted term resembles

the wanted term:

U1,j(v;u) = − 1

v − uj
Ba1(v)Ba2(uj+1) · · ·Bam(uj−1)Ř′a[σj ](u) Res

w→uj

[( m∏
i=1

w − ui + 1

w − ui

)
a(w)

]
.

Putting this together with the wanted term, we arrive at expression (2.1.13).

For the Da(v) operator, we see that the wanted term from each exchange contains an R matrix

which links the auxiliary spaces of the Da(v) and Ba1(u) operators. Since this R matrix acts only

on those two spaces, it commutes with any creation operators to the right of it and may be moved

to the right of the expression before applying (2.1.5) to the second creation operator. Therefore,

taking the trace after m exchanges we have

traDa(v)Ba(u) = Ba(u) tra
(
Da(v)R′aam(v − um) · · ·R′aa1(v − u1)

)
+

m∑
j=1

U2,j(v;u),

where now each U2,j(v;u) may be written
∑n−1

k,l=1Bkldkl(uj) for some Bkl ∈ (V ′a1)∗⊗· · ·⊗ (V ′am)∗⊗
B((v−1, u−1

1 , . . . , u−1
m )).

In order to find the unwanted terms, we first note that the unwanted term from a single exchange

may be written as follows, working from (2.1.5) and taking the trace:

traDa(v)Ba1(u) = Ba1(u) tra
[
Da(v)R′aa1(v − u)

]
− 1

v − u
Ba1(v) Res

w→u
tra
[
Da(w)R′aa1(w − u)

]
,

as P = − Res
w→u

R(w − u). In this form we see that the unwanted term is the residue of the wanted
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term, and can proceed with the argument that was used for a(v). Acting now on Ba(u), we obtain

U2,1(v;u) by starting with the unwanted term from the first exchange given above and taking the

wanted term in each subsequent exchange, yielding

U2,1(v;u) =
1

v − u1
Ba1(v)Ba2(u2) · · ·Bam(um) Res

w→u1
tra T

′
a;a(w;u).

with T ′a;a(w;u) as given in (2.1.15). Then using the same permutation of the parameters u as

above, we find

U2,j(v;u) = − 1

v − uj
Ba(uσj ,uj→v) Res

w→u1
tra T

′
a;a(w;uσj )Ř

′
a[σj ](u),

as required.

Here note that the matrix that appears on the r.h.s of the exchange relations for Da(v) is not

Da(v) itself but in fact the matrix

T ′a;a(v;u) := Da(v)R′aam(v − um) · · ·R′aa1(v − u1). (2.1.16)

We will refer to this matrix as the nested monodromy matrix, and proceed to investigate its prop-

erties.

Lemma 2.1.4. The nested monodromy matrix satisfies the RTT relation,

R′ab(v − w)T ′a;a(v;u)T ′b;a(w;u) = T ′b;a(w;u)T ′a;a(v;u)R′ab(v − w).

Proof. Starting from the l.h.s. of the equation and using the definition (2.1.16) of T ′a;a(v;u),

R′ab(v − w)T ′a;a(v;u)T ′b;a(w;u)

= R′ab(v − w)Da(v)R′aam(v − um) · · ·R′aa1(v − u1)Db(w)R′bam(w − um) · · ·R′ba1(w − u1)

= R′ab(v − w)Da(v)Db(w)R′aam(v − um)R′bam(w − um) · · ·R′aa1(v − u1)R′ba1(w − u1)

= Db(w)Da(v)R′ab(v − w)R′aam(v − um)R′bam(w − um) · · ·R′aa1(v − u1)R′ba1(w − u1) by (2.1.7)

= Db(w)Da(v)R′bam(w − um)R′aam(v − um) · · ·R′ba1(w − u1)R′aa1(v − u1)R′ab(v − w) by YBE

= T ′b;a(w;u)T ′a;a(v;u)R′ab(v − w).

By the above Lemma, the matrix T ′a(v;u) is a homomorphic image of the generating matrix

T ′a;a(v) of Y (gln−1).

Another important property concerns the parameters u which appear in the nested monodromy

matrix.

Lemma 2.1.5. Matrix elements
[
T ′a;a(v;u)

]
jk

of T ′a;a(v;u) transform under the action of Sm as:

Ř′a[σ](u)
[
T ′a;a(v;u)

]
jk

=
[
T ′a;a(v;uσ)

]
jk
Ř′a[σ](u),
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for any σ ∈ Sm.

Proof. It is sufficient to show that this relation holds for transpositions, as these generate Sm.

Moving Ř′aiai+1
(ui−ui+1) from left to right through each of the R-matrices in the definition (2.1.16),

the R-matrices with which it does not commute will undergo parameter exchange ui ↔ ui+1 due

to the (braided) Yang-Baxter equation:

Ř′aiai+1
(ui − ui+1)R′aai+1

(v − ui+1)R′aai(v − ui) = R′aai+1
(v − ui)R′aai(v − ui+1)Ř′aiai+1

(ui − ui+1).

Thus we obtain

Ř′aiai+1
(ui − ui+1)

[
T ′a;a(v;u)

]
jk

=
[
T ′a;a(v;ui↔i+1)

]
jk
Ř′aiai+1

(ui − ui+1).

The required identity is now immediate.

We have established that the nested monodromy matrix satisfies the RTT relation with the gln−1

R-matrix, and so defines a representation of Y (gln−1). We will refer to the associated representation

space as the nested vacuum sector, as it will play the role of the vacuum vector on which the creation

operators B(u) act.

Denote by L(λ(i))0
ci the subspace of the Y (gln)-evaluation module L(λ(i))ci consisting of vectors

annihilated by all operators cj(u), namely

L(λ(i))0
ci := {ζ ∈ L(λ(i))ci : cj(u)ζ = 0 for 1 ≤ j ≤ n− 1}.

This subspace corresponds to the natural embedding gln−1 ⊂ gln and is an irreducible lowest weight

Y (gln−1)-module with the lowest weight given by

λi(u)0 = λi+1(u) for 1 ≤ i ≤ n− 1 (2.1.17)

and λi(u) defined in (2.1.2).

We define the vacuum sector L0 ⊂ L as the tensor product of these subspaces,

L0 := L(λ(1))0
c1 ⊗ L(λ(2))0

c2 ⊗ . . .⊗ L(λ(`))0
c`
.

By our initial assumption, the space L is an irreducible Y (gln)-module. Then, by Lemma 6.2.2 and

Theorem 6.5.8 in [Mo07], the space L0 is an irreducible Y (gln−1)-module. In particular, the space

L0 is annihilated by all operators ci(u),

L0 = {ζ ∈ L : ci(u) · ζ = 0 for 1 ≤ i ≤ n− 1},

and is stable under the action of the operators dij(u) for 1 ≤ i, j ≤ n− 1, see (2.1.8).

Each auxiliary space V ′ai is a vector representation of the Lie algebra gln−1 of weight λ′ =

(1, 0, . . . , 0) and may now be viewed as an evaluation module L(λ′)ui of Y (gln−1) with the lowest
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weight given by

λ′1(u) =
u− ui − 1

u− ui
and λ′j(u) = 1 for 2 ≤ j ≤ n− 1. (2.1.18)

In particular, the generating matrix T ′a(u) of Y (gln−1) acts on L(λ′)ui as R′aai(u− ui).
We have now all the necessary ingredients to define the nested vacuum sector

L′ := L0 ⊗ V ′am ⊗ · · · ⊗ V
′
a1 . (2.1.19)

Proposition 2.1.6. Let T ′(v) denote the generating matrix of Y (gln−1). Then the map

Y (gln−1)→ Y (gln)⊗ End(V ′am ⊗ · · · ⊗ V
′
a1), T ′(v) 7→ T ′(v;u) (2.1.20)

is a homomorphism of algebras. Moreover, it equips the space L′ with a structure of a lowest weight

Y (gln−1)-module with the lowest weight given by

λ′1(v;u) =
∏̀
j=1

v − λ(j)
2 − cj − 1

v − λ(j)
2 − cj

m∏
k=1

v − uk − 1

v − uk
and

λ′i(v;u) =
∏̀
j=1

v − λ(j)
i+1 − cj − 1

v − λ(j)
i+1 − cj

for 2 ≤ i ≤ n− 1.

(2.1.21)

Proof. The homomorphism property follows from Lemma 2.1.4. We already know that L0 is an

irreducible Y (gln−1)-module. It follows from (2.1.16) and (2.1.19) that the space L′ is stable under

the action of T ′a;a(v;u). Thus the map (2.1.20) equips the space L′ with a structure of Y (gln−1)-

module with each tensorand a lowest weight Y (gln−1)-module. The lowest vector is

η = η1 ⊗ · · · ⊗ η` ⊗ e′1 ⊗ · · · ⊗ e′1, (2.1.22)

where each ηi is a lowest vector of L(λ(i))0
ci for 1 ≤ i ≤ ` and each e′1 is a lowest vector of Vai for

1 ≤ i ≤ m (viewed as an evaluation module L(λ′)ui). Finally, acting with [T ′a;a(v;u)]ii on η for

1 ≤ i ≤ n and using (2.1.17) and (2.1.18) yields (2.1.21).

Lemma 2.1.7. For any vector ζ ∈ L′ we have that a(u) · ζ = λ1(u)ζ, where λ1(u) is defined by

(2.1.2).

Proof. By Proposition 2.1.6 we know that L′ = Y (gln−1)η for η defined in (2.1.22) and ci(u)·L′ = 0.

Using (2.1.9) and definition of t′ij(v;u), we find that [a(u), t′ij(v;u)] · ζ = 0 for any 1 ≤ i, j ≤ n.

Hence it is enough to act with a(u) on the lowest vector η, which yields the required result.
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2.1.3 Nested algebraic Bethe ansatz

Recall the definition of the full quantum space (2.1.1) and the nested vacuum sector (2.1.19). Let

Φ′ ∈ L′. We will refer to this as the nested Bethe vector, and we will impose additional properties

on it in what follows. The ansatz for the eigenvector of the transfer matrix, the Bethe vector, is

then

Φ(u) := Ba(u) · Φ′ ∈ L.

Since L is a finite dimensional vector space, the parameters u can be evaluated to non-zero complex

numbers, hence from now on we will assume that u ∈ Cm is an m-tuple of non-zero complex

numbers.

To find the conditions for which this is an eigenvector of the transfer matrix, we act with

t(v) = a(v) + traDa(v), and use Lemma 2.1.3 to move through the creation operators. So(
a(v) + traDa(v)

)
Ba(u) · Φ′

= Ba(u)

[( m∏
i=1

v − ui + 1

v − ui

)
a(v) + tra T

′
a;a(v;u)

]
· Φ′

−
m∑
j=1

1

v − uj
Ba(uσj ,uj→v) Res

w→uj

[( m∏
i=1

w − ui + 1

w − ui

)
a(w) + tra T

′
a;a(w;uσj )

]
Ř′a[σj ](u) · Φ′.

(2.1.23)

For Φ(u) to be an eigenvector of t(v) for all v, we require that the wanted term acts as a scalar

on Φ′, and that the unwanted terms all vanish on Φ′. Focussing first on the wanted term, by

Lemma 2.1.7, a(v) · Φ′ = λ1(v)Φ′. Therefore, we require that Φ′ be an eigenvector of the nested

transfer matrix t′;a(v;u) := tra T
′
a;a(v;u) for all v, that is,

t′;a(v;u) · Φ′ = Γ′(v;u)Φ′, (2.1.24)

for some scalar Γ′(v;u). Under this assumption, the eigenvalue of the transfer matrix t(v) will then

be

Γ(v;u) = λ1(v)

m∏
i=1

v − ui + 1

v − ui
+ Γ′(v;u). (2.1.25)

This condition on Φ′ presents an equivalent diagonalisation problem to the one defined initially

for t(v), the auxiliary spaces a1, . . . , am acting as additional spin chain sites in the vector repre-

sentation, with parameter shifts given by the corresponding u1, . . . , um. Crucially, the underlying

algebra has changed from Y (gln) to Y (gln−1), with monodromy matrix Ta;a(v;u) and, as such, we

may continue this argument inductively until arriving at the known Y (gl2) case.

For example, constructing the ansatz for the nested Bethe vector, we fix m′ ∈ N and introduce

an m′-tuple u′ = (u′1, . . . , u
′
m′) of distinct complex parameters, so that

Φ′ = Φ′(u′;u) = B′a′1
(u′1;u) · · ·B′a′

m′
(u′m′ ;u) · Φ′′,
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where, upon decomposing the nested monodromy matrix T ′a;a(v,u) in the same way as we did for

Ta(v),

Φ′′ ∈ L′0 ⊗ V ′′a′
m′
⊗ · · · ⊗ V ′′a′1 .

Here L′0 is the vacuum sector of L′ defined analogously to that of L, and each V ′′a′i
is a gln−2-module

of weight λ′′ = (1, 0, . . . , 0). Repeating this process, we reduce the problem to a Y (gl2)-system,

which may be solved using using an argument of the type given in Chapter 1.

It therefore remains to show that the unwanted terms can be made to vanish on the nested

Bethe vector. Since the creation operators within each unwanted term contain a unique set of

parameters, we assume that the unwanted terms are each linearly independent, and demand the

potentially stronger condition on Φ′ that each term vanishes independently.

Consider again the expression for the unwanted terms acting on Φ′ in (2.1.23). As a consequence

of Lemma 2.1.5 we may commute the jth unwanted term in square brackets with the Ř′a[σj ](u),

which reverses the parameter permutation in the nested monodromy matrix. The expression on

this line then becomes

−
m∑
j=1

1

v − uj
Ba(uσj ,uj→v)Ř

′
a[σj ](u) Res

w→uj

[( m∏
i=1

w − ui + 1

w − ui

)
a(w) + tra T

′
a;a(w;u)

]
· Φ′.

Each term in this sum is now merely a residue of the wanted term acting on Φ′, which we have

assumed acts diagonally (2.1.24). Therefore, this expression becomes

−
m∑
j=1

1

v − uj
Ba(uσj ,uj→v)Ř

′
a[σj ](u) Res

w→uj

[( m∏
i=1

w − ui + 1

w − ui

)
λ1(w) + Γ′(w;u)

]
· Φ′.

By setting each summand to zero, we obtain a sufficient condition for the unwanted terms to vanish

Res
w→uj

[( m∏
i=1

w − ui + 1

w − ui

)
λ1(w) + Γ′(w;u)

]
= 0

Or, in other words,

Res
w→uj

Γ(w;u) = 0 for 1 ≤ j ≤ m. (2.1.26)

These are the Bethe equations for u.

2.1.4 End of recursion

Upon reducing to the residual Y (gl2)-system, we have the familiar 2× 2 monodromy matrix

T (n−2)
a (v) =

(
a(n−2)(v) b(n−2)(v)

c(n−2)(v) d(n−2)(v)

)
.
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Dependence on parameters u,u′, . . . ,u(n−3) has been suppressed. The RTT relation yields the

relations

a(n−2)(v)b(n−2)(u) =
v − u+ 1

v − u
b(n−2)(u)a(n−2)(v)− 1

v − u
b(n−2)(v)a(n−2)(u),

d(n−2)(v)b(n−2)(u) =
v − u− 1

v − u
b(n−2)(u)d(n−2)(v) +

1

v − u
b(n−2)(v)d(n−2)(u),

[b(n−2)(v), b(n−2)(u)] = 0.

The Bethe vector with m(n−2) excitations is

Φ(n−2)(u) = b(n−2)(u
(n−2)
1 ) · · · b(n−2)(u

(n−2)

m(n−2)) · η(n−2),

where η(n−2) is a lowest vector of the nested vacuum sector L(n−2). The associated eigenvalue of

the transfer matrix t(n−2)(v) is

Γ(n−2)(v;u, . . . ,u(n−2)) = λ
(n−2)
1 (v;u, . . . ,u(n−3))

m(n−2)∏
i=1

v − u(n−2) + 1

v − u(n−2)

+ λ
(n−2)
2 (v;u, . . . ,u(n−3))

m(n−2)∏
i=1

v − u(n−2) − 1

v − u(n−2)
i

,

provided the u(n−2) satisfy the Bethe equations

Res
w→u(n−2)

j

Γ(n−2)(w;u, . . .u(n−2)) = 0 for 1 ≤ j ≤ m(n−2).

2.1.5 Full expressions for eigenvalues and Bethe equations

In this section, we unpack the recursion steps to give the explicit expressions for the eigenvalues

of the transfer matrix in terms of the parameters of the Y (gln) system. In order to match the

notation used in the Bethe ansatz for the Y ±ρ (gl2n) chain in Section 2.2, we begin by relabelling

the spectral parameters as follows. For the initial step, relabel parameters ui → u
(1)
i and excitation

number m→ m(1), and for subsequent levels of nesting u
(k)
i → u

(k+1)
i and m(k) → m(k+1). We use

Proposition 2.1.6 to rewrite the weights λ
(k)
1 (v;u, . . . ,u(k−1)) of the nested system in terms of the

weights of the initial Y (gln)-system,

λ
(k)
1 (v;u(1), . . . ,u(k)) = λk+1(v)

m(k)∏
i=1

v − u(k)
j − 1

v − u(k)
j

for 1 ≤ k ≤ n− 1 and

λ
(k)
l (v;u(1), . . . ,u(k)) = λk+l(v) for l > 1, 1 ≤ k ≤ n− l.
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From the recursion relation in (2.1.25), a general expression can be found for the eigenvalue

Γ(k)(v;u(1), . . . ,u(n−1)), for 1 ≤ k ≤ n− 2:

Γ(k)(v;u(1), . . . ,u(n−1))

= λ
(n−2)
2 (v;u(1), . . . ,u(n−2))

m(n−1)∏
i=1

v − u(n−1)
i −1

v − u(n−1)
i

+
n−2∑
l=k

λ
(l)
1 (v;u(1), . . . ,u(l))

m(l+1)∏
i=1

v − u(l+1) +1

v − u(l+1)

= λn(v)
m(n−1)∏
i=1

v − u(n−1)
i − 1

v − u(n−1)
i

+
n−2∑
l=k

λl+1(v)
m(l)∏
i=1

v − u(l)
i − 1

v − u(l)
i

m(l+1)∏
i=1

v − u(l+1)
i + 1

v − u(l+1)
i

.

We have thus shown the following.

Theorem 2.1.8. The eigenvalues of the Bethe vectors for a Y (gln)-system are given by

Γ(v) = λ1(v)
m(1)∏
i=1

v − u(1)
i + 1

v − u(1)
i

+ λn(v)
m(n−1)∏
i=1

v − u(n−1)
i − 1

v − u(n−1)
i

+

n−2∑
l=1

λl+1(v)

m(l)∏
i=1

v − u(l)
i − 1

v − u(l)
i

·
m(l+1)∏
i=1

v − u(l+1)
i + 1

v − u(l+1)
i

. (2.1.27)

Recall also the Bethe equations (2.1.26) satisfied by parameters u
(k)
j . In fact, comparing the

above two expressions, we note that equivalent Bethe equations can be obtained by demanding

instead that the residue of the full eigenvalue Γ(v) vanishes at each u
(k)
j for 1 ≤ k ≤ n − 1,

1 ≤ j ≤ m(k). This is exactly the condition that the eigenvalue of the transfer matrix is analytic.

We may now evaluate the residue to obtain the Bethe equations in terms of λk(v) with 1 ≤ k ≤ n
leading to the following statement.

Theorem 2.1.9. The Bethe equations for a Y (gln)-system are

λk(u
(k)
j )

λk+1(u
(k)
j )

=

m(k−1)∏
i=1

u
(k)
j − u

(k−1)
i

u
(k)
j − u

(k−1)
i − 1

·
∏
i 6=j

u
(k)
j − u

(k)
i − 1

u
(k)
j − u

(k)
i + 1

·
m(k+1)∏
i=1

u
(k)
j − u

(k+1)
i + 1

u
(k)
j − u

(k+1)
i

,

λ1(u
(1)
j )

λ2(u
(1)
j )

=
∏
i 6=j

u
(1)
j − u

(1)
i − 1

u
(1)
j − u

(1)
i + 1

·
m(2)∏
i=1

u
(1)
j − u

(2)
i + 1

u
(1)
j − u

(2)
i

,

λn−1(u
(n−1)
j )

λn(u
(n−1)
j )

=

m(n−2)∏
i=1

u
(n−1)
j − u(n−2)

i

u
(n−1)
j − u(n−2)

i − 1
·
∏
i 6=j

u
(n−1)
j − u(n−1)

i − 1

u
(n−1)
j − u(n−1)

i + 1
,

(2.1.28)

for 1 ≤ k ≤ n− 1 and 1 ≤ j ≤ m(k).

Finally, we end this section with an expression for the eigenvector. Although we have con-

structed the eigenvector recursively, it was shown in [TV13],[BR08] that the gln Bethe vector may

instead be written in a closed form in terms of the original Y (gln) generating matrix and R-matrix.
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Φ(u(1), . . . ,u(n−1))

= trV

[(
n−1∏
k=1

m(k)∏
i=1

Taki
(u

(k)
i )

)(
n−1∏
k=2

k−1∏
l=1

m(k)∏
i=1

1∏
j=m(l)

Raki alj
(u

(k)
i −u

(l)
j )

)

× (e21)⊗m
(1) ⊗ · · · ⊗ (en,n−1)⊗m

(n−1)

]
· η, (2.1.29)

where the trace is taken over the space V := Va11 ⊗ · · · ⊗ Van−1

m(n−1)

∼= (Cn)⊗m with m =
∑n−1

i=1 m
(i)

and η is the lowest weight vector for L.

2.2 Nested algebraic Bethe ansatz for the even twisted Yangian

spin chain

In this section, we give the nested algebraic Bethe ansatz for an even twisted Yangian spin chain.

We first review the twisted Yangian algebra and its representation theory, allowing us to define a

spin chain as a twisted Yangian representation. We then proceed to construct eigenvectors for a

transfer matrix which acts on this system using the nested algebraic Bethe ansatz.

2.2.1 The Ol’shanskii twisted Yangian

We begin by defining the Ol’shanskii twisted Yangian, following [Ol92], [Mo07]. First, recall the

transpose defined in (1.2.20). Recall also the notation ± and ∓ with upper and lower signs referring

to the orthogonal and sympelctic cases respectively.

Definition 2.2.1. Let ρ ∈ C. The twisted Yangian Y ±ρ (gl2n) is the subalgebra of Y (gl2n) generated

by the coefficients of the entries of the matrix

S(u) = T (u)T t(−u− ρ). (2.2.1)

The ‘ρ-shifted’ twisted Yangian defined above is isomorphic to the usual one studied in [Mo07].

The isomorphism is provided by the mapping S(u) 7→ S(u+ ρ/2). For the purposes of the nested

algebraic Bethe ansatz, it will not be necessary to fix a particular value of ρ, and it will remain a

free parameter. However, it may be necessary to fix a particular value of ρ in order to obtain a local

interaction Hamiltonian from the resulting transfer matrix; see Remark 2.2.17 for more details.

Note that the construction (2.2.1) differs from the one described in (1.3.1) as it physically

represents a reflective boundary which turns particles into antiparticles and vice versa. As such,

instead of the reflection equation the matrix S(u) satisfies the twisted reflection equation

R12(u− v)S1(u)Rt12(−u− v − ρ)S2(v) = S2(v)Rt12(−u− v − ρ)S1(u)R12(u− v), (2.2.2)

which is a simple consequence of the RTT relation.
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Additionally it satisfies the symmetry relation

St(−u− ρ) = S(u)± S(u)− S(−u− ρ)

2u+ ρ
, (2.2.3)

which can be shown by taking the transpose of S(u) and using the Y (gln) relations to put the

matrix back together. Indeed, if S(u) were instead constructed from a matrix of commutative

polynomials we would simply have the first term on the right hand side; the extra terms are a

consequence of the noncommutative nature of the Yangian. The fact that this relation is linear will

be useful for the nested algebraic Bethe ansatz.

The above two relations are in fact the defining relations of Y ±ρ (gl2n), in the sense that this

subalgebra is isomorphic to an algebra defined by the above relations only. Their form in terms

of matrix elements sij(u) of S(u), for ρ = 0, can be found in (2.4) and (2.5) of [Ol92] (note that

indices i, j, k, l are indexed by −n,−n+ 1, . . . , n− 1, n in loc. cit.); also see Section 4.1 in [Mo07].

This definition of the twisted Yangian may be seen as a quantum analogue of the classical

definition of g2n as the invariant subalgebra of gl2n with respect to the automorphism E 7→ −Et. In

other words, Y ±ρ (gl2n) is the rational quantum version of symmetric pairs AI(a) and AII. Denoting

the coefficients as sij(u) =
∑

r≥0 s
(r)
ij u

−r, the map Fij 7→ −s(1)
ji defines an embedding U(g2n) ↪→

Y ±ρ (gl2n), with the twisted reflection equation and symmetry relation implying (1.2.18) and (1.2.19)

respectively. In fact, for this algebra in particular, the map

sij(u) 7→ δij − Fji(u+ (ρ± 1)/2)−1

defines the evaluation homomorphism ev± : Y ±ρ (gl2n) → U(g2n). This is in contrast to X(gN ),

which cannot possess such an evaluation homomorphism.

Recall now the coproduct for Y (gl2n), defined by (1.2.11). The coproduct is itself an algebra

homomorphism, and the action on the twisted Yangian subalgebra generated by S(u) can be shown

to obey

∆ : S(u) 7→ (T (u)⊗ 1)(1⊗S(u))(T t(−u− ρ)⊗ 1) ∈ End(C2n)⊗Y (gl2n)⊗Y ±ρ (gl2n)[[u−1]]. (2.2.4)

We see that, rather than mapping to the tensor square of the twisted Yangian, the subalgebra is

preserved only in the right tensor space in the image of the coproduct, that is, ∆ : Y ±ρ (gl2n) →
Y (gl2n)⊗ Y ±ρ (gl2n). This property makes the twisted Yangian a left coideal subalgebra of Y (gl2n).

This also has a clear physical interpretation: the T (u) and T t(−u − ρ) are the interaction

of a test particle with the ‘bulk’ of the spin chain before and after reflecting off the boundary

respectively, and S(u) is the interaction with the boundary itself.

We now turn to representation theory of Y ±ρ (gl2n). As in the case of Y (gln), we will be interested

in the lowest weight representations.

Definition 2.2.2. A representation V of Y ±ρ (gl2n) is called a lowest weight representation if there
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exists a nonzero vector ξ ∈ V such that V = Y ±ρ (gl2n)ξ and

sij(u)ξ = 0 for 1 ≤ j < i ≤ 2n and

sii(u)ξ = µi(u)ξ for 1 ≤ i ≤ n,

where µi(u) are formal power series in u−1 with constant terms equal to 1. The vector ξ is called

the lowest weight vector of V , and the n-tuple µ(u) = (µ1(u), . . . , µn(u)) is called the lowest weight

of V .

Note that ξ is also an eigenvector for the action of sii(u) with n + 1 ≤ i ≤ 2n. Indeed, the

symmetry relation (2.2.3) implies that

s2n−i+1,2n−i+1(u)ξ =

(
µi(−u− ρ)± µi(u)− µi(−u− ρ)

2u+ ρ

)
ξ for 1 ≤ i ≤ n.

Recall from Section 1.2.2 that for an n-tuple µ ∈ Cn we may define an irreducible highest weight

representation of U(g2n), which here will be denoted M(µ). Using the evaluation homomorphism

ev±, we can extend this to a Y ±ρ (gl2n)-module with lowest weight satisfying

µi(u) = 1− µi(u+ (ρ± 1)/2)−1 for 1 ≤ i ≤ n. (2.2.5)

Now, recall the tensor product of evaluation modules (2.1.1). The coproduct allows us to equip

the space

M := L⊗M(µ) = L(λ(1))c1 ⊗ L(λ(2))c2 ⊗ . . .⊗ L(λ(`))c` ⊗M(µ) (2.2.6)

with the structure of a lowest weight Y ±ρ (gl2n)-module. In particular, S(u) acts on the space M by

S(u) ·M =

(∏̀
i=1

Li(u− ci)

)
L±(u)

(
1∏
i=`

Lti(−u− ρ− ci)

)
M, , (2.2.7)

where here we recall the convention of ordering products from left to right, so the leftmost operators

in the above products are L1(u− ci) and Lt`(−u− ρ− ci) respectively, and we have introduced the

“boundary” Lax operator

L±(u) := (id⊗ ev±)(S(u)) =
2n∑
i,j=1

eij ⊗ (δij − Fji(u+ (ρ± 1)/2)−1). (2.2.8)

This may be thought of as a generalisation of a K-matrix, in which case the chosen representation

would be one-dimensional, but as of yet does not have a clear physical interpretation. Nevertheless,

we include it here as a matter of mathematical interest.

Let ξ ∈ M(µ) be the lowest vector. Denote by ηi the lowest vector of L(λ(i))ci and set ζ =

η1 ⊗ . . . ⊗ η` ⊗ ξ. Then the submodule Y ±ρ (gl2n)ζ of Y ±ρ (gl2n)-module M is a lowest weight
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representation with a lowest vector ζ. It is given by

λi(u)λ2n−i+1(−ρ− u)µi(u) for 1 ≤ i ≤ n,

with λi(u) defined in (2.1.2) and µi(u) defined in (2.2.5), see Proposition 4.2.11 in [Mo07]. To the

best of our knowledge, there are currently no irreducibility criteria known for a tensor product of

irreducible representations of Y (gl2n) and Y ±ρ (gl2n).

For the remainder of this chapter, we will study the problem of constructing eigenvectors of

the transfer matrix defined by τ(u) = tra Sa(u), for which we employ the nested algebraic Bethe

ansatz.

2.2.2 Block decomposition

Just as with the gln closed spin chain, or even the Heisenberg spin chain, the first step of the (nested)

algebraic Bethe ansatz is the decomposition of the monodromy matrix in its auxiliary space into

submatrices. In the gln case, this took the form of (2.1.3), where each row was separated off one

by one. For this spin chain, however, we employ a different strategy. Inspired by the arguments

presented in [Rs91, DVK87], we decompose the monodromy matrix into equal n×n blocks. This is

due to the redundancies contained within the generating matrix for a g2n-symmetric system defined

in RTT presentation.

We write matrices T (u) and S(u) in the block form:

T (u) =

(
A(u) B(u)

C(u) D(u)

)
, S(u) =

(
A(u) B(u)

C(u) D(u)

)
. (2.2.9)

Our goal is to derive the algebraic relations between these smaller matrix operators (blocks), which

we will make use of in the Bethe ansatz. We will denote the matrix elements of A(u) by aij(u)

with 1 ≤ i, j ≤ n, and similarly for matrices B(u), C(u) and D(u), and their barred counterparts.

Furthermore, we make use of barred indices ı̄ = n − i + 1 for indices 1 ≤ i ≤ n; note that in

Section 1.2.2 this notation was used for indices running from 1 to 2n.

Recall that C2n ∼= C2 ⊗ Cn. Let eij with 1 ≤ i, j ≤ 2n denote the standard matrix units of

End(C2n). Moreover, let xij with 1 ≤ i, j ≤ 2 (resp. eij with 1 ≤ i, j ≤ n) denote the standard

matrix units of End(C2) (resp. End(Cn)). Then, for any 1 ≤ i, j ≤ n, we may write

eij = x11 ⊗ eij , en+i,j = x21 ⊗ eij , (2.2.10)

and similarly for ei,n+j and en+i,n+j . Hence any matrix M ∈ End(C2n) with entries (M)ij ∈ C can

be equivalently written as

M =

2∑
a,b=1

xab ⊗ [M ]ab ∈ End(C2)⊗ End(Cn),
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where [M ]ab =
∑n

i,j=1(M)i+n(a−1),j+n(b−1) eij are blocks of M , viz. (2.2.9). Now let M ∈ End(C2n⊗
C2n). Then we may write

M =
2∑

a,b,c,d=1

xab ⊗ xcd ⊗ [M ]abcd ∈ End(C2 ⊗ C2)⊗ End(Cn ⊗ Cn),

where [M ]abcd are obtained as follows. Writing M =
∑2n

i,j,k,l=1(M)ijkleij ⊗ ekl we have

[M ]abcd =
n∑

i,j,k,l=1

(M)i+n(a−1),j+n(b−1),k+n(c−1),l+n(d−1) eij ⊗ ekl. (2.2.11)

Denote the R-matrix acting on C2n ⊗C2n by R(u) and its t-transpose by Rt(u). Viewing them

as elements in End(C2 ⊗ C2) ⊗ End(Cn ⊗ Cn)[[u−1]] and using (2.2.11) we recover the six-vertex

block structure

R(u) =


R(u)

I −u−1P

−u−1P I

R(u)

 , Rt(u) =


I

Rt(u) ∓u−1Q

∓u−1Q Rt(u)

I

 ,

(2.2.12)

where the operators inside the matrices are each acting on Cn ⊗ Cn; note that Rt(u) = I − u−1Q

and Q =
∑

1≤i,j≤n eij⊗e̄ ı̄ in both cases of ∓ above are of the orthogonal type, where here we have

used the notation ı̄ = n− i+ 1.

In a similar way, the matrices T1(u) = T (u)⊗ I and T2(u) = I ⊗T (u), as elements of End(C2⊗
C2)⊗ End(Cn ⊗ Cn)⊗ Y (gl2n)[[u−1]], take the form

T1(u) =


A1(u) B1(u)

A1(u) B1(u)

C1(u) D1(u)

C1(u) D1(u)

 , T2(u) =


A2(u) B2(u)

C2(u) D2(u)

A2(u) B2(u)

C2(u) D2(u)

 ,

(2.2.13)

where A1(u) means A(u)⊗ I ∈ End(Cn⊗Cn)⊗Y (g2n)[[u−1]] with I being the identity matrix, and

similarly for the other blocks. Substituting (2.2.12) and (2.2.13) to the RTT relation allows us to

rewrite the defining relations of Y (gl2n) in terms of the matrices A(u), B(u), C(u) and D(u). The
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relations that we will need are:

R12(u− v)A1(u)A2(v) = A2(v)A1(u)R12(u− v), (2.2.14)

R12(u− v)B1(u)B2(v) = B2(v)B1(u)R12(u− v), (2.2.15)

R12(u− v)D1(u)D2(v) = D2(v)D1(u)R12(u− v), (2.2.16)

C1(u)A2(v) = A2(v)C1(u)R12(u− v) +
P12A1(u)C2(v)

u− v
, (2.2.17)

C1(u)D2(v) = R12(v − u)D2(v)C1(u)− P12D2(u)C1(v)

u− v
, (2.2.18)

D1(u)A2(v)−A2(v)D1(u) =
P12B1(u)C2(v)−B2(v)C1(u)P12

u− v
. (2.2.19)

In particular, the coefficients of the matrix entries of A(u) generate a Y (gln) subalgebra of Y (gl2n).

The same is true for D(u).

We now repeat the same steps for the twisted Yangian Y ±ρ (gl2n). We substitute (2.2.12)

to (2.2.2) and view matrices S1(u) and S2(u) as elements of End(C2 ⊗ C2) ⊗ End(Cn ⊗ Cn) ⊗
Y ±ρ (gl2n)[[u−1]], so that they take the same form as in (2.2.13). This allows us to write the defining

relations of Y ±ρ (gl2n) in terms of the matrices A(u), B(u), C(u) and D(u). The relations that we

will need are:

A2(v)B1(u) = R12(u− v)B1(u)Rt12(−u− v − ρ)A2(v)

+
P12B1(v)Rt12(−u− v − ρ)A2(u)

u− v
∓ B2(v)Q12D1(u)

u+ v + ρ
, (2.2.20)

R12(u− v)B1(u)Rt12(−u− v − ρ)B2(v)

= B2(v)Rt12(−u− v − ρ)B1(u)R12(u− v), (2.2.21)

R12(u− v)A1(u)A2(v)−A2(v)A1(u)R12(u− v)

= ∓R12(u− v)B1(u)Q12C2(v)−B2(v)Q12C1(u)R12(u− v)

u+ v + ρ
, (2.2.22)

C1(u)A2(v) = A2(v)Rt12(−u− v − ρ)C1(u)R12(u− v)

+
P12A1(u)Rt12(−u− v − ρ)C2(v)

u− v
∓ D1(u)Q12C2(v)

u+ v + ρ
. (2.2.23)

It remains to cast the symmetry relation (2.2.3) in the block form. Observe that

St(u) =

(
Dt(u) ±Bt(u)

±Ct(u) At(u)

)
.

This allows us immediately to extract linear relations between matrices A(u), B(u), C(u) and D(u),
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of which we will need the following two only:

Dt(−u− ρ) = A(u)± 1

2u+ ρ

(
A(u)−A(−u− ρ)

)
, (2.2.24)

±Bt(−u− ρ) = B(u)± 1

2u+ ρ
(B(u)−B(−u− ρ)). (2.2.25)

Having defined the block relations, we now proceed to define the creation operators with which

we will build an ansatz for the transfer matrix eigenvector. As with the gln case, these will be

taken from elements of the upper right “B-block”. In the following section we define the creation

operator, and derive relations between creation operators.

2.2.3 Creation operator for a single excitation

The key operators in the construction of the Bethe vector will come from the B block, viz. (2.2.9).

However, rather than use a matrix of creation operators, we reinterpret B(u) as a row vector in two

auxiliary spaces, which will be denoted Va and Vã, with components given by the matrix elements

of B(u).

Definition 2.2.3. The creation operator is given by

β(u) :=
∑

1≤i,j≤n
e∗i ⊗ e∗j ⊗ bı̄j(u) ∈ (Cn)∗ ⊗ (Cn)∗ ⊗ Y ±ρ (gl2n)[[u−1]], (2.2.26)

where ı̄ = n− i+ 1.

The two auxiliary spaces in the above definition are labelled in the same order as the tensor

product, that is, βãa(u) ∈ V ∗ã ⊗ V ∗a ⊗ Y ±ρ (gl2n)[[u−1]]. The exchange and symmetry relations

involving the B operator may now be rewritten using the above notation. We introduce here the

notation

p(u) = 1± 1

2u+ ρ
, (2.2.27)

which will appear frequently in what follows.

Recall also the properties (1.2.22) and (1.2.23) of the matrix Q := P t.

Lemma 2.2.4. The creation operator satisfies the following identities:

βã1a1(u1)βã2a2(u2)Ra1ã2(−u1 − u2 − ρ)Řã1ã2(u1 − u2)

= βã1a1(u2)βã2a2(u1)Ra1ã2(−u1 − u2 − ρ)Řa1a2(u1 − u2), (2.2.28)

βãiai(u)Qaia = ±
(
p(−u− ρ)βãiai(−u− ρ)± βãiai(u)

2u+ ρ

)
QãiaQaia, (2.2.29)

where Ř(u) := PR(u).

Proof. We start by proving (2.2.28). From (2.2.21), begin by acting from the left with P12, then

use the defining property of the permutation operator to move it to the right on the r.h.s. of the
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equation to obtain

Ř12(u1−u2)B1(u1)Rt12(−u1−u2−ρ)B2(u2) = B1(u2)Rt12(−u1−u2−ρ)B2(u1)Ř12(u1−u2). (2.2.30)

We want to rewrite this in terms of the creation operators defined in Definition 2.2.3. Choose bases

for V1 and V2, then denote the matrix components of R12(−u1−u2−ρ) by ri1j1i2j2 , and the matrix

components of Ř12(u1 − u2) by ři1j1i2j2 . In components, (2.2.30) becomes

n∑
j1,j2,k1,k2=1

ři1j1i2j2 bj1k1(u1)rk1l1k̄2 ̄2 bk2l2(u2) =

n∑
j1,j2,k1,k2=1

bi1j1(u2)rj1k1 ̄2 ı̄2 bj2k2(u1) řk1l1k2l2 .

Relabelling i1 → ı̄1 and i2 → ı̄2, and relabelling the summation indices j1 → ̄1 and j2 → ̄2 yields

an equivalent expression:

n∑
j1,j2,k1,k2=1

b̄1k1(u1)bk̄2l2(u2)rk1l1k2j2 řı̄1 ̄1 ı̄2 ̄2 =
n∑

j1,j2,k1,k2=1

bı̄1j1(u2)b̄2k2(u1)rj1k1j2i2 řk1l1k2l2 .

Finally, we note that řı̄1 ̄1 ı̄2 ̄2 = řj1i1j2i2 , as Řab(u)tatb = Řab(u). Then taking the tensor product

with e∗i1 ⊗ e
∗
l1
⊗ e∗i2 ⊗ e

∗
l2
∈ V ∗ã1 ⊗ V

∗
a1 ⊗ V

∗
ã2
⊗ V ∗a2 and summing over these indices yields

βã1a1(u1)βã2a2(u2)Ra1ã2(−u1 − u2 − ρ)Řã1ã2(u1 − u2)

= βã1a1(u2)βã2a2(u1)Ra1ã2(−u1 − u2 − ρ)Řa1a2(u1 − u2),

as required.

We now focus on (2.2.29). From (2.2.25) in matrix components, we make the assignment

u 7→ −u− ρ and multiply by ± to obtain

b̄̄ı(u) = ±p(−u− ρ)bij(−u− ρ) +
bij(u)

2u+ ρ
.

Then, taking the tensor product with e∗j ⊗e∗ı̄ ∈ V ∗ãi⊗V
∗
ai , and summing over i, j yields the following

expression in terms of the creation operator:

βãiai(u) = ±p(−u− ρ)βaiãi(−u− ρ) +
βaiãi(u)

2u+ ρ
= ±

(
p(−u− ρ)βãiai(−u− ρ)± βãiai(u)

2u+ ρ

)
Pãiai .

To obtain (2.2.29) from here, we multiply on the right by the operator Qaia and use the identity

PãiaiQaia = QãiaQaia.

2.2.4 Creation operator for multiple excitations

The next step is to generalize the creation operator β(u) defined in (2.2.26) for multiple excitations.

Choose m ∈ N, the excitation number, and consider the tensor product space W = Vã1 ⊗ · · · ⊗
Vãm ⊗ Va1 ⊗ · · · ⊗ Vam . Denote its dual by W ∗ = V ∗ã1 ⊗ · · · ⊗ V

∗
ãm
⊗ V ∗a1 ⊗ · · · ⊗ V

∗
am and introduce
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an m-tuple of formal parameters u = (u1, u2, . . . , um).

Definition 2.2.5. The creation operator for m excitations is given in terms of the ordered product

of β operators and R-matrices:

βã1a1...ãmam(u) =

m∏
i=1

(
βãiai(ui)

1∏
j=i−1

Raj ãi(−uj − ui − ρ)

)
∈W ∗ ⊗ Y ±ρ (gl2n)[u1, . . . , um][[u−1

1 , . . . , u−1
m ]]. (2.2.31)

The insertion of R-matrices between the creation operators here differs from the Y (gln) case;

due to the fact that the B block matrices satisfy a twisted reflection equation-type relation (2.2.21),

it is necessary to insert these R-matrices in order to exchange adjacent creation operators or their

parameters. This may be compared to the equivalent block relation for Y (gln) given by (2.2.15).

Note that the creation operator for m excitations satisfies the following recursive relation

βã1a1...ãmam(u) = βã1a1...ãm−1am−1(u1, . . . , um−1)βãmam(um)
1∏

j=m−1

Raj ãm(−uj − um − ρ). (2.2.32)

Given i ∈ {1, . . . ,m − 1} denote by ui↔i+1 the m-tuple obtained from u by interchanging its

i-th and (i+ 1)-th entries, namely

ui↔i+1 = (u1, u2, . . . , ui−1, ui+1, ui, ui+2, . . . , um). (2.2.33)

The Lemma below states a relation between the operators βã1a1...ãmam(u) and βã1a1...ãmam(ui↔i+1)

that will assist us in obtaining the explicit expressions of the so-called “unwanted terms” in Section

2.2.11.

Lemma 2.2.6. The following identity holds:

βã1a1...ãmam(u) = βã1a1...ãmam(ui↔i+1)Řaiai+1(ui − ui+1)Ř−1
ãiãi+1

(ui − ui+1) (2.2.34)

for 1 ≤ i ≤ m− 1.

Proof. We use induction on m, with the basis case provided by (2.2.28). Assume the result holds

for m− 1 excitations. There are two cases to consider, depending on the spaces ai, ai+1 on which

Raiai+1(ui − ui+1) acts nontrivially. Consider first the case where i < m− 1 and use the recursive
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relation (2.2.32):

βã1a1...ãmam(u) = βã1a1...ãm−1am−1(u1, . . . , um−1)βãmam(um)
1∏

j=m−1

Raj ãm(−uj − um − ρ)

= βã1a1...ãm−1am−1(u1, . . . , ui+1, ui, . . . , um−1)Řaiai+1(ui − ui+1)

× Ř−1
ãiãi+1

(ui − ui+1)βãmam(um)
1∏

j=m−1

Raj ãm(−uj − um − ρ).

Notice that the matrix Ř−1
ãiãi+1

(ui − ui+1) commutes with all matrices to the right of it, so it can

be moved to the very right. The matrix Řaiai+1(ui − ui+1) may be moved through the product of

R-matrices using the (braided) Yang-Baxter equation:

Řaiai+1(ui − ui+1)Rai+1ãm(−ui+1 − um − ρ)Raiãm(−ui − um − ρ)

= Rai+1ãm(−ui − um − ρ)Raiãm(−ui+1 − um − ρ)Řaiai+1(ui − ui+1).

This then gives (2.2.34) for i < m− 1. For i = m− 1, we factorise the excitations as follows:

βã1a1...ãmam(u) = βã1a1...ãm−2am−2(u1, . . . , um−2)βãm−1am−1ãmam(um−1, um)

×
1∏

j=m−2

(
Raj ãm−1(−uj − um−1 − ρ)Raj ãm(−uj − um − ρ)

)
= βã1a1...ãm−2am−2(u1, . . . , um−2)βãm−1am−1ãmam(um, um−1)

× Řam−1am(um−1 − um)Ř−1
ãm−1ãm

(um−1 − um)

×
1∏

j=m−2

(
Raj ãm−1(−uj − um−1 − ρ)Raj ãm(−uj − um − ρ)

)
.

The matrix Ř−1
ãm−1ãm

(um−1 − um) may be moved through the product of R-matrices using another

variant of the Yang-Baxter equation,

Ř−1
ãm−1ãm

(um−1 − um)Raj ãm−1(−uj − um−1 − ρ)Raj ãm(−uj − um − ρ)

= Raj ãm−1(−uj − um − ρ)Raj ãm(−uj − um−1 − ρ)Ř−1
ãm−1ãm

(um−1 − um).

Then, rearranging the commuting matrices in the expression, we reconstruct the full excitation

vector and arrive at (2.2.34) for i = m− 1. This completes the induction.

2.2.5 Rewriting the AB exchange relation

We now consider the exchange relation between the A(u) operator and the creation operator

(2.2.26). Looking at the relation (2.2.20), we see that it has two “unwanted terms”, one of which

includes the D(u) operator. This mixing appears to cause a problem for the definition of a nested
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monodromy matrix, and we endeavour to rewrite this relation in a more useful form.

Lemma 2.2.7. The following identity holds:

Aa(v)βãiai(u) = βãiai(u)Rtãia(u− v)Rtaia(−u−v−ρ)Aa(v)

+
βãiai(v)

u− v
QãiaR

t
aia(−2u− ρ)Aa(u)

∓ p(−u− ρ)

u+ v + ρ
βãiai(v)QãiaQaiaAa(−u− ρ). (2.2.35)

Proof. We introduce the following rule for obtaining expressions in terms of the β operator from

those in terms of B operator. Let Xã ∈ End(Vã) and Ya ∈ End(Va). Considering the components

of βãa(u)Xt
ãYa, we have

βãa(u)Xt
ãYa =

∑
1≤i,j,k,l,r,s≤n

(e∗k ⊗ e∗l ⊗ bk̄l(u))(eri ⊗ esj ⊗ xı̄r̄ ysj)

=
∑

1≤i,j,k,l≤n
ei ⊗ ej ⊗ bk̄l(u)xı̄k̄ ylj ,

so that (βãa(u)Xt
ãYa)ı̄j =

∑
1≤k,l≤n bkl(u)xik ylj . On the other hand, taking the (i, j)-th matrix

element of the expression XaBa(u)Ya for any Xa, Ya ∈ End(Va) we obtain

(XaBa(u)Ya)ij =
∑

1≤k,l≤n
xik bkl(u)ylj = (βãa(u)Xt

ãYa)ı̄j . (2.2.36)

Using this rule, we can rewrite (2.2.20) as

Aa(v)βãiai(u) = βãiai(u)Rtãia(u− v)Rtaia(−u− v − ρ)Aa(v)

+
βãiai(v)

u− v
QãiaR

t
aia(−u− v − ρ)Aa(u)

∓ βãiai(v)

u+ v + ρ
QãiaQaiaD

t
a(u),

where the identities X1 = P12X2P12 and Q12X1 = Q12X
t
2 have been used. From here, the symmetry

relation (2.2.24) may be used to obtain

Aa(v)βãiai(u) = βãiai(u)Rtãia(u− v)Rtaia(−u− v − ρ)Aa(v)

+
βãiai(v)

u− v
QãiaR

t
aia(−u− v − ρ)Aa(u)

∓ βãiai(v)

u+ v + ρ
QãiaQaia

(
p(−u− ρ)Aa(−u− ρ)± Aa(u)

2u+ ρ

)
.
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We note that

Rtaia(−u− v − ρ)

u− v
− Qaia

(2u+ ρ)(u+ v + ρ)
=

1

u− v

(
I +

(
1− u− v

2u+ ρ

)
Qaia

u+ v + ρ

)
=
Rt(−2u− ρ)

u− v
.

Following these manipulations, we obtain

Aa(v)βãiai(u) = βãiai(u)Rtãia(u− v)Rtaia(−u−v−ρ)Aa(v)

+
βãiai(v)

u− v
QãiaR

t
aia(−2u− ρ)Aa(u)

∓ p(−u− ρ)

u+ v + ρ
βãiai(v)QãiaQaiaAa(−u− ρ), (2.2.37)

as required.

This relation (2.2.35) is convenient as it does not feature the D operator, so the relation can

be used repeatedly in the presence of multiple creation operators. However, to obtain the most

convenient form of (2.2.35), we must consider the action of p(v)Aa(v) + p(−v − ρ)Aa(−v − ρ) on

βãiai(u) rather than of Aa(v) alone (the motivation for this construction will be explained in Section

2.2.8). Introduce the following notation for a symmetrised combination of functions or operators,

{f(v)}v := f(v) + f(−v − ρ). (2.2.38)

Lemma 2.2.8. The following identity holds:

{p(v)Aa(v)}v βãiai(u) (2.2.39)

= βãiai(u)
{
p(v)Rtãia(u− v)Rtaia(−u− v − ρ)Aa(v)

}v
+

1

p(u)

{
p(v)

u− v
βãiai(v)

}v
Res
w→u

[ {
p(w)Rtãia(u− w)Rtaia(−u− w − ρ)Aa(w)

}w ]
.

(2.2.40)

Proof. Starting from (2.2.35), multiplying by p(v) and symmetrising using (2.2.38), we obtain

{p(v)Aa(v)}v βãiai(u) = βãiai(u)
{
Rtãia(u− v)Rtaia(−u− v − ρ)p(v)Aa(v)

}v
+

{
p(v)

u− v
βãiai(v)

}v
QãiaR

t
aia(−2u− ρ)Aa(u)

∓ p(−u− ρ)

{
p(v)

u+ v + ρ
βãiai(v)

}v
QãiaQaiaAa(−u− ρ). (2.2.41)

We will show that this is equivalent to (2.2.39) term by term, separating the terms by the parameter

carried by Aa(·). Note that the term containing Aa(v) is already the same in both (2.2.39) and

(2.2.41). For the remaining terms, containing Aa(u) and Aa(−u− ρ), we will work backwards from
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(2.2.39). Let

U =
1

p(u)

{
p(v)

u− v
βãiai(v)

}v
Res
w→u

[ {
p(w)Rtãia(u− w)Rtaia(−u− w − ρ)Aa(w)

}w ]
.

Furthermore, expand the symmetriser inside the residue so that U = U+ + U−, where

U+ =
1

p(u)

{
p(v)

u− v
βãiai(v)

}v
Res
w→u

[
p(w)Rtãia(u− w)Rtaia(−u− w − ρ)Aa(w)

]
,

U− =
1

p(u)

{
p(v)

u− v
βãiai(v)

}v
Res
w→u

[
p(−w − ρ)Rtãia(u+ w + ρ)Rtaia(w − u)Aa(−w − ρ)

]
.

Focussing first on U+, we evaluate the residue to obtain

U+ =

{
p(v)

u− v
βãiai(v)

}v
QãiaR

t
aia(−2u− ρ)Aa(u).

This now matches the term containing Aa(u) in (2.2.41). It remains to show that U− is equal to

the term containing Aa(−u− ρ) in (2.2.41). Again evaluating the residue, we obtain

U− = −
{
p(v)

u− v
βãiai(v)

}v p(−u− ρ)

p(u)
Rtãia(2u+ ρ)QaiaAa(−u− ρ)

= −
{
p(v)

u− v

(
βãiai(v)Qaia − βãiai(v)

QãiaQaia
2u+ ρ

)}v p(−u− ρ)

p(u)
Aa(−u− ρ).

We now apply the symmetry relation (2.2.29), so

U− = −
{
p(v)

u− v

(
± p(−v − ρ)βãiai(−v − ρ) +

βãiai(v)

2v + ρ
− βãiai(v)

2u+ ρ

)}v
× p(−u− ρ)

p(u)
Qã1aQaiaAa(−u− ρ).

Since it lies within the symmetriser, the term containing βãiai(−v − ρ) can be rewritten in terms

of βãiai(v) to obtain

U− = −
{(
± p(−v − ρ)

u+ v + ρ
+

1

u− v

(
1

2v + ρ
− 1

2u+ ρ

))
p(v)βãiai(v)

}v
× p(−u− ρ)

p(u)
QãiaQaiaAa(−u− ρ).
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All that remains are algebraic manipulations:

U− = −
{(
± p(−v − ρ)

u+ v + ρ
+

2

(2v + ρ)(2u+ ρ)

)
p(v)βãiai(v)

}v p(−u− ρ)

p(u)
Qã1aQaiaAa(−u− ρ)

= −
{(
± 1− 1

2v + ρ
+

2u+ 2v + 2ρ

(2v + ρ)(2u+ ρ)

)
p(v)

u+ v + ρ
βãiai(v)

}v
× p(−u− ρ)

p(u)
Qã1aQaiaAa(−u− ρ)

= −
{(
± 1 +

1

2u+ ρ

)
p(v)

u+ v + ρ
βãiai(v)

}v p(−u− ρ)

p(u)
Qã1aQaiaAa(−u− ρ)

= ∓p(−u− ρ)

{
p(v)

u+ v + ρ
βãiai(v)

}v
Qã1aQaiaAa(−u− ρ).

This matches the term containing Aa(−u− ρ) in (2.2.41) and completes the proof.

2.2.6 The AB exchange relation for multiple excitations

We want to move {p(v)Aa(v)}v through the operator βã1a1...ãmam(u). Each time {p(v)Aa(v)}v is

moved through one of the excitations βãiai(ui) using (2.2.35), we obtain a term, where the parameter

v of {p(v)Aa(v)}v is unchanged. We will call this term the wanted term. All the additional terms

will be called the unwanted terms; we will denote them by UWT and consider their exact form in

Section 2.2.11. Focussing on the wanted term at each step, {p(v)Aa(v)}v accrues R-matrices as it

moves through the excitations. In the following Lemma, we will show that these R-matrices may

be moved through those appearing in the operator βã1a1...ãmam(u).

Lemma 2.2.9. The following exchange relation holds(
i−1∏
k=1

Rtãka(uk − v)

)(
i−1∏
l=1

Rtala(−ul − v − ρ)

)
Aa(v)βãiai(ui)

1∏
j=i−1

Raj ãi(−uj − ui − ρ)

= βãiai(ui)

(
1∏

j=i−1

Raj ãi(−uj − ui − ρ)

)(
i∏

k=1

Rtãka(uk − v)

)(
i∏
l=1

Rtala(−ul − v − ρ)

)
Aa(v)

+ UWT.

Proof. We begin by using (2.2.35) and focus on the wanted terms only:(
i−1∏
k=1

Rtãka(uk − v)

)(
i−1∏
l=1

Rtala(−ul − v − ρ)

)
Aa(v)βãiai(ui)

1∏
j=i−1

Raj ãi(−uj − ui − ρ)

=

(
i−1∏
k=1

Rtãka(uk − v)

)(
i−1∏
l=1

Rtala(−ul − v − ρ)

)
βãiai(ui)R

t
ãia(ui − v)

×Rtaia(ui − v)Aa(v)
1∏

j=i−1

Raj ãi(−uj − ui − ρ) + UWT
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yielding

βãiai(ui)

(
i−1∏
k=1

Rtãka(uk − v)

)(
i−1∏
l=1

Rtala(−ul − v − ρ)

)
Rtãia(ui − v)

×

(
1∏

j=i−1

Raj ãi(−uj − ui − ρ)

)
Rtaia(ui − v)Aa(v) + UWT.

All that remains is to rearrange the product of R-matrices in the centre of the expression. The

matrices can be reordered using the Yang-Baxter equation

Rtai−1a(−ui−1 − v − ρ)Rtãia(ui − v)Rai−1ãi(−ui−1 − ui − ρ)

= Rai−1ãi(−ui−1 − ui − ρ)Rtãia(ui − v)Rtai−1a(−ui−1 − v − ρ).

Thus the product of R-matrices becomes(
i−1∏
l=1

Rtala(−ul − v − ρ)

)
Rtãia(ui − v)

(
1∏

j=i−1

Raj ãi(−uj − ui − ρ)

)

=

(
i−2∏
l=1

Rtala(−ul − v − ρ)

)
Rai−1ãi(−ui−1 − ui − ρ)Rtãia(ui − v)

×Rtai−1a(−ui−1 − v − ρ)

(
1∏

j=i−2

Raj ãi(−uj − ui − ρ)

)

= Rai−1ãi(−ui−1 − ui − ρ)

(
i−2∏
l=1

Rtala(−ul − v − ρ)

)
Rtãia(ui − v)

×

(
1∏

j=i−2

Raj ãi(−uj − ui − ρ)

)
Rtai−1a(−ui−1 − v − ρ)

=

(
1∏

j=i−1

Raj ãi(−uj − ui − ρ)

)
Rtãia(ui − v)

(
i−1∏
l=1

Rtala(−ul − v − ρ)

)
,

where the last equality is achieved by inductively applying the same argument. Putting this to-

gether, and noting that the Rt-matrices all commute with the R-matrices, we arrive to(
i−1∏
k=1

Rtãka(uk − v)

)(
i−1∏
l=1

Rtala(−ul − v − ρ)

)
Aa(v)βãiai(ui)

1∏
j=i−1

Raj ãi(−uj − ui − ρ)

= βãiai(ui)

(
1∏

j=i−1

Raj ãi(−uj − ui − ρ)

)(
i∏

k=1

Rtãka(uk − v)

)(
i∏
l=1

Rtala(−ul − v − ρ)

)
Aa(v)

+ UWT

as required.

54



Applying this result to the product of m such excitations in (2.2.31) yields

Aa(v)βã1a1...ãmam(u)

= βã1a1...ãmam(u)

(
m∏
k=1

Rtãka(uk − v)

)(
m∏
l=1

Rtala(−ul − v − ρ)

)
Aa(v) + UWT.

We define the matrix on the right side to be the nested monodromy matrix,

Ta(v;u) :=

(
m∏
k=1

Rtãka(uk − v)

)(
m∏
l=1

Rtala(−ul − v − ρ)

)
Aa(v). (2.2.42)

Its matrix entries will be denoted by tij(v;u). The matrix Ta(v;u) allows us to write the above

identity more compactly,

Aa(v)βã1a1...ãmam(u) = βã1a1...ãmam(u)Ta(v;u) + UWT,

which leads to the following result.

Corollary 2.2.10. The AB exchange relation for the creation operator of multiple excitations has

the form

{p(v)Aa(v)}v βã1a1...ãmam(u) = βã1a1...ãmam(u) {p(v)Ta(v;u)}v + UWT.

2.2.7 Exchange relations for the nested monodromy matrix

In this section we introduce a vector space M ′, called the nested vacuum sector, on which the nested

monodromy matrix T (v;u) satisfies the usual RTT relation. This allows us to identify T (v;u) as

the monodromy matrix for a residual Y (gln)-system. The space M ′ is then interpreted as the full

quantum space of this residual system.

We start by introducing certain subspaces of the evaluation modules M(µ) and L(λ(i))ci that

will be building blocks of the space M ′. Denote by M0(µ) the subspace of the evaluation module

M(µ) of the twisted Yangian Y ±ρ (gl2n) consisting of vectors annihilated by the operator C(u) of

the matrix S(u), namely

M0(µ) := {ζ ∈M(µ) : cij(u)ζ = 0 for 1 ≤ i, j ≤ n}.

The subspace M0(µ) corresponds to the natural embedding gln ⊂ g2n with g2n = so2n or sp2n

(generated by Fij with 1 ≤ i, j ≤ n, viz. (1.2.18-1.2.19)) and is an irreducible gln-representation

with highest weight µ = (µ1, . . . , µn). The space M0(µ) is stable under the action of the operator

A(u) of the matrix S(u). Moreover, A(u) satisfies the usual RTT relation on this space. Indeed,

applying equality (2.2.23) to M0(µ) yields C1(v)A2(u)M0(µ) = 0. Applying (2.2.22) instead we

obtain

R(u− v)A1(u)A2(v)ζ = A2(v)A1(u)R(u− v)ζ
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for all ζ ∈M0(µ). We thus have the following.

Lemma 2.2.11. The mapping

Y (gln)→ Y ±ρ (gl2n), T (u) 7→ A(u)

equips the space M0(µ) with a structure of a lowest weight Y (gln)-module with the lowest weight

given by (2.2.5).

Note that the operator A(u) of the matrix S(u) acts on the space M0(µ) via the Lax operator

L±,0(u) :=
n∑

i,j=1

eij ⊗ (δij − Fji(u+ (ρ± 1)/2)−1), (2.2.43)

which is the restriction of L±(u) defined in (2.2.8) to the operator A(u).

Next, we denote by L0(λ(k))ck the subspace of the evaluation module L(λ(k))ck of Y (gl2n)

consisting of vectors annihilated by the operator C(u) of the matrix T (u), namely

L0(λ(k))ck := {ζ ∈ L(λ(k))ck : cij(u)ζ = 0 for 1 ≤ i, j ≤ n}. (2.2.44)

The subspace L0(λ(k))ck corresponds to the natural embedding gln ⊕ gln ⊂ gl2n (generated by

Eij with 1 ≤ i, j ≤ n and n < i, j ≤ 2n) and is isomorphic to a tensor product of irreducible

gln-representations L(λ′ (k))⊗L(λ′′ (k)) with the highest weights λ′ (k) = (λ
(k)
1 , . . . , λ

(k)
n ) and λ′′ (k) =

(λ
(k)
n+1, . . . , λ

(k)
2n ). Indeed, applying equality (2.2.17) to L0(λ(k))ck yields C1(u)A2(v)L0(λ(k))ck = 0.

Applying (2.2.18) instead we obtain C1(u)D2(v)L0(λ(k))ck = 0. Moreover, applying (2.2.19) to

L0(λ(i))ci we get [D1(u), A2(v)]L0(λ(k))ck = 0. This, together with (2.2.14) and (2.2.16), implies

the following.

Lemma 2.2.12. Each of the mappings

Y (gln)→ Y (gl2n), T (u) 7→ A(u) and T (u) 7→ D(u)

is a homomorphism of algebras. Moreover, these mappings equip the spaces L(λ′ (k)) and L(λ′′ (k))

with a structure of a lowest weight Y (gln)-module with the lowest weight given by λ
′ (k)
k (u) = λ

(k)
k (u)

and λ
′′ (k)
k (u) = λ

(k)
n+k(u), respectively, for 1 ≤ k ≤ n.

Denote the corresponding Y (gln)-modules by L0(λ′ (k))ck and L0(λ′′ (k))ck , respectively. The

operator A(u) of the matrix T (u) of Y (gl2n) acts on the space L0(λ′′ (k))ck as the identity operator,

and on the space L0(λ′ (k))ck via the restriction of the Lax operator ,

L0(u− ck) :=
n∑

i,j=1

eij ⊗ (δij − Eji(u− ck)−1). (2.2.45)

Likewise, the operator Dt(u) of the transposed matrix T t(u) acts on the space L0(λ′ (k))ck as the
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identity operator, and on the space L0(λ′′ (k))ck via the transposed Lax operator (L0(u− ck))t.
We are now ready to introduce the vacuum sector M0 ⊂M by

M0 := L0(λ(1))c1 ⊗ · · · ⊗ L0(λ(`))c` ⊗M
0(µ). (2.2.46)

Lemma 2.2.13. The space M0 is stable under the action of the operator A(u) of the matrix S(u).

Proof. We start by showing that operator C(u) of the matrix S(u) annihilates the space M0:

cij(v) ·M0 = 0. We use induction on `. For ` = 0 we have M0 = M0(µ) and cij(v)M0(µ) = 0, by

definition (2.2.46). For any ` ≥ 1 denote M (`−1) := L0(λ(1))c1 ⊗ · · · ⊗ L0(λ(`−1))c`−1
⊗M0(µ). Let

ζ ∈ M (`−1) and ζ ′ ∈ L0(λ(`))c` be any nonzero vectors. Using (2.2.4) and the notation (2.2.9) we

find

cij(u) · (ζ ′ ⊗ ζ) =
n∑

k,l=1

(
cik(u)d̄ l̄(−u− ρ)ζ ′ ⊗ akl(u) · ζ ± cik(u)c̄ l̄(−u− ρ)ζ ′ ⊗ bkl(u) · ζ

+ dik(u)d̄ l̄(−u− ρ)ζ ′ ⊗ ckl(u) · ζ ± dik(u)c̄ l̄(−u− ρ)ζ ′ ⊗ dkl(u) · ζ
)

=
n∑

k,l=1

(
cik(u)d̄ l̄(−u− ρ)ζ ′ ⊗ akl(u) · ζ + dik(u)d̄ l̄(−u− ρ)ζ ′ ⊗ ckl(u) · ζ

)
,

by definition (2.2.44); here we used the notation ı̄ = n − i + 1. Assuming induction, ckl(u)ζ = 0.

Finally, by (2.2.18) and (2.2.44), we have that

cik(u)d̄ l̄(−u− ρ)ζ ′ = d̄ l̄(−u− ρ)cik(u)ζ ′ = 0.

Hence cij(u) · (ζ ′ ⊗ ζ) = 0, as required. Next, we need to show that aij(u) ·M0 ⊆ M0[u−1]. The

base case is given by Lemma 2.2.11. For ` ≥ 1 we have

aij(u) · (ζ ′ ⊗ ζ) =
n∑

k,l=1

(
aik(u)d̄ l̄(−u− ρ)ζ ′ ⊗ akl(u) · ζ ± aik(u)c̄ l̄(−u− ρ)ζ ′ ⊗ bkl(u) · ζ

+ bik(u)d̄ l̄(−u− ρ)ζ ′ ⊗ ckl(u) · ζ ± bik(u)c̄ l̄(−u− ρ)ζ ′ ⊗ dkl(u) · ζ
)

=
n∑

k,l=1

aik(u)d̄ l̄(−u− ρ)ζ ′ ⊗ akl(u) · ζ,

by definition (2.2.44) and the result above. Assuming induction, akl(u) · ζ ∈ M (`−1)[u−1] and, by

Lemma 2.2.12, aik(u)d̄ l̄(−u−ρ)ζ ′ ∈ L0(λ(`))c` [u
−1]. Hence aij(u) ·(ζ ′⊗ζ) ∈M0[u−1]. This proves

the claim.

The last ingredients we will need are the auxiliary spaces Vãi and Vai . They are vector repre-

sentations of gln of weight λ(ãi) = λ(ai) = (1, 0, . . . , 0). Denote by Lt(λ)c the evaluation module of

Y (gln) obtained from the gln-representation L(λ) by composing the evaluation map evc in (1.2.10)

with the algebra automorphism T (u) → T t(−u). The spaces Vãi and Vai can thus be viewed as

evaluation modules Lt(λ(ãi))−ui and Lt(λ(ai))ui of Y (gln), respectively, with the lowest weights
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given by

λ
(ãi)
j (u) = λ

(ai)
j (u) = 1 for 1 ≤ j ≤ n− 1 and

λ(ãi)
n (v) =

v − ui + 1

v − ui
, λ(ai)

n (v) =
v + ui + 1

v + ui
.

(2.2.47)

In particular, the matrix Ta(v) of Y (gln) acts on the space Lt(λ(ãi))−ui as Rtaãi(ui − v) and on the

space Lt(λ(ai))ui as Rtaai(−ui − v); here note that Rtab(u) = Rtba(u).

We define the nested vacuum sector as a tensor product the auxiliary spaces and the vacuum

sector M0:

M ′ := W ⊗M0, W = Vã1 ⊗ · · · ⊗ Vãm ⊗ Va1 ⊗ · · · ⊗ Vam . (2.2.48)

Proposition 2.2.14. Let T (v) be the generating matrix of Y (gln). Then the mapping

Y (gln)→ End(W )⊗ Y ±ρ (gl2n), T (v) 7→ T (v;u)

equips the space M ′ with the structure of a lowest weight Y (gln)-module with the lowest weight given

by

λi(v;u) = λi(u)λ2n−i+1(−u)µi(u)

m∏
j=1

λ
(aj)
i (v)λ

(ãj)
i (v) (2.2.49)

for 1 ≤ i ≤ n with λi(v) defined in (2.1.2), µi(v) in (2.2.5) and λ
(aj)
i (v), λ

(ãj)
i (v) in (2.2.47).

Proof. It follows from the definition (2.2.42) and Lemma 2.2.13, that the space M ′ is stable under

the action of Ta(v;u). Moreover, for any ζ ∈M ′, we have that

Rab(v − w)Ta(v;u)Tb(w;u) · ζ = Tb(w;u)Ta(v;u)Rab(v − w) · ζ.

Indeed, we can interleave the matrices on the l.h.s. of the equality above, then use the transposed

Yang-Baxter equation to reorder the product of matrices:

Rab(v − w)Ta(v;u)Tb(w;u)

= Rab(v − w)

(
m∏
k=1

Rtãka(uk − v)Rtãkb(uk − w)

)(
m∏
l=1

Rtala(−ul − v)Rtalb(−ul − w)

)
Aa(v)Ab(w)

=

(
m∏
k=1

Rtãkb(uk − w)Rtãka(uk − v)

)(
m∏
l=1

Rtalb(−ul − w)Rtala(−ul − v)

)
Rab(v − w)Aa(v)Ab(w).

From here we use (2.2.22) to obtain the result, plus additional terms. However, C(u) appears as

the rightmost operator acting nontrivially on M0 ⊂ M ′ in each of these additional terms. Since

C(u) annihilates all vectors in M0, these additional terms vanish. Its lowest vector is

η := eã1 ⊗ · · · ⊗ eãm ⊗ ea1 ⊗ · · · ⊗ eam ⊗ η1 ⊗ · · · ⊗ η` ⊗ ξ, (2.2.50)

where ξ is a lowest vector of M0(µ), each ηi is a lowest vector of L(λ(i))0
ci for 1 ≤ i ≤ `, and each
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eãi (resp. eai) is a lowest vector of Vãi (resp. Vai) for 1 ≤ i ≤ m (viewed as an evaluation module

Lt(λ(ãi))−ui (resp. Lt(λ(ai))−ui)). Finally, acting with tii(v;u) on η for 1 ≤ i ≤ n and using (2.1.2),

(2.2.5) and (2.2.47) yields (2.2.49).

Remark 2.2.15. (i) Recall that L0(λ(i))ci
∼= L0(λ′ (i))ci ⊗L0(λ′′ (i))ci with A(u) (resp. Dt(u)) acting

non-trivially on the first (resp. second) tensorand only. We may thus rewrite the space M0 as

M0 ∼= L0(λ′ (1))c1 ⊗ · · · ⊗ L0(λ′ (`))c` ⊗M
0(µ)⊗ L0(λ′′ (`))c` ⊗ · · · ⊗ L

0(λ′′ (1))c1 .

By Proposition 2.2.14, we may view this space as a lowest weight Y (gln)-module. Provided the

binary property holds, it is an irreducible Y (gln)-module, see Theorem 6.5.8 in [Mo07]. (ii) Enu-

merate the tensorands of M0 above by 1, 2, . . . , 2`, 2` + 1. Then the matrix Ta(v;u) acts on the

space M ′ = W ⊗M0 via the operator(
m∏
k=1

Rtaãk(uk − v)

)(
m∏
l=1

Rtaal(−ul − v − ρ)

)

×

(∏̀
i=1

L0
ai(u− ci)

)
L±0
a,`+1(µ)

(
1∏
i=`

(
L0
a,2`−i+1(−u− ρ− ci)

)t)
,

where the Lax operators are those defined in (2.2.45) and (2.2.43).

We end this section with one more technical result which will assist us in finding the explicit

expressions of the unwanted terms in Section 2.2.11.

Lemma 2.2.16. The following identities hold:

Řaiai+1(ui − ui+1)Ř−1
ãiãi+1

(ui − ui+1)tkl(w;u) = tkl(w;ui↔i+1)Řaiai+1(ui − ui+1)Ř−1
ãiãi+1

(ui − ui+1).

Řaiai+1(ui − ui+1)Ř−1
ãiãi+1

(ui − ui+1)η = η.

Proof. The first identity is achieved by moving the Ř-matrices through each matrix in the definition

of the nested monodromy matrix. Indeed, the Ř-matrices each commute with all but a pair of

adjacent R-matrices in (2.2.42), for which we use the Yang Baxter equations,

Řaiai+1(ui − ui+1)Rtaia(−ui − v)Rtai+1a(−ui+1 − v)

= Rtaia(−ui+1 − v)Rtai+1a(−ui − v)Řaiai+1(ui − ui+1),

Ř−1
ãiãi+1

(ui − ui+1)Rtãia(ui − v)Rtãi+1a(ui+1 − v) = Rtãia(ui+1 − v)Rtãi+1a(ui − v)Ř−1
ãiãi+1

(ui − ui+1),

and the result follows.

To see why the second identity is true, notice that the lowest weight vector η (2.2.50) is an

eigenvector of Paiai+1 , and therefore also of Řaiai+1(ui − ui+1). This is true also for Pãiãi+1 . Thus,

acting with both Řaiai+1(ui − ui+1) and Ř−1
ãiãi+1

(ui − ui+1), the eigenvalues cancel, which gives the

result.
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2.2.8 The twisted Yangian spin chain and transfer matrix

We are now ready to consider the nested algebraic Bethe ansatz for a one-dimensional spin chain

with open boundary conditions and having twisted Yangian Y ±ρ (gl2n) as its underlying symmetry.

The full quantum space is the lowest weight Y ±ρ (gl2n)-module M defined in (2.2.6):

M = L(λ(1))c1 ⊗ L(λ(2))c2 ⊗ · · · ⊗ L(λ(`))c` ⊗M(µ).

The generating matrix S(u) of Y ±ρ (gl2n) acts on this space via a product of Lax operators (2.2.7):

Sa(v) ·M =

(∏̀
i=1

Lai(v − ci)

)
L±a,`+1(v)

(
1∏
i=`

Ltai(−v − ρ− ci)

)
M.

Taking the trace of the generating matrix we obtain a double-row transfer matrix

τ(v) := tr S(v) = trA(v) + trD(v) = trA(v) + trDt(v). (2.2.51)

One can show using the usual methods that [τ(u), τ(v)] = 0; see Section 2 in [ACDFR06], also

[Sk88]. We seek an eigenvector of Ψ ∈ M of τ(v), which we will refer to as the Bethe vector. The

problem of finding an eigenvector of the transfer matrix (2.2.51) can be substantially simplified

with the help of the symmetry relation (2.2.24) which allows us to write the transfer matrix τ(v)

in a symmetric form

τ(v) = p(v) trA(v) + p(−v − ρ) trA(−v − ρ) = {p(v) trA(v)}v,

where p(v) is given by (2.2.27). Here we used the notation introduced in (2.2.38). It will therefore

be sufficient to focus on the action of A(v), without needing to consider D(v).

The last ingredient we will need is the nested transfer matrix, see (2.2.42):

t(v;u) := trT (v;u).

It will play the role of τ(v) at the nested level of the ansatz. Since we will only consider the action

of T (v;u) on a finite-dimensional vector space, we can thus specialize the parameters ui of m-tuple

u to nonzero complex numbers. Hence we will further assume that u ∈ Cm is an m-tuple of distinct

nonzero complex numbers.

Remark 2.2.17. Open spin chains of this type, with “soliton non-preserving” open boundary condi-

tions, were first considered in [Do00], where a construction of a Hamiltonian with local interactions

is also given. To specialise to this case, we first choose the number of sites ` to be even, and choose

the weights λ(2i−1) = (1, 0, . . . , 0) and λ(2i) = (0, 0, . . . ,−1), arriving at the “alternating chain”

of fundamental and anti-fundamental sites. We also choose the one-dimensional representation of

so2n or sp2n for the boundary site M(µ). Finally, we fix ρ = −n, and set each of the shifts ci to be

zero. The resulting Hamiltonian contains interactions with a range no further than the four nearest
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sites.

2.2.9 Bethe vector for a single excitation

To introduce the nesting technique, we start by constructing the Bethe vector with a single exci-

tation, i.e., m = 1, as this case allows us to expose the main idea of our approach while keeping

the technical difficulties to the minimum; for example, in this case we find the unwanted terms

without additional computations. Recall the definition of the vacuum sector M0 (2.2.46) and the

nested vacuum sector M ′ (2.2.48). For m = 1 we have M ′ = Vã1 ⊗ Va1 ⊗M0. Let Φ ∈ M ′, which

we will refer to as the nested Bethe vector. The vector Φ may depend on u ∈ C, hence we will

write Φ = Φ(u). Using the creation operators defined in Definition 2.2.3, we write an ansatz for

the Bethe vector with a single excitation

Ψ(u) := βã1a1(u) · Φ(u) ∈M. (2.2.52)

We now compute the action of the transfer matrix τ(v) on this Bethe vector. Using Lemma 2.2.8

we have

τ(v) ·Ψ(u)

= {p(v) trA(v)}v βã1a1(u) · Φ(u)

= βã1a1(u) tra

({
p(v)Rtã1a(u− v)Rta1a(−u− v − ρ)Aa(v)

}v ) · Φ(u)

+
1

p(u)

{
p(v)

u− v
βã1a1(v)

}v
Res
w→u

tra

({
p(w)Rtã1a(u− w)Rta1a(−u− w − ρ)Aa(w)

}w ) · Φ(u)

= βã1a1(u) {p(v)t(v;u)}v · Φ(u)

+
1

p(u)

{
p(v)

u− v
βã1a1(v)

}v
Res
w→u

{p(w)t(w;u)}w · Φ(u). (2.2.53)

The first term in the r.h.s. of the equality above is the wanted term, as the parameter carried by

βã1a1(u) is unchanged. The second term has βã1a1(v) and is the unwanted term, which we will

require to vanish.

Let us now make the additional requirement, which we will justify later, that vector Φ(u) is an

eigenvector of the nested transfer matrix t(v;u) with an eigenvalue Γ(v;u):

t(v;u) · Φ(u) = Γ(v;u)Φ(u). (2.2.54)

This allows us to rewrite (2.2.53) as

τ(v) ·Ψ(u) = {p(v)Γ(v;u)}v Ψ(u) +
1

p(u)
Res
w→u

{p(w)Γ(w;u)}w
{
p(v)

u− v
βã1a1(v)

}v
· Φ(u)

= Λ(v;u)Ψ(u) + Res
w→u

Λ(w;u)
1

p(u)

{
p(v)

u− v
βã1a1(v)

}v
· Φ(u),
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where Λ(v;u) := {p(v)Γ(v;u)}v. We thus conclude that Φ(u) is an eigenvector of τ(v) with eigen-

value Λ(v;u) if

Res
w→u

Λ(w;u) = 0.

This is the Bethe equation for u, solutions of which, by (2.2.52), give a set of possible eigenvectors

of τ(v).

It remains to find a nested Bethe vector Φ(u) satisfying (2.2.54): we seek an eigenvector Φ(u) ∈
M ′ of t(v;u). By Proposition 2.2.14, the nested monodromy matrix Ta(v;u) and the nested vacuum

sector M ′ form a Y (gln)-system. The spectral problem of this system can be solved by means of

the usual nested algebraic Bethe ansatz presented in [KR83], which we have recalled in detail in

Appendix 2.1. For example, the ansatz for Φ(u) has the form

Φ(u) = Φ(u′;u) := B′a′1
(u′1) · · ·B′a′

m′
(u′m′) · Φ′(u′;u),

where u′ = (u′1, . . . , u
′
m′) ∈ Cm′ and B′a′j

(u′j) are creation operators taken from the Ta(v;u). Con-

tinuing this nesting procedure, we obtain an eigenvector Φ(u;u′) with eigenvalue, see (2.1.27),

Γ(v;u) = λ1(v;u)

m′∏
i=1

v − u(1)
i + 1

v − u(1)
i

+ λn(v;u)

m(n−1)∏
i=1

v − u(n−1)
i − 1

v − u(n−1)
i

+
n−1∑
k=2

λk(v;u)
m(k−1)∏
i=1

v − u(k−1)
i − 1

v − u(k−1)
i

m(k)∏
j=1

v − u(k)
j + 1

v − u(k)
j

,

where λk(v;u) are given by (2.2.14) and the u
(k)
i with 1 ≤ k ≤ n− 1 are parameters introduced at

level k of nesting when diagonalizing the gln-symmetric periodic spin chain. These parameters are

fixed to be solutions of their respective Bethe equations, given in (2.1.28).

The boundary eigenvalue Λ(v;u) and Bethe equation for u can then be found by substituting the

values for λk(v;u) from (2.2.49) into the above expression. These are given explicitly for multiple

excitations by Theorem 2.2.18 in Section 2.2.12.

2.2.10 Bethe vector for multiple excitations

For multiple excitations the argument proceeds similarly to the previous section. Recall that m ∈ N
is the excitation number and u ∈ Cm is an m-tuple of distinct nonzero complex parameters. Let Φ,

the nested Bethe vector, be a vector from the lowest weight Y (gln)-module M ′ defined in (2.2.48):

Φ ∈M ′ = Vã1 ⊗ · · · ⊗ Vãm ⊗ Va1 ⊗ · · · ⊗ Vam ⊗M0.

The vector Φ may also depend on the parameters u, and we will write Φ = Φ(u). From the nested

Bethe vector, we make the following ansatz for the full Bethe vector:

Ψ(u) := βã1a1...ãmam(u) · Φ(u) ∈M. (2.2.55)
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We now act with the transfer matrix τ(v) on this Bethe vector. Using Corollary 2.2.10 we find

τ(v) ·Ψ(u) = βã1a1...ãmam(u) {p(v)t(v;u)}v · Φ(u) + UWT.

The unwanted terms UWT are less simple than in the m = 1 case, and will be discussed in detail in

the section below. With the expectation that the u may be chosen such that the unwanted terms

vanish, the Bethe vector Φ(u) will be an eigenvector of τ(v) if we take the additional requirement,

as for m = 1, that

t(v;u) · Φ(u) = Γ(v;u)Φ(u). (2.2.56)

We therefore seek an eigenvector Φ(u) ∈M ′ of t(v;u). This is found again by the algebraic Bethe

ansatz for Y (gln) with the full quantum space M ′ and monodromy matrix T (v;u), precisely as

given in Section 2.1.

From here, proceeding as we did in the m = 1 case, we have that

τ(v) ·Ψ(u) = Λ(v;u)Ψ(u) + UWT, where Λ(v;u) = {p(v)Γ(v;u)}v . (2.2.57)

2.2.11 Dealing with unwanted terms

In this section, we will find an exact expression for the unwanted terms from the action of τ(v) on

the Bethe vector and, by setting these terms to zero, we will obtain the Bethe equations.

We begin by introducing some notation for the unwanted terms. Let U(v;u) denote the terms

initially excluded from the expression in

τ(v)βã1a1...ãmam(u) = βã1a1...ãmam(u) {p(v)t(v;u)}v + U(v;u).

To find an expression for U(v;u), begin by acting on βã1a1...ãmam(u). By repeated applications of

(2.2.39), as in Lemma 2.2.9, we may move Aa(·) through each of the remaining creation operators

in βã1a1...ãmam(u), generating a sum of terms in which the rightmost operator is a matrix element

of Aa(u) for u ∈ {v, u1, . . . , um,−v − ρ,−u1 − ρ, . . . ,−um − ρ}. To find a more concise expression

for U(v;u), it will be useful to partition the terms by the parameter appearing in Aa(·). Let B
denote the subalgebra of Y ±ρ (gl2n) generated by coefficients of bij(u) for 1 ≤ i, j ≤ n, the closure

of which is guaranteed by (2.2.21). Then

U(v;u) =
m∑
j=1

(
U+,j(v;u) + U−,j(v;u)

)
,

where

U+,j(v;u) =

n∑
k,l=1

B+,j,klakl(uj), U−,j(v;u) =

n∑
k,l=1

B−,j,klakl(−uj − ρ)

for some B±,j,kl ∈ B ⊗ (Cn)⊗2m. Additionally, let us define Uj(v;u) := U+,j(v;u) + U−,j(v;u).

We will now proceed to find U1(v;u) using the standard techniques. Indeed, consider moving τ(v)
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through only the first creation operator. From (2.2.39),

τ(v)βã1a1...ãmam(u)

=

(
βã1a1(u1) tra

{
p(v)Rtã1a(u1 − v)Rta1a(−u1 − v − ρ)Aa(v)

}v
+

1

p(u1)

{
p(v)

u1 − v
βã1a1(v)

}v
Res
w→u1

tra
{
p(w)Rtã1a(u1 − w)Rta1a(−u1 − w − ρ)Aa(w)

}w )
×

m∏
i=2

(
βãiai(ui)

1∏
j=i−1

Raj ãi(−uj − ui − ρ)
)
.

We focus on the second term here, which, upon taking the residue, contains Aa(u1) and Aa(−u1−ρ).

As all the entries of the m-tuple u are distinct, all contributions to U1(v;u) must originate from

moving Aa(u1) and Aa(−u1 − ρ) through the remaining creation operators without any further

parameter exchanges. Therefore, by repeated applications of Lemma 2.2.9,

U1(v;u) =
1

p(u1)

{
p(v)

u1 − v
βã1a1(v)

}v m∏
i=2

(
βãiai(ui)

1∏
j=i−1

Raj ãi(−uj−ui−ρ)

)
Res
w→u1

{p(w)t(w;u)}w .

It now remains to find similar expressions for Uj(v;u) for 2 ≤ j ≤ m. Recall Lemma 2.2.6.

By repeatedly applying such transpositions, we may apply an arbitrary permutation to the pa-

rameters u in the m-excitation creation operator. For σ ∈ Sm, let uσ denote the ordered set

(uσ(1), uσ(2), . . . , uσ(m)). Additionally, let σj denote the cyclic permutation σj : (1, 2, . . . ,m) 7→
(j, j + 1, . . . , j − 1). We have

βã1a1...ãmam(u) = βã1a1...ãmam(uσj )Řa1...am [σj ](u)Ř−1
ã1...ãm

[σj ](u)

where Ř[σj ](u) is the product of Ř-matrices that generates this permutation. Using this expression

for βã1a1...ãmam(u) and following the argument above, we obtain an expression for Uk(v;u):

Uk(v;u) =
1

p(uk)

{
p(v)

uk − v
βã1a1(v)

}v m∏
i=2

(
βãiai(uσk(i))

1∏
j=i−1

Raj ãi(−uσk(j) − uσk(i) − ρ)

)
× Res

w→uk
{p(w)t(w;uσk)}w Řa1...am [σk](u)Ř−1

ã1...ãm
[σk](u).

By applying this to the nested Bethe vector, we will obtain an expression for all the unwanted terms

from the action of τ(v) on Ψ(u). Moving the Ř matrices back through the nested transfer matrix

by (2.2.16) allows us to use the fact that the nested Bethe vector is assumed to be an eigenvector
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of the nested transfer matrix. Therefore, summing all these unwanted terms gives

U(v;u) · Φ(u)

=
m∑
k=1

1

p(uk)

{
p(v)

uk − v
βã1a1(v)

}v m∏
i=2

(
βãiai(uσk(i))

1∏
j=i−1

Raj ãi(−uσk(j) − uσk(i) − ρ)

)
× Řa1...am [σk](u)Ř−1

ã1...ãm
[σk](u) Res

w→uk
{p(w)t(w;u)}w · Φ(u)

=
m∑
k=1

1

p(uk)
Res
w→uk

{p(w)Γ(w;u)}w
{

p(v)

uk − v
βã1a1(v)

}v

×
m∏
i=2

(
βãiai(uσk(i))

1∏
j=i−1

Raj ãi(−uσk(j) − uσk(i) − ρ)

)
Řa1...am [σk](u)Ř−1

ã1...ãm
[σk](u) · Φ(u).

The Bethe equations are then extracted by demanding U(v;u) ·Φ(u) = 0. Since each summand is

independent, we obtain

Res
w→uk

{p(w)Γ(w;u)}w = 0 for 1 ≤ k ≤ m

or, more concisely

Res
w→uk

Λ(w;u) = 0 for 1 ≤ k ≤ m. (2.2.58)

2.2.12 Boundary eigenvalues and Bethe equations

From the nested algebraic Bethe ansatz for a Y (gln)-system, we have explicit values for the eigen-

values of the nested system, see (2.1.27),

Γ(v;u) = λ1(v;u)
m(1)∏
i=1

v − u(1)
i + 1

v − u(1)
i

+ λn(v;u)
m(n−1)∏
i=1

v − u(n−1)
i − 1

v − u(n−1)
i

+
n−1∑
k=2

λk(v;u)
m(k−1)∏
i=1

v − u(k−1)
i − 1

v − u(k−1)
i

m(k)∏
i=1

v − u(k)
i + 1

v − u(k)
i

,

where λk(v;u) are given by Proposition 2.2.14. Note that the (i+1)-th level of nesting for Y ±ρ (gl2n)

corresponds to i-th level for Y (gln). The parameters u
(k)
i satisfy the appropriate Bethe equations

of Y (gln) given in (2.1.28). The full eigenvalues Λ(v;u) = {p(v)Γ(v;u)}v of the Bethe vectors, cf.,

(2.2.57), are then obtained by substituting our values for λk(v;u) from (2.2.49). This leads to the

following statement.

Theorem 2.2.18. The eigenvalues of the Bethe vectors for a Y ±ρ (gl2n)-system are given by

Λ(v;u) =

(
1± 1

2v + ρ

)
Γ(v;u) +

(
1∓ 1

2v + ρ

)
Γ(−v − ρ;u), (2.2.59)
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where

Γ(v;u) =

(∏̀
j=1

v − cj − λ(j)
1

v − cj
· v + ρ+ cj + λ

(j)
2n

v + ρ+ cj

)(
m(1)∏
i=1

v − u(1)
i + 1

v − u(1)
i

)(
v + (ρ± 1)/2− µ1

v + (ρ± 1)/2

)

+

(∏̀
j=1

v − cj − λ(j)
n

v − cj
·
v + ρ+ cj + λ

(j)
n+1

v + ρ+ cj

)(
m∏
i=1

v − ui + 1

v − ui
· v + ρ+ ui + 1

v + ρ+ ui

)

×

(
m(n−1)∏
i=1

v − u(n−1)
i − 1

v − u(n−1)
i

)(
v + (ρ± 1)/2− µn
v + (ρ± 1)/2

)

+
n−1∑
k=2

(∏̀
j=1

v − cj − λ(j)
k

v − cj
·
v + ρ+ cj + λ

(j)
2n−k+1

v + ρ+ cj

)

×

(
m(k−1)∏
i=1

v − u(k−1)
i − 1

v − u(k−1)
i

)(
m(k)∏
i=1

v − u(k)
i + 1

v − u(k)
i

)(
v + (ρ± 1)/2− µk
v + (ρ± 1)/2

)
. (2.2.60)

By (2.2.58), the Bethe equations for u are found by demanding that the residue of the eigenvalue

(2.2.59) vanishes at each of the uk with 1 ≤ k ≤ m. Evaluating this residue and using the fact that

the Y ±ρ (gl2n)-system reduces to a Y (gln)-system we obtain the following.

Theorem 2.2.19. The Bethe equations for a Y ±ρ (gl2n)-system are given by (2.1.28) and

uk + (ρ− 1)/2

uk + (ρ+ 1)/2
· uk + (ρ∓ 1)/2 + µn
uk + (ρ± 1)/2− µn

(∏
i 6=k

uk − ui − 1

uk − ui + 1
· uk + ui + ρ− 1

uk + ui + ρ+ 1

)

=

(∏̀
j=1

uk − cj − λ
(j)
n

uk − cj − λ
(j)
n+1

·
uk + ρ+ cj + λ

(j)
n+1

uk + ρ+ cj + λ
(j)
n

)(
m(n−1)∏
i=1

uk + ρ+ u
(n−1)
i

uk + ρ+ u
(n−1)
i + 1

·
uk − u

(n−1)
i − 1

uk − u
(n−1)
i

)
(2.2.61)

for 1 ≤ k ≤ m.

Remark 2.2.20. The condition (2.1.26) is equivalent to the vanishing of the residue of Λ(v;u) in

(2.2.59) at each of the u
(k)
i , which is the expected Bethe equation for a system of equations.

Remark 2.2.21. The eigenvalue Λ(v;u) for a Y ±ρ (gl2n)-system, when the evaluation module M(µ)

of Y ±ρ (gl2n) in (2.2.6) is a one-dimensional, was calculated in [ACDFR06] by means of the analytical

Bethe ansatz. By shifting the roots of the equations and including the assumption that the roots

come in pairs, one can recover the eigenvalue found in [ACDFR06] from (2.2.60) and (2.2.59).

2.2.13 A trace formula for the Bethe vectors

Recall the trace formula for the Bethe vectors for the closed gln-symmetric spin chain (2.1.29). This

formula allows us to write an expression of the nested Bethe vector of the residual Y (gln)-system
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in terms of a trace of elements of the nested monodromy matrix as follows:

Φa1,...,am,ã1,...,ãm(u,u(1), . . . ,u(n−1))

= trV

[(
n−1∏
k=1

m(k)∏
i=1

Taki
(u

(k)
i ,u)

)(
n−1∏
k=2

k−1∏
l=1

m(k)∏
i=1

1∏
j=m(l)

Raki alj
(u

(k)
i −u

(l)
j )

)

× (e21)⊗m
(1) ⊗ · · · ⊗ (en,n−1)⊗m

(n−1)

]
· η, (2.2.62)

where the trace is taken over the space V := Va11 ⊗ · · · ⊗ Van−1

m(n−1)

∼= (Cn)⊗m with m =
∑n−1

i=1 m
(i)

and η is the lowest vector (2.2.50) of the nested vacuum sector M ′, c.f. (2.2.48). Our goal is to

extended this formula for Bethe vectors (2.2.55) of the Y ±ρ (gl2n)-system.

Recall the notation from Section 2.2.2. The R-matrix acting on C2n ⊗ C2n is denoted by

R(u) and the matrix units of End(C2n) (resp. EndU (C2)) by eij for 1 ≤ i, j ≤ 2n (resp. xij for

1 ≤ i, j ≤ 2). We will use symbols Wa (Wai , Wãi , Waki
, ...) to denote copies of C2n; symbols Va

(Vai , Vãi , Vaki
, ...) will be reserved for copies of Cn. When necessary, we will write (eij)a to indicate

that eij ∈ End(Wa), and similarly for (xij)a and (eij)a; here recall (2.2.10).

Proposition 2.2.22. The Bethe vector for the Y ±ρ (gl2n)-system can be written as

Ψ(u,u(1), . . . ,u(n−1))

= trW

[
m∏
l=1

((
l−1∏
j=1

Rtajal(−uj − ul − ρ)

)
Ŝal(ul;u

(1), . . . ,u(n−1))

)(
n−1∏
k=1

m(k)∏
i=1

Saki
(u

(k)
i )

)

×

(
n−1∏
k=2

k−1∏
l=1

m(k)∏
i=1

1∏
j=m(l)

Raki alj (u
(k)
i −u

(l)
j )

)
(en+1,n)⊗m ⊗ (e21)⊗m

(1) ⊗ · · · ⊗ (en,n−1)⊗m
(n−1)

]
· ξ,

(2.2.63)

where the trace is taken over the space W := Wa1⊗· · ·⊗Wam⊗Wa11
⊗· · ·⊗Wan−1

m(n−1)

∼= (C2n)⊗(m+m)

with m =
∑n−1

i=1 m
(i), and

Ŝa(u;u(1), . . . ,u(n−1)) =

(
1∏

k=n−1

1∏
i=m(k)

Raaki (−u−u(k)
i −ρ)

)
Sa(u)

(
n−1∏
k=1

m(k)∏
i=1

Rt
aaki

(u−u(k)
i )

)
,

(2.2.64)

and ξ is the lowest vector of the Y ±ρ (gl2n)-module M defined in (2.2.6).
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Proof. We start from (2.2.55), with Φ replaced by (2.2.62),

Ψ(u,u(1), . . . ,u(n−1))

= trV

[
m∏
l=1

(
βãlal(ul)

1∏
j=l−1

Raj ãl(−uj − ul − ρ)

)( n−1∏
k=1

m(k)∏
i=1

Taki
(u

(k)
i ;u)

)

×

(
n−1∏
k=2

k−1∏
l=1

m(k)∏
i=1

1∏
j=m(l)

Raki alj
(u

(k)
i − u

(l)
j )

)
(e21)⊗m

(1) ⊗ · · · ⊗ (en,n−1)⊗m
(n−1)

]
· η.

(2.2.65)

The proof shall proceed in two steps. First, we shall rewrite the above formula in terms of the

B-block operator, c.f. (2.2.9), rather than creation operators β, which will allow us to introduce

a trace over the corresponding auxiliary spaces. Then, from this formula, we will argue that the

n×n matrix operators B, T and R may be replaced by their 2n× 2n counterparts to complete the

proof.

Note that, by commuting matrices which act on different spaces, the creation operator and the

product of nested monodromy matrices may be reordered as follows:

m∏
l=1

(
βãlal(ul)

1∏
j=l−1

Raj ãl(−uj − ul − ρ)

)
=

(
m∏
l=1

βãlal(ul)

)(
m∏
l=1

1∏
j=l−1

Raj ãl(−uj − ul − ρ)

)

and

n−1∏
k=1

m(k)∏
i=1

Taki
(u

(k)
i ;u) =

n−1∏
k=1

m(k)∏
i=1

[(
m∏
l=1

Rt
ãla

k
i
(ul − u

(k)
i )

)(
m∏
l=1

Rt
ala

k
i
(−ul−u

(k)
i −ρ)

)
Aaki

(u
(k)
i )

]

=

(
m∏
l=1

(
Rãl(ul)

)tãl)( m∏
l=1

(
Ral(−ul − ρ)

)tal)( n−1∏
k=1

m(k)∏
i=1

Aaki
(u

(k)
i )

)
,

where we have introduced

Ra(u) =

1∏
k=n−1

1∏
i=m(k)

Raaki
(u− u(k)

i ). (2.2.66)

Dependence on u(1), . . . ,u(n−1) has been omitted for clarity. Note also that, as a product of R-

matrices, Ra(u) satisfies the RTT relation

Rab(u− v)Ra(u)Rb(v) = Rb(v)Ra(u)Rab(u− v).
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Including these new expressions in (2.2.65), we make the following reordering,(
m∏
l=1

1∏
j=l−1

Raj ãl(−uj − ul − ρ)

)(
m∏
l=1

R
tãl
ãl

(ul)

)(
m∏
l=1

R
tal
al (−ul − ρ)

)

=

(
m∏
l=1

(
1∏

j=l−1

Raj ãl(−uj − ul − ρ)

)
R
tãl
ãl

(ul)

)(
m∏
l=1

R
tal
al (−ul − ρ)

)
.

We now proceed to make repeated applications of the RTT relation, in a similar manner to the

proof of Lemma 2.2.9. For example we have, at the centre of the expression,(
1∏

j=m−1

Raj ãm(−uj − um − ρ)

)
R
tãm
ãm

(um)R
ta1
a1 (−u1−ρ) · · ·Rtam

am (−um−ρ)

= R
ta1
a1 (−u1 − ρ) · · ·Rtam−1

am−1 (−um−1 − ρ)R
tãm
ãm

(um)

×

(
1∏

j=m−1

Raj ãm(−uj − um − ρ)

)
Rtam
am (−um − ρ).

Continuing inductively, we obtain the equality

m∏
l=1

((
1∏

j=l−1

Raj ãl(−uj − ul − ρ)

)
R
tãl
ãl

(ul)

)(
m∏
l=1

R
tal
al (−ul − ρ)

)

=

m∏
l=1

(
R
tãl
ãl

(ul)

(
1∏

j=l−1

Raj ãl(−uj − ul − ρ)

)
R
tal
al (−ul − ρ)

)
.

Therefore, (2.2.65) is equivalent to

Ψ(u,u(1), . . . ,u(n−1))

= trV

[
m∏
l=1

(
βãlal(ul)R

tãl
ãl

(ul)

(
1∏

j=l−1

Raj ãl(−uj − ul − ρ)

)
R
tal
al (−ul − ρ)

)(
n−1∏
k=1

m(k)∏
i=1

Aaki
(u

(k)
i )

)

×

(
n−1∏
k=2

k−1∏
l=1

m(k)∏
i=1

1∏
j=m(l)

Raki alj
(u

(k)
i − u

(l)
j )

)
(e21)⊗m

(1) ⊗ · · · ⊗ (en,n−1)⊗m
(n−1)

]
· η. (2.2.67)

To obtain an expression in terms of the B-block operator (as opposed to the creation operator β),
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we utilise (2.2.36). Indeed,

Ψ(u,u(1), . . . ,u(n−1))

= trV


 n∑

r1,...,rm,
s1,...,sm=1

(
m∏
l=1

((
l−1∏
j=1

Rtajal(−uj − ul − ρ)

)
Ral(−ul − ρ)Bal(ul)R

tal
al (ul)

))
s1r̄1...smr̄m

⊗ e∗r1 ⊗ · · · ⊗ e
∗
rm ⊗ e

∗
s1 ⊗ · · · ⊗ e

∗
sm

( n−1∏
k=1

m(k)∏
i=1

Aaki
(u

(k)
i )

)

×

(
n−1∏
k=2

k−1∏
l=1

m(k)∏
i=1

1∏
j=m(l)

Raki alj
(u

(k)
i − u

(l)
j )

)
(e21)⊗m

(1) ⊗ · · · ⊗ (en,n−1)⊗m
(n−1)

 · η.
Recall that η = (e1)⊗m ⊗ (e1)⊗m ⊗ ξ. After contracting the dual vectors with the vector η, the

resulting matrix element may then be written in terms of a trace over Ṽ := Va1⊗· · ·⊗Vam ∼= (Cn)⊗m,

using the identity (M)ji = tr(Meij). This gives the expression

Ψ(u,u(1), . . . ,u(n−1))

= tr
Ṽ ,V

[
m∏
l=1

((
l−1∏
j=1

Rtajal(−uj − ul − ρ)

)
Ral(−ul − ρ)Bal(ul)R

tal
al (ul)

)(
n−1∏
k=1

m(k)∏
i=1

Aaki
(u

(k)
i )

)

×

(
n−1∏
k=2

k−1∏
l=1

m(k)∏
i=1

1∏
j=m(l)

Raki alj
(u

(k)
i − u

(l)
j )

)
(e1n)⊗m ⊗ (e21)⊗m

(1) ⊗ · · · ⊗ (en,n−1)⊗m
(n−1)

]
· ξ.

(2.2.68)

It remains to show that this expression may be rewritten in terms of the original monodromy

matrix S(u) and the R-matrix R(u). We will do this by showing that the expression (2.2.63)

reduces to the above expression (2.2.68). We put Ŝa := Ŝa(u;u(1), . . . ,u(n−1)) and rewrite the

r.h.s. of (2.2.63) as

trW

[(
m∏
l=1

(
l−1∏
j=1

Rtajal(−uj − ul − ρ)

)
Ŝal

)
(en+1,n)⊗m

⊗
(
ÂR̂

(
(e21)⊗m

(1) ⊗ · · · ⊗ (en,n−1)⊗m
(n−1)

))]
· ξ, (2.2.69)

where operators Â and R̂ denote the products in the third line of (2.2.63). Recall (2.2.10) and

write (en+1,n)⊗m = (x21)⊗m ⊗ (e1n)⊗m and

(e21)⊗m
(1) ⊗ · · · ⊗ (en,n−1)⊗m

(n−1)
= (x11)⊗m ⊗ (e21)⊗m

(1) ⊗ · · · ⊗ (en,n−1)⊗m
(n−1)

.
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From (2.2.12) we see that

Raki alj (u
(k)
i − u

(l)
j )(x11)aki

(x11)alj
= (x11)aki

(x11)alj
Raki alj

(u
(k)
i − u

(l)
j ) .

Moreover,

Saki
(u

(k)
i )(x11)aki

= (x11)aki
Aaki

(u
(k)
i ) + (x21)aki

Caki
(u

(k)
i ).

Since Caki
(u

(k)
i )·ξ = 0, we can neglect the C operator above. Therefore we can replace ÂR̂

(
(e21)⊗m

(1)

⊗· · ·⊗ (en,n−1)⊗m
(n−1)

)
in (2.2.69) with (x11)m⊗

(
ÂR̂

(
(e21)⊗m

(1)⊗· · ·⊗ (en,n−1)⊗m
(n−1)

))
, where

operators Â and R̂ denote the operators in the third line of (2.2.68). Now set U := (C2)⊗(m+m)

and consider the expression

trU

[(
m∏
l=1

(
l−1∏
j=1

Rtajal(−uj − ul − ρ)

)
Ŝal

)
(x21)⊗m ⊗ (x11)m

]
. (2.2.70)

To complete the proof we need to show that the trace above is equivalent to the operators in the

second line of (2.2.68). Observe from (2.2.12) that operators R and Rt acting on tensor products

of x11’s and x21’s preserve their numbers in the tensor product. Hence the trace (2.2.70) is only

nonzero when each Ŝal maps (x21)al to (x11)al . In particular, using (2.2.12), and the notation

(2.2.66), we find that

Ŝal(x21)⊗(l) ⊗ (x11)m−l+m = (x21)⊗(l−1) ⊗ (x11)m−l+1+mRal(−ul − ρ)Bal(ul)R
tal
al (ul) + (...),

where (...) denotes the terms that do not contribute to the trace. Moreover,(
l−1∏
j=1

Rtajal(−uj − ul − ρ)

)
(x21)⊗(l) ⊗ (x11)m−l+m

= (x21)⊗(l) ⊗ (x11)m−l+m

(
l−1∏
j=1

Rtajal(−uj − ul − ρ)

)
+ (...),

where we have used the same notation as above. Hence the trace (2.2.70) is indeed equivalent to

the operators in the second line of (2.2.68). This completes the proof.

The trace formula (2.2.63) simplifies the process of obtaining the explicit form of the Bethe

vectors in terms of the matrix elements of the monodromy matrix Sa(u). We provide here some

very basic examples.

Example 2.2.23. Let n ≥ 2, m ≥ 1 and m(1) = · · · = m(n−1) = 0. Then

Ψ(u1, . . . , um) =

(
m∏
i=1

(
i−1∏
j=1

ui + uj + ρ+ 1

ui + uj + ρ

)
sn,n+1(ui)

)
· ξ.
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Example 2.2.24. Let n ≥ 2, m = m(i) = 1 and m(j) = 0 for all j 6= i. Then

Ψ(u1, u
(i)
1 ) =

(
sn,n+1(u1)si,i+1(u

(i)
1 )

+
1

u1 − u(i)
1

(
u1 − u(i)

1 − 1

u1 + u
(i)
1 + ρ

si,n+1(u1)− sn,2n−i+1(u1)

)
sn,i+1(u

(i)
1 )

)
· ξ.

Example 2.2.25. Let n ≥ 2, m = 2, m(i) = 1 and m(j) = 0 for all j 6= i. Then

Ψ(u1, u2, u
(i)
1 )

=
u1 + u2 + ρ+ 1

u1 + u2 + ρ

(
sn,n+1(u1)sn,n+1(u2)si,i+1(u

(i)
1 )

−

(
1

u2 − u(i)
1

sn,n+1(u1)sn,2n−i+1(u2)

− u2 − u(i)
1 − 1

u2 − u(i)
1

· 1

u2 + u
(i)
1 + ρ

(
sn,n+1(u1)si,n+1(u2) +

u2 + u
(i)
1 + ρ+ 1

u1 − u(i)
1

×

(
u1 − u(i)

1 − 1

u1 + u
(i)
1 + ρ

si,n+1(u1)− sn,2n−i+1(u1)

)
sn,n+1(u2)

)
sn,i+1(u

(i)
1 )

))
· ξ.

Remark 2.2.26. Note that in Examples 2.2.24 and 2.2.25 sn,i+1(u
(i)
1 ) · ξ = 0 unless i = n− 1.

Example: the ` = 2, Y −ρ (gl4) chain

In this section we give an analysis of the solutions to the Bethe equations of a simple example

system, the sp4-symmetric (n = 2) chain of length two.

Using the following parameters gives a alternating chain of form studied in [Do00]:

λ(1) = (1, 0, 0, 0), c1 = 0; λ(2) = (0, 0, 0,−1), c2 = −ρ; µ = (0, 0).

Additionally, we must take ρ = −2 in order to make use of the Hamiltonian given in the paper.

The λ(i) are weights of gl4 representations, but the overall sp4-symmetry requires us to de-

compose the representations according to sp4 ⊂ gl4, and we find that both representations above

decompose to the 4 irrep of sp4. As sp4-irreps, we can then decompose the full spin chain as follows:

4⊗ 4 = 10⊕ 5⊕ 1.

Each Bethe vector should correspond to the highest weight vector of one of the above multiplets,

with excitation numbers mi determined by the difference in weights. Specifically, each excitation

at level i represents a reduction in the highest weight by root αi. Then, the multiplicity of the irrep

in the decomposition indicates the number of distinct solutions to the Bethe equations with the
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sp4-irrep (m1,m) u
(1)
1 u

(1)
2 u1 energy

10 (0, 0) − − − 96

5 (1, 0) 1/2 − − −48
3/2∗ − − 16

1 (2, 1) 1/2 + i/2 1/2− i/2 1 + i/
√

2 −48
3/2∗ 1/4∓ i/4 1.50383± 0.0620246i 16± 32i

Table 2.1: Solutions to the Bethe equations of the Y −ρ (gl4) spin chain of length two, with ρ = −2.
The solutions have been organised according to the corresponding sp4 multiplet. Solutions with an
asterisk correspond to non-physical states.

given excitation numbers. In practice, the number of solutions of the equations themselves tend to

exceed the number predicted by this decomposition, and the desired number is reached only after

undergoing a careful selection process.

We present in Table 2.2.13 a list of solutions corresponding to the case l = 2. Note that the

Bethe vector is invariant under the action of the symmetric group Smi for each level i, so there is a

redundancy in the solutions; we have not included the redundant solutions in Table 2.2.13. Further

to this, for the top-level there is also a parameter symmetry u→ −u− ρ; we have opted to display

only the solutions satisfying Re(u1 + ρ/2) > 0.

We see that, even after accounting for the redundancies, the equations have additional solutions

which do not correspond to physical eigenstates of the system. In this case, the parameter u
(1)
1

satisfies 2u
(1)
1 + ρ − 1 = 0, and thus is a zero of the function p(v), which appears in the Bethe

ansatz, artificially removing the pole from the eigenvalue.

In this short chain, it is not too difficult to show that the Hamiltonian is given simply by

H = 2ρ(ρ− 1)(ρ(ρ± 1)P12 ± 2(n+ ρ)Q12 − ρ) = 24(1 + 2P12).

Then, comparing the spectrum of the permutation operator with the above solutions justifies the

removal of those solutions with u
(1)
1 = 3/2, as the corresponding energy levels are not present.

In the case of a single excitation, it is a simple calculation to check that the eigenvector obtained

by the Bethe ansatz agrees with the results above. Indeed,

Ψ(u
(1)
1 ) = s12(u

(1)
1 ) · ξ

=
[
Ra1(u

(1)
1 )Rta2(−u(1)

1 − ρ)Ra2(u
(1)
1 )Rta1(−u(1)

1 − ρ)
]

12
(e1 ⊗ e1)

=
(
e∗2
)
a
Ra1(u

(1)
1 )Rta2(−u(1)

1 − ρ)Ra2(u
(1)
1 )Rta1(−u(1)

1 − ρ)(e2 ⊗ e1 ⊗ e1).

From the last expression above, we see that Rta1 acting on e2⊗ e1⊗ e1 will act as the identity—the

projector Q will only be nonzero if it acts on a tensor product ei ⊗ e2n−i+1. Further, since each

R-matrix only serves to permute the vectors, we see that Rta2 will also only act as identity. Hence,

in this case the Bethe vector is identical to that of a periodic chain of the same length.
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Calculating the action of the remaining R-matrices is straightforward, and yields

Ψ(u
(1)
1 ) = − 1

u
(1)
1

[
e2 ⊗ e1 +

(
1− 1

u
(1)
1

)
e1 ⊗ e2

]
.

The solution u
(1)
1 = 1/2 gives the antisymmetric state as expected.
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Chapter 3

Nested algebraic Bethe ansatz for

even orthogonal and symplectic open

spin chains

In this chapter we repeat our analysis for an open spin chain constructed from so2n or sp2n modules,

with all possible diagonal boundary conditions. However, as with the previous chapter, we will begin

by reviewing a related gln spin chain, this time the open spin chain with Grassmannian (type AIII)

boundary conditions which will appear as the nested system for the orthogonal or symplectic chains.

We introduce its underlying reflection algebra B ex
ρ (n, p) and give the nested algebraic Bethe ansatz

for such a chain.

Following this, we introduce the algebra Xρ(g2n, g
θ
2n)tw and show how it acts on a spin chain

constructed from so2n or sp2n modules. Special consideration must be made when extending these

from Lie algebra modules to Yangian modules, as there is no evaluation homomorphism, and we

present the fusion procedure for this purpose. We then proceed to give the nested algebraic Bethe

ansatz for the system, showing how it reduces to the gln chain from Section 3.1 . Unlike the

twisted Yangian spin chain studied in Chapter 1, care must be taken to separate the orthogonal

and symplectic cases.

3.1 Nested algebraic Bethe ansatz for an open gln spin chain.

3.1.1 The extended reflection algebra B ex
ρ (n, p)

We begin by introducing the extended reflection algebra, following [MR02]. Recall once again the

Yangian Y (gln). In this chapter we will use superscript ◦ to distinguish the Y (gln) generating

matrix and weights from those for X(g2n), so Y (gln) is generated by matrix T ◦(u) which satisfies

the RTT relation with R-matrix R(u) = 1− u−1P .

In Chapter 1 we introduced the Ol’shanskii twisted Yangian Y ±(gl2n) as a subalgebra of Y (gl2n),

which led to an open spin chain with gl2n bulk symmetry, broken to g2n symmetry by the bound-
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ary conditions—a type AI(a) or AII symmetric pair. The (extended) reflection algebra B ex
ρ (n, p)

corresponds to the type AIII symmetric pair (sln, slp⊕ sln−p⊕C), although in practice it will take

the form (gln, glp ⊕ gln−p).

As with the twisted Yangian, the reflection algebra may be defined as a standalone associative

algebra generated by a matrix satisfying certain relations, but we will also want to be able to view

it as a coideal subalgebra of Y (gln).

Recall from Table 1.3.2 that symmetric pair AIII is generated by an inner automorphism corre-

sponding to conjugation by an involutory matrix, which we will call G◦. The matrix G◦ takes the

form

G◦ =

(
Ip 0

0 −In−p

)
.

We then define the algebra B ex
ρ (n, p) as follows, including also a ‘shift’ parameter ρ.

Definition 3.1.1. The extended reflection algebra B ex
ρ (n, p) is the unital associative algebra gener-

ated by the coefficients of the entries b◦ij(u) = g◦ij +
∑

r≥1 b
◦(r)
ij u−r of the abstract generating matrix

B◦(u), satisfying the reflection equation

R(u− v)B◦(u)R(u+ v + ρ)B◦(v) = B◦(v)R(u+ v + ρ)B◦(u)R(u− v), (3.1.1)

and no other relations.

By the same arguments as in Proposition 2.1 in [MR02], the product B◦(u)B◦(−u − ρ) is a

scalar

B◦(u)B◦(−u− ρ) = f◦(u)I, (3.1.2)

where f◦(u) is an even series with respect to the transformation u 7→ −u−ρ, with coefficients central

in B ex
ρ (n, p). One may then define the reflection algebra Bρ(n, p) as the quotient of B ex

ρ (n, p) by

the unitarity relation B◦(u)B◦(−u− ρ) = I. The algebra Bρ(n, p) exists as a subalgebra of Y (gln)

generated by

T ◦(u)G◦(T ◦(−u− ρ))−1,

see [MR02] Theorem 3.1. Then, as a subalgebra of Y (gln), Bρ(n, p) is left-coideal, so

∆ : Bρ(n, p)→ Y (gln)⊗ Bρ(n, p).

This coideal property is then inherited by the B ex
ρ (n, p),

∆(b◦ij(u)) =

n∑
k,l=1

t◦ik(u)t′◦lj(−u− ρ)⊗ b◦kl(u).

The representation theory of B ex
ρ (n, p) follows.

Definition 3.1.2. A representation V of B ex
ρ (n, p) is called a lowest weight representation if there
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exists a non-zero vector η ∈ V such that V = B ex
ρ (n, p)η and

b◦ji(u)η = 0 for 1 ≤ i < j ≤ n and b◦ii(u)η = µ◦i (u)η for 1 ≤ i ≤ n,

where µi(u) are formal power series in u−1 with constant terms equal to 1 if i ≤ n − r and −1 if

i > n− r. The vector η is called the lowest vector of V , and the n-tuple µ◦(u) = (µ◦1(u), . . . , µ◦n(u))

is called the lowest weight of V .

We note that any representation V of Bρ(n, p) may be extended to a representation of B ex
ρ (n, p)

by allowing the series f◦(u) to act as the identity operator on V .

Recall the action of the inverse matrix T−1(u) on a Yangian Y (gln) lowest weight module, given

by (1.2.17). The following proposition shows that the B ex
ρ (n, p) modules constructed using lowest

weight Y (gln) modules are themselves lowest weight modules. The proof is given in [GR20a], but

is based on that of Proposition 4.10 in [GRW17].

Proposition 3.1.3. Let η be the lowest vector of a lowest weight Y (gln)-module L(λ(u)) and let ξ

be the lowest vector of a lowest weight B ex
ρ (n, p)-module V (µ(u)). Then B ex

ρ (n, p)(η⊗ ξ) is a lowest

weight B ex
ρ (n, p)-module with the lowest vector η ⊗ ξ and the lowest weight γ◦(u) with components

determined by the relations

γ̃◦i (u) = µ̃◦i (u)λ◦i (u)λ′◦i (−u− ρ) for 1 ≤ i ≤ n (3.1.3)

with µ̃◦i (u) defined by

µ̃◦(u) := (2u+ ρ− i+ 1)µ◦i (u) +

i−1∑
j=1

µ◦j (u), (3.1.4)

and γ̃◦i (u) defined analogously.

The following proposition rephrases Theorem 3.1 in [BR09] for the algebra B ex
ρ (n, p), and will

be important for the nesting procedure of the Bethe ansatz.

Proposition 3.1.4. Let M be a lowest weight B ex
ρ (n, p)-module. For any 1 ≤ k ≤ n − 1 define a

subspace M(k) ⊆M by

M(k) := {v ∈M : b◦ij(u)v = 0 for i > j and j < k}.

Then operators

b
(k)
ij (u) := b◦ij

(
u+ k−1

2

)
+ δij

k−1∑
l=1

b◦ll
(
u+ k−1

2

)
2u+ ρ

, (3.1.5)

where k ≤ i, j ≤ n form a representation of the algebra Bex
ρ (n−k+ 1, r−k+ 1) or Bex

ρ (n−k+ 1, 0)

in M(k) for r > k − 1 or r ≤ k − 1, respectively.

Remark 3.1.5. An analogue of Proposition 3.1.4 for the “non-extended” reflection algebra Bρ(n, p)
would require operators b

(k)
ij (u) in (3.1.5) to be multiplied by a suitable series in u−1 with coefficients
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central in Bρ(n, p) to ensure that the corresponding generating matrix B◦(k)(u) satisfies the unitarity

relation in the space V (k).

We now introduce the one-dimensional representations that will function as the boundary of

the spin chain. For any a ∈ C define a matrix-valued rational function

K◦(u) = G◦ − a

u+ ρ
2

I. (3.1.6)

The existence of the free parameter a in this case is a consequence of the fact that the underlying

symmetric pair has a nontrivial centre—in this case, we are working with (sln, slr⊕sln−r⊕C). This

K-matrix is a one-parameter solution of the reflection equation (3.1.1) with the R-matrix, and is

therefore a representation of B ex
ρ (n, p). Indeed, more specifically, we have the following Proposition.

Proposition 3.1.6. (i) Let r = 0. The assignment B◦(u) 7→ I yields a one-dimensional represen-

tation of Bex
ρ (n, 0) of weight

µ◦1(u) = . . . = µ◦n(u) = 1. (3.1.7)

(ii) Let 1 ≤ r ≤ n. The assignment B◦(u) 7→ K◦(u) yields a one-dimensional representation of

B ex
ρ (n, p) of weight µ◦(u) given by

µ◦1(u) = . . . = µ◦r(u) = −1− a

u+ ρ
2

, µ◦r+1(u) = . . . = µ◦n(u) = 1− a

u+ ρ
2

. (3.1.8)

We now define the spin chain and the action of B ex
ρ (n, p) on it. Recall once again the evaluation

modules from Section 1.2.1, which in this case will be denoted L◦(λ)c, where λ = (λ1, . . . , λn)

are the gln weights of the module, and c is the parameter shift when acted on by Y (gln) via the

evaluation homomorphism. We denote the lowest weight vector of this module by η. Let V (µ◦)

denote a B ex
ρ (n, p) one-dimensional module defined by Proposition 3.1.6.

We will study the spin chain

M◦ = L◦ ⊗ V (µ◦) = L◦(λ(1))c1 ⊗ · · · ⊗ L◦(λ(`))c` ⊗ V (µ◦), (3.1.9)

which by Proposition 3.1.3 is a lowest weight B ex
ρ (n, p)-module of weight γ◦(u) with components

determined by (recall (3.1.4)),

γ̃◦i (u) = µ̃◦i (u)
∏̀
j=1

λ
(j)
i (u)λ

′(j)
i (u) with λ

(j)
i (u) = 1−

λ
(j)
i

u− cj
. (3.1.10)

The action of the generating matrix on the module is given by

B◦a(u) 7→ L◦a1(u− c1) · · · L◦a`(u− c`)K◦a(u)
(
L◦a`(−u− ρ− c`)

)−1 · · ·
(
L◦a1(−u− ρ− c1)

)−1
. (3.1.11)

In what follows we study the spectral problem for a transfer matrix constructed from the above

monodromy matrix, acting on the spin chain (3.1.9). Just as in the previous chapter, this will
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appear as a nested system when studying the even orthogonal and symplectic chains, and so we

provide the NABA solution of the gln system here.

The nesting procedure for this system bears a lot of resemblance to that of the closed gln spin

chain studied in Section 2.1. However, a subtlety is introduced via Proposition 3.1.4—unlike Y (gln),

the (n−k)× (n−k) submatrix of the generating matrix B◦(u) will not itself form a representation

of the reduced algebra. Instead, the elements must be shifted in parameter, and diagonal elements

of the matrix must be added to obtain a nested system of operators.

The spectral problem for this chain was addressed by Belliard and Ragoucy in [BR09] , thus we

will keep this section concise and provide the key steps in the proofs only.

3.1.2 Exchange relations

For any matrix A =
∑n

i,j=1 aijeij with eij ∈ End(Cn) and any 1 ≤ k ≤ n define a k-reduced matrix

A(k) =
∑n

i,j=k aije
(k)
i−k+1,j−k+1 with e

(k)
ij ∈ End(Cn−k+1). We use this notation to define k, l-reduced

R- and Ř-matrices acting on the spaces V
(k)
a
∼= Cn−k+1 and V

(l)
b
∼= Cn−l+1 by

R
(k,l)
ab (u) :=

u

u− 1

(
I

(k,l)
ab − 1

u
P

(k,l)
ab

)
, Ř

(k,l)
ab (u) := P

(k,l)
ab R

(k,l)
ab (u).

Note that P (k,l)e
(k)
i ⊗ e

(l)
j = 0 if k < l and i + k − l ≤ 0, and R

(n,n)
ab (u) and Ř

(n,n)
ab (u) are identity

operators. We denote the k-reduced generating matrix of B ex
ρ (n, p) in End(V

(k)
a ) as D

(k)
a (u) and

decompose it as

D(k)
a (u) =

a(k)(u) B
(k)
a (u)

C
(k)
a (u) D

(k+1)
a (u)

 . (3.1.12)

We also set

D̂(k)
a (u) := D(k)

a

(
u+ k−1

2

)
+
k−1∑
i=1

a(i)
(
u+ k−1

2

)
2u+ ρ

I(k)
a , (3.1.13)

â(k)(u) := a(k)
(
u+ k

2

)
+

k−1∑
i=1

a(i)
(
u+ k

2

)
2u+ 1 + ρ

, B̂(k)
a (u) := B(k)

a

(
u+ k

2

)
(3.1.14)

leading to the following recursive relations:

[
D̂(k)
a (u)

]
ij

=
[
D̂(k−1)

(
u+ 1

2

)]
1+i,1+j

+
δij

2u+ ρ

[
D̂(k−1)

(
u+ 1

2

)]
11
, (3.1.15)

â(k)(u) =
[
D̂(k)
a

(
u+ 1

2

)]
11

=
[
D̂(k−1)
a (u+ 1)

]
22

+
1

2u+ 1 + ρ
â(k−1)

(
u+ 1

2

)
, (3.1.16)[

D̂(k)
a (u)

]
1,1+l

=
[
B̂(k)

(
u− 1

2

)]
l

(3.1.17)

for 1 ≤ i, j ≤ n − k + 1 and 1 ≤ l ≤ n − k. We note that operator D̂
(k)
a (u) is a generalisation of

Sklyanin’s D̃(u) operator (see Section 5 in [Sk88]) for arbitrary rank.
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Lemma 3.1.7. Let M be a lowest weight B ex
ρ (n, p)-module. For any 1 ≤ k ≤ n − 1 define a

subspace

M(k) := {η ∈M : b◦ij(u)η = 0 for i > j and j < k}. (3.1.18)

Let ≡ denote equality of operators in the space V
(k)
a ⊗ V (k)

b ⊗M(k). Then

B̂(k)
a (v)B̂

(k)
b (u) ≡ B̂(k)

a (u)B̂
(k)
b (v)Ř

(k+1,k+1)
ab (v − u), (3.1.19)

â(k)(v)B̂
(k)
b (u) ≡ (v − u+ 1)(v + u+ 1 + ρ)

(v − u)(v + u+ ρ)
B̂

(k)
b (u) â(k)(v)

− 2u+ 1 + ρ

(v − u)(2u+ ρ)
B̂

(k)
b (v) â(k)(u) +

1

v + u+ ρ
B̂

(k)
b (v)D̂

(k+1)
b (u), (3.1.20)

D̂(k+1)
a (v)B̂

(k)
b (u) ≡ (v − u− 1)(v + u− 1 + ρ)

(v − u)(v + u+ ρ)
B̂

(k)
b (u)R

(k+1,k+1)
ab (v + u+ ρ)

× D̂(k+1)
a (v)R

(k+1,k+1)
ab (v − u)

− (2v − 1 + ρ)(2u+ 1 + ρ)

(2v + ρ)(2u+ ρ)(v + u+ ρ)
B̂

(k)
b (v)R

(k+1,k+1)
ab (2v+ρ)P

(k+1,k+1)
ab â(k)(u)

+
2v − 1 + ρ

(v − u)(2v + ρ)
B̂

(k)
b (v)R

(k+1,k+1)
ab (2v + ρ)D̂(k+1)

a (u)P
(k+1,k+1)
ab , (3.1.21)

â(k)(v)D̂
(k+1)
b (u) ≡ D̂(k+1)

b (u) â(k)(v) +
1

v−u
tra P

(k+1,k+1)
ab

(
B̂

(k)
b (u)Ĉ(k)

a (v)− B̂(k)
a (u)Ĉ

(k)
b (u)

)
+

1

(v − u)(2u− 1 + ρ)
trb

(
B̂

(k)
b (v)Ĉ

(k)
b (u)− B̂(k)

b (u)Ĉ
(k)
b (v)

)
· I(k+1,k+1)
b .

(3.1.22)

Proof. The k = 1 case (M(1) = M) is a restatement of the defining relations of B ex
ρ (n, p). When

k > 1 we additionally need to use Proposition 3.1.4.

3.1.3 Quantum spaces and monodromy matrices

Choose m1, . . . ,mn−1 ∈ Z≥0, the excitation numbers. Let k = 1, . . . , n− 1. For each mk, assign an

mk-tuple u(k) = (u
(k)
1 , . . . , u

(k)
mk) of complex parameters and a set of labels ak = {ak1, . . . , akmk}. We

will use notation from [BR09] to denote multi-tuples:

u(1...k) := (u(1), . . . ,u(k)), a1...k := (a1, . . . ,ak). (3.1.23)

We will say that M◦ is a level-1 quantum space and denote it by M (1). Then for each 2 ≤ k ≤ n

we define a level-k quantum space M (k) recursively by

M (k) := W
(k)

ak−1 ⊗ (M (k−1))0 (3.1.24)

where

W
(k)

ak−1 := V
(k)

ak−1
1

⊗ · · · ⊗ V (k)

ak−1
mk−1
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and (M (k−1))0 is level-(k − 1) vacuum sector defined by

(M (k−1))0 := {η ∈M (k−1) : b◦ij(u)η = 0 for i > j and j < k − 1}. (3.1.25)

Propositions 3.1.3 and 3.1.4 imply that the space M (k) is a Bex
ρ (n−k+1, r−k+1)- or Bex

ρ (n−k+1, 0)-

module for k < r + 1 or k ≥ r + 1, respectively. In particular, for k ≥ 2,

M (k) = W
(k)

ak−1 ⊗ (Ce(k−1)
1 )⊗mk−2 ⊗ · · · ⊗ (Ce(2)

1 )⊗m1

⊗ L(k−1)(λ(1))c1 ⊗ · · · ⊗ L(k−1)(λ(`))c` ⊗ V (µ◦)

where

L(k−1)(λ(i))ci := {η ∈ L◦(λ(i))ci : t◦ij(u)η = 0 for i > j and j < k − 1}

are evaluation Y (gln−k+2)-modules. (In the case when L◦(λ(i)) ∼= Cn, i.e. the bulk quantum space

is a tensor product of fundamental gln-modules, L(k−1)(λ(i))ci
∼= C.)

Definition 3.1.8. We will say that D̂
(1)
a (v) := D

(1)
a (v) is a level-1 monodromy matrix. For each

2 ≤ k ≤ n we recursively define a level-k monodromy matrix, acting on the space M (k), via

D̂
(k)

aa1...k−1

(
v;u(1...k−1)

)
:=

(mk−1∏
i=1

R
(k,k)

aak−1
i

(
v + u

(k−1)
i + ρ

))

× D̂(k)

aa1...k−2

(
v;u(1...k−2)

)( 1∏
i=mk−1

R
(k,k)

aak−1
i

(
v − u(k−1)

i

))
, (3.1.26)

where D̂
(k)

aa1...k−2(v;u(1...k−2)) is defined by (3.1.15),

[
D̂

(k)

aa1...k−2

(
v;u(1...k−2)

)]
ij

:=
[
D̂

(k−1)

aa1...k−2

(
v + 1

2 ;u(1...k−2)
)]

1+i,1+j

+
δij

2v + ρ

[
D̂

(k−1)

aa1...k−2

(
v + 1

2 ;u(1...k−2)
)]

11
(3.1.27)

for 1 ≤ i, j ≤ n− k + 1.

The above definition outlines how the nested monodromy matrices will be constructed for this

open spin chain, with extra R-matrices being attached at each level of nesting, and the extraction

of appropriate submatrices. However, this recursive definition is unwieldy and we wish to instead

have a closed form of the operator.

Proposition 3.1.9. Let ≡ denote equality of operators in the space V
(k)
a ⊗M (k) for any 2 ≤ k ≤ n.
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Then

D̂
(k)

aa1...k−1

(
v;u(1...k−1)

)
≡

 1∏
j=k−1

mj∏
i=1

R
(k,j+1)

aaji

(
v + u

(j)
i + k−1−j

2 + ρ
)

× D̂(k)
a (v)

k−1∏
j=1

1∏
i=mj

R
(k,j+1)

aaji

(
v − u(j)

i + k−1−j
2

) . (3.1.28)

We use the technical lemma below to help us prove Proposition 3.1.9. First, introduce a rational

function

Λ±(v;u(k)) :=

mk∏
i=1

(v + u
(k)
i ± 1 + ρ)(v − u(k)

i ± 1)

(v + u
(k)
i + ρ)(v − u(k)

i )
. (3.1.29)

Lemma 3.1.10. Let A
(k)
a (v) ∈ End(V

(k)
a )[[v−1]] be a matrix operator such that [A

(k)
a (v)]1+i,1 = 0

for i ≥ 1. Set

A
(k)

aak−1(v;u(k−1)) :=

(mk−1∏
i=1

R
(k,k)

aak−1
i

(
v + u

(k−1)
i + ρ

))
A(k)
a (v)

(
1∏

i=mk−1

R
(k,k)

aak−1
i

(
v − u(k−1)

i

))
.

Then, for 1 ≤ i, j ≤ n− k and η = (e
(k)
1 )⊗mk−1 ∈W (k)

ak−1,

[
A

(k)

aak−1(v;u(k−1))
]
11
η =

[
A(k)
a (v)

]
11
η,

[
A

(k)

aak−1(v;u(k−1))
]
1+i,1

η = 0, (3.1.30)[
A

(k)

aak−1(v;u(k−1))
]
1+i,1+j

η =
1

Λ−(v;u(k−1))

([
A(k)
a (v)

]
1+i,1+j

+ δij
1− Λ−(v;u(k−1))

2v − 1 + ρ

[
A(k)
a (v)

]
11

)
η. (3.1.31)

Proof. The first two identities follow from

[
R

(k,k)

aak−1
l

(v)
]
11
η = η,

[
R

(k,k)

aak−1
l

(v)
]
1+i,1

η = 0.

To prove the third identity we need to use

[
R

(k,k)

aak−1
l

(v)
]
1+i,1+j

η =
v

v − 1
δijη,

[
R

(k,k)

aak−1
l

(v)
]
1+i,1

[
R

(k,k)

aak−1
l

(u)
]
1,1+j

η =
vu

(v − 1)(u− 1)
· 1

vu
δijη

giving

[
M

(k)

aak−1(v;u(k−1))
]
1+i,1+j

η =
1

Λ−(v;u(k−1))

([
M (k)
a (v)

]
1+i,1+j

− δijf(v;u(k−1))
[
M (k)
a (v)

]
11

)
η
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where

f(v;u(k−1)) =

mk−1∑
i=1

1

(v + u
(k−1)
i + ρ)(v − u(k−1)

i )

i−1∏
j=1

(v + u
(k−1)
i − 1 + ρ)(v − u(k−1)

i − 1)

(v + u
(k−1)
i + ρ)(v − u(k−1)

i )
.

A simple induction on mk−1 then yields

f(v;u(k−1)) =
1− Λ−(v;u(k−1))

2v − 1 + ρ
,

implying the third identity.

Proof of Proposition 3.1.9. It is sufficient to prove that (cf. (3.1.27))

D̂
(k)

aa1...k−2(v;u(1...k−2)) ≡

 1∏
j=k−2

mj∏
i=1

R
(k,j+1)

aaji

(
v + u

(j)
i + k−1−j

2 + ρ
)

× D̂(k)
a (v)

k−2∏
j=1

1∏
i=mj

R
(k,j+1)

aaji

(
v − u(j)

i + k−1−j
2

) . (3.1.32)

We will use induction on k to prove the claim. The k = 2 case follows from the definition and

provides a base for induction. Now assume that the statement holds for D̂
(k−1)

aa1...k−3(v;u(1...k−3)).

Note that [
R

(k,l)
ab (v)

]
ij
e

(l)
1 =

v

v − 1
δije

(l)
1 (3.1.33)

for 1 ≤ i, j ≤ n− k + 1 and any k > l. Combining this with Lemma 3.1.10 we obtain

[
D̂

(k−1)

aa1...k−2(v + 1
2 ;u(1...k−2))

]
11
≡

(
1∏

l=k−3

1

Λ−
(
v + k−1−l

2 ;u(l)
)) [D̂(k−1)

a (v + 1
2)
]
11
,

[
D̂

(k−1)

aa1...k−2(v + 1
2 ;u(1...k−2))

]
1+i,1+j

≡

(
1∏

l=k−2

1

Λ−
(
v + k−1−l

2 ;u(l)
))([D̂(k−1)

a (v + 1
2)
]
1+i,1+j

+ δij
1− Λ−

(
v + 1

2 ;u(k−2)
)

2v + ρ

[
D̂(k−1)
a (v + 1

2)
]
11

)

for 1 ≤ i, j ≤ n− k + 1. The identities above together with (3.1.27) and (3.1.15) imply

[
D̂

(k)

aa1...k−2

(
v;u(1...k−2)

)]
ij
≡

(
1∏

l=k−2

1

Λ−
(
v + k−1−l

2 ;u(l)
)) [D̂(k)

a (v)
]
ij

which is equivalent to (3.1.32), as required.

The Corollary below follows from Propositions 3.1.9 and 3.1.4, and by virtue of the Yang-Baxter

equation.
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Corollary 3.1.11. Let ≡ denote equality of operators in the space V
(k)
a ⊗ V

(k)
b ⊗M (k) for any

2 ≤ k ≤ n. Then

R
(k,k)
ab (v − w)D

(k)

aa1...k−1

(
v;u(1...k−1)

)
R

(k,k)
ab (v + w)D

(k)

ba1...k−1

(
w;u(1...k−1)

)
≡ D(k)

ba1...k−1

(
w;u(1...k−1)

)
R

(k,k)
ab (v + w)D

(k)

aa1...k−1

(
v;u(1...k−1)

)
R

(k,k)
ab (v − w).

In other words, matrix entries of the level-k monodromy matrix satisfy the defining relations of

the algebra B̃ρ(n−k+1, r−k+1) or B̃ρ(n−k+1, 0) in M (k) for r > k−1 or r ≤ k−1, respectively.

3.1.4 Transfer matrix, creation operators and Bethe vectors

We are now ready to introduce transfer matrices and creation operators acting on the level-k

quantum space M (k).

Definition 3.1.12. The level-k a-operator is the first diagonal entry of the level-k monodromy

matrix, namely

â
(k)

a1...k−1

(
v;u(1...k−1)

)
:=
[
D̂

(k)

aa1...k−1

(
v + 1

2 ;u(1...k−1)
)]

11
. (3.1.34)

Definition 3.1.13. The level-k transfer matrix for a B ex
ρ (n, p)-chain is obtained by taking trace of

the level-k monodromy matrix, namely

τ (k)
(
v;u(1...k−1)

)
:= tra D̂

(k)

aa1...k−1

(
v − k−1

2 ;u(1...k−1)
)

=
2v − n+ ρ

2v − k + ρ
· â(k)

a1...k−1

(
v − k

2 ;u(1...k−1)
)

+ tra D̂
(k+1)

aa1...k−1

(
v − k

2 ;u(1...k−1)
)
.

(3.1.35)

Our goal is to find eigenvectors (Bethe vectors) of the level-1 transfer matrix τ (1)(v) and the

corresponding eigenvalues. With this goal in mind we introduce a lowest weight vector with respect

to the action of the level-n monodromy matrix,

ξ(n) := (e
(n)
1 )⊗mn−1 ⊗ · · · ⊗ (e

(2)
1 )⊗m1 ⊗ ξ ∈M (n).

This vector will serve as a vacuum vector for constructing Bethe vectors of the full system, including

auxiliary spaces of all nested systems.

Lemma 3.1.14. The level-k a-operator acts on vector ξ(n) by

â
(k)

a1...k−1

(
v − k

2 ;u(1...k−1)
)
ξ(n) =

(
k−2∏
i=1

1

Λ−
(
v − i

2 ;u(i)
)) γ̃◦k(v)

2v − k + 1 + ρ
ξ(n). (3.1.36)

Proof. Recall that ξ is a lowest vector of weight γ◦(v) with components γ◦i (v) determined by
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(3.1.10). It follows from (3.1.13) and (3.2.18) that

[
D̂(k)
a

(
v − k−1

2

)]
11
ξ(n) =

(
γ◦k(v) +

k−1∑
i=1

γ◦i (v)

2v − k + 1 + ρ

)
ξ(n) =

γ̃◦k(v)

2v − k + 1 + ρ
ξ(n).

All that remains is to apply Proposition 3.1.9, Lemma 3.1.10 and identity (3.1.33).

From now on we will view B-operators (cf. (3.1.12)) obtained from the nested monodromy

matrix D̂
(k)

aa1...k

(
v;u(1...k−1)

)
as row-vectors, that is

B̂
(k)

aa1...k−1

(
v;u(1...k−1)

)
∈ (V (k+1)

a )∗ ⊗ End(M (k))[v−1].

These row-vectors will give rise to level-k creation operators and level-k Bethe vectors. Since M (k) is

a finite-dimensional vector space, we can evaluate the formal parameter v to any non-zero complex

number.

Definition 3.1.15. The level-k creation operator is defined by

B
(k)

a1...k

(
u(1...k)

)
:=

mk∏
i=1

B̂
(k)

aki a
1...k−1

(
u

(k)
i ;u(1...k−1)

)
.

Note that operator B
(k)

a1...k

(
u(1...k)

)
is a row-vector with respect to all tensorands in W

(k+1)

ak
.

Definition 3.1.16. The level-k Bethe vector is defined by

Φ(k)
(
u(k...n−1);u(1,...k−1)

)
:=

n−1∏
i=k

B
(i)

a1...i

(
u(1...i)

)
· ξ(n).

where u(1,...k−1) are viewed as fixed parameters.

The level-1 Bethe vector Φ(1)
(
u(1...n−1)

)
∈ M (1) is a vector in the level-1 quantum space. For

arbitrary u(1...n−1) it is called an off-shell Bethe vector.

Set Smk,...,mn−1 := Smk × · · · ×Smn−1 . For any σ(l) ∈ Sml with k ≤ l ≤ n− 1 define an action

of Smk,...,mn−1 on Φ(k)(u(k...n−1)) by

σ(l) : u(k...n−1) 7→ u
(k...n−1)

σ(l) := (u(k), . . . ,u
(l)

σ(l) , . . . ,u
(n−1))

where we have set u
(l)

σ(l) := (u
(l)

σ(l)(1)
, . . . , u

(l)

σ(l)(ml)
). The relation (3.1.19) together with the identity

Ř
(l,l)

alia
l
j

(u)ξ(n) = ξ(n) implies the following Lemma.

Lemma 3.1.17. The level-k Bethe vector Φ(k)
(
u(k...n−1);u(1...k−1)

)
is invariant under the action

of Smk,...,mn−1.

We are now ready to give the Bethe ansatz result for the spin chain.
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Theorem 3.1.18. The level-1 Bethe vector Φ(1)
(
u(1...n−1)

)
is an eigenvector of τ (1)(v) with the

eigenvalue

Λ(1)
(
v;u(1...n−1)

)
:=

2v − n+ ρ

2v − 1 + ρ
Λ+
(
v − 1

2 ;u(1)
) γ̃◦1(v)

2v + ρ
+ Λ−

(
v − n−1

2 ;u(n−1)
) γ̃◦n(v)

2v − n+ 1 + ρ

+
n−1∑
i=2

2v − n+ ρ

2v − i+ ρ
Λ−
(
v − i−1

2 ;u(i−1)
)

Λ+
(
v − i

2 ;u(i)
) γ̃◦i (v)

2v − i+ 1 + ρ
(3.1.37)

provided

Res
v→u(j)i

Λ(1)
(
v + j

2 ;u(1...n−1)
)

= 0 (3.1.38)

for all 1 ≤ i ≤ mj and 1 ≤ j ≤ n− 1.

Remark 3.1.19. The equations (3.1.38) are Bethe equations for a B ex
ρ (n, p)-chain. Their explicit

form is

γ̃◦k
(
u

(k)
j + k

2

)
γ̃◦k+1

(
u

(k)
j + k

2

) mk∏
i=1
i 6=j

(u
(k)
j − u

(k)
i + 1)(u

(k)
j + u

(k)
i + 1 + ρ)

(u
(k)
j − u

(k)
i − 1)(u

(k)
j + u

(k)
i − 1 + ρ)

=

mk−1∏
i=1

(u
(k)
j − u

(k−1)
i + 1

2)(u
(k)
j + u

(k−1)
i + 1

2 + ρ)

(u
(k)
j − u

(k−1)
i − 1

2)(u
(k)
j + u

(k−1)
i − 1

2 + ρ)

×
mk+1∏
i=1

(u
(k)
j − u

(k+1)
i + 1

2)(u
(k)
j + u

(k+1)
i + 1

2 + ρ)

(u
(k)
j − u

(k+1)
i − 1

2)(u
(k)
j + u

(k+1)
i − 1

2 + ρ)
(3.1.39)

for 1 ≤ j ≤ mk and 1 ≤ k ≤ n − 1 assuming m0 = mn = 0. For example, when n = 2, we have

k = 1 and the r.h.s. of (3.1.39) equals 1.

Proof of Theorem 3.1.18. Using Lemma 3.1.7, symmetry Smk,...,mn−1 of Φ(k)
(
u(k...n−1);u(1...k−1)

)
and standard arguments, we obtain

â
(k)

a1...k−1

(
v − k

2 ;u(1...k−1)
)

Φ(k)
(
u(k...n−1);u(1...k−1)

)
=

(
Λ+
(
v − k

2 ;u(k)
)
B

(k)

a1...k

(
u(1...k)

)
â

(k)

a1...k−1

(
v − k

2 ;u(1...k−1)
)

−
mk∑
i=1

1

v − k
2 − u

(k)
i

Res
w→u(k)i

Λ+
(
w;u(k)

)
B

(k)

a1...k

(
u

(1...k)

σ
(k)
i ,u

(k)
i →v−

k
2

)
â

(k)

a1...k−1

(
u

(k)
i ;u(1...k−1)

)
−

mk∑
i=1

2u
(k)
i + ρ

(v − k
2 + u

(k)
i + ρ)(2u

(k)
i − n+ k + ρ)

Res
w→u(k)i

Λ−
(
w;u(k)

)
×B

(k)

a1...k

(
u

(1...k)

σ
(k)
i ,u

(k)
i →v−

k
2

)
tra D̂

(k+1)

aa1...k

(
u

(k)
i ;u

(1...k)

σ
(k)
i

))
Φ(k+1)

(
u(k+1...n−1);u(1...k)

)
(3.1.40)

86



and

tra D̂
(k+1)

aa1...k−1

(
v − k

2 ;u(1...k−1)
)

Φ(k)
(
u(k...n−1);u(1...k−1)

)
=

(
Λ−
(
v − k

2 ;u(k)
)
B

(k)

a1...k

(
u(1...k)

)
tra D̂

(k+1)

aa1...k

(
v − k

2 ;u(1...k)
)

−
m1∑
i=1

2v − n+ ρ

(2v − k + ρ)(v − k
2 + u

(k)
i + ρ)

Res
w→u(k)i

Λ+
(
w;u(k)

)
×B

(k)

a1...k

(
u

(1...k)

σ
(k)
i ,u

(k)
i →v−

k
2

)
â

(k)

a1...k−1

(
u

(k)
i ;u(1...k−1)

)
−

m1∑
i=1

(2u
(k)
i + ρ)(2v − n+ ρ)

(2v − k + ρ)(v − k
2 − u

(k)
i )(2u

(k)
i − n+ k + ρ)

Res
w→u(k)i

Λ−
(
w;u(k)

)
×B

(k)

a1...k

(
u

(1...k)

σ
(k)
i ,u

(k)
i →v−

k
2

)
tra D̂

(k+1)

aa1...k

(
u

(k)
i ;u

(1...k)

σ
(k)
i

))
Φ(k+1)

(
u(k+1...n−1);u(1...k)

)
. (3.1.41)

Here σ
(k)
i ∈ Smk denotes a cyclic permutation such that

u
(k)

σ
(k)
i

= (u
(k)
i , u

(k)
i+1, . . . , u

(k)
mk
, u

(k)
1 , u

(k)
2 , . . . , u

(k)
i−1).

Below we indicate key identities that were used in obtaining (3.1.40) and (3.1.41). For this

we need to introduce additional notation. Set ak6akj
= (ak1, . . . , a

k
j−1, a

k
j+1, . . . , a

k
mk

) and u
(k)

6u(k)j

=

(u
(k)
1 , . . . , u

(k)
j−1, u

(k)
j+1, . . . , u

(k)
mk). Then let

D̂
(k+1)

aa1...k

6ak1

(
v;u

(1...k)

σ
(k)
j , 6u(k)j

)
:=

(
mk∏
i=2

R
(k+1,k+1)

aaki

(
v + u

(k)

σ
(k)
j (i)

+ ρ
))

× D̂(k+1)

aa1...k−1

(
v;u(1...k−1)

) 2∏
i=mk

R
(k+1,k+1)

aaki

(
v − u(k)

σ
(k)
j (i)

) (3.1.42)

and

Λ±
(
w;u

(k)

6u(k)j

)
:=

mk∏
i=1
i 6=j

(w − u(k)
i ± 1)(w + u

(k)
i ± 1 + ρ)

(w − u(k)
i )(w + u

(k)
i + ρ)

so that

Res
w→u(k)j

Λ±(w;u(k)) = ±
2u

(k)
j ± 1 + ρ

2u
(k)
j + ρ

Λ±
(
u

(k)
j ;u

(k)

6u(k)j

)
.

Also note that

traR
(k+1,k+1)
ab (u)P

(k+1,k+1)
ab =

u− n+ k

u− 1
· I(k+1,k+1)
b .
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To obtain the second terms in the r.h.s. of (3.1.41) we used

Res
w→u(k)i

Λ+
(
w;u(k)

)
=

2u
(k)
i + 1 + ρ

2u
(k)
i + ρ

· 2v − k − 1 + ρ

2v − n+ ρ

× Λ+
(
u

(k)
i ;u

(k)

6u(k)i

)
traR

(k+1,k+1)

aak1
(2v − k + ρ)P

(k+1,k+1)

aak1
.

To obtain the third term in the r.h.s. of (3.1.40) we used the second equality below, and to obtain

the third term in the r.h.s. of in (3.1.41) we used the third equality below:

Res
w→u(k)i

Λ−
(
w;u(k)

)
tra D̂

(k+1)

aa1...k

(
u

(k)
i ;u

(1...k)

σ
(k)
i

)
= −

2u
(k)
i − 1 + ρ

2u
(k)
i + ρ

Λ−
(
u

(k)
i ;u

(k)

6u(k)i

)
tra

(
R

(k+1,k+1)

aak1

(
2u

(k)
i + ρ

)
D̂

(k+1)

aa1...k

6ak1

(
u

(k)
i ;u

(k)

σ
(k)
i ,6u(k)i

)
P

(k+1,k+1)

aak1

)
= −

2u
(k)
i − n+ k + ρ

2u
(k)
i + ρ

Λ−
(
u

(k)
i ;u

(k)

6u(k)i

)
D̂

(k+1)

ak1a
1...k

6ak1

(
u

(k)
i ;u

(k)

σ
(k)
i , 6u(k)i

)
= −

2u
(k)
i − n+ k + ρ

2u
(k)
i + ρ

· 2v − k − 1 + ρ

2v − n+ ρ

× Λ−
(
u

(k)
i ;u

(k)

6u(k)i

)
tra

(
R

(k+1,k+1)

aak1
(2v − k + ρ)D̂

(k+1)

aa1...k

6ak1

(
u

(k)
i ;u

(k)

σ
(k)
i ,6u(k)i

)
P

(k+1,k+1)

aak1

)
.

Combining (3.1.40) and (3.1.41) gives

τ (k)
(
v;u(1...k−1)

)
Φ(k)

(
u(k...n−1);u(1...k−1)

)
= B

(k)

a1...k

(
u(1...k)

)(2v − n+ ρ

2v − k + ρ
Λ+
(
v − k

2 ;u(k)
)
â

(k)

a1...k−1

(
v − k

2 ;u(1...k−1)
)

+ Λ−
(
v − k

2 ;u(k)
)

tra D̂
(k+1)

aa1...k

(
v − k

2 ;u(1...k)
))

Φ(k+1)
(
u(k+1...n−1);u(1...k)

)
−

mk∑
i=1

Fn,k
(
v, u

(k)
i

)
B

(k)

a1...k

(
u

(1...k)

σ
(k)
i ,u

(k)
i →v−

k
2

)
× Res

w→u(k)i

(
2w − n+ k + ρ

2w + ρ
Λ+(w;u(k)) â

(k)

a1...k−1

(
w;u(1...k−1)

)
+ Λ−(w;u(k)) tra D̂

(k+1)

aa1...k

(
w;u

(1...k)

σ
(k)
i

))
Φ(k+1)

(
u(k+1...n−1);u(1...k)

)
(3.1.43)

where

Fn,k(v, u) =
(2v − n+ ρ)(2u+ ρ)

(v − k
2 − u)(v − k

2 + u+ ρ)(2u− n+ k + ρ)
.

When k = n− 1 and n = 2, using (3.1.34) and (3.1.36) we have that Φ(k+1)
(
u(k+1...n−1)

)
= ξ and

â(1)(w)ξ =
γ̃◦1(w + 1

2)

2w + 1 + ρ
ξ, tra D̂

(2)
aa1

(
w;u

(1)

σ
(1)
i

)
ξ =

γ̃◦2(w + 1
2)

2w + ρ
ξ,
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yielding

τ (1)(v)Φ(1)
(
u(1)

)
=

(
2v − 2 + ρ

2v − 1 + ρ
Λ+
(
v − 1

2 ;u(1)
) γ̃◦1(v)

2v + ρ
+ Λ−

(
v − 1

2 ;u(1)
) γ̃◦2(v)

2v − 1 + ρ

)
Φ(1)

(
u(1)

)
−

m1∑
i=1

F2,1

(
v, u

(1)
i

)
Res

w→u(1)i

(
2w − 1 + ρ

2w + ρ
Λ+(w;u(1))

γ̃◦1(w + 1
2)

2w + 1 + ρ

+ Λ−(w;u(1))
γ̃◦2(w + 1

2)

2w + ρ

)
Φ(1)

(
u

(1)

σ
(1)
i ,u

(1)
i →v−

1
2

)
= Λ(1)

(
v − 1

2 ;u(1)
)

Φ(1)
(
u(1)

)
−

m1∑
i=1

F2,1

(
v, u

(1)
i

)
Res

w→u(1)i
Λ(1)

(
w;u(1)

)
Φ(1)

(
u

(1)

σ
(1)
i ,u

(1)
i →v−

1
2

)
.

This completes the proof when n = 2. Assuming 1 < k < n and n > 2 introduce notation

Λ(k)
(
v;u(k−1...n−1)

)
:=

n−1∑
l=k

2v − n+ ρ

2v − l + ρ
Λ−
(
v − l−1

2 ;u(l−1)
)

Λ+
(
v − l

2 ;u(l)
) γ̃◦l (v)

2v − l + 1 + ρ

+ Λ−
(
v − n−1

2 ;u(n−1)
) γ̃◦n(v)

2v − n+ 1 + ρ

and notice that, for all k ≤ l ≤ n− 1 and 1 ≤ i ≤ ml,

Res
w→u(l)i

Λ(k)
(
w + k−1

2 ;u(k−1,k)
)

= Res
w→u(l)i

Λ(1)
(
w;u(1...n−1)

)
.

Hence, when k = n − 1 and n > 2, using similar arguments as before and symmetry of the Bethe

89



vector, we find that

τ (n−1)
(
v;u(1...n−2)

)
Φ(n−1)

(
u(n−1);u(1...n−2)

)
=

(
n−2∏
j=1

Λ−
(
v − j

2 ;u(j)
))−1(

2v − n+ ρ

2v − n+ 1 + ρ
Λ−
(
v − n−2

2 ;u(n−2)
)

× Λ+
(
v − n−1

2 ;u(n−1)
) γ̃◦n−1(v)

2v − n+ 2 + ρ

+ Λ−
(
v − n−1

2 ;u(n−1)
) γ̃◦n(v)

2v − n+ 1 + ρ

)
Φ(n−1)

(
u(n−1);u(1...n−2)

)
−
mn−1∑
i=1

Fn,n−1

(
v, u

(n−1)
i

)( n−2∏
j=1

Λ−
(
u

(n−1)
i − j−n+1

2 ;u(j)
))−1

× Res
w→u(n−1)

i

(
2w − 1 + ρ

2w + ρ
Λ−
(
w + 1

2 ;u(n−2)
)

Λ+
(
w;u(n−1)

) γ̃◦n−1(w + n−1
2 )

2w + 1 + ρ

+ Λ−
(
w;u(n−1)

) γ̃◦n(w + n−1
2 )

2w + ρ

)
Φ(n−1)

(
u

(n−1)

u
(n−1)
i →v−n−1

2

;u(1...n−2)
)

=

(
n−2∏
j=1

Λ−
(
v − j

2 ;u(j)
))−1

Λ(n−1)
(
v;u(n−2,n−1)

)
Φ(n−1)

(
u(n−1);u(1...n−2)

)
provided Res

w→u(n−1)
i

Λ(1)
(
w;u(1...n−1)

)
= 0 for all 1 ≤ i ≤ mn−1. Next, when 1 < k < n − 1 and

n > 3, using negative inductive arguments we obtain

τ (k)
(
v;u(1...k−1)

)
Φ(k)

(
u(k...n−1);u(1...k−1)

)
=

(
k−1∏
j=1

Λ−
(
v − j

2 ;u(j)
))−1

Λ(k)
(
v;u(k−1...n−1)

)
Φ(k)

(
u(k...n−1);u(1...k−1)

)
provided Res

w→u(l)i
Λ(1)

(
w + l

2 ;u(1...n−1)
)

= 0 for all 1 ≤ i ≤ ml and k ≤ l ≤ n − 1. Finally, when

k = 1 and n > 2, we obtain

τ (1)(v)Φ(1)
(
u(1...n−1)

)
= Λ(1)

(
v;u1...n−1

)
Φ(1)

(
u(1...n−1)

)
provided Res

w→u(l)i
Λ(1)

(
w + l

2 ;u(1...n−1)
)

= 0 for all 1 ≤ i ≤ ml and 1 ≤ l ≤ n − 1, which completes

the proof.

3.2 Nested algebraic Bethe ansatz for the Xρ(g2n, g
θ
2n)

tw spin chain

In this section we present the nested algebraic Bethe ansatz for the Xρ(g2n, g
θ
2n)tw spin chain. We

begin by reviewing the fusion procedure for X(g2n), which allows us to construct representations
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of X(g2n), which will form the bulk of the chain.

3.2.1 Representations of the Yangian X(g2n)

Recall the extended Yangian X(g2n) from Section 1.2.2, generated by the matrix T (u) ∈ End(C2n)⊗
X(g2n)[[u−1]] satisfying the RTT relation

Rab(u− v)Ta(u)Tb(v) = Tb(v)Ta(u)Rab(u− v), (3.2.1)

with R-matrix

R(u) := I − P

u
− Q

κ− u
. (3.2.2)

Here P is the permutation operator on (C2n)⊗2, Q = P t1 as defined in (1.2.22), and κ = n∓1 with

the upper and lower signs denoting the orthogonal and symplectic cases respectively.

Since X(g2n) cannot have an equivalent of the evaluation homomorphism, not every representa-

tion of U(g2n) may be extended to a representation of X(g2n). Nevertheless, we may extend some

representations via a process known as R-matrix fusion.

The fusion procedure first makes use of the fact that the R-matrix itself satisfies the defining

relation of X(g2n) as a consequence of the Yang-Baxter relation, and therefore defines a represen-

tation of the algebra on C2n. This is the vector representation of g2n on C2n, a highest weight

representation of weight λ = (1, 0, . . . , 0) and highest weight vector e1, defined by the assignment

Fij 7→ eij − θij e2n−j+1,2n−i+1. The map

% : tij(u) 7→ δij +
1

u
eij −

1

u+ κ
θij e2n−j+1,2n−i+1

then equips C2n with a structure of a X(g2n)-module. Since we will use lowest weight X(g2n)-

modules, we compose the map % with the anti-automorphisms sign and tran. We also include the

shift automorphism τc as it will be necessary for the fusion procedure. Denoting the resulting map

by %c := % ◦ sign ◦ tran ◦ τc we have

%c : tij(u) 7→ δij −
1

u− c
eji +

1

u− c− κ
θij e2n−i+1,2n−j+1.

It follows that

%c(T (u)) = R(u− c), %c(T (u))%−c(T (−u)) = %c(T (u))%c(T
t(u+ κ)) = 1− 1

(u− c)2
.

This allows us to view the space C2n as an irreducible lowest weight X(g2n)-module with weight

λ(u) given by

λ1(u) = 1− 1

u− c
, λ2(u) = . . . = λ2n−1(u) = 1, λ2n(u) = 1 +

1

u− c− κ
. (3.2.3)
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We denote this module by L(λ)c. We will use this notation for all irreducible finite-dimensional

representations of g2n that can be equipped with a structure of a X(g2n)-module.

Consider the tensor product space (C2n)⊗k with k ≥ 2. Each C2n carries the vector representa-

tion of g2n, and so the full vector space (C2n)⊗k is also a representation of g2n. The Brauer algebra

Bk(±2n) acts naturally on this tensor space and commutes with the action of g2n, see e.g. Chapter

10 of [GW09]. The Brauer-Schur-Weyl duality allows us to obtain irreducible representations of g2n

by studying primitive idempotents in Bk(±2n). Recall that irreducible representations of Bk(±2n)

are labelled by all partitions λ = (λ1, λ2, . . .) of the non-negative integers k, k−2, k−4, . . . . Denote

by λ′ the partition conjugate to λ, e.g. if λ = (2, 1, 1), then λ′ = (3, 1). Then the vector space

(C2n)⊗k decomposes as

(C2n)⊗k ∼=
bk/2c⊕
f=0

⊕
λ`k−2f
λ′1+λ′2≤2n

Vλ ⊗ L(λ)

in the orthogonal case, and as

(C2n)⊗k ∼=
bk/2c⊕
f=0

⊕
λ`k−2f
2λ′1≤2n

Vλ′ ⊗ L(λ)

in the symplectic case; here Vλ and L(λ) are irreducible representations of Bk(±2n) and g2n,

respectively, labelled by the partition λ. We will focus on the symmetric representation labelled by

the partition (k) and the skew-symmetric representation labelled by the partition (1, . . . , 1) of k.

Assume that k ≥ 1 in the orthogonal case and 1 ≤ k ≤ n in the symplectic case. By Theorem 2.2 of

[IMO12] (see also Example 2.4 (iii) and Section 4 therein) the corresponding primitive idempotents

act on the space (C2n)⊗k via operators Π±k defined by

Π±1 = 1 and Π±k =
1

k!

k∏
i=2

(
R1i(∓(i− 1)) · · ·Ri−1,i(∓1)

)
if k ≥ 2. (3.2.4)

The subspace L±k = Π±k (C2n)⊗k is a g2n-submodule of (C2n)⊗k that is isomorphic to the highest

weight representation L(λ) of weight λ = (k, 0, . . . , 0) in the orthogonal case and of weight λ =

(1, . . . , 1, 0, . . . , 0), where the number of 1’s is k, in the symplectic case. The highest vector in the

orthogonal case is

η = e1 ⊗ · · · ⊗ e1.

In the symplectic case it is

η =
∑
σ∈Sk

sign(σ) eσ(1) ⊗ · · · ⊗ eσ(k),

where Sk is the group of permutations on the set {1, 2, . . . , k}.
By combining the comultiplication in (1.2.28) with the map %c and an appropriate choice of

the shift automorphisms, we obtain a representation of X(g2n) on the vector space (C2n)⊗k given
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by the assignment

T (u) 7→ R01(u− c)R02(u− c∓ 1) · · ·R0k(u− c∓ k ± 1) ∈ End((C2n)⊗(k+1)) (3.2.5)

where the “zero” space denotes the matrix space of T (u).

Proposition 3.2.1. The subspace L±k ⊂ (C2n)⊗k is stable under the action of X(g2n) defined by

(3.2.5). Moreover, the representation of X(g2n) on L±k obtained by restriction is an irreducible

lowest weight representation of weight λ(u) given by, for 1 ≤ i ≤ n,

λi(u) = 1− λi
u− c

, λ2n−i+1(u) = 1 +
λi

u− c∓ k ± 1− κ
, (3.2.6)

where λ = (k, 0, . . . , 0) in the orthogonal case and λ = (1, . . . , 1, 0, . . . , 0), with the number of 1’s

being k, in the symplectic case.

Proof. Using the explicit form of the idempotent Π±k and the Yang-Baxter equation multiple times

we find

R01(u− c)R02(u− c∓ 1) · · ·R0k(u− c∓ k ± 1)Π±k

= Π±k R0k(u− c∓ k ± 1) · · ·R02(u− c∓ 1)R01(u− c),

which implies the first part of the proposition. Since U(g2n) ⊂ X(g2n) we have X(g2n)(e1 ⊗ · · · ⊗
e1) = L±k . By Lemma 5.17 in [AMR06] adapted to lowest weight representations, the tensor product

of lowest vectors e1⊗· · ·⊗e1 is again a lowest vector of weight given by the product of the individual

weights with respect to the action (3.2.5), namely
∏k−1
j=0 λi(u∓j), where λi(u∓j) are those given by

(3.2.3). This implies the second part of the proposition for the orthogonal case. For the symplectic

case we refer the reader to the proof of Theorem 5.16 in [AMR06].

These representations of X(g2n) will be denoted by L(λ)c. We define the Lax operator L(u) of

X(g2n) by T (u) · L(λ)c = L(u− c)L(λ)c. It will be useful to know that

L(u)Lt(u+ κ) = Lt(u+ κ)L(u) =
k−1∏
i=0

(u∓ i)2 − 1

(u∓ i)2
· I =

u± 1

u
· u∓ k
u∓ k ± 1

· I (3.2.7)

which follows from the relations R(u)Rt(κ+ u) = Rt(κ+ u)R(u) = (1− u−2)I and (3.2.5).

3.2.2 The twisted Yangian Xρ(g2n, g
θ
2n)

tw

We now focus on the extended twisted Yangian Xρ(g2n, g
θ
2n)tw and its representation theory, adher-

ing closely to [GR16, GRW17, GRW19]. This will form the full underlying algebra of the open spin

chain, and many results in this section will bear resemblance to the those given in Section 3.1.1 for

the gln chain. As in the B ex
ρ (n, p) case above, we have included an additional “shift” parameter ρ

in the definition.
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Recall the C and D symmetric pairs from Section 1.3.2. Each of these is defined using an

involutive automorphism θ of the form F 7→ GFG−1. In order to construct the twisted Yangian,

we use this matrix G to construct a specific matrix-valued rational function

G(u) =
dI − uG
d− u

where d =
1

4
trG, (3.2.8)

so that d = 0 for symmetric pairs CI and DIII, d = n/2 for CD0, and d = (p − q)/4 for CII and

DI. Note that in each case the matrix G(u) = G+O(u−1) when expanded in powers of u−1.

Definition 3.2.2. The extended twisted Yangian Xρ(g2n, g
θ
2n)tw is the subalgebra of X(g2n) gen-

erated by the coefficients of the entries of the matrix

Σ(u) = T (u− κ
2 )G(u+ ρ

2)T t(ũ− κ
2 ) where ũ = κ− u− ρ. (3.2.9)

The “ρ-shifted” twisted Yangian defined above is isomorphic to the one introduced by one of

the authors in [GR16]. The isomorphism is provided by the map Σ(u) 7→ S(u + ρ
2). (Note that

Σ(u) is used to denote the special twisted Yangian in [GR16].)

Note that, from this definition, it is immediate that the extended twisted Yangian Xρ(g2n, g
θ
2n)tw

is indeed a coideal subalgebra of X(g2n), and we have

∆
(
σij(u)

)
=
∑
lm

til(u− κ
2 )t2n−j+1,2n−m+1(ũ− κ

2 )⊗ σlm(u) ∈ X(g2n)⊗Xρ(g2n, g
θ
2n)tw.

The Lemma below gives the defining relations of the algebra, and is due to Lemmas 4.1 and 4.3

in [GR16].

Lemma 3.2.3. The matrix Σ(u) defined in (3.2.9) satisfies the reflection equation and the sym-

metry relation:

R(u− v)Σ1(u)R(u+ v + ρ)Σ2(v) = Σ2(v)R(u+ v + ρ)Σ1(u)R(u− v), (3.2.10)

Σt(u) = (±)Σ(ũ)± Σ(u)− Σ(ũ)

u− ũ
+

tr(G(u+ ρ
2))Σ(ũ)− tr(Σ(u)) · I
u− ũ− κ

, (3.2.11)

where the lower sign in (±) distinguishes symmetric pairs CI and DIII from the remaining ones.

The name extended twisted Yangian refers to the lack of unitarity relation of the algebra

which, just as in the B ex
ρ (n, p) case, implies the existence of a nontrivial centre of the algebra. If

the unitarity relation is included, one arrives at the twisted Yangian Y (g2n, g
θ
2n)tw. Alternatively,

one arrives at the twisted Yangian using the construction (3.2.9), but instead starting from the

Yangian Y (g2n) instead of its extended version; this is a consequence of the cross-unitarity relation.

In the other direction, one may drop the symmetry relation to define an extended reflection algebra,

which has the reflection equation as its only relation, just as we defined B ex
ρ (n, p). These algebras

were studied in [GR16]. Since we will make use of the symmetry relation but not the unitarity
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relation in the nested algebraic Bethe ansatz, we have opted to use Xρ(g2n, g
θ
2n)tw as our starting

point.

Note above that the cases CI and DIII must be distinguished from the others using an additional

(±) sign in (3.2.11). We can combine these cases with the others by studying a slightly different

generating matrix. First we introduce the rational function

g(u) =


1 for CI, DIII,

2u− κ± 1 + ρ for CII, DI when p = q,

u− ũ− κ
tr(G(u+ ρ

2))
for CD0 and CII, DI when p > q.

(3.2.12)

Note that in the last case we have

u− ũ− κ
tr(G(u+ ρ

2))
=

(u− κ+ ρ
2)(u− d+ ρ

2)

d(2u− n+ ρ)
.

Now we define the matrix

S(u) := g(u)Σ(u) ∈ Xρ(g2n, g
θ
2n)tw((u−1)). (3.2.13)

Lemma 3.2.4. The matrix S(u) satisfies the reflection equation and the symmetry relation

St(u) = −
(

1± 1

u− ũ

)
S(ũ)± S(u)

u− ũ
− tr(S(u)) · I

u− ũ− κ
. (3.2.14)

Proof. Since we have only multiplied by a rational function, the reflection equation is satisfied as

before.

Substituting (3.2.13) to (3.2.14) gives

Σt(u) = −g(ũ)

g(u)

(
1± 1

u− ũ

)
Σ(κ− u− ρ)± Σ(u)

u− ũ
− tr(Σ(u)) · I

u− ũ− κ
. (3.2.15)

For symmetric pairs CI and DIII we have g(u) = 1 giving

−g(ũ)

g(u)

(
1± 1

u− ũ

)
= −1∓ 1

u− ũ
.

For symmetric pairs CII and DI when p = q we have instead g(u) = 2u− κ+ 1 + ρ and so

−g(ũ)

g(u)

(
1∓ 1

u− ũ

)
= 1∓ 1

u− ũ
.

Thus for the above symmetric pairs (3.2.15) becomes

Σt(u) =

(
(±)1∓ 1

u− ũ

)
Σ(κ− u− ρ)± Σ(u)

u− ũ
− tr(Σ(u)) · I

u− ũ− κ
,
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which is equivalent to (3.2.11), since the above cases have tr(G(u)) = 0.

Let us now focus on all the remaining symmetric pairs. By Lemma 2.2 in [GRW17] the matrix

G(u) itself satisfies the symmetry relation (3.2.11), namely

Gt(u+ ρ
2) = G(κ− u− ρ

2)±
G(u+ ρ

2)−G(κ− u− ρ
2)

u− ũ

+
tr(G(u+ ρ

2))G(κ− u− ρ
2)− tr(G(u+ ρ

2)) · I
u− ũ− κ

.

Recall (3.2.12). Taking the trace of both sides we find

−u− ũ− κ
2u+ ρ

(
1∓ 1

u− ũ
+

2κ± 2

u− ũ− κ

)
g(ũ) =

(
1∓ 1

u− ũ
+

g−1(u)

u− ũ− κ

)
g(u)

and rearrange to

−g(ũ)

g(u)

(
1± 1

u− ũ

)
=

(
1∓ 1

u− ũ
+

g−1(u)

u− ũ− κ

)
.

This allows us to rewrite (3.2.15) as

Σt(u) =

(
1∓ 1

u− ũ
+

g−1(u)

u− ũ− κ

)
Σ(κ− u− ρ)± Σ(u)

u− ũ
− tr(Σ(u)) · I

u− ũ− κ

= Σ(ũ)± Σ(u)− Σ(ũ)

u− ũ
+

tr(G(u+ ρ
2))Σ(ũ)− tr(Σ(u)) · I
u− ũ− κ

,

which coincides with the symmetry relation (3.2.11), as required.

This new symmetry relation (3.2.14) is more convenient than (3.2.11) in the context of the nested

algebraic Bethe ansatz for the Xρ(g2n, g
θ
2n)tw-chain as it allows us to study all types of boundary

at once. This will become evident in Sections 3.2.7 and 3.2.8, where the exchange relations are

obtained.

Next, we introduce the lowest weight representations of Xρ(g2n, g
θ
2n)tw. We rephrase some of

the statements given in Section 4 of [GRW17], where the highest weight representation theory was

studied.

Definition 3.2.5. A representation V of Xρ(g2n, g
θ
2n)tw is called a lowest weight representation if

there exists a non-zero vector ξ ∈ V such that V = Xρ(g2n, g
θ
2n)tw ξ and

σij(u)ξ = 0 for 1 ≤ j < i ≤ 2n and σii(u)ξ = µi(u)ξ for 1 ≤ i ≤ n, (3.2.16)

where µi(u) are formal power series in u−1 with the constant term equal gii. The vector ξ is called

the lowest weight vector of V , and the n-tuple µ(u) = (µ1(u), . . . , µn(u)) is called the lowest weight

of V .

Note that the symmetry relation (3.2.11) implies that ξ is also an eigenvector for σii(u) with

n < i ≤ 2n.
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Our focus will be on the lowest weight Xρ(g2n, g
θ
2n)tw-modules obtained by tensoring lowest

weight X(g2n)- and Xρ(g2n, g
θ
2n)tw-representations. With this goal in mind we make use of Propo-

sition 4.10 in [GRW17], which is rephrased to include the shift ρ.

Proposition 3.2.6. Let η be the lowest vector of a lowest weight X(g2n)-module L(λ(u)) and let ξ

be the lowest vector of a lowest weight Xρ(g2n, g
θ
2n)tw-module V (µ(u)). Then Xρ(g2n, g

θ
2n)tw(η ⊗ ξ)

is a lowest weight Xρ(g2n, g
θ
2n)tw-module with the lowest vector η ⊗ ξ and the lowest weight γ(u)

with components determined by the relations

γ̃i(u) = µ̃i(u)λi(u− κ
2 )λ2n−i+1(ũ− κ

2 ) for 1 ≤ i ≤ n, (3.2.17)

with

µ̃i(u) := (2u+ ρ− i+ 1)µi(u) +
i−1∑
j=1

µj(u), (3.2.18)

and γ̃i(u) defined analogously.

We introduce the one-dimensional representations of Xρ(g2n, g
θ
2n)tw below, which play the role

of boundary conditions for the spin chain. This Lemma rephrases Lemma 2.3 in [GRW17] and

Lemma 5.4 in [GRW19].

Lemma 3.2.7. Let a, b ∈ C. Then the matrices

K(u) = G− a

u+ ρ
2

I (3.2.19)

when n ≥ 1 and G is type CI, or n ≥ 2 and G is of type DIII, and

K(u) = −
(

1− b

u+ ρ
2

)((
1− a

u+ ρ
2

)
e11 −

(
1 +

a

u+ ρ
2

)
e22

)
+

(
1 +

b

u+ ρ
2

)((
1− a

u+ ρ
2

)
e33 −

(
1 +

a

u+ ρ
2

)
e44

)
, (3.2.20)

when n = 2, and

K(u) =
(u− a+ ρ

2)(u+ a− 2d+ ρ
2)

(u− d+ ρ
2)2

(
I − 2u+ ρ

u− a+ ρ
2

e11 −
2u+ ρ

u+ a− 2d+ ρ
2

e2n,2n

)
, (3.2.21)

when n > 2 and d = n
2 −1, are one- or two-parameter solutions of (3.2.10) satisfying the symmetry

relation (3.2.11) (with Σ(u) replaced by K(u)).

The non-zero matrix elements of K(u) in (3.2.19-3.2.21) are power series in u−1 of the form

gii + u−1C[[u−1]], so that K(u) ∈ G + u−1C[[u−1]] with G type DI with p = 2 for (3.2.20–3.2.21).

This implies the following statement.

Proposition 3.2.8. (i) The assignment Σ(u) 7→ K(u) yields a one-dimensional representation of

Xρ(g2n, g
θ
2n)tw of weight µ(u) given by, in the case-by-case way,
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• for CI and DIII by (3.2.19):

µ1(u) = . . . = µn(u) = 1− a

u+ ρ
2

, (3.2.22)

• for DI when n = p = q = 2 by (3.2.20):

µ1(u) =

(
−1 +

a

u+ ρ
2

)(
1− b

u+ ρ
2

)
,

µ2(u) =

(
1 +

a

u+ ρ
2

)(
1− b

u+ ρ
2

)
,

(3.2.23)

• for DI when n > 2, p = 2n− 2, q = 2 by (3.2.21):

µ1(u) = −
(u+ a+ ρ

2)(u+ a− 2d+ ρ
2)

(u− d+ ρ
2)2

,

µ2(u) = . . . = µn(u) =
(u− a+ ρ

2)(u+ a− 2d+ ρ
2)

(u− d+ ρ
2)2

.

(3.2.24)

(ii) The assignment Σ(u) 7→ K(u) = G(u+ ρ
2) with G(u) defined by (3.2.8) yields a one-dimensional

representation of Xρ(g2n, g
θ
2n)tw of weight µ(u) given, case-by-case, by

• for CII when p ≥ q and DI when p ≥ q ≥ 4:

µi(u) =
d− (u+ ρ

2)gii

d− u− ρ
2

for 1 ≤ i ≤ n, (3.2.25)

• for CD0:

µ1(u) = . . . = µn(u) = 1. (3.2.26)

Finally, we introduce the spin chain model using the above representation theory defining the

action of Xρ(g2n, g
θ
2n)tw on it.

Recall the module L(λ)c, regarded as a X(g2n) lowest weight module, with action defined by

the fusion procedure in Proposition 3.2.1. Let V (µ) denote a one-dimensional representation of

Xρ(g2n, g
θ
2n)tw of the sort given in Proposition 3.2.8. The spin chain is then

M := L(λ(1))c1 ⊗ L(λ(2))c2 ⊗ . . .⊗ L(λ(`))c` ⊗ V (µ), (3.2.27)

The generating matrix S(u) (cf. (3.2.13)) of Xρ(g2n, g
θ
2n)tw acts on this space as

S(u) ·M = g(u)

(∏̀
i=1

Li(u− ci − κ
2 )

)
K(u)

(
1∏
i=`

Lti(ũ− ci − κ
2 )

)
M, (3.2.28)
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where Li(u) are the fused Lax operators of X(g2n), K(u) are given by Lemma 3.2.7, and ũ =

κ − u − ρ. By Proposition 3.2.6, the space M is a lowest weight Xρ(g2n, g
θ
2n)tw-module of weight

γ(u) with components defined by (3.2.17) with µi(u) as in Proposition 3.2.8 and λi(u) given by

λi(u) =
∏̀
j=1

λ
(j)
i (u) (3.2.29)

with weights λ
(j)
i (u) as in (3.2.6). The image of S(u) on M given by (3.2.28) is the monodromy

matrix of the open spin chain.

3.2.3 Block decomposition of X(g2n) and Xρ(g2n, g
ρ
2n)

tw

We now initiate the nested algebraic Bethe ansatz of the chain, using the nesting procedure from

Chapter 2. The first step is to decompose the generating matrices T (u) and S(u) into n× n block

matrices, and recast the defining relations in block form. We decompose the 2n×2n matrices T (u)

and S(u) into n× n blocks as follows:

T (u) =

(
A(u) B(u)

C(u) D(u)

)
, S(u) =

(
A(u) B(u)

C(u) D(u)

)
. (3.2.30)

We will denote the matrix elements of A(u) by aij(u) with 1 ≤ i, j ≤ n, and similarly for matrices

B(u), C(u) and D(u), and their barred counterparts.

Recall that C2n ∼= C2 ⊗ Cn. Let eij with 1 ≤ i, j ≤ 2n denote the standard matrix units of

End(C2n). Moreover, let xij with 1 ≤ i, j ≤ 2 (resp. eij with 1 ≤ i, j ≤ n) denote the standard

matrix units of End(C2) (resp. End(Cn)). Then, for any 1 ≤ i, j ≤ n, we may write

eij = x11 ⊗ eij , en+i,j = x21 ⊗ eij , ei,n+j = x12 ⊗ eij , en+i,n+j = x22 ⊗ eij . (3.2.31)

Hence any matrix M ∈ End(C2n) with entries (M)ij ∈ C can be written as

M =

2∑
a,b=1

xab ⊗ [[M ]]ab ∈ End(C2)⊗ End(Cn),

where [[M ]]ab =
∑n

i,j=1[M ]i+n(a−1),j+n(b−1) eij are blocks of M , viz. (3.2.30). Now suppose that

M ∈ End(C2n ⊗ C2n). Then we may write

M =

2∑
a,b,c,d=1

xab ⊗ xcd ⊗ [[M ]]abcd ∈ End(C2 ⊗ C2)⊗ End(Cn ⊗ Cn),
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where [[M ]]abcd are obtained as follows. Writing M =
∑2n

i,j,k,l=1[M ]ijkleij ⊗ ekl we have

[[M ]]abcd =
n∑

i,j,k,l=1

[M ]i+n(a−1),j+n(b−1),k+n(c−1),l+n(d−1) eij ⊗ ekl. (3.2.32)

Denote the g2n R-matrix acting on C2n ⊗C2n by R̃(u). Viewing R̃(u) as element in End(C2 ⊗
C2)⊗ End(Cn ⊗ Cn)[[u−1]] and using (3.2.32) we recover the familiar six-vertex block structure,

R̃(u) =


R(u)

Rt(κ− u) U(u)

U(u) Rt(κ− u)

R(u)

 . (3.2.33)

The operators inside the matrix above are each acting on Cn ⊗ Cn and are given by

R(u) = I − 1

u
P, U(u) = − 1

u
P ± 1

u− κ
Q, (3.2.34)

where both the transpose t and the projector Q =
∑N

i,j=1 eij⊗e̄ ı̄ are of the orthogonal type (recall

the notation ı̄ = n − i + 1), and I is the identity matrix. These operators satisfy the following

unitarity relations

R(u)R(−u) = (1− u−2)I, Rt(u)Rt(n− u) = I. (3.2.35)

In a similar way, the matrices T1(u) and T2(u), as elements of End(C2 ⊗ C2) ⊗ End(Cn ⊗ Cn) ⊗
X(g2n)[[u−1]], take the form

T1(u) =


A1(u) B1(u)

A1(u) B1(u)

C1(u) D1(u)

C1(u) D1(u)

 , T2(u)=


A2(u) B2(u)

C2(u) D2(u)

A2(u) B2(u)

C2(u) D2(u)

 .

(3.2.36)

where A1(u) means A(u)⊗ I ∈ End(Cn ⊗ Cn)⊗X(g2n)[[u−1]], and similarly for the other blocks.

Substituting (3.2.33) and (3.2.36) to (1.2.27) allows us to rewrite the defining relations of X(g2n)
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in terms of the matrices A(u), B(u), C(u) and D(u). The relations that we will need are:

R(u− v)A1(u)A2(v) = A2(v)A1(u)R(u− v), (3.2.37)

R(u− v)D1(u)D2(v) = D2(v)D1(u)R(u− v), (3.2.38)

Rt(κ− u+ v)C1(u)A2(v) = A2(v)C1(u)R(u− v) +Q(u− v)A1(u)C2(v), (3.2.39)

C2(v)D1(u)Rt(κ− u+ v) = R(u− v)D1(u)C2(v)−D2(v)C1(u)K(u− v), (3.2.40)

A2(v)D1(u)Rt(κ− u+ v)−Rt(κ− u+ v)D1(u)A2(v)

= Q(u− v)B1(u)C2(v)−B2(v)C1(u)Q(u− v). (3.2.41)

In particular, the coefficients of the matrix entries of A(u) generate a Y (gln) subalgebra of X(g2n).

The same is true for D(u).

We now repeat the same steps for the extended twisted Yangian Xρ(g2n, g
θ
2n)tw. We substitute

(3.2.33) to (3.2.10) and view the matrices S1(u) and S2(u) as elements of End(C2⊗C2)⊗End(Cn⊗
Cn)⊗Xρ(g2n, g

θ
2n)tw((u−1)), so that they take the same form as in (3.2.36). This allows us to write

the defining relations of Xρ(g2n, g
θ
2n)tw in terms of the matrices A(u), B(u), C(u) and D(u). The

relations that we will need are:

R(u− v)A1(u)R(u+ v + ρ)A2(v) = A2(v)R(u+ v + ρ)A1(u)R(u− v)

−R(u− v)B1(u)Q(u+ v + ρ)C2(v) +B2(v)Q(u+ v + ρ)C1(u)R(u− v), (3.2.42)

A2(v)R(u+ v + ρ)B1(u)Q(u− v) = R(u− v)B1(u)Q(u+ v + ρ)A2(v)

−B2(v)Q(u+ v + ρ)A1(u)Q(u− v)−B2(v)Q(u+ v + ρ)D1(u)Q(u− v), (3.2.43)

Rt(ũ− v)C1(u)R(u+ v + ρ)A1(v) = A1(v)Rt(ũ− v)C1(u)R(u− v)

−Q(u− v)A1(u)Rt(ũ− v)C2(v)−Rt(ũ− v)D1(u)Q(u+ v + ρ)C1(v), (3.2.44)

R(u− v)B1(u)Rt(ũ− v)B2(v) = B2(v)Rt(ũ− v)B1(u)R(u− v). (3.2.45)

It remains to cast the symmetry relation (3.2.14) in the block form. Observe that

St(u) =

(
Dt(u) ±Bt(u)

±Ct(u) At(u)

)
, (3.2.46)

which allows us to immediately extract linear relations between the operators A(u), B(u), C(u) and

D(u), of which we will need the following two only:

Dt(u) = −
(

1± 1

u− ũ

)
A(ũ)± A(u)

u− ũ
− tr(S(u)) · I

u− ũ− κ
, (3.2.47)

Bt(u) =

(
∓ 1− 1

u− ũ

)
B(ũ) +

B(u)

u− ũ
. (3.2.48)
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3.2.4 Creation operator for a single excitation

We begin by reinterpreting the B operator of the generating matrix S(u), viz. (3.2.30), as a row

vector in two auxiliary spaces, V ∗ã1 ⊗ V
∗
a1
∼= (Cn)∗ ⊗ (Cn)∗, with components given by the matrix

elements bij(u).

Definition 3.2.9. The creation operator for a single (top-level) excitation is given by

βã1a1(u) :=

N∑
i,j=1

e∗i ⊗ e∗j ⊗ b̄ıj(u) ∈ V ∗ã1 ⊗ V
∗
a1 ⊗Xρ(g2n, g

θ
2n)tw((u−1)). (3.2.49)

The exchange and symmetry relations involving the B operator must now be rewritten using the

above notation. In general, we may switch between the two notations using the following relation,

in matrix elements,

(XaBa(u)Ya)ij =
∑

1≤k,l≤n
xik bkl(u)ylj = (βãa(u)Xt

ãYa)ı̄j , (3.2.50)

where X,Y are matrix operators with entries in C((u−1)) and may act nontrivially on the additional

auxiliary spaces. The Lemma below states some useful properties of the creation operator.

Lemma 3.2.10. The (top-level) creation operator satisfies the following two identities:

βã1a1(u1)βã2a2(u2)Ra1ã2(−u1 − u2 − ρ)Řã1ã2(u1 − u2)

= βã1a1(u2)βã2a2(u1)Ra1ã2(−u1 − u2 − ρ)Řa1a2(u1 − u2), (3.2.51)

βã1a1(v)Qã1aQa1a =

(
∓ 1− 1

v − ṽ

)
βã1a1(ṽ)Qa1a +

βã1a1(v)Qa1a
v − ṽ

. (3.2.52)

Proof. The operator B(u) satisfies the same exchange relation as the equivalent operator from

Chapter 2, with an additional shift of κ. Following Lemma 2.2.4, with ρ replaced by ρ − κ, we

arrive at (3.2.51). To prove (3.2.52) we work from (3.2.48). Acting from the right by Qa1a, and

using the equalities Xt
a1Qa1a = XaQa1a = Pa1aXa1Qa1a, we obtain

Pa1aBa1(v)Qa1a =

(
∓ 1− 1

v − ṽ

)
Ba1(ṽ)Qa1a +

Ba1(v)Qa1a
v − ṽ

.

Implementing (3.2.50) then yields the desired result.

3.2.5 The AB exchange relation for a single excitation

Our next step is to rewrite the AB exchange relation (3.2.43) in terms of the creation operator

(3.2.49). Typically, the Bethe ansatz method would also require us to consider the DB exchange

relation but, just as in Chapter 2, we will make use of the linear symmetry relation (3.2.47) to

replace all instances of D operators by A operators. Indeed, the Lemma below allows us to rewrite
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the trace of the monodromy matrix trS(u) = trA(u) + trD(u) in terms of the A operator only.

We will often make use of the following notation. For a function f we define a symmetrization

operation by

{f(u)}u := f(u) + f(ũ), (3.2.53)

noting that now ũ = κ− u− ρ. We also introduce the rational function

p(u) =
1

u− ũ
. (3.2.54)

Lemma 3.2.11. We have

− trS(ũ)

u− ũ+ κ
=

trS(u)

u− ũ− κ
= {p(u) trA(u)}u .

Proof. Adding A(u) to both sides of (3.2.47) and taking the trace we obtain

trS(u) =

(
1± 1

u− ũ

)
tr(A(u)−A(ũ))− (κ± 1) trS(u)

u− ũ− κ
.

Rearranging this, and dividing by (u− ũ± 1), we find

trS(u)

u− ũ− κ
=

tr(A(u)−A(ũ))

u− ũ
,

which, by (3.2.53), proves the second equality. The first equality is obtained by sending u 7→ ũ,

and noting that the r.h.s. remains unchanged.

Applying Lemma 3.2.11 to (3.2.47) we obtain a new symmetry relation for the A and D oper-

ators:

Dt(u) = −
(

1± 1

u− ũ

)
A(ũ)± A(u)

u− ũ
−
{

tr(A(u)) · I
u− ũ

}u
. (3.2.55)

This symmetry relation allows us to obtain a D-independent form of the AB exchange relation.

Lemma 3.2.12. The AB exchange relation (3.2.43) may be equivalently written as

Aa(v)βã1a1(u) = βã1a1(u)S
(1)
a ã1a1

(v;u) + U+ + U−, (3.2.56)

where

S
(1)
a ã1a1

(v;u) := Rtã1a(u− v)Rta1a(ũ− v)Aa(v)Rta1a(u− v ± 1)Rtã1a(ũ− v ± 1), (3.2.57)

U+ :=
βã1a1(v)

u− v
Qã1aR

t
a1a(ũ− u)Aa(u)Rta1a(±1)Rtã1a(ũ− u± 1), (3.2.58)

U− := ±βã1a1(v)

u− ṽ
Qã1aQa1a

(
1± 1

u− ũ

)
Aa(ũ)Rta1a(u− ũ± 1)Rtã1a(±1). (3.2.59)

The matrix S
(1)
a ã1a1

(v;u) is the nested monodromy matrix for a single excitation. The matrices
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U± are the ‘unwanted terms’, which will also be written as “UWT”.

Proof of Lemma 3.2.12. The first step is to rewrite (3.2.43) in terms of βã1a1(u). We obtain, using

(3.2.50),

Aa(v)βã1a1(u)Rtã1a(u+ v + ρ)Rta1a(κ− u+ v)

= βã1a1(u)Rtã1a(u− v)Rta1a(ũ− v)Aa(v)

− βã1a1(v)Qã1aPa1aR
t
a1a(ũ− v)Aa1(u)Ua1a(u− v)

− βã1a1(v)Qã1aPa1aUa1a(u+ v + ρ)Da1(u)Rta1a(κ− u+ v).

Since Q is a rank n projector, Rt(u) is invertible for u 6= n, with inverse Rt(n−u) = Rt(κ−u± 1).

Multiplying the expression above by the appropriate inverses, we have

Aa(v)βã1a1(u)

= βã1a1(u)Rtã1a(u− v)Rta1a(ũ− v)Aa(v)Rta1a(u− v ± 1)Rtã1a(ũ− v ± 1)

− βã1a1(v)Qã1aPa1aR
t
a1a(ũ− v)Aa1(u)Ua1a(u− v)Rta1a(u− v ± 1)Rtã1a(ũ− v ± 1)

− βã1a1(v)Qã1aPa1aUa1a(u+ v + ρ)Da1(u)Rtã1a(ũ− v ± 1)

= βã1a1(u)S
(1)
a ã1a1

(v;u) + UA + UD, (3.2.60)

where

UA := −βã1a1(v)Qã1aPa1aR
t
a1a(ũ− v)Aa1(u)Ua1a(u− v)Rta1a(u− v ± 1)Rtã1a(ũ− v ± 1),

UD := −βã1a1(v)Qã1aPa1aUa1a(u+ v + ρ)Da1(u)Rtã1a(ũ− v ± 1).

So far the first term, the “wanted term”, matches the desired expression (3.2.56). We must now

manipulate UA + UD to match the remaining terms. First, note that

U(u− v)Rt(u− v ± 1) =

(
− P

u− v
± Q

u− v − κ

)(
1− Q

u− v ± 1

)
= − P

u− v
+

(
1

(u− v)(u− v ± 1)
± 1

u− v − κ

(
1− κ± 1

u− v ± 1

))
Q

= − P

u− v
+

(
1

(u− v)(u− v ± 1)
± 1

u− v ± 1

)
Q

= −P R
t(±1)

u− v
.

Thus,

UA =
βã1a1(v)

u− v
Qã1aPa1aR

t
a1a(ũ− v)Aa1(u)Pa1aR

t
a1a(±1)Rtã1a(ũ− v ± 1)

=
βã1a1(v)

u− v
Qã1aR

t
a1a(ũ− v)Aa(u)Rta1a(±1)Rtã1a(ũ− v ± 1). (3.2.61)
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With UD, our strategy will be to use the symmetry relation (3.2.55), allowing us to combine the

term with UA. We first make the following manipulations in preparation:

UD = −βã1a1(v)Qã1aPa1aUa1a(u+ v + ρ)Rtã1a(ũ− v ± 1)Da1(u)

= −βã1a1(v)Qã1a

(
− 1

u+ v + ρ
± Qa1a
u− ṽ

)(
1 +

Qã1a
u− ṽ ∓ 1

)
Da1(u)

= −βã1a1(v)

(
− Qã1a
u+ v + ρ

± Qã1aQa1a
u− ṽ

+
Qã1a

u− ṽ ∓ 1

(
− κ± 1

u+ v + ρ
± 1

u− ṽ

))
Da1(u).

The final term may be factorised as follows:

− κ± 1

u+ v + ρ
± 1

u− ṽ
= − κ(u− ṽ ∓ 1)

(u+ v + ρ)(u− ṽ)
.

Thus,

UD = −βã1a1(v)

(
− Qã1a
u+ v + ρ

± Qã1aQa1a
u− ṽ

− κQã1a
(u+ v + ρ)(u− ṽ)

)
Da1(u)

= −βã1a1(v)

(
± Qã1aQa1a

u− ṽ
− Qã1a
u− ṽ

)
Da1(u)

= −βã1a1(v)

u− ṽ
(
±Qã1aQa1a −Qã1a

)
Da1(u).

Although this expression is now a lot simpler, the Da1(u) operator is acting on the auxiliary space

Va1 , rather than Va as desired. To remedy this, we use the following identity:

Qã1aDa1(u) = Qã1a tra(Qa1aDa1(u)) = Qã1a tra(Qa1aD
t
a(u)) = Qã1aQa1aD

t
a(u)Qã1a,

where we have used that tra(Qa1a) = Ia1 . Therefore, using also Qa1aDa1(u) = Qa1aD
t
a(u),

UD = ∓βã1a1(v)

u− ṽ
Qã1aQa1aD

t
a(u)(1∓Qã1a).

Applying the symmetry relation (3.2.55) we obtain

UD = ∓βã1a1(v)

u− ṽ
Qã1aQa1a

(
−
(

1± 1

u− ũ

)
Aa(ũ)± Aa(u)

u− ũ
−
{

tr(A(u)) · Ia
u− ũ

}u)
(1∓Qã1a).

Since all terms in UA + UD contain Aa(u) or Aa(ũ), we reorganise the sum UA + UD accordingly.
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Define

U+ :=
βã1a1(v)

u− v
Qã1aR

t
a1a(ũ− v)Aa(u)Rta1a(±1)Rtã1a(ũ− v ± 1)

− βã1a1(v)

u− ṽ
Qã1aQa1a

(
Aa(u)∓ tr(A(u))

u− ũ

)
(1∓Qã1a),

U− := ±βã1a1(v)

u− ṽ
Qã1aQa1a

((
1± 1

u− ũ

)
Aa(ũ)− tr(A(ũ))

u− ũ

)
(1∓Qã1a),

so that UA+UD = U+ +U−. It remains to match the expressions for U+ and U− with those in the

desired expressions (3.2.58), (3.2.59). With U−, we simply use Qa1a tr(A(ũ)) = Qa1aAa(ũ)Qa1a to

obtain the required form,

U− = ±βã1a1(v)

u− ṽ
Qã1aQa1a

(
1± 1

u− ũ

)
Aa(ũ)Rta1a(u− ũ± 1)Rtã1a(±1).

We now turn our attention to U+. Using again the trace property of Qa1a,

U+ =
βã1a1(v)

u− v
Qã1aR

t
a1a(ũ− v)Aa(u)Rta1a(±1)Rtã1a(ũ− v ± 1)

− βã1a1(v)

u− ṽ
Qã1aQa1a

Aa(u)

u− ũ
Rta1a(±1)(1∓Qã1a).

The Qã1a and Rta1a(±1) matrices are present in both terms as desired. The simplest way forward

is to expand the remaining matrices in terms of projectors, then match term by term. Indeed,

U+ = βã1a1(v)Qã1a

(
1

u− v
Aa(u)Rta1a(±1) +

Aa(u)Rta1a(±1)Qã1a

(u− v)(u− ṽ ∓ 1)

+
1

u− ṽ

(
1

u− v
− 1

u− ũ

)
Qa1aAa(u)Rta1a(±1)

± 1

u− ṽ

(
1

u− ũ
± 1

(u− v)(u− ṽ ∓ 1)

)
Qa1aAa(u)Rta1a(±1)Qã1a

)

= βã1a1(v)Qã1a

(
1

u− v
Aa(u)Rta1a(±1) +

Aa(u)Rta1a(±1)Qã1a

(u− v)(u− ṽ ∓ 1)

± u− v ± 1

(u− ũ)(u− v)(u− ṽ ∓ 1)
Qa1aAa(u)Rta1a(±1)Qã1a

)
.

Although all the terms have been fully written out, it is still not clear that this is equal to the

desired expression. The discrepancy arises due to the terms on the last line. These terms contain

two Qã1a operators, and so elements sandwiched between these operators appear as a trace. This

leads to the following identities

Qã1aQa1aAa(u)Qa1aQã1a = Qã1aAa(u)Qã1a,

Qã1aQa1aAa(u)Qã1a = Qã1aAa(u)Qa1aQã1a.
(3.2.62)
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Then, expanding the Rta1a(±1) matrices,

U+ =
βã1a1(v)

u− v
Qã1aR

t
a1a(ũ− u)Aa(u)Rta1a(±1)

+ βã1a1(v)
(
α1Qã1aQa1aAa(u)Qã1a + α2Qã1aQa1aAa(u)Qa1aQã1a

)
,

where we find

α1 = ∓α2 = ∓ 1

(u− v)(u− ṽ ∓ 1)
± u− v ± 1

(u− ũ)(u− v)(u− ṽ ∓ 1)
= ∓ 1

(u− v)(u− ũ)
.

So

U+ =
βã1a1(v)

u− v

(
Qã1aR

t
a1a(ũ− u)Aa(u)Rta1a(±1)

∓ Qã1aQa1aAa(u)Qã1a
u− ũ

+
Qã1aQa1aAa(u)Qa1aQã1a

u− ũ

)
.

Writing
1

u− ũ
=

1

u− ũ
· u− ũ∓ 1

u− ũ∓ 1
=

1

u− ũ∓ 1

(
1∓ 1

u− ũ

)
,

and using (3.2.62) we obtain

U+ =
βã1a1(v)

u− v

(
Qã1aR

t
a1a(ũ− u)Aa(u)Rta1a(±1)∓ Qã1aAa(u)Qa1aQã1a

u− ũ∓ 1

+
Qã1aQa1aAa(u)Qã1a
(u− ũ)(u− ũ∓ 1)

+
Qã1aAa(u)Qã1a
u− ũ∓ 1

∓ Qã1aQa1aAa(u)Qa1aQã1a
(u− ũ)(u− ũ∓ 1)

)
=
βã1a1(v)

u− v
Qã1aR

t
a1a(ũ− u)Aa(u)Rta1a(±1)Rtã1a(ũ− u± 1),

which matches (3.2.58), as required.

From Lemma 3.2.12, in order to obtain the most elegant form of the unwanted terms, we must

symmetrise over v → ṽ. This will allow us to write the unwanted terms as a residue of the wanted

terms. We will employ the notation (3.2.53).

Lemma 3.2.13. The AB exchange relation for a single excitation is

{
p(v)Aa(v)

}v
βã1a1(u) = βã1a1(u)

{
p(v)S

(1)
a ã1a1

(v;u)
}v

+
1

p(u)

{
p(v)

βã1a1(v)

u− v

}v
Res
w→u

{
p(w)S

(1)
a ã1a1

(w;u)
}w
.
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Proof. Evaluating the residue, the desired expression is{
p(v)Aa(v)

}v
βã1a1(u)

= βã1a1(u)
{
p(v)Rtã1a(u− v)Rta1a(ũ− v)Aa(v)Rta1a(u− v ± 1)Rtã1a(ũ− v ± 1)

}v
+

{
p(v)

βã1a1(v)

u− v

}v
Qã1aR

t
a1a(ũ− u)Aa(u)Rta1a(±1)Rtã1a(ũ− u± 1)

+

{
p(v)

βã1a1(v)

u− v

}v
Rtã1a(u− ũ)Qa1aAa(ũ)Rta1a(u− ũ± 1)Rtã1a(±1).

(3.2.63)

We will work from (3.2.56), and obtain this expression. Multiplying (3.2.56) by p(v) and sym-

metrising over v → ṽ reveals that the “wanted term” and U+ term are already of the correct form,

while U− is of the form

{
p(v)U−

}v
= ±

{
p(v)

βã1a1(v)

u− ṽ

}v
Qã1aQa1a

(
1± 1

u− ũ

)
Aa(ũ)Rta1a(u− ũ± 1)Rtã1a(±1).

From here, we will use the identity (3.2.52) to construct Rt(u − ũ), and arrive at the desired

expression. We must split the r.h.s. into two portions, on one of which we will use the to construct

the “identity” part of the Rt-matrix. Combining this with the other portion will result in the

desired Rt-matrix. It turns out the correct proportions to take are given as follows:

1

u− ṽ

(
1± 1

u− ũ

)
=

1

u− ṽ

(
1± 1

u− v
∓ 1

u− v
± 1

u− ũ

)
=

1

u− ṽ

(
1± 1

u− v
∓ u− ṽ

(u− v)(u− ũ)

)
=

1

u− ṽ

(
1± 1

u− v

)
∓ 1

(u− v)(u− ũ)
.

Then,

{
p(v)U−

}v
= ±

{
p(v)

βã1a1(v)

u− v

(
u− v ± 1

u− ṽ
∓ 1

u− ũ

)}v
×Qã1aQa1aAa(ũ)Rta1a(u− ũ± 1)Rtã1a(±1).
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Applying (3.2.52) to the first of these terms, we have

±
{
p(v)

βã1a1(v)

u− v

(
u− v ± 1

u− ṽ

)}v
Qã1aQa1a

= ±
{
p(v)

u− v

(
u− v ± 1

u− ṽ

)((
∓ 1− 1

v − ṽ

)
βã1a1(ṽ)Qa1a +

βã1a1(v)Qa1a
v − ṽ

)}v
= ±

{
p(v)

βã1a1(v)

(u− v)(u− ṽ)

(
(u− ṽ ± 1)

(
± 1− 1

v − ṽ

)
+
u− v ± 1

u− ṽ

)}v
Qa1a

=

{
p(v)

βã1a1(v)

(u− v)(u− ṽ)

(
(u− ṽ ± 1)(v − ṽ ∓ 1)± (u− v ± 1)

v − ṽ

)}v
Qa1a

=

{
p(v)

βã1a1(v)

(u− v)(u− ṽ)

(
(v − ṽ)(u− ṽ)

v − ṽ

)}v
Qa1a

=

{
p(v)

βã1a1(v)

u− v

}v
Qa1a.

Therefore

{
p(v)U−

}v
=

{
p(v)

βã1a1(v)

u− v

}v
Rtã1a(u− ũ)Qa1aAa(ũ)Rta1a(u− ũ± 1)Rtã1a(±1), (3.2.64)

which agrees with the last term in (3.2.63).

Lemmas 3.2.12 and 3.2.13 provide us with an insight into the expression for the nested mon-

odromy matrix of the spin chain. The next step is to generalize the result of Lemma 3.2.13 for an

arbitrary number of excitations.

3.2.6 Creation operator for multiple excitations

Choose m ∈ N, the number of (top-level) excitations, and introduce m-tuple u = (u1, u2, . . . , um)

of formal parameters and m-tuples ã = (ã1, . . . , ãm) and a = (a1, . . . , am) of labels. For each label

we associate an auxiliary vector space, Vã1 , Va1 , . . . , Vãm , Vam , each isomorphic to Cn. Then we

define a tensor space Wãa and its dual W ∗ãa by

Wãa := Vã1 ⊗ Va1 ⊗ · · · ⊗ Vãm ⊗ Vam , W ∗ãa := V ∗ã1 ⊗ V
∗
a1 ⊗ · · ·V

∗
ãm ⊗ V

∗
am . (3.2.65)

Definition 3.2.14. The creation operator for m (top-level) excitations is given by

βãa(u) :=
m∏
i=1

(
βãiai(ui)

1∏
j=i−1

Raj ãi(ũi − uj)
)
∈W ∗ãa ⊗X(g2n, g

ρ
2n)tw((u−1

1 , . . . , u−1
m )).

Note that βãa(u) satisfies the following recursion relation:

βã1a1...ãmam(u1, . . . , um) = βã1a1...ãm−1am−1(u1, . . . , um−1)βãmam(um)

×Ram−1ãm(ũm − um−1) · · ·Ra1ãm(ũm − u1).
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Our next step is to obtain an identity relating βãa(u) with βãa(ui↔i+1), where ui↔i+1 denotes the

m-tuple obtained from u by interchanging ui with ui+1 for any 1 ≤ i ≤ m − 1. For this purpose,

we define

Ř(u) :=
u

u− 1
PR(u).

The normalisation here is chosen such that Ř(u)Ř(−u) = I.

Lemma 3.2.15. The creation operator for m (top-level) excitations obeys the following symmetry

βãa(u) = βãa(ui↔i+1)Řaiai+1(ui − ui+1)Řãiãi+1(ui+1 − ui)

for 1 ≤ i ≤ m− 1.

Proof. The operator B(u) satisfies the same defining relations as those in Chapter 2, with an

additional shift of κ. Following the same argument as in Lemma 2.2.6, with ρ− κ instead of ρ, we

arrive at the same conclusion. Finally, the normalised Ř allows us to write Ř−1(u) = Ř(−u).

3.2.7 The AB exchange relation for multiple excitations

We now generalise the single excitation nested monodromy matrix S
(1)
a ã1a1

(v;u1) from Lemma 3.2.13

to multiple excitations.

Definition 3.2.16. The nested monodromy matrix for k (top-level) excitations is given by

S
(1)
a ã1a1...ãkak

(v;u1, . . . , uk) :=

(
k∏
i=1

Rtãia(ui − v)

)(
k∏
i=1

Rtaia(ũi − v)

)

×Aa(v)

(
1∏
i=k

Rtaia(ui − v ± 1)

)(
1∏
i=k

Rtãia(ũi − v ± 1)

)
. (3.2.66)

We will often omit the ã1a1 . . . ãkak from the subscript, writing simply S
(1)
a (v;u1, . . . , uk).

Lemma 3.2.17. The following identity holds

S(1)
a (v;u1, . . . , uk−1)

(
βãkak(uk)

1∏
j=k−1

Raj ãk(ũk − uj)
)

=

(
βãkak(uk)

1∏
j=k−1

Raj ãk(ũk − uj)
)
S(1)
a (v;u1, . . . , uk) + UWT,

where UWT denotes the “unwanted terms” that do not contain Aa(v).

Proof. Working from the definition of S
(1)
a (v;u1, . . . , uk−1), and commuting matrices which act on
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different spaces, we use Lemma 3.2.12 to obtain

S(1)
a (v;u1, . . . , uk−1)

(
βãkak(uk)

1∏
j=k−1

Raj ãk(ũk − uj)
)

= βãkak(uk)

(
k−1∏
i=1

Rtãia(ui − v)

)(
k−1∏
i=1

Rtaia(ũi − v)

)
×Rtãka(uk − v)Rtaka(ũk − v)Aa(v)Rtaka(uk − v ± 1)Rtãka(ũk − v ± 1)

×

(
1∏

i=k−1

Rtaia(ui − v ± 1)

)(
1∏

i=k−1

Rtãia(ũi − v ± 1)

)(
1∏

j=k−1

Raj ãk(ũk − uj)

)
+ UWT.

To obtain the result, we must move the rightmost product of R-matrices to the left, using the

Yang-Baxter equation. The first move is simply commuting the rightmost product of R-matrices

to the left, through the product of Rt-matrices, as there is no intersection of spaces on which these

products act non-trivially.

Next, we write

Rtãka(ũk − v ± 1)

(
1∏

i=k−1

Rtaia(ui − v ± 1)

)(
1∏

j=k−1

Raj ãk(ũk − uj)

)

=

[(
k−1∏
i=1

Raia(ui − v ± 1)

)
Rãka(ũk − v ± 1)

(
1∏

j=k−1

Raj ãk(ũk − uj)

)]ta
.

From here, repeated use of the Yang-Baxter equation allows us to swap the matrices on the left

with those on the right. Indeed, the Yang-Baxter equation is

Raia(ui − v ± 1)Rãka(ũk − v ± 1)Raiãk(ũk − ui) = Raiãk(ũk − ui)Rãka(ũk − v ± 1)Raia(ui − v ± 1).

Note that after performing each swap, the R-matrix swapped to the left commutes with the re-

maining product of R-matrices on the left, and similarly for the R-matrix swapped to the right.

Thus

Rtãka(ũk − v ± 1)

(
1∏

i=k−1

Rtaia(ui − v ± 1)

)(
1∏

j=k−1

Raj ãk(ũk − uj)

)

=

[(
1∏

j=k−1

Raj ãk(ũk − uj)

)
Rãka(ũk − v ± 1)

(
k−1∏
i=1

Raia(ui − v ± 1)

)]ta

=

(
1∏

j=k−1

Raj ãk(ũk − uj)

)(
1∏

i=k−1

Rtaia(ui − v ± 1)

)
Rtãka(ũk − v ± 1).
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So far we have

l.h.s. = βãkak(uk)

(
k−1∏
i=1

Rtãia(ui − v)

)(
k−1∏
i=1

Rtaia(ũi − v)

)
×Rtãka(uk − v)Rtaka(ũk − v)Aa(v)Rtaka(uk − v ± 1)

×

(
1∏

j=k−1

Raj ãk(ũk − uj)

)(
1∏

i=k−1

Rtaia(ui − v ± 1)

)(
1∏
i=k

Rtãia(ũi − v ± 1)

)
+ UWT.

Note that the product ofR-matrices that we were moving commutes withRtaka(ũk−v)Aa(v)Rtaka(uk−
v ± 1). Then, moving further leftwards, we must use the Yang-Baxter relation again. Specifically,

we use

Rtaia(ũi − v)Rtãka(uk − v)Raiãk(ũk − ui) = Raiãk(ũk − ui)Rtãka(uk − v)Rtaia(ũi − v),

giving (
k−1∏
i=1

Rtaia(ũi − v)

)
Rtãka(uk − v)

(
1∏

j=k−1

Raj ãk(ũk − uj)

)

=

(
1∏

j=k−1

Raj ãk(ũk − uj)

)
Rtãka(uk − v)

(
k−1∏
i=1

Rtaia(ũi − v)

)
.

Therefore,

l.h.s. = βãkak(uk)

(
k−1∏
i=1

Rtãia(ui − v)

)(
1∏

j=k−1

Raj ãk(ũk − uj)

)
Rtãka(uk − v)

×

(
k∏
i=1

Rtaia(ũi − v)

)
Aa(v)

(
1∏
i=k

Rtaia(ui − v ± 1)

)(
1∏
i=k

Rtãia(ũi − v ± 1)

)

+ UWT

= βãkak(uk)

(
1∏

j=k−1

Raj ãk(ũk − uj)

)(
k∏
i=1

Rtãia(ui − v)

)

×

(
k∏
i=1

Rtaia(ũi − v)

)
Aa(v)

(
1∏
i=k

Rtaia(ui − v ± 1)

)(
1∏
i=k

Rtãia(ũi − v ± 1)

)

+ UWT

= βãkak(uk)

(
1∏

j=k−1

Raj ãk(ũk − uj)

)
S(1)
a (v;u1, . . . , uk) + UWT
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as required.

We may apply this result inductively to the creation operator for m excitations βãa(u).

Corollary 3.2.18. The AB exchange relation for multiple excitations has the form

{p(v)Aa(v)}v βãa(u) = βãa(u)
{
p(v)S(1)

a (v;u)
}v

+ UWT (3.2.67)

where S
(1)
a (v;u) is the nested monodromy matrix for m excitations defined by (3.2.66) and UWT

denotes the terms that do not contain Aa(v).

3.2.8 Exchange relations for the nested monodromy matrix

We introduce a vector spaceM (1), which we call the nested vacuum sector, and a matrix S
(1)
a (v;w,u),

called the generalised nested monodromy matrix, acting on this space, with w = (w1, w2, . . . , wm)

and u = (u1, u2, . . . , um) beingm-tuples of non-zero complex parameters. We show that S
(1)
a (v;w,u)

satisfies the defining relations of the algebra B ex
ρ (n, p) in the space M (1). This allows us to identify

S
(1)
a (v;w,u) as the monodromy matrix for the residual B ex

ρ (n, p)-chain, in a suitable sense. The

space M (1) is then reinterpreted as the (full) quantum space of this residual chain, which we have

studied in Section 3.1.

For each bulk vector space L(λ(i))ci in (3.2.27) denote by L0(λ(i))ci the subspace consisting of

vectors annihilated by the operator C(u) of the generating matrix T (u) of X(g2n), namely

L0(λ(i))ci := {ζ ∈ L(λ(i))ci : tn+k,l(u) · ζ = 0 for 1 ≤ k, l ≤ n}. (3.2.68)

Lemma 3.2.19. The space L0(λ(i))ci is an irreducible lowest weight Y (gln)-module.

Proof. Relation (3.2.39) implies that L0(λ(i))ci is stable under the action of A(u). Then (3.2.37)

allows us to view L0(λ(i))ci as a Y (gln)-module. Thus we only need to show that L0(λ(i))ci is an

irreducible Y (gln)-module. Let η ∈ L(λ(i))ci be a lowest vector and note that η ∈ L0(λ(i))ci . Set

L := Y (gln)η and note that L ⊆ L0(λ(i))ci . Since there are no more lowest vectors in L0(λ(i))ci , it

follows that L = L0(λ(i))ci .

Introduce a vacuum sector M0 of the full quantum space M by

M0 := L0(λ(1))c1 ⊗ · · · ⊗ L0(λ(`))c` ⊗ V (µ) ⊂M.

The Lemma below is an analogue of Lemma 2.2.11.

Lemma 3.2.20. The operator C(u) of the matrix S(u) acts by zero on the space M0. Consequently,

M0 is stable under the action of the operator A(u) of the matrix S(u).

Recall (3.2.65). We define the level-1 nested vacuum sector by

M (1) := Wãa ⊗M0. (3.2.69)
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Here an overlap of notation with M (1) defined in Section 3.1.3 is intentional. It will be shown below

that M (1) can be viewed as the (full) quantum space for a residual B ex
ρ (n, p)-chain.

Next, we define a generalised nested monodromy matrix which differs from the one in Definition

3.2.16 by an addition m-tuple of complex parameters, w. These parameters will play a prominent

role in Section 3.2.10.

Definition 3.2.21. The generalised nested monodromy matrix is defined by

S(1)
a (v;w,u) :=

(
m∏
i=1

Rtãia(ui − v)

)(
m∏
i=1

Rtaia(wi − v)

)

×Aa(v)

(
1∏

i=m

Rtaia(w̃i − v ± 1)

)(
1∏

i=m

Rtãia(ũi − v ± 1)

)
. (3.2.70)

Matrix S
(1)
a (v;u) defined by (3.2.66) is recovered by setting wi = ũi. It will be useful to know

that (3.2.35) allows us to rewrite (3.2.70) as

S(1)
a (v;w,u) =

(
m∏
i=1

Rtãia(ui − v)

)(
m∏
i=1

Rtaia(wi − v)

)

×Aa(v)

(
m∏
i=1

Rtaia(wi + v + ρ)

)−1( m∏
i=1

Rtãia(ui + v + ρ)

)−1

. (3.2.71)

Set r = 0 for types CI, DII and CD0, and r = n− p
2 for types DI and CII.

Proposition 3.2.22. The mapping

B ex
ρ (n, p)→ End(M (1))⊗Xρ(g2n, g

θ
2n)tw, B◦a(v) 7→ S(1)

a (v;w,u) (3.2.72)

equips the space M (1) with the structure of a lowest weight B ex
ρ (n, p)-module with lowest weight

given by

γ̃j(v;w,u) = g(v) µ̃◦j (v)

(∏̀
i=1

λ
(i)
j (v − κ

2 ) λ̄
(i)
j (ṽ − κ

2 )

)
, (3.2.73)

γ̃n(v;w,u) = g(v) µ̃◦n(v)

(
m∏
i=1

v − ui + 1

v − ui
· v − wi + 1

v − wi
· v − w̃i ∓ 1 + 1

v − w̃i ∓ 1
· v − ũi ∓ 1 + 1

v − ũi ∓ 1

)

×

(∏̀
i=1

λ(i)
n (v − κ

2 ) λ̄(i)
n (ṽ − κ

2 )

)
(3.2.74)

for 1 ≤ j ≤ n − 1 with g(v) defined by (3.2.12), µj(v), µn(v) defined in Proposition 3.2.8, and

λ
(i)
j (v − κ

2 ), λ̄
(i)
j (ṽ − κ

2 ) given by

λ
(i)
j (v) = 1−

λ
(i)
j

v − ci
, λ̄

(i)
j (v) = 1 +

λ
(i)
j

v − ci ∓ ki ± 1− κ
(3.2.75)
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for 1 ≤ j ≤ n, where λ(i) = (ki, 0, . . . , 0) in the orthogonal case and λ(i) = (1, . . . , 1, 0, . . . , 0), with

the number of 1’s being ki, in the symplectic case.

Proof. We start by proving the Proposition in the case m = 0. Relation (3.2.42) with Lemma 3.2.20

imply that A(v) satisfies the reflection equation on M0. That is, for any ζ ∈M0,

Rab(v − x)Aa(v)Rab(v + x+ ρ)Ab(x) · ζ = Ab(x)Rab(v + x+ ρ)Aa(v)Rab(v − x) · ζ.

The remaining terms, which contain C(u) as the rightmost operator, vanish due to Lemma 3.2.20.

It follows that M0 is a lowest weight B ex
ρ (n, p)-module, with weights obtained from (3.2.6) and

Proposition 3.2.6. The m > 0 case is then immediate from Proposition 3.2.6 and (3.2.71), as the

auxiliary spaces are regarded as dual vector evaluation representations of Y (gln) with shifts of ui

or wi for 1 ≤ i ≤ m, and lowest weight vector e1.

Proposition 3.2.22 implies that M (1) can be viewed as the (full) quantum space for a residual

B ex
ρ (n, p)-chain (since S

(1)
a (v;w,u) satisfies (3.1.2) but not the unitarity relation). We end this

section with a lemma which will assist us in finding the explicit expressions of the unwanted terms.

Recall that Ř(u) := u
u−1 PR(u).

Lemma 3.2.23. The following identities hold:

Ř(u)e1 ⊗ e1 = e1 ⊗ e1,

Řãiãi+1(ui+1 − ui)skl(v;w,u) = skl(v;w,ui↔i+1)Řãiãi+1(ui+1 − ui),

Řaiai+1(wi+1 − wi)skl(v;w,u) = skl(v;wi↔i+1;u)Řaiai+1(wi+1 − wi).

Proof. The first identity follows from the definition of Ř(u). To obtain the second identity we

need to move Řãiãi+1(ui+1 − ui) rightward through the products of R-matrices in the definition of

S
(1)
a (v;w,u) in (3.2.70). In each product we must use the (braided) Yang-Baxter equation once.

For Řãiãi+1(ui+1 − ui) in the leftmost product,

Řãiãi+1(ui+1 − ui)Rtãia(ui − v)Rtãi+1a(ui+1 − v) = Rtãia(ui+1 − v)Rtãi+1a(ui − v)Řãiãi+1(ui+1 − ui),

and in the rightmost product,

Řãiãi+1(ui+1 − ui)Rtãi+1a(ũi+1 − v ± 1)Rtãia(ũi − v ± 1)

= Rtãi+1a(ũi − v ± 1)Rtãia(ũi+1 − v ± 1)Řãiãi+1(ui+1 − ui).

Applying these identities, we obtain the second identity. The third identity is obtained similarly.

At this point it will be necessary to separate the orthogonal and symplectic cases—we will find

that the method used for the symplectic case results in an eigenvector which would be identically

equal to zero in the orthogonal case. Thus, we present first the symplectic case in Section 3.2.9,

and give the appropriate modifications, following [DVK87], in Section 3.2.10.
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3.2.9 Transfer matrix and Bethe vectors for a Xρ(sp2n, sp
θ
2n)

tw-chain

Introduce the transfer matrix acting on the quantum space M defined in (3.2.27).

Definition 3.2.24. The transfer matrix τ(v) ∈ End(M)[v, v−1] is the representative of

trS(v)

2v − 2κ− ρ

on the space M .

From arguments given in [Sk88] (see also Section 2.2 in [Vl15]) the reflection equation (3.2.10)

implies that transfer matrices commute,

[τ(u), τ(v)] = 0.

Lemma 3.2.11 allows us to deduce the following symmetry properties of the transfer matrix.

Corollary 3.2.25. The transfer matrix satisfies the following:

τ(ṽ) = τ(v) = {p(v) trA(v)}v.

Recall the generalised nested monodromy matrix S
(1)
a (v;w,u) defined in Definition 3.2.21, and

the nested vacuum sector M (1) from (3.2.69). By Proposition 3.2.22 we regard M (1) as the (full)

quantum space of a residual B ex
ρ (n, p)-chain. Let Φ(1)(u(1...n−1);w,u) denote the level-1 Bethe

vector constructed from S
(1)
a (v;w,u) according to Definition 3.1.16.

Lemma 3.2.26. The level-1 Bethe vector satisfies

Řãiãi+1(wi − wi+1)Φ(1)(u(1...n−1);w,u) = Φ(1)(u(1...n−1);wi↔i+1;u),

Řaiai+1(ui − ui+1)Φ(1)(u(1...n−1);w,u) = Φ(1)(u(1...n−1);w,ui↔i+1).

Proof. The level-1 Bethe vector is constructed from a linear combination of products of matrix

elements skl(v;w,u) of the generalised nested monodromy matrix acting on the highest weight

vector. The result is therefore immediate from Lemma 3.2.23.

Recall the creation operator βãa(u) for m excitations from Definition 3.2.14. In what follows

we will use the notation u
(n)
i := ui − κ

2 = ui − n+1
2 and mn := m. Additionally, we will use u + a

to mean (u1 + a, . . . , um + a).

Definition 3.2.27. The (top-level) symplectic Bethe vector is defined by

Ψ(u(1...n)) := βãa(u(n) + κ
2 ) · Φ(1)(u(1...n−1); κ2 − u

(n) − ρ,u(n) + κ
2 )

= βãa(u) · Φ(1)(u(1...n−1); ũ,u),

where ũ = (ũ1, . . . , ũm) with ũi = κ− ui − ρ.
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As with the B ex
ρ (n, p) case, Sm := Sm1 × · · · × Smn−1 × Smn acts on the symplectic Bethe

vector by reordering parameters. The invariance of the Bethe vector under this action can then be

shown by combining Lemma 3.2.15 and Lemma 3.2.26.

Corollary 3.2.28. The symplectic Bethe vector is invariant under the action of Sm.

Recall the notation Λ±(v;u(k)) in (3.1.29) and in addition define

Λ+2(v,u(n)) :=

mn∏
i=1

(v + u
(n)
i + 2 + ρ)(v − u(n)

i + 2)

(v + u
(n)
i + ρ)(v − u(n)

i )
.

The Theorem below is our first main result.

Theorem 3.2.29. The symplectic Bethe vector Ψ(u(1...n)) is an eigenvector of the transfer matrix

τ(v) with eigenvalue

Λ(v;u(1...n)) :=
{
p(v)Λ(1)

(
v;u(1...n)

)}v
(3.2.76)

where

Λ(1)
(
v;u(1...n)

)
:=

2v − n+ ρ

2v − 1 + ρ
Λ+
(
v − 1

2 ,u
(1)
) γ̃1(v)

2v + ρ

+
n−1∑
i=2

2v − n+ ρ

2v − i+ ρ
Λ−
(
v − i−1

2 ,u(i−1)
)

Λ+
(
v − i

2 ,u
(i)
) γ̃i(v)

2v − i+ 1 + ρ

+ Λ−
(
v − n−1

2 ,u(n−1)
)

Λ+2
(
v − κ

2 ,u
(n)
) γ̃n(v)

2v − n+ 1 + ρ

and

γ̃j(v) = g(v) µ̃◦j (v)
∏̀
i=1

λ
(i)
j (v − κ

2 )
∏̀
i=1

λ
′(i)
j (ṽ − κ

2 )

for 1 ≤ j ≤ n, provided

Res
v→u(i)j

Λ(v + i
2 ;u(1...n)) = 0 and Res

v→u(n)k

Λ(v + κ
2 ;u(1...n)) = 0 (3.2.77)

for 1 ≤ j ≤ mi, 1 ≤ i ≤ n− 1 and 1 ≤ k ≤ mn.

Remark 3.2.30. The equations (3.2.77) are Bethe equations for a Xρ(sp2n, sp
θ
2n)tw-chain. Their

explicit form for u
(i)
j with 1 ≤ i ≤ n − 2 is the same as in (3.1.39). Those for u

(n−1)
j receive an
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additional factor due to the top-level excitations,

γ̃n−1

(
u

(n−1)
j + n−1

2

)
γ̃n
(
u

(n−1)
j + n−1

2

) mn−1∏
i=1
i 6=j

(u
(n−1)
j − u(n−1)

i + 1)(u
(n−1)
j + u

(n−1)
i + 1 + ρ)

(u
(n−1)
j − u(n−1)

i − 1)(u
(n−1)
j + u

(n−1)
i − 1 + ρ)

=

mn−2∏
i=1

(u
(n−1)
j − u(n−2)

i + 1
2)(u

(n−1)
j + u

(n−2)
i + 1

2 + ρ)

(u
(n−1)
j − u(n−2)

i − 1
2)(u

(n−1)
j + u

(n−2)
i − 1

2 + ρ)

×
mn∏
i=1

(u
(n−1)
j − u(n)

i + 1)(u
(n−1)
j + u

(n)
i + 1 + ρ)

(u
(n−1)
j − u(n)

i − 1)(u
(n−1)
j + u

(n)
i − 1 + ρ)

. (3.2.78)

The top-level Bethe equations, for u
(n)
j , are

γ̃n(u
(n)
j + κ

2 )

γ̃n(κ2 − u
(n)
j − ρ)

mn∏
i=1
i 6=j

(u
(n)
j − u

(n)
i + 2)(u

(n)
j + u

(n)
i + 2 + ρ)

(u
(n)
j − u

(n)
i − 2)(u

(n)
j + u

(n)
i − 2 + ρ)

=

mn−1∏
i=1

(u
(n)
j − u

(n−1)
i + 1)(u

(n)
j + u

(n−1)
i + 1 + ρ)

(u
(n)
j − u

(n−1)
i − 1)(u

(n)
j + u

(n−1)
i − 1 + ρ)

. (3.2.79)

Proof of Theorem 3.2.29. In order to prove the theorem, it will be necessary to calculate an ex-

pression for the unwanted terms. As such, we will first expand on the exchange relations of the

twisted Yangian, studied in Section 3.2.7. Recall Corollary 3.2.18,

{p(v)Aa(v)}vβãa(u) = βãa(u){p(v)S(1)
a (v;u)}v + UWT.

Let XB denote the subalgebra of Xρ(sp2n, sp
θ
2n)tw generated by elements of the B block matrix,

i.e. s
(k)
i,n+j with 1 ≤ i, j ≤ n, k ≥ 1. The closure of XB is guaranteed by (3.2.45). Then, considering

repeated applications of Lemma 3.2.12, it is possible to write UWT above such that, in each

term, elements of the XB subalgebra appear to the left of the expression. That is, there exist

B±,kij ∈W ∗ãa ⊗XB((v−1)) such that

tra{p(v)Aa(v)}vβãa(u) = βãa(u) tra{p(v)S(1)
a (v;u)}v

+

m∑
k=1

n∑
i,j=1

(
B+,k
ij aij(uk) +B−,kij aij(ũk)

)
.

Since we will not need the exact form the B±,kij , we define the combination

Uk(v;u) :=

n∑
i,j=1

(
B+,k
ij aij(uk) +B−,kij aij(ũk)

)
,

where we have made explicit the dependence on v and u. From Lemma 3.2.13 we obtain an exact
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expression for the unwanted terms for a single excitation. Applying this to the leftmost creation

operator βã1a1(u1), followed by Lemma 3.2.17, we are able to extract an expression for U1(v;u):

U1(v;u) =
1

p(u1)

{
p(v)

βã1a1(v)

u1 − v

}v
×

m∏
i=2

(
βãiai(ui)

1∏
j=i−1

Raj ãi(−uj − ui − ρ)
)

Res
w→u1

tra
{
p(w) S(1)

a (w;u)
}w
. (3.2.80)

From here, to find Uk(v;u) for 2 ≤ k ≤ m we make use of Lemma 3.2.15. Specifically, by repeatedly

applying transpositions, we may apply any permutation σ ∈ Sm to the parameters u. Let uσ denote

(uσ(1), . . . , uσ(m)), and let σk denote the cyclic permutation (k, k + 1, . . . , 1,m, . . . , k − 1). Then

βãa(u) = βãa(uσk)Řa[σk](u)Řã[σk](ũ)

where Řa[σk](u) is the product of Ř matrices necessary to implement this cyclic permutation,

Řa[σk](u) =

1∏
j=k−1

(
1∏

i=m−1

Řaiai+1(uj − uj+1)

)
.

With this permuted creation operator, repeating the arguments used to find (3.2.80) yields

Uk(v;u) =
1

p(uk)

{
p(v)

uk − v
βã1a1(v)

}v m∏
i=2

(
βãiai(uσk(i))

1∏
j=i−1

Raj ãi(−uσk(j) − uσk(i) − ρ)
)

× Res
w→uk

{
p(w) tra S

(1)
a (w;uσk)

}w
Řa[σk](u)Řã[σk](ũ), (3.2.81)

and therefore a full expression for the unwanted terms,

tra{p(v)Aa(v)}vβãa(u) = βãa(u) tra{p(v)S(1)
a (v;u)}v

+

m∑
k=1

1

p(uk)

{
p(v)

uk − v
βã1a1(v)

}v m∏
i=2

(
βãiai(uσk(i))

1∏
j=i−1

Raj ãi(−uσk(j)−uσk(i)−ρ)
)

× Res
w→uk

tra
{
p(w)S(1)

a (w;uσk)
}w
Řa[σk](u)Řã[σk](ũ).

Acting now with this expression on the level-1 Bethe vector gives the full action for the transfer
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matrix on the top level Bethe vector with u
(n)
i = ui − κ

2 ,

τ(v) ·Ψ(u(1...n)) = βãa(u) tra{p(v)S(1)
a (v;u)}v · Φ(1)(u(1...n−1); ũ,u)

+
m∑
k=1

1

p(uk)

{
p(v)

uk − v
βã1a1(v)

}v m∏
i=2

(
βãiai(uσk(i))

1∏
j=i−1

Raj ãi(−uσk(j)−uσk(i)−ρ)
)

× Res
w→uk

tra
{
p(w)S(1)

a (w;uσk)
}w
Řa[σk](u)Řã[σk](ũ) · Φ(1)(u(1...n−1); ũ,u)

= βãa(u) tra{p(v)S(1)
a (v;u)}v · Φ(1)(u(1...n−1); ũ,u)

+
m∑
k=1

1

p(uk)

{
p(v)

uk − v
βã1a1(v)

}v m∏
i=2

(
βãiai(uσk(i))

1∏
j=i−1

Raj ãi(−uσk(j)−uσk(i)−ρ)
)

× Res
w→uk

tra
{
p(w)S(1)

a (w;uσk)
}w · Φ(1)(u(1...n−1); ũσk ,uσk).

The last equality follows from Lemma 3.2.26. From the full expression (3.2.76), the condition

(3.2.77) for the parameters u
(j)
i is equivalent to Res

v→u(j)i
Λ(1)(v+ j

2 ;u(1...n)) = 0 with u
(n)
i = ui− κ

2 ,

as these poles are not present in Λ(1)(ṽ− j
2 ;u(1...n)). Therefore, from Theorem 3.1.18, using weights

from Proposition 3.2.22,

τ(v) ·Ψ
(
u(1...n)

)
= Λ

(
v;u(1...n)

)
Ψ
(
u(1...n)

)
+

m∑
k=1

Res
w→uk

Λ(w;u
(1...n)

σ
(n)
k

)
1

p(uk)

{
p(v)

uk − v
βã1a1(v)

}v

×
m∏
i=2

(
βãiai(uσk(i))

1∏
j=i−1

Raj ãi(−uσk(j)−uσk(i)−ρ)
)
· Φ(1)

(
u(1...n−1); ũσk ,uσk

)
,

where Λ(v;u(1...n)) =
{
p(v)Λ(1)(v;u(1...n))

}v
as required. Note that, owing to Corollary 3.2.28, we

have Λ(v;u(1...n)) = Λ(v;u
(1...n)

σ(n) ) for any σ(n) ∈ Smn . Therefore, Ψ(u(1...n)) is an eigenvector of

τ(v) with eigenvalue Λ(v;u(1...n)) provided Res
v→uk

Λ(v;u(1...n)) = 0, or equivalently Res
v→u(n)k

Λ(v +

κ
2 ;u(1...n)) = 0, for 1 ≤ k ≤ mn.

Example 3.2.31. The symplectic Bethe vector with m top-level excitations and m1 = . . . = mn−1 =

0 is given by

Ψ(u(n)) =
[
B(u

(n)
1 + κ

2 )
]
n,1
· · ·
[
B(u(n)

m + κ
2 )
]
n,1
· ξ

=
[
S(u

(n)
1 + κ

2 )
]
n,n+1

· · ·
[
S(u(n)

m + κ
2 )
]
n,n+1

· ξ.

For m1 = mn = 1 and m2 = . . . = mn−1 = 0, the on-shell symplectic Bethe vector, that is, when
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the parameters satisfy the Bethe equations, takes the form

Ψ(u(n), u(n−1)) =
(u(n) − u(n−1) − 1)(u(n) + u(n−1) + ρ+ 1)

(u(n) − u(n−1))(u(n) + u(n−1) + ρ)

×

([
B(u(n)+ κ

2 )
]
n,1

[
Â(n−1)(u(n−1)+ 1

2)
]
12

−
γ̃n−1(u(n−1) + n−1

2 )

(u(n) − u(n−1) − 1)(u(n) + u(n−1) + ρ+ 1)

×
([
B(u(n)+ κ

2 )
]
n,2

+
[
B(u(n)+ κ

2 )
]
n−1,1

))
· ξ, (3.2.82)

where Â(n−1)(v) refers to the level-(n−1) nested version of the A operator of S(v) obtained via

(3.1.13).

3.2.10 Transfer matrix and Bethe vectors for a Xρ(so2n, so
θ
2n)

tw-chain

We now focus on the orthogonal case. We define the transfer matrix τ(v) acting on the quantum

space M defined in (3.2.27) in the same way as we did in the symplectic case. However, the

definition of the orthogonal Bethe vector will differ from its symplectic counterpart in Definition

3.2.27. Indeed, looking at Proposition 3.2.22, the weights γ̃n(v; ũ;u) do not have poles at v = ui,

and so making the same ansatz as in the symplectic case would yield Bethe equations that are

trivially satisfied. Such an ansatz therefore must be identically equal to zero. To remedy this we

use a limiting procedure proposed in [DVK87]. Recall that Φ(1)(u(1...n−1);w;u) denotes the level-1

Bethe vector constructed from S
(1)
a (v;w;u) according to Definition 3.1.16.

Definition 3.2.32. The level-1 orthogonal Bethe vector is defined by

Φ
(1)
lim(u(1...n−1), ũ;α,β) := lim

ε→0
Φ(1)(u(1...n−2), (u(n−1), ũ− κ

2 − ε); ũ− β ε;u+αε).

In the above definition, as well as parameters u(1...n−1), the Bethe vector includes m additional

excitations at level-(n−1), with parameters ũi − κ
2 − ε = κ

2 − ui − ρ− ε. The shift of κ
2 = 1

2(n− 1)

is simply to account for the parameter shifts in the nested Bethe ansatz for the B ex
ρ (n, p)-chain.

Parameters α and β have been introduced to control the limit as ε→ 0. These parameters should

be thought of as additional Bethe parameters, which will eventually be determined by the Bethe

equations. We obtain the same parameter symmetry as Lemma 3.2.26.

Lemma 3.2.33. The level-1 orthogonal Bethe vector satisfies

Řãiãi+1(ui+1 − ui)Řaiai+1(ui − ui+1)Φ
(1)
lim(u(1...n−1), ũ;α,β)

= Φ
(1)
lim(u(1...n−1), ũi↔i+1;αi↔i+1,βi↔i+1).
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Proof. We use Lemma 3.1.17 to write

Φ
(1)
lim(u(1...n−1), ũ;α,β) = Φ

(1)
lim(u(1...n−1), ũi↔i+1;α,β).

Then

Řãiãi+1(ui+1 − ui)Řaiai+1(ui − ui+1) lim
ε→0

Φ(1)(u(1...n−2), (u(n−1), ũ− κ
2 − ε); ũ− βε;u+αε)

= lim
ε→0

Řãiãi+1(ui+1 − ui + (βi − βi+1)ε)Řaiai+1(ui − ui+1 + (αi − αi+1)ε)

× Φ(1)(u(1...n−2), (u(n−1), ũ− κ
2 − ε); ũ− βε;u+αε)

= lim
ε→0

Φ(1)(u(1...n−2), (u(n−1), ũ− κ
2 − ε); ũi↔i+1 − βi↔i+1ε;ui↔i+1 +αi↔i+1ε),

where the last equality follows from Lemma 3.2.23, as in the symplectic case. Then, following up

with Lemma 3.1.17 to exchange ũ− κ
2 − ε with ũi↔i+1 − κ

2 − ε, we obtain the desired result.

Corollary 3.2.34. The level-1 orthogonal Bethe vector satisfies

τ (1)(v; ũ;u)Φ
(1)
lim(u(1...n−1), ũ;α,β)

= Λ(1)
(
v;u(1...n−2), (u(n−1), ũ− κ

2 ); ũ,u
)

Φ
(1)
lim(u(1...n−1), ũ;α,β)

with

Λ(1)
(
v;u(1...n−1);w,u

)
=

2v − n+ ρ

2v − 1 + ρ
Λ+
(
v − 1

2 ,u
(1)
) γ̃1(v)

2v + ρ

+

n−1∑
i=2

2v − n+ ρ

2v − i+ ρ
Λ−
(
v − i−1

2 ,u(i−1)
)

Λ+
(
v − i

2 ,u
(i)
) γ̃i(v)

2v − i+ 1 + ρ

+ Λ−
(
v − n−1

2 ,u(n−1)
)
Λ+
(
v − n

2 ,w −
n
2

)
Λ+
(
v − n

2 ,u−
n
2

) γ̃n(v)

2v − n+ 1 + ρ
(3.2.83)

provided

Res
v→u(i)j

Λ(1)
(
v + i

2 ;u(1...n−2), (u(n−1), ũ− κ
2 ); ũ,u

)
= 0 for 1 ≤ j ≤ mi, 1 ≤ i ≤ n− 1, (3.2.84)

lim
ε→0

Res
v→ũj−ε

Λ(1)
(
v;u(1...n−2), (u(n−1), ũ− κ

2 − ε); ũ− βε,u+αε
)

= 0 for 1 ≤ j ≤ m. (3.2.85)

Proof. By Theorem 3.1.18 and Proposition 3.2.22, vector Φ(1)(u(1...n−2), (u(n−1), ũ − κ
2 − ε);

ũ − β ε;u + αε) is an eigenvector of the nested transfer matrix τ (1)(v; ũ − βε;u + αε)

with eigenvalue Λ(1) = Λ(1)(v;u(1...n−2), (u(n−1), ũ − κ
2 − ε); ũ − βε;u + αε) provided

Res
v→u(i)j + i

2

Λ(1) = 0 for 1 ≤ j ≤ mi, 1 ≤ i ≤ n− 1 and Resv→ũj−κ2−ε+
n−1
2

Λ(1) = 0 for 1 ≤ j ≤ m.

Taking the ε→ 0 limit gives the wanted result.

Direct evaluation of the residue and the limit in (3.2.85) yield the following Bethe equations for
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1 ≤ j ≤ m,

2uj − n+ ρ+ 2

2uj − n+ ρ

γ̃n−1(ũj)

γ̃n(ũj)
= −1− αj

1− βj
1

Λ+(uj − n
2 ,u

(n−2))

Λ+(uj − n−1
2 ,u(n−1))

Λ−(uj − n−1
2 ,u(n−1))

.

For any collection of Bethe roots u(1...n−1), the above equations can be thought to constrain α in

terms of β. With this perspective, for any m-tuple u, as the equations depend on αj and βj only

through the combination (1 − αj)/(1 − βj), there is a 1-parameter family of eigenvectors of the

nested transfer matrix with the same eigenvalue. We conclude that any choice of β must give the

same nested Bethe vector. In particular, there will be two choices of interest:

αj = 0, βj = δj and αj = 1− 1

1− δj
=: δ̂j , βj = 0,

with eigenvector

Φ
(1)
lim(u(1...n−1), ũ; 0, δ) = Φ

(1)
lim(u(1...n−1), ũ; δ̂,0). (3.2.86)

Note that this equality has only been shown to hold “on-shell”, i.e. when the u(1...n−1) satisfy Bethe

equations. We are now ready to define the top-level orhtogonal Bethe vector. In what follows, we

will write u
(n)
i := ui − κ

2 = ui − n−1
2 , v̄ := −v − ρ and mn := m.

Definition 3.2.35. The (top-level) orthogonal Bethe vector is

Ψ(u(1...n); δ) := βãa(u) · Φ(1)
lim(u(1...n−1), ũ; 0, δ)

= βãa(u(n) + κ
2 ) · Φ(1)

lim(u(1...n−1), ū(n) + κ
2 ; 0, δ)

with δj defined by, for 1 ≤ j ≤ mn,

δj := 1 +
2u

(n)
j + ρ− 1

2u
(n)
j + ρ+ 1

γ̃n(ū
(n)
j + κ

2 )

γ̃n−1(ū
(n)
j + κ

2 )

1

Λ+(u
(n)
j −

1
2 ,u

(n−2))

Λ+(u
(n)
j ,u(n−1))

Λ−(u
(n)
j ,u(n−1))

. (3.2.87)

We now have an Sm := Sm1 × · · · ×Smn−1 ×Smn action on the orthogonal Bethe vector by

reordering parameters. The invariance of the Bethe vector under this action can then be shown by

combining Lemma 3.2.15 and Lemma 3.2.33.

Corollary 3.2.36. The orthogonal Bethe vector is invariant under the action of Sm.

The Theorem below is our second main result. Recall (3.2.83).

Theorem 3.2.37. The orthogonal Bethe vector Ψ(u(1...n); δ) is an eigenvector of the transfer matrix

τ(v) with eigenvalue

Λ(v;u(1...n)) :=
{
p(v)Λ(1)

(
v;u(1...n−2), (u(n−1), ū(n)); ū(n) + κ

2 ,u
(n) + κ

2

)}v
(3.2.88)
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provided

Res
v→u(i)j

Λ(v + i
2 ;u(1...n)) = 0 (3.2.89)

for 1 ≤ j ≤ mi, 1 ≤ i ≤ n− 2, and

γ̃n−1(u
(n−1)
j + κ

2 )

γ̃n(u
(n−1)
j + κ

2 )

mn−1∏
i=1
i 6=j

(u
(n−1)
j − u(n−1)

i + 1)(u
(n−1)
j + u

(n−1)
i + ρ+ 1)

(u
(n−1)
j − u(n−1)

i − 1)(u
(n−1)
j + u

(n−1)
i + ρ− 1)

=
1

Λ−(u
(n−1)
j + 1

2 ,u
(n−2))

(3.2.90)

for 1 ≤ j ≤ mn−1, and

γ̃n(u
(n)
j + κ

2 )

γ̃n−1(ū
(n)
j + κ

2 )

mn∏
i=1
i 6=j

(u
(n)
j − u

(n)
i + 1)(u

(n)
j + u

(n)
i + ρ+ 1)

(u
(n)
j − u

(n)
i − 1)(u

(n)
j + u

(n)
i + ρ− 1)

=
1

Λ−(u
(n)
j + 1

2 ,u
(n−2))

(3.2.91)

for 1 ≤ j ≤ mn.

Remark 3.2.38. The equations (3.2.89–3.2.91) are Bethe equations for a Xρ(so2n, so
θ
2n)tw-chain.

Their explicit form for u
(i)
j with 1 ≤ i ≤ n−3 and i = n−1 is the same as in (3.1.39). For i = n−2

there is an additional factor, corresponding to the extra excitations at level n− 1,

γ̃n−2

(
u

(n−2)
j + n−2

2

)
γ̃n−1

(
u

(n−2)
j + n−2

2

) mn−2∏
i=1
i 6=j

(u
(n−2)
j − u(n−2)

i + 1)(u
(n−2)
j + u

(n−2)
i + 1 + ρ)

(u
(n−2)
j − u(n−2)

i − 1)(u
(n−2)
j + u

(n−2)
i − 1 + ρ)

=

mn−3∏
i=1

(u
(n−2)
j − u(n−3)

i + 1
2)(u

(n−2)
j + u

(n−3)
i + 1

2 + ρ)

(u
(n−2)
j − u(n−3)

i − 1
2)(u

(n−2)
j + u

(n−3)
i − 1

2 + ρ)

×
mn−1∏
i=1

(u
(n−2)
j − u(n−1)

i + 1
2)(u

(n−2)
j + u

(n−1)
i + 1

2 + ρ)

(u
(n−2)
j − u(n−1)

i − 1
2)(u

(n−2)
j + u

(n−1)
i − 1

2 + ρ)

×
mn∏
i=1

(u
(n−2)
j − u(n)

i + 1
2)(u

(n−2)
j + u

(n)
i + 1

2 + ρ)

(u
(n−2)
j − u(n)

i −
1
2)(u

(n−2)
j + u

(n)
i −

1
2 + ρ)

. (3.2.92)

The sets of parameters u(n−1) and u(n) correspond to the two branching Dynkin nodes of so2n, and

are often denoted u(+) and u(−) .

Remark 3.2.39. For n = 2, the Bethe equations (3.2.90) and (3.2.91) decouple into two sets of

Bethe equations for open sl2 spin chains, and can be solved separately. This is consistent with the

isomorphism so4
∼= sl2 ⊕ sl2. Similarly, for n = 3, the isomorphism so6

∼= sl4 is borne out in the

Bethe equations (3.2.90), (3.2.91) and (3.2.92).

Proof of Theorem 3.2.37. The calculation of unwanted terms is identical to the symplectic case. In
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particular, using Lemma 3.2.33 we find

τ(v) ·Ψ(u(1...n); δ) = βãa(u){p(v)τ (1)(v; ũ;u)}v · Φ(1)
lim(u(1...n−1), ũ; 0, δ)

+

mn∑
j=1

1

p(uj)

{
p(v)

uj − v
βã1a1(v)

}v

×
mn∏
i=2

(
βãiai(uσj(i))

1∏
k=i−1

Rakãi(−uσj(k)−uσj(i)−ρ)
)

× Res
w→uj

{
p(w)τ (1)(w; ũσj ;uσj )

}w · Φ(1)
lim(u(1...n−1), ũσj ; 0, δσj ).

Recall notation u
(n)
j = u− κ

2 . Corollary 3.2.34 applied to the wanted term together with the identity

Res
v→u(i)j

Λ(1)
(
ṽ − i

2 ;u(1...n−2), (u(n−1), ū(n)); ū(n) + κ
2 ,u

(n) + κ
2

)
= 0

for 1 ≤ j ≤ mi and 1 ≤ i ≤ n− 2 yields (3.2.88) and (3.2.89). The above identity does not hold for

i = n− 1. Thus the Bethe equations (3.2.90) for u
(n−1)
j are obtained by evaluating directly

Res
v→u(n−1)

j

Λ(1)
(
v − n−1

2 ;u(1...n−2), (u(n−1), ū(n)); ū(n) + κ
2 ,u

(n) + κ
2

)
= 0

and the help of

Λ−
(
v, ū(n)

)
Λ+
(
v − 1

2 , ū
(n) − 1

2

)
Λ+
(
v − 1

2 ,u
(n) − 1

2

)
= Λ+

(
v, ū(n)

)
.

The top-level Bethe equations (3.2.91) for u
(n)
j are obtained from equating to zero the unwanted

terms. However, some care must be taken so as not to exchange the order of the residue and limit.

Using the same arguments as in the proof of Corollary 3.2.34 and assuming (3.2.89) and (3.2.90),

so that (3.2.86) holds, we write

Res
w→uj

{
p(w)τ (1)(w; ũσj ;uσj )

}w · Φ(1)
lim(u(1...n−1), ũσj ; 0, δσj )

= lim
ε→0

Res
w→uj

(
p(w)τ (1)(w; ũσj − δσj ε;uσj )

× Φ(1)(u(1...n−2), (u(n−1), ũσj − κ
2 − ε); ũσj − δσj ε;uσj )

+ p(w̃)τ (1)(w̃; ũσj ;uσj + δ̂σj ε)

× Φ(1)(u(1...n−2), (u(n−1), ũσj − κ
2 − ε); ũσj ;uσj + δ̂σj ε)

)
.
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This expression equates to zero if

lim
ε→0

Res
w→uj

(
p(w)Λ(1)

(
w;u(1...n−2), (u(n−1), ũ− κ

2 − ε); ũ− δε,u
)

+ p(w̃)Λ(1)
(
w̃;u(1...n−2), (u(n−1), ũ− κ

2 − ε); ũ,u+ δ̂ε
))

= lim
ε→0

Res
w→uj

(
p(w)Λ−

(
w − n−1

2 ,u(n−1)
)

Λ−
(
w − n−1

2 , w̃ − κ
2 − ε

)
× Λ+

(
w − n

2 , w̃ − δε−
n
2

)
Λ+
(
w − n

2 ,u−
n
2

) γ̃n(w)

2w − n+ 1 + ρ

+ p(w̃)Λ−
(
w̃ − n−1

2 ,u(n−1)
)
Λ−
(
w̃ − n−1

2 , ũ− κ
2 − ε

)
× Λ+

(
w̃ − n

2 , ũ−
n
2

)
Λ+
(
w̃ − n

2 ,u+ δ̂ε− n
2

) γ̃n(w̃)

2w̃ − n+ 1 + ρ

)
= 0.

Note that the terms that contain a pole at uj are Λ+
(
w − n

2 ,u −
n
2

)
and Λ+

(
w̃ − n

2 , ũ −
n
2

)
.

Now evaluate the residue and use identities Λ±(v̄,w) = Λ∓(v,w), Λ±(v, w̄) = Λ±(v,w) and

p(w) = −p(w̃). Then, upon rewriting ui’s in terms of u
(n)
i ’s, we obtain

lim
ε→0

(
Λ−
(
u

(n)
j ,u(n−1)

)
Λ−
(
u

(n)
j ,u(n) + ε

)
Λ+
(
u

(n)
j −

1
2 ,u

(n) + δε+ 1
2

)
×
γ̃n(u

(n)
j + κ

2 )

2u
(n)
j + ρ− 1

mn∏
i=1
i 6=j

u
(n)
j − u

(n)
i + 1

u
(n)
j − u

(n)
i

u
(n)
j + u

(n)
i + ρ

u
(n)
j + u

(n)
i + ρ− 1

− Λ+
(
u

(n)
j ,u(n−1)

)
Λ+
(
u

(n)
j ,u(n) + ε

)
Λ−
(
u

(n)
j + 1

2 ,u
(n) + δ̂ε− 1

2

)
×
γ̃n(ū

(n)
j + κ

2 )

2u
(n)
j + ρ+ 1

mn∏
i=1
i 6=j

u
(n)
j − u

(n)
i − 1

u
(n)
j − u

(n)
i

u
(n)
j + u

(n)
i + ρ

u
(n)
j + u

(n)
i + ρ+ 1

)
= 0. (3.2.93)

Observe that

lim
ε→0

Λ−
(
u

(n)
j ,u(n) + ε

)
Λ+
(
u

(n)
j −

1
2 ,u

(n) + δε+ 1
2

)
= δj

2u
(n)
j + ρ− 1

2u
(n)
j + ρ

2u
(n)
j + ρ+ 1

2u
(n)
j + ρ

×
mn∏
i=1
i 6=j

u
(n)
j − u

(n)
i − 1

u
(n)
j − u

(n)
i

u
(n)
j + u

(n)
i + ρ− 1

u
(n)
j + u

(n)
i + ρ

u
(n)
j − u

(n)
i

u
(n)
j − u

(n)
i − 1

u
(n)
j + u

(n)
i + ρ+ 1

u
(n)
j + u

(n)
i + ρ
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and

lim
ε→0

Λ+
(
u

(n)
j ,u(n) + ε

)
Λ−
(
u

(n)
j + 1

2 ,u
(n) + δ̂ε− 1

2

)
= δ̂j

2u
(n)
j + ρ− 1

2u
(n)
j + ρ

2u
(n)
j + ρ+ 1

2u
(n)
j + ρ

×
mn∏
i=1
i 6=j

u
(n)
j − u

(n)
i + 1

u
(n)
j − u

(n)
i

u
(n)
j + u

(n)
i + ρ+ 1

u
(n)
j + u

(n)
i + ρ

u
(n)
j − u

(n)
i

u
(n)
j − u

(n)
i + 1

u
(n)
j + u

(n)
i + ρ− 1

u
(n)
j + u

(n)
i + ρ

.

Hence taking the ε→ 0 limit in (3.2.93) gives

Λ−
(
u

(n)
j ,u(n−1)

)
δj
γ̃n(u

(n)
j + κ

2 )

2u
(n)
j + ρ− 1

mn∏
i=1
i 6=j

u
(n)
j − u

(n)
i + 1

u
(n)
j − u

(n)
i

u
(n)
j + u

(n)
i + ρ

u
(n)
j + u

(n)
i + ρ− 1

− Λ+
(
u

(n)
j ,u(n−1)

)
δ̂j
γ̃n(ū

(n)
j + κ

2 )

2u
(n)
j + ρ+ 1

mn∏
i=1
i 6=j

u
(n)
j − u

(n)
i − 1

u
(n)
j − u

(n)
i

u
(n)
j + u

(n)
i + ρ

u
(n)
j + u

(n)
i + ρ+ 1

= 0.

Recall that δ̂j = −δj/(1− δj). We may thus rewrite the equality above as

2u
(n)
j + ρ+ 1

2u
(n)
j + ρ− 1

γ̃n(u
(n)
j + κ

2 )

γ̃n(κ2 − u
(n)
j − ρ)

×
mn∏
i=1
i 6=j

(u
(n)
j − u

(n)
i + 1)(u

(n)
j + u

(n)
i + ρ+ 1)

(u
(n)
j − u

(n)
i − 1)(u

(n)
j + u

(n)
i + ρ− 1)

= − 1

1− δj
Λ+(u

(n)
j ,u(n−1))

Λ−(u
(n)
j ,u(n−1))

.

Substituting the definition of δj from (3.2.87) and using Λ+(u
(n)
j −

1
2 ,u

(n−2))Λ−(u
(n)
j + 1

2 ,u
(n−2)) = 1

we obtain (3.2.91), as required.

Example 3.2.40. The orthogonal Bethe vector with a single top-level excitation and m1 = . . . =

mn−1 = 0 is given by

Ψ(u(n)) =

(
− 2u(n) + ρ− 1

2u(n) + ρ

[
B(u(n) + κ

2 )
]
n−1,1

[
Â(n−1)(ū(n) + 1

2)
]
11

+
1

1− δ
· 1

2u(n) + ρ+ 1

[
B(u(n) + κ

2 )
]
n−1,1

×
([
Â(n−1)(ū(n) + 1

2)
]
22
−
[
Â(n−1)(ū(n) + 1

2)
]
11

2u(n) + ρ

)
− 1

1− δ
· 2u(n) + ρ

2u(n) + ρ+ 1

[
B(u(n) + κ

2 )
]
n,2

×
([
Â(n−1)(ū(n) + 1

2)
]
22
−
[
Â(n−1)(ū(n) + 1

2)
]
11

2u(n) + ρ

))
· ξ,
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where Â(n−1)(v) refers to the level-(n−1) nested version of the A operator of S(v) obtained via

(3.1.13). Note that the level-(n−1) excitations contribute only diagonal elements, which do not

modify the vacuum vector. Hence the expression above may be simplified by using (3.2.87) and

[
Â(n)(ū(n))

]
11
· ξ = −

γ̃n(ū(n) + κ
2 )

2u(n) + ρ
ξ,

[
Â(n−1)(ū(n) + 1

2)
]
11
· ξ = −

γ̃n−1(ū(n) + κ
2 )

2u(n) + ρ− 1
ξ, x

resulting in

Ψ(u(n)) =
γ̃n−1(ū(n) + κ

2 )

2u(n) + ρ− 1

([
S(u(n) + κ

2 )
]
n−1,n+1

−
[
S(u(n) + κ

2 )
]
n,n+2

)
· ξ.

3.2.11 Hamiltonian for the fundamental open spin chain

In this section, we discuss the case in which each bulk quantum space is the fundamental rep-

resentation of g2n and each ci = −κ/2, i.e., M ∼= (C2n)⊗`. Additionally, set ρ = 0. Let K(u)

denote the K-matrix associated to a one-dimensional representation of Xρ(g2n, g
θ
2n)tw, as listed in

Proposition 3.2.8. Additionally, let K∗(u) denote a solution of the dual reflection (obtained by

substituting u→ ũ and v → ṽ in the reflection equation, so that K∗(u) = K(ũ)). Note that in the

above Sections we have taken K∗(u) = I. For such an open spin chain, the transfer matrix given

in Definition 3.2.24 takes the form

τ(u) =
g(u)

2u− 2κ
tra

(
K∗a(u)

(∏̀
i=1

Rai(u)

)
Ka(u)

(
1∏
i=`

Rai(u)

))
.

Prior to extracting a Hamiltonian, we may cancel the poles at u = 0 and u = κ by multiplying by

a certain rational function in u to obtain

t(u) = tra

(
K
∗
a(u)

(∏̀
i=1

Rai(u)

)
Ka(u)

(
1∏
i=`

Rai(u)

))
, (3.2.94)

where

R(u) = −u(κ− u)

κ
R(u) = −u(κ− u)

κ
+
κ− u
κ

P +
u

κ
Q ∈ End(C2n ⊗ C2n)[u],

and K(u),K∗(u) are normalised such that K(0) = K
∗(κ) = I, with trK(κ) and trK∗(0) both

non-zero.

Proposition 3.2.41. The following Hamiltonian commutes with τ(u):

H0 = H0
L +

`−1∑
i=1

H0
i,i+1 +H0

R, (3.2.95)

where

H0
L =

tra
(
K
∗
a(0)H0

a1

)
trK∗(0)

, H0
R = 1

2K
′
`(0), H0

i,i+1 = Pi,i+1 ±
Qi,i+1

κ
.
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Proof. Observe that R(0) = P , and K(0) = I, so Proposition 4 in [Sk88] allows us to extract a

nearest neighbour interaction Hamiltonian for the system.

The Hamiltonian (3.2.95) is equivalent to the one considered in [GKR05]. The two-site inter-

action term Hi,i+1 is equivalent to that given in [Rs85].

An additional Hamiltonian may be extracted from t(u) by looking instead at the point u = κ.

At this point, R(κ) is equal to Q, rather than P . Nevertheless, the following procedure allows a

nearest neighbour interaction Hamiltonian to be extracted.

Proposition 3.2.42. The following Hamiltonian commutes with τ(u):

Hκ = Hκ
L +

`−1∑
i=1

Hκ
i,i+1 +Hκ

R, (3.2.96)

with

Hκ
L = 1

2

(
K
∗′
1 (κ)

)t
, Hκ

R =
tra
(
Hκ
a`K

t
a(κ)

)
traK t

a(κ)
, Hκ

i,i+1 = Pi,i+1 ∓
Qi,i+1

κ
.

Proof. We begin by differentiating t(u) at u = κ to obtain

t′(κ) = tra

(
K
∗′
a (κ)Qa1 · · ·Qa`Ka(κ)Qa` · · ·Qa1 +Qa1 · · ·Qa`K ′a(κ)Qa` · · ·Qa1

+
∑̀
j=1

Qa1 · · ·R′aj(κ) · · ·Qa`Ka(κ)Qa` · · ·Qa1

+
∑̀
j=1

Qa1 · · ·Qa`Ka(κ)Qa` · · ·R′aj(κ) · · ·Qa1

)
.

Repeated applications of QaiMaQai = Qai trM and traQai = I allow us to reduce this to:

t′(κ) = tra
(
K
∗′
a (κ)Qa1

)
trbKb(κ) + trK ′(κ)

+
`−1∑
j=1

tra
(
R
′
aj(κ)Qa,j+1Qaj

)
trbKb(κ) + tra

(
R
′
a`(κ)Ka(κ)Qa`

)
+

`−1∑
j=1

tra
(
QajQa,j+1R

′
aj(κ)

)
trbKb(κ) + tra

(
Qa`Ka(κ)R′a`(κ)

)
.

Since R′(κ) = I −P/κ+Q/κ, it commutes with Q acting on the same spaces, allowing us to apply

the cyclicity of the partial trace. With this, and the identity QaiMa = QaiM
t
i , we obtain

t′(κ) =
(
K
∗′
1 (κ)

)t
traKa(κ) + traK

′
a(κ)

+ 2 traKa(κ)

`−1∑
j=1

R
′
j,j+1(κ)tPj,j+1 + 2 tra

(
Ka(κ)R′`a(κ)Q`a

)
.
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From here we divide by traKa(κ) and subtract appropriate constants to extract the Hamiltonian.

Remark 3.2.43. Note that in the case where both conditions on K and K∗ hold, the Hamiltonian

H0 +Hκ has nearest neighbour interaction in the bulk given by Pi,i+1.
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Chapter 4

Nested algebraic Bethe ansatz for

q-deformed even orthogonal and

symplectic closed spin chains

In this chapter we present the nested algebraic Bethe ansatz for a closed spin chain with underlying

algebra given by the so2n or sp2n quantum loop algebra. The spin chain sites are given by Uq(so2n) or

Uq(sp2n) representations, with the action extended to the quantum loop algebra via an analogue of

the fusion procedure introduced in Chapter 3. The nested algebraic Bethe ansatz is then undertaken

using the same nesting procedure as the previous two chapters, the nested system being the q-

deformed gln closed spin chain. As with the system in Chapter 3, care must be taken to distinguish

the orthogonal and symplectic cases; we find that the auxiliary spaces at the top level appear as

fused (anti-)symmetric representations of Uq(gln) in the nested system. The eigenvalues and Bethe

equations are found, and a closed ‘trace’ formula for the eigenvectors is given, analogous to the one

given in Chapter 2.

4.1 Preliminaries and definitions

4.1.1 Quantised enveloping algebras Uq(gln) and Uq(g2n)

We must first define the q-deformed equivalents to the classical Lie algebras. Recall that in Chap-

ter 1 we gave the definitions of the classical enveloping algebras U(gln) and U(gN ), in terms of

their generators and commutation relations. We then gave an equivalent, matrix form of the defin-

ing relations (1.2.2) and (1.2.21). It will be simplest to use this latter style of definition for the

quantised enveloping algebras Uq(gln) and Uq(g2n).

Let q ∈ R× with q 6= ±1. Following [J86a], the algebra Uq(gln) may be defined as an RTT
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algebra associated to a constant R-matrix

Rq =
n∑

i,j=1

qδijeii ⊗ ejj + (q − q−1)
∑
i<j

eij ⊗ eji, (4.1.1)

which satisfies the constant Yang-Baxter equation

(Rq)12(Rq)13(Rq)23 = (Rq)23(Rq)13(Rq)12.

That is, we define the generating matrices L± =
∑N

i,j=1 eij ⊗ `
±
ij ∈ End(CN ) ⊗ Uq(gln), which are

triangular matrices

`+ij = 0 for i < j, `−ij = 0 for i > j.

Then the defining relations of Uq(gln) are

RqL
±
1 L
±
2 = L±2 L

±
1 Rq,

RqL
+
1 L
−
2 = L−2 L

+
1 Rq,

`+ii`
−
ii = `−ii`

+
ii = 1 for 1 ≤ i ≤ n.

(4.1.2)

Following [FRT90] and [GRW20], the algebra Uq(g2n) may be defined in the same way, although

we must first introduce the following notation. We use parameter θ = 1 for the so2n case and θ = −1

for the sp2n case. Note that in previous chapters this role was taken by the double sign symbols ±,

∓; we make this change of notation in order to match the literature on the respective algebras in

each chapter. We will also make use of the notation θij = θiθj with θi = θ if 1 ≤ i ≤ n and θi = 1

if n < i ≤ 2n. Now, defining also θ′ = 1
2(θ + 1)—that is, the indicator function for the orthogonal

case—we introduce the tuple of integers

(ν1, . . . , ν2n) = (−n+ θ′,−n+ 1 + θ′, . . . ,−1 + θ′, 1− θ′, . . . , n− 1− θ′, n− θ′). (4.1.3)

This allows us to define the constant R-matrix for Uq(g2n),

Rq =
2n∑
i,j=1

qδij−δi,2n−j+1eii ⊗ ejj + (q − q−1)
∑
i<j

(eij ⊗ eji − qνi−νjθijeij ⊗ e2n−i+1,2n−j+1). (4.1.4)

We also define a matrix transposition ω, which may be thought of as a q-analogue of the matrix

transposition t from previous chapters:

(eij)
ω = qνi−νjθije2n−j+1,2n−i+1. (4.1.5)

This transpose, however, is not involutive, and we separately define its inverse as ω̄ : eij 7→
qνj−νiθije2n−j+1,2n−i+1. The algebra Uq(g2n) is then the associative algebra generated by relations
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(4.1.2) with R-matrix (4.1.4), along with a cross-unitarity relation

L±(L±)ω̄ = (L±)ω̄L± = I. (4.1.6)

4.1.2 Quantum loop algebras Uq(Lg2n) and Uq(Lgln)

We now introduce the matrix operators required to define the quantum loop algebras Uq(Lg2n) and

Uq(Lgln). The R matrix for the former is given by

R(u, v) := Rq +
q − q−1

v/u− 1
P − q − q−1

q2κv/u− 1
Qq, (4.1.7)

where Rq is given by (4.1.4), P is the permutation operator P =
∑

i,j eij ⊗ eji and Qq = P ω̄2 . The

matrix R(u, v), obtained by Jimbo in [J86b], is a solution of the quantum Yang-Baxter equation

on (C2n)⊗3 with spectral parameters,

R12(u, v)R13(u,w)R23(v, w) = R23(v, w)R13(u,w)R12(u, v). (4.1.8)

In this chapter, the Uq(Lgln) model will appear as the nested system after the first level of

nesting, and so we introduce the R-matrix and relevant operators in this context. The reduced

Uq(Lgln) R-matrix on Cn−k+1 ⊗ Cn−l+1, where k ≥ l in all cases we are interested in, is given by

R(k,l)(u, v) := R(k,l)
q +

q − q−1

v/u− 1
P (k,l), (4.1.9)

where the bracketed superscripts refer to the nesting level on each of the two tensor spaces. The

matrix operators here are reduced versions of those introduced above. Indeed, let e
(k)
ij denote the

(n− k + 1)× (n− k + 1) elementary matrices. Then

R(k,l)
q :=

n−k+1∑
i=1

n−l+1∑
j=1

qδije
(k)
ii ⊗ e

(l)
jj + (q − q−1)

n−k+1∑
i,j=1

δi<j e
(k)
ij ⊗ e

(l)
j′i′ ,

P (k,l) :=
n−k+1∑
i,j=1

e
(k)
ij ⊗ e

(l)
j′i′ , Q(k,l)

q :=
n−k+1∑
i,j=1

qi−je
(k)
ij ⊗ e

(l)
ı̄̄ ,

(4.1.10)

where i′ = i+ k− l and j′ = j + k− l, and ı̄ = (n− l+ 1)− i+ 1, ̄ = (n− l+ 1)− j + 1. Note here

that the q factor for Q
(k,l)
q will have a different form to that of Qq. We also introduce an equivalent

of the transpose ω on the reduced spaces by

(e
(l)
ij )ω = qi−je

(l)
̄ ı̄ and (e

(l)
ij )ω̄ = qj−ie

(l)
̄ ı̄ .

with ı̄ = (n− l+ 1)− i+ 1, ̄ = (n− l+ 1)− j+ 1. Despite the difference with (4.1.5), we have used

the same notation ω and ω̄; it will be clear which one is meant from the matrix it is acting on.
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These matrix operators satisfy

(R(k,l)
q )−1 = R

(k,l)
q−1 , P (k,l)Q(k,l)

q P (k,l) = Q
(k,l)
q−1 . (4.1.11)

Here the subscript q−1 means that all instances of q are replaced with q−1 in the definition of the

operator; such notation will be used throughout this chapter.

Recall that C2n ∼= C2⊗Cn. Let xij with 1 ≤ i, j ≤ 2 denote the matrix units of End(C2). Then,

for any 1 ≤ i, j ≤ n, we may write

eij = x11 ⊗ e(1)
ij , en+i,j = x21 ⊗ e(1)

ij , ei,n+j = x12 ⊗ e(1)
ij , en+i,n+j = x22 ⊗ e(1)

ij . (4.1.12)

Viewing the matrix R(u, v) as an element in End(C2⊗C2) we recover the six-vertex block structure,

R(u, v) =


R(1,1)(u, v)

K(1,1)(u, q2κv) U (1,1)(u, v)

Ū (1,1)(v, u) K(1,1)(u, q2κv)

R(1,1)(u, v)

 , (4.1.13)

where the operators inside the matrix above are each acting on Cn ⊗ Cn and may be written in

terms of those in (4.1.10) as

U (k,k)(u, v) := − q − q
−1

u/v − 1
P (k,k) +

θ(q − q−1)

q−κ′u/v − qκ′
Q(k,k)
q ,

Ū (k,k)(v, u) := P (k,k)U
(k,k)
q−1 (v, u)P (k,k), K(k,l)(u, v) := (R

(k,l)
q−1 (u, v))ω̄2 ,

(4.1.14)

where κ′ = κ− k + 1. We also note two more important identities,

Ū (k,k)(v, u)(K(k,k)(u, q2κv))−1 =
q − q−1

v/u− 1
P (k,k)(K(k,k)(u, q2κu))−1

=
1

v − u
Res
w→u

R(k,k)(u,w)(K(k,k)(u, q2κw))−1, (4.1.15)

(K(k,k)(v, q2κu))−1U (k,k)(v, u) =
q−1 − q
v/u− 1

(K(k,k)(u, q2κu))−1P (k,k)

=
1

v − u
Res
w→u

(K(k,k)(w, q2κu))−1R(k,k)(w, u), (4.1.16)

that will play a key part in finding the unwanted terms of the algebraic Bethe ansatz. Lastly,

introduce elements

E+(l)
ij := δijq

−e(l)ii − (q − q−1)δi<je
(l)
ij , E−(l)

ji := δijq
e
(l)
ii + (q − q−1)δi<je

(l)
ji ,

E(l)
ij (u) :=

1

1− u
E+(l)
ij +

1

1− u−1
E−(l)
ij ,

(4.1.17)
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where we have used the notation qe
(l)
ii =

∑n−l+1
j=1 qδije

(l)
jj . Then we may write

R(k,l)(u, v) =

n−k+1∑
i,j=1

e
(k)
ij ⊗ E

(l)
j′i′(v/u), K(k,l)(u, v) =

n−k+1∑
i,j=1

e
(k)
ij ⊗ (E(l)

q−1,j′i′
(v/u))ω̄, (4.1.18)

where i′ = i+ k − l and j′ = j + k − l.
We are now ready to define the quantum loop algebras Uq(Lg2n) and Uq(Lgln). The two algebras

may again be defined by RTT relations, with the R-matrices defined above. As such, we combine

the two definitions, writing N = 2n or N = n respectively. We then introduce elements `±ij [r] with

1 ≤ i, j ≤ N and r ≥ 0, combine them into formal series `±ij(u) =
∑

r≥0 `
±
ij [r]u

±r, and collect into

generating matrices

L±(u) :=
∑

1≤i,j≤N
eij ⊗ `±ij(u). (4.1.19)

We will say that elements `±ij [r] have degree r.

Definition 4.1.1. The quantum loop algebra Uq(Lg2n) (resp. Uq(Lgln)) is the unital associative

algebra with generators `±ij [r] with 1 ≤ i, j ≤ N and r ≥ 0, subject to the following relations:

`−ii [0]`+ii [0] = 1 for all i and `−ij [0] = `+ji[0] = 0 for i < j and (4.1.20)

R12(u, v)L±1 (u)L±2 (v) = L±2 (v)L±1 (u)R12(u, v), (4.1.21)

R12(u, v)L+
1 (u)L−2 (v) = L−2 (v)L+

1 (u)R12(u, v). (4.1.22)

where N = 2n and R12(u, v) is given by (4.1.7) (resp. N = n and R12(u, v) is given by (4.1.9) with

k = l = 1).

The following subalgebras of Uq(Lg2n) will be relevant to the present chapter:

• Looking at the degree 0 elements `±ij [0] with 1 ≤ i, j ≤ 2n, they satisfy the relations (4.1.2),

but not the cross-unitarity relation (4.1.6). Thus, they form a subalgebra isomorphic to the

quantisation of the direct sum of g2n and a one dimensional Lie algebra.

• The subalgebra generated by `±ij [r] with 1 ≤ i, j ≤ n and r ≥ 0 is isomorphic to Uq(Lgln).

This can be seen as a consequence of the decomposition (4.1.13).

• The subalgebra generated by `±ij [0] with 1 ≤ i, j ≤ n is isomorphic to Uq(gln).

We now cast the generating matrices L±(u) of Uq(Lg2n) into n× n block matrices and find the

relations between them. Indeed, we write

L±(u) =

(
A±(u) B±(u)

C±(u) D±(u)

)
. (4.1.23)

135



Then, viewing L±1 (u) and L±2 (u) as elements in End(C2 ⊗ C2) with entries in End(Cn ⊗ Cn) ⊗
Uq(Lg2n)[[u±1]], we have

L±1 (u) =


A±1 (u) B±1 (u)

A±1 (u) B±1 (u)

C±1 (u) D±1 (u)

C±1 (u) D±1 (u)

, L±2 (u) =


A±2 (u) B±2 (u)

C±2 (u) D±2 (u)

A±2 (u) B±2 (u)

C±2 (u) D±2 (u)

.

This allows us to write the defining relations of Uq(Lg2n) in terms of the matrix operators A±(u),

B±(u), C±(u) and D±(u). The relations that we will need are:

A±2 (v)B±1 (u)K
(1,1)
12 (u, q2κv) = R

(1,1)
12 (u, v)B±1 (u)A±2 (v)−B±2 (v)A±1 (u)Ū

(1,1)
12 (v, u), (4.1.24)

K
(1,1)
12 (v, q2κu)D±1 (v)B±2 (u) = B±2 (u)D±1 (v)R

(1,1)
12 (v, u)− U (1,1)

12 (v, u)B±1 (v)D±2 (u), (4.1.25)

K
(1,1)
12 (u, q2κv)C±1 (u)A±2 (v) = A±2 (v)C±1 (u)R

(1,1)
12 (u, v)− U (1,1)

12 (u, v)A±1 (u)C±2 (v), (4.1.26)

C±2 (v)D±2 (u)K
(1,1)
12 (u, q2κv) = R

(1,1)
12 (u, v)D±1 (u)C±2 (v)−D±2 (v)C±1 (u)Ū

(1,1)
12 (v, u), (4.1.27)

K
(1,1)
12 (u, q2κv)D±1 (u)A±2 (v)−A±2 (v)D±1 (u)K

(1,1)
12 (u, q2κv)

= B±2 (v)C±1 (u)Ū
(1,1)
12 (v, u)− U (1,1)

12 (u, v)B±1 (u)C±2 (v), (4.1.28)

and their mixed counterparts obtained in an obvious way, cf. (4.1.21) vs. (4.1.22). Operators A±(u),

B±(u) and D±(u) satisfy relations analogous to (4.1.21) and (4.1.22) only with R(1,1)(u, v), e.g.,

R
(1,1)
12 (u, v)B±1 (u)B±2 (v) = B±2 (v)B±1 (u)R

(1,1)
12 (u, v). (4.1.29)

We now focus on the subalgebra Uq(gln) ⊂ Uq(g2n) generated by coefficients of the matrix

entries of A±(u). Define a k-reduced matrix A±(k)(u) :=
∑n

i,j=k e
(k)
i−k+1,j−k+1 ⊗ [A±(u)]ij and set

a±(k)(v) := [A±(k)(v)]11, B±(k+1)(u) :=
n−k∑
j=1

(e
(k+1)
j )∗ ⊗ [A±(k)(u)]1,1+j . (4.1.30)

We also define a suitably normalised check Ř-matrix

Ř
(k,l)
12 (u, v) :=

v − u
qv − q−1u

P
(k,l)
12 R

(k,l)
12 (u, v).
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The defining relations of Uq(Lgln) then yield

a±(k)(v)B
±(k+1)
1 (u) =

qv − q−1u

v − u
B
±(k+1)
1 (u)a±(k)(v) +

q − q−1

u/v − 1
B
±(k+1)
1 (v)a±(k)(u), (4.1.31)

A
±(k)
1 (v)B

±(k)
2 (u) = B

±(k)
2 (u)A

±(k)
1 (v)R

(k,k)
12 (v, u)− q − q−1

u/v − 1
B
±(k)
2 (v)A

±(k)
1 (u)P

(k,k)
12 , (4.1.32)

B
±(k)
1 (u)B

±(k)
2 (v) = B

±(k)
1 (v)B

±(k)
2 (u)Ř

(k,k)
12 (u, v), (4.1.33)

R
(k,k)
12 (u, v)A

±(k)
1 (u)A

±(k)
2 (v) = A

±(k)
2 (v)A

±(k)
1 (u)R

(k,k)
12 (u, v), (4.1.34)

plus the mixed relations. Note that R
(n,n)
12 (u, v) acts as a constant on C ⊗ C ∼= C multiplying by

qv−q−1u
v−u , while Ř

(n,n)
12 (u, v) multiplies by 1.

4.1.3 Representations

Just as in Chapter 3, we will need to construct representations of this quantum group using the

fusion procedure, and this construction will proceed in an analogous way. For this we follow

[IMO12, IMO14].

Each site in the spin chain is built using the fusion procedure, which allows us to define an

action of Uq(Lg2n), on symmetric (respectively skewsymmetric) modules of Uq(so2n) (Uq(sp2n)).

These modules can be obtained by projecting to the (skew)symmetric subspace of a tensor product

of s copies of the vector representation C2n, and they define irreducible representations of their

respective algebras. Indeed, the symmetric case has lowest weight vector ηs = (e1)⊗s with weight

λ = (qs, 1, . . . , 1, q−s). In the skewsymmetric case, we must restrict to 1 ≤ s ≤ n, and the lowest

weight vector is ηs =
∑

σ∈Ss sign(σ)ql(σ) · eσ(1) ⊗ eσ(2) ⊗ · · · ⊗ eσ(s); here l(σ) denotes the length of

a reduced expression of σ ∈ Ss, an element in the symmetric group on s letters (full details will

be given in [GRW20]). The weight of this vector is given by λ =
(
q, . . . , q, 1, . . . , 1, q−1, . . . , q−1

)
,

where the number of q’s and the number of q−1’s is s.

The Uq(Lg2n)-action on either of these modules derives from the action on the tensor product

space (C2n)⊗s, which is given by a product of R-matrices. By carefully choosing the relative

shift parameters between these R-matrices, we can obtain an action which leaves invariant the

(skew)symmetric subspace of the tensor product space. Indeed, letting c ∈ C× denote an overall

shift for this particular site, the map is given by

L±a (u) 7→
s∏
j=1

Raj(u, q
2θ(j−1)c).

The projector to the (skew)symmetric subspace may also be written as a product of R-matrices,

Πθ
s :=

θ

[s]q!

2∏
j=s

(
R12(q−2θ, 1)P12 · · ·Rj−1,j(q

−(j−1)θ, 1)Pj−1,j

)
.
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Thus, the space Πθ
s(C2n)⊗s may be viewed as a Uq(Lg2n)-module, which we will denote by L(λ)c.

Now, fix ` ∈ N, the length of the spin chain. For each 1 ≤ i ≤ ` we choose ci ∈ C× and si ∈ N,

and construct the module L(λ(i))ci . As a Uq(Lg2n)-module, we find that this is a lowest weight

module with lowest weight vector ηsi given above, and weights now given by

λ
(i)
j (u, ci) :=



qsi ci − q−siu
ci − u

if j = 1,

1 if 1 < j < 2n,

q−1ci − q−2κ+1u

qsi−1ci − q−2κ−si+1u
if j = 2n

(4.1.35)

in the symmetric case, i.e. when g2n = so2n, and by

λ
(i)
j (u, ci) :=



q ci − q−1u

ci − u
if 1 ≤ j ≤ si,

1 if si < j < 2n− si + 1,

q−sici − q−2κ+siu

q−si+1 ci − q−2κ+si−1u
if 2n− si + 1 ≤ j ≤ 2n

(4.1.36)

in the skewsymmetric case. Here weights λ(i)(u) should be expanded as a series in positive (resp.

negative) powers of u for `+jj(u) (resp. for `−jj(u)).

The full spin chain, on which we will study the transfer matrix spectral problem, is then given

by

L := L(λ(1))c1 ⊗ · · · ⊗ L(λ(`))c` . (4.1.37)

The generating matrix L±a (u) acts on the space L in terms of a product of R-matrices (4.1.7),

Ta(u; c) :=
∏̀
i=1

si∏
j=1

Raij (u, q
2θ(j−1)ci) (4.1.38)

where ij enumerate individual tensorands C2n of L(λ(i))ci . We will often omit the dependence on c

to ease the notation and write Ta(u), its matrix elements will be denoted as tij(u). The module L

is a Uq(Lg2n) lowest weight module, with lowest weight vector η = ηs1 ⊗· · ·⊗ ηs` and lowest weight

equal to the product of lowest weights of the individual modules, that is,

`±ij(u)η = 0 for i > j and `±jj(u)η =
∏̀
i=1

λ
(i)
j (u, ci)η for all j. (4.1.39)

Finally, of particular interest for the nested algebraic Bethe ansatz, we note that the subspace

(L(λ(i))ci)
0 := {ξ ∈ L(λ(i))ci : tn+i,j [0]ξ = 0 for 1 ≤ i, j ≤ n}
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is an irreducible Uq(gln)-module of lowest weight (λ
(i)
1 , . . . , λ

(i)
n ). In particular, we have that

L0 := {ξ ∈ L : tn+i,j(u)ξ = 0 for 1 ≤ i, j ≤ n} = L(λ(1))0
c1 ⊗ · · · ⊗ L(λ(`))0

c`
.

The A±a (u) and D±a (u) operators act on the subspace L0 in terms of a product of the “reduced” R-

and K-matrices defined in (4.1.9) and (4.1.14),

A(1)
a (u) :=

∏̀
i=1

si∏
j=1

R
(1,1)
aij

(u, q2θ(j−1)ci), (4.1.40)

D(1)
a (u) :=

∏̀
i=1

si∏
j=1

K
(1,1)
aij

(u, q2κ+2θ(j−1)ci). (4.1.41)

4.2 Nested algebraic Bethe ansatz

4.2.1 Quantum spaces and monodromy matrices

Choose m0,m1, . . . ,mn−1 ∈ Z≥0, which will denote the number of excitations at each level of

nesting. For each mk assign an mk-tuple u(k) := (u
(k)
1 , . . . , u

(k)
mk) of complex parameters and an

mk-tuple of labels ak := (ak1, . . . , a
k
mk

), which will label the auxiliary spaces. For the top level

m0 the creation operator will live in two auxiliary spaces, and so we additionally assign a tuple

ã0 := (ã0
1, . . . , ã

0
m0

). As in Chapter 3, we will often use the following shorthand notation:

u(0...k) := (u(0), . . . ,u(k)), a0̃,0...k := (ã0,a0, . . . ,ak). (4.2.1)

Let V
(k)

ak−1
i

denote a copy of Cn−k+1 and let W
(k)

ak−1 be given by

W
(k)

ak−1 := V
(k)

ak−1
1

⊗ · · · ⊗ V (k)

ak−1
mk−1

.

Let L be a lowest weight Uq(Lg2n)-module defined in (4.1.37). This will play the role of the

original spin chain, and we will refer to it as the level-0 quantum space. Then, starting from

L = L(0), we recursively define the nested quantum spaces in the following way. We define the

level-1 quantum space by

L(1) := (L(0))0 ⊗W (1)
ã0 ⊗W

(1)
a0 , (4.2.2)

and each subsequent level-k quantum space, for 2 ≤ k ≤ n, by

L(k) := (L(k−1))0 ⊗W (k)

ak−1 , (4.2.3)

where

(L(k−1))0 := {ξ ∈ L(k−1) : tij(u)ξ = 0 for i > j and j < k − 1}.

As the name quantum space suggests, we will regard these quantum spaces as spin chains in
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their own right. As such, we recursively define a monodromy matrix for each nested spin chain.

Definition 4.2.1. We will say that Ta(v) is a level-0 monodromy matrix. We define level-1 mon-

odromy matrices, acting on the space L(1), by

A
(1)

aa0̃,0
(v;u(0)) :=

(
1∏

i=m0

K
(1,1)

aã0i
(v, q2θu

(0)
i )

)(
m0∏
i=1

K
(1,1)

aa0i
(v, u

(0)
i )

)
A(1)
a (v), (4.2.4)

D
(1)

aa0̃,0
(v;u(0)) := D(1)

a (v)

(
1∏

i=m0

R
(1,1)

aã0i
(v, u

(0)
i )

)(
m0∏
i=1

R
(1,1)

aa0i
(v, q−2θu

(0)
i )

)
. (4.2.5)

For each 2 ≤ k ≤ n we recursively define level-k monodromy matrices, acting on the spaces L(k),

by

A
(k)

aa0̃,0...k−1
(v;u(0...k−1)) := A

(k)

aa0̃,0...k−2
(v;u(0...k−2))

(mk−1∏
i=1

R
(k,k)

aak−1
i

(v, u
(k−1)
i )

)
, (4.2.6)

D
(k)

aa0̃,0...k−1
(v;u(0...k−1)) :=

(mk−1∏
i=1

R
(k,k)

aak−1
i

(v, q2κ′u
(k−1)
i )

)
D

(k)

aa0̃,0...k−2
(v;u(0...k−2)), (4.2.7)

where A
(k)

aa0̃,0...k−2
and D

(k)

aa0̃,0...k−2
denote the 1-reduced operators of A

(k−1)

aa0̃,0...k−2
and D

(k−1)

aa0̃,0...k−2
, re-

spectively.

Operators A
(k)

aa0̃,0...k−1
and D

(k)

aa0̃,0...k−1
are matrices with entries in End(L(k)). Thus, to ease the

notation, we will write them as A
(k)
a and D

(k)
a . We will use a similar notation throughout this

chapter.

Lemma 4.2.2. For 1 ≤ k ≤ n− 1 let ≡ denote equality of operators in the space L(k). Then

R
(k,k)
ab (v, w)A(k)

a (v;u(0...k−1))A
(k)
b (w;u(0...k−1))

≡ A(k)
b (w;u(0...k−1))A(k)

a (v;u(0...k−1))R
(k,k)
ab (v, w),

R
(k,k)
ab (v, w)D(k)

a (v;u(0...k−1))D
(k)
b (w;u(0...k−1))

≡ D(k)
b (w;u(0...k−1))D(k)

a (v;u(0...k−1))R
(k,k)
ab (v, w),

D(k)
a (v;u(0...k−1))R

(k,k)
q−1,ab

(v, q2κ′w)A
(k)
b (w;u(0...k−1))

≡ A(k)
b (w;u(0...k−1))R

(k,k)
q−1,ab

(v, q2κ′w)D(k)
a (v;u(0...k−1)) (4.2.8)

where κ′ = κ− k + 1.

Proof. The first two identities follow from the Yang-Baxter equation and the defining relations of

A and D operators. For the third identity we additionally need to use the property C±a (v) ≡ 0.

Observe that K-matrices in (4.2.4) and R-matrices in (4.2.5) are “at the fusion point”. More

precisely, introduce (anti)-symmetric projector Π± := ± 1
q+q−1R

(1,1)(q∓2, 1)P (1,1) and set V ± :=
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Π±Cn⊗Cn. The subspace V ± is an irreducible Uq(Lgln)-module with the lowest weight vector ξ±

given by

ξ+ = e
(1)
1 ⊗ e

(1)
1 , ξ− = e

(1)
1 ⊗ e

(1)
2 − qe

(1)
2 ⊗ e

(1)
1 . (4.2.9)

Denote

Kθ
kj :=

[
K

(1,1)

aã0i
(v, q2θu

(0)
i )K

(1,1)

aa0i
(v, u

(0)
i )
]
jk
, Rθ

kj :=
[
R

(1,1)

aã0i
(v, u

(0)
i )R

(1,1)

aa0i
(v, q−2θu

(0)
i )
]
jk
,

where the matrix elements are taken with respect to the “a” space. Then Kθ
jk ξ
−θ = Rθ

jk ξ
−θ = 0

if j > k and

K−jj ξ
+ =

(
δj<n + δjn

q2v − q−2u
(0)
i

v − u(0)
i

)
ξ+, R−jj ξ

+ =

(
δj1

q−2v − q2u
(0)
i

v − u(0)
i

+ δj>1

)
ξ+,

K+
jj ξ
− =

(
δj<n−1 + δj≥n−1

qv − q−1u
(0)
i

v − u(0)
i

)
ξ−, R+

jj ξ
− =

(
δj≤2

q−1v − qu(0)
i

v − u(0)
i

+ δj>2

)
ξ−.

For each 1 ≤ j ≤ m0 define vector ξ
(j)
− recursively by ξ

(1)
− := ξ− and

ξ
(j)
− := e

(1)
1 ⊗ ξ

(j−1)
− ⊗ e(1)

2 − qe
(1)
2 ⊗ ξ

(j−1)
− ⊗ e(1)

1 .

We also set ξ
(j)
+ :=

(
e

(1)
1

)⊗2j
. Then for each 1 ≤ k ≤ n− 1 we define a level-k nested vacuum vector

by

η
(k)
± := η ⊗ ξ(m0)

± ⊗
(
e

(2)
1

)⊗m1 ⊗ · · · ⊗
(
e

(k+1)
1

)⊗mk ∈ (L(k))0, (4.2.10)

where η = ηs1 ⊗ · · · ⊗ ηs` is the lowest weight vector of L(0) = L. We then denote the (1, 1)-th

matrix element of monodromy matrices (4.2.4), (4.2.6) by

a(k)(v;u(0...k−1)) :=
[
A(k)
a (v;u(0...k−1))

]
11
, d(k)(v;u(0...k−1)) :=

[
D(k)
a (v;u(0...k−1))

]
11
.

We will be interested in the action of these operators on η
(k)
± .

Lemma 4.2.3. Vector η
(k)
−θ is lowest weight vector with respect to the action of the level-k mon-

odromy matrix. The operators a(k)(v;u(0...k−1)) and d(k)(v;u(0...k−1)) act on η
(k)
−θ by multiplication
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with

for k = 1 :
∏̀
i=1

λ
(i)
1 (v) , (4.2.11)

for 2 ≤ k ≤ n− 2 :
∏̀
i=1

λ
(i)
k (v)

mk−1∏
i=1

q−1v − qu(k−1)
i

v − u(k−1)
i

, (4.2.12)

for k = n− 1 :
∏̀
i=1

λ
(i)
n−1(v)

mn−2∏
i=1

q−1v − qu(n−2)
i

v − u(n−2)
i

m0∏
i=1

qθ
′
v − q−θ′u(0)

i

v − u(0)
i

, (4.2.13)

for k = n :
∏̀
i=1

λ(i)
n (v)

mn−1∏
i=1

q−1v − qu(n−1)
i

v − u(n−1)
i

m0∏
i=1

q2−θ′ v − qθ′−2u
(0)
i

v − u(0)
i

, (4.2.14)

and

for k = 1 :
∏̀
i=1

λ
(i)
2n(v) , (4.2.15)

for 2 ≤ k ≤ n− 2 :
∏̀
i=1

λ
(i)
2n−k+1(v)

mk−1∏
i=1

qv − q2κ′−1u
(k−1)
i

v − q2κ′u
(k−1)
i

, (4.2.16)

for k = n− 1 :
∏̀
i=1

λ
(i)
n+2(v)

mn−2∏
i=1

qv − q2κ′−1u
(n−2)
i

v − q2κ′u
(n−2)
i

m0∏
i=1

q−θ
′
v − qθ′ u(0)

i

v − u(0)
i

, (4.2.17)

for k = n :
∏̀
i=1

λ
(i)
n+1(v)

mn−1∏
i=1

qv − q2κ′−1u
(n−1)
i

v − q2κ′u
(n−1)
i

m0∏
i=1

qθ
′−2 v − q2−θ′u

(0)
i

v − u(0)
i

, (4.2.18)

respectively. Here κ′ = κ− k + 1 and θ′ = 1
2(1 + θ).

Proof. First, note that the level-k nested monodromy matrix may be written as

A(k)
a (v;u(0...k−1)) =

(
1∏

i=m0

K
(k,1)

aã0i
(v, q2θu

(0)
i )

)

×

(
m0∏
i=1

K
(k,1)

aa0i
(v, u

(0)
i )

)
A(k)
a (v)

(
k∏
l=2

ml−1∏
i=1

R
(k,l)

aal−1
i

(v, u
(l−1)
i )

)
.

In order to prove that η
(k)
−θ is a lowest weight vector, consider the action of the matrix elements[

A
(k)
a (v;u(0...k−1)

]
ij

with i ≥ j. It follows from (4.1.17–4.1.18) that, when acting on η
(k)
+ , the R-

and K-matrices become upper triangular matrices in the “a” auxiliary space. That is, for i ≥ j,

E(l)
j′i′(u/v)e

(l)
1 = δij

(
δi′1

q−1v − qu
v − u

+ δi′>1

)
e

(l)
1 ,

(E(l)
q−1,j′i′

(u/v))ω̄ e
(l)
1 = δij

(
δi′ l̄

qv − q−1u

v − u
+ δi′<l̄

)
e

(l)
1 ,
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where the primed notation is the same as for (4.1.18). Furthermore, as η is a lowest weight vector

for L, the action of A
(k)
a (v) is also upper triangular,

[
A(k)
a (v)

]
ij
η = δij

∏̀
p=1

λ
(p)
k (v, cp)η for i ≥ j.

Therefore, taking a product of these matrices, the action of the level-k nested monodromy matrix

will also be upper triangular, from which we conclude that η
(k)
+ is a lowest weight vector. The

identities (4.2.11-4.2.14) may be found by[ml−1∏
i=1

R
(k,l)

aal−1
i

(v, u
(l−1)
i )

]
j1

(e
(l)
1 )⊗ml−1 = δj1

(
δkl

mk−1∏
i=1

q−1v − qu(k−1)
i

v − u(k−1)
i

+ δk>l

)
(e

(l)
1 )⊗ml−1 ,

[
1∏

i=m0

K
(k,1)

aã0i
(v, q2θu

(0)
i )

]
j1

(e
(1)
1 )⊗m0 = δj1

(
δkn

m0∏
i=1

q1−θ v − qθ−1u
(0)
i

q−θv − qθu(0)
i

+ δk<n

)
(e

(1)
1 )⊗m0 ,[

m0∏
i=1

K
(k,1)

aa0i
(v, u

(0)
i )

]
11

(e
(1)
1 )⊗m0 =

(
δkn

m0∏
i=1

qv − q−1u
(0)
i

v − u(0)
i

+ δk<n

)
(e

(1)
1 )⊗m0 ,

where the matrix elements are taken with respect to the the “a” space. Expressions (4.2.15-4.2.18)

are obtained similarly. This concludes the proof in the symplectic case.

The orthogonal case follows by the same arguments and the fact that ξ
(m0)
− is a lowest weight

vector with respect to the action of

K[m0] :=

(
1∏

i=m0

K
(1,1)

aã0i
(v, q2u

(0)
i )

)(
m0∏
i=1

K
(1,1)

aa0i
(v, u

(0)
i )

)
.

We will prove the latter by induction on m0. The m0 = 1 case has already been explained above.

Let s ≥ 1. We assume that ξ
(s)
− is a lowest weight vector for K[s] of weight λ

[s]
i (v) = 1 for i < n− 1

and λ
[s]
i (v) =

∏s
j=1

q v−q−1u
v−u for i = n− 1, n. We write the action of K[s+1] on ξ

(s+1)
− as

[
K

[s+1]
ij

]
ij
· ξ(s+1)
− =

n∑
b,c=1

(E(1)
q−1,bi

(q2u/v))ω̄
[
K[s]

]
bc

(E(1)
q−1,jc

(u/v))ω̄

×
(
e

(1)
1 ⊗ ξ

(s)
− ⊗ e

(1)
2 − qe

(1)
2 ⊗ ξ

(s)
− ⊗ e

(1)
1

)
=

n∑
b,c=1
i≤b≤c

(E(1)
q−1,bi

(q2u/v))ω̄
[
K[s]

]
bc

(E(1)
q−1,jc

(u/v))ω̄ · e(1)
1 ⊗ ξ

(s)
− ⊗ e

(1)
2

− q
n∑

b,c=1
b≤c≤j

(E(1)
q−1,bi

(q2u/v))ω̄
[
K[s]

]
bc

(E(1)
q−1,jc

(u/v))ω̄ · e(1)
2 ⊗ ξ

(s)
− ⊗ e

(1)
1 (4.2.19)
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since ξ
(s)
− and e

(1)
1 are lowest weight vectors in their relevant representations. Observe that

(E(1)
q−1,ji

(u/v))ω̄ e
(1)
1 = δij

(
δin

qv − q−1u

v − u
+ δi<n

)
e

(1)
1

+ δi<nδjn
qi−j(q − q−1)

v/u− 1
e

(1)
n−i+1

and

(E(1)
q−1,ji

(u/v))ω̄ e
(1)
2 = δij

(
δi,n−1

qv − q−1u

v − u
+ δi 6=n−1

)
e

(1)
2 − δinδj,n−1

q2 − 1

u/v − 1
e

(1)
1

+ δi<n−1δj,n−1
qi−j(q − q−1)

v/u− 1
e

(1)
n−i+1 .

Assume that i > j. It clear from above that K
[s+1]
ij · ξ(s+1)

− = 0 if j < n − 1. Hence we only need

to consider the case with i = n and j = n− 1. Then (4.2.19) becomes

[
K[s+1]

]
n,n−1

· ξ(s+1)
− = −

(
λ[s]
n (v)

v − u
q−1v − qu

· q
2 − 1

u/v − 1

− qλ[s]
n (v)

q2 − 1

q2u/v − 1
· qv − q

−1u

v − u

)
e

(1)
1 ⊗ ξ

(s)
− ⊗ e

(1)
1 = 0,

as required. Next, assume that i = j = n. Then

[
K[s+1]

]
nn
· ξ(s+1)
− = λ[s]

n (v)

(
v − u

q−1v − qu
e

(1)
1 ⊗ ξ

(s)
− ⊗ e

(1)
2 − q

qv − q−1u

v − u
e

(1)
2 ⊗ ξ

(s)
− ⊗ e

(1)
1

)
+ qλ

[s]
n−1(v)

q2 − 1

q2u/v − 1
· q
−1(q − q−1)

v/u− 1
e

(1)
1 ⊗ ξ

(s)
− ⊗ e

(1)
2

= λ[s]
n (v)

qv − q−1u

v − u

(
e

(1)
1 ⊗ ξ

(s)
− ⊗ e

(1)
2 − qe

(1)
2 ⊗ ξ

(s)
− ⊗ e

(1)
1

)
= λ[s+1]

n (v)ξ
(s+1)
− .

In a similar way, for i = j = n− 1, we find

[
K[s+1]

]
n−1,n−1

· ξ(s+1)
− = λ

[s]
n−1(v)

(
qv − q−1u

v − u
e

(1)
1 ⊗ ξ

(s)
− ⊗ e

(1)
2 − q

2 v − u
v − q2u

e
(1)
2 ⊗ ξ

(s)
− ⊗ e

(1)
1

)
− λ[s]

n (v)
q−1(q − q−1)

q−2v/u− 1
· q

2 − 1

u/v − 1
e

(1)
2 ⊗ ξ

(s)
− ⊗ e

(1)
1

= λ
[s]
n−1(v)

qv − q−1u

v − u

(
e

(1)
1 ⊗ ξ

(s)
− ⊗ e

(1)
2 − qe

(1)
2 ⊗ ξ

(s)
− ⊗ e

(1)
1

)
= λ

[s+1]
n−1 (v)ξ

(s+1)
− .

Lastly, when i = j < n−1 we obtain
[
K[s+1]

]
ii
· ξ(s+1)
− = ξ

(s+1)
− . Then, using the arguments similar

to those in the symplectic case yields the wanted result.
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4.2.2 Transfer matrices, Bethe vectors and Bethe equations

Recall the level-k monodromy matrices from Definition 4.2.1.

Definition 4.2.4. We define level-0 transfer matrix by

τ(v) := tra Ta(v) = traA
(1)
a (v) + traD

(1)
a (v). (4.2.20)

For all 1 ≤ k ≤ n− 1 we define level-k transfer matrices by

τ (k)(v;u(0...k−1)) := traA
(k)
a (v;u(0...k−1))

and

τ̃ (k)(v;u(0...k−1)) := traD
(k)
a (v;u(0...k−1)).

Note that, as there is no equivalent of the symmetry relation that we used in previous chapters,

it is necessary to keep track of both the A and D blocks of the monodromy matrix.

Next, for each level of nesting, 0 ≤ k ≤ n− 1, we introduce the creation operators for multiple

excitations.

Definition 4.2.5. We define level-0 creation operator by

B
(0)

a0̃,0
(u(0)) :=

m0∏
i=1

βã0i a0i
(u

(0)
i ) (4.2.21)

where

βã0i a0i
(u

(0)
i ) :=

n∑
j,k=1

q−j t̄,n+k(u
(0)
i )⊗ e(1)∗

k ⊗ e(1)∗
j ∈ End(L(0))⊗ V (1)∗

ã0i
⊗ V (1)∗

a0i
. (4.2.22)

For all 1 ≤ k ≤ n− 1 we define level-k creation operators by

B
(k)

ak
(u(k);u(0...k−1)) :=

mk∏
i=1

B
(k+1)

aki
(u

(k)
i ;u(0...k−1)) (4.2.23)

where

B
(k+1)

aki
(u

(k)
i ;u(0...k−1)) :=

n−k∑
j=1

[
A

(k)

aki
(u

(k)
i ;u(0...k−1))

]
1,1+j

⊗ e(k+1)∗
j ∈ End(L(k))⊗ V (k+1)∗

aki
. (4.2.24)

Recall the notion of nested vacuum vector η
(k)
± , viz. (4.2.10). The level-(n−1) nested vacuum

vector is our reference state for constructing the (off-shell) Bethe vectors.

145



Definition 4.2.6. For all 1 ≤ k ≤ n− 1 we define level-k Bethe vectors by

Φ
(k)
θ (u(k...n−1);u(0...k−1)) :=

n−1∏
i=k

B
(i)

ai
(u(i);u(0...i−1)) · η(n−1)

−θ . (4.2.25)

The level-0 Bethe vector is defined by

Φ
(0)
θ (u(0...n−1)) := B

(0)

a0̃,0
(u(0))Φ

(1)
θ (u(1...n−1);u(0)). (4.2.26)

Note that vector Φ
(k)
θ (u(k...n−1);u(0...k−1)) is an element of the level-k quantum space L(k) and

has u(0...k−1) and c as its free parameters.

For 0 ≤ k ≤ n− 1 set Smk...n−1
:= Smk × · · · ×Smn−1 . For any σ(l) ∈ Sml with k ≤ l ≤ n− 1

define an action of Smk...n−1
on Φ

(k)
θ (u(k...n−1);u(0...k−1)) by

σ(l) : u(k...n−1) 7→ u
(k...n−1)

σ(l) := (u(k), . . . ,u
(l)

σ(l) , . . . ,u
(n−1)}, u

(l)

σ(l) := (u
(l)

σ(l)(1)
, . . . , u

(l)

σ(l)(ml)
).

For further convenience we set σ
(l)
j ∈ Sml to be the j-cycle such that

u
(l)

σ
(l)
j

= (u
(l)
j , u

(l)
j+1, . . . , u

(l)
ml
, u

(l)
1 , . . . , u

(l)
j−1).

We will also make use of the notation

u
(l)

σ
(l)
j , u

(l)
j →v

:= (v, u
(l)
j+1, . . . , u

(l)
ml
, u

(l)
1 , . . . , u

(l)
j−1).

Lemma 4.2.7. Bethe vector Φ
(k)
θ (u(k...n−1);u(0...k−1)) is invariant under the action of Smk...n−1

.

Proof. This follows using standard arguments, the fact that Ř-matrices act on η
(n−1)
−θ by 1, and

relations

βã0i a0i
(u

(0)
i )βã0i+1a

0
i+1

(u
(0)
i+1) = βã0i a0i

(u
(0)
i+1)βã0i+1a

0
i+1

(u
(0)
i )
(
Ř

(1,1)

a0i a
0
i+1

(u
(0)
i , u

(0)
i+1)

)−1
Ř

(1,1)

ã0i ã
0
i+1

(u
(0)
i , u

(0)
i+1)

and

B
(k+1)

aki
(u

(k)
i ;u(0...k−1))B

(k+1)

aki+1

(u
(k)
i+1;u(0...k−1))

≡ B(k+1)

aki
(u

(k)
i+1;u(0...k−1))B

(k+1)

aki+1

(u
(k)
i ;u(0...k−1))Ř

(k+1,k+1)

aki a
k
i+1

(u
(k)
i , u

(k)
i+1)

which follow from (4.1.29) and (4.1.33); here ≡ denotes equality of operators in the space L(k).

The following result is the solution of the Uq(gln) subsystem. The method is well-known—see

e.g. [BR08]—and follows along the same line as the rational case, which was given in Section 2.1,

and so we omit the details here.
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Theorem 4.2.8. Bethe vector Φ
(1)
θ (u(1...n−1);u(0)) is an eigenvector of τ (1)(v;u(0)) with the eigen-

value

Λ(1)(v;u(1...n−1);u(0)) :=

m1∏
i=1

qv − q−1u
(1)
i

v − u(1)
i

∏̀
i=1

λ
(i)
1 (v)

+

n−2∑
k=2

mk−1∏
i=1

q−1v − qu(k−1)
i

v − u(k−1)
i

mk∏
i=1

qv − q−1u
(k)
i

v − u(k)
i

∏̀
i=1

λ
(i)
k (v)

+

mn−2∏
i=1

q−1v − qu(n−2)
i

v − u(n−2)
i

mn−1∏
i=1

qv − q−1u
(n−1)
i

v − u(n−1)
i

m0∏
i=1

qθ
′
v − q−θ′u(0)

i

v − u(0)
i

∏̀
i=1

λ
(i)
n−1(v)

+

m0∏
i=1

q2−θ′v − q−2+θ′u
(0)
i

v − u(0)
i

mn−1∏
i=1

q−1v − qu(n−1)
i

v − u(n−1)
i

∏̀
i=1

λ(i)
n (v) (4.2.27)

and an eigenvector of τ̃ (1)(v;u(0)) with the eigenvalue

Λ̃(1)(v;u(1...n−1);u(0)) :=

m1∏
i=1

v − q2κu
(1)
i

qv − q2κ−1u
(1)
i

∏̀
i=1

λ
(i)
2n(v)

+
n−2∑
k=2

mk−1∏
i=1

qv − q2κ−2k+1u
(k−1)
i

v − q2κ−2k+2u
(k−1)
i

mk∏
i=1

v − q2κ−2k+2u
(k)
i

qv − q2κ−2k+1u
(k)
i

∏̀
i=1

λ
(i)
2n−k+1(v)

+

mn−2∏
i=1

qv − q3−2θu
(n−2)
i

v − q4−2θu
(n−2)
i

mn−1∏
i=1

v − q4−2θu
(n−1)
i

qv − q3−2θu
(n−1)
i

m0∏
i=1

q−θ
′
v − qθ′u(0)

i

v − u(0)
i

∏̀
i=1

λ
(i)
n+2(v)

+

mn−1∏
i=1

qv − q1−2θu
(n−1)
i

v − q2−2θu
(n−1)
i

m0∏
i=1

q−2+θ′ v − q2−θ′u
(0)
i

v − u(0)
i

∏̀
i=1

λ
(i)
n+1(v) (4.2.28)

provided

Res
v→u(k)j

Λ(1)(v;u(1...n−1);u(0)) = 0 for 1 ≤ k ≤ n− 1, 1 ≤ j ≤ mk. (4.2.29)

Proof. Step 1. Φ
(1)
θ (u(1...n−1);u(0)) is an eigenvector of τ (1)(v,u(0)). We rewrite the exchange

relations (4.1.31) and (4.1.32) as

a(k)(v)B
(k+1)

aki
(u

(k)
i ) =

qv − q−1u
(k)
i

v − u(k)
i

B
(k+1)

aki
(u

(k)
i )a(k)(v)

−
v/u

(k)
i

v − u(k)
i

Res
w→u(k)i

qw − q−1u
(k)
i

w − u(k)
i

B
(k+1)

aki
(v)a(k)(w),

A(k+1)
a (v)B

(k+1)

aki
(u

(k)
i ) = B

(k+1)

aki
(u

(k)
i )A(k+1)

a (v)R
(k+1)

aaki
(v, u

(k)
i )

−
v/u

(k)
i

v − u(k)
i

Res
w→u(k)i

B
(k+1)

aki
(v)A(k+1)

a (w)R
(k+1,k+1)

aaki
(w, u

(k)
i ).
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Then, using the usual symmetry arguments for the Bethe vector, viz. Lemma 4.2.7, we obtain

τ (1)(v;u(0))Φ
(1)
θ (u(1...n−1);u(0))

= B
(1)
a1 (u(1);u(0))

(
m1∏
i=1

qv − q−1u
(1)
i

v − u(1)
i

a(1)(v;u(0)) + τ (2)(v;u(0,1))

)
Φ

(2)
θ (u(2...n−1);u(0,1))

−
m1∑
j=1

v/u
(1)
j

v − u(1)
j

B
(1)
a1 (u

(1)

σ
(1)
j ,u

(1)
j →v

;u(0))

× Res
w→u(1)j

(
m1∏
i=1

qw − q−1u
(1)
i

w − u(1)
i

a(1)(w;u(0)) + τ (2)(w;u
(0,1)

σ
(1)
j ,u

(1)
j →v

)

)
Φ

(2)
θ (u(2...n−1);u

(0,1)

σ
(1)
j

).

Proceeding in the same way and using Lemma 4.2.3 we find

τ (1)(v;u(0))Φ
(1)
θ (u(1...n−1);u(0)) = Λ(1)(v;u(1...n−1);u(0))Φ

(1)
θ (u(1...n−1);u(0))

provided (4.2.29) holds, as required.

Step 2. Φ
(1)
θ (u(1...n−1);u(0)) is an eigenvector of τ̃ (1)(v,u(0)). It follows from Lemma 4.2.2 that

transfer matrices τ (1)(v;u(0)) and τ̃ (1)(v;u(0)) form a family of commutative operators in the space

L(1). They can thus be diagonalized simultaneously. Assuming (4.2.29) holds, it is sufficient to

focus on the wanted terms in the exchange relations. In particular, it follows from (4.2.8) that

d(k)(v)B
(k+1)

aki
(u

(k)
i ) =

v − q2κ−2k+2u
(k)
i

qv − q2κ−2+1u
(k)
i

B
(k+1)

aki
(u

(k)
i )d(k)(v) + UWT,

D(k+1)
a (v)B

(k+1)

aki
(u

(k)
i ) = B

(k+1)

aki
(u

(k)
i )R

(k+1)

q−1,aaki
(v, q2κ−2k+2u

(k)
i )D(k+1)

a (v) + UWT,

where UWT denotes the unwanted terms. The eigenvalue (4.2.28) now follows by Lemma 4.2.3

and the standard arguments.

Having solved the nested system, we now give the solution to the full system below.

Theorem 4.2.9. Bethe vector Φ
(0)
θ (u(0...n−1)) is an eigenvector of τ(v) with eigenvalue

Λ(v;u(0...n−1)) := Λ(1)(v;u(1...n−1);u(0)) + Λ̃(1)(v;u(1...n−1);u(0)) (4.2.30)

provided

Res
v→u(0)j

Λ(v;u(0...n−1)) = 0 for 1 ≤ j ≤ m0, and (4.2.31)

Res
v→u(k)j

Λ(1)
(
v;u(1...n−1);u(0)

)
= 0 for 1 ≤ j ≤ mk, 1 ≤ k ≤ n− 1. (4.2.32)
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Proof. Using (4.1.11) and (4.1.14)–(4.1.16), we deduce R
(1,1)
21 (u, v) = R

(1,1)
q−1,12

(v, u) and

(K
(1,1)
12 (u, q2κv))−1 = K

(1,1)
21 (v, q2θu) = K

(1,1)
q−1,12

(u, q−2θv).

These relations allow us to rewrite (4.1.24) and (4.1.25) as

A±1 (v)B±2 (u) = R
(1,1)
q−1,12

(v, u)B±2 (u)A±1 (v)K
(1,1)
12 (v, q2θu)

− 1

v − u
Res
w→u

R
(1,1)
q−1,12

(w, u)B±1 (v)A±2 (u)K
(1,1)
12 (w, q2θu),

D±1 (v)B±2 (u) = K
(1,1)
q−1,12

(v, q−2θu)B±2 (u)D±1 (v)R
(1,1)
12 (v, u)

− 1

v − u
Res
w→u

K
(1,1)
q−1,12

(w, q−2θu)B±1 (v)D±2 (u)R
(1,1)
12 (w, u).

Then, using (4.1.14), (4.2.22) and replacing the A and D operators with their images in End(L(0)),

we obtain

A(1)
a (v)βã0i a0i

(u
(0)
i ) = βã0i a0i

(u
(0)
i )K

(1,1)

aa0i
(v, u

(0)
i )A(1)

a (v)K
(1,1)

aã0i
(v, q2θu

(0)
i )

− 1

v − u(0)
i

βã0i a0i
(v) Res

w→u(0)i
K

(1,1)

aa0i
(w, u

(0)
i )A(1)

a (w)K
(1,1)

aã0i
(w, q2θu

(0)
i ),

D(1)
a (v)βã0i a0i

(u
(0)
i ) = βã0i a0i

(u
(0)
i )R

(1,1)

aa0i
(v, q−2θu

(0)
i )D(1)

a (v)R
(1,1)

aã0i
(v, u

(0)
i )

− 1

v − u(0)
i

βã0i a0i
(v) Res

w→u(0)i
R

(1,1)

aa0i
(w, q−2θu

(0)
i )D(1)

a (v)R
(1,1)

aã0i
(w, u

(0)
i ).

The relations above together with Lemma 4.2.7 and the standard symmetry arguments imply that

τ(v)Φ
(0)
θ (u(0...n−1))

= B
(0)

a0̃,0
(u(0))

(
τ (1)(v;u(0)) + τ̃ (1)(v;u(0))

)
Φ

(1)
θ (u(1...n−1);u(0))

−
m0∑
j=1

1

v − u(0)
j

B
(0)

a0̃,0
(u

(0)

σ
(0)
j ,u

(0)
j →v

)

× Res
w→u(0)j

(
τ (1)(w;u

(0)

σ
(0)
j

) + τ̃ (1)(w;u
(0)

σ
(0)
j

)
)

Φ
(1)
θ (u(1...n−1);u

(0)

σ
(0)
j

).

Theorem (4.2.8) allows us to replace τ (1)(w;u
(0)

σ
(0)
j

) and τ̃ (1)(w;u
(0)

σ
(0)
j

) with their eigenvalues, provided
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(4.2.32) holds, giving

τ(v)Φ
(0)
θ (u(0...n−1))

= B
(0)

a0̃,0
(u(0))Λ(v;u(0...n−1))Φ

(1)
θ (u(1...n−1);u(0))

−
m0∑
j=1

1

v − u(0)
j

B
(0)

a0̃,0
(u

(0)

σ
(0)
j ,u

(0)
j →v

) Res
w→u(0)j

Λ(w;u
(0)

σ
(0)
j

,u(1...n−1))Φ
(1)
θ (u(1...n−1);u

(0)

σ
(0)
j

).

Noting that, from its definition and the exact forms of the Λ(1) and Λ̃(1) from Theorem 4.2.8, we

have Λ(w;u
(0)

σ
(0)
j

,u(1...n−1)) = Λ(w;u(0...n−1)). Therefore, (4.2.31) implies that each term in the sum

on the second line individually vanishes, and we are left with the desired result.

Remark 4.2.10 (i). The equations (4.2.32) are Bethe equations for a Uq(gln)-symmetric spin chain,

with an additional factor when j = n−1 due to level-0 excitations. For convenience, set u
(n)
j := u

(0)
j

and mn := m0. Then the explicit form of the equations (4.2.32) and (4.2.31) in the symplectic case

is

∏̀
i=1

λ
(i)
1 (u

(1)
j )

λ
(i)
2 (u

(1)
j )

=

m1∏
i=1
i 6=j

q−1u
(1)
j − qu

(1)
i

qu
(1)
j − q−1u

(1)
i

m2∏
i=1

qu
(1)
j − q−1u

(2)
i

u
(1)
j − u

(2)
i

, (4.2.33)

∏̀
i=1

λ
(i)
k (u

(k)
j )

λ
(i)
k+1(u

(k)
j )

=

mk−1∏
i=1

u
(k)
j − u

(k−1)
i

q−1u
(k)
j − qu

(k−1)
i

mk∏
i=1
i 6=j

q−1u
(k)
j − qu

(k)
i

qu
(k)
j − q−1u

(k)
i

mk+1∏
i=1

qu
(k)
j − q−1u

(k+1)
i

u
(k)
j − u

(k+1)
i

, (4.2.34)

∏̀
i=1

λ
(i)
n−1(u

(n−1)
j )

λ
(i)
n (u

(n−1)
j )

=

mn−2∏
i=1

u
(n−1)
j − u(n−2)

i

q−1u
(n−1)
j − qu(n−2)

i

mn−1∏
i=1
i 6=j

q−1u
(n−1)
j − qu(n−1)

i

qu
(n−1)
j − q−1u

(n−1)
i

mn∏
i=1

q2u
(n−1)
j − q−2u

(n)
i

u
(n−1)
j − u(n)

i

,

(4.2.35)∏̀
i=1

λ
(i)
n (u

(n)
j )

λ
(i)
n+1(u

(n)
j )

=

mn−1∏
i=1

u
(n)
j − u

(n−1)
i

q−2u
(n)
j − q2u

(n−1)
i

mn∏
i=1
i 6=j

q−2u
(n)
j − q2u

(n)
i

q2u
(n)
j − q−2u

(n)
i

(4.2.36)

for 2 ≤ k ≤ n− 2 and all allowed j, and weights given by (4.1.36).

(ii). In the orthogonal case, the Bethe equations for k = 1, . . . , n−3 are identical to the symplectic

case. For k = n− 2 and n− 1, the equations are replaced by, respectively,

∏̀
i=1

λ
(i)
n−2(u

(n−2)
j )

λ
(i)
n−1(u

(n−2)
j )

=

mn−3∏
i=1

u
(n−2)
j − u(n−3)

i

q−1u
(n−2)
j − qu(n−3)

i

mn−2∏
i=1
i 6=j

q−1u
(n−2)
j − qu(n−2)

i

qu
(n−2)
j − q−1u

(n−2)
i

×
mn−1∏
i=1

qu
(n−2)
j − q−1u

(n−1)
i

u
(n−2)
j − u(n−1)

i

mn∏
i=1

qu
(n−2)
j − q−1u

(n)
i

u
(n−2)
j − u(n)

i

, (4.2.37)

150



and ∏̀
i=1

λ
(i)
n−1(u

(n−1)
j )

λ
(i)
n (u

(n−1)
j )

=

mn−2∏
i=1

u
(n−1)
j − u(n−2)

i

q−1u
(n−1)
j − qu(n−2)

i

mn−1∏
i=1
i 6=j

q−1u
(n−1)
j − qu(n−1)

i

qu
(n−1)
j − q−1u

(n−1)
i

, (4.2.38)

for all allowed j. For the level-0 Bethe equations, however, the eigenvalue contains four poles at

each Bethe root, rather than two. Through use of the identity (see Remark 6.6 in [GRW20]),

λn+2(u)

λn(u)
=
λn+1(u)

λn−1(u)
,

the resulting expression may be factorised to give the following Bethe equations, for 1 ≤ j ≤ mn,(
mn−2∏
i=1

q−1u
(n)
j − qu

(n−2)
i

u
(n)
j − u

(n−2)
i

mn−1∏
i=1

qu
(n)
j − q−1u

(n−1)
i

q−1u
(n)
j − qu

(n−1)
i

+
∏̀
i=1

λ
(i)
n (u

(n)
j )

λ
(i)
n−1(u

(n)
j )

)

×

(
mn∏
i=1
i 6=j

qu
(n)
j − q−1u

(n)
i

q−1u
(n)
j − qu

(n)
i

mn−2∏
i=1

q−1u
(n)
j − qu

(n−2)
i

u
(n)
j − u

(n−2)
i

−
∏̀
i=1

λ
(i)
n+1(u

(n)
j )

λ
(i)
n−1(u

(n)
j )

)
= 0. (4.2.39)

Observe that setting the first factor to zero is exactly equivalent to (4.2.38), the level-(n − 1) set

of equations, noting that the sign discrepancy is due to the product in (4.2.38) excluding the i = j

index. This factorisation is due to an automorphism of the Dynkin diagram of type Dn, which

exchanges the two branching nodes. This symmetry of Dynkin diagram is broken by our nesting

procedure, and so we obtained only a single set of Bethe equations for the level-(n−1) Bethe roots.

Extending this to the level-0, we set the right-hand factor above to zero to give the level-0 Bethe

equations

∏̀
i=1

λ
(i)
n−1(u

(n)
j , ci)

λ
(i)
n+1(u

(n)
j , ci)

=

mn−2∏
i=1

u
(n)
j − u

(n−2)
i

q−1u
(n)
j − qu

(n−2)
i

mn∏
i=1
i 6=j

q−1u
(n)
j − qu

(n)
i

qu
(n)
j − q−1u

(n)
i

(4.2.40)

for all allowed j.

(iii). Rather than taking (4.2.31) and (4.2.32) separately, we could instead attempt to recover the

Bethe equations from the condition Res
v→u(k)j

Λ(v;u(0...n−1)) = 0 for all Bethe roots u
(k)
j , 0 ≤ k ≤ n−1.

As one might expect, this turns out to be directly equivalent to (4.2.32) for 1 ≤ k ≤ n−2, however,

in the k = n− 1 case we obtain a factorisation identical to (4.2.39),(
mn−2∏
i=1

q−1u
(n−1)
j − qu(n−2)

i

u
(n−1)
j − u(n−2)

i

mn−1∏
i=1
i 6=j

qu
(n−1)
j − q−1u

(n−1)
i

q−1u
(n−1)
j − qu(n−1)

i

−
∏̀
i=1

λ
(i)
n (u

(n−1)
j )

λ
(i)
n−1(u

(n−1)
j )

)

×

(
mn∏
i=1

qu
(n−1)
j − q−1u

(n)
i

q−1u
(n−1)
j − qu(n)

i

mn−2∏
i=1

q−1u
(n−1)
j − qu(n−2)

i

u
(n−1)
j − u(n−2)

i

+
∏̀
i=1

λ
(i)
n+1(u

(n−1)
j )

λ
(i)
n−1(u

(n−1)
j )

)
= 0
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for 1 ≤ j ≤ mn−1. This again reflects the fact that the symmetry of the Dynkin diagram of type

Dn is unbroken at level-0. One might expect that a nesting procedure of the type employed in

[MR97] for rational closed spin chains and in [Go18] for rational open spin chains, in which the

chain of symmetry subalgebras is Dn ⊃ Dn−1 ⊃ · · · ⊃ D1, would preserve this symmetry of the

Dynkin diagram at all levels of nesting.

Remark 4.2.11. For n = 2, the Bethe equations (4.2.38) and (4.2.40) decouple into two sets of

Bethe equations for Uq(sl2)-symmetric spin chains, and can be solved separately. This is consistent

with the isomorphism so4
∼= sl2 ⊕ sl2. Similarly, for n = 3, the isomorphism so6

∼= sl4 is borne out

in the Bethe equations (4.2.37), (4.2.38) and (4.2.40).

Remark 4.2.12. Let aij denote the matrix entries of a connected Dynkin diagram of type Cn or

Dn and let I denote the set of its nodes. Then put d1 = . . . = dn = 1 except dn = 2 for Cn.

Upon substituting u
(k)
j → qd̃kz

(k)
j , where d̃k =

∑k
i=1 di except d̃n =

∑n−1
i=1 di for Dn, and taking

into account (4.1.35) and (4.1.36), Bethe equations above can be written as

∏̀
i=1

λk(q
d̃kz

(k)
j )

λk+1(qd̃kz
(k)
j )

= −
∏
l∈I

ml∏
i=1

z
(k)
j − qdkaklz

(l)
i

qdkaklz
(k)
j − z

(l)
i

,

for 1 ≤ k ≤ n and all allowed j.

4.2.3 A nearest-neighbour interaction Hamiltonian

In the case where L(λ(i))ci
∼= Cn, so that L ∼= (Cn)⊗` and the Lax operators are given simply

by the R-matrix (4.1.7), a nearest neighbour spin chain Hamiltonian may be extracted from the

transfer matrix by taking the logarithmic derivative at a particular value of the spectral parameter

v. Indeed, set ci = 1 for 1 ≤ i ≤ ` and define an adjusted transfer matrix by

t(v) :=

(
1− v
q − q−1

)`
τ(v),

with the property that at v = 1 it becomes the shift operator,

t(1) = tra Pa1Pa2 · · ·Pa` = P`−1,`P`−2,`−1 · · ·P12.

A nearest-neighbour interaction Hamiltonian is then

H :=
d

dv
ln t(v)

∣∣∣
v=1

=
(
t(1)−1

)
t′(1) =

`−1∑
i=1

hi,i+1 + h`,1,

where the interaction between adjacent sites h ∈ End(Cn ⊗ Cn) is given by

h := I − P Rq
q − q−1

+
P Qq
q2κ − 1

.
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4.2.4 Trace formula for Bethe vectors

Introduce matrices fθ ∈ End(C2n) by f+ = q−1en+2,n− qen+1,n−1 and f− = −qen+1,n. Then define

a transposition ω on End(C2n) by ω : eij 7→ θijq
νi−νje̄̄ı where ı̄ = 2n − i + 1 and ̄ = 2n − j + 1.

The Theorem below is our second main result.

Theorem 4.2.13. The level-0 Bethe vector can be written as

Φ
(0)
θ (u(0...n−1)) = trW

[(
n−1∏
k=1

mk∏
i=1

m0∏
j=1

Rq−1,aki a
0
j
(u

(k)
i , q2θu

(0)
j )

)

×

(
m0∏
i=1

Tωa0i
(u

(0)
i )

)(
n−1∏
k=1

mk∏
i=1

m0∏
j=1

Raki a0j
(u

(k)
i , q−2κu

(0)
j )

)

×

(
n−1∏
k=1

mk∏
i=1

Taki
(u

(k)
i )

)(
n−1∏
k=2

k−1∏
l=1

mk∏
i=1

1∏
j=ml

Raki alj
(u

(k)
i , u

(l)
j )

)

× (fθ)
⊗m0 ⊗ (e21)⊗m1 ⊗ · · · ⊗ (en,n−1)⊗mn−1

]
· η , (4.2.41)

where the trace is taken over the space W = Wa0 ⊗ · · · ⊗Wan−1
∼= (C2n)⊗(m0+...+mn−1).

Proof. Recall the trace formula for the Bethe vectors of a Uq(gln)-symmetric spin chain given in

Section 5.2 of [BR08]. This result implies the following formula for the level-1 Bethe vector:

Φ
(1)
θ (u(1...n−1);u(0)) = tr

W
(1)

[(
n−1∏
k=1

mk∏
i=1

A
(1)

aki a
0̃,0

(u
(k)
i ;u(0))

)

×

(
n−1∏
k=2

k−1∏
l=1

mk∏
i=1

1∏
j=ml

R
(1,1)

aki a
l
j

(u
(k)
i , u

(l)
j )

)

× (e
(1)
21 )⊗m1 ⊗ · · · ⊗ (e

(1)
n,n−1)⊗mn−1

]
· η(1)
−θ ,

where the trace is taken over the space W
(1)

= W
(1)

a11
⊗ · · · ⊗W (1)

an−1
mn−1

∼= (Cn)⊗(m1+...+mn−1). From
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(4.2.4), this is equal to

Φ
(1)
θ (u(1...n−1);u(0)) = tr

W
(1)

[(
n−1∏
k=1

mk∏
i=1

1∏
j=m0

K
(1,1)

aki ã
0
j

(u
(k)
i , q2θu

(0)
j )

)

×

(
n−1∏
k=1

mk∏
i=1

m0∏
j=1

K
(1,1)

aki a
0
j

(u
(k)
i , u

(0)
j )

)

×

(
n−1∏
k=1

mk∏
i=1

A
(1)

aki
(u

(k)
i )

)(
n−1∏
k=2

k−1∏
l=1

mk∏
i=1

1∏
j=ml

R
(1,1)

aki a
l
j

(u
(k)
i , u

(l)
j )

)

× (e
(1)
21 )⊗m1 ⊗ · · · ⊗ (e

(1)
n,n−1)⊗mn−1

]
· η(1)
−θ .

We now introduce the level-0 creation operators in order to arrive at an expression for the level-0

Bethe vector, as given in Definition 4.2.6,

Φ
(0)
θ (u(0...n−1)) = tr

W
(1)

[(
m0∏
i=1

βã0i a0i
(u

(0)
i )

)(
n−1∏
k=1

mk∏
i=1

1∏
j=m0

K
(1,1)

aki ã
0
j

(u
(k)
i , q2θu

(0)
j )

)

×

(
n−1∏
k=1

mk∏
i=1

m0∏
j=1

K
(1,1)

aki a
0
j

(u
(k)
i , u

(0)
j )

)(
n−1∏
k=1

mk∏
i=1

A
(1)

aki
(u

(k)
i )

)

×

(
n−1∏
k=2

k−1∏
l=1

mk∏
i=1

1∏
j=ml

R
(1,1)

aki a
l
j

(u
(k)
i , u

(l)
j )

)

× (e
(1)
21 )⊗m1 ⊗ · · · ⊗ (e

(1)
n,n−1)⊗mn−1

]
· η(1)
−θ .

The next step is to rewrite the above expression in terms of the matrix B(u), cf. (4.1.23), rather

than the creation operator β(u). Consider the following in expression, in which a matrix operator

X acts non-trivially on the space ã0 and trivially on the space a0, and vice versa for the matrix

operator Y , and both operators act non-trivially on any number of other spaces,

βã0a0(u)Xã0 Ya0 · (e
(1)
k )ã0 ⊗ (e

(1)
l )a0 =

∑
ij

(e
(1)∗
j )ã0 ⊗ (e

(1)∗
i )a0 ⊗ q−ibı̄j(u) ·Xã0 Ya0 · (e

(1)
k )ã0 ⊗ (e

(1)
l )a0 .

Contracting matrices gives∑
ij

q−i bı̄j(u)[X]jk[Y ]il =
∑
ij

q−̄
[
Bω(u)

]
̄i

[X]jk[Y ]il

=
∑
ij

q−k̄
[
Bω(u)

]
̄i

[Xω]k̄̄[Y ]il

=
∑
ij

q−k̄[Xω]k̄̄
[
Bω(u)

]
̄i

[Y ]il
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= q−k̄[XωBω(u)Y ]k̄l = q−k̄ tr
[
XωBω(u)Y e

(1)

lk̄

]
.

We have thus arrived at the identity

βã0a0(u)Xã0 Ya0 · (e
(1)
k )ã0 ⊗ (e

(1)
l )a0 = q−k̄ tr

[
XωBω(u)Y e

(1)

lk̄

]
.

Now recall (4.2.9). Hence we need to consider the cases when (k, l) = (1, 1), (1, 2), (2, 1), or equiv-

alently (l, k̄) = (1, n), (2, n), (1, n− 1). Bearing this in mind we define matrices f
(1)
θ ∈ End(Cn) by

f
(1)
− = −qe(1)

1,n and f
(1)
+ = q−1e

(1)
2,n − qe

(1)
1,n−1. This allows us to write the level-0 Bethe vector as

follows:

Φ
(0)
θ (u(0...n−1))

= trW

[(
n−1∏
k=1

mk∏
i=1

1∏
j=m0

K
(1,1)

aki a
0
j

(u
(k)
i , q2θu

(0)
j )

)ωa0

×

(
m0∏
i=1

Bω
a0i

(u
(0)
i )

)(
n−1∏
k=1

mk∏
i=1

m0∏
j=1

K
(1,1)

aki a
0
j

(u
(k)
i , u

(0)
j )

)

×

(
n−1∏
k=1

mk∏
i=1

A
(1)

aki
(u

(k)
i )

)(
n−1∏
k=2

k−1∏
l=1

mk∏
i=1

1∏
j=ml

R
(1,1)

aki a
l
j

(u
(k)
i , u

(l)
j )

)

× (θqθ−nf
(1)
θ )⊗m0 ⊗ (e

(1)
21 )⊗m1 ⊗ · · · ⊗ (e

(1)
n,n−1)⊗mn−1

]
· η

= trW

[(
n−1∏
k=1

mk∏
i=1

m0∏
j=1

R
(1,1)

q−1,aki a
0
j

(u
(k)
i , q2θu

(0)
j )

)

×

(
m0∏
i=1

θqθ−nBω
a0i

(u
(0)
i )

)(
n−1∏
k=1

mk∏
i=1

m0∏
j=1

K
(1,1)

aki a
0
j

(u
(k)
i , u

(0)
j )

)

×

(
n−1∏
k=1

mk∏
i=1

A
(1)

aki
(u

(k)
i )

)(
n−1∏
k=2

k−1∏
l=1

mk∏
i=1

1∏
j=ml

R
(1,1)

aki a
l
j

(u
(k)
i , u

(l)
j )

)

× (f
(1)
θ )⊗m0 ⊗ (e

(1)
21 )⊗m1 ⊗ · · · ⊗ (e

(1)
n,n−1)⊗mn−1

]
· η. (4.2.42)

It remains to show that the form of the Bethe vector given in (4.2.41) reduces to to above form,

by considering the decomposition C2n ∼= C2 ⊗ Cn as in (4.1.12), and tracing out all the C2 spaces.

155



Making explicit this decomposition, the formula (4.2.41) becomes

Φ
(0)
θ (u(0...n−1)) = trW

[(
n−1∏
k=1

mk∏
i=1

m0∏
j=1

Rq−1,aki a
0
j
(u

(k)
i , q2θu

(0)
j )

)

×

(
m0∏
i=1

Tωa0i
(u

(0)
i )

)(
n−1∏
k=1

mk∏
i=1

m0∏
j=1

Raki a0j
(u

(k)
i , q−2κu

(0)
j )

)

×

(
n−1∏
k=1

mk∏
i=1

Taki
(u

(k)
i )

)(
n−1∏
k=2

k−1∏
l=1

mk∏
i=1

1∏
j=ml

Raki alj
(u

(k)
i , u

(l)
j )

)

× (x21 ⊗ f (1)
θ )⊗m0 ⊗ (x11 ⊗ e(1)

21 )⊗m1 ⊗ · · · ⊗ (x11 ⊗ e(1)
n,n−1)⊗mn−1

]
· η.

(4.2.43)

Recall (4.1.13) and note that

R(u, v) x11 ⊗ x11 = R(1,1)(u, v)x11 ⊗ x11,

R(u, v) x11 ⊗ x21 = U (1,1)(u, v)x21 ⊗ x11 +K(1,1)(u, q2κv)x11 ⊗ x21.

Next, recall (4.1.3) and note that

νn+j − νi = j − θ′ − (−n+ i− 1 + θ′) = j − i+ n− θ

for all 1 ≤ i, j ≤ n. This implies the following relationship between the transposition ω on End(C2n)

and its counterpart on End(Cn):

[
Tω(u)

]
i,n+j

= θqi−j−n+θtn−j+1,2n−i+1(u) = θqθ−n
[
Bω(u)

]
ij
.

Hence, the action of T (u) and Tω(u) on x11 and x21 takes the form

T (u)x11 = A(u)x11 + C(u)x21,

Tω(u)x21 = θqθ−nBω(u)x11 +Aω(u)x21.

The identities above imply that the numbers of x11’s and x21’s inside the trace in (4.2.43) are

conserved individually under the action R-matrices. Therefore, the only possibility for the partial

trace over the C2 spaces to be nonzero is if the action of the Tω
a0i

(u
(0)
i ) maps (x21)a0i

to (x11)a0i
.

That is, each Tω
a0i

(u
(0)
i ) acts as qθ−nθBω

a0i
(u

(0)
i ). Since each (x21)a0i

must be acted on by Tω
a0i

(u
(0)
i ),

the R-matrices to the right of the Tω
a0i

(u
(0)
i )’s must not permute the (x21)a0j

with the (x11)aki
for

k ≥ 1. That is, the Raki a0j
(u

(k)
i , q−2κu

(0)
j ) each act as K

(1,1)

aki a
0
j

(u
(k)
i , u

(0)
j ) in order for the trace to be

non-zero. Finally, all other R-matrices in (4.2.43) act on suitable pairs x11 ⊗ x11 only, and may

simply be replaced with R(1,1)(u, v), for appropriate u, v. This proves that taking the partial trace
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over the C2 spaces in (4.2.43) we arrive at (4.2.42), as required.

Below we provide two examples of level-0 Bethe vectors obtained using (4.2.43). We will assume

that mi = 0 for 0 ≤ i ≤ n−1 if not stated otherwise. We also use the notation pk := δk,n−1 q
−2 (q−

q−1).

Example 4.2.14 (Symplectic case). For n ≥ 1 and m0 = m ≥ 1 we have

Φ
(0)
− (u

(0)
1 , . . . , u(0)

m ) = q−mtn,n+1(u
(0)
1 ) · · · tn,n+1(u(0)

m ) · η.

For n ≥ 2 and m0 = mk = 1 with 1 ≤ k ≤ n− 1 we have

Φ
(0)
− (u

(0)
1 , u

(k)
1 ) = q−1

[
tn,n+1(u

(0)
1 )tk,k+1(u

(k)
1 )

+
pku

(0)
1

u
(k)
1 − u

(0)
1

(
tn−1,n+1(u

(0)
1 ) + tn,n+2(u

(0)
1 )
)
tnn(u

(k)
1 )

]
· η.

For n ≥ 2 and m0 = 2, mk = 1 with 1 ≤ k ≤ n− 1 we have

Φ
(0)
− (u

(0)
1 , u

(0)
2 , u

(k)
1 ) = q−2

[
tn,n+1(u

(0)
1 )tn,n+1(u

(0)
2 )tk,k+1(u

(k)
1 )

+ pk

(
u

(0)
2

u
(k)
1 − u

(0)
2

tn,n+1(u
(0)
1 )

(
tn−1,n+1(u

(0)
2 ) +

qu
(k)
1 − q−1u

(0)
1

u
(k)
1 − u

(0)
1

tn,n+2(u
(0)
2 )

)

+
u

(0)
1

u
(k)
1 − u

(0)
1

(
qu

(k)
1 − q−1u

(0)
2

u
(k)
1 − u

(0)
2

tn−1,n+1(u
(0)
1 ) +

q2u
(k)
1 − q−2u

(0)
2

u
(k)
1 − u

(0)
2

tn,n+2(u
(0)
1 )

)

× tn,n+1(u
(0)
2 )

)
tk+1,k+1(u

(k)
1 )

]
· η.

Example 4.2.15 (Orthogonal case). For n ≥ 1 and m0 = m ≥ 1 we have

Φ
(0)
+ (u

(0)
1 , . . . , u(0)

m ) =
m∏
k=1

(
q−2tn−1,n+1(u

(0)
k )− tn,n+2(u

(0)
k )
)
· η.

For n ≥ 2 and m0 = mk = 1 with 1 ≤ k ≤ n− 1 we have

Φ
(0)
+ (u

(0)
1 , u

(k)
1 ) =

[
qδk,n−1u

(k)
1 − q−δk,n−1u

(0)
1

q2(u
(k)
1 − u

(0)
1 )

(
q−2tn−1,n+1(u

(0)
1 )− tn,n+2(u

(0)
1 )
)
tk,k+1(u

(k)
1 )

+
pk+1u

(0)
1

u
(k)
1 − u

(0)
1

(
q−2tn−2,n+1(u

(0)
1 )− q tn,n+3(u

(0)
1 )
)
tk+1,k+1(u

(k)
1 )

]
· η.
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For n ≥ 4 and m0 = 2, mk = 1 with 1 ≤ k ≤ n− 3 we have

Φ
(0)
+ (u

(0)
1 , u

(0)
2 , u

(k)
1 ) =

(
q−2tn−1,n+1(u

(0)
1 )− tn,n+2(u

(0)
1 )
)

×
(
q−2tn−1,n+1(u

(0)
2 )− tn,n+2(u

(0)
2 )
)
tk,k+1(u

(k)
1 ) · η.

The k = n− 2 and k = n− 1 cases have long tails, hence we have not written them out explicitly.

4.2.5 The semi-classical limit

In order to retrieve the results of [Rs85] and [DVK87], we investigate the semi-classical q → 1

limit, or equivalently the ~→ 0 limit. The limit must be taken in a particular way, as the spectral

parameters have a hidden q dependence. Setting u = e2x~, v = e2y~ and q = e~ and expanding in

powers of ~, we recover the Zamolodchikov R-matrix [ZZ78, KS82],

Rq −→
~→0

I, Qq −→
~→0

Q :=

2n∑
i,j=1

eij ⊗ eı̄̄, R(u, v) −→
~→0

R(x− y) := I − P

x− y
− Q

κ− (x− y)
.

The reduced R-matrices become the Yang R-matrices,

R(k,l)(u, v) −→
~→0

R(k,l)(x− y) := I(k,l) − P (k,l)

x− y
.

The eigenvalues given in Theorem 4.2.8 in the limit become

Λ(1)(y;x(1...n−1);x(0)) =

m1∏
i=1

y − x(1)
i + 1

y − x(1)
i

∏̀
i=1

λ
(i)
1 (y)

+
n−2∑
k=2

mk−1∏
i=1

y − x(k−1)
i − 1

y − x(k−1)
i

mk∏
i=1

y − x(k)
i + 1

y − x(k)
i

∏̀
i=1

λ
(i)
k (y)

+

mn−2∏
i=1

y − x(n−2)
i − 1

y − x(n−2)
i

mn−1∏
i=1

y − x(n−1)
i + 1

y − x(n−1)
i

m0∏
i=1

y − x(0)
i + θ′

y − x(0)
i

∏̀
i=1

λ
(i)
n−1(y)

+

mn−1∏
i=1

y − x(n−1)
i − 1

y − x(n−1)
i

m0∏
i=1

y − x(0)
i + 2− θ′

y − x(0)
i

∏̀
i=1

λ(i)
n (y)
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and

Λ̃(1)(y;x(1...n−1);x(0)) =

m1∏
i=1

y − x(1)
i − κ

y − x(1)
i − κ+ 1

∏̀
i=1

λ
(i)
2n(y)

+
n−2∑
k=2

mk−1∏
i=1

y − x(k−1)
i − κ+ k

y − x(k−1)
i − κ+ k − 1

mk∏
i=1

y − x(k)
i − κ+ k − 1

y − x(k)
i − κ+ k

∏̀
i=1

λ
(i)
2n−k+1(y)

+

mn−2∏
i=1

y − x(n−2)
i + θ − 1

y − x(n−2)
i + θ − 2

mn−1∏
i=1

y − x(n−1)
i + θ − 1

y − x(n−1)
i + θ − 2

m0∏
i=1

y − x(0)
i − θ′

y − x(0)
i

∏̀
i=1

λ
(i)
n+2(y)

+

mn−1∏
i=1

y − x(n−1)
i + θ

y − x(n−1)
i + θ − 1

m0∏
i=1

y − x(0)
i − 2 + θ′

y − x(0)
i

∏̀
i=1

λ
(i)
n+1(y)

where the rational weights are given by

λ
(i)
j (v) −→

~→0
λ

(i)
j (y) :=



y − bi − si
y − bi

if j = 1,

1 if 1 < j < 2n,

y − bi − κ+ 1

y − bi − κ+ 1− si
if j = 2n

(4.2.44)

in the symmetric case, i.e. when g2n = so2n, and by

λ
(i)
j (v) −→

~→0
λ

(i)
j (y) :=



y − bi − 1

y − bi
if 1 ≤ j ≤ si,

1 if si < j < 2n− si + 1,

y − bi − κ+ si
y − bi − κ+ si − 1

if 2n− si + 1 ≤ j ≤ 2n

(4.2.45)

in the skewsymmetric case, i.e. when g2n = sp2n; here bi = 1
2~ log ci ∈ C are the inhomogeneities.

The Bethe equations may be obtained in the same way. Denoting x
(n)
j := x

(0)
j and mn := m0

their explicit form is, in the symplectic case,

∏̀
i=1

λ
(i)
1 (x

(1)
j )

λ
(i)
2 (x

(1)
j )

=

m1∏
i=1
i 6=j

x
(1)
j − x

(1)
i − 1

x
(1)
j − x

(1)
i + 1

m2∏
i=1

x
(1)
j − x

(2)
i + 1

x
(1)
j − x

(2)
i

,

∏̀
i=1

λ
(i)
k (x

(k)
j )

λ
(i)
k+1(x

(k)
j )

=

mk−1∏
i=1

x
(k)
j − x

(k−1)
i

x
(k)
j − x

(k−1)
i − 1

mk∏
i=1
i 6=j

x
(k)
j − x

(k)
i − 1

x
(k)
j − x

(k)
i + 1

mk+1∏
i=1

x
(k)
j − x

(k+1)
i + 1

x
(k)
j − x

(k+1)
i

,

∏̀
i=1

λ
(i)
n−1(x

(n−1)
j )

λ
(i)
n (x

(n−1)
j )

=

mn−2∏
i=1

x
(n−1)
j − x(n−2)

i

x
(n−1)
j − x(n−2)

i − 1

mn−1∏
i=1
i 6=j

x
(n−1)
j − x(n−1)

i − 1

x
(n−1)
j − x(n−1)

i + 1

mn∏
i=1

x
(n−1)
j − x(n)

i + 2

x
(n−1)
j − x(n)

i

,
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∏̀
i=1

λ
(i)
n (x

(n)
j )

λ
(i)
n+1(x

(n)
j )

=

mn−1∏
i=1

x
(n)
j − x

(n−1)
i

x
(n)
j − x

(n−1)
i − 2

mn∏
i=1
i 6=j

x
(n)
j − x

(n)
i − 2

x
(n)
j − x

(n)
i + 2

for 2 ≤ k ≤ n − 2 and all allowed j, and weights given by (4.2.45). In the orthogonal case, the

Bethe equations for k = 1, . . . , n − 3 are identical to the symplectic case; for k = n − 2, n − 1, n

they are, respectively,

∏̀
i=1

λ
(i)
n−2(x

(n−2)
j )

λ
(i)
n−1(x

(n−2)
j )

=

mn−3∏
i=1

x
(n−2)
j − x(n−3)

i

x
(n−2)
j − x(n−3)

i − 1

mn−2∏
i=1
i 6=j

x
(n−2)
j − x(n−2)

i − 1

x
(n−2)
j − x(n−2)

i + 1

×
mn−1∏
i=1

x
(n−2)
j − x(n−1)

i + 1

x
(n−2)
j − x(n−1)

i

mn∏
i=1

x
(n−2)
j − x(n)

i + 1

x
(n−2)
j − x(n)

i

,

∏̀
i=1

λ
(i)
n−1(x

(n−1)
j )

λ
(i)
n (x

(n−1)
j )

=

mn−2∏
i=1

x
(n−1)
j − x(n−2)

i

x
(n−1)
j − x(n−2)

i − 1

mn−1∏
i=1
i 6=j

x
(n−1)
j − x(n−1)

i − 1

x
(n−1)
j − x(n−1)

i + 1
,

∏̀
i=1

λ
(i)
n−1(x

(n)
j )

λ
(i)
n+1(x

(n)
j )

=

mn−2∏
i=1

x
(n)
j − x

(n−2)
i

x
(n)
j − x

(n−2)
i − 1

mn∏
i=1
i 6=j

x
(n)
j − x

(n)
i − 1

x
(n)
j − x

(n)
i + 1

for all allowed j, and weights given by (4.2.44). Substituting x
(k)
j → w

(k)
j − d̃k with d̃k and assuming

restrictions on n as in Remark 4.2.12, the Bethe equations for both symplectic and orthogonal cases

take the form ∏̀
i=1

λ
(i)
k (w

(k)
j − d̃k)

λ
(i)
k+1(w

(k)
j − d̃k)

= −
∏
l∈I

ml∏
i∈1

w
(k)
j − w

(l)
i −

1
2dkakl

w
(k)
j − w

(l)
i + 1

2dkakl

for 1 ≤ k ≤ n and all allowed j.

Finally, the trace formula for level-0 Bethe vector (4.2.43) takes the form

Φ(0)(x(0...n−1)) = trW

[(
n−1∏
k=1

mk∏
i=1

m0∏
j=1

Raki a0j
(x

(k)
i − x

(0)
j − θ)

)

×

(
m0∏
i=1

T ta0i
(x

(0)
i )

)(
n−1∏
k=1

mk∏
i=1

m0∏
j=1

Raki a0j
(x

(k)
i − x

(0)
j + κ)

)

×

(
n−1∏
k=1

mk∏
i=1

Taki
(x

(k)
i )

)(
n−1∏
k=2

k−1∏
l=1

mk∏
i=1

1∏
j=ml

Raki alj
(x

(k)
i − x

(l)
j )

)

× (fθ)
⊗m0 ⊗ (e21)⊗m1 ⊗ · · · ⊗ (en,n−1)⊗mn−1

]
· η ,

where the trace is taken over the space W = Wa01
⊗ · · · ⊗ Wan−1

mn−1

∼= (C2n)⊗(m0+...+mn−1) and

fθ ∈ End(C2n) is defined for orthogonal and symplectic cases respectively by f1 = en+1,n−1−en+2,n
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and f−1 = en+1,n, and Ta(x)’s are defined via the rational fusion procedure analogous to that

in Section 4.1.3 (see [IMO12] and Section 3.1 in [GR20a]) and t is the transposition defined by

t : eij 7→ e̄ ı̄.
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Chapter 5

Conclusion and Outlook

In this thesis we have studied closed and open spin chains using the nested algebraic Bethe ansatz

technique. More specifically, we have studied even orthogonal and symplectic (g2n, or indeed

Uq(g2n) ) spin chains, and applied a nesting procedure which reduced the diagonalisation problem

to well-known gln-type problem.

Having found expressions for the eigenstates, physical properties of the spin chain can be ex-

plored by calculating expressions for scalar products between eigenstates and other important

states, as well as matrix elements known as form factors, in terms of the undetermined Bethe roots.

For the closed Heisenberg spin chain, it was shown that overlaps reduce elegantly to a determinant

form [Sl89], and this has recently been extended to closed spin chains with gln symmetry [GLR20].

It is hoped that a similarly elegant form exists for the open spin chains.

The Bethe ansatz has a well known application in models relating to the AdS/CFT corre-

spondence: Hamiltonians for spin chains of certain symmetry algebras, including so(6), show up in

1-loop corrections to correlation functions in the conformal field theory. A recent paper [LGKLP20]

details these calculations for certain open spin chains, including models of similar type to those

studied in Chapter 3.

Here we outline some alternatives and extensions to the methods we have presented.

5.1 An alternative nesting procedure

When applying the algebraic Bethe ansatz, the main freedom we have is the ‘creation operator’

for the system—both its structure and the ordering of multiple creation operators. In the nested

algebraic Bethe ansatz, the creation operator is chosen to facilitate the reduction of the system to

a lower-rank case using the algebraic relations between the monodromy matrix elements. In this

work in particular, we have focussed on the nesting procedure g2n ⊃ gln ⊃ · · · ⊃ gl2. However, it

is possible to work ‘from the other end of the Dynkin diagram’, employing instead the procedure

g2n ⊃ g2n−2 ⊃ · · · ⊃ g2. An advantage of this nesting procedure is that it allows one to study the

odd orthogonal (type B) case in the same manner: so2n+1 ⊃ so2n−1 ⊃ · · · ⊃ so3, where a variant

of the gl2 algebraic Bethe ansatz is applied at the final step. This is a well-known technique, and
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has been applied to closed [MR97] and open spin chains [GKR05, Go18].

Another approach to the type B case, first introduced by Reshetikhin [Rs85], defines a mon-

odromy matrix with the spinor representation as its auxiliary space. The resulting matrix is 2N

dimensional, and at each step cutting the matrix into equal sized block matrices corresponds to the

nesting procedure above.

The [MR97] paper also contains the algebraic Bethe ansatz for the more general orthosymplectic

spin chain. For open orthosymplectic spin chains, the Bethe equations were given in [AACDFR04],

but the construction of eigenvectors remains an open problem.

5.2 Baxter’s Q operator

One technique that has seen much success in studying solvable models was introduced by Baxter

[Ba72]. In his landmark solution of the 8-vertex model Baxter does not construct eigenvectors

for the transfer matrix. Rather, he defines an operator, denoted Q, which commutes with the

transfer matrix and the action of which on the Bethe eigenvector is simply given by a polynomial

with roots at each of the Bethe roots. This implies that the expression for the eigenvalue of the

transfer matrix may be replaced by an operatorial relation between the transfer matrix and the

Q operator: Baxter’s T -Q relation. The Bethe equations then appear as an analyticity condition

for the transfer matrix eigenvalues. This technique was adapted by Reshetikhin into the analytical

Bethe ansatz [Rs83], which allows one to obtain the eigenvalues and Bethe equations without the

use of the ‘heavy machinery’ of the coordinate or algebraic Bethe ansätze, and which saw much

success in the study of spin chains [KS95, AACDFR03, ACDFR06].

An explicit construction of Baxter’s Q operator is not necessary for finding the transfer matrix

eigenvalues and so, until recently, its form has only been known in the low-rank cases. However, in

[BFLMS11] the gln closed chain was studied in detail, linking the Q operator to infinite dimensional

oscillator representations of (slight generalisations of) Y (gln). It was shown that the Q operator

may be constructed in the same way as the transfer matrix, but with the ‘auxiliary space’ being

this oscillator representation. The investigation into even orthogonal spin chains is far advanced

[Fr20], and it is hoped that these results could be generalised to open chains—the XXX and XXZ

cases were studied in [FS15, VW20]—in particular to those with non-diagonal boundary conditions.

5.3 Solutions to the Bethe equations

In this work, our starting point has been a spin chain and transfer matrix, and our end point has

been Bethe vectors, eigenvalues and Bethe equations. However, we did not touch on the notion

of completeness of the Bethe ansatz, or the solutions to the Bethe equations themselves. Indeed,

the counting of solutions to the Bethe equations has always been a topic of study, since even the

original Bethe ansatz [Be31]; perhaps Bloch’s [Bl30] miscounting of eigenvectors partially inspired

Bethe to pick up the problem in the first place.
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The Bethe ansatz completeness problem has been studied in detail in a series of works by

Tarasov, Varchenko and Mukhin; [Ta18] contains the results for the XXX model as well as the

relevant references. Higher rank cases have been studied using the ‘reproduction procedure’, a

method which gives families of solutions originating from a single solution [MV03]. It would be

interesting to explore the reproduction procedure for Bethe equations derived from open spin chains

and determine of the mathematical structure of the corresponding population of solutions.

The counting and classifying of solutions into those that lead to physically valid eigenstates

has also been studied using computational algebraic geometry [JZ18]. Similarly, in [MV17] a

computational method was given for determining the Bethe roots using relations between the

eigenvalues of the Baxter Q operator, known as the QQ system.

Regarding the models we have studied in this thesis, one natural prerequisite for the complete-

ness of the Bethe ansatz is the irreducibility of the spin chain as a representation of the quantum

group. In the case of the Yangian Y (gln), this supplies a restriction on the shift parameters cj and

weights λ of the evaluation modules that make up the spin chain, mentioned briefly in Section 1.2.1.

However, the relevant irreducibility conditions for representations of twisted Yangians are not yet

known.

5.4 Separation of variables

Separation of variables is a well-known technique when applied to PDEs, but Sklyanin was the

first to popularise it as a universal method for solving classical and quantum integrable models,

including quantum spin chains [Sk92]. The method involves a detailed analysis of the B operator

(creation operator), regarding it as a polynomial with operator coefficients and finding its operator

roots. Diagonalising these operator roots, which commute by virtue of the algebra relations, then

provides a useful basis for the construction of transfer matrix eigenvectors.

Sklyanin was able to apply the method to the su2- and su3-symmetric closed spin chains.

For the su3 model, the technique differs from the nested algebraic Bethe ansatz—rather than

using a particular ordering of creation operators, the eigenstates are built from a single, carefully

constructed B operator. The form of this operator was deduced from its classical counterpart,

but this approach is limited by operator ordering ambiguities when moving to the quantum case.

Nevertheless, the extension of this construction to sun was recently discovered [GLS17]. The

orthogonal and symplectic cases remain open problems, as it is a difficult task to find an appropriate

diagonalisable B operator with the correct number of roots.

Separation of variables has also been expanded to open spin chains [FKN14], where it was

successfully applied to an XXZ system with arbitrary non-diagonal boundaries. We hope that in

the future this technique can be applied to open spin chains of higher rank, as well as the orthogonal

and symplectic spin chains.
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