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ABSTRACT

Attention is focused on the range of literature which has contributed to the 

developing awareness of the theoretical principles governing the geometry of 

pattern. A means by which textile and other surface patterns can be classified by 

reference to the symmetry characteristics of their underlying structures is 

developed, and shown to be an objective, systematic and reproducible means of 

providing meaningful, standardised descriptions of regular geometric patterns. The 

potential of the classification system as a worthwhile analytical tool is explored 

through its application to groups of textile patterns from four distinct cultural 

settings: traditional Javanese batiks; traditional Sindhi ajraks; Jacquard woven 

French Silks (Autumn, 1893); Japanese textiles produced during the Edo period 

(1604-1867) using a variety of patterning techniques. Data are tested to establish 

firstly, if the patterns from different cultural settings show different symmetry 

preferences; secondly, if the symmetry preferences associated with a given 

culture are maintained over the passage of time, in the absence of external 

pressures for change; thirdly, if techniques of manufacture have any bearing on 

the symmetry preferences associated with a given culture.
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1. INTRODUCTION.

In general, textile designers have been aware of the importance of geometry in 

the construction of repeating patterns. However, explanatory literature on the 

subject has not been readily accessible, due to the inevitable barrier erected by 

unfamiliar symbols and obscure terminology. In an attempt to remedy this state 

of affairs a series of papers by H. J. Woods [1-4] was published in the Journal of 

the Textile Institute in the mid-1930’s. Through these publications, Woods, a 

physicist working in the Textile Department of the University of Leeds, attempted 

to de-mystify the mathematical rules governing the geometrical structure of two- 

dimensional repeating patterns. His objective was to encourage an awareness 

among textile designers of the potential for application of the principles of 

geometrical symmetry to pattern construction; these theoretical principles had 

been developed by crystallographers in their quest to understand certain three- 

dimensional phenomena.

For much of the twentieth century archaeologists, anthropologists and design 

historians have, in the main, restricted their study of patterns on decorated 

objects to broad ranging subjective commentary and superficial analysis; cross- 

cultural considerations and comparisons have generally been hindered by the 

apparent lack of awareness of a procedure to systematically classify two- 

dimensional designs in a way which is both meaningful and reproducible. A 

framework for the objective classification of two-dimensional designs does 

however exist. In 1948 Anna Shepard [5], an eminent archaeologist, who was 

seemingly unaware of Woods’ work, gave descriptions of the principles of
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geometrical symmetry and, in particular, explained how these principles could be 

applied to the classification of decoration on archaeological artifacts.

The work of both Woods and Shepard apparently remained unnoticed until the 

1970’s when, due largely to the individual and combined efforts of Crowe [6-12] 

and Washburn [13-19], these and similar studies were gradually brought to the 

attention of those practitioners and analysts who were receptive to the 

perspectives offered.

With the above considerations in mind, this thesis presents a rationalisation of a large 

quantity of information, including terminology and nomenclature, presented in literature 

from a wide range of interested disciplines. Appropriate concepts and ideas are 

introduced and employed in the development of a systematic means of objectively 

classifying all known regular repeating patterns. Further to this an exploration is made 

of the classification system, as an analytical tool, through its application to groups of 

textile patterns from a selection of cultures and periods.



2. PRINCIPLES AND PERSPECTIVES.
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2.1. Preliminary Notions.

Regular geometric patterns can be conveniently defined as designs in the plane 

(categorised as either border patterns or all-over patterns by the designer) which 

exhibit the repetition of a motif, or motifs, at regular intervals. It should be noted 

that the term geometric is not used in a sense which excludes figurative and floral 

patterns, but rather to underline the fact that all regular repeating patterns have 

an underlying geometric structure which facilitates the regular repetition of 

motifs. Motifs (which may be geometrical, floral or figurative in nature) are 

either symmetrical or asymmetrical. A symmetrical m otif is a figure which is 

comprised of two or more parts of identical size, shape and content; each 

identical part is known as a fundamental unit and the area enclosing it as a 

fundamental region, terms also employed when referring to the minimum 

repeating unit and area of a border or an all-over pattern. In the synthesis of 

patterns, repetition can be defined as the process which permits the reproduction 

of a motif by transferring it through a given distance, from one position in the 

plane to another while at the same time allowing its retention in its original 

position. Where repetition of a motif or motifs is continuous in one direction only, 

between two imaginary (or real) parallel lines, the pattern thus produced is 

referred to as a border pattern. Synonymous terms include strip patterns 

(Grunbaum and Shephard [20]), one-dimensional designs (Washburn and Crowe [21]) 

and frieze groups (Grunbaum and Shephard [22]). Where repetition of a motif, or 

motifs, is continuous in two independent directions and thus covers the plane, 

the pattern is referred to as an all-over pattern. Synonymous terms include



wallpaper groups (Buerger and Lukesh [23]), wallpaper designs (Schattschneider 

[24]), periodic patterns (Grunbaum and Shephard [25]) and crystallographic patterns 

(Mamedov [26]). Investigators have, in the past, determined a means of classifying 

both motifs and patterns by reference to their symmetry characteristics (i.e. the 

geometry of their underlying structures), a system of classification which, as 

indicated in the Introduction , had its origins in the discipline of crystallography. 

This thesis presents a further adaptation of this system of classification in order 

that its potential for application to the synthesis and analysis of textile patterns 

can be more widely recognised.

2.2. The Study of Pattern: Historical Precedents.

Probably the most influential study of pattern to be published in Europe during the 

nineteenth century was Owen Jones’ [27] The Grammar of Ornament, which 

covered subject matter from a number of periods and styles and was concerned 

with the classification of decoration across a wide range of architecture and the 

applied arts. Although not based on the consideration of the geometrical 

characteristics of pattern structure, Jones’ work is none the less worthy of 

mention, for it stands out as the first serious attempt to categorise patterns by 

reference to their cultures and periods of origin. Crowe [28] commented,

"...it has been the reference par excellence for 

mathematicians interested in the cultural aspects of 

patterned ornament. It is organised entirely on cultural and 

historical principles, not at all on stylistic or mathematical 

principles."

4

Subsequent to its publication in French and German, The Grammar of Ornament,



as pointed out by Durant [29], seemingly acted as a stimulus for similar 

publications, and compendia illustrating patterns from various sources have 

continued to be published up to the present day. Works such as Racinet’s [30] 

L ’Ornement Polychrome were extensively illustrated in folio format. Others were 

wide ranging with reference to medium, culture and period: Franz Sales Meyer’s 

[31] Handbook of Ornament, which illustrated a vast range of decorative elements, 

from across a wide spectrum of the applied arts, is one example; Speltz’s [32-34] 

three volume work, ambitiously entitled The Coloured Ornament of A ll Historical 

Styles, is another example. Further compendia were presented by Bourgoin [35], 

Audsley and Audsley [36], Kelley and Mowll [37], Lewis [38], Fenn [39], Edwards 

[40], Christie [41], Bossert [42], Dye [43], Bain [44], Bodrogi [45], Proctor [46], 

Ernst [47], Hornung [48], Albarn et al. [49], Menten [50], and Hann and Thomson

[51]. A comprehensive review of such treatises was recently provided by Durant

[52].

Although it has long been recognised that geometry plays an important role in the 

underlying structure of pattern, this recognition has generally manifested itself 

in practice rather than theory. On the few occasions where an identification of 

the geometrical principles governing patterns was evident in the design literature 

of the late 1800’s and early 1900’s, this was often from the perspective of pattern 

synthesis (i.e. the construction of patterns) rather than from the perspective of 

patterns analysis (i.e. the determination of a pattern’s geometrical structure). The 

majority of design publications were thus aimed at the design practitioner and not 

the design analyst. Meyer [53a], for example, in 1894, stated his intentions when 

he declared that his handbook was,

5
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"...based on a system which is synthetic rather than analytic 

and intended more to construct and develop...than to dissect 

and deduce."

It is none the less interesting to note that Meyer [53b] grouped designs according 

to their spatial characteristics into ribbon-like bands, enclosed spaces or unlim ited 

fla t patterns corresponding to border patterns, motifs and all-over patterns 

respectively. In addition, Meyer [53b] recognised that the foundation of every form 

of all-over pattern was a,

"...certain division, a subsidiary construction or a network."

He thus anticipated the use of the term nets (used for example by Woods [54]) to 

refer to the skeletal grids (or lattices) underlying the structure of all-over 

patterns, a phenomenon explained later in chapter 5 of this thesis.

Whilst not adopting the terminology and theoretical perspectives being developed 

by crystallographers at that time, certain late nineteenth and early twentieth 

century observers none the less exhibited an astute awareness of the underlying 

geometrical principles fundamental to the construction of all-over patterns. In 

1897, Stephenson and Suddards [55], for example, in their appraisal of the 

geometry of pattern design (particularly Jacquard woven patterns) illustrated 

patterns with constructions based on rectangular, rhombic, hexagonal and square 

lattices. In a similar vein, Day [56], in 1903, placed an emphasis on the 

geometrical basis of all design and illustrated the construction of all-over patterns 

on square, parallelogram, rhombic and hexagonal type lattices. In 1910, Christie



[57] rationalised all-over patterns, including many textile patterns, into two main 

types: those which were comprised of isolated units (spot-like effects, where the 

background totally surrounds each individual motif) and those which were 

comprised of continuous units (where motifs are repeated to form a continuous 

mass). Through further sub-division, Christie [57a] gave numerous examples of how 

all-over patterns could be developed by the practitioner. Christie’s work is of 

importance for it represents a first stage in the categorisation of patterns, for the 

purpose of both analysis and synthesis, by reference to their geometrical 

structures. Interestingly, Christie [57b] claimed that his categorisation of patterns,

"...followed broadly the lines laid down by the zoologist, who 

separates into well defined categories all living and extinct 

creatures."

During the early twentieth century another perspective of pattern analysis and 

classification was evolving: the consideration of patterns by reference to their 

symmetries, a perspective which, as mentioned previously, had its origins in the 

scientific investigation of crystals. Attention is focused below on the range of 

literature which has contributed to the development of the theoretical principles 

governing symmetry in pattern.

2.3. Symmetry: The Development of Concepts and Perspectives.

Both scientific and mathematical observers (such as Shubnikov and Koptsik [58], 

Coxeter [59], Jeger [60], Guggenheimer [61], Yale [62], Gans [63], Ewald [64], 

Dodge [65], Schattschneider [66], Hargittai [67] and Martin [68]) have recognised 

that symmetry in motifs and patterns is characterised by the use of one or more

7



of the following geometrical actions:

(i) Translation, by which a figure undergoes repetition vertically, horizontally 

or diagonally at regular intervals while retaining the same orientation.

(ii) Rotation, by which a figure undergoes repetition at regular intervals round 

an imaginary fixed point (variously known as a roto-centre, a rotational 

centre or a centre of rotation).

(iii) Reflection, by which a figure undergoes repetition across an imaginary 

straight line, known as a reflection axis, producing a mirror image. This is 

characteristic of so-called bilateral symmetry.

(iv) Glide-reflection, by which a figure is repeated in one action through a 

combination of translation and reflection, in association with a glide- 

reflection axis. This particular geometrical action is often illustrated by the 

pattern produced by a person’s footprints.

These four basic geometrical actions are generally termed symmetry operations.

Synonymous terms include symmetries (Grunbaum and Shephard [69]), congruence

transformations (Campbell [70]) or isometries (Schattschneider [71a]). Relevant

schematic illustrations are provided by Figure 1.

Translation is the underlying geometric feature of both border patterns and all-

over patterns. In the former case translation is in one direction only and in the

8



Figure 1. The Four Symmetry Operations.
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latter case translation is in two distinct directions across the plane. 

Schattschneider [71a] commented,

10

"A translation of points in the plane shifts all points the 

same distance in the same direction."

Rotation may be present in certain varieties of motifs, border patterns and all- 

over patterns. Schattschneider [71b] commented,

"A rotation of points in the plane moves points by turning 

the plane about a fixed point (called a centre of rotation)."

Reflection may be present in certain varieties of motifs, border patterns and all- 

over patterns, and reflection axes may be horizontal or vertical. Schattschneider 

[71c] commented,

"A reflection of points in the plane is determined by a fixed 

line, called the mirror line or reflection axis; every point 

not on the line is sent to its mirror image with respect to 

the line and every point on the line is left fixed."

Glide-reflection may be present in certain varieties of border patterns and all- 

over patterns. Schattschneider [7Id] commented,

"A glide-reflection, as its name suggests, is a transformation 

of points in the plane which combines a translation (glide) 

and a reflection. It may be obtained by a reflection followed 

nonstop by a translation which is parallel to the mirror line 

or by a translation followed by a reflection in a mirror line 
parallel to the translation vector."



The combination of symmetry operations that characterise a given motif or 

pattern is called its symmetry group. As pointed out by Stevens [72],

"A symmetry group is a collection of symmetry operations that together 
share three characteristics: (1) each operation can be followed by a second 
operation to produce a third operation that itself is a member of the group,

(2) each operation can be undone by another operation, that is to say, for 

each operation there exists an inverse operation, and (3) the position of the 

pattern after an operation can be the same as before the operation, that is, 

there exists an identical operation which leaves the figure unchanged."

In a similar vein, Schattschneider [73] commented that a symmetry group,

"...is a collection of all isometries (or symmetry operations) 
which, when applied to the design...create an image which 

is superimposed exactly on the original so that, to the eye, 

it seems that no transformation has taken place."

Where motifs or patterns possess the same symmetry group they are said to be of 

the same symmetry class and are therefore classified accordingly, based on the 

nomenclature explained in subsequent chapters of this thesis. All symmetrical 

motifs (of which there are an infinite number of classes) exhibit reflectional 

and/or rotational symmetry characteristics; border patterns (of which there are 

only seven distinct classes) and all-over patterns (of which there are only 

seventeen distinct classes) exhibit translation and may also exhibit combinations 

of one or more of the remaining three symmetry operations. Where problems in 

classification arise due to the availability of only a limited area of a border 

pattern or an all-over pattern, a common problem with archaeological textiles, the 

criteria suggested by Washburn and Crowe [74] seem worthy of adoption. They



stated that a single translation of a motif in one direction is the minimal property 

of a border pattern and that translation of at least two identical motifs in more 

than one direction is the minimal property of an all-over pattern.

As pointed out by Grunbaum and Shephard [75] it is a surprising fact that the 

complex classification of the three dimensional crystallographic classes (of which 

there are two hundred and thirty) was accomplished by Fedorov [76], in 1885, in 

advance of the enumeration of the seemingly much more straight forward 

seventeen classes of all-over patterns which was also accomplished by Fedorov 

[77], six years later in 1891. Remarking on further developments, Grunbaum and 

Shephard [78] commented,

"After many years of efforts it has been established that 

there are precisely 4,783 classes of crystallographic space 

groups in 4-dimensional Euclidian space... The number of 

classes in 5 dimensions is not known."

Since the primary focus of crystallographers was towards three-dimensional (and 

higher dimensional) phenomena, it was not until the 1920’s that an interest in the 

application of the two-dimensional enumeration became aroused through the works 

of Polya [79] and Niggli [80] in 1924. It is a further surprise to realise that it was 

seemingly not until 1926 that the seven classes of border patterns were first 

enumerated by Niggli [81].

In a second edition of a work by Speiser [82], published in 1927, the notation used 

by Niggli was adopted but two of Niggli’s symbols were unfortunately interchanged
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and, as pointed out by Washburn and Crowe [83], the mathematical literature of 

the next fifty years replicated this error until its correction by Schattschneider 

[84] in 1978. The crystallographic literature had, however, continued on its own 

path and was not similarly affected.

In 1933 Birkhoff [85], in his classic work Aesthetic Measure, defined and 

illustrated the four symmetry operations, and discussed their presence in motifs 

and patterns. In the context of textiles, the most notable attempt to classify 

regular repeating patterns according to geometrical principles was, as indicated 

in the Introduction, made in the mid-1930’s by Woods [1-4]. In addition to 

classifying motifs, border patterns and all-over patterns according to their 

symmetry characteristics, Woods focused attention on border and all-over patterns 

with counterchange characteristics (that is, two-colour patterns which 

interchanged colour in association with successive symmetry operations). As 

recognised by Crowe [86], Woods’ publications, which appeared under the general 

title of The Geometrical Basis of Pattern Design, anticipated work that would not 

be done by crystallographers or mathematicians for another twenty years. The 

wider significance of Woods’ work was recognised by Washburn and Crowe [87], 

in 1988, when they commented that his published papers,

"...were landmarks because he made available to the non

scientist a new way of understanding the formation of 

repeating patterns."

In 1937, Buerger and Lukesh [88] also produced a worthwhile account of symmetry 

in pattern and presented a series of symbols to denote lattice types and rotational

13



orders (e.g. two-fold, three-fold etc..), and the presence of reflection and glide- 

reflection axes. An important attempt to explain the principles of symmetry and 

in particular to assess the application of these principles to the field of pattern 

analysis of archaeological artifacts was, as indicated previously, provided by Anna 

Shepard [89] in 1948. In 1952, Weyl [90] presented a description of symmetry in 

art as well as botany and other pure sciences. New perspectives were also 

provided by the Russian crystallographers Shubnikov and Koptsik [91]. From the 

viewpoint of designers the works of Walker and Padwick [92], Schattschneider 

[93,94] and Stevens [95] are probably the most useful and accessible accounts of 

symmetry in pattern. In 1980, Crowe [96] presented a flowchart (based on 

Schattschneider’s work) to aid in the identification of all-over pattern classes; this 

was developed further and published in collaboration with Washburn [97] to take 

into account two colour counterchange patterns (which are briefly discussed later 

in Chapter 6 of this thesis). In 1981, Rose and Stafford [98] provided an outline 

of an elementary instruction course in mathematical symmetry. Grunbaum and 

Shephard’s [99] monumental treatise on the mathematics of patterns, published in 

1987, will surely prove to be a twentieth century landmark to mathematical 

investigators in the field of pattern analysis. Likewise, Washburn and Crowe’s 

[100] wide ranging and perceptive treatment of the theory and practice of pattern 

analysis, published in 1988, should, for decades to come, prove to be of great 

value to archaeologists, anthropologists and design historians. The diverse presence 

and application of symmetry is exhibited by two recently published compendia 

[101,102] which together include over one hundred papers from the pure sciences, 

the arts and humanities.



2.4 The Application of the Principles of Symmetry to Pattern Analysis.

In order that the study of surface decoration can be conducted systematically, the 

classification of explicitly defined, replicable units would appear to be a necessary 

pre-requisite. Precise classificatory tools enable hypothesis formation and theory 

testing. Symmetry classification would appear to be such a tool. However, with 

only a small number of exceptions, archaeologists, anthropologists and design 

historians had, until the 1970’s, generally used the concept of symmetry in design 

in one of two ways: one treatment inferred the presence of symmetry by 

employing such terms as harmony and balance, and the other treatment used the 

term symmetry to refer to bilateral reflection symmetry. The latter usage of the 

term was evident in Boas’ [103] classic anthropological treatise Prim itive Art. 

Citing a wide range of examples from Peruvian textiles, Pueblo pottery, 

Australian aboriginal wooden shields and Andaman Island body painting, Boas 

[103a] maintained that symmetry was a universal property in ‘...the art of all 

times and all peoples’. Observing that ‘...symmetrical arrangements to the right 

and left of a vertical axis’ were widespread in use, Boas [103b] maintained that 

this was due to the orientation of most natural phenomena including the human 

body. Using the term in a similarly restricted sense to that employed by Boas, 

other anthropological investigators focused attention on the decoration of objects 

from specific cultural settings. Examples include Holm’s [104] study of the 

bilaterally symmetrical figures of North American West Coast Indian art, Levi- 

Strauss’ [105] consideration of symmetries of Caduveo body art, Critchlow’s [106] 

comparison of symmetries in Islamic architecture with the Islamic perception of 

the cosmos, and Glassie’s [107] study of the structure of traditional folk 

architecture in Virginia. In all cases, relationships between decoration and wider
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aspects of cultural organisation were inferred.

Brainerd [108] was seemingly the first archaeological investigator to adopt a wider 

perspective of symmetry to that employed by Boas. Using the concept of 

symmetry in the fuller geometrical sense developed by crystallographers, 

Brainerd’s work was pivotal in providing a penetrating insight of how symmetry 

classification might provide a systematic route to the cross-cultural comparison 

of decorated objects. Using prehistoric pottery as a source of data on motifs and 

border patterns , Brainerd [108] conducted an analysis of the symmetry 

characteristics exhibited by fragments from two distinct archaeological sites (the 

Monument Valley area of Arizona and the Mayan site of Chichen Itza in the 

Yucatan, Mexico). Two principal observations resulted from the study. These are 

briefly summarised below.

Firstly, Brainerd found that different types of symmetry predominated in each of 

the two groups of pottery, and that the symmetry exhibited by one group of 

designs was more diverse than that exhibited by the other group of designs. In 

retrospect these findings may not seem to be startling, but the method of 

obtaining data (i.e. through recording the symmetry characteristics of defined 

groups of designs) demonstrated that an objective comparison could be made 

between designs originating in two widely different cultural settings.

Secondly, Brainerd implied that within a given cultural setting there will be a 

preferred symmetry or symmetries used to decorate objects and whilst such 

symmetry arrangements may not necessarily be named or even recognised



consciously by the people using them, they will none the less be followed 

exactingly.

Although Brainerd’s work was published in 1942, in one of the most popular North 

American archaeological journals, a more widespread acceptance of symmetry 

analysis, and its further development as an aid to the classification of pattern, 

was not readily forthcoming for some decades to come, a situation deplored by 

Stewart [109] as recently as 1980. There are however three notable early 

exceptions, published in 1944, 1948 and 1965; these are briefly reviewed below.

Muller [110] analysed the symmetries of tiling patterns in the Alhambra Palace, 

Granada, Spain, and found that eleven of the seventeen possible all-over pattern 

classes were represented. Although subsequent research, such as that conducted 

by Grunbaum, Grunbaum and Shephard [111] has indicated minor flaws in Muller’s 

findings, her work none the less stands as the first systematic attempt to apply 

the principles of symmetry to the analysis of all-over patterns from a defined 

period and a specific cultural context.

As indicated previously, the work of Shepard [112] is of great importance. In 1948 

she explored in some detail the potential of symmetry analysis as an analytical 

tool to the archaeologist and illustrated different classes of motifs and border 

patterns with pottery examples from the American Southwest. She outlined the 

nature of a variety of problems (e.g. faulty draftsmanship or the combination of 

different symmetries in complex designs) which may be encountered by the analyst 

and highlighted the tendency for certain symmetries to predominate within a given



cultural context. In addition she remarked on how cultural change (brought about 

particularly by the adoption of cultural traits from another culture) may be 

pinpointed by symmetry analysis, subject to the availability of a representative 

time series of data. In a subsequent work, published in 1956, Shepard [113] 

included a summarised version of her 1948 study.

In 1965, MacGillavry [114] illustrated the seventeen classes of all-over patterns 

with examples taken from the work of Dutch artist M. C. Escher (1898-1971). As 

shown by Locher [115] Escher’s inspiration for his tessellating figures, which are 

characteristic of many of his works, resulted in part from a visit to the Alhambra 

in the mid-1930’s, prior, therefore, to the study conducted by Muller [110] in 1944. 

As pointed out by Washburn and Crowe [116], by 1942 Escher had compiled a 

notebook in which he had illustrated patterns with both rotational and glide- 

reflection characteristics, using two, three, four and six colours.

Subsequent to the four pioneering studies mentioned above, a number of 

investigators have set out to classify and compare patterns on decorated objects 

from specific cultural settings. Using symmetry classification as an analytical 

tool, it has been possible, as pointed out by Washburn [117], to,

"...study more systematically consistencies and changes in 

temporal and spatial aspects of design styles and to relate 

these shifts to other patterns of activity in a given culture."

A selection of relevant publications, in which patterns have been classified by 

reference to their symmetry characteristics, are briefly reviewed below.
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Crowe [118-120] in a series of studies of African decorative art, analysed the 

symmetries of Kuba decorated artifacts (from Zaire), Benin bronzes (from Nigeria) 

and Begho clay smoking pipes (from Ghana); in each case different symmetry 

classes were found to predominate. Focusing on the incidence of temporal changes 

in the use of certain symmetry classes, Crowe [120] found evidence to suggest the 

early absence, but subsequent presence, of three of the seven classes of border 

patterns and implied that parallel changes in society accounted for these changes.

Zaslow and Dittert [121] employed symmetry analysis in the study of Hohokam 

ceramics (largely from the site at Snaketown, Arizona), and presented a 

chronology of change in the dominant symmetry classes. Their analysis suggested,

"...a connection between social factors and the pattern class

selected for ceramic decoration."

The Aschers [122], in their study of Inca culture, analysed 300 border patterns and 

120 all-over patterns on pottery fragments. All seven classes of border patterns 

were represented to varying degrees, but forty per cent were from one border 

class only, twenty per cent were from a second border class and eleven per cent 

were from a third border class. Seventy per cent of all-over patterns were from 

four all-over pattern classes and the remaining thirty per cent were from eight 

all-over pattern classes. The Aschers noted that other aspects of Inca culture (e.g. 

the structural layout of the residential compound) exhibited similar repetitive 

characteristics to the dominant pattern types.
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Van Esterik [123] in her analysis of pottery designs from the site of Ban Chiang, 

Thailand, found that two of the seven classes of border patterns were the most 

consistently used for body and pedestal bands; two further classes of border 

patterns were most consistently used on the bodies of vessels.

In one of the few studies concerned with textiles, Kent [124] employed symmetry 

classification in the study of temporal changes and continuities in the patterning 

of prehistoric textiles from the American Southwest. She presented an interesting 

correlation of the shifts in design structure with other major events in the 

chronology of the area.

Washburn [125-128] presented a range of studies which employed symmetry 

classification as an analytical tool to: Anasazi ceramics, to make comparisons 

between different archaeological sites; Greek Neolithic ceramics, to aid the study 

of trade networks; Indian basketry designs from California, to facilitate the 

correlation of design characteristics with aspects of language, marriage practices 

and trade networks. Her results generally indicated that design structures within 

each cultural setting were homogeneous and non-random.

Campbell [129] presented a detailed commentary and symmetry analysis of 

specimens of Pueblo pottery from Starkweather Ruin in New Mexico. He observed 

a strong preference for two-fold symmetry and vertical reflection, and an almost 

total absence of horizontal reflection and glide-reflection. Campbell’s major 

conclusion was that pattern analysis, based on symmetry classification, provided 

an easy comparison of artifacts from different archaeological sites. He

20



commented that his findings offered support to Washburn’s [130] assertion that,

"...the use of symmetry classes to measure similarities in 

design structure is a very consistent, objective procedure 

that can yield accurate, reproducible and comparable 

results."

By way of summary, it appears from the relevant archaeological and 

anthropological literature that groups of artisans, working within a given cultural 

setting (i.e. a context, within which interacting individuals share a set of learned 

beliefs, values, attitudes, habits and forms of behaviour that are transmitted from 

generation to generation), will show preferential arrangements of design elements. 

Rather than randomly using many of the infinite number of motif classes, all of 

the seven border pattern classes and all of the seventeen all-over pattern classes, 

a preference for specific symmetry classes will be evident. This non-randomness 

of design structure is of fundamental significance, for it demonstrates that 

symmetry classification may be a culturally sensitive analytical tool. In the case 

studies presented in Chapter 7, non-randomness of design structure is tested in the 

context of groups of textiles from a selection of cultural settings. Data are also 

tested to establish if the symmetry preferences associated with a given culture 

have a tendency to be maintained over the passage of time, in the absence of 

external pressures for change (such as trade and other forms of inter-cultural 

communication). Further to this, data are tested to establish if technique of 

manufacture has any bearing on the symmetry characteristics of groups of 

patterns produced in the same cultural context.
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The symmetry characteristics of motifs, border patterns and all-over patterns are 

further discussed in the following pages in association with an appropriate notation 

which facilitates the systematic classification of each of the three design 

categories.
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3. THE CLASSIFICATION OF

Dependent upon the symmetry operations used in its production, a motif is 

classified using the notation cn or dn, where n is some integer. Motifs from family 

cn (c for cyclic) exhibit n-fold rotational symmetry but no other symmetry. Motifs 

from family dn (d for dihedral) have n distinct reflection axes as well as n-fold 

rotational symmetry. Motifs therefore allow no translations or glide-reflections 

and are limited in terms of symmetry operations to rotations about a fixed point 

and/or reflection across an axis or axes. A further explanation of the geometrical 

principles governing the structure of motifs is provided below. In order to refer 

unambiguously to the area occupied by motifs, each is considered inscribed within 

a circle.

An asymmetrical motif, when considered as an independent entity, can only repeat 

(or coincide with itself) after a full rotation of 360 degrees. This being the case, 

asymmetrical motifs have no rotational (or any other) symmetry characteristics 

and are thus classified as cl motifs. Examples of typical asymmetrical motifs are 

shown in Figure 2.

Symmetrical motifs, which are characterised by reflectional and/or rotational 

symmetry, are classified as follows:

23 CLOTHWORKERS' LIBRARY 
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MOTIFS.

dl, c2, d2, c3, d3, c4, d4, c5, d5, c6, d6...dn, cn + 1





Using simple geometrical figures, Figure 3 illustrates the basic principles 

underlying the above notation.
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Figure 3. Class cn and Class dn Motifs, 

(schematic illustrations)
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The addition of a reflection axis to an asymmetrical unit will yield a motif with 

bilateral symmetry which can be classified as dl. Examples are shown in Figure

4. Each motif within this class contains two fundamental units, each a mirror 

reflection of the other.
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Figure 4. Class dl Motifs.



Figure 5 shows class c2 motifs. Each of these is comprised of two fundamental 

units, has two-fold rotational symmetry (i.e. rotation through 180 degrees allows 

one fundamental unit to coincide with its partner) and is of identical appearance 

if viewed right-side-up or up-side-down.
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Figure 5. Class c2 Motifs.



Motifs from the dihedral family, of classes higher than d l, exhibit both 

reflectional and rotational symmetry in that they may be produced through 

reflection of a fundamental unit in a series of reflectional axes intersecting at a 

central fixed point, or alternatively, may be produced by rotation of a bilaterally 

symmetrical unit about a centre of rotation. Motifs from class d2, examples of 

which are shown in Figure 6, therefore have bilateral symmetry around both their 

horizontal and their vertical axes. Each motif has two reflection axes, intersecting 

at 90 degrees. The fundamental region is one quarter of a circle. The motif may 

also be produced by rotations of a bilaterally symmetrical unit through 180 

degrees and 360 degrees.
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Figure 6. Class d2 Motifs.
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As shown by examples in Figure 7, three rotations (of 120 degfBSS7“240 tfegrees-

and 360 degrees) bring a class c3 motif into coincidence with itself.

Figure 7. Class c3 Motifs.



Class d3 motifs, examples of which are shown in Figure 8, have three intersecting 

reflection axes which produce bilaterally symmetrical units spaced at 120 degrees. 

The fundamental region is therefore one-sixth of a circle. This class of motifs 

may also be produced by rotations of a bilaterally symmetrical unit through 120 

degrees, 240 degrees and 360 degrees.

Figure 8. Class d3 Motifs.
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Figure 9 shows examples of motifs from class c4. These are characterised by the 

presence of rotations through 90 degrees, 180 degrees, 270 degrees and 360 

degrees.

Figure 9. Class c4 Motifs.



Four intersecting reflection axes produce class d4 motifs. Typical examples are 

shown in Figure 10. The fundamental region is one-eighth of a circle. Class d4 

motifs may also be produced by rotation of a bilaterally symmetrical unit through 

90 degrees, 180 degrees, 270 degrees and 360 degrees.
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Figure 10. Class d4 Motifs.



Five-fold rotation characterises motifs from class c5, examples of which are 

shown in Figure 11.

Figure 11. Class c5 Motifs.
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Five intersecting reflection axes produce class d5 motifs, examples of which are 

shown in Figure 12. In the case of motifs from this class the fundamental region 

is one-tenth of a circle (i.e. a 36 degree sector bounded by reflection axes). Class 

d5 motifs may also be produced by rotations of a bilaterally symmetrical unit 

through 72 degrees, 144 degrees, 216 degrees, 288 degrees and 360 degrees.
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Figure 12. Class d5 Motifs.



Six-fold rotation characterises class c6 motifs, examples of which are shown in 

Figure 13. The fundamental region is comprised of one-sixth of a circle.
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Figure 13. Class c6 Motifs.
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Six intersecting reflection axes produce class d6 motifs. Examples from this class 

are shown in Figure 14. The fundamental region is one-twelfth of a circle. Motifs 

from this class may also be produced by rotations of a bilaterally symmetrical 

unit through 60 degrees, 120 degrees, 180 degrees, 240 degrees, 300 degrees and 

360 degrees.

Figure 14. Class d6 Motifs.
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Figures 15 and 16 show examples of motifs from higher order c and d classes 

respectively, together with their relevant notation. The limiting case of both cn 

and dn is a circle, which has a rotational centre of infinite order and an infinite 

number of intersecting reflection axes.

Figure 15. High Order Class c Motifs.
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Figure 16. High Order Class d Motifs.

As will become evident when attention is focused on the symmetry characteristics 

of patterns, some of the rotational and reflectional properties exhibited by motifs 

may also be exhibited by regular repeating patterns.



4. THE CLASSIFICATION OF BORDER PATTERNS.
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4.1. An Explanation of the Relevant Notation.

In the construction of border patterns, translation occurs along an imaginary 

horizontal axis which is parallel to the sides of the border and is known as a 

translation axis. Where reflection is present in a border pattern it may be across 

a reflection axis parallel to the sides of the border and/or across a reflection axis 

perpendicular to the sides of the border. To ensure that the sides of the border 

remain correctly orientated, rotation, where it is feature of border patterns, may 

only be of the two-fold (i.e. 180 degree) variety. Where glide-reflection is present, 

this occurs in association with an imaginary horizontal glide-reflection axis 

parallel to the sides of the border.

As indicated previously, a total of seven (and only seven) distinct possibilities, 

from the viewpoint of symmetry and ignoring interchange of colour, can be 

identified. Proofs for the existence of only seven classes of border patterns can 

be found in Washburn and Crowe [131a]. A generally accepted four-symbol 

notation of the form pxyz may be used to enable systematic classification. 

Further explanation is provided below.

As shown by Washburn and Crowe [131b] the first symbol p, of the four symbol 

notation, prefaces the notation for each of the seven distinct border classes. The 

symbols in the second, third and fourth positions denote the presence of vertical 

reflections, horizontal reflections or glide-reflections, and half turns respectively. 

Where a vertical reflection is present, x is m (for mirror); otherwise x is 1. Where



a horizontal reflection is present, y is m and where a glide-reflection is present 

y is a; otherwise y is 1. Where two-fold rotation is present z is 2; otherwise z is 

1.

Using a simple asymmetrical figure (of class cl), the seven distinct possibilities, 

employing combinations of the four symmetry operations are illustrated in Figure

17, together with the relevant notation:

p i l l ,  plal , pmll ,  plml, pi 12, pma2, pmm2

It should be noted (from Figure 17) that through the use of reflection and/or 

rotation, the asymmetrical figure appears to develop into a constituent part of a 

larger symmetrical figure which is subsequently translated along the axis. Each 

class of border pattern is further described and illustrated below.

4.2. Class p i l l  Border Patterns.

The most elementary border class is translation class p i l l  which is generated by 

translation of an asymmetrical (class cl) motif by a specified distance along an 

imaginary line known as the translation axis. Examples are shown in Figure 18.

The fundamental region, which is the smallest area of the pattern that repeats 

itself with the absence of gaps or overlaps, is bounded by the edges of the border 

and by two imaginary lines (which are of parallel orientation and are of equal 

length) separated by a distance of one translation.
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Figure 17. Schematic Illustrations of the 

Seven Classes of Border Patterns.
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Figure 18. Class p i l l  Border Patterns.
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4.3. Class plal Border Patterns.

Class plal border patterns are generated by the glide-reflection of a class cl 

motif. Examples from this pattern class are shown in Figure 19.

4.4. Class pmll Border Patterns.

Class pmll border patterns are generated by alternating reflection axes 

perpendicular to the axis of translation. Examples of class pml 1 border patterns 

are shown in Figure 20.

4.5. Class p lml Border Patterns.

Class plml border patterns have a single reflection axis that runs along the 

direction of translation. Examples of class plml border patterns are shown in 

Figure 21. By way of differentiation between class plml patterns and pmll 

patterns, Stevens [132a] observed that class plml reflects translations whereas 

class pmll translates reflections.

4.6. Class pi 12 Border Patterns.

Class pi 12 border patterns exhibit two-fold rotational symmetry (indicated by the 

fourth position in the notation). These patterns are characterised by successive 

translations of motifs with two-fold centres of rotation (c2 motifs). In this way, 

a second two-fold centre is generated which alternates with the first two-fold 

centre. Examples of class pi 12 patterns are shown in Figure 22.
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Figure 19. Class p l a l  Border Patterns.



Figure 20. Class pml 1 Border Patterns.
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Figure 21. Class p lml  Border Patterns.
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Figure 22. Class pi 12 Border Patterns.



4.7. Class pma2 Border Patterns.

As observed by Stevens [132b] border patterns from this class may be generated 

using one o f four procedures: by successive reflection o f a class c2 m otif; by 

successive translation o f two alternate class c2 motifs; by successive two-fold 

rotation o f a class dl motif; by successive glide-reflection o f a class dl motif. 

Examples o f class pma2 border patterns are shown in Figure 23.

4.8. Class pmm2 Border Patterns.

The remaining class of border patterns, pmm2, has a continuous horizontal 

reflection axis intersected at regular points by two alternating perpendicular

'N
reflection axes. One of two class d2 motifs, each having a fundamental region of 

the same area, may be visualised within the pattern. In the diagrammatic example 

shown in Figure 17, the smallest angle of the scalene triangle orientates towards 

one o f the two intersections of the horizontal and vertical reflection axes to 

produce one d2 motif; the other d2 motif is produced when the 90 degree angles 

o f the scalene triangles are orientated towards the other intersection. Figure 24 

shows examples o f pmm2 border patterns.

It is worth commenting that any of the latter three classes o f border patterns 

described above (i.e. classes pi 12, pma2 and pmm2) may be distinguished from the 

first four classes o f border patterns by turning the pattern up-side down; if the 

pattern appears the same and is orientated in the same direction, then it is 

classed as pi 12 or pma2 or pmm2.
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Figure 23. Class pma2 Border Patterns.
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Figure 24. Class pmm2 Border Patterns.



Further accounts o f the seven classes of border patterns were given by Woods 

[133], Crowe [134], Budden [135], Cadwell [136], Coxeter [137] and Stevens [138].

The flow-diagram in Figure 25, which is adapted from Crowe and Washburn [139] 

and Rose and Stafford [140], is designed to aid the identification o f a border 

pattern’s symmetry class, through presenting the user with a series of questions 

relating to the presence or absence o f certain symmetry operations.
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Figure 25. Flow Diagram to Aid Identification 
o f a Border Patterns Symmetry Class.
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5. THE CLASSIFICATION OF ALL-OVER PATTERNS.

5.1. An Explanation of the Relevant Notation.

As indicated previously all-over patterns are those patterns in which a m otif (or 

motifs) is translated in two independent directions across the plane. When 

combined with one or more of the other three symmetry operations, a total of 

seventeen (and only seventeen) distinct classes of all-over patterns may be 

generated. Proof for the existence o f only seventeen all-over pattern classes was 

provided by Martin [141] and Schwarzenberger [142],

In addition to combinations of the four symmetry operations, a further structural 

element is always present in all-over patterns: a framework o f corresponding 

points which form a regular lattice. The corresponding points o f an all-over 

pattern may be connected to produce lattice units (generally referred to as u n it 

cells) of the same shape, size and content. When translated in two independent 

directions, across the plane, a lattice unit generates the full all-over pattern. 

Schattschneider [143] commented that every all-over pattern,

"...must have in its symmetry group two ‘shortest’ 
independent translations (these correspond to the periodic 
nature o f the design): a lattice unit for such a design is a 
parallelogram having as its sides the vectors o f these two 
translations."

There are five distinct lattice types: parallelogram, rectangular, rhombic, square 

and hexagonal (the unit cell associated with this latter lattice type is a rhombus 

consisting o f two equilateral triangles). The frameworks, which are known as



Bravais lattices (after Bravais who, as pointed out by Grunbaum and Shephard 

[144] proved that lattices could be classified into five  general types) may be used 

in the generation o f all-over patterns. The five Bravais lattice types, together 

with their corresponding unit cells are shown in Figure 26. Table 1 lists all 

seventeen pattern classes, together with the appropriate lattice type for each.

54

Table 1. Lattice Types for the Seventeen Classes 
o f All-Over Patterns.

International Notation Lattice Type

Pi parallelogram
p lm l rectangular

P lg l rectangular
c lm l rhombic
p211 parallelogram
p2mm rectangular
p2mg rectangular

P2gg rectangular
c2mm rhombic

p3 hexagonal
p3ml hexagonal
p31m hexagonal
p4 square
p4mm square
p4gm square

p6 hexagonal
p6mm hexagonal

Nowacki [145], Coxeter and Moser [146] and Schattschneider [147] presented tables 

which compared the various notations used in the classification of all-over 

patterns. The most widely acceptable notation, which has been adopted for use in 

the sub-sections below, consists of four symbols which identify the conventionally
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Figure 26. The Five Bravais Lattices.
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chosen unit cell, the highest order of rotation and the symmetry axes present in 

two directions. The first symbol o f the four symbol notation, either a letter p or 

a letter c, denotes whether the lattice cell associated with the pattern is 

primitive or centred. Primitive cells, which are present in fifteen o f the seventeen 

all-over pattern classes, contain the minimum area of the pattern which may 

generate the full pattern by translation only. In the cases of the remaining two 

all-over pattern classes, the lattice cell is of the rhombic variety and is centred, 

i.e. a diamond shaped cell is held within a rectangle (shown by dashed lines in 

Figure 26) so that reflection axes can be positioned at right angles to the sides 

o f the enlarged cell, which holds one full repeating unit (within the diamond cell) 

and a quarter o f a repeating unit at each of the enlarged cell corners. As pointed 

out by Washburn and Crowe [148] the identification of the appropriate lattice of 

a pattern is not always easy. However, it is generally the case that an 

identification o f the combination o f symmetry operations used in the generation 

o f the pattern is sufficient for purposes o f classification. By way of further 

clarification, however, and to aid the discussion which follows, Figure 27 shows 

the relevant symmetry operations which characterise each class o f all-over 

pattern, together with the appropriate unit cell and the relevant four symbol 

notation. The widely accepted shortened form of the notation is also provided (in 

brackets).

The second symbol, n, of the four symbol notation, denotes the highest order of 

rotation in the pattern. As pointed out by Schattschneider [147], only rotations of 

orders 2 (180 degrees), 3 (120 degrees), 4 (90 degrees) or 6 (60 degrees) may 

generate all-over patterns. This restriction, which is often referred to as the
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Figure 27. The Unit Cells For Each o f the Seventeen Classes
of All-Over Patterns.
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c rys ta llog ra ph ic  re s tr ic t io n , is discussed by Stevens [149]. Where no rotation is 

present in an all-over pattern, n equals 1.

The third symbol denotes a symmetry axis normal to the x-axis o f the cell (i.e. 

a symmetry axis at right angles to the le ft side of the cell). The letter m (for 

mirror) indicates an axis o f reflection. The letter g (for glide) indicates the 

presence o f a glide-reflection axis and 1 indicates no reflections or glide 

reflections normal to the x-axis.

The fourth symbol denotes a symmetry axis at angle a to the x-axis, with a 

dependent on n, the highest order of rotation (shown by the second symbol). The 

angle a equals 60 degrees for n equals 3 or 6: a  equals 45 degrees for n equals 4; 

a  equals 180 degrees for n equals 1 or 2. The letter m indicates that the relevant 

symmetry axis is an axis of reflection, g indicates a glide-reflection axis and 1 

indicates that no symmetry axes are present at angle a to the x-axis. Where no 

symbols are placed in the third and fourth positions, this indicates that the 

pattern admits no reflections or glide-reflections.

A ll seventeen classes of all-over patterns are illustrated schematically in Figure 

28, and are further described below under general headings which relate to the 

highest order o f rotation present in each. Whilst illustrations for each pattern 

class are provided, reference to Figure 28 should act as a further aid to the 

understanding of the descriptions which follow each sub-heading below.
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Figure 28. Schematic Illustrations o f the Seventeen 
Classes of All-Over Patterns.
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5.2 Patterns Without Rotational Properties.

5.2.1 Class pi All-Over Patterns.

From the viewpoint of symmetry, class pi all-over patterns are the most 

straightforward in terms of both construction and analysis. The conventionally 

chosen unit cell is of the parallelogram lattice type. No reflections or glide- 

reflections are present, and in view of the fact that the highest order o f rotation 

is 1 (i.e. 360 degrees) the pattern is considered to have no rotational properties. 

The fundamental region and the unit cell are o f the same area, and the pattern 

is generated by translations of a c l motif in two independent directions. Examples 

from this pattern class are shown in Figure 29.

5.2.2 Class plml (pm) All-Over Patterns.

Class p lm l all-over patterns have rectangular lattice units with two alternating 

and parallel reflection axes and a highest order o f rotation of 1. The corners of 

the unit cell fall on reflection axes and the pattern is thus generated by two 

parallel reflections and a translation along the direction of the reflection axes. 

The fundamental region is half the area of the unit cell and is bounded on opposite 

sides by reflection axes. Examples from this pattern class are shown in Figure 30.
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Figure 29. Class pi A ll-O ver Patterns.
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Figure 30. Class p lml  A ll-O ver Patterns.



5.2.3 Class plgl  (pg) All-Over Patterns.

Class p lg l all-over patterns are generated by two parallel glide-reflections of a 

c l motif. The corners of the unit cell (which is a unit from a rectangular type 

lattice) fall on glide-reflection axes. The highest order of rotation is 1 and the 

fundamental region is half the area of the unit cell. Examples from this pattern 

class are shown in Figure 31.

5.2.4 Class clml (cm) All-Over Patterns.

Class c lm l all-over patterns have a unit cell o f the rhombic lattice type. In this 

case, as mentioned previously, a diamond shaped cell is held within a larger 

rectangle. The pattern is generated by a reflection, at right angles to the enlarged 

cell, and by a parallel glide-reflection. Reflection axes therefore alternate with 

glide-reflection axes. The enlarged cell contains two repeating units, one full 

repeating unit within the diamond shape and quarter units at each of the enlarged 

cell corners. The fundamental region is one half of the diamond shaped unit cell 

area. Examples from this class of pattern are shown in Figure 32.

5.3 Patterns Exhibiting Two-Fold Rotation.

5.3.1 Class p211 (p2) All-Over Patterns.

Class p211 is one of the five classes o f all-over patterns in which the highest 

order of rotation is of the two-fold variety. Classes p2mm, p2mg, p2gg and c2mm 

also exhibit two-fold rotation and, like class p211, appear the same when viewed 

up-side-down. Each class p211 pattern contains repetitions of four different two

fold centres of rotation; every similar two-fold centre has the same orientation. 

A  parallelogram lattice type forms the unit cell which has corners on similar two
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fold rotational centres and is twice the area o f the fundamental region. Further 

two-fold rotational centres are located in the centre o f the unit cell and on each 

of its sides. Examples from this pattern class are shown in Figure 33.

5.3.2 Class p2mm (pmm) All-Over Patterns.

Each class p2mm all-over pattern has a rectangular lattice type unit cell. The 

fundamental region is one quarter of the unit cell. The highest order o f rotation 

is 2 and the pattern is generated by reflection in four sides of a rectangle. Two 

types o f horizontal reflection axes alternate with each other, as do two types of 

vertical reflection axes. A different type of d2 rotational centre is present at 

each o f the reflection axes intersections. The unit cell is constructed by joining 

four rotational centres o f the same orientation. The fundamental region is one 

quarter of the unit cell area. Figure 34 shows examples from this pattern class.

5.3.3 Class p2mg (pmg) All-Over Patterns.

In class p2mg all-over patterns two types of parallel reflection axes alternate with 

each other and intersect, at right angles, with two types of parallel glide- 

reflection axes. The highest order o f rotation is 2 and all rotational centres are 

on glide-reflection axes. Reflection axes pass between rotational centres. Four 

types of d2 rotational centres are present. The fundamental region is one quarter 

o f the unit cell area. Figure 35 shows examples from this pattern class.
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Figure 31. Class p lg l All-Over Patterns.
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Figure 32. Class c l m l  A ll-O ver Patterns.



67

Figure 33. Class p211 A ll-O ver Patterns.
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Figure 34. Class p2mm A ll-O ver Patterns.
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Figure 35. Class p2mg A ll-O ver Patterns.



5.3.4 Class p2gg (pgg) All-Over Patterns.

Class p2gg patterns contain glide-reflection axes which intersect at right angles 

within a rectangular lattice unit cell. The fundamental region is one quarter of 

the area of the unit cell and the highest order of rotation is 2. Examples from this 

pattern class are shown in Figure 36.

5.3.5 Class c2mm (cmm) All-Over Patterns.

Class c2mm all-over patterns contain a large number of symmetry operations. 

These patterns are generated by a centred cell (c) whose corners and centre fall 

on two-fold rotational centres. Parallel reflection and glide-reflection axes 

alternate with each other in both vertical and horizontal directions. Two-fold 

rotational centres are present at both glide-reflection axes intersections and 

reflection axes intersections. Although the diamond shaped unit cell can generate 

the pattern by translation (as is the case with c lm l patterns), convention dictates 

a larger rectangular shaped generating area. The corners and centre o f the larger 

generating unit fall on similar two-fold rotational centres. The fundamental region 

is one quarter of the area o f the diamond shaped unit cell. Examples from this 

pattern class are shown in Figure 37.

5.4 Patterns Exhibiting Three-Fold Rotation.

5.4.1 Class p3 All-Over Patterns.

Class p3 all-over patterns have an hexagonal lattice type unit cell and a highest 

order of rotation o f 3. Three distinct three-fold rotational centres are present. 

The area of the fundamental region is one third of the unit cell area. Examples 

from this class are shown in Figure 38.
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Figure 36. Class p2gg A ll-O ver Patterns.



Figure 37. Class c2mm All-Over Patterns.
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Figure 38. Class p3 A ll-O ver Patterns.
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5.4.2 Class p3ml All-Over Patterns.

Class p3ml all-over patterns have an hexagonal lattice type unit cell and a 

highest order of rotation of 3. These patterns combine three-fold rotational 

centres with reflection axes. Each three-fold rotation centre is positioned at an 

intersection of reflection axes. A reflection axis is positioned along the longest 

diagonal o f the unit cell. The fundamental region for this pattern class is one sixth 

the area o f the unit cell. Examples from this pattern class are shown in Figure 39.

5.4.3 Class p31m All-Over Patterns.

Class p31m, all-over patterns have an hexagonal lattice type unit cell and a 

highest order o f rotation o f 3. A reflection axis is positioned along the shortest 

diagonal o f the unit cell and on each side of the unit cell. Not all three-fold 

rotational centres are on reflection axes. The fundamental region is one sixth of 

the unit cell area. Examples from this pattern class are shown in Figure 40.

5.5 Patterns Exhibiting Four-Fold Rotation.

5.5.1 Class p4 All-Over Patterns.

Class p4 all-over patterns have a square lattice type unit cell, no reflection axes 

and a highest order of rotation of 4. Two-fold and four-fold rotational centres 

alternate in both horizontal and vertical directions. Four-fold rotational centres 

are positioned at the centre and at each corner o f the unit cell. A  two-fold 

rotational centre is positioned on each side o f the unit cell. The fundamental 

region is one quarter of the unit cell area. Examples from this pattern class are 

shown in Figure 41.
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Figure 39. Class p3ml A ll-O ver Patterns.
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Figure 40. Class p31m A ll-Over Patterns.
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Figure 41. Class p4 A ll-O ver Patterns.

(c) (d)



78 — --------- -------------------------- —
CLOTHWORKERS' LIBRARY

5.5.2 Class p4mm (p4m) All-Over Patterns. UNIVERSITY OF ' FEDS

Class p4mm all-over patterns have a square lattice type unit cell, a highest order 

of rotation of 4 and are generated by reflection in the sides o f an isosceles 

triangle. The unit cell is divided into eight parts by reflection axes. A  four-fold 

rotational centre is positioned at the centre and at each corner o f the unit cell.

A  two-fold rotational centre is positioned on each side o f the unit cell. The 

fundamental region is one eighth the area of the unit cell. Examples from this 

pattern class are shown in Figure 42.

5.5.3 Class p4gm (p4g) All-Over Patterns.

Class p4gm patterns have a square lattice type unit cell and a highest order of 

rotation o f 4. Each corner of the unit cell is on a four-fold rotational centre. 

Reflection axes intersect at right angles on two-fold rotational centres positioned 

at the centre o f each side of the unit cell. The fundamental region is one eighth 

the area of the unit cell. Examples from this pattern class are shown in Figure 43.

5.6 Patterns exhibiting Six-Fold Rotation.

5.6.1 Class p6 All-Over Patterns.

Class p6 all-over patterns have an hexagonal lattice type unit cell, with corners 

falling on six-fold rotational centres. Three-fold rotational centres and two-fold 

rotational centres are also present within this pattern class. A ll the six-fold 

rotational centres have the same orientation; the three-fold rotational centres 

have two different orientations; the two-fold rotational centres have three 

different orientations. The fundamental region is one sixth of the unit cell area. 

Examples from this pattern class are shown in Figure 44.



79

Figure 42. Class p4mm A ll-O ver Patterns.
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Figure 44. Class p6 A ll-Over Patterns.
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Class p6mm all-over patterns are generated by a combination o f reflections and 

rotations. Six-fold rotational centres are present at each corner o f the unit cell, 

which is o f the hexagonal lattice type. Reflection axes connect each corner with 

the other three corners and in addition each side is bisected by a reflection axis. 

Three-fold and two-fold rotational centres are also present and located on 

intersections of reflection axes. The area of the fundamental region is one twelfth 

of the unit cell area. Figure 45 shows examples from this pattern class.

Historically important explanations and further descriptions o f the seventeen 

pattern classes described above are provided by Birkhoff [150], Bradley [151], 

Buerger [152]. MacGillavry [153], Burckhardt [154], Coxeter and Moser [155], Loeb 

[156], Shubnikov and Koptsik [157], Schwarzenberger [158], Schattschneider [159] 

and Stevens [160].

The flow-diagram in Figure 46, which has been adapted from Schattschneider [159] 

and Crowe and Washburn [161], is designed to aid the identification o f an all-over 

pattern’s symmetry class, through presenting the user with a series o f questions 

relating to the presence or absence o f certain symmetry operations.
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5.6.2 Class p6mm (p6m) A ll-O ver Patterns.
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Figure 45. Class p6mm A ll-O ver Patterns.

(a)

(• IG D If
lo o ;

/-^czzid^ v 
• t o ! #

(c)



84

Figure 46. Flow Diagram to Aid the Identification o f the 
Seventeen Classes o f All-Over Patterns.
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6. COUNTERCHANGE DESIGNS AND THEIR CLASSIFICATION.

6.1 A  Description of the Concept.

Explanation and discussion, so far, have concentrated on symmetry operations 

which do not involve colour change, i.e. colour has been preserved following each 

symmetry operation. It may however be the case with certain two-colour designs 

that certain symmetry operations interchange colours in a systematic and 

continuous way. Such designs have been termed counterchange designs (Christie 

[162], Woods [163] and Gombrich [164]). A  comprehensive appraisal o f two-colour 

counterchange motifs, border patterns and all-over patterns (also known as tw o - 

co lou r f in i te  designs, tw o-co lou r one-dim ensional p a tte rn s  and tw o -co lo u r tw o - 

dim ensional p a tte rn s  respectively) was recently provided by Washburn and Crowe 

[165a]. The counterchange possibilities for motifs are briefly described below and 

subsequent attention is focused on the relevant internationally accepted notation 

used in the classification o f counterchange border and all-over patterns.

6.2 Counterchange Motifs

As pointed out by Washburn and Crowe [165b], there is only one way to 

systematically colour a cn motif with two colours and that is to alternate the 

colours around the design. Such a colouring is only possible where n is an even 

number. Schematic examples of counterchange cn motifs are shown in Figure 47. 

It can be seen that a prime ( ’ ) has been introduced into the standard notation.

In the case of dn motifs, which admit reflections, there are, as recognised by 

Washburn and Crowe [165b], two possible approaches to systematically introduce



Figure 47. Counterchange cn’ Motifs

* %
c2’ c4’ c6 ’

Figure 48. Counterchange d’n Motifs (n=odd numbers).

< A
d’ 1 d’3 d’5

Figure 49. Counterchange d’n and dn’ motifs (n=even numbers).

d’2

d2’

B
d’4

d4’



colour interchange. Where n is an odd number, only one type o f colouring is 

possible; where n is an even number alternative colourings are possible. In the 

former case, which is illustrated schematically in Figure 48, all reflections reverse 

the colours and all rotations preserve the colours. In the latter case, where n is 

an even number, half the reflections reverse colours and half preserve colours, and 

rotations by one nth of 360 degrees reverse colours; such possibilities are 

illustrated schematically in Figure 49.

6.3 Counterchange Border Patterns

As illustrated previously, when colour interchange between symmetry operations 

is ignored, only seven distinct classes o f border patterns can be created using 

combinations of the four symmetry operations. For the sake o f clarity, these 

seven classes may be referred to as the seven p r im a ry  border p a tte rn  classes. By 

introducing colour interchange on these primary structures, a total o f seventeen 

classes of two-colour counterchange border patterns are possible. The notation 

used in the classification o f such designs is a modification o f the pxyz notation 

used in the classification o f the seven primary border pattern classes. This is the 

internationally accepted notation proposed by Belov [166]. A  prime ( ’ ) is generally 

associated with one of the symbols, if the corresponding symmetry operation 

interchanges colours. Washburn and Crowe [167a] described the determination of 

the notation as follows,
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"The first symbol is p if no translation reverses the two 
colours; it is p’ if some translation does reverse the colours. 
The second symbol, x, is 1 if there is no vertical reflection 
consistent with colour [symmetry operations consistent with 
colour are those which preserve colour]; m if there is a 
vertical reflection which preserves colour; m ’ otherwise (i.e. 
if  all vertical reflections reverse the colours). The third 
symbol, y, is 1 if there is no horizontal reflection; m if 
there is a horizontal reflection which preserves colour; m’ 
if  there is a horizontal reflection which reverses colours 
(except in two cases beginning with p’ , in which two cases 
y is a); a’ if there is no horizontal reflection, but the 
shortest glide-reflection reverses colours; and is a 
otherwise. The fourth symbol, z, is 1 if there is no half-turn 
consistent with colour; 2 if there are half-turns which 
preserve colour; 2’ otherwise (i.e. if  all half-turns reverse 
colours)."

Schematic illustrations of each of the seventeen counterchange border patterns 

are shown in Figure 50, and the patterns previously published by Woods are 

reproduced in Figure 51 together with the relevant internationally accepted 

notation.

6.4 Counterchange All-Over Patterns

As stated previously, only seventeen distinct classes o f all-over pattern may be 

produced using combinations of the four symmetry operations. For the sake of 

clarity these seventeen classes may be referred to as the seventeen p r im a ry  a ll-  

over p a tte rn  classes. However, by introducing colour interchange on these primary 

structures, a total o f forty-six classes of two-colour counterchange all-over 

patterns are possible. As pointed out by Washburn and Crowe [167b], although 

there is no universally accepted international notation for the forty-six 

counterchange all-over patterns, the notation proposed by Belov and Tarkhova 

[168] appears to be the most widely used. The notation is an adaptation of that
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Figure 50. Schematic Illustrations of the Seventeen Classes
of Counterchange Border Patterns.
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Figure 51. Woods’ Counterchange Border Patterns.
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used to classify primary all-over patterns, but is slightly more complex. Washburn 

and Crowe [169a] offered the following explanation,
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"As a general rule (not without several exceptions!) a prime 
(’ ) attached to a symbol indicates a colour change when the 
corresponding operation is performed. If a translation makes 
the colour change, the p of the symbol is changed to p’b 
when the translation is along the edge o f the primitive cell, 
or to p’c when the translation is along a diagonal o f the 
primitive cell. (However, when p is changed to p’b or p’c in 
this way, no other symbol has a prime attached.) When all 
the mirror reflections in one direction reverse the colours 
then the corresponding m becomes m’ ; when all the glide- 
reflections in one direction reverse the colours then the 
corresponding g becomes g’ ."

Schematic illustrations of the forty-six counterchange all-over patterns are shown 

in Figure 52, and the patterns previously published by Woods [170] are reproduced 

in Figure 53 together with the relevant internationally accepted notation 

described above.

Further discussions o f the two-colour counterchange all-over pattern classes, 

together with a well-developed series of flow-diagrams to aid the classification 

of such designs, were, as indicated previously, provided by Washburn and Crowe 

[171].
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Figure 52. Schematic Illustrations of the Forty-Six Classes
of Counterchange A ll-O ver Patterns.
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Figure 52 (cont). Schematic Illustrations of the Forty-Six
Classes of Counterchange A ll-O ver Patterns.
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Figure 52 (cont). Schematic Illustrations of the Forty-Six
Classes o f Counterchange A ll-O ver Patterns.
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Figure 53. Woods’ Counterchange A ll-O ver Patterns.
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Figure 53 (cont). Woods’ Counterchange A ll-O ver Patterns.
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Designs can of course be created by the systematic interchange of more than two 

colours. The theory accompanying such possibilities has only developed over the 

past two decades. Jarratt and Schwarzenberger [172] established the number of 

border pattern classes possible through interchanging n colours, for all values of 

n. Wieting [173] explored possible colourings of all-over patterns for values of n 

up to sixty. Extensive bibliographies of relevant literature were provided by 

Schwarzenberger [174] and Grunbaum and Shephard [175].



7. SYMMETRY IN REGULAR GEOMETRIC PATTERNS: 

CASE STUDIES FROM VARIOUS CULTURAL SETTINGS.
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7.1 Introduction.

Having established a means by which regular geometric patterns can be classified 

by reference to their symmetry characteristics, the objective of this chapter is 

to apply these classification principles to groups of textile patterns from a small 

number of cultural settings, and, by so doing, test the validity of the following 

hypotheses:

i) When a representative group of all-over textile patterns from a given 

cultural setting are classified according to their symmetry 

characteristics, a non-random distribution of all-over pattern classes, 

and thus a unique range of symmetry preferences will result.

ii) The symmetry preference of a given culture will be maintained over 

time, provided that external forces for change are largely absent.

iii) When all-over textile patterns from a given cultural setting are 

differentiated by reference to technique of manufacture, the symmetry 

preferences associated with each technique will be broadly similar.

Case studies of patterns from four distinct cultural settings are presented below: 

traditional Javanese batik patterns; traditional Sindhi ajrak patterns; Jacquard 

woven French silk patterns (Autumn, 1893); Japanese textile patterns, produced



during the Edo period (1604-1867) using a variety of patterning techniques. Data 

from each of the first three case studies were used to test the validity of 

hypothesis (i) above, and data from the fourth case study were used to test the 

validity of hypotheses (ii) and (iii) above.

It should be stressed at this stage of the enquiry that the objective is not to 

present an all-encompassing explanation and analysis of textile designs within each 

cultural setting. The emphasis in this thesis is on the way in which design 

elements have been repeated and not on the thematic or symbolic role of the 

elements themselves. The primary concern in the case studies is not therefore 

with broader issues of aesthetic development. Rather, the intention is simply to 

explore the viability of employing symmetry classification as an analytical tool 

within the context of textiles. Prior to the presentation of the case studies, a 

number of limitations relating to the nature of the data analysed are briefly 

considered below.

7.2 Data Considerations

Periods of fieldwork in Indonesia and Pakistan provided access to traditional 

Javanese batik patterns (sample size =110) and traditional Sindhi ajrak patterns 

(sample size = 71) respectively. In the context of this thesis, traditional patterns 

are defined as those which, although manufactured in modern times, are 

considered by indigenous informants to have been produced, using similar 

techniques, for several generations without undergoing significant change. By 

adopting this definition, the following question may be posed: Are ‘traditional’ 

patterns a reflection of some aspect of past culture and/or some aspect of present
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culture? Both Javanese and Sindhi societies have certainly undergone change 

(particularly of an economic nature) during the course of ‘several generations’. 

Equally, many aspects of culture have been retained (e.g. language, music, cooking 

practices and religion). Many textile patterns may well have fallen into disuse 

with the passage of time. Equally, many textile patterns (e.g. those classified as 

‘traditional’) have been retained. Assuming that symmetry in pattern is in some 

way related to culture (as has been suggested by the bulk of the archaeological 

and anthropological literature cited previously), it may be suggested that the 

symmetry characteristics manifested by ‘traditional’ designs would seem to be in 

some way related to aspects of indigenous culture which have been retained 

despite the presence of pressures for change (particularly evident in contemporary 

times, due to the advent of mass production, mass communication and mass 

distribution).

It is often the case in the analysis of data relating to a given category of 

manufactured objects that random sampling techniques are employed with the 

intention of making inference relating to the total population as opposed to a 

small section of it. Random sampling of total populations of traditional Javanese 

or Sindhi textiles was not possible. However, attempts were made to ensure that 

the pattern samples were as representative as could be expected under the 

conditions prevailing during each field visit. In each case the testimony of 

indigenous informants/practitioners was sought to ensure firstly, that all the 

patterns included for analysis were typical of their region of origin and secondly 

that no commonly used pattern type had been excluded.

1 0 0



A pattern book of Jacquard woven French silks (dated Autumn, 1893), held in the 

Clothworkers’ Collection at the University of Leeds, provided a readily available 

single source of a large number of historic patterns (sample size = 483) produced 

in a dated European cultural context. An illustrated compendium, published in 

1960 by the Japan Textile Colour Design Centre [176] was used as a source for 

Japanese textile patterns (sample size = 290) produced during the Edo period 

(1604-1867), a time span of seemingly uninterrupted cultural stability. Whilst the 

representative nature of the two historical data sources stated above and the 

resultant sample sizes yielded by them may well appear to be more favourable 

than is invariably the case in comparable studies of groups of historical objects, 

it should none the less be recognised that the quality of data cannot be totally 

assured. This is a common problem, particularly associated with historic textiles; 

they are not only limited in number, but their distribution in time and space has 

a variation which is regulated both by the intensity of past production as well as 

by the physical conditions to which they have been subjected with the passage of 

time. For this reason, in the absence of supporting evidence, it is always difficult 

to determine the extent to which available data are a reflection of an historical 

and cultural reality. None the less, in order to encourage clarity of analysis and 

interpretation in the case studies which follow, all data series are assumed to be 

representative. All conclusions reached, however, should be seen within the 

context of the considerations outlined above.

It should be noted that the percentage figures given in all four case studies have 

been rounded to the nearest whole numbers.
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7.3 Case Study 1 - the Symmetry Preferences Exhibited by Javanese Batik 
Patterns1.

During a visit to Indonesia in September 1989, a survey was made of traditional 

Javanese batik designs [177]. Examples were examined from the island’s principal 

batik producing regions, including the areas in and around the Central Javanese 

sultanates of Surakarta (Solo) and Yogyakarta (Yogya), the coastal areas of 

Cirebon, Indramayu, Pekalongan and Lasem, and the area in and around Garut in 

West Java. In addition, several practitioners were consulted, a small number of 

local collections were assessed and sketches were taken from authoritative 

Indonesian and other published sources [178-181]. In total, 505 traditional designs 

were examined and from these it was found that 110 exhibited regular all-over 

pattern characteristics. The remaining 395 designs were non-repeating varieties 

which, however, it should be noted in passing, often depicted figures with bilateral 

reflectional properties. The 110 regular all-over patterns were classified by 

reference to their symmetry characteristics with the aid of the flow diagram

1 0 2

\ The word ‘batik’ is used to refer to wax (or sometimes paste) resist patterning 

techniques and their relevant products. The process, as practised in Java, involves 

the application of hot molten wax to areas of a fabric’s surface. On solidification 

of the wax, the fabric is immersed in a dye bath. Waxed areas of the fabric 

remain impervious to the dyestuff which is taken-up only by the uncovered areas 

of the fabric. In Java, distinction is made between ‘tulis’ batik and ‘cap’ 

(pronounced ‘tjap’) batik. The former term designates the type of Javanese batik 

drawn by hand employing a hand-held drawing pen known as a canting (pronounced 

‘tjanting’), an implement consisting of thin copper with one or more capillary 

spouts and a handle shaped from reed or bamboo. The term cap is used to refer 

to the hand-held copper printing blocks which may be used as an alternative and 

speedier means of wax application. Regular all-over patterns may be produced 

using either method of wax application. The traditional use of batik is as a 

garment for festive or ceremonial dress. A wide ranging survey of batik motifs 

and patterns indigenous to Java is provided by Hann, M.A., ‘Unity in Diversity: 

The Batiks of Java’, submitted for publication in the Journal of the Textile 

Institute.
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Figure 54. A Selection of Javanese Batik Patterns.
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previously presented in Figure 46. Two-colour counterchange patterns were absent. 

A selection of all-over patterns typically found on Javanese batiks is presented 

in Figure 54. The numerical outcome of the classification exercise is included in 

Appendix 1 and the percentage frequency of each pattern class recorded is 

presented in histogram form in Figure 55.

Figure 55. Percentage Frequency of All-Over Pattern Classes

(Javanese Batiks).
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From the pattern sample of 110, eleven of the seventeen all-over pattern classes 

were represented to varying degrees. By far the most dominant symmetry class 

was four-fold reflectional symmetry (p4mm) which was evident in 49 per cent of 

the total sample. Rotational symmetry, in the form of class p211 patterns, which 

was evident in 15 per cent of the total sample, was the next most common 

symmetry feature. Four-fold rotational symmetry, in the form of class p4 patterns 

accounted for 5 per cent of the total sample, but three-fold (p3) and six-fold (p6) 

rotational symmetry were totally absent. Bilateral symmetry, which as mentioned 

previously was frequently evident in figures depicted on batiks with non-repeating 

compositions, accounted for 9 per cent of the total sample in the form of class 

p lm l patterns and 2 per cent of the total sample in the form of the centred class 

cl m l patterns. Classes p i, p2mm, c2mm and p6mm accounted for 5, 8, 3 and 1 

per cent respectively. Classes p4gm and p2gg accounted for less than 2 per cent 

and less than 1 per cent of the total sample respectively. Classes p2mg and p lg l 

were totally absent, as were classes p3ml and p31m.

In order to confirm that the resultant distribution of symmetry classes was non- 

random, a chi-square test was performed on the data, comparing the frequency 

observed to the frequency expected (under conditions of randomness). The chi- 

square value of 426 with 16 degrees of freedom confirmed beyond reasonable 

doubt that the distribution was non-random and that a definite preference was 

expressed towards a small number of symmetry classes. This result lends support 

to hypothesis (i).
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Assuming that the data are representative of Javanese batik patterns in general,



the classification indicates a consensus among Javanese batik producers (as a 

whole) in the predominant use of a few symmetry classes, as well as an additional 

awareness of a wide range of symmetry possibilities. Reflectional, rotational and 

glide-reflectional classes were present to varying degrees. The extent to which 

this general consensus and awareness are typical of individual local conditions in 

each of the principal producing centres cannot however be assessed from the 

current data, due to the restrictions imposed by the sample size acquired during 

the field study. It certainly appears to be the case that motif types, judged in 

terms of thematic and symbolic content, differ from region to region within Java, 

and each particular centre of production is noted for its own speciality batik 

types. For example, it has been noted elsewhere [177] that the batiks from central 

Java show a predominance of design types associated with ancient Javanese Hindu 

culture (centred in and around the sultanates of Surakarta and Yogyakarta), 

whereas batik designs from northern coastal areas (e.g. in and around Cirebon) 

show motifs of Chinese origin (due to the intensity of past trade). It would seem 

worthwhile to conduct a wider ranging survey which would firstly encompass the 

symmetry classification of batik designs differentiated by reference to their 

source of production, and secondly, would include a symmetry classification of the 

full range of motifs used in the numerous non-repeating compositions. The extent 

to which symmetry class choice shows a consensus from centre to centre may act 

as an indication of the extent of intra-cultural interaction between producers.



7.4 Case Study 2 - the Symmetry Preferences Exhibited by Sindhi Ajrak 

Patterns2.

During July 1987 and April 1988 a survey was made of traditional Sindhi textiles 

produced using the ajrak process. Two principal sources of data were used. Firstly, 

Threadlines Gallery, an organisation responsible for the marketing of the full 

range of Pakistani craft textiles. Associated with the various government 

sponsored regionally organised Small Industries Development Boards, Threadlines 

Gallery co-ordinates the retail distribution of the country’s crafts through a series 

of outlets in the principal urban centres (Karachi, Islamabad and Peshawar). One 

example of each ajrak design in stock in each Threadlines Gallery outlet was 

purchased and this provided a total of 41 all-over patterns. The second source of 

data was Lok Virsa, the country’s principal cultural museum based in Islamabad 

and considered to hold the nation’s premier craft textile collection. Access to Lok 

Virsa’s textile store was permitted. A total of 30 ajraks (purchased by Lok Virsa 

during the late 1970’s and early 1980’s) were located and recorded
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2
. Typical ajrak textiles are used for turbans and shawls and are generally 

comprised of a series of borders surrounding a central all-over patterned area. 

Ajraks preserve one of the most ancient techniques of block printing associated 

with the Indus valley and are now exclusively produced in Sind province (Pakistan). 

Ajrak printing is a combination of mordant and resist block printing/dyeing. Prior 

to colouring, the process involves three stages of printing using hand-held wooden 

printing blocks. Firstly a resist mixture of chalk and gum is applied, secondly a 

mordant paste containing iron sulphate is applied and thirdly a mordant paste 

containing alum is applied. The first dyeing stage is when the cloth is dipped into 

a cold bath of indigo to pick-up a blue colour in the exposed areas. After drying, 

the cloth is dyed in a simmering madder bath with the result that the chalk and 

gum areas resist dye pick-up and thus remain white, the iron sulphate mordant 

areas are dyed black and the alum mordant areas are dyed red. The historic 

evolution of Sindhi ajraks and the precise details of the process remains largely 

undocumented. A brief, though highly ambiguous, outline is provided by Yacopino, 

F., ‘Threadlines Pakistan’, the Ministry of Industry and Elite Publishers, Karachi,

1987, pp.84-89.



photographically or sketched. The all-over pattern sample from both sources was 

therefore 71. Each all-over pattern was classified according to its symmetry 

characteristics. Two-colour counterchange patterns were absent. A selection of 

typical Sindhi ajrak patterns is shown in Figure 56. The numerical outcome of the 

classification exercise is included in Appendix 2 and the percentage frequency of 

each pattern class recorded is presented in histogram form in Figure 57.

From the pattern sample of 71, only five of the seventeen all-over pattern classes 

were represented to varying degrees. By far the most dominant pattern class was 

the four-fold reflectional symmetry class p4mm, which was evident in 60 per cent 

of the total sample. The next most dominant symmetry class was the purely 

translational class p i, which accounted for 14 per cent of the sample. Reflectional 

symmetry in the forms of p2mm, p lm l and c2mm patterns, accounted for 13, 7 

and 6 per cent respectively. The four purely rotational classes p211, p3, p4 and 

p6, were totally absent from the sample, as were all forms of glide-reflection.

In order to confirm that the resultant distribution of symmetry classes was non- 

random, a chi-square test was performed on the data, comparing the frequency 

observed to the frequency expected (under conditions of randomness). The chi- 

square value of 425 with 16 degrees of freedom confirmed beyond reasonable 

doubt that the distribution was non-random and that a definite preference was 

expressed towards a small number of symmetry classes, thus lending further 

support to hypothesis (i).
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Figure 56. A Selection of Sindhi Ajrak Patterns.
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Figure 57. Percentage Frequency of All-Over Pattern Classes

(Sindhi Ajraks).

All-Over Pattern Classes

Assuming that the data are representative of Sindhi ajrak patterns in general, the 

classification indicates a general consensus among ajrak producers in the 

predominant use of purely reflectional symmetry. An awareness of purely 

rotational and glide-reflectional symmetry classes is not however evident.

Sind province (which largely consists of the alluvial plain and delta of the River 

Indus) has been associated with block printing, and in particular the use of 

mordants, for the better part of three and a half thousand years (dating, 

seemingly, to the latter stages of the Indus Valley Civilisation, C.2300-1750 B.C., 

located at Mohenjo-daro). The ajrak process certainly seems to be of ancient 

origin, but whether ‘traditional’ ajrak patterns are of similarly remote origin is 

not known.



Sind province is also renowned for the production of decorative tiles (seemingly 

also produced in very remote times). During the course of the field study, the 

impression gained, based (it must be stressed) on a passing intuitive assessment, 

was that ajrak patterns and decorative tiling patterns were very similar in terms 

of structural characteristics (as well as colour). A rigorous comparative survey 

of the symmetry characteristics of patterns from both technique sources may give 

some indication of the extent to which artisans, working in different media, are 

governed by similar cultural rules (manifested by pattern symmetry).
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7.5 Case Study 3- the Symmetry Preferences Exhibited by Jacquard Woven 
French Silks (Autumn, 1893)3.

A readily available source of textiles produced in a European cultural setting was 

provided by the Clothworker’s Collection 4 at the University of Leeds. A pattern 

book containing Jacquard woven silks, dated Autumn 1893, was selected because 

it provided a large dated sample of patterned textiles. A catalogue entry from the 

1950’s identified the samples as ‘silk dress fabrics of French origin’. It was not, 

however, known where in France the silks were woven, nor if they represented the 

collective efforts of more than one production enterprise. Attempts to locate 

other Jacquard woven French silks of precisely the same date were unsuccessful. 

The total all-over pattern sample was 483. Each pattern was classified according 

to its symmetry characteristics. Although a very small proportion of two-colour 

counterchange patterns (< 2 per cent) was present, in these cases the pattern

3. Silk production in France had become well established by the early 18th century 

with the principal centres of production located in Lyons and Tours. In 1805, 

Joseph Marie Jacquard (1752-1834) presented a mechanism which was to 

revolutionise the production of figured silk fabrics. Jacquard’s mechanism, when 

attached to a conventional raised horizontal loom, introduced the possibility of 

automatic selective shedding. By the late 1800’s looms with Jacquard attachments 

had largely replaced the drawloom in the vast bulk of French woven silk 

production (much of which was used for fashionable dress fabrics, with fresh 

collections of woven silks being presented on a seasonal basis to interested 

customers).

4
. An appraisal of the collection’s contents, together with a description of ongoing 

research projects is provided by Hann, M.A., ‘The Clothworkers’ Collection, the 

University of Leeds - An Archive Source for use by Scholars and Industrialists’, 

Ars Textrina, vol. 12, 1989, pp. 157-174.



outline only was classified; this was to ensure that the analysis remained within 

the scope of the seventeen primary all-over pattern classes. A selection of 

patterns from the pattern book are shown in Figure 58. The numerical outcome 

of the classification exercise is shown in Appendix 3 and the percentage 

frequency of each pattern class recorded is presented in histogram form in Figure

59.

From the pattern sample of 483, twelve of the seventeen all-over pattern classes 

were represented to varying degrees. By far the most dominant pattern class was 

p lg l, produced by the glide-reflection of an asymmetrical motif. This class 

accounted for 76 per cent of the total sample analysed. The next most common 

pattern class was the purely translational class pi which accounted for 14 per 

cent of the total sample. All other symmetry classes recorded, when taken 

together, accounted for around 10 per cent of the total sample, with no single 

class accounting for more than 2 per cent. All three-fold patterns of both the 

purely rotational variety (p3) and the reflectional varieties (p3ml and p31m) were 

totally absent, as were class p4 and class p6mm patterns.

In order to confirm that the distribution was non-random, a chi-square test was 

performed on the data, comparing the frequency observed to the frequency 

expected (under conditions of randomness). The chi-square value of 4,504 with 16 

degrees of freedom, confirmed beyond reasonable doubt that the distribution was 

non-random, and that a definite preference was expressed towards a small number 

of symmetry classes. This result lent further support to hypothesis (i).
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Figure 58. A Selection of Jacquard Woven French Silk 

Patterns (Autumn, 1893).
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Figure 59. Percentage Frequency of All-Over Pattern Classes 

(Jacquard Woven French Silks, Autumn, 1893).

All-Over Pattern Classes

To what extent p lg l patterns are typical of 1890’s French figured silk designs is 

not yet known and further enquiry using compatible data sources would be 

necessary to establish the extent of the popularity at the time. It could of course 

be the case that the data is grossly misleading; all the patterns may have been 

produced in one single design studio where a definite house-style had emerged. As 

a consequence, the distribution described above may not be representative of 

1890’s Jacquard woven French silks in general, but rather an expression of the 

eccentricities of a particular design studio or even a single designer.



7.6 Case study 4 - the Symmetry Preferences Exhibited by Japanese Textile 
Patterns Produced During the Edo Period (1604 - 1867)5.

The objectives of this case study of Japanese patterns from the Edo period are

firstly to test the hypothesis that the symmetry preferences of a given culture

will be maintained over time provided that external forces for change are largely

absent and secondly, to establish whether the patterns produced using two distinct

categories of patterning techniques will exhibit broadly similar symmetry

characteristics.
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The Japanese Edo period certainly seems to have been a time span when outside 

pressures for change were largely absent. A policy of national isolation had been 

enacted by the ruling feudal government, and communications (including trade)

5. A wide range of patterning techniques were employed during the Edo period. 

Figured fabrics of cotton or silk were woven on the takahata (or high loom), a 

raised horizontal loom of a type which was seemingly introduced from China some 

centuries previously. Non-figured fabrics were produced on various forms of 

backstrap loom. Various embroidery techniques and gold-leaf imprinting were also 

in use. The Edo period is particularly noted for the range of resist dyeing 

techniques in use. These were of three general types: (i) ‘Kasuri’, the name given 

to the process of resist dyeing of yarns prior to weaving (known as ‘ikat’ in the 

West). After the precise form of the pattern has been decided, the parts of the 

yarn to remain undyed are bound with a material impervious to the dye. After 

dyeing, the yarns are woven so that the dyed and undyed sections are woven at 

previously determined points. Kasuri is generally categorised as warp, weft or 

double depending on whether the warp, the weft or both sets of yarns are resist 

dyed, (ii) ‘Shibori’, the name given to the technique more commonly known in the 

West as ‘tie-and-dye’ or ‘plangi’. Portions of lightweight fabric are wrapped with 

dye resistant string and placed in a dyebath or alternatively the points of the 

fabric to remain undyed are picked out with a needle and a length of strong 

thread on which the fabric is drawn to form a series of tightly packed folds, (iii) 

Resist paste techniques, by which dye resist pastes are applied to the fabric in one 

of two ways: either by freehand drawing of the paste onto the fabric using a tube 

(held rather like a crayon) or else by a spatula through a pre-cut stencil. When the 

paste is dry the fabric is immersed in a dye bath and the dye takes to those areas 

not covered by the paste.



with other parts of the world were forbidden (with the exception of very limited 

contacts with China and the Netherlands at the port of Nagasaki) [182]. Until the 

restoration of trade with the West, in 1867, Japanese society remained largely 

undisturbed [183]. Significant innovations in patterning techniques none the less 

took place, but it seems that these innovations were not of the type aimed at the 

mechanisation of processes as was the norm in Western Europe at the time, but 

rather were aimed at improving the patterning potential of familiar craft 

techniques. In fact it has been suggested [184] that the textile designs produced 

during the Edo period were the ‘...richest in variety of techniques, styles and 

motifs in the history of Japanese textiles’. In addition to figured weaving, 

embroidery and gold-leaf imprinting (by which gold-leaf figures were gummed to 

the fabric surface), a full range of resist dyeing techniques (e.g. ikat, plangi and 

stencil resist techniques) were also in use. Stencil resist techniques, in particular, 

were the focus of much development during the period [185]. Further attention 

is focused on this development later in the case study, when a comparison is made 

between the symmetry characteristics of patterns produced by two distinct 

categories of patterning techniques (i.e. figured weaving and resist dyeing).

A three volume series entitled ‘ Textile Designs of Japan' appeared to be the most 

authoritative illustrated source of Japanese textile designs published to date, and 

as such offered potential as a source of illustrations for pattern classification 

[186-188], The second volume, in the series, which was subtitled ‘Designs 

Composed Mainly in Geometric Arrangement’ offered a rich compendium of all- 

over patterns, each identified by reference to its patterning technique and period 

of manufacture. Designs illustrated in the other two volumes in the series were
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unsuitable for inclusion in the study; volume 1 presented ‘free style graphic 

designs’, which were comprised mainly of non-repeating compositions, and volume 

3 presented designs which were produced by remote island peoples, distant from 

the mainstream of Japanese culture at the time. From volume 2 of the series, a 

total of 299 Edo period Designs proved suitable for symmetry classification. A 

small selection of designs from the stated source are reproduced in Figure 60.
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Figure 60. A Selection of Japanese Textile Patterns From

the Edo Period.
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7.6.1 A Comparison of the Symmetry Preferences Exhibited During Consecutive 
Time Periods.

In order to assess whether the symmetry preferences exhibited by Edo period 

patterns were maintained with the passage of time, the data were further 

categorised into four consecutive sub-periods dependant upon the time of 

manufacture: the Early Edo (1604-1673), the Middle Edo (1673-1750), the Late Edo 

(1751-1800) and the End of Edo (1801-1867)6, yielding sample sizes of 9, 34, 94 and 

162 respectively. The sample size of data from the Early Edo was obviously too 

small to be of much use in the subsequent analysis and as such was excluded from 

the study. The numerical outcome of the classification of patterns from the three 

remaining sub-periods is provided in Appendix 4 and the percentage frequency of 

each pattern class recorded is presented in histogram form in Figures 61 (a), (b) 

and (c).

From the data for the Middle Edo, twelve of the seventeen all-over pattern 

classes were represented to varying degrees. The most dominant pattern classes 

were as follows: class c2mm which accounted for 24 per cent of the relevant 

pattern sample, class p2mm which accounted for 18 per cent, and classes p lm l 

and pi which accounted for 15 per cent and 12 per cent respectively. Classes 

p lg l, p2mg, p2gg, p4 and p6 were absent from the sample. The eight remaining

1 2 0

6. Although this chronology does not appear to be in widespread use, and the time 

span of each sub-period appears to be rather arbitrary, it is none the less the 

chronology presented in the data source in association with the patterns analysed 

and as such would appear to be acceptable in the context of this case study.
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Figure 61(a). Percentage Frequency of All-Over Pattern Classes 

(Japanese Textiles, Middle Edo, All Patterning Techniques).
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Figure 61(b). Percentage Frequency of All-Over Pattern Classes 

(Japanese Textiles, Late Edo, All Patterning Techniques).

25
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Figure 61(c). Percentage Frequency of All-Over Pattern Classes 

(Japanese Textiles, End of Edo, All Patterning Techniques).

All-Over Pattern Classes

all-over pattern classes, taken together, accounted for just over 30 per cent of 

the total sample with classes c lm l and p4mm accounting for 9 per cent and 6 per 

cent respectively, and classes p211, p3, p3ml, p31m, p4gm and p6mm each 

accounting for slightly less than 3 per cent of the sample.

From the data for the Late Edo, fifteen of the seventeen all-over pattern classes 

were represented to varying degrees. The most dominant pattern classes were as 

follows: class p2mm which accounted for 22 per cent of the relevant pattern 

sample, class pi which accounted for 19 per cent and class c2mm which accounted 

for 18 per cent. Classes p31m and p6mm were totally absent. The remaining 

pattern classes, taken together, accounted for around 38 per cent of the total 

sample, with classes p211 and p lm l accounting for 7 per cent and 6 per cent



respectively, and the remaining ten classes accounting for between 1 per cent 

and 4 per cent of the total sample.

From the data for the End of Edo, sixteen of the seventeen all-over pattern 

classes were represented to varying degrees. The most dominant pattern classes 

were as follows: class c2mm which accounted for 25 per cent of the relevant 

pattern sample, class p2mm which accounted for 24 per cent, and classes pi and 

p4mm, each of which accounted for 9 per cent. Class p3 was totally absent. The 

twelve remaining classes, taken together, accounted for around 35 per cent of the 

total sample, with classes p211 and p2mg each accounting for 6 per cent, and the 

remaining ten classes each accounting for between just under 1 per cent and 

around 4 per cent of the total sample.

From the data available it seems to be the case that c2mm patterns, p2mm 

patterns and pi patterns were dominant throughout the three time spans, together 

accounting for 54 per cent, 59 per cent and 58 per cent of the total samples in 

the Middle Edo, Late Edo and End of Edo respectively. Whilst these figures appear 

on first inspection to support hypothesis (ii), further attention to the data reveals 

two inconsistencies: patterns from class pi m l accounted for around 15 per cent 

of the Middle Edo pattern sample and class p4mm accounted for 9 per cent of the 

End of Edo pattern sample.

The relatively high percentage frequency of p lm l patterns during the Middle Edo 

may be a weakness resulting from the small sample size, and as a consequence 

may not be fully representative of an historical reality. It could however be the
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case that p lm l patterns were indeed popular in the Middle Edo and subsequently 

underwent a decline in popularity over the three time spans, but further enquiry 

using a larger sample size would be a necessary pre-requisite to establish whether 

this was indeed the case.

As regards the relatively high percentage frequency of End of Edo class p4mm 

patterns, further examination of the data source revealed that the vast majority 

of these patterns had been produced using stencil resist patterning techniques, a 

category of patterning techniques which underwent development and showed an 

increased popularity during the End of Edo [189]. Further attention is focused on 

this development in the next sub-section. On the basis of the increased percentage 

frequency of p4inm patterns it seems to be the case that an important change in 

the symmetry preferences manifested by Edo period textile patterns did indeed 

occur, despite the absence of outside forces of cultural change.

From relevant past literature [190-192], it seems that temporal changes in the 

symmetry preferences expressed by a given culture are generally explained by 

reference to outside agents of change only. In addition there appears to be the 

underlying suggestion that symmetry preferences will be maintained indefinitely 

providing agents of diffusion (e.g. missionaries, trade delegations or military 

conquests) are excluded. On closer inspection, however, this underlying assumption 

does not appear to be well founded. Whilst the importance of diffusion of 

innovations in the development of all societies should not be underestimated, to 

suggest that cultures remain static when outside forces for change are absent, 

appears to be distant from reality. Indeed it would seem to be more feasible to
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suggest that all isolated societies undergo certain occasional incremental changes 

(e.g. of an economic, religious or technological nature) which, taken cumulatively, 

may help to perpetuate the society or alternatively lead to its breakdown. Such 

incremental changes may also manifest themselves through subtle changes in the 

decorative arts, changes which may in turn be revealed through symmetry 

classification.

It appears therefore that although classes c2mm, p2mm and pi all-over patterns 

remained dominant throughout the three time spans of the analysis, an extension 

of the symmetry preferences also occurred, firstly in terms of the number of 

symmetry classes used (which increased from 12 to 15 to 16) and secondly in 

terms of the increased popularity of class p4mm patterns.

7.6.2 A Comparison of the Symmetry Preferences Exhibited by Patterns Produced 

Using Two Distinct Categories of Patterning Techniques.

There appears to be the underlying assumption in much of the archaeological and

anthropological literature concerned with symmetry in pattern, that the patterns

produced in a given cultural context using different techniques of manufacture

will show the same symmetry preferences [193]. However, this outlook does not

seem to have been satisfactorily tested by reference to two or more concurrent

series of data, which although of the same time period and cultural source, were

each derived from patterns produced using a distinctly different category of

production technique. The objective of the analysis presented below is to ascertain

if the patterns produced by two different categories of patterning techniques (i.e.

either weaving or resist dyeing) exhibit the same symmetry preferences. Data
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obtained from designs woven during the Late Edo and End of Edo were combined, 

as were data from designs produced by resist dyeing, with resultant sample sizes 

of 115 and 116 respectively. The numerical outcome of the symmetry 

classification of each series is included in Appendix 5 and the percentage 

frequency of the all-over pattern classes recorded for each category of technique 

is presented in histogram form in Figures 62 (a) and (b).

From the data available, the most dominant symmetry class exhibited by woven 

patterns was class p2mm which accounted for 30 per cent of the total sample. The 

next most dominant classes were pi and c2mm, each of which accounted for 17 

per cent of the total sample. The most dominant symmetry classes exhibited by 

resist dyed patterns were classes p2mm and c2mm, each of which accounted for 

18 per cent of the total sample, and classes pi and p4mm, each of which 

accounted for 11 per cent of the total sample. Classes p i, p2mm and c2mm 

therefore showed a dominance in the patterns produced by each category of 

technique, and as such some support seems to be lent to hypothesis (iii) (in that 

the symmetry preferences of each category of patterning technique are ‘broadly 

similar’). However, taken together, these three classes accounted for 64 per cent 

of woven patterns but only 47 per cent of resist dyed patterns. In addition the 

relatively high percentage incidence of p4mm resist dyed patterns should not be 

ignored. Further examination of the data source revealed that all p4mm resist 

dyed patterns were produced by stencil resist techniques. During the course of 

further enquiry into the circumstances which led to the development and increased 

popularity of stencil resist techniques during the Late Edo and End of Edo, it was 

realised that the principal end-use of such patterns was as clothing products and
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Figure 62(a). Percentage frequency of All-Over Pattern Classes 

(Japanese Textiles, Late Edo and End of Edo, Woven Patterns Only).

All-Over Pattern Classes

Figure 62(b). Percentage frequency of All-Over Pattern Classes 

(Japanese Textiles, Late Edo and End of Edo, Resist Dyed Patterns Only).

20
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that the use of p4mm patterns was particularly suited to the nature of Japanese 

clothing construction. Further explanation is presented below. Japanese clothing 

construction during the Edo period had developed from the simple method of 

doubling a length of cloth and then simply slashing a hole in the middle of the 

fold, through which the head of the weaver ultimately passed [194]. Unlike 

Western clothing, Edo period clothing had no seam at the shoulders, but instead 

continued in one piece from the front to the back. It appears that a large 

proportion of designs on clothing fabric, during much of the Edo period, were of 

a ‘graphic’ variety, comprising large scale non-repeating compositions with figures 

of an asymmetrical nature 1195]. With such designs it was necessary to ensure 

that the orientation of figures remained the same on both the front and the back 

of the garment. Using freehand painting or embroidery, this was facilitated by 

reversing the orientation of the design elements at the mid-way shoulder line. 

The problem of design orientation imposed by clothing construction was easily 

resolved with the increased use of stencil resist techniques: after applying paste 

to one half of the cloth with the stencil continuously orientated in one direction, 

the stencil was simply rotated through 180 degrees and the paste thus applied to 

the other half of the cloth. By the End of Edo, stencil resist techniques were 

increasingly used in the patterning of clothing products. A parallel development 

was the introduction of small-scale stencil resist all-over repeating patterns 

(known as ‘Komon’ or ‘small patterns’). With the increased application of stencil 

resist techniques, it appears that the necessity of turning stencils through 180 

degrees became redundant through the increased use of p4mm patterns (which 

appear the same if viewed either right-side-up or up-side-down). It seems that 

p4mm patterns offer potential for usage in a range of garment forms; not only can
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Figure 63. A p4mm Pattern Tilted by 45 Degrees.

they be rotated through 90 degrees, 180 degrees, 270 degrees and 360 degrees to 

produce the same visual effect, but, as shown in Figure 63, they can also be tilted 

by 45 degrees to produce a second visual effect (which in turn can be viewed in 

one of four directions). Recalling the dominance of p4mm patterns in both 

Javanese batiks and Sindhi ajraks, it would seem that the visual flexibility of 

p4rnm patterns may well contribute, at least in part, to their usage in a wide 

range of apparel products.

Whilst the Late Edo and End of Edo data showed that the dominant symmetry 

preferences exhibited by each category of patterning technique were broadly 

similar, It has none the less been shown that an increase in one particular



symmetry class (i.e. p4mm) came about in the absence of outside pressures for 

change, firstly through developments in stencil resist techniques and secondly 

through the restrictions imposed by garment construction techniques. However, 

it should be noted that the increased acceptance of p4mm patterns, during the 

later years of the Kdo period, may indicate that other concurrent cultural changes 

also took place.

7.7 Summary of Results

On classifying textile patterns from different cultural settings, it has been shown 

that a non-random distribution of symmetry classes and thus a unique range of 

symmetry preferences results in each case. This non-randomness is of fundamental 

significance to anthropologists, archaeologists and design historians for it 

demonstrates that design structure, assessed in terms of symmetry characteristics, 

is in some way culturally sensitive and as such may prove of use as an indicator 

of cultural adherence, continuity and change.

On assessing the extent to which the symmetry preferences of a given culture 

were maintained with the passage of time, in the absence of outside forces for 

change, it was found that a small number of symmetry classes remained in 

predominant use throughout the chosen time period. In addition, it was observed 

that an extension of symmetry preferences came about firstly, through an increase 

in the total number of symmetry classes used and secondly, through the increased 

popularity of one particular symmetry class.
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When the patterns produced by two different categories of patterning techniques 

were classified by reference to their symmetry characteristics, it was found that 

the dominant symmetry preferences exhibited by each category were broadly 

similar. In addition an increase in the use of one particular symmetry class was 

noted; this increase may have come about due, at least in part, to the restrictions 

imposed by the garment construction techniques in use at the time.
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8. IN CONCLUSION

For many years now anthropologists have focused upon understanding culture as 

a series of inter-related subsystems bound together by a series of organisational 

rules (e.g. laws, values, attitudes and habits), developed by participants in order 

that their society can be maintained and perpetuated. Typical examples of 

subsystems include the economy, religious practices, language and music. 

Observers have maintained that the conception, execution and function of the 

decorative arts of any culture can be considered to be a subsystem equally as 

integral to the growth and maintenance of a culture as any other subsystem [196]. 

Following from this, it appears that much of the relevant anthropological 

literature assumes firstly, that the same organisational rules permeate through the 

many subsystems of a given culture; secondly, that these organisational rules are 

somehow manifested in the structural characteristics of the culture’s decorative 

arts; thirdly, that continuities and/or changes in any one subsystem are reflected 

in all other subsystems (including in the decorative arts), due to changes in the 

organisational rules applicable to the culture in general. Based on these 

assumptions a number of investigators have attempted to relate the structural 

characteristics (but not the full spectrum of symmetry characteristics) of the 

decorative arts with other aspects of culture. Adams [197] attempted to relate the 

organisational principles of Sumba textile design to certain other activities such 

as marriage exchange, ritualistic practices, and structure of ceremonial language. 

A study by El-Said and Parman [198] attempted to relate the geometry of Islamic 

tiling patterns to aspects of Islamic cosmology. Kaeppler [199] found structural 

relationships between Tongan music and bark cloth design and maintained that



these were manifestations of wider societal characteristics. Arnold [200], in a 

study conducted among the residents of Quinua (Peru), found a relationship 

between decoration on textiles and the principles governing the spatial 

organisation expressed in ritual and religion. Whilst these studies may well be 

worthwhile in their own right, in that they have contributed to advances in the 

understanding of specific cultures, it should be stressed, however, that clearly 

defined rules of universally applicable methodology have failed to emerge. In 

addition, the relationship between the decorative arts and other subsystems never 

seems to be specified in a way which can lend itself to general application in 

cultures other than that which was the focus of attention in the relevant study.

The apparent importance of the decorative arts as an integral component of all 

cultures should not, however, be underestimated. This was recognised by Alland 

[201], for example, when he stated that the art of any society is,

.".an emotionally charged and culturally centred storage 

device for complex sets of conscious and unconscious 

information."

In order to gain access to the information contained therein, Washburn [202] 

argues that the,

"...regularised formal aspects of its structure must be 

delineated. In order to achieve this, however, it is first 

necessary to define some parameter which can be used to 

measure the systematic nature of the structure. The 

parameter chosen must be fundamental to all [decorative] 

art forms in order to enable the study and comparison of 

[decorative] art produced by all societies throughout the 

world. In this sense the parameter must be a cultural
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universal.”

It does indeed seem to be the case that symmetry classification is a systematic 

and reproducible analytical procedure which relies on the use of standardised units 

of measurement of a parameter which is fundamental to all decorative art form.

As such, it would appear to offer the facility for advancing the understanding of 

the decorative arts, either in general or else with specific reference to a given 

culture, medium or time period.

Why different cultural settings show different symmetry preferences is not as yet 

fully understood. However the fact that they do, indicates that symmetry 

classification is capable of isolating and classifying an attribute which is culturally 

sensitive, and as such would appear to offer the key to discovering firstly, the 

precise relationship between the decorative arts and other subsystems and 

secondly, the nature of the process of cultural change itself.

In addition to the potential offered to researchers concerned with the analysis of 

patterns in order to determine their cultural significance, symmetry classification 

should also prove to be of value to textile designers concerned with construction of 

patterns. The system of classification developed in this thesis could act as a framework 

for the teaching of the principles of pattern construction to undergraduate textile 

design students and in addition would seem to be worthy of further application in the 

realms of computer aided design.
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APPENDIX 1.

Numerical outcome of the Classification of Traditional Javanese

Batik Patterns (Sample Size = 110 All-Over Patterns)

Symmetry Class Frequency

\

pl 6

p lm l 10

p lg l 0

c lm l 2

P211 17

p2mm 9

p2mg 0

P2gg 1

c2mm 3

p3 0

p3ml 0

p31m 0

p4 5

p4mm 54

p4gm 2

p6 0

p6mm 1

Total 110
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APPENDIX 2.

Numerical outcome of the Classification of Traditional Sindhi Ajrak

Patterns (Sample Size = 71 All-Over Patterns)

Symmetry Class Frequency

pl 10

plm l 5

Plgl 0

clm l 0

p211 0

p2mm 9
p2mg 0

P2gg 0

c2mm 4

p3 0

p3ml 0

p31m 0

p4 0

p4mm 43
p4gm 0

p6 0

p6mm 0

Total 71
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APPENDIX 3.

Numerical outcome of the Classification of Jacquard Woven

French Silk Patterns, Autumn 1893 (Sample Size = 483 All-Over Patterns)

Symmetry Class Frequency

\

pl 67

plm l 3

Plgl 370

clm l 10

p211 7
p2mm 3
p2mg 6

p2gg 4
c2mm 9

p3 0
p3ml 0
p31m 0

p4 0
p4mm 2

p4gm 1

p6 1

p6mm 0

Total 483
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Numerical outcome of the Classification of Japanese Textile Patterns, 

(All Patterning Techniques) Produced During the Middle Edo, 

the Late Edo and End of Edo 

(Sample Sizes = 34; 94; 162 respectively)

APPENDIX 4.

Symmetry Class Middle Edo Late Edo End of Edo

Frequency Frequency Frequency

pl 4 18 14

p lm l 5 6 3

Plgl 0 4 5

c lm l 3 4 7

p211 1 7 9

p2mm 6 21 38

p2mg 0 4 9

p2gg 0 3 6

c2mm 8 17 40

p3 1 1 0

p3ml 1 1 1

p31m 1 0 5

p4 0 2 4

p4mm 2 3 14

p4gm 1 2 2

p6 0 1 2

p6mm 1 0 3

Total 34 94 162

Note: All patterning techniques include: stencil resist techniques; warp, weft and 

double ikat, free-hand painted resist; gold-leaf imprints; tie-dyed and other bound 

resists; embroidery and other stitch work; various forms of figured weaving.
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Numerical outcome of the Classification of Japanese Textile Patterns, 

Produced Using Two Distinct Categories of Patterning Techniques, During 

the Late Edo and End of Edo (combined)

(Sample Sizes =115 woven patterns; 116 resist dyed patterns)

APPENDIX 5.

Symmetry Class Woven Patterns Resist Dyed Patterns

Frequency Frequency

pl 19 13

p lm l 5 4

p lg l 7 2

c lm l 5 5

p211 7 9

p2mm 34 21

p2mg 4 9

P2gg 3 6

c2mm 20 21

p3 0 1

p3ml 1 1

p31m 3 1

p4 1 4

p4mm 4 13

p4gm 2 2

p6 0 2

p6mm 0 2

Total 115 116

Note: Woven patterns are of the figured variety, of the type produced on 

drawlooms or their equivalent. Resist dyed patterns are produced by stencil resist 

techniques; warp, weft and double ikat; free-hand painted resist; tie-dyed and 

other bound resists.


