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ABSTRACT 

Different modelling approaches are used to address the same decision problem but can lead to different 

estimates of life years gained and quality-adjusted life years. Three common methods are used in health 

economics: the partitioned (PSM), the state-transition (STM) and more recently the multi-state model 

(MSM). Novel methods were also identified to jointly model progression and survival using a copula 

to jointly model survival outcomes and MSMs with transitions estimated simultaneously. Differences 

in model predictions may have the propensity to change the conclusions of an economic analysis and 

the decisions made on the basis of such analyses.  

A simulation study was conducted to identify whether one approach is consistently superior to others 

under particular circumstances, or in general. The simulation study suggests that no single method is 

satisfactory in all circumstances and that approaches cannot be selected based on observed data 

characteristics alone. Case studies using real trial data also indicated that different assumptions could 

be made when modelling treatment effects, that PSMs and STMs may be inaccurate to varying degrees 

when estimating incremental outcomes and that neither is bias-free. 

This thesis demonstrated that it is not possible to determine with certainty a priori which approach to 

select, based only on the observed characteristics of the available data; thus, analysts and decision-

makers need be careful when relying on predictions from a single approach. Recommendations are 

formulated to improve the transparency of health economic analyses and increase decision-makers’ 

confidence in the use of those models. Because it is unknown whether ICERs generated using a single 

analytic approach are adequate, in some cases, decision-making should consider ICERs from a range 

of alternative approaches to account for structural uncertainty. This thesis also highlights the importance 

of clinical input in selecting the most appropriate approach for the extrapolation of survival data. 
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1 CHAPTER I: IMPORTANCE OF CONSISTENT DECISION-

MAKING 

The aim of this thesis is to guide the choice of modelling approach for estimating health state sojourn 

time for anticancer therapies conditional on the nature of data available and to guide decision-making 

based on these models. In particular, this study addresses the following question – “Is it possible to 

identify when particular analytical approaches may perform better than others, subject to the nature of 

the data available?” In this chapter, I explain the motivations underpinning the thesis. 

1.1 Motivation for this thesis 

In the UK, drug reimbursement decisions take into account multiple factors, including the safety, 

clinical effectiveness and cost-effectiveness of the technology under assessment (whether the drug 

represents good value for money for the health service).1, 2  

The determination of whether a particular health technology is cost-effective is informed by an 

economic evaluation. Broadly speaking, economic evaluation can be defined as the comparative 

analysis of two or more competing options in terms of their costs and consequences.3 Economic 

evaluation may take numerous forms (e.g. cost-effectiveness analysis [CEA], cost-utility analysis 

[CUA], cost-benefit analysis [CBA] and cost-consequences analysis [CCA]). In England, CUA is 

frequently used for the economic analysis of health care technologies. Whilst it is sometimes possible 

to undertake an economic evaluation based on a single study (e.g. a randomised controlled trial [RCT]), 

more typically, mathematical models are required to predict long-term outcomes and costs for all 

relevant decision options.  

For drugs, a decision rule based on the incremental cost-effectiveness ratio (ICER) is employed to help 

inform resource allocation decision-making. The ICER represents the ratio of the incremental costs to 

incremental health benefits for the new technology versus current practice and provides a basis for 

decision-makers to consider the balance of the additional value of a health technology against the 

opportunity costs associated with curtailing existing treatments and services to fund the new technology. 

In England, the National Institute for Health and Care Excellence (NICE) uses quality-adjusted life 

years (QALYs) gained as the common measure for health benefits; this is a measure of both the quantity 

and quality of life experienced by patients. In principle, this allows consistent reimbursement 

recommendations to be made across all disease areas, thereby promoting the efficient allocation of 

healthcare resources. For the majority of drug technologies, NICE typically adopts a decision-making 

threshold range of £20,000 to £30,000 per QALY gained, although technologies with higher ICERs 

may be recommended under particular circumstances, for example, where the intervention satisfies 

NICE's End of Life criteria or where it meets the criteria for being considered as a Highly Specialised 

Technology (HST).2, 4 
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In order to allow a ‘fair’ comparison between treatments, it is essential that economic evaluations adopt 

a robust and consistent approach. When seeking market access/reimbursement in the UK, 

pharmaceutical companies and sponsors are required to submit an economic evaluation within the NICE 

Single Technology Appraisal (STA) process. To achieve some degree of standardisation, NICE has 

published a methods guide to support its Technology Appraisal (TA) process.2 However, this guidance 

is not a technical document and covers only NICE’s broad principles for undertaking Health 

Technology Assessment (HTA). 

Owing to ongoing and rapid drug development, often with the same product having multiple licensed 

indications, oncology represents an area in which a large number of technologies require appraisal 

before they can be routinely commissioned within the NHS. Overall survival (OS) is a key endpoint in 

oncology in the advanced/metastatic setting, defined in a trial setting as the time from randomisation 

(or study entry for non-randomised studies) to death from any cause. OS is an objective endpoint and 

is generally straightforward to measure and record. However, long follow-up durations are typically 

required in order for a new technology to demonstrate a survival advantage; such evidence is frequently 

lacking. Progression-free survival (PFS), which is usually defined as the time from randomisation to 

progression or death (whichever occurs first) has therefore been suggested as a potential surrogate for 

OS in advanced cancer; this usually requires much shorter follow-up than OS. In addition, the United 

States Food and Drug Administration (FDA)5 and the European Medicines Agency (EMA),6 recently 

accepted that prolonged PFS and disease-free survival (DFS) could be considered relevant measures of 

clinical benefit, and therefore could be used as primary outcome, provided that the magnitude of the 

treatment effect outweighs safety concerns. In this case, OS should be reported as a secondary outcome. 

The use of PFS as a primary endpoint (or surrogate for OS) is not solely attributable to its practicality. 

It should be noted that although PFS is sometimes regarded as a valid surrogate for OS, a review 

conducted by the decision support unit (DSU)7 suggests that the level of evidence available supporting 

a relationship between PFS and OS varies considerably by cancer type and is not always consistent, 

even within one specific cancer type. Consequently, instances in which OS data are immature due to 

not being the primary endpoint, or are contaminated by treatment switching and the use of subsequent 

therapies, are becoming increasingly common.8 Trials may also be terminated earlier when a significant 

difference in PFS is achieved.  

Health economic models of anticancer therapies in the advanced/metastatic setting typically share the 

same structure, articulated around three health states; (i) progression-free (PF); (ii) progressed disease 

(PD), and; (iii) death.9 Notwithstanding other health effects which might be included in the model (e.g. 

health losses due to adverse events), the time spent in each of the alive health states (sojourn time) is 

usually weighted according to the average level of health-related quality of life (HRQoL) associated 

with each state to estimate overall QALYs gains. 
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Recent methodological research around modelling for anticancer therapies has largely focused on 

survival extrapolation, adjusting OS to account for treatment switching and whole disease modelling.10-

15 Whilst this represents an important step, there remain research gaps with respect to selecting the 

appropriate analytic approach to estimate health state sojourn time, and by extension, to estimate 

QALYs.  

A number of approaches, described in Chapter 2, are available and are commonly used in health 

economics when estimating the health states sojourn time for anticancer treatments; these include the 

general partitioned survival approach and the general state-transition approach (further detail is 

available in Chapter 2). It should be noted that for each method, variations exist and a number of other 

choices need to be made. These general approaches require different data inputs and involve the use of 

different assumptions. 

Each approach is subject to inherent limitations and their appropriateness is likely to vary subject to the 

amount and nature of data available, as well as other factors related to the decision problem such as 

whether there is a need to deviate from the trial (inclusion of a stopping rule for instance), or whether 

the downstream treatment pathway should be explicitly modelled.  

Whilst taxonomies have been developed to help analysts determine the most appropriate modelling 

technique (e.g. Brennan et al16, Barton et al17), these are generally broad and do not focus on issues 

which are specific to the modelling of anticancer therapies. In particular, the PSM approach is now 

widely used in oncology but does not fit neatly onto these taxonomies that assume that IPD are available 

and transitions can be estimated. These taxonomies should be updated to reflect modelling approaches 

which estimate health state occupancy directly without modelling the underlying disease process.  

At present, the choice of analytical approach to estimate the health state sojourn time for anticancer 

therapies in the advanced/metastatic setting is largely based on what the modeller considers to be 

appropriate for the decision problem at hand and/or references to models developed to inform previous 

appraisals in the given disease area.9 The availability for individual patient level data also drives the 

choice of approach. There is no explicit framework to help the modeller decide whether one particular 

approach may be more appropriate in particular cases, for instance when data are less mature or when 

the available data indicate some degree of dependence between outcomes (e.g. if longer time of 

progression appears to be associated with longer time to death). The choice of model can influence the 

conclusion of an analysis. 

As a consequence, despite the use of the generally accepted model structure for anticancer therapies, 

different modelling approaches are used inconsistently to estimate health state sojourn times and 

resulting QALY gains within NICE appraisals of cancer technologies. In addition to factors related to 
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the decision problem (inclusion of a stopping rule, modelling the pathway...) that influence the preferred 

method, other factors could inform the choice of analytic approach. A recent review conducted by 

Woods et al (2017)9, 18 found that the choice of analytic approach was rarely justified with respect to 

the data, but was instead commonly justified through reference to previous appraisals as precedent. The 

review also highlighted some general inconsistencies in analysts’ understanding of the approaches. 

The identification of new approaches and the formal exploration of when one particular approach may 

fare better than others is therefore valuable and may lead to more consistent decisions. 

 

1.2 Examples of health technology appraisals where the choice of approaches had a 

considerable impact on decision-making. 

In this section, I describe briefly three examples of NICE appraisals in which the company’s choice of 

analytic approach was contested by the Assessment Group (AG)/Evidence Review Group (ERG). The 

key approaches employed and described in this section are the partitioned survival model (PSM) and 

the state-transition model (STM). These are described in more detail in Chapter 2. The stated rationale 

provided by the AG/ERG for preferring an alternative approach is described. The validity of some of 

these arguments are discussed in Chapter 2. 

 

• Example 1: NICE TA257 - Assessment of the cost effectiveness of lapatinib or 

trastuzumab in combination with an aromatase inhibitor for the first-line treatment of 

metastatic hormone receptor positive breast cancer (BC) that over-expresses HER2 

In NICE TA257 in BC,19 the two pharmaceutical companies each submitted an economic evaluation 

(using a PSM structure), which used OS as the primary source of survival information and extrapolated 

OS from the trials using standard parametric curves from the Generalised F family of survival functions. 

The AG involved in this appraisal used an alternative modelling approach (the STM), calculating the 

expected OS from the time in the PF and PD states, resulting in a large variation in projected OS, 

compared with the projection from the two companies. The Kaplan-Meier (KMs) plots for PFS and OS 

and the numbers of PFS and OS events were not reported in the documentation for this appraisal as they 

were marked as confidential. The AG argued that their decision to model OS by combining PFS and 

PPS using a STM structure was justified because (i) OS is a result of the combination of patient 

experience in two distinct phases (the risk of death is lower in patients who have not progressed and 

greater in patients who have progressed) and therefore it was believed by the AG that standard 

parametric statistical models cannot accurately represent an outcome measure such as OS; (ii) 
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modelling OS over a long time horizon can result in large cumulative errors; (iii) post-progression 

survival (PPS) is more stable and there is greater confidence when extrapolating over a long time 

horizon, with narrower confidence intervals, and (iv) modelling PFS and OS independently could lead 

to some anomalies with negative estimates of PPS when both outcomes are projected independently 

from each other. It should be noted that these arguments reflect the view of the AG involved in this 

appraisal, some of which I consider to be debatable. 

Although the differences in ICERs generated by the companies and the AG are not entirely attributable 

to the alternative modelling approaches adopted (PSM vs. STM), the AG’s estimate of the ICER was 

approximately three times as high as that reported by the companies. Estimates of life years gained 

(LYGs) and QALYs gained are shown in Table 1. When looking at the LYs (discounted), one company 

estimated the life years to be 3.40 years for lapatinib+letrozole (LAP+LET) and 2.82 years for LET 

alone, leading to an incremental survival gain of 0.58 years. The AG, using an alternative structure 

estimated the LYs (discounted) to be 2.69 and 2.55 respectively, leading to an incremental LYs of 0.14; 

this is approximately one quarter the size of the gain estimated by the company. In contrast, the same 

company estimated the LYs to be 3.05 years for trastuzumab+anastrozole (TRA+ANA) and 2.66 years 

for ANA, leading to an incremental LY of 0.39; compared with 2.70 and 2.22 estimated by the AG, 

leading to an incremental LY of 0.48. The incremental LY estimated by the AG was therefore higher 

compared with those estimated by one of the company (competitor). The estimate for QALYs were also 

very different between the companies and the AG approach. 

 

Table 1 : Comparison of LYs and QALYs estimated by the companies and AG in TA257 

  TRA+ANA LAP+LET ANA LET 

LYGs     
Company A (PSM) 3.05 3.40 2.66 2.82 

Company B (PSM) NR NR NR NR 

AG (STM) 2.70 2.69 2.22 2.55 

QALYs     
Company A (PSM) 2.14 2.39 1.79 1.92 

Company B (PSM) 1.87 1.71 1.29 1.29 

AG (STM) 1.69 1.57 1.24 1.46 

Abbreviations: ANA: anastrozole; LAP: lapatinib; LET: letrozole; NR: not reported; TRA: trastuzumab 
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• Example 2: NICE TA472 - Assessment of the cost-effectiveness of obinutuzumab with 

bendamustine for treating follicular lymphoma (FL) refractory to rituximab 

A more recent example is TA472 in FL.20 The company  submitted what is usually referred to as a 

cohort-based semi-Markov model (a type of state transition model in which event rates are conditional 

on the time at which patients enter an intermediate model state, such as PD). In this type of model, OS 

is not taken directly from the trial but is instead estimated as a function of sojourn time in the PF and 

PD states. The company justified this approach on the basis of the immaturity of OS in the trial and the 

indolent nature of the condition. The probability of dying after progression was taken from the pooled 

PPS data across both trial arms. 

Despite the data for OS being more immature for the intervention arm, the ERG considered that directly 

modelling OS was more appropriate for the following reasons: (i) the evidence used to inform the PPS 

could equally be considered immature and subject to uncertainty (as the same number of events are 

observed - only the denominator changes); (ii) evidence to inform PFS for the intervention was also 

immature (and therefore basing predictions on two immature endpoints for the intervention could 

introduce inaccuracy), and (iii) discrepancies between the model’s predictions and the observed data 

for OS (especially the for the control arm) in the company’s model. 

Consequently, the ERG explored the use of a PSM whereby models were fitted directly to the trial OS 

data, with some assumptions on when the hazard of death would be the same between treatment arms. 

ICERs were not reported and were marked as confidential. LYGs and QALYs reported by both the 

company and ERG are shown in Table 2. Whilst estimated survival was similar for the intervention arm 

between the ERG and the company (5.80 vs 5.73 LYGs), differences were much larger for the control 

arm (4.27 vs. 5.30 LYGs). The ERG further noted that when plotting the predicted vs. observed OS, the 

approach taken by the ERG led to similar predictions to the company for the intervention arm, and both 

approaches provided a reasonable fit to the observed data. In contrast, for the comparator arm, the ERG 

commented that the company’s approach provided a poor fit to the observed OS, but that the ERG 

approach (PSM structure) provided a much better fit to the observed data, with the differences in 

survival between the comparator and intervention arms being much less pronounced. It should be noted 

that the comment from the ERG is unsurprising given that OS in the PSM is fitted directly to the trial 

data, and therefore a good visual fit to the observed data is generally expected. 

In TA472, most of the differences were attributable to the choice of analytical approach rather than the 

approach to parametric extrapolation
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Table 2 : LYs and QALYs reported by the company and the ERG in TA472 

  O-benda benda Incremental 

LYGs       

Company A (STM) 5.80 4.27 1.54 

AG (PSM) 5.74 5.30 0.44 

QALYs    
Company A (STM) 4.23 2.92 1.32 

AG (PSM) 4.09 3.48 0.62 

Abbreviations: benda: bendamustine; O: obinutuzumab 

 

• Example 3: NICE TA381 - Assessment of the cost-effectiveness of olaparib for the 

maintenance treatment of relapsed, platinum-sensitive, BRCA mutation-positive ovarian, 

fallopian tube and peritoneal cancer after response to second-line or subsequent 

platinum-based chemotherapy 

A third example of different analytic approaches used between the company and the ERG is evident in 

TA381 (olaparib for patients with ovarian cancer21). The company used a semi-Markov model whereby 

patients move through a series of states, with OS modelled as a function of the time spent in these health 

states. The ERG had a number of concerns and argued that a PSM was more appropriate because of 

challenges in modelling the pathway, the presence of treatment switching in the trial and discrepancies 

between observed and model-predicted OS. The company estimated QALYs to be 2.58 for the 

intervention and 1.69 for the comparator arm, leading to an incremental gain of 0.90 QALYs. The 

ERG’s most optimistic analysis, across any combination of parametric survival models, suggested an 

incremental gain of 0.52 QALYs. The ERG’s analysis suggested that the ICER for olaparib was 

considerably higher than the company’s estimate. 

These three examples highlight that alternative models can be used to address the same decision 

problem, but that each of these analytic approaches are associated with limitations. These different 

approaches can lead to very different estimate in terms of LYGs and QALYs. It is unknown whether 

one approach is consistently better than the other approach under particular circumstances, if not under 

none or all cases, and therefore the choice is often the responsibility of the analyst. As simply shown in 

the three examples, the differences between the approaches have the propensity to change the 

conclusions of an economic analysis and the decisions made on the basis of such analyses.  

In TA381, most of the differences were attributable to the choice of analytical approach rather than the 

approach to parametric extrapolation. 



25 

1.3 Research questions 

The aim of this thesis is to guide the choice of analytic approach to estimate health state sojourn time 

for modelling anticancer therapies conditional on the nature of data available and to guide decision-

making based on these models. In particular, this study addresses the following question – “Is it possible 

to identify when particular analytical approaches may perform better than others subject to the nature 

of the data available (e.g. under different levels of censoring, dependence and follow-up)?” 

In order to address this question, the following sub-questions will be explored: 

(i) How is health state sojourn time currently estimated in health economic models of 

anticancer therapies? 

(ii) Are the simplifications made in health economic models of anticancer therapies 

appropriate? 

(iii) How could the dependence structure between progression and survival outcomes be 

included when estimating the health state sojourn time? 

(iv) How do the identified approaches perform in terms of prediction subject to the nature 

of the data available e.g. under different levels of censoring, dependence between the 

time to progression and death following progression and follow-up? 

(v) Is it appropriate to rely on predictions obtained from a single analytical approach to 

estimate health state sojourn time? 

These research questions were developed by me and refined by his supervisory team following use of 

the different analytical approaches, both as part of his previous role as an ERG for ScHARR-TAG and 

work conducted with pharmaceutical companies 

The focus in this thesis is when a model is developed based on data from a RCT only, without explicit 

use of external evidence to replace outcomes from the trial, i.e. transitions are estimated within the trial 

(and not taken from external sources). It should however be noted that external evidence could be used 

to inform the long-term plausibility of predictions. However, this is not the focus in this thesis. In 

addition, the focus in this thesis is when individual-patient level data (IPD) are available and when 

cohort models are appropriate (e.g. interaction between individuals does not need to be modelled), and 

therefore both the PSM and STM could be used. In some cases, the choice of approach could be driven 

due to IPD not being available, or the decision problem at hand. 
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1.4 Thesis structure 

This thesis is structured in five parts and is comprised of ten chapters. The links between chapters and 

how the different chapters influence each other is shown in Figure 1. Chapter 1 is the introduction to 

the thesis. 

Part I is composed of two chapters. The first chapter (Chapter 2) describes the current approaches used 

to estimate health state sojourn time in economic models of anticancer therapies, namely the PSM and 

the STM approaches.  In this chapter, I describe the key strengths and limitations of the approaches, 

and highlight whether they have been systematically compared. Chapter 3 provides a theoretical 

background on key concepts in survival analysis. In this chapter, I briefly describe the general concept 

of survival analysis, censoring, the survivor, hazard and cumulative hazard functions, the Kaplan-Meier 

and Nelson-Aalen estimates, the Cox regression model and the concept of competing risks. These 

concepts will be briefly explained through reference to a dataset in breast cancer. These two chapters 

set the scene and provide the general background to the key terms and concepts used throughout the 

thesis. 

Part II of the thesis is also comprised of two chapters. In Chapter 4, I provide further detail on the 

estimation of health state sojourn time using multi-state models (MSMs) – a type of state transition 

model which combines transitions under a competing risk framework. This chapter focusses on the 

implementation of the MSM using two packages available in R, the msm package and the mstate 

package. I describe the key differences between the approaches and how transitions are combined under 

a competing risk framework. In Chapter 5, I highlight the simplifications made in health economic (HE) 

models of anticancer therapies to estimate health state sojourn time using the STM approach and 

demonstrate how this compares with the MSM approach. I then discuss the key assumptions and 

implications for the simplifications typically made in health economics when modelling competing 

transitions between health states. The findings from Chapters 4 and 5 impact on all subsequent chapters. 

Part III concerns the joint modelling of progression and survival outcomes and consists of: (a) a 

systematic review of methods, conducted across a range of disciplines, to explore the available methods 

used to jointly model progression and survival outcomes when estimating the health state sojourn time 

(Chapter 6), and (b) a discussion of limitations associated with the use of PPS when developing a model 

based on information collected in an RCT only (Chapter 7).  

Chapters 6 and 7 influence all of the subsequent chapters. In particular, the review (Chapter 6) identifies 

the potential approaches that could be used or combined with existing approaches which are currently 

used in health economics to jointly model PFS and OS. Challenges associated with searching the 

methodological literature are addressed through the use of iterative searching.  
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Figure 1 : Schematic representation of the thesis structure 
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Chapter 7 describes some of the limitations associated with the use of PPS when developing a model 

based on information collected in an RCT only. In this chapter, I use real datasets to illustrate the 

potential biases associated with the use of PPS data estimated only in a subset of patients who have 

progressed. I then discuss the merits and limitations of an approach that has been considered to adjust 

PPS (i.e. making the time to death following progression conditional on the time to progression) and 

show in real datasets whether this approach consistently improve predictions. 

In Part IV, alongside common approaches used in health economics (Chapter 2-5), the range of 

methodologies identified in Chapter 6 is applied to a series of simulated datasets (Chapter 8) and real 

datasets in Chapter 9. In Chapter 8 (simulation study), hypothetical trial data are generated covering a 

wide range of possible scenarios relating to different data characteristics. Methods described in Chapter 

2-6 are then applied to test their appropriateness and performance subject to the nature of the data 

available (dependence between the time to progression and time to death following progression, level 

of censoring and duration of follow-up). Only those methods for jointly modelling PFS and OS 

identified from the review in Chapter 6 which could be adopted easily in health economics (i.e. had 

already been programmed in a suitable package) were considered in the simulation study. In Chapter 8, 

selected methods are applied to simulated single trial arms only to examine their performance in 

estimating health state sojourn time and QALYs. This single trial arms approach was adopted in order 

to avoid the potential for spurious conclusions arising from apparently appropriate incremental 

outcomes despite the presence of a poor model fit in both treatment groups. Furthermore, when 

estimating life years and QALYs in the intervention group, different modelling assumptions could be 

made (using hazard ratio, pooling data...) as less information is available about the treatment effect, 

increasing challenges when interpreting results.  

Because a single trial arms approach is used in Chapter 8, for completeness, in Chapter 9, an exploratory 

analysis is conducted whereby selected methods (the PSM and STM) are applied to two trial arms to 

examine their performance in estimating the incremental LYGs and QALYs between competing 

options, to support and confirm findings from Chapter 8. In Chapter 9, methods are applied to a series 

of case-studies involving real data from trials in gastric cancer.  

Part V (Chapter 10) presents the conclusions of the thesis, with key recommendations and a summary 

of findings, a description of the limitations, strengths, and areas for further research. 
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PART I: WHAT IS THE PROBLEM? 

2 CHAPTER II: APPROACHES CURRENTLY USED IN HEALTH 

ECONOMICS TO ESTIMATE HEALTH STATE SOJOURN TIME 

2.1 Chapter overview 

This chapter highlights the key differences between the partitioned survival model (PSM) and state-

transition model (STM) approaches, as well as the strengths and limitations that are often perceived 

with these approaches. The PSM and STM are described in Section 2.3 and 2.4, respectively. In Section 

2.5, I discuss whether these approaches have been compared systematically. 

2.2 Introduction 

Two broad analytic approaches are currently used in health economics (HE) to estimate health state 

sojourn time and QALYs when modelling anticancer treatments;  

• The partitioned survival approach whereby the OS and PFS curves are used as the primary 

sources of time-to-event information, with the sojourn time in the PD state derived as the 

difference between the cumulative survivor functions for OS and PFS, and; 

• The state-transition approach, whereby OS is estimated indirectly as a function of the time to 

progression (TTP), the time to pre-progression death (PrePS) and the time to death following 

progression (also referred as PPS). The term state-transition is used here to describe the general 

process by which patients move through a series of mutually exclusive and jointly exhaustive 

model health states. Different terminologies are commonly used in the literature to describe the 

general state-transition process, including: compartmental model; illness-death model, and 

progressive three state model. There are two key variations of the state-transition approach 

which will be the focus in this thesis: 

o The multi-state model (MSM) whereby the competing transitions (transitions from 

PF to PD or death) are explicitly modelled and combined under a competing risk 

framework. Therefore, the term MSM is used throughout this document to refer to the 

STM whereby transitions are combined under a competing risk framework, 

o The STM whereby simplifications are made with respect to the competing 

transitions (referred hereafter as the Simplified STM). In this variation of the STM, 

which is the most commonly used in health economic analysis (as demonstrated in 

Chapter 4.5), PFS, the cumulative incidence of the competing events (progression and 

pre-progression death) is used directly to represent the combined transitions to 

progression or death from the progression-free health state, with additional assumption 

made to separate the events.  
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It should be noted that whilst the focus of this thesis is around the commonly used three state 

advanced/metastatic cancer structure, additional health states could be included, for example to reflect 

multiple progression events associated with sequences of treatments. Issues around the choice of 

analytic approach are largely similar irrespective of the number of health states included in the model. 

Key characteristics, strengths and limitations of the PSM and the STM approaches in the case of the 

typical three state cancer model are summarised below in Sections 2.3 and Section 2.4, respectively. 

Furthermore, the focus in this thesis is when IPD is available, and therefore both the PSM and STM 

could be used. In some cases, the choice between approach could be driven due to IPD not being 

available, or the decision problem at hand. 

2.3 The partitioned survival approach 

As highlighted in a recent review conducted by Woods et al (2017), the PSM is probably the most 

commonly used modelling method applied in the economic analysis of advanced/metastatic anticancer 

treatments.9 Under this approach, PFS and OS are modelled as two independent processes using data 

on these outcomes. This approach is intuitively attractive, as it relies directly on the PFS and OS data 

from the trial with no (or minimal) assumptions about any potential relationship between PFS and OS. 

The PSM originates from the Quality-Adjusted Time Without Symptoms or Toxicity (Q-TWIST) 

approach,9 which was developed to incorporate quality of life information into survival analysis. The 

typical implementation of PSMs involves partitioning overall survival time into time with/without 

progression and applying utilities to each alive health state to estimate QALYs gained. Considering the 

typical three-state model (PF, PD and death) used in the economic analysis of advanced/metastatic 

cancer therapies, the time-to-event curves for OS and PFS are used as primary sources of time-to-event 

information to estimate health state occupancy over time. Except in the rare cases in which survival 

data are not subject to censoring or Kaplan-Meier functions are complete, PFS and OS are typically 

extrapolated using parametric functions. In the PSM, the probability of being in the PF health state at 

any time t is given by the cumulative probability of PFS; the probability of being alive at any time t is 

given by the cumulative probability of OS, and; the probability of being in the PD state at time t is given 

by the difference between the OS and PFS functions. Ignoring discounting, the mean sojourn time in 

the PFS state is estimated by integrating the PFS survival function, whilst the mean sojourn time in PD 

is estimated as the difference between the area under the curve for the PFS and OS functions  (see Figure 

2). 
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Figure 2 : Estimation of health state occupancy in partitioned survival models 

 

A key characteristic of the PSM approach, compared with the STM process (described later in Section 

2.4), is that it deals with state occupancy directly rather than estimating transitions between health states. 
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residing in each model health state at each time-point are estimated directly from the cumulative PFS 

and OS survivor functions.  

Whilst the simplicity of the PSM approach is often considered attractive, it is associated with several 
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• Limitation 2: Inability to model the underlying process. Related to Limitation 1, the PSM 

does not involve modelling the underlying disease process and therefore, the selection of an 

appropriate survival function to extrapolate long-term outcomes may be challenging when there 

is little information on the expected long-term effects of the intervention.  

• Limitation 3: Difficulties in extrapolating outcomes when observed data are immature. 

Related to Limitation 2, producing a reliable extrapolation is difficult when trial follow-up is 

limited and/or when the degree of censoring is substantial. This is particularly important given 

that OS data are often immature.22 Within the PSM, extrapolation of the survivor functions is 

often based on short-term trends observed in the trial. These trends are then assumed to hold 

throughout the extrapolation period.9 This may not be appropriate especially when 

extrapolating over a long time period. It has been argued that the extrapolation of OS could 

prove less reliable and uncertain compared with the extrapolation using intermediate endpoints 

(such as modelling OS using PFS and PPS). However, as described in Chapter 7, this is 

debateable, and there are a number of issues with the extrapolation of PPS. 

• Limitation 4: Problems associated with ignoring the dependence structure between PFS 

and OS. The dependence structure between PFS and OS is typically not included in health 

economics whereby survival models are fitted separately to the available data on PFS and OS. 

However, PFS and OS events overlap with one another (PFS is a composite endpoint including 

progression and death occurring prior to progression) and events are structurally dependent in 

the sense that death cannot be followed by progression.9 The lack of consideration of the 

structural dependence between PFS and OS may in some instances lead to anomalies, whereby 

the cumulative probability of PFS exceeds the cumulative probability of OS at certain time-

points. The independent modelling of PFS and OS could also lead to potentially implausible 

scenarios whereby the cumulative PFS probability reaches zero quickly (short tailed) but the 

OS function reaches a plateau (long tailed). Ignoring the dependence structure between the 

outcomes leads to a disconnect between PFS and OS. Whilst there are methods available in 

other fields to incorporate the dependence structure between joint survival endpoints (such as 

modelling PFS and OS under a semi-competing risk framework), these are rarely used in health 

economic models. 

• Limitation 5: Lack of transparency around the underlying process. Related to Limitation 

2, the PSM deals with health state occupancy. Therefore, transitions are not explicitly modelled. 

Therefore, it may be more difficult to understand the underlying process of progression or what 

is implied about the relative treatment effects of a new therapy (compared with the STM, which 

involves the explicit modelling of the underlying disease process). 
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2.4 The state-transition model approach 

Within the STM, transitions between health states are explicitly modelled and individuals move 

between these health states over time. This is different to the PSM, whereby state occupancy is modelled 

directly. In the STM, OS is estimated indirectly conditional on the transition intensities (rates). The 

relationship between OS and the intermediate health states is made explicit and requires quantification. 

With the multi-state model, transition intensities (rates) for progression (𝜆12), pre-progression mortality 

(𝜆13) and death following progression (𝜆23) are explicitly modelled as show in Figure 3.  

Figure 3 : Conceptual representation of the multi-state model 

 

The STM and PSM as currently implemented in health economics are often conceptually represented 

using Figure 3. This not correct as the competing transitions are not modelled separately in the version 

of the STM as implemented in health economics. A better conceptual representation is Figure 4 as PFS 

is typically used directly with progression and pre-progression death events split. Representing the PSM 

using Figure 3 (as usually done) is also not appropriate as transitions are not modelled within the PSM. 

A better conceptual representation is the one shown above in Figure 2. 

Figure 4 : Conceptual representation of the STM as implemented in health economics. 
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When transitions are constant (i.e. event rates are assumed to be exponentially distributed), STM is 

often called as a (time-homogenous) Markov model. A key property of the Markov model is that it is 

“memoryless”, that is, transitions from one state to another depend solely on the patient’s current state 

and are independent of their previous transitions.23 When the transition intensities vary with time (for 

instance, piecewise exponential or other time-varying models), STM is called as time-varying (or non-

time homogeneous) Markov model. The term semi-Markov is often used when one or more transition 

intensities depend on the time spent in an intermediate health state or calendar time;9 hence, event  risk 

in an intermediate health state is conditional on when the patient entered that state. It should be noted 

that the term Markov model is often used inappropriately in health economics to describe the general 

state-transition process, despite most models not being true ‘Markov models’ in that transition 

intensities are not constant.9 

The STM approach is attractive as it can provide greater flexibility compared with the PSM. In 

particular, the STM approach allows a more conceptually valid representation of the modelling of OS 

by considering the differences in event hazards between different group of patients who progressed and 

did not progress (addressing Limitation 1 of the PSM) but also modelling the general underlying natural 

history process (addressing some of Limitations 2 and 5 of the PSM). Secondly, using data from the 

intermediate endpoints (TTP/PFS and PPS) could reduce the uncertainty associated with the 

extrapolation as more events are recorded in people participating to the transition (addressing Limitation 

3 of the PSM). Whilst not commonly done, it can also be easier to introduce the dependence structure 

when modelling PFS and OS (addressing Limitation 4 of the PSM) by making PPS conditionally 

dependent on TTP (see Chapter 7), although this can also be done with the PSM under a semi-competing 

risk framework (see Chapter 6.9). Finally, the STM may be argued to be more transparent (addressing 

Limitation 5 of the PSM) compared with the PSM as the relationship between health states is explicitly 

stated and transitions between these health states are modelled. This is particularly attractive when there 

is the need to use external data, for instance, when data on OS are immature or lacking. However, the 

STM approach is also subject to limitations, with some of the advantages described above also being 

argued to be disadvantages. As with the PSM, the limitations highlighted below represent some of the 

arguments that have been made against the STM, and therefore, reflect different points of view (some 

of which may be arguable or may contradict themselves): 

• Limitation 1: Greater number of assumptions required. Additional assumptions are 

required with the STM due to the additional number of parameters (transitions). For example, 

PFS is assumed to be a good surrogate for OS, which may not always be appropriate. Other 

assumptions could be that the time to death following progression is same between arms. 

Assumptions need be made on how to separate progression and pre-progression death events. 

Assumptions are made explicit in the STM, whilst for PSMs, these assumptions are implicit. 
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Whilst the explicit statement of assumptions may increase transparency, the number of 

assumptions required in the STM, may make the model less transparent.  

• Limitation 2: The greater number of variables could increase uncertainty when the 

extrapolation is already uncertain. The plausibility of the OS projection is dependent on the 

robustness and long-term extrapolation of every transition. Combining uncertain transitions 

(uncertainty associated with extrapolation) increases uncertainty in the resulting OS. This was 

highlighted by the ERG in TA472 (described in Chapter 1.2), where the estimation of OS was 

reliant on the extrapolation of immature data for PFS and PPS. In the PSM, OS is a results of 

the extrapolation of a single event (death). 

• Limitation 3: The use of a post-randomisation outcome (PPS). There could be some 

selection biases when estimating the transition from the progressed health state to death (PPS), 

as this is a post-randomisation measure. For example, for PPS, this becomes problematic if 

limited numbers of patients have progressed, and/or if those progressing early are expected to 

have different prognoses to those who have not progressed at the end of the clinical study. This 

issue is described in further detail in Chapter 7. Furthermore, whilst it is often argued that using 

PPS helps with the extrapolation, the same number of events (or fewer) are included in the 

estimation of this transition compared with OS, with the only difference relating to the number 

of patients included in the denominator (N progressed rather than N randomised). Therefore, 

whilst the estimate for PPS may be good for those who participated to this transition, there is 

no information on whether this is appropriate for people who did experience this transition in 

the trial. Therefore, using PPS may not necessarily make the estimation of OS more reliable, 

compared with directly fitting a model to OS data (this is discussed in Chapter 7). Another 

related limitation is that patients progress later are more likely to be censored in the PPS dataset. 

This would suggest that there is time-dependent bias in the form of informative censoring. 

Therefore, the STM may only partly address the limitation with the PSM in representing the 

true OS. 

• Limitation 4: Variation in implementation. Different approaches/assumptions can also be 

used when implementing STMs. As described previously, transitions from progression-free to 

progression and pre-progression mortality could be modelled separately under a competing risk 

framework (also referred as the MSM). Alternatively, PFS, that is, the cumulative incidence of 

progression and pre-progression mortality, could be used together with assumptions on the 

contribution of progression and pre-progression mortality to the overall number of PFS events 

(referred to here as the Simplified STM approach commonly used in HE). These differences in 

implementation could potentially lead to inconsistencies in predictions, as demonstrated in 

Chapter 4.5 and 5.4.  
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• Limitation 5: Impact of interval censoring: PFS may be subject to interval censoring, which 

may affect its robustness and therefore impact the estimation for OS in the STM. 

• Limitation 6: more difficult to estimate transition in the absence of patient level data. 

Although not impossible, it is challenging to implement a STM when IPD are not available (as 

PFS and OS are correlated). 

 

2.5 Have the approaches been compared systematically?  

There is increasing evidence, or at least recognition, that different analytic approaches may lead to 

different estimates of modelled health gains, and therefore different cost-effectiveness results. These 

inconsistencies have been highlighted in a number of NICE TAs (described in Section 1.2) including 

NICE TA25719 (lapatinib and trastuzumab in combination with an aromatase inhibitor for breast cancer) 

NICE TA47220 (obinutuzumab plus bendamustine for follicular lymphoma), and NICE TA381 

(olaparib for ovarian cancer).21 These differences have also been highlighted by other researchers 

including for example, Williams et al (2017),24 Briggs et al (2015),25 Smare et al,26 Batteson et al,27 and 

Cranmer et al.28 

Whilst these studies have compared estimates in LYGs and QALYs using the PSM and the STM 

(including MSM) approaches,19, 24, 25 they did not compare the different approaches systematically and 

comparisons were typically limited to single case studies. This makes it difficult to determine whether 

one approach is consistently superior to another. For instance, in the examples described in Chapter 1.2, 

the use an alternative approach was justified by the AG/ERG based on their perception of limitations 

with the approach used by the company.  

Furthermore, the comparison in some of these studies could sometimes be deemed unfair due to the 

different assumption used.24, 27, 28 As a consequence, it is difficult to understand whether the differences 

observed are attributable to differences in model assumptions or implementation. For instance, Williams 

et al (2017) compared the PSM with two variations of the STM; the MSM (under a competing risk 

framework) using the R package mstate and the Simplified STM as implemented in a NICE cancer 

appraisal (TA174) for the first-line treatment of chronic lymphocytic leukaemia (CLL).24 The authors 

showed some differences in results between the two variations of the STM (the MSM and the Simplified 

STM) and the PSM. However, different assumptions were made between the MSM and the Simplified 

STM, which makes drawing any comparison problematic. Transitions were assumed to be constant in 

the Simplified STM (as this was the assumption used in TA174). In contrast, transitions were assumed 

to be time-varying within the MSM. However, the discussion section of the paper acknowledges that 

under the same assumptions, predictions were closer between approaches in their case-study. 
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Similarly, in the comparison of the STM and PSM in some of the studies highlighted above, the choice 

of parametric extrapolation was sometimes questionable26, 27 and therefore it is difficult to understand 

whether the appropriateness of an approach is primarily driven by the type of approach or the underlying 

assumptions (for example, the choice of a parametric survival models used to extrapolate outcomes). 

It is possible that one approach may be more appropriate than another depending on the nature of the 

data available. Whilst these individual comparisons provide some useful knowledge on the performance 

and limitations of particular methods, model choice is not based on knowledge of the performance of a 

particular method given the available data, because that information is not available. Perhaps more 

importantly, whilst some comparisons between approaches are available (single case studies), the 

assessment of the performance of a method is often limited to the fit of the method to the observed 

period of a trial. This does not provide any information on whether the long-term extrapolation with 

one approach is more suitable than another. This is because data are not observed following the end of 

the trial. However, it should be acknowledged that some studies are available and compared the 

prediction to earlier cut-off with results from the trial reported at later cut-off, but data were still not 

complete.23 It should be noted that a number of other studies are available in the literature and that the 

examples described in Chapter 1.2, in addition to the additional studies referenced in this section only 

provide a small selection of studies comparing the different approaches. However, whilst the list 

provided in this section is far from exhaustive, all the studies identified/known are limited to single case 

studies, sometimes, with arguable assumptions to allow a fair comparison. No study providing a 

systematic comparison of approaches is known or has been identified following a rapid search of the 

literature. 

Although no formal systematic review has been conducted, no study providing a systematic comparison 

of approaches has been identified following a rapid search of the literature (non-systematic search in 

web-based search engines) or was known by the student, his supervisory team or experts consulted 

during this thesis. It is reasonable to assume that if such study existed and was available/published, this 

would be known and commonly cited. 

Consequently, a systematic comparison of the different approaches is required to understand whether a 

particular approach may be more appropriate and perhaps superior to predict PFS and OS (over a 

lifetime horizon) according to the characteristics of the data.  

In the next chapter (Chapter 3), I briefly describe the general concept of survival analysis, censoring, 

the survivor, hazard and cumulative hazard functions, the Kaplan-Meier and Nelson-Aalen estimates, 

the Cox regression model and the concept of competing risks. These concepts will be explained through 

reference to a dataset in breast cancer and are important as they reflect key terms and concepts used 

throughout the remainder of this thesis. 
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3 CHAPTER III: KEY CONCEPTS IN SURVIVAL ANALYSIS USED 

THROUGHOUT THIS THESIS 

3.1 Chapter overview 

This chapter aims to provide some theoretical background and a brief description of some of the key 

concepts used in survival analysis that will be used throughout this thesis. These concepts will be 

necessary to understand some of the approaches described hereafter. Further description and details on 

survival analysis are available in a number of textbooks including Collett D. Modelling Survival Data 

in Medical Research, Third Edition. Textbook - Chapman & Hall/CRC Texts in Statistical Science 

2014).29 In this chapter, key concepts will be demonstrated through reference to data for the comparator 

arm from a real trial in breast cancer (CALGB 40502).30, 31 

The datasets used is described in Section 3.2. The concepts of survival analysis and censoring are 

described in Sections 0 and 3.4, respectively. The concepts of the survivor, hazard and cumulative 

hazard functions are described in Section 3.5. Non-parametric estimates of the survivor function (the 

Kaplan-Meier and Nelson-Aalen estimate) are described in Section 3.6. In Section 3.7 and Section 3.8, 

I describe the Cox proportional hazards model and the concept of parametric models. In Section 3.9, I 

briefly describe how parameters are estimated using the maximum likelihood function. Finally, in 

Section 3.10 I briefly describe the concept of competing risks. 

3.2 Description of the datasets used throughout this thesis 

A number of datasets are used in this thesis to either illustrate the key concepts in survival analysis 

(Chapter 3), the implementation of key methods (Chapters 4 and 5), the impact of censoring on the 

estimation of post-progression survival (Chapter 7) or are used as in case-studies to assess the 

performance of methods. 

 

Datasets used in this thesis include: 

• Individual patient-level data for the control arm from a published randomised Phase III trial of 

weekly paclitaxel compared to weekly nanoparticle albumin bound nab-paclitaxel or 

Ixabepilone with or without bevacizumab as first-line therapy for locally recurrent or metastatic 

breast  cancer (CALGB 40502).31 The breast cancer dataset included 275 patients, of whom 

217 had a recorded PFS event (195 progression events and 22 deaths prior to progression).32 

There were 137 death events overall. This dataset was available through the Project Data 

Sphere. 
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• Individual patient-level data for the control arm from a published randomised Phase III 

randomised, placebo-controlled study of docetaxel in combination with zibotentan in patients 

with metastatic castration-resistant prostate cancer. The prostate cancer dataset included 470 

patients, of whom 401 had a recorded PFS event (340 progression events and 61 deaths prior 

to progression).32 There were 255 death events overall. This dataset was available through the 

Project Data Sphere. 

• Individual patient-level data from a published randomised Phase III trial of darbepoetin alpha 

in previously untreated extensive-stage small-cell lung cancer treated with platinum plus 

etoposide. The lung cancer dataset included 479 patients, of whom 440 had a recorded PFS 

event (313 progression events and 127 deaths prior to progression).33 There were 397 death 

events overall. This dataset was available through the Project Data Sphere. 

• A dataset by the GASTRIC (Global Advanced/Adjuvant Stomach Tumor Research 

International Collaboration) group used in a previously meta-analysis to assess the surrogacy 

between PFS and OS, including a collection of 20 cancer trials in advanced/recurrent gastric 

cancer publicly available in the R package surrosurv (gastadv dataset). The gastric cancer 

dataset included information on 4,069 individuals treated with different treatments in gastric 

cancer, of whom 3,820 had a recorded PFS event (2914 progression events and 906 deaths prior 

to progression). There were 3,635 death events overall.  

Table 3 : Summary of characteristics of datasets used throughout this thesis 

 Breast Prostate Lung Gastric 

Available from: Project Data 

Sphere 

Project Data 

Sphere 

Project Data 

Sphere 

Surrosurv 

(gastadv dataset) 

N 275 470 479 4,069 

Number PFS events 

recorded 

217 401 440 3,820 

• Progressive 

event 
195 340 313 2,914 

• Death prior 

progression 
22 61 127 906 

Total number of deaths 137 255 397 3,635 

Used in Chapter Chapter 3-5 Chapter 5 Chapter 5 Chapter 7, 9. 
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The Kaplan-Meier (KM) estimates (this concept is described in Section 3.6) for PFS, OS, TTP, prePS 

and PPS are shown in Figure 5, for the breast cancer dataset, Figure 6 for the prostate cancer dataset, 

Figure 7 for the lung cancer dataset and Figure 8 for the Gastric dataset (collection of trials). 

The BC dataset is used in (1) Chapter 3 to illustrate the key concept in survival, (2) Chapter 4 when 

illustrating the implementation of the multi-state model and (3) Chapter 5 when illustrating the 

implementation of the STM. Although the three datasets (breast, prostate and lung) are used within this 

thesis, the breast cancer dataset is used when illustrating the implementation of key approaches and 

describing key concepts in survival analysis as the breast cancer had a lower number of recorded PFS 

and OS events 

The Lung and Prostate datasets are only used in Chapter 5 when assessing assumptions regarding the 

estimation of the transition for leaving the progression-free health state (combined transition). 

The Gastric dataset is used in Chapter 7 when assessing the implication for using PPS in a trial and in 

Chapter 9 in case-studies. 

 

Figure 5 : Kaplan Meier Breast cancer dataset  
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Figure 6 : Kaplan Meier Prostate cancer dataset 

 

 

Figure 7 : Kaplan Meier Lung cancer dataset 
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Figure 8 : Kaplan Meier Gastric cancer datasets (collection of trials) 

 

3.3 What is survival analysis 

Survival analysis is described by Collett (2015)29 as “the analysis of data in the form of times from a 

well-defined time origin until the occurrence of some particular event or end-point”.  

In our context of trials of anticancer treatments; 

• The time origin is typically the time of randomisation/recruitment. The time origin could also 

be the time at which a particular treatment is initiated or the time at which a particular prior 

event occurs. 

• The events/endpoints typically include:  

o Death – measured in terms of overall survival (OS) 

o Progression - measured in terms of time to progression (TTP) or progression-free 

survival (PFS). The latter includes death occurring prior to progression. 

o Disease recurrence or relapse – measured in terms of disease-free survival (DFS) or 

event-free survival (EFS). Depending on the study, this usually includes death as an 

event. 

o Treatment discontinuation – measured in terms of time to treatment discontinuation 

(TTD). This usually includes death as an event.  

Time-to-event data are special and cannot be analysed using standard statistical analysis as these are: 

(i) frequently censored (the concept of censoring is described Section 3.4); (ii) generally not 

symmetrically distributed (e.g. positively skewed).29 This is illustrated in Figure 9 for the outcome of 

PFS in the BC dataset. 
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Figure 9 : Histogram for time to death from the BC dataset (CALGB 40502) 

 

3.4 What is censoring? 

The concept of censoring is central to the analysis of survival data. There are different types of 

censoring. In this thesis, the focus will be on right-censoring as this is the most common type of 

censoring in oncology trials.  

Right censoring occurs when the event of interest (e.g. PFS) has not been observed for a particular 

individual and therefore the censored survival time is less than the actual, but unknown, survival time. 

This is called right censoring because the event occurs to the right of the last known observed time-

point. There are a number of reasons for an event not to be observed within a trial. This could be because 

the study ended before the event occurred (also referred as administrative censoring). Alternatively, 

individuals in the trial could be lost of follow-up, thus, whilst no event was observed up to the last 

contact with the patient, it is unknown if an event happened subsequently as no information is available 

from this patient after their last contact. Patients may also experience a separate event (such as death) 

which prevents the event of interest (progression) from occurring.  

The concept of right censoring is illustrated in Figure 10. On the left-hand side of Figure 10, the true 

time to event is presented. However, it can be seen that for Patients 2, 6 and 10, the event occurred after 

the end of study follow-up. Therefore, these individuals are said to be censored at the end of the study, 

as shown on the right-hand side of Figure 10.
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Figure 10 : Illustration of right censoring 

 

 

In the BC dataset, there were 58 censored PFS observations and 138 censored OS observations.  

Less common is left censoring. Left censoring occurs when the subject is at risk for the event before 

the study start. Another form of censoring is interval censoring. Interval censoring occurs when the 

event of interest occurs within a time interval and the precise event time is not known. 

Finally, informative censoring occurs when censoring cannot be directly assumed to be independent of 

the survival event and censoring provides additional information than the fact that survival time 

exceeded a certain time.34 For instance, time to progression could be informatively censored by death.  

3.5 The survivor, hazard and cumulative hazard function 

Two central concepts of survival analysis are the survivor function and the hazard function. Let us 

denote 𝑇, the survival time, as a continuous random variable that can take any non-negative value. This 

random variable has a probability distribution with an underlying probability density function (PDF) 

𝑓(𝑡). The cumulative distribution function (CDF) of T (or cumulative incidence function) is then given 

by: 

𝐹(𝑡) = 𝑃(𝑇 ≤ 𝑡) = ∫ 𝑓(𝑢)𝑑𝑢
𝑡

0
         

with 𝑇, the random variable for survival time and 𝑡, the actual survival time. This function summarises 

the cumulative probability of an event occurring before time 𝑡.29 

The survival function, 𝑆(𝑡), is the probability that the survival time exceeds time t and can be written 

as: 

Time 0 END OF STUDY
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Time 0 END OF STUDY

Patient 10
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𝑆(𝑡) = 𝑃(𝑇 ≥ 𝑡) = ∫ 𝑓(𝑢)𝑑𝑢
∞

𝑡
= 1 − 𝐹(𝑡)       

In addition to the PDF, 𝑓(𝑡), and the survivor function, 𝑆(𝑡), the hazard function ℎ(𝑡) is an important 

concept and can be defined as the instantaneous event or hazard rate at time t. It expresses the event 

rate at time 𝑡, conditional on the event not having occurred before 𝑡. This is described by Collett et al 

(2015)29 as the probability that the random variable associated with an individual’s survival time, 𝑇, 

lies between 𝑡 and 𝑡 + 𝛿𝑡, conditional on 𝑇 being greater than or equal to 𝑡. 

ℎ(𝑡) = 𝑙𝑖𝑚
𝛿𝑡→∞

(
𝑃(𝑡≤𝑇<𝑡+𝛿𝑡 |𝑇≥𝑡)

𝛿𝑡
)          

The cumulative hazard function (i.e. the cumulative risk of an event occurring by time t) 𝐻(𝑡), can be 

derived from survivor function 𝑆(𝑡) as: 

𝐻(𝑡) = ∫ ℎ(𝑢)𝑑𝑢 =  −𝑙𝑜𝑔 𝑆(𝑡)
𝑡

0
        

The hazard function ℎ(𝑡) can also be estimated from the survivor function 𝑆(𝑡) (and vice versa), and 

the cumulative hazard function 𝐻(𝑡), so that: 

ℎ(𝑡) =
−𝑑𝑙𝑜𝑔𝑆(𝑡)

𝑑𝑡
=  

𝑑𝐻(𝑡)

𝑑𝑡
=  

𝑓(𝑡)

𝑆(𝑡)
         

3.6 Non-parametric estimates of the survival function: the Kaplan-Meier (KM) and Nelson-

Aalen estimates 

The survivor function, 𝑆(𝑡), is often estimated non-parametrically in the form of the Kaplan-Meier 

estimate. The Kaplan-Meir estimate of the survivor function is given by35: 

�̂�(𝑡) = ∏ (1 −
𝑑𝑖

𝑛𝑖
)𝑖:𝑡𝑖≤𝑡           

With 𝑡𝑖 denoting the time when at least one event happened, 𝑑𝑖 the number of events that happened at 

time 𝑡𝑖, and 𝑛𝑖 the total individuals at risk (have not yet had an event or been censored) up to time 𝑡𝑖. 

In brief, a plot of the Kaplan-Meier estimate of the survivor function is a step, in which the estimated 

survival probabilities are constant between adjacent event time points and which decrease at each event 

time. Survival times are arranged in ascending order and the beginning of each time interval corresponds 

to the time at which an event occurred. 

Whilst the Kaplan-Meier estimate of the survivor function is commonly used to represent survival data 

in clinical studies, an alternative estimate of the survivor function is the Nelson-Aalen estimate (or 

Altshuler’s estimate)36 with �̃�(𝑡) the Nelson-Aalen cumulative hazard rate estimator given by: 
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�̃�(𝑡) = ∑
𝑑𝑖

𝑛𝑖
𝑡𝑖≤𝑡             

And �̃�(𝑡) the survival function 

S̃(𝑡) = e−�̃�(𝑡)           

The Kaplan-Meier estimate is an approximation and will always be lower than the Nelson-Aalen 

estimate. However, both estimates are very similar, with the Nelson-Aalen estimate performing better 

in small samples. 

Figure 11 shows the cumulative hazard for OS using the KM survivor function (black line) and Nelson-

Aalen estimates (red dashed line). The cumulative hazard function can be obtained from the KM or 

Nelson Aalen estimate from the relationship between the survivor and cumulative hazard function. It 

can be seen that the two are very close to each other, with the Nelson-Aalen estimate being slightly 

higher than the KM estimate. 

Figure 11 : Comparison of the cumulative hazard function from the KM and Nelson Aalen-

estimate in the BC dataset (CALGB 40502) 

 

3.7 The Cox regression model 

Another important concept in survival analysis is the Cox proportional hazards model.37 This is 

commonly used to study the effect of covariates on survival time. The Cox model is a semi-parametric 

model, which assumes a constant effect of the covariates on the hazard function, and thus, an implication 

is that this model is only appropriate when the survivor function for the groups compared (predictor 

variable) do not cross, unless time-varying covariates are included.  
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The Cox model defines the hazard function of an individual 𝑖 by 

ℎ𝑖(𝑡) = e𝛽𝑥𝑖ℎ0(𝑡)          

where ℎ0(𝑡) denotes the baseline hazard function (the hazard function obtained when all covariates are 

set to zero); 𝛽 denotes the logarithm of the hazard ratio and 𝑥𝑖 denotes the value of the covariate 

With the Cox model, we are only interested in estimating the hazard ratio (the 𝛽-coefficients). The 

hazard ratio (HR) is the ratio of the hazard rates for the groups compared according to the explanatory 

variable. The HR is commonly used to summarise the effect of a treatment in oncology trials, or the 

effect associated with other variables. The 𝛽-coefficients (the HR) could be estimated using the method 

of maximum likelihood or alternatively a Bayesian framework could be used. 

It is important to highlight that the semi-parametric nature of the Cox model means that no assumptions 

are made about the form of the baseline hazard. Therefore, the Cox model is interested in estimating 

the effect of a covariate, not the baseline hazard. Once the 𝛽-coefficients (the effect of the covariates) 

have been identified, the baseline hazard function ℎ0(𝑡) and corresponding survivor function can then 

be estimated. 

Whilst the Cox model provides an important interpretation of survival data, it cannot be used to 

extrapolate beyond the observed period of a study without further assumptions about the baseline 

hazard. As previously mentioned, an implication of the Cox model is also that the effects of the 

covariates are constants; which may not be valid. Therefore, it is important to test this assumption. A 

number of methods are available, which are not the focus of this thesis, including inspection of 

Schoenfeld residuals and/or log-cumulative hazard plots. 

3.8 Parametric survival models 

Whilst Cox proportional hazard models may be useful to estimate treatment effects, health economic 

models often require the extrapolation of outcomes beyond the study follow-up and therefore, we need 

to model the baseline hazard. In the Cox model, no probability distribution is assumed. In contrast, 

parametric survival models assume a specific probability distribution for the survival times and thus, 

can be used to analyse survival data and also to extrapolate beyond the observed period of a study. 

A number of standard parametric models are often considered; these include: the exponential; Weibull; 

Gompertz; generalised gamma; gamma, log logistic and log-normal distributions. In addition to the 

standard parametric models, flexible parametric models can provide additional flexibility in the 

modelling of the shape of the hazard function.38, 39  
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Parametric models are often separated into proportional hazard (PH) models and accelerated failure 

time models (AFT). In the PH regression model, the effect of covariates is obtained on the hazard 

function.40 PH models include the exponential, Weibull, Gompertz and some forms of spline model 

(hazard forms) and assumed that the effect of a covariate is constant. In the accelerated failure-time 

regression model, the effect of covariates on the logarithm of the survival time is assessed.40 AFT 

models include the log-normal, log-logistic, generalised gamma and assume that the effect of a covariate 

is increasing (accelerating) or decreasing (decelerating) over time, and therefore is not constant (unless 

the AFT parameter is 1). It should be noted that some models can be parameterised as either PH or AFT  

(for example, the Weibull distribution and some spline models).  

3.9 Maximising the likelihood function 

Whilst most statistical packages allow for the simple fitting of standard parametric models to the data, 

it is important to understand how coefficients from these models are estimated. Under a frequentist 

approach, the parameters of the survival functions are typically estimated by finding the set of values 

which maximise the likelihood (the probability of the data given the model and specific parameter 

values). Under a Bayesian framework, we derive a posterior distribution for the parameters by 

combining the prior with the likelihood. Observations can be censored or not. Therefore, the likelihood 

function has two components: one for the observations that are censored (where no event occurred) and 

one for the observations that are not censored (where the event occurred). Events and censored times 

contribute differently to the calculation of the likelihood. For completely observed events, the 

contribution is the whole PDF. However, for right censored events, all we know is that they contribute 

at least up to a certain point, and therefore we use the survival function, S(t) for censored time. The 

likelihood of the data is then the product of the likelihood across all patients (observations and censored 

times). The overall likelihood is 

𝐿(𝜃) = ∏ 𝑓(𝑡𝑖; 𝜃)𝛿𝑖=1 ∏ 𝑆(𝑡𝑖; 𝜃)𝛿𝑖=0         

𝐿(𝜃) = ∏ ℎ(𝑡𝑖; 𝜃)𝑆(𝑡𝑖; 𝜃)𝛿𝑖=1 ∏ 𝑆(𝑡𝑖; 𝜃)𝛿𝑖=0   

𝐿(𝜃) =  ∏ ℎ(𝑡𝑖; 𝜃)𝛿𝑖𝑆(𝑡𝑖; 𝜃)𝑛
𝛿𝑖=1   Where 𝛿𝑖  is the censoring indicator.  
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3.10 Competing risks 

Another key concept in survival, notably in the analyses of multiple survival data (or endpoints) is the 

notion of competing risks. Competing risks occur when the occurrence of one event influences or 

hinders the occurrence of another event. 

Standard survival analysis censors follow-up at the occurrence of the competing event. Therefore, it is 

implicitly assumed that individuals could subsequently experience the later event. This therefore 

assumes independence between the event of interest and the competing event (censored individuals are 

assumed to have the same survival as those who remain in follow-up), which may not be true. It is 

difficult to test for the independence of events. 

In contrast, within the competing risk framework, competing events are not deemed independent and 

multiple events cannot occur simultaneously. In the presence of competing events, the marginal 

probability of each competing events can be estimated from the cumulative incidence function (CIF), 

which is derived from the cause-specific hazard. The CIF for an event 𝑐 at time 𝑡𝑓 can be written as41: 

CIF𝑐(𝑡𝑓) = ∑ 𝐼𝑐(𝑡𝑓)
𝑓
𝑓′=1 = ∑ �̂�(𝑡𝑓′−1)

𝑓
𝑓′=1  . ℎ̂𝑐(𝑡𝑓′)       

Where 𝐼𝑐(𝑡𝑓) is the incidence probability of failing from event-type 𝑐 at time 𝑡𝑓, and �̂�(𝑡𝑓′−1) the  

overall probability of survival at a previous time. 

The CIF is equivalent to 1-KM estimator when there is no competing event.  

It should be noted that the incidence function of the two competing events is equal to the cumulative 

incidence function. Therefore, considering PFS as an example, the incidence function for time to 

progression (TTP) and pre-progression mortality (PrePS) will be equal to the cumulative incidence 

function (PFS). 

This is illustrated in Figure 12 using data on PFS from the BC dataset.  

It can be seen that standard approaches and approaches that properly deal with competing risks are 

similar when analysing a combined composite endpoint such as PFS, but that a proper competing risk 

approach is required when analysing the component parts of PFS to avoid bias. In Figure 12, the red 

line represents the incidence function adjusted for competing risks for TTP and PrePS separately in the 

left and middle graphs, and is lower than the incidence functions estimated using standard survival 

analysis. In the graph on the right, the red line, represent the cumulative incidence function for both 

time to progression and time to pre-progression mortality combined, which is the same as PFS. 
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Figure 12 : Naive KM and KM allowing for competing risks for the cumulative hazard and the cause-specific hazard in BC dataset (CALGB 40502)*  

 

*  dashed line represents the 95% CI 
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It should be noted that within the competing risk framework, there is no longer a direct relationship 

between the cumulative incidence, survivor and hazard functions. Therefore, alternative approaches are 

required when examining the impact of an explanatory variable (the most common of which is the Fine 

and Gray model42). 

Competing risks analysis is a large topic in its own right, and therefore is beyond the scope in this thesis. 

However, an understanding of the key principles is required to understand the MSM approach described 

in Chapter 4 and how this compares with the direct PFS fit in Chapter 5. 

This chapter has provided a brief description of the key concepts used in survival analysis, including 

competing risks. In Chapter 4, I describe the MSM approach with a reference to the concepts described 

above and through reference to the BC dataset.  
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PART II: MODELLING THE PROCESS OF PROGRESSION 

4 CHAPTER IV: MODELLING TRANSITIONS USING THE MULTI-

STATE MODEL UNDER THE COMPETING RISK FRAMEWORK 

4.1 Chapter overview 

In this chapter, I focus on the implementation of the multi-state model (MSM) using two R packages 

(as R was the software used in this thesis for the simulation study in Chapter 8): the msm package and 

the mstate package. I describe the key differences and how transitions are combined under a 

competing risks framework.  

Section4.2 introduces this chapter. The implementation of the MSM using the msm package when 

transitions are constant is described in Section 4.3. In this section, I describe how to implement the 

MSM using this package, and explain how transitions are estimated. I also briefly discuss how the 

Markov assumption (when transitions are constant) can be relaxed by using piecewise exponential 

models.  

Section 4.4 details the implementation of the MSM using the mstate package. In Section 4.4.1, I 

describe how transitions are combined under a competing risk framework in the mssample function 

(which is part of the mstate package). In Section 4.4.2, I provide a summary of findings following a 

review of R code with an example of implementation in Section 4.4.3. 

The term MSM will be used thorough this thesis to refer to the multi-state model, with msm used to 

refer to the package in R. 

4.2 Introduction 

As illustrated in Chapter 2 (Figure 3), three transitions are required in the three-state model typically 

used in the economic analysis of treatments for advanced/metastatic cancer: 

• the transition from progression-free (PF) to progressed disease (PD) (λ12); 

• the transition from PF to death (λ13), and; 

• the transition from PD to death (λ23). 

The transitions from the PF health state (to PD or death – λ12 and λ13) are competing, in that the chance 

of experiencing one event (transition) is hindered by experiencing another event (transition). Therefore, 

transitions must be combined under a competing risk framework. This can be done through the MSM, 



53 

which is an extension of competing risk analysis43, 44. Multi-state modelling is widely used in the field 

of statistics but is rarely used in health economics. The reason for this is unclear and could be due to 

lack of awareness or its complexity compared with standard methods which are currently used.  

A number of packages in R software are available to implement MSMs, making this a more attractive 

option and subject of research in health economics.43, 45 For instance, the implementation of the MSM 

in health economics has been recently described by Williams et al24 in a step-by-step tutorial using the 

mstate package developed by Putter et al.43 An alternative package to implement MSMs in R - the 

msm package - has been developed by Christopher Jackson.45 The msm package has been used in at 

least three NICE technology appraisals; TA58646, TA58747 and ID94548 as highlighted later in Chapter 

5.3.5. 

More recently, a user-friendly MSM package has been developed in STATA software.49 It uses the 

same principle as the function in the mstate package, and therefore, is not the focus in this chapter. 

However, it should be noted that the STATA function is perhaps more flexible and quicker to run and 

the decision to focus on R was taken as this was the software used for the simulation study. 

In this chapter, I focus on the R packages and describe the implementation of the MSM using both the 

msm package45 and the mstate package as these have different flexibilities and characteristics.24, 50  

4.3 Performing multi-state modelling using the msm package when transitions are constant 

4.3.1 How are transitions estimated and combined in the msm function? 

The msm package is comprised of a number of pre-defined functions; the msm function is used to 

estimate the parameters for the MSM. A key characteristic of the msm function, is that it fits the MSM 

to the available time-to-event data directly using maximum likelihood estimation, therefore, few steps 

are required when implementing this form of model. The transitions (or parameters) are estimated and 

combined endogenously within the msm function. This contrasts with the mstate package (described 

in Section 4.4) whereby transitions (or parameters) are estimated exogenously from the function and 

combined within the function. 

The msm package includes a number of options to fit the model to data from processes with arbitrary 

observation times (usually panel data on state-occupancy; observations obtained over multiple time 

periods45), exactly-observed transition times (usually time-to-event data where the time to transition is 

the event), censored states (i.e. information is not known about the state occupancy), or a mixture of 

these types of data. Therefore, the msm function is sufficiently flexible to deal with a variety of data 

types and interval censoring. 
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In the msm function, an initial transition matrix is specified with the parameters (that are unknown) 

being estimated by maximum likelihood via optimisation. The msm function is intuitively attractive as 

it estimates the parameters of the model directly from the data.  

The default of the msm function is that the model is Markov, whereby event rates are assumed to be 

constant from start to the end (survival distributions are exponentially distributed) and are independent 

of previous transition events (although this can be relaxed, as described in Section 4.3.3). This is very 

restrictive; Christopher Jackson (author of the function) acknowledges that such an assumption was 

made to accommodate the computation of the likelihood for intermittently-observed processes within 

the function.45 Nevertheless, the msm function offers the option to relax this assumption, for example, 

by assuming that transitions are different between time intervals, e.g. using piecewise exponential 

distributions conditional on time. And therefore, the function is very flexible. 

Transition probabilities (which are assumed to follow an exponential distribution [or piecewise]) are 

estimated from the likelihood function which varies according to the type of data. The focus in this 

section will be on exactly observed transitions times as this reflects the type of data typically available 

from oncology trials (i.e. PFS and OS). It should be noted that the option of processes with ‘arbitrary 

observation times’ could be relevant, when data allows, as this will be similar to assuming interval 

censoring between two time intervals. I also focus here on the case whereby transitions are constant 

over time (rather than varying between time intervals). 

The contribution of the likelihood for exact transition times45 between states is written as:  

𝐿𝑖,𝑗 = exp (𝑞𝑆(𝑡𝑗)𝑆(𝑡𝑗)(𝑡𝑗+1 − 𝑡𝑗))𝑞𝑠(𝑡𝑗)𝑠(𝑡𝑗+1)     (4.1)  

Where 𝑆(𝑡𝑗) represent the state an individual at time t, and 𝑞𝑠()𝑠() the instantaneous risk of moving 

between state 

The expression for the likelihood in Equation (4.1) resembles the expression for the likelihood for 

general survival data and is composed of two elements: when transitions are observed or when 

transitions are censored. Thus, estimates for the non-competing transition (progression to death) will be 

the same within the multi-state model using the msm function or estimated externally from the data 

using PPS. Similarly, as shown in Section 3.10, PFS represents the cumulative incidence of the two 

competing transitions. Therefore, under the assumption of exponentially distributed event times, the 

probability of remaining progression-free in the MSM will be the same as the survival function for PFS. 

This is demonstrated in the Section 4.3.2. 
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4.3.2 Implementing the multi-state model using the msm function in the BC dataset (CALGB 

40502) assuming transition to be constant (Markov model) 

The implementation of the MSM using the msm function in the BC dataset is described hereafter using 

the option for “exactly-observed transition times” to reflect the type of data available. The 

implementation of the model using the msm function in the BC dataset can be summarised in four key 

steps, as shown in Figure 13. 

Transitions are assumed to be constant throughout the patient’s lifetime and therefore, the model is 

assumed to be Markov. 

Figure 13 : Summary of key steps for implementing the multi-state using the msm function in the 

BC dataset (CALGB 40502) assuming the model to be Markov 

 

 

 

 

 

 

 

 

 

Predictions for the state occupancy in PF, PD and time to death using the msm function are shown later 

in Figure 24 alongside the predictions from the mssample function and simplified STMs.  

As described in Section 4.3.1, given the calculation of the likelihood function for exactly observed 

times, the transitions (leaving pre-progression and progression health state) estimated endogenously 

from the MSM using the msm function are expected to be the same as the transitions estimated 

externally assuming the survival distributions are exponentially distributed. To confirm this, I compared 

the estimate for the transition probabilities estimated endogenously using the msm function and the 

transition probabilities estimated externally from the data: 

Step 1: Prepare the data in terms of state occupancy at each time (this requires some 

data manipulation) 

Step 2: Specify the multi-state model. This is governed here by a 4x4 transition 

intensity matrix. A 4x4 transition matrix is used to represent instantaneous transitions 

permitted by the model, (1) progression-free, (2) progression, (3) death following 

progression and (4) death without progression. Zero values are imputed when 

transitions are not allowed 

Step 3: Specify the initial values for the transitions. The initial values can be directly 

estimated using the crudeinits.msm function 

Step 4: Run the msm function. The option exacttimes=TRUE is selected as we assume 

the times to transition to be known 
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• The transition probability from the progression health state to death (state [ii] → state [iii]) was 

estimated to be 0.05697 using the msm function. The same estimate was obtained when PPS 

was estimated externally from the data assuming the survival distribution to be exponentially 

distributed, 

• Similarly, the probability of remaining progression-free in the MSM was the same as the 

inverse of the PFS probability estimated externally from the data assuming the survival to be 

exponentially distributed. 

4.3.3 Relaxing the Markov assumption 

As described in Section4.3.1, the msm function assumes transitions to be constant and therefore the 

survival distributions are exponentially distributed (with the simple form assuming the model to be 

Markov, with transitions constant over the time horizon). However, it is possible to relax this 

assumption by fitting the MSM (using the msm function) to data for different time intervals to allow for 

time-varying transition probabilities (using piecewise exponential distributions). In the simple case, one 

may assume that the event rates are different between two time periods (e.g. the hazards change after 

some defined time-point). However, the msm function accommodates more complex forms, i.e. 

assuming transitions vary within more than two time intervals or assuming that only specified 

transitions are time-varied. For example, in TA586,46 the msm was fitted to three time intervals in order 

to account for time-varying probabilities (Chapter 5.3.5). Functions are available within the msm 

package to assume directly piecewise exponentials, or constant transitions within a defined number of 

intervals. The msm function can also be extended to include the effect of covariates. This can be done 

by using the pci option within the msm function (to allow piecewise exponential) or the 

piecewise.msm function for more complex forms (when the effect of covariates is of interest). A 

key limitation with using piecewise exponential is that the extrapolation beyond the observed period 

will be based only on the fit and extrapolation of the last time period, rather than the entire data.  

4.4 The mstate package; a flexible alternative to perform multi-state modelling to include any 

parametric distributions?  

The mstate package was developed by Putter et al43 and was subsequently described in a step-by-step 

tutorial for health economic modelling by Williams et al.50 Compared with the msm package,45 the 

mstate package43 uses parameters for the transitions (cumulative hazard) as an input, rather than 

fitting the MSM to the data. Parameters for each transition are therefore estimated exogenously from 

the MSM, with transitions combined under a competing risk framework within the function. The 

mstate package, compared with the msm function, allows any form of survival distribution to be used. 
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Two key functions within the mstate package can be used to generate the MSM; (a) the probtrans 

function which uses a cohort approach, and (b) the mssample function which uses a simulation 

approach. These functions (probtrans and mssample) are used by Williams et al.24 in her tutorial. 

Williams et al recommends the use of the probtrans function when the Markov property holds and 

the mssample function when the Markov property is violated. Nevertheless, whilst Williams et al.24, 

50 suggest the use of the probtrans function when the Markov property holds, following my own 

review of the function, I believe that the mssample function is equally appropriate in such situations, 

with transitions being constant (the survival distribution is exponentially distributed). This was 

confirmed following contact with the author, who suggested that when the Markov assumption holds 

(rare assumption), the key benefit of using the probtrans over the mssample function is that it uses 

a cohort approach (hence, no simulation is required). In this section, I focus on the implementation of 

the MSM using the mssample function as it encompasses both situations whereby the Markov 

assumption holds and where it is violated. 

A key characteristic of the mssample function is that it uses data on the cumulative hazard for each 

cause-specific transition (estimated exogenously from the MSM), with data censored when the 

competing event occurs. Thus, considering the typical three-state advanced/metastatic cancer model 

structure, the mssample function uses three inputs; 

(i) The cumulative hazard for TTP. For this transition, PFS is censored for PrePS, 

(ii) The cumulative hazard for PrePS. For this transition, PFS is censored for progression, 

(iii) The cumulative hazard for the PPS. 

These transitions (estimated exogenously from the function) are then combined under a competing risk 

framework within the mssample function.  For this thesis, the R code of the mssample function (the 

key function used when generating the multi-state model) was reviewed in detail in order to understand 

how the inputs (the cumulative hazard function for each transition) to the function are transformed and 

then subsequently combined under a competing risk framework. It should be noted that the mssample 

function uses a number of associated pre-defined functions pertaining to the mstate package which 

were also reviewed in order to understand how the function works; in particular: the mssample1, 

crsample, Hazsample, NAfix and to.trans2 functions. A description of the how inputs 

(cumulative hazard functions) for the competing transitions are combined is described in Section 4.4.1 

with findings from the review of the R code highlighted in Section 4.4.2. The implementation of the 

MSM using the mssample function in the BC dataset is described in Section 4.4.3. 
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4.4.1 How are inputs (cumulative hazard) for the competing transitions combined under a 

competing risk framework in the mssample function? 

The approach used within the mssample function to combine the competing transitions under the 

competing risk framework can be summarised in five key steps, as illustrated in Figure 14 for the 

outcome of PFS (cumulative incidence of progression and pre-progression mortality events). A 

narrative description is provided below. 

Figure 14 : Illustration on how transitions are combined under the competing risk framework in 

the mssample function 
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In brief, the mssample function uses data on the ‘naïve’ cumulative hazards (not adjusted for 

competing risks) as inputs for the two separate cause-specific transitions (TTP and PrePS), with the 

competing risk censored. Transformations are then made inside the mssample function, with 

transitions combined under the competing risk framework following five key steps: 

• Step 1: Estimation of the ‘naïve’ instantaneous hazards (unadjusted for competing risk) 

for progression (𝐡𝟏(𝐭)) and pre-progression mortality (𝐡𝟐(𝐭)). The instantaneous hazard is 

approximated by taking the difference between the cumulative hazard at time t and t-1. This is 

a discrete time approximation for the differential of the cumulative hazard over the relevant 

time interval: 

• Step 2: Calculation of the instantaneous hazards for the cumulative incidence of events 

(any events [progression or pre-progression mortality]). The instantaneous hazard for the 

cumulative incidence of events (h3(t)) is calculated by summing the hazard rates for 

progression (h1(t)) and pre-progression mortality (h2(t))  

• Step 3a: Transformation of the instantaneous hazard for the cumulative incidence of 

events (PFS) onto a survival function 𝐒(𝐭). This is done by multiplying the survival at time 

t-1 by the 1 minus the instantaneous hazard at time t, h(t). It should be noted that as described 

later in Chapter 4.4.2.1, the mssample function incorrectly uses the instantaneous hazard, 

instead of the probability (𝑝(𝑡) ) when calculating the survival function. Doing so, will lead to 

the estimate of PFS (which is the cumulative incidence for both events). 

• Step 3b: Estimation of the cumulative hazard for PFS. The survival function is then 

transformed back onto a cumulative hazard function H(t) based on the relationship between 

H(t) and S(t) so that : 𝐻(𝑡) =  − log [𝑆(𝑡)]     

• Step 4: Sample the time to any event (progression and pre-progression mortality). The 

time to any event (progression or pre-progression mortality) is then sampled from the 

cumulative hazard curve to determine the time at which time an event (any) would occur.  

• Step 5: Define whether the event is progression or pre-progression death.  In Step 4, the 

time to any event is sampled. However, this could be either a progression event or a pre-

progression mortality event. At the point of failure (the event), the hazard for the two competing 

events is compared to determine whether the event is progression or death (to identify which 

event is more likely). From the comparison of two hazards (progression and pre-progression 

death), the probability for the event to be one or the other is calculated. For instance, if the event 

is assumed to occur at time t, and the instantaneous hazard for TTP and prePS are equal at that 

time, there will be an equal chance for the event to be either progression or death. If the 

instantatenous hazard at time t is lower for TTP (compared with prePS), the probability for the 

event to be pre-progression mortality will be higher. However, the event could still be pre-

progression mortality (despite lower hazard).  
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4.4.2 Findings upon review of the R code of the mssample function 

As previously highlighted, for this thesis, in order to understand how the mssample function works 

and how competing transitions are combined under a competing risk framework, I reviewed the R code 

of the function (and associated functions).  

Upon review of the R code, an inconsistency was identified during this process. A further clarification 

on how the function worked is also highlighted. 

4.4.2.1 Rates in the crsample function appear to be incorrectly treated as probabilities 

Upon the review of the R code, an inconsistency was identified in the crsample function (which is 

used in the mssample function) in that the instantaneous rates h(t) are treated as probabilities when 

deriving the survival function.  

The survival function (ci$S0) is calculated as the cumulative multiplication result (cumprod) of 1 

minus the instantaneous hazard (ci$hazsum) 

This is not correct as shown in Figure 16, as the instantaneous rates need to be transformed to a 

probability first so that p(𝑡) =  [1 − (1 − exp (ℎ(𝑡))]. The impact of this error is likely to be minimal 

when rates are very small as they become closer to probabilities. However, when the function is applied 

to models which use larger time increments, and when event rates are higher, the impact of the error 

could become more significant. 

It is however possible to correct for this inconsistency simply by slightly amending the R code, so that 

instantaneous rates are first transformed onto probabilities prior to deriving the survival function so 

that:  

 𝑝(𝑡) =  [1 − (1 − exp (ℎ(𝑡))] instead of  𝑝(𝑡) =  [1 − ℎ(𝑡)]     

In the R code,  

ci$S0 <- cumprod(1 - -ci$hazsum) (Original line of code) 

needs to be amended to the following: ci$S0 <- cumprod(1 - [1-exp(-ci$hazsum)]) 

 

The presence of this inconsistency can be demonstrated easily by considering the simplest case of the 

MSM; the illness-death model, whereby individuals can either be alive or dead (Figure 15). Therefore, 

in this case, competing risks are not considered here, as the model includes only a single transition 

(from alive to dead). 
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Figure 15 : The illness-death model 

 

The MSM for the simplified illness-death model was run using: (i) the original mssample including 

the original crsample functions, and (ii) a corrected version of the crsample and mssample 

functions. For the purpose of illustration, the models were run assuming two extreme scenarios: (a) a 

very short time increment of one day, and (b) a longer time increment of eight weeks (56 days). The 

only transition in this model (death) was informed by a Weibull survival distribution fitted to data on 

OS from the BC dataset (described in Chapter 3.2) for illustration. A total of 150,000 patients were 

simulated within the mssample function, with the same random seed used to reduce any influence 

caused from sampling variation. Figure 16 shows the predictions from the two models (the original and 

corrected models) alongside the KM for OS and the direct fit to the data using the Weibull distribution.  

In the absence of inconsistency in the mssample function, one would expect the predictions from the 

MSM to be identical to the direct Weibull fit irrespective of the time increment used. However, it can 

be seen from the left-hand panel in Figure 16 that using the original mssample function, different time 

increments provide different predictions, and that smaller time increments lead to predictions which are 

closer to the direct fit using the Weibull distribution, as expected. As previously highlighted, this 

inconsistency is likely to be attributable to the error made within the crsample function which 

incorrectly treats rates as probabilities when deriving the survival function.   

The location of the error (transformation of rate onto probabilities) is also hinted given that predictions 

from the MSM get closer to the direct Weibull fit when the time increment is small (1 day). In contrast, 

following the amendment of the crsample function, it can be seen that predictions using the corrected 

version of the mssample function, shown on the right-hand panel of Figure 16 are more stable and, as 

expected, the predictions are identical to those derived from the directly fitted Weibull distribution , 

irrespective of the time increment used. 

The author of the mssample function was contacted by email on the 19th October 2017 to highlight 

this error. 
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Figure 16: Predictions for the illness-death model using different time increments prior and after correction 
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4.4.2.2 Is time modelled continuously in the mssample function? 

Williams et al24, 50 describes the MSM as using a continuous-time approach and states that in this type 

of model “survival times are treated as continuous variables, rather than being measured in discrete 

cycles as is usually the case in decision-analytic modelling”. This statement is misleading as the 

mssample function uses direct data on the cumulative hazard over time (discretised), rather than the 

parameters of the survival function. In other words, the extrapolation for the transitions is made outside 

of the function with data discretised in time intervals defined by the user. The discretised cumulative 

hazards are then used in the mssample function to sample the time to events using the Hazsample 

function.  

Upon reviewing of the R code, as expected, it appears that time is indeed sampled to a discrete value 

from the defined interval. The function returns a discretised value, rather than any values between 

cycles. For instance, assuming a time horizon of 1,000 days, with data structured in 10-days intervals 

(10, 20, 30…1,000), the possible time sampled will be a multiple of 10. In contrast, assuming the same 

time horizon of 1,000 days, but this time the data are structured in 1-day intervals, the possible time 

sampled could take the value of any integer between 1 to 1,000. Therefore, the use of the term 

“continuous time” is potentially misleading as the sampled time cannot take any possible value. Time 

is therefore treated in a similar way as in standard health economic cohort models, whereby, time is 

measured in discrete time cycles. However, the mssample function uses a simulation approach. 

This approach to sampling time (using discretised time intervals) has a number of implications. Whilst 

predictions will be the same irrespective of the time increment for a single transition (e.g. time to 

progression), this is no longer true when considering consecutive times (e.g. time to death based on 

time to progression and time from progression to death). This can be illustrated by considering a simple 

three-state model, whereby all patients move to progression prior to death (therefore no patients die in 

the pre-progression health state [PFS=TTP]). Data from the BC dataset on PFS (used as a proxy for 

TTP) and PPS were used in this example. For the sake of simplicity, all transitions were assumed to be 

time-varying, based on Weibull distributions. The MSM was run using the mssample function 

(corrected for the inconsistency identified in Section 4.4.2.1), with predictions shown in Figure 17 

assuming a time-step of one day and 8 weeks, respectively. For transparency, results are also presented 

using the original mssample function (prior correction). 
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Figure 17 : Illustration of the impact of using different cycle length on the predictions for the time to events for single and consecutive times 
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As anticipated, predictions for PFS are identical irrespective of the time interval used (as this is 

estimated from a single time-to-event outcome) using the corrected version of the mssample function. 

In contrast, predictions for OS (which are comprised of two consecutive times PFS/TTP+PPS) were 

different depending on the time interval used even using the corrected version (and even more so using 

the original function). This is because time is treated discretely rather than continuously. Whilst this is 

not a limitation of the function, this highlights that consideration needs to be taken when selecting the 

cycle length 

4.4.3 Implementing the multi-state model using the mssample function in the BC dataset 

(CALGB 40502) and comparison with the msm function when the model is Markov 

In this section, I describe the implementation of the MSM using the mssample function (part of the 

mstate package) in the BC dataset. Given (a) the inconsistency described in Section 4.4.2.1 and (b) 

the method used for sampling time to events (Section 4.4.2.2), the corrected version of the mssample 

function was used assuming a 1-day cycle length. It should be noted that whilst smaller time increments 

may reduce any further potential biases, the computational time is increased significantly. In addition, 

150,000 patients were sampled to reduce any influence from sampling variation.  

The MSM was run assuming that all transitions (TTP, PrePS and PPS) were constant (survival is 

exponentially distributed) - otherwise known as a Markov model. The survival distributions for each 

transition were transformed into their cumulative hazard functions and inputted into the mssample 

function. Predictions from the mssample function are plotted alongside the predictions from the msm 

function (described previously) as this also assumes constant transitions (exponential distribution). 

It should be noted that transitions (TTP, PrePS and PPS) could follow alternative parametric time-

varying distributions. The exponential distribution was selected to provide the same distributional 

assumption as that used in the msm function. In brief, the implementation of the MSM using the 

mssample function (part of the mstate package) is relatively straightforward and follows six key 

steps (see Figure 18). It should be noted that the earlier steps described in Figure 18 feed into the 

mssample function which is used to combine the transitions (Step 6 in the figure). 

The survival functions for the three transitions together with their associated cumulative hazard 

functions using the exponential, are presented in Appendix 1. Predictions from the MSM using the 

mssample function (mstate package), the msm function and STMs are plotted against the KM plots 

of PFS and OS in Figure 24. As expected, when transitions are constant, predictions from the MSM 

using the mssample function and msm function are the same. It should be noted that in this example, 

the assumption of constant transitions did not fit the data well. 
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Figure 18 : Step by step implementation of the multi-state using the mssample function (part of 

the mstate package) in the BC dataset (CALGB 40502) 

 

 

 

 

 

 

 

 

 

 

 

Step 1: Identify in the dataset the cause-specific event not conditional on the 

competing risk (0 - did not die or have a progression, 1 - had a recurrence event, 2 - 

died without progression) 

Step 2: Create 2 new survival outcome variables for each cause-specific event (the 

competing event is censored) 

• Time to progression (TPP). In the original dataset, there was 217 PFS events 

(including progression and pre-progression death). The PFS event was death 

in 22 patients. Therefore, TTP is derived based on PFS censoring these 22 

events 

• Pre-progression mortality (PrePS). This is derived based on PFS censoring 

progression for the 195 patients for whom the PFS event was progression 

Step 3: Generate a transition matrix describing the possible path and transitions in the 

multi-state using the transMat function (pertaining to the mstate package) 

Step 4: Prepare the data. This is done using the msprep function pertaining to the 

mstate package. This function converts a dataset which is in wide format (one 

subject per line, multiple columns indicating time and status for different states) into a 

dataset in long format (one line for each transition for which a subject is at risk). This 

uses a counting process approach whereby the number and type of events an 

individual experience during his or her follow-up are counted 

Step 5: Estimate the cumulative hazard function for each cause-specific event (or 

transition). Data are discretised in time in time intervals. A time interval of 1 day is 

used over a time horizon of 1,000 days 

Step 6: Generate predictions from the multi-state using the mssample function. The 

function is used alongside (1) the matrix describing the path (step 3) and (2) the 

transition probabilities (step 5) between health states (in the form of cumulative 

hazard). The mssample function is used to generate the state occupancy assuming 

150,000 patients 
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4.5 Summary 

In this chapter I described the implementation and key assumptions when constructing an MSM. This 

is a powerful tool which allows for the modelling of transitions under a competing risks framework. 

Two R packages to perform multi-state modelling were described in this chapter; the msm and mstate 

package. As previously described, a function is also available in STATA and uses the same approach 

as the mssample function in R. It should be noted that the STATA function (which I have used 

separately – not shown here) is more efficient and return predictions more rapidly. 

A key strength of the msm package is that parameters are estimated endogenously and the model is 

fitted directly to the data with transitions assumed to be constant. The msm package assumes constant 

event risks and that the model follows a Markov process. This assumption is rarely considered plausible 

in health economics. However, it is possible to relax this assumption by fitting the model using the msm 

function assuming that transitions are constant within defined time intervals. This can easily be done 

using the msm function using the pci option. However, when fitting the MSM and predicting health 

state occupancy over the patient’s lifetime, the long-term extrapolation beyond the observed period of 

the trial will be based on the constant hazard observed in the last time interval considered – this 

assumption may not be considered appropriate and could lead to inappropriate extrapolations. In 

contrast, the mstate package allows for the use of any parametric distributions (standard or flexible). 

However, using this package, parameters for the transitions are estimated exogenously from the MSM 

and inputs (the cumulative hazard function for each transitions) are combined within the mssample 

function.  

In addition to accounting for competing risks under a competing risk framework, a key strength with 

using the msm and mstate functions is that these are pre-defined functions which are easy to use, 

making them transparent and reproducible, which reduces the scope for implementation errors (as 

described in Chapter 5). Despite the strengths associated with multi-state modelling and the availability 

of packages in R, the approach is rarely used in health economic state-transition models. Instead, a 

number of simplifications are typically made in health economics to avoid the explicit modelling of the 

competing transitions. 

In the next Chapter, I highlight the simplifications made in health economic models of anticancer 

therapies to estimate health state sojourn time using the STM approach and demonstrate how this 

compares with the MSM approach. I then discuss the key assumptions and implications for the 

simplifications typically made in health economics when modelling competing transitions between 

health states. 
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5 CHAPTER V: WHAT ARE THE IMPLICATIONS FOR THE 

SIMPLIFICATIONS MADE IN HEALTH ECONOMICS WHEN 

MODELLING COMPETING TRANSITIONS 

5.1 Chapter overview 

In this chapter, I describe how the STM approach is currently implemented in health economic models 

of treatments for advanced/metastatic cancer.  

In Section 5.3, I present findings from a review of the implementation of the state transition model in 

NICE TAs of cancer interventions in the advanced/metastatic setting published in the last 10 years. 

In Section 5.4, I describe the key assumptions made in health economics when modelling the competing 

transitions and highlight how this compares with the MSM. 

In Section 5.5, I provide a direct comparison of the STM as currently implemented in health economics 

and the MSM when transitions are assumed to be constant to illustrate that these approaches provide 

similar estimates. A comparison when transitions are time-varying is presented in Section 5.6. 

In Section 5.8, I draw conclusions regarding  the extent to which the simplifications regarding 

competing transitions made in health economic state transition models are appropriate.  

5.2 Introduction  

Following a rapid review of STMs used in NICE TAs, I highlight the simplifications that are typically 

made in current STMs and discuss the key assumptions employed when modelling competing 

transitions. I also highlight how this approach compares with the MSM approach described in Chapter 

4.   

5.3 How are competing transitions combined in NICE TAs of anticancer interventions in the 

advanced/metastatic setting? 

This section presents results from a rapid review of STMs used in NICE TAs of cancer interventions in 

the advanced/metastatic setting published in the last 10 years (May 2009 – May 2019). The review was 

subsequently updated for transparency and completeness to include an additional year (until May 2020). 
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5.3.1 Review objectives 

A review of the implementation of the PSM is available Woods et al (2016). However, no review is 

available on how the STM is currently implemented in health economics. Consequently, a rapid review 

of STMs used in NICE TAs is presented in this thesis. The primary aim of this rapid review is to identify 

how competing transitions in the STM are modelled in health economic analyses, notably how the 

transition from TTP (𝜆12) and PrePS (𝜆13) are combined. 

The secondary objective of the review is to identify the different structural assumptions used within 

current three-state STMs. 

 

5.3.2 Initial search and selection strategy 

The initial search was conducted on the 5th June 2019. For this thesis, I reviewed all NICE TAs of 

interventions for advanced/metastatic cancer completed or ongoing between May 2009- May 2019 (the 

last 10 years). Ongoing (“in development”) appraisals were also included to ensure that potential 

alternative approaches were not missed. 

The review was limited to NICE appraisals: (a) to be reflective of approaches used within the HTA 

context; (b) as enough details on the analytical approach and assumptions are typically available from 

NICE documentation, and (c) to keep the review manageable. Findings may therefore not be fully 

generalisable as alternative implementations may be available in the broader literature. 

Only models reported in company submissions were considered within the review as these form the 

basis for the economic evaluation in NICE STAs. For NICE Multiple Technology Appraisals (MTAs), 

only the method reported by the AG was included. This is because only a summary of the company’s 

model is typically published. Inclusion and exclusion criteria for the review are described below.
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Inclusion criteria 

• Appraisals (completed or ongoing) between May 2009- May 2019 

• Modelling of an intermediate endpoint (PFS, TTD, EFS, TTP, RFS) and OS 

• Appraisals for an intervention in the advanced/metastatic setting or mixed population including 

a large proportion of people with advanced disease. 

• Progressive models (i.e. patients are not assumed to regress to a better health state) 

• Presence of competing transitions, taken from the same source of data. 

Exclusion criteria 

• Appraisals in conditions other than cancer 

• Early/adjuvant setting (when non-metastatic) 

• Terminated appraisals or appraisals at scoping stage or prior ACD 

• Models in which OS is estimated directly (e.g. using a PSM approach) 

• Appraisals where there was insufficient detail (or lack of clarity) regarding how the competing 

transitions were considered 

• Non-progressive models 

• Absence of competing risks (for instance, no death in pre-progression) 

• Competing risks modelled using data from multiple sources (for instance, PFS taken from one 

source and the proportion of events which are deaths taken from another source). 

5.3.3 Subsequent update 

Given the timing of the review, the original search was updated on the 16th June 2020 to include the 

most recent year (June 2019 – May 2020).  

5.3.4 Data extraction and synthesis 

A data extraction form was created in Excel with the key characteristics of relevant appraisals 

(condition, setting) and details of the modelling approach (for instance health states, structural 

assumptions) extracted. 

A simplified version of the extraction from is provided in Appendix 2, summarising the key 

characteristics of the included appraisals, the approach taken and the assumption used.  

Findings are summarised in a narrative form in the main body of this chapter. The methods to 

model/combine competing transitions are then categorised in terms of key structural assumptions. 
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5.3.5 Results 

Figure 19 shows the results of the search. As of the June 2020, there 439 TAs ongoing/in the 

development list and 396 NICE TAs published between May 2009 and May 2020. Of these, 29 

appraisals met the defined inclusion criteria; 28 in the published list of NICE TAs and 1 appraisal in 

the NICE development list. The included appraisals are listed in Table 4. The key reasons for exclusion 

were: non-cancer appraisals or non-advanced (n=182), appraisals at the scoping stage, in progress or 

terminated (n=473), direct OS modelling (n=135), other (n=16). It should be noted that only one reason 

for exclusion is recorded here; therefore, a study could also have been excluded for a different reason 

to the main reason recorded here.  

 

Figure 19: Search results for NICE TAs included in the review 
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Table 4 : NICE TAs included in the review 

Ref Title 
Date 

published 

ID945 Abiraterone for treating newly diagnosed high risk metastatic hormone-naive prostate 

cancer [ID945] 

TBC 

TA604 Idelalisib for treating follicular lymphoma refractory to 2 treatments  Oct-19 

TA593 Ribociclib with fulvestrant for treating hormone receptor-positive, HER2-negative, 

advanced breast cancer 

Aug-19 

TA586 Multiple myeloma - lenalidomide (post bortezomib) (part rev TA171) [ID667]  Jun-19 

TA587 Multiple myeloma (newly diagnosed) - lenalidomide [ID474]  Jun-19 

TA578 Durvalumab for treating locally advanced unresectable non-small-cell lung cancer after 

platinum-based chemoradiation 

May-19 

TA563 Abemaciclib with an aromatase inhibitor for previously untreated, hormone receptor-

positive, HER2-negative, locally advanced or metastatic breast cancer  

Feb-19 

TA513 Obinutuzumab for untreated advanced follicular lymphoma  Mar-18 

TA502 Ibrutinib for treating relapsed or refractory mantle cell lymphoma  Jan-18 

TA496 Ribociclib with an aromatase inhibitor for previously untreated, hormone receptor-

positive, HER2-negative, locally advanced or metastatic breast cancer  

Dec-17 

TA491 Ibrutinib for treating Waldenstrӧm’s macroglobulinaemia Nov-17 

TA439 Cetuximab and panitumumab for previously untreated metastatic colorectal cancer Mar-17 

TA472 Obinutuzumab with bendamustine for treating follicular lymphoma refractory to 

rituximab 

Aug-17 

TA387 Abiraterone for treating metastatic hormone-relapsed prostate cancer before 

chemotherapy is indicated 

Apr-16 

TA400 Nivolumab in combination with ipilimumab for treating advanced melanoma  Jul-16 

TA386 Ruxolitinib for treating disease-related splenomegaly or symptoms in adults with 

myelofibrosis 

Mar-16 

TA384 Nivolumab for treating advanced (unresectable or metastatic) melanoma  Feb-16 

TA380 Panobinostat for treating multiple myeloma after at least 2 previous treatments  Jan-16 

TA381 Olaparib for maintenance treatment of relapsed, platinum-sensitive, BRCA mutation-

positive ovarian, fallopian tube and peritoneal cancer after response to second-line or 

subsequent platinum-based chemotherapy 

Jan-16 

TA370 Bortezomib for previously untreated mantle cell lymphoma  Dec-15 

TA343 Obinutuzumab in combination with chlorambucil for untreated chronic lymphocytic 

leukaemia 

Jun-15 

TA263 Bevacizumab in combination with capecitabine for the first-line treatment of metastatic 

breast cancer 

Aug-12 

TA257 Lapatinib or trastuzumab in combination with an aromatase inhibitor for the first-line 

treatment of metastatic hormone-receptor-positive breast cancer that overexpresses 

HER2 

Jun-12 

TA258 Erlotinib for the first-line treatment of locally advanced or metastatic EGFR-TK 

mutation-positive non-small-cell lung cancer 

Jun-12 

TA243 Rituximab for the first-line treatment of stage III-IV follicular lymphoma Jan-12 

TA226 Rituximab for the first-line maintenance treatment of follicular non-Hodgkin's 

lymphoma 

Jun-11 

TA214 Bevacizumab in combination with a taxane for the first-line treatment of metastatic 

breast cancer 

Feb-11 

TA193 Rituximab for the treatment of relapsed or refractory chronic lymphocytic leukaemia  Jul-10 

TA174 Rituximab for the first-line treatment of chronic lymphocytic leukaemia Jul-09 

https://www.nice.org.uk/guidance/indevelopment/gid-ta10122
https://www.nice.org.uk/guidance/indevelopment/gid-ta10122
https://www.nice.org.uk/guidance/indevelopment/gid-ta10290
https://www.nice.org.uk/guidance/indevelopment/gid-tag452
https://www.nice.org.uk/guidance/indevelopment/gid-tag429
https://www.nice.org.uk/guidance/ta578
https://www.nice.org.uk/guidance/ta578
https://www.nice.org.uk/guidance/ta563
https://www.nice.org.uk/guidance/ta563
https://www.nice.org.uk/guidance/ta513
https://www.nice.org.uk/guidance/ta502
https://www.nice.org.uk/guidance/ta496
https://www.nice.org.uk/guidance/ta496
https://www.nice.org.uk/guidance/ta491
https://www.nice.org.uk/guidance/ta439
https://www.nice.org.uk/guidance/ta472
https://www.nice.org.uk/guidance/ta472
https://www.nice.org.uk/guidance/ta387
https://www.nice.org.uk/guidance/ta387
https://www.nice.org.uk/guidance/ta400
https://www.nice.org.uk/guidance/ta386
https://www.nice.org.uk/guidance/ta386
https://www.nice.org.uk/guidance/ta384
https://www.nice.org.uk/guidance/ta380
https://www.nice.org.uk/guidance/ta381
https://www.nice.org.uk/guidance/ta381
https://www.nice.org.uk/guidance/ta381
https://www.nice.org.uk/guidance/ta370
https://www.nice.org.uk/guidance/ta343
https://www.nice.org.uk/guidance/ta343
https://www.nice.org.uk/guidance/ta263
https://www.nice.org.uk/guidance/ta263
https://www.nice.org.uk/guidance/ta257
https://www.nice.org.uk/guidance/ta257
https://www.nice.org.uk/guidance/ta257
https://www.nice.org.uk/guidance/ta258
https://www.nice.org.uk/guidance/ta258
https://www.nice.org.uk/guidance/ta243
https://www.nice.org.uk/guidance/ta226
https://www.nice.org.uk/guidance/ta226
https://www.nice.org.uk/guidance/ta214
https://www.nice.org.uk/guidance/ta214
https://www.nice.org.uk/guidance/ta193
https://www.nice.org.uk/guidance/ta174
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Consequently, a total of 29 appraisals were included in the review, including 28 TAs from the initial 

search in the last 10 years (May 2009-May 2019) and one TA in the most recent year (June 2019- May 

2020).  

Of the 29 appraisals included in this review, 6 were in breast cancer (BC; TAs 214, 257, 263, 496, 563 

and 593),19, 51-55 5 were in follicular lymphoma (FL; TAs 226, 243, 472, 513 and 604),20, 56-59 3 were in 

multiple myeloma (MM; TAs 380, 586, and 587),46, 47, 60 3 were in CLL (TAs 174, 193 and 343)61-63 2 

were in melanoma (TAs 384 and 400)64, 65 2 were in mantle cell lymphoma (MCL; TAs 370 and 502),66, 

67 2 were in non-small-cell lung cancer (NSCLC; TAs 258 and 578),68, 69 2 were in prostate cancer (PC; 

TAs 387 and ID945)48, 70 one was in myelofibrosis (MF; TA 386),71 one was in ovarian cancer (OC; TA 

381),21 one was in colorectal cancer (CC; TA 439),72 and one was in Waldenstrӧm’s 

macroglobulinaemia (WM), TA 491.73 

Fifteen of the included appraisals were conducted in the advanced/metastatic setting, eight related to a 

relapsed/refractory population, one was in patients with locally advanced disease only (stage III) with 

the remaining five appraisals including a mixed population in terms of stage or where it was unclear 

whether this was the advanced form of the condition. 

The majority of models reviewed were centred around 3 key health states (PF, PD and death), with a 

proportion of those separating the time on and off treatment. 

Evidence on the time to progression or death (PFS) and PPS was taken (mostly) from the same source 

(key trial) in 20 appraisals. Separate sources were used for PFS and PPS in 9 appraisals. This was 

because a pathway was typically modelled. In one appraisal (TA51359), the model was based primarily 

on the key trial, supplemented by external evidence.  

5.3.5.1 Terminology used 

Terminologies used to describe the modelling approach were sometimes absent, inconsistent or 

inappropriate, with the Markov terminology often used inappropriately, despite the model not being 

‘true’ Markov. A range of terminologies were used including; Markov model, semi-Markov model, and 

(Markov) state-transition model. 

5.3.5.2 Justification for the choice of approach 

The key justification provided for the modelling approach compared with the PSM (or an alternative 

approach) focused on the modelling of the treatment pathway/natural history or use of external evidence 

in 17 appraisals. Fourteen appraisals (ID945,48 TA593,55 TA578,68 TA563,53 TA502,67 TA496,54 
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TA491,73 TA472,20 TA400,64 TA384,65 TA381,21 TA370,66 TA343,61 TA25719) made explicit reference 

to the immaturity of the data for justifying using an STM compared with a PSM approach. Four 

appraisals justified the use of the STM given the structural relationship between PFS and OS (TA586,46 

TA587,47 TA57868 and TA56353). One appraisal, an MTA, justified the use of the STM approach by the 

difficulty in representing the hazard of death using a parametric distribution (TA25719). Seven 

appraisals (TA604,56 TA214,52 TA193,62 TA174,63 TA513,59 TA26351 and TA25869) did not provide 

any clear justification for the choice of modelling approach, with the exception of mentioning that the 

selected approach is commonly used in oncology. 

The majority of the STMs included in this review used a cohort approach, with 5 models using an 

individual based-simulation approach (TA593,55 TA496,54 TA387,70 TA386,71 TA24357) and an 

additional 3 using the msm package (ID945,48 TA586,46 TA58747). In the majority of cases, the 

intermediate endpoint was PFS. Two models used time to treatment discontinuation (TTD)70, 71 with an 

additional appraisal using first subsequent treatment (FST).21  

5.3.5.3 Modelling competing transitions 

The majority of models reviewed (n=21) modelled a combined endpoint (typically PFS) directly as a 

single composite endpoint, accounting for the two competing events. In other words, taking PFS as an 

example, instead of explicitly modelling the transitions from progression-free to progressed disease and 

from progression-free to death (without progression), the majority of reviewed models used PFS 

directly and extrapolated this endpoint beyond the trial duration as a single outcome. PFS was then 

divided between the two competing events using a set of structural assumptions.  

Three of the models reviewed (TA604,56 TA400,64 TA384,65) modelled the two competing risks 

separately: TTP - where deaths prior to progression were censored and; PrePS - whereby progression 

events other than death were censored. However, it is unclear from the model descriptions provided in 

the company submissions (CS) or the ERG reports how the two competing risks were combined and 

whether this was done appropriately. An additional model used TTP and estimated a constant rate of 

death from a negative binomial model (TA56353). Three appraisals used the msm package in R and 

therefore dealt with competing risks (ID945,48 TA586,46 TA58747). One appraisal used a discrete event 

simulation approach and compared times to the next event (TA38770). 

Amongst the 21 models that modelled a combined endpoint (mostly PFS) as a single endpoint, three 

broad approaches were employed to separate the two competing events (using PFS as an example); 
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• Approach 1 (n=8): Use of PFS to model the combined transitions for people leaving the PF 

state, assuming that a proportion of PFS events are death or progression. The proportion was 

assumed to be constant (calculated as number of pre-progression deaths divided by total number 

of PFS events) in 5 appraisals (TA593,55 TA496,54 TA386,71 TA381,21 TA24357). In a further 

two appraisals (TA439,72 TA257,19) this approach appeared to have been employed, but this 

was not fully clear. The proportion of pre-progression deaths was assumed to be time-varying 

in one appraisal (TA38060) whereby a logistic regression model using the log of time in PFS 

was used as a covariate. 

• Approach 2 (n=11): Use of PFS to model the combined transitions for people leaving the PF 

state, with a constant probability of dying in PFS based on the rate of death in PFS (TA513,59 

TA502,67 TA491,73 TA472,20 TA263,51 TA258,69 TA226,58 TA214,52 TA193,62 TA17463) 

calculated as the number of deaths in PFS divided by the person-years in PFS (total PFS time; 

observation and censored time). In one appraisal (TA34361) it was unclear how the constant 

probability of dying whilst progression-free was calculated. 

• Approach 3 (n=2): Use of PFS to model the combined transitions for people leaving the PF 

state; with 

o Approach 3a: the probability of dying in PFS at each cycle based on the pre-progression 

survival (PrePS) curve in one appraisal (TA37066). A parametric function was fitted to 

prePS data (PFS censored for progression) to obtain the probability of dying in PFS in 

each cycle. 

o Approach 3b: the probability of remaining in PFS in each cycle based on TTP in 

another appraisal (TA57868). A parametric function was fitted to the KM for TTP to 

obtain the probability of remaining in PFS at each cycle. In this appraisal, the company 

stated that “the key assumption made was that the TTP distribution was set to the same 

as for PFS”. This assumption is likely to be necessary to limit inconsistencies in the 

shape between PFS and TTP. 

5.3.5.4 Use of multi-state modelling 

Three appraisals (ID945,48 TA586,46 TA58747) used a multi-state approach using the msm function 

described in Chapter 4.3. The observed time-to-event data were used initially, followed by an MSM in 

ID94548 and TA58747. The msm was fitted to data for three time intervals in TA58646 in order to account 

for time-varying probabilities. No appraisals used the mstate/mssample functions described in 

Chapter 4.4.  
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5.3.5.5 Use of post-progression survival and assumptions about the intervention  

The majority of appraisals reviewed used a time-varying distribution to model PFS (or related 

intermediate endpoints) or to model the transition between progression and death (PPS). Seven 

distributions were generally considered: the exponential, Weibull, Gompertz, Log-Normal, Log-

Logistic, Gamma and Generalised Gamma functions. 

Appraisals which allowed time-varying transition in PPS used tunnel states (a series of states that can 

be occupied for only one cycle) in all cohort models. Tunnel states allow the probability to be different 

for each tunnel state, allowing transition probabilities to change depending on history. Tunnel states 

were not required for the individual patient-level simulation models. The use of an exponential 

distribution for PPS was justified in 5 appraisals (TA502,67 TA380,60 TA343,61 TA258,69 TA226,58) to 

avoid overcomplicating the model by the addition of tunnel states. 

For the 15 appraisals which primarily used information from the key pivotal trial (i.e. the model is based 

on the trial for the intervention against a relevant comparator with little reference to external evidence), 

PPS was pooled across arms in 10 appraisals (TA593,55 TA578,68 TA513,59 TA472,20 TA370,66 

TA257,19 TA214,52 TA193,62 TA174,63 TA38060). The key justification for pooling PPS was the absence 

of significant or visual differences in the data between each arms. A different PPS function was used 

between the control and intervention arms in 6 appraisals (TA586,46 TA587,47 TA386,71 TA381,21 

TA263,51 TA25719) based primarily on evidence from the key trial. One appraisal (TA257) presented 

results from two models for different comparisons; one comparison where PPS was pooled and one 

comparison where PPS was not pooled. The same PPS was further assumed between treatments in a 

further 3 appraisals (TA502,67 TA258,69 TA60456) because the key trial was either a single trial arms 

study or had a different comparator to the one assessed in the pivotal trial.  

In all of the included models in this review, PPS was based on survival models fitted directly to the trial 

data, without any adjustment (with the exception of general population mortality constraints). In other 

words, none of the included models estimated the time to death following progression conditional on 

the time to progression. The only models which recognised that PPS estimated from the trial only in the 

subset of patients who progressed may not be generalisable to the overall randomised population was 

in TA51359 and TA38060. In TA513,59 the company modelled early and late progressors separately, 

using information from the trial to represent early progressors (the first two years) and external evidence 

to represent late progressors (beyond two years). Similarly, in TA380, PPS (following lenalidomide) 

was separated between early and late progression. 
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5.3.5.6 Other assumptions  

With the exception of the MSMs that used the msm function, transitions were typically estimated 

separately from each other (no common parameters), and therefore, there is an assumption of 

conditional independence (parameters for the transitions are estimated independently from each other). 

In one appraisal (TA56353), transitions after progression were not explicitly modelled. Instead, a fixed 

pay-off (calculated from external data) that represented the outcomes in PPS (costs and QALYs) was 

applied at the point of progression. This assumes perfect surrogacy between delta PFS and delta OS. 

Finally, the majority of models included background mortality constraints to ensure that the modelled 

mortality hazard for people with the disease does not fall below that for people without the disease. 

Such assumptions did not impact on the implementation in the model. Background mortality was 

typically implemented by taking the maximum between the probability of death for the general 

population and the probability of death from hazard from the trial (for logical consistency). 

5.3.5.7 Key findings 

This rapid review highlights some variation with respect to how competing transitions are considered 

in NICE TAs for anticancer therapies in the advanced/metastatic setting. The majority of economic 

models included in this review used a cohort approach and modelled the intermediate endpoint (PFS or 

an alternative related endpoint) as a single composite endpoint, accounting for the two competing 

events. Consequently, instead of explicitly modelling the two competing transitions (progression-free 

to progression and progression-free to death) as is done in the MSM approach described in Chapter 4, 

the cumulative incidence of events (PFS) was modelled instead for people leaving the progression-free 

health state, with a set of structural assumptions being applied to subsequently separate progression 

events from pre-progression mortality events. 

Three appraisals used multi-state modelling using the msm function and fitted the model for part of the 

trial period, or for different time intervals, to account for time-varying hazards. Most of these appraisals 

were recent submissions/re-submissions. The review did not identify any appraisals which used the 

mstate (mssample) function. Three broad structural assumptions were used to separate the two 

competing transitions from the cumulative incidence of events (PFS or related endpoints) in people 

leaving the PF health state: (i) assuming a proportion of PFS events are deaths (which could be constant 

or time-varying); (ii) assuming a constant probability of dying in PFS calculated from the number of 

deaths divided by total person-PFS time, or (iii) assuming a probability of dying in PFS or remaining 

in PFS based on the PrePS or TTP curve.  
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This rapid review highlights that compared with the MSM approach described in Chapter 4, 

simplifications are typically made in health economic models in that not all transitions are explicitly 

modelled under a competing risk framework and that there are some inconsistencies in NICE TAs in 

terms of how competing transitions are considered.  

In Section 5.4, I discuss the key assumptions and simplifications made in health economics to model 

the competing transitions and whether these have the propensity to alter decision-making compared 

with the formal multi-state framework. 

5.4 What are the key assumptions commonly made in health economics when modelling the 

competing transitions? 

The multi-state approach described in Chapter 4 is rarely used in health economic evaluation. As noted 

above, the msm function was used in three recent appraisals (ID945,48 TA586,46 TA58747). The key 

assumption is that transitions are constant within time intervals. The mstate/mssample function, 

which uses parametric extrapolation for each transition and combines them under a competing risk 

framework, has not been used in any of the appraisals included in this review. However, such functions 

could have been used in more recent appraisals or in expanded literature not covered by this review. As 

described in Section 5.3, the STM is typically implemented using PFS directly (as a composite endpoint 

for the two competing transitions) combined with structural assumptions on how to separate death 

events from progression events. 

This section focusses on the two key structural assumptions made within the Simplified STM approach 

used in in health economic models and compares them against the structural assumptions made within 

the multi-state framework. 

5.4.1 Assumptions regarding the estimation of the transition for leaving the progression-free 

health state (combined transition) 

As highlighted in Section 5.3, a key difference between the MSM and the Simplified STM applied in 

health economics relates to how the cumulative incidence of event (PFS) is estimated: 

• In the MSM, the cumulative incidence of events for leaving the PF health state is estimated as 

a function of the two competing events/transitions (TTP and PrePS) under a competing risk 

framework. Therefore, the probability of leaving the PF health state is given by two transitions 

and is therefore estimated indirectly from the PFS data. 
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• In contrast, in the Simplified STM applied in health economic models, the cumulative incidence 

of events for leaving the PF health state is estimated directly from the PFS curve fitted to the 

trial data. Therefore, the probability of leaving the PF health state is given by the PFS data 

directly (a single transition). 

As described in Section 3.10, standard approaches and approaches that properly deal with competing 

risks are similar when analysing a combined composite endpoint such as PFS using a non-parametric 

approach. However, whilst this may be true from a non-parametric point of view during the observed 

period of a study, this relationship may no longer hold when: 

• the hazard is determined parametrically during the observed period, and when, 

• extrapolating beyond the observed period.  

This is because during and beyond the observed period, the hazard is determined from a parametric 

function and fit to the data and no longer from the data itself directly. The only exception is when the 

rate of events is constant (i.e. survival is exponentially distributed). In such cases, using PFS directly to 

represent the cumulative incidence of events is the same as modelling the two competing transitions 

separately.  This is because rates are additive and constant throughout the model duration. 

In contrast, when the rate of events (for either PFS or competing transitions) is assumed to be time-

varying, using PFS directly may lead to differences in predictions compared with modelling the two 

competing transitions under a competing risk framework. This is because the fit and extrapolation for 

PFS estimated from a single dataset (PFS) is not the same as the fit and extrapolation from two separate 

datasets (TTP and prePS) which are then combined. These potential differences will be reduced when 

the degree of extrapolation is minimal and when the fit of the model to the observed data is good. In 

contrast, larger differences will be expected when the parametric function provides a poor fit to the 

observed period or when the need for extrapolation beyond the observed period is greater due to the 

increase in uncertainty around of the shape of the extrapolation (as PFS will be a combination of the 

extrapolated hazards for two separate events). 

Despite difficulty to provide a comparison, to illustrate this further, the PFS direct fit is compared 

against the estimated PFS under a competing risk framework in this Section. In addition to the BC 

dataset described in Chapter 3.2, data for the comparator arm from a trial in prostate cancer and lung 

cancer were obtained from the Project Data Sphere.32, 33, 74 The prostate cancer trial included 470 

patients, of whom 401 had a recorded PFS event (340 progression events and 61 deaths prior to 

progression).32 The lung cancer trial included 479 patients, of whom 440 had a recorded PFS event (313 

progression events and 127 deaths prior to progression).33  
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Eight parametric distributions (exponential, Weibull, Gompertz, Log-Normal, Log-Logistic, Gamma 

and Generalised Gamma and a restricted cubic spline (RCS) hazard model with one knot) were 

considered for each survival outcomes (PFS, TTP and PrePS). The fit for each parametric distribution 

for PFS, TTP and PrePS in the Lung and Prostate cancer dataset is shown in Appendix 3.  

The estimated mean PFS using the direct PFS fit and estimated by combining TTP and PrePS under a 

competing risk framework is shown in Table 5 for the combination of transitions for each of the three 

separate datasets (breast , prostate and lung). 

Table 5 : Estimation of mean PFS using direct PFS fit and combination of TTP and PrePS in the 

Breast, Lung and Prostate datasets 

The values in bold (first row for each dataset) represent the mean PFS predicted using direct PFS (for 

instance, the mean PFS using a directly fitted Gompertz model for the BC dataset is 67.21 weeks). The 

next rows show PFS estimated as combination of the distribution selected for TTP (column) and presPS 

(row) under a competing risk framework, giving 64 possible combinations for each dataset. For 

example, in the BC dataset, mean PFS generated assuming TTP follows a log-normal distribution and 

PrePS follows a gamma distribution is 84.00 weeks. 

 

 exp  weibull  gompertz  lnorm  llogis  gamma  gengamma  spline  

 PFS 70.18 66.55 67.21 101.42 84.78 67.02 67.76 75.17

 exp 70.18 67.02 68.69 93.2 78.58 67.34 68.49 72.46

 weibull 68.57 66.46 67.6 81.93 72.36 66.67 67.47 68.65

 gompertz 67.4 66.05 66.84 75.88 68.99 66.16 66.69 66.4

 lnorm 69.77 66.92 68.41 91.65 77.82 67.22 68.28 71.98

 llogis 69.02 66.63 67.89 86.28 74.8 66.87 67.78 70.13

 gamma 68.85 66.56 67.78 84 73.5 66.8 67.66 69.37

 gengamma 67.97 66.26 67.23 78.11 70.26 66.42 67.08 67.28

 spline 68.87 66.56 67.78 85.33 74.26 66.8 67.67 69.79

 PFS 44.95 44.09 43.69 69.31 67.03 44.47 43.63 50.64

 exp 44.95 44.45 45.04 58.05 53.85 44.64 44.3 47.01

 weibull 44.34 44.01 44.41 52.61 49.92 44.15 43.9 45.35

 gompertz 43.38 43.27 43.4 47.1 45.95 43.33 43.22 43.39

 lnorm 45.28 44.74 45.39 62.2 57.13 44.95 44.58 48.27

 llogis 44.86 44.43 44.94 57.45 53.57 44.6 44.3 46.88

 gamma 44.54 44.16 44.62 54.18 51.06 44.32 44.05 45.86

 gengamma 43.61 43.42 43.64 48.37 46.84 43.51 43.35 43.81

 spline 44.39 44.06 44.45 53.77 50.84 44.2 43.96 45.7

 PFS 29.69 29.19 29.29 34.07 35.85 29.21 29.21 30.07

 exp 29.69 29.26 29.31 29.36 28.82 29.02 29.38 29.38

 weibull 29.75 29.24 29.33 29.36 28.83 29 29.39 29.41

 gompertz 29.53 29.33 29.29 29.32 28.76 29.1 29.34 29.24

 lnorm 30.67 29.37 29.8 29.82 29.42 29.06 29.86 30.39

 llogis 30.39 29.46 29.72 29.77 29.33 29.18 29.8 30.13

 gamma 29.77 29.23 29.34 29.36 28.82 28.98 29.38 29.41

 gengamma 29.51 29.26 29.25 29.24 28.66 29.01 29.26 29.15

 spline 29.83 29.36 29.4 29.49 29.01 29.12 29.52 29.64

D
is

tr
ib

u
ti

o
n

 f
o

r 
P

re
P

S

Distribution for PFS/TTP

Lung cancer dataset (mean PFS in weeks)

Prostate cancer dataset (mean PFS in weeks)

Breast cancer dataset (mean PFS in weeks)

D
is

tr
ib

u
ti

o
n

 f
o

r 
P

re
P

S
D

is
tr

ib
u

ti
o

n
 f

o
r 

P
re

P
S



81 

 

As expected, the estimated mean PFS is exactly the same when the exponential distribution is used for 

the direct PFS fit and when the exponential distribution is used for both TTP and PrePS and combined 

under a competing risk framework. This was the case in all three datasets (breast, prostate and lung 

cancer). 

When looking at each individual dataset, the following could be noted: 

• Breast and prostate cancer dataset: The log-normal, log-logistic and spline models had a 

longer tails compared with other distributions for both PFS and TTP, and thus led to higher 

estimates of TTP and therefore higher PFS. Because of the longer tail, for these distributions, 

the reliance on extrapolation beyond the observed period was much greater and therefore the 

extrapolation for PrePS has a more significant impact on the estimation of PFS, as shown in 

Table 5. While the same TTP is used, different prePS lead to larger variation for PFS. 

• Lung cancer dataset: In this dataset, whilst the log-normal and log-logistic distributions had 

longer tails compared with other distributions, the tail remained minimal. PrePS was relatively 

similar between models up to week 75, by that time, most patients had progressed, limiting any 

impact from the use of different PrePS functions. 

Although it is difficult to provide a like-for-like comparison, it can be seen from this simple illustration 

that when the fit to the transition is poor or the degree of extrapolation required is greater, there is more 

scope for the differences between the direct fit and competing risk approach. If transitions were 

estimated using a complete dataset with no censoring, no differences are expected in the estimation of 

PFS using the direct fit or combining TTP and PrePS. However, this is not possible in practice as data 

are incomplete (due to censoring). Consequently, differences in the estimation of PFS between these 

two approaches are the results of the selection of the appropriate survival function, rather than the 

approach itself. 

5.4.2 Assumptions on the estimation on the separation of patients who experienced progression 

or death  

Because PFS is used directly in the simplified STM (commonly used in HE) to represent the transitions 

for people leaving the PF health state, assumptions are required to separate progression to pre-

progression death events. As highlighted in Section 5.3, three broad structural assumptions are used in 

the Simplified STM to separate PFS in terms of progression and pre-progression death events. These 

key structural assumptions are described in detail below. Whilst the number of PFS event will be the 

same irrespective of the approach taken, the estimated number of progression and pre-progression 

mortality events differs according to the approach used. 
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5.4.2.1 Approach 1: The Simplified STM assuming a proportion of PFS events to be death 

or progression 

Perhaps, the simplest approach to separate PFS into the two competing events (progression and pre-

progression mortality) is to consider that a proportion of PFS events are (a) progression or (b) death. 

The probability that the event is either progression or death could be: 

• Constant: calculated from the number of deaths in PFS divided by the total number PFS events 

• Time-varying: calculated from a logistic regression model using PFS time as a covariate (on 

the log scale) or alternative forms. 

The implementation is relatively straightforward. The number of patients leaving the PF health sate is 

first calculated at each cycle (based on the difference in PFS between time intervals), with a proportion 

of people leaving this health state assumed to be because of death. 

The key strength of this approach is its simplicity. However, it is associated with two limitations: 

(i) Assuming the probability that PFS events are deaths is constant is an over-simplification and is 

only appropriate when the model is Markov (i.e. when all transitions - PFS and the two 

competing transitions - are constant), 

(ii) Whilst the probability of an event being death or progression could be assumed to be time-

varying, through the use of a logistic regression model (which uses log of PFS time as 

covariate), such an approach is also likely to be biased for two reasons. First, the shape that the 

logistic model can take is restricted. Perhaps more importantly, the logistic model does not 

account for censoring, and therefore any estimates from the logistic regression model are likely 

to be different from data after accounting for competing risks. 

5.4.2.2 Approach 2: The Simplified STM assuming a constant probability of dying in PFS 

based on the number of events divided by the total PFS time 

The second approach uses a different set of structural assumptions in that the number of deaths in pre-

progression at a given cycle is calculated from the number of patients who were progression-free in the 

previous cycle and a constant probability of dying. This constant probability of dying in PFS is 

calculated based on the number of deaths in PFS divided by the total PFS time (sum of PFS time, 

including censored observations and events). The number of progression events is then calculated from 

the number of people who progress during a given cycle minus the number of pre-progression deaths 

calculated above. 
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Compared with Approach 1 (outlined above), this approach is perhaps more consistent with the 

competing risk framework whereby PFS represents the cumulative incidence of the two competing 

events. Within this framework, the probability of death is calculated as the cumulative incidence of any 

event at time t multiplied by the cause-specific hazard for each event. However, such an approach is 

restrictive and only appropriate if the rate of pre-progression mortality is constant over time. 

Furthermore, this is different to properly dealing with competing risks, as PrePS does not affect PFS 

with this approach; instead it only influences the contribution of progression and pre-progression death 

events. 

5.4.2.3 Approach 3: The Simplified STM assuming a probability of dying based on the pre-

progression survival curve (PrePS) or remaining based on TTP 

The third approach follows the same principle as the second approach in that the number of deaths in 

the PF state is calculated from the number of patients who were progression-free in the previous cycle 

and the probability of dying in PFS. However, compared with Approach 2, which assumes a constant 

probability of dying in PFS based on the number of deaths in PFS and total PFS time, Approach 3 uses 

the hazard from the pre-progression survival function (PrePS). PrePS is the “naïve” cause-specific 

incidence of pre-progression mortality prior to accounting for the existence of the competing event 

defined as the time to pre-progression mortality, with progression events occurring prior to death being 

censored.  

Typically, PrePS is extrapolated beyond the trial using parametric functions. The probability of dying 

is then given by the PrePS hazard during each cycle. If PrePS follows an exponential distribution, the 

hazard of death prior to progression will be constant. If PrePS follows any other distribution, the hazard 

of dying whilst progression-free will be time-varying. It should be noted that if the exponential 

distribution is used and the hazard is constant, this is the same as calculating the hazard based on the 

number of death events in PFS and total PFS time under a Poisson distribution. Consequently, under 

the assumption of an exponential distribution for PrePS, the hazard of dying in PFS will be the same 

for Approaches 2 and 3.  

As with Approach 2, the implementation is more consistent with the competing risk framework whereby 

PFS represents the cumulative incidence of the two competing events. However, compared with 

Approach 2, using PrePS to define the probability of dying whilst progression-free is more flexible and 

allows a better reflection of the data allowing the hazard to be time-varying. Nevertheless, as previously 

highlighted, this is different to properly dealing with competing risks, as PrePS does not affect PFS with 

this approach, but only the contribution of progression and pre-progression death events. 
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Furthermore, there is an important limitation with this approach in that PrePS and PFS are extrapolated 

independently from each other despite being correlated (PrePS events are a component of PFS events). 

Therefore, it is possible for PrePS to be mis-specified in that PrePS becomes greater than PFS (which 

is not plausible as PFS includes these deaths). Whilst a constraint could be added to a model to prevent 

the number of deaths in pre-progression from being greater than the number of PFS events, such 

constraints introduce biases compared with modelling the two competing transitions separately under a 

competing risk framework. 

Similar to this approach, instead of using PrePS to determine the probability of dying whilst 

progression-free, an alternative approach was identified in the review whereby TTP is used to determine 

the probability of remaining alive in PFS (TA57868). This follows the same principle as above (approach 

3), but uses TTP instead of PrePS to estimate the probability of remaining in the progression-free health 

state. However, using TTP instead of PrePS required additional strong assumptions, such that the same 

distribution had to be used for PFS and TTP to ensure consistency. This is approach is less likely to be 

appropriate and therefore is not discussed further within this thesis.   

 

5.4.2.4 Estimation of the percentage of death in patients without progression using the 

different methods in the prostate cancer dataset 

As highlighted in the previous section, different approaches are currently used to separate progression 

and pre-progression deaths from PFS. These different methods could have an impact on the estimation 

of OS depending on both the extrapolation for PFS and the number of pre-progression mortality events. 

To illustrate this, data from the breast, prostate and lung cancer datasets were used to estimate the 

number of pre-progression mortality events using the following methods described above: 

- Scenario 1: Assuming a proportion of PFS events are deaths (either constant or time-varying) 

- Scenario 2: Using PrePS to estimate the probability of dying in PFS. Eight parametric 

distributions are considered (exponential, Weibull, Gompertz, Log-Normal, Log-Logistic, 

Gamma and Generalised Gamma, spline hazard model with one knot). As previously 

highlighted, the scenario using the exponential distribution is the same as using the number of 

deaths in PFS divided by the total PFS time. 
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For illustration, PFS is assumed to follow a log-normal distribution. This was selected because the log-

normal distribution was generally associated with a tail in the datasets examined, and therefore any 

effect associated with the method to estimate the number of pre-progression death is likely to be clearer. 

Results in terms of estimated percentage number of pre-progression deaths over time for the breast, 

prostate and lung cancer datasets are presented in Figure 20, Figure 21 and Figure 22, respectively.  

Figure 20 : Comparison in the estimation of the number of death not associated with progression 

using different simplified approaches used in health economics in the BC dataset (CALGB 40502) 

 

Figure 21 : Comparison in the estimation of the number of death not associated with progression 

using different simplified approaches used in health economics in the prostate cancer dataset 
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Figure 22 : Comparison in the estimation of the percentage of death not associated with 

progression using different simplified approaches used in health economics in the lung cancer 

dataset 

 

 

In summary, it can be seen that different approaches could predict very different percentage of pre-

progression deaths. Assuming a constant or time-varying proportion of PFS events are deaths led to 

different estimates (Scenario 1 – right-hand side of each figure). Similarly, for Scenario 2 (left-hand 

side of each figure), the percentage of estimated death events in people who are progression-free was 

very different depending the choice of parametric function used for PrePS. These differences would 

have a knock-on impact on the OS estimation. 
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5.5 Implementation of the Simplified STM (used in health economics) in the BC dataset and 

comparison against the MSM using the mssample function when transitions are constant 

(Markov) 

Let us consider again the BC dataset, whereby the outcomes are PFS and OS. A Simplified STM was 

constructed under each of the three different structural assumptions described above and these were 

compared against the MSM (using the mssample function). 

For simplicity, a cohort approach is used. It is expected that the choice between the cohort or simulation 

approach would not affect conclusions as both approaches would provide very similar predictions (with 

differences attributable to sampling variation) under the same assumptions. In addition, in order to 

reflect the implementation of the Simplified STM, transitions are assumed to be conditionally 

independent i.e. parameters for the transitions are estimated independently from each other. In order to 

provide a like-for-like comparison against the MSM, all transitions rates are assumed to be constant 

(Markov). A comparison against the MSM when transitions are time-varying is presented in Section 

5.6. The Simplified STM was implemented using R. The key steps in implementing the Simplified STM 

are summarised in Figure 23. A time horizon of 520 weeks was used assuming a cycle length (time 

interval) of 1 day. 

As expected, predictions were the same (Figure 24) between all the different implementations of the 

Simplified STM and the MSM using the msm or mstate package when the model is assumed to be 

Markov (transitions assumed to be constant). Curves are superimposed, and therefore other lines are 

obscured.
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Figure 23: Summary of the step-by-step implementation of the Simplified STM (based on the 

approach commonly used in health economic models)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Step 1: Estimate the time to progression or death from the progression-free health 

state – Fit a parametric function to PFS  

Step 2: Estimate the number of PFS events at the end of each cycle 

No. of people in PFS in current cycle minus number of people in PFS in previous 

cycle 

Step 3: Estimate the number of deaths in pre-progression  

Step 7: Calculate the health state occupancy 

Approach 1: Proportion 

based on (a) number of PFS 

event that are death and (b) 

(a) total number of PFS 

events 

Approach 2:Probability of 

dying calculated from the 

number of deaths in PFS and 

total PFS time in BC dataset 

Approach 3:Probability of 

dying based on PrePS 

(parametric function fitted to 

the KM for prePS) 

Step 4: Estimate the number of progression events:  

No. of PFS minus No. pre-progression death 

Step 5: Estimate the time from progression to death in people who progressed (i.e. 

who did not die without progression) – Fit a parametric distribution 

Step 6: Apply PPS to patients who progressed 



89 

 

Figure 24 : Comparison of predictions for PFS and OS assuming transition rates are constant (curves are superimposed) in the BC dataset (CALGB 

40502) 
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5.6 Health state sojourn time estimated with each approach 

Health state sojourn times (time in PF, PD) estimated from the multi-state using msm, the mssample 

function, and the three implementations of the simplified STM are summarised in Table 6. As approach 

uses different inputs, the uncertainty is captured by bootstrapping the BC dataset rather than the value 

of each input parameters. This is to ensure that any differences observed would be attributable to the 

approach itself, rather than the differences in input parameters. 

 

Table 6 : Summary of health state sojourn times (BC dataset boostrapped) 

  msm msmsample 

simplified 

STM1 

simplified 

STM2/3 

      

Time in 

PF (in 

weeks) point estimate 

     

70.16  

              

70.11  

                      

70.16  

                           

70.16  

 LCI 

     

61.60  

              

61.77  

                      

61.62  

                           

61.62  

 UCI 

     

79.91  

              

79.93  

                      

80.05  

                           

80.05  

      

Time in 

PD (in 

weeks) point estimate 

     

68.14  

              

68.63  

                      

68.57  

                           

68.63  

 LCI 

     

56.01  

              

56.57  

                      

56.39  

                           

56.44  

 UCI 

     

81.74  

              

82.21  

                      

82.14  

                           

82.20  

      

Total LY 

(in 

weeks) point estimate 

   

138.30  

           

138.75  

                    

138.74  

                        

138.79  

 LCI 

   

122.77  

           

123.33  

                    

123.20  

                        

123.25  

 UCI 

   

156.22  

           

156.39  

                    

156.66  

                        

156.71  

 

 

In summary, approaches generate the same health state sojourn times. 
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5.7 Implications when transitions are time-varying 

It is challenging to provide a like-for-like comparison between the current implementation of the 

Simplified STM and the MSM given that these approaches uses different input parameters. As described 

in Section 5.4, a single extrapolation is used for PFS in simplified STM. In contrast, PFS in the MSM 

is a function of the extrapolation of both TTP and PresPS. Different structural assumptions to separate 

progression from pre-progression mortality could also be made (Section 5.4.2). 

As previously described in Section 5.4.1, differences in predictions between the MSM and the 

simplified STM are likely to be larger when: (a) data are less complete; (b) the fit of the model to the 

observed data is poor, and/or (c) where the reliance on extrapolation is greater. 

Despite the difficulty in comparing the two approaches, I ran the MSM (using the mssample function 

from the mstate package) using eight parametric extrapolations (exponential, Weibull, Gompertz, 

Log-Normal, Log-Logistic, Gamma and Generalised Gamma and spline hazard model with one knot) 

for TTP and PrePS, giving 64 combinations of predicted PFS. PPS was assumed to be constant in all 

analyses. 

In parallel, I also ran the Simplified STM as currently implemented in HE assuming: 

• both PrePS and PFS follow eight possible parametric extrapolations, leading to 64 possible 

combinations of functions (referred to as Approach 3 in Section 5.4.2.3). 

• PPS was assumed to follow an exponential distribution as in the implementation of the MSM. 

As previously discussed, there is an alternative implementation of the STM, assuming a proportion of 

PFS events are deaths (Approach 1 in Section 5.4.2.1). Little difference is expected (See Section 5.4.2) 

against the implementation the STM selected here given that PFS will be the same, with the only 

difference being the number of deaths occurring pre-progression. Therefore, for ease of interpretation, 

this is not explored here. 

Approaches were applied to the BC dataset as well as the prostate and lung cancer datasets, with results 

reported in Appendix 4 (due to the size of the tables). In summary, taking the BC dataset as an example, 

the mean OS predicted by the simplified STM ranged from 133.3 weeks to 166.5 weeks in the BC 

dataset, depending on the choice of parametric distributions assumed. In contrast, the mean OS 

predicted by the MSM using the mssample function ranged from 132.8 to 159.1 weeks. Similarly, the 

mean PFS predicted by the Simplified STM ranged from 66.6 weeks to 101.4 weeks, depending on the 
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choice of parametric distributions assumed. In contrast, the mean PFS predicted by the MSM using the 

mssample function ranged from 65.6 weeks to 93.6 weeks. 

Whilst it is difficult to interpret, differences in predictions in LYGs between the two approaches were 

over 5% only when PFS/TTD followed a log-normal or log-logistic distribution. This is because these 

distributions were associated with a long tail (Appendix 1 for BC dataset) and the hazard was no longer 

based on the data itself but based on the extrapolated hazard. As expected, when the mean LYGs were 

calculated for the first 100 weeks only (to avoid the need for extrapolation), predictions between the 

MSM and the simplified STM were closer (not shown). 

The process was repeated in the prostate and lung cancer datasets. Similar findings were obtained, in 

that larger differences (defined as >5%) were seen only for those scenarios where PFS/TTD was 

assumed to follow a log-normal or log-logistic distribution, due to the longer tail associated with these 

distributions. 

It should be noted that it is difficult to make inferences based on a limited number of datasets and that 

the MSM and simplified STM use different inputs. Whilst it is challenging to compare predictions 

between approaches, this exploratory comparison confirms that some differences are expected between 

approaches. However, these differences are likely to be minimal, but could be larger depending on the 

parametric function used, the fit of the model to the observed data and the degree to which the model 

relies on extrapolation beyond the observed period. 
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5.8 Should we be concerned with the simplifications made in the Simplified STM (commonly 

used in HE)? 

Despite multi-state modelling offering a convenient way to combine competing transitions under a 

competing risk framework, simplifications are usually made in health economic applications to avoid 

the need to model the competing transitions. The rapid review of NICE cancer appraisals also indicated 

that the STM has been implemented inconsistently between appraisals and that different assumptions 

could be made regarding how to separate PFS into its two constituent components (progression and pre-

progression deaths). These different implementations can lead to differences in the predicted number 

of pre-progression death events, and therefore may also impact on predictions of OS. 

As demonstrated in Section 5.4.1, the simplifications made in health economics have few implications 

when all transition rates are assumed to be constant. However, the implications are more significant 

when transitions rates are time-varying. Whilst it is difficult to directly compare the MSM and the 

Simplified STM due to the differences in inputs, larger differences in predictions could occur between 

implementation depending on the characteristics of the data and the need for extrapolation, as 

demonstrated in the exploratory analysis in the BC dataset in Section 5.6, but also in two separate 

datasets in patients with prostate and lung cancer.  

This chapter has demonstrated that when transitions are selected appropriately and the fit to the data is 

good, it makes little difference whether transitions are modelled under a competing risk framework or 

using the assumptions typically made in HE. However, if transitions are selected poorly and do not fit 

the data well, differences in predictions are likely to be increased. This is because one approach relies 

on the fit and extrapolation of a transition in one dataset (PFS) compared with the fit and extrapolation 

in two datasets (TTP and PrePS). Therefore, differences are more likely to be attributable to the choice 

of parametric function and extrapolation, rather than the approach itself. 

This will be demonstrated in Chapter 8, where the MSM is compared systematically against the STM 

in a simulation study, where I attempted to reduce potential biases in interpretation by selecting 

parametric functions using a similar process. 

Prior to this, in the next chapter, I describe a review of methods to jointly model progression and 

survival outcomes in order to identify whether alternative approaches could be used to estimate health 

state sojourn time.
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PART III: JOINT MODELLING OF PROGRESSION AND SURVIVAL 

OUCTOMES 

6 CHAPTER VI: THE JOINT MODELLING OF PROGRESSION AND 

SURVIVAL OUTCOMES: A REVIEW OF METHODS 

6.1 Chapter overview 

This chapter aims to summarise methods that can be used to jointly model progression and survival 

outcomes.  

Section 6.2 introduces this Chapter. Objective of the review are described in Section 6.3. Inclusion and 

exclusion criteria for the review are described in Section 6.4. In Section 6.5, I describe the search 

strategy, challenges associated with searching the methodological literature and how I addressed those 

challenges. In Section 6.6, 6.7, 6.8 I describe the screening process, the framework for the review and 

how data were synthesised respectively. Findings from the review are presented in Section 6.9.  

6.2 Introduction 

As described in Chapter 2, Woods et al.9 and Bullement et al.18 two key general approaches are currently 

used in health economics (HE) to estimate health state sojourn times and associated quality-adjusted 

life years (QALYs); (i) the partitioned survival approach (PSM) and (ii) the state-transition approach 

(including the MSM or the “simplified” STM which uses PFS directly). Under these currently used 

approaches, progression and survival outcomes are estimated independently from each other; thus, the 

current implementation in health economics does not typically consider the dependence structure or 

correlation between PFS and OS.  

Indeed, in the current implementation of the PSM, OS and PFS are typically modelled as two 

independent processes, whereby parametric functions are fitted independently to the OS and PFS data 

from the trial, despite PFS events including death occurring before progression. Parameters are 

estimated for each outcome separately. 

Similarly, within the current implementation of the STM approach, OS is estimated indirectly, as a 

result of three possible transitions, with the transitions typically estimated one at a time and often 

independently from each other, with the possible exception of PPS which could be estimated as a 

function of the time to progression TTP, although this is rarely done. Similarly, the dependence between 
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TTP and PrePS is often not considered within the standard STM used in HE; however, it is accounted 

for within the MSM framework whereby competing risks are considered. 

The dependence is ignored primarily because estimates for each transition are estimated using separate 

datasets, rather than through the use of a jointly-fitted model. The impact of ignoring this dependence 

structure between progression and survival outcomes in health economic models is unknown. 

Consequently, prior to testing the performance of the different methods to estimate health state sojourn 

times (Chapter 8), I undertook a systematic review of the literature to identify methods that could be 

used to jointly model progression and survival outcomes that could be relevant to health economics. 

This review examined methods used within a range of other disciplines including operational research, 

statistics, engineering and environmental modelling. 

6.3 Objectives for the review 

The primary aim of this review is to identify methods that can be used to jointly model progression and 

survival outcomes (and associated parameters) when estimating health state sojourn time to improve on 

methods currently used in health economics. 

A secondary objective was to identify methods that could be used to induce dependence between 

transitions in order to generate ‘reflective’ trial data that exhibit different degrees of dependence for use 

in the simulation study presented in the next chapters (Chapter 7 and 8). The review followed a 

systematic process in that it is reproducible and documented. However, it should be noted that there are 

a number of challenges associated with the conduct of a review of methods, which are described further 

below.  

6.4 Inclusion/exclusion criteria for the review and search 

Strict inclusion and exclusion criteria were applied. This is because a large number of citations and 

studies were expected. Inclusion and exclusion criteria are described below. 
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Inclusion criteria 

• Full papers describing a methodology, not already identified (from sources already known or 

identified through the searches) to jointly model progression and survival outcomes or related 

survival endpoints, 

Exclusion criteria 

• Conference abstracts or presentations in which sufficient details are not available to replicate 

the approach 

• Application of a method rather than its development; when the method has been previously 

identified 

• Methods that do not relate to time-to-event outcomes 

• Methods developed to account for the dependence between a longitudinal measurement e.g. 

blood pressure) and a time-to-event outcome (e.g. OS) 

• Methods that cannot be used to extrapolate time-to-events outcomes (e.g. non-parametric) 

• Methods developed to estimate the effect of covariates, rather than the joint prediction of health 

state sojourn time 

• Methods to deal with competing risks or interval censoring only. 

6.5 Search strategy 

6.5.1 Method for searching 

The methods to systematically search for evidence relating to the effectiveness of clinical interventions 

are well established, with searches typically being based on a defined PICO (population, intervention, 

comparator, outcome) specification of the research question. The types of studies to search for are 

known and therefore key terms can be defined a priori. For this type of systematic review, the aim is 

typically to identify all possible studies according to the PICO question given a set of search terms.75, 76 

In contrast, methods for searching within the methodological literature are less established and are 

particularly challenging. This is due to the absence or limited knowledge of the studies that might be 

relevant for inclusion in the review. When searching for studies within a methodological review, whilst 

the broad concept of the method searched is known, the name of the method may be described using a 

variety of terms and therefore it is not possible to search for the method directly. 



97 

 

The challenges associated with conducting searches for methodological research have been discussed 

by Schlosser et al (2006),77 Booth et al (2008),78 Hutton and Ashcroft (1998),79 Edwards et al (1998)80 

and Paisley et al.81 

Unlike systematic reviews of interventions, there is no gold standard on how to conduct searches for 

methodological research. I rapidly searched the literature to identify previous examples of 

methodological reviews to provide an understanding of some of the approaches that have been used 

when searching for methodological papers.82 I also looked at the methods used in similar PhD theses.11, 

83 Whilst the description for the method used to search for the methodological literature is often limited, 

these sources11, 82, 83 used an iterative approach.  

As part of the process of understanding methods for searching for a methodological review, I talked to 

an information specialist (Dr Suzy Paisley, ScHARR, HEDS, University of Sheffield) with expertise in 

searching methodological literature. Dr Paisley confirmed that an iterative approach would be the most 

appropriate method to conduct the searches for this review. With this approach, the searches are not 

fixed and evolve at the same time as the researcher develops a deeper understanding of the topic and 

the different methods available. This type of approach for searching, also known as “pearl growing” 

has been widely discussed in the literature by  Schlosser et al (2006),77 Booth et al (2008),78 Hutton and 

Ashcroft (1998),79 Edwards et al (1998)80 and Paisley et al.81 An advantage of this approach is that this 

is not static, and there can be some variation depending on what the searches are trying to achieve. 

Therefore, I considered that using such an approach would provide some flexibility and would allow 

the searches to be adapted to meet my needs.  

In brief, I adopted the following process: 

1. Relevant key papers were identified (‘pearls’) through known sources by myself and my 

supervisory team;  

2. Key terms under which the key papers are indexed, and key terms used in the title and abstract 

were identified;  

3. A keyword search was then conducted in a search database (Web of Science [WoS]) based on 

the key terms identified in the ‘pearl’ papers (through keywords used and reference searching). 

4. In addition to the keyword searching, citation searching was undertaken with the aim of 

identifying papers that cite the identified ‘pearl’ papers. Citation searching is a useful 

alternative to subject searching which allows the identification of key papers that include the 

identified ‘pearl’ paper in their bibliographies. 
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5. The reference lists of the identified ‘pearl’ papers were also searched to identify potentially 

relevant published literature. 

6. Papers identified through database, citation and reference searching were then screened to 

identify potentially relevant papers. 

7. The process was repeated twice again until saturation was reached (further detail is available in 

Section 6.5.4). These potentially relevant papers were, in turn, assessed and new search terms 

were defined based on the keywords used in the papers and reviewing the reference list. Citation 

searches are also conducted to identify papers that reference the ‘new’ ‘pearl papers.  

8. Validation with experts to ensure that key methods have not been missed. 

6.5.2 Identification of the initial ‘pearl’ papers 

Five initial ‘pearl’ papers were used. The ‘pearl’ papers were primarily identified through known 

sources by myself and my supervisory team. The initial ‘pearls’ are summarised in Table 7. 

Table 7 : Initial ‘Pearl’ papers 

Author Year Title 

Andersen44 2002 Multistate models for event history analysis 

Glasziou84 1998 Quality adjusted survival analysis with repeated quality of life measure 

Putter43 2007 Tutorial in biostatistics: competing risks and multi-state models 

Williams24 2017 

Estimation of survival probabilities for use in cost-effectiveness 

analyses: A comparison of a multi-state modelling survival analysis 

approach with partitioned survival and Markov decision-analytic 

modelling. 

 

Estimation of Survival Probabilities for Use in Cost-effectiveness 

Analyses: A Comparison of a Multi-State Modelling Survival Analysis 

Approach with Partitioned Survival and Markov Decision-Analytic 

Modelling 

Williams50 2017 
Cost-effectiveness analysis in R using a multi-state modelling survival 

analysis framework: A tutorial. 

 

Cost-effectiveness Analysis in R Using a Multi-State Modelling 

Survival Analysis Framework a Tutorial. 

6.5.3 Initial keyword search 

A search was initially conducted in the ISI Web of Knowledge on the 19th February 2018. The search 

was subsequently re-run on the 7th June 2020 in the ISI Web of Science core collection (formally Web 

of Knowledge) to ensure the review was up to date. The review was limited to peer-reviewed 

publications and therefore conference abstracts or grey literature including unpublished or ongoing 

research was excluded from the review. 
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To keep the review manageable, I searched for keywords included in the title only. This was a pragmatic 

decision which was taken due to the large number of citations retrieved when searching across all fields 

due to the use of broad terms. The number of citations retrieved by the searches was already high when 

searching titles only. 

Initial search terms were identified through keywords used to describe the methods in the initial ‘pearl’ 

papers (described in Section 6.5.2) and papers included in their reference lists. 

The first component of the keyword search involved searching for terms related to time-to-event 

outcomes. The second component involved searching for terms related to dependence structures. These 

search terms are then combined with an AND statement.  

This was then combined with an additional filter related to methods in order focus the search on papers 

describing the method itself and its assumptions, rather than any applications of that method. Variations 

to search terms were used. For instance, to describe the terms ‘dependent’, related (synonym) search 

terms such as ‘conditional’ and ‘joint’ were considered. 

In addition to keywords related to dependence and outcomes, additional keyword searching was 

conducted using terms describing previously identified approaches. This was done to identify potential 

papers which compare an alternative method to an approach previously identified. The search strategy 

is described in Table 8, with the additional search terms used for the second iterations of the search 

highlighted in bold. The search strategy was discussed with an information research specialist prior to 

the search being conducted. 

6.5.4 Additional search terms (2nd iteration) 

Search terms used for the second iteration are presented in Table 8 above highlighted in bold. Whilst 

the initial title keyword search was already sensitive, the search was slightly amended to include 

additional search terms related to outcomes and dependence.  The initial search was then complemented 

with a search using more specific keyword terms. 

It should be noted that the process can be repeated indefinitely and that this is can be a slow process. 

Therefore, a pragmatic approach was employed whereby a maximum of two iterations was considered 

to avoid repeating the process indefinitely with diminishing marginal returns. This would allow a large 

amount of literature to be captured whilst keeping the review manageable. This was also supported by 

the small amount of literature deemed relevant from the second iteration, as shown in the PRISMA 

diagram in Figure 25. Petticrew and Roberts (2006) and Schlosser et al (Schlosser 2006) consider 

saturation as an indicator for stopping further literature searching. Edwards et al (1998)80 further notes 

that the marginal returns associated with reviewing additional papers diminish very quickly after a 

certain point. Citations were uploaded onto Endnote X8 reference management software. 
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Table 8 :  Initial and second keyword search 

Search Search term 1st search 2ndsearch 

#1 TI=(event* OR failure* OR survival* OR duration* OR 

hazard* OR process OR processes OR occurrence) 

801,674 1,691,665 

#2 TI=(dependenc* OR correlat* OR associat* OR join* OR 

relationship OR conditional* OR linked* OR clustered* OR 

connection*) 

 

1,903,768 2,540,902 

#3 TI=(model* OR method* OR approach* OR statistic* ) 4,018,460  

#4 #3 AND #2 AND #1 1,850 4,395 

#5 TI=(multistate OR “multi-state” OR markov OR “illness 

death” OR “partition* survival” OR copula* OR frailt*) 

29,609 44,469 

#6 TI=(compar* OR versus OR alternative*) 1,569,753  

#7 #6 AND #5 AND #3 386 475 

#8 #7 OR #4 2,234  

#9 TI=(progres* OR PFS) 245,271  

#10 TI=(overall survival OR OS OR death) 214,122  

#11 #10 AND #9 AND #2 285  

#12 #11 OR #8 2,510  

#13 TI=(( multivariate* OR bivariate* OR cluster*) near/0 

(survival* OR risk* OR event* OR failure* OR endpoint* OR 

time* OR distribution*)) 

 

 2,101 

#14 #13 AND #3  605 

#15 #14 OR #7 OR #4  5,392 

#16 TI=(semi competing  or  semicompeting)   90 

#17 TI=(( successive* OR sequential* OR consecutive* OR 

serial*) near/0 (survival* OR risk* OR event* OR failure* OR 

endpoint* OR time* OR distribution*)) 

 346 

#18 #17 OR #16 OR #15  5,823 

#19 #18 NOT #12 

 

 3,588 

http://apps.webofknowledge.com/summary.do?product=WOS&doc=1&qid=1&SID=E4YzdffSwvvMLCJEWPA&search_mode=AdvancedSearch&update_back2search_link_param=yes
http://apps.webofknowledge.com/summary.do?product=WOS&doc=1&qid=13&SID=E4YzdffSwvvMLCJEWPA&search_mode=AdvancedSearch&update_back2search_link_param=yes
http://apps.webofknowledge.com/summary.do?product=WOS&doc=1&qid=2&SID=E4YzdffSwvvMLCJEWPA&search_mode=AdvancedSearch&update_back2search_link_param=yes
http://apps.webofknowledge.com/summary.do?product=WOS&doc=1&qid=14&SID=E4YzdffSwvvMLCJEWPA&search_mode=AdvancedSearch&update_back2search_link_param=yes
http://apps.webofknowledge.com/summary.do?product=WOS&doc=1&qid=3&SID=E4YzdffSwvvMLCJEWPA&search_mode=AdvancedSearch&update_back2search_link_param=yes
http://apps.webofknowledge.com/summary.do?product=WOS&doc=1&qid=4&SID=E4YzdffSwvvMLCJEWPA&search_mode=AdvancedSearch&update_back2search_link_param=yes
http://apps.webofknowledge.com/summary.do?product=WOS&doc=1&qid=15&SID=E4YzdffSwvvMLCJEWPA&search_mode=AdvancedSearch&update_back2search_link_param=yes
http://apps.webofknowledge.com/summary.do?product=WOS&doc=1&qid=5&SID=E4YzdffSwvvMLCJEWPA&search_mode=AdvancedSearch&update_back2search_link_param=yes
http://apps.webofknowledge.com/summary.do?product=WOS&doc=1&qid=16&SID=E4YzdffSwvvMLCJEWPA&search_mode=AdvancedSearch&update_back2search_link_param=yes
http://apps.webofknowledge.com/summary.do?product=WOS&doc=1&qid=6&SID=E4YzdffSwvvMLCJEWPA&search_mode=AdvancedSearch&update_back2search_link_param=yes
http://apps.webofknowledge.com/summary.do?product=WOS&doc=1&qid=7&SID=E4YzdffSwvvMLCJEWPA&search_mode=AdvancedSearch&update_back2search_link_param=yes
http://apps.webofknowledge.com/summary.do?product=WOS&doc=1&qid=17&SID=E4YzdffSwvvMLCJEWPA&search_mode=CombineSearches&update_back2search_link_param=yes
http://apps.webofknowledge.com/summary.do?product=WOS&doc=1&qid=8&SID=E4YzdffSwvvMLCJEWPA&search_mode=CombineSearches&update_back2search_link_param=yes
http://apps.webofknowledge.com/summary.do?product=WOS&doc=1&qid=9&SID=E4YzdffSwvvMLCJEWPA&search_mode=AdvancedSearch&update_back2search_link_param=yes
http://apps.webofknowledge.com/summary.do?product=WOS&doc=1&qid=10&SID=E4YzdffSwvvMLCJEWPA&search_mode=AdvancedSearch&update_back2search_link_param=yes
http://apps.webofknowledge.com/summary.do?product=WOS&doc=1&qid=11&SID=E4YzdffSwvvMLCJEWPA&search_mode=AdvancedSearch&update_back2search_link_param=yes
http://apps.webofknowledge.com/summary.do?product=WOS&doc=1&qid=12&SID=E4YzdffSwvvMLCJEWPA&search_mode=CombineSearches&update_back2search_link_param=yes
http://apps.webofknowledge.com/summary.do?product=WOS&doc=1&qid=18&SID=E4YzdffSwvvMLCJEWPA&search_mode=AdvancedSearch&update_back2search_link_param=yes
http://apps.webofknowledge.com/summary.do?product=WOS&doc=1&qid=19&SID=E4YzdffSwvvMLCJEWPA&search_mode=CombineSearches&update_back2search_link_param=yes
http://apps.webofknowledge.com/summary.do?product=WOS&doc=1&qid=20&SID=E4YzdffSwvvMLCJEWPA&search_mode=CombineSearches&update_back2search_link_param=yes
http://apps.webofknowledge.com/summary.do?product=WOS&doc=1&qid=25&SID=E4YzdffSwvvMLCJEWPA&search_mode=AdvancedSearch&update_back2search_link_param=yes
http://apps.webofknowledge.com/summary.do?product=WOS&doc=1&qid=26&SID=E4YzdffSwvvMLCJEWPA&search_mode=AdvancedSearch&update_back2search_link_param=yes
http://apps.webofknowledge.com/summary.do?product=WOS&doc=1&qid=27&SID=E4YzdffSwvvMLCJEWPA&search_mode=CombineSearches&update_back2search_link_param=yes
http://apps.webofknowledge.com/summary.do?product=WOS&doc=1&qid=28&SID=E4YzdffSwvvMLCJEWPA&search_mode=AdvancedSearch&update_back2search_link_param=yes
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6.5.5 Citation and reference search 

In addition to keyword searching, within each iteration, the references of relevant papers were assessed 

to identify further papers. Further, citation searches were conducted to identify papers that cite the paper 

that was deemed relevant. 

6.5.6 Expert advice 

Due to challenges when conducting a review of methods, it is possible that some methods may not have 

been identified due to the lack of sensitivity of search terms, different terminology used in different 

disciplines or because the searches were restricted to titles. 

Expert advice was sought when the review of methods was completed. Key authors of papers who have 

published in the area and experts in statistics were emailed a brief outline of the review objectives 

together with the list of key methods identified alongside the key publications to check that no relevant 

methods had been missed by the search. Experts were asked to validate whether any methods were 

missing and suggest further research for inclusion in the review. Experts were identified through the 

my supervisory team and authors of the papers identified. 

6.6 Screening process 

The titles and abstracts of the citations identified from the searches were screened and relevant full-text 

papers were obtained according to the inclusion criteria defined in Section 6.4. Papers were screened 

by one reviewer (myself). 

Given that the focus of the review was on methods that could be used to jointly model progression and 

survival outcomes in order to estimate health state sojourn time, I did not aim to incorporate all 

applications of these methods to different case studies. However, excluding all applications outright 

may exclude methods that had not otherwise been identified. Therefore, I attempted to ensure that a 

method only described in an application was not excluded. In addition, whilst the focus is on methods 

that could be used to jointly model progression and survival outcomes, the identified methods were 

included when deemed relevant if they were used for different purposes. Important modifications of a 

method previously identified were also included. 

6.7 Framework for the review 

In addition to challenges associated with the searches, systematically reviewing methods papers poses 

similar challenges, and there is no ‘gold standard’ approach. Therefore, the review needs to be adapted 
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to its particular context. Hutton and Ashcroft (1998)79 and Edwards et al (1998)80 describe some of the 

challenges associated with conducting a review of methods. Edwards et al. (1998)80 proposes that the 

review of methods must be considered according to an explicit framework and that the process by which 

literature is obtained and synthesised should be methodical, transparent and explicit. Hutton and 

Ashcroft (1998)79 and Edwards et al (1998)80 suggest that methods could be assessed in a framework in 

terms of validity, practical applicability, reliability, mathematical properties and theoretical arguments. 

Consequently, a framework was developed to assess and describe the studies included in this review of 

methods (Table 9). The framework includes the questions I tried to answer for each of the method 

included in this review. The developed framework is based on criteria set out by Hutton and Ashcroft 

(1998)79 and Edwards et al (1998)80 and adapted from the frameworks used in previous PhD theses by 

Dr Nick Latimer11 and Dr Jon Tosh83 when searching for methods for adjusting for treatment switching 

and methods for optimisation, respectively. 

It should be noted that answers to questions from this framework are typically limited to information 

available in the paper identified or additional information provided following discussion with experts. 

For instance, for a large number of the methods identified, limited details were available, reducing the 

scope for assessment of the method. 

The framework focuses on four key elements of the identified methods:  

(i) its development/origin;  

(ii) its theoretical/mathematical properties;  

(iii) its application and performance,  

(iv) its applicability to health economics.  

 

The ”development/origin” domain concerns whether the method was originally developed to jointly 

model PFS and OS and to estimate health state sojourn time, or whether it was originally developed to 

account for the dependence between other survival endpoints or other types of data (for example, 

longitudinal or binary outcomes). The domain also refers to whether the method is an extension of 

another method, how the method has been extended and how it compares with the original method. 

 

 



103 

 

Table 9 : Framework for the review of methods 

Factor Consideration 

Development of the 

method 

• What was the method originally developed for? 

• Is the method an extension of another method? 

Theoretical properties • What are the key assumptions? 

• What are its mathematical properties? 

• What are its key limitations? 

Application of the 

method for the joint 

modelling of PFS and 

OS 

• Has the method been used to jointly model PFS and OS? 

• Has the method been tested in a simulation study or a real-life 

example? 

• How did the method perform? 

• Are the authors aware of any limitations relating to its performance? 

• When the method has not been used for the joint modelling of PFS 

and OS, how did it perform when jointly modelling two processes 

(similar to PFS and OS) 

Applicability to HE • Is the method applicable and sufficiently flexible to be used in health 

economic evaluation? If not, why not? 

• Is an example of implementation provided by the authors? 

• Is the implementation of the method transparent? 

 

The “theoretical/mathematical properties” domain concerns the key assumptions, mathematical 

properties and key limitations associated with the method. It is important to understand the theoretical 

properties of the methods in order to assess whether they are suitable for application in health economic 

evaluation. 

The “application and performance” domain concerns whether the method has been used for the joint 

prediction of PFS and OS (or similar outcomes). This also concerns its performance when jointly 

modelling PFS and OS and whether the method has been tested in a simulation study or a real-life 

example. It should be noted that whilst the review is focussed on methodological papers, applications 

relevant to the joint modelling of progression and survival outcomes would have also been included if 

there had been any. 
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Finally, the “applicability to health economics” domain relates to whether the method is likely to be 

adopted for use in health economic evaluation in the near future. Applicability to health economics is 

an important domain given that the lack of details or examples on how to implement the method 

(example of implementation in a suitable software package such as Excel or R) will likely prevent the 

method from being widely adopted in health economics. The importance of the applicability to health 

economics is illustrated by the case of the MSM. Despite the method being originally described by 

Andersen et al (2002),44 and described in a tutorial by Putter et al (2007)43 using the mstate package 

and Jackson et al (2011)85 using the msm package over a decade ago, only recently has interest increased 

in the use of this method as a vehicle for health economic evaluation, spearheaded by the publication 

of a tutorial by Williams et al (2017) on how to model PFS and OS using the multi-state framework in 

health economics.50 Despite the publication of a thorough tutorials on the method and its application in 

the context of health economics, this approach is still rarely used. The applicability to health economics 

domain also discusses whether the approach is flexible enough to be routinely used, or if its use is likely 

to be restricted, for instance, if it is limited to specific parametric distributions or to individuals with 

specialist skills (e.g. statistics). 

6.8 Data extraction, assessment and synthesis 

A template, based on the framework defined in Section 6.7, summarising the relevant details of each 

study included in the methods review was completed by myself, which has not been provided as this 

contains exactly the same information as provided in the main body of text in this chapter. Indeed, in 

the absence of relevant assessment criteria when conducting a review of methods, each method was 

judged based on its theoretical properties; in particular, with respect to the main assumptions, how well 

the method is described and potential key limitations. The assessment of the theoretical properties of a 

method helps in understanding how a method can be used to jointly model PFS and OS.  

Details are synthesised directly in a narrative form in the main body of this chapter. Key characteristics 

of the methods identified are described as well as their mathematical form. Methods were grouped 

where possible according to key characteristics. 

6.9 Summary of methods identified within the review to jointly model PFS and OS 

This section summarises the results of the systematic review of methods identified in the literature that 

could be used to jointly model progression and survival outcomes. The flow diagram depicting the 

number of records identified, screened and included is shown in Figure 25. The initial keyword search 

yielded 2,510 citations, of which 12 were included following sifting of the titles, abstracts and papers 

(Belckacemi et al, 2014;86 Dejardin, 2010;87 Fleischer et al, 2009;88 Fu et al, 2013;89 Krol et al, 2017;90 
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Li et al, 2015;91 Mazroui et al, 2013;92 Meller et al, 2019;93 Oakes et al, 1982;94 Rondeau et al, 2007;95 

Rondeau et al, 2012;96 Weber et al, 2019.97). No further relevant citations were obtained following the 

initial screening of the 1,490 citation searches and 212 reference searches. 

At the second round of searches, the keyword search yielded 3,588 additional citations, of which one 

additional citation was included following sifting of the titles, abstracts and papers (Sildnes et al, 

201898). The citation and reference searches yielded to 526 and 389 citations, respectively; however, 

none of these were considered relevant. The citation and reference searches for the paper identified in 

Step 498 yielded to one and  32 citations, respectively; of these, none were considered relevant. I 

considered that saturation was achieved given that only one citation was considered relevant in Step 4, 

and therefore, no further searches were conducted. 

Given the large number of records, the specific reason for exclusion was not explicitly recorded for 

each citation. However, the key reason for exclusions were: lack of relevance of the paper (e.g. analysis 

of trials); methods related to the modelling of longitudinal and time-to-event data (for which the volume 

of literature is very large), methods for meta-analysis or applications of the same method previously 

identified. 

Some papers included in the review described the same methods (in particular for the frailty and copula 

models) but provided additional details. This is one of the challenges of conducting a systematic review 

of methods. Consequently, rather than focusing on a description of each individual paper, papers were 

grouped according to the methods they describe. 

It should be noted that a large number of papers are available describing each of these methods, in 

particular for the frailty and copula models. A large number of applications were identified, but were 

not formally included. Furthermore, additional papers describing these methods may not have been 

identified during this review. Consequently, the included papers may not necessarily reflect the most 

comprehensive papers that describe the method, but rather the papers identified during the systematic 

review process and considered to be relevant by myself for the description of the method, or that I 

considered for the identification of the method (the joint modelling of PFS and OS). 

Given the challenges associated with conducting a review of methods, flexibility was required when 

including and excluding studies. When describing the methods in this thesis, in addition to the papers 

that were formally included during this process (e.g. papers included in Appendix 5), additional papers 

that were formally excluded (for instance because the paper described an application of a method 

previously identified) were also retrieved informally to provide supplementary information about the 

method when necessary.  
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Figure 25 : Flow diagram for the review of method 
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Approaches identified during this systematic review process were grouped into four categories; these 

are described in the next sections: 

1. General extensions of the multi-state model to jointly model progression and survival outcomes 

(described in Section 6.9.1) 

2. Methods to jointly model progression and survival outcomes, inducing the dependence from a 

random effect term (frailty) in PH models or its extension using transformation models for AFT 

models (described in Section 6.9.2) 

3. Methods to jointly model progression and survival outcomes, using a copula model (described 

in Section 6.9.3) 

4. Semi-competing risk by means of first passage times (described in Section 6.9.4). 

Throughout the systematic review process, a number of specific bivariate models were also identified; 

however, these were excluded upon further inspection, as they were special cases of more general 

copula models (Group 3 above). Similarly, a general approach that has been used for the analysis of 

bivariate models, described by Henderson et al (1995), was not included in this review as the general 

concept was known (e.g. when including TTP as a covariate when estimating PPS) and consisted of 

modelling the conditional distribution of a failure time (e.g. T1) given another failure time (T2) as 

covariate.  

Identified approaches fall further under two umbrellas: 

1. Those where the dependence is included between transitions (under the illness-death model) 

2. Those where the dependence between OS and PFS is included by modelling the survival 

outcomes under a semi-competing risks model. 

As part of the systematic review process, seven experts were contacted to ensure that no additional 

relevant approaches were missing. Four of the seven experts contacted as part of the review process 

responded. They believed that the list of methods identified during the systematic process was generally 

exhaustive. Experts suggested a number of additional papers of interest; however, following inspection, 

the majority of the papers suggested related to evidence synthesis (using bivariate models or frailty 

models) for the joint modelling of PFS and OS, rather than the joint prediction of progression and 

survival outcomes within a single trial (as is the focus in this thesis). These methods (bivariate/frailty 

models) are already included in this review but are versatile and are used for a variety of purposes, 

therefore, including all possible variations is outside the scope of this thesis. For transparency, the 

reasons for the exclusion of papers suggested by the key experts is described below: 
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• All four experts suggested the addition of further papers for inclusion on the application of the 

multi-state model.43, 45, 50, 99, 100 However, these did not represent new methods (and were already 

included) and therefore were not considered further. 

• An expert suggested that there was an increasing interest in predicting OS based on tumour 

imaging data and suggested a paper for potential inclusion.101 This was not considered further 

as this was outside the scope of the review and did not meet the review inclusion criteria. 

• A paper describing a Bayesian approach for jointly modelling correlated outcomes was also 

suggested as a possible approach to use in health economics.102 However, following 

examination of the paper, the proposed approach was similar to a bivariate model and therefore 

was not considered further. The authors of this paper were contacted and confirmed that the 

approach used was a bivariate joint distribution model.  

• An expert suggested for inclusion some of work carried out on multi-level mixed effect 

parametric survival analysis as a potential approach. However, following examination of some 

of the papers found, the approach described used a frailty (random effect) model and was 

therefore not considered further as this general approach was already included.  

• Additional papers on joint modelling in evidence synthesis (NMA) were also highlighted, but 

were outside the scope of this review103-105 

• An approach used to jointly model PFS and OS employed in a previous NICE STA (TA561106) 

was also suggested by one of the experts for possible inclusion in this review for completeness. 

In this appraisal, the company modelled PFS and OS jointly across both arms, assuming 

proportionality and the same parametric form between OS and PFS. In other terms, PFS was 

included as a covariate when estimating parameters for the parametric function for OS. The key 

assumption in this approach is proportionality between PFS and OS. Little detail on the 

approach was available or included in TA561.106 No literature was identified describing this 

approach, limiting any assessment in this review. The expert further considered this approach 

to be crude, and therefore it was not formally included in this review. 

• Finally, one expert mentioned the use of a non-parametric approach to combine evidence on 

time-to-event outcomes and have used a constraint to ensure that PFS is less than OS which has 

been applied to an appraisal in lung cancer.107 The area under the curve (AUC) was calculated 

for PFS and OS, with the correlation between the two endpoints included in the NMA using a 

bivariate model. Patients alive after 5 years were then assumed to be remission as the curve 

converged in the trials with external evidence used after that time point. Whilst this approach 

has been used in a NICE appraisal,107 the expert highlighted that this approach is not yet been 

published. While the method was unpublished, this was still considered as new methods may 

address limitations of currently published methods. However, from the description, this 
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approach (using non-parametric AUC using a bivariate model) appears to be mostly relevant 

when synthesising OS and PFS from different sources, rather than the joint modelling of 

progression and survival outcomes within a single trial. Strong assumptions are also required 

to extrapolate beyond the trial period. Consequently, in the absence of further details, this 

approach was not considered further.  

Following discussion with other analysts, an additional paper of potential interest was suggested relating 

to the use of moment-generating functions in health economics.108 However, this paper did not meet the 

inclusion criteria as it was not related to the joint modelling of progression and survival outcomes.  

As no additional methods included in this thesis were identified through expert opinion, the final 

taxonomy was not sent back to expert for validity testing. The key characteristics of methods identified 

during the systematic process are summarised in Table 10. 

6.9.1 General extensions of the multi-state/illness-death model for the joint modelling of PFS 

and OS 

Three general extensions of the MSM were identified to jointly model PFS and OS. Parameters for each 

transition are estimated jointly. These methods are described in turn below. 

6.9.1.1 The model proposed by Li et al (2015)91 

The authors aimed to extend the model developed by Fleischer et al (2009)88 based on the assumption 

of exponential distributions to a Weibull distribution to include the dependence between progression 

and survival outcomes in a multi-state model. 

6.9.1.1.1 Development of the method 

This is an extension to the statistical model developed by Fleischer et al (2009)88 which is, in turn, an 

extension of the multi-state framework. Fleischer et al (2009)88 developed a statistical model based on 

exponential distributions that describes the dependence structure between OS and PFS. The model 

developed by Li et al (2015)91 generalises the exponential to the Weibull distribution, in order to provide 

additional flexibility.  

This model was developed to predict PFS and OS; but could be extended to other time-to-event 

outcomes. This section focuses on the model developed by Li et al (2015) as this includes both the case 

where the transitions follow an exponential distribution (Fleischer’s model) or the Weibull distribution 

(Li’s model). Consequently, despite being identified, the model by Fleischer et al (2009)88 is not 

described here as this is the same model, but uses an exponential rather than the Weibull. 
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Table 10 : Summary of approaches identified to jointly model PFS and OS 

  Extension of the multi-state 
Frailty 

model/extension 
Copula models First passage 

  

Li et al (2015);91 

Fleischer et al (2009)88 

Belkacemi et al 

(2014)86 

Meller et al 

(2019)93 

Krol et al 

(2017),90Mazroui et al 

(2012),92 Rondeau et al 

(2007),95 Dejardin et al 

(2010)87 

Fu et al 

(2013),89Weber et al 

(2019),97 Oakes et al 

(1982)109 

Sildnes et al (2018)98 

Key properties/assumptions 

Transitions follow a 

Weibull distribution 

with same shape 

parameter 

·         Transition 

follow an 

exponential 

distribution 

·         Conditional 

distribution 

Likelihood 

estimated 

using 

counting 

processes 

Frailty acts 

multiplicatively on the 

hazard 

Form of bivariate 

model 

The joint distribution 

must satisfy random 

sign censoring 

Has the method been 

applied to jointly model PFS 

and OS 

Yes – within an illness-

death model 

Yes – within an 

illness-death model 

Yes – within 

an illness-

death model 

Yes – a frailty term 

shared between TTP and 

PPS 

Yes – under semi-

competing risk 

Yes – semi-competing 

risk 

Key limitations 

·         Limited to 

Weibull distribution 

·         Same shape 

assumed between 

transitions 

Limited to 

exponential 

Unpublished 

at the time of 

writing of 

this chapter 

·         Limited to PHM 

(possible to extend to 

AFT) 

·         Choice of frailty 

distribution and model 

Large number of 

copulas available 

Terminal and non-

terminal event follow 

same underlying 

process 

Example of implementation 

available? and/or key 

barriers for use in health 

economics 

Example of R code 

provided by the authors 

Exponential is too 

restrictive 

Code not 

available 

Challenging to 

implement in the absence 

of a step-by-step tutorial 

– given the different 

possible formulations 

Example of R code 

provided by the authors 

(Fu, 2013) 

Different copula would 

require different 

formulation 

No example of 

implementation in a 

suitable package 

Gamma process 

(restrictive) 

Abbreviations: AFT: accelerated failure time; OS: overall survival; PFS: progression-free survival
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6.9.1.1.2 Theoretical properties 

The model proposed by Li et al (2015) can be represented as an MSM with transition intensities which 

follow a Weibull distribution. The model has four parameters 𝜆1, 𝜆2, 𝜆3 𝑎𝑛𝑑 𝛼; with the same shape 

parameter (𝛼) being shared between transitions. Consequently, the dependence/correlation between 

transitions is induced by transitions sharing the same shape parameter. As the Weibull is an extension 

of the exponential, the same results will be obtained by Fleischer et al (2009)88 when 𝛼 = 1. 

The working assumption is that TTP and OS are independent (this is the “maximal independence 

assumption”), with PFS given by the minimum of TTP and OS. If death occurs before progression, then 

PFS=OS (for an individual patient). If progression occurs first (TTP<OS), OS would be equal to the 

sum of TTP and a new variable OS’(latent time). 

Equations described here are reproduced from the paper directly.91 Further information is available in 

the paper.91 

This can be written down as: 

𝑇𝑇𝑃~𝑓1 = 𝑊𝑒𝑖𝑏𝑢𝑙𝑙(𝛼, 𝜆1,) 𝑂𝑆𝑜𝑟𝑖𝑔~𝑓2 = 𝑊𝑒𝑖𝑏𝑢𝑙𝑙(𝛼, 𝜆2), 𝑃𝐹𝑆 = 𝑚𝑖𝑛 (𝑇𝑃𝑃, 𝑂𝑆𝑜𝑟𝑖𝑔)  

𝑂𝑆′~𝑓3 = 𝑊𝑒𝑖𝑏𝑢𝑙𝑙(𝛼, 𝜆3), 𝑂𝑆′╨𝑇𝑇𝑃╨𝑂𝑆𝑜𝑟𝑖𝑔 

𝑂𝑆 = {
𝑃𝐹𝑆, 𝑖𝑓 𝑃𝐹𝑆 ≠ 𝑇𝑇𝑃

𝑇𝑇𝑃 + 𝑂𝑆′, 𝑖𝑓 𝑃𝐹𝑆 = 𝑇𝑇𝑃
 

Where 𝜆1 > 0, 𝜆2 > 0, 𝜆3 > 0 and 𝛼 > 0 

For this model, the survival function for OS is given by [equations reproduced from the paper91]: 

𝑆𝑂𝑆(𝑥) = exp[−(𝜆1 + 𝜆2)𝑥𝛼] + 𝜆1𝛼 ∫ 𝛾𝛼−1exp [−(𝜆1 + 𝜆2)𝛾𝛼 − 𝜆3(𝑥 − 𝛾)𝛼]𝑑𝛾
𝑥

0
  

The parameters 𝜆1, 𝜆2, 𝜆3 and 𝛼 are estimated using maximum likelihood estimation (MLE), with the 

likelihood calculated for four types of patients (represented by 𝛿𝑛): 

1. those, who progress and then are censored without death (𝛿1), 

2. those, who progress and then die (𝛿2), 

3. those who die before progression (𝛿3), 

4. those, who are censored without progression or death (𝛿4). 
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The likelihood for these four patients’ categories can then be calculated based on the density 𝑓() and 

the survival function 𝑆() so that: 

if δi = 1 then 

𝐿𝑖
(1)(𝜃) = 𝑃(𝑇𝑇𝑃 = 𝑡𝑖1)𝑃(𝑂𝑆𝑜𝑟𝑖𝑔 > 𝑡𝑖1)𝑃(𝑂𝑆′ > 𝑡𝑖2) = 𝑓1(𝑡𝑖1)𝑆2(𝑡𝑖1)𝑆3(𝑡𝑖2)  

if δi = 2 then 

𝐿𝑖
(2)(𝜃) = 𝑃(𝑇𝑇𝑃 = 𝑡𝑖1)𝑃(𝑂𝑆𝑜𝑟𝑖𝑔 > 𝑡𝑖1)𝑃(𝑂𝑆′ = 𝑡𝑖2) = 𝑓1(𝑡𝑖1)𝑆2(𝑡𝑖1)𝑓3(𝑡𝑖2)   

if δi = 3 then 

𝐿𝑖
(3)(𝜃) = 𝑃(𝑇𝑇𝑃 > 𝑡𝑖1)𝑃(𝑂𝑆𝑜𝑟𝑖𝑔 = 𝑡𝑖1) = 𝑆1(𝑡𝑖1)𝑓2(𝑡𝑖1)     

if δi = 4 then 

𝐿𝑖
(4)(𝜃) = 𝑃(𝑇𝑇𝑃 > 𝑡𝑖1)𝑃(𝑂𝑆𝑜𝑟𝑖𝑔 > 𝑡𝑖1) = 𝑆1(𝑡𝑖1)𝑆2(𝑡𝑖1)     

with the overall log likelihood being the sum of the log likelihood across all subjects. 

It should be noted that the model proposed by Li et al (2015),91 and by extension Fleischer et al (2009),88 

is considered to use a latent failure time approach by Meller et al (2019),93 given that the estimation of 

the transition for PFS can occur after OS (but this is adjusted as PFS cannot be greater than OS in the 

final model). Meller et al (2019) suggest that this could make the interpretation of the estimate difficult, 

as the predictions may not be as meaningful from a clinical point of view.  

Although not presented here, it is also possible to derive analytical correlations amongst TTP, PFS and 

OS from Li’s model. 

6.9.1.1.3 Application of the method to the modelling of PFS and OS  

Li et al (2015) applied their method in three cancer trials.91 Overall, the authors reported that their model 

provided a good fit to the data and, as expected, a better fit compared with the exponential distribution. 

They also demonstrate that whilst the assumption of a constant shape parameter 𝛼 could be 

questionable, the model can still, in general, provide a good fit to the data during the observed period 

of a study. 
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In addition, the authors conducted a simulation study to evaluate the fit of the Weibull and exponential 

models using hypothetical data sets generated from various distributions: 

1. Assuming the simulated event times follow an exponential distribution, the authors report that 

both the Weibull and exponential functions provided an accurate fit to the data.  

2. When the simulated event times are generated from a Weibull distribution with the same shape 

parameter (across transitions), the Weibull model provided a good fit to the data. In contrast, 

the exponential distribution fitted the data less well. 

3. Assuming the data are generated from a Weibull distribution with different shape parameters; 

the Weibull model provided a reasonable fit, despite the assumption of common shape 

parameter being violated. In contrast, the exponential provided a poor fit. 

4. When the simulated event times were generated from a log-logistic distribution (hazard had a 

non-monotonic shape), the Weibull model provided a reasonable visual fit to the KM and 

performed better than the exponential, as expected,  

5. Similarly, when the simulated event times were generated from a log-normal distribution, the 

Weibull model provided a reasonable visual fit to the KM. 

The model developed by Li et al (2015)91 was also evaluated in Meller et al (2019)93 using a simulated 

dataset, as well as in a real-life example, using data from the CLEOPATRA trial; a Phase III RCT in 

HER2-positive metastatic breast cancer involving 808 patients. Using the simulated data, Meller et al 

(2019) reported that the model developed by Li et al (2015) tended to over-estimate the correlation 

coefficient between PFS and OS. Using real data from the CLEOPATRA trial, Meller et al (2019) 

reported that whilst the model proposed by Li et al (2015) provided a slight over-estimate of the 

transition between progression and death, the model provided a reasonable fit to PFS and OS. 

 

6.9.1.1.4 Applicability of the method to health economic evaluation 

The method was specifically designed for estimating jointly PFS and OS and therefore can be applied 

easily to an RCT dataset for use in health economic analyses. The statistical model proposed by Li et 

al (2015)91 is a general illness-death model. Compared with the model by Fleischer et al (2009),88 a key 

strength is that it uses Weibull models which are more flexible compared with exponential models. The 

Weibull model is expected to provide a better fit with a more accurate estimation of the correlation 

(formula for analytical estimation of correlation not shown here). Whilst its implementation is more 

complex, a copy of the R code is available from the author on request and is relatively straightforward 
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to implement (as demonstrated in the simulation study in Appendix 12). Despite the primary aim of the 

author to estimate OS, the code is easily adaptable to extract PFS predictions as well.   

A key limitation is that transitions are assumed to follow a Weibull distribution, which may not always 

be appropriate. Furthermore, the same shape parameter is assumed between transitions, which is a 

simplification. However, simulation studies conducted by the authors showed that even when the 

underlying distribution has a non-monotonic hazard, the proposed Weibull model (using the same shape 

parameter) could still provide an adequate fit to the observed data. The use of the same shape parameter 

is justified by the author on the basis of mathematical convenience. The authors also argue that usually 

the shape of the hazards for progression and death are similar; therefore, this is a plausible assumption. 

However, even when the common 𝛼 assumption is violated, the authors show that the proposed Weibull 

model with the same 𝛼 parameter fits the data adequately. The authors suggest this could be relaxed 

and it is possible to use different shape parameters. However, the correlations among the survival 

endpoint and OS can no longer be derived analytically. 

In summary, the model proposed by Li et al (2015)91 presents a potential alternative to the STM as 

currently implemented in health economics as it allows for the joint modelling of PFS and OS. The 

model is relatively straightforward to implement in R. Whilst a key limitation is the use of the Weibull 

distribution, the Weibull distribution is often used in health economic analyses and appears to provide 

a reasonable visual fit to the observed data, even when data are generated using other distributional 

forms. Nevertheless, the plausibility of the predictions beyond the trial period generated using this 

method remain unclear. 

6.9.1.2 The model proposed by Belkacemi et al (2014)86 

The authors aimed to develop a model, whereby PFS and PPS are linked using a conditional exponential 

distribution to test the existence of an association between PFS and PPS to better understand the process 

of improvement or decrement of OS. 

6.9.1.2.1 Development of the method 

The model proposed by Belkacemi et al (2014)86 is also an extension of the multi-state framework, 

whereby OS is modelled based on PFS and PPS, but using a conditional distribution.  

6.9.1.2.2 Theoretical properties 

The model proposed by Belkacemi et al (2014)86 considers the conditional association between PFS 

and PPS. In other words, the dependence structure between PFS and PPS is represented by a conditional 



115 

 

distribution. This is different to the model developed by Flesicher et al (2009)88 and Li et al (2015) 

which did not consider conditional distributions. 

The working assumption of the model proposed by Belkacemi is that: 

• If both progression and death are observed, OS is composed of two survival times; (a) PFS and 

(b) PPS, 

• If only death is observed, this is counted as a progression event and therefore PFS ≤ OS 

• PFS and PPS are statistically dependent. 

Equations described here are reproduced from the paper directly.86 Further information is available in 

the paper.86  

Belkacemi et al (2014) describe the survival function for OS  as: 

𝑆𝑇(𝑡) = 𝑆𝑋(𝑡) + ∫ 𝑆𝑌|𝑋(𝑡 − 𝑥|𝑥)𝑓𝑋(𝑥)𝑑𝑥
𝑡

0
       

Where: 

𝑇 represents OS, 𝑋 is PFS and 𝑌 is PPS and 𝑆𝑌|𝑋 is the conditional survival function of 𝑌 given 𝑋 

Estimates for the survival function are then generated using MLE. The likelihood is calculated by 

dividing the contribution of patients in 5 categories [equations reproduced from the paper86], where, for 

the ith patient, δi(i=1,…,N) is a categorical indicator, nj the number of patients in each category, C the 

administrative right censoring time, 

For δi = 1, both progression and death are observed 

𝐿1 = ∏ 𝑓𝑋(𝑥𝑖)𝑛1
𝑖=1 𝑓𝑌|𝑋(𝑦𝑖|𝑥𝑖)         

where 𝑦𝑖 = 𝑡𝑖 − 𝑥𝑖 

For δi = 2, only progression is observed 

𝐿2 = ∏ 𝑓𝑋(𝑥𝑖)𝑛2
𝑖=1 𝑆𝑌|𝑋(𝑦𝑖

𝑐|𝑥𝑖)         

where 𝑦𝑖
𝑐 = 𝑐𝑖 − 𝑥𝑖 

For δi = 3, only death is observed (related to cancer) 
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𝐿3 = ∏ {1 − 𝑆𝑋(𝑡𝑖)𝑛3
𝑖=1 }𝑓𝑇(𝑡𝑖)         

For δi = 4, only death is observed (unrelated to cancer) 

𝐿4 = ∏ 𝑆𝑋(𝑡𝑖)𝑛4
𝑖=1 𝑓𝑇(𝑡𝑖)          

For δi = 5, neither progression nor death are observed 

𝐿5 = ∏ 𝑆𝑋(𝑐𝑖)𝑛5
𝑖=1 𝑆𝑇(𝑐𝑖)         

The model proposed by Belkacemi et al (2014)86 assumes that both PFS and PPS (conditional on PFS) 

are exponentially distributed with parameters λ for PFS and θ(x) for PPS. 

As PPS is conditional on PFS, θ(x) is assumed to follow a conditional exponential distribution with 2 

parameters β and v such that: 

θY|X(x) = α. exp (−βx)          

where 𝛼 = exp(𝑣) and 𝛽 < 𝜆/2    

The correlation coefficient 𝛽 provides an indication of the correlation between PFS and OS and PFS 

and PPS. The authors observed that if PFS and OS are positively correlated, an improvement in PFS 

would therefore lead to an improvement in OS. However, the authors state that this is different to 

assuming that PFS is positively correlated with PPS, because the improvement in PFS may translate to 

lower PPS.    

The hazard function for PPS can be written as: 

ℎ𝑌(𝑦) =
∫ 𝜃𝑌|𝑋(𝑥)𝑔(𝑥,𝑦)𝑑𝑥
∞

0

∫ 𝑔(𝑥,𝑦)𝑑𝑥
∞

0

         

The hazard function for OS can be written as : 

ℎ𝑇(𝑡) =
∫ 𝜃𝑌|𝑋(𝑥)𝑔(𝑥,𝑡−𝑥)𝑑𝑥

𝑡

0
𝑒𝑥𝑝 (−𝜆𝑡)

𝜆
∫ 𝑔(𝑥,𝑦)𝑑𝑥

𝑡

0

          

where 𝑔(𝑥, 𝑦) = exp {−[𝜃𝑌|𝑋(𝑥)𝑦 + 𝜆𝑥]} and the assumption that X and Y|X to be exponentially 

distributed with parameters λ and θ(x) 
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6.9.1.2.3 Application of the method to the modelling of PFS and OS  

The authors applied their method in a Phase III clinical trial of patients with NSCLC.110 Parameters 

were found by optimisation methods using two R software packages; DEoptim (a package to perform 

global optimisation, used to find starting values), and alabama (which includes functions that use the 

augmented Lagrangian and adaptive barrier minimisation algorithm in which constraints are allowed). 

The model is applied with (explanatory variables considered relevant by the authors including tumour 

stage, performance status and toxicity) and without covariates. In their dataset, the β parameter (the 

correlation coefficient) was statistically significant, indicating a link between PFS and PPS confirming 

the adequacy of the conditional model. 

Overall, the authors show that the proposed model provided a reasonable fit to OS, PFS and PPS when 

no covariates are considered. When considering covariates in their dataset, the authors suggest that their 

model performed better for the estimation of OS (especially at the tail) compared with the Cox-semi 

Markov model. The authors state that results were consistent with Fleischer et al (2009)88 in the same 

dataset; despite the statistical models being different. It should be noted that both Belkacemi et al 

(2014)86 and Fleischer et al (2009)88 use exponential distributions, but the model proposed by 

Belkacemi et al (2014)86 takes into account the dependency between PFS and PPS, that is not considered 

by Fleischer et al (2009). 

6.9.1.2.4 Applicability of the method to health economic evaluation 

Whilst this method could be easily applied to an RCT dataset, the model developed by Belkacemi et al 

(2014) has limited application to the HE context as it is very restrictive and is limited to the exponential 

distribution only (applied as a conditional exponential distribution). The exponential distribution was 

used for mathematical convenience. The authors suggest that the generalisation to the Weibull 

distribution is numerically possible, but that the estimate of the correlation becomes analytically 

impossible to derive. The absence of code to reproduce results limits its applicability to health 

economics. 
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6.9.1.3 The model proposed by Meller et al (2019)  

6.9.1.3.1 Development of the method 

The model proposed by Meller et al (2019)93 is also an extension of the multi-state framework. 

However, compared with the models developed by Fleischer et al (2009)88 and Li et al (2015),91 which 

according to the authors, use a latent failure time approach, the model developed by Meller et al 

explicitly considers all “transition intensities between all states.” The model proposed by Meller et al 

(2019)93 has been specifically developed for the joint modelling of PFS and OS, but is applicability is 

not restricted to the modelling of PFS and OS and could be used for any illness-death model.  

6.9.1.3.2 Theoretical properties 

The model proposed by Meller et al (2019)93 follows a general illness-death MSM approach. PFS is 

defined as the waiting time in the initial state. OS is defined as the time until reaching the death state. 

The authors state that no assumptions are made, with the exception that there are no progressions after 

death. PFS < OS if a progression event occurs, whilst PFS = OS if a patient transition directly from the 

initial state to death (i.e. the patient dies prior to progression). PFS is first estimated based on the hazard 

of patients moving from the initial state to either the progression or death health state. In the second 

step, a binomial distribution is used to define if PFS<OS. The residual time until death in people for 

whom PFS<OS is then simulated. Neither latent times nor copulas are used in the model developed by 

Meller et al (2019).93 

The model proposed by Meller et al (2019)93 is therefore very similar to the multi-state framework used 

by Jackson et al (2012)45 and Putter et al (2013)43 whereby all transitions are explicitly modelled. 

However, whilst the general framework is similar, parametric inference for the model proposed by 

Meller et al (2019)93 relies on MLE for counting processes, thus, it is based on the contributions of the 

three transitions. This contrasts with the multi-state framework in Putter et al (2013), whereby transition 

intensities are estimated independently of each other one at a time and then combined under a competing 

risk framework.  

In addition to the estimation of the transition intensities, the authors demonstrate how the correlation 

between PFS and OS can be computed (see Meller et al (2019)93 for further details). This is not 

described here as it is beyond the scope of the review. 
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6.9.1.3.3 Application of the method to the joint modelling of OS and PFS 

The authors compared their model with the model by Fleischer et al (2009)88 and Li et al (2015)91 in 

both a simulation study and a real case example. In the simulation study, the authors show that their 

model provided a better estimation of the transition between the PD state and death, and therefore did 

not result in such an over-estimation of the true underlying correlation. This is explained by the fact 

that the shape of Weibull distribution was not assumed to be constant between transitions. 

In a real-life example, using data from the CLEOPATRA trial; a Phase III RCT in HER2-positive 

metastatic BC involving 808 patients, the authors found that: 

- for the transition between PF and PD, all models provided a very similar and satisfactory visual 

fit 

- for the transition between PF to death, the model proposed by Meller provided a slightly better 

visual fit 

- for the transition from PD to death, no direct comparison is provided as estimates are shown on 

different scale. The authors stated that the model by Meller slightly over-estimated the hazard 

for that transition. The model by Fleischer et al (2009)88 and Li et al (2015)91 provided a 

reasonable visual fit to the observed data (Nelson-Aalen); however, in the absence of a direct 

comparison with the method of interest, it is unclear how they performed compared with the 

model proposed by Meller et al (2019).93 

- when considering the fit to the PFS and OS survival functions, the estimate for PFS was 

generally similar irrespective of the approach used. As the authors pointed out, this is not 

surprising, since: (a) all approaches provide similar estimates for the transition between PF and 

PD, and (b) the number of transitions from PF to death is relatively much lower than the number 

of transitions to PD. 

- the authors also found that estimates for OS are also very similar between approaches, although 

they do not comment on the implications of this finding. 

- finally, the authors note that the estimated correlation coefficients are similar between 

approaches, but are associated with large confidence intervals, indicating the difficulty in 

estimating the correlation coefficient with precision irrespective of the approach used. 
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6.9.1.3.4 Applicability of the method to health economic evaluation 

The model proposed by Meller et al (2019)93 was developed to jointly model PFS and OS and therefore, 

is highly relevant to the context of health economics. 

A key advantage of the model proposed by Meller et al (2019),93 compared with other extensions of the 

multi-state framework discussed previously (Li et al (2015)91 and Fleischer et al (2009)88) is that there 

is no restriction on the parametric distribution and strong assumptions are not made e.g. the assumption 

used by Li91 regarding the same Weibull shape parameter for all transition intensities.  

Despite its flexibility, results from the simulation study and real-life case study example remain 

inconclusive, with the authors noting that the estimates for PFS and OS are relatively similar 

irrespective of the approach used in the case study example. It should be noted that this could be 

attributable to the data used, and that the methods might perform differently using different datasets. 

The evaluation of the performance of the method was also limited to the goodness-of-fit to the observed 

data (visual fit) and therefore does not account for the plausibility of the long-term extrapolation. 

A key barrier for the adoption of the method described by Meller et al to health economics is the lack 

of detail provided regarding its implementation. Whilst the authors describe their general model and the 

approach used for statistical inference, few details are provided by the authors on how to reproduce the 

results, leaving the reader/analyst to program the implementation based on their understanding of the 

method described by the authors. No code is available in the final paper published in Statistics in 

Medicine; this is a key barrier for its immediate adoption in health economics. Analysts typically in 

charge of developing such health economic models may not have the technical skills to implement such 

an approach without a comprehensive tutorial. A copy of the code used to generate results in the paper 

was requested from the main author, but was not shared and therefore information is limited to what is 

contained in the paper. 
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6.9.2 Jointly model PFS and OS and inducing the dependence by the introduction of a random 

effect – the frailty/transformation model 

6.9.2.1 Development of the method 

This method is not specific to the joint modelling of progression and survival outcomes but is a general 

approach to account for the dependence between two survival endpoints. Frailty models111 are an 

extension of the Cox PH model. They account for the heterogeneity caused by unmeasured covariates. 

The Cox model can be considered as a frailty model without a random effect term. Thus, the frailty acts 

as a random effect.  

Frailty models can be used for a number of purposes, but are widely used for clustered survival data 

when modelling the dependence between two processes belonging to the same cluster. For instance, 

frailty models are used extensively in family disease studies for instance, where the time to disease 

onset for individuals within a family (cluster) are correlated, possibly due to sharing similar 

environmental and/or genetic conditions.112 

6.9.2.2 Theoretical properties 

Frailty models were originally introduced for PH models and were later extended to AFT models. The 

key assumption in the frailty model is that the survival times are conditionally independent given an 

(unobserved) frailty term (or random effect). Therefore, in the case of the PH model, given an 

unobserved frailty (random effect), the hazard for each survival time is assumed to follow a PH model, 

with the frailty effect acting multiplicatively on the baseline hazard. The joint survival function can then 

be obtained by integrating out the frailty (using an appropriate frailty density and its corresponding 

Laplace transformation – see details below). 

There are a number of classes of frailty models (shared, additive, nested or joint frailty models). Brief 

descriptions of the shared frailty model and the joint frailty model are provided in the next sub-section, 

as these two models are the most relevant when considering the dependence between progression and 

survival outcomes. 

In addition to the different classes of frailty, different frailty densities can be used; the most common 

being the gamma, positive stable or log-normal distribution. The gamma distribution is possibly the 

most commonly used due to its simplicity compared with other models. However, the log-normal model 

is more flexible than the gamma distribution, but requires the use of a more complex MLE procedure 

to estimate the parameters. 
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The baseline hazard can be non-parametric, semi-parametric or parametric. Parameters are usually 

estimated through the marginal likelihood via the marginal distribution (the likelihood integrated with 

respect to the frailty term).113 As previously highlighted, frailty models were originally developed for 

PH models, with the frailty term (random effect) acting multiplicatively on the hazard, inducing positive 

correlation. For AFT models, the frailty is included as an error term. The frailty could be considered as 

an unobserved covariate that is additive on the log failure time scale and describes some reduced or 

increased event times for different clusters.114 Similarly, multi-level mixed effects parametric survival 

analysis described by Crowther et al (2017)100 is an extension of parametric frailty survival models, 

allowing any number of normally distributed random effects to be used, including the exponential, 

Weibull, and Gompertz PH models, and the Log-Logistic, Log-normal and Generalised Gamma AFT 

models. 

6.9.2.2.1 The shared frailty model 

The shared frailty model is appropriate when observations within a cluster share a common 

unobservable frailty. Typically, a single frailty is assumed, implying a positive correlation within each 

group. This can be relaxed by considering two independent frailty terms. Furthermore, the frailty 

assumes that the unobserved factors are the same within a group of clustered observations, and therefore 

the correlation is assumed to be constant between all individuals. Therefore, the shared frailty model is 

particularly useful in the context of the illness-death model where transitions share a frailty term. 

The hazard function for the shared frailty for PH model can be written as follows:96 

For the j-th (j = 1, ..., ni) individual of the i-th group (i = 1, ..., G),  

𝜆𝑖𝑗(𝑡|𝜐𝑖) =  𝜐𝑖𝜆0(𝑡) exp(𝛽𝑇𝑋𝑖𝑗) = 𝜐𝑖𝜆𝑖𝑗(𝑡)       

where 𝜆0 is the baseline hazard; 𝑋𝑖𝑗 is the covariate vector associated with the vector of regression 

parameter 𝛽, and 𝜐𝑖 the random effect for the i-th group. 

For AFT,114 the shared frailty can be expressed as a log-linear model for the logarithm of the event time 

such as:  

log    𝑇𝑖𝑗 = 𝑥𝑖𝑗
′ 𝛽 + 𝑏𝑖 + 𝜎𝜀𝑖𝑗          

where 𝛽 is a vector of fixed effects corresponding to covariate vector 𝑥𝑖𝑗 , 𝜎 is a scale parameter, the  

εij′ s are independent and identically distributed random errors, and the 𝑏𝑖’s are the cluster-specific 

random effects. 
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6.9.2.2.2 The joint frailty model 

In contrast to the shared frailty model described above (see Section 6.9.2.2.1), the joint frailty model90, 

96 can be used irrespective of whether the observations are clustered. This is particularly useful when 

an event may be terminated by loss to follow-up, end of study, or a major failure such as death. 

Therefore, the joint frailty model is particularly useful in the context of semi-competing risks. 

The joint frailty model considers the joint evolution of two survival processes whereby one event (event 

2) impedes the process of another event (event 1); treating the terminal event (event 2) as informative 

censoring.96 It considers the dependency between the survival processes and respects that event 2 is a 

competing event for event 1.  

Compared with the shared frailty model, in the joint frailty model, the frailty (υi), which links the two 

processes is assumed to act differently on the two survival functions. This is made possible by the 

introduction of an additional parameter, α.90, 96 

The hazard functions for the joint frailty model, for the intermediate and terminal events can be written 

as:96 

𝑟𝑖𝑗(𝑡|𝜐𝑖) =  𝜐𝑖𝑟0(𝑡) exp(𝛽1
𝑇𝑋𝑖𝑗) = 𝜐𝑖𝑟𝑖𝑗(𝑡) (intermediate event)      

𝜆𝑖(𝑡|𝜐𝑖) =  𝜐𝑖
𝛼𝜆0(𝑡) exp(𝛽2

𝑇𝑋𝑖) = 𝜐𝑖
𝛼𝜆𝑖(𝑡) (terminal event)     

where r0(t) is the intermediate event baseline hazard function and λ0(t) the terminal event baseline 

hazard function. 

It should be noted that when α = 1, the frailty has an identical effect on the risk of recurrent events and 

on the risk of terminal event. When α > 0, the recurrent events rate and the terminal event rate are 

positively associated. Finally, when α = 0 the terminal event is independent of the recurrent events. 

6.9.2.3 Application of the method to the joint modelling of PFS and OS 

A large number of applications of frailty models were identified. However, the large majority of 

applications of frailty models identified during this review process focused on: (i) the estimation of the 

frailty term; (ii) the estimation for the effect of covariates for PFS and OS rather than health state sojourn 

time, typically using non-parametric distributions, or (iii) the modelling of a recurring event and death. 

Thus, this section focuses on a limited number of cases that were considered relevant to the prediction 

of PFS and OS and the estimation of health state sojourn time. Perhaps the most relevant example for 
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the use of frailty terms for the joint modelling of PFS and OS has been described by Dejardin et al 

(2010).87 The authors proposed an illness-death model whereby PFS and OS are jointly modelled 

through the use of frailty term which is shared between TPP and PPS. The key assumption was PH 

between progression and death. Transitions shared a common parameter and therefore, the survival 

distribution for the PPS was partly determined by the survival distribution for TTP. Key characteristics 

of the model developed by Dejardin et al (2010) are: (a) it incorporates interval censoring, and (b) it 

assumes that death can only occur after progression (therefore, there is no direct transition from the PF 

state to death). The authors assumed piecewise marginal distributions (semi-parametric) and examined 

two frailty distributions: the gamma and positive stable frailty distributions. Overall, the authors 

reported that their model estimate for time to death was close to the non-parametric KM estimator, using 

either the gamma frailty or positive stable distribution, with the exception of the tail of the curve (which 

is important to consider in health economics). A similar model was also used by Rice et al (2017)115 

using a non-parametric distribution. 

A similar approach (frailty shared between transitions in an illness-death model) was employed by Xu 

et al (2010)116 using data from a RCT of nasopharyngeal cancer to estimate the effect of covariates. A 

frailty term (gamma distribution) was shared between all transitions (non-parametric maximum 

likelihood estimation [NPMLE]). The authors compared their model with: (a) the Markov model and 

(b) a restricted model (semi-competing model). They found that the Markov model and the general 

frailty model gave broadly similar results, both of which were more realistic compared with those of 

the restricted model. Similarly, Han et al (2014) proposed a Bayesian Markov Chain Monte Carlo 

methods (MCMC) for model fitting and a frailty term with normal distribution (in WINBUGS). 

Examples of the joint frailty model have been identified mostly for the modelling of recurring events 

and death to estimate the effect of covariates; these have been described for examples by Liu et al 

(2015),117 Rondeau et al (2007)95 and Mazroui et al (2012).92  

6.9.2.4 Applicability of the method to health economic evaluation 

Frailty models are useful tools when modelling the dependence between two processes and have been 

extensively studied. Whilst frailties were originally developed for PH models, they can be extended to 

some AFT models. Furthermore, whilst not specific to the modelling of PFS and OS, frailty models can 

be used when considering the dependence between TTP/PFS and OS/PPS with; 

• the shared frailty model, whereby TTP and PPS share a common unobservable frailty,  

• the joint frailty model, whereby the dependence between TTP and OS is considered under a 

semi-competing risk framework, with TTP terminated by death. 
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A key limitation is that a single frailty induces positive correlation, which may not always be 

appropriate. This can however be relaxed by the addition of another frailty term. The use of a frailty 

term also assumes that the unobserved factors are the same within a group of clustered observations, 

and therefore the correlation is assumed to be constant between all individuals within that group. 

Furthermore, the marginal survival functions in the frailty model contain the association parameter of 

the frailty distribution,118 and thus can be challenging to couple with other frailty models.  

When considering the frailty model, in addition to the class of model, assumptions are also needed 

regarding the distribution of the frailty term (gamma, log-normal etc.), which specifies the type of 

dependence between the two processes. A key barrier for the adoption of frailty models (shared or joint) 

in health economics is the absence of clear step-by-step tutorial on how to jointly predict PFS and OS 

using frailty models. Whilst Dejardin et al (2010) reports an example of the use of a frailty model to 

jointly model PFS and OS, the code used to reproduce results is not available online. Strong assumptions 

were also made by the authors. The author was contacted, but no response was provided at the time of 

writing of this thesis. The only application identified in which the code was available in the appendices 

was from Han et al (2014). However, the approach is programmed in WINBUGS 

(statistical software for Bayesian analysis using MCMC methods), which is likely to be a barrier for 

many analysts responsible for development cost-effectiveness models in HTA.   

It should be noted that there are a number of R packages that are available to fit general frailty models 

such as frailtypack, frailtySurv or parfm that could potentially be used to jointly model 

progression or survival outcomes. However, these packages do not provide clear examples for direct 

use in health economic analyses. The implementation is also likely to be different according to the 

parametric distribution assumed, the frailty distribution used and type of frailty model; this limits the 

immediate adoption of the approach in health economic evaluation.    
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6.9.3 Bivariate models: the Copula model 

6.9.3.1 Development of the method 

This method is not specific to the joint modelling of PFS and OS, but is a general approach to account 

for the dependence between two survival endpoints. 

Sklar’s theorem is the foundation principle for copulas (which establishes the connection between a 

joint d-dimensional distribution function and its univariate marginal distribution).119 Copulas are a class 

of bivariate distribution whose marginal distribution function are uniform on the unit interval. Copulas 

can be described as functions which enable the combination of univariate distributions to obtain a joint 

distribution given a specified dependence structure. Therefore, any bivariate model can be considered 

to represent a form of copula. 

6.9.3.2 Theoretical property 

The copula model compared with the frailty model deals with the joint survival function whereas the 

frailty model is a conditional hazard model that has a multiplicative factor.120 Indeed, Nelsen et al (2006) 

describe the copula, 𝐶, as a function that “joins or couple multiple distribution functions to their one-

dimensional marginal distribution functions”.119 Sklar’s theorem states that for a given joint distribution 

and univariate marginal distribution, there exists a copula function to couple them.119, 121  

In mathematical terms121, for HX,Y(x, y) - a joint distribution, FX(x) - the marginal distribution of X and 

FY(y) - the marginal distribution of Y, there exists a copula C(u, v) such that: 

𝐻𝑋,𝑌(𝑥, 𝑦) = 𝐶(𝐹𝑋(𝑥), 𝐹𝑌(𝑦))         

Each pair, (x, y) are associated with a point (FX(x), FY(y)), in the unit square [0,1] × [0,1], 

corresponding to a number, HX,Y(x, y), in [0,1].121 

In the copula model, there are no constraints with the form of the marginal distribution (in contrast with 

the frailty model). This is because the correspondence is independent of the marginal distribution. 

Copula are effective tool to obtain the joint CDF from individual marginal distribution. A key difference 

of the copula compared with frailty model is that the marginal survival function does not include the 

association parameter (the copula). In other terms, the marginal function remains unchanged, which is 

an attractive property as it is flexible and allows for the separation of the measure of dependence from 

the marginal distribution.  
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A copula having a domain of I2 has the following properties.121 

• It is 2-increasing121  

For every 𝑢1, 𝑢2, 𝑣1, 𝑣2 in I such that 𝑢1 ≤ 𝑢2 and 𝑣1 ≤ 𝑣2, then 

𝐶(𝑢2, 𝑣2) − 𝐶(𝑢2, 𝑣1) − 𝐶(𝑢1, 𝑣2) + 𝐶(𝑢1, 𝑣1) ≥ 0      

Where I is the identity matrix. 

• It is grounded121 

For every u, v in I,  

𝐶(𝑢, 0) = 0 =  𝐶(𝑣, 0)          

• Finally, for every u, v in I,121 

𝐶(𝑢, 1) = 𝑢           

𝐶(1, 𝑣) = 𝑣           

Several families of Copulas have been described, with the Archimedean copulas being the most popular 

to model the dependence in reliability engineering, medicine, climate and weather research, hydrology 

research. The Archimedean copulas (associative class of copula) is particularly popular as only one 

parameter is needed to govern the strength of dependence, it can be easily constructed and admit an 

explicit formula.122 There are a varieties of Archimedean copulas such as Ali-Mikhail-Haq, Clayton, 

Franck, Gumbel, independence and Joe.123, 124  

Another families of copulas often used is the Gaussian copula.123, 125 As described in Wikipedia,123 it is 

a distribution over the unit cube [0,1]d and constructed from a multivariate normal distribution over ℝ2, 

by using the probability integral transform. 

This family of copula has been used to jointly model PFS and OS by Fu et al.89  

As described in Wikipedia,123 for a given correlation matrix 𝑅 ∈  [−1,1]𝑑 x 𝑑, the Gaussian copula with 

parameter matrix 𝑅 can be written as: 

𝐶𝑅
𝐺𝑎𝑢𝑠𝑠(𝑢) = 𝛷𝑅(𝛷−1(𝑢1), … . , (𝛷−1(𝑢𝑑))        
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The inferential procedure for the copula model follows two possible approaches; 

• A two stage approach.124 The marginal survival functions are first estimated. The estimates for 

the marginal distribution are then used to estimate the dependence parameters (copula function 

parameters) by maximisation of the likelihood with respect to the copula function. This is 

particularly useful when modelling the marginal survival functions in a semi-parametric or 

nonparametric way. 

• Simultaneous MLE for all the parameters (the parameters of the marginal survival functions 

and the parameters of the copula). This is usually done when the marginal survival function is 

modelled parametrically. The simultaneous estimation would provide a different estimation for 

the baseline hazard accounting for the dependency.120 

6.9.3.3 Application of the method to the modelling of PFS and OS 

Copula models have been extensively studied and have typically been used to assess the surrogacy 

between PFS and OS in meta-analysis or used for evidence synthesis.126, 127  

However, an example of the use of a copula to jointly predict PFS and OS was reported by Fu et al 

(2013).89 The authors describe the use of a Copula function to study both the correlation structure 

between PFS and OS and to predict OS based on PFS. The authors proposed a normal induced copula 

estimation model and used a Gaussian copula to link the marginal distributions of TTP and OS, under 

a Bayesian framework. 

In this model, PFS and OS are combined under a semi-competing risk framework, with OS (the terminal 

event) censoring the non-terminal event (PFS), with the copula acting as the dependence parameter 

between the terminal and non-terminal events. The authors proposed a normal induced copula 

estimation model and used a Gaussian copula (bivariate normal) to link the marginal distributions of 

TTP and OS, under a Bayesian framework. Both the marginal and copula terms are estimated 

simultaneously. The choice of a bivariate normal distribution is justified by the authors as it is simple 

to interpret and because the dependence can be determined by the correlation coefficient. 

In terms of calculation of the likelihood and estimation of parameters, within Fu’s model, parametric 

functions are fitted to both TTP and OS at the same time, with the likelihood function calculated based 

on the contribution of 4 type of individuals: 

• those who both progressed and died subsequently 

• those who progressed only but did not die 
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• those who died prior progression 

• those who neither progressed nor died. 

The total likelihood is therefore the sum of the likelihood estimated for these four type of individuals 

in the dataset, with parameters for both the marginal distributions (e.g. parameters for the Weibull for 

OS and Gompertz for TTP) and copula parameter estimated as the parameters that maximise the 

likelihood. 

This contrasts with the independent model, whereby parametric functions for PFS and OS are fitted 

separately to each outcome, with the likelihood function for both events only incorporating information 

on patients who had the event of interest or were censored. 

Fu et al (2013)89 performed a simulation study to determine whether the performance of the method in 

terms of OS prediction was improved using joint modelling compared with the independent model 

(direct fit to PFS and OS). The authors concluded that: 

• when there is no correlation in the data (ρ = 0), the copula model performed less well (in terms 

of mean squared error and biases) compared with the working independent model. This is 

justified by the author because of the introduction of an additional parameter, 

• both the copula model and working independent model provide an unbiased estimate of the 

median OS and are not significantly different from each other (irrespective of ρ). However, the 

authors note that the variance with the NICE model is usually smaller, therefore providing a 

more accurate estimate of median OS, 

• when ρ ≠ 0, the copula model performs better (i.e. it is more accurate estimate and unbiased) 

for TTP. This is because TTP can be dependently censored by OS, and therefore the correlation 

parameter ρ becomes important. 

Fu et al (2013)89 also demonstrate how to estimate OS and PFS given that their model is based on TTP 

and OS. This could be summarised in three steps: 

• Step 1: Obtain M posterior samples for ρ and the hazard functions of TPP and OS 

• Step 2: for each k (sample), generate TTP and OS as {T1i, T2i}i=1
10,000

 on the basis of 

{λTTP,k, λOS,k, ρk} 

• Step 3: derive PFS and OS such as  {min (T1i,T2i), T2i}i=1
10,000

 

The code used by the authors is available in the supplementary appendix and therefore, the model can 

be used by other analysts. Although it is unclear whether the Fu’s model example was used, as this was 
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only available in abstract form, Felizzi et al (2018)128 conducted a study using a Gaussian copula 

(bivariate normal) to link OS and PFS survivals.  Another relevant example for the use of copulas is 

provided by Rotolo et al (2013). Rotolo et al (2013) used Copulas to generate simulated data within an 

MSM that would include: (a) the dependence of time for successive time, and (b) the dependence of 

time for competing events. Clayton copulas were used to induce the dependence for the competing 

event and another Clayton copula was used to induce the dependence for the successive transitions.  

6.9.3.4 Applicability of the method to health economic evaluation 

Copulas are versatile and are suitable methods for use in health economics to induce the dependence 

between survival outcomes. Copulas are equally useful when including the dependence of time for 

successive events or semi-competing events. A key strength of copula is that the marginal distribution 

remains unchanged and therefore it is possible to couple different copulas to induce different levels of 

dependence, as shown by Rotolo et al (2013).129 In the copula model, there are also no constraints with 

the form of the marginal distribution (in contrast to the frailty model). This is because the 

correspondence is independent of the marginal distribution. This is a key strength. 

Fu et al (2013) provide an example of implementation (R code) for the Gaussian copula for the joint 

modelling of PFS and OS. Whilst the exponential distribution is used, the code provided by the authors 

can be easily amended by the user to any parametric distribution (as shown in the simulation study in 

Appendix 12). Therefore, the method by Fu et al (2013) using a Gaussian copula to jointly model PFS 

and OS under a semi-competing risk can be easily and immediately adopted in health economic 

analyses. For instance, the same model was used recently by Felizzi et al (2018)128 However, it should 

be noted that a large number of other copula functions exist, which would require a different 

implementation and formulation. The Gaussian copula, whilst simple, may not always be the most 

appropriate copula for the data (depending on the tail of the distribution of the data). The Gaussian 

copula is said to be tail independent,130 thus a key limitation for this type copula is the inability to 

capture extreme values. Other copulas may be more appropriate. However, from a practical point of 

view, it is not feasible to look at all copula functions. Researchers suggest that the choice of copula is 

often based on familiarity, ease of use and analytical tractability.122 The choice of copula function could 

also be informed by goodness-of-fit tests, such as the Akaike Information Criterion (AIC).131 Exploring 

the type of dependency pattern exhibited within the data can also be useful to limit the number of copula 

functions examined. 
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6.9.4 Semi-competing risk by means of first passage times of a stochastic process 

This method98 was originally developed for engineering problems and is an extension of threshold 

analysis and the single-threshold model proposed by Paroissin and Salami (2014). The approach 

proposed by the authors models terminal and non-terminal event under a semi-competing framework.98  

The description presented in this section is very brief, as I wasn’t able to understand properly this 

method based solely on the description provided by the authors. No software for implementation was 

also provided, meaning I could not check or confirm my understanding using an example of 

implementation in software.  

In brief, the two events are coupled through the introduction of a threshold. A threshold (𝑐) is assumed 

for the terminal event at time X. A threshold (𝑆) is assumed for the non-terminal event at time Z. 

The authors propose a model whereby the time to the terminal event (X) is the first passage time to a 

fixed level c in a stochastic process, while the time to the non-terminal event (Z) is represented by the 

first passage time of the same process to a stochastic threshold S, which is assumed to be independent 

of the stochastic process. 

The method was applied in a simulated dataset (data generated using the method examined itself 

[threshold model]) .98 The authors showed that estimated parameters using MLE were close to the true 

parameters in their simulated data. 

The authors also applied their method to a case study in bone marrow transplantation. The threshold 

model was first fitted to the data assuming S follows a log-normal distribution. Following examination, 

the authors found that a normal distribution was more appropriate. Parameters for S and the underlying 

process 𝐷(𝑡) (gamma process) were then estimated using MLE. 

The authors state that the parametric curves seem to fit fairly well to the non-parametric curve (I believe 

this is debatable when examining the fit against the KM), but less well compared with that in the 

simulated data (which were simulated using the method itself). The authors also compared their estimate 

for the marginal distribution for Z (the non-terminal event) against estimation by Fine et al (2001) and 

state that their predictions using their model was within the confidence interval estimated by Fine et al 

(2001), but did not reflect the plateau at the end. Agai,n I believe this is debatable.  

While this approach98 to deal with semi-competing risks is interesting, its applicability to health 

economics is likely to be very limited given the strong assumptions upon which the model relies. In 

particular, both events are assumed the follow same underlying process (𝐷(𝑡)). As acknowledged by 
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the authors this may not always be appropriate. In particular, the process may change when the non-

terminal event occurs. Although this is debatable, the approach did not appear to fit the data well 

(according to my interpretation) even when data were simulated using the approach itself (and approach 

subsequently used estimate the underlying parameters). 

Perhaps more importantly, I wasn’t able to fully comprehend this method based on the description in 

the paper. No implementation in a software is provided, and therefore I had to rely on the description 

in the paper; the same challenges are likely to be face by most analysts in health economics. The absence 

of the code in a suitable statistical package to replicate results is an important limitation to its use and 

quick adoption to health economics. 
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6.10 Discussion and conclusions 

This chapter aimed to identify and summarise approaches that could be used to jointly model 

progression and survival outcomes in order to estimate health state sojourn times in health economic 

models for anticancer therapies. A systematic review process was employed, using an iterative 

approach, in order to account for challenges associated with searching and reviewing the 

methodological literature. Only one reviewer screened and extracted results, which is a limitation. 

Despite some overlap, identified methods could be categorised according to two groups; (1) methods 

that include the dependence between transitions in an illness-death model (joint/conditional modelling 

of transitions) and (2) methods that include the dependence between PFS and OS under a semi-

competing risk framework. These could be further separated into four broad categories; (i) general 

extensions of the MSM; (ii) methods where the dependence is induced by a frailty/error term; (iii) 

methods where dependence is induced using a copula or bivariate model, and (iv) the first-passage 

method.  

All of the approaches identified within this review are subject to certain limitations. The extensions of 

the multi-state method identified during the review process are limited to specific parametric 

distributions, typically the exponential and Weibull.86, 91 This may therefore be a strong assumption 

which may not be consistent with the underlying distributions from which transitions are drawn. An 

additional recent paper93 was identified describing a method to jointly model PFS and OS (using the 

multi-state framework); however, details are currently insufficient for its immediate adoption in health 

economic analyses. 

The frailty model, which is typically used for PH models, allows for the induction of the dependence 

between two survival outcomes. This can be extended to some AFT models using an error term. 

However, this requires transformation. There are several types of frailty models, with the shared frailty 

and joint frailty models being possibly the most relevant to the health economics context. Within the 

shared frailty approach, the dependence can be induced between consecutive transitions (for instance 

between TTP and PPS).87, 95, 96, 132 The joint frailty model is useful in the context of semi-competing 

risks whereby a terminal event (OS) censors a non-terminal event (TTP). The introduction of a frailty 

in the shared frailty model typically induces a positive correlation, as this acts multiplicatively on the 

hazard. However, this can be relaxed by the introduction of a second frailty term. In addition to the type 

of frailty, there are different distributions for the frailty term that can be used, including the gamma or 

log-normal distribution. 
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The copula model is an alternative to frailty model.89, 118, 121, 129, 133 Copulas are essentially a type of 

bivariate model. Copulas are perhaps more flexible compared with the frailty model, as there is no 

constraint on the choice for the marginal distribution. Compared with the frailty model, the marginal 

distribution in the copula model also remains unchanged. The copula model also induces both positive 

and negative correlation. Similar to the frailty model, copula models can be used to induce the 

dependence between consecutive transitions (such as TTP and PPS) or to deal with a semi-competing 

risk situation whereby a terminal event (OS) censors a non-terminal event (TTP). OS and TPP are 

therefore estimated jointly, accounting for their dependence. Despite copulas being flexible, a large 

number of copulas exists, and the choice between copulas can be difficult. This can be informed by 

statistical goodness-of-fit. 

In Chapter 8, the performance of approaches commonly used in health economics will be examined in 

addition to alternative approaches that could be employed to jointly model progression and survival 

outcomes and to estimate health state sojourn time. A key consideration when examining a method is 

whether the method is likely to be adopted in the first place. Given the need for transparency and 

technical skills of analysts typically in charge of building or reviewing cost-effectiveness models, a 

method is unlikely to be adopted if there are no examples/tutorials on how to implement the method in 

a suitable software package. Even with a tutorial (and examples available in a suitable package),45, 50 

adoption is not guaranteed as illustrated by the slow adoption of the MSM. This is also reflected by the 

restriction on the software use when companies submit to NICE.  Consequently, for pragmatic reasons, 

only methods that provided code or a clear tutorial for its implementation in a suitable package were 

included in Chapter 8.  

Whilst a number of these identified methods have potential, these are unlikely to be adopted 

immediately to health economics, either because they need to be further developed or a thorough tutorial 

is required to guide analysts on how to implement these approaches (in particular given the different 

possible formulation). The model proposed by Li et al (2015); a MSM using Weibull distributions with 

transitions sharing a common parameter, and the model proposed by Fu et al (2013); Bayesian Gaussian 

copulas are methods that could be immediately adopted in health economics and therefore will be 

included in the next stage of this thesis. 

Despite its high degree of relevance, the approach proposed by Meller et al (2019)93 is unlikely to be 

adopted immediately and easily in health economics given the insufficient information to implement 

the approach (the code is not available in the final version of the published article and was not provided 

upon request to the author). The approach also did not show to be particularly superior to the Li’ model 

in a simulation study conducted by the author. A number of general methods are available to jointly 
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model two survival outcomes (PFS and OS) under a semi-competing risk framework. Of particular 

interest are the frailty model and the use of a copula. Both are widely used in the field of statistics, in 

particular for evidence synthesis, bivariate analysis or the modelling of a recurrent event and a terminal 

event. There are however a large number of copula and frailty models. Although the volume of literature 

on this topic is large, none of the models seem to hold any clear advantage compared to the other. There 

are also a large number of different specifications, making any direct comparisons impossible. It should 

be noted that a comparison of the copula and frailty model is outside the scope of this thesis, and 

therefore, the focus in this thesis is on exploring whether the joint modelling of PFS and OS could 

potentially improve predictions compared with the separate fit (as currently done in the PSM) and 

therefore focusing on the Fu et al (2013)89 was deemed reasonable as this approach was also used by 

Felizzi et al (2018).128 Despite the approach being limited to one copula distribution (Gaussian), this 

approach could be easily and immediately adopted in health economics. The use of other forms of 

copula would require a different formulation. The Gaussian copula is tail independent in that it may not 

capture extreme values, which is likely to be appropriate when considering PFS and OS. No papers 

were identified providing a clear example of the implementation of the frailty model under a semi-

competing risks framework, despite some packages being available. Whilst it could have been 

interesting to examine both copula and frailty models in Chapter 8 when jointly modelling PFS and OS 

under a competing risk framework, I had to be pragmatic in this thesis and focus on approaches that are 

most likely to be adopted and which have been implemented in a suitable statistical package (for 

conclusions to be helpful for decision-makers and analysts, rather than conclusion to be limited to a 

research exercise). Whilst this could be considered as a possible limitation, using the Fu model in 

Chapter 8 (given the availability of a clear tutorial) could inform future research in health economics 

on whether predictions are improved sufficiently to justify using complex models (given the different 

formulations) which may make decision-making more complicated. Indeed, at present, decision-making 

is already challenging by the choice of parametric functions. If different approaches/formulations were 

also to examined, this would introduce additional challenges.  

In the next chapter, I describe the possible limitations/biases associated with the use of PPS estimated 

in the subset of patients who experienced progression to reflect the overall trial population when 

developing a model based on information collected in an RCT only. 
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7 CHAPTER VII: LIMITATIONS ASSOCIATED WITH THE USE OF 

POST-PROGRESSION SURVIVAL (PPS) WHEN DEVELOPING A 

MODEL BASED ON INFORMATION COLLECTED IN AN RCT 

ONLY 

7.1 Chapter overview 

In this chapter, I describe the potential biases associated with the use of PPS estimated only in a subset 

of patients who progress when generalised to the overall randomised population in the same randomised 

control trial (RCT). This may be an issue for any STM. 

Section 7.2 introduces this Chapter. In Section 7.3 I discuss the possible limitations and illustrate those 

using hypothetical simulated data. In Section 7.4, I use real datasets to illustrate the possible limitations. 

Finally, in Section 7.5, I discuss a possible simple approach to reduce potential biases associated with 

PPS and test this within a real dataset to assess whether it improve predictions of OS. 

7.2 Introduction  

As described in Chapter 4.5, within the STM approach (including MSMs), OS is estimated indirectly 

through the explicit modelling of every transition between health states. This is an attractive approach, 

as this allows for a more natural and explicit modelling of the natural history/underlying disease 

progression process of cancer. This contrasts with the PSM which does not involve modelling the 

disease process, but instead involves directly fitting parametric functions to data on PFS and OS. 

Modelling the underlying disease progression process appears more naturally appropriate rather than 

fitting a curve directly to OS. However, when developing a model based only on information collected 

in an RCT, transitions are not observed for all randomised individuals, which could introduce a series 

of biases. 

Indeed, when developing a model based on information collected in an RCT only, the transitions from 

the PF state to the PD state (using TTP) or death states (using PrePS) are estimated using data relating 

to all randomised patients. Despite data not being fully complete due to censoring (administrative or 

random), (right) censoring is assumed to occur at random. Consequently, the estimate for the transitions 

from the PF state (to progression or death) can be considered ‘unbiased’ as this is estimated amongst 

all randomised individuals in the trial. The likelihood function for the survival function uses information 

both from patients who have had the event and from those who are censored. It should be noted however 

that TTP/PFS would be biased if censoring was not random. 
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Conversely, when developing a model based on information collected in a single RCT only, the 

transition from the PD state to the death state (PPS) is estimated only in the subset of patients who 

progressed during the observed period of the trial; thus, only a subset of randomised patients contributes 

information to the likelihood function for PPS, and those who did not progress within the observed trial 

period are excluded from the estimation of this transition.  

Consequently, whilst the estimate for this transition could be considered unbiased within those who 

progressed, the estimate could be biased when representing the overall population (those who 

progressed and those who did not yet progress) for two reasons. First, patients who experienced 

progression by the time the trial ended (also referred as early progressors) may have a different survival 

prognosis following progression compared with patients who had not yet progressed by end of the trial 

(from which data are not observed). Secondly, those who progress later are more likely to be censored 

in the PPS dataset. This would suggest that there is time-dependent bias in the form of informative 

censoring. 

This chapter aims to: (a) demonstrate and describe potential biases associated with the use of PPS 

estimated in the subset of patients who experienced progression when developing a model based on 

information collected in an RCT only; (b) describe some of the implications of these biases and; (c) 

discuss the advantages and disadvantages of some of the approaches that have been suggested to adjust 

the estimated PPS when developing a model based on information collected in a single RCT.  

7.3 Potential limitations associated with the use of PPS when developing a model based on 

information collected in an RCT only 

As only the subset of patients who experienced disease progression within the observed period of the 

trial are included in the analysis of PPS, this estimated transition may not be generalizable to the overall 

population. This may be the case if patients who had progressed within the observed period of the trial 

experience a faster or a slower time to death following progression compared with those patients who 

had not progressed at the data cut-off for the trial.  

In order to illustrate this problem, hypothetical trial data were generated assuming 3 levels of 

dependence (negative dependence, independence and positive dependence) between TTP and PPS, 

whereby the truth (i.e. the complete data in the absence of censoring) is known, in addition to the same 

data assuming censoring reflects early termination in trials.  

The process used to generate data is described below. Hypothetical uncensored time-to-event data were 

first generated for PFS and OS using a simple multi-state process for 500 individuals. TTP and PPS 
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were assumed to follow an exponential distribution, with rate parameters of 0.03019738 and 0.082085, 

corresponding to mean sojourn times of 144 weeks and 53 weeks, respectively. No death was assumed 

prior to progression; thus, PFS equals TTP. A Gaussian copula was then used to link TTP and PPS to 

induce three levels of dependence (moderate negative, independent and moderate positive). A moderate 

dependence was defined by a Kendall’s Tau of 0.5 for illustration.134 Once uncensored survival times 

were generated, administrative censoring was introduced at Week 156 for all three scenarios, so that 

patients with an uncensored TTP time or death time greater or equal to 156 weeks were censored at this 

time. This was done to reflect early termination in trials and to compare whether the KM for PPS 

estimated in all randomised patients estimated using uncensored survival time is similar to the KM for 

PPS estimated only in the subset of patients who had a recorded progression event by the trial cut-off. 

For simplicity, no random censoring was assumed to occur before the administrative censoring time-

point in this illustration.  

KM plots for the scenarios of independence between TTP and PPS, negative moderate dependence and 

positive moderate dependence are shown in Figure 26, Figure 27 and  Figure 28, respectively. The 

simulated uncensored correlated time for TTP and PPS (in all randomised patients – complete dataset) 

are shown in the left-hand panels, the generated censored PFS and OS KM are shown in the centre 

panels, and estimates for PPS are shown in the right-hand panels of the figures. 

Unsurprisingly, when TTP and PPS duration times are independent / not correlated (Figure 26), the KM 

for PPS estimated in the censored dataset only in the subset of people who progressed before Week 156 

(blue line) is relatively similar to the KM for PPS generated from the respective uncensored dataset 

(amongst all randomised patients in an uncensored dataset). This could be explained by the fact that the 

time to progression does not affect the time to death following progression. In this case, it is reasonable 

to assume that PPS estimated in the subset of patients who progressed early is generalisable to the 

overall population.
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Figure 26: Data generated assuming independence between PFS/TTP and PPS 

 

When TTP and PPS duration times are moderately negatively correlated (Figure 27), the KM plot for 

PPS estimated for early progressors (before Week 156, blue line) is significantly higher compared with 

the KM for PPS estimated in all randomised patients in the uncensored dataset. This is intuitive because 

in the case of negative dependence, patients who progress early have a longer time to death following 

progression. 

Figure 27: Data generated assuming moderate negative between PFS/TTP and PPS 
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Conversely, in case of moderate positive dependence (Figure 28), the KM plot for PPS in the early 

progressors (before Week 156, blue line) is significantly lower compared than the KM plot for PPS 

estimated amongst all randomised patients in the complete dataset. This is intuitive because in the case 

of positive dependence, patients who progress early have a shorter time to death following progression. 

Figure 28: Data generated assuming moderate positive between PFS/TTP and PPS 

 

 

Whilst simple and intuitive, this example using hypothetical data illustrates the general concept that 

using the PPS estimated in the subset of patients who progress may not be generalizable to the overall 

population when TTP and PPS are not independent. 

Three levels of dependence were examined (negative, independence and positive) to reflect the possible 

scenario that could possibly be encountered in HTA. In reality, data could exhibit any degree of 

dependence (either positive or negative). The nature of the dependence is likely to be different between 

cancers, but also within line of treatment for the same cancer. Negative dependence could happen for 

instance when the introduction of a new treatment has a positive effect on PFS but not on OS. Positive 

dependence is relevant when delaying progression is associated with longer PPS. 

Furthermore, usually, fewer people receiving the intervention (new treatment) progress by the time the 

trial ends, compared with the control group. Therefore, potential biases are likely to impact on the two 

treatments to different degrees and could work in opposite directions. 
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7.4 Illustration of potential biases associated with the use of PPS estimated in a subset of patient 

using real trial data 

There are limits with using hypothetical data (used in Section 7.3) as the degree of dependence assumed 

could be deemed unrealistic and these types of dependence may not be observed in real datasets. To 

further illustrate this issue and to overcome potential limitations associated with the use of hypothetical 

data, the validity of assuming that PPS estimated in a subset of patients is generalizable to PPS for the 

overall randomised population was examined in eight trial arms in gastric cancer in which data on both 

PFS and OS were complete (i.e. all randomised patients had recorded progression and death times).  

These trial arms were selected as they had complete information (everyone in the trial progressed and 

died, and therefore, information is available for all randomised individual rather than a subset). 

Furthermore, these trial arms were selected as they were part of a broader set of 20 trials in gastric 

cancer used in a meta-analysis.135-137 The data are publicly available in the R package surrosurv 

(gastadv dataset) provided by the GASTRIC (Global Advanced/Adjuvant Stomach Tumor Research 

International Collaboration) group.  

Compared with using hypothetical data, using real trial data allows an assessment of whether using PPS 

estimated in the subset of patients who progressed is generalizable to the overall randomised population 

without having to make potentially arbitrary assumptions regarding the dependence between TTP and 

PPS.  

A total of eight trial arms (4 control and 4 experimental arms) from 5 RCTs included in the meta-

analysis135-137 were used in this analysis; two trials arm were excluded as there was some censoring.  

The KM plots of PFS and OS from these trial arms is shown in Figure 29. The sample size of patients 

in each arm varied from 43 to 184. Although the sample size for some trial arms was small, trial arms 

were not pooled. This is because whilst trials were conducted in gastric cancer, the intervention and 

control arms assessed were different between trials. Pooling datasets would therefore introduce biases 

given that different trial arms may exhibit different behaviour in terms of PPS. 
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Figure 29 : KM for PFS and OS for trial included in the analysis (Gastric cancer) 
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The correlation between PFS/TTP and PPS (excluding patients who had the same recorded times to 

progression and death) was computed for each trial arm using the Kendall Tau test, in order to 

understand whether the complete data exhibited any type of dependence (Figure 30). The Kendall’s Tau 

in the trial arms examined ranged between 0.067 (p=0.438) indicating no dependence to 0.327 

(p<0.005) indicating some small to moderate positive dependence between TTP and PPS. 

In order to examine whether people who progressed early have the same risk of death as all randomised 

patients, administrative censoring was arbitrarily introduced when 70% of PFS events occurred. 

Therefore, for each complete dataset, an equivalent dataset was created whereby patients who 

progressed or died after a specified time-point were censored. The KM plots for PFS and OS including 

censoring are shown below in Figure 29 alongside the complete KM. A comparison for the PPS 

estimated in the complete datasets amongst all randomised patients against the KMs estimated in the 

truncated datasets (censored datasets) is shown in Figure 30 alongside the Kendall Tau (estimated the 

complete dataset) for the dependence between TTP and PPS.  

With the exception of Dataset 5, the median PPS in the censored datasets were consistently under-

estimated (to varying degrees) compared with the PPS observed in all randomised patients. Visually, 

the PPS estimated in the subset of patients who progressed was worse than that estimated in the full 

randomised population in five of the 8 datasets examined. It can also be seen that the degree of 

dependence was more pronounced in some trial arms compared with others. This potentially suggests 

that data could exhibit any degree of dependence, even within the same cancer type. Differences could 

also be attributable to differences in mechanism of action or differences in sample size. Although not 

shown here, as expected, differences in PPS between all randomised patients and the subset of patients 

who progressed were more pronounced when the level of censoring was greater, but less pronounced 

when the degree of censoring was lower. 

This simple illustration confirms that using PPS estimated only in a subset of patients could introduce 

biases in that it may not be generalisable to the overall population. It should be noted that only trial 

arms in gastric cancer were used, and that different degrees of variation could be observed if alternative 

datasets were used or if different censoring assumptions were assumed. 
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Figure 30 : Comparison of PPS in the complete and censored datasets (Gastric Cancer) 
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7.5 Adjusting the time to death following progression, by making it conditional on time to 

progression (covariate in a statistical model) 

Because of the selection biases described above and following informal discussions with analysts 

working in HTA, when only data from the trial are used (e.g. no external evidence is included in the 

model), analysts may sometimes consider adjusting PPS by making it conditional on TTP. This may be 

done in order to: (i) reduce possible biases and make PPS more generalizable to the overall population; 

(ii) account for the trend in the data during the observed period, and; (iii) extrapolate that trend beyond 

the observed period of the study. 

The approach typically considered in HE consists in using TTP as a covariate in the statistical model 

when estimating PPS. Whilst different formulations are feasible and have been proposed, analysts may 

typically consider two approaches: 

(i) making PPS conditional on TTP on the log scale, 

(ii) making PPS conditional on TTP on the normal (non-log) scale. 

It should be noted that different formulations are also feasible, for instance using the square of TTP, or 

more complex formulations. These two formulations were selected here to illustrate the impact of 

adjusting PPS using the two most common (simple) formulations. In this section, I will re-use the eight 

trial arms in gastric cancer described in Section 7.4 to explore whether making PPS conditionally 

dependent on TTP (in the log and non-log scale) reduces selection bias. The following steps were taken: 

• first, a statistical model is estimated for PPS using TTP as a covariate (on the log and non-log 

scale) in each censored dataset.  

• second, the statistical model is then used to generate predictions for PPS based on: (a) the 

number of patients who progressed in each cycle, and (b) the estimated PPS for a given cycle 

(i.e. patients who progressed in cycle 1 will be assigned a different PPS compared with patients 

who progressed at cycle 30, based on the covariate in the PPS statistical model). This can be 

done both at a cohort level (using tunnel states) or at the individual patient level.  

• in order to compare the lifetime predictions, parametric distributions were fitted to both 

TTP/PFS and PPS. This was required in order to generate predictions for PPS which were 

conditionally dependent on TTP beyond the observed period. The resulting PPS was then 

generated from the proportion of people who were expected to die over time. 

Given that the statistical model for PPS uses TTP as a covariate, any predictions for PPS using this 

statistical model will be linked to the predictions for TTP/PFS. This is because, dependent on the 
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prediction for TTP (i.e. when people progress), the effect of the covariate will be different at the 

individual level when predicting PPS.  

Given that the prediction for TTP would impact on the prediction for PPS, TTP/PFS was fitted to the 

complete datasets without censoring in order to reduce any misspecification of PFS/TTP if curves were 

fitted to the censored data. This was necessary given that the approaches considered use TTP/PFS as a 

function of PPS, and therefore any misspecification of TTP/PFS could lead to a misspecification of 

PPS. Therefore, the cases presented here are likely to represent a best case scenario. Seven parametric 

distributions were considered for TTP/PFS (exponential, Weibull, Gompertz, Log-Normal, Log-

Logistic, Gamma and Generalised Gamma). For each dataset, the parametric distribution with the best 

goodness-of-fit in terms of AIC/BIC was selected for TTP/PFS (as this was fitted to the complete 

datasets). The fit to PFS is shown in Appendix 6 for each dataset. 

Statistical models were estimated for PPS (with or without covariates) to the censored datasets to reflect 

information typically available from a trial when PPS is fitted to the data. Seven parametric distributions 

were also considered for PPS (exponential, Weibull, Gompertz, Log-Normal, Log-Logistic, Gamma 

and Generalised Gamma). However, results for the exponential distribution are not reported here as 

these were similar to those for the Weibull distribution. Results are presented for each arm separately 

and for each distribution for PPS. This was necessary to avoid misinterpreting results due to the use of 

an inappropriate parametric distribution. 

Results for each trial arm are presented in Figure 31 to Figure 38. For each arm, the KM plot for PPS 

estimated amongst all randomised patients (black line) and the KM plot for PPS estimated in the subset 

of patients who progressed early (red dashed line) are plotted against: (a) the unadjusted predicted PPS 

fitted to the censored dataset (blue line); (b) the adjusted predicted PPS conditional on the log of TTP 

fitted to the censored dataset (represented by the dark green line), and; (c) the adjusted predicted PPS 

conditional on TTP (on the non-log scale) fitted to the censored dataset (represented by the orange line). 

It should be noted that Gompertz distribution could not be fitted in a number of datasets. 
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Figure 31 : Predictions for PPS using adjusted and unadjusted method in Dataset 1 
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Figure 32 : Predictions for PPS using adjusted and unadjusted method in Dataset 2 
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Figure 33 : Predictions for PPS using adjusted and unadjusted method in Dataset 3 
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Figure 34 : Predictions for PPS using adjusted and unadjusted method in Dataset 4 
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Figure 35 : Predictions for PPS using adjusted and unadjusted method in Dataset 5 
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Figure 36 : Predictions for PPS using adjusted and unadjusted method in Dataset 6 
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Figure 37 : Predictions for PPS using adjusted and unadjusted method in Dataset 7 
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Figure 38 : Predictions for PPS using adjusted and unadjusted method in Dataset 8 
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As shown in the figures, the results differed between the trial arms.  

In summary, under optimal conditions (i.e. reduced misspecification of PFS) I observed that: 

• adjusting PPS using TTP as a covariate did not always correct for selection biases irrespective 

of the parametric distributions assumed (e.g. Datasets 1, 6, 7 and 8), 

• adjusting PPS using TTP as a covariate on a non-log scale was generally less appropriate 

compared with using TTP on the log scale, 

• whilst adjusting PPS using the log of TTP appeared to improve predictions in some trial arms 

(Datasets 2, 3, 4 and 5). This was only the case for selected parametric distributions. 

Furthermore, whilst predictions were improved, biases were only partly addressed. 

• adjusting PPS using TTP may introduce biases when PPS estimated in the subset of progressors 

is close to the PPS in the complete dataset (Dataset 8). 

 

Unexpectedly, results were consistent when different degree of censoring was assumed (results not 

shown). 
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7.6 Discussion and conclusions 

This chapter highlights potential issues associated with the use of (unadjusted) PPS when developing a 

model (STM or MSM) based on incomplete data from an individual RCT.  

Whilst the estimate for PPS could be considered unbiased for those patients who progressed, the 

estimate could be biased when representing the overall population (those who progressed and those who 

did not yet progress) for two reasons. First, patients who experienced a progression by the time the trial 

ended (also referred as early progressors) may have a different survival prognosis following progression 

compared with patients who had not yet progressed by end of the trial (from which data are not 

observed). Secondly, those who progress later are more likely to be censored in the PPS dataset. This 

would suggest that there is time-dependent bias in the form of informative censoring. 

It is important to recognise these biases in order to understand how this could affect the performance of 

the STM/MSM whereby OS is estimated indirectly as a function of PPS and other transitions. 

Whilst it is possible to adjust PPS by making it conditional on TTP (e.g. on the log or non-log scale), 

this approach remains flawed because the PPS in people who did not progress in the trial remains 

unknown and therefore the estimation relies on assumptions (notably that the trend in the data will 

continue into the unobserved period). The validity of such approach is likely to depend on the amount 

of data available and whether the trend observed in the data continue beyond the observed period of the 

study. Furthermore, whilst a constraint could be added in order to reduce the effect of the extrapolation 

of the trend in the data (e.g. assuming the same PPS after a certain point), there remain limitations as 

the cut-off is arbitrary. 

Similar to using TTP as a covariate for PPS in the statistical model, it is possible to model PPS 

separately for the subgroups of early and late progressors. However, this approach suffers from similar 

limitations, including: 

• the definition of “early” and “late” progressors is arbitrary. 

• the amount of data on PPS available in an RCT relies on a small number of patients and events. 

Separating PPS into two groups (“early” and “late” progressors) may therefore further increase 

uncertainty.  

• patients who did not progress in the trial are assumed to have the same prognosis as late 

progressors. 
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In this study, TTP/PFS was fitted to the complete datasets to avoid any misspecification. However, in 

practice, when constructing an economic model, TTP/PPS is fitted to the censored dataset. Any 

misspecification of TTP/PFS is likely to have a knock-on impact on the estimate of PPS. 

Alternative approaches could also be considered to adjust PPS, using more complex statistical methods, 

such as Inverse Probability of Censoring Weighting (IPCW) whereby the PPS will be adjusted 

according to weights (no example was identified or known). Such an approach could help with the 

problem of informative censoring (those who progress later are more likely to be censored in the PPS 

dataset) if there is good information on prognostic characteristics measured over time. However, such 

an approach is also likely to be limited given that the PPS in people who did not progress remain 

unobserved; therefore, the PPS is weighted according to what is currently observed in the trial. These 

approaches are likely to be more valuable when supplemented with data from other trials or clinical 

opinion. 

This study has a number of limitations that need to be recognised. Firstly, a limited number of datasets 

were examined and therefore conclusions may be different if different datasets were considered. 

However, using a limited example illustrated that the problem exists. Datasets were also arbitrarily cut 

when 70% of PFS events had been experienced. Results are likely to be different if alternative cut-offs 

were used. Indeed, if censoring was introduced later, progression would have been observed for a larger 

proportion of patients and the PPS for people who had progressed would have been more complete. 

Furthermore, the same degree of censoring was assumed for each trial arm. Usually, more censoring 

will be observed for the intervention arm. Biases could affect the control and intervention arm 

differently. The sample size in trial arms included was generally small, which could increase the 

uncertainty. It was not appropriate to pool the trial arms as different interventions were assessed. Results 

were also heavily influenced by the choice of parametric distribution. Finally, this study only looked at 

making PPS conditional on TTP on the log and non-log scale. Alternative parameterisations are 

possible. It is unclear whether this would improve or worsen the adjustment. However, whilst different 

parameterisations are possible, it is unclear how analysts could decide on the most appropriate 

parameterisation given that the shape of the PPS function for people who did not progress remains 

unknown.  

Despite findings, this does not mean that PPS estimated in the subset of patients who progressed cannot 

and should not be used, as this is often the only information available to analyst and this is appropriate 

when the dependence between TTP and PPS is believed to be low. Rather, this exploratory analysis 

highlights that prior to using PPS naively, analysts should be aware of the limitations of the data and 

should consider whether the PPS observed in early progressors may be different to PPS in the overall 
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population. This could be informed by discussion with clinical experts or supplemented using data from 

registry or other data published in similar conditions; however, it should be noted that this could be 

different if a new drug has a different mechanism of action. Analysts should also examine whether any 

signs of dependence between TTP and PPS are exhibited in the data. This could help provide an 

understanding of whether the PPS estimated from the trial in the subset of patients is likely to suffer 

from selection biases. The sample size of the data and number of events is also important to consider 

as this is likely to make any adjustment more challenging and any prediction less reliable. This example 

also highlights that the impact of biases may differ between treatment arms; hence, what is observed in 

one [control] arm may not necessarily be transferable to the other [intervention] arm.  

In summary, this exploratory analysis suggests that there is no single best approach for adjusting PPS. 

Analysts should therefore consider reporting both the unadjusted PPS and adjusted PPS (e.g. using log 

of TTP as a covariate) in order to reflect the uncertainty so that it can be considered in the decision-

making process. Decision-makers are more likely to be more confident in their decision-making if 

predictions using the adjusted and unadjusted PPS are similar. However, as demonstrated in this 

chapter, adjusting PPS did not consistently improve predictions, therefore there is a risk that neither are 

correct. This is unknown, and decision-makers need to consider the possibility that all these estimates 

are uncertain and may be biased. If predictions using the adjusted and unadjusted PPS vary widely, this 

uncertainty should be reflected in the decision-making process. Whilst there is no clear solution, it may 

be useful for decision-makers to understand the importance of PPS on model results across a wide 

variety of alternative scenarios. 

 

The potential impact of biases in PPS is further examined in the next chapter, where I describe the 

methods and results of a simulation study to examine the performance of methods, including the STM, 

MSM and PSM in estimating health state sojourn time.  
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PART IV: HOW DO METHODS PERFORM ACCORDING TO 

DIFFERENT DATA CHARACTERISTICS? 

8 CHAPTER VIII: A SIMULATION STUDY TO EVALUATE THE 

PERFORMANCE OF METHODS TO ESTIMATE HEALTH STATE 

SOJOURN TIME IN SINGLE TRIAL ARMS 

8.1 Chapter overview 

This chapter presents the methods and results of a simulation study undertaken to: (i) evaluate and 

compare the performance of methods that are currently used in health economics to estimate health state 

sojourn time in single trial arms, and; (ii) assess whether including the dependence between progression 

and survival outcomes when constructing such models improves their performance. The performance 

of seven methods are examined in this simulation study; these are described in Section 8.3.4.  

Section 8.3 describes the methods for the simulation study. This includes a description of the aim, details 

on how data for the simulation study were generated, the underlying assumptions of the methods 

examined, and the targets and performance measures considered within the study. Results are presented 

in Section 8.4, and a discussion of the limitations of the simulation study is presented in Section 8.5. 

8.2 Introduction 

As described in Chapter 2, a number of approaches are currently used in health economics to estimate 

health state sojourn times, and by extension, QALYs. However, these methods are used inconsistently 

between appraisals, largely because their relative performance is unknown. Furthermore, a key 

simplification on how these methods are currently implemented in health economics, which could affect 

their performance, is that PFS and OS are not jointly modelled. 

In health economics, at present, whilst consideration is made on the long-term predictions, the 

performance of a method is typically judged upon its prediction against the observed data, e.g. does a 

PSM fit the observed data better than an STM? Whilst this can be evaluated easily during the observed 

period of a trial, follow-up within clinical trials is frequently limited and time-to-event data, particularly 

OS, are often immature. Furthermore, a lifetime horizon is often the standard in health economics. 

Whilst external longer-term evidence can be used in order to validate predictions from an approach, 

there are often limitations and these data are also often incomplete or unavailable. 
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A number of studies have examined how well models fitted to early data-cuts compared with later data-

cuts.27, 138 However, these were limited to single case studies and the later cut-off used to compare 

predictions was not fully complete. The overall performance of methods used in health economics is 

unknown because the presence of censoring (unobserved data) makes it impossible to know for certain 

what the data would have looked like had they been fully observed. As such, the performance of 

alternative methods for estimating OS and health state sojourn time is unknown. 

Consequently, a simulation study is proposed in this thesis to attempt to evaluate the overall 

performance of alternative methods, accounting for their performance during both the observed and 

unobserved period in single trial arms. This is possible in a simulation study as hypothetical data can 

be generated that reflects the type of information that is typically available from a clinical trial, as well 

as the underlying truth (in the absence of censoring). 

In this simulation study, contrasting approaches are examined in single arm trials; the PSM whereby 

OS is estimated directly from a parametric function fitted to the data with the hazard extrapolated over 

time and the STM which models the underlying disease process. A key debate in health economics is 

whether fitting OS directly to the data is more or less appropriate than modelling of the underlying 

process when using data from a RCT only (based on the information available), provided the most 

appropriate available extrapolation is used. The data is simulated and methods in this study are applied 

in a way that allows this question to be explored comprehensively.  
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8.3 Methods for the simulation study 

A simulation study was chosen to evaluate the performance of methods currently used in health 

economic evaluation. This is because it allows for the evaluation of the overall performance of methods 

during both the observed and unobserved period, which would have otherwise not been possible using 

published trial data. In a simulation study, data can be generated in such a way that reflects both the 

restricted follow-up times and the small sample sizes typically encountered in clinical trials of oncology 

treatments, in addition to the unbiased times if the follow-up was not restricted and if a larger sample 

size was considered. Another key strength is the flexibility to assess a large number of defined scenarios, 

which would be challenging using published trial data. 

Simulation studies are an accepted and widely used tool when evaluating the performance of statistical 

methods. Morris et al (2019)139 define simulation studies as “computer experiments that involve 

creating data by pseudo random sampling” that help “to understand the behaviour of statistical 

methods”. There are a large number of published simulation studies. However, they often differ from 

each other in terms of design, data generating mechanisms as well as the methods evaluated. This is 

because rather than following a strictly defined process, simulation is a general tool which needs to be 

adapted to its aim.  

Morris et al (2019) published a recent review of 100 simulation studies that were published in Volume 

34 of Statistics in Medicine (2015).139 The authors highlight the variation between the included studies 

but also, the inconsistency in terms of terminology and study design. Findings from this comprehensive 

review were then used by the authors to formulate practical guidance, to develop a structured approach 

for the design, execution, analysis, reporting and presentation of simulation studies and to formulate 

coherent terminology. 

In particular, Morris et al (2019) propose the planning of a simulation study to follow the ADEMP 

(Aims, Data-generating mechanisms, Estimands, Methods, Performance measures) structured 

approach.139 The ADEMP approach proposed by the authors covers the key steps that need to be 

considered when designing a simulation study. This structured ADEMP approach is followed in this 

thesis for the planning of the simulation study.  

The aim of the simulation study is described in Section 8.3.1. The data-generating mechanism is 

described in Section 8.3.2. Estimands are described in Section 8.3.2. Methods included in the simulation 

study are described in Section 8.3.3. Finally, the performance measures are described in Section8.3.5. 
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8.3.1 [A]DEMP: Defining the aims of the simulation study 

Perhaps the most important aspect when designing a simulation study is a clear definition of its aim. 

This influences its scope, how data are generated and in turn, the level of complexity required, but also 

how reliable conclusions from the simulation study are and how results should be interpreted.  

In this thesis, the primary aim of the simulation study is to evaluate the performance of methods that 

are currently used in health economics to estimate health state sojourn time (PSM, STM, MSM) in a 

single treatment group. A secondary aim is to evaluate whether including the dependence between 

progression and survival outcomes when constructing such models could improve their performance 

(Li’s model91 and Fu’s model89). In particular, a key debate in health economics is whether fitting OS 

directly to the data is more or less appropriate than modelling of the underlying process when using 

data from a RCT only (based on the information available), provided the most appropriate available 

extrapolation is used.  

In health economics, the accurate prediction of the incremental QALYs gained between treatment arms 

is important. However, a single trial arms approach was adopted in this simulation study to avoid the 

potential for spurious conclusions arising from apparently appropriate incremental outcomes despite 

the presence of a poor model fit in both treatment groups. Furthermore, when considering a control and 

an intervention arm, different choices are possible (e.g. assuming PH between arms for the whole model 

duration or until after a certain time point, pooling PPS data across arms, or fitting curves separately to 

data for each arm). These choices may lead to different model results which would introduce further 

complexities in interpreting the performance of alternative economic model approaches in the 

simulation study. An exploratory analysis is presented in Chapter 9, whereby the performance of 

methods in estimating incremental QALYs is assessed for transparency using real cancer trial datasets. 

Whilst a simulation study is used to evaluate the performance of analytic methods, there are a number 

of challenges which need to be considered upfront when interpreting results. In particular, 

(i) a large component of the performance of a method stems from subjective judgement on 

how transitions/survival endpoints are chosen and extrapolated, rather than the analytical 

approach itself. Consequently, results will need to be interpreted in the context of how 

parametric models were selected in the simulation study,  

(ii) the key target is the estimation of the mean lifetime health state sojourn time. This makes 

assessing the performance of methods very challenging as a method may generate 

appropriate estimates of appropriate health state sojourn time despite poor model fit, 
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(iii) the hazard of death is likely to vary between cancer sites, interventions and lines of 

treatment.  It is therefore challenging to draw generalizable conclusions. 

8.3.2 A[D]EMP: The data-generating mechanism 

A key objective of this simulation study is to generate data that are reflective of trials encountered in 

HTA used to estimate the health state sojourn time. Clinical trials typically include a number of 

variables, including time-to-event data (e.g. PFS and OS) and response outcomes (e.g. complete 

response [CR] and partial response [PR]) as well as other prognostic information (measured at baseline 

or over time). In theory, data could be generated to reflect all of this information using complex 

processes which account for the correlation between different prognostic factors and/or the inclusion of 

time-dependent covariates. It is equally important to consider what information from clinical trials is 

currently used when estimating health state sojourn time, in addition to information that could affect 

the performance of a method. As described in Chapter 2, current modelling methods (PSMs, STMs, and 

MSMs) use information on two key events; progression and death. The survival outcomes (PFS, OS, 

PPS) are generally, but not always, estimated without consideration of covariates (with the possible 

exception of treatment arm) or prognosis factors (e.g. survival outcomes are used on their own). 

However, there are instances, where survival outcomes may be estimated using baseline characteristics, 

notably when there are important stratification factors. 

Generating data using complex methods by modelling a set of unnecessary covariates that are time-

dependent (for instance, a link between change in white blood cell and progression) and linking them 

to the time to death or progression would rely on a number of unsupported assumptions that could 

reduce the realism of the data generated and reduce transparency. However, ignoring prognosis entirely 

(notably at baseline) may reduce realism in the data-generating mechanism. 

Consequently, in this simulation study, a “semi-complex” process was used to generate data, whereby: 

• The general process underlying the natural history of cancer is modelled to estimate PFS and 

OS, rather than assuming that the times to progression and death are independent, 

• Time to death is made dependent on TTP (depending on the scenario of interest), 

• A prognostic factor is considered at baseline to reflect patients with a good, moderate or bad 

prognosis in terms of speed of progression, 

• Random, administrative and interval censoring are introduced to reflect the types of censoring 

typically observed in cancer trials. 
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A key aspect of the data-generating mechanism is the conceptual representation of the natural history 

of advanced/metastatic cancer, as summarised in Section 8.3.2.2. The subsequent sections detail the 

mathematical model used to simulate the data. Prior to describing the data-generating mechanism, it is 

important to define the scenarios that will be investigated. Given the aim of the simulation study 

(Section 8.3.1), the scenarios to be investigated need to be realistic to reflect characteristics of data 

typically encountered within the HTA context when estimating health state sojourn time. 

8.3.2.1 Scenarios investigated 

The scenarios investigated in this simulation study focus on four key characteristics of trial data that 

are likely to impact on the performance of methods under investigation. Characteristics for each 

scenario are assumed to follow three levels (high, medium, low) or two levels (high/low) for each 

category, resulting in 54 unique possible scenarios (summarised in Table 12 in Section 8.4). These 

include:  

• The proportion of observed PFS events amongst all enrolled/randomised patients, which is 

defined as either progression or death (85%, 65%, 45%), informed by findings from a rapid 

review of previous NICE TAs in advanced/metastatic cancer (Appendix 7). 

• The ratio of OS to PFS events (75%, 55%, 35%), informed by findings from a rapid review of 

previous NICE TAs in advanced/metastatic cancer (Appendix 7). 

• The dependence/correlation between the TTP and PPS (negative moderate, independent and 

positive moderate), based on an assumption to reflect the possible form of dependence that 

could be seen in a trial. This dependence/correlation was induced using a Gaussian copula 

(bivariate normal) as the correlation coefficient equals the copula. Further details on how the 

dependence is included is provided in Section 8.3.2.4.2.1. 

• The proportion of deaths that occur prior to a progression event (low or moderate/high), to 

reflect scenarios that have a lower or higher proportion of deaths pre-progression (low is 

assumed to be approximately two to three times lower than high). Further details are provided 

in Section 8.3.2.4.2.2. 

As previously described, data relating to single trial arms only are generated. Scenarios are also limited 

to non-cure processes given: (a) the challenges in generating realistic data given the uncertainty in the 

underlying process for such treatments/conditions; (b) only non-cure survival models are considered 

when fitting data to survival outcomes and (c) to keep the number of scenarios manageable.  

It should be noted that whilst 54 scenarios are examined in this simulation study, some scenarios might 

be considered more relevant or plausible than others. In particular, whilst negative dependence is 
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possible, the level assumed could be considered extreme. The level of positive dependence could also 

be considered extreme. However, it is useful to consider more extreme scenarios in order to examine 

trends, and also to assess whether the conclusions regarding the performance of methods are robust 

even under less plausible assumptions about the underlying distribution from which the data are drawn.  

8.3.2.2 Conceptual representation of the natural history of cancer 

As described in Section 8.3.1, a progressive multi-state process is used to represent the natural history 

of advanced/metastatic cancer (Figure 39) whereby patients could either (1) progress, (2) die without 

progression or (3) die following progression. 

Figure 39: Conceptual representation of the natural history of cancer in the advanced/metastatic 

setting (transition between health states) 

𝜆12 and 𝜆13 represent the transition for the progression-free to progression and death respectively; 𝜆23 represent the transition from progression 

to death 

  

Within a trial, PFS is defined as the time to progression or death without progression and is therefore 

represented by two transitions; the transitions from progression-free to progression (𝜆12 ) or death 

without progression (𝜆13 ). 

OS is a function all transitions within the multi-state with: 

• Individuals dying following progression are represented as a function of two transitions: (a) 

the transition from progression-free to progression (𝜆12 ) followed by (b) the transition from 

progression to death (𝜆23), 

• Individuals dying in the absence progression are represented by the transition from 

progression-free to death without progression (𝜆13). 

 

Progression-free

DeathProgression

𝜆12 𝜆13

𝜆23



 

166 

 

8.3.2.3 Generating censored data reflective of scenarios observed within the HTA context 

A key challenge in this simulation study is to generate realistic data that reflect the different scenarios 

encountered within the HTA context, whereby data on PFS and OS are typically not fully observed for 

all patients. Previous simulation studies,139 typically first generate the uncensored survival times (using 

the natural history model), with censoring introduced subsequently. Furthermore, performance is often 

assessed according to the level of censoring for OS alone, PFS alone, with scenarios rarely defined to 

account for the degree of censoring for both outcomes. 

Scenarios to be investigated in this simulation study are defined according to the degree of censoring 

for both PFS and OS. Therefore, in addition to the natural history model, the censoring mechanism for 

both PFS and OS needs to be part of the data-generating mechanism.  

A multi-state, patient level-simulation was built in R software (R studio version 3.6.3). The model has 

two parts: (i) a natural history model of the progression of cancer which generates uncensored survival 

times, and (ii) a censoring model that generates censoring (see  Figure 40). In this model it is assumed 

that the patient would die from causes other than cancer, and the time to death without progression is 

shorter than the time to death following progression.  

The model simulates the life histories of a sample of patients with cancer. The simulation of the 

individual event histories uses Monte Carlo sampling. This means that each uncertain event within the 

individual’s modelled lifetime can occur randomly, but overall the events conform to a pattern which 

is specified by the scenario identified. Briefly, uncensored survival times are first generated using the 

natural history component of the model. For each simulated individual (assumed to be free of 

progression at the start of the simulation), TTP, prePS and PPS are generated based on the relevant 

distribution (described in Section 8.3.2.4). The generated uncensored times are then compared with: 

• PFS, which is defined as the minimum of the TTP and PrePS  

• OS, which is defined as death before or after progression (PrePS or TTP+PPS)  

In parallel to the process of generating uncensored survival times, a censoring mechanism is introduced 

(shown in the bottom half of Figure 40), which includes administrative censoring (the end of the trial 

period), random censoring (patients who are lost to follow-up) and interval censoring (progression 

assessed during scheduled visits). Uncensored survival times are then compared against the censoring 

mechanism to define whether censoring (either administrative or random) occurs before the event of 

interest. The model further considers random entry into the trial in order to add realism to the generated 

data.  
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Figure 40: Representation of the model used to generate data 

 

In order to match the scenarios of interest (in terms of censoring), some parameters need to be calibrated. 

Consequently, predictions from the MSM in terms of the proportion of PFS and OS events, given a set 

of initial parameters, are compared against the target values (the proportion of PFS and OS events for 

the scenario of interest). Parameters from both the natural history and censoring models are then varied 

simultaneously using an iterative approach until the characteristics of the generated data match the 

scenario of interest in terms of the level of censoring for PFS and OS. 

A number of optimisation functions such as the optim() function in R (including different algorithms 

such as Nelder Mead [NM] or Broyden–Fletcher–Goldfarb–Shanno [BFGS] methods) or other 

algorithm approaches exist such as the Metropolis Hastings calibration method.140, 141 For the sake of 

simplicity, I used the iterative approach taken by Rotolo et al (2013) to calibrate the parameters from 

the MSM to match the target values.129 In brief, the authors developed a criterion function which 

compares the target values versus predictions and varies parameters from the MSM such that the 

differences between the two is minimised according to a threshold set by the user. Parameters are varied 

according to an automated heuristic function with acceptance criteria until the logarithm of the ratio 

between the targets and predictions reaches a value close to zero. Further details on the algorithm and 

heuristic function are available in Rotolo et al (2013).129 It should be noted that the choice of 

optimisation function would not affect findings, as this is only used to calibrate parameters for the 

natural history and censoring models that match (broadly) the scenario of interest.  
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8.3.2.4 Parameters included in the mathematical model used to generate data 

The mathematical model used to generate the data for this simulation study for each scenario is 

composed of three categories of parameters; (i) those that are fixed and common to all scenarios; (ii) 

those that are fixed but specific to the scenario investigated, and (iii) those that need to be calibrated so 

that the generated data match the characteristics of the scenarios investigated. Parameters are 

summarised in Table 11. Further description is provided in turn below.  

It should be noted that several key inputs in the natural history MSM are a function of a number of 

parameter values. For instance, in the natural history model, the time to death in the absence of 

progression (general population mortality) is a function of: (a) the age of the patient, and (b) the rate of 

mortality from the general population (mortality is higher as patient age increases). Similarly, TTP is a 

function of: (a) the patient’s prognostic group, and (b) TTP by prognostic group. Finally, administrative 

censoring is a function of: (a) random entry in the model, and (b) the follow-up time for the last patient 

who enters the trial. 

8.3.2.4.1 Parameters that are fixed and common to all scenarios 

8.3.2.4.1.1 Age and time to random entry 

Patient age is included in the natural history model when generating the data to estimate the time to 

death in the absence of progression (used as a proxy for death other than cancer). For simplicity, patient 

age is sampled from a triangular distribution assuming a median age of 65 years (range: 45-90 years) 

to reflect the age of patients typically observed in people with advanced/metastatic cancer enrolled in 

clinical trials. Other distributions such as a Gaussian distribution with upper and lower truncation could 

have been more realistic; however, a triangular distribution was used for simplicity. 

Figure 41 : Distribution used for the time to random entry and distribution of age 
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Table 11: Summary of parameters used in the mathematical model used to generate data 

Parameter Distribution Parameter value  Source 

Parameters that are fixed and common to all scenarios   

Age Triangular median: 65 (range 45-90) Assumption 

Random entry Uniform 0 - 52 weeks Assumption 

Rate of non-cancer mortality by age Fixed  ONS 

Prognostic group Fixed 

High: 40% 

Moderate: 30% 

Low: 30% Assumption 

Time to progression by prognostic group Spline with two knots models Project Data Sphere 

Random censoring rate Exponential 0.0009  

Interval censoring Fixed 

Week 0-52: every 4 weeks 

Week 52-124: every 6 weeks 

Week 124-260: every 8 weeks 

Week 260+: every 12 weeks Assumption 

    

Parameters that are fixed and specific to each scenario     

Dependence (copula function) Gaussian 

Independence: Kendall’s τ=0 

moderate positive: Kendall’s τ=0.4 

moderate negative: Kendall’s τ=-0.4 Assumption 

Excess mortality (SMR) – general causes Fixed SMR = 1.5 (low mortality) vs SMR = 7 (high mortality) Assumption 

Additional background mortality due to cancer Exponential 

0.0002  for scenarios with low mortality 

0.00055  for scenarios with high mortality Assumption 

Parameters that are calibrated       

Time to death following progression Exponential  Calibrated 

administrative time for censoring Fixed   Calibrated 

Abbreviations:  ONS: office of national statistic; SMR: standard mortality ratio
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Random entry is included in the censoring model to reflect that patients do not all enter the trial at the 

same time, but within a time interval, with the trial ending when the last patient who entered the trial 

has been followed for a specified minimum duration or when a certain number of events have occurred 

(also called administrative censoring). In this simulation study, patients are assumed to randomly enter 

the trial within a 52-week period, assuming a uniform distribution. This was informed by the recruitment 

period observed in two trials for the first-line treatment for advanced BC, which was 60 weeks and 78 

weeks, respectively.142, 143 

8.3.2.4.1.2 General mortality – time to death in the absence of progression 

The hazard of mortality by age in the general population is taken directly from life tables.144 The hazard 

of death in males and females is summarised in Figure 42. For simplicity, to avoid including gender in 

the data-generating mechanism, the hazard for males and females was pooled assuming a 50:50 split. 

For each sampled individual, the hazard of death by age is transformed into probabilities and then 

transformed into the cumulative incidence of events from the age at which they enter the model; this 

was done to reflect the higher probability of dying from non-cancer-related causes in older individuals.  

This is illustrated in Figure 42 (for males and females separately) where the cumulative incidence of 

death is presented for an individual entering the trial at the age of 45 or an individual entering the trial 

at the age of 90 years. 

Figure 42 : Hazard of death by age and sex and example of cumulative incidence for a patient 

aged 45 years and a patient aged 90 years  
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8.3.2.4.1.3 Prognostic group 

To add further realism to the data-generating mechanism and to avoid the use of a simple function for 

TTP, sampled individuals were classified into three prognostic group: good prognosis (40%), moderate 

prognosis (30%) and bad prognosis (30%). TTP is assumed to be dependent on prognostic group. 

8.3.2.4.1.4 Time to progression by prognostic group 

TTP by prognostic group was taken directly from the TTP observed in trials for some cancers.  

Individual patient data from three trials in breast, prostate or lung cancer were obtained from the Project 

Data Sphere74 with TTP calculated by censoring death in the absence of the progression. These datasets 

were described in Section 5.4.1. In these datasets, the median TTP was estimated to be 48.8 weeks, 36.6 

weeks and 26.1 weeks in individuals with breast, prostate and lung cancer, respectively. 

Data on TTP were not fully observed in either the breast, prostate or lung cancer datasets (Figure 43). 

Consequently, parametric extrapolation was required to extrapolate the TTP over a lifetime horizon. A 

range of parametric distributions was explored (exponential, Weibull, Gompertz, Log-Normal, Log-

Logistic, Gamma and Generalised Gamma, and a spline hazard model  with one to four knots). 

Following assessment of the visual fit and statistical fit (AIC), a spline model with two knots was 

selected for each dataset (Appendix 8).  

Figure 43: KM for TTP observed in breast, prostate and lung cancer and fitted curve 
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The TTP in breast cancer is used as a proxy for TTP in individuals considered to have a good prognosis. 

The TTP in prostate cancer is used as proxy for TTP in people with a moderate prognosis. Finally, the 

TTP in lung cancer is used a proxy for TTP in people with a bad prognosis. It should be noted that using 

data related to cancer site as a proxy for prognosis is an assumption. It could have been possible to use 

an arbitrary HR to define patients with good, bad or moderate prognosis for example. Data related to 

cancer were used as proxy in order to assume realistic shapes of the TTP functions. This assumption is 

unlikely to affect results from this simulation study. 

8.3.2.4.1.5 Rate of random censoring (for time to progression only) 

Whilst the majority of censoring is likely to be attributable to administrative censoring, a small degree 

of random censoring was introduced to add realism to the data-generating mechanism, defined as the 

time to loss of follow-up. In the model, only the TTP could be randomly censored due to loss of follow-

up as the time to death was assumed to be known with certainty. 

The time to loss of follow was assumed to follow an exponential distribution with a rate of 0.0009 

(weekly). This was selected (using trial error) so that only a small number of progression events 

(approximately 5-10%) would be censored for this reason. 

8.3.2.4.1.6 Interval censoring (for time to progression only) 

In addition to random censoring, interval censoring was also introduced to add further realism for the 

TTP given that progression is often only recorded during scheduled visits rather than at the time of the 

progression event. This was done by assuming that sampled individuals attend regular scheduled visits 

and that progression would only be recorded during the visit following the real time to progression. 

This is a simplification, as in reality, some patients may present earlier if they develop symptoms, hence 

leading to an earlier time of documented disease progression. I assumed that sampled patients had a 

visit every 4 weeks the first 52 weeks, every 6 weeks between Week 52 and Week 124, every 8 weeks 

between Week 124 and Week 260 and every 12 weeks thereafter. This is an unsupported assumption. 

Consequently, if progression occurs before a scheduled visit, progression is assumed to be recorded at 

the next scheduled visit, rather than at the time of progression. 
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8.3.2.4.2 Parameters that are fixed but specific to the scenario investigated 

8.3.2.4.2.1 Dependence parameter between TTP and PPS 

Scenarios were defined according to three levels of dependence between: (a) TTP, and (b) PPS 

(independence, negative moderate dependence, positive moderate dependence) using a copula (𝜃). 

Correlated random numbers were generated from the specified copula, which were then linked to the 

marginal function for TTP and PPS.  

As described in Chapter 6.9.3, a number of copulas exist, with different tails and distributions. For the 

sake of simplicity, the dependence between TPP and PPS was induced using a Gaussian copula 

(bivariate normal). The Gaussian copula is attractive as it is easier to interpret and the level of 

dependence can be determined directly by the Kendall’s Tau correlation coefficient (theta = Kendall’s 

Tau). A moderate dependence was therefore defined in this study by a Kendall Tau of 0.4 [-0.4].145 It 

should be noted that greater or lower degree of dependence could have been explored.  Whilst a 

moderate dependence could be considered extreme, such level was chosen in order to be able to 

distinguish any possible trend in the performance of methods. 

The value for the copula parameter is defined by the scenario of interest and therefore was fixed for 

each scenario. Scenarios are separated into three categories: 

o Negative moderate dependence between TTP and PPS = Kendall’s τ =-0.4 

o Independence between TTP and PPS = Kendall’s τ=0 

o Positive moderate dependence between TTP and PPS = Kendall’s τ=0.4 

An illustration of how the dependence between TTP and PPS is provided in Figure 44, assuming 

independence (Kendall’s τ=0) and both perfect dependence (Kendall’s τ=-1 and τ=1) in the top row of 

Figure 44 and moderate dependence (Kendall τ =-0.4 and τ=0.4) in the bottom row of Figure 44. On 

the left-hand side of Figure 44, TTP and PPS are negatively correlated and therefore, a longer time to 

progression (shown on the x-axis) is associated with a shorter time to death following progression 

(shown on the y-axis). The middle figure in Figure 44 shows an example of independence (Kendall 

τ=0), whereby the PPS is independent of TTP. Finally, on the right-hand side of Figure 44, positive 

dependence is assumed, whereby a longer time to progression (x-axis) is associated with a longer time 

to death following progression (y-axis).
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Figure 44: Illustration of dependence between the time to progression and time to death assuming 

perfect and moderate dependence 

 

8.3.2.4.2.2 Mortality 

Scenarios were classified according to the rate of death in the absence of progression. This was included 

applying a SMR to general mortality risk, supplemented by an additional background mortality to 

reflect scenarios that have a lower or higher proportion of deaths pre-progression (low is assumed to be 

approximately two to three times lower than high). 

•  SMR for general mortality 

The SMR against general population mortality was partly informed by Zaorsky et al (2017).146 This 

study reports risks of non-cancer deaths amongst cancer patients against the risk of non-cancer death in 

the general population using US death certificate data in Surveillance, Epidemiology, and End Results 

(SEER). The study reported large variations in the risk of death from non-cancer causes according to 

the type of cancer, patient age, calendar year and time after diagnosis. The authors reported the SMR 

by age for all cancers, but also specific for each cancer. For instance, considering all cancers, the authors 
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reported a SMR ranging between 0.66 to 20.21 for different causes of death in patients aged between 

60-65. The SMR in patients aged 85+ according to the cause of death ranged from 1.45 to 2.78.  

For the scenarios where the PrePS was assumed to be low, the rate of mortality from non-cancer causes 

from the general population was used and slightly uplifted assuming an SMR of 1.5. For the scenarios 

where the rate of death in the absence of progression is assumed to be high, I assumed an SMR of 7, 

meaning that that the rate of death from non-cancer causes in individuals with cancer is 7 times higher 

compared with the rate observed in the general population. 

• Additional background mortality 

In addition to the mortality associated from general causes (applied to general population mortality), 

additional background mortality was included for prePS to ensure enough deaths occurred by the time 

data were censored and to ensure that the difference in terms of proportion of PFS events that are death 

between the scenarios within the low level and moderate to high level was between two-fold to three-

fold. The additional background mortality was assumed to follow an exponential distribution with a rate 

of 0.0002 for the scenarios assuming a low mortality rate in PFS. An exponential distribution with a 

rate of 0.00055 was used for the scenarios assuming higher mortality rate in PFS. These values were 

selected following trial-error experimentation to ensure that scenarios that have a higher proportion of 

deaths pre-progression generate approximately two to three times higher number of death compared 

with scenarios that have lower proportion of death. 

8.3.2.4.3 Parameters that are calibrated so that the data generated match the scenario 

investigated 

Only two parameters (PPS and time to administrative censoring) were calibrated using the optimisation 

mechanism reported by Rotolo et al (2013).129 

8.3.2.4.3.1 Time to death following progression (PPS) 

PPS was assumed to follow an exponential distribution. The rate parameter for the exponential 

distribution for PPS was calibrated to match the proportion of OS events for the scenario of interest. 

PPS was assumed to follow an exponential distribution as this is a single distribution parameter. If a 

two-parameter distribution was selected, such as a Weibull distribution, additional assumptions (such 

as the shape of the function) would be required given the large number of possible solutions. The 

selection of the exponential distribution was also supported by the shape of the PPS function observed 

in several cancers such as the BC, prostate, and lung cancers datasets (taken from the DataSphere 

project30, 32, 33) used in Chapter 5.4.1 and Gastric cancer135, 136, 147 (Figure 45).  
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It should be noted that with the exception of the gastric cancer dataset (whereby most patients 

progressed), data in the breast, prostate and lung cancer datasets were less complete. Nevertheless, this 

supports the choice for the exponential as a reasonably realistic distribution for PPS for this simulation 

study. 

Figure 45: Exponential models fitted to PPS data in the gastric, breast, prostate and lung cancer 

datasets 

 

 

8.3.2.4.3.2 Duration of follow-up for the last patient who is entering the trial (administrative 

censoring) 

Administrative censoring is included in the model to account for the fact that trials terminate early. This 

is included by stopping the trial after the last patient who entered the trial has reached a specified follow-

up duration (or after a pre-specified number of events occur).  

This parameter is calibrated so that the model predicts both the proportion of PFS and OS events to 

match the scenario of interest, given other parameters in the model. 
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8.3.2.5 Calibration of parameters 

Parameters were calibrated using the algorithm reported by Rotolo et al (2013)129 assuming 10,000 

patients enter the simulation. The log of target values is compared against the log of the predictions. 

Parameter values are varied until the ratio of the log is minimised until reaching a specified acceptance 

criterion (set to 0.0001). Therefore, for each scenario, we have a set of fixed/calibrated parameters that 

are specific to the scenario of interest and therefore one underlying truth.  

The calibrated parameters are shown in Appendix 9. The resulting PFS and OS for three scenarios (1, 

31, 54) are shown in Figure 46 assuming a large number of patients (assumed to be 240,000 individuals 

– this is justified in Section 8.3.3) in order to represent the truth. The resulting PFS and OS KM for all 

54 scenarios are presented in Appendix 10. It can also be seen than some scenarios could be considered 

to be more plausible than others, but overall, the resulting PFS and OS reflect a range of what could be 

observed within a trial. As a consequence of sampling variation and the use of only 10,000 patients 

when calibrating the parameters (larger number of patients would increase the calibration time), the 

value predicted for the truth when assuming 240,000 patients may not exactly match the target value; 

however, this should remain very close (e.g. for Scenario 31, the target for the proportion which were 

progression or death [PFS] events was 85% compared with 85.84% assuming 240,000 patients).   

Figure 46: Examples of generated PFS and OS for selected scenarios (Scenario 1, 31 and 54) 
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8.3.2.6 Generating the simulated datasets to test the performance of the methods 

The parameters previously calibrated/defined (in Section 8.3.2.4) represent the true parameters for the 

underlying natural history. However, trials typically include a small number of patients; hence, if a trial 

was to be replicated, there would inevitably be some variation. For each scenario, using the same set of 

parameters, 1,000 unique datasets are generated, assuming a sample size of 240 patients based on a 

typical median number of patients recruited in trials seen in HTA (Appendix 7) to account for sampling 

variation. This is illustrated in Figure 47 for Scenario 31, whereby the uncensored true survival time 

(generated assuming 240,000 patients) is plotted against the censored survival times observed in the 

first 100 datasets.  

Figure 47: Example of datasets generated for Scenario 31 
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8.3.3 AD[E]MP: Selection of the estimand/target 

As highlighted by Morris et al (2019), simulation studies typically compare methods for estimating a 

parameter of the data-generating model, also termed an estimand. However, the authors highlight that 

the target can be other quantities, such as a fitted outcome mean. 

Given the aim of the simulation study - to evaluate methods to estimate health state sojourn time and 

QALYs - mean lifetime OS was selected as the key target (denoted 𝜃). Total QALY gain was chosen 

as a secondary target in sensitivity analysis as its interpretation can be more challenging given that 

QALYs in PFS and PD contribute to the overall QALYs. Indeed, an approach may be considered to 

have low bias when looking at the overall QALYs, but the contribution of QALYs in PFS and PD may 

be biased. Mean PFS was also evaluated as a sensitivity analysis. 

Using the mean OS as a key target is further justified by the expectation of similar PFS predictions 

between approaches. PFS is used directly within the PSM and simplified STM. In the MSM, PFS is 

estimated by combining TTP and PrePS under a competing risk framework. However, this is unlikely 

to lead to a significant variation in PFS given the small number of deaths typically observed prior to 

disease progression. 

It should be noted that whilst the restricted mean can be considered more convenient and is less 

influenced by the choice of extrapolation curve, in health economics, methods are used to calculate the 

LYGs and QALYs over a lifetime rather than for some finite time interval.  

For a given scenario, the target (𝜃) is calculated by generating data from the multi-state natural history 

model (without censoring) using parameters estimated in Section 8.3.2.4 using 240,000 patients to 

provide a robust approximation of the population mean OS, QALYs and PFS. This is illustrated in 

Figure 48 where the true population mean OS was calculated for Scenario 31 assuming different 

numbers of patients. It can be seen that the mean estimate OS is stable (little variation) after generating 

approximately 100,000 patients.
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Figure 48 : Predicted mean OS using different population size 

 

In health economic models, analysts calculate the mean OS, QALYs, PFS using both (a) the point 

estimate parameter value (usually referred to as the deterministic estimate) and (b) using the distribution 

around the point estimate (referred to as the probabilistic estimate) to both account for the uncertainty 

around the point estimate but also to account for possible non-linearity (to get the expectation of the 

mean). 

Consequently, two analyses are presented when estimating the mean OS, QALYs and PFS, calculated 

using: 

1. The point estimate parameters for each distributions 

2. A set of input parameter values drawn by random sampling for each distribution repeated a 

1,000 times with the mean OS, QALYs and PFS estimated as the mean of the 1,000 iterations. 

Parameters for the exponential, Weibull, Gompertz, Log-Normal, Log-Logistic, Gamma and 

Generalised Gamma distributions were drawn by random sampling using the 

normboot.flexsurvreg function in R which simulates alternative parameters from the 

asymptotic normal distribution of parameter estimates under sampling uncertainty (multivariate 

normal distribution). 
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8.3.4 ADE[M]P: Modelling methods included in the simulation study 

The performance of seven methods are examined in this simulation study; 

1 The PSM model as implemented in health economics, whereby PFS and OS are extrapolated 

independently of one another, 

2 The Simplified STM as implemented in health economics: 

o Assuming a constant probability of death in PFS, with the post-progression survival 

time unadjusted 

o Assuming a constant probability of death in PFS, with the post-progression survival 

time estimated as a function of the time to progression on a log scale (TTP in log scale 

used as a covariate in the regression model for PPS), 

o Assuming a constant probability of death in PFS with the post-progression survival 

time estimated as a function of the time to progression on the normal (non-log) scale  

(TTP in normal scale [non-log] used as a covariate in the regression model for PPS) 

3. The MSM (fitted using the mssample function),43, 44, 50 

4. The model developed by Li et al (2015)148 described in Section 6.9.1.1 

5. Modelling the dependence between PFS and OS under a semi-competing risk framework (using 

a copula) – the model developed by Fu et al (2013),89 

 

The methods chosen for evaluation within the simulation study include those methods which are 

commonly used in health economic models to estimate health state sojourn time, as well as additional 

methods identified from the review of methods which could be easily adopted in health economics. 

Further details regarding the implementation of some these approaches included in this simulation study 

are given in Chapter 2, 4, 5, 6 and 7.  

The performance of the MSM using the msm function (Chapter 4.3) was not evaluated in this chapter 

to avoid misleading conclusions. Whilst a key assumption of the MSM implemented using the msm 

function is that the model is a Markov process, this assumption could be relaxed by assuming that 

transition rates follow piecewise exponential distributions (i.e. the hazards varies across a defined 

number of intervals). The performance of the MSM using the msm function is therefore likely to be 

highly dependent on assumptions made about the number of time intervals selected. Whilst it is possible 

to assume an arbitrary cut-off, conclusions are likely to be misleading, as the performance of the method 

could be different if alternative time intervals are selected. Consequently, I considered that it would be 

challenging to interpret any results from the MSM using the msm function given the infinite number of 
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possible implementations/combinations (number of intervals). Furthermore, when fitting the MSM and 

predicting health state occupancy over the patient’s lifetime, the long-term extrapolation beyond the 

observed period of the trial will be based on the constant hazard observed in the last time interval 

considered – this assumption may not be considered appropriate. 

Similarly, as described in Section 6.10 , alternative methods identified during the review of the methods 

to jointly model PFS and OS (such as the Meller model,93 the use of frailty87 and the first passage 

method98) were not taken forward for the simulation study in the absence of a clear tutorial on how 

these should be implemented. Given the need for transparency and technical skills of analysts typically 

in charge of building or reviewing cost-effectiveness models, a method is unlikely to be adopted if there 

are no examples/tutorials on how to implement the method in a suitable software package. Even with a 

tutorial (and examples available in a suitable package),45, 50 adoption is not guaranteed as illustrated by 

the slow adoption of the MSM. Including only the most relevant approaches either currently used in 

HE, or well described was therefore a pragmatic reason.  

The code use for this simulation study is provided in Appendix 11. 

A weekly cycle length was assumed for all methods under consideration. Methods were implemented 

in R software. Further details regarding the implementation of methods, in particular how the MSM, 

the Li and Fu model are implemented are provided in Appendix 12. 

The approach for survival extrapolation and selection of the parametric survival distributions is 

described in Section 8.3.4.1. This is because survival extrapolation and the model selection process 

plays an important role in the implementation of the methods investigated and their performance. 

Indeed, the prediction associated with each method is conditional on the parametric distribution 

assumed for each endpoint. Finally, Section 8.3.4.1 describes how general population mortality was 

included for each approach. 

 

8.3.4.1 Selection of the preferred survival distribution/prediction 

A large component of the performance of a method stems from subjective judgement on how 

transitions/survival endpoints are chosen and extrapolated, rather than the analytical approach itself. 

For instance, within the PSM approach, OS is estimated from the direct fit to the OS data. Different 

distributions will provide different predictions for the mean OS. Similarly, for the STM, OS predictions 

are a function of the time in PFS and the time in PPS. The choice of parametric distribution for PFS and 

PPS will therefore lead to different estimates of OS. Consequently, irrespective of the approach 
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considered, analysts must make a decision about the most plausible parametric distributions. When 

looking at the performance of methods, it is therefore important that the selection process reflects the 

process typically followed by HTA analysts, rather than a best- or worst-case scenario.  

Selecting the most appropriate parametric model for extrapolation is challenging due to incomplete 

information (censoring). As such, subjective judgement is required. NICE TSD 1412 recommends that 

the most appropriate distribution is selected based on consideration of: (a) the visual fit of the predicted 

models to the observed time-to-event data; (b) the statistical goodness-of-fit of the model relative to all 

other fitted models (measured using the AIC and the Bayesian Information Criterion [BIC]); (c) an 

assessment of the observed hazards, and (d) the plausibility of the long-term extrapolation. However, 

despite these recommendations, analysts sometimes consider only statistical fit without giving sufficient 

attention to plausibility. 

The base case for this simulation study uses a similar process to select the preferred survival 

distribution/prediction based on the TSD1412 recommendations. The preferred distribution is selected 

based on the visual fit, the clinical plausibility and its statistical fit. This is possible because in addition 

to the censored data, data in the absence of censoring are also generated for each dataset. Assessment 

of the nature of the hazard function is not considered as it was not possible to automatize criteria related 

to this.  

Whilst an attempt was made in this simulation study to use a similar process to select the preferred 

survival distribution based on the TSD1412 recommendations, assessment of the long-term plausibility 

remains a subjective judgement and there is no one size fit all. A set of rules was defined to inform the 

selection of the most appropriate survival distribution. It should be noted that predictions for the PSM 

are from the direct fit to PFS and OS, whilst prediction for PFS and OS for the STM/MSM are a function 

of different transitions. Consequently, the term transition/prediction is used here to reflect the different 

inputs used to generate PFS and OS. The overall process used to select the most appropriate survival 

distribution in this simulation study based on the statistical fit, visual fit and clinical plausibility is 

depicted in Figure 49 with further description provided in the text below.  
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Figure 49: Process used to select the most appropriate survival distribution  

* reaches zero when 90% of events are expected 

 

➢ Fit parametric distributions to the transition/survival endpoint of interest (Step 1):  

As described in Chapter 3.8, a number of parametric distributions exist (standard, spline, polynomials 

or mixture-cure models). Seven standard parametric distributions are considered in this thesis for the 

possible survival endpoints depending on the approach examined: exponential, Weibull, Gompertz, 

Log-Normal, Log-Logistic, Gamma and Generalised Gamma models. These distributions were chosen 

as they are commonly used to extrapolate time-to-event data in health economic models. These 

distributions were fitted to each survival outcome. Whilst not investigating cure models in this 

simulation study is a possible limitation, the scenarios examined do not include the possibility of a cure, 

reducing the relevance of cure models. Spline models were also not considered, as this would have 

increased model run-time, and many options are available in terms of the number of knots and the scale 

on which the model is fitted.  
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Distribution is excludedDistribution is included
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➢ Remove distribution/prediction that reaches zero prematurely when 10% of events are still 

expected to be observed (Step 2):  

Cumulative survival probabilities for a number of distributions could reach zero prematurely and 

therefore these were not considered to be appropriate and were removed outright. This was defined in 

this simulation study by the time at which 10% of patients had not yet experienced the event of interest. 

➢ Assessment of visual fit (Step 3):  

The predictions for each model are compared (Step 2) against the KM plots for OS and PFS. Only those 

distributions for the transitions/prediction of interest that provided a reasonable fit to the KM were 

retained. Distributions that did not provide a reasonable fit for OS and PFS were excluded. A reasonable 

fit was defined as models that provided in most cases (85% of the time) predictions within the 95% 

confidence interval for the KM for OS and PFS. The threshold was increased gradually (by 10%) if 

none of the predictions were deemed to provide a good visual fit. 

➢ Assessment of the long-term plausibility (Step 4):  

It is assumed that the analyst possesses some (imperfect) information about the expected trend of PFS 

and OS in the long-term. In HTA, analysts consult clinicians to understand the expected long-term trend 

or look at external data in order to understand the expected long-term survival. However, this 

information is imperfect. Of the distributions that provide a good visual fit to the KM for OS and PFS 

(within 95% CI), predictions for PFS and OS for the remaining models are generated when 10% of 

events are remaining in the uncensored dataset. Distributions that predict a survival probability between 

+/-5% (i.e 5%-15%) of the truth (from the uncensored dataset) are considered to provide a reasonable 

long-term extrapolation (Step 4). As mentioned previously, the margin was increased if no predictions 

were within this margin. An arbitrary margin of +/-5% was selected in order to represent the plausible 

base-case scenario. A greater margin of error would represent a case where the analysis was less sure 

about what the long-term survival would be. Conversely, a narrower margin of error would represent a 

case where the analyst knows the truth with more certainty. Assuming an arbitrary margin of error of 

+/-5% was considered to be more reflective of reality, compared with assuming a best-case in which 

the truth is known with certainty, or a worst-base whereby there is high uncertainty about long-term 

outcomes. Plausibility was defined as follows: 

• For the PSM model, whereby survival distributions are fitted directly to OS and PFS (and 

therefore the fitted functions are equal to the prediction for OS and PFS), plausibility is based 

on extrapolation associated with the direct fit to the data.  
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• For the variations of the STM assessed in this simulation study (whereby PPS is adjusted or 

unadjusted), the selection process for the PFS curve was the same as that used for the PSM for 

PFS as the distribution is fitted directly to the data. The selection process for the PPS curve, 

however, is based on the OS predictions from the STM (i.e. the resulting OS after combining 

all transitions) rather than the expected PPS. This approach was adopted to: (a) reflect the 

information that is likely to be provided by clinical experts advising on long-term OS 

projections, and (b) allow a fair assessment against the PSM. As described in Chapter 7, PPS 

is typically estimated in a subset of people who progressed, who may have different outcomes 

compared with the people who have not yet progressed. Therefore, basing the plausibility on 

the estimated OS is more likely to be fairer to the STM when compared with the PSM. 

Consequently, following the selection of the PFS distribution, all combinations of OS for the 

seven PPS distribution examined are run, with only PPS distributions that provide a plausible 

OS estimate being included next stage. 

• Similarly, for the MSM, the choice of survival distributions for TTP, PrePS and PPS is based 

on the predictions of PFS and OS after combining all transitions. A two-step approach is used. 

First, the combination of curves for TTP and PrePS that provide a reasonable PFS projection is 

selected (i.e. 49 combinations). Secondly, OS is generated for the seven possible PPS 

distributions (given the selected PFS), with only PPS distributions that provide a plausible long-

term prediction for OS, kept for the next stage. 

• The Li model uses transitions based on Weibull distributions, therefore there was no 

requirement to select alternative distributions within this method. 

• Finally, for the copula model, the distributional form for OS was assumed to be same as that 

for the PSM (independent) model. Consequently, only the choice of distribution for TTP was 

necessary, based on the expected prediction for PFS (Further detail in Appendix 12).  

➢ Statistical fit (Step 5):  

Finally, of the distributions included based on visual fit and long-term plausibility, the distribution with 

the best AIC is selected. The AIC was used instead of the BIC as it was easier to compute for use in 

combination with the Fu model. The choice between AIC and BIC as a measure for statistical fit is not 

expected to impact results from this simulation study.  

An example of the model selection process used in the simulation study is provided below, based on 

hypothetical OS data (see Figure 50) for the PSM model (given OS is fitted directly to the data). In this 

example, the Gompertz distribution (grey curve) is considered inappropriate as it reaches zero 

prematurely and is therefore excluded. OS is expected to reach 10% at around Week 707 (based on the 

“truth”) with a margin of error of +/- 5%.  
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Figure 50: Illustration of the selection process for the most appropriate extrapolation distribution 
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Therefore, in this example, the exponential, Log-Normal, Log-Logistic and Generalised Gamma 

distributions are excluded as these distributions predict an OS which are inconsistent with the truth 

(<5% or >15% at week 707). Of the remaining two distributions (the Weibull and Gamma), the Gamma 

distribution (purple curve) has the lowest AIC and is therefore selected. 

8.3.4.1 Adjustment for general population mortality 

General population mortality is included when estimating health state sojourn time to prevent logically 

inconsistent situations whereby the model predictions indicate a better survival prognosis for patients 

who have the disease compared with people who do not have the disease.  

The expected weekly hazard of death from the general mortality is taken from UK life tables, assuming 

the median starting age of patients observed in each dataset. Predictions of OS and PFS are then adjusted 

accordingly, if necessary, such that the weekly unadjusted hazard for PFS and OS predicted remains 

higher than or equal to the expected hazard of death for the general population. 

For the STM approaches, both PrePS and PPS were adjusted for general mortality. However, for the 

MSM, only PrePS was adjusted for general mortality. It was not possible to easily adjust PPS for general 

mortality as the hazard for PPS was not dependent on TTP. Consequently, the final estimates for PFS 

and OS in the MSM were adjusted for general mortality, rather than transitions used to reach this 

estimate. This is a possible limitation that needs to be considered when interpreting results and 

comparing results for the MSM vs. the STM in this simulation study. 
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8.3.5 ADEM[P]: Performance measures 

Morris et al (2019) identified a number of performance measures in previous published simulation 

studies that have been used to assess the performance of a method. The authors recommend that the 

performance measure should depend on the aim of the study. 

Four key performance measures are considered in this simulation study, in addition to their Monte Carlo 

(MC) standard error; 

• Biases, 

• Empirical SE / Coefficient of variation 

• (Root) mean square error (MSE), 

• Coverage 

The MC SE provides an estimate of the uncertainty in the Monte Carlo sample. The model-based SE is 

also calculated and reported for transparency and completeness. 

It is also important to inspect distributions and identify outliers.139 Given the number of scenarios and 

methods assessed, the process was automatized and 5% of samples at the extreme were removed. 

Results are therefore presented for 950 samples for each scenario (rather than 1,000). This is a 

simplification. 

The rsimsum function in R was used to both extract key performance measure and generate nested 

loop plots. 149 Nested loop plots are a type of diagram that allow the  presentation of all information 

about the results of a simulation study with respect to chosen criterion in a single picture and therefore 

make it easier to look at results across the range of scenarios examined.150  

 

8.3.5.1 Biases 

Bias (denoted β) is calculated as the difference between the true mean population OS (θ) and the mean 

OS estimated by methods examined to estimate health state sojourn time (θ̂) so that: 

Bias =
1

𝑛𝑠𝑖𝑚
∑ 𝜃�̂� − 𝜃

𝑛𝑠𝑖𝑚
𝑖=1          
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The average biases and relative biases are computed in this simulation study. The relative bias is 

convenient to facilitate comparison between approaches. Absolute bias is also computed to provide an 

order of magnitude of biases either side of the true population mean. 

The MC SE of the estimate is computed as: 

√
1

𝑛𝑠𝑖𝑚(𝑛𝑠𝑖𝑚−1)
∑ (𝜃𝑖 − �̅�)2𝑛𝑠𝑖𝑚

𝑖=1          

8.3.5.2 Empirical SE / coefficient of variation 

Whilst biases are an important measure, biases cannot be interpreted on their own, and it is important 

to also consider precision. Consequently, the empirical SE is also described (defined as the SE 

calculated in the probabilistic results). 

In order to help interpreting the empirical SE, the relative empirical SE to the predicted mean (otherwise 

named as coefficient of variation) was generated (empirical SE / mean OS) for each scenario. 

8.3.5.3 MSE 

This is the sum of the squared bias and variance. 

MSE =
1

𝑛𝑠𝑖𝑚
∑ (𝜃 − 𝜃)2𝑛𝑠𝑖𝑚

𝑖=1          

Morris et al (2019) suggest that when MSE is a performance measure, the data-generating mechanism 

should include a range of values for the number of observations (sample size in the trial) given that the 

MSE will be sensitive to this. This was not considered necessary in this simulation study given that the 

number of observations was selected to reflect the number of patients typically observed in clinical 

trials and therefore reflects the expected performance of the methods in practice.  

The MSE is a convenient measure as it integrates both biases and variance into a single measure. The 

empirical SE in contrast, gives precision but if a method is biased we need to interpret the empirical SE 

carefully. The Root of MSE is reported for simplicity. The MC SE of the MSE is also computed with 

the formula available in Morris et al (2019).139 

8.3.5.4 Coverage 

An approximation of the coverage of each method is also computed. The coverage typically refers to 

the coverage of confidence intervals, defined as the probability that a confidence interval contains θ. A 
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method is therefore considered good when the coverage is approximately 95% reflecting that the true 

value is contained within the 95% CI. 

The methods under consideration combine information from different transitions rather than estimating 

a 95% CI directly, and therefore the coverage is given by the combination of transitions varied within 

their 95% CI. Furthermore, as previously described, input parameter values are drawn by random 

sampling for each distribution repeated 1,000 times using the normboot.flexsurvreg function in 

R which simulates alternative parameters from the asymptotic normal distribution of parameter 

estimates under sampling uncertainty. Therefore, this may not fully reflect the 95% CI. The mean OS 

over the lifetime is also calculated as the AUC estimated by a method and is therefore highly dependent 

on the extrapolation. Consequently, whilst the ‘true’ mean OS over the lifetime could fall within 95% 

of the predicted OS for a particular method, prediction during the observed period could fall outside the 

95% CI for the OS KM. The coverage estimated in this simulation study only represents an 

approximation of the true coverage. Despite being an approximation in this simulation study, assessing 

the coverage provides an insight into the performance of a method. The coverage is defined as: 

Coverage =
1

𝑛𝑠𝑖𝑚
∑ 1(𝜃𝑙𝑜𝑤,𝑖 ≤ 𝜃 ≤ 𝜃𝑢𝑝𝑝,𝑖)

𝑛𝑠𝑖𝑚
𝑖=1        

Two approaches are considered in this simulation when estimating the coverage; 

1. Method 1: measured by considering whether the true value fell within the PSA predictions. 

Over-coverage is expected. This is likely to happen because using the mean time in health state 

is challenging when judging the performance of a method given that the mean may be unbiased, 

despite a poor visual fit. 

2. Method 2: The true mean falls within the calculated 95% CI. Under-coverage is expected when 

the underlying data are non-normal, and therefore using the calculated SE to estimate the 95% 

may not be reliable.   

 

In this simulation, I defined over-coverage as a coverage of >95%. Under-coverage was defined using 

80%. It should be noted that other thresholds could have been selected 

The Monte Carlo SE of the coverage is also computed with the formula available in Morris et al 

(2019).139 
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8.4 Results 

Scenarios in this simulation study are defined according to four key observable (or at least partially 

observed) data characteristics: (1) the dependence (moderate negative, independence, moderate 

positive) between TTP and PPS, (2) the proportion of recorded PFS events (low, moderate, high) 

amongst all patient, (3) the ratio of OS to PFS events (low, moderate, high) and (4) the proportion of 

pre-progression mortality (low, high) in patients with a PFS event. Using a 3x3x3x2 factorial design 

resulted in a total of 54 scenarios. While the same underlying hazard of progression (TTP) is assumed 

for all scenarios; the simulated hazard of death (OS) generated for each scenario was not. A summary 

of the characteristics for each of the 54 simulated scenarios is provided in Table 12, with the KM plots 

reported in Appendix 10. 

The performance of methods investigated is likely to vary depending upon the simulated scenarios. Due 

to the large number of methods and scenarios assessed, detailed results are not presented for every 

method, simulated scenarios and targets. Instead, rather than focusing on individual results, key trends 

for the performance of methods are summarised in this Section. Furthermore, results presented within 

the main body of this thesis focus on the predicted mean lifetime OS, with reference to results for 

prediction to the time in the progression-free health state, when necessary (given similarities between 

approaches). Results using QALYs are not discussed in the body of this thesis, as they followed 

generally the same trend as for OS. For transparency, and completeness, full results are presented in 

Appendix 13 for each of the 54 simulated scenarios, for every method and for every target.  

The relative performance for all methods (PSM, STM, STM with PPS adjusted using log of TTP, STM 

with PPS adjusted using TTP, MSM, Li’s model, Fu’s model) is described here. However, rather than 

comparing all methods directly against each other, for ease of reading, results are separated into the 

following subsections. In Section 8.4.1, I present details of the performance of the PSM and STM (See 

Section 8.3.4.1). The unadjusted STM is compared with the adjusted STMs, the MSM and the Li model 

in Section 8.4.2, 8.4.3 and 8.4.4 respectively. The comparative performance of the PSM (independent 

model) against the Fu model is presented in Section 8.4.5. A short summary describing the key points 

is provided in Section 8.4.6. 

Although results are summarised in this Section, some interpretation is provided alongside to help the 

reader understand why a particular trend is observed and whether it is solely attributable to the observed 

data characteristics considered, other unobserved data characteristics, external factors like the simulated 

underlying hazard or curve selection process used. 
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Table 12 : Summary of characteristics for the scenarios investigated 

Sc n Dep PFS % PFS / OS prePS / PFS Sc n Dep PFS % PFS / OS prePS / PFS Sc n 
PFS 

% 
PFS / OS prePS / PFS prePS / PFS 

1 Neg Low (45%) Low (35%) Low  19 No Low (45%) Low (35%) Low  37 Pos Low (45%) Low (35%) Low  

2 Neg Low (45%) Mod (55%) Low  20 No Low (45%) Mod (55%) Low  38 Pos Low (45%) Mod (55%) Low  

3 Neg Low (45%) High (75%) Low 21 No Low (45%) High (75%) Low 39 Pos Low (45%) High (75%) Low 

4 Neg Low (45%) Low (35%) High 22 No Low (45%) Low (35%) High 40 Pos Low (45%) Low (35%) High 

5 Neg Low (45%) Mod (55%) High 23 No Low (45%) Mod (55%) High 41 Pos Low (45%) Mod (55%) High 

6 Neg Low (45%) High (75%) High 24 No Low (45%) High (75%) High 42 Pos Low (45%) High (75%) High 

7 Neg Mod (65%) Low (35%) Low  25 No Mod (65%) Low (35%) Low  43 Pos Mod (65%) Low (35%) Low  

8 Neg Mod (65%) Mod (55%) Low  26 No Mod (65%) Mod (55%) Low  44 Pos Mod (65%) Mod (55%) Low  

9 Neg Mod (65%) High (75%) Low 27 No Mod (65%) High (75%) Low 45 Pos Mod (65%) High (75%) Low 

10 Neg Mod (65%) Low (35%) High 28 No Mod (65%) Low (35%) High 46 Pos Mod (65%) Low (35%) High 

11 Neg Mod (65%) Mod (55%) High 29 No Mod (65%) Mod (55%) High 47 Pos Mod (65%) Mod (55%) High 

12 Neg Mod (65%) High (75%) High 30 No Mod (65%) High (75%) High 48 Pos Mod (65%) High (75%) High 

13 Neg High (85%) Low (35%) Low  31 No High (85%) Low (35%) Low  49 Pos High (85%) Low (35%) Low  

14 Neg High (85%) Mod (55%) Low  32 No High (85%) Mod (55%) Low  50 Pos High (85%) Mod (55%) Low  

15 Neg High (85%) High (75%) Low 33 No High (85%) High (75%) Low 51 Pos High (85%) High (75%) Low 

16 Neg High (85%) Low (35%) High 34 No High (85%) Low (35%) High 52 Pos High (85%) Low (35%) High 

17 Neg High (85%) Mod (55%) High 35 No High (85%) Mod (55%) High 53 Pos High (85%) Mod (55%) High 

18 Neg High (85%) High (75%) High 36 No High (85%) High (75%) High 54 Pos High (85%) High (75%) High 

Abbreviations: Dep = dependence; gen pop = general population; Mod = moderate; Neg = Negative; PFS = progression-free survival; PFS % = Proportion of PFS (progression or death) events; PFS / OS = Ratio of 

death to PFS events (i.e. PFS events / OS events); Pos = Positive; prePS / PFS = Proportion of pre-progression mortality; Sc n = Scenario number. 



 

194 

 

8.4.1 Performance of the PSM and (unadjusted) STM when predicting the mean lifetime OS. 

In summary, while both the PSM and STM were prone to some biases (notably in case of moderate 

dependence), both approaches were generally reasonable at predicting the mean health state sojourn 

time for single trial arms in this particular simulation study; with the PSM generally associated with 

less biases than with the STM, but with less precision. 

8.4.1.1 Individual performance of the PSM and STM 

Nested loop plots for the percentage bias for the prediction of the mean lifetime OS for each of the 54 

scenarios for the PSM and (unadjusted) STM are displayed in Figure 51.  

The mean lifetime OS predicted using the PSM (i.e. by fitting a curve directly to the trial data) or 

unadjusted STM (i.e. estimating OS as a function of PFS and unadjusted PPS) was considered unbiased 

(variation of less than 0.5% from the true mean) in six of the 54 simulated scenarios examined; 

Scenarios 25, 28, 41, 49, 50, and 53 for the PSM and Scenarios 30, 31, 34, 50, 51, 54 for the STM. This 

means that, on average, when the PSM or STM was replicated 1,000 times, the average of mean 

predicted lifetime OS was similar or very close (less than 0.5%) to the true mean OS.  

Nevertheless, bias remained generally low in the majority of simulated scenarios examined. The 

average bias was less or equal to 5% in 41 simulated scenarios using the PSM indicating that fitting a 

parametric function directly to OS to represent the hazard of death was generally reasonable (under the 

curve selection criteria used in this simulation study) in the scenarios investigated in this simulation 

study. Biases were less or equal than 10% in 49 scenarios. Using the unadjusted STM, biases were low 

(≤5%) in 32 scenarios and less or equal than 10% in 44 scenarios. While reasonable, the PSM and STM 

were therefore prone to some biases. 

The coefficient of variation (empirical SE as a percentage of the true mean) was greater than 5% in 52 

scenarios using the PSM and in all of the simulated scenarios using the STM (n=54), and above 10% in 

17 and 18 scenarios respectively, indicating some lack of precision for both approaches. 

The coverage (the ratio of times the PSA predictions overlaped the true mean) was reasonable. The 

coverage was high (over-coverage; defined in this simulation study as >95%) for both the PSM and 

STM when measured by considering whether the true value fell within the PSA range predictions 

(method 1: within the PSA range) but was lower under method 2, when the true mean falls within the 

calculated 95% CI (based on SE). Under method 1, the coverage was greater than 95% for 51 scenarios 

using the PSM and 52 scenarios using the STM. Under method 2, the number of scenarios drops to 29 

and 18, respectively. However, the coverage remained reasonable. 
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Figure 51 : Percentage bias in estimation for the mean lifetime survival (OS) using the PSM and STM 

Please note the scale used for this graph - In percentage (0.2 represent 20%) 
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A possible explanation for the high coverage when using the PSA range is the fact that the mean time 

in health state is used in this simulation study, rather than whether the true KM is within the PSA 

predictions (visual fit). When estimating coverage under method 2, when the true mean fell within the 

calculated 95% CI, as expected, the coverage was generally lower and there was under-coverage in 

some occasion; but the coverage remain generally reasonable. This was expected given that the 

underlying data were generally non-normally distributed, and therefore using the calculated SE to 

estimate the 95% may not have ben reliable.  

Key trends are presented/described in tabulated format, with a focus on only the key messages for ease 

of reading (given the wealth of information in Appendix 13). Key trends for the performance of the 

PSM according to data characteristics are summarised in Table 13, alongside some interpretation for 

particular results to help the reader understand the reason for these trends. Trends for the STM are 

summarised in Table 14; alongside some interpretation.  

In summary, while the performance of the PSM and unadjusted STM in predicting the mean OS appear 

to be affected by both the dependence in the data, and the proportion of pre-progression death (Figure 

51); a key factor for their performance was unobserved data characteristics; in particular the shape of 

the hazard during the unobserved period and whether there was any turning point. Indeed, the poor 

performance of the PSM in the case of negative dependence was largely explained by the problems of 

standard models in representing more complex hazard of death, notably when PrePS was low (hazard 

was decelerating after the observed period, with the long-terms hazard plateauing). For the STM, the 

poor performance in some of the scenarios was largely explained by: (i) biases associated with the use 

of PPS (generalisability to the overall population for PPS when estimated in a subset of patients who 

progressed), as well as (ii) limitations of the models in representing the hazard for progression (the 

simulated hazard for progression was associated with a tail, which makes estimation of PFS challenging 

and therefore impacted estimate for OS for the STM). 

For both the PSM and STM, there was a trend toward reduced biases when data on OS were more 

mature. Indeed, the range for predicted biases tended to reduce as more OS events were reported. 

However, the trends observed here are weaker than expected due to the design of the simulation study. 

I would expect the trends to have been plainer if the simulation was designed differently and scenarios 

used the same hazard of death, but assumed different levels of censoring. In this simulation study, the 

simulated hazards of death were different between scenarios, and therefore the ability for the selected 

parametric function to represent those hazards is not directly comparable. Similarly, the range of 

coefficients of variation was reduced with larger OS events recorded and indicated less precision when 

data were less mature. 
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Table 13: Summary and interpretation of key trends for the performance of the PSM observed in this simulation study 

Sensitivity 

of results to 

Key trends Interpretation 

the 

dependence 

in the data 

• Larger biases in scenarios with negative 

dependence. Biases ranged between -25.18% 

and 2.43%, -11.53% and 2.31% and -9.23% and 

5.01% in simulated scenarios with negative, no 

or positive dependence.   

• OS predictions were generally under-estimated 

in the majority of scenarios with negative (14 

out of 18), no dependence (13 out of 18) or 

positive dependence (10 out of 18).  

• Estimates were more precise in scenarios with 

negative dependence (when considering the 

coefficient of variation and RMSE).  

• The coverage was generally worse in simulated 

scenarios with negative dependence. 

• Larger biases were explained by clearer change in the hazard of death beyond the 

observed period for scenarios with negative dependence. The simulated hazard was 

typically decelerating beyond or close to the end of the observed period of the trial, 

resulting a long tail in the underlying simulated true survival curve. It was difficult 

for the fitted curve to reflect the change in hazard beyond the observed period. 

Therefore bias for PSM werenot really related to the dependence, but more about 

whether hazards changed post observed period 

• Under-estimation explained by the presence of tail in the simulated hazard of death. 

This was more pronounced for the scenarios with negative dependence as the hazard 

of death was more accelerating beyond the observed period, but decelerating beyond 

the observed period. The fitted curve in cases of no or positive dependence allowed 

a better reflection of the hazard (as the turning point was less sharp). 

• Better precision for scenarios with negative dependence as scope for extrapolation 

to become erratic is reduced due to the accelerating hazard of death during the 

observed period 

• Worse coverage for scenarios with negative dependence as biases are higher but 

estimates are also more precise. 

pre-

progression 

mortality 

• Smaller biases in scenarios with higher pre-

progression mortality 

• In simulated scenarios with higher pre-progression mortality, simulated individuals 

are more likely to die prior to progression, and therefore the simulated tail for the 

survival function becomes less pronounced for those scenarios, allowing the fitted 

parametric function to better reflect the hazard of death. 
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Table 14: Summary and interpretation of key trends for the performance of the unadjusted STM observed in this simulation study 

Sensitivity 

of results to 

Key trends Interpretation 

dependence 

in the data 

• Larger biases in scenarios with negative 

dependence. Biases ranged between -

10.03% and 19.37%, -10.57% and 1.74% 

and -12.47% and 0.37% in scenarios with 

negative, no or positive dependence.  

• OS predictions were generally over-

estimated in case of negative dependence 

(15 of 18) and under-estimated in case of 

positive dependence (17 of 18) 

• Estimates were also in general less precise 

in simulated scenarios with negative 

dependence compared with those with no or 

positive dependence. 

• Better coverage in simulated scenarios with 

negative dependence  

• In the case of negative dependence, because patients who progress early have a longer 

time to death following progression, PPS in the trial in the subset of patients who 

progress will be significantly higher compared with PPS estimated in all randomised 

patients; this is likely to lead to over-estimation of OS.  

• In the case of positive dependence, because patients who progress early have a shorter 

time to death following progression, PPS in the trial in the subset of patients who 

progress will be significantly lower compared with PPS estimated in all randomised 

patients; this is likely to lead to under-estimation of OS. 

• There was therefore more scope for bias when survival predictions are long (as in the 

negative scenarios) than when survival predictions are short (as in the positive 

scenarios). 

• Better coverage for scenarios with negative dependence due to the lack of precision. 

pre-

progression 

mortality 

• Smaller biases in scenarios with lower pre-

progression mortality 

• Combination of two factors; (1) PFS was more biased (and under-estimated) in scenarios 

with lower pre-progression mortality compared with those with higher pre-progression 

mortality and (2) generalisability of PPS to randomised population 

• Also, in scenario with lower pre-progression deaths, more patients and events 

contributed to the PPS transition 
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8.4.1.2 Comparative performance of the PSM vs. STM 

While the PSM performed slightly better compared with the STM in this particular study, notably in 

case of positive dependence, predictions were relatively similar for the majority of scenarios. 

Differences between the approaches were generally smaller when data on OS were more mature. As 

expected, the range for predicted differences tended to reduce as more OS events were reported. 

There was a noticeable difference between the PSM and STM (defined as a difference in percentage 

bias of 5% or more) in a third of the simulated scenarios; most were in scenarios with negative 

dependence (n=13 out of 18), although four were in scenarios with positive dependence and one was a 

scenario with no dependence. 

Of those scenarios with negative dependence where there was some noticeable difference (n=13), the 

PSM performed better compared with the STM in most scenarios (n=9), notably in those where the 

number of pre-progression deaths was higher. As previously highlighted, biases for the PSM were large 

in scenarios with negative dependence and low PrePS; this is attributable to the simulated hazard. 

Of the four scenarios with positive dependence where there were noticeable differences between the 

PSM and STM, the PSM had less bias in all scenarios. 

Ideally a method is both unbiased and precise. When looking at the precision, the STM was generally 

more precise compared with the PSM in the absence of dependence or when positive dependence is 

simulated (Figure 52). This is because OS is estimated as a function of two transitions, estimated with 

perhaps more certainty due to the number of events contributing to these transitions (while the total 

number of event is the same between the PSM and STM, the relative number of events for each 

transition is larger, reducing uncertainty around the estimate). In the simulated scenarios with negative 

dependence, the STM was generally less precise compared with the PSM. This could be explained by 

the high precision of the PSM due to the accelerating hazard with limited large variation in the 

extrapolation. 
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Figure 52 : Relative precision for the STM compared with the PSM (positive values indicate better precision)  

Please note the scale used for this graph - In percentage (200 represent 200%) 
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8.4.2 Performance of the STM where PPS is adjusted on the log or normal scale 

The previous section discussed the performance of the unadjusted STM (where PPS is taken from the 

trial directly without any adjustment). In this simulation study, the performance for the STM was also 

examined for two variations of the STM whereby the PPS is adjusted by TTP on either (a) the log scale 

(referred to hereafter as “STM with PPS on the log scale”) or (b) normal (non-log) scale (“STM with 

PPS on the normal scale”). Nested loop plots for the percentage bias for the prediction of the mean OS 

for each of the 54 scenarios for the STM adjusted or not (for comparison) are displayed in Figure 53 

(Please note the differences in scale when comparing with Figure 51). 

The average bias was less or equal to 5% in 29 simulated scenarios using the STM with PPS on the log 

scale; most scenarios with no dependence (n=15/18) and more than half of scenarios with negative 

dependence (n=10/18). In contrast, biases were low only in a minority of scenarios with positive 

dependence (n=4/18). Using the STM with PPS on the normal scale, the average bias was less or equal 

to 5% in less than of half of the simulated scenarios (n=22); none with positive dependence and more 

than half of scenarios with negative (n=11/18) or no dependence (n=11/18). 

A summary for the comparison against the unadjusted STM and the key trends are presented in Boxes 

1 and 2, respectively.  

In summary, predictions for the mean OS were relatively similar between the unadjusted and adjusted 

STM in the absence of dependence. As predictions were already reasonable with the unadjusted STM, 

the scope for improvement was reduced in those scenarios. These methods however did not worsen 

predictions. Predictions were however less precise. 

In contrast, both the STM with PPS adjusted on log and normal scale typically improved predictions in 

scenarios with negative dependence (where the unadjusted STM did not perform well), but worsened 

predictions in scenarios with positive dependence. The adjusted STMs were also less precise in case of 

positive dependence.  

The STM with PPS in the normal scale was less precise compared with the STM with PPS in the log 

scale and was associated with significantly large biases in case of positive dependence. 

The coverage for both the STM with PPS adjusted on log and normal scale typically larger compared 

with the unadjusted STM.  
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Box 1: Key trends for the performance of the STM with PPS on the log scale 

• Similar performance (in terms of percentage bias) to the unadjusted STM in case of no 

dependence (no noticeable differences) 

• Noticeable differences (difference in percentage bias of 5% or more) for 13 of the 18 

scenarios with negative dependence. Predictions were improved in most scenarios (n=10/13) 

• Noticeable differences for 13 of the 18 scenarios with positive dependence. Predictions were 

worsened in most scenarios (n=10/13) 

• The STM with PPS on the log scale was less precise (Figure 54) compared with the 

unadjusted model in most simulated scenarios with no or positive dependence. The adjusted 

STM on the log scale was more precise compared with the unadjusted model in about half 

of the scenarios with negative dependence. 

 

Box 2: Key trends for the performance of the STM with PPS on the normal scale  

• Noticeable difference in 6 scenarios with no dependence (predictions improved in half cases) 

• Noticeable difference in 8 scenarios with negative dependence (predictions improved in most 

cases [n=7/8]) 

• Noticeable difference in almost all scenarios with positive dependence (predictions worsen in 

all cases [n=17/17]) 

• The adjusted STM on the normal scale was consistently worse than the adjusted STM on the 

log scale in all simulated scenarios with positive dependence 

• The STM with PPS on the normal scale was less precise compared with the unadjusted model 

(Figure 54), in all but 4 scenarios (all with negative dependence) 

• Compared with the STM with PPS on the log scale, the STM with PPS on the normal scale 

was also generally less precise in the majority of scenarios examined (n=49/54). 
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Figure 53 : Percentage bias in estimation for the mean lifetime survival (OS) using the STM unadjusted vs. adjusted STMs 

Please note the scale used for this graph - In percentage (0.5 represent 50%) 
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Figure 54 : Relative precision for STM adjusted vs. unadjusted (positive values indicate better precision) for the prediction for the mean lifetime OS 

Please note the scale used for this graph - In percentage (200 represent 200%) 
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8.4.3 Comparative performance of the MSM vs. STM 

In summary, as expected, the performance for the MSM and unadjusted STM was relatively similar 

(Figure 55 and Figure 56). Therefore, the simple approach (unadjusted STM) when curves are selected 

appropriately (same process) did not fare worse compared with the competing risk approach. Whilst 

small, there was some differences for a limited number of scenarios for the prediction of the mean 

lifetime OS between the MSM and STM; in particular in the simulated scenarios with higher pre-

progression mortality.  

The direction and level of biases were mostly attributable to differences in PFS predictions. The MSM 

(whereby PFS is estimated under a competing-risk framework) consistently generated lower OS 

predictions compared with the STM (whereby PFS is fitted directly to the data) in this simulation study, 

with the exception of 3 Scenarios (Scenarios 40, 46 and 53), but the differences were minimal. This is 

because PFS estimated using the MSM was typically lower (under-estimated) compared with PFS 

estimated using the STM in this simulation study which led to an under-estimation of OS. This is likely 

to be the result of the combination of two factors: (i) the simulated hazard for progression in this 

particular simulation study which had a tail, and (ii) the choice of curve for PrePS with the MSM which 

led to more death pre-progression compared with the direct modelling of PFS and therefore under-

estimated PFS.  

8.4.4 Comparative performance of the Li model vs. STM 

The Li model consistently under-estimated OS and had more biases compared with the unadjusted STM 

in the simulated scenarios with no or positive dependence. The poorer performance of the Li model in 

predicting the mean OS is not surprising given the restriction placed on the Weibull distribution, and 

the resulting complex simulated hazards used in this simulation study. 

The Li model, however, was noticeably less biased for OS compared with the unadjusted STM in seven 

scenarios (Scenarios 4, 10, 13, 14, 16, 17, 18), all of which had negative dependence, of which 5 had 

more complete PFS data.  

Whilst the Li model was typically more biased (given the complexity of the simulated hazard in this 

simulation), it was more precise compared with the unadjusted STM in all scenarios. This led to poor 

coverage. 
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Figure 55 : Percentage bias in estimation for the mean lifetime survival (OS) using the STM vs. the MSM and the Li model 

Please note the scale used for this graph - In percentage (0.5 represent 50%) 
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Figure 56 : Relative precision for the MSM and the Li model compared with the STM (positive value indicates better precision) 

Please note the scale used for this graph - In percentage (1000 represent 1000%) 
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8.4.5 Comparative performance of the Fu model against the PSM (independent model) 

In general, as expected, differences were minimal and predictions for OS were relatively similar 

between the Fu model and independent fitted models (Figure 57), as the same parametric distribution 

was selected for OS as part of the curve selection criterion defined in Section 8.3.4.1.  

The same trends as those described for the PSM in Section 8.4.1 therefore applies (e.g. larger biases for 

scenarios with lower pre-progression mortality and negative dependence). 

The coverage was slightly better than the PSM. Estimates were also generally more precise in cases of 

positive dependence. 

A particular benefit of the copula is the joint modelling of OS and PFS under a semi-competing risk 

framework, and therefore, accounting for the structural relationship that exists between PFS and OS 

when estimating PFS, rather than the addition of an arbitrary constraint, as is done in the PSM to prevent 

PFS being higher than OS.  

In this particular study, the Fu model did not perform well for estimating PFS and was more biased for 

the prediction of the time in the progression-free health state (Figure 59). This finding needs to be 

interpreted in relation with the simulated hazard considered in this simulation study and also the curve 

selection criteria. The simulation study showed that when the hazard (for both progression or death) is 

complex, the Fu model could lead to more biases. As previously discussed, standard models are often 

inappropriate in representing more complex hazards and struggle to reflect the turning point in the 

hazard and associated tail beyond the observed period. Because OS is acting as a semi-competing risk 

in the Fu model this will affect the estimation for PFS (as TTP is truncated by OS). The same hazard of 

progression (TTP) was also assumed for all scenarios and was complex in that it was already difficult 

for the fitted curve to reflect the change in hazard beyond the observed period. The curve selection 

process was also simplified to allow automation; which could have contributed to the  poor performance 

of the Fu model in the scenarios examined. The combination of these issuesmay explain why the Fu 

model exhibited poorer performance in the simulations.   
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Figure 57 : Percentage bias in estimation for the mean lifetime survival (OS) using the PSM and the Fu model  

Please note the scale used for this graph - In percentage (0.2 represent 20%) 
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Figure 58 : Relative precision for the Fu model compared with the PSM (positive values indicate better precision) 

Please note the scale used for this graph - In percentage (25 represent 25%) 
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Figure 59 : Percentage bias in estimation for the mean lifetime time in progression-free (PFS) using the PSM and the Fu model 

Please note the scale used for this graph - In percentage (0.2 represent 20%) 
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8.4.6 Comparison of methods - Summary 

In summary, while all approaches were prone to biases, the PSM and STM were generally reasonable 

at predicting health state sojourn time in single trial arms.  The PSM was associated with less bias 

compared with the STM in this particular simulation study; but was less precise.  

While the data characteristics assessed in this simulation study explained some of the trends in results, 

unobserved data characteristics such as the underlying simulated hazard were a larger contributor for 

particular results, in addition to the curve selection method. There was difficulty in representing the 

hazard of progression using the standard parametric survival models explored in this simulation study, 

leading to PFS under-estimation. This had implications for the estimation of OS in the STM, which 

affected performance. The complexity of the simulated hazard and ability to fit standard parametric 

models (explored in this study) also affected the performance of the Fu’s model. 

In this simulation study, all approaches were more prone to biases in the simulated scenarios that 

included negative (moderate) dependence between TTP and PPS. The PSM, under-estimated OS as it 

was not able to reflect the shape of the simulated hazard of death which was quickly accelerating during 

the observed period, but decelerating beyond the observed period. The STM, whereby OS is estimated 

as a function of PFS and PPS, similarly, could not accurately reflect the simulated hazard of death for 

the underlying truth, due to: (i) similar challenges with the extrapolation of PFS which was under-

estimated, and (ii) the generalisability of PPS estimated only in a subset of patients who progress. The 

PSM was more appropriate than the STM in the simulated scenarios that included higher pre-

progression mortality. This is because in these scenarios, the underlying truth had a shorter tail. In 

contrast, the STM was more appropriate in those with lower pre-progression mortality due to the large 

biases observed for the PSM, but also the counteractive effect of lower PFS prediction together with 

PPS over-estimation. 

In the simulated scenarios assuming independence of TTP and PPS, both the PSM and STM were 

appropriate and had similar performance and therefore neither method is favoured over the other.  

In the simulated scenarios in which positive (moderate) dependence was assumed, the PSM was 

generally appropriate and the unadjusted STM was more prone to biases compared with the PSM in a 

limited number of scenarios, notably those with lower pre-progression mortality. The PSM appeared to 

fare better in those scenarios. 

There was a general trend for the performance of methods to be improved when data were more mature, 

despite the simulated hazard being different between scenarios.  
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To account for dependence in the data, adjusting PPS using TTP as a covariate on the log scale, typically 

improved biases or did not lead to noticeable differences compared with the unadjusted STM in the 

majority of the simulated scenarios where there was a negative dependence, no dependence or positive 

dependence with higher pre-progression mortality. Adjusting PPS on the log scale was more prone to 

bias in scenarios with positive dependence with higher pre-progression mortality. Adjusting PPS on the 

normal scale was typically more prone to biases (compared with the unadjusted STM or adjustment in 

log scale), in particular for scenarios with positive dependence. 

The performance of the unadjusted STM (where PFS is used directly) was relatively similar to the 

performance of the MSM using the mstate function. The simple unadjusted STM approach did not 

fare worse than the competing risk approach (MSM) when curves were selected appropriately (same 

process). The MSM, however, consistently generated lower OS predictions in this simulation study. 

This is attributable to the fact that the estimated PFS with the MSM was consistently lower, due to the 

effect of pre-progression mortality. Some of those differences were also attributable to the choice of 

curve (based on an automated process), rather than the method itself. 

While the performance of the Li model was limited in this simulation study, the approach had low biases 

in a number of scenarios indicating that this approach was sometimes reasonable, despite the 

assumption that all transition follow a Weibull distribution (with the same shape parameter).  

In this particular study, the Fu model was more prone to biases for the estimation of the mean time in 

progression-free compared with the direct PFS fit. This is explained by the complexity of the hazard 

considered (all scenarios also used the same hazard of progression; and therefore, it is challenging to 

make generalisable conclusions) and also the simplicity of the curve selection process used in this 

simulation study. While the Fu model remains a potentially appropriate approach for jointly modelling 

OS and PFS in a way which preserves the structural relationship between the outcomes, this study 

showed that when the hazard of progression and death are complex, the approach could lead to more 

biases (as OS is acting as a semi-competing risk).  

Whilst biases are an important measure of performance, the precision of methods also needs to be 

considered. Whilst biases for the PSM and STM were small in a number of simulated scenarios, both 

approaches were generally imprecise when looking at the RMSE and empirical SE indicating that there 

was a large variation in the OS prediction when the models were replicated 1,000 times. The STM was 

generally more precise compared with the PSM in the case of no or positive dependence. Precision was 

lost when adjusting PPS on the log and non-log scales. Both the PSM and STM had a good coverage. 

Although not shown in the main body of this thesis, in health economics, QALYs are usually the key 

clinical outcome of interest. Similar conclusions to those for OS were observed (appendix 13). 
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8.5 Discussion and conclusions 

This chapter assessed the comparative performance of methods currently used in health economics to 

estimate health state sojourn time, as well as other methods identified in Chapter 6, in a simulation study 

to identify whether particular methods fare better than others in particular situations within single trial 

arms. In summary, while approaches were more prone to biases in some of the simulated scenarios, in 

particular those with negative dependence, the two commonly used approach in health economics, the 

PSM and STM were generally reasonable at predicting health state sojourn time in this particular 

simulation study when applied to single trial arms. The PSM fared better compared with the STM in 

this simulation study; but was less precise. 

Approaches could not be selected based on the observed data characteristics alone as their performance 

was mostly affected by unobserved data characteristics such as the complexity of the underlying hazard 

(for both OS and progression) and the curve selection process. As with any study, there are strengths 

and limitations which need to be recognised, and findings need to be interpreted in light of these. 

8.5.1 Strengths 

This study has a number of strengths: 

• the study follows the ADEMP structure developed by Morris et al139 and therefore conforms to 

the latest recommendations for the reporting and conduct of simulation studies. 

• the performance of methods was evaluated during both the observed and full unobserved period 

using simulated data. This is not possible using published trial data. Other studies compared 

the fit of methods to either the observed period only of a trial, or only part of the unobserved 

period by comparing the fit to a later data cut (where data are not complete either). 

• simulated scenarios were generated to be realistic, using data from real trials to inform the 

simulation, but also characteristics observed in trials used in HTA. 

• the curve selection process was also automatized taking into account the recommended steps 

in identifying appropriate survival curves. This allowed a fairer comparison between methods. 

Studies typically compared approaches using different curve selection processes; rendering any 

comparison challenging to interpret as differences in predictions are mostly the results of the 

extrapolation method, rather than the analytical approach itself.   

• although the natural history model uses a multi-state process, the STM and MSM assessed in 

this simulation study used a different process and inputs, and therefore results are not likely to 

be biased in favour of any approach examined. 

• while not explicitly discussed in the main body of this thesis, predictions of QALYs were also 

considered, as well as PSA results to account for the uncertainty around the point estimate. 
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8.5.2 Limitations 

In addition to strengths, this study has a number of limitations including: 

• Data-generating mechanism 

First, as with any study, there are challenges with generating data and scenarios that are realistic. 

Although every attempt was made in this simulation study for the data to be generated to be realistic, 

biases cannot be entirely avoided. The data were generated using a multi-state process as this was 

considered to provide an accurate representation of the natural history of cancer. There are also 

challenges in defining scenarios that are realistic. Fifty-four scenarios were included in this simulation 

study, defined according to the degree of censoring for PFS and OS, proportion of pre-progression death 

and dependence between TTP and PPS. Despite this, the generated scenarios do not cover all possible 

situations arising in practice. In order to identify patterns, some of the defined scenarios could be 

considered extreme, for instance the level of dependence assumed. In addition to scenarios assuming 

independence between TTP and PPS, scenarios with moderate positive or moderate negative 

dependence were defined (Kendall Tau = [0.4]). This level of dependence may be unrealistic. 

Furthermore, although different degrees of censoring were examined, the scenarios examined typically 

represented those with a high degree of censoring. The performance of all methods is likely to be 

improved when the degree of censoring is lower, as the need for extrapolation beyond the observed 

period becomes less and therefore differences between approaches are likely to be reduced. Perhaps 

more importantly, given the chosen data-generating mechanism, when examining different censoring 

levels, scenarios were not directly comparable (e.g. I did not compare the same trial with different 

censoring levels). Instead, each scenario represented different hazards of death, with different censoring 

characteristics, rather than the same underlying hazard with censoring introduced subsequently. This 

approach was chosen in order to ensure that results are not influenced by the selected form of the 

underlying hazard of death. Although the scenarios examined reflected different hazards of death, more 

complex hazards could be observed in practice. 

• Simulated hazard of progression or death 

The simulated underlying hazard of progression or death may have disadvantaged some approaches. 

This was evident when looking at the comparison of the STM against the MSM or the PSM against the 

Fu model. Consequently, findings from this simulation cannot be fully generalisable, as the simulated 

hazard was generally tail dependent, and it is not surprising for these approaches to be more prone to 

biases in those cases. It should be noted that the complexity of the hazard of progression or death also 

had some impact on the performance of the PSM and the STM. This was apparent when comparing 
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scenarios with lower or higher pre-progression mortality, where it was more challenging to identify a 

parametric function which reflected the underlying hazard in scenarios with lower pre-progression 

mortality due to the longer tail in the true underlying distribution. 

• Mechanism of action 

Related to the data-generating mechanism and simulated hazard, the simulated scenarios did not 

explicitly include the possibility of a cure, and therefore results may not be generalisable to new 

treatments where a cure is expected. However, as highlighted there was a tail in the underlying 

simulated hazard, but this only affected a limited number of patients, and therefore cannot be interpreted 

as the effect of a curative treatment. Only a limited number of standard distributions were also 

considered. This is a possible limitation, as more complex models could have provided more appropriate 

extrapolations.  

• Curve selection mechanism 

Another key challenge in this simulation study is the extrapolation approach. Irrespective of the 

approach considered, analysts need to make a decision about the most plausible parametric distribution 

for the possible transitions/survival endpoints, with the performance of the method more linked to 

whether an appropriate extrapolation is selected, rather than the validity of the approach itself. This 

therefore makes the conduct of a robust simulation study very challenging, as a large component of the 

performance of those methods relies on subjective judgements, of which decisions need to be made in 

the absence of evidence. In this simulation study, the process for curve selection was automatised to 

reflect the process that is typically followed in health economics. Automatising the process was 

necessary as curves had to be selected for each approach, for the 1,000 datasets for each of the 54 

scenarios. Whilst this had the advantage of potentially reducing any unconscious biases when selecting 

curves, strict criteria had to be employed, and therefore, perhaps more appropriate curves would have 

been selected, should curves have been examined manually. This was apparent when comparing results 

between the STM and MSM and the PSM and the Fu model, where some of the differences in OS 

prediction were attributable to the curve selection process rather than the analytic approach itself. The 

curve selection criteria used in this simulation study, although believed to be realistic, could be deemed 

simplistic as only one time-point was used to determine clinical plausibility of the selected function. In 

practice, clinical experts may be able to provide more information to aid model selection. The process 

for curve selection may also differ between analysts, and there is no single agreed approach. The base-

case curve selection criteria was also perhaps not adequate to select models that reflected the tail in the 

true underlying data (reliance on a single time point when 10% of events are left), explaining the poor 

performance of some of the approaches. 
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• Assessment of clinical plausibility 

There is also an assumption that clinical opinion is available, which may not be possible for instance 

for a new intervention which is not part of clinical practice. It is possible that analysts may have no 

information on the long-term trend for OS for instance. 

• Judging the performance of methods based on the mean lifetime OS 

The mean time in health state (lifetime) was used in the base-case to assess the performance of methods, 

rather than evaluating the performance of method during the observed period. This introduced further 

challenges, as although the mean time may appear unbiased, the method under consideration may still 

provide a poor fit compared with the truth, as shown in Chapter 9. It is also difficult to interpret QALYs 

as this is the result of both utility values but also the mean time in two health states (therefore QALYs 

may appear unbiased, despite time in health state biased). 

• Single trial arms approach 

Exploring only one arm could also be considered as a possible limitation. This single trial arms approach 

was adopted in order to avoid the potential for spurious conclusions arising from apparently appropriate 

incremental outcomes despite the presence of a poor model fit in both treatment groups. However, in 

health economics we are interested in the incremental outcomes between treatments. Different 

approaches make different assumption about the treatment effect. Whilst an approach may be 

appropriate to model outcomes for one arm, the approach may be less appropriate when considering 

outcomes for an alternative treatment arm. For instance, a key rationale for using the STM is that it 

allows the model to capture the underlying disease process and therefore, data from the control arm 

(where more events typically occur) could be used to inform the process for the intervention arm.  

8.5.3 Conclusion 

This simulation study shows that that all approaches are prone to biases, but that fitting survival models 

to OS and PFS may be no better, or worse, than modelling the underlying disease process. All 

approaches have limitations which need to be recognised. With the PSM, it is unknown in a trial setting 

whether a parametric function fitted to OS would always represent the underlying hazard and what is 

the best extrapolation method. With the STM, similarly the best extrapolation method for PFS  is 

unknown and there may be uncertainty regarding the generalisability of using PPS estimated only in 

the subset of patients who have progressed. 
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It is challenging to draw any definitive conclusions from this simulation study regarding which 

modelling method should be used given the characteristics of time-to-event data. Whilst some trends 

were observed, the performance of methods was primarily explained by unobservable data 

characteristics such as by the shape of the simulated hazard and the subjective curve selection 

mechanism. It is important to consider the clinical/biological rationale for the shape of the hazard and 

also presence of dependence. However, while it is informative to look at the hazard plot to see if there 

is a trend (e.g. increasing or decreasing), and if there is any indication of dependence within the data; 

data characteristics beyond the observed period remain unknown and speculative.  

In this simulation, the performance of methods in single trial arms was explored. However, in health 

economics, the incremental health state sojourn time/QALYs are of importance, and therefore, it is 

equally important to assess the performance associated with different modelling approaches where 

different assumptions are made about the modelling of the treatment effect. This has the propensity to 

alter decision-making. This is explored in Chapter 9. 
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9 CHAPTER IX: EVALUATING THE PERFORMANCE OF 

METHODS USED IN HEALTH ECONOMICS TO ESTIMATE THE 

INCREMENTAL HEALTH STATE SOJOURN TIME/QALYS: CASE 

STUDIES 

 

9.1 Chapter overview 

This chapter evaluates the performance of the PSM and STM in estimating the health state sojourn 

times and QALYs, incrementally, and also separately, for a control arm (part of routine practice) and a 

new intervention arm for which less information is available. The performance of the methods is judged 

using real cancer trial datasets, and in addition to the predicted mean health state sojourn times and 

QALYs, the visual predictions are considered. 

Section 9.2 introduces this Chapter. The methods for these case studies is presented in Section 9.3. 

Results for each case study are described in Section 9.4. In Section 9.5, I provide a conclusion on 

whether an approach is more accurate compared with others in estimating the incremental health state 

sojourn times/QALYs in the case study considered, and discuss the potential implications.    

9.2 Introduction 

Chapter 8 presented a simulation study to evaluate the performance of methods commonly used in 

health economics, alongside additional methods identified in Chapter 6 to estimate health state sojourn 

time/QALYs. This simulation study was conducted in single trial arms for pragmatic reasons and ease 

of interpretation and showed that both the PSM and STM were generally appropriate when estimating 

health state sojourn time in single trial arms.  

In health economics, the incremental health gain (QALYs) associated with the introduction of a new 

technology is a key outcome of interest; this is driven by health state sojourn time predicted by the 

model for both arms. 

When trying to predict the effect associated with the introduction of the new technology, the following 

elements need to be considered: (i) what is the relative treatment effect?; (ii) which outcomes/endpoints 

are affected by the new treatment?; (iii) how long does the treatment effectiveness last? and (iv) what 

happens when the treatment effect diminishes?  
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The effect of the new technology on OS is modelled differently between the PSM and the STM. In the 

PSM, a treatment effect (hazard ratio or time-varying treatment effect) is applied directly to OS 

estimated in the control arm for some duration (a patient’s remaining lifetime or some shorter period). 

It should be noted that curves could also be fitted independently. In the STM, OS is estimated as a 

function of any gain in PFS (compared with the control arm), but also any potential gain (if any) in PPS. 

Consequently, in addition to differences in the general prediction for health state sojourn time for a 

given arm (control arm), the different analytic approaches rely on different assumptions on how health 

state sojourn time would be estimated for the intervention arm. 

A key criticism of PSMs is that they do not model the underlying natural history process, and therefore, 

it could be challenging to predict OS in the long-term for the intervention arm where less information 

on long-term outcomes is available compared with the control arm (which may have been used in 

practice for some time). External information, including clinical input, can help in selecting the most 

appropriate curves for the transitions or survival endpoints of interest, although this is invariably 

associated with uncertainty. In contrast, the long-term relative treatment effect associated with the 

introduction of a new technology is typically less clear. Clinical judgement regarding the plausible long-

term extrapolation, and therefore the choice of curve, is therefore more challenging. The relative 

treatment effect on PFS and OS estimated in the trial is typically extrapolated over a lifetime horizon, 

or is assumed to diminish by some arbitrary time-point without any evidence to substantiate such 

assumptions. 

In contrast, the STM which allows for the explicit modelling of the underlying natural history process 

may provide a more plausible prediction for the health state sojourn time/QALYs when external 

evidence or clinical validation are more limited for the intervention arm, by borrowing information from 

the control arm. An assumption commonly made in health economics (Chapter 5.3.5.5) is that PPS is 

the same between treatment arms (in the absence of significant differences in the trial), and therefore, 

it is argued that it is possible to borrow information from the control arm in order to have an estimate 

of OS for the intervention arm  (by pooling PPS across arms, and therefore assuming no treatment effect 

after progression). Such an approach equates approximately to assuming that any gain in PFS would 

translate into a commensurate gain in OS (with small variation due to the pre-progression death), which 

might be considered reasonable in some cancers. A further reason why the STM is sometimes argued 

to be more appropriate than the PSM in modelling the intervention arm is that it is believed to be easier 

to use external evidence (e.g. using external evidence in second-line to model the pathway for a first-

line treatment). However, such evidence sources can also be used indirectly to inform the most 

appropriate OS fit for the PSM.  
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When evaluating the performance of methods in Chapter 8, the key assumption was that the analyst 

possessed some insight/information through either clinical validation or external evidence on the long-

term expected OS and PFS for the treatment arm of interest, which is less likely for a new intervention 

arm that is not the standard of care. A single trial arms approach was also used. In addition, in Chapter 

8, performance was only assessed in terms of predicted mean health state sojourn time/QALYs. Whilst 

this was a pragmatic decision given the nature of the simulation study, as highlighted in Section 8.3.3, 

such an approach has some limitations as the mean predicted health state sojourn time/QALYs may 

appear unbiased, but visual predictions may be poor (e.g. the model could over-predict at the beginning 

and under-predict at the end of the function, but overall generate the same LYGs). In Chapter 8, 

hypothetical trial arms were generated and methods were assessed in these hypothetical datasets. Whilst 

data were generated with the intention of ensuring realism, there are inherent limitations with using 

simulated datasets, as the data-generating process itself may introduce some biases. Perhaps more 

importantly, when considering an additional arm (treatment arm), additional assumptions are required 

to characterise the effect of the intervention on both PFS and OS. Whilst possible, generating realistic 

treatment effects adds challenges. 

Consequently, in this chapter, I explore the performance of the PSM and STM in estimating the 

incremental health state sojourn time and QALYs associated with the introduction of a new technology 

in a series of real case studies, where the truth is known because data are complete. 

9.3 Description of the method 

This study is an extension of the simulation study conducted in Chapter 8, and uses real case-studies. 

Although it uses real data from trial arms, this study is considered exploratory because of previously 

discussed challenges associated with interpreting incremental results and using the mean time in health 

state (e.g. incremental may be unbiased, but predictions for each separate arm may be different to the 

truth) and the large number of choices available with respect to how the treatment effect for the new 

intervention could be implemented in both the PSM and the STM. Real case studies are used instead of 

simulated data to avoid making any assumption about the treatment effect. This also therefore mean 

that predictions are compared against the truth for the sample (e.g one dataset), rather than unbiased 

truth (which would account for sampling variation). 

9.3.1 Aims of the exploratory analysis 

The aims of this exploratory analysis are to examine the performance of the PSM and STM when 

estimating the incremental health state sojourn times and QALYs associated with the introduction of a 

new technology in real case studies which include: 
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• a control arm, which represents the current standard of care, whereby the analyst has some 

information (e.g. clinical opinion and/or external evidence) regarding the expected long-term 

PFS and OS (similar to the approach used in Chapter 8), 

• and a new intervention for which no external information is available on long-term treatment 

effects or outcomes on PFS and OS beyond the observed period of the trial. 

Put simply, this analysis attempts to address the question of whether directly fitting parametric models 

to OS data when information about the long-term prognosis of an intervention intervention is unknown 

could be appropriate, despite not explicitly modelling the underlying natural history process. 

9.3.2 Clinical trial datasets (case studies) considered in the exploratory analysis 

The PSM and STM were applied to real cancer trial datasets to reflect the treatment effects typically 

observed in cancer trials and also to limit the number of other unsupported assumptions when modelling 

the underlying natural history.  

It should be noted that whilst using real cancer trial datasets reduces the number of assumptions, the 

number of scenarios examined will be limited by the data used and may not therefore cover all possible 

practical solutions.  

Trial data usually containss some censoring. However, in order to assess the performance of alternative 

modelling methods, the truth needs to be known and complete data are required.  Consequently, for 

these case-studies, complete datasets containing full information (no censoring) are required alongside 

a censored/truncated dataset (reflective of trial data used to estimate health state sojourn time in HTA).  

Obtaining data from a cancer clinical trial in which both complete and censored information is available 

is challenging. Ideally, a clinical trial which reported outcomes at the primary analysis and a final 

analysis (with events observed for all individuals) would be used in this exploratory analysis. However, 

in the majority of cancer trials identified (through searches of databases), a large number of patients 

remained censored in the final analysis (i.e. the trials stopped before everyone in the trial died). Cancer 

trials with complete information (no censoring) are rare. Furthermore, for a number of trials which 

report both a primary and final analysis (although still not complete), not all outcomes are reported for 

both analyses. Indeed, the cut-off time for the final analysis for PFS is often different to the final analysis 

for OS (for instance, PFS may stop being collected when a certain of number of events occurred [enough 

to estimate the treatment effect], whilst OS data continues to be collected to ensure sufficient data for 

estimation of the treatment effect.).  
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The complete data representing the (sample) truth are described in Section 9.3.2.1. Censoring is 

subsequently introduced into these datasets in Section 9.3.2.2 to create truncated datasets to reflect 

information typically available in HTA when implementing the different methods of interest.  

9.3.2.1 Complete (or near complete) datasets used in this exploratory analysis 

The alternative methods assessed in this case study were applied to a number of cancer trials for 

advanced/recurrent gastric cancer publicly available in the R package surrosurv (gastadv dataset) 

provided by the GASTRIC (Global Advanced/Adjuvant Stomach Tumor Research International 

Collaboration) group. The selected datasets are part of a broader 20 trials in gastric cancer used in a 

meta-analysis looking at the surrogacy between PFS and OS.135-137 These trials were selected as data 

were publicly available. No similar complete data were identified in other trials in other disease area. 

Data identified in other disease areas typically contained a large amount of censoring, rendering them 

unsuitable for the case studies. 

As the purpose of the meta-analysis135-137 was to assess the surrogacy between PFS and OS, included 

trials examined a number of different treatments options, sometimes in different subgroups. 

Consequently, an intervention in one trial could be the control arm in another. Similarly, comparators 

could also be different between trials despite examining the treatment effect for the same intervention. 

Researchers who compiled the dataset defined the experimental (intervention) treatment as the 

treatment arm in those trials which contained the largest number of drugs irrespective of the active 

ingredient or regimen used (for instance triplet therapy compared with doublet therapy) or the treatment 

arm which included newer agent when the number of regimens given was the same (for instance when 

both arms were doublet therapy). For these reasons, the data were not pooled across trials.  

The number of patients enrolled/randomised and the proportion of recorded PFS and OS events, for the 

control and intervention arms and whole trial population are presented in Table 15 for each of the 20 

individual trials included in the meta-analysis.135-137 
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Table 15 : Characteristics of trials included in the gastric cancer dataset 

 Combined arm Control arm Intervention arm 

Trial 

number n 

% PFS 

events 

% OS 

events n 

% PFS 

events 

% OS 

events N 

% PFS 

events 

% OS 

events 

1 60 0.97 0.95 30 0.97 0.97 30 0.97 0.93 

2 62 0.92 0.9 29 0.97 0.93 33 0.88 0.88 

3 119 1 0.99 61 1 0.98 58 1 1 

4 256 1 1 72 1 1 184 1 1 

5 118 0.95 0.85 60 0.95 0.85 58 0.95 0.84 

6 58 0.59 0.52 27 0.63 0.48 31 0.55 0.55 

7 156 1 1 53 1 1 103 1 1 

8 90 0.99 0.94 45 1 0.98 45 0.98 0.91 

9 387 0.95 0.9 132 0.95 0.92 255 0.95 0.89 

10 206 0.93 0.87 101 0.94 0.9 105 0.92 0.85 

11 135 0.98 0.86 45 1 0.91 90 0.97 0.83 

12 279 0.97 0.95 105 0.95 0.93 174 0.99 0.97 

13 337 0.92 0.88 165 0.94 0.88 172 0.91 0.87 

14 148 0.87 0.8 73 0.95 0.89 75 0.8 0.72 

15 457 0.86 0.75 230 0.86 0.77 227 0.85 0.74 

16 158 0.83 0.8 79 0.82 0.77 79 0.84 0.82 

17 86 0.97 0.94 43 1 1 43 0.93 0.88 

18 704 0.98 0.94 234 0.99 0.96 470 0.97 0.93 

19 120 0.91 0.89 38 1 0.97 82 0.87 0.85 

20 133 1 1 46 1 1 87 1 1 

Abbeviations: n=number; OS: overall survival; PFS: progression free survival 

As shown in Table 15, a number of the available trials have complete (or nearly complete) information 

on PFS and OS. Ideally, this exploratory analysis would only consider those trials which had full 

information with no censoring (e.g. Datasets 4, 7 and 20). However, those trials typically had a small 

sample size (<75 patients) in one of the treatment arms (typically the control group) which could 

introduce some uncertainty. Furthermore, as previously highlighted, trials included in the meta-analysis 

(and therefore in this dataset) examined different treatment regimens in gastric cancer, and therefore 

the observed treatment effect in terms of gain in PFS and OS varies between the different trials included. 

Conversely, including trials which contain a large amount of censoring is likely to introduce biases and 

require a larger number of assumptions.  

In addition to the three trials which had complete information (e.g. Datasets 4, 7 and 20), the following 

trials were also included in this exploratory analysis: 
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• Dataset 3: only one patient was censored for OS for the control arm, and therefore the dataset 

was almost complete. 

• Datasets 12 and 18: the sample size in each arm was >100 patients, >90% of events were 

observed and these two datasets illustrated different scenarios for the treatment effects on PFS 

and OS. 

Other datasets were not considered further as more than 10% of OS events in at least one arm were 

censored and the trials did not provide additional scenarios of interest in terms of treatment effects for 

OS and PFS. 

For the three datasets with near complete information (Datasets 3, 12 and 18), assumptions had to be 

made for the small number of patients that were censored. For simplicity, censored patients were 

removed from the trial. This is a simplification. It should be noted that an alternative approach could 

have been to assume the event time to be the same as the censoring time. As the interest is not around 

quantifying the treatment effect between treatment arms with full accuracy, removing the small number 

of censored of patients was deemed to be reasonable as this would not affect conclusion from this 

analysis. Unsurprisingly, the KM estimate following removal of the censored patients was similar to 

the original KM (not shown), as only a small number of patients were censored. The KM plots for OS 

and PFS for the included six datasets are summarised in Figure 60. 
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Figure 60 : PFS and OS in the datasets considered in this exploratory analysis (excludes censored 

patients where necessary) – Gastric cancer  
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As shown in Figure 60, different scenarios regarding the treatment effects on OS and PFS for the 

intervention vs. control arm are covered in these six datasets. These scenarios can be categorised in 

terms of whether the intervention was associated with a gain in PFS and/or a gain in OS compared with 

the control arm (Table 16). 

Table 16 : Scenario examined in this exploratory analysis 

Trial PFS gain OS gain 

Dataset 3 NO YES 

Dataset 4 YES NO 

Dataset 7 NO NO 

Dataset 12 YES NO 

Dataset 18 YES YES 

Dataset 20 YES YES 

 

It should be noted that these scenarios represent the truth (once data are complete after the final 

analysis), rather than the treatment effect observed at the primary analysis when a proportion of patients 

are censored. 

9.3.2.2 Truncation of the datasets 

The six gastric cancer trial datasets described in Figure 60 were truncated to reflect information typically 

available in HTA.  

The following steps were followed. The resulting truncated datasets that are used to generate predictions 

are shown below in Figure 61: 

• Step 1: Assumption that patients do not enter the trial at the same time (random entry). 

The datasets considered did not contain information on the time to entry into the trial. Only 

information on PFS and OS was available from the dataset. Whilst this is not a limitation when 

estimating survival outcomes, ignoring time to entry could affect the censoring mechanism as 

this would inappropriately assume that all patients enter the trial at the same time.   

To add realism, random entry to the trial was added assuming that patients entered the trial 

within a 50-day window. For each patient randomised, a time to entry was assigned, randomly 

sampled from a uniform distribution (between 0 to 50 days). 
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• Step 2: Introduction of random censoring associated with loss of follow-up. Once time to 

random entry in the trial was assigned for each patient, random censoring was introduced to 

reflect loss of follow-up for PFS, assuming the time to random censoring (due to loss of follow-

up) follows an exponential distribution with an arbitrary rate parameter of 0.000747. As with 

the simulation study presented in Chapter 8, random censoring was assumed to affect PFS but 

not OS (as OS is known with certainty). The rate parameter was selected to ensure that 

approximately 5% to 15% of patients would be lost to follow-up for PFS in the truncated 

dataset. 

• Introduction of administrative censoring (early termination). The final step was to 

introduce the time at which the trial would terminate to report on its primary analysis. In this 

exploratory analysis, trials were assumed to terminate and report outcomes when 70% of PFS 

events occurred across both treatment arms. This assumption was generally in line with the 

design of the actual trials. Consequently, patients with a recorded PFS and OS greater than the 

administrative censoring time were censored at this time point. 

 

It should be noted, as expected, that the censored datasets were very close to the complete datasets, as 

censoring is assumed to occur at random, with the exception of administration censoring.  
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Figure 61: KM for PFS and OS observed in the gastric cancer datasets after truncation – Gastric 

cancer 
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9.3.3 Estimands considered 

As described in Section 9.3.2, methods (the PSM and STM) were applied to real truncated datasets. 

Predictions were then compared against the PFS and OS from the complete dataset, representing the 

truth for the sample, rather than the underlying population truth (which is not affected by sampling 

variation). This is different to the simulation study described in Chapter 8, whereby the model 

predictions estimated in a smaller dataset (n=240) were compared against the unbiased truth estimated 

assuming a large number of patients (240,000 individuals) to reflect variation associated with the 

smaller sample size of clinical trial. This was necessary given the data available.  

It should be noted that the target considered in this exploratory analysis is the truth from the sample, 

and therefore is prone to sample variation with a wide CI around the estimated treatment effect due to 

the small sample size”. 

Furthermore, in this exploratory analysis the sample truth was calculated by fitting a parametric model 

rather taking the observed average survival time (or restricted mean from the KM). This was done given 

the small sample size and also because of the step change in the KM which dropped to 0 quickly in 

some datasets. A flexible model (spline model with 3 knots) was used to estimate the sample truth. 

A time horizon of 10 years was examined given the poor prognosis in gastric cancer. 

The PSM and the STM methods were applied to the truncated dataset to estimate the following 

outcomes for each treatment arm individually and incrementally: 

• Mean time spent in the PF health state 

• Mean time spent in the PD health state 

• Total LYGs 

• Total QALYs. 

 

Utility values of 0.80 and 0.50 were arbitrarily assumed for individuals in the PF and PD states, 

respectively, in order to estimate total QALYs. It should be noted that it is difficult to interpret the 

incremental QALY gain in isolation as it is a function of: (a) the time spent in the health states in each 

individual arm, and (b) the assumed utility values. Consequently, for each of the six case-studies, the 

predicted time in each health state, for each individual arms, is described alongside the incremental 

LYGs and QALYs. 

9.3.4 Implementation of methods 

Similar to Chapter 8, the process for curve selection was automated in order to: (i) have a structured 

transparent and reproducible process for curve selection and (ii) minimise any influence from 
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unconscious biases. However, predictions associated with each methods were double-checked manually 

to ensure face validity (which was not possible in Chapter 8). 

A daily cycle length was used to increase accuracy in the predictions. For the sake of simplicity, general 

population mortality was not used to cap modelled OS rates in this exploratory analysis. This is because 

the age of patients included in the trial was not available; hence, additional assumptions would have 

been required. This was also considered a pragmatic decision given the poor prognosis of patients with 

advanced/gastric cancer in the trial considered with the large majority of patients recruited dying within 

3 years, with no patients alive after 7 years (Figure 60). Discounting was also not considered. This 

simplification was made to make the interpretation of results easier. These simplifications are unlikely 

to affect the findings of the analysis. 

9.3.5 Methods considered in this exploratory analysis 

Given the nature of this analysis and for ease of interpretation, only the PSM and STM (unadjusted and 

adjusted in the log scale) were considered in this exploratory analysis. The more formal MSM was not 

explored given its similarities with the STM (see Chapter 5 and Chapter 8). Furthermore, the Li model91 

was not explored further given that the model is constrained by the need to use Weibull distributions, 

which is very restrictive when extrapolating beyond the observed period of the trials. Finally, the Fu 

model (joint modelling of PFS and OS under semi-competing risks) was not considered here for 

pragmatic reasons, given the aim of this analysis and its exploratory nature. Whilst it would have been 

possible to include this model, significant alteration would have been necessary as the model is fitted 

individually to data from single trial arms. As described later, there are already a number of challenges 

when looking at the performance of the PSM (independent model) when estimating health state sojourn 

time/QALYs between two treatment arms given the different possible assumption regarding the nature 

of the treatment effects. It was considered that including the Fu model89 would make the interpretation 

of the exploratory analysis more challenging.  

A key challenge in this exploratory analysis is that for the PSM and the STM, the estimation of the 

health state sojourn times and QALYs for the intervention arm could adopt a variety of alternative 

assumptions regarding how the treatment effect is modelled. Whilst this is also the case for the control 

arm, where different assumptions could be made, these assumptions and decisions are perhaps more 

limited and less subject to debate.  

For PFS, for both the PSM and STM, a survival curve can be fitted directly to the KM for each arm 

separately or using a relative treatment effect parameter (in the form of an HR for PH models or a 
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constant acceleration factor for AFT models). It should be noted that the estimation of PFS would only 

affect the estimate of OS for the STM. 

For OS, within the PSM, whilst a survival distribution is typically fitted directly to the survival data for 

OS, the effect of the intervention arm could be modelled by; 

1. Fitting a separate curve to the intervention arm (either assuming the same distribution as the 

control arm or using different parametric model forms) 

2. Applying a treatment effect (an HR for PH or a constant acceleration factor for AFT models) 

to the baseline OS and PFS curves from the control arm. This treatment effect may be applied 

indefinitely or may be assumed to wane at the end of the observed follow-up period or at some 

other timepoint (e.g. based on clinical opinion). 

Within the STM, the effect of the intervention on PPS can be estimated by; 

1. Fitting PPS separately to each arm, and therefore assuming that the time to death following 

progression differs between arms. 

2. Applying a treatment effect (an HR for PH or a constant acceleration factor for AFT models) 

to the baseline PPS from the control arm. Treatment effects may be applied over the patient’s 

remaining lifetime, up to the end of the observed follow-up period of the trial or some other 

defined time-point. 

3. Pooling PPS data from both the control and intervention arm, and therefore assuming that the 

time to death following progression is the same between arms. A shift in PFS is therefore 

assumed to lead to a commensurate shift in OS (with some variation attributable to the 

proportion of patients who may die prior progression). 

Further variations are also possible, for example using the observed KM up to a certain timepoint 

followed by parametric extrapolation. 

It is not practical to examine all possible implementations of the STM and PSM and the choice of 

implementation is often guided by the analyst’s judgement. Consequently, for this exploratory analysis 

only a limited number of alternative implementations were considered. These were considered by 

myself to be the most common and appropriate assumptions made when reviewing previous TAs. Key 

assumptions considered in this exploratory analysis on how PFS and OS is modelled for the intervention 

arm for the PSM and STM are summarised in Table 17. Lifetime treatment effects are often deemed 

clinically implausible, and assuming the relative treatment effects apply over a shorter duration (such 

as 3 to 5 years depending on the condition and length of follow-up) is often considered to be more 
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plausible. To reflect this, in addition to applying a treatment effect over the lifetime, analyses are 

presented where the treatment effect is limited to the trial duration given the poor prognosis of patients 

with gastric cancer (most patients die and progress within 3 years). 

Analyses are separated into primary analyses and scenario analyses depending on the most likely 

implementations in HTA (according to my judgement). In this exploratory analysis, irrespective of the 

analysis, PFS was always modelled for the intervention arm assuming a treatment effect (an HR for PH 

or a constant acceleration factor for AFT models). This was a pragmatic decision. This was found to be 

most commonly assumed approach in health economics for PFS.9 However, it is recognised that 

different analysts may have different views and could be reluctant to use a treatment effect for any 

outcomes, and therefore prefer to model PFS using separate parametric distributions. 

Table 17 : Method used to model outcomes for the treatment arm. 

    PFS OS 

PSM Primary analysis HR applied 

to control 

HR applied to control (whole model 

duration) 

  Scenario analysis  1 HR applied 

to control 

HR applied to control (trial duration only). 

The same hazard used after  

 Scenario analysis  2 HR applied 

to control 

Separate fit (same distributional form as 

control) 

STM 

(unadjusted) 

Primary analysis HR applied 

to control 

Pooled PPS if p<0.05 

Separate PPS if p>0.05 

  Scenario analysis  1 HR applied 

to control 

Pooled PPS if p>0.05 

Separate PPS if p<0.05 

 Scenario analysis  2 HR applied 

to control 

Separate PPS (same distributional form as 

control) 

STM  

(adjusted using 

log of TTP) 

Primary analysis HR applied 

to control 

Pooled PPS if p<0.05 

Separate PPS if p>0.05 

 Scenario analysis  1 HR applied 

to control 

Pooled PPS if p>0.05 

Separate PPS if p<0.05 

  Scenario analysis  2 HR applied 

to control 

Separate PPS (same distributional form as 

control) 

Abbreviations : HR: hazard ratio; OS: overall-survival; PFS: progression-free survival; PPS: post-progression survival; STM: state-transition 

model; TTP: time to progression 
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For the primary analysis, for the STM, PPS was pooled if there was no statistically significant difference 

for the HR for PPS between treatments arms, as this assumption is commonly made in health economics 

to justify pooling PPS (See Chapter 5.3.5.5). PPS for each treatment arm, and associated p-value (HR 

for PPS between treatment arms) is shown in Figure 62. It can be seen that PPS was visually similar 

and there was no statistically significant difference in the HR for PPS in Datasets 3, 4, 7 or 18. There 

were some visual differences in PPS between arms in Dataset 12, but the p-value for the HR was >0.05, 

and therefore this could be attributable to the sample size. PPS was visually and statistically different 

in Dataset 20; thus different PPS was used between arms in the primary analysis. It should be noted that 

using a p value to decide on whether or not to pool PPS has limitation, as absence of evidence does not 

mean evidence of absence. Furthermore, the trial isn’t powered to find a significant difference in PPS. 

9.3.6 Curve selection process 

As highlighted in Chapter 8.3.4.1, the choice of parametric model for extrapolation is a key issue when 

judging the performance of a method. Consequently, a similar process for curve selection to that 

described in Chapter 8.3.4.1 was used. Analysts are assumed to possess some (imperfect) information 

on the long-term PFS and OS for the control arm only (but not for the intervention arm). This is because 

the control arm is typically part of clinical practice already, and therefore, external evidence on its long 

term outcomes is typically available and clinicians are able to have an estimate of its long-term effect. 

It should be noted that it is possible that no information is available for both the control and intervention 

if neither are part of standard of care and are new interventions. However, this situation is not considered 

here.  
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Figure 62 : KM for PPS in the truncated datasets and associated p-value – Gastric cancer 
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In Chapter 8, analysts were assumed to be given information on when 90% of events in the trial arm 

were expected to have occurred (in the primary analysis).  

As highlighted in Chapter 8, results are likely to be impacted if different criteria for curve selection are 

used. Whilst this is true for both approaches, in the STM, OS is a function of both the predictions of 

PFS and PPS, and thus, any misspecification of PFS will also impact on OS, as shown in Chapter  8. 

For ease of interpretation and transparency, two analyses are conducted assuming: 

1. A stringent criterion for curve selection (i.e. more certain) whereby the analyst is assumed to 

have elicited information regarding the time at which 95% of PFS and OS events in the control 

arm would occur, with a margin of error of 2.5%. This is considered stringent as this is allow 

to better represent a possible tail in the data. 

2. A less stringent criterion for curve selection (less certain, similar to that used in Chapter 8 in 

the primary analysis), whereby the analyst is assumed to have elicited information regarding 

the time at which 90% of PFS and OS events in the control arm would occur, with a margin of 

error of 5%. 

For each of the six trials, the complete datasets are used to inform the clinical plausibility for the fit to 

the control arm only, in order to select the transitions/extrapolation that are likely to be plausible. 

Analysts are assumed to possess no information on the OS or PFS for the intervention arm, and 

therefore, must rely on either extrapolating OS directly from the truncated trial data in the PSM (using 

a treatment effect or using the same distributional form), or modelling the underlying process in the 

STM using information available for the control arm only. 

9.3.7 Performance measure 

Bias was the only performance measure considered in this exploratory analysis. As previously stated, 

only bias against the sample truth (point estimate) was considered given the wide 95% CI due to small 

sample size. 

As highlighted in Chapter 8, using the mean time in health state has limitations given that it is possible 

for the mean time to be unbiased, even if the model does not provide a good representation of the data. 

As this exploratory analysis is limited to six case studies, it was possible to visually examine predictions 

for each dataset; this was not possible in the simulation study conducted in Chapter 8. Consequently, a 

description of the visual predictions on OS and PFS generated by each method is presented alongside 

the mean predicted health state sojourn time/QALYs (for each arm individually and incremental results 

between treatment arms). 
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9.4 Results 

Given the wealth of information, only key findings are summarised and the description of results in this 

section focuses on the primary analysis using the stringent criterion for curve selection (e.g whereby 

the analyst is assumed to have elicited information regarding the time at which 95% of PFS and OS 

events in the control arm would occur, with a margin of error of 2.5%), unless stated. Results from 

scenarios assuming different assumptions regarding the modelling of the treatment effects (waning 

treatment effect, no use of HR, separate PPS, etc) and different curve selection criteria (less stringent 

definition) are presented in Appendix 14; and referenced in this thesis when necessary. The timepoint 

used for the curve selection process, and p-values for PPS are also presented separately for each dataset 

alongside the selected distributions (based on visual fit, AIC and long-term plausibility) for OS, PFS, 

PrePS and PPS for the two scenarios examined (stringent and less stringent curve selection criteria) in 

Appendix 15. 

In Section 9.4.1, I report how methods performed in each dataset in estimating the mean incremental 

LYGs and QALYs and provide a brief description (key messages). Due to challenges in interpreting 

the mean time in health states, as well as incremental values (as the incremental may be unbiased, but 

the estimate for each individual arm biased), the fit (visual) is discussed in Section 9.4.2 for relevant 

datasets to provide further details and interpretation only when methods predicted appropriate 

incremental LY/QALYs. 

9.4.1 Performance of the PSM and STM in estimating the incremental mean LY and QALYs 

The predicted incremental mean LYGs and QALYs generated using the PSM and STM (under the base-

case assumption about the modelling of the treatment effect and curve selection criteria) are displayed 

in Figure 63. 

In summary, no approach was consistently better at predicting the incremental LYGs and QALYs. In 

fact, approaches were prone to biases and generated varying incremental mean LYGs and QALYs. 

These findings were generally not affected when considering different assumptions to model the 

treatment effect; unless stated: 

• both the PSM and STM generated reasonable incremental LY/QALYs in Dataset 3, 

• no approaches generated reasonable incremental LY/QALYs in Dataset 4 and 20, 

• the PSM generated more plausible estimates for the incremental LY/QALYs in Dataset 7, but 

remained inaccurate (Table 18). 
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Figure 63: Comparison of the predicted mean incremental LYs and QALYs gained (base-case) against the truth from the sample dataset  
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• the PSM generated more plausible estimates for the incremental LY/QALYs in Dataset 12, 

unlike both versions of the STM, 

• the unadjusted STM generated more plausible estimate for the incremental LY/QALYs in 

Dataset 18, but remained inaccurate (Table 18). 

• No approach were appropriate in Dataset 20 under the base-case selection criteria. However, 

when pooling PPS (despite significant difference; p value <0.05), the unadjusted STM 

generated reasonable estimates for the incremental LY/QALY in Dataset 20. 

• As expected findings were similar between LYs and QALYs. 

• Approaches remained inaccurate when a less stringent curve selection criteria was used for the 

base-case assumption for the modelling of the treatment effect (Table 19). 

Table 18 : Predicted incremental LY and percent bias (using stringent curve selection criteria – 

base-case assumption regarding the modelling of the treatment effect) 

  

Truth for 

the 

Sample 

Predicted 

Inc LY       

Percent 

Bias     

    PSM 

Unadjusted 

STM 

Adjusted 

STM   PSM 

Unadjusted 

STM 

Adjusted 

STM 

Dataset 3 40.3  51.5  37.5  38.0    27.68% -6.93% -5.77% 

Dataset 4 7.5  34.5  39.2  62.5    362.30% 425.42% 737.59% 

Dataset 7 -59.8  -32.6  1.5  1.4    -45.52% -102.44% -102.28% 

Dataset 12 16.1  13.3  46.7  60.5    -17.52% 189.32% 275.10% 

Dataset 18 39.9  87.4  56.0  98.2    119.03% 40.27% 146.02% 

Dataset 20 60.3  130.5  105.4  124.8    116.48% 74.85% 107.08% 

Table 19 : Predicted incremental LY and percent bias (using less stringent curve selection criteria 

– base-case assumption regarding the modelling of the treatment effect) 

  

Truth for 

the 

Sample 

Predicted Inc LY 

  

    

Percent Bias 

  
  

    PSM 

Unadjusted 

STM 

Adjusted 

STM   PSM 

Unadjusted 

STM 

Adjusted 

STM 

Dataset 3 40.3  66.0  37.5  38.0    63.83% -6.93% -5.77% 

Dataset 4 7.5  34.5  39.2  62.5    362.30% 425.42% 737.59% 

Dataset 7 -59.8  -32.6  -1.5  1.4    -45.52% -102.44% -102.28% 

Dataset 12 16.1  15.4  46.7  60.5    -4.77% 189.32% 275.10% 

Dataset 18 39.9  87.4  56.0  112.1    119.03% 40.35% 180.98% 

Dataset 20 60.3  148.8  105.4  139.2    146.87% 74.85% 130.91% 
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9.4.2 Visual predictions for each individual dataset, in each treatment arms 

The description of results in this Section will focus on those scenarios where at least one approach was 

considered to be reasonable (<20% variation from the truth) at estimating the incremental mean 

LYs/QALYs (e.g Dataset 3 and, Dataset 12) under the base-case selection criteria. While the 

incremental LYs/QALYs predicted was considered reasonable, the aim in this section is to assess 

whether the estimate and visual predictions for each individual arm were accurate.  

No detailed description is provided for Dataset 4, 7, 18 and 20 as none of the approaches generated 

reasonable incremental LYs/QALYs under the base-case criteria; suggesting that no approach 

accurately predicted OS for either one or both the control and intervention arm. It should be noted that 

the unadjusted STM generated reasonable mean incremental LY in Dataset 20 when PPS was pooled 

(despite p-value <0.05).  

9.4.2.1 Comparison of predictions using the PSM and STM in Dataset 3 

In this dataset, patients enrolled in the intervention arm experienced a small improvement in PFS 

compared with the control arm. OS was also improved in the intervention arm, compared with the 

control arm. Using a less stringent curve selection criterion led to the selection of a different OS curve 

for the PSM compared with the more stringent curve selection criteria. 

The predicted PFS assuming a lifetime treatment effect provided a good visual fit to the observed data, 

and a reasonable visual prediction compared with the unobserved period of the full dataset for both the 

control and intervention arms. Despite the good visual fit, the mean predicted time in the PF health state 

(Appendix 14) was slightly under-estimated for both treatment arms, as the selected PFS distribution 

had a smaller tail compared with that observed in the complete dataset. 

When considering predictions for OS, using the stringent curve selection criterion, the PSM fitted the 

data well during the observed period for the control arm, but the visual fit beyond the observed period 

of the trial was under-estimated compared with the complete dataset (Figure 64). In contrast, the STMs 

(when PPS was unadjusted or adjusted using TTP on the log scale) did not provide a good visual fit 

during the observed period of the trial, but the prediction beyond the trial period was closer to what was 

observed in the complete dataset (Figure 64). The predicted OS for the intervention arm was broadly 

similar between approaches and was in line with the OS seen in the complete dataset (Figure 64).  

The STMs (adjusted or not) predicted mean LYGs and QALYs which were close to those estimated in 

the complete dataset, when considering each treatment arm individually.The PSM slightly 

underestimated the mean LYGs and QALYs for both treatment arms; as a result, the incremental mean 

LYGs/QALYs predicted by the STMs and PSM were close to those estimated in the complete dataset, 

with predictions from the STMs being much closer to the truth in that sample.  
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Figure 64 : Predicted PFS and OS using the PSM and STM in Dataset 3 using a stringent curve selection criterion 
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Using a less stringent curve selection criterion, the curve selection process did not change compared 

with Scenario 1 for the STM, as PFS and PPS remained unchanged. However, a different OS curve (to 

the one used using the stringent definition) was selected which affected the PSM predictions. 

Predictions were worse, with the predicted OS being over-estimated compared with the OS seen in the 

complete dataset. Alternative assumptions on the modelling for OS for the PSM (i.e. waning treatment 

effects and fitting separate models to each arm) led to a slight improvement in predictions, but the PSM 

remained more biased compared with the STM. 

9.4.2.2 Predictions using the PSM and STM in Dataset 12 

In this case study, patients enrolled in the intervention group had a significantly better PFS compared 

with the control group, but no OS gain was observed.  Using a less stringent curve selection criterion, 

led to a different OS curve selection for the PSM. The curves selected for PFS and PPS were the same 

in both scenarios.  

The predicted PFS assuming a constant treatment effect was reasonable (Figure 65) for both the control 

and intervention arm. As a result, the predicted mean time in the progression-free health state (Appendix 

14) was similar, but slightly over-estimated, compared with the complete dataset. 

Using the stringent curve selection criterion (Figure 65), the visual fit for OS to the observed data was 

broadly similar between approaches. Beyond the observed period, no methods generated visual 

predictions that were close to that observed in the complete dataset for the control arm. The PSM and 

unadjusted STM under-estimated OS whilst the adjusted STM over-estimated OS. When looking at the 

intervention arm, the unadjusted STM generated predictions for OS which were close to that observed 

in the complete dataset, both visually and in terms of mean predicted LYGs (Appendix 14). The PSM 

provided a good visual fit during the observed period, but under-estimated both the mean LYGs and 

QALYs. In contrast, the adjusted STM over-estimated both the mean LYGs and QALYs.
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Figure 65 : Predicted PFS and OS using the PSM and STM in Dataset 12 using a stringent curve selection criterion 
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Figure 66 : Predicted PFS and OS using the PSM and STM in Dataset 12 using a less stringent curve selection criterion 
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As shown in Figure 63, the PSM predicted incremental LYGs/QALYs in the same order to that 

estimated in the complete dataset. However, when looking at predictions for each individual arm, 

predictions were not as accurate. The incremental LYGs/QALYs were over-estimated using the STM 

approach.  

In summary, in this particular case study (Dataset 12), despite the PSM generating accurate incremental 

LYs/QALYs, no method was accurate at predicting OS for both the control and intervention arm 

separately. Using the stringent curve selection criteria (base-case) methods generated accurate 

predictions for one arm only..  

Using a less stringent curve selection criterion (Figure 66), the curve selection process did not change 

for transitions included in the STM, and therefore predictions remained the same. A different curve was 

selected for OS for the PSM which improved prediction in each individual arms, and lead to accurate 

prediction of the incremental LY (Appendix 14). 
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9.5 Discussion and conclusions 

This chapter examined the comparative performance of PSM and STM in estimating health state sojourn 

time/QALYs when information about the long-term prognosis of an intervention is unknown. Methods 

were compared in six case-studies. This  showed that despite not modelling the underlying natural 

history process explicitly, in the case-studies considered the PSM was not less accurate compared with 

the STM in predicting OS and QALYs for the intervention arm, even under the simplified assumption 

of the treatment effect applied throughout the model duration.  

In fact, predictions were often inaccurate. This study highlights that neither the PSM or STMs are bias-

free and that the choice between the two is heavily reliant on information available about the prognosis 

for both the control and intervention arms. Indeed, whilst both approaches are generally appropriate, 

any misspecification in the curve selection affects the accuracy of predictions of health state sojourn 

time/QALYs.  

When modelling the intervention arm, there are limitations with both approaches. With the PSM, 

assumptions have to be made on how long the treatment effect will persist. Assuming the treatment 

effect persists over the patient’s remaining lifetime, as assumed within the primary analysis in this 

study, is likely to be optimistic. Assumptions could be made that the treatment effect wanes after a 

certain time point. Whilst this may be a more realistic assumption, it is often arbitrary. For STMs, PPS 

is often pooled when no statistical difference is observed between arms, and therefore the time to death 

following progression between arms is assumed to be same (as was done in the primary analysis in this 

study). Therefore, the benefits of the intervention are driven primarily from the gain in PFS. Such an 

approach is attractive as it allows borrowing of information from the control arm which is often more 

complete. However, assuming the same PPS between treatment arms may be an oversimplification. 

Indeed, despite no significant differences observed in the censored dataset, this may not necessarily 

mean that there is no difference in PPS had the data been complete. Furthermore, as shown in Chapter 

7, using PPS is subject to potential limitations relating to selection bias and informative censoring. 

Finally, estimated OS with the STM depends on both the extrapolation of PFS and PPS, which could 

introduce inaccuracy.  

A key strength of this study is that real trial cancer datasets were used, and therefore they reflect the 

prognoses and treatment effects observed in actual oncology clinical trials. Furthermore, datasets with 

different treatment effects (on PFS, OS or both) were examined allowing exploration of the performance 

of these alternative modelling methods in a number of scenarios. Different implementations for the 

PSM and STMs were also examined to estimate outcomes for the treatment arm to cover the most 
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common scenarios considered in applied health economic evaluations. The process for curve selection 

was also automated to reduce any unconscious biases when selecting curves for the 

transitions/endpoints of interest, and two selection criteria were explored. 

This study is subject to several limitations. 

• the target considered in this exploratory analysis is the truth from the sample, and therefore is 

prone to sample variation with a wide CI around the estimated treatment effect due to the small 

sample size. 

• in this exploratory analysis the sample truth was calculated by fitting a parametric model 

(spline model with 3 knots). This was done given the small sample size and also because of 

the step change in the KM which dropped to 0 quickly in some datasets.  

• furthermore, in this exploratory analysis the sample truth was calculated by fitting a parametric 

model rather estimating the mean time from the KM (restricted mean). This was done given 

the small size, but also because of the step change in the KM which dropped to 0 quickly in 

some datasets.  

• a limited number of trials were examined. Only six trials were considered, all of which were 

conducted in gastric cancer since data was available. Nevertheless, the treatment effect on PFS 

and OS, as well as the definition of the control and intervention arms in the trials included 

differed between the trials. Therefore, the trials included cover different scenarios.  

• the majority of trials had a small sample size which could increase the uncertainty. Three trials 

had less than 103 patients in each arm. The sample size was also considerably lower for the 

control arm (half of the size of the intervention in five out of six trials). Despite their small 

sample size, conclusion from this study are generalisable to larger datasets in that predictions 

are often inaccurate and that neither the PSM or STMs are bias-free. 

• methods had to be applied to datasets containing censoring to reflect information typically 

available in HTA, but the respective complete datasets had to be available in order to assess 

their performance. In this study, I used complete datasets, and introduced censoring (random 

and administration) using assumptions. Whilst results are influenced to some degree by these 

censoring assumptions, the key findings from this study are not.  

• only the most common implementations of the PSM and STM were considered in this study 

when estimating outcomes for the intervention arms. This is because the implementation could 

be different between analysts, but also the decision problem at hand. Therefore, what was 

considered as primary analysis in this study, may not be considered the approach taken by 

other analysts. For the PSM, the primary analysis considered a treatment effect applied for the 
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lifetime in order to model the intervention arm. This is a simplification and possibly an 

optimistic assumption. In practice, analysts may restrict the treatment effect to a particular 

duration (waning treatment effect). For the STM, I assumed that PPS is pooled if the HR for 

PPS between arms was not statistically significant, despite occasional visual differences. This 

approach was employed for the primary analysis as it is often taken in HTA. However, the 

absence of statistical difference does not preclude any difference, inparticular given the small 

number of patients considered in some of the arms in this study. However, alongside the 

primary analysis, whilst described minimally in the main body of this thesis, a number of 

alternative scenario analyses were presented for transparency using different structural 

assumptions, such as waning treatment effects or use of separate curves between treatment 

arms for PPS. These alternative implementations did not affect the key findings.  

• a key limitation concerns the choice of model for extrapolation. As previously described, the 

performance of methods is heavily dependent on the curve selection for the 

transitions/outcomes of interest. In order to limit unconscious biases, the process used in the 

simulation study was also used here, whereby curves are selected using an automated process. 

A key criterion for curve selection is about the long-term plausibility for PFS and OS, and 

therefore the performance of each method varies depending on the level of certainty of the 

long-term prediction. Two scenarios are presented in this study, assuming a stringent and a less 

stringent curve selection criterion. It can be seen that results were sometimes different between 

analyses, highlighting the importance for clinical validation on the long-term outcomes.  

• it should be acknowledged that only the PSM and STM (adjusted and unadjusted) was 

examined in this study. Alternative methods considered in the simulation study could have 

been examined. However, they were not considered in this study for pragmatic reasons.  

• Information about the control arm was assumed to be available. This is because the control 

arm is typically part of clinical practice already, and therefore, external evidence on its long-

term impact is often available and clinicians may be able to estimate this. However, it is 

possible that no information is available for either the control or intervention if neither are part 

of standard of care.  

• As highlighted in this study, interpreting QALYs or incremental LYGs and QALYs is very 

challenging as these are the results of a number of estimates. Indeed, in this study, despite poor 

visual prediction compared with the complete datasets, approaches sometimes generated 

similar mean health state sojourn time/QALYs. Similarly, they were a number of cases where 

predictions for both arms were sub-optimal when taken on their own, but the predicted 

incremental LYGs or QALYs were close to what observed in the complete dataset. Whilst the 
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mean incremental LYGs/QALYs are the outcome of interest in HE, the mean predicted health 

state sojourn time/QALYs and visual predictions for each arm need to be considered.  

• the treatment effects in the case studies were very low, so assuming the effect is retained for a 

lifetime might not make much difference. If there was a big treatment effect that was lost over 

time, assuming it applies indefinitely might have more of an impact. However, the conclusion 

would remain the same that neither approach is bias-free. 

In conclusion, this exploratory analysis shows that, despite not modelling explicitly the underlying 

natural history process, the PSM does not perform less well compared with the STM when estimating 

health state sojourn time/QALYs for the intervention arm. In fact, all these approaches, whilst 

reasonable, were often inaccurate to varying degree when compared with the predictions in the complete 

dataset. Unsurprisingly, this study further highlights the importance of clinical validation in order to 

select the most appropriate curve for the transitions in the STM or direct fit for the PSM.   
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PART V: IMPLICATIONS FOR DECISION-MAKERS AND ANALYSTS 

10 CHAPTER X: KEY FINDINGS / STRENGTHS/LIMITATIONS / 

AREAS OF FURTHER RESEARCH 

10.1 Chapter overview 

In this chapter, I summarise the findings of this thesis, discuss its contribution to health economics, and 

discuss areas of future research. Findings from previous chapters are drawn together in order to 

formulate a series of recommendations for both analysts and decision-makers to help guide the choice 

of analytical models when assessing the cost-effectiveness of oncology treatments. 

10.2 Overview of the thesis 

In Chapter 1, I discussed the motivations for this thesis that alternative models are currently used to 

address the same decision problem but have the propensity to change the conclusions of an economic 

analysis; therefore the decisions made on the basis of these analyses. The aim of this thesis was to guide 

the choice of modelling approach for estimating health state sojourn time for anticancer therapies 

conditional on the nature of data available. In particular, this study attempted to address the following 

question – “Is it possible to identify when particular analytical approaches may perform better than 

others, subject to the nature of the data available (e.g. under different levels of censoring, dependence 

and follow-up)?”  

In Chapter 2, I provided a description of the different approaches that are currently used in health 

economics when modelling oncology treatment. I summarised the underlying assumptions associated 

with approach, and described their strengths and limitations. I then discussed briefly previous 

comparisons available; and highlighted that approaches had not been compared systematically and 

therefore it is difficult to determine whether one approach is consistently superior to another. I therefore 

proposed in this chapter that a systematic comparison of the different approaches is required to identify 

whether one approach is superior to another. 

In Chapter 3, I provided some theoretical background and a brief description of some of the key 

concepts used in survival analysis that are used throughout this thesis. These concepts are important as 

they underpin the alternative modelling approaches evaluated within the thesis. 
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In Chapter 4, I described the MSM – a type of STM which combines transitions under a competing risk 

framework. The MSM is rarely used in health economics despite the availability of several software 

packages and clear tutorials by Williams et al.50 I focused on the implementation of the MSM using two 

packages available in R, the msm package and the mstate package. I showed that the MSM is easily 

implemented in R using these two packages and explained the key differences and how transitions are 

estimated and combined within these two packages. As highlighted by other researchers,24, 50 I showed 

that using the MSM is relatively straightforward and therefore barriers for its use in health economics 

are low. While the MSM using the mssample has been previously described by Williams et al, this 

chapter is original and significant as it provides a comparison of the msm and mssample functions in 

R, but also provides an in-depth description on how transitions are combined within the function. 

In Chapter 5, I described the simplifications that are typically made in health economic when modelling 

oncology treatments using the STM approach and highlighted how this “simple” approach compares 

with the competing risk approach (the MSM). I conducted a review of previous NICE appraisals in 

order to identify the key assumptions and understand how the STM is currently implemented in health 

economics. I showed that, whilst it is difficult to directly compare the MSM and the Simplified STM 

due to the differences in inputs, any differences are more likely to be the result of the choice of 

parametric functions and extrapolation of the transitions, rather than the approach itself. This chapter is 

original and significant as it clearly sets out the different implementations of the STM in health 

economics (to model oncology treatments), and provide a more direct and fairer comparison between 

the STM and MSM; showing little differences. 

In Chapter 6, I presented the methods and results of a review of methods for the joint modelling of 

progression and survival. I described challenges associated with searching the methodological 

literature, and described how these were addressed through the use of iterative searching and use of 

expert opinion. Despite some overlap, identified methods could be categorised according to two groups: 

(1) methods that include the dependence between transitions in an illness-death model (joint/conditional 

modelling of transitions) and (2) methods that include the dependence between PFS and OS under a 

semi-competing risk framework. All of the approaches identified within this review had limitations. 

Example of implementation were also often not available in an appropriate software package. This 

chapter is original and significant as it summarises approaches that are currently available that could 

potentially be used in health economics to jointly model progression and survival.  

In Chapter 7, I described the potential biases associated with the use of PPS estimated only in a subset 

of patients who progressed when generalised to the overall randomised population in the same 

randomised control trial. I illustrated these using hypothetical simulated datasets as well as real datasets. 
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I then explored whether simple approaches that are typically considered reduce biases and showed that 

adjustments that are currently proposed (suggested by analyts when I described my topic to external 

audience) may often be inaccurate. Consequently, I suggested that analysts should consider reporting 

both the unadjusted PPS and adjusted PPS in order to reflect the uncertainty so that it can be considered 

in the decision-making process. This chapter is original and significant as this demonstrated clearly 

potential biases associated with PPS when there is dependence in the data. It also highlighted that 

current suggested adjustments for PPS may not always have the desired effect of reducing bias. 

In Chapter 8, I designed and implemented a simulation study specifically to address the research 

questions posed in the first chapter of this thesis. A simulation study was chosen because this allowed 

the bias associated with the methods to be compared given a known truth, during both the observed and 

unobserved period, which would have otherwise not been possible using published trial data. The 

simulation study followed the ADEMP framework set out by Morris et al.139 When applied to single 

arm studies, I showed that whilst all approaches were prone to biases, the PSM and STM remained 

generally reasonable. I showed that it not possible to identify whether the PSM or STM fare “better” 

that the other based on observed data characteristics alone and that their performance differed in 

different scenarios. The PSM was affected more by the difficulty for simple parametric extrapolation 

to reflex complex hazard (changes in hazards during and beyond the observed period), whereas the 

STM also has the problem with the generalisability of PPS when there is dependence. Other methods 

(properly modelling competing risks, trying to adjust for prognosis in PPS, modelling a relationship 

between PFS and OS) generally made very little difference and didn’t represent a clear improvement to 

the standard PSM and STM approaches. This chapter is original and significant as it provides a 

systematic comparison and showed that is not possible to select approaches based on the observed data 

characteristics alone and that the performance of methods was principally explained by unobserved data 

characteristics like how the hazard look beyond the observed period, and how well curves are selected. 

Finally, in Chapter 9, I assessed the performance of methods in estimating incremental outcomes using 

six case-studies in gastric cancer. I showed that the PSM was not less accurate compared with the STM 

in predicting OS and QALYs for the intervention arm, even under the simplified assumption of the 

treatment effect applied throughout the model duration. In fact, all these approaches, whilst reasonable, 

were often inaccurate to varying degrees when compared with the predictions in the complete datasets. 

This chapter also re-iterated the importance of clinical validation when selecting extrapolation method. 

This chapter is original and significant as it provides a direct comparison of the performance between 

approaches using complete data and shows that all approaches are prone to biases, and that it is possible 

for none of the approach typically considered to generate accurate predictions for the incremental 

LYs/QALYs. 
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10.3 Discussion 

This thesis demonstrated that approaches currently used in health economics models to estimate health 

state sojourn time are generally reasonable, but, could be inaccurate and that it is not possible to 

determine with certainty a priori, based only on the observed characteristics of the available data, 

whether one approach is likely to fare better than the other. While it is possible to learn something from 

looking at the hazard plot (to identify trend) or assement of relationship in the data (between PFS and 

PPS for instance), it remain unknow how the hazard would look like beyond the observed period. 

In this thesis, I attempted to highlight the different strengths but also limitations, as well as the key 

underlying assumptions (when modelling the introduction of a new technology) associated with each 

approach. These needs to be recognised when selecting a particular approach, as without a proper 

understanding and knowledge of these, it is not possible to justify robustly why an approach should be 

used/prefered compared with another. 

The aim of this thesis was to attempt to identify particular data characteristics that could help analysts 

and decision-makers select the most appropriate analytical method to estimate health state sojourn time 

for both the control and intervention arm. At present, there is no framework for making this choice, and 

modelling approaches are used inconsistently between appraisals, often with no or inadequate 

justification. My experience has been that analysts often have a preference for a particular approach. 

Some analysts also inappropriately assume naively that all approaches are the same, inaccurately 

referencing outputs from previous research that showed in some limited case study that both the PSM 

and STM generated similar predictions.20 Identifying cases where a particular approach is perhaps more 

suitable compared with another is also valuable, given the ongoing debates on which model structure 

to use to answer a particular problem. For instance, within the NICE STA (or MTA) process, where the 

company submits a model, there are often disagreements between the structure chosen by the company 

and the one preferred by the ERG (or AG).  

I showed through the use of a simulation study in single-trial arms, that is not possible to select 

approaches based on the observed data characteristics alone, and instead, whilst some trends were seen 

in terms of more observable data characteristics (such as when dependence is present in the data; 

although this is only partially observable), the performance of methods was primarily driven by 

unobserved data characteristics (in particular the shape of the hazard beyond the observed period; e.g 

turning points) but also how well curves are selected. As expected, when there are dependence in the 

data, modelling the underlying process was less adequate due to limitations associated with the 

generalisability of using PPS estimated only in the subset of patients who progressed. However, the 
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STM/MSM remain reasonable approaches, and the level of dependence examined in the simulation 

study was perhaps extreme compared with that observed in real trials. I do not suggest that the 

STM/MSM cannot or should not be used in case of dependence; more that that caution should be 

exercised and analysts need to have a full understanding of the potential limitations. Even so, there is 

no guarantee that an alternative approach would necessarily generate more accurate predictions. It is 

also important to recognised that when adjusting PPS by including TTP as a covariate in the statistical 

model (to account for the dependence) for example, the effect of this adjustment is unclear, and 

therefore I suggest that both the unadjusted and adjusted be presented for transparency. 

In health economics, we are often more interested in incremental outcomes between arms. There is  also 

an ongoing debate regarding whether the PSM (direct fit to OS) is appropriate, notably when modelling 

the treatment effect for the intervention. I showed through the use of six case studies that the PSM was 

no less accurate than the STM in predicting OS and QALYs for the intervention arm, even under the 

simplified assumption of the treatment effect applied throughout the model duration. In fact, whilst both 

approaches were generally reasonable, they were often inaccurate; with none approaches generating 

accurate predictions in some cases. 

The MSM is rarely used in health ecoconomics. My experience has been that analysts often have a 

limited understanding of the differences between the MSM (formal modelling of the competing 

transitions under a competing risk framework) and the STM as implemented in health economics (which 

uses PFS directly). I showed in this thesis that both approaches generate similar results when curves are 

selected appropriately and that differences highlighted in previous research are perhaps more 

attributable to assumptions about the choice of parametric extrapolations, rather that the approach itself. 

A number of approaches are also available in the broader literature (outside health economics) to jointly 

model progression and survival. However, clear examples are not available for many of those. This is 

an important barrier given the need for transparency and technical skills of analysts typically in charge 

of building or reviewing cost-effectiveness models. Methods without a proper tutorial are unlikely to 

be adopted. The method developed by Fu model was identified to jointly model PFS and OS under a 

semi-competing risk using a copula; with a clear example available in a suitable statistical package. I 

showed that it is easy to implement and avoids arbitrary assumptions currently made in health 

economics for the structural relationship between survival endpoints where a constraint is added to 

ensure that PFS is consistent with OS. However, I also showed in the simulation study, that when the 

hazard of death and progression are complex, such approach may be less desirable. 

When modelling the treatment arm, approaches make different assumption which need to be recognised 

and undertood. With the PSM, assumptions have to be made on how long the treatment effect will 
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persist (when using a HR). It is often unclear whether the treatment effect will persist over the patient’s 

remaining lifetime or wanes after a certain time point. With the STM, typically, PPS is pooled between 

treatment arms when no statistical difference is observed between arms, and therefore the benefits of 

the intervention are driven primarily from the gain in PFS. However, assuming the same PPS between 

treatment arms may be an oversimplification. Indeed, despite no significant differences observed in the 

censored dataset, this may not necessarily mean that there would be no difference in PPS had the data 

been complete. Furthermore, as showed when dependence is present in the data, PPS estimated in the 

subset of patients who progressed is biased when generalised to the overall randomised population. 

My experience has been that analysts have typically strong views and preferences for a particular 

approach; based on their perception of the strengths and limitations. Indeed, when describing my topic 

to external, but also internal audiences, strong views has been expressed either side in favour of an 

approach, which has been challenging to reconcile. In particular, depending on their model choice 

preferences, concerns were expressed that results may be biased against their preferred approach. In 

this thesis, because of these strong views, I tried to be as objective as possible, and not be influenced 

by any a priori preferences. As an example, when I started my thesis, my pre-conception was that when 

data are immature, using a STM (which allow an explicit modelling of the process) would always fare 

better compared with the direct fit to OS. This thesis showed that this is not necessarily the case, and 

that in fact, all approaches are biased, but subject to different limitations. Consequently, what is more 

relevant is to recognise, but also be able to communicate effectively the underlying assumptions and 

implications when selecting a particular approach. 

While this thesis focused on the choice of analytical approach, extrapolation is a key component when 

determining the performance of a method. All these approaches use different inputs (transitions or 

survival endpoints). It is crucial that a robust extrapolation method is used as otherwise, the wrong 

conclusion will be made. 

In summary, I showed in this thesis that relying on a single analytical approach (e.g economic model 

structure) is not advisable as it is not possible to know for certain if an approach fare better than the 

other (due to the need to extrapolate beyong the trial). This is an important finding because at present, 

decisions are often made based on the choices made a priori by the analyst responsible of building 

models, but often, without any knowledge on whether using a different approach would provide a 

different economic conclusion. The decision-making process should therefore capture both the 

uncertainty around the analytical approach and extrapolation method (clinical expectation). 
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10.4 Recommendations 

Based upon findings from this thesis, I formulated the following recommendations for the choice of 

analytical approach when assessing the cost-effectiveness of oncology treatments for both analysts and 

decision-makers. It should be noted that these recommendations only apply to cases where there is a 

choice between the PSM and STM. It is possible that in some cases, the choice of analytical approach 

is driven by the decision problem instead, and therefore analysts have little choice to use a particular 

approach. Recommendations also consider the most common 3-state oncology model and it is 

recognised that some of the recommendations formulated below may be more difficult to implement 

when considering more health states; although not impossible.   

 

10.4.1 Recommendations for analysts responsible for building models 

As it is not possible to identify when one approach fare better than the other based on observable data 

characteristics alone, I formulated the following recommendations for analysts responsible for building 

oncology cost-effectiveness models; which I hope would increase both transparency, but also 

consistency between appraisals: 

• to include automatically, as standard, the functionality within the cost-effectiveness model to 

assess the different analytical approaches; notably the PSM and STM (adjusted or not). My 

experience (during and prior to my PhD) has been that exploring alternative model choices 

does not require a significant time if the model is designed from the start to be flexible. Indeed, 

considering only the methods that are commonly used in health economics (the PSM and 

STM), including the functionality for the PSM when the model is initially built as a STM is 

relatively straightforward as the trace for OS and PFS can typically simply be over-written 

(unless tunnel state are required for other reasons such as costing). In contrast, if the model is 

initially built as a PSM (which is the case for many oncology appraisals), the addition of the 

functionality to assess the STM become more challenging and time consuming. Consequently, 

it is reasonable to recommend as a starting point that oncology models should follow as 

standard a STM structure, with the PSM approach applied subsequently. Decision-makers are 

more likely to be more confident in their decision-making if analysts can show that predictions 

between approaches are the same; although this can still be biased. If there are differences, 

these could then considered in the decision-making process. It is also valuable for analysts who 

built a STM to compare the modelled OS against the direct fit for the sake of validation. 
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• analysts need to be able to communicate transparently and effectively why one approach is 

preferred, and to explain the different assumptions made and their implications. This needs to 

be communicated effectively to decision-makers so that they are able to account for the 

uncertainty appropriately, and reject scenarios that are perhaps less appropriate. Ultimately, 

decision-makers should be responsible for selecting the approach they feel to be the most 

appropriate to form a basis for decision-making, rather than the other way around.  

• analysts should be transparent about the different key assumptions when modelling the 

treatment effect and ensure that all options are included within the model as standard (even if 

deemed not relevant by the analyst). This is important as decision-makers or other analysts 

may not share the view expressed by the analyst responsible for building models and may want 

to consider the uncertainty around different assumptions. This can also act as a matter of 

validation.  

• analysts need to be able to communicate transparently and effectively how clinical validation 

is undertaken. The extrapolation method is crucial. Clinical opinion is often used inconsistently 

between appraisals. This process needs to be transparent and standardised. 

• when constructing a STM, results using both the adjusted and unadjusted STM should be 

reported as standard in order for decision-makers to capture any uncertainty (as it cannot be 

known for certainty which one is more appropriate). Indeed, if predictions using the adjusted 

and unadjusted PPS vary widely, this uncertainty should be reflected in the decision-making 

process, but also explained by analysts. Decision-makers are more likely to be confident in 

their decision-making if predictions using the adjusted and unadjusted PPS are similar. But, 

there remains a risk that neither are correct. This is unknown, and decision-makers will need 

to consider the possibility that all these estimates are uncertain and may be biased.  

• when using a PSM and selected curves for PFS and OS appear to cross, analyts should consider 

reporting results by jointly modelling PFS and OS (in addition to independent) using the Fu’s 

model.  
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10.4.2 Recommendations for decision makers and model reviewers 

In addition to recommendations for analysts in charge of building oncology cost-effectiveness models, 

I formulated the following recommendation for for decision-makers and model reviewers; which if 

adopted I hope would ensure consistent decision-making: 

• there is a need to develop a framework to standardise how, in what format, and level of 

information (i.e key assumptions, predictions for each approaches) that should presented to 

decision-makers. Decision-makers often have a large amount of information to process, even 

when considering a single modelling approach. If multiple scenarios are presented, a clear 

framework needs to be developed for decision-makers to avoid information overload.  

• training is required to ensure that decision-makers fully understand the underlying assumptions 

for each modelling approach.  

• decision-makers should request that different structures are explored to ensure that the decision 

is not influenced by the choice of approach. If alternative structures are not presented, decision-

makers may want to consider this uncertainty within their decision-making process. 

• a framework for handling structural uncertainty within the decision-making process would be 

helpful to promote consistency between appraisals. 

• consider the uncertainty associated with expert elicitation for survival model selection 

 

10.5 Area of future research 

This thesis demonstrates that analysts and decision-makers cannot rely solely on predictions from a 

single approach, but should instead consider the structural uncertainty associated with the modelling 

approach. However, there remain a number of methodological issues which require further research: 

(i) scenarios covered in this simulation study were limited to non-cure processes. There is an 

increasing number of novel treatments undergoing assessments which have the potential to 

offer a cure. It may therefore be informative to explore whether the same findings would be 

seen if cure processes were considered. 

(ii) additional research on how to account for the structural uncertainty in the decision-making 

process is required. Should recommendations from this thesis be taken forward by analysts and 

decision-makers, a transparent and structured process needs to be defined to understand how 

structural uncertainty could be accounted for within the decision-making process. For instance, 

if two approaches provide very different answers, how should decision-makers synthesise and 
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use this information? While there is already some research on how to account for structural 

uncertainty within models, this needs to be extended to consider decision-makers preferences. 

Other methods could be considered such as model averaging for instance or multi-criteria 

decision analysis (MCDA) type process. 

(iii) there is also a need for further research to assess how best to elicit expert information to inform 

survival model selection and how uncertainty associated with this approach is accounted for. 

Whilst there is general guidance on how to select extrapolation methods, these guidelines do 

not provide clear guidance on how clinical opinion should be used when selecting the most 

appropriate extrapolation method. My experience has been that clinical opinion is used 

inconsistently between appraisals. Standardisation is important as inaccurate selection for the 

extrapolation method, lead to incurrate method’s prediction. Research is also needed on how to 

capture the uncertainty; for instance bayesian model average accounting for both the statistical 

fit and clinical expectation,  

(iv) a number of approaches to jointly model progression and survival were identified in the review 

of methods. Some of these  could not be assessed due to the absence of a clear tutorial/example. 

This is a key barrier to their implementation. Further research is therefore required on how to 

implement these methods, should they be taken forward in health economics, 

(v) it is important to understand from both decision-makers but also analysts, the potential barriers 

they foresee for the recommendations formulated in this thesis. This is important as decision-

making is already challenging. My recommendation adds significant additional complexity 

which needs to be recognised. For analysts responsible for building or reviewing cost-

effectiveness models, this will add work. For decision-makers this adds an additional level of 

complexity and more information to process. Additional research should be conducted to 

understand what information decision-makers require and to understand whether the additional 

analysis demands can be met by analysts or is useful for decision makers 

(vi) Additional research is required to develop alternative methods that could be used to adjust PPS. 

In Chapter 7, I explored simple adjustments to PPS. For instance, IPCW has been suggested as 

an alternative approach. It is unclear if such approach or an alternative would necessarily be 

more accurate,  

(vii) Incorporation of bayesian method within the development of the PSM and STM being 

expanded. 
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10.6 Conclusion 

I aimed to guide the choice of modelling approach for cost-effectiveness models for oncology treatment; 

in particular identify if and when one approach may fare better than the other based on observed data 

characteristics.  

I demonstrated in both my simulation study, but also case studies, that this is as not simple, and that 

approaches cannot be selected based on observed data characteristics alone as that their 

performance/appropriateness is primarily explained by unobserved data characteristics such as the 

complexity of the underlying hazards (for both OS and PFS), and the parametric model selection 

process. This is an important finding.  

Analysts and decision-makers should therefore be careful when relying on predictions from a single 

approach. It is unknown whether ICERs generated using a single analytic approach are adequate, or 

whether, in some cases, decision-making should consider ICERs from a range of alternative approaches 

to account for these possible structural uncertainty. 

Based upon findings from this thesis, I have formulated series of recommendations for both analysts 

and decision-makers, which I believe if they are taken forward would improve the transparency of 

health economic analyses and increase decision-makers’ confidence in the use of those models. 
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Appendix 1 : Parametric fit to the BC dataset 

Figure 67 : Extrapolation for PFS in the BC dataset 
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Figure 68 : Extrapolation for TTP in the BC dataset 
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Figure 69 : Extrapolation for prePS in the BC dataset 
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Figure 70 : Extrapolation for OS in the BC dataset 
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Appendix 2 : Key characteristics of appraisals included in the review 

Key 

characteristics 
TAs 

Review of NICE cancer TAs 

STAs 

ID945; TA604; TA593; TA586; TA587 ; TA578 ; TA563 ; TA513 ; TA502 ; 

TA496 ; TA491 ; TA472 ; TA387 ; TA400 ; TA386 ; TA384 ; TA380 ; 

TA381 ; TA370 ;TA343 ; TA263 ; TA258 ; TA226 ; TA214 ; TA193 ; TA174 

MTAs TA439; TA257; TA243 

Conditions 

Follicular lymphoma (FL) TA604; TA513; TA472; TA243; TA226 

Breast cancer (BC) 
TA593; TA563; TA496; TA263 ; TA257 ; 

TA214 

Chronic lymphocytic lymphoma 

(CLL) 
TA343 ; TA193 ; TA174 

Mantle cell lymphoma TA502; TA370 

Myelofibrosis TA386 

Multiple myeloma (MM) TA586; TA587; TA380 

ovarian cancer (OC) TA381 ; 

melanoma TA400 ; TA384 

NSCLC TA578; TA258 

Prostate Cancer (PC) ID945; TA387 

Colorectal Cancer (CC) TA439; 

Waldenstrom’s 

Macroglobulinaemia (WM) 
TA491 

Setting 

(Locally) advanced /metastatic 

ID945; TA593; TA563; TA513; TA496 ; 

TA439 ; TA387 ; TA400 ; TA384 ; 

TA263 ; TA257 ; TA258 ; TA243 ; 

TA226 ; TA214 

Locally advanced only TA578; 

Relapsed/refractory 
TA604; TA586; TA502; TA491; TA472 ; 

TA380 ; TA381 ; TA193 

Mix pop/unclear TA587; TA386 ; TA370; TA343 ; TA174 

Justifications 

provided for 

choice of 

structure 

Clear reference to OS immaturity 

ID945; TA593; TA578; TA563; TA502 ; 

TA496 ; TA491 ; TA472 ; TA400 ; 

TA384 ; TA381 ; TA370 ; TA343 ; TA257 

Modelling of the pathway / 

natural history / use external 

evidence 

ID945; TA593; TA563; TA496; TA491 ; 

TA439 ; TA472 (indolent) ; TA387 ; 

TA400 ; TA386 ; TA384 ; TA380 ; 

TA381 ; TA370 ; TA343 ; TA243 ; TA226 

Structural relationship PFS/OS – 

avoid crossing 
TA586; TA587; TA578; TA563 

Structural relationship (patient 

experience in 2 phase for hazard 

of death) 

TA257 
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No clear justification for STM 

and/or reference to previous 

appraisals 

TA604; TA214; TA193 ; TA174 ; TA513; 

TA263 ; TA258 

Composite 

endpoint 

different to 

PFS 

TTD TA387; TA386 

FST TA381 ; 

Simulation approach (other than MSM?) TA593/TA496; TA387; TA386 ; TA243 

MSM approach ID945; TA586; TA587 

Analysis primarly based on trial for both arms) 

TA604; TA593; TA586; TA587; TA578 ; 

TA513 (supplemented by additional trial 

for late PD) ; TA472; TA387; TA386; 

TA380 ; TA381 ; TA370 ; TA343 ; 

TA263 ; TA257 ; TA214 ; TA193 ; TA174 

PFS + PPS from same trial (but comparator 

different to key trial) 
TA502; TA258 

PFS and PPS taken from different trials 
ID945; TA563; TA496; TA491; TA439 ; 

TA400 ; TA384 ; TA243 ; TA226 

Modelling of competing transitions 

PFS modelled 

as composite 

endpoint 

Proportion of PFS events 

assumed to be death (explicit) 

TA593; TA496; TA439 (implicit); 

TA386 ; TA380 (logistic) ; TA381 ; 

TA257 (implicit); TA243 

Death rate based on number of 

death and total PFS time 

TA513; TA502; TA491; TA472; TA343 

(implicit) ; TA263 ; TA258 ; TA226 ; 

TA214 ; TA193 ; TA174 

Death rate based on prePS TA370 

Probability of progression based 

on TTP 
TA578 (same distribution as for PFS) 

Min time to death and time to progression 

(sampling time) 

  

TA387 

Two 

competing 

transitions 

modelled 

separately 

TTP + parametric function for 

prePS 

TA604; TA400 ; TA384 

  

TTP+negative binomial for 

prePS 
TA563 

Modelling of PPS 

PPS same 

double arm 

trial 

Pooled (no sig diff) 

TA593; TA578; TA513 (ERG comment); 

TA472 ; TA370 ; TA257 ; TA214 ; 

TA193 ; TA174 ; TA380 (pano - pathway) 

Different PPS between arms 

TA586 (MSM); TA587(MSM); TA381 ; 

TA263 (KM+exp) ; TA257 ; TA386 

(stopping rule) 

PPS taken from one arm (single arm trial) 
TA604; TA502; TA258 (different 

comparator to trial) 

PPS taken 

from external 

source 

PPS curve 

ID945; TA496; TA491; TA439; TA400 ; 

TA384 ; TA343 ; TA243 (pathway) ; 

TA226 

Pay-off applied TA563 

PPS not really used (simulation) TA387 
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Distribution used for PPS 

PPS – 

exponential 

only? 

No clear justification 
TA604; TA513; TA491 (unclear if other 

examined); TA214; TA193; TA174 

Avoid tunnel 

state/overcomplication 

TA502; TA380 ; TA343 (implicit 

mention) ; TA258 ; TA226 

MSM ID945; TA586; TA587 

PPS – exponential in base case but alternative used TA593; TA578; TA370 

PPS - non exponential used in base-case 

TA563(pay off) ; TA496 (external trial); 

TA439 (external trial); TA472; TA400; 

TA386 ; TA384 ; TA381 ; 

TA263(KM+exp) ; TA257 (exp in one 

model, non exp in another); 

TA243(pathway) 

Modelling of late and early progressor separately TA513; TA380 

PPS (using age as a covariate) TA343 (exponential adjusted by age) 

Alternative structure explored 

  
STM as base-case (but PSM 

explored in SA) 
TA578 

  STM used for one arm only TA400 ; TA384 

Other notes   

TA604 (Several models using different 

data); 

TA593 – First line model same as TA496 

TA439 – pathway modelled 

TA386- Stopping rule applied ; pathway 

modelled 

TA380 – pathway modelled 

TA381 – pathway modelled 

TA257 – 2 models built by AG 
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Appendix 3 : Parametric fit to the Prostate and Lung cancer datasets 

Figure 71 : Parametric fit to the prostate cancer dataset 
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Figure 72 : Parametric fit to the Lung cancer dataset 
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Appendix 4 : Comparison of prediction between simplified STM vs. MSM 

Table 20 : Comparison of prediction between simplified STM vs. MSM – Breast cancer dataset 

PFS/ 

TTP 
prePS Simplified STM MSM Relative difference (%) 

     PF  PD   LY   PF  PD   LY   PF  PD   LY  

exp exp       70.2        68.7      138.9       71.2       68.5     139.6  1.41% -0.41% 0.51% 

exp weib       70.2        66.6      136.7       68.4       66.7     135.1  -2.54% 0.29% -1.16% 

exp gomp       70.2        63.5      133.7       67.6       67.1     134.7  -3.65% 5.64% 0.76% 

exp lnorm       70.2        68.3      138.4       69.5       68.2     137.7  -0.93% -0.07% -0.51% 

exp llogis       70.2        67.3      137.5       69.0       68.1     137.1  -1.68% 1.25% -0.25% 

exp gam       70.2        67.0      137.2       67.8       66.9     134.6  -3.43% -0.25% -1.88% 

exp ggam       70.2        65.0      135.2       69.5       67.0     136.5  -1.04% 3.08% 0.94% 

exp spl       70.2        67.1      137.3       69.2       66.6     135.9  -1.34% -0.69% -1.02% 

weib exp       66.6        69.2      135.7       66.6       69.9     136.4  0.03% 1.01% 0.53% 

weib weib       66.6        68.0      134.6       65.7       68.6     134.4  -1.26% 0.88% -0.18% 

weib gomp       66.6        66.9      133.4       65.6       67.8     133.3  -1.46% 1.35% -0.05% 

weib lnorm       66.6        68.8      135.4       67.1       66.7     133.9  0.87% -3.07% -1.13% 

weib llogis       66.6        68.3      134.9       66.7       67.7     134.4  0.24% -0.94% -0.36% 

weib gam       66.6        68.2      134.8       66.7       69.4     136.1  0.20% 1.74% 0.98% 

weib ggam       66.6        67.6      134.1       66.1       68.9     134.9  -0.75% 1.97% 0.62% 

weib spl       66.6        68.2      134.8       66.9       68.4     135.2  0.50% 0.19% 0.34% 

gomp exp       67.2        69.1      136.3       68.2       69.0     137.2  1.43% -0.06% 0.68% 

gomp weib       67.2        67.6      134.9       67.7       68.3     136.0  0.71% 0.95% 0.83% 

gomp gomp       67.2        66.1      133.3       66.7       67.4     134.1  -0.80% 2.07% 0.62% 

gomp lnorm       67.2        68.7      135.9       68.9       69.2     138.1  2.54% 0.70% 1.61% 

gomp llogis       67.2        68.0      135.2       66.8       68.6     135.4  -0.58% 0.78% 0.10% 

gomp gam       67.2        67.9      135.1       68.3       68.2     136.5  1.67% 0.40% 1.03% 

gomp ggam       67.2        67.0      134.2       66.8       67.3     134.1  -0.60% 0.40% -0.10% 

gomp spl       67.2        67.9      135.1       67.0       66.5     133.5  -0.27% -2.05% -1.16% 

lnorm exp     101.4        65.1      166.5       93.6       65.5     159.1  -7.70% 0.58% -4.46% 

lnorm weib     101.4        58.0      159.5       81.8       63.4     145.2  -19.31% 9.20% -8.93% 

lnorm gomp     101.4        57.0      158.4       75.1       61.7     136.8  -25.98% 8.31% -13.65% 

lnorm lnorm     101.4        64.5      166.0       92.9       65.9     158.8  -8.43% 2.14% -4.32% 

lnorm llogis     101.4        61.4      162.9       87.6       64.6     152.1  -13.67% 5.10% -6.59% 

lnorm gam     101.4        59.4      160.8       83.4       62.2     145.5  -17.82% 4.61% -9.53% 

lnorm ggam     101.4        57.4      158.8       78.4       62.0     140.5  -22.68% 8.05% -11.57% 

lnorm spl     101.4        60.7      162.1       84.2       64.1     148.3  -16.99% 5.57% -8.54% 

llogis exp       84.8        67.0      151.7       78.6       67.7     146.2  -7.34% 1.08% -3.62% 
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llogis weib       84.8        63.0      147.8       72.4       65.3     137.6  -14.66% 3.57% -6.89% 

llogis gomp       84.8        61.8      146.6       69.2       65.0     134.2  -18.38% 5.09% -8.48% 

llogis lnorm       84.8        66.7      151.5       78.0       66.6     144.6  -8.03% -0.16% -4.57% 

llogis llogis       84.8        64.8      149.6       73.9       67.7     141.5  -12.89% 4.41% -5.39% 

llogis gam       84.8        63.8      148.6       74.2       66.9     141.2  -12.44% 4.89% -5.00% 

llogis ggam       84.8        62.4      147.2       70.7       65.4     136.1  -16.61% 4.76% -7.55% 

llogis spl       84.8        64.4      149.2       73.8       66.1     140.0  -12.92% 2.69% -6.18% 

gam exp       67.0        69.1      136.1       67.2       68.7     135.9  0.25% -0.54% -0.15% 

gam weib       67.0        67.9      134.9       65.8       69.5     135.3  -1.79% 2.34% 0.29% 

gam gomp       67.0        66.4      133.4       65.7       68.0     133.6  -1.98% 2.33% 0.16% 

gam lnorm       67.0        68.8      135.8       67.6       69.2     136.8  0.79% 0.67% 0.73% 

gam llogis       67.0        68.2      135.3       66.4       69.3     135.7  -0.87% 1.51% 0.33% 

gam gam       67.0        68.1      135.1       66.1       68.5     134.6  -1.39% 0.62% -0.38% 

gam ggam       67.0        67.2      134.3       66.8       68.3     135.1  -0.37% 1.58% 0.60% 

gam spl       67.0        68.1      135.1       65.9       68.6     134.5  -1.70% 0.73% -0.47% 

ggam exp       67.8        69.0      136.8       68.1       67.8     135.9  0.50% -1.78% -0.65% 

ggam weib       67.8        67.6      135.4       67.4       68.0     135.4  -0.52% 0.52% 0.00% 

ggam gomp       67.8        65.8      133.6       66.7       67.2     133.9  -1.59% 2.19% 0.27% 

ggam lnorm       67.8        68.7      136.5       68.2       68.0     136.2  0.62% -0.95% -0.17% 

ggam llogis       67.8        68.1      135.8       68.3       68.6     136.9  0.83% 0.76% 0.80% 

ggam gam       67.8        67.9      135.7       68.1       67.1     135.2  0.46% -1.13% -0.34% 

ggam ggam       67.8        66.8      134.5       67.2       68.5     135.7  -0.86% 2.56% 0.84% 

ggam spl       67.8        67.9      135.7       67.8       68.5     136.3  0.04% 0.91% 0.48% 

spl exp       75.2        68.1      143.3       71.7       67.9     139.6  -4.63% -0.26% -2.55% 

spl weib       75.2        65.3      140.5       67.8       66.4     134.2  -9.76% 1.61% -4.48% 

spl gomp       75.2        64.0      139.1       66.4       66.9     133.3  -11.69% 4.66% -4.18% 

spl lnorm       75.2        67.9      143.1       71.7       67.5     139.2  -4.59% -0.56% -2.68% 

spl llogis       75.2        66.7      141.8       71.2       68.6     139.8  -5.32% 2.91% -1.45% 

spl gam       75.2        66.0      141.1       69.8       67.7     137.5  -7.21% 2.65% -2.60% 

spl ggam       75.2        64.6      139.7       66.8       66.0     132.8  -11.12% 2.18% -4.97% 

spl spl       75.2        66.4      141.6       69.9       67.6     137.4  -7.06% 1.73% -2.94% 

Abbreviations : exp : exponential ; weib : weibull ; gomp :gompertz ; lnorm : lognormal ; llogis : loglogistic ; gam : gamma ; ggam : 

generalised gamma ; MSM : multi-state model ; PFS : progression-free survival ; prePS : pre-progression mortality survival ; spl : spline 

hazard with one knot ; STM : state-transition model ; TTP : time to progression 
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Table 21 : Comparison of prediction between simplified STM vs. MSM – Gastric cancer dataset 

PFS/ 

TTP 
prePS Simplified STM MSM Relative difference (%) 

     PF  PD   LY   PF  PD   LY   PF  PD   LY  

exp exp       44.9        60.0      104.9       45.0       60.7     105.7  0.15% 1.23% 0.76% 

exp weib       44.9        58.8      103.8       44.2       59.6     103.8  -1.74% 1.35% 0.01% 

exp gomp       44.9        55.4      100.3       43.1       58.6     101.8  -4.05% 5.91% 1.45% 

exp lnorm       44.9        60.5      105.5       45.4       60.2     105.7  1.11% -0.46% 0.21% 

exp llogis       44.9        59.8      104.8       45.3       60.1     105.4  0.79% 0.50% 0.62% 

exp gam       44.9        59.3      104.2       44.5       59.9     104.4  -1.00% 1.09% 0.19% 

exp ggam       44.9        56.6      101.6       43.9       57.9     101.7  -2.42% 2.21% 0.16% 

exp spl       44.9        58.9      103.8       44.4       60.4     104.8  -1.21% 2.50% 0.89% 

weib exp       44.1        60.2      104.3       43.9       60.8     104.8  -0.38% 1.09% 0.47% 

weib weib       44.1        59.3      103.4       43.8       60.4     104.2  -0.66% 1.80% 0.75% 

weib gomp       44.1        56.7      100.8       43.4       57.8     101.2  -1.50% 1.83% 0.37% 

weib lnorm       44.1        60.6      104.7       44.9       60.7     105.6  1.83% 0.17% 0.87% 

weib llogis       44.1        60.1      104.2       44.4       59.8     104.2  0.61% -0.48% -0.02% 

weib gam       44.1        59.7      103.7       44.2       59.6     103.8  0.30% -0.08% 0.08% 

weib ggam       44.1        57.7      101.8       43.7       58.6     102.3  -0.93% 1.58% 0.50% 

weib spl       44.1        59.4      103.5       43.5       59.2     102.7  -1.25% -0.40% -0.76% 

gomp exp       43.7        60.3      104.0       45.4       59.8     105.1  3.79% -0.83% 1.11% 

gomp weib       43.7        59.5      103.2       44.2       59.5     103.7  1.13% -0.05% 0.45% 

gomp gomp       43.7        57.2      100.9       43.2       57.6     100.8  -1.05% 0.73% -0.04% 

gomp lnorm       43.7        60.7      104.4       45.3       60.3     105.6  3.57% -0.59% 1.15% 

gomp llogis       43.7        60.2      103.9       45.0       59.6     104.5  2.94% -1.05% 0.63% 

gomp gam       43.7        59.8      103.5       44.6       58.9     103.5  2.09% -1.53% 0.00% 

gomp ggam       43.7        58.1      101.8       43.4       59.2     102.7  -0.60% 1.91% 0.83% 

gomp spl       43.7        59.5      103.2       44.4       59.4     103.8  1.64% -0.24% 0.55% 

lnorm exp       67.9        54.3      122.2       56.3       58.2     114.4  -17.16% 7.17% -6.35% 

lnorm weib       67.9        50.2      118.1       52.4       55.5     107.9  -22.85% 10.47% -8.69% 

lnorm gomp       67.9        49.4      117.3       47.6       52.8     100.4  -29.95% 6.91% -14.43% 

lnorm lnorm       67.9        57.0      124.9       61.9       56.5     118.3  -8.89% -0.91% -5.25% 

lnorm llogis       67.9        54.2      122.2       57.3       57.0     114.4  -15.58% 5.14% -6.38% 

lnorm gam       67.9        51.4      119.3       55.6       55.6     111.2  -18.15% 8.20% -6.80% 

lnorm ggam       67.9        50.2      118.1       48.5       54.9     103.4  -28.65% 9.30% -12.52% 

lnorm spl       67.9        50.9      118.8       53.9       54.4     108.3  -20.65% 6.95% -8.83% 

llogis exp       64.9        55.2      120.1       53.1       57.4     110.5  -18.23% 4.04% -8.00% 

llogis weib       64.9        52.2      117.1       50.7       56.0     106.7  -21.93% 7.26% -8.92% 

llogis gomp       64.9        51.2      116.1       45.2       56.1     101.4  -30.35% 9.73% -12.68% 
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llogis lnorm       64.9        57.3      122.2       57.3       59.5     116.8  -11.72% 3.85% -4.41% 

llogis llogis       64.9        55.1      120.0       53.4       57.1     110.5  -17.72% 3.64% -7.91% 

llogis gam       64.9        53.1      118.0       50.7       57.4     108.2  -21.81% 8.13% -8.34% 

llogis ggam       64.9        51.9      116.8       47.1       55.1     102.1  -27.49% 6.13% -12.55% 

llogis spl       64.9        52.5      117.4       50.8       55.9     106.7  -21.71% 6.54% -9.09% 

gam exp       44.5        60.1      104.6       44.9       59.3     104.2  0.90% -1.33% -0.38% 

gam weib       44.5        59.1      103.6       44.5       58.9     103.4  0.05% -0.43% -0.22% 

gam gomp       44.5        56.2      100.7       43.4       58.3     101.7  -2.46% 3.70% 0.98% 

gam lnorm       44.5        60.6      105.0       45.6       60.8     106.4  2.60% 0.39% 1.32% 

gam llogis       44.5        60.0      104.5       44.5       59.1     103.5  0.00% -1.54% -0.88% 

gam gam       44.5        59.5      104.0       44.4       59.6     103.9  -0.23% 0.10% -0.04% 

gam ggam       44.5        57.3      101.7       43.4       58.3     101.7  -2.30% 1.73% -0.03% 

gam spl       44.5        59.2      103.7       44.3       59.9     104.2  -0.31% 1.14% 0.52% 

ggam exp       43.6        60.3      103.9       44.4       61.1     105.5  1.84% 1.28% 1.51% 

ggam weib       43.6        59.6      103.2       44.1       60.3     104.4  1.04% 1.30% 1.19% 

ggam gomp       43.6        57.4      101.0       43.2       58.1     101.3  -1.01% 1.21% 0.25% 

ggam lnorm       43.6        60.7      104.3       44.4       59.9     104.3  1.78% -1.34% -0.04% 

ggam llogis       43.6        60.2      103.9       43.9       59.5     103.4  0.58% -1.20% -0.45% 

ggam gam       43.6        59.8      103.5       43.9       60.2     104.1  0.55% 0.64% 0.60% 

ggam ggam       43.6        58.2      101.9       43.6       60.3     103.9  -0.07% 3.55% 2.00% 

ggam spl       43.6        59.6      103.2       44.2       59.4     103.6  1.24% -0.36% 0.32% 

spl exp       50.3        58.7      108.9       45.9       59.6     105.6  -8.64% 1.69% -3.08% 

spl weib       50.3        56.8      107.1       45.1       59.2     104.3  -10.36% 4.21% -2.63% 

spl gomp       50.3        55.0      105.2       43.1       57.5     100.6  -14.21% 4.53% -4.42% 

spl lnorm       50.3        59.7      110.0       47.9       60.3     108.2  -4.64% 1.02% -1.57% 

spl llogis       50.3        58.7      109.0       46.5       59.7     106.2  -7.53% 1.81% -2.50% 

spl gam       50.3        57.5      107.8       45.4       59.5     104.9  -9.68% 3.51% -2.64% 

spl ggam       50.3        55.6      105.9       43.7       57.7     101.3  -13.14% 3.63% -4.33% 

spl spl       50.3        57.4      107.7       45.4       58.6     103.9  -9.80% 2.09% -3.46% 

Abbreviations : exp : exponential ; weib : weibull ; gomp :gompertz ; lnorm : lognormal ; llogis : 

loglogistic ; gam : gamma ; ggam : generalised gamma ; MSM : multi-state model ; PFS : progression-

free survival ; prePS : pre-progression mortality survival ; spl : spline hazard with one knot ; STM : 

state-transition model ; TTP : time to progression 
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Table 22 : Comparison of prediction between simplified STM vs. MSM – Lung cancer dataset 

PFS/ 

TTP 
prePS Simplified STM MSM Relative difference (%) 

     PF  PD   LY   PF  PD   LY   PF  PD   LY  

exp exp       29.7        19.8        49.5       29.7       20.0       49.7  -0.06% 0.89% 0.32% 

exp weib       29.7        19.9        49.6       29.8       19.8       49.6  0.34% -0.35% 0.06% 

exp gomp       29.7        19.6        49.3       29.6       19.5       49.1  -0.47% -0.47% -0.47% 

exp lnorm       29.7        20.6        50.3       30.9       20.4       51.3  3.99% -0.90% 1.99% 

exp llogis       29.7        20.4        50.1       30.6       20.4       51.0  3.04% -0.07% 1.77% 

exp gam       29.7        19.9        49.6       29.8       20.0       49.9  0.51% 0.69% 0.58% 

exp ggam       29.7        19.6        49.3       29.7       19.6       49.3  0.14% -0.26% -0.02% 

exp spl       29.7        20.0        49.6       29.9       20.0       49.9  0.83% 0.02% 0.50% 

weib exp       29.2        20.0        49.2       29.4       20.4       49.7  0.62% 1.91% 1.15% 

weib weib       29.2        20.0        49.2       29.5       20.0       49.5  0.94% 0.21% 0.64% 

weib gomp       29.2        20.0        49.2       29.5       20.4       49.9  1.14% 2.13% 1.54% 

weib lnorm       29.2        20.3        49.5       29.4       20.3       49.7  0.61% -0.23% 0.26% 

weib llogis       29.2        20.3        49.5       29.5       20.3       49.8  1.11% -0.19% 0.57% 

weib gam       29.2        20.0        49.2       29.0       20.0       49.0  -0.70% 0.12% -0.37% 

weib ggam       29.2        20.0        49.2       29.3       20.2       49.5  0.20% 1.14% 0.58% 

weib spl       29.2        20.1        49.3       29.6       19.9       49.5  1.35% -0.92% 0.43% 

gomp exp       29.3        19.9        49.2       29.2       20.2       49.5  -0.18% 1.52% 0.51% 

gomp weib       29.3        20.0        49.3       29.2       20.3       49.5  -0.29% 1.51% 0.44% 

gomp gomp       29.3        19.9        49.1       29.4       20.2       49.6  0.39% 1.65% 0.90% 

gomp lnorm       29.3        20.5        49.8       29.9       20.4       50.3  2.18% -0.60% 1.03% 

gomp llogis       29.3        20.4        49.7       29.5       20.3       49.7  0.60% -0.63% 0.09% 

gomp gam       29.3        20.0        49.3       29.1       20.1       49.2  -0.53% 0.32% -0.19% 

gomp ggam       29.3        19.9        49.1       29.4       20.0       49.4  0.52% 0.55% 0.54% 

gomp spl       29.3        20.0        49.3       29.1       20.5       49.7  -0.56% 2.56% 0.71% 

lnorm exp       34.1        18.9        53.0       29.4       19.8       49.3  -13.55% 4.74% -7.02% 

lnorm weib       34.1        19.1        53.1       29.4       19.8       49.2  -13.82% 3.85% -7.47% 

lnorm gomp       34.1        18.4        52.5       29.3       19.8       49.2  -13.94% 7.69% -6.34% 

lnorm lnorm       34.1        20.3        54.4       29.6       20.6       50.2  -13.13% 1.44% -7.69% 

lnorm llogis       34.1        20.0        54.1       29.8       20.4       50.1  -12.65% 1.92% -7.26% 

lnorm gam       34.1        19.2        53.2       29.1       19.8       48.9  -14.56% 3.59% -8.03% 

lnorm ggam       34.1        18.6        52.6       29.5       20.0       49.5  -13.25% 7.38% -5.97% 

lnorm spl       34.1        19.5        53.5       29.4       20.5       49.9  -13.83% 5.34% -6.86% 

llogis exp       35.7        18.7        54.4       28.5       20.2       48.6  -20.19% 7.78% -10.56% 

llogis weib       35.7        18.9        54.5       29.0       20.4       49.4  -18.73% 8.13% -9.43% 

llogis gomp       35.7        18.4        54.1       28.8       20.7       49.5  -19.30% 12.33% -8.53% 
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llogis lnorm       35.7        20.1        55.8       29.7       20.7       50.4  -16.69% 2.91% -9.62% 

llogis llogis       35.7        19.8        55.4       29.1       20.4       49.5  -18.50% 3.31% -10.72% 

llogis gam       35.7        18.9        54.6       28.9       20.0       48.8  -19.05% 5.46% -10.55% 

llogis ggam       35.7        18.6        54.3       28.4       20.3       48.7  -20.44% 9.23% -10.27% 

llogis spl       35.7        19.3        54.9       28.6       20.4       49.0  -19.69% 5.70% -10.78% 

gam exp       29.2        20.0        49.2       29.1       20.4       49.5  -0.27% 1.63% 0.50% 

gam weib       29.2        20.1        49.3       29.1       20.3       49.4  -0.27% 0.89% 0.20% 

gam gomp       29.2        20.0        49.2       28.7       20.2       48.9  -1.71% 0.99% -0.61% 

gam lnorm       29.2        20.4        49.6       28.9       20.6       49.5  -0.95% 1.13% -0.09% 

gam llogis       29.2        20.4        49.6       29.4       20.0       49.4  0.69% -1.69% -0.29% 

gam gam       29.2        20.1        49.3       29.0       20.2       49.2  -0.57% 0.32% -0.21% 

gam ggam       29.2        20.1        49.3       29.0       20.3       49.2  -0.86% 0.84% -0.17% 

gam spl       29.2        20.3        49.5       29.3       20.3       49.7  0.36% 0.38% 0.37% 

ggam exp       29.2        20.0        49.2       29.3       19.9       49.2  0.27% -0.73% -0.14% 

ggam weib       29.2        20.1        49.3       29.5       20.3       49.8  0.93% 0.94% 0.94% 

ggam gomp       29.2        20.0        49.2       29.4       20.4       49.8  0.73% 1.90% 1.20% 

ggam lnorm       29.2        20.4        49.6       30.0       20.5       50.5  2.61% 0.89% 1.91% 

ggam llogis       29.2        20.4        49.6       30.0       20.3       50.3  2.73% -0.44% 1.42% 

ggam gam       29.2        20.1        49.3       29.7       20.2       49.9  1.77% 0.32% 1.18% 

ggam ggam       29.2        20.1        49.3       29.0       20.3       49.4  -0.60% 1.04% 0.07% 

ggam spl       29.2        20.3        49.5       29.2       19.9       49.1  -0.17% -1.83% -0.85% 

spl exp       30.1        19.7        49.8       29.4       19.9       49.4  -2.07% 0.93% -0.88% 

spl weib       30.1        19.8        49.8       29.6       19.9       49.5  -1.68% 0.72% -0.73% 

spl gomp       30.1        19.7        49.7       29.0       20.1       49.0  -3.64% 2.14% -1.35% 

spl lnorm       30.1        20.3        50.4       30.3       20.6       50.9  0.79% 1.42% 1.05% 

spl llogis       30.1        20.2        50.3       29.9       20.2       50.1  -0.38% 0.02% -0.22% 

spl gam       30.1        19.8        49.9       28.9       20.3       49.3  -3.80% 2.74% -1.20% 

spl ggam       30.1        19.7        49.7       29.1       20.0       49.1  -3.18% 1.46% -1.34% 

spl spl       30.1        20.0        50.1       30.2       19.9       50.1  0.51% -0.44% 0.13% 

Abbreviations : exp : exponential ; weib : weibull ; gomp :gompertz ; lnorm : lognormal ; llogis : 

loglogistic ; gam : gamma ; ggam : generalised gamma ; MSM : multi-state model ; PFS : progression-

free survival ; prePS : pre-progression mortality survival ; spl : spline hazard with one knot ; STM : 

state-transition model ; TTP : time to progression 
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Appendix 6 : PPS Chapter 

Figure 73 : Selected fit to PFS for each dataset 
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Appendix 7 : Review for key trials characteristics 

Key characteristics of trial data that are typically encountered within the HTA context 

Prior to setting out the design of the simulation study, it is important to understand the characteristics 

of trial data that are typically encountered within the HTA context in order to define plausible and 

realistic scenarios when evaluating the performance of the methods under investigation. This section 

presents the findings from a rapid review of NICE TAs of therapies for advanced/metastatic cancer. 

Objective of the review 

The primary aim of this rapid review is to identify the key characteristics of trial data which are 

observable and which may be deemed to influence the performance of methods that are typically 

encountered within the HTA context, in terms of: (i) the number of patients enrolled/randomised; (ii) 

the proportion of observed PFS events amongst enrolled/randomised patients which are either 

progression or death, and; (iii) the proportion of observed deaths amongst enrolled/randomised patients. 

The aim of this rapid review is to obtain a broad picture of the key characteristics of trials that are 

typically encountered within the HTA context in terms of the number of observed PFS and OS events 

to inform the data-generating mechanism. 

• Search and selection strategy 

The review focused on 30 NICE TAs of therapies for advanced/metastatic cancer. This review is limited 

to NICE appraisals to: (a) be reflective of trials encountered within the HTA context, and; (b) 

information which is publicly available. In addition, this rapid review is limited to key trials included 

in the company’s submission for the intervention, in which full details are available on the number of 

events and censoring. In order to keep the review manageable, summary information relating to trials 

included in indirect comparisons/meta-analyses undertaken by the company are not considered. 

A number of HTAs reported trial data from different data-cuts. Where possible, data from the most 

recent data-cut were extracted. Data from earlier data cut-offs were extracted when data on the number 

of observed PFS and OS events were not reported in the most up-to-date data-cut. In addition, a number 

of HTAs reported data from several trials for the intervention; these were extracted, where possible. 

• Findings from the rapid review 

Key study characteristics are summarised in Figure 74.  
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Figure 74: Key characteristics of the 68 study arms included in the review 

 

Abbreviations: OS: overall survival; PFS: progression-free survival
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Thirty-five trials were included in the 30 HTAs included in this review, from which data were extracted 

from 25 two-arm trials, 4 three-arm trials, with the remaining 6 trials being single trial arms, 

corresponding to a total of 68-trial study arms. The 30 HTAs included in this review are reported in 

Appendix 7. 

In summary: 

- The mean number of patients enrolled/randomised per arm was 276.1 (median: 240; range: 42-

872). 

- Median PFS was not reached in 5 trial arms (median reached in 63 trial arms). In trial arms 

where the median PFS was reached, the mean PFS amongst enrolled/randomised patients was 

7.16 months (median: 5.20; range: 0.9-42.20). 

- Median OS was not reached in 19 trial arms (reached in 49 trial arms). In trial arms where the 

median OS was reached, mean OS amongst enrolled/randomised patients was 17.12 months 

(median: 17.30; range: 3.80-35.50). 

- The mean proportion of observed PFS events amongst enrolled/randomised patients, where 

PFS is defined as either progression or death before progression was 68.34% (median: 70.78%, 

range: 16.81% - 98.51%). 

- The mean proportion of observed OS events amongst enrolled/randomised patients was 42.05% 

(median: 40.23%, range: 5.82% - 84.62%). 

- The ratio between the total number of deaths and PFS events (e.g. OS events divided by PFS 

events) was 59.15% (median: 61.91%, range: 13.33% - 91.76%). 

These findings are used to inform the scenarios examined in the simulation study. 
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Appendix 8 : AIC for model fit to TTP in the breast, prostate and lung datasets 

  Breast Prostate Lung 

Exponential 

   

2,088.8  

   

3,374.3  

   

2,953.1  

Weibull 

   

2,082.8  

   

3,375.1  

   

2,888.6  

Gompertz 

   

2,090.5  

   

3,376.3  

   

2,948.7  

LogNormal 

   

2,139.9  

   

3,456.2  

   

2,825.1  

LogLogistic 

   

2,070.8  

   

3,385.5  

   

2,808.2  

Gamma 

   

2,080.4  

   

3,375.3  

   

2,856.6  

GenGamma 

   

2,081.4  

   

3,377.0  

   

2,827.1  

Spline (one 

knot) 

   

2,060.3  

   

3,348.0  

   

2,808.8  

Spline (two 

knot) 

   

2,058.9  

   

3,347.4  

   

2,791.2  

Spline (three 

knot) 

   

2,060.9  

   

3,346.7  

   

2,793.8  

Spline (four 

knot) 

   

2,062.7  

   

3,344.8  

   

2,767.7  
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Appendix 9 : Calibrated parameters 

Scenario adm.coeff pps.coeff   Scenario adm.coeff pps.coeff 

1 12.478035 
-

3.4235992   28 27.520411 
-

4.6928649 

2 11.683833 
-

2.8708669   29 27.765966 
-

3.8389242 

3 11.011459 
-

2.2365854   30 29.340254 
-

3.1454755 

4 7.6568535 
-

3.6132046   31 114.66164 
-

5.6143098 

5 9.1357667 
-

2.9604047   32 108.11197 
-

4.8619237 

6 8.7772735 
-

2.3345744   33 105.24018 
-

4.2160072 

7 33.99621 
-

3.9937388   34 83.774822 
-

5.6664283 

8 33.542072 
-

3.4539686   35 83.16378 
-

4.7869728 

9 32.235189 
-

2.8724304   36 79.682677 
-

4.0554359 

10 27.878214 
-

4.1185211   37 11.876984 
-

4.6539933 

11 28.246922 
-

3.4263333   38 12.468284 
-

3.7227728 

12 28.066599 
-

2.8248406   39 11.520266 -2.980176 

13 112.13568 
-

5.2723776   40 9.4177451 
-

5.1906546 

14 102.3145 
-

4.6048834   41 8.0741347 
-

4.0171942 

15 104.74938 
-

4.1732336   42 8.7592819 
-

3.1272833 

16 88.350968 
-

5.2506728   43 34.095796 
-

4.9367239 

17 82.139651 
-

4.4866779   44 34.218473 
-

4.1399848 

18 83.566896 -4.007175   45 32.620622 
-

3.3111407 

19 12.061512 
-

4.0212744   46 26.533994 
-

5.2350521 

20 13.384992 
-

3.3275497   47 26.730997 
-

4.2340087 

21 11.721155 
-

2.6146696   48 29.020159 
-

3.4263114 

22 8.7270917 -4.467706   49 109.11841 
-

5.8010987 

23 7.9006853 
-

3.4345884   50 102.25587 
-

5.0071826 

24 8.5001327 
-

2.6346434   51 110.799 
-

4.4155695 

25 32.503319 
-

4.4275459   52 87.368408 
-

6.0459865 

26 34.650467 
-

3.8218342   53 79.572474 
-

5.0450773 

27 33.775418 
-

3.1084309   54 85.960616 
-

4.3419768 
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Appendix 10 : Simulated PFS and OS for the 54 Scenarios used in the Simulation study 
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Appendix 11 : Code used for the simulation study (to estimate health state sojourn time only) 

#################################################################################### 

# Please note that the code for the Li’s model is available on request to the original authors 

# The code used to generate the simulation scenarios is available on Request 

(r.rafia@sheffield.ac.uk) 

#################################################################################### 

rm(list=ls(all=TRUE)) # Clear console 

set.seed(15) ; id<-as.numeric(Sys.getenv("SGE_TASK_ID")); print(id); # Dataset number and set 

seed 

#setwd("~/Documents/Dataset[49]"); id<-50 # Test on a Scenario 49; Dataset 49 

Start <- Sys.time(); #Starting time 

 

######################################################################################### 

# Download required libraries and corrected function for mssample 

######################################################################################### 

library(robustbase);library(survival);library(flexsurv);library(copula);library(asaur);library

(mstate);library(MASS);library(optimx);library(coda);library(MCMCpack);library(boot);library(m

vtnorm);library(SurvCorr);library(triangle);library(data.table); 

source("_mssamplenew.R") # Download corrected version of mssample function 

 

######################################################################################### 

# Select Scenario and define key inputs (number of bootstrap, distribution considered…) 

######################################################################################### 

.Sc<-1 # 1 = Base case scenario (i.e selection based on plausibility); 2 = AIC scenario 

.nbBoot=1000; # Number of boostrap (probabilistic analysis) 

.qpfs=0.8; .qpd=0.5; # Utility values for PFS and PD used to calculate QALYs 

.mgin<-c(0.85,0.05) # Margins for visual fit and long term plausibility 

.name<-c("exp","weibull","gompertz","lnorm","llogis","gamma","gengamma"); # Spline excluded 

.np<-c(1,2,2,2,2,2,3); .np<-.np[1:length(.name)] # Spline excluded 

.thin=20; .burn=5000 # thining interval and burning period for Copula model 

 

######################################################################################### 

# Download dataset (240,000 patients), life table and inputs for long term plausibility 

######################################################################################### 

dataset<-read.table(paste0("dataset.txt"),skip=1); dataset<-as.data.frame(dataset); 

names(dataset)<-

c("empty","ID","age","response","pfs","pfstime","os","ostime","pfs.true","pfstime.true","os.tr

ue","ostime.true") ; 

 

lifetable<- read.csv("lifetable.csv", header=TRUE); 

lifetable$pool<-(lifetable$Male+lifetable$Female)/2;lifetable$pool<-1-exp(-lifetable$pool); 

lifetable$pool<--(log(1-lifetable$pool))/52;lifetable$pool<-1-exp(-lifetable$pool);lifetab<-

NULL;  

for (i in 0:100){lifetab2<-rep(lifetable$pool[i+1],52);lifetab<-c(lifetab,lifetab2)}; 

life_table<-c(lifetab,1); 

 

.input<-read.table(paste0("Input.txt"),skip=1); .input<-as.data.frame(.input); 

.plaus<-.input[,1:2];true.m<-.input[,3]; .truepfs<-true.m[1];.trueos<-true.m[2];.trueqaly<-

true.m[3] 

 

######################################################################################### 

# Select dataset, define cycle … 

######################################################################################### 

n_row_dat<-nrow(dataset);n_pat_dat<-n_row_dat/1000; 

start.dat<-1+(n_pat_dat*(id-1));end.dat<-n_pat_dat*id;dataset<-dataset[start.dat:end.dat,]; 

med.age<-median(dataset$age) # median age 

.LT<-life_table[round((med.age*52)):length(life_table)]; # life table to use (taken from median 

age observed in the trial) 

.lgp1<-length(.LT)+1; .lgp0<-length(.LT); # Define time horizon 

.sq<-seq(from=0, to = length(.LT), by=1) # Define cycle accross time horizon (ex 0,1,2,3,4,...10) 

.QTT<-c(t(matrix(rep(.sq,.nbBoot),nrow=.lgp1))) # cycle repeat for number of bootsrap (ex 

0,0,0,1,1,1,2,2,2,3,3,3,4,4,4....10,10,10) 

 

mailto:r.rafia@sheffield.ac.uk
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######################################################################################### 

# Generate datasets for TTP, PFS, OS, prePS and PPS (with or without covariate) 

######################################################################################### 

dataset$ttptime<-dataset$pfstime; dataset$ttp<-dataset$pfs 

dataset$ttp[dataset$pfstime==dataset$ostime&dataset$os==1]<-0 

dataset$prepstime<-dataset$pfstime; dataset$preps<-0 

dataset$preps[dataset$pfstime==dataset$ostime&dataset$os==1]<-1 

dataset$ppstime<-dataset$ostime-dataset$pfstime; dataset$pps<-dataset$os 

pps_data<-subset(dataset,dataset$pfs==1&dataset$ppstime>0) 

 

# Datasets are set up with 3 variables as time, event, covariate (if appropriate); # NA if no 

covariate 

pfs_data<-cbind(dataset$pfstime,dataset$pfs,rep(NA,length(dataset$pfs))) 

ttp_data<-cbind(dataset$ttptime,dataset$ttp,rep(NA,length(dataset$pfs))) 

os_data<-cbind(dataset$ostime,dataset$os,rep(NA,length(dataset$pfs))) 

preps_data<-cbind(dataset$prepstime,dataset$preps,rep(NA,length(dataset$pfs))) 

pps_data_NoCov<-cbind(pps_data$ppstime,pps_data$pps,rep(NA,length(pps_data$pps))) 

pps_data_Log<-cbind(pps_data$ppstime,pps_data$pps,log(pps_data$pfstime)) 

pps_data_NoLog<-cbind(pps_data$ppstime,pps_data$pps,pps_data$pfstime) 

 

######################################################################################### 

# Create matrix for general population mortality (diagnole with NA) – to be used later … 

######################################################################################### 

.SQT<-c(t(matrix(rep(.sq,.lgp1),nrow=.lgp1))) # cycle repeat for cycle duration (ex 

0,0,0,1,1,1,2,2,2,3,3,3,4,4,4....10,10,10) 

.Z<-sapply(1:.lgp0, function(expr){f<-.LT;y<-c(.LT[expr:.lgp0],rep(NA,(expr-1)))}) 

.Z<-cbind(.Z,rep(NA,.lgp0)) 

 

######################################################################################### 

# Variables used within mssample function 

######################################################################################### 

ntrans<-3;tmat<- transMat(list(c(2,3), 3, c()),names = c("progression-free", "progression", 

"death")) 

tmat2 <- transMat(x = list(c(2, 4), c(3), c(), c()),names=c("PFS", "prog","death after prog", 

"death without prog")) 

tt.ms<-.lgp1; tt.ms2<-seq(0,.lgp0,1); newtrans<-rep(1:ntrans,each=tt.ms); timeD<-

rep(tt.ms2,ntrans); 

preps.name<-rep(.name,length(.name)); 

ttp.name<-c(t(matrix(preps.name,nrow=length(.name)))); pfs.loop.msm.name<-

rbind(ttp.name,preps.name) 

preps.N<-rep(1:length(.name),length(.name)); ttp.N<-c(t(matrix(preps.N,nrow=length(.name)))); 

pfs.loop.msm<-rbind(ttp.N,preps.N) 

 

######################################################################################### 

# Start simulation – For a given dataset 

# Seven methods considered: 1) PSM, 2) unadjusted STM, 3) STM with PPS adjusted by log of TTP,  

# 4) STM with PPS adjusted by TTP (non-log scale), 5) MSM using mssample function, 6) Li’s model 

and 7) Fu’s model (Copula) 

######################################################################################### 

 

######################################################################################### 

# myTryCatch - Function to identify when a function return an error (available online)                               

# custom tryCatch to return result and warnings -- http://stackoverflow.com/a/24569739/2271856                

######################################################################################### 

myTryCatch <- function(expr) { 

  warn <- err <- NULL; value <- withCallingHandlers( 

    tryCatch(expr, error=function(e) { 

      err <<- e;NULL 

    }), warning=function(w) { 

      warn <<- w;invokeRestart("muffleWarning")}) 

  list(value=value, warning=warn, error=err) 

} 
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######################################################################################### 

# a.S.gp - Function to adjust a survival curve by general population mortality                               

# This function is applied to a number of column (for instance for 7 distributions or 1,000 

boostrapped survival function)                

######################################################################################### 

a.S.gp<-function(expr){ 

  vector_s<-Z<-Y<-NULL; #Set variables to NULL 

  vector_s<-expr 

  Z<-matrix(rep(.LT,ncol(vector_s)),ncol=ncol(vector_s)) 

  Y<- -log(vector_s);Y<-diff(Y); 

  Y[Y<0]<-0;Y[is.nan(Y)]<-0;Y[is.infinite(Y)]<-0; 

  Y<-pmax(Y,Z);Y<-1-exp(-Y);  

  Y<-1-Y 

  Y<-apply(Y,2,cumprod) 

  Y<-rbind(rep(1,ncol(vector_s)),Y) 

  return(Y) 

} 

 

######################################################################################### 

# zeroadd - Function to create diagonal for PPS matrix to use in STM 

# Also use for tmp.matNA below (to generate matrix with NA and zeroes) 

######################################################################################### 

zeroadd<-function(x,mat){ 

  f<-mat[,x] 

  y<-c(rep(0,x-1),f[1:(length(f)-x+1)])   

} 

 

tmp.matNA<-rbind(rep(NA,ncol(.Z)),.Z*NA) # Generate a matrix with only NA 

tmp.matNA<-sapply(1:.lgp1, zeroadd, tmp.matNA) # Transform matrix with zero in diagonale 

 

 

######################################################################################### 

# Some general functions used for survival – For spline model (excluded) 

# dmySpline, pmySpline, qmySpline, splinem 

# Generate survival distribution for a given distribution 

# Note: dat.S need to be of the form time, status, and covariate (NA if no covariate) 

######################################################################################### 

dmySpline <- function(.x, .gamma1, .gamma2, .gamma3, .knots1, .knots2, .knots3, ...)  

  dsurvspline(.x,gamma = c(.gamma1, .gamma2, .gamma3), knots = c(.knots1, .knots2, .knots3), 

...) 

 

pmySpline <- function(.x,.gamma1, .gamma2, .gamma3, .knots1, .knots2, .knots3, ...)  

  psurvspline(.x,gamma = c(.gamma1, .gamma2, .gamma3), knots = c(.knots1, .knots2, .knots3),...) 

 

qmySpline <- function(.x,.gamma1, .gamma2, .gamma3, .knots1, .knots2, .knots3, ...)  

  qsurvspline(.x,gamma = c(.gamma1, .gamma2, .gamma3), knots = c(.knots1, .knots2, .knots3),...) 

 

splinem<-function(dat.S){ 

  .dat<-.cov<-NULL; 

  .dat<-dat.S; .cov<-.dat[,3] 

  if(is.na(.cov[1])){ 

    flexsurvspline(Surv(.dat[,1], .dat[,2]) ~1,k=1,scale="odds") 

  }else{ 

    flexsurvspline(Surv(.dat[,1], .dat[,2]) ~.cov,k=1,scale="odds") 

  } 

} 

 

######################################################################################### 

# survm – Function to fit a specific survival distribution 

######################################################################################### 

survm<-function(.Distr, dat.S){ 

  .dat<-.cov<-.ds<-NULL 

  .ds<-.Distr;.dat<-dat.S;.cov<-.dat[,3] 

  if(is.na(.cov[1])){ 

    if(.ds=="mySpline"){splinem(.dat)}else{flexsurvreg(Surv(.dat[,1], .dat[,2]) ~ 1, dist=.ds)} 

  }else{ 

    if(.ds=="mySpline"){splinem(.dat)}else{flexsurvreg(Surv(.dat[,1], .dat[,2]) ~ .cov, 

dist=.ds)} 

  } 

} 
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######################################################################################## 

# Cdistr – Function to Catch single distributions that return an error that need to be rejected 

because 

# (a) lack of convergion for instance or (b) drop too quickly (inconsistency identified during 

testing) 

######################################################################################### 

Cdistr<-function(.Distr, dat.S){  

  .dat<-.ds<-X<-Y<-Z<-XX<-xx<-NULL 

  .dat<-dat.S;.ds<-.Distr; 

  X<-myTryCatch(survm(.ds, .dat)) 

  Y<-myTryCatch(normboot.flexsurvreg(X$value,B=1000, raw=T)) 

  if(is.null(Y$value)){Z="null"}else{Z=.ds} 

   

  #Added constraint to avoid distribution that produce distribution that drop too quickly 

(especially gengamma) 

   

  if(Z!="null"){ 

    XX<-survm(Z, .dat) 

    XX<-summary(object= XX,X = NULL,type = "survival", t = .sq, start = 0, ci = FALSE, tidy = 

FALSE); 

    XX<- XX[[1]]$est 

    xx<-abs(diff(XX));  xx<-max(xx) 

    if(xx<0.075){Z<-Z}else{Z="null"}   

  }else{Z="null"} 

  return(Z) 

} 

 

######################################################################################### 

# myCdistr – Function to return valid distribution for a given dataset 

######################################################################################### 

myCdistr<-function(dat.S){ 

  X<-.dat<-NULL 

  .dat<-dat.S 

  X<-unlist(lapply(.name,Cdistr,.dat)) 

  return(X) 

} 

 

######################################################################################### 

# sv.distr - Generate survival function for a given distribution 

# sv.aic - Generate AIC for a given distribution 

######################################################################################### 

sv.distr<-function(.Distr,dat.S){ 

  .dat<-.ds<-Y<-Z<-NULL 

  .dat<-dat.S;.ds<-.Distr; 

  if(.ds=="null"){Y<-rep(NA,.lgp1)}else{ 

    Z<-survm(.ds,.dat); 

    Y<-summary(object= Z,X = NULL,type = "survival", t = .sq, start = 0, ci = FALSE, tidy = 

FALSE); 

    Y<- Y[[1]]$est 

  } 

  return(Y) 

} 

 

sv.aic<-function(.Distr,dat.S){ 

  .dat<-.ds<-Y<-NULL 

  .dat<-dat.S;.ds<-.Distr; 

  if(.ds=="null"){Y<-NA}else{ 

    Y<-survm(.ds,.dat)$AIC 

  } 

  return(Y) 

} 

 

 

#ADDED  

CdistrALL2<-function(.Distr, dat.S){  

  .dat<-.ds<-X<-Y<-Z<-XX<-xx<-NULL 

  .dat<-dat.S;.ds<-.Distr; 

  X<-myTryCatch(survm(.ds, .dat)) 

  Y<-myTryCatch(normboot.flexsurvreg(X$value,B=1000, raw=T)) 

  if(is.null(Y$value)){Z="null"}else{Z=.ds} 

  #Added constraint to avoid distribution that produce distribution that drop too quickly 

(especially gengamma) 

  return(Z) 
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} 

 

 

myCdistr2<-function(dat.S){ 

  X<-.dat<-NULL 

  .dat<-dat.S 

  X<-unlist(lapply(.name,CdistrALL2,.dat)) 

  return(X) 

} 

######################################################################################### 

# .fitdist - Return survival function and AIC for all possible distributions (list[surv, AIC]) 

# .adjT = used as a variable for whether to adjust for general population or not (as some 

distributions dont need to) 

######################################################################################### 

.fitdist<-function(dat.S,.adjT){ 

  .dat<-.dd<-Y<-Z<-.adj<-NULL 

  .adj<-.adjT 

  .dat<-dat.S; 

  .dd<-myCdistr(.dat)  

  #ADDED FOLLOWING RUNNING 

  if(sum(.dd=="null")==7){.dd<-myCdistr2(.dat)}else{.dd<-.dd} 

Y<-sapply(.dd,sv.distr,.dat) 

  Z<-sapply(.dd,sv.aic,.dat) 

  if(.adj=="null"){Y<-Y}else{Y<-a.S.gp(Y)} 

  return(list(Y,Z)) 

} 

 

 

######################################################################################### 

# m.select.fit – Function used to identify survival distribution based on (a) visual fit, (b) 

plausibility and (c) AIC or AIC only 

######################################################################################### 

m.select.fit<-function(dat.S,.pred.sv,.clinpl,.bound){ 

.dat<-.pred.SV<-.clp<-.bd<-.pred.SV1<-.pred.SV2<-.tmp.time<-.rmNA<-.stp1<-.stp2<-.stp3<-.cr3<-

.cst<-.km<-.kmU<-.kmL<-n.with<-p.with<-r.with<-NULL; 

.dat<-dat.S; .pred.SV<-.pred.sv;  .clp<-unlist(.clinpl);  .bd<-.bound;   

.pred.SV1<-.pred.SV[[1]]; .pred.SV2<-.pred.SV[[2]]; nRowX<-nrow(.pred.SV1) 

.clp2<-unlist(.clp[2]); .clp1<-unlist(.clp[1]); .bd2<-unlist(.bd[2]); .bd1<-unlist(.bd[1]) 

   

  .tmp.time<-min(.clp2, nRowX); #Constraint to avoid error (used for when debugging) 

  #STEP 1 (a): Remove distribution that reaches 0 when expected survival around 10% 

  .rmNA<-.pred.SV1[.tmp.time,];.rmNA[.rmNA<0.0001]<-NA 

  #STEP 1 (b) If all distribution reaches 0, then remove constraint 

  if (sum(is.na(.rmNA))==length(.rmNA)){.rmNA<-rep(1,length(.rmNA))}; 

  .rmNA[!is.na(.rmNA)]<-1;  .rmNA<-t(matrix(rep(.rmNA,nRowX),ncol=nRowX));  .stp1<-.pred.SV1 

*.rmNA 

   

  #STEP 2: Visual fit (based on fit to KM - within CI) 

  .km<-survfit(Surv(.dat[,1],.dat[,2])~1,conf.int=TRUE);  

  .surv<-.km$surv;  .kmU<-.km$upper; .kmL<-.km$lower;  .kmtime<-round(.km$time) 

  # Constraint added because NA possible in KM at the end 

  .cst<-min(sum(!is.na(.kmtime)),sum(!is.na(.kmL)),sum(!is.na(.kmU)));  

  .kmU<-.kmU[1:.cst]; .kmL<-.kmL[1:.cst]; .kmtime<-.kmtime[1:.cst] 

   

  .tmpkm<-.stp1[.kmtime+1,] #ADD +1 because start at 1 not 0 

  .fL<-.tmpkm>=.kmL;  .fU<-.tmpkm<=.kmU;  n.with<-.fL+.fU; 

  p.with<-colSums(n.with==2)/nrow(n.with);  r.with<-min(.mgin[1],max(p.with,na.rm=TRUE)); 

  if(r.with!=.mgin[1]){r.with<-r.with*0.9} 

  s.with<-p.with>=r.with;  s.with[s.with==FALSE]<-NA;  s.with<-

t(matrix(rep(s.with,nRowX),ncol=nRowX)) 

  .stp2<-.stp1 *s.with 

   

  #STEP 3: Selection based on long-term prediction 

  .clp2<-min(.clp2,.lgp1); .tmp.pl<-.stp2[.clp2,];  

  m.y<-abs(.tmp.pl-.clp1)-.mgin[2];m.y<-pmax(0,ceiling(m.y/0.02));m.y<-min(m.y,na.rm=TRUE) 

  mgin.adj<-.mgin[2]+m.y*0.02; 

  .cr3<-(between(.tmp.pl,(.clp1-mgin.adj),(.clp1+mgin.adj))); .cr3[.cr3==FALSE]<-NA; 

.cr3.tmp<-.cr3 

  .cr3<-t(matrix(rep(.cr3.tmp,nRowX),ncol=nRowX)) 

  .stp3<-.stp2 *.cr3 

   

  #Constraint added for PFS (make sure PFS lower than expected OS) 

  if(is.null(.bd)){.tmpcr<-1; .tmpfs <-1}else{ 
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    .tmpcr<-NULL; OS.t<- .stp3[min(.bd2,.lgp1),]; OS.p<-.bd1; .tmpcr<-OS.t<OS.p; 

    if(sum(.tmpcr,na.rm=TRUE)==0){ .tmpcr<-(OS.t<OS.p+0.05)} # if none, increase range by 0.05 

(constraint in case) 

    if(sum(.tmpcr,na.rm=TRUE)==0){ .tmpcr<-(OS.t<OS.p+0.25)} # if none, then increase range by 

extreme (constraint in case) 

    if(sum(.tmpcr,na.rm=TRUE)==0){ .tmpcr<-(OS.t<OS.p+0.50)} # if none, then increase range by 

extreme (constraint in case) 

    .tmpfs<- .tmpcr 

    .tmpfs[.tmpfs==0]<-NA  } 

  .cr3.tmp<- .cr3.tmp*.tmpfs 

 #STEP 4 (Final): Select distribution based on AIC 

  .cr4<-.pred.SV2; .cr4[is.na(.cr3.tmp)]<-NA;   

   

  .base<-which((min(.cr4,na.rm=TRUE)==.cr4)=="TRUE") ;  .aic<-

which((min(.pred.SV2,na.rm=TRUE)==.pred.SV2)=="TRUE"); 

  .curv<-c(.base,.aic); return(.curv)} 

 

######################################################################################### 

# p.function.boot – Generate survival distribution for 1,000 boostrapped sample for a given 

distribution 

# adjT = variable for adjustment for gen pop mortality? 

######################################################################################### 

p.function.boot<-function(.Distr,dat.S,adjT){ 

  .ds<-.param<-.p<-.c<-.dat<-.d<-.e<-.adj<-NULL 

  .ds<-.Distr; .dat<-dat.S; .param<-par.boot(.ds,.dat); .adj<-adjT 

  if(.ds=="gengamma"){  

    .p<-do.call(paste0("p", .ds), list(.QTT,.param[,1],.param[,2],.param[,3]))}else if 

(.ds=="exp") { 

      .p<-do.call(paste0("p", .ds), list(.QTT,.param[,1]))} else if (.ds=="mySpline"){ 

        .p<-do.call(paste0("p", .ds), 

list(.QTT,.param[,1],.param[,2],.param[,3],.param[,4],.param[,5],.param[,6]))} else if 

  (.ds=="null"){ .p<-rep(NA,length(.LT))}else{.p<-do.call(paste0("p", .ds), 

list(.QTT,.param[,1],.param[,2]))} 

   

  .c<-1-t(matrix(.p, nrow = .nbBoot, ncol = .lgp1)) 

  .d<-cbind(sv.distr(.ds,.dat),.c) 

    if(.adj=="null"){.e<-.d}else{.e<-a.S.gp(.d)} 

  return(.e) 

}     

 

 

######################################################################################### 

# par.boot – Generate parameters for 1,000 boostrapped sample for a given distribution 

######################################################################################### 

par.boot<-function(.Distr,dat.S){ 

  .ds<-.dat<-X<-Y<-NULL 

  .ds<-.Distr;.dat<-dat.S 

  X<-survm(.ds,.dat) ;   Y<-normboot.flexsurvreg(X,B=.nbBoot, raw=T) 

  if(.ds=="mySpline"){Y<-cbind(Y,t(matrix(rep(X$knots,.nbBoot),ncol=.nbBoot)))}else{Y<-Y} 

  return(Y) 

} 

 

######################################################################################### 

# gen.tn – Function to generate survival distributions (deterministic + probabilitic) for PFS 

and OS (mostly) 

# Based on name of distribution, curve is selected based on plausility, and boostrapped curve 

are generated 

######################################################################################### 

gen.tn<-function(Tname){ 

  X<-.dat<-.clinP<-.limX<- Pred_x <- Selection_x <- dist_x<-.scenario1<-.scenario2<-.tname<-

.adjG<-NULL; .tname<-Tname 

   

  if(.tname=="pfs"){.dat<-pfs_data;.clinP<-.plaus[1,];.limX<-.plaus[3,];.adjG<-1}else 

if(.tname=="ttp"){ 

    .dat<-ttp_data;.clinP<-.plaus[2,];.limX<-NULL;.adjG<-"null"}else if(.tname=="os"){ 

      .dat<-os_data;.clinP<-.plaus[3,];.limX<-NULL;.adjG<-1}else if(.tname=="preps"){ 

        .dat<-preps_data;.clinP<-.plaus[4,];.limX<-NULL;.adjG<-1}else if(.tname=="pps"){ 

          .dat<-pps_data;.clinP<-.plaus[5,];.limX<-NULL;.adjG<-1}else{return(error)} 

   

  Pred_x <-.fitdist(.dat,.adjG) 

  # Select distribution for the base-case and scenario  analysis  

  Selection_x <-m.select.fit(.dat, Pred_x,.clinP,.limX) 

  dist_x<-.name[Selection_x]; 
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  # Boostrapped distribution (option selected to adjusted for general population mortality) 

  .scenario1<-p.function.boot(dist_x[1],.dat,.adjG);   .scenario2<-

p.function.boot(dist_x[2],.dat,.adjG) 

  return(list(.scenario1,.scenario2, dist_x)) 

} 

 

######################################################################################### 

# psm.mod – Run PSM (Approach 1) 

######################################################################################### 

psm.mod<-function(.i,os_mat,pfs_mat){ 

  pfst<-ost<-pfs.e<-os.e<-NULL 

  pfst<-pfs_mat[[.Sc]][,.i];ost<-os_mat[[.Sc]][,.i] 

  pfs.e<- pmin(pfst,ost) 

  os.e<- ost 

  psm<-cbind(pfs.e,os.e) 

} 

 

######################################################################################### 

# Functions specific to STMs and MSM 

######################################################################################### 

 

######################################################################################### 

# param.pp.mat - This function is used to transform parameters for PPS according to the covariate 

of time 

# .Distr = distribution 

# .parX = parameter for survival function with the covariate 

# .SQ_T = cycle 

######################################################################################### 

param.pp.mat<-function(.Distr,.parX,.SQ_T){ 

  .ds<-.param<-.SQ_T1<-NULL; 

  .ds<-.Distr;.param<-.parX;.SQ_T1<-.SQ_T 

  if(.ds=="exp"){ 

    par1<-.param[,1]*exp(.param[,2]*.SQ_T1);   par.s<-par1 

  }else if (.ds=="lnorm"){ 

    par1<-.param[,1]+.param[,3]*.SQ_T1;    par2<-.param[,2];     par.s<-cbind(par1,par2) 

  }else if(.ds=="gengamma"){ 

    par1<-.param[,1]+.param[,4]*.SQ_T1;     par2<-.param[,2];     par3<-.param[,3];     par.s<-

cbind(par1,par2,par3) 

  }else if(.ds=="mySpline"){ 

    par1<-.param[,1]+.param[,4]*.SQ_T1;     par2<-.param[,2];     par3<-.param[,3];    par.s<-

cbind(par1,par2,par3) 

  }else if(.ds=="null"){ 

    par<-NA 

  }else{ 

    par1<-.param[,1];    par2<-.param[,2]*exp(.param[,3]*.SQ_T1) ;     par.s<-cbind(par1,par2) 

  } 

} 

 

 

######################################################################################### 

# svCOLmat  - Generate survival distribution for each column in matrix - for instance .n = 1 

select 1:1500; .n=2 select 1501:3000 

# . Used because otherwise fail because of Spline 

######################################################################################### 

svCOLmat<-function(.i,.Distr,.parX){ 

  .param<-.ds<-.p<-.c<-.n<-NULL 

  .ds<-.Distr;   .n<-.i;   .param<-.parX[.n,] 

   

  if(.ds=="gengamma"){  

    .p<-do.call(paste0("p", .ds), list(.sq,.param[1],.param[2],.param[3]))}else if (.ds=="exp") 

{ 

      .p<-do.call(paste0("p", .ds), list(.sq,.param))} else if (.ds=="mySpline"){ 

        .p<-do.call(paste0("p", .ds), 

list(.sq,.param[1],.param[2],.param[3],.param[4],.param[5],.param[6]))} else if (.ds=="null"){  

.p<-rep(NA,.lgp1)}else{ .p<-do.call(paste0("p", .ds), list(.sq,.param[1],.param[2]))} 

  .c<-1-.p 

}    
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######################################################################################### 

# adj_gp_pps  -  Adjust for general population in matrix for PPS 

# .xp = vector for survival to adjust 

######################################################################################### 

adj_gp_pps<-function(.xp){ 

  .x<-adjtrans<-NULL; 

  .x<-.xp; 

  adjtrans<- -log(.x);adjtrans<-diff(adjtrans); 

  adjtrans[adjtrans<0]<-0;adjtrans[is.nan(adjtrans)]<-0;adjtrans[is.infinite(adjtrans)]<-0; 

  adjtrans<-pmax(adjtrans,.Z);adjtrans<-1-exp(-adjtrans);  

  adjtrans<-1-adjtrans 

  adjtrans<-apply(adjtrans,2,cumprod) 

  adjtrans<-rbind(rep(1,ncol(.x)),adjtrans) 

  return(adjtrans) 

} 

 

######################################################################################### 

# pps.matrix.gen - Generate matrix for PPS with zero in diagonale 

# PPS adjusted according to covariate 

######################################################################################### 

pps.matrix.gen<-function(.Distr,dat.S){ 

  .ds<-.dat<-X<-Z<-X1<-Y1<-Z1<-XX2<-XX3<-XX4<-NULL 

  .ds<-.Distr;.dat<-dat.S 

  X<-Cdistr(.ds,.dat) # catch distribution that fail? 

  if(X=="null"){Z="null"}else{Z=.ds} 

   

  if(Z=="null"){XX4<-tmp.matNA}else{  #if distribution not valid (then exclude) 

    X1<-survm(Z, .dat); 

    if(X1$ncovs==0){X1<-c(X1$res[,1],0)}else{X1<-X1$res[,1]} 

     

    X2<-rep(X1,.lgp1) # repeat parameter for length of LT * LT (for) 

    X2<-t(matrix(X2,nrow=length(X1))) 

     

    #Log covariate 

    #replace inf by 0 when in log scale 

    .cov<-.dat[,3] 

    if(is.na(.cov[1])){ 

      a.SQT<-.sq}else if (max(.cov)<10){ #Log dataset cannot be more than 10 (log 15000) 

        a.SQT<-log(.sq);a.SQT[is.infinite(a.SQT)]<-0}else{a.SQT<-.sq} 

     

    PAR_STORE<-param.pp.mat(Z,X2,a.SQT) 

    PAR_STORE<-as.matrix(PAR_STORE) 

    .k<-NULL 

    if(Z=="mySpline"){ 

      .k<-survm(Z,.dat)$knots 

      .k<-rep(.k,.lgp1) 

      .k<-t(matrix(.k,nrow=3)) 

      PAR_STORE<-cbind(PAR_STORE,.k) 

    } 

     

    XX2<-sapply(1:.lgp1,svCOLmat,Z,PAR_STORE) 

    XX3<-adj_gp_pps(XX2) 

    XX4<-sapply(1:.lgp1, zeroadd, XX3) 

  } 

} 

 

 

######################################################################################## 

# genOS.stm - Generate OS prediction for a given distribution, dataframe, PFS and PrePS 

# pfs.t = survival distribution for pfs 

# preps.t = survival distribution for preps 

# pps.t = Matrix for PPS 

######################################################################################### 

genOS.stm<-function(.i,pfs.t,preps.t,pps.t){ 

  pfs.t1<-preps.t1<-pps.t1<-NULL 

  pfs.t1<-pfs.t;preps.t1<-preps.t;pps.t1<-t(pps.t[[.i]]) 

  pps.t1[is.na(pps.t1)]<-1 

  pfs.d1<-c(0,abs(diff(pfs.t1))) #PFS difference 

    #STM1 (using prePS)  

  pd.d1<--log(preps.t1);pd.d1[is.infinite(pd.d1)]<-0;pd.d1<-c(abs(diff(pd.d1)));pd.d1<-1-exp(-

pd.d1); 

  pd.d1<-pfs.t1[1:(length(pfs.t1)-1)]*pd.d1;pd.d1<-c(0,pd.d1) 
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  pd.d1<-pmax(0,pfs.d1-pd.d1);pd.d1<- rep(pd.d1,length(pfs.t1));pd.d1<-

t(matrix(pd.d1,length(pfs.t1)));pd.d1<-t(pd.d1) 

  n.pd1<-pps.t1*pd.d1; 

  pd.e1<-(colSums(n.pd1));os.e1<-pfs.t1+pd.e1; 

  return(os.e1) 

} 

 

######################################################################################### 

# gen.pred.os -Generate STM for all distributions of OS 

# Take the first column for PFS and prepS (deterministic) 

# This function will be used to define which OS is plausible (to select the plausible PPS) 

# pfs.t, preps.t = survival distribution for pfs, preps (deterministic) 

# dat.S = PPS data 

# Return predicted OS and AIC 

######################################################################################### 

gen.pred.os<-function(pfs.t,preps.t,dat.S){ 

  .dat<-pfs.t1<-preps.t1<-pps.t1<-NULL 

  .dat<-dat.S; 

  #If prediction are in in a list   

  pfs.t1<-pfs.t[,1];  preps.t1<-preps.t[,1] 

  #Generate matrix for PPS for 7 distribution 

  #ADDED FOLLOWING RUNNING 

  .nameAD<-unlist(lapply(.name,Cdistr,.dat)) 

  if(sum(.nameAD=="null")==7){.nameAD<-myCdistr2(.dat)}else{.nameAD<-.nameAD} 

 

  mat.PPS<-lapply(.nameAD,pps.matrix.gen,.dat) 

  os.e2<-sapply(1:length(.nameAD),genOS.stm,pfs.t1,preps.t1,mat.PPS) 

  os.aic<-sapply(.nameAD,sv.aic,.dat) 

  return(list(os.e2,os.aic)) 

} 

######################################################################################### 

# fun.os.pred - This function is used to identify which distribution for PPS is the most 

plausible 

# given PFS and prePS 

######################################################################################### 

fun.os.pred<-function(dat.S,pfs.t,preps.t){ 

  dat.<-.cov<-dat.use<-.pfsT<-.prepsT<- Pred_x<- Select_x<-os.data<- Dist_x<-NULL 

  .dat<-dat.S; .cov<-.dat[,3] 

  .pfsT<-pfs.t; .prepsT<-preps.t 

  Pred_x<-gen.pred.os(.pfsT,.prepsT,.dat) 

   

  #SELECT DISTRIBUTION FOR BASE AND SCENARIO   

  Select_x<-m.select.fit(os_data, Pred_x,.plaus[3,],NULL) 

  Dist_x<-.name[Select_x]; 

  return(Dist_x) 

} 

 

######################################################################################### 

# stmgen - This function is used to generate prediction for the STM for for each bootstap sample 

# for a selected distribution (which would have been selected beforehand) 

# .cycle = value of the coavriate of cycle of time (for ex 1,2,3,4....)or in log scale 

# parB = boostrapped parameters (for ex 1000 row of parameters) 

######################################################################################### 

stmgen<-function(.i,parX,cycle,pfs.t,preps.t,.Distr){ 

  pfs.t1<-preps.t1<-.ds<-parN<-g<-PAR_STORE<-.cyc<-pps.t1<-os.e<-NULL 

  pfs.t1<-pfs.t[,.i]; preps.t1<-preps.t[,.i]; .ds<-.Distr; parN<-parX ; .cyc<-cycle 

  XX<-parN[.i,] #Parameters 

  X2<-rep(XX,.lgp1) 

  X2<-t(matrix(X2,nrow=length(XX))) 

   

  PAR_STORE<-param.pp.mat(.ds,X2,.cyc);  PAR_STORE<-as.matrix(PAR_STORE) 

  .k<-NULL;  if(.ds=="mySpline"){ .k<-survm(.ds,.dat)$knots;     .k<-rep(.k,.lgp1);    .k<-

t(matrix(.k,nrow=3))  } 

   

  pps.t1<-sapply(1:.lgp1,svCOLmat,.ds,PAR_STORE) 

  pps.t1<-matrix(pps.t1,nrow=.lgp1,ncol=.lgp1) 

  pps.t1<-adj_gp_pps(pps.t1); # Adjust general population mortality 

  pps.t1<-sapply(1:.lgp1, zeroadd, pps.t1) 

  os.e<-genOS.stm2(pfs.t1,preps.t1,pps.t1) 

  return(os.e) 

} 
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######################################################################################### 

# genOS.stm2 – Generate a single STM for a given PFS, PrePS and PPS curve 

######################################################################################### 

genOS.stm2<-function(pfs.t,preps.t,pps.t){ 

  pps.t1<-preps.t1<-pfs.t1<-pd.d1<-pd.e1<-os.e1<-pd.d1<-NULL 

  pfs.t1<-pfs.t;preps.t1<-preps.t;pps.t1<-t(pps.t) 

  pps.t1[is.na(pps.t1)]<-1 

  pfs.d1<-c(0,abs(diff(pfs.t1))) #PFS difference 

   

  #STM1 (using prePS)  

  pd.d1<--log(preps.t1);pd.d1[is.infinite(pd.d1)]<-0;pd.d1<-c(abs(diff(pd.d1)));pd.d1<-1-exp(-

pd.d1); 

  pd.d1<-pfs.t1[1:(length(pfs.t1)-1)]*pd.d1;pd.d1<-c(0,pd.d1) 

  pd.d1<-pmax(0,pfs.d1-pd.d1);pd.d1<- rep(pd.d1,length(pfs.t1));pd.d1<-

t(matrix(pd.d1,length(pfs.t1)));pd.d1<-t(pd.d1) 

  n.pd1<-pps.t1*pd.d1; 

  pd.e1<-(colSums(n.pd1));os.e1<-pfs.t1+pd.e1; 

  return(cbind(pfs.t1,os.e1)) 

} 

 

######################################################################################### 

# stm.mod – Generate prediction for STM model (depending on data, PPS will be adjusted or not 

by the covariate) 

######################################################################################### 

stm.mod<-function(dat.S,pfs.t,preps.t){ 

  .dat<-pfs.t1<-preps.t1<-NULL 

  pfs.t1<-pfs.t[[.Sc]];   preps.t1<-preps.t[[.Sc]];   .dat<-dat.S 

  #Step 1 identify distribution to select for base-case and scenario 

  selectdist.pps<-fun.os.pred(.dat,pfs.t1,preps.t1) 

  #SELECT DISTRIBUTION FOR GIVEN SCENARIO 

  .ds<-selectdist.pps[.Sc] 

  #Start with base-case 

  Z<-survm(.ds,.dat);  B<-normboot.flexsurvreg(Z,B=.nbBoot, raw=T);   H<-rbind(Z$res[,1],B) 

  if(Z$ncovs==0){H<-cbind(H,rep(0,nrow(H)))}else{H<-H} 

  .cov<-.dat[,3] # Covariate 

  if(is.na(.cov[1])){a.SQT<-.sq}else if (max(.cov)<10){a.SQT<-

log(.sq);a.SQT[is.infinite(a.SQT)]<-0}else{ a.SQT<-.sq} 

  XX6<-sapply(1:nrow(H),stmgen,H,a.SQT,pfs.t1,preps.t1,.ds) 

  return(XX6) 

}   

 

######################################################################################### 

# Functions specific to MSMs 

######################################################################################### 

 

######################################################################################### 

# approx_mssample - Generate approximation for MSM for a given PPS, TTP and prePS (similar to 

STM) 

######################################################################################### 

approx_mssample<-function(pps.t,ttp.t,preps.t){ 

  LY_e <-OS_e <-PFS_e <-pd.e3<-n.pd3<-pfs.t3<-pd.d3<-preps.msm<-ttp.msm<-mat.pps<-NULL; 

  preps.msm<-preps.t; preps.msm<-diff(preps.msm); 

  ttp.msm<-ttp.t; ttp.msm<-diff(ttp.msm);  

  pfs.t3<-ttp.msm+preps.msm;     

  pfs.t3<-1-exp(-pfs.t3); pfs.t3<-cumprod(1 - pfs.t3); pfs.t3<-c(1,pfs.t3);mat.pps<-t(pps.t) 

  pfs.d3<-c(0,abs(diff(pfs.t3)));ttp.dy<-ttp.msm; preps.dy<-preps.msm #Number of progressors 

(usin prePS) 

  pd.d3<-ttp.dy/(ttp.dy+preps.dy);pd.d3[is.nan(pd.d3)]<-0;pd.d3<-c(0,pd.d3);pd.d3<-

pd.d3*pfs.d3 

  pd.d3<- rep(pd.d3,length(ttp.t)); pd.d3<-t(matrix(pd.d3,length(ttp.t))); pd.d3<-t(pd.d3) 

  n.pd3<-mat.pps*pd.d3;pd.e3<-(colSums(n.pd3)) 

  OS_e<-pfs.t3+pd.e3; PFS_e<-pfs.t3 

  LY_e<-cbind(PFS_e,OS_e) 

  return(LY_e) 

} 
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######################################################################################## 

# genapprox - Generate predictions for approximation method (for probabilitic for a given 

bootstrap) for 1,000 bootstrapped 

######################################################################################### 

genapprox<-function(.i,ttp.t,preps.t,pps.t){ 

  ttpt1<-prepst1<-ppst1<-XX3<-XX4<-mssamp_app1<-NULL 

  ttpt1<-ttp.t[,.i]   

  prepst1<-preps.t[,.i]   

  ppst1<-exp(-pps.t[,.i]) 

  ppst1<-rep(ppst1,.lgp1) 

  ppst1<-matrix(ppst1,ncol=.lgp1) 

   

  XX3<-adj_gp_pps(ppst1) 

  XX4<-sapply(1:.lgp1, zeroadd, XX3) 

  mssamp_app1<-approx_mssample(XX4,ttpt1,prepst1) 

  return(mssamp_app1) 

} 

 

######################################################################################### 

# msm.pfs - Generate PFS to look at combination of TTP and prePS that are acceptable 

# . d= combination of TTP and prePS (49 combination here) 

# 1,000 sample used here as PFS is shortish 

######################################################################################### 

 

msm.pfs<-function(.i,.d,ttp.t,preps.t){ 

  .dS<-ttp.x<-preps.x<-pps.x<-cumHaz<-Haz<-stateprobsT1<-pfs.e<-NULL 

  .dS<-.d[,.i];   ttp.x<-ttp.t[,.dS[1]];   preps.x<-preps.t[,.dS[2]] 

  pps.x<-(1-pexp(.sq,exp(-2))) #Arbirtrary PPS assumed (short for speed) 

   

  if(is.na(preps.x[2])|is.na(ttp.x[2])){pfs.e<-rep(NA,.lgp1)}else{ 

    cumHaz<-c(ttp.x,preps.x,preps.x); Haz<-cumHaz; Haz[!is.finite(Haz)]<-0; 

    Haz<-cbind(time=as.vector(timeD),Haz=as.vector(Haz),trans=as.vector(newtrans)); Haz<-

as.data.frame(Haz) 

    stateprobsT1 <- MSsample.new(Haz=Haz,trans=tmat2,tvec=tt.ms2,clock="reset", M=1000) 

    pfs.e<- stateprobsT1$pstate1 

  } 

  return(pfs.e) 

} 

 

######################################################################################### 

# msm.os – Generate OS prediction for 7 combinations 

# generate OS to look at what PPS is acceptable 

# 10,000 samples used (as otherwise some inconsistencies) 

######################################################################################### 

msm.os<-function(.i,.d,ttp.t,preps.t,pps.t){ 

  .dS<-ttp.x<-preps.x<-pps.x<-cumHaz<-Haz<-stateprobsT1<-pfs.e<-NULL 

  .dS<-.i;   ttp.x<-ttp.t;   preps.x<-preps.t;   pps.x<-pps.t[,.dS]  

    if(is.na(pps.x[2])){os.e<-rep(NA,.lgp1)}else{ 

    cumHaz<-c(ttp.x,preps.x, pps.x); Haz<-cumHaz; Haz[!is.finite(Haz)]<-0; 

    Haz<-cbind(time=as.vector(timeD),Haz=as.vector(Haz),trans=as.vector(newtrans)); Haz<-

as.data.frame(Haz) 

    stateprobsT1 <- MSsample.new(Haz=Haz,trans=tmat2,tvec=tt.ms2,clock="reset", M=10000) 

    os.e <- 1-(stateprobsT1$pstate3+stateprobsT1$pstate4) 

  } 

  return(os.e) 

} 

 

######################################################################################### 

# msm.all - Run the multistate (deterministic only) 

# prediction for both PFS and OS 

# 10,000 used (as otherwise some inconsistencies) 

######################################################################################### 

msm.all<-function(ttp.t,preps.t,pps.t){ 

  ttp.x<-preps.x<-pps.x<-cumHaz<-Haz<-stateprobsT1<-pfs.e<-NULL 

  ttp.x<-ttp.t[,1];  preps.x<-preps.t[,1] ;   pps.x<-pps.t[,1]  

  cumHaz<-c(ttp.x,preps.x,pps.x); Haz<-cumHaz; Haz[!is.finite(Haz)]<-0; 

  Haz<-cbind(time=as.vector(timeD),Haz=as.vector(Haz),trans=as.vector(newtrans)); Haz<-

as.data.frame(Haz) 

  stateprobsT1 <- MSsample.new(Haz=Haz,trans=tmat2,tvec=tt.ms2,clock="reset", M=10000) 

  pfs.e<- stateprobsT1$pstate1 

  os.e <- 1-(stateprobsT1$pstate3+stateprobsT1$pstate4) 

  pred.e<-cbind(pfs.e,os.e) 

  return(pred.e)} 
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######################################################################################### 

# MSM.mod – Wrapper MSM function 

######################################################################################### 

MSM.mod<-function(){ 

  ttp.fit<-preps.fit<-pps.fit<-d_ttp.msm1<-d_preps.msm1<-d_pps.msm1<-d_ttp_boot<-

d_preps_boot<-d_pps_boot<-NULL 

  ttp.fit<-.fitdist(ttp_data,"null") # no adjustment for gen pop 

  preps.fit<-.fitdist(preps_data,1) # adjusted for gen pop 

  pps.fit<-.fitdist(pps_data_NoCov,1) # adjusted for gen pop 

#AIC scenario   

  aic.ttp<-ttp.fit[[2]];   aic.preps<-preps.fit[[2]] ;   aic.pps<-pps.fit[[2]] 

  ttp.aic<-c(t(matrix(rep(aic.ttp,length(aic.ttp)),nrow=length(aic.ttp)))) 

  preps.aic<-rep(aic.preps,length(aic.preps)); aic.msm.pfs<-rbind(ttp.aic,preps.aic) ; 

aic.msm.pfs<-colSums(aic.msm.pfs,na.rm = FALSE) 

   

  if(.Sc==1){ # Base-case 

    #adjustment to make sure no NA, and curve is decreasing (for Scenario 1 only) 

    Trans1Cum1<- -log(ttp.fit[[1]]);Trans1Cum1<-diff(Trans1Cum1);Trans1Cum1[Trans1Cum1<0]<-0; 

    Trans1Cum1[is.nan(Trans1Cum1)]<-0;Trans1Cum1[is.infinite(Trans1Cum1)]<-

0;Trans1Cum1[Trans1Cum1<0]<-0; 

    Trans1Cum1<-rbind(rep(0,ncol(Trans1Cum1)),apply(Trans1Cum1, 2, cumsum)); 

     

    Trans2Cum1<- -log(preps.fit[[1]]);Trans2Cum1<-diff(Trans2Cum1);Trans2Cum1[Trans2Cum1<0]<-

0; 

    Trans2Cum1[is.nan(Trans2Cum1)]<-0;Trans2Cum1[is.infinite(Trans2Cum1)]<-

0;Trans2Cum1[Trans2Cum1<0]<-0; 

    Trans2Cum1<-rbind(rep(0,ncol(Trans2Cum1)),apply(Trans2Cum1, 2, cumsum)); 

     

    Trans3Cum1<- -log(pps.fit[[1]]);Trans3Cum1<-diff(Trans3Cum1);Trans3Cum1[Trans3Cum1<0]<-0; 

    Trans3Cum1[is.nan(Trans3Cum1)]<-0;Trans3Cum1[is.infinite(Trans3Cum1)]<-

0;Trans3Cum1[Trans3Cum1<0]<-0; 

    Trans3Cum1<-rbind(rep(0,ncol(Trans3Cum1)),apply(Trans3Cum1, 2, cumsum)); 

     

    #Generate prediction for PFS (based on TPP and preps) for all combinations 

    pred_pfs_msm<-sapply(1:length(ttp.N),msm.pfs,pfs.loop.msm,Trans1Cum1,Trans2Cum1)   

    pred_pfs_msm<-list(pred_pfs_msm,aic.msm.pfs) 

    select.pfs.msm<-m.select.fit(pfs_data,pred_pfs_msm,.plaus[1,],.plaus[3,]) 

     

    d_pfs.msm<-pfs.loop.msm.name[,select.pfs.msm];     d_ttp.msm1<-d_pfs.msm[1,1];     

d_preps.msm1<-d_pfs.msm[2,1] 

    # Select distribution 

    ttp.msm.os<-Trans1Cum1[,d_ttp.msm1] 

    preps.msm.os<-Trans2Cum1[,d_preps.msm1] 

    #Now lets identify the distribution that provide OS given TTP and PREPS 

    pred_os_msm<-sapply(1:length(.name),msm.os,.name,ttp.msm.os,preps.msm.os,Trans3Cum1)   

    pred_os_msm<-list(pred_os_msm,aic.pps) 

    select.os.msm<-m.select.fit(os_data,pred_os_msm,.plaus[3,],NULL) 

    d_pps.msm1<-.name[select.os.msm[1]] 

  }else{ # AIC scenario 

    x1<-ttp.fit[[2]];     .aic1<-which((min(x1,na.rm=TRUE)==x1)=="TRUE");     d_ttp.msm1<-

.name[.aic1] 

    x2<-preps.fit[[2]];     .aic2<-which((min(x2,na.rm=TRUE)==x2)=="TRUE");     d_preps.msm1<-

.name[.aic2] 

    x3<-pps.fit[[2]] ;     .aic3<-which((min(x3,na.rm=TRUE)==x3)=="TRUE");    d_pps.msm1<-

.name[.aic3] 

  } 

  d_ttp_boot<-p.function.boot(d_ttp.msm1,ttp_data,"null") 

  d_preps_boot<-p.function.boot(d_preps.msm1,preps_data,1) 

  d_pps_boot<-p.function.boot(d_pps.msm1,pps_data_NoCov,1) 

  tCum1<-NULL;tCum2<-NULL;tCum3<-NULL 

  tCum1<- -log(d_ttp_boot);tCum1<-diff(tCum1);tCum1[tCum1<0]<-0; 

  tCum1[is.nan(tCum1)]<-0;tCum1[is.infinite(tCum1)]<-0;tCum1[tCum1<0]<-0; 

  tCum1<-rbind(rep(0,ncol(tCum1)),apply(tCum1, 2, cumsum)); 

  tCum2<- -log(d_preps_boot);tCum2<-diff(tCum2);tCum2[tCum2<0]<-0; 

  tCum2[is.nan(tCum2)]<-0;tCum2[is.infinite(tCum2)]<-0;tCum2[tCum2<0]<-0; 

  tCum2<-rbind(rep(0,ncol(tCum2)),apply(tCum2, 2, cumsum)); 

  tCum3<- -log(d_pps_boot);tCum3<-diff(tCum3);tCum3[tCum3<0]<-0; 

  tCum3[is.nan(tCum3)]<-0;tCum3[is.infinite(tCum3)]<-0;tCum3[tCum3<0]<-0; 

  tCum3<-rbind(rep(0,ncol(tCum3)),apply(tCum3, 2, cumsum)); 

  xy<-c(msm.all(tCum1,tCum2,tCum3)) #deterministic 

  # probabilitic (2:1001) 

  xy1<-sapply(2:ncol(tCum1),genapprox,tCum1,tCum2,tCum3);   xy2<-cbind(xy,xy1) 

  return(xy2)} 
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######################################################################################### 

# Functions specific to Li’s model (2015) 

######################################################################################### 

[The original code is available on request to the Authors (Li et al, 2015)] 

The code was adapted for this thesis 
 

######################################################################################### 

# Functions specific to Fu’s model (2013) – Copula model 

######################################################################################### 

 

######################################################################################### 

# fun.transform.init.param – Function to transform initial parameter (to help with convergence) 

######################################################################################### 

fun.transform.init.param<-function(.dist,parm){ 

  .ds<-.par<-x<-NULL ;   .ds<-.dist;.par<-parm 

  if(.ds=="gengamma"|.ds=="mySpline"){x<-1/exp(.par)}else if(.ds=="gompertz"){ 

    par1<-.par[1];par2<-.par[2];x<-c(exp(par1),1/par2)}else{x<-1/.par} 

} 

 

######################################################################################### 

# fun.transform.param – Function to transform back parameters 

######################################################################################### 

fun.transform.param<-function(.dist,parm){ 

  .ds<-.par<-x<-NULL 

  .ds<-.dist;.par<-parm 

  if(.ds=="gengamma"){x<-log(1/.par)}else if(.ds=="gompertz"){ 

    if(is.null(ncol(.par))){par1<-.par[1];par2<-.par[2];x<-c(log(par1),1/par2)}else{par1<-

.par[,1];par2<-.par[,2]; 

x<-cbind(log(par1),1/par2)}}else if (.ds=="mySpline"){ 

      if(is.null(ncol(.par))){par1<-.par[1];par2<-.par[2];par3<-.par[3];par4<-.par[4];par5<-

.par[5];par6<-.par[6]; 

x<-c(log(1/par1),log(1/par2),log(1/par3),1/par4,1/par5,1/par6)}else{par1<-.par[,1];par2<-

.par[,2];par3<-.par[,3]; 

par4<-.par[,4];par5<-.par[,5];par6<-.par[,6];x<-

cbind(log(1/par1),log(1/par2),log(1/par3),1/par4,1/par5,1/par6)} 

    }else{x<-1/.par}} 

 

######################################################################################### 

# fun.init.parm – Function to estimate initial parameters 

######################################################################################### 

fun.init.parm<-function(.dist,time,status){ 

  knot<-x<-par<-par.T<-.ds<-.time<-.status<-NULL 

  .ds<-.dist;.time<-time;.status<-status 

  if(.ds=="mySpline"){ 

    x<-  flexsurvspline(Surv(.time,.status)~1,k=1,scale="odds"); knot<-x$knots}else{ x<-

flexsurvreg(Surv(.time,.status)~1,dist=.ds)} 

  par<-fun.transform.init.param(.ds,x$res[,1]);   par.T<-c(par,1/knot)} 

 

######################################################################################### 

# param.i – Function to define the initial parameters for the marginal selected – Otherwise 

error message 

######################################################################################### 

param.i<-function(.dist){ 

  .ds<-x<-NULL;   .ds<-.dist 

  if(.ds=="exp"){ 

    x<-list(rate=0.05)}else if(.ds=="weibull"){ 

      x<-list(shape=0.1, scale=1)}else if (.ds=="gompertz"){ 

        x<-list(shape=0, rate=1)}else if (.ds=="lnorm"){ 

          x<-list(meanlog=1, sdlog=1)}else if (.ds=="llogis"){ 

            x<-list(shape=1, scale=1)}else if (.ds=="gamma"){ 

              x<-list(shape=0, rate=1)}else if (.ds=="gengamma"){ 

                x<-list(mu=0, sigma=1, Q=1)}else if (.ds=="mySpline"){ 

                  x<-list(.gamma1=0.05, .gamma2=0.05, .gamma3=0.05, .knots1=1, .knots2=1, 

.knots3=1)}else { 

                    x<-"error"}  } 
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######################################################################################### 

# dfunction – Density function to use 

######################################################################################### 

dfunction<-function(.dist,p.ar,ve.c){ 

  .ds<-NULL;   .ds<-.dist 

  if(.ds=="gengamma"){  

    x<-do.call(paste0("d", .ds), list(ve.c,p.ar[1],p.ar[2],p.ar[3]))}else if (.ds=="exp") { 

      x<-do.call(paste0("d", .ds), list(ve.c,p.ar[1]))} else if (.ds=="mySpline"){ 

        x<-do.call(paste0("d", .ds), 

list(ve.c,p.ar[1],p.ar[2],p.ar[3],p.ar[4],p.ar[5],p.ar[6]))} else { 

          x<-do.call(paste0("d", .ds), list(ve.c,p.ar[1],p.ar[2])) 

        } 

} 

 

 

######################################################################################### 

# pfunction – probability function to use 

######################################################################################### 

pfunction<-function(.dist,p.ar,ve.c){ 

  .ds<-NULL 

  .ds<-.dist 

  if(.ds=="gengamma"){  

    x<-do.call(paste0("p", .ds), list(ve.c,p.ar[1],p.ar[2],p.ar[3]))}else if (.ds=="exp") { 

      x<-do.call(paste0("p", .ds), list(ve.c,p.ar[1]))} else if (.ds=="mySpline"){ 

        x<-do.call(paste0("p", .ds), 

list(ve.c,p.ar[1],p.ar[2],p.ar[3],p.ar[4],p.ar[5],p.ar[6]))} else { 

          x<-do.call(paste0("p", .ds), list(ve.c,p.ar[1],p.ar[2])) 

        } 

} 

 

######################################################################################### 

# qfunction – probability function to use 

######################################################################################### 

qfunction<-function(.dist,p.ar,ve.c){ 

  .ds<-NULL 

  .ds<-.dist 

  if(.ds=="gengamma"){  

    x<-do.call(paste0("q", .ds), list(ve.c,p.ar[1],p.ar[2],p.ar[3]))}else if (.ds=="exp") { 

      x<-do.call(paste0("q", .ds), list(ve.c,p.ar[1]))} else if (.ds=="mySpline"){ 

        x<-do.call(paste0("q", .ds), 

list(ve.c,p.ar[1],p.ar[2],p.ar[3],p.ar[4],p.ar[5],p.ar[6]))} else { 

          x<-do.call(paste0("q", .ds), list(ve.c,p.ar[1],p.ar[2])) 

        } 

} 

 

######################################################################################### 

# wrapper.copula – Generate copula paremeters and parameters for marginals for TTP and OS 

# Adapted from Fu et al (2013 

######################################################################################### 

wrapper.copula<-function(ttp.dist,os.dist){ 

.dttp<-.dos<-.dat<-init.pam<-dnX<-npar1<-npar1<-npar2<-par1<-par2<-par3<-par.c1<-par.c2<-

par.c<-par.all<- E.myCop.norm<-NULL 

dnX<-npar1<-npar2<-.npar1<-.npar2<-.npar3<-.tpar1<-.tpar2<-.tpar<-cop.est<-.dat<-init.pam<-

dn1<-dn2<-dn<-p1<-p2<- cop.est<-NULL 

  .dttp<-ttp.dist;.dos<-os.dist 

  #Set data up (censor for TTP) 

  .dat<-dataset 

  .dat<-cbind(.dat$pfstime,.dat$ostime,.dat$pfs,.dat$os) ;   .dat<-as.data.frame(.dat); 

names(.dat)<-c("PD","OS","delta","xi") 

  .dat$delta[.dat$PD==.dat$OS &.dat$xi==1]<-0; #censor for TTP 

   

  init.pam<-c(fun.init.parm(.dttp,.dat$PD,.dat$delta),fun.init.parm(.dos,.dat$OS,.dat$xi),0.5) 

  p1<-param.i(.dttp);p2<-param.i(.dos) 

  E.myCop.norm <- normalCopula(0,dim=2,dispstr="ex"); 

  E.myMvd <- mvdc(copula=E.myCop.norm, margins =c(.dttp,.dos),paramMargins = list(p1,p2)); 

   

  postloglikelihood <- function(para,dat,E.myMvd){ eps <- 1e-50; 

  ff<-length(para)-1 

  if (ff==2){ 

    if ((para[1] <= eps) | (para[2] <= eps) | (para[length(para)] <= -(1-eps)) | 

(para[length(para)]>= (1-eps))) return(-Inf)}else if((ff==3)){ 

      if ((para[1] <= eps) | (para[2] <= eps)| (para[3] <= eps) | (para[length(para)] <= -(1-

eps)) | (para[length(para)]>= (1-eps))) return(-Inf)}else if((ff==4)){ 
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        if ((para[1] <= eps) | (para[2] <= eps)| (para[3] <= eps) | (para[4] <= eps)| 

(para[length(para)] <= -(1-eps)) | (para[length(para)]>= (1-eps))) return(-Inf)}else 

if((ff==5)){ 

          if ((para[1] <= eps) | (para[2] <= eps) | (para[3] <= eps) | (para[4] <= eps) | 

(para[5] <= eps)| (para[length(para)] <= -(1-eps)) | (para[length(para)]>= (1-eps))) return(-

Inf)}else if((ff==6)){ 

            if ((para[1] <= eps) | (para[2] <= eps) | (para[3] <= eps)| (para[4] <= eps)| 

(para[5] <= eps)| (para[6] <= eps)| (para[length(para)] <= -(1-eps)) | (para[length(para)]>= 

(1-eps))) return(-Inf)}else if((ff==7)){ 

              if ((para[1] <= eps) | (para[2] <= eps) | (para[3] <= eps)| (para[4] <= eps)| 

(para[5] <= eps)| (para[6] <= eps)| (para[7] <= eps)| (para[length(para)] <= -(1-eps)) | 

(para[length(para)]>= (1-eps))) return(-Inf)}else if((ff==8)){ 

                if ((para[1] <= eps) | (para[2] <= eps) | (para[3] <= eps)| (para[4] <= eps)| 

(para[5] <= eps)| (para[6] <= eps)| (para[7] <= eps)| (para[8] <= eps)| (para[length(para)] <= 

-(1-eps)) | (para[length(para)]>= (1-eps))) return(-Inf)}else if((ff==9)){ 

                  if ((para[1] <= eps) | (para[2] <= eps) | (para[3] <= eps)| (para[4] <= eps)| 

(para[5] <= eps)| (para[6] <= eps)| (para[7] <= eps)| (para[8] <= eps)| (para[9] <= eps)| 

(para[length(para)] <= -(1-eps)) | (para[length(para)]>= (1-eps))) return(-Inf)}else 

if((ff==12)){ 

                    if ((para[1] <= eps) | (para[2] <= eps) | (para[3] <= eps)| (para[4] <= 

eps)| (para[5] <= eps)| (para[6] <= eps)| (para[7] <= eps)| (para[8] <= eps)| (para[9] <= eps)| 

(para[10] <= eps) | (para[11] <= eps) | (para[12] <= eps)| (para[length(para)] <= -(1-eps)) | 

(para[length(para)]>= (1-eps))) return(-Inf)} 

   

  dnX<-E.myMvd@margins ;   npar1<-.np[.name==dnX[[1]]] ;   npar2<-.np[.name==dnX[[2]]] 

   

  par1<-para[1:npar1] ;   par2<-para[(npar1+1):(npar1+npar2)] ;   par3<-tail(para,n=1) 

   

  par.c1<-fun.transform.param(dnX[1],par1) ;   par.c2<-fun.transform.param(dnX[2],par2) ;   

par.c<-par3 ;   par.all<-c(par.c1,par.c2,par.c) 

   

  delta <- dat[,3]; xi <- dat[,4];    c1.indx <- delta & xi; c2.indx <- delta & (!xi);   c3.indx 

<- (!delta)&xi; c4.indx <- (!delta)&(!xi); 

  dn1<-.dttp;dn2<-.dos 

   

  # decompose the loglikelihood function to 4 parts according to the manuscript 

  # First Component 

  if(sum(c1.indx)>0){ 

    loglik.c1 <- loglikMvdc(par.all,as.matrix(dat[c1.indx,1:2]),E.myMvd); 

  } else {    loglik.c1 <- 0; 

  } 

  #Second 

  if(sum(c2.indx)>0){ 

    loglik.c2 <- sum(log(pnorm(qnorm(pfunction(dn2,par.c2,dat[c2.indx,2])), 

                               mean=par.c*qnorm(pfunction(dn1,par.c1,dat[c2.indx,1])), 

                               sd=sqrt(1-par.c^2), 

                               lower.tail=F)*dfunction(dn1,par.c1,dat[c2.indx,1]))); 

  } else {    loglik.c2 <- 0; 

  } 

  #Third Component 

  if(sum(c3.indx) >0 ){ 

      loglik.c3 <- sum(log(pnorm(qnorm(pfunction(dn1,par.c1,dat[c3.indx,1])), 

                               mean=par.c*qnorm(pfunction(dn2,par.c2,dat[c3.indx,2])), 

                               sd=sqrt(1-par.c^2), 

                               lower.tail=F)*dfunction(dn2,par.c2,dat[c3.indx,2]))); 

  } else {    loglik.c3 <- 0; 

  } 

  # Fourth Component 

  if(sum(c4.indx)>0){ 

    sigma <- matrix(c(1,par.c,par.c,1),nrow=2); 

    CDF <- function(V,sigma){ 

      return(pmvnorm(lower = V,upper=Inf, sigma=sigma,mean=c(0,0))[1]) 

    } 

    loglik.c4<- 

sum(log(apply(qnorm(cbind(pfunction(dn1,par.c1,dat[c4.indx,1]),pfunction(dn2,par.c2,dat[c4.ind

x,1]))),1,CDF,sigma))); 

  } else {    loglik.c4 <- 0; 

  } 

  loglik <- loglik.c1+loglik.c2+loglik.c3+loglik.c4; return(loglik); 

  } 

cop.est<-myTryCatch(MCMCmetrop1R(postloglikelihood,theta.init=init.pam, dat=.dat, 

E.myMvd=E.myMvd,thin=.thin, 

mcmc=(.nbBoot*.thin), burnin=.burn,tune=1, logfun=TRUE,optim.method = "Nelder-Mead")) 
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post.all1<-NULL;post.all1<-cop.est$value 

   

if(is.null(post.all1)){cop.est<-myTryCatch(MCMCmetrop1R(postloglikelihood,theta.init=init.pam, 

dat=.dat, E.myMvd=E.myMvd, 

thin=.thin,mcmc=(.nbBoot*.thin), burnin=.burn,tune=1, logfun=TRUE,optim.method = "BFGS"))} 

post.all2<-NULL;post.all2<-cop.est$value 

   

if(is.null(post.all2)){cop.est<-myTryCatch(MCMCmetrop1R(postloglikelihood,theta.init=init.pam, 

dat=.dat, E.myMvd=E.myMvd, 

thin=.thin,mcmc=(.nbBoot*.thin), burnin=.burn,tune=1, logfun=TRUE,optim.method = "CG"))} 

post.all3<-NULL;post.all3<-cop.est$value 

   

if(is.null(post.all1) & is.null(post.all2) & is.null(post.all3)){cop.est<-NULL} 

   

if(is.null(cop.est$value)){.tpar<-NA}else{ 

    mat_par_cop<-cop.est$value 

    dnX<-E.myMvd@margins 

    npar1<-.np[.name==dnX[[1]]] 

    npar2<-.np[.name==dnX[[2]]] 

     

    .npar1<-mat_par_cop[,1:npar1] 

    .npar2<-mat_par_cop[,(npar1+1):(npar1+npar2)] 

    .npar3<-mat_par_cop[,ncol(mat_par_cop)] 

     

    #Return parameter back to normal values   

    .tpar1<-fun.transform.param(dnX[[1]],.npar1) 

    .tpar2<-fun.transform.param(dnX[[2]],.npar2) 

    .tpar<-cbind(.tpar1,.tpar2,.npar3) 

  } 

  return(.tpar) 

} 

 

 

######################################################################################### 

# gen_pred_cop_pfs – Generate prediction for PFS 

######################################################################################### 

gen_pred_cop_pfs<-function(.i,mat_copula){ 

  .matcop<-.ds<-prediction.i<-.est<-NULL 

  .matcop<-mat_copula[[.i]] ;   .ds<-.name[.i] 

   

  if(is.na(.matcop[1])){prediction.i<-rep(NA,.lgp1*2)}else{ 

    .matcop<-colMeans(.matcop) 

    npar1<-.np[.i] ;     npar2<-.np[.name==.ds.osC] # TTP and OS 

    par1<-.matcop[1:npar1] ;     par2<-.matcop[(npar1+1):(npar1+npar2)] ;     par3<-

tail(.matcop,n=1) 

     

    #Generate random sample from copula parameters (15,000 sample) 

    .coprnd = rCopula(15000, normalCopula(par3));   

     

    pfs.p<-qfunction_Vector(.coprnd[,1],.ds,par1)   

    os.p<-qfunction_Vector(.coprnd[,2],.ds.osC,par2) 

    pfs.p<-pmin(pfs.p,os.p) 

     

    #round pfs and os to higher value 

    pfs.p<-ceiling(pfs.p) ;     os.p<-ceiling(os.p) 

    breaks = c(.sq,tail(.sq,1)+1) 

     

    duration.cut.pfs = cut(pfs.p, breaks, right=FALSE)  

    duration.freq.pfs = table(duration.cut.pfs)  

     

    duration.cut.os = cut(os.p, breaks, right=FALSE)  

    duration.freq.os = table(duration.cut.os)  

     

    duration.cumfreq.pfs = cumsum(duration.freq.pfs)  

    duration.cumfreq.os = cumsum(duration.freq.os)  

     

    duration.cumfreq.pfs<-as.numeric(duration.cumfreq.pfs) 

    duration.cumfreq.os<-as.numeric(duration.cumfreq.os) 

     

  prediction.i<-c(duration.cumfreq.pfs,duration.cumfreq.os)} 

  return(prediction.i) # Only intrested in PFS at the model 

   

} 
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######################################################################################### 

# gen_pred_cop – Generate predictions for OS and OS for a given distribution for TTP 

######################################################################################### 

gen_pred_cop<-function(.i,mat_copula){ 

  .matcop<-.ds<-prediction.i<-npar1<-npar2<-par1<-par2<-par3<-.coprnd<-NULL 

  .matcop<-mat_copula[.i,] 

  npar1<-.np[.name==.ds.pfsC] # TTP 

  npar2<-.np[.name==.ds.osC] # OS 

   

  par1<-.matcop[1:npar1] ;   par2<-.matcop[(npar1+1):(npar1+npar2)] ;   par3<-tail(.matcop,n=1) 

   

  #Generate random sample from copula parameters 

  .coprnd = rCopula(15000, normalCopula(par3));   

   

  pfs.p<-qfunction_Vector(.coprnd[,1],.ds.pfsC,par1)   

  os.p<-qfunction_Vector(.coprnd[,2],.ds.osC,par2) 

  pfs.p<-pmin(pfs.p,os.p) 

   

  #round pfs and os to higher value 

  pfs.p<-ceiling(pfs.p) 

  os.p<-ceiling(os.p) 

   

  breaks = c(.sq,tail(.sq,1)+1) 

   

  duration.cut.pfs = cut(pfs.p, breaks, right=FALSE)  

  duration.freq.pfs = table(duration.cut.pfs)  

   duration.cut.os = cut(os.p, breaks, right=FALSE)  

  duration.freq.os = table(duration.cut.os)  

  duration.cumfreq.pfs = cumsum(duration.freq.pfs)  

  duration.cumfreq.os = cumsum(duration.freq.os)  

  duration.cumfreq.pfs<-as.numeric(duration.cumfreq.pfs) 

  duration.cumfreq.os<-as.numeric(duration.cumfreq.os) 

  

  prediction.i<-cbind(duration.cumfreq.pfs,duration.cumfreq.os) 

  return(prediction.i) 

} 

 

######################################################################################### 

# myAIC_cop – Calculate AIC 

######################################################################################### 

myAIC_cop<-function(.i,mat_copula) { 

  .ds<-np<-.mCop<-.nparC<-aic.cop<-NULL 

  .ds<-.name[.i] ;  .matcop<-mat_copula[[.i]] 

  if(is.na(.matcop[1])){aic.cop<-NA}else{ 

     

    .mCop<-colMeans(.matcop) ;  .mCop<-.mCop[1:.np[.i]] ;  .ds<-.name[.i] ;  .nparC<-.np[.i] 

     

    aic.cop1<-dfunction(.ds,.mCop,pfs_data[,1])*pfs_data[,2]+((1-pfs_data[,2])*(1-

pfunction(.ds,.mCop,pfs_data[,1]))) 

    aic.cop<--log(aic.cop1);   aic.cop[which(aic.cop==Inf)]<-0; 

    aic.cop<-sum(aic.cop); 

    aic.cop<-2*(aic.cop)+2*(.nparC)  } 

  return(aic.cop) 

} 

 

######################################################################################### 

# qfunction_Vector – Generate survival time given a distribution, random number and parameters 

######################################################################################### 

qfunction_Vector<-function(RnD,.Distr,parX){ 

  .ds<-.param<-.rnd<-NULL; 

  .ds<-.Distr; .param<-parX;.rnd<-RnD; 

  if(.ds=="gengamma"){  

    .q<-do.call(paste0("q", .ds), list(.rnd,.param[1],.param[2],.param[3]))}else if 

(.ds=="exp") { 

      .q<-do.call(paste0("q", .ds), list(.rnd,.param[1]))} else if (.ds=="mySpline"){ 

        .q<-do.call(paste0("q", .ds), 

list(.rnd,.param[1],.param[2],.param[3],.param[4],.param[5],.param[6]))} else if 

  (.ds=="null"){ .q<-rep(NA,length(.LT))}else{.q<-do.call(paste0("q", .ds), 

list(.rnd,.param[1],.param[2]))} 

  return(.q)}     
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######################################################################################### 

# m.select.fit.copOS – Addition function to make sure that for the combination of TTP and OS – 

OS is still within the data 

######################################################################################### 

m.select.fit.copOS<-function(dat.S,.pred.sv,.clinpl,.bound){ 

.dat<-.pred.SV<-.clp<-.bd<-.pred.SV1<-.pred.SV2<-.tmp.time<-.rmNA<-.stp1<-.stp2<-.stp3<-.cr3<-

.cst<-.km<-.kmU<-.kmL<-n.with<-p.with<-r.with<-NULL; 

  .dat<-dat.S ;   .pred.SV<-.pred.sv ;   .clp<-unlist(.clinpl) ;   .bd<-.bound;   .pred.SV1<-

.pred.SV;  nRowX<-nrow(.pred.SV1) 

   .clp2<-unlist(.clp[2]) ;   .clp1<-unlist(.clp[1]) ;  .bd2<-unlist(.bd[2]) ;   .bd1<-

unlist(.bd[1]) 

   .tmp.time<-min(.clp2, nRowX); #Constraint to avoid error (used for when debugging) 

  #STEP 1 (a): Remove distribution that reaches 0 when expected survival around 10% 

  .rmNA<-.pred.SV1[.tmp.time,];.rmNA[.rmNA<0.0001]<-NA 

  #STEP 1 (b) If all distribution reaches 0, then remove constraint 

  if (sum(is.na(.rmNA))==length(.rmNA)){.rmNA<-rep(1,length(.rmNA))}; 

  .rmNA[!is.na(.rmNA)]<-1; 

  .rmNA<-t(matrix(rep(.rmNA,nRowX),ncol=nRowX)) 

  .stp1<-.pred.SV1 *.rmNA 

   

  #STEP 2: Visual fit (based on fit to KM - within CI) 

  .km<-survfit(Surv(.dat[,1],.dat[,2])~1,conf.int=TRUE);  

  .surv<-.km$surv;   .kmU<-.km$upper;   .kmL<-.km$lower ;   .kmtime<-round(.km$time) 

  # Constraint added because NA possible in KM at the end 

  .cst<-min(sum(!is.na(.kmtime)),sum(!is.na(.kmL)),sum(!is.na(.kmU))) ;  

  .kmU<-.kmU[1:.cst]; .kmL<-.kmL[1:.cst]; .kmtime<-.kmtime[1:.cst] 

   .tmpkm<-.stp1[.kmtime+1,] #ADD +1 because start at 1 not 0 

  .fL<-.tmpkm>=.kmL;   .fU<-.tmpkm<=.kmU;    n.with<-.fL+.fU; 

   

  p.with<-colSums(n.with==2)/nrow(n.with);   r.with<-min(.mgin[1],max(p.with,na.rm=TRUE)); 

  if(r.with!=.mgin[1]){r.with<-r.with*0.9} 

  s.with<-p.with>=r.with;   s.with[s.with==FALSE]<-NA;   s.with<-

t(matrix(rep(s.with,nRowX),ncol=nRowX)) 

  .stp2<-.stp1 *s.with 

     

#STEP 3: Selection based on long-term prediction 

  .clp2<-min(.clp2,.lgp1);   .tmp.pl<-.stp2[.clp2,];  

  m.y<-abs(.tmp.pl-.clp1)-.mgin[2];m.y<-pmax(0,ceiling(m.y/0.02));m.y<-min(m.y,na.rm=TRUE) 

  mgin.adj<-.mgin[2]+m.y*0.02; 

  .cr3<-(between(.tmp.pl,(.clp1-mgin.adj),(.clp1+mgin.adj)));   .cr3[.cr3==FALSE]<-NA;   

.cr3.tmp<-.cr3 

  .cr3<-t(matrix(rep(.cr3.tmp,nRowX),ncol=nRowX));   .stp3<-.cr3 

  return(.stp3) 

} 

 

######################################################################################### 

# E.performance  

######################################################################################### 

E.performance <-function(m.dat=NULL,m.true=NULL){ 

  perform.e<-m.mean1<- m.mean2<- m.bias1<- m.bias2<- m.rmse1<-m.rmse2<-m.cover<-m.se<-NULL; 

  s.dat<-colSums(m.dat)  

  m.mean1<-  s.dat[1] ; #Mean (first value) 

  m.mean2<-  mean(s.dat) ; #Mean (across all values) 

  m.bias1<-  m.mean1- m.true ; #absolute bias around mean 

  m.bias2<- m.mean2- m.true ; #absolute bias around probabilistic mean 

  m.rmse1<- abs(m.true- m.mean1)^2; #RMSE around mean 

  m.rmse2<- abs(m.true- m.mean2)^2 ; #RMSE around probabilistic mean 

  m.lci1<-min(s.dat);m.uci1<-max(s.dat);m.cover<-between(m.true,m.lci1,m.uci1) ; #Coverage 

  m.se<-sd(s.dat)/sqrt(length(s.dat)) ; #SE 

  perform.e<-c(m.mean1, m.mean2, m.bias1, m.bias2, m.rmse1, m.rmse2, m.cover,m.se) 

  return(perform.e) 

} 

 

######################################################################################### 

# summaryperformance  

######################################################################################### 

summaryperformance<-function(.datO){ 

  .dat.output<- pfs.pef<- os.pef<- qaly.pef<- performanceall <-NULL; 

  .dat.output<-.datO 

  pfs.pef<-E.performance(.dat.output[[1]], .truepfs);os.pef<- 

E.performance(.dat.output[[2]],.trueos); 

  qaly.pef<- E.performance(.dat.output[[3]], .trueqaly); 

  performanceall <-c(pfs.pef ,os.pef ,qaly.pef); 
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  return(performanceall) 

} 

 

######################################################################################### 

# sumLY – Smmarise LY and QALY – adjusted for general population mortality (in case) 

######################################################################################### 

sumLY<-function(x){ 

  a<-b<-c<-d<-NULL 

  a<-x[1:.lgp1,] ;   b<-x[(.lgp1+1):(.lgp1*2),] ;  a<-a.S.gp(a) ;   b<-a.S.gp(b) ;   c<-

a*.qpfs+(b-a)*.qpd ;    

d<-list(a,b,c) 

} 

 

######################################################################################### 

# Start to Run the different nodels 

######################################################################################### 

Start <- Sys.time() 

#Run PSM 

Start1 <- Sys.time() 

pfs_matrix<-gen.tn("pfs");  os_matrix<-gen.tn("os");  preps_matrix<-gen.tn("preps"); 

ttp_matrix<-gen.tn("ttp"); 

pfs_mod<-sapply(1:ncol(os_matrix[[1]]),psm.mod,os_matrix,pfs_matrix) 

Stop1 <- Sys.time();RunTime1<-Stop1-Start1; 

RunTime1 

 

#Run 3 versions of STM 

Start2 <- Sys.time() 

STM1_mod<-stm.mod(pps_data_NoCov,pfs_matrix,preps_matrix) 

Stop2 <- Sys.time();RunTime2<-Stop2-Start2; RunTime2 

Start3 <- Sys.time() 

STM2_mod<-stm.mod(pps_data_Log,pfs_matrix,preps_matrix) 

Stop3 <- Sys.time();RunTime3<-Stop3-Start3; RunTime3 

Start4 <- Sys.time() 

STM3_mod<-stm.mod(pps_data_NoLog,pfs_matrix,preps_matrix) 

Stop4 <- Sys.time();RunTime4<-Stop4-Start4; RunTime4 

 

#Run MSM 

Start5 <- Sys.time() 

MSM_Mod<-MSM.mod() 

Stop5 <- Sys.time();RunTime5<-Stop5-Start5; RunTime5 

 

#Run Li model 

Start6 <- Sys.time() 

Li_Output<-sapply(1:(.nbBoot+1),bootLI,dataset) 

Stop6 <- Sys.time();RunTime6<-Stop6-Start6; RunTime6 

 

Start7 <- Sys.time() 

 

##################### 

# Only run when .Scen = 1 

##################### 

 

if (.Sc==1){ 

.dat1<-.clinP1<-.limX1<-PREDICTION1<-SELECTION<-copula_output<-predpfs<-pfs.i<-os.i<-

aic.cop.pfs<-predpfs2<-pfs_mat_select<-cop_output<-.ds.pfsC<-NULL; 

.clinP1<-.plaus[3,]; .limX1<-NULL; .dat1<-os_data ;   PREDICTION1<-.fitdist(.dat1,1) 

  SELECTION<-m.select.fit(.dat1,PREDICTION1,.clinP1,.limX1) 

  .ds.osC<-.name[SELECTION[[1]]] # Select distribution for OS (based on independent fit) 

   

  #Extract parameters and copula for the 7 distribution given a OS distribution 

  copula_output<-sapply(.name[1:length(.name)],wrapper.copula,.ds.osC) 

   

  if(sum(is.na(copula_output))==length(.name)){cop_output<-rep(NA,.lgp1*2);cop_output<-

rep(cop_output,.nbBoot+1); 

cop_output<-t(matrix(cop_output,nrow=.nbBoot+1))}else{ 

    predpfs<-1-(sapply(1:length(.name),gen_pred_cop_pfs,copula_output)/15000) 

    pfs.i<-predpfs[1:.lgp1,] 

    os.i<-predpfs[(.lgp1+1):(.lgp1*2),] 

    #Select OS first - to make sure OS still fit the data 

    os.i2<-m.select.fit.copOS(.dat1,os.i,.clinP1,.limX1) 

    pfs.i2<-pfs.i *os.i2 
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    aic.cop.pfs<-sapply(1:length(.name),myAIC_cop,copula_output);     aic.cop.pfs<-

aic.cop.pfs*pfs.i2[1,] 

    predpfs2<-list(pfs.i2,aic.cop.pfs) 

    select.pfs.copula<-m.select.fit(pfs_data,predpfs2,.plaus[1,],.plaus[3,]) 

     

    .ds.pfsC<-.name[select.pfs.copula[[.Sc]]] 

    pfs_mat_select<-copula_output[[.ds.pfsC]]; pfs_mat_select<-

rbind(colMeans(pfs_mat_select),pfs_mat_select) 

    cop_output<-1-(sapply(1:nrow(pfs_mat_select),gen_pred_cop,pfs_mat_select)/15000) 

  } #End if function for NA 

}else{ 

.dat1<-.dat2<-.ds.osC<-.ds.pfsC<- PREDICTION1<- PREDICTION2<- os.distT <- ttp.distT <- copuGEN 

<- cop_output <-NULL 

.dat1<-os_data; .dat2<-ttp_data 

PREDICTION1<-.fitdist(.dat1,2); PREDICTION2<-.fitdist(.dat2,2) 

 

os.distT<-which((min(PREDICTION1[[2]],na.rm=TRUE)==PREDICTION1[[2]])=="TRUE") ; 

ttp.distT<-which((min(PREDICTION2[[2]],na.rm=TRUE)==PREDICTION2[[2]])=="TRUE") ; 

.ds.osC<-.name[os.distT]; .ds.pfsC<-.name[ttp.distT] 

copuGEN<-wrapper.copula(.ds.pfsC,.ds.osC); copuGEN<-rbind(colMeans(copuGEN),copuGEN) 

cop_output<-1-(sapply(1:nrow(copuGEN),gen_pred_cop,copuGEN)/15000) 

} 

 

Stop7 <- Sys.time();RunTime7<-Stop7-Start7; RunTime7 

 

######################################################################################### 

# Summarise and extract outputs 

######################################################################################### 

.mod1<-sumLY(pfs_mod); .mod2<-sumLY(STM1_mod); .mod3<-sumLY(STM2_mod); .mod4<-sumLY(STM3_mod); 

.mod5<-sumLY(MSM_Mod); .mod6<-sumLY(Li_Output);.mod7<-sumLY(cop_output) 

#Extract Results 

.perfomance1<-summaryperformance(.mod1); .perfomance2<-summaryperformance(.mod2); 

.perfomance3<-summaryperformance(.mod3); .perfomance4<-summaryperformance(.mod4); 

.perfomance5<-summaryperformance(.mod5); .perfomance6<-summaryperformance(.mod6);  

.perfomance7<-summaryperformance(.mod7) 

#Combine performance   

.modall<-rbind(.perfomance1,.perfomance2,.perfomance3,.perfomance4,.perfomance5,.perfomance6, 

.perfomance7); 

 

#Extract fitted curves   

lpfs1<-.mod1[[1]][,1];los1<-.mod1[[2]][,1];lpfs2<-.mod2[[1]][,1];los2<-.mod2[[2]][,1];lpfs3<-

.mod3[[1]][,1]; 

los3<-.mod3[[2]][,1]; lpfs4<-.mod4[[1]][,1];los4<-.mod4[[2]][,1];lpfs5<-.mod5[[1]][,1];los5<-

.mod5[[2]][,1];  

lpfs6<-.mod6[[1]][,1];los6<-.mod6[[2]][,1]; lpfs7<-.mod7[[1]][,1];los7<-.mod7[[2]][,1];  

 

km.pfs<-survfit(Surv(pfs_data[,1], pfs_data[,2])~1,conf.int=TRUE); km.surv.pfs<-

summary(km.pfs,time=.sq)$surv;  

km.surv.pfs<-c(km.surv.pfs,rep(NA,.lgp1-length(km.surv.pfs))); 

km.os<-survfit(Surv(os_data[,1], os_data[,2])~1,conf.int=TRUE);km.surv.os<-

summary(km.os,time=.sq)$surv; 

km.surv.os<-c(km.surv.os,rep(NA,.lgp1-length(km.surv.os))); 

#Extract Graph 

graphX<-cbind(.sq,km.surv.pfs,lpfs1,lpfs2,lpfs3,lpfs4,lpfs5, lpfs6, 

lpfs7,km.surv.os,los1,los2,los3,los4, los5, los6, los7) 

write.table(.modall, paste0("performance", id, ".txt"), row.names = FALSE);  

write.table(graphX,paste0("graph", id, ".txt"), row.names = FALSE); Stop <- Sys.time();RunTime<-

Stop-Start; RunTime 
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Appendix 12 : Further details regarding the implementation of methods under investigation 

(Chapter 8) 

10.6.1.1.1 Implementation of the partitioned survival approach in this simulation study 

The implementation of the PSM was relatively straightforward, with parametric distributions fitted 

directly to the data for PFS and OS within the censored dataset. 

The process for selecting the parametric distributions for PFS and OS is described in Chapter 2. The 

minimum between PFS and OS was taken for PFS to avoid logical inconsistency.  

10.6.1.1.2 Implementation of the simplified state-transition approach in this simulation study 

Three variations are explored in this simulation study: 

- STM using unadjusted PPS 

- STM using PPS adjusted using log of TTP as a covariate 

- STM using PPS adjusted using the TTP as a covariate (non-log scale) 

The implementation of the STM in this simulation study follows the steps described in Chapter 5 for 

what was referred to as “Approach 3” (which encompasses “Approach 2”), i.e. the PFS curve is used 

directly, with the proportion of events that are deaths or progression in each cycle being calculated 

based on the number of people that are progression-free multiplied by the probability of death in a given 

cycle from the PrePS curve (assumed to be an exponential for simplicity).  

As described in Chapter 5, an alternative approach to determine the proportion of PFS events that are 

death or progression (referred to as “Approach 1” in Chapter 5) could have been used. Whilst little 

difference is expected, it is recognised that it would have been interesting to explore all possible 

formulations.  However, for pragmatic reasons, and model run-time, only one approach was explored.  

In brief,  

1. parametric distributions are first fitted to the PFS data to determine the proportion of patients 

who are progression-free at each cycle in the model, 

2. a parametric distribution (exponential) is then fitted to the PrePS data to determine the 

probability of dying for patients who are progression-free in each model cycle, 

3. from the PFS and PrePS curve, I calculate in each cycle how many patients progress or die prior 

to progression, 
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4. a parametric distribution is then fitted to the PPS data to determine to probability of dying after 

progression, 

5. given that non-constant transition (i.e. time-varying parametric distributions) are considered for 

PPS, the PD health state is implemented in the model using a series of tunnel states to allow the 

death probability to be conditioned on the time since experiencing progression. 

6. the PPS curve is then applied to the proportion of PFS events that are progression to determine 

the time to death in people who progressed. 

Similar to the unadjusted PPS, whereby a parametric distribution is fitted to data for PPS, for the 

methods using the adjusted PPS, a parametric distribution is fitted to the data for PPS, but with TTP 

included as a covariate in the statistical model. Given that the general STM process included tunnel 

states for the progressive-disease health state, including the dependence between PPS and TTP in the 

economic model was straightforward, as the probability of death was allowed to vary according to time. 

For new patients progressing, the PPS curve according to the time at which the patient progressed was 

used. For instance, assuming the PPS distribution follows an exponential distribution (constant 

probability) for simplicity, an individual who progressed at cycle 1 will have a different probability of 

dying compared with an individual who progressed at cycle 20.    

 

10.6.1.1.3 Implementation of the multi-state model in this simulation study 

The implementation of the MSM in this simulation study follows the steps described in Chapter 4 using 

the mssample function (part of the mstate package). Compared with the simplified STM, PFS is 

not used directly, but estimated by modelling the two competing transitions (TTP and PrePS) and 

combining them under a competing risk framework. 

The implementation was relatively straightforward. Parametric distributions were fitted to the data for 

TTP, PrePS and PPS. These were then transformed into the cumulative hazard form and used directly 

within the mssample function (corrected version) as described in Chapter 4 to generate predictions.  

As described in Chapter 4, the multi-state approach using the mssample function uses a simulation 

approach, and thus, the more patients are sampled, the more accurate/stable the prediction. However, 

increasing the number of patients sampled, increases model run-time. Similarly, the time horizon and 

time step used (cycle length) both have an effect on the model run-time. 10,000 patients were assumed 

in the mssample function in order to increase precision.  
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In the simulation study, results are generated both deterministically and probabilistically. Therefore, it 

is important to consider model run-time. To estimate results probabilistically, 1,000 iterations of the 

MSM must be generated for each 1,000 datasets within each of the 54 scenarios investigated. 

Considering 5,000 patients (to reduce sampling variation in predictions), a cycle length of a week and 

a time horizon of about 19 years (corresponding to 1,000 weeks), a single model takes slightly less than 

half a minute to run, although this could vary depending on the performance of the computer. Based on 

the above estimation, using the mssample function to estimate the probabilistic prediction in a single 

dataset for a single scenario takes approximately 8-9 hours. It is therefore impractical to use the 

mssample function when generating prediction probabilistically in this simulation study given the 

large number of model runs required (1,000 datasets for each 54 scenarios). It should be noted that it is 

possible to reduce the number of patients sampled to 1,000 to reduce model run-time. Using this 

approach, a single model run takes less than 10 seconds, and coverage can be estimated in around 2 

hours. Whilst this is perhaps more manageable, this still leads to an unmanageable model run-time. 

Furthermore, reducing the number of patients decreases precision. An alternative approach was used to 

approximate the coverage of the MSM to provide a trade-off between running time and precision.   

Consequently, an alternative approach (referred to here as the “approximation method”) is used when 

running the MSM probabilistically, derived from the steps used in the mssample function described 

in Chapter 4.  

Compared with the mssample function, this approximation method follows a cohort approach, similar 

to the simplified STM previously described, with:  

- PFS estimated by combining the hazards from the two cause-specific events (TTP and PrePS) 

rather than using PFS directly from the trial.  

- The proportion of PFS events that are death or progression in each cycle given by the 

contribution of the two competing events to the cumulative hazard. In the mssample function, 

a sampling approach is used to determine whether an event is death or progression. Because a 

cohort approach is used here, in each cycle, the proportion of PFS events which are death or 

progression was determined by comparing: (1) the sum of the hazards from the two cause-

specific events (TTP and PrePS) and (2) the individual hazards for each events at this time 

point. For instance, assuming the hazards for TTP and PrePS are 0.02 and 0.001 for a given 

cycle respectively, I assumed that 95% of events would be progression and 5% would be death.  

In order to validate that the approximation method described here provides broadly similar results when 

compared with the mssample function, predictions for OS were generated and compared using both 
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approaches when applied to the BC dataset . For simplicity, all transitions (TTP, PrePS and PPS) were 

assumed to follow Weibull distributions. Input parameter values were drawn by random sampling for 

each distribution repeated 1,000 times using the normboot.flexsurvreg function in R. 

Five thousand patients were used in the mssample function to increase precision, with the mean 

calculated OS ranging from 110.5 to 161.4 weeks. Estimates from the approximation method were 

compared with the generated mean OS taken from the mssample function for the 1,000 iterations. 

Overall, absolute differences in predicted OS using the mssample function and the approximation 

method were very small (median: 0.007; Range: -4.18 to 5.41 weeks). When considering relative 

differences, estimates using the approximation method were generally within +/- 0.5% of the estimates 

generated using the mssample function (Figure 75).  

In terms of model run-time, in this particular example, the probabilistic results were estimated in less 

than 5 minutes using the approximation method compared with more than 8 hours using the mssample 

function (this time was however reduced to 2 hours if 1,000 patients were sampled instead of 5,000; 

however, some precision was lost). It should be noted that this approximation method is not and cannot 

be a replacement for the mssample function given that it can only provide an approximation of the 

mean lifetime survival (which is intended for the aim of this thesis). 

Figure 75 : Comparison of prediction for OS using the multi-state function and approximation 

method 
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10.6.1.1.4 Implementation of the Li model in this simulation study 

As described in Chapter 6, the model developed by Li et al (2015) uses Weibull distributions for every 

transition. Whilst the R program developed by the authors was not available in the public domain, it 

was kindly provided by the authors following a request. Because the model is restricted to the Weibull 

distribution, little to no adaptation is required, with the only amendment relating to the extraction of 

information on PFS as well as OS. The function reports only point estimates. The implementation of 

the Li model is relatively straightforward.  

It should be noted that the Li model returns an error when a person has a recorded OS event but not a 

recorded PFS event (censored). Whilst this is rare, it is possible, because progression is recorded at the 

time of the visit and patients could be lost of follow-up for progression, whilst the time of death is 

recorded and known with certainty. Consequently, when using the Li model, an assumption had to be 

made that TTP was equal to OS when PFS was not recorded, but OS was. This is a possible limitation. 

For illustration, predictions using the Li model when applied to the BC dataset are shown in Figure 76 

against assuming independent Weibull distributions for each transition. 

Figure 76 : Estimation using the Li model 

 

In the simulation study, results are generated both deterministically and probabilistically. Only the point 

estimate is reported when running the model proposed by Li et al (2015). Consequently, probabilistic 

results in this simulation study were generated by bootstrapping the sample data and fitting the model 

to each bootstrapped dataset. This is different to other approaches where the probabilistic estimate is 

generated by sampling parameters. Whilst this is a possible limitation, the impact on the interpretation 

of results is likely to be minimal. 
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10.6.1.1.5 Implementation of the Fu model in this simulation study 

As described in Chapter 6, the model developed by Fu et al (2013) allows the joint modelling of PFS 

and OS under a semi-competing risk framework using a Gaussian copula. As described in Chapter 6, 

whilst  there exist other copulas and a Bayesian framework was used, a key benefit of the approach 

proposed by Fu et al (2013) is that the program is directly available in the appendices to the paper, and 

therefore can be used directly in health economics in a reproducible and transparent way. A Gaussian 

copula is also considered generally appropriate when modelling PFS and OS as it is tail independent. 

In this section, I will describe how the Fu model was implemented in this simulation study using the 

BC dataset.  

➢ Step 1: Setting up the data 

Prior to the implementation of the Fu model, data must be set up in the appropriate format. Notably, 

data are required on TTP and OS, rather than PFS. In other words, in our dataset, a new variable needs 

to be created for TTP whereby in patients with a PFS event for whom PFS is equal to OS, the PFS event 

needs to be censored. 

It is also easier if variables for TTP and OS are renamed in a similar way as suggested by the authors 

and data follow the same order. Failing that, the variable names need to be replaced in the R program 

to ensure that the appropriate variables are selected. Similarly, additional changes would be required in 

the R program to ensure that the correct variables are picked up if the order of variables is different.  

Consequently, for each dataset examined in the simulation, a new dataset was created to mimic the 

format used by the author. 

➢ Step 2: Select the marginal distribution for TTP and OS 

The authors assumed that the marginal survival distributions for both TTP and OS follow exponential 

distributions and the R code provided reflects this. The exponential distribution can be restrictive and 

therefore analysts may wish to explore alternative marginal distributions. Any combination of marginal 

distribution is possible; however, this may not be feasible or practical given run-time and may be 

inappropriate if some distributions are clearly implausible. Considering the seven distributions for 

survival endpoints considered in the simulation study (exponential, Weibull, Gompertz, log-normal, 

log-logistic, gamma, and generalised gamma), 49 possible combinations of TTP and OS are possible. 

The estimation of the values for both the copula and marginal survival distribution parameters can be 

time-consuming (as the samples of the posterior are reported, rather than point estimate) for each 
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possible combination, with the run-time for a given combination of marginal survival distribution for 

TTP and OS conditional on the sample size of the data, the number of burn-in, thinning interval, 

optimisation method, number of samples of the posterior distribution and marginal survival distribution 

used. Exploratory analysis indicated a model run-time ranging from 5-10 minutes to more than 30 

minutes  for a given combination of marginal survival distribution for TTP and OS. Assuming a model 

run-time of 10 minutes and 49 combinations (based on seven parametric distributions), it would take 

around 8 hours to estimate all possible combinations of marginal survival distribution for TTP and OS 

for a single sample dataset. Given that 54 scenarios (which contain 1,000 datasets) are examined, 

examining all possible combination was not considered to be practical for this simulation study. 

Consequently, I limited the number of combinations examined to reduce model run-time. 

Given that OS (terminal event) censors TTP (non-terminal event) under a semi-competing risk 

framework, the estimate for OS is likely to be close to the estimate of OS using the independent fit to 

the data. The distribution for OS should not be significantly affected by TTP (unless there are lot of 

deaths pre-progression). Consequently, to limit the number of combinations of TTP and OS, the 

marginal distribution for OS in the Fu model could be narrowed down to the OS distributions that are 

considered plausible when looking at the independent fit to the data, if model running-time is an issue. 

It should be noted that this is a simplification. 

This is also consistent with the objective in this simulation study - to assess whether jointly modelling 

PFS and OS meaningfully improves the estimation of health state sojourn time and QALYs compared 

with the independent model.  

To limit the number of distributions examined, the marginal survival distribution for OS was assumed 

to be the same as that selected for the independent model (the PSM). Conversely, no assumption was 

made regarding the marginal survival distribution for TTP. Consequently, prior to selecting the most 

plausible model, seven combinations are run in each dataset for this simulation study (for the seven 

marginal survival distribution of TTP for the selected marginal survival distribution for OS; e.g. 

Weibull). This is a possible limitation and therefore results need to be interpreted with some caution. 



 

325 

 

➢ Step 3: Amending the R program to use a specified distribution 

The R program provided by the authors can be adapted, so that the marginal survival distributions for 

TTP and OS other forms than the exponential distribution.  

For the purpose of this thesis, and for the sake of efficiency, the R program was amended to allow for 

the following forms: exponential, Weibull, Gompertz, log-normal, log-logistic, gamma, and generalised 

gamma. This involved changing the density and distribution function. Whilst a function could have 

been created for all 49 possible combinations of TTP and OS, this would have been less efficient, less 

transparent, and more difficult to debug. Furthermore, although not presented here, the marginal 

distribution could also take more complex form, such as a spline model; the inclusion of a spline model 

with one knot was explored for feasibility but was not included in the final simulation.  

In addition to key amendments to the density and distribution function for the marginal distributions 

when calculating the likelihood function (e.g. using the Gompertz instead of the exponential), it was 

necessary to transform the parameters of the marginal distribution when using distributions others than 

the original exponential distributions. Indeed, some parametric distributions allow negative parameters, 

which is incompatible with the algorithm used to estimate parameters. Similarly, the values taken by 

some parameters could also be high, making the estimation difficult. Consequently, supportive 

functions were created in order to transform parameters when used in conjunction with the main 

function.  

➢ Step 4: Ensure that the model converges 

The Fu model uses the random walk Metropolis Hastings algorithm to estimate parameters which 

maximise the likelihood. It should also be noted that the model may sometimes fail to converge, but 

that using a different optimisation method may facilitate convergence (for example, Nelder-Mead). The 

analyst can also modify the number of posterior samples, the burn-in number and thinning interval.  

Furthermore, the choice of initial parameters is important, as the model will fail to converge if 

inappropriate or unrealistic initial values are used. For simplicity, initial values could be those estimated 

using the independent model. 
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➢ Step 5: Extract output 

Once the data have been correctly set up, and the R program has been amended for the marginal 

distributions for TTP and OS to take on the specified form, the R program can be run. As the approach 

uses a Bayesian framework, the function reports only the samples of the posterior distribution for both: 

(a) the parameters of the marginal distributions of TTP and OS, and (b) the copula parameter, rather 

than the point estimate. Both deterministic and probabilistic results are considered in this simulation 

study. For the purpose of this simulation study, the point estimate was approximated by taking the 

median from the posterior distribution to account for potential skewness in the sample. It should be 

noted that when considering marginal distributions with more than one parameter (such as the Weibull 

distribution), parameters are correlated within each sample of the posterior distribution.  

➢ Step 6: Generate TTP and OS 

Once samples of the posterior distribution have been estimated for the parameters of the marginal 

distribution and the copula, it is then possible to generate predictions for TTP and OS by sampling TTP 

and OS given the copula parameter. As recommended by the authors, a large number of samples (e.g. 

10,000) is required in order to reduce the influence of Monte Carlo sampling error. Consequently, 

predictions were generated by sampling 10,000 individuals. 

➢ Step 7: Define PFS time 

PFS is defined as the minimum of sampled time between TTP and OS.  

➢ Step 8: Summarise information 

The time to PFS and OS can then be summarised in terms of health state occupancy. 

An example of the Fu model implementation is presented using the BC dataset. The marginal 

distribution for OS was assumed to follow a Weibull distribution, with the marginal distribution for 

TTP following 6 possible forms (Weibull, Gompertz, log-normal, log-logistic, gamma, and generalised 

gamma). The exponential is not shown here. Predictions are summarised in Figure 77. For transparency, 

the independent fit to OS (Weibull) is plotted alongside prediction from the Fu model. The independent 

fit assuming PFS follows the same distribution as TTP is also presented. However, there a limitation 

with this comparison as assuming that the marginal distribution for TTP follows a particular distribution 

does not necessarily mean that PFS would follow the same distribution. 
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Figure 77 : Estimation using Fu model assuming the marginal distribution for OS to follow 

Weibull 
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Appendix 13 : Full result simulation study 
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Table 23 : Results for simulated scenario 1 

 

Scenario1 Deterministic Probabilistic

PSM STM STM - Log STM - Time MSM Li's model Fu's model PSM STM STM - Log STM - Time MSM Li's model Fu's model

PFS Mean 57.07 59.45 59.57 59.22 56.33 46.30 49.23 56.75 60.21 60.32 59.97 55.60 46.50 49.56

PFS Bias -12.11 -9.73 -9.61 -9.96 -12.85 -22.88 -19.95 -12.43 -8.97 -8.86 -9.21 -13.58 -22.68 -19.62

PFS MC SE 0.16 0.21 0.21 0.20 0.18 0.11 0.14 0.15 0.22 0.22 0.21 0.20 0.11 0.15

PFS Rel Bias -17.5% -14.1% -13.9% -14.4% -18.6% -33.1% -28.8% -18.0% -13.0% -12.8% -13.3% -19.6% -32.8% -28.4%

PFS empSE 4.93 6.40 6.51 6.17 5.67 3.33 4.36 4.73 6.64 6.74 6.39 6.08 3.37 4.48

PFS MC SE 0.11 0.15 0.15 0.14 0.13 0.08 0.10 0.11 0.15 0.15 0.15 0.14 0.08 0.10

PFS MSE 170.99 135.52 134.73 137.29 197.29 534.45 416.84 176.83 124.41 123.84 125.70 221.33 525.56 405.04

PFS MC SE 3.71 3.82 3.85 3.87 4.37 4.86 5.50 3.65 3.68 3.70 3.73 5.23 4.88 5.52

PFS Rel P 0.00% -40.65% -42.59% -36.17% -24.37% 119.85% 27.76% 0.00% -49.24% -50.83% -45.33% -39.52% 96.56% 11.28%

PFS ModelSE 5.24 6.82 6.87 6.72 7.32 3.48 4.56 5.24 6.82 6.87 6.72 7.32 3.48 4.56

PFS Cover2 0.35 0.59 0.59 0.58 0.44 0.00 0.05 0.33 0.62 0.63 0.62 0.42 0.00 0.06

PFS Cover1 0.80 0.93 0.93 0.93 0.86 0.13 0.51 0.80 0.93 0.93 0.93 0.86 0.13 0.51

OS Mean 90.54 103.81 93.26 108.39 101.13 83.14 94.37 93.47 114.62 98.84 114.29 110.45 83.91 97.04

OS Bias -8.49 4.78 -5.77 9.37 2.10 -15.89 -4.66 -5.55 15.60 -0.19 15.26 11.42 -15.12 -1.99

OS MC SE 0.25 0.30 0.31 0.51 0.30 0.18 0.30 0.71 1.13 1.02 0.74 1.26 0.19 0.34

OS Rel Bias 0.09-                   0.05             0.06-                 0.09                   0.02             0.16-                0.05-                  0.06-                   0.16               0.00-                 0.15                   0.12               0.15-                0.02-                  

OS empSE 7.72 9.14 9.56 15.80 9.14 5.61 9.10 21.86 34.82 31.48 22.91 38.86 5.82 10.32

OS MC SE 0.18 0.21 0.22 0.36 0.21 0.13 0.21 0.50 0.80 0.72 0.53 0.89 0.13 0.24

OS MSE 131.57 106.29 124.46 337.06 87.93 283.86 104.35 508.15 1454.43 990.09 757.10 1638.96 262.42 110.41

OS MC SE 0.18 0.21 0.22 0.36 0.21 0.13 0.21 245.94 326.14 297.81 112.98 401.20 5.59 4.21

OS Rel P 0.00% -28.61% -34.71% -76.11% -28.69% 89.50% -27.94% 0.00% -60.59% -51.79% -8.95% -68.36% 1312.50% 348.43%

OS ModelSE 24.70 50.78 34.64 32.51 52.45 7.03 16.50 24.70 50.78 34.64 32.51 52.45 7.03 16.50

OS Cover2 0.90 0.99 0.83 0.98 0.99 0.38 0.95 0.92 0.98 0.87 0.99 0.99 0.40 0.96

OS Cover1 0.98 1.00 1.00 1.00 1.00 0.91 0.99 0.98 1.00 1.00 1.00 1.00 0.91 0.99

QALYs Mean 62.39 69.74 64.50 71.96 67.46 55.46 61.95 63.76 75.38 67.52 75.13 71.90 55.90 63.39

QALYs Bias -7.88 -0.53 -5.77 1.69 -2.80 -14.81 -8.31 -6.51 5.11 -2.75 4.87 1.63 -14.36 -6.88

QALYs MC SE 0.15 0.19 0.18 0.29 0.18 0.11 0.17 0.37 0.58 0.52 0.40 0.64 0.12 0.19

QALYs Rel Bias 0.11-                   0.01-             0.08-                 0.02                   0.04-             0.21-                0.12-                  0.09-                   0.07               0.04-                 0.07                   0.02               0.20-                0.10-                  

QALYs empSE 4.63 5.76 5.59 8.90 5.55 3.48 5.24 11.41 17.94 16.12 12.18 19.84 3.59 5.86

QALYs MC SE 0.11 0.13 0.13 0.20 0.13 0.08 0.12 0.26 0.41 0.37 0.28 0.46 0.08 0.13

QALYs MSE 83.48 33.37 64.52 82.07 38.63 231.38 96.54 172.36 347.53 267.27 171.93 395.94 219.17 81.65

QALYs MC SE 2.41 1.41 2.09 3.82 1.54 3.30 2.87 61.87 79.44 72.86 26.44 95.98 3.30 2.64

QALYs Rel P 0.00% -35.22% -31.41% -72.93% -30.33% 76.99% -21.85% 0.00% -59.55% -49.93% -12.29% -66.94% 910.34% 279.26%

QALYs ModelSE 12.82 25.72 17.81 16.99 26.73 4.23 9.07 12.82 25.72 17.81 16.99 26.73 4.23 9.07

QALYs Cover2 0.78 0.97 0.80 0.96 0.96 0.11 0.80 0.80 0.97 0.83 0.97 0.95 0.13 0.83

QALYs Cover1 0.96 0.99 1.00 1.00 1.00 0.70 0.99 0.96 0.99 1.00 1.00 1.00 0.70 0.99
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Table 24 : Results for simulated scenario 2 

 

  

Scenario2 Deterministic Probabilistic

PSM STM STM - Log STM - Time MSM Li's model Fu's model PSM STM STM - Log STM - Time MSM Li's model Fu's model

PFS Mean 54.84 59.22 58.94 59.02 55.58 46.97 48.19 54.38 60.05 59.77 59.82 54.75 47.15 48.66

PFS Bias -14.34 -9.96 -10.24 -10.16 -13.60 -22.21 -20.99 -14.80 -9.13 -9.41 -9.36 -14.43 -22.03 -20.52

PFS MC SE 0.15 0.19 0.19 0.20 0.16 0.11 0.15 0.15 0.20 0.20 0.21 0.17 0.11 0.15

PFS Rel Bias -20.7% -14.4% -14.8% -14.7% -19.7% -32.1% -30.3% -21.4% -13.2% -13.6% -13.5% -20.9% -31.8% -29.7%

PFS empSE 4.72 5.78 5.86 6.01 5.07 3.27 4.65 4.51 6.16 6.23 6.33 5.35 3.32 4.74

PFS MC SE 0.11 0.13 0.13 0.14 0.12 0.08 0.11 0.10 0.14 0.14 0.15 0.12 0.08 0.11

PFS MSE 227.73 132.61 139.10 139.39 210.55 504.01 462.05 239.22 121.13 127.43 127.67 236.73 496.20 443.48

PFS MC SE 4.31 3.75 3.88 3.91 4.28 4.66 6.33 4.27 3.62 3.75 3.78 4.99 4.69 6.30

PFS Rel P 0.00% -33.52% -35.23% -38.44% -13.58% 107.80% 3.02% 0.00% -46.40% -47.72% -49.37% -29.10% 84.36% -9.54%

PFS ModelSE 4.46 7.19 7.14 6.96 7.45 3.58 4.27 4.46 7.19 7.14 6.96 7.45 3.58 4.27

PFS Cover2 0.18 0.59 0.57 0.57 0.38 0.00 0.03 0.16 0.63 0.61 0.61 0.36 0.00 0.04

PFS Cover1 0.55 0.93 0.93 0.93 0.84 0.19 0.44 0.55 0.93 0.93 0.93 0.84 0.19 0.44

OS Mean 71.58 84.39 76.75 91.22 80.78 68.28 74.25 72.75 87.19 80.63 94.33 83.45 68.60 75.89

OS Bias -14.78 -1.96 -9.60 4.87 -5.57 -18.07 -12.10 -13.60 0.84 -5.72 7.98 -2.90 -17.75 -10.46

OS MC SE 0.20 0.22 0.19 0.50 0.20 0.13 0.21 0.23 0.76 0.81 0.62 0.91 0.13 0.24

OS Rel Bias 0.17-                   0.02-             0.11-                 0.06                   0.06-             0.21-                0.14-                  0.16-                   0.01               0.07-                 0.09                   0.03-               0.21-                0.12-                  

OS empSE 6.21 6.78 5.82 15.38 6.27 3.86 6.57 7.04 23.53 24.85 19.15 28.07 3.95 7.47

OS MC SE 0.14 0.16 0.13 0.35 0.14 0.09 0.15 0.16 0.54 0.57 0.44 0.64 0.09 0.17

OS MSE 256.81 49.71 126.06 259.91 70.31 341.40 189.67 234.45 553.88 649.51 430.07 795.22 330.78 165.18

OS MC SE 0.14 0.16 0.13 0.35 0.14 0.09 0.15 5.94 188.67 178.86 66.88 215.07 4.51 4.90

OS Rel P 0.00% -16.13% 13.64% -83.71% -2.10% 158.11% -10.83% 0.00% -91.05% -91.97% -86.49% -93.71% 217.83% -11.21%

OS ModelSE 9.80 30.33 33.30 26.10 38.33 4.57 9.92 9.80 30.33 33.30 26.10 38.33 4.57 9.92

OS Cover2 0.46 0.92 0.66 0.91 0.89 0.05 0.61 0.49 0.92 0.70 0.92 0.88 0.06 0.67

OS Cover1 0.87 1.00 1.00 0.99 0.99 0.56 0.94 0.87 1.00 1.00 0.99 0.99 0.56 0.94

QALYs Mean 52.24 59.96 56.06 63.32 57.07 48.23 51.58 52.69 61.61 58.24 65.11 58.15 48.45 52.54

QALYs Bias -11.69 -3.97 -7.87 -0.61 -6.86 -15.70 -12.35 -11.24 -2.32 -5.69 1.18 -5.78 -15.49 -11.39

QALYs MC SE 0.14 0.16 0.14 0.29 0.14 0.09 0.14 0.15 0.40 0.42 0.34 0.47 0.09 0.15

QALYs Rel Bias 0.18-                   0.06-             0.12-                 0.01-                   0.11-             0.25-                0.19-                  0.18-                   0.04-               0.09-                 0.02                   0.09-               0.24-                0.18-                  

QALYs empSE 4.28 4.79 4.28 8.79 4.30 2.77 4.36 4.55 12.38 12.87 10.52 14.42 2.83 4.77

QALYs MC SE 0.10 0.11 0.10 0.20 0.10 0.06 0.10 0.10 0.28 0.30 0.24 0.33 0.06 0.11

QALYs MSE 154.90 38.69 80.23 77.54 65.59 254.09 171.46 147.03 158.50 197.82 111.98 241.13 247.76 152.42

QALYs MC SE 3.24 1.42 2.00 3.00 1.86 2.80 3.48 3.25 45.69 42.78 15.39 50.65 2.82 3.42

QALYs Rel P 0.00% -20.41% 0.05% -76.33% -1.20% 138.32% -3.72% 0.00% -86.47% -87.48% -81.26% -90.02% 159.89% -8.99%

QALYs ModelSE 5.58 15.79 17.21 14.01 19.80 3.23 5.87 5.58 15.79 17.21 14.01 19.80 3.23 5.87

QALYs Cover2 0.29 0.85 0.62 0.85 0.75 0.01 0.33 0.31 0.86 0.65 0.87 0.72 0.01 0.38

QALYs Cover1 0.72 0.98 0.99 0.99 0.97 0.38 0.87 0.72 0.98 0.99 0.99 0.97 0.38 0.87



 

331 

 

Table 25 : Result for simulated scenario 3 

 

 

Scenario3 Deterministic Probabilistic

PSM STM STM - Log STM - Time MSM Li's model Fu's model PSM STM STM - Log STM - Time MSM Li's model Fu's model

PFS Mean 51.51 58.70 58.80 58.75 54.36 47.47 46.50 51.11 59.55 59.65 59.59 53.97 47.59 46.73

PFS Bias -17.67 -10.48 -10.38 -10.43 -14.82 -21.71 -22.68 -18.07 -9.63 -9.53 -9.59 -15.21 -21.59 -22.45

PFS MC SE 0.15 0.18 0.18 0.20 0.13 0.11 0.18 0.14 0.19 0.19 0.21 0.14 0.11 0.18

PFS Rel Bias -25.5% -15.2% -15.0% -15.1% -21.4% -31.4% -32.8% -26.1% -13.9% -13.8% -13.9% -22.0% -31.2% -32.5%

PFS empSE 4.58 5.56 5.55 6.02 4.16 3.32 5.56 4.41 5.91 5.88 6.34 4.27 3.35 5.61

PFS MC SE 0.11 0.13 0.13 0.14 0.10 0.08 0.13 0.10 0.14 0.13 0.15 0.10 0.08 0.13

PFS MSE 333.27 140.83 138.53 145.06 236.96 482.22 545.31 345.88 127.56 125.30 132.11 249.60 477.17 535.60

PFS MC SE 5.15 3.87 3.80 4.02 4.05 4.64 7.91 5.08 3.73 3.66 3.88 4.21 4.66 7.86

PFS Rel P 0.00% -32.07% -31.85% -42.03% 21.70% 90.37% -32.13% 0.00% -44.27% -43.68% -51.58% 6.65% 72.96% -38.15%

PFS ModelSE 3.90 7.22 7.19 7.13 6.85 3.71 4.02 3.90 7.22 7.19 7.13 6.85 3.71 4.02

PFS Cover2 0.07 0.58 0.59 0.58 0.27 0.00 0.04 0.06 0.62 0.62 0.61 0.27 0.00 0.05

PFS Cover1 0.29 0.92 0.92 0.92 0.84 0.22 0.36 0.29 0.92 0.92 0.92 0.84 0.22 0.36

OS Mean 58.58 70.43 67.36 80.31 66.22 58.24 61.66 59.44 71.48 69.46 82.11 66.30 58.38 62.43

OS Bias -19.71 -7.85 -10.92 2.03 -12.06 -20.04 -16.63 -18.84 -6.81 -8.83 3.82 -11.99 -19.90 -15.86

OS MC SE 0.17 0.18 0.17 0.51 0.13 0.11 0.18 0.19 0.30 0.66 0.52 0.28 0.11 0.19

OS Rel Bias 0.25-                   0.10-             0.14-                 0.03                   0.15-             0.26-                0.21-                  0.24-                   0.09-               0.11-                 0.05                   0.15-               0.25-                0.20-                  

OS empSE 5.21 5.39 5.14 15.67 4.02 3.43 5.52 5.94 9.29 20.32 15.88 8.53 3.47 5.91

OS MC SE 0.12 0.12 0.12 0.36 0.09 0.08 0.13 0.14 0.21 0.47 0.36 0.20 0.08 0.14

OS MSE 415.66 90.72 145.73 249.51 161.63 413.43 306.97 390.34 132.64 490.51 266.66 216.46 408.16 286.44

OS MC SE 0.12 0.12 0.12 0.36 0.09 0.08 0.13 6.78 43.99 326.25 16.13 42.94 4.45 6.02

OS Rel P 0.00% -6.60% 2.93% -88.94% 68.42% 130.64% -10.71% 0.00% -59.17% -91.46% -86.03% -51.58% 193.48% 0.80%

OS ModelSE 7.14 14.02 19.15 18.10 14.23 3.93 6.86 7.14 14.02 19.15 18.10 14.23 3.93 6.86

OS Cover2 0.16 0.69 0.54 0.82 0.51 0.00 0.26 0.17 0.72 0.58 0.85 0.49 0.00 0.29

OS Cover1 0.51 0.98 0.94 0.98 0.95 0.33 0.75 0.51 0.98 0.94 0.98 0.95 0.33 0.75

QALYs Mean 44.74 52.83 51.32 57.78 49.42 43.36 44.78 45.05 53.60 52.62 58.93 49.34 43.47 45.23

QALYs Bias -15.16 -7.07 -8.58 -2.12 -10.48 -16.53 -15.12 -14.84 -6.29 -7.27 -0.97 -10.56 -16.43 -14.67

QALYs MC SE 0.13 0.14 0.14 0.29 0.10 0.09 0.13 0.14 0.19 0.35 0.30 0.16 0.09 0.14

QALYs Rel Bias 0.25-                   0.12-             0.14-                 0.04-                   0.17-             0.28-                0.25-                  0.25-                   0.11-               0.12-                 0.02-                   0.18-               0.27-                0.24-                  

QALYs empSE 3.92 4.26 4.17 8.95 3.12 2.68 4.05 4.19 5.82 10.75 9.14 4.94 2.70 4.28

QALYs MC SE 0.09 0.10 0.10 0.21 0.07 0.06 0.09 0.10 0.13 0.25 0.21 0.11 0.06 0.10

QALYs MSE 245.11 68.13 90.90 84.57 119.53 280.48 245.00 237.85 73.46 168.35 84.41 135.83 277.15 233.40

QALYs MC SE 3.79 1.88 2.28 2.96 2.07 2.85 3.85 3.89 10.37 80.53 3.73 10.00 2.86 3.89

QALYs Rel P 0.00% -15.10% -11.28% -80.79% 58.09% 115.26% -6.23% 0.00% -48.18% -84.80% -78.98% -28.02% 140.76% -4.22%

QALYs ModelSE 4.35 8.28 10.55 10.39 8.35 3.05 4.44 4.35 8.28 10.55 10.39 8.35 3.05 4.44

QALYs Cover2 0.11 0.63 0.55 0.79 0.40 0.00 0.15 0.12 0.66 0.59 0.81 0.38 0.00 0.15

QALYs Cover1 0.36 0.97 0.93 0.97 0.92 0.28 0.57 0.36 0.97 0.93 0.97 0.92 0.28 0.57
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Table 26 : Result for simulated scenario 4 

 

 

Scenario4 Deterministic Probabilistic

PSM STM STM - Log STM - Time MSM Li's model Fu's model PSM STM STM - Log STM - Time MSM Li's model Fu's model

PFS Mean 50.98 56.86 56.91 56.70 50.23 42.34 44.33 52.41 57.73 57.78 57.56 49.91 42.53 44.71

PFS Bias -4.98 0.90 0.95 0.74 -5.73 -13.62 -11.63 -3.55 1.77 1.82 1.60 -6.05 -13.44 -11.25

PFS MC SE 0.12 0.20 0.20 0.20 0.16 0.10 0.13 0.15 0.21 0.21 0.21 0.17 0.10 0.14

PFS Rel Bias -8.9% 1.6% 1.7% 1.3% -10.2% -24.3% -20.8% -6.4% 3.2% 3.2% 2.9% -10.8% -24.0% -20.1%

PFS empSE 3.82 6.23 6.25 6.16 5.05 3.07 3.91 4.59 6.50 6.52 6.42 5.13 3.11 4.04

PFS MC SE 0.09 0.14 0.14 0.14 0.12 0.07 0.09 0.11 0.15 0.15 0.15 0.12 0.07 0.10

PFS MSE 39.41 39.54 39.87 38.48 58.26 194.95 150.52 33.64 45.28 45.71 43.67 62.92 190.20 142.79

PFS MC SE 1.39 1.87 1.90 1.84 1.75 2.64 3.02 1.39 2.19 2.23 2.15 1.95 2.65 2.94

PFS Rel P 0.00% -62.31% -62.55% -61.53% -42.60% 55.31% -4.49% 0.00% -50.17% -50.48% -48.92% -20.07% 116.80% 28.84%

PFS ModelSE 5.71 6.87 6.88 6.78 5.90 3.24 4.12 5.71 6.87 6.88 6.78 5.90 3.24 4.12

PFS Cover2 0.83 0.94 0.94 0.94 0.71 0.04 0.23 0.85 0.95 0.95 0.95 0.69 0.05 0.25

PFS Cover1 0.99 0.99 0.99 0.99 0.97 0.51 0.80 0.99 0.99 0.99 0.99 0.97 0.51 0.80

OS Mean 88.83 105.39 92.42 104.95 101.26 82.97 94.30 184.66 133.50 106.05 115.85 129.20 84.42 100.04

OS Bias -0.65 15.92 2.95 15.48 11.79 -6.50 4.82 95.19 44.03 16.58 26.38 39.73 -5.05 10.57

OS MC SE 0.22 0.44 0.30 0.45 0.44 0.23 0.30 5.24 2.12 1.35 0.81 2.18 0.25 0.45

OS Rel Bias 0.01-                   0.18             0.03                 0.17                   0.13             0.07-                0.05                  1.06                   0.49               0.19                 0.29                   0.44               0.06-                0.12                  

OS empSE 6.72 13.71 9.20 13.91 13.69 7.14 8.92 161.42 65.35 41.74 24.91 67.21 7.65 13.24

OS MC SE 0.15 0.31 0.21 0.32 0.31 0.16 0.21 3.71 1.50 0.96 0.57 1.54 0.18 0.32

OS MSE 45.55 441.19 93.15 432.99 326.06 93.24 102.83 35090.28 6205.41 2015.56 1315.70 6091.48 84.06 286.84

OS MC SE 0.15 0.31 0.21 0.32 0.31 0.16 0.21 2549.68 851.25 447.18 154.39 865.09 2.99 27.52

OS Rel P 0.00% -75.97% -46.57% -76.66% -75.88% -11.41% -43.28% 0.00% 510.06% 1395.41% 4098.32% 476.77% 44380.83% 14765.31%

OS ModelSE 173.47 81.81 48.90 37.89 85.84 9.74 33.12 173.47 81.81 48.90 37.89 85.84 9.74 33.12

OS Cover2 1.00 0.92 0.99 1.00 0.97 0.84 1.00 0.99 0.90 1.00 0.99 0.96 0.85 1.00

OS Cover1 1.00 0.94 1.00 1.00 0.98 0.99 1.00 1.00 0.94 1.00 1.00 0.98 0.99 1.00

QALYs Mean 59.71 69.76 63.28 69.49 65.70 54.19 60.45 108.05 84.07 70.36 75.19 79.57 54.97 63.44

QALYs Bias -1.82 8.23 1.76 7.96 4.17 -7.34 -1.08 46.53 22.55 8.84 13.67 18.05 -6.56 1.91

QALYs MC SE 0.13 0.25 0.17 0.25 0.24 0.13 0.17 2.64 1.07 0.68 0.42 1.10 0.14 0.24

QALYs Rel Bias 0.03-                   0.13             0.03                 0.13                   0.07             0.12-                0.02-                  0.76                   0.37               0.14                 0.22                   0.29               0.11-                0.03                  

QALYs empSE 3.96 7.62 5.26 7.81 7.32 4.06 4.90 81.32 32.98 21.04 12.95 33.90 4.31 7.09

QALYs MC SE 0.09 0.17 0.12 0.18 0.17 0.09 0.12 1.87 0.76 0.48 0.30 0.78 0.10 0.17

QALYs MSE 18.96 125.75 30.71 124.36 70.96 70.31 25.12 8769.98 1594.71 520.43 354.43 1473.91 61.55 53.84

QALYs MC SE 0.72 5.58 1.22 5.16 3.85 1.95 1.04 638.64 215.22 112.08 38.73 214.21 1.86 5.93

QALYs Rel P 0.00% -73.01% -43.30% -74.32% -70.75% -4.82% -34.65% 0.00% 508.00% 1393.14% 3839.93% 475.29% 35506.92% 13059.80%

QALYs ModelSE 87.31 41.07 24.78 19.45 43.12 5.39 17.12 87.31 41.07 24.78 19.45 43.12 5.39 17.12

QALYs Cover2 1.00 0.93 1.00 1.00 0.99 0.64 0.99 0.99 0.92 1.00 1.00 0.98 0.69 0.99

QALYs Cover1 1.00 0.96 1.00 1.00 0.99 0.97 1.00 1.00 0.96 1.00 1.00 0.99 0.97 1.00
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Table 27 : Result for simulated scenario 5 

Scenario5 Deterministic Probabilistic

PSM STM STM - Log STM - Time MSM Li's model Fu's model PSM STM STM - Log STM - Time MSM Li's model Fu's model

PFS Mean 51.15 55.22 55.13 55.06 49.63 43.05 44.68 50.94 56.12 56.02 55.95 49.47 43.23 45.14

PFS Bias -4.81 -0.74 -0.83 -0.90 -6.33 -12.91 -11.28 -5.02 0.16 0.06 -0.02 -6.49 -12.74 -10.82

PFS MC SE 0.13 0.17 0.17 0.17 0.14 0.10 0.11 0.12 0.17 0.18 0.18 0.14 0.10 0.12

PFS Rel Bias -8.6% -1.3% -1.5% -1.6% -11.3% -23.1% -20.2% -9.0% 0.3% 0.1% 0.0% -11.6% -22.8% -19.3%

PFS empSE 3.88 5.11 5.25 5.33 4.23 3.01 3.50 3.68 5.30 5.46 5.52 4.35 3.05 3.57

PFS MC SE 0.09 0.12 0.12 0.12 0.10 0.07 0.08 0.08 0.12 0.13 0.13 0.10 0.07 0.08

PFS MSE 38.20 26.67 28.26 29.16 57.96 175.75 139.50 38.75 28.09 29.76 30.46 60.98 171.50 129.85

PFS MC SE 1.23 0.95 1.08 1.11 1.72 2.50 2.61 1.22 1.03 1.15 1.17 1.82 2.49 2.55

PFS Rel P 0.00% -42.40% -45.44% -46.95% -15.97% 65.67% 22.76% 0.00% -51.83% -54.57% -55.61% -28.32% 45.17% 6.34%

PFS ModelSE 4.34 6.69 6.68 6.62 5.20 3.29 4.03 4.34 6.69 6.68 6.62 5.20 3.29 4.03

PFS Cover2 0.74 0.95 0.94 0.93 0.66 0.06 0.24 0.73 0.95 0.94 0.94 0.64 0.07 0.28

PFS Cover1 0.96 1.00 1.00 1.00 0.96 0.58 0.83 0.96 1.00 1.00 1.00 0.96 0.58 0.83

OS Mean 71.97 79.40 72.63 82.76 75.06 64.14 74.60 74.85 85.96 76.90 86.94 80.15 64.52 76.41

OS Bias -1.44 5.99 -0.78 9.36 1.66 -9.26 1.19 1.45 12.55 3.49 13.53 6.75 -8.88 3.00

OS MC SE 0.18 0.17 0.19 0.36 0.17 0.13 0.20 0.78 1.10 0.78 0.52 1.05 0.13 0.22

OS Rel Bias 0.02-                   0.08             0.01-                 0.13                   0.02             0.13-                0.02                  0.02                   0.17               0.05                 0.18                   0.09               0.12-                0.04                  

OS empSE 5.60 5.20 5.85 11.04 5.22 3.92 6.09 24.02 33.79 23.97 15.88 32.43 4.02 6.71

OS MC SE 0.13 0.12 0.13 0.25 0.12 0.09 0.14 0.55 0.78 0.55 0.36 0.74 0.09 0.15

OS MSE 33.40 62.89 34.83 209.25 29.92 101.16 38.45 578.34 1298.35 586.21 435.01 1095.82 95.03 53.99

OS MC SE 0.13 0.12 0.13 0.25 0.12 0.09 0.14 229.00 297.51 185.77 61.34 294.84 2.31 2.32

OS Rel P 0.00% 16.02% -8.48% -74.26% 15.22% 103.80% -15.42% 0.00% -49.49% 0.39% 128.84% -45.14% 3476.83% 1180.91%

OS ModelSE 29.36 41.80 30.50 24.23 39.76 4.63 10.13 29.36 41.80 30.50 24.23 39.76 4.63 10.13

OS Cover2 0.97 0.98 0.94 0.99 0.99 0.46 1.00 0.97 0.97 0.96 0.99 0.99 0.49 1.00

OS Cover1 1.00 1.00 1.00 1.00 1.00 0.92 1.00 1.00 1.00 1.00 1.00 1.00 0.92 1.00

QALYs Mean 51.33 56.26 52.85 57.90 52.42 44.99 50.70 52.71 59.81 55.26 60.25 54.92 45.23 51.74

QALYs Bias -2.16 2.77 -0.64 4.41 -1.07 -8.50 -2.79 -0.78 6.32 1.76 6.76 1.43 -8.26 -1.75

QALYs MC SE 0.12 0.12 0.13 0.21 0.11 0.09 0.12 0.40 0.56 0.40 0.28 0.53 0.09 0.13

QALYs Rel Bias 0.04-                   0.05             0.01-                 0.08                   0.02-             0.16-                0.05-                  0.01-                   0.12               0.03                 0.13                   0.03               0.15-                0.03-                  

QALYs empSE 3.60 3.82 4.15 6.56 3.51 2.69 3.62 12.18 17.27 12.28 8.73 16.46 2.74 3.93

QALYs MC SE 0.08 0.09 0.10 0.15 0.08 0.06 0.08 0.28 0.40 0.28 0.20 0.38 0.06 0.09

QALYs MSE 17.64 22.24 17.65 62.44 13.44 79.54 20.89 148.79 337.81 153.83 121.88 272.56 75.78 18.48

QALYs MC SE 0.64 0.91 0.62 2.81 0.54 1.48 0.82 55.78 75.49 45.72 15.54 72.14 1.47 0.75

QALYs Rel P 0.00% -10.96% -24.87% -69.88% 5.43% 79.55% -1.22% 0.00% -50.25% -1.68% 94.58% -45.23% 1873.71% 860.37%

QALYs ModelSE 14.91 21.27 15.77 12.92 20.16 3.14 5.90 14.91 21.27 15.77 12.92 20.16 3.14 5.90

QALYs Cover2 0.92 1.00 0.95 0.98 0.96 0.26 0.93 0.92 1.00 0.96 0.99 0.96 0.28 0.94

QALYs Cover1 0.99 1.00 1.00 1.00 1.00 0.81 1.00 0.99 1.00 1.00 1.00 1.00 0.81 1.00
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Table 28 : Result for simulated scenario 6 

Scenario6 Deterministic Probabilistic

PSM STM STM - Log STM - Time MSM Li's model Fu's model PSM STM STM - Log STM - Time MSM Li's model Fu's model

PFS Mean 51.25 54.43 54.32 54.41 48.90 43.59 46.00 50.70 55.40 55.28 55.37 48.70 43.72 46.49

PFS Bias -4.71 -1.54 -1.64 -1.55 -7.06 -12.37 -9.96 -5.26 -0.56 -0.68 -0.59 -7.27 -12.24 -9.47

PFS MC SE 0.13 0.16 0.15 0.17 0.12 0.10 0.12 0.12 0.16 0.16 0.17 0.13 0.10 0.13

PFS Rel Bias -8.4% -2.7% -2.9% -2.8% -12.6% -22.1% -17.8% -9.4% -1.0% -1.2% -1.1% -13.0% -21.9% -16.9%

PFS empSE 3.94 4.84 4.76 5.09 3.71 2.98 3.83 3.71 4.96 4.89 5.22 3.95 3.01 3.90

PFS MC SE 0.09 0.11 0.11 0.12 0.09 0.07 0.09 0.09 0.11 0.11 0.12 0.09 0.07 0.09

PFS MSE 37.69 25.80 25.31 28.25 63.63 161.99 113.92 41.38 24.92 24.33 27.58 68.34 158.81 104.91

PFS MC SE 1.28 0.96 0.92 1.04 1.71 2.38 2.58 1.33 0.93 0.88 1.04 1.80 2.38 2.51

PFS Rel P 0.00% -33.85% -31.44% -40.00% 12.71% 74.87% 6.00% 0.00% -44.16% -42.42% -49.54% -11.64% 52.02% -9.67%

PFS ModelSE 4.24 6.85 6.81 6.81 5.00 3.37 4.31 4.24 6.85 6.81 6.81 5.00 3.37 4.31

PFS Cover2 0.73 0.94 0.94 0.93 0.63 0.08 0.37 0.70 0.95 0.95 0.94 0.59 0.09 0.41

PFS Cover1 0.95 1.00 1.00 1.00 0.95 0.62 0.90 0.95 1.00 1.00 1.00 0.95 0.62 0.90

OS Mean 61.10 66.43 62.90 73.79 61.02 54.39 63.33 61.67 67.58 64.57 76.24 61.22 54.55 64.53

OS Bias -4.20 1.14 -2.39 8.50 -4.27 -10.90 -1.96 -3.62 2.28 -0.72 10.95 -4.07 -10.74 -0.76

OS MC SE 0.16 0.16 0.15 0.35 0.13 0.10 0.18 0.17 0.24 0.27 0.41 0.23 0.10 0.18

OS Rel Bias 0.06-                   0.02             0.04-                 0.13                   0.07-             0.17-                0.03-                  0.06-                   0.03               0.01-                 0.17                   0.06-               0.16-                0.01-                  

OS empSE 4.99 4.86 4.68 10.77 3.95 3.13 5.40 5.15 7.44 8.18 12.63 7.10 3.17 5.70

OS MC SE 0.11 0.11 0.11 0.25 0.09 0.07 0.12 0.12 0.17 0.19 0.29 0.16 0.07 0.13

OS MSE 42.45 24.94 27.61 188.21 33.81 128.71 32.97 39.64 60.52 67.28 279.13 66.96 125.32 32.98

OS MC SE 0.11 0.11 0.11 0.25 0.09 0.07 0.12 1.40 28.89 17.26 36.26 28.84 2.20 1.22

OS Rel P 0.00% 5.11% 13.37% -78.57% 59.44% 153.63% -14.69% 0.00% -52.03% -60.26% -83.34% -47.34% 164.43% -18.14%

OS ModelSE 6.06 11.81 15.21 18.35 11.15 3.66 6.96 6.06 11.81 15.21 18.35 11.15 3.66 6.96

OS Cover2 0.83 0.99 0.92 0.97 0.87 0.19 0.93 0.85 1.00 0.94 0.98 0.86 0.21 0.95

OS Cover1 0.98 1.00 1.00 1.00 1.00 0.76 1.00 0.98 1.00 1.00 1.00 1.00 0.76 1.00

QALYs Mean 45.92 49.54 47.75 53.22 45.18 40.27 45.46 46.05 50.41 48.87 54.73 45.22 40.39 46.21

QALYs Bias -3.51 0.11 -1.69 3.78 -4.25 -9.16 -3.97 -3.39 0.97 -0.56 5.30 -4.22 -9.04 -3.22

QALYs MC SE 0.11 0.12 0.12 0.21 0.10 0.08 0.12 0.11 0.15 0.16 0.23 0.14 0.08 0.12

QALYs Rel Bias 0.07-                   0.00             0.03-                 0.08                   0.09-             0.19-                0.08-                  0.07-                   0.02               0.01-                 0.11                   0.09-               0.18-                0.07-                  

QALYs empSE 3.43 3.79 3.72 6.39 2.97 2.41 3.61 3.48 4.75 5.04 7.21 4.26 2.44 3.77

QALYs MC SE 0.08 0.09 0.09 0.15 0.07 0.06 0.08 0.08 0.11 0.12 0.17 0.10 0.06 0.09

QALYs MSE 24.09 14.39 16.64 55.13 26.92 89.80 28.79 23.59 23.50 25.71 80.01 35.92 87.66 24.59

QALYs MC SE 0.86 0.53 0.58 2.31 0.80 1.43 0.99 0.84 6.99 4.32 8.89 6.75 1.43 0.89

QALYs Rel P 0.00% -18.21% -14.72% -71.18% 33.17% 102.53% -9.69% 0.00% -46.27% -52.29% -76.67% -33.24% 104.00% -14.83%

QALYs ModelSE 3.80 7.23 8.67 10.31 6.41 2.80 4.57 3.80 7.23 8.67 10.31 6.41 2.80 4.57

QALYs Cover2 0.76 0.97 0.93 0.97 0.79 0.14 0.80 0.76 0.98 0.94 0.97 0.76 0.15 0.84

QALYs Cover1 0.94 1.00 1.00 1.00 0.99 0.69 0.99 0.94 1.00 1.00 1.00 0.99 0.69 0.99
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Table 29 : Result for simulated scenario 7 

 

 

Scenario7 Deterministic Probabilistic

PSM STM STM - Log STM - Time MSM Li's model Fu's model PSM STM STM - Log STM - Time MSM Li's model Fu's model

PFS Mean 59.42 60.96 61.11 60.87 57.25 49.08 51.30 59.43 61.54 61.70 61.45 56.89 49.20 51.43

PFS Bias -9.76 -8.22 -8.07 -8.31 -11.93 -20.10 -17.88 -9.75 -7.64 -7.48 -7.73 -12.29 -19.98 -17.75

PFS MC SE 0.16 0.19 0.19 0.18 0.17 0.10 0.12 0.16 0.20 0.20 0.19 0.18 0.10 0.12

PFS Rel Bias -14.1% -11.9% -11.7% -12.0% -17.2% -29.1% -25.8% -14.1% -11.0% -10.8% -11.2% -17.8% -28.9% -25.7%

PFS empSE 4.92 5.89 5.98 5.68 5.27 3.09 3.62 4.80 6.17 6.26 5.94 5.69 3.11 3.66

PFS MC SE 0.11 0.14 0.14 0.13 0.12 0.07 0.08 0.11 0.14 0.14 0.14 0.13 0.07 0.08

PFS MSE 119.55 102.33 100.83 101.24 170.16 413.55 332.75 118.12 96.36 95.07 94.94 183.44 408.72 328.40

PFS MC SE 2.97 2.97 2.94 2.92 3.64 3.98 4.20 2.90 2.93 2.91 2.86 4.34 3.99 4.20

PFS Rel P 0.00% -30.26% -32.19% -24.90% -12.84% 153.85% 84.69% 0.00% -39.45% -41.22% -34.67% -28.93% 137.36% 72.16%

PFS ModelSE 4.70 5.80 5.86 5.73 6.77 3.09 3.70 4.70 5.80 5.86 5.73 6.77 3.09 3.70

PFS Cover2 0.42 0.58 0.59 0.59 0.34 0.00 0.01 0.42 0.61 0.62 0.61 0.34 0.00 0.01

PFS Cover1 0.84 0.92 0.92 0.92 0.78 0.08 0.35 0.84 0.92 0.92 0.92 0.78 0.08 0.35

OS Mean 117.53 132.87 121.04 128.05 129.77 111.21 120.67 119.13 148.18 127.29 132.44 142.74 112.11 122.67

OS Bias -4.43 10.90 -0.92 6.09 7.80 -10.76 -1.30 -2.83 26.21 5.32 10.48 20.77 -9.86 0.70

OS MC SE 0.27 0.40 0.38 0.37 0.40 0.23 0.30 0.35 1.48 0.97 0.71 1.36 0.24 0.32

OS Rel Bias 0.04-                   0.09             0.01-                 0.05                   0.06             0.09-                0.01-                  0.02-                   0.21               0.04                 0.09                   0.17               0.08-                0.01                  

OS empSE 8.47 12.41 11.74 11.42 12.26 7.13 9.20 10.94 45.58 29.83 21.86 41.94 7.35 9.92

OS MC SE 0.19 0.28 0.27 0.26 0.28 0.16 0.21 0.25 1.05 0.68 0.50 0.96 0.17 0.23

OS MSE 91.35 272.54 138.55 167.26 211.02 166.49 86.28 127.53 2762.62 917.23 587.00 2188.52 151.16 98.73

OS MC SE 0.19 0.28 0.27 0.26 0.28 0.16 0.21 39.80 456.66 225.61 161.08 380.81 4.80 3.38

OS Rel P 0.00% -53.37% -47.94% -44.95% -52.26% 41.20% -15.25% 0.00% -94.24% -86.56% -74.96% -93.20% 121.32% 21.64%

OS ModelSE 16.74 61.83 39.49 29.67 60.17 9.11 16.09 16.74 61.83 39.49 29.67 60.17 9.11 16.09

OS Cover2 0.96 0.94 0.93 1.00 0.97 0.71 0.99 0.97 0.93 0.95 1.00 0.97 0.73 1.00

OS Cover1 1.00 0.99 1.00 1.00 0.99 0.98 1.00 1.00 0.99 1.00 1.00 0.99 0.98 1.00

QALYs Mean 76.59 84.72 78.85 82.29 82.06 70.33 75.72 77.39 92.55 82.16 84.66 88.44 70.82 76.76

QALYs Bias -5.15 2.98 -2.88 0.55 0.32 -11.41 -6.01 -4.34 10.82 0.42 2.92 6.70 -10.92 -4.98

QALYs MC SE 0.16 0.22 0.20 0.21 0.22 0.13 0.16 0.20 0.75 0.49 0.37 0.69 0.13 0.17

QALYs Rel Bias 0.06-                   0.04             0.04-                 0.01                   0.00             0.14-                0.07-                  0.05-                   0.13               0.01                 0.04                   0.08               0.13-                0.06-                  

QALYs empSE 4.83 6.93 6.23 6.43 6.76 4.01 5.00 6.02 23.12 15.08 11.39 21.38 4.12 5.37

QALYs MC SE 0.11 0.16 0.14 0.15 0.16 0.09 0.11 0.14 0.53 0.35 0.26 0.49 0.09 0.12

QALYs MSE 49.77 56.93 47.02 41.62 45.78 146.25 61.19 55.05 651.04 227.45 138.02 501.31 136.27 53.53

QALYs MC SE 1.78 2.80 1.62 1.48 1.97 2.94 2.18 10.08 111.92 53.76 38.97 91.88 2.88 2.02

QALYs Rel P 0.00% -51.53% -39.86% -43.65% -49.04% 44.66% -6.96% 0.00% -93.22% -84.08% -72.05% -92.07% 112.97% 25.74%

QALYs ModelSE 8.73 31.10 20.04 15.29 30.53 5.02 8.59 8.73 31.10 20.04 15.29 30.53 5.02 8.59

QALYs Cover2 0.88 0.98 0.90 0.98 0.99 0.38 0.88 0.89 0.97 0.93 0.99 0.99 0.41 0.90

QALYs Cover1 0.99 0.99 1.00 1.00 1.00 0.91 1.00 0.99 0.99 1.00 1.00 1.00 0.91 1.00
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Table 30 : Result for simulated scenario 8 

 

 

Scenario8 Deterministic Probabilistic

PSM STM STM - Log STM - Time MSM Li's model Fu's model PSM STM STM - Log STM - Time MSM Li's model Fu's model

PFS Mean 58.42 60.68 60.81 60.53 55.93 49.29 50.18 58.20 61.23 61.37 61.08 55.98 49.41 50.30

PFS Bias -10.76 -8.50 -8.37 -8.65 -13.25 -19.89 -19.00 -10.98 -7.95 -7.81 -8.10 -13.20 -19.77 -18.88

PFS MC SE 0.14 0.17 0.18 0.17 0.15 0.10 0.12 0.14 0.18 0.19 0.18 0.16 0.10 0.12

PFS Rel Bias -15.6% -12.3% -12.1% -12.5% -19.1% -28.8% -27.5% -15.9% -11.5% -11.3% -11.7% -19.1% -28.6% -27.3%

PFS empSE 4.40 5.27 5.66 5.29 4.53 2.97 3.58 4.28 5.44 5.87 5.48 4.81 3.01 3.59

PFS MC SE 0.10 0.12 0.13 0.12 0.10 0.07 0.08 0.10 0.12 0.13 0.13 0.11 0.07 0.08

PFS MSE 135.21 100.05 102.09 102.75 195.92 404.51 373.89 138.89 92.79 95.45 95.53 197.37 399.88 369.27

PFS MC SE 3.07 2.87 2.97 2.94 3.67 3.82 4.37 3.04 2.77 2.88 2.85 4.03 3.85 4.35

PFS Rel P 0.00% -30.27% -39.55% -30.82% -5.57% 119.78% 51.17% 0.00% -38.07% -46.79% -38.87% -20.65% 102.33% 42.42%

PFS ModelSE 4.14 5.53 5.62 5.53 6.04 3.12 3.42 4.14 5.53 5.62 5.53 6.04 3.12 3.42

PFS Cover2 0.30 0.58 0.58 0.57 0.26 0.00 0.00 0.28 0.61 0.61 0.60 0.27 0.00 0.00

PFS Cover1 0.71 0.92 0.92 0.92 0.74 0.10 0.23 0.71 0.92 0.92 0.92 0.74 0.10 0.23

OS Mean 89.58 101.62 92.18 100.23 96.56 85.61 91.57 90.35 104.94 95.47 102.64 98.78 85.97 92.51

OS Bias -10.37 1.68 -7.77 0.28 -3.39 -14.34 -8.37 -9.60 4.99 -4.48 2.70 -1.17 -13.98 -7.44

OS MC SE 0.19 0.20 0.25 0.28 0.20 0.14 0.21 0.20 0.67 0.75 0.50 0.58 0.14 0.22

OS Rel Bias 0.10-                   0.02             0.08-                 0.00                   0.03-             0.14-                0.08-                  0.10-                   0.05               0.04-                 0.03                   0.01-               0.14-                0.07-                  

OS empSE 5.89 6.26 7.55 8.59 6.22 4.19 6.55 6.11 20.69 23.12 15.31 17.73 4.27 6.86

OS MC SE 0.14 0.14 0.17 0.20 0.14 0.10 0.15 0.14 0.47 0.53 0.35 0.41 0.10 0.16

OS MSE 142.17 42.01 117.38 73.79 50.17 223.07 112.95 129.41 452.46 553.86 241.42 315.43 213.50 102.34

OS MC SE 0.14 0.14 0.17 0.20 0.14 0.10 0.15 3.64 139.05 159.27 81.51 99.55 3.88 3.22

OS Rel P 0.00% -11.67% -39.23% -53.03% -10.54% 97.07% -19.16% 0.00% -91.29% -93.02% -84.09% -88.14% 104.95% -20.82%

OS ModelSE 7.80 31.59 32.08 23.47 27.83 4.98 8.56 7.80 31.59 32.08 23.47 27.83 4.98 8.56

OS Cover2 0.61 0.99 0.65 0.96 0.93 0.21 0.73 0.64 0.99 0.69 0.97 0.93 0.23 0.75

OS Cover1 0.96 1.00 0.97 1.00 1.00 0.77 0.99 0.96 1.00 0.97 1.00 1.00 0.77 0.99

QALYs Mean 62.31 69.01 64.33 68.27 65.06 57.59 60.84 62.63 70.84 66.14 69.65 66.18 57.81 61.35

QALYs Bias -8.41 -1.71 -6.40 -2.45 -5.67 -13.14 -9.89 -8.09 0.11 -4.59 -1.08 -4.54 -12.92 -9.38

QALYs MC SE 0.13 0.14 0.16 0.18 0.13 0.09 0.13 0.13 0.35 0.39 0.27 0.30 0.09 0.13

QALYs Rel Bias 0.12-                   0.02-             0.09-                 0.03-                   0.08-             0.19-                0.14-                  0.11-                   0.00               0.06-                 0.02-                   0.06-               0.18-                0.13-                  

QALYs empSE 3.86 4.28 4.78 5.40 4.05 2.73 3.96 3.94 10.74 11.99 8.43 9.31 2.77 4.11

QALYs MC SE 0.09 0.10 0.11 0.12 0.09 0.06 0.09 0.09 0.25 0.28 0.19 0.21 0.06 0.09

QALYs MSE 85.70 21.27 63.77 35.20 48.48 179.96 113.41 81.03 115.21 164.74 72.22 107.27 174.57 104.91

QALYs MC SE 2.06 0.87 1.85 1.18 1.56 2.32 2.48 2.01 32.82 38.70 20.28 22.67 2.32 2.43

QALYs Rel P 0.00% -18.74% -34.80% -48.93% -9.00% 100.74% -4.79% 0.00% -86.53% -89.21% -78.17% -82.09% 102.18% -8.19%

QALYs ModelSE 4.43 16.15 16.39 12.30 14.53 3.18 4.93 4.43 16.15 16.39 12.30 14.53 3.18 4.93

QALYs Cover2 0.45 0.92 0.64 0.89 0.78 0.02 0.41 0.45 0.93 0.66 0.92 0.79 0.03 0.44

QALYs Cover1 0.80 0.99 0.96 1.00 0.98 0.50 0.91 0.80 0.99 0.96 1.00 0.98 0.50 0.91
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Table 31 : Result for simulated scenario 9 

 

 

Scenario9 Deterministic Probabilistic

PSM STM STM - Log STM - Time MSM Li's model Fu's model PSM STM STM - Log STM - Time MSM Li's model Fu's model

PFS Mean 55.14 60.07 59.80 59.89 54.87 49.19 49.04 54.86 60.65 60.36 60.47 54.77 49.29 49.08

PFS Bias -14.04 -9.11 -9.38 -9.29 -14.31 -19.99 -20.14 -14.32 -8.53 -8.82 -8.71 -14.41 -19.89 -20.10

PFS MC SE 0.12 0.16 0.16 0.16 0.13 0.09 0.13 0.12 0.16 0.16 0.17 0.13 0.09 0.13

PFS Rel Bias -20.3% -13.2% -13.6% -13.4% -20.7% -28.9% -29.1% -20.7% -12.3% -12.8% -12.6% -20.8% -28.7% -29.1%

PFS empSE 3.75 4.85 4.80 4.96 3.89 2.88 3.93 3.64 5.02 4.95 5.13 4.04 2.90 3.89

PFS MC SE 0.09 0.11 0.11 0.11 0.09 0.07 0.09 0.08 0.12 0.11 0.12 0.09 0.07 0.09

PFS MSE 211.12 106.40 110.99 110.77 219.85 407.95 420.97 218.36 97.92 102.34 102.22 223.91 403.86 419.03

PFS MC SE 3.42 2.95 3.06 3.06 3.50 3.75 5.17 3.40 2.87 2.99 2.98 3.82 3.75 5.11

PFS Rel P 0.00% -40.33% -39.03% -42.91% -7.27% 68.64% -9.05% 0.00% -47.34% -45.94% -49.70% -18.59% 57.45% -12.55%

PFS ModelSE 3.35 5.54 5.45 5.51 5.58 3.16 3.23 3.35 5.54 5.45 5.51 5.58 3.16 3.23

PFS Cover2 0.06 0.56 0.55 0.55 0.18 0.00 0.00 0.05 0.59 0.58 0.58 0.19 0.00 0.00

PFS Cover1 0.38 0.92 0.92 0.92 0.68 0.09 0.18 0.38 0.92 0.92 0.92 0.68 0.09 0.18

OS Mean 70.44 81.55 76.24 84.47 76.01 69.03 72.61 70.98 82.01 77.27 85.75 76.07 69.18 73.09

OS Bias -15.94 -4.83 -10.14 -1.90 -10.37 -17.35 -13.77 -15.40 -4.37 -9.11 -0.63 -10.31 -17.20 -13.29

OS MC SE 0.13 0.17 0.14 0.27 0.14 0.10 0.14 0.14 0.20 0.34 0.32 0.18 0.10 0.14

OS Rel Bias 0.18-                   0.06-             0.12-                 0.02-                   0.12-             0.20-                0.16-                  0.18-                   0.05-               0.11-                 0.01-                   0.12-               0.20-                0.15-                  

OS empSE 4.07 5.17 4.41 8.33 4.29 3.08 4.23 4.34 6.11 10.52 9.94 5.66 3.10 4.41

OS MC SE 0.09 0.12 0.10 0.19 0.10 0.07 0.10 0.10 0.14 0.24 0.23 0.13 0.07 0.10

OS MSE 270.62 50.03 122.17 72.96 125.91 310.60 207.38 256.02 56.37 193.56 99.13 138.21 305.49 196.12

OS MC SE 0.09 0.12 0.10 0.19 0.10 0.07 0.10 4.31 7.74 65.80 18.75 7.71 3.45 3.70

OS Rel P 0.00% -38.06% -14.76% -76.16% -10.00% 74.67% -7.63% 0.00% -49.52% -82.97% -80.93% -41.08% 95.88% -3.22%

OS ModelSE 5.26 8.56 15.66 14.27 9.16 3.61 5.53 5.26 8.56 15.66 14.27 9.16 3.61 5.53

OS Cover2 0.13 0.80 0.50 0.86 0.48 0.00 0.25 0.14 0.81 0.53 0.88 0.50 0.00 0.27

OS Cover1 0.65 0.97 0.92 0.99 0.93 0.31 0.85 0.65 0.97 0.92 0.99 0.93 0.31 0.85

QALYs Mean 51.76 58.80 56.06 60.21 54.47 49.27 51.02 51.95 59.20 56.74 61.02 54.47 49.38 51.27

QALYs Bias -12.18 -5.15 -7.88 -3.74 -9.48 -14.67 -12.92 -12.00 -4.74 -7.20 -2.93 -9.48 -14.57 -12.67

QALYs MC SE 0.10 0.13 0.11 0.17 0.10 0.07 0.10 0.10 0.14 0.19 0.20 0.12 0.08 0.10

QALYs Rel Bias 0.19-                   0.08-             0.12-                 0.06-                   0.15-             0.23-                0.20-                  0.19-                   0.07-               0.11-                 0.05-                   0.15-               0.23-                0.20-                  

QALYs empSE 3.03 3.88 3.47 5.31 3.12 2.31 3.09 3.11 4.29 5.91 6.02 3.75 2.33 3.17

QALYs MC SE 0.07 0.09 0.08 0.12 0.07 0.05 0.07 0.07 0.10 0.14 0.14 0.09 0.05 0.07

QALYs MSE 157.56 41.51 74.20 42.17 99.53 220.66 176.59 153.57 40.88 86.80 44.72 103.83 217.59 170.67

QALYs MC SE 2.41 1.39 1.75 1.50 1.83 2.20 2.58 2.43 2.18 15.43 4.26 2.68 2.20 2.57

QALYs Rel P 0.00% -38.98% -24.05% -67.51% -5.57% 71.61% -4.11% 0.00% -47.56% -72.40% -73.32% -31.23% 78.11% -3.80%

QALYs ModelSE 3.22 5.46 8.50 8.09 5.86 2.67 3.53 3.22 5.46 8.50 8.09 5.86 2.67 3.53

QALYs Cover2 0.08 0.72 0.51 0.81 0.34 0.00 0.08 0.08 0.73 0.53 0.83 0.34 0.00 0.09

QALYs Cover1 0.32 0.96 0.92 0.97 0.87 0.19 0.58 0.32 0.96 0.92 0.97 0.87 0.19 0.58
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Table 32 : Result for simulated scenario 10 

 

Scenario10 Deterministic Probabilistic

PSM STM STM - Log STM - Time MSM Li's model Fu's model PSM STM STM - Log STM - Time MSM Li's model Fu's model

PFS Mean 52.98 56.91 57.00 56.93 50.50 44.29 45.70 53.93 57.53 57.62 57.55 50.48 44.39 45.76

PFS Bias -2.99 0.95 1.04 0.96 -5.46 -11.68 -10.26 -2.03 1.57 1.66 1.58 -5.48 -11.57 -10.20

PFS MC SE 0.12 0.18 0.18 0.17 0.14 0.09 0.11 0.14 0.18 0.18 0.18 0.14 0.09 0.11

PFS Rel Bias -5.3% 1.7% 1.9% 1.7% -9.8% -20.9% -18.3% -3.6% 2.8% 3.0% 2.8% -9.8% -20.7% -18.2%

PFS empSE 3.75 5.47 5.49 5.34 4.18 2.73 3.34 4.19 5.64 5.66 5.51 4.17 2.75 3.30

PFS MC SE 0.09 0.13 0.13 0.12 0.10 0.06 0.08 0.10 0.13 0.13 0.13 0.10 0.06 0.08

PFS MSE 23.01 30.77 31.14 29.41 47.24 143.83 116.42 21.67 34.24 34.72 32.79 47.42 141.52 114.93

PFS MC SE 0.90 1.47 1.50 1.40 1.47 2.04 2.31 0.89 1.67 1.70 1.59 1.53 2.04 2.21

PFS Rel P 0.00% -52.84% -53.14% -50.54% -19.12% 89.37% 26.33% 0.00% -44.78% -45.13% -42.07% 0.93% 131.44% 61.24%

PFS ModelSE 4.65 5.26 5.28 5.27 4.42 2.76 3.20 4.65 5.26 5.28 5.27 4.42 2.76 3.20

PFS Cover2 0.87 0.93 0.93 0.94 0.62 0.04 0.15 0.89 0.92 0.92 0.93 0.63 0.04 0.15

PFS Cover1 0.99 1.00 1.00 1.00 0.93 0.42 0.72 0.99 1.00 1.00 1.00 0.93 0.42 0.72

OS Mean 113.14 131.14 117.39 121.33 127.83 109.22 117.75 179.51 158.37 134.24 132.92 158.40 110.65 122.04

OS Bias 1.63 19.63 5.88 9.82 16.32 -2.29 6.24 68.00 46.86 22.73 21.41 46.89 -0.86 10.53

OS MC SE 0.28 0.55 0.36 0.35 0.55 0.28 0.32 4.05 2.01 1.59 1.08 2.22 0.29 0.42

OS Rel Bias 0.01                   0.18             0.05                 0.09                   0.15             0.02-                0.06                  0.61                   0.42               0.20                 0.19                   0.42               0.01-                0.09                  

OS empSE 8.59 16.96 10.97 10.68 16.97 8.62 9.68 124.80 62.00 49.05 33.30 68.48 9.01 12.66

OS MC SE 0.20 0.39 0.25 0.25 0.39 0.20 0.23 2.86 1.42 1.13 0.76 1.57 0.21 0.30

OS MSE 76.37 672.91 154.73 210.22 553.86 79.42 132.53 20183.67 6036.25 2920.45 1566.03 6882.34 81.84 270.91

OS MC SE 0.20 0.39 0.25 0.25 0.39 0.20 0.23 1761.60 731.33 496.77 262.82 806.27 3.02 18.69

OS Rel P 0.00% -74.36% -38.68% -35.26% -74.38% -0.63% -21.26% 0.00% 305.16% 547.31% 1304.63% 232.18% 19083.96% 9625.49%

OS ModelSE 144.17 78.55 58.99 45.42 86.69 11.71 28.21 144.17 78.55 58.99 45.42 86.69 11.71 28.21

OS Cover2 1.00 0.88 1.00 1.00 0.93 0.95 1.00 1.00 0.86 1.00 1.00 0.92 0.95 1.00

OS Cover1 1.00 0.93 1.00 1.00 0.97 1.00 1.00 1.00 0.93 1.00 1.00 0.97 1.00 1.00

QALYs Mean 72.47 82.65 75.80 77.74 79.06 67.90 72.59 105.94 96.45 84.41 83.72 94.34 68.64 74.75

QALYs Bias -0.08 10.10 3.25 5.20 6.52 -4.65 0.04 33.39 23.90 11.86 11.18 21.80 -3.90 2.21

QALYs MC SE 0.15 0.29 0.19 0.19 0.28 0.15 0.17 2.04 1.01 0.80 0.54 1.11 0.16 0.22

QALYs Rel Bias 0.00-                   0.14             0.04                 0.07                   0.09             0.06-                0.00                  0.46                   0.33               0.16                 0.15                   0.30               0.05-                0.03                  

QALYs empSE 4.75 8.93 5.75 5.82 8.77 4.61 5.15 62.76 31.18 24.53 16.77 34.29 4.81 6.61

QALYs MC SE 0.11 0.20 0.13 0.13 0.20 0.11 0.12 1.44 0.72 0.56 0.38 0.79 0.11 0.15

QALYs MSE 22.50 181.62 43.63 60.90 119.27 42.86 26.50 5049.54 1542.59 741.71 405.93 1649.97 38.33 48.45

QALYs MC SE 0.79 7.50 1.70 2.25 5.73 1.53 1.02 441.39 184.44 124.17 65.42 198.30 1.42 4.04

QALYs Rel P 0.00% -71.74% -31.97% -33.61% -70.70% 5.86% -15.11% 0.00% 305.06% 554.69% 1300.32% 234.91% 16921.11% 8927.23%

QALYs ModelSE 72.54 39.37 29.63 22.90 43.47 6.18 14.47 72.54 39.37 29.63 22.90 43.47 6.18 14.47

QALYs Cover2 1.00 0.89 1.00 1.00 0.95 0.84 1.00 1.00 0.86 1.00 1.00 0.95 0.87 1.00

QALYs Cover1 1.00 0.94 1.00 1.00 0.98 0.99 1.00 1.00 0.94 1.00 1.00 0.98 0.99 1.00
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Table 33 : Result for simulated scenario 11 

Scenario11 Deterministic Probabilistic

PSM STM STM - Log STM - Time MSM Li's model Fu's model PSM STM STM - Log STM - Time MSM Li's model Fu's model

PFS Mean 51.31 56.68 56.74 56.67 50.08 44.62 44.83 51.36 57.29 57.36 57.28 50.06 44.71 44.79

PFS Bias -4.65 0.72 0.78 0.70 -5.88 -11.34 -11.13 -4.60 1.33 1.39 1.32 -5.90 -11.25 -11.17

PFS MC SE 0.11 0.17 0.17 0.17 0.13 0.09 0.09 0.11 0.17 0.18 0.17 0.13 0.09 0.09

PFS Rel Bias -8.3% 1.3% 1.4% 1.3% -10.5% -20.3% -19.9% -8.2% 2.4% 2.5% 2.4% -10.5% -20.1% -20.0%

PFS empSE 3.44 5.13 5.26 5.15 3.93 2.69 2.89 3.39 5.29 5.43 5.32 3.94 2.72 2.91

PFS MC SE 0.08 0.12 0.12 0.12 0.09 0.06 0.07 0.08 0.12 0.12 0.12 0.09 0.06 0.07

PFS MSE 33.39 26.78 28.28 27.03 50.02 135.84 132.16 32.69 29.78 31.44 30.05 50.35 133.96 133.28

PFS MC SE 1.04 1.26 1.33 1.26 1.44 1.98 2.11 1.02 1.43 1.51 1.43 1.44 1.98 2.13

PFS Rel P 0.00% -55.12% -57.39% -55.57% -23.49% 62.95% 41.44% 0.00% -58.96% -61.03% -59.40% -25.98% 55.58% 35.72%

PFS ModelSE 3.44 5.23 5.25 5.23 4.00 2.80 2.92 3.44 5.23 5.25 5.23 4.00 2.80 2.92

PFS Cover2 0.65 0.94 0.93 0.94 0.59 0.05 0.06 0.65 0.94 0.93 0.94 0.59 0.05 0.07

PFS Cover1 0.93 1.00 1.00 1.00 0.93 0.46 0.55 0.93 1.00 1.00 1.00 0.93 0.46 0.55

OS Mean 80.28 92.00 84.30 90.01 86.65 77.15 81.73 81.91 98.25 87.98 92.58 92.16 77.50 82.25

OS Bias -3.48 8.24 0.54 6.24 2.89 -6.61 -2.03 -1.85 14.49 4.22 8.81 8.40 -6.26 -1.51

OS MC SE 0.18 0.19 0.21 0.24 0.18 0.13 0.19 0.53 0.89 0.69 0.38 0.89 0.13 0.20

OS Rel Bias 0.04-                   0.10             0.01                 0.07                   0.03             0.08-                0.02-                  0.02-                   0.17               0.05                 0.11                   0.10               0.07-                0.02-                  

OS empSE 5.46 5.88 6.50 7.25 5.47 4.06 5.73 16.29 27.43 21.36 11.64 27.31 4.13 6.06

OS MC SE 0.13 0.13 0.15 0.17 0.13 0.09 0.13 0.37 0.63 0.49 0.27 0.63 0.09 0.14

OS MSE 41.88 102.34 42.54 91.52 38.23 60.20 36.97 268.40 961.64 473.62 213.11 815.60 56.22 38.95

OS MC SE 0.13 0.13 0.15 0.17 0.13 0.09 0.13 125.48 209.26 159.50 45.23 219.48 1.73 1.38

OS Rel P 0.00% -13.75% -29.58% -43.38% -0.48% 80.22% -9.43% 0.00% -64.75% -41.86% 95.69% -64.43% 1453.44% 622.62%

OS ModelSE 21.52 38.26 28.50 18.09 37.31 4.87 7.53 21.52 38.26 28.50 18.09 37.31 4.87 7.53

OS Cover2 0.92 0.87 0.95 1.00 0.99 0.69 0.95 0.93 0.85 0.96 0.97 0.99 0.70 0.96

OS Cover1 0.99 0.97 1.00 1.00 1.00 0.97 1.00 0.99 0.97 1.00 1.00 1.00 0.97 1.00

QALYs Mean 55.53 63.00 59.17 62.00 58.35 51.96 54.31 56.36 66.31 61.20 63.47 61.10 52.16 54.56

QALYs Bias -3.14 4.33 0.51 3.33 -0.32 -6.71 -4.35 -2.30 7.64 2.53 4.80 2.43 -6.50 -4.11

QALYs MC SE 0.11 0.13 0.14 0.15 0.11 0.08 0.11 0.27 0.46 0.36 0.21 0.45 0.09 0.11

QALYs Rel Bias 0.05-                   0.07             0.01                 0.06                   0.01-             0.11-                0.07-                  0.04-                   0.13               0.04                 0.08                   0.04               0.11-                0.07-                  

QALYs empSE 3.43 4.11 4.28 4.69 3.50 2.59 3.28 8.44 14.04 11.05 6.58 13.87 2.63 3.46

QALYs MC SE 0.08 0.09 0.10 0.11 0.08 0.06 0.08 0.19 0.32 0.25 0.15 0.32 0.06 0.08

QALYs MSE 21.59 35.63 18.58 33.10 12.33 51.68 29.72 76.40 255.41 128.41 66.28 198.11 49.19 28.79

QALYs MC SE 0.72 1.39 0.70 1.36 0.51 1.13 0.94 30.82 52.62 39.86 11.27 53.89 1.11 0.93

QALYs Rel P 0.00% -30.23% -35.85% -46.52% -3.81% 75.67% 9.31% 0.00% -63.92% -41.74% 64.51% -63.02% 932.04% 495.98%

QALYs ModelSE 10.98 19.37 14.59 9.61 18.83 3.03 4.32 10.98 19.37 14.59 9.61 18.83 3.03 4.32

QALYs Cover2 0.83 0.93 0.95 0.99 0.97 0.40 0.79 0.85 0.91 0.96 0.98 0.97 0.43 0.79

QALYs Cover1 0.98 0.99 1.00 1.00 1.00 0.88 0.98 0.98 0.99 1.00 1.00 1.00 0.88 0.98
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Table 34 : Result for simulated scenario 12 

 

 

Scenario12 Deterministic Probabilistic

PSM STM STM - Log STM - Time MSM Li's model Fu's model PSM STM STM - Log STM - Time MSM Li's model Fu's model

PFS Mean 52.22 55.23 55.07 54.99 49.26 44.83 45.99 51.96 55.83 55.67 55.59 49.20 44.91 46.04

PFS Bias -3.74 -0.73 -0.89 -0.97 -6.71 -11.14 -9.97 -4.01 -0.13 -0.29 -0.37 -6.76 -11.05 -9.93

PFS MC SE 0.12 0.14 0.14 0.14 0.11 0.08 0.10 0.12 0.14 0.14 0.15 0.11 0.08 0.10

PFS Rel Bias -6.7% -1.3% -1.6% -1.7% -12.0% -19.9% -17.8% -7.2% -0.2% -0.5% -0.7% -12.1% -19.8% -17.7%

PFS empSE 3.83 4.20 4.27 4.37 3.51 2.59 3.14 3.72 4.40 4.47 4.56 3.52 2.61 3.18

PFS MC SE 0.09 0.10 0.10 0.10 0.08 0.06 0.07 0.09 0.10 0.10 0.10 0.08 0.06 0.07

PFS MSE 28.68 18.20 19.03 20.00 57.26 130.71 109.19 29.88 19.32 20.00 20.90 58.01 129.02 108.65

PFS MC SE 0.99 0.66 0.70 0.76 1.49 1.88 2.03 1.02 0.68 0.71 0.77 1.49 1.88 2.05

PFS Rel P 0.00% -16.89% -19.52% -22.96% 19.35% 118.53% 48.83% 0.00% -28.36% -30.56% -33.37% 11.93% 103.02% 36.57%

PFS ModelSE 3.43 5.10 5.07 5.03 3.87 2.84 3.16 3.43 5.10 5.07 5.03 3.87 2.84 3.16

PFS Cover2 0.67 0.92 0.91 0.90 0.53 0.05 0.17 0.65 0.92 0.91 0.91 0.52 0.05 0.17

PFS Cover1 0.90 1.00 1.00 1.00 0.89 0.50 0.71 0.90 1.00 1.00 1.00 0.89 0.50 0.71

OS Mean 68.43 73.87 69.30 74.17 67.90 62.08 70.12 68.82 74.80 70.43 75.58 68.52 62.21 70.63

OS Bias -2.77 2.67 -1.89 2.98 -3.30 -9.11 -1.07 -2.37 3.60 -0.77 4.38 -2.67 -8.98 -0.57

OS MC SE 0.17 0.14 0.14 0.20 0.13 0.09 0.18 0.17 0.26 0.21 0.24 0.28 0.09 0.18

OS Rel Bias 0.04-                   0.04             0.03-                 0.04                   0.05-             0.13-                0.02-                  0.03-                   0.05               0.01-                 0.06                   0.04-               0.13-                0.01-                  

OS empSE 5.14 4.22 4.20 6.08 4.03 2.82 5.49 5.30 7.97 6.34 7.51 8.71 2.84 5.66

OS MC SE 0.12 0.10 0.10 0.14 0.09 0.06 0.13 0.12 0.18 0.15 0.17 0.20 0.07 0.13

OS MSE 34.06 24.94 21.17 45.79 27.07 90.97 31.22 33.65 76.37 40.75 75.48 82.98 88.72 32.32

OS MC SE 0.12 0.10 0.10 0.14 0.09 0.06 0.13 1.15 32.34 8.66 14.18 40.42 1.64 1.08

OS Rel P 0.00% 48.34% 50.00% -28.56% 62.84% 232.46% -12.24% 0.00% -55.79% -30.23% -50.23% -63.05% 247.16% -12.43%

OS ModelSE 5.03 12.09 12.68 12.21 12.38 3.31 5.56 5.03 12.09 12.68 12.21 12.38 3.31 5.56

OS Cover2 0.79 1.00 0.88 0.95 0.84 0.22 0.89 0.81 0.99 0.89 0.97 0.86 0.24 0.91

OS Cover1 0.97 1.00 0.99 1.00 0.99 0.78 0.98 0.97 1.00 0.99 1.00 0.99 0.78 0.98

QALYs Mean 49.88 53.50 51.17 53.58 48.73 44.49 48.86 50.00 54.15 51.91 54.46 49.02 44.58 49.12

QALYs Bias -2.51 1.12 -1.21 1.20 -3.66 -7.90 -3.53 -2.39 1.76 -0.47 2.08 -3.36 -7.81 -3.26

QALYs MC SE 0.11 0.10 0.11 0.13 0.09 0.07 0.11 0.12 0.15 0.13 0.15 0.16 0.07 0.11

QALYs Rel Bias 0.05-                   0.02             0.02-                 0.02                   0.07-             0.15-                0.07-                  0.05-                   0.03               0.01-                 0.04                   0.06-               0.15-                0.06-                  

QALYs empSE 3.51 3.23 3.29 4.13 2.92 2.10 3.42 3.56 4.74 4.11 4.73 4.88 2.12 3.52

QALYs MC SE 0.08 0.07 0.08 0.09 0.07 0.05 0.08 0.08 0.11 0.09 0.11 0.11 0.05 0.08

QALYs MSE 18.59 11.69 12.26 18.45 21.92 66.76 24.11 18.40 25.52 17.09 26.64 35.10 65.42 23.00

QALYs MC SE 0.67 0.42 0.46 0.67 0.71 1.07 0.83 0.67 8.07 2.13 3.38 9.92 1.07 0.80

QALYs Rel P 0.00% 17.80% 14.04% -27.73% 44.27% 179.60% 5.35% 0.00% -43.35% -24.72% -43.12% -46.66% 184.00% 2.68%

QALYs ModelSE 3.03 6.78 7.05 6.92 6.66 2.42 3.53 3.03 6.78 7.05 6.92 6.66 2.42 3.53

QALYs Cover2 0.71 0.99 0.88 0.93 0.74 0.11 0.70 0.71 0.99 0.90 0.94 0.76 0.12 0.71

QALYs Cover1 0.90 1.00 0.99 1.00 0.97 0.67 0.97 0.90 1.00 0.99 1.00 0.97 0.67 0.97
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Table 35 : Result for simulated scenario 13 

 

 

Scenario13 Deterministic Probabilistic

PSM STM STM - Log STM - Time MSM Li's model Fu's model PSM STM STM - Log STM - Time MSM Li's model Fu's model

PFS Mean 65.98 66.21 66.35 66.35 63.39 58.09 56.75 66.50 66.87 67.01 67.02 63.10 58.21 57.16

PFS Bias -3.36 -3.13 -2.99 -2.99 -5.94 -11.25 -12.59 -2.83 -2.47 -2.32 -2.32 -6.24 -11.13 -12.18

PFS MC SE 0.20 0.21 0.21 0.21 0.20 0.12 0.14 0.21 0.22 0.22 0.22 0.22 0.13 0.14

PFS Rel Bias -4.8% -4.5% -4.3% -4.3% -8.6% -16.2% -18.2% -4.1% -3.6% -3.4% -3.3% -9.0% -16.1% -17.6%

PFS empSE 6.30 6.42 6.55 6.55 6.14 3.84 4.25 6.49 6.71 6.84 6.83 6.84 3.86 4.29

PFS MC SE 0.14 0.15 0.15 0.15 0.14 0.09 0.10 0.15 0.15 0.16 0.16 0.16 0.09 0.10

PFS MSE 50.95 51.00 51.85 51.71 72.95 141.22 176.62 50.13 51.08 52.18 52.05 85.71 138.86 166.85

PFS MC SE 2.02 2.04 2.13 2.10 2.45 2.88 3.48 2.04 2.14 2.24 2.22 3.24 2.87 3.41

PFS Rel P 0.00% -3.63% -7.49% -7.25% 5.50% 169.57% 119.90% 0.00% -6.40% -10.01% -9.80% -10.06% 182.20% 128.50%

PFS ModelSE 5.87 6.14 6.18 6.19 7.32 3.81 3.88 5.87 6.14 6.18 6.19 7.32 3.81 3.88

PFS Cover2 0.81 0.82 0.82 0.83 0.69 0.20 0.18 0.82 0.84 0.84 0.84 0.69 0.20 0.19

PFS Cover1 0.97 0.98 0.98 0.98 0.93 0.70 0.66 0.97 0.98 0.98 0.98 0.93 0.70 0.66

OS Mean 264.53 297.10 270.83 262.88 293.83 270.05 263.75 266.72 311.97 281.49 269.39 308.06 272.81 268.27

OS Bias 5.67 38.23 11.97 4.02 34.97 11.18 4.89 7.86 53.10 22.63 10.53 49.19 13.94 9.41

OS MC SE 0.60 0.98 0.72 0.72 0.94 0.79 0.58 0.62 1.69 1.36 1.02 1.67 0.81 0.59

OS Rel Bias 0.02                   0.15             0.05                 0.02                   0.14             0.04                0.02                  0.03                   0.21               0.09                 0.04                   0.19               0.05                0.04                  

OS empSE 18.35 30.17 22.26 22.29 28.94 24.20 17.82 19.17 52.11 42.03 31.36 51.51 24.88 18.15

OS MC SE 0.42 0.69 0.51 0.51 0.66 0.56 0.41 0.44 1.20 0.96 0.72 1.18 0.57 0.42

OS MSE 368.52 2370.89 638.28 512.63 2059.51 710.30 341.05 428.66 5532.18 2276.83 1093.14 5070.42 813.00 417.66

OS MC SE 0.42 0.69 0.51 0.51 0.66 0.56 0.41 26.09 601.80 351.56 115.07 552.62 34.35 15.63

OS Rel P 0.00% -63.00% -32.06% -32.25% -59.80% -42.53% 6.05% 0.00% -86.47% -79.21% -62.65% -86.16% -40.68% 11.45%

OS ModelSE 31.48 68.09 59.06 48.92 70.73 29.46 31.95 31.48 68.09 59.06 48.92 70.73 29.46 31.95

OS Cover2 1.00 0.85 1.00 1.00 0.89 0.99 1.00 1.00 0.84 1.00 1.00 0.87 0.99 1.00

OS Cover1 1.00 0.96 0.99 1.00 0.97 0.99 1.00 1.00 0.96 0.99 1.00 0.97 0.99 1.00

QALYs Mean 152.06 168.41 155.32 151.34 165.93 152.45 148.90 153.31 176.04 160.85 154.80 172.96 153.86 151.28

QALYs Bias 1.83 18.18 5.09 1.11 15.70 2.22 -1.33 3.08 25.81 10.62 4.57 22.73 3.63 1.05

QALYs MC SE 0.31 0.50 0.37 0.37 0.48 0.40 0.30 0.32 0.85 0.69 0.52 0.85 0.41 0.30

QALYs Rel Bias 0.01                   0.12             0.03                 0.01                   0.10             0.01                0.01-                  0.02                   0.17               0.07                 0.03                   0.15               0.02                0.01                  

QALYs empSE 9.54 15.43 11.36 11.40 14.80 12.33 9.12 9.93 26.27 21.22 15.97 26.06 12.67 9.30

QALYs MC SE 0.22 0.35 0.26 0.26 0.34 0.28 0.21 0.23 0.60 0.49 0.37 0.60 0.29 0.21

QALYs MSE 94.30 568.22 154.70 131.02 465.26 156.67 84.83 108.08 1355.54 562.41 275.56 1194.71 173.53 87.51

QALYs MC SE 3.57 22.44 5.68 4.42 19.30 6.29 2.96 6.25 149.25 87.27 28.71 134.87 7.15 3.05

QALYs Rel P 0.00% -61.75% -29.40% -29.92% -58.42% -40.07% 9.52% 0.00% -85.70% -78.08% -61.29% -85.46% -38.51% 14.11%

QALYs ModelSE 15.92 34.21 29.65 24.59 36.01 14.98 16.16 15.92 34.21 29.65 24.59 36.01 14.98 16.16

QALYs Cover2 1.00 0.86 1.00 1.00 0.91 0.97 1.00 1.00 0.86 1.00 1.00 0.89 0.98 1.00

QALYs Cover1 1.00 0.97 0.99 1.00 0.98 1.00 1.00 1.00 0.97 0.99 1.00 0.98 1.00 1.00
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Table 36 : Result for simulated scenario 14 

Scenario14 Deterministic Probabilistic

PSM STM STM - Log STM - Time MSM Li's model Fu's model PSM STM STM - Log STM - Time MSM Li's model Fu's model

PFS Mean 64.98 65.61 65.77 65.65 62.06 57.33 54.49 65.36 66.22 66.39 66.27 62.07 57.43 54.69

PFS Bias -4.21 -3.57 -3.42 -3.53 -7.12 -11.85 -14.70 -3.82 -2.96 -2.79 -2.92 -7.11 -11.75 -14.49

PFS MC SE 0.20 0.20 0.20 0.21 0.19 0.12 0.13 0.20 0.21 0.21 0.22 0.21 0.12 0.13

PFS Rel Bias -6.1% -5.2% -4.9% -5.1% -10.3% -17.1% -21.2% -5.5% -4.3% -4.0% -4.2% -10.3% -17.0% -20.9%

PFS empSE 6.01 6.20 6.26 6.38 5.92 3.66 3.87 6.08 6.47 6.55 6.66 6.47 3.68 3.91

PFS MC SE 0.14 0.14 0.14 0.15 0.14 0.08 0.09 0.14 0.15 0.15 0.15 0.15 0.08 0.09

PFS MSE 53.82 51.17 50.89 53.13 85.71 153.89 230.91 51.58 50.59 50.69 52.85 92.41 151.69 225.33

PFS MC SE 2.03 2.10 2.07 2.18 2.72 2.89 3.70 1.97 2.17 2.16 2.28 3.34 2.89 3.68

PFS Rel P 0.00% -6.02% -7.87% -11.18% 3.33% 169.74% 141.71% 0.00% -11.63% -13.82% -16.64% -11.64% 172.67% 141.66%

PFS ModelSE 5.38 5.96 6.05 6.00 6.91 3.68 3.43 5.38 5.96 6.05 6.00 6.91 3.68 3.43

PFS Cover2 0.77 0.80 0.80 0.79 0.61 0.14 0.06 0.78 0.81 0.82 0.81 0.63 0.15 0.06

PFS Cover1 0.97 0.97 0.97 0.97 0.90 0.65 0.42 0.97 0.97 0.97 0.97 0.90 0.65 0.42

OS Mean 170.49 179.13 169.41 166.44 176.43 163.73 167.80 171.33 183.33 173.18 167.49 179.23 164.48 169.12

OS Bias 4.05 12.68 2.96 -0.01 9.98 -2.72 1.35 4.88 16.88 6.74 1.04 12.78 -1.97 2.68

OS MC SE 0.37 0.37 0.40 0.42 0.37 0.31 0.35 0.38 0.93 0.78 0.45 0.94 0.31 0.36

OS Rel Bias 0.02                   0.08             0.02                 0.00-                   0.06             0.02-                0.01                  0.03                   0.10               0.04                 0.01                   0.08               0.01-                0.02                  

OS empSE 11.45 11.27 12.37 13.02 11.25 9.52 10.78 11.67 28.52 24.00 13.98 29.05 9.67 10.97

OS MC SE 0.26 0.26 0.28 0.30 0.26 0.22 0.25 0.27 0.65 0.55 0.32 0.67 0.22 0.25

OS MSE 147.43 287.75 161.62 169.45 226.10 97.86 117.92 160.00 1097.46 620.56 196.31 1006.15 97.24 127.48

OS MC SE 0.26 0.26 0.28 0.30 0.26 0.22 0.25 5.86 409.25 147.23 8.41 405.31 3.57 4.45

OS Rel P 0.00% 3.25% -14.27% -22.66% 3.65% 44.88% 12.89% 0.00% -83.24% -76.33% -30.26% -83.85% 45.81% 13.15%

OS ModelSE 12.79 30.58 32.95 14.30 31.80 11.34 12.71 12.79 30.58 32.95 14.30 31.80 11.34 12.71

OS Cover2 0.99 0.93 0.99 0.92 0.97 0.94 0.99 0.99 0.91 0.99 0.93 0.96 0.95 0.99

OS Cover1 1.00 0.99 1.00 1.00 0.99 1.00 1.00 1.00 0.99 1.00 1.00 0.99 1.00 1.00

QALYs Mean 104.74 109.25 104.43 102.91 106.83 99.06 100.25 105.27 111.53 106.51 103.63 108.23 99.47 100.97

QALYs Bias 0.76 5.27 0.45 -1.06 2.85 -4.92 -3.73 1.29 7.55 2.53 -0.35 4.25 -4.51 -3.01

QALYs MC SE 0.21 0.21 0.22 0.23 0.21 0.17 0.19 0.21 0.48 0.40 0.25 0.49 0.17 0.19

QALYs Rel Bias 0.01                   0.05             0.00                 0.01-                   0.03             0.05-                0.04-                  0.01                   0.07               0.02                 0.00-                   0.04               0.04-                0.03-                  

QALYs empSE 6.47 6.53 6.73 7.19 6.45 5.16 5.77 6.61 14.75 12.36 7.73 15.09 5.24 5.87

QALYs MC SE 0.15 0.15 0.15 0.17 0.15 0.12 0.13 0.15 0.34 0.28 0.18 0.35 0.12 0.13

QALYs MSE 42.41 70.34 45.52 52.77 49.74 50.81 47.23 45.34 274.52 158.98 59.80 245.57 47.78 43.47

QALYs MC SE 1.50 2.97 1.68 2.00 2.09 1.87 1.74 1.63 101.45 36.26 2.46 98.25 1.79 1.59

QALYs Rel P 0.00% -1.74% -7.69% -18.99% 0.56% 56.97% 25.63% 0.00% -79.92% -71.38% -26.83% -80.80% 59.11% 26.87%

QALYs ModelSE 6.67 15.68 16.80 7.84 16.83 6.11 6.68 6.67 15.68 16.80 7.84 16.83 6.11 6.68

QALYs Cover2 0.96 0.96 0.97 0.90 0.99 0.84 0.86 0.97 0.95 0.98 0.91 0.99 0.85 0.88

QALYs Cover1 0.99 0.99 1.00 1.00 1.00 0.99 0.99 0.99 0.99 1.00 1.00 1.00 0.99 0.99
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Table 37 : Result for simulated scenario 15 

Scenario15 Deterministic Probabilistic

PSM STM STM - Log STM - Time MSM Li's model Fu's model PSM STM STM - Log STM - Time MSM Li's model Fu's model

PFS Mean 64.51 65.67 65.82 65.76 61.43 57.59 53.65 64.63 66.28 66.45 66.39 61.73 57.69 53.87

PFS Bias -4.67 -3.51 -3.36 -3.42 -7.75 -11.59 -15.53 -4.55 -2.90 -2.73 -2.79 -7.45 -11.49 -15.31

PFS MC SE 0.19 0.19 0.21 0.21 0.19 0.12 0.12 0.18 0.20 0.22 0.21 0.21 0.12 0.12

PFS Rel Bias -6.8% -5.1% -4.9% -4.9% -11.2% -16.8% -22.4% -6.6% -4.2% -4.0% -4.0% -10.8% -16.6% -22.1%

PFS empSE 5.72 5.96 6.43 6.33 5.82 3.63 3.76 5.61 6.22 6.71 6.61 6.37 3.64 3.79

PFS MC SE 0.13 0.14 0.15 0.15 0.13 0.08 0.09 0.13 0.14 0.15 0.15 0.15 0.08 0.09

PFS MSE 54.51 47.82 52.57 51.68 93.98 147.53 255.23 52.13 47.04 52.50 51.39 95.98 145.37 248.63

PFS MC SE 1.95 1.88 2.11 2.07 2.84 2.79 3.81 1.89 1.91 2.20 2.14 3.43 2.78 3.80

PFS Rel P 0.00% -7.90% -20.80% -18.28% -3.43% 148.89% 131.71% 0.00% -18.66% -30.23% -27.91% -22.38% 137.11% 119.34%

PFS ModelSE 4.84 5.93 6.05 6.01 6.51 3.69 3.26 4.84 5.93 6.05 6.01 6.51 3.69 3.26

PFS Cover2 0.71 0.81 0.80 0.81 0.56 0.15 0.03 0.72 0.83 0.81 0.82 0.59 0.15 0.03

PFS Cover1 0.94 0.98 0.98 0.98 0.86 0.66 0.30 0.94 0.98 0.98 0.98 0.86 0.66 0.30

OS Mean 130.45 136.69 128.66 128.52 132.36 124.80 128.78 130.94 137.17 129.42 129.30 132.56 125.09 129.50

OS Bias -1.89 4.34 -3.68 -3.82 0.01 -7.55 -3.57 -1.41 4.83 -2.92 -3.05 0.21 -7.25 -2.84

OS MC SE 0.24 0.23 0.29 0.28 0.24 0.18 0.24 0.25 0.28 0.30 0.35 0.32 0.18 0.24

OS Rel Bias 0.01-                   0.03             0.03-                 0.03-                   0.00             0.06-                0.03-                  0.01-                   0.04               0.02-                 0.02-                   0.00               0.05-                0.02-                  

OS empSE 7.52 7.13 8.91 8.62 7.52 5.61 7.37 7.67 8.76 9.23 10.86 9.94 5.65 7.52

OS MC SE 0.17 0.16 0.20 0.20 0.17 0.13 0.17 0.18 0.20 0.21 0.25 0.23 0.13 0.17

OS MSE 60.02 69.66 92.89 88.90 56.48 88.40 67.03 60.70 99.86 93.62 127.18 98.78 84.53 64.58

OS MC SE 0.17 0.16 0.20 0.20 0.17 0.13 0.17 2.11 20.75 3.25 36.82 20.68 2.83 2.39

OS Rel P 0.00% 11.07% -28.86% -24.03% -0.09% 79.68% 3.92% 0.00% -23.31% -30.98% -50.19% -40.53% 84.09% 3.94%

OS ModelSE 7.36 11.57 8.81 11.59 13.92 6.49 7.38 7.36 11.57 8.81 11.59 13.92 6.49 7.38

OS Cover2 0.87 0.98 0.85 0.83 0.95 0.74 0.83 0.88 0.98 0.87 0.85 0.97 0.76 0.84

OS Cover1 0.98 1.00 1.00 0.99 1.00 0.98 0.99 0.98 1.00 1.00 0.99 1.00 0.98 0.99

QALYs Mean 84.58 88.04 84.08 83.99 84.61 79.67 80.48 84.86 88.47 84.64 84.56 84.80 79.85 80.91

QALYs Bias -2.35 1.12 -2.85 -2.94 -2.32 -7.25 -6.44 -2.07 1.54 -2.28 -2.36 -2.13 -7.08 -6.01

QALYs MC SE 0.15 0.16 0.18 0.18 0.16 0.11 0.14 0.16 0.18 0.19 0.21 0.20 0.11 0.14

QALYs Rel Bias 0.03-                   0.01             0.03-                 0.03-                   0.03-             0.08-                0.07-                  0.02-                   0.02               0.03-                 0.03-                   0.02-               0.08-                0.07-                  

QALYs empSE 4.78 4.85 5.57 5.53 4.98 3.41 4.17 4.84 5.60 5.80 6.62 6.28 3.43 4.25

QALYs MC SE 0.11 0.11 0.13 0.13 0.11 0.08 0.10 0.11 0.13 0.13 0.15 0.14 0.08 0.10

QALYs MSE 28.30 24.74 39.07 39.15 30.20 64.20 58.90 27.66 33.76 38.77 49.34 43.94 61.84 54.23

QALYs MC SE 1.06 1.05 1.34 1.40 1.19 1.65 1.82 1.03 5.55 1.41 10.29 5.77 1.62 1.75

QALYs Rel P 0.00% -3.00% -26.39% -25.39% -8.17% 96.47% 30.98% 0.00% -25.49% -30.33% -46.56% -40.66% 98.62% 29.43%

QALYs ModelSE 4.07 6.78 5.62 6.76 8.35 3.92 4.19 4.07 6.78 5.62 6.76 8.35 3.92 4.19

QALYs Cover2 0.77 0.98 0.84 0.81 0.88 0.53 0.60 0.79 0.98 0.86 0.83 0.90 0.54 0.63

QALYs Cover1 0.93 1.00 0.99 0.97 0.99 0.92 0.92 0.93 1.00 0.99 0.97 0.99 0.92 0.92
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Table 38 : Result for simulated scenario 16 

 

 

Scenario16 Deterministic Probabilistic

PSM STM STM - Log STM - Time MSM Li's model Fu's model PSM STM STM - Log STM - Time MSM Li's model Fu's model

PFS Mean 58.23 59.06 59.06 59.00 53.98 50.35 50.16 58.63 59.58 59.58 59.53 53.97 50.42 50.16

PFS Bias 2.08 2.91 2.90 2.85 -2.17 -5.80 -6.00 2.47 3.43 3.42 3.37 -2.19 -5.73 -6.00

PFS MC SE 0.16 0.17 0.17 0.17 0.14 0.10 0.11 0.16 0.17 0.17 0.17 0.15 0.10 0.11

PFS Rel Bias 3.7% 5.2% 5.2% 5.1% -3.9% -10.3% -10.7% 4.4% 6.1% 6.1% 6.0% -3.9% -10.2% -10.7%

PFS empSE 4.88 5.20 5.21 5.23 4.42 3.08 3.47 4.95 5.33 5.33 5.36 4.56 3.10 3.44

PFS MC SE 0.11 0.12 0.12 0.12 0.10 0.07 0.08 0.11 0.12 0.12 0.12 0.10 0.07 0.08

PFS MSE 28.09 35.48 35.48 35.44 24.23 43.14 47.95 30.59 40.10 40.11 40.03 25.54 42.45 47.85

PFS MC SE 1.48 1.95 1.93 1.93 1.05 1.24 1.42 1.59 2.20 2.18 2.19 1.16 1.23 1.39

PFS Rel P 0.00% -12.05% -12.15% -13.02% 21.89% 150.93% 98.18% 0.00% -13.69% -13.82% -14.66% 17.87% 155.25% 106.77%

PFS ModelSE 4.61 4.81 4.82 4.82 4.16 3.10 3.12 4.61 4.81 4.82 4.82 4.16 3.10 3.12

PFS Cover2 0.93 0.92 0.92 0.92 0.84 0.53 0.48 0.93 0.91 0.91 0.91 0.83 0.55 0.48

PFS Cover1 0.99 0.99 0.99 0.99 0.98 0.91 0.89 0.99 0.99 0.99 0.99 0.98 0.91 0.89

OS Mean 232.37 272.55 242.19 234.38 271.49 242.65 231.71 264.31 296.69 267.57 252.15 295.30 246.30 241.87

OS Bias 4.05 44.23 13.87 6.06 43.17 14.33 3.39 35.99 68.37 39.25 23.83 66.98 17.98 13.55

OS MC SE 0.73 1.23 0.84 0.76 1.20 0.84 0.85 2.67 1.83 2.11 1.49 1.87 0.87 0.82

OS Rel Bias 0.02                   0.19             0.06                 0.03                   0.19             0.06                0.01                  0.16                   0.30               0.17                 0.10                   0.29               0.08                0.06                  

OS empSE 22.44 37.83 25.75 23.57 36.89 25.80 26.04 82.33 56.43 64.96 46.04 57.75 26.74 25.37

OS MC SE 0.52 0.87 0.59 0.54 0.85 0.59 0.60 1.89 1.30 1.49 1.06 1.33 0.61 0.58

OS MSE 519.40 3386.34 854.66 591.56 3223.35 870.31 688.78 8066.33 7855.67 5756.05 2685.69 7817.94 1037.30 826.72

OS MC SE 0.52 0.87 0.59 0.54 0.85 0.59 0.60 1185.42 559.67 703.83 368.83 580.75 45.40 38.25

OS Rel P 0.00% -64.82% -24.04% -9.34% -63.00% -24.34% -25.73% 0.00% 112.85% 60.62% 219.73% 103.21% 848.34% 952.81%

OS ModelSE 86.28 81.51 76.60 67.27 82.16 32.10 55.12 86.28 81.51 76.60 67.27 82.16 32.10 55.12

OS Cover2 1.00 0.84 1.00 1.00 0.86 0.99 1.00 0.99 0.82 0.99 1.00 0.85 1.00 1.00

OS Cover1 0.99 0.95 0.99 1.00 0.96 1.00 0.99 0.99 0.95 0.99 1.00 0.96 1.00 0.99

QALYs Mean 133.65 153.99 138.81 134.89 151.94 136.43 130.90 149.74 166.22 151.66 143.93 163.84 138.28 135.98

QALYs Bias 2.65 22.99 7.81 3.88 20.93 5.43 -0.10 18.74 35.21 20.65 12.93 32.83 7.27 4.97

QALYs MC SE 0.37 0.62 0.42 0.39 0.60 0.42 0.43 1.34 0.92 1.05 0.75 0.94 0.44 0.42

QALYs Rel Bias 0.02                   0.18             0.06                 0.03                   0.16             0.04                0.00-                  0.14                   0.27               0.16                 0.10                   0.25               0.06                0.04                  

QALYs empSE 11.50 19.10 13.03 11.88 18.61 13.06 13.16 41.29 28.31 32.48 23.04 28.98 13.53 12.82

QALYs MC SE 0.26 0.44 0.30 0.27 0.43 0.30 0.30 0.95 0.65 0.75 0.53 0.67 0.31 0.29

QALYs MSE 139.21 892.77 230.46 156.09 784.06 199.82 172.97 2054.12 2040.32 1480.12 697.16 1916.79 235.67 189.04

QALYs MC SE 5.32 35.86 9.20 6.22 32.47 8.73 6.24 299.63 141.38 177.15 93.07 143.94 10.39 8.73

QALYs Rel P 0.00% -63.72% -22.01% -6.25% -61.77% -22.40% -23.57% 0.00% 112.79% 61.64% 221.29% 103.04% 831.62% 936.60%

QALYs ModelSE 43.35 40.79 38.31 33.63 41.17 16.22 27.66 43.35 40.79 38.31 33.63 41.17 16.22 27.66

QALYs Cover2 1.00 0.83 1.00 1.00 0.87 0.98 1.00 0.99 0.82 0.99 1.00 0.86 0.99 1.00

QALYs Cover1 0.99 0.95 0.99 0.99 0.97 1.00 0.99 0.99 0.95 0.99 0.99 0.97 1.00 0.99
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Table 39 : Result for simulated scenario 17 

 

 

Scenario17 Deterministic Probabilistic

PSM STM STM - Log STM - Time MSM Li's model Fu's model PSM STM STM - Log STM - Time MSM Li's model Fu's model

PFS Mean 56.00 58.82 58.85 58.86 53.36 49.96 47.92 56.25 59.34 59.37 59.38 53.43 50.02 47.83

PFS Bias 0.01 2.83 2.86 2.87 -2.62 -6.03 -8.06 0.26 3.35 3.38 3.39 -2.55 -5.96 -8.15

PFS MC SE 0.13 0.16 0.16 0.16 0.14 0.10 0.10 0.13 0.17 0.17 0.17 0.14 0.10 0.10

PFS Rel Bias 0.0% 5.1% 5.1% 5.1% -4.7% -10.8% -14.4% 0.5% 6.0% 6.0% 6.1% -4.6% -10.7% -14.6%

PFS empSE 3.98 5.03 5.02 5.05 4.35 2.99 3.06 4.00 5.14 5.13 5.16 4.45 3.00 3.05

PFS MC SE 0.09 0.12 0.12 0.12 0.10 0.07 0.07 0.09 0.12 0.12 0.12 0.10 0.07 0.07

PFS MSE 15.86 33.31 33.41 33.74 25.82 45.29 74.33 16.04 37.59 37.75 38.07 26.26 44.59 75.74

PFS MC SE 0.74 1.59 1.60 1.62 1.06 1.25 1.64 0.74 1.77 1.78 1.79 1.10 1.24 1.65

PFS Rel P 0.00% -37.30% -37.09% -37.80% -16.24% 77.55% 69.79% 0.00% -39.45% -39.27% -39.91% -19.09% 77.15% 72.09%

PFS ModelSE 3.83 4.77 4.78 4.78 4.03 3.05 2.75 3.83 4.77 4.78 4.78 4.03 3.05 2.75

PFS Cover2 0.93 0.93 0.93 0.93 0.80 0.50 0.24 0.93 0.91 0.92 0.91 0.80 0.51 0.22

PFS Cover1 1.00 1.00 1.00 1.00 0.98 0.90 0.73 1.00 1.00 1.00 1.00 0.98 0.90 0.73

OS Mean 132.42 151.53 143.21 141.42 148.79 137.49 131.67 134.09 158.64 149.21 143.74 154.40 138.27 132.32

OS Bias -3.83 15.28 6.96 5.17 12.54 1.24 -4.58 -2.16 22.39 12.96 7.49 18.15 2.02 -3.93

OS MC SE 0.23 0.34 0.35 0.36 0.34 0.28 0.23 0.35 0.93 0.86 0.39 0.90 0.28 0.23

OS Rel Bias 0.03-                   0.11             0.05                 0.04                   0.09             0.01                0.03-                  0.02-                   0.16               0.10                 0.06                   0.13               0.01                0.03-                  

OS empSE 6.98 10.55 10.82 11.15 10.41 8.56 7.11 10.83 28.66 26.39 11.88 27.60 8.70 7.24

OS MC SE 0.16 0.24 0.25 0.26 0.24 0.20 0.16 0.25 0.66 0.61 0.27 0.63 0.20 0.17

OS MSE 63.38 344.63 165.29 150.91 265.36 74.81 71.46 121.86 1321.49 863.42 197.04 1090.52 79.74 67.77

OS MC SE 0.16 0.24 0.25 0.26 0.24 0.20 0.16 30.34 256.04 240.68 9.43 254.34 3.34 2.38

OS Rel P 0.00% -56.23% -58.36% -60.79% -55.01% -33.57% -3.55% 0.00% -85.71% -83.15% -16.82% -84.61% 54.88% 123.90%

OS ModelSE 18.15 36.09 32.22 14.49 34.27 10.35 10.61 18.15 36.09 32.22 14.49 34.27 10.35 10.61

OS Cover2 0.97 0.83 1.00 0.98 0.92 0.99 0.96 0.98 0.82 1.00 0.98 0.92 0.99 0.97

OS Cover1 1.00 0.97 1.00 1.00 0.98 1.00 1.00 1.00 0.97 1.00 1.00 0.98 1.00 1.00

QALYs Mean 83.01 93.41 89.26 88.37 90.40 83.73 80.21 83.92 97.12 92.42 89.69 93.23 84.14 80.51

QALYs Bias -1.91 8.49 4.34 3.45 5.48 -1.19 -4.71 -1.00 12.20 7.49 4.76 8.31 -0.78 -4.41

QALYs MC SE 0.13 0.19 0.19 0.19 0.18 0.15 0.13 0.19 0.48 0.43 0.21 0.46 0.15 0.13

QALYs Rel Bias 0.02-                   0.10             0.05                 0.04                   0.06             0.01-                0.06-                  0.01-                   0.14               0.09                 0.06                   0.10               0.01-                0.05-                  

QALYs empSE 4.03 5.85 5.82 5.97 5.65 4.60 3.87 5.80 14.68 13.34 6.36 14.09 4.67 3.94

QALYs MC SE 0.09 0.13 0.13 0.14 0.13 0.11 0.09 0.13 0.34 0.31 0.15 0.32 0.11 0.09

QALYs MSE 19.90 106.27 52.59 47.47 61.96 22.57 37.15 34.65 364.18 234.01 63.10 267.23 22.42 34.94

QALYs MC SE 0.74 3.67 2.19 2.06 2.69 0.85 1.23 7.75 66.46 60.40 2.81 64.11 0.86 1.18

QALYs Rel P 0.00% -52.56% -51.94% -54.37% -49.13% -23.24% 8.41% 0.00% -84.38% -81.08% -16.73% -83.03% 54.28% 117.19%

QALYs ModelSE 9.31 18.21 16.28 7.57 17.33 5.51 5.56 9.31 18.21 16.28 7.57 17.33 5.51 5.56

QALYs Cover2 0.96 0.82 0.99 0.96 0.96 0.95 0.87 0.97 0.79 0.98 0.95 0.96 0.96 0.87

QALYs Cover1 1.00 0.96 0.99 0.99 0.99 1.00 1.00 1.00 0.96 0.99 0.99 0.99 1.00 1.00
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Table 40 : Result for simulated scenario 18 

Scenario18 Deterministic Probabilistic

PSM STM STM - Log STM - Time MSM Li's model Fu's model PSM STM STM - Log STM - Time MSM Li's model Fu's model

PFS Mean 53.77 58.87 58.86 58.85 53.19 50.11 46.80 53.91 59.39 59.38 59.36 53.23 50.16 46.72

PFS Bias -2.19 2.91 2.90 2.89 -2.77 -5.86 -9.17 -2.06 3.42 3.41 3.40 -2.73 -5.80 -9.24

PFS MC SE 0.11 0.16 0.16 0.16 0.13 0.09 0.09 0.11 0.16 0.17 0.17 0.14 0.10 0.09

PFS Rel Bias -3.9% 5.2% 5.2% 5.2% -4.9% -10.5% -16.4% -3.7% 6.1% 6.1% 6.1% -4.9% -10.4% -16.5%

PFS empSE 3.30 4.84 5.02 5.03 4.14 2.92 2.88 3.29 4.94 5.13 5.14 4.25 2.93 2.89

PFS MC SE 0.08 0.11 0.12 0.12 0.10 0.07 0.07 0.08 0.11 0.12 0.12 0.10 0.07 0.07

PFS MSE 15.69 31.83 33.55 33.60 24.79 42.81 92.32 15.06 36.15 37.92 37.97 25.56 42.22 93.69

PFS MC SE 0.68 1.45 1.53 1.58 1.00 1.20 1.76 0.66 1.62 1.71 1.75 1.05 1.20 1.78

PFS Rel P 0.00% -53.47% -56.76% -56.95% -36.46% 27.90% 31.15% 0.00% -55.62% -58.76% -58.95% -40.07% 25.96% 30.01%

PFS ModelSE 3.22 4.76 4.77 4.76 3.95 3.05 2.55 3.22 4.76 4.77 4.76 3.95 3.05 2.55

PFS Cover2 0.86 0.94 0.93 0.92 0.79 0.52 0.10 0.86 0.92 0.91 0.91 0.79 0.52 0.10

PFS Cover1 0.98 0.99 0.99 0.99 0.97 0.90 0.57 0.98 0.99 0.99 0.99 0.97 0.90 0.57

OS Mean 99.01 114.03 107.14 107.04 109.52 102.75 98.24 99.35 115.14 108.71 108.43 109.99 103.02 98.41

OS Bias -6.65 8.37 1.48 1.38 3.86 -2.91 -7.42 -6.31 9.49 3.05 2.77 4.33 -2.64 -7.24

OS MC SE 0.15 0.18 0.22 0.21 0.18 0.15 0.15 0.15 0.27 0.34 0.31 0.20 0.16 0.15

OS Rel Bias 0.06-                   0.08             0.01                 0.01                   0.04             0.03-                0.07-                  0.06-                   0.09               0.03                 0.03                   0.04               0.02-                0.07-                  

OS empSE 4.57 5.65 6.84 6.55 5.63 4.72 4.55 4.63 8.45 10.45 9.69 6.22 4.78 4.61

OS MC SE 0.10 0.13 0.16 0.15 0.13 0.11 0.10 0.11 0.19 0.24 0.22 0.14 0.11 0.11

OS MSE 65.07 101.98 48.98 44.73 46.57 30.77 75.73 61.24 161.37 118.38 101.42 57.48 29.78 73.72

OS MC SE 0.10 0.13 0.16 0.15 0.13 0.11 0.10 1.73 38.96 40.23 41.83 3.01 1.10 1.97

OS Rel P 0.00% -34.63% -55.36% -51.24% -34.02% -6.37% 0.90% 0.00% -70.00% -80.38% -77.17% -44.68% -6.17% 0.67%

OS ModelSE 5.05 11.58 13.90 11.73 8.50 5.53 5.02 5.05 11.58 13.90 11.73 8.50 5.53 5.02

OS Cover2 0.69 0.84 0.97 0.95 0.98 0.91 0.63 0.71 0.82 0.96 0.94 0.97 0.91 0.65

OS Cover1 0.99 0.98 1.00 1.00 1.00 1.00 0.98 0.99 0.98 1.00 1.00 1.00 1.00 0.98

QALYs Mean 65.64 74.67 71.23 71.17 70.72 66.40 63.16 65.84 75.39 72.17 72.02 70.96 66.56 63.22

QALYs Bias -3.98 5.06 1.61 1.56 1.10 -3.21 -6.46 -3.77 5.77 2.55 2.41 1.35 -3.06 -6.39

QALYs MC SE 0.09 0.12 0.14 0.13 0.12 0.09 0.09 0.09 0.16 0.19 0.18 0.13 0.09 0.09

QALYs Rel Bias 0.06-                   0.07             0.02                 0.02                   0.02             0.05-                0.09-                  0.05-                   0.08               0.04                 0.03                   0.02               0.04-                0.09-                  

QALYs empSE 2.86 3.79 4.25 4.11 3.56 2.83 2.72 2.89 4.93 5.89 5.52 3.87 2.85 2.75

QALYs MC SE 0.07 0.09 0.10 0.09 0.08 0.06 0.06 0.07 0.11 0.14 0.13 0.09 0.07 0.06

QALYs MSE 24.00 39.89 20.60 19.31 13.89 18.30 49.09 22.55 57.59 41.12 36.25 16.80 17.49 48.40

QALYs MC SE 0.71 1.42 0.88 0.90 0.62 0.64 1.09 0.68 9.75 10.73 10.91 0.90 0.62 1.09

QALYs Rel P 0.00% -43.08% -54.73% -51.73% -35.69% 2.16% 10.66% 0.00% -65.72% -75.96% -72.68% -44.45% 2.28% 10.52%

QALYs ModelSE 2.85 6.39 7.43 6.40 4.93 3.32 2.91 2.85 6.39 7.43 6.40 4.93 3.32 2.91

QALYs Cover2 0.64 0.86 0.96 0.94 0.99 0.81 0.36 0.67 0.83 0.95 0.91 0.99 0.82 0.37

QALYs Cover1 0.97 0.98 1.00 0.99 1.00 0.99 0.90 0.97 0.98 1.00 0.99 1.00 0.99 0.90
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Table 41 : Result for simulated scenario 19 

 

 

Scenario19 Deterministic Probabilistic

PSM STM STM - Log STM - Time MSM Li's model Fu's model PSM STM STM - Log STM - Time MSM Li's model Fu's model

PFS Mean 58.94 60.21 60.30 60.14 56.36 47.29 54.45 59.17 61.01 61.11 60.95 55.83 47.48 54.70

PFS Bias -10.14 -8.87 -8.79 -8.94 -12.72 -21.79 -14.63 -9.92 -8.07 -7.97 -8.13 -13.26 -21.60 -14.38

PFS MC SE 0.21 0.23 0.24 0.24 0.20 0.12 0.17 0.20 0.24 0.25 0.25 0.21 0.12 0.18

PFS Rel Bias -14.7% -12.8% -12.7% -12.9% -18.4% -31.5% -21.2% -14.4% -11.7% -11.5% -11.8% -19.2% -31.3% -20.8%

PFS empSE 6.39 7.17 7.45 7.45 6.17 3.70 5.37 6.26 7.43 7.76 7.76 6.61 3.75 5.43

PFS MC SE 0.15 0.16 0.17 0.17 0.14 0.08 0.12 0.14 0.17 0.18 0.18 0.15 0.09 0.12

PFS MSE 143.60 130.10 132.69 135.38 199.79 488.55 242.93 137.45 120.18 123.65 126.27 219.40 480.61 236.34

PFS MC SE 3.93 3.92 4.20 4.19 4.64 5.05 4.84 3.80 3.80 4.38 4.38 5.47 5.07 4.80

PFS Rel P 0.00% -20.68% -26.55% -26.44% 7.24% 198.02% 41.69% 0.00% -28.96% -34.86% -34.89% -10.32% 178.34% 32.65%

PFS ModelSE 6.13 7.07 7.19 7.14 7.81 3.76 5.85 6.13 7.07 7.19 7.14 7.81 3.76 5.85

PFS Cover2 0.52 0.63 0.63 0.61 0.44 0.01 0.28 0.54 0.66 0.66 0.65 0.45 0.01 0.30

PFS Cover1 0.89 0.92 0.92 0.92 0.84 0.23 0.84 0.89 0.92 0.92 0.92 0.84 0.23 0.84

OS Mean 118.62 115.54 119.52 131.85 113.34 83.13 126.12 122.54 117.15 132.78 157.85 114.58 83.79 131.42

OS Bias -2.99 -6.07 -2.09 10.24 -8.26 -38.48 4.51 0.93 -4.46 11.17 36.24 -7.03 -37.82 9.81

OS MC SE 0.35 0.32 0.41 0.85 0.32 0.18 0.40 0.73 0.44 1.56 1.36 0.66 0.19 0.46

OS Rel Bias 0.02-                   0.05-             0.02-                 0.08                   0.07-             0.32-                0.04                  0.01                   0.04-               0.09                 0.30                   0.06-               0.31-                0.08                  

OS empSE 10.89 9.91 12.74 26.12 9.81 5.60 12.40 22.63 13.58 48.23 42.02 20.38 5.76 14.11

OS MC SE 0.25 0.23 0.29 0.60 0.23 0.13 0.28 0.52 0.31 1.11 0.96 0.47 0.13 0.32

OS MSE 127.41 134.94 166.57 786.33 164.40 1512.27 173.85 512.50 204.20 2448.80 3077.30 464.46 1463.63 295.02

OS MC SE 0.25 0.23 0.29 0.60 0.23 0.13 0.28 268.43 62.16 560.92 355.03 180.47 14.07 12.58

OS Rel P 0.00% 20.73% -26.95% -82.61% 23.30% 278.52% -22.82% 0.00% 177.57% -77.99% -70.99% 23.26% 1443.28% 157.27%

OS ModelSE 29.80 19.06 54.00 76.55 26.02 6.93 29.63 29.80 19.06 54.00 76.55 26.02 6.93 29.63

OS Cover2 1.00 0.95 1.00 1.00 0.93 0.00 1.00 1.00 0.96 1.00 1.00 0.94 0.00 1.00

OS Cover1 1.00 1.00 1.00 1.00 1.00 0.31 1.00 1.00 1.00 1.00 1.00 1.00 0.31 1.00

QALYs Mean 76.99 75.84 77.85 83.97 73.58 55.75 79.39 79.02 76.88 84.72 97.21 74.04 56.14 82.12

QALYs Bias -4.54 -5.69 -3.68 2.44 -7.95 -25.78 -2.14 -2.51 -4.65 3.19 15.68 -7.49 -25.39 0.59

QALYs MC SE 0.20 0.19 0.22 0.43 0.18 0.12 0.23 0.38 0.25 0.79 0.69 0.35 0.12 0.25

QALYs Rel Bias 0.06-                   0.07-             0.05-                 0.03                   0.10-             0.32-                0.03-                  0.03-                   0.06-               0.04                 0.19                   0.09-               0.31-                0.01                  

QALYs empSE 6.16 5.95 6.93 13.27 5.63 3.59 6.93 11.82 7.75 24.23 21.29 10.82 3.68 7.81

QALYs MC SE 0.14 0.14 0.16 0.30 0.13 0.08 0.16 0.27 0.18 0.56 0.49 0.25 0.08 0.18

QALYs MSE 58.46 67.80 61.56 181.88 94.80 677.44 52.56 145.88 81.56 596.64 698.69 173.05 658.20 61.35

QALYs MC SE 2.26 2.30 2.25 11.93 2.85 5.97 2.12 67.35 17.05 135.21 86.42 44.98 6.02 2.61

QALYs Rel P 0.00% 7.13% -21.08% -78.46% 19.81% 194.36% -21.06% 0.00% 132.84% -76.20% -69.17% 19.36% 933.03% 128.82%

QALYs ModelSE 15.28 10.42 27.35 38.60 14.15 4.26 15.73 15.28 10.42 27.35 38.60 14.15 4.26 15.73

QALYs Cover2 0.98 0.89 0.99 0.99 0.84 0.00 1.00 0.98 0.90 0.99 1.00 0.85 0.00 1.00

QALYs Cover1 1.00 1.00 1.00 1.00 1.00 0.22 1.00 1.00 1.00 1.00 1.00 1.00 0.22 1.00
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Table 42 : Result for simulated scenario 20 

 

 

Scenario20 Deterministic Probabilistic

PSM STM STM - Log STM - Time MSM Li's model Fu's model PSM STM STM - Log STM - Time MSM Li's model Fu's model

PFS Mean 58.89 60.09 60.13 60.10 55.77 48.37 53.64 58.82 60.89 60.93 60.90 55.41 48.55 53.85

PFS Bias -10.18 -8.97 -8.93 -8.97 -13.30 -20.70 -15.43 -10.24 -8.17 -8.13 -8.16 -13.66 -20.52 -15.22

PFS MC SE 0.19 0.22 0.22 0.23 0.19 0.12 0.16 0.19 0.23 0.23 0.24 0.20 0.12 0.17

PFS Rel Bias -14.7% -13.0% -12.9% -13.0% -19.3% -30.0% -22.3% -14.8% -11.8% -11.8% -11.8% -19.8% -29.7% -22.0%

PFS empSE 6.01 6.73 6.80 7.03 5.80 3.59 5.07 5.73 7.01 7.08 7.32 6.05 3.63 5.13

PFS MC SE 0.14 0.15 0.16 0.16 0.13 0.08 0.12 0.13 0.16 0.16 0.17 0.14 0.08 0.12

PFS MSE 139.63 125.77 126.08 129.78 210.49 441.23 263.59 137.68 115.81 116.24 120.08 223.20 434.10 257.76

PFS MC SE 3.85 3.83 3.88 3.90 4.62 4.72 4.98 3.74 3.71 3.77 3.79 5.08 4.73 4.96

PFS Rel P 0.00% -20.47% -22.12% -27.03% 7.01% 180.25% 40.40% 0.00% -33.12% -34.52% -38.70% -10.45% 149.06% 24.90%

PFS ModelSE 5.73 7.01 7.02 7.01 7.19 3.88 5.46 5.73 7.01 7.02 7.01 7.19 3.88 5.46

PFS Cover2 0.51 0.63 0.63 0.63 0.39 0.01 0.23 0.51 0.66 0.66 0.65 0.39 0.01 0.23

PFS Cover1 0.87 0.92 0.92 0.92 0.81 0.30 0.79 0.87 0.92 0.92 0.92 0.81 0.30 0.79

OS Mean 90.27 88.72 89.55 96.19 85.93 68.94 93.29 91.85 93.17 95.54 109.71 88.51 69.24 95.04

OS Bias -5.04 -6.59 -5.76 0.87 -9.38 -26.37 -2.02 -3.47 -2.14 0.23 14.39 -6.80 -26.07 -0.27

OS MC SE 0.29 0.25 0.27 0.46 0.24 0.13 0.30 0.32 0.94 0.91 0.94 0.72 0.14 0.32

OS Rel Bias 0.05-                   0.07-             0.06-                 0.01                   0.10-             0.28-                0.02-                  0.04-                   0.02-               0.00                 0.15                   0.07-               0.27-                0.00-                  

OS empSE 8.91 7.79 8.24 14.23 7.32 4.12 9.38 9.91 29.10 28.12 29.07 22.07 4.18 9.89

OS MC SE 0.20 0.18 0.19 0.33 0.17 0.09 0.22 0.23 0.67 0.65 0.67 0.51 0.10 0.23

OS MSE 104.73 104.14 101.11 203.11 141.48 712.43 92.04 110.14 850.35 789.94 1051.34 532.96 697.04 97.74

OS MC SE 0.20 0.18 0.19 0.33 0.17 0.09 0.22 10.19 218.16 201.60 255.63 153.63 7.00 3.81

OS Rel P 0.00% 30.67% 16.79% -60.81% 48.25% 368.34% -9.85% 0.00% -88.40% -87.58% -88.38% -79.84% 461.98% 0.47%

OS ModelSE 14.46 39.32 40.13 47.37 30.55 4.80 14.39 14.46 39.32 40.13 47.37 30.55 4.80 14.39

OS Cover2 0.93 0.81 0.90 1.00 0.74 0.00 0.98 0.95 0.82 0.92 1.00 0.75 0.00 0.99

OS Cover1 1.00 1.00 1.00 1.00 0.99 0.26 1.00 1.00 1.00 1.00 1.00 0.99 0.26 1.00

QALYs Mean 62.80 62.39 62.81 66.12 59.70 48.98 62.74 63.57 64.85 66.05 73.13 60.88 49.19 63.67

QALYs Bias -5.57 -5.99 -5.56 -2.25 -8.68 -19.40 -5.64 -4.81 -3.52 -2.33 4.75 -7.50 -19.19 -4.70

QALYs MC SE 0.18 0.17 0.17 0.25 0.14 0.10 0.18 0.19 0.49 0.47 0.49 0.37 0.10 0.19

QALYs Rel Bias 0.08-                   0.09-             0.08-                 0.03-                   0.13-             0.28-                0.08-                  0.07-                   0.05-               0.03-                 0.07                   0.11-               0.28-                0.07-                  

QALYs empSE 5.50 5.10 5.26 7.82 4.44 3.00 5.64 5.94 15.06 14.55 15.03 11.45 3.05 5.90

QALYs MC SE 0.13 0.12 0.12 0.18 0.10 0.07 0.13 0.14 0.35 0.33 0.35 0.26 0.07 0.14

QALYs MSE 61.25 61.80 58.58 66.16 95.06 385.18 63.53 58.34 239.04 217.01 248.36 187.28 377.50 56.92

QALYs MC SE 2.08 1.87 1.84 2.38 2.26 3.73 2.19 2.83 53.40 49.37 61.83 36.95 3.74 2.05

QALYs Rel P 0.00% 16.23% 9.11% -50.61% 52.91% 235.07% -4.99% 0.00% -84.45% -83.35% -84.39% -73.11% 280.45% 1.22%

QALYs ModelSE 7.70 20.12 20.52 24.16 16.01 3.44 8.32 7.70 20.12 20.52 24.16 16.01 3.44 8.32

QALYs Cover2 0.81 0.77 0.85 0.99 0.67 0.00 0.88 0.82 0.79 0.88 0.99 0.67 0.00 0.89

QALYs Cover1 0.98 0.99 1.00 1.00 0.98 0.25 1.00 0.98 0.99 1.00 1.00 0.98 0.25 1.00
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Table 43 : Result for simulated scenario 21 

 

Scenario21 Deterministic Probabilistic

PSM STM STM - Log STM - Time MSM Li's model Fu's model PSM STM STM - Log STM - Time MSM Li's model Fu's model

PFS Mean 58.65 59.88 59.91 59.90 54.66 49.06 53.36 57.90 60.76 60.78 60.78 54.39 49.22 53.62

PFS Bias -10.42 -9.18 -9.16 -9.16 -14.40 -20.00 -15.70 -11.16 -8.31 -8.28 -8.28 -14.67 -19.85 -15.44

PFS MC SE 0.19 0.20 0.20 0.22 0.16 0.12 0.17 0.17 0.21 0.21 0.23 0.17 0.12 0.18

PFS Rel Bias -15.1% -13.3% -13.3% -13.3% -20.9% -29.0% -22.7% -16.2% -12.0% -12.0% -12.0% -21.2% -28.7% -22.4%

PFS empSE 5.73 6.30 6.22 6.63 5.08 3.65 5.36 5.34 6.58 6.50 6.95 5.09 3.69 5.47

PFS MC SE 0.13 0.14 0.14 0.15 0.12 0.08 0.12 0.12 0.15 0.15 0.16 0.12 0.08 0.13

PFS MSE 141.27 124.04 122.49 127.91 233.24 413.45 275.29 153.04 112.26 110.76 116.87 241.16 407.51 268.32

PFS MC SE 3.92 3.85 3.77 3.98 4.59 4.66 5.88 3.91 3.68 3.60 3.99 4.66 4.68 5.86

PFS Rel P 0.00% -17.48% -15.27% -25.43% 27.06% 146.47% 13.95% 0.00% -34.14% -32.48% -41.00% 10.09% 109.27% -4.50%

PFS ModelSE 5.37 7.23 7.22 7.32 6.21 4.08 5.48 5.37 7.23 7.22 7.32 6.21 4.08 5.48

PFS Cover2 0.47 0.63 0.64 0.63 0.29 0.01 0.23 0.43 0.66 0.66 0.66 0.27 0.01 0.24

PFS Cover1 0.82 0.92 0.92 0.92 0.79 0.39 0.79 0.82 0.92 0.92 0.92 0.79 0.39 0.79

OS Mean 72.48 73.27 73.56 77.55 69.27 59.43 74.72 73.46 74.86 76.88 84.36 70.01 59.62 75.70

OS Bias -9.45 -8.66 -8.37 -4.38 -12.66 -22.50 -7.21 -8.48 -7.07 -5.05 2.42 -11.92 -22.31 -6.23

OS MC SE 0.22 0.19 0.19 0.32 0.15 0.12 0.23 0.23 0.40 0.64 0.44 0.32 0.12 0.24

OS Rel Bias 0.12-                   0.11-             0.10-                 0.05-                   0.15-             0.27-                0.09-                  0.10-                   0.09-               0.06-                 0.03                   0.15-               0.27-                0.08-                  

OS empSE 6.92 5.79 5.92 9.98 4.67 3.78 6.97 7.19 12.41 19.68 13.56 9.92 3.83 7.30

OS MC SE 0.16 0.13 0.14 0.23 0.11 0.09 0.16 0.17 0.28 0.45 0.31 0.23 0.09 0.17

OS MSE 137.13 108.55 105.12 118.67 182.02 520.38 100.56 123.50 203.89 412.22 189.62 240.37 512.49 91.99

OS MC SE 0.16 0.13 0.14 0.23 0.11 0.09 0.16 3.96 68.34 138.14 17.30 52.12 5.49 2.82

OS Rel P 0.00% 42.85% 36.70% -51.91% 119.26% 234.28% -1.48% 0.00% -66.42% -86.64% -71.88% -47.43% 252.32% -2.85%

OS ModelSE 8.96 17.22 27.69 24.55 14.71 4.30 9.41 8.96 17.22 27.69 24.55 14.71 4.30 9.41

OS Cover2 0.72 0.69 0.75 0.95 0.49 0.00 0.82 0.75 0.72 0.80 0.97 0.50 0.00 0.84

OS Cover1 0.97 0.99 0.99 1.00 0.95 0.31 0.99 0.97 0.99 0.99 1.00 0.95 0.31 0.99

QALYs Mean 53.83 54.60 54.75 56.74 51.03 44.44 53.37 54.10 55.66 56.68 60.41 51.32 44.57 53.94

QALYs Bias -7.85 -7.09 -6.93 -4.94 -10.65 -17.25 -8.32 -7.59 -6.03 -5.01 -1.27 -10.36 -17.11 -7.75

QALYs MC SE 0.16 0.15 0.15 0.20 0.11 0.10 0.15 0.16 0.23 0.34 0.26 0.18 0.10 0.16

QALYs Rel Bias 0.13-                   0.11-             0.11-                 0.08-                   0.17-             0.28-                0.13-                  0.12-                   0.10-               0.08-                 0.02-                   0.17-               0.28-                0.13-                  

QALYs empSE 4.83 4.51 4.51 6.25 3.35 2.95 4.77 4.91 7.20 10.45 7.95 5.48 2.98 4.96

QALYs MC SE 0.11 0.10 0.10 0.14 0.08 0.07 0.11 0.11 0.17 0.24 0.18 0.13 0.07 0.11

QALYs MSE 84.91 70.51 68.37 63.44 124.62 306.21 91.86 81.62 88.06 134.20 64.77 137.39 301.64 84.56

QALYs MC SE 2.49 1.93 1.87 2.05 2.17 3.26 2.52 2.44 16.65 33.26 4.13 12.08 3.27 2.43

QALYs Rel P 0.00% 14.82% 14.79% -40.33% 107.77% 168.56% 2.58% 0.00% -53.45% -77.93% -61.87% -19.82% 170.86% -1.86%

QALYs ModelSE 5.22 9.68 14.54 13.21 8.35 3.33 6.08 5.22 9.68 14.54 13.21 8.35 3.33 6.08

QALYs Cover2 0.57 0.66 0.70 0.91 0.39 0.01 0.63 0.58 0.69 0.74 0.94 0.38 0.01 0.65

QALYs Cover1 0.89 0.99 0.99 1.00 0.93 0.34 0.98 0.89 0.99 0.99 1.00 0.93 0.34 0.98
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Table 44 : Result for simulated scenario 22 

Scenario22 Deterministic Probabilistic

PSM STM STM - Log STM - Time MSM Li's model Fu's model PSM STM STM - Log STM - Time MSM Li's model Fu's model

PFS Mean 55.14 56.92 56.91 56.91 50.06 42.91 49.01 55.50 57.78 57.77 57.77 49.71 43.09 49.17

PFS Bias -0.84 0.94 0.93 0.93 -5.92 -13.07 -6.97 -0.48 1.80 1.79 1.79 -6.28 -12.89 -6.81

PFS MC SE 0.18 0.21 0.22 0.22 0.17 0.11 0.16 0.18 0.22 0.23 0.23 0.17 0.11 0.16

PFS Rel Bias -1.5% 1.7% 1.7% 1.7% -10.6% -23.3% -12.5% -0.9% 3.2% 3.2% 3.2% -11.2% -23.0% -12.2%

PFS empSE 5.47 6.53 6.67 6.67 5.10 3.27 4.79 5.48 6.78 6.96 6.96 5.19 3.33 4.89

PFS MC SE 0.13 0.15 0.15 0.15 0.12 0.08 0.11 0.13 0.16 0.16 0.16 0.12 0.08 0.11

PFS MSE 30.60 43.49 45.24 45.36 60.96 181.44 71.57 30.25 49.19 51.51 51.66 66.29 177.19 70.24

PFS MC SE 1.43 2.19 3.16 3.16 1.85 2.69 2.23 1.44 2.54 3.95 3.95 2.09 2.70 2.16

PFS Rel P 0.00% -29.82% -32.63% -32.80% 15.28% 179.54% 30.42% 0.00% -34.69% -37.88% -38.05% 11.57% 170.39% 25.61%

PFS ModelSE 6.00 6.72 6.81 6.81 5.91 3.35 5.32 6.00 6.72 6.81 6.81 5.91 3.35 5.32

PFS Cover2 0.93 0.94 0.94 0.94 0.66 0.08 0.64 0.94 0.95 0.95 0.94 0.66 0.09 0.64

PFS Cover1 1.00 1.00 1.00 1.00 0.95 0.57 0.95 1.00 1.00 1.00 1.00 0.95 0.57 0.95

OS Mean 131.19 130.26 132.92 147.41 127.68 86.02 141.89 158.14 138.14 153.20 179.51 133.42 87.50 157.99

OS Bias 2.17 1.24 3.90 18.39 -1.34 -42.99 12.88 29.12 9.12 24.19 50.49 4.40 -41.51 28.97

OS MC SE 0.45 0.42 0.58 1.27 0.44 0.25 0.52 2.50 1.29 1.67 1.81 1.19 0.26 1.04

OS Rel Bias 0.02                   0.01             0.03                 0.14                   0.01-             0.33-                0.10                  0.23                   0.07               0.19                 0.39                   0.03               0.32-                0.22                  

OS empSE 14.00 12.99 17.89 39.05 13.47 7.56 16.05 77.07 39.74 51.48 55.80 36.66 8.11 31.67

OS MC SE 0.32 0.30 0.41 0.90 0.31 0.17 0.37 1.77 0.91 1.18 1.28 0.84 0.19 0.73

OS MSE 200.59 170.17 334.94 1861.12 182.98 1905.64 423.08 6781.14 1660.67 3232.65 5659.80 1361.95 1789.00 1841.56

OS MC SE 0.32 0.30 0.41 0.90 0.31 0.17 0.37 890.19 460.35 530.50 535.66 409.38 21.52 137.13

OS Rel P 0.00% 16.15% -38.74% -87.14% 8.11% 242.68% -23.87% 0.00% 276.10% 124.08% 90.75% 341.90% 8930.17% 491.97%

OS ModelSE 91.01 40.66 65.48 88.60 40.61 10.16 69.72 91.01 40.66 65.48 88.60 40.61 10.16 69.72

OS Cover2 1.00 0.99 1.00 1.00 1.00 0.03 1.00 1.00 1.00 1.00 1.00 1.00 0.05 1.00

OS Cover1 1.00 1.00 1.00 1.00 1.00 0.64 1.00 1.00 1.00 1.00 1.00 1.00 0.64 1.00

QALYs Mean 82.14 82.20 83.53 90.78 78.86 55.89 85.65 95.72 86.40 93.93 107.09 81.62 56.68 93.75

QALYs Bias 0.83 0.90 2.23 9.47 -2.45 -25.42 4.35 14.42 5.10 12.63 25.78 0.32 -24.62 12.44

QALYs MC SE 0.24 0.23 0.30 0.64 0.23 0.14 0.28 1.26 0.65 0.84 0.91 0.60 0.15 0.53

QALYs Rel Bias 0.01                   0.01             0.03                 0.12                   0.03-             0.31-                0.05                  0.18                   0.06               0.16                 0.32                   0.00               0.30-                0.15                  

QALYs empSE 7.47 7.13 9.28 19.65 7.21 4.30 8.49 38.70 20.18 25.83 28.01 18.62 4.57 16.11

QALYs MC SE 0.17 0.16 0.21 0.45 0.17 0.10 0.20 0.89 0.46 0.59 0.64 0.43 0.10 0.37

QALYs MSE 56.50 51.55 91.03 475.39 57.93 664.49 90.88 1704.03 432.77 825.99 1448.65 346.48 627.12 414.22

QALYs MC SE 2.22 1.92 4.72 37.82 1.93 7.05 4.03 222.89 116.73 132.76 134.49 101.76 7.24 32.46

QALYs Rel P 0.00% 9.98% -35.16% -85.53% 7.43% 202.33% -22.49% 0.00% 267.81% 124.48% 90.87% 331.95% 7074.54% 476.82%

QALYs ModelSE 45.90 20.63 32.95 44.48 20.76 5.59 35.42 45.90 20.63 32.95 44.48 20.76 5.59 35.42

QALYs Cover2 1.00 1.00 1.00 1.00 0.99 0.02 1.00 1.00 1.00 1.00 1.00 0.99 0.03 1.00

QALYs Cover1 1.00 1.00 1.00 1.00 1.00 0.59 1.00 1.00 1.00 1.00 1.00 1.00 0.59 1.00
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Table 45 : Result for simulated scenario 23 

 

 

Scenario23 Deterministic Probabilistic

PSM STM STM - Log STM - Time MSM Li's model Fu's model PSM STM STM - Log STM - Time MSM Li's model Fu's model

PFS Mean 52.55 56.81 56.77 56.83 49.62 44.03 47.71 52.56 57.67 57.64 57.70 49.41 44.21 47.91

PFS Bias -3.38 0.88 0.84 0.90 -6.31 -11.90 -8.22 -3.37 1.74 1.70 1.77 -6.52 -11.72 -8.03

PFS MC SE 0.14 0.20 0.20 0.21 0.16 0.11 0.13 0.14 0.21 0.21 0.22 0.16 0.11 0.13

PFS Rel Bias -6.0% 1.6% 1.5% 1.6% -11.3% -21.3% -14.7% -6.0% 3.1% 3.0% 3.2% -11.7% -21.0% -14.3%

PFS empSE 4.27 6.27 6.31 6.60 5.01 3.43 4.04 4.17 6.52 6.56 6.90 5.08 3.49 4.09

PFS MC SE 0.10 0.14 0.14 0.15 0.12 0.08 0.09 0.10 0.15 0.15 0.16 0.12 0.08 0.09

PFS MSE 29.68 40.05 40.55 44.38 64.92 153.43 83.86 28.71 45.47 45.94 50.70 68.25 149.60 81.08

PFS MC SE 1.24 1.87 1.92 3.03 1.94 2.57 2.16 1.19 2.17 2.23 3.84 2.07 2.57 2.14

PFS Rel P 0.00% -53.55% -54.19% -58.12% -27.36% 55.00% 12.16% 0.00% -59.08% -59.63% -63.47% -32.51% 43.13% 4.17%

PFS ModelSE 4.81 6.80 6.80 6.91 5.36 3.64 4.78 4.81 6.80 6.80 6.91 5.36 3.64 4.78

PFS Cover2 0.86 0.94 0.94 0.94 0.64 0.15 0.54 0.86 0.95 0.95 0.95 0.63 0.16 0.55

PFS Cover1 0.99 1.00 1.00 1.00 0.94 0.71 0.94 0.99 1.00 1.00 1.00 0.94 0.71 0.94

OS Mean 79.46 82.89 83.83 89.32 77.98 63.44 83.02 81.58 86.82 91.95 105.16 79.51 63.80 85.15

OS Bias -2.47 0.96 1.90 7.40 -3.95 -18.49 1.09 -0.35 4.89 10.02 23.23 -2.42 -18.12 3.22

OS MC SE 0.23 0.22 0.24 0.46 0.21 0.13 0.24 0.53 0.85 1.10 1.12 0.48 0.14 0.28

OS Rel Bias 0.03-                   0.01             0.02                 0.09                   0.05-             0.23-                0.01                  0.00-                   0.06               0.12                 0.28                   0.03-               0.22-                0.04                  

OS empSE 7.01 6.88 7.44 14.16 6.56 4.08 7.43 16.41 26.33 33.77 34.66 14.85 4.17 8.49

OS MC SE 0.16 0.16 0.17 0.32 0.15 0.09 0.17 0.38 0.60 0.78 0.80 0.34 0.10 0.19

OS MSE 55.13 48.18 58.90 254.94 58.65 358.51 56.41 269.10 716.59 1239.34 1739.63 226.07 345.83 82.40

OS MC SE 0.16 0.16 0.17 0.32 0.15 0.09 0.17 128.40 230.44 290.91 271.91 95.36 4.85 6.37

OS Rel P 0.00% 3.75% -11.31% -75.51% 13.91% 195.12% -11.19% 0.00% -61.17% -76.38% -77.58% 22.13% 1451.84% 273.41%

OS ModelSE 22.44 30.14 41.03 49.73 19.77 4.82 15.94 22.44 30.14 41.03 49.73 19.77 4.82 15.94

OS Cover2 0.98 0.97 1.00 1.00 0.90 0.06 1.00 0.98 0.98 1.00 1.00 0.91 0.07 1.00

OS Cover1 1.00 1.00 1.00 1.00 1.00 0.60 1.00 1.00 1.00 1.00 1.00 1.00 0.60 1.00

QALYs Mean 55.49 58.48 58.95 61.71 53.87 44.93 55.82 56.56 60.71 63.26 69.89 54.58 45.16 56.94

QALYs Bias -2.25 0.74 1.20 3.97 -3.87 -12.82 -1.92 -1.18 2.97 5.52 12.15 -3.16 -12.58 -0.80

QALYs MC SE 0.13 0.16 0.16 0.25 0.13 0.09 0.14 0.28 0.44 0.56 0.58 0.25 0.10 0.16

QALYs Rel Bias 0.04-                   0.01             0.02                 0.07                   0.07-             0.22-                0.03-                  0.02-                   0.05               0.10                 0.21                   0.05-               0.22-                0.01-                  

QALYs empSE 4.14 4.84 4.89 7.79 4.09 2.90 4.34 8.55 13.65 17.27 17.78 7.83 2.96 4.81

QALYs MC SE 0.09 0.11 0.11 0.18 0.09 0.07 0.10 0.20 0.31 0.40 0.41 0.18 0.07 0.11

QALYs MSE 22.15 23.94 25.32 76.39 31.66 172.67 22.47 74.44 194.82 328.43 463.41 71.32 167.00 23.77

QALYs MC SE 0.79 0.95 1.04 5.07 1.04 2.38 0.83 31.60 58.09 73.88 69.39 23.31 2.38 1.35

QALYs Rel P 0.00% -26.90% -28.40% -71.81% 2.35% 102.83% -8.98% 0.00% -60.73% -75.48% -76.87% 19.14% 734.00% 215.72%

QALYs ModelSE 11.60 15.59 20.91 25.25 10.47 3.34 8.83 11.60 15.59 20.91 25.25 10.47 3.34 8.83

QALYs Cover2 0.96 0.97 1.00 1.00 0.86 0.07 0.98 0.97 0.98 1.00 1.00 0.86 0.07 0.98

QALYs Cover1 1.00 1.00 1.00 1.00 1.00 0.60 1.00 1.00 1.00 1.00 1.00 1.00 0.60 1.00
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Table 46 : Result for simulated scenario 24 

Scenario24 Deterministic Probabilistic

PSM STM STM - Log STM - Time MSM Li's model Fu's model PSM STM STM - Log STM - Time MSM Li's model Fu's model

PFS Mean 52.15 55.66 55.55 55.50 48.80 44.95 47.83 51.78 56.55 56.45 56.39 48.68 45.09 48.26

PFS Bias -3.78 -0.26 -0.37 -0.43 -7.13 -10.98 -8.10 -4.15 0.63 0.52 0.46 -7.24 -10.83 -7.66

PFS MC SE 0.14 0.18 0.17 0.18 0.14 0.11 0.12 0.13 0.18 0.18 0.19 0.14 0.11 0.12

PFS Rel Bias -6.8% -0.5% -0.7% -0.8% -12.7% -19.6% -14.5% -7.4% 1.1% 0.9% 0.8% -12.9% -19.4% -13.7%

PFS empSE 4.36 5.41 5.38 5.55 4.39 3.33 3.58 4.09 5.69 5.66 5.83 4.38 3.37 3.66

PFS MC SE 0.10 0.12 0.12 0.13 0.10 0.08 0.08 0.09 0.13 0.13 0.13 0.10 0.08 0.08

PFS MSE 33.24 29.27 29.08 30.96 70.00 131.57 78.41 33.95 32.76 32.24 34.19 71.63 128.62 72.06

PFS MC SE 1.11 1.03 1.12 1.20 1.98 2.31 1.93 1.13 1.18 1.24 1.32 2.01 2.31 1.87

PFS Rel P 0.00% -35.01% -34.43% -38.33% -1.26% 71.60% 47.94% 0.00% -48.25% -47.60% -50.71% -12.80% 47.96% 25.42%

PFS ModelSE 4.52 6.76 6.74 6.75 4.87 3.73 4.66 4.52 6.76 6.74 6.75 4.87 3.73 4.66

PFS Cover2 0.79 0.94 0.94 0.93 0.58 0.21 0.54 0.77 0.95 0.95 0.94 0.57 0.22 0.59

PFS Cover1 0.99 1.00 1.00 1.00 0.94 0.76 0.96 0.99 1.00 1.00 1.00 0.94 0.76 0.96

OS Mean 64.78 66.84 67.10 69.88 61.14 54.21 66.49 65.45 68.17 70.19 76.19 62.04 54.39 67.69

OS Bias -2.82 -0.77 -0.51 2.27 -6.46 -13.40 -1.11 -2.15 0.56 2.58 8.58 -5.56 -13.22 0.08

OS MC SE 0.20 0.18 0.18 0.26 0.14 0.11 0.21 0.21 0.31 0.66 0.43 0.28 0.12 0.21

OS Rel Bias 0.04-                   0.01-             0.01-                 0.03                   0.10-             0.20-                0.02-                  0.03-                   0.01               0.04                 0.13                   0.08-               0.20-                0.00                  

OS empSE 6.04 5.45 5.49 8.14 4.20 3.50 6.36 6.56 9.56 20.25 13.14 8.56 3.55 6.58

OS MC SE 0.14 0.13 0.13 0.19 0.10 0.08 0.15 0.15 0.22 0.46 0.30 0.20 0.08 0.15

OS MSE 44.39 30.27 30.35 71.34 59.37 191.72 41.64 47.66 91.62 416.36 246.29 104.06 187.26 43.28

OS MC SE 0.14 0.13 0.13 0.19 0.10 0.08 0.15 2.70 44.11 168.52 34.39 40.81 3.01 1.56

OS Rel P 0.00% 22.76% 21.09% -44.94% 107.04% 197.40% -9.82% 0.00% -52.88% -89.50% -75.07% -41.17% 242.25% -0.59%

OS ModelSE 8.27 13.89 24.40 24.03 12.95 3.97 7.98 8.27 13.89 24.40 24.03 12.95 3.97 7.98

OS Cover2 0.89 0.92 0.95 0.99 0.73 0.12 0.96 0.90 0.93 0.97 1.00 0.73 0.14 0.98

OS Cover1 1.00 1.00 1.00 1.00 0.99 0.68 1.00 1.00 1.00 1.00 1.00 0.99 0.68 1.00

QALYs Mean 48.04 50.12 50.21 51.59 45.21 40.59 47.59 48.26 51.05 52.03 55.01 45.63 40.72 48.32

QALYs Bias -2.54 -0.46 -0.37 1.01 -5.37 -9.99 -2.99 -2.32 0.47 1.45 4.43 -4.95 -9.86 -2.26

QALYs MC SE 0.13 0.14 0.13 0.17 0.10 0.09 0.13 0.14 0.19 0.34 0.24 0.16 0.09 0.13

QALYs Rel Bias 0.05-                   0.01-             0.01-                 0.02                   0.11-             0.20-                0.06-                  0.05-                   0.01               0.03                 0.09                   0.10-               0.19-                0.04-                  

QALYs empSE 4.05 4.22 4.14 5.18 3.11 2.71 3.88 4.26 5.82 10.62 7.40 4.79 2.74 4.00

QALYs MC SE 0.09 0.10 0.10 0.12 0.07 0.06 0.09 0.10 0.13 0.24 0.17 0.11 0.06 0.09

QALYs MSE 22.84 18.01 17.25 27.81 38.52 107.15 23.94 23.47 34.03 114.73 74.27 47.49 104.68 21.11

QALYs MC SE 0.72 0.60 0.59 1.13 1.00 1.73 0.80 0.86 10.77 42.15 8.69 9.84 1.73 0.72

QALYs Rel P 0.00% -7.97% -4.32% -38.89% 68.99% 123.88% 9.02% 0.00% -46.49% -83.94% -66.89% -21.21% 141.17% 13.00%

QALYs ModelSE 4.69 8.06 12.87 12.77 7.16 3.07 5.16 4.69 8.06 12.87 12.77 7.16 3.07 5.16

QALYs Cover2 0.82 0.93 0.96 0.99 0.69 0.15 0.89 0.83 0.95 0.97 1.00 0.69 0.16 0.91

QALYs Cover1 0.99 1.00 1.00 1.00 1.00 0.71 1.00 0.99 1.00 1.00 1.00 1.00 0.71 1.00
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Table 47 : Result for simulated scenario 25 

 

 

Scenario25 Deterministic Probabilistic

PSM STM STM - Log STM - Time MSM Li's model Fu's model PSM STM STM - Log STM - Time MSM Li's model Fu's model

PFS Mean 60.41 61.24 61.21 61.10 57.48 49.41 55.49 60.75 61.85 61.82 61.71 56.97 49.55 55.71

PFS Bias -8.69 -7.86 -7.89 -8.00 -11.62 -19.69 -13.61 -8.35 -7.25 -7.28 -7.39 -12.13 -19.55 -13.39

PFS MC SE 0.17 0.20 0.20 0.20 0.17 0.11 0.14 0.17 0.21 0.20 0.21 0.20 0.11 0.14

PFS Rel Bias -12.6% -11.4% -11.4% -11.6% -16.8% -28.5% -19.7% -12.1% -10.5% -10.5% -10.7% -17.6% -28.3% -19.4%

PFS empSE 5.35 6.08 6.06 6.09 5.31 3.24 4.32 5.36 6.33 6.31 6.35 6.03 3.27 4.37

PFS MC SE 0.12 0.14 0.14 0.14 0.12 0.07 0.10 0.12 0.15 0.14 0.15 0.14 0.08 0.10

PFS MSE 104.15 98.71 98.91 101.04 163.26 398.04 203.90 98.40 92.68 92.83 94.95 183.46 392.75 198.38

PFS MC SE 2.89 3.01 3.03 3.07 3.59 4.06 3.68 2.80 3.01 3.03 3.07 4.64 4.07 3.65

PFS Rel P 0.00% -22.59% -22.07% -22.93% 1.60% 171.98% 53.34% 0.00% -28.34% -27.86% -28.71% -20.88% 168.24% 50.48%

PFS ModelSE 5.26 5.86 5.85 5.84 7.16 3.22 4.62 5.26 5.86 5.85 5.84 7.16 3.22 4.62

PFS Cover2 0.54 0.60 0.60 0.59 0.39 0.00 0.19 0.56 0.63 0.63 0.62 0.40 0.00 0.20

PFS Cover1 0.90 0.92 0.92 0.92 0.80 0.14 0.75 0.90 0.92 0.92 0.92 0.80 0.14 0.75

OS Mean 148.31 143.20 146.11 155.08 140.88 106.55 153.00 150.79 144.37 154.67 172.54 140.65 107.29 157.27

OS Bias 0.36 -4.75 -1.84 7.13 -7.07 -41.40 5.05 2.84 -3.58 6.72 24.59 -7.30 -40.66 9.32

OS MC SE 0.43 0.39 0.45 0.76 0.39 0.22 0.44 0.47 0.46 1.30 1.37 0.50 0.23 0.46

OS Rel Bias 0.00                   0.03-             0.01-                 0.05                   0.05-             0.28-                0.03                  0.02                   0.02-               0.05                 0.17                   0.05-               0.27-                0.06                  

OS empSE 13.35 12.00 13.82 23.37 12.03 6.81 13.47 14.55 14.13 40.18 42.22 15.37 6.95 14.06

OS MC SE 0.31 0.28 0.32 0.54 0.28 0.16 0.31 0.33 0.32 0.92 0.97 0.35 0.16 0.32

OS MSE 178.22 166.35 194.08 596.37 194.62 1760.32 206.75 219.58 212.31 1657.67 2385.34 289.19 1701.82 284.36

OS MC SE 0.31 0.28 0.32 0.54 0.28 0.16 0.31 13.48 17.49 425.91 366.91 18.19 18.30 11.30

OS Rel P 0.00% 23.81% -6.61% -67.36% 23.10% 284.65% -1.77% 0.00% 6.03% -86.88% -88.12% -10.36% 338.22% 7.12%

OS ModelSE 24.93 19.65 43.88 61.36 23.17 8.29 28.08 24.93 19.65 43.88 61.36 23.17 8.29 28.08

OS Cover2 1.00 0.92 0.99 1.00 0.92 0.00 1.00 1.00 0.93 1.00 1.00 0.93 0.00 1.00

OS Cover1 1.00 1.00 1.00 1.00 1.00 0.39 1.00 1.00 1.00 1.00 1.00 1.00 0.39 1.00

QALYs Mean 92.28 89.97 91.42 95.87 87.68 68.10 93.14 93.62 90.74 95.88 104.78 87.42 68.51 95.35

QALYs Bias -2.43 -4.73 -3.29 1.16 -7.02 -26.61 -1.56 -1.08 -3.97 1.17 10.07 -7.29 -26.20 0.64

QALYs MC SE 0.23 0.21 0.23 0.39 0.21 0.13 0.23 0.25 0.25 0.66 0.69 0.27 0.13 0.24

QALYs Rel Bias 0.03-                   0.05-             0.03-                 0.01                   0.07-             0.28-                0.02-                  0.01-                   0.04-               0.01                 0.11                   0.08-               0.28-                0.01                  

QALYs empSE 6.95 6.60 7.23 11.91 6.47 3.94 7.02 7.56 7.69 20.33 21.30 8.36 4.02 7.33

QALYs MC SE 0.16 0.15 0.17 0.27 0.15 0.09 0.16 0.17 0.18 0.47 0.49 0.19 0.09 0.17

QALYs MSE 54.15 65.96 62.97 143.00 91.15 723.42 51.64 58.26 74.76 414.44 554.71 122.93 702.34 54.11

QALYs MC SE 1.87 2.39 2.23 7.44 3.03 6.80 1.85 3.22 4.60 105.86 88.96 6.15 6.82 2.00

QALYs Rel P 0.00% 10.72% -7.51% -65.94% 15.29% 210.61% -1.94% 0.00% -3.28% -86.18% -87.40% -18.24% 254.12% 6.31%

QALYs ModelSE 12.71 10.40 22.22 30.92 12.86 4.69 14.68 12.71 10.40 22.22 30.92 12.86 4.69 14.68

QALYs Cover2 0.99 0.88 0.97 1.00 0.84 0.00 1.00 1.00 0.90 0.99 1.00 0.85 0.00 1.00

QALYs Cover1 1.00 1.00 1.00 1.00 1.00 0.26 1.00 1.00 1.00 1.00 1.00 1.00 0.26 1.00
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Table 48 : Result for simulated scenario 26 

 

 

Scenario26 Deterministic Probabilistic

PSM STM STM - Log STM - Time MSM Li's model Fu's model PSM STM STM - Log STM - Time MSM Li's model Fu's model

PFS Mean 60.14 61.45 61.44 61.26 57.30 50.15 54.59 60.39 62.06 62.05 61.87 56.90 50.27 54.79

PFS Bias -8.93 -7.63 -7.63 -7.81 -11.78 -18.93 -14.49 -8.69 -7.02 -7.02 -7.21 -12.17 -18.81 -14.29

PFS MC SE 0.17 0.19 0.19 0.19 0.17 0.10 0.13 0.17 0.20 0.20 0.20 0.18 0.10 0.13

PFS Rel Bias -12.9% -11.0% -11.0% -11.3% -17.0% -27.4% -21.0% -12.6% -10.2% -10.2% -10.4% -17.6% -27.2% -20.7%

PFS empSE 5.19 5.91 5.91 5.90 5.16 3.10 4.06 5.13 6.14 6.14 6.12 5.47 3.13 4.09

PFS MC SE 0.12 0.14 0.14 0.14 0.12 0.07 0.09 0.12 0.14 0.14 0.14 0.13 0.07 0.09

PFS MSE 106.70 93.12 93.20 95.83 165.29 367.79 226.44 101.77 86.95 87.00 89.43 178.07 363.52 220.83

PFS MC SE 2.89 2.83 2.84 2.91 3.54 3.77 3.76 2.80 2.75 2.77 2.83 4.08 3.77 3.75

PFS Rel P 0.00% -23.03% -23.08% -22.69% 0.88% 180.24% 62.88% 0.00% -30.29% -30.31% -29.89% -12.00% 169.13% 57.02%

PFS ModelSE 4.94 5.82 5.82 5.77 6.97 3.28 4.30 4.94 5.82 5.82 5.77 6.97 3.28 4.30

PFS Cover2 0.50 0.63 0.62 0.61 0.37 0.00 0.12 0.51 0.65 0.65 0.63 0.37 0.00 0.12

PFS Cover1 0.87 0.93 0.93 0.93 0.78 0.15 0.68 0.87 0.93 0.93 0.93 0.78 0.15 0.68

OS Mean 110.08 105.16 106.91 112.60 102.40 85.38 111.86 111.21 106.96 110.70 120.93 103.53 85.70 113.47

OS Bias -2.02 -6.94 -5.19 0.49 -9.71 -26.73 -0.24 -0.90 -5.15 -1.40 8.82 -8.58 -26.40 1.37

OS MC SE 0.32 0.25 0.29 0.45 0.25 0.14 0.31 0.33 0.62 0.82 0.68 0.63 0.14 0.32

OS Rel Bias 0.02-                   0.06-             0.05-                 0.00                   0.09-             0.24-                0.00-                  0.01-                   0.05-               0.01-                 0.08                   0.08-               0.24-                0.01                  

OS empSE 9.82 7.73 8.95 13.89 7.86 4.17 9.70 10.24 19.11 25.14 20.86 19.55 4.22 9.92

OS MC SE 0.23 0.18 0.21 0.32 0.18 0.10 0.22 0.24 0.44 0.58 0.48 0.45 0.10 0.23

OS MSE 100.39 107.88 107.08 193.06 155.90 731.68 94.11 105.61 391.32 633.40 512.57 455.28 714.71 100.12

OS MC SE 0.23 0.18 0.21 0.32 0.18 0.10 0.22 3.46 126.10 193.16 85.90 120.08 7.19 3.76

OS Rel P 0.00% 61.34% 20.24% -50.05% 56.20% 453.38% 2.40% 0.00% -71.27% -83.40% -75.89% -72.54% 488.87% 6.67%

OS ModelSE 12.69 25.58 31.42 34.81 27.49 5.12 13.39 12.69 25.58 31.42 34.81 27.49 5.12 13.39

OS Cover2 0.95 0.80 0.87 1.00 0.70 0.00 0.98 0.95 0.80 0.89 1.00 0.71 0.00 0.99

OS Cover1 1.00 0.99 1.00 1.00 0.98 0.25 1.00 1.00 0.99 1.00 1.00 0.98 0.25 1.00

QALYs Mean 73.08 71.01 71.89 74.68 68.39 57.73 72.31 73.72 72.10 73.97 79.02 68.83 57.93 73.17

QALYs Bias -3.69 -5.76 -4.89 -2.10 -8.39 -19.04 -4.47 -3.05 -4.68 -2.81 2.25 -7.94 -18.84 -3.60

QALYs MC SE 0.18 0.16 0.17 0.24 0.15 0.09 0.18 0.19 0.33 0.42 0.35 0.33 0.09 0.18

QALYs Rel Bias 0.05-                   0.08-             0.06-                 0.03-                   0.11-             0.25-                0.06-                  0.04-                   0.06-               0.04-                 0.03                   0.10-               0.25-                0.05-                  

QALYs empSE 5.57 4.94 5.28 7.34 4.64 2.77 5.41 5.80 10.18 13.00 10.84 10.23 2.80 5.53

QALYs MC SE 0.13 0.11 0.12 0.17 0.11 0.06 0.12 0.13 0.23 0.30 0.25 0.23 0.06 0.13

QALYs MSE 44.66 57.54 51.75 58.15 91.81 370.22 49.20 42.96 125.40 176.68 122.46 167.51 362.85 43.48

QALYs MC SE 1.59 1.81 1.74 2.05 2.31 3.40 1.74 1.51 31.34 47.42 20.63 28.92 3.40 1.56

QALYs Rel P 0.00% 27.40% 11.38% -42.26% 44.53% 304.92% 6.11% 0.00% -67.51% -80.07% -71.35% -67.80% 329.86% 10.26%

QALYs ModelSE 6.65 13.26 16.10 17.81 14.61 3.32 7.50 6.65 13.26 16.10 17.81 14.61 3.32 7.50

QALYs Cover2 0.87 0.75 0.82 0.99 0.58 0.00 0.89 0.88 0.76 0.86 1.00 0.60 0.00 0.91

QALYs Cover1 0.99 0.98 1.00 1.00 0.95 0.16 1.00 0.99 0.98 1.00 1.00 0.95 0.16 1.00
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Table 49 : Result for simulated scenario 27 

 

Scenario27 Deterministic Probabilistic

PSM STM STM - Log STM - Time MSM Li's model Fu's model PSM STM STM - Log STM - Time MSM Li's model Fu's model

PFS Mean 60.19 61.01 61.03 61.13 56.27 50.38 54.51 60.04 61.60 61.62 61.73 56.04 50.47 54.56

PFS Bias -8.87 -8.05 -8.03 -7.93 -12.79 -18.68 -14.56 -9.03 -7.47 -7.44 -7.34 -13.03 -18.59 -14.51

PFS MC SE 0.17 0.18 0.18 0.19 0.16 0.10 0.13 0.16 0.19 0.19 0.20 0.16 0.10 0.13

PFS Rel Bias -12.8% -11.7% -11.6% -11.5% -18.5% -27.0% -21.1% -13.1% -10.8% -10.8% -10.6% -18.9% -26.9% -21.0%

PFS empSE 5.11 5.60 5.63 5.84 4.78 3.03 4.14 4.90 5.78 5.83 6.04 4.93 3.05 4.15

PFS MC SE 0.12 0.13 0.13 0.13 0.11 0.07 0.10 0.11 0.13 0.13 0.14 0.11 0.07 0.10

PFS MSE 104.77 96.14 96.25 96.98 186.55 358.15 229.08 105.53 89.09 89.35 90.25 193.96 354.89 227.73

PFS MC SE 2.93 2.98 2.95 2.98 3.73 3.66 3.88 2.89 2.88 2.86 2.90 3.94 3.66 3.87

PFS Rel P 0.00% -16.73% -17.80% -23.41% 14.10% 184.79% 52.13% 0.00% -28.04% -29.30% -34.16% -1.25% 158.57% 39.19%

PFS ModelSE 4.65 5.59 5.63 5.67 5.54 3.35 4.29 4.65 5.59 5.63 5.67 5.54 3.35 4.29

PFS Cover2 0.48 0.61 0.61 0.61 0.27 0.00 0.13 0.47 0.64 0.64 0.64 0.25 0.00 0.13

PFS Cover1 0.85 0.92 0.92 0.92 0.71 0.19 0.67 0.85 0.92 0.92 0.92 0.71 0.19 0.67

OS Mean 83.50 82.03 82.31 85.06 78.28 68.41 85.38 84.21 82.56 83.57 89.30 78.70 68.55 86.02

OS Bias -6.65 -8.12 -7.83 -5.08 -11.87 -21.74 -4.76 -5.94 -7.59 -6.57 -0.84 -11.45 -21.60 -4.12

OS MC SE 0.22 0.18 0.19 0.28 0.17 0.11 0.22 0.22 0.19 0.26 0.37 0.20 0.11 0.23

OS Rel Bias 0.07-                   0.09-             0.09-                 0.06-                   0.13-             0.24-                0.05-                  0.07-                   0.08-               0.07-                 0.01-                   0.13-               0.24-                0.05-                  

OS empSE 6.65 5.65 5.92 8.69 5.19 3.31 6.82 6.85 5.99 8.06 11.33 6.15 3.33 7.00

OS MC SE 0.15 0.13 0.14 0.20 0.12 0.08 0.16 0.16 0.14 0.19 0.26 0.14 0.08 0.16

OS MSE 88.37 97.87 96.39 101.24 167.81 483.36 69.17 82.13 93.45 108.15 128.88 168.94 477.49 65.95

OS MC SE 0.15 0.13 0.14 0.20 0.12 0.08 0.16 2.82 2.82 12.00 17.21 4.30 4.64 2.26

OS Rel P 0.00% 38.13% 25.97% -41.48% 63.98% 304.01% -5.08% 0.00% 30.58% -27.82% -63.43% 23.96% 323.02% -4.24%

OS ModelSE 7.78 6.67 13.78 18.42 8.28 3.81 8.13 7.78 6.67 13.78 18.42 8.28 3.81 8.13

OS Cover2 0.77 0.63 0.68 0.90 0.43 0.00 0.86 0.80 0.64 0.72 0.94 0.44 0.00 0.87

OS Cover1 0.99 0.96 0.99 1.00 0.87 0.16 0.99 0.99 0.96 0.99 1.00 0.87 0.16 0.99

QALYs Mean 59.81 59.32 59.47 60.87 56.02 49.32 59.04 60.12 59.76 60.27 63.17 56.16 49.42 59.38

QALYs Bias -5.99 -6.48 -6.33 -4.92 -9.77 -16.47 -6.75 -5.68 -6.03 -5.52 -2.62 -9.63 -16.38 -6.41

QALYs MC SE 0.14 0.14 0.14 0.18 0.11 0.08 0.14 0.15 0.14 0.17 0.22 0.12 0.08 0.14

QALYs Rel Bias 0.09-                   0.10-             0.10-                 0.07-                   0.15-             0.25-                0.10-                  0.09-                   0.09-               0.08-                 0.04-                   0.15-               0.25-                0.10-                  

QALYs empSE 4.43 4.20 4.31 5.42 3.47 2.48 4.34 4.51 4.37 5.15 6.64 3.84 2.50 4.43

QALYs MC SE 0.10 0.10 0.10 0.12 0.08 0.06 0.10 0.10 0.10 0.12 0.15 0.09 0.06 0.10

QALYs MSE 55.47 59.54 58.55 53.54 107.55 277.47 64.40 52.57 55.49 56.93 50.90 107.53 274.38 60.79

QALYs MC SE 1.78 1.71 1.73 1.60 2.03 2.64 1.91 1.72 1.66 3.00 4.25 2.38 2.64 1.86

QALYs Rel P 0.00% 11.41% 5.93% -33.08% 63.16% 219.92% 4.13% 0.00% 6.53% -23.14% -53.80% 38.07% 226.98% 3.51%

QALYs ModelSE 4.35 4.78 7.71 9.92 5.48 2.84 5.09 4.35 4.78 7.71 9.92 5.48 2.84 5.09

QALYs Cover2 0.61 0.61 0.66 0.84 0.38 0.00 0.65 0.63 0.64 0.69 0.89 0.38 0.00 0.66

QALYs Cover1 0.88 0.96 0.98 1.00 0.85 0.16 0.97 0.88 0.96 0.98 1.00 0.85 0.16 0.97
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Table 50 : Result for simulated scenario 28 

 

 

Scenario28 Deterministic Probabilistic

PSM STM STM - Log STM - Time MSM Li's model Fu's model PSM STM STM - Log STM - Time MSM Li's model Fu's model

PFS Mean 55.79 57.20 57.12 57.08 50.83 44.68 49.44 56.11 57.83 57.74 57.70 50.61 44.79 49.49

PFS Bias -0.23 1.18 1.10 1.06 -5.19 -11.34 -6.58 0.09 1.81 1.72 1.68 -5.41 -11.23 -6.53

PFS MC SE 0.16 0.18 0.18 0.18 0.14 0.09 0.12 0.16 0.18 0.19 0.19 0.14 0.09 0.12

PFS Rel Bias -0.4% 2.1% 2.0% 1.9% -9.3% -20.2% -11.7% 0.2% 3.2% 3.1% 3.0% -9.7% -20.1% -11.7%

PFS empSE 4.80 5.53 5.58 5.62 4.31 2.85 3.83 4.84 5.70 5.75 5.79 4.29 2.87 3.83

PFS MC SE 0.11 0.13 0.13 0.13 0.10 0.07 0.09 0.11 0.13 0.13 0.13 0.10 0.07 0.09

PFS MSE 23.11 31.99 32.35 32.66 45.49 136.80 57.98 23.40 35.73 36.03 36.30 47.67 134.40 57.30

PFS MC SE 0.98 1.53 1.52 1.53 1.42 2.07 1.67 1.01 1.73 1.72 1.73 1.50 2.06 1.65

PFS Rel P 0.00% -24.62% -25.99% -26.93% 24.48% 184.21% 56.98% 0.00% -27.91% -29.26% -30.16% 27.50% 185.08% 59.39%

PFS ModelSE 4.78 5.30 5.28 5.28 4.71 2.86 3.94 4.78 5.30 5.28 5.28 4.71 2.86 3.94

PFS Cover2 0.92 0.93 0.93 0.93 0.63 0.06 0.55 0.92 0.92 0.92 0.92 0.62 0.06 0.56

PFS Cover1 1.00 1.00 1.00 1.00 0.94 0.51 0.94 1.00 1.00 1.00 1.00 0.94 0.51 0.94

OS Mean 147.44 148.53 150.43 158.44 146.22 105.70 153.07 158.72 155.27 164.97 181.97 152.22 106.87 161.78

OS Bias -0.05 1.05 2.95 10.96 -1.26 -41.78 5.59 11.24 7.79 17.48 34.48 4.73 -40.61 14.30

OS MC SE 0.49 0.44 0.53 0.88 0.45 0.27 0.52 1.50 1.25 1.58 1.81 1.32 0.28 0.72

OS Rel Bias 0.00-                   0.01             0.02                 0.07                   0.01-             0.28-                0.04                  0.08                   0.05               0.12                 0.23                   0.03               0.28-                0.10                  

OS empSE 15.03 13.51 16.45 27.02 13.85 8.24 15.99 46.26 38.66 48.73 55.85 40.67 8.56 22.01

OS MC SE 0.35 0.31 0.38 0.62 0.32 0.19 0.37 1.06 0.89 1.12 1.28 0.93 0.20 0.51

OS MSE 225.76 183.34 279.08 849.70 193.18 1813.30 286.57 2263.88 1553.30 2677.61 4304.50 1674.51 1722.73 688.24

OS MC SE 0.35 0.31 0.38 0.62 0.32 0.19 0.37 499.18 411.71 491.94 558.47 423.32 22.26 50.11

OS Rel P 0.00% 23.88% -16.50% -69.05% 17.84% 232.72% -11.59% 0.00% 43.21% -9.88% -31.39% 29.39% 2820.61% 341.84%

OS ModelSE 56.88 37.95 53.43 70.91 41.04 10.46 46.24 56.88 37.95 53.43 70.91 41.04 10.46 46.24

OS Cover2 1.00 0.99 1.00 1.00 0.99 0.05 1.00 1.00 0.99 1.00 1.00 0.99 0.06 1.00

OS Cover1 1.00 1.00 1.00 1.00 1.00 0.64 1.00 1.00 1.00 1.00 1.00 1.00 0.64 1.00

QALYs Mean 90.46 91.43 92.35 96.35 88.36 66.26 91.37 96.19 94.98 99.81 108.29 91.29 66.87 95.74

QALYs Bias -0.09 0.88 1.80 5.80 -2.19 -24.29 0.82 5.65 4.44 9.26 17.74 0.74 -23.68 5.19

QALYs MC SE 0.25 0.23 0.28 0.45 0.23 0.15 0.27 0.76 0.63 0.79 0.91 0.66 0.15 0.37

QALYs Rel Bias 0.00-                   0.01             0.02                 0.06                   0.02-             0.27-                0.01                  0.06                   0.05               0.10                 0.20                   0.01               0.26-                0.06                  

QALYs empSE 7.80 7.23 8.55 13.75 7.23 4.49 8.31 23.35 19.50 24.45 28.08 20.46 4.65 11.24

QALYs MC SE 0.18 0.17 0.20 0.32 0.17 0.10 0.19 0.54 0.45 0.56 0.64 0.47 0.11 0.26

QALYs MSE 60.77 53.06 76.30 222.58 57.07 610.28 69.69 576.67 399.50 682.83 1102.50 418.76 582.18 153.14

QALYs MC SE 2.10 1.97 3.24 14.52 1.90 7.03 2.46 126.12 102.95 123.20 140.51 103.79 7.08 11.58

QALYs Rel P 0.00% 16.20% -16.82% -67.85% 16.22% 201.47% -11.97% 0.00% 43.43% -8.76% -30.83% 30.27% 2426.91% 331.70%

QALYs ModelSE 28.74 19.16 26.86 35.58 20.82 5.62 23.53 28.74 19.16 26.86 35.58 20.82 5.62 23.53

QALYs Cover2 1.00 0.99 1.00 1.00 0.98 0.02 1.00 1.00 1.00 1.00 1.00 0.98 0.03 1.00

QALYs Cover1 1.00 1.00 1.00 1.00 1.00 0.56 1.00 1.00 1.00 1.00 1.00 1.00 0.56 1.00
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Table 51 : Result for simulated scenario 29 

 

Scenario29 Deterministic Probabilistic

PSM STM STM - Log STM - Time MSM Li's model Fu's model PSM STM STM - Log STM - Time MSM Li's model Fu's model

PFS Mean 53.55 57.11 57.11 57.05 50.48 45.26 48.12 53.69 57.73 57.73 57.67 50.36 45.36 48.20

PFS Bias -2.39 1.17 1.17 1.11 -5.46 -10.68 -7.82 -2.26 1.79 1.79 1.73 -5.58 -10.58 -7.74

PFS MC SE 0.12 0.18 0.18 0.18 0.14 0.09 0.11 0.12 0.19 0.19 0.19 0.14 0.09 0.11

PFS Rel Bias -4.3% 2.1% 2.1% 2.0% -9.8% -19.1% -14.0% -4.0% 3.2% 3.2% 3.1% -10.0% -18.9% -13.8%

PFS empSE 3.82 5.57 5.57 5.62 4.29 2.83 3.35 3.81 5.74 5.75 5.79 4.28 2.86 3.37

PFS MC SE 0.09 0.13 0.13 0.13 0.10 0.06 0.08 0.09 0.13 0.13 0.13 0.10 0.07 0.08

PFS MSE 20.27 32.37 32.38 32.79 48.19 122.17 72.43 19.58 36.15 36.17 36.53 49.45 120.07 71.26

PFS MC SE 0.84 1.53 1.53 1.55 1.46 1.94 1.69 0.82 1.74 1.74 1.76 1.50 1.94 1.68

PFS Rel P 0.00% -53.09% -53.11% -53.90% -20.82% 81.75% 29.38% 0.00% -56.03% -56.07% -56.80% -20.81% 77.28% 27.74%

PFS ModelSE 3.93 5.29 5.29 5.28 4.28 2.96 3.59 3.93 5.29 5.29 5.28 4.28 2.96 3.59

PFS Cover2 0.86 0.93 0.93 0.92 0.60 0.08 0.40 0.86 0.92 0.92 0.91 0.59 0.09 0.41

PFS Cover1 0.99 1.00 1.00 1.00 0.93 0.58 0.91 0.99 1.00 1.00 1.00 0.93 0.58 0.91

OS Mean 91.34 95.80 96.20 99.69 91.37 76.23 92.87 92.36 98.64 101.28 108.51 92.57 76.57 94.32

OS Bias -3.55 0.91 1.30 4.79 -3.52 -18.66 -2.02 -2.53 3.75 6.39 13.62 -2.32 -18.32 -0.57

OS MC SE 0.24 0.24 0.27 0.38 0.23 0.13 0.24 0.28 0.69 0.86 0.75 0.57 0.13 0.26

OS Rel Bias 0.04-                   0.01             0.01                 0.05                   0.04-             0.20-                0.02-                  0.03-                   0.04               0.07                 0.14                   0.02-               0.19-                0.01-                  

OS empSE 7.25 7.29 8.35 11.76 7.12 4.10 7.40 8.69 21.39 26.36 23.15 17.53 4.15 8.09

OS MC SE 0.17 0.17 0.19 0.27 0.16 0.09 0.17 0.20 0.49 0.61 0.53 0.40 0.10 0.19

OS MSE 65.12 53.87 71.42 161.23 62.98 364.88 58.79 81.89 471.08 734.89 720.75 312.47 352.79 65.77

OS MC SE 0.17 0.17 0.19 0.27 0.16 0.09 0.17 10.80 163.72 183.60 141.45 148.14 4.91 4.04

OS Rel P 0.00% -1.04% -24.71% -62.03% 3.75% 213.28% -4.03% 0.00% -83.48% -89.12% -85.90% -75.42% 339.24% 15.34%

OS ModelSE 13.21 26.00 32.66 33.78 19.02 4.94 12.58 13.21 26.00 32.66 33.78 19.02 4.94 12.58

OS Cover2 0.96 0.97 0.97 1.00 0.88 0.05 0.99 0.97 0.97 0.98 1.00 0.88 0.06 0.99

OS Cover1 1.00 1.00 1.00 1.00 1.00 0.59 1.00 1.00 1.00 1.00 1.00 1.00 0.59 1.00

QALYs Mean 61.73 65.03 65.23 66.96 60.83 51.69 60.87 62.29 66.64 67.96 71.56 61.40 51.90 61.62

QALYs Bias -2.49 0.80 1.00 2.73 -3.40 -12.53 -3.36 -1.94 2.41 3.73 7.33 -2.83 -12.33 -2.61

QALYs MC SE 0.13 0.15 0.17 0.21 0.14 0.09 0.14 0.16 0.36 0.44 0.39 0.30 0.09 0.15

QALYs Rel Bias 0.04-                   0.01             0.02                 0.04                   0.05-             0.20-                0.05-                  0.03-                   0.04               0.06                 0.11                   0.04-               0.19-                0.04-                  

QALYs empSE 4.13 4.72 5.14 6.51 4.24 2.66 4.19 4.82 11.19 13.63 11.96 9.11 2.69 4.52

QALYs MC SE 0.09 0.11 0.12 0.15 0.10 0.06 0.10 0.11 0.26 0.31 0.27 0.21 0.06 0.10

QALYs MSE 23.27 22.86 27.35 49.75 29.51 164.20 28.83 26.97 130.90 199.46 196.69 90.95 159.36 27.22

QALYs MC SE 0.78 0.90 1.01 2.53 1.01 2.16 0.98 2.61 41.80 47.06 35.54 36.64 2.14 1.15

QALYs Rel P 0.00% -23.26% -35.31% -59.71% -5.13% 140.38% -2.88% 0.00% -81.46% -87.50% -83.78% -72.03% 219.72% 13.64%

QALYs ModelSE 6.96 13.35 16.61 17.20 9.92 3.12 6.92 6.96 13.35 16.61 17.20 9.92 3.12 6.92

QALYs Cover2 0.94 0.97 0.98 1.00 0.82 0.03 0.94 0.94 0.97 0.98 1.00 0.81 0.03 0.95

QALYs Cover1 1.00 1.00 1.00 1.00 1.00 0.51 1.00 1.00 1.00 1.00 1.00 1.00 0.51 1.00
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Table 52 : Result for simulated scenario 30 

Scenario30 Deterministic Probabilistic

PSM STM STM - Log STM - Time MSM Li's model Fu's model PSM STM STM - Log STM - Time MSM Li's model Fu's model

PFS Mean 52.16 57.07 57.08 56.94 50.13 45.70 47.53 52.16 57.68 57.70 57.55 50.03 45.80 47.76

PFS Bias -3.77 1.14 1.15 1.01 -5.80 -10.22 -8.40 -3.76 1.76 1.77 1.62 -5.90 -10.13 -8.17

PFS MC SE 0.12 0.17 0.17 0.18 0.14 0.09 0.10 0.12 0.18 0.18 0.18 0.13 0.09 0.10

PFS Rel Bias -6.7% 2.0% 2.1% 1.8% -10.4% -18.3% -15.0% -6.7% 3.1% 3.2% 2.9% -10.5% -18.1% -14.6%

PFS empSE 3.67 5.36 5.33 5.43 4.17 2.71 3.02 3.63 5.53 5.50 5.61 4.14 2.74 3.06

PFS MC SE 0.08 0.12 0.12 0.12 0.10 0.06 0.07 0.08 0.13 0.13 0.13 0.10 0.06 0.07

PFS MSE 27.65 30.02 29.71 30.52 50.99 111.88 79.63 27.32 33.64 33.33 34.04 51.89 110.00 76.10

PFS MC SE 0.92 1.33 1.32 1.35 1.52 1.80 1.63 0.90 1.52 1.51 1.54 1.54 1.80 1.61

PFS Rel P 0.00% -53.27% -52.72% -54.50% -22.72% 82.77% 47.06% 0.00% -56.96% -56.45% -58.11% -23.26% 75.79% 40.21%

PFS ModelSE 3.54 5.24 5.25 5.23 4.05 3.01 3.43 3.54 5.24 5.25 5.23 4.05 3.01 3.43

PFS Cover2 0.72 0.94 0.94 0.93 0.57 0.08 0.31 0.72 0.93 0.93 0.92 0.58 0.09 0.32

PFS Cover1 0.95 1.00 1.00 1.00 0.92 0.63 0.89 0.95 1.00 1.00 1.00 0.92 0.63 0.89

OS Mean 71.18 75.77 76.09 77.53 69.67 62.21 72.17 71.54 77.12 78.57 81.71 70.77 62.36 72.93

OS Bias -4.22 0.37 0.70 2.14 -5.72 -13.19 -3.23 -3.86 1.73 3.17 6.31 -4.63 -13.04 -2.47

OS MC SE 0.21 0.19 0.19 0.24 0.16 0.10 0.22 0.22 0.36 0.48 0.43 0.35 0.10 0.22

OS Rel Bias 0.06-                   0.00             0.01                 0.03                   0.08-             0.17-                0.04-                  0.05-                   0.02               0.04                 0.08                   0.06-               0.17-                0.03-                  

OS empSE 6.57 5.76 5.95 7.38 4.85 3.03 6.64 6.81 11.06 14.84 13.36 10.67 3.06 6.85

OS MC SE 0.15 0.13 0.14 0.17 0.11 0.07 0.15 0.16 0.25 0.34 0.31 0.24 0.07 0.16

OS MSE 60.88 33.28 35.91 58.89 56.21 183.08 54.49 61.20 125.08 230.07 218.11 135.08 179.30 52.99

OS MC SE 0.15 0.13 0.14 0.17 0.11 0.07 0.15 1.71 42.27 69.11 58.45 41.52 2.59 1.60

OS Rel P 0.00% 30.00% 21.63% -20.71% 83.48% 369.37% -2.26% 0.00% -62.07% -78.95% -74.02% -59.25% 395.71% -1.28%

OS ModelSE 5.89 17.41 23.71 21.05 17.18 3.53 6.28 5.89 17.41 23.71 21.05 17.18 3.53 6.28

OS Cover2 0.73 0.93 0.96 0.99 0.67 0.05 0.80 0.74 0.93 0.95 0.99 0.68 0.06 0.83

OS Cover1 0.98 0.99 1.00 1.00 0.98 0.55 1.00 0.98 0.99 1.00 1.00 0.98 0.55 1.00

QALYs Mean 51.23 55.00 55.17 55.85 49.88 44.81 50.34 51.42 55.87 56.59 58.12 50.39 44.92 50.79

QALYs Bias -3.24 0.53 0.69 1.37 -4.60 -9.66 -4.13 -3.06 1.39 2.12 3.64 -4.08 -9.56 -3.68

QALYs MC SE 0.13 0.14 0.14 0.16 0.11 0.07 0.13 0.14 0.21 0.26 0.24 0.19 0.07 0.13

QALYs Rel Bias 0.06-                   0.01             0.01                 0.03                   0.08-             0.18-                0.08-                  0.06-                   0.03               0.04                 0.07                   0.07-               0.18-                0.07-                  

QALYs empSE 4.07 4.30 4.33 4.83 3.38 2.24 3.86 4.21 6.45 8.04 7.43 5.77 2.26 3.97

QALYs MC SE 0.09 0.10 0.10 0.11 0.08 0.05 0.09 0.10 0.15 0.18 0.17 0.13 0.05 0.09

QALYs MSE 27.05 18.74 19.18 25.16 32.56 98.34 31.95 27.04 43.55 69.05 68.47 49.92 96.42 29.31

QALYs MC SE 0.81 0.76 0.77 1.07 0.95 1.40 0.98 0.80 10.87 17.24 14.60 9.70 1.40 0.91

QALYs Rel P 0.00% -10.39% -11.53% -28.94% 45.14% 230.56% 11.22% 0.00% -57.51% -72.61% -67.96% -46.81% 246.83% 12.31%

QALYs ModelSE 3.36 9.25 12.26 11.01 8.96 2.59 3.96 3.36 9.25 12.26 11.01 8.96 2.59 3.96

QALYs Cover2 0.67 0.93 0.95 0.98 0.64 0.05 0.69 0.67 0.93 0.95 0.99 0.65 0.06 0.71

QALYs Cover1 0.91 1.00 1.00 1.00 0.96 0.56 1.00 0.91 1.00 1.00 1.00 0.96 0.56 1.00
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Table 53 : Result for simulated scenario 31 

Scenario31 Deterministic Probabilistic

PSM STM STM - Log STM - Time MSM Li's model Fu's model PSM STM STM - Log STM - Time MSM Li's model Fu's model

PFS Mean 66.45 66.47 66.36 66.37 63.99 58.29 60.76 67.01 67.12 67.01 67.02 63.41 58.41 61.54

PFS Bias -2.87 -2.85 -2.96 -2.95 -5.33 -11.03 -8.56 -2.31 -2.20 -2.31 -2.30 -5.91 -10.91 -7.78

PFS MC SE 0.21 0.21 0.21 0.21 0.20 0.13 0.17 0.21 0.22 0.22 0.22 0.24 0.13 0.17

PFS Rel Bias -4.1% -4.1% -4.3% -4.3% -7.7% -15.9% -12.3% -3.3% -3.2% -3.3% -3.3% -8.5% -15.7% -11.2%

PFS empSE 6.44 6.45 6.45 6.45 6.27 3.87 5.23 6.61 6.71 6.70 6.69 7.31 3.89 5.39

PFS MC SE 0.15 0.15 0.15 0.15 0.14 0.09 0.12 0.15 0.15 0.15 0.15 0.17 0.09 0.12

PFS MSE 49.74 49.75 50.31 50.22 67.62 136.53 100.58 49.01 49.77 50.17 50.04 88.34 134.08 89.50

PFS MC SE 1.98 2.00 2.02 2.02 2.32 2.85 2.87 2.01 2.09 2.11 2.11 3.87 2.84 2.70

PFS Rel P 0.00% -0.31% -0.18% -0.08% 5.76% 177.41% 51.56% 0.00% -2.80% -2.61% -2.47% -18.32% 188.26% 50.54%

PFS ModelSE 6.06 6.14 6.12 6.13 7.94 3.88 4.88 6.06 6.14 6.12 6.13 7.94 3.88 4.88

PFS Cover2 0.83 0.83 0.82 0.83 0.72 0.23 0.50 0.84 0.84 0.83 0.84 0.72 0.24 0.54

PFS Cover1 0.98 0.98 0.98 0.98 0.94 0.73 0.90 0.98 0.98 0.98 0.98 0.94 0.73 0.90

OS Mean 322.77 327.17 327.74 328.98 323.12 271.67 320.66 325.01 325.73 333.83 335.38 323.10 273.96 328.26

OS Bias -4.72 -0.31 0.25 1.50 -4.36 -55.81 -6.83 -2.47 -1.76 6.35 7.90 -4.38 -53.52 0.78

OS MC SE 0.86 0.88 0.91 1.06 0.87 0.77 0.81 0.87 0.94 1.47 1.46 1.03 0.79 0.79

OS Rel Bias 0.01-                   0.00-             0.00                 0.00                   0.01-             0.17-                0.02-                  0.01-                   0.01-               0.02                 0.02                   0.01-               0.16-                0.00                  

OS empSE 26.42 27.03 28.18 32.74 26.73 23.74 24.91 26.76 28.89 45.43 44.95 31.66 24.23 24.43

OS MC SE 0.61 0.62 0.65 0.75 0.61 0.54 0.57 0.61 0.66 1.04 1.03 0.73 0.56 0.56

OS MSE 719.42 729.81 793.62 1073.11 732.59 3677.87 666.40 721.55 836.90 2101.93 2080.66 1020.35 3451.06 596.98

OS MC SE 0.61 0.62 0.65 0.75 0.61 0.54 0.57 23.32 41.92 406.72 290.69 55.99 83.57 21.85

OS Rel P 0.00% -4.46% -12.15% -34.90% -2.29% 23.87% 12.48% 0.00% -14.20% -65.30% -64.55% -28.54% 21.97% 19.96%

OS ModelSE 43.51 40.72 50.12 58.49 47.10 28.24 45.46 43.51 40.72 50.12 58.49 47.10 28.24 45.46

OS Cover2 1.00 0.98 0.98 0.98 0.97 0.47 1.00 1.00 0.98 0.99 0.99 0.98 0.49 1.00

OS Cover1 1.00 1.00 1.00 1.00 1.00 0.94 1.00 1.00 1.00 1.00 1.00 1.00 0.94 1.00

QALYs Mean 181.32 183.53 183.78 184.40 180.76 153.32 178.56 182.61 183.00 187.02 187.80 180.57 154.51 182.59

QALYs Bias -3.22 -1.01 -0.76 -0.14 -3.78 -31.21 -5.98 -1.93 -1.54 2.48 3.26 -3.96 -30.03 -1.94

QALYs MC SE 0.43 0.45 0.47 0.54 0.45 0.40 0.41 0.44 0.48 0.75 0.74 0.54 0.41 0.41

QALYs Rel Bias 0.02-                   0.01-             0.00-                 0.00-                   0.02-             0.17-                0.03-                  0.01-                   0.01-               0.01                 0.02                   0.02-               0.16-                0.01-                  

QALYs empSE 13.39 13.84 14.41 16.67 13.75 12.23 12.72 13.59 14.83 22.99 22.79 16.64 12.48 12.55

QALYs MC SE 0.31 0.32 0.33 0.38 0.32 0.28 0.29 0.31 0.34 0.53 0.52 0.38 0.29 0.29

QALYs MSE 189.59 192.26 208.10 277.72 203.04 1123.84 197.39 188.30 222.00 534.15 529.41 292.24 1057.62 161.02

QALYs MC SE 5.98 6.67 7.62 10.39 7.54 24.63 7.31 6.24 11.35 101.59 72.60 17.54 24.23 6.03

QALYs Rel P 0.00% -6.28% -13.64% -35.46% -5.04% 19.87% 10.88% 0.00% -15.96% -65.04% -64.42% -33.25% 18.56% 17.39%

QALYs ModelSE 21.88 20.63 25.28 29.46 24.84 14.49 23.11 21.88 20.63 25.28 29.46 24.84 14.49 23.11

QALYs Cover2 1.00 0.98 0.97 0.98 0.96 0.41 1.00 1.00 0.98 0.98 0.98 0.97 0.44 1.00

QALYs Cover1 1.00 1.00 1.00 1.00 1.00 0.92 1.00 1.00 1.00 1.00 1.00 1.00 0.92 1.00
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Table 54 : Result for simulated scenario 32 

Scenario32 Deterministic Probabilistic

PSM STM STM - Log STM - Time MSM Li's model Fu's model PSM STM STM - Log STM - Time MSM Li's model Fu's model

PFS Mean 65.39 66.15 66.17 66.02 63.16 57.87 59.01 65.84 66.79 66.81 66.65 63.17 57.97 59.30

PFS Bias -3.74 -2.99 -2.97 -3.11 -5.98 -11.27 -10.13 -3.29 -2.35 -2.33 -2.48 -5.97 -11.16 -9.83

PFS MC SE 0.20 0.21 0.21 0.20 0.20 0.12 0.15 0.20 0.21 0.21 0.21 0.22 0.12 0.15

PFS Rel Bias -5.4% -4.3% -4.3% -4.5% -8.6% -16.3% -14.7% -4.8% -3.4% -3.4% -3.6% -8.6% -16.1% -14.2%

PFS empSE 6.02 6.33 6.36 6.32 6.22 3.81 4.67 6.14 6.57 6.61 6.56 6.79 3.83 4.72

PFS MC SE 0.14 0.15 0.15 0.14 0.14 0.09 0.11 0.14 0.15 0.15 0.15 0.16 0.09 0.11

PFS MSE 50.23 48.89 49.19 49.54 74.36 141.44 124.36 48.43 48.66 49.07 49.18 81.61 139.25 119.00

PFS MC SE 1.92 1.95 1.97 1.96 2.53 2.84 3.07 1.91 2.03 2.06 2.06 3.09 2.83 3.02

PFS Rel P 0.00% -9.41% -10.33% -9.10% -6.29% 150.06% 66.30% 0.00% -12.85% -13.86% -12.59% -18.27% 156.19% 68.66%

PFS ModelSE 5.56 6.07 6.09 6.05 7.48 3.81 4.37 5.56 6.07 6.09 6.05 7.48 3.81 4.37

PFS Cover2 0.80 0.83 0.83 0.82 0.68 0.20 0.37 0.81 0.84 0.84 0.83 0.70 0.20 0.38

PFS Cover1 0.98 0.98 0.98 0.98 0.94 0.70 0.83 0.98 0.98 0.98 0.98 0.94 0.70 0.83

OS Mean 195.28 188.75 190.07 193.56 187.21 165.72 192.88 196.23 188.93 192.60 199.92 186.33 166.35 194.92

OS Bias 4.41 -2.12 -0.80 2.69 -3.66 -25.15 2.01 5.36 -1.93 1.73 9.05 -4.54 -24.52 4.05

OS MC SE 0.60 0.43 0.47 0.59 0.43 0.31 0.55 0.62 0.47 0.73 1.02 0.55 0.32 0.56

OS Rel Bias 0.02                   0.01-             0.00-                 0.01                   0.02-             0.13-                0.01                  0.03                   0.01-               0.01                 0.05                   0.02-               0.13-                0.02                  

OS empSE 18.56 13.31 14.43 18.18 13.35 9.66 17.03 18.98 14.46 22.55 31.34 17.08 9.81 17.15

OS MC SE 0.43 0.31 0.33 0.42 0.31 0.22 0.39 0.44 0.33 0.52 0.72 0.39 0.23 0.39

OS MSE 363.59 181.53 208.62 337.53 191.51 725.65 293.91 388.54 212.60 510.80 1063.03 312.19 697.17 310.18

OS MC SE 0.43 0.31 0.33 0.42 0.31 0.22 0.39 13.64 15.67 129.99 198.58 42.39 15.69 10.93

OS Rel P 0.00% 94.37% 65.45% 4.17% 93.17% 268.96% 18.72% 0.00% 72.26% -29.15% -63.33% 23.40% 274.55% 22.46%

OS ModelSE 17.95 17.00 26.00 38.70 21.60 11.50 18.15 17.95 17.00 26.00 38.70 21.60 11.50 18.15

OS Cover2 0.98 0.95 0.96 0.97 0.94 0.40 0.98 0.98 0.95 0.96 0.98 0.94 0.43 0.99

OS Cover1 1.00 1.00 1.00 1.00 1.00 0.90 1.00 1.00 1.00 1.00 1.00 1.00 0.90 1.00

QALYs Mean 117.26 114.22 114.89 116.58 112.55 100.22 114.14 117.87 114.50 116.34 119.96 112.11 100.57 115.25

QALYs Bias 1.08 -1.96 -1.29 0.41 -3.62 -15.95 -2.03 1.69 -1.67 0.17 3.78 -4.06 -15.61 -0.93

QALYs MC SE 0.31 0.24 0.26 0.31 0.24 0.17 0.29 0.32 0.26 0.39 0.52 0.31 0.18 0.29

QALYs Rel Bias 0.01                   0.02-             0.01-                 0.00                   0.03-             0.14-                0.02-                  0.01                   0.01-               0.00                 0.03                   0.03-               0.13-                0.01-                  

QALYs empSE 9.61 7.50 7.94 9.63 7.48 5.35 8.83 9.86 8.06 11.88 16.06 9.53 5.42 8.91

QALYs MC SE 0.22 0.17 0.18 0.22 0.17 0.12 0.20 0.23 0.19 0.27 0.37 0.22 0.12 0.20

QALYs MSE 93.50 60.02 64.71 92.90 68.97 283.12 81.94 99.94 67.72 141.01 271.89 107.19 272.97 80.15

QALYs MC SE 3.16 2.35 2.41 3.41 2.64 5.57 2.60 3.49 4.17 33.18 49.12 11.73 5.52 2.57

QALYs Rel P 0.00% 64.30% 46.44% -0.44% 65.30% 222.87% 18.64% 0.00% 49.52% -31.15% -62.31% 7.03% 230.35% 22.43%

QALYs ModelSE 9.21 9.19 13.49 19.70 12.32 6.30 9.65 9.21 9.19 13.49 19.70 12.32 6.30 9.65

QALYs Cover2 0.95 0.93 0.94 0.96 0.91 0.30 0.93 0.96 0.93 0.95 0.97 0.91 0.31 0.95

QALYs Cover1 1.00 1.00 1.00 1.00 0.99 0.85 1.00 1.00 1.00 1.00 1.00 0.99 0.85 1.00
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Table 55 : Result for simulated scenario 33 

Scenario33 Deterministic Probabilistic

PSM STM STM - Log STM - Time MSM Li's model Fu's model PSM STM STM - Log STM - Time MSM Li's model Fu's model

PFS Mean 64.34 65.96 65.96 65.84 62.50 57.71 57.49 64.66 66.58 66.57 66.46 62.71 57.81 57.76

PFS Bias -4.75 -3.13 -3.13 -3.24 -6.59 -11.38 -11.60 -4.43 -2.51 -2.51 -2.63 -6.38 -11.28 -11.33

PFS MC SE 0.18 0.21 0.21 0.21 0.20 0.12 0.14 0.18 0.21 0.21 0.22 0.22 0.12 0.14

PFS Rel Bias -6.9% -4.5% -4.5% -4.7% -9.5% -16.5% -16.8% -6.4% -3.6% -3.6% -3.8% -9.2% -16.3% -16.4%

PFS empSE 5.60 6.34 6.34 6.38 6.16 3.69 4.18 5.62 6.59 6.59 6.63 6.76 3.72 4.22

PFS MC SE 0.13 0.15 0.15 0.15 0.14 0.08 0.10 0.13 0.15 0.15 0.15 0.16 0.09 0.10

PFS MSE 53.88 49.99 49.98 51.15 81.30 143.18 151.99 51.13 49.70 49.72 50.79 86.29 141.10 146.02

PFS MC SE 1.93 1.95 1.98 2.04 2.63 2.77 3.16 1.87 2.02 2.08 2.14 3.43 2.77 3.12

PFS Rel P 0.00% -21.97% -21.92% -22.81% -17.29% 129.95% 80.08% 0.00% -27.29% -27.30% -28.12% -30.85% 128.33% 77.75%

PFS ModelSE 5.09 6.01 6.01 5.99 7.23 3.78 4.04 5.09 6.01 6.01 5.99 7.23 3.78 4.04

PFS Cover2 0.74 0.82 0.82 0.81 0.64 0.18 0.22 0.75 0.83 0.83 0.82 0.67 0.19 0.23

PFS Cover1 0.96 0.98 0.98 0.98 0.92 0.69 0.73 0.96 0.98 0.98 0.98 0.92 0.69 0.73

OS Mean 134.15 129.28 129.85 131.60 126.24 116.14 133.03 134.81 130.44 131.09 133.98 126.73 116.39 133.96

OS Bias 1.24 -3.62 -3.05 -1.30 -6.67 -16.76 0.12 1.91 -2.46 -1.82 1.07 -6.18 -16.52 1.05

OS MC SE 0.40 0.28 0.29 0.36 0.28 0.18 0.38 0.41 0.53 0.44 0.40 0.52 0.18 0.39

OS Rel Bias 0.01                   0.03-             0.02-                 0.01-                   0.05-             0.13-                0.00                  0.01                   0.02-               0.01-                 0.01                   0.05-               0.12-                0.01                  

OS empSE 12.20 8.78 9.08 10.98 8.61 5.40 11.60 12.58 16.34 13.47 12.35 16.10 5.44 11.87

OS MC SE 0.28 0.20 0.21 0.25 0.20 0.12 0.27 0.29 0.38 0.31 0.28 0.37 0.12 0.27

OS MSE 150.29 90.20 91.61 122.18 118.46 310.05 134.43 161.74 272.74 184.63 153.56 296.94 302.31 141.81

OS MC SE 0.28 0.20 0.21 0.25 0.20 0.12 0.27 5.16 91.30 61.66 13.05 83.14 5.82 4.63

OS Rel P 0.00% 93.01% 80.77% 23.47% 101.05% 411.07% 10.66% 0.00% -40.71% -12.80% 3.74% -38.91% 435.59% 12.38%

OS ModelSE 10.05 20.36 16.95 15.91 20.46 6.25 10.10 10.05 20.36 16.95 15.91 20.46 6.25 10.10

OS Cover2 0.84 0.86 0.89 0.92 0.79 0.26 0.85 0.84 0.87 0.90 0.94 0.81 0.27 0.86

OS Cover1 0.99 0.99 0.99 1.00 0.99 0.78 1.00 0.99 0.99 0.99 1.00 0.99 0.78 1.00

QALYs Mean 86.38 84.43 84.71 85.55 81.87 75.38 83.76 86.81 85.19 85.51 86.93 82.18 75.54 84.31

QALYs Bias -0.80 -2.75 -2.47 -1.63 -5.31 -11.80 -3.42 -0.37 -1.98 -1.66 -0.25 -5.00 -11.64 -2.87

QALYs MC SE 0.22 0.19 0.19 0.21 0.18 0.11 0.20 0.23 0.30 0.25 0.24 0.30 0.11 0.21

QALYs Rel Bias 0.01-                   0.03-             0.03-                 0.02-                   0.06-             0.14-                0.04-                  0.00-                   0.02-               0.02-                 0.00-                   0.06-               0.13-                0.03-                  

QALYs empSE 6.82 5.78 5.84 6.54 5.61 3.45 6.25 7.04 9.14 7.83 7.25 9.14 3.48 6.41

QALYs MC SE 0.16 0.13 0.13 0.15 0.13 0.08 0.14 0.16 0.21 0.18 0.17 0.21 0.08 0.15

QALYs MSE 47.06 40.94 40.20 45.40 59.63 151.02 50.72 49.66 87.34 63.99 52.53 108.54 147.62 49.24

QALYs MC SE 1.53 1.56 1.50 1.67 2.04 2.64 1.83 1.60 23.35 16.36 3.56 21.15 2.63 1.74

QALYs Rel P 0.00% 39.09% 36.06% 8.57% 47.68% 290.35% 18.90% 0.00% -40.62% -19.11% -5.60% -40.71% 310.32% 20.80%

QALYs ModelSE 5.33 10.79 9.21 8.77 11.45 3.94 5.80 5.33 10.79 9.21 8.77 11.45 3.94 5.80

QALYs Cover2 0.79 0.84 0.86 0.91 0.74 0.18 0.77 0.79 0.84 0.87 0.93 0.76 0.19 0.79

QALYs Cover1 0.94 0.99 0.99 1.00 0.97 0.72 0.99 0.94 0.99 0.99 1.00 0.97 0.72 0.99
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Table 56 : Result for simulated scenario 34 

Scenario34 Deterministic Probabilistic

PSM STM STM - Log STM - Time MSM Li's model Fu's model PSM STM STM - Log STM - Time MSM Li's model Fu's model

PFS Mean 58.99 59.07 59.00 58.98 54.19 50.05 53.11 59.48 59.60 59.52 59.51 54.01 50.13 53.34

PFS Bias 2.87 2.95 2.88 2.86 -1.93 -6.07 -3.02 3.36 3.47 3.40 3.38 -2.12 -5.99 -2.79

PFS MC SE 0.17 0.17 0.17 0.17 0.15 0.10 0.13 0.17 0.17 0.17 0.17 0.15 0.10 0.13

PFS Rel Bias 5.1% 5.2% 5.1% 5.1% -3.4% -10.8% -5.4% 6.0% 6.2% 6.1% 6.0% -3.8% -10.7% -5.0%

PFS empSE 5.17 5.16 5.18 5.21 4.68 3.09 4.05 5.27 5.28 5.29 5.32 4.73 3.11 4.08

PFS MC SE 0.12 0.12 0.12 0.12 0.11 0.07 0.09 0.12 0.12 0.12 0.12 0.11 0.07 0.09

PFS MSE 34.93 35.33 35.08 35.23 25.58 46.39 25.49 38.97 39.87 39.56 39.71 26.86 45.55 24.39

PFS MC SE 1.69 1.71 1.72 1.73 1.05 1.27 0.98 1.86 1.89 1.91 1.92 1.11 1.26 0.96

PFS Rel P 0.00% 0.27% -0.30% -1.28% 22.30% 180.22% 63.20% 0.00% -0.47% -1.09% -2.07% 23.70% 186.94% 66.70%

PFS ModelSE 4.82 4.83 4.82 4.82 4.39 3.09 3.85 4.82 4.83 4.82 4.82 4.39 3.09 3.85

PFS Cover2 0.91 0.91 0.92 0.91 0.84 0.49 0.79 0.90 0.90 0.90 0.90 0.83 0.50 0.81

PFS Cover1 0.99 0.99 0.99 0.99 0.98 0.90 0.99 0.99 0.99 0.99 0.99 0.98 0.90 0.99

OS Mean 302.03 297.76 298.55 299.79 296.60 229.84 296.06 304.98 302.84 310.51 314.28 302.78 232.81 301.44

OS Bias 3.88 -0.40 0.40 1.64 -1.55 -68.31 -2.10 6.82 4.68 12.35 16.13 4.63 -65.35 3.29

OS MC SE 0.88 0.90 0.99 1.13 0.91 0.77 0.86 0.99 1.36 1.92 1.83 1.40 0.80 0.87

OS Rel Bias 0.01                   0.00-             0.00                 0.01                   0.01-             0.23-                0.01-                  0.02                   0.02               0.04                 0.05                   0.02               0.22-                0.01                  

OS empSE 27.26 27.83 30.54 34.92 28.14 23.80 26.58 30.45 41.86 59.09 56.40 43.29 24.52 26.91

OS MC SE 0.63 0.64 0.70 0.80 0.65 0.55 0.61 0.70 0.96 1.36 1.29 0.99 0.56 0.62

OS MSE 757.10 774.12 931.90 1220.54 793.49 5232.17 710.14 972.95 1772.55 3640.09 3437.25 1893.85 4871.22 734.23

OS MC SE 0.63 0.64 0.70 0.80 0.65 0.55 0.61 105.39 330.06 637.20 467.19 344.45 100.49 29.73

OS Rel P 0.00% -4.12% -20.36% -39.07% -6.19% 31.17% 5.15% 0.00% -47.08% -73.44% -70.84% -50.52% 54.26% 28.06%

OS ModelSE 43.60 48.12 57.29 65.15 48.49 28.63 40.74 43.60 48.12 57.29 65.15 48.49 28.63 40.74

OS Cover2 1.00 0.99 0.98 0.99 0.99 0.34 0.99 1.00 0.99 0.98 0.99 0.98 0.37 0.99

OS Cover1 1.00 1.00 1.00 1.00 1.00 0.89 1.00 1.00 1.00 1.00 1.00 1.00 0.89 1.00

QALYs Mean 168.71 166.60 166.98 167.59 164.56 129.94 163.96 170.33 169.30 173.11 174.99 167.59 131.44 166.72

QALYs Bias 2.80 0.69 1.06 1.68 -1.36 -35.98 -1.95 4.42 3.38 7.20 9.08 1.68 -34.47 0.81

QALYs MC SE 0.45 0.46 0.50 0.57 0.46 0.39 0.44 0.50 0.68 0.96 0.92 0.71 0.40 0.45

QALYs Rel Bias 0.02                   0.00             0.01                 0.01                   0.01-             0.22-                0.01-                  0.03                   0.02               0.04                 0.05                   0.01               0.21-                0.00                  

QALYs empSE 13.87 14.07 15.49 17.67 14.30 12.12 13.57 15.48 20.99 29.62 28.30 21.75 12.48 13.73

QALYs MC SE 0.32 0.32 0.36 0.41 0.33 0.28 0.31 0.36 0.48 0.68 0.65 0.50 0.29 0.32

QALYs MSE 199.93 198.15 240.66 314.77 206.00 1441.00 187.67 258.93 451.73 928.42 882.67 475.42 1343.93 189.07

QALYs MC SE 7.15 7.08 8.57 12.58 7.33 27.57 6.45 27.78 82.55 160.53 117.95 84.67 27.09 7.39

QALYs Rel P 0.00% -2.82% -19.80% -38.42% -5.91% 30.99% 4.49% 0.00% -45.62% -72.69% -70.08% -49.34% 53.90% 27.06%

QALYs ModelSE 21.89 24.12 28.69 32.63 24.45 14.56 20.71 21.89 24.12 28.69 32.63 24.45 14.56 20.71

QALYs Cover2 1.00 0.99 0.99 0.99 0.99 0.31 0.98 1.00 1.00 0.99 0.99 0.99 0.35 0.99

QALYs Cover1 1.00 1.00 1.00 1.00 1.00 0.88 1.00 1.00 1.00 1.00 1.00 1.00 0.88 1.00
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Table 57 : Result for simulated scenario 35 

 

Scenario35 Deterministic Probabilistic

PSM STM STM - Log STM - Time MSM Li's model Fu's model PSM STM STM - Log STM - Time MSM Li's model Fu's model

PFS Mean 57.85 59.03 59.07 58.96 53.88 50.12 51.38 58.18 59.56 59.60 59.49 53.85 50.19 51.41

PFS Bias 1.81 2.99 3.03 2.92 -2.16 -5.93 -4.66 2.14 3.52 3.56 3.45 -2.19 -5.85 -4.63

PFS MC SE 0.15 0.17 0.17 0.17 0.15 0.10 0.12 0.15 0.17 0.17 0.17 0.15 0.10 0.12

PFS Rel Bias 3.2% 5.3% 5.4% 5.2% -3.9% -10.6% -8.3% 3.8% 6.3% 6.4% 6.1% -3.9% -10.4% -8.3%

PFS empSE 4.54 5.24 5.24 5.20 4.59 3.07 3.62 4.57 5.35 5.35 5.31 4.66 3.09 3.65

PFS MC SE 0.10 0.12 0.12 0.12 0.11 0.07 0.08 0.11 0.12 0.12 0.12 0.11 0.07 0.08

PFS MSE 23.89 36.39 36.67 35.57 25.68 44.56 34.81 25.47 40.95 41.27 40.03 26.50 43.76 34.77

PFS MC SE 1.16 1.79 1.80 1.75 1.03 1.25 1.16 1.24 1.97 1.98 1.93 1.08 1.24 1.15

PFS Rel P 0.00% -24.93% -24.99% -23.76% -1.96% 118.21% 57.50% 0.00% -26.86% -26.90% -25.74% -3.71% 119.29% 57.16%

PFS ModelSE 4.30 4.83 4.83 4.81 4.19 3.11 3.44 4.30 4.83 4.83 4.81 4.19 3.11 3.44

PFS Cover2 0.93 0.90 0.91 0.91 0.82 0.51 0.65 0.93 0.89 0.89 0.89 0.82 0.52 0.66

PFS Cover1 1.00 0.99 0.99 0.99 0.97 0.90 0.96 1.00 0.99 0.99 0.99 0.97 0.90 0.96

OS Mean 152.42 159.09 159.92 162.47 157.12 135.72 151.51 153.57 160.84 164.13 170.20 157.63 136.37 153.22

OS Bias -4.10 2.57 3.40 5.95 0.60 -20.80 -5.01 -2.95 4.32 7.61 13.68 1.11 -20.15 -3.30

OS MC SE 0.39 0.38 0.40 0.50 0.40 0.27 0.39 0.41 0.54 0.80 1.10 0.53 0.27 0.41

OS Rel Bias 0.03-                   0.02             0.02                 0.04                   0.00             0.13-                0.03-                  0.02-                   0.03               0.05                 0.09                   0.01               0.13-                0.02-                  

OS empSE 12.11 11.62 12.43 15.32 12.19 8.22 11.96 12.55 16.57 24.64 33.90 16.35 8.29 12.53

OS MC SE 0.28 0.27 0.29 0.35 0.28 0.19 0.27 0.29 0.38 0.57 0.78 0.38 0.19 0.29

OS MSE 163.31 141.47 165.86 269.75 148.76 499.98 168.04 165.94 292.81 664.12 1334.91 268.31 474.76 167.76

OS MC SE 0.28 0.27 0.29 0.35 0.28 0.19 0.27 6.27 89.60 183.60 321.51 73.96 10.93 5.71

OS Rel P 0.00% 8.60% -5.05% -37.49% -1.30% 116.93% 2.44% 0.00% -42.65% -74.07% -86.30% -41.13% 128.74% 0.21%

OS ModelSE 15.96 18.14 26.22 35.15 18.33 10.16 16.22 15.96 18.14 26.22 35.15 18.33 10.16 16.22

OS Cover2 0.97 0.98 0.98 0.99 0.97 0.45 0.95 0.97 0.98 0.99 0.99 0.96 0.47 0.96

OS Cover1 1.00 1.00 1.00 1.00 1.00 0.92 1.00 1.00 1.00 1.00 1.00 1.00 0.92 1.00

QALYs Mean 93.56 97.25 97.68 98.93 94.72 82.90 91.17 94.24 98.29 99.94 102.94 94.97 83.24 92.03

QALYs Bias -1.51 2.18 2.61 3.85 -0.35 -12.18 -3.90 -0.84 3.21 4.87 7.87 -0.10 -11.83 -3.04

QALYs MC SE 0.21 0.21 0.22 0.26 0.21 0.15 0.21 0.22 0.28 0.41 0.56 0.28 0.15 0.22

QALYs Rel Bias 0.02-                   0.02             0.03                 0.04                   0.00-             0.13-                0.04-                  0.01-                   0.03               0.05                 0.08                   0.00-               0.12-                0.03-                  

QALYs empSE 6.52 6.35 6.73 8.00 6.54 4.49 6.38 6.76 8.75 12.65 17.11 8.54 4.53 6.68

QALYs MC SE 0.15 0.15 0.15 0.18 0.15 0.10 0.15 0.16 0.20 0.29 0.39 0.20 0.10 0.15

QALYs MSE 44.73 45.01 52.07 78.75 42.91 168.37 55.84 46.31 86.81 183.53 354.45 72.81 160.46 53.77

QALYs MC SE 1.52 1.85 2.19 3.31 1.67 3.58 1.90 1.84 23.67 47.32 80.92 18.46 3.51 1.85

QALYs Rel P 0.00% 5.49% -6.17% -33.57% -0.78% 110.91% 4.53% 0.00% -40.36% -71.46% -84.41% -37.35% 122.43% 2.40%

QALYs ModelSE 8.25 9.40 13.35 17.77 9.57 5.50 8.54 8.25 9.40 13.35 17.77 9.57 5.50 8.54

QALYs Cover2 0.96 0.97 0.99 0.99 0.95 0.40 0.92 0.97 0.97 0.99 0.99 0.95 0.41 0.93

QALYs Cover1 1.00 1.00 1.00 1.00 1.00 0.90 1.00 1.00 1.00 1.00 1.00 1.00 0.90 1.00
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Table 58 : Result for simulated scenario 36 

Scenario36 Deterministic Probabilistic

PSM STM STM - Log STM - Time MSM Li's model Fu's model PSM STM STM - Log STM - Time MSM Li's model Fu's model

PFS Mean 55.46 58.99 58.92 58.90 53.63 49.96 49.81 55.63 59.52 59.45 59.42 53.62 50.03 49.86

PFS Bias -0.49 3.04 2.97 2.94 -2.32 -5.99 -6.14 -0.32 3.56 3.49 3.47 -2.33 -5.92 -6.09

PFS MC SE 0.13 0.17 0.17 0.17 0.15 0.10 0.11 0.13 0.17 0.17 0.17 0.15 0.10 0.11

PFS Rel Bias -0.9% 5.4% 5.3% 5.3% -4.1% -10.7% -11.0% -0.6% 6.4% 6.2% 6.2% -4.2% -10.6% -10.9%

PFS empSE 3.90 5.15 5.11 5.18 4.52 2.97 3.39 3.91 5.27 5.22 5.30 4.66 2.98 3.40

PFS MC SE 0.09 0.12 0.12 0.12 0.10 0.07 0.08 0.09 0.12 0.12 0.12 0.11 0.07 0.08

PFS MSE 15.44 35.78 34.89 35.48 25.78 44.72 49.19 15.37 40.43 39.44 40.03 27.11 43.92 48.69

PFS MC SE 0.68 1.66 1.61 1.66 1.00 1.23 1.39 0.68 1.85 1.79 1.85 1.07 1.22 1.39

PFS Rel P 0.00% -42.70% -41.67% -43.33% -25.50% 72.60% 32.44% 0.00% -44.94% -43.94% -45.53% -29.52% 71.74% 32.05%

PFS ModelSE 3.62 4.83 4.82 4.82 4.07 3.10 3.15 3.62 4.83 4.82 4.82 4.07 3.10 3.15

PFS Cover2 0.91 0.91 0.91 0.91 0.81 0.51 0.47 0.91 0.90 0.90 0.89 0.80 0.52 0.47

PFS Cover1 0.99 1.00 1.00 1.00 0.98 0.89 0.90 0.99 1.00 1.00 1.00 0.98 0.89 0.90

OS Mean 100.38 106.14 106.46 107.75 102.14 93.61 99.92 100.75 108.66 109.64 111.32 103.05 93.82 100.40

OS Bias -3.93 1.82 2.14 3.44 -2.17 -10.71 -4.40 -3.56 4.35 5.32 7.00 -1.27 -10.49 -3.92

OS MC SE 0.28 0.22 0.24 0.28 0.22 0.14 0.27 0.28 0.59 0.76 0.57 0.46 0.15 0.27

OS Rel Bias 0.04-                   0.02             0.02                 0.03                   0.02-             0.10-                0.04-                  0.03-                   0.04               0.05                 0.07                   0.01-               0.10-                0.04-                  

OS empSE 8.48 6.91 7.32 8.62 6.92 4.47 8.19 8.65 18.25 23.47 17.57 14.09 4.49 8.43

OS MC SE 0.19 0.16 0.17 0.20 0.16 0.10 0.19 0.20 0.42 0.54 0.40 0.32 0.10 0.19

OS MSE 87.39 51.05 58.12 86.04 52.52 134.55 86.42 87.49 351.60 578.37 357.34 199.82 130.31 86.40

OS MC SE 0.19 0.16 0.17 0.20 0.16 0.10 0.19 3.06 103.29 229.78 100.76 71.23 3.08 2.78

OS Rel P 0.00% 50.64% 34.29% -3.14% 50.45% 261.00% 7.22% 0.00% -77.52% -86.40% -75.75% -62.27% 270.71% 5.26%

OS ModelSE 6.78 26.41 26.38 23.78 19.39 5.16 6.94 6.78 26.41 26.38 23.78 19.39 5.16 6.94

OS Cover2 0.79 0.93 0.95 0.97 0.90 0.44 0.79 0.81 0.92 0.95 0.97 0.90 0.45 0.81

OS Cover1 1.00 1.00 1.00 1.00 0.99 0.91 1.00 1.00 1.00 1.00 1.00 0.99 0.91 1.00

QALYs Mean 66.83 70.77 70.91 71.55 67.16 61.79 64.90 67.07 72.19 72.65 73.48 67.61 61.92 65.16

QALYs Bias -2.11 1.82 1.96 2.60 -1.78 -7.15 -4.04 -1.88 3.24 3.71 4.54 -1.33 -7.02 -3.79

QALYs MC SE 0.16 0.15 0.15 0.17 0.14 0.09 0.15 0.16 0.31 0.39 0.30 0.25 0.09 0.15

QALYs Rel Bias 0.03-                   0.03             0.03                 0.04                   0.03-             0.10-                0.06-                  0.03-                   0.05               0.05                 0.07                   0.02-               0.10-                0.05-                  

QALYs empSE 4.85 4.56 4.68 5.19 4.37 2.83 4.63 4.95 9.65 12.16 9.31 7.67 2.85 4.75

QALYs MC SE 0.11 0.10 0.11 0.12 0.10 0.07 0.11 0.11 0.22 0.28 0.21 0.18 0.07 0.11

QALYs MSE 27.99 24.09 25.69 33.68 22.26 59.16 37.75 28.00 103.51 161.43 107.11 60.50 57.44 36.87

QALYs MC SE 0.95 1.06 1.05 1.46 0.84 1.33 1.14 1.00 26.49 58.10 25.83 18.19 1.31 1.11

QALYs Rel P 0.00% 13.21% 7.64% -12.64% 23.22% 193.03% 9.83% 0.00% -73.68% -83.43% -71.71% -58.32% 201.56% 8.65%

QALYs ModelSE 3.71 13.49 13.47 12.22 10.03 3.24 4.10 3.71 13.49 13.47 12.22 10.03 3.24 4.10

QALYs Cover2 0.78 0.92 0.94 0.97 0.88 0.39 0.69 0.78 0.90 0.92 0.97 0.87 0.41 0.71

QALYs Cover1 0.97 0.99 1.00 1.00 0.99 0.88 0.99 0.97 0.99 1.00 1.00 0.99 0.88 0.99
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Table 59 : Result for simulated scenario 37 

Scenario37 Deterministic Probabilistic

PSM STM STM - Log STM - Time MSM Li's model Fu's model PSM STM STM - Log STM - Time MSM Li's model Fu's model

PFS Mean 60.50 61.45 61.17 61.09 56.02 47.19 57.35 61.01 62.34 62.06 61.98 54.98 47.41 57.84

PFS Bias -8.65 -7.71 -7.98 -8.06 -13.13 -21.96 -11.80 -8.14 -6.81 -7.09 -7.18 -14.17 -21.74 -11.31

PFS MC SE 0.22 0.25 0.24 0.24 0.20 0.12 0.22 0.22 0.26 0.25 0.25 0.22 0.12 0.23

PFS Rel Bias -12.5% -11.1% -11.5% -11.7% -19.0% -31.8% -17.1% -11.8% -9.8% -10.2% -10.4% -20.5% -31.4% -16.4%

PFS empSE 6.86 7.59 7.45 7.41 6.16 3.58 6.89 6.89 7.89 7.75 7.71 6.87 3.63 7.03

PFS MC SE 0.16 0.17 0.17 0.17 0.14 0.08 0.16 0.16 0.18 0.18 0.18 0.16 0.08 0.16

PFS MSE 121.84 116.96 119.05 119.92 210.39 495.05 186.73 113.65 108.57 110.17 110.93 248.07 485.98 177.37

PFS MC SE 3.75 3.74 3.78 3.78 4.66 4.93 5.03 3.62 3.66 3.70 3.70 6.11 4.95 4.96

PFS Rel P 0.00% -18.36% -15.12% -14.35% 24.12% 267.61% -0.99% 0.00% -23.87% -20.98% -20.31% 0.45% 260.21% -4.14%

PFS ModelSE 6.76 7.35 7.28 7.25 8.84 3.79 6.94 6.76 7.35 7.28 7.25 8.84 3.79 6.94

PFS Cover2 0.62 0.67 0.66 0.66 0.42 0.01 0.49 0.65 0.70 0.69 0.69 0.42 0.01 0.51

PFS Cover1 0.94 0.94 0.94 0.94 0.82 0.27 0.90 0.94 0.94 0.94 0.94 0.82 0.27 0.90

OS Mean 165.41 158.18 179.96 296.32 153.73 81.24 173.77 176.21 164.38 201.18 311.84 160.57 81.85 183.90

OS Bias 2.50 -4.74 17.04 133.40 -9.19 -81.68 10.86 13.29 1.47 38.26 148.92 -2.35 -81.06 20.98

OS MC SE 0.64 0.78 1.11 3.38 0.76 0.18 0.65 1.45 0.88 1.83 2.79 0.95 0.18 0.78

OS Rel Bias 0.02                   0.03-             0.10                 0.82                   0.06-             0.50-                0.07                  0.08                   0.01               0.23                 0.91                   0.01-               0.50-                0.13                  

OS empSE 19.68 23.98 34.15 104.24 23.44 5.41 20.07 44.78 27.10 56.38 86.09 29.32 5.56 24.07

OS MC SE 0.45 0.55 0.78 2.39 0.54 0.12 0.46 1.03 0.62 1.29 1.98 0.67 0.13 0.55

OS MSE 393.14 596.69 1455.29 28651.83 633.32 6700.77 520.12 2179.65 735.69 4639.77 29580.83 864.19 6602.43 1019.07

OS MC SE 0.45 0.55 0.78 2.39 0.54 0.12 0.46 515.12 33.62 497.13 915.40 38.71 29.17 70.58

OS Rel P 0.00% -32.63% -66.78% -96.44% -29.52% 1222.78% -3.82% 0.00% 173.05% -36.93% -72.94% 133.26% 6382.95% 246.08%

OS ModelSE 58.76 46.73 86.70 121.97 50.65 6.41 52.34 58.76 46.73 86.70 121.97 50.65 6.41 52.34

OS Cover2 1.00 0.97 1.00 0.68 0.97 0.00 1.00 1.00 0.98 1.00 0.71 0.97 0.00 1.00

OS Cover1 1.00 1.00 1.00 0.96 1.00 0.01 1.00 1.00 1.00 1.00 0.96 1.00 0.01 1.00

QALYs Mean 100.86 97.52 108.33 166.49 93.67 54.78 104.09 106.41 100.89 119.21 174.51 96.78 55.15 109.30

QALYs Bias -1.35 -4.68 6.13 64.28 -8.53 -47.43 1.89 4.20 -1.31 17.00 72.31 -5.43 -47.06 7.10

QALYs MC SE 0.33 0.40 0.57 1.70 0.39 0.11 0.34 0.73 0.45 0.93 1.41 0.49 0.12 0.40

QALYs Rel Bias 0.01-                   0.05-             0.06                 0.63                   0.08-             0.46-                0.02                  0.04                   0.01-               0.17                 0.71                   0.05-               0.46-                0.07                  

QALYs empSE 10.07 12.34 17.44 52.49 12.00 3.48 10.58 22.59 13.91 28.60 43.47 15.25 3.57 12.48

QALYs MC SE 0.23 0.28 0.40 1.20 0.28 0.08 0.24 0.52 0.32 0.66 1.00 0.35 0.08 0.29

QALYs MSE 103.07 174.02 341.44 6884.17 216.74 2261.53 115.48 527.53 195.13 1106.06 7116.11 261.79 2226.98 205.92

QALYs MC SE 3.26 5.53 19.79 249.85 6.97 10.68 4.50 127.35 8.05 122.30 225.54 10.55 10.84 15.32

QALYs Rel P 0.00% -33.44% -66.68% -96.32% -29.64% 735.00% -9.53% 0.00% 163.61% -37.59% -72.99% 119.43% 3908.90% 227.81%

QALYs ModelSE 29.69 23.77 43.69 61.34 26.36 4.05 26.92 29.69 23.77 43.69 61.34 26.36 4.05 26.92

QALYs Cover2 1.00 0.96 1.00 0.69 0.95 0.00 1.00 1.00 0.97 1.00 0.72 0.96 0.00 1.00

QALYs Cover1 1.00 0.99 1.00 0.96 1.00 0.01 1.00 1.00 0.99 1.00 0.96 1.00 0.01 1.00



 

366 

 

Table 60 : Result for simulated scenario 38 

Scenario38 Deterministic Probabilistic

PSM STM STM - Log STM - Time MSM Li's model Fu's model PSM STM STM - Log STM - Time MSM Li's model Fu's model

PFS Mean 60.02 62.40 62.10 61.95 54.98 48.79 56.09 60.41 63.36 63.04 62.89 54.38 49.01 56.51

PFS Bias -9.04 -6.66 -6.96 -7.11 -14.08 -20.27 -12.97 -8.65 -5.70 -6.02 -6.17 -14.69 -20.06 -12.55

PFS MC SE 0.19 0.25 0.25 0.25 0.20 0.12 0.19 0.19 0.26 0.26 0.26 0.22 0.12 0.20

PFS Rel Bias -13.1% -9.6% -10.1% -10.3% -20.4% -29.4% -18.8% -12.5% -8.3% -8.7% -8.9% -21.3% -29.0% -18.2%

PFS empSE 5.89 7.75 7.70 7.67 6.27 3.69 5.93 5.85 8.07 8.02 7.99 6.93 3.74 6.04

PFS MC SE 0.14 0.18 0.18 0.18 0.14 0.08 0.14 0.13 0.19 0.18 0.18 0.16 0.09 0.14

PFS MSE 116.38 104.39 107.63 109.36 237.55 424.48 203.47 109.05 97.66 100.43 101.89 263.71 416.20 194.00

PFS MC SE 3.42 3.44 3.50 3.51 4.86 4.75 4.88 3.29 3.39 3.44 3.45 6.29 4.76 4.83

PFS Rel P 0.00% -42.34% -41.48% -41.15% -11.78% 154.81% -1.44% 0.00% -47.55% -46.78% -46.49% -28.87% 144.70% -6.38%

PFS ModelSE 6.20 7.55 7.48 7.45 8.38 4.09 6.22 6.20 7.55 7.48 7.45 8.38 4.09 6.22

PFS Cover2 0.62 0.73 0.71 0.71 0.36 0.01 0.42 0.64 0.75 0.74 0.73 0.35 0.01 0.44

PFS Cover1 0.93 0.95 0.95 0.95 0.79 0.39 0.89 0.93 0.95 0.95 0.95 0.79 0.39 0.89

OS Mean 105.10 97.81 108.55 188.35 95.56 65.77 107.68 107.22 101.62 117.27 200.54 98.25 66.07 110.24

OS Bias -0.92 -8.21 2.53 82.33 -10.46 -40.26 1.65 1.20 -4.40 11.25 94.52 -7.78 -39.95 4.21

OS MC SE 0.42 0.32 0.45 1.92 0.38 0.13 0.43 0.48 0.66 0.98 1.78 0.49 0.13 0.44

OS Rel Bias 0.01-                   0.08-             0.02                 0.78                   0.10-             0.38-                0.02                  0.01                   0.04-               0.11                 0.89                   0.07-               0.38-                0.04                  

OS empSE 13.09 9.73 13.97 59.09 11.64 3.94 13.10 14.65 20.29 30.19 54.94 15.21 4.01 13.66

OS MC SE 0.30 0.22 0.32 1.36 0.27 0.09 0.30 0.34 0.47 0.69 1.26 0.35 0.09 0.31

OS MSE 171.96 162.08 201.42 10265.83 244.79 1636.03 174.24 215.78 430.53 1037.36 11948.63 291.56 1612.21 204.25

OS MC SE 0.30 0.22 0.32 1.36 0.27 0.09 0.30 17.39 129.27 216.59 393.34 13.49 10.31 10.36

OS Rel P 0.00% 80.87% -12.26% -95.09% 26.41% 1002.45% -0.23% 0.00% -47.87% -76.47% -92.89% -7.25% 1233.90% 14.94%

OS ModelSE 20.32 28.76 44.64 79.46 22.45 4.66 19.06 20.32 28.76 44.64 79.46 22.45 4.66 19.06

OS Cover2 0.99 0.86 0.99 0.75 0.84 0.00 1.00 0.99 0.89 0.99 0.78 0.87 0.00 1.00

OS Cover1 1.00 1.00 1.00 0.96 0.99 0.04 1.00 1.00 1.00 1.00 0.96 0.99 0.04 1.00

QALYs Mean 70.56 67.63 72.91 112.76 64.28 47.52 70.66 71.74 69.82 77.55 119.14 65.44 47.74 72.07

QALYs Bias -3.17 -6.11 -0.83 39.03 -9.45 -26.21 -3.07 -2.00 -3.91 3.82 45.41 -8.29 -25.99 -1.66

QALYs MC SE 0.23 0.17 0.26 0.98 0.21 0.10 0.23 0.25 0.34 0.51 0.92 0.27 0.10 0.24

QALYs Rel Bias 0.04-                   0.08-             0.01-                 0.53                   0.13-             0.36-                0.04-                  0.03-                   0.05-               0.05                 0.62                   0.11-               0.35-                0.02-                  

QALYs empSE 7.03 5.36 8.11 30.15 6.38 2.99 7.18 7.84 10.51 15.73 28.23 8.29 3.04 7.53

QALYs MC SE 0.16 0.12 0.19 0.69 0.15 0.07 0.16 0.18 0.24 0.36 0.65 0.19 0.07 0.17

QALYs MSE 59.49 65.94 66.46 2431.66 130.04 695.83 60.97 65.43 125.55 261.82 2857.99 137.45 684.84 59.37

QALYs MC SE 1.90 2.25 2.18 93.79 3.85 5.02 2.11 4.10 32.76 52.70 97.73 5.45 5.07 2.92

QALYs Rel P 0.00% 72.44% -24.86% -94.56% 21.60% 453.89% -4.15% 0.00% -44.26% -75.14% -92.28% -10.50% 566.49% 8.52%

QALYs ModelSE 10.56 15.10 22.90 40.29 12.68 3.47 10.74 10.56 15.10 22.90 40.29 12.68 3.47 10.74

QALYs Cover2 0.93 0.91 0.97 0.79 0.76 0.00 0.94 0.94 0.92 0.98 0.82 0.80 0.00 0.97

QALYs Cover1 1.00 1.00 1.00 0.97 0.98 0.09 1.00 1.00 1.00 1.00 0.97 0.98 0.09 1.00
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Table 61 : Result for simulated scenario 39 

 

 

Scenario39 Deterministic Probabilistic

PSM STM STM - Log STM - Time MSM Li's model Fu's model PSM STM STM - Log STM - Time MSM Li's model Fu's model

PFS Mean 60.66 62.90 62.92 62.78 54.26 49.75 55.96 60.89 63.88 63.91 63.76 54.03 49.93 56.50

PFS Bias -8.38 -6.14 -6.12 -6.26 -14.78 -19.29 -13.08 -8.15 -5.16 -5.14 -5.28 -15.01 -19.11 -12.54

PFS MC SE 0.19 0.24 0.25 0.25 0.18 0.12 0.17 0.19 0.25 0.26 0.26 0.19 0.12 0.18

PFS Rel Bias -12.1% -8.9% -8.9% -9.1% -21.4% -27.9% -18.9% -11.8% -7.5% -7.4% -7.7% -21.7% -27.7% -18.2%

PFS empSE 5.86 7.32 7.68 7.76 5.66 3.80 5.30 5.77 7.60 7.99 8.09 5.85 3.85 5.44

PFS MC SE 0.13 0.17 0.18 0.18 0.13 0.09 0.12 0.13 0.17 0.18 0.19 0.13 0.09 0.12

PFS MSE 104.57 91.26 96.31 99.47 250.44 386.71 199.13 99.70 84.30 90.19 93.22 259.58 379.93 186.98

PFS MC SE 3.16 3.11 3.26 3.34 4.99 4.66 4.49 3.06 2.96 3.20 3.29 5.25 4.66 4.42

PFS Rel P 0.00% -35.95% -41.70% -43.04% 7.07% 137.64% 22.12% 0.00% -42.38% -47.95% -49.13% -2.72% 124.67% 12.20%

PFS ModelSE 6.26 7.58 7.68 7.65 6.84 4.28 6.07 6.26 7.58 7.68 7.65 6.84 4.28 6.07

PFS Cover2 0.65 0.77 0.76 0.75 0.29 0.03 0.40 0.66 0.80 0.79 0.78 0.29 0.03 0.44

PFS Cover1 0.95 0.96 0.96 0.96 0.75 0.47 0.90 0.95 0.96 0.96 0.96 0.75 0.47 0.90

OS Mean 84.29 75.83 83.51 132.30 69.84 58.32 85.35 85.49 77.20 86.83 139.42 70.74 58.53 86.80

OS Bias -2.34 -10.80 -3.12 45.67 -16.79 -28.31 -1.28 -1.14 -9.43 0.20 52.78 -15.89 -28.10 0.17

OS MC SE 0.32 0.20 0.32 1.21 0.18 0.13 0.32 0.34 0.22 0.54 1.15 0.23 0.13 0.33

OS Rel Bias 0.03-                   0.12-             0.04-                 0.53                   0.19-             0.33-                0.01-                  0.01-                   0.11-               0.00                 0.61                   0.18-               0.32-                0.00                  

OS empSE 9.91 6.18 9.89 37.31 5.69 3.86 9.96 10.37 6.78 16.74 35.47 7.03 3.91 10.17

OS MC SE 0.23 0.14 0.23 0.86 0.13 0.09 0.23 0.24 0.16 0.38 0.81 0.16 0.09 0.23

OS MSE 103.68 154.79 107.47 3476.50 314.21 816.27 100.72 108.81 134.85 279.98 4042.73 302.03 804.81 103.43

OS MC SE 0.23 0.14 0.23 0.86 0.13 0.09 0.23 3.23 4.23 109.07 148.44 6.91 7.01 3.47

OS Rel P 0.00% 157.54% 0.48% -92.94% 203.32% 559.73% -0.91% 0.00% 133.79% -61.60% -91.44% 117.62% 603.49% 3.96%

OS ModelSE 12.15 10.01 22.01 48.90 10.53 4.41 11.96 12.15 10.01 22.01 48.90 10.53 4.41 11.96

OS Cover2 0.91 0.68 0.90 0.87 0.41 0.00 0.93 0.92 0.71 0.92 0.89 0.45 0.00 0.95

OS Cover1 1.00 0.97 1.00 0.97 0.84 0.18 1.00 1.00 0.97 1.00 0.97 0.84 0.18 1.00

QALYs Mean 60.34 56.79 60.63 84.98 51.20 44.09 59.47 61.01 57.77 62.59 88.84 51.58 44.25 60.35

QALYs Bias -3.69 -7.24 -3.40 20.96 -12.83 -19.94 -4.56 -3.02 -6.26 -1.44 24.81 -12.45 -19.78 -3.68

QALYs MC SE 0.20 0.16 0.22 0.63 0.13 0.10 0.19 0.21 0.17 0.31 0.61 0.15 0.10 0.20

QALYs Rel Bias 0.06-                   0.11-             0.05-                 0.33                   0.20-             0.31-                0.07-                  0.05-                   0.10-               0.02-                 0.39                   0.19-               0.31-                0.06-                  

QALYs empSE 6.06 4.94 6.70 19.52 3.96 3.04 5.87 6.35 5.18 9.60 18.77 4.50 3.08 6.02

QALYs MC SE 0.14 0.11 0.15 0.45 0.09 0.07 0.13 0.15 0.12 0.22 0.43 0.10 0.07 0.14

QALYs MSE 50.33 76.81 56.43 819.97 180.23 406.97 55.23 49.32 66.01 94.24 967.17 175.22 400.82 49.80

QALYs MC SE 1.69 2.14 1.86 37.17 3.24 3.86 1.97 1.61 2.02 26.28 37.72 3.56 3.88 1.78

QALYs Rel P 0.00% 50.84% -18.14% -90.35% 134.31% 296.95% 6.78% 0.00% 50.08% -56.36% -88.57% 99.24% 323.45% 10.92%

QALYs ModelSE 6.62 6.85 12.09 25.28 6.83 3.46 7.47 6.62 6.85 12.09 25.28 6.83 3.46 7.47

QALYs Cover2 0.81 0.72 0.87 0.89 0.33 0.00 0.86 0.82 0.77 0.90 0.91 0.35 0.00 0.87

QALYs Cover1 0.99 0.97 1.00 0.98 0.81 0.26 1.00 0.99 0.97 1.00 0.98 0.81 0.26 1.00
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Table 62 : Result for simulated scenario 40 

Scenario40 Deterministic Probabilistic

PSM STM STM - Log STM - Time MSM Li's model Fu's model PSM STM STM - Log STM - Time MSM Li's model Fu's model

PFS Mean 57.09 57.30 57.19 57.23 49.95 42.87 51.78 57.80 58.19 58.08 58.12 49.47 43.06 52.13

PFS Bias 1.00 1.21 1.10 1.14 -6.14 -13.22 -4.31 1.71 2.10 1.99 2.03 -6.62 -13.03 -3.96

PFS MC SE 0.21 0.21 0.21 0.21 0.17 0.10 0.18 0.21 0.22 0.22 0.22 0.17 0.11 0.18

PFS Rel Bias 1.8% 2.2% 2.0% 2.0% -10.9% -23.6% -7.7% 3.0% 3.7% 3.5% 3.6% -11.8% -23.2% -7.1%

PFS empSE 6.36 6.49 6.45 6.45 5.14 3.22 5.49 6.51 6.76 6.73 6.72 5.25 3.27 5.56

PFS MC SE 0.15 0.15 0.15 0.15 0.12 0.07 0.13 0.15 0.16 0.15 0.15 0.12 0.08 0.13

PFS MSE 41.40 43.48 42.80 42.85 64.05 185.08 48.72 45.29 50.08 49.16 49.28 71.33 180.47 46.63

PFS MC SE 1.80 1.91 1.89 1.88 1.89 2.67 1.80 2.02 2.29 2.25 2.24 2.30 2.66 1.79

PFS Rel P 0.00% -3.85% -2.85% -2.79% 53.34% 288.97% 34.15% 0.00% -7.20% -6.23% -6.16% 53.84% 296.16% 37.07%

PFS ModelSE 6.57 6.80 6.77 6.78 6.20 3.37 5.66 6.57 6.80 6.77 6.78 6.20 3.37 5.66

PFS Cover2 0.94 0.95 0.94 0.94 0.64 0.07 0.79 0.94 0.95 0.95 0.95 0.63 0.08 0.80

PFS Cover1 1.00 1.00 1.00 1.00 0.94 0.56 0.98 1.00 1.00 1.00 1.00 0.94 0.56 0.98

OS Mean 199.90 182.84 216.20 308.38 180.05 83.83 204.17 206.77 193.33 241.28 323.85 192.79 85.06 212.21

OS Bias 9.53 -7.53 25.83 118.01 -10.32 -106.55 13.79 16.40 2.96 50.91 133.48 2.42 -105.31 21.84

OS MC SE 0.70 0.95 1.79 3.73 0.93 0.23 0.75 1.21 1.18 2.18 2.99 1.24 0.24 0.91

OS Rel Bias 0.05                   0.04-             0.14                 0.62                   0.05-             0.56-                0.07                  0.09                   0.02               0.27                 0.70                   0.01               0.55-                0.11                  

OS empSE 21.54 29.42 55.09 115.06 28.71 7.02 23.26 37.31 36.37 67.05 92.10 38.17 7.44 27.91

OS MC SE 0.49 0.68 1.26 2.64 0.66 0.16 0.53 0.86 0.83 1.54 2.11 0.88 0.17 0.64

OS MSE 554.27 921.27 3698.19 27151.56 930.00 11401.12 730.67 1659.49 1330.29 7082.27 26290.82 1461.29 11145.42 1255.28

OS MC SE 0.49 0.68 1.26 2.64 0.66 0.16 0.53 402.78 288.97 555.68 885.48 296.74 50.43 77.77

OS Rel P 0.00% -46.40% -84.71% -96.50% -43.73% 842.09% -14.25% 0.00% 5.22% -69.03% -83.59% -4.46% 2416.47% 78.67%

OS ModelSE 51.16 65.43 104.08 129.96 70.20 9.03 51.60 51.16 65.43 104.08 129.96 70.20 9.03 51.60

OS Cover2 1.00 0.99 0.99 0.70 0.98 0.00 1.00 1.00 0.99 0.99 0.75 0.99 0.00 1.00

OS Cover1 1.00 0.99 1.00 0.98 1.00 0.07 1.00 1.00 0.99 1.00 0.98 1.00 0.07 1.00

QALYs Mean 117.08 108.61 125.26 171.36 105.01 54.77 117.62 120.72 114.12 138.06 179.36 111.24 55.45 121.74

QALYs Bias 5.07 -3.40 13.24 59.35 -7.00 -57.24 5.60 8.71 2.11 26.05 67.35 -0.78 -56.56 9.73

QALYs MC SE 0.36 0.48 0.90 1.87 0.47 0.13 0.39 0.61 0.59 1.09 1.50 0.62 0.14 0.46

QALYs Rel Bias 0.05                   0.03-             0.12                 0.53                   0.06-             0.51-                0.05                  0.08                   0.02               0.23                 0.60                   0.01-               0.50-                0.09                  

QALYs empSE 11.05 14.73 27.63 57.61 14.47 4.08 11.97 18.77 18.16 33.53 46.12 19.20 4.29 14.21

QALYs MC SE 0.25 0.34 0.63 1.32 0.33 0.09 0.27 0.43 0.42 0.77 1.06 0.44 0.10 0.33

QALYs MSE 147.64 228.27 937.96 6837.54 258.30 3292.80 174.54 427.68 333.98 1801.81 6661.17 368.69 3217.83 296.33

QALYs MC SE 5.41 7.29 57.95 258.26 9.04 15.07 7.21 100.01 71.45 139.48 223.30 72.30 15.63 18.42

QALYs Rel P 0.00% -43.71% -84.01% -96.32% -41.72% 633.45% -14.79% 0.00% 6.76% -68.68% -83.45% -4.43% 1815.32% 74.47%

QALYs ModelSE 25.76 32.88 52.21 65.13 35.47 5.07 26.30 25.76 32.88 52.21 65.13 35.47 5.07 26.30

QALYs Cover2 1.00 0.99 0.99 0.70 0.98 0.00 1.00 1.00 1.00 1.00 0.76 0.99 0.00 1.00

QALYs Cover1 1.00 0.99 1.00 0.98 1.00 0.07 1.00 1.00 0.99 1.00 0.98 1.00 0.07 1.00
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Table 63 : Result for simulated scenario 41 

Scenario41 Deterministic Probabilistic

PSM STM STM - Log STM - Time MSM Li's model Fu's model PSM STM STM - Log STM - Time MSM Li's model Fu's model

PFS Mean 54.72 57.64 57.20 57.29 49.28 44.28 50.35 54.98 58.56 58.10 58.20 49.00 44.48 50.69

PFS Bias -1.24 1.67 1.24 1.33 -6.69 -11.68 -5.62 -0.99 2.59 2.14 2.24 -6.96 -11.49 -5.27

PFS MC SE 0.16 0.22 0.22 0.22 0.16 0.11 0.16 0.16 0.23 0.23 0.23 0.17 0.11 0.17

PFS Rel Bias -2.2% 3.0% 2.2% 2.4% -11.9% -20.9% -10.0% -1.8% 4.6% 3.8% 4.0% -12.4% -20.5% -9.4%

PFS empSE 5.06 6.68 6.74 6.73 5.08 3.31 5.02 5.06 6.99 7.06 7.04 5.16 3.36 5.10

PFS MC SE 0.12 0.15 0.15 0.15 0.12 0.08 0.12 0.12 0.16 0.16 0.16 0.12 0.08 0.12

PFS MSE 27.16 47.37 46.92 46.98 70.50 147.39 56.72 26.53 55.59 54.35 54.53 75.01 143.22 53.83

PFS MC SE 1.20 2.02 1.98 2.00 2.02 2.47 2.10 1.22 2.44 2.39 2.41 2.20 2.46 2.06

PFS Rel P 0.00% -42.53% -43.55% -43.34% -0.64% 133.83% 1.69% 0.00% -47.72% -48.67% -48.42% -3.82% 126.30% -1.85%

PFS ModelSE 5.50 7.02 6.92 6.94 5.83 3.74 5.52 5.50 7.02 6.92 6.94 5.83 3.74 5.52

PFS Cover2 0.92 0.94 0.94 0.94 0.61 0.17 0.75 0.92 0.95 0.94 0.94 0.60 0.18 0.77

PFS Cover1 0.99 0.99 0.99 0.99 0.93 0.72 0.97 0.99 0.99 0.99 0.99 0.93 0.72 0.97

OS Mean 97.30 94.40 104.37 175.41 95.56 62.24 99.94 101.43 98.46 114.91 188.05 100.39 62.60 103.78

OS Bias -0.20 -3.10 6.87 77.91 -1.95 -35.26 2.44 3.93 0.95 17.41 90.55 2.89 -34.90 6.27

OS MC SE 0.39 0.36 0.45 1.88 0.41 0.13 0.38 0.85 0.58 0.84 1.71 0.56 0.13 0.44

OS Rel Bias 0.00-                   0.03-             0.07                 0.80                   0.02-             0.36-                0.03                  0.04                   0.01               0.18                 0.93                   0.03               0.36-                0.06                  

OS empSE 12.05 11.24 13.84 58.00 12.60 3.90 11.81 26.19 17.73 25.79 52.85 17.37 3.98 13.67

OS MC SE 0.28 0.26 0.32 1.33 0.29 0.09 0.27 0.60 0.41 0.59 1.21 0.40 0.09 0.31

OS MSE 145.17 135.73 238.63 9429.86 162.48 1258.27 145.38 700.84 314.96 967.61 10989.35 309.65 1233.92 226.01

OS MC SE 0.28 0.26 0.32 1.33 0.29 0.09 0.27 242.60 77.91 88.56 371.16 29.91 9.01 17.47

OS Rel P 0.00% 15.10% -24.18% -95.68% -8.55% 857.00% 4.09% 0.00% 118.25% 3.16% -75.43% 127.49% 4235.03% 267.22%

OS ModelSE 32.54 25.16 45.48 78.85 26.73 4.67 24.04 32.54 25.16 45.48 78.85 26.73 4.67 24.04

OS Cover2 1.00 0.96 0.99 0.77 0.95 0.00 1.00 1.00 0.97 0.99 0.81 0.96 0.00 1.00

OS Cover1 1.00 1.00 1.00 0.97 1.00 0.07 1.00 1.00 1.00 1.00 0.97 1.00 0.07 1.00

QALYs Mean 65.07 64.49 69.35 104.89 62.56 44.41 65.08 67.21 66.79 74.89 111.49 64.90 44.64 67.09

QALYs Bias -0.47 -1.05 3.81 39.35 -2.98 -21.13 -0.46 1.67 1.25 9.35 45.95 -0.64 -20.90 1.55

QALYs MC SE 0.21 0.18 0.25 0.95 0.21 0.09 0.21 0.43 0.29 0.44 0.87 0.29 0.09 0.24

QALYs Rel Bias 0.01-                   0.02-             0.06                 0.60                   0.05-             0.32-                0.01-                  0.03                   0.02               0.14                 0.70                   0.01-               0.32-                0.02                  

QALYs empSE 6.42 5.66 7.67 29.42 6.46 2.80 6.48 13.36 8.89 13.47 26.86 8.79 2.85 7.28

QALYs MC SE 0.15 0.13 0.18 0.68 0.15 0.06 0.15 0.31 0.20 0.31 0.62 0.20 0.07 0.17

QALYs MSE 41.44 33.07 73.30 2413.19 50.54 454.43 42.23 181.12 80.45 268.70 2831.76 77.66 444.80 55.43

QALYs MC SE 1.50 1.38 3.18 91.78 1.91 3.83 1.55 61.58 20.56 23.62 95.39 7.33 3.86 3.66

QALYs Rel P 0.00% 28.93% -29.90% -95.23% -1.07% 426.91% -1.88% 0.00% 126.09% -1.64% -75.26% 130.86% 2093.29% 236.42%

QALYs ModelSE 16.60 13.22 23.15 39.77 13.93 3.32 12.84 16.60 13.22 23.15 39.77 13.93 3.32 12.84

QALYs Cover2 0.99 0.98 0.99 0.78 0.94 0.00 0.99 1.00 0.98 1.00 0.81 0.96 0.00 1.00

QALYs Cover1 1.00 1.00 1.00 0.97 0.99 0.18 1.00 1.00 1.00 1.00 0.97 0.99 0.18 1.00
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Table 64 : Result for simulated scenario 42 

Scenario42 Deterministic Probabilistic

PSM STM STM - Log STM - Time MSM Li's model Fu's model PSM STM STM - Log STM - Time MSM Li's model Fu's model

PFS Mean 52.77 56.99 56.96 56.94 48.45 45.37 49.21 52.83 57.86 57.82 57.81 48.30 45.54 49.65

PFS Bias -3.15 1.07 1.04 1.02 -7.47 -10.55 -6.72 -3.10 1.94 1.90 1.88 -7.62 -10.38 -6.27

PFS MC SE 0.13 0.21 0.21 0.21 0.16 0.11 0.13 0.13 0.22 0.22 0.22 0.16 0.11 0.13

PFS Rel Bias -5.6% 1.9% 1.9% 1.8% -13.4% -18.9% -12.0% -5.5% 3.5% 3.4% 3.4% -13.6% -18.6% -11.2%

PFS empSE 3.99 6.45 6.50 6.57 4.84 3.41 4.07 4.01 6.79 6.84 6.91 4.82 3.46 4.13

PFS MC SE 0.09 0.15 0.15 0.15 0.11 0.08 0.09 0.09 0.16 0.16 0.16 0.11 0.08 0.09

PFS MSE 25.86 42.76 43.28 44.22 79.22 122.97 61.68 25.68 49.78 50.28 51.21 81.29 119.78 56.32

PFS MC SE 1.02 1.65 1.75 1.78 2.07 2.29 1.86 0.98 2.00 2.11 2.14 2.10 2.29 1.80

PFS Rel P 0.00% -61.69% -62.23% -63.08% -31.84% 37.19% -3.82% 0.00% -65.02% -65.51% -66.22% -30.53% 34.54% -5.29%

PFS ModelSE 4.80 6.76 6.75 6.76 5.08 3.87 4.99 4.80 6.76 6.75 6.76 5.08 3.87 4.99

PFS Cover2 0.88 0.93 0.93 0.93 0.52 0.26 0.70 0.88 0.93 0.94 0.93 0.51 0.27 0.74

PFS Cover1 1.00 1.00 1.00 1.00 0.91 0.81 0.97 1.00 1.00 1.00 1.00 0.91 0.81 0.97

OS Mean 70.92 69.04 75.46 112.62 64.62 53.74 71.78 71.72 71.39 78.66 120.35 66.43 53.94 73.09

OS Bias -2.07 -3.94 2.48 39.63 -8.36 -19.24 -1.21 -1.26 -1.60 5.67 47.37 -6.55 -19.04 0.11

OS MC SE 0.28 0.18 0.26 0.98 0.18 0.12 0.28 0.29 0.52 0.50 0.91 0.35 0.12 0.30

OS Rel Bias 0.03-                   0.05-             0.03                 0.54                   0.11-             0.26-                0.02-                  0.02-                   0.02-               0.08                 0.65                   0.09-               0.26-                0.00                  

OS empSE 8.60 5.49 8.01 30.24 5.68 3.57 8.78 9.06 15.95 15.52 28.19 10.85 3.62 9.14

OS MC SE 0.20 0.13 0.18 0.69 0.13 0.08 0.20 0.21 0.37 0.36 0.65 0.25 0.08 0.21

OS MSE 78.22 45.64 70.18 2483.92 102.17 383.05 78.40 83.66 256.66 272.85 3037.35 160.48 375.62 83.49

OS MC SE 0.20 0.13 0.18 0.69 0.13 0.08 0.20 2.42 99.55 86.49 104.42 52.97 4.40 3.49

OS Rel P 0.00% 145.54% 15.44% -91.90% 129.04% 481.49% -3.90% 0.00% -67.71% -65.90% -89.66% -30.18% 526.11% -1.70%

OS ModelSE 9.59 21.23 21.66 44.93 14.27 4.05 10.09 9.59 21.23 21.66 44.93 14.27 4.05 10.09

OS Cover2 0.92 0.89 0.98 0.89 0.72 0.00 0.94 0.93 0.91 0.99 0.90 0.75 0.01 0.97

OS Cover1 1.00 0.99 1.00 0.97 0.95 0.43 1.00 1.00 0.99 1.00 0.97 0.95 0.43 1.00

QALYs Mean 51.29 51.62 54.82 73.39 46.85 40.48 50.65 51.71 53.05 56.67 77.52 47.70 40.63 51.44

QALYs Bias -1.98 -1.65 1.55 20.12 -6.42 -12.79 -2.62 -1.56 -0.22 3.41 24.25 -5.56 -12.63 -1.83

QALYs MC SE 0.16 0.14 0.18 0.51 0.12 0.09 0.16 0.17 0.28 0.28 0.48 0.19 0.09 0.16

QALYs Rel Bias 0.04-                   0.03-             0.03                 0.38                   0.12-             0.24-                0.05-                  0.03-                   0.00-               0.06                 0.46                   0.10-               0.24-                0.03-                  

QALYs empSE 4.95 4.32 5.45 15.70 3.62 2.77 4.91 5.25 8.71 8.73 14.71 5.83 2.82 5.08

QALYs MC SE 0.11 0.10 0.13 0.36 0.08 0.06 0.11 0.12 0.20 0.20 0.34 0.13 0.06 0.12

QALYs MSE 28.37 21.40 32.04 651.02 54.34 171.21 30.91 29.98 75.84 87.69 804.19 64.86 167.56 29.14

QALYs MC SE 0.80 0.73 1.22 27.78 1.47 2.26 0.97 0.87 25.60 21.94 27.58 13.00 2.27 0.97

QALYs Rel P 0.00% 30.88% -17.48% -90.06% 86.64% 218.17% 1.68% 0.00% -63.65% -63.79% -87.26% -18.74% 247.72% 6.76%

QALYs ModelSE 5.29 11.38 11.63 23.03 7.82 3.15 6.20 5.29 11.38 11.63 23.03 7.82 3.15 6.20

QALYs Cover2 0.90 0.94 0.98 0.90 0.70 0.05 0.91 0.90 0.95 0.98 0.91 0.73 0.05 0.93

QALYs Cover1 1.00 1.00 1.00 0.98 0.96 0.53 1.00 1.00 1.00 1.00 0.98 0.96 0.53 1.00
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Table 65 : Result for simulated scenario 43 

Scenario43 Deterministic Probabilistic

PSM STM STM - Log STM - Time MSM Li's model Fu's model PSM STM STM - Log STM - Time MSM Li's model Fu's model

PFS Mean 61.80 62.17 62.03 62.05 58.07 49.31 58.72 62.23 62.81 62.67 62.69 56.86 49.45 59.12

PFS Bias -7.40 -7.03 -7.18 -7.15 -11.13 -19.89 -10.48 -6.97 -6.39 -6.54 -6.51 -12.34 -19.75 -10.08

PFS MC SE 0.20 0.20 0.20 0.20 0.18 0.10 0.18 0.20 0.21 0.21 0.21 0.22 0.10 0.18

PFS Rel Bias -10.7% -10.2% -10.4% -10.3% -16.1% -28.7% -15.1% -10.1% -9.2% -9.4% -9.4% -17.8% -28.5% -14.6%

PFS empSE 6.03 6.28 6.28 6.23 5.66 3.14 5.51 6.10 6.50 6.51 6.45 6.83 3.17 5.67

PFS MC SE 0.14 0.14 0.14 0.14 0.13 0.07 0.13 0.14 0.15 0.15 0.15 0.16 0.07 0.13

PFS MSE 91.13 88.84 90.85 89.86 155.97 405.55 140.24 85.79 83.12 84.99 84.01 198.80 400.02 133.70

PFS MC SE 2.90 2.91 2.97 2.90 3.53 3.99 3.47 2.84 2.92 2.98 2.91 5.78 3.99 3.43

PFS Rel P 0.00% -7.66% -7.67% -6.19% 13.62% 268.43% 19.70% 0.00% -11.86% -11.98% -10.57% -20.04% 270.14% 15.90%

PFS ModelSE 5.63 5.89 5.86 5.86 8.70 3.16 5.41 5.63 5.89 5.86 5.86 8.70 3.16 5.41

PFS Cover2 0.63 0.65 0.65 0.65 0.43 0.00 0.43 0.65 0.69 0.68 0.68 0.44 0.00 0.46

PFS Cover1 0.93 0.93 0.93 0.93 0.79 0.12 0.89 0.93 0.93 0.93 0.93 0.79 0.12 0.89

OS Mean 199.20 192.18 218.63 329.92 187.96 105.49 203.18 203.88 196.59 235.41 339.37 192.38 106.09 210.69

OS Bias 5.62 -1.41 25.04 136.34 -5.63 -88.10 9.60 10.30 3.00 41.82 145.78 -1.20 -87.49 17.10

OS MC SE 0.73 0.82 1.22 2.91 0.80 0.21 0.70 0.83 0.90 1.62 2.52 0.99 0.22 0.72

OS Rel Bias 0.03                   0.01-             0.13                 0.70                   0.03-             0.46-                0.05                  0.05                   0.02               0.22                 0.75                   0.01-               0.45-                0.09                  

OS empSE 22.64 25.38 37.59 89.82 24.68 6.59 21.49 25.48 27.70 50.05 77.65 30.45 6.73 22.26

OS MC SE 0.52 0.58 0.86 2.06 0.57 0.15 0.49 0.58 0.64 1.15 1.78 0.70 0.15 0.51

OS MSE 543.82 645.64 2038.39 26648.16 640.26 7805.15 553.50 754.50 775.24 4251.08 27274.91 927.39 7700.42 787.32

OS MC SE 0.52 0.58 0.86 2.06 0.57 0.15 0.49 46.80 32.48 360.69 761.90 38.47 38.05 38.23

OS Rel P 0.00% -20.42% -63.70% -93.64% -15.83% 1080.85% 11.02% 0.00% -15.37% -74.08% -89.23% -29.96% 1332.23% 31.02%

OS ModelSE 43.58 46.22 81.46 99.33 51.03 7.65 44.81 43.58 46.22 81.46 99.33 51.03 7.65 44.81

OS Cover2 1.00 0.96 0.99 0.54 0.95 0.00 1.00 1.00 0.97 0.99 0.57 0.96 0.00 1.00

OS Cover1 1.00 1.00 1.00 0.88 1.00 0.01 1.00 1.00 1.00 1.00 0.88 1.00 0.01 1.00

QALYs Mean 118.14 114.74 127.92 183.58 111.40 67.54 119.21 120.61 117.13 136.50 188.49 113.25 67.88 123.08

QALYs Bias 0.59 -2.81 10.37 66.02 -6.15 -50.02 1.65 3.06 -0.42 18.95 70.94 -4.30 -49.67 5.53

QALYs MC SE 0.37 0.42 0.62 1.47 0.41 0.12 0.36 0.42 0.46 0.82 1.27 0.51 0.13 0.37

QALYs Rel Bias 0.01                   0.02-             0.09                 0.56                   0.05-             0.43-                0.01                  0.03                   0.00-               0.16                 0.60                   0.04-               0.42-                0.05                  

QALYs empSE 11.51 12.93 19.04 45.23 12.54 3.85 10.96 12.96 14.12 25.35 39.19 15.87 3.92 11.39

QALYs MC SE 0.26 0.30 0.44 1.04 0.29 0.09 0.25 0.30 0.32 0.58 0.90 0.36 0.09 0.26

QALYs MSE 132.79 174.89 469.50 6403.12 194.99 2516.59 122.83 177.17 199.39 1001.12 6565.97 270.12 2482.60 160.09

QALYs MC SE 4.04 5.59 25.07 199.43 6.67 12.46 4.15 10.95 8.14 88.00 187.51 11.71 12.61 8.01

QALYs Rel P 0.00% -20.68% -63.41% -93.52% -15.71% 795.17% 10.28% 0.00% -15.76% -73.86% -89.06% -33.29% 990.80% 29.54%

QALYs ModelSE 22.00 23.37 40.98 49.97 26.71 4.41 22.99 22.00 23.37 40.98 49.97 26.71 4.41 22.99

QALYs Cover2 1.00 0.94 0.99 0.56 0.94 0.00 1.00 1.00 0.96 0.99 0.58 0.95 0.00 1.00

QALYs Cover1 1.00 1.00 1.00 0.89 1.00 0.01 1.00 1.00 1.00 1.00 0.89 1.00 0.01 1.00
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Table 66 : Result for simulated scenario 44 

 

 

Scenario44 Deterministic Probabilistic

PSM STM STM - Log STM - Time MSM Li's model Fu's model PSM STM STM - Log STM - Time MSM Li's model Fu's model

PFS Mean 61.21 62.71 62.48 62.42 57.43 49.98 57.57 61.58 63.37 63.14 63.09 56.49 50.12 57.93

PFS Bias -7.89 -6.39 -6.62 -6.68 -11.67 -19.12 -11.53 -7.52 -5.73 -5.96 -6.01 -12.61 -18.98 -11.17

PFS MC SE 0.17 0.21 0.20 0.20 0.19 0.10 0.15 0.17 0.21 0.21 0.21 0.21 0.10 0.16

PFS Rel Bias -11.4% -9.3% -9.6% -9.7% -16.9% -27.7% -16.7% -10.9% -8.3% -8.6% -8.7% -18.2% -27.5% -16.2%

PFS empSE 5.33 6.42 6.31 6.27 5.72 3.12 4.74 5.33 6.62 6.51 6.47 6.57 3.15 4.80

PFS MC SE 0.12 0.15 0.14 0.14 0.13 0.07 0.11 0.12 0.15 0.15 0.15 0.15 0.07 0.11

PFS MSE 90.56 82.05 83.63 83.81 168.98 375.18 155.33 84.89 76.66 77.85 77.99 202.09 370.09 147.80

PFS MC SE 2.77 2.81 2.82 2.82 3.78 3.81 3.48 2.67 2.76 2.76 2.76 5.15 3.82 3.42

PFS Rel P 0.00% -31.20% -28.83% -27.76% -13.42% 191.52% 26.15% 0.00% -35.19% -32.95% -32.06% -34.04% 187.24% 23.33%

PFS ModelSE 5.15 5.92 5.88 5.87 8.37 3.28 4.94 5.15 5.92 5.88 5.87 8.37 3.28 4.94

PFS Cover2 0.60 0.69 0.68 0.68 0.40 0.00 0.34 0.62 0.72 0.71 0.71 0.40 0.00 0.36

PFS Cover1 0.91 0.94 0.94 0.94 0.77 0.17 0.87 0.91 0.94 0.94 0.94 0.77 0.17 0.87

OS Mean 126.48 122.91 134.18 216.81 122.01 80.63 128.34 127.81 125.67 140.17 222.95 124.34 80.89 130.58

OS Bias 1.29 -2.28 8.99 91.62 -3.18 -44.56 3.15 2.62 0.48 14.98 97.76 -0.85 -44.30 5.39

OS MC SE 0.51 0.43 0.52 1.74 0.42 0.13 0.50 0.53 0.52 0.89 1.57 0.56 0.13 0.51

OS Rel Bias 0.01                   0.02-             0.07                 0.73                   0.03-             0.36-                0.03                  0.02                   0.00               0.12                 0.78                   0.01-               0.35-                0.04                  

OS empSE 15.71 13.21 16.03 53.66 12.86 3.88 15.50 16.29 16.03 27.34 48.48 17.16 3.93 15.69

OS MC SE 0.36 0.30 0.37 1.23 0.30 0.09 0.36 0.37 0.37 0.63 1.11 0.39 0.09 0.36

OS MSE 248.06 179.54 337.62 11271.40 175.21 2000.55 249.88 271.88 257.02 971.23 11904.81 294.87 1977.78 274.87

OS MC SE 0.36 0.30 0.37 1.23 0.30 0.09 0.36 7.84 34.21 271.55 325.24 33.44 11.24 9.21

OS Rel P 0.00% 41.34% -4.02% -91.43% 49.22% 1536.30% 2.68% 0.00% 3.20% -64.52% -88.71% -9.91% 1617.22% 7.81%

OS ModelSE 17.03 24.98 36.62 62.75 27.55 4.68 17.44 17.03 24.98 36.62 62.75 27.55 4.68 17.44

OS Cover2 0.97 0.88 0.99 0.59 0.94 0.00 0.98 0.98 0.90 0.99 0.61 0.95 0.00 0.99

OS Cover1 1.00 1.00 1.00 0.87 1.00 0.00 1.00 1.00 1.00 1.00 0.87 1.00 0.00 1.00

QALYs Mean 81.60 80.26 85.84 127.13 78.23 55.31 81.44 82.38 81.85 89.03 130.40 79.12 55.48 82.67

QALYs Bias -1.72 -3.06 2.51 43.81 -5.09 -28.01 -1.88 -0.94 -1.48 5.70 47.08 -4.21 -27.84 -0.66

QALYs MC SE 0.26 0.21 0.28 0.89 0.22 0.09 0.26 0.27 0.26 0.46 0.81 0.30 0.09 0.26

QALYs Rel Bias 0.02-                   0.04-             0.03                 0.53                   0.06-             0.34-                0.02-                  0.01-                   0.02-               0.07                 0.56                   0.05-               0.33-                0.01-                  

QALYs empSE 8.06 6.57 8.69 27.37 6.71 2.70 7.97 8.39 8.06 14.16 24.87 9.21 2.73 8.07

QALYs MC SE 0.18 0.15 0.20 0.63 0.15 0.06 0.18 0.19 0.19 0.32 0.57 0.21 0.06 0.19

QALYs MSE 67.84 52.50 81.77 2667.52 70.82 792.07 67.03 71.25 67.15 232.78 2834.16 102.41 782.65 65.55

QALYs MC SE 1.88 1.75 3.21 86.84 2.53 4.86 2.01 1.94 9.11 66.17 81.25 9.95 4.89 1.92

QALYs Rel P 0.00% 50.37% -14.03% -91.33% 44.43% 794.03% 2.20% 0.00% 8.30% -64.86% -88.61% -16.93% 847.63% 8.06%

QALYs ModelSE 8.80 12.99 18.79 31.85 15.21 3.15 9.62 8.80 12.99 18.79 31.85 15.21 3.15 9.62

QALYs Cover2 0.91 0.94 0.98 0.63 0.89 0.00 0.94 0.93 0.95 0.98 0.65 0.92 0.00 0.96

QALYs Cover1 1.00 1.00 1.00 0.89 1.00 0.01 1.00 1.00 1.00 1.00 0.89 1.00 0.01 1.00
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Table 67 : Result for simulated scenario 45 

 

 

Scenario45 Deterministic Probabilistic

PSM STM STM - Log STM - Time MSM Li's model Fu's model PSM STM STM - Log STM - Time MSM Li's model Fu's model

PFS Mean 61.16 63.02 63.16 62.97 56.43 50.48 57.34 61.54 63.72 63.85 63.66 56.35 50.59 57.57

PFS Bias -7.89 -6.03 -5.90 -6.08 -12.62 -18.57 -11.71 -7.51 -5.34 -5.20 -5.39 -12.70 -18.46 -11.48

PFS MC SE 0.16 0.20 0.21 0.21 0.17 0.10 0.14 0.16 0.21 0.21 0.21 0.18 0.10 0.14

PFS Rel Bias -11.4% -8.7% -8.5% -8.8% -18.3% -26.9% -17.0% -10.9% -7.7% -7.5% -7.8% -18.4% -26.7% -16.6%

PFS empSE 4.86 6.22 6.36 6.37 5.38 3.06 4.31 4.90 6.41 6.55 6.55 5.64 3.08 4.34

PFS MC SE 0.11 0.14 0.15 0.15 0.12 0.07 0.10 0.11 0.15 0.15 0.15 0.13 0.07 0.10

PFS MSE 85.79 74.97 75.17 77.55 188.29 354.22 155.72 80.34 69.46 69.86 71.95 193.08 350.45 150.62

PFS MC SE 2.61 2.67 2.56 2.68 3.97 3.66 3.36 2.52 2.56 2.47 2.58 4.34 3.67 3.32

PFS Rel P 0.00% -38.96% -41.64% -41.87% -18.49% 151.94% 27.18% 0.00% -41.51% -44.01% -44.10% -24.50% 152.42% 27.68%

PFS ModelSE 5.15 5.94 5.97 5.91 6.47 3.40 4.85 5.15 5.94 5.97 5.91 6.47 3.40 4.85

PFS Cover2 0.60 0.72 0.71 0.71 0.32 0.00 0.34 0.62 0.75 0.75 0.74 0.32 0.00 0.35

PFS Cover1 0.93 0.95 0.95 0.95 0.71 0.19 0.86 0.93 0.95 0.95 0.95 0.71 0.19 0.86

OS Mean 92.58 83.15 92.29 141.86 80.55 64.90 94.36 93.44 84.57 94.16 145.94 82.11 65.05 95.33

OS Bias -0.96 -10.39 -1.25 48.32 -12.99 -28.64 0.82 -0.10 -8.97 0.61 52.40 -11.43 -28.49 1.79

OS MC SE 0.33 0.17 0.31 0.92 0.17 0.10 0.33 0.34 0.37 0.37 0.88 0.41 0.11 0.34

OS Rel Bias 0.01-                   0.11-             0.01-                 0.52                   0.14-             0.31-                0.01                  0.00-                   0.10-               0.01                 0.56                   0.12-               0.30-                0.02                  

OS empSE 10.20 5.28 9.45 28.31 5.26 3.23 10.19 10.52 11.28 11.47 27.16 12.53 3.26 10.36

OS MC SE 0.23 0.12 0.22 0.65 0.12 0.07 0.23 0.24 0.26 0.26 0.62 0.29 0.07 0.24

OS MSE 104.82 135.81 90.72 3134.90 196.38 830.57 104.33 110.66 207.54 131.86 3482.80 287.47 822.20 110.43

OS MC SE 0.23 0.12 0.22 0.65 0.12 0.07 0.23 3.57 67.87 26.68 105.04 81.73 5.99 3.80

OS Rel P 0.00% 272.63% 16.55% -87.02% 276.62% 895.54% 0.23% 0.00% -12.95% -15.84% -84.98% -29.40% 941.28% 3.20%

OS ModelSE 10.29 15.72 14.99 37.16 17.30 3.73 10.37 10.29 15.72 14.99 37.16 17.30 3.73 10.37

OS Cover2 0.85 0.59 0.92 0.78 0.54 0.00 0.89 0.86 0.63 0.93 0.79 0.58 0.00 0.90

OS Cover1 1.00 1.00 1.00 0.92 0.96 0.03 1.00 1.00 1.00 1.00 0.92 0.96 0.03 1.00

QALYs Mean 64.64 60.48 65.09 89.82 57.20 47.60 64.38 65.18 61.40 66.23 92.07 57.96 47.70 64.94

QALYs Bias -2.85 -7.00 -2.40 22.33 -10.28 -19.89 -3.10 -2.30 -6.08 -1.25 24.58 -9.53 -19.78 -2.55

QALYs MC SE 0.19 0.12 0.20 0.48 0.11 0.08 0.19 0.20 0.21 0.23 0.47 0.22 0.08 0.19

QALYs Rel Bias 0.04-                   0.10-             0.04-                 0.33                   0.15-             0.29-                0.05-                  0.03-                   0.09-               0.02-                 0.36                   0.14-               0.29-                0.04-                  

QALYs empSE 5.89 3.82 6.12 14.90 3.35 2.48 5.72 6.12 6.38 7.02 14.48 6.72 2.50 5.81

QALYs MC SE 0.14 0.09 0.14 0.34 0.08 0.06 0.13 0.14 0.15 0.16 0.33 0.15 0.06 0.13

QALYs MSE 42.80 63.59 43.16 720.66 116.94 401.77 42.34 42.66 77.72 50.83 813.91 135.93 397.65 40.25

QALYs MC SE 1.53 1.59 1.56 26.54 2.16 3.18 1.57 1.50 17.38 6.45 26.84 20.05 3.19 1.48

QALYs Rel P 0.00% 138.53% -7.26% -84.36% 210.02% 463.92% 6.08% 0.00% -8.21% -24.17% -82.17% -17.28% 496.58% 10.67%

QALYs ModelSE 5.49 8.67 8.48 19.28 9.64 2.84 6.34 5.49 8.67 8.48 19.28 9.64 2.84 6.34

QALYs Cover2 0.79 0.65 0.87 0.83 0.41 0.00 0.84 0.80 0.70 0.89 0.83 0.46 0.00 0.86

QALYs Cover1 0.95 0.99 1.00 0.96 0.93 0.06 0.99 0.95 0.99 1.00 0.96 0.93 0.06 0.99
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Table 68 : Result for simulated scenario 46 

 

 

Scenario46 Deterministic Probabilistic

PSM STM STM - Log STM - Time MSM Li's model Fu's model PSM STM STM - Log STM - Time MSM Li's model Fu's model

PFS Mean 57.32 57.51 57.38 57.35 50.76 44.42 52.46 57.85 58.16 58.03 58.00 50.54 44.54 52.73

PFS Bias 1.23 1.42 1.29 1.26 -5.33 -11.67 -3.63 1.76 2.07 1.94 1.91 -5.56 -11.55 -3.36

PFS MC SE 0.18 0.19 0.19 0.18 0.15 0.09 0.14 0.19 0.19 0.19 0.19 0.15 0.09 0.15

PFS Rel Bias 2.2% 2.5% 2.3% 2.3% -9.5% -20.8% -6.5% 3.1% 3.7% 3.5% 3.4% -9.9% -20.6% -6.0%

PFS empSE 5.68 5.76 5.71 5.68 4.47 2.83 4.46 5.78 5.93 5.89 5.86 4.48 2.85 4.53

PFS MC SE 0.13 0.13 0.13 0.13 0.10 0.06 0.10 0.13 0.14 0.14 0.13 0.10 0.07 0.10

PFS MSE 33.71 35.10 34.28 33.87 48.37 144.20 33.10 36.49 39.40 38.38 37.92 50.92 141.60 31.78

PFS MC SE 1.54 1.62 1.59 1.57 1.49 2.12 1.25 1.69 1.84 1.82 1.79 1.56 2.11 1.22

PFS Rel P 0.00% -2.69% -1.26% -0.23% 61.30% 302.84% 61.93% 0.00% -4.91% -3.55% -2.57% 66.70% 310.57% 62.98%

PFS ModelSE 5.26 5.40 5.38 5.37 4.76 2.84 4.53 5.26 5.40 5.38 5.37 4.76 2.84 4.53

PFS Cover2 0.91 0.92 0.92 0.92 0.63 0.05 0.79 0.91 0.91 0.92 0.92 0.63 0.06 0.79

PFS Cover1 1.00 1.00 1.00 1.00 0.93 0.47 0.98 1.00 1.00 1.00 1.00 0.93 0.47 0.98

OS Mean 203.66 190.49 225.62 307.54 187.20 100.80 201.64 207.33 196.21 242.58 323.33 195.94 101.75 206.95

OS Bias 7.19 -5.98 29.15 111.07 -9.27 -95.66 5.18 10.86 -0.26 46.11 126.86 -0.53 -94.72 10.48

OS MC SE 0.68 0.85 1.44 2.99 0.81 0.24 0.69 0.90 0.92 1.73 2.58 0.95 0.25 0.78

OS Rel Bias 0.04                   0.03-             0.15                 0.57                   0.05-             0.49-                0.03                  0.06                   0.00-               0.23                 0.65                   0.00-               0.48-                0.05                  

OS empSE 20.82 26.20 44.36 92.22 25.09 7.43 21.34 27.88 28.51 53.38 79.67 29.34 7.68 23.93

OS MC SE 0.48 0.60 1.02 2.12 0.58 0.17 0.49 0.64 0.65 1.23 1.83 0.67 0.18 0.55

OS MSE 484.89 721.38 2815.30 20833.27 714.94 9206.95 481.68 894.42 811.82 4972.81 22432.62 860.24 9031.54 681.86

OS MC SE 0.48 0.60 1.02 2.12 0.58 0.17 0.49 247.98 46.47 373.84 785.44 43.70 46.98 47.93

OS Rel P 0.00% -36.81% -77.96% -94.90% -31.14% 684.75% -4.77% 0.00% -4.34% -72.72% -87.75% -9.70% 1218.45% 35.75%

OS ModelSE 39.09 50.02 84.16 106.71 53.24 9.12 38.76 39.09 50.02 84.16 106.71 53.24 9.12 38.76

OS Cover2 1.00 0.98 0.98 0.62 0.99 0.00 1.00 1.00 0.99 0.98 0.64 0.99 0.00 1.00

OS Cover1 1.00 1.00 1.00 0.94 1.00 0.03 1.00 1.00 1.00 1.00 0.94 1.00 0.03 1.00

QALYs Mean 119.03 112.50 130.03 170.98 108.83 63.73 116.56 121.02 115.55 138.70 179.06 113.13 64.23 119.29

QALYs Bias 3.96 -2.57 14.96 55.91 -6.23 -51.33 1.50 5.96 0.49 23.63 64.00 -1.93 -50.83 4.23

QALYs MC SE 0.34 0.43 0.72 1.50 0.41 0.13 0.35 0.46 0.47 0.87 1.30 0.48 0.14 0.39

QALYs Rel Bias 0.03                   0.02-             0.13                 0.49                   0.05-             0.45-                0.01                  0.05                   0.00               0.21                 0.56                   0.02-               0.44-                0.04                  

QALYs empSE 10.60 13.24 22.31 46.18 12.69 4.13 10.87 14.08 14.39 26.78 39.92 14.81 4.26 12.11

QALYs MC SE 0.24 0.30 0.51 1.06 0.29 0.09 0.25 0.32 0.33 0.61 0.92 0.34 0.10 0.28

QALYs MSE 127.97 181.80 720.99 5257.03 199.76 2652.21 120.28 233.43 207.13 1274.98 5687.99 222.72 2601.56 164.35

QALYs MC SE 4.88 5.66 39.76 184.76 6.52 13.73 4.31 62.94 11.66 94.02 197.81 10.53 14.00 11.38

QALYs Rel P 0.00% -35.93% -77.42% -94.73% -30.24% 557.81% -4.89% 0.00% -4.31% -72.36% -87.56% -9.60% 993.60% 35.19%

QALYs ModelSE 19.68 25.15 42.23 53.49 26.86 4.99 19.81 19.68 25.15 42.23 53.49 26.86 4.99 19.81

QALYs Cover2 1.00 0.98 0.98 0.62 0.98 0.00 1.00 1.00 0.99 0.98 0.65 0.99 0.00 1.00

QALYs Cover1 1.00 1.00 1.00 0.94 1.00 0.03 1.00 1.00 1.00 1.00 0.94 1.00 0.03 1.00
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Table 69 : Result for simulated scenario 47 

 

 

Scenario47 Deterministic Probabilistic

PSM STM STM - Log STM - Time MSM Li's model Fu's model PSM STM STM - Log STM - Time MSM Li's model Fu's model

PFS Mean 55.50 57.72 57.56 57.57 50.49 45.17 50.92 55.76 58.38 58.22 58.22 50.36 45.28 51.15

PFS Bias -0.48 1.74 1.58 1.59 -5.49 -10.81 -5.06 -0.23 2.39 2.24 2.24 -5.62 -10.70 -4.84

PFS MC SE 0.15 0.19 0.19 0.19 0.15 0.09 0.13 0.15 0.20 0.20 0.20 0.15 0.09 0.13

PFS Rel Bias -0.9% 3.1% 2.8% 2.8% -9.8% -19.3% -9.0% -0.4% 4.3% 4.0% 4.0% -10.0% -19.1% -8.6%

PFS empSE 4.64 5.94 5.91 5.89 4.55 2.84 4.01 4.64 6.13 6.10 6.08 4.59 2.87 4.07

PFS MC SE 0.11 0.14 0.14 0.14 0.10 0.07 0.09 0.11 0.14 0.14 0.14 0.11 0.07 0.09

PFS MSE 21.70 38.29 37.42 37.19 50.81 124.94 41.67 21.58 43.27 42.17 41.93 52.69 122.68 39.93

PFS MC SE 0.89 1.78 1.75 1.75 1.57 1.97 1.40 0.89 2.03 1.99 1.99 1.62 1.97 1.37

PFS Rel P 0.00% -39.14% -38.50% -38.08% 3.82% 166.71% 33.63% 0.00% -42.66% -42.09% -41.68% 2.13% 161.49% 30.08%

PFS ModelSE 4.45 5.45 5.42 5.43 4.52 2.96 4.22 4.45 5.45 5.42 5.43 4.52 2.96 4.22

PFS Cover2 0.91 0.92 0.92 0.92 0.61 0.09 0.70 0.91 0.91 0.91 0.91 0.60 0.10 0.72

PFS Cover1 1.00 1.00 1.00 1.00 0.92 0.57 0.97 1.00 1.00 1.00 1.00 0.92 0.57 0.97

OS Mean 107.03 106.91 117.99 182.28 108.92 72.43 107.69 108.84 109.91 124.61 191.49 112.91 72.70 110.02

OS Bias -0.54 -0.67 10.42 74.71 1.35 -35.15 0.12 1.27 2.34 17.03 83.91 5.33 -34.87 2.44

OS MC SE 0.43 0.39 0.46 1.58 0.41 0.12 0.41 0.55 0.55 0.69 1.50 0.50 0.13 0.45

OS Rel Bias 0.01-                   0.01-             0.10                 0.69                   0.01             0.33-                0.00                  0.01                   0.02               0.16                 0.78                   0.05               0.32-                0.02                  

OS empSE 13.41 11.91 14.23 48.64 12.77 3.83 12.74 16.97 16.85 21.32 46.10 15.38 3.88 13.79

OS MC SE 0.31 0.27 0.33 1.12 0.29 0.09 0.29 0.39 0.39 0.49 1.06 0.35 0.09 0.32

OS MSE 179.80 142.19 310.85 7944.05 164.67 1249.95 162.16 289.24 289.01 743.96 9164.20 264.78 1231.02 195.90

OS MC SE 0.31 0.27 0.33 1.12 0.29 0.09 0.29 68.75 69.85 77.65 294.45 13.45 8.77 10.43

OS Rel P 0.00% 26.64% -11.29% -92.40% 10.23% 1122.84% 10.71% 0.00% 1.45% -36.63% -86.45% 21.71% 1812.44% 51.45%

OS ModelSE 20.29 23.06 34.84 62.08 22.16 4.51 17.68 20.29 23.06 34.84 62.08 22.16 4.51 17.68

OS Cover2 0.98 0.94 1.00 0.64 0.97 0.00 0.99 0.98 0.96 1.00 0.65 0.97 0.00 0.99

OS Cover1 1.00 1.00 1.00 0.89 1.00 0.03 1.00 1.00 1.00 1.00 0.89 1.00 0.03 1.00

QALYs Mean 70.17 70.77 76.26 108.41 69.61 49.76 69.12 71.15 72.47 79.77 113.21 71.56 49.94 70.35

QALYs Bias -0.41 0.19 5.68 37.83 -0.97 -20.82 -1.46 0.57 1.89 9.19 42.63 0.98 -20.64 -0.23

QALYs MC SE 0.23 0.19 0.25 0.80 0.21 0.08 0.22 0.28 0.27 0.36 0.76 0.25 0.08 0.23

QALYs Rel Bias 0.01-                   0.00             0.08                 0.54                   0.01-             0.29-                0.02-                  0.01                   0.03               0.13                 0.60                   0.01               0.29-                0.00-                  

QALYs empSE 6.94 5.80 7.71 24.76 6.51 2.58 6.66 8.69 8.44 11.15 23.51 7.72 2.61 7.16

QALYs MC SE 0.16 0.13 0.18 0.57 0.15 0.06 0.15 0.20 0.19 0.26 0.54 0.18 0.06 0.16

QALYs MSE 48.34 33.63 91.73 2043.30 43.23 439.97 46.41 75.74 74.73 208.66 2369.38 60.51 433.00 51.27

QALYs MC SE 1.68 1.38 3.77 69.32 1.55 3.48 1.50 16.90 19.29 19.41 75.61 2.91 3.49 2.31

QALYs Rel P 0.00% 43.37% -18.96% -92.13% 13.92% 626.19% 8.76% 0.00% 5.97% -39.31% -86.34% 26.64% 1010.19% 47.25%

QALYs ModelSE 10.42 11.93 17.75 31.33 11.48 2.96 9.51 10.42 11.93 17.75 31.33 11.48 2.96 9.51

QALYs Cover2 0.97 0.99 1.00 0.64 0.96 0.00 0.97 0.97 1.00 1.00 0.66 0.97 0.00 0.98

QALYs Cover1 1.00 1.00 1.00 0.89 1.00 0.06 1.00 1.00 1.00 1.00 0.89 1.00 0.06 1.00
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Table 70 : Result for simulated scenario 48 

 

 

Scenario48 Deterministic Probabilistic

PSM STM STM - Log STM - Time MSM Li's model Fu's model PSM STM STM - Log STM - Time MSM Li's model Fu's model

PFS Mean 53.53 57.45 57.58 57.45 50.28 45.91 49.86 53.67 58.08 58.22 58.09 50.27 45.99 50.08

PFS Bias -2.40 1.52 1.65 1.52 -5.66 -10.02 -6.07 -2.26 2.15 2.29 2.16 -5.66 -9.94 -5.85

PFS MC SE 0.12 0.19 0.19 0.20 0.15 0.09 0.11 0.13 0.20 0.20 0.20 0.15 0.09 0.11

PFS Rel Bias -4.3% 2.7% 3.0% 2.7% -10.1% -17.9% -10.9% -4.0% 3.8% 4.1% 3.9% -10.1% -17.8% -10.5%

PFS empSE 3.84 5.93 5.97 6.05 4.52 2.77 3.41 3.89 6.13 6.17 6.25 4.60 2.79 3.45

PFS MC SE 0.09 0.14 0.14 0.14 0.10 0.06 0.08 0.09 0.14 0.14 0.14 0.11 0.06 0.08

PFS MSE 20.48 37.44 38.31 38.93 52.42 108.15 48.46 20.21 42.12 43.21 43.72 53.20 106.64 46.11

PFS MC SE 0.79 1.66 1.75 1.84 1.58 1.79 1.39 0.78 1.88 1.98 2.08 1.62 1.79 1.36

PFS Rel P 0.00% -58.15% -58.66% -59.83% -28.01% 91.98% 26.58% 0.00% -59.70% -60.21% -61.33% -28.44% 93.68% 26.91%

PFS ModelSE 3.91 5.33 5.36 5.34 4.34 3.03 3.88 3.91 5.33 5.36 5.34 4.34 3.03 3.88

PFS Cover2 0.84 0.89 0.89 0.88 0.59 0.12 0.62 0.84 0.88 0.88 0.87 0.59 0.13 0.64

PFS Cover1 0.99 1.00 1.00 1.00 0.91 0.64 0.95 0.99 1.00 1.00 1.00 0.91 0.64 0.95

OS Mean 76.68 75.18 83.49 119.44 72.44 59.65 77.15 77.23 76.20 85.43 122.61 73.77 59.78 77.90

OS Bias -2.26 -3.76 4.55 40.50 -6.50 -19.29 -1.79 -1.71 -2.74 6.49 43.67 -5.17 -19.16 -1.04

OS MC SE 0.31 0.17 0.26 0.80 0.17 0.10 0.31 0.32 0.24 0.36 0.75 0.21 0.10 0.32

OS Rel Bias 0.03-                   0.05-             0.06                 0.51                   0.08-             0.24-                0.02-                  0.02-                   0.03-               0.08                 0.55                   0.07-               0.24-                0.01-                  

OS empSE 9.50 5.33 8.14 24.53 5.18 3.03 9.67 9.85 7.47 11.07 23.09 6.47 3.05 9.89

OS MC SE 0.22 0.12 0.19 0.56 0.12 0.07 0.22 0.23 0.17 0.25 0.53 0.15 0.07 0.23

OS MSE 95.35 42.57 86.81 2241.68 68.99 381.24 96.58 99.76 63.23 164.63 2439.68 68.46 376.34 98.78

OS MC SE 0.22 0.12 0.19 0.56 0.12 0.07 0.22 2.66 23.14 29.19 74.46 2.27 3.78 2.85

OS Rel P 0.00% 217.58% 36.47% -84.99% 237.10% 885.48% -3.37% 0.00% 73.78% -20.93% -81.81% 131.92% 939.42% -0.89%

OS ModelSE 7.90 10.58 15.45 30.89 8.88 3.45 7.82 7.90 10.58 15.45 30.89 8.88 3.45 7.82

OS Cover2 0.80 0.85 0.98 0.76 0.73 0.00 0.83 0.81 0.87 0.99 0.77 0.74 0.00 0.85

OS Cover1 1.00 1.00 1.00 0.92 0.99 0.16 1.00 1.00 1.00 1.00 0.92 0.99 0.16 1.00

QALYs Mean 54.40 54.82 59.02 76.96 51.30 43.60 53.53 54.72 55.53 60.18 78.73 51.97 43.69 53.98

QALYs Bias -1.85 -1.43 2.77 20.71 -4.95 -12.65 -2.72 -1.53 -0.72 3.93 22.48 -4.28 -12.56 -2.27

QALYs MC SE 0.17 0.13 0.17 0.42 0.10 0.07 0.17 0.18 0.15 0.21 0.40 0.11 0.07 0.17

QALYs Rel Bias 0.03-                   0.03-             0.05                 0.37                   0.09-             0.22-                0.05-                  0.03-                   0.01-               0.07                 0.40                   0.08-               0.22-                0.04-                  

QALYs empSE 5.31 3.88 5.28 12.86 3.04 2.28 5.24 5.54 4.70 6.58 12.23 3.53 2.30 5.37

QALYs MC SE 0.12 0.09 0.12 0.30 0.07 0.05 0.12 0.13 0.11 0.15 0.28 0.08 0.05 0.12

QALYs MSE 31.56 17.10 35.52 593.96 33.67 165.27 34.83 32.98 22.57 58.68 654.89 30.81 163.09 33.98

QALYs MC SE 0.85 0.63 1.39 20.45 0.91 1.87 0.99 0.91 5.90 7.79 20.32 0.90 1.87 0.95

QALYs Rel P 0.00% 86.76% 1.04% -82.96% 205.57% 440.97% 2.49% 0.00% 38.91% -29.11% -79.50% 145.67% 478.44% 6.30%

QALYs ModelSE 4.31 6.19 8.43 15.97 5.22 2.58 4.83 4.31 6.19 8.43 15.97 5.22 2.58 4.83

QALYs Cover2 0.77 0.93 0.97 0.77 0.75 0.00 0.79 0.78 0.95 0.97 0.78 0.77 0.00 0.80

QALYs Cover1 0.97 1.00 1.00 0.93 0.99 0.29 1.00 0.97 1.00 1.00 0.93 0.99 0.29 1.00
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Table 71 : Result for simulated scenario 49 

 

 

Scenario49 Deterministic Probabilistic

PSM STM STM - Log STM - Time MSM Li's model Fu's model PSM STM STM - Log STM - Time MSM Li's model Fu's model

PFS Mean 66.34 66.38 66.28 66.42 63.93 57.71 63.61 66.95 67.02 66.92 67.06 63.19 57.84 64.69

PFS Bias -2.96 -2.92 -3.02 -2.87 -5.37 -11.58 -5.68 -2.35 -2.28 -2.38 -2.23 -6.11 -11.46 -4.60

PFS MC SE 0.21 0.21 0.21 0.21 0.20 0.12 0.20 0.22 0.22 0.22 0.22 0.23 0.12 0.21

PFS Rel Bias -4.3% -4.2% -4.4% -4.1% -7.8% -16.7% -8.2% -3.4% -3.3% -3.4% -3.2% -8.8% -16.5% -6.6%

PFS empSE 6.44 6.45 6.46 6.44 6.28 3.79 6.07 6.67 6.68 6.71 6.68 7.12 3.81 6.32

PFS MC SE 0.15 0.15 0.15 0.15 0.14 0.09 0.14 0.15 0.15 0.15 0.15 0.16 0.09 0.15

PFS MSE 50.21 50.00 50.83 49.64 68.24 148.54 69.07 49.93 49.83 50.57 49.56 87.98 145.77 61.08

PFS MC SE 2.06 2.04 2.07 2.04 2.37 2.87 2.34 2.15 2.14 2.16 2.14 3.54 2.86 2.19

PFS Rel P 0.00% -0.14% -0.70% 0.16% 5.20% 188.69% 12.70% 0.00% -0.49% -1.11% -0.35% -12.37% 206.27% 11.31%

PFS ModelSE 5.98 6.01 6.01 6.03 8.42 3.79 5.61 5.98 6.01 6.01 6.03 8.42 3.79 5.61

PFS Cover2 0.84 0.84 0.83 0.84 0.72 0.18 0.71 0.85 0.85 0.85 0.85 0.72 0.19 0.76

PFS Cover1 0.97 0.97 0.97 0.97 0.94 0.68 0.97 0.97 0.97 0.97 0.97 0.94 0.68 0.97

OS Mean 365.92 336.06 399.32 454.53 330.31 246.07 356.87 367.68 335.06 403.95 460.25 331.25 247.61 364.72

OS Bias 1.41 -28.44 34.81 90.02 -34.20 -118.44 -7.64 3.17 -29.45 39.44 95.74 -33.26 -116.90 0.21

OS MC SE 1.01 0.90 1.74 2.23 0.88 0.64 0.96 1.00 0.92 1.64 2.30 1.06 0.65 0.96

OS Rel Bias 0.00                   0.08-             0.10                 0.25                   0.09-             0.32-                0.02-                  0.01                   0.08-               0.11                 0.26                   0.09-               0.32-                0.00                  

OS empSE 31.05 27.85 53.49 68.74 27.02 19.76 29.58 30.85 28.43 50.62 70.91 32.81 20.14 29.58

OS MC SE 0.71 0.64 1.23 1.58 0.62 0.45 0.68 0.71 0.65 1.16 1.63 0.75 0.46 0.68

OS MSE 964.86 1584.13 4069.89 12824.63 1898.72 14417.77 932.69 960.80 1674.29 4115.59 14188.90 2181.81 14071.16 873.84

OS MC SE 0.71 0.64 1.23 1.58 0.62 0.45 0.68 32.02 59.90 233.90 601.81 103.06 150.99 33.65

OS Rel P 0.00% 24.24% -66.31% -79.60% 32.02% 146.88% 10.13% 0.00% 17.78% -62.86% -81.07% -11.61% 134.60% 8.80%

OS ModelSE 48.88 45.61 79.93 83.58 54.24 22.71 47.93 48.88 45.61 79.93 83.58 54.24 22.71 47.93

OS Cover2 1.00 0.91 0.90 0.61 0.90 0.00 0.99 1.00 0.91 0.91 0.61 0.92 0.00 1.00

OS Cover1 1.00 1.00 0.99 0.95 0.99 0.31 1.00 1.00 1.00 0.99 0.95 0.99 0.31 1.00

QALYs Mean 202.86 187.95 219.54 247.19 184.33 140.35 197.52 203.93 187.64 222.05 250.24 184.58 141.16 201.77

QALYs Bias -0.18 -15.10 16.50 44.15 -18.71 -62.69 -5.53 0.88 -15.41 19.01 47.20 -18.46 -61.89 -1.28

QALYs MC SE 0.52 0.46 0.87 1.13 0.45 0.34 0.49 0.51 0.47 0.83 1.16 0.56 0.34 0.50

QALYs Rel Bias 0.00-                   0.07-             0.08                 0.22                   0.09-             0.31-                0.03-                  0.00                   0.08-               0.09                 0.23                   0.09-               0.30-                0.01-                  

QALYs empSE 15.92 14.12 26.96 34.81 13.81 10.34 15.24 15.82 14.39 25.60 35.88 17.14 10.54 15.27

QALYs MC SE 0.37 0.32 0.62 0.80 0.32 0.24 0.35 0.36 0.33 0.59 0.82 0.39 0.24 0.35

QALYs MSE 253.25 426.95 998.11 3159.77 540.55 4037.42 262.50 250.71 444.10 1016.01 3513.71 634.31 3940.97 234.59

QALYs MC SE 8.60 14.38 43.81 100.20 17.18 41.65 10.11 8.53 15.79 58.28 150.82 30.38 41.88 8.90

QALYs Rel P 0.00% 27.22% -65.12% -79.08% 32.91% 137.05% 9.16% 0.00% 20.90% -61.83% -80.56% -14.84% 125.43% 7.28%

QALYs ModelSE 24.54 23.03 40.23 42.09 28.43 11.84 24.48 24.54 23.03 40.23 42.09 28.43 11.84 24.48

QALYs Cover2 1.00 0.91 0.90 0.62 0.89 0.00 0.99 1.00 0.91 0.92 0.63 0.91 0.00 1.00

QALYs Cover1 1.00 0.99 0.99 0.96 0.99 0.29 1.00 1.00 0.99 0.99 0.96 0.99 0.29 1.00
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Table 72 : Result for simulated scenario 50 

Scenario50 Deterministic Probabilistic

PSM STM STM - Log STM - Time MSM Li's model Fu's model PSM STM STM - Log STM - Time MSM Li's model Fu's model

PFS Mean 65.85 66.26 66.11 66.22 63.52 57.29 62.37 66.30 66.89 66.74 66.85 62.84 57.41 62.84

PFS Bias -3.36 -2.96 -3.10 -2.99 -5.70 -11.92 -6.85 -2.91 -2.33 -2.48 -2.37 -6.38 -11.80 -6.38

PFS MC SE 0.19 0.20 0.20 0.20 0.20 0.12 0.17 0.19 0.21 0.21 0.21 0.24 0.12 0.17

PFS Rel Bias -4.9% -4.3% -4.5% -4.3% -8.2% -17.2% -9.9% -4.2% -3.4% -3.6% -3.4% -9.2% -17.1% -9.2%

PFS empSE 5.90 6.25 6.22 6.24 6.23 3.66 5.30 5.96 6.45 6.42 6.44 7.32 3.68 5.35

PFS MC SE 0.14 0.14 0.14 0.14 0.14 0.08 0.12 0.14 0.15 0.15 0.15 0.17 0.08 0.12

PFS MSE 46.06 47.72 48.23 47.85 71.23 155.48 74.95 44.01 47.01 47.27 47.08 94.18 152.87 69.21

PFS MC SE 1.88 1.98 1.99 1.97 2.43 2.83 2.45 1.83 2.01 2.02 2.01 3.93 2.82 2.33

PFS Rel P 0.00% -10.88% -10.02% -10.65% -10.42% 159.47% 23.81% 0.00% -14.55% -13.57% -14.31% -33.55% 162.96% 24.53%

PFS ModelSE 5.53 5.92 5.87 5.91 8.59 3.72 5.10 5.53 5.92 5.87 5.91 8.59 3.72 5.10

PFS Cover2 0.82 0.84 0.84 0.84 0.72 0.14 0.65 0.84 0.86 0.85 0.85 0.72 0.15 0.67

PFS Cover1 0.97 0.98 0.98 0.98 0.93 0.64 0.95 0.97 0.98 0.98 0.98 0.93 0.64 0.95

OS Mean 202.47 203.43 228.56 296.13 201.64 151.01 200.83 203.49 203.61 233.32 297.84 201.73 151.46 203.60

OS Bias -0.21 0.76 25.88 93.46 -1.04 -51.67 -1.84 0.81 0.93 30.64 95.16 -0.95 -51.22 0.92

OS MC SE 0.74 0.76 0.80 1.54 0.69 0.27 0.69 0.75 0.77 0.85 1.45 0.84 0.27 0.69

OS Rel Bias 0.00-                   0.00             0.13                 0.46                   0.01-             0.25-                0.01-                  0.00                   0.00               0.15                 0.47                   0.00-               0.25-                0.00                  

OS empSE 22.78 23.41 24.72 47.38 21.37 8.26 21.18 23.15 23.82 26.13 44.79 25.95 8.35 21.19

OS MC SE 0.52 0.54 0.57 1.09 0.49 0.19 0.49 0.53 0.55 0.60 1.03 0.60 0.19 0.49

OS MSE 518.49 548.05 1280.08 10976.31 457.48 2738.12 451.66 536.03 567.61 1620.75 11059.97 673.83 2693.45 449.30

OS MC SE 0.52 0.54 0.57 1.09 0.49 0.19 0.49 15.86 17.80 70.23 313.60 27.72 27.65 13.93

OS Rel P 0.00% -5.30% -15.05% -76.88% 13.59% 660.37% 15.66% 0.00% -5.54% -21.51% -73.29% -20.44% 667.79% 19.38%

OS ModelSE 20.86 22.27 41.83 50.47 29.98 9.73 21.18 20.86 22.27 41.83 50.47 29.98 9.73 21.18

OS Cover2 0.96 0.87 0.95 0.53 0.90 0.00 0.95 0.96 0.88 0.94 0.53 0.91 0.00 0.97

OS Cover1 1.00 1.00 0.99 0.79 1.00 0.23 1.00 1.00 1.00 0.99 0.79 1.00 0.23 1.00

QALYs Mean 120.99 121.59 134.11 167.93 119.88 92.69 119.13 121.64 121.87 136.68 168.97 119.71 92.95 120.65

QALYs Bias -1.11 -0.51 12.01 45.83 -2.23 -29.41 -2.98 -0.47 -0.23 14.57 46.87 -2.39 -29.15 -1.45

QALYs MC SE 0.37 0.37 0.41 0.79 0.34 0.15 0.35 0.38 0.38 0.44 0.75 0.43 0.16 0.35

QALYs Rel Bias 0.01-                   0.00-             0.10                 0.38                   0.02-             0.24-                0.02-                  0.00-                   0.00-               0.12                 0.38                   0.02-               0.24-                0.01-                  

QALYs empSE 11.44 11.45 12.77 24.30 10.46 4.76 10.79 11.65 11.65 13.60 23.06 13.22 4.82 10.80

QALYs MC SE 0.26 0.26 0.29 0.56 0.24 0.11 0.25 0.27 0.27 0.31 0.53 0.30 0.11 0.25

QALYs MSE 131.96 131.29 307.07 2690.37 114.34 887.72 125.08 135.86 135.62 397.07 2728.07 180.21 873.04 118.55

QALYs MC SE 3.65 4.05 13.48 76.35 3.58 9.06 3.69 3.91 4.44 17.98 79.71 9.14 9.08 3.54

QALYs Rel P 0.00% -0.24% -19.73% -77.84% 19.50% 476.69% 12.46% 0.00% 0.05% -26.54% -74.46% -22.27% 485.51% 16.49%

QALYs ModelSE 10.66 11.66 21.39 25.78 16.72 5.54 11.40 10.66 11.66 21.39 25.78 16.72 5.54 11.40

QALYs Cover2 0.93 0.91 0.95 0.54 0.90 0.00 0.94 0.94 0.91 0.95 0.55 0.92 0.00 0.96

QALYs Cover1 1.00 1.00 0.99 0.81 1.00 0.22 1.00 1.00 1.00 0.99 0.81 1.00 0.22 1.00
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Table 73 : Result for simulated scenario 51 

 

 

Scenario51 Deterministic Probabilistic

PSM STM STM - Log STM - Time MSM Li's model Fu's model PSM STM STM - Log STM - Time MSM Li's model Fu's model

PFS Mean 65.22 66.57 66.75 66.48 63.69 58.03 61.26 65.63 67.19 67.38 67.10 62.99 58.14 61.67

PFS Bias -3.90 -2.56 -2.38 -2.65 -5.43 -11.09 -7.87 -3.50 -1.93 -1.75 -2.02 -6.13 -10.98 -7.45

PFS MC SE 0.18 0.20 0.20 0.20 0.21 0.12 0.16 0.18 0.21 0.21 0.20 0.25 0.12 0.16

PFS Rel Bias -5.6% -3.7% -3.4% -3.8% -7.9% -16.0% -11.4% -5.1% -2.8% -2.5% -2.9% -8.9% -15.9% -10.8%

PFS empSE 5.61 6.29 6.15 6.13 6.44 3.62 4.93 5.68 6.47 6.33 6.31 7.59 3.65 5.01

PFS MC SE 0.13 0.14 0.14 0.14 0.15 0.08 0.11 0.13 0.15 0.15 0.14 0.17 0.08 0.12

PFS MSE 46.66 46.05 43.47 44.54 70.87 136.11 86.17 44.39 45.59 43.04 43.83 95.23 133.89 80.64

PFS MC SE 1.86 1.95 1.86 1.88 2.45 2.67 2.58 1.80 2.00 1.91 1.91 4.30 2.67 2.50

PFS Rel P 0.00% -20.42% -16.86% -16.23% -24.00% 139.93% 29.52% 0.00% -23.15% -19.53% -19.05% -44.14% 141.50% 28.17%

PFS ModelSE 5.23 5.88 5.88 5.84 8.81 3.79 4.80 5.23 5.88 5.88 5.84 8.81 3.79 4.80

PFS Cover2 0.80 0.85 0.86 0.85 0.73 0.20 0.56 0.81 0.87 0.88 0.87 0.73 0.20 0.58

PFS Cover1 0.97 0.98 0.98 0.98 0.94 0.72 0.93 0.97 0.98 0.98 0.98 0.94 0.72 0.93

OS Mean 145.63 142.49 156.35 203.40 140.47 114.42 144.79 146.50 142.81 157.55 203.83 139.90 114.65 146.23

OS Bias 2.63 -0.51 13.34 60.39 -2.54 -28.58 1.78 3.50 -0.20 14.54 60.83 -3.10 -28.35 3.23

OS MC SE 0.58 0.50 0.45 0.85 0.47 0.18 0.56 0.60 0.52 0.47 0.82 0.58 0.18 0.58

OS Rel Bias 0.02                   0.00-             0.09                 0.42                   0.02-             0.20-                0.01                  0.02                   0.00-               0.10                 0.43                   0.02-               0.20-                0.02                  

OS empSE 17.89 15.52 13.96 26.26 14.58 5.44 17.32 18.36 15.96 14.54 25.24 17.77 5.48 17.73

OS MC SE 0.41 0.36 0.32 0.60 0.33 0.12 0.40 0.42 0.37 0.33 0.58 0.41 0.13 0.41

OS MSE 326.64 240.81 372.56 4336.24 218.86 846.60 302.87 348.85 254.38 422.65 4335.86 324.91 833.73 324.41

OS MC SE 0.41 0.36 0.32 0.60 0.33 0.12 0.40 10.95 12.98 15.07 106.41 16.08 10.01 10.53

OS Rel P 0.00% 32.92% 64.34% -53.58% 50.50% 983.16% 6.69% 0.00% 32.35% 59.42% -47.08% 6.77% 1024.04% 7.21%

OS ModelSE 13.00 14.23 18.08 29.88 20.10 6.24 13.05 13.00 14.23 18.08 29.88 20.10 6.24 13.05

OS Cover2 0.77 0.79 0.98 0.50 0.81 0.00 0.82 0.76 0.80 0.97 0.49 0.81 0.00 0.82

OS Cover1 0.99 0.99 0.99 0.80 0.99 0.27 1.00 0.99 0.99 0.99 0.80 0.99 0.27 1.00

QALYs Mean 92.38 91.22 98.20 121.64 89.34 74.62 90.77 92.94 91.56 98.99 122.05 88.85 74.77 91.62

QALYs Bias 0.14 -1.02 5.96 29.40 -2.90 -17.62 -1.47 0.70 -0.68 6.75 29.81 -3.39 -17.47 -0.62

QALYs MC SE 0.30 0.25 0.25 0.45 0.24 0.11 0.30 0.31 0.26 0.27 0.44 0.31 0.12 0.30

QALYs Rel Bias 0.00                   0.01-             0.06                 0.32                   0.03-             0.19-                0.02-                  0.01                   0.01-               0.07                 0.32                   0.04-               0.19-                0.01-                  

QALYs empSE 9.37 7.81 7.84 13.96 7.43 3.54 9.15 9.65 8.09 8.18 13.54 9.53 3.56 9.37

QALYs MC SE 0.22 0.18 0.18 0.32 0.17 0.08 0.21 0.22 0.19 0.19 0.31 0.22 0.08 0.22

QALYs MSE 87.77 61.93 96.94 1059.27 63.54 322.95 85.71 93.49 65.88 112.43 1071.56 102.21 317.88 88.07

QALYs MC SE 2.76 2.43 3.55 28.92 2.15 4.04 2.68 2.97 3.75 4.15 28.13 5.85 4.03 2.75

QALYs Rel P 0.00% 44.13% 42.83% -54.93% 59.12% 602.02% 5.02% 0.00% 42.15% 39.01% -49.21% 2.53% 632.68% 6.06%

QALYs ModelSE 6.77 7.95 9.97 15.78 12.13 4.01 7.50 6.77 7.95 9.97 15.78 12.13 4.01 7.50

QALYs Cover2 0.76 0.87 0.99 0.59 0.86 0.00 0.81 0.75 0.87 0.99 0.56 0.87 0.00 0.83

QALYs Cover1 0.95 0.99 0.99 0.85 0.99 0.32 0.99 0.95 0.99 0.99 0.85 0.99 0.32 0.99
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Table 74 : Result for simulated scenario 52 

 

 

Scenario52 Deterministic Probabilistic

PSM STM STM - Log STM - Time MSM Li's model Fu's model PSM STM STM - Log STM - Time MSM Li's model Fu's model

PFS Mean 59.12 59.16 59.07 59.17 54.15 50.19 55.83 59.62 59.69 59.60 59.70 54.09 50.26 56.08

PFS Bias 3.02 3.06 2.97 3.07 -1.94 -5.91 -0.27 3.52 3.59 3.50 3.60 -2.01 -5.84 -0.02

PFS MC SE 0.18 0.18 0.18 0.18 0.16 0.10 0.15 0.18 0.18 0.18 0.18 0.16 0.10 0.15

PFS Rel Bias 5.4% 5.5% 5.3% 5.5% -3.5% -10.5% -0.5% 6.3% 6.4% 6.2% 6.4% -3.6% -10.4% 0.0%

PFS empSE 5.44 5.47 5.44 5.42 4.78 3.13 4.65 5.56 5.59 5.57 5.55 4.89 3.15 4.66

PFS MC SE 0.12 0.13 0.12 0.12 0.11 0.07 0.11 0.13 0.13 0.13 0.13 0.11 0.07 0.11

PFS MSE 38.63 39.22 38.44 38.81 26.62 44.75 21.68 43.32 44.14 43.27 43.75 27.95 43.96 21.68

PFS MC SE 1.80 1.83 1.81 1.84 1.13 1.25 0.98 2.01 2.03 2.02 2.05 1.20 1.24 1.02

PFS Rel P 0.00% -1.08% -0.31% 0.48% 29.23% 201.28% 36.59% 0.00% -0.99% -0.34% 0.51% 29.33% 212.00% 42.59%

PFS ModelSE 4.84 4.85 4.84 4.86 4.28 3.10 4.31 4.84 4.85 4.84 4.86 4.28 3.10 4.31

PFS Cover2 0.91 0.91 0.91 0.91 0.82 0.49 0.91 0.88 0.88 0.88 0.88 0.82 0.51 0.92

PFS Cover1 1.00 1.00 1.00 1.00 0.98 0.90 1.00 1.00 1.00 1.00 1.00 0.98 0.90 1.00

OS Mean 337.53 329.71 398.29 427.32 327.13 229.10 327.63 339.93 330.76 403.07 439.25 332.24 231.58 331.13

OS Bias -34.30 -42.13 26.45 55.48 -44.70 -142.74 -44.20 -31.90 -41.07 31.23 67.42 -39.60 -140.26 -40.70

OS MC SE 1.02 0.92 1.71 2.20 0.89 0.72 1.04 1.01 0.89 1.84 2.35 0.92 0.74 1.01

OS Rel Bias 0.09-                   0.11-             0.07                 0.15                   0.12-             0.38-                0.12-                  0.09-                   0.11-               0.08                 0.18                   0.11-               0.38-                0.11-                  

OS empSE 31.32 28.28 52.70 67.94 27.56 22.11 32.14 31.06 27.52 56.60 72.53 28.25 22.79 31.16

OS MC SE 0.72 0.65 1.21 1.56 0.63 0.51 0.74 0.71 0.63 1.30 1.66 0.65 0.52 0.72

OS MSE 2156.34 2573.85 3474.60 7689.56 2757.45 20863.62 2985.73 1981.46 2443.55 4175.62 9800.04 2365.66 20192.36 2626.79

OS MC SE 0.72 0.65 1.21 1.56 0.63 0.51 0.74 63.35 73.35 326.55 546.11 73.61 203.85 77.71

OS Rel P 0.00% 22.62% -64.70% -78.76% 29.06% 100.57% -5.06% 0.00% 27.37% -69.89% -81.66% 20.84% 85.65% -0.68%

OS ModelSE 52.95 52.76 83.50 91.01 54.02 26.17 49.97 52.95 52.76 83.50 91.01 54.02 26.17 49.97

OS Cover2 0.90 0.94 0.92 0.74 0.93 0.00 0.79 0.91 0.95 0.93 0.75 0.95 0.00 0.81

OS Cover1 1.00 1.00 1.00 0.97 1.00 0.35 0.98 1.00 1.00 1.00 0.97 1.00 0.35 0.98

QALYs Mean 186.50 182.60 216.87 231.41 179.81 129.60 180.57 187.85 183.29 219.42 237.54 182.34 130.87 182.39

QALYs Bias -16.25 -20.15 14.12 28.66 -22.94 -73.14 -22.18 -14.90 -19.46 16.67 34.79 -20.40 -71.88 -20.36

QALYs MC SE 0.51 0.47 0.86 1.11 0.45 0.37 0.53 0.51 0.45 0.92 1.18 0.47 0.38 0.51

QALYs Rel Bias 0.08-                   0.10-             0.07                 0.14                   0.11-             0.36-                0.11-                  0.07-                   0.10-               0.08                 0.17                   0.10-               0.35-                0.10-                  

QALYs empSE 15.79 14.35 26.56 34.18 13.99 11.35 16.27 15.66 14.00 28.47 36.43 14.34 11.70 15.77

QALYs MC SE 0.36 0.33 0.61 0.78 0.32 0.26 0.37 0.36 0.32 0.65 0.84 0.33 0.27 0.36

QALYs MSE 513.03 611.53 904.23 1988.46 721.40 5478.88 756.46 466.76 574.36 1087.76 2536.18 621.87 5303.61 662.77

QALYs MC SE 16.11 18.85 43.73 72.58 20.94 53.15 21.93 15.36 17.79 83.23 138.14 19.24 53.75 19.88

QALYs Rel P 0.00% 21.12% -64.66% -78.65% 27.50% 93.49% -5.79% 0.00% 25.12% -69.76% -81.53% 19.16% 79.18% -1.41%

QALYs ModelSE 26.55 26.42 41.85 45.61 27.17 13.41 25.37 26.55 26.42 41.85 45.61 27.17 13.41 25.37

QALYs Cover2 0.91 0.95 0.92 0.73 0.93 0.00 0.80 0.92 0.95 0.93 0.74 0.95 0.00 0.83

QALYs Cover1 1.00 1.00 1.00 0.97 1.00 0.34 0.99 1.00 1.00 1.00 0.97 1.00 0.34 0.99



 

381 

 

Table 75 : Result for simulated scenario 53 

 

 

Scenario53 Deterministic Probabilistic

PSM STM STM - Log STM - Time MSM Li's model Fu's model PSM STM STM - Log STM - Time MSM Li's model Fu's model

PFS Mean 58.95 59.32 59.23 59.27 54.08 49.83 54.43 59.35 59.86 59.77 59.81 54.06 49.90 54.67

PFS Bias 2.87 3.24 3.15 3.19 -2.00 -6.25 -1.65 3.27 3.78 3.69 3.73 -2.02 -6.18 -1.41

PFS MC SE 0.17 0.18 0.18 0.18 0.16 0.10 0.14 0.17 0.18 0.18 0.18 0.16 0.10 0.14

PFS Rel Bias 5.1% 5.8% 5.6% 5.7% -3.6% -11.2% -2.9% 5.8% 6.7% 6.6% 6.7% -3.6% -11.0% -2.5%

PFS empSE 5.20 5.43 5.43 5.41 4.83 3.04 4.32 5.26 5.56 5.56 5.53 5.00 3.05 4.33

PFS MC SE 0.12 0.12 0.12 0.12 0.11 0.07 0.10 0.12 0.13 0.13 0.13 0.11 0.07 0.10

PFS MSE 35.20 40.00 39.42 39.38 27.33 48.31 21.35 38.34 45.15 44.46 44.44 29.04 47.46 20.68

PFS MC SE 1.54 1.82 1.81 1.80 1.13 1.29 0.87 1.66 2.02 2.02 2.00 1.27 1.28 0.85

PFS Rel P 0.00% -8.51% -8.51% -7.65% 15.58% 192.72% 44.72% 0.00% -10.36% -10.33% -9.42% 10.79% 196.77% 47.86%

PFS ModelSE 4.61 4.87 4.87 4.87 4.32 3.07 4.08 4.61 4.87 4.87 4.87 4.32 3.07 4.08

PFS Cover2 0.91 0.91 0.91 0.92 0.81 0.47 0.87 0.89 0.88 0.88 0.89 0.80 0.48 0.87

PFS Cover1 1.00 0.99 0.99 0.99 0.97 0.87 0.99 1.00 0.99 0.99 0.99 0.97 0.87 0.99

OS Mean 172.20 169.60 197.64 255.58 170.80 127.55 168.19 173.15 170.95 204.01 260.79 173.38 128.05 170.36

OS Bias 0.04 -2.56 25.48 83.42 -1.36 -44.62 -3.98 0.99 -1.21 31.85 88.63 1.22 -44.11 -1.80

OS MC SE 0.59 0.62 0.73 1.47 0.60 0.25 0.54 0.60 0.63 0.80 1.45 0.69 0.25 0.54

OS Rel Bias 0.00                   0.01-             0.15                 0.48                   0.01-             0.26-                0.02-                  0.01                   0.01-               0.19                 0.51                   0.01               0.26-                0.01-                  

OS empSE 18.08 19.10 22.61 45.41 18.61 7.65 16.60 18.58 19.41 24.61 44.66 21.13 7.73 16.76

OS MC SE 0.42 0.44 0.52 1.04 0.43 0.18 0.38 0.43 0.45 0.56 1.03 0.48 0.18 0.38

OS MSE 326.63 371.14 1160.07 9018.16 347.74 2049.03 290.94 346.00 377.95 1619.28 9847.76 447.41 2005.62 283.82

OS MC SE 0.42 0.44 0.52 1.04 0.43 0.18 0.38 13.87 12.77 84.63 328.14 14.52 22.08 10.13

OS Rel P 0.00% -10.41% -36.05% -84.14% -5.57% 458.52% 18.72% 0.00% -8.36% -42.95% -82.68% -22.63% 477.68% 22.97%

OS ModelSE 18.63 18.98 40.81 52.94 21.42 8.95 18.33 18.63 18.98 40.81 52.94 21.42 8.95 18.33

OS Cover2 0.96 0.89 0.95 0.51 0.94 0.00 0.94 0.97 0.92 0.95 0.52 0.93 0.00 0.97

OS Cover1 1.00 1.00 0.99 0.80 1.00 0.30 1.00 1.00 1.00 0.99 0.80 1.00 0.30 1.00

QALYs Mean 103.78 102.60 116.59 145.57 101.63 78.72 100.42 104.38 103.43 119.94 148.34 102.91 79.00 101.58

QALYs Bias 0.88 -0.31 13.69 42.67 -1.28 -24.18 -2.48 1.48 0.53 17.03 45.43 0.00 -23.91 -1.32

QALYs MC SE 0.31 0.31 0.37 0.75 0.30 0.14 0.28 0.32 0.32 0.41 0.74 0.34 0.14 0.29

QALYs Rel Bias 0.01                   0.00-             0.13                 0.41                   0.01-             0.24-                0.02-                  0.01                   0.01               0.17                 0.44                   0.00               0.23-                0.01-                  

QALYs empSE 9.47 9.57 11.54 23.06 9.36 4.31 8.72 9.74 9.74 12.62 22.72 10.56 4.36 8.81

QALYs MC SE 0.22 0.22 0.26 0.53 0.21 0.10 0.20 0.22 0.22 0.29 0.52 0.24 0.10 0.20

QALYs MSE 90.44 91.50 320.45 2351.38 89.15 603.43 82.05 96.92 94.99 449.28 2580.09 111.44 590.60 79.28

QALYs MC SE 3.18 3.18 12.54 68.19 2.66 6.78 2.68 3.89 3.61 22.14 84.71 3.50 6.77 2.75

QALYs Rel P 0.00% -1.90% -32.64% -83.11% 2.47% 382.79% 18.16% 0.00% 0.03% -40.48% -81.63% -14.99% 399.52% 22.19%

QALYs ModelSE 9.51 9.81 20.67 26.76 11.07 4.99 9.78 9.51 9.81 20.67 26.76 11.07 4.99 9.78

QALYs Cover2 0.97 0.95 0.95 0.51 0.94 0.00 0.94 0.97 0.96 0.94 0.52 0.93 0.00 0.96

QALYs Cover1 1.00 1.00 0.98 0.81 1.00 0.31 1.00 1.00 1.00 0.98 0.81 1.00 0.31 1.00
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Table 76 : Result for simulated scenario 54 

 

 

Scenario54 Deterministic Probabilistic

PSM STM STM - Log STM - Time MSM Li's model Fu's model PSM STM STM - Log STM - Time MSM Li's model Fu's model

PFS Mean 57.28 59.48 59.63 59.43 54.21 50.37 53.02 57.53 60.02 60.17 59.97 54.24 50.46 53.15

PFS Bias 1.29 3.49 3.63 3.44 -1.78 -5.62 -2.97 1.54 4.03 4.17 3.98 -1.75 -5.54 -2.84

PFS MC SE 0.15 0.18 0.18 0.18 0.16 0.10 0.13 0.15 0.19 0.18 0.18 0.17 0.10 0.13

PFS Rel Bias 2.3% 6.2% 6.5% 6.1% -3.2% -10.0% -5.3% 2.8% 7.2% 7.5% 7.1% -3.1% -9.9% -5.1%

PFS empSE 4.52 5.63 5.51 5.52 5.00 3.02 3.90 4.53 5.75 5.64 5.65 5.19 3.04 3.91

PFS MC SE 0.10 0.13 0.13 0.13 0.11 0.07 0.09 0.10 0.13 0.13 0.13 0.12 0.07 0.09

PFS MSE 22.06 43.81 43.56 42.31 28.11 40.66 24.00 22.85 49.25 49.15 47.67 29.91 39.85 23.37

PFS MC SE 1.01 2.02 1.98 1.95 1.22 1.16 0.94 1.04 2.24 2.19 2.16 1.36 1.15 0.92

PFS Rel P 0.00% -35.53% -32.82% -33.12% -18.23% 124.15% 34.48% 0.00% -37.99% -35.45% -35.72% -23.75% 122.54% 34.02%

PFS ModelSE 4.00 4.88 4.89 4.87 4.46 3.13 3.74 4.00 4.88 4.89 4.87 4.46 3.13 3.74

PFS Cover2 0.91 0.89 0.89 0.90 0.83 0.54 0.81 0.91 0.86 0.86 0.87 0.83 0.55 0.81

PFS Cover1 1.00 0.99 0.99 0.99 0.97 0.90 0.98 1.00 0.99 0.99 0.99 0.97 0.90 0.98

OS Mean 112.17 113.11 126.14 163.78 109.92 93.67 110.82 112.75 114.23 127.99 165.32 111.09 93.85 111.64

OS Bias -1.30 -0.36 12.68 50.31 -3.54 -19.80 -2.64 -0.72 0.77 14.52 51.85 -2.38 -19.61 -1.82

OS MC SE 0.41 0.40 0.38 0.73 0.31 0.15 0.38 0.43 0.44 0.40 0.71 0.39 0.15 0.39

OS Rel Bias 0.01-                   0.00-             0.11                 0.44                   0.03-             0.17-                0.02-                  0.01-                   0.01               0.13                 0.46                   0.02-               0.17-                0.02-                  

OS empSE 12.71 12.33 11.72 22.44 9.61 4.61 11.76 13.15 13.66 12.38 21.85 12.09 4.63 12.08

OS MC SE 0.29 0.28 0.27 0.52 0.22 0.11 0.27 0.30 0.31 0.28 0.50 0.28 0.11 0.28

OS MSE 163.08 152.06 297.90 3034.21 104.72 413.22 145.13 173.34 187.08 364.08 3165.74 151.61 406.08 149.20

OS MC SE 0.29 0.28 0.27 0.52 0.22 0.11 0.27 7.74 29.40 13.19 79.00 27.95 5.92 5.86

OS Rel P 0.00% 6.23% 17.69% -67.91% 75.11% 660.28% 16.82% 0.00% -7.33% 12.88% -63.77% 18.41% 706.32% 18.48%

OS ModelSE 9.76 12.56 14.49 25.81 13.40 5.24 9.61 9.76 12.56 14.49 25.81 13.40 5.24 9.61

OS Cover2 0.80 0.79 0.95 0.51 0.83 0.03 0.83 0.80 0.80 0.92 0.50 0.82 0.05 0.84

OS Cover1 0.99 0.98 0.99 0.83 1.00 0.48 1.00 0.99 0.98 0.99 0.83 1.00 0.48 1.00

QALYs Mean 73.27 74.40 80.96 99.72 71.22 61.95 71.32 73.63 75.12 82.04 100.65 71.82 62.06 71.76

QALYs Bias -0.26 0.87 7.43 26.19 -2.31 -11.58 -2.21 0.10 1.59 8.51 27.12 -1.71 -11.47 -1.77

QALYs MC SE 0.22 0.21 0.21 0.38 0.16 0.10 0.21 0.23 0.23 0.23 0.38 0.20 0.10 0.21

QALYs Rel Bias 0.00-                   0.01             0.10                 0.36                   0.03-             0.16-                0.03-                  0.00                   0.02               0.12                 0.37                   0.02-               0.16-                0.02-                  

QALYs empSE 6.77 6.56 6.59 11.82 4.97 2.98 6.32 7.01 7.23 6.97 11.60 6.17 2.99 6.49

QALYs MC SE 0.16 0.15 0.15 0.27 0.11 0.07 0.15 0.16 0.17 0.16 0.27 0.14 0.07 0.15

QALYs MSE 45.91 43.69 98.56 825.33 29.96 143.07 44.81 49.06 54.77 120.97 870.00 41.01 140.45 45.24

QALYs MC SE 1.92 2.46 3.40 21.73 1.03 2.27 1.52 2.17 8.05 4.28 21.95 7.43 2.25 1.60

QALYs Rel P 0.00% 6.77% 5.73% -67.15% 86.06% 417.06% 14.83% 0.00% -6.08% 1.21% -63.54% 28.85% 447.72% 16.44%

QALYs ModelSE 5.15 6.86 7.90 13.45 7.28 3.34 5.59 5.15 6.86 7.90 13.45 7.28 3.34 5.59

QALYs Cover2 0.81 0.89 0.92 0.52 0.87 0.08 0.84 0.81 0.89 0.89 0.50 0.87 0.08 0.85

QALYs Cover1 0.97 0.98 0.99 0.82 0.99 0.57 1.00 0.97 0.98 0.99 0.82 0.99 0.57 1.00
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Appendix 14 : Predicted mean time in health state using different assumption about treatment 

effect 
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Table 77 : Predicted health state sojourn time and QALYs - Dataset 3 [base-case highlighted in Yellow and Greeen] 

 

Abbreviations : BC : base-case ; LY: life years; PD: progressive disease; PFS: progression-free survival; PSM : partitioned survival model; QALYs: quality adjusted life years; SC: scenario; STM: state-transition model; 

STMlog: state-transition using log of time  

PFS PD LY QALY PFS PD LY QALY PFS PD LY QALY

TRUTH 150.93 106.26 257.18 173.87 190.75 106.74 297.50 205.98 39.83 0.49 40.32 32.11

PSM BC 140.28 94.30 234.57 159.37 171.43 114.62 286.05 194.45 31.15 20.33 51.48 35.08

PSM SC1 140.22 93.14 233.36 158.74 171.53 117.01 288.54 195.73 31.31 23.87 55.18 36.98

PSM SC2 140.28 94.30 234.57 159.37 170.02 93.76 263.78 182.89 29.74 -0.54 29.20 23.52

STM BC 140.91 119.16 260.07 172.31 172.21 125.38 297.60 200.46 31.30 6.22 37.52 28.15

STM SC1 140.91 99.70 240.62 162.58 172.21 140.80 313.01 208.17 31.30 41.09 72.39 45.59

STM SC1 140.91 95.93 236.84 160.70 172.21 156.50 328.72 216.02 31.30 60.57 91.87 55.33

STMlog BC 140.91 120.30 261.22 172.88 172.21 126.99 299.21 201.27 31.30 6.69 37.99 28.38

STMlog SC1 140.91 96.41 237.33 160.94 172.21 135.51 307.73 205.53 31.30 39.10 70.40 44.59

STMlog SC2 140.91 94.91 235.83 160.19 172.21 137.62 309.83 206.58 31.30 42.71 74.00 46.39

PSM BC 140.91 148.31 289.22 186.89 172.21 183.06 355.27 229.30 31.30 34.75 66.05 42.41

PSM SC1 140.91 139.14 280.06 182.30 172.21 200.81 373.03 238.18 31.30 61.67 92.97 55.87

PSM SC2 140.91 148.31 289.22 186.89 172.21 155.01 327.23 215.28 31.30 6.70 38.00 28.39

STM BC 140.91 119.16 260.07 172.31 172.21 125.38 297.60 200.46 31.30 6.22 37.52 28.15

STM SC1 140.91 99.70 240.62 162.58 172.21 140.80 313.01 208.17 31.30 41.09 72.39 45.59

STM SC1 140.91 101.57 242.48 163.52 172.21 159.92 332.14 217.73 31.30 58.35 89.65 54.22

STMlog BC 140.91 120.30 261.22 172.88 172.21 126.99 299.21 201.27 31.30 6.69 37.99 28.38

STMlog SC1 140.91 104.05 244.96 164.76 172.21 145.87 318.08 210.70 31.30 41.82 73.12 45.95

STMlog SC2 140.91 103.81 244.73 164.64 172.21 143.93 316.14 209.74 31.30 40.11 71.41 45.10

Control Intervention Incremental

STRINGENT CURVE SELECTION CRITERIA

LESS STRINGENT CURVE SELECTION CRITERIA
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Table 78 : Predicted health state sojourn time and QALYs - Dataset 4 [base-case highlighted in Yellow and Green] 

 

Abbreviations : BC : base-case ; LY: life years; PD: progressive disease; PFS: progression-free survival; PSM : partitioned survival model; QALYs: quality adjusted life years; SC: scenario; STM: state-transition model; 

STMlog: state-transition using log of time  

PFS PD LY QALY PFS PD LY QALY PFS PD LY QALY

TRUTH 153.57 137.76 291.33 191.74 203.04 95.76 298.80 210.31 49.47 -42.01 7.47 18.58

PSM BC 143.94 157.72 301.67 194.02 191.06 145.13 336.19 225.41 47.11 -12.59 34.52 31.39

PSM SC1 143.94 157.44 301.38 193.87 191.06 145.35 336.41 225.52 47.11 -12.08 35.03 31.65

PSM SC2 143.94 157.72 301.67 194.02 191.06 135.38 326.44 220.54 47.11 -22.34 24.77 26.52

STM BC 143.94 113.95 257.89 172.13 191.06 106.07 297.13 205.88 47.11 -7.88 39.23 33.75

STM SC1 143.94 118.16 262.10 174.23 191.06 104.19 295.24 204.94 47.11 -13.97 33.14 30.71

STM SC1 143.94 133.60 277.55 181.96 191.06 98.44 289.50 202.07 47.11 -35.16 11.95 20.11

STMlog BC 143.94 148.87 292.81 189.59 191.06 164.30 355.36 235.00 47.11 15.43 62.54 45.41

STMlog SC1 143.94 162.06 306.01 196.19 191.06 159.59 350.65 232.64 47.11 -2.47 44.65 36.46

STMlog SC2 143.94 173.91 317.85 202.11 191.06 83.68 274.74 194.69 47.11 -90.23 -43.11 -7.42

PSM BC 143.94 157.72 301.67 194.02 191.06 145.13 336.19 225.41 47.11 -12.59 34.52 31.39

PSM SC1 143.94 157.44 301.38 193.87 191.06 145.35 336.41 225.52 47.11 -12.08 35.03 31.65

PSM SC2 143.94 157.72 301.67 194.02 191.06 135.38 326.44 220.54 47.11 -22.34 24.77 26.52

STM BC 143.94 113.95 257.89 172.13 191.06 106.07 297.13 205.88 47.11 -7.88 39.23 33.75

STM SC1 143.94 118.16 262.10 174.23 191.06 104.19 295.24 204.94 47.11 -13.97 33.14 30.71

STM SC1 143.94 133.60 277.55 181.96 191.06 98.44 289.50 202.07 47.11 -35.16 11.95 20.11

STMlog BC 143.94 148.87 292.81 189.59 191.06 164.30 355.36 235.00 47.11 15.43 62.54 45.41

STMlog SC1 143.94 162.06 306.01 196.19 191.06 159.59 350.65 232.64 47.11 -2.47 44.65 36.46

STMlog SC2 143.94 193.16 337.10 211.73 191.06 92.44 283.50 199.07 47.11 -100.72 -53.60 -12.67

Control Intervention Incremental

STRINGENT CURVE SELECTION CRITERIA

LESS STRINGENT CURVE SELECTION CRITERIA
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Table 79 : Predicted health state sojourn time and QALYs - Dataset 7 [base-case highlighted in Yellow and Green] 

 

Abbreviations : BC : base-case ; LY: life years; PD: progressive disease; PFS: progression-free survival; PSM : partitioned survival model; QALYs: quality adjusted life years; SC: scenario; STM: state-transition model; 

STMlog: state-transition using log of time  

PFS PD LY QALY PFS PD LY QALY PFS PD LY QALY

TRUTH 219.51 112.24 331.75 231.73 205.78 66.15 271.93 197.70 -13.73 -46.09 -59.82 -34.03

PSM BC 176.98 89.78 266.77 186.48 173.59 60.58 234.18 169.17 -3.39 -29.20 -32.59 -17.31

PSM SC1 176.98 106.24 283.22 194.70 173.60 72.50 246.11 175.13 -3.38 -33.73 -37.11 -19.57

PSM SC2 176.98 89.78 266.77 186.48 173.60 71.52 245.12 174.64 -3.38 -18.27 -21.65 -11.84

STM BC 176.98 82.39 259.37 182.78 173.60 87.23 260.83 182.50 -3.38 4.84 1.46 -0.28

STM SC1 176.98 95.20 272.18 189.19 173.60 81.66 255.26 179.71 -3.38 -13.54 -16.92 -9.47

STM SC1 176.98 148.67 325.66 215.92 173.60 57.52 231.12 167.64 -3.38 -91.15 -94.53 -48.28

STMlog BC 176.98 100.02 277.01 191.60 173.60 104.77 278.37 191.27 -3.38 4.74 1.36 -0.33

STMlog SC1 176.98 90.30 267.28 186.74 173.60 70.05 243.66 173.91 -3.38 -20.25 -23.63 -12.83

STMlog SC2 176.98 105.28 282.26 194.23 173.60 96.72 270.32 187.24 -3.38 -8.56 -11.94 -6.99

PSM BC 176.98 89.78 266.77 186.48 173.59 60.58 234.18 169.17 -3.39 -29.20 -32.59 -17.31

PSM SC1 176.98 106.24 283.22 194.70 173.60 72.50 246.11 175.13 -3.38 -33.73 -37.11 -19.57

PSM SC2 176.98 89.78 266.77 186.48 173.60 71.52 245.12 174.64 -3.38 -18.27 -21.65 -11.84

STM BC 176.98 82.39 259.37 182.78 173.60 87.23 260.83 182.50 -3.38 4.84 1.46 -0.28

STM SC1 176.98 95.20 272.18 189.19 173.60 81.66 255.26 179.71 -3.38 -13.54 -16.92 -9.47

STM SC1 176.98 148.67 325.66 215.92 173.60 57.52 231.12 167.64 -3.38 -91.15 -94.53 -48.28

STMlog BC 176.98 100.02 277.01 191.60 173.60 104.77 278.37 191.27 -3.38 4.74 1.36 -0.33

STMlog SC1 176.98 90.30 267.28 186.74 173.60 70.05 243.66 173.91 -3.38 -20.25 -23.63 -12.83

STMlog SC2 176.98 105.28 282.26 194.23 173.60 96.72 270.32 187.24 -3.38 -8.56 -11.94 -6.99

Control Intervention Incremental

STRINGENT CURVE SELECTION CRITERIA

LESS STRINGENT CURVE SELECTION CRITERIA
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Table 80 : Predicted health state sojourn time and QALYs – Dataset 12 [base-case highlighted in Yellow and Green] 

 

Abbreviations : BC : base-case ; LY: life years; PD: progressive disease; PFS: progression-free survival; PSM : partitioned survival model; QALYs: quality adjusted life years; SC: scenario; STM: state-transition model; 

STMlog: state-transition using log of time  

PFS PD LY QALY PFS PD LY QALY PFS PD LY QALY

TRUTH 94.74 147.56 242.30 149.57 147.27 111.16 258.43 173.39 52.53 -36.40 16.13 23.82

PSM BC 104.44 118.86 223.31 142.99 151.09 85.52 236.61 163.63 46.65 -33.34 13.30 20.64

PSM SC1 104.88 123.94 228.82 145.87 150.11 82.85 232.96 161.51 45.23 -41.09 4.14 15.64

PSM SC2 104.44 118.86 223.31 142.99 NA NA NA NA NA NA NA NA

STM BC 106.68 114.83 221.51 142.76 160.63 107.53 268.16 182.27 53.95 -7.30 46.65 39.51

STM SC1 106.68 127.89 234.57 149.29 160.63 97.57 258.19 177.29 53.95 -30.32 23.63 28.00

STM SC1 106.68 116.66 223.33 143.67 160.63 99.40 260.03 178.20 53.95 -17.26 36.69 34.53

STMlog BC 106.68 137.89 244.56 154.28 160.63 144.42 305.05 200.71 53.95 6.53 60.49 46.43

STMlog SC1 106.68 146.26 252.94 158.47 160.63 122.91 283.54 189.96 53.95 -23.35 30.61 31.49

STMlog SC2 106.68 130.21 236.89 150.45 160.63 170.24 330.87 213.62 53.95 40.03 93.98 63.18

PSM BC 105.92 135.55 241.47 152.51 156.19 100.63 256.82 175.27 50.27 -34.92 15.36 22.76

PSM SC1 106.08 140.98 247.06 155.35 155.65 97.38 253.04 173.21 49.58 -43.60 5.98 17.86

PSM SC2 105.92 135.55 241.47 152.51 155.24 94.00 249.24 171.19 49.32 -41.55 7.77 18.68

STM BC 106.68 114.83 221.51 142.76 160.63 107.53 268.16 182.27 53.95 -7.30 46.65 39.51

STM SC1 106.68 127.89 234.57 149.29 160.63 97.57 258.19 177.29 53.95 -30.32 23.63 28.00

STM SC1 106.68 116.66 223.33 143.67 160.63 99.40 260.03 178.20 53.95 -17.26 36.69 34.53

STMlog BC 106.68 137.89 244.56 154.28 160.63 144.42 305.05 200.71 53.95 6.53 60.49 46.43

STMlog SC1 106.68 162.07 268.74 166.37 160.63 130.88 291.51 193.94 53.95 -31.19 22.76 27.57

STMlog SC2 106.68 157.79 264.47 164.24 160.63 130.58 291.21 193.79 53.95 -27.22 26.74 29.55

Control Intervention Incremental

STRINGENT CURVE SELECTION CRITERIA

LESS STRINGENT CURVE SELECTION CRITERIA
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Table 81 : Predicted health state sojourn time and QALYs – Dataset 18 [base-case highlighted in Yellow and Green] 

 

Abbreviations : BC : base-case ; LY: life years; PD: progressive disease; PFS: progression-free survival; PSM : partitioned survival model; QALYs: quality adjusted life years; SC: scenario; STM: state-transition model; 

STMlog: state-transition using log of time  

PFS PD LY QALY PFS PD LY QALY PFS PD LY QALY

TRUTH 129.23 241.13 370.36 223.95 167.02 243.26 410.27 255.24 37.79 2.12 39.91 31.29

PSM BC 120.67 210.55 331.22 201.81 176.86 241.79 418.64 262.38 56.19 31.23 87.43 60.57

PSM SC1 120.64 201.25 321.90 197.14 176.90 252.12 429.02 267.58 56.26 50.86 107.12 70.44

PSM SC2 120.67 210.55 331.22 201.81 176.40 185.83 362.23 234.03 55.73 -24.72 31.01 32.22

STM BC 120.70 232.29 353.00 212.71 177.00 231.99 408.98 257.59 56.29 -0.30 55.99 44.88

STM SC1 120.70 225.72 346.42 209.42 177.00 236.89 413.89 260.04 56.29 11.17 67.46 50.62

STM SC1 120.70 225.72 346.42 209.42 177.00 236.89 413.89 260.04 56.29 11.17 67.46 50.62

STMlog BC 120.70 253.21 373.92 223.17 177.00 295.12 472.11 289.16 56.29 41.91 98.20 65.99

STMlog SC1 120.70 269.79 390.49 231.46 177.00 289.51 466.51 286.35 56.29 19.72 76.01 54.89

STMlog SC2 120.70 262.39 383.10 227.76 177.00 394.51 571.51 338.85 56.29 132.12 188.41 111.09

PSM BC 120.67 210.55 331.22 201.81 176.86 241.79 418.64 262.38 56.19 31.23 87.43 60.57

PSM SC1 120.70 295.43 416.13 244.28 177.00 378.81 555.81 331.00 56.29 83.39 139.68 86.73

PSM SC2 120.67 210.55 331.22 201.81 176.40 185.83 362.23 234.03 55.73 -24.72 31.01 32.22

STM BC 120.70 207.44 328.14 200.28 177.00 207.17 384.16 245.18 56.29 -0.27 56.02 44.90

STM SC1 120.70 204.05 324.76 198.59 177.00 209.92 386.91 246.56 56.29 5.87 62.16 47.97

STM SC1 120.70 334.55 455.26 263.84 177.00 411.58 588.58 347.39 56.29 77.03 133.32 83.55

STMlog BC 120.70 285.22 405.92 239.17 177.00 341.08 518.07 312.13 56.29 55.86 112.15 72.96

STMlog SC1 120.70 269.79 390.49 231.46 177.00 289.51 466.51 286.35 56.29 19.72 76.01 54.89

STMlog SC2 120.70 262.39 383.10 227.76 177.00 394.51 571.51 338.85 56.29 132.12 188.41 111.09

Control Intervention Incremental

STRINGENT CURVE SELECTION CRITERIA

LESS STRINGENT CURVE SELECTION CRITERIA
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Table 82 : Predicted health state sojourn time and QALYs – Dataset 20 [base-case highlighted in Yellow and Green] 

 

Abbreviations : BC : base-case ; LY: life years; PD: progressive disease; PFS: progression-free survival; PSM : partitioned survival model; QALYs: quality adjusted life years; SC: scenario; STM: state-transition model; 

STMlog: state-transition using log of time  

PFS PD LY QALY PFS PD LY QALY PFS PD LY QALY

TRUTH 101.31 52.85 154.16 107.47 152.52 61.92 214.44 152.98 51.21 9.08 60.28 45.50

PSM BC 115.31 72.61 187.92 128.55 178.49 158.24 336.73 221.91 63.18 85.64 148.82 93.36

PSM SC1 115.31 72.00 187.31 128.25 178.49 159.19 337.68 222.39 63.18 87.19 150.37 94.14

PSM SC2 115.31 72.61 187.92 128.55 178.49 114.83 293.32 200.21 63.18 42.22 105.40 71.66

STM SC1 115.31 54.47 169.79 119.49 178.49 50.84 229.33 168.21 63.18 -3.63 59.55 48.73

STM BC 115.31 39.25 154.57 111.88 178.49 81.47 259.97 183.53 63.18 42.22 105.40 71.65

STM SC1 115.31 37.41 152.73 110.96 178.49 86.15 264.64 185.87 63.18 48.74 111.92 74.91

STMlog SC1 115.31 96.24 211.56 140.37 178.49 121.04 299.54 203.32 63.18 24.80 87.98 62.94

STMlog BC 115.31 58.29 173.60 121.40 178.49 134.31 312.80 209.95 63.18 76.02 139.20 88.55

STMlog SC2 115.31 57.10 172.41 120.80 178.49 90.52 269.01 188.05 63.18 33.42 96.60 67.25

PSM BC 115.31 72.61 187.92 128.55 178.49 158.24 336.73 221.91 63.18 85.64 148.82 93.36

PSM SC1 115.31 72.00 187.31 128.25 178.49 159.19 337.68 222.39 63.18 87.19 150.37 94.14

PSM SC2 115.31 72.61 187.92 128.55 178.49 114.83 293.32 200.21 63.18 42.22 105.40 71.66

STM SC1 115.31 54.47 169.79 119.49 178.49 50.84 229.33 168.21 63.18 -3.63 59.55 48.73

STM BC 115.31 39.25 154.57 111.88 178.49 81.47 259.97 183.53 63.18 42.22 105.40 71.65

STM SC1 115.31 37.41 152.73 110.96 178.49 86.15 264.64 185.87 63.18 48.74 111.92 74.91

STMlog SC1 115.31 96.24 211.56 140.37 178.49 121.04 299.54 203.32 63.18 24.80 87.98 62.94

STMlog BC 115.31 58.29 173.60 121.40 178.49 134.31 312.80 209.95 63.18 76.02 139.20 88.55

STMlog SC2 115.31 57.10 172.41 120.80 178.49 90.52 269.01 188.05 63.18 33.42 96.60 67.25

STRINGENT CURVE SELECTION CRITERIA

LESS STRINGENT CURVE SELECTION CRITERIA

Control Intervention Incremental
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Appendix 15 : Parametric distribution selected for the stringent and less stringent analysis 

Table 83 : Summary of distributions selected – Stringent definition 

 Dataset 3 Dataset 4 Dataset 7 Dataset 12 Dataset 18 Dataset 20 

Time point used for PFS selection criteria 413.55 448 449.6 290.1 377 305.25 

Time point used for OS selection criteria 582 821.3 750.4 516.1 929.95 441.25 

Difference in PPS (p-value) 0.328 0.640 0.272 0.314 0.824 0.006 

Selected OS distribution Gamma Log-logistic Weibull Weibull Gamma 

Generalised 

Gamma 

Selected PFS distribution Log-normal Log-logistic Gamma Log-normal Log-normal Log-normal 

Selected prePS distribution Exponential Exponential Exponential Exponential Exponential Exponential 

Selected PPS distribution for the unadjusted STM Gamma Log-logistic Log-logistic Gamma Exponential Log-normal 

Selected PPS distribution for the adjusted STM Gamma Log-logistic Log-logistic Gamma Gompertz Gamma 

Table 84 : Summary of distributions selected – Less stringent definition 

 Dataset 3 Dataset 4 Dataset 7 Dataset 12 Dataset 18 Dataset 20 

Time point used for PFS selection criteria 298.7 338.4 378.8 245.9 272.1 235 

Time point used for OS selection criteria 512.5 663.6 629.4 473.9 733.5 386.5 

Difference in PPS (p-value) 0.328 0.640 0.272 0.314 0.824 0.006 

Selected OS distribution Log-normal Log-logistic Weibull Gamma Gamma Log-logistic 

Selected PFS distribution Log-normal Log-logistic Gamma Log-normal Log-normal Log-normal 

Selected prePS distribution Exponential Exponential Exponential Exponential Exponential Exponential 

Selected PPS distribution for the unadjusted STM Gamma Log-logistic Log-logistic Gamma Gamma Log-normal 

Selected PPS distribution for the adjusted STM Gamma Log-logistic Log-logistic Gamma Gamma Log-normal 
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