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Abstract

In this thesis we are concerned with harmonic maps from a Riemann surface to a complex

projective space, the unitary group, the orthogonal group, or the symplectic group.

We describe and link two constructions of complex isotropic (equivalently, finite uniton

number) harmonic maps from a Riemann surface to complex projective spaces; all har-

monic maps from the 2-sphere are complex isotropic. We then specialise to harmonic

maps from the 2-sphere to the complex projective plane and show that there is no restric-

tion on the ramification behaviour in some situations and that the opposite is true in other

situations.

We find the dimension of the spaces of holomorphic sections and holomorphic differ-

entials of certain line bundles. We use those results to give improved lower bounds on

the index of complex isotropic harmonic maps from the 2-sphere and torus to a complex

projective space of arbitrary dimension and from higher genus surfaces in some cases.

We give, up to dimension 6, algebraic parametrizations of all S1-invariant extended solu-

tions of harmonic maps of finite uniton number from a Riemann surface to the symplectic

group, giving the corresponding harmonic maps explicitly. For arbitrary dimension we

give an algorithm which parametrizes all such S1-invariant extended solutions of har-

monic maps which are of standard type, i.e., of the maximum possible uniton number.
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Chapter 1

Introduction

A map between (compact) Riemannian manifolds is called harmonic if it is a critical point

of the energy functional, a natural extension of Dirichlet’s energy to Riemannian mani-

folds. The general theory of harmonic maps took off in 1958 when J. Eells investigated

infinite-dimensional spaces of maps, looking at points on these spaces that are critical

points of the energy functional [22]. Little was known about their existence until Eells

and J. Sampson [26] famously proved that one can continuously deform any given map

between Riemannian manifolds into a harmonic map in its homotopy class, provided the

target manifold is non-positively curved. The same cannot be said for positively curved

target manifolds, for example Eells and J. C. Wood [27] proved that there does not exist a

harmonic map from a 2-torus to the 2-sphere of degree ±1. Although there is no general

theorem on the existence of harmonic maps for positively curved manifolds, many ex-

amples of harmonic maps and existence results have been found. Examples of harmonic

maps include but are not limited to: constant mappings between Riemannian manifolds;

harmonic functions; geodesics and holomorphic maps between Kähler manifolds (see [35,

§2.2], [51, Chapter 4] and [25, §3] for a comprehensive list). We direct the reader to the

articles and book [24, 25, 51] for descriptions of existence and classification for particular

domain and target manifolds.
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A key tool in the study of harmonic maps is the first variation of the energy. The first

variation of the energy gives a formula involving the tension field which is the Euler-

Lagrange operator associated to the energy. The tension field also determines the direction

in which the energy decreases most rapidly. If the tension field is identically zero then

the map is a critical point of the energy functional and therefore a harmonic map [23, 51].

In [23] harmonic maps are linked to the physical action of rubber being stretched over

marble, which can be realised as a mapping of a plane domain to a 2-sphere. The tension

field at a point on the rubber represents the tension in the rubber: therefore if the tension

field is zero, the the rubber is in elastic equilibrium.

The second variation of the energy [40, 47] is useful for determining the behaviour of

the energy near a harmonic map: it gives a way of assessing the stability of a harmonic

map by calculating its index. The index is the maximal dimension of the subspace on

which the Hessian of the energy is negative definite. A harmonic map is called (weakly)

stable if the index = 0: a harmonic map that is a local minimum of the energy has

index = 0 and is therefore stable [25, §6]. Generally the index of a harmonic map is

hard to calculate, for example, the index of the identity map on a (compact) Einstein

manifold (the Ricci curvature is a constant multiple of the metric) is zero if and only if

the first eigenvalue of the Laplacian is greater than twice the conformal factor [47]. Even

for a constant mapping, which has index = 0, the second variation is non-trivial [51,

Chapter 5 §1.3]. Another notable result is due to A. Lichnerowicz [39]: holomorphic

maps between compact Kähler manifolds are harmonic and have index = 0. These maps

are therefore stable, in fact they are global minima of the energy functional. In many

cases only estimates have been found for the index of a harmonic map, for example, any

harmonic map from a compact Riemann surface to a complex projective space which is

neither holomorphic nor antiholomorphic is unstable [5, 6].

Harmonic maps into a complex projective space have been researched extensively [2, 3,

10, 12, 18, 19, 28, 37, 38, 53]. In [27] Eells and Wood showed that a harmonic map from
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a Riemann surface of genus g to the the 2-sphere S2 = CP1 is holomorphic if the degree

of the map is greater than the genus g, all such maps are therefore stable by [39]. For

g = 0, in [19, 20], A.M. Din and W.J. Zakrzewski first gave the explicit solutions of the

harmonic map equation. These were given by successively differentiating a holomorphic

map then constructing what would later be known as osculating spaces and associated

curves in [28].

The work of [27] and [19] was expanded upon by Eells and Wood in [28] where they

constructed harmonic maps with no restriction on the genus g. This led to a classification

theorem relating complex isotropic harmonic maps φ : M → CPn to pairs (f, ρ) where

f : M → CPn is a full holomorphic map and ρ an integer, 0 ≤ ρ ≤ n [28]. Further,

for 0 < ρ < n, these maps are unstable. In fact Eells and Wood in [28, §9] gave a

lower bound for the index of these harmonic maps φ by noting that, given a holomorphic

vector field along φ, there is a smooth variation of φ that contributes to the index of φ.

In Chapter 4 of this thesis we improve the estimates of Eells and Wood [28, §9] for all

harmonic maps from the 2-sphere to a complex projective space and complex isotropic

harmonic maps from the torus to a complex projective space. We also give new bounds on

the index of complex isotropic harmonic maps from higher genus surfaces to a complex

projective space which improve those in [28] in some cases. Also in [28], Eells and

Wood proved that all harmonic maps had been obtained for g = 0, and for g = 1 with

non-zero degree [28, Proposition 7.6]. For g = 0, D. Burns added to the discussion by

providing physical motivations to the work of Din and Zakrzewski [19] and Eells and

Wood [28]. Also for g = 0, S.S. Chern and J. Wolfson [14, 52] interpret the work of Din

and Zakrzewski through a moving frames approach providing a classification theorem for

minimal 2-spheres in CPn.

As described in [28] harmonic maps M → CPn, where M is a compact Riemann sur-

face, are constructed from a full holomorphic map f : M → CPn as follows: first they

construct a family of holomorphic maps from a Riemann surface into a complex Grass-
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mannian which are indexed by the integer ρ, 0 ≤ ρ ≤ n: these are called the associated

curves of f . For each ρ, by pairing the ρth associated curve with the (ρ− 1)st associated

curve, one gets a map into a flag manifold Fρ−1,ρ which is horizontal with respect to a

Riemann submersion π : Fρ−1,ρ → CPn. Composing this map with the Riemann submer-

sion gives a harmonic map into a complex projective space now known as the ρth Gauss

transform of f .

After the work of Eells and Wood, many authors turned their attention to classifying har-

monic maps from a compact Riemann surface to a complex Grassmannian G(k, n). In

[44] J. Ramanathan determined all harmonic maps S2 → G(2, 4). In [16] (the results

of which were announced in [15]) Chern and Wolfson constructed all harmonic maps

S2 → G(2, n) for n arbitrary. Later F.E. Burstall and Wood gave an interpretation of the

construction of [28] in [12] by considering maps from M to a Grassmannian as subbun-

dles of the trivial bundle M × Cn+1, and developing a technique of analysing harmonic

maps from a Riemann surface into a complex Grassmannian using “diagrams”. In Chap-

ter 2 we recall the construction of complex isotropic harmonic maps φ : M → CPn given

by Eells and Wood in [28] and by Burstall and Wood in [12] and link the two approaches.

In the constructions of complex isotropic maps given in [28], to ensure the associated

curves of the full holomorphic map f are well defined and holomorphic, one needs to

pay particular attention to the ramification points of f . Analogously in the construction

of [12] to ensure the subbundles of M × Cn+1 are holomorphic one needs to “fill out the

zeros” of the subbundle. This again amounts to paying attention to the ramification points

of another related bundle map. In §2.2.1 we prove these two definitions of ramification

point are the same.

In [18] T.A. Crawford showed that subspaces consisting of maps of a fixed degree and

energy of the space of harmonic maps S2 → CP2 are path connected and that they can

be given the structure of a complex manifold. This is done by proving that the Gauss

transform as seen as a mapping from the complex manifold of full holomorphic maps of
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fixed degree and total ramification index to the space of harmonic maps of fixed degree

and energy is a homeomorphism. Therefore the complex structure of the domain manifold

can be transported to the target. L. Lemaire and Wood carry further the work of Crawford

to prove in [37] that the Gauss transform is, in fact, a diffeomorphism making the space of

harmonic maps with fixed degree and energy a smooth closed submanifold of the space of

all maps S2 → CP2. In this work, the total ramification index, i.e. the sum of the points

of ramification of the full holomorphic map counted according to multiplicity, must be

fixed. Our work sheds some light on the phenomenon of ramification coalescence, where

the points of ramification can come together in the deformation of a map; at such a point,

the space of harmonic maps remains smooth [37].

At a similar time to the extensive work dedicated to harmonic maps from surfaces to a

complex projective space, K. Uhlenbeck developed the theory of harmonic maps into Lie

groups. In [50], Uhlenbeck introduced polynomial extended solutions of a harmonic map,

that is, maps from a Riemann surface M into the loop group of the unitary group ΩU(n)

that are polynomial in a “spectral” parameter λ.Uhlenbeck showed that such a polynomial

extended solution can be factorized with respect to certain subbundles of Cn := M × Cn

called “unitons”. In [46], G. Segal introduced the Grassmannian model of an extended

solution which represents an extended solution by a subbundle W of the trivial bundle

M ×H whereH is a Hilbert space.

In [9] Burstall and M.A. Guest used canonical elements and certain maps into a loop

group to classify all polynomial extended solutions for harmonic maps into the unitary

group. Chapter 5 concerns canonical elements, giving justification to two theorems pre-

sented in [7] and [8] and giving concrete descriptions of canonical elements for SU(n),

O(n) and Sp(n). The extended solutions classified in [9] were given by integration, with

equations which are easy to solve for U(n), especially for low dimensions. By view-

ing O(n) as a subgroup of U(n), M.J. Ferreira, B.A. Simões and Wood [29] applied

the method of Burstall and Guest [9] to give a classification of extended solutions for
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harmonic maps into the orthogonal group. This classification was given according to

their canonical elements. Further, they gave a parametrization (at least locally) of these

extended solutions in terms of free holomorphic data by replacing every instance of in-

tegration with differentiation and algebraic operations. Chapter 6 recalls the work of

Uhlenbeck, Segal, Burstall, Guest, Ferreira, Simões and Wood. In Chapter 7, we study

the problem of constructing harmonic maps into the symplectic group, which is consid-

erably harder than for the orthogonal group, as there are additional equations to solve to

ensure the map is into the symplectic group.

For completeness we give an introduction to harmonic maps and present two important

pieces of harmonic map theory, namely the first and second variation mentioned above.

1.1 Harmonic Maps

The first variation gives us the Euler-Lagrange equation for the energy functional. The

equation for this can be used directly to see, for example, that all geodesics φ : S1 → N

are harmonic maps. The second variation formula is useful for assessing if a harmonic

map is stable or not. Full details for the first and second variation can be found in [51],

this is also the main reference for the first chapter; for more information we direct the

reader to the survey articles [23, 25, 24] and [56].

1.1.1 Energy Density Function and The Energy Integral

Consider two compact Riemannian manifolds (M, g) and (N, h) with dimension m and

n, respectively.

Definition 1.1.1. The energy density function of a C∞-mapping φ : (M, g)→ (N, h) is
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the function e(φ) ∈ C∞(M) given by

e(φ) =
1

2

m∑
i=1

(φ∗h)(ui, ui) =
1

2

m∑
i=1

h(dφ(ui), dφ(ui)) .

where C∞(M,N) denotes the space of C∞ maps from M to N and C∞(M) =

Cinfty(M,C). In the definition above, φ∗h is the pull back of h by φ and we denote

by dφ : TxM → Tφ(x)N the differential of φ at a point x ∈ M . Also {ui}mi=1 is an

orthonormal basis for the tangent space TxM at x.

To use this definition when we have local coordinates, we may apply the Gram-Schmidt

process. To do this we need to take local coordinates (x1, x2, ..., xm) on U around x. At

each point x ∈ U we apply the Gram–Schmidt process to {∂/∂xi}mi=1 to get a locally

defined orthonormal frame {ui}mi=1. Noting that for each point x ∈ U we have that

{ui(x)}mi=1 is an orthonormal basis for TzM , then the energy density function defined on

a neighbourhood U around x is given by,

e(φ) =
1

2

m∑
i=1

(φ∗h)(ui, ui)

where e(φ) ∈ C∞(U) if φ ∈ C∞(U,N) .

In [51, §1.1] it is shown that if we take local coordinates (x1, x2, ..., xm) on a neigh-

bourhood around x ∈ M , local coordinates (y1, y2, ..., yn) on a neighbourhood around

φ(x) ∈ N and define φα := yα ◦ φ, for α = 1, ..., n, then we have

e(φ) =
1

2

∑
i,j,α,β

gijhαβ
∂φα

∂xi
∂φβ

∂xj
.

Here gij is the inverse of gij = g( ∂
∂xi
, ∂
∂xj

), and hαβ = h( ∂
∂yα

, ∂
∂yβ

).
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Definition 1.1.2. Let φ ∈ C∞(M,N), then the energy of φ is defined as

E(φ) =

∫
M

e(φ)vg =
1

2

∫
M

|dφ|2vg

where vg is the volume measure given in local coordinates by vg =
√

det gijdx
1 · · · dxn .

Definition 1.1.3. A map φ ∈ C∞(M,N) is called harmonic if φ is a critical point of the

energy E. Specifically φ is a harmonic map if, for any smooth variation φt of φ where

−ε < t < ε, we have
d

dt

∣∣∣∣
t=0

E(φt) = 0 .

Here a smooth variation φt is defined as a smooth map F : (−ε, ε)×M → N , given by

F (t, x) := φt(x), for −ε < t < ε, x ∈M , where F (0, x) = φ(x) for all x ∈M .

1.1.2 The First Variation Formula

We consider the main steps in constructing the first variation formula for harmonic maps.

The first variation formula is a useful tool for finding harmonic maps, as it describes the

criterion for a map to be harmonic in terms of the Euler-Lagrange equation.

Definition 1.1.4. For any smooth variation φt of φ where −ε < t < ε, we define the

variation vector field along φ to be

V (x) :=
d

dt

∣∣∣∣
t=0

φt(x) ∈ Tφ(x)N (x ∈M) .

Now consider φ−1TN , the pullback bundle of TN by φ . That is, for the bundle pro-

jection π : TN → N ,

φ−1TN = {(x, u) ∈M × TN | π(u) = φ(x)} .
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We can now view the variation vector fields V as smooth sections of the pullback bundle

φ−1TN . Let∇ and N∇ be the Levi-Civita connections on (M, g) and (N, h), respectively,

then we can define the induced connection ∇̃ on φ−1TN as follows: it is the unique

connection such that, for each x ∈M with φ(x) ∈ N , X ∈ TxM and Z a smooth section

of TN , we have

∇̃X(φ∗Z) = φ∗(N∇dφ(X)Z)

where dφ : TxM → Tφ(x)N is the differential of φ. Here φ∗Y = Y ◦ φ for any section Y

of TN and is a section of φ−1TN called the pullback of Y by φ. For more details on this

definition see [24].

Theorem 1.1.5. Let (M, g) and (N, h) be compact Riemannian manifolds and φ ∈

C∞(M,N). For any smooth variation φt, −ε < t < ε, of φ, let V (x) := d/dt|t=0φt(x)

for x ∈M and let {ei}mi=1 be any orthonormal frame field. Then

d

dt

∣∣∣∣
t=0

E(φt) = −
∫
M

h(V, τ(φ))vg,

where

τ(φ) =
m∑
i=1

(∇̃ei(dφ(ei))− dφ(∇eiei)).

Here, dφ is considered a bundle mapping TM → φ−1TN and so dφ(ei) is a local section

of φ−1TN . Thus, φ ∈ C∞(M,N) is a harmonic map if and only if

τ(φ) = 0

everywhere on M.

Proof. See [26, 51].

Here τ(φ) is known as the tension field of φ and the above theorem shows that τ(φ) = 0

is the Euler-Lagrange equation of the energy functional.
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1.1.3 The Second Variation Formula

The second variation formula is used to assess the stability of harmonic maps and is useful

when studying the structure of the space of harmonic maps.

Let φ : M → N be a harmonic map. Then in a similar way to the above let us take a

smooth variation φs,t : M → N of φ, with two parameters s and t. More concretely, we

have a smooth map

F : (−ε, ε)× (−ε, ε)×M → N,

F : (s, t, x) 7→ φs,t(x),

where F (0, 0, x) = φ(x) for x ∈ M . This gives two variation vector fields, i.e. sections

of φ−1TN , one for each parameter s and t,

V (x) :=
d

ds

∣∣∣∣
s,t=0

φs,t(x), W (x) :=
d

dt

∣∣∣∣
s,t=0

φs,t(x) .

Definition 1.1.6. Let φ : (M, g) → (N, h) be a harmonic map. Then the Hessian of the

energy E at φ is defined by

H(E)φ(V,W ) =
∂2

∂s∂t

∣∣∣∣
(s,t)=(0,0)

E(φs,t),

for V and W variation vector fields.

Definition 1.1.7. The Riemann curvature tensor on N is defined by

NR(U, V )W = N∇U
N∇VW − N∇V

N∇UW − N∇[U,V ]W,

for U, V, W , vector fields on N .

Theorem 1.1.8. Let φ : (M, g) → (N, h) be a harmonic map. Then the Hessian of the
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energy E at φ is given by

H(E)φ(V,W ) =
∂2

∂s∂t

∣∣∣∣
(s,t)=(0,0)

E(φs,t) =

∫
M

h
(
W,Jφ(V )

)
vg,

for V and W variation vector fields. Here Jφ is a second order self-adjoint elliptic differ-

ential operator acting on the space of variation vector fields along φ given by:

Jφ(V ) := −
m∑
i=1

(∇̃ei∇̃ei − ∇̃∇eiei)V −
m∑
i=1

NR(V, dφ(ei))dφ(ei) .

Proof. See [26, 51] .

Using the second variation formula above we can now define the stability of harmonic

maps.

Definition 1.1.9. The index of a harmonic map φ : M → N is defined as

index(φ) = sup{dim(F ) | F is a vector subspace of Γ(φ−1TN)

withH(E)φ negative definite on F} .

Note here that Γ(·) denotes the space of smooth sections, and the supremum is finite by

standard elliptic operator theory [51, Chapter 5 §1.2]. A harmonic map φ : M → N is

said to be (weakly) stable if

index(φ) = 0 .

An immediate consequence of this definition is that index(φ) = 0 if and only if

H(E)φ(V, V ) ≥ 0 for all V ∈ Γ(φ−1TN).
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1.2 Thesis Overview

Besides the introductory chapter this thesis is split into two main parts which cover the

topic of harmonic maps from a compact Riemann surface to a complex projective space

or certain Lie groups. All chapters concern harmonic maps from a Riemann surface,

Chapters 2–4 concern harmonic maps with target space a complex projective space and

Chapters 5–7 harmonic maps with target space the unitary group U(n), the orthogonal

group O(n), or the symplectic group Sp(n).

In Chapter 2 we describe and link two constructions of complex isotropic harmonic maps

from M to complex projective spaces CPn given in [28, 12].

In Chapter 3 we specialise to S2 → CP2 and show that there is no restriction on the

ramification behaviour of full holomorphic maps of degree k with total ramification index

0 ≤ r0 ≤ k − 2 and we give a counter-example that shows the opposite for k − 2 < r0 ≤

(3/2)k− 3. Through an application of the Gauss transform these holomorphic maps give

harmonic maps which form a finite-dimensional manifold [37].

In Chapter 4 we find the dimension of the spaces of holomorphic sections and holomor-

phic differentials of certain line bundles to give improved lower bounds on the index of

complex isotropic harmonic maps Mg → CPn for g = 0 or 1; here Mg denotes a compact

Riemann surface of genus g. We also give new bounds on the index of complex isotropic

harmonic maps from higher genus surfaces which improve those in [28] in some cases.

In Chapter 5 we give explicit descriptions of canonical elements for the Lie groups SU(n),

O(n) and Sp(n), which are used in the construction and classification of harmonic maps

into U(n) and O(n) given in [9] and [29], respectively.

In Chapter 6 we recall the underlying theory of harmonic maps into Lie groups due to

K. Uhlenbeck [50] and go on to recall the work of G. Segal [46], F.E. Burstall and M.A.

Guest [9] for harmonic maps into the unitary group U(n). Finally we recall the work of
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M.J. Ferreira, B.A. Simões and J.C. Wood [29] for harmonic maps into the orthogonal

group O(n).

In Chapter 7 we give a new method of using canonical elements of Sp(n) to give algebraic

parametrizations of S1-invariant extended solutions of harmonic maps of finite uniton

number from a surface to the symplectic group Sp(n) up to complex dimension 6. This

method was inspired by [29], but is harder as there is an extra equation to solve which

was not present in the O(n) case. For arbitrary dimension we give an algorithm which

parametrizes all such S1-invariant extended solutions of harmonic maps which are of

standard type.
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Chapter 2

Harmonic Maps from Surfaces to

Complex Projective Spaces

We recall the construction of complex isotropic harmonic maps given in [28, 12] and link

the two approaches (Proposition 2.2.9); for additional reading related to these construc-

tions see [2, 18, 37, 38, 53] and for a moving frames approach see [14, 52].

2.1 Subbundles of M × Cn+1

Let M be a compact Riemann surface. We give CPn its standard structure as a Kähler

manifold of constant holomorphic sectional curvature c > 0 [51, p. 147]. Let us identify

CPn with the set of complex lines (i.e. one-dimensional complex subspaces in Cn+1) in

the usual way, so that each point V ∈ CPn is identified with a complex line in Cn+1. This

leads to the definition of the following canonical bundle, which will be of vital use in our

work.

Definition 2.1.1. The tautological bundle T over CPn is the subbundle of the trivial

bundle CPn × Cn+1 → CPn whose fibre at V ∈ CPn is the complex line V in Cn+1.
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By decomposing the complexified tangent bundle TCCPn using the complex structure in

the usual way we have

TCCPn = T (1,0)CPn ⊕ T (0,1)CPn.

There is a well-known connection-preserving isomorphism h : T (1,0)CPn → L(T, T⊥)

where L(T, T⊥) is the bundle of linear bundle maps from the tautological bundle to its

orthogonal complement in the trivial bundle CPn × Cn+1. This is given by

h(Z)σ = πT⊥Z(σ), (2.1.1)

where σ is a local section of T , Z ∈ T (1,0)CPn, πT⊥ denotes the orthogonal projection

onto T⊥ and Z(·) denotes differentiation with respect to Z. For information on this iso-

morphism see [2, 12, 28].

Consider a smooth map φ : M → CPn. We may decompose the C-linear extension of its

differential dφ into components:

∂φ : T (1,0)M → T (1,0)CPn, ∂φ : T (0,1)M → T (1,0)CPn. (2.1.2)

Let Gk(Cn+1) be the Grassmannian of k-dimensional subspaces of Cn+1. To each map

φ : M → Gk(Cn+1), we may associate the pullback of the tautological bundle φ := φ−1T ;

this is the rank k subbundle of the trivial bundle M × Cn+1 over M whose fibre at z is

the k-dimensional subspace φ(z). Conversely, any rank k subbundle φ of M × Cn+1

corresponds to a map φ : M → Gk(Cn+1) where φ(z) is the k-dimensional subspace

given by the fibre φ
z

for z ∈ M . We shall call φ the associated subbundle of φ. The

orthogonal projection πφ onto φ applied to the standard derivation on the trivial bundle

M × Cn+1 induces a connection φ∇ on φ; on a (local complex) chart (U, z) of M this is
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given by
φ∇∂/∂zυ = πφ

∂

∂z
υ, φ∇∂/∂zυ = πφ

∂

∂z
υ, (2.1.3)

for υ ∈ Γ(φ) = Γ(φ−1T ).

We may regard CPn as the complex Grassmannian G1(Cn+1) of complex 1-planes in

Euclidean (n + 1)-space Cn+1. Then to each map φ : M → CPn, we may associate

the pullback of the tautological bundle φ := φ−1T ; this is the complex line subbundle of

the trivial bundle M × Cn+1 over M whose fibre at z is the line φ(z). Conversely, any

complex line subbundle φ of M ×Cn+1 corresponds to a map φ : M → CPn where φ(z)

is the line given by the fibre φ
z

for z ∈M .

As in [12], given mutually orthogonal subbundles φ and ψ on a coordinate chart (U, z)

we define the (linear) bundle maps A′φ,ψ : φ→ ψ and A′′φ,ψ : φ→ ψ by

A′φ,ψ(υ) = πψ
∂

∂z
υ and A′′φ,ψ(v) = πψ

∂

∂z
υ,

where πψ is the orthogonal projection onto ψ (some authors e.g. [11] interchange φ with

ψ in this notation). These two maps are “adjoint up to sign” [11], more concretely, with

〈 , 〉φ the Hermitian metric on φ induced from the flat hermitian metric 〈 , 〉 on the trivial

bundle CPn × Cn+1 then

−〈A′φ,ψυ, w〉φ = 〈υ,A′′ψ,φw〉φ for υ ∈ φ, w ∈ ψ.

A very useful special case of the above is the following: we set

A′φ = A′φ,φ⊥ : φ→ φ⊥ and A′′φ = A′′φ,φ⊥ : φ→ φ⊥.

Then, using the pullback of (2.1.1), we have the following isomorphism of bundles over

M :

φ−1T (1,0)CPn ∼= L(φ, φ⊥). (2.1.4)
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Since this is a pullback of a connection-preserving isomorphism it is again a connection-

preserving isomorphism, which can be used to identify ∂φ(∂/∂z) and ∂φ(∂/∂z) with

the bundle maps A′φ and A′′φ, respectively. We give all bundles their Koszul-Malgrange

structure [36], i.e. that with ∂-operator given by the (0, 1)-part of the connection on the

respective bundle. It follows that (2.1.4) is an isomorphism of holomorphic bundles.

Then we have the following for a smooth map φ : M → CPn:

Lemma 2.1.2. [12]

(i) The map φ is holomorphic (respectively, antiholomorphic) if and only if A′′φ = 0

(respectively A′φ = 0).

(ii) The map φ is harmonic if and only if A′φ : φ→ φ⊥ is holomorphic, i.e.,

A′φ ◦ φ∇∂/∂z = φ⊥∇∂/∂z ◦ A′φ,

or equivalently, A′′φ : φ→ φ⊥ is antiholomorphic, i.e.,

A′′φ ◦ φ∇∂/∂z = φ⊥∇∂/∂z ◦ A′′φ,

Let φ : M → CPn be a non-antiholomorphic harmonic map. After a process of filling

out the zeros of A′φ detailed in [12, p. 266], according to Lemma 2.1.2 the image of A′φ

becomes a holomorphic subbundle of φ⊥, i.e. closed under φ⊥∇∂/∂z, which we denote by

ImA′φ. We call this holomorphic subbundle the ∂′-Gauss bundle and denote it by G′(φ).

As G′(φ) is a complex line subbundle of the trivial bundle M × Cn+1 over M it corre-

sponds to a map G′(φ) : M → CPn such that G′(φ) =: G′(φ)−1T . Explicitly G′(φ)(z)

is the fibre at z ∈ M of G′(φ). Similarly let φ : M → CPn be a non-holomorphic

harmonic map, then the image of A′′φ is an antiholomorphic subbundle of φ⊥, i.e. closed

under φ⊥∇∂/∂z, denoted G′′(φ) and called the ∂′′-Gauss bundle. As before G′′(φ) is a

complex line subbundle of the trivial bundle M × Cn+1 over M and so induces a map

G′′(φ) : M → CPn characterised by G′′(φ) =: G′′(φ)−1T .
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Lemma 2.1.3. [12, Proposition 2.3 and Remark] Let φ : M → CPn be a harmonic

map. If φ is not antiholomorphic then G′(φ) is harmonic and G′′(G′(φ)) = φ. If φ is not

holomorphic then G′′(φ) is harmonic and G′(G′′(φ)) = φ.

Definition 2.1.4. A map f : M → CPn is said to be full if its image does not lie in a

proper projective subspace of CPn.

We shall now construct a “harmonic sequence” from a full holomorphic map using the

above. Let f0 : M → CPn be a full holomorphic map, then as above G′(f0) := ImA′f0 ⊂

f⊥
0

(most authors omit the underlining in the bundle G′(·); we add it for clarity); here

G′(f0) : M → CPn is a harmonic map by Lemma 2.1.3. Applying the procedure again to

G′(f0) : M → CPn we have G′(G′(f0)) := ImA′G′(f0) ⊂ G′(f0)⊥, where G′(G′(f0)) =

G′(G′(f0))−1T for some smooth map G′(G′(f0)) : M → CPn which is again a harmonic

map by Lemma 2.1.3.

For j = 0, 1, . . . , n, write fj := (G′)j(f0) := G′(G′(. . . G′(G′(f0)) . . . )) where G′ is

applied j times to f0, and f
j

:= (G′)j(f0) := G′(G′(. . . G′(G′(f0)) . . . )), so fj : M →

CPn is a harmonic map and f
j

:= f−1
j T its associated subbundle given by the pullback

of the tautological bundle. By fullness, none of the subbundles f
j

is zero for j < n, since

otherwise f would lie in the constant proper subspace of Cn+1 spanned by the f
j
. Note

that f
j

:= ImA′fj−1
⊂ f⊥

j−1
.

Remark 2.1.5. Similarly, given a full antiholomorphic map g0 and by replacing A′

and G′ with A′′ and G′′, respectively, we obtain harmonic maps gk := (G′′)k(g0) :=

G′′(G′′(. . . G′′(G′′(g0)) . . . )) where G′′ is applied k times to g0.

It was shown in [12], and through a different interpretation in [28], that the nth iteration

of the procedure above gives f
n

:= ImA′fn−1
⊂ f⊥

n−1
where fn : M → CPn is a full

antiholomorphic map. Using Lemma 2.1.2 we see that A′′f0 = A′fn = 0 since f0 and fn

are holomorphic and antiholomorphic, respectively, therefore G′′(f0) = G′(fn) = 0 and
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so do not define maps into CPn. Therefore we have the following sequence of associ-

ated subbundles of harmonic maps and bundle maps between them, called the harmonic

sequence (of f0) [2, 53]:

f
0

A′f0−−−→←−−−
A′′f1

f
1

A′f1−−−→←−−−
A′′f2

. . .
A′fρ−2−−−→←−−−
A′′fρ−1

f
ρ−1

A′fρ−1−−−→←−−−
A′′fρ

f
ρ

A′fρ−−−→←−−−
A′′fρ+1

f
ρ+1

A′fρ+1−−−→←−−−
A′′fρ+2

. . .
A′fn−1−−−→←−−−
A′′fn

f
n
; (2.1.5)

where f0 : M → CPn is a full holomorphic map with associated bundle f
0

:= f0
−1T ,

fi : M → CPn is a full harmonic map with associated bundle f
i

:= fi
−1T for each

i ∈ {1, 2, . . . , n − 1} and fn : M → CPn is a full antiholomorphic map with associated

bundle f
n

:= fn
−1T .

Extending the notation above to a harmonic map φ : M → CPn we write the j-fold

iterate of G′ on φ as (G′)j(φ) := G′(G′(. . . G′(G′(φ)) . . . )) where G′ is applied j times

to φ and (G′)j(φ) := G′(G′(. . . G′(G′(φ)) . . . )). Similarly we write the j-fold iterate of

G′′ on φ as (G′′)j(φ) := G′′(G′′(. . . G′′(G′′(φ)) . . . )) where G′′ is applied j times to φ

and (G′′)j(φ) := G′′(G′′(. . . G′′(G′′(φ)) . . . )). Note that if (G′)j(φ) is holomorphic so

(G′)j+1(φ) = 0 and therefore does not define a map into CPn. Similarly if (G′′)j(φ) is

antiholomorphic so (G′′)j+1(φ) = 0 and again does not define a map into CPn.

Definition 2.1.6. [12, §3] A harmonic map φ : M → CPn is called complex isotropic if

its associated subbundle φ is orthogonal to (G′)j(φ) for each j ≥ 1.

Lemma 2.1.7. [12, Lemma 3.1] If φ : M → CPn is complex isotropic then

(G′)
j
(φ) ⊥ (G′)

k
(φ)

for all j, k ∈ {0, 1, . . . }, j 6= k.

Lemma 2.1.8. The harmonic maps fj from (2.1.5), that is, the harmonic maps con-

structed from a full holomorphic map as iterated ∂′-Gauss bundles, (G′)j(f0), are com-

plex isotropic.
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Proof. By Lemma 2.1.7 we need only prove that for a full holomorphic map f0 : M →

CPn that f
0

is orthogonal to f
j

for all j ≥ 0 i.e. that f0 is complex isotropic. Let F0

be a local holomorphic lift of the full holomorphic map f0 : M → CPn, then F0 can be

seen as a local nowhere zero section of f
0
. Define A′0,j = A′fj−1

◦ A′fj−2
◦ · · · ◦ A′f0 so

A′0,j : f
0
→ f

j
and A′0,1 = A′f0 . We will use induction to prove our claim that f

0
⊥f

j
for

all j = 1, 2, . . . , n. We have f
0
⊥f

1
as by definition f

1
:= G′(f0) := ImA′G′(f0) ⊂ f⊥

0
.

We use this as a base of induction on j ∈ {1, . . . , n}: for an induction hypothesis let us

assume that f
0
⊥f

k
for all k ≤ j and we will see that this implies f

0
⊥f

j+1
.

Let 〈 , 〉 denote the flat Hermitian metric on the trivial bundle CPn×Cn+1 and F0 ∈ Γ(f
0
)

be the local holomorphic lift of f0 : M → CPn. We have,

〈F0, A
′
0,j+1(F0)〉 = 〈F0, π

⊥
fj

∂

∂z
A′0,j(F0)〉

= 〈F0,
∂

∂z
A′0,j(F0)− πfj

∂

∂z
A′0,j(F0)〉

= 〈F0,
∂

∂z
A′0,j(F0)〉 − 〈F0, πfj

∂

∂z
A′0,j(F0)〉.

By the induction hypothesis f
0
⊥f

j
so 〈F0, πfj

∂
∂z
A′0,j(F0)〉 = 0. Therefore,

〈F0, A
′
0,j+1(F0)〉 = 〈F0,

∂

∂z
A′0,j(F0)〉

=
∂

∂z
〈F0, A

′
0,j(F0)〉 − 〈 ∂

∂z̄
F0, A

′
0,j(F0)〉 = 0,

as F0 is holomorphic, A′0,j(F0) ∈ Γ(f
j
) and f

0
⊥f

j
by the induction hypothesis. There-

fore f
0
⊥f

j+1
and the induction step is complete.

Remark 2.1.9. (i) All harmonic maps S2 → CPn are given as above; for higher gen-

era the construction gives all harmonic maps which are complex isotropic (see also

[28, §5] and [12, §3 ff.]), or equivalently of finite uniton number cf. [1, §4.3]. The

terms of infinite isotropy order, strongly isotropic and pseudoholomorphic [3] are

also used.



22 2. HARMONIC MAPS FROM SURFACES TO COMPLEX PROJECTIVE SPACES

(ii) It follows from Lemma 2.1.8 and Lemma 2.1.7 that all f
i

in (2.1.5) are mutually

orthogonal subbundles of the trivial bundle M × Cn+1.

Definition 2.1.10. Let (U, z) be a chart of M and let z0 ∈ U be a zero of A′fρ−1
where

ρ ∈ {1, . . . , n}; then we can write

A′fρ−1
(z) = (z − z0)kλ(z),

where λ is a smooth section of L(f
ρ−1

, f⊥
ρ−1

), non-zero at z0 and k ∈ N (where N =

{1, 2, . . . }). Then we say that f0 is ρth(-order) ramified at the point z0 with ramification

index k. We call the sum of all ramification indices of the points of ρth ramification the

ρth total ramification index and denote it rρ−1.

2.1.1 Degree of a Smooth Map

Let M be a compact Riemann surface. For use in later sections we present some results

concerning the degree of a smooth map φ : M → CPn.

Definition 2.1.11. Let φ : M → CPn be a smooth map. The degree of φ, denoted deg(φ)

is the degree of the induced map φ∗ : H2(CPn,Z)→ H2(M,Z) on second cohomology.

More explicitly, the deRham cohomology class [ωN ] of the Kähler form ωN of N = CPn

gives a generator of H2(CPn,Z) ∼= Z and the deRham cohomology class [ωM ] of the

volume form ωM gives a generator of H2(M,Z) ∼= Z; then [φ∗ωN ] = deg(φ)[ωM ].

Lemma 2.1.12. [12, Lemma 5.1] Let φ : M → CPn be a smooth map and φ its associated

subbundle of the trivial bundle M ×Cn+1. Then deg(φ) = −c1(φ) where c1(φ) is the first

Chern class of φ.

Recall for a smooth map φ : M → CPn we may decompose the C-linear extension of its

differential dφ (2.1.2). This gives a decomposition of the energy density e(φ) of φ given
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in Definition 1.1.1 in the following way:

e(φ) = e(1,0)(φ) + e(0,1)(φ),

where e(1,0)(φ) = 1
2
|∂φ|2 and e(0,1)(φ) = 1

2
|∂φ|2. This, in turn, gives a decomposition of

the energy E(φ) of φ from Definition 1.1.2 given by

E(φ) = E(1,0)(φ) + E(0,1)(φ),

where E(1,0)(φ) = 1
2

∫
M
|∂φ|2vg and E(0,1)(φ) = 1

2

∫
M
|∂φ|2vg.

Lemma 2.1.13. Let φ : M → CPn be a smooth map. Then

E(1,0)(φ)− E(0,1)(φ) =
4π

c
deg(φ),

where c > 0 is the value of the constant holomorphic sectional curvature of CPn.

Proof. See [28, p. 247] and [55, p. 141].

This lemma shows that a holomorphic or antiholomorphic map gives a harmonic map of

minimum energy in its homotopy class, see [39].

2.2 Associated Curves and the Gauss Transforms

The construction of harmonic maps from surfaces to complex projective spaces was first

given in a twistorial way in [28] using associated curves: it was later interpreted using

the Gauss transform in [12]. We give a description of this construction with an aim to link

the two approaches from [12] and [28].

Let F : U → Cn+1\{0} be a local holomorphic lift of a full holomorphic map f :

M → CPn on a complex chart (U, z) of M . That is, f |U = π ◦ F for π : Cn+1\{0} →
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CPn defined by π(w0, w1, . . . , wn) = [w0, w1, . . . , wn] where [ ] denote homogeneous

coordinates. We define the derivatives of F by F (ρ) = dρF/dzρ.

Definition 2.2.1. We define the ρth osculating space of f at z ∈M to be the space

θρ = θρ(z) = Span{F (α)(z) | 0 ≤ α ≤ ρ}.

Note that, by the chain rule, θρ is well-defined under change of local coordinates (from z

to w) up to a non-zero factor (given by a power of dw/dz).

The ρth osculating space of f may vary in dimension with z ∈ M , however [28, Lemma

3.1] if f : M → CPn is full then there exists a point z ∈ M such that the nth osculating

space of f at z has dimension n+ 1 and so is the whole of Cn+1.

Consider the wedge product F∧F ′∧F ′′∧· · ·∧F (ρ) : U → ∧ρ+1Cn+1,where F ′ = dF/dz

and 0 ≤ ρ ≤ n. Again by the chain rule, this wedge product is well defined up to scalar

multiples under change of local coordinate. If ρ = n then the zeros of the wedge product

are exactly the points z ∈ M such that dim θn(z) < n + 1, we denote this collection of

discrete points by B, similarly to [28, (3.1)] we have

B = {z ∈M | dim θn(z) < n+ 1}. (2.2.1)

These zeros have a special significance that we discuss later. If the wedge product F ∧

F ′ ∧ F ′′ ∧ · · · ∧ F (ρ) is nowhere zero then it defines a (ρ + 1)-dimensional subspace in

Cn+1 for each z ∈M . If z0 ∈ B is a zero of F ∧F ′ of order κ0 ∈ N, then it is also a zero

of F ∧ F ′ ∧ F ′′ ∧ · · · ∧ F (ρ) of order κρ ∈ N for each ρ, 1 ≤ ρ ≤ n where κi ≤ κj for

1 ≤ i < j ≤ n. Let U be an open neighbourhood of z0 then we write

F ∧ F ′ ∧ F ′′ ∧ · · · ∧ F (ρ)(z) = (z − z0)κργ(z), (2.2.2)

for all z ∈ U and γ(z) ∈ ∧ρ+1Cn+1 is non-zero. As γ(z) is decomposable for all z 6= z0 it
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is decomposable for z = z0 and therefore defines a (ρ+ 1)-dimensional subspace in Cn+1

for each z ∈ U . For convenience, we will define γ(z) to be F ∧F ′∧F ′′∧ · · · ∧F (ρ)(z) at

points that aren’t zeros. As the wedge product F ∧F ′∧F ′′∧· · ·∧F (ρ) is independent upto

scalar multiples of choice of chart U and local holomorphic lift F we have the following:

Definition 2.2.2. The ρth associated curve is the holomorphic map f(ρ) : M →

Gρ+1(Cn+1) where f(ρ)(z) is the (ρ+ 1)-dimensional subspace defined by γ.

See Remark 2.2.7 for the relationship with osculating space. Here Gρ+1(Cn+1) denotes

the Grassmannian of (ρ + 1)-dimensional subspaces of Cn+1. Note that f(ρ) is not the

same as fρ in the previous section and by [28] the ρth associated curve is independent of

lift F and local coordinate z, so f(ρ) is well-defined, and is clearly smooth.

Remark 2.2.3. Associated curves h(ρ) : M → Gρ+1(Cn+1) for a full antiholomorphic

map h : M → CPn can be defined similarly by replacing F ρ = dρF/dzρ by Hρ =

dρF/dzρ where H : U → Cn+1\{0} is some local antiholomorphic lift over some chart

U of M .

Definition 2.2.4. Let f : M → CPn be a full holomorphic (resp. antiholomorphic) map.

The polar of f is defined by g = f⊥(n−1) : M → CPn (where f⊥(n−1) denotes the line

orthogonal to the hyperplane f(n−1)) and is a full antiholomorphic (resp. holomorphic)

map as shown in [28, §3B ff.].

In §2.1 we defined the ∂′-Gauss bundle; we now define a related notion.

Definition 2.2.5. The first ∂′-Gauss transform φ = G(1)(f) : M → CPn of a full

holomorphic map is defined by

φ(z) = f(z)⊥ ∩ f(1)(z).

The ρth ∂′-Gauss transform of f is defined by

G(ρ)(f)(z) = f(ρ−1)(z)⊥ ∩ f(ρ)(z).
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The first ∂′′-Gauss transform φ = G(−1)(g) : M → CPn of a full antiholomorphic map

is defined by

φ(z) = g(z)⊥ ∩ g(1)(z).

The ρth ∂′′-Gauss transform of g is defined by

G(−ρ)(g)(z) = g(ρ−1)(z)⊥ ∩ g(ρ)(z).

It was shown in [28] that for any ρ = 1, . . . , n the ρth ∂′-Gauss transform (resp. ρth

∂′′-Gauss transform) of a full holomorphic (resp. full antiholomorphic) map defines a

smooth and full harmonic map. Further, G(n)(f) is antiholomorphic and is the polar of

f and similarly for g : M → CPn a full antiholomorphic map, G(−n)(g) is holomorphic

and is the polar of g. Let f : M → CPn be a full holomorphic map.

Definition 2.2.6. We define the ρth osculating subbundle of f to be the rank ρ + 1 sub-

bundle of M × Cn+1 over M defined by θρ = f−1
(ρ)T . Here T is the tautological bundle

over the complex Grassmannian Gρ+1(Cn+1), i.e. the subbundle of the trivial bundle

Gρ+1(Cn+1) × Cn+1 → Gρ+1(Cn+1) whose fibre at V ∈ Gρ+1(Cn+1) is the (ρ + 1)-

dimensional subspace V in Cn+1.

Remark 2.2.7. The ρth osculating subbundle of f is the subbundle resulting from filling

out the zeros [12, p.266] of the ρth osculating space of f . In fact the process of filling

out the zeros is exactly the same process as was done here; by defining the ρth associated

curve of f using the ρth osculating space of f then defining the ρth osculating subbundle

of f to be the subbundle associated to the ρth associated curve of f .

Definition 2.2.8. The ρth ∂′-Gauss bundle of f is defined to be the line subbundle of

M × Cn+1 defined by

G(ρ)(f) = π⊥θρ−1
θρ.

We define G(ρ)(f) to be the (unique) map such that G(ρ)(f) := G(ρ)(f)−1T , this is the ρth
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∂′-Gauss transform of f defined in Definition 2.2.5.

We now see that this definition coincides with the definition of ∂′-Gauss bundle given in

§2.1.

Proposition 2.2.9. Let f0 : M → CPn be a full holomorphic map and let f
ρ

for 0 ≤ ρ ≤

n be the subbundles of M × Cn+1 from (2.1.5) then

G(ρ)(f0) = ImA′fρ−1
.

Proof. Let F0 be a local holomorphic lift of the full holomorphic map f0 : M → CPn,

then F0 can be seen as a local section of f
0
. Consider

A′f0(F0) = π⊥f0F
′
0 = F ′0 − πf0F ′0. (2.2.3)

Recall for a local holomorphic lift of f0 that θ0 = Span{F0} and θ1 = Span{F0, F
′
0} and

soA′f0(F0) ∈ θ1 andA′f0(F0) is orthogonal to θ0 by (2.2.3). So we haveA′f0(F0) ∈ θ⊥0 ∩θ1

and so ImA′f0 ⊂ θ⊥0 ∩ θ1. After filling out the zeros, both sides are one-dimensional

subbundles so we have ImA′f0 = π⊥θ0θ1. We use this as a base for an induction on ρ;

as an induction hypothesis, assume that f
ρ−1

:= ImA′fρ−2
= π⊥θρ−2

θρ−1 for all ρ − 1 ∈

{1, 2, . . . , n − 1} and consider A′fρ−1
(Fρ−1) for Fρ−1 a local nowhere zero section of

f
ρ−1

. By the induction hypothesis Fρ−1 is orthogonal to θρ−2 and Fρ−1 ∈ θρ−1, so θρ−1 =

Span{F (j)
0 , Fρ−1 | 0 ≤ j ≤ ρ − 2} and θρ = Span{F (j)

0 , Fρ−1, F
′
ρ−1 | 0 ≤ j ≤ ρ − 2}.

We have

A′fρ−1
(Fρ−1) = π⊥fρ−1

F ′ρ−1 = F ′ρ−1 − πfρ−1F
′
ρ−1 ∈ θρ, (2.2.4)

in particular A′fρ−1
(Fρ−1) is orthogonal to Fρ−1. We claim 〈F ′ρ−1, F

(j)
0 〉 = 0 for all j =

1, 2, . . . , ρ−2 where 〈 , 〉 denotes the flat metric on the trivial bundle CPn×Cn+1. Indeed

〈F ′ρ−1, F
(j)
0 〉 =

∂

∂z
〈Fρ−1, F

(j)
0 〉 − 〈Fρ−1,

∂

∂z
F

(j)
0 〉 = 0,
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as Fρ−1 is orthogonal to θρ−2 and F
(j)
0 is holomorphic. If follows from (2.2.4) that

A′fρ−1
(Fρ−1) is orthogonal to F (j)

0 for all j = 1, 2, . . . , ρ − 2 and so orthogonal to θρ−2.

We conclude that A′fρ−1
(Fρ−1) is orthogonal to θρ−1, and so A′fρ−1

(Fρ−1) ∈ θ⊥ρ−1 ∩ θρ,

giving ImA′fρ−1
⊂ θ⊥ρ−1 ∩ θρ. After filling out the zeros, both ImA′fρ−1

and θ⊥ρ−1 ∩ θρ
are one-dimensional subbundles so we have ImA′fρ−1

= π⊥θρ−1
θρ, which completes the

induction step.

Corollary 2.2.10. Let f0 : M → CPn be a full holomorphic map with local holomorphic

lift F0 : M → Cn+1\{0} and let f
ρ

:= f−1
ρ T for 0 ≤ ρ ≤ n be the subbundles of

M × Cn+1 from (2.1.5) where, as before, fρ = (G′)ρ(f0) where G′ is applied ρ times to

f0. Define A′0,j = A′fj−1
◦ A′fj−2

◦ · · · ◦ A′f0 so A′0,j : f
0
→ f

j
and A′0,1 = A′f0 , then

(i) G(ρ)(f0) = (G′)ρ(f0);

(ii) the wedge product satisfies

F0 ∧ F ′0 ∧ · · · ∧ F
(ρ)
0 = F0 ∧ A′0,1(F0) ∧ A′0,2(F0) ∧ · · · ∧ A′0,ρ(F0).

Proof. (i) This follows from Proposition 2.2.9 and the definitions of the associated

bundles: G(ρ)(f) := G(ρ)(f)−1T and f
ρ

= f−1
ρ T .

(ii) We have that A′0,ρ−1(F0) is a section of f
ρ

for all ρ ∈ {1, . . . , n− 1} and so

θρ = Span{F (j)
0 | 0 ≤ j ≤ ρ} = Span{F0, A

′
0,j(F0) | 1 ≤ j ≤ ρ}.

2.2.1 Ramification

Recall the space B from (2.2.1). Using Corollary 2.2.10, we show that B is the space of

all zeros of A′fj for j = 0, 1, . . . , n as defined in Definition 2.1.10.
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Definition 2.2.11. Let f : M → CPn be a full holomorphic map. We say that f is first-

ramified at a point z ∈ M if df(z) = 0. The (first) ramification index of f at z is the

order of the zero of df(z) at z. The first total ramification index, r0 of f is the sum of all

the first ramification indices (cf. [31, p. 264]). Here by the order of the zero of df(z0) at

z0 we mean the natural number k such that in local coordinates

dw

dz
= (z − z0)kf̃(z),

where f̃ is smooth and non-zero at z0 and z , w = (w1, . . . , wn), are local complex

coordinates of M and CPn, respectively.

Recall from §2.2 and (2.2.1) the collection B of all points such that the wedge product

F∧F ′∧F ′′∧· · ·∧F (n) is zero. We will describe the ρth ramification points from Definition

2.1.10 in terms of the wedge product F0 ∧ F ′0 ∧ · · · ∧ F (ρ) to show the significance of the

space B.

Let F0 : U → Cn+1\{0} be a (local) nowhere zero holomorphic lift of a full holomorphic

map f0 : M → CPn on an open set U of M ; we often view F0 as a (local) section of f
0
.

Let z0 ∈ U be a first ramification point of f0 with ramification index k1 then

F0 ∧ F ′0(z) = (z − z0)k1 γ1(z),

where γ1 is non-zero at z0. Definition 2.2.11 and Definition 2.1.10 coincide as Corollary

2.2.10 (ii) gives F0 ∧ F ′0(z) = F0 ∧ A′f0(F0)(z) and so the zeros of F0 ∧ F ′0 are equal to

the zeros of A′f0(F0) and have the same order.

Recall from Definition 2.1.10 that if f0 is also ρth ramified at the point z0 with ramification

index kρ; then

A′fρ−1
(Fρ−1)(z) = (z − z0)kρFρ(z),

where Fρ−1 is a section of f
ρ−1

non-zero at z0 and Fρ a section of f
ρ

non-zero at z0.
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More generally, let z0 ∈ U and let 1 ≤ ρ ≤ n. For each j, 1 ≤ j ≤ ρ, let kj be the

jth ramification index of z0 ∈ M , possibly zero. Then using the notation from Corollary

2.2.10 we have

A′0,ρ(F0)(z) = (z − zj)
∑ρ
j=1 kjGρ(z),

where Gρ a non-zero section of f
ρ
. Note that f0 is not jth ramified at z0 if kj = 0 for

some j, 1 ≤ j ≤ ρ. Therefore, by Corollary 2.2.10 we have that:

Proposition 2.2.12. Let f0 : M → CPn be a full holomorphic map, with holomorphic

lift F0, let z0 ∈ M and let 0 ≤ ρ ≤ n. For each j with 1 ≤ j ≤ ρ, let kj be the jth

ramification index, possibly zero. Then, locally,

F0(z) ∧ F ′0(z) ∧ · · · ∧ F (ρ)
0 (z) = F0(z) ∧ A′0,1(F0)(z) ∧ A′0,2(F0)(z) ∧ · · · ∧ A′0,ρ(F0)(z)

= (z − z0)sρF0 ∧G1(z) ∧G2(z) ∧ · · · ∧Gρ(z),

for sρ =
∑ρ

j=1(ρ − j + 1)kj and F0 ∧ G1(z) ∧ G2(z) ∧ · · · ∧ Gρ(z) non-zero at z0 with

F0, Gl, l ∈ {1, . . . , ρ} defined above.

Remark 2.2.13. We note that by Proposition 2.2.12, the space B defined by (2.2.1) is the

space of all points where A′fj is zero for some j ∈ {0, 1, . . . , n}. Also from (2.2.2) we

have κρ = sρ and F0 ∧G1(z) ∧G2(z) ∧ · · · ∧Gρ is the decomposition of γ.
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Chapter 3

Harmonic 2-Spheres in the Complex

Projective Plane and Ramification

Points

In this chapter we will focus on harmonic maps φ : S2 → CP2, in particular on their

first-ramification points and how these can be used to describe the space of full harmonic

maps. We give some results found in [18, 37] and look at natural questions that arise

from [37], concerning the “coalescing of ramification points”. We see an ansatz and a

counterexample that provide answers to these natural questions. We call a map that is

holomorphic or antiholomorphic ±-holomorphic. Note that all harmonic maps S2 →

CP1 are ±-holomorphic, see [35, 54].

3.1 Harmonic 2-Spheres in the Complex Projective Plane

Let f : S2 → CP2 be a holomorphic map. It is well known that such a map can be repre-

sented by a triple of polynomials by first identifying S2 with C ∪ {∞} via stereographic
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projection, and defining a map p : C → C3\{0} by p(z) = (p0(z), p1(z), p2(z)), where

(p0, p1, p2) is a triple of coprime polynomials with max(deg(p0), deg(p1), deg(p2)) =

deg(f). We write f = [ p0, p1, p2] where the square brackets represent homogeneous

coordinates.

Let f : S2 → CP2 be full, by Definition 2.1.4 all harmonic maps that are not full lie in

a CP1 and are holomorphic or antiholomorphic as above, see [35, 54] for details. So all

harmonic maps f : S2 → CP2 that are not holomorphic or antiholomorphic are full.

Definition 3.1.1. We denote by Hol∗k(CP
2) the space of all full holomorphic maps from

S2 to CP2 of degree k.

Lemma 3.1.2. The space Hol∗k(CP
2) is a complex manifold of dimension 3k + 2.

Proof. Let f ∈ Hol∗k(CP
2) and U a neighbourhood of f , then each g ∈ U can be rep-

resented as a triple of coprime polynomials as above. Using the equivalence relation

defining the homogeneous coordinates we have that for g ∈ U where g = [ q0, q1, q2]

and a any non zero coefficient of q0, q1 or q2 then [ q0, q1, q2] ∼ [ q0/a, q1/a, q2/a] .

The coefficients of the polynomials q0/a, q1/a, q2/a are complex numbers and so, after

disregarding the unit coefficient after division by a, give us a mapping into C3k+2.

By a first-ramification (resp. second-ramification) point of a holomorphic map f from S2

to CP2 we mean a point where the holomorphic map f is first-ramified (resp. second-

ramified) as defined in 2.2.11.

Definition 3.1.3. Let f : S2 → CP2 be a full holomorphic map with first-ramification

points {z1, z2, . . . , zl} with ramification indices {k1, k2, . . . , kl} for some l ∈ N and

kj ∈ N for all j ∈ {1, 2, . . . , l} then the (first-)ramification divisor R(f) is the monic

polynomial

R(f) =
l∏

j=1

(z − zj)kj .
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Note that, by stereographic projection, we are regarding S2 as the extended complex plane

C∞, i.e., {z ∈ C} with a point at infinity∞. Also, note that the degree of the ramification

divisor is equal to the first total ramification index if f is not ramified at the point at

infinity, otherwise it has lower degree.

Consider ft, a smooth variation in Hol∗k(CP
2) of the full holomorphic map f : S2 → CP2

by a parameter t. Then the first total ramification index or equivalently the degree of the

ramification divisor could change for different values of t. This means that finding the

first associated curve of the family ft requires division by the ramification divisor R(f)

where the degree of R(f) could change with t which may be a discontinuous process, see

[37] and below for examples of when it is discontinuous. Recall the degree of a smooth

map defined in Definition 2.1.11.

Definition 3.1.4. Let Hol∗k,r0(CP
2) be the submanifold of Hol∗k(CP

2) of full holomorphic

maps of degree k and first total ramification index r0; we also define Harmd,E(CP2) the

space of all harmonic maps of degree d and energy 4πE.

Theorem 3.1.5. [37] The map

G′k,r0 : Hol∗k,r0(CP
2)→ Cj(S2,CP2)

is a smooth embedding onto Harmd,E(CP2) for any j ≥ 2 where d = k − r0 − 2 and

E = 3k − r0 − 2. Each component Harmd,E(CP2) of Harm(CP2) is a closed smooth

submanifold of Cj(S2,CP2) of dimension 6E + 4 if E = |d| and of dimension 2E + 8

otherwise.

Remark 3.1.6. Here G′k,r0 is the restriction to Hol∗k,r0(CP
2) of the first ∂′-Gauss trans-

formG(1) defined in Definition 2.2.5 and shown to be equivalent toG′ by Corollary 2.2.10.

Our aim is to better understand the space Harmd,E(CP2). From [18] we know that the first

∂′-Gauss transform maps Hol∗k,r0(CP
2) to Harmk−r0−2,3k−r0−2(CP2) homeomorphically
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and by Theorem 3.1.5 this is a diffeomorphism. Therefore having a better understand-

ing of the space Hol∗k,r0(CP
2) automatically gives us more information about the space

Harmd,E(CP2) via the ∂′-Gauss transform. One direction that could be pursued for a bet-

ter understanding of Hol∗k,r0(CP
2) is to investigate the coalescing of ramification points.

3.2 Coalescing of Ramification Points

Definition 3.2.1. Let ft be a family of maps in Hol∗k,r0(CP
2) depending smoothly on−ε <

t− t0 < ε where t0 ∈ R and let 2 ≤ ρ ≤ r0 be an integer. Denote the (first-)ramification

points of ft by zi = zi(t), i = 1, . . . , ρ. We say ft has ramification coalescence at t0, or

the ramification points coalesce as t→ t0, if for a ramification point zi of ft0 there exists

i1, . . . , iδ, 2 ≤ δ ≤ ρ, such that each zij (j ∈ {1, . . . , δ}) is a ramification point of ft and

zij → z for all j ∈ {1, . . . , δ}. In this case we say that the zij coalesce to z. We also

say the set {z1(t), . . . , zρ(t)} of ramification points (of ft) coalesce to {z1(t0), . . . , zρ(t0)}

(note that some elements of the second set may be identical).

Remark 3.2.2. Without loss of generality, by choosing a new coordinate z on S2 by

stereographic projection we can suppose that all our ramification points are in one chart

and that the point at infinity given by this chart, ft0 has no ramification. In this case the

set {z1(t), . . . , zρ(t)} of ramification points coalesce to {z1(t0), . . . , zρ̃(t0)} if and only if

the roots of the (first-)ramification divisor R(ft) tend to the roots of R(ft0).

To demonstrate this definition of ramification coalescence it is beneficial to consider an

example; we present one which is different from that in [37].

Example 3.2.3. Identifying S2 with C ∪ {∞} by stereographic projection and let ft :

S2 → CP2 be the smooth map defined by ft(z) = [Ft(z)] (as described above), where

Ft(z) = (z4 − 2t2z2 − 1, z3 − 3t2z, z4 − 2t2z2),
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(z ∈ C, t ∈ R). We have that ft(∞) = [1, 0, 1]. Using the local coordinate ẑ = 1
z

centred

on the point at infinity z =∞ shows this is, in fact, smooth.

Identifying ∧2C3 with C3, after a short calculation, we have

(Ft ∧ F ′t)(z) = (z2 − t2)ψ(z),

where the ramification divisor is R(ft)(z) = (z2 − t2) and

ψ(z) = (z4 − 6t2z2, 4z, 6t2z2 − z4 − 3).

Therefore, if t 6= 0, then ft has two ramification points z = ±t, both of index 1, but if t = 0

then these ramification points coalesce into one ramification point z = 0 of ramification

index 2. In this example, the degree of the ramification divisor does not change with t and

so by [37], the associated curve ft(1) varies smoothly with t. Note that ft ∈ Hol∗4,2(CP2) ,

for all t .

Two natural questions arise from [37]. The first question is, given two finite sets

{k1, . . . , kρ} and {k̃1, . . . , k̃ρ̃} of positive integers such that r0 =
∑ρ

i=1 ki =
∑ρ̃

j=1 k̃j ,

does there exist a family of maps ft ∈ Hol∗k,r0(CP
2) that have the points of ramifica-

tion {z1(t), . . . , zρ(t)} with zi(t) of ramification index ki (i = 1, . . . , ρ), such that, when

t → t0 then {z1(t), . . . , zρ(t)} coalesce to {z1(t0), . . . , zρ̃(t0)} with zi(t0) of ramifica-

tion index k̃i (i = 1, . . . , ρ̃)? The second question is, can we also specify the points

{z1(t), . . . , zρ(t)}?

Proposition 3.2.4. [37] The space Hol∗k,r0(CP
2) is non-empty precisely for the range

k ≥ 2, 0 ≤ r0 ≤ 3
2
k − 3.

Definition 3.2.5. Let f : S2 → CP2 be a full holomorphic map, then the conjugate

polar h of f is the complex conjugate g of the polar g of f defined in Definition 2.2.4 i.e.

h(z) = f(1)(z)⊥ where z ∈ S2.
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Lemma 3.2.6. [37, Proposition 2.6] For each pair of integers k ≥ 2, 0 ≤ r0 ≤ 3
2
k − 3,

the map f 7→ conjugate polar of f restricts to a bijection

Hol∗k,r0(CP
2)→ Hol∗k′,r1(CP

2),

where k′ = 2k − r0 − 2, r1 = 3k − 2r0 − 6.

From Lemma 3.2.6 detailed in [37], maps in Hol∗k,r0(CP
2) for k − 2 ≤ r0 ≤ 3

2
k − 3 are

precisely the conjugate polars of the maps in Hol∗k,r0(CP
2) for 0 ≤ r0 ≤ k−2. We answer

the natural questions above by considering ramification coalescence in Hol∗k,r0(CP
2) for

these two ranges.

3.2.1 The Lower Range

Let us consider Hol∗k,r0(CP
2) for 0 ≤ r0 ≤ k− 2. We will construct a family of examples

in this range that are ramified at any chosen points. Just as above, let f : S2 → CP2 be

defined by f(z) = [F (z)], with

F (z) =

(∫
R(f)(z)p0(z)dz,

∫
R(f)(z)p1(z)dz,

∫
R(f)(z)p2(z)dz

)
, (3.2.1)

where R(f) is the desired ramification divisor of f constructed from the given points of

ramification, (p0, p1, p2) is a triple of coprime polynomials with at least one of degree k−

r0−1, the other two of possibly different degrees≤ k− r0−1 and z ∈ C. The maximum

degree of the three integrands of (3.2.1) is r0 + k − r0 − 1 = k − 1, so the degree of f is

the maximum degree of the three integrals which is k. Note the constants of integration

of each component of (3.2.1) can be chosen so that f is full and the components of f are

coprime.
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As before identifying ∧2C3 with C3, we have

(F ∧ F ′)(z) = R(f)(z)ψ(z)

and

ψ(z) =

(
p2

∫
R(f)(z)p1(z)dz − p1

∫
R(f)(z)p2(z)dz,

p0

∫
R(f)(z)p2(z)dz − p2

∫
R(f)(z)p0(z)dz,

p1

∫
R(f)(z)p0(z)dz − p0

∫
R(f)(z)p1(z)dz

)
.

Also to ensure that the map f has no ramification at infinity, then the top coefficient of

one of the components of ψ(z) needs to be non-zero. Equivalently, one of the components

of ψ(z) must be of degree 2k − r0 − 2. Let

p0(z) =

k−r0−1∑
i=0

aiz
i, p1(z) =

k−r0−1∑
i=0

biz
i, p2(z) =

k−r0−1∑
i=0

ciz
i,

then to ensure that f is not ramified at infinity one of the following must be true:

bk−r0−1ck−r0−2 − bk−r0−2ck−r0−1 6= 0,

ck−r0−1ak−r0−2 − ck−r0−2ak−r0−1 6= 0, (3.2.2)

ak−r0−1bk−r0−2 − ak−r0−2bk−r0−1 6= 0,

which our polynomials p0, p1, p2 can be chosen to satisfy. Note also that the polynomi-

als and constants of integration of the components of (3.2.1) can be chosen to ensure

components of ψ(z) are coprime, so that R(f) really is the ramification divisor.

Lemma 3.2.7. The ansatz (3.2.1) gives maps f = [F ] ∈ Hol∗k,r0(CP
2) precisely for the

range 0 ≤ r0 ≤ k − 2.
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Proof. Consider (3.2.1) for R(f)(z) a monic polynomial of degree r0 = k − 1. For

f = [F ] to be of degree k there are only two possibilities:

(i) All p0, p1, p2 have degree 0.

(ii) At least one of p0, p1, p2 has degree 1 with others of possibly smaller degree with

the constants of integration all zero (indeed, f is of degree k in this instance as each

component of F is divisible by z).

For (i), regardless of the choice of constants of integration the components of F are lin-

early dependent. More concretely, let R̂ be the anti-derivative ofR(f), then with arbitrary

constants of integration c0, c1, c2 ∈ C we have

F (z) =

(
R̂(z) + c0, R̂(z) + c1, R̂(z) + c2

)

so that each component of F can be written as a linear combination of the other two.

For (ii), if deg (p0), deg (p1), deg (p2) ≤ 1 with equality holding for at least one of the

p0, p1, p2 then the components of F are again linearly dependent. To see this, write

p0(z) = a1z + a0, p1(z) = b1z + b0, p2(z) = c1z + c0,

for a0, a1, b0, b1, c0, c1 ∈ C. Again, let R̂ be the anti-derivative of R(f) and using integra-
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tion by parts and rearranging we have

F (z) =

(∫
R(f)(z)p0(z)dz,

∫
R(f)(z)p1(z)dz,

∫
R(f)(z)p2(z)dz

)
=

(∫
R(f)(z)(a1z + a0)dz,

∫
R(f)(z)(b1z + b0)dz,

∫
R(f)(z)(c1z + c0)dz

)
=

(
a1

(
zR̂(z)−

∫
R̂(z)dz

)
+ a0R̂(z) , b1

(
zR̂(z)−

∫
R̂(z)dz

)
+ b0R̂(z),

c1

(
zR̂(z)−

∫
R̂(z)dz

)
+ c0R̂(z)

)

=


a1 a0

b1 b0

c1 c0


zR̂(z)−

∫
R̂(z)dz

R̂(z)

 ,

which shows that the components of F are clearly linearly dependent. Also, for R(f) of

degree greater than k−1, then the degree of f will be greater than k. Therefore the ansatz

(3.2.1) cannot be extended to allow r0 > k − 2. The examples

F (z) =

(∫
R(f)(z)zk−r0−1dz,

∫
R(f)(z)(z + 1)k−r0−2dz, 1

)
, (3.2.3)

where R(f)(z) is some monic polynomial of degree r0, so p0 = zk−r0−1, p1 = (z +

1)k−r0−2 and p2 = 0 in ansatz (3.2.1) provide maps f = [F ] ∈ Hol∗k,r0(CP
2) for 0 ≤ r0 ≤

k − 2. This can be seen as by identifying ∧2C3 with C3, we have

(F ∧ F ′)(z) = R(f)(z)ψ(z)

with

ψ(z) =

(
− (z + 1)k−r0−2, zk−r0−1 − (z + 1)k−r0−2

∫
R(f)(z)zk−r0−1dz,

(z + 1)k−r0−2

∫
R(f)(z)zk−r0−1dz − zk−r0−1

∫
R(f)(z)(z + 1)k−r0−2dz

)
.
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Note that this map is not ramified at infinity as the third equation in (3.2.2) is satisfied.

Remark 3.2.8. For r0 = k − 2 in (3.2.3) above, we have the polynomials p0 = z, p1 = 1

and p2 = 0 so

F (z) =

(∫
zR(f)(z)dz,

∫
R(f)(z)dz, 1

)
.

The components of F are clearly coprime. For any constants of integration the first com-

ponent of F is of degree k, the second component of degree k−1 and the third component

of degree 0. Let s0, s1, s2 ∈ C, by equating coefficients we see that

s0

∫
zR(f)(z)dz + s1

∫
R(f)(z)dz + s2 = 0,

if and only if s0 = s1 = s2 = 0 therefore the components of F are linearly independent.

We have that the corresponding f = [F ] has degree k and is a full holomorphic map into

CP2 so f ∈ Hol∗k(CP
2).

We differentiate F (z) to get

F ′(z) = (zR(f)(z), R(f)(z), 0),

and by identifying ∧2C3 with C3, we have

(F ∧ F ′)(z) = (−R(f)(z), zR(f)(z), R(f)(z)

∫
zR(f)(z)dz − zR(f)(z)

∫
R(f)(z)dz)

= R(f)(z)(−1, z,

∫
zR(f)(z)dz − z

∫
R(f)(z)dz)

= R(f)(z)ψ(z)

where ψ(z) = (−1, z,
∫
zR(f)(z)dz − z

∫
R(f)(z)dz). As the third component of ψ is

of degree 2k − r0 − 2 = 2k − (k − 2) − 2 = k, or equivalently as the third equation of

(3.2.2) is satisfied, then f = [F ] has no ramification at infinity. Therefore f = [F ] is, in

fact, a map in Hol∗k,k−2(CP2) and so in both the lower range, 0 ≤ r0 ≤ k − 2, and the
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upper range, k − 2 ≤ r0 ≤ 3
2
k − 3.

We see that by using the ansatz (3.2.1) we have

Proposition 3.2.9. For any number of given points and ramification indices with sum r0

where 0 ≤ r0 ≤ k − 2 we can construct, using (3.2.1), a map f ∈ Hol∗k,r0(CP
2), that is

ramified at those points with the chosen ramification indices.

Example 3.2.10. Let 0 and−i be the points in which we wish our degree 6 map f is to be

ramified with ramification index 2 and 1, respectively. Then using the method described

above the ramification divisor is R(f)(z) = z2(z + i) and using one of the simplest

choices of polynomials fulfilling the criteria above: p0 = z2, p1 = z, p2 = 1 we can

construct, using the ansatz (3.2.1), a map f ∈ Hol∗6,3(CP2), ramified at the points given

above, given by f = [F ] where

F (z) =

(
1

6
z6 +

i

5
z5,

1

5
z5 +

i

4
z4 + 1,

1

4
z4 +

i

3
z3

)
.

Note that the constants of integration we have chosen are c0 = 0, c1 = 1 and c2 = 0 where

cj is the constant of integration of
∫
R(f)(z)pj(z)dz. Also note that f is not ramified at

infinity as the polynomials p0, p1, p2 satisfy at least one of (3.2.2) above. The exterior

product is given by

(F ∧ F ′)(z) = R(f)(z)ψ(z),

where

ψ(z) =

(
− 1

20
z5 − i

12
z4 + 1,

1

12
z6 +

2i

15
z5, − 1

30
z7 − i

20
z6 − z2

)
.

Therefore f(z) = [F (z)] is a map that has the points of ramification chosen above and

the components of ψ(z) are coprime, e.g., as is easily checked by substituting the zeros

of the second component into the others, meaning that there are no further points of

ramification.



42
3. HARMONIC 2-SPHERES IN THE COMPLEX PROJECTIVE PLANE AND

RAMIFICATION POINTS

Further to Proposition 3.2.9 we can construct a family of maps in Hol∗k,r0(CP
2) for 0 ≤

r0 ≤ k−2 that has ramification coalescence at any point. This can be done by constructing

a smooth family of ramification divisors dependent on t ∈ [0, 1] that acts as a curve

connecting two ramification divisors. For example let our ramification divisors be R0 and

R1 both of the same degree, then Rt = tR1 + (1 − t)R0 is a curve connecting the two.

Following the above we can construct a smooth family of maps ft such that, for t = 0, f0

has ramification divisor R0 and for t = 1, f1 has ramification divisor R1. Therefore for

any “configuration” of ramification points that coalesce we can construct a smooth family

of maps that has those points of ramification coalescing at given values of t.

Remark 3.2.11. If R0 and R1 are not of the same degree then the associated curve ft(1)

and first Gauss transform G(1)(ft) are not continuous in t, if R0 and R1 are of the same

degree then ft(1) and G(1)(ft) are continuous in t [37].

Example 3.2.12. Let 2, 3 be the points in which our degree 4 map f1 is to be ramified and

let us ask that these points coalesce into a ramification point at 0 of ramification index 2

for f0. We have our smooth family of ramification divisors R(ft)(z) = t(z − 2)(z − 3) +

(1− t)z2 and after one of the simplest choices of polynomials fulfilling the criteria above:

p0 = z, p1 = z, p2 = 1 we can construct, using the ansatz (3.2.1), a smooth family of

maps ft = [Ft] ∈ Hol∗4,2(CP2) with prescribed ramification coalescence:

Ft(z) =

(
1

4
z4 − 5t

3
z3 + 3tz2 + 1,

1

4
z4 − 5t

3
z3 + 3tz2,

1

3
z3 − 5t

2
z2 + 6tz

)
.

The exterior product is given by

(Ft ∧ F ′t)(z) = R(ft)(z)ψt(z)

for

ψt(z) =

(
− 1

12
z4 +

5t

6
z3 − 3tz2,

1

12
z4 − 5t

6
z3 + 3tz2 − 1, z

)
.

Therefore ft(z) = [Ft(z)] is a smooth family of maps that have the ramification coales-
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cence chosen above and the components of ψt(z) are coprime which means there are no

further points of ramification.

Proposition 3.2.13. Given r0 ∈ N with 0 ≤ r0 ≤ k − 2 and a finite set of pairs {(zi, ki)}

where zi ∈ S2 and ki is a positive integer with
∑ρ

i=1 ki = r0, there exists a holomorphic

map f : S2 → CP2 that is ramified at z1, . . . , zρ, with ramification indices k1, . . . , kρ,

respectively. Also, for any given points {z1(t0), . . . , zρ(t0)} there exists a smooth 1-

parameter family of holomorphic maps ft : S2 → CP2 with ramification coalescence

at those points (see Definition 3.2.1).

3.2.2 The Upper Range

To answer fully the natural questions from [37] posed above we also need to consider

Hol∗k,r0(CP
2) for k − 2 ≤ r0 ≤ 3

2
k − 3. We will find two counterexamples for this upper

range of ramification index that show that not all ramification is possible in the upper

range.

Example 3.2.14. We prove that there does not exist a map f̂ ∈ Hol∗4,3(CP2) that is rami-

fied of order 3 at zero.

By Lemma 3.2.6 the conjugate polar map of Definition 3.2.5 restricts to a bijection

Hol∗k,r0(CP
2)→ Hol∗k′,r1(CP

2) for k ≥ 2, 0 ≤ r0 ≤ 3
2
k− 3 where k′ = 2k− r0 − 2, r1 =

3k−2r0−6 (which is in fact an application of (4.1.7) below). Let f ∈ Hol∗3,0(CP2) be the

conjugate polar of f̂ ∈ Hol∗4,3(CP2) and write f = [F ] = [p0, p1, p2]. Due to f not having

any ramification points, F ∧ F ′ defines the map f̂ and so to find the associated curve f̂(1)

of f̂ we use the wedge product (F ∧F ′)∧ (F ∧F ′)′ = (F ∧F ′)∧ (F ′ ∧F ′+F ∧F ′′) =

F ∧ F ′ ∧ F ′′ (so f̂(1) is the second associated curve of f ) and by (3.1.3) the greatest
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common divisor of this is the first-ramification divisor of f̂ . Write

p0(z) =
3∑
i=0

aiz
i, p1(z) =

3∑
i=0

biz
i, p2(z) =

3∑
i=0

ciz
i,

then

F ∧ F ′ ∧ F ′′ = det


p0 p1 p2

p′0 p′1 p′2

p′′0 p′′1 p′′2

 = 2 det


a1 b1 c1

a2 b2 c2

a3 b3 c3

 z3 + 6 det


a0 b0 c0

a2 b2 c2

a3 b3 c3

 z2

+ 6 det


a0 b0 c0

a1 b1 c1

a3 b3 c3

)z + 2 det


a0 b0 c0

a1 b1 c1

a2 b2 c2

 .

We see that the coefficients of F ∧ F ′ ∧ F ′′ are linear combinations of the 3 × 3 matrix

minors of the matrix 
a3 b3 c3

a2 b2 c2

a1 b1 c1

a0 b0 c0

 . (3.2.4)

Now let us assume that f̂ is ramified at z = 0 of order 3 (so f is second-ramified at z = 0

of order 3), then z3
∣∣F ∧ F ′ ∧ F ′′ and therefore we have that the coefficients of the terms

of degree 0 to 2 of F ∧ F ′ ∧ F ′′ must be zero. Therefore all but one matrix minor must be

zero. For ease let us write

`ijk = det


ai bi ci

aj bj cj

ak bk ck

 0 ≤ i, j, k ≤ 3.

Then z3
∣∣F ∧ F ′ ∧ F ′′ if and only if `012 = `013 = `023 = 0. Without loss of generality,
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using that `023 = 0, let

σ3 = α0σ0 + α1σ2 for α0, α1 ∈ C and σi = (ai, bi, ci). (3.2.5)

Now as `012 = 0 we have one of the following equations:

σ0 = α2σ1 + α3σ2,

σ1 = α4σ0 + α5σ2, (3.2.6)

σ2 = α6σ0 + α7σ1,

where α2, α3, α4, α5, α6, α7 ∈ C. Each equation (3.2.6) together with (3.2.5) implies

`123 = 0. Therefore all 3 × 3 matrix minors of (3.2.4) are zero, which implies that f

is not a full map, a contradiction.

We present another counterexample using similar arguments to the counterexample above.

Example 3.2.15. We prove that there does not exist a map f̂ ∈ Hol∗6,6(CP2) that is rami-

fied of order 5 at zero.

Let f be the conjugate polar of f̂ ∈ Hol∗6,6(CP2) so f ∈ Hol∗4,0(CP2), and we write

f = [F ] = [p0, p1, p2]. Due to f not having any ramification points, F ∧ F ′ defines

the map f̂ and so to find the associated curve f̂(1) of f̂ we again use the wedge product

F ∧F ′∧F ′′ (so f̂(1) is the second associated curve of f ) and again by (3.1.3) the greatest

common divisor of this is the ramification divisor of f̂ . Write

p0(z) =
4∑
i=0

aiz
i, p1(z) =

4∑
i=0

biz
i, p2(z) =

4∑
i=0

ciz
i,
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then

F ∧ F ′ ∧ F ′′ = det


p0 p1 p2

p′0 p′1 p′2

p′′0 p′′1 p′′2

 = 2 det


a2 b2 c2

a3 b3 c3

a4 b4 c4

 z6 + 6 det


a1 b1 c1

a3 b3 c3

a4 b4 c4

 z5

+

(
12 det


a0 b0 c0

a3 b3 c3

a4 b4 c4

+ 6 det


a1 b1 c1

a2 b2 c2

a4 b4 c4


)
z4

+

(
16 det


a0 b0 c0

a2 b2 c2

a4 b4 c4

+ 2 det


a1 b1 c1

a2 b2 c2

a3 b3 c3


)
z3

+

(
12 det


a0 b0 c0

a1 b1 c1

a4 b4 c4

+ 6 det


a0 b0 c0

a2 b2 c2

a3 b3 c3


)
z2

+ 6 det


a0 b0 c0

a1 b1 c1

a3 b3 c3

 z + 2 det


a0 b0 c0

a1 b1 c1

a2 b2 c2

 .

We see that the coefficients of F ∧ F ′ ∧ F ′′ are linear combinations of the 3 × 3 matrix

minors of the matrix 

a4 b4 c4

a3 b3 c3

a2 b2 c2

a1 b1 c1

a0 b0 c0


, (3.2.7)
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and so are subject to some Plücker relations [30]. Similarly to before let us write

`ijk = det


ai bi ci

aj bj cj

ak bk ck

 0 ≤ i, j, k ≤ 4.

Then the Plücker relations for this situation are

`124`034 − `024`134 + `014`234 = 0, (3.2.8)

`123`034 − `023`134 + `013`234 = 0,

`123`024 − `023`124 + `012`234 = 0, (3.2.9)

`123`014 − `013`124 + `012`134 = 0,

`023`014 − `013`024 + `012`034 = 0. (3.2.10)

Now let us assume that f̂ is ramified at z = 0 of order 5 (so f is second-ramified at z = 0

of order 5), then z5
∣∣F ∧ F ′ ∧ F ′′ and therefore we have that the coefficients of the terms

of degree 0 to 4 of F ∧ F ′ ∧ F ′′ must be zero. This amounts to another set of equations:

6`012 = 0, (3.2.11)

6`013 = 0, (3.2.12)

12`014 + 6`023 = 0, (3.2.13)

16`024 + 2`123 = 0, (3.2.14)

12`034 + 6`124 = 0. (3.2.15)

We have from (3.2.11) and (3.2.12) that `012 = `013 = 0, substituting into (3.2.10) and

together with (3.2.13) we have `023 = `014 = 0, now substituting into (3.2.9) and together

with (3.2.14) we have `123 = `024 = 0, now finally substituting into (3.2.8) and together
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with (3.2.15) we have `124 = `034 = 0. Without loss of generality, using that `034 = 0, let

σ4 = α0σ0 + α1σ3 for α0, α1 ∈ C and σi = (ai, bi, ci). (3.2.16)

Now as `013 = 0 we have one of the following equations:

σ0 = α2σ1 + α3σ3,

σ1 = α4σ0 + α5σ3, (3.2.17)

σ3 = α6σ0 + α7σ1,

where α2, α3, α4, α5, α6, α7 ∈ C. Each equation (3.2.17) together with (3.2.16) implies

`134 = 0. Also, as `023 = 0 we have one of the following equations:

σ0 = β0σ2 + β1σ3,

σ2 = β2σ0 + β3σ3, (3.2.18)

σ3 = β4σ0 + β5σ2,

where β0, β1, β2, β3, β4, β5 ∈ C. Each equation (3.2.18) together with (3.2.16) implies

`234 = 0. Therefore all 3× 3 matrix minors of (3.2.7) are zero, which implies that f is not

a full map, a contradiction.

Hence, we have proved:

Proposition 3.2.16. There does not exist a holomorphic map in Hol∗4,3(CP2) that is ram-

ified of order 3 at 0. Nor does there exist a holomorphic map in Hol∗6,6(CP2) that is

ramified of order 5 at 0.

Remark 3.2.17. It does not seem easy to generalise Example 3.2.14 and 3.2.15 as the pro-

cedure relies on starting with a map f ∈ Hol∗k,r0(CP
2) which has an unramified conjugate

polar. Maps satisfying this have even degree k and total ramification index r0 = 3
2
k − 3.
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The next map satisfying this criterion is f ∈ Hol∗8,9(CP2) which has 20 matrix minors and

35 Plücker relations.
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Chapter 4

On the Index of Harmonic Maps from

Surfaces into a Complex Projective

Space

In [28] an estimate was given for the index of non-±-holomorphic harmonic maps φ :

Mg → CPn where Mg is a closed Riemann surface of genus g. As before, we call a map

that is holomorphic or antiholomorphic ±-holomorphic.

Proposition 4.0.1. [28] Let φ : Mg → CPn be a non-±-holomorphic harmonic map.

Then

index(φ) ≥ deg(φ)(n+ 1) + n(1− g).

Here deg(φ) denotes the degree of φ on second cohomology as defined in Definition

2.1.11.

In this chapter we shall give improvements to this estimate for genus 0, for complex

isotropic (see Definition 2.1.6) harmonic maps for genus 1, and in some cases for complex

isotropic harmonic maps for higher genus. Elements of this chapter were written up in

the paper [41].
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4.1 The Space of Holomorphic Sections and Holomor-

phic Differentials

We familiarise the reader with definitions that we use to improve Proposition 4.0.1.

Definition 4.1.1. [31, §5] Let X be a smooth manifold. A (smooth) complex vector

bundle (of rank k) on X consists of a family of k-dimensional complex vector spaces

{Ex}x∈X parametrized byX , together with a smooth manifold structure onE = ∪x∈XEx,

such that:

(i) The projection map π : E → X , π(Ex) = x, is smooth, and

(ii) any point x0 ∈ X has an open neighbourhood U , such that there exists a diffeo-

morphism

φU : π−1(U)→ U × Ck,

taking the vector space Ex isomorphically onto {x} ×Ck, called a local trivialisa-

tion

Definition 4.1.2. Let M be a Riemann surface with open covering (Ui)i∈I . Let π : E →

M be a complex vector bundle of rank k on M and

A = {φi : π−1(Ui)→ Ui × Cn | i ∈ I}

be an atlas for E i.e. a collection of local trivialisations. Let

ϕij := φi ◦ φ−1
j : (Ui ∩ Uj)× Cn → (Ui ∩ Uj)× Cn.

The atlas A is holomorphic if the associated transition functions

gij : Ui ∩ Uj → GL(n,C)
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defined by

ϕij(x, t) = (x, gij(x)t) for (x, t) ∈ (Ui ∩ Uj)× Cn

are holomorphic. Two atlases A and A′ are holomorphically compatible if A ∪ A′ is a

holomorphic atlas. The equivalence class of all holomorphically compatible atlases is

called a holomorphic structure.

Remark 4.1.3. For a complex vector bundle, the transition functions are just smooth.

Definition 4.1.4. A holomorphic vector bundle on a Riemann surface M is a complex

vector bundle together with a holomorphic structure.

On a holomorphic vector bundle, we have a ∂-operator [31, §5]. By [36] any complex

vector bundle E → M over a Riemann surface equipped with a linear connection ∇

can be given a unique holomorphic structure (called the Koszul-Malgrange holomorphic

structure) with ∂-operator equal to the (0, 1)-part of∇.

The estimate in Proposition 4.0.1 was constructed by noting that given a holomorphic

vector field along φ we have a smooth variation of φ that contributes to the index of φ:

Lemma 4.1.5. [28, p. 258] Let φ : M → CPn be a non-±-holomorphic harmonic map

then

index(φ) ≥ dimH0(M,φ−1T (1,0)CPn)

where H0(M,φ−1T (1,0)CPn) is the space of holomorphic sections of φ−1T (1,0)CPn de-

fined on the whole of M .

Here dim denotes complex dimension. Let Mg be a closed Riemann surface of genus g.

Theorem 4.1.6 (Riemann–Roch [33]). Let W → Mg be a holomorphic vector bundle of

rank n over a Riemann surface Mg of genus g then

dimH0(Mg,W )− dimH1(Mg,W ) = c1(∧nW ) + n(1− g),
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where c1 is the first Chern class (evaluated on the canonical generator ofH2(Mg,Z)) and

H1(Mg,W ) is (by Serre duality) the space of holomorphic (1,0)-forms of Mg with values

in the dual, W ∗, of W [33, Theorem 9].

Corollary 4.1.7. Let W → Mg be a complex vector bundle over a Riemann surface Mg

which can be given more than one distinct holomorphic structure, then dimH0(M,W )−

dimH1(M,W ) is independent of the choice of holomorphic structure.

Proof. By Theorem 4.1.6 we have dimH0(Mg,W ) − dimH1(Mg,W ) = c1(∧nW ) +

n(1− g), where the right-hand side depends only on the complex structure.

Let φ−1T (1,0)CPn →Mg be the pullback of the complex vector bundle T (1,0)CPn → CPn

of rank n. Give the former the Koszul-Malgrange holomorphic structure from the (0, 1)-

part of the pullback of the Levi-Civita connection defined on CPn. Let φ : Mg → CPn

be a non-±-holomorphic harmonic map. Then using Riemann-Roch for the holomorphic

vector bundle φ−1T (1,0)CPn →Mg of rank n we get

dimH0(Mg, φ
−1T (1,0)CPn)− dimH1(Mg, φ

−1T (1,0)CPn) = deg(φ)(n+ 1) + n(1− g)

and Proposition 4.0.1 follows directly by disregarding the non-negative number

dimH1(Mg, φ
−1T (1,0)CPn). We improve the estimate in Proposition 4.0.1 by looking at

dimH0(Mg, φ
−1T (1,0)CPn) more closely and finding an improved estimate for its dimen-

sion by using the connection-preserving isomorphism (2.1.4).

Considering the harmonic sequence (2.1.5) above:

Definition 4.1.8. [12, 28] We say a full harmonic map φ : Mg → CPn has directrix (f, ρ)

if φ = G(ρ)(f) for ρ ∈ {0, 1, . . . , n} and f : Mg → CPn a full holomorphic map.

This is possible if and only if φ is complex isotropic (see Lemma 2.1.8). Given a har-

monic map φ : Mg → CPn with directrix (f, ρ) then by (2.1.4) we have the following
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decomposition into complex vector bundles:

φ−1T (1,0)CPn ∼= L(f
ρ
, f⊥

ρ
)

= L(f
ρ
, f

0
⊕ f

1
⊕ · · · ⊕ f

ρ−1
⊕ f

ρ+1
⊕ · · · ⊕ f

n
)

∼= L(f
ρ
, f

0
)⊕ · · · ⊕ L(f

ρ
, f

ρ−1
)⊕ L(f

ρ
, f

ρ+1
)⊕ · · · ⊕ L(f

ρ
, f

n
)

= A− ⊕ A+,

where

A− =

ρ−1∑
j=0

L(f
ρ
, f

j
), A+ =

n∑
j=ρ+1

L(f
ρ
, f

j
).

To respect the Leibniz rule, we give L(f
ρ
, f⊥

ρ
) the connection L∇ induced from f

ρ
and

f⊥
ρ

defined by

(L∇ ∂
∂z
u)(s) = f⊥ρ ∇ ∂

∂z
u(s)− u(fρ∇ ∂

∂z
s), (4.1.1)

where f⊥ρ ∇ and fρ∇ are the connections defined in (2.1.3) on f⊥
ρ

and f
ρ
, respectively,

u ∈ Γ(L(f
ρ
, f⊥

ρ
)) and s ∈ Γ(f

ρ
). We then give L(f

ρ
, f⊥

ρ
) the Koszul-Malgrange holo-

morphic structure from the (0, 1)-part of that connection L∇. As (2.1.1) is connection-

preserving then φ−1T (1,0)CPn ∼= L(f
ρ
, f⊥

ρ
) is an isomorphism of holomorphic vector

bundles where they are both given the Koszul-Malgrange holomorphic structures defined

from their respective connections.

Lemma 4.1.9. Let L(f
ρ
, f⊥

ρ
) be the holomorphic vector bundle over a Riemann surface

Mg defined above, then A+ and A− are both holomorphic subbundles of L(f
ρ
, f⊥

ρ
).

Proof. It suffices to show that both Γ(A+) and Γ(A−) are closed under L∇ ∂
∂z

. To show

this we let u ∈ Γ(A+) and s ∈ Γ(f
ρ
) then by (4.1.1) ,

(L∇ ∂
∂z
u)(s) = f⊥ρ ∇ ∂

∂z
u(s)− u(fρ∇ ∂

∂z
s).

As u(s) ∈ Γ(
∑n

j=ρ+1 f j), according to [2, p. 603] for suitable complex-valued functions
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a and b,
∂

∂z
u(s) = au(s) + bν,

where ν ∈ Γ(
∑n

j=ρ f j). Therefore, by the definition of f
⊥
ρ ∇,

f⊥ρ ∇ ∂
∂z
u(s) = π⊥fρ

∂

∂z
u(s) ∈ Γ(

n∑
j=ρ+1

f
j
).

Also, as fρ∇ ∂
∂z
s ∈ Γ(f

ρ
) and since u ∈ Γ(A+) = Γ(

∑n
j=ρ+1 L(f

ρ
, f

j
)) then

u(fρ∇ ∂
∂z
s) ∈ Γ(

∑n
j=ρ+1 f j) also. Hence L∇ ∂

∂z
u ∈ Γ(A+). A similar argument can

be made for A−.

For each j ∈ {ρ + 1, . . . , n}, L(f
ρ
, f

j
) is a complex subbundle of L(f

ρ
, f⊥

ρ
) and so can

be given an induced (subbundle) holomorphic structure, i.e. that with ∂-operator given

by πfj
L∇ ∂

∂z
. Using this we give A+ a second ‘direct sum’ holomorphic structure ∂sum

defined by

∂sum(σ) =
n∑

j=ρ+1

πfj
L∇ ∂

∂z
(σj) (4.1.2)

for σ = σρ+1 +σρ+2 + · · ·+σn ∈ Γ(A+) and σj ∈ Γ(L(f
ρ
, f

j
)) for all j ∈ {ρ+1, . . . , n}.

Lemma 4.1.10. Let A+ be the holomorphic bundle over Riemann surface M defined

above equipped with the holomorphic structure ∂sum and let each complex subbundle

L(f
ρ
, f

j
) of L(f

ρ
, f⊥

ρ
) be equipped with the induced (subbundle) holomorphic structure

as above. Then

(i) H0(M,A+) =
∑n

j=ρ+1H
0(M,L(f

ρ
, f

j
)),

(ii) H1(M,A+) =
∑n

j=ρ+1H
1(M,L(f

ρ
, f

j
)).

Proof. (i) Let σ ∈ Γ(A+) then σ may be decomposed uniquely as σ = σρ+1 + σρ+2 +

· · · + σn where σj ∈ Γ(L(f
ρ
, f

j
)) for all j ∈ {ρ + 1, . . . , n}. As ∂sum|L(f

ρ
,f
j
) =
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πfj
L∇ ∂

∂z
then L(f

ρ
, f

j
) are holomorphic subbundles of (A+, ∂sum), so

∂sum(σ) = ∂sum(σρ+1) + ∂sum(σρ+2) + · · ·+ ∂sum(σn)

= πfρ+1

L∇ ∂
∂z

(σρ+1) + πfρ+2

L∇ ∂
∂z

(σρ+2) + · · ·+ πfn
L∇ ∂

∂z
(σn).

Therefore σ ∈ H0(M,A+) if and only if σj ∈ H0(M,L(f
ρ
, f

j
)) for each j ∈

{ρ+ 1, . . . , n}.

(ii) Using Serre duality [33, Theorem 9] we have H1(M,A+) ∼= H0(M,A∗+ ⊗ T ∗Mg),

then (ii) follows from (i).

Proposition 4.1.11. Let M be a Riemann surface, and φ : M → CPn a harmonic map

with directrix (f, ρ); letA+ =
∑n

j=ρ+1 L(f
ρ
, f

j
) be equipped with the holomorphic struc-

ture ∂sum and let L(f
ρ
, f

j
) be holomorphic subbundles of L(f

ρ
, f⊥

ρ
) equipped with the

induced (subbundle) holomorphic structures. Then

dimH0(M,φ−1T (1,0)CPn) ≥
n∑

j=ρ+1

dimH0(M,L(f
ρ
, f

j
))− dimH1(M,L(f

ρ
, f

j
)).

Proof. Recall that φ−1T (1,0)CPn ∼= L(f
ρ
, f⊥

ρ
) is an isomorphism of holomorphic vector

bundles where φ−1T (1,0)CPn and L(f
ρ
, f⊥

ρ
) have Koszul-Malgrange holomorphic struc-

tures defined from their respective connections. By Lemma 4.1.9, A+ and A− are holo-

morphic subbundles of L(f
ρ
, f⊥

ρ
), so we have

dimH0(M,φ−1T (1,0)CPn) = dimH0(M,A+) + dimH0(M,A−)

≥ dimH0(M,A+)

≥ dimH0(M,A+)− dimH1(M,A+), (4.1.3)

as dimH0(M,A−) ≥ 0 and dimH1(M,A+) ≥ 0. By Corollary 4.1.7 the right-hand
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side of (4.1.3) is independent of choice of the holomorphic structure on A+. Using this,

we replace the holomorphic structure of A+ induced by the Koszul-Malgrange holomor-

phic structure of L(f
ρ
, f⊥

ρ
) with the holomorphic structure defined by (4.1.2). Applying

Lemma 4.1.10 to dimH0(M,A+) − dimH1(M,A+) with A+ equipped with the holo-

morphic structure ∂sum, we have

dimH0(M,φ−1T (1,0)CPn) ≥ dimH0(M,A+)− dimH1(M,A+)

=
n∑

j=ρ+1

{dimH0(M,L(f
ρ
, f

j
))− dimH1(M,L(f

ρ
, f

j
))}.

Recall from Lemma 2.1.12 that the degree of φ is minus the first Chern class c1 of the

bundle φ, we have from [28, p. 246], given a harmonic map φ : Mg → CPn with directrix

(f, ρ), where Mg is a Riemann surface of genus g, then

− deg(φ) = c1(φ) =

ρ−1∑
α=0

rα − deg(f) + ρ(2− 2g). (4.1.4)

We deduce the following.

Theorem 4.1.12. Let Mg be a Riemann surface of genus g, φ : Mg → CPn a full non-±-

holomorphic complex isotropic harmonic map with directrix (f, ρ), and rα the (α + 1)st

total ramification index of f (see §2.2.1). Then

index(φ) ≥ (n+ 1) deg(f)−
ρ−1∑
α=0

(n− α)rα + (2nρ− ρ2 + 2ρ− n)(g − 1). (4.1.5)
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Proof. For each j ∈ {ρ+ 1, . . . , n}, we have using (4.1.4) that

c1(L(f
ρ
, f

j
)) = c1(f ∗

ρ
⊗ f

j
)

= c1(f ∗
ρ
) + c1(f

j
)

= −c1(f
ρ
) + c1(f

j
)

= −(j − ρ)(2g − 2) +

j−1∑
α=ρ

rα.

Therefore for each j ∈ {ρ+ 1, . . . , n} Theorem 4.1.6 (Riemann-Roch) gives

dimH0(Mg, L(f
ρ
, f

α
))− dimH1(Mg, L(f

ρ
, f

α
)) = c1(L(f

ρ
, f

j
)) + 1− g

= −(2j − 2ρ+ 1)(g − 1) +

j−1∑
α=ρ

rα.

Using this together with Proposition 4.1.11 we have

dimH0(Mg,φ
−1T (1,0)CPn) ≥

n∑
j=ρ+1

{dimH0(Mg, L(f
ρ
, f

j
))− dimH1(Mg, L(f

ρ
, f

j
))}

=
n∑

j=ρ+1

{c1(L(f
ρ
, f

j
)) + 1− g}

=
n∑

j=ρ+1

{−(2j − 2ρ+ 1)(g − 1) +

j−1∑
α=ρ

rα}

=
(

(n− ρ)(2ρ− 1)− n(n+ 1) + ρ(ρ+ 1)
)

(g − 1) +
n∑

j=ρ+1

j−1∑
α=ρ

rα

=
(

(n− ρ)(2ρ− 1)− n(n+ 1) + ρ(ρ+ 1)
)

(g − 1) +
n−1∑
α=ρ

(n− α)rα.

(4.1.6)
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From [31, p. 271] we have a useful relation involving the total ramification indices rα:

n−1∑
α=0

(n− α)rα = (n+ 1) deg(f) + n(n+ 1)(g − 1). (4.1.7)

We split this sum and rearrange to give

n−1∑
α=ρ

(n− α)rα = (n+ 1) deg(f) + n(n+ 1)(g − 1)−
ρ−1∑
α=0

(n− α)rα. (4.1.8)

By substituting (4.1.8) into (4.1.6) we have the following:

dimH0(Mg,φ
−1T (1,0)CPn) ≥ (n+ 1) deg(f)−

ρ−1∑
α=0

(n− α)rα+(
(n− ρ)(2ρ− 1)− n(n+ 1) + ρ(ρ+ 1) + n(n+ 1)

)
(g − 1)

= (n+ 1) deg(f)−
ρ−1∑
α=0

(n− α)rα + (2nρ− ρ2 + 2ρ− n)(g − 1).

By Lemma 4.1.5 the theorem is proven.

Corollary 4.1.13. Let Mg be a Riemann surface of genus g, φ : Mg → CPn a full non-±-

holomorphic complex isotropic harmonic map with directrix (f, ρ), and rα the (α + 1)st

total ramification index of f (see §2.2.1). Then

index(φ) ≥ (n+ 1) deg(φ) +

ρ−1∑
α=0

(α + 1)rα + (n+ ρ2)(1− g).

Proof. By (4.1.4) we have

deg(f) = deg(φ) +

ρ−1∑
α=0

rα − ρ(2g − 2). (4.1.9)
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Substituting (4.1.9) into (4.1.5) and rearranging we have

index(φ) ≥ (n+ 1)
(

deg(φ) +

ρ−1∑
α=0

rα − ρ(2g − 2)
)
−

ρ−1∑
α=0

(n− α)rα

+ (2nρ− ρ2 + 2ρ− n)(g − 1)

= (n+ 1) deg φ+ (n+ 1)

ρ−1∑
α=0

rα −
ρ−1∑
α=0

(n− α)rα

− 2ρ(n+ 1)(g − 1) + (2nρ− ρ2 + 2ρ− n)(g − 1)

= (n+ 1) deg φ+ (n+ 1)

ρ−1∑
α=0

rα −
ρ−1∑
α=0

(n− α)rα + (n+ ρ2)(1− g)

= (n+ 1) deg φ+

ρ−1∑
α=0

(α + 1)rα + (n+ ρ2)(1− g).

Remark 4.1.14. Theorem 4.1.12 is an improvement on Proposition 4.0.1 [28] if and only

if
ρ−1∑
α=0

(α + 1)rα > ρ2(g − 1),

which clearly holds for g = 0.

Corollary 4.1.15. Let φ : S2 → CPn be a full non-±-holomorphic harmonic map with

directrix (f, ρ) and rα the (α + 1)st total ramification index of f . Then

index(φ) ≥ (n+ 1) deg(f)−
ρ−1∑
α=0

(n− α)rα − 2nρ+ ρ2 − 2ρ+ n

= (n+ 1) deg(φ) +

ρ−1∑
α=0

(α + 1)rα + n+ ρ2.

Proof. This follows immediately from Theorem 4.1.12 and Corollary 4.1.13 by putting

g = 0

Corollary 4.1.16. Let φ : S2 → CP2 be a full non-±-holomorphic harmonic map with
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directrix (f, 1) and let r0 be the first total ramification index of f . Then

index(φ) ≥ 3 deg(f)− 2r0 − 3 = 3 deg(φ) + r0 + 3.

Proof. Let φ : S2 → CP2 be a non-±-holomorphic harmonic map, then we have ρ = 1

and n = 2; by substituting these values into Corollary 4.1.15 we get the desired result.

Remark 4.1.17. For a harmonic map φ : S2 → CPn with directrix (f, ρ), Corol-

lary 4.1.15 is an improvement on known estimates (Proposition 4.0.1) by the amount

ρ2 +
∑ρ−1

α=0(α + 1)rα. In particular, Corollary 4.1.16 is an improvement for a harmonic

map φ : S2 → CP2 with directrix (f, 1) by the amount 1 + r0.

Corollary 4.1.18. Let φ : M1 → CPn be a full non-±-holomorphic complex isotropic

harmonic map with directrix (f, ρ) and rα the (α + 1)st total ramification index of f .

Then

index(φ) ≥ (n+ 1) deg(f)−
ρ−1∑
α=0

(n− α)rα

= (n+ 1) deg(φ) +

ρ−1∑
α=0

(α + 1)rα.

Proof. This follows immediately from Theorem 4.1.12 and Corollary 4.1.13 by putting

g = 1.

Corollary 4.1.19. Let φ : M1 → CP2 be a full non-±-holomorphic complex isotropic

harmonic map with directrix (f, 1) and let r0 be the first total ramification index of f .

Then

index(φ) ≥ 3 deg(φ) + r0 = 3 deg(f)− 2r0.

Proof. Let φ : M1 → CP2 be a non-±-holomorphic harmonic map, then we have ρ = 1

and n = 2. By substituting these values into Corollary 4.1.18 we get the desired result.
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Remark 4.1.20. For a harmonic map φ : M1 → CPn with directrix (f, ρ), Corol-

lary 4.1.18 is an improvement on known estimates (Proposition 4.0.1) by the amount∑ρ−1
α=0(α + 1)rα. In particular, Corollary 4.1.19 is an improvement for a harmonic map

φ : M1 → CP2 with directrix (f, 1) by the amount r0.

4.2 Examples

We present examples of harmonic maps for genus 0, 1, and higher genera for which the

known estimates on the index are improved by Corollary 4.1.16, Corollary 4.1.19 and

Theorem 4.1.12, respectively.

4.2.1 Genus 0

We define the family of maps ηk : S2 → S2 given by ηk(z) = zk for k ∈ Z: all ηk are

holomorphic.

Example 4.2.1. cf. [28, Example 8.1] Let F : S2 → C3 \ {0}, where F (z) = (1, z, z2).

Then let f = [F ] : S2 → CP2, so f(z) = [1, z, z2] and is a full holomorphic map with

deg(f) = 2 and r0 = 0. Following §2.1 we have that G′(f) : S2 → CP2 is a full

non-±-holomorphic (complex isotropic) harmonic map of degree 0 and directrix (f, 1).

For each k ∈ N the composition f ◦ ηk : S2 → CP2 gives a full holomorphic map with

deg(f ◦ ηk) = 2k and r0 = 2(k − 1). For each k ∈ N, G′(f ◦ ηk) : S2 → CP2 gives a

full non-±-holomorphic harmonic map of degree 0 and directrix (f ◦ ηk, 1). By Corollary

4.1.16, index(G′(f ◦ ηk)) ≥ 3 deg(f ◦ ηk) − 2r0 − 3 = 6k − 4(k − 1) − 3 = 2k + 1.

By Remark 4.1.17, for each k ∈ N, Corollary 4.1.16 improves the estimate in [28] (see

Proposition 4.0.1 above) by 2k − 1.

Example 4.2.2. cf. [28, Example 8.2] Let F : S2 → C3 \ {0}, where F (z) = (1, z +

z3, z2). Then let f = [F ] : S2 → CP2, so f(z) = [1, z + z3, z2] and is a full holomorphic
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map with deg(f) = 3 and r0 = 0. Again following §2.1 we have that G′(f) : S2 → CP2

is a full non-±-holomorphic (complex isotropic) harmonic map of degree 1 and directrix

(f, 1). For each k ∈ N the composition f ◦ ηk : S2 → CP2 gives a full holomorphic map

with deg(f ◦ηk) = 3k and r0 = 2(k−1). For each k ∈ N, G′(f ◦ηk) : S2 → CP2 gives a

full non-±-holomorphic harmonic map of degree k and directrix (f ◦ηk, 1). By Corollary

4.1.16, index(G′(f ◦ ηk)) ≥ 3 deg(f ◦ ηk) − 2r0 − 3 = 9k − 4(k − 1) − 3 = 5k + 1.

By Remark 4.1.17, for each k ∈ N, Corollary 4.1.16 improves the estimate in [28] (see

Proposition 4.0.1 above) by 2k − 1.

4.2.2 Genus 1

Let M1, M ′
1 be tori, i.e. compact Riemann surfaces of genus 1 and ψ : M1 → M ′

1 a

holomorphic covering map of degree k.

Example 4.2.3. Let f : M ′
1 → CP2 be the degree 5 full holomorphic map with first total

ramification index 4 constructed in [28, Lemma 8.7]. The composition f ◦ ψ is a full

holomorphic map with deg(f ◦ ψ) = 5k and r0 = 4k. As an application of Corollary

4.1.19 let G′(f ◦ ψ) : M1 → CP2 be the degree k harmonic non-±-holomorphic map

with directrix (f ◦ ψ, 1) then index(G′(f ◦ ψ)) ≥ 3 deg(f ◦ ψ)− 2r0 = 15k − 8k = 7k.

By Remark 4.1.20, for each k ∈ N, Corollary 4.1.19 improves the estimate in [28] (see

Proposition 4.0.1 above) by 4k.

4.2.3 Higher Genera

Let Mg be a compact Riemann surface of genus g > 1.

Example 4.2.4. By [28, Theorem 8.10] there exist full non-±-holomorphic complex

isotropic harmonic maps φ : Mg → CP2 of degree k > g. Indeed there exist holomorphic

maps h : Mg → CP1 of all degrees k > g. Composing such a map with the full harmonic
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map of degree 1 with directrix (f, 1) from Example 4.2.2 gives a full non-±-holomorphic

complex isotropic harmonic map of degree k > g. This is the Gauss transform of the full

holomorphic map f ◦ h which has degree 3k. From (4.1.9) r0 = 2k + 2g − 2 > g − 1.

Therefore by Remark 4.1.14, Theorem 4.1.12 improves the estimate in [28] (see Proposi-

tion 4.0.1 above) for all these maps, giving examples in all degrees > g.
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Chapter 5

Canonical Elements

In this chapter we discuss certain elements of a semi-simple Lie algebra called “canonical

elements”. As described in [10] these elements give rise to natural fibrations of a class

of homogeneous spaces over a Riemann surface. These homogeneous spaces are of the

form G/H for G a semi-simple compact Lie group and H the centraliser of a torus of

G: the homogeneous spaces G/H are called flag manifolds. The natural fibration of the

flag manifold described in [10] is a “twistor fibration” and has a rich theory for describing

harmonic maps. For more general information on twistor fibrations we direct the reader

to the survey [25]. Before our discussion of canonical elements we will describe certain

bases of Cn called “null bases” that will aid in the discussion of canonical elements and aid

in the calculations of later sections, particularly the sections pertaining to the orthogonal

group and symplectic group.

5.1 Null Bases

Let {ei} be the standard basis for Cn where e1 = (1, 0, . . . , 0)T , e2 = (0, 1, 0, . . . , 0)T ,

. . . , en = (0, . . . , 0, 1)T and let (x, y) = xT Iy =
∑n

i=1 xiyi be the standard symmetric

bilinear form on Cn for x = (x1, . . . , xn)T and y = (y1, . . . , yn)T .
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Definition 5.1.1. A basis {ẽi} for Cn which satisfies (ẽi, ẽj) = δij̄ for any i, j ∈

{1, 2, . . . , n} and where j̄ = n+ 1− j is called a null basis.

5.1.1 The Orthogonal Group

Consider the orthogonal group

O(n) = {A ∈ GL(n,R) | (Ax,Ay) = (x, y) ∀ x, y ∈ Rn} (5.1.1)

= {A ∈ GL(n,R) | ATA = I}.

The complexification of O(n) denoted O(n,C) = O(n)C is given by

O(n) = {A ∈ GL(n,C) | (Ax,Ay) = (x, y) ∀ x, y ∈ Cn}

= {A ∈ GL(n,C) | ATA = I},

for AT the linear map characterised by (Ax, y) = (x,ATy) for the standard symmetric

bilinear form on Cn and x, y ∈ C. For more information see [34].

Definition 5.1.2. For any subspace V ∈ Cn we say that V is isotropic if (x, y) = 0 for all

x, y ∈ V or equivalently if V ⊥ ⊂ V where : Cn → Cn denotes complex conjugation

given by v =
∑n

i=1 viei for v =
∑n

i=1 viei. We say that V is maximally isotropic if

V ⊥ = V .

We consider the orthogonal group for the particular null basis {ẽi} for Cn given by

ẽj =
1√
2

(e2j − ie2j−1), ẽj̄ =
1√
2

(e2j + ie2j−1), (5.1.2)

for j ≤ n
2

and with ẽ(n+1)/2 = en when n is odd. Let P be the matrix with columns given
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by the null basis (5.1.2),

P =

ẽ1 ẽ2 . . . ẽn

 =
1√
2



−i 0 0 0 0 i

1
...

...
...

... 1

0 0 0 0 0 0

0 · · · −i 0 0 i · · · 0

0 1 0 0 1 0
... 0 −i i 0

...

0 0 1 1 0 0


,

for n even; for n odd, P has a column (0, 0, . . . , 0, 1)T in the middle. The standard

symmetric bilinear form on Cn in this null basis is given by

(x, y) = xTP T IPy = xTQy =
n∑
j=1

xjyj̄ (5.1.3)

for x =
∑n

j=1 xj ẽj , y =
∑n

j=1 yj ẽj and Q = Qn =


1

. .
.

1

 is of size n× n.

Definition 5.1.3. Let A = (aij) be an m × n matrix. The second transpose, AT of A is

the n×m matrix defined by AT = (aj̄ī).

As Q−1 = Q we have from this definition that for an n× n matrix AT = (aji),

AT = QATQ and AT = QATQ. (5.1.4)

Note that AT is obtained from A by reflection in the second diagonal (sometimes called

the antidiagonal), that is, all elements of A = (aij) such that i + j = n + 1. Also from
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Definition 5.1.3, we have for x = (x1, x2, . . . , xn)T that

xT = xTQ and xT = xTQ. (5.1.5)

In this null basis the orthogonal group is given by O(n,C) = {A ∈ GL(n,C) | ATA =

I}. A lies in O(n,C) if and only if it preserves the inner product (5.1.3), i.e. ATQA = Q;

since Q−1 = Q this is equivalent to ATA = I .

Lemma 5.1.4. [29] Let A be an n × n matrix in the null basis (5.1.2) and let cj the jth

column of A. Then A ∈ O(n,C) if and only if

(ci, cj) = δij̄.

Proof. This follows immediately from ATA = I, where

A =

c1 c2 . . . cn

 and AT =


cTn
...

cT2

cT1

 .

5.1.2 The Symplectic Group

Define a skew-symmetric bilinear form on C2m by

ω(x, y) =
m∑
j=1

xjym+j − xm+jyj = (x,Ωy) = xTΩy, (5.1.6)
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for x = (x1, . . . , xn)T , y = (y1, . . . , yn)T and Ω the 2m× 2m matrix

Ω =

 0 Im

−Im 0

 .

Here Im denotes the m × m identity matrix. Let 〈x, y〉 = xT Iy =
∑n

i=1 xiyi be the

standard Hermitian form on Cn for x = (x1, . . . , xn)T and y = (y1, . . . , yn)T . Note that

〈x, y〉 = (x, y). Let J : C2m → C2m be the conjugate-linear map characterised by

ω(x, y) = 〈x, J(y)〉 (x, y ∈ C2m). (5.1.7)

From (5.1.6) we have that the conjugate-linear map J can be represented by a matrix in

the following way

(x,Ωy) = ω(x, y) = 〈x, J(y)〉 = (x, J(y)),

so J(y) = Ωy. For the standard basis {ei} we have

J(ej) = Ωej = −em+j, J(em+j) = Ωem+j = ej (j ∈ {1, . . . ,m}). (5.1.8)

The symplectic group over the field of complex numbers is a non-compact Lie group

defined by

Sp(2m,C) = {A ∈ GL(n,C) | ω(Ax,Ay) = ω(x, y) ∀ x, y ∈ Cn}

= {A ∈ GL(n,C) | ATΩA = Ω}.

The (compact) symplectic group is defined to be the intersection Sp(m) := Sp(2m,C)∩

U(2m).

Lemma 5.1.5. Let A be an 2m × 2m matrix and let cj be the jth column of A. Then
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A ∈ Sp(2m,C) if and only if

ω(cj, ck) =

δj,k−m, if j ≤ k,

−δj−m,k, if j > k.

Proof. Consider AT · Ω · A for A =

c1 c2 . . . c2m

 ,


cT1
...

cT2m−1

cT2m


 Im

−Im


c1 c2 . . . c2m

 = (bjk),

where (bjk) is the matrix with entries given by

bjk = cTj · Ω · ck = ω(cj, ck).

Therefore, we have AT · Ω · A = (bjk) = Ω, if and only if bjk =

δj,k−m, if j ≤ k,

−δj−m,k, if j > k.

For more information of the symplectic group see [34, 45].

Definition 5.1.6. For any subspace V ∈ C2n we say that V is J-isotropic if ω(x, y) = 0

for all x, y ∈ V or equivalently if V ⊥ ⊂ JV . We say that V is maximally J-isotropic if

V ⊥ = JV .
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Consider the null basis {êi} for C2m given by

êj =
1√
2

(em+j − iej), êj̄ =
1√
2

(em+j + iej) (5.1.9)

for j ≤ m. Let P̂ be the matrix with columns given by the components of the null basis

(5.1.9) with respect to the standard basis,

P̂ =

ê1 ê2 . . . ên

 =
1√
2

−iIm iQm

Im Qm

 , (5.1.10)

where Qm =


1

. .
.

1

 is of size m×m. Note that Qm = QT
m = QT

m = Q−1
m . In the

null basis (5.1.9) the skew-symmetric bilinear form (5.1.6) above is given by

ω(x, y) = xT P̂ TΩP̂ y = xT Ω̂y = xTQ2mΩ̂y = xTΩnully

= i
m∑
j=1

xj̄yj − xjyj̄, (5.1.11)

where x =
∑2m

j=1 xj êj , y =
∑2m

j=1 yj êj , xT = xTQ2m from (5.1.5),

Ω̂ := P̂ TΩP̂ =

 −iQm

iQm

 and

Ωnull := Q2mΩ̂ =

iIm
−iIm

 . (5.1.12)

Similarly to before we may represent the conjugate-linear map J : C2m → C2m by a

matrix in this null basis. Let {êi} be the null basis from (5.1.11) then using (5.1.8) we
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have

J(êj) =
1√
2
J(em+j − iej) =

1√
2

(
J(em+j)− J(iej)

)
=

1√
2

(
J(em+j) + iJ(ej)

)
=

1√
2

(ej − iem+j)

= i
1√
2

(em+j + iej) = −iêj̄ = ¯iˆje

and

J(êj̄) =
1√
2
J(em+j + iej) =

1√
2

(
J(em+j) + J(iej)

)
=

1√
2

(
J(em+j)− iJ(ej)

)
=

1√
2

(ej + iem+j)

= i
1√
2

(em+j − iej) = iêj = −iêj̄.

Let v =
∑2m

j=1 vj êj ∈ C2m for {êj} the null basis (5.1.9). We split the sum using the

notation introduced in Definition 5.1.1 so v =
∑m

k=1 vkêk+
∑m

l=1 vl̄êl̄. Upon applying the

conjugate-linear map J : C2m → C2m we have,

J(v) = J(
m∑
k=1

vkêk +
m∑
l=1

vl̄êl̄) =
m∑
k=1

vkJ(êk) +
m∑
l=1

vl̄J(êl̄)

=
m∑
k=1

vk(iêk) +
m∑
l=1

vl̄(−iêl̄) =
m∑
k=1

ivkêk −
m∑
l=1

ivl̄êl̄ (5.1.13)

=
m∑
k=1

ivkêk −
m∑
l=1

ivl̄êl̄ = Ωnullv.

Also note that for v =
∑2m

j=1 vj êj ∈ C2m then

v =
2m∑
j=1

vj êj =
2m∑
j=1

vj êj̄ =
2m∑
j=1

vj̄ êj,

where we rename the indices in the last equality. A lies in Sp(2m,C) if and only if it
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preserves the inner product (5.1.11); as ω(x, y) = xT Ω̂y then A ∈ Sp(2m,C) if and only

if AT Ω̂A = Ω̂. Using (5.1.4) this is equivalent to ATΩnullA = Ωnull and so we write the

symplectic group in the null basis (5.1.9) as

Sp(2m,C) = {A ∈ GL(n,C) | ATΩnullA = Ωnull}. (5.1.14)

Lemma 5.1.7. Let A be an n × n matrix in the null basis (5.1.9) given above and let cj

be the jth column of A. Then A ∈ Sp(n,C) if and only if

ω(cj, ck) =

iδj̄k, if j ≥ k,

−iδj̄k, if j < k.

Proof. Similarly to Lemma 5.1.5 we consider AT ·Ωnull ·A for A =

c1 c2 . . . cn

 ,


cTn
...

cT2

cT1


iIm

−iIm


c1 c2 . . . cn

 = (bjk),

where (bjk) is the matrix with entries given by

bjk = cTj̄ · Ωnull · ck = ω(cj̄, ck).

Therefore, we haveAT ·Ωnull ·A = (bjk) = Ωnull, if and only if bjk =

iδjk, if j̄ ≥ k,

−iδjk, if j̄ < k.
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5.2 Canonical Elements

LetG be a compact (real) Lie group with semi-simple Lie algebra g. We give descriptions

and examples of particular elements of the Lie algebra g called canonical elements. We

state and give justification to two results, Theorem 5.2.14 and Theorem 5.2.16 which

describe canonical elements for U(n) and O(n), respectively. We go on to give concrete

descriptions of canonical elements for SU(n) and O(n) following the theory of [10],

summarised in Proposition 5.2.17 for the orthogonal group. Finally, we give a description

of canonical elements for Sp(m) summarised in Proposition 5.2.20. For more information

on canonical elements see [7, 10, 17] and for the general theory below see [34, §6] and

[45, §3].

Definition 5.2.1. Let g be a semi-simple Lie algebra then a maximal commutative sub-

algebra of g is a subspace h of g satisfying the following:

(i) for all H1, H2 ∈ h, [H1, H2] = 0 (commutative);

(ii) for all X ∈ g, if [H,X] = 0 for all H ∈ h, then X ∈ h (maximal).

Definition 5.2.2. Let gC be a complex semi-simple Lie algebra then a Cartan subalgebra

a of gC is a maximal commutative subalgebra of gC such that ad(ξ) is diagonalizable for

each ξ ∈ a.

Here diagonalizable means that there is a basis of gC such that ad(ξ) is represented by a

diagonal matrix.

Proposition 5.2.3. [34, Proposition 6.12] Let g be a real semi-simple Lie algebra and

t some maximally commutative subalgebra. Let tC = t ⊗ C and gC = g ⊗ C be the

complexicifations of t and g, respectively. Then tC is a Cartan subalgebra for gC.

Remark 5.2.4. We will adopt the convention of many authors by calling a maximal com-

mutative subalgebra t a maximal toral subalgebra. This name is due to the following: let
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T be a connected Lie group whose Lie algebra is a maximal commutative subalgebra t

of g, then T can be shown to be isomorphic to S1 × S1 × · · · × S1, which is a maximal

torus of G.

Definition 5.2.5. Let gC be a complex semi-simple Lie algebra and a be a cartan subal-

gebra for gC. We call the non-zero linear map λ ∈ a∗ where there exists non-zero v ∈ gC

such that ad(ξ)v = λ(ξ)v for all ξ ∈ a a root of gC relative to a. We call the corre-

sponding v ∈ gC a root vector of λ. The collection of all root vectors v ∈ gC together

with 0 is called the root space of λ. The set of all roots λ ∈ a∗ is called the root system

of g relative to a and is denoted ∆.

Remark 5.2.6. If λ ∈ ∆ then −λ ∈ ∆, [10, p. 26].

Definition 5.2.7. A positive root system ∆+ is a subset of ∆ such that

(i) For λ,−λ ∈ ∆ then ∆+ contains either λ or −λ;

(ii) ∆+ is closed i.e., For λ1, λ2 ∈ ∆+ such that λ1 + λ2 ∈ ∆ then λ1 + λ2 ∈ ∆+.

We call elements of ∆+ positive roots.

Definition 5.2.8. [10] Given a positive root system ∆+, a positive root is called simple if

it cannot be expressed as a sum of two other positive roots.

Remark 5.2.9. There is a choice for the set of simple roots for each choice of positive

root system [34, §6.8] and so when thinking of simple roots one must think of a choice of

simple roots relative to a choice of positive root system (which is generally not unique).

Definition 5.2.10. Let λ1, . . . , λl be simple roots relative to some positive root system ∆+.

Then the dual vectors A1, . . . , Al ∈ a to the simple roots λ1, . . . , λl are characterised by

λj(Ak) = iδjk.
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Definition 5.2.11. [10] Let a be a Cartan subalgebra for gC and ∆+ a positive root

system with simple roots λ1, . . . , λl and corresponding dual vectors A1, . . . , Al ∈ a. Then

a canonical element ξ of g is the element of g given by

ξ =
∑
i∈I

Ai,

where I is a subset of {1, 2, . . . , l}.

Let G be a Lie group with Lie algebra g. We will often call a canonical element ξ ∈ g a

canonical element for the Lie group G.

For use in later chapters we also give the following definition.

Definition 5.2.12. Fix a canonical element ξ ∈ g, then the homomorphism γξ : S1 → G

defined by γξ(eit) = exp(tξ) is called a canonical geodesic.

This homomorphism is well defined see [9, p. 549ff.].

Remark 5.2.13. In keeping with the notation of [9, 29] we often write λ = eit ∈ S1.

5.2.1 Canonical Elements for SU(n)

For convenience, the definition of canonical elements (Definition 5.2.11) for g = su(n)

can be extended to allow the dual vectors Ai to be in u(n) = su(n) ⊕ R. They are then

determined up to addition of an element iδ0 ·I , for I the n×n identity matrix and δ0 ∈ R.

We have:

Theorem 5.2.14. [8, Proposition A.1] An element ξ ∈ u(n) is canonical if and only if

ξ = i(δ0 · I +
m∑
j=1

j · PEj)
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for some orthogonal decomposition Cn =
∑m

j=1Ej into subspaces, with orthogonal pro-

jection matrix PEj and any δ0 ∈ R.

Note also that dimEj = rank(PEj).

Corollary 5.2.15. An element ξ ∈ su(n) is canonical if and only if

ξ = i(
−1

n

m∑
j=1

j rank(PEj) · I +
m∑
j=1

j · PEj)

for some orthogonal decomposition Cn =
∑m

j=1 Ej, with orthogonal projection matrix

PEj .

Proof. Consider su(n) = {A ∈ u(n) | trace(A) = 0}. As su(n) ⊂ u(n) then a canonical

element ξ = i(δ0 · I +
∑m

j=1 j · PEj) ∈ u(n) is a canonical element in su(n) if and only

if ξ ∈ su(n). So,

ξ ∈ su(n) ⇐⇒ trace(ξ) = nδ0 +
m∑
j=1

j rank(PEj) = 0.

We will give some justification for the corollary above by finding canonical elements

with respect to some positive root system of a Cartan subalgebra and show that these are

equal to the canonical elements in Corollary 5.2.15 for some orthogonal decomposition

Cn =
∑m

j=1Ej .

Let t be a maximal toral subalgebra (maximally commutative subalgebra) for su(n) given

by

t = {i diag(a1, . . . , an) | aj ∈ R ∀j,
n∑
j=1

aj = 0},
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so a Cartan subalgebra for su(n)C is given by

tC = {diag(η1, . . . , ηn) | ηj ∈ C ∀j,
n∑
j=1

ηj = 0}.

The roots of su(n)C relative to tC are linear maps λjk : tC → C defined by λjk(η) =

ηj − ηk where η ∈ tC and j < k. The corresponding root spaces to the roots are spanned

by Ejk ∈ su(n) where Ejk has zeros in every entry except for the (j, k) entry which

has a 1. We choose the simple roots of the positive root system ∆+ to be λj,j+1 with

associated root spaces Ej,j+1, j = 1, 2, . . . , n− 1. Dual vectors to these simple roots are

A1, . . . , An−1 ∈ t such that

λj,j+1(Ak) = iδjk,

for all k = 1, . . . , n− 1. These are of the form

Ak = i(
−k
n
· I +Dk),

where ak ∈ R and Dk is a 2× 2 block matrix of the form

Dk =

 Ik 0k,n−k

0n−k,k 0n−k,n−k

 ,

where Ik denotes a k × k identity matrix and 0j,k denotes a j × k matrix with all zero

entries. According to Definition 5.2.11 the canonical elements of su(n) are of the form

ξ = i
(∑
j∈J

−j
n
· I +Dj

)
= i
(∑
j∈J

−j
n
· I +

∑
j∈J

Dj

)
, (5.2.1)

where J ⊆ {1, 2, . . . , n − 1}. We give an ordering to the elements of J , so j1 < j2 <

· · · < jl for jk ∈ J, k = 1, 2, . . . , n − 1 and l ≤ n − 1. Considering the second sum of
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(5.2.1) we have, ∑
j∈J

Dj =
l∑

k=1

Djk =
l∑

k=1

(l + 1− k) ·Bk,

for

Bk = diag
( jk−1︷ ︸︸ ︷

0, . . . , 0,

jk−jk−1︷ ︸︸ ︷
1, . . . , 1,

n−jk︷ ︸︸ ︷
0, . . . , 0

)
,

where we set j0 = 0. Now by adding the identity matrix I to both sides and rearranging

we have,

I +
∑
j∈J

Dj = I +
l∑

k=1

(l + 1− k) ·Bk =
l+1∑
k=1

k ·Bl+2−k, (5.2.2)

where

Bl+1 = diag
( jl︷ ︸︸ ︷

0, . . . , 0,

n−jl︷ ︸︸ ︷
1, . . . , 1

)
.

Let us consider the first sum of (5.2.1) minus the identity matrix,

−I +
∑
j∈J

−j
n
· I = (−1 +

∑
j∈J

−j
n

) · I =
−1

n
(n+

∑
j∈J

j) · I =
−1

n
(n+

l∑
k=1

jk) · I.

By noting that trace(
∑l+1

k=1Bk) = rank(
∑l+1

k=1Bk) = n and jk =
∑k

h=1 rank(Bh) =∑k
h=1 traceBh, then

−1

n
(n+

l∑
k=1

jk) =
−1

n
(rank(

l+1∑
k=1

Bk) +
l∑

k=1

k∑
h=1

rank(Bh))

=
−1

n
(rank(

l+1∑
k=1

Bk) +
l∑

k=1

k rank(Bl+1−k))

=
−1

n
(rank(Bl+1) +

l∑
k=1

(k + 1) rank(Bl+1−k))

=
−1

n
(
l+1∑
k=1

k rank(Bl+2−k)).
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So,

− I +
∑
j∈J

−j
n
· I =

−1

n
(
l+1∑
k=1

k rank(Bl+2−k)) · I. (5.2.3)

Using (5.2.1),(5.2.2) and (5.2.3) we have

ξ = i
(−1

n

l+1∑
k=1

k rank(Bl+2−k) · I +
l+1∑
k=1

k ·Bl+2−k

)
,

where the B1, B2, . . . , Bl+1 are orthogonal projection matrices giving a decomposition of

Cn, exactly as in Corollary 5.2.15.

5.2.2 Canonical Elements for O(n)

Theorem 5.2.16. [7, Proposition 4.1] ξ is a canonical element for so(n) if and only if

either

(i) For some k ∈ N with 2k + 1 ≤ n, ξ has eigenvalues ±il, 0 ≤ l ≤ k, or

(ii) For some k ∈ N with 2k + 2 ≤ n, ξ has eigenvalues ±i(l + 1
2
), 0 ≤ l ≤ k, and the

eigenvalues ± i
2

have multiplicity at least 2.

Note that this theorem classifies canonical elements up to conjugacy and is independent

of the choice of simple roots of a positive root system with respect to some Cartan subal-

gebra. We give some justification for this theorem by describing the canonical elements

with respect to some Cartan subalgebra as in [10]. First we deal with O(n) for n = 2m

and m ∈ N.

Consider a maximal torus for O(2m) (or SO(2m))

T1 =

diag(R1, R2, . . . , Rm)

∣∣∣∣∣∣Rj =

 cos(aj) sin(aj)

− sin(aj) cos(aj)

 , aj ∈ R

 ,
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which has Lie algebra

t1 =





0 a1

−a1 0

. . .

0 am

−am 0



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
aj ∈ R


,

and is a maximal toral subalgebra of so(n). We will regard T1 as a real subgroup of

O(2m,C) and t1 as a real subalgebra of so(2m,C) in the obvious way and write them

with respect to the null basis (5.1.2) given above. So we have in the null basis (5.1.2) that

T1 =
{

diag(eia1 , . . . , eiam , e−iam , . . . , e−ia1)
∣∣ aj ∈ R

}
and

t1 = {diag(ia1, . . . , iam,−iam, . . . ,−ia1) | aj ∈ R} .

Therefore a Cartan subalgebra for so(2m,C) is

tC1 = {diag(η1, . . . , ηm,−ηm, . . . ,−η1) | ηj ∈ C} .

According to Definition 5.2.5 to find the roots of so(n,C) with respect to tC1 we need

to consider ad(η)v for η ∈ tC1 and v ∈ so(n,C) = {A ∈ gl(n,C) | AT = −A}. Let
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η = diag(η1, . . . , ηm,−ηm, . . . ,−η1) ∈ tC1 and, always using the null basis 5.1.2,

v =



v1,1 v1,2 . . . . . . v1,2m−1 0

v2,1 v2,2 0 −v1,2m−1

... . .
. ...

... . .
. ...

v2m−1,1 0 −v2,2 −v1,2

0 −v2m−1,1 . . . . . . −v2,1 −v1,1


∈ so(2m,C).

Then considering ad(η)v = λ(η)v we see that the roots λ are

i(ηj + ηk), −i(ηj + ηk), i(ηj − ηk), −i(ηj − ηk),

where ηj, ηk ∈ C and j, k ∈ {1, 2, . . . ,m}, j < k. The corresponding root spaces to these

roots are spanned by0 Ejk̄ − Ekj̄
0 0

 ,

 0 0

Ek̄j − Ej̄k 0

 ,

Ejk 0

0 −Ek̄j̄

 ,

Ekj 0

0 −Ej̄k̄

 ,

where Ejk is a m×m matrix of zeros in all positions other than the (j, k) position, which

has a 1. We choose the positive root system ∆+ to be the set containing the roots i(ηj−ηk)

and i(ηj + ηk) for all j, k ∈ {1, 2, . . . ,m}, j < k, and we choose the simple roots of this

positive root system to be λj(η) = i(ηj − ηj+1) for j = 1, 2, . . . ,m − 1 together with

λm(η) = i(ηm−1 + ηm). We see that any element of ∆+ can be expressed as follows:

i(ηj − ηk) =
k−1∑
α=j

λα, j, k ∈ {1, 2, . . . ,m}, j < k,

i(ηj + ηk) =
k−1∑
α=j

λα + 2
m−2∑
β=k

λβ + λm−1 + λm, j, k ∈ {1, 2, . . . ,m− 1}, j < k,
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i(ηj + ηm) =
m−2∑
α=j

λα + λm, j ∈ {1, 2, . . . ,m− 2}.

We now wish to find the dual vectors to the simple roots, i.e. the unique A1, . . . , Am ∈ t

such that

λj(Ak) = iδjk, ∀k ∈ {1, 2, . . . ,m}, j ∈ {1, 2, . . . ,m}.

By inspection these are the diagonal matrices of the form,

Ak = i diag
( k︷ ︸︸ ︷

1, . . . , 1,

2(m−k)︷ ︸︸ ︷
0, . . . , 0,

k︷ ︸︸ ︷
− 1, . . . ,−1,

)
, (5.2.4)

Am−1 =
i

2
diag

( m−1︷ ︸︸ ︷
1, . . . , 1,−1, 1,

m−1︷ ︸︸ ︷
− 1, . . . ,−1,

)
, Am =

i

2

Im
−Im

 ,

for k = 1, . . . ,m− 2. According to Definition 5.2.11 canonical elements ξ ∈ so(2m) are

of the form

ξ =
∑
i∈I

Ai,

for I ⊆ {1, 2, . . . ,m} and Ai above. It is easy to see that these satisfy Theorem 5.2.16.

A similar argument can be made for odd dimensional orthogonal groups. Consider a

maximal torus for O(2m+ 1),

T2 =

diag(R1, . . . , Rm, 1)

∣∣∣∣∣∣Rj =

 cos(aj) sin(aj)

− sin(aj) cos(aj)

 , aj ∈ R

 .

Again by seeing this real space as a subspace of O(2m + 1,C) we may write T2 with

respect to the null basis (5.1.2), we have

T2 =
{

diag(eia1 , . . . , eiam , 1, e−iam , . . . , e−ia1)
∣∣ aj ∈ R

}
,
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with Lie algebra

t2 = {diag(ia1, . . . , iam, 0,−iam, . . . ,−ia1) | aj ∈ R} .

Therefore a Cartan subalgebra for so(2m+ 1,C) is

tC2 = {diag(η1, . . . , ηm, 0,−ηm, . . . ,−η1) | ηj ∈ C} .

Again from Definition 5.2.5 we find the roots λ of so(2m + 1,C) with respect to tC2 by

considering ad(η)v = λ(η)v for η ∈ tC2 and v ∈ so(2m+ 1,C) = {A ∈ gl(n,C) | AT =

−A}. We see that the roots are

i(ηj + ηk), −i(ηj + ηk), i(ηj − ηk), −i(ηj − ηk), iηk, −iηk,

where ηj, ηk ∈ C and j, k ∈ {1, 2, . . . ,m}, j < k. Simple roots to a positive root system

can be chosen to be λj(η) = i(ηj − ηj+1), j ∈ {1, . . . ,m − 1} together with λm = iηm.

As before we wish to find dual vectors to these positive roots i.e. A1, . . . , Am ∈ t such

that

λj(Ak) = iδjk, ∀k ∈ {1, 2, . . . ,m}, j ∈ {1, 2, . . . ,m}.

By inspection these are diagonal matrices of the form,

Ak = i diag
( k︷ ︸︸ ︷

1, . . . , 1,

2(m−k)+1︷ ︸︸ ︷
0, . . . , 0,

k︷ ︸︸ ︷
− 1, . . . ,−1

)
, (5.2.5)

for k = 1, . . . ,m. According to Definition 5.2.11 canonical elements ξ of so(2m+ 1) are

of the form

ξ =
∑
i∈I

Ai,

for I ⊆ {1, 2, . . . ,m} and Ai above. Note that these canonical elements have eigenvalues

±il for 1 ≤ l ≤ m and therefore satisfy Theorem 5.2.16. We therefore have the result
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Proposition 5.2.17. Let T1, T2, t1, t2, and tC1 , t
C
2 be the maximal tori, maximal toral

subalgebras and the Cartan subalgebras of O(2m,C) and O(2m + 1,C), respectively,

with the usual choices of simple roots of the positive root systems ∆+ as above. Then

(i) ξ is a canonical element for so(2m+ 1) if and only if

ξ = i diag(ξ1, ξ2, . . . , ξm, ξm+1,−ξm,−ξm−1, . . . ,−ξ1),

where ξj are positive integers such that ξj − ξj+1 = 1 or 0, for all j = 1, 2, . . . ,m,

and ξm+1 = 0.

(ii) ξ is a canonical element for so(2m) if and only if

ξ = i diag(ξ1, ξ2, . . . , ξm,−ξm,−ξm−1, . . . ,−ξ1),

where ξj are positive integers or half integers such that if ξ1 is an integer then

ξj − ξj+1 = 1 or 0, for all j = 1, 2, . . . ,m − 1, ξm = 0, and if ξ1 is a half integer

then ξj − ξj+1 = 1 or 0, for all j = 1, 2, . . . ,m − 2, and either ξm−1 = ξm = 1/2

or ξm−1 = 1/2, ξm = −1/2.

Proof. For (i) we consider the Aj from (5.2.5) for j ∈ I ⊆ {1, 2, . . . ,m}. We order

the elements of I = {j1, j2, . . . , jα} so jβ < jβ+1 for all β = 1, 2, . . . , α − 1, and so

|I| = α ≤ m. Then

ξ =
∑
j∈I

Aj = i diag
( j1︷ ︸︸ ︷
α, . . . , α,

j2−j1︷ ︸︸ ︷
α− 1, . . . , α− 1, . . . ,

jα−jα−1︷ ︸︸ ︷
1, . . . , 1,

2(m−jα)+1︷ ︸︸ ︷
0, . . . , 0,

jα−jα−1︷ ︸︸ ︷
− 1, . . . ,−1, . . . ,

j2−j1︷ ︸︸ ︷
1− α, . . . , 1− α,

j1︷ ︸︸ ︷
− α, . . . ,−α

)
and by relabelling we have ξ = i diag(ξ1, ξ2, . . . , ξm, ξm+1,−ξm,−ξm−1, . . . ,−ξ1) where

ξj are positive integers such that ξl − ξl+1 = 1 or 0, for all l = 1, 2, . . . ,m and ξm+1 = 0.
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For (ii) we consider the Aj from (5.2.4) for j ∈ I ⊆ {1, 2, . . . ,m}. Suppose that m /∈ I

and m − 1 /∈ I and order the elements of I = {j1, j2, . . . , jα} so jβ < jβ+1 for all

β = 1, 2, . . . , α− 1, jα ≤ m− 2 and so |I| = α ≤ m− 2. Then

ξ =
∑
j∈I

Aj = i diag
( j1︷ ︸︸ ︷
α, . . . , α,

j2−j1︷ ︸︸ ︷
α− 1, . . . , α− 1, . . . ,

jα−jα−1︷ ︸︸ ︷
1, . . . , 1,

2(m−jα)︷ ︸︸ ︷
0, . . . , 0,

jα−jα−1︷ ︸︸ ︷
− 1, . . . ,−1, . . . ,

j2−j1︷ ︸︸ ︷
1− α, . . . , 1− α,

j1︷ ︸︸ ︷
− α, . . . ,−α

)
and by relabelling we have ξ = i diag(ξ1, ξ2, . . . , ξm,−ξm,−ξm−1, . . . ,−ξ1) where ξl are

positive integers such that ξl − ξj+1 = 1 or 0, for all l = 1, 2, . . . ,m− 1 and ξm = 0.

Now let m,m − 1 ∈ I then we have I = {j1, j2, . . . , jα,m − 1,m}, and so 2 ≤ |I| =

α + 2 ≤ m. Note that

Am−1 + Am = i diag
( m−1︷ ︸︸ ︷

1, . . . , 1, 0, 0,

m−1︷ ︸︸ ︷
1, . . . , 1

)
and so

ξ =
∑
j∈I

Aj = i diag
( j1︷ ︸︸ ︷
α + 1, . . . , α + 1,

j2−j1︷ ︸︸ ︷
α, . . . , α, . . . ,

m−1−jα︷ ︸︸ ︷
1, . . . , 1, 0, 0,

m−1−jα︷ ︸︸ ︷
− 1, . . . ,−1, . . . ,

j2−j1︷ ︸︸ ︷
− α, . . . ,−α,

j1︷ ︸︸ ︷
− α− 1, . . . ,−α− 1

)
.

By relabelling, similarly to above, we have

ξ = i diag(ξ1, ξ2, . . . , ξm,−ξm,−ξm−1, . . . ,−ξ1) where ξl are positive integers such that

ξl − ξj+1 = 1 or 0, for all l = 1, 2, . . . ,m− 1 and ξm = 0.

For m /∈ I, m− 1 ∈ I we have that I = {j1, j2, . . . , jα,m− 1} and

ξ =
∑
j∈I

Aj = i diag
( j1︷ ︸︸ ︷
α + 1

2
, . . . , α + 1

2
,

j2−j1︷ ︸︸ ︷
α− 1

2
, . . . , α− 1

2
, . . . ,

m−1−jα︷ ︸︸ ︷
1
2
, . . . , 1

2
,−1

2
, 1

2
,
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m−1−jα︷ ︸︸ ︷
− 1

2
, . . . ,−1

2
, . . . ,

j2−j1︷ ︸︸ ︷
− α, . . . ,−α,

j1︷ ︸︸ ︷
− α− 1, . . . ,−α− 1

)
.

Relabelling, we have ξ = i diag(ξ1, ξ2, . . . , ξm,−ξm,−ξm−1, . . . ,−ξ1) where ξl are pos-

itive half integers such that ξl − ξj+1 = 1 or 0, for all l = 1, 2, . . . ,m − 2 and

ξm−1 = −ξm = 1
2
.

Finally, let m ∈ I and m− 1 /∈ I then we have I = {j1, j2, . . . , jα,m} and

ξ =
∑
j∈I

Aj = i diag
( j1︷ ︸︸ ︷
α + 1

2
, . . . , α + 1

2
,

j2−j1︷ ︸︸ ︷
α− 1

2
, . . . , α− 1

2
, . . . ,

m−jα︷ ︸︸ ︷
1
2
, . . . , 1

2

m−jα︷ ︸︸ ︷
− 1

2
, . . . ,−1

2
, . . . ,

j2−j1︷ ︸︸ ︷
− α, . . . ,−α,

j1︷ ︸︸ ︷
− α− 1, . . . ,−α− 1

)
.

Relabelling we have ξ = i diag(ξ1, ξ2, . . . , ξm,−ξm,−ξm−1, . . . ,−ξ1) where ξl are pos-

itive half integers such that ξl − ξl+1 = 1 or 0, for all l = 1, 2, . . . ,m − 2 and

ξm−1 = ξm = 1
2
.

Example 5.2.18. For so(6,C) the elements of ∆+ are λ1(η) = i(η1 − η2), λ2(η) =

i(η2 − η3), λ3(η) = i(η2 + η3). The dual vectors to these simple roots are

A1 = i diag(1, 0, 0, 0, 0,−1), A2 =
i

2
diag(1, 1,−1, 1,−1,−1),

A3 =
i

2
diag(1, 1, 1,−1,−1,−1),

and so the canonical elements of so(6) are

I = {1} : ξ = A1 = i diag(1, 0, 0, 0, 0,−1),

I = {2} : ξ = A2 =
i

2
diag(1, 1,−1, 1,−1,−1),

I = {3} : ξ = A3 =
i

2
diag(1, 1, 1,−1,−1,−1),
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I = {1 + 2} : ξ = A1 + A2 =
i

2
diag(3, 1,−1, 1,−1,−3),

I = {1 + 3} : ξ = A1 + A3 =
i

2
diag(3, 1, 1,−1,−1,−3),

I = {2 + 3} : ξ = A2 + A3 = i diag(1, 1, 0, 0,−1,−1),

I = {1 + 2 + 3} : ξ = A1 + A2 + A3 = i diag(2, 1, 0, 0,−1,−2).

Example 5.2.19. For so(5,C) the elements of ∆+ are λ1(η) = i(η1 − η2) and λ2(η) =

i(η2 − η3). The dual vectors to these simple roots are

A1 = i diag(1, 0, 0, 0,−1), A2 = i diag(1, 1, 0,−1,−1),

and so the canonical elements of so(5) are

I = {1} : ξ = A1 = i diag(1, 0, 0, 0,−1),

I = {2} : ξ = A2 = i diag(1, 1, 0,−1,−1),

I = {1 + 2} : ξ = A1 + A2 = i diag(2, 1, 0,−1,−2).

5.2.3 Canonical Elements for Sp(m)

For use in later sections we will give a description of the canonical elements for the

symplectic group, Sp(m). Also, for the benefit of later sections we will give all matrices

with respect to the null basis (5.1.9) given above. Recall in this basis that Sp(2m,C) =

{A ∈ GL(2m,C) | ATΩnullA = Ωnull}, therefore its Lie algebra in this basis is given by

sp(2m,C) = {A ∈ gl(2m,C) | ATΩnull + ΩnullA = 0} and Sp(m) = Sp(2m,C) ∩

U(2m). Consider the torus T ⊂ Sp(m):

T =
{

diag(eia1 , . . . , eiam , e−iam , . . . , e−ia1)
∣∣ aj ∈ R

}
, (5.2.6)
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with Lie algebra

t = {i diag(a1, . . . , am,−am, . . . ,−a1) | aj ∈ R, ∀j}. (5.2.7)

Considering Definitions 5.2.1, 5.2.2 and Proposition 5.2.3 we see that this is a maximal

toral subalgebra of sp(m), T is a maximal torus of Sp(m) and tC is a Cartan subalgebra

for sp(m)C = sp(2m,C) where

tC = {diag(η1, . . . , ηm,−ηm, . . . ,−η1) | ηj ∈ C ∀i}. (5.2.8)

By Definition 5.2.5 the roots of sp(2m,C) relative to tC are linear maps λ : tC → C

satisfying ad(ξ)v = λ(ξ)v for all ξ ∈ tC and for some non-zero v ∈ sp(2m,C). The

elements of sp(2m,C) represented in the null basis are precisely the 2m × 2m matrices

of the form A B

C −AT

 ,

where A is an arbitrary m×mmatrix with both B and C second-symmetric matrices i.e.

matrices that are symmetric with respect to the second diagonal, soBT = B and CT = C.

For a description of sp(2m,C) in the standard basis see [34, p.41].

The roots of sp(n)C relative to tC are linear maps tC → C defined by

i(ηj + ηk), −i(ηj + ηk), i(ηj − ηk), 2iηk, −2iηk,

where ηj, ηk ∈ C and j, k ∈ {1, 2, . . . ,m}, j 6= k. The corresponding root spaces to these

roots are spanned by0 Ejk + Ekj

0 0

 ,

 0 0

Ejk + Ekj 0

 ,

Ejk 0

0 Ekj

 ,
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0 Ejj̄

0 0

 ,

 0 0

Ej̄j 0

 ,

where Ejk is an m × m matrix of zeros in all positions other than the (j, k) position,

which has a 1. We choose the simple roots of the positive root system ∆+ to be λj(η) =

i(ηj − ηj+1) and λm(η) = 2iηm with associated root spaces vj, vm, respectively, where

vj =

Ejj+1 0

0 Ej+1j

 , vm =

0 Emm̄

0 0

 .

The dual vectors to the simple roots are A1, . . . , Am ∈ t such that

λj(Ak) = iδjk and λm(Ak) = iδmk ∀k = 1, . . . ,m, j = 1, . . . ,m− 1.

These are diagonal matrices of the form

Ak = i diag
( k︷ ︸︸ ︷

1, . . . , 1,

2(m−k)︷ ︸︸ ︷
0, . . . , 0,

k︷ ︸︸ ︷
− 1, . . . ,−1

)
, Am =

i

2

Im
−Im

 , (5.2.9)

for k = 1, . . . ,m − 1. According to Definition 5.2.11 canonical elements ξ ∈ sp(m) are

of the form

ξ =
∑
j∈I

Aj,

for I ⊆ {1, 2, . . . ,m} and Aj above.

Proposition 5.2.20. Let T be a maximal torus of Sp(m) given by (5.2.6), t the corre-

sponding maximal toral subalgebra of sp(2m) given by (5.2.7) and tC a Cartan subal-

gebra of sp(2m,C) given by (5.2.8), with the usual choice of simple roots of the positive

root system ∆+ as above. Then ξ ∈ t is a canonical element for sp(2m) if and only if

ξ = i diag(ξ1, ξ2, . . . , ξm,−ξm,−ξm−1, . . . ,−ξ1) where ξj are positive integers and half
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integers such that

ξj − ξj+1 = 1 or 0, for all j = 1, 2, . . . ,m− 1, ξm = 0 or
1

2
.

Proof. Considering the Aj from (5.2.9) for j ∈ I ⊆ {1, 2, . . . ,m}, let m /∈ I and order

the elements of I = {j1, j2, . . . , jα} so jβ < jβ+1 for all β = 1, 2, . . . , α − 1 and |I| =

α ≤ m− 1. Then

ξ =
∑
j∈I

Aj = i diag
( j1︷ ︸︸ ︷
α, . . . , α,

j2−j1︷ ︸︸ ︷
α− 1, . . . , α− 1, . . . ,

jα−jα−1︷ ︸︸ ︷
1, . . . , 1,

2(m−jα)︷ ︸︸ ︷
0, . . . , 0,

jα−jα−1︷ ︸︸ ︷
− 1, . . . ,−1, . . . ,

j2−j1︷ ︸︸ ︷
1− α, . . . , 1− α,

j1︷ ︸︸ ︷
− α, . . . ,−α

)
and by relabelling we have ξ = i diag(ξ1, ξ2, . . . , ξm,−ξm,−ξm−1, . . . ,−ξ1) where ξj are

positive integers such that ξj − ξj+1 = 1 or 0, for all j = 1, 2, . . . ,m− 1 and ξm = 0.

If m ∈ I then we have I = {j1, j2, . . . , jα,m} and

ξ =
∑
j∈I

Aj = i diag
( j1︷ ︸︸ ︷
α + 1

2
, . . . , α + 1

2
,

j2−j1︷ ︸︸ ︷
α− 1

2
, . . . , α− 1

2
, . . . ,

jα−jα−1︷ ︸︸ ︷
3
2
, . . . , 3

2
,

2(m−jα)︷ ︸︸ ︷
1
2
, . . . , 1

2
,

jα−jα−1︷ ︸︸ ︷
− 3

2
, . . . ,−3

2
, . . . ,

j2−j1︷ ︸︸ ︷
1
2
− α, . . . , 1

2
− α,

j1︷ ︸︸ ︷
− α− 1

2
, . . . ,−α− 1

2

)
.

By rebelling we have ξ = i diag(ξ1, ξ2, . . . , ξm,−ξm,−ξm−1, . . . ,−ξ1) where ξj are half

integers such that ξj − ξj+1 = 1 or 0, for all j = 1, 2, . . . ,m− 1 and ξm = 1
2
.

Example 5.2.21. For sp(6,C) the elements of ∆+ are λ1(η) = i(η1 − η2), λ2(η) =

i(η2 − η3), λ3(η) = 2i(η3). The dual vectors to these simple roots are

A1 = i diag(1, 0, 0, 0, 0,−1), A2 = i diag(1, 1, 0, 0,−1,−1),

A3 =
i

2
diag(1, 1, 1,−1,−1,−1).
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and so the canonical elements of sp(3) are as follows:

I = {1} : ξ = A1 = i diag(1, 0, 0, 0, 0,−1),

I = {2} : ξ = A2 = i diag(1, 1, 0, 0,−1,−1),

I = {3} : ξ = A3 =
i

2
diag(1, 1, 1,−1,−1,−1),

I = {1 + 2} : ξ = A1 + A2 = i diag(2, 1, 0, 0,−1,−2),

I = {1 + 3} : ξ = A1 + A3 =
i

2
diag(3, 1, 1,−1,−1,−3),

I = {2 + 3} : ξ = A2 + A3 =
i

2
diag(3, 3, 1,−1,−3,−3),

I = {1 + 2 + 3} : ξ = A1 + A2 + A3 =
i

2
diag(5, 3, 1,−1,−3,−5).
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Chapter 6

Harmonic Maps from Surfaces to Lie

Groups

In [50], K. Uhlenbeck developed the theory of harmonic maps into Lie groups by in-

troducing “polynomial extended solutions” of a harmonic map. Uhlenbeck showed that

such a polynomial extended solution can be factorized with respect to certain subbundles

of Cn := M×Cn called “unitons”. The Grassmannian model of an extended solution was

introduced by G. Segal in [46]. The Grassmannian model represents an extended solution

by a subbundle W of the trivial bundle M ×H for H a Hilbert space.

In [9], F.E. Burstall and M.A. Guest used canonical elements and certain maps into a loop

group to classify all polynomial extended solutions for harmonic maps into the unitary

group. These extended solutions were given by integration, with equations which are

easy to solve for U(n), especially for low dimensions. By viewing O(n) as a subgroup of

U(n), M.J. Ferreira, B.A. Simões and J.C. Wood in [29] applied the work of F.E. Burstall

and M.A. Guest to give a classification of extended solutions for harmonic maps into the

orthogonal group according to their canonical elements. Further, they gave a parametriza-

tion (at least locally) of these extended solutions in terms of free holomorphic data by

replacing every instance of integration with differentiation and algebraic operations.
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In this chapter we give a description of the theory of harmonic maps into Lie groups,

setting up the theory needed in Chapter 7.

6.1 Harmonic Maps into Lie Groups

Let ϕ : M → G be a smooth map from a Riemann surface to a Lie group. Define a

1-form, Aϕ, with values in its Lie algebra g by

Aϕ =
1

2
ϕ−1dϕ;

decomposing into (1, 0)- and (0, 1)- parts we have

Aϕ = Aϕz dz + Aϕz dz

where

Aϕz =
1

2
ϕ−1ϕz , Aϕz =

1

2
ϕ−1ϕz,

for z a local complex coordinate. Note that Aϕ is half the pullback of the Maurer-Cartan

form on g, and both Aϕz and Aϕz are local sections of the endomorphism bundle End(Cn)

where Cn := M ×Cn is the complex trivial bundle over M . We define a unitary connec-

tion Dϕ by

Dϕ = d+ Aϕ

and, again decomposing into (1, 0)- and (0, 1)- parts, we have

Dϕ
z = ∂z + Aϕz , Dϕ

z = ∂z + Aϕz .

Recall from Chapter 4 that any complex vector bundle E → M over a Riemann surface

equipped with a linear connection∇ can be given a unique holomorphic structure (called
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the Koszul-Malgrange complex structure [36]) from the (0, 1)-part of ∇ by realising it

as a ∂-operator. Therefore we may give Cn a unique holomorphic structure from Dϕ
z , by

which we mean that any local section σ of Cn is holomorphic if and only if Dϕ
z σ = 0

for any complex coordinate z. We denote the holomorphic bundle by (Cn, Dϕ
z ).

Theorem 6.1.1. [50] Let G denote U(n) or a compact Lie subgroup of U(n). Then a

smooth map ϕ : M → G is harmonic if and only if on each coordinate domain, Aϕz is a

holomorphic endomorphism of the holomorphic vector bundle (Cn, Dϕ
z ) i,e,. Aϕz ◦D

ϕ
z =

Dϕ
z ◦ Aϕz .

6.1.1 Unitons

Definition 6.1.2. Let ϕ : M → U(n) be harmonic and let α be a smooth subbundle of

the trivial bundle Cn. We say that α is a uniton for ϕ if, for all σ ∈ Γ(α),

(i) Dϕ
z (σ) ∈ Γ(α), i.e. α is a holomorphic subbundle of Cn;

(ii) Aϕz (σ) ∈ Γ(α), i.e. α is closed under Aϕz .

For any subspace α ∈ Cn, we denote by πα and π⊥α the orthogonal projection onto α and

its orthogonal compliment α⊥, respectively.

Theorem 6.1.3. [50] Let ϕ : M → U(n) be a harmonic map and α a uniton for ϕ, then

the map ϕ̃ : M → U(n) given by ϕ̃ = ϕ(πα − π⊥α ) is harmonic. This is known as adding

a uniton.

Uhlenbeck considered harmonic maps constructed in this way by starting from a constant

map ϕ0 : M → U(n) and adding a uniton α1 for ϕ0 to get a harmonic map

ϕ1 = ϕ0(πα1 − π⊥α1
).
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Continuing the process Uhlenbeck defined more complicated harmonic maps inductively

as follows: for each i = 1, 2, . . . , r for some r let

ϕi = ϕi−1(παi − π⊥αi),

where αi is a uniton for ϕi−1. Expanding, we have for each i, the uniton factorization of

the harmonic map ϕ = ϕi:

ϕi = ϕ0(πα1 − π⊥α1
)(πα2 − π⊥α2

) · · · (παi − π⊥αi) (6.1.1)

and a sequence of unitons α1, α2, . . . , αi. Harmonic maps ϕi of this form are said to be

of finite uniton number. The minimal number of uniton factors required is called the

(minimal) uniton number of ϕ.

Theorem 6.1.4. [50] All harmonic maps ϕ : S2 → U(n) are of finite uniton number.

6.1.2 Extended Solutions

In Uhlenbeck’s seminal work [50], smooth maps into loop groups of the Lie group were

developed by introducing a parameter which she calls a spectral parameter λ ∈ S1 in

the following way.

Definition 6.1.5. The free and based loop groups of any Lie group G are denoted ΛG

and ΩG, respectively where

ΛG = {γ : S1 → G | γ is smooth }

and

ΩG = {γ ∈ ΛG | γ(1) = e}

for e the identity element of G. The loop algebras Λg and Ωg are defined similarly.
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Following [50] we restrict G to the Lie group U(n) or a Lie subgroup of U(n) with

corresponding Lie algebra g.

ConsiderAϕ = 1
2
ϕ−1dϕ for some smooth map ϕ : M → G. Taking the exterior derivative

of the 1-formAϕ, we have the pullback of the Maurer-Cartan equation: dAϕ+[Aϕ, Aϕ] =

0, where [Aϕ, Aϕ] is a g-valued two form defined by [Aϕ, Aϕ](X, Y ) = [Aϕ(X), Aϕ(Y )].

Lemma 6.1.6. Given a g-valued 1-form A, locally there exist smooth maps ϕ : M → G

such that Aϕ ≡ 1
2
ϕ−1dϕ = A if and only if dA+ [A,A] = 0.

Proof. See [50].

We decompose our given g-valued 1-form A for a local complex coordinate z so A =

Azdz + Azdz and

dA+ [A,A] = ∂zAz − ∂zAz + 2[Az, Az]. (6.1.2)

The vanishing of the tension field, is equivalent to ∂zAz + ∂zAz = 0 [50, (9)]. Adding

this to (6.1.2) and using Lemma 6.1.6 gives

∂zAz + [Az, Az] = 0, (6.1.3)

which is an interpretation of the harmonic equation from Theorem 6.1.1. We introduce a

“spectral” parameter, λ ∈ S1, by setting

Aλ =
1

2
(1− λ−1)Azdz +

1

2
(1− λ)Azdz. (6.1.4)

Theorem 6.1.7. [50] Let M be a Riemann surface. Given a g-valued 1-form A : M →

T ∗M⊗g, then locally there exists an S1-family of smooth maps Φλ : M → G, a harmonic

map ϕ : M → G such that Φ−1 = cϕ, c ∈ G, and Aλ = 1
2
Φ−1
λ dΦλ if and only if

(i) ∂zAz − ∂zAz + 2[Az, Az] = 0;
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(ii) ∂zAz + [Az, Az] = 0.

Proof (Sketch). There are locally defined smooth maps Φ such thatAλ = 1
2
Φ−1
λ dΦλ if and

only if Aλ satisfies the integrability condition

dAλ + [Aλ, Aλ] = 0.

With Aλ defined by (6.1.4), expanding this out in powers of λ, the constant term gives (i),

the coefficient of λ−1 gives (ii) and the coefficient of λ gives the conjugate of (ii).

Definition 6.1.8. [50] Let ϕ : M → G be a harmonic map then we call a smooth map

Φ = Φλ : M → ΩG an extended solution for ϕ if Φ1 = e and Φλ satisfies

1

2
Φ−1
λ dΦλ = Aλ,

for Aλ the Ωg-valued 1-form (6.1.4) above.

Remark 6.1.9. Definition 6.1.8 implies that Φ−1 = cϕ for some constant c ∈ G.

Definition 6.1.10. We call two harmonic maps ϕ and ϕ̃ equivalent if ϕ̃ = cϕ for some

c ∈ G. We also call two extended solutions Φ and Φ̃ equivalent if Φ̃−1 = aΦ−1 for some

a ∈ G. Note that this implies that Φ̃ = ηΦ for some η ∈ ΩG.

Proposition 6.1.11. [50, Corollary 12.2] Let Φ : M → ΩG be an extended solution. A

subbundle α of Cn is a uniton for Φ if and only if Φ̃ = Φ(πα + λπ⊥α ) is an extended

solution.

Definition 6.1.12. An extended solution Φ = Φλ : M → ΩG is called S1-invariant if

ΦλΦµ = Φλµ, λ, µ ∈ S1.

Recall the notion of uniton factorisation, (6.1.1).
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Proposition 6.1.13. [48, Proposition 2.10] An extended solution Φ : M → ΩG is S1-

invariant if and only if it has a uniton factorisation with nested unitons:

0 = α0 ⊂ α1 ⊂ α2 ⊂ · · · ⊂ αr ⊂ αr+1 = M × Cn,

for some r ∈ N.

6.1.3 Grassmannian Model

In [46], G. Segal described the Grassmannian model of an extended solution; this is a sub-

bundle W of the trivial bundle M ×H forH the Hilbert space L2(S1,Cn). By expanding

into Fourier series, we have

H = Span{λiej | i ∈ Z, j = 1, 2, . . . , n},

for {e1, e2, . . . , en} the standard basis for Cn and where Span denotes the closed linear

span.

We specialise to G = U(n) which has a natural action on Cn. This action induces an

action of ΩU(n) onH where γ ∈ ΩU(n) acts on v ∈ H = L2(S1,Cn) by

(γ · v)(λ) = γ(λ)v(λ), (6.1.5)

where λ ∈ S1. This group action is isometric with respect to the L2 inner product defined

by 〈v, w〉L2 =
∑

i〈vi, wi〉, where v =
∑

i λ
ivi ∈ H, w =

∑
i λ

iwi ∈ H and 〈·, ·〉 is the

standard hermitian innner product on Cn. LetH+ be a closed subspace ofH defined by

H+ = Span{λiej | i ∈ N0, j = 1, 2, . . . , n}, (6.1.6)

where N0 = {0, 1, 2, . . . }. The action of ΩU(n) on H (6.1.5) induces an action on H+,
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the orbit of this is denoted Gr (see [43] for descriptions of the elements of Gr) and gives

a bijection

ΩU(n) 3 Φ 7→ W := ΦH+ ∈ Gr. (6.1.7)

We note here that, since λH+ ⊂ H+, for any W ∈ Gr, λW ⊂ W.

Definition 6.1.14. W ∈ Gr is called the Grassmannian model for the extended solution

Φ if W = ΦH+.

We define a subgroup of the based loop group ΩU(n) (see Definition 6.1.5).

Definition 6.1.15. The algebraic loop group of U(n) is

ΩalgU(n) = {γ ∈ ΩU(n) | γ =
t∑
i=s

λkSk, Sk ∈ gl(n,C), s, t ∈ Z, s ≤ t}.

In particular for r ∈ N0 we define ΩrU(n) ⊂ ΩalgU(n) to be

ΩrU(n) = {γ ∈ ΩalgU(n) | γ =
r∑
i=0

λkSk, Sk ∈ gl(n,C) }. (6.1.8)

Remark 6.1.16. For γ =
∑t

i=s λ
kSk ∈ ΩalgU(n), we write γ =

∑t
i=s λ

−kSk and γT =∑t
i=s λ

kSTk .

Definition 6.1.17. An extended solution Φ : M → ΩU(n) which takes values in ΩrU(n)

is called a polynomial extended solution. We say that the degree of the polynomial

extended solution is at most r.

Lemma 6.1.18. [48, §2] Let Φ be a polynomial extended solution of degree at most r

then

λrH+ ⊂ ΦH+ ⊂ H+.

Note that Lemma 6.1.18 shows that ΦH+ ⊂ H+/λ
rH+ = Cn + λCn + · · ·+ λr−1Cn.
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Definition 6.1.19. Let Φ : M → ΩrU(n) be a polynomial extended solution. A uniton

factorization of Φ is

Φ = Φr = (πα1 + λπ⊥α1
)(πα2 + λπ⊥α2

) · · · (παr + λπ⊥αr),

where αj is a uniton for Φj−1 = (πα1 + λπ⊥α1
)(πα2 + λπ⊥α2

) · · · (παj−1
+ λπ⊥αj−1

), for

j = 1, . . . , r and Φ0 = I .

Proposition 6.1.20. Let Φ : M → ΩrU(n) be an S1-invariant polynomial extended

solution of a harmonic map ϕ : M → U(n) with uniton factorisation

Φ = Φr = (πα1 + λπ⊥α1
)(πα2 + λπ⊥α2

) · · · (παr + λπ⊥αr), (6.1.9)

and ψj = α⊥j ∩ αj+1. Then the Grassmannian model of Φ is given by both

(i) W = ΦH+ = (πψ0 + λπψ1 + λ2πψ3 + · · ·+ λrπψr)H+ and

(ii) W = ΦH+ = α1 + λα2 + λ2α3 + · · ·+ λr−1αr + λrH+.

Proof. By Proposition 6.1.13 the unitons of ϕ satisfy

0 = α0 ⊂ α1 ⊂ α2 ⊂ · · · ⊂ αr ⊂ αr+1 = M × Cn. (6.1.10)

We expand out the brackets of (6.1.9). The term of degree zero in λ is πα1◦πα2◦· · ·◦παr =

πα1 by (6.1.10). The term of degree 1 in λ is

π⊥α1
◦ πα2 ◦ · · · ◦ παr + πα1 ◦ π⊥α2

◦ · · ·

· · · ◦ παr + · · ·+ πα1 ◦ πα2 ◦ · · · ◦ π⊥αr = π⊥α1
◦ πα2 = πα⊥1 ∩α2

(6.1.11)
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again by (6.1.10). For the term of degree 2 in λ we have

∑
1≤i<j≤r

πα1 ◦ πα1 ◦ · · · ◦ παi−1
◦ π⊥αi ◦ παi+1

◦ · · · ◦ παj−1
◦ π⊥αj ◦ παj+1

◦ · · · ◦ παr

= π⊥α2
◦ πα3 = πα⊥2 ∩α3

by (6.1.10), indeed all but the first term of the sum are zero. It is easy to see that the term

of degree j in λ is of the form

π⊥α1
◦ π⊥α2

◦ · · · ◦ π⊥αj ◦ παj+1
◦ · · · ◦ παr = π⊥αj ◦ παj+1

= πα⊥j ∩αj+1
.

By defining

ψj = α⊥j ∩ αj+1, (6.1.12)

then the above calculations show that ψ0 = α1 and Φ = πψ0 +λπψ1 +λ2πψ2 + · · ·+λrπψr .

Therefore the Grassmannian model of Φ is given by

W = ΦH+ = (πψ0 + λπψ1 + λ2πψ3 + · · ·+ λrπψr)H+. (6.1.13)

To interpret this, by Lemma 6.1.18 we have ΦH+ ⊂ H+/λ
rH+ = Cn + λCn + · · · +

λr−1Cn. Therefore to expand (6.1.13) we need only consider
∑

0≤j≤r−1 ΦλjCn. We have

ΦCn = ψ0 + λψ1 + · · ·+ λrψr

ΦλCn = λψ0 + λ2ψ1 + · · ·+ λrψr−1 + λr + 1ψr

Φλ2Cn = λ2ψ0 + λ3ψ1 + · · ·+ λrψr−2 + λr+1ψr−1 + λr+2ψr

...
...

Φλr−1Cn = λr−1ψ0 + λrψ1 + · · ·+ λ2r−1ψr.
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Summing we have

∑
0≤j≤r−1

ΦλjCn = ψ0 + λ(ψ0 + ψ1) + λ2(ψ0 + ψ1 + ψ2) + · · ·+ λj(ψ0 + · · ·+ ψj),

where ψ0 + ψ1 + · · · + ψj = α⊥0 ∩ α1 + α⊥1 ∩ α2 + α⊥2 ∩ α3 + · · · + α⊥j ∩ αj+1 = αj+1

by (6.1.10). So

W = ΦH+ = α1 + λα2 + λ2α3 + · · ·+ λr−1αr + λrH+.

Proposition 6.1.21. [50] Let ϕ : M → U(n) be a harmonic map with a polynomial

extended solution Φ then

(i) Φ has a uniton factorization;

(ii) ϕ is of finite uniton number.

The bijection (6.1.7) restricts to a bijection from ΩalgU(n) to λ-closed subspaces W of

H+ which lie inGrsr = {W ∈ Gr | λrH+ ⊂ W ⊂ λsH+, r ≥ s }. This bijection further

restricts to a bijection

ΩrU(n) 3 Φ 7→ W := ΦH+ ∈ Grr,

where Grr ⊂ Gr given by Grr = {W ∈ Gr | λrH+ ⊂ W ⊂ H+ }.

Lemma 6.1.22. [46] Let Φ : M → ΩU(n) be a smooth map and set W = ΦH+ : M →

Gr. Then Φ is an extended solution if and only if W satisfies two conditions:

1. ∂z(Γ(W )) ⊂ Γ(W ), i.e. W is a holomorphic subbundle of M ×H;

2. λ∂z(Γ(W )) ⊂ Γ(W ), i.e. W is closed under the operator λ∂z.
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6.1.4 Complex Extended Solutions

As in [9] we want to consider complex extended solutions, the idea of which comes

from the infinite-dimensional complex structure of ΩG for G a Lie group [43]. This

complex structure is described using the Iwasawa decomposition of the loop group ΛGC

in Proposition 6.1.23 below.

Let Λ+GC (resp. Λ∗GC) be the subgroup of ΛGC consisting of smooth maps S1 → GC

which extend holomorphically to {λ ∈ C | |λ| < 1} (resp. {λ ∈ C | 0 < |λ| < 1}), we

define Λ+gC similarly.

Proposition 6.1.23. [43, Theorem 8.1.1] The product map ΩG × Λ+GC → ΛGC is a

diffeomorphism. Therefore any γ ∈ ΛGC can be written uniquely in the form γ = γu · γ+,

where γu ∈ ΩG and γ+ ∈ Λ+GC. This is known as the Iwasawa decomposition.

Both Λ+GC and ΛGC are complex Lie groups and so the homogeneous space ΛGC/Λ+GC

is a complex manifold. A consequence of Proposition 6.1.23 is the identification of ΩG

with the complex homogeneous space ΛGC/Λ+GC giving ΩG a complex structure, see

[43, §8.1].

Definition 6.1.24. [9, §1] A holomorphic map Ψ : M → Λ∗GC is called a complex

extended solution if, on each coordinate domain (U, z),

ImλΨ−1Ψz ⊆ Λ+gC.

Proposition 6.1.25. [21, 9] Let [ ] denote the projection onto the first factor of the

Iwasawa decomposition. If Ψ : M → Λ∗GC is a complex extended solution then its

projection Φ = [Ψ] onto ΩG is an extended solution. Conversely if Φ : M → ΩG is an

extended solution and z0 is a point of M then there exists a neighbourhood U0 of z0 and

a complex extended solution Ψ : U0 → Λ∗GC such that Φ|U0 = [Ψ].
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It follows from Proposition 6.1.23 that the Grassmannian model W = ΦH+ is also given

by W = ΨH+ [29].

Definition 6.1.26. [29, §2.3] A meromorphic map Ψ : M → Λ∗GC is called a meromor-

phic extended solution if it is an extended solution away from the poles.

As in [29], we may extend W = ΨH+ and Φ = [Ψ] smoothly over the poles and we will

continue to write Φ = [Ψ] even when Ψ is meromorphic.

6.2 Harmonic Maps into the Unitary Group

In [9], a general theory was introduced to classify harmonic maps into a Lie group G by

using the canonical elements from Definition 5.2.11 to give complex extended solutions.

We will describe this theory for G = U(n). Let ξ̃ be a canonical element of su(n), then

by recalling (5.2.1),

ξ̃ = i
(∑
j∈J

−j
n
· I +

∑
j∈J

Dj

)
= i diag(

1

n
δ + ξ1,

1

n
δ + ξ2, . . . ,

1

n
δ + ξn),

where δ = −
∑

j∈J j and the ξj are non-negative integers satisfying

ξj − ξj+1 = 0 or 1, ξn = 0.

By Definition 5.2.12 the canonical geodesic γξ̃ : S1 → SU(n) is given by

γξ̃ = exp(tξ̃) = diag(e(it/n)δeitξ1 , e(it/n)δeitξ2 , . . . , e(it/n)δeitξn). (6.2.1)

By regarding SU(n) ⊂ U(n) we can consider (6.2.1) as a map into U(n), and as in

[9, p. 562] (6.2.1) gives a representative of a geodesic in the projective unitary group

PU(n) = U(n)/Z(U(n)). The centre of U(n), Z(U(n)) consists of diagonal matrices
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of the form c · I for c ∈ C, and |c| = 1, so PU(n) is a group of equivalence classes of

unitary matrices under multiplication by c ·I . By fixing representatives of each canonical

geodesic in an equivalence class and recalling the notation from Remark 5.2.13 we may

define a homomorphism γξ : S1 → U(n),

γξ = e
−it
n
δγξ̃ = diag(eitξ1 , eitξ2 , . . . , eitξn) = diag(λξ1 , λξ2 , . . . , λξn),

where ξ = i diag(ξ1, ξ2, . . . , ξn) and the ξj are non-negative integers satisfying ξj−ξj+1 =

0 or 1, ξn = 0. Note here that γξ ∈ ΩrU(n) with ξ1 = r.

Definition 6.2.1. [29, §2.6] Let ξ be a diagonal matrix ξ = i diag(ξ1, ξ2, . . . , ξn) where

ξj are non-negative integers satisfying ξj − ξj+1 = 0 or 1, ξn = 0 and ξ1 = r. Then we

call ξ a canonical element of ΩrU(n) and γξ = diag(λξ1 , λξ2 , . . . , λξn) ∈ ΩrU(n) the

corresponding canonical geodesic.

Definition 6.2.2. Let ξ = i diag(ξ1, ξ2, . . . , ξn) be a canonical element of ΩrU(n). By

type of the canonical element we mean the (r+ 1)-tuple (t0, t1, . . . , tr) where tj := #{l |

ξl = j}.

Remark 6.2.3. Note that
∑r

j=0 tj = n.

Definition 6.2.4. We call an n× n matrix A a block matrix if it is of the form

A =



A1,1 A1,2 A1,3 . . . A1,r A1,r+1

A2,1 A2,2 A2,3 . . . A2,r A2,r+1

A3,1 A3,2 A3,3 . . . A3,r A3,r+1

...
...

...
. . .

...
...

Ar,1 Ar,2 Ar,3 . . . Ar,r Ar,r+1

Ar+1,1 Ar+1,2 Ar+1,3 . . . Ar+1,r Ar+1,r+1


,

where all entries Aj,l 1 ≤ j, l ≤ r + 1 are matrices and Al,l 1 ≤ l ≤ r + 1 are square

matrices of possibly different sizes. Note that matrices Aj,l for j 6= l are of possibly
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different sizes and are not necessarily square. We call the entries of A of the form Aj,j+κ

−r ≤ κ ≤ r the κth block superdiagonal of A. We call A upper block triangular if Aj,l

has all zero entries for all 1 < l < j ≤ r + 1 and we call an upper block triangular

matrix A block unitriangular if the matrices Al,l 1 ≤ l ≤ r + 1 are identity matrices.

Let ξ = i diag(ξ1, ξ2, . . . , ξn) be a canonical element of ΩrU(n) of type (t0, t1, . . . , tr).

Relabelling we have

ξ = i diag
( tr︷ ︸︸ ︷
ξ̃1, . . . , ξ̃1,

tr−1︷ ︸︸ ︷
ξ̃2, . . . , ξ̃2, . . . ,

t0︷ ︸︸ ︷
ξ̃r+1, . . . , ξ̃r+1

)
.

Therefore ξ has distinct eigenvalues iξ̃1, iξ̃2, . . . , iξ̃r+1, where iξ̃k has multiplicity tr+1−k

with associated eigenspaces of Cn

E1 = {
( tr︷ ︸︸ ︷
∗, . . . , ∗,

n−tr︷ ︸︸ ︷
0, . . . , 0

)
T},

E2 = {
( tr︷ ︸︸ ︷

0, . . . , 0,

tr−1︷ ︸︸ ︷
∗, . . . , ∗,

n−Tr−1︷ ︸︸ ︷
0, . . . , 0

)
T},

...

Ej = {
( Tr+2−j︷ ︸︸ ︷

0, . . . , 0,

tr+1−j︷ ︸︸ ︷
∗, . . . , ∗,

n−Tr+1−j︷ ︸︸ ︷
0, . . . , 0

)
T},

...

Er+1 = {
( n−t1︷ ︸︸ ︷

0, . . . , 0,

t1︷ ︸︸ ︷
∗, . . . , ∗

)
T},

where Tk =
∑r

l=k tl and the *s denote arbitrary complex numbers.

Define Xjk = Ej ⊗ Ek where ⊗ denotes the Kronecker tensor product [4], so Xjk is an

n × n matrix comprised of (r + 1) × (r + 1) blocks where the (j, k)th block is of size

tr+1−j × tr+1−k; the (j, k)th block of Xjk has arbitrary entries and all other blocks of

Xjk have all entries 0. Let ejk ∈ Xjk then we have the matrix products ξejk = iξ̃jejk,
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ejkξ = iξ̃kejk. Therefore

ad(ξ)ejk = ξejk − ejkξ = iξ̃jejk − iξ̃kejk = i(ξ̃j − ξ̃k)ejk,

and so the eigenvalues of ad(ξ) on g = u(n) are i(ξ̃j − ξ̃k) which are are of the form

iκ for κ ∈ Z, −r ≤ κ ≤ r. In line with the notation of [29] we denote the eigenspaces

of each eigenvalue iκ by gCκ = gCκ (ξ) (the superscript C here is to distinguish it from the

o(n) and sp(2m) cases in §6.3 and §7.1, respectively), where

gCκ = Span{Xjk | k − j = κ}.

So gCκ consists of matrices with entries zero unless they are on the κth block superdiagonal

and gl(n,C) = u(n)C =
∑r

κ=−r g
C
κ .

Example 6.2.5. Let ξ = i diag(2, 1, 1, 0) be a canonical element of Ω2U(4) which is of

type (1, 2, 1) and so has eigenvalues ξ̃1 = 2i, ξ̃2 = i, and ξ̃3 = 0 of multiplicities 1, 2,

and 1, respectively. These have corresponding eigenspaces of the form,

E1 = {(∗, 0, 0, 0)T}, E2 = {(0, ∗, ∗, 0)T}, E3 = {(0, 0, 0, ∗)T}.

We display the Xjk

X11 =


∗ 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 , X22 =


0 0 0 0

0 ∗ ∗ 0

0 ∗ ∗ 0

0 0 0 0

 , X33 =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 ∗

 ,
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X12 =


0 ∗ ∗ 0

0 0 0 0

0 0 0 0

0 0 0 0

 , X23 =


0 0 0 0

0 0 0 ∗

0 0 0 ∗

0 0 0 0

 , X13 =


0 0 0 ∗

0 0 0 0

0 0 0 0

0 0 0 0

 ,

and X21 = XT
12, X31 = XT

31, X32 = XT
23. So the eigenspaces for each of the eigenvalues

are

gC0 = Span{X11, X22, X33}, gC1 = Span{X12, X23},

gC2 = Span{X13}, gC−1 = Span{X21, X32}, gC−2 = Span{X31}.

Note that gC1 and gC2 are the 1st and 2nd block superdiagonal, respectively and gl(4,C) =

u(4)C =
∑2

κ=−2 g
C
κ .

Let Λ+
algU(n)C = Λ+

algGL(n,C) := Λ+U(n)C ∩ ΛalgU(n)C, and similarly Λ+
algu(n)C =

Λ+
alggl(n,C) := Λ+u(n)C ∩ Λalgu(n)C.

Definition 6.2.6. [29] Let ξ be a canonical element of ΩrU(n). We define a finite-

dimensional Lie subgroup AC
ξ of Λ+

algGL(n,C) by

AC
ξ = {A = (ajk) ∈ Λ+

algGL(n,C) | ajk = δjk if ξj ≤ ξk,

otherwise ajk is a polynomial in λ ∈ S1 of degree at most ξj − ξk − 1}.

We also define the Lie subgroup (AC
ξ )0 of AC

ξ by (AC
ξ )0 = AC

ξ ∩ U(n).

The elements of AC
ξ are block unitriangular. Also the κth block superdiagonal has entries

polynomial in λ of degree at most κ− 1 for κ > 0.

Example 6.2.7. (i) Let ξ = i diag(2, 1, 1, 0), a canonical element of Ω2U(4), then
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A ∈ AC
ξ if and only if

A =


1 a12 a13 α1λ+ α0

0 1 0 a24

0 0 1 a34

0 0 0 1

 ,

for some a12, a13, a24, a34, α1, α0 ∈ C, and λ ∈ S1.

(ii) Let ξ = i diag(3, 2, 1, 0), a canonical element of Ω3U(4), then A ∈ AC
ξ if and only

if

A =


1 a12 α1λ+ α0 δ2λ

2 + δ1λ+ δ0

0 1 a23 β1λ+ β0

0 0 1 a34

0 0 0 1

 ,

for some a12, a23, a34, α1, α0, β1, β0, δ2, δ1, δ0 ∈ C and λ ∈ S1.

Recall the definition of canonical geodesic from Definition 5.2.12, the projection onto

ΩU(n) given by the Iwasawa decomposition from Proposition 6.1.23 and the definition

of equivalent extended solution from Definition 6.1.10.

Proposition 6.2.8. [29, Proposition 2.2] Let Φ̃ : M → Ωr̃U(n) be a polynomial extended

solution for some r̃ ∈ N0. Then there is an equivalent extended solution Φ : M →

ΩrU(n) with 0 ≤ r ≤ r̃, a canonical element ξ = i diag(ξ1, ξ2, . . . , ξn) of ΩrU(n) and a

meromorphic map A : M → AC
ξ such that Φ = [Aγξ]. A and ξ are uniquely determined

by Φ, and all harmonic maps ϕ : M → U(n) of finite uniton number have such an

extended solution.

Following [29], let cj for j = 1, . . . , n denote the columns of A ∈ AC
ξ , so ck =

(a1k, a2k, . . . , ank)
T , where ajk are polynomials in λ of maximum degree determined by
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Definition 6.2.6. Let
∑

j:P (j) denote the sum over all j satisfying the condition P (j),

and let x′ denote the derivative of x with respect to any local complex coordinate on M.

We state the converse of Proposition 6.2.8 for which we recall the definition of complex

extended solution in Definition 6.1.24.

Proposition 6.2.9. [29, Proposition 2.4] Let ξ be a canonical element of ΩrU(n), A :

M → AC
ξ be a holomorphic map and Ψ = Aγξ. Then Ψ is a complex extended solution if

and only if the columns cj for j = 1, . . . , n of A satisfy

c′k =
∑

j:ξj>ξk

λξj−ξk−1ρ′jkcj, r > ξk ≥ 0, (6.2.2)

where ρjk is the coefficient of the term of degree ξj − ξk − 1 in ajk. This is equivalent to

a′ik =
∑

j:ξi≥ξj>ξk

λξj−ξk−1ρ′jkaij, r ≥ ξi > ξk ≥ 0, (6.2.3)

and holds if and only if it holds mod λξi−ξk−1, so is equivalent to

a′ik =
∑

j:ξi>ξj>ξk

λξj−ξk−1ρ′jkaij mod λξi−ξk−1, r ≥ ξi > ξk + 1 ≥ 1. (6.2.4)

Any of the above (6.2.2), (6.2.3) and (6.2.4) are known as the extended solution equations

for A.

Definition 6.2.10. We denote the space of meromorphic maps A : M → AC
ξ satisfying

(6.2.2) by SolCξ and the subspace of SolCξ of meromorphic maps A : M → (AC
ξ )0 by

(SolCξ )0.

Now we have a corollary to both Propositions 6.2.8 and 6.2.9.

Corollary 6.2.11. [29] Let ξ be a canonical element of ΩrU(n). The assignment A 7→

Φ = [Aγξ] defines a one-to-one correspondence between SolCξ and the space of extended
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solutions Φ = [Aγξ] : M → ΩrU(n) and restricts to a one-to-one correspondence be-

tween (SolCξ )0 and the set of S1-invariant extended solutions Φ = [Aγξ] : M → ΩrU(n).

We describe how S1-invariant polynomial extended solutions Φ : M → ΩrU(n) give

harmonic maps ϕ : M → U(n).

Proposition 6.2.12. [23, §4] Let φ : M → N be a harmonic map between Riemannian

manifolds and ψ : N → P be a totally geodesic map i.e. a map with vanishing second

fundamental form. Then the composition ψ ◦ φ : M → P is harmonic.

Proposition 6.2.13. [13, p. 66] Let Gk(Cn) be the Grassmannian of k-dimensional

subspaces of Cn, G∗(Cn) = ∪k=0,1,...,nGk(Cn) and V a subspace of Cn. The map

ι : G∗(Cn) → U(n) defined by ι(V ) = πV − π⊥V is a totally geodesic embedding that is

isometric up to a constant factor. The embedding ι is known as the Cartan embedding.

Example 6.2.14. Given an S1-invariant polynomial extended solution Φ : M → ΩrU(n),

recall from Proposition 6.1.20 that we can write this as

Φ = πψ0 + λπψ1 + λ2πψ2 + · · ·+ λrπψr ,

for some r ∈ {0, 1, . . . } where ψj = α⊥j ∩ αj+1; by Proposition 6.1.13 the unitons αj are

nested. Also from Proposition 6.1.20 the Grassmannian model is given by

W = ΦH+ = α1 + λα2 + λ2α3 + · · ·+ λr−1αr + λrH+.

On putting λ = −1 we see that the corresponding harmonic map ϕ : M → U(n) is given

by

ϕ =
∑
j even

πψj −
∑
j odd

πψj .

This can be rewritten as

ϕ = πφ − π⊥φ , (6.2.5)
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where

πφ =
∑
j even

πψj and π⊥φ =
∑
j odd

πψj .

Recall from §2.1 that to each map φ : M → G∗(Cn+1), we may associate the pullback

of the tautological bundle φ := φ−1T . Conversely, any subbundle φ of M × Cn+1 cor-

responds to a map φ : M → G∗(Cn+1). By Propositions 6.2.12 and 6.2.13 we see that

(6.2.5) is given by

ϕ = ι ◦ φ = πφ − π⊥φ

where φ : M → G∗(Cn) is given by

φ =
∑
j even

ψj. (6.2.6)

In [9, §4] and [32, Ch. 22] the equations in Proposition 6.2.9 were easily solved giving

low-dimensional examples. In [29], the above was adapted for O(n) and (6.2.2) was

solved giving a classification and parametrization of harmonic maps into O(n) in terms

of the canonical elements from Definition 5.2.16, we turn our attention to this now.

6.3 Harmonic Maps into the Orthogonal Group

Recall the orthogonal groupO(n) (5.1.1). We considerO(n) as a subgroup of U(n) given

by O(n) = {A ∈ U(n) | A = A} = {A ∈ U(n) | ATA = I}, where for A = (ajk),

A = (ajk). We may also regard the loop group ΩO(n) = ΩSO(n) as a subgroup of

ΩU(n) given by ΩO(n) = {Φ ∈ ΩU(n) | Φ = Φ} = {Φ ∈ ΩU(n) | ΦTΦ = I}.

Lemma 6.3.1. [43, Proposition 8.5.1] Let Φ ∈ ΩU(n) and, recalling the bijection (6.1.7),

set W = ΦH+. Then Φ ∈ ΩO(n) if and only if W
⊥

= λW.

Recall the subset ΩrU(n) of the algebraic loop group ΩalgU(n) (6.1.8). We define a subset
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ΩrU(n)R ⊂ ΩrU(n) by

ΩrU(n)R =
{

Φ ∈ ΩrU(n)
∣∣ Φ = λ−rΦ

}
=
{

Φ ∈ ΩrU(n)
∣∣ ΦTΦ = λrI

}
. (6.3.1)

Lemma 6.3.2. [48, §6] LetW = ΦH+ for Φ ∈ ΩrU(n), then Φ ∈ ΩrU(n)R if and only

if W
⊥

= λ1−rW. We call an element Φ ∈ ΩrU(n)R (and the corresponding W ) real of

degree r.

Let Φ : M → ΩrU(n)R be an S1-invariant polynomial extended solution. It is easy to

see from (6.3.1) that if r is even then Φ = Φ so φ = ±Φ−1 are harmonic maps into a

real Grassmannian. Then by Propositions 6.2.12 and 6.2.13 we have the harmonic map

ϕ = ι ◦ φ : M → O(n). For r odd, by [48, Theorem 6.8] n must be even, so Φ =

−Φ and following [48, §6.3] φ = ±iΦ−1 are harmonic maps into the symmetric space

O(2m)/U(m) for n = 2m which can be identified with the space of maximally isotropic

subspaces of C2m. Again by Propositions 6.2.12 and 6.2.13 we have the harmonic map

ϕ = ι ◦ φ : M → O(2m).

Similarly to [29] we shall write all matrices and vectors with respect to a null basis (5.1.2)

and we note that with respect to this null basis we have

ΩrU(n)R =
{

Φ ∈ ΩrU(n)
∣∣ ΦTΦ = λrI

}
. (6.3.2)

Recall the canonical elements ξ of so(2m) and so(2m + 1) given in Proposition 5.2.17.

Let ξ̃ be a canonical element of so(2m) so we have that

ξ̃ = i diag(ξ̃1, . . . , ξ̃m,−ξ̃m, . . . ,−ξ̃1). By Definition 5.2.12 we may define a canonical

geodesic γξ̃ : S1 → O(2m) by

γξ̃ = exp(tξ̃) = diag(eitξ̃1 , eitξ̃2 , . . . , eitξ̃m , e−itξ̃m , . . . , e−itξ̃1)

= diag(λξ̃1 , λξ̃2 , . . . , λξ̃m , λ−ξ̃m , . . . , λ−ξ̃1). (6.3.3)
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We regard O(2m) ⊂ U(2m) and so can view the canonical geodesic γξ̃ as a map into

U(2m). Again by following [9, p. 562] (6.3.3) gives a representative of a geodesic in

the projective unitary group PU(2m) = U(2m)/Z(U(2m)). Recall that PU(2m) is a

group of equivalence classes of unitary matrices under multiplication by c · I, for c ∈ C.

Fixing representatives of each canonical geodesic in an equivalence class we define the

homomorphism γξ : S1 → U(2m),

γξ = eitξ̃1γξ̃ = diag(e2itξ̃1 , eit(ξ̃2+ξ̃1), . . . , eit(ξ̃m+ξ̃1), eit(ξ̃1−ξ̃m), . . . , eit(ξ̃1−ξ̃2), e0)

= diag(λ2ξ̃1 , λ(ξ̃2+ξ̃1), . . . , λ(ξ̃m+ξ̃1), λ(ξ̃1−ξ̃m), . . . , λ(ξ̃1−ξ̃2), λ0)

= diag(λξ1 , λξ2 , . . . , λξm , λξm+1 , . . . , λξ2m−1 , λξ2m)

where ξj =

ξ̃j + ξ̃1, if 1 ≤ j ≤ m,

ξ̃1 − ξ̃2m+1−j, if m+ 1 ≤ j ≤ 2m,

and ξ = i diag(ξ1, ξ2, . . . , ξ2m). Note

that, for ξ1 even, then the ξj are non-negative integers such that ξj − ξj+1 = 0 or 1,

ξ2m = 0, ξ1 = 2ξ̃1 and ξj = ξ1 − ξj. For ξ1 odd then either ξj − ξj+1 = 0 or 1, and

ξm−1 = ξm or ξj − ξj+1 = 0, or 1, for j = 1, 2, . . . ,m − 2,m + 2, . . . , 2m and

ξm−1 − ξm = 1, ξm − ξm+1 = −1, ξm+1 − ξm+2 = 1. Also note that

γTξ γξ =
(

diag(λξ2m , λξ2m−1 , . . . , λξ1)
)(

diag(λξ1 , . . . , λξ2m)
)

= diag(λξ1+ξ2m , λξ2+ξ2m−1 , . . . , λξ2m+ξ1)

= λξ1I

as ξj = ξ1 − ξj. Therefore by (6.3.2), γξ takes values in ΩrU(n)R. A similar argu-

ment can be applied to odd dimension: let ξ̃ be a canonical element of so(2m + 1) so

we have that ξ̃ = i diag(ξ̃1, . . . , ξ̃m, 0,−ξ̃m, . . . ,−ξ̃1), with canonical geodesic γξ̃ =

diag(λξ̃1 , . . . , λξ̃m , 1, λ−ξ̃m+2 , . . . , λ−ξ̃1). Again fixing representatives of each canonical

geodesic in an equivalence class in PU(2m+ 1) we define the homomorphism γξ : S1 →
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U(2m+ 1) by

γξ = diag(λξ1 , λξ2 , . . . , λξm , λξm+1 , λξm+2 . . . , λξ2m , λξ2m+1),

where ξj =


ξ̃j + ξ̃1, if 1 ≤ j ≤ m,

ξ̃1 if j = m+ 1,

ξ̃1 − ξ̃2m+2−j, if m+ 2 ≤ j ≤ 2m+ 1,

and ξ = i diag(ξ1, ξ2, . . . , ξ2m+1). Note the ξj are non-negative integers such that ξj −

ξj+1 = 0 or 1, ξ2m+1 = 0, ξ1 = 2ξ̃1 and ξj = ξ1 − ξj. We arrive at the definition:

Definition 6.3.3. [29, Definition 3.1] Let ξ be a diagonal matrix ξ = i diag(ξ1, ξ2, . . . , ξn)

where ξj are non-negative integers satisfying ξj − ξj+1 = 0 or 1, ξn = 0, ξj = r − ξj,

ξ1 = r and when r is odd ξn/2−1 = ξn/2. Then we call ξ a canonical element of ΩrU(n)R

and γξ = diag(λξ1 , λξ2 , . . . , λξn) ∈ ΩrU(n)R the corresponding canonical geodesic.

Remark 6.3.4. (i) It was shown in [48, Theorem 6.8] that if n is odd then r is even.

This can be seen from Proposition 5.2.17 as our representatives of the canonical

geodesics in PU(n) are chosen by adding ξ1 to ξ, a canonical element of so(n).

Therefore if n is odd then ξ1 is always an integer and we have r = 2ξ1.

(ii) The definition from [29] above seems to miss the case when n = 2m, r is odd and

ξm−1 − ξm = 1, ξm − ξm+1 = −1, ξm+1 − ξm+2 = 1. This is not the case as

performing the change of basis that swaps the entries ξm and ξm+1, gives canonical

elements such that ξm−1 = ξm, ξm − ξm+1 = 1, ξm+1 = ξm+2 which is covered

in the definition above. (As in Proposition 6.2.8, we are only interested in finding

extended solutions and harmonic maps up to equivalence (Definition 6.1.10).)

(iii) Recalling Definition 6.2.2 where the ‘type’ of a canonical element was defined, this

definition extends to the canonical elements of Definition 6.3.3. The possible types

of these canonical elements are (t0, t1, . . . , tr) where the tj are positive integers

with tj = tr−j, and when r is odd, t(r−1)/2 = t(r+1)/2 ≥ 2.
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Similarly to §6.2, the corresponding eigenspaces of ad(ξ) for ξ a canonical element of

ΩrU(n)R are denoted gRκ = gRκ (ξ) and consist of matrices with entries zero unless on the

κth block superdiagonal. If ξ is a canonical element of ΩrU(n)R then it is a canonical

element of ΩrU(n) and we have gRκ (ξ) = gCκ (ξ) ∩ o(n,C). Recall the space AC
ξ from

Definition 6.2.6.

Definition 6.3.5. (i) Let ξ be a canonical element of ΩrU(n)R. We define the finite-

dimensional Lie subgroup AR
ξ of Λ+

algGL(n,C) to be the intersection AR
ξ = AC

ξ ∩

ΩO(n,C).We also define the Lie subgroup (AR
ξ )0 of AR

ξ by (AR
ξ )0 = AR

ξ ∩O(n,C).

(ii) We denote the space of meromorphic maps A : M → AR
ξ satisfying (6.2.2) by SolRξ

and the subspace of SolRξ of meromorphic maps A : M → (AR
ξ )0 by (SolRξ )0.

Proposition 6.3.6. [29, Proposition 3.4] Let Φ̃ : M → ΩrU(n)R be a polynomial

extended solution for some r̃ ∈ N0. Then there is an equivalent extended solution

Φ : M → ΩrU(n)R with 0 ≤ r ≤ r̃, a canonical element ξ = i diag(ξ1, ξ2, . . . , ξn)

of ΩrU(n)R and a meromorphic map A : M → AR
ξ such that Φ = [Aγξ]. A and ξ are

uniquely determined by Φ, and all harmonic maps ϕ : M → O(n) of finite uniton number

have such an extended solution.

Example 6.3.7. Let Φ ∈ ΩrU(n)R be an S1-invariant polynomial extended solution.

Recall from Proposition 6.1.20 that

Φ = πψ0 + λπψ1 + λ2πψ2 + · · ·+ λrπψr , (6.3.4)

where ψj = α⊥j ∩ αj+1, and by Proposition 6.1.13 the unitons are nested, i.e.

0 = α0 ⊂ α1 ⊂ α2 ⊂ · · · ⊂ αr ⊂ αr+1 = M × Cn.

Also from Proposition 6.1.20 the Grassmannian model is given by

W = ΦH+ = α1 + λα2 + λ2α3 + · · ·+ λr−1αr + λrH+. (6.3.5)
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As shown in Example 6.2.14, on putting λ = −1 into (6.3.4) we see that the corresponding

harmonic map ϕ = M → U(n) is given by

ϕ = Φ−1 =
∑
j even

πψj −
∑
j odd

πψj .

This can be rewritten as

ϕ = πφ − π⊥φ (6.3.6)

where

πφ =
∑
j even

πψj and π⊥φ =
∑
j odd

πψj .

By Propositions 6.2.12 and 6.2.13, we see that (6.3.6) is given by

ϕ = ι ◦ φ = πφ − π⊥φ

where φ : M → G∗(Cn) and is given by the subbundle

φ =
∑
j even

ψj. (6.3.7)

Recall from Definition 6.3.2 that W
⊥

= λ1−rW or equivalently from (6.3.1) the extended

solution satisfies Φ = λ−rΦ. Using (6.3.4) with W
⊥

= λ1−rW or equivalently (6.3.5)

with Φ = λ−rΦ we see that α⊥j = αr+1−j and ψj = ψr−j for all j.

For r even, as ψj = ψr−j for all j, we see that φ = φ and so the corresponding map φ is,

in fact, a map into a real Grassmannian φ : M → G∗(Rn). Note that

Gk(Rn) =
O(n)

O(k)×O(n− k)
,

so we will often write φ from (6.3.7) as a map into O(n)/(O(k) × O(n − k)) for an

appropriate k. The Cartan embedding from Proposition 6.2.13 restricts to the totally
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geodesic embedding ι : G∗(Rn)→ O(n), therefore ϕ = Φ−1 = ι ◦ φ = πφ − π⊥φ : M →

O(n).

For r odd, then as earlier by [48, Theorem 6.8] or Remark 6.3.4, n is even, say n = 2m.

As r is odd we have from (6.3.7) that

φ =
∑
j even

ψj = ψ0 + ψ2 + ψ4 + · · ·+ ψr−1.

We see that

φ⊥ = ψ1 + ψ3 + · · ·+ ψr = ψr−1 + ψr−3 + · · ·+ ψ0 = φ

so φ
⊥

= φ and by Definition 5.1.2 is maximally isotropic. We identify the space of

maximally isotropic subspaces of C2m with the spaceO(2m)/U(m) [48, §6.3]. Therefore

for the corresponding map φ : M → G∗(C2m) and x ∈M , φ(x) is a maximally isotropic

subspace of C2m and so φ is a harmonic map into O(2m)/U(m). There is a totally

geodesic embedding of O(2m)/U(m) into Gm(C2m) which upon composition with the

Cartan embedding from Proposition 6.2.13 has image in {g ∈ U(2m) | g = −g} [48,

§6.3]. The minus sign in g = −g reflects the fact that Φ−1 = πφ − π⊥φ = πφ − πφ so it is

more natural to consider the associated harmonic map ϕ = iΦ−1 = i(πφ − πφ) which is

real, i.e., has values in O(2m) = {g ∈ U(2m) : g = +g}.

6.3.1 Adding a Border

We will now describe a procedure introduced in [29] which is used to give a parametriza-

tion of harmonic maps ϕ : M → O(n).

Let ξ = i diag(ξ1, ξ2, . . . , ξn) be a canonical element of ΩrU(n)R of type (t0, t1, . . . , tr)

for some r ∈ N0, m ≥ 2. We define ξ̃ = i diag(ξ2, . . . , ξ2m−1) which, if ξ is not of type
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(2, 2), is a canonical element of Ωr̃U(n− 2)R of type

(t̃0, t̃1, . . . , t̃r̃) =

(t0 − 1, t1, . . . , tr−1, tr − 1), with r̃ = r if t0 ≥ 2,

(t1, . . . , tr−1), with r̃ = r − 2 otherwise.
(6.3.8)

If ξ is of type (2, 2) then, ξ̃ is of type (1, 1), r̃ = r = 1 and is therefore not a canonical

element, so we must treat this case separately. Let A : M → AR
ξ be given by A =

(ajk)j,k=1,2,...,n then we define a matrix Ã = (ajk)j,k=2,...,n−1, this is called removing the

border.

Now let Ã = (ajk)j,k=2,...,n−1 : M → AR
ξ̃

be given, we add a new first column

(a11, a21, . . . , an1)T where aj1 = δj1, a new bottom row (an2, an3, . . . , ann) where

ank = δnk. We also add a new top row (a12, a13, . . . , a1,n−1), new last column

(a2n, a3n, . . . , an−1,n)T and new top-right element a1n so we have

A =



1 a12 a13 . . . a1,n−1 a1n

0 a2n

0 Ã a3n

0
...

0 0 0 0 0 1


.

This process is called adding a border and the resulting A defines a map A : M → AC
ξ .

To ensure that A takes values in AR
ξ we use Lemma 5.1.4 on the columns cj of A, in

fact, given the new top row (resp. new last column) we can use Lemma 5.1.4 to find

expressions for the elements of the new last column (new top row) in terms of those in the

new top row (resp. new last column), we may also find the new top-right element using

(cn, cn) = 0. Applying Lemma 5.1.4 in this way to complete the border so that A takes

values in AR
ξ is called (completing the border) by algebra.

Lemma 6.3.8. [29, Lemma 3.6] Let ξ be a canonical element of ΩrU(n)R not of type
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(2, 2), and let ξ̃ be the canonical element of Ωr̃U(n − 2)R defined above. Let A =

(ajk)j,k=1,2,...,n : M → AR
ξ be a holomorphic map, and let Ã : (ajk)j,k=2,...,n−1 : M → AR

ξ̃

be the holomorphic map defined above. Suppose A satisfies (6.2.2), then so does Ã. Con-

versely, suppose Ã satisfies (6.2.2) then A satisfies (6.2.2) if and only if the new top row

satisfies (6.2.3), and this holds if and only if the new last column satisfies (6.2.3).

Therefore given an extended solution Φ̃ = [Ãγξ̃] : M → Ωr̃U(n − 2)R we may find

another (non-equivalent) extended solution Φ = [Aγξ] : M → ΩrU(n)R by adding a

border to Ã, then solving (6.2.3) for the elements of the new top row and finding the new

last column and new top-right element by algebra.

6.3.2 Solving the Extended Solution Equation

To solve the extended solution equations (6.2.3) for the new top row and therefore

parametrize the extended solutions for O(n), Ferreira, Simões and Wood in [29, §3.4]

introduced new parameters which change the problem of integrating (6.2.3) to differenti-

ating the new parameters and doing some algebraic operations.

Definition 6.3.9. Let ν and βj for j = 1, 2, . . . , l, l ∈ N, be meromorphic functions on

the Riemann surface M. We define the generalised derivative of ν with respect to β1 to

be the quotient ν(1) = ν ′/β′1 where ′ denotes the derivative with respect to some local

complex coordinate z on M. Higher generalised derivatives are defined inductively by

ν(k) = (ν(k−1))′/β′k, for 0 ≤ k ≤ l, and we set ν(0) = ν. Note that these are well-defined

under change of complex coordinates.

LetM(M) denote the space of meromorphic functions on the Riemann surface M. Let

p1 = p1(ξ) = dim gR1 (ξ) and p = p(ξ) =
∑r

j=1 dim gRj (ξ), for ξ a canonical element of

ΩrU(n)R for some r ∈ N0. Using the process of adding a border and using Definition

6.3.9 with Lemma 6.3.8, Ferreira, Simões and Wood gave an algorithm which defines a
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map h = hξ :M(M)p → SolRξ . The map h restricts to a map h0 = (h0)ξ :M(M)p1 →

(SolRξ )0. We will now see an example of this algorithm in practice and we direct the

reader to [29, Proposition 3.7] for full details of the map h : M(M)p → SolRξ , and for

more interpretation of the following example.

Example 6.3.10. Consider the 1 × 1 matrix ξ̃ = (0) which is a canonical element of

Ω0U(1)R of type (1) and let us define a 1 × 1 matrix Ã = (1) : M → AR
ξ̃
. Let ξ =

i diag(2, 1, 0) be the canonical element of Ω2U(3)R of type (1, 1, 1) defined from ξ̃ as in

(6.3.8). We will add a border to Ã to get a 3× 3 matrix A as above so we have

A =


1 a12 a13

0 1 a23

0 0 1

 .

The extended solution equations (6.2.3) for A are

a′12 =
∑

j:2≥ξj>0

λξj−2ρ′j2a1j = λ0a′12a11 = a′12,

and therefore the extended solution equations are automatically satisfied. To ensure that

A : M → AR
ξ̃

we use Lemma 5.1.4 which says that A ∈ O(3,C) if and only if (cj, ck) =

δjk where cj are the columns of A. The only non-trivial equations are

(c2, c3) = 0 =⇒ a12 = −a23,

(c3, c3) = 0 =⇒ a13 =
1

2
a2

23.

Therefore we have

A =


1 a12 −1

2
a2

12

0 1 −a12

0 0 1

 .
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By Proposition 6.3.6, Φ = [Aγξ] : M → Ω2U(3)R is an extended solution for the har-

monic map φ = Φ−1 : M → G2(R3). The unitons of φ, αj , j = 1, 2 are given by

α1 = Span{c3} and α2 = Span{c2, c3} where c2 and c3 denote the second and third

columns of A, respectively. We see that α0 ⊂ α1 ⊂ α2 ⊂ α3 and so by Proposition

6.1.13 the extended solution is S1-invariant and by Proposition 6.1.20 its Grassmannian

model is given by W = ΦH+ = α1 + λα2 + λ2H+. As r is even, by Example 6.3.7, the

corresponding harmonic map takes values in a real Grassmannian φ : M → G2(R3). By

Propositions 6.2.12 and 6.2.13, we have the harmonic map ϕ = ι ◦ φ : M → O(3) given

by ϕ = ι ◦ φ = πφ − π⊥φ .
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Chapter 7

Harmonic Maps from Surfaces into the

Symplectic Group

In this chapter we adapt the work of [9, 29] to the symplectic group. We do this by modi-

fying the process of adding a border in §6.3.1 and solving the extended solution equations

by introducing generalised derivatives. This process is more difficult compared to the

O(n) case as, when solving the extended solution equations we must replace parameters

inside the border, as opposed to on the border as in [29], this is because the algebra is

based on an antisymmetric form ω which does not determine as much as the symmetric

form used in the O(n) case.

We give a parametrization of all S1-invariant extended solutions up to dimension 6, and

give a theorem parametrizing S1-invariant extended solutions of canonical type for all

dimensions.
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7.1 Harmonic Maps into The Symplectic Group

Throughout this chapter we will use the null basis (5.1.9) from §5.1.2 and from now on

we will write all vectors and matrices with respect to this null basis. Recall the symplectic

group §5.1.2, that is Sp(m) := Sp(2m,C) ∩ U(2m), where on using a null basis,

Sp(2m,C) = {A ∈ GL(n,C) | ATΩnullA = Ωnull},

for

Ωnull =

iIm
−iIm

 .

We will regard Sp(m) as a subgroup of U(2m) in the obvious way:

Sp(m) = {A ∈ U(2m) | ATΩnullA = Ωnull}.

Similarly,

ΩSp(m) = {Φ ∈ ΩU(2m) | ΦTΩnullΦ = Ωnull},

where ΦT is defined by Remark 6.1.16, replacing T by T. Recall the bijection (6.1.7),

and the conjugate-linear map J : C2m → C2m defined by (5.1.13).

Lemma 7.1.1. [43, Proposition 8.5.4] Given Φ ∈ ΩU(2m), set W = ΦH+ ∈ Gr, then

Φ ∈ ΩSp(m) if and only if JW⊥ = λW.

Lemma 7.1.2. In the null basis (5.1.9), given Φ ∈ ΩU(2m), set W = ΦH+ ∈ Gr, then

Φ ∈ ΩSp(m) if and only if ΩnullW
⊥

= λW.

Proof. From Lemma 7.1.1 it suffices to show that JW⊥ = ΩnullW
⊥

. Recall from (5.1.13)

that J(v) = Ωnullv for v ∈ C2m. Therefore we have

JW⊥ = ΩnullW⊥ = ΩnullW
⊥

= ΩnullW
⊥
.
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Note that the formulation above highlights the link between the Grassmannian model W

and its polar W⊥
, not to be confused with the polar of f from Definition 2.2.4. Recall

the skew-symmetric bilinear form ω(·, ·) given by (5.1.11). In keeping with notation of

[48, 49] we define a subset of ΩrU(n) similar to that of (6.3.1).

Definition 7.1.3. Let ΩrU(2m)J be the subset of ΩrU(2m) defined by

ΩrU(2m)J = {Φ ∈ ΩrU(2m) | ω(Φx,Φy) = λrω(x, y)}.

where x, y ∈ C2m.

We will show that this definition is equivalent to the definition given in [48, §6.8][49,

§7.1] as well as give another equivalent definition.

Lemma 7.1.4. The subset ΩrU(2m)J of ΩrU(2m) can be equivalently defined by

(i) ΩrU(2m)J = {Φ ∈ ΩrU(2m) | JΦJ−1 = λ−rΦ} in the standard basis and

(ii) ΩrU(2m)J = {Φ ∈ ΩrU(2m) | ΦTΩnullΦ = λrΩnull} in the null basis (5.1.9).

Proof. Recall the standard Hermitian form 〈·, ·〉 on C2m given in §5.1.2. In the null basis

(5.1.9) this is given by

〈x, y〉 = xT P̂ T IP̂ y = xT Iy, (7.1.1)

where P̂ is the unitary matrix given by (5.1.10). Note the similarity between the expres-

sions of 〈x, y〉 given in both the standard basis and the null basis (5.1.9), indeed both bases

are Hermitian. Also note that in the null basis (5.1.9) (as well as the standard basis) we

have

〈Φx, y〉 = 〈x,ΦT
y〉 (7.1.2)
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where Φ an 2m × 2m matrix. From (7.1.1) we have that, in the null basis (5.1.9), Φ ∈

U(2m) if and only if Φ
T

Φ = I .

For (i), as Φ ∈ ΩrU(2m) ⊂ ΩU(2m), then Φ
T

Φ = I , together with (5.1.7) we have

ω(Φx,Φy) = 〈Φx, JΦy〉 = 〈x,ΦT
JΦy〉 = 〈x,Φ−1JΦy〉

and

λrω(x, y) = λr〈x, Jy〉 = 〈x, λ−rJy〉,

as λj = λ−j for all j. Therefore ω(Φx,Φy) = λrω(x, y) if and only if Φ−1JΦ = λ−rJ if

and only if JΦJ−1 = λ−rΦ. For (ii) we have from (5.1.11) that

ω(Φx,Φy) = xTΦT Ω̂Φy.

Therefore ω(Φx,Φy) = λrω(x, y) if and only if ΦT Ω̂Φ = λrΩ̂. Now recall from (5.1.4)

that ΦT = QΦTQ for Q = Q−1 =


1

. .
.

1

 and from (5.1.12) that Ωnull := QΩ̂. Due

to QQ = I , the following are equivalent

ΦT Ω̂Φ = λrΩ̂

ΦTQQΩ̂Φ = λrQQΩ̂

QΦTQQΩ̂Φ = λrQΩ̂

ΦTΩnullΦ = λrΩnull.

Therefore ω(Φx,Φy) = λrω(x, y) if and only if and only if ΦTΩnullΦ = λrΩnull.

Lemma 7.1.5. Given Φ ∈ ΩrU(2m), set W = ΦH+ ∈ Grr, then Φ ∈ ΩrU(2m)J if and

only if JW⊥ = λ1−rW.
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Proof. It suffices to prove that JW⊥ = λ1−rW if and only if JΦJ−1 = λ−rΦ. As

W = ΦH+, by multiplying by λ1−r we have

λ1−rW = λ1−rΦH+. (7.1.3)

Recall from §6.1.3 that the natural action of ΩU(2m) is isometric with respect to the

L2 inner product defined by 〈v, w〉L2 =
∑

i〈vi, wi〉, where v =
∑

i λ
ivi ∈ H, w =∑

i λ
iwi ∈ H and 〈·, ·〉 is the standard hermitian innner product on Cn. Therefore, as

Φ ∈ ΩU(2m) then Φ preserves the inner product and we deduce W⊥ = ΦH⊥+. Upon

applying the conjugate-linear map J : C2m → C2m we have

JW⊥ = JΦH⊥+ = JΦJ−1JH⊥+ = λJΦJ−1H+, (7.1.4)

as JH⊥+ = λH+. Comparing (7.1.3) and (7.1.4) we have JW⊥ = λ1−rW if and only if

λ1−rΦH+ = λJΦJ−1H+ if and only if JΦJ−1 = λ−rΦ as required.

We give a version of Lemma 7.1.5 for the null basis where J is calculated using Ωnull.

Lemma 7.1.6. In the null basis (5.1.9), given Φ ∈ ΩrU(2m), set W = ΦH+ ∈ Grr, then

Φ ∈ ΩrU(2m)J if and only if ΩnullW
⊥

= λ1−rW.

Proof. Similarly to Lemma 7.1.2, by Lemma 7.1.1, it suffices to show that JW⊥ =

ΩnullW
⊥

. Recall from (5.1.13) that J(v) = Ωnullv for v ∈ C2m. As in the proof of

Lemma 7.1.2,

JW⊥ = ΩnullW⊥ = ΩnullW
⊥

= ΩnullW
⊥
.

Then Lemma 7.1.6 follows from Lemma 7.1.5.

We now define canonical elements of ΩrU(2m)J from those of sp(m) similarly to what
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we did for o(m) in §6.3. Let ξ̃ be a canonical element of sp(m), so by Proposition 5.2.20,

ξ̃ = i diag(ξ̃1, . . . , ξ̃m,−ξ̃m, . . . , ξ̃1),

where ξ̃j − ξ̃j+1 = 1 or 0, for all j = 1, 2, . . . ,m− 1, and ξ̃m = 0 or 1. By Definition

5.2.12 the canonical geodesics γξ̃ : S1 → Sp(m) are of the form

γξ̃ = exp(tξ̃) = diag(eitξ̃1 , eitξ̃2 , . . . , eitξ̃m , e−itξ̃m , . . . , e−itξ̃1). (7.1.5)

As above we regard Sp(m) ⊂ U(2m) and so can view the canonical geodesic γξ̃ as a map

into U(2m). Again by following [9, p.562] we will fix representatives of the geodesics

(7.1.5) in the projective unitary group PU(n) = U(n)/Z(U(n)). Recall that PU(n) is a

group of equivalence classes of unitary matrices under multiplication by c · I, for c ∈ C.

By choosing suitable representatives of each canonical geodesic in an equivalence class

and recalling the notation from Remark 5.2.13 we define the homomorphism γξ : S1 →

Sp(m),

γξ = eitξ̃1γξ̃ = diag(e2itξ̃1 , eit(ξ̃2+ξ̃1), . . . , eit(ξ̃m+ξ̃1), eit(ξ̃1−ξ̃m), . . . , eit(ξ̃1−ξ̃2), e0)

= diag(λ2ξ̃1 , λ(ξ̃2+ξ̃1), . . . , λ(ξ̃m+ξ̃1), λ(ξ̃1−ξ̃m), . . . , λ(ξ̃1−ξ̃2), λ0)

= diag(λξ1 , λξ2 , . . . , λξm , λξm+1 , . . . , λξ2m−1 , λξ2m)

where ξj =

ξ̃j + ξ̃1, if 1 ≤ j ≤ m,

ξ̃1 − ξ̃2m+1−j, if m+ 1 ≤ j ≤ 2m,

and ξ = i diag(ξ1, ξ2, . . . , ξ2m). Note

that ξj are non-negative integers satisfying ξj − ξj+1 = 0 or 1, ξ2m = 0, ξ1 = 2ξ̃1 and
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ξj = ξ1 − ξj. We also have

γTξ Ωnullγξ = diag(λξ2m , . . . , λξm+1 ,−λξm , . . . ,−λξ1) diag(λξ1 , . . . , λξm , λξm+1 , . . . , λξ2m)

= diag(λξ2m+ξ1 , . . . , λξm+1+ξm ,−λξm+ξm+1 , . . . ,−λξ1+ξ2m)

= λξ1Ωnull,

as ξj = ξ1 − ξj , which shows that γξ takes values in ΩrU(2m)J where r = ξ1. We arrive

at a definition similar to Definition 6.2.1:

Definition 7.1.7. Let ξ be a diagonal matrix ξ = i diag(ξ1, ξ2, . . . , ξ2m) where ξj are

non-negative integers satisfying ξj − ξj+1 = 0 or 1, ξ2m = 0, ξj = r − ξj and ξ1 = r.

Then we call ξ a canonical element of ΩrU(2m)J and γξ = diag(λξ1 , λξ2 , . . . , λξ2m) ∈

ΩrU(2m)J the corresponding canonical geodesic.

Remark 7.1.8. (i) Recall Definition 6.3.3 and Remark 6.3.4.

Let ξ = i diag(ξ1, ξ2, . . . , ξ2m) be a canonical element of ΩrU(2m)J . If r is odd,

then ξ is a canonical element of ΩrU(2m)R if and only if ξm−1 = ξm.

(ii) We may define the “type” (Definition 6.2.2) of a canonical element ξ of ΩrU(2m)J

in a similar to that of canonical elements ofU(n) andO(n). We say that a canonical

element ξ of ΩrU(2m)J of type (1, 1, . . . , 1) is of standard type.

Similarly to §6.2 and §6.3 we denote the corresponding eigenspaces of ad(ξ) for ξ a

canonical element of ΩrU(n)J by gJκ = gJκ(ξ); this consists of matrices with entries

zero unless on the κth block superdiagonal. If ξ is a canonical element of ΩrU(n)J

then, similarly to §6.3 it is a canonical element of ΩrU(n) so the eigenspaces satisfy

gJκ(ξ) = gCκ (ξ) ∩ sp(n,C). Recall the space AC
ξ from Definition 6.2.6.

Definition 7.1.9. (i) Let ξ be a canonical element of ΩrU(2m)J . We define the finite-

dimensional Lie subgroup AJ
ξ of Λ+

algGL(n,C) to be the intersection AJ
ξ = AC

ξ ∩
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ΩSp(2m,C). We denote its Lie algebra by aJξ . We also define the Lie subgroup

(AJ
ξ )0 of AJ

ξ to be (AJ
ξ )0 = AJ

ξ ∩ Sp(2m,C).

(ii) We denote the space of meromorphic maps A : M → AJ
ξ satisfying (6.2.2) by SolJξ

and the subspace of SolJξ consisting of meromorphic maps A : M → (AJ
ξ )0 by

(SolJξ )0.

We give a proposition similar to Proposition 6.2.8 and Proposition 6.3.6. We also direct

the reader to [42] where a related proposition in a different context was given.

Proposition 7.1.10. Let Φ̃ : M → Ωr̃U(2m)J be a polynomial extended solution for some

r̃ ∈ N. Then there is an equivalent extended solution Φ : M → ΩrU(2m)J with 0 ≤

r ≤ r̃, a canonical element ξ = i diag(ξ1, ξ2, . . . , ξ2m) of ΩrU(2m)J and a meromorphic

map A : M → AJ
ξ such that Φ = [Aγξ]. A and ξ are uniquely determined by Φ, and all

harmonic maps ϕ : M → Sp(m) of finite uniton number have such an extended solution.

Proof. Let Φ̃ : M → Ωr̃U(n)J be a polynomial extended solution for some r̃ ∈ N, then

according to [9, §4], in the fashion of [29], we may write Φ̃ = [Bγτ ] for B : M →

Λ+
algGL(2m,C) meromorphic, τ = i diag(τ1, τ2, . . . , τ2m) for τj non-negative integers

such that τj − τj+1 = ηj ∈ N, τ2m = 0, τj = τ1 − τj and γτ (t) = exp(tτ), note that τ

is not necessarily a canonical element. (Recall from Proposition 6.1.23 and Proposition

6.1.25 that [ ] is the projection onto the first factor of the Iwasawa decomposition.)

We relabel the τj, for j = 1, 2, . . . , 2m so we have

τ = i diag(τ̃1, τ̃1, . . . , τ̃1, τ̃2, . . . , τ̃2, . . . , τ̃δ, . . . , τ̃δ),

where 1 ≤ δ ≤ τ̃1, τ̃j− τ̃j+1 = η̃j ∈ N, τ̃δ = 0, τ̃j = τ̃1− τ̃j . Note here that by relabelling

we collect together all τj such that ηj = 0 so η̃j ≥ 1 for all j ∈ {1, . . . , δ}.
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Define W = BγτH+ ∈ Grr̃ and consider the filtration of W given by

W = W ∩ λ0H+ ⊇ W ∩ λ1H+ ⊇ W ∩ λ2H+

⊇ . . . ⊇ W ∩ λτ̃1H+ ⊇ W ∩ λτ̃1+1H+ = λτ̃1+1H+.

Let Pj : H → Cn be the natural projection defined by Pj(v) = vj for v =
∑

j λ
jvj ∈ H.

Following [42, §3.3] and [48, §3.4] define

Aj =
W ∩ λjH+

(λW ∩ λjH+) + (W ∩ λj+1H+)
∼=

Pj(W ∩ λjH+)

Pj−1(W ∩ λj−1H+)
. (7.1.6)

According to [42, Theorem 2] if Aj = 0 for some j ∈ {0, 1, . . . , τ̃1} (and so by the

symmetry of τ we have Aτ̃1−j = 0) then there exists a constant loop µ ∈ Ω2U(2m)J

such that µBγτH+ ∈ Grr̃−2 and further, [µBγτ ] = µ[Bγτ ] is an equivalent extended

solution to [Bγτ ], see Definition 6.1.10. We see from (7.1.6) that Aj = 0 if and only

if Pj(W ∩ λjH+) = Pj−1(W ∩ λj−1H+), also if we let τ̃k < j ≤ τ̃k+1 for some

k ∈ {1, . . . , δ}. Then Pj(W ∩ λjH+) 6= Pj−1(W ∩ λj−1H+) if any only if j = τ̃k + 1.

We conclude that Aj 6= 0 for all j such that τ̃k < j ≤ τ̃k+1 for some k ∈ {1, . . . , δ} if

and only if τ̃k − τ̃k+1 = 1 and so τ is a canonical element of Ωr̃U(2m)J . If, on the other

hand, Aj = 0 for each j in some subset D ⊆ {0, 1, . . . , τ̃1} we iterate the procedure of

[42, §3.3] for each j ∈ D by multiplying by some constant loop µj ∈ Ω2U(2m)J to get

(
∏
j∈D

µj)Bγτ = Cγξ

for some C : M → Λ+
algGL(2m,C) and ξ a canonical element of ΩrU(2m)J for some

r ≤ r̃. We have that [Cγξ] is an equivalent extended solution to [Bγτ ].

Following [9, p.560 ff.] we need only consider C : M → AJ
ξ ⊂ Λ+

algGL(2m,C) as

[Cγξ] : M → ΩrU(2m)J is holomorphic and {[exp(η)γξ] | η ∈ aJξ } is a proper algebraic

subvariety of {[Aγξ] | A ∈ Λ+
algGL(2m,C)}.
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We now give an interpretation of S1-invariant polynomial extended solutions. Recall the

Grassmannian model of an S1-invariant extended solution from Proposition 6.1.20.

Lemma 7.1.11. Let Φ = (πα1 + λπ⊥α1
)(πα2 + λπ⊥α2

) · · · (παr + λπ⊥αr) ∈ ΩrU(2m)J be an

S1-invariant polynomial extended solution, W = ΦH+ be its corresponding Grassman-

nian model and J : C2m → C2m be the conjugate-linear map defined by (5.1.13). Then

the following are equivalent:

(i) JW⊥ = λ1−rW,

(ii) Jα⊥j = αr+1−j for all 1 ≤ j ≤ r and

(iii) Jψj = ψr−j where ψj = α⊥j ∩ αj+1 for all 1 ≤ j ≤ r.

Proof. Recall H+ ⊂ H = L2(S1,C2m) from §6.1.3. Then W = ΦH+ ⊂ H and by

Proposition 6.1.20, W = ΦH+ = α1 + λα2 + λ2α3 + · · · + λr−1αr + λrH+. Let v =∑
j λjvj ∈ H, then v ∈ W⊥ if and only if vj⊥αj for all 0 < j ≤ r − 1 and vj = 0 for all

j ≥ r. Hence

W⊥ = α⊥1 + λα⊥2 + λ2α⊥3 + · · ·+ λr−1α⊥r +H⊥+.

As J is conjugate-linear we have

JW⊥ = Jα⊥1 + λ−1Jα⊥2 + λ−2Jα⊥3 + · · ·+ λ1−rJα⊥r + λH+, (7.1.7)

where λH+ = JH⊥+ for H⊥+ = Span{λ−iej | i ∈ N, j = 1, 2, . . . , 2m} the orthogonal

complement ofH+ from (6.1.6). On the other hand,

λ1−rW = αr + λ−1αr−1 + λ−2αr−2 + · · ·+ λ1−rα1 + λH+. (7.1.8)

By comparing (7.1.7) and (7.1.8) we see that JW⊥ = λ1−rW if and only if Jα⊥j =

αr+1−j for all 1 ≤ j ≤ r.
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Now suppose Jα⊥j = αr+1−j for all 1 ≤ j ≤ r and let ψj = α⊥j ∩ αj+1. Then for each j,

1 ≤ j ≤ r, Jψj = Jα⊥j ∩ Jαj+1 = αr+1−j ∩ α⊥r−j = ψr−j.

Conversely, suppose Jψj = ψr−j for all 1 ≤ j ≤ r. By Proposition 6.1.13 as Φ is

S1-invariant we have

0 = α0 ⊂ α1 ⊂ α2 ⊂ · · · ⊂ αr ⊂ αr+1 = M × Cn,

giving αj =
∑j−1

k=0 α
⊥
k ∩αk+1 =

∑j−1
k=0 ψk and α⊥j =

∑r
k=j ψk. Upon applying J we have

Jα⊥j =
r∑
k=j

Jψk =
r∑
k=j

ψr−k =

r−j∑
l=0

ψl = αr+1−j,

and we conclude Jα⊥j = αr+1−j if and only if Jψj = ψr−j for all j, 1 ≤ j ≤ r.

Remark 7.1.12. Recall from (5.1.13) that Jv = Ωnullv for v ∈ Cn. By Lemma 7.1.11 we

also have ΩnullW
⊥

= λ1−rW if and only if Ωnullα
⊥
j = αr+1−j if and only if Ωnullψj =

ψr−j in the null basis (5.1.9).

Example 7.1.13. Let n = 2m and Φ ∈ ΩrU(n)J be an S1-invariant extended polynomial

extended solution. Recall from Proposition 6.1.20 that

Φ = πψ0 + λπψ1 + λ2πψ2 + · · ·+ λrπψr , (7.1.9)

where ψj = α⊥j ∩ αj+1, and by Proposition 6.1.13 the unitons are nested, i.e.

0 = α0 ⊂ α1 ⊂ α2 ⊂ · · · ⊂ αr ⊂ αr+1 = M × Cn.

Also from Proposition 6.1.20 the Grassmannian model is given by

W = ΦH+ = α1 + λα2 + λ2α3 + · · ·+ λr−1αr + λrH+. (7.1.10)
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As shown in Example 6.2.14, on putting λ = −1 into (7.1.9) we see that the corresponding

harmonic map ϕ = M → U(n) is given by

ϕ = Φ−1 =
∑
j even

πψj −
∑
j odd

πψj .

This can be rewritten as

ϕ = πφ − π⊥φ (7.1.11)

where

πφ =
∑
j even

πψj and π⊥φ =
∑
j odd

πψj .

By Propositions 6.2.12 and 6.2.13, we see that (7.1.11) is given by

ϕ = ι ◦ φ = πφ − π⊥φ

where φ : M → G∗(Cn) and is given by the subbundle

φ =
∑
j even

ψj. (7.1.12)

As Φ ∈ ΩrU(n)J we have by Lemma 7.1.5 and Lemma 7.1.11 that JW⊥ = λ1−rW ,

Jα⊥j = αr+1−j and Jψj = ψr−j for all 1 ≤ j ≤ r.

For r even, as Jψj = ψr−j for all j, we see that (7.1.12) is the sum of J-closed subspaces

of Cn, ψj+ψr−j . Therefore the corresponding map φ is, in fact, a map into a quaternionic

Grassmannian φ : M → G∗(Hm). Note that

Gk(Hm) =
Sp(m)

Sp(m− k)× Sp(k)
,

so we will often write φ from (7.1.12) as a map into Sp(m)/(Sp(m − k) × Sp(k)) for

an appropriate k. The Cartan embedding from Proposition 6.2.13 restricts to the totally
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geodesic embedding ι : G∗(Hm)→ Sp(m), giving a harmonic map ϕ = ι◦φ = πφ−π⊥φ :

M → Sp(m).

For r odd, considering (7.1.12) we have

φ =
∑
j even

ψj = ψ0 + ψ2 + ψ4 + · · ·+ ψr−1. (7.1.13)

We see that

Jφ = Jψ0 + Jψ2 + · · ·+ Jψr−1 = ψr + ψr−2 + · · ·+ ψ1 = φ⊥

so Jφ = φ⊥ and by Definition 5.1.6 φ is maximally J-isotropic. We identify the space

of maximally J-isotropic subspaces of C2m with the space Sp(m)/U(m) [48, §6.8] (cf.

[42, §4]). Therefore for the corresponding map φ : M → G∗(Hm) and x ∈ M , φ(x)

is a maximally J-isotropic subspace of C2m ∼= Hm and so φ is a harmonic map into

Sp(m)/U(m). There is a totally geodesic embedding of Sp(m)/U(m) into Gm(C2m)

which upon composition with the Cartan embedding from Proposition 6.2.13 has image

in {g ∈ U(2m) | JgJ−1 = −g}. As in the O(2m) case (Example 6.3.7) to obtain the

image in Sp(m) = {g ∈ U(2m) | JgJ−1 = +g}, we consider the associated harmonic

map ϕ = iΦ−1 = i(πφ − π⊥φ ) = i(πφ − πJφ) which gives a harmonic map map into

Sp(m).

7.1.1 Adding a Border in Sp(m)

Similarly to §6.3.1 we will discuss a method of adding a border to Ã : M → AJ
ξ̃

for ξ̃

a canonical element of ΩrU(2m)J . This will give us a method of parametrizing complex

extended solutions of a harmonic map ϕ : M → Sp(m) of finite uniton number. We

remind the reader that throughout this chapter we use the null basis (5.1.9) from §5.1.2

and write all vectors and matrices with respect to this null basis.
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Let ξ = i diag(ξ1, ξ2, . . . , ξ2m) be a canonical element of ΩrU(2m)J of type

(t0, t1, . . . , tr) for some r ∈ N, m ≥ 1. Similarly to §6.3.1 let us define ξ̃ =

i diag(ξ2, . . . , ξ2m−1), which is a canonical element of Ωr̃U(2m− 2)J of type

(t̃0, t̃1, . . . , t̃r̃) =

(t0 − 1, t1, . . . , tr − 1), with r̃ = r if t0 ≥ 2,

(t1, . . . , tr−1), with r̃ = r − 2 otherwise.

Now let Ã = (ajk)j,k=2,...,n−1 : M → AJ
ξ̃

be given then we add a border to Ã as in §6.3.1

to get

A =



1 a12 a13 . . . a1,2m−1 a1,2m

0 a2,2m

0 Ã a3,2m

0
...

0 0 0 0 0 1


.

The resulting A defines a map A : M → AC
ξ . To ensure that A takes values in AJ

ξ we need

Lemma 7.1.14. A ∈ Sp(2m,C) if and only if AT ∈ Sp(2m,C).

Proof. Recall (5.1.14) which says that A ∈ Sp(2m,C) if and only if ATΩnullA = Ωnull.

My multiplying both sides by Ωnull, A, A−1 and Ω−1
null in the following way

AΩnull(A
TΩnullA)A−1Ω−1

null = AΩnull(Ωnull)A
−1Ω−1

null

by noting that −Ωnull = Ω−1
null = ΩT

null we get that ATΩnullA = Ωnull if and only if

AΩnullA
T = Ωnull.

We give a version of Lemma 6.3.8 for Sp(2m,C); the proof is a modified version of the

proof of [29, Lemma 3.6].
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Proposition 7.1.15. Let ξ be a canonical element of ΩrU(2m)J , and let ξ̃ be the canonical

element of Ωr̃U(2m − 2)J defined above. Let A = (ajk)j,k=1,2,...,2m : M → AJ
ξ be

a holomorphic map, and let Ã : (ajk)j,k=2,...,2m−2 : M → AJ
ξ̃

be the holomorphic map

defined above. SupposeA satisfies (6.2.2), then so does Ã. Conversely, suppose Ã satisfies

(6.2.2) then the following are equivalent:

(a) A satisfies (6.2.2);

(b) the new top row satisfies (6.2.3) i.e.,

a′1k =
∑

l : ξl>ξk

λξl−ξk−1ρ′lka1l mod λr−ξk−1 k = tr, tr + 1, . . . , 2m; (7.1.14)

(c) the new last column satisfies (6.2.3) i.e.,

a′j,2m =
∑
l : ξl>0

λξl−1ρ′l,2majl mod λξj−1 j = 1, 2, . . . ,
r∑

k=1

tk. (7.1.15)

Proof. First, let us consider the top-right element a1,2m of A, then (7.1.14) and (7.1.15)

both read

a′1,2m =
∑
l : ξl>0

λξl−1ρ′l,2ma1l mod λr−1

as ξ1 = r, ξ2m = 0 and ξ1 ≥ ξl for all l = 1, . . . , 2m. Therefore we need only consider

(7.1.14) for k = tr, tr + 1, . . . , 2m− 1, and (7.1.15) for j = 2, 3, . . . ,
∑r

k=1 tk.

Now assume that (7.1.15) holds, then by Proposition 6.2.9, (7.1.15) is equivalent to

c̃′2m =
∑
l : ξl>0

λξl−1ρ′l,2mc̃l, (7.1.16)

where c̃l are the columns cl, l = 1, 2, . . . , 2m, of A with the top and bottom elements

omitted, and so c̃l for l = 2, . . . , 2m − 1 are the columns of Ã. Recall (5.1.11) and

Lemma 5.1.7, then as A ∈ Sp(2m,C) we have ω(ck, c2m) = 0 for all k ≥ 2. Therefore
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by expanding ω(ck, c2m) we have

0 = ω(ck, c2m) = −ia1k + ω(c̃k, c̃2m). (7.1.17)

Differentiating gives

a′1k = −i
(
ω(c̃′k, c̃2m) + ω(c̃k, c̃

′
2m)
)
. (7.1.18)

Using (7.1.16) and by Lemma 5.1.7 we have

ω(c̃k, c̃
′
2m) =

∑
l : ξl>0

λξl−1ρ′l,2mω(c̃k, c̃l) =

iλ
ξk−1ρ′

k,2m
, if k > l,

−iλξk−1ρ′
k,2m

, if k > l,

= 0 mod λr−ξk−1,

as ξk = r− ξk. Now consider ω(c̃′k, c̃2m), as Ã satisfies (6.2.2) and using (7.1.17) we have

that

ω(c̃′k, c̃2m) =
∑

l≥2 : ξl>ξk

λξl−ξk−1ρ′lkω(c̃l, c̃2m) = i
∑

l≥2 : ξl>ξk

λξl−ξk−1ρ′lka1k.

Substituting these into (7.1.18) we have

a′1k = −i(i
∑

l≥2 : ξl>ξk

λξl−ξk−1ρ′lka1k) mod λr−ξk−1

=
∑

l≥2 : ξl>ξk

λξl−ξk−1ρ′lka1k mod λr−ξk−1

=
∑

l : ξ1≥ξl>ξk

λξl−ξk−1ρ′lka1k.

Therefore (7.1.15) implies (7.1.14), moreover (7.1.15) implies that all columns of A sat-

isfy (6.2.2) and therefore implies (a).

Now assume that (7.1.14) holds and recall that we need only consider (7.1.14) for k =
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tr, tr + 1, . . . , 2m − 1. We will prove that (7.1.15) holds by downwards induction on

j ∈ {2, 3, . . . ,
∑r

k=1 tk}. Let us consider the base case
∑r

k=2 tk < j ≤
∑r

k=1 tk then for

ξ = i diag(ξ1, ξ2, . . . , ξ2m) of type (t0, t1, . . . , tr) we have ξj = 1 for all such j and so

(7.1.15) reads a′j,2m = a′j,2m as ρ′j,2m = a′j,2m and ajj = 1, and therefore (7.1.15) holds.

Let us introduce the notation

ĉjk =



a1k

a2k

...

aj−1,k

0
...

0


, čjk =



0
...

0

aj+1,k

aj+2,k

...

a2m,k


,

where ĉjk and čjk are of length 2m for all j, k ∈ {1, 2, . . . , 2m}. For an induction hypothesis

suppose that (7.1.15) holds for all j > I for some I ∈ {2, 3, . . . ,
∑r

k=2 tk}, therefore

(čI2m)′ =
∑
l : ξl>0

λξl−1ρ′l,2mč
I
l . (7.1.19)

We show that (7.1.15) holds for j = I . Define εI =

−1, if I > m,

1, if I ≤ m,

then we can

expand ω(cI , c2m) as follows:

ω(cI , c2m) = iεIaI,2m + ω(ĉI
I
, čI2m).

By Lemma 5.1.7 we have, iεIaI,2m = −ω(ĉI
I
, čI2m) and differentiating we get

iεIa
′
I,2m = −ω((ĉI

I
)′, čI2m)− ω(ĉI

I
, (čI2m)′). (7.1.20)
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As Ã satisfies (6.2.2) and I ≥ 2 we have

ω((ĉI
I
)′, čI2m) =

∑
j : ξj>ξI

λξi−ξI−1ρ′
j,I
ω(ĉIj , č

I
2m),

where, as j < I in the sum above, then

ĉIj = (a1j, a2j, . . . , aj−1,j, 1, 0, . . . , 0)T ,

čI2m = (0, . . . , 0, aI+1,2m, aI+2,2m, . . . , a2m−1,2m, 1)T .

For each j in the sum above we have

ω(ĉIj , č
I
2m) = ω(cj, c2m) = iδj,2m,

as j < 2m for all j. We see that ω(ĉIj , č
I
2m) 6= 0 if and only if j = 2m = 1, and so

ω((ĉI
I
)′, čI2m) = iλξ1−ξI−1ρ′

1,I
= iλξI−1ρ′

1,I
= 0 mod λξI−1,

as ξ1 = r, and ξI = r − ξI . Now (7.1.20) reads

iεIa
′
I,2m = −ω(ĉI

I
, (čI2m)′) mod λξI − 1, (7.1.21)

and by the induction hypothesis (7.1.19) we have

ω(ĉI
I
, (čI2m)′) =

∑
l : ξl>0

λξl−1ρ′l,2mω(ĉI
I
, čIl ). (7.1.22)

We can expand ω(cI , cl) similarly to earlier to give

ω(cI , cl) = iεIaIl + ω(ĉI
I
, čIl ),
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again using that A ∈ Sp(2m,C) and Lemma 5.1.7 we have ω(cI , cl) = iεIδIl and so if

I 6= l then

−iεIaIl = ω(ĉI
I
, čIl ),

and if I = l then čI
I

is a column of zeros and so ω(ĉI
I
, čII) = 0. Putting these together with

(7.1.21) and (7.1.22) we have

iεIa
′
I,2m = −ω(ĉI

I
, (čI2m)′) mod λξI − 1

= iεI
∑
l : ξl>0

λξl−1ρ′l,2maIl mod λξI−1.

Therefore a′I,2m =
∑

l : ξl>0 λ
ξl−1ρ′l,2maIl mod λξI−1 which completes the induction step

and therefore the lemma is proven.

By Lemma 7.1.14, given the new top row (resp. new last column) we solve the equations

from Lemma 5.1.7 to find expressions for the elements of the new last column (resp.

new top row). Unlike the O(n) case detailed in §6.3.1 where elements of the new last

column and new top-right element were found by algebra, we cannot find the new top-

right element a1,2m in the Sp(m) case by solving ω(c2m, c2m) = 0 from Lemma 5.1.7, this

is because ω(c2m, c2m) = 0 is automatically satisfied. So we must find the new top-right

element by integrating (7.1.14). We use ‘by algebra’ to describe the method of solving

the equations of Lemma 5.1.7 to find expressions for the new last column in the Sp(m)

case as well as for the O(n) case in §6.3.1.

Completing the border by algebra is where using the null basis (5.1.9) is particularly

useful. If were to find expressions for the new last column from the new top row in

the standard basis we would use Lemma 5.1.5 as opposed to Lemma 5.1.7 which, for

a unitriangular matrix A = (ajk)j,k=1,2,...2m (see Definition 6.2.4), does not give us an

expression for am,2m; this does not fit well with our key construction of adding a border.

Also in the null basis (5.1.9) we replace the non-diagonal matrix Ω in (5.1.6) with the
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diagonal matrix Ωnull in (5.1.11).

7.2 Classification up to Dimension 6

Recall from Definition 6.1.12 that, for Φ = Φλ : M → ΩrU(n)J a polynomial extended

solution, then Φ is called S1-invariant if ΦλΦµ = Φλµ for all λ, µ ∈ S1. If Φ = [Aγξ]

for ξ a canonical element of ΩrU(2m)J and A ∈ SolJξ then Φ is S1-invariant if and only

if A ∈ (SolJξ )0, that is, A is independent of λ ∈ S1. By using Proposition 7.1.10 we will

find a classification of all S1-invariant extended solutions with respect to the canonical el-

ements of ΩrU(2m)J , up tom = 3.We will find these extended solutions by successively

adding borders, solving the extended solution equations (6.2.3) by introducing generalised

derivatives from Definition 6.3.9 and solving the equations arising from Lemma 5.1.7. We

will conclude

Theorem 7.2.1. LetM be a Riemann surface, let ξ = i diag(ξ1, ξ1, . . . , ξn) for n = 2m ≤

6 be a canonical element of ΩrU(n)J for some r ∈ N0 and let p1 = p1(ξ) = dim gJ1 (ξ).

There exists a bijective map h0 : M(M)p1 → (SolJξ )0 where, for (ν1, ν2, . . . , νp) ∈

M(M)p1 , each entry of h0(ν1, ν2, . . . , νp) is a rational function of νj and their derivatives.

7.2.1 m = 1

For m = 1, note that as 0 ≤ r ≤ 2m then r = 0, or 1. We wish to find parametrizations

for extended solutions Φ : M → ΩrU(2)J where ξ a canonical element of ΩrU(2)J and

A ∈ (SolJξ )0. By Definition 7.1.7 the canonical element of Ω0U(2)J is ξ = i diag(0, 0)

and the canonical element of Ω1U(2)J is ξ = i diag(1, 0); these are of type (2) and

(1, 1), respectively. By Proposition 7.1.10, and Proposition 6.2.9 every extended solution

Φ̃ : M → ΩrU(2)J , r = 0 or 1 is equivalent to one of the two extended solutions given

below.
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Type (2)

We will first consider the canonical element ξ = i diag(0, 0) of Ω0U(2)J so that γξ = I .

By Definition 7.1.9, A : M → (AJ
ξ )0 is the identity matrix which automatically satisfies

the symplecticity condition in Lemma 5.1.7 and the extended solution equations (6.2.3).

This leads to the extended solution Φ = [Aγξ] = I; we call the extended solutions in

Ω0U(2m)J with A = I for any m trivial solutions.

Type (1, 1)

We consider the canonical element ξ = i diag(1, 0) of Ω1U(2)J . By Definition 7.1.9

A : M → (AJ
ξ )0 is of the form

A =

1 f

0 1

 , (7.2.1)

for f : M → C meromorphic. It is easy to see by Lemma 5.1.7 that A ∈ Sp(2,C);

further A automatically satisfies the extended solution equations (6.2.3) as these read

a′12 = λ0ρ′12a11 = a′12, and therefore A ∈ (SolJξ )0. So Φ = [Aγξ] = πα1 + λπ⊥α1
is an

extended solution, where α1 = Span{c2} and c2 is the second column of A. By Example

7.1.13 the corresponding Grassmannian Model is given by W = ΦH+ = α1 + λH+,

with Φ = πα1 + λπ⊥α1
. As r is odd, by (7.1.13), this corresponds to the harmonic map

φ : M → Sp(1)/U(1) associated to the subbundle φ = ψ0 = α1 of M × C2. By

Example 7.1.13 we have the harmonic map ϕ = iΦ−1 = i(ι ◦ φ) : M → Sp(1) where

Φ−1 = ι ◦ φ = πα1 − π⊥α1
.

7.2.2 m = 2

The possible canonical elements of ΩrU(4)J from Definition 7.1.7

are ξ = i diag(3, 2, 1, 0) for Ω3U(4)J , ξ = i diag(2, 1, 1, 0) for Ω2U(4)J , ξ =
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i diag(1, 1, 0, 0) for Ω1U(4)J and ξ = i diag(0, 0, 0, 0) for Ω0U(4)J . These are of type

(1, 1, 1, 1), (1, 2, 1), (2, 2) and (4), respectively, and the canonical element of type (4)

gives a trivial solution: Φ = [Aγξ] = I : M → Ω0U(4)J .

Type (1, 1, 1, 1)

Consider the canonical element ξ = i diag(3, 2, 1, 0) of Ω3U(4)J . This gives us the canon-

ical geodesic γξ = diag(λ3, λ2, λ1, λ0) ∈ Ω3U(4)J . Let Ã =

1 f

0 1

 be the A from

the type (1, 1) example above. We wish to add a border to Ã as in §7.1.1 to define

A : M → (AC
ξ )0. We have

A =


1 a12 a13 a14

0 a24

0
Ã

a34

0 0 0 1

 =


1 a12 a13 a14

0 1 f a24

0 0 1 a34

0 0 0 1

 . (7.2.2)

Now to ensure that A : M → (AC
ξ )0 takes values in (AJ

ξ )0 and further to ensure A ∈

(SolJξ )0, we use Proposition 7.1.15, which states that we need only solve the extended

solution equations (6.2.3) for the new top row and new top-right element then we complete

the border by algebra. The extended solution equations for the new top row and new top-

right element are

a′12 = a′12, a′13 = a12a
′
23 = a12f

′, a′14 = a13a
′
34.

The first equation is automatically satisfied so let us relabel a12 = g and turn our attention

to the second equation a′13 = gf ′, using integration by parts we get

a13 =

∫
a′13 =

∫
gf ′ = gf −

∫
g′f. (7.2.3)
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We introduce a new parameter τ with τ ′ = g′f, (note that τ is defined up to an arbitrary

constant) then we have f = τ (1) := τ ′/g′ so f is now equal to the generalised derivative

of τ with respect to g. The integral now reads

a13 = gτ (1) − τ.

To ensure A : M → (AJ
ξ )0 ⊂ (AC

ξ )0 we solve the equations in Lemma 5.1.7;

a34 = −a12 a24 = a13 + a23a34. (7.2.4)

Solving these gives

A =


1 g gτ (1) − τ a14

0 1 τ (1) −τ

0 0 1 −g

0 0 0 1

 .

Finally we find a14 by integrating a′14 = a13a
′
34 = (gτ (1) − τ)(−g)′. We do this by using

integration by parts to reduce the order of the (generalised) derivative of τ ,

a14 =

∫
a′14 =

∫
(gτ (1) − τ)(−g)′ =

∫
−g′
(
τ ′

g′

)
g + g′τ (7.2.5)

=

∫
−τ ′g + g′τ = −gτ + 2

∫
g′τ.

Similarly as before we introduce a new parameter ν such that ν ′ = g′τ so τ = ν(1) :=

ν ′/g′ and τ is equal to the generalised derivative or ν with respect to g. Note also that

τ (1) = ν(2) := (ν(1))′/g′. The integral now reads

a14 = −gν(1) + 2ν,
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and so

A =


1 g gν(2) − ν(1) 2ν − gν(1)

0 1 ν(2) −ν(1)

0 0 1 −g

0 0 0 1

 , (7.2.6)

for meromorphic functions g and ν, we call such functions data or parameters. The

reader can easily check that this satisfies the extended solution equations of Proposition

6.2.9, which for type (1, 1, . . . , 1) say each column differentiates into a multiple of the

one before. Note here that this gives rise to a bijective map hξ :M(M)2 → (SolJξ )0 given

by (g, ν) 7→ A. Conversely given an A = (ajk)j,k=1,2,3,4 ∈ (SolJξ )0, then we can retrieve

the data g and ν by setting g = a12 and ν = (1/2)(a14 − a12a24). Set

Φ = [Aγξ] = (πα1 + λπ⊥α1
)(πα2 + λπ⊥α2

)(πα3 + λπ⊥α3
),

for α1 = Span{c4}, α2 = Span{c4, c3}, α3 = Span{c4, c3, c2} for c2, c3, c4 the second,

third and fourth columns of A, respectively. Then Φ is an extended solution with Grass-

mannian model W = ΦH+ = α1 + λα2 + λ2α3 + λ3H+. As r is odd, by (7.1.13), this

corresponds to the harmonic map φ : M → Sp(2)/U(2) associated to the subbundle

φ = ψ0 +ψ2 = α1 +α⊥2 ∩α3 of M ×C4. By Example 7.1.13 we have the harmonic map

ϕ = iΦ−1 = i(ι ◦ φ) : M → Sp(2) where Φ−1 = ι ◦ φ = πφ − π⊥φ which is of uniton

number at most 3.

Type (1, 2, 1)

Consider the canonical element ξ = i diag(2, 1, 1, 0) of Ω2U(4)J , with the corresponding

canonical geodesic γξ = diag(λ2, λ1, λ1, λ0) ∈ Ω2U(4)J . We find A ∈ (SolJξ )0 from the

general solution of type (2) which is the 2 × 2 identity matrix. By adding a border we
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have

A =


1 a12 a13 a14

0 1 0 a24

0 0 1 a34

0 0 0 1

 .

Similarly to the above, we need only solve the extended solution equations (6.2.3) for the

new top row and new top-right element and then complete the border by algebra. The

extended solution equations in this case are

a′12 = a′12, a′13 = a′13, a′14 = a′24a12 + a′34a13.

For first two equations are trivial and we therefore relabel our data thus; a12 = g, a13 = h.

Before we integrate the third equation to parametrize a14, we need to find a24 and a34 by

algebra: the equations derived from Lemma 5.1.7 give a24 = a13 = h and a34 = −a12 =

−g. To find the new top-right element we integrate

a14 =

∫
a′14 =

∫
h′g + g′h = hg − 2

∫
g′h. (7.2.7)

By introducing a parameter ν such that ν ′ = g′h we have h = ν(1) = ν ′/g′. By substitut-

ing these into (7.2.7) we have that A ∈ (SolJξ )0 can be written

A =


1 g ν(1) gν(1) − 2ν

0 1 0 ν(1)

0 0 1 −g

0 0 0 1

 , (7.2.8)

where g and ν are meromorphic functions. The reader can easily check that this satisfies

the extended solution equations of Proposition 6.2.9, which for type (1, 2, 1) say that

column c4 differentiates into a linear combination of columns c3 and c2 and columns c3
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and c2 differentiate into a multiple of column c1. This gives the extended solution

Φ = [Aγξ] = (πα1 + λπ⊥α1
)(πα2 + λπ⊥α2

),

where α1 = Span{c4}, α2 = Span{c4, c3, c2}, for c2, c3, c4 the second, third and fourth

columns of A, respectively. Following Example 7.1.13, the corresponding Grassmannian

model and harmonic map are W = ΦH+ = α1 + λα2 + λ2H+. As r is even, by (7.1.12),

this corresponds to the harmonic map into the quaternionic Grassmannian φ : M →

G1(H2) = HP1 associated to the subbundle φ = ψ0 + ψ2 = ψ0 + Jψ0 of M × C4.

So φ : M → Sp(2)/(Sp(1) × Sp(1)). By Example 7.1.13 we have the harmonic map

ϕ = Φ−1 = ι ◦ φ : M → Sp(2) defined by ϕ = Φ−1 = ι ◦ φ = πφ − π⊥φ . The

data, g and ν, can also be retrieved from A = (ajk)j,k=1,2,3,4 by setting g = a12 and

ν = −(1/2)(a14 − a12a24), therefore the process above gives rise to a bijection hξ :

M(M)2 → (SolJξ )0.

Type (2, 2)

The solution comes from the general solution (7.2.1) of type (1, 1) by adding a border.

Recall the canonical element of type (2, 2) of the form ξ = i diag(1, 1, 0, 0) so r = 1.

Adding a border we have

A =


1 a12 a13 a14

0 1 f a24

0 0 1 a34

0 0 0 1

 .

From the block structure of elements in (AC
ξ )0, then a12 = a34 = 0. The extended solution

equations (6.2.3) give a′13 = a′13 and a′14 = a′14 and so all we need is to solve the equations
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arising from Lemma 5.1.7 to ensure that A : M → (AJ
ξ )0. We get

A =


1 0 g h

0 1 f g

0 0 1 0

0 0 0 1

 , (7.2.9)

for f, g and h meromorphic. The map hξ :M(M)3 → (SolJξ )0 defined by (f, g, h) 7→ A

is obviously bijective, and gives the extended solution Φ = [Aγξ] = (πα1 + λπ⊥α1
), for

α1 = Span{c4, c3}. As r is odd, by (7.1.13), this corresponds to the harmonic map

φ : M → Sp(2)/U(2) associated to the subbundle φ = ψ0 = α1 of M × C4. By

Example 7.1.13 we have the harmonic map ϕ = iΦ−1 = i(ι ◦ φ) : M → Sp(2) defined

by Φ−1 = ι ◦ φ = πα1 − π⊥α1
.

7.2.3 m = 3

All solutions for the different types of canonical elements of ΩrU(6)J for r = 1, . . . , 6 are

found by adding a border to the solutions in §7.2.2, i.e. type (1, 1, 1, 1), (1, 2, 1), (2, 2) and

(4). There are seven non-trivial classes of solutions indexed by the type of the canonical

elements of ΩrU(6)J , these are type (1, 1, 1, 1, 1, 1), (1, 2, 2, 1), (1, 4, 1) (1, 1, 2, 1, 1),

(2, 2, 2) (3, 3) and (2, 1, 1, 2), with the trivial solution Φ = [Aγξ] = I : M → Ω0U(6)J

arising from the canonical element ξ = i diag(0, 0, 0, 0, 0, 0) of Ω0U(6)J which has type

(6).

Type (1, 1, 1, 1, 1, 1)

The canonical element of type (1, 1, 1, 1, 1, 1) is the canonical element

ξ = i diag(5, 4, 3, 2, 1, 0) of Ω5U(6)J . To find A ∈ (SolJξ )0 we add a border to the general
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solution (7.2.6) of type (1, 1, 1, 1) above so we have

A =



1 a12 a13 a14 a15 a16

0 1 g gν(2) − ν(1) 2ν − gν(1) a26

0 0 1 ν(2) −ν(1) a36

0 0 0 1 −g a46

0 0 0 0 1 a56

0 0 0 0 0 1


, (7.2.10)

where g and ν are meromorphic functions and ν(1) = ν ′/g′, ν(2) = ν(1)/g′. Similarly to

the above we find a12, a13, a14, a15 and a16 by integrating the extended solution equations

and introducing new parameters to give generalised derivatives. We find a26, a36, a46 and

a56, by algebra to ensureA takes values in (AJ
ξ )0. The extended solution equations (6.2.3)

are

a′12 = a′12, a′13 = a12a
′
23, a′14 = a13a

′
34, a′15 = a14a

′
45, a′16 = a15a

′
56.

Note that the first equation is automatically satisfied and the last equation must be solved

after we have completed the last column by algebra. Set a12 = h then we find a13 by

integration:

a13 =

∫
a′13 =

∫
hg′ = hg −

∫
h′g. (7.2.11)

We introduce a new parameter α with α′ = h′g so g = α(1) := α′/h′. The integral then

reads a13 = hα(1) − α. Note that the generalised derivatives ν(1) and ν(2) are now with

respect to α(1). We now find a14 by integration:

a14 =

∫
a′14 =

∫
a13a

′
34 =

∫
(hα(1) − α)(ν(2))′. (7.2.12)

We will use integration by parts to lower the order of the (generalised) derivative of ν to

put the right-hand side of the above in a form where we may introduce a new parameter.
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This gives

∫
(hα(1) − α)(ν(2))′ = (hα(1) − α)ν(2) −

∫
(hα(1) − α)′

(ν(1))′

(α(1))′

= (hα(1) − α)ν(2) −
∫
α′ + h(α(1))′ − α′

(α(1))′
(ν(1))′ (7.2.13)

= (hα(1) − α)ν(2) − hν(1) +

∫
h′

ν ′

(α(1))′

= (hα(1) − α)ν(2) − hν(1) +
h′

(α(1))′
ν −

∫ (
h′

(α(1))′

)′
ν.

For ease of notation let us write h(1) := h′/(α(1))′. We introduce a new parameter τ such

that τ ′ = (h(1))′ν so ν = τ (1) := τ ′/(h(1))′, then

a14 = (hα(1) − α)τ (3) − hτ (2) + h(1)τ (1) − τ,

where

τ (1) :=
τ ′

(h(1))′
, τ (2) :=

(τ (1))′

(α(1))′
, τ (3) :=

(τ (2))′

(α(1))′
, h(1) :=

h′

(α(1))′
, α(1) :=

α′

h′
.

(7.2.14)

Next we integrate a′15 = a14a
′
45 to find a15:

a15 =

∫
a′15 =

∫
a14a

′
45 =

∫
(hα(1)−α)τ (3)− hτ (2) + h(1)τ (1)− τ)(−α(1))′. (7.2.15)

Again we will use integration by parts to lower the order of the (generalised) derivatives

of τ to put the right-hand side of the above in a form where we may introduce a new

parameter:

a15 = (α− hα(1))τ (3) + hτ (2) − h(1)τ (1) + τ)α(1)
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−
∫

(α− hα(1))τ (3) + hτ (2) − h(1)τ (1) + τ)′α(1) (7.2.16)

= (α− hα(1))τ (3) + hτ (2) − h(1)τ (1) + τ)α(1) −
∫ {

(α′ − h′α(1) − h(α(1))′)τ (3)

+ (α− hα(1))(τ (3))′ + h′τ (2) + h(τ (2))′ − (h(1))′τ (1) − h(1)(τ (1))′ + τ ′
}
α(1).

Using (7.2.14) we see (α′ − h′α(1) − h(α(1))′)τ (3) + h′τ (2) + h(τ (2))′ − (h(1))′τ (1) −

h(1)(τ (1))′ + τ ′ = 0. So we have

a15 =
(

(α− hα(1))τ (3) + hτ (2) − h(1)τ (1) + τ
)
α(1) −

∫
(α− hα(1))α(1)(τ (3))′

=
(

(α− hα(1))τ (3) + hτ (2) − h(1)τ (1) + τ
)
α(1) − (α− hα(1))α(1)τ (3)

+

∫
((α− hα(1))α(1))′τ (3)

= hα(1)τ (2) − h(1)α(1)τ (1) + α(1)τ +

∫
((α− hα(1))α(1))′τ (3)

= hα(1)τ (2) − h(1)α(1)τ (1) + α(1)τ +

∫
(α− 2hα(1))(α(1))′

(τ (2))′

(α(1))′

= (α− hα(1))τ (2) − h(1)α(1)τ (1) + α(1)τ −
∫

(α− 2hα(1))′τ (2)

= (α− hα(1))τ (2) − h(1)α(1)τ (1) + α(1)τ −
∫ (

− α′

(α(1))′
− 2h

)
(τ (1))′ (7.2.17)

= (α− hα(1))τ (2) +

(
α′

(α(1))′
+ 2h− h(1)α(1)

)
τ (1) + α(1)τ

+

∫ (
− α′

(α(1))′
− 2h

)′
τ ′

(h(1))′
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= (α− hα(1))τ (2) + 2hτ (1) + α(1)τ +

∫ (
−(h(1)α(1))′ − 2h′

(h(1))′

)
τ ′

= (α− hα(1))τ (2) + 2hτ (1) +
−h(1)(α(1))′ − 2h′

(h(1))′
τ

−
∫ (

− α(1) +
−h(1)(α(1))′ − 2h′

(h(1))′

)′
τ

= (α− hα(1))τ (2) + 2hτ (1) − 3h′

(h(1))′
τ +

∫ (
α(1) +

3h′

(h(1))′

)′
τ.

We introduce a new parameter β such that

β′ =

(
α(1) +

3h′

(h(1))′

)′
τ so τ = β(1) :=

β′(
α(1) + 3h′

(h(1))′

)′ ,
and for ease of notation let us set

a = α(1) +
3h′

(h(1))′
,

so β(1) := β′/a′. Therefore we my write

a15 = (α− hα(1))β(3) + 2hβ(2) + (α(1) − a)β(1) + β,

where

β(2) :=
β(1)

(h(1))′
, β(3) :=

(β(2))′

(α(1))′
, β(4) :=

(β(3))′

(α(1))′
, h(1) :=

h′

(α(1))′
, α(1) :=

α′

h′
.
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Now all other entries of A can be rewritten in terms of h, α and β, in fact so far we have

A =



1 h hα(1) − α
(hα(1) − α)β(4) − hβ(3)

+h(1)β(2) − β(1)

(α− hα(1))β(3) + 2hβ(2)

+(α(1) − a)β(1) + β
a16

0 1 α(1) α(1)β(4) − β(3) 2β(2) − α(1)β(3) a26

0 0 1 β(4) −β(3) a36

0 0 0 1 −α(1) a46

0 0 0 0 1 a56

0 0 0 0 0 1


.

We now turn our attention to the elements in the new last column, to ensure A ∈ (AJ
ξ )0

we solve the equations arising from Lemma 5.1.7, these equations are

a56 = −a12, a46 = −a13 − a23a56, a36 = a14 + a24a56 + a34a46,

a26 = a15 + a25a56 − a45a36 + a35a46.

Solving these give

a56 = −h, a46 = α, a36 = h(1)β(2) − β(1), (7.2.18)

a26 = h(1)α(1)β(2) − aβ(1) + β.

Now we need only find the new top-right element a16 which we do by integrating

a′16 = a15a
′
56, introducing a new parameter and a new generalised derivative similar to

the calculation for a15 above.

a16 =

∫
a′16 =

∫
a15a

′
56 =

∫ (
(α− hα(1))β(3) + 2hβ(2) + (α(1) − a)β(1) + β

)
(−h′)
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=
(hα(1) − α)h′

(α(1))′
(β(2))′ − 2hh′

(h(1))′
(β(1))′ − (α(1) − a)h′

a′
β′ + h′β

= (hα(1) − α)h(1)β(2) − 2hh′

(h(1))′
β(1) − (α(1) − a)h′

a′
β

−
∫

(hα(1) − α)h(1))′β(2) −
(

2hh′

(h(1))′

)′
β(1) −

{(
(α(1) − a)h′

a′

)′
+ h′

}
β

= (hα(1) − α)h(1)β(2) − 2hh′

(h(1))′
β(1) − (α(1) − a)h′

a′
β

−
∫

(hα(1) − α)h(1))′

(h(1))′
(β(1))′ −

(
2hh′

(h(1))′

)′
a′

β′ −
{(

(α(1) − a)h′

a′

)′
+ h′

}
β

= (hα(1) − α)h(1)β(2) − 2hh′

(h(1))′
β(1) − (α(1) − a)h′

a′
β

−
∫

(hα(1) − α)h(1))′

(h(1))′
(β(1))′ −

(
2hh′

(h(1))′

)′
a′

β′ −
{(

(α(1) − a)h′

a′

)′
+ h′

}
β

(7.2.19)

= (hα(1) − α)h(1)β(2) −
{

(hα(1) − α)h(1))′

(h(1))′
+

2hh′

(h(1))′

}
β(1)

+

{( 2hh′

(h(1))′

)′
a′

− (α(1) − a)h′

a′

}
β

+

∫ (
(hα(1) − α)h(1))′

(h(1))′

)′
β(1) +

{(−( 2hh′

(h(1))′

)′
a′

)′
+

(
(α(1) − a)h′

a′

)′
+ h′

}
β

= (hα(1) − α)h(1)β(2) −
{

(hα(1) − α)h(1))′

(h(1))′
+

2hh′

(h(1))′

}
β(1)
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+

{( 2hh′

(h(1))′

)′
a′

− (α(1) − a)h′

a′

}
β

+

∫ (
(hα(1)−α)h(1))′

(h(1))′

)′
a′

β′ +

{(−( 2hh′

(h(1))′

)′
a′

)′
+

(
(α(1) − a)h′

a′

)′
+ h′

}
β

= (hα(1) − α)h(1)β(2) −
{

(hα(1) − α)h(1))′

(h(1))′
+

2hh′

(h(1))′

}
β(1)

+

{( (hα(1)−α)h(1))′

(h(1))′

)′
a′

+

(
2hh′

(h(1))′

)′
a′

− (α(1) − a)h′

a′

}
β

+

∫ {(( (hα(1)−α)h(1))′

(h(1))′

)′
a′

)′
+

(−( 2hh′

(h(1))′

)′
a′

)′
+

(
(α(1) − a)h′

a′

)′
+ h′

}
β.

If we set

b = (hα(1) − α)h(1), c =
2hh′ + b′

(h(1))′
, d =

−(α(1) − a)h′ + c′

a′
,

and introduce a new parameter γ with

γ′ = (d+ h)′β so β = γ(1) :=
γ′

(d+ h)′
.

We have

a16 = bγ(3) − cγ(2) + dγ(1) + γ,

where

γ(2) :=
γ(1)

a′
, γ(3) :=

γ(2)

(h(1))′
, γ(4) :=

(γ(3))′

(α(1))′
,

γ(5) :=
(γ(4))′

(α(1))′
, h(1) :=

h′

(α(1))′
, α(1) :=

α′

h′
.
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Therefore rewriting all elements of A we have

A =

1 h hα(1) − α
(hα(1) − α)γ(5) − hγ(4)

+h(1)γ(3) − γ(2)

(α− hα(1))γ(4) + 2hγ(3)

+(α(1) − a)γ(2) + γ(1)
a16

0 1 α(1) α(1)γ(5) − γ(4) 2γ(3) − α(1)γ(4) a26

0 0 1 γ(5) −γ(4) a36

0 0 0 1 −α(1) α

0 0 0 0 1 −h

0 0 0 0 0 1



,

for a16 as given above, a26 = h(1)α(1)γ(3)−αγ(2) + γ(1) and a36 = h(1)γ(3)− γ(2) with h,

α and γ meromorphic functions. This gives the extended solution

Φ = [Aγξ] = (πα1 + λπ⊥α1
)(πα2 + λπ⊥α2

)(πα3 + λπ⊥α3
)(πα4 + λπ⊥α4

)(πα5 + λπ⊥α5
),

where α1 = Span{c6}, α2 = Span{c6, c5}, α3 = Span{c6, c5, c4},

α4 = Span{c6, c5, c4, c3}, α5 = Span{c6, c5, c4, c3, c2}, where c1, c2, c3, c4, c5, c6 are the

columns of A. As r is odd, by (7.1.13), this corresponds to the harmonic map φ : M →

Sp(3)/U(3) associated to the subbundle φ = ψ0 + ψ2 + ψ4 = α1 + α⊥2 ∩ α3 + α⊥4 ∩ α5

of M × C6. By Example 7.1.13 we have the harmonic map ϕ = iΦ−1 = i(ι ◦ φ) : M →

Sp(3) defined by Φ−1 = ι ◦ φ = πφ − π⊥φ which is of uniton number at most 5. The map

hξ : M(M)3 → (SolJξ )0 defined by (h, α, γ) 7→ A described above is bijective as given

an A = (ajk)j,k=1,...,6 ∈ (SolJξ )0 we can recover the data by setting h = a12, α = a46 and

γ = a16 − bγ(3) + cγ(2) − dγ(1) for

γ(3) = (1/2)(a25 − a23a35), γ(2) = −a35 + (a′12/a
′
23)γ(3),
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γ(1) = a26 − (a′46/a
′
23)γ(3) + (a′46/a

′
12 + 3a′12/(a

′
12/a

′
23))γ(2),

b = (a13a23 − a46)
a′12

a′23

, c =
2a12a

′
12 + b′(a′12
a′23

)′ , d =

− 3(a′12)2(
a′12
a′23

)′ + c′(
a′46
a′12

+
3a′12(
a′12
a′23

)′)′ .

Type (1, 2, 2, 1)

The canonical element of type (1, 2, 2, 1) is ξ = i diag(3, 2, 2, 1, 1, 0) ∈ Ω3U(6)J . To find

A ∈ (SolJξ )0 we add a border to the general solution (7.2.9) of type (2, 2) above so we

have

A =



1 a12 a13 a14 a15 a16

0 1 0 g h a26

0 0 1 f g a36

0 0 0 1 0 a46

0 0 0 0 1 a56

0 0 0 0 0 1


,

where g, h and f are meromorphic functions. First we find a12, a13, a14, a15 and a16

by integrating the extended solution equations and introducing new parameters to give

generalised derivatives. The extended solution equations (6.2.3) are

a′12 = a′12, a′13 = a′13, a′14 = a12a
′
24 + a13a

′
34,

a′15 = a12a
′
25 + a13a

′
35, a′16 = a14a

′
46 + a15a

′
56.

Note that the first two equations are automatically satisfied so we set a12 = α and a13 = β

then we find a14 by integration:

a14 =

∫
a′14 =

∫
a12a

′
24 + a13a

′
34 =

∫
αg′ + βf ′ = αg + βf −

∫
α′g + β′f.
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We introduce two new parameters ν1 and ν2 such that ν ′1 = gα′, and ν ′2 = fβ′ so g =

ν
(1)
1 := ν ′1/α

′ and f = ν
(1)
2 := ν ′2/β

′ and so a14 = αν
(1)
1 + βν

(1)
2 − ν1 − ν2. We notice at

this point that the map we are constructing is not injective, as we may replace ν1 and ν2

by ν1 + c and ν2 − c. To ensure this map is bijective we will replace ν1 and ν2 by ν̃1 and

ν̃2 with ν̃1 = ν
(1)
1 and ν̃2 = ν1 + ν2 then we have

A =



1 α β −ν̃2 + αν̃1 +
β(ν̃′2−α′ν̃1)

β′
a15 a16

0 1 0 ν̃1 h a26

0 0 1
ν̃′2−α′ν̃1

β′
ν̃1 a36

0 0 0 1 0 a46

0 0 0 0 1 a56

0 0 0 0 0 1


.

Now we find a15 by integration:

a15 =

∫
a′15 =

∫
a12a

′
25 + a13a

′
35 =

∫
αh′ + βν̃ ′1 = αh+ βν̃1 −

∫
α′h+ β′ν̃1.

Again introducing new parameters ν3 and ν4 with ν ′3 = hα′ and ν ′4 = ν̃1β
′ so we have

new generalised derivatives h = ν
(1)
3 := ν ′3/α

′ and ν̃1 = ν
(1)
4 := ν ′4/β

′, and so a15 =

αν
(1)
3 +βν

(1)
4 −ν3−ν4. Similarly to earlier when finding a14, to ensure our parametrization

is bijective, we replace the parameters ν3 and ν4 with ν̃3 and ν̃3 by setting ν̃3 = ν
(1)
3 and

ν̃4 = ν3 + ν4 then
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A =



1 α β a14 a15 a16

0 1 0
ν̃′4−α′ν̃3

β′
ν̃3 a26

0 0 1
ν̃′2−

α′(ν̃′4−α
′ν̃3)

β′

β′
ν̃4−α′ν̃3

β′
a36

0 0 0 1 0 a46

0 0 0 0 1 a56

0 0 0 0 0 1



,

where

a14 = −ν̃2 +
α(ν̃ ′4 − αν̃3)

β′
+
β
(
ν̃ ′2 −

α′(ν̃′4−α′ν̃3)

β′

)
β′

,

a15 = −ν̃4 + αν̃3 +
β(ν̃ ′4 − α′ν̃3)

β′
.

Finding the new last column by algebra means solving the equations from Lemma 5.1.7

which give

a56 = −α, a46 = −β, a36 = −ν̃2, a26 = −ν̃4.

We turn our attention to finding the new top-right element a16:

a16 =

∫
a′16 =

∫
a14a

′
46 + a15a

′
56

=

∫ (
ν̃2 +

α(ν̃ ′4 − αν̃3)

β′
+
β
(
ν̃ ′2 −

α′(ν̃′4−α′ν̃3)

β′

)
β′

)
(−β′)

+

(
− ν̃4 + αν̃3 +

β(ν̃ ′4 − α′ν̃3)

β′

)
(−α′)

=

∫
β′ν̃2 − βν̃ ′2 + α′ν̃4 − αν̃ ′4 = −βν̃2 − αν̃4 +

∫
2β′ν̃2 + 2α′ν̃4.

We introduce new parameters ν5 and ν6 such that ν ′5 = β′ν̃2 and ν ′6 = α′ν̃4 so we have
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ν̃2 = ν
(1)
5 := ν ′5/β

′ and ν̃4 = ν
(1)
6 := ν ′6/α

′ which gives a16 = −βν(1)
5 −αν

(1)
6 +2ν5 +2ν6.

Renaming parameters once again to ensure that the parametrization is bijective we set

ν̃6 = ν
(1)
6 and ν̃5 = ν5 + ν6 which gives

A =



1 α β a14 a15 a16

0 1 0
ν̃′6−α′ν̃3

β′
ν̃3 −ν̃6

0 0 1 a34
ν̃′6−α′ν̃3

β′
α′ν̃6−ν̃′5

β′

0 0 0 1 0 −β

0 0 0 0 1 α

0 0 0 0 0 1


,

where

a14 =
α′ν̃6 − ν̃ ′5

β′
+
α(ν̃ ′6 − α′ν̃3)

β′
+
β
((

ν̃′5−α′ν̃6
β′

)′
− α′(ν′6−α′ν̃3)

β′

)
β′

,

a34 =

(
ν̃′5−α′ν̃6

β′

)′
− α′(ν′6−α′ν̃3)

β′

β′
, a15 = −ν̃6 + αν̃3 +

β(ν̃ ′6 − α′ν̃3)

β′
,

a16 = 2ν̃5 − αν̃6 −
β(ν̃ ′5 − α′ν̃6)

β′
,

The parameters α, β, ν̃3, ν̃5 and ν̃6 are meromorphic functions which can be recovered

for a given A = (ajk)j,k=1,...,6 ∈ (SolJξ )0 by setting α = a12, β = a13, ν̃3 = a15, ν̃5 =

(1/2)(a16 − a12a26 − a13a36) and ν̃6 = −a26.

We have the extended solution

Φ = [Aγξ] = (πα1 + λπ⊥α1
)(πα2 + λπ⊥α2

)(πα3 + λπ⊥α3
),

where α1 = Span{c6}, α2 = Span{c6, c5, c4}, α3 = Span{c6, c5, c4, c3, c2}, and

c2, c3, c4, c5, c6 denote the columns of A. As r is odd, by (7.1.13), this corresponds to

the harmonic map φ : M → Sp(3)/U(3) associated to the subbundle φ = ψ0 + ψ2 =

α1 + α⊥2 ∩ α3 of M × C6. By Example 7.1.13 we have the harmonic map ϕ = iΦ−1 =
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i(ι ◦ φ) : M → Sp(3) where Φ−1 = ι ◦ φ = πφ − π⊥φ which is of uniton number at most

3.

Type (1, 4, 1)

The canonical element of Ω2U(6)J of type (1, 4, 1) is of the form

ξ = i diag(2, 1, 1, 1, 1, 0) and to describe A : M → (AJ
ξ )0 we add a border to that of the

general solution of type (4) i.e. the identity matrix. Then as before to ensure A ∈ (SolJξ )0

we solve the extended solution equations (6.2.3) and ensure that A satisfies Lemma 5.1.7.

The extended solution equations are

a′12 = a′12, a′13 = a′13, a′14 = a′14, a′15 = a′15,

a′16 = a′26a12 + a′36a13 + a′46a14 + a′56a15.

Let a12 = α, a13 = β, a14 = γ, and a15 = δ then as these automatically satisfy the

extended solution equations, we need only solve the extended solution equation for a16.

Before we find this new top-right element we will use Lemma 5.1.7 to find the new last

column of A which gives

a26 = δ, a36 = γ, a46 = −β, a56 = −α.

We now use similar methods to the above to solve the following integration:

a16 =

∫
a′16 =

∫
a′26a12 + a′36a13 + a′46a14 + a′56a15

=

∫
δ′α + γ′β − β′γ − α′δ = δα + γβ − 2

∫
γβ′ + δα′.

We introduce new parameters ν1 and ν2 such that ν ′1 = γβ′ and ν ′2 = δα′ with generalised

derivatives γ = ν
(1)
1 := ν ′1/β

′ and δ = ν
(1)
2 := ν ′2/α

′ so the integral gives a16 = βν
(1)
1 +
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αν
(1)
2 − 2(ν1 + ν2). Therefore we have A ∈ (SolJξ )0 for

A =



1 α β ν
(1)
1 ν

(1)
2 βν

(1)
1 + αν

(1)
2 − 2(ν1 + ν2)

0 1 0 0 0 ν
(1)
2

0 0 1 0 0 ν
(1)
1

0 0 0 1 0 −β

0 0 0 0 1 −α

0 0 0 0 0 1


,

with meromorphic functions α, β, ν1 and ν2. As before we wish for our parametrization

to be given by a bijective map, it is clear that given an A = (ajk)j,k=1,...,6 ∈ (SolJξ )0

one would not be able to retrieve the data ν1 and ν2 without integration therefore we

follow the procedure detailed in the type (1, 2, 2, 1) example above. We set ν(1)
1 = ν̃1, and

ν1 + ν2 = ν̃2 so our A ∈ (SolJξ )0 is now given by

A =



1 α β ν̃1
ν̃′2−β′ν̃1

α′
βν̃(1) +

α(ν̃′2−β′ν̃1)

α′
− 2ν̃2

0 1 0 0 0
ν̃′2−β′ν̃1

α′

0 0 1 0 0 ν̃1

0 0 0 1 0 −β

0 0 0 0 1 −α

0 0 0 0 0 1


,

where α, β, ν̃1 and ν̃2 are meromorphic functions which can be retrieved by setting α =

a12, β = a13, ν̃1 = a14 and ν̃2 = (1/2)(a16 − a12a26 − a13a36). The resulting extended

solution is given by

Φλ = Φ = [Aγξ] = (πα1 + λπ⊥α1
)(πα2 + λπ⊥α2

).
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The unitons above are given by α1 = Span{c6} and α2 = Span{c6, c5, c4, c3}, for

c2, c3, c4, c5, c6 the columns of A. As r is even, by (7.1.12), this corresponds to the har-

monic map into the quaternionic Grassmannian φ : M → G1(H3) = HP2 associated to

the subbundle φ = ψ0 +ψ2 = ψ0 +Jψ0 ofM×C6. So φ : M → Sp(3)/(Sp(2)×Sp(1)).

By Example 7.1.13 we have the harmonic map ϕ = Φ−1 = ι ◦ φ : M → Sp(3) defined

by ϕ = Φ−1 = ι ◦ φ = πφ − π⊥φ .

Type (1, 1, 2, 1, 1)

We obtain this from the general solution (7.2.8) of type (1, 2, 1) by adding a bor-

der, solving the extended solution equations and completing the border by algebra de-

scribed in §7.1.1. The canonical element of type (1, 1, 2, 1, 1) is of the form ξ =

i diag(4, 3, 2, 2, 1, 0) ∈ Ω4U(6)J , and the extended solution equations are

a′12 = a′12, a′13 = a12a
′
23, a′14 = a12a

′
24, a′15 = a13a

′
35 + a14a

′
45, a16 = a15a

′
56.

We set a12 = α, so we have

A =



1 α a13 a14 a15 a16

0 1 g ν(1) gν(1) − 2ν a26

0 0 1 0 ν(1) a36

0 0 0 1 −g a46

0 0 0 0 1 a56

0 0 0 0 0 1


,

where α, g and ν are meromorphic functions, with generalised derivative ν(1) = ν ′/g′. To

find a13 we integrate a12a
′
23 as follows:

a13 =

∫
a′13 =

∫
a12a

′
23 =

∫
αg′ = αg −

∫
α′g.
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Choose h with h′ = α′g so that h is a new parameter that replaces g, we also have the

generalised derivative g = h(1) := h′/α′, so a13 = αh(1)−h and the generalised derivative

of ν with respect to g is now with respect to h(1).We will use integration by parts on a12a
′
24

to lower the order of the (generalised) derivative of ν to find a14. We have

a14 =

∫
a′14 =

∫
a12a

′
24 =

∫
α(ν(1))′ = αν(1) −

∫
α′

ν ′

(h(1))′

= αν(1) − ν α′

(h(1))′
+

∫ ( α′

(h(1))′

)′
ν,

for ease of notation let us set a := α′/(h(1))′ and we introduce a new parameter τ where

τ ′ = a′ν, so we have the generalised derivative ν = τ (1) := τ ′/a′, and a14 = ατ (2) −

aτ (1) + τ as ν(1) = τ (2) := (τ (1))′/(h(1))′. Now A becomes

A =



1 α αh(1) − h ατ (2) − aτ (1) + τ a15 a16

0 1 h(1) τ (2) h(1)τ (2) − 2τ (1) a26

0 0 1 0 τ (2) a36

0 0 0 1 −h(1) a46

0 0 0 0 1 a56

0 0 0 0 0 1


,

where h(1) := h′/α′, τ (2) := τ (1)/(h(1))′, τ (1) := τ ′/a′. We now find a15 by integration

by parts which lowers the order of (generalised) derivative of τ ,

a15 =

∫
a′15 =

∫
a13a

′
35 + a14a

′
45

=

∫
(αh(1) − h)(τ (2))′ + (ατ (2) − aτ (1) + τ)(−h(1))′

= (αh(1) − h)τ (2) +

∫
−2α(h(1))′τ (2) + α′τ (1) − (h(1))′τ
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= (αh(1) − h)τ (2) +

∫
−2α(h(1))′

(h(1))′
(τ (1))′ +

α′

a′
τ ′ − (h(1))′τ

= (αh(1) − h)τ (2) − 2ατ (1) +
α′

a′
τ +

∫
2α′τ (1) −

{(α′
a′

)′
+ (h(1))′

}
τ

= (αh(1) − h)τ (2) − 2ατ (1) +
α′

a′
τ +

∫
2α′

a′
τ ′ −

{(α′
a′

)′
+ (h(1))′

}
τ

= (αh(1) − h)τ (2) − 2ατ (1) +
3α′

a′
τ −

∫ {(3α′

a′

)′
+ (h(1))′

}
τ.

We introduce a new parameter β with

β′ =
(3α′

a′
+ h(1)

)′
τ, so τ = β(1) :=

β′

(3α′

a′
+ h(1))′

,

and so we have

a15 = (αh(1) − h)β(3) − 2αβ(2) +
3α′

a′
β(1) − β.

Therefore substituting the above formulae into A gives

A =



1 α αh(1) − h αβ(3) − aβ(2) + β(1)
(αh(1) − h)β(3) − 2αβ(2)

+3α′

a′
β(1) − β

a16

0 1 h(1) β(3) h(1)β(3) − 2β(2) a26

0 0 1 0 β(3) a36

0 0 0 1 −h(1) a46

0 0 0 0 1 a56

0 0 0 0 0 1



,

where β(2) := (β(1))′/a′, β(3) := (β(2))′/(h(1))′, h(1) := h′/α′.
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We now find the new last column by algebra to get,

a56 = −a12 = −α, a46 = −a13 − a23a56 = h, a36 = a14 + a24a56 = β(1) − aβ(2),

a26 = a15 + a25a56 − a45a36 + a35a46 = −ah(1)β(2) +
(
h(1) +

3α′

a′

)
β(1) − β,

and so A now takes values in (AJ
ξ )0. Finally we complete the border by integrating a′16 =

a15a
′
56 to find a′16, we do this by using integration by parts to lower the order of the

(generalised) derivatives of β and then simplifying the expressions. We have

a16 =

∫
a′16 =

∫
a15a

′
56 =

∫ (
(αh(1) − h)β(3) − 2αβ(2) +

3α′

a′
β(1) − β

)
(−α′)

=

∫
−α′(αh(1) − h)β(3) + 2αα′β(2) − 3α′α′

a′
β(1) + α′β

=

∫
−a(αh(1) − h)(β(2))′ +

2αα′

a′
(β(1))′ −

3α′α′

a′

(3α′

a′
+ h(1))′

β′ + α′β

= −a(αh(1) − h)β(2) +
2αα′

a′
β(1) −

3α′α′

a′

(3α′

a′
+ h(1))′

β

+

∫
(a(αh(1) − h))′β(2) −

(2αα′

a′

)′
β(1) +

{(
3α′α′

a′

(3α′

a′
+ h(1))′

)′
+ α′

}
β

= −a(αh(1) − h)β(2) +
2αα′

a′
β(1) −

3α′α′

a′

(3α′

a′
+ h(1))′

β

+

∫
(a(αh(1) − h))′

a′
(β(1))′ −

(2αα′

a′
)′

(3α′

a′
+ h(1))′

β′ +

{(
3α′α′

a′

(3α′

a′
+ h(1))′

)′
+ α′

}
β

= −a(αh(1) − h)β(2) +
{2αα′

a′
+

(a(αh(1) − h))′

a′

}
β(1)

−
{ 3α′α′

a′

(3α′

a′
+ h(1))′

+
(2αα′

a′
)′

(3α′

a′
+ h(1))′

}
β
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+

∫
−
((a(αh(1) − h))′

a′

)′
β(1) +

{(
3α′α′

a′

(3α′

a′
+ h(1))′

)′
+

(
(2αα′

a′
)′

(3α′

a′
+ h(1))′

)′
+ α′

}
β

= −a(αh(1) − h)β(2) +
{2αα′

a′
+

(a(αh(1) − h))′

a′

}
β(1)

−
{ 3α′α′

a′

(3α′

a′
+ h(1))′

+
(2αα′

a′
)′

(3α′

a′
+ h(1))′

}
β

+

∫ −( (a(αh(1)−h))′

a′

)′
(3α′

a′
+ h(1))′

β′ +

{(
3α′α′

a′

(3α′

a′
+ h(1))′

)′
+

(
(2αα′

a′
)′

(3α′

a′
+ h(1))′

)′
+ α′

}
β

= −a(αh(1) − h)β(2) +
{2αα′

a′
+

(a(αh(1) − h))′

a′

}
β(1)

−

{( (a(αh(1)−h))′

a′

)′
(3α′

a′
+ h(1))′

+
3α′α′

a′

(3α′

a′
+ h(1))′

+
(2αα′

a′
)′

(3α′

a′
+ h(1))′

}
β

+

∫ {(( (a(αh(1)−h))′

a′

)′
(3α′

a′
+ h(1))′

)′
+

(
3α′α′

a′

(3α′

a′
+ h(1))′

)′
+

(
(2αα′

a′
)′

(3α′

a′
+ h(1))′

)′
+ α′

}
β.

If we set

b = a(αh(1) − h), c =
2αα′ + b′

a′
, d =

3α′α′

a′
+ c′

(3α′

a′
+ h(1))′

,

and introduce a new parameter γ with

γ′ = (d+ α)′β, so β = γ(1) :=
γ′

(d+ α)′
,

and we have

a16 = −bγ(3) + cγ(2) − dγ(1) + γ.
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Therefore rewriting all elements of A we have

A =

1 α αh(1) − h
αγ(4) − aγ(3)

+γ(2)

(αh(1) − h)γ(4) − 2αγ(3)

+3α′

a′
γ(2) − γ(1)

−bγ(3) + cγ(2)

−dγ(1) + γ

0 1 h(1) γ(4) h(1)γ(4) − 2γ(3)
ah(1)γ(3) − γ(1)

+
(
h(1) + 3α′

a′

)
γ(2)

0 0 1 0 γ(4) γ(2) − aγ(3)

0 0 0 1 −h(1) h

0 0 0 0 1 −α

0 0 0 0 0 1



,

where

γ(2) :=
γ(1)

(3α′

a′
+ h(1))′

, γ(3) :=
γ(2)

a′
, γ(4) :=

(γ(3))′

(h(1))′
, h(1) :=

h′

α′
,

for h, α and γ meromorphic functions. This gives the extended solution

Φ = [Aγξ] = (πα1 + λπ⊥α1
)(πα2 + λπ⊥α2

)(πα3 + λπ⊥α3
)(πα4 + λπ⊥α4

),

where α1 = Span{c6}, α2 = Span{c6, c5}, α3 = Span{c6, c5, c4, c3}, α4 =

Span{c6, c5, c4, c3, c2}, for c1, c2, c3, c4, c5, c6 the columns of A. As r is even, by (7.1.12),

this corresponds to the harmonic map into the quaternionic Grassmannian φ : M →

G2(H3) associated to the subbundle φ = ψ0 + ψ2 + ψ4 = ψ0 + Jψ2 + Jψ0 of M × C6.

So φ : M → Sp(3)/(Sp(1) × Sp(2)). By Example 7.1.13 we have the harmonic map

ϕ = Φ−1 = ι ◦ φ : M → Sp(3) defined by ϕ = Φ−1 = ι ◦ φ = πφ − π⊥φ . Also,

φ⊥ = ψ1 + ψ3 = ψ1 + Jψ1, and so is a harmonic map into the quaternionic Grass-

mannian φ⊥ : M → G1(H3) = HP2. By Example 7.1.13 we have the harmonic map
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ι ◦ φ⊥ : M → Sp(3) where ι ◦ φ⊥ = −ι ◦ φ = −Φ−1 = π⊥φ − πφ.

Unlike type (1, 2, 2, 1) and type (1, 4, 1) the parameters do not need to be modified to

ensure the parametrization (α, h, γ) 7→ A is bijective as, similarly to type (1, 1, 1, 1, 1, 1),

given an A = (ajk)j,k=1,...,6 ∈ (SolJξ )0 we can recover the data by setting α = a12,

h = a46, and γ = a16 + bγ(3) − cγ(2) + dγ(1), where

γ(3) =
−1

2
(a25 − a23a24), γ(2) =

−a′12

2a′23

(a25 − a23a14),

γ(1) = −
(
a26 −

a′12a23

a′23

γ(3) −
(
a23 +

3a′12

(
a′12
a23

)′

)
γ(2)
)
,

a =
a′12

a′23

, b = aa13, c =
2a12a

′
12 + b′

a′
, d =

3a′12a
′
12 + c′

(
3a′12
a′

+ a23)′
.

Type (2, 2, 2)

This has r = 2 with canonical element ξ ∈ Ω2U(6)J of the form

ξ = i diag(2, 2, 1, 1, 0, 0). We obtain A : M → (AJ
ξ )0 from the general solution (7.2.8) of

type (1, 2, 1) by adding a border, ensuring A ∈ (SolJξ )0 by solving the extended solution

equations and completing the border by algebra. The extended solution equations for type

(2, 2, 2) are

a′13 = a′13, a′14 = a′14, a′15 = a13a
′
35 + a14a

′
45, a′16 = a13a

′
36 + a14a

′
46.
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We see that a13 and a14 automatically satisfies these and so by setting a13 = α, and

a14 = β, and recalling the form of (AJ
ξ )0 from Definition 7.1.9 we have

A =



1 0 α β a15 a16

0 1 g ν(1) gν(1) − 2ν a26

0 0 1 0 ν(1) a36

0 0 0 1 −g a46

0 0 0 0 1 0

0 0 0 0 0 1


.

We integrate to find a15:

a15 =

∫
a′15 =

∫
a13a

′
35 + a14a

′
45 =

∫
α(ν(1))′ − βg′

= αν(1) − βg +

∫
−α

′

g′
ν ′ + β′g

= αν(1) − α′

g′
ν ′ − βg +

∫
+
(α′
g′

)′
ν + β′g.

We introduce the parameters h and τ such that h′ = β′g so g = h(1) := h′/β′ and

τ = (α′/(h(1))′)′ν, so ν = τ (1) := τ ′/((α′/(h(1))′)′, for ease of notation let us set α(1) :=

α′/(h(1))′, so τ (1) := τ ′/(α(1))′ and a15 = ατ (2) − α(1) − βh(1) + h + τ. Similarly to

type (1, 2, 2, 1) and type (1, 4, 1) we will modify the parameters to ensure our algorithm

is bijective and so we have an algorithm that gives a bijective map between the space of

meromorphic functions on M of dimension 4 and (SolJξ )0. Let h̃ = h(1) and τ̃ = τ + h,

then

a15 = τ̃ − βh̃− α(1)(τ̃ ′ − β′h̃)

(α(1))′
+ α

(
τ̃ ′−β′h̃
(α(1))′

)′
h̃′
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and

A =



1 0 α β a15 a16

0 1 h̃

(
τ̃ ′−β′h̃
(α(1))′

)′
h̃′

h̃

(
τ̃ ′−β′h̃
(α(1))′

)′
h̃′

− 2(τ̃ ′−β′h̃)

(α(1))′
a26

0 0 1 0

(
τ̃ ′−β′h̃
(α(1))′

)′
h̃′

a36

0 0 0 1 −h̃ a46

0 0 0 0 1 0

0 0 0 0 0 1



.

We now find the new last column by algebra, we get a46 = −α, a36 = β and a26 =

τ̃ − α(1)(τ̃ ′ − β′h̃)/(α(1))′. Finally we find the new top-right element a16 by integration

as before

a16 =

∫
a′16 =

∫
a13a

′
36 + a14a

′
46 =

∫
β′α− α′β

= αβ − 2

∫
α′β.
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We introduce a new parameter γ such that γ′ = α′β which gives the generalised derivative

β = γ(1) := γ′/α′ and so a16 = αγ(1) − 2γ. Replacing the parameters we obtain

A =

1 0 α γ(1)

τ̃ − γ(1)h̃

−α(1)(τ̃ ′−(γ(1))′h̃)

(α(1))′
+ α

(
τ̃ ′−(γ(1))′h̃

(α(1))′

)′
h̃′

αγ(1) − 2γ

0 1 h̃

(
τ̃ ′−(γ(1))′h̃

(α(1))′

)′
h̃′

h̃

(
τ̃ ′−(γ(1))′h̃

(α(1))′

)′
h̃′

− 2(τ̃ ′−(γ(1))′h̃)

(α(1))′
τ̃ − α(1)(τ̃ ′−(γ(1))′h̃)

(α(1))′

0 0 1 0

(
τ̃ ′−(γ(1))′h̃

(α(1))′

)′
h̃′

γ(1)

0 0 0 1 −h̃ −α

0 0 0 0 1 0

0 0 0 0 0 1



,

where α, γ, h̃, and τ̃ are meromorphic functions with α(1) = α′/h̃′. Given A =

(ajk)j,k=1,...,6 ∈ (SolJξ )0 we may retrieve the meromorphic functions by setting α = a13,

γ = (−1/2)(a16 − a13a14), h̃ = a23 and τ̃ = a26 − (a′13/2a
′
23)(a25 − a23a24).

We have the extended solution

Φ = [Aγξ] = (πα1 + λπ⊥α1
)(πα2 + λπ⊥α2

),

where α1 = Span{c6, c5}, α2 = Span{c6, c5, c4, c3}, for c3, c4, c5, c6 the columns of A.

As r is even, by (7.1.12), this corresponds to the harmonic map into the quaternionic

Grassmannian φ : M → G2(H3) = HP2 associated to the subbundle φ = ψ0 + ψ2 =

ψ0 + Jψ0 of M × C6. So φ : M → Sp(3)/(Sp(2) × Sp(1)). By Example 7.1.13 we

have the harmonic map ϕ = Φ−1 = ι ◦ φ : M → Sp(3) defined by ϕ = Φ−1 =
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ι ◦ φ = πφ − π⊥φ . Also, φ⊥ = ψ1 = Jψ1, and so is a harmonic map into the quaternionic

Grassmannian φ⊥ : M → G1(H3) = HP2. By Example 7.1.13 we have the harmonic

map ι ◦ φ⊥ : M → Sp(3) where ι ◦ φ⊥ = −ι ◦ φ = −Φ−1 = π⊥φ − πφ.

Type (3, 3)

We add a border to the general solution (7.2.9) of type (2, 2) to find A : M → (AJ
ξ )0 with

canonical element ξ = i diag(1, 1, 1, 0, 0, 0) of Ω1U(6)J . All extended solution equations

for type (3, 3) are automatically satisfied and so we let a14 = α, a15 = β, a16 = γ, and

due to the block structure of (AJ
ξ )0 we have a12 = a13 = a46 = a56 = 0. To ensure

A ∈ (AJ
ξ )0 we use Lemma 5.1.7 to complete the border to get

A =



1 0 0 α β γ

0 1 0 g h β

0 0 1 f g α

0 0 0 1 0 0

0 0 0 0 0 1


,

for α, β, γ, g, f, h, meromorphic functions. We have the extended solution

Φ = [Aγξ] = (πα1 + λπ⊥α1
),

where α1 = Span{c6, c5, c4} for c6, c5, c4, c3 the columns of A. As r is odd, by (7.1.13),

this corresponds to the harmonic map φ : M → Sp(3)/U(3) associated to the subbundle

φ = ψ0 = α1 of M × C6. By Example 7.1.13 we have the harmonic map ϕ = iΦ−1 =

i(ι ◦ φ) : M → Sp(3) where Φ−1 = ι ◦ φ = πα1 − π⊥α1
which is of uniton number at most

1. The map is clearly bijective, and so gives a bijection between the space of 6-tuples of

meromorphic functions on M of (SolJξ )0.
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Type (2, 1, 1, 2)

We have the canonical element ξ = i diag(3, 3, 2, 1, 0, 0) of Ω3U(6)J and we add a border

to the general solution (7.2.6) of type (1, 1, 1, 1) taking into account the block structure of

(AJ
ξ )0. We have extended solution equations a′13 = a′13, a

′
14 = a′34a13, a

′
15 = a′45a

′
14 and

a′16 = a′46a14. As a13 automatically satisfies these we set a13 = α with α arbitrary so we

have

A =



1 0 α a14 a15 a16

0 1 g gν(2) − ν(1) 2ν − gν(1) a26

0 0 1 ν(2) −ν(1) a36

0 0 0 1 −g a46

0 0 0 0 1 0

0 0 0 0 0 1


,

where g and ν are meromorphic functions and ν(1) = ν ′/g′, ν(2) = ν(1)/g′. We integrate

a′14 = a′34a13 using integration by parts to lower the order of the (generalised) derivatives

of ν:

a14 =

∫
a′14 =

∫
a′34a13 =

∫
(ν(2))′α = ν(2)α−

∫
(ν(1))′

α′

g′

= αν(2) − α′

g′
ν(1) +

∫ (α
′

g′
)′

g′
ν ′

= αν(2) − α′

g′
ν(1) +

(α
′

g′
)′

g′
ν −

∫ ((α
′

g′
)′

g′

)′
ν.

For ease of notation let α(1) := α′/g′ and α(2) := (α(1))′/g′ and let us introduce a new

parameter τ such that τ ′ = (α(2))′ν so we have the generalised derivative ν = τ (1) :=

τ ′/(α(2))′. By replacing the new parameter we have a14 = ατ (3)−α(1)τ (2) +α(2)τ (1)− τ
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and

A =



1 0 α ατ (3) − α(1)τ (2) + α(2)τ (1) − τ a15 a16

0 1 g gτ (3) − τ (2) 2τ (1) − gτ (2) a26

0 0 1 τ (3) −τ (2) a36

0 0 0 1 −g a46

0 0 0 0 1 0

0 0 0 0 0 1


,

where τ (2) = (τ (1))′/g′, τ (3) = (τ (2))′/g′. We follow the same procedure to find a15:

a15 =

∫
a′15 =

∫
a′45a

′
14 =

∫
(−g′)(ατ (3) − α(1)τ (2) + α(2)τ (1) − τ)

=

∫
−g
′α

g′
(τ (2))′ +

g′α(1)

g′
(τ (1))′ − (α(1))′

(α(2))′
τ ′ + g′τ

= −ατ (2) + α(1)τ (1) − (α(1))′

(α(2))′
τ +

∫
α(1)(τ (1))′ − (α(1))′

(α(2))′
τ ′ +

{((α(1))′

(α(2))′

)′
+ g′

}
τ

= −ατ (2) + 2α(1)τ (1) − 2(α(1))′

(α(2))′
τ +

∫
−(α(1))′

(α(2))′
τ ′ +

{(2(α(1))′

(α(2))′

)′
+ g′

}
τ

= −ατ (2) + 2α(1)τ (1) − 3(α(1))′

(α(2))′
τ +

∫ {(3(α(1))′

(α(2))′

)′
+ g′

}
τ,

and by introducing a new parameter γ such that

γ′ =

((3(α(1))′

(α(2))′

)′
+ g′

)
τ, and so τ = γ(1) :=

γ′(
3(α(1))′

(α(2))′

)′
+ g′

,

we have

a15 = −αγ(3) + 2α(1)γ(2) − 3(α(1))′

(α(2))′
γ(1) + γ.
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We replace all τ with γ(1) to get

A =



1 0 α
αγ(4) − α(1)γ(3)

+α(2)γ(2) − γ(1)

−αγ(3) + 2α(1)γ(2)

−3
(

(α(1))′

(α(2))′

)
γ(1) + γ

a16

0 1 g gγ(4) − γ(3) 2γ(2) − gγ(3) a26

0 0 1 γ(4) −γ(3) a36

0 0 0 1 −g a46

0 0 0 0 1 0

0 0 0 0 0 1



,

where γ(2) := (γ(1))′/(α(2))′, γ(3) := (γ(2))′/g′, γ(4) := (γ(3))′/g′.

We now turn our attention to the new last column which we find, as usual, by algebra to

get

a46 = −α, a36 = −α(1)γ(3) + α(2)γ(2) − γ(1),

a26 = −gα(1)γ(3) + (2α(1) + gα(2))γ(2) −
(3(α)(1))′

(α(2))′
+ g
)
γ(1) + γ.

To complete the border we now need only find a16, which we do by integrating the ex-

tended solution equation as before. We have

a16 =

∫
a′16 =

∫
a′46a14 =

∫
−α′(αγ(4) − α(1)γ(3) + α(2)γ(2) − γ(1))

=

∫
−α′αγ(4) + α′α(1)γ(3) − α′α(2)γ(2) + α′γ(1)

=

∫
−α(1)α(γ(3))′ + α(1)α(1)(γ(2))′ − α′α(2)

(α(2))′
(γ(1))′ +

α′(
3(α(1))′

(α(2))′

)′
+ g′

γ′
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= −α(1)αγ(3) + α(1)α(1)γ(2) − α′α(2)

(α(2))′
γ(1) +

α′(
3(α(1))′

(α(2))′

)′
+ g′

γ

+

∫
(α(1)α)′γ(3) − (α(1)α(1))′γ(2) +

(α′α(2)

(α(2))′

)′
γ(1) −

(
α′(

3(α(1))′

(α(2))′

)′
+ g′

)′
γ

= −α(1)αγ(3) + α(1)α(1)γ(2) − α′α(2)

(α(2))′
γ(1) +

α′(
3(α(1))′

(α(2))′

)′
+ g′

γ

+

∫
(α(2)α + α(1)α(1))(γ(2))′ − (α(1)α(1))′

(α(2))′
(γ(1))′

+

(
α′α(2)

(α(2))′

)′
(

3(α(1))′

(α(2))′

)′
+ g′

γ′ −

(
α′(

3(α(1))′

(α(2))′

)′
+ g′

)′
γ

= −α(1)αγ(3) + (α(2)α + 2α(1)α(1))γ(2) − 3α(1)(α(1))′

(α(2))′
γ(1) +

α′ +
(
α(1)(α(1))′

(α(2))′

)′
(

3(α(1))′

(α(2))′

)′
+ g′

γ

+

∫
−(α(2)α + α(1)α(1))′γ(2) +

(2α(1)(α(1))′

(α(2))′

)′
γ(1) −

((
α + α(1)(α(1))′

(α(2))′

)′
(

3(α(1))′

(α(2))′

)′
+ g′

)′
γ

= −α(1)αγ(3) + (α(2)α + 2α(1)α(1))γ(2) − 3α(1)(α(1))′

(α(2))′
γ(1) +

α′ +
(
α(1)(α(1))′

(α(2))′

)′
(

3(α(1))′

(α(2))′

)′
+ g′

γ

+

∫
−(α +

3α(1)(α(1))′

(α(2))′
(γ(1))′ +

(
2α(1)(α(1))′

(α(2))′

)′
(

3(α(1))′

(α(2))′

)′
+ g′

γ′ −

((
α + α(1)(α(1))′

(α(2))′

)′
(

3(α(1))′

(α(2))′

)′
+ g′

)′
γ

= −α(1)αγ(3) + (α(2)α + 2α(1)α(1))γ(2) −
(
α +

6α(1)(α(1))′

(α(2))′

)
γ(1)
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+
α′ +

(
3α

(1)(α(1))′

(α(2))′

)′
(

3(α(1))′

(α(2))′

)′
+ g′

γ +

∫ (
α +

3α(1)(α(1))′

(α(2))′

)′
γ(1) −

((
α + 3α(1)(α(1))′

(α(2))′

)′
(

3(α(1))′

(α(2))′

)′
+ g′

)′
γ

= −α(1)αγ(3) + (α(2)α + 2α(1)α(1))γ(2) −
(
α +

6α(1)(α(1))′

(α(2))′

)
γ(1)

+
α′ +

(
3α

(1)(α(1))′

(α(2))′

)′
(

3(α(1))′

(α(2))′

)′
+ g′

γ +

∫ (
α + 3α(1)(α(1))′

(α(2))′

)′
(

3(α(1))′

(α(2))′

)′
+ g′

γ′ −

((
α + 3α(1)(α(1))′

(α(2))′

)′
(

3(α(1))′

(α(2))′

)′
+ g′

)′
γ

= −α(1)αγ(3) + (α(2)α + 2α(1)α(1))γ(2) −
(
α +

6α(1)(α(1))′

(α(2))′

)
γ(1)

+
2
(
α + 3α(1)α(1))′

(α(2))′

)′
(

3(α(1))′

(α(2))′

)′
+ g′

γ −
∫ (2

(
α + 3α(1)α(1))′

(α(2))′

)′
(

3(α(1))′

(α(2))′

)′
+ g′

)′
γ.

Now let

a = α(1)α, b = α(1)α(1) +
a′

g′
, c =

3α(1)α′ + b′

(α(2))′
, d =

α + c′(
3(α(1))′

(α(2))′

)′
+ g′

,

and introduce a new parameter β such that β′ = d′γ and so γ = β(1) := β′/d′. Replacing
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all these we have a16 = −aβ(4) + bβ(3) − cβ(2) + dβ(1) − β and

A =

1 0 α
αβ(5) − α(1)β(4)

+α(2)β(3) − β(2)

−αβ(4) + 2α(1)β(3)

−3
(

(α(1))′

(α(2))′

)
β(2) + β(1)

−aβ(4) + bβ(3) − cβ(2)

+dβ(1) − β

0 1 g gβ(5) − β(4) 2β(3) − gβ(4)

−gα(1)β(4) + β(1)

+(2α(1) + gα(2))β(3)

−
(

3(α)(1))′

(α(2))′
+ g
)
β(2)

0 0 1 β(5) −β(4) −α(1)β(4) + α(2)β(3) − β(2)

0 0 0 1 −g −α

0 0 0 0 1 0

0 0 0 0 0 1



,

where

β(2) :=
(β(1))′(

3(α(1))′

(α(2))′

)′
+ g′

, β(3) :=
(β(2))′

(α(2))′
, β(4) :=

(β(3))′

g′
, β(5) :=

(β(4))′

g′
,

for meromorphic functions g, α and β.

We have the extended solution

Φ = [Aγξ] = (πα1 + λπ⊥α1
)(πα2 + λπ⊥α2

)(πα3 + λπ⊥α3
),

where α1 = Span{c6, c5}, α2 = Span{c6, c5, c4}, α3 = Span{c6, c5, c4, c3}, where

c3, c4, c5, c6 denote the columns A. As r is odd, by (7.1.13), this corresponds to the har-

monic map φ : M → Sp(3)/U(3) associated to subbundle φ = ψ0 + ψ2 = α1 + α⊥2 ∩ α3

of M × C6. By Example 7.1.13 we have the harmonic map ϕ = iΦ−1 = i(ι ◦ φ) : M →
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Sp(3) where Φ−1 = ι ◦ φ = πφ − π⊥φ which is of uniton number at most 3.

The process above gives rise to a bijection (α, g, β) 7→ A between the space of meromor-

phic functions on M of dimension 3 to (SolJξ )0, as given some A = (ajk)j,k=1,...,6 ∈

(SolJξ )0 we retrieve the meromorphic functions by setting g = a23, α = a13 and

β = −a16 − aβ(4) + bβ(3) − cβ(2) + dβ(1), where

α(1) =
a′13

a′23

, α(2) =
(α(2))′

a′23

β(5) = a34, β(4) = −a35, β(3) =
1

2
(a25 − ga35),

β(2) = −a36 −
α(1)

2
β(4) + α(2)β(3), β(1) = a15 + gβ(4) − 2α(1)β(3) +

3(α(1))′

(α(2))′
β(2),

and a, b, c, and d given above.

7.3 Standard Type Theorem

In the classification above a different algorithm was used for each type of canonical ele-

ment to identify and isolate the parameters that are to be replaced; for canonical elements

of higher dimension than those in §7.2 such an algorithm may not exist. For O(n) an al-

gorithm was given in [29] which classifies all extended solutions of finite uniton number.

This algorithm, demonstrated in Example 6.3.10, adds a border to a lower dimensional

solution and then parametrizes the new top row by solving the extended solution equa-

tions (6.2.2), the new last column and new top-right element found by algebra as detailed

in §6.3.1. When solving the extended solution equations and finding the new top row,

Ferreira, Simões and Wood introduced new parameters that replace the parameters in the

new top row only, leaving all parameters inside the border unchanged, then went on to

complete the border by finding the new last column and new top-right element by alge-

bra. The resulting parameters were sometimes only local in character. For Sp(m) finding

such a general algorithm is more difficult as, unlike the O(n) case, there is an additional
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problem that we cannot find the new top-right element by algebra. This is because of

the equation (cn, cn) = 0 from Lemma 5.1.4, which determined the new top-right element

in the O(n) case, is now ω(cn, cn) = 0 from Lemma 5.1.7, which is automatically satis-

fied: this forces us to introduce new parameters that replace certain parameters inside the

border as well as parameters on the new top row, as opposed to only on the new top row as

in the O(n) case. In our work, the parameters introduced in this way are always globally

defined. Further, if one does not carefully choose the parameters that are to be replaced

when solving the extended solution equations, then problems may arise in finding the new

top-right element of the border, for example consider the type (1, 1, 1, 1) example from

§7.2.2: If we introduce new parameters which replace the parameters in the new top row

of the border only as in the O(n) case, we get

A =


1 τ (1) τ a14

0 1 f −τ

0 0 1 −τ (1)

0 0 0 1

 ,

where τ (1) = τ ′/f ′. Then, when finding the new top-right element we get a14 =
∫
−τ (1)τ

which cannot be solved by introducing a new parameter as before. This leads us to the

method used in §7.2.2, and to a general result for standard type which we now discuss.

Recall the definition of “standard type” from Remark 7.1.8. We prove that, for a standard

type canonical element ξ, when adding a border to an A ∈ (SolJξ )0 we may introduce new

parameters which replace the parameters on the superdiagonal of A and then complete

the border by algebra. More concretely, we give an algorithm that defines a parametriza-

tion h0 = (h0)ξ : M(M)m → (SolJξ )0 inductively for m = 1, 2, . . . , where ξ is the

canonical element of ΩrU(2m)J of standard type. To prove that the algorithm gives The-

orem 7.3.1 below we use a series of nested inductions. Recall the definition of (AJ
ξ )0 from

Definition 7.1.9.
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We prove:

Theorem 7.3.1. Suppose M is a Riemann surface, and m ∈ N. LetM(M)m denote the

space of m-tuples (ν1, . . . , νm) of meromorphic functions on M , and for r = 2m − 1 let

ξ be the canonical element of ΩrU(2m)J of standard type, with corresponding canonical

geodesic γξ. Let (SolJξ )0 be the space of meromorphic mapsA : M → (AJ
ξ )0 which satisfy

the extended solution equation (6.2.3) (away from the poles of A). Then there exists a

bijection h0 :M(M)m → (SolJξ )0 with the property that for every S1-invariant extended

solution Φ : M → ΩrU(2m)J of standard type there exist meromorphic parameters

(ν1, . . . , νm) such that Φ = [Aγξ] away from the poles of A, where A = h0(ν1, . . . , νm)

and [ ] denotes the projection onto the first factor of the Iwasawa decomposition.

Remark 7.3.2. (i) Our parameters are globally defined, i.e. defined on the whole of

M .

(ii) Each entry of h0(ν1, . . . , νm) is a rational function of ν1, . . . , νm and their (gen-

eralised) derivatives (Definition 6.3.9); recall that these are well-defined under

change of complex coordinates.

(iii) The map from Theorem 7.3.1 is bijective as each parameter can be found from the

elements of A in a way that generalises the classifications for type (1, 1), (1, 1, 1, 1)

and (1, 1, 1, 1, 1, 1) in §7.2.1, §7.2.2 and §7.2.3, respectively.

Proof. Our scheme of nested inductions starts with an ‘overarching’ induction on di-

mension (Induction Hypothesis 7.3.3). This proves that we may add a border to a given

Ã ∈ (SolJ
ξ̃
)0 with prescribed superdiagonal to give a A ∈ (SolJξ )0 where ξ̃ and ξ are

standard type canonical elements of Ω2m−2U(2m − 2)J and Ω2mU(2m)J , respectively.

To achieve the induction step for the overarching induction hypothesis we use two sep-

arate inductions, Induction Hypothesis 7.3.6 and Induction Hypothesis 7.3.8. Induction

Hypothesis 7.3.6 proves that we can solve the extended solution equations (7.3.5) below

and therefore parametrize the first half of the new top row (i.e. the first m elements in
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the new top row) in terms of the elements of the superdiagonal of A and their derivatives.

Similar to Induction Hypothesis 7.3.6, Induction Hypothesis 7.3.8 proves that we can also

solve the extended solution equations and parametrize the last m− 1 elements in the new

top row in terms of the elements of the superdiagonal of A and their derivatives. The

(m+ 1)st element of the new top row is treated separately. Finally to finish the induction

step for the overarching induction hypothesis (Induction Hypothesis 7.3.3) we complete

the border by algebra.

We use induction on m so the dimension 2m of Sp(2m,C) is increased by 2 in the over-

arching induction step.

We start with m = 1 where we have ξ = i diag(1, 0). Let f : M → C be a meromorphic

function. Then elements of (SolJξ )0 are of the form

A =

1 f

0 1

 ,

so we have a bijective mapping h0 : M(M)1 → (SolJξ )0 given by f 7→ A. We use this

as a base for induction on the dimension m. Let m ≥ 1 and let ξ = i diag(2m, 2m −

1, . . . , 1, 0) be a canonical element of Ω2mU(2m)J . Note that ξ is of standard type and

γξ ∈ Ω2mU(2m)J (Definition 7.1.7). We define another canonical element of standard

type ξ̃ = i diag(2m−2, 2m−3, . . . , 1, 0) of Ω2m−2U(2m−2)J . To explain our algorithm,

we need to introduce parameters αij depending on two indices.

Induction Hypothesis 7.3.3. Let σ(m) = m(m − 1)/2 − 1 and assume we have deter-

mined h̃0 =M(M)m−1 → (SolJ
ξ̃
)0 such that that for meromorphic data

(ν1, . . . , νm−1) = (αm−2,0, αm−3,1, αm−4,2, . . . , α1,m−3, α0,σ(m)) ∈M(M)m−1 (7.3.1)
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the associated Ã ∈ (SolJ
ξ̃
)0 defined from h̃0 has superdiagonal of the form

(αm−2,0, α
(1)
m−3,1, α

(2)
m−4,2, . . . , α

(m−3)
1,m−3, α

(σ(m))
0,σ(m),

− α(m−3)
1,m−3, . . . , −α

(1)
m−3,1, −αm−2,0). (7.3.2)

Here,

all the generalised derivatives of each αi,j in the superdiagonal (7.3.2) are

with respect to functions of ‘previous’ entries αk,l in the superdiagonal, i.e.

ones with m− 2 ≥ k > i.

(7.3.3)

We call this the overarching induction hypothesis.

Note that the last m − 2 entries of (7.3.2) are minus the first m − 2 entries and that the

m− 1st entry has a special formula.

Notation 7.3.4. For αa,b then “a” numbers the parameter and its position in the su-

perdiagonal and “b” denotes the “generation” of the parameter. Each time during our

inductions that we introduce a new parameter to replace an existing (‘old’) parameter

such that the old parameter is a generalised derivative of the new one.

Remark 7.3.5. (i) For m = 2, (7.3.1) and (7.3.2) read α0,0 ∈M(M)1 and (α0,0) (as

α
(0)
0,0 = α0,0 by Definition 6.3.9), respectively.

(ii) For m = 3, (7.3.1) and (7.3.2) read (α1,0, α0,2) ∈M(M)2 and (α1,0, α
(2)
0,2 ,−α1,0),

respectively.

Now suppose Induction Hypothesis 7.3.3 holds for some m − 1. We will show how to

find h0 : M(M)m → (SolJξ )0 from h̃0 = M(M)m−1 → (SolJ
ξ̃
)0 by adding a border to
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the Ã associated to h̃0, so we have

A =



1 a12 a13 . . . a1,2m−1 a1,2m

0 a2,2m

0 Ã a3,2m

0
...

0 0 0 0 0 1


. (7.3.4)

The form of (7.3.4) for types (1, 1, 1, 1) and (1, 1, 1, 1, 1, 1) are given by (7.2.2) and

(7.2.10). We find a parametrization of the new top row (a12, a13, . . . , a1,2m−1) and new

top-right element a1,2m by solving the extended solution equations (6.2.3) which read in

this case

a′1j = a1,j−1a
′
j−1,j. (7.3.5)

Here, as usual, ′ denotes the derivative with respect to any local complex coordinate on

M , but our equations are independent of choice of complex coordinate. We find the

first m − 1 elements of the new top row. The first element in the new top row a12

automatically satisfies (7.3.5) and so we parametrize this by a12 = αm−1,0 where αm−1,0

is meromorphic. For the next element a13 we have a13 =
∫
a12a

′
23. As a23 is the second

element of the superdiagonal of A and therefore the first element in the superdiagonal of

Ã we have by (7.3.2) in our overarching induction hypothesis that a23 = αm−2,0. Using

this and integration by parts we have

a13 =

∫
αm−1,0 α

′
m−2,0 = αm−1,0 αm−2,0 −

∫
α′m−1,0 αm−2,0. (7.3.6)

This calculation was presented for type (1, 1, 1, 1, 1, 1) earlier in (7.2.11). We introduce

a new parameter αm−2,1 (which is a ‘new generation’ of αm−2,0 which replaces it) such

that α′m−2,1 = αm−2,0 α
′
m−1,0 and so αm−2,0 = α′m−2,1/α

′
m−1,0 =: α

(1)
m−2,1, substituting
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and integrating (7.3.6) we have

a13 = αm−1,0 α
(1)
m−2,1 − αm−2,1.

We use this as a base for an induction on K, 3 ≤ K < m inside our overarching in-

duction hypothesis to prove that we can solve the extended solution equations (7.3.5) and

parametrize the first m elements of the new top row in terms of certain elements of the

superdiagonal of A:

Induction Hypothesis 7.3.6. For some K with 3 ≤ K < m, assume there exists

αm−K+1,K−2 such that

a1K = gK(αm−1,0, αm−2,1, . . . , αm−K+1,K−2), (7.3.7)

by which we mean that

a1K is a rational function of αm−1,0, αm−2,1, . . . , αm−K+1,K−2 and their gen-

eralised derivatives. The generalised derivatives of each αi,j are with re-

spect to functions of ‘previous’ parameters αk,l, i.e. ones with m− 1 ≥ k >

i.

(7.3.8)

By (7.3.3) in our overarching induction hypothesis (Induction Hypothesis 7.3.3) we know

for 3 ≤ K < m that

α
(j)
m−K+1,K−3 =

(α
(j−1)
m−K+1,K−3)′

f ′m−K+1,j−1

, 1 ≤ j ≤ K − 2, (7.3.9)

where fm−K+1,j−1 are functions of αm−1,0, αm−2,1, . . . , αm−K+2,K−3 and their derivatives.

Remark 7.3.7. Note that “j − 1” in fm−K+1,j−1 does not denote the generation of the

parameter but indicates the order j − 1 of the generalised derivative of αm−K+1,K−3.

Also, by the overarching induction hypothesis (7.3.2), aK,K+1 = α
(K−2)
m−K,K−2.
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Suppose Induction Hypothesis 7.3.6 holds for some K, 3 ≤ K < m. From the extended

solution equation (7.3.5) for j = K + 1 we have

a1,K+1 =

∫
a′1,K+1 =

∫
a1,K a

′
K,K+1 =

∫
gK(α

(K−2)
m−K,K−2)′ (7.3.10)

where gk is given by (7.3.7). Integrating (7.3.10) by parts to lower the order of the (gen-

eralised) derivative of α(K−2)
m−K,K−2 and using (7.3.9) we have

a1,K+1 = gK(α
(K−2)
m−K,K−2)−

∫
g′K

f ′m−K,K−3

(α
(K−3)
m−K,K−2)′. (7.3.11)

Using integration by parts again, we get

a1,K+1 = gK(α
(K−2)
m−K,K−2)− g′K

f ′m−K,K−3

(α
(K−3)
m−K,K−2) +

∫ (
g′K

f ′m−K,K−3

)
f ′m−K,K−4

(α
(K−4)
m−K,K−2)′.

(7.3.12)

After repeating this use of integration by parts to lower the order of the (generalised)

derivative and using (7.3.9) we obtain an expression of the form

a1,K+1 =
K−1∑
k=1

γK+1
k α

(k−1)
m−K,K−2 −

∫
(γK+1

1 )′αm−K,K−2, (7.3.13)

where γK+1
K−1 = gK , and inductively γK+1

j = −(γK+1
j+1 )′/f ′m−K,j−1, j = 1, 2, . . . , K − 2.

Note here that the γK+1
j are all functions of αm−1,0, αm−2,1, . . . , αm−K+1,K−2 and their

derivatives as by (7.3.8) and (7.3.9) both gK and fm−K,j−1 are functions of these. Let

αm−K,K−1 be a new generation of αm−K,K−2 satisfying α′m−K,K−1 = (γK+1
1 )′αm−K,K−2,

and so αm−K,K−2 = (αm−K,K−1)′/(γK+1
1 )′ =: α

(1)
m−K,K−1. Then by substituting this last
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formula into (7.3.13) and integrating we conclude

a1,K+1 =
K−1∑
k=1

γK+1
k α

(k)
m−K,K−1 − αm−K,K−1

=: gK+1(αm−1,0, αm−2,1, . . . , αm−K,K−1)

for some gK+1, which completes the induction step for Induction Hypothesis 7.3.6. Note

that when we introduce a new generation αm−K,K−1 of αm−K,K−2 for some K we have

the following relations of generalised derivatives:

α
(j)
m−K,K−1 = α

(j−1)
m−K,K−2, j = 2, 3, . . . , K − 1. (7.3.14)

We have thus found a parametrization of the first m elements in the new top row.

Next, we find the element a1,m+1 of the new top row. To do this we solve (7.3.5) in a

similar way to before:

a1,m+1 =

∫
a1,ma

′
m,m+1 =

∫
gm(α

(σ(m))
0,σ(m))

′,

where gm is as in (7.3.7) and am,m+1 = α
(σ(m))
0,σ(m) by (7.3.2) from the overarching induction

hypothesis. Using integration by parts we have

a1,m+1 = gm α
(σ(m))
0,σ(m) −

∫
g′m α

(σ(m))
0,σ(m). (7.3.15)

From the overarching induction hypothesis (7.3.3) the generalised derivatives of α0,σ(m)

are of the form

α
(j)
0,σ(m) =

(α
(j−1)
0,σ(m))

′

h′j−1

, j = 1, 2, . . . , σ(m), (7.3.16)

where hj−1 are functions of αm−1,0, αm−2,1, . . . , α1,m−2 and their derivatives. Substituting
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the expression (7.3.16) for j = σ(m) into (7.3.15) we obtain

a1,m+1 = gm α
(σ(m))
0,σ(m) −

∫
g′m

(hσ(m)−1)′
(α

(σ(m)−1)
0,σ(m) )′. (7.3.17)

Using integration by parts to evaluate the integral in (7.3.17) we have

a1,m+1 = gm α
(σ(m))
0,σ(m) −

g′m
(hσ(m)−1)′

(α
(σ(m)−1)
0,σ(m) )

+

∫ (
g′m

(hσ(m)−1)′

)′
(hσ(m)−2)′

(α
(σ(m)−2)
0,σ(m) )′.

With repeated use of integration by parts to lower the order of the (generalised) derivative

of α0,σ(m) and using (7.3.16) we end up with

a1,m+1 =

σ(m)+1∑
k=1

γm+1
k α

(k−1)
0,σ(m) −

∫
(γm+1

1 )′ α0,σ(m), (7.3.18)

where

γm+1
σ(m)+1 = gm, γm+1

j = −
(γm+1
j+1 )′

h′j−1

, j = 1, 2, . . . , σ(m). (7.3.19)

Note here that the γm+1
j are all functions of αm−1,0, αm−2,1, . . . , α1,m−2 and their deriva-

tives as by (7.3.8) and (7.3.16) both gm and hj are functions of these. We introduce a

new generation α0,σ(m)+1 of α0,σ(m) in the following way: let α0,σ(m)+1 = (γm+1
1 )′α0,σ(m),

which gives a new generalised derivative

α0,σ(m) = (α0,σ(m)+1)/(γm+1
1 )′ =: α

(1)
0,σ(m)+1. (7.3.20)

The relation between the generalised derivatives of the new generation and the old gener-
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ation is

α
(j)
0,σ(m)+1 = α

(j−1)
0,σ(m), j = 1, 2, . . . , σ(m) + 1. (7.3.21)

Substituting (7.3.20) into (7.3.18) and evaluating the integral we get

a1,m+1 =

σ(m)+1∑
k=1

γm+1
k α

(k)
0,σ(m)+1 − α0,σ(m)+1, (7.3.22)

where the γm+1
k are as in (7.3.19), and so we have a parametrization for the (m + 1)st

element of the new top row. The calculation above was presented in (7.2.3) for m = 2

and both (7.2.12) and (7.2.13) for m = 3.

We turn our attention to the element a2m−1,2m of the new last column. We find this

element by algebra, that is we use Lemma 5.1.7 and solve

ω(cj, ck) =

iδjk, if j > k,

−iδjk, if j < k,

where cj is the jth column of A. Applying this to c2, and c2m we get

ω(c2, c2m) = i(−a2m−1,2m − αm−1,0) = 0

and so a2m−1,2m = −αm−1,0.

We now find the last m− 2 elements of the new top row and new top-right element.

Firstly to find a1,m+2 in the new top row we solve (7.3.5) by first using am+1,m+2 =

−α(m−2)
1,m−2 (from the overarching induction hypothesis (7.3.2)) and then (7.3.22). This
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gives

a1,m+2 =

∫
a′1,m+2 =

∫
a1,m+1a

′
m+1,m+2 =

∫
a1,m+1(α

(m−2)
1,m−2)′ by (7.3.5)

=

∫ ( σ(m)+1∑
k=1

γm+1
k α

(k)
0,σ(m)+1 − α0,σ(m)+1

)
(−α(m−2)

1,m−2)′. by (7.3.22)

Expanding the brackets and pulling out the first term of the sum, we see

a1,m+2 =

∫ σ(m)+1∑
k=1

γm+1
k (−α(m−2)

1,m−2)′α
(k)
0,σ(m)+1 −

∫
(−α(m−2)

1,m−2)′α0,σ(m)+1

=

∫ σ(m)+1∑
k=2

γm+1
k (−α(m−2)

1,m−2)′α
(k)
0,σ(m)+1 +

∫
γm+1

1 (−α(m−2)
1,m−2)′α

(1)
0,σ(m)+1 (7.3.23)

−
∫

(−α(m−2)
1,m−2)′α0,σ(m)+1.

Recall from (7.3.16) and (7.3.21) that

α
(1)
0,σ(m)+1 =

(α0,σ(m)+1)′

(γm+1
1 )′

, α
(j)
0,σ(m)+1 =

(α
(j−1)
0,σ(m)+1)′

h′j−2

, (7.3.24)

for j = 2, 3, . . . , σ(m) + 1. We substitute (7.3.24) for j = k into the first integrand of

(7.3.23) then use integration by parts and collect like terms as follows:

a1,m+2 =

∫ σ(m)+1∑
k=2

γm+1
k (−α(m−2)

1,m−2)′

h′k−2

(α
(k−1)
0,σ(m)+1)′ +

∫
γm+1

1 (−α(m−2)
1,m−2)′

(γm+1
1 )′

α′0,σ(m)+1

−
∫

(−α(m−2)
1,m−2)′α0,σ(m)+1

=
γm+1

1 (−α(m−2)
1,m−2)′

(γm+1
1 )′

α0,σ(m)+1 +

σ(m)+1∑
k=2

γm+1
k (−α(m−2)

1,m−2)′

h′k−2

α
(k−1)
0,σ(m)+1
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−
∫ σ(m)+1∑

k=2

(γm+1
k (−α(m−2)

1,m−2)′

h′k−2

)′
α

(k−1)
0,σ(m)+1 (7.3.25)

−
∫ {

(−α(m−2)
1,m−2)′ +

(γm+1
1 (−α(m−2)

1,m−2)′

(γm+1
1 )′

)′}
α0,σ(m)+1.

We now substitute (7.3.24) for j = k − 1 into the first integrand of (7.3.25) and pull out

the first term of the sum in the first integrand to get

a1,m+2 =
γm+1

1 (−α(m−2)
1,m−2)′

(γm+1
1 )′

α0,σ(m)+1 +

σ(m)+1∑
k=2

γm+1
k (−α(m−2)

1,m−2)′

h′k−2

α
(k−1)
0,σ(m)+1

−
∫ σ(m)+1∑

k=3

(
γm+1
k (−α(m−2)

1,m−2)′

h′k−2

)′
h′k−3

(α
(k−2)
0,σ(m)+1)′ (7.3.26)

−
∫ (

γm+1
k (−α(m−2)

1,m−2)′

h′0

)′
(γm−1

1 )′
α′0,σ(m)+1

−
∫ {

(−α(m−2)
1,m−2)′ +

(γm+1
1 (−α(m−2)

1,m−2)′

(γm+1
1 )′

)′}
α0,σ(m)+1.

Using integration by parts on the first two integrals into (7.3.26) and collecting the like

terms, we see

a1,m+2 =
{γm+1

1 (−α(m−2)
1,m−2)′

(γm+1
1 )′

−

(
γm+1
k (−α(m−2)

1,m−2)′

h′0

)′
(γm−1

1 )′

}
α0,σ(m)+1

+

σ(m)∑
k=2

{γm+1
k (−α(m−2)

1,m−2)′

h′k−2

−

(
γm+1
k+1 (−α(m−2)

1,m−2)′

h′k−1

)′
h′k−2

}
α

(k−1)
0,σ(m)+1

+
γm+1
σ(m)+1(−α(m−2)

1,m−2)′

h′σ(m)

α
(σ(m))
0,σ(m)+1
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+

∫ σ(m)+1∑
k=3

((γm+1
k (−α(m−2)

1,m−2)′

h′k−2

)′
h′k−3

)′
α

(k−2)
0,σ(m)+1

−
∫ {

(−α(m−2)
1,m−2)′ +

(γm+1
1 (−α(m−2)

1,m−2)′

(γm+1
1 )′

)′
−

((γm+1
k (−α(m−2)

1,m−2)′

h′0

)′
(γm−1

1 )′

)′}
α0,σ(m)+1.

If we continue to use (7.3.24), integrate by parts to lower the order of (generalised) deriva-

tive and then collect like terms we finally get

a1,m+2 =

σ(m)+1∑
k=1

δm+2
k α

(k−1)
0,σ(m)+1 −

∫
(−α(m−2)

1,m−2 + δm+2
1 )′α0,σ(m)+1, (7.3.27)

where the δm+2
k are inductively defined as follows:

δm+2
σ(m)+1 =

γm+1
σ(m)+1(−α(m−2)

1,m−2)′

h′σ(m)+1

, δm+2
j =

γm+1
j (−α(m−2)

1,m−2)′

h′j−2

−
(δm+2
j+1 )′

h′j−2

,

j = 2, 3, . . . , σ(m) and

δm+2
1 =

γm+1
1 (−α(m−2)

1,m−2)′

(γm+1
1 )′

− (δm+2
2 )′

(γm+1
1 )′

.

As before we introduce a new generation α0,σ(m)+2, of α0,σ(m)+1 satisfying

α′0,σ(m)+2 = (−α(m−2)
1,m−2 + δm+2

1 )′ α0,σ(m)+1,

so

α0,σ(m)+1 =
(α0,σ(m)+2)′

(−α(m−2)
1,m−2 + δm+2

1 )′
=: α

(1)
0,σ(m)+2. (7.3.28)

Substituting (7.3.28) into (7.3.27) and evaluating the integral we have

a1,m+2 =

σ(m)+1∑
k=1

δm+2
k α

(k)
0,σ(m)+2 − α0,σ(m)+2.
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Note here that all the δm+2
j , j = 2, 3, . . . , σ(m) are functions of

αm−1,0, αm−2,1, . . . , α1,m−2 and their derivatives as all γm+1
j and hj are functions

of them and their derivatives. This calculation was given in (7.2.5) for m = 2 and

(7.2.15), (7.2.16) and (7.2.17) for m = 3.

We will use this as a basis for another induction, this time to find the elements a1I with

m+ 2 ≤ I ≤ 2m.

Induction Hypothesis 7.3.8. For each I , m + 2 ≤ I < 2m, assume there exists

α0,σ(m)+I−m such that

a1I =

σ(m)+1∑
k=1

δIk α
(k)
0,σ(m)+I−m − α0,σ(m)+I−m, (7.3.29)

for

δIσ(m)+1 =
δI−1
σ(m)+1(−α(2m−I)

I−m−1,2m−I)
′

l′σ(m)

, δIj =
δI−1
j (−α(2m−I)

I−m−1,2m−I)
′

l′j−1

−
(δIj+1)′

l′j−1

,

(7.3.30)

j = 1, 2, . . . , σ(m),

where lj are functions of αm−1,0, αm−2,1, . . . , α1,m−2 and their derivatives

with
(7.3.31)

α
(j)
0,σ(m)+I−m =

α
(j−1)
0,σ(m)+I−m

l′j−1

, j = 1, 2, . . . , σ(m) + I −m. (7.3.32)

We find a parametrization of a1,I+1 by solving (7.3.5) for j = I + 1 which reads

a′1,I+1 = a1Ia
′
I,I+1. (7.3.33)
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From (7.3.2) we have that aI,I+1 = −α(2m−I−1)
I−m,2m−I−1, substituting this into (7.3.33) we have

a′1,I+1 = a1I(−α(2m−I−1)
I−m,2m−I−1)′. (7.3.34)

Suppose Induction Hypothesis 7.3.8 holds for some I , m+2 ≤ I < 2m, then a1I is given

by (7.3.29). By substituting this into (7.3.34) we get

a′1,I+1 =
( σ(m)+1∑

k=1

δIk α
(k)
0,σ(m)+I−m − α0,σ(m)+I−m

)
(−α(2m−I−1)

I−m,2m−I−1)′. (7.3.35)

We integrate both sides of (7.3.35) and expand the brackets to give

a1,I+1 =

∫ σ(m)+1∑
k=1

(δIk α
(k)
0,σ(m)+I−m − α0,σ(m)+I−m)(−α(2m−I−1)

I−m,2m−I−1)′

=

∫ σ(m)+1∑
k=1

δIk(−α
(2m−I−1)
I−m,2m−I−1)′α

(k)
0,σ(m)+I−m (7.3.36)

−
∫

(−α(2m−I−1)
I−m,2m−I−1)′α0,σ(m)+I−m.

Substituting (7.3.32) from Induction Hypothesis 7.3.8 into (7.3.36) we get

a1,I+1 =

∫ σ(m)+1∑
k=1

δIk(−α
(2m−I−1)
I−m,2m−I−1)′

l′k−1

(α
(k−1)
0,σ(m)+I−m)′ (7.3.37)

−
∫

(−α(2m−I−1)
I−m,2m−I−1)′α0,σ(m)+I−m.

We use integration by parts on (7.3.37) then pull out the first term of the sum in the

integrand to collect like terms as follows:

a1,I+1 =

σ(m)+1∑
k=1

δIk(−α
(2m−I−1)
I−m,2m−I−1)′

l′k−1

α
(k−1)
0,σ(m)+I−m
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−
∫ σ(m)+1∑

k=2

(δIk(−α(2m−I−1)
I−m,2m−I−1)′

l′k−1

)′
α

(k−1)
0,σ(m)+I−m (7.3.38)

−
∫ {

(−α(2m−I−1)
I−m,2m−I−1)′ +

(δI1(−α(2m−I−1)
I−m,2m−I−1)′

l′0

)′}
α0,σ(m)+I−m.

We substitute (7.3.32) from Induction Hypothesis 7.3.8 into the sum in the integrand in

(7.3.38) to get

a1,I+1 =

σ(m)+1∑
k=1

δIk(−α
(2m−I−1)
I−m,2m−I−1)′

l′k−1

α
(k−1)
0,σ(m)+I−m

−
∫ σ(m)+1∑

k=2

(
δIk(−α(2m−I−1)

I−m,2m−I−1)′

l′k−1

)′
l′k−2

(α
(k−2)
0,σ(m)+I−m)′ (7.3.39)

−
∫ {

(−α(2m−I−1)
I−m,2m−I−1)′ +

(δI1(−α(2m−I−1)
I−m,2m−I−1)′

l′0

)′}
α0,σ(m)+I−m.

Similarly to before we use integration by parts on (7.3.39) then pull out the first term of

the sum in the integrand to collect like terms as follows:

a1,I+1 =

σ(m)+1∑
k=1

δIk(−α
(2m−I−1)
I−m,2m−I−1)′

l′k−1

α
(k−1)
0,σ(m)+I−m

−
σ(m)+1∑
k=2

(
δIk(−α(2m−I−1)

I−m,2m−I−1)′

l′k−1

)′
l′k−2

α
(k−2)
0,σ(m)+I−m

−
∫ σ(m)+1∑

k=3

(( δIk(−α(2m−I−1)
I−m,2m−I−1)′

l′k−1

)′
l′k−2

)′
α

(k−2)
0,σ(m)+I−m

−
∫ {

(−α(2m−I−1)
I−m,2m−I−1)′ +

(δI1(−α(2m−I−1)
I−m,2m−I−1)′

l′0

)′
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−

(( δI2(−α(2m−I−1)
I−m,2m−I−1)′

l′1

)′
l′0

)′}
α0,σ(m)+I−m.

Continuing the programme of using (7.3.32) from Induction Hypothesis 7.3.8, integration

by parts and pulling out the first term of the sum in the integrand to collect like terms we

end up with

a1,I+1 =

σ(m)+1∑
k=1

δI+1
k α

(k−1)
0,σ(m)+I−m −

∫
(α

(2m−I−1)
I−m,2m−I−1)′α0,σ(m)+I−m, (7.3.40)

for

δI+1
σ(m)+1 =

δIσ(m)+1(−αI−m,2m−I−1)′

l′σ(m)

, δI+1
j =

δIj (−αI−m,2m−I−1)′

l′j−1

−
δI+1
j+1

l′j−1

,

j = 1, 2, . . . , σ(m) defined inductively. We introduce a new generation α0,σ(m)+I−m+1 of

α0,σ(m)+I−m such that α′0,σ(m)+I−m+1 = (α
(2m−I−1)
I−m,2m−I−1)′α0,σ(m)+I−m, therefore we have

α0,σ(m)+I−m =
(α0,σ(m)+I−m+1)′

(α
(2m−I−1)
I−m,2m−I−1)′

=: α
(1)
0,σ(m)+I−m+1. (7.3.41)

Substituting (7.3.41) into (7.3.40) and evaluating the integral gives

a1,I+1 =

σ(m)+1∑
k=1

δI+1
k α

(k)
0,σ(m)+I−m+1 − α0,σ(m)+I−m+1.

Note that the δI+1
k are all functions of αm−1,0, αm−2,1, . . . , α1,m−2 and their derivatives as

by (7.3.30) and (7.3.31) of Induction Hypothesis 7.3.8, δIk and li are functions of these

and their derivatives. For I = 2m− 1 = 5, so m = 3 and ξ is of type (1, 1, 1, 1, 1, 1) this

calculation was given in (7.2.19).

This completes the induction step for Induction Hypothesis 7.3.8 and so we have found a

parametrization for the new top row, new top-right element and a2m−1,2m of the new last



7.3. STANDARD TYPE THEOREM 203

column.

We find the remaining elements aj,2m, for 2 ≤ j ≤ 2m − 2 by algebra similar to how

we parametrized a2m−1,2m earlier. More concretely we use (5.1.11) and Lemma 5.1.7 to

get that the columns of A must satisfy

ω(cj, c2m) = i
m∑
k=1

ak,jak,2m − aK,jak,2m = 0,

for 1 < j ≤ 2m therefore we find aj,2m by evaluating ω(c2m+1−j, c2m) = 0. For m = 2

and m = 3 these calculation are given in (7.2.4) and (7.2.18), respectively.

This completes the border on Ã and the resulting A as in (7.3.4) is an element of (SolJξ )0.

During this process the generation of each of the parameters αm−2,0, αm−3,1,

αm−4,2, . . . , α1,m−3 on the superdiagonal of Ã increased by 1, as a new generalised deriva-

tive was introduced. We introduced a completely new parameter αm−1,0, and the genera-

tion of the parameter α0,σ(m) was increased by m and so introducing m more generalised

derivatives of α0,σ(m). In fact, αm−2,0 is replaced by α
(1)
m−2,1 and in general α(j)

m−2−j,j

is replaced by α(j+1)
m−2−j,j+1 for j = 0, 1, . . . ,m − 3 with α(σ(m))

0,σ(m) replaced by α(σ(m+1))
0,σ(m+1).

Therefore the superdiagonal of A has the form

(αm−1,0, α
(1)
m−2,1, α

(2)
m−3,2, α

(3)
m−4,3, . . . , α

(m−2)
1,m−2, α

(σ(m+1))
0,σ(m+1),

− α(m−2)
1,m−2, . . . ,−α

(2)
m−3,2,−α

(1)
m−2,1,−αm−1,0). (7.3.42)

This completes the induction step for the overarching induction hypothesis (Induc-

tion Hypothesis 7.3.3). GivenA ∈ (SolJξ )0 thenA has superdiagonal of the form (7.3.42).

The meromorphic data

(ν1, . . . , νm) = (αm−1,0, αm−2,1, αm−3,2, . . . , α1,m−3, α0,σ(m+1)) ∈M(M)m
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can be found from the elements of A, see Remark 7.3.2.
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