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Abstract

In this thesis we are concerned with harmonic maps from a Riemann surface to a complex

projective space, the unitary group, the orthogonal group, or the symplectic group.

We describe and link two constructions of complex isotropic (equivalently, finite uniton
number) harmonic maps from a Riemann surface to complex projective spaces; all har-
monic maps from the 2-sphere are complex isotropic. We then specialise to harmonic
maps from the 2-sphere to the complex projective plane and show that there is no restric-
tion on the ramification behaviour in some situations and that the opposite is true in other

situations.

We find the dimension of the spaces of holomorphic sections and holomorphic differ-
entials of certain line bundles. We use those results to give improved lower bounds on
the index of complex isotropic harmonic maps from the 2-sphere and torus to a complex

projective space of arbitrary dimension and from higher genus surfaces in some cases.

We give, up to dimension 6, algebraic parametrizations of all S!-invariant extended solu-
tions of harmonic maps of finite uniton number from a Riemann surface to the symplectic
group, giving the corresponding harmonic maps explicitly. For arbitrary dimension we
give an algorithm which parametrizes all such S'-invariant extended solutions of har-

monic maps which are of standard type, i.e., of the maximum possible uniton number.
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Chapter 1

Introduction

A map between (compact) Riemannian manifolds is called harmonic if it is a critical point
of the energy functional, a natural extension of Dirichlet’s energy to Riemannian mani-
folds. The general theory of harmonic maps took off in 1958 when J. Eells investigated
infinite-dimensional spaces of maps, looking at points on these spaces that are critical
points of the energy functional [22]]. Little was known about their existence until Eells
and J. Sampson [26] famously proved that one can continuously deform any given map
between Riemannian manifolds into a harmonic map in its homotopy class, provided the
target manifold is non-positively curved. The same cannot be said for positively curved
target manifolds, for example Eells and J. C. Wood [27]] proved that there does not exist a
harmonic map from a 2-torus to the 2-sphere of degree +1. Although there is no general
theorem on the existence of harmonic maps for positively curved manifolds, many ex-
amples of harmonic maps and existence results have been found. Examples of harmonic
maps include but are not limited to: constant mappings between Riemannian manifolds;
harmonic functions; geodesics and holomorphic maps between Kihler manifolds (see [35)
§2.2], [S1, Chapter 4] and [25, §3] for a comprehensive list). We direct the reader to the
articles and book [24, 25, 51] for descriptions of existence and classification for particular

domain and target manifolds.
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A key tool in the study of harmonic maps is the first variation of the energy. The first
variation of the energy gives a formula involving the tension field which is the Euler-
Lagrange operator associated to the energy. The tension field also determines the direction
in which the energy decreases most rapidly. If the tension field is identically zero then
the map is a critical point of the energy functional and therefore a harmonic map [23,51].
In [23]] harmonic maps are linked to the physical action of rubber being stretched over
marble, which can be realised as a mapping of a plane domain to a 2-sphere. The tension
field at a point on the rubber represents the tension in the rubber: therefore if the tension

field is zero, the the rubber is in elastic equilibrium.

The second variation of the energy [40, 47]] is useful for determining the behaviour of
the energy near a harmonic map: it gives a way of assessing the stability of a harmonic
map by calculating its index. The index is the maximal dimension of the subspace on
which the Hessian of the energy is negative definite. A harmonic map is called (weakly)
stable if the index = 0: a harmonic map that is a local minimum of the energy has
index = 0 and is therefore stable [25, §6]. Generally the index of a harmonic map is
hard to calculate, for example, the index of the identity map on a (compact) Einstein
manifold (the Ricci curvature is a constant multiple of the metric) is zero if and only if
the first eigenvalue of the Laplacian is greater than twice the conformal factor [47]. Even
for a constant mapping, which has index = 0, the second variation is non-trivial [S1,
Chapter 5 §1.3]. Another notable result is due to A. Lichnerowicz [39]]: holomorphic
maps between compact Kéhler manifolds are harmonic and have index = 0. These maps
are therefore stable, in fact they are global minima of the energy functional. In many
cases only estimates have been found for the index of a harmonic map, for example, any
harmonic map from a compact Riemann surface to a complex projective space which is

neither holomorphic nor antiholomorphic is unstable [, 6]].

Harmonic maps into a complex projective space have been researched extensively [2} 3,

100112, 118, 119, 28,137,138, 153]]. In [27] Eells and Wood showed that a harmonic map from



a Riemann surface of genus g to the the 2-sphere S? = CP' is holomorphic if the degree
of the map is greater than the genus g, all such maps are therefore stable by [39]. For
g = 0, 1n [19, 20], A.M. Din and W.J. Zakrzewski first gave the explicit solutions of the
harmonic map equation. These were given by successively differentiating a holomorphic
map then constructing what would later be known as osculating spaces and associated

curves in [28]].

The work of [27] and [19] was expanded upon by Eells and Wood in [28] where they
constructed harmonic maps with no restriction on the genus g. This led to a classification
theorem relating complex isotropic harmonic maps ¢ : M — CP" to pairs (f, p) where
f + M — CP" is a full holomorphic map and p an integer, 0 < p < n [28]]. Further,
for 0 < p < n, these maps are unstable. In fact Eells and Wood in [28, §9] gave a
lower bound for the index of these harmonic maps ¢ by noting that, given a holomorphic
vector field along ¢, there is a smooth variation of ¢ that contributes to the index of ¢.
In Chapter (4| of this thesis we improve the estimates of Eells and Wood [28, §9] for all
harmonic maps from the 2-sphere to a complex projective space and complex isotropic
harmonic maps from the torus to a complex projective space. We also give new bounds on
the index of complex isotropic harmonic maps from higher genus surfaces to a complex
projective space which improve those in [28]] in some cases. Also in [28], Eells and
Wood proved that all harmonic maps had been obtained for ¢ = 0, and for g = 1 with
non-zero degree [28, Proposition 7.6]. For g = 0, D. Burns added to the discussion by
providing physical motivations to the work of Din and Zakrzewski [19] and Eells and
Wood [28]]. Also for g = 0, S.S. Chern and J. Wolfson [[14} 52] interpret the work of Din
and Zakrzewski through a moving frames approach providing a classification theorem for

minimal 2-spheres in CP".

As described in [28]] harmonic maps M — CP", where M is a compact Riemann sur-
face, are constructed from a full holomorphic map f : M — CP" as follows: first they

construct a family of holomorphic maps from a Riemann surface into a complex Grass-
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mannian which are indexed by the integer p, 0 < p < n: these are called the associated
curves of f. For each p, by pairing the pth associated curve with the (p — 1)st associated
curve, one gets a map into a flag manifold #,_, , which is horizontal with respect to a
Riemann submersion 7 : F,_; , — CP". Composing this map with the Riemann submer-
sion gives a harmonic map into a complex projective space now known as the pth Gauss

transform of f.

After the work of Eells and Wood, many authors turned their attention to classifying har-
monic maps from a compact Riemann surface to a complex Grassmannian G(k,n). In
[44]] J. Ramanathan determined all harmonic maps S* — G(2,4). In [16] (the results
of which were announced in [[15]) Chern and Wolfson constructed all harmonic maps
S? — G(2,n) for n arbitrary. Later F.E. Burstall and Wood gave an interpretation of the
construction of [28] in [[12]] by considering maps from M to a Grassmannian as subbun-
dles of the trivial bundle M x C"™!, and developing a technique of analysing harmonic
maps from a Riemann surface into a complex Grassmannian using “diagrams”. In Chap-
ter 2] we recall the construction of complex isotropic harmonic maps ¢ : M — CP" given

by Eells and Wood in [28] and by Burstall and Wood in [12] and link the two approaches.

In the constructions of complex isotropic maps given in [28]], to ensure the associated
curves of the full holomorphic map f are well defined and holomorphic, one needs to
pay particular attention to the ramification points of f. Analogously in the construction
of [12] to ensure the subbundles of M x C"*! are holomorphic one needs to “fill out the
zeros” of the subbundle. This again amounts to paying attention to the ramification points
of another related bundle map. In we prove these two definitions of ramification

point are the same.

In [18] T.A. Crawford showed that subspaces consisting of maps of a fixed degree and
energy of the space of harmonic maps S? — CIP? are path connected and that they can
be given the structure of a complex manifold. This is done by proving that the Gauss

transform as seen as a mapping from the complex manifold of full holomorphic maps of



fixed degree and total ramification index to the space of harmonic maps of fixed degree
and energy is a homeomorphism. Therefore the complex structure of the domain manifold
can be transported to the target. L. Lemaire and Wood carry further the work of Crawford
to prove in [37]] that the Gauss transform is, in fact, a diffeomorphism making the space of
harmonic maps with fixed degree and energy a smooth closed submanifold of the space of
all maps S? — CP2. In this work, the total ramification index, i.e. the sum of the points
of ramification of the full holomorphic map counted according to multiplicity, must be
fixed. Our work sheds some light on the phenomenon of ramification coalescence, where
the points of ramification can come together in the deformation of a map; at such a point,

the space of harmonic maps remains smooth [37]].

At a similar time to the extensive work dedicated to harmonic maps from surfaces to a
complex projective space, K. Uhlenbeck developed the theory of harmonic maps into Lie
groups. In [50], Uhlenbeck introduced polynomial extended solutions of a harmonic map,
that is, maps from a Riemann surface M into the loop group of the unitary group QU (n)
that are polynomial in a “spectral” parameter A. Uhlenbeck showed that such a polynomial
extended solution can be factorized with respect to certain subbundles of C" := M x C"
called “unitons”. In [46], G. Segal introduced the Grassmannian model of an extended
solution which represents an extended solution by a subbundle W of the trivial bundle

M x H where H is a Hilbert space.

In [9] Burstall and M.A. Guest used canonical elements and certain maps into a loop
group to classify all polynomial extended solutions for harmonic maps into the unitary
group. Chapter [5] concerns canonical elements, giving justification to two theorems pre-
sented in [7] and [8] and giving concrete descriptions of canonical elements for SU(n),
O(n) and Sp(n). The extended solutions classified in [9] were given by integration, with
equations which are easy to solve for U(n), especially for low dimensions. By view-
ing O(n) as a subgroup of U(n), M.J. Ferreira, B.A. Simdes and Wood [29] applied

the method of Burstall and Guest [9] to give a classification of extended solutions for
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harmonic maps into the orthogonal group. This classification was given according to
their canonical elements. Further, they gave a parametrization (at least locally) of these
extended solutions in terms of free holomorphic data by replacing every instance of in-
tegration with differentiation and algebraic operations. Chapter [0 recalls the work of
Uhlenbeck, Segal, Burstall, Guest, Ferreira, Simdes and Wood. In Chapter 7, we study
the problem of constructing harmonic maps into the symplectic group, which is consid-
erably harder than for the orthogonal group, as there are additional equations to solve to

ensure the map is into the symplectic group.

For completeness we give an introduction to harmonic maps and present two important

pieces of harmonic map theory, namely the first and second variation mentioned above.

1.1 Harmonic Maps

The first variation gives us the Euler-Lagrange equation for the energy functional. The
equation for this can be used directly to see, for example, that all geodesics ¢ : St — N
are harmonic maps. The second variation formula is useful for assessing if a harmonic
map is stable or not. Full details for the first and second variation can be found in [S1],
this is also the main reference for the first chapter; for more information we direct the

reader to the survey articles [23} 25, 24] and [56].

1.1.1 Energy Density Function and The Energy Integral

Consider two compact Riemannian manifolds (M, ¢g) and (N, h) with dimension m and

n, respectively.

Definition 1.1.1. The energy density function of a C*-mapping ¢ : (M, g) — (N, h) is
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the function e(¢) € C*°(M) given by

2
Sy
I
N | —
o

*
S

£
l\')l’—‘

Z (dp(u;), do(us)) .

where C*°(M, N) denotes the space of C* maps from M to N and C®(M) =
C™/%W(M,C). In the definition above, ¢*h is the pull back of h by ¢ and we denote
by d¢ : T,M — Ty N the differential of ¢ at a point x € M. Also {u;}~; is an

orthonormal basis for the tangent space 7, M at x.

To use this definition when we have local coordinates, we may apply the Gram-Schmidt
process. To do this we need to take local coordinates (x!, z2, ...,2™) on U around x. At
each point z € U we apply the Gram-Schmidt process to {9/0x'}", to get a locally
defined orthonormal frame {u;},. Noting that for each point z € U we have that
{u;(x)}", is an orthonormal basis for 7, M, then the energy density function defined on

a neighbourhood U around z is given by,

where e(¢) € C*°(U) if p € C°(U, N).

In [51, §1.1] it is shown that if we take local coordinates (z',z?, ...,2™) on a neigh-
bourhood around z € M, local coordinates (y',%?,...,y™) on a neighbourhood around

¢(z) € N and define ¢ := y* o ¢, for = 1, ..., n, then we have

g, 09" 06
—— E " G hag
e(9) = 2 2.9 fras ozt Jxd -
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Definition 1.1.2. Let ¢ € C°(M, N), then the energy of ¢ is defined as

B6) = | et@hoy =3 [ 1aoku,

where v, is the volume measure given in local coordinates by v, = /det g;;dx" - - - dz™ .

Definition 1.1.3. A map ¢ € C°(M, N) is called harmonic if ¢ is a critical point of the
energy E. Specifically ¢ is a harmonic map if, for any smooth variation ¢; of ¢ where

—e < t < ¢ we have

d
T t:OE(¢t) =0.

Here a smooth variation ¢, is defined as a smooth map F': (—¢,¢) x M — N, given by

F(t,x) := ¢u(z), for —e <t < ¢, x € M, where F(0,z) = ¢(x) forall z € M.

1.1.2 The First Variation Formula

We consider the main steps in constructing the first variation formula for harmonic maps.
The first variation formula is a useful tool for finding harmonic maps, as it describes the

criterion for a map to be harmonic in terms of the Euler-Lagrange equation.

Definition 1.1.4. For any smooth variation ¢; of ¢ where —e < t < €, we define the

variation vector field along ¢ to be

Vieg) =2 dlz) €TymN (v €M).

t=0

Now consider ¢ 'T'N, the pullback bundle of TN by ¢. That is, for the bundle pro-

jectionm : T'N — N,

¢ 'TN = {(x,u) € M x TN | n(u) = ¢(x)}.



1.1. HARMONIC MAPS 9

We can now view the variation vector fields V' as smooth sections of the pullback bundle
¢~'TN. Let V and V'V be the Levi-Civita connections on (M, g) and (N, h), respectively,
then we can define the induced connection V on ¢ 1TN as follows: it is the unique
connection such that, for each © € M with ¢(z) € N, X € T, M and Z a smooth section

of T'N, we have
Vx (¢ Z) = ¢"(VVasx)Z)

where d¢ : T, M — Ty, N is the differential of ¢. Here ¢*Y =Y o ¢ for any section Y’
of T'N and is a section of ¢ 'T'N called the pullback of Y by ¢. For more details on this
definition see [24].

Theorem 1.1.5. Let (M,g) and (N,h) be compact Riemannian manifolds and ¢ €
C>®(M, N). For any smooth variation ¢, —e < t < €, of ¢, let V() := d/dt|;—op:(2)

for x € M and let {e;}", be any orthonormal frame field. Then

d

i, Bo)=—[ nv.ropm,

where
m

7(6) = Y (Ve (dd(e)) — dp(Ve,e:)).

i=1
Here, d¢ is considered a bundle mapping TM — ¢~ TN and so d¢(e;) is a local section
of YT N. Thus, ¢ € C*(M, N) is a harmonic map if and only if

m(¢) =0
everywhere on M.
Proof. See [26,51]]. OJ

Here 7(¢) is known as the tension field of ¢ and the above theorem shows that 7(¢) = 0

is the Euler-Lagrange equation of the energy functional.
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1.1.3 The Second Variation Formula

The second variation formula is used to assess the stability of harmonic maps and is useful

when studying the structure of the space of harmonic maps.

Let ¢ : M — N be a harmonic map. Then in a similar way to the above let us take a
smooth variation ¢,; : M — N of ¢, with two parameters s and ¢. More concretely, we

have a smooth map

F:(—€€) x(—€,€) x M = N,
F (S,t,.flf) — ¢s,t($)a

where F'(0,0,z) = ¢(x) for x € M . This gives two variation vector fields, i.e. sections

of TN, one for each parameter s and ¢,

d d
V(z) = T Gs1(2), W(z) = pr
s,t=0

¢s,t (m) .
=0

s,t

Definition 1.1.6. Let ¢ : (M, g) — (N, h) be a harmonic map. Then the Hessian of the
energy FE at ¢ is defined by

82
H(E)(V,W) =

E(‘bs,t)a

(s,t)=(0,0)
forV and W variation vector fields.

Definition 1.1.7. The Riemann curvature tensor on N is defined by
NRU V)W = V"V W = YV NV W — NV g W,

for U, V., W, vector fields on N.

Theorem 1.1.8. Let ¢ : (M,g) — (N, h) be a harmonic map. Then the Hessian of the
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energy I at ¢ is given by

82

H(E), (VW) = -

B6u) = [ 1(W.3sV)) 0,

(5,£)=(0,0)
for V and W variation vector fields. Here J, is a second order self-adjoint elliptic differ-
ential operator acting on the space of variation vector fields along ¢ given by:
Jo(V) 1= =) (VeVe, = Vo, )V = Y VRV, do(e:))dp(e;) .
i=1

=1

Proof. See [26,51] . ]

Using the second variation formula above we can now define the stability of harmonic

maps.

Definition 1.1.9. The index of a harmonic map ¢ : M — N is defined as

index(¢) = sup{dim(F) | F'is a vector subspace of T'(¢""TN)

with H(E), negative definite on F} .

Note here that I'(-) denotes the space of smooth sections, and the supremum is finite by
standard elliptic operator theory [51, Chapter 5 §1.2]. A harmonic map ¢ : M — N is
said to be (weakly) stable if

index(¢) =0.

An immediate consequence of this definition is that index(¢) = 0 if and only if

H(E)y(V,V) > 0forall V € [(¢~'TN).
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1.2 Thesis Overview

Besides the introductory chapter this thesis is split into two main parts which cover the
topic of harmonic maps from a compact Riemann surface to a complex projective space
or certain Lie groups. All chapters concern harmonic maps from a Riemann surface,
Chapters concern harmonic maps with target space a complex projective space and
Chapters harmonic maps with target space the unitary group U(n), the orthogonal
group O(n), or the symplectic group Sp(n).

In Chapter 2| we describe and link two constructions of complex isotropic harmonic maps

from M to complex projective spaces CIP" given in [28] [12]].

In Chapter [3| we specialise to S> — CP? and show that there is no restriction on the
ramification behaviour of full holomorphic maps of degree k& with total ramification index
0 < rg <k — 2 and we give a counter-example that shows the opposite for k — 2 < ry <
(3/2)k — 3. Through an application of the Gauss transform these holomorphic maps give

harmonic maps which form a finite-dimensional manifold [37].

In Chapter 4] we find the dimension of the spaces of holomorphic sections and holomor-
phic differentials of certain line bundles to give improved lower bounds on the index of
complex isotropic harmonic maps M, — CP" for g = 0 or 1; here M, denotes a compact
Riemann surface of genus g. We also give new bounds on the index of complex isotropic

harmonic maps from higher genus surfaces which improve those in [28] in some cases.

In Chapter we give explicit descriptions of canonical elements for the Lie groups SU (n),
O(n) and Sp(n), which are used in the construction and classification of harmonic maps

into U(n) and O(n) given in [9] and [29]], respectively.

In Chapter [6] we recall the underlying theory of harmonic maps into Lie groups due to
K. Uhlenbeck [50] and go on to recall the work of G. Segal [46]], F.E. Burstall and M.A.

Guest [9] for harmonic maps into the unitary group U(n). Finally we recall the work of
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M.J. Ferreira, B.A. Simdes and J.C. Wood [29] for harmonic maps into the orthogonal

group O(n).

In Chapter we give a new method of using canonical elements of Sp(n) to give algebraic
parametrizations of S'-invariant extended solutions of harmonic maps of finite uniton
number from a surface to the symplectic group Sp(n) up to complex dimension 6. This
method was inspired by [29], but is harder as there is an extra equation to solve which
was not present in the O(n) case. For arbitrary dimension we give an algorithm which
parametrizes all such S'-invariant extended solutions of harmonic maps which are of

standard type.



14

1. INTRODUCTION



15

Chapter 2

Harmonic Maps from Surfaces to

Complex Projective Spaces

We recall the construction of complex isotropic harmonic maps given in [28, 12] and link
the two approaches (Proposition [2.2.9); for additional reading related to these construc-
tions see [2, (18} 137,138, 53] and for a moving frames approach see [14,52].

2.1 Subbundles of M x C"t!

Let M be a compact Riemann surface. We give CP" its standard structure as a Kéhler
manifold of constant holomorphic sectional curvature ¢ > 0 [S1, p. 147]. Let us identify
CP" with the set of complex lines (i.e. one-dimensional complex subspaces in C"*1) in
the usual way, so that each point V' € CP" is identified with a complex line in C**!. This
leads to the definition of the following canonical bundle, which will be of vital use in our

work.

Definition 2.1.1. The tautological bundle T' over CP" is the subbundle of the trivial
bundle CP" x C"*' — CP" whose fibre at V € CP" is the complex line V in C"*1,
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By decomposing the complexified tangent bundle 7CCP" using the complex structure in

the usual way we have
TCP" = TMOCP @ TV CP".

There is a well-known connection-preserving isomorphism h : THOCP™ — L(T, T+)
where L(T,T+) is the bundle of linear bundle maps from the tautological bundle to its

orthogonal complement in the trivial bundle CP" x C"*!. This is given by
WMZ)o =nmpiZ(0), (2.1.1)

where o is a local section of T', Z € T(WOCP", 7,1 denotes the orthogonal projection
onto 7 and Z(-) denotes differentiation with respect to Z. For information on this iso-

morphism see [2, 12} 28]].

Consider a smooth map ¢ : M — CP". We may decompose the C-linear extension of its

differential d¢ into components:

0¢ : THOIM — T7EOCP", 8¢ : TOYM — THOICP, (2.1.2)

Let G1(C™*1) be the Grassmannian of k-dimensional subspaces of C"*!. To each map
¢ : M — G(C"*"), we may associate the pullback of the tautological bundle ¢ := ¢~ 'T’;
this is the rank k subbundle of the trivial bundle M x C"™! over M whose fibre at z is
the k-dimensional subspace ¢(z). Conversely, any rank & subbundle ¢ of M x cntt
corresponds to a map ¢ : M — Gp(C""1) where ¢(z) is the k-dimensional subspace
given by the fibre ¢_for z € M. We shall call ¢ the associated subbundle of ¢. The
orthogonal projection 74 onto ¢ applied to the standard derivation on the trivial bundle

M x C"*! induces a connection *V on ¢; on a (local complex) chart (U, z) of M this is
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given by
d %)
Vojpst = oz v,  *Vajosv = Tomv, 2.1.3)

forv e I'(¢) =T(¢7'T).

We may regard CP" as the complex Grassmannian G;(C"™!) of complex 1-planes in
Euclidean (n + 1)-space C***. Then to each map ¢ : M — CP", we may associate
the pullback of the tautological bundle ¢ := ¢~ 1T'; this is the complex line subbundle of
the trivial bundle M x C"*! over M whose fibre at z is the line ¢(z). Conversely, any
complex line subbundle ¢ of M X C"*! corresponds to a map ¢ : M — CP" where ¢(2)
is the line given by the fibre ¢_for z € M.

As in [12]], given mutually orthogonal subbundles ¢ and ¢ on a coordinate chart (U, z)
we define the (linear) bundle maps Aj, , : ¢ — ¢ and AY |, : ¢ — ¢ by

9] 9]
A, (v) = Tya U and A}, (v) = Ty 3=

where 7y, is the orthogonal projection onto 1) (some authors e.g. [11] interchange ¢ with
1 in this notation). These two maps are “adjoint up to sign” [[1 1], more concretely, with
(, )¢ the Hermitian metric on ¢ induced from the flat hermitian metric (, ) on the trivial

bundle CP" x C"! then
— (A} yu,w)y = (v, A yw)y for veE P, w e
A very useful special case of the above is the following: we set
Ay=Apgrio— ¢ and AG=Af, 6o

Then, using the pullback of (2.1.1)), we have the following isomorphism of bundles over
M:
¢ ' THOCP" = L(, ¢). (2.1.4)
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Since this is a pullback of a connection-preserving isomorphism it is again a connection-
preserving isomorphism, which can be used to identify 9¢(9/0z) and 0¢(9/0%) with
the bundle maps A;, and Aldlv respectively. We give all bundles their Koszul-Malgrange
structure [36], i.e. that with O-operator given by the (0, 1)-part of the connection on the
respective bundle. It follows that (2.1.4) is an isomorphism of holomorphic bundles.

Then we have the following for a smooth map ¢ : M — CP":

Lemma 2.1.2. [[2]

(1) The map ¢ is holomorphic (respectively, antiholomorphic) if and only if A;ﬁ =0
(respectively Aj, = 0).
(ii) The map ¢ is harmonic if and only if A}, : ¢ — ibl is holomorphic, i.e.,

1
Al 0"V gj9: = 7 Vo2 0 Al,
or equivalently, A;ﬁ : Q — gﬁl is antiholomorphic, i.e.,
1
Al 0 Vg0, =7 Vaya: 0 A,

Let ¢ : M — CP" be a non-antiholomorphic harmonic map. After a process of filling
out the zeros of A;) detailed in [12] p. 266], according to Lemma m the image of Aib
becomes a holomorphic subbundle of Ql, i.e. closed under ¢* V /07, which we denote by
ImAY,. We call this holomorphic subbundle the ¢’-Gauss bundle and denote it by G'(¢).
As G'(¢) is a complex line subbundle of the trivial bundle M x C"™! over M it corre-
sponds to a map G'(¢) : M — CP" such that G'(¢) =: G'(¢)~'T. Explicitly G'(¢)(z)
is the fibre at = € M of G'(¢). Similarly let ¢ : M — CP" be a non-holomorphic
harmonic map, then the image of A7} is an antiholomorphic subbundle of QL, i.e. closed
under "V, /o= denoted G”(¢) and called the 0”-Gauss bundle. As before G”(¢) is a
complex line subbundle of the trivial bundle M x C"*! over M and so induces a map

G"(¢) : M — CP" characterised by G"(¢) =: G”(¢) ' T.
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Lemma 2.1.3. [I2| Proposition 2.3 and Remark] Let ¢ : M — CP" be a harmonic
map. If ¢ is not antiholomorphic then G'(¢) is harmonic and G"(G'(¢p)) = ¢. If ¢ is not
holomorphic then G"(¢) is harmonic and G'(G" (¢)) = ¢.

Definition 2.1.4. A map f : M — CP" is said to be full if its image does not lie in a
proper projective subspace of CP".

We shall now construct a “harmonic sequence” from a full holomorphic map using the
above. Let fy : M — CP" be a full holomorphic map, then as above G'(fj) := IﬂAIfO C
S/ é (most authors omit the underlining in the bundle G'(); we add it for clarity); here
G'(fo) : M — CP" is a harmonic map by Lemma[2.1.3] Applying the procedure again to
G'(fo) : M — CP" we have G'(G'(fo)) := ImAp,; C G'(fo)*, where G'(G'(fo)) =
G'(G'(fo)) T for some smooth map G'(G’(fy)) : M — CP™ which is again a harmonic
map by Lemma[2.1.3]

For j = 0,1,...,n, write f; := (G")(fo) == G'(G'(...G'(G'(fo))...)) where G’ is
applied j times to fj, and ij = @j(f()) =G(G'(...G'(G'(fy))...)),s0 fj : M —
CP" is a harmonic map and ij = fj’lT its associated subbundle given by the pullback
of the tautological bundle. By fullness, none of the subbundles ij is zero for j < n, since

otherwise f would lie in the constant proper subspace of C"*! spanned by the ij. Note

that f :=ImA}  C [ .

Remark 2.1.5. Similarly, given a full antiholomorphic map gy and by replacing A’
and G' with A" and G", respectively, we obtain harmonic maps g, := (G")*(go) =

G"(G"(...G"(G"(g0))-..)) where G" is applied k times to g.

It was shown in [12], and through a different interpretation in [28], that the nth iteration
of the procedure above gives f = ImA} | C ii_ , Where f, : M — CP" is a full
antiholomorphic map. Using Lemma we see that Ay = A, = 0 since f and f,

are holomorphic and antiholomorphic, respectively, therefore G”(fy) = G'(f,,) = 0 and
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so do not define maps into CP". Therefore we have the following sequence of associ-

ated subbundles of harmonic maps and bundle maps between them, called the harmonic

sequence (of fy) [2,53]:
Ao Ah

A A A A’
fp—2 fo—1 1, Fot+1 fn—1
fomo fieo 2 e o e e f (219)

" " " " " 1 "
A1 A% Afpfl A%, Afp+1 Afp+2 Af,,

where fo : M — CP" is a full holomorphic map with associated bundle f 0 = fo 'T,
fi + M — CP" is a full harmonic map with associated bundle L .= f,7'T for each
ie{l,2,...,n—1}and f, : M — CP" is a full antiholomorphic map with associated
bundle f := f,~'T.

Extending the notation above to a harmonic map ¢ : M — CP" we write the j-fold
iterate of G’ on ¢ as (G')(¢) := G'(G'(...G'(G'(9)) ...)) where G’ is applied j times
to ¢ and (G")’(¢) := G'(G'(...G"(G'(#)) ...)). Similarly we write the j-fold iterate of
G" on ¢ as (G")(¢) := G"(G"(...G"(G"(¢))...)) where G” is applied j times to ¢
and (G")(¢) = G"(G"(...G"(G"(¢))...)). Note that if (G')7(¢) is holomorphic so

(G")Y*1(¢) = 0 and therefore does not define a map into CP". Similarly if (G”)?(¢) is

antiholomorphic so (G”)’™ (¢) = 0 and again does not define a map into CP".

Definition 2.1.6. [[/2] §3] A harmonic map ¢ : M — CP" is called complex isotropic if

its associated subbundle ¢ is orthogonal to (G’ ) (¢) for each j > 1.

Lemma 2.1.7. [I2, Lemma 3.1] If ¢ : M — CP" is complex isotropic then

forall j,k €{0,1,...}, j # k.

Lemma 2.1.8. The harmonic maps f; from (2.1.5), that is, the harmonic maps con-
structed from a full holomorphic map as iterated &'-Gauss bundles, (G')’ (fo), are com-

plex isotropic.
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Proof. By Lemma [2.1.7| we need only prove that for a full holomorphic map fy : M —
CP" that f , is orthogonal to ij for all j > 0 i.e. that fy is complex isotropic. Let Fj
be a local holomorphic lift of the full holomorphic map f, : M — CP", then F{ can be
seen as a local nowhere zero section of f . Define Aj; = A} oA}  o---0A} so
Avy i fy— ij and Ay, = A} . We will use induction to prove our claim that f 1 ij for
all j = 1,2,...,n. We have f L f asby definition f := G'(fo) := ImAG ) C L)L
We use this as a base of induction on j € {1,...,n}: for an induction hypothesis let us

assume that f ot Jf, forall k < j and we will see that this implies f o ij+ .

Let (, ) denote the flat Hermitian metric on the trivial bundle CP" x C"*! and F, € T'(f )
be the local holomorphic lift of f, : M — CP". We have,

/ 8 /
<F0a AO,j+1(FU)> = <F0a Wé&Ao,j(FO»
0 0

= (Fo, &ABJ(FO) — Ty &Ag,j(FU»
o 9 .
= (Fp, &Ao,j(FOD - <F077Tfj§Ao,j(Fo)>-

By the induction hypothesis ioj_ij so (Fo, 7y, %A{)’j(FO» = 0. Therefore,

/ a !/
<F07 Ao,j+1<F0)> = <F07 &Ao,j(FO»

a !/ a /
<F0> AO,j<F0)> - <£FO> Ao,j(F0)> =0,

z

as Fy is holomorphic, Aj ;(Fp) € T'( L) and f L ij by the induction hypothesis. There-

fore f L ij—i— , and the induction step is complete. [

Remark 2.1.9. (i) All harmonic maps S* — CP" are given as above; for higher gen-
era the construction gives all harmonic maps which are complex isotropic (see also
[28, §5] and [lI2] §3 ff.]), or equivalently of finite uniton number cf. [I, §4.3]. The
terms of infinite isotropy order, strongly isotropic and pseudoholomorphic /3] are

also used.
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(i1) It follows from Lemma and Lemma that all f_ in are mutually

orthogonal subbundles of the trivial bundle M x C"1,

Definition 2.1.10. Let (U, z) be a chart of M and let zy € U be a zero of A’fk1 where

p € {1,...,n}; then we can write

foa(2) = (2 = 20)*A(2),

where \ is a smooth section of L(f

_p_17ipL_1>y non-zero at zy and k € N (where N =

{1,2,...}). Then we say that f is pth(-order) ramified at the point z, with ramification
index k. We call the sum of all ramification indices of the points of pth ramification the

pth total ramification index and denote it r,_;.

2.1.1 Degree of a Smooth Map

Let M be a compact Riemann surface. For use in later sections we present some results

concerning the degree of a smooth map ¢ : M — CP".

Definition 2.1.11. Let ¢ : M — CP" be a smooth map. The degree of ¢, denoted deg (o)
is the degree of the induced map ¢* : H*(CP",Z) — H*(M, Z) on second cohomology.

More explicitly, the deRham cohomology class [w"] of the Kihler form w” of N = CP"
gives a generator of H?(CP",Z) = Z and the deRham cohomology class [w"/] of the

volume form w™ gives a generator of H2(M,Z) = 7; then [¢*w™]| = deg(¢)[w™].

Lemma 2.1.12. [lI2] Lemma 5.1] Let ¢ : M — CP" be a smooth map and ¢ its associated
subbundle of the trivial bundle M x C"™'. Then deg(¢) = —c1(¢p) where c1(¢) is the first
Chern class of ¢.

Recall for a smooth map ¢ : M — CP" we may decompose the C-linear extension of its

differential d¢ (2.1.2). This gives a decomposition of the energy density e(¢) of ¢ given
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in Definition [I.1.1]in the following way:

e(¢) = e (g) + eV (9),

where e'?(¢) = 110¢| and eV (¢) = 1|d¢|?. This, in turn, gives a decomposition of

the energy E(¢) of ¢ from Definition [1.1.2] given by
E(¢) = E"0(¢) + BV (9),

where B0 (6) = £ [, |06/, and EOV(6) = 1 [, [09]v,.

2 2

Lemma 2.1.13. Let ¢ : M — CP" be a smooth map. Then

B09(6) — BO(6) = T deg(s),

C

where ¢ > 0 is the value of the constant holomorphic sectional curvature of CP".
Proof. See [28, p. 247] and [35, p. 141]. O

This lemma shows that a holomorphic or antiholomorphic map gives a harmonic map of

minimum energy in its homotopy class, see [39].

2.2 Associated Curves and the Gauss Transforms

The construction of harmonic maps from surfaces to complex projective spaces was first
given in a twistorial way in [28] using associated curves: it was later interpreted using
the Gauss transform in [[12]]. We give a description of this construction with an aim to link

the two approaches from [[12] and [28]].

Let F : U — C""\{0} be a local holomorphic lift of a full holomorphic map f :
M — CP" on a complex chart (U, z) of M. Thatis, f|y = 7o F for m : C"™\{0} —
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CP" defined by m(wg, wy,...,w,) = [wy,wi,...,w,|] where [ | denote homogeneous

coordinates. We define the derivatives of ' by F'*) = d’F'/dz".

Definition 2.2.1. We define the pth osculating space of f at =z € M to be the space

6, = 6,(=) = Span{F)() | 0 < a < p}.

Note that, by the chain rule, 6, is well-defined under change of local coordinates (from z

to w) up to a non-zero factor (given by a power of dw/dz).

The pth osculating space of f may vary in dimension with z € M, however [28, Lemma
3.11if f : M — CP" is full then there exists a point z € M such that the nth osculating

space of f at 2 has dimension n + 1 and so is the whole of C"*!,

Consider the wedge product FAF'AF"A---AF®) : U — APHIC™ where F' = dF/dz
and 0 < p < n. Again by the chain rule, this wedge product is well defined up to scalar
multiples under change of local coordinate. If p = n then the zeros of the wedge product
are exactly the points z € M such that dim 6,,(z) < n + 1, we denote this collection of

discrete points by B, similarly to [28, (3.1)] we have
B={ze M |dimb,(z) <n+1}. (2.2.1)

These zeros have a special significance that we discuss later. If the wedge product F' A
F'ANF" A --- A F® is nowhere zero then it defines a (p + 1)-dimensional subspace in
Cn*! foreach z € M. If zy € B is azero of F' A F’ of order ko € N, then it is also a zero
of FAF' ANF"A--- A\ F® of order r, € N for each p, 1 < p < n where ; < r; for

1 <1 < j < n.LetU be an open neighbourhood of z; then we write
FAF'AF'"A---ANFP(2) = (2 — 2)"(2), (2.2.2)

forall z € U and v(z) € A?"1C"*! is non-zero. As ~y(z) is decomposable for all z # zg it



2.2. ASSOCIATED CURVES AND THE GAUSS TRANSFORMS 25

is decomposable for z = z, and therefore defines a (p + 1)-dimensional subspace in C"!
for each z € U. For convenience, we will define y(z) tobe FAF' AF" A---ANF®)(2) at
points that aren’t zeros. As the wedge product F'A F' A F" A--- A F®) is independent upto

scalar multiples of choice of chart U and local holomorphic lift ' we have the following:

Definition 2.2.2. The pth associated curve is the holomorphic map f,y : M —
G 11 (C™Y) where f(,(z) is the (p + 1)-dimensional subspace defined by ~.

See Remark for the relationship with osculating space. Here G,41(C™*!) denotes
the Grassmannian of (p + 1)-dimensional subspaces of C"*!. Note that f,) is not the
same as f, in the previous section and by [28] the pth associated curve is independent of

lift /" and local coordinate z, so f(, is well-defined, and is clearly smooth.

Remark 2.2.3. Associated curves h(,) : M — G,1(C"™) for a full antiholomorphic
map h : M — CP" can be defined similarly by replacing F* = d°F/dz" by HP =
d’F/dz’ where H : U — C"1\{0} is some local antiholomorphic lift over some chart

Uof M.

Definition 2.2.4. Let f : M — CP" be a full holomorphic (resp. antiholomorphic) map.
The polar of f is defined by g = f(tq) : M — CP" (where f(t,q) denotes the line
orthogonal to the hyperplane f(,_1y) and is a full antiholomorphic (resp. holomorphic)
map as shown in [28, §3B ff.].

In we defined the 0’-Gauss bundle; we now define a related notion.

Definition 2.2.5. The first 0'-Gauss transform ¢ = G (f) : M — CP" of a full
holomorphic map is defined by

o(2) = f(2)" N fuy(2).
The pth J'-Gauss transform of f is defined by

GO(f)(2) = fo-n ()" N fp(2)-
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The first 0"-Gauss transform ¢ = GV (g) : M — CP" of a full antiholomorphic map
is defined by

o(2) = 9(2)" Ng(2).

The pth 0"-Gauss transform of g is defined by

GTP(9)(2) = gio-1)(2)* N g (2)-

It was shown in [28] that for any p = 1,...,n the pth ¢’-Gauss transform (resp. pth
0"-Gauss transform) of a full holomorphic (resp. full antiholomorphic) map defines a
smooth and full harmonic map. Further, G™ (f) is antiholomorphic and is the polar of
f and similarly for g : M — CP" a full antiholomorphic map, G(~™(g) is holomorphic
and is the polar of g. Let f : M — CP" be a full holomorphic map.

Definition 2.2.6. We define the pth osculating subbundle of f to be the rank p + 1 sub-
bundle of M x C"! over M defined by 0 b, = f(; )1T. Here T is the tautological bundle
over the complex Grassmannian G,1(C"1), ie. the subbundle of the trivial bundle
Go1(C™) x C"*Y — G, 1(C™Y) whose fibre at V- € G,1(C"11) is the (p + 1)-

dimensional subspace V in C"1,

Remark 2.2.7. The pth osculating subbundle of f is the subbundle resulting from filling
out the zeros [12| p.266] of the pth osculating space of f. In fact the process of filling
out the zeros is exactly the same process as was done here; by defining the pth associated
curve of f using the pth osculating space of f then defining the pth osculating subbundle

of f to be the subbundle associated to the pth associated curve of f.

Definition 2.2.8. The pth 0'-Gauss bundle of f is defined to be the line subbundle of
M x C**! defined by
GY(f) =my 0

O, 1=P"

We define G'*)(f) to be the (unique) map such that G\ (f) == GW)(f)~'T, this is the pth
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d'-Gauss transform of f defined in Definition|2.2.5]

We now see that this definition coincides with the definition of ¢’-Gauss bundle given in

2.1

Proposition 2.2.9. Let fo : M — CP" be a full holomorphic map and let ip for() < p<
n be the subbundles of M x C"*! from then

G(fo) = ImA} .

Proof. Let Fy be a local holomorphic lift of the full holomorphic map f, : M — CP",

then F{, can be seen as a local section of i o Consider
Al (Fy) = mp Fy = Fy — 7 F. (2.2.3)

Recall for a local holomorphic lift of f that 6y = Span{F,} and 0, = Span{Fy, F} and
so A (Fy) € 61 and A’y (Fp) is orthogonal to by 1} So we have A’ (Fy) € 65 N6,
and so Im A’fo C 0& N 6. After filling out the zeros, both sides are one-dimensional
subbundles so we have IﬂA}O = Wé;) 0,. We use this as a base for an induction on p;
as an induction hypothesis, assume that ip_l = IﬂA’fp_2 = ngp O, forallp—1 €
{1,2,...,n — 1} and consider A}  (F,-1) for F, 1 a local nowhere zero section of
ip_ .- By the induction hypothesis F),_; is orthogonal to 0,_» and F},_1 € 0,_1,800,_1 =
Span{Féj),Fp_l |0<j<p—2}andb, = Span{Féj),Fp_l,F;_l |0<j<p-—2}
We have

Ay (Fp)=mp Fp o =F,  —m, F, €9, (2.2.4)

in particular A,  (F,-1) is orthogonal to F,_;. We claim (F}_,, Fo(j)) = 0 forall j =

1,2,...,p—2where ( , ) denotes the flat metric on the trivial bundle CP" x C"*!. Indeed

0 .
= o (Fp1 ) = (Foe

0

Z pl) —0
laaz 0> )

(Fpo0 )

p—1
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as F,_; is orthogonal to ¢, 5 and Féj) is holomorphic. If follows from 1} that
Alfp,l(Fp—l) is orthogonal to Fo(j) forall j = 1,2,...,p — 2 and so orthogonal to ¢,_,.
We conclude that A | (F)—1) is orthogonal to 6,1, and so A} (F,-1) € 0, N0,
giving Im Ay C 0., N6, After filling out the zeros, both Im Al | and 0,06,

are one-dimensional subbundles so we have IﬂA/fp L= 7T3‘ X [ . which completes the
_ 6,

—1

induction step. O

Corollary 2.2.10. Let fy : M — CP" be a full holomorphic map with local holomorphic

lift Fy : M — C"™\{0} and let ip = f;'T for 0 < p < n be the subbundles of

M x C"*! from where, as before, f, = (G')*(fy) where G’ is applied p times to
fo. Define Ay ; = Ay 0 Ay o0 Ay so Ay, f— ij and Ay | = A’y , then

i) G (fo) = (G")"(fo);
(i1) the wedge product satisfies

Fo ANFyA - ANEP = Fy N Ay (Fo) A Ay o(Fo) A=+ A Ay (Fy).

Proof. (i) This follows from Proposition [2.2.9] and the definitions of the associated
bundles: G (f) := G (f)~'T and I = [T

(ii) We have that Aj, , | (Fp) is a section of ip forallp € {1,...,n — 1} and so
6, = Span{Fy’ | 0 < j < p} = Span{Fy, 49 ;(F) | 1< j < p}.

2.2.1 Ramification

Recall the space B from (2.2.1)). Using Corollary [2.2.10] we show that B is the space of
all zeros of A}j for j =0,1,...,n as defined in Definition [2.1.10
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Definition 2.2.11. Let f : M — CP" be a full holomorphic map. We say that f is first-
ramified at a point z € M if df (z) = 0. The (first) ramification index of f at z is the
order of the zero of df (2) at z. The first total ramification index, r of [ is the sum of all
the first ramification indices (cf. [31, p. 264]). Here by the order of the zero of df (zy) at

zo we mean the natural number k such that in local coordinates

dw k7
—=(z—z z
2 = (2= 20)f(2)
where f is smooth and non-zero at zy and z, w = (wy,...,w,), are local complex

coordinates of M and CPP", respectively.

Recall from §2.2] and (2.2.1) the collection B of all points such that the wedge product
FAF'AF"A---AF™ is zero. We will describe the pth ramification points from Definition
2.1.10|in terms of the wedge product Fy A F, A - - - A F®) to show the significance of the

space B.

Let Fy : U — C"*1\{0} be a (local) nowhere zero holomorphic lift of a full holomorphic
map fo : M — CP" on an open set U of M; we often view Fj as a (local) section of S 0"

Let 2y € U be a first ramification point of f, with ramification index k; then
Fo A Fy(2) = (2 = 20)™ m(2),

where 7, is non-zero at z,. Definition [2.2.T1] and Definition [2.1.10] coincide as Corollary
2.2.10] (i) gives Fy A Fy(z) = Fo A A% (Fy)(2) and so the zeros of Iy A [y are equal to

the zeros of A’ (Fp) and have the same order.

Recall from Definition[2.1.10|that if f is also pth ramified at the point z, with ramification
index k,; then

Ay, ((Fpea)(2) = (2 — 20)" Fy(2),

where F,_; is a section of fp_ , hon-zero at zy and F), a section of fp non-zero at 2.
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More generally, let zp € U and let 1 < p < n. Foreach 5,1 < 5 < p, let k; be the

jth ramification index of zy € M, possibly zero. Then using the notation from Corollary
we have
P )
Abp(Fo)(2) = (2 = )27 G, (2),

where G, a non-zero section of f . Note that f; is not jth ramified at 2, if k; = 0 for
=p

some j, 1 < 7 < p. Therefore, by Corollary [2.2.10| we have that:

Proposition 2.2.12. Let fy : M — CP" be a full holomorphic map, with holomorphic
lift Fo, let zo € M and let 0 < p < n. For each j with 1 < j < p, let k; be the jth

ramification index, possibly zero. Then, locally,

Fo(2) NE(2) A+ NEP (2) = Folz) A Ay (Fo)(2) A Ay o(Fo)(2) A -+ A Ay (Fo)(2)

= (2 —20)"Fo ANG1(2) NGa(z) N+ NG (),

Jors, =320 (p—Jj+1)kjand Fy N G1(2) A Ga(2) A -+ A G,(2) non-zero at z with
Fo, G, L€ {1,...,p} defined above.

Remark 2.2.13. We note that by Proposition|2.2.12| the space B defined by is the
space of all points where A’y is zero for some j € {0,1,...,n}. Also from we
have k, = s, and Fy \ G1(z) N Ga(2) A --- N G, is the decomposition of .
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Chapter 3

Harmonic 2-Spheres in the Complex
Projective Plane and Ramification

Points

In this chapter we will focus on harmonic maps ¢ : S?> — CIP?, in particular on their
first-ramification points and how these can be used to describe the space of full harmonic
maps. We give some results found in [18, 37] and look at natural questions that arise
from [37], concerning the “coalescing of ramification points”. We see an ansatz and a
counterexample that provide answers to these natural questions. We call a map that is
holomorphic or antiholomorphic #--holomorphic. Note that all harmonic maps S? —

CP! are +-holomorphic, see [35,154].

3.1 Harmonic 2-Spheres in the Complex Projective Plane

Let f : S> — CP? be a holomorphic map. It is well known that such a map can be repre-

sented by a triple of polynomials by first identifying S* with C U {co} via stereographic
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projection, and defining a map p : C — C3\{0} by p(2) = (po(2), p1(2), p2(2)), where
(po, p1, p2) is a triple of coprime polynomials with max(deg(py), deg(p;), deg(p2)) =
deg(f). We write f = [ po,p1,p2] where the square brackets represent homogeneous

coordinates.

Let f : S — CP? be full, by Definition all harmonic maps that are not full lie in
a CP! and are holomorphic or antiholomorphic as above, see [33, 54] for details. So all

harmonic maps f : S? — CP? that are not holomorphic or antiholomorphic are full.

Definition 3.1.1. We denote by Hol}(CP?) the space of all full holomorphic maps from
S? to CP? of degree k.

Lemma 3.1.2. The space Hol},(CP?) is a complex manifold of dimension 3k + 2.

Proof. Let f € Hol;(CP?) and U a neighbourhood of f, then each ¢ € U can be rep-
resented as a triple of coprime polynomials as above. Using the equivalence relation
defining the homogeneous coordinates we have that for g € U where g = | qo, ¢1, 2]
and a any non zero coefficient of qo, q; or g2 then [ qo, ¢1,92] ~ [ q@o/a,q1/a,q2/a] .
The coefficients of the polynomials q/a, q1/a, ¢2/a are complex numbers and so, after

disregarding the unit coefficient after division by a, give us a mapping into C3*+2, O

By a first-ramification (resp. second-ramification) point of a holomorphic map f from S
to CPP* we mean a point where the holomorphic map f is first-ramified (resp. second-

ramified) as defined in[2.2.11]

Definition 3.1.3. Let f : S*> — CP? be a full holomorphic map with first-ramification
points {z1, 2o, ..., 2z} with ramification indices {ki,ko,... Kk} for some | € N and
kj € Nforall j € {1,2,...,1} then the (first-)ramification divisor R(f) is the monic

polynomial
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Note that, by stereographic projection, we are regarding S? as the extended complex plane
Cw, i.e., {z € C} with a point at infinity co. Also, note that the degree of the ramification
divisor is equal to the first total ramification index if f is not ramified at the point at

infinity, otherwise it has lower degree.

Consider f;, a smooth variation in Hol; (CP?) of the full holomorphic map f : S? — CP?
by a parameter ¢. Then the first total ramification index or equivalently the degree of the
ramification divisor could change for different values of ¢. This means that finding the
first associated curve of the family f; requires division by the ramification divisor R(f)
where the degree of R(f) could change with ¢ which may be a discontinuous process, see
[37] and below for examples of when it is discontinuous. Recall the degree of a smooth

map defined in Definition[2.1.11

Definition 3.1.4. Let Hol;,, (CP?) be the submanifold of Hol},(CPP?) of full holomorphic
maps of degree k and first total ramification index ry; we also define Harmg, E((CIP’Q) the

space of all harmonic maps of degree d and energy 4 E.

Theorem 3.1.5. [57] The map

o - Hol  (CP?) — C7(S?, CP?)

k7TO

is a smooth embedding onto Harm,, E(CIP’z) forany 7 > 2 where d = k —ry — 2 and
E = 3k — ro — 2. Each component Harmgy ;(CP?) of Harm(CP?) is a closed smooth
submanifold of C7(S?, CP?) of dimension 6E + 4 if E = |d| and of dimension 2E + 8

otherwise.
Remark 3.1.6. Here G, is the restriction to Holy, , (CP?) of the first &'-Gauss trans-

form G defined in Definition and shown to be equivalent to G' by Corollary

Our aim is to better understand the space Harm,, E((C]P’2). From [18]] we know that the first

&'-Gauss transform maps Holy , (CP?) to Harmy_,,—2 3t—r,—2(CP?) homeomorphically
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and by Theorem [3.1.5] this is a diffeomorphism. Therefore having a better understand-
ing of the space Holz’TO(CIPQ) automatically gives us more information about the space
Harm, ;(CP?) via the &-Gauss transform. One direction that could be pursued for a bet-

ter understanding of Holy, (CP?) is to investigate the coalescing of ramification points.

3.2 Coalescing of Ramification Points

Definition 3.2.1. Let f; be a family of maps in Holy, (CP?) depending smoothly on —e <
t—1tyg < ewherety € Randlet2 < p < rybe an integer. Denote the (first-)ramification
points of f, by z; = zi(t), i = 1,..., p. We say f, has ramification coalescence at 1, or
the ramification points coalesce as t — 1y, if for a ramification point z; of fi, there exists
i1, ..., 05 2 < 0 < p, such that each z;, (j € {1,...,0}) is a ramification point of f; and
2, — zforall j € {1,...,6}. In this case we say that the z;; coalesce to z. We also
say the set {z1(t), . .., z,(t)} of ramification points (of f:) coalesce to {z(to), ..., 2,(to)}

(note that some elements of the second set may be identical).

Remark 3.2.2. Without loss of generality, by choosing a new coordinate z on S* by
stereographic projection we can suppose that all our ramification points are in one chart
and that the point at infinity given by this chart, f;, has no ramification. In this case the
set {z1(t), ..., z,(t)} of ramification points coalesce to {z(to), ..., 25(to)} if and only if

the roots of the (first-)ramification divisor R( f;) tend to the roots of R( fy,).

To demonstrate this definition of ramification coalescence it is beneficial to consider an

example; we present one which is different from that in [37].

Example 3.2.3. Identifying S? with C U {oc} by stereographic projection and let f; :
S2% — CP? be the smooth map defined by f,(z) = [F,(2)] (as described above), where

Fi(2) = (2" —21%2% — 1,2 — 3122, 2* — 21227),
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(2 € C,t € R). We have that f,(cc) = [1,0, 1]. Using the local coordinate 2 = * centred

z

on the point at infinity z = oo shows this is, in fact, smooth.

Identifying N>C? with C3, after a short calculation, we have
(B A (2) = (2% = 2)1(2),
where the ramification divisor is R(f;)(z) = (2% — t*) and

(2) = (4 — 61222 42, 6127 — 51— 3).

Therefore, ift # 0, then f, has two ramification points z = +t, both of index 1, but ift = 0
then these ramification points coalesce into one ramification point z = 0 of ramification
index 2. In this example, the degree of the ramification divisor does not change with t and
so by [37], the associated curve fyy varies smoothly with t. Note that f, € HOIZQ(CIP’Q) ,
forallt.

Two natural questions arise from [37]. The first question is, given two finite sets
{ki,...,k,} and {ki,...,ks} of positive integers such that ro = > k; = 521 kj,
does there exist a family of maps f; € Holy (CP?) that have the points of ramifica-
tion {z1(t), ..., 2,(t)} with z;(¢) of ramification index k; (i = 1,..., p), such that, when
t — to then {2(t),...,2,(t)} coalesce to {z(ty), ..., 25(to)} with 2(ty) of ramifica-
tion index k; (¢ = 1,...,p)? The second question is, can we also specify the points

{z1(t), ..., 2,(t)}?

Proposition 3.2.4. [37] The space HOIZVTO(C]PQ) is non-empty precisely for the range
k>20<r<3k-3.

Definition 3.2.5. Let f : S?> — CP? be a full holomorphic map, then the conjugate
polar h of f is the complex conjugate G of the polar g of [ defined in Definition ie.
h(z) = fay(z)* where z € S
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Lemma 3.2.6. [37, Proposition 2.6] For each pair of integers k > 2, 0 < rg < %k‘ -3,

the map f — conjugate polar of f restricts to a bijection
Hol; , (CP?) — Hol}, . (CP?),
where k' =2k —rqg — 2, 11 = 3k — 2ry — 6.

From Lemma detailed in [37], maps in Hol,’;m((C]P’z) fork —2 <ry < 3k—3are
precisely the conjugate polars of the maps in Holj , (CP?) for 0 < ry < k—2. We answer
the natural questions above by considering ramification coalescence in Holj, (CP?) for

these two ranges.

3.2.1 The Lower Range

Let us consider Holj,, (CP?) for 0 < ry < k — 2. We will construct a family of examples
in this range that are ramified at any chosen points. Just as above, let f : S*> — CP? be

defined by f(z) = [F(z)], with

P = ([ roEmEE [ROEREE [ RDEREE). 620

where R(f) is the desired ramification divisor of f constructed from the given points of
ramification, (pg, p1, p2) is a triple of coprime polynomials with at least one of degree k —
ro — 1, the other two of possibly different degrees < k — 1y — 1 and z € C. The maximum
degree of the three integrands of isrg+ k —rg— 1=k —1, so the degree of f is
the maximum degree of the three integrals which is k. Note the constants of integration
of each component of can be chosen so that f is full and the components of f are

coprime.
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As before identifying A2C? with C3, we have

(F'AF)(2) = R(f)(2)9(2)

and

o) = (o2 [ RO~ [ RO
wo [ ROz = [ RO Gz,
b [ ROEmEE - m [ RO
Also to ensure that the map f has no ramification at infinity, then the top coefficient of

one of the components of ¢)(z) needs to be non-zero. Equivalently, one of the components

of 1(z) must be of degree 2k — ry — 2. Let

k—ro—1 k—ro—1 k—ro—1
po(z) = Z a; 2", pi(z) = Z biz", pa(z) = ciz'
=0 =0 =0

then to ensure that f is not ramified at infinity one of the following must be true:

bi—ro—1Ch—rg—2 — Dk—rg—2Ck—ro—1 7 0,
Ck—rg—10k—rqg—2 — Ck—rqg—20k—ry—1 7é 07 (322)

akfmqbkfmfz - akfrof2bkfmfl # 0,

which our polynomials py, p1, p2 can be chosen to satisfy. Note also that the polynomi-
als and constants of integration of the components of (3.2.1)) can be chosen to ensure

components of 1(z) are coprime, so that R(f) really is the ramification divisor.

Lemma 3.2.7. The ansatz gives maps [ = [F] € Holy, (CP?) precisely for the

range 0 < rog < k — 2.
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Proof. Consider (3.2.1) for R(f)(z) a monic polynomial of degree 1y = k — 1. For

f = [F] to be of degree k there are only two possibilities:

(i) All pg, p1, p2 have degree 0.

(i1) At least one of pg, p1, p2 has degree 1 with others of possibly smaller degree with
the constants of integration all zero (indeed, f is of degree k in this instance as each

component of F'is divisible by 2).

For (i), regardless of the choice of constants of integration the components of F' are lin-
early dependent. More concretely, let R be the anti-derivative of R(f), then with arbitrary

constants of integration ¢y, ¢1, co € C we have
F(z) = (R(z) +co, R(2) + 1, R(2) + cz)

so that each component of F' can be written as a linear combination of the other two.
For (ii), if deg (po), deg (p1),deg (p2) < 1 with equality holding for at least one of the

Do, P1, P2 then the components of ' are again linearly dependent. To see this, write
po(2) = a1z + ay, p1(2) = bz + by, p2(2) = a1z + co,

for ag, a1, by, b1, cg, c1 € C. Again, let R be the anti-derivative of R(f) and using integra-
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tion by parts and rearranging we have

(/R 2)po(z dz/R (= dz/R >

_ ( / ROP)(2)(arz + ag)dz, / ROP)(2)(by= + bo)dz, / R( f)(z)(clz+co)dz)
_ (a1 (zR(z) - / R(z)dz) +aR(2), by <zfz(z) - / R(2)d ) L boR(2),

o (zﬁz(z) - / R(z)dz) + COR(Z))

ay Qg A A
zR(z) — [ R(z)dz
=101 by . ;
R(z)
€1 G

which shows that the components of F' are clearly linearly dependent. Also, for R(f) of
degree greater than k£ — 1, then the degree of f will be greater than k. Therefore the ansatz
(3.2.1)) cannot be extended to allow ry > k — 2. The examples

= </R(f)( ooty /R 2)(z 4+ )02z, 1> (3.2.3)

k—’/’o—l’ P11 = (Z -+

1)"=0=2 and p, = 0 in ansatz (3.2.1) provide maps f = [F] € Holy, (CP?) for 0 < rq <

where R(f)(z) is some monic polynomial of degree 79, so py = =z

k — 2. This can be seen as by identifying A?C? with C3, we have

(FAF)(z) = R())(2)4(2)

U(z) = ( — (- D)FT AT — (p / R(f)(2)2""0 " dz,

(z+ 1)kmo—2 / R(f)(2)2" 07y — pFrot / R(f)(2)(z + 1)’“"02dz).
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Note that this map is not ramified at infinity as the third equation in (3.2.2)) is satisfied. [

Remark 3.2.8. Forrg =k —2in above, we have the polynomials py = z,p; = 1
and ps = 0 so

F(z) = ( / 2R(f)(2)dz, / R(f)(2)dz, 1).

The components of F' are clearly coprime. For any constants of integration the first com-
ponent of F is of degree k, the second component of degree k — 1 and the third component

of degree 0. Let sq, 1, so € C, by equating coefficients we see that

S0 / 2R(f)(2)dz + s, / R(f)(2)dz + sy = 0,

if and only if sy = s1 = sy = 0 therefore the components of F' are linearly independent.
We have that the corresponding f = [F] has degree k and is a full holomorphic map into
CP? so f € Hol;(CP?).

We differentiate F(z) to get

F'(2) = (2R(f)(2), R(f)(2),0),

and by identifying N\>C? with C3, we have

(F AF)(:) = (RN REOELRGIE) [ R0 - RO [ROE
= RE)Lz, [ 2R EE -2 [ RO(EE)

where () = (=1,z, [ zR(f)(2)dz — z [ R(f)(2)dz). As the third component of 1) is
of degree 2k — rq — 2 = 2k — (k — 2) — 2 = k, or equivalently as the third equation of
is satisfied, then [ = [F] has no ramification at infinity. Therefore [ = [F] is, in

fact, a map in Hol} +_o(CP?) and so in both the lower range, 0 < ro < k — 2, and the
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upper range, k — 2 < rg < %/{: — 3.

We see that by using the ansatz (3.2.1)) we have

Proposition 3.2.9. For any number of given points and ramification indices with sum rq
where 0 < rog < k — 2 we can construct, using , amap f € Hol;, (CP?), that is

k’,’/’o

ramified at those points with the chosen ramification indices.

Example 3.2.10. Let 0 and —i be the points in which we wish our degree 6 map f is to be
ramified with ramification index 2 and 1, respectively. Then using the method described
above the ramification divisor is R(f)(z) = 2*(z + i) and using one of the simplest
choices of polynomials fulfilling the criteria above: py = z*,p1 = z,ps = 1 we can
construct, using the ansatz ,amap [ € Holgyg(CPQ), ramified at the points given
above, given by f = [F| where
1 1 1 1 1 0
F(o)= (264225 25 2 aq 2,4, ' 3)
(2) <6z+5z,5z+4z+,4z+32

Note that the constants of integration we have chosen are cy = 0,c; = 1 and co = O where
¢; is the constant of integration of [ R(f)(z)pj(z)dz. Also note that f is not ramified at

infinity as the polynomials py, p1,p2 satisfy at least one of (3.2.2)) above. The exterior

product is given by

(F'AF)(2) = R(f)(2)1(2),

where
1.0, 1, 2. 1 . i
S N I Pl T R G B 2
Vi) < 07 T TR T T Tn 7
Therefore f(z) = [F(2)] is a map that has the points of ramification chosen above and

the components of 1(z) are coprime, e.g., as is easily checked by substituting the zeros
of the second component into the others, meaning that there are no further points of

ramification.
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Further to Proposition we can construct a family of maps in Hol (CP?) for 0 <
ro < k—2 that has ramification coalescence at any point. This can be done by constructing
a smooth family of ramification divisors dependent on ¢ € [0, 1] that acts as a curve
connecting two ramification divisors. For example let our ramification divisors be R, and
R, both of the same degree, then R; = tR; + (1 — t) Ry is a curve connecting the two.
Following the above we can construct a smooth family of maps f; such that, for t = 0, f;
has ramification divisor Ry and for ¢ = 1, f; has ramification divisor R;. Therefore for
any “configuration” of ramification points that coalesce we can construct a smooth family

of maps that has those points of ramification coalescing at given values of ¢.

Remark 3.2.11. If Ry and R, are not of the same degree then the associated curve fy)
and first Gauss transform GV (f,) are not continuous in t, if Ry and R, are of the same

degree then f,) and GW(f,) are continuous in t [37].

Example 3.2.12. Let 2, 3 be the points in which our degree 4 map fi is to be ramified and
let us ask that these points coalesce into a ramification point at 0 of ramification index 2
for fo. We have our smooth family of ramification divisors R(f;)(z) = t(z —2)(z — 3) +
(1—1t)2? and after one of the simplest choices of polynomials fulfilling the criteria above:
Po = 2,p1 = 2,p2 = 1 we can construct, using the ansatz (3.2.1), a smooth family of

maps f, = [Fy] € Hol} ,(CP?) with prescribed ramification coalescence:

1 ot 1 ot 1 ot
Fi(z) = <1z4 — 323 +3tz* +1, 124 — gz?’ + 3tz 523 - 522 + 6tz).

The exterior product is given by
(F A F))(2) = R(fi)(2)(2)

for
1 ot 1 ot
(z) = < - 524 + Ez3 — 3tz 524 - 523 +3tz2 — 1, z )

Therefore fi(z) = [F,(z)] is a smooth family of maps that have the ramification coales-
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cence chosen above and the components of 1,(z) are coprime which means there are no

further points of ramification.

Proposition 3.2.13. Given ry € Nwith0 < rq < k — 2 and a finite set of pairs {(z;, k;) }
where z; € 5% and k; is a positive integer with >_0_| k; = 1o, there exists a holomorphic
map f : S* — CP? that is ramified at z,, . . . , 2p, With ramification indices ki, ..., k),
respectively. Also, for any given points {z(to),. .., 2,(to)} there exists a smooth I-

parameter family of holomorphic maps f; : S*> — CP? with ramification coalescence

at those points (see Definition[3.2.1).

3.2.2 The Upper Range

To answer fully the natural questions from [37/] posed above we also need to consider
Holy,, (CP?) for k — 2 < ry < 3k — 3. We will find two counterexamples for this upper

range of ramification index that show that not all ramification is possible in the upper

range.

Example 3.2.14. We prove that there does not exist a map f € HOlZ73(C]P2) that is rami-

fied of order 3 at zero.

By Lemma the conjugate polar map of Definition restricts to a bijection
Hol; , (CP?) — Hol}, . (CP?) for k > 2,0 < rq < 2k — 3 where k' =2k —rg — 2,1 =
3k —2ro— 6 (which is in fact an application of below). Let f € Hol;o((CIP’Q) be the
conjugate polar of f € HOIZ,3(CIP>2) and write f = [F] = [po, p1, p2]- Due to f not having
any ramification points, ' \ F" defines the map f and so to find the associated curve f(l)
of f we use the wedge product (F NF'YAN(FANF'Y = (FAF)YAN(F'ANF' +FANF") =
FNF' NF" (so f(l) is the second associated curve of f) and by the greatest
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common divisor of this is the first-ramification divisor of f . Write

po(z) = Z a;2, pi(z) = Zbizi7 p2(z) = Z ¢,
=0 1=0 =0
then
Po P1 P2 ar b1 ap by <o
FAF' ANF" =det p6 p’l p’2 = 2det as b o 2% + 6 det as by co 22
po Pl Dy az by c3 az bz c3
ag bo Co Qo bO Co
+ 6det ar b ¢ )Z + 2det ar b ¢
as bg C3 a2 b2 Ca

We see that the coefficients of '\ F' N\ F" are linear combinations of the 3 X 3 matrix

minors of the matrix
as
a2
a1

Qo

b
by
b
bo

C3
C
2 (3.2.4)
(&1

Co

Now let us assume that f is ramified at z = 0 of order 3 (so f is second-ramified at z = 0

of order 3), then z?"F A F'' N F" and therefore we have that the coefficients of the terms

of degree 0 to 2 of ' \ F' N F" must be zero. Therefore all but one matrix minor must be

zero. For ease let us write

a;, bi ¢
éijk = det a; bj Cj
ar by c

0<i,jk<S3.

Then 23|F N F' N F" if and only if Ly1o = Lo13 = Loz = 0. Without loss of generality,
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using that loo3 = 0, let

03 = oy + 109 for ap, a1 € C and o; = (a;, b, ¢;). (3.2.5)
Now as ly1o = 0 we have one of the following equations:

0p = (01 + (3072,
01 = Q00 + Q509, (3.2.6)

02 = Qig0g + 7071,

where s, (i3, g, 05, a6, € C. Each equation (3.2.6) together with (3.2.5) implies
U193 = 0. Therefore all 3 x 3 matrix minors of are zero, which implies that f

is not a full map, a contradiction.

We present another counterexample using similar arguments to the counterexample above.

Example 3.2.15. We prove that there does not exist a map f € Hol; ;(CPP?) that is rami-

fied of order 5 at zero.

Let f be the conjugate polar of f € H01;76(CIF’2) so f € HOIZLO((CIF’Q), and we write
f = [F] = [po,p1,p2]- Due to f not having any ramification points, F' N F' defines
the map f and so to find the associated curve f(l) of f we again use the wedge product
FENF'NFE" (so f(l) is the second associated curve of ) and again by the greatest

common divisor of this is the ramification divisor of f. Write
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then

bPo P11 P2 az by c a b o

FANF' ANF" =det p{] p’l p’ = 2det as by c3 z6+6det as by c3 2P

o P Py as by ¢y ag by cy

ay by co a by

+ <12 det | a3 by c3 | +6det [ ay by e >z4
as bs cu ag by cy
as by <o a; b

+ (16det ay by ¢y | +2det | ay by o >z3
as by ¢y as bs c3
ap bo co ap bo <o

+ (12 det | a; by ¢y | +6det | ay by ¢ >22
as by ¢y as bs c3

ap bo co ap bo co

+6det | ay by ¢ | 2+2det | a; b ¢

as bg C3 a9 b2 Co

We see that the coefficients of F N F' \ F" are linear combinations of the 3 x 3 matrix

minors of the matrix

ay b4 Cy
az by c3
a9 b2 (&) 5 (3 27)

a by o

ap by co



3.2. COALESCING OF RAMIFICATION POINTS

and so are subject to some Pliicker relations [30]. Similarly to before let us write

a; bz Ci
gijk = det Q. bj Cj 0 < i?j? k < 4.
ag bk Cr

Then the Pliicker relations for this situation are

61246034 - 60246134 + 60146234 = 0;
61236034 - 60236134 =+ 60136234 = O;
61236024 - 60236124 + €012€234 = 07
61236014 - 60136124 + 60126134 = 07

Co2slors — Lo13lo24 + Lo12loss = 0.

47

(3.2.8)

(3.2.9)

(3.2.10)

Now let us assume that f is ramified at z = 0 of order 5 (so f is second-ramified at z = 0

of order 5), then z5‘F A F' N\ F" and therefore we have that the coefficients of the terms

of degree 0 to 4 of F N F' N\ F" must be zero. This amounts to another set of equations:

60012 = 0, (3.2.11)
60015 = 0, (3.2.12)
120014 + 603 = 0, (3.2.13)
16604 + 20105 = 0, (3.2.14)
120054 + 60124 = 0. (3.2.15)

We have from (3.2.11) and (3.2.12)) that {y12 = lo13 = 0, substituting into and
together with (3.2.13) we have {ys3 = (14 = 0, now substituting into and together

with we have (125 = lyog = 0, now finally substituting into (3.2.8) and together
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with we have {194 = L34 = 0. Without loss of generality, using that o34 = 0, let
04 = oy + 103 for ag, a1 € C and o; = (a;, b;,¢;). (3.2.16)
Now as ly13 = 0 we have one of the following equations:

00 = Q201 + 303,
01 = (40¢9 + 503, (3217)

03 = Qg0g + 707,

where oy, a3, g, a5, 0, 0p € C. Each equation together with implies

U134 = 0. Also, as lya3 = 0 we have one of the following equations:

oo = Booa + Bros,
oy = Bo0y + B303, (3.2.18)

03 = [400 + B502,

where By, b1, Be, B3, B4, B5 € C. Each equation together with implies
ly34 = 0. Therefore all 3 x 3 matrix minors of are zero, which implies that f is not

a full map, a contradiction.

Hence, we have proved:

Proposition 3.2.16. There does not exist a holomorphic map in Holz,g((CIP’z) that is ram-
ified of order 3 at 0. Nor does there exist a holomorphic map in HOIZVG((CIP’Q) that is
ramified of order 5 at (.

Remark 3.2.17. It does not seem easy to generalise Example[3.2.14\and[3.2.15as the pro-

cedure relies on starting withamap f € Holy (CP?) which has an unramified conjugate

polar. Maps satisfying this have even degree k and total ramification index ry = %k: - 3.
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The next map satisfying this criterion is f € Hol;g(C}Pﬂ) which has 20 matrix minors and

35 Pliicker relations.
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Chapter 4

On the Index of Harmonic Maps from
Surfaces into a Complex Projective

Space

In [28] an estimate was given for the index of non-+-holomorphic harmonic maps ¢ :
M, — CP" where M, is a closed Riemann surface of genus g. As before, we call a map

that is holomorphic or antiholomorphic +-holomorphic.

Proposition 4.0.1. /28] Let ¢ : M, — CP" be a non-x-holomorphic harmonic map.
Then
index(¢) > deg(¢)(n + 1) +n(1 — g).

Here deg(¢) denotes the degree of ¢ on second cohomology as defined in Definition

2.1.11

In this chapter we shall give improvements to this estimate for genus 0, for complex
isotropic (see Definition[2.1.6]) harmonic maps for genus 1, and in some cases for complex
isotropic harmonic maps for higher genus. Elements of this chapter were written up in

the paper [41].
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4.1 The Space of Holomorphic Sections and Holomor-

phic Differentials

We familiarise the reader with definitions that we use to improve Proposition 4.0.1

Definition 4.1.1. /31, §5] Let X be a smooth manifold. A (smooth) complex vector
bundle (of rank k) on X consists of a family of k-dimensional complex vector spaces
{E, }zex parametrized by X, together with a smooth manifold structure on E = U,cx E,,

such that:

(i) The projectionmap 7 : E — X, n(E,) = x, is smooth, and

(11) any point xo € X has an open neighbourhood U, such that there exists a diffeo-
morphism

¢y HU) = U x CF,

taking the vector space E, isomorphically onto {x} x C¥, called a local trivialisa-

tion

Definition 4.1.2. Let M be a Riemann surface with open covering (U;);cr. Let m 1 E —

M be a complex vector bundle of rank k on M and
A= {¢:7m HU;) > U;xC"|icl}
be an atlas for E i.e. a collection of local trivialisations. Let
@i = dio¢; ! (U;NU;) x C* = (U;NU;) x C".
The atlas A is holomorphic if the associated transition functions



4.1. THE SPACE OF HOLOMORPHIC SECTIONS AND HOLOMORPHIC
DIFFERENTIALS 53

defined by
wii(z,t) = (x, gij(x)t) for (xz,t) € (U;NU;) x C"

are holomorphic. Two atlases A and A" are holomorphically compatible if A U 2 is a
holomorphic atlas. The equivalence class of all holomorphically compatible atlases is

called a holomorphic structure.
Remark 4.1.3. For a complex vector bundle, the transition functions are just smooth.

Definition 4.1.4. A holomorphic vector bundle on a Riemann surface M is a complex

vector bundle together with a holomorphic structure.

On a holomorphic vector bundle, we have a g—operator [31, §5]. By [36] any complex
vector bundle £ — M over a Riemann surface equipped with a linear connection V
can be given a unique holomorphic structure (called the Koszul-Malgrange holomorphic

structure) with d-operator equal to the (0, 1)-part of V.
The estimate in Proposition [4.0.1] was constructed by noting that given a holomorphic

vector field along ¢ we have a smooth variation of ¢ that contributes to the index of ¢:

Lemma 4.1.5. [28, p. 258] Let ¢ : M — CP" be a non-=+-holomorphic harmonic map
then
index(¢) > dim H°(M, ¢~ T CP")

where HO(M, ¢~ 'TOICP™) is the space of holomorphic sections of ¢~ T OCP" de-
fined on the whole of M.

Here dim denotes complex dimension. Let M, be a closed Riemann surface of genus g.

Theorem 4.1.6 (Riemann—Roch [33]). Let W — M, be a holomorphic vector bundle of

rank n over a Riemann surface M, of genus g then

dim H°(M,, W) — dim H' (M, W) = ¢, (N"W) +n(1 — g),
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where c; is the first Chern class (evaluated on the canonical generator of Hy(M,, Z)) and
H*(M,, W) is (by Serre duality) the space of holomorphic (1,0)-forms of M, with values
in the dual, W*, of W [33, Theorem 9].

Corollary 4.1.7. Let W — M, be a complex vector bundle over a Riemann surface M,
which can be given more than one distinct holomorphic structure, then dim H°(M, W) —

dim HY (M, W) is independent of the choice of holomorphic structure.

Proof. By Theorem we have dim H°(M,, W) — dim H'(M,, W) = c;(A\"W) +

n(1 — g), where the right-hand side depends only on the complex structure. 0

Let o' TWOCP" — M, be the pullback of the complex vector bundle 70 CP™ — CP”
of rank n. Give the former the Koszul-Malgrange holomorphic structure from the (0, 1)-
part of the pullback of the Levi-Civita connection defined on CP". Let ¢ : M, — CP"
be a non-+-holomorphic harmonic map. Then using Riemann-Roch for the holomorphic

vector bundle ¢TI CP" — M, of rank n we get
dim H°(M,, 6~ 'THOCP") — dim H'(M,, 6 THOCP") = deg(é)(n + 1) + n(1 — g)

and Proposition follows directly by disregarding the non-negative number
dim H'(M,, o' THICP"). We improve the estimate in Proposition by looking at
dim H°(M,, ¢~ 1 THICP") more closely and finding an improved estimate for its dimen-

sion by using the connection-preserving isomorphism (2.1.4).

Considering the harmonic sequence (2.1.3)) above:
Definition 4.1.8. [[12| 28] We say a full harmonic map ¢ : M, — CP" has directrix (f, p)

if = GW(f) forp € {0,1,...,n} and f : M, — CP" a full holomorphic map.

This is possible if and only if ¢ is complex isotropic (see Lemma [2.1.8)). Given a har-
monic map ¢ : M, — CP" with directrix (f, p) then by (2.1.4) we have the following
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decomposition into complex vector bundles:

o ' THOCP" = L(f , f7)
:L(ip’io@i1@"'@ip_1@ip+1@”'@in>
~L(f f) @@L, f, VOL.f, )& ®L{.f)

=A_ D A+7
where
p—1 n
A_:ZL(ip7ij)’ A+: Z L(ip’ij)'
=0 j=p+1

To respect the Leibniz rule, we give L( ip, S i) the connection 'V induced from ip and
ii defined by
("V o u)(s) =7V s u(s) —u(*V 2 ), 4.1.1)

0z

where /' V and 7V are the connections defined in (2.1.3) on ii and ip, respectively,

u € F(L(ip,ii)) and s € F(f ). We then give L(f fL) the Koszul—Malgrange holo-

morphic structure from the (0 1)-part of that connection *V. As is connection-
preserving then ¢~ 'TUHOCP" = L(f f f ) is an isomorphism of holomorphic vector
bundles where they are both given the Koszul-Malgrange holomorphic structures defined

from their respective connections.

Lemma 4.1.9. Let L( ip, Lf) be the holomorphic vector bundle over a Riemann surface

M, defined above, then A, and A_ are both holomorphic subbundles of L( ip, S ;)

Proof. Tt suffices to show that both T'(A,) and I'(A_) are closed under £V 2. To show
this we let u € T'(A,) and s € F(ip) then by li ,

("V o u)(s) = fﬁv%u(s) —u(""V o.5).

oz

Asu(s) e (5, f f ), according to [2 p. 603] for suitable complex-valued functions
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a and b,

0

gu(s) = au(s) + bv,

where v € (37 ij) Therefore, by the definition of /7" V/,

fPLV%u()—ﬂfa_u GFZf

Also, as fPV@s € F(f) and since u € T'(Ay) = (X0, (f f )) then
u(fpv%s) e I'(Q pr ) also. Hence LVgu € I'(A;). A similar argument can

be made for A_. O

Foreachj € {p+1,...,n}, L(ip,ij) is a complex subbundle of L(ip,iﬁ) and so can
be given an induced (subbundle) holomorphic structure, i.e. that with 9-operator given
by ijLV a. Using this we give A, a second ‘direct sum’ holomorphic structure Oy

defined by
Dsum Z 7,V 2.(0;) (4.1.2)

oz
Jj=p+1

foro =0,14+0,0+- 40, €I'(Ay)and o; € F(L(ip,ij)) forallj € {p+1,...,n}.

Lemma 4.1.10. Let A, be the holomorphic bundle over Riemann surface M defined
above equipped with the holomorphic structure Oy, and let each complex subbundle
L( ip, i]) of L( ip, ii) be equipped with the induced (subbundle) holomorphic structure

as above. Then
(1) H()(M? A+) = Z;’L:erl HO(Ma L(ip>ij))a
() HY(M,A,) = Z?:,)H Hl(M,L(ip,ij)).

Proof. (i) Let o € I'(A}) then o may be decomposed uniquely as 0 = 0,41 + 0,12 +
+++ 0, where 0 € T(L(f |, f ) forall j € {p+1,....n}. As Qumlris s =
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Y o then L( ip, i]) are holomorphic subbundles of (A, O ), S0

asum(o') = 5sum(o'erl) + gsum(o'erZ) + -+ asum(o'n)

= 7Tfp+1Lv%(Up+1) + 7rfp+2LV <JP+2) +oeee anLv%(Un)'

9
oz

Therefore ¢ € H°(M, A,) if and only if o; € HO(M,L(ip,ij)) for each j €

{p+1,...,n}.

(ii) Using Serre duality [33, Theorem 9] we have H'(M, A, ) = H(M, A% @ T*M,),

then (ii) follows from (i).

O

Proposition 4.1.11. Let M be a Riemann surface, and ¢ : M — CP" a harmonic map
with directrix (f, p); let A, =377 . L(f . i]) be equipped with the holomorphic struc-
ture Oy, and let L( ip, i]) be holomorphic subbundles of L( ip, ii) equipped with the

induced (subbundle) holomorphic structures. Then

f))-

p’ =]

dim H(M, ¢~ ' TOCP?) > >~ dim H(M, L( [ f)) —dim H' (M, L(f

J=p+1

Proof. Recall that ¢~ THOCP" 22 [( o i) is an isomorphism of holomorphic vector
bundles where ¢~ 'T(HOCP" and L( [ ,j) have Koszul-Malgrange holomorphic struc-
tures defined from their respective connections. By Lemma[.1.9] A, and A_ are holo-

morphic subbundles of L( ip, iﬁ), so we have

dim H(M, ¢ ' TEOCP") = dim H(M, A,) 4 dim H°(M, A_)
> dim H(M, A,)
> dim H'(M, A,) — dim H' (M, A}), (4.1.3)

as dim H(M,A_) > 0 and dim H'(M, A,) > 0. By Corollary the right-hand
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side of (4.1.3)) is independent of choice of the holomorphic structure on A, . Using this,

we replace the holomorphic structure of A, induced by the Koszul-Malgrange holomor-

phic structure of L( ip, f [f) with the holomorphic structure defined by (4.1.2). Applying
Lemma [4.1.10| to dim H°(M, A,) — dim H'(M, A, ) with A, equipped with the holo-

morphic structure gy, We have

dim H(M, o' THOCP™) > dim H°(M, A,) — dim HY(M, A,)

= > A{dimH(M,L(f , f,)) — dim H' (M, L(f , f ))}-

Jj=p+1

]

Recall from Lemma [2.1.12] that the degree of ¢ is minus the first Chern class ¢; of the
bundle @ we have from [28| p. 246], given a harmonic map ¢ : M, — CP" with directrix
(f,p), where M, is a Riemann surface of genus g, then

p—1

— deg(¢) = c1(¢) = > o — deg(f) + p(2 — 29). (4.1.4)

a=0
We deduce the following.

Theorem 4.1.12. Let M, be a Riemann surface of genus g, ¢ : My, — CP" a full non-=+-

holomorphic complex isotropic harmonic map with directrix (f, p), and r, the (o + 1)st

total ramification index of f (see §2.2.1)). Then

-1

index(¢) > (n+1)deg(f) — Y (n—a)ra + (2np—p*+2p—n)(g—1). (4.1.5)

)

Q
Il
o
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Proof. Foreachj € {p+1,...,n}, we have using (4.1.4) that

all(f . f)=alf,ef)

=alf)+alf)
=-—a(f)+alf)
= (=29 -2+ ) Ta

Therefore for each j € {p + 1,...,n} Theorem.1.6](Riemann-Roch) gives

dim H(M,, L(f, f,)) — dim H'(M,, L(f f ) =all(f f)+1-g
j—1

= (2 =20+ 1)(g—1)+ 7

a=p

Using this together with Proposition {.1.11] we have

dim H(M,,¢"'THOCP") > i {dim H*(My, L(f , f ) — dim H'(My, L(f , f )}

= > (g, ) +1o)

- if—(%—zpﬂ)(g— D +Z}

= ((n—p)(2p— 1) —n(n+ 1)+p(p+1)>(9— 1)+ Zﬂ;lgm
—((n=p)2p=1) = +1) +p(p+1)) (g~ 1) +n21<n — a)ra.

(4.1.6)
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From [31} p. 271] we have a useful relation involving the total ramification indices r:

i
L

(n—a)re = (n+1)deg(f) +n(n+1)(g —1). 4.1.7)

Q
Il
=)

We split this sum and rearrange to give

-1

i(n —a)r, =(n+1)deg(f) +n(n+1)(g—1)— > (n—a)r,. (4.1.8)

a=p

R}

Q
Il
o

By substituting (4.1.8)) into ( we have the following:

p—1
dim H*(M,,¢ ' TOOCP™) > (n + 1) deg(f Z n— Q)re+
a=0

((=p)2p =) =n(n+ 1) +plp+ 1) +n(n+1))(g—1)

—_

= (n+1)deg(f) = Y (n—a)ra+ (2np —p* +2p —n)(g — 1).

hs)

i
o

By Lemma the theorem is proven. O

Corollary 4.1.13. Let M, be a Riemann surface of genus g, ¢ : My, — CP" a full non-+-
holomorphic complex isotropic harmonic map with directrix (f, p), and r,, the (o + 1)st

total ramification index of f (see §2.2.1)). Then

p—1
index(¢) > (n+ 1)deg(¢) + » (a+ L)ra + (n+ p*)(1 — g).
a=0
Proof. By (.1.4) we have
p—1
deg(f) = deg(¢) + ) _ra —p(29 —2). (4.1.9)



4.1. THE SPACE OF HOLOMORPHIC SECTIONS AND HOLOMORPHIC
DIFFERENTIALS 61

Substituting (4.1.9) into (#.1.5)) and rearranging we have

—1 p—1

index(¢) > (n+1)( deg(é) + 3 70— p(20 = 2)) = Y _(n — a)ra

a=0

A

Q
Il
=)

+ (2np—p* +2p —

T —

(9—1)
=(n+1)dego+ (n+1) To — Y (n—a)ry

a=

—2p(n+1)(g—1)+ 2np—p* +2p—n)(g — 1)

R}

o
o

a=

— (ot Ddeggt (04 )Y 70— 30— @t (n+ )1~ g)
— (n+1)degd+ 3 (@ + Dra+ (n+ )1 - g).

O

Remark 4.1.14. Theorem is an improvement on Proposition [28] if and only
if

p—1

> (a+1ra>p*(g—1),

a=0

which clearly holds for g = 0.

Corollary 4.1.15. Let ¢ : S? — CP" be a full non-+-holomorphic harmonic map with

directrix (f, p) and r,, the (a + 1)st total ramification index of f. Then

T
L

index(¢) > (n+1)deg(f) — Y (n—a)ro —2np+p* —2p+n

‘?Q
i

= (n+1)deg(¢) + ) (a+ra+n+p".

Q
o

Proof. This follows immediately from Theorem and Corollary 4.1.13| by putting

Corollary 4.1.16. Let ¢ : S?> — CP? be a full non-+-holomorphic harmonic map with
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directrix (f, 1) and let r( be the first total ramification index of f. Then
index(¢) > 3deg(f) — 2ro — 3 = 3deg(¢) + 1o + 3.

Proof. Let ¢ : 5S> — CP? be a non-%-holomorphic harmonic map, then we have p = 1

and n = 2; by substituting these values into Corollary 4.1.T5|we get the desired result. [

Remark 4.1.17. For a harmonic map ¢ : S* — CP" with directrix (f,p), Corol-
lary is an improvement on known estimates (Proposition by the amount
p* + ZZ;B(a + 1)ro. In particular, Corollary is an improvement for a harmonic
map ¢ : S? — CP? with directrix (f, 1) by the amount 1 + rg.

Corollary 4.1.18. Let ¢ : My — CP" be a full non-+-holomorphic complex isotropic
harmonic map with directrix (f, p) and r, the (o + 1)st total ramification index of f.
Then

p—1

index(¢) > (n+ 1) deg(f) = > (n—a)ra

a=0

= (n+1)deg(o) + i(a + 1)rq.

Proof. This follows immediately from Theorem [4.1.12] and Corollary @4.1.13] by putting

Corollary 4.1.19. Let ¢ : M, — CP? be a full non-+-holomorphic complex isotropic
harmonic map with directrix (f,1) and let ro be the first total ramification index of f.
Then

index(¢) > 3deg(¢) + o = 3deg(f) — 2ro.

Proof. Let ¢ : M, — CP? be a non-+-holomorphic harmonic map, then we have p = 1
and n = 2. By substituting these values into Corollary 4.1.18 we get the desired result.
O
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Remark 4.1.20. For a harmonic map ¢ : M; — CP" with directrix (f,p), Corol-
lary H.1.18) is an improvement on known estimates (Proposition by the amount

dr 0(a + 1)ry. In particular, Corollary is an improvement for a harmonic map
¢ - My — CP? with directrix (f, 1) by the amount r.

4.2 Examples

We present examples of harmonic maps for genus 0, 1, and higher genera for which the
known estimates on the index are improved by Corollary #.1.16] Corollary 4.1.19] and

Theorem 4.1.12} respectively.

4.2.1 Genus(

We define the family of maps 7, : S — S? given by n,(2) = 2* for k € Z: all 1, are

holomorphic.

Example 4.2.1. ¢f. [28 Example 8.1] Let F : S? — C?\ {0}, where F(z) = (1, z, 2°).
Then let f = [F] : S? — CP?, so f(2) = [1, 2, 2%] and is a full holomorphic map with
deg(f) = 2 and ro = 0. Following §2.1 we have that G'(f) : S* — CP? is a full
non-=+-holomorphic (complex isotropic) harmonic map of degree 0 and directrix (f,1).
For each k € N the composition f ony, : S? — CP? gives a full holomorphic map with
deg(f o) = 2k and ro = 2(k — 1). Foreach k € N, G'(f on,) : S? — CP? gives a
full non-+-holomorphic harmonic map of degree 0 and directrix (f on, 1). By Corollary
index(G'(f ong)) > 3deg(fonk) —2rg —3 = 6k —4(k — 1) —3 = 2k + 1.
By Remark[{d.1.17} for each k € N, Corollary improves the estimate in [28] (see

Proposition[d.0.1|above) by 2k — 1.

Example 4.2.2. ¢f. [28) Example 8.2] Let F : S? — C3\ {0}, where F(z) = (1,2 +
23, 2%). Thenlet f = [F] : S* — CP?, so f(z) = [1, 2 + 2%, 2%] and is a full holomorphic
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map with deg(f) = 3 and ro = 0. Again following §2.1 we have that G'(f) : S*> — CP?
is a full non-=£-holomorphic (complex isotropic) harmonic map of degree 1 and directrix
(f,1). For each k € N the composition f o, : S*> — CP? gives a full holomorphic map
with deg(f ony) = 3k andro = 2(k—1). Foreach k € N, G'(fony) : S* — CP? gives a
full non-+-holomorphic harmonic map of degree k and directrix (f on, 1). By Corollary
index(G'(f ony)) > 3deg(fomk) —2ro —3 = 9k —4(k — 1) — 3 = 5k + 1.
By Remark[{d.1.17} for each k € N, Corollary improves the estimate in [28] (see
Proposition above) by 2k — 1.

4.2.2 Genusl1

Let M;, Mj be tori, i.e. compact Riemann surfaces of genus 1 and ¢ : M; — M a

holomorphic covering map of degree k.

Example 4.2.3. Let f : M| — CP? be the degree 5 full holomorphic map with first total
ramification index 4 constructed in [28 Lemma 8.7]. The composition [ o 1 is a full
holomorphic map with deg(f o 1) = 5k and ro = 4k. As an application of Corollary
let G'(f o)) : My — CP? be the degree k harmonic non-+-holomorphic map
with directrix (f o 1, 1) then index(G'(f o ¥)) > 3deg(f o ¢) — 2ro = 15k — 8k = Tk.
By Remark[d.1.20} for each k € N, Corollary improves the estimate in [28] (see
Proposition .01 above) by 4k.

4.2.3 Higher Genera

Let M, be a compact Riemann surface of genus g > 1.

Example 4.2.4. By [28, Theorem 8.10] there exist full non-+-holomorphic complex
isotropic harmonic maps ¢ : My — CP? of degree k > g. Indeed there exist holomorphic

maps h : My — CP' of all degrees k > g. Composing such a map with the full harmonic
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map of degree 1 with directrix (f, 1) from Example gives a full non-+-holomorphic
complex isotropic harmonic map of degree k > g. This is the Gauss transform of the full
holomorphic map f o h which has degree 3k. From ro=2k+29g—2>¢9g—1
Therefore by Remark{.1.14] Theorem improves the estimate in [28] (see Proposi-
tion.0.1)above) for all these maps, giving examples in all degrees > g.
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Chapter 5

Canonical Elements

In this chapter we discuss certain elements of a semi-simple Lie algebra called “canonical
elements”. As described in [10] these elements give rise to natural fibrations of a class
of homogeneous spaces over a Riemann surface. These homogeneous spaces are of the
form G//H for G a semi-simple compact Lie group and H the centraliser of a torus of
G the homogeneous spaces G/ H are called flag manifolds. The natural fibration of the
flag manifold described in [10] is a “twistor fibration” and has a rich theory for describing
harmonic maps. For more general information on twistor fibrations we direct the reader
to the survey [25]. Before our discussion of canonical elements we will describe certain
bases of C" called “null bases” that will aid in the discussion of canonical elements and aid
in the calculations of later sections, particularly the sections pertaining to the orthogonal

group and symplectic group.

5.1 Null Bases

Let {e;} be the standard basis for C* where e; = (1,0,...,0)%, e; = (0,1,0,...,0)7,
cven =(0,...,0,1)" and let (z,y) = 2"Ty = > | x;y; be the standard symmetric

bilinear form on C" for z = (zy,...,2,)" andy = (y1,...,yn)".
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Definition 5.1.1. A basis {&;} for C* which satisfies (¢;,€;) = 0; for any i,j €

{1,2,...,n} and where j = n + 1 — j is called a null basis.

5.1.1 The Orthogonal Group

Consider the orthogonal group

O(n) ={A € GL(n,R) | (Az, Ay) = (z,y) ¥V z,y € R"} (5.1.1)
={AecGL(n,R) | ATA=1T}.

The complexification of O(n) denoted O(n, C) = O(n)® is given by

O(n) ={A € GL(n,C) | (Az, Ay) = (z,y) ¥ z,y € C"}
={A€GL(n,C) | ATA=1I},

for AT the linear map characterised by (Az,y) = (x, ATy) for the standard symmetric

bilinear form on C" and x, y € C. For more information see [34]].

Definition 5.1.2. For any subspace V€ C" we say that V is isotropic if (z,y) = 0 for all
x,y €V or equivalently if V- C V where — : C* — C" denotes complex conjugation
given by v = > Tie; for v = > vie;. We say that V' is maximally isotropic if

Vi=V.

We consider the orthogonal group for the particular null basis {é;} for C" given by

. 1 . _ 1 .
& = E(@j —ieyj), &= E(@j +iegi1), (.1.2)

for j < 5 and with €(,,4.1)/2 = €, when n is odd. Let P be the matrix with columns given
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by the null basis (5.1.2)),
1 0O 0 0 O 1
1 ; 1
0 0O 0 00 0
P é1 € | =2 0 0 O 0
‘ ‘ 0 1 0 01 0
0 —i ¢ 0
0 0 1 10 0
for n even; for n odd, P has a column (0,0,...,0,1)T in the middle. The standard

symmetric bilinear form on C" in this null basis is given by

(w,y) =" PTIPy = 2" Qy =) a;y; (5.1.3)

j=1

forz =377 i€,y =27 y;¢;and Q = Q,, = is of size n x n.

1

Definition 5.1.3. Let A = (a;;) be an m x n matrix. The second transpose, A* of A is

the n X m matrix defined by A* = (aj;).
As Q™' = @ we have from this definition that for an n x n matrix A” = (a;;),
A¥ =QATQ and AT = QA*Q. (5.1.4)

Note that A* is obtained from A by reflection in the second diagonal (sometimes called

the antidiagonal), that is, all elements of A = (a;;) such that i + j = n + 1. Also from
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Definition|5.1.3} we have for x = (x1, 79, ..., 2,)7 that
¥ =27Q and 2T =27Q. (5.1.5)

In this null basis the orthogonal group is given by O(n,C) = {A € GL(n,C) | A*A =
I}. Aliesin O(n, C) if and only if it preserves the inner product (5.1.3)), i.e. ATQA = Q;

since Q! = Q this is equivalent to A¥A = I.

Lemma 5.1.4. [29] Let A be an n X n matrix in the null basis and let c; the jth
column of A. Then A € O(n,C) if and only if

(Civ Cj) = 515

Proof. This follows immediately from A*A = I, where

e T
A= Ci Cy ... Cp and AT:
<
| .
[
5.1.2 The Symplectic Group
Define a skew-symmetric bilinear form on C*™ by
W@, y) =Y T hmrs — Tmpiys = (2,Q) = 2"y, (5.1.6)

J=1
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forz = (x1,...,2,)", y = (y1,...,yn)" and Q the 2m x 2m matrix

Here I,,, denotes the m x m identity matrix. Let (z,y) = 271y = Y. z;5; be the
standard Hermitian form on C" for x = (z1,...,7,)" andy = (y1,...,y.)". Note that

(x,y) = (x,7). Let J : C*™ — C*™ be the conjugate-linear map characterised by

wl,y) = (2, J(y)  (v,y € C™). (5.1.7)

From (5.1.6) we have that the conjugate-linear map J can be represented by a matrix in

the following way

(2, Qy) = w(z,y) = (z, J(y)) = (z,J(y)),
so J(y) = Qy. For the standard basis {¢;} we have
J(ej) = Qej = —epmyy, J(emtj) = Qemij =€ (je{tl,...,m}). (5.1.8)

The symplectic group over the field of complex numbers is a non-compact Lie group

defined by

Sp(2m,C) ={A € GL(n,C) | w(Az, Ay) = w(z,y) V z,y € C"}
— [Ae GL(n,C) | ATQA = Q).

The (compact) symplectic group is defined to be the intersection Sp(m) := Sp(2m,C) N
U(2m).

Lemma 5.1.5. Let A be an 2m x 2m matrix and let c; be the jth column of A. Then
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A € Sp(2m, C) if and only if

(

5j7k—m> lf] S ka
w(cj, c) =
\_5jfm,k7 lf_] > k.
Proof. Consider AT - Q- AforA=|c¢, ¢ ... com |,

Cl C ... Com | — (bjk>7
T
Com—1

T
Com
where (b,y;) is the matrix with entries given by

bir = ch Q- = w(ey, cp).

0j k—m> if j <k,
Therefore, we have A - Q- A = (bj) = Q, if and only if bj; =

_5j—m,k; lfj > k.
O

For more information of the symplectic group see [34, 45].

Definition 5.1.6. For any subspace V' € C*" we say that V is J-isotropic if w(z,y) = 0
for all x,y € V or equivalently if V- C JV. We say that V is maximally J-isotropic if
Vit=JvV.
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Consider the null basis {é;} for C*™ given by

. 1 . . 1 .
€j = ﬁ(em-&-j — iej), € = E(emﬂ‘ + iej) (5.1.9)

for j < m. Let P be the matrix with columns given by the components of the null basis

(5.1.9) with respect to the standard basis,

P=\|e¢ & ... & |=— , 5.1.10
€1 €9 €n \/§ Im Qm ( )
1
where Q,,, = is of size m x m. Note that Q,,, = QT = Q% = Q,;!. In the
1
null basis (5.1.9) the skew-symmetric bilinear form above is given by
w(w,y) = 2" PTQPy = 2" Qy = 25 Q2mQy = 2™ Qpury
:injyj — T;Yj, (5.1.11)
j=1
where x = Z?ZI Tiéj, Y= Zj:”l Yi€;, 1 = 2% Qoy, from ll
o —iQ,,
Q:=PTOP = @ and
1Qm
R il,,
Qnull = QQmQ = . (5112)
—il,

Similarly to before we may represent the conjugate-linear map J : C** — C?™ by a

matrix in this null basis. Let {¢;} be the null basis from (5.1.11) then using (5.1.8) we
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have
R 1 1
J@) = 5T eme —ie) = 5 (Jemes) = Jey)
1 , 1
= 5 (Tensp) +i(e))) = ole; —iensy)
= ii(emﬂ +iej) = —ié; =1 g
V2
and
R 1 1
T(&5) = 5 ey + i) = ﬁ(ﬂemﬂ-) + Jiey))
1 , 1
= _2<J(em+3) zJ(eﬁ) = _2(€J + i€m;)
= zi(emﬂ ie;) = ie; = —i¢;

Letv = ij v;é; € C*™ for {é,} the null basis (5.1.9). We split the sum using the
notation introduced in Definition SOV = oo Vkér+ >, vié;. Upon applying the

conjugate-linear map J : C*™ — C?™ we have,

J(0) = I oéx+ ) vier) = DT (@) + )T (@)
k=1 =1 k=1 =1
= " TiEn) + Y w(—ie) =Y ivelr — Y ivger (5.1.13)
k=1 =1 k=1 =1
= Z 1LE) — Ziv;él = Qnuiv
k=1 =1

Also note that for v = Zj:‘l v;é; € C*" then

2m 2m 2m
E (] e E j = E 5€55
: :1 j:l

where we rename the indices in the last equality. A lies in Sp(2m, C) if and only if it
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preserves the inner product (5.1.11); as w(z, y) = 27Qy then A € Sp(2m, C) if and only
if ATQA = Q. Using (5.1.4) this is equivalent to A% A = Quun and so we write the
symplectic group in the null basis (5.1.9) as

Sp(2m,C) = {A € GL(n,C) | A*QuuA = Quun }- (5.1.14)

Lemma 5.1.7. Let A be an n x n matrix in the null basis (5.1.9) given above and let c;
be the jth column of A. Then A € Sp(n,C) if and only if

w(cj, ) =
Proof. Similarly to Lemma|5.1.5|we consider A* - Q- A for A = 4 o ... cnls
| |
i1,
C1 Cy Cn | — (b]k’)7
i

where (bj;) is the matrix with entries given by
bjk = C% : Qnuu *Cr = W(Cj, Ck).

Therefore, we have A* - Quui- A = (bjr.) = Qouns if and only if by, = ’
O



76 5. CANONICAL ELEMENTS

5.2 Canonical Elements

Let GG be a compact (real) Lie group with semi-simple Lie algebra g. We give descriptions
and examples of particular elements of the Lie algebra g called canonical elements. We
state and give justification to two results, Theorem and Theorem which
describe canonical elements for U(n) and O(n), respectively. We go on to give concrete
descriptions of canonical elements for SU(n) and O(n) following the theory of [10],
summarised in Proposition for the orthogonal group. Finally, we give a description
of canonical elements for Sp(m) summarised in Proposition[5.2.20] For more information
on canonical elements see [7, |10} [17] and for the general theory below see [34, §6] and

[45] §3].
Definition 5.2.1. Let g be a semi-simple Lie algebra then a maximal commutative sub-
algebra of g is a subspace by of g satisfying the following:

(i) forall Hy, Hy € b, [Hy, Hy] =0  (commutative);

(i) forall X € g,if [H,X]| =0 forall H € h,then X € h  (maximal).

Definition 5.2.2. Let g€ be a complex semi-simple Lie algebra then a Cartan subalgebra
a of g© is a maximal commutative subalgebra of g© such that ad(€) is diagonalizable for

each & € a.

Here diagonalizable means that there is a basis of g© such that ad(&) is represented by a

diagonal matrix.

Proposition 5.2.3. /34, Proposition 6.12] Let g be a real semi-simple Lie algebra and
t some maximally commutative subalgebra. Let t* = t @ C and g* = g ® C be the

complexicifations of t and g, respectively. Then t* is a Cartan subalgebra for g°.

Remark 5.2.4. We will adopt the convention of many authors by calling a maximal com-

mutative subalgebra t a maximal toral subalgebra. This name is due to the following: let
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T be a connected Lie group whose Lie algebra is a maximal commutative subalgebra t
of g, then T can be shown to be isomorphic to S* x S x --- x S, which is a maximal

torus of G.

Definition 5.2.5. Let g© be a complex semi-simple Lie algebra and a be a cartan subal-
gebra for g©. We call the non-zero linear map X\ € a* where there exists non-zero v € g°©
such that ad(&)v = MNE)v for all € € a aroot of g€ relative to a. We call the corre-
sponding v € g€ a root vector of \. The collection of all root vectors v € g© together
with 0 is called the root space of \. The set of all roots \ € a* is called the root system

of g relative to a and is denoted A.
Remark 5.2.6. If A € A then —\ € A, [lI0, p. 26].

Definition 5.2.7. A positive root system A" is a subset of A such that

(1) For \, =\ € A then A" contains either \ or —\;

(i) AT isclosed i.e., For \i, Ao € AT such that \; + Xy € A then A\ + Ay € AT,

We call elements of A™ positive roots.

Definition 5.2.8. [[/0] Given a positive root system A", a positive root is called simple if

it cannot be expressed as a sum of two other positive roots.

Remark 5.2.9. There is a choice for the set of simple roots for each choice of positive
root system [34) §6.8] and so when thinking of simple roots one must think of a choice of

simple roots relative to a choice of positive root system (which is generally not unique).

Definition 5.2.10. Let \q, ..., \; be simple roots relative to some positive root system A™.

Then the dual vectors A, ..., A; € a to the simple roots )1, . .., \; are characterised by
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Definition 5.2.11. [I0] Let a be a Cartan subalgebra for g© and A a positive root
system with simple roots A1, . .., \; and corresponding dual vectors Ay, ..., A; € a. Then

a canonical element £ of g is the element of g given by

=Y A

el
where I is a subset of {1,2,... 1}.
Let G be a Lie group with Lie algebra g. We will often call a canonical element £ € g a
canonical element for the Lie group G.

For use in later chapters we also give the following definition.

Definition 5.2.12. Fix a canonical element ¢ € g, then the homomorphism ¢ : S* — G

defined by ¢ (e) = exp(t) is called a canonical geodesic.

This homomorphism is well defined see [9} p. 549ff.].

Remark 5.2.13. In keeping with the notation of [9, [29] we often write A = et € S*.

5.2.1 Canonical Elements for SU(n)

For convenience, the definition of canonical elements (Definition |5.2.11) for g = su(n)
can be extended to allow the dual vectors A; to be in u(n) = su(n) @ R. They are then
determined up to addition of an element 4, - I, for I the n x n identity matrix and Jy € R.

We have:

Theorem 5.2.14. [8, Proposition A.1] An element & € u(n) is canonical if and only if

fzi(50']+2j'PEj)

j=1
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for some orthogonal decomposition C" = Z;n:l E; into subspaces, with orthogonal pro-

Jection matrix P, and any oy € R.

Note also that dim E; = rank(Pg;).

Corollary 5.2.15. An element £ € su(n) is canonical if and only if
=l o
€= 2(7 Z] rank(Ppg,) - I + Z] - Pg,)
j=1 j=1

for some orthogonal decomposition C" = 2721 E;, with orthogonal projection matrix

Pg..

J

Proof. Consider su(n) = {A € u(n) | trace(A) = 0}. As su(n) C u(n) then a canonical
element § = i(do - [ + > 7", j - Pr;) € u(n) is a canonical element in su(n) if and only

if € € su(n). So,

€ € su(n) < trace(§) =ndy + Zj rank(Pg;) = 0.

J=1

]

We will give some justification for the corollary above by finding canonical elements
with respect to some positive root system of a Cartan subalgebra and show that these are

equal to the canonical elements in Corollary for some orthogonal decomposition
Cn - Z;nzl Ej.

Let t be a maximal toral subalgebra (maximally commutative subalgebra) for su(n) given
by
t = {idiag(as,...,a,) | a; € R Vj, Zaj =0},

J=1



80 5. CANONICAL ELEMENTS

so a Cartan subalgebra for su(n)® is given by

t© = {diag(n1, ..., m) | n; € C V4, > _n; =0},
j=1
The roots of su(n)® relative to t© are linear maps \j; : t© — C defined by \j.(n) =
n; — M Where ) € tC and j < k. The corresponding root spaces to the roots are spanned
by Ej; € su(n) where Ej; has zeros in every entry except for the (j, k) entry which
has a 1. We choose the simple roots of the positive root system A* to be \; ;1 with
associated root spaces F; ;11,7 = 1,2,...,n — 1. Dual vectors to these simple roots are

Ay, ..., A,_1 € tsuch that
Ajjr1(Ax) = idjp,

forall k =1,...,n — 1. These are of the form

Ak22(71+Dk),

where a;, € R and D), is a 2 x 2 block matrix of the form

I O
D, = k kn—k ’

On—rk On—kn—k

where [}, denotes a £ x £ identity matrix and 0, ; denotes a j X k matrix with all zero

entries. According to Definition [5.2.11|the canonical elements of su(n) are of the form

g:i(Z%.IJFDj):i(Z%j.JJrZDj), (5.2.1)

j€J jedJ JjeJ

where J C {1,2,...,n — 1}. We give an ordering to the elements of J, so j; < js <

o< giforjre Jk=1,2,...,n—1and [ < n — 1. Considering the second sum of
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(5.2.1) we have,
l l
> D= D; =) (I+1-k) B,
jeJ k=1 k=1
for Jk—1 Jk—Jk—1 n—jk

—
Bkzdiag(0,...,0,1,...,1,0,...,0 ;

where we set jo = 0. Now by adding the identity matrix / to both sides and rearranging

we have,
I+1
I+ D _I+Zl+1— k) B =Y k- By, (5.2.2)
jeJ k=1
where Ji n—ji

——
Bm=diag(0,...,o,1,...,1)-

Let us consider the first sum of (5.2.1) minus the identity matrix,
I = N ) =T ) T = T YT
JE€J JjeJ jeJ k=1

By noting that trace( l“ _, Br) = rank( l“ —,Br) = nand j, = Zh (rank(By) =
S _, trace By, then

l I+1 Ik
—1 ‘ —1
7(71—1—2];&— (rank( ZBk —I—ZZrank (Byr))
k=1 k=1 k=1 h=1
-1 I+1 I
= —(rank ZBk + Y krank(Bj41-x))
k=1 k=1
B !
= — (rank(B41) + Z 1)rank(Biy1-k))

=1
I+1

— %(Z krank(Bio_k)).

k=1
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So,
s g
1+ 1= (3 krank(Biyay)) - 1. (5.2.3)
jes (-
Using (5.2.1)),(5.2.2)) and (5.2.3)) we have
o I+1
¢ = i(T S krank(Bioy) - T+ k- BHH),
k=1 k=1
where the By, B, ..., By, are orthogonal projection matrices giving a decomposition of

C", exactly as in Corollary[5.2.15

5.2.2 Canonical Elements for O(n)

Theorem 5.2.16. [[7, Proposition 4.1] & is a canonical element for so(n) if and only if

either

(1) For some k € N with 2k + 1 < n, £ has eigenvalues +il, 0 < | < k, or

(ii) For some k € N with 2k + 2 < n, £ has eigenvalues +i(l + %), 0 <[l <k, and the

eigenvalues :i:% have multiplicity at least 2.

Note that this theorem classifies canonical elements up to conjugacy and is independent
of the choice of simple roots of a positive root system with respect to some Cartan subal-
gebra. We give some justification for this theorem by describing the canonical elements
with respect to some Cartan subalgebra as in [10]. First we deal with O(n) for n = 2m

and m € N.

Consider a maximal torus for O(2m) (or SO(2m))

‘ cos(a;)  sin(a,)
Ty = < diag(R1, Ry, ..., Ry) | R; = ,a; €R S
—sin(a;) cos(ay)
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which has Lie algebra

—Qaq 0
t = CleR s

0 am

—a,, 0

and is a maximal toral subalgebra of so(n). We will regard 7 as a real subgroup of
O(2m,C) and t; as a real subalgebra of so(2m, C) in the obvious way and write them

with respect to the null basis (5.1.2)) given above. So we have in the null basis (5.1.2)) that
Ty = {diag(e’™, ... e, e " .. e ™) ‘ a; € R}

and

t, = {diag(iay, ..., 00y, —iam, ..., —ia;) |a; € R}.
Therefore a Cartan subalgebra for so(2m, C) is
T = {diag(m1, - Mo, —m, - - -» —m) | n; € C}.

According to Definition to find the roots of so(n,C) with respect to t© we need
to consider ad(n)v for n € t¥ and v € s0(n,C) = {A € gl(n,C) | A = —A}. Let
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n = diag(n1, ..., D> —"m, - - -, —m1) € tT and, always using the null basis|5.1.2]
V1,1 V1,2 cee o V12m—1 0
V2,1 V2,2 0 —U1,2m—1
v = ' ' ' € so(2m, C).
Vom—1,1 0 —U22 —U12
0 —V2m-11 - -- e —V21 —V1,1

Then considering ad(n)v = A\(n)v we see that the roots \ are

i(n; + M), —i(n; + k), i(n; — M), —i(nj — M),

where n;,m, € Cand j, k € {1,2,...,m}, j < k. The corresponding root spaces to these

roots are spanned by

0 Ej— Ey 0 0 Ey 0 Ey 0

0 0 Ep;—E 0 0 —Ej; 0 —Ej

where Ej; is a m x m matrix of zeros in all positions other than the (j, k) position, which
has a 1. We choose the positive root system A to be the set containing the roots i(7; — ;)
and i(n; + ng) forall j. k € {1,2,...,m}, j < k, and we choose the simple roots of this
positive root system to be \;(n) = i(n; — nj41) for j = 1,2,...,m — 1 together with

Am(n) = i1(Nm—1 + Nm ). We see that any element of AT can be expressed as follows:

k—1
Z(nj_nk)zz)\aa j7k€{1727"'7m}7j<k7
a=j

k—1 m—2

ii+m) =Y Aat+2) Ag+ Aot +Am, Gke{L2,...,m—1}, j<k
a=j B=k
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m—2
2(77]+nm):z)\a+)\ma ]6{172777"_2}
a=j
We now wish to find the dual vectors to the simple roots, i.e. the unique A;,... A, € t

such that
/\](Ak) = i(Sjk, Vk € {1,2, . ,m}, J € {1,2, . ,m}.

By inspection these are the diagonal matrices of the form,

k 2(m—k) k

—— ——
A =idiag(1,...,1,0,...,0, —1,...,—1,>, (5.2.4)
m—1 m—1

i — i [Im
Ay = 5 diag 1,...,1,—1,1,—1,...,—1,), Ap =3 ;
2 2 I,

fork =1,...,m — 2. According to Definition|5.2.11|canonical elements £ € so(2m) are

of the form

e=Y 4,

icl
for I C {1,2,...,m} and A; above. It is easy to see that these satisfy Theorem|5.2.16

A similar argument can be made for odd dimensional orthogonal groups. Consider a

maximal torus for O(2m + 1),

cos(a; sin(a;
T, = { diag(Ry, ..., Rm,1) | R; = (a;) (a;) ,a; € R

—sin(a;) cos(a,)

Again by seeing this real space as a subspace of O(2m + 1,C) we may write 75 with

respect to the null basis (5.1.2), we have

T, = {diag(eml, N T ) ‘ a; € ]R},
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with Lie algebra
t, = {diag(iai, ..., iam, 0, —iay, ..., —ia1) |a; € R}.
Therefore a Cartan subalgebra for so(2m + 1,C) is

tg = {dlag(nlv cee 7nm707 —Nmy - _771) |7]] & (C} .

Again from Definition we find the roots A of so(2m + 1,C) with respect to t5 by
considering ad(n)v = A\(n)v forn € tS and v € s0(2m + 1,C) = {A € gl(n,C) | A* =

—A}. We see that the roots are

i(n; + M), —i(n; + k), i(1; — M), —i(n; — M), i — i,

where 7;,m, € Cand j, k € {1,2,...,m}, j < k. Simple roots to a positive root system
can be chosen to be \;(1) = i(1; — n;+1), 7 € {1,...,m — 1} together with \,,, = in,,.
As before we wish to find dual vectors to these positive roots i.e. Aj,..., A, € tsuch
that

Ni(Ag) =id, Vke{l,2,...,m}, je{l,2,...,m}.

By inspection these are diagonal matrices of the form,

k 2(m—k)+1 k
—N— ————
Ay, = idiag (1,...,1,0,...,0, — 1,...,—1>, (5.2.5)

for k = 1,..., m. According to Definition [5.2.11|canonical elements £ of so(2m + 1) are

of the form
€= A
iel
for I C {1,2,...,m} and A; above. Note that these canonical elements have eigenvalues

+il for 1 <[ < m and therefore satisfy Theorem|5.2.16, We therefore have the result
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Proposition 5.2.17. Let T\, Ty, t1, to, and t&, {5 be the maximal tori, maximal toral
subalgebras and the Cartan subalgebras of O(2m,C) and O(2m + 1,C), respectively,

with the usual choices of simple roots of the positive root systems A" as above. Then

(1) € is a canonical element for so(2m + 1) if and only if

5 = Zdlag(gh £2a s 7€ma €m+17 _£m7 _gm—lv sy _51)7

where &; are positive integers such that §; — &1 = 1 or O, forall j = 1,2,...,m,

and &, 1 = 0.

(ii) & is a canonical element for s0(2m) if and only if

5 = idiag(flaf?a cee 7€m7 —ﬁm, _gm—la ey _gl)a

where §; are positive integers or half integers such that if & is an integer then
§ — &+ =1or0, forall j =1,2,....m—1,&, =0, and if & is a half integer
then§; — €41 = 1or0, forall j =1,2,...,m — 2, and either &,,_1 = &, = 1/2
orém_1=1/2§, =—-1/2.

Proof. For (i) we consider the A; from (5.2.5) for j € I C {1,2,...,m}. We order
the elements of I = {j1,j2,...,Ja} 80 jg < jpq1 forall = 1,2,..., o — 1, and so

|I| = o < m. Then

Ji J2—Jj1 Ja—ja-1 2(m—ja)+1
=Y Aj=idiag (a,...,a,a—1,...,a—1,...,1,...,1,0,...,0,
jel
Ja—Ja-1 Jj2—J1 J1
-1...,-1...,1—qa,...;,1 —q, —oz,...,—oa)
and by relabelling we have & = idiag(&1,&s, -y &my Emat, —Ems —Em—1, - - ., —&1) Where

&, are positive integers such that § — &1 = 1 or 0, forall [ = 1,2,...,mand &, = 0.
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For (ii) we consider the A; from (5.2.4) for j € I C {1,2,...,m}. Suppose that m ¢ [
and m — 1 ¢ [ and order the elements of I = {ji,ja,...,ja} SO jg < jp41 for all
f=1,2,...,a—1,j,<m—2andso |[| = o < m — 2. Then

J1 J2—Jj1 Ja—ja—1 2(M—ja)
—— % ~ —
£=ZAJ-zidiag(a,...,a,a—1,...,a—1,...,1,...,1,0,...,0,
jel
Ja=Ja—1 Jj2—J1 J1
—-1,...,-1...,1—a,...,1 —q, —a,...,—a)
and by relabelling we have { = i diag(&1, &2, -+, &my, —&my —Em—1, - - -, —&1) Where & are

positive integers such that § — &, = 1or 0, foralll =1,2,...,m —1and ¢, = 0.

Now let m,m — 1 € I then we have I = {j1,j2,...,Ja,m — 1,m},and so 2 < |I| =

a + 2 < m. Note that

m—1 m—1

— ——
A1 + Ay = idiag (1,...,1,0,0,1,...,1)

and so

J1 J2—J1 m—1—ja
- ~ —— —

=Y A;j=idiag(a+1,...,a+La,...,0,...,1,...,1,0,0,

Jjel

m—1—ja J2—Jj1 J1
7\ 7\

- ™~ ™~

—-1,...,—-1,..., —a,...,—q, —a—l,...,—a—l)-

By relabelling, similarly to above, we have
¢ =idiag(&1, &,y &my —&my, —&m—1, - - -, —&1) where & are positive integers such that
& —&q1=1or0,foralll=1,2,...,m—1and¢, =0.

Form ¢ I, m — 1 € I we have that [ = {j1, ja,...,Ja,m — 1} and

J1 J2—J1 m—1—ja
7\ 7\

e

~
—E ——— 1 1 1 1 1 1 11
5_ AJ—Zdlag(ct+§,...,a+5,(1—5,...,0(—5,...,5,...,57—5,5,

jel
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m—1—ja J2—Jj1 Ji
—_——N— ~ - ~N I 7N ™~
—%,...,—%7..., —a,...,—q, —a—l,...,—a—l)-
Relabelling, we have ¢ = idiag(&1,&s, -+, &my —&my —Em—1, - - -, —&1) Where & are pos-

itive half integers such that § — ;41 = 1l or 0, forall I = 1,2,...,m — 2 and
fmfl = _gm = %

Finally, let m € I and m — 1 ¢ I then we have I = {j1, ja, ..., ja, m} and

J1 J2—J1 m—ja
7\ ~ 7\ ~ ——
_E i 1 1 1 1 1 1
5_ Ag—Zdlagcv—i—5,...,0(4—5,04—5,...,04—5,...,5,...,5
jeI
m—ja J2—n J1
—~ - - r -
1 1
T ey Ty — Qe —A —oz—l,...,—oz—1>~
Relabelling we have { = idiag(&1,&, -+, &my —&ms —Em—1, - - -, —&1) Where ; are pos-

itive half integers such that §§ — &, = 1l or O, forall [ = 1,2,...;m — 2 and
fm—l = gm = % O

Example 5.2.18. For s0(6,C) the elements of A" are A\i(n) = i(n — n2), Xa(n) =

i(n2 —m3), A3(n) = i(n2 + n3). The dual vectors to these simple roots are
A; = idiag(1,0,0,0,0,—1), Ay = %diag(l, 1,-1,1,—1,-1),

Ay = %diag(l, 1,1,—1,-1,-1),

and so the canonical elements of s0(6) are
[={1}:€=A, =idiag(1,0,0,0,0,—1),

I= {2} : g = AQ = %dlag(L 17 _17 L _L _1)a

[={3}:€=Ay= %diag(l, 1,1,—1,-1,-1),
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I={1+2}:€=A + A= %diag(s,l,—l,l,—l,—3),
[= {143} &= A+ Ay — %diag(3,1,1,—1,—1,—3),
I={2+43}:&= Ay + As = idiag(1,1,0,0, -1, —1),
I={14+2+3}:&=A;+ Ay + A3 = idiag(2,1,0,0,—1, —2).

Example 5.2.19. For s0(5, C) the elements of AT are \1(n) = i(m — n2) and \a(n) =

i(n2 — n3). The dual vectors to these simple roots are
A; = idiag(1,0,0,0,—1), Ay =idiag(1,1,0,—1,—1),
and so the canonical elements of so(5) are
I={1}:&£=A; =idiag(1,0,0,0,—1),

[={2}: &= A, =idiag(1,1,0, -1, —1),

I={142}:€6= A + Ay = idiag(2,1,0,—1,—2).

5.2.3 Canonical Elements for Sp(m)

For use in later sections we will give a description of the canonical elements for the
symplectic group, Sp(m). Also, for the benefit of later sections we will give all matrices
with respect to the null basis given above. Recall in this basis that Sp(2m,C) =
{A € GL(2m,C) | A*QuuA = Quu}, therefore its Lie algebra in this basis is given by
sp(2m,C) = {A € gl(2m,C) | A*Qun + QA = 0} and Sp(m) = Sp(2m,C) N
U(2m). Consider the torus 7" C Sp(m):

T = {diag(ewl, L elm e i) } a; € ]R} , (5.2.6)
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with Lie algebra
t = {idiag(as,...,am, —am,...,—a1) | a; € R, Vj}. (5.2.7)

Considering Definitions [5.2.1] [5.2.2] and Proposition [5.2.3| we see that this is a maximal
toral subalgebra of sp(m), T' is a maximal torus of Sp(m) and t* is a Cartan subalgebra

for sp(m)® = sp(2m, C) where

€ = {diag(n1, - ms —Nms--.,—m) | n; € C Vi}. (5.2.8)

By Definition the roots of sp(2m, C) relative to t© are linear maps A : t©* — C
satisfying ad(€)v = \(&)v for all £ € t© and for some non-zero v € sp(2m, C). The
elements of sp(2m, C) represented in the null basis are precisely the 2m x 2m matrices

of the form
A B

C —A*
where A is an arbitrary m x m matrix with both B and C second-symmetric matrices i.e.

matrices that are symmetric with respect to the second diagonal, so B* = B and C* = C.

For a description of sp(2m, C) in the standard basis see [34] p.41].
The roots of sp(n)® relative to t© are linear maps t© — C defined by
i(nj + ), —i(1j + k), i(nj — k), 20k, — 201,

where 7;,m, € Cand j,k € {1,2,...,m}, j # k. The corresponding root spaces to these

roots are spanned by

0 Ej+ Ey 0 0 Ej 0
0 0 Ej,+Ey 0 0 Ejj
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0 B 0 O

17
0 0 E;; 0
where Ejj; is an m x m matrix of zeros in all positions other than the (j, k) position,
which has a 1. We choose the simple roots of the positive root system A™ to be \;(n) =

i(nj — nj+1) and A, (n) = 2in,, with associated root spaces v;, vy, respectively, where

Ejj+1 0 0 Emﬁz
vV = s Um =
0 Ejiq; 0 0
The dual vectors to the simple roots are Ay, ..., A,, € tsuch that

)\J(Ak)zzéjk and /\m(Ak):'L(Smk szl,...,m, jzl,...,m—l.

These are diagonal matrices of the form

k 2(m—k) k
—— N —— i (L,
Akzidiag(l,...,Lo,...,o,—1,...,—1), Am =3 , (529

2 1,

for k =1,...,m — 1. According to Definition [5.2.11| canonical elements { € sp(m) are

of the form

=D A

jel

for I C{1,2,...,m} and A; above.

Proposition 5.2.20. Let T' be a maximal torus of Sp(m) given by , t the corre-
sponding maximal toral subalgebra of sp(2m) given by and t© a Cartan subal-
gebra of sp(2m, C) given by , with the usual choice of simple roots of the positive
root system A1 as above. Then £ € t is a canonical element for sp(2m) if and only if

¢ = idiag(&, &, - &my —Emy —Em—t, - - ., —&1) Where &; are positive integers and half
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integers such that

1
§ —&ri=1o0r0, forall j=1,2,...,m—1, §m:00r§.

Proof. Considering the A; from (5.2.9) for j € I C {1,2,...,m}, let m ¢ I and order
the elements of I = {j1,j2,...,Ja} 80 jg < js1 forall 5 =1,2,...,a —1and |I| =

a < m — 1. Then

Ji J2—Jj1 Ja—Jja—1 2(m—ja)
—— - - ~ —
f:ZAj:idiag<0z,...,a,a—1,...,a—1,...,1,...,1,0,...,0,
jel
ja—ja—l jZ;jl Z&
-1,...,-1,....1—qa,...,1 —q, —oz,...,—oz)
and by relabelling we have & = i diag(&1, o, - - -, Emy —Ems —Em—1, - - -, —&1) Where §; are

positive integers such that {; — ;41 = lor 0, forall j = 1,2,...,m — L and §,, = 0.

If m € I then we have I = {j1, 2, ..., ja, m} and

J J2—j1 Ja—ja—1 2(m—ja)
- - ~ - - —f——
- — i di 1 1 1 1 3 31 1
f_ZA] —ldlag<oz—|—§,...,oz+§,oz—5,...,&—5,...75,...75,5,...,5,
jEI
Ja—Ja—1 Jj2~J1 J1
3 3 1 1 1 1
9 y T 9 a§_a7 ,E—Oé,—Oé 29 ,-@-5)
By rebelling we have £ = idiag(&1, &s, - -+, &my —&my —Em—1, - - -, —&1) where ; are half
. . 1
integers such that {; — §;,1 = lor 0, forall j=1,2,...,m —1and &, = 5. [

Example 5.2.21. For sp(6,C) the elements of At are A\i(n) = i(n — n2), Xa(n) =

i(n2 —ms), A3(n) = 2i(n3). The dual vectors to these simple roots are
A, = idiag(1,0,0,0,0,—1), Ay = idiag(1,1,0,0,—1, —1),

Ay = %diag(l, 1,1,—1,-1,-1).
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and so the canonical elements of sp(3) are as follows:
I={1}: &= A, =idiag(1,0,0,0,0,—1),
I ={2}:&= Ay =idiag(1,1,0,0,—1,—1),
[={3}:¢6=Ay = %diag(l, 1,1,-1,-1,-1),
I={1+42}:¢£= A+ Ay =idiag(2,1,0,0,—1,—-2),
I={1+3}:€=A + Ay = %diag(?), 1,1,-1,-1,-3),
[={2+3}:€6=Ay+ Ay = %diag(3,3, 1,-1,-3,-3),

[={1+2+3} :£:A1+A2+A3:%diag(5,3,1,—1,—3,—5).
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Chapter 6

Harmonic Maps from Surfaces to Lie

Groups

In [50], K. Uhlenbeck developed the theory of harmonic maps into Lie groups by in-
troducing “polynomial extended solutions” of a harmonic map. Uhlenbeck showed that
such a polynomial extended solution can be factorized with respect to certain subbundles
of C" := M x C" called “unitons”. The Grassmannian model of an extended solution was
introduced by G. Segal in [46]. The Grassmannian model represents an extended solution

by a subbundle W of the trivial bundle M x H for H a Hilbert space.

In [9]], F.E. Burstall and M.A. Guest used canonical elements and certain maps into a loop
group to classify all polynomial extended solutions for harmonic maps into the unitary
group. These extended solutions were given by integration, with equations which are
easy to solve for U(n), especially for low dimensions. By viewing O(n) as a subgroup of
U(n), M.J. Ferreira, B.A. Simdes and J.C. Wood in [29] applied the work of F.E. Burstall
and M.A. Guest to give a classification of extended solutions for harmonic maps into the
orthogonal group according to their canonical elements. Further, they gave a parametriza-
tion (at least locally) of these extended solutions in terms of free holomorphic data by

replacing every instance of integration with differentiation and algebraic operations.
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In this chapter we give a description of the theory of harmonic maps into Lie groups,

setting up the theory needed in Chapter

6.1 Harmonic Maps into Lie Groups

Let ¢ : M — G be a smooth map from a Riemann surface to a Lie group. Define a

1-form, A%, with values in its Lie algebra g by

1
A? = o7 dg;

decomposing into (1, 0)- and (0, 1)- parts we have
A = A?dz + AZdz

where

1

AV =~ - z

1
o _ L o1
z 2@0 (pZ7

for z a local complex coordinate. Note that A% is half the pullback of the Maurer-Cartan
form on g, and both A? and AZ are local sections of the endomorphism bundle End(C")
where C" := M x C" is the complex trivial bundle over M. We define a unitary connec-
tion D¥ by

D? =d+ A*

and, again decomposing into (1,0)- and (0, 1)- parts, we have
D¢ =0,+ A?, DZ=0.+ AZ

Recall from Chapter [] that any complex vector bundle E — M over a Riemann surface

equipped with a linear connection V can be given a unique holomorphic structure (called
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the Koszul-Malgrange complex structure [36]) from the (0, 1)-part of V by realising it
as a O-operator. Therefore we may give C" a unique holomorphic structure from DY, by
which we mean that any local section o of C" is holomorphic if and only if Do = 0

for any complex coordinate z. We denote the holomorphic bundle by (C", DZ).

Theorem 6.1.1. [50] Let G denote U(n) or a compact Lie subgroup of U(n). Then a
smooth map ¢ : M — G is harmonic if and only if on each coordinate domain, A? is a

holomorphic endomorphism of the holomorphic vector bundle (C", DY) ie,. A? o DY =

DZ o A?.

6.1.1 Unitons

Definition 6.1.2. Let ¢ : M — U(n) be harmonic and let o be a smooth subbundle of

the trivial bundle C". We say that « is a uniton for ¢ if, for all o € T'(«),

(i) DZ(o) € I'(ev), ie. «isaholomorphic subbundle of C";

(i) A?(0) € I'(a), i.e «isclosed under AY.
For any subspace o € C", we denote by 7, and 7 the orthogonal projection onto « and
its orthogonal compliment o+, respectively.

Theorem 6.1.3. [50] Let o : M — U(n) be a harmonic map and « a uniton for o, then
the map @ : M — U(n) given by p = o(7 — m21) is harmonic. This is known as adding

a uniton.

Uhlenbeck considered harmonic maps constructed in this way by starting from a constant

map o : M — U(n) and adding a uniton a4 for ¢ to get a harmonic map

©1 = 900(7]-0!1 - ﬂ-jz_l)'
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Continuing the process Uhlenbeck defined more complicated harmonic maps inductively

as follows: foreach i =1, 2,...,r for some r let

Y = <Pz'—1(7Taz- - Wii)a

where «; is a uniton for ¢; ;. Expanding, we have for each ¢, the uniton factorization of

the harmonic map ¢ = ¢;:

1 1 1
gpi = 900(77-041 _ﬂ-()cl)(ﬂ_OCQ _ﬂ-ag)...<ﬂ_0¢i _Wai) (6‘1'1)
and a sequence of unitons oy, o, . . ., ;. Harmonic maps ¢; of this form are said to be

of finite uniton number. The minimal number of uniton factors required is called the

(minimal) uniton number of .

Theorem 6.1.4. [50] All harmonic maps o : S* — U(n) are of finite uniton number.

6.1.2 Extended Solutions

In Uhlenbeck’s seminal work [50], smooth maps into loop groups of the Lie group were
developed by introducing a parameter which she calls a spectral parameter A € S! in

the following way.

Definition 6.1.5. The free and based loop groups of any Lie group G are denoted AG

and Q)G, respectively where

AG ={y: 8" = G|~ is smooth }

and

QG ={v e AG [y(1) =€}

for e the identity element of G. The loop algebras Ag and g are defined similarly.
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Following [50] we restrict G to the Lie group U(n) or a Lie subgroup of U(n) with

corresponding Lie algebra g.

Consider A¥ = %go_ldcp for some smooth map ¢ : M — G. Taking the exterior derivative
of the 1-form A%, we have the pullback of the Maurer-Cartan equation: dA¥ +[A¥, A¥] =
0, where [A%, A?| is a g-valued two form defined by [A%, A?|(X,Y) = [A¥(X), A¥(Y)].

Lemma 6.1.6. Given a g-valued 1-form A, locally there exist smooth maps ¢ : M — G
such that A? = o~ *dp = A if and only if dA + [A, A] = 0.

Proof. See [30]. ]

We decompose our given g-valued 1-form A for a local complex coordinate z so A =
A,dz + Asdz and
dA+ [A, Al = 0:A, — 0. A5 + 2[A5, A, (6.1.2)

The vanishing of the tension field, is equivalent to 0-A, + 0. A= = 0 [50, (9)]. Adding
this to (6.1.2) and using Lemma[6.1.6| gives

0zA, +[Az, A] =0, (6.1.3)
which is an interpretation of the harmonic equation from Theorem [6.1.1] We introduce a
“spectral” parameter, A\ € S', by setting

Ay = %(1 — A HA,dz + %(1 — \)Azdz. (6.1.4)

Theorem 6.1.7. [50] Let M be a Riemann surface. Given a g-valued 1-form A : M —
T*M ®g, then locally there exists an S*-family of smooth maps ®y : M — G, a harmonic
map @ : M — G suchthat ®_1 = cp, c € G, and A, = %Cb)fldfl),\ if and only if

(1) afAZ - azAE + 2[1427 Az] = OJ



100 6. HARMONIC MAPS FROM SURFACES TO LIE GROUPS

Proof (Sketch). There are locally defined smooth maps ¢ such that A, = %QDKIdCI) » if and

only if A, satisfies the integrability condition
dAy + [Ax, Ay] = 0.
With A, defined by (6.1.4)), expanding this out in powers of A, the constant term gives (i),

the coefficient of A~! gives (ii) and the coefficient of \ gives the conjugate of (ii). [

Definition 6.1.8. [50] Let ¢ : M — G be a harmonic map then we call a smooth map
® =P, : M — QG an extended solution for p if &1 = e and ®, satisfies

1
5Py = A,

for A, the Qg-valued 1-form ((6.1.4) above.
Remark 6.1.9. Definition implies that ®_1 = cp for some constant c € G.

Definition 6.1.10. We call two harmonic maps ¢ and ¢ equivalent if o = cy for some
¢ € G. We also call two extended solutions ® and ® equivalent if ®_, = a®_; for some

a € G. Note that this implies that ® = n® for some 1 € QG.

Proposition 6.1.11. /50, Corollary 12.2] Let ® : M — QG be an extended solution. A
subbundle o of C" is a uniton for ® if and only if ® = O (7, + ML) is an extended

solution.

Definition 6.1.12. An extended solution ® = ®, : M — QG is called S'-invariant if
(I))\q),u = (I))\l“ )\,[L S Sl.

Recall the notion of uniton factorisation, (6.1.1)).
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Proposition 6.1.13. /48, Proposition 2.10] An extended solution ® : M — QG is S*-

invariant if and only if it has a uniton factorisation with nested unitons:
O=ayCa; Cas C---Ca, Capp=MxC",

for some r € N.

6.1.3 Grassmannian Model

In [46], G. Segal described the Grassmannian model of an extended solution; this is a sub-
bundle W of the trivial bundle M x H for H the Hilbert space L?(S!, C"). By expanding

into Fourier series, we have
H = Span{Ne; |i€Z, j=1,2,...,n},

for {e1,ey,...,e,} the standard basis for C" and where Span denotes the closed linear

span.

We specialise to G = U(n) which has a natural action on C". This action induces an

action of QU (n) on H where v € QU (n) actsonv € H = L*(S',C") by

(v - 0)(A) = 7(X)o(A), (6.1.5)

where A € S*. This group action is isometric with respect to the L? inner product defined
by (v,w)r2 = Y. (v, w;), where v = >, N, € H, w = Y, N'w; € H and (-, -) is the

standard hermitian innner product on C". Let H .. be a closed subspace of ‘H defined by
H, = Span{\e; |i € Ny, j =1,2,...,n}, (6.1.6)

where Ny = {0,1,2,...}. The action of QU(n) on H (6.1.5) induces an action on H .,
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the orbit of this is denoted Gr (see [43] for descriptions of the elements of GGr) and gives
a bijection

QU(n) > P — W:=dH, € Gr. (6.1.7)
We note here that, since \H, C Hy, forany W € Gr, \W C W.
Definition 6.1.14. W € G is called the Grassmannian model for the extended solution
Oif W=oH,.
We define a subgroup of the based loop group QU (n) (see Definition [6.1.5)).

Definition 6.1.15. The algebraic loop group of U(n) is

t
QalgU(n) = {7 S QU(TL) | = Z)‘k‘ska Sk € g[(n,@), CRAS Zu s < t}

i=s

In particular for r € Ny we define Q,.U(n) C Q.U (n) to be

QU (n) ={y € QueU(n) | v =Y _ NS, S € gl(n,C) }. (6.1.8)

i=0
Remark 6.1.16. Fory = >_'__\kS, € Qu,U(n), we write 7 = 3. _\"*S; and 4" =
Z}Z’:s )\kSE
Definition 6.1.17. An extended solution ® : M — QU (n) which takes values in .U (n)

is called a polynomial extended solution. We say that the degree of the polynomial

extended solution is at most r.

Lemma 6.1.18. /48, §2] Let ® be a polynomial extended solution of degree at most r
then

NH, CDH, C Hy.

Note that Lemma|6.1.18|shows that ®H, C H  /N"H, = C" + AC" + --- + X"~ IC™.
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Definition 6.1.19. Let ® : M — Q,.U(n) be a polynomial extended solution. A uniton

Jactorization of P is
O =0, = (Tay + A5,) (Tay + AT5,) -+ (Ta, + A7y ),

where o is a uniton for ®;_y = (Ta, + Ay, )(Ta, + Ay, ) -+ (Ta,_, + )mijfl), for

jg=1,....rand Oy = I.

Proposition 6.1.20. Ler ® : M — Q.U(n) be an S*-invariant polynomial extended

solution of a harmonic map ¢ : M — U (n) with uniton factorisation
D =P, = (Mo, + Mo ) (Ta, + AT) -+ (Ta, + ATy ), (6.1.9)
and ; = osz N jt1. Then the Grassmannian model of ® is given by both

1) W =dH, = (my, + Ay, + N2my, + -+ + XN'my, )H and

() W=0H, =a;+ Xy + Nag+ -+ XN"ta, + \"H,.
Proof. By Proposition |6.1.13|the unitons of ¢ satisfy
O=ayCa; Cas C---Ca, Capp =M xC". (6.1.10)

We expand out the brackets of (6.1.9)). The term of degree zero in \ is 7, 07,0 - -0, =
Ta, DY (6.1.10). The term of degree 1 in A is

1 1

TralOWOCZO“‘OWQT'—f_WaIOTrQQO'..

1 1 _
11O Mg, My OMay O v+ O My =My, O May = Malna, (6.1.11)
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again by (6.1.10). For the term of degree 2 in A we have

€L €L
E Tap OMay © 1+ O Ta;_y OTg, ©TMay g @77 O Ta;  OTg; OTayy O O Ta,
1<i<j<r

_ L _
- 7To¢2 © 7T013 - ﬂ.a%ﬂag

by (6.1.10), indeed all but the first term of the sum are zero. It is easy to see that the term

of degree j in A is of the form

1 1 1 _
ﬂ-al071-&20...071'%O7Taj+1o...oﬂ'ar —71'01],071'0(].+1 _ﬂ-aj-ﬁoz]-+1‘

By defining
vy = o5 Nag, (6.1.12)

then the above calculations show that ¢y = ay and ® = 7y, + Ay, + A2y, + -+ A7y, .

Therefore the Grassmannian model of @ is given by
W =OH, = (my, + Ay, + Nogy + -+ Ny ) Hy (6.1.13)

To interpret this, by Lemma [6.1.18 we have ®H, C H /NH, = C" + \C" + --- +
A"~1C". Therefore to expand (6.1.13)) we need only consider ), <j<r1 dNC". We have

PC" = o+ M1 + -+ + A,
PAC™ = Mg + Ny + -+ + Nhy + X + 1,
PAZC™ = N2hp + N2y + -+ N o+ N Th + A2,

(I))\Tfl(cn — )\rflwo 4 )\rwl et )\2r71,¢r.
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Summing we have

D ONC" =+ AW + ) + N (W0 + ) o N (W0 1),

0<j<r—1
Where¢0+1/)1+---+1/)j:aéﬂal—i—allﬁa2+a§ﬂa3+---+ajﬂaj+1:ozj+1
by (L.T0). So

W=0H,=a+ g+ Nag+ -+ X" a, + \"H,.

]

Proposition 6.1.21. [50] Let v : M — U(n) be a harmonic map with a polynomial

extended solution ® then

(1) ® has a uniton factorization;

(1) ¢ is of finite uniton number.

The bijection (6.1.7) restricts to a bijection from €2,,U(n) to A-closed subspaces W of
H, whichliein Gri = {W € Gr | N"H; C W C AM¥H_, r > s }. This bijection further

restricts to a bijection
Q.U(Mn)> e —W:=dH, € Gr,,

where Gr, C Gr givenby Gr, = {W € Gr | NH, C W C H, }.

Lemma 6.1.22. [46]] Let ® : M — QU (n) be a smooth map and set W = ®H, : M —

Gr. Then ® is an extended solution if and only if W satisfies two conditions:

1. 0:(T(W)) Cc T'(W), ie W isaholomorphic subbundle of M x H;

2. X0, (D(W)) c (W), ie W is closed under the operator \0,.
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6.1.4 Complex Extended Solutions

As in [9] we want to consider complex extended solutions, the idea of which comes
from the infinite-dimensional complex structure of ()G for GG a Lie group [43]. This

complex structure is described using the Iwasawa decomposition of the loop group AG®

in Proposition below.

Let ATG® (resp. A*G©) be the subgroup of AG® consisting of smooth maps S' — G©
which extend holomorphically to {\ € C | |\| < 1} (resp. {A € C | 0 < |A| < 1}), we

define A*g® similarly.

Proposition 6.1.23. [43| Theorem 8.1.1] The product map QG x ATG® — AG® is a
diffeomorphism. Therefore any v € AG® can be written uniquely in the form v = 7, - 7.,

where v, € QG and v, € AYGC. This is known as the Iwasawa decomposition.

Both ATG® and AG® are complex Lie groups and so the homogeneous space AG®/A+GC
is a complex manifold. A consequence of Proposition [6.1.23]is the identification of QG
with the complex homogeneous space AG®/A*TGC giving QG a complex structure, see

(43, §8.1].

Definition 6.1.24. [9 §1] A holomorphic map ¥ : M — A*GC is called a complex

extended solution if, on each coordinate domain (U, z),

Im AU 10, C ATgC.

Proposition 6.1.25. [2]| [9] Let | | denote the projection onto the first factor of the
Iwasawa decomposition. If U : M — A*GC is a complex extended solution then its
projection ® = [V] onto QG is an extended solution. Conversely if ® : M — QG is an
extended solution and = is a point of M then there exists a neighbourhood Uy of zy and

a complex extended solution V : Uy — N*G© such that ®|y, = [¥].
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It follows from Proposition [6.1.23] that the Grassmannian model W = &7 is also given
by W = WH, [29].

Definition 6.1.26. /29, §2.3] A meromorphic map V : M — A*G© is called a meromor-

phic extended solution if it is an extended solution away from the poles.

As in [29]], we may extend W = ¥, and ® = [¥] smoothly over the poles and we will

continue to write & = [¥] even when ¥ is meromorphic.

6.2 Harmonic Maps into the Unitary Group

In [9], a general theory was introduced to classify harmonic maps into a Lie group G by
using the canonical elements from Definition [5.2.11]to give complex extended solutions.

We will describe this theory for G = U(n). Let & be a canonical element of su(n), then

by recalling (5.2.1)),

_ _' 1 1 1
§:i(27‘7-1+ZDj) = idiag(=6+ 61, =0+ &, 0, =0+ ),

jeJ jeJ

where § = — > ;e J and the §; are non-negative integers satistying
§—&1=0o0rl & =0
By Definition the canonical geodesic ¢ : S* — SU(n) is given by
Ve = exp(té) = diag(e(it/")‘seit&, elit/migites ,e(it/”)‘seitgn). (6.2.1)

By regarding SU(n) C U(n) we can consider (6.2.1) as a map into U(n), and as in
9L p. 562] (6.2.1]) gives a representative of a geodesic in the projective unitary group
PU(n) = U(n)/Z(U(n)). The centre of U(n), Z(U(n)) consists of diagonal matrices



108 6. HARMONIC MAPS FROM SURFACES TO LIE GROUPS

of the form ¢ - I for ¢ € C, and |¢| = 1, so PU(n) is a group of equivalence classes of
unitary matrices under multiplication by c- I . By fixing representatives of each canonical
geodesic in an equivalence class and recalling the notation from Remark [5.2.13] we may

define a homomorphism ¢ : S' — U(n),
Ve = 6_7“575 = diag(e™, €2, ™) = diag(AS, A2, ..., A,

where § = 1 diag(&, &s, - . ., &,) and the &; are non-negative integers satisfying {; —&;,1 =

0 or 1, &, = 0. Note here that v, € ,U(n) with & = .

Definition 6.2.1. [29, §2.6] Let £ be a diagonal matrix £ = i diag(&y, s, . .., &,) where
§; are non-negative integers satisfying £; — 11 = 0 or 1, &, = 0 and & = r. Then we
call ¢ a canonical element of ).U(n) and v = diag(\*, X2, ... \&) € Q,U(n) the

corresponding canonical geodesic.

Definition 6.2.2. Ler ¢ = idiag(&;, &, .. .,&,) be a canonical element of 0,.U(n). By

type of the canonical element we mean the (r + 1)-tuple (to, t1, ..., t,) where t; := #{l |
G=37t
Remark 6.2.3. Note that }’_t; = n.

Definition 6.2.4. We call an n x n matrix A a block matrix if it is of the form

Al,l A1,2 A1,3 e Al,r Al,r+1
A2,1 A2,2 A2,3 s A2,r A2,r+1
A3,1 A3,2 A3,3 s A3,7" A3,r+1
A= . . . )
Ar,l Ar,2 Ar,3 s Ar,r Ar,r+1
Ar—i—l,l Ar+1,2 Ar+1,3 s AT+1,7' A7'+1,r+1

where all entries Aj; 1 < j,1 < r + 1 are matrices and A;; 1 <1 < r + 1 are square

matrices of possibly different sizes. Note that matrices A;; for j # | are of possibly
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different sizes and are not necessarily square. We call the entries of A of the form A; ;.
—r < Kk < r the xth block superdiagonal of A. We call A upper block triangular if A;,
has all zero entries for all 1 < | < 5 < r + 1 and we call an upper block triangular

matrix A block unitriangular if the matrices A;; 1 <1 < r + 1 are identity matrices.

Let & = idiag(&y, &, - .., &,) be a canonical element of Q,U(n) of type (to,t1,...,t).

Relabelling we have

tr tr—1 to
—_— N —— —_———

é.:Zdlag <é:l7"'7517527"')527"'7£T+17"'?é1”+1)'

Therefore £ has distinct eigenvalues i&1,i, .. ., Z.gr_;'_l’ where &), has multiplicity ¢, 1

with associated eigenspaces of C"

—— —
Er+1Z{(O,...,O,*,...,*)TL

where T}, = >, t; and the *s denote arbitrary complex numbers.

Define X, = F; ® E), where ® denotes the Kronecker tensor product [4], so X, is an
n x n matrix comprised of (r + 1) x (r + 1) blocks where the (j, k)th block is of size
try1—j X top1-g; the (j, k)th block of X, has arbitrary entries and all other blocks of

X, have all entries 0. Let e;; € X then we have the matrix products ej, = i€,



110 6. HARMONIC MAPS FROM SURFACES TO LIE GROUPS

ejré = igkejk. Therefore
ad(&)ej, = Eej — e = i€ e — ire = i(§5 — &)ejn,

and so the eigenvalues of ad(€) on g = u(n) are i(£; — &) which are are of the form
ik for k € Z, —r < k < r. In line with the notation of [29] we denote the eigenspaces
of each eigenvalue ix by g = g©(€) (the superscript C here is to distinguish it from the

o(n) and sp(2m) cases in §6.3|and respectively), where
g- = Span{Xj; | k—j = r}.

So g€ consists of matrices with entries zero unless they are on the xth block superdiagonal

and gl(n,C) =u(n)c=5"_  g¢C

Example 6.2.5. Let £ = idiag(2, 1, 1,0) be a canonical element of QU (4) which is of
type (1,2,1) and so has eigenvalues 51 = 2, 52 =1, and 53 = 0 of multiplicities 1,2,

and 1, respectively. These have corresponding eigenspaces of the form,

By ={(%,0,0,00T}, Ey={(0,%%077}, FE;=1{(0,0,0,%7}.

We display the Xy,
*[0 0]0 00 00 00 0]0
0/0 0]0 Olx *|0 00 0]0
Xll = ) X22 — ) X33 - )
0/0 0]0 O]« *|0 00 0]0
0/0 0]0 00 0|0 0]0 0=
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0

*

*

0

0
Xip = , Xog = , X3 =
0
0

*

o | o O | O
o | o O

o | O O

o 1T o OO
oo OO
o | o O | O
o | o O | O
o | o O | O
o | o OO
o o O

0

and Xy = X{,, X31 = X1, X3o = XX So the eigenspaces for each of the eigenvalues
are

g5 = Span{Xii, Xa0, Xa3}, g7 = Span{Xj, Xo3},
gg = Span{X3}, 991 = Span{ X, X32}, 9(92 = Span{ X3 }.

Note that g© and g5 are the 1st and 2nd block superdiagonal, respectively and gl(4,C) =
u(4)(c = ZZ:—2 gg-

Let AL, U(n)® = AJ,GL(n,C) := ATU(n)® N AygU(n)®, and similarly AJ u(n)® =

alg alg
AJ81(n, C) := ATu(n)® N Aggu(n)©.

Definition 6.2.6. [29] Let £ be a canonical element of 2. U(n). We define a finite-
+ GL(n,C) by

dimensional Lie subgroup ng of Aalg

A = {A = (aj) € A,GL(n,C) | aj, = 0 if & < &,

alg

otherwise ajy, is a polynomial in A € St of degree at most & — & — 1}
We also define the Lie subgroup (Qléc)o of ng by (Qléc)g = Qléc N U(n).

The elements of Qléc are block unitriangular. Also the xth block superdiagonal has entries

polynomial in A of degree at most x — 1 for k > 0.

Example 6.2.7. (i) Let & = idiag(2,1,1,0), a canonical element of QU (4), then
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Ae Qléc if and only if

1laz aiz| X+
A— 0 1 0 924 7

0| 0 1 asa

0] 0 0 1

for some a2, a3, Goy, 34, 01, 09 € C, and X € S*.

(il) Let ¢ = idiag(3,2,1,0), a canonical element of Q3U(4), then A € Qléc if and only
if

1 12 041)\ “+ (52)\2 + 51)\ + 50
= 0] 1 23 BiA + Bo |

0] 0 1 34

0] 0 0 1

1
for some Gi2, (23, 434, 1, a07517507527 51760 cCand e S".

Recall the definition of canonical geodesic from Definition [5.2.12] the projection onto
QU (n) given by the Iwasawa decomposition from Proposition |6.1.23| and the definition
of equivalent extended solution from Definition

Proposition 6.2.8. /29 Proposition 2.2] Let & : M — Q:U (n) be a polynomial extended
solution for some v € Ny. Then there is an equivalent extended solution ® : M —
&n) of Q.U(n) and a
meromorphic map A : M — Qléc such that & = [A~¢|. A and & are uniquely determined

Q.U (n) with 0 < r <7, a canonical element § = i diag(&y, &, . . .

by ®, and all harmonic maps ¢ : M — U(n) of finite uniton number have such an

extended solution.

Following [29]], let ¢; for 7 = 1,...,n denote the columns of A € 91?, SO ¢ =

(a1g, Qoks - - - ,ank)T, where aj;, are polynomials in A of maximum degree determined by
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Definition W Let 3. p(;) denote the sum over all j satisfying the condition P(j),
and let 2’ denote the derivative of x with respect to any local complex coordinate on M.

We state the converse of Proposition [6.2.8] for which we recall the definition of complex

extended solution in Definition [6.1.24]

Proposition 6.2.9. /29 Proposition 2.4] Let  be a canonical element of Q.U (n), A :
M — Q(éc be a holomorphic map and ¥ = A~.. Then V is a complex extended solution if
and only if the columns c; for j = 1, ..., n of A satisfy

c = Z )\éj—ék—lp;kcj’ r> & >0, (6.2.2)

J:€5>&k

where pjj, is the coefficient of the term of degree &; — &, — 1 in a;j,. This is equivalent to

a= > ANTEay 126> 20, (6.2.3)
J:&i285>8k
and holds if and only if it holds mod N5~ 5o is equivalent to
ap = ATE e mod AT r>E>641>10 (624)

Ji6i>E>Ek

Any of the above ) and are known as the extended solution equations
for A.

Definition 6.2.10. We denote the space of meromorphic maps A : M — Qléc satisfying
by SoléC and the subspace of SoléC of meromorphic maps A : M — (ng)o by
(SOI?)O

Now we have a corollary to both Propositions [6.2.8]and [6.2.9]

Corollary 6.2.11. [29] Let £ be a canonical element of Q,.U(n). The assignment A

O = [Av| defines a one-to-one correspondence between SoléC and the space of extended
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solutions ® = [Ave] : M — Q,U(n) and restricts to a one-to-one correspondence be-

tween (Soléc)o and the set of S*-invariant extended solutions ® = [Av] : M — Q,U(n).

We describe how S'-invariant polynomial extended solutions ® : M — Q,U(n) give

harmonic maps ¢ : M — U(n).

Proposition 6.2.12. /23| §4] Let ¢ : M — N be a harmonic map between Riemannian
manifolds and ) : N — P be a totally geodesic map i.e. a map with vanishing second

fundamental form. Then the composition 1 o ¢ : M — P is harmonic.

Proposition 6.2.13. [I3, p. 66] Let Gi(C") be the Grassmannian of k-dimensional
subspaces of C", G.(C") = Ug—o1,. .Gr(C") and V a subspace of C". The map
L : Go(C") — U(n) defined by (V') = my — 7y is a totally geodesic embedding that is

isometric up to a constant factor. The embedding . is known as the Cartan embedding.

Example 6.2.14. Given an S*-invariant polynomial extended solution ® : M — Q,U(n),

recall from Proposition that we can write this as
¢ = Ty + )\ﬂ-'ll)l + )‘27T¢2 +o+ )‘T’/ler»

for somer € {0,1,...} where y; = ajL Moy, by Proposition|6.1.13|the unitons o; are
nested. Also from Proposition the Grassmannian model is given by

W =®H, =a; +das + Nag+ -+ XN "a, + \H,.

On putting A = —1 we see that the corresponding harmonic map ¢ : M — U(n) is given
by

Y = Zﬂ—d)j_ Zﬂ'wj.

J even J odd
This can be rewritten as

o = — L, (6.2.5)



6.3. HARMONIC MAPS INTO THE ORTHOGONAL GROUP 115

where

Ty = Z Ty, and qu = Z Ty, -

j even 7 odd
Recall from that to each map ¢ : M — G.(C"1), we may associate the pullback
of the tautological bundle ¢ := ¢~ 'T. Conversely, any subbundle ¢ of M x C™*! cor-

responds to a map ¢ : M — G,(C"™). By Propositions 6.2.12| and [6.2.13| we see that

(6:2.5) is given by

=100 ="T4— Wé
where ¢ : M — G..(C") is given by

o= U (6.2.6)

J even

In [9] §4] and [32, Ch. 22] the equations in Proposition were easily solved giving
low-dimensional examples. In [29], the above was adapted for O(n) and (6.2.2) was
solved giving a classification and parametrization of harmonic maps into O(n) in terms

of the canonical elements from Definition we turn our attention to this now.

6.3 Harmonic Maps into the Orthogonal Group

Recall the orthogonal group O(n) (5.1.1)). We consider O(n) as a subgroup of U(n) given
by O(n) = {A € U(n) | A= A} = {A € U(n) | ATA = I}, where for A = (a;3),
A = (@;;). We may also regard the loop group Q20 (n) = QSO(n) as a subgroup of
QU (n) given by QO(n) = {® € QU(n) | ® = &} = {® € QU(n) | 2T = I}.

Lemma 6.3.1. [43| Proposition 8.5.1] Let ® € QU (n) and, recalling the bijection (6.1.7),
set W = ®H_ . Then & € QO(n) if and only if W= \W.

Recall the subset 2,.U (n) of the algebraic loop group €2,,U () (6.1.8). We define a subset
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Q. U(n)* C Q,.U(n) by
QUM ={2eQUn)| =170} ={2eQUn)| d"®=X1}. (63.1)

Lemma 6.3.2. [48, §6] Let W = ®H for ® € Q,.U(n), then ® € Q,U(n)® if and only
ifWL = M""W. We call an element ® € Q,U(n)® (and the corresponding W) real of

degree 1.

Let ® : M — Q,.U(n)® be an S'-invariant polynomial extended solution. It is easy to
see from ( that if r is even then & = ® so ¢ = +®_,; are harmonic maps into a
real Grassmannian. Then by Propositions [6.2.12] and [6.2.13| we have the harmonic map
© =10¢ : M — O(n). For r odd, by [48, Theorem 6.8] n must be even, so & =

—& and following [48| §6.3] ¢ = £i®_; are harmonic maps into the symmetric space

O(2m)/U(m) for n = 2m which can be identified with the space of maximally isotropic

subspaces of C*™. Again by Propositions |6.2.12] and |6.2.13| we have the harmonic map
p=1t10¢: M — O(2m).

Similarly to [29] we shall write all matrices and vectors with respect to a null basis (5.1.2))

and we note that with respect to this null basis we have
QUM ={2eQUn)| ¢°®=N1T}. (6.3.2)

Recall the canonical elements £ of so(2m) and so(2m + 1) given in Proposition [5.2.17

Let & be a canonical element of 50(2m) so we have that

£ = z’diag(él, s = —§~1). By Definition |5.2.12| we may define a canonical
geodesic ¢ : ' — O(2m) by

Ye = exp(t §) = diag(e™®, e, .. et mithm | o)

= diag(AS, A&, .. A8 Ao A E), (6.3.3)
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We regard O(2m) C U(2m) and so can view the canonical geodesic ¢ as a map into
U(2m). Again by following [9, p. 562] gives a representative of a geodesic in
the projective unitary group PU(2m) = U(2m)/Z(U(2m)). Recall that PU(2m) is a
group of equivalence classes of unitary matrices under multiplication by ¢ - I, for ¢ € C.
Fixing representatives of each canonical geodesic in an equivalence class we define the
homomorphism ¢ : S* — U(2m),

S ,elt(ngrgl)’ eZt(élfgm), - ,eit(glng)’ eo)

Ve = €itglfy§~ = diag(ewgl, €it(£2+gl)
_ diagO\le, )\(52-1—51)’ ol )\(fm-i-fl)’ )\(51—€~m)’ . )\(51—52)’ )\0)

— diag()\gl, )\52’ . /\§m, )\Emﬂ7 - )\£sz17 /\ﬁgm)

&+, if1<j<m,
where &; = and £ = 1 diag(&1, &, - - ., &om). Note

&1 — Samr1—j, ifm+1<7<2m,
that, for & even, then the §; are non-negative integers such that §; — &;41 = 0 or 1,

Com = 0, & = 2& and §; = & — ;. For § odd then either §; — §;11 = 0 or 1, and
Em-1 = &En or §G—& = 0,0r 1, for j =1,2,....m—2m+2,...,2m and

-1 —Em=1,&n — &1 = —1, a1 — Enao = 1. Also note that

7?75 = (diag()\@m, Nezm-1 )\51)> <diag()\€1, . ,/\52’"))

— diag()\§1+52m, )\€2+£2m—1’ . )\Ezm+§1)

= \7

as & = & — &;. Therefore by , e takes values in Q,U(n)®. A similar argu-
ment can be applied to odd dimension: let £ be a canonical element of s0(2m + 1) so
we have that £ = idiag(€y,...,Em, 0, —Em, ..., —&1), with canonical geodesic Ve =
diag()\él, e )\5’”, 1, )Fgm+2, e )\*51). Again fixing representatives of each canonical

geodesic in an equivalence class in PU(2m + 1) we define the homomorphism v, : S* —
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U(2m + 1) by

Ye = diag(AS, A2, A NSt \Emt2 NG ety

/

&+ &, if1<j<m,

where &; = 1 £ ifj=m+1,

51—52m+2_j, ifm+2<7<2m+1,

\
and £ = idiag(&, &, - -, Eam1). Note the &; are non-negative integers such that &; —

1 =0o0rl, &1 =0,& = 2¢; and & = & — &;. We arrive at the definition:

Definition 6.3.3. [29] Definition 3.1] Let & be a diagonal matrix £ = i diag(&1, &2, ..., &)
where §; are non-negative integers satisfying &; — ;11 = 0 or 1,5, = 0, & =1 — &,
& =rand whenr is odd &, /51 = &,/2. Then we call § a canonical element of Q,U (n)®

and e = diag( A1, 2%, ..., \S) € Q,U(n)*¥ the corresponding canonical geodesic.

Remark 6.3.4. (i) It was shown in [48, Theorem 6.8] that if n is odd then r is even.
This can be seen from Proposition as our representatives of the canonical
geodesics in PU(n) are chosen by adding & to &, a canonical element of so(n).

Therefore if n is odd then &, is always an integer and we have r = 2§;.

(11) The definition from [29] above seems to miss the case when n = 2m, r is odd and
1 —&m = 1, &0 — Enur = =1, &1 — Emao = 1. This is not the case as
performing the change of basis that swaps the entries &, and &,,11, gives canonical
elements such that £, 1 = &y Em — Emar = 1, a1 = Emao Which is covered
in the definition above. (As in Proposition we are only interested in finding
extended solutions and harmonic maps up to equivalence (Definition[6.1.10).)

(iii) Recalling Definition[6.2.2|where the ‘type’ of a canonical element was defined, this
definition extends to the canonical elements of Definition The possible types
of these canonical elements are (to,t1,...,t.) where the t; are positive integers

witht; = t,_;, and when r is odd, (,_1y/2 = t(r41)/2 > 2.
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Similarly to the corresponding eigenspaces of ad(¢) for £ a canonical element of
Q,U(n)® are denoted g& = g¥(¢) and consist of matrices with entries zero unless on the
xth block superdiagonal. If ¢ is a canonical element of 2,.U(n)¥ then it is a canonical
element of ,U(n) and we have g (¢) = g5 (&) N o(n,C). Recall the space 2AF from
Definition [6.2.6l

Definition 6.3.5. (i) Let £ be a canonical element of .U (n)X. We define the finite-
4G L(n,C) to be the intersection A = 2Ag N

QO(n, C). We also define the Lie subgroup (2)o of A by (U)o = ANO(n, C).

dimensional Lie subgroup Q[%R of A

(i) We denote the space of meromorphic maps A : M — QléR satisfying by Solﬂg
and the subspace of Solﬂg of meromorphic maps A : M — (Q[]g)o by (Solﬂf)o.

Proposition 6.3.6. /29 Proposition 3.4] Let ® : M — Q,U(n)® be a polynomial
extended solution for some 7 € Ny. Then there is an equivalent extended solution
®: M — QUMN)E with0 < r < 7, a canonical element ¢ = idiag(£1,&,...,&,)
of Q.U(n)* and a meromorphic map A : M — A such that ® = [Av¢]. A and § are
uniquely determined by ®, and all harmonic maps ¢ : M — O(n) of finite uniton number

have such an extended solution.

Example 6.3.7. Let ® € Q,U(n)® be an S'-invariant polynomial extended solution.

Recall from Proposition that
D =y, + My, + Ny, + 0+ Ny, (6.3.4)
where ¢; = aj N aj41, and by Proposition the unitons are nested, i.e.
O=ayCa; Cas C---Ca. Cap.1=MxC".
Also from Proposition the Grassmannian model is given by

W=0H, =a;+Aaa+ Nag+--+XN"ta, + NH,. (6.3.5)
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As shown in Example[6.2.14} on putting \ = —1 into (6.3.4) we see that the corresponding

harmonic map ¢ = M — U(n) is given by

p=0= ) my = Y Ty,

j even J odd

This can be rewritten as

=Ty — Ty (6.3.6)

where

Ty = Z Ty; and Tjs': Z Ty, -

Jj even j odd

By Propositions[6.2.12|and [6.2.13) we see that ([6.3.6) is given by

QOZLO¢:’/T¢—7T2;

where ¢ : M — G.(C") and is given by the subbundle

o= U (6.3.7)

Recall from Definition that W = A" or equivalently from the extended
solution satisfies ® = A\7"®. Using with W= = \="W or equivalently

with ® = A\7"® we see that EJ-L = Qpy1—jand P; = Er_j forall j.

Forr even, as 1; = @,_j for all j, we see thaté = ¢ and so the corresponding map ¢ is,

in fact, a map into a real Grassmannian ¢ : M — G, (R™). Note that

GL(R") =

so we will often write ¢ from (6.3.7) as a map into O(n)/(O(k) x O(n — k)) for an
appropriate k. The Cartan embedding from Proposition |6.2.13| restricts to the totally



6.3. HARMONIC MAPS INTO THE ORTHOGONAL GROUP 121

geodesic embedding 1 : G,(R") = O(n), therefore p = ®_y =10 ¢ =1y — 7wy : M —
O(n).

For r odd, then as earlier by [48, Theorem 6.8] or Remark|[6.3.4} n is even, say n = 2m.
As 1 is odd we have from ((6.3.7) that

o= Uy=to+ vttt

j even

We see that

©-

gbL:¢1+77Z)3+"'+¢r:Er—l—i_ar—“%_’_"'—’_@o:

S0 EL = ¢ and by Definition |5.1.2| is maximally isotropic. We identify the space of

maximally isotropic subspaces of C*™ with the space O(2m) /U (m) [48, §6.3]. Therefore
for the corresponding map ¢ : M — G,.(C*™) and x € M, ¢(x) is a maximally isotropic
subspace of C*™ and so ¢ is a harmonic map into O(2m)/U(m). There is a totally
geodesic embedding of O(2m)/U(m) into G,,(C*™) which upon composition with the
Cartan embedding from Proposition has image in {g € U(2m) | g = —g} [48
§6.3]. The minus sign in g = —g reflects the fact that _; = 7y — ﬂ(j = Ty — Tg SO It s
more natural to consider the associated harmonic map p = i®_ = i(7y — 75) which is

real, i.e., has values in O(2m) = {g € U(2m) : § = +g¢}.

6.3.1 Adding a Border

We will now describe a procedure introduced in [29] which is used to give a parametriza-

tion of harmonic maps ¢ : M — O(n).

Let £ = idiag(&;, &, - . ., &) be a canonical element of Q.U (n)® of type (to,t1,. .. ,1,)

for some r € Ny, m > 2. We define & = i diag(&s, . . ., Eam_1) Which, if £ is not of type
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(2,2), is a canonical element of Q:U(n — 2)* of type

(to—l,th...,t?«_l,t,«—l), with 7 =r lftoZZ,
(fo,F, ... ) = (6.3.8)

(t1,...,t,—1), with 7 =r—2 otherwise.

If € is of type (2,2) then, € is of type (1,1), 7 = r = 1 and is therefore not a canonical
element, so we must treat this case separately. Let A : M — 91]15 be given by A =

(@jk)j k=12, n then we define a matrix A= (@jk)j k=2, n—1, this is called removing the

border.
Now let A = (@jk)jh=2,.mm1 = M — Q(Hg be given, we add a new first column
(a11,a01,...,an1)" where aj; = 4;1, a new bottom row (a,2,an3, ..., an,) wWhere
Qni, = Onk. We also add a new top row (ais,ais,...,a1,—1), new last column
(aon, Az, - - - ,an_lvn)T and new top-right element a4,, SO we have

Ilap a3 ... A1,p—1 | A1n

0 Q2p

A=1 0 A A3
0
0] 0 0 0 0 1

This process is called adding a border and the resulting A defines amap A : M — Qléc.
To ensure that A takes values in 21 we use Lemma on the columns ¢; of A, in
fact, given the new top row (resp. new last column) we can use Lemma [5.1.4] to find
expressions for the elements of the new last column (new top row) in terms of those in the
new top row (resp. new last column), we may also find the new top-right element using
(Cnycn) = 0. Applying Lemma in this way to complete the border so that A takes

values in Qlﬂf is called (completing the border) by algebra.

Lemma 6.3.8. [29 Lemma 3.6] Let & be a canonical element of Q,.U(n)® not of type
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s , an et 3 e the canonical element o 7 n — efjinea aoove. et =
(2,2), and let € be th I el f Q:U(n — 2)® defined above. Let A

-----

be the holomorphic map defined above. Suppose A satisfies , then so does A. Con-

versely, suppose A satisfies then A satisfies if and only if the new top row
satisfies ((6.2.3), and this holds if and only if the new last column satisfies (6.2.3).

Therefore given an extended solution & = [12175] : M — Q:U(n — 2)® we may find
another (non-equivalent) extended solution ® = [Av] : M — Q,.U(n)* by adding a
border to A, then solving 1| for the elements of the new top row and finding the new

last column and new top-right element by algebra.

6.3.2 Solving the Extended Solution Equation

To solve the extended solution equations (6.2.3) for the new top row and therefore
parametrize the extended solutions for O(n), Ferreira, Simdes and Wood in [29] §3.4]
introduced new parameters which change the problem of integrating (6.2.3) to differenti-

ating the new parameters and doing some algebraic operations.

Definition 6.3.9. Let v and B3; for j =1,2,...,1, | € N, be meromorphic functions on
the Riemann surface M. We define the generalised derivative of v with respect to [, to
be the quotient vV) = 1/ /B, where ' denotes the derivative with respect to some local
complex coordinate z on M. Higher generalised derivatives are defined inductively by
v = (vE=D) /8 for 0 < k <1, and we set v'°) = v. Note that these are well-defined

under change of complex coordinates.

Let M(M) denote the space of meromorphic functions on the Riemann surface M. Let
p1 = pi(§) = dimgf(§) and p = p(§) = >_7_, dim g (§), for £ a canonical element of
Q,.U(n)® for some r € Ny. Using the process of adding a border and using Definition

6.3.9) with Lemma [6.3.8] Ferreira, Simdes and Wood gave an algorithm which defines a
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map h = he : M(M)? — Solﬂg . The map h restricts to a map hg = (ho)e : M(M)P* —
(SolﬂS)o. We will now see an example of this algorithm in practice and we direct the
reader to [29, Proposition 3.7] for full details of the map h : M(M)? — Solﬂg, and for

more interpretation of the following example.

Example 6.3.10. Consider the 1 x 1 matrix ¢ = (0) which is a canonical element of
QoU (DR of type (1) and let us define a 1 x 1 matrix A = (1) : M — Qlﬂg. Let £ =
i diag(2,1,0) be the canonical element of QU (3)¥ of type (1,1,1) defined from & as in
. We will add a border to A to get a 3 x 3 matrix A as above so we have

1 a2 a3
A= 0 1 a93
0 0 1

The extended solution equations ([6.2.3)) for A are

/o Ei—2 1 __ 0 7 !
aip = E AT piatng = Adgpann = ayg,
j:2>€;>0

and therefore the extended solution equations are automatically satisfied. To ensure that

A: M — Ql? we use Lemma|5.1.4\which says that A € O(3,C) if and only if (¢, cx) =

0 ;& Where c; are the columns of A. The only non-trivial equations are
(co,c3) =0 = a1 = —ags,

1
(03,03) =0 = a3 = §CL§3.

Therefore we have
1.2

A= 0| 1 | —ap
0 0 1
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By Proposition D = [Ave] : M — QU (3)® is an extended solution for the har-
monic map ¢ = ®_1 : M — G2(R®). The unitons of ¢, «j, j = 1,2 are given by
a; = Span{cs} and oy = Span{cy, cs} where ¢y and c3 denote the second and third
columns of A, respectively. We see that oy C oy C o C ag and so by Proposition
the extended solution is S*-invariant and by Proposition its Grassmannian
model is given by W = ®H_ = oy + Aoy + N2 H_.. As ris even, by Examplem the

corresponding harmonic map takes values in a real Grassmannian ¢ : M — G5(R3). By

Propositions |6.2.12|and|6.2.13| we have the harmonic map ¢ = 10 ¢ : M — O(3) given

byQOZLOgb:ﬂ'd,—ﬂ'j)‘.



126 6. HARMONIC MAPS FROM SURFACES TO LIE GROUPS



127

Chapter 7

Harmonic Maps from Surfaces into the

Symplectic Group

In this chapter we adapt the work of [9, 29] to the symplectic group. We do this by modi-
fying the process of adding a border in and solving the extended solution equations
by introducing generalised derivatives. This process is more difficult compared to the
O(n) case as, when solving the extended solution equations we must replace parameters
inside the border, as opposed to on the border as in [29]], this is because the algebra is
based on an antisymmetric form w which does not determine as much as the symmetric

form used in the O(n) case.

We give a parametrization of all S*-invariant extended solutions up to dimension 6, and
give a theorem parametrizing S'-invariant extended solutions of canonical type for all

dimensions.
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7.1 Harmonic Maps into The Symplectic Group

Throughout this chapter we will use the null basis (5.1.9) from and from now on
we will write all vectors and matrices with respect to this null basis. Recall the symplectic

group §5.1.2} that is Sp(m) := Sp(2m, C) N U(2m), where on using a null basis,
Sp(Zm, (C) = {A S GL(’/L, C) ’ AanuuA = Qnull}y

for

We will regard Sp(m) as a subgroup of U(2m) in the obvious way:
Sp(m) = {A € U(2m) | A*QunA = Quun}-
Similarly,
QSp(m) = {® € QU(2m) | 2*Vun® = L},

where ®* is defined by Remark [6.1.16} replacing 7 by *. Recall the bijection (6.1.7)),
and the conjugate-linear map .J : C*™ — C?™ defined by (5.1.13).

Lemma 7.1.1. [43, Proposition 8.5.4] Given ® € QU (2m), set W = ®H, € Gr, then
® € QSp(m) if and only if JWL = \W.

Lemma 7.1.2. In the null basis (5.1.9), given ® € QU (2m), set W = ®H . € Gr, then
o € QSp(m) if and only if QnuHWL = \W.

Proof. From Lemma it suffices to show that JIW+ = QnuHWL. Recall from (5.1.13])

that J(v) = Quuv for v € C*™. Therefore we have

JWJ_ = QnuIIWJ‘ - ﬁnuIIWJ_ = QnullWl'
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]

Note that the formulation above highlights the link between the Grassmannian model 11/
and its polar WL, not to be confused with the polar of f from Definition m Recall
the skew-symmetric bilinear form w(-, ) given by . In keeping with notation of
[48,149] we define a subset of €2,.U(n) similar to that of .

Definition 7.1.3. Let Q.U (2m)” be the subset of Q.U (2m) defined by
Q.U(2m)” ={® € Q.U(2m) | w(®z, ®y) = N'w(x,y)}.
where x,1y € C*™.

We will show that this definition is equivalent to the definition given in [48, §6.8][49,

§7.1] as well as give another equivalent definition.

Lemma 7.1.4. The subset Q,.U(2m)” of Q,.U(2m) can be equivalently defined by

() Q.U(2m)’ ={® € Q.U(2m) | J®J ' =\T"®} inthe standard basis and

() Q.U2m)! ={® € Q.U2m) | ®*Quuu® = \"Quun}  in the null basis (3.1.9).

Proof. Recall the standard Hermitian form (-, -) on C*™ given in §5.1.2] In the null basis

(5.1.9) this is given by

(z,y) = 2T PTIPy = 277, (7.1.1)

where P is the unitary matrix given by (5.1.10). Note the similarity between the expres-
sions of (z, y) given in both the standard basis and the null basis (5.1.9)), indeed both bases
are Hermitian. Also note that in the null basis (5.1.9) (as well as the standard basis) we
have

(@, y) = (2, B y) (7.1.2)
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where ® an 2m X 2m matrix. From (7.1.1)) we have that, in the null basis (5.1.9), ® €
U(2m) if and only if &' & = 1.

For (i), as ® € Q,U(2m) C QU(2m), then & ® = I, together with (5.1.7) we have
w(Pz, Py) = (Pz, JOY) = <x,5TJQJy) = (x,® ' JDy)

and

Nw(z,y) =Nz, Jy) = (x,\""Jy),
as M = \~7 for all j. Therefore w(®x, ®y) = N'w(x,y) if and only if =1 JO = A" J if
and only if J®.J~! = A7"®. For (ii) we have from (5.1.11)) that

w(Px, Dy) = 2T DTQDy.

Therefore w(®x, Dy) = A\w(x,y) if and only if BTQP = X", Now recall from (5.1.4)
1

that ®F = Q®TQ forQ = Q' = and from (5.1.12) that Qu := Q2. Due

1
to Q) = I, the following are equivalent

dTOD = \'Q)
3T QOND = N QO
QPTQOND = N\ QN
q)TQnull(I) = N Qnun.

Therefore w(®x, Py) = N"w(w, y) if and only if and only if D=y ® = A" Qpu. O

Lemma 7.1.5. Given ® € Q,U(2m), set W = ®H, € Gr,, then ® € Q,U(2m)” if and
only if JW+ = \="W.
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Proof. It suffices to prove that JWL = A=W if and only if J®J ! = \7"®. As
W = ®H,,, by multiplying by A" we have

MW = ATTOH, (7.1.3)

Recall from that the natural action of QU (2m) is isometric with respect to the
L? inner product defined by (v, w)r2 = Y . (v;,w;), where v = > . No; € H, w =
> ANw; € H and (-,-) is the standard hermitian innner product on C". Therefore, as
® € QU(2m) then ® preserves the inner product and we deduce W+ = @Hi. Upon

applying the conjugate-linear map .J : C*™ — C?™ we have
JWH = JoH: = JOJ JHL = \JOJ " H,, (7.1.4)

as JHT = AH,. Comparing (7.1.3) and (7.1.4) we have JW=* = A=W if and only if
ATTOH . = NJDJ'H, if and only if JOJ ! = A" ® as required. O
We give a version of Lemma [7.1.5]for the null basis where J is calculated using 2.

Lemma 7.1.6. In the null basis (5.1.9), given ® € Q,U(2m), set W = ®H . € Gr,, then

® € Q,U(2m)” if and only if QnuHWL = \TWL

Proof. Similarly to Lemma by Lemma it suffices to show that JW* =
Q7 . Recall from 1i that J(v) = Quv for v € C?". As in the proof of
Lemmal7.1.2]

JWE = QWL = QoW = QW

Then Lemma follows from Lemma O

We now define canonical elements of 2,.U(2m)”’ from those of sp(m) similarly to what
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we did for o(m) in Let £ be a canonical element of sp(m), so by Proposition |5.2.20]

g: idiag(gla e agrm _gma - a§1)7

where éj — fjﬂ =1lor0,forall j=1,2,...,m—1, and fm = 0 or 1. By Definition
5.2.12|the canonical geodesics 7 : S* — Sp(m) are of the form

Ve = exp(t§) = diag(e“gl, eité, . e”gm, e_”gm, e e‘“gl). (7.1.5)

As above we regard Sp(m) C U(2m) and so can view the canonical geodesic ¢ as a map
into U(2m). Again by following [9, p.562] we will fix representatives of the geodesics
in the projective unitary group PU(n) = U(n)/Z(U(n)). Recall that PU(n) is a
group of equivalence classes of unitary matrices under multiplication by ¢ - I, for ¢ € C.
By choosing suitable representatives of each canonical geodesic in an equivalence class

and recalling the notation from Remark [5.2.13| we define the homomorphism ¢ : S* —
Sp(m),

it€y

Ve =€y = diag(emgl, eit(é?J“él), e ,eit(ng“gl), eit(él_ém), . ,eit(gl_é), e?)

= diag(}?él, >\(€~2+é:1)7 e )\(£~m+§1)’ )\(frgm)7 e )\(51*52)7 )\0)
— diag()\él, )\52’ o ’)\ém’ )\fm-&-l, . )\€2m—1, )\ézm)

&+é. if1<j<m,
where {; = and £ = idiag(&y, &, ..., &om). Note

& _£2m+1—j, iftm+1<j<2m,

that £; are non-negative integers satisfying ; — ;.1 =0 or 1, &, =0, &§ = 2¢1 and
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& =& — ;. We also have

Ve Qe = diag(A=m o AT €S A ) diag (AT L A S A&
= diag(A&mFé o N\t \EntEnin NG
- )\ngnulla

as §; = & — &, which shows that ¢ takes values in Q,U (2m)” where r = £,. We arrive

at a definition similar to Definition

Definition 7.1.7. Let £ be a diagonal matrix § = idiag(&1,&, ..., &m) where & are
non-negative integers satisfying {; — &1 =0 or 1,89, =0, &G =1 —§; and & = .
Then we call ¢ a canonical element of Q.U (2m)’ and ¢ = diag(\s1,\%2, ... \%m) €

Q,.U(2m)” the corresponding canonical geodesic.

Remark 7.1.8. (i) Recall Definition and Remark
Let & = idiag(&y,&, ..., &) be a canonical element of Q.U (2m)’. If r is odd,

then £ is a canonical element of Q.U (2m)® if and only if £, 1 = Epn.

(11) We may define the “type” (Definition of a canonical element & of Q,.U(2m)”
in a similar to that of canonical elements of U (n) and O(n). We say that a canonical

element & of Q,.U(2m)” of type (1,1, ...,1) is of standard type.

Similarly to and we denote the corresponding eigenspaces of ad(§) for € a
canonical element of Q,.U(n)’ by g/ = g/(&); this consists of matrices with entries
zero unless on the xth block superdiagonal. If £ is a canonical element of Q,U(n)’

then, similarly to it is a canonical element of Q,.U(n) so the eigenspaces satisfy
g7(&) = g5 (&) Nsp(n, C). Recall the space A from Definition

Definition 7.1.9. (i) Let & be a canonical element of 2,.U(2m)’. We define the finite-

dimensional Lie subgroup 2} of Aj,,GL(n,C) to be the intersection A = 2A¢ N
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QSp(2m, C). We denote its Lie algebra by ag‘] . We also define the Lie subgroup
(AL)o of AL to be (AL)o = AL N Sp(2m, C).

(i) We denote the space of meromorphic maps A : M — ng‘] satisfying by Sol‘g
and the subspace of Solg‘] consisting of meromorphic maps A : M — (ng )o by
(SOlg)o

We give a proposition similar to Proposition and Proposition We also direct

the reader to [42]] where a related proposition in a different context was given.

Proposition 7.1.10. Let d: M — QU (2m)” be a polynomial extended solution for some
7 € N. Then there is an equivalent extended solution ® : M — Q.U (2m)‘] with 0 <
r < 7, a canonical element & = i diag(&1, &, . .., Eam) of .U(2m)? and a meromorphic
map A : M — ng such that ® = [Av¢|. A and & are uniquely determined by ®, and all

harmonic maps ¢ : M — Sp(m) of finite uniton number have such an extended solution.

Proof. Let ® : M — Q;U (n)” be a polynomial extended solution for some 7 € N, then
according to [9, §4], in the fashion of [29], we may write o = [By,] for B : M —
A:ngL(2m, C) meromorphic, 7 = idiag(ry, 7y, ..., Tay) for 7; non-negative integers
such that 7; — 7541 = n; € N, 7, = 0, 77 = 74 — 7; and ~-(t) = exp(t7), note that 7

is not necessarily a canonical element. (Recall from Proposition [6.1.23] and Proposition

6.1.25|that [ | is the projection onto the first factor of the Iwasawa decomposition.)

We relabel the 7;, for j = 1,2,...,2m so we have
7':idiag(ﬁ,ﬁ,...,7‘1,7:2,...,7:2,...,7:5,...,7'5),

where 1 <6 <7, 7,—Tj41 =17, € N, 75 =0, %3 = 71 — 7. Note here that by relabelling

we collect together all 7; such that); = 0so7; > 1forall j € {1,...,6}.
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Define W = B~v,H, € Gr; and consider the filtration of W given by

W=WnXH, DWnAHL, DW N NH,
D...DWNANHL DW N A, =\,

Let P; : H — C" be the natural projection defined by P;(v) = v; forv = > Nv; € H.
Following [42, §3.3] and [48, §3.4] define
W N NH, P;(W N NH,)

;= . : = . : 7.1.
A AW N NHL)+ (W N NHHL) Py(W N N-YHY) (7.1.6)

According to [42, Theorem 2] if A; = 0 for some j € {0,1,...,7;} (and so by the
symmetry of 7 we have Az _; = 0) then there exists a constant loop u € QU (2m)”’
such that uBvy,H, € Gri_o and further, [uB~,] = p[B7,] is an equivalent extended
solution to [B7,], see Definition We see from that A; = 0 if and only
if (W N NHL) = Py(W 0 N7YH,), also if we let 7, < j < 74y for some
ke{l,...,8}. Then Py(W N NH,) # P;_1(W N NM'H,)if any only if j = 75, + 1.
We conclude that A; # 0 for all j such that 7, < j < 71 for some k € {1,...,6} if
and only if 7, — 7x41 = 1 and so 7 is a canonical element of €2;U (2m)‘] . If, on the other
hand, A; = 0 for each j in some subset D C {0, 1,...,7} we iterate the procedure of

[42, §3.3] for each j € D by multiplying by some constant loop u; € QU (2m)” to get

(H :uj)B’VT = Ce

jeD
for some C': M — A},GL(2m,C) and £ a canonical element of ©,U(2m)” for some
r < 7. We have that [Cy¢] is an equivalent extended solution to [B~|.
Following [9 p.560 ff.] we need only consider C' : M — Ql‘g C A;ﬁgGL(Qm,C) as

Cve] : M — Q,U(2m)” is holomorphic and {[exp(n)ve] | n € a/} is a proper algebraic
3 3 3
+ GL(2m,C)}. O

alg

subvariety of {[Av] | A€ A
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We now give an interpretation of S'-invariant polynomial extended solutions. Recall the
Grassmannian model of an S*-invariant extended solution from Proposition [6.1.20

Lemma 7.1.11. Let ® = (7o, + Ay ) (Tay + Amo,) - -+ (Mo, + A7) € Q.U (2m)” be an
Sl-invariant polynomial extended solution, W = ®H_, be its corresponding Grassman-
nian model and J : C*™ — C?™ be the conjugate-linear map defined by (5.1.13). Then

the following are equivalent:

(i) JW+ =W,
(i1) Jozjl = Qpq1—j forall 1 < j <r and
(iil) Jv; = ¥,_; where 1; = OcjL Najqy forall 1 < j <.
Proof. Recall H, C H = L*(S',C*") from §6.1.3l Then W = ®H, C H and by
Proposition [6.1.20, W = ®H, = a; + dag + XN2ag + -+ XL, + N"H,. Letv =
Zj Ajvj € H,thenv € W+ if and only if v; Lo forall0 < j <r —1andv; = 0 for all

j > r. Hence
Wt =a; + g +Nag +-+ X oy + Hy

As J is conjugate-linear we have
JWE =Jaf + X ay + A Jag + -+ AT Ja + AH, (7.1.7)

where N\H, = JH7 for Hf = Span{\~'¢; | i € N, j = 1,2,...,2m} the orthogonal
complement of #, from (6.1.6). On the other hand,

MW =, + A oo F A 2o+ N o+ AH, (7.1.8)

By comparing (7.1.7) and (7.1.8) we see that JW* = X' ~"W if and only if Jaj =
apq1—j forall 1 <j <.
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Now suppose Jo;; = a,41—; forall 1 < j <7 andlett; = aj N a;yq. Then for each j,

1 S j S r, J’l/JJ = JOéj‘ N JOéj+1 = Ory1—j ﬂOéi‘_j = ¢r—j-

Conversely, suppose Jv; = 1,_; for all 1 < 5 < r. By Proposition as ¢ is

Sl-invariant we have
O=ayCa CayC - Ca, Capyp =M xC",

giving a; = 3070 adk Nagyy = S01—1 4y, and aj = > i, ¥x. Upon applying J we have

r r r—j
Jozj = Z Jiy, = Z%—k = ZM = Qry1—js
k=j k=j 1=0

and we conclude Jaj = a,41_; if and only if Jip; = ¢,_; forall j, 1 < j <. O

Remark 7.1.12. Recall from (5.1.13)) that Jv = Qv for v € C*. By Lemma|7.1.11|we
also have QnuHWL = M="W if and only if Qnuuaj = Qpt1—5 if and only if Qnulﬂj =

Yy_j in the null basis (5.1.9).

Example 7.1.13. Let n = 2m and ® € Q,U(n)’ be an S*-invariant extended polynomial
extended solution. Recall from Proposition that

D =y, + My, + Ny, + 0+ Ny, (7.1.9)
where ¢; = OzjL N aj11, and by Proposition the unitons are nested, i.e.
O=ayCa; Cas C---Ca, Cap1=MxC".
Also from Proposition[6.1.20|the Grassmannian model is given by

W =0H, =a; +Xagy + Nag+-+ X "la, + \"H,. (7.1.10)
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As shown in Example[6.2.14} on putting \ = —1 into we see that the corresponding

harmonic map ¢ = M — U(n) is given by

p=0= ) my = Y Ty,

j even J odd

This can be rewritten as

_ 1L

where

Ty = Z Ty; and Tjs': Z Ty, -

Jj even j odd

By Propositions[6.2.12|and[6.2.13] we see that is given by

QOZLO¢:’/T¢—7T2;

where ¢ : M — G.(C") and is given by the subbundle

(7.1.11)

(7.1.12)

As ® € Q,.U(n)’ we have by Lemma and Lemma |7.1.11| that JW+ = \="W,

Joéj- = ar+1—j and ij = Q/JT_j forall 1 Sj S T.

Forr even, as Ji; = ,._; for all j, we see that is the sum of J-closed subspaces

of C", Y;+1,_;. Therefore the corresponding map ¢ is, in fact, a map into a quaternionic

Grassmannian ¢ : M — G.(H™). Note that

my Sp(m)
Gi(H") = Sp(m — k) x Sp(k)’

so we will often write ¢ from ([7.1.12)) as a map into Sp(m)/(Sp(m — k) x Sp(k)) for
an appropriate k. The Cartan embedding from Proposition[6.2.13| restricts to the totally
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geodesic embedding v : G,(H™) — Sp(m), giving a harmonic map ¢ = 1o¢ = wy—my
M — Sp(m).

For r odd, considering we have

b= =10+ rt st + U, (7.1.13)

j even

We see that

J?IJwO—FJwQ‘f’"“i‘Jwrfl:¢T+¢T*2+”'+¢1:?L

so Jo = @L and by Definition ¢ is maximally J-isotropic. We identify the space
of maximally J-isotropic subspaces of C*™ with the space Sp(m)/U(m) [48, §6.8] (cf-
[42] §4]). Therefore for the corresponding map ¢ : M — G.(H™) and x € M, ¢(x)
is a maximally J-isotropic subspace of C*™ = H™ and so ¢ is a harmonic map into
Sp(m)/U(m). There is a totally geodesic embedding of Sp(m)/U(m) into G,,(C*™)
which upon composition with the Cartan embedding from Proposition has image
inf{g € U22m) | JgJ' = —g}. As in the O(2m) case (Example to obtain the
image in Sp(m) = {g € U(2m) | JgJ~' = +g}, we consider the associated harmonic
map ¢ = i®_y = i(my — my) = i(my — W) which gives a harmonic map map into

Sp(m).

7.1.1 Adding a Border in Sp(m)

Similarly to §6.3.1| we will discuss a method of adding a border to A : M — Q[g for &

a canonical element of 2,U(2m)’. This will give us a method of parametrizing complex
extended solutions of a harmonic map ¢ : M — Sp(m) of finite uniton number. We
remind the reader that throughout this chapter we use the null basis (5.1.9) from §5.1.2]

and write all vectors and matrices with respect to this null basis.



140 7. HARMONIC MAPS FROM SURFACES INTO THE SYMPLECTIC GROUP

Let & = idiag(&;, &, - - ., Eom) be a canonical element of .U (2m)” of type
(to,t1,...,t,) for some r € N, m > 1. Similarly to - let us define & =

idiag(&s, . .., Eam_1), which is a canonical element of ;U (2m — 2)7 of type

(tg—l,tl,...,tr—l), with 7 =1r 1ft022,

(t1,...,t,—1), with 7 =7r —2 otherwise.

Now let A = (ajk)jk=2,. n-1: M — ng‘] be given then we add a border to A as in §6.3.1

.....

to get
1llap az ... A1,2m—1 | @1,2m
0 a2,2m
A=10 A as om
0
00 0 0 0 1

The resulting A definesamap A : M — Qlf. To ensure that A takes values in Q[EJ we need

Lemma 7.1.14. A € Sp(2m, C) if and only if A* € Sp(2m, C).

Proof. Recall (5.1.14) which says that A € Sp(2m, C) if and only if AQuuuA = Quu.
My multiplying both sides by Q. A, A~! and Q_, in the following way

AQnull (ATQnullA) Ail Qil

null

= 14£)null(§2null>1471§271

null

by noting that —Qu = Q5 = QF, we get that AQuA = Quu if and only if

null

AQnull AT = Qnull . L]

We give a version of Lemma for Sp(2m, C); the proof is a modified version of the
proof of [29, Lemma 3.6].
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Proposition 7.1.15. Let £ be a canonical element of .U (2m)”7, and let é be the canonical

-----

,,,,,

defined above. Suppose A satisfies  then so does A. Conversely, suppose A satisfies
then the following are equivalent:
(a) A satisfies (6.2.2));

(b) the new top row satisfies Le.,

= 3 NS ey mod NUET k=10, 41, 2m; (7.114)
1:6>Eg

(c) the new last column satisfies (6.2.3)) i.e.,
@ = > N plopan mod AT =123 "t (7.115)
1:6>0 k=1

Proof. First, let us consider the top-right element a; o,,, of A, then (7.1.14) and (7.1.15))
both read

/ -1 7 r—1
12m = § A Pr2mau mod A

1:£,>0

as & =1,&, =0and & > forall [ =1,...,2m. Therefore we need only consider

(7.1.14) for k =t,.t, +1,...,2m —1,and (7.1.15) for j =2,3,....> ,_, ts.
Now assume that (7.1.15)) holds, then by Proposition (7.1.13) is equivalent to

& = Z A ) oy (7.1.16)

1:£>0

where ¢; are the columns ¢;, [ = 1,2,...,2m, of A with the top and bottom elements
omitted, and so ¢; for [ = 2,...,2m — 1 are the columns of A. Recall (5.1.11) and
Lemma |5.1.7, then as A € Sp(2m, C) we have w(cy, ¢a,) = 0 for all & > 2. Therefore
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by expanding w(cy, ca,,) We have
0 = w(ck, Com) = —targ + w(Ck, Com)- (7.1.17)

Differentiating gives

ayy = —i<w(é;,ézm) + w(ék,é’zm)>. (7.1.18)

Using and by Lemma we have

iINEF Ll if k> 1
k,2 ) )
WGk &) = Y AT w0 (8, 6) = "

1:6>0 —valp’g S

as & = r — &,. Now consider w(¢&,, ¢2,, ), as A satlsﬁes 2)) and usmg we have
that

W(C,y Com) = Z N8y (G, G ) = Z P TS

1>2:5>& 1>22:§>8

Substituting these into (7.1.18)) we have

ay, = —i(i Z A8y a1)  mod NS

122:6>8&;
- Z A8ty ayy, mod AT
122:6>8;
= Z )\gligkilp;kalk.
l:6128>8;

Therefore (7.1.13) implies (7.1.14), moreover (7.1.15)) implies that all columns of A sat-
isfy (6.2.2) and therefore implies (a).

Now assume that (7.1.14) holds and recall that we need only consider (7.1.14) for £ =
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tryt, +1,...,2m — 1. We will prove that holds by downwards induction on
J€{2,3,...,> ,_; tr}. Let us consider the base case Y ,_,t;, < j < >, _, t; then for
¢ = idiag(&, &, ..., &m) of type (to,ti1,...,t.) we have {; = 1 for all such j and so
reads a5, = @}, as g, = @}y, and a;; = 1, and therefore (7.1.15) holds.

Let us introduce the notation

a1k 0
A2k
0
(}Z:: Aj—1k | » Vl%: @Gk | o
0 A5k
0 Q2m,k

where éfg and EJ; are of length 2m forall j, k € {1,2,...,2m}. For an induction hypothesis
suppose that (7.1.15) holds for all j > I for some I € {2,3,...,>", _,t;}, therefore

() = > A TNpl,6 (7.1.19)
1:6>0
—1, if I >m,
We show that (7.1.15) holds for j = I. Define e7 = then we can
1, if I <m,

expand w(cy, cop,) as follows:

w(cr, Cam) = €701 2m + w(é%, ).

'
T?

By Lemma|5.1.7|we have, iczar 2, = —w(eL, ¢ ) and differentiating we get

ie7a m = —w((&D), &) — w(ék, (h,)")- (7.1.20)
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As A satisfies 1| and [ > 2 we have

where, as j < I in the sum above, then

A _ T
Cj = (alj,agj, ceey @15, 1,0, Ce ,0) s

I T
CQm = (O, e ,0, a[+1’2m, a1+272m, e 7a2m,1’2m, 1) .

For each j in the sum above we have

w(el, &)

. = w(cj, Com) = 105

J,2m>

as j < 2m for all j. We see that w(ég, ¢k ) # 0if and only if j = 2m = 1, and so

NV . e . _ _
w((7)', &,,) = INST 1p/1,7 S 1pl1,7 =0 mod N1,

as & =, and & = r — &;. Now (7.1.20) reads
€70 g0y = —w(eL (& )) mod A —1, (7.1.21)

7' \"2m

and by the induction hypothesis we have
w(ed (e5,)) = > X, w(edh e, (7.1.22)
1:£,>0

We can expand w(cy, ¢;) similarly to earlier to give

w(cy, ¢) = iegan + w(é%, &,
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again using that A € Sp(2m,C) and Lemma we have w(cy, ¢;) = iegdy; and so if
I # [ then
—iegan = w(éf, &),

and if / = [ then é% is a column of zeros and so w(é%, ¢h) = 0. Putting these together with

(7.1.21) and (7.1.22)) we have

. N
ie7a] gm = —w(ck, (&,,)") mod A —1
=ier Z Al man mod AT
1:£,>0

Therefore a} 5, = 3. 50 APl gnan mod A~ which completes the induction step

and therefore the lemma is proven. 0

By Lemma(7.1.14] given the new top row (resp. new last column) we solve the equations
from Lemma to find expressions for the elements of the new last column (resp.
new top row). Unlike the O(n) case detailed in where elements of the new last
column and new top-right element were found by algebra, we cannot find the new top-
right element a; 5,, in the Sp(m) case by solving w(capm, c2m) = 0 from Lemma this
is because w(cam, com) = 0 is automatically satisfied. So we must find the new top-right
element by integrating (7.1.14). We use ‘by algebra’ to describe the method of solving
the equations of Lemma to find expressions for the new last column in the Sp(m)
case as well as for the O(n) case in

Completing the border by algebra is where using the null basis (5.1.9) is particularly
useful. If were to find expressions for the new last column from the new top row in
the standard basis we would use Lemma as opposed to Lemma which, for
a unitriangular matrix A = (a;i); k=12, 2m (see Definition , does not give us an
expression for a,, 2,,; this does not fit well with our key construction of adding a border.

Also in the null basis (5.1.9) we replace the non-diagonal matrix €2 in with the
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diagonal matrix Qp,y in (5.1.TT).

7.2 Classification up to Dimension 6

Recall from Definition [6.1.12]that, for ® = &, : M — Q,U(n)” a polynomial extended
solution, then @ is called S'-invariant if ®,®, = ®,, forall \, u € S*. If & = [Ay]
for ¢ a canonical element of Q,U(2m)” and A € Solg‘] then ® is S'-invariant if and only
if A e (Solg)o, that is, A is independent of A\ € S*. By using Proposition we will
find a classification of all S'-invariant extended solutions with respect to the canonical el-
ements of Q,.U(2m)”, up to m = 3. We will find these extended solutions by successively
adding borders, solving the extended solution equations by introducing generalised
derivatives from Definition[6.3.9]and solving the equations arising from Lemmal[5.1.7] We

will conclude

Theorem 7.2.1. Let M be a Riemann surface, let § = i diag(&y, &y, ..., &) forn =2m <
6 be a canonical element of Q.U (n)” for some r € Ny and let p; = p;(§) = dim g7 (£).
There exists a bijective map ho : M(M)** — (Solf)o where, for (vi,1s,...,1,) €

M(M)Pr, each entry of ho(v1, va, . . ., 1) is a rational function of v; and their derivatives.

721 m=1

For m = 1, note thatas 0 < r < 2m then r = 0, or 1. We wish to find parametrizations
for extended solutions ® : M — Q,U(2)7 where ¢ a canonical element of ,U(2)7 and
Ae (Solg)o. By Definition the canonical element of QU (2)” is ¢ = i diag(0, 0)
and the canonical element of ,U(2)” is £ = idiag(1,0); these are of type (2) and
(1,1), respectively. By Proposition and Proposition every extended solution
d: M= QU (2)7, 7 = 0 or 1 is equivalent to one of the two extended solutions given

below.
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Type (2)

We will first consider the canonical element £ = i diag(0, 0) of QuU(2)” so that v¢ = I.
By Definition [7.1.9, A : M — (), is the identity matrix which automatically satisfies
the symplecticity condition in Lemma and the extended solution equations (6.2.3).
This leads to the extended solution & = [A7¢] = I; we call the extended solutions in

QU (2m)” with A = [ for any m trivial solutions.

Type (1,1)

We consider the canonical element ¢ = idiag(1,0) of Q,U(2)”. By Definition [7.1.9)
A M — () is of the form
L f

) (7.2.1)
0 1

A:

for f : M — C meromorphic. It is easy to see by Lemma that A € Sp(2,C);
further A automatically satisfies the extended solution equations (6.2.3) as these read
aly = \°plya11 = ), and therefore A € (Sol‘g)o. So & = [Avy] = 7,, + Amy, is an
extended solution, where «; = Span{cy} and ¢ is the second column of A. By Example
the corresponding Grassmannian Model is given by W = ®H, = o + \H,
with & = 7, + )wrofl. As r is odd, by , this corresponds to the harmonic map
¢ : M — Sp(1)/U(1) associated to the subbundle ¢ = 1)y = ay of M x C*. By

Example [7.1.13| we have the harmonic map ¢ = i®_; = i(c o0 ¢) : M — Sp(1) where

1

Oy =10¢=my — T,

722 m=2

The possible canonical elements of 2,U(4)” from Definition[7.1.7]
are ¢ = idiag(3,2,1,0) for QU(4)7, ¢ = idiag(2,1,1,0) for QU(4)’, ¢ =
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idiag(1,1,0,0) for Q;U(4)7 and £ = idiag(0,0,0,0) for QyU(4)’. These are of type
(1,1,1,1), (1,2,1), (2,2) and (4), respectively, and the canonical element of type (4)
gives a trivial solution: ® = [Avye] =1 : M — QU (4)”.

Type (1,1,1,1)

Consider the canonical element ¢ = i diag(3, 2, 1,0) of 23U (4)”. This gives us the canon-

- 1
ical geodesic ¢ = diag(A*, A2, A1 A0) € Q3U(4)7. Let A = d be the A from
0 1

the type (1,1) example above. We wish to add a border to A as in ~ to define
A M — (2Ag)o. We have

1la2 aiz|as 1 a2 aiz aus
0 - a 0 1 a
A— A S foam (7.2.2)
0 s34 0 0 1 axn
0| O 0 1 0 0 0 1

Now to ensure that A : M — (Af), takes values in (A7), and further to ensure A €
(Sol‘g)o, we use Proposition which states that we need only solve the extended
solution equations (6.2.3) for the new top row and new top-right element then we complete
the border by algebra. The extended solution equations for the new top row and new top-

right element are
ro_ r r / r /
A1y = g, a3 = Q12093 = a12f, ay, = a13as,.

The first equation is automatically satisfied so let us relabel a1, = g and turn our attention

to the second equation a3 = g f’, using integration by parts we get

ow= [y~ [or=or= [4r (7.2.3)



7.2. CLASSIFICATION UP TO DIMENSION 6 149

We introduce a new parameter 7 with 7/ = ¢’ f, (note that 7 is defined up to an arbitrary
constant) then we have f = 7(!) := 7//¢’ so f is now equal to the generalised derivative

of 7 with respect to g. The integral now reads
a13 :gT(l) —T.

To ensure A : M — (7)o C (2F)o we solve the equations in Lemma

a3y = —a12 (24 = Q13 + (23034 (7.2.4)
Solving these gives
1 g gt —7 ay
01 7 -7
A=
0 0 1 —qg
0 0 0 1

Finally we find a4 by integrating a), = a3a}, = (97 — 7)(—g)’". We do this by using

integration by parts to reduce the order of the (generalised) derivative of T,

7_/
14 = / ay, = / (g7 = 7)(~g)' = / —g’(?)g +g'7 (7.2.5)

Similarly as before we introduce a new parameter v such that v/ = ¢'7 so 7 = v(1) :=
V'/¢' and T is equal to the generalised derivative or v with respect to g. Note also that

7 =@ = (v /g'. The integral now reads

ary = —gv + 2,
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and so
1 g gy@) — v 2y — gy(l)
0 1 v@ —M
A= , (7.2.6)
0 0 1 —g
0 0 0 1

for meromorphic functions g and v, we call such functions data or parameters. The
reader can easily check that this satisfies the extended solution equations of Proposition
6.2.9, which for type (1,1,...,1) say each column differentiates into a multiple of the
one before. Note here that this gives rise to a bijective map he : M(M)* — (Solg‘])o given
by (g,v) — A. Conversely given an A = (a;x);k=1234 € (Sol:é])o, then we can retrieve

the data ¢ and v by setting ¢ = a2 and v = (1/2)(a14 — a12a24). Set
¢ = [AVE] = (7-‘-041 + )‘ﬂ-i_l)(ﬂ-az + )‘ﬂ-i_g)(ﬂas + )‘ﬂ-i_g)v

for ay = Span{cs}, s = Span{cy, c3}, ag = Span{cy, c3, c2} for co, c3, ¢4 the second,
third and fourth columns of A, respectively. Then @ is an extended solution with Grass-
mannian model W = ®H_, = aq + Aay + Naz + A3H_.. As ris odd, by , this
corresponds to the harmonic map ¢ : M — Sp(2)/U(2) associated to the subbundle
¢ = o+ 1y = a1+ g Nagof M x C*. By Examplewe have the harmonic map
o =i®_y =i(to@p): M — Sp(2) where _; = 10 ¢ = 14 — m; which is of uniton

number at most 3.

Type (1,2,1)

Consider the canonical element ¢ = i diag(2,1, 1, 0) of Q,U(4)”, with the corresponding
canonical geodesic ve = diag(A%, A\', A\, A\°) € Q,U(4)”. We find A € (Sol{), from the

general solution of type (2) which is the 2 x 2 identity matrix. By adding a border we
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have
1 a2 a3z au
A— 0 1 0 a924
0 0 1 a34
0 0 0 1

Similarly to the above, we need only solve the extended solution equations (6.2.3)) for the
new top row and new top-right element and then complete the border by algebra. The

extended solution equations in this case are
/ / / / / / /
Qg = Ay, Q13 = A3, Gy = Qg1 + A34013.

For first two equations are trivial and we therefore relabel our data thus; a5 = g, a;3 = h.
Before we integrate the third equation to parametrize a4, we need to find as4 and ag4 by
algebra: the equations derived from Lemmal|5.1.7| give asy = a13 = h and agy = —a;2 =

—g. To find the new top-right element we integrate

ayq = /a/14 = /h’g +4¢'h = hg— 2/g'h. (7.2.7)

By introducing a parameter v such that v/ = g’h we have h = v(!) = //¢’. By substitut-

ing these into li we have that A € (Sol‘g)o can be written

1 g v g -2y
01 0 v
A= , (7.2.8)
00 1 —q
00 0 1

where g and v are meromorphic functions. The reader can easily check that this satisfies
the extended solution equations of Proposition which for type (1,2,1) say that

column ¢, differentiates into a linear combination of columns ¢3 and ¢y and columns c;3
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and ¢, differentiate into a multiple of column ¢;. This gives the extended solution
(I) = [Afyg] = (ﬂ-al + Aﬂi_1)(ﬂa2 + )\ﬂ-i_z)7

where oy = Span{c,}, as = Span{cy, c3, o}, for ¢s, ¢3, ¢4 the second, third and fourth
columns of A, respectively. Following Example the corresponding Grassmannian
model and harmonic map are W = ®H, = a; + Aay + A\*H,. Asris even, by ,
this corresponds to the harmonic map into the quaternionic Grassmannian ¢ : M —
G1(H?) = HP' associated to the subbundle ¢ = thy + o = 1o + Jibg of M x C%.
So ¢ : M — Sp(2)/(Sp(1) x Sp(1)). By Example we have the harmonic map
p =01 =10¢: M — Sp(2) defined by ¢ = &1 = 10¢ = 1y — my. The
data, ¢ and v, can also be retrieved from A = (a;i);k=1,234 by setting g = a;2 and
v = —(1/2)(a14 — a12a24), therefore the process above gives rise to a bijection he :

M(M)* = (Sol{)o.

Type (2,2)

The solution comes from the general solution (7.2.1) of type (1, 1) by adding a border.
Recall the canonical element of type (2,2) of the form { = idiag(1,1,0,0) sor = 1.

Adding a border we have
I a2 a3 au
A= 0 1 [ axu
0 0 1 a34
0 0 0 1

From the block structure of elements in (Qléc)o, then a2 = ass4 = 0. The extended solution

equations (6.2.3)) give a}; = a/5 and @}, = a/, and so all we need is to solve the equations
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arising from Lemma to ensure that A : M — (2),. We get

1 0 g h
0 1
A= I : (7.2.9)
00 10
00 01

for f, g and h meromorphic. The map he : M (M) — (Solg‘])o defined by (f,g,h) — A
is obviously bijective, and gives the extended solution ® = [Avy| = (ma, + Amy,), for
a; = Span{cy, c3}. As r is odd, by (7.1.13), this corresponds to the harmonic map
¢ : M — Sp(2)/U(2) associated to the subbundle ¢ = 1)y = ay of M x C'. By
Example [7.1.13| we have the harmonic map ¢ = i®_; = i(v 0 ¢) : M — Sp(2) defined
by ®_ | =10¢=m, — 7t

at’

723 m=3

All solutions for the different types of canonical elements of 2,.U(6)7 forr = 1,...,6 are
found by adding a border to the solutions in ie. type (1,1,1,1),(1,2,1),(2,2) and
(4). There are seven non-trivial classes of solutions indexed by the type of the canonical
elements of Q,U(6)7, these are type (1,1,1,1,1,1), (1,2,2,1), (1,4,1) (1,1,2,1,1),
(2,2,2) (3,3) and (2,1, 1,2), with the trivial solution ® = [Av] = [ : M — QU (6)’
arising from the canonical element £ = i diag(0, 0,0, 0,0, 0) of QuU(6)” which has type
(6).

Type (1,1,1,1,1,1)

The canonical element of type (1,1, 1,1, 1, 1) is the canonical element

¢ = idiag(5,4,3,2,1,0) of QsU(6)”. To find A € (Sol{)o we add a border to the general
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solution (7.2.6) of type (1, 1,1, 1) above so we have

1 a2 a3 Q14 Q15 Q16
0 1 g gl/(z) — v 9y — gl/(l) Qo6
0 0 1 v —M ase
A= , (7.2.10)
0 O 0 1 —g 46
0O 0 0 0 1 ase
0 0 0 0 0 1

where g and v are meromorphic functions and vV = v/ /¢, v? = (1) /¢ Similarly to
the above we find a12, a13, a14, a5 and a4 by integrating the extended solution equations
and introducing new parameters to give generalised derivatives. We find a4, asg, a4¢ and
asg, by algebra to ensure A takes values in (ng )o- The extended solution equations

are
! _ ! / _ / ! _ ! ! _ ! / _ !
Q19 = Q19, Q13 = A12Q93, A1y = A13034, Q15 = A14Qy5, Q15 = A15054-

Note that the first equation is automatically satisfied and the last equation must be solved

after we have completed the last column by algebra. Set a;5 = h then we find a,3 by

13 = /a’m = /hg' = hg — /h’g. (7.2.11)

We introduce a new parameter o with o’ = h'g so g = o) := o//}h/. The integral then

integration:

reads a;3 = ha')) — . Note that the generalised derivatives v and v(®) are now with

respect to o). We now find a4 by integration:

ayy = /“/14 = /a13a§4 = /(ha(l) —a)(v?). (7.2.12)

We will use integration by parts to lower the order of the (generalised) derivative of v to

put the right-hand side of the above in a form where we may introduce a new parameter.
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This gives

/(ha(l) B a)(y(Q)), _ (ha(l) _ a)u(z) — /(ha(l) —a) (DY

O/—i—hOé(l) "o
= (haW — )@ — / (Ex(l))z (v (7.2.13)

VI

_ 1 2 1

' o\
1 2 1
:(hOé()—Oé)V()—hV()+WV—/(W) V.

For ease of notation let us write (! := h//(a("))’. We introduce a new parameter 7 such

that 7/ = (hM)vsov = 71 := 7/ /(R then

a1 = (ha'V — @)r® — hr® 4 O 0 _ 1

where
SO A SR i) AR U oo AR ) B LA ( S 4
(hD)”’ "~ (a®)” "~ (a®)” = (@MY’ Y
(7.2.14)

Next we integrate a5 = a14a)5 to find ay5:

Qs = /a’15 = /a14aﬁl5 = /(ha(l) —a)7® — hr® W70 (oMY (7.2.15)

Again we will use integration by parts to lower the order of the (generalised) derivatives
of 7 to put the right-hand side of the above in a form where we may introduce a new

parameter:

a5 = (a — haW)r® 4 pr@ — W70 4 7)1
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— /(a — haW)r® 4 pr@ — W7 M) 4 7y 1) (7.2.16)
(0= haW)r® 4+ 4@ _ p0r0) 4 1)a®) _ / {(O/ oW — p(a®y)r®
+ (o — haW)(7®)) + W@ 4 h(T(2))/ — (h(l))/T(l) — h(l)(T(l))/ + T’}a(l).

Using (7.2.14) we see (o/ — K'aV) — h(aM))76) 4 7@ 4 p(7@)) — (B0 —
M) (7MY + 7/ = 0. So we have

- ((a  haWyr® 4 @ 00 T) O / (o — haD)aW (7
_ ((a — haWyr®) 4 pr® _ p020 4 T>a<1> (0 — haW)aM7®)
+ /((a — haM)aWy'76)

— haWr@ _ 000 L / (@ = haV)aD)+®)

— haWr@ _ 000 L / (o — Qhau))(a(l))/(

— (@ = haW)r® — H0M70 L 07 _ / (@ — 2haMy7®

/

= (a — haW)7® — pWoW- O 4 oW / ( - % - 2h> (7MWY (7.2.17)
o

/
= (Oé — hOz(l))T(2) + (ﬁ + 2h — h(l)a(1)>7—(1) + Oz(l)T

[ (= oy ) oy
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—(hW MY —_op!
. . (halVy —2h
= (a — haM7® 4 2p7M 4 o7 4 / ( (Y 7'

= (a — haW)7® 4 2pr W) 4 —

—hM (oM — 2"\’
_ _ -
/ < N IO) )

30/ 30 Y
= (@ — haM)7@ 1 2p7 M) WT + / (a(l) + W) T.

We introduce a new parameter 3 such that

34 / 6/
[ 1) — 31 .—
ﬁ = <CY + (h(1)>/) T S0 T = ﬁ = } . 79
(Oé( ) —+ (h(1>)’>

and for ease of notation let us set

30

_
a=qa +(h(1))”

so BV := B'/a’. Therefore we my write

a5 = (a — ha(l))ﬁ(?’) +2rB? + (a(l) — a)ﬁ(l) + 8,

157



158 7. HARMONIC MAPS FROM SURFACES INTO THE SYMPLECTIC GROUP

Now all other entries of A can be rewritten in terms of h, o and /3, in fact so far we have

(ha(l) — a)5(4) — hp® (a0 — ha(l))6(3) + 2h53)

1 h haM —q a6
+hM AR — M) +(a® —a)gM + 3

01 oW ag@ — 36 282 — oM 3() g

=loo 5 g a

0 0 0 1 —aW Qg

00 0 0 1 as6

00 0 0 0 1

We now turn our attention to the elements in the new last column, to ensure A € (ng )o

we solve the equations arising from Lemma[5.1.7] these equations are
(56 = —Q12, Q46 = —A13 — A23056, (36 = Q14 T U24056 + A34046,

Q26 = Q15 + Q25056 — Q45036 + A35046-

Solving these give
as = —h, ai=0a, az= h(l)ﬁ(m - 5(1)7 (7.2.18)

s = hWa3® _ 430 4 g

Now we need only find the new top-right element a;s which we do by integrating
alg = ay5akg, introducing a new parameter and a new generalised derivative similar to

the calculation for a5 above.

am:/QRZ/mw%Z/Km—hdmﬂa+%ﬂ”+mm—@M”+®@%U
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ha@® — oK ) b O _ , /
- : a(aa))(/l) (B®) - (MY (B(l)) o o ) -+ I
— (haW — a)hM3® (?Lf(Llf)L) 50 _ (alt )a/ a)h/ﬁ
7N\ 1 _ B /
_ /(ha(l) —a)hWVYp® — ((fﬂ;)/) B {(—(a - %) ) + h/}ﬁ
— (haW — a)hM3® (?L}(LK;; 50 _ (alt )a/ a)h/ﬁ
ha® — a DY / %// o\
G, ((ey )
— (ha® — @)W B® _ (W;; 50 _ (a(”a—/a)h’ 8
haV — a)hM)) ) %/, O\
g G0y,

(7.2.19)

— (ha(l) _ Oé)h(l)ﬁ@) . {(hOé(l) — a)h(l))/ Shh }5(1)

a0y oy

(g () o0 o)

M — )nMY  2hH
@ g [ (et —a)htt) )
— (ra® - g - { R ) s
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— (ha(l) _ a)h(l)ﬁ(z) _ {

a a a

((ha(l)fa)h(l))’), < 2hh' >/
RO Ry oV —a)n
{ (R1)) (hD)) ( ) }5

((ha(n—a)h(”)/)’ ' ( ohi’ )’ '
oy —( oy @ —a)h\’
+/{< o) >+< () )+(Q_TQJ%%}ﬁ
a a a
If we set
2hh + b —(aW —a)n' + ¢
1 1
b= (haV —a)hW, c:w, d= 7 ;

and introduce a new parameter y with

/ — d h/ ! = (1) = ,y
Y'=(d+h)3 so B=x CESD
We have
ais = by — ey + dy V) + 4,
where
1 2 3
7(2) : y 7(3) _ " 7(4) — (v®)
a (R (aMy’
4
. (%) B .— I NG
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Therefore rewriting all elements of A we have

A=
oV — a6
+h(1)fy(3) — 7(2) +<a(1) — a)r)/(z) + 7(1)

01 ol oG _ @) 24(3) _ (D) -
0 0 1 (%) —y@ asg
00 0 1 —a a
0 0 0 0 1 —h
0 0 0 0 0 1

for a,4 as given above, ass = KM a3 — ay® 4 v and ag5 = RV~ — 4(2) with b,

« and v meromorphic functions. This gives the extended solution
© = [Ave] = (Ta, + Am5) (Tay + AT, ) (Tay + Ao (Tay + A5 (Tay + AT,

where a; = Span{cg}, an = Span{cg, ¢5}, ag = Span{cg, 5, ¢4},

ay = Span{cg, ¢5, ¢4, 3}, a5 = Span{cg, ¢s, ¢4, c3, C2 }, Where ¢q, ¢o, 3, ¢4, 5, ¢ are the
columns of A. As r is odd, by (7.1.13), this corresponds to the harmonic map ¢ : M —
Sp(3)/U(3) associated to the subbundle ¢ = g + Vs + by = o1 + g N + oy N
of M x C°. By Examplewe have the harmonic map ¢ = i®_; =i(to ) : M —
Sp(3) defined by ®_; = 1 0 ¢ = my — my which is of uniton number at most 5. The map
he : M(M)? — (Sol‘g)o defined by (h, «,y) — A described above is bijective as given

.....

v = ay — by® + cy? — dyW for

7(3) = (1/2)(ags — agzass), V(Q) = —ass + (%2/%3)7(3)7
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7(1) = Q9g — (a216/a/23)’7(3) + (aim/a/m + 34/12/(“32/61/23))7(2)’

3(a’ 2
_ (a/1122)/ + c/
/ I / 212
a12 2@12@12 + b (a/23)
b= (ai13a93 — a46)_a, ) c= T a0 d= 7
* ) ( + A
12 (M)
/

@23
Type (1,2,2,1)

The canonical element of type (1,2,2,1) is € = idiag(3,2,2,1,1,0) € Q3U(6)’. To find
A€ (Solg)o we add a border to the general solution 1} of type (2,2) above so we

have
I aiz a3 an a5 ase
0 1 0 g h agp
Ao 0O 0 1 f g as |
0 0 O 1 0 oau
0 0 0 0 1 asg
0o 0 0 0 0 1

where g, h and f are meromorphic functions. First we find ayo, a13, a4, a5 and a4
by integrating the extended solution equations and introducing new parameters to give

generalised derivatives. The extended solution equations (6.2.3)) are
r_ ' r / /
Ajg = 19, (13 = A3, A1y = (12094 + A1303,

r / / !’ / /
Q15 = Q12095 + A13035, A1g = G140 + A15056.

Note that the first two equations are automatically satisfied so we set a1 = avand a3 = (8

then we find a4 by integration:

a14:/a/14=/a12a'24+a13a§4:/ag’—i-ﬁf':ag—l—ﬁf—/o/g—i—ﬁ'f.



7.2. CLASSIFICATION UP TO DIMENSION 6 163

We introduce two new parameters v; and v, such that v = go/, and v/, = ff' so g =
yfl) =vj/a’and f = yél) = v/ and s0 ayy = au{l) + ﬁz/él) — v — 5. We notice at
this point that the map we are constructing is not injective, as we may replace v; and s
by v; 4+ c and 15 — c. To ensure this map is bijective we will replace 1, and 1, by 7; and

Uy with 7y = 1/51) and vy = 1 + v, then we have

1 «

010 U h  ag
|00 Loel D asg

0 0 O 1 0 au

0 0 O 0 I ase

0 0 O 0 0 1

Now we find a;5 by integration:

ais = /a'15 = /a12a/25 + ar3a3; = /ah’ + By = ah + Bin — /O/h + B’

Again introducing new parameters v3 and v, with v4 = ha’ and vy = 9,8’ so we have
new generalised derivatives h = Vg(,l) = vi/a’ and 1) = uf) = v, /[, and s0 a15 =
ow?()l) + l/il) —v3—1y. Similarly to earlier when finding a4, to ensure our parametrization
is bijective, we replace the parameters v3 and v4 with 75 and /5 by setting v; = y?()l) and

54 = U3+ Uy then
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I a p a4 Q15 Q16
1;:1 —0/93 ~
0 1 0 5 V3 (0513

A=10 0 1 27— el gy
0 0 O 1 0 Q46
0 0 0 0 1 ase
0 0 0 0 0 1
where o
o 6<~§ _ (Vr/a V3)>
N (8% av B
(14 = —V2 + ( 45, 5 + 2L ;
N . v, — oD
a5 = —V4+ay3+%'

Finding the new last column by algebra means solving the equations from Lemma

which give

(s = —@v, Qug = —F, Q36 = —V2, Q26 = —V4.

We turn our attention to finding the new top-right element a44:

a1 = /a'16 = /a14a216 +a15ag6
ol —ai) A=)
= [ (oo SRS )

e e

+ ( — Uy 4 avs + B — o'h) g,alﬁg)) (—a)

= /B/ﬂg — ,Bﬂé + ()/1;4 — O{ﬁi = —5172 — 01174 + /26/172 + 20.//54.

We introduce new parameters v5 and v such that v, = (' and v = o'y so we have
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Uy = Vél) =vi/f and Iy = yél) := v /o’ which gives a5 = —ﬂuél) —al/él) +2v5 4+ 215.

Renaming parameters once again to ensure that the parametrization is bijective we set

Vg = Vél) and 5 = v5 + 1 which gives

1 a B au ais aie
01 0 %52 by i
vh—a'vs o' vg—vlk
A _ 0 0 ]- a34 6 B’ B’ 2 :
0 0 0 1 0 -
0 0 0 0 1 Q
0 0 0 0 0 1
where
vE—a' D o (vi—a'vs3)
w7 alth—am)  O((5F7) -5
a14 = 5 + 5 3 )
(Défa/f/ﬁ ) ! o (vg—a'v3) R ,
B B’ ~ ~ Vg —Q VS)
azq = 3 ;15 = —Vg + o3 + 3 )
B(05 — o'i)

a1 = 255 — O{ﬁﬁ —

oy ’
The parameters «, (3, 3, 5 and g are meromorphic functions which can be recovered
for a given A = (a;i)jk=1..6 € (Solg)o by setting @ = ajo, f = a3, U3 = a5, V5 =

(1/2)(&16 — Q12096 — CL136L36) and Dﬁ = —Qa2.

We have the extended solution
o = [A’Yg] = (7TO¢1 + )\7‘(';)(71'&2 + )‘ﬂ-ig)(ﬂ-aa + )‘ﬂ-aLg)v

where oy = Span{cs}, as = Span{cg,cs, s}, a3 = Span{cs,cs,cy, 3,2}, and
C2, €3, C4, C5, Cg denote the columns of A. As r is odd, by (7.1.13), this corresponds to
the harmonic map ¢ : M — Sp(3)/U(3) associated to the subbundle ¢ = 1)y + 1o =
a1 + ay Nag of M x C8. By Example we have the harmonic map ¢ = i®_; =
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i(to¢): M — Sp(3) where ®_; = 1 0 ¢ = 7, — m; which is of uniton number at most

3.

Type (1,4, 1)

The canonical element of Q2,U(6)” of type (1,4, 1) is of the form

¢ = idiag(2,1,1,1,1,0) and to describe A : M — (Q[g)g we add a border to that of the
general solution of type (4) i.e. the identity matrix. Then as before to ensure A € (Sol‘g )o
we solve the extended solution equations (6.2.3)) and ensure that A satisfies Lemma/5.1.7]

The extended solution equations are
r r_ r_ r_
(g = Qyg, Q13 = A3, A1y = Qyy, Q15 = A5,

/ !/ !/ !/ !/
A1 = Qo612 T A36013 1+ Qy14 + U56015.

Let a1 = «, a3 = [, ay = 7, and a;5 = ¢ then as these automatically satisfy the
extended solution equations, we need only solve the extended solution equation for aqg.
Before we find this new top-right element we will use Lemma to find the new last

column of A which gives

Q26 = 57 a3 = 7, Q46 = —5, 56 = —Q.

We now use similar methods to the above to solve the following integration:

a1 = /a’16 = /&/26&12 + abga13 + ayga14 + a5ea15
:/5'a+7’ﬁ—ﬁ’v—o/5=5a+75—2/75'+50/-

We introduce new parameters v and v, such that f = v and v/, = o’ with generalised

derivatives 7 = l/fl) =1/ and § = 1/51) := v} /a’ so the integral gives a5 = ﬁz/fl) +
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cwél) — 2(vy + 12). Therefore we have A € (Sol‘g)o for

1 a p l/fl) Vél) 5V£1)+C¥V§1)—2(V1+7/2)
010 0 0 Y
001 0 0 e

A= :
000 1 0 —8
000 0 1 —a
000 0 0 1

with meromorphic functions «, 3, v; and v,. As before we wish for our parametrization

one would not be able to retrieve the data v; and 1, without integration therefore we

follow the procedure detailed in the type (1,2, 2, 1) example above. We set I/fl) =14, and

v+ =1ns0o0ur A€ (Solf‘])o is now given by

1 a f i 200 g e@in) oy
0100 0 Bhn

PR A 2
000 1 0 e
000 0 1 —a
000 0 0 1

where «, (3, 71 and 7, are meromorphic functions which can be retrieved by setting o =
a9, 5 = a13, 1;1 = Q14 and 172 = (1/2) (a16 — Q12096 — a13a36). The resulting extended

solution is given by

D) =P = [Av] = (70, + )\77;)(%[2 + )\WiQ).
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The unitons above are given by a; = Span{cs} and ay = Span{cg, c;, 4, c3}, for
¢, C3, Cy, C5, C the columns of A. As r is even, by (7.1.12), this corresponds to the har-
monic map into the quaternionic Grassmannian ¢ : M — G(H?) = HP? associated to
the subbundle ¢ = g +1by = 1P+ Jipg of M x C®. So ¢ : M — Sp(3)/(Sp(2) x Sp(1)).
By Example we have the harmonic map o = ®_| = 10 ¢ : M — Sp(3) defined
by<p:<I>,1:Lo¢:7r¢—7ré.

Type (1,1,2,1,1)

We obtain this from the general solution (7.2.8) of type (1,2,1) by adding a bor-
der, solving the extended solution equations and completing the border by algebra de-
scribed in §7.1.1L The canonical element of type (1,1,2,1,1) is of the form ¢ =

idiag(4,3,2,2,1,0) € Q4U(6)7, and the extended solution equations are
r r / r / r 'y / o /
(g = A1, Q13 = A12093,  A14 = A1209y, A5 = 413035 T A140y5,  A16 = A15056-

We set a2 = «, so we have

I a a3 auy Q15 Q16
01 g v g -2 ay
4|00 1o v ass |
00 0 1 -9 (46
00 0 O 1 56
00 O 0 0 1

where «, g and v are meromorphic functions, with generalised derivative v(!) = 1/ /¢ To

find a3 we integrate a5a,- as follows:
3 2093

a3 = /a’lg = /0,120,/23 = /ag' = ozg—/o/g.
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Choose h with i’ = o'g so that h is a new parameter that replaces g, we also have the
generalised derivative g = h() := h’/a/, s0 a3 = ah?) —h and the generalised derivative
of v with respect to g is now with respect to h(*). We will use integration by parts on a;oal,

to lower the order of the (generalised) derivative of v to find a;4. We have

V/
a14 = /@/14 = /a12a/24 = /Oz(l/(l)), = avW —/O_//W
m_,_

/

= av —VW—F/(ﬁ),V,

for ease of notation let us set a := o/ /(h("))" and we introduce a new parameter T where

2) _

7' = a'v, so we have the generalised derivative v = 7Y := 7//d’, and a4 = a7l

at® + 7 as v = 72 .= (70)" /(R Now A becomes

1 a ahW —h at® —ar® 47 as aie

0 1 LM +2) W72 — 271 o
4|00 1 0 7@ ass |

0 0 0 1 —hM o

00 0 0 1 ase

0 0 0 0 0 1

where h(V) := b/ /a/, 7?) = 7 /(KM)' 7() .= 7/ /a/. We now find a5 by integration

by parts which lowers the order of (generalised) derivative of 7,

/ !/ !/
15 = /CL15 — /a13a35 + (1146645

= /(ah(l) _ h)(T(Z))/ + (a7(2) —ar® 4+ T)(—h(l))/

= (ahM — h)T® + / —2a(hW)7@ 4 o/7W — (KWWY 7
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—2a(hWY o
= (ahM — h)7® + / W(T(l))’ + ET’ — (hWy'r

/ /
= (ah™ — h)7® —2a7W 4 2,7' + /20/7(1) — {<2> + (h(1)>/}7'
a

a
= (ahM — hB)r®@ — 207M 4 Z—:T + 2a—0//7’ — {(%)l - (h(l))’}r
= (ozh(l) — h)T(2) —2a7® + 3@_0//7_ — / {<3a_0’/)/ + (h(l))’}r.
We introduce a new parameter 3 with
B = (3a—0,/ + h(l))/T, so 7=pW .= —(35, f/h(l))”

and so we have

3 /
myzwmn_mgw_%wm+7%gn_ﬁ

Therefore substituting the above formulae into A gives

(ah(l) — h)ﬁ(?’) — 2033

1 a ah®™ —h af® —aB® + p0) ae
+3550 —
0 1 D 56 RO BB3) —23@) g
A= ,
00 1 0 BB a6
0 0 0 1 —hM o
0 0 0 0 1 as6
0 0 0 0 0 1

where 8 = (80) /a', B®) := (B@Y /(hVY, A := o/,
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We now find the new last column by algebra to get,
as6 = —Q12 = —Q, (46 = —Q13 — Q23056 = N, A3 = Q14 + Q24056 = 5(1) - a5(2),

3a/
(26 = 15 + Q25056 — (5036 + gsaag = —ahV P + (h(l) + 7)5(1) — B,

and so A now takes values in (Q[g )o- Finally we complete the border by integrating a4 =
ajsasg to find ajg, we do this by using integration by parts to lower the order of the

(generalised) derivatives of 3 and then simplifying the expressions. We have

/ / 30/ /
(16 = /a16 - /a15a56 - / ((ah(l) - h>5(3) B 20‘6(2) + 75(1) B 5) (=)

3 Ny
= / —a/(ah™ — 1)B®) + 200a/8® — O;/a BY + o'
3a'a’
= [ a(an® — Ry + B0y — g 1 a's
o (324 0y
200/ 3a/a’
— 1 _ (2) m_
a(ah h)B™ + 7 5 Ean h(l))’ﬁ

/ 3a’a’

- _ 1 _ 2) m_
olah® = 03+ SO0 — Cr £

(alah® = 1)) Y SN
+/ o (8 )—WBJF (3" + pY ol

= —a(ah(l) — h)5(2) + {2050/ I (a(ah(l) _ h)),}ﬁ(l)

a a

! !

3d’a (2?;/)/

B {(3& T hmy (& + h(l))’}ﬁ
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(a(ah(l) _ h))' ’ 30;’/0/ ! (23?/)/ ! ,
+/—< 7 ) B 4 { (—(3_05/+h(1))/ + @ Loy +a 2

a

200’ (a(ahV) — R)Y
/ + /
a a

= —a(ah(l) _ h)ﬁ@) + {

3a’a’ (2(();_?/)/

B {(3& + hY + (3 + h(l))/}ﬁ

_ ((a(ahﬂj—h»’ )’ seer / 2oy '
a / a’ a’ /
[ Sy { ((— + hw) : ((— + h‘w)') o }5

2ac! N (a(ah™ — h))

a a

= —a(ah(l) _ h)ﬁ@) + {

<M), 3a’a’ (2ao/ )/

G 0y (4 pDy (3 4+ py

<—(a(ah(1)—h))’>/ ! 3o/’ ! (2aa’ )/ !
# a—/ # /
*/{( (=5 hy ) " ((— +h<1>>'> " <<3a—f%+h<l>>’> o }ﬁ'

If we set
200 + 1 30//0/ +c
b=a(ah® —h), c==2CF2 g o T°
a (25 + hWy
and introduce a new parameter y with
/
Y =(d+a)f, so f=q0=_T
(d+ )

and we have

arg = —by® + @ — dy® 4.
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Therefore rewriting all elements of A we have

A=
ary(4) — a7(3) ah(l) — h 7(4) — 2&#)/(3) _bf}/(g) _|_ C’Y(Q)
1 h —h
a « —
ahWy®) _ O
01 AW NO) RV _ 24) N
+<h( )+ %)7( )
0 0 1 0 4@ 4@ _ g
0 0 0 1 —hW h
0 0 0 0 1 —
0 0 0 0 0 1
where
@) ._ 7(1) (3)._ 7(2) 4) ._ (7(3))/ B .— E
’Y * (3a—of/+h(1)>/7 ry N a/ Y 7 : (h(l)),7 N a,?

for h, o and v meromorphic functions. This gives the extended solution
© = [Ave] = (Ta, + Am5,) (Tay + AT, ) (Tay + A (Ta, + AT,

where oy = Span{cs}, s = Span{cs,cs5}, a3 = Span{cs,cs, 4,03}, 4 =
Span{cs, ¢5, cu, ¢3, C2}, for ¢1, ¢2, ¢3, ¢4, ¢5, ¢ the columns of A. As r is even, by (7.1.12)),
this corresponds to the harmonic map into the quaternionic Grassmannian ¢ : M —
G2(H?) associated to the subbundle ¢ = 1pg + 12 + 4 = 1o + Jipy + Jipg of M x C°.
So ¢ : M — Sp(3)/(Sp(1) x Sp(2)). By Example [7.1.13| we have the harmonic map
o =® 1 =10¢: M — Sp(3) defined by ¢ = &_; = 10¢ = my — m;. Also,
@L = Y1 + 3 = ¥ + J1q, and so is a harmonic map into the quaternionic Grass-

mannian ¢+ : M — G(H?) = HP?. By Example [7.1.13| we have the harmonic map
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vo ¢t M — Sp(3) where ot = —1op = —D_y =75 — m.

Unlike type (1,2,2,1) and type (1,4,1) the parameters do not need to be modified to
ensure the parametrization («, h,7y) — A is bijective as, similarly to type (1,1,1,1,1,1),
given an A = (ajk)M:Lm’G € (Solg‘])o we can recover the data by setting @ = a9,
h = as, and v = a1 + bv®) — ey® 4 dy(D, where

3 _ 1 (2) _ —o
v = —(a25 - a23a24), v = 7
2093

2
ay,a 3d]
A0 = _(a% - G 2 (3) _ (a23 4 2% )7(2)>7

(52

_ 2a10a7, + U g 3aj,a, + ¢

(Cl25 - 023014),

/

a
a = /12, b= aa;3, c / 3 3a/
23 a (=2 + ag)’

Type (2,2,2)

This has 7 = 2 with canonical element £ € QU (6)” of the form

¢ =idiag(2,2,1,1,0,0). We obtain A : M — (Q[‘g)o from the general solution of
type (1,2, 1) by adding a border, ensuring A € (Solg)o by solving the extended solution
equations and completing the border by algebra. The extended solution equations for type

(2,2,2) are

r_ r_ r / / r / /
a3 = Qyg, Gy = Ayy, 05 = 013035 + A140ys, Qg = A13036 T A14046-
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We see that a3 and a4 automatically satisfies these and so by setting a;3 = «, and

a14 = f3, and recalling the form of (27 ), from Definition we have

1 0 a B ais a16
01 g v gl -2 ay
ga_l00o1 o0 v a6
000 1 —g (46
000 O 1 0
000 O 0 1

We integrate to find a;5:

a5 = /a’15 = /algaf% + apual; = /oz(l/(l))’ — Bq

/

o)
= vV —ﬂg+/—?V’+ﬂ’g
/ N
= vV — ﬁly' —Bg+/+(2,> v+ Ay
g g

We introduce the parameters h and 7 such that /' = f'g so g = h(Y) := h'/B’ and
7= (a//(ROYYv,sov =71 = 7'/((o/ /(hM)"), for ease of notation let us set oV :=
o /(hWY so 7MW = 7//(aM) and a5 = at® — oM — BAY) + b + 7. Similarly to
type (1,2,2,1) and type (1,4, 1) we will modify the parameters to ensure our algorithm
is bijective and so we have an algorithm that gives a bijective map between the space of
meromorphic functions on M of dimension 4 and (SOlg)g. Leth = h and 7 = 7 + h,

then

oW (7 — B'h) ( @) >/
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and

1 0 « g ais 16

7 (?;?ﬁlff ) " ( ?;?ﬁlff > 2(7' —p'h)
0 1 7 W T Ty Q26
A= <%/ (1,6; },L>/

00 1 0 e asg

00 0 1 ~h 4g

0 0 0 0 1 0

0 0 0 0 0 1
We now find the new last column by algebra, we get ays = —a, agg = [ and ags =

7 —aM(# — B'h)/(aY. Finally we find the new top-right element a,4 by integration

alb—/@16—/a15a36+a14a46—/ﬁa—o/5
—aﬁ—Q/

as before
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We introduce a new parameter + such that 7/ = '3 which gives the generalised derivative

B =~W:=+'/a/ and so a;s = ay") — 2. Replacing the parameters we obtain

A=
7 —~Wh
1 0 « A1 NN ay — 2y
a7 —(yM)Y'p) (a(1)yr
R @ 7
(%’—m(“)’ﬁ) ;L(%’—m(l))'ﬁ)
0 1 h @Dy @Dy 27 -(OYR) = aOF—(WYR)
W W T oy T T ey
<7’,—(W<1))/;1>/ 9
e
0 0 1 0 + A
000 1 —h —a
0 00 0 1 0
000 0 0 1
where o, v, h, and 7 are meromorphic functions with a(!) = o / B. Given A =
(@jk)jk=1,.6 € (Sol‘g)o we may retrieve the meromorphic functions by setting o = a3,

Y= (-1/2)(@16 — CL136L14), iL = 923 and 7 = Ao — (a’13/2a’23)(ag5 — a23a24).

We have the extended solution
® = [Ave] = (o, + Ay, ) (Tay + ATa,),

where oy = Span{cg, 5}, aa = Span{cg, ¢s, ¢4, c3}, for c3, ¢4, c5, ¢ the columns of A.
As r is even, by (7.1.12)), this corresponds to the harmonic map into the quaternionic
Grassmannian ¢ : M — G5(H?) = HIP? associated to the subbundle ¢ = o+ P =

Yo + Jbg of M x C8. So ¢ : M — Sp(3)/(Sp(2) x Sp(1)). By Example [7.1.13| we
have the harmonic map ¢ = ® | = 1o ¢ : M — Sp(3) defined by ¢ = & ; =
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Lo =Ty — Wj)‘. Also, QL = 1)1 = Ja1, and so is a harmonic map into the quaternionic
Grassmannian ¢ : M — G;(H?) = HP?. By Example (7.1.13| we have the harmonic
map ¢ o ¢ : M — Sp(3) where Lo ¢+ = —10 ¢ = —D_y =1, — 7.

Type (3,3)

We add a border to the general solution (7.2.9) of type (2,2) to find A : M — (), with
canonical element & = i diag(1,1,1,0,0,0) of Q,U(6)”. All extended solution equations
for type (3, 3) are automatically satisfied and so we let a4 = «, a;5 = 3, a16 = 7, and

due to the block structure of (Q(g )o we have ajs = a13 = aqg = asg = 0. To ensure

A € (U)o we use Lemma to complete the border to get

100 a 8 v
010 g h B
A=10 0 1 g al,
0001 00
0000 O01

for «, 3,7, g, f, h, meromorphic functions. We have the extended solution
® = [Aye] = (7o, +A7,,),

where oy = Span{cg, c5, ¢4} for cg, 5, ¢4, ¢3 the columns of A. As 7 is odd, by (7.1.13)),
this corresponds to the harmonic map ¢ : M — Sp(3)/U(3) associated to the subbundle
¢ =1y = oy of M X C°. By Examplewe have the harmonic map ¢ = i®_; =
i(to¢) : M — Sp(3) where ®_; = 10 ¢ = m,, — m., which is of uniton number at most
1. The map is clearly bijective, and so gives a bijection between the space of 6-tuples of

meromorphic functions on M of (Solg)o.
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Type (2,1,1,2)

We have the canonical element £ = i diag(3, 3,2, 1,0, 0) of Q3U(6)7 and we add a border
to the general solution (7.2.6)) of type (1,1, 1, 1) taking into account the block structure of
(AZ)o. We have extended solution equations a3 = a}3, a}, = aj,a13, aj5 = ajzal, and

als = ajga14. As a3 automatically satisfies these we set a13 = « with « arbitrary so we

have
1 0 « Q14 ais a6
01 g gv® —vM 20— g ay
Ao 0 0 1 v —M ase ’
0 0O 1 —g A46
0 0 O 0 1 0
0 0 0 0 0 1
where ¢ and v are meromorphic functions and v = v/ /¢, 1® = (1) /¢’ We integrate

ay, = aj4,ai3 using integration by parts to lower the order of the (generalised) derivatives

of v:
Oé/
g = /a/14 = /%4@13 = /(1/(2))’@ =1 — /(V(l))/?
’ a’\/
e B c) +/ &),
g g
&)y
@ Y gly_/(g/)y
g g g
For ease of notation let a") := o//¢’ and a® := (a(V)' /¢ and let us introduce a new
parameter 7 such that 7 = (a(®)'v so we have the generalised derivative v = 7(1) :=

7' /(a(?)’. By replacing the new parameter we have a4 = a7® — W72 4 @70 7
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and

@]
Q
Q
3
S
|
Q
=
9
x
+
Q
=
)
G
|
9

1 a5 Q16

01 g gr® — 72 27D — g7 gy
s 0 0 1 76 —7® asg 7

0 0 O 1 —qg Q46

0 00 0 1 0

000 0 0 1

where 72 = (7Y /¢’ 73 = (7)) /¢’. We follow the same procedure to find a,5:

ais = /a’15 = /aﬁma’14 = /(—g’)(ar(3) —aWr® 1 o@70 1)

. ga, oy 9/04(1) 1)v/ (a(l))/ ' /
- [ ey e

2(@(1))/ (a(l))/ 2(&(1))/ !/
— _ (2 (1) _ =2\ N ) /
B PN e T T*/ @@yt {( ) +d}r

3(&(1))/ 3(&(1))/ !/
— _ar® M 1) A" ) Sl /
= —ar\” + 20T @@y T+ /{( (@Y ) +g }7’,

and by introducing a new parameter «y such that

/

(M) \7
'}/: < (a )/> +g/ T, and so 7—:’7(1) = 1 7 )
(a(Q)) 3y ,
( (a(z))/ ) + g

we have
3(04(1))/ (1)

(a®y !
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We replace all 7 with vV to get

OK’}/(4) — a(l)fy(3) —Oéf}/(s) + 205(1)7(2)

1 0 « (@D
+a@y2) — 4 —3(@@))/)7“) +7

Q16

01 g gW—4® 29 — gy® g
A= ,
00 1 7(4) —®) a6
000 1 —qg Q46
00 0 0 1 0
00 0 0 0 1

where 7@ 1= (y) /(o) 4B = (y)Y /g/ 4D = (®) /g

We now turn our attention to the new last column which we find, as usual, by algebra to

get
3 1)y
a5 = —gaMy® 1 (200 1 ga@)y® — ( Eaé))? 4 g> NONPY

To complete the border we now need only find a1, which we do by integrating the ex-

tended solution equation as before. We have

_ / —alary@ 4 aaWA®) — o/a@n® 4 o)
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/(2
— aWan® 1 Wama@ _ 2 o

AN
30 (oMY o + (%)
) _ 30 207) q) @)
(O{(2)>, 7 3(0{(1))/ /
() +9

(a®@y

v

a® @My '\ 1
20 (M) (“W)
Ne) (1) 5 (1)} A (2) <—> 1 _
—i—/ (P a+aPa'P) ) 4 Y AT
((Q(Q))/> +g

3 (1) ( A1) o + (%)
2 _ 3aV(@V) ) e

Y+
)y ay '
(a®) (—3&2))),) +4q

g

20D (WY’ NOTNONAN
3@(1) (a(l))/ (1) , < (a((Q))/ ) ) , <Oé + (Oc((2>)/) ) '
+ —(a + — ) + 7 — ( y

@y 7 amy)’ amy\’
(o) (3((04(2)))/) +9 '3((04_(2»)/) +g

606(1) (Og(l))/>7(1)

— _ oMW a3 (2 D N~ 2)
ooy + (aPa+ 20 al)y <a+ (@Y
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a® a7\’ a® (M) \/
O/ + (3 (a((Q))/) > 3&(1)(a(1))/ / ) (Oé + 3 (a((Q))/ ) ) !
+ v+ / o+ —— |7 = ¥

ay\’ am )’
(3(((1@)))/ ) +9 (3((a(2)))’ ) +9

w> (1)
(@)

a® a7\’ 30 (M)’ 30 (M)’
o’ + (3 (a((Q)_)/) ) (O‘ + (a((Q))_’ ) ) . (O‘ + (a<(_2>y ) ) /
v+ ( Y- ( Y

— —aWay® + (a@a + 2aWaW)y®@ (a I

3(a) ' 3a) )’ 30y
( ((a<2>)>/ ) +9 ((a_(Q)))’ ) +9 ((a<_2)))/ ) +9
6a (aV)y
= —aWay® 4 (a®@a + 2aWa®)y@ — (a X WWI)

3o\’ 3aWaMy\’
2 (O{ + (a(2))/ ) > 2(0{ + (04(2)), ) ) '
+ ¥ — .

ay\’ ay\’
<3((a(2)))/ ) +q <3((a(2)))/ ) +4

Now let
! 3 W/ + 4 /
(0% 3(a /
(((04(2)))’) +9

and introduce a new parameter 3 such that 3’ = d'vy and so v = V) := 3'/d'. Replacing



184 7. HARMONIC MAPS FROM SURFACES INTO THE SYMPLECTIC GROUP

all these we have a5 = —afB® + b33 — ¢4® + 31 — 5 and

A=
Lo af® — oMW —apW 4 22D p0G) —afW + 83 — @
a 2Dy
+a®36) _ g@) _3(ﬁ>5<2> + 80 +dBM — 3
—gaWa®W 4 g0
o)D)y
- (3((0422))/) + g) 6(2)
00 1 5O —5® —aWpW 4 o2 p6) — )
0 00 1 —g —
000 0 1 0
000 0 0 1
where
B (8L BB .= (8@ B = (B9 56— (BW)
CAY - (o) A
() +9

for meromorphic functions g, o and .

‘We have the extended solution
¢ = [A’YE] = (71'041 + Awil)(ﬂaz + Aﬂ-ig)(ﬂ-aii + Aﬂ-i;:,)v

where oy = Span{cg,c5}, s = Span{cg,cs,cs}, a3 = Span{cg, cs, ¢y, 3}, where
cs, €4, Cs, ¢ denote the columns A. As r is odd, by (7.1.13)), this corresponds to the har-
monic map ¢ : M — Sp(3)/U(3) associated to subbundle ¢ = )y + 12 = a1 + az Nag
of M x CS5. By Examplewe have the harmonic map ¢ =i®_; =i(to0¢) : M —
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Sp(3) where ®_; = 1 0 ¢ = 7, — m; which is of uniton number at most 3.

The process above gives rise to a bijection («, g, ) — A between the space of meromor-
phic functions on M of dimension 3 to (Solé’)o, as given some A = (a;i)jk=1,.6 €
(Solg‘])o we retrieve the meromorphic functions by setting ¢ = as3, @ = ai3 and

B = —ais —af® + b5 — ¢ + dBWM where

a. &(2) / 1
all) = ij a? = ( 7 ) 5(5) = Q34, 5(4) = —ass, 5(3) = S (azs — gass),
23 a3 2

3<&(1))/
@Oy

(1)
B = —ag — =D +a@8W, B0 = ai5 + g8Y — 2a106(3) + 59,

and a, b, ¢, and d given above.

7.3 Standard Type Theorem

In the classification above a different algorithm was used for each type of canonical ele-
ment to identify and isolate the parameters that are to be replaced; for canonical elements
of higher dimension than those in such an algorithm may not exist. For O(n) an al-
gorithm was given in [29] which classifies all extended solutions of finite uniton number.
This algorithm, demonstrated in Example [6.3.10] adds a border to a lower dimensional
solution and then parametrizes the new top row by solving the extended solution equa-
tions (6.2.2)), the new last column and new top-right element found by algebra as detailed
in §6.3.1 When solving the extended solution equations and finding the new top row,
Ferreira, Simoes and Wood introduced new parameters that replace the parameters in the
new top row only, leaving all parameters inside the border unchanged, then went on to
complete the border by finding the new last column and new top-right element by alge-
bra. The resulting parameters were sometimes only local in character. For Sp(m) finding

such a general algorithm is more difficult as, unlike the O(n) case, there is an additional
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problem that we cannot find the new top-right element by algebra. This is because of
the equation (¢, ¢;,) = 0 from Lemma5.1.4] which determined the new top-right element
in the O(n) case, is now w(cy,, ¢,) = 0 from Lemma which is automatically satis-
fied: this forces us to introduce new parameters that replace certain parameters inside the
border as well as parameters on the new top row, as opposed to only on the new top row as
in the O(n) case. In our work, the parameters introduced in this way are always globally
defined. Further, if one does not carefully choose the parameters that are to be replaced
when solving the extended solution equations, then problems may arise in finding the new
top-right element of the border, for example consider the type (1,1, 1, 1) example from
If we introduce new parameters which replace the parameters in the new top row

of the border only as in the O(n) case, we get

~(1)

1 T a4

0 1 —T
A= / ,

0o 0 1 —7M

0 0 O 1

where 7() = 7'/ . Then, when finding the new top-right element we get a4 = [ —7()7
which cannot be solved by introducing a new parameter as before. This leads us to the

method used in and to a general result for standard type which we now discuss.

Recall the definition of “standard type” from Remark [7.1.8] We prove that, for a standard
type canonical element £, when adding a border to an A € (Solg)o we may introduce new
parameters which replace the parameters on the superdiagonal of A and then complete
the border by algebra. More concretely, we give an algorithm that defines a parametriza-
tion hg = (ho)e : M(M)" — (Solg)o inductively for m = 1,2,..., where ¢ is the
canonical element of §2,.U(2m)” of standard type. To prove that the algorithm gives The-

orem below we use a series of nested inductions. Recall the definition of (QL‘g )o from

Definition
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We prove:

Theorem 7.3.1. Suppose M is a Riemann surface, and m € N. Let M(M)™ denote the
space of m-tuples (v1, ..., vy,) of meromorphic functions on M, and for r = 2m — 1 let
¢ be the canonical element of Q.U (2m)” of standard type, with corresponding canonical
geodesic 7y¢. Let (Sol)o be the space of meromorphic maps A : M — (] )o which satisfy
the extended solution equation (away from the poles of A). Then there exists a
bijection hg : M(M)™ — (S olg )o with the property that for every S'-invariant extended
solution ® : M — Q.U(2m)”? of standard type there exist meromorphic parameters
(1,...,Vm) such that & = [A~e] away from the poles of A, where A = ho(v1,. .., V)

and [ | denotes the projection onto the first factor of the Iwasawa decomposition.

Remark 7.3.2. (i) Our parameters are globally defined, i.e. defined on the whole of
M.

(ii) Each entry of ho(v1, ..., vy) is a rational function of vy, ..., v, and their (gen-
eralised) derivatives (Definition [6.3.9); recall that these are well-defined under

change of complex coordinates.

(i11)) The map from Theorem is bijective as each parameter can be found from the

elements of A in a way that generalises the classifications for type (1,1), (1,1,1,1)

and (1,1,1,1,1,1) in §7.2.1} §7.2.2land §7.2.3| respectively.

Proof. Our scheme of nested inductions starts with an ‘overarching’ induction on di-
mension (Induction Hypothesis [7.3.3)). This proves that we may add a border to a given
A e (Solg)o with prescribed superdiagonal to give a A € (Solg )o where € and & are
standard type canonical elements of 2, oU(2m — 2)7 and s,,U(2m)’, respectively.
To achieve the induction step for the overarching induction hypothesis we use two sep-
arate inductions, Induction Hypothesis and Induction Hypothesis Induction
Hypothesis proves that we can solve the extended solution equations below

and therefore parametrize the first half of the new top row (i.e. the first m elements in
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the new top row) in terms of the elements of the superdiagonal of A and their derivatives.
Similar to Induction Hypothesis Induction Hypothesis proves that we can also
solve the extended solution equations and parametrize the last m — 1 elements in the new
top row in terms of the elements of the superdiagonal of A and their derivatives. The
(m + 1)st element of the new top row is treated separately. Finally to finish the induction
step for the overarching induction hypothesis (Induction Hypothesis [7.3.3) we complete

the border by algebra.

We use induction on m so the dimension 2m of Sp(2m, C) is increased by 2 in the over-

arching induction step.

We start with m = 1 where we have £ = idiag(1,0). Let f : M — C be a meromorphic

function. Then elements of (Solg‘])o are of the form

L f
0 1

A:

Y

so we have a bijective mapping ho : M(M)' — (Sol‘g)o given by f — A. We use this
as a base for induction on the dimension m. Let m > 1 and let ¢ = idiag(2m,2m —
1,...,1,0) be a canonical element of Q,,,U(2m)’. Note that ¢ is of standard type and
Ve € Qo U (2m)J (Definition . We define another canonical element of standard
type £ =i diag(2m—2,2m—3,...,1,0) of Qy,, oU(2m—2)’. To explain our algorithm,

we need to introduce parameters «;; depending on two indices.

Induction Hypothesis 7.3.3. Let 0(m) = m(m — 1)/2 — 1 and assume we have deter-

mined hg = M(M)™' — (Solg)g such that that for meromorphic data

(V1; cee Vm—l) = (am—Q,Oa Am—3,1, Om—42,..., X1 m-3, Oéo,a(m)) € M(M)m_l (7.3.1)
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the associated A € (Solg)o defined from ho has superdiagonal of the form

1 2 m—3 ag(m
(Oéme,Ov 047(71)_3,1a Ofﬁn)—4,2a ) ag,m—i’)}? aé,cf(ni%’
— ag?:n__:;?z’ N _Oz'frlz)—&l’ —O,/m_270). (732)
Here,

all the generalised derivatives of each «; j in the superdiagonal are
with respect to functions of ‘previous’ entries oy, in the superdiagonal, i.e.  (7.3.3)

ones withm — 2 >k > 1.

We call this the overarching induction hypothesis.

Note that the last m — 2 entries of (7.3.2)) are minus the first m — 2 entries and that the

m — 1st entry has a special formula.

Notation 7.3.4. For a,y then “a” numbers the parameter and its position in the su-
perdiagonal and “b” denotes the “generation” of the parameter. Each time during our
inductions that we introduce a new parameter to replace an existing (‘old’) parameter

such that the old parameter is a generalised derivative of the new one.

Remark 7.3.5. (i) Form = 2, (7.3.1) and (7.3.2)) read cyo € M(M)" and (app) (as

oz(()?()) = oy by Definition|6.3.9), respectively.

(i) Form =3, (7.3.1) and (7.3.2)) read (a1, g 2) € M(M)? and (a1 o, Oé((f% ,—Q1),

respectively.

Now suppose Induction Hypothesis holds for some m — 1. We will show how to
find ho : M(M)™ — (Sol)o from hg = M(M)™~! — (Sol{), by adding a border to
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the A associated to 710, so we have

1la a3z ... a1,2m—1 | @1,.2m
0 az om
A=1| 0 A asom | - (7.3.4)
0
00 0 O 0 1

The form of (7.3.4) for types (1,1,1,1) and (1,1,1,1,1,1) are given by (7.2.2) and
(7.2.10). We find a parametrization of the new top row (a2, @13, .. ., G12,m—1) and new
top-right element a, 2., by solving the extended solution equations (6.2.3) which read in

this case

a/lj - a17]_1a;_17] (7.3.5)

Here, as usual, ’ denotes the derivative with respect to any local complex coordinate on
M, but our equations are independent of choice of complex coordinate. We find the
first m — 1 elements of the new top row. The first element in the new top row a;s
automatically satisfies and so we parametrize this by a12 = «a,,—1 9 wWhere a,,—1
is meromorphic. For the next element a3 we have a5 = f a12a55. AS ass is the second
element of the superdiagonal of A and therefore the first element in the superdiagonal of
A we have by in our overarching induction hypothesis that as3 = ay,—20. Using

this and integration by parts we have

/ !
a3 = /am—l,O Q90 = Qm—1,0 Um—20 — /Oém_Lo Qp—2,0- (7.3.6)

This calculation was presented for type (1,1,1,1,1,1) earlier in (7.2.11). We introduce

a new parameter o, (which is a ‘new generation’ of a,,_2 o which replaces it) such

1 . .
that o), o) = Qm200;, 1 and SO Qu, 20 = a5, o1/07, 1 =: aﬁn)_m, substituting
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and integrating we have

_ (1)
a13 = Om-1,00y," 91 — Om-21.

We use this as a base for an induction on K, 3 < K < m inside our overarching in-
duction hypothesis to prove that we can solve the extended solution equations (7.3.5) and
parametrize the first m elements of the new top row in terms of certain elements of the

superdiagonal of A:

Induction Hypothesis 7.3.6. For some K with 3 < K < m, assume there exists

Qm— K +1,K—2 Such that

a1k = 9k (Qm—1,0s Um—21, - - - s U K+1,K-2)5 (7.3.7)

by which we mean that

a1k 1s a rational function of ty—10, m—21, - - -, Um—K+1,K—2 and their gen-
eralised derivatives. The generalised derivatives of each o, ; are with re- (73.8)

spect to functions of ‘previous’ parameters oy, i.e. ones withm —1 > k >

1.

By (7.3.3) in our overarching induction hypothesis (Induction Hypothesis we know

for 3 < K < m that

' (a(j—l) )/
O‘gb)_K—H,K—3 = nj_KH’K_i; ) 1<j<K-2 (7.3.9)

m—K+1,j—1

where f,,_ k1,;-1 are functions of v, 10, m—2.1, - - . , Am—K 42 K—3 and their derivatives.

Remark 7.3.7. Note that “j — 17 in fp,_k11,-1 does not denote the generation of the

parameter but indicates the order j — 1 of the generalised derivative of u,—ky1, K3

Also, by the overarching induction hypothesis (7.3.2), ax k+1 = agf_ _I?,)K—Q'
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Suppose Induction Hypothesis [7.3.6/holds for some K, 3 < K < m. From the extended
solution equation ((7.3.5) for j = K + 1 we have

r x4 = / A / i Qi je g = / gK(af,fi}?}K_2)’ (7.3.10)

where gy, is given by (7.3.7). Integrating (7.3.10) by parts to lower the order of the (gen-

eralised) derivative of afff_ 71?1{-2 and using (7.3.9) we have

al,K‘H:gK( Ay KK 2 /f/ 7(;(7[?,)1(72),‘ (7311)
m—K,K— 3

Using integration by parts again, we get

Ik
K—2 9] K-3 (finf K- ) K—4
a1,K+1 = gK(afn—K,)K—Q) - /—K(agn—K,)K—2) + / #(afn—K,)K—Q),'
m—K,K—3 m—K,K—4
(7.3.12)
After repeating this use of integration by parts to lower the order of the (generalised)

derivative and using (7.3.9) we obtain an expression of the form

a1 = ZvK“ s / (VY s a, (7.3.13)

K+1 . . K K+1 .
where "] = g, and inductively v/t = —(v Y/ fl ki i =12, K —2.
Note here that the %K*l are all functions of a,—10, m—21, ..., Cm—K+1,Kk—2 and their

derivatives as by (7.3.8) and (7.3.9) both gx and f,,_x ;i are functions of these. Let

Qm—K,K—1 be a new generation of o, o satisfying o], KK-1= (fyf( +1) Om— K K—2,

and SO (K k-2 = (ocm_K,K_l)’/(%KH)’ =: aﬁi)_KK_l. Then by substituting this last
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formula into (7.3.13)) and integrating we conclude

K-1
_ K+1 (k)
a1,K+1 = E :714 A KK-1— Om-K,K-1
k=1

= 9K+1(Oém—1,o, Am—21,--- 7am—K,K—1)

for some gx 1, which completes the induction step for Induction Hypothesis Note
that when we introduce a new generation o,k x—1 Of o,k x—2 for some K we have

the following relations of generalised derivatives:
D e =V, =23, K1 (7.3.14)

We have thus found a parametrization of the first m elements in the new top row.

Next, we find the element a, ,,; of the new top row. To do this we solve (7.3.5) in a

similar way to before:

a1my1 = /al,ma;n,m—i—l = /gm(aé?o(?;)z;),’

where g,, 1s as in (7.3.7) and a,, ;41 = &é"é@% by (7.3.2)) from the overarching induction

hypothesis. Using integration by parts we have

Umi1 = G O] — / G T (7.3.15)

From the overarching induction hypothesis (7.3.3)) the generalised derivatives of i s (m)

are of the form o)
(%]a_(m))/ .
0,0(m) = hé'_l ) J = 17 27 s 7U(m)7 (7316)

where h;_; are functions of &, 1,0, Qm—21, - - . , 1 m—2 and their derivatives. Substituting
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the expression (7.3.16) for j = o(m) into (7.3.15) we obtain

o(m g;n o(m)—1
A1,m+1 = Im Oé((),g((nzi - / m(&éyg(”z) )),. (7.3.17)

Using integration by parts to evaluate the integral in (7.3.17) we have

/
(a(m)) Gm a(a(m)_l))

a1,m+1 = Gm O‘/O,a(m) (ho'(m)fl)/ 0,0(m)

, !/
gm
(h‘a’mf ,> aom)—
/ ( (m) 1) (a(( ) 2))/.

(ha(m)f2)/ 0,0(m)

With repeated use of integration by parts to lower the order of the (generalised) derivative

of o »(m) and using we end up with

o(m)+1
m k— m
A1,m+1 = Ve ! Oé((),g(ii) - /(’71 +1),a0,0(m)7 (7.3.18)
k=1

where

/ya(;%—i-l = Om, fyj +1 :_}Z’;’ ] = 1,2,...,0’(7)’2,). (7319)
j—1

Note here that the v are all functions of Op—1,0, Om—2.1, - - -, 01 ;m—2 and their deriva-

J

tives as by (7.3.8) and (7.3.16) both g,, and h; are functions of these. We introduce a
new generation o g(m)+1 of g o(mm) in the following way: let ag (m)+1 = (v Ly Q0,0:(m)>

which gives a new generalised derivative

m 1
0.0(m) = (Q0.0(m1)/ () =t Q50 1 (7.3.20)

The relation between the generalised derivatives of the new generation and the old gener-
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ation is

o) =ags o j=12,. . a(m)+ 1. (7.3.21)

Substituting ((7.3.20)) into (7.3.18)) and evaluating the integral we get

(m)+1
Alm+1 = Z ")/ZH_I Oé(()]fz(m)Jrl — @0,0(m)+1, (7322)
k=1
m—+1 . . .
where the ;""" are as in (7.3.19), and so we have a parametrization for the (m + 1)st

element of the new top row. The calculation above was presented in (/.2.3) for m = 2

and both (7.2.12) and (7.2.13) for m = 3.

We turn our attention to the element ay,, 1 2, of the new last column. We find this
element by algebra, that is we use Lemma and solve
i(;fk, lf] > k,

wiej,ep) =4

—idz, ifj <k,
where c; is the jth column of A. Applying this to ¢y, and c,,,, We get
W(C2; C2m) = i(_an—l,Qm - Oém—1,0) =0

and so A2m—1,2m = —Qm—1,0-

We now find the last m — 2 elements of the new top row and new top-right element.

Firstly to find @y 42 in the new top row we solve (7.3.5) by first using @, 41,my2 =

—04%;2% (from the overarching induction hypothesis (7.3.2))) and then (7.3.22). This
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gives

_ / _ ! _ (m=2)\r
a1,m+2 —/al,m+2 = /al,m+1am+1,m+2 —/a1 m+1(a1m 2) by(@

m m—2
/ Z ! aO o(m)+1 04070.(m)+1>( Oég m— %) by "

Expanding the brackets and pulling out the first term of the sum, we see
m (m—2 k m—2
A1,m+2 = / Z Tk +1 O m— %)'aé)( )+1 _/( agm %) @0,0(m)+1
m (m—2 k m m—2 1
-[ Z W a2 o+ [ ali ol (7323

o /( Odgn:n 2%) Q0,0(m)+1-

Recall from (7.3.16) and (7.3.27]) that
(3-1)
NG _ (om1)" ) _ (%my)’ (7.3.24)
0,0(m)+1 (,71714»1)/ 0,0(m)+1 hg',g

for j = 2,3,...,0(m) + 1. We substitute (7.3.24) for j = k into the first integrand of

(7.3.23)) then use integration by parts and collect like terms as follows:

o(m)+1 m+1 (m72))/ m—+1 (m—2)y\,

_ k—1 N ( Qq ,m— 2)
ap m+2 — / Z h/ (Oé((),o(fr)L)—i-l)/ + / m—+1Y, Oéz],o'(m)Jrl
k—2 (v )

1

m—2
_/( Oégm %)IQOU(m)—i-l

m+1 (m—2)y, o(m)+1 m+1( agm 2%)

71 (= Q1 m— 2) (k—1)
(,.Y{n—i-l) m)—+1 + Z h;€72 aO,a(m)—i—l
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o(m) +1 L (g2

)"\ (k—1)
/ hﬁc : Rt (7.3.25)

m+1 (m—Q) ’
- (—Oé( m—2)) + < m ) Q0,0 (m)+1
/ { 1,m—2 (71 +1) (m)

We now substitute for j = k — 1 into the first integrand of (7.3.25]) and pull out

the first term of the sum in the first integrand to get

m m—2 o(m)+1 m m—2
a T H( a(lm %) n Z H( a(lm %> NG
1,m+2 = m m)+1 o(m
(71 +1> h;cfz 0,0(m)+1
+1( agm 2%),>/
hy k—2
/ Z hlj - (aé,a(w)z)ﬂ)/ (7.3.26)

k—3

m m—2
(vk “w%,m_;)')’
TR )

- ( m—l)/ aO,a(m)+1

(m—2)y/

m—+1
m— N (=g, )"\
- (—Oé( m—2)) + < m ) Q0,0 (m)+1
/{ 1,m—2 (71 +1) (m)

Using integration by parts on the first two integrals into (7.3.26) and collecting the like

terms, we see

,merl( a(m 2)) <Vlrcn+1( - gﬂ:n 2%)/ !
1 1,m—2
Alm+2 = { Py - — }Oéo,a m)+1
(] +1) (V1 1)' o
m+1 (m—2)y,
a(m) m m—2 Vg1 (“Om2) >
" Z Vi +1( agm %) _ ( R, }Oz(k_l)
h/ h; ) 0,0(m)+1
m m—2
n 70(;3_4_1( O‘im %) (o(m))

h! ( aO,a(m)Jrl
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o(m)+1 (WH(O‘%_—QQ)')/ /
Ri_o (k—2)
T / Z < h ) aO,a(m)—f—l
k=3 k—3

il (m—2)y, (vk <—a5’,212;>'>’ )
_ (—Q{(m_Q))/—|— N (=0 2) " ) N
1,m—2 (,yIn+1)/ (’Y{nil)/ 0,0(m)+1-

If we continue to use (7.3.24), integrate by parts to lower the order of (generalised) deriva-

tive and then collect like terms we finally get
o(m)+1
= 3 Al = [(col o e (132)

k=1

where the 0, are inductively defined as follows:

5m+2 — ryo—(m)'i'l(_ 17m72)/ 5m+2 — ’)/] +1<_O[§,’ITL7%)/ . (5‘]—}:52)/
T P omy 41 ! hi s hi s

m+1

m—2 m
5§n+2 _ 71 (_ag,m—%), (62 +2),

(v (v

As before we introduce a new generation Ay g(;m)+2, Of g 5(m)+1 satisfying

m—2 m
Oy ymyaz = (=D + 072 g 41,

SO
(ao,a(m)JrZ)/

Qp,0(m)+1 = m—2 m =
(—am ) + o7 +2y

Substituting (7.3.28) into (7.3.27) and evaluating the integral we have

1

(
& i (7.3.28)

o(m)+1

_ m+2 _ (k)
Gmiz= Y O ag s iy — Q0 om)s2-
k=1
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Note here that all the 5}"*2, j = 2/3,...,0(m) are functions of
Q1,05 m—21, - - -, Q1,m—2 and their derivatives as all 7}”“ and h; are functions

of them and their derivatives. This calculation was given in (7.2.5) for m = 2 and

(T2-13), (TZ16) and (T217) for m = 3.

We will use this as a basis for another induction, this time to find the elements a;; with

m+2<I<2m.

Induction Hypothesis 7.3.8. For each I, m + 2 < [ < 2m, assume there exists

Q0,0(m)+I1—m Such that

(m)+1
air = Z 6l€ Oé(()lz(m)—i-l—m — Q0 o(m)+I—m>» (7329)
k=1
for
-1 (2m—1I) B _
5! . 5U(m)+l(_al—m—l,2m—l)/ 5 — 55- 1(—a§_m_272m_1)’ (5]I+1)/
olm)+l I ’ i I AR
a(m) j—1 j—1
(7.3.30)
J = 1’2’ '7U(m)7
where [; are functions of auy—10, m—2,1, - - ., 1 ;m—2 and their derivatives (7331
with e
, =D
O s = g G= 12 o(m) + T —m. (7.3.32)
j—1

We find a parametrization of a; 7+ by solving (7.3.5) for 7 = I + 1 which reads

@) 141 = Q1107 4. (7.3.33)
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From (7.3.2) we have that a; ;1 = —aﬁz;"jnfinﬁl_)l_l, substituting this into (7.3.33)) we have
a/1,1+1 =air(— 04527771 QIml)[ ) (7.3.34)

Suppose Induction Hypothesis[7.3.8|holds for some I, m+2 < I < 2m, then a; is given

by (7.3.29). By substituting this into (7.3.34) we get

2m—I—1
0} 141 =( Z 0L 0y 1m — Cosmyirm ) (—afm L V) (7.3.39)

We integrate both sides of (7.3.35) and expand the brackets to give

o(m)+1
(2m—I-1) /
ayr+1 = / E 5k Of m)+I—m OéO,O’(m)+I*m)(_al—m,Qm—I—l)

o(m)+1

/ Z Sh(— Qﬂ:nZImll 1)IO‘(()12(m)+I—m (7.3.36)

(2m—1-1) /
- (_alfm,melfl) Q0,0 (m)+1—m-

Substituting (7.3.32) from Induction Hypothesis [7.3.§]into (7.3.36) we get

o m)+1 2m—]—1) )/

o= [ Z 220 (0 (7.3.37)

/
lk—l

(2m—I-1) /
- (_O‘I—m,zm—f—1)aO,a(m)H—m-

We use integration by parts on (7.3.37)) then pull out the first term of the sum in the

integrand to collect like terms as follows:

o(m)+1 5’€(_ (2m—1I-1)

/
. I—m,Qm—I—l) (k—1)
a1, 741 = E I 0,0(m)+I-m
k=1 k-1
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o(m)+1 5] 2m I-1)

—m,zm— )/ ! —
/ Z / om—I—1 )aé’fa(a)ﬂ_m (7.3.38)
lk—l

2m[1)

o1 (—a )Y/
2m—I1—1 —m,2m—I1—1
_/{<_agm,2m)ll)/+( l(/) ) Q0,5(m)+I1—m-

We substitute (7.3.32) from Induction Hypothesis into the sum in the integrand in

o get

o(m)+1 5£( (2m—I-1)

/
o _alfm,meIfl) (k—1)
air+1 = E : I 0,0(m)+I—m
k=1 k-1

6 (- a?”;‘;”m/)’

/Z =

/
lk72

alf? )X (7.3.39)

@y ,o(m)+I—-m

2m11)

51( )/ ’

2m—I1—1 —m,2m—I1—1

_/{<_O{5‘—m,2m—)1—1),+< I > Q0,0(m)+I—m-
0

Similarly to before we use integration by parts on then pull out the first term of

the sum in the integrand to collect like terms as follows:

o(m)+1 51€(_ (2m—I1-1)

/
. Z Ifm,melfl) (k—1)
ar,r+1 = i 0,0(m)+I—m
k=1 k=1

l/

2m—I—1
o(m)+1 (@i( o >>
k—1 (k—2)

U 0,0(m)+I—m
k=2 k=2

(2m—I—-1)

o(m)+1 <61€(_a1—m,2m—l—1)/>/ /
( U1 > (k—2)

I aO,o(m)+I—m
k—2

2mIl)

51( )/ ’
m—1I— —-m,2m—I—1
{(_a§2m,2ml)ll)l + ( l6 >
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<6£( C‘{I—'m,2'm—1—l > /
l/
- ( ll, ) }@O,a(m)—i-l—m'
0

Continuing the programme of using (7.3.32)) from Induction Hypothesis integration

by parts and pulling out the first term of the sum in the integrand to collect like terms we

end up with
o(m)+1
k— m—I—
arp= Y &ttal - / (o ) Q0 1-m,  (7:3.40)
k=1
for
I I
sl — 5a(m)+1(—041—m,2m—1—1)/ sl — 531'(_0”*”%2“%1*1)/ _ 5jill
o(m)+1 — I ) J - I o
J(m) ]—1 ]—1
j=1,2,...,0(m) defined inductively. We introduce a new generation Q0,5 (m)+I—m+1 Of

(2m—1-1)

/ _ /
0,0 (m)+1-m SUch that o v r g = (0, 001 1) @0,0(m)+1-m. therefore we have

(aO,U(m)+I—m+1>/ (1)
aO,a(m)+17m - (2m—I—-1) , =: 0,0(m)+I—m+1" (7.3.41)
( I—m,2m—[—1)

Substituting (7.3.41)) into (7.3.40) and evaluating the integral gives

o(m)+1
_ I+1 (k)
A= O gt st — Q0o(m)LmL-
k=1
Note that the 6,€+1 are all functions of o, —1,0, ®m—21, - - ., 01 m—2 and their derivatives as

by (7.3.30) and (7.3.31) of Induction Hypothesis [7.3.8} 67 and [; are functions of these

and their derivatives. For I = 2m — 1 = 5,som = 3 and £ is of type (1,1,1,1,1, 1) this
calculation was given in (7.2.19).

This completes the induction step for Induction Hypothesis and so we have found a

parametrization for the new top row, new top-right element and as,,—1 2, of the new last
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column.

We find the remaining elements a; 5,,, for 2 < 57 < 2m — 2 by algebra similar to how
we parametrized dg,,—12m earlier. More concretely we use (5.1.1T) and Lemma to
get that the columns of A must satisfy

m
w(cj, com) = zz g, i@k, 2m — OK 0% 9, = 0,
k=1
for 1 < j < 2m therefore we find a; 2., by evaluating w(cam+1—, C2m) = 0. For m = 2

and m = 3 these calculation are given in (7.2.4) and (7.2.18), respectively.
This completes the border on A and the resulting A as in li is an element of (Solg)o.

During this process the generation of each of the parameters an,—20, Qum-31,
42, - - ., 01 ;m—3 ON the superdiagonal of Aincreased by 1, as a new generalised deriva-
tive was introduced. We introduced a completely new parameter «,,_ o, and the genera-
tion of the parameter oy ,(,,) Was increased by m and so introducing m more generalised

derivatives of g (). In fact, ap,_s( is replaced by 0‘;?-2,1 and in general o

m—2-j,j
is replaced by afﬁ?_jﬁl for j = 0,1,...,m — 3 with aé”(f?;g replaced by aé”{f?;:g;.
Therefore the superdiagonal of A has the form
1 2 3 m—2 o(m+1
(O‘mfl,oj agn)—Q,lj O‘ﬁn)—372> O%(n)—4,37 S &g,m—%’ ((],ci(m++B7
- ag?:n_f%) ey —(1/53)_372, —Oég)_z,l, _am_170). (7.3.42)

This completes the induction step for the overarching induction hypothesis (Induc-
tion Hypothesis|7.3.3). Given A € (Solg )o then A has superdiagonal of the form (7.3.42).

The meromorphic data

(VI; cee >Vm> = (Oémfl,Ou Ap—21, Om—32, ..., X1,.m-3, O50,0(771—&—1)) S M(M)m
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can be found from the elements of A, see Remark[7.3.2] O



205

Bibliography

[1] A. Aleman, R. Pacheco, and J.C. Wood, Harmonic maps and shift-invariant sub-
spaces, Preprint, arXiv:1812.09379, 2018.

[2] J. Bolton, G.R. Jensen, M. Rigoli, and L.M. Woodward, On conformal minimal
immersions of S? into CP", Math. Ann. 275 (1988), no. 4, 599-620.

[3] J. Bolton and L.M. Woodward, Congruence theorems for harmonic maps from a
Riemann surface into CP" and S™, J. London Math. Soc. 2 (1992), no. 45, 363-376.

[4] T. Brocker and T. tom. Dieck, Representations of compact Lie groups, Graduate
Texts in Mathematics, vol. 98, Springer-Verlag, New York, 1985.

[5] D. Burns, F. Burstall, PH. De Bartolomeis, and J. Rawnsley, Stability of harmonic
maps of Kdhler manifolds, J. Differential Geom. (1989), no. 30, 579-594.

[6] D. Burns, P.H. De Bartolomeis, M.J. Ferreira, and R. Tribuzy, Applications har-
moniques stables dans P™, Ann. Sci. Ecole Norm. Sup. (1988), no. 21, 159-187.

[7] F. Burstall, On canonical elements, Preprint, arXiv:1811.12041, 2018.

[8] F. Burstall, J.H. Eschenburg, M.J. Ferreira, and R. Tribuzy, Kdhler submanifolds
with parallel pluri-mean curvature, Differential Geom. Appl. 20 (2004), no. 4, 47—
66.

[9] F. Burstall and M.A. Guest, Harmonic two-spheres in compact symmetric spaces,
revisited, Math. Ann. 309 (1997), 541-572.

[10] F. Burstall and J. Rawnsley, Twistor theory for Riemannian symmetric spaces, Lec-
ture Notes in Mathematics, no. 1424, Springer, Berlin, Heidelberg, 1990.

[11] F Burstall and S.M. Salamon, Tournaments, flags and harmonic maps, Math. Ann.
227 (1987), 249-265.

[12] FE Burstall and J.C. Wood, The construction of harmonic maps into complex Grass-
mannians, J. Differential Geom. 23 (1986), no. 3, 255-297.



206 BIBLIOGRAPHY

[13] J. Cheeger and D.G. Ebin, Comparison theorems in Riemannian geometry, AMS
Chelsea Publishing, Providence, RI, 2008, Revised reprint of the 1975 origional.

[14] S.S. Chern and J. Wolfson, Minimal surfaces by moving frames, Amer. J. Math. 105
(1983), no. 1, 59-83.

[15] S.S. Chern and J. Wolfson, Harmonic maps of S* into a complex Grassmannian
manifold, Proc. Nat. Acad. Sci. U.S.A. (1985), no. 82, 2217-2219.

[16] S.S. Chern and J. Wolfson, Harmonic maps of the 2-sphere into a complex Grass-
mannian manifold, Ann. of Math. (1987), no. 125, 301-335.

[17] N. Correia and R. Pacheco, Harmonic maps of finite uniton number and their canon-
ical elements, Ann. Global Anal. Geom. 47 (2015), 335-358.

[18] T.A. Crawford, The space of harmonic maps from the 2-sphere to the complex pro-
Jjective plane, Canad. Math. Bull. 40 (1997), no. 3, 285-295.

[19] A.M. Din and W.J. Zakrzewski, General classical solutions in the C PN~! model,
Nuclear Phys. B 174 (1980), 397-406.

[20] A.M. Din and W.J. Zakrzewski, Properties of the general classical C PN~1 solu-
tions, Phys. Lett. B 95 (1980), 419-422.

[21] J. Dorfmeister, F. Pedit, and H. Wu, Weierstrass type representation of harmonic
maps into symmetric spaces, Comm. Anal. Geom. 6 (1998), no. 4, 633-668.

[22] J. Eells, On the geometry of function spaces, Symposium Internacional de topolo-
gia algebraic (Universidad Nacional Autonoma de México and UNESCO, Mexico
City), 1958, pp. 303-308.

[23] J. Eells and L. Lemaire, A report on harmonic maps, Bull. London Math. Soc. 10
(1978), 1-68.

[24] J. Eells and L. Lemaire, Selected topics in harmonic maps, CBMS Regional Confer-
ence Series in Mathematics, no. 50, American Mathematical Society, Providence,
RI, 1983.

[25] J. Eells and L. Lemaire, Another report on harmonic maps, Bull. London Math. Soc.
20 (1988), no. 5, 385-524.

[26] J. Eells and J.H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J.
Math. 86 (1964), no. 1, 109-160.

[27] J. Eells and J.C. Wood, Restrictions on harmonic maps of surfaces, Topology (1976),
no. 15, 263-266.



BIBLIOGRAPHY 207

[28] J. Eells and J.C. Wood, Harmonic maps from surfaces to complex projective spaces,
Adv. in Math. 49 (1983), no. 3, 217-263.

[29] M.J. Ferreira, B.A. Simdes, and J.C. Wood, Harmonic maps into the orthogonal
group and null curves, Math. Z. 293 (2019), no. 1-2, 181-220.

[30] W. Fulton, Young tableaux, Student Texts, no. 35, Cambridge University Press,
Cambridge, 1997.

[31] P. Griffiths and J. Harris, Principles of algebraic geometry, Wiley Interscience, New
York, 1978.

[32] M.A. Guest, Harmonic maps, loop groups and integrable systems, London Math-
ematical Society Student Texts, no. 38, Cambridge University Press, Cambridge,
1997.

[33] R.C. Gunning, Lectures on vector bundles over Riemann surfaces, Mathematical
Notes, vol. 6, Princeton University Press, 1967.

[34] B.C. Hall, Lie groups, Lie algebras, and representations, Graduate texts in Mathe-
matics, no. 222, Springer, New York, 2003.

[35] F. Hélein and J.C. Wood, Harmonic maps, Handbook of global analysis, Elsevier
Science, Amsterdam, 2008, 417-492.

[36] J.L. Koszul and B. Malgrange, Sur certaines structures fibrées complexes, Arch.
Math. 9 (1958), 102-109.

[37] L. Lemaire and J.C. Wood, On the space of harmonic 2-spheres in CP?, Internat. J.
Math. 7 (1996), no. 2, 211-225.

[38] L. Lemaire and J.C. Wood, Jacobi fields along harmonic 2-spheres in CP? are inte-
grable, J. London Math. Soc. 66 (2002), no. 2, 468—486.

[39] A. Lichnerowicz, Applications harmoniques et variétés Kdhleriennes, Rend. Sem.
Mat. Fis. Milano 39 (1969), no. 1, 186-195.

[40] E. Mazet, La formule de la variation seconde de I’énergie au voisinage d’une appli-
cation harmonique, J. Differential Geom. 8 (1973), no. 2, 279-296.

[41] J. Oliver, On the index of harmonic maps from surfaces to complex projective spaces,
Internat. J. Math., https://doi.org/10.1142/S0129167X2050069X.

[42] R. Pacheco, Harmonic two-spheres in the symplectic group Sp(n), Internat. J. Math.
17 (2006), 295-311.



208 BIBLIOGRAPHY

[43] A. Pressley and G. Segal, Loop groups, Oxford Mathematical Monographs, Oxford
Science Publications, Oxford: The Clarenden Press, 1986.

[44] J. Ramanathan, Harmonic maps from S? to Ga4, J. Differential Geom. (1984),
no. 19, 207-219.

[45] W. Rossmann, Lie groups: An introduction through linear groups, Oxford Graduate
texts in Mathematics, Oxford University Press, Oxford, United Kingdom, 2002.

[46] G. Segal, Loop groups and harmonic maps, Advances in Homotopy Theory, London
Math. Soc., Lecture Notes, no. 139, pp. 153—-164, Cambridge University Press, 1989.

[47] R. Smith, The second variation formaula for harmonic mappings, Proc. Amer. Math.
Soc. 47 (1975), 229-236.

[48] M. Svensson and J.C. Wood, Filtrations, factorizations and explicit formulae for
harmonic maps, Commun. Math. Phys. 310 (2012), 99-134.

[49] M. Svensson and J.C. Wood, New constructions of twistor lifts for harmonic maps,
Manuscripta Math. 144 (2012), 457-502.

[50] K. Uhlenbeck, Harmonic maps into Lie groups: classical solutions of the chiral
model, J. Differential Geom. 30 (1989), 1-50.

[51] H. Urakawa, Calculus of variations and harmonic maps, American Mathematical
Society, Providence, RI, 1993.

[52] J. Wolfson, On minimal surfaces in a Kdhler surface of constant holomorphic sec-
tional curvature, Trans. Amer. Math. Soc. 290 (1985), no. 2, 627-646.

[53] J. Wolfson, Harmonic sequences and harmonic maps of surfaces into complex
Grassmann manifolds, J. Differential Geom. 27 (1988), no. 1, 161-178.

[54] J.C. Wood, Harmonic maps between surfaces, Ph.D. thesis, University of Warwick,
1974.

[55] J.C. Wood, Holomorphicity of certain harmonic maps from a surface to complex
projective n-space, J. London Math. Soc. 2 (1979), no. 20, 137-142.

[56] Y.L. Xin, Geometry of harmonic maps, Progress in Nonlinear Differential Equations
and their Applications, vol. 23, Birkhéuser, Boston, MA, 1996.



	Acknowledgements
	Abstract
	Introduction
	Harmonic Maps
	Energy Density Function and The Energy Integral
	The First Variation Formula
	The Second Variation Formula

	Thesis Overview

	Harmonic Maps from Surfaces to Complex Projective Spaces
	Subbundles of M Cn+1
	Degree of a Smooth Map

	Associated Curves and the Gauss Transforms
	Ramification


	Harmonic 2-Spheres in the Complex Projective Plane and Ramification Points
	Harmonic 2-Spheres in the Complex Projective Plane
	Coalescing of Ramification Points
	The Lower Range
	The Upper Range


	On the Index of Harmonic Maps from Surfaces into a Complex Projective Space
	The Space of Holomorphic Sections and Holomorphic Differentials
	Examples
	Genus 0
	Genus 1
	Higher Genera


	Canonical Elements
	Null Bases
	The Orthogonal Group
	The Symplectic Group

	Canonical Elements
	Canonical Elements for SU(n)
	Canonical Elements for O(n)
	Canonical Elements for Sp(m)


	Harmonic Maps from Surfaces to Lie Groups
	Harmonic Maps into Lie Groups
	Unitons
	Extended Solutions
	Grassmannian Model
	Complex Extended Solutions

	Harmonic Maps into the Unitary Group
	Harmonic Maps into the Orthogonal Group
	Adding a Border
	Solving the Extended Solution Equation


	Harmonic Maps from Surfaces into the Symplectic Group
	Harmonic Maps into The Symplectic Group
	Adding a Border in Sp(m)

	Classification up to Dimension 6
	m=1
	m=2
	m=3

	Standard Type Theorem

	Bibliography

