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Abstract

Statistical mechanics is concerned with finding the macroscopic behaviour

of a physical system given its microscopic characteristics. At equilibrium

there is a general framework given in terms of the various statistical ensem-

bles that describes how to calculate the macroscopic quantity that is desired.

Out of equilibrium there is no such framework, leading to the treatment of

microscopic models on an individual basis and the investigation of arbitrar-

ily defined models. However, there exists a recent theory of boundary driven

steady states and an associated nonequilibrium counterpart to detailed bal-

ance due to Evans.

In this thesis I first review this theory of boundary driven steady states and

the associated nonequilibrium counterpart to detailed balance due to Evans,

before applying the theory to some toy models of driven athermal systems.

These initial attempts do not reproduce the qualitative behaviour of granular

systems such as jamming but are a valuable and novel starting point for a

more thorough investigation of this technique.

I then move on to the general theory of boundary driven systems and formu-

late a nonequilibrium free energy principle. The physical content of this is

illustrated through a simple diffusion model. I then provide a reformulation

of the principle which is more suitable for calculation and demonstrate its

validity in a more complex model.

Finally I investigate a particular example of a boundary driven system, a

toy model of a complex fluid called the rotor model. I first use simulation

to investigate the model and its phase behaviour, before using an analytical

approach to do the same. This approach takes the form of a nonequilibrium

real space renormalisation group calculation, and qualitatively reproduces

some of the features seen in the simulations.

v





Contents

Abstract v

List of Figures x

Abbreviations xv

1 Introduction 1

2 Boundary driven systems in the limit of zero temperature 7

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 The nonequilibrium counterpart to detailed balance . . . . . . . . . 9

2.2.1 The role of the driving parameter . . . . . . . . . . . . . . . . 14

2.2.2 The role of temperature . . . . . . . . . . . . . . . . . . . . . 14

2.2.3 The use of NCDB at zero temperature . . . . . . . . . . . . . 14

2.3 One dimensional driven diffusion . . . . . . . . . . . . . . . . . . . . 15

2.3.1 The limit of zero temperature . . . . . . . . . . . . . . . . . . 16

2.4 The comb model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.1 The limit of zero temperature . . . . . . . . . . . . . . . . . . 19

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Free energies in boundary driven systems 25

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Free energies at equilibrium . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Free energies in boundary driven steady states . . . . . . . . . . . . 28

3.3.1 One dimensional driven diffusion . . . . . . . . . . . . . . . . 30

3.4 An alternative formulation of the nonequilibrium free energy . . . . 33

3.4.1 The comb model . . . . . . . . . . . . . . . . . . . . . . . . . 36

vii



Contents viii

3.4.2 Comparison to the theory of Evans . . . . . . . . . . . . . . . 38

3.4.3 Connection to large deviation theory . . . . . . . . . . . . . . 39

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 The rotor model: a simulation study 41

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2.1 Connection to previous models in statistical mechanics . . . . 46

4.2.2 Driving the system out of equilibrium . . . . . . . . . . . . . 47

4.2.3 The continuum limit . . . . . . . . . . . . . . . . . . . . . . . 48

4.3 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3.1 Simulation method . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3.2 Velocity profiles . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3.3 Constitutive relation . . . . . . . . . . . . . . . . . . . . . . . 56

4.3.4 Synchronisation and the Kuramoto order parameter . . . . . 57

4.3.5 The internal energy . . . . . . . . . . . . . . . . . . . . . . . 58

4.3.6 The velocity correlation function . . . . . . . . . . . . . . . . 61

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5 The rotor model: a theoretical study 65

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2 Effective medium theory . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2.1 Harmonic expansion of the equation of motion . . . . . . . . 67

5.2.2 Comparison to simulation . . . . . . . . . . . . . . . . . . . . 71

5.3 Analysis of an isolated running pair of rotors . . . . . . . . . . . . . 72

5.3.1 Comparison to simulation . . . . . . . . . . . . . . . . . . . . 78

5.4 Coarse graining in the rotor model . . . . . . . . . . . . . . . . . . . 79

5.4.1 Real space renormalisation at equilibrium: the Ising model . 80

5.5 Renormalisation of the rotor model . . . . . . . . . . . . . . . . . . . 82

5.5.1 The static rotor experiment . . . . . . . . . . . . . . . . . . . 83

5.5.2 The moving rotor experiment at high shear rates . . . . . . . 88

5.5.3 The moving rotor experiment at low shear rates . . . . . . . 91

5.6 The renormalisation group flow . . . . . . . . . . . . . . . . . . . . . 94

5.6.1 Low shear rate renormalisation group flow . . . . . . . . . . . 95



Contents ix

5.6.2 High shear rate renormalisation group flow . . . . . . . . . . 100

5.6.3 Interpretation and comparison to simulation . . . . . . . . . . 101

5.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6 Conclusions and future work 107

A Transition rates in boundary driven systems 111

A.1 The basic formulation of NCDB . . . . . . . . . . . . . . . . . . . . . 111

A.2 An alternative formulation of NCDB . . . . . . . . . . . . . . . . . . 113

B Simulation method for the rotor model 115

C Equations of motion for an isolated running rotor pair 117

Bibliography 119





List of Figures

2.1 The jamming phase diagram of Liu and Nagel. . . . . . . . . . . . . 8

2.2 A large volume of sheared fluid, divided up into N subsystems. . . . 11

2.3 The state space for the one dimensional diffusion model. . . . . . . . 16

2.4 The flow curve at zero temperature for the 1D driven diffusion model. 17

2.5 The state space of the comb model. . . . . . . . . . . . . . . . . . . . 18

2.6 The nonequilibrium transition rates in the boundary driven comb

model as a function of velocity v, given by equations (2.15). . . . . . 19

2.7 The nonequilibrium transition rates in the boundary driven comb

model as a function of the driving parameter ν, given by equations

(2.17). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.8 The flow curve at zero temperature for the comb model. . . . . . . . 21

3.1 The cyclic state space used in the calculation of the free energy for

the comb model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 The nonequilibrium free energy f(ν) for the comb model. . . . . . . 38

3.3 The average current J(ν) for the comb model. . . . . . . . . . . . . . 38

4.1 A typical theoretical constitutive curve for a shear banding fluid. . . 43

4.2 The sliding block representation of Lees-Edwards bondary conditions. 47

4.3 Time series for the stress and potential energy of the rotor model in

a typical simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.4 Examples of time averaged velocity profiles for kBT = 0.01 and µ = 0.2. 51

4.5 Examples of time averaged velocity profiles for kBT = 0.05 and µ = 0.2. 52

4.6 The effective potential used in the calculation of the escape rate in a

solid region for the parameters α = 1, Σ = 0.5. . . . . . . . . . . . . 54

xi



List of Figures xii

4.7 The number of running pairs measured in simulations of the rotor

model for µ = 0.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.8 Constitutive relations measured in simulations of the rotor model for

a range of temperatures and friction coefficients. . . . . . . . . . . . 56

4.9 The Kuramoto order parameter k measured in simulations of the rotor

model for a range of temperatures and friction coefficients. . . . . . . 58

4.10 The internal energy density of the rotor model measured in simulation

for a range of temperatures and friction coefficients. . . . . . . . . . 59

4.11 The fluctuations of the internal energy density of the rotor model

measured in simulation for a range of temperatures and friction coef-

ficients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.12 The fluctuations of the internal energy of the rotor model measured

in simulation for the parameters kBT = 0.01 and µ = 0.2 for different

system sizes, scaled by the simulation size. . . . . . . . . . . . . . . . 61

4.13 The velocity-velocity correlation function of the rotor model measured

in simulation for kBT = 0.01 and µ = 0.2. . . . . . . . . . . . . . . . 62

5.1 The stress in the rotor model as calculated in effective medium theory. 68

5.2 A comparison of effective medium theory calculations with different

highest included harmonics. . . . . . . . . . . . . . . . . . . . . . . . 70

5.3 The position of the minimum of the constitutive curve and the bound-

ary of approximation validity as calculated in effective medium theory. 72

5.4 The function x(c) = ℜ(a10) for (a) µ = 0.2 and (b) µ = 1.0. . . . . . . 75

5.5 The stress in a system consisting of a single isolated running rotor pair. 77

5.6 The relative angles of rotor pairs as a function of time according to

the isolated running pair analysis. . . . . . . . . . . . . . . . . . . . 77

5.7 The decay length of the disturbances from an isolated running rotor

pair. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.8 The functions (a) f(x) and (b) g(x) defined in equations (5.37) and

(5.43) respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.9 The low shear rate renormalisation group flow projected onto the α−µ

plane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.10 The low shear rate renormalisation group flow projected onto the

σ2 − µ plane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98



List of Figures xiii

5.11 The low shear rate renormalisation group flow projected onto the

α− σ2 plane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.12 The RG fixed point of h(u) for α = 1, various temperatures and

friction coefficients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.13 Theoretical and measured constitutive curves for µ = 1.0 at two dif-

ferent temperatures. . . . . . . . . . . . . . . . . . . . . . . . . . . . 103



List of Figures xiv



Abbreviations

NCDB Nonequilibrium Counterpart to Detailed Balance
ODE Ordinary Differential Equation
DPD Dissipative Particle Dynamics

xv





Chapter 1

Introduction

It is a fact observed for centuries that macroscopic amounts of matter, typically

but not limited to solids, liquids or gases, if left unperturbed, will generally settle

down into an unchanging state. When this is the case, such systems can typically be

described by a small number of variables such as energy, volume and temperature.

Thermodynamics describes how these few variables change and are related to each

other using the ideas of heat and work; despite the vast array of systems governed

by thermodynamics, the main features of the theory can be summed up by just four

laws. As science progressed it was found that this everyday matter actually consisted

of an unimaginable number of atoms or molecules undergoing rapid motion, on the

scale of Avogadro’s number or of the order of 1023. A new challenge emerged: the

alternative description of these systems starting from the microscopic level. The

field of statistical mechanics is primarily concerned with such systems containing a

large number of elements.

The microscopic state of a system can be described by a microstate - a list of

all microscopic properties of the system such as the position, velocity and angular

momentum of every particle. Given the equations of motion of the particles the

system is completely specified, and the evolution of the microstate of the system will

be given by these equations. They are of course impossible to solve for practically

all realistic systems due to the fantastically large number of them.

Fortunately, in practice we never care about exactly which microstate the sys-

tem is in at a given time, but instead the values of quantities we measure at the

macroscopic scale such as pressure and volume. Statistical mechanics approaches

this question by introducing probabilistic assumptions into the theory and asking the

1



Chapter 1. Introduction 2

question: what is the probability of finding the system in a particular microstate?

For systems at equilibrium with a heat bath of temperature T , the answer has

been known for over a century and is given by the Boltzmann distribution. If each

microstate x is assigned an energy E(x), then the probability of observing that

microstate is proportional to e−βE(x), where β = 1/kBT and kB is Boltzmann’s

constant:

p(x;β) =
e−βE(x)

Z
, Z =

∑

x

e−βE(x). (1.1)

Z is a normalisation factor called the partition function. This probability distribu-

tion can then be used to calculate the values of quantities that an experimenter will

actually observe, if that quantity can be connected with an appropriate function

over the microstates of the system, and given that the calculation can actually be

performed. An equivalent formulation is in terms of the free energy F , defined by

F = −β−1 lnZ. (1.2)

This microscopic definition of the free energy provides a link to thermodynamics,

where the macroscopic quantities such as pressure and internal energy are calculated

as appropriate derivatives of the free energy. Using either of these approaches, the

problem appears to be solved.

This statement does not by itself answer all of our questions, however. One of

the most striking features of equilibrium physics is the existence of phase transi-

tions, whereby a system changes from one state to a qualitatively different one upon

variation of some control parameter such as temperature. The transition is charac-

terised by an order parameter, a quantity that changes qualitatively upon crossing

the transition, for example by moving from zero to a nonzero value. Thermody-

namically, this qualitative change is captured by a non-analytic free energy, that is,

a free energy for which one or more of the derivatives with respect to the control

parameter is undefined.

A deep insight into phase transitions is gained by one of the most important ideas

in physics of the previous century: renomalisation group theory. Used extensively

in the physics of criticality (continuous phase transitions) and particle physics, it is

based on the changes upon viewing a system at different length scales or distances

(or different energies in particle physics). In particular, at the largest length scales
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it can be the case that the microscopic details of a system become unimportant; this

leads to universal behaviour among disparate physical systems, their properties de-

termined only by features such as spatial dimension and symmetry. The behaviour

of the system on large length scales determines its phase behaviour, for example, if

distant parts of a system are strongly correlated then we would expect to see some

degree of long range order in the system, for example crystallinity. One form of

renormalisation group theory, the real space renormalisation group, is based mainly

on the work of Migdal [1] and L. P. Kadanoff [2, 3] and consists of removing short

distance degrees of freedom by a process of decimation. This entails averaging over

short distance properties to create a new system that describes how the original

one looks at larger distances; this can be achieved by averaging out individual com-

ponents or by averaging over a collection of components to create a new kind of

object. If this averaging is repeated over and over again, it is found that the system

as described by a collection of parameters will tend to a limit, called a fixed point.

The limit reached depends on what the original system was, for example what its

temperature was. These fixed points are understood to describe the system prop-

erties on the macroscopic scale, and certain fixed points correspond to the phases

observed in experiment.

While equilibrium physics is mostly a well understood discipline, a cursory glance

around us reveals that the world is generally not in a state of equilibrium; it is filled

with fluid flows, electrical currents, temperature gradients, time dependent phenom-

ena and so on. What is the correct picture for this significantly more complicated

world? It is most often assumed that a picture in terms of probability distribu-

tions will serve just as well as at equilibrium, although it is rather unlikely that

there is a universal probability distribution that describes all situations with the

simplicity of the Boltzmann distribution due to the vast range of situations that

fall under the label “nonequilibrium”. Nonequilibrium systems may be observed to

undergo phase transitions as at equilibrium, although there is no general theory for

comparison. Renormalisation group theory cannot be used in its usual guise, but

one of the chapters of this thesis is devoted to the application of the same ideas

out of equilibrium. Insight into the near equilibrium case was given by Green and

Kubo in the form of their relations that link dynamic properties such as viscosity to

correlation functions [4, 5]. Some more general approaches have been devised, such
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as the Jarzynski [6, 7, 8] and Crooks [9, 10] relations and the assorted fluctuation

theorems [11, 12, 13], that are valid arbitrarily far from equilibrium. The theory of

stochastic thermodynamics due to U. Seifert [14, 15] uses the ideas and language

of thermodynamics in the context of microscopic systems where fluctuations are

important.

The study of time independent systems provides a large simplification. These are

systems in a steady state, for which the values of macroscopic quantities fluctuate in

time but average to the same constant value over any time window of long enough

duration (in theoretical work this duration is normally assumed to be infinite, but in

practice the phrase “long enough” depends on the details of the system). Equilibrium

is the simplest example of a steady state, one without any macroscopic flow of mass,

energy or any other quantity.

This thesis is concerned only with boundary driven systems in a steady state.

Boundary driven systems are those whose constituents are not directly affected by

any external fields but are perturbed away from equilibrium at the boundaries.

The archetypal example of a boundary driven system is a sheared fluid, where the

perturbation is provided by the relative movement of the walls of the container.

Newtonian fluids such as water respond simply to the perturbation, by developing

a constant velocity gradient across the system called the shear rate γ̇. If the shear

stress Σ needed to drive the system is measured then it is found to obey Σ =

ηγ̇, which serves to define the (constant) viscosity η. This relation between flow

parameters is called the constitutive relation. Non-newtonian fluids are those which

do not follow this rule and have instead a more complicated form for Σ(γ̇). These

complex fluids possess some degree of internal structure on the mesoscopic scale,

larger than the size of a single molecule but not as large as the system size, and are

generally described by tensorial models. Typical fluids that show non-Newtonian

behaviour include polymer solutions, polymer melts and micellar solutions. The

deviation from Newtonian behaviour may take many forms. Shear thinning is a

decrease of the viscosity with shear rate, whereas shear thickening is the opposite.

Some systems cannot support homogeneous flow for some range of shear rates or

stresses and must separate out into bands of differing shear rates (shear banding)

or stresses (vorticity banding).

From a microscopic point of view, constituents of the fluid near the boundary
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may collide with the confining walls, but particles in the bulk of a large volume of

fluid will obey the same equations of motion as at equilibrium due to the lack of

direct forces from the walls. These bulk particles are in a nonequilibrium state but

only due to the similarly nonequilibrium condition of the fluid around them. This

suggests the interpretation of a large volume in the bulk of the fluid as the system

of interest with the remaining even larger surrounding fluid being a nonequilibrium

reservoir, similar to the picture in the equilibrium canonical ensemble where a system

of interest is in contact with a heat bath of practically infinite size. R. M. L. Evans

and coworkers have investigated the modelling of these systems and provided rules

that models should obey if they wish to describe such situations [16, 17, 18, 19];

these rules and their foundation are used to derive some results in this thesis.

Chapter 2 is devoted to an application of the rules just mentioned: the behaviour

of boundary driven systems as their temperature is reduced to zero. Athermal

systems with a large number of constituents abound in nature, but are not described

by ordinary statistical mechanics as they cannot explore their configuration space

due to the lack of any thermal excitation. It is as yet unclear whether a statistical

description of these systems is possible. However, driven athermal systems raise

the possibility of exploration of the phase space through mechanical excitation. In

this chapter, I give some background to the phenomenology and theory of granular

materials before reviewing the theory of Evans et al. for boundary driven systems.

The rest of the chapter discusses the application of the theory to athermal systems

before testing it in boundary driven toy models for which the temperature is taken

to zero.

Chapter 3 delves deeper into the theory of boundary driven systems in order to

provide a partial answer to an elusive question in the field: is there such a thing

as a free energy out of equilibrium, and if so, how can we calculate it? If known,

this function would provide a route to calculate properties of any model such as

the average current. The NCDB formalism is used to derive two results: a rather

formal expression for the free energy in boundary driven systems dependent on full

knowledge of the statistics of the current at equilibrium, and an equivalent but

simpler expression which can be calculated using just the equilibrium transition

rates and the integrated flux gained in each transition. The former is applied to an

analytically tractable model, one dimensional diffusion. The latter is applied to the
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“comb model”, a simple toy model for which the equilibrium current distribution is

unknown. However, the free energy and therefore the current can be numerically

determined very simply. This result is checked against the independent analytical

result for the current in the driven system.

Chapter 4 moves away from fundamental theory and introduces a toy model of

a complex fluid called the rotor model. This is a one dimensional model similar to

the XY model but with a full dynamical equation of motion for each constituent. In

addition, it is sheared out of equilibrium into a steady state. As it is a nonequilibrium

many particle interacting system, it is difficult to analyse theoretically so the first

approach at understanding it is via simulation. Simulation results are given for

various parameters and the phase behaviour of the model is sketched. Two important

results from the simulations are the constitutive curve, i.e. the stress Σ felt by the

rotors as a function of the applied shear rate γ̇, and the identification of possible

order parameters describing the phases.

Chapter 5 analyses the rotor model from a theoretical perspective. The goal is

to describe some of the features revealed in simulation, a difficult job due to the

nonequilibrium nature of the problem. The rotor model is an interacting model,

meaning it is much more realistic than the models considered in chapters 2 and 3,

but also too complex for the apparatus associated with the fundamental theory to be

used. The main result of this chapter is a nonequilibrium real space renormalisation

group calculation which describes how the parameters of the model appear to change

as the model is viewed at different length scales. This gives information about the

way in which homogeneous regions of the system behave. The results obtained are

compared with the simulation data.



Chapter 2

Boundary driven systems in the

limit of zero temperature

2.1 Introduction

As well as the thermal systems that are most commonly encountered in statisti-

cal mechanics, nature also provides a wide variety of athermal systems, including

granular media. These are typically systems that contain a large number of par-

ticles, where said particles are themselves too large to be appreciably affected by

thermal fluctuations and can only be excited by driving the system in some fashion.

This means that static granular assemblies are nonergodic, i.e. their phase space is

unexplored, and so ordinary statistical mechanics fails to describe them. Granular

systems that are driven would fall outside of the realm of equilibrium statistical

mechanics anyway.

An early documentation of the uniqueness of granular media describes what

is now known as Reynolds dilatancy [20]. This is the change in volume of the

system in response to a change in shape or an applied strain and is a property not

exhibited by simple fluids. Granular media jam, that is, develop a nonzero yield

stress in an amorphous state, when their density is increased, so that they will

only flow when pushed hard enough or in the right direction [21]. The stress in a

high density granular medium is typically distributed inhomogeneously, with chains

of grains in contact supporting large forces and others only feeling weak contact

forces. Many more interesting properties are exhibited by driven granular systems.

When the concentration of grains is low, they mostly interact via (inelastic) binary

7
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Figure 2.1: The jamming phase diagram of Liu and Nagel, adapted from their
original paper on the matter [26].

collisions and exhibit gas-like behaviour. At higher concentrations more lasting

contacts between grains are formed. Non-Newtonian behaviour is typically seen,

often including Bagnold scaling [22, 23] where the shear stress varies as the square

of the shear rate; shear induced size separation [24] and shear banding [25] have also

been seen. These and other disparate phenomena have for the most part not been

drawn together.

The connection to finite temperature materials is also unclear. Colloidal suspen-

sions may jam at a high enough packing fraction, and molecular liquids may jam at

a low enough temperature, so it is natural to ask if these phenomena are related.

In 1998 A. J. Liu and S. R. Nagel proposed a unification of these phenomena via a

jamming phase diagram [26]. A sketch of the phase diagram is shown in figure 2.1.

The three axes are temperature T , applied stress Σ and inverse density ρ−1. The

common link between all of these is that at large values jamming does not occur. An

ordinary equilbrium fluid would reside in the Σ = 0 plane, whereas granular media

occupy the T = 0 plane. Close to the origin, within the region enclosed by the dotted

lines, the system is jammed in one way or another. The exact surface that bounds

this region is somewhat vague, depending on the system in consideration and the

time constraints of the experiment; it could be the case that a jammed system is

not truly “thermodynamically” jammed, but would relax given a long enough time

to an unjammed state. This relaxation time may be vastly greater than any length

of time that an experimentalist would be willing to wait for, so in general some

arbitrary definition must be decided upon as to what constitutes a jammed state.

The line in the T = 0 plane corresponds to the yield stress of an athermal
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material, whereas the line in the Σ = 0 plane corresponds to the glass transition. It

has been conjectured that for systems with short range repulsive interactions these

two lines meet at a well defined point on the inverse density axis called point J.

This corresponds to random close packing, the densest packing fraction achievable

in an amorphous arrangement of particles - roughly 64% for hard spheres - although

the concept of random close packing has been criticised by S. Torquato, who argues

for a more precise maximally random jammed state [27]. Point J has some of the

features of a critical point but many that do not correspond to equilibrium critical

physics [28, 29]. The work in this chapter will be framed in terms of the Liu and

Nagel phase diagram later.

The most common way of disturbing a granular system is via the imposition of a

shear stress. The shearing of a granular medium is an example of a boundary driven

process, as described in chapter 1. This opens up the possibility of using the theory of

boundary driven systems developed by R. M. L. Evans and coworkers. This is a well

founded approach to this class of systems which results in a nonequilibrium ensemble

picture of a sheared system, and a principle called the nonequilibrium counterpart

to detailed balance, or NCDB. This says that stochastic boundary driven systems

have a number of constraints upon the transition rates between microstates, equal

to the number of constraints in equilibrium (i.e. those given by detailed balance).

In section 2.2 I review the NCDB formalism and comment on its use in the limit of

zero temperature. The following sections apply the principle to some toy models,

namely one dimensional diffusion in section 2.3 and the comb model in section 2.4.

2.2 The nonequilibrium counterpart to detailed balance

Theoretical models of stochastic systems are often described using a set of states

between which the system moves according to some probabilistic rules. The states

represent a specification of the system, for example in terms of positions, velocities,

energies and so on; collectively they are called the phase space of the system. The

rules consist of transition rates between different states: for two states i and j the

transition rate ωij is the probability of moving from i to j per unit time. The prob-

ability of observing the system in state i, pi, is determined by the master equation:
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dpi
dt

=
∑

j

(pjωji − piωij). (2.1)

For a particular j, the term in the sum represents the net current between i and

j. This equation is to be supplemented with the usual conditions of positive and

normalised probabilities: pi ≥ 0 and
∑

i pi = 1. If the rates are known, and given

a suitable initial condition, then we can in principle solve this equation to find the

probability distribution over the states of the system as a function of time.

We may instead consider steady states only. These are situations for which the

occupation probabilities are time invariant, so that the left hand side of the master

equation (2.1) is zero. One way of ensuring this is to have all the individual terms

in the sum on the left hand side vanish individually:

pjωji − piωij = 0 ∀ i, j. (2.2)

This statement says that the transitions from i to j are balanced exactly by tran-

sitions from j to i, so that on average there is no flow of matter, energy and so

on through the system. In this way detailed balance is a necessary condition for

equilibrium; it can be viewed as a restriction on the transition rates in the model if

equilibrium is to be reached. For a system described by a canonical distribution, the

probability of a state i is known to be proportional to e−βEi where Ei is the energy

of state i and β = 1/kBT (the Boltzmann distribution). Equation (2.2) can then be

rewritten as
ωij
ωji

= eβ(Ei−Ej). (2.3)

There are any number of steady states other than equilibrium for which the right

hand side of (2.1) is zero, but they must lead to some net flux through the system.

Detailed balance does not hold, and it is not known in general whether an equivalent

constraint will hold instead. Because of this lack of knowledge, it is a common

practice to simply define a physically reasonable set of rates for a nonequilibrium

system before investigating their consequences such as phase behaviour (see e.g. the

bus route model of O’Loan et al. [30] or driven diffusive systems [31, 32]). A partial

substitute for detailed balance has been derived by R. M. L. Evans and coworkers,

who consider the case of boundary driven systems arbitrarily far from equilibrium.
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Figure 2.2: A large volume of sheared fluid, divided up into N subsystems.
Each subsystem is itself macroscopically large, in the sense that it is much

larger than any correlation length.

In these systems, a flux or current, such as the shear rate in a sheared fluid, is

constrained in a similar way to how constraints are applied at equilibrium to the

average energy. The development of the theory is given a brief overview here; it is

mostly derived from the papers of Evans et al. [18, 33, 19].

The same results have since been obtained by C. Monthus [34] and are said

to apply in the more general context of all steady states, although this has to my

knowledge not been verified by either analytical or numerical work; as such the

applicability of this interpretation is unknown. V. Lecomte et al. have used the

idea of constraining the current in a system to some non-zero value to produce

a nonequilibrium system and analyse the current fluctuations [35]; likewise, the

motivation for this is somewhat lacking. The advantage of NCDB and the associated

ensemble is the sound physical basis and the proof of application to various toy

models.

We begin with a very large region of sheared fluid, depicted in figure 2.2. This

region is divided up into a large number N of smaller but still macroscopically large

subsystems. To ensure minimal coupling between subsystems, the size L of each is

taken to be much larger than any correlation length in the system. Each subsystem

follows a trajectory in phase space Γ for a duration τ . The number of subsystems

that undergo the trajectory Γ is denoted by nΓ; the probability of observing the

trajectory Γ is given by a frequentist interpretation: p(Γ) = nΓ/N . If we now make

many copies of the entire ensemble, an ensemble of ensembles, the distributions that

we see will be dominated by those with the largest statistical weight ΩN , where

ΩN =
N !

∏

Γ nΓ!
(2.4)

is the number of distinct ways of rearranging the observed trajectories amongst the
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subsystems. In order to find the most likely distribution, ΩN should be maximised.

Equivalently we can maximise lnΩN in order to make use of Stirling’s approxi-

mation: lnx! ≈ x lnx − x, for large x. Converting the distribution numbers nΓ

into probabilities p(Γ) and applying the approximation, the quantity to maximise

is the entropy of the distribution −N∑

Γ p(Γ) ln p(Γ). This is to be done with the

constraint
∑

Γ

p(Γ)γ(Γ) = 〈γ〉, (2.5)

where γ(Γ) is the shear accumulated during the trajectory Γ.

In order to maximise the entropy, we require an appropriate measure on the space

of trajectories. This is an unknown quantity, but we can infer that it is the same

measure as that for the equilibrium set of trajectories because the subsystems follow

the same equations of motion as at equilibrium. With the nonequilibrium constraint

the equilibrium trajectories are reweighted depending on their accumulated shear:

p(Γ) =
1

W
peq(Γ)eνγ(Γ), (2.6)

where ν is the Lagrange multiplier associated with the shear constraint (analogous

to the inverse temperature β) and W is a factor assuring normalisation. Going back

to a single system somewhere in the middle of figure 2.2, its trajectory will follow

this distribution. The many surrounding systems play the role of a nonequilibrium

reservoir or heat bath that requires both β and ν to specify it instead of just β as

in the equilibrium case. The distribution just derived forms the basis of my analysis

of boundary driven systems in this and the next chapter.

The same result could have been reached using the Bayesian statistical mechanics

of E. T. Jaynes [36, 37] by interpreting the path entropy mentioned above as the

Shannon information of the trajectory distribution. This is in fact how NCDB was

originally derived [17], but the Gibbsian argument reproduced here puts the theory

on a less controversial basis by avoiding the need for an observer’s knowledge of

the system, or lack thereof. Similar results have also been used in trajectory-based

investigations of the glass transition and its associated dynamical heterogeneity [38,

39, 40]. In those studies the trajectories were biased towards those with low or high

average mobility, but the biasing is a way to access physically unlikely trajectories

rather than to generate physically correct trajectories as in NCDB.
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In principle this result could be used to calculate averages and so on, but this is

unlikely given that peq(Γ) is unknown. However, using the idea that a microscopic

transition from state i to j is part of a longer trajectory, some remarkable properties

of the nonequilibrium system can be derived [18]; this calculation is detailed in

appendix A. Given a set of equilibrium transition rates ωij that necessarily obey

detailed balance, the rates Ωij in the driven system can be expressed in terms of

them:

Ωij = ωij exp[νKij + qj(ν)− qi(ν)], (2.7)

where Kij is the flux gained during the transition. The quantity qi(ν) contains

detailed information about the equilibrium system and is a measure of the amount

of flux that can be gained in the future if the system starts in state i. It is the crucial

difference between NCDB and mean field models, where transitions are made more

or less likely according to the flux carried by that transition only.

Given the mapping (2.7) between the driven and equilibrium rates, and given

the detailed balance condition that the equilibrium rates satisfy, it can be inferred

that the driven rates satisfy an analogous constraint: this is the nonequilibrium

counterpart to detailed balance. Similarly to ordinary detailed balance, it can be

viewed as the definition of a boundary driven steady state, or at least the simplest

(but still common) type of of these systems that does not have, for example, long

term memory of its initial conditions. For these systems, NCDB can be viewed as

a set of rules that a model must adhere to if it is to produce physically meaningful

results. It is not expected that NCDB can help us to understand all systems. The

assumptions that go into the theory include a steady state, a lack of long term

memory, and an insensitivity to the exact details of the boundary conditions; any

of these conditions may be violated in real systems.

The rules have been produced with the minimum of physical assumptions. There

is some unspecified coupling between the nonequilibrium reservoir and the system

of interest, the presence of which allows both the driving of the system out of equi-

librium and the dissipation necessary to reach a steady state. The theory does not

specify or care about exactly what the coupling is, only that it results in the specified

amount of flow, just as in canonical equilibrium the exact thermostatting mechanism

at the boundaries is irrelevant as long as the same energy is maintained on average.

In normal thermodynamic terms, the reservoir is doing work on the system which is
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maintaining a steady state by losing energy through heat flow back to the reservoir,

but quantifying this energy exchange would require some more detail on the actual

processes involved.

2.2.1 The role of the driving parameter

At this point the parameter ν may seem a little mysterious. Introduced as a Lagrange

multiplier in a maximisation procedure, it has not yet been given a full physical

interpretation, other than to say that it is a property of the nonequilibrium heat

bath inducing the shear flow. Intuitively, it should be related to the force that is

driving the system out of equilibrium - the stress in a sheared fluid, for example -

but it has not been shown that this is the case.

ν plays a role similar to β at equilibrium, in that it indicates how readily shear

can be exchanged between the system and reservoir. In the usual presentation, the

statistical mechanical β is identified as a quantity that must be the same for systems

in thermal contact that are in mutual equilibrium. The assumption of the equality

of the statistical mechanical entropy kB lnΩ and the thermodynamic entropy is then

required to explicitly relate β to temperature. In the nonequilibrium situation seen

here there is no thermodynamic counterpart to the theory; there is a trajectory

entropy, but whether this corresponds to a measurable thermodynamic entropy is

unknown.

2.2.2 The role of temperature

While the relation given by equation (2.7) specifies the driven rates in terms of the

equilibrium rates, we may well ask: which equilibrium rates? Or more specifically:

the equilibrium rates at what temperature? While the nonequilibrium reservoir

will still have a temperature-like quantity that governs how energy is exchanged

between system and reservoir, it is not necessarily the same as at equilibrium. This

temperature is not known a priori, and has been regarded as a fitting parameter in

previous studies [41].

2.2.3 The use of NCDB at zero temperature

NCDB gives a prescription for the transition rates in boundary driven systems by

comparing the system to one at equilibrium. The equilibrium rates depend on the
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temperature of the associated heat bath. If this temperature is reduced to zero, then

the theory may model or at least help us to understand driven athermal systems. The

matter is more subtle than this, however. As seen in the last chapter, the statistics

of the current in the driven ensemble depend on the statistics of the current in the

equilibrium ensemble. At equilibrium the average current is zero and most nonzero

currents are effectively out in the tails of the equilibrium distribution. However,

at zero temperature there is no distribution - such currents have a probability of

exactly zero as there is nothing to excite the system into producing them, and the

mapping to the nonequilibrium system fails. In this work, the theory is used at finite

temperature and then once we have access to the statistics of the nonequilibrium

system we take the temperature to zero. This corresponds to approaching the zero

temperature plane along a particular route in the jamming phase diagram shown in

figure 2.1. Instead of moving down the T − ρ−1 plane to T = 0 and then moving

to a finite stress, we first move the system off the T − ρ−1 plane and then bring it

down to the zero temperature plane.

At this point, NCDB yields a set of transition rates at zero temperature for some

imposed current J . A further connection could be made with the jamming phase

diagram by taking J to zero. If we have a way of calculating the stress for a given

current, then this can be monitored as J → 0. If the stress is finite at J = 0, this

would indicate a yield stress for that system.

2.3 One dimensional driven diffusion

To illustrate the basic idea of the method, it is first applied to a very basic model: a

particle undergoing a random walk or diffusion in a discrete state space. The state

space is shown in figure 2.3. The particle has the option of jumping to the states

immediately to the left or right of its current position. The rates of hopping to

the left or right are equal in equilibrium and are labelled ω. The driven rates to

the left and right, L and R respectively, are derived using the NCDB prescription

in continuous time, equation (2.7). Each state has exactly the same propensity for

future flux as every other, so qi = qj ∀i, j and the only term in the exponent is the
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Figure 2.3: The state space for the one dimensional diffusion model.

term linear in ν:

R = ωeν , (2.8a)

L = ωe−ν . (2.8b)

The rates are altered so that, for positive ν, hops to the right are enhanced while

those to the left are suppressed.

2.3.1 The limit of zero temperature

The equilibrium rate ω drops to zero in the zero temperature limit, as there are no

thermal kicks to move the particle into another state. The driven system, however,

must have a nonzero transition rate in order to satisfy the imposed flux constraint.

If a positive flux is imposed, then R must remain non-zero right down to zero

temperature. Inspection of equation (2.8a) then indicates that in this limit the

driving parameter ν must tend to infinity in order to counterbalance the decrease in

ω. Clearly ν must vary with temperature in order to keep the imposed current the

same, and in the limit of zero temperature if the current is to stay nonzero then ν

must diverge.

ν can be related to a force using an argument from Simha et al. [19]. The

transition rate in equation (2.8) can be interpreted as the solution of the Fokker-

Planck equation

∂p(x+∆x, t+∆t|x, t)
∂t

= − ∂

∂x

(

A(x) +D
∂

∂x

)

p(x+∆x, t+∆t|x, t), (2.9)

where D is a diffusion coefficient, A(x) is related to the force acting on the particle

F via F (x) = µA(x), for a friction coefficent µ. For short times, the solution for a

constant diffusion coefficient independent of space and time is:

p(x+∆x, t+∆t|x, t) = 1√
4πD∆t

exp

(

−(∆x−A(x)∆t)2

4D∆t

)

. (2.10)
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Figure 2.4: The flow curve at zero temperature, force F0 as a function of
imposed velocity v, for the 1D driven diffusion model. Note that the curve
passes smoothly through the origin as v → 0, indicating no yield stress. As

noted in the text, the same flow curve results for any temperature.

From this we can identify a transition rate ωx,x+∆x = p(x + ∆x, t + ∆t|x, t)/∆t.

Consideration of the equivalent transition in the other direction, ωx,x−∆x, leads to

ωx,x+∆x

ωx,x−∆x
= exp

(

A(x)∆x

D

)

. (2.11)

Assuming that this holds in the current discrete model, a comparison with equations

(2.8) gives an expression for the force:

F = 2νkBT. (2.12)

In section 3.3.1 of the following chapter, the average velocity of a diffusing particle

v will be shown to be related to ν by v = 2Dν. Taken together, these relations

imply that v is directly proportional to the applied force (i.e. we have reproduced

the simple relation F = µv) and therefore F → 0 as v → 0 for any temperature:

there is no jamming in this simple model. This is no great surprise as there is

nothing to jam against - no configuration of the system (position on the line) could

ever result in impeded movement. The curve of force against velocity (analogous to

stress versus shear rate for a sheared fluid) is a straight line through the origin with

gradient µ, shown in figure 2.4.

2.4 The comb model

A toy model called the comb model was introduced by Evans to provide an applica-

tion of the NCDB formalism [18]. This model, whose state space is shown in figure
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Figure 2.5: The state space of the comb model, consisting of the two states
α and β repeated in both directions. Only the α states possess the horizontal

connections that allow the particle to change the integrated flux.

2.5, has just two states periodically repeated. The structure of the state space is

different to the previous model. If a particle hopping among these states finds itself

in an α state, it can either hop downwards into a β state with rate D or left or right

into another α state with rates L and R respectively. If it is instead in a β state

then it can only hop directly upwards into its neighbouring α state. If we define

the integrated flux as the distance travelled in the horizontal direction, then only

left and right transitions contribute to the flux acquired in a trajectory. The two

states α and β also have differing energies: the energy of the β states is lower by an

amount E compared to the α states.

At equilibrium, detailed balance leads to the following conditions (the equilib-

rium rates are distinguished from the general rates by writing them in lowercase

script):

r = l, (2.13)

u = de−E , (2.14)

where the energy is measured in units of kBT . We can think of the first condition as

ensuring that the system does not acquire a net flux, as the rates of hopping to the

left and right are the same, and the second condition as ensuring that Boltzmann’s

law is recovered for state occupancies.

As in the previous section, we would expect that for positive driving hops to

the right are encouraged. In addition, since no flux can be accumulated from the

β states, we would also expect the system to enhance the upwards hopping rate in

order to get the particle out of these trapped states and into an α state where it can

carry flux. The NCDB constraints on the driven rates are derived by Evans and can
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Figure 2.6: The nonequilibrium transition rates in the boundary driven comb
model as a function of velocity v, given by equations (2.15).

be written as [18]:

R− L =

(

1 +
D

U

)

v, (2.15a)

RL = r2, (2.15b)

UD = d2e−E , (2.15c)

R+ L+D − U = 2r + (1− e−E)d, (2.15d)

where v is the drift velocity of the particle, that is, the imposed current. The first

of these four equations amounts to a definition of the drift velocity in terms of the

rates, as flux can only be acquired when in an α state and the occupancy of α states

is U/(U +D). The other three equations are nontrivial consequences of NCDB, and

can be identified as the product constraints (equations (2.15b) and (2.15c)) and exit

rate constraints (equation (2.15d)) derived by Baule and Evans [33].

A graph of the driven rates as a function of the driving parameter v is shown in

figure 2.6. As before, hops to the right are enhanced for positive v while hops to the

left are suppressed, and vice versa for negative v. As the magnitude of v increases,

upward hops are enhanced leading to a greater occupancy of the α states so that

the system can carry more flux, whereas downward hops are suppressed in order to

keep particles in the α states where they can flow.

2.4.1 The limit of zero temperature

As T → 0, all the equilibrium rates tend to zero as well - there is no thermal

excitation at all between states. In the driven case, the rates will not be zero due
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to the imposed current that is maintained by the mechanical driving. In the limit

of zero temperature then the constraints on the rates, equations (2.15), become:

R− L =

(

1 +
D

U

)

v, (2.16a)

RL = 0, (2.16b)

UD = 0, (2.16c)

R+ L+D − U = 0. (2.16d)

The solution to these equations is given by R = U = v, L = D = 0 assuming that

v > 0; for v < 0 the solution has instead L = U = −v and R = 0. Transitions in

the direction opposite to the current are completely suppressed, and the particle is

always found in an α state due to the downwards rate being zero.

To analyse the force in the system, a similar approach is taken to the simple

diffusion case. I again assume that the result in equation (2.11) applies to this

discrete model. The approach requires an explicit expression for the driven rates,

but the system of equations (2.15) cannot be solved explicitly for the rates in terms

of v. As with the case of diffusion I instead use the NCDB prescription in terms of

the Lagrange multiplier ν, equation (2.7), which results in the following rates [18]:

R = reν , (2.17a)

L = re−ν , (2.17b)

D =
d2e−E

de−E +Q(ν)
, (2.17c)

U = de−E +Q(ν), (2.17d)

where the flux potential Q(ν) is given by

Q(ν) = r(cosh(ν)− 1)− d

2
(1 + e−E) +

√

(

r (cosh(ν)− 1)− d

2
(1− e−E)

)

+ d2e−E.

(2.18)

Using R and L in place of Ωx,x+∆x and Ωx,x−∆x in equation (2.11) and setting

∆x = 1, we find again that

F = kBT ln(R/L)

= 2νkBT.
(2.19)
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Figure 2.7: The nonequilibrium transition rates in the boundary driven comb
model as a function of the driving parameter ν, given by equations (2.17).

Figure 2.8: The zero temperature flow curve, force F0 as a function of imposed
velocity v, for the comb model. Note that in contrast to figure 2.4 the curve
does not pass smoothly through the origin as v → 0, but tends to a nonzero

value before a discontinuous jump down to zero at v = 0.

The same result arises because in both models the transitions that carry flux are

between identical kinds of states. Furthermore, ν can be expressed in terms of known

rates from equation (2.17a) as ln(R/r), giving the force as:

F = 2kBT (lnR− ln r). (2.20)

The force at zero temperature

F0 = −2 lim
T→0

kBT ln r, (2.21)

where F0 = limT→0 F . This follows from limT→0R = v, a finite number. Sur-

prisingly in this model the zero temperature force does not depend on the imposed

current v, as the limiting form of F depends on the equilibrium rate r only.

Assuming a particular form for r gives a physical interpretation of the limit. As
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the hops between sites are an activated process, it is natural to consider an Arrhenius

form for r:

r = A(T ) exp

(

− EA
kBT

)

, (2.22)

where EA is an activation energy, the height of the energy barrier restricting passage

between α sites. The prefactor A(T ) varies slowly with temperature. Substituting

this into equation (2.21) gives

F0 = 2EA − 2kB lim
T→0

T lnA(T ). (2.23)

If we assume that the second term vanishes then the force takes on a simple form.

Imagine the comb model to be a coarse graining of an underlying continuous model

with a potential barrier of height EA halfway between α sites. The distance between

α sites in the current units is one, so the distance from the bottom of the well (the α

state) to the top of the barrier is one half. The limiting force 2EA is then simply the

average gradient of that potential for one side of the barrier. However, the following

conclusion may still hold if the limit is not so simple.

The above analysis indicates that the comb model at zero temperature exhibits

a yield stress: flow is not possible below the force specified by equation (2.21). This

is because there is no dependence of the force on the imposed velocity, except when

v = 0 for which F = 0. For any v 6= 0, i.e., if the system is to flow at all, the force in

equation (2.21) will be felt. The equivalent of a flow curve for this system, F versus v,

is simply a horizontal line and F does not go to zero as v goes to zero: limv→0 F0 6= 0.

This is qualitatively different to the case of simple diffusion previously examined.

Note that this result is only seen in the limit of zero temperature. At any non-zero

temperature limv→0 R = r, meaning that the force as given by equation (2.20) is

identically zero.

2.5 Conclusions

In this chapter I have outlined the use of NCDB for sheared athermal systems and

applied the principle to two simple models. Some subtlety arises due to the necessity

of a finite temperature when constructing the statistics of the driven system; this

was discussed in terms of the more general jamming phase diagram of Liu and Nagel.
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The models discussed, one dimensional diffusion and the comb model, indicate that

physical results can be obtained at least for these toy models.

I have also found indications that NCDB could be used to help understand yield

stress materials. By studying the force in a zero temperature system as the imposed

current is taken to zero, the existence or non-existence of a yield stress in principle be

determined for any particular system. It was found that for one dimensional diffusion

in a continuous state space there is no yield stress, whereas the more complex comb

model can exhibit a yield stress, although that can only be concluded by making an

assumption on the temperature dependence of the equilibrium rates.

Further work on this topic includes the extension of the theory to more complex,

realistic models.





Chapter 3

Free energies in boundary

driven systems

3.1 Introduction

The question of a nonequilibrium free energy has been discussed in the literature for

many years. Around sixty years ago Onsager and Machlup formulated an answer

to the problem for linear deviations from equilibrium [42] in terms of the Onsager

Machlup functional. More recently B. Derrida and collaborators have used large

deviation techniques to investigate driven diffusive systems such as the symmetric

exclusion process [43]. This is a lattice model consisting of hard core particles that

can hop to the left or right nearest neighbour lattice sites as long as they are empty.

It is driven by providing an influx of particles at one end and removing them at

the other. Derrida et al. derived a free energy functional that gives the probability

of fluctuations about the average density profile. This can be viewed as a specific

case of the macroscopic fluctuation theory developed by L. Bertini and collaborators

[44], which is a theory for many body systems that admit a description in terms of

thermodynamic densities that obey hydrodynamical equations of motion.

In this chapter, the extension of the equilibrium free energy formalism to bound-

ary driven systems is discussed. It is developed using the theory of boundary driven

systems described in section 2.2. In section 3.2, I give a recap of the equilibrium free

energy formalism in order to set the stage for the nonequilibrium version. My own

work starts in section 3.3 where I derive a free energy for boundary driven systems,

before giving an example of a toy model for which this free energy formalism can

25



Chapter 3. Free energies in boundary driven systems 26

be used analytically to obtain a physical result. The result is then compared to the

same model under direct driving. In 3.4 I derive an alternative expression for the

free energy which is more useful for application to complex problems, and then test

it against another toy model where the current can be analytically determined by

independent means.

3.2 Free energies at equilibrium

In this section, the definition and use of free energies in statistical mechanics is laid

out to provide a context for the upcoming nonequilibrium calculation.

The probability distribution for microstates at equilibrium is well known:

p(x;β) =
1

Z
e−βU(x), (3.1)

where x labels a microscopic configuration of the system, U(x) is the energy of

microstate x, β−1 = kBT with T the temperature of the associated heat bath, and Z

is the canonical partition function which ensures that the distribution is normalised:

Z =

∫

dx e−βU(x). (3.2)

In the following I will be interested in the thermodynamic limit N → ∞ and so will

use the energy density u = U/N for clarity.

An experimenter does not have the required resolution to find out which mi-

crostate the system happens to be in at a given time and even if they did it would

not be of much use. Instead, they measure macroscopic quantities that can be given

in terms of a function of the microscopic configuration of the system. We are able in

principle to find the probability distribution for any observable that we like. Here

we deal with a general macroscopic observable M with an associated function over

microstates M(x), and the probability that it takes on a particular value M0:

p(M = M0;β) =
1

Z

∑

x

M(x)=M0

e−Nβu(x). (3.3)

This is simply the result of summing the probabilities of all microstates that are

consistent with the value of M being M0. We now rewrite equation (3.3) by defining
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two quantities:

f eq
N (β) = − 1

N
β−1 lnZ, and (3.4)

f̃ eq
N (M0, β) = − 1

N
β−1 ln

∑

x

M(x)=M0

e−βH(x). (3.5)

The first of these is identified with the thermodynamic equilibrium free energy den-

sity. The second depends on the quantity we wish to measure and is also often

referred to as a free energy. This is the quantity that appears in, for example,

the Landau theory of phase transitions. Here I will call f̃ eq
N (M0, β) an observable

dependent free energy in order to distinguish it from the usual free energy f eq
N (β).

With these definitions, equation (3.3) becomes:

p(M = M0;β) = e−Nβ[f̃
eq(M0,β)−feq(β)]. (3.6)

For large N , it is assumed that fN and f̃N are independent of N (i.e. the free energies

are extensive); these limits are denoted by f and f̃ respectively. If this is the case,

then as the number of particles in the system tends to infinity (i.e. as we take the

thermodynamic limit), the probability distribution of M becomes more and more

sharply peaked about the value of M that minimises f̃(M,β) − f(β). In this case,

it is overwhelmingly likely that the experimenter will measure M to have the value

that satisfies:

∂

∂M0
[f̃ eq(M0, β) − f eq(β)] =

∂

∂M0
f̃ eq(M0, β) = 0. (3.7)

This is the principle of minimisation of free energy. In addition to this, if there is

only one value of M , say M∗(β), that provides a minimum to the exponent then the

probability of seeing that value will tend to one in the thermodynamic limit, so we

must have

f̃ eq(M∗(β), β) ≈ f(β) (3.8)

in the limit of a large number of particles.

The key points here are that the most probable value of a macroscopic observable

is given by the minimisation of its corresponding free energy, the free energy comes

from the normalisation factor in the distribution, and the observable dependent free
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energy comes from the unnormalised probability of the macroscopic observable being

considered. Recall also that the free energy contains the information necessary to

calculate averages of the system, for example the energy density and its fluctuations:

〈u〉N =
∂(βf eq

N )

∂β
, (3.9)

〈U2〉N − 〈U〉2N =
∂2(βF eq

N )

∂β2
, (3.10)

where I have used U = Nu and defined the extensive free energy FN = NfN .

Corresponding relations will hold for the nonequilibrium free energy derived next.

3.3 Free energies in boundary driven steady states

In this section, I follow an identical path to the one just seen but starting from the

distribution of trajectories instead of the distribution of microstates. In the driven

system, the probability of an individual trajectory Γ of length τ is given by

pτ (Γ; ν) =
1

W
peqτ (Γ)eνJ(Γ)τ , (3.11)

where peqτ (Γ) is the equilibrium probability distribution for the trajectory, and W is

the normalisation factor associated with this distribution:

W =
∑

Γ

peqτ (Γ)eνJ(Γ)τ . (3.12)

Now consider the current J instead of the arbitrary quantity M as the macroscopic

variable of interest: given a driving strength ν, what current will an experimenter

observe in the system? As in the previous section, we can write down the probability

for the current J(Γ) to take on a value J0:

pτ (J = J0; ν) =
1

W

∑

Γ
J(Γ)=J0

peqτ (Γ)eνJ(Γ)τ . (3.13)

In the sum, we can factor out eνJ(Γ)τ = eνJ0τ and note that

∑

Γ
J(Γ)=J0

peqτ (Γ) = peqτ (J0). (3.14)
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As the system must be seen to have some current, integrating (3.13) over all currents

gives an expression for the normalisation factor:

W =

∫ ∞

−∞

dJ0 p
eq
τ (J0)e

νJ0τ . (3.15)

We can then rewrite the distribution as

pτ (J = J0; ν) =
peqτ (J0)e

νJ0τ

∫∞

−∞
dJ0 p

eq
τ (J0)eνJ0τ

. (3.16)

Following the ideas of the last section, we identify a free energy density like quantity

fτ (ν) that comes from the normalisation factor, and a current dependent free energy

f̃τ (J0, ν) that comes from the unnormalised probability, where

fτ (ν) = −1

τ
ln

∫ ∞

−∞

dJ0 p
eq
τ (J0)e

νJ0τ , (3.17)

f̃τ (J0; ν) = −1

τ
ln[peqτ (J0)e

νJ0τ ]. (3.18)

The trajectory duration τ plays the role of the system size N in the previous section.

As in the previous section, for large τ I assume that fτ and f̃τ are independent of

τ ; these limits are denoted by f and f̃ respectively. The analysis in the previous

section can be copied practically verbatim to find that the most probable current

J∗ is the one that minimises the generalised free energy f̃(J0, ν), and in the limit of

large τ we have f̃τ (J
∗(ν), ν) ≈ fτ (ν).

We may also use the definition of fτ (ν) in equation (3.17) directly to find the

average integrated current:

−∂fτ
∂ν

=

∫∞

−∞
dJ0 p

eq
τ (J0)e

νJ0τJ0
∫∞

−∞
dJ0 p

eq
τ (J0)eνJ0τ

= 〈J〉τ .
(3.19)

Taking the infinite τ limit will then give the steady state current. Compared to

the equilibrium case, the current J plays the role of the energy density u and the

trajectory duration τ plays the role of N . Likewise, the fluctuations of the integrated
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current K = Jτ are given by

〈K2〉τ − 〈K〉2τ =
∂2Fτ
∂ν2

, (3.20)

where as in the previous section I have defined Fτ = τfτ .

f̃(J0; ν) is related to the properties of the current at equilibrium as follows. From

the definition:

f̃(J0; ν) = lim
τ→∞

−1

τ
(ln peqτ (J0) + νJ0τ)

= I(J0)− νJ0,

(3.21)

where the “rate function” for the large deviations of the current at equilibrium is

defined by [45]

I(J0) = − lim
τ→∞

1

τ
ln peqτ (J0). (3.22)

There is a strong connection between this work and large deviation theory that is

expanded upon below in section 3.4.3. By differentiating the expression for f̃ , we

find that the most probable current is that which satisfies

d

dJ0
I(J0) = ν, (3.23)

so that the most likely current is the one that makes the slope of the equilibrium

rate function equal to the driving parameter ν.

3.3.1 One dimensional driven diffusion

As an illustration the above quantities are calculated for the case of a particle dif-

fusing on a line. In contrast to the diffusion model of the previous chapter I consider

a continuous space model, for mathematical ease. Here, the integrated current K is

the distance travelled by the particle x, and the corresponding current is the average

velocity v = x/τ . The equilibrium probability distribution for the distance travelled

x0 in a trajectory of length τ is given by the solution of the diffusion equation:

peqτ (x0) =
1√

4πDτ
exp

(

− x20
4Dτ

)

, (3.24)
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where D is a diffusion coefficient. For the present purposes this is expressed in terms

of the velocity (current) v instead:

peqτ (v0) =
1√

4πDτ
exp

(

−v20τ

4D

)

. (3.25)

The steady state free energy is calculated from equation (3.17) as

fτ (ν) = −1

τ
ln

[

1√
4πDτ

∫ ∞

−∞

dv0 exp

(

−v20τ

4D
+ νv0τ

)]

= −1

τ
ln

[

1√
4πDτ

√
4πDτexp

(

Dν2τ
)

]

= −Dν2 +
1

τ
ln

√
4πDτ.

(3.26)

As expected, fτ (ν) is independent of τ for large trajectory durations, being equal to

−Dν2. The current dependent free energy is similarly calculated:

f̃τ (v0, ν) = − ln

[

1√
4πDτ

exp

(

−v20τ

4D
+ νv0τ

)]

=
1

τ
ln

√
4πDτ +

v20
4D

− νv0,

(3.27)

which again in the long time limit is independent of τ , being equal to v20/4D − νv0.

This can be found equivalently from equation (3.21) after noting that the distribution

for the velocity, equation (3.25), has a large deviation form: peqτ (v0) = e−I(v0)τ ,

meaning that the large deviation function for the equilibrium current is v20/4D.

Subtracting νv0 from this gives the above result.

To find the most probable distance travelled we must minimise the current de-

pendent free energy f̃(v0, ν) with respect to the velocity, which gives:

v∗(ν) = 2Dν. (3.28)

Substituting this into the expression for f̃τ , we see that the latter is indeed equal to

the long time limit of fτ (ν). The fluctuations of the distance travelled (the integrated

current) can also be obtained via equation (3.20) to give 〈x2〉τ − 〈x〉2τ = 2Dτ .

This procedure is in some sense a “top down” process: we work in terms of

a globally conserved quantity, the average velocity v, and don’t worry about the

microscopic laws needed to drive the system. As the system is so simple, we can
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compare this to a “bottom up” method of solving the problem: diffusion under

the action of a constant force Σ, corresponding to a linear potential −Σx. The

probability distribution for a delta function initial condition is as follows:

pτ (v0) =
1√

4πDτ
exp

(

−(v0 − Σ/µ)2τ

4D

)

, (3.29)

where µ is a coefficient of friction. The solution looks just like that of the ordinary

diffusion equation but in a moving frame of reference. The average velocity in the

steady state is calculated to be:

〈v〉 =
∫ ∞

−∞

dv0 v0pτ (v0) =
Σ

µ
. (3.30)

Comparing this to the expression derived from equation (3.28), we can identify

2Dν = Σ/µ, or

2ν =
Σ

kBT
, (3.31)

where I have used the fluctuation dissipation relation D = kBT/µ. The driving

parameter ν is then proportional to the slope of the potential in units of kBT . It

is clear that ν should be connected to a force (or stress for a sheared fluid), as it is

the property of the outside world that drives the system out of equilibrium and it

is conjugate to the current (or shear rate for a sheared fluid). Note also that this

reproduces the result of the previous chapter for one dimensional diffusion.

It should be emphasised that these results have been derived from first principles

using a well founded free energy principle for a class of out of equilibrium systems:

a rare achievement. Although the current results are obviously related to NCDB,

they focus on a different aspect. The main result taken from the NCDB formalism is

the distribution of trajectories, which has a physical basis greater than many ad hoc

nonequilibrium methods. If the trajectories of real systems follow this distribution,

then the results presented here should apply.
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3.4 An alternative formulation of the nonequilibrium

free energy

While the previous calculation is a success in terms of defining a free energy away

from equilibrium, it may not be very useful for the majority of systems. The full time

dependence of the equilibrium system must be known to find the quantity peqτ (J), a

task that usually cannot be done exactly. In one particular presentation of NCDB

[18], a relation between Greens functions was used in order to solve a model without

having to explicitly calculate the probability of currents at equilibrium; this was

extended by A. Baule in order to give a general procedure for NCDB calculations

[33]. The following calculation uses the same relation and ideas to arrive at a different

expression for f(ν). This approach is valid for systems that have a discrete set of

states and are modelled by a Markov process.

First, the expression for f , equation (3.17), is rewritten in the long time limit as

f(ν) = lim
τ→∞

−1

τ
ln

∫ ∞

−∞

dJ0 p
eq
τ (J0)e

νJ0τ

= lim
τ→∞

−1

τ
ln

∫ ∞

−∞

dJ0
∑

i

peq(i)peqτ (J0|i)eνJ0τ

= lim
τ→∞

−1

τ
ln
∑

i

fi(τ, ν),

(3.32)

where fi(τ, ν) is defined by

fi(τ, ν) =

∫ ∞

−∞

dJ0 p
eq(i)peqτ (J0|i)eνJ0τ . (3.33)

peq(i) is the probability of being in state i at equilibrium, and peqτ (J0|i) is the prob-

ability of the system exhibiting a flux J0 given that it begins in state i. It will be

easier in the following to deal with probabilities of integrated flux K0 = J0τ ; as the

two quantities are simply related, the integrals in the above expressions hold with

K0 substituted for J0.

The probabilities peqτ (K0|i) for different values of i can be related to each other

as follows. One way for the system to acquire the required flux in the time τ is to

hang around in state i for some time τ − t before jumping to a different state j.

The probability of waiting in state i for a time t depends on the stochastic process;

in order to proceed I assume the process in question is Markovian. For a continous
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time Markov process this probability is given by

hi(t) = πie
−πit, (3.34)

where πi =
∑

j ωij is the total exit rate from state i. The likelihood of jumping to

state j is given by ωij/πi; the jump results in a contribution Kij to the flux. From

j, the system then needs to make up the remaining flux, K0 −Kij, in the remaining

time t; the probability of this is peqτ (K0 − Kij |j). The system could jump at any

time and to any connected state, so summing over these variables we obtain

peqτ (K0|i) = Ci

∫ τ

0
dt hi(τ − t)

∑

j

ωij
πi

peqτ (K0 −Kij|j). (3.35)

Ci is a normalisation constant, calculated by integrating over all K0:

Ci =
1

1− e−πit
. (3.36)

This equation is now converted into one for the functions fi(τ, ν). Multiplying

equation (3.35) by the occupation probability peqi , on the right hand side detailed

balance is used to write peqi ωij = peqj ωji. Multiplying by eνK0 and integrating over

K0 requires a shift in the integration variable on the right hand side. Finally the

expression (3.34) for hi is used, to give the result

fi(τ, ν) =
e−πiτ

1− e−πiτ

∫ τ

0
dt eπit

∑

j

ωjie
νKijfj(t, ν). (3.37)

From here, the factor in front of the integral is taken to the left hand side and then

the equation is differentiated with respect to τ to get rid of the integral:

πie
πiτfi + eπiτ

∂fi
∂τ

− ∂fi
∂τ

= eπiτ
∑

j

ωjie
νKijfj(τ, ν). (3.38)

For long times, the term without a factor of eπiτ is neglected to give a simple equation

for fi(τ, ν):
∂fi
∂τ

=
∑

j

Mijfj, (3.39)
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where Mij are the entries of the square matrix M :

Mij =











ωjie
νKij , if i 6= j,

−πi, if i = j.

(3.40)

This is a set of linear, constant coefficient differential equations for the fi. The

solution may be written as

fi(τ, ν) =
∑

k

ckvk,ie
λkτ , (3.41)

where λk and vk are the eigenvalues and corresponding eigenvectors of M , the

latter of which have entries vk,i, and ck are constants of integration. As we are only

interested in long times, the sum over k will eventually be dominated by the most

positive eigenvalue λ∗. We may therefore write

fi(τ, ν) ≈ c∗v∗i e
λ∗τ . (3.42)

With this solution in hand we turn back to the expression for f(ν), equation

(3.32). Substituting in, we find that

f(ν) = lim
τ→∞

−1

τ
ln
∑

i

ri

= lim
τ→∞

−1

τ
ln
∑

i

c∗v∗i e
λ∗τ

= lim
τ→∞

−1

τ
ln(c∗

∑

i

v∗i ) + lim
τ→∞

−1

τ
λ∗τ

= −λ∗.

(3.43)

This expression provides a way to calculate the nonequilibrium free energy if all the

equilibrium rates are known, given the feasibility of computing λ∗.

This method has clear advantages over the previous result, equation (3.17), as it

does not involve solving the equilibrium dynamics for peq(J); the only information

needed is the equilibrium rates {ωij}. The state space for any realistic model will

likely be enormous, corresponding to a very large matrix M , but one need only find

the largest eigenvalue of M . In addition M may well be a sparse matrix, allowing

the use of faster solution methods.
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Figure 3.1: The cyclic state space used in the calculation of the free energy
for the comb model.

The method relies on the fact that the system is modelled by a Markov process

and has discrete states. A näıve extension of the above result to continuous state

spaces would give an integral equation, where the eigenvalues are now eigenvalues of

the integral operator that will involve the probability of moving between two points

in the continuum of states. The mathematics becomes more complicated, but it

could be sidestepped using a discretisation of phase space and an application of the

above method.

3.4.1 The comb model

The validity of this approach is tested using the comb model seen in section 2.4, for

which the steady state current is known analytically. A system consisting of three

α and three β states with periodic boundary conditions is used, so that state α3 is

connected to state α1. This state space is shown in figure 3.1. Three is the minimum

number of α states that will allow periodic boundary conditions without multiple

connections between two states. As there are six states in total, M is a 6×6 matrix.

In order to cut down the number of parameters, the units used in this section differ

from those in the previous chapter and follow Evans [18]. Rates are normalised by

the equilibrium horizontal hopping rate so that r = l = 1, d = ρ and u = ρe−E.

The equilibrium exit rate from an α state is given by r + l + d = 2 + ρ, while from

a β state it is u = ρe−E . The rates in terms of the driving parameter ν are used;
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putting equations (2.17) into the current units:

R = eν , (3.44a)

L = e−ν , (3.44b)

D =
ρ2e−E

ρe−E +Q(ν)
, (3.44c)

U = ρe−E +Q(ν), (3.44d)

where the flux potential Q(ν) is given by equation (2.18) in the current units:

Q(ν) = cosh(ν)−1− ρ

2
(1+e−E)+

√

(

(cosh(ν)− 1)− ρ

2
(1− e−E)

)

+ d2e−E . (3.45)

Putting it all together, M is as follows:

M =





























−(2 + ρ) eν e−ν ρe−E 0 0

e−ν −(2 + ρ) eν 0 ρe−E 0

eν e−ν −(2 + ρ) 0 0 ρe−E

ρ 0 0 −ρe−E 0 0

0 ρ 0 0 −ρe−E 0

0 0 ρ 0 0 −ρe−E





























. (3.46)

This has six eigenvalues, of which we require the most positive one. The quantities

E and ρ are fixed, and the eigenvalues are solved for numerically as a function of ν.

The most positive eigenvalue for each ν is selected to produce a graph of f(ν); this

is shown in figure 3.2 for particular values of E and ρ. Following equation (3.19),

the derivative of this function is computed numerically to find the average current

(velocity) J . From section 2.4, we know that the current satisfies

J =
U

U +D
(R− L)

= 2 sinh(ν)
(ρe−E +Q(ν))2

(ρe−E +Q(ν))2 + ρ2e−E
,

(3.47)

The numerical and analytical results are compared in figure 3.3; for all values of

E and ρ tested, the two curves are indistinguishable. Alternatively, it can be seen

numerically that f(ν) is exactly the same function as −Q(ν). Given that f = −Q,

and that by definition dQ
dν = J [18], then the correct current must also follow from
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Figure 3.2: The nonequilibrium free energy f(ν) for the comb model for the
parameters ρ = E = 1.
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Figure 3.3: The average current (velocity) J(ν) for the comb model for the
parameters ρ = E = 1.

the negative derivative of f .

3.4.2 Comparison to the theory of Evans

As noted above, in the comb model the free energy f turns out to be identical

to the negative of the flux potential Q. This is in fact a general result, despite

an apparent difference in their definitions. As seen in equation (3.32), f is an

average of the quantity fi over all microstates, where the average is taken using

the equilibrium microstate distribution. According to Evans [18] Q is an average

of the same quantity but using the driven microstate distribution (see for example

equations (19) and (20) of the cited paper). One might expect these to be different

quantities as the microstate distribution is certainly altered by the driving in general,

but the infinite time limit ensures that there is no inconsistency. After a long enough

time the system will have forgotten its initial microstate and the initial transient

behaviour becomes insignificant when compared with the steady state behaviour.
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3.4.3 Connection to large deviation theory

A connection between NCDB and large deviation theory was made earlier in this

section when the rate function for the fluctuations of the current I(J0) was intro-

duced. The approach taken in this thesis has been to deliberately avoid phrasing

things in terms of large deviations and instead drawing the parallel with the familiar

case of equilibrium physics. However, the calculations seen in this chapter can all be

phrased as large deviation results if desired. Indeed, the generalisation of the free

energy away from equilibrium is the rate function and equilibrium free energies can

be expressed in this way as well [45].

The functions fτ and f̃τ were introduced by way of a definition, but then assum-

ing the existence of a long time limit is tantamount to assuming a large deviation

principle. The calculation of f in terms of the eigenvalue λ∗ of the matrix M has

been obtained in the large deviation literature, although in the context of quantify-

ing the fluctuations of an additive process given a large deviation principle for the

paths of a stochastic system. In the current work there is an explicit connection to

a whole class of physical systems and a fundamental significance to the fluctuations

of the current.

3.5 Conclusions

In this chapter I derived a free energy formalism for boundary driven systems using a

physically motivated expression for the probability distribution of trajectories in such

systems. This free energy generates physical results for the case of one dimensional

diffusion. This result requires a knowledge of the current statistics at equilibrium.

For Markovian systems with a finite state space I then expressed the free energy as

an eigenvalue of a matrix related to the transition matrix of the Markov process;

this is expected to be much more useful for actual calculations as it only requires

knowledge of the local equilibrium rates. I have numerically tested this version of

the free energy against the comb model, for which analytical results are known, and

found an excellent agreement.

While the work in this chapter has provided strong evidence for the validity and

applicability of the free energy formalism, the models that I used for the test were

very simple single particle models. A stronger test would be to apply the theory
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to more complicated interacting systems. A prime candidate is the one dimensional

simple exclusion process, a lattice model consisting of hard core particles that can

hop to neighbouring lattice sites as long as they are empty. Similarly to the comb

model, if the left and right hopping rates are equal then it is an equilibrium model

called the symmetric simple exclusion process. This has been studied using large

deviation techniques [43], although generally with a different method of driving

than that considered here. Exclusion processes generally are model systems for

nonequilibrium steady states and much is known about them [32]. A. Simha et al.

have studied the two particle symmetric exclusion process using NCDB [19], but two

particles is the only case for which analytical results were obtained. The study of

the symmetric simple exclusion process using the free energy formalism, particularly

the approach in section 3.4, could prove to be very fruitful. In addition, it would be

most useful to form a general connection with the free energy at equilibrium. This

is a difficult problem as the free energy derived here is based on trajectories rather

than microstates, but if achieved it could be a vital calculational tool as much is

known about equilibrium free energies.

Finally, the free energy concept could be combined with the ideas of the previous

chapter in order to produce a free energy approach to sheared athermal systems.

As discussed in that chapter, there is little in the way of a unifying framework for

athermal systems, but this approach could provide some general insight into the

field.



Chapter 4

The rotor model: a simulation

study

4.1 Introduction

The most common example of a boundary driven system is a sheared fluid. Typi-

cally a fluid is placed between two boundaries that are then moved relative to each

other; in the most common cases the boundaries are either concentric cylinders

(Taylor-Couette flow), a cone and plate or two parallel plates. The rheological or

flow properties such as the stress for a given shear rate or shearing protocol can then

be measured. As mentioned in chapter 1 the simplest fluids are Newtonian fluids

such as water, but many fluids will exhibit more complex behaviour in the form of

viscoelasticity, a response to perturbations that is partly viscous and partly elastic

in character leading to a dependence of the flow properties such as viscosity on the

speed at which they are perturbed. The complex flow is due to the presence of

some mesoscopic structure, on a scale smaller than the sample size but much bigger

than the atomic scale. For example, if a polymer solution is sheared then it could

encourage the individual polymer chains to align with each other more than they

otherwise would. This change in structure then has a feedback effect on the flow

itself, for example, by making it easier to shear, leading to a complex relationship

between the macroscopic and mesoscopic scales. This mutual dependence can result

in nonequilibrium phase transitions [46]. As well as measuring rheological proper-

ties, the mesostructural properties can be investigated directly using a number of

techniques, including flow birefringence [47, 48], nuclear magnetic resonance [49, 50]

41
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and small angle neutron scattering [51, 52].

Examples of complex fluids are polymer solutions [53, 54], colloidal suspensions

[55, 56] and surfactant solutions [57, 47], of which the latter provide a particularly

interesting case. Surfactant molecules have a polar headgroup and a non-polar tail,

usually a hydrocarbon chain. These parts of the molecule are hydrophilic and hy-

drophobic respectively, meaning that the molecules will often huddle together to

hide away their hydrophobic tails while maximising the exposure of the headgroup

to the solvent, in structures called micelles. The formation of micelles results in a

loss of translational entropy and so will only happen at a critical micelle concen-

tration where the energy gain from protecting the hydrophobic tails from the water

outweighs the entropic penalty for doing so. The structures formed include lamel-

lae and vesicles. Wormlike micelles are long cylindrical arrangements of surfactant

molecules that behave in many respects like polymers, being effectively one dimen-

sional chains, but the chains can break and combine so they cannot be modelled

as having a constant size. Wormlike micelle solutions can be observed to undergo

shear banding [47]. Another unusual phase is the so-called onion phase in which

multilayered spherical vesicles are formed [57].

The properties of complex fluids are typically captured theoretically using consti-

tutive models, normally tensorial models that define the stress tensor in terms of the

mesoscopic structure, for example the (diffusive) Johnson-Segalman model [58, 59].

The dynamics of the structure is specified and then the model can be solved for

the flow properties either in or out of the steady state, usually numerically. An

interesting case is that of shear banding, mentioned in chapter 1, where two macro-

scopic regions of the fluid exist at a common shear stress but different shear rates.

This is indicated theoretically by a negatively sloping constitutive curve as shown

in figure 4.1; the negative slope means a small fluctuation to a higher shear rate is

not penalised and the system would run away to higher shear rates. As the shear

rate is increased from zero, the stress is seen to increase until it reaches a partic-

ular value Σ∗. After that point, the system separates out into two bands of low

shear rate γ̇1 and high shear rate γ̇2, of sizes determined by the overall shear rate:

f1γ̇1+f2γ̇2 = γ̇, where f1 and f2 are the fractions of the system occupied by the low

and high shear rate bands respectively. If the shear rate continues to be increased

the stress remains constant up until the upper value γ̇2, after which the flow is once
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Figure 4.1: A typical theoretical constitutive curve for a shear banding fluid.

more homogeneous and the stress starts to increase again. The range of shear rates

for which homogeneous flow is not stable covers up all of the negative slope in the

underlying theoretical curve.

While tensorial models are needed to describe real fluids, simpler non-tensorial

models have made appearances in the literature, such as the toy model investigated

by P. D. Olmsted and others which involves only the shear stress [60, 61], and can

reproduce features such as the instability in the constitutive curve described above.

In a similar vein, a toy model of a sheared complex fluid is considered in this chapter.

The rotor model was used by Evans et al. to test the predictions of NCDB [41]. The

version investigated here is simplified in that the potential used is easier to work

with, both analytically and numerically. I first define the model in section 4.2 and

link it to other models in statistical mechanics. The rest of the chapter describes

the results of the simulation of the model.

4.2 The model

The model consists of a linear chain of rotors that interact with nearest neighbour

forces. At any moment in time, each rotor j is characterised by its angle θj(t)

relative to an arbitrary zero line, and its angular velocity θ̇j(t); these will normally

be referred to as positions and velocities. The torque fi,j acting between nearest

neighbour rotors with labels i and j has three components: conservative, dissipative
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and stochastic. The conservative force is a simple periodic function:

f ci,j = α sin(θi − θj), (4.1)

where α is a constant; the dissipative force is linear in the angular velocity difference:

fdi,j = µ(θ̇i − θ̇j), (4.2)

where µ is a constant coefficient of friction; and the stochastic force is written as

f si,j = σξi,j(t), (4.3)

where σ is a constant that measures the strength of the stochastic force. As I will

mostly be using σ2 in what follows, I shall call σ2 the noise strength.

The first two expressions depend only on relative angles and velocities, whereas

the third force is uncorrelated with the state of the system and will be given in more

detail below. As the forces on the rotors only depend on relative velocities, the

system is Galilean invariant: an identical constant velocity may be added to every

rotor and the model will not change its behaviour. The dependence on relative

angles likewise means that the zero of angle is unimportant. Note also that the first

two forces are manifestly odd in the sense that f ci,j = −f cj,i, and similarly for fdi,j, so

that Newton’s third law holds for these forces. For convenience, f si,j is also defined

to satisfy Newton’s third law: ξi,j(t) = −ξj,i(t). With this restriction, angular

momentum is exactly conserved in the model.

Each ξi,j(t) is a Gaussian white noise process. White noise is a stochastic process

with zero mean whose values at different times are completely uncorrelated, and the

Gaussian qualifier refers to the fact that at any moment in time the value of the

noise is drawn from a Gaussian distribution. As a result the term ξi,j(t) satisfies the

following:

〈ξi,j(t)〉 = 0, (4.4)

〈ξi,j(t)ξi′,j′(t′)〉 = (δi,i′δj,j′ − δi,j′δj,i′)δ(t − t′), (4.5)

where δ(t − t′) is the Dirac delta function. The unusual form of the correlation
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takes into account the fact that stochastic forces on different rotors are uncorrelated

except for when the two forces are between the same pair of rotors, in which case

the restriction to follow Newton’s third law comes into play.

The stochastic force f si,j mimics the effect of coupling to a heat bath. The

fluctuation dissipation theorem relates the noise strength σ2 to the temperature of

the heat bath and the friction coefficient µ:

σ2 = 2µkBT. (4.6)

This relation ensures that with zero driving the system will arrive in a Boltzmann

distribution with temperature T . The simulation data in this chapter uses the

thermal energy kBT instead of σ2 to characterise the strength of the thermal noise.

The forces chosen are of the simplest form available. A similar model could be

defined with the friction given by a different odd function, or some other conservative

force that is periodic with period 2π, but the linear friction and sinusoid are the

easiest to work with. The conservative force used here is derived from a potential

U(x):

U(x) = −α cos(x). (4.7)

With the forces thus defined, the equation of motion of a single rotor is as follows:

Iθ̈i = fi+1,i + fi−1,i

= α[sin(θi+1 − θi) + sin(θi−1 − θi)] + µ[θ̇i+1 − 2θ̇i + θ̇i−1] + σ[ξi+1,i + ξi−1,i],

(4.8)

where I is the moment of inertia of the rotor, which is identical for all of them.

This is clearly not a model of a real fluid, but is instead a toy model that will

hopefully yield much interesting physics and has qualitative similarities to a real

fluid. A complex fluid consists of components that will interact with each other if

they are close enough, meaning that to slide past each other these components must

overcome potential barriers in a similar way. In order to move past each other (that

is, go through a relative rotation), the rotors similarly have to overcome a potential

barrier.
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4.2.1 Connection to previous models in statistical mechanics

The rotor model as defined above has connections to many other models, a few of

which are mentioned here. It should be noted that even though for example the

conservative forces may be of the same form as other models, the rotor model is a

full dynamical system with dissipation and inertia, in addition to which it will be

driven out of equilibrium by boundary driven shear.

The XY model

The XY model is a well known lattice based model whose constituents are the two

dimensional spins s = (sx, sy). There is a coupling between spins that is usually given

by their scalar product: H(si, sj) = α(1−si ·sj) = α(1−cos(θi−θj). At equilibrium

in one dimension, the spins are disordered except at zero temperature; this is a

common although not completely general property of one dimensional systems in

statistical mechanics [62]. At equilibrium in dimensions greater than two, the model

has a critical value of the coupling below which it is disordered but above which

it is in an ordered phase, and in dimension two, the situation is somewhat more

complicated [63].

The equilibrium rotor model is equivalent to the one dimensional XY model,

so knowledge of the equilibrium XY model specifies the equilibrium behaviour of

the rotor model. Once it is driven away from equilibrium it is something new. In

addition to the coupling in the XY model there is a dynamic coupling between rotors

by way of friction.

The Kuramoto model

The Kuramoto model [64] is a simple model of phase coupled oscillators. The equa-

tion of motion for a rotor j in the original Kuramoto model is given by

θ̇i = ωj +K

N
∑

j=1

sin(θj − θi). (4.9)

The numbers ωj are the natural frequencies of the oscillators, the rate of progression

of phase if there were no coupling between oscillators. They are typically random

numbers drawn from some continous distribution; in the rotor model this distribu-

tion would be a delta function centred on zero as the rotors want to be at rest if
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Figure 4.2: The sliding block representation of Lees-Edwards bondary con-
ditions. The angular coordinate runs horizontally, while the spatial coordinate

runs vertically.

possible. By comparing with the equation of motion (4.8), we see that this corre-

sponds to the overdamped case of the rotor model. The interaction term is of a

global type: the motion of a single oscillator is coupled to all others, unlike in the

rotor model where the interactions are of nearest neighbour form.

The original model was created as a simple model of synchronisation, and can be

solved in the large N limit to find regimes where the oscillators are all synchronised,

partially synchronised, or all unsynchronised. This is quite a feat for a fully nonlinear

model; the rotor model is considerably more complicated and will not yield to the

same techniques. The Kuramoto model does however provide us with a complex

quantity that describes the synchronisation of the oscillators, namely

keiψ =
1

N

N
∑

j=1

eiθj . (4.10)

k is a number between zero and one that measures the phase coherence of the

oscillators; synchronisation is indicated by a nonzero value of k.

4.2.2 Driving the system out of equilibrium

As defined so far, the system will remain in equilibrium with the angular difference

between neighbouring rotors following a Boltzmann distribution. On average, neigh-

bouring rotors will have zero angular difference and zero relative velocity. In order
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to produce a boundary driven system, the ends of the system are turned relative

to one another at a constant rate, in the same way that a constant shear rate can

be produced in a fluid confined by two parallel plates, by moving them at constant

non-zero relative velocity.

Lees-Edwards boundary conditions were first introduced in order to perform

molecular dynamics simulations of fluids undergoing planar shear [65]. The bound-

ary conditions used in the rotor model are very similar to this situation but with

angular variables. The sliding block representation of the boundary conditions is

shown in figure 4.2. With ordinary periodic boundary conditions, a rotor at one

end of the system would interact with an image of the rotor at the other end. With

Lees-Edwards boundary conditions, the images are moved (rotated) at a constant

speed, with the upper and lower images moving in opposite directions. If the system

contains N rotors, then the rotors numbered 1 and L will interact with imaginary

rotors that we may label 0 and N + 1. Instead of having θ0 = θN and θN+1 = θ1,

we have:

θ0 = θN −Nγ̇t (4.11)

and

θN+1 = θ1 +Nγ̇t, (4.12)

where Nγ̇t is the total shear applied to the system at time t. It is easy to see, for

example by summing the difference in velocities between neighbouring rotors across

the entire system (i.e. including the pair of rotors 1 and 0 or N and N +1, but not

both), that the system as a whole now has a non-zero shear rate of size γ̇. These

boundary conditions, like ordinary periodic boundary conditions, do not introduce

any edge effects; in this scheme the rotor labelling is nothing more than convention.

4.2.3 The continuum limit

The rotor model is unusual in that it is not clear how to go about taking the con-

tinuum limit. Naively taking the limit of small inter-rotor distance in the equations

of motion and introducing a field θ(x) leads to a topologically different system than

the microscopic one. In the original system, if a rotor turns relative to a neighbour

by an angle of 2π then the system is in exactly the same state as it was originally

in terms of forces. In the continuous system, if two areas of the chain undergo a



4.3. Simulation results 49

relative rotation of 2π then the fluid in between gets twisted as well. This produces

a restoring force that wants to untwist the chain back to its original position. This

does not bode well for shearing the system; it would be similar to endlessly twisting

up a rubber tube and a steady state would not be reached as a constantly increasing

stress would be required. The conclusion is that the rotor model is an intrinsically

discrete model and must be treated as such.

4.3 Simulation results

With no hope of exactly solving the model analytically, the equations of motion

are numerically timestepped in order to find the properties of the steady state. The

model as described contains five parameters: the moment of inertia I, the amplitude

of the potential α, the friction coefficient µ, the noise strength σ2 and the shear rate

γ̇. In the following I and α are set equal to one, which amounts to a particular

choice of units for moment of inertia and time. We are left with a three dimensional

parameter space to explore, consisting of µ, σ2 and γ̇.

4.3.1 Simulation method

The equations of motion (4.8) with the boundary conditions described in section

4.2.2 were numerically timestepped using an algorithm described in appendix B.

Apart from the velocity profiles in the following section, each data point shown is

the average of three independent simulations, that is, three simulations. All results

shown are for systems of 512 rotors unless otherwise noted; some simulations were

repeated with 1024 rotors but no significant deviations in behaviour from the smaller

system size were found.

The initial conditions for the model were designed to be as unbiased as possible.

The initial positions were randomly drawn from a uniform distribution over the

interval [−π, π]. The initial velocities were given according to uniform flow with an

additional random velocity, the latter being drawn from a Gaussian distribution with

a variance determined by the temperature. Some simulations were repeated with

the initial velocities given just by the random velocity, without an overall velocity

gradient; these appeared to reach the same steady state but took longer to get there.

After startup, the model was given a duration of 105 time units to reach a steady



Chapter 4. The rotor model: a simulation study 50

0 50 100 150 200 250 300
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

S
tre

ss

Time

(a)

0 200000 400000 600000 800000 1000000 1200000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

S
tre

ss

Time

(b)

0 50 100 150 200 250 300
0

100

200

300

400

500

P
ot

en
tia

l e
ne

rg
y

Time

(c)

0 200000 400000 600000 800000 1000000 1200000
0

100

200

300

400

500
P

ot
en

tia
l e

ne
rg

y

Time

(d)

Figure 4.3: Time series for the stress and potential energy in a typical simu-
lation.

state; in practice, all simulations appeared to settle down much more quickly than

that. In all cases the average stress, potential energy and other quantities rapidly

approached a constant value plus fluctuations and so the system was considered to

be in a steady state for all intents and purposes; however, see the discussion in the

following section about what constitutes a steady state in this model. Typical time

series of the stress and internal energy are shown in figure 4.3, at early times and

over the course of the whole simulation.

4.3.2 Velocity profiles

The most visually obvious output of the simulations is the velocity profile in the

fluid. Typical examples for the parameters kBT = 0.01 and µ = 0.2 are shown

in figure 4.4. For low enough γ̇, µ and σ2 neighbouring rotors can lock together,

staying at a fixed relative angle on average and thus behaving like a solid under

strain. Following the terminology of Büttiker et al. [66], the pair of rotors is then
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Figure 4.4: Examples of time averaged velocity profiles for kBT = 0.01 and
µ = 0.2. Plot (f) is a blowup of a region of (d), shown so that the locked rotors

are apparent.
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Figure 4.5: Examples of time averaged velocity profiles for kBT = 0.05 and
µ = 0.2.
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called locked; if it is not locked, it is running. The entire system cannot lock as it

must sustain a shear rate somehow, so some degree of running will always occur.

Note that the converse is not true: locked states cannot always occur, as the locked

rotors feel only a conservative force on average due to their lack of relative velocity.

The conservative force is sinusoidal and therefore bounded (by one in the current

units); if the average stress exceeds one then no rotors can stay locked. This provides

an upper bound on the existence of such profiles, although the actual limit is lower

due to fluctuations.

At very low shear rates, of the order of 10−3, the system exhibits uniform flow

(figure 4.4a). At around γ̇ = 0.005 there are a small number of solid regions sepa-

rated by single running pairs of rotors (figure 4.4b). As the shear rate is increased

these solid regions break up into smaller regions still separated by isolated pairs of

running gaps (figure 4.4c). Eventually there are some regions that contain more than

two consecutive rotors in relative rotation, while the solid regions become of smaller

size (figure 4.4d). At high enough shear rates the profile is always uniform, with an

average relative velocity that is the roughly the same for all neighbours (figure 4.4e);

no more solid regions are seen from γ̇ ≈ 2.75 onwards. The solid regions are very

robust, existing for the entire averaging time of 106 time units without breaking.

At the higher temperature kBT = 0.05 and the same friction coefficient 0.2,

there is a similar progression of large solid regions splitting into smaller ones before

disappearing as γ̇ is increased. In this case the extra thermal noise has the effect of

blurring the boundaries between solid regions so that the jump in velocity between

steps occurs over a liquid-like region. The progression is shown in figure 4.5. Uniform

flow for this averaging time is seen at a lower value of γ̇, approximately 1.5. In

addition to this, there is again a uniform phase seen at the lowest shear rates. At

kBT = 0.1 and µ = 0.2 no solid regions are seen in the profiles at any shear rate

tested.

The low shear rate uniform regimes are due to thermal fluctuations that result in

a lack of long term memory. If the shear rate is very low, then neighbouring rotors

undergo full relative rotations (slip) very rarely at a rate determined by γ̇. If the time

between slips is so long that the system has forgotten which rotor pair slipped last

(i.e. if that time is longer than some appropriate correlation time), then every rotor

is equally likely to slip next. The velocity profiles shown are therefore dependent



Chapter 4. The rotor model: a simulation study 54

-5 5
Φ

-5

5

Ueff HΦL

Figure 4.6: The effective potential used in the calculation of the escape rate
in a solid region for the parameters α = 1, Σ = 0.5.

on the interplay between shear rate, the correlation time and the averaging time.

In particular, at any finite temperature locked states cannot be a part of the true

steady state as any noise in the system will eventually cause them to break. When

averaged over the longest periods of time all states should appear uniform at any

nonzero temperature.

An order of magnitude estimate of the breaking due to thermal noise can be

obtained via the use of Kramers escape rate theory [67, 68]. In its simplest guise

this is concerned with the thermally activated escape of a particle from a metastable

state of a one dimensional potential, i.e. a potential well. For a deep enough well

or low enough temperature, the particle will effectively be in equilibrium in the

metastable state and it will only rarely be excited over a barrier and out of the well.

In general the rate of escape rK from the metastable state follows an Arrhenius

form:

rK = Ae−∆U/kBT , (4.13)

where ∆U is the height of the potential barrier blocking its escape, and A is a

prefactor that contains some more details about the system. For moderate to strong

friction µ, A was found by Kramers to be

A =

(
√

µ2

4
+ ω2

b −
µ

2

)

ω0

2πωb
, (4.14)

where ω0 is the curvature of the potential at the bottom of the well and ωb the

curvature at the top of the barrier. While this expression is not valid for low friction,

in this analysis I use it for all µ - I am only looking for a very rough approximation to
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Figure 4.7: The number of running pairs measured in simulation for µ = 0.2.
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0.05; triangles, 0.1.

the escape rate, and the dominant behaviour is given by the exponential in equation

(4.13).

In the current situation, the role of the particle position is played by the relative

angle between neighbouring rotors φ. In the solid region it lives in a potential that

is roughly given by Ueff(φ) = −2α cos(φ) − 2Σφ, where Σ is the average stress in

the system. The linear term reflects the fact that the system is under strain and

so there is a nonzero force Σ from each neighbour on average. A plot of Ueff(φ) is

show in figure 4.6. In the solid region the rotors lie at a preferential angle such that

φ spends most of its time in the bottom of the potential wells. Note that there are

no minima for Σ ≥ α, corresponding to the fact that the solid region has an upper

bound to the stress that it can support due to the boundedness of the potential. The

difference between the escape rates to the right and left wells then gives an estimate

for the thermal shear rate γ̇K .

The inverse of this shear rate tK = γ̇−1
K gives an estimate of the time between

thermally activated hops. If the averaging window used is much larger than tK then

many thermally activated breakages will occur and a uniform phase will be seen. For

kBT = 0.01 and µ = 0.2, with a stress Σ = 0.55 taken from the simulations, tK is

found to be 2× 1026: vastly greater than the averaging time of 106. For kBT = 0.01

and Σ = 0.59 (the latter also determined empirically) we find tK ≈ 2.5× 105. This

is fairly close to the averaging time so that some breakage is seen, concentrated

around the areas with the largest fluctuations, the ends of the solid regions. For

kBT = 0.1 and Σ = 0.5, tK ≈ 8600 or nearly two orders of magnitude less than
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the averaging time, so we would expect to see more thermal breakage and thus a

roughly uniform flow. This analysis is only approximate as the requisite conditions

for Kramers’ theory may not always hold and fluctuations in the solid regions are

neglected, but is corroborated by the simulation results. The number of running

pairs seen is plotted in figure 4.7 for µ = 0.2 and various temperatures; running in

the simulations was defined as having undergone a relative rotation of at least 2π

over the averaging period.

Increasing µ to 1.0 destroys the solid regions previously seen. A higher friction

coefficient would result in a higher average stress for the same velocity profile; if

that stress is now too high to support solid regions then the same profiles will not

be valid. This leaves open the possibility of observing solid regions at lower shear

rates, but this has not been observed down to shear rates of 10−4.

4.3.3 Constitutive relation

One of the most important things to measure from a rheological perspective is the

constitutive equation of the fluid, the stress Σ as a function of shear rate γ̇. Examples

for various parameters are shown in figure 4.8. In all cases, at high shear rates the

relation takes the Newtonian form Σ ≈ µγ̇; µ plays the role of the viscosity of the

“fluid”.

The curves for kBT = 0.01, 0.05 and 0.1 at µ = 0.2 (figure 4.8a) consist of

three distinct regions. At low shear rates Σ changes rapidly as a function of γ̇
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before levelling out to a rough stress plateau, then at high shear rates we see the

Newtonian behaviour just mentioned. For kBT = 0.01 the plateau ends at roughly

the same value of shear rate that uniform flow sets in, although that is not the case

for kBT = 0.05. At the higher temperature of kBT = 0.5 the plateau is effectively

lost although the curve is still nonlinear. In general the plateau region is where we

find some locked gaps; as the shear rate is increased, more and more begin to run

in order to accommodate the imposed shear rate at roughly the same stress. When

all the gaps are running, no more locked pairs of rotors can be broken and so the

only way of sustaining an increased shear rate is for the average relative velocity to

increase; this comes with a necessary increase in the frictional part of the stress.

At very low shear rates, the plateau in the kBT = 0.01, µ = 0.2 curve is preceded

by a sudden increase in stress. A negative slope in the constitutive curve indicates

that the system may not be in its steady state by the same argument used to predict

shear banding instabilities from theoretical models: the negative slope means that

any small fluctuation away from the steady state shear rate will not be opposed.

Initially it was thought that this is due to finite size effects, but simulations of a

system of 1024 rotors instead of 512 show the same behaviour. The reason for this

remains unknown.

At µ = 1.0 (figure 4.8b there is no clear plateau for the shear rates tested,

although the kBT = 0.01 curve does begin to level off, indicating a possible plateau

at lower γ̇. The curves for higher temperatures show a decrease towards zero at low

shear rates before any plateau sets in.

4.3.4 Synchronisation and the Kuramoto order parameter

The Kuramoto order parameter k is shown in figure 4.9. This is the real part of

the time average of the complex quantity defined in equation (4.10). At low shear

rates k is generally higher; when the majority of gaps are locked, k is close to one

as nearly all rotors are rotating in a group of the same speed.

For µ = 0.2 at the two lowest temperatures, figure 4.9a, there is again an apparent

change at roughly γ̇ = 2.75 after which k levels out from an initial decrease. At the

lowest temperature, kBT = 0.01, the decrease in k is basically linear up until this

point. At the highest temperature shown, kBT = 0.5, the decrease is smoother,

similar to the smoother behaviour of Σ(γ̇) when compared to lower temperatures.
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Figure 4.9: The Kuramoto order parameter k measured in simulation for a
range of temperatures and friction coefficients. Different symbols denote dif-
ferent temperatures kBT : squares, 0.01; circles, 0.05; triangles, 0.1; diamonds,

0.5.

Increasing µ again destroys the structure seen at low temperature to give a smooth

curve, as seen in figure 4.9b.

This order parameter alone may indicate a transition at γ̇ ≈ 2.75 for µ = 0.2

for kBT = 0.01 and 0.05; for the lower of the two temperatures, this value is in line

with the qualitative changes in the velocity profile and constitutive curve, namely,

the loss of any locked gaps and the destruction of the stress plateau. k might exhibit

a singularity in that its derivative could be discontinuous at the transition point, if

the linear decrease changes abruptly to a horizontal line across the axis. Further

simulations on a larger system are needed to confirm this. The picture is not so clear

cut at higher temperatures; kBT = 0.05 exhibits locked gaps and a stress plateau,

but after its initial decrease k is significantly above zero, although it does become

small eventually, and also exhibits a small bump. The kBT = 0.1 system behaves

in a similar fashion. The reason for the bump is unclear as it does not seem to

correspond with any other change in behaviour.

4.3.5 The internal energy

The internal energy density u is defined as N−1
∑

j(1− cos(θj+1 − θj)), where N is

the number of rotors in the system. The addition of one is for convenience, so that

when all the rotors are aligned u it reaches its minimum value of zero. Note that the

kinetic contribution to the total energy is not included, as it is not Galilean invariant
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Figure 4.10: The internal energy density measured in simulation for a range
of temperatures and friction coefficients. Different symbols denote different
temperatures kBT : squares, 0.01; circles, 0.05; triangles, 0.1; diamonds, 0.5.

and therefore not very informative as it is different in each frame of reference. The

time averaged energy density is shown in figure 4.10 for various parameters. There

is again some odd behaviour for kBT = 0.01, µ = 0.2 at the lowest shear rates just

like in the constitutive curve, but apart from that all plots show an increase towards

u = 1, a slight overshoot, and an approach back to one.

At high and low γ̇ the reason for this behaviour is clear. Thinking in terms of

relative angles, if a pair of rotors undergo a full relative rotation then they have to

overcome a potential barrier. While the journey up the barrier is determined by

the shear rate and is therefore slow, the way down the slope on the other side will

be quick in comparison. The relative angle then languishes close to the bottom of

the potential for a while until it is required to slip again. In addition, any rotors

locked together provide an effectively constant contribution to the potential energy,

the size of which depends on the stress. While the potential energy density always

lies below two, the locked pairs of rotors effectively lower that bound. In contrast, at

high shear rates and uniform flow every relative angle follows the path γ̇t to a close

approximation with only small deviations from it. The potential is sampled almost

uniformly in time and so cos(θj+1 − θj) ≈ cos(γ̇t) = 0, where an overbar denotes a

time average. The overshoot in between is in a region where the rotors move past

each other fast enough so that they sample the potential better than at low shear

rates but still with some asymmetry in the time spent moving up and down the

barrier. Note that the point of crossing the line u = 1 roughly corresponds with the
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Figure 4.11: The fluctuations of the internal energy density measured in sim-
ulation for a range of temperatures and friction coefficients. Different symbols
denote different temperatures kBT : squares, 0.01; circles, 0.05; triangles, 0.1;

diamonds, 0.5.

notable features of the previous sections.

The variance of the internal energy density is given by u2 − ū2. The data are

shown in figure 4.11. For µ = 0.2 (figure 4.11a) a clear peak is seen for kBT = 0.01

at roughly γ̇ = 3, but for kBT = 0.05 the peak is very small and at the higher

temperatures shown it is not distinguishable. The peak is reminiscent of a second

order phase transition, where at the critical point the fluctuations of the internal

energy, and accordingly the heat capacity, diverge. A similar peak can be seen in

figure 4.11b for µ = 1.0, shifted to a slightly lower value of γ̇, despite the fact that

there are no other indications of a transition there for that friction coefficient.

The fluctuations of the internal energy (not energy density) at kBT = 0.01 and

µ = 0.2 for different system sizes are shown in figure 4.12. The different plots are

scaled by the system size for comparison. A classic indicator of a phase transition

is a peak in the heat capacity, or the energy variance. In general the peak will

get sharper as the system becomes larger, indicating a well defined point where the

phase transition happens. Figure 4.12 does not show this, but instead shows that all

three system sizes give a very similar result. This indicates that even for a system

size of 256 rotors, we have essentially already converged to thermodynamic or large

system size behaviour of this quantity.

The variance as shown does not appear to diverge in the large system limit as

might be expected for a phase transition. This is to be expected as the internal

energy of the rotor model is bounded for any given system size, meaning that its
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Figure 4.12: The fluctuations of the internal energy measured in simulation
for the parameters kBT = 0.01 and µ = 0.2 for different system sizes, scaled
by the simulation size. The squares are the data for N = 256, circles N = 512,

and triangles N = 1024.

variance cannot grow arbitrarily.

4.3.6 The velocity correlation function

The velocity correlation function, defined by C(j, k) = 〈(θ̇j −〈θ̇j〉)(θ̇k −〈θ̇k〉)〉, gives
more evidence for a transition at γ̇ ≈ 2.75. Some correlation functions for kBT =

0.01, µ = 0.2 are shown in figure 4.13; C is plotted as a function of distance d = k−j.

At low shear rates the correlation is rather short ranged; increasing the shear rate up

to 2.5 leads to much longer range correlations. At γ̇ = 2.75 the correlations abruptly

disappear. Note that in the run up to the transition C(j, k) does not decay away

to zero within the system, indicating that finite size effects are probably important;

larger simulations with 1024 rotors instead of 512 show similar statistics.

4.4 Conclusions

In this chapter I have studied an idealised model of a complex fluid through simula-

tion. It was hoped that the rotor model would exhibit some qualitative properties of

a real fluid and help to develop intuition about boundary driven systems in general,

and it does indeed provide some rich behaviour, much of which is strongly reminis-

cent of real fluids. Repeat simulations and simulations started with different initial

conditions indicate that the model shows reproducible steady state behaviour, mean-

ing that the statistical mechanics seen in the previous chapters could apply. At low

shear rates and thermal noise the model shows a strong departure from Newtonian
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Figure 4.13: The velocity-velocity correlation function measured in simula-
tion for kBT = 0.01 and µ = 0.2.

flow, as shown by the inhomogeneous velocity profiles and the nonlinear constitutive

curves, at least for moderate to long timescales.

Various statistical averages indicate some sort of transition at γ̇ ≈ 2.75 for

kBT = 0.01, with signatures seen in the constitutive relation and the Kuramoto

order parameter k and the most striking evidence coming from a peak in the variance

of the internal energy. It seems very likely that there is a nonequilibrium phase

transition at this point. Close to a phase transition finite size effects could come

into play as correlation lengths diverge, making simulations more tricky in that

region. The transition at low temperatures could persist down to zero temperature;

the argument in section 4.3.2 for the eventual dissolution of solid regions at finite

temperature does not hold at zero temperature, so the transition may correspond

with a definitive structural change, the density of locked rotors going to zero. Zero

temperature simulations are currently in progress to test this idea. Phase transitions

in some one dimensional systems at equilibrium can be ruled out rigourously [62],
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barring transitions at zero (as in the Ising model) or infinite temperature. The

rotor model does not fall into that class of systems and so is free to undergo phase

transitions.

The measured constitutive curves provide an interesting comparison with real

experimental systems, where many fluids undergoing controlled shear rate experi-

ments exhibit a stress plateau bounded by two Newtonian flow regimes [51]. The

plateau is usually associated with some degree of inhomogeneity in the system; for

example, the work of Cappalaere et al. just cited provides evidence for a mixture of

isotropic and nematic phases of wormlike micelles in the plateau region. In addition,

advancing along the plateau involves some internal restructuring such as changing

the proportions of the different phases, or in the rotor model, removing some locked

pairs of rotors. The linear increase of the number of running pairs shown in figure

4.7 is also reminiscent of the balance of the high and low shear rate bands in shear

banding fluids, where the size of the latter is reduced in favour of the former as

shear rate is increased in order to maintain the global shear rate constraint. In the

rotor model the locked pairs constitute regions of extremely high viscosity as they

are never seen to shear on the timescale of the current simulations.

In addition to the zero temperature simulations mentioned above, there are areas

of parameter space that were not investigated in this work, such as the regimes

of high temperature, high shear rate, or very low shear rate. A more complete

investigation of parameter space would provide a wider picture to place the current

results in and may reveal more connections to experiment; in particular, unpublished

simulations of the rotor model performed by C. Hall have indicated velocity profiles

of conventional shear banding type [69].

Having described some phenomenology of the rotor model, the next step is to

try and give these features a theoretical explanation. This is the purpose of the next

chapter of this thesis.





Chapter 5

The rotor model: a theoretical

study

5.1 Introduction

Even though the rotor model is one dimensional and simple to write down, it is far

from being analytically tractable; any theoretical examination of it must necessarily

include some approximations. In this chapter I aim to analyse particular situations

seen in simulation before applying a more general method, built on the ideas of the

renormalisation group.

Renormalisation group (RG) theory is a very successful theoretical technique

developed in the last century to study the large scale properties of thermal and

quantum systems. Experimentally, it is seen that at a critical point there is no

discontinuous change in the order parameter (e.g. volume or magnetisation) but

there is instead some other singular behaviour, such as a divergence in specific heat

capacity. The latter typically diverges as |T − Tc|α, where α here is an example

of a critical exponent. Ordinary statistical mechanics fails at these points as the

correlation length becomes infinite. In particular, the mean field theory of phase

transitions, which deals in average values of the relevant quantities, fails to describe

these transitions accurately. Important progress was made by B. Widom, who in-

vestigated some ideas about the behaviour of critical systems and reproduced the

known relations between critical indices [70, 71]. Despite the apparent complexity

of the critical physics, critical points exhibit universality, whereby different physical

systems can behave in a similar manner around the critical point, dependent only

65
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on the symmetries and dimension of the systems.

The renormalisation group formalism includes all of these ideas in one setting.

Originating in particle physics, it was developed into a general calculational tool of

statistical physics. L. P. Kadanoff investigated a real space renormalisation group

method for the Ising model called the block spin transformation that reproduced

Widom scaling [2]. K. G. Wilson built on these ideas and produced a theory that

gives the critical behaviour of a model by integrating out high momentum variables

[72, 73]. The Wilson procedure is an example of a momentum space RG calculation

as opposed to a real space calculation.

This chapter is divided into three main sections. The first describes effective

medium theory in the model, where I approximate the environment of an individual

piece of the fluid in a simple manner to produce an analytically tractable model.

The second analyses a single isolated running pair of rotors of the kind seen in the

previous chapter. I ask under what conditions this arrangement may remain stable.

The third uses the ideas of real space RG to carry out an approximate coarse graining

procedure on the rotor model. Throughout the chapter the idea of linearisation of

fluctuations is used repeatedly.

5.2 Effective medium theory

Effective medium theory is a way of approximating the rotor model that is similar

to elementary treatments of the Ising model. With the equations of motion written

in terms of the relative angles φj = θj+1 − θj, one pair of rotors is singled out. The

forces from its neighbours are assumed to be constant, amounting to a force Σ on

each side - this is identified as the average stress throughout the system in steady

state. This is analogous to the treatment of the Ising model that most students learn

first: in evaluating the partition function, we must add up the Boltzmann factors for

neighbouring spins. This is a difficult task in general, and is simplified by assuming

that for one of these spins, the value of the neighbouring spins seen by it are all

equal to a constant that is the mean value of the spin. In the Ising model, this value

has the interpretation of magnetisation. The situation is the same here, with the

significant constant being the force or stress in the system. As in the Ising model,

this is a mean field model with a mean field of stress instead of magnetisation.
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The work in this section is done at zero temperature; this is not very general,

but will hopefully be relevant at least to small temperatures as well. The equation

of motion for a relative angle φi = θi+1 − θi is written as

φ̈j = gj+1 − 2gj + gj−1, (5.1)

where the inter-rotor forces gj are found from equation (4.8):

gj = fj+1,j = α sin(φj) + µφ̇j + σξj+1,j. (5.2)

The effective medium approximation is applied as follows:

φ̈j ≈ 2〈g〉 − 2gj

≈ 2Σ − 2α sin(φj)− 2µφ̇j +
√
2σζ(t).

(5.3)

where the average force from one rotor on its neighbour 〈g〉 is identified as the

average stress in the system Σ. The final term on the right hand side is a rewriting

of the stochastic forces so that the function ζ(t) is delta-correlated white noise. The

approximation corresponds to the effective potential used in section 4.3.2 and shown

in figure 4.6. As can be seen, the problem has been greatly simplified to a single

differential equation, an approximate equation of motion for the local dynamics of

the rotor chain. This is still a difficult equation to solve exactly as it contains a

sinusoidal nonlinearity, so approximate solutions are sought instead.

5.2.1 Harmonic expansion of the equation of motion

The relative angle φ(t) is expected to increase approximately linearly in time at

some speed s, with fluctuations about the general trend. The following form for

φ(t) is used:

φ(t) = st+
∞
∑

m=0

(am cos(mst) + bm sin(mst)). (5.4)

Here, the fluctuations are periodic in nature with a period determined by the average

relative velocity of the pair s. This expression can be substituted directly into the

equation of motion (5.3). If the fluctuations are small, i.e. am, bm << 1, then the

nonlinear term can be expanded to first order in these coefficients and a set of linear

equations results. There are two equations for each harmonic mode, which gives an
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Figure 5.1: The stress in the rotor model as calculated in effective medium
theory. The three curves correspond to different values of µ: black, 0.5; red, 1;

blue, 5.

infinite set of equations. In practice the upper limit on the sum is not taken to be

infinity, but is truncated at some low integer M to allow calculations to be done.

Any harmonics higher than M that appear in the equations are simply dropped,

equivalent to disregarding the faster modes of the fluctuations.

With these two approximations, analytic solutions can be found. The linear

system is solved for the Fourier amplitudes used, {am}, and the stress Σ which is

thus far unknown. This results in an expression for the stress in the system as a

function of the relative velocity, Σ(s).

The approximation is only valid for small fluctuations. This is quantified by

studying the modulus of each term in the sum. For any harmonic the sine and

cosine terms can be combined into one sinusoidal term with an overall prefactor

which is the modulus, given as
√

a2m + b2m for the mth harmonic. If any modulus is

greater than one, then we are not justified in neglecting the higher order products of

the coefficients, for example a2m. This may occur in some regions of parameter space,

given that the moduli are found as functions of the parameters of the model, but

not in others. In these regions the approximation breaks down and the particular

combinations of parameters that cause this are labelled invalid; regions of parameter

space in which this does not happen are called valid.

In the first harmonic case, the solution is approximated via φ(t) = st+a cos(st)+

b sin(st). After substitution into the equation of motion and linearisation treating a

and b as small quantities, three equations are obtained via equating coefficients of
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linearly independent terms:

a = 2(Σ − µs), (5.5a)

s2a = 2µsb, (5.5b)

s2b = 2(1 − µsa). (5.5c)

The solution is easy to obtain:

a =
4µ

s(s2 + 4µ2)
, (5.6a)

b =
2

(s2 + 4µ2)
, (5.6b)

Σ = µs+
2µ

s(s2 + 4µ2)
. (5.6c)

From the last equation we see that the stress Σ is given as a linear term µs plus

a nonlinear term that comes ultimately from the potential. For large s the curve

asymptotes to µs, but diverges as s → 0; the approximation becomes worse for low

s as can be seen from the solution for a, so this divergence can be safely ignored.

However, it doesn’t necessarily rule out a portion of negative slope in the Σ(s) curve,

which is of theoretical interest as it signifies nonhomogeneous flow, as mentioned in

section 4.1.

The calculation has been performed up to the third harmonic, i.e. with M = 3.

A comparison between the approximations at first, second and third harmonics is

shown in figure 5.2 reveals what at first appears to be qualitative differences between

the cases: the approximation up to first or third harmonic gives a stress that diverges

at low shear rates, whereas the second harmonic calculation gives a decrease to zero

stress as would be physically expected. However, when resticted to the parameters

for which the approximation is justifiable, the three approximations give very similar

results. In view of this only the first harmonic calculation is used as higher harmonics

merely add mathematical inconvenience for little or no gain.

Consider a chain of rotors undergoing uniform flow in a steady state, where each

rotor is spinning at a speed s relative to its neighbours. Each rotor then feels equal

but opposite forces from its neighbours, of magnitude Σ(s), which sum to zero. A

real system will fluctuate about this steady state. If a rotor increases its speed by

a small amount δs, then it feels a new force −Σ(s + δs) from the rotor on its left
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Figure 5.2: A comparison of the stress in effective medium theory with dif-
ferent highest included harmonics, for the value µ = 0.2. The three curves
correspond to different values of M : green, M = 1; blue, M = 2; red M = 3.
The vertical lines mark the value of s where the approximation becomes invalid;

the lines for M = 2 and M = 3 lie on top of each other on this scale.

and Σ(s − δs) from the rotor on its right. Expanding these forces to linear order

and summing gives an unbalanced force on the rotor of −2δsΣ′(s), with a prime

denoting a derivative. From this we see that if s is such that it falls on the negative

slope of the Σ(s) curve, then the fluctuation grows. This means that uniform flow

at such a shear rate is unstable and therefore inhomogeneous flow must result.

An obvious question therefore is where does the minimum in the stress occur in

the µ − s plane? Given the parameter values corresponding to the minimum, it is

simple to check if a and b remain small enough in that area to trust the approxima-

tion. To find the minimum we differentiate the expression for the stress and set the

resulting expression to zero. Disregarding the solution where µ = 0, this ultimately

leads to an equation that is a sixth order polynomial in s, but a quadratic in µ2.

The solutions for µ as a function of s at the minimum, called smin, are

µ = ± 1

2smin

√

1− s4min ±
√

1 + 4s4min, (5.7)

where the plus/minus signs are intended to be chosen independent of each other

to give four solutions. Clearly the two solutions with an overall negative sign are

not relevant. The other two may be real or imaginary depending on the contents

of the outer square root; it is found that only one is real for at least some values of

smin, that with the positive sign inside the square root. This solution is only real for

smin < 6
1
4 , where 6

1
4 ≈ 1.565, indicating that the minimum is never seen at higher

values of s than this. This curve is effectively the phase boundary, as found in this
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approximation, between uniform and non-uniform flow for that region of parameter

space where the approximation is valid.

Where, then, is the approximation valid? To answer this, the squared modulus

is set equal to one to give a relationship between s and µ which defines the boundary

of validity:

a2 + b2 =
4

s2(s2 + 4µ2)

= 1.

(5.8)

This is a quadratic equation in µ and a quadratic equation in s2. The solution can

be expressed as µ in terms of s or vice versa:

µ = ± 1

2s

√

4− s4, (5.9a)

s = ±
√
2

√

−µ2 ±
√

µ4 + 1, (5.9b)

where the plus/minus signs are interpreted in the same way as before. Once again

we only need the positive solutions, so the appropriate curve in the first case is clear.

For the second case, s in terms of µ, we can again discard the negative solutions and

then examine whether the remaining solutions are real; the useful solution is that

with the positive sign inside the square root. The position of the stress minimum is

compared with the boundary of validity in figure 5.3. The plot shows an area where

a negative slope in the constitutive curve is included in the valid region of parameter

space.

5.2.2 Comparison to simulation

The results are compared to simulations at kBT = 0.01, the lowest temperature

used, in order to limit any discrepancies due to the zero temperature used in the

calculations. The result in figure 5.3 indicates that there can be inhomogeneous

flow for applied shear rates of less than 1.56, depending on the value of µ. This is

qualitatively similar to simulation, but the region of inhomogeneous flow measured in

simulation actually extends to a much higher shear rate than this theory indicates,

almost up to γ̇ = 3 at µ = 0.2; see for example figures 4.7 and 4.8. This is the

opposite to what might be expected, that the zero temperature calculation would
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Figure 5.3: The position of the minimum of the Σ(s) curve (black) and the
boundary of approximation validity (red), for the first harmonic approximation.
Points to the left of the red line are invalid. There is a clear area of valid (µ, s)
pairs where the Σ(s) curve has a negative slope, shown in more detail in (b).

overstate the range of inhomogeneous flow, as temperature should smear out the

velocity profile to some extent. This discrepancy must then result from the mean

field approximation, which omits fluctuations that would otherwise destabilise the

uniform state.

Increasing µ by enough puts the system on the positive slope of the constitutive

curve; the simulations at µ = 1 confirm that this is the case but more simulations

are needed to see where the boundary is for a given shear rate.

5.3 Analysis of an isolated running pair of rotors

In this section, an isolated running pair in a chain of otherwise locked rotors is

studied. In contrast to the effective medium theory approximation used in the

previous section, the influence of other rotors on the chosen pair is not combined

into a featureless constant. Each relative angle φj is assumed to have a steady

increase in time accompanied by small fluctuations, similar to the assumption used

in effective medium theory in equation (5.4).

Instead of the single number s in the previous section, we now deal with a set of

average relative speeds sj and associated fluctuations ∆j:

φj(t) = sjt+ aj0 +∆j(t). (5.10)

aj0 is a constant for each j, and plays the role of the zero Fourier mode of the
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fluctuations. In the previous section there was no need to include the zero mode as

doing so would have just been a redefinition of the origin of time, which we are of

course allowed to do. In the current case, that freedom only allows the value of one

of the zero mode coefficients to be fixed, while the rest are still to be determined.

Substitution into the equation of motion (5.10) gives:

∆̈j =sin(sj+1t+ a0j+1∆j+1)− 2 sin(sjt+ a0j +∆j) + sin(sj−1t+ a0j−1 +∆j−1)

+ µ(sj+1 − 2sj + sj−1 + ∆̇j+1 − 2∆̇j + ∆̇j−1).

(5.11)

Even after linearisation with respect to the fluctuations ∆j the above problem is

practically as hard as the original one. The nature of the problem depends on the

specification of the speeds sj, so the simplest nontrivial choice is made: all are zero

except for one. This describes a pair of rotors moving with a non-zero relative

speed, sending out small amplitude waves into a surrounding chain of rotors. This

is expected to be a good description of running pairs in a real system if they are far

enough apart to be considered isolated and if fluctuations are small, such as for one

of the steps in figure 4.4b.

The fluctuations are defined such that they don’t carry any shear on average.

As in the previous section a Fourier series is used, but unlike the previous section

there would be no one frequency to use in a such a series in the general case. With

the special case of only one rotor pair carrying shear, the frequency is clear as

there is only one timescale to choose from, that associated with the velocity of the

chosen pair. The fluctuations can then be given as a truncated Fourier series; in

this work, only the first harmonic is included due to the amount of algebra involved.

The complex exponential representation of the series is used here as opposed to the

previous section, where real trigonometric functions were used:

∆j(t) = aj1e
ist + aj−1e

−ist. (5.12)

As the fluctuation is supposed to describe a change in a real angle, the condition

aj1 = (aj−1)
∗ is imposed, where * denotes the complex conjugate. This ensures that

each ∆j is real. The freedom in choosing one of the zero modes mentioned above is

exercised by setting a00 = 0.

With these prescriptions, the equations are solved for the Fourier coefficients. It
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is assumed that the system is infinitely long and that the fluctuations decay to zero

amplitude at infinity. Equating the average stress in the solid region, or equivalently

averaging the acceleration and setting it to zero, gives:

0 = sin(∆j+1)− 2sin(∆j) + sin(∆j−1)

= sin aj+1
0 − 2 sin aj0 + sin aj−1

0 ,
(5.13)

where the second equality follows after linearisation. This is solved by aj0 = a0 for all

pairs j inside the solid region. The average stress in the system is then Σ = sin(a0),

where a0 is the average relative angle in the solid region (i.e. a0 describes the amount

of twist in the chain). It can be seen that if the average stress is larger than one, the

description no longer makes sense as the average angle between rotors is now not a

real number. Physically, this indicates that the stress throughout the system is large

enough to overcome the barrier presented by the inter-rotor potential and that the

chain should break or slip at another place; clearly this violates the assumptions in

setting up this solution.

In solving the equations for the Fourier coefficients, a difficulty arises that was

not seen in the previous section. While the fluctuations about the steady state are

expected to be small, the zero mode coefficient that indicates the average twist in

the solid region is not necessarily small. When expanding the nonlinear terms to

first order in the fluctuations, the zero mode coefficient is included in the reference

state that we are expanding about:

sin(φj) = sin(sjt+ aj0 +∆j)

≈ sin(sjt+ aj0) + cos(sjt+ aj0)∆j .
(5.14)

Even after linearisation in the fluctuations (i.e {aj±1}), this is still a nonlinear prob-

lem in the unknowns as there is, for example, a cos(a0) term appearing in all equa-

tions for relative angles throughout the solid region, and a0 is not known a priori.

This is dealt with by pretending that c = cos(a0) is a known number and then

analytically solving the equations, which are still linear in the Fourier coefficients

for the first harmonic. The solution is the set of coefficients given in terms of the

number c and the parameters µ and s.

Having found these expressions, another piece of information is given to us by
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Figure 5.4: The function x(c) = ℜ(a1
0
) for (a) µ = 0.2 and (b) µ = 1.0.

Different colours correspond to different values of s: black, s = 1; blue, s = 1.5;
red, s = 2.

matching up the average stress in the solid region with the average stress inside the

running pair, which must hold in the steady state. The average stress in the solid

region was seen above to be sin(a0). Using force balance on average for the shear

carrying pair, we obtain:

0 = sin(a0 +∆1)− 2sin(st+∆0) + sin(a0 +∆−1)− 2µs (5.15)

When the first and third terms are linearised, the familiar sin(a0) results for each.

For the second term:

sin(st+∆0) ≈ sin(st) + cos(st)(a10e
ist + a−1

0 e−ist)

≈ 1

2
(a10 + a−1

0 ),
(5.16)

which is just the real part of a±1
0 . It is a simple matter to express the equations to

be solved in terms of the real and imaginary parts of the Fourier coefficients rather

than the coefficients themselves, to allow this piece of information to be easily used.

The final force balance equation is:

0 = sin(a0)−ℜ(a10)− µs. (5.17)

As the expressions for the coefficients (or equivalently their real and imaginary

parts) have been found in terms of c, the function x(c) is known, where x = ℜ(a10).
x(c) is too complicated to give as a closed form expression but is plotted for some
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parameter values in figure 5.4. A trigonometric identity tells us that sin(a0) =
√
1− c2, and we are left with an implicit equation for c:

0 =
√

1− c2 − x(c)− µs. (5.18)

This equation is solved numerically, and with a value of c for a given µ and s the

values of all the other coefficients follow.

Some example Σ(s) curves are given in figure 5.5. Example trajectories for the

middle rotor pair and some of the neighbouring pairs in the solid region are shown

in figure 5.6. The problem of approximation validity arises again as in the previous

section, but turns out not to be as serious. The approximation is again invalid at

low values of s but this affects a relatively small portion of the µ − s plane. The

areas that could be expected to be susceptible are in regions that are often denied to

us because for much of it Σ is larger than one and the approximation doesn’t apply

anyway. All the curves include a portion of negative slope.

The interpretation of a constitutive curve with a negative slope applies as in

the previous section. The situation corresponding to uniform flow there is a system

where all the shear is carried by isolated running pairs, each of which has the same

relative velocity s. The instability of the system to values of s on the downward

slope means that this situation is unsustainable, but again the configuration that is

selected to replace it is unknown. It could be a uniform or shear banded phase, but

it could still be phase with isolated running pairs, but with fewer of them or with

the shear unevenly distributed between the slip planes. A region of positive slope

indicates that the situation with identical velocity slip planes is stable.

The solution found gives some information as to the interaction of two slip planes

in the same system. In this approximation, the slip plane disturbs its environment

via linear waves that decay as they propagate. If there are two slip planes with

a solid region in between, they will only interact appreciably if the fluctuations

have not decayed significantly by the time they get to the other slip plane. This is

quantified in figure 5.7, which shows the decay length of the fluctuations, measured

in numbers of rotors, as a function of slip plane velocity for various values of the

friction coefficient. For µ = 0.2 and 0.5 we would expect them to be more stable as

the decay length is around three rotors at most.
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Figure 5.5: The stress in a system consisting of a single isolated running rotor
pair. The solution only exists at stresses below one, and becomes invalid below

a value of s that changes with the coefficient of friction.
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Figure 5.6: The relative angle of (a) the running pair of rotors and (b) the first
five rotor pairs to the right of the running pair as functions of time, for s = 1.2
and µ = 0.2. The further into the solid region, the smaller the amplitude of
the fluctuations about the average value. The fluctuations are successively out

of phase by the same amount, indicating a travelling torsional wave.
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Figure 5.7: The decay length of the disturbances from an isolated running
pair as a function of the running pair velocity s. Different colours indicate
different values of the friction coefficient µ: black, 0.05; red, 0.1; green, 0.2;

blue, 0.5.

As can be seen, a lower friction coefficient means that the waves decay less

quickly. As expected for linear waves, the fluctuations decay away at high frequen-

cies. There is a cutoff at low frequencies due to the failure of the approximation as

in effective medium theory, and no solutions can be found for low enough s anyway.

There is a peak in the decay length which is due to a resonance with the potential,

where the frequency of the waves happens to be around the natural frequency of

the potential. Importantly, the decay length is small for many parameter values,

indicating that the slip planes can sit a few rotors apart without disturbing each

other much.

5.3.1 Comparison to simulation

As in the previous section, the simulation data for kBT = 0.01 are used as this

was a zero temperature calculation. No solutions were found for µ = 1.0 which is

consistent with the uniform behaviour seen in simulations. For µ = 0.2, there is a

range of s values for which a solution can be found. The solutions extend all the way

up to Σ = 1 on the high s side, but are not present in simulation above the plateau

stress of around 0.59 (see figure 4.8a). This is due to the isolated assumption of the

approximation; for large enough γ̇ there are many more running pairs than locked

and they cannot be considered isolated in a large chain of locked rotors - eventually

there are no such large chains. The negative slope in the constitutive curves indicates
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that the values on the graphs would not necessarily be the ones measured, which is

good considering that the measured behaviour gives a stress plateau.

A more detailed analysis of the simulation data would be needed to identify a

decay length associated with the fluctuations from an isolated running pair, but

there are very clean situations such as γ̇ = 0.01 at kBT = 0.01 and µ = 0.2 where

the running rotor pairs are clearly isolated and could be studied in more detail

individually with the minimum of external influence.

5.4 Coarse graining in the rotor model

The general setup that will be used in this section is that of a single rotor j coupled

to two neighbours j + 1 and j − 1. The three rotors are described by their angles

and velocities as a function of time. At the microscopic level there is an equation

of motion for each rotor which involves coupling to its nearest neighbours via the

force f . The idea is to average over the dynamics of every second rotor along the

chain and express the force on the remaining rotors in terms of their next nearest

neighbours instead:

Iθ̈j = f(θj+1 − θj, θj−1 − θj, θ̇j+1 − θ̇j, θ̇j−1 − θ̇j)

= f̃(θj+2 − θj, θj−2 − θj, θ̇j+2 − θ̇j, θ̇j−2 − θ̇j).
(5.19)

So the force that rotor j + 1 feels due to rotor j is interpreted as being due to

rotor j − 1 instead. In general, the coarse grained force f̃ will have a different and

much more complicated form than that of f . This coarse graining takes us a step

towards the macroscopic system by averaging over small distance properties, giving

an insight into how the system behaves on a larger scale than the individual rotors.

The model is only considered to be in a steady state, so that the average values of

the forces from each side of rotor j should always be equal and opposite, and equal

in magnitude to the stress in the system Σ, regardless of which other rotors are used

to express the force.

Once the average has been performed, the remaining next nearest neighbours

are relabelled with consecutive numbers and the distance between them is redefined

to be one lattice spacing instead of two. The latter point means that the local shear

rate as calculated in the microscopic system, (θ̇j+2 − θ̇j)/2 for example, is now the
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relative velocity of nearest neighbours in the coarse grained system. The system is

regarded as independent of the small distance properties that were just averaged

out, so from here the same coarse graining can be repeated. In RG calculations the

idea is to do this over and over to leave only the largest distance properties. Note

that while the number of rotors is halved each time, a system of large enough extent

will ensure that the coarse graining can be carried out an arbitrary number of times.

In general, at each stage we require the physics to be identical; in the case of the

Ising model this means that the partition function retains the same form, and in

the scheme for the rotor model outlined here we require the new forces to be of the

same form as the old. This will necessarily require some approximations, on top of

those needed to solve for the dynamics of the middle rotor in the first place.

In the next section, I give the background to real space renormalisation and re-

produce an equilibrium calculation for the Ising model in order to give some context

for the nonequilibrium calculation. In section 5.5 I flesh out the ideas given above

concerning coarse graining in the rotor model, resulting in a set of RG flow equations

for the model in different flow regimes. In section 5.6 I use these equations to find

the fixed points of the RG flow and interpret the results.

5.4.1 Real space renormalisation at equilibrium: the Ising model

The one dimensional Ising model is defined as N spins positioned on sites of a regular

lattice. Each spin is given a number si = ±1 which signifies it pointing up or down.

Neighbouring spins have an energy of interaction given by −J0 − Jsisi+1, where J0

is a constant introduced for convenience. The partition function is given by

Z =
∑

si=±1

∏

i

eK0+Ksisi+1 , (5.20)

where K0 = J0/kBT , K = J/kBT and periodic boundary conditions are assumed

so that sN+1 = s1. It is common to refer to K0 and K as the coupling constants

of the model. The decimation procedure consists of performing the sum over spin

states for alternate spins, leaving a sum over half as many terms. This has the

effect of averaging over the short distance properties to define a new model where

the interactions are between next nearest neighbours instead. The decimation in

this case is simple as the partition function factorises. Doing the sum for one of the
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terms in the product over i gives:

∑

si=±1

eK0+Ksi−1sieK0+Ksisi+1 = 2e2K0 cosh(K(si−1 + si+1)). (5.21)

The partition function is now a product of many of these terms. In order to make

the right hand side of equation (5.21) look like the original terms, it is set equal to

eK̃0+K̃si−1si+1 ; K̃0 and K̃ are the renormalised coupling constants. By picking values

of the spins si−1 and si+1 two equations are derived that can be solved to give K̃0

and K̃ as functions of K0 and K. The answer is:

K̃ =
1

2
ln cosh(2K), (5.22a)

K̃0 = 2K0 + ln 2 +
1

2
ln cosh(2K). (5.22b)

So the partition function can be rewritten as a sum over every other spin in such a

way that it has exactly the same structure as the microscopic case, but with different

values of the couplings K0 and K. As the sum is identical in form, the procedure

can be repeated over and over, with K0 and K changing each time. The change of

the coupling constants with iteration is called the renormalisation group flow. If an

iteration does not change the values of the coupling constants then we are at a fixed

point of the flow: the system looks identical at larger length scales. The original

system is then considered to be in a phase with the macroscopic properties of the

fixed.

For the example here, the important coupling constant is K which describes how

likely it is that nearest neighbour spins will align. There are two fixed points for K,

denoted by a star: K∗ is zero or infinity. K∗ = 0 corresponds to an infinite tem-

perature state where the system is completely disordered, and K∗ = ∞ corresponds

to a zero temperature state where all the spins are aligned. We still need to know

what microscopic details lead to the respective fixed points, or in other words, the

stability of the fixed points. It turns out that starting from any finite K leads to the

infinite temperature fixed point, and the only way to get to the zero temperature

fixed point is to start off at zero temperature in the first place; in other words, it is

unstable. For the one dimensional Ising model then, long range order only sets in

at the special point of zero temperature.
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The calculation shown here is rather simple; in particular, the decimation scheme

results in exactly the same kind of system as we started with. This is typically not

the case; particularly in higher dimensions there will normally be new couplings

generated with each iteration which must be dealt with in some way. In order to

keep the simple iterative structure seen above, the extra couplings may be simplified

or neglected altogether in what are rather uncontrolled approximations. This will

be the case for the rotor model considered next.

5.5 Renormalisation of the rotor model

The starting point in contrast to the previous section is the equation of motion of a

single rotor:

Iθ̈j = α sin(θj+1−θj)+α sin(θj−1−θj)+h(θ̇j+1− θ̇j)+h(θ̇j−1− θ̇j)+ ξj+1,j+ ξj−1,j.

(5.23)

Here the frictional force, ordinarily written as µ(θ̇i − θ̇j), is written in terms of an

arbitrary function h. The moment of inertia is unimportant and is set equal to one

from here onwards. In principle, if we knew the equivalent of the partition function

for this nonequilibrium system we could sum over every second rotor as in the Ising

model example, but it is unknown. In place of this, the equations of motion contain

all of the physics needed to describe the system at a local scale.

Imagine an experimenter has been presented with a black box system, whose

properties they wish to measure. It consists of two rotors with some unspecified

medium hidden in between them. The experimenter may control the motion of

the visible rotors and measure the forces on them, but cannot probe the interior.

However, the apparatus does come with some helpful literature detailing the forces

that the rotors feel: one that depends only on the relative angle of the rotors, one

that depends only on their relative velocity and a stochastic force that is uncorrelated

with the state of the system. The experimenter now wishes to characterise these

forces more accurately.

First, the angle dependent force. To determine this, the experimenter must hold

the rotors apart at some fixed angle and measure the average force on them. They

can then collect data points which approximate the functional form of the force. If

the experimenter is compelled by the accompanying literature to accept that this
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force must have the form of a sinusoid, then they would fit a sinusoid to their data

points to extract the constant associated with the conservative force. If the force is

measured over time and the variance calculated, this experiment will also yield the

variance of the stochastic forces.

The simplest method of determing the velocity dependent force is for the exper-

imenter to turn the rotors at a constant relative velocity and measure the average

resultant force. Repeating this procedure at different velocities builds up a picture

of the frictional force between the two rotors.

With the knowledge that in between the two rotors is another rotor of the same

type, a theorist can calculate what the experimenter might measure. Given the

equation of motion (5.23), the motion of the boundary rotors θj±1 is fixed by what

the experimenter is doing, leaving a single differential equation to solve. In the

following sections, the equation of motion is expressed using the variable y which

measures the deviation from the average motion of the boundary rotors:

θj(t) =
θj+1(t) + θj−1(t)

2
+ y(t) (5.24)

In terms of y, the relative angles are

θj±1 − θj = ±θj+1 − θj−1

2
− y. (5.25)

It should be emphasised that this is a local procedure: I only ever consider three

consecutive rotors and the global shear rate constraint is not mentioned. In addition

it applies only to a homogeneously flowing region and so the results may not be valid

for the entire system unless it is homogeneous everywhere. If the system consists of

finite size differently flowing regions then the renormalisation group transformation

cannot be iterated an infinite number of times as the coarse grained system will

span two flow regimes, but even if this is the case then it may still give a useful

approximation if the size of the regions is large enough so that the coarse grained

parameters are close to the fixed point values.

5.5.1 The static rotor experiment

If the two outer rotors are held apart at a fixed angle δ, the rotor in between

will thermalise and be distributed in angle and velocity according to a Boltzmann
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distribution. On average it will be found halfway in between the two rotors at δ/2

where the size of the force from each is identical. In this section the friction force h

is kept as a linear form with friction coefficient µ. Using the fact that θj+1−θj−1 = δ

in equation (5.25), the equation of motion (5.23) can be written as:

ÿ = −2α cos

(

δ

2

)

sin(y)− 2µẏ + η, (5.26)

where the trigonometric identities sin(A + B) = sin(A) cos(B) + cos(A) sin(B) and

sin(A − B) = sin(A) cos(B) − cos(A) sin(B) have been used in rewriting the con-

servative force. It is derived from the potential −2α cos(δ/2) cos(y). η is the new

stochastic force, equal to the sum of ξi+1,i and ξi−1,i. It has a higher variance due

to the contribution of two forces:

〈η(t)η(t′)〉 = 〈(ξj+1,j(t) + ξj−1,j(t))(ξj+1,j(t
′) + ξj−1,j(t

′))〉

= 〈(ξj+1,j(t)ξj+1,j(t
′) + ξj−1,j(t)ξj−1,j(t

′))〉

= 2σ2δ(t− t′),

(5.27)

where the second equality takes into account that the stochastic forces from different

sides of rotor j are uncorrelated. Noting that the rotor also has a friction coefficient

of 2µ, we see that the temperature that rotor j experiences is unchanged, as can be

seen from equation (4.6):

kBT =
2σ2

2(2µ)

=
σ2

2µ
.

(5.28)

The distribution of y and ẏ is known thanks to the equilibrium conditions:

ρeq(y, ẏ) = Z−1
y Z−1

ẏ exp

(

−µẏ2

σ2

)

exp

(

4αµ

σ2
cos

(

δ

2

)

cos(y)

)

, (5.29)

where the normalisation factors Zy and Zẏ are given by

Zy =

∫ 2π

0
dy exp

(

4αµ

σ2
cos

(

δ

2

)

cos(y)

)

= 2πI0

(

4αµ

σ2
cos

(

δ

2

)) (5.30)
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and

Zẏ =

∫ ∞

−∞

dẏ exp

(

−µẏ2

σ2

)

=

√

πσ2

µ
.

(5.31)

Here In is a modified Bessel function of order n [74].

Now on to what the experimenter will measure. The frictional force on the

boundary rotors is zero on average, so the only contribution comes from the conser-

vative force α sin(θj − θj−1):

〈α sin(θj − θj−1)〉 = 〈α sin(y + δ/2)〉

=
α

Zy

∫ 2π

0
dy exp

(

4αµ

σ2
cos

(

δ

2

)

cos(y)

)

× [sin(y) cos(δ/2) + cos(y) sin(δ/2)]

=
α

Zy

∫ 2π

0
dy exp

(

4αµ

σ2
cos

(

δ

2

)

cos(y)

)

cos(y) sin(δ/2).

(5.32)

The integral involving sin(y) vanishes due to the integrand being odd. The remaining

integral can again be expressed in terms of a Bessel function [75], to give:

〈α sin(θj − θj−1)〉 = α sin

(

δ

2

) I1

(

4αµ
σ2

cos
(

δ
2

)

)

I0

(

4αµ
σ2 cos

(

δ
2

)

) . (5.33)

Using the fact that odd and even order modified Bessel functions are themselves odd

and even respectively [74], we see that the force is periodic in the angular separation

of the boundary rotors δ with period 2π, and that it is odd in δ so that the coarse

grained system still has equal and opposite forces between rotors.

Despite these properties, this force is clearly not the sinusoid that we want for

this renormalisation group flow. It is approximated by a sinusoid via expansion in

a Fourier series which is truncated after the first harmonic:

〈sin(θj − θj−1)〉 =
∑

n

bn sin(nδ)

≈ b1 sin(δ).

(5.34)

Note that constraining the force in this way this is a somewhat arbitrary assumption,

resulting in a (possibly very) lossy transformation. However, at this stage it is the
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Figure 5.8: The functions (a) f(x) and (b) g(x) defined in equations (5.37)
and (5.43) respectively. The dashed line in (a) represents the value x = 8/3π.

simplest route to be taken as any more complicated assumption would result in

additional coupling constants to be considered.

Given this approximation, the problem of finding α in the experimenter’s black

box system is reduced to finding the first Fourier coefficient b1:

b1 =
1

π

∫ π

−π
dδ 〈sin(θj − θj−1)〉 sin(δ). (5.35)

This integral cannot be done analytically but has some simple properties. The final

result is expressed in terms of a function defined by the integral:

α̃ = αf

(

4µα

σ2

)

, (5.36)

where f is defined by

f(x) =
1

π

∫ π

−π
dδ sin(δ) sin

(

δ

2

)

I1
(

x cos
(

δ
2

))

I0
(

x cos
(

δ
2

)) . (5.37)

f is plotted in figure 5.8a. As I1 is odd, f(0) = 0. The function asymptotes to the

value 8/3π, and is always less than one. Equation (5.36) describes the renormal-

isation group flow of the quantity α, in particular how it is coupled to the other

parameters undergoing renormalisation.

Now the experimenter measures the variance of the force on a boundary rotor.

The average of the squared force is given by

〈(µ(θ̇j − θ̇j−1) + α sin(θj − θj−1))
2〉 = 〈µ2ẏ2〉+ 〈α2 sin2(y + δ/2)〉, (5.38)
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due to the decoupling of position and momentum degrees of freedom at equilibrium.

The mean square frictional force is given by

〈µ2ẏ2〉 = µ2

Zẏ

∫ ∞

−∞

dẏ ẏ2 exp

(

−µẏ2

σ2

)

=
µσ2

2
.

(5.39)

The mean square conservative force is calculated as follows:

〈α2 sin2(θj − θj−1)〉 = 〈α2 sin2(y + δ/2)〉

=
α2

Zy

∫ 2π

0
dy exp

(

4αµ

σ2
cos

(

δ

2

))

1

2
(1− cos(2y + δ))

=
α2

Zy

∫ 2π

0
dy exp

(

4αµ

σ2
cos

(

δ

2

))

× 1

2
[1− cos(2y) cos(δ) + sin(2y) sin(δ)] .

(5.40)

The sine term again gives an odd integrand so its contribution vanishes, while the

term involving cos(2y) results in another modified Bessel function [75]:

〈α2 sin2(θj − θj−1)〉 =
α2

2

[

1− cos(δ)
I2
(

x cos
(

δ
2

))

I0
(

x cos
(

δ
2

))

]

. (5.41)

This quantity and 〈sin(θj−θj−1)〉2 are dependent on the relative angle of the bound-

ary rotors δ, but we require the stochastic force to be independent of the state of the

system at all times. Referring again to the thought experiment above, it is reason-

able that the experimenter may simply average over all the results that they obtain

at different angles. The final answer for the variance in the coarse grained system is

σ̃2 = σ2 +
µσ2

2
+

α2

2
g

(

4µα

σ2

)

, (5.42)

where the function g is defined by

g(x) =
1

2π

∫ π

−π
dδ

[

1− cos(δ)
I2
(

x cos
(

δ
2

))

I0
(

x cos
(

δ
2

)) − 2 sin2
(

δ

2

)

I21
(

x cos
(

δ
2

))

I20
(

x cos
(

δ
2

))

]

. (5.43)

g is shown in figure 5.8b. It is easy to show that g(0) = 1, and it can be seen from

the graph that g is a decreasing function.
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5.5.2 The moving rotor experiment at high shear rates

In this experiment, the boundary rotors are given a constant nonzero relative veloc-

ity. Instead of θj+1 − θj−1 = δ as in the previous section, θj+1 − θj−1 = 2ut where

u is the local shear rate. The zero of time has been chosen so that θj−1 and θj+1

are both parallel to the zero angle line at t = 0. If u is large enough, simulation

and intuition indicate that the three rotors will be in a situation of uniform flow, so

that the middle rotor lies in between the two outer rotors on average. The deviation

from this average condition is given by y(t), which is assumed to be non-increasing

on average so as to fulfil the expectation of uniform flow. y is written as a0 +∆(t),

where a0 is a constant and ∆̄ = 0, where the bar denotes the time average. ∆ and its

time derivative ∆̇ are assumed to be small in order to make the equation of motion

tractable. This approximation will fail at low shear rates where we might expect

the middle rotor to climb slowly up its potential barrier and quickly accelerate down

the other side, before oscillating in its new minimum for an appreciable amount of

time. This failure will be seen in the results obtained below. The stipulation that

rotor j is stationary on average implies that ¯̇∆ = 0, where the bar denotes the time

average.

For high enough shear rates it is assumed that the thermal noise will have a

negligible impact on the physics involved and so we solve for the motion of j in the

zero temperature case. Substituting all of this into equation (5.23), performing the

same manipulations as in the previous section, and linearising with respect to ∆

gives the equation of motion

∆̈ =α(sin(ut− a0) + sin(−ut− a0))− α(cos(ut− a0) + cos(−ut− a0))∆(t)

+ h(u) + h(−u)− (h′(u) + h′(−u))∆̇(t),
(5.44)

where h′ is the derivative of h. We will assume that h is an odd function, as befits

a frictional force, which means that h(u) + h(−u) = 0 and h′(u) + h′(−u) = 2h′(u).

In the steady state we expect ∆(t) to be periodic in time, so it is expanded in

Fourier series with complex coefficients an:

∆(t) =
∑

n

ane
inut. (5.45)

As ∆ is an angle, the coefficients incur restrictions that force ∆ to be real, namely
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a−n = a∗n. In addition, the zero frequency mode is assumed to be absent; any part

of ∆ with a non zero time average is absorbed into the quantity a0. The series is

truncated at the first harmonic in order to give a solvable equation:

∆(t) = aeiut + a∗e−iut, (5.46)

where a ≡ a1. The sine and cosine terms are simplified with standard trigonometric

identities: sin(A+B)+sin(A−B) = 2 sin(A) cos(B), and cos(A+B)+cos(A−B) =

2 cos(A) cos(B). The product of cos(ut) and ∆(t) is found by writing the cosine as

a sum of two exponentials, multiplying the exponentials together and dropping any

second harmonic terms to be consistent with the truncated Fourier expansion. The

equation of motion then becomes

− u2(aeiut + a∗e−iut) = −2α sin(a0) cos(ut)− 2α cos(a0)ℜ(a)

− 2iug′(u)(aeiut − a∗e−iut). (5.47)

From here we equate the coefficients of linearly independent terms, giving three

equations:

0 = −2α cos(a0)ℜ(a), (5.48a)

u2a = α sin(a0) + 2iuh′(u)a, (5.48b)

u2a∗ = α sin(a0)− 2iuh′(u)a∗. (5.48c)

Solving the latter two equations for ℜ(a) and ℑ(a) in terms of a0 gives

ℜ(a) = α sin(a0)

u2 + 4h′(u)2
, (5.49a)

ℑ(a) = 2αh′(u) sin(a0)

u(u2 + 4h′(u)2)
. (5.49b)

This solution for ℜ(a) is used in the remaining equation to get the solution for a0:

cos(a0) sin(a0) = 0, which means that

a0 =
mπ

2
(5.50)

where m is an integer.
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Depending on the choice of m, there are two qualitatively different solutions to

the equations. For m odd, sin(a0) = ±1 leading to nonzero ℜ(a) and ℑ(a), whereas
for m even, sin(a0) = 0 leading to ℜ(a) = ℑ(a) = 0. In the first case the motion of

the middle rotor has some fluctuations about its average path but in the other there

are none at all. The two solutions are as follows:

θodd(t) =
mπ

2
+

α sin(mπ2 )

u(u2 + 4h′(u)2)
[u cos(ut)− 2h′(u) sin(ut)], (5.51a)

θeven(t) =
mπ

2
, (5.51b)

for m odd and even respectively.

After linearisation and neglecting second harmonic terms, the force exerted on

rotor j − 1 by rotor j for these two solutions is

Σodd(t) = α sin
(mπ

2
+ ut

)

+
2α2h′(u)

u(u2 + 4h′(u)2)

+ h(u)− 2h′(u)α sin(mπ2 )

u2 + 4h′(u)2
[u sin(ut) + 2h′(u) cos(ut)], (5.52a)

Σeven(t) = α sin(mπ + ut) + h(u). (5.52b)

There is no obvious reason to choose one solution over the other, so the final results

are given using an average over both. If we assume that the middle rotor will visit

both solutions due to some neglected fluctuations, then we may write the relevant

quantities as a weighted average over the result from each solution. The weighting

is expressed via a new parameter w which lies between zero and one.

The force felt as a result of uniform motion of the two outer rotors varies with

time as well as shear rate (the relative velocity in the coarse grained system). How-

ever, the black box experiment stipulates that the friction should only depend on

relative velocity; the natural course of action is simply to average over time. The

time averaged force exerted on j − 1 from its right hand side is

Σ̄ = wΣ̄odd + (1− w)Σ̄even

= h(u) + w
2α2h′(u)

u(u2 + 4h′(u)2)

= h̃(u).

(5.53)

As h is an odd function, the friction felt by the rotors in the coarse grained system is
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also odd as expected. Performing the same calculation for the other boundary rotor

j +1 would result in the negative of this expression. The second term of the second

equality in equation (5.53) diverges as u → 0, a manifestation of the low shear rate

problem noted at the start of the section.

Validity of the high shear rate approximation

It is important to have a better idea of where the current approximation breaks

down. There is no hard and fast rule as to exactly which shear rates are covered by

the approximation, but it was derived assuming that ∆(t) is small meaning that the

Fourier coefficients should be small. This is used as a rough guide to the validity of

the solution. The maximum value of ∆ is

max(∆) = 2|a| =
α

u
√

u2 + 4h′(u)2
, (5.54)

so the corresponding condition is:

α

u
√

u2 + 4h′(u)2
< 1. (5.55)

5.5.3 The moving rotor experiment at low shear rates

The calculation in the previous section is not appropriate for low shear rates, so

in order to probe this regime a new approach is needed. The stochastic force is

reinstated, and the friction force expressed as a linear function again; for low enough

shear rates any differentiable odd function h can be approximated by a straight line

through the origin. Using the same prescription for θj+1 and θj−1 as in the previous

section, the equation of motion is

ÿ = −2α cos(ut) sin(y)− 2µẏ + η. (5.56)

This stochastic differential equation in the overdamped limit is equivalent to a

Smoluchowski equation:

∂ρ

∂t
=

1

2µ

∂

∂y
[2α cos(ut) sin(y)ρ] +

σ2

4µ2

∂2ρ

∂y2
, (5.57)
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where ρ(y; t) is the probability density function for y at time t. The aim is to solve

for ρ and use it to average over the behaviour of y.

The long term behaviour of ρ should be periodic in time, and ρ must always

be periodic in y due to the nature of the system. ρ is therefore expanded in a two

dimensional Fourier series:

ρ(y; t) =
∑

m,n

am,ne
imyeinut (5.58)

With this expansion, the Smoluchowski equation can be turned into an infinite set

of coupled algebraic equations for the am,n:

inuam,n = m
α

4µ
(am−1,n−1+am−1,n+1−am+1,n−1−am+1,n+1)−m2 σ2

4µ2
am,n. (5.59)

Some properties of am,n can be determined from the properties of ρ(y; t). First, at

every point in time ρ must be normalised:

∫ 2π

0
dy ρ(y; t) = 1 ∀t, (5.60)

which leads to a0,n = 0 for n 6= 0 and a0,0 = 1/2π. Second, ρ must be real; taking

the complex conjugate of the expansion (5.58) reveals that a∗m,n = a−m,−n. Third,

ρ is even in y; changing the sign of y in equation (5.58) gives am,n = a−m,n.

Solving the infinite set of equations (5.59) is very difficult, so the Fourier series

is truncated again. The simplest nontrivial approximation is to restrict m and n

to the values 0, +1 and -1. This gives nine linear equations to be solved, but with

the help of the constraints on the coefficients the solution can be obtained easily by

hand. The coefficients are:

a0,0 =
1

2π
, (5.61a)

a1,1 = a−1,1 =
α

8πµ

(

σ2

4µ2
+ iu

)

, (5.61b)

a−1,−1 = a1,−1 =
α

8πµ

(

σ2

4µ2
− iu

)

, (5.61c)

a0,1 = a0,−1 = a1,0 = a−1,0 = 0. (5.61d)
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The final result for ρ(y; t) is

ρ(y; t) =
1

2π
+

µα

2π(σ4 + 16µ4u2)
[(σ2 − 4iµ2u)eiyeiut + (σ2 + 4iµ2u)eiye−iut

+ (σ2 − 4iµ2u)e−iyeiut + (σ2 + 4iµ2u)e−iye−iut]. (5.62)

The average force felt by rotor j − 1 is as follows:

〈α sin(θj − θj−1)〉 = 〈α sin(y + ut)〉

= α

∫ 2π

0
dy sin(y + ut)ρ(y; t).

(5.63)

Using the solution for ρ and noting that only terms constant in y will survive the

integration over a period, the average force is

〈α sin(θj − θj−1)〉 = 2παℑ(a−1,−1)

=
4µ3α2u

σ4 + 16µ4u2
.

(5.64)

As this is the low shear rate regime, the above force is linearised in u to obtain a

constant friction coefficient. To get the friction in the experimenter’s coarse grained

system we must add the force due to the motion of the rotor which is simply µu.

The final result for the low shear rate friction coefficient in the coarse grained system

is

µ̃ = µ+
4α2µ4

σ4
. (5.65)

The same calculation incorporating higher harmonics can be carried out, but

the expressions involved rapidly become more complicated. If second harmonics are

included then the average force is qualitatively the same but algebraically speaking

significantly more complicated. In addition to this it results in unphysical behaviour

for a region of parameter space that is expected to be covered by the approxima-

tions. The reason for this is unknown, but may be related to the behaviour of

the different approximations in effective medium theory. In figure 5.2 the stress in

the second harmonic approximation shows an unphysical divergence at low shear

rates. As in the the present work, the second harmonic case is qualitatively different

from the first. In addition to this, the third harmonic approximation for effective

medium theory shows the same low shear rate behaviour as the first. This suggests
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that, as sometimes the case with a non-rigourous approach such as this, that the

simple perturbation theories used in this chapter may not be improved upon by

successively taking into account higher harmonics. Instead the results point to a

qualitative difference between even and odd harmonic cases. Whether the harmonic

approximation interact with the linearisation approximation is unknown.

Validity of the low shear rate approximation

Use of the Smoluchowksi equation assumes that there is little movement during the

time the velocity of the rotor equilibrates. The equilibration time for the velocity

is given roughly by the Smoluchowksi timescale µ−1. If the rotor is driven over its

potential landscape too quickly, this will not give enough time for the velocity to

relax. The rate at which the rotor is driven is the shear rate u, with a corresponding

timescale u−1. Alternatively, if the potential varies too rapidly in space, then the

rotor will be constantly trying to adjust to a new environment as it moves along

and again the velocity will not relax. The timescale associated with the potential is

1/
√
α. These conditions are expressed mathematically by

u

µ
< 1 and (5.66a)

α

µ2
< 1. (5.66b)

5.6 The renormalisation group flow

The RG flow equations are summarised here for convenience:

α̃ = αf

(

4µα

σ2

)

, (5.67a)

σ̃2 = σ2 +
µσ2

2
+

α2

2
g

(

4µα

σ2

)

, (5.67b)

h̃(u) =

(

1 +
4α2µ2

σ4

)

µu for low shear rates, and (5.67c)

h̃(u) = h(u) +
2wα2h′(u)

u(u2 + 4h′(u)2)
for high shear rates. (5.67d)

The definition of µ in the first two equations depends on the shear rate. At low shear

rates, µ is taken to be the coefficient of friction at the appropriate level of coarse
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graining following the flow in equation (5.67c). At high shear rates, the coefficient of

friction is taken to be h(u)/u. As this will in general be dependent on the shear rate

u, which is undesirable for the stochastic and conservative forces, the u dependence

is replaced by a stress dependence. When the experimenter measures the force in

the moving rotor experiment they are measuring the stress in the system: h̃(u) = Σ.

This relation is inverted for u(Σ) to find h(u)/u as a function of Σ.

The goal is to find the fixed points of these equations which will reveal how a

homogeneous region of the rotor model behaves on a large scale. These are the points

in parameter space where further coarse graining does not result in movement away

from that point, so for example where σ̃ = σ (and similarly for the other quantities).

The fixed point of α is simple to find: as f is always less than one, at each iteration α

is multiplied by a number less than one and so always approaches zero. A fixed point

is denoted by ∗, so that α∗ = 0. In the usual language, α is an irrelevant variable.

Typically µ and α appear to converge to steady values within five iterations; these

are assumed to be the fixed point values.

5.6.1 Low shear rate renormalisation group flow

First, it is assumed that α, σ2 and µ in the microscopic system are nonzero and

finite. From inspection of equations (5.67b) and (5.67c), σ2 and µ will never be

lower than their starting values. This leads directly to σ∗2 = ∞ as at each iteration

σ2 is multiplied by a factor larger than one. The flow equation for µ then says that

it is always increasing, but on first glance it is unclear as to whether the increase

results in an infinite value of µ. As the term 4α2µ2/σ4 has both a decreasing term on

the top and an increasing one on the bottom, it is reasonable to guess that µ instead

asymptotes to a finite value; this is confirmed numerically. µ∗ can apparently take

on a continuum of values depending on the initial value of µ.

The stability of these fixed points can be investigated by linearising the flows

about the fixed point. As the fixed point of σ2 is at infinity, I use the variable

z = 1/σ2 instead, for which the fixed point is zero. The low shear rate flows in
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terms of z can be found from equations (5.67b):

α̃ = αf(4µαz), (5.68a)

z̃ =

[

1

z

(

1 +
µ

2

)

+
α2

2
g(4µαz)

]−1

, (5.68b)

µ̃ = µ(1 + 4α2µ2z2). (5.68c)

The fixed point is given by α∗ = 0, z∗ = 0 and µ∗ a finite number. Small deviations

in each direction δα, δz and δµ are introduced about the fixed point and the flow

equations are linearised in these quantities. The parameters one iteration along from

these starting values are:

α̃ = 0, (5.69a)

z̃ =
δz

1 + µ∗/2
, (5.69b)

µ̃ = µ∗ + δµ. (5.69c)

The first equation is a result of α̃ being different from zero only by a term of order

δα2. The second says that, as µ∗ is nonzero, z decreases back toward its fixed point

of zero. The third says that the new value of µ is larger than the perturbed value,

or in other words the fixed point is unstable. As this is true for any value of µ∗, it

confirms that any nonzero value of µ can be a fixed point for the flow as long as we

start from an appropriate point in parameter space.

Shown in figures 5.9, 5.10 and 5.11 are different slices through the three di-

mensional parameter space spanned by α, µ and σ2 with flows of the parameters

indicated. These graphs support the analysis above. α always decreases from its

initial value and ends up at zero quite suddenly; when this happens, the renormal-

isation of α and µ is essentially over. The most striking feature is the values of µ∗

generated. In figure 5.9, we see that even a modest initial value of µ can lead to an

enormous value of µ∗, of the order of 1024 for µ = 2 at σ2 = 1 for example. As µ

acts like a viscosity, this implies that the coarse grained system will not support a

shear under any sensible timescale for some initial parameters. This is qualitatively

similar to the solid regions seen in the previous chapter which are stable for the

entire duration of the simulation. A larger initial value of σ2 reduces the value of
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(a)

(b)

(c)

Figure 5.9: The low shear rate renormalisation group flow projected onto the
α − µ plane with initial values of σ2 equal to (a) 0.1, (b) 1 and (c) 10. The

flows start from α = 0.5, 1, 2 and 3.
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(a)

(b)

(c)

Figure 5.10: The low shear rate renormalisation group flow projected onto
the σ2 − µ plane with initial values of α equal to (a) 0.1, (b) 1 and (c) 10.
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(a)

(b)

(c)

Figure 5.11: The low shear rate renormalisation group flow projected onto
the α− σ2 plane with initial values of µ equal to (a) 2, (b) 5 and (c) 10.
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µ∗. Conversely, large initial values of σ2 and small initial values of α can lead to

more modest values of µ∗, again in qualitative agreement with simulation where high

temperatures destroy the solid regions.

The flows depicted are independent of the stress, although the shear rate at each

iteration depends on the stress via u = Σ/µ. Note that a lower value of Σ brings

different regions of the parameter space under the remit of the approximation. From

the constraint on the local shear rate in equation (5.66a) and the constitutive relation

in the linear regime, Σ = µu, µ is restricted to be greater than
√
Σ, so a lower stress

leads to a greater region of parameter space accessible by the approximation.

If σ2 is initially zero and α and µ are nonzero and finite, then the static rotor

experiment will give σ2 = 0 at any level of coarse graining; this then leads to a

constant value of α. The calculation performed for the moving rotor experiment is

no longer valid at zero temperature, so the value of µ is unknown. This fixed point

is unstable because, as noted above, any nonzero value of σ2 no matter how small

can only increase with the flow.

With regard to the validity of the approximation, note that if µ is increasing and

α decreasing then the inequalities in (5.66) will continue to be met; that is, if the RG

flow starts off in a region where the low shear rate approximation is valid, it will stay

valid, so the fixed points found in this section are the correct ones for an initially

low shear rate state. It should also be noted that the RG calculation requires at

least a few iterations to converge, so that solid regions consisting of, for example,

two slowly moving rotors are not really covered by the theory. This situation is seen

at shear rates close to the transition to uniform flow, where the only locked pairs

are isolated amongst many running pairs.

5.6.2 High shear rate renormalisation group flow

The flow of the frictional force at high shear rates is now the flow of h(u) in function

space. There is little help in finding the fixed point via the equations (5.67); setting

α = α∗ = 0 in equation (5.67d) just leads to h∗(u) = h∗(u). Due to the relative

complexity in determining the coefficient of friction in this regime it is difficult to

make general statements about fixed points of the sort in the previous section. The

function h(u) does appear to reach a fixed point after a small number of iterations,

although this can only be inferred by eye. Once the iteration process has started
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Figure 5.12: The RG fixed point of h(u) for α = 1. Different colours indicate
different temperatures kBT : red, 0.05; blue, 0.1; green 0.5.

the validity condition for this approximation, equation (5.55), must be taken into

account. This leads to a cut-off for the theoretical curves at low shear rates. The

available stresses give close to linear behaviour for most accessible shear rates, but

often marked deviations from this as well.

Some examples of h∗(u) are seen in figure 5.12. They were calculated using

Σ = 2 but are very similar when calculated using other values of stress. All curves

lie above the linear Newtonian curve but converge to it for high enough shear rates.

The deviation at lower shear rates is most noticeable for the lower two temperatures

shown, kBT = 0.05 and 0.1. These appear to flatten out almost completely and

could indicate the start of a region of negative slope or a plateau.

5.6.3 Interpretation and comparison to simulation

In general, the RG flows considered always result in a finite frictional force, an

infinite temperature and zero potential at the fixed point; as previously noted, these

fixed points should tell us something about the phases the model can exhibit. The

finite but non-zero friction coefficient implies that the general behaviour of the model

at the largest scales is viscous flow. The infinite temperature, similar to the infinite

temperature fixed point in the Ising model studied earlier, indicates disorder: there

is no structure in the flow visible at the macroscopic scale. This view is bolstered by

the absence of a potential barrier. This simple situation is made more interesting in

two ways. Firstly, the viscous flow seen may be so viscous as to be, for all practical

purposes, no flow at all. Taking this into consideration, the model can show both
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fluid-like and solid-like behaviour at the fixed point. Secondly, the calculation was

performed for homogeneous flow only. If the flow is not homogeneous, as is often

seen in simulation, the analysis does not apply, opening up the possibility for other

behaviours not accounted for in the current approach.

The low shear rate RG calculation is restricted to parameters for which µ2 > α.

With the simulation value of α = 1, this implies that µ > 1 which is a region

that was not investigated in simulation. However, the results presented show some

interesting qualitative features, most promisingly the existence of extremely high

viscosity states at low shear rates. The viscosities are so high that it would be very

unlikely to see these very slowly moving rotors shear; although there is no overlap in

this regime, the solid regions found in chapter 4 are indeed never seen to shear over

the simulation timescale. The dependence of the flow on σ2 indicates that a larger

microscopic value of σ2 leads to a reduced µ∗, which would indicate less stable solid

regions. This is seen in simulation, where from a situation with many locked rotor

pairs, an increase in temperature leads to a smaller proportion of locked pairs.

Some discrepancies between theory and data exist for the low shear rate case.

The stress independence of the low shear rate approximation means that these high

viscosity states are predicted for high stresses which is not seen in the simulations.

In general a higher microscopic value of µ gives a larger fixed point value µ∗ (see for

example figure 5.9), but simulations indicate that a larger value of µ destroys the

high viscosity solid regions, the opposite of theory which would indicate that they

instead become more stable. The detail missing in the theory could be the global

situation, whereby an increase in µ at the same shear rate gives rise to a higher stress,

meaning that if solid regions exist they must become smaller in order to spread the

shear over more but slower rotor pairs. In this sense the intrinsic stability of the solid

regions does increase but global constraints eliminate their existence independently

of thermal fluctuations.

The high shear rate calculation again does not extend to many parameters used

in simulation, although it does cover the relatively high stress regime where the

local shear rate is high enough to suppress any fluctuations to a manageable level.

The constitutive curve appears to always lie above the straight line Newtonian case,

as in simulation. The curves shown in figure 5.13 were obtained for Σ = 2.0 but

all the stresses tested gave very similar curves. Agreement with simulation is fairly
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Figure 5.13: Theoretical (solid lines) and measured (data points) constitutive
curves for µ = 1.0 at two different temperatures. The theoretical calculations

were performed at a stress of 2.

good, and gets slightly better with increasing temperature, but the theoretical curve

levels out more quickly when approaching lower shear rates. This could be due to a

non-monotonic region of the predicted constitutive curve, the bulk of which is not

captured by the approximation, although it is currently not possible to determine

if that is correct. The simulations do not seem to indicate inhomogeneous flow, as

would be expected from a curve of that type.

The difference between theory and data may arise due to the neglect of some

fluctuations in the RG approximation. In a true uniform flow situation, there will

be many neighbouring rotors in relative rotation, sending out waves into the sur-

rounding medium. Any particular pair would be perturbed at irregular intervals by

these waves, leading to fluctuations that are not well described by a single frequency.

This picture is supported by the better agreement at higher temperatures, for which

the thermal noise could mimic the effects of the missing fluctuations. The fact that

the approximation becomes more secure for higher friction coefficients also supports

this interpretation, as this would lead to a more effective damping of perturbations

meaning that fewer far away events would have a noticeable effect on the chosen

pair. A temperature of 0.01, the lowest used in simulation, violated the validity

condition for all parameters so an RG flow could not be determined.

The suggestion above that the flattening out of the low temperature curves could

be the start of a region of negative slope seems unlikely once compared with the

simulations; even at µ = 1.0 the flow always appears to be uniform. However, there
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is always the chance of some subtle inhomogeneity being present that is harder to

detect.

5.7 Conclusions

In this chapter I have analysed the rotor model theoretically using three distinct

but related approaches. The simplest is the effective medium theory of section 5.2,

in which a single rotor pair that feels a constant average force from the other rotors

is considered. The equation of motion for the relative angle of the pair was solved

using an approximate harmonic expansion and a constitutive curve was produced.

While being an analytically tractable approximation, solvable using pen and paper,

the mean field assumption significantly underestimates the region of inhomogeneous

flow.

In the next section I analysed the dynamics of an isolated running rotor pair

surrounded by locked rotors, a situation seen in simulation at low shear rates, low

temperature and low friction coefficient. A solution was found using a similar ap-

proximation as above, a harmonic expansion. The calculation resulted in constitutive

curves for this situation and the decay length for the perturbations in the surround-

ing solid region. It is more difficult to compare these results with simulation, but

the results indicate correctly that the situation is not stable for µ = 1.

In the last part of this chapter I have performed a local nonequilibrium renor-

malisation group calculation for the rotor model. The calculation uses a decimation

scheme in which I average over the dynamics of every other rotor, using different

approximations for the averaging depending on the situtation, and further approx-

imations in order to generate a recursion relation for the parameters of the model.

The calculation yields the renormalisation group flow of the parameters α, σ2, µ at

low shear rates and the full friction function h(u) at high shear rates. A quantita-

tive comparison of this calculation with simulation is mostly absent, as the typical

simulation parameters are in a region of parameter space for which the theoretical

approximations are unreliable. There is a small region of overlap in which I have

calculated the theoretical constitutive curve for uniform flow at high shear rates

and stresses; the agreement with simulation breaks down at the lowest shear rates

available theoretically, but improves for higher shear rates and temperatures.
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All the approximations used involved some kind of harmonic expansion, and

all but the low shear rate RG calculation involved some linearisation of sinusoidal

terms. In each case, the linearisation results in an inaccessible low shear rate regime,

indicating that motion there is complicated and highly anharmonic.





Chapter 6

Conclusions and future work

In this thesis I have considered a variety of systems described by NCDB, namely

boundary driven systems with a constrained current. The particular systems in this

class ranged from completely general (chapter 3) to a specific numerical example

(chapters 4 and 5).

In between these two cases was the more restricted class of athermal systems

considered in chapter 2, which also served as an introduction to the NCDB formal-

ism. There, I outlined how NCDB could be applied to sheared athermal systems

and illustrated the concept for two toy models, one dimensional diffusion and the

comb model. The analysis in that chapter drew on the work of Liu and Nagel and

their putative jamming phase diagram in order to interpret the ordering of limits. I

provided a further connection with the existing literature on athermal materials with

an interpretation of yield stress in NCDB, and showed that under some assumptions

the comb model can exhibit a yield stress.

The subsequent chapter was the most wide-ranging in this thesis. In it I out-

lined a general free energy formalism for boundary driven steady states based on

the probability distribution of trajectories postulated in NCDB. The free energy

density obtained is analogous to an equilibrium free energy density based on the

distribution of microstates but is intensive in time as well as space. I first expressed

the free energy in a rather formal way that explicitly uses the equilibrium current

distribution; this is suitable for the simplest of models such as the diffusion model

looked at, but may otherwise be difficult to apply in practice. I then derived an

alternative expression that only requires knowledge of the equilibrium transition

rates between microstates, and validated it through use of the comb model. The

107



Chapter 6. Conclusions and future work 108

formalism developed has strong connections to large deviation theory, a branch of

mathematics now fairly commonplace in statistical physics.

The theory in both chapters 2 and 3 is illustrated using two simple noninter-

acting models, due to the complexity of real fluids and partly due to the relatively

young theory. Future challenges in this direction would primarily involve addressing

more complex models and developing approximate calculational techniques where

necessary; one example has already been given at the end of chapter 3, that of a

boundary driven simple exclusion process, that could give insight into interacting

models in NCDB.

Moving away from fundamental theory, in chapters 4 and 5 I studied the rotor

model, a one dimensional toy model that is designed to mimic a complex fluid.

This simple one dimensional model exhibits unexpected behaviour such as the solid

regions seen at low shear rate, temperature and coefficient of friction. Despite its

apparent distance from any real fluid, the flow curves that are measured in simulation

are remarkably similar to experimental flow curves for real complex fluids, that show

non-Newtonian behaviour including the stress plateaus that are often seen in studies

of shear banding fluids. The model also shows signs of a phase transition for small

enough parameter values, with signatures in measured properties such as the flow

curve and the variance of the internal energy.

Theoretically, the rotor model was approached in three ways: effective medium

theory, the analysis of an isolated running pair of rotors, and via renormalisation

group techniques. Each approach has successes and limitations. All of the ap-

proximations fail at low shear rates, bar the part of the RG calculation specifically

designed for this regime. All but that one are restricted in parameter space due

to the linearisation needed to make any headway theoretically; even the low shear

rate RG calculation is restricted in parameter space, although for different reasons.

A common theme emerges when looking at all of the techniques: the difficulty of

accessing the high α (strongly interacting) regime, where “high” is relative to the

coefficient of friction µ. Unfortunately, this is where the most interesting behaviour

was seen theoretically; future work would have to concentrate on cracking this area

to give more insight into the phase behaviour of the model. Overall, the rotor model

is a very interesting candidate for the study of boundary driven systems, nonequi-

librium phase transitions and complex fluids.
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Boundary driven fluids and athermal systems are commonplace in the real world

and in the laboratory. This thesis has probed their underlying theoretical properties

in order to help understand these important systems. While more work is needed

in order to begin to apply the techniques discussed to real life situations, this has

been a promising step forward along that path.





Appendix A

Transition rates in boundary

driven systems

A.1 The basic formulation of NCDB

This appendix gives a brief derivation of the transition rates in boundary driven

systems according to the NCDB formalism; this derivation is adapted from the

paper by Simha et al. [19]. The starting point is the distribution for trajectories in

a subsystem of a large volume of sheared fluid, equation (2.6), and the definition of

a transition rate:

Ωij =
p(x(t+∆t) = j|x(t) = i)

∆t
, (A.1)

where x(t) denotes the microstate of the system at time t. p(x(t+∆t) = j|x(t) = i)

is the probability of being in state j at time t + ∆t conditioned on the fact that

it was found in state i at the earlier time t. The precise time t that we look at is

immaterial as the rates are constant in the steady state, so the value of t is chosen

to be zero without loss of generality. A conditional probability P (A|B) is defined

in terms of a joint probability P (A,B) via P (A|B) = P (A,B)/P (B) for P (B) 6= 0.

Given the distribution of trajectories, the probability of being in state i at time 0,

p(x(0) = i), is obtained by summing over the probabilities of all the trajectories

where i appears at time 0. The probability p(x(0) = i) is then

pτ (x(0) = i) =
∑

Γ
Γ(0)=i

peqτ (Γ)eνγ(Γ), (A.2)
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where I have used the nonequilibrium trajectory distribution in equation (2.6) and

used the notation Γ(t) to denote the “value” of the trajectory Γ at time t, that is, the

microstate the system is in at that time if it follows trajectory Γ. The subscript τ is

to remind us that the probabilities are evaluated using an ensemble of trajectories

of length τ . This is rewritten using a delta function to introduce an integral over γ:

pτ (x(0) = i) =

∫ ∞

−∞

dγ
∑

Γ
Γ(0)=i

peqτ (Γ)eνγδ(γ − γ(Γ)). (A.3)

The constrained sum over Γ now results in the joint probability of seeing a shear γ

at equilibrium and being in state i initially:

∑

Γ
Γ(0)=i

peqτ (Γ)δ(γ − γ(Γ)) = peqτ (γ, x(0) = i)

= peqτ (γ|x(0) = i)peqτ (x(0) = i),

(A.4)

where the definition of a conditional probability has been used again. The probability

of the system being in microstate i at time 0 and then being in microstate j at time

∆t, pτ (x(∆t) = j, x(0) = i), is given by a similar sum over trajectories. In this case

we need an extra constraint Γ(∆t) = j in addition to Γ(0) = i, The result for the

transition probability is then

Ωij =

∫∞

−∞
dγ eνγpeqτ (γ|x(0) = i, x(∆t) = j)peqτ (x(0) = i, x(∆t) = j)

∆t
∫∞

−∞
dγ eνγpeqτ (γ|x(0) = i)peqτ (x(0) = i)

. (A.5)

The equilibrium rate ωij is hidden in there and may be factored out:

ωij =
peqτ (x(0) = i, x(∆t) = j)

∆tpeqτ (x(0) = i)
. (A.6)

As the use of the driven ensemble is only valid in the limit of long trajectories, the

limit of large τ is taken. The final answer is:

Ωij = ωij lim
τ→∞

∫∞

−∞
dγ eνγpeqτ (γ|x(0) = i, x(∆t) = j)
∫∞

−∞
dγ eνγpeqτ (γ|x(0) = i)

. (A.7)

So the driven rates are proportional to the equilibrium rates, with the constant of

proportionality being a function of the driving strength ν and dependent on the

equilibrium statistics only. Since the equilibrium rates are constrained by detailed



Chapter A. Transition rates in boundary driven systems 113

balance, the driven rates likewise must obey the same number of pairwise constraints.

This is the nonequilibrium counterpart to detailed balance. In this derivation, the

underlying hypothesis is the expression for the nonequilibrium trajectory distribu-

tion, equation (2.6); if that is valid for the system in question, then the mathematics

necessarily leads us to the above conclusion.

A.2 An alternative formulation of NCDB

The expression for the driven rates derived above can be put into a more physically

readable form. The derivation here is adapted from Appendix B of the paper of

Evans [18]; as I will only be concerned with systems in continuous time I omit

details related to discrete time models.

The equilibrium probability that appears in the numerator of equation (A.7) can

be rewritten as peqτ−∆t(γ −Kij |x(0) = j), where Kij is the integrated current gained

from the transition i → j. This is the probability of acquiring the integrated current

γ − Kij in the time τ − ∆t, starting from state j. This equality holds because if

the system has to make the transition i → j at the start of the trajectory then it

has gained the integrated flux Kij associated with that transition, and must make

up the rest of the total γ in the remainder of the trajectory. The numerator and

denominator now take on similar forms:

Ωij = ωij lim
τ→∞

∫∞

−∞
dγ eνγpeqτ−∆t(γ −Kij |x(0) = j)
∫∞

−∞
dγ eνγpeqτ (γ|x(0) = i)

. (A.8)

Shifting the integration variable in the numerator by Kij gives:

Ωij = ωije
νKij lim

τ→∞

∫∞

−∞
dγ eνγpeqτ−∆t(γ|x(0) = j)

∫∞

−∞
dγ eνγpeqτ (γ|x(0) = i)

. (A.9)

For large enough τ , peqτ−∆t(γ|x(0) = j) ≈ peqτ (γ|x(0) = j). Defining eqi(ν) =

limτ→∞

∫∞

−∞
dγ eνγpeqτ (γ|x(0) = j), the rates are written as

Ωij = ωije
νKij+qj(ν)−qi(ν). (A.10)

The qi are factors that enhance or suppress the transition according to whether it

is likely to yield a larger flux in the future.





Appendix B

Simulation method for the rotor

model

The algorithm used to simulate the rotor model was one devised for use in dissipative

particle dynamics (DPD) by Groot andWarren [76]. It is based on the velocity Verlet

algorithm [77, 78], commonly used for conservative systems, where the positions r(t)

and the velocities v(t) are updated as follows:

r(t+ δt) = r(t) + δtv(t) +
1

2
δt2a(r(t)),

v(t+ δt) = v(t) +
1

2
δt[a(r(t)) + a(r(t+ δt))],

(B.1)

where δt is the timestep used and a is the acceleration of the system’s component

parts. In the numerical analysis literature this is known as a predictor-corrector

method, as the expression for v(t+ δt) uses data from the next timestep in the form

of a(r(t + δt)). This can be derived by discretising Newton’s second law and using

the central difference approximation for the second time derivative.

In the case of DPD and the rotor model, this algorithm cannot be applied as the

force and thus the acceleration at any time depends on the velocities at that time

as well as the positions. In order to overcome this, an estimate ṽ for the velocities

at the next timestep is made so that the force can be computed:

r(t+ δt) = r(t) + δtv(t) +
1

2
δt2a(r(t),v(t)),

ṽ(t+ δt) = v(t) + λδta(r(t),v(t)),

v(t+ δt) = v(t) +
1

2
δt[a(r(t),v(t)) + a(r(t+ δt), ṽ(t+ δt))].

(B.2)
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λ is an empirical factor that is supposed to account for effects of the stochastic terms

that appear in a, and in the present work is set to 1/2.

The DPD algorithm was modified slightly for the present work by including a

variable timestep. The distance the rotors were allowed to move in a single iteration

was restricted to some number c. At each step, if the rotor velocities were such that

an iteration at the current value of the timestep would result in one or more rotor

pairs moving through a relative angle of c or more, then the timestep was reduced

and the step tried again. This addition ensures that rotors moving at a high speed

will not miss the potential barriers between minima which could affect the dynamics.

Experimentation with the value of c revealed that the system was mostly insensitive

to its precise value unless it became too large; for all the simulations quoted in this

thesis it was set equal to 0.1. Unfortunately this leads to very slow simulations at

high shear rates and temperatures, where rotors are often moving very fast. As

a result this region was not investigated as thoroughly as lower temperatures and

shear rates.



Appendix C

Equations of motion for an

isolated running rotor pair

This appendix deals with the approximate solution to the equations outlined in

section 5.3. In solving the equations we may concentrate on one side of the infinite

chain only; here I choose to look at j ≥ 0. Using the equations of motion (5.11) and

the linearisation in equation (5.14), the equations to solve may be written as:

−s2a01 = c(a11 + a−1
1 ) + ieia

0
0 + iµs(a11 + a−1

1 − 2a01), (C.1)

−s2a11 = c(a21 − 2a11)−
1

2
ieia

0
0 + iµs(a01 − 2a11 + a21), (C.2)

−s2aj1 = (c+ iµs)(aj−1
1 − 2aj1 + aj+1

1 ), j 6= 0,±1. (C.3)

The last equation describes the bulk of the chain. It is a discrete wave equation, so

a travelling wave solution is tried:

aj1 = (Reik)j (C.4)

Substitution into equation gives a second order difference equation that can be

reduced to a quadratic equation in Reik with two solutions:

Reik = 1− s2(c− iµs)

2(c2 + µ2s2)
± s(c− iµs)

2(c2 + µ2s2)
(q1 − iq2), (C.5)
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where q1 and q2 are given by:

q1,2 =
1

2

√

√

(s2 − 4c)2 + 16µ2s2 ± s2 − 4c. (C.6)

The two solutions are inverses and describe waves travelling in different direc-

tions. Infinitely far away from the middle of the chain, the disturbances must decay

to zero, and only one of these waves satisfies this. The other is the solution for

the other side of the chain. The general solution for aj1 in the bulk of the chain is

given by A(Reik)j , where A is a complex constant determined by matching up with

the solution at the centre of the chain. The equations are solved for the real and

imaginary parts of A, a01 and a11 in terms of µ, s and c.
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