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Abstract

Recommender systems (RS) have become key components driving the success of e-commerce,

and other platforms where revenue and customer satisfaction is dependent on the user’s ability

to discover desirable items in large catalogues. As the number of users and items on a platform

grows, the computational complexity, the vastness of the data, and the sparsity problem constitute

important challenges for any recommendation algorithm. In addition, the most widely studied

filtering-based RS, while effective in providing suggestions for established users and items, are

known for their poor performance for the new user and new item (cold start) problems.

Stereotypical modelling of users and items is a promising approach to solving these problems.

A stereotype represents an aggregation of the characteristics of the items or users which can be

used to create general user or item classes. This work propose a set of methodologies for the

automatic generation of stereotypes during the cold-starts. The novelty of the proposed approach

rests on the findings that stereotypes built independently of the user-to-item ratings improve

both recommendation metrics and computational performance during cold-start phases. The

resulting RS can be used with any machine learning algorithm as a solver, and the improved

performance gains due to rate-agnostic stereotypes are orthogonal to the gains obtained using

more sophisticated solvers.

Recommender Systems using the primitive metadata features (baseline systems) as well as

factorisation-based systems are used as benchmarks for state-of-the-art methodologies to assess

the results of the proposed approach under a wide range of recommendation quality metrics. The

results demonstrate how such generic groupings of the metadata features, when performed in a

manner that is unaware and independent of the user’s community preferences, may greatly reduce

the dimension of the recommendation model, and provide a framework that improves the quality

of recommendations in the cold start.

3



Contents

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1 Introduction 18
1.1 Background and Rationals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.3 Research Questions and Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . 22
1.4 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2 Literature Review 24
2.1 Recommender System in e-commerce . . . . . . . . . . . . . . . . . . . . . . . 24
2.2 Popular Recommender Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3 Existing Recommender System Approaches . . . . . . . . . . . . . . . . . . . . 27

2.3.1 Collaborative Filtering (CF) . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.2 Content-Based Filtering (CBF) . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.3 Demographic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.4 Hybrid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.5 Pairwise Preference Learning . . . . . . . . . . . . . . . . . . . . . . . 31

2.4 Cold-Start Problem for Recommender Systems . . . . . . . . . . . . . . . . . . 31
2.5 Stereotype-Based Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5.1 Stereotype - Definition and Evolution . . . . . . . . . . . . . . . . . . . 33
2.5.2 Stereotypes in Recommender Systems . . . . . . . . . . . . . . . . . . . 37
2.5.3 Approaches for Stereotypical Groups . . . . . . . . . . . . . . . . . . . 39

2.6 Evaluation of Recommender Systems . . . . . . . . . . . . . . . . . . . . . . . 41
2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3 Problem Analysis 44
3.1 Research Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2 MovieLens 1 Million Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.3 Clustering Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4



CONTENTS 5

3.4 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4 Automatic Construction of Item-Based Stereotypes 70
4.1 Stereotypes for Complex Categorical Features . . . . . . . . . . . . . . . . . . . 70
4.2 Stereotypes for Numerical Features . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.3 Stereotype Creation Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3.1 Results with Complex Categorical Features . . . . . . . . . . . . . . . . 80
4.3.2 Results with Numerical Features . . . . . . . . . . . . . . . . . . . . . . 96

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5 Preliminary Evaluation of Stereotypes 103
5.1 Homogeneity of Training and Test Datasets . . . . . . . . . . . . . . . . . . . . 104
5.2 Stereotypes Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.2.1 A Hard Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.2.2 A Soft Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.2.3 Predictive Power of Stereotypes . . . . . . . . . . . . . . . . . . . . . . 122

5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6 Stereotype-Based Recommendation Performance 125
6.1 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.1.1 Cold Start Assessment of Item Consumption . . . . . . . . . . . . . . . 127
6.1.2 Cold Start Assessment of Item Rating . . . . . . . . . . . . . . . . . . . 133
6.1.3 Cold Start Assessment of Recommendations Driven by Stereotypes versus

SVD-Based RS (with metadata) . . . . . . . . . . . . . . . . . . . . . . 139
6.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

7 Validation of the Stereotype-Driven Methodology 151
7.1 Amazon Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
7.2 Constructing Item-Based Stereotypes . . . . . . . . . . . . . . . . . . . . . . . . 153

7.2.1 Stereotypes for Complex Categorical Features . . . . . . . . . . . . . . . 154
7.2.2 Stereotypes for the Numerical Features . . . . . . . . . . . . . . . . . . 159

7.3 Evaluation of Stereotypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
7.3.1 Homogeneity of Training and Test Datasets . . . . . . . . . . . . . . . . 163
7.3.2 A Hard Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
7.3.3 A Soft Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
7.3.4 Predictive Power of Stereotypes . . . . . . . . . . . . . . . . . . . . . . 174

7.4 Recommendation Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
7.4.1 Cold Start Assessment of Item Rating . . . . . . . . . . . . . . . . . . . 177
7.4.2 Cold Start Assessment of Recommendations Driven by Stereotypes versus

SVD-Based RS (with metadata) . . . . . . . . . . . . . . . . . . . . . . 184
7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

8 Conclusion and Future Work 193
8.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
8.2 Contribution to knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
8.3 Limitations and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

References 201



List of Tables

3.1 Combined ML 1 Million/IMDb movie and user features . . . . . . . . . . . . . . . . . 47
3.2 Movie features transformed to a numerical feature vector for Analysis 1 and Analysis 1.B 49
3.3 Top 7 ranked feature directions (or subspace of directions) according to maximum sep-

aration as measured by δn,a
j for an increasing number of clusters (n) and algorithm (a)

equals to k-means . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.4 Top 7 ranked feature directions (or subspace of directions) according to maximum sep-

aration as measured by δn,a
j for an increasing number of clusters (n) and algorithm (a)

equals to GMM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.5 Top 7 ranked feature directions (or subspace of directions) according to maximum separ-

ation as measured by δn,a
j for DBSCAN . . . . . . . . . . . . . . . . . . . . . . . . 59

3.6 Top 7 ranked feature directions (or subspace of directions) according to maximum sep-
aration as measured by δn,a

j for an increasing number of clusters (n) and algorithm (a)
equals to k-means for Analysis 1.B . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.7 Top 7 ranked feature directions (or subspace of directions) according to maximum sep-
aration as measured by δn,a

j for an increasing number of clusters (n) and algorithm (a)
equals to gaussian mixture model (GMM) for Analysis 1.B . . . . . . . . . . . . . . . 64

3.8 Top 7 ranked feature directions (or subspace of directions) according to maximum separ-
ation as measured by δn,a

j for DBSCAN for Analysis 1B . . . . . . . . . . . . . . . . 64
3.9 Top 7 ranked feature directions (or subspace of directions) according to maximum sep-

aration as measured by δn,a
j for an increasing number of clusters (n) and algorithm (a)

equals to k-means for Analysis 1.C . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.10 Top 7 ranked feature directions (or subspace of directions) according to maximum sep-

aration as measured by δn,a
j for an increasing number of clusters (n) and algorithm (a)

equals to GMM for Analysis 1.C . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.11 Top 7 ranked feature directions (or subspace of directions) according to maximum separ-

ation as measured by δn,a
j for DBSCAN for Analysis 1.C . . . . . . . . . . . . . . . . 68

4.1 Stereotypes automatically generated using algorithm 1 for the feature: genre and keywords 92
4.2 k-modes resulting centroids composition for 5 clusters and the genre feature, with two

alternative methodologies for the initialisation of the position of the centroids . . . . . . 94
4.3 k-modes resulting centroids composition for 10 clusters and the genre feature, with two

alternative methodologies for the initialisation of the position of the centroids . . . . . . 94

6



LIST OF TABLES 7

4.4 Centroid composition identified by k-modes for the feature keywords with Huang initial-
isation methodology and k= 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.5 Filtered modes discovered and ranked via the persistence algorithm for feature: log(budget+1) 97
4.6 Filtered modes discovered and ranked via the persistence algorithm for feature: log(revenue+1) 97
4.7 Filtered modes discovered and ranked via the persistence algorithm for feature: director

popularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.8 Filter modes discovered and ranked via the persistence algorithm for feature: country

distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.9 Filtered modes discovered and ranked via the persistence algorithm for feature: cast pop-

ularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.10 Filter modes discovered and ranked via the persistence algorithm for feature: language

popularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.11 Filter modes discovered and ranked via the persistence algorithm for feature: cast gender

bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.12 Filtered modes discovered and ranked via the persistence algorithm for feature: popularity

of movie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.13 Filtered modes discovered and ranked via the persistence algorithm for feature: production

company popularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.14 Filtered modes discovered and ranked via the persistence algorithm for feature: release

time of the year . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.15 Filtered modes discovered and ranked via the persistence algorithm for feature: vote average 98
4.16 Filtered modes discovered and ranked via the persistence algorithm for feature: release year 98
4.17 Filtered modes discovered and ranked via the persistence algorithm for feature: runtime . 99
4.18 Filtered modes discovered and ranked via the persistence algorithm for feature: log(vote

count) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.19 Classification of numerical features between Type I (stereotyping can be done via the

modes) and Types II (stereotyping can be done via percentile intervals) . . . . . . . . . 99
4.20 Stereotypes for feature: log(budget+1) . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.21 Stereotypes for feature: log(revenue+1) . . . . . . . . . . . . . . . . . . . . . . . . 100
4.22 Stereotypes for feature: director popularity . . . . . . . . . . . . . . . . . . . . . . . 100
4.23 Stereotypes for feature: country distance . . . . . . . . . . . . . . . . . . . . . . . . 100
4.24 Stereotypes for feature: cast popularity . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.25 Stereotypes for feature: language popularity . . . . . . . . . . . . . . . . . . . . . . 100
4.26 Stereotypes for feature: cast gender bias . . . . . . . . . . . . . . . . . . . . . . . . 100
4.27 Stereotypes for feature: popularity of movie . . . . . . . . . . . . . . . . . . . . . . 101
4.28 Stereotypes for feature: production company popularity . . . . . . . . . . . . . . . . . 101
4.29 Stereotypes for feature: release time of the year . . . . . . . . . . . . . . . . . . . . . 101
4.30 Stereotypes for feature: vote average . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.31 Stereotypes for feature: release year . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.32 Stereotypes for feature: runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.33 Stereotypes for feature: log(vote count) . . . . . . . . . . . . . . . . . . . . . . . . 102

5.1 Stereotypes automatically generated using algorithm 1 for the feature genre over the test
dataset only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.2 Hard Test comparison statistics for the stereotypes of the feature genre generated over the
training vs the test datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109



8 LIST OF TABLES

5.3 Stereotypes for the keywords feature using the training dataset and the list of enlarged
keywords are shown on the left. The keywords highlighted are those that meet the filter
condition in the test dataset. The right column show the stereotypes for the keywords
using test dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.4 Comparison statistics for the stereotypes of the feature keywords generated over the test
vs the training datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.5 Hard test metrics for the evaluation of the numerical stereotypes. The table reports for
all features and all stereotypes the dissimilarity in probability mass and centre, and the
accuracy from relationships 5.4. The last column gives standard metric of the accuracy . . 113

5.6 Stereotypes automatically generated using algorithm 1 for the feature genre over the Full
dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.7 Stereotypes automatically generated using algorithm 1 for the feature keywords over the
Full dataset and the keywords enlarged set . . . . . . . . . . . . . . . . . . . . . . . 117

5.8 Statistics describing the mismatch ratios for the stereotypical representations of complex
categorical features for the items in test dataset using Full vs the Training stereotypes . . . 118

5.9 An example of confusion matrix. Highlighted the areas of True Positives, True Negatives,
False Positives, False Negatives for the prediction of s1 . . . . . . . . . . . . . . . . . 119

5.10 Confusion matrix for the feature: cast gender bias . . . . . . . . . . . . . . . . . . . . 119
5.11 Confusion matrix for the feature: cast popularity . . . . . . . . . . . . . . . . . . . . 120
5.12 Confusion matrix for the feature: country distance . . . . . . . . . . . . . . . . . . . 120
5.13 Confusion matrix for the feature: director popularity . . . . . . . . . . . . . . . . . . 120
5.14 Confusion matrix for the feature: log budget . . . . . . . . . . . . . . . . . . . . . . 120
5.15 Confusion matrix for the feature: log revenue . . . . . . . . . . . . . . . . . . . . . . 120
5.16 Confusion matrix for the feature: log vote count . . . . . . . . . . . . . . . . . . . . 120
5.17 Confusion matrix for the feature: popularity . . . . . . . . . . . . . . . . . . . . . . 120
5.18 Confusion matrix for the feature: production company popularity . . . . . . . . . . . . 121
5.19 Confusion matrix for the feature: release time of the year . . . . . . . . . . . . . . . . 121
5.20 Confusion matrix for the feature: release year . . . . . . . . . . . . . . . . . . . . . . 121
5.21 Confusion matrix for the feature: runtime . . . . . . . . . . . . . . . . . . . . . . . 121
5.22 Confusion matrix for the feature: vote average . . . . . . . . . . . . . . . . . . . . . 121
5.23 Numerical features stereotypes evaluation, soft test. F1-score and accuracy metrics for the

classification problem of the test items using the stereotypes generated on full items . . . 122
5.24 Summary for all features of the search for explanatory power of stereotypes via the Agresti-

Coull test. Confidence level of 99% . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.1 Classification-prediction metrics derived from the confusion matrices, including the area
under the curve (AUC) for both the receiver operating characteristic (ROC) and the precision-
recall curve (PRC) for the new-user and new-item experiments in the ML/IMDb. (T.P.
refers to true positive, and F.P. refers to false positive) . . . . . . . . . . . . . . . . . . 128

6.2 New User: Top-N Recommendations - performance metrics of stereotype modelsNNSRc,
NNSRn, NNSRcom vs baseline model NNSRb, plus performance increase and p-
value of the test on the significance of the increased performance due to stereotypes . . . 129

6.3 New Item: Top-N Recommendations - performance metrics of stereotype modelsNNSRc,
NNSRn, NNSRcom vs baseline model NNSRb, plus performance increase and p-
value of the test on the significance of the increased performance due to stereotypes . . . 129

6.4 Handling imbalanced dataset for new user problem . . . . . . . . . . . . . . . . . . . 133
6.5 Performance metrics: new user problem . . . . . . . . . . . . . . . . . . . . . . . . 137
6.6 Performance metrics: new item problem . . . . . . . . . . . . . . . . . . . . . . . . 137
6.7 RMSE obtained by [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138



LIST OF TABLES 9

6.8 Performance metrics XGBoost regression for the mixed case . . . . . . . . . . . . . . 139
6.9 New user and new item cold start comparisons between the recommendation models:

stereotypes and SVD with and without metadata . . . . . . . . . . . . . . . . . . . . 142
6.10 Hit rate for top-N recommendation list . . . . . . . . . . . . . . . . . . . . . . . . . 142
6.11 Mean reciprocal rank (MRR) and mean average precision (MAP) . . . . . . . . . . . . 143
6.12 Example evaluation of DCG@10 following equation 6.6 . . . . . . . . . . . . . . . . 145
6.13 Example evaluation of IDCG@10 following equation 6.8 . . . . . . . . . . . . . . . . 145
6.14 Comparison nDCG for model with stereotype and SVD with metadata . . . . . . . . . . 146
6.15 Comparison half-life utility for model with stereotypes and SVD with metadata using a

decay factor α equal to 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

7.1 Proportion of products with features available for Amazon dataset . . . . . . . . . . . . 153
7.2 Statistics of Amazon dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
7.3 Stereotypes automatically generated using algorithm 1 for the feature: Categories. Amazon

product group: ‘Sports & Outdoors’ . . . . . . . . . . . . . . . . . . . . . . . . . . 160
7.4 Stereotypes automatically generated using algorithm 1 for the feature: Categories. Amazon

product group: ‘Clothing, Shoes and Jewellery’ . . . . . . . . . . . . . . . . . . . . 161
7.5 Stereotypes for feature: Price. Amazon product group: ‘Sports & Outdoor’ . . . . . . . 162
7.6 Stereotypes for feature: Brand Popularity. Amazon product group: ‘Sports & Outdoor’ . . 162
7.7 Stereotypes for feature: log(sales rank). Amazon product group: ‘Sports & Outdoor’ . . . 162
7.8 Stereotypes for feature: Price. Amazon product group: ‘Clothing, Shoes and Jewellery’ . 162
7.9 Stereotypes for feature: log(brand popularity). Amazon product group: ‘Clothing, Shoes

and Jewellery’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
7.10 Stereotypes for feature: log(sales rank). Amazon product group: ‘Clothing, Shoes and

Jewellery’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
7.11 Stereotypes automatically generated using Algorithm 1 for the feature ‘categories’ in the

test data. Amazon product group: ‘Sports & Outdoors’ . . . . . . . . . . . . . . . . . 168
7.12 Stereotypes automatically generated using Algorithm 1 for the feature: ‘categories’ in the

test data. Amazon product group: ‘Clothing, Shoes and Jewellery’ . . . . . . . . . . . 169
7.13 Hard test comparison statistics for the stereotypes of the feature ‘categories’ generated

over the training vs the test datasets . . . . . . . . . . . . . . . . . . . . . . . . . . 169
7.14 Hard test metrics for the evaluation of the numerical stereotypes. The table reports for all

numerical features and all stereotypes the dissimilarity in probability mass and centre, and
the accuracy from equation 5.4. The last column gives standard metric of the accuracy.
Amazon product group: ‘Sports & Outdoors’ . . . . . . . . . . . . . . . . . . . . . . 170

7.15 Hard test metrics for the evaluation of the numerical stereotypes. The table reports for all
numerical features and all stereotypes the dissimilarity in probability mass and centre, and
the accuracy from equation 5.4. The last column gives standard metric of the accuracy.
Amazon product group: ‘Clothing, Shoes and Jewelry’ . . . . . . . . . . . . . . . . . 170

7.16 Statistics describing the mismatch ratios for the stereotypical representations of ‘categor-
ies’ feature for the items in test dataset using full vs the training stereotypes . . . . . . . 172

7.17 Confusion matrix for the feature ‘price’. Amazon product group: Sports & Outdoors . . . 172
7.18 Confusion matrix for the feature ‘brand popularity’. Amazon Product Group: Sports &

Outdoors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
7.19 Confusion matrix for the feature ‘sales rank’. Amazon product group: Sports & Outdoors 173
7.20 Confusion matrix for the feature ‘price’. Amazon product group: Clothing, Shoes and

Jewellery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
7.21 Confusion matrix for the feature ‘brand popularity’. Amazon product group: Clothing,

Shoes and Jewellery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173



10 LIST OF TABLES

7.22 Confusion matrix for the feature ‘sales rank’. Amazon product group: Clothing, Shoes
and Jewellery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

7.23 Numerical features stereotypes evaluation, soft test. F1-score and accuracy metrics for the
classification problem of the test items using the stereotypes generated on training items . 173

7.24 Summary for all features of the search for explanatory power of stereotypes via the Agresti-
Coull test. confidence level of 95%. Amazon product group: Sports & Outdoors . . . . . 175

7.25 Summary for all features of the search for explanatory power of stereotypes via the Agresti-
Coull test. Confidence level of 95%. Amazon product group: Clothing, Shoes and Jewellery175

7.26 Performance metrics for new user problem - Amazon dataset . . . . . . . . . . . . . . 181
7.27 Performance metrics for new item problem - Amazon dataset . . . . . . . . . . . . . . 181
7.28 New user and new item cold start comparisons between the recommendation models:

stereotypes and SVD with and without metadata . . . . . . . . . . . . . . . . . . . . 185
7.29 Hit rate for Top-N recommendation list - Amazon dataset . . . . . . . . . . . . . . . . 186
7.30 Mean reciprocal rank (MRR) and mean average precision (MAP) - Amazon dataset . . . 188
7.31 Comparison nDCG for model with stereotypes and SVD with metadata - Amazon dataset . 188
7.32 Comparison half-life utility for model with stereotypes and SVD with metadata using a

decay factor α equal to 3 - Amazon dataset . . . . . . . . . . . . . . . . . . . . . . . 189



List of Figures

2.1 Sample triggers by Rich [2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.2 Stereotype hierarchy as developed in GRUNDY by Rich [2] . . . . . . . . . . . . . . 35

3.1 Description of the overall research methodology . . . . . . . . . . . . . . . . . . . . 45
3.2 Problem analysis process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.3 Elbow method considerations for k-means using ‘fit’ a standardised Eucliedean measure . 52
3.4 Elbow method considerations for k-means using ‘fit’ a sklearn score measure . . . . . . 53
3.5 Elbow method considerations for GMM using a standardized Eucliedean measure ‘fit’ . . 54
3.6 Elbow method considerations for GMM using a sklearn score measure ‘fit’ . . . . . . . 54
3.7 Approximation of the first derivative of score for the GMM elbow procedure. Two plat-

eaus can be identified suggesting a first elbow at around k= 5 and a second elbow at around
k= 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.8 Approximation of the first derivative of the distortion for the GMM elbow procedure. Two
plateaus can be identified suggesting a first elbow at around k= 5 and a second elbow at
around k= 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.9 Silhouette score as a function of the two parameters of the DBSCAN algorithm. Elbow
method considerations suggest an epsilon of about 20 . . . . . . . . . . . . . . . . . 56

3.10 Ranking feature separation in feature space using δn,a
j . . . . . . . . . . . . . . . . . 58

3.11 Elbow method considerations for k-means, Analysis 1 vs Analysis 1.B . . . . . . . . . 62
3.12 Elbow method considerations for GMM, Analysis 1 vs Analysis1.B . . . . . . . . . . . 62
3.13 Elbow method considerations for the silhouette score over the parameter space for DB-

SCAN, Analysis 1 vs Analysis 1.B . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.14 Elbow method considerations for k-means, Analyses 1 vs 1.B vs 1.C . . . . . . . . . . 66
3.15 Elbow method considerations for GMM, Analyses 1 vs 1.B vs 1.C . . . . . . . . . . . 66
3.16 Silhouette score as a function of the two parameters of the DBSCAN algorithm. Elbow

method considerations suggest an epsilon of about 20 across all analyses . . . . . . . . 67

4.1 Probability density approximation via histograms and KDE for the features: log(budget+1)
and log(revenue+1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2 Probability density approximation via histograms and KDE for the features: cast popular-
ity and cast gender bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

11



12 LIST OF FIGURES

4.3 Probability density approximation via histograms and KDE for the features: country dis-
tance and director popularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.4 Probability density approximation via histograms and KDE for the features: language
popularity and popularity of the movie . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.5 Probability density approximation via histograms and KDE for the features: production
company popularity and release time of the year . . . . . . . . . . . . . . . . . . . . 77

4.6 Probability density approximation via histograms and KDE for the features: release year
and runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.7 Probability density approximation via histograms and KDE for the features: vote average
and vote count . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.8 A fictitious probability density approximation illustrating the idea behind the ranking of
modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.9 The probability proportion that can be associated to each structure (purple for A, green
for B, yellow for C and grey for D) . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.10 Correlation matrix for the genre feature, each category of the genre feature is ordered ‘as
seen’ in the training dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.11 Correlation matrix for the genre feature, each category of the genre feature is ordered as
suggested by the permutation search for similar ‘groups’ . . . . . . . . . . . . . . . . 82

4.12 Correlation matrix for the keywords feature, each keyword is ordered as suggested by the
permutation search for similar ‘groups’ . . . . . . . . . . . . . . . . . . . . . . . . 82

4.13 Genre grouping result from metric 4.4 and linkage 4.6 . . . . . . . . . . . . . . . . . 85
4.14 Genre grouping result from metric 4.4 and linkage 4.7 . . . . . . . . . . . . . . . . . 86
4.15 Genre grouping result from metric 4.4 and linkage 4.8 . . . . . . . . . . . . . . . . . 87
4.16 Keywords grouping result from metric 4.4 and linkage 4.7 . . . . . . . . . . . . . . . 89
4.17 Keywords grouping result from metric 4.4 and linkage 4.8 . . . . . . . . . . . . . . . 90
4.18 Genre feature hierarchical cluster of the correlation matrix, assembly iterations. Average

cluster size over the clusters formed at each iteration of the linkage merge. Dissimilarity
metric 4.4, linkage criterium Ward . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.19 Genre feature hierarchical cluster of the correlation matrix, assembly iterations. Total
number of clusters present after each iteration of the linkage merge. Dissimilarity met-
ric 4.4, linkage criterium Ward . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.20 Genre feature hierarchical cluster of the correlation matrix, assembly iterations. Dendro-
gram iteration ratio using dissimilarity metric 4.4, linkage criterium Ward. The red circle
indicates the local minimum which is most to the right . . . . . . . . . . . . . . . . . 91

4.21 Inverse elbow methodology applied to the k-modes clustering of the genre feature with
two alternative methodologies for the initialisation of the position of the artefact centroids 93

4.22 Inverse elbow methodology applied to the k-modes clustering of the keywords feature with
two alternative methodologies for the initialisation of the position of the artefact centroids 95

5.1 Histogram distribution of the movie’s production year . . . . . . . . . . . . . . . . . . 104
5.2 Histogram distribution of the movie’s genres percentage occurrence . . . . . . . . . . . 105
5.3 Histogram distribution of the movie’s popularity feature . . . . . . . . . . . . . . . . . 105
5.4 Hierarchical dendrogram resulting from the abs metric and the Ward linkage for the genre

feature over the test dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.5 Genre feature hierarchical cluster of the correlation matrix of the test dataset, assembly

iterations. Dendrogram iteration ratio using dissimilarity metric 4.4, linkage criterium
Ward. The red circle indicates the local minimum which is most to the right . . . . . . . 108

5.6 Fictitious comparison of numerical stereotypes set up. Stereotypes mass, centre of mass
and numbers are identified by the dots . . . . . . . . . . . . . . . . . . . . . . . . . 112



LIST OF FIGURES 13

5.7 Mismatch ratio for the genre stereotyping representations of 1149 movies in the test data-
set using Full versus Training stereotypes . . . . . . . . . . . . . . . . . . . . . . . . 116

5.8 Mismatch ratio for the keywords stereotyping representations of 1149 movies in the test
dataset using Full versus Training stereotypes . . . . . . . . . . . . . . . . . . . . . . 117

5.9 Example of the Agresti-Coull test for an imaginary user in the example described in the
text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.1 Comparison between methods to treat imbalance on base model and model with stereotypes133
6.2 Distribution of rating error - new user problem . . . . . . . . . . . . . . . . . . . . . 138
6.3 Performance comparison between different algorithm implementation. Source [1] . . . . 138
6.4 Example of adding item factors to Equation 6.5 . . . . . . . . . . . . . . . . . . . . 141
6.5 Half-life utility (R) new user and (L) new item cases as a function of the α decay factor

(x-axis) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
6.6 Genre diversity (number of distinct genres recommended for the model with stereotype) . 148
6.7 Comparison genre diversity for the models: stereotype and SVD with metadata . . . . . 148

7.1 Correlation matrix for the complex categorical feature ‘categories’ in Amazon product
group: ‘Sport and Outdoors’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

7.2 Correlation matrix for the complex categorical feature ‘categories’ in Amazon product
group: ‘Clothing, Shoes and Jewellery’ . . . . . . . . . . . . . . . . . . . . . . . . . 156

7.3 Dendrogram for the hierarchical clustering of ‘categories’ feature in Amazon product
group: ‘Sport and Outdoors’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

7.4 Dendrogram for the hierarchical clustering of ‘categories’ feature in Amazon product
group: ‘Clothing, Shoes and Jewellery’ . . . . . . . . . . . . . . . . . . . . . . . . . 157

7.5 Categories feature hierarchical cluster of the correlation matrix, assembly iterations. Av-
erage cluster size over the clusters formed at each iteration of the linkage merge. Dissim-
ilarity metric 4.4, linkage criterium Ward. Amazon product group: ‘Sports & Outdoors’ . 157

7.6 Categories feature hierarchical cluster of the correlation matrix, assembly iterations. Av-
erage cluster size over the clusters formed at each iteration of the linkage merge. Dissim-
ilarity metric 4.4, linkage criterium Ward. Amazon product group: ‘Clothing, Shoes &
Jewellery’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

7.7 Categories feature hierarchical cluster of the correlation matrix, assembly iterations. Total
number of clusters present after each iteration of the linkage merge. Dissimilarity metric
4.4, linkage criterium Ward. Amazon product group: ‘Sports & Outdoors’ . . . . . . . . 158

7.8 Categories feature hierarchical cluster of the correlation matrix, assembly iterations. Total
number of clusters present after each iteration of the linkage merge. Dissimilarity metric
4.4, linkage criterium Ward. Amazon product group: ‘Clothing, Shoes and Jewellery’ . . 158

7.9 Categories feature hierarchical cluster of the correlation matrix, assembly iterations. Dendro-
gram iteration ratio using dissimilarity metric 4.4, linkage criterium Ward. The red circle
indicates the local minimum which is most to the right. Amazon product group: ‘Sports
& Outdoors’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

7.10 Categories feature hierarchical cluster of the correlation matrix, assembly iterations. Dendro-
gram iteration ratio using dissimilarity metric 4.4, linkage criterium Ward. The red circle
indicates the local minimum which is most to the right. Amazon product group: ‘Clothing,
Shoes & Jewelry’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

7.11 Probability density approximation via histograms and KDE for the features: Price, Brand
Popularity and log (sales rank). Amazon product group: ‘Sports & Outdoors’ . . . . . . 161

7.12 Probability density approximation via histograms and KDE for the features: Price, Brand
Popularity and log (sales rank). Amazon product group: ‘Clothing, Shoes and Jewellery’ . 162



14 LIST OF FIGURES

7.13 Histogram distribution of the price for the training set (in blue) with 371k products and
the test set (in red) with 159k products. Amazon product group: ‘Sports & Outdoors’ . . . 164

7.14 Histogram distribution of the price for the training set (in blue) with about 1,052k products
and the test set (in red) with about 450k products. Amazon product group: ‘Clothing,
Shoes and Jewellery’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

7.15 Histogram distribution of the ‘categories’ frequency in the training set (in blue) and the test
set (in red). Note that only the most frequent categories are being displayed to facilitate
comparison. Amazon product group: ‘Sports & Outdoors’ . . . . . . . . . . . . . . . 165

7.16 Histogram distribution of the ‘categories’ frequency in the training set (in blue) and the test
set (in red). Note that only the most frequent categories are being displayed to facilitate
comparison. Amazon product group: ‘Clothing, Shoes and Jewelry’ . . . . . . . . . . . 165

7.17 Dendrogram for the hierarchical clustering of the ‘categories’ feature in test dataset. Amazon
product group: ‘Sports & Outdoors’ . . . . . . . . . . . . . . . . . . . . . . . . . . 166

7.18 Dendrogram for the hierarchical clustering of the ‘categories’ feature in test dataset. Amazon
product group: ‘Clothing, Shoes and Jewellery’ . . . . . . . . . . . . . . . . . . . . 166

7.19 Dendrogram iteration ratio using dissimilarity metric 4.4, Linkage criterium Ward for
the test dataset. The red circle indicates the local minimum which is most to the right.
Amazon product group ‘Sports & Outdoors’ . . . . . . . . . . . . . . . . . . . . . . 167

7.20 Dendrogram iteration ratio using dissimilarity metric 4.4, linkage criterium Ward for
the test dataset. The red circle indicates the local minimum which is most to the right.
Amazon product group ‘Clothing, Shoes and Jewelry’ . . . . . . . . . . . . . . . . . 167

7.21 Composition of rating - Amazon dataset . . . . . . . . . . . . . . . . . . . . . . . . 178
7.22 Distribution of rating error, new item case, XGBoost . . . . . . . . . . . . . . . . . . 183
7.23 Distribution of number of users by number of items reviewed for the Sports & Outdoors

product group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
7.24 Product category diversity (number of distinct product categories recommended in the

top-N list) for the model with stereotypes . . . . . . . . . . . . . . . . . . . . . . . 190
7.25 Comparison product category diversity for the model with stereotypes and the SVD with

metadata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190



Acknowledgements

I praise and thank Allah SWT for His greatness and for giving me the strength during my PhD

journey.

Doctor Daniel Kudenko, thank you very much for being a great supervisor. Your smile has

always affected me positively. It was a great pleasure to have had the opportunity to work with

you. Even though you were no longer a faculty member of the University of York you were still

committed to supervise and collaborate with me and I am really grateful to you for that.

I thank Dr. Tommy Yuan for taking over my supervision, for being supportive and patient,

and always willing to help and cooperate. I really appreciate it.

To Dr. Nick Pears, thank you for your valuable feedback and support.

I thank my internal examiner, Dr. Dimitar Kazakov, for the meetings and conversations that

were extremely vital to improve the quality of the thesis. Also, I thank my external examiner

Professor Vania Dimitrova for her very helpful comments and suggestions.

I would like to thank all the Computer Science Department research administrators and IT

staff who have been very helpful and always responsive to all my requests. I had a good time in

York, during which I learned a lot, and I am appreciative for that.

I am really grateful to King Saud University (KSU) for the valuable scholarship which funded

my studies in York.

Lastly, I would like to thank my beloved children Abdulaziz, Alhanouf and Alshihana. You

all gave me strength and courage that enabled me to overcome all the difficulties we faced while

abroad and for that I am eternally grateful.

15



Declaration

This thesis has not previously been accepted in substance for any degree and is not being concur-

rently submitted in candidature for any degree other than Doctor of Philosophy of the University

of York. This thesis is the result of my own investigations, except where otherwise stated. Other

sources are acknowledged by explicit references.

I hereby give consent for my thesis, if accepted, to be made available for photocopying and

for inter-library loan, and for the title and summary to be made available to outside organisations.

Signed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (candidate)

Date . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

16



Publications

1. N. A. Alrossais and D. Kudenko, “iSynchronizer: A Tool for Extracting, Integration and

Analysis of MovieLens and IMDb Datasets,” in Adjunct Publication of the 26th Conference

on User Modeling, Adaptation and Personalization - UMAP 18, Singapore, 2018.

2. N. A. Alrossais, “Integrating Item Based Stereotypes in Recommender Systems,” in Pro-

ceedings of the 26th Conference on User Modeling, Adaptation and Personalization -

UMAP 18, Singapore, 2018.

3. N. A. Alrossais and D. Kudenko, “Evaluating Stereotype and Non-Stereotype Recom-

mender Systems,” in Knowledge-aware and Conversational Recommender Systems Work-

shop KaRS at 12th ACM Conference on Recommender Systems RecSys 2018, Vancouver,

Canada, 2018, pp. 23-28.

4. N. A. Alrossais and D. Kudenko, “Generating Stereotypes Automatically For Complex

Categorical Features,” in Proceedings of the Second Workshop on Knowledge-aware and

Conversational Recommender Systems, co-located with 28th ACM International Confer-

ence on Information and Knowledge Management, KaRS@CIKM 2019, Beijing, China,

November 7, 2019, pp. 8-14.

5. N. A. Alrossais, D. Kudenko and T. Yuan, “Improving Cold Start Recommendations Using

Item-Based Stereotypes,” in User Modeling and User-Adapted Interaction Journal, 2020.

Accepted subject to revision, under review.

17



CHAPTER 1

Introduction

1.1 Background and Rationals
Recommender Systems (RS) have been developed to enhance the user experience, sales revenue

and in turn the profitability for an organization. As stated by Aggarwal et al. [3], growing product

sales is the fundamental purpose of a recommender system. In other words, recommender sys-

tems are employed by businesses to enhance their profit. By recommending thoughtfully chosen

items to users, recommender systems draw appropriate items to the consideration of users, thus

enhancing the probability of further sales. It is potentially the most critical role for a commercial

recommender system, i.e., to sell a supplementary collection of items opposed to those normally

sold devoid of any recommendation. This objective is accomplished by proposing items carefully

selected to satisfy the user’s needs and requirements [4]. According to [5], recommender systems

have been reported to increase sales on online market places by over 35% for Amazon.com and

more than 60% for Netflix.

Despite the benefits of RSs, Linden et al. [6] in their paper related to Amazon.com recom-

mender system stated that e-commerce recommendation algorithms frequently function in a chal-

lenging environment, such as:

• Several applications require the results set to be returned in real-time, in no more than half

a second, while still providing high-quality recommendations.

• Customer data is volatile which means that every interaction contributes valuable customer

data, and the algorithm must respond instantly to new information.

18



Section 1.1 Background and Rationals 19

• RSs usually have insufficient data of new customers (new user problem), which is created

by a few purchases or product ratings while the older customers can have an overabundance

of information based on thousands of purchases and ratings.

• In addition to the new user problem, also the new item problem or early-rater problem oc-

curring when an item has not been rated yet by any of the members, of the user community,

is considered a challenging problem to recommender algorithms.

The growing importance of RSs has motivated the research community to invent diverse

techniques for the development of recommender systems to solve the above mentioned prob-

lems. A promising approach for improving recommendations and solve the new user and the

new item problems is stereotype-based modeling. Rich [2] was the first to propose the utilisation

of stereotypes in user modeling and recommender systems. A stereotype depicts a collection of

attributes that are relevant for a collection of users [7], for example based on demographic in-

formation. User-based stereotyping was engaged by Rich [2] as a method for addressing the new

user problem, with the objective that recommendations could be presented to a new user without

the requirement to gather a set of ratings from the users for the purpose of user model training.

In the stereotype approach, users are grouped instead of each being treated individually. This

approach has the advantage of larger sets of training data available for a group of users in com-

parison to a single user. In e-commerce, for example, for a single user without a history of trans-

actions, construction of any model is not possible. However, if it can determined that the user

shares some meaningful features with one of the predefined groups - then one can use a model

based on the existing preferences of the group to generate recommendations. Thus, stereotypes

can be built on the idea that users with similar features may also share similar broad-level prefer-

ences and that items with similar features may be preferred by certain types of users. Therefore,

a stereotype can be viewed as an aggregation of the characteristics of the items or users that allow

one to group items and users in general classes.

Historically, in the pioneering works on stereotyping, the majority of the stereotype classes

were built manually by the operator with knowledge of the problem and data [2, 8, 9, 10, 11, 12].

This approach has obvious limitations: firstly, the operator building classes manually may miss

or disregard important relationships (features) that effectively classify and define a stereotype,

just because the operator intuition did not consider such possible dependencies between features;

secondly, the ad-hoc construction of stereotypes is inefficient and unable to cope with a gen-

eral dynamic evolution of the features, for example relationships that were not important in the

past become important after the stereotypes have already been deployed; thirdly, inconsistencies

among stereotype classes often arise especially as their representation evolve as discussed in [13],

such inconsistencies are larger if the stereotype building problem is not addressed in a systematic

manner especially in online platforms.

Online platforms are often judged based on user experience, and recommendation quality is
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one of the keys for improving or degrading the experience. Cold start is when a new user first

approaches the platform or a novel item is launched. Improving the recommendations during

that phase is key to customer (i.e. user and item provider) retention. It would be unfeasible, and

likely error-prone, to rely on expert human knowledge to correctly classify a new user or a new

item to the platform.

While the majority of the literature focuses on user-based stereotypes to solve the new user

problem, it is important to note that this work focuses on item-based stereotypes to solve the

new user and the new item problems. Cold start phase is defined as the situation in which the

RS needs to cope with a new user first approaching the platform or a novel item being launched.

This project investigates the possibility of obtaining a viable recommender system that uses ste-

reotypes generated directly via item’s metadata similarities, without using ratings and preferences

information.

This work examines how stereotypes can be built automatically, and most importantly in a

way that is independent of user’s preferences. The work also aims to demonstrate how stereotypes

can effectively improve recommendations during the cold start phase.

To the author’s knowledge there are no works in the literature that attempt to group the items

and/or users based on their primitive metadata, delineating similarities that are independent of the

preferences expressed by users toward items. The body of the existing research has focused dis

proportionally on consumption/preference driven grouping of the users/items. Only after such

common preferences were identified, machine learning methods are used to link groups of pref-

erences directly to the metadata features. We see a gap in such a procedure: creating clusters of

items and/or users that are independent of past user-to-item preferences should in principle allow

a machine learning driven algorithm to discover patterns that are not directly observable in the

preferences when regressed back on the metadata. The difference between the two approaches

may seem small, but given the non-linearity of these problems, it will be demonstrated how it

leads to important patterns not discoverable in the case of explaining the preference groups with

the metadata features.

1.2 Problem Statement
The new user and new item problems remain important challenges for any recommender system.

With the rapid growth of the number of users and items, the majority of the recommender systems

using collaborative filtering techniques suffer from problems like data sparsity and scalability. In

the literature related to the application of clustering methods to solve the cold start problem in RS,

the clustering methods are applied directly to the ratings (for example clustering the rating matrix,

as in [14]), or indirectly via the preferences of users (for example clustering groups of users based

on tastes, as in [15] as a way to address sparsity and as a way to generalise preferences).

Modern datasets have a range of features that often fall outside the established clustering



Section 1.2 Problem Statement 21

methods for generating stereotypes. The vastity and complexity of the datasets also calls for fully

automated procedures, rather than the manually/operator assisted stereotype creation found in the

preliminary literature on stereotypes. A feature category that is often found in modern datasets,

and that will be formally introduced in Chapter 3, is that of complex categorical features; these

are multi-label categorical features, where the number of labels is not strictly defined. For this

type of features their labels often has a lexical meaning, that describe one or more characteristics

the item (user). These can be for example keywords attached to an item. We recognise that such

features play a crucial role in user and item pairing, and they are not handled by the existing

stereotype construction methodologies.

The novelty of this research is to show that there are other dimensions in the problem of

obtaining recommendation improvements in cold starts, and these dimensions do not rely on

the study of the rating matrix. The work analyses a different aspect, namely the possibility of

obtaining a viable RS that operates on stereotypes of users and items, that are generated directly

via their features similarities, other than ratings and preferences information. In other words,

we first propose and test systematic ways to produce stereotypes that are rating and preferences

‘agnostic’; ultimately, they allow us to reduce the dimensionality of the problem. The stereotypes

provide sufficient flexibility to be used later on in the development of a recommender system to

describe preferences traits in a population of users, e.g. males in their 20s likes action and comedy

movies.

Ratings and preferences are introduced after the stereotypes have been built to train a recom-

mender system that is operated in a reduced space of user and item classes. This approach in

addition to reducing the sparsity of the rating matrix- reduction that is driven by a process that is

independent of the rating matrix itself - generates a framework that is able to handle seamlessly

the treatment of new user and new item without the need of any ratings, as long as the basic

item and user descriptions are available to allow the system to associate the user and item with a

stereotype combination.

Our approach leads to an hybrid recommender system using a combination between content-

based recommendation, i.e. it suggests similar items based on item’s metadata - stereotyped,

and demographic collaborative filtering, i.e. it relies on statistical preferences given by users that

are similar to the user considered from the point of view of user’s information. As the number

of ratings expressed by the new user, or the number of ratings about the new item grows, the

stereotypical system can transition to a classical RS. Due to the fact that a stereotypical approach

can only generate very general type of recommendations, it should only be employed during cold

start phases, where none or few ratings have been expressed by the new user or about the new

item (see for example [16]). An alternative use of stereotypes can be to provide an element of

novelty in recommendations once overspecialisation is detected.
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1.3 Research Questions and Hypothesis
In the context of providing the users of a platform with recommendations about interesting items,

this work will demonstrate how the use of rating and preference independent item-based ste-

reotypes lead to a substantial dimensionality reduction that has the dual benefit of improving

computational efficiency and also increasing recommendation quality during cold-start phases.

The project seeks to answer the following research questions, with the designated research

hypotheses.

1. Can item-based stereotypes, not based on rating, be constructed automatically?

• H1. Item-based stereotypes, not based on rating, can be constructed automatically.

2. Can automatically constructed item-based stereotypes improve recommendations during

the cold-start phases?

• H2. Automatic item-based stereotypes have positive result in improving recommend-

ation over no stereotypes during the cold-start phases.

3. How do stereotype-based item models compare to other state-of-the-art recommender sys-

tems models in terms of predictive performance during the cold-start phases?

• H3. Stereotype-based item models will result in a better predictive performance when

compared to other state-of-the-art recommender system models during the cold-start

phases.

4. Apart from recommendation accuracy, what are the other benefits of item-based stereo-

types?

• H4. Item-based stereotypes add other benefits to recommender systems apart from

accuracy like serendipity, system performance measured in run time and hit rate.

A number of experiments will be conducted in the subsequent chapters to test the hypotheses.

Hypothesis H1 will be tested in Chapters 4 and 5. Hypothesis H2 will be tested in Chapters 6

and 7 while the same chapters will accept hypothesis H3 and H4.

1.4 Structure of the Thesis
The rest of the thesis is organised as follows:

• The technical introduction to recommender systems and related issues are discussed in

Chapter 2. Chapter 2 also contains a review of the literature’s in stereotyping and its root

in solving cold-start problems.
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• Chapter 3 starts by looking into feature identification and selection in order to propose

a novel approach for automatic stereotype construction. The chapter then documents

clustering-based algorithms for numerical features applied to a simplified dataset.

• Chapter 4 documents the investigation of hierarchical clustering applied to the correlation

matrix for complex categorical features as a method to discover stereotypes automatically.

The same chapter proposes a method for the automatic construction of stereotypes for

numerical features.

• Chapter 5 provides a preliminary evaluation of stereotypes using three different tests to

ensure that the generated stereotypes are stable prior to testing them in recommendation

context.

• Cold start into recommendation performance are addressed in Chapter 6. The comparison

with the state-of-the-art factorisation technique (SVD) against the proposed approach to

benchmark the findings is discussed in the same chapter.

• The generalisation of the methodology on a second dataset from the retail sector is tackled

in Chapter 7.

• The thesis is concluded in Chapter 8. This chapter also summarises the results of the

project and discusses future work.



CHAPTER 2

Literature Review

This chapter describes the key concepts from the existing literature that considered crucial for the

current research. It starts with a general overview of the recommender systems field including

RS models and their evaluation and it progresses with the stereotypes-based modeling.

2.1 Recommender System in e-commerce
In the present times, personalisation of product information has become a crucial aspect that

influences a customer’s product selection and satisfaction. Personalised service demands organ-

isations to comprehend customers and offer goods or services that satisfy their needs. Successful

organisations are those which provide the right products to the right customers at the right time

and for the right price. Since e-commerce websites started to grow, a compelling need arose

for rendering recommendations obtained from filtering the complete array of choices that were

available. Users found it challenging to reach the most suitable options from the enormous range

of items that such websites were providing. The stupendous growth and diversity of information

present on the internet and the quick introduction of novel e-business services such as purchas-

ing products, comparison of products and auction regularly confounded users, causing them to

make bad decisions [17]. With the expanding of the new level of customisation, organisations

raise the volume of information that users are required to process before choosing the items that

meet their requirements. To resolve this information overload problem, one of the solutions is

the employment of recommender systems [18].

In the recent years, RSs have proved to be important means of coping with the problem of

information overload. A recommender system responds to this phenomenon by steering a user

24
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towards items which are relevant to the current task of the user. Based on a user’s request,

which can be expressed, grounded on the recommendation approach, context and need of the

user, RS produce recommendations utilising different types of data and knowledge related to

the users. RSs save past transactions in customised databases to allow the user to access the

recommendations later.

The user may accept or reject them and give either implicit or explicit feedback instantly or

at a subsequent stage. All such actions and user’s feedbacks may be saved in the recommender

database and could be employed for making new recommendations in subsequent user-system

interactions [17]. Hence, recommender systems automate personalisation on the e-commerce

sites by fostering personalisation for each individual customer. As Jeff Bezos, the CEO of e-

commerce giant Amazon.com, said “If I have 2 million customers on the Web, I should have 2

million stores on the Web” [19, p. 158].

RSs can be defined as the software tools and techniques which provide recommendations for

items to be of value to a user [20, 21, 22]. Recommender systems are employed by e-commerce

websites to recommend products to their customers [19]. Almost every major company has

applied them in one form or the other, for example Amazon uses it to recommend products to its

customers, Youtube uses it to determine which video to play next to the autoplay and Facebook

uses it to recommend posts that you like and people to follow.

The products may be recommended on the basis of the best overall sellers on a site, the cus-

tomer’s demographics characteristics, or an evaluation of the customer’s past purchase behavior

as a forecast for anticipated purchase behavior. In a broader perspective, such techniques are

a component of personalisation on a website, as they support the website to adjust itself to an

individual customer.

E-commerce recommendation algorithms frequently function in a challenging environment

to enhance their profit. In order to accomplish this large business-centric objective of raising rev-

enue, the general operational and technical objectives of recommender systems must be achieved

as follow:

• Relevance - One of the most apparent operational objectives of a recommender system is to

recommend items that are relevant to the customer’s needs. Users have a higher probability

to consume items that are appealing to them. Even though relevance is the fundamental

operational objective of a recommender system, it may not be sufficient to use it in isolation

[3].

• Novelty - Recommender systems are more effective when the suggested item is something

that has not been seen by the user previously [23].

• Serendipity - It indicates the ability of a RS to surprise the user, the items recommended

are slightly unexpected, and hence there is a reasonable component of lucky discovery, in

contrast to evident recommendations [18]. Serendipity is distinctive from novelty in that
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the recommendations are unexpected for the user, rather than merely something which the

users were not aware about in the past [24].

• Enhancing recommendation diversity - Recommender systems generally recommend a

top-k item list. When the recommended list comprises items of distinct types, there is

a higher probability that the user may approve at a minimum one such item. Item diversity

has the advantage of guaranteeing that the user is not wearied by recurring recommenda-

tion of comparable items [3, 25].

RSs are information processing systems which dynamically collect different types of data to

generate their recommendations. The collected data is basically about the items to recommend

and the users who will obtain such recommendations. Yet, as the available sources of know-

ledge and data for recommender systems can be quite assorted, their utilisation relies on the

recommendation techniques [17]. RSs often need to access the following content: a) information

describing the users, b) information describing the content (i.e. items), c) implicit information

about users selecting certain items and d) explicit information about users rating and reviewing

certain items.

2.2 Popular Recommender Systems
To provide an understanding of the state-of-the-art RSs, this section discusses a few popular RSs

as reported by Aggarwal et al. [3].

GroupLens Recommender System. It was a ground-breaking recommender system that was

developed as a research prototype for recommending Usenet news in 1994. The recommender

system gathered ratings from Usenet readers and employed them to forecast if the readers would

like an article prior to reading it. Few of the initial automated algorithms for collaborative filtering

(CF) were created in the GroupLens setting [26].

Amazon.com Recommender System. It is one of the earliest recommender systems developed

in the commercial context. Amazon.com presented recommendations based on explicit user

ratings, purchase information and customer’s browsing behavior. Amazon’s ratings are defined

on a 5-point scale, where 1-star is the lowest rating and 5-star is the highest rating. The customer-

specific data concerning purchase and browsing can be simply obtained when customers are

logged in with a mechanism of account authentication offered by Amazon. Linden et al. [6]

reported that Amazon’s use of item-to-item CF technique had a huge successful impact on the

business through increased click-through and conversion rates.

Netflix Movie Recommender System. Established as a mail-order rental company for digital

video disc (DVD) of movies and television shows, Netflix ultimately extended to streaming de-

livery. Netflix offers users the facility to give ratings to the movies as well as television programs

on a 5-point scale. Moreover, the user actions concerning viewing different items are also saved

by Netflix. Such ratings and actions are later employed by the company to generate recom-
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mendations. Moreover, Netflix presents explanations for the recommended items. It explicitly

provides instances of recommendations relying on particular items that were viewed by the user.

Such an approach can help develop customer loyalty as well as retention. Netflix reports that at

least 75% of its downloads come from their RS [27]. Netflix increased the awareness of research

community toward incorporating machine learning techniques into commercial RSs when they

launched prize competition in 2006 [28]. The competition attracted more than 5000 teams for

the one million dollar award to the first algorithm that outperforms Netflix’s in-house RS by 10%

of accuracy.

Google News Personalisation System. It is capable of recommending news to users based on

their browsing history. The clicks are linked to particular users via their Gmail accounts. In such

a context, news articles are used as items. The action of clicks by a user on a news article can be

seen as a positive rating for such an article. These ratings can be seen as unary where a method

is present for a user to convey their liking for an item, but no method is available for users to

display their dislike. Collaborative recommendation algorithms are implemented to the gathered

ratings so that inferences can be made about the personalised articles for specific users.

Facebook Friend Recommendations. Facebook is an instance of a social networking website.

Their recommendations have slightly varying goals than a product recommendation. Facebook

friend recommendations lead to a growth in the number of social connections which enhances

the experience of a user and promotes the growth of the social network. The recommendation of

potential friends (or links) permits better connectivity and growth of the network on which the

advertisement revenue depends.

2.3 Existing Recommender System Approaches
According to [7], many recommendation strategies have been created and utilised in diverse in-

formation domains. Many hybrid approaches have been established to take the advantages of

the various approaches. The five key recommendation strategies in general use are collaborative,

content-based, demographic, hybrid and pairwise preference learning. These are discussed in

turn below.

2.3.1 Collaborative Filtering (CF)

One of the more successful underlying ideas driving the range of techniques behind user-based

collaborative filtering (CF) is to establish preference patterns exhibited by users, for example via

a domain of similar users (i.e. user neighbours), where similarity among users is defined via

known past preferences and a range of possible metrics. Item-based CF methods [29, 6, 30] were

proposed later on, which compute predicted ratings as a function of the ratings of the same user

on similar items (i.e. item neighbours).

CF approach is possibly the most widely utilised and established, as verified by its deploy-
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ment on e-commerce websites like Amazon.com [6]. The term was first coined by Goldberg et

al. [31] and a large body of research was conducted in the late 90s and early 2000s to investigate

such systems, see for instance [31, 32, 33, 34, 35, 36, 37, 38, 39] and references therein.

From those years on, thanks to the large range of algorithms developed in machine learning

(ML), a wealth of research focused on the application of classification and grouping methodolo-

gies to CF, see for example approaches based on bayesian networks [36], latent semantic analysis

[40], maximum entropy [41], support vector machines [42], singular value decomposition (SVD)

[43, 44], SVD with neural net classification [38] and inductive rule learning [39]. These tech-

niques are prone to become computationally expensive when the number of users increases, as

the number of similarity pairs between users grow too large, and also the matrix of all possible

user-to-item pairs becomes extremely large and sparse. Goldberg et al. [37] provides a frame-

work to reduce the dimensionality by performing the principal component analysis (PCA) and

clustering of the rating matrix.

However, the major shortcomings of CF consist in the fact that the users for which a recom-

mendation needs to be performed must have a past sufficiently large stencil of implicit or explicit

rating preferences recorded. The similarity metrics, like correlation or cosine distances, appear to

be too noisy when too little past preferences are known about a user or an item. This is the case

in the ‘new user’ and ‘new item’ problems, which can arise when a new user first approaches

the platform or a novel item is launched and there is no implicit or explicit preference history

expressed by the new user (or expressed toward the new item). The CF approach also encounters

the latency problem, which is the time between the release of a new item and its first appearance

within a recommendation list [45, 46]. This problem is especially apparent in the e-commerce

domain where item catalogue is constantly updated. The reduction of item latency directly affects

the revenue of e-commerce systems.

While user-based methods were initially considerably popular, they have also been proven

not easily scalable and sometimes inaccurate. Item-based CF methods [29, 6, 30] are less af-

fected by these drawbacks. Another advantage of item-based methods is that they can be easily

used to justify a recommendation. Hence, the list of neighbour items used in the prediction, as

well as their similarity weights, can be provided to the user as a clarification of the recommend-

ation. In user-based methods, however, the active user does not recognise the other users who

serve as neighbours in the recommendation [17]. Justifiability is continually highlighted in major

recommender system conferences and journals [47, 48]. It claims to increase the possibility of

an item to be clicked as well as increasing user loyalty and trust which are important features in a

competitive e-commerce domain. The rising interest to have explainable and transparent RS shed

the light into using item properties and metadata as well as user-generated content like textual

reviews and tags.

Nonetheless, the item-based CF technique has been shown to be more effective in terms of

the prediction accuracy than the user-based CF technique [30, 3]. Despite its efficiency, the
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item-based collaborative filtering does not perform well and may generate inaccurate recom-

mendations to users due to two key impediments namely: the sparsity and the new item problem

[30, 3]. To resolve these problems, contemporary recommender systems have focused on the

integration of supplementary information, hence, allowing RS to exploit the additional inform-

ation to compensate the insufficient users’ ratings to produce more accurate recommendations.

Illustrations of such additional information are the semantic relationships that exist among users

or items [49, 50, 51, 52, 53]; and the multi-criteria ratings which can imply more complex users’

preferences [3, 54, 55, 56].

The approach developed by Sun et al. [57] for presenting recommendations based on group-

to-item associations has been confirmed to give better results than traditional item-to-item asso-

ciations. This approach seems quite effective and highly relevant for our area of research which

deals with creating item groups based on stereotypes for recommendations. The idea of implicit

relation between items is discussed for the first time in this study. Sun et al. [57] introduced a

novel matrix factorisation (MF) model by exploiting association rule-based implicit item rela-

tionships (IIR). It is produced solely based on user-to-item rating information and it does not use

additional user or item side information. The authors employed an adapted associate rule tech-

nique to reveal the implicit item relationships as item-to-item and group-to-item associations,

which are then utilised to regularise the creation of low-rank user and item feature matrices in the

suggested IIR model. Moreover, they design four distinct strategies to pick the most reliable item

associations to train the model. MF techniques have been extensively applied in recommender

systems. Sun et al. [57] defined the implicit item relationships as the item associations between

a target item and another item or a set of other items. The association rule mining is to search

the associated item pairs that often co-occur in transaction events and it usually produces high

reliable result.

2.3.2 Content-Based Filtering (CBF)

An alternative approach, that builds on the poor scalability of user-based CF, is that of content-

based filtering (CBF), given its roots in the field of document classification and retrieval. While

user-based CF methods rely on the opinion of similarly-minded users to predict a rating, CBF

approaches look at ratings given to similar items where the concepts of similarity are applied

between items features [6, 29, 58]. The resulting recommender systems have proved more ef-

ficient and suitable to offline precomputation [17]. The content analyser of a CBF system is

the part that extracts features from the items descriptions and properties and stores them in a

structured item representation [59]. Content-based filtering approaches consider the past prefer-

ences of an individual user to discover preference models on a feature-based representation of

the content.

The content-based systems have their limitations such as the content-based recommenda-
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tion techniques comprise of a natural limit on the type and number of features that are linked,

whether manually or automatically, with the items that they recommend. Domain knowledge is

generally essential. Moreover, content-based recommenders have no internal method for discov-

ering unanticipated items. This shortcoming is termed as the serendipity problem to emphasize

on the propensity of the content-based systems to generate recommendations with a limited nov-

elty (i.e. overspecialisation). Many recent research [60, 61, 27] recognise the importance of

novelty in modern recommendation setting. Lastly, ample ratings have to be gathered before

a content-based recommender system can actually recognise user tastes and present precise re-

commendations which are not possible when there are few ratings [17]. A wealth of research has

been dedicated to the application of semantic techniques to extract features from descriptions,

for example see [62, 63, 64] and references therein among others.

2.3.3 Demographic

Demographic recommender systems suggest items based on the demographic profile of the user

[17]. The underlying assumption is that distinctive recommendations should be made for sep-

arate demographic niches. Several websites implement uncomplicated and efficient personalisa-

tion solutions grounded on demographics. For instance, users are forwarded to specific websites

depending on their language or country. Or recommendations may be personalised based on

the user’s age. According to [7], the demographic recommender systems utilise additional user

information such as the gender, age or occupation apart from their ratings. Demographic recom-

mendation depends on the assumption that users having common demographic attributes have

similar needs or interests. Examples of the use of demographic information in RS can be seen

from [65, 66].

2.3.4 Hybrid

To achieve improved results, certain recommender systems blend techniques for content-based

approaches and collaborative filtering approaches [67, 46]. Broadly, all the knowledge available

from diverse sources of data must be utilised and the algorithmic power of different recommender

systems needs to be applied to generate inferences that are robust. Hybrid recommender systems

have been developed to investigate such routes [3]. By the application of hybrid approaches,

few restrictions and issues of standalone recommender systems such as the cold-start problem

can be avoided [68, 43, 69]. The mixture of approaches can be implemented in several ways:

1) the independent implementation of algorithms and recombination of the results, 2) utilising

certain rules of content-based filtering in the collaborative filtering approach and 3) utilising cer-

tain rules of collaborative-filtering approach in content-based approach and building a integrated

recommender system which combines both discussed approaches [67]. More approaches to build

hybrid systems are proposed by Burke [70]. The work presented in [1, 43, 71, 68] demonstrate

successful examples of hybrid recommender systems.
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2.3.5 Pairwise Preference Learning

A novel area of research consists in utilising ontologies for potential improvement of RSs are

discussed in [72, 73]. For example [74] proposes to use inductive logic programming (ILP)

for preference learning (PL) and description logic (DL) learning and apply them in the context

of recommendations. DL represents a problem in concepts, objects and roles. When ILP is

used to learn general concepts, the system needs to be presented with examples on which such

ontologies can be discovered. The difficulty of adopting such novel strategy in the field of RS is

due to inconsistency in the logics that can be learned using ratings, for the very nature of ratings:

users are often inconsistent in providing ratings. For this reason, ontologies driven RS have only

been applicable to a learning strategy driven by pairwise comparisons, see for example [75], [76]

and [74]. While such approach may yield in the near future positive developments in standard

non cold start recommendations, it is perhaps too early to find application in cold start scenarios,

also given the difficulties in learning and obtaining consistent binary pairwise preferences to use

in the learning phase.

2.4 Cold-Start Problem for Recommender Systems
While the majority of the literature focuses on user CF and CBF as well as hybrid approaches

of the two, the review work by Jannach et al. [77] has shown that less than 5% of the existing

research addresses the new user and new item problems (see Schein et al. [78] for one example).

Elahi et al. [79] provide a comprehensive review of the recent developments in addressing the

cold-start problems. Historically, cold-start phases have been addressed by implementing hybrid

recommendation techniques, combining collaborative and content-based filtering [80, 68, 22, 81,

82, 43, 83]. Deshpande and Karypis [29] argue that the new user and new item problems can be

related to the sparsity of the rating matrices. The work in [77, 84] proposed a graph technique to

address the sparsity of the rating matrix to handle the cold-start problems.

Recently, the cold-start problem has been an active research subject, with several works ad-

dressing techniques tailored to handle either the new user or the new item problem [85, 43, 86,

87]. For example, Fernandez-Tobias et al. [69] propose to solve the new user problem via lat-

ent rating patterns discovered using item metadata in a factorisation-based method. Deldjoo et

al. [88] focus instead on the new item problem, using innovative audio and video metadata in

the movie recommendation domain. The emerging pattern is characterised by heavier use of

the available metadata context of both items and users, coupled often with factorisation-based

methods. The general findings suggest that during extreme cold starts it is difficult for any of the

researched systems to significantly improve over basic baseline models. Moving away from pure

cold start, the researched models improve over the baseline once the first few ratings have been

collected.

Other works suggest extracting information about the new user from social media - for ex-
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ample, see [89], [90] and [91] - or linking across domains - for example, see [92], [69] and [87]

- by using the knowledge of ratings and tags assigned by the users to items in an auxiliary do-

main (e.g. movie ratings) to model preferences in a target domain (e.g. book purchases). Such

techniques reveal user social data and might cause privacy concerns.

Fernandez-Tobias et al. [93] proposed three strategies of user personality information and

applied them to CF to solve the new user problem, while [94] and [95] incorporated feature-

based preferences between items to alleviate the cold-start problem.

Special approaches for handling the new user and new item problems consist of requiring a

first compulsory training period of the RS on every new user and new item before performing

recommendations, see [96, 6]. Such works demonstrate the inherent difficulties of handling

extreme cold starts; they usually improve recommendations over simpler baseline models once

the users and items become ‘known’ via a series of directly expressed preferences or, as Nasery

et al. [94] suggests, as indirect preferences expressed to features.

A range of techniques that increase efficiency by reducing the cardinality and sparsity of the

rating and consumption matrix include those built upon the idea of factorisation of the user-to-

item rating matrix [97, 43, 98, 99]. These techniques, among which the singular value decom-

position (SVD) is probably the most popular thanks to the success obtained in the Netflix grand

prize [100, 101], aim to reduce the dimensionality of the rating matrix by projecting the ratings

over a latent factor space. This process enables researchers to determine how users rate items.

More details on SVD are discussed in Chapter 6. Most of the studies referenced in this work,

when reaching the prediction stage, rely on factorisation techniques to reduce the dimensionality

of the user-to-item matrix or to provide a latent space where clustering methods are applied, for

example, see [98]

In addition to the above methods, classes such as stereotypes can also be used as a tool to

generate recommendations for users in the cold-start scenario. A range of studies [10, 102, 9]

followed the ideas of user-based stereotyping presented by Rich [2]. Rich [2] was the first to

recognise and propose that users could be ‘stereotyped’ in the absence of past preferences for

a user, assuming that his/her preferences would be in line to those of the stereotypical group to

which the user belonged. For example, it is easy to argue that a female user in her 20s located in

the US will exhibit on average different preference traits than those of an average man in his 60s

located in India. The issue is whether common preference traits based on feature characteristics

like gender, age, location and education are strong enough to provide recommendations.

Up until the late 90s, the construction of stereotypes had been almost exclusively manual and

driven by expert knowledge. The work of [103] provides one of the first attempts to ‘learn’ the

user and item classes via supervised learning techniques. Grouping of features, or clustering, was

soon introduced as a way to address the sparsity of rating matrices, especially in the context of

classifiers and probabilistic-based systems [104, 105, 106]. A wealth of research has focused on

the application of classification and grouping methodologies to CF and CBF for clustering - see
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[107] - and for forests of trees - see [108]. However, this research does not address the cold-start

phases.

Adomavicius and Tuzhilin [80] and Braunhofer et al. [97] attempted to apply grouping meth-

odologies to the cold-start phase and, in particular, to the new user case. In the extreme cold-start

scenario the system may recommend popular items or items with the highest average ratings, as

discussed by [93].

As reviewed in the present work, extreme cold start is a relatively poorly researched area

of RS compared to specialised recommendations for well-known users and items. Only in re-

cent years this problem has received a wider attention, despite the importance that high quality

recommendations during cold start have in attracting and retaining new users and new item (con-

tent) providers. A RS operating outside the cold start realm can rely on several well researched

techniques applicable directly to the user-to-items preference matrix in order to produce mean-

ingful collaborative filtering like recommendations. In the cold start situations, it is now fully

acknowledged that user’s and item’s metadata provide invaluable extra information to improve

recommendations to a new user or of a new unrated item. The main gap that we see in the lit-

erature is the absence of a comprehensive treatment of users and items metadata, that could be

seen as “independent” of the recommendation system technique used. For example, the singular

value decomposition methods (SVD) have been expanded and generalised (Factorisation Ma-

chines) to embed user and item metadata. However, the metadata treatment is a constitutional

part of the solver and could not be generalised to other approaches. This work addresses the

use of metadata, via stereotypes, creating a unified approach for multiple types of user and item

metadata features as discussed in the following section(s). We aim at providing a construct for

the treatment of metadata that can be reused in different types of RS . The next section discusses

how stereotypes are defined in the literature and how this works expands on their definition to

use them for extreme cold start recommendations.

2.5 Stereotype-Based Modeling

2.5.1 Stereotype - Definition and Evolution

Rich was the first to propose the utilisation of stereotypes in user modeling and recommender

systems in her Ph.D. thesis published in 1979 [109]. Stereotyping was adopted by Rich as a

method to resolve the new user problem. The aim is to make recommendations to new user

without the need of gathering a set of user ratings for the purpose of user model training. Rich [2]

mentioned that an additional benefit of stereotyping is its space-efficiency as the characteristics

that are applicable to several users are required to be stored only once, but they can be employed

by all members belonging to a stereotype when necessary.

Rich addressed the problems when systems are supposed to assume their users as individuals

with distinctive goals and personalities. She outlined the challenges and later introduced stereo-
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types as a valuable method for developing models of distinct users with limited user information.

In order to create user models quickly, a vast amount of vague knowledge must be included in

the user models [2].

In user modeling, the idea of a stereotype robustly associates to its definition in English - a

body of default information about a set of people. In the study by Rich [109, p. 44], stereotypes

depict “the collection of frequently occuring characteristics of users”. It is crucial to note that,

a stereotype may or may not be a precise representation of the user group or any specific group

member, but it may simply be an estimation of certain characteristics of the group [7]. It is not

essentially a set of specifics which are valid for all members of the group. The fundamental

motivation for applying stereotyping is to present personalisation with inadequate information

from new user via the recognition of the assigned stereotypes.

To exhibit and appraise stereotyping, Rich [2] created GRUNDY to suggest novels to users

on the basis of socio-demographic characteristics of users. The enhanced utilisation of machines

which are controlled by software to mediate between the interactions amid users and systems has

rendered it likely for such interactions to have more flexibility and are more personalised with the

suitable customised user models [110]. Therefore, numerous system developers have recognised

the individuality of users and user groups and have developed distinct user or group models with

the aim to account for dissimilarities [7].

A stereotype has two indispensable parts: a) the designation of the stereotype in terms of the

characteristics similar to members or the features of typical users, b) the pre-conditions are the

triggers that must hold to allocate the stereotype to a user [2, 7]. The first constituent is called the

body or traits of the stereotype [109]. The body comprises of the characteristics that are shared

by the members of the stereotype. In regard to the RS, such characteristics are generally the

attribute items of shared interest for the stereotype members. The body, hence, can be utilised

to categorise items for recommendation to stereotype members. The representation of the body

relies on the application [7]. The second constituent of a stereotype is generally termed as the

trigger and it signifies the conditions or events that are required to be held true when allocating

the stereotype to a user. Such conditions are generally propositions on demographic attributes of

the user. In the case of the activation of a stereotype by a user, the body can be utilised to forecast

his characteristics. Moreover, the trigger can be explicitly depicted in diverse ways similar to the

body [7].

As stated by Rich [2], for a system to effectively utilise stereotypes, it should possess two

types of information. Firstly, it should have the information on stereotypes themselves e.g. the

collections of traits, and secondly, it must have information related to a collection of triggers

which are those events whose incidence signals the suitability of specific stereotypes. For ex-

ample, if a user instantaneously utilises a sophisticated construct in a system, that is required

to act as a trigger for the ‘expert-user’ stereotype, which should then be activated. During the

activation of a stereotype, the predictions that the system makes about diverse features must be
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Figure 2.1: Sample triggers by Rich [2]

Figure 2.2: Stereotype hierarchy as developed in GRUNDY by Rich [2]

incorporated into the user model. An example of triggers used in The GRUNDY system by Rich

[2] is depicted in Figure 2.1.

Stereotypes, when coupled with the capability of documenting explicit statements by the user

and deducting direct inferences related to a user from his behavior, have the possibility to present

a mechanism for developing computer systems that can respond in a per user way [2]. A num-

ber of stereotype-based systems [109, 111] include one more component to describe hierarchical

relations among stereotypes. Definite stereotypes at the leaves of a hierarchy may inherit char-

acteristics from the more common stereotypes above. This infers that additional space-efficiency

can be achieved. Figure 2.2 depicts a sample of stereotype hierarchy as developed in GRUNDY.

Comparison with communities. As pointed by Paliouras et al. [103], an additional user mod-

eling for grouping users based on their characteristics is to group them as per their shared interests

in a community. This has correlation to the concept of a neighbourhood in CF recommender sys-

tems although an explicit model of the neighbourhood users’ common interests is developed for

a community [7]. Given the divergent descriptions of stereotypes and communities, they tend to
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be derived in dissimilar manners. Generally, stereotypes are developed by hand [103], but once

established they can provide a fast method for modeling and serving new user [7].

Due to this reason, they are highly dependent on the developer and might not be appropri-

ate for all of the user groups as described by [102, p. 3]: “this is part of the statistical nature

of stereotypes: for some users they are inaccurate, but their power is that they are useful for

many users”. In contrast, communities are well modeled with unsupervised learning and clus-

tering [103]. Hence they are data-driven and tend to more precisely exhibit the users’ common

interests. Similar to stereotypes, communities can be optimise storage characteristics. Member-

ship of a user to a community is computed by the interests expressed by user and their alikeness

to the interests of members of the community. Stereotype membership is defined by the ex-

pressed user characteristics. In the case of CF recommendation approaches, a community or set

of communities cannot be allocated to a new user without getting relevance feedback from the

user, therefore community modeling is incapable to solve the new user problem [7].

As explained by Rich [2], as it will be rarely plausible to know accurately before a system is

being utilised, the kinds of users it will have, what they will be attempting to achieve, or how they

will deal with the system, it is essential that it is possible to modify old stereotypes and generate

new ones after the system has been operating for a while. Although it is important to have the

before-mentioned facility for the changes in the system, it is prudent to start out with stereotypes

that are as reasonable as viable, so that the opening reception of the system will be positive.

The latter can be promoted via protocols of users communicating with a simulated system. Such

protocols can also provide insights on the other major problem, e.g. the building of the triggers

[2].

Adapting Stereotypes. Apart from learning models of individual users, it is essential for a user

modeling system to have the capability to transform its stereotypes database. This significance

results from the lack of accurate data on which to base the initial development of the stereotypes.

Moreover, computers have a notable lead over humans concerning the application of stereotypes

as they are not devoted to them emotionally and hence can change them as necessary by experi-

ence. This characteristic is undoubtedly beneficial [2].

The majority of the events that happen when a stereotype is activated can provide insight

into the accuracy of the stereotype and its triggers. If the user acts in a manner forecasted by

the stereotype, it provides evidence to the suitability of that prediction as well as to the aptness

of the triggers that prompted the activation of the stereotype. In another scenario, if the user

exhibits a behavior that contradicts with a forecast of an active stereotype, then it can be inferred

that either the prediction is unsuitable, or the triggers that made the stereotype to be activated are

inapt (or probably both). It should be noted that this does not necessarily infer that the stereotype

or the triggers are incorrect. They may accurately forecast most of the times while the current

user is simply an exception. A single divergence will not cause the system to question its triggers

and stereotypes, only as multiple divergences are being identified then the system will begin
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un-reinforcing triggers and the stereotype by decreasing their ratings. If, in fact, some of the

inferences are accurate, they will be reinforced in different scenarios and hence will be stored

by the system. Incorrect inferences will ultimately be eliminated. It is due to this deceptive

un-reinforcement that may occur that it is predominantly essential that reinforcement happens

whenever a prediction is borne out by experience or else, it might be prudent not to do anything

when the system is on the correct path and to alter the data base only in a situation when it is

inferring inaccurate conclusions [2].

Creating New Stereotypes. Rich [2] indicated that the following step in the learning process

after the alteration of the present stereotypes is the building of new stereotypes. This could be

performed after a system has sufficient models of individual users from which patterns can be

constructed. The development of new stereotypes can be done by utilising direct pattern cat-

egorisation techniques similar to [112]. These new stereotypes would have the benefits of the

automated models, particularly the lack of susceptibility to the biases of the system developer.

To summarise the gaps that we find in the literature and motivate the presented research, the

stereotypes often involve features as well as activation conditions (for example a user selecting a

type of item or performing an action that actives or deactivates or changes the user stereotype).

In our extreme cold start approach the stereotypes are all built based on metadata similarities,

without having any activating condition which would preclude or overfit a behaviour during the

very first few recommendations. An user (item) belongs to a given stereotype if its metadata

features are indicative of a vicinity to the typical users (items) in the same stereotype.

2.5.2 Stereotypes in Recommender Systems

Germane is an instance of a stereotype-based user modelling system in which stereotypes are built

automatically by utilising user’s relevance feedback, and it is the first instance of a stereotype-

based text recommender. Moreover, stereotype weights in Germane are based on stereotype

performance in training rather than the degree to which a user is perceived to fit for a stereotype

[7].

Germane has been created and implemented to team-role scenario instead of the socio-

demographic context which is generally utilised for the research on stereotype-based user model-

ling. In Germane, automatic feature selection is carried out and in the similar manner for single-

component user models as well as stereotypes. In Germane, every stereotype is a text classifier

which is required to symbolise the shared interests of a group of users. To achieve this, the same

text classification methods can be deployed to develop stereotypes. In Germane, stereotypes once

trained, are stored in text files in distinct directories in a similar manner as single-component user

models. Utilising a similar approach to develop stereotypes and single-component user models

will mean that any dissimilarity among their levels of performance for the same user cannot be

attributed to divergence in their derivation [113].
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For the purpose of training of a stereotype, the training set is derived from the ratings from

each of the group members. It is implicitly assumed that prior to the training, the group mem-

bership of each user has been identified. A stereotype can then be developed from a training set

comprising of the binary feedback on several text documents from each of the group members.

The stereotypes for a specific user are developed independently from each other [7].

Orwant [114] presented DOPPELGANGER which is a generalised tool for gathering, pro-

cessing, and presenting information about users. In DOPPELGANGER, information flows in

a bottom-up fashion where the available sensors decide what inferences could be made, and

hence how well users would be modeled and which applications are feasible. Krulwich [66]

introduced Lifestyle Finder, in which large scale data are employed to generalise user-specified

data along the patterns common to the population, covering areas not described in the user’s ori-

ginal data. The approach proposed by Krulwich [66] is very efficient profiles users by utilising a

small amount of information. These advantages of the approach come at the expense of a trivial

reduction in accuracy but the approach is still accurate enough to be effective.

The personal program guide (PPG) by Ardissono et al. [111] is based on a multi-agent ar-

chitecture that promotes the integration of different user modeling techniques for recommending

programs to viewers. PPG recognises the TV viewer’s preferences and suggests the programs to

watch. UM-TOOL by Brajnik et al. [115] provides a dynamic way to build stereotypes where

such models are created and updated depending on the user activity. UM-TOOL supports a

unique approach to user modeling, which is based on both the application of stereotypes and

a dynamic reclassification scheme. Shapira et al. [116] evaluated the approaches to building

stereotypes and proposed a new model for information filtering systems to resolve the issues re-

lated to those approaches. Shapira et al. [116] suggested a compromise method, the essence of

defining a group of values for attributes that collectively form a trigger for a stereotype.

Lamche et al. [11] conducted an evaluation of the effectiveness of a user-based stereotypes

recommender system for the mobile fashion domain. Results were aligned with previous studies

in which the user model based on stereotypes generates better results than non stereotype-based

user model. However, the stereotypes were identified by the author before hand. Kamitsios et al.

[117] presented a stereotype-based user model in an educational game to offer personalisation

according to a player’s skill. Likewise, the stereotypes (i.e. mode of the game) were identified by

the author. The effectiveness of stereotype-based RS in digital library ‘Sowiport’ were measured

by Beel et al. [12]. The results were not encouraging as the authors assumed one class of ste-

reotypes only (i.e. students and researchers). Thus, all Sowiport visitors were receiving similar

recommendations related to specific topics. The work by [118] provides a first attempt at eval-

uating stereotype-based and non-stereotype-based RS. Nevertheless, in such work, stereotypes

were still built using expert knowledge.

In summary, several claims have been made in the literature related to the effectiveness of

stereotyping in user modeling, but only a few studies have validated them empirically. Building
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a methodology for the automated generation of stereotypes from item’s descriptive metadata

(independent of user’s rating) has not been carried out to date.

2.5.3 Approaches for Stereotypical Groups

In most of the pioneering works on stereotyping, the majority of the classes were built manually

by the operator with the domain knowledge. This approach is called the behavioural approach as

it is related to behavioral sciences [116]. This approach has obvious limitations, like the operator

building classes manually may miss or disregard important relationships (features) that effect-

ively classify and define a stereotype. It is therefore paramount to create a stereotype building

procedure that assembles the classes in a systematic manner. To the best of our knowledge there

has been no application of the concept of stereotypes to item modeling and efforts to automatic-

ally create stereotypes have been limited.

Later research employed the mathematical approach to determine stereotypic groups using

some form of mathematical way to generate groups, such as clustering or graph theory [116, 105,

104]. In this research, we will follow the mathematical approach of machine learning. A machine

learning based study should address the design of the optimal data representation to tackle the

problem at hand, and the same applies to stereotyping. The problem of classification of users

or items in stereotypes is itself a statistical challenge because stereotypes need to be defined.

Such a problem in machine learning is labelled as an unsupervised learning problem. Clustering-

based algorithms applied to a dataset describing items can provide either a direct representation

of stereotypes or provide valuable insights into what features are most distinctively driving class

separations.

Data clustering (or just clustering) is a way to create groups of objects in such a way that ob-

jects in one cluster are similar and objects in different clusters are quite different. Data clustering

is confused with classification, where objects are allocated to predefined classes. In data cluster-

ing, the classes are not predefined [119]. One of the oldest unsolved problems associated with

clustering is how to choose the number of clusters [120]. Data clustering is the process of defin-

ing natural groupings within multidimensional data based on similarity measure like Euclidean

distance [121, 122].

Recent work on clustering for RS indicates its popularity as a method for enhancing recom-

mendation quality [58]. It is important to remind that the majority of the clustering - similarity-

and dimensionality-reduction approaches developed for filtering-based systems or to solve cold-

start problems all operate on the users-to-items preference (or rating) matrix [91, 123, 85, 86,

124, 125, 107, 126, 46, 71, 127].

The present work approaches the problem differently by investigating the possibility of ob-

taining a viable RS that uses stereotypes generated directly via the feature’s metadata similarities

instead of ratings and preferences. Ratings and preferences-agnostic stereotypes lead to signific-

ant dimensionality reduction when the RS is trained. However, they are sufficiently flexible for
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capturing general preference traits in a population of users.

One quite similar finding to our work is in Li et al’s work [128] which recognised that mak-

ing recommendation based on user is not appropriate in particular areas. Instead, they applied

machine learning to construct clusters for items by implementing a distance matrix. However,

the work does not address the cold-start problem.

A cluster is usually identified by a cluster center (or centroid) [129]. Data clustering is a

difficult problem in unsupervised learning. With the absence of ‘true’ labels makes the evalu-

ation of the result a difficult and some what subjective task. Moreover, the clusters in data may

have different shapes and sizes [122]. Data-clustering algorithms are very much related to data

types. Understanding scale, normalisation, and proximity is therefore necessary in interpreting

the results of clustering algorithms. Data type refers to the degree of quantisation in the data

[130, 131]. A single attribute can be binary, discrete, or continuous. A binary attribute has ex-

actly two values, such as zero or one. A discrete attribute has a finite range of possible values.

While continuous attributes come from an infinite set.

A body of research exists for the application of clustering concepts to numerical and cat-

egorical data [132, 133, 134, 135]. The problem of clustering data with mixed numerical and

categorical features is an active subject of research. Huang [133] first introduced the so-called

k-prototypes clustering algorithm. k-prototypes integrates the k-means and k-modes algorithms

through the definition of a combined dissimilarity measure. Improvements on the dissimilar-

ity measures achieving better clustering performance have later been proposed, see for instance

[136]. Another popular family of clustering methods, the density-based approaches like DB-

SCAN first proposed by Ester et al. [137], have also been generalised recently to cope with

mixed categorical and numerical features [138].

Most clustering algorithms are based on two common clustering techniques known as hier-

archical and partition clustering [139, 140]. A partitional algorithm divides a data set into mul-

tiple non-overlapping subsets, whereas a hierarchical algorithm divides a data set into a sequence

of nested partitions [119]. Algorithms in hierarchical clustering category generate a cluster tree

(or dendrogram) by using heuristic splitting or merging techniques [141]. A cluster tree is defined

as “a tree showing a sequence of clustering with each clustering being a partition of the dataset”

[142, p. 586]. Several hierarchical algorithms have been proposed in the literature which differs

in the way that the two most similar clusters are calculated [143, 131]. More details on specific

clustering algorithms are discussed in Chapters 3 and 4.

In this work we demonstrate how clustering procedures, when used in their standard formula-

tion, do not produce well behaved groups that would serve the scope of stereotypes. We attribute

this to at least two facts: most modern datasets have high dimensionality in their feature space;

modern dataset have complex categorical features which further increase (sometimes dispropor-

tionally) the dimension of the feature space. When clustering models attempt to partition such

high dimensional spaces they are likely to fail, or to discover structures that are more driven by
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slight standardisation issues along each of the coordinates. Our work proposes a different way to

utilise clustering models to obtain stereotypes, tackling the problem with an automatic and sys-

tematic per feature clustering/grouping. We demonstrate that the resulting groups (stereotypes)

are indeed able to describe per feature strong relationships across groups of users (items) that can

be effectively and efficiently used during cold start recommendations.

2.6 Evaluation of Recommender Systems
The literature available on RS evaluation presents a large assortment of evaluation metrics, and

the most appropriate evaluation metric can be chosen among them. Gunawardana and Shani [144]

suggested several evaluation metrics for recommender systems: a) predictive accuracy metrics,

b) classification accuracy metrics, c) rank accuracy metrics and d) non-accuracy metrics for the

comparison of recommender system algorithms. Based on [145], predictive accuracy or rating

prediction metrics are most suitable for situations where an exact prediction of the ratings for

every item is of high concern. The most significant representatives of this class are: a) mean

absolute error (MAE), b) mean squared error (MSE), c) root mean squared error (RMSE) and d)

normalised mean absolute error (NMAE). Recently, rating prediction has been largely abandoned

by recommendation researchers and practitioners as it is considered a bad proxy for actual user

preferences [60, 61, 27].

Classification accuracy metrics measure the number of correct classifications of relevant or

irrelevant items that are produced by the recommender system, and are hence useful for user tasks

like finding good items. This type of metric is especially suitable for applications in e-commerce

that attempt to convince users of making certain decisions like purchasing products or services.

The general basic information retrieval (IR) metrics such as recall and precision are estimated

from the number of items that may be either relevant or irrelevant, and either included in the

recommendation set of a user or not. Cleverdon and Kean [146] have observed the inversely

relation between precision and recall. Therefore, several approaches have been taken to combine

both metrics. One commonly used approach is the F1 metric.

Receiver Operating Characteristics (ROC) and Precision Recall (PRC) plots are free-threshold

measures as opposed to single-threshold measures such as precision and recall. ROC and PRC

are plots of the true positive rate versus the false positive rate for the predictions of a model for

multiple thresholds between 0.0 and 1.0.

A rank accuracy or ranking prediction metric estimates the capacity of a recommender system

to calculate the correct order of items that best represents the user’s preference, which is named

the measurement of rank correlation in statistics. The most commonly used metrics include: hit

rate (HR), mean reciprocal rank (MRR), normalised discounted cumulative gain (nDCG), mean

average precision (MAP) and half-life utility metric (HLU).

Non-accuracy measures (quality measures) like novelty and diversity have moved into the

focus of researchers in recent years. We will explore the meaning of serendipity and its applic-
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ability to our model in Chapters 6 and 7.

A proper evaluation design is crucial in order to obtain an understanding of the effective-

ness of various recommendation algorithms. The evaluation of RSs is often multifaceted, and a

single criterion cannot capture many of the designer goals. Incorrect design of the experimental

evaluation may result in either overestimation or underestimation of the accuracy of a particular

algorithm [3].

Intuitively, RSs can be evaluated using either online methods or offline methods [74]. In an

online system, the user reactions are assessed against the recommendations. User participation

is therefore essential for online systems. However, because online evaluations require active user

participation, it is often not viable to use them in benchmarking and research. Usually there

are significant challenges in obtaining access to user conversion data from large-scale user par-

ticipation systems. On the other hand, one also needs to use datasets of various types, and from

multiple domains. Multiple dataset testing is particularly important to ensure that the recommen-

ded system is more generalised so that one can be assured that the algorithm works in a variety

of settings. In such cases, offline evaluations with historical datasets are used. Offline methods

are by far the most popular methods for evaluating RS from a research perspective [3].

Historical data, such as ratings, are used for offline testing. Well known examples of a his-

torical dataset are the Netflix Prize dataset [101] and MovieLens and IMDb datasets [147, 148].

The Netflix1 dataset was originally released in the context of an online contest, and has since

been used as a standardised benchmark for testing many algorithms.

The main advantage of using historical datasets is that multiple datasets from different do-

mains (e.g. news, music, movies) can be used to test the generalisability of the recommender

system [3]. To demonstrate and assess the proposed recommendation methodology, we per-

formed the cold-start experiments using two datasets: the integrated set of MovieLens with ad-

ded metadata from the IMDb database and the publicly available dataset of reviews for item

purchases from Amazon.com.

The main limitation of offline tests is that they do not measure the actual propensity of the

user to respond to the RS in the future. Moreover, metrics like accuracy do not capture signific-

ant characteristics of recommendations, like novelty and serendipity. Such characteristics have

important long-term impacts on the conversion rate of the recommendations.

Nevertheless, given these drawbacks, offline approaches tend to be the most commonly ac-

cepted techniques for RS evaluation [3] and hence they will be used in the current research.

2.7 Summary
The review of the relevant literature on RSs discussed in this chapter highlighted the three out-

standing problems: new user, new item problems and computational efficiency. Rich proposed

the idea of user-based stereotyping as a method to solve cold-start problems. However, her ap-

1http://www.netflixprize.com/rules
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proach was based on expert-driven creation, given the early age for computational algorithm.

When computational algorithms gained the ability to discover patterns most of the works were

dedicated to the mining of patterns in the rating matrix. That was an obvious choice, but also

contradicted the spirit of the original idea. The application of the idea that mining of data can be

helpful during cold-start phase is an even lesser researched area, the previous work highlighted

the need to solve such problems and in particular the new user problem. However, they revert

back to clustering or standard factorisation methods or other transformation which uses the rating

matrix.

This project aims to obtain recommendation improvements in cold starts from a different

angle, namely feature transformations that are rating agnostic, compared to the widely researched

approach up to now, transformations that operate on ratings. A wide range of fully reproducible

experiments will be illustrated in the coming chapters.
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Problem Analysis

We now live in a world with diverse data sources. Modern data has become more complex and

existing stereotype-based approach can not handle it. In order to answer our research questions,

we are looking for a dataset that is complex and rich in item metadata such as the combined data-

set of MovieLens and IMDb [148]. Such a dataset has a range of features, from simple numerical

to categorical and complex categorical. A categorical variable is defined as complex when 1) it

cannot be easily translated into a numerical variable via encoding, 2) when the semantics of the

categories play an important role in the optimal determination of stereotypes and 3) when it is

multi-choice (e.g. there is no predefined minimum or maximum number of labels that describe

the item or user). These variables can be viewed as multiple-choice answers on a questionnaire,

with the underlying idea being ‘pick all that apply’. In the movie domain, typical examples of

complex categorical features include the ‘genre’ and ‘keywords’ used for labelling movies. For

instance, for one item the genre may be categorised as ‘drama’, whereas for another item might

be ‘drama’ in addition to ‘romance’ and ‘historic’. More details on research methodology and

dataset is provided in Sections 3.1 and 3.2.

The problem of generating automatic stereotypes could be approached via successive analysis

where the order of increasing complexity will enable to discern effects in the stereotype gener-

ation. Our methodology to answer our research questions is first aim to reduce the complexity

of the problem by eliminating the complex categorical and categorical features by transforming

them to numerical ones, reducing part of the dimensionality of the problem but still retaining as

much information content as possible. More details are provided in Sections 3.3 and 3.4.

.

44
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Figure 3.1: Description of the overall research methodology

3.1 Research Methodology
Figure 3.1 outlines the overall research methodology of this thesis. It illustrates three main phases

that depict the overall research and answer the research questions.

Phase 1: Research Scoping (this Chapter). In the majority of the studies, both the ones where

the learning of the stereotypes is addressed, as well as in those using the stereotypes in a clas-

sification/recommender system, the underlying question revolves around feature identification:

which features, among the ones available, can be identified as the most indicative of users or

items classes, and what values of these features have the highest predictive power for the recom-

mendation? Such sets of features and values constitute the foundations of stereotypes.

For a problem such as item stereotyping, we first investigate whether a mixture of feature

engineering and clustering techniques can lead to the automatic formation of clusters that can

be used directly as stereotypes. The methodology adopted aims to identify which item features

may have the highest importance for the creation of stereotypes. In this chapter, three different

clustering algorithms are examined. The main idea is that a repeated identification of the same

set of key features among different clustering algorithms would support the concept of item

stereotyping in the relevant cluster. Figure 3.2 summarises the analysis process.

The output of this phase will indicates wither the mixture of feature engineering and clus-

tering techniques can lead to a practical and automatic formation of clusters that can be used

directly as stereotypes. If this is not the case, then we will handle each feature type separately in

Phase 2.
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Phase 2: Core Contribution (Chapters 4 and 5). The work in this phase addresses RQ1

outlined in Chapter 1. Our research objective is to define associations between metadata features

for both users and items. Such associations prove helpful to an RS in categorising both new users

and new items to generate recommendations when few reviews are available.

In Chapter 4 we proposed a methodology for the automatic construction of stereotypes.

Firstly, we investigate the effect of complex categorical variables and how these can be handled

in a clustering-based stereotyping framework. Secondly, we construct stereotypes automatically

for remaining categorical and numerical features. We explain the stereotype creation experiments

and showing key results using MovieLens 1M and IMDb dataset.

Chapter 5 proposed a comprehensive statistical tests to evaluate stereotypes accurately. For

each stereotype created in Chapter 4, we performed three statistical tests to evaluate the stability,

accuracy and predictive content of the stereotypes.

Phase 3: Testing Stereotypes in Recommender System (Chapters 6 and 7). The work in

this phase addresses RQ2, RQ3 and RQ4 outlined in Chapter 1. We first proceeds to embed

the stereotypes as the base coordinates in an recommender system. In Chapter 6, we predict

and recommend which items a user is likely to consume under cold-start scenarios. Then, we

focused on the rating predictions using different machine-learning approaches with increasing

complexity. Finally, we benchmark our approach against matrix-factorisation techniques. An

in-depth analysis of the recommendation quality of the two approaches (stereotypes and factor-

isation methods) is conducted; such analysis is not limited to recommendation accuracy, but it

attempts to investigate other aspects and desirable properties of recommendations, such as utility

and novelty.

Chapter 7 validate the stereotype-based approach for cold start recommendation using an-

other dataset. In particular, the chapter validate our answers to research questions: RQ1, RQ2,

RQ3 and RQ4 outlined in Chapter 1.

3.2 MovieLens 1 Million Dataset
For RSs research and development, resources such as the MovieLens and the internet movie data-

base (IMDb) datasets provide a rich source of data for the testing and evaluation of recommender

systems and have been utilised in many studies such as [43, 149, 126, 150, 60, 58, 151, 152, 61,

85, 104, 153, 154, 155, 156]. The MovieLens and IMDb databases of movies are selected as an

example of a challenging item stereotyping problem.

For the stereotype-based approach, three types of information are required for the training

and testing user and item metadata:

1. A set of information about users

2. A set of information about items
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Figure 3.2: Problem analysis process

Item (movie) feature
Boolean Features Numerical Features Categorical Features

Adult Budget Original Language
Popularity List of Cast ids
Revenue List of Cast genders

Run Time Movie Genres list
Release Year Release Month
Vote Average List of Crew ids and Crew roles
Vote Count Production Company(s)

Production Country(s)
Keywords

User feature
Gender

Age
Occupation
Zip Code

Table 3.1: Combined ML 1 Million/IMDb movie and user features

3. Relevant feedback from users i.e. user’s rating

The MovieLens dataset is highly popular among the research community with more than

140,000 downloads in 2014 and more than 7,500 references in Google Scholar [147].

Demographic features (e.g. age and gender) of users were extracted from ML 1M dataset

and supplementary item features were extracted from IMDb. The combined dataset ML/IMDb

contains 6,040 users, 3,827 movies, 1,000,209 ratings, 35,052 cast and 28,541 crew information

along with other movie data and user generated features like keywords. Tables 3.1 describes

the available users and items (movies) features in the dataset under investigation. This extensive

dataset will be used to generate stereotypes in this chapter and Chapters: 4, 5 and to test RS

performance in cold start in Chapter 6.
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3.3 Clustering Algorithms
The machine learning approach starts with the design of appropriate data representations. Better

performance is often obtained by the use of features extracted from the original data. Building

a feature representation is an opportunity to leverage domain knowledge into the data that can

be very application specific. Thus, a better understanding of the underlying features is useful for

building good stereotypes. In spite of that, there are a number of generic feature construction

methods such as clustering.

Clustering-based algorithms applied to item metadata provide a direct representation of ste-

reotypes along with valuable insights into which features drive class separations. The main chal-

lenge in the application of a clustering algorithm resides in the standardisation of the data. In the

most common scenarios, mixed numerical and categorical features are present. Additional com-

plexity may arise from categorical features that are not simply labels but may require applications

of semantic similarity metrics into the language they are expressed.

Standard clustering algorithms, like the well-known k-means and its variations, discover

structures in the data by applying Euclidean distances, and minimising the total variance of the

distances between the cluster’s centroids and the individual data points [119]. For categorical

features, the concept of distance and order may be difficult to define and, when not meaningless,

may introduce unexpected false relationships. For example, suppose that a categorical feature in

a dataset is the ‘means of transport’ and the possible entries are: car, boat, train and helicopter.

If one tries to simply introduce a numerical representation for them, for example car= 1, boat=

2, train= 3, helicopter= 4, and apply a standard clustering algorithm on such a new numerical

feature, an unwanted and unreal ordering effect will be introduced, namely that cars would be

‘nearer’ to boats than to trains for example. The standard way to translate such categorical feature

to a numerical one is 1 to n encoding, whereas in the example discussed each one of the means

of transportation can be encoded as a 1 at that ‘coordinate’ position amongst zeroes at all other

positions indicating non-car transportation means.

A body of research exists for the application of clustering concepts to categorical data. In

[133], the k-mode algorithm was introduced to deal with categorical data. In the k-modes al-

gorithm, the centroid of clusters is no longer identified by means but with modes. A matching

dissimilarity measure is introduced to deal with categorical objects, and the clustering cost func-

tion is minimised by using a frequency-based method to update modes. Several marginal im-

provements have been introduced to k-modes, for example [134, 135], where the improvements

are all directed toward the formation of the dissimilarity measure used. In [157] similarity and

efficiency of k-mode is investigated in comparison to the k-median approach.

The problem of clustering data with mixed numerical and categorical features is an active

subject of research. Huang [133] first introduced the so-called k-prototypes clustering algorithm.

k-prototypes integrates the k-means and k-modes algorithms through the definition of a com-
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Numerical Movie (item) Feature Vector Components and Dimensions
Analysis 1

Numerical Features Dimension Analysis 1.B
Numerical Features Dimension Categorical

Feature Represented
Budget 1
Popularity 1
Revenue 1
Run Time 1
Release Year 1
Vote Average 1
Vote Count 1
Is Adult 1
Cast Popularity 1 Cast Popularity 1 List of Cast Ids
Cast Gender Bias 1 Cast Gender Bias 1 List of Cast Genders
Director Popularity 1 Director Popularity 1 List of Crew Ids & Roles
Encoded Original Language M (sparse) Language Popularity 1 Original Language
Encoded Production Comp. P (sparse) Encoded Comp. Popularity 1 Production Comp.
Encoded Movie Genre G (sparse) Encoded Movie Genre G (sparse) Movie Genres List
Encoded Keywords K (sparse) Encoded Keywords K (sparse) Keywords
Release Time of Year 1 Release Time of Year 1 Release month
Production Coordinates 3 Production Normalized Dis-

tance
1 Production Country

Table 3.2: Movie features transformed to a numerical feature vector for Analysis 1 and Analysis 1.B

bined dissimilarity measure. Improvements on the dissimilarity measures for better clustering

performance have later been proposed, for instance by Ji et al. [136].

Model-based clustering algorithms and in particular the gaussian mixture models (GMMs)

are a major approach to clustering analysis [119]. GMMs assume the data are coming from a

mixture of probability distribution, each represents a different cluster. GMMs provide an im-

provements over k-means as it can cluster stratified area which are difficult to be described well

in k-means.

Another family of clustering methods are the density based approaches, like DBSCAN first

proposed by Ester et al. [137]. These methods have recently been generalised to cope with mixed

categorical and numerical features [138].

3.4 Experimental Evaluation
Table 3.2 describes the available items (movies) features in the combined ML 1M and IMDb

datasets. The item features embed the typical complexity that can be encountered in the ste-

reotyping process, with mixed numerical and categorical features. The unshaded rows represent

numerical features and thus do not require any pre-processing. The last column of the table shows

the original categorical features that have undergone a transformation.

In this and the following sections, a clustering-based technique for the automatic individu-

ation of item-based stereotypes will be discussed. The main challenges posed by the application

of clustering techniques to the movies dataset is constituted by the abundance of features and by
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the complexity of the categorical features. For example, the feature describing the cast goes as

far as having, for each cast role, the actor’s name, the gender and the role name. In a similar

fashion for each crew member the data contains the name (Stanley Kubrick, Oliver Stones) and

role (director, screenwriter).

Thus it is important to perform a transformation to simplify the data. The simplification

process is achieved by retaining all of the numerical features, as well as all of the categorical

ones that can be translated, via feature engineering, to a numerical representation which retains

the categorical feature’s meaning. The allure of this simplified analysis resides in the ability to

use a larger range of clustering methodologies - those developed for problems with numerical

features only.

We apply three state-of-the-art clustering algorithms: k-means, GMMs and DBSCAN to the

simplified item data. The results of the clustering algorithms are then investigated further in order

to confirm the appropriateness of the encoding techniques that have been applied to categorical

features and analyse the ‘shape’ of the resulting clusters. The aim is to identify which of the

item features may have the highest descriptive content for the creation of stereotypes. Figure 3.2

summarises the analysis process.

Analysis 1

In this simplified analysis we aim at eliminating the categorical features by transforming them

to numerical ones, thus reducing part of the dimensionality of the problem but still retaining as

much information content as possible. The problem of dealing with the lists of cast ids and crew

ids can be simplified by considering what a cast id and what a crew id do for a movie. At a very

general level (the stereotype level) the cast and crew ids can be used to define popularity like

features. For each cast c, let nc be the count of the number of movies in which cast c is present.

The popularity of cast c can be defined as pc = log(nc). A Movie’s cast popularity (pm) can be

defined as the average over the top N casts (sorted by popularity) of the popularity of each cast,

N is chosen to be less or equal to 5 (a movie’s cast popularity is dictated by its most popular 5

actors). Crew popularity could be defined in a similar fashion; however, it is possible to further

approximate the popularity of the crew with that of the director-arguably the most representative

crew member: pd = log(nd).

For the remaining categorical features the approach taken is as follow:

• Encode cast gender list to gender bias: for each cast member the gender is available; an

average gender bias for each movie can be defined by taking the average across genders of

the top N casts (sorted as defined above), after having translated the entries to +1 and -1

for female and male respectively.

• Encode original language and Encode production company(s): the categorical features are

transformed via a 1 to n encoding by differentiating across the most popular languages and
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production companies, and classify the rest as ‘others’.

• Encode movies genre list: the list of genres is again encoded as a 1 to n vector. Each movie

might have multiple genres so this is an example of a feature where a non pre-specified

number of labels may apply simultaneously to a given item.

• Encode keywords: a 1 to n encoding that retains only the keywords with the largest number

of occurrences across all training items is adopted. This is another example of a feature

where a non pre-specified number of labels, or sub-categories may apply simultaneously

for a given item.

• Release month to release time of year: to capture the yearly periodicity of the months, and

the well-known effect of increased movie release activity around the Nov to Jan months, a

periodic function is used. Let the release month be represented by a number, 1 for Jan, 2

for Feb, and so on till 12 for Dec. A release time of the year for month i can be defined as:

rti = cos(2πi/12).

• Production countries: a 1 to n encoding could be used as introduced for other features;

however, it can be argued that such an encoding would obfuscate ‘cultural vicinity’ effects

which may be embedded in the production country feature. For example, a Canadian movie

may be ‘closer’ to the cultural mindset of a U.S. movie than an Indian movie, and can be

said between European movies and an Australian movies. To capture both the categorical

and the proximity effect described, each production country code is encoded to the latitude

and longitude coordinates of their capital city. From the latitude and longitude values,

using Earth’s radius the 3-dimensional spatial coordinates are computed, and used in the

feature vector - with the implicit assumption that the Euclidean distance between capital

cities is a proxy for the real distance.

The simplified feature vector is as presented in the first two columns of Table 3.2. In the

table, M represents the selected number of the most representative languages plus one, P is the

number of most representative production companies plus one, G is the total number of movie

genres, K represents the selected number of the most representative keywords plus one.

By retaining languages with more than 20 movies then M= 7, by retaining the production

companies that have produced at least 20 movies over the data under exam then P= 27, by retain-

ing all movie genres leads to G= 24. Finally, by retaining keywords with a presence in more than

20 movies then K= 84. Therefore, the numerical feature vector has size 157.

Experiment Applied to Analysis 1
k-means

k-means is one of the most popular clustering algorithm, even though technically it is not a

clustering but a partition algorithm. The popularity of k-means derives mostly from its simplicity
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Figure 3.3: Elbow method considerations for k-means using ‘fit’ a standardised Eucliedean measure

and its computational efficiency. The fact that k-means is not technically a clustering but a

partitioning algorithm implies that the algorithm does not directly discover the number of clusters

in the data. The standard solution to the problem of using k-means for cluster discovery in a

dataset, see for example [119], consists of performing the clustering analysis for an increasing

number of clusters and observing metrics that describe the ‘silhouette’ of the clusters.

It is assumed that the number of clusters in the data can be identified by looking for a well

defined kink (or elbow) that changes the slope of the silhouette metric. As the number of cluster

increases, the metric describing the silhouette of the clusters (representative of the amount of

variance of the points from their respective centroids) will improve. However, the marginal

improvement in the silhouette metric may display a change of slope around a certain range of

clustering points. That range is indicative of a ‘regime change’, whereas the marginal improve-

ment of adding additional clusters after the kink will be limited compared to the improvement in

the overall silhouette before the kink, and hence indicative of what the true number of clusters in

the data may be.

The analysis described is applied to the dataset with numerical features (as described in

Table 3.2). Two metrics for the silhouette of the clusters are used: the standard score metrics

available in the sklearn1 metrics, and a standardized Euclidean metric defined as:

√∑
(ui − vi)2/V [ui] (3.1)

For each vector u in the feature space from its respective centroid v, with V [ui] being the

variance of the coordinate i for all u(s) in that centroid. The resulting curves of the two ap-

proaches are depicted in Figures 3.3 and 3.4. It is possible to see that both methods suggest a

slope change in the chosen silhouette method in the region of 8 to 10 clusters.

Two important drawbacks of using k-means are:

• By the way it is constructed k-means will assume that the clusters are of a globular shape,
1https://scikit-learn.org/
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Figure 3.4: Elbow method considerations for k-means using ‘fit’ a sklearn score measure

other-shapes are difficult to accommodate within the k-means framework, yet clusters that

have stratified area will be difficult to be described well in k-means.

• Every point must belong to a cluster, where it is natural to expect that in real case situations

a point might not belong to any cluster, or the degree of belonging to a cluster is ‘less’ as

the points are further away from the centroid.

Expectation-Maximization: Gaussian Mixture Models (GMMs)

GMMs provide an improvement over k-means on both the drawbacks of the assumed globular

shape and the degree of belonging highlighted above. For each cluster, GMM assumes a N-

dimensional gaussian distribution, and assembles the total distribution as the superposition of as

many gaussians as clusters. The shape of the gaussian along any axis or particular combination

of axis is dictated by the respective variances, therefore in a GMM model a cluster’s shape may

deviate from a globular shape to a very flat, almost compressed shape. Whilst k-means is a hard

partitioning method, a point either belongs to a cluster or another, in GMM there is a degree of

fuzziness. A point has a probability of belonging to each of the clusters. Hence, GMM is a soft

partitioning method.

Gaussian distributions provide ‘flexibility’ to the clusters, which are determined via a two

steps iterative process:

• An expectation step: for each point find the probability of belonging to each cluster.

• A maximization step: for each cluster, update location and shape based on the probabilities

of the data points that have been determined in the previous step.

Similar to k-means, GMMs are technically not clustering, but partitioning algorithms. There-

fore, a similar ‘elbow’ methodology needs to be put in place to discover the most likely number

of clusters in the data. Figures 3.5 and 3.6 show an analysis for the increasing clusters numbers
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Figure 3.5: Elbow method considerations for GMM using a standardized Eucliedean measure ‘fit’

Figure 3.6: Elbow method considerations for GMM using a sklearn score measure ‘fit’

generated by the GMM partitioning of the feature space. Whilst from a first analysis of the score

method after smoothing out the noise, one could put forward the hypothesis of a natural number

of clusters in the data in the region of 5 to 7. The distortion measure exhibits a very uniform

(in first derivative) decay of distortion and only a detailed analysis of the derivative displays two

potential regions with slight regime shifts, for example at around k= 5, the other less pronounced

at k= 20.

Such regions can be identified as ‘local plateau’ in the approximation of the first derivative

of the distortion or score. A local plateau indicates that there is no obvious improvement adding

more clusters. Detailed analysis of the score derivative also shows a similar pattern, as it can be

seen in Figures 3.8 and 3.7.

Whilst k-means suggests 8 to 10 clusters in the data, the GMMs indicates that there are two

‘tiers’ of natural clusters in the data. A tier 1 group with about 5 clusters, and tier 2 group with

20 clusters. A more in depth understanding of these features requires the investigation of the

clusters’ structures as follows.
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Figure 3.7: Approximation of the first derivative of score for the GMM elbow procedure. Two plateaus
can be identified suggesting a first elbow at around k= 5 and a second elbow at around k= 20

Figure 3.8: Approximation of the first derivative of the distortion for the GMM elbow procedure. Two
plateaus can be identified suggesting a first elbow at around k= 5 and a second elbow at around k= 20

Density Based Spatial Clustering Analysis with Noise (DBSCAN)

DBSCAN was originally proposed in [137] and it is a density based clustering algorithm. It

does not require that every point is assigned to a cluster, hence does not partition the entire data.

Instead, it extracts the ‘dense’ clusters and leaves sparse background classified as ‘noise’. The

main advantages of DBSCAN over the k-means and GMM algorithms are:

• The algorithm does not require to specify the number of clusters in the data at prior, as

opposed to k-means.

• The algorithm can find arbitrarily shaped clusters.

DBSCAN operationally transforms the space according to the density of the data, points in

dense regions are left untouched, points in sparse regions are moved further away. It then iterates

multiples over the transformed space determining distances and cutting points according to a

distance parameter (called epsilon - ε - in most implementations) to get the clusters core points.

Finally, it assigns each non-core point to a nearby cluster if the distance parameter satisfies the

condition for that core point, otherwise assigns it to the noise.
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Figure 3.9: Silhouette score as a function of the two parameters of the DBSCAN algorithm. Elbow method
considerations suggest an epsilon of about 20

The major drawbacks of DBSCAN resides in the difficult choice of two parameters: epsilon

and minPts. Epsilon represents a distance parameter, whilst minPts represents the minimum

number of points required to form a dense region. As a rule of thumb, minPts should be chosen

to be between d and 2d, where d is the dimensionality of the problem. As for epsilon (ε) if it

is chosen much too small, a large part of the data will not be clustered; whereas for a too high

value of ε, clusters could merge. A procedure similar to the elbow method previously described

can be used to identify epsilon. For DBSCAN, the distortion measure cannot be readily defined,

and the sklearn implementation does not support a scoring method. For this reason a ‘silhouette’

index score is used. This is calculated using the mean intra-cluster distance (a) and the mean

nearest-cluster distance (b) for each sample. The silhouette score for a sample is

(b− a)/max(a, b) (3.2)

In Figure 3.9, the silhouette is displayed for several combinations of minPts and epsilon. A

value of 20 for epsilon seems appropriate. With an epsilon of 20, only two natural clusters are

discovered inside the data by the DBSCAN algorithm for each of the minPts tested. This result is

somewhat of dubious nature and further investigations would be required to analyse the clusters

and potentially the data normalisation adopted.

It is worth noting the stability of DBSCAN, as reported in [137] that the method does not

produce deterministic results as the order of the sample presented to the algorithm is changed.

A sensitivity analysis that randomly change the order of the movie items presented to the model

would be required to generalise the result obtained.

Analysis 1 Experimental Result

The initial clustering methods applied to the stereotyping of movie items, when the feature
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vector is transformed to be a numerical one, has shown some contradictory findings. Whilst

partitioning algorithms (k-means and GMMs) suggest a natural range of clusters in the data of

the order of 5 to 10, DBSCAN only discovers 2. The latter result is suspicious and may be

attributed to a sub-optimal normalisation of the feature coordinates which creates false density

structures in some of the features coordinates or sub-spaces (i.e. sets of coordinates).

The results of clustering can be used to build stereotypes. Different methodologies to link

the clustering results to stereotypes are subjects of ongoing investigations, however in the current

context the simplest and most intuitive way to generate a stereotype class from a clustering result

is to assign the cluster centroid the role of stereotype for all items that fall in its vicinity in the

feature space. Investigation of the stereotypes (clusters) structures should reveal further insights

into the directions along which the algorithms operate and shed light into potential normalisation

or encoding problems.

The results of the clustering algorithms lead to further investigations into the analysis of

the clusters ‘shape’. It is possible to gain a sense of the clustering structures by synthesizing

and studying an estimator of the ‘rank’ of the feature separation between each coordinate of the

cluster centers. To do so, for a given clustering algorithm (a) and a given number of clusters (n),

a normalised distance between the cluster centroid i and the cluster centroid o along coordinate

xj can be defined as:

di,oj =
abs(xij − xoj)
abs(xoj)

(3.3)

And with that, a delta for each coordinate xj and algorithm a, for a number of clusters n can

be introduced as:

δn,aj = maxi(d
i,o
j ) for i = 1, . . . , n− 1 (3.4)

The delta measure can serve as a proxy to estimate the degree of importance of each direction

(coordinate) in determining the feature space separation. Based on the amount of ‘space’ between

centroids, it provides a way to estimate the relative ranking of each direction and the ‘shape’ of

the clusters. Figure 3.10 shows a simple example on how the delta works in ranking the directions

of feature separation in a two dimensional space. It can be seen that direction X is much more

important than direction Y in separating the three clusters.

The analysis of the directions ranking according to the degree of separation defined by δn,aj , as

the number of clusters increases, is particularly relevant for the k-means and the GMMs models.

It provides an intuition for what directions of the feature vector space are most effective and stable

in separating the space. The analysis of the delta measure also enables a critical examination of

the numerical feature directions, thus providing an idea of whether the normalisation and the

encoding performed on the feature is suitable for clustering or may skew the results. In the case

of DBSCAN, where the number of clusters is an output of the algorithm, the algorithm does not
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Figure 3.10: Ranking feature separation in feature space using δn,a
j

define centroids, the measure defined in 3.4 is not directly applicable. To generalise the measures

in 3.3 and 3.4 for DBSCAN, it is necessary to define the centroids of the clusters, and this can

be done for cluster i by taking the expected value E[.] along each coordinate j for all ε points

belonging to the cluster:

xij = E[εij ] (3.5)

With such a definition for the cluster’s centroid it is possible to introduce the delta measure

in the same way as the measures in 3.3 and 3.4 for DBSCAN.

Tables 3.3, 3.4 and 3.5 show the top 7 ranked directions (or subspaces when a feature is

composed by multiple coordinates) according to metric 3.4 for the three algorithms examined in

Section 3.4. There is a clear and distinct feature separation, and that different algorithms tend

to discover similar predominant features (coordinates) along which space separation occurs. For

instance, it is noticeable how features like popularity, cast and director’s popularity appear to be

less effective as clustering coordinates than features like production country, keywords, genre

and production company. Also, it is interesting to note how the ranking of features depends

on the number of clusters. For a given number of clusters there is a definitive similarity across

algorithms, with the partitioning algorithms (k-means and GMMs) agreeing on both the top four

most important directions and their relative rankings.

A striking finding from the analysis is that all the directions scoring high in terms of feature

space separation are the ones that have been encoded from categorical values to a subspace of

a certain size in the numerical feature vector. For example, production company is encoded

as a numerical feature of 27 dimensions as shown in Table 3.2. It is therefore important to

evaluate whether the encoding is the potential root cause of such an observation. In the next

section, changes are made to the way the features are transformed (encoded) and this leads to an

alternative analysis.

Analysis 1.B

The initial findings of Section 3.4 suggest a further revision of the features introduced in

Table 3.2, this is needed in order to shed light on the questions below:

• Why does the feature ‘production company’ has such a high importance in the clustering
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Table 3.3: Top 7 ranked feature directions (or subspace of directions) according to maximum separation
as measured by δn,a

j for an increasing number of clusters (n) and algorithm (a) equals to k-means
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Table 3.4: Top 7 ranked feature directions (or subspace of directions) according to maximum separation
as measured by δn,a

j for an increasing number of clusters (n) and algorithm (a) equals to GMM
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Direction 4 Production Country
Direction 5 Genre
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Direction 7 Budget

Table 3.5: Top 7 ranked feature directions (or subspace of directions) according to maximum separation
as measured by δn,a

j for DBSCAN
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process? Intuition would suggest that such a feature should be of the same order of import-

ance as the feature cast Ids and director Id. However, ‘production company’ consistently

ranks higher than the cast and director features. It is natural to question whether this effect

is real or whether it is introduced by the different encoding. Production company was en-

coded 1 to n, whilst cast and director features were represented via the popularity scalar

value.

• As the clustering number increases, the feature ‘production country’ becomes the prevail-

ing separation feature. Is this due to the scale of this metric? Could the same information

be presented in a different way to the clustering algorithms?

• Are keywords and genre truly important or their rank is a side effect of the large dimension

of their subspace?

To gain further insights into the problems above, a revision of some of the features is proposed

below:

• Language to language popularity: pL = log(nL), where nL is the count of movies in the

training set with language L.

• Production company to production company popularity: in a similar fashion as what was

done in Table 3.2 for cast and director popularity, the production company popularity can

be introduced as ppc = log(npc), where npc is the count of movies in the training set

produced by the company.

• Production coordinates to normalised distances: in order to retain the basic idea that the

closer the locations of production for a movie the more culturally similar the movies are

likely to be, and at the same time simplify and scale this feature, it might be necessary

to introduce a normalised distance. By fixing an origin on the surface of the earth, for

example the coordinates of the Greenwich meridian in London, it is possible to compute the

distance from such origin to each movie production country (which had been transformed

to a location as shown in Table 3.2). The distance is computed via the geodesic (shortest

distance on the curved surface). In order to differentiate between two points at a similar

distance but on the opposite sides of the origin the distance is then complemented with

a sign. Positive if the geodesic is moving east of the origin, negative if the geodesic is

moving west of the origin (sign of longitude). One further problem arises, the earth can

be approximated via a sphere and there could be points that have a large positive distance

compared to the diameter of the earth and points that have a large negative distance and

yet they are actually close in geographical sense. To account for such characteristic, a

periodic function is introduced. Let ω0,P be the signed geodesic distance between point

0 (the origin) and point P , and R be the earth radius, then the normalised distance can be

defined as:
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∆0,p = cos(
πω0,P

2R
) (3.6)

Which also conveniently falls in the -1 to +1 range as to conform with the typical scales of

the other numerical features.

With the proposed changes discussed above, the new analysis can be run with the new feature

vector space of third and fourth columns from the right in Table 3.2. As before by retaining all

movie genres then G= 24 and by retaining keywords with a presence in more than 20 movies

then K= 84. Therefore, the new numerical feature vector has size 123.

Experiment Applied to Analysis 1.B

In the new feature vector in Table 3.2 with the new feature space of size 123 (compared

to the size of 157 of the analysis 1), we repeat the elbow procedures for the identification of

the most likely number of clusters for both k-means and GMM clustering models. The results

are displayed in Figures 3.11 and 3.12. The measures introduced previously, namely the score

and the distortion, are displayed together with those for the same algorithm applied to the wider

feature vector from analysis 1.

The first important finding is that for the k-means algorithm, both the score and the distortion

measures exhibit only minimal variations, despite a 20% reduction of the feature vector space

between the two analyses. Analysis 1.B elbow procedure confirms the existence of a natural

number of clusters in the data between 5 and 10, with 8 being the most likely value. Secondly,

whilst in analysis 1 using GMM was only weakly conclusive about the kink (elbow) location,

i.e. an elbow in the score was less pronounced and there were two likely regimes identified. In

analysis 1.B, the score displays a much more defined elbow and the elbow location is consistent

with a 5 to 10 natural clusters, confirming the k-means finding in a clearer manner. The score of

GMM, which represents the log-likelihood of the sample data, slightly decreases which may be

consistent with the dimension reduction.

To understand how the cluster’s shape is influenced under the new feature vector, the same

analysis is repeated for the newer clustering results. This derives the preferential directions as

well as the ranking of directions according to the separation delta measure.

Tables 3.6 and 3.7 show the resulting features, ranked by maximum separation in the feature

space, as the clustering models proceed from fewer to more clusters. The first important finding

of this investigation is that there seems to be a more defined ‘cut off’ in separation measure,

whereas a handful of features contribute to most of the separations, and the others contribute

to at least one less separation. In order to reinforce the fact that there are dominant directions

identified by the clustering algorithm, the non-dominant features are left blank.

The second finding is that the emerging features ranking is relatively stable across cluster’s

dimension as well as algorithm (GMM vs k-means). Keywords and genre appear to be the dom-
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Figure 3.11: Elbow method considerations for k-means, Analysis 1 vs Analysis 1.B

Figure 3.12: Elbow method considerations for GMM, Analysis 1 vs Analysis1.B

Figure 3.13: Elbow method considerations for the silhouette score over the parameter space for DBSCAN,
Analysis 1 vs Analysis 1.B
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inant features, and in such an order, pretty much across algorithms and cluster sizes, with only

the exclusion of small clustering dimensions where genre and even budget can take a leading

role. As the clustering dimension increases, country distance (the new feature introduced in ana-

lysis 1.B to represent the production country), still arises as one of the most important directions,

and this confirms the finding of analysis 1. Even more importantly this show that even a com-

plex mathematical manipulation, such as the one that reduces that feature space from dimension

3 to dimension 1, only minimally influence the results. Ultimately the importance of the fea-

ture budget is confirmed, and as clustering dimension increases, past the elbow, the new feature

revenue is discovered as an important separating feature.

Having observed the results given by partitioning algorithms like k-means and GMMs, it is

interesting to look also at the results of a density based approach like DBSCAN. As before, the

DBSCAN procedure differs from that of the other partitioning algorithms as the number of cluster

structures is actually an output of the model, once the parameters epsilon and minimum number

of points are selected as discussed earlier. To select these parameters, an elbow like methodology

was suggested over a silhouette target function as displayed in Figure 3.13. DBSCAN applied to

the feature vector of analysis 1.B actually reveals a silhouette score that is slightly lower than that

of analysis 1, but with an asymptote at high epsilon that is slightly higher. The two parameters

of the model are chosen to be almost identical to that of analysis 1, and still lead to two cluster

structures.

Table 3.8 shows the dominant feature directions according to the separation measure previ-

ously introduced and adapted for DBSCAN. The main finding is that for analysis 1.B the role of

keywords is not confirmed by DBSCAN. Instead budget is ranked as the most significant feature

to create separation, followed by genre, country distance and keywords.

Analysis 1.B Experimental Result

Analyses 1 and 1.B led to the following findings:

1. If a categorical feature is truly important for a given problem, and if that feature can be

transformed to a numerical feature by retaining the meaning of what it represents, then the

transformation is not likely to influence the feature’s importance in an automated stereo-

typing process. This is the case for the production country, which is designed to reduce its

dimension but retain the meaning of the feature. This does not affect the fact that it is a top

ranking feature as per separation and hence its importance in a stereotyping process.

2. If a categorical feature has a small importance overall in defining separations among groups

of items, it would be disregarded or poorly weighted in a stereotyping process. Encoding

the feature simply as 1 to n could potentially introduce false structures, especially when

the encoded dimensions are large. The example where the above applies in the current
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Table 3.6: Top 7 ranked feature directions (or subspace of directions) according to maximum separation as
measured by δn,a

j for an increasing number of clusters (n) and algorithm (a) equals to k-means for Analysis
1.B
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Table 3.7: Top 7 ranked feature directions (or subspace of directions) according to maximum separation
as measured by δn,a

j for an increasing number of clusters (n) and algorithm (a) equals to gaussian mixture
model (GMM) for Analysis 1.B
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Clusters

2

Direction 1 Budget
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Direction 3 Country Distance
Direction 4 Keywords
Direction 5 Popularity
Direction 6
Direction 7

Table 3.8: Top 7 ranked feature directions (or subspace of directions) according to maximum separation
as measured by δn,a

j for DBSCAN for Analysis 1B



Section 3.4 Experimental Evaluation 65

problem is that of the production company feature. When such a feature is encoded as a 1

to n, it scores consistently in the top positions of the ranking features. However when it is

transformed to production company popularity its rank is changed to that of a secondary

feature.

3. If a categorical feature with a large number of categories can be synthesised via a math-

ematical formula, tailored to both retaining the information content and reduce its dimen-

sionality, then this can facilitate the application to stereotyping of numerical clustering

methods. However, if a categorical feature with a large number of categories cannot be

reduced via a mathematical model to a simpler numerical feature, then one should not

employ the naive 1 to n numerical encoding in the context of stereotyping.

The findings above imply that the conducted analyses 1 and 1.B lead to several important

conclusions, some of which are not fully expected (for example the importance of production

country, budget, release month). However the same analysis is affected by potentially spurious

structures introduced by the 1 to n encoding of the two features: genre and keywords. Further

reducing such feature spaces to smaller numerical coordinates is a challenging task. It would

require in depth research on the potential applications of lexicographic and semantic distances,

and grouping algorithms that would take into account the underlying meaning of the words in

each category. For example, measuring how ‘close’ two genres are, and how ‘close’ keywords

are, as well as how ‘close’ could categories of different features be amongst each other (e.g. how

a keyword may be more likely related to a set of genres rather than another) constitute critical

problems for such a research. Tackling these problems would be very beneficial for any robust

and successful stereotyping model to be applied to real life problems.

Before formally introducing and researching potential solutions to such problems, a further

simplified analysis can be carried out to confirm or disprove the current findings regarding the

stereotyping problem. In the new analysis, which can be called analysis 1.C, the subspaces of

genre and keywords are removed from the feature vector. The analysis of only the numerical

feature vector, deprived of any 1 to n encoding, will demonstrate whether the presence of 1

to n encoded features having large n compared to the feature space is not only influencing the

clustering along the encoded directions but also along the other directions. In simpler words,

analysis 1.C is carried out to validate the findings about the numerical (non-encoded) features.

Analysis 1.C

Repeating the elbow procedures for the identification of the most likely number of clusters

(stereotypes) in the feature vector of Table 3.2, where both genre and keywords 1 to n encoded

features have been removed, using k-means and GMM clustering models, leads to the results of

Figures 3.14 and 3.15. In particular, k-means clustering does not improve neither in score, nor in

distortion over analysis 1.B, and the elbow suggests the very same number of clusters as that of
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Figure 3.14: Elbow method considerations for k-means, Analyses 1 vs 1.B vs 1.C

Figure 3.15: Elbow method considerations for GMM, Analyses 1 vs 1.B vs 1.C

analysis 1.B.

For the GMM however, the situation differs substantially. The score of analysis 1.C is much

lower (in GMM the score represents the per sample average log-likelihood of the data), therefore

suggesting that the data may not be well represented via joint normal distributions. Perhaps

having removed the large number of encoded dimensions is what highlights the non-normality

of the data. Somehow this fact should have been expected as several directions are introduced as

the logarithm of a positive defined quantity. The distortion is also slightly worse for analysis 1.B

than analysis 1 but it is at a comparable level. However, rather than the measures of cluster ‘fit’,

the main objective of analysis 1.C is to look at the main directions identified by the clustering

procedures in order to prove or disprove the conclusions that analyses 1 and 1.B suggested.

Tables 3.9 and 3.10 show the features ranking for analysis 1.C, and the same exact features,

with almost identical ranking as analysis 1.B, are identified by the separation measure as the
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Figure 3.16: Silhouette score as a function of the two parameters of the DBSCAN algorithm. Elbow
method considerations suggest an epsilon of about 20 across all analyses
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Table 3.9: Top 7 ranked feature directions (or subspace of directions) according to maximum separation as
measured by δn,a

j for an increasing number of clusters (n) and algorithm (a) equals to k-means for Analysis
1.C
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Table 3.10: Top 7 ranked feature directions (or subspace of directions) according to maximum separation
as measured by δn,a

j for an increasing number of clusters (n) and algorithm (a) equals to GMM for Analysis
1.C
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Direction 5 Popularity
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Table 3.11: Top 7 ranked feature directions (or subspace of directions) according to maximum separation
as measured by δn,a

j for DBSCAN for Analysis 1.C

fundamental features in the clustering analysis 1.C by both k-means and GMM. These findings

validate the conclusions reached during analyses 1 and 1.B.

Conducting analysis 1.C via DBSCAN leads to the elbow procedure in parameter space of

Figure 3.16. The reduced feature vector of analysis 1.C still leads to the same parameter selec-

tion as analyses 1 and 1.B. Yet again, DBSCAN identifies two clusters and for these the main

separating directions are reported in Table 3.11, and once more the usual top four directions of

feature space separation identified are consistent with the previous findings. With lower degree

of importance, DBSCAN applied to analysis 1.C also discovers the popularities of the movie, of

the cast and of the director as further separation features. Analysis 1.C therefore overall confirms

that the conclusions are valid for this problem.

3.5 Summary
An initial analysis of clustering methods applied to the problem of the identification of stereo-

types for movie items using a series of specially assembled numerical feature vectors was con-

ducted. The analysis was then further simplified to demonstrate the effect on the stereotyping
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process of 1 to n encoding versus ad-hoc mathematical transformation of categorical features.

Results show that some features are more indicative than others in separating items, and their

presence supports the idea of using cluster separation as a way to obtain stereotypes. Clustering

of the item metadata appears to be a promising approach to generate stereotypes because it allows

one to determine the importance of features automatically but, at the same time, the investigation

demonstrates that clustering cannot be directly applied to stereotype creation - at least not for

problems where both numerical and complex categorical features are present at the same time.

This is because in some cases the separation of the cluster centroids may be dominated by a single

feature (for example genre or keyword), as a result of the high dimensionality of the feature itself

and not because of the feature true importance.

In the next chapter, we will investigate the effect of complex multi-valued categorical vari-

ables like genre and keywords, and how these can be handled in a clustering-based stereotyping

framework. Also, we will look at how to automate remaining features - numerical and non com-

plex categorical features.



CHAPTER 4

Automatic Construction of Item-Based Stereotypes

The research conducted in Chapter 3 into the direct application of clustering algorithms for the

creation of stereotypes indicates an inherent difficulty in obtaining structures (stereotypes) due

to the vastity of the dimension and the diversity and complexity of some of the features, with

the resulting stereotypes dominated by the high dimensional features. Such a research lead to a

preliminary conclusion that, when in the presence of high dimensionality and distinct complex

categorical features, the straightforward application of a clustering approach might not lead to

the desired, easily interpretable stereotyping framework.

The main contribution of Chapter 4 is to propose an algorithmic framework for the automatic

identification of stereotypes for both numerical and complex categorical features. This chapter

address the following research question:

Can item-based stereotypes, not based on rating, be constructed automatically?

The novel approach to automatic stereotype construction for complex categorical and numer-

ical features is proposed in Sections 4.1 and 4.2 respectively, while Section 4.3 describes the

experiment for automatic stereotype construction.

4.1 Stereotypes for Complex Categorical Features
Using clustering as a technique for the automatic individuation of stereotypes, lead to a gap/disconnect

between categorical features that can be transformed to simple numerical features, still retaining

their information content, and categorical features that are not easily transformable. In particular,

for the problem at hand, the two features (i.e. movie genre, movie keywords) that were identified

as being highly important in the previous context, cannot be easily translated into a numerical

70



Section 4.1 Stereotypes for Complex Categorical Features 71

representation without recurring to complex semantic distances or representations like those de-

riving from natural language processing research, see for instance the famous research that lead

to the word2vec algorithm [158].

Complex categorical variables make the application of stereotypes to RS more challenging,

but at the same time they are more representative of the real-world due to the fact that the most

important categorical variables are multi-entry categorical in a non-strict sense. By that we mean

that the entry of an item for a given categorical features, genre for example, is not simply one

category, e.g. ‘drama’, but it can take several entries without any preassigned number, e.g. for one

item the genre may be categorised as ‘drama’, for another item it may be ‘drama’ plus ‘romance’

plus ‘historic’. These features can be viewed as multiple choices categorical variables, in such a

way to resemble multiple choice answers to a questionnaire and the idea is ‘pick all that applies’.

To the best of the author’s knowledge, all the available categorical clustering algorithms like

k-modes and its possible variations have been developed for single choice categorical variables,

hence they cannot be applied directly to multi-entry categorical features. However, a transforma-

tion can be employed to transform multiple-entry categorical variables to a series of variables that

can be handled by k-modes. For each possible value of the category, a new variable is introduced

to represent a true/false encoding. This is not dissimilar from the concept of 1 to n encoding, but

in this context it is used to define a multi-valued categorical representation, but not a numerical

coordinate instead.

Multi-entry categorical features do not just bring an extra level of complexity, they also

provide an understanding of the intrinsic relationships between categories which come directly

from the process that generated the data.

For a complex categorical feature there exist a number of entries where multiple labels are

assigned to the same item. By investigating a large enough set of items with multiple entries one

can extract what type of relationships exist, if any, between the categories. This can be done by

investigating the correlation matrix of the encoded multi-entry feature. The first step consists of

converting the categorical feature in a multi-1 to n encoding, and then computing the correlation

matrix between categories.

The correlation matrix can be defined in a standard way; given a multi-1 to n encoded ob-

servation for the multi-entry categorical feature, Xi for i = 1, . . . , N possible categories, the

covariance matrix is defined as:

CVi,j = E [(Xi − µi)(Xj − µj)] i, j = 1, . . . , N (4.1)

µk = E [Xk]

Where E[ ] is the expected value operator. From the covariance matrix, the correlation

matrix R is obtained normalising the covariance matrix by the product of the standard deviations
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along directions i, j:

Ri,j =
CVi,j
σiσj

(4.2)

σ2
k = E [(Xk − µk)2]

The values in the correlation matrix 4.2 would already suggest which categories are better

coupled with each other.

• A positive correlation indicates similarity, i.e. the two categories are likely to be found

together as a multi-entry item description.

• A near zero correlation indicates that there is no significant relationship between the two

categories

• A negative correlation indicates that the two categories are ‘antithetic’ meaning that the

two categories are unlikely to be found together in a multi-entry item description.

To further enhance the grouping between categories, one can group entries of the correlation

matrix that are most related with each other. Several algorithms have been proposed in the lit-

erature, see for example [159] and [160] references therein. Most of these revolve around the

application of hierarchical clustering using the correlation matrix entries to define a penalty dis-

tance function. The penalty function can be introduced in several different ways, see [161] for a

range of dissimilarity metric examples. In this context we will work with a simple linear metric

(also referred to as penalty P ) defined as:

Pi,j = 1− |Ri,j | (4.3)

Which constitutes a simple linear penalty: low correlations around 0 are penalised more than

high positive (near +1) or negative correlations (near -1).

Following [160], in order to apply formal clustering to a correlation matrix, it is necessary to

introduce both a ‘metric’ that defines distances between pair of observations and a ‘linkage’ cri-

terion whose role is to define the similarity/dissimilarity across groups (clusters) of observations

based on the metric of distances between single observations. In order to define a metric/distance

that starts from the concept of correlation and that respects the properties:

a) positive defined, b) elements that are nearer to each other have lower distance than elements

that are further apart from each other; the concept of correlation needs to be somewhat inverted.

Correlation measures stronger positive (negative) relationships with values that are further

away from 0 and toward +1 (-1). This needs to be inverted in the sense that the closer the

correlation to |1|, between two observations/entries, the smaller the distance, with the limiting

case of correlation going toward +1 (-1) and distance approaching 0. Such an inverted correlation
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metric, can be obtained in several different ways, and it is often called dissimilarity measure

(to emphasize the inverse role respect to correlation which measures similarity), see [161] for

examples. Two such ways in which the dissimilarity can be obtained are as follow:

D
(a)
i,j = 1− |Ri,j | (4.4)

D
(a)
i,j =

√
1−R2

i,j (4.5)

The dissimilarity measures 4.4 and 4.5 need to be complemented with a linkage criterion

which determines the distance between groups of observations based on the dissimilarity meas-

ures between single observations. In the hierarchical clustering literature, there are many altern-

ative linkages proposed, see [162] for a general review. In this research the most widespread

and general linkages will be employed. For a given set of observations A, and a second set of

observations B, the three linkage criterions adopted for each dissimilarity measure D are:

• The single-linkage:

L(A,B) = min {Di,j with i ∈ A, j ∈ B} (4.6)

• The complete-linkage:

L(A,B) = max {Di,j with i ∈ A, j ∈ B} (4.7)

• The Ward-linkage: this is better explained by analysing what happens when group A is

aggregated to a new group C, and their aggregate distance compute via the linkage from

B:

L(A+ C,B) = α1Di,j + α2Dk,j + α3Dk,i with i ∈ A, j ∈ B, k ∈ C

α1 = (nA + nB)/(nA + nB + nC)

α2 = (nC + nB)/(nA + nB + nC)

α3 = −nB/(nA + nB + nC)

(4.8)

with nA, nB , nC are the sizes of the sets A, B, C respectively. Linkage 4.8 defines a linkage

criterion by recursion, which when applied as a clustering determinant minimises the squares of

the intracluster dissimilarities.

Our suggested method for creating stereotypes automatically for complex categorical fea-

tures rests on the systematic truncation of the dendrogram of the hierarchical clustering proced-
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ure. More information about traditional hierarchical clustering methods can be found in [163].

A complication is found in the choice of the penalty function to adopt, a quadratic penalty as

defined in formula 4.5 tends to compress excessively toward 1.0 entries that have low correla-

tions (in general below 0.4 - 0.5 in absolute value) and the resulting dendrograms appear to be too

compressed when dealing with correlation matrices that have average/low correlations in mag-

nitude. The linear penalty function defined in formula 4.4 is more suited for exploring situations

where the correlations tend to be low on average, while a quadratic penalty formula such as the

on in 4.5 is suited for situations where the average correlation is high (above 0.4 - 0.5 in absolute

value).

A dendrogram truncation criteria can be implemented by examining how the linkage merge

iterations are shaping the clusters discovered from the bottom up (i.e. from the stronger links

toward weaker links). As the iterations progress the number of clusters formed initially grows,

then from a critical iteration onward, the structures discovered begin to merge back toward a

single cluster. This dynamic can be summarised by monitoring the average cluster size and

the number of clusters formed up to a given iteration. The cut off procedure can therefore be

implemented via a dual criterion:

• By looking for the last maximum, or last local plateau in the number of clusters as a

function of the iteration.

• By applying a reverse elbow procedure to the average cluster size.

The two criteria can also be coupled by taking the ratio, at any iteration, of the average cluster

size divided by the number of clusters formed. For simplicity such quantity will be referred to

as dendrogram iteration ratio. The cutoff procedure then reduces to finding the highest iteration

exhibiting a local minimum in the iteration ratio. The only situation in which this idea would

fail is in the case of a monotonically increasing dendrogram iteration ratio, that is found when

there are no real underlying groups in the data, e.g. the data is a collection of items that do not

belong together, and the data is just grouped into an ever growing single cluster that will end up

comprising the entire dataset. In this special case the conclusion should be: the feature cannot

be split into stereotypes. The complete procedure to create stereotypes for complex categorical

features is illustrated in algorithm 1.

4.2 Stereotypes for Numerical Features
In Chapter 3 it was demonstrated how the entire feature set for the movie dataset under ex-

amination could be reduced, via features engineering techniques, to numerical features, thus

eliminating the need to stereotype categorical features in the current problem.

In order to propose an algorithm for grouping (stereotyping) numerical features, a prelimin-

ary examination of the probability distribution of each feature needs to be undertaken using two
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Algorithm 1 Algorithm to assemble stereotypes for complex categorical features
Compute the correlation matrix
Compute the average non-diagonal correlation value V

if V is low on average (for example below 0.4) then
use linear dissimilarity

else
use quadratic dissimilarity

end if

Hierarchically cluster the correlation matrix

Assemble the dendogram
Compute the dendogram iteration ratio R
Find the highest iteration at which R displays a local minimum

if at least one local minimum then
Assemble the stereotypes by cutting the dendogram between such iteration and the success-
ive one

else
No stereotype

end if

approximate representations of the individual feature’s probability distributions: a standard his-

togram representation, and a kernel density estimation (KDE) [164] performed using a gaussian

kernel.

There are several observations that can be drawn by looking at the approximate probability

distributions of the 14 features in Figures 4.1 to 4.7. The most important observation is that there

is a clear distinction between features whose sample distributions are inherently multimodal,

potentially discrete or mixed distributions (e.g. log (budget), log (revenue), cast gender bias,

country distance, director popularity, language popularity and release time of year) and the fea-

tures whose histograms are representative of a continuous potentially mono-modal distribution

(e.g. cast popularity, popularity of movie, production company popularity, runtime, release year,

vote average and log of vote count).

Among the mixed distributions typical examples are log (budget) and log (revenue), for which

unknown budget or revenues are given a discrete value of 0, and then the known budgets/revenues

are continuously distributed. There is a small set of features whose histogram or KDE representa-

tion is worth examining closer; firstly, language popularity: because of the skewed nature toward

‘EN’, the histogram and KDE try to represent a distribution that tends toward a delta probability

distribution, and the effect of approximating a delta function (or any discontinuities), via gaussian

kernels results in the many wiggles in the graph, see [165]. For the very same reason KDE plots

are not as meaningful in the case of inherently discrete distribution or distributions exhibiting

discontinuities (for example release month), but are very relevant in the case of continuous ones

(for example vote average). Secondly, popularity features like for instance director popularity are
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(a) log(budget+1) (b) log(revenue+1)

Figure 4.1: Probability density approximation via histograms and KDE for the features: log(budget+1)
and log(revenue+1)

(a) cast popularity (b) cast gender bias

Figure 4.2: Probability density approximation via histograms and KDE for the features: cast popularity
and cast gender bias

by construction discrete - as the definition of director popularity involves the log of number n of

movies directed - however at high log(n) those could also be approximated as continuous distri-

butions, so one could end up with a mixed distribution: discrete at low popularity and continuous

at high popularity.

The multimodal identity of several features suggests a very natural way to create numerical

stereotypes for such features: select the most relevant modes and intervals around them. The

attractiveness of this definition consists in the fact that it seems operatively simple, and it is

indeed the case for features like log(budget+1) or log(revenue+1) where two distinctive groups

that are easy to identify would be created, the high budget/revenue items and the ones with

unknown budget/revenue. However, the simplicity of the definition is not enough to determine

stereotypes in those cases where there are several modes (distinctive peaks in the distribution),

and where it is in principle not clear how many of such modes should be relevant (see for example

features like production company popularity or cast gender bias).
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(a) country distance (b) director popularity

Figure 4.3: Probability density approximation via histograms and KDE for the features: country distance
and director popularity

(a) language popularity (b) popularity of the movie

Figure 4.4: Probability density approximation via histograms and KDE for the features: language popular-
ity and popularity of the movie

(a) production company popularity (b) release time of the year

Figure 4.5: Probability density approximation via histograms and KDE for the features: production com-
pany popularity and release time of the year
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(a) release year (b) runtime

Figure 4.6: Probability density approximation via histograms and KDE for the features: release year and
runtime

(a) vote average (b) vote count

Figure 4.7: Probability density approximation via histograms and KDE for the features: vote average and
vote count

An algorithm is required to automatically ‘detect’ the peaks in a histogram plot and classify

such peaks according to their significance. This problem is not as simple as the problem of

discovering local maximums in a function and ranking them, and the reason for this is better

explained via an example. Figure 4.8 shows a fictitious probability distribution with 4 local

maximums (local modes); if the local maxima of the distribution were identified and ranked

simply via their probability density value, i.e. ranking them as (A, B, C, D), the ranks would not

be representative of the ‘structures’ in the data. This is because the shape of the curve around

maximum B, even though B constitutes the second highest peak, suggests that it is potentially

associated with a noise effect in the left branch of the A peak, or alternatively perhaps by a smaller

effect around the large peak A. In either case the structure B would not be as significant when

ranking the structures of the distribution, and it would be less dominant than C and D, as the shape

of the distribution around C and D seems instead genuinely associated with structures relevant

for stereotyping. This example shows that the relative maxima together with their significance

(or dominance) must be identified in a stable, noise resilient fashion.
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Figure 4.8: A fictitious probability density approximation illustrating the idea behind the ranking of modes

A formal solution to this problem was provided in the mathematical branch of computational

topology and particularly in the field of persistent homology [166]. The concept of significance

(i.e. persistence) can be used to such a scope. Persistence is better explained with a classic

topology example: the function is analogous to a submerged mountain, with an initial water level

above the global maximum A. As the level drops, whenever it reaches a local maximum, a new

island is born, and whenever it reaches a local minimum, two islands merge (the lower island

merges into the higher). The lifespan of an island is correlated to its significance, also called

persistence. In Figure 4.8, the persistence of each local maxima is shown via the vertical blue

bars, which allows the desired ranking of the local maxima: (A, C, D and B).

The importance of modes, as well as the absence of multiple characteristic modes, can be

assessed when the distribution of a feature is computed via a numerical discretisation via binned

histograms, as follow: if B bins are used to approximate the distribution, then if the distribu-

tion was a uniform pdf each bin would contain 1/B probability density, therefore a meaningful

deviation between two neighbouring bins in terms of probability can be defined as 2/B. This

constitutes a first order approximation of a minimum ‘significance’ of the modes.

In addition to the significance of the barcode associated to each mode identified, one addi-

tional criterion can be used to define what proportion of the sample is associated with the mode

by approximating numerically the area under the curve connected to the specific barcode as de-

picted in the fictitious example of Figure 4.9. Such an approximate area is representative of the

coverage of the mode, and it can be computed via standard Riemann’s approximation [167].

Figure 4.9: The probability proportion that can be associated to each structure (purple for A, green for B,
yellow for C and grey for D)
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In our study we distinguish numerical features into two categories, Type I features are such

that the sample distribution has a number of modes with significant barcode greater or equal to

two, and the estimated proportion of the population sample that can be attributed to such modes

is relevant, i.e. greater or equal to 60%. Features that do not respect such conditions are called

Type II features and the stereotypes are built using percentile driven intervals (for example quart-

iles).

4.3 Stereotype Creation Experiment
The integrated ML/IMDb dataset, contains approximately one million movie ratings provided by

approximately 6000 users for 4000 movies. A special split procedure is implemented: the data

that is left out for evaluation purposes should be able to provide a test environment for both new

user and new item. In our experimental set up we select about 2000 users and about 1000 movies

randomly, all these users and items (as well as their respective ratings) are left out for testing. The

item’s metadata is composed by simple numerical features like the movie’s budget, the movie’s

revenue, the runtime as well as simple categorical features like the movie’s production company,

the production country and the movie’s language, and finally some complex categorical features

like the movie’s genre and the movie’s associated keywords.

4.3.1 Results with Complex Categorical Features

To gain an initial understanding and qualitatively validate the grouping in the two large and sig-

nificant complex categorical features: ‘genre’ and ‘keywords’ in the dataset, a greedy grid search

algorithm was developed in python to rank possible permutations of columns and rows in the

correlation matrix according to the row and column values of function 4.3. This guarantees that

the search will find a set of possible permutations that create localised ‘zones’ in the correlation

matrix of minimal penalty, thus highlighting the implied relationships between the categories (as

read in the rows and columns). It is important to note that the result of the search for permuta-

tions does not lead to a unique result, and the optimisation may lead to several local minima in

the penalty where the search converges to.

Figure 4.10 shows the correlation matrix computed over the training set for the entries of

feature ‘genre’. In such a figure, the order of the categories is ‘as encountered’, meaning that

each category (for example ‘Drama’ or ‘Western’) is set at the last position in the queue when

it is first met whilst scanning the data. It is clear that the correlation matrix is able to convey

important information, already in its unsorted form, by simply looking for large positive and

negative associations. For example, one can see how ‘Sci-Fi’ and ‘Science Fiction’ are highly

correlated, and so are ‘Children’s’ and ‘Family’. At the same time the most negatively correlated

are for example ‘Drama’ and ‘Science Fiction’, or ‘Thriller’ and ‘Comedy’.
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Figure 4.10: Correlation matrix for the genre feature, each category of the genre feature is ordered ‘as
seen’ in the training dataset

However, the shape of Figure 4.10 is sub-optimal for identifying groups of relationships,

which are instead easily spotted when the correlation matrix is permuted according to the al-

gorithm discussed previously. When the greedy grid search is applied to row/columns permuta-

tions, Figure 4.11 is obtained (this grouping is just for display in the figure and does not affect

what follows). This makes it easier to identify ‘groups’ that can be considered as clusters for

that feature only. In the case at hand for the feature ‘genre’ we can see that the first group is

constituted by (‘Film-Noir’, ‘Thriller’, ‘Crime’ and ‘Mystery’). A second group is constituted by

(‘Children’s’, ‘Animation’, ‘Family’, ‘Fantasy’) and a third group by (‘Sci-Fi’, ‘Science-Fiction’,

‘Action’ and ‘Horror’) with ’Adventure’ linked closely to both the second group and to the third.

Other groups can be identified, like (‘Music’, ‘Musical’ and ‘Documentary’) or (‘Drama’,

‘War’,‘History’), as well as individual categories whose link with others is too small and should

be regarded as singletons (see for example ‘Westerns’, or ‘Foreign’). Some singleton like ‘Com-

edy’ and ‘Romance’ do show a small correlation between each other, but this link is, at least on

the training set, too weak to trigger grouping.

A similar correlation analysis was performed for the feature ‘keywords’ by restricting the at-

tention to keywords that appear in the training data a sufficient number of times, in order to avoid

fitting any pattern to keywords that are rarely used. In this context, only keywords that were

seen more than twenty times each over the items of the training data were retained. Calculating

the correlation matrix as defined in formula 4.2 and then applying the row and columns greedy

search for permutations that minimise the penalty function 4.3 leads to a grouped depicted in

Figure 4.12.
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Figure 4.11: Correlation matrix for the genre feature, each category of the genre feature is ordered as
suggested by the permutation search for similar ‘groups’

Figure 4.12: Correlation matrix for the keywords feature, each keyword is ordered as suggested by the
permutation search for similar ‘groups’
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One can see how keyword correlations are in general much weaker than for genre, as a result

of the vast ‘scattering’ over hundreds of keywords; by observing Figure 4.12, it is easy to see

how very few cases of negative correlation exists between keywords, possibly related again to

the vastity of keywords available. Ultimately, thanks to the correlation grouping, it is relatively

easy to see how several well-defined groups appears. For example, just to list a few there is a

first group in the top left corner that would relate to crime movies (‘serial killer’, ‘film noir’, ‘ob-

session’, ‘murder’, ‘suspense’), a group that relates to relationships (‘friends’, ‘love’, ‘wedding’,

‘jealousy’, ‘family’) and a group that relate to police stories (‘detective’, ‘explosion’, ‘violence’,

‘police’).

The averages in sample correlation in both genre and keywords are low in absolute value,

therefore our hierarchical clustering procedure has been carried out using a linear penalty 4.4

as suggested in Section 4.1. When the metric for dissimilarity 4.4 is applied in a hierarchical

clustering algorithm via the three alternative linkages criteria 4.6, 4.7 and 4.8 to the correlation

matrix for the feature ‘genre’ the resulting clustered correlation matrices and dendrograms are

shown in Figures 4.13 to 4.15.

Before reviewing the results in the figures, it is necessary to introduce the concepts underly-

ing the dendrogram plots. In a dendrogram the existing hierarchical connections between objects

are displayed, the key to interpreting a dendrogram is to look for objects that are connected via

branches that splits at a low linkage distance (or dissimilarity) which is read on the y axis. On

the x axis one has the labels, or objects. Horizontal lines indicate merges, vertical lines indicate

the objects participating in the merge as well as the height, y coordinate, at which the merge

happened. The smaller (lower) the y of the split the more related two objects or group of objects

are. By following the vertical branches of the dendrogram toward higher linkage distance (or

dissimilarity) merges one finds the elements constituting different layers of clusters or groups,

where the intensity of the relationship, in other words the strength or connection existing among

the objects of the group, is inversely proportional to the height of the common branch from which

they arise.

Figure 4.14 can be used as an example to illustrate the information conveyed by a dendro-

gram - this figure represents the hierarchical linkages for the genre feature using dissimilarity 4.4

and complete linkage 4.7. By beginning at the lowest linkage dissimilarity (y = 0) and looking

for the lowest merges, one finds that ‘Sci-Fi’ and ‘Science Fiction’ merge at a dissimilarity link-

age of around 0.2 and ‘Children’s’ and ‘Family’ merge at a dissimilarity linkage of around 0.25.

These are the two stronger merges; other strong mergers can be seen at slightly higher dissimilar-

ities between ‘Music’ and ‘Musical’ and also between ‘Action’ and ‘Adventure’. A particularly

interesting strong merge is the one that connects the ‘Children’s’ and ‘Family’ branch met above

with the ‘Animation’ branch. This illustrates how clusters are formed, where one is able to see
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more labels following a certain split, as well as how strong the relationship is between the labels

below the split. In this case the cluster contains - at the level of the third merge - ‘Children’s’,

‘Family’, ‘Animation’ with the link between the first two stronger than their links to the third.

Following the same branch up one finds that also ‘Fantasy’ could be included within the same

cluster, if one is happy to consider grouping at higher dissimilarity. At even higher dissimilarity

the branch would merge with the ‘History’ and ‘War’ branch - again if one is willing to merge at

a much higher dissimilarity.

Finally, the last observation regarding how to read the dendrogram concerns the colour of

the branches. The colour is just a visual aid in finding branches that merge at low dissimilarity,

branches that merge at high dissimilarity are left blue to highlight weaker links.

The logical grouping identified by single linkage 4.6 and dissimilarity 4.4 - Figure 4.13 -

seems to be less congruent with a ‘human’ subjective assignment. As discussed before, a met-

ric could be used to evaluate the hierarchical links discovered, see for example the Fowkles and

Mallows metric [168], however such a metric requires the availability of the true labels for the

clusters. In addition to the fact that the true labels are not available, even if they were available

for complex categorical features like genre and keywords, the true labels would reflect the ‘ex-

pert opinion’ of the operators defining the labels - hence they would be subjective rather than

objective. For this very reason, evaluation of the clustered correlation matrices and dendrograms

is performed via a subjective judgment.

The groupings provided by the complete linkage 4.7 and Ward linkage 4.8 as shown in Fig-

ures 4.14, and 4.15, respectively, are overall very similar. However, the Ward linkage seems

to be able to better represent the hierarchical links between different levels of the groupings, at

the highest dissimilarity the first split consists of movies that are family friendly versus movies

that cater more to an adult audience. Both within the family friendly and within the adult audi-

ence subgroups, the genres are further split into sub-groups that can be endorsed by the author’s

subjective view (see for example the subgroups: ‘Fantasy’, ‘Children’s’, ‘Family’, ‘Animation’

under the family oriented category, and the ‘Film-Noir’, ‘Crime’, ‘Thriller’, ‘Mystery’ subgroup

in the adult audience category).



Section 4.3 Stereotype Creation Experiment 85

(a
)C

or
re

la
tio

n
m

at
ri

x
af

te
rc

lu
st

er
in

g
w

ith
m

et
ri

c
4.

4
an

d
lin

ka
ge

4.
6

(b
)H

ie
ra

rc
hi

ca
ld

en
dr

og
ra

m
re

su
lti

ng
fr

om
m

et
ri

c
4.

4
an

d
lin

ka
ge

4.
6

Fi
gu

re
4.

13
:G

en
re

gr
ou

pi
ng

re
su

lt
fr

om
m

et
ri

c
4.

4
an

d
lin

ka
ge

4.
6



86 Automatic Construction of Item-Based Stereotypes Chapter 4

(a
)C

or
re

la
tio

n
m

at
ri

x
af

te
rc

lu
st

er
in

g
w

ith
m

et
ri

c
4.

4
an

d
lin

ka
ge

4.
7

(b
)H

ie
ra

rc
hi

ca
ld

en
dr

og
ra

m
re

su
lti

ng
fr

om
m

et
ri

c
4.

4
an

d
lin

ka
ge

4.
7

Fi
gu

re
4.

14
:G

en
re

gr
ou

pi
ng

re
su

lt
fr

om
m

et
ri

c
4.

4
an

d
lin

ka
ge

4.
7



Section 4.3 Stereotype Creation Experiment 87

(a
)C

or
re

la
tio

n
m

at
ri

x
af

te
rc

lu
st

er
in

g
w

ith
m

et
ri

c
4.

4
an

d
lin

ka
ge

4.
8

(b
)H

ie
ra

rc
hi

ca
ld

en
dr

og
ra

m
re

su
lti

ng
fr

om
m

et
ri

c
4.

4
an

d
lin

ka
ge

4.
8

Fi
gu

re
4.

15
:G

en
re

gr
ou

pi
ng

re
su

lt
fr

om
m

et
ri

c
4.

4
an

d
lin

ka
ge

4.
8



88 Automatic Construction of Item-Based Stereotypes Chapter 4

The following stage is to apply the same hierarchical clustering and dendrogram study of the

linkage dissimilarity splits methodology to the other complex categorical feature of the sample

data under investigation, the keywords feature.

Given that it was observed that the complete linkage, equation 4.7, and the Ward linkage,

equation 4.8, generate better distinctions and grouping criteria the attention is focused on such

methodologies for the analysis of the keyword feature. Figure 4.16 displays the clustered correl-

ation matrix and the hierarchical dendrogram of the most frequent keywords using dissimilarity

metric 4.4 and the complete linkage criterium 4.7, while Figure 4.17 displays the clustered cor-

relation matrix and dendrogram for the most frequent keywords using the same dissimilarity but

the Ward linkage criterium 4.8. The set of most frequent keywords was defined based on the

number of counts of each keyword as in Section 4.3.1.

As it was found for the feature genre, the two linkages form very similar groups across

keywords, and such groups are plausible when considered from a human lexical based prospect-

ive (see for example the group: ‘sequel’, ‘monster’, ‘dystopia’, ‘alien’ or the group ‘violence’,

‘explosion’, ‘robbery’, ‘murder’, ‘police’). The Ward linkage appears again to be more suited

in defining a vertical separation of the logical links in the dendrogram. This characteristic is ex-

tremely important when considering possible different levels for cutting automatically a dendro-

gram as a way to create logical groups within the categories of a complex categorical feature.

So far, it was demonstrated that performing the hierarchical clustering of the correlation mat-

rix using the Ward linkage and the linear penalty as suggested in Section 4.1 leads to a sound

way of obtaining grouping (stereotypes). Following the algorithm 1 to decide at which height of

the dissimilarity linkage, one should truncate the dendrogram, leads to the average cluster size

over all clusters formed up to a given iteration, as shown for the feature genre in Figure 4.18,

and the number of clusters formed up to a given iteration in Figure 4.19. Figure 4.20 shows the

resulting dendogram iteration ratio, with the highlighted iteration number where the algorithm

discussed in Section 4.1 is used to cut the dendogram. The application of the algorithm for genre

and keywords leads to the stereotypes listed in Table 4.1.
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Figure 4.18: Genre feature hierarchical cluster of the correlation matrix, assembly iterations. Average
cluster size over the clusters formed at each iteration of the linkage merge. Dissimilarity metric 4.4, linkage
criterium Ward

Figure 4.19: Genre feature hierarchical cluster of the correlation matrix, assembly iterations. Total number
of clusters present after each iteration of the linkage merge. Dissimilarity metric 4.4, linkage criterium Ward

Figure 4.20: Genre feature hierarchical cluster of the correlation matrix, assembly iterations. Dendrogram
iteration ratio using dissimilarity metric 4.4, linkage criterium Ward. The red circle indicates the local
minimum which is most to the right
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Stereotypes - Genre
(Order not relevant)

Stereotypes - Keywords
(Order not relevant)

1 [‘Music’,‘Musical’] [‘Violence’,‘Explosion’, ‘Shootout’, ‘Flashback’]
2 [‘Fantasy’,‘Animation’,‘Family’,‘Children’s’] [‘Nudity’,‘Sex’,‘Female nudity’]
3 [‘Action’,‘Adventure’,‘Western’] [‘Drug’,‘Death’,‘Murder’,‘Police’,‘Robbery’]
4 [‘War’,‘History’] [‘Lawyer’,‘Rape’]
5 [‘TV Movie’, ‘Documentary’,‘Foreign’] [‘Film noir’, ‘Obession’,‘Suspense’]
6 [‘Film Noir’,‘Crime’,‘Thriller’,‘Mystery’] [‘Blood’,‘Murder’,‘Prostitute’,‘Revenge’]
7 [‘Romance’,‘Comedy’,‘Drama’,‘Horror’] [‘High School’,‘Teenager’,‘Party’]
8 [‘Science Fiction’,‘Sci-Fi’] [‘Independent film’,‘Gay’,‘Woman director’]
9 [‘Hostage’,‘Kidnapping’]
10 [‘Love’,‘Friends’,‘Sports’]
11 [‘Sequel’,‘Monster’,‘Dystopia’,‘Alien’]
12 [‘Cat’,‘Father son relationship’,‘Dog’]
13 [‘Los angeles’,‘Detective’,‘Corruption’, ‘New York’]
14 [‘World war ii’,‘Biography’, ‘Journalist’]
15 [‘Prison’,‘Escape’]
16 [‘After credits stinger’,‘During credits stinger’]
17 [‘Money’,‘London England’, ‘Paris’, ‘Wedding’]
18 [‘Musical’,‘Based on play or musical’]
19 [‘Jealousy’,‘Adultery’, ‘Divorce’]
20 [‘Serial killer’,‘Slasher’]
21 [‘Widow’,‘Small town’]
22 [‘Drug’,‘Police’,‘Robbery’]
23 [‘Suicide’,‘Teacher’,‘Dying and death’]
24 [‘Death’,‘Investigation’]
25 [‘Daughter’,‘Mother and daughter relationship’, ‘Family’]

Table 4.1: Stereotypes automatically generated using algorithm 1 for the feature: genre and keywords

Comparison with other Clustering Algorithms

In this section, the clustering results (Table 4.1) of the automatic stereotype algorithm 1 are

compared with the results of the categorical clustering algorithm k-modes [133]. k-modes is a

clustering algorithm that is widely used in the literature. In order to create meaningful and useful

stereotypes in the context of a recommender system, we are interested in an algorithm which is

capable of grouping all the labels of the categorical feature under examination in stereotypes,

without at priory excluding any labels.

The k-modes clustering algorithm can be initialised in different ways, for example following

Zhexue Huang [133] the artefacts (e.g. the localisation of the centroids) are placed in a random

manner in feature space, or following Cao et al. [169], who suggested the artefacts to be placed in

feature space based on initial density/frequency estimations. Once the method is initialised, the

k-modes clustering implementation used tries to minimise a cost function, defined as the sum of

all distances for each point of the cluster artefact it belongs to. Distance for categorical variables

is defined based on a simple delta function dissimilarity measure as described in [133].

Let X,Y be two categorical objects described by m categorical attributes. The dissimilarity

measure between X,Y can be defined by the total mismatches of the corresponding attributes
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Figure 4.21: Inverse elbow methodology applied to the k-modes clustering of the genre feature with two
alternative methodologies for the initialisation of the position of the artefact centroids

categories of the two objects. Formally,

d1(X,Y ) =

m∑
j=1

δ(xj , yj) (4.9)

where

δ(xj , yj) =

0 (xj = yj)

1 (xj 6= yj)
(4.10)

In a similar fashion as k-means, k-modes is a partitioning algorithm, meaning it does not dis-

cover how many structures are present in the data, but rather it partitions the data in a number of

pre-specified clusters. An inverse elbow methodology, based on a cost function to be minimised

rather than a score or silhouette function that needs to be maximised, can be applied to the cost

function of k-modes following closely what was discussed previously in Section 3.4 for k-means.

Figure 4.21 displays the inverse elbow graph for the genre feature partitioned via k-modes with

both Huang and Cao initialisations. Both cost functions decay with a lower rate of decay as the

number of clusters, k, increases. However, it is not straightforward to identify a single well-

defined kink in the decay graphs, and for this reason the results of the k-modes clustering for the

genre feature is closely inspected by looking at the centroid characteristics at (k= 5) and (k= 10).

Tables 4.2 and 4.3 display, for (k= 5) and (k= 10) respectively, the centroid compositions for

the genre feature and both initialisation methods (Huang and Cao). It is important to note that

the ordering of the cluster centroids in the table is not relevant, i.e. centroid n.1 is not more nor

less important than centroid n.4. The most interesting finding by observing Tables 4.2 and 4.3

is that k-modes seems to easily allow for centroids which substantially overlap on several sub-

categories, for example for both (k= 5) and (k= 10) categories like ‘Drama’, ‘Comedy’, ‘Thriller’,

‘Action’, ‘Family’ and ‘Adventure’ appear several times in more than one centroid.
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Centroid Composition (Huang)
(Order not relevant)

Centroid Composition (Cao)
(Order not relevant)

1 [‘Drama’,‘Comedy’,‘Romance’] [‘Family’,‘Children’s’,‘Animation’]
2 [‘Drama’] [‘Drama’]
3 [‘Adventure’,‘Family’,‘Children’s’,‘Animation’] [‘Comedy’,‘Adventure’,‘Family’,‘Fantasy’,‘Children’s’]
4 [‘Comedy’] [‘Comedy’]
5 [‘Thriller’,‘Action’] [‘Thriller’,‘Action’,‘Adventure’,‘Science Fiction’,‘Sci-Fi’]

Table 4.2: k-modes resulting centroids composition for 5 clusters and the genre feature, with two alternat-
ive methodologies for the initialisation of the position of the centroids

Centroid Composition (Huang)
(Order not relevant)

Centroid Composition (Cao)
(Order not relevant)

1 [‘Drama’] [‘Drama’]
2 [‘Comedy’] [‘Comedy’,‘Action’,‘Adventure’,‘Science Fiction’,‘Fantasy’]
3 [‘Adventure’,‘Family’,‘Children’s’,‘Animation’] [‘Family’,‘Children’s’,‘Animation’,‘Musical’]
4 [‘Action’,‘Adventure’,‘Science Fiction’,‘Sci-Fi’] [‘Thriller’,‘Action’,‘Adventure’,‘Science Fiction’,‘Sci-Fi’]
5 [‘Thriller’,‘Action’] [‘Comedy’,‘Music’,‘Musical’]
6 [‘Drama’,‘Romance’] [‘Comedy’,‘Adventure’,‘Family’,‘Children’s’,‘Animation’]
7 [‘Comedy’,‘Family’,‘Children’s’] [‘Comedy’,‘Family’,‘Children’s’]
8 [‘Thriller’,‘Crime’] [‘Thriller’,‘Action’,‘Crime’]
9 [‘Drama’,‘Thriller’,‘Mystery’] [‘Thriller’,‘Horror’,‘Mystery’]
10 [‘Drama’,‘Comedy’,‘Romance’] [‘Adventure’,‘Family’,‘Fantasy’,‘Children’s’]

Table 4.3: k-modes resulting centroids composition for 10 clusters and the genre feature, with two altern-
ative methodologies for the initialisation of the position of the centroids

It is legit to wonder why certain categories are not at all represented in the centroids of

Tables 4.2 and 4.3, see for instance ‘Documentary’, ‘Western’, ‘Film-Noir’ or even ‘Foreign’. For

this question the answer lies in the training dataset, using the dissimilarity measure adopted by

the k-modes algorithms leads, by construction, to substantial frequency-based overweighting of

the categories in centroids, which might also explain the recurrent presence of the most frequent

categories as well as the lack of presence of less frequent categories. However, we argue that

these labels should indeed be retained as they may represent specific niche of users preferences,

and are required in the recommendation items coordinates as shown later in the research.

A similar study of the reverse ‘elbow’ is presented for the keywords feature in Figure 4.22.

It is striking to note that whilst the cost function obtained by Huang’s initialisation methodology

displays a reverse elbow, even if a weak one at around (k= 20), that is not the case for the Cao

initialisation procedure.

A look at the composition of the cluster centroids for (k= 20) demonstrates that, for both

initialisation procedures, the presence of ‘other keywords’ (to represent any keyword that does

not pass the filter of at least twenty occurrences as previously discussed) become a dominating

presence in almost all centroids. In fact, all centroids of this analysis result to be such that they

were either just composed of ‘other keywords’ or composed by one of the keywords that can

be seen in Figure 4.12 and ‘other keywords’, hence invalidating any conclusions that could be

extracted.
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Figure 4.22: Inverse elbow methodology applied to the k-modes clustering of the keywords feature with
two alternative methodologies for the initialisation of the position of the artefact centroids

Centroid Composition (Huang)
(Order not relevant)

1 [’Revenge’]
2 [’Father son relationship’]
3 [’Sequel’]
4 [’Women director’,’Friends’]
5 [’Drug’]
6 [’Sport’]
7 [’Female Nudity’,’Nudity’]
8 [’Friendship’]
9 [’Paris’]
10 [’Murder’]
11 [’Suspense’]
12 [’Prison’]
13 [’Alien’]
14 [’Monster’]
15 [’Robbery’]
16 [’Gay’]
17 [’London England’]
18 [’Musical’]
19 [’Sport’]
20 [’Death’]

Table 4.4: Centroid composition identified by k-modes for the feature keywords with Huang initialisation
methodology and k= 20
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A repeat of the k-modes clustering removing the ‘other keywords’ entry, and focusing only

on the keywords that are most frequent in the training data, leads to identical inverse elbow plots

as in Figure 4.22. The analysis of the centroids for (k= 20) and Huang’s initialisation reveals

that (see Table 4.4) almost all centroids but two are constituted by a single keyword. Overall this

finding makes the application of k-modes in this context questionable. The algorithm seems to be

very sensitive to the initial conditions chosen, with the centroids changing substantially as new

random artefacts are used.

Our empirical experience led us to favour our suggested algorithm 1 over k-mode for the

stereotype construction of complex categorical features.

4.3.2 Results with Numerical Features

The concept of persistence and barcode calculation suggested in Section 4.2 was implemented

in Python for a one-dimensional real valued sequence via an iterative search process based on

sorting the sequence and applying the concept of island birth, death based on jumps vs continuity

of the indices. The application of the search for persistence to the features described in Fig-

ures 4.1 to 4.7 leads to the results in the Tables 4.5 to 4.18. The tables present for each feature

the modes that satisfy the barcode criterion (greater than 2/B) and for such modes the respective

estimation of the area obtained via the Riemann’s approximation, displayed in the third column,

as an estimate of the sample population that can be attributed to the mode under exam. Given

that our numerical discretisation of the probability denisity function is done using between 20

and 40 bins, we can estimate that a jitter of +/- 2.5% is in our case the limit between signal and

noise, and therefore we disregard as not significative all modes associated to a population of less

than 4%. Hence, two criteria that needs to be satisfied for a mode to be considered significative.

The barcode needs to be greater than the threshold dictated by the number of bins used in the

discretisation; and the area of population that can be attributed to such barcode needs to be also

significative based on the numerical approximation.

The algorithm successfully finds and ranks the modes in the desired order, this can be ob-

served for example by looking at some of the features like ‘cast gender bias’ or ‘normalised

country distance’ (Figures 4.2 and 4.3 vs Tables 4.11 and 4.8). However, the algorithm also dis-

covers some modes that are not significant and that are most likely associated with either noise

in the sample (and/or in the numerical discretisation) or are associated with irrelevant structures.

For some examples of structures whose persistence is associated to noise or irrelevant struc-

tures one can look at the following: Table 4.17, extremely long movies above 200 minutes in

runtime (probably a genuine but irrelevant structure) versus movies of 0 minutes (induced by

movies whose runtime is not available); or Table 4.15, movies that have received a vote near to

10 (probably a genuine but irrelevant structure) versus movies that have received a 0 vote (also a

genuine structure which mixes poorly liked movie and movies that are yet to receive a vote).
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Feature Mode Location Persistence Barcode (Probability) Population %attributable to the Mode
0.000 0.4903 0.52

16.096 0.1481 0.42
4.024 0.0013 not significative

Table 4.5: Filtered modes discovered and ranked via the persistence algorithm for feature: log(budget+1)

Feature Mode Location Persistence Barcode (Probability) Population %attributable to the Mode
0.000 0.4861 0.51

16.844 0.1414 0.39
2.246 0.0013 not significative

Table 4.6: Filtered modes discovered and ranked via the persistence algorithm for feature: log(revenue+1)

Feature Mode Location Persistence Barcode (Probability) Population %attributable to the Mode
0.000 0.3338 0.19
0.574 0.1692 0.13
0.957 0.1389 0.32
1.340 0.0955 not significative
3.446 0.0156 not significative
2.297 0.0063 not significative

Table 4.7: Filtered modes discovered and ranked via the persistence algorithm for feature: director pop-
ularity

Feature Mode Location Persistence Barcode (Probability) Population %attributable to the Mode
-0.261 0.6856 0.72
0.895 0.1389 0.14
0.580 0.0644 not significative
-0.787 0.0194 not significative

Table 4.8: Filter modes discovered and ranked via the persistence algorithm for feature: country distance

Feature Mode Location Persistence Barcode (Probability) Population %attributable to the Mode
0.946 0.0833 0.17
0.000 0.0400 not significative
0.676 0.0076 not significative
1.217 0.0004 not significative

Table 4.9: Filtered modes discovered and ranked via the persistence algorithm for feature: cast popularity

Feature Mode Location Persistence Barcode (Probability) Population %attributable to the Mode
7 0.9107 0.91
4 0.0295 not significative
3 0.0206 not significative

Table 4.10: Filter modes discovered and ranked via the persistence algorithm for feature: language pop-
ularity
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Feature Mode Location Persistence Barcode (Probability) Population %attributable to the Mode
-0.684 0.3241 0.31
-0.368 0.2971 0.27
-0.053 0.1486 0.15
-1.000 0.1347 0.13
0.263 0.0417 not significative
0.579 0.0093 not significative

Table 4.11: Filter modes discovered and ranked via the persistence algorithm for feature: cast gender bias

Feature Mode Location Persistence Barcode (Probability) Population %attributable to the Mode
0.000 0.5989 0.68

37.092 0.0007 not significative
59.347 0.0006 not significative
89.021 0.0004 not significative
133.532 0.0004 not significative

Table 4.12: Filtered modes discovered and ranked via the persistence algorithm for feature: popularity of
movie

Feature Mode Location Persistence Barcode (Probability) Population %attributable to the Mode
0.000 0.1473 0.38
5.052 0.0362 not significative
0.561 0.0332 not significative
4.210 0.0194 not significative

Table 4.13: Filtered modes discovered and ranked via the persistence algorithm for feature: production
company popularity

Feature Mode Location Persistence Barcode (Probability) Population %attributable to the Mode
-0.053 0.1949 0.19
-0.579 0.1633 0.16
0.474 0.1625 0.16
-0.895 0.1574 0.24
0.789 0.1435 0.21

Table 4.14: Filtered modes discovered and ranked via the persistence algorithm for feature: release time
of the year

Feature Mode Location Persistence Barcode (Probability) Population %attributable to the Mode
5.789 0.2243 0.89
0.000 0.0130 not significative
9.474 0.0004 not significative

Table 4.15: Filtered modes discovered and ranked via the persistence algorithm for feature: vote average

Feature Mode Location Persistence Barcode (Probability) Population %attributable to the Mode
1995 0.3519 0.78
1982 0.0168 not significative
1969 0.0028 not significative

Table 4.16: Filtered modes discovered and ranked via the persistence algorithm for feature: release year
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Feature Mode Location Persistence Barcode (Probability) Population %attributable to the Mode
89.158 0.4861 0.94
0.000 0.0029 not significative

229.263 0.0008 not significative

Table 4.17: Filtered modes discovered and ranked via the persistence algorithm for feature: runtime

Feature Mode Location Persistence Barcode (Probability) Population %attributable to the Mode
4.347 0.1094 0.99

Table 4.18: Filtered modes discovered and ranked via the persistence algorithm for feature: log(vote count)

Table 4.19 summarises the features that can be categorised as belonging to the Type I versus

those belonging to Type II based on the algorithm discussed in Section 4.2. For features whose

distribution is not multimodal (Type II), and also for features of Type I where a zone of the dis-

tribution is ‘too wide’ and still attributable to a single mode (for example the log (budget) area

of mode 16.84 contains 42% of the population sample and it spans several orders of magnitude

in budget), stereotypes can be introduced via percentile driven intervals as discussed.

Percentile interval driven stereotypes can be obtained by identifying the lower and upper

bounds of the feature value corresponding to a given percent level of the population (for example

20% or 25%). The features of Type II, which by definition do not exhibit clear bumps in their

distributions, hence clusters, will be stereotyped via the percentile driven approach, the same

approach can be applied also to portions of Type I features when needed as discussed previously.

Tables 4.20 to 4.33 present the stereotypes that are obtained with the methodology illustrated.

For each table the column relative to the mode location is provided only for stereotypes that had

been extracted using the modes discovered for features of Type I. The mode location is omitted

for areas of the distribution that are stereotyped not by mode plus or minus interval but by a

percentile driven interval.

Type I Features Type II features
Log (budget+1) Language Popularity
Log(revenue+1) Popularity (of movie)
Director Popularity Production company popularity
Country Distance Vote average
Release Time of Year Release Year
Cast Gender Bias Runtime

Log (vote count)
Cast Popularity

Table 4.19: Classification of numerical features between Type I (stereotyping can be done via the modes)
and Types II (stereotyping can be done via percentile intervals)
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Stereotype Mode Location (if any) Lower Interval Upper Interval Population %attributable
1 0.000 0.000 1.000 0.52
2 - 1.000 16.096 0.21
3 - 16.096 ∞ 0.21

Table 4.20: Stereotypes for feature: log(budget+1)

Stereotype Mode Location (if any) Lower Interval Upper Interval Population %attributable
1 0.000 0.000 1.000 0.51
2 - 1.000 16.844 0.22
3 - 16.844 ∞ 0.22

Table 4.21: Stereotypes for feature: log(revenue+1)

Stereotype Mode Location (if any) Lower Interval Upper Interval Population %attributable
1 0.000 0.000 0.286 0.23
2 0.574 0.286 0.765 0.15
3 0.957 0.765 ∞ 0.41

Table 4.22: Stereotypes for feature: director popularity

Stereotype Mode Location (if any) Lower Interval Upper Interval Population %attributable
1 -0.261 -∞ 0.000 0.78
2 0.895 0.000 ∞ 0.19

Table 4.23: Stereotypes for feature: country distance

Stereotype Mode Location (if any) Lower Interval Upper Interval Population %attributable
1 - 0.000 0.555 0.25
2 - 0.555 1.011 0.25
3 - 1.011 1.456 0.25
4 - 1.456 ∞ 0.25

Table 4.24: Stereotypes for feature: cast popularity

Stereotype Mode Location (if any) Lower Interval Upper Interval Population %attributable
1 7 6.9 7.1 0.91
2 - 0 6.9 0.09

Table 4.25: Stereotypes for feature: language popularity

Stereotype Mode Location (if any) Lower Interval Upper Interval Population %attributable
1 -0.684 -0.857 -0.432 0.31
2 -0.368 -0.432 -0.226 0.27
3 -0.053 -0.226 +∞ 0.25
4 -1.000 -∞ -0.857 0.13

Table 4.26: Stereotypes for feature: cast gender bias
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Stereotype Mode Location (if any) Lower Interval Upper Interval Population %attributable
1 - 0.000 2.500 0.25
2 - 2.500 6.204 0.25
3 - 6.204 9.770 0.25
4 - 9.770 +∞ 0.25

Table 4.27: Stereotypes for feature: popularity of movie

Stereotype Mode Location (if any) Lower Interval Upper Interval Population %attributable
1 - 0.000 0.895 0.25
2 - 0.895 2.117 0.25
3 - 2.117 3.518 0.25
4 - 3.518 +∞ 0.25

Table 4.28: Stereotypes for feature: production company popularity

Stereotype Mode Location (if any) Lower Interval Upper Interval Population %attributable
1 -0.053 -0.1 0.1 0.2
2 -0.579 -0.675 -0.1 0.16
3 0.474 0.1 0.628 0.16
4 -0.895 -1.000 -0.675 0.24
5 0.789 0.628 1.000 0.21

Table 4.29: Stereotypes for feature: release time of the year

Stereotype Mode Location (if any) Lower Interval Upper Interval Population %attributable
1 - 0.000 5.7 0.25
2 - 5.7 6.4 0.25
3 - 6.4 7.3 0.25
4 - 7.3 10 0.25

Table 4.30: Stereotypes for feature: vote average

Stereotype Mode Location (if any) Lower Interval Upper Interval Population %attributable
1 - 1918 1980 0.25
2 - 1980 1993 0.25
3 - 1993 1998 0.25
4 - 1998 2007 0.25

Table 4.31: Stereotypes for feature: release year

Stereotype Mode Location (if any) Lower Interval Upper Interval Population %attributable
1 - 0 93 0.25
2 - 93 102 0.25
3 - 102 117 0.25
4 - 117 300 0.25

Table 4.32: Stereotypes for feature: runtime
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Stereotype Mode Location (if any) Lower Interval Upper Interval Population %attributable
1 - 0 3.135 0.25
2 - 3.135 4.356 0.25
3 - 4.356 5.568 0.25
4 - 5.568 10 0.25

Table 4.33: Stereotypes for feature: log(vote count)

4.4 Summary
The problem of complex and rich item data is made more challenging, but at the same time more

representative of real-world applications of stereotypes to recommender systems, by the fact that

the most important categorical variables are multi-entry categorical in a non-strict sense. By

that we mean that the entry of an item for a given categorical features, genre for example, is not

simply one category, e.g. ‘drama’, but it can take several entries without any preassigned number,

e.g. for one item the genre may be categorised as ‘drama’, for another item it may be ‘drama’

plus ‘romance’ plus ‘historic’.

Multi-entry categorical features do not just bring an extra level of complexity, they also en-

able the researcher to gain an understanding of the intrinsic relationships between categories,

relationships that come directly from the process that generated the data. In this chapter, we have

proposed an algorithm for the automatic identification of stereotypes for both complex categor-

ical and numerical features. The approach proposed consists in clustering and grouping generic

metadata features (based on their type) to provide new metadata features that can be viewed as

a stereotypical representation of the original data. The work in this chapter address the research

question:

Can item-based stereotypes, not based on rating, be constructed automatically?

Before discussing how the automatic generated stereotypes can be used in recommender

system, it is important to evaluate the stereotypes obtained for their stability and accuracy, which

will be carried out in the next chapter.



CHAPTER 5

Preliminary Evaluation of Stereotypes

In Chapter 4, we proposed an algorithm for the automatic identification of stereotypes for both

categorical and numerical features. Before discussing how stereotypes can be used in a recom-

mender system, it is important to investigate possible ways to evaluate the stereotypes. It is of

paramount importance to check that the results obtained during the stereotype creation phase are

stable and truly representative of real data associations. Previously it was also discussed how,

given that the problem of assembling stereotypes is an unsupervised learning problem, the ab-

sence of ‘true’ labels makes the evaluation of the appropriateness of the stereotypes a difficult

and some what subjective task.

Upon inspection of the stereotypes generated in the previous chapter, it was easy to agree that

the great majority of associations discovered by the algorithm were in line with our subjective

judgment. Nevertheless, it is possible to take the evaluation of the stereotypes one step further by

checking their stability and consistency on out-of-sample data. For this scope all the data used up

to this stage to perform calculations and derivation of the stereotypes can be labelled as training

data, and new unseen data, labelled as test data, can be used to evaluate consistency and stability

of the relationships discovered. In this chapter, we first validate training/test homogeneity in

Section 5.1. Then Section 5.2 formulate three different statistical tests for stereotype evaluation.

The presentation that follows has been formulated for this thesis, it is believed that the structures

discovered should be examined via appropriate tests before being used in a RS. This approach

and the tests carried out can be viewed as an element of novelty arising from the present research.

103
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(a) Training set (b) Test set

Figure 5.1: Histogram distribution of the movie’s production year

5.1 Homogeneity of Training and Test Datasets
For each stereotype created on the in-sample data, a number of statistical tests can be formulated

to evaluate its stability, accuracy and predictive content. However, the first step to perform in

order to proceed with the training/test validation is to confirm that the data is somewhat ‘homo-

geneous’, i.e. the movies contained in the unseen test data - albeit different movies from those

contained in the training data - can be thought of as being extracted from the same unknown

population as that of the training data.

The two simplest driving features that can be checked to confirm or disprove qualitatively

the statement that the test data can be seen as representative of the training data are the item

(movie) year distribution, and the item (movie) genre distribution. If the distribution of the year

of production of movies in the training and the test sets is very different, for example if the

training movies were all movies prior to 1975 and the test movie all movies after 1975 it would

be possible to observe differences in the stereotypes just as a by-product of the evolution of taste

and association of genres. For example, ‘Horror-Comedy’ would be an easy association to find

in the 90s but not so in the 50s. Therefore, several preliminary checks can be performed to

confirm whether or not there is ground to believe that conclusions drawn on one dataset may not

be applicable to the other. Figures 5.1 display the distribution of the movie’s production year for

the two sets. The first thing to notice is that statistically the test data, albeit of a smaller size than

the train data, still contains enough samples to draw reasonable conclusions: 1149 for the test set

versus 2678 for the training set used up to this point.

From Figure 5.1 it is also possible to observe that qualitatively the movies in the two sets have

a similar distribution over the years, with the only major difference being that the most frequent

movie production years in the test dataset are 1995 to 1997 whereas for the training dataset are

1998 to 2000. This difference should not be enough to invalidate the analyses that will follow,

and we can conclude that the two datasets have a similar spectrum of movies over the years.
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(a) Training set (b) Test set

Figure 5.2: Histogram distribution of the movie’s genres percentage occurrence

(a) Training set (b) Test set

Figure 5.3: Histogram distribution of the movie’s popularity feature

The next check performed consists in verifying that the distribution of genres for the movies

in the two datasets is not dissimilar to the point of invalidating the ability to extend conclusions

drawn on one set to the other set. Figures 5.2 display the percentage of occurrence of each genre

label in the movies of both training and test datasets. It is possible to observe how the test dataset

is indeed very much representative of the training dataset, with almost a perfect relative match in

frequency and order of the most important labels. For instance, one needs to look at the 6th and

7th label in order of relative occurrence to find the first label mismatch between the two datasets,

in the training case the 6th category is ‘Crime’ followed by ‘Adventure’, and in the test data these

two features are swapped in terms of importance.

In theory, all other features should be checked in terms of their distribution similarity in

order to make sure that the two datasets can be thought of as homogeneous as possible. For

example Figure 5.3 displays the histogram distribution of the movie popularity feature (via the log

transformation to compress a large range of popularities). We can see how also the popularities

have a very similar distribution in their occurrence between the two sets, with the larger corpus
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of log popularities occurring between the values of 0 and 3, and the most frequent log popularity

equal to 2 for both sets.

We can observe that the test dataset is indeed representative of the training dataset, and can

be used to infer conclusions about the algorithms under investigation.

5.2 Stereotypes Evaluation
There are two logical ways to check in the unsupervised learning situation at hand whether the

relationships that have been learnt by the algorithm (in this context the stereotypes) are truly

representative of the population: a hard test and a soft test.

5.2.1 A Hard Test

The most severe test is to check if on ‘unseen’ data - a test datasets - the same relationships as

those learnt from the training dataset would be discovered in an independent fashion; and then

measure how far apart the relationships learnt by the algorithm from both sets are. This test

is an extremely severe test, in the sense that it relies on homogeneity between the two datasets.

There is an extra reason, which applies especially to keywords, that makes the hard test extremely

severe. Given the very large number of keywords, in principle there is a staggering amount of

possible ways in which ‘keywords’ (but also genres) can combine, making any true relationship

extremely noisy and potentially weak.

Complex Categorical Features
The hard test consists of comparing the stereotypes obtained over the training data with the

stereotypes obtained independently over the test data. For complex categorical features, this is

carried out scoring how close two sets of labels are to each other, by looking at one minus the ratio

of the number of labels in the set difference between the stereotype examined and the reference

stereotype to the total labels of the reference group; this provides a measure of precision.

A classical simple example from statistics can be used to illustrate the above test: suppose

you are interested in measuring the mean of a population, to do so you collect first a training

sample of data and successively a smaller test set of data. The hard test proposed for stereotypes

can be thought of being akin to estimating the mean of the population from both datasets, and

then comparing and measuring how different the means are.

The mathematical formulation of the hard test can be obtained by considering the composition

of the stereotypes generated on the training and on the test data. Let STi be the i-th stereotype

generated on the training data and composed by a certain number of ni labels, and let the Stj be

the j-th stereotype generated on the test data and composed by a certain number of mj labels.

Given that stereotypes are an un-ordered set, and that the stereotypes obtained using the training

data may in principle differ from those obtained using the test data, a procedure to find the best

match between stereotypes obtained in the two sets is required. For any STi a simple search

is performed to find the stereotype Stj that shares the highest number of common components
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(labels). For example, suppose that over some fictitious training data the stereotypes identified

were:

ST1 = [a, b, c],

ST2 = [d, e, f ],

ST3 = [g, h];

and suppose that the stereotypes identified over the test data were instead:

St1 = [a, b, d],

St2 = [g, h],

St3 = [c, e, f ].

Then the search would find that the maximum number of common labels is obtained when ST1 is

matched with St1, ST2 with St3 and ST3 with St2, with only the last match being a perfect match of

the two stereotypes. How well the stereotypes obtained on the test data are representative of the

stereotypes on the training data can be analysed using a metric for the degree of similarity of the

matches discovered. For each matched pair of stereotypes (STi , Stj) having a count of matching

labels equal to eij the similarity metric can be defined as:

µ(ST
i ,S

t
j)

=
ei,j

max(ni,mj)
(5.1)

In the case of a perfect match (eij = ni = mj), the metric 5.1 will be 1.0; when the stereo-

types identified are not identical then the µij will be less than 1.0. The statistics of the µij will

provide an objective way to evaluate the stereotypes.

In order to perform the hard test for the feature: genre, the procedure described in algorithm 1

(i.e. the algorithm to discover stereotypes in complex categorical features) is applied to the fea-

ture ‘genre’ for the items in the test data. Figure 5.4 displays the dendrogram for the feature genre

over the test dataset. A qualitative comparison with the corresponding Figure 4.15 which was

obtained for the training dataset reveals striking similarities: the strongest merges happen in the

same order (SciFi-Science Fiction), (Children’s-Family), (Music-Musical), (Action-Adventure).

And also, the first non-simple merge is the same ((Children’s-Family)-Animation). Looking for

dissimilarities one can observe how the genre Documentary is connected TV-Movie and For-

eign on the training data, whilst on the test data is most connected to the Comedy-Romance-

Drama-Horror branch. Also, the genres Western and Fantasy locate in different branches of the

dendrograms in the training and test datasets.

Figure 5.5 shows the dendrogram iteration ratio, i.e. the metric that allows one to define

the iteration at which to cut the dendrogram automatically in order to generate the stereotypes;

Figure 5.5 can be viewed as the corresponding of Figure 4.20, but whilst Figure 4.20 performs

the iterations on the training data, Figure 5.5 performs them on the test data (two disjoint sets). A

striking similarity between the two graphs can be readily observed, with the algorithm identifying

the same iteration (iteration 13) as the highest iteration with a local minimum, therefore cutting
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the dendrogram at the same iteration (14) in both cases. The resulting stereotype elaborated on

the test data only are reported in Table 5.1 and can be compared directly to those discovered over

the training data in Table 4.1.

Figure 5.4: Hierarchical dendrogram resulting from the abs metric and the Ward linkage for the genre
feature over the test dataset

Figure 5.5: Genre feature hierarchical cluster of the correlation matrix of the test dataset, assembly iter-
ations. Dendrogram iteration ratio using dissimilarity metric 4.4, linkage criterium Ward. The red circle
indicates the local minimum which is most to the right

The objective analysis of the differences between the two sets of stereotypes (those of Table 4.1

and Table 5.1 constitutes the main result of the hard test and can be performed using the metric

introduced in equation 5.1. Table 5.2 reports the results of the comparison between the 8 ste-

reotypes for genre: there is an 88% accuracy (average match), with a median match of 100% -

indicating that in most of the stereotypes there is a perfect one-to-one match between the stereo-

type composition derived on the training data vs those derive on the test data.



Section 5.2 Stereotypes Evaluation 109

Stereotypes - Genre - Test Data
1 [‘Music’,‘Musical’]
2 [‘Animation’,‘Family’,‘Children’s’]
3 [‘Action’,‘Adventure’]
4 [‘War’,‘History’]
5 [‘TV Movie’,‘Foreign’,‘Fantasy’,‘Western’]
6 [‘Film Noir’,‘Crime’,‘Thriller’,‘Mystery’]
7 [‘Romance’,‘Comedy’,‘Drama’,‘Horror’,‘Documentary’]
8 [‘Science Fiction’,‘Sci-Fi’]

Table 5.1: Stereotypes automatically generated using algorithm 1 for the feature genre over the test dataset
only

Descriptive Statistics of µij Value
Average (Accuracy) 88%

Median 100%
Minimum 66.6%

Table 5.2: Hard Test comparison statistics for the stereotypes of the feature genre generated over the
training vs the test datasets

The first problem that is encountered when trying to perform the hard test for the evaluation

of the stereotypes of the feature keywords is the fact that the feature is constituted by a much

sparser set of values than genre; for this reason, the keywords satisfying the occurrence filter in

the test data may not necessarily be the same as those that were identified in the training data.

The way to proceed in this case is to generate first the list of keywords that fulfil either the filter

condition over the training data or the filter condition over the test data (the aggregate set of

keywords will be referred to as the enlarged keywords), and then assemble the stereotypes for the

training data with the enlarged set of keywords, and finally proceed with the hard test. Table 5.3

shows the stereotypes for the feature keywords computed using the enlarged set of keywords, the

keywords highlighted are the ones that have been added by meeting the filter condition over the

test data; it can be noted how such keywords often embed in already existing stereotypes and in

other situations their very existence changes slightly the shape of the older stereotypes.

The right column of Table 5.3 shows the stereotypes obtained using the set of enlarged

keywords over the test dataset. It can be noted by comparing both columns in Table 5.3 that

in the case of the test data there is one more stereotype than in the case of training. The objective

analysis of the differences between the stereotypes sets is performed using the metric introduced

in equation 5.1. Table 5.4 reports the results of the comparison, there is a 65.3% accuracy (av-

erage match), with a median match of 66%. This means that both on average and in median,
2
3 of the composition of a stereotype is being matched - i.e. two labels out of three. This is an

excellent and surprising result, given:

• The sparsity of the keywords features,

• The fact that the training and test datasets are completely disjoint, and
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Stereotypes - Keywords - Training Data Stereotypes - Keywords - Test Data
1 [Violence, Explosion,Shootout, Flashback] [Explosion,Shootout, Violence, World war ii]
2 [Nudity, Sex, Female nudity] [Nudity, Female nudity, Sex]
3 [Based on play or musical, Musical] [Woman director, Musical]
4 [Lawyer, Rape] [Friends, Teacher]
5 [Film noir, Obsession, Suspense] [Detective, Obsession, Suspense]
6 [Blood, Murder, Prostitute, Revenge] [Adultery, Prostitute, Jealousy, Dying and death]
7 [High school, Teenager, Party] [High school, Teenager]
8 [Independent film, Gay, Woman director] [Gay, Based on Play or Musical]
9 [Based on Novel, Extramarital affair] [Rape, Extramarital affair, Based on novel]
10 [Jealousy, Adultery,Divorce] [Revenge, Flashback]
11 [Sequel, Monster, Dystopia, Alien] [Film noir, small town]
12 [Cat, Father son relationship, Dog] [Cat, Dog, Father son relationship]
13 [Los angeles, Detective, Corruption, New York] [Corruption, Police, Investigation]
14 [World war ii, Biography, Journalist] [Lawyer, Biography]
15 [Prison, Escape] [Prison, Escape, Los Angeles, Dystopia]
16 [Love, Friends, Sport] [Love, Alien]
17 [After credits stinger, During credits stinger] [After credits stinger, During credits stinger]
18 [Serial killer, Slasher] [Serial killer, Monster, Sequel,Slasher]
19 [Drug, Police, Robbery] [Drug, Independent film]
20 [Death, Investigation] [New York, Journalist]
21 [Suicide, Teacher, Dying and death] [Paris, London England, Robbery]
22 [Money, London England, Paris, Wedding] [Money, Party, Suicide, Sport]
23 [Hostage, Kidnapping] [Hostage, Kidnapping, Murder, Violence, Blood]
24 [Widow, Small town] [Widow, Death]
25 [Daughter, Mother daughter relationship, Family] [Daughter, Mother daughter relationship, Wedding]
26 [Family, Divorce]

Table 5.3: Stereotypes for the keywords feature using the training dataset and the list of enlarged keywords
are shown on the left. The keywords highlighted are those that meet the filter condition in the test dataset.
The right column show the stereotypes for the keywords using test dataset

Descriptive Statistics of µij Value
Average (Accuracy) 65.3%

Median 66.6%
Minimum 33%

Table 5.4: Comparison statistics for the stereotypes of the feature keywords generated over the test vs the
training datasets

• The large feature dimension is in principle leading to a much higher potential number of

combinations of the labels, reducing the probability of obtaining matches.

Numerical Features
The evaluation of the numerical stereotypes can be conducted in a similar fashion to that

performed for the complex categorical stereotypes. The hard test requires a measure of similar-

ity between the stereotypes that are meant to represent the same group of the population, in the

present analysis such stereotypes are generated independently from two non-overlapping data-
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sets for any given feature. For this reason, the similarity/dissimilarity will need to quantify firstly

whether or not the number of stereotypes discovered over the training data, and then independ-

ently over the test data, match before attempting a comparison between pairs of stereotypes.

Figure 5.6 provides an illustration of the type of differences between stereotypes that one

needs to quantify in the case of numerical features; the figure depicts the imaginary sample

distribution of a feature, the distribution above obtained from a different sample for the same

feature than the one below. Using the procedure discussed in Section 4.2 the stereotypes are

discovered as intervals of the distribution. One can represent each interval via its ‘centre’ and

probability importance. The dots in the figure represent the ‘centres’ of each stereotype, the size

of each dot is proportional to the probability ‘mass’ that the stereotype represents and, given the

analogy between probability density and mass density, the location of the dots can be placed at

the centre of mass of the stereotype (which is analogous to the definition of the expected value

of stereotype interval):

Xc
sj =

∫ SU
j

SL
j

x p(x) dx (5.2)

P csj =

∫ SU
j

SL
j

p(x) dx (5.3)

Where p(x) represents the probability density of the given feature on the values x. Xc
sj is the

centre of the j-th stereotype spanning from the below limit of SLj to the upper limit of SUj , and it

can be thought of as the single best point for a given stereotype that one could select if one had

to replace the entire stereotype with a single value of the feature. P csj represents the probability

mass associated to the stereotype.

As seen from the figure, there may be several types of discrepancies arising when comparing

numerical stereotypes via the hard test:

• An additional stereotype discovered using one set of data but not the other (example of the

brown dot to the right),

• Stereotypes whose probability ‘mass’ are very close but their centres locations are off

(example of the red dots),

• Situations where the centres may be not identical but also the probability of the masses are

different (example of the green dots).
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Figure 5.6: Fictitious comparison of numerical stereotypes set up. Stereotypes mass, centre of mass and
numbers are identified by the dots

In terms of percentage accuracy, for each stereotype of a given feature, firstly one needs to

pair stereotypes between the two distinct runs (note that in the example of Figure 5.6 there would

be two pairs and one single stereotype), then the following formula can be used to evaluate the

accuracy of the pair:

δPT,tsj = |PTrainsj − P testsj |

δXT,t
sj = |XTrain

sj −Xtest
sj |

µT,tsj =



(
1− δPT,t

sj

0.5(PTrain
sj +P test

sj )

)(
1− δXT,t

sj

0.5(XTrain
sj +Xtest

sj )

)

0 if no stereotype can be paired

(5.4)

Where the first two equations of relationships 5.4 define the deltas existing between the prob-

ability masses and the probability centres respectively, and the third expression defines a percent-

age accuracy between the two stereotypes obtained via the train and test datasets. It is easy to

verify that in case of 0 deltas the formula will give a 1 (100%) accuracy. As soon as either the

probability masses or the probability centres exhibit deviations the accuracy will be less than 1.

In the limiting case of a stereotype generated in the training or test datasets that cannot be put into

correspondence with another then the accuracy will be at 0 (lower branch of the third equation).

Table 5.5 displays the quantities of the set of relationships 5.4 for all stereotypes of all nu-

merical features (features ordered alphabetically). For almost all the features the number of

stereotypes discovered over the training and over the test data match; only for the feature ‘log

revenue’ there is one less stereotype discovered in the test data over the training data, and the

effect for the non-paired stereotype is reflected in the entry with 0 accuracy. Of all the thirteen
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Feature Name δPT,t
sj δXT,t

sj µT,t
sj Statistics

cast gender bias 1 0.01 0.0 0.92
mean accuracy: 0.93

minimum accuracy: 0.86
stdv accuracy: 0.05

cast gender bias 2 0.0 0.0 1.00
cast gender bias 3 0.02 0.0 0.94
cast gender bias 4 0.01 0.01 0.86

cast popularity 1 0.0 0.21 0.23
mean accuracy: 0.43

minimum accuracy: 0.23
stdv accuracy: 0.15

cast popularity 2 0.0 0.32 0.39
cast popularity 3 0.0 0.42 0.55
cast popularity 4 0.0 0.63 0.58

country distance 1 0.0 0.03 0.89 mean accuracy: 0.94
minimum accuracy: 0.89

stdv accuracy: 0.05
country distance 2 0.0 0.01 0.98

director popularity 1 0.18 0.0 0.58 mean accuracy: 0.66
minimum accuracy: 0.58

stdv accuracy: 0.09
director popularity 2 0.08 0.03 0.61
director popularity 3 0.03 0.12 0.79

log (budget) 1 0.02 0.0 0.96 mean accuracy: 0.84
minimum accuracy: 0.75

stdv accuracy: 0.08
log (budget) 2 0.05 1.11 0.75
log (budget) 3 0.023 1.56 0.83

log (revenue) 1 0.02 0.03 0.74 mean accuracy: 0.52
minimum accuracy: 0.0

stdv accuracy: 0.38
log (revenue) 2 0.10 0.78 0.82
log (revenue) 3 Nan Nan 0.0

log (vote count) 1 0.0 0.08 0.95
mean accuracy: 0.96

minimum accuracy: 0.94
stdv accuracy: 0.02

log (vote count) 2 0.0 0.19 0.94
log (vote count) 3 0.0 0.11 0.98
log (vote count) 4 0.0 0.14 0.97

popularity 1 0.0 0.08 1.0
mean accuracy: 0.96

minimum accuracy: 0.94
stdv accuracy: 0.02

popularity 2 0.0 0.17 0.96
popularity 3 0.0 0.27 0.95
popularity 4 0.0 0.45 0.94

Prod. comp. popularity 1 0.0 0.08 0.48
mean accuracy: 0.66

minimum accuracy: 0.48
stdv accuracy: 0.12

Prod. comp. popularity 2 0.0 0.36 0.62
Prod. comp. popularity 3 0.0 0.69 0.70
Prod. comp. popularity 4 0.0 0.9 0.77

release time of the year 1 0.0 0.0 1.0
mean accuracy: 0.94

minimum accuracy: 0.79
stdv accuracy: 0.08

release time of the year 2 0.0 0.0 1.0
release time of the year 3 0.0 0.0 1.0
release time of the year 4 0.01 0.07 0.79

release year 1 0.0 2.93 0.98
mean accuracy: 0.99

minimum accuracy: 0.98
stdv accuracy: 0.01

release year 2 0.0 1.23 0.99
release year 3 0.0 0.55 0.99
release year 4 0.0 0.0 1.0

runtime 1 0.0 0.35 0.99
mean accuracy: 0.96

minimum accuracy: 0.88
stdv accuracy: 0.04

runtime 2 0.0 0.75 0.99
runtime 3 0.0 1.13 0.98
runtime 4 0.0 15.14 0.88

vote average 1 0.0 0.06 0.99
mean accuracy: 0.99

minimum accuracy: 0.99
stdv accuracy: 0.005

vote average 2 0.0 0.0 1.0
vote average 3 0.0 0.0 1.0
vote average 4 0.0 0.03 0.99

Table 5.5: Hard test metrics for the evaluation of the numerical stereotypes. The table reports for all
features and all stereotypes the dissimilarity in probability mass and centre, and the accuracy from relation-
ships 5.4. The last column gives standard metric of the accuracy
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numerical features, nine of them have an hard test resulting average accuracy of over 80%. For

the features whose average stereotypes accuracy is below 80%, one can see that only the feature

‘cast popularity’ overall is characterised by low accuracy across all stereotypes. For ‘log revenue’

the average is brought down by the unpaired stereotype, the two paired stereotypes do indeed ex-

hibit an accuracy in the region of 80%. The fact that the features with the lowest accuracy are

those in the group of popularity derived features (cast popularity, director popularity, production

company popularity) put some doubts on to whether the ‘popularity’ transformation suggested

earlier may be responsible for the lower - on average - accuracy of the stereotypes derived on two

independent datasets. This fact should be investigated further, and potentially the definitions of

popularities revised.

Excluding this finding, that affects three features out of thirteen, for the remaining features

the numerical stereotypes are very stable (both in terms of probability ‘mass’ and in terms of

their numerical ranges and hence their centres) therefore making them truly representative of the

items population.

5.2.2 A Soft Test

The soft test is a less stringent test and it is perhaps more representative of the use that stereo-

types have in a recommender system. In this test, the test data is first used to create aggregate

clusters together with the training data, and ‘true’ labels (coordinates in the stereotypes space)

are created for each of the elements of the test data. Then the stereotypes that had been defined

over the training set are used to label the items in the test data, therefore obtaining another view

of the labels for each point. The statistical metrics of the errors between the two stereotypical

representations obtained for each test item can be used for evaluation purposes of the training

stereotypes. This test is a precursory analysis of the validity in the use of stereotypes in a re-

commender system: if the stereotypes learnt on the training dataset prove to be able to give item

representations which hold if one ‘knew’ the true substereotypical representation of the item, it

would mean that the relationship learnt can indeed be used to provide recommendations.

Complex Categorical Features
The formulation of the soft test consists of transforming the unsupervised learning problem into

a problem that resembles a supervised learning one: first the Train dataset (T) and test dataset

(t) are assembled together in a dataset called Full dataset (F). For a given complex categorical

feature the stereotyping identification procedure is repeated for the Full dataset (F) obtaining a

set of stereotypes SFi ; using these stereotypes SFi it is possible to derive, for each item in the test

dataset (t), the degree of belonging of each movie to each stereotype. For example, suppose the

fictitious stereotypes were:

SF1 = [a, b, c],

SF2 = [d, e, f ],

SF3 = [g, h];
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then a test item having as labels (a,b,d) would have [2,1,0] as a vector of degrees of belonging to

each stereotype. For each item in the test data, the vector representing the degrees of belonging

to each of the SFi stereotypes can be regarded as the ‘true’ stereotypical representation of the

item. The degrees of belonging vector representation can be obtained for all items in the test data

also using the stereotypes that were discovered in the training data only. For item p, let v(F )(p)

be its degree of belonging representation to the stereotypes extracted from the Full dataset (F)

and let v(T )(p) be the degree of belonging representation of the item to the stereotypes extracted

from the training dataset (T); a metric can be established by looking at the vector difference:

v(F ) − v(T ).

It is important to observe that in order to be able to take the difference between the two

degree of belonging vectors, the two vectors must be of the same size, and given that the two sets

of stereotypes are not ordered, they also need to be rearranged so that the degree of belonging

can be compared along the same stereotype’s coordinates. These two steps are performed as

follow: first the vectors are sorted guaranteeing that there is as close as possible match between

the F and T stereotypes at a given index in the vectors. The match is defined via the number

of labels overlapping between each of the F and T stereotypes, a minimum of 50% of matching

labels is taken as a pre-requisite to declare two stereotypes as corresponding. When there is

no direct correspondence, i.e. when a pair of F , T stereotypes cannot be linked between each

other because the minimum match between labels is not meeting the required minimum, then

the dimension of the vectors is augmented adding both coordinates as a penalty. An example

using fictitious data can help understand the sorting and resizing procedure; let us suppose that

the stereotypes discovered over the Full data (F ) were:

SF1 = [a, b, c],

SF2 = [d, e, f ],

SF3 = [g, h, i];

and those discovered in the training data were:

ST1 = [c, d, e],

ST2 = [a, b],

ST3 = [f, h],

ST4 = [g, i].

The sorting and matching goes as follow: the most similar stereotype to SF1 is ST2 with two out

of three matching labels; the most similar stereotype to SF2 is ST1 with two out of three matching

labels. The most similar to SF3 is ST4 and ST3 does not have a corresponding stereotype and it is

left last as a dummy coordinate for F stereotypes.

Suppose item A is characterised by the labels: (a,b,d); this item would have [2,1,0,0] as a

vector of belonging representation toward the F stereotypes, and [2,1,0,0] over the resorted T

stereotypes. A second item B described with labels (c,g,h) would have [1,0,2,0] as a vector

representation over the Full F stereotypes and [0,1,1,1] as vector representation over the T ste-
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Stereotypes - Genre - Full Data
1 [‘Music’,‘Musical’]
2 [‘Animation’,‘Family’,‘Children’s’,‘Fantasy’]
3 [‘Action’,‘Adventure’]
4 [‘War’,‘History’]
5 [‘TV Movie’,‘Foreign’,‘Western’]
6 [‘Film Noir’,‘Crime’,‘Thriller’,‘Mystery’]
7 [‘Romance’,‘Comedy’,‘Drama’,‘Horror’,‘Documentary’]
8 [‘Science Fiction’,‘Sci-Fi’]

Table 5.6: Stereotypes automatically generated using algorithm 1 for the feature genre over the Full dataset

reotypes. In the case of item A the vector difference between the two representations would be

[0,0,0,0], and for item B instead would be [1,-1,1,-1].

In the first item there is no mismatch between the F and T stereotypical representations of the

item, while the stereotypical representation of item B has a substantial mismatch. In particular

the mismatch can be quantified by introducing a metric (the mismatch ratio): counting the sum

of the labels non-matching, given by the sum of the positive entries in the vector difference,

divided by the number of labels for the item. In the case of item A the mismatch ratio would

be 0, for item B it would be 2
3 . Investigation of the distribution of the mismatch ratio over as

many items as those in the test dataset (t) constitutes the soft test evaluation of how good and

stable the stereotypes discovered on the Training data (T ) are. In particular it is very indicative

of the stability of the stereotypes the number of zero mismatches versus non-zero mismatches,

as it can be seen as a simplified representation of how good the stereotypes constructed would be

on out-of-sample recommendations.

For the feature genre, after assembling the Full dataset (Full= Training + test) and re-computing

the stereotypes, one obtains those illustrated in Table 5.6.

Figure 5.7: Mismatch ratio for the genre stereotyping representations of 1149 movies in the test dataset
using Full versus Training stereotypes
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Stereotypes - Keywords - Full Data
1 [Explosion,Shootout, Violence, Flashback]
2 [Nudity, Female nudity, Sex]
3 [Biography, Sport, Musical]
4 [Suicide, Teacher, Dying and death]
5 [Film Noir, Obsession, Suspense]
6 [Adultery, Jealousy, Extramarital Affair, Divorce]
7 [High school, Teenager, Party]
8 [Gay, Based on Play or Musical]
9 [Journalist, World war ii, Based on novel]
10 [Revenge, Blood, Sequel]
11 [Widow, small town]
12 [Cat, Dog, Father son relationship]
13 [Investigation, Detective, Murder, New York]
14 [Lawyer, Rape, Prostitute]
15 [Prison, Escape]
16 [Police, Robbery, Corruption ]
17 [After credits stinger, During credits stinger]
18 [Serial killer, Slasher]
19 [Woman director, Independent film]
20 [Friends, Love ]
21 [Paris, London England]
22 [Money, Drug ]
23 [Hostage, Kidnapping]
24 [Alien, Dystopia, Monter]
25 [Daughter, Mother daughter relationship, Wedding ]
26 [Family, Los Angeles]

Table 5.7: Stereotypes automatically generated using algorithm 1 for the feature keywords over the Full
dataset and the keywords enlarged set

Figure 5.8: Mismatch ratio for the keywords stereotyping representations of 1149 movies in the test dataset
using Full versus Training stereotypes

For each of the items in the test data (1149 movies) their stereotypical representations using

the stereotypes F and T is performed, and the mismatch ratios computed. Figure 5.7 displays

the mismatch ratios for all the samples in the test data for the feature genre. It is possible to
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Descriptive Statistics of the mismatch ratios Genre Value Keywords Value
Average mismatch 3.5% 14%
Median mismatch 0% 0%

Number of non-zero mismatch 56 267
Proportion of non-zero mismatches 4.8% 23.2%

Mean conditioned on mismatch begin > 0 73% 61%

Table 5.8: Statistics describing the mismatch ratios for the stereotypical representations of complex cat-
egorical features for the items in test dataset using Full vs the Training stereotypes

observe how the mismatch ratios of the stereotypical representations of the items is zero in most

cases (1093 items have a 0 mismatch) but when not zero, the mismatch is substantial and likely

to be near 100%. As for the keywords, Table 5.7 represent the stereotypes assembled from the

Full dataset, while Figure 5.8 illustrated the mismatch ratio of the stereotypical representations

using the stereotypes F and T. The statistics of the mismatch ratios for both complex categorical

features are highlighted in Table 5.8

The best way to express the results of the soft test is as follow: over a large sample of

test items for the feature genre, there is a chance greater than 95% that the ‘true’ stereotypical

representation of the item can be captured using the stereotypical representation of the item via

the Training dataset. There is a 4.8% chance to commit an error, and in the few cases of error, the

error is quite sizeable. What the above means is that if an unseen item was to be categorised via

its genre into a stereotypical representation, then it is very likely that the categorisation will be

right (95.2% chance), however in the case of a mistake, the categorisation will be substantially

wrong.

Numerical Features
In a similar fashion to what has been done in the soft test evaluation of the stereotypes gen-

erated for complex categorical features, for numerical features the set of labels is achieved by

creating the stereotypes on the union of the test and Training data. Once the synthetic ‘true’

labels are created for the items of the test data, the quality of the classification is investigated

for each feature via the confusion matrix of the classification. The confusion matrix offers a

summary of the correct vs incorrect classifications performed; the following example will review

the idea behind the confusion matrix. Suppose a classification method is trying to predict the

stereotype to which an item belongs to, and suppose that there are three stereotypes s1, s2, s3,

and we know the ‘true’ value of the stereotype for all the items. The confusion matrix may look

as that of Table 5.9. In this fictitious example the classifier makes a prediction for 100 items, and

it predicts that 30 of them belong to the class s1 (where 30 is the sum of the elements in the first

row, 20+2+8). In reality of the 30 predicted to be s1, 20 are truly s1, but 2 are in fact belonging

to s2 while 8 to s3. The same can be done for the other rows, the classified predicts 25 elements

to be of type s2, when in reality 20 are indeed of type 2, but 5 are of type 3.

For each stereotype prediction, it is possible to obtain the total of true positives (TP): the
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Items= 100 True s1 True s2 True s3
Predicted s1 20 2 8
Predicted s2 0 20 5
Predicted s3 5 10 30

Table 5.9: An example of confusion matrix. Highlighted the areas of True Positives, True Negatives, False
Positives, False Negatives for the prediction of s1

Items= 1014 True s1 True s2 True s3 True s4
Predicted s1 126 0 0 0
Predicted s2 0 335 0 0
Predicted s3 0 0 335 0
Predicted s4 0 0 0 218

Table 5.10: Confusion matrix for the feature: cast gender bias

number of items that were predicted correctly (for the example of Table 5.9 and the prediction

of s1 it is 20, the cell highlighted in light green). The total of false positives (FP): the number

of items that were predicted to belong to s1 but they actually belong to other stereotypes (for the

example of Table 5.9 and the prediction of s1 is 10, the sum of the cells highlighted in yellow).

The total of false negatives (FN): the number of items that were not predicted to be s1 but should

have been s1 (for the example of Table 5.9 and the prediction of s1 is 5, the sum of the cells

highlighted in orange). The total number of true negatives (TN): the numbers of items that were

correctly predicted not to be s1 (for the example of Table 5.9 and the prediction of s1 is 65, the

sum of the cells highlighted in dark green).

For each stereotype, as well as for the entire features, the accuracy of the stereotypes can be

defined as the number of true positives (TP) divided by the number of items. Another alternative

metric to evaluate the classifier is via the F1 score, which is the harmonic average of precision

and recall, where the recall is defined as the number of true positives (TP) divided by the number

of positives (TP + FP); the precision is defined as the number of true positives (TP) divided by

the number of true positives and false negatives (TP+FN).

Tables 5.10 to 5.22 display the confusion matrices for all the stereotypes of the numerical

features. For each feature the total number of items is fewer than the 1149 items comprising the

full test dataset. The difference in items arises because many items have invalid/missing entries

for the numerical feature presented. It is believed to be safer to remove such entries from each

evaluation set, rather than create an ad hoc methodology to handle missing values. Such a meth-

odology would be required if the algorithms were to be used in a recommender system, but for

the current scope of providing an evaluation stage any superimposed methodology for missing or

invalid entries could increase the risk of obfuscating the results. In the Tables 5.10 to 5.22, the

incorrect predictions are highlighted in orange.
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Items= 1014 True s1 True s2 True s3 True s4
Predicted s1 478 112 0 0
Predicted s2 0 220 118 0
Predicted s3 0 0 51 27
Predicted s4 0 0 0 8

Table 5.11: Confusion matrix for the feature: cast popularity

Items= 1014 True s1 True s2
Predicted s1 754 0
Predicted s2 0 260

Table 5.12: Confusion matrix for the feature: country distance

Items= 1014 True s1 True s2 True s3 True s4
Predicted s1 532 6 0 0
Predicted s2 0 254 115 0
Predicted s3 0 0 44 49
Predicted s4 0 0 0 14

Table 5.13: Confusion matrix for the feature: director popularity

Items= 1014 True s1 True s2 True s3
Predicted s1 515 0 0
Predicted s2 0 228 0
Predicted s3 0 0 271

Table 5.14: Confusion matrix for the feature: log budget

Items= 1014 True s1 True s2 True s3
Predicted s1 516 0 0
Predicted s2 0 371 0
Predicted s3 0 0 127

Table 5.15: Confusion matrix for the feature: log revenue

Items= 1014 True s1 True s2 True s3 True s4
Predicted s1 264 0 0 0
Predicted s2 17 243 0 0
Predicted s3 0 4 243 0
Predicted s4 0 0 9 234

Table 5.16: Confusion matrix for the feature: log vote count

Items= 1014 True s1 True s2 True s3 True s4
Predicted s1 254 0 0 0
Predicted s2 1 271 0 0
Predicted s3 0 7 242 0
Predicted s4 0 0 6 233

Table 5.17: Confusion matrix for the feature: popularity
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Items= 1014 True s1 True s2 True s3 True s4
Predicted s1 332 54 0 0
Predicted s2 0 253 64 0
Predicted s3 0 0 192 32
Predicted s4 0 0 0 87

Table 5.18: Confusion matrix for the feature: production company popularity

Items= 1014 True s1 True s2 True s3 True s4
Predicted s1 308 0 0 0
Predicted s2 0 229 0 0
Predicted s3 0 0 257 0
Predicted s4 0 0 0 220

Table 5.19: Confusion matrix for the feature: release time of the year

Items= 1014 True s1 True s2 True s3 True s4
Predicted s1 227 14 0 0
Predicted s2 0 227 0 0
Predicted s3 0 0 278 0
Predicted s4 0 0 0 268

Table 5.20: Confusion matrix for the feature: release year

Items= 1014 True s1 True s2 True s3 True s4
Predicted s1 214 0 0 0
Predicted s2 0 272 0 0
Predicted s3 0 0 245 15
Predicted s4 0 0 0 268

Table 5.21: Confusion matrix for the feature: runtime

Items= 1014 True s1 True s2 True s3 True s4
Predicted s1 252 0 0 0
Predicted s2 0 247 0 0
Predicted s3 0 0 250 0
Predicted s4 0 0 0 265

Table 5.22: Confusion matrix for the feature: vote average
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Feature Name F1-score Accuracy
cast gender bias 1.0 100%
cast popularity 0.77 75%

country distance 1.0 100%
director popularity 0.86 83%

log(budget) 1.0 100%
log(revenue) 1.0 100%

log(vote count) 0.98 98%
popularity 0.99 98%

Prod. comp. popularity 0.86 85%
Release time of the year 1.0 100%

Release year 0.98 98%
runtime 0.98 98%

vote average 1.0 100%

Table 5.23: Numerical features stereotypes evaluation, soft test. F1-score and accuracy metrics for the
classification problem of the test items using the stereotypes generated on full items

Table 5.23 displays the accuracy and F1-score metrics derived from the confusion matrices

for the numerical features. Cast popularity is the feature with the lowest accuracy of prediction,

at 75%, all other features have an accuracy well above 80%, with six features having perfect

accuracy of 100%. The soft test overall confirms a remarkable stability, thus paving the road to

using such stereotypes in the context of recommendation.

5.2.3 Predictive Power of Stereotypes

Before concluding this chapter, one last statistical test will examine how much user’s preference

traits can indeed be described via the stereotypes discovered in the test set. One can test how

much biased user’s selection were: does the user display a statistically significant positive or

negative bias toward a stereotype compared to the item’s population distribution?

Figure 5.9: Example of the Agresti-Coull test for an imaginary user in the example described in the text
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A simple example can aid to explain the test procedure more closely, let us suppose that

the universe of movies was constituted only by 300 movies and these had been stereotyped for

the genre feature in 75 western movies, 150 drama movies, and 75 family movies. With these

numbers the proportions of each stereotype over the population of movies are 25% western,

50% for drama, and 25% for the family type. Suppose that user A rates 30 movies, and the

movies rated are 20 western, 4 drama, 6 family; considering user A’s own ‘universe’ of chosen

movies roughly 66% are westerns, 14% drama and 20% family. The situation for user A is also

depicted in Figure 5.9. Another user, user B, also rates 30 movies: 5 western, 16 drama and

9 family. For user B the proportions are: 17% western, 53% drama, 30% family. Using the

fictitious numbers of the example user A has seen and rated 66% western, while the population

of westerns was 25%, thus a difference in proportion of +41%; we can say that westerns is an

important stereotype for user A, (suggesting that the user seeks such movies). The difference

in drama for user A is (14%-50%), or -36%, a negative excess, or a negative mid-point of the

difference, and that allows us to say that this user avoids the stereotype drama. The difference in

family movies is -5%, being smaller in magnitude, we cannot conclude anything about family,

i.e this user does not show a statistically significant preference or dislike for movies of the family

stereotypes.

For user B (not depicted in the figure), by computing the difference between proportions

and comparing the differences obtained, we see that there we can draw no conclusions for all

three stereotypes, the user B does not show a preference or dislike for movies based on the

stereotypes created. Therefore, the stereotypes of this fictitious example seem to represent well

the like/dislike of user A, but not that of user B. This type of reasoning can be done via a statistical

test whose Null Hypothesis is: ‘for the stereotype investigated the user consumed a proportion

of items that is similar to the proportion expected if the stereotype had no influence in the user’s

choice’. Rejecting the Null means that the stereotype has indeed an influence in shaping that

user’s preferences.

The mechanics of the test is carried out via the calculation of Confidence Intervals for the dif-

ference of two proportions arising from binomial and multinomial distributions. This statistical

problem was studied by Agresti and Coull [170], and a formula for the Confidence interval cor-

responding to a given statistical significance level proposed in the same reference. By examining

the results of the Agresti-Coull test across the thousands of users of the test dataset, and across

all features and stereotypes, one can develop an understanding of whether or not stereotypes are

descriptive of user’s preferences. Preferences here indicate both positive and negative biases, for

example the fact that the Agresti-Coull test shows that it is statistically significant that a given

user has not consumed an amount of items falling in a particular stereotype (for example low

budget movie items) still indicates precious information for a recommender system.

Table 5.24 displays the results of the application of the Agresti-Coull test with 99% confid-

ence. The table is ordered by the proxy of how significant the feature is for the user’s population
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Feature
% users

not
different

% users
with
L.P.P

% users
with

L.N.P

Avg of
significant
stereotypes

Total
stereo-
types

Log (Vote count) 1.1% 97% 95% 3.0 4
Popularity 3.0% 91% 92% 2.6 4

log (budget) 4.3% 85% 93% 2.0 3
log (revenue) 4.4% 85% 93% 2.2 3

Genre 12.3% 26% 30% 3.3 8
Vote Avg 12.7% 66% 65% 2.0 4
Keywords 18.0% 53% 46% 3.0 25

Release year 22.1% 49% 57% 2.1 4
Director popularity 23.4% 19% 0% 2.03 5

Cast popularity 24.7% 43% 47% 2.2 4
Runtime 25.7% 53% 28% 2.0 4

Prod. comp. popularity 26.7% 22% 43% 1.7 4
Release time of the year 65.4% 13% 2% 1.3 5

Cast gender bias 70.2% 6% 3% 1.3 4
Country 75.6% 5% 5% 2.0 2

Table 5.24: Summary for all features of the search for explanatory power of stereotypes via the Agresti-
Coull test. Confidence level of 99%

and can be read as follow: for the feature genre only 12.3% of users display no significative pos-

itive or negative preferences toward at least one of the genre stereotypes. Of the users displaying

at least one positive preference (87.7% of the population), only 26% display a large positive

preference (L.P.P) toward at least one stereotype, and 30% display a large negative preference

(L.N.P) toward at least one (the two may not be mutually exclusive). The stereotypes discovered

are indeed capable of describing positive and negative preference traits for over 70% of the users.

5.3 Summary
This chapter concludes with two observations; the first is that, in the experiment under examin-

ation, the stereotypes obtained via the proposed methodology have been shown to be stable on

out-of-sample data in both the hard and soft tests (i.e. they accurately describe the item pop-

ulation metadata with a reduced set of dimensions, and they are capable of describing users’

positive and negative preferences). The result of this chapter is the output of phase 2 as depicted

in research methodology in Chapter 3.

The result of the three statistical tests proposed in this chapter are the keys to confirming that,

for the problem at hand, one can proceed to embed the stereotypes as the base coordinates in an

RS which will be covered in the next chapter.

The second observation is that the suite of test presented as a way to aid the preliminary

evaluation of the stereotypes can be considered among the contributions of this research.



CHAPTER 6

Stereotype-Based Recommendation Performance

The analysis carried out in the previous Chapter 5 have clearly demonstrated that the stereotypes

discovered via the proposed automated procedure are capable of representing users’ preferences.

A natural next step is to test the power of the stereotypes in the recommendation context.

In the existing literature that deals with the recommender systems, the majority of the studies

focus on predicting ratings. While the rating is the ultimate variable expressing user’s prefer-

ences, it can be seen as incorporating two stages of the user decision process: first the user chose

to consume the item, then decides to express a rating conveying his/her appreciation of the item.

This chapter aims to benchmark the use of stereotypes against the recent advancement in re-

commender systems in the cold start phase using different metrics, more details are provided in

Section 6.1.

The chapter main contribution is to provide answers to the following research questions:

• Can automatically constructed item-based stereotypes improve recommendations during

the cold-start phases?

• How do stereotype-based item models compare to other state-of-the-art recommender sys-

tems models in terms of predictive performance during the cold-start phases?

• Apart from recommendation accuracy, what are the other benefits of item-based stereo-

types?

125
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6.1 Experimental Evaluation
In this section, we present the assessment of recommendations driven by stereotypes during cold

starts in three stages:

1. Cold start user-to-item pairing (or consumption). The aim is to predict, hence recommend,

which items a user is likely to consume. The effects and potential benefits of introducing

stereotypes over using the primitive metadata features are investigated in Section 6.1.1.

2. Cold start user-to-item rating. The aim is to predict the rating that a user would attribute

to an unconsumed item, and hence recommend the items with the highest predicted rat-

ings. The effects of introducing stereotypes over using the primitive metadata features are

investigated in Section 6.1.2.

3. Cold start general benchmarking of a RS driven by stereotypes against a RS driven by

singular value decomposition (SVD) with metadata. The aim is to benchmark the cold

start recommendations produced by the stereotype-based system with those produced by a

state-of-the-art RS on the same data. This evaluation is carried out in Section 6.1.3.

The results reported in the following experiments are the average over six experiments in

which the dataset was split 70% in training and 30% in test for ML/IMDb. The test data was

effectively split in six successive experiments with some overlap of the test data allowed across

experiments. In the item’s consumption case the variable predicted is a binary variable expressing

whether a user consumed an item or not, leading to a ‘user-to-item consumption matrix’. In the

rating case, the variable predicted is the MovieLens rating, which is reported on a 1 to 5 scale.

Recommendation metrics can be broadly classified into three classes: classification accuracy

metrics, predictive accuracy metrics, and rank accuracy metrics [35, 144]. In Section 6.1.1, the

objective is to predict consumption, hence classification accuracy metrics are adopted. Predictive

accuracy metrics are used to measure how well stereotype-based models predict ratings compared

to models using the original metadata (Section 6.1.2). Finally, in Section 6.1.3, the cold start

recommendations of the stereotype-based system are assessed versus the SVD-based RS (with

metadata). In addition to the standard prediction accuracy metrics, several most important rank

accuracy metrics are examined including: hit rate (HR), mean reciprocal rank (MRR), mean

average precision (MAP), normalised discounted cumulative gain (nDCG) and half-life utility

metric (HLU). Rank accuracy metrics measure the ability of a recommendation algorithm to

produce a list of items that meets the specific user preferences in terms of hits and ordering

(i.e. the items are all interesting to the user, the list replicates how the user would have ordered

the same items). In the same section an attempt is also made to measure recommendation’s

novelty/serendipity.
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6.1.1 Cold Start Assessment of Item Consumption

When performing predictions for item’s consumption one is not just interested in the class label

(0,1), but also in obtaining an estimate of the probability of how likely it is that a user consumes

an item. For such an experiment, a simple neural network with a single layer of neurons and

a softmax layer to rescale the output to a probability density was chosen as a classifier. Sub-

sequently this classifier will be referred to as the neural network with softmax recommender

(NNSR).

Baseline Model and Stereotype-Based Models

Given the different nature of stereotypes for complex categorical features and for numerical

features, in this preliminary phase the evaluation of recommendations is done for the two types of

stereotypes independently. This aims to demonstrate that performance improvements are intrinsic

of the stereotypes approach, and not due to one particular type of feature, or any feature in

particular. Then a combination of categorical and numerical stereotypes leading to a complete

stereotype-based system is also examined to study the impact on recommendations of the two

classes. Therefore, in the experiments conducted four recommendation models were tested:

• A baseline model (NNSRb), which uses all features available in the item and user metadata

as they are in the original data.

• A complex categorical stereotype model (NNSRc) which uses the stereotypes for the

complex categorical features and revert to the standard features for the rest.

• A numerical stereotype model (NNSRn) which uses the stereotypes for the numerical

features and revert to the standard features for the categorical ones.

• A combined stereotype model (NNSRcom) which uses the mixture stereotypes for the

categorical and numerical features.

For this section, the baseline model is the reference model in terms of performance. For each

model two experiments are performed:

• Experiment A (new user) - The models are trained over a subset of users. The remaining

users are used to test the model performance, treating them as if they were new unknown

users, and checking whether the item predicted to be consumed were effectively consumed.

• Experiment B (new item) - The models are trained over preferences expressed for a subset

of items. The remaining items are used to test the model performance treating them as if

they were new, and checking the predicted item consumption with the real consumption in

the data.
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Metric
New User Experiment New Item Experiment

NNSRb NNSRc NNSRn NNSRcom NNSRb NNSRc NNSRn NNSRcom

Accuracy 71.49% 71.68% 71.30% 71.34% 70.8% 71.3% 71.4% 71.4%
Percision 30.27% 30.49% 30.71% 30.65% 29.6% 30.2% 30.8% 30.7%
T.P. Rate 73.32% 73.55% 76.6 % 76.14% 73.2% 73.8% 76.6 % 76.2%
F. P Rate 28.82% 28.64% 29.6% 29.48% 29.6% 29.1% 29.5% 29.4%
ROC AUC 79.6% 80.0% 79.8% 80.65% 79.3% 80.1% 80.9 % 80.7%
PRC AUC 41.1% 41.8% 41.9 % 41.44% 40.2% 42.2% 41.9 % 41.5%

Table 6.1: Classification-prediction metrics derived from the confusion matrices, including the area under
the curve (AUC) for both the receiver operating characteristic (ROC) and the precision-recall curve (PRC)
for the new-user and new-item experiments in the ML/IMDb. (T.P. refers to true positive, and F.P. refers to
false positive)

Recommendation Results: New User and New Item Experiments

Table 6.1 shows the metrics derived from the confusion matrices for the ‘new user’ and ‘new

item’ experiments. To evaluate the model’s skills the area under the curve (AUC) for both the

receiver operating characteristic (ROC), and for the precision-recall (PRC) curves are reported.

When the classes predicted are very unbalanced, as it is the case in situations where users have

consumed only few items compared to the population of items (e.g. unbalanced presence of

0s over 1s in the data), predicting rare ‘1’ events (true positives) becomes more important than

predicting 0 (true negatives). In such cases as prescribed by [171] the AUC for the PRC may be a

better indication of model’s skills, although the latter is less easy to interpret. ROC curve is a plot

of the true positive rate versus the false positive rate for the predictions of a model for multiple

thresholds between 0.0 and 1.0. Herlocker et al [32] recommend to use ROC to evaluate RSs.

It can be observed that the stereotypes-based system provides an improvement in predicting

items consumption, especially for the True Positive metric and the PRC AUC. This despite using

features with much lower dimensions compared to the original metadata. This first analysis

demonstrates that the improvements come from both numerical and categorical stereotypes in an

independent manner, hinting that the dimension reduction process intrinsically embeds elements

of increased predictability. Coupling the two stereotypes categories leads to a mixture of the two

which is expected.

In most commercial applications it is customary to take the top-N recommendations predicted

by the RS. The NNSR systems by construction can predict, for every item, the probability of

consumption by a given user. For every new user the top-N items ranked by probability of

consumption are selected and cross checked for actual consumption, and the precision metrics

computed. Tables 6.2 and 6.3 show the sample statistics of precision. The tables also provide the

p-value of the statement ‘the stereotype-based model performs better when predicting the top-N

items than the baseline model using the original metadata’. For example, one can state that for
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Model Top-N Recommendation Top 50 Top 100 Top 150

NNSRb
Avg Precision 25.70% 42.44% 56.53%
Precision Std 15.9% 14.2% 13.2%

NNSRc

Avg Precision 26.16% 43.29% 57.13%
Precision Std 16.0% 14.3% 13.3%

Precision % improvement 1.79% 2.03% 1.07%
P-value 0.36 0.04 0.21

NNSRn

Avg Precision 25.82% 44.55% 58.33%
Precision Std 16.8% 14.9% 13.6%

Precision % improvement 0.47% 4.85% 3.18%
P-value 0.78 <0.01 0.01

NNSRcom

Avg Precision 25.50% 43.82% 58.10%
Precision Std 16.86% 14.85% 13.74%

Precision % improvement -0.8% 3.3% 2.8%
P-value 0.57 0.03 0.07

Table 6.2: New User: Top-N Recommendations - performance metrics of stereotype models NNSRc,
NNSRn, NNSRcom vs baseline model NNSRb, plus performance increase and p-value of the test on
the significance of the increased performance due to stereotypes

Model Top-N Recommendation Top 50 Top 100 Top 150

NNSRb
Avg Precision 22.87% 41.93% 55.12%
Precision Std 17.8% 14.8% 13.3%

NNSRc

Avg Precision 25.49% 43.08% 56.96%
Precision Std 16.0% 14.1% 13.1%

Precision % improvement 11.4% 2.74% 3.34%
p-value <0.01 0.09 0.04

NNSRn

Avg Precision 24.72% 44.74% 58.50%
Precision Std 16.8% 14.9% 13.4%

Precision % improvement 8.09% 6.73% 6.13%
p-value 0.04 <0.01 < 0.01

NNSRcom

Avg Precision 25.58% 44.08% 58.21%
Precision Std 16.79% 14.80% 13.42%

Precision % improvement 11.85% 5.13% 5.61%
p-value 0.065 <0.01 0.01

Table 6.3: New Item: Top-N Recommendations - performance metrics of stereotype models NNSRc,
NNSRn, NNSRcom vs baseline model NNSRb, plus performance increase and p-value of the test on
the significance of the increased performance due to stereotypes
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the top 100 items we are more than 96% (i.e. 1 - 0.04 ‘p-value’) confident that the stereotype-

based model NNSRc for new user experiment performs better than the baseline model, and we

are more than 99% confident that the stereotype model NNSRn performs better than the base

model, and our estimated improvement in precision per user is in the region of 4.85% for the

NNSRn.

Handling of imbalanced data

A dataset is imbalanced if the classification classes are not approximately equally represented.

In recent years there has been an increased interest in applying machine learning techniques to

difficult real-world problems, many of which are characterised by extremely imbalanced dataset,

where the occurrence of an event is particularly rare. In addition, the distribution of the testing

data may vary from that of the training data, and the true misclassification costs may be unknown

at learning time. There are two main problems arising from data with unequal class distribution,

as follows:

1. Machine learning (ML) algorithms are built to minimise errors. Since the probability of

samples belonging to the majority class is substantially higher in imbalanced dataset, the

algorithms are much more likely to classify new observations to the majority class. For

example, given an imbalanced dataset where the majority class represent the 98% of the

observations (against a 2% of the minority class-which is also usually the class of interest),

we could have a classifier which achieves a prediction accuracy of 98% by classifying

all instances as the majority class and eliminating the 2% minority class observations as

noise. Such a classifier would be obviously wrong. In other words, predictive accuracy,

a common option to evaluate the output of a classifier, may not be appropriate when data

is imbalanced and/or the cost of different errors varies considerably. This is known as the

accuracy paradox [172].

2. In real life, costs of different errors vary markedly. The cost of False Negative is usually

much larger than False Positive, yet ML algorithms penalise both types with a similar

weight. Credit scoring is a typical example, if the model predicts that a loan will default,

and the loan is not granted, yet it turned out not to be the case, the maximum loss the

lender is subjected to is the profit they would have generated by issuing that loan. On the

other hand, if the model classifies a loan that defaults as being safe, the cost is substantially

larger, as part of the principal may not be recovered. This illustrates an example where one

should not weight False Positive and False Negative equally.

For the ML/IMDb dataset, the data is very sparse: any given person has seen only a small

fraction of all movie. On average the user has rated about 115 movies and a median of 67 movies
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(i.e. the user rated less than 5% on average). The result is that our dataset is heavily unbalanced.

One way to overcome this issue is to use the values of y to automatically adjust weights inversely

proportional to class frequencies in the input data as:

nsamples
nsamples ∗ freqclass(y)

(6.1)

Where nsamples are the number of samples, nclasses is the number of classes (which in our

case is two) and freqclass(y) is the frequency of occurrence of a class.

We used this method to deal with imbalanced dataset in the previous experiments. Beside the

above method which introduce a penalty function to adjust class weights inversely proportional

to class frequencies to handle imbalanced data, in this section we are also looking to:

• Validate the results obtained i.e. show that the model with stereotypes has better perform-

ances than the base model regardless of the method we use to treat imbalance in the dataset.

• Compare different common methodologies to deal with imbalanced datasets.

Techniques to deal with imbalanced data. The most common techniques used to deal with

imbalanced datasets are:

1-Resampling techniques

• Undersampling is the process of deleting some of the observations from the majority class

in order to match the numbers with the minority class. The main method to select which

observation to delete/keep are:

– Random undersampling: as the name suggests this a purely random selection.

– ClusterCentroids [173], in the majority class cluster of samples are replaced by the

cluster centroid of a k-means algorithm.

– NearMiss [173], in order to overcome the issue of potential information loss, ‘near

neighbour’ method and its variations have been proposed. The basic algorithms of the

near neighbour family consist of: first, the method calculates the difference between

all instances of the majority class and those of the minority class. Then k instances of

the majority class which have the smallest distances from those of the minority class

are chosen. If there are n instances in the minority class, the ‘nearest’ method will

result in k ∗ n instances of the majority class.

As discussed by [174] the main advantages and disadvantages of the undersampling tech-

niques were shown to be that it can help improve model runtime and solve the memory

problems by lowering the number of training data samples when the training dataset is ex-

tremely large. However, it can potentially discard useful information about the data itself

that might be needed to build rule-based classifiers. Methods such as ClusterCentroid or

NearMiss are in general preferable to that of random undersampling.
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• Oversampling is the process of generating synthetic data that attempts to randomly gener-

ate a sample of the attributes from observations in the minority class. There are a range of

methods used to oversample a dataset for classification problem. From random-sampling

to the most common technique used that is called synthetic minority over-sampling tech-

nique (SMOTE) [175]. It basically make the minority class equal to the majority class

by creating synthetic (not duplicate) samples of the minority class. The advantages of

oversampling using the SMOTE technique are its simplicity and no lost of information.

However, it is not very practical for high dimensional data.

2- Training techniques: Cost-Sensitive Training, see for example [176]: a number of learn-

ing models provide some built-in support to deal with imbalance data such as class weight-

ing to automatically adjust weights inversely proportional to class frequencies in the input

data as explained in equation 6.1 and implemented in the previous experiments.

Comparison of techniques on the ML/IMDb dataset. In order to select the most ap-

propriate method to deal with imbalance dataset, and validate the results obtained so far,

the main techniques listed above were tested over the training of both the baseline system

and the combined numerical plus categorical stereotype system for the new user experi-

ment. The first test we performed consists in using the NNSR on the imbalanced dataset

without applying any correction of the imbalance. Considering in our dataset each user has

rated less than 5% of the movies (i.e. our dataset is highly imbalanced) we would expect

to obtain fairly poor results from this first test.

Table 6.4 shows the key metrics obtained using the different techniques to treat imbalanced

data. When using an unbalanced model (i.e. without correcting the imbalance) the accur-

acy seems very high, around 86% for both models. Precision, TP/(TP+FP), seems as well

fairly high but that is due to the very low number of false positives (FP) and true posit-

ives (TP). However, other metrics such as recall, TP/(TP+FN), and false positive rate are

extremely low highlighting the inherent problems in the model. The no correction model

tends to assign every movie to the predominant class. This constitutes another example

of the accuracy paradox [172]. Interesting, using the imbalanced dataset, without correc-

tion, penalises the model with stereotypes over the base model (i.e. using stereotype does

not seem to reduce imbalance). Overall, the results obtained confirm the improvement in

predictions obtained when employing stereotypes.

Using the methods SMOTE and Penalised seems to lead to the best results for both base

model and model with stereotypes confirming the improvements obtained using the model

with stereotypes. Figure 6.1 shows a plot of the True Positive Rate (Recall) for the various

techniques employed to treat imbalance of the important class on the two models i.e. base

model and model with stereotypes. While when using an imbalanced dataset, the base
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Base Model on New User
Metric No correction Penalised Rnd Undersmp Near Miss SMOTE

Accuracy 86.15% 71.49% 71.8% 73.2% 72.0%
Precision 60.70% 30.27% 30.5% 31.5% 30.7%

Recall 14.28% 73.32% 73.4% 71.4% 73.2%
False Positive Rate 1.58% 28.82% 28.53% 26.46% 28.17%

F1-score 23.12% 42.85% 43.09% 43.71% 43.25%
Stereotype Model on New User

Accuracy 85.96% 71.34% 71.3% 73.8% 71.5%
Precision 59.41% 30.65% 30.6% 31.7% 30.7%

Recall 12.35% 76.14% 76.0% 68.4% 76.0%
False Positive Rate 1.44% 29.48% 29.46% 25.25% 29.29%

F1-score 20.45% 43.71% 43.63% 43.32% 43.73%

Table 6.4: Handling imbalanced dataset for new user problem

Figure 6.1: Comparison between methods to treat imbalance on base model and model with stereotypes

model performs slightly better than the model with stereotypes, correcting the imbalance

leads to a marked improvement in performances for both models and demonstrate as the

model with stereotypes does indeed brings benefit to the prediction.

6.1.2 Cold Start Assessment of Item Rating

Having demonstrated in Section 6.1.1 that the use of stereotypes improves the cold start

predictions for item consumption, and having also demonstrated that both numerical and

complex categorical stereotypes provide independent sources of improvement, this section

focuses on predicting rating, with the full range of features stereotyped.

Given the nature of the rating variable, generally represented as a discontinuous number

with R possible values, one has two options available: to use a classification approach

using R buckets, or to predict the normalised/scaled dependent variable using a regression

like algorithm. In the literature there are examples of both methods, see [177] for a clas-
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sification and [1] for a regression example. In the present work it is demonstrated how

stereotypes can be used in a classification approach in Section 6.1.1, while this section

focus on the evaluation of the potential benefit of using stereotypes vs original metadata

using regression like approaches.

Generally, user-to-item ratings exhibit biases [178], for example some users always tend to

give higher or lower ratings, or ratings restricted to a narrower range. Several techniques

have been proposed in the literature to account for such biases, for example subtracting

from the original entries user-averages and/or subtracting item-average [1, 178]. In the

present study, ratings are normalised per user by converting them to standard scores:

r̃ =
(r − µu)

σu
(6.2)

Where µu is the mean rating of the user considered, and σu is the standard deviation of

such user.

For each of the two experiments (new user and new item as explained in Section 6.1.1)

several machine learning algorithms capable of predicting a numerical target variable are

tested, where the only difference between the setups evaluated consists in how the predictor

features are treated. In the baseline model, all features are treated as they are in the original

dataset. In the stereotype model, all features are treated via their stereotypes representa-

tion. Our proposed representation of stereotyping allows the application of virtually any

machine learning algorithm. The algorithms tested and presented for this evaluation cover

the full spectrum of algorithm complexity:

– A naive approach where a system is metadata unaware and involves either a) predict-

ing a rating that equals the average rating for the item considered (new user) with no

regard to the specific user or b) predicting a rating that equals the average rating of

the user considered, with no regard to the specific item (new item).

– A simple linear regression approach where the target value, in this case an item’s

rating, is expected to be assembled as the linear combination of the effects of each

feature. The algorithm fits a linear model to minimise the residual sum of squares

between the observed targets in the dataset, and the targets predicted by the linear

approximation [179].

– A neural network regression approach which is based on a single-layer neural net-

work with a softmax layer. Neural networks process information in a similar way

as the human brain learning by example, they cannot be programmed to perform a

specific task.

– A XGBoost driven regression where XGBoost stands for eXtreme Gradient Boosting
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and it was developed by Tianqi1 as an implementation of gradient boosted decision

trees classifiers and regressors [180, 181]. XGBoost combines a few advantages,

including an ability to find non-linear transformations, ability to handle skewed vari-

ables without requiring transformations and high scalability.

It should be noted that, for numerical regression style models, there is no guarantee that

the rating will fall between 1 and 5, therefore the resulting prediction, when transformed

back (rescaled) into a rating ‘r’, must be capped/floored in the following manner:

– 1 if r ≤ 1

– 5 if r ≥ 5

– r otherwise

We do not, however, constrain our predicted ratings to be integer numbers. We note that in

practical applications of recommender systems, the fractional parts of the prediction can be

helpful in defining a ranking order among items (i.e. an item whose predicted rating is 3.9

should rank lower than an item whose predicted rating is 4.2, however if predicted ratings

were rounded to the nearest integer they would have the same value, 4). Additionally, when

the scoring metric is the mean squared error (one of the most popular reported metrics -

see also Netflix challenge [98]), rounding predictions almost always affects the error.

Rating Predictions and Recommendation Results: New User and New Item Experi-
ments

Tables 6.5 and 6.6 show the key performance metrics obtained for the new user and new

item experiments respectively. The tables display prediction accuracy metrics for the naive

system and for the RS derived via the three different regression approaches, as well as the

different treatments of the metadata each regressor uses (original metadata are indicated as

base features vs stereotyped features).

As expected, using a RS that is able to extract rating relationships from metadata improves

substantially the error in the cold start rating predictions compared to the naive approach.

Also, increasing the ability of the regressor to make use of the metadata improves the rating

prediction (i.e. moving from a simple linear model to a more complex neural network-

driven regression).

Contrary to what intuition might have suggested, reducing the metadata feature space via

the use of stereotypes not only does not make the rating prediction worse, but they are in

fact improved. For instance, in the new item experiment, the improvement in precision

metrics that can be gained using stereotyped features is equal or larger than the improve-

ment in the same metrics that arises from switching from a simple regression model to a
1https://tqchen.com/
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more complex one, like neural network regression. Also, and probably most importantly,

the benefit obtained in extra precision using stereotypes does not depend on the regression

model used; this suggests that stereotypes offer an extra dimension for improvement to the

problem of better recommendations (at least in cold start phases) that is independent of

the rating prediction algorithm used. Moreover, the complexity reduction in the metadata

features, once stereotypes are adopted, can be appreciated via the reduction in the CPU

time (in seconds) required for training a given regression approach. For the most complex

regressors the stereotyped metadata allows in excess of 20% improvement in CPU time.

This is an extra benefit of the proposed approach. All experiments are run on a Intel Core

i7 -7700K CPU @ 4.2 GHz with 64.0 GB RAM.

Finally, the improvement of prediction accuracy and computational efficiency can be eval-

uated by introducing an ad-hoc metric, we call it Efficiency metric, as follow:

Efficiency =
RMSENaive

RMSE
∗ (1 + k ∗ CPUTimeNaive

CPUTime
) (6.3)

The metric aims at weighting the effects of an increase in prediction accuracy as measured

by the relative improvement of RMSE compared to the naive RMSE together with the

improvement in computational efficiency. The k of the formula is a parameter, set at 0.03,

that aims at under weighting the improvements in computational efficiency, which are

important, but of a lower importance compared to improvements in RMSE.

Looking at the percentage improvements obtained in the efficiency metrics in the new

user case, one can see that the improvements in using stereotypes (0.6%) are higher than

the improvements in increasing the model complexity from a simple linear regression to

XGBoost (0.4%). Therefore, providing more grounded evidence for the use of stereotypes

in cold start phases.

To gain a view of the goodness of the cold start predictions for the new user and new item

problems we have collected and analysed the distribution of the error in the final rating

as integer values from 1 to 5 obtained by rounding the values deriving from the XGBoost

model with stereotypes.

Figure 6.2 displays an histogram of the distribution of such rating error. For example, an

error of +2 means that the predicted rating was two steps higher of the actual rate given by

the new user (to the new item). We can see that 43% of the predictions have no error, and

that if one considers also predictions where the error amount is of +/- 1 (a small error) -

i.e. the predicted rating was off only by one level up or down - then 91% of the population

predicted. This is an impressive result, demonstrating how the model suggested is indeed

capable of predicting the preference/dispreference in cold start phases over 9 times out of

10.
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New User Experiment
RMSE (Naive: 0.963) Base features Stereotyped features

Linear R. 0.940 0.938
Neural Net R. 0.918 0.906
XGBoost R. 0.913 0.901

MAE (Naive: 0.772)
Linear R. 0.743 0.742

Neural Net R. 0.724 0.712
XGBoost R. 0.721 0.710

Cpu Time (Naive: 1)
Linear R. 10.7 9.1

Neural Net R. 69.5 55.6
XGBoost R. 90.5 73.2

Efficiency Metric
Linear R. 1.054 1.060

Neural Net R. 1.053 1.069
XGBoost R. 1.058 1.073

Table 6.5: Performance metrics: new user problem

New Item Experiment
RMSE (Naive: 1.01) Base features Stereotyped features

Linear R. 0.939 0.934
Neural Net R. 0.928 0.917
XGBoost R. 0.926 0.918

MAE (Naive: 0.81)
Linear R. 0.740 0.736

Neural Net R. 0.735 0.727
XGBoost R. 0.738 0.729

Cpu Time (Naive: 1)
Linear R. 10.8 8.6

Neural Net R. 56.8 34.9
XGBoost R. 90.5 71.6

Efficiency Metric
Linear R. 1.104 1.118

Neural Net R. 1.093 1.110
XGBoost R. 1.093 1.104

Table 6.6: Performance metrics: new item problem

Comparison with existing studies

Despite the majority of the existing studies focused on the movie recommendation domain

and a large number of studies have used the well-known MovieLens and Netfix datasets,

there are fewer published works using the combination of IMDb and MovieLens features

(an enlarged dataset) to predict MovieLens’ users ratings. One such work is [1], where a

hybrid method combining collaborative and content-based recommendation is used to pre-

dict rating of the MovieLens dataset enhanced by the IMDb movie attributes. In order to
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Figure 6.2: Distribution of rating error - new user problem

Figure 6.3: Performance comparison between different algorithm implementation. Source [1]

decrease system runtime and to reveal latent user and item relations, Spiegel et al. [1], use

various methods from the simple K-nearest neighbours (KNN), to a single value decom-

position (SVD) and finally a combination of the two methods with their hybrid filtering

approach which they refer to as ‘HYB-SVD-KNN’. The novelty in their paper lies in us-

ing a hybrid model (combining collaborative and content-based filtering) and in applying

a combination between SVD and KNN method.

Figure 6.3 shows the results obtained by Spiegel et al. [1] in terms of both prediction

accuracy (RMSE) and computational effort. Unfortunately, the authors do not specify on

whether the results refer to the new user or to the new item problems so, to benchmark

against our tests, we would assume it refers to a mixed case. The RMSE they obtain with

the various methods range between 0.961 and 0.935 as summarised in Table 6.7.

Methods RMSE
SVD 0.961
KNN 0.941

SVD-KNN 0.946
HBY-SVD-KNN 0.935

Table 6.7: RMSE obtained by [1]
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Baseline Numerical only Categorical only Cat and Num Stero.
RMSE 0.921 0.910 0.910 0.910
MAE 0.727 0.715 0.716 0.716

Table 6.8: Performance metrics XGBoost regression for the mixed case

For a direct comparison with [1] we ran our model for a mixed case (new user and new

item) using the XGBoost algorithm. The results are reported in Table 6.8. As shown com-

paring Tables 6.7 and 6.8 the combined use of stereotypes and the XGBoost algorithm led

to an increase in prediction accuracy of 2.5% (0.935-0.910) RMSE compared to the best

model proposed by [1]. Unfortunately, we are not able to also compare the performances

in terms of computational costs as the machine used for the computation have different

performances and there are not enough details on the paper to be able to create an estimate

of how the CPU time that we have measured in our experiment could rescale in terms of

those experienced by Spiegel et al. [1]. However, in the next section we are implement-

ing alternative solution methods including the SVD, to evaluate the effectiveness of the

stereotypes in improving the prediction accuracy.

6.1.3 Cold Start Assessment of Recommendations Driven by Stereo-
types versus SVD-Based RS (with metadata)

The previous sections show a broad evaluation of the benefits of introducing stereotypes

over the original metadata during cold start. Matrix-factorisation techniques, and in par-

ticular SVD and SVD++ methods, have gained substantial popularity. For completeness,

a comparison of such techniques with the stereotype-driven approach is necessary. The

standard, classic, formulation of the SVD algorithm does not include the user or item

metadata. However it was shown in the previous section that without such information,

particularly during cold start phases, the recommendations provided would be extremely

naive. Therefore a fair comparison with SVD/SVD++ should incorporate the user and

item metadata in the factorisation procedure. For this comparison, however, there is no

available off-the-shelf solution in Python. To this end we used a new Python library called

Surprise2. The SVD/SVD++ methods as implemented in Surprise take only a list of user

ids, item ids and the corresponding user-to-item ratings as inputs. We needed to extend the

basic algorithm to account for the extra implicit knowledge embedded in ratings by using

the user and item metadata.

The main ideas behind SVD and SVD++ and the incorporation of metadata are revised

first, followed by an in-depth analysis of the recommendation quality of the two approaches

(stereoptypes and factorisation methods). The analysis is not limited to recommendation

2http://surpriselib.com
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accuracy, but attempts an investigation on other aspects and desirable properties of recom-

mendations, such as serendipity.

SVD/ SVD++ with metadata

The intuition behind SVD, and in general matrix-factorisation methods [100], is that there

should exist a latent space (Pf ), of dimensionality f , that determines how a user rates an

item. User-item interactions (i.e. ratings) are modelled as inner products in that space. For

example the user u’s rating of item i, which is denoted by rui, can be represented as the

inner product of two arrays of length f leading to the estimate:

rui = qTi ∗ pu (6.4)

Where each item i is associated with a vector qi ∈ Pf , and each user u is associated

with a vector pu ∈ Pf . To learn the factor vectors (pu and qi), and therefore the latent

space representations, the system minimises the regularised squared error on the set of

known ratings. Regularisation is typically introduced to avoid overfitting. Two approaches

implemented in Surprise to minimise the regularised error are stochastic gradient descent

proposed in [182] and alternating least squares (ALS) proposed in [178].

It is important to stress here that these characteristics are latent characteristics, and do not

necessarily correspond to the user and item metadata.

Three enhancements have been proposed and applied to equation 6.4 to improve the per-

formance in cold start phases: i. introduce user and item specific biases in the ratings; ii.

add user and item metadata; iii. introduce implicit feedback.

Enhancements i. and ii. lead to the decomposition of the ratings as illustrated in equation

6.5:

rui = µ+ bu + bi + (qi +
∑
a∈A(i)

ya)T ∗ (pu +
∑

b∈B(u)

yb) (6.5)

where the terms µ+bu+bi represent overall mean, user bias and item bias, respectively. In

order to include the item’s metadata, a term is added to the right of qi. The metadata is en-

coded to a 1 to n encoding giving item i a set of attributesA(i) (for example genres, movie

budget, revenue, cast popularity) via the vector ya ∈ Pf . This latter term represents the

effect of the item metadata. In a similar fashion a term for the user metadata representation

via a set of attributes B(u) is added to the right of pu.

To give an example of how item’s metadata are incorporated in equation 6.5, lets assume

we have 4 users and 5 items, and we are dealing with movies with the rating matrix de-
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picted in Figure 6.4, where ratings are on a scale 1 to 5 and a question mark indicates an

unknown or unconsumed/unrated item-to-user paring. Suppose that two of the items are

movies belonging to the genre comedy, and therefore we want to add the item metadata

information: ‘genre equals comedy’. We have a vector ya that is composed of 1 (for com-

edy movies) and zeros (not comedy movie). We add this vector to qi as an item factor as

indicated in equation 6.5.

Figure 6.4: Example of adding item factors to Equation 6.5

A third enhancement, that is independent of the two just discussed, is the one that led to the

technique called SVD++. As highlighted by [100, 98], recommender systems can use im-

plicit feedback to gain insight into user preferences. Items that a user has not rated have an

implicit feedback content. If a user has not rated an item this carries more information than

simply not rating, inferring a potential dis-preference. The literature points toward evid-

ence suggesting that incorporating implicit feedbacks improves the prediction accuracy of

a recommender system.

SVD/ SVD++ with metadata vs Stereotypes Recommendations: New User and New
Item Experiments

In this section the results obtained via SVD with metadata and SVD++ with metadata are

compared to the stereotype-based system driven by the XGBoost regression. It is important

to note that in the new user experiment, for the 30% of users in the test set we assumed that

no rating are available, hence the technique SVD++ is not applicable. It should be noted

and remarked that in the current evaluation, the implicit feedback is incorporated for the

factorisation-driven RS, but it is not used for the stereotype-driven RS.

Table 6.9 shows basic prediction accuracy metrics for both the new user and new item

experiments. The stereotype-based model outperforms all of the SVD driven methods in

both RMSE and MAE with the only exclusion being the SVD++, i.e. the addition of the

implicit feedback information in the new item problem. Note that the stereotypes-driven

models do not make use of implicit feedback information. This prove that the introduction

of implicit feedback is indeed beneficial as highlighted by [98].

Going past the simplest predictive accuracy metrics, rank accuracy metrics measure the
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New User Experiment

Stereotype SVD without
metadata

SVD with
metadata

SVD++
metadata

RMSE 0.901 0.961 0.924 x
MAE 0.710 0.768 0.736 x

New Item Experiment
RMSE 0.918 1.059 0.932 0.905
MAE 0.729 0.8607 0.748 0.727

Table 6.9: New user and new item cold start comparisons between the recommendation models: stereo-
types and SVD with and without metadata

ability of a recommendation algorithm to produce a recommended ordering of items close

to what a user would express. Ranking metrics are more appropriate to evaluate algorithms

used in domains where the user’s preferences in recommendations are non binary. In what

follows the most important rank accuracy metrics, e.g. HR, MRR, MAP, nDCG, HLU as

well as serendipity are considered in turn.

Hit Rate. The simplest way to evaluate top-N recommendations is the hit rate (HR),

which measures the proportion of successfully recommended items in top-N recommend-

ations. In other words, if a user rated one of the top-N we recommended, we consider it a

‘hit’. HR is evaluated at different N (10, 20 and 30) and the results are shown in Table 6.10.

Model with
stereotype

SVD with
features

p-value of
difference in HR

Hit Rate @ N New
User

New
Item

New
User

New Item
(SVD++)

New
User

New
Item

HR @ 10 34.7% 23% 26% 20% < 0.0001 <0.0001
HR @ 20 29.3% 21% 22% 14% <0.0001 <0.0001
HR @ 30 26.4% 21% 21% 11% <0.0001 < 0.0001

Table 6.10: Hit rate for top-N recommendation list

As shown in Table 6.10 both for the new user and new item cases the model with stereo-

types has a higher percentage of hits in comparison to the SVD with metadata (for the new

user problem) and SVD++ with metadata and implicit feedback (for the new item prob-

lem). Recall for the new item case, SVD++ with metadata and implicit feedback has a

higher RMSE and MAE than stereotype-based model as shown in Table 6.9, however the

user satisfaction as measured by the HR is not really improved.

Table 6.10 also shows the p-values of the test with null hypothesis: ‘The difference of hit

rate is not statistically significant’. Given the extremely low p-values the stereotype-based

models offer statistically significant improvements for both experiments.
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Mean Reciprocal Rank (MRR) and Mean Average Precision (MAP). Mean Recip-

rocal Rank is another measure to evaluate systems that return a ranked list [183]. which

takes into account the rank of the position of the first correctly identified recommendation.

While MRR can be thought of as a score to evaluate only the top hit, the mean average

precision (MAP) provides a more suitable measure in the cases where we are interested in

the ranking quality of a list rather than just the highest-ranking hit. MAP provides a single

summary of the user’s ranking preferences as described by [183]. The terminology used is

‘MAP @N’ to describe how relevant the list of the N recommended items is.

The results for the MRR and MAP in the cold start experiments are shown in Table 6.11.

If only the quality of the top hit is examined (MRR) the systems perform in an equivalent

manner in the new user case (there is no statistical significant difference). While for the

new item case the SVD++ with metadata displays a higher quality of the top hit, suggest-

ing that the use of implicit feedback has indeed valuable information in improving on the

quality of the top recommendation. As soon as the focus is extended past the single top

recommendation to a basket of recommendations (HR and MAP) then the recommenda-

tions provided by the stereotype-based approach are significantly improved over the SVD

techniques. This leads to the conclusion that not only stereotype-based model leads to a

lower accuracy error but also to a higher user satisfaction as measured by HR and MAP.

Model with
stereotype

SVD with
features

p-value of
difference

New
User

New
Item

New
User

New Item
(SVD++)

New
User

New
Item

MRR 66% 51% 66% 55% 0.86 0.03
MAP @ 10 22% 12% 15% 9% < 0.0001 <0.0001
MAP @ 20 17% 10% 11% 6% <0.0001 <0.0001
MAP @ 30 14% 9% 9% 4% <0.0001 < 0.0001

Table 6.11: Mean reciprocal rank (MRR) and mean average precision (MAP)

Normalised Discounted Cumulative Gain (nDCG). Normalised discounted cumulat-

ive gain (nDCG) is a single-number measure of the effectiveness of a ranking algorithm

that allows non-binary judgments of relevance. nDCG uses graded relevance, which is

accumulated starting at the top of the ranking and may be reduced, or discounted, at lower

ranks [184].

It is the ratio of two measures: discounted cumulative gain (DCG) and Ideal DCG (IDCG).

Discounted cumulative gain (DCG) measures the usefulness, or gain, of an item based on

its position in the result list. The gain is accumulated from the top of the result list to

the bottom, with the gain of each result being discounted at lower ranks. The traditional

formula of DCG accumulated at a particular rank position N is defined as, see [184]:
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DCG@N =

N∑
i=1

reli
log2(i+ 1)

(6.6)

To summarise this value across users, all the items in the top N are sorted by their relative

relevance, producing the maximum possible DCG@N , also called Ideal DCG (IDCG). The

normalised discounted cumulative gain, or nDCG, is then computed as:

nDCG@N =
DCG@N

IDCG@N
(6.7)

Where

IDCG@N =

relN∑
i=1

2reli−1

log2(i+ 1)
(6.8)

The example will explains how nDCG is calculated. Suppose a list of 10 recommen-

ded items i (e.g. movies), where only the first, fourth, sixth and eight are relevant (e.g.

of interest) for a specific user. Following equation 6.6 we can calculate DCG@10 as in

Table 6.12. In order to evaluate nDCG we have to evaluate the maximum possible DCG

i.e. IDCG. To do so we sort the list by relevance, see Table 6.13, and we use equation 6.8

to evaluate IDCG. Finally, we use equation 6.7 to calculate nDCG@10 for that specific

user that is equal to nDCG@10 = DCG@N
IDCG@N = 2.10

2.56 = 0.82

Note that in a perfect ranking algorithm, the nDCG will be the same as the IDCG producing

an nDCG of 1.0. nDCG calculations span from a value of 0.0 (no match) to 1.0 (perfect

ranking).

The results obtained for the two cold start scenarios comparing the stereotypes-based mod-

els and the matrix-factorisation with metadata based models are reported in Table 6.14.

nDCG confirms the results obtained with the other ranking metrics analysed by measuring

how useful are our recommendation in average to users. The model with stereotypes out-

performs the SVD with metadata for the new user case with a level of confidence well over

98% across all the nDCG tests. Instead, on the new item case, the stereotype-based system

performs in a slightly poorer manner. As N grows the statistical confidence on the nDCG

of the SVD++ outperforming that of stereotypes wanes. Once again, as seen on MRR, we

attribute the slightly better performance on the new item to implicit feedback. By giving a

score of 0 to items that no users in the training sample watched prevent these items from

being recommended and this is what we believe drives this result. For the new item case

this comparison highlights the importance of introducing the implicit feedback that would

form part of the future research.
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DCG@10
i reli log2(i+ 1) reli/log2(i+ 1)
1 1 1.00 1.00
2 0 1.58 -
3 0 2.00 -
4 1 2.32 0.43
5 0 2.58 -
6 1 2.81 0.36
7 0 3.00 -
8 1 3.17 0.32
9 0 3.32 -
10 0 3.46 -

DCG@10 2.10

Table 6.12: Example evaluation of DCG@10 following equation 6.6

IDCG@10
i pos reli log2(i+ 1) 2reli−1 /log2(i+ 1)
1 1 1 1.00 1.00
4 2 1 1.58 0.63
6 3 1 2.00 0.50
8 4 1 2.32 0.43
2 5 0 2.58 -
3 6 0 2.81 -
5 7 0 3.00 -
7 8 0 3.17 -
9 9 0 3.32 -
10 10 0 3.46 -

IDCG@10 2.56

Table 6.13: Example evaluation of IDCG@10 following equation 6.8

Half-Life Utility Metric (HLU). The HLU was introduced by Breese et al. [36] on the

premise that a user presented with a ranked list of results, is unlikely to browse deeply into

the list. The HLU evaluation metric postulates that the probability of a user selecting a

relevant item drops exponentially as they move further down the list. The metric examines

an unbounded recommendation list containing all the items. Given such a list, an item at

position j has a probability of 2(j−1)

(α−1) of being selected, where α is a half-life parameter,

specifying the location of the item in the list.

The utility is defined as the difference between the user’s rating for an item and the ‘default

rating’ for an item [36], with the default rating generally assumed to be a neutral or slightly

negative rating. The expected utility of recommendations given to user u,Ru is represented

in equation 6.9. ruj represents the rating of user u on item j of the ranked list, d is the

default rating, and α is the half-life factor (or decay factor).
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Model with
stereotype

SVD with
features

p-value of
difference

nDCG @ N New
User

New
Item

New
User

New Item
(SVD++)

New
User

New
Item

nDCG @ 10 61% 49.2% 57% 52% 0.012 0.001
nDCG @ 20 66% 49.2% 55% 51% < 0.0001 0.01
nDCG @ 30 60% 49.7% 54% 51% <0.0001 0.13

Table 6.14: Comparison nDCG for model with stereotype and SVD with metadata

Ru =
∑
j

max(ruj − d, 0)

2(j−1)/(α−1)
(6.9)

Figure 6.5 display HLU for the new user and new item experiments for the stereotype

model using a decay factor α ranging between 3 and 10 and a default rating equal to the

median rating in the dataset (3 in the data used). The half-life utility increases with the

decay factor i.e. with the assumption that a user is also interested in items further down the

list.

Table 6.15 shows the comparison between the half-life utility value at a decay factor equals

to 3 using the model with stereotypes versus the SVD with metadata. While for the new

user case we can assert that the model with stereotypes outperforms the SVD model with

metadata with more than 95% of confidence, for the new item case the HLU values are

much closer and given the p-values we cannot assert that the values are statistically differ-

ent. This behaviour can be ascribed once more to the presence of implicit feedback.

Figure 6.5: Half-life utility (R) new user and (L) new item cases as a function of the α decay factor (x-axis)

Serendipity. Various definitions are proposed for this concept in the recommender sys-

tem domain. For example, serendipity is defined as a measure of the extent to which the

recommended items are both attractive and surprising to the users [35]. To date, various

definitions and evaluation metrics to measure serendipity have been proposed, and there

is no wide consensus. Kotkov et al. [24] have provided a comprehensive review of the
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Model with
stereotype

SVD with
features

p-value of
difference in HLU

HLU @ N New
User

New
Item

New
User

New Item
(SVD++)

New
User

New
Item

HLU @ 10 47.917 36.306 44.324 32.444 0.0353 <0.001
HLU @ 20 42.306 29.889 38.927 28.719 0.0340 0.1127
HLU @ 30 40.096 26.895 35.289 26.812 0.0014 0.5840

Table 6.15: Comparison half-life utility for model with stereotypes and SVD with metadata using a decay
factor α equal to 3

various definitions and challenges. They suggested that the definition should adapt to the

field of application.

Using stereotypes created independently of the ratings to classify user preferences enable

the discovery of associations between items that are not necessarily obvious or expected.

Given that stereotypes are not generated using rating matrices, such association may carry

an element of novelty/serendipity when recommended. In this experiment a proxy for

serendipity can be selected by finding how variegate the metadata features were in the

top-N recommendation lists.

In the ML/IMDb data under examination, one can think of genre as the perfect example

to introduce a measure of serendipity. It is easy to agree on the fact that when selecting

a movie, the genre(s) of the movie play a key role in the selection. If a system obtained

high prediction accuracy but did so by recommending always the same genre to a given

user that has been stereotyped (e.g. male in his 40s like only thriller and action), then

recommendations would not be very variegate despite the high accuracy that may have

been achieved. One complication is constituted by the fact that there are some items that

are categorised as belonging to many genres.

It is possible to argue that there is more information content into an item with a well

specified label (for example movie A: drama) than an item categorised with many labels

(many genres, for example movie B: drama, war, history, romance, documentary). The

weight of a movie in representing a genre should be inversely proportional to the number

of labels used. For example, a movie categorised as representative of all 24 genres would

add a weight of 1/24 to each genre (a movie with many genre does not represent any single

genre highly). With this in mind one can compute for all the items in the top-N list, the

sum of the weight contributions to each label (genre in our example).

A recommender system will be more novel/serendipitous than another recommender sys-

tem if its top-N list will cover more of those labels. A parameter k is introduced to rep-

resent the minimum value of the score required to claim that its corresponding genre label

was represented. For example suppose one considers top-N with N= 10, and suppose one

finds that with the score introduced above the genre label comedy has a score of 0.5. That
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means that comedy could have been 1 of the two genres of an item recommended or maybe

that comedy was 1 of 4 of the 4 genres in two of the 10 recommendations. At some low

value the score should discarded, and only the genres whose score is above k should be

considered as being represented in the top-N items.

Figure 6.6: Genre diversity (number of distinct genres recommended for the model with stereotype)

Figure 6.7: Comparison genre diversity for the models: stereotype and SVD with metadata

Figure 6.6 shows the number of genres represented in the top-N recommendation list (y-

axis) as a function of the growing value of k (the genre significance cut off, x-axis) for

the stereotype-based models. To note that genre has 24 labels in total. Figure 6.6 shows

the results obtained for the model with stereotypes for the new user case for 3 different N

values, namely Top 10, 20 and 30. The parameter k ranges between 0 (i.e. no limit, all the

genres associated with the recommended movies, no matter how small their weight, are

counted as being represented) and 5 (i.e. only genre that have a weighted score above 5

are counted).

Figure 6.7 shows the comparison in genre diversity for the top 10 recommendation lists

produced by the model with stereotypes and the SVD with metadata. If one agrees that

a low k value should be in the region of 0.5 to 1 as intuition suggests (for instance for

top 10 a k=1 would mean that there must be at least 1 movie that represents such genre
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in full, or perhaps two movies with such genre represented in half, etc.) then the model

with stereotypes outperforms the SVD model in this proxy of novelty/serendipity. The

two tend to align for higher values of k as expected. These findings allow us to conclude

that a stereotype-based recommendation should be more serendipitous than (or at least

equally serendipitous as) SVD-based recommendations without sacrificing the quality of

recommendation.

6.2 Summary

The presented research so far solve the gap that we found in the literature which are: i)

extension of the concept of stereotype to complex categorical features, ii) automation of the

procedure to generate stereotypes independently of the RS algorithm chosen and for any

feature type, and ultimately iii) the possibility to build stereotypes independently of users-

to-item preferences, in order to discover patterns of preferences that may be otherwise lost

in the usual clustering approaches driven by rating matrices.

In Sections 6.1.1 and 6.1.2, we demonstrated how the dimensionality reduction performed

by automated item-based stereotyped, in a rating agnostic context, not only does not de-

grade performance, but improve the performance of the recommendations compared to a

baseline system that uses primitive item metadata in the new user and new item problems.

These experiments answer the research question:

– Can automatically constructed item-based stereotypes improve recommendations dur-

ing the cold-start phases?

The results demonstrate that the improvements, which might not be noticeable in general

precision metrics, are indeed present in the metrics that matter most in predicting consump-

tion in the case where the consumed class is rare compared to the catalogue, hinting that

the dimension-reduction process intrinsically embeds elements of increased predictability

during cold-start. This can be viewed as supporting evidence toward the use of stereotypes

in cold start phases.

Most importantly, the added precision obtained by using stereotypes does not seem to de-

pend on the regression model used, suggesting that stereotypes offer an extra dimension

for improving the quality of recommendations (at least in cold-start phases) that is inde-

pendent of the rating-prediction algorithm used. This finding is one of the most important

findings of the research justifying the use of stereotypes in the RS community as an extra

‘direction’ for improvement during cold-start phases.

In Section 6.1.3 we have conducted an in-depth comparison of the recommendations pro-

duced by a stereotype-based RS and a SVD-based RS in which we have embedded the user

and item metadata. We have shown how stereotypes-based recommendations improve the
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rating prediction accuracy metrics (MAE and RMSE) compared to SVD/SVD++ with item

and user features. Thus we answered the research question:

– How do stereotype-based item models compare to other state-of-the-art recommender

systems models in terms of predictive performance during the cold-start phases?

It is important to note that the MovieLens 1M dataset has basic user demographic features

and somehow those features (i.e. gender and age) were already stereotyped, i.e. divided in

generic groups in the original data.

We demonstrated how stereotypes driven recommendations have a superior performance,

with an overall high statistical confidence, according to the most widespread metrics for

evaluation of ranked list; for each metric we present the rationale of the metric and discuss

the results. For the case of ‘serendipity’, where there is little agreement in the RS com-

munity on how to quantitatively frame such concept, we introduce a novel definition of

serendipity (or list variety) that fits well the scope of item complex categorical features -

which are to be seen often as the most descriptive features of items metadata. Also accord-

ing to our definition of serendipity we obtain further evidence corroborating the adoption

of stereotypes in RS addressing cold starts. This answers our last research question:

– Apart from recommendation accuracy, what are the other benefits of item-based ste-

reotypes?

To generalise the findings, the next chapter demonstrates how the methodology is applic-

able to a different dataset from the retail sector.



CHAPTER 7

Validation of the Stereotype-Driven Methodology

The Amazon product dataset1 is the second dataset that will be used to further validate

the stereotype-based approach for cold start recommendations. The item features embed

the typical complexity that can be encountered in the stereotyping process in modern data,

with complex categorical, categorical and numerical features. The dataset contains product

reviews and metadata from Amazon including 142.8 million reviews spanning the period

from May 1996 to July 2014. Amazon.com has been the subject of intensive investigations,

due to the extremely high sparsity, both in the normal recommendation context [127, 185],

and in cold-start situations [84]. Section 7.1 will discuss more on this dataset with the

focus on the two groups ‘Sport and Outdoors’ and ‘Clothing, Shoes and Jewellery’.

The settings and results of using the Amazon preferences dataset are explained in this

chapter. The experiments in Section 7.2 were carried out by using the proposed algorithms

as described in Chapter 4. The evaluation of item-based stereotypes in Section 7.3 is

following the statistical tests described in Chapter 5. Lastly, Section 7.4 describes the

results of using stereotypes in RS and benchmarks the results against the SVD method.

In particular, this chapter aims to further validate our answers to the research questions:

– Can item-based stereotypes, not based on rating, be constructed automatically?

1http://jmcauley.ucsd.edu/data/amazon/links.html
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– Can automatically constructed item-based stereotypes improve recommendations dur-

ing the cold-start phases?

– How do stereotype-based item models compare to other state-of-the-art recommender

systems models in terms of predictive performance during the cold-start phases?

– Apart from recommendation accuracy, what are the other benefits of item-based ste-

reotypes?

7.1 Amazon Dataset

The Amazon product data2 is selected as a second dataset to further validate the stereotype-

based approach for cold start recommendations. It is focused on retail purchases and it is

used in modern recommendation research [127, 84, 43, 185, 186].

The dataset contains product reviews and metadata from Amazon including 142.8 million

reviews. For convenience, given the size of the full database (i.e. over 20GB compressed)

the dataset is also divided in smaller datasets for independent product categories such as

books, movies & TV and electronics. The focus has been restricted to two groups: ‘Sport

and Outdoors’ and ‘Clothing, Shoes and Jewellery’. The reasons for selecting these two

groups are twofold, on one hand the data for these two groups is sufficiently clean, and on

the other hand given the validation objective that this second investigation is pursuing, it

is believed that taking on retail items that are very different from movies would give more

breadth to the current research.

For the items available in these two categories, the dataset includes reviews and product

metadata. However, no user/reviewer data such as age, gender, or location is available.

The item metadata contains the following fields:

– asin - ID of the product, e.g. 0000031852

– title - name of the product

– price - price in US dollars (at time of crawl)

– imUrl - url of the product image

– related - related products (also bought, also viewed, bought together, buy after view-

ing)

– salesRank - sales rank information (numeric).

– brand - brand name

2http://jmcauley.ucsd.edu/data/amazon/links.html
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– categories - list of categories the product belongs to, e.g. Sports & Outdoors, Hunting

& Fishing, Fishing, Accessories, Charts & Maps

Data issues (mostly missing data) were found to affect all dataset groups. For example, for

the ‘Sport and Outdoors’ dataset, which is composed by 530,000 distinct products, while

the ‘categories’ feature is available for all the products in the dataset, price and brand are

available only for a subset of products (54% and 28% respectively) as reported in Table

7.1.

The same is applied to the second group under investigation: ‘Clothing, Shoes and Jew-

ellery’. In addition, the feature sales rank contains multiple ranks (such as the rank in

Sport & Outdoors, and Music even if the item does not strictly belong to the Music group).

For consistency, our stereotypes will be calculated only on the sales rank for its respective

group, in the example Sport & Outdoors.

The number of products for which the three metrics (price, brand and sales rank) are all

available is reported in the last row of the Table 7.1. This dataset will attest the effective-

ness of the proposed approach and generalise the results obtained in a completely different

domain. The statistics of this dataset is summarised in Table 7.2.

Feature
Sport & Outdoors Clothing, Shoes and Jewellery

Products Percentage Products Percentage
Total 530,000 100% 1,503,384 100%
Price 287,792 54% 574,882 38%

Brand popularity 150,380 28% 96,730 6%
Sales Rank 370,419 70% 657,651 44%
Combined 113,276 21% 38,803 3%

Table 7.1: Proportion of products with features available for Amazon dataset

Dataset Amazon
Sport & Outdoors

Amazon
Clothing, Shoes & Jewellery

no. of Items 530,000 1,503,384
no. of Users 2,000,000 3,000,000

no. of Rating 3,268,695 5,748,920

Table 7.2: Statistics of Amazon dataset

7.2 Constructing Item-Based Stereotypes

An algorithm for the automatic identification of stereotypes for both categorical and nu-

merical features was proposed in Chapter 4 and then used on the ML/IMDb dataset. For

the Amazon dataset the same automated procedure has been used to define the stereotypes.
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The results are discussed in the following sections. In order to validate the automatically

generated stereotypes and then use them in a recommender system, the first step is to divide

the data in test and train datasets. The partition chosen consists of taking 70% of the item

metadata as the training set and 30% as a test set, the two are selected via random sampling.

7.2.1 Stereotypes for Complex Categorical Features

In the dataset, the feature ‘categories’ is composed of multiple aggregated lists of categor-

ies and requires de-vectorisation and cleaning. For example, a product can be in categor-

ies [Sports & Outdoors, Accessories, Sport Watches], [Clothing, Shoes & Jewellery, Sport

Watches] and [Clothing, Shoes & Jewellery, Men, Watches, Wrist Watches]. In order to re-

create correlation-based stereotypes the data needs to be pre-processed first by eliminating

group entries and exploding such entries into a list of unique categories (de-vectorisation).

In the example above the pre-processing leads to the following distinct and unique la-

bels: [Sports & Outdoors, Accessories, Sport Watches, Clothing, Shoes & Jewellery, Men,

Watches, Wrist Watches]. This approach, when applied to the data, results in a relative

high number of unique labels. In order to reduce the number of clusters and to remove the

noise introduced by categories that appear in a relatively small number of products only,

the categories with more than 2% of the products were retained. For the ‘Sport and Out-

doors’ product group, this resulted in selecting 72 distinct categories. For the ‘Clothing,

Shoes and Jewellery’ product group, the application of such a filter resulted in selecting 79

distinct categories.

For the two product groups chosen, the feasibility of using the stereotyping algorithm

1 proposed in Chapter 4 has been explored by generating and investigating the correla-

tion matrixes of the filtered feature ‘categories’ for the training dataset. The correlation

matrices have been grouped via the greedy search algorithm that was developed earlier in

Chapter 4. Figures 7.1 and 7.2 show the correlation matrices for the feature ‘categories’ in

the ‘Sport and Outdoors’ and ‘Clothing, Shoes and Jewellery’ product groups, respectively.

The correlation matrices in Figures 7.1 and 7.2 display well defined area of positive cor-

relation (denoted by the green colour), as well as negative correlation (denoted by the red

colour). Such behaviour (present in both product groups) indicates that the stereotyping

procedure, based on the hierarchical clustering of the correlation matrix and subsequent

dendrogram truncation should work well for these datasets and should lead to stereotypes

that effectively reduce the dimensionality of the problem. The typical correlation value

found in the matrices in the off-diagonal terms tend to be low, on average less than 0.4;
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therefore as suggested in Section 4.1, the algorithm 1 for the generation of stereotypes will

use the absolute value dissimilarity metric defined in equation 4.4.

Figures 7.3 and 7.4 display the dendrograms resulting from the hierarchical clustering of

the correlation matrices using the absolute dissimilarity metric defined in Equation 4.4 for

the product categories. These figures also confirm that there are clearly identifiable and

segregated groups of labels that appear to be well suited for the stereotyping algorithm.

Proceeding with the algorithm of Section 4.1 Figures 7.5, 7.6, 7.7 and 7.8 show the average

cluster size, and the number of clusters formed up to a given iteration, for the ‘Sport &

Outdoors’ and ‘Clothing, Shoes & Jewellery’ product group, respectively.

Figure 7.1: Correlation matrix for the complex categorical feature ‘categories’ in Amazon product group:
‘Sport and Outdoors’
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Figure 7.2: Correlation matrix for the complex categorical feature ‘categories’ in Amazon product group:
‘Clothing, Shoes and Jewellery’

Figure 7.3: Dendrogram for the hierarchical clustering of ‘categories’ feature in Amazon product group:
‘Sport and Outdoors’
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Figure 7.4: Dendrogram for the hierarchical clustering of ‘categories’ feature in Amazon product group:
‘Clothing, Shoes and Jewellery’

Figure 7.5: Categories feature hierarchical cluster of the correlation matrix, assembly iterations. Average
cluster size over the clusters formed at each iteration of the linkage merge. Dissimilarity metric 4.4, linkage
criterium Ward. Amazon product group: ‘Sports & Outdoors’

Figure 7.6: Categories feature hierarchical cluster of the correlation matrix, assembly iterations. Average
cluster size over the clusters formed at each iteration of the linkage merge. Dissimilarity metric 4.4, linkage
criterium Ward. Amazon product group: ‘Clothing, Shoes & Jewellery’



158 Validation of the Stereotype-Driven Methodology Chapter 7

Figure 7.7: Categories feature hierarchical cluster of the correlation matrix, assembly iterations. Total
number of clusters present after each iteration of the linkage merge. Dissimilarity metric 4.4, linkage
criterium Ward. Amazon product group: ‘Sports & Outdoors’

Figure 7.8: Categories feature hierarchical cluster of the correlation matrix, assembly iterations. Total
number of clusters present after each iteration of the linkage merge. Dissimilarity metric 4.4, linkage
criterium Ward. Amazon product group: ‘Clothing, Shoes and Jewellery’

As discussed in Chapter 4, the two criteria (i.e. the average cluster size and the number

of clusters formed up to a given iteration) are coupled by taking the ratio, at any iteration,

of the average cluster size divided by the number of clusters, a quantity that is referred to

as the dendrogram iteration ratio. This quantity is shown in Figures 7.9 and 7.10 for the

two product groups. The figures also show the point at which the algorithm 1 developed in

Chapter 4 suggests to cut the dendrogram.

Tables 7.3 and 7.4 show the stereotypes obtained for the ‘categories’ feature of the two

product groups. It is possible to see how the procedure identifies many strong relation-

ships that we can agree with as humans. For example the associations of Lawn & Garden

with Patio, or that of Caps & Hats with Clothing Accessories, as well as some relationships

that are embedded in the data but as humans it would have been less obvious to discover,
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when not even counter intuitive, like for example the association of Watches with Martial

Arts.

Figure 7.9: Categories feature hierarchical cluster of the correlation matrix, assembly iterations. Dendro-
gram iteration ratio using dissimilarity metric 4.4, linkage criterium Ward. The red circle indicates the local
minimum which is most to the right. Amazon product group: ‘Sports & Outdoors’

Figure 7.10: Categories feature hierarchical cluster of the correlation matrix, assembly iterations. Dendro-
gram iteration ratio using dissimilarity metric 4.4, linkage criterium Ward. The red circle indicates the local
minimum which is most to the right. Amazon product group: ‘Clothing, Shoes & Jewelry’

7.2.2 Stereotypes for the Numerical Features

Each product (identified by the number in column ‘asin’) has numerical metadata features

such as ‘price’ and ‘sales rank’ as well as a simple categorical feature, ‘brand’, that can be

used to calculate ‘brand popularity’. Following the definition of the popularity features in

Chapter 3 we can introduce ‘brand popularity’ as the natural logarithm of the occurrence of

a brand within the training dataset. Given that the feature ‘sales rank’ spans several orders
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Stereotypes - Categories
(Order not relevant)

1 [‘Lawn & Garden’,‘Patio’]
2 [‘Cases & Bags’,‘Gun Holsters’]
3 [‘Costumes & More’,‘Novelty’]
4 [‘Hunting & Tactical Knives’,‘Hunting Knives’]
5 [‘Skiing’,‘Snow Sports’]
6 [‘Airsoft’,‘Paintball & Airsoft’]
7 [‘Action Sports’, ‘Skateboarding’]
8 [‘Caps & Hats’, ‘Clothing Accessories’, ‘Baseball Caps’]
9 [‘Active Shirts’ & ‘Tees, Shirts, Sweatshirts’]
10 [‘Home & Kitchen’, ‘Kitchen & Dining’]
11 [‘Sport Watches’, ‘Wrist Watches’, ‘Watches’, ‘Available for International Shipping’,

‘Jewelry: International Shipping Available’, ‘New Arrivals’]
12 [‘Baseball’, ‘Team Sports’]
13 [‘Cycling’, ‘Parts & Components’]
14 [‘Exercise & Fitness’, ‘Running’]
15 [‘Camping & Hiking’, ‘Outdoor Gear’, ‘Camp Kitchen’]
16 [‘Sports Sunglasses’, ‘Sunglasses’, ‘Accessories’]
17 [‘Active’, ‘Shoes & Jewelry’, ‘Women’, ‘Pants’]
18 [‘Martial Arts‘, ’Other Sports‘, ‘Protective Gear’]
19 [‘Gloves’, ‘Golf’]
20 [‘Boating’, ‘Boating & Water Sports’, ‘Diving & Snorkelling’, ‘Swimming’]
21 [‘Clothing‘, ‘Men’, ‘Big & Tall’, ‘Shorts’, ‘Socks’, ‘Jackets’]
22 [‘Hunting’, ‘Hunting & Fishing’, ‘Hunting Optics’, ‘Fishing’, ‘Tactical & Duty’]
23 [‘Bags’, ‘Leisure Sports & Game Room’, ‘Jerseys’]
24 [‘Fan Shop’, ‘T-Shirts’, ‘Auto Accessories’, ‘Sports Souvenirs’, ‘Sports Equipment’]

Table 7.3: Stereotypes automatically generated using algorithm 1 for the feature: Categories. Amazon
product group: ‘Sports & Outdoors’

of magnitude, for example from item ranked no.1 to item ranked no. 25,800 it is sensible

to take the natural logarithm of such a feature.

In order to group the numerical features into stereotypes, a preliminary examination of

the probability distribution of each feature needs to be carried out. Figures 7.11 and 7.12

display three features for the two product groups with two approximate representations for

each individual feature’s probability distributions: a standard histogram representation and

a kernel density estimation (KDE) [164] performed using a gaussian kernel.

By applying the criterion presented in Section 4.2 to distinguish between features of Type

I (i.e. features whose distribution is multi-modal and for which a set of modes can be used

to define stereotypes) and features of Type II (i.e. features whose distribution does not

allow one to define stereotypes via the use of modes, or where the modes identified are

not significative) it was discovered that all the numerical features in the Amazon ‘Sports

& Outdoors’ dataset are categorised as Type II. The same applies to the ‘Clothing, Shoes

and Jewellery’ dataset where all the numerical features fall within Type II.
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Stereotypes - Categories
(Order not relevant)

1 [‘Skate & Street’, ‘Surf’, ‘Exotic Apparel’]
2 [‘Body Jewellery’, ‘Piercing Jewellery’]
3 [‘Sunglasses’, ‘Sunglasses & Eyewear Accessories’]
4 [‘Lingerie’, ‘Sleep & Lounge’]
5 [‘Handbags & Wallets’, ‘Shoulder Bags’, ‘Luggage & Travel Gear’]
6 [‘Costumes’, ‘Costumes & Accessories’]
7 [‘Athletic’, ‘Running’]
8 [‘Shirts’, ‘T-Shirts’, ‘Sweaters’]
9 [‘Dresses’, ‘Night Out & Cocktail’, ‘Pumps’]
10 [‘Active’, ‘Sports & Outdoors’, ‘Work Wear & Uniforms’]
11 [‘Fashion’, ‘Shop by Designer’, ‘Pumps’]
12 [‘Necklaces’, ‘Pendants’, ‘Fine’, ‘Bracelets’]
13 [‘Baby’, ‘Baby Girls’]
14 [‘Boys’, ‘Girls’]
15 [‘Available for International Shipping’, ‘New Arrivals’, ‘Jewellery: International

Shipping Available’, ‘Watches’, ‘Wrist Watches’, ‘Fashion Watches’]
16 [‘Casual’, ‘Pants’, ‘Jackets & Coats’]
17 [‘Shoes’, ‘Shoes & Accessories: International Shipping Available’, ‘Sandals’, ‘Com-

fort Shoes’, ‘Fashion Sneakers’]
18 [‘Boot Shop’, ‘Boots’, ‘Outdoor’, ‘Outdoor & Work’]
19 [‘Jeans’, ‘Women’s Luxury Brands’]
20 [‘Men’, ‘Women’, ‘Big & Tall’]
21 [‘Knits & Tees’, ‘Tops & Tees’, ‘Blouses & Button-Down Shirts’]
22 [‘Costumes & More’, ‘Novelty’, ‘Jewelry’, ‘Earrings’, ‘Necklaces & Pendants’]
23 [‘Amazon Curated Collection’, ‘Gemstones’, ‘Rings’]
24 [‘Accessories’, ‘Hats & Caps’, ‘Band & Music Fan’]
25 [‘Flats’, ‘Loafers & Slip-Ons’]
26 [‘Petite’, ‘Plus-Size’, ‘Juniors’]

Table 7.4: Stereotypes automatically generated using algorithm 1 for the feature: Categories. Amazon
product group: ‘Clothing, Shoes and Jewellery’

(a) Price (b) Brand Popularity (c) Sales

Figure 7.11: Probability density approximation via histograms and KDE for the features: Price, Brand
Popularity and log (sales rank). Amazon product group: ‘Sports & Outdoors’
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(a) Price (b) Brand Popularity (c) Sales

Figure 7.12: Probability density approximation via histograms and KDE for the features: Price, Brand
Popularity and log (sales rank). Amazon product group: ‘Clothing, Shoes and Jewellery’

Stereotype Mode Location (if any) Lower Interval Upper Interval Population %attributable
1 - 0.000 12.95 0.25
2 - 12.95 23.99 0.25
3 - 23.99 49.97 0.25
4 - 49.97 ∞ 0.25

Table 7.5: Stereotypes for feature: Price. Amazon product group: ‘Sports & Outdoor’

Stereotype Mode Location (if any) Lower Interval Upper Interval Population %attributable
1 - 0.000 2.48 0.25
2 - 2.48 3.83 0.25
3 - 3.83 5.06 0.25
4 - 5.06 ∞ 0.25

Table 7.6: Stereotypes for feature: Brand Popularity. Amazon product group: ‘Sports & Outdoor’

Stereotype Mode Location (if any) Lower Interval Upper Interval Population %attributable
1 - 0.000 11.85 0.25
2 - 11.85 12.85 0.25
3 - 12.85 13.55 0.25
4 - 13.55 ∞ 0.25

Table 7.7: Stereotypes for feature: log(sales rank). Amazon product group: ‘Sports & Outdoor’

Stereotype Mode Location (if any) Lower Interval Upper Interval Population %attributable
1 - 0.000 12.98 0.25
2 - 12.98 23.16 0.25
3 - 23.16 48.97 0.25
4 - 48.97 ∞ 0.25

Table 7.8: Stereotypes for feature: Price. Amazon product group: ‘Clothing, Shoes and Jewellery’
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Stereotype Mode Location (if any) Lower Interval Upper Interval Population %attributable
1 - 0.000 2.56 0.25
2 - 2.56 4.14 0.25
3 - 4.14 5.55 0.25
4 - 5.55 ∞ 0.25

Table 7.9: Stereotypes for feature: log(brand popularity). Amazon product group: ‘Clothing, Shoes and
Jewellery’

Stereotype Mode Location (if any) Lower Interval Upper Interval Population %attributable
1 - 0.000 11.85 0.25
2 - 11.85 12.97 0.25
3 - 12.97 13.68 0.25
4 - 13.68 ∞ 0.25

Table 7.10: Stereotypes for feature: log(sales rank). Amazon product group: ‘Clothing, Shoes and Jew-
ellery’

For features whose distribution is not multimodal (i.e. categorised as Type II), stereotypes

are generated via percentile driven intervals as shown in Tables 7.5 to 7.10.

This section validated the novel approach for constructing stereotypes automatically and

therefore the research question:

Can item-based stereotypes, not based on rating, be constructed automatically?

Before validating the remaining research questions, it is important to evaluate the stereo-

types obtained for their stability and accuracy, which will be carried out in the next section.

7.3 Evaluation of Stereotypes

As discussed in the methodology illustrated for the ML/IMDb dataset, the stereotypes con-

stitute the building blocks of the explanatory power of the RS extracted from the user and

item metadata. Therefore it is of paramount importance to check that the results obtained

are stable and truly representative of real data associations. All the data used up to this

stage to perform calculations and derivation of the stereotypes can be labelled as training

data, and new unseen data labelled as test data can be used to evaluate the consistency and

stability of the relationships discovered. In what follows the stability of the stereotypes

generated is evaluated as well as the use of stereotypes in capturing user preference traits

is investigated following similar steps as in Chapter 5.

7.3.1 Homogeneity of Training and Test Datasets

The first step to perform in order to proceed with the training/test validation is to confirm

that the data is somewhat ‘homogeneous’, meaning that the statistical distribution of the
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features for the two samples is similar. The two simplest driving features that can be

checked to confirm or disprove qualitatively the statement that the test data can be seen

as representative of the training data are the price distribution and the product categories

distribution.

If the distribution of the price of the products in the training and the test sets was very

different, for example if the majority of training products were expensive product, above

a certain threshold, while the majority of the test products were generally non expensive

products, it would be reasonable to assume that there may be differences in the stereotypes

generated. Figures 7.13 and 7.14 display the distributions of price for the training and test

dataset for the two Amazon product groups, qualitatively confirming that the distributions

of the test and training data are not dissimilar enough to expect any effect on the stereotypes

inferred on the data.

The second check performed consists in verifying that the distribution of categories in the

two datasets is not dissimilar to the point of invalidating the ability to extend conclusions

drawn on one set to the other. Figures 7.15 and 7.16 display the occurrence of most fre-

quent category label in the products of both training and test datasets. It is possible to

observe how the test dataset is indeed very much representative of the training dataset,

with only small variations in the relative occurrence of certain category labels and almost

a one to one perfect relative match in frequency and order of the most important labels.

In the figures, the histograms of the training data have been sorted, and displayed with the

histogram for the same category labels of the test data. Only small variations in relative fre-

quency are recorded and visible in the graphs. It is therefore possible to argue that the test

dataset is indeed representative of the training dataset and can be used to infer conclusions

about the stereotypes that have been automatically generated.

Figure 7.13: Histogram distribution of the price for the training set (in blue) with 371k products and the
test set (in red) with 159k products. Amazon product group: ‘Sports & Outdoors’
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Figure 7.14: Histogram distribution of the price for the training set (in blue) with about 1,052k products
and the test set (in red) with about 450k products. Amazon product group: ‘Clothing, Shoes and Jewellery’

Figure 7.15: Histogram distribution of the ‘categories’ frequency in the training set (in blue) and the
test set (in red). Note that only the most frequent categories are being displayed to facilitate comparison.
Amazon product group: ‘Sports & Outdoors’

Figure 7.16: Histogram distribution of the ‘categories’ frequency in the training set (in blue) and the
test set (in red). Note that only the most frequent categories are being displayed to facilitate comparison.
Amazon product group: ‘Clothing, Shoes and Jewelry’
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7.3.2 A Hard Test

As discussed in Section 5.2, a hard test is to check if from unseen data - namely the test

dataset - the same relationships as those learnt from the training dataset would be dis-

covered in an independent fashion. Then measure how far apart the relationships learnt by

the algorithm from both datasets are.

In order to perform the hard test for complex categorical feature, Figures 7.17 and 7.18

display the dendrogram for the feature ‘categories’ over the test datasets derived independ-

ently from the training data for two Amazon product groups.

Figure 7.17: Dendrogram for the hierarchical clustering of the ‘categories’ feature in test dataset. Amazon
product group: ‘Sports & Outdoors’

Figure 7.18: Dendrogram for the hierarchical clustering of the ‘categories’ feature in test dataset. Amazon
product group: ‘Clothing, Shoes and Jewellery’

For both product groups for both datasets (train and test) the categories composing the
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branches, in general, present a very good resemblance between the two, and this qualitative

fact will be later confirmed by the stereotype creation and the stereotype hard and soft tests.

Figures 7.19 and 7.20 show the dendrogram iteration ratio, i.e. the metric that allows one

to define the iteration at which to cut the dendrogram automatically in order to generate the

stereotypes. Figures 7.19 and 7.20 can be viewed as corresponding to Figures 7.9 and 7.10,

whilst Figures 7.9 and 7.10 perform the iterations on the training data, and Figures 7.19 and

7.20 perform them on the test data (two disjoint sets). The resulting stereotype elaborated

on the test data are reported in Tables 7.11 and 7.12 and can be compared directly to those

discovered over the training data in Tables 7.3 and 7.4 respectively.

Figure 7.19: Dendrogram iteration ratio using dissimilarity metric 4.4, Linkage criterium Ward for the
test dataset. The red circle indicates the local minimum which is most to the right. Amazon product group
‘Sports & Outdoors’

Figure 7.20: Dendrogram iteration ratio using dissimilarity metric 4.4, linkage criterium Ward for the test
dataset. The red circle indicates the local minimum which is most to the right. Amazon product group
‘Clothing, Shoes and Jewelry’

The objective analysis of the differences between the two sets of stereotypes (those of

Tables 7.3 and 7.11, and Tables 7.4 and 7.12) constitutes the main result of the hard test
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Stereotypes - Categories - Test data
(Order not relevant)

1 [‘Lawn & Garden’,‘Patio’]
2 [‘Cases & Bags’,‘Gun Holsters’]
3 [‘Costumes & More’,‘Novelty’]
4 [‘Hunting & Tactical Knives’,‘Hunting Knives’]
5 [‘Skiing’,‘Snow Sports’]
6 [‘Airsoft’,‘Paintball & Airsoft’]
7 [‘Action Sports’, ‘Skateboarding’]
8 [‘Sports Sunglasses’, ‘Sunglasses’]
9 [‘Caps & Hats’, ‘Clothing Accessories’, ‘Baseball Caps’]
10 [‘Active Shirts & Tees’, ‘Shirts’, ‘Sweatshirts’]
11 [‘Home & Kitchen’, ‘Kitchen & Dining’]
12 [‘Baseball’, ‘Team Sports’]
13 [‘Cycling’, ‘Parts & Components’]
14 [‘Exercise & Fitness’, ‘Running’]
15 [‘Camping & Hiking’, ‘Outdoor Gear’, ‘Camp Kitchen’]
16 [‘Sport Watches’, ‘Wrist Watches’, ‘Watches’, ‘Available for International Shipping’,

‘Jewelry: International Shipping Available’, ‘New Arrivals’]
17 [‘Active’, ‘Shoes & Jewelry’, ‘Women’, ‘Pants’]
18 [‘Martial Arts’, ‘Other Sports’, ‘Protective Gear’]
19 [‘Gloves’, ‘Golf’]
20 [‘Clothing’, ‘Men’,‘ Big & Tall’, ‘Shorts’, ‘Socks’, ‘Jackets’]
21 [‘Boating’, ‘Boating & Water Sports’, ‘Diving & Snorkeling’, ‘Swimming’]
22 [‘Hunting’, ‘Hunting & Fishing’, ‘Hunting Optics’, ‘Fishing’]
23 [‘Bags’, ‘Leisure Sports & Game Room’, ‘Jerseys’]
24 [‘Fan Shop’, ‘T-Shirts’, ‘Auto Accessories’, ‘Sports Souvenirs’, ‘Sports Equipment’]

Table 7.11: Stereotypes automatically generated using Algorithm 1 for the feature ‘categories’ in the test
data. Amazon product group: ‘Sports & Outdoors’

and can be performed using the metric introduced in Equation 5.1. Table 7.13 reports the

results of the comparison between the 24 stereotypes for ‘categories’ of the product group

Sports & Outdoors. There is 93% accuracy (average match), with a median match of 100%

- indicating that in most of the stereotypes there is a perfect one to one match between their

composition derived on the training data vs that derived on the test data. The same table

reports results for the product group Clothing, Shoes and Jewellery, which exhibit even

higher average accuracy

The evaluation of the numerical stereotypes can be conducted in a similar fashion to

that performed for the complex categorical stereotypes. The formulation is re-adapted to

numerical based nature, by adopting definitions of probability mass and location accuracy,

mismatch ratios as explained in Chapter 5 in Equation 5.4. The reader is referred to that

part of the thesis to refresh the meaning of the various terms and quantities discussed below.

Tables 7.14 and 7.15 display the quantities of the set of Equation 5.4 for the stereotypes

of the numerical features for the two product groups under study. For the product group

Sports & Outdoors for almost all features the number of stereotypes discovered over the
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Stereotypes - Categories - Test data
(Order not relevant)

1 [‘Skate & Street’, ‘Surf’, ‘Exotic Apparel’]
2 [‘Body Jewellery’, ‘Piercing Jewellery’]
3 [‘Sunglasses’, ‘Sunglasses & Eyewear Accessories’]
4 [‘Lingerie’, ‘Sleep & Lounge’]
5 [‘Handbags & Wallets’, ‘Shoulder Bags’, ‘Luggage & Travel Gear’]
6 [‘Costumes’, ‘Costumes & Accessories’]
7 [‘Athletic’, ‘Running’]
8 [‘Shirts’, ‘T-Shirts’, ‘Sweaters’]
9 [‘Dresses’, ‘Night Out & Cocktail’, ‘Pumps’]
10 [‘Active’, ‘Sports & Outdoors’]
11 [‘Fashion’, ‘Shop by Designer’, ‘Pumps’]
12 [‘Necklaces’, ‘Pendants’, ‘Fine’, ‘Bracelets’]
13 [‘Baby’, ‘Baby Girls’]
14 [‘Boys’, ‘Girls’]
15 [‘Available for International Shipping’, ‘New Arrivals’, ‘Jewellery: International

Shipping Available’, ‘Watches’, ‘Wrist Watches’, ‘Fashion Watches’]
16 [‘Casual’, ‘Pants’, ‘Jackets & Coats’]
17 [‘Shoes’, ‘Shoes & Accessories: International Shipping Available’, ‘Sandals’, ‘Com-

fort Shoes’, ‘Fashion Sneakers’]
18 [‘Boot Shop’, ‘Boots’, ‘Outdoor’, ‘Outdoor & Work’, ‘Work Wear & Uniforms’]
19 [‘Jeans’, ‘Women’s Luxury Brands’]
20 [‘Men’, ‘Women’]
21 [‘Knits & Tees’, ‘Tops & Tees’, ‘Blouses & Button-Down Shirts’]
22 [‘Costumes & More’, ‘Novelty’, ‘Jewelry’, ‘Earrings’, ‘Necklaces & Pendants’]
23 [‘Amazon Curated Collection’, ‘Gemstones’, ‘Rings’]
24 [‘Accessories’, ‘Hats & Caps’, ‘Band & Music Fan’]
25 [‘Flats’, ‘Loafers & Slip-Ons’]
26 [‘Petite’, ‘Plus-Size’, ‘Big & Tall’,‘Juniors’]

Table 7.12: Stereotypes automatically generated using Algorithm 1 for the feature: ‘categories’ in the test
data. Amazon product group: ‘Clothing, Shoes and Jewellery’

Descriptive Statistics of µij Sports & Outdoor Value Clothing, Shoes and Jewellery Value
Average (Accuracy) 93% 96%

Median 100% 100%
Minimum 78% 84%

Table 7.13: Hard test comparison statistics for the stereotypes of the feature ‘categories’ generated over
the training vs the test datasets
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Feature Name δPT,t
sj δXT,t

sj µT,t
sj Statistics

price 1 0.01 0.015 0.998
mean accuracy: 0.999

minimum accuracy: 0.998
stdv accuracy: 0.001

price 2 0.0 0.015 0.999
price 3 0.0 0.010 1.000
price 4 0.0 0.057 0.999

brand popularity 1 0.011 0.594 0.850
mean accuracy: 0.875

minimum accuracy: 0.818
stdv accuracy: 0.059

brand popularity 2 0.016 0.802 0.860
brand popularity 3 0.024 0.724 0.818
brand popularity 4 0.004 0.620 0.973

sales rank 1 0.0 0.350 0.943
mean accuracy: 0.985

minimum accuracy: 0.943
stdv accuracy: 0.025

sales rank 2 0.0 0.005 1.000
sales rank 3 0.0 0.0 1.000
sales rank 4 0.0 0.005 1.000

Table 7.14: Hard test metrics for the evaluation of the numerical stereotypes. The table reports for all
numerical features and all stereotypes the dissimilarity in probability mass and centre, and the accuracy
from equation 5.4. The last column gives standard metric of the accuracy. Amazon product group: ‘Sports
& Outdoors’

Feature Name δPT,t
sj δXT,t

sj µT,t
sj Statistics

price 1 0.0 0.005 0.999
mean accuracy: 0.995

minimum accuracy: 0.988
stdv accuracy: 0.005

price 2 0.0 0.220 0.988
price 3 0.0 0.230 0.994
price 4 0.0 0.049 0.999

brand popularity 1 0.0179 0.4127 0.2347
mean accuracy: 0.731

minimum accuracy: 0.235
stdv accuracy: 0.291

brand popularity 2 0.0053 0.5834 0.9629
brand popularity 3 0.0125 0.7718 0.8163
brand popularity 4 0.0091 0.6062 0.9098

sales rank 1 0.001 0.005 0.996
mean accuracy: 0.939

minimum accuracy: 0.759
stdv accuracy: 0.104

sales rank 2 0.002 0.273 0.759
sales rank 3 0.0 0.005 1.000
sales rank 4 0.0 0.002 1.000

Table 7.15: Hard test metrics for the evaluation of the numerical stereotypes. The table reports for all
numerical features and all stereotypes the dissimilarity in probability mass and centre, and the accuracy from
equation 5.4. The last column gives standard metric of the accuracy. Amazon product group: ‘Clothing,
Shoes and Jewelry’
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training and over the test data match. Of the 3 numerical features, 2 of them have a hard

test resulting average accuracy of well above 90%. The other feature, brand popularity

has an average stereotype accuracy of 87%. For all the features examined, the numerical

stereotypes are very stable (both in terms of probability ‘mass’ and in terms of their nu-

merical ranges and hence their centres), thus making them truly representative of the item

population. This is the further evidence of the stability for the sample population statistical

distributions for the numerical features.

For the product group Clothing, Shoes and Jewellery, of the 3 numerical features, 2 of

them have a hard test resulting an average accuracy of well above 90%. The other feature,

brand popularity, has an average stereotypes accuracy of 73%. This is mainly due to the

misalignment of cluster 1, the lowest popularity items that has an accuracy of just 23%.

Nonetheless, the numerical stereotypes can be viewed as being quite consistent across the

two datasets (training and test) making them a very good and stable representation of the

item population for both Amazon product groups.

7.3.3 A Soft Test

As discussed in Chapter 5, the soft test consists in evaluating how suitable the stereotypes

created on the training data are for new products. In the unsupervised learning context,

one does not have the ‘true’ stereotypical labels of the items. In order to obtain what we

can regard as the ‘true’ stereotypical representation of the items in the test dataset, we first

recreate the stereotypes over the Full dataset (F= training dataset + test dataset).

For each of the items in the test dataset for both product groups, the statistics of the

samples’ mismatch ratios of complex categorical feature ‘categories’ using the stereo-

types F (full dataset) and T (training dataset) are analysed in Table 7.16. The mismatch

ratio was introduced formally in Chapter 5 as a metric to quantify how similar/dissimilar

the representation of an item is between two sets of stereotypes as coordinates: the ratio

represents the sum of the non-matching labels divided by the total number of labels for the

item. The soft test is highlighting a very high number of perfect alignment. Only less than

10% of the items representations in stereotypes for the soft test display a non zero mis-

match. 9.7% for Sports & Outdoors, 6.7% for Clothing Shoes and Jewelery. The average

mismatch is low, but that is also a result of the median being 0 (perfect match across most

of the items).

As for the numerical features, the quality of the classification is investigated for each

feature via the confusion matrix of the classification. For each stereotype, as well as for

the entire features, the accuracy of the stereotypes can be defined as the number of true

positives (TP) divided by the number of items. Another alternative metric to evaluate the
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Descriptive Statistics of the mismatch ratios Sports &Outdoor Value Clothing, Shoes and Jewellery Value
Average mismatch 4.3% 2.9%
Median mismatch 0% 0%

Number of non-zero mismatch 15,505 37,689
Proportion of non-zero mismatches 9.7% 6.7%

Mean conditioned on mismatch begin > 0 73% 61%

Table 7.16: Statistics describing the mismatch ratios for the stereotypical representations of ‘categories’
feature for the items in test dataset using full vs the training stereotypes

Items= 85,941 True s1 True s2 True s3 True s4
Predicted s1 21066 0 0 0
Predicted s2 0 21701 0 0
Predicted s3 0 0 21365 0
Predicted s4 0 0 422 21387

Table 7.17: Confusion matrix for the feature ‘price’. Amazon product group: Sports & Outdoors

classifier is via the F1 score, which is the harmonic average of precision and recall. The

recall is defined as the number of true positives (TP) divided by the number of positives

(TP + FP). The precision is defined as the number of true positives (TP) divided by the

number of true positives and false negatives (TP + FN). The reader is referred to Chapter

5 where these concepts were first introduced.

Tables 7.17 to 7.19 display the confusion matrices for all the stereotypes of the numerical

features in the product group Sports & Outdoors. While Tables 7.20 to 7.22 display the

confusion matrices for all the stereotypes of the numerical features of the product group

Clothing, Shoes and Jewellery.

For each feature in the product group Sports & Outdoors, the total number of items is

fewer than the 159k items comprising the test dataset (total number of items is fewer than

the 450k for product group Clothing, Shoes and Jewellery). Such difference in items arises

because many items have invalid/missing entries for the numerical feature presented. In

the tables, the incorrect predictions are highlighted in orange.

Table 7.23 displays the accuracy and F1-score metrics derived from the confusion matrices

for the numerical features of both product groups. All the features have an accuracy above

90%.

Items= 45,080 True s1 True s2 True s3 True s4
Predicted s1 17173 2674 0 0
Predicted s2 0 9875 3616 0
Predicted s3 0 0 7653 1664
Predicted s4 0 0 0 2425

Table 7.18: Confusion matrix for the feature ‘brand popularity’. Amazon Product Group: Sports & Out-
doors



Section 7.3 Evaluation of Stereotypes 173

Items= 110,593 True s1 True s2 True s3 True s4
Predicted s1 27342 0 0 0
Predicted s2 174 27601 0 0
Predicted s3 0 0 27653 0
Predicted s4 0 0 0 27823

Table 7.19: Confusion matrix for the feature ‘sales rank’. Amazon product group: Sports & Outdoors

Items= 172,507 True s1 True s2 True s3 True s4
Predicted s1 42715 120 0 0
Predicted s2 0 43098 103 0
Predicted s3 0 0 43176 18
Predicted s4 0 0 0 43277

Table 7.20: Confusion matrix for the feature ‘price’. Amazon product group: Clothing, Shoes and Jew-
ellery

Items= 28,855 True s1 True s2 True s3 True s4
Predicted s1 10297 1864 0 0
Predicted s2 0 6447 1875 0
Predicted s3 0 0 4365 579
Predicted s4 0 0 0 3428

Table 7.21: Confusion matrix for the feature ‘brand popularity’. Amazon product group: Clothing, Shoes
and Jewellery

Items= 197,342 True s1 True s2 True s3 True s4
Predicted s1 49480 0 0 0
Predicted s2 0 49586 0 0
Predicted s3 0 0 48960 0
Predicted s4 0 0 0 49316

Table 7.22: Confusion matrix for the feature ‘sales rank’. Amazon product group: Clothing, Shoes and
Jewellery

Product Group Feature Name F1-score Accuracy

Sport & outdoors
price 0.995 99.8%

brand popularity 0.794 91.2%
sales rank 0.998 99.9%

Clothing, Shoes and Jewellery
price 0.999 99.9%

brand popularity 0.849 92.5%
sales rank 1.000 100%

Table 7.23: Numerical features stereotypes evaluation, soft test. F1-score and accuracy metrics for the
classification problem of the test items using the stereotypes generated on training items
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It has been demonstrated how the stereotypes discovered for the Amazon dataset via the

automated procedures are indeed representative of the population of items, and over a large

and heterogeneous set of items the stereotypes are remarkably stable. In particular, it was

shown how the stereotypes generated independently on some unseen data are very similar,

when not outright identical, to those obtained on the training dataset (hard test). And it

was also shown how the stereotypes generated over the training data when used to make

inferences/predictions about group belonging of new unseen items (test data) do produce

very accurate predictions (soft test). The only stereotype and dataset where the resulting

accuracy was a bit lower, but still very high, is the one for brand popularity; this could be

attributed to the very skewed characteristic of this feature (i.e. few brands with very high

popularity vs many with average to low popularity).

Having demonstrated the stability and ability to represent well the characteristics of the

items, it is now necessary to demonstrate whether or not the characteristics of the stereo-

types discovered are capable of representing groups of users’ preferences. This question is

answered in the following section following the steps of Chapter 5.

7.3.4 Predictive Power of Stereotypes

In this section the stereotypes discovered in the previous sections for the Amazon dataset

are examined for their ability to represent user preferences. If the stereotypes were proved

to be able to model user preferences for a non-trivial portion of the user population then

this would indicate a suitable set to be used for recommendation.

Up to this point for both Amazon groups, only the item metadata has been used. In order to

formulate the test that will examine which stereotypes and which features are most suited

to be used as representative of a user preferences, it is necessary to introduce the rating

data. For the Sports & Outdoor product group, the dataset contains the ratings provided

by approximatively two million users for about 500k items in the training and test data,

although only about 20k users have reviewed more than 10 products.

For the Clothing, Shoes and Jewellery product group, the dataset contains the ratings

provided by over three million users for over 1.5 million items in the training and test

data, although only about 30k users reviewed more than 10 products. Note that not all of

the products in the dataset (either training or test dataset) have reviews, a large number of

them are unreviewed.

As discussed and demonstrated in Chapter 5, the Agresti-Coull test can be used to build

a methodology and a metric on how a stereotype is capable of influencing a single user’s

preference. This provides us with a way to verify whether the stereotypes created are

capable of capturing and representing users preference traits in a population of users. The

reader is directed to Section 5.2.3 to refresh the main ideas behind the Agresti-Coull test.
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Feature
% users

not
different

% users
with
L.P.P

% users
with

L.N.P

Avg of
significant
stereotypes

Total
stereo-
types

Categories 32% 33% 0% 1.93 24
Price 43% 35% 15% 1.39 4

Brand Popularity 52% 33% 14% 1.36 4
Sales Rank 58% 29% 11% 1.35 4

Table 7.24: Summary for all features of the search for explanatory power of stereotypes via the Agresti-
Coull test. confidence level of 95%. Amazon product group: Sports & Outdoors

Feature
% users

not
different

% users
with
L.P.P

% users
with

L.N.P

Avg of
significant
stereotypes

Total
stereo-
types

Categories 16% 11% 5% 1.94 26
Sales Rank 22% 56% 23% 1.54 4

Brand Popularity 29% 42% 19% 1.52 4
Price 52% 34% 14% 1.35 4

Table 7.25: Summary for all features of the search for explanatory power of stereotypes via the Agresti-
Coull test. Confidence level of 95%. Amazon product group: Clothing, Shoes and Jewellery

Table 7.24 displays the results of the application of the Agresti-Coull method for all the

stereotypes of all features in product group Sports & Oudoors, and it is evaluated with

95% significance. The column ‘% users not different’ represents the percentage of the

users - over the entire sample of users - that do not display any statistically significant

preference or dis-preference for at least one of the stereotypes of that particular feature

under examination.

In the table, features are ordered by significance of the stereotypes. For example, for the

feature categories, 32% of the users in the sample do not present at least one statistically

significant preference/dis-preference for a specific stereotype of the categories feature. On

the contrary 68% of the users appear to have at least one significant preference or dis-

preference in at least one of the labels of the categories driven stereotype.

The columns with ‘%users with L.P.P or L.N.P’ (i.e. large positive preference or large neg-

ative preference) display how many users have what can be considered a strong like/dislike

preference +/-15% for at least one stereotype of the feature examined. For example, for

the feature categories we see that 68% of the users display a statistically significant pos-

itive or negative preference for at least one stereotype, however no users display a strong

negative preference for one or more stereotypes and 33% of users display a strong positive

preference. The last two columns of the table display the typical number of stereotypes

triggering positive/negative preferences for users on average, as well as the number of ste-

reotypes that a given feature has. For example, for categories there are 24 stereotypes and

a given user is affected on average by less than 2 of those. This indicates that users have

exhibited a specific preference for only a few labels /categories that are represented by a
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small number of stereotypes.

The other three numerical features seem to be able to have an impact on users’ preferences

on average for 50% of the users. The main conclusion that can be drawn is that we are

more than 95% confident that the stereotypes created for the complex categorical feature

are capable of capturing and representing users positive and negative preferences for 2/3

of the user population, and the numerical feature stereotypes capture the preference traits

of one in two users. While the stereotypes for ‘categories’ seem to have only positive

large influences, the numerical feature stereotypes describe both positive and negative large

preferences.

Table 7.25 displays the results of the application of the Agresti-Coull method, for all ste-

reotypes of all features in product group Clothing, Shoes and Jewellery, and it is evaluated

with 95% significance. It is important to note that in both Tables 7.24 and 7.25, the per-

centage of total indifferent users is calculated on a different sample size (i.e. the sample on

which the stereotypes could be calculate). While for the complex categorical feature we

could use reviews on all the products in the training dataset, for the numerical features we

could use only the products for which the feature under study is available which represent

a subset of the whole training dataset.

Similarly, across the two product groups the ‘categories’ driven stereotype is the one rank-

ing highest in determining positive or negative statistically significant user preferences, but

it is at the same time also the weakest in determining very large positive/negative prefer-

ences.

Ultimately, we can conclude that in both datasets the stereotypes generated are capable

of describing user preference traits in substantially large portions of the user population.

Interestingly the stereotypes of the dataset ‘Clothing, Shoes and Jewellery’ capture a larger

share of the user population preferences. Perhaps it is worth highlighting a very different

type of behavior for retail customers although further investigation is outside the scope of

the RS development of this research. For instance the population of users purchasing an

item in the ‘Sports and Outdoors’ group seem to be more affected by price, while price

seems to be the least important characteristics driving a user decision in the ‘Clothing,

Shoes and Jewellery’. The stereotype system that will be built onto these two datasets is

indeed capable of capturing and modelling such behavior in its recommendations.

7.4 Recommendation Performance
The prediction of item consumption during the research on the ML/IMDb dataset in Chapter 6

demonstrated that such a prediction, rarely done in the literature compared to the predic-

tion of ratings, is strongly affected by the imbalance between the class predicted (i.e. con-

sumed) and the majority of the observations (i.e. not consumed). In the movie dataset,



Section 7.4 Recommendation Performance 177

each user has rated an average of 115 movies (less than 5% of the items). The imbalance

proved challenging when training the classifier as we discussed in Section 6.1.1.

In the case for highly imbalanced datasets a classifier will classify items into the predom-

inant class as this would minimise the error. Special techniques were used in Section 6.1.1

to treat imbalanced datasets with good success.

However, in the case of Amazon datasets, the imbalance is so extreme that the prediction

attempts may be worthless. In the Amazon datasets, we have approximately 530,000 items

for the Sport and Outdoors group, and roughly 1,500,000 items for the Clothing, Shoes and

Jewellery group, with the typical user having reviewed on average 1.7 items. Even if the

dataset was cut down to retain only the items that have more than 10 reviews, the average

user-to-item review percentage would be in the region of 0.01% which is 400 times more

unbalanced than the ML/IMDb data.

For the above reason the investigation of the item consumption for the Amazon dataset

was not carried out in this research. Later when the investigation of the model performance

against SVD is carried out, information regarding the ability to correctly rank consumption

will arise from measures like MRR and HLU.

In the remainder of this section, we will present the assessment of recommendations driven

by stereotypes during cold starts in two stages:

1. Cold start user-to-item rating.

2. Cold start assessment of recommendations driven by stereotypes versus SVD-based

RS (with metadata).

7.4.1 Cold Start Assessment of Item Rating

In Section 6.1.2, we explained how user-to-item ratings exhibit different kinds of global

biases. For instance, some users consistently give higher ratings on items than other users,

as well as some items on average receive higher feedback than other items. In order to

compute accurate rating predictions such bias effects (user and item biases) need to be

removed from the data.

The dependent variable in this experiment is the user rating, which is expressed as an

integer value ranging from 1 to 5. We normalised rating as follow:

r̃ui = rui + bi + bu (7.1)

Where rui is the actual rating, bi represents the item bias and bu represents the user bias.

The item bias is obtained by subtracting the item average from the mean (bi = µ − µi

where µ is the overall mean across users and items, and µi is the mean of item i). The user
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bias, bu is obtained by subtracting the user average from the mean (bu = µ−µu where µu
is the mean of user u).

Note that the distribution of ratings for Amazon dataset is highly unbalanced toward high

rating. Almost 60% of the ratings are equal to 5, and another 20% are equal to 4, leaving

only 20% for ratings between 1 and 3. This characteristic ‘high rating concentration’ is

depicted in Figure 7.21, where the cumulative proportion of ratings is displayed. The high

rating concentration is a characteristic that makes this dataset completely different from

the previous dataset investigated and, as shown later in the research, it is going to have

a specific impact on the rating predictions. This characteristic may be interpreted as one

further piece of evidence showing how the Amazon and ML/IMDb datasets are different.

The difference between the ML/IMDb and the Amazon datasets may be driven by the fact

that the movie rating attributed by a single user has little impact on the commercial fortune

or misfortune of the movie. However in the Amazon case, sellers may be encouraged to

produce or influence user ratings (i.e. unreal reviews), as such ratings directly reflect on

their ability to generate further sales in a very tangible and immediate manner.

This ‘high rating concentration’ might be the reason why Amazon was recently pushed to

introduce ‘Verified Purchases Reviews3’. The data in the public dataset does not contain

any information on whether a review was verified or not, and it is easy to assume it was

not verified as most reviews are pre-2014 but the verified review flag was introduced in

Nov-2016. This may be the reason why, to the author’s knowledge, many scientific papers

use the ML dataset more often than the Amazon dataset. However, it is important to

note that this important difference highlighted between the two datasets constitutes further

supporting evidence for the general validity of the stereotype-based methodology.

As a measure of quality of the results, the root mean squared error (RMSE) is reported

along with the mean absolute error (MAE).

Figure 7.21: Composition of rating - Amazon dataset

3https://www.amazon.com/gp/help/customer/display.html?nodeId=202076110
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Baseline and Stereotype-Based Models

Two recommendation models are considered: a ‘baseline model’ which uses all features

available in the data in the way they are provided (this is the model against which we

benchmark our results), and a ‘stereotypes-based model’ where the item features are treated

via the rating independent stereotypes generated previously.

In order to measure the impact of replacing the original features with the stereotypes, and

simulate cold start situations (new user and new item), the dataset has been split into two

alternative experimental sets:

– Experiment A (new user) - For each item in the dataset the models are trained on

the preference set expressed by a subset of users (randomly selected). The remaining

users are left out, and used to test the accuracy of the models.

– Experiment B (new item) - For each user in the dataset the models are trained on all

preferences expressed for a subset of items (randomly selected). The remaining items

are left out, and used to evaluate the accuracy of the models.

For each of the two experiments several machine learning algorithms are employed from

the simplest methods (naive method and linear regression) to the most popular and com-

plex (neural network and XGBoost) with the aim to improve model performances and to

confirm that our conclusions related to the application of stereotypes do not depend on the

particular model chosen. The reader is referred to Section 6.1.2 for more details on the

adopted regression techniques. All experiments are run on an Intel Core i7 -7700K CPU

@ 4.2 GHz with 64.0 GB RAM.

Rating Predictions and Recommendation Results: New User And New Item Experi-
ments

The results reported in Tables 7.26 and 7.27 are the average of a six experiments where

the dataset was split 70% in training and 30% in test. The test data was effectively split in

six successive experiments with some overlap of the test data allowed across experiments.

The predicted ratings in the Tables 7.26 and 7.27 are subject to the clamping and flooring

described in Section 6.1.2.

The simple prediction rules, also called naive estimators, which predicts new ratings to be

the mean rating of items for the new user case (i.e. average rating among existing users)

or as the mean rating by user across all items for the new item case, result in RMSE= 0.76

and RMSE= 0.80, respectively. Notice that the first rule represents a sensible ‘best sellers

list’ approach.
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The linear regression method constitutes a substantial improvement compared to the naive

methods, resulting in an improvement of at least 19% and 26% in RMSE over the baseline

model in the new user and new item problem respectively. Using stereotypes results in a

further improvement over the baseline model in excess of 1.9% and 2.57% for new user

and new item problem respectively. Once more, the use of stereotypes appears to bring an

increase in performances. A similar pattern applies to MAE.

As discussed for ML/IMDb dataset, the neural network regression approach is employed

as one of the more sophisticated and powerful predictions approaches. Using a neural net-

work regressor further improves the rating prediction performance. The RMSE improves

by about 0.5% and 0.2% compared to the linear regression baseline value for new user

and new item problems respectively. This small improvement in performance comes at

the cost of around 26% increase in computational time. Applying stereotypes leads to

a further 2.6% and 3.5% improvement in the RMSE with respect to the neural network

baseline model for new user and new item problems respectively. The MAE follows a

similar pattern. The performance increase is obtained with a reduction of roughly 30% of

the computational time.

In a similar fashion as seen for linear regression, neural network regression also confirms

that: a) stereotypes improve performance by a few percentage points compared to the same

model that uses basic features, and b) stereotypes reduce computational time.

Using a XGBoost regressor lead to the highest prediction improvement compared to the

naive estimation. While the performance for the baseline XGBoost model is only slightly

better than the baseline linear regression model, adding stereotypes lead to an improve-

ment of 3.1% with respect to the XGBoost baseline model for the RMSE in the new user

experiment. The MAE follows a similar pattern.

For the new item experiment, the XGBoost algorithm is the one that leads to the highest

prediction accuracy improvement, with an increased performance of well over 5% for both

RMSE and MAE compared to the XGBoost baseline model.

One more datum regarding the benefit of using stereotypes, reported only for the XGBoost

new user and new item tests, consists in the number of times the predicted rating value for

the baseline model is closer to or further away from the real observed rating compared to

the predicted rating value for the stereotype-based model. For the new user experiment

it was found that 56.8% of the times the prediction using stereotypes is closer to the ac-

tual rating than the prediction of the baseline model. For the new item experiment the

stereotype-driven predictions were closer to the actual rating 59.7% of the times.

It is important to note that for this particular dataset improving the regression model does

not bring much improvement in prediction performance. However, more sophisticated

models (neural network and XGBoost) do substantially improve performance metrics com-
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New User Experiment
RMSE (Naive: 0.76) Base features Stereotyped features

Linear R. 0.616 0.604
Neural Net R. 0.614 0.598
XGBoost R. 0.612 0.593

MAE (Naive: 0.48)
Linear R. 0.530 0.523

Neural Net R. 0.523 0.515
XGBoost R. 0.522 0.512

Cpu Time (Naive: 1)
Linear R. 1.534 1.147

Neural Net R. 27.89 18.055
XGBoost R. 12.77 5.472

Efficiency Metric
Linear R. 1.565 1.710

Neural Net R. 1.252 1.296
XGBoost R. 1.279 1.375

Table 7.26: Performance metrics for new user problem - Amazon dataset

New Item Experiment
RMSE (Naive: 0.80) Base features Stereotyped features

Linear R. 0.585 0.570
Neural Net R. 0.584 0.563
XGBoost R. 0.585 0.550

MAE (Naive: 0.53)
Linear R. 0.515 0.492

Neural Net R. 0.511 0.485
XGBoost R. 0.510 0.474

Cpu Time (Naive: 1)
Linear R. 1.193 1.094

Neural Net R. 26.239 18.383
XGBoost R. 10.779 5.786

Efficiency Metric
Linear R. 1.836 1.928

Neural Net R. 1.386 1.447
XGBoost R. 1.413 1.553

Table 7.27: Performance metrics for new item problem - Amazon dataset

pared to simpler models (linear regression). Regardless of this, the improvement and value

added by stereotypes is fully demonstrated. In addition, the extra predictive content arising

when using stereotypes seems to be orthogonal (i.e. independent) of the machine learning

approach used (i.e. the solver used to train the features-rating relationship). Similar find-

ing is also observed in the ML/IMDb dataset. When stereotypes are used in more complex

models the percentage improvement in the error metrics increases over their respective

baseline models.



182 Validation of the Stereotype-Driven Methodology Chapter 7

We can speculate the ability of more complex models, in their baseline form, to perform

substantially better than simpler ones (i.e. neural network performing only marginally

better than linear regression) can be related to the very characteristic discussed previously,

namely the extreme concentration of high reviews in the dataset. Investigation of this

particular aspect is outside the scope of this research, and it does not affect our conclusion

on the value added by stereotypes.

The two side benefits of using stereotypes (error reduction and computational speed im-

provement) can be evaluated by using the ad-hoc Efficiency metric 6.3 which was discussed

for the same experiments in the movie case in Chapter 6. The metric aims at weighting

the effects of an increase in prediction accuracy, as measured by the relative improvement

of RMSE compared to the naive RMSE together with the improvement in computational

efficiency. The parameter k of the formula is set at 0.03, aiming at under weighting the

improvements in computational efficiency, because of a lower importance compared to im-

provements in RMSE. The metric confirms what has already been discussed, namely that

for the Amazon dataset there is little benefit in using complicated prediction models. When

the little RMSE improvement is balanced against the higher computational requirements,

stereotypes are instead a valuable way to increase efficiency for all models.

In both of the example analysed we have demonstrated how stereotypes enable to improve

the accuracy and at the same time reduce the computational time by a substantial amount.

The improvement in accuracy cannot be ascribed to a better fit, as it is independent of the

regressor model chosen. We can summarise our findings as follows:

– There is a consistent improvement in prediction accuracy between 2% and 5% of

RMSE when using stereotypes compared to using the original baseline features dur-

ing cold start experiments.

– The improvement is consistent across the regressors. Linear, neural network and

XGBoost regressions all perform better using stereotypes than using the original fea-

tures.

– The improvement in prediction accuracy due to stereotypes is larger than the im-

provement that can be harvested by choosing incrementally more complex regression

techniques.

– Using stereotypes, especially in the most powerful regression techniques (NN and

XGBoost) leads to more than 30% computational time improvement over using the

base features.

– The improved accuracy (via a smaller RMSE) and improved CPU time can be in-

corporated into the efficiency metric and it shows the real advantage in favour of the

stereotype approach.
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– Looking at the percentage improvements obtained in the efficiency metric, one can

see that the improvements in using stereotypes are higher than the improvements in

increasing the model complexity from a simple linear regression to XGBoost. There-

fore, providing more grounded evidence for the use of stereotypes in cold start phases.

In particular for the Amazon dataset, the Efficiency metric 6.3 suggests that one may

settle for simpler models like linear regression with stereotypes as the most efficient

approach.

To illustrate another consequence of the fact that the dataset contains a vast majority of top

positive reviews, Figure 7.22 displays the histogram for the distribution of the predicted

rating error. For example, an error of -1 means that the predicted rating was one step higher

than the actual rating given by the new user (to the new item). We can see that 93% of the

predictions have an error between +/- 1 (a small error) - i.e. the predicted rating was off

only by one level up or down, demonstrating how the model suggested is indeed capable

of representing the preference (positive or negative) in cold start phases over 9 times out

of 10.

Note that the distribution of the error is skewed toward the negative side. This happens as

a result of the top rating concentration. The models calibrated have very little incentive in

predicting lower ratings (as the training ratings are extremely dense in the 4 and 5 area).

The stiffness of the fit derives the small quantity of large errors. These are low reviews that

were not predicted to be so low.

The experiments in this section verified the research question:

Can automatically constructed item-based stereotypes improve recommendations during

the cold start phases?

In the next section, the matrix-factorisation methods (SVD and SVD with metadata also

known as Factorisation Machine) that were explored and compared with the proposed ste-

reotype approach for the ML/IMDb data are applied to the Amazon data and the results

compared to the ones obtained using stereotypes.

Figure 7.22: Distribution of rating error, new item case, XGBoost
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Figure 7.23: Distribution of number of users by number of items reviewed for the Sports & Outdoors
product group

7.4.2 Cold Start Assessment of Recommendations Driven by Stereo-
types versus SVD-Based RS (with metadata)

The general theory and model set up for the SVD and SVD with metadata features were

discussed in section 6.1.3. There is one general complication with the Amazon dataset

that required a change in the underlying implementation. The Amazon dataset is much

larger and much sparser than the ML/IMDb dataset. Figure 7.23 shows the histogram (in

log scale) representing how many reviews typical users have. There are millions of users,

i.e. the vast majority, with fewer than 3 reviews. Only at two orders of magnitude below,

about ten thousand users have 30 reviews or more, and only less than one thousand users

that have more than 100 reviews. This is a very different picture than that of the ML/IMDb

case.

To handle the sparsity, it was decided to test two alternative sparse matrix approaches:

list of list (LIL) and compressed row storage (CRS) or Yale approach. For a description

of both approaches see [187]. Ultimately while LIL provides more flexibility, it is less

efficient when handling matrix operations. The CRS method was adopted. Despite the

fewer features of the Amazon dataset, compared to the ML/IMDb case, the substantially

larger number of users and much larger number of items would render the use of matrix-

factorisations with metadata very cumbersome if not outright unfeasible on machines with

standard specifications without the use of a sparse matrix treatment.

SVD with metadata vs Stereotypes Recommendations: New User and New Item Ex-
periments

In this section we will compare the results obtained from the factorisation methods (SVD
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and SVD with metadata) with the best results obtained from machine learning techniques

(XGBoost) and the use of stereotypes.

Table 7.28 compares key accuracy metrics obtained for both the new user and new item ex-

periments. The results reported are the average of six experiments in which the dataset was

split 70% in training and 30% in test. The test data was effectively split in six successive

experiments with some overlap of the test data allowed across experiments. It is important

to note that for the 30% of users (items in new item case) in the test set we assumed that no

ratings were available. That means that no previous information was assumed to be avail-

able for those users (items), which were used to assess the new user (new item) behaviour.

Table 7.28 demonstrates the model with stereotypes outperforms the SVD method in both

RMSE and MAE in the cold start phase. The improvement arising by using stereotypes

seems to be independent and captured by the stereotypes only, confirming the findings ob-

served in the ML/IMDb dataset. In comparison to the new user tests performed for the

ML/IMDb dataset, the performance improvement offered by the stereotype-based model

compared to the SVD with metadata is even larger.

In the new item experiment, using implicit feedback, i.e. SVD++, in the form of data on

other items rated does not constitute a real benefit as it leads to a negligible improvement

of just 0.1% in the RMSE compared to the SVD (not shown) at the cost of more than

doubling the computational time. This is probably attributable to the extreme sparsity of

the data, where the implicit feedback (i.e. disliking all items not consumed/reviewed) is a

poor assumption given the vastity of the items catalogue and the extremely low number of

reviews per user.

New User Experiment

Base Model Stereotype SVD without
metadata

SVD with
metadata

RMSE 0.612 0.593 0.733 0.613
MAE 0.522 0.512 0.542 0.534

New Item Experiment
RMSE 0.585 0.550 0.773 0.588
MAE 0.510 0.474 0.529 0.511

Table 7.28: New user and new item cold start comparisons between the recommendation models: stereo-
types and SVD with and without metadata

In order to evaluate the rank accuracy metrics, the test sets had to be modified as follows:

– For the new user case we divided users 70%-30% and trained the model on the known

rating for 70% of the users, as we did for the previous analyses. For the remaining

30% of the users the test set included all the items in the dataset whether the user

rated them or not. In this way our top-N recommendation list includes also items that

have not been rated by the user.
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– For the new item case we divided items 70%-30% and trained the model on all users

but just on 70% of the items. The test set included for each user all of the items in

the test set (30% of the total) regardless of whether that user had rated the item or

not. In this way our top-N recommendation list includes also items that have not been

actually rated by the user.

In addition, due to the sparsity of the dataset analysed, we had to restrict our analysis only

to users with a minimum number of reviews in order to obtain meaningful rank accuracy

metrics. For the Sports and Outdoors and the Clothing Shoes and Jewellery subsets of the

Amazon dataset, each reviewer has rated on average just 1.7 items with the majority of

the user having reviewed only one item. Figure 7.23 shows the histogram for the number

of items rated by reviewers for the Sports and Outdoors portion of the data where the fact

just quoted is self-evident in log scale. In order to evaluate meaningful rank accuracy

metrics, only reviewers with more than 10 reviews were retained for this part of the study.

It would be difficult to assemble any statistically significant metric if the test set had not

been restricted to such reviewers.

Because of the extreme sparsity of the data, and because in the test set while we retain only

users with more than 10 reviews we also retain and potentially recommend all items (also

the ones that on the dataset have no reviews), we expect the ranking metrics to be lower than

those achieved for the ML/IMDb dataset. A different point of view could be obtained by

only providing recommendations for the items that have also received a minimum number

of reviews. While this would improve the rank accuracy metrics, we wish to point out that

what we are interested in this experiment as a relative comparison among techniques, and

also showing and preserving the most extreme cold start approach.

Hit Rate. The simplest metric to evaluate the accuracy of the top-N recommendations is

the hit rate. The hit rate measure was discussed in details in Section 6.1.3. We evaluated

HR at different N (10, 20 and 30) for the two cold start cases using the two methods under

comparison i.e. model with stereotypes and SVD with metadata. The main results are

shown in Table 7.29.

Model with
stereotype

SVD with
features

p-value of
difference in HR

Hit Rate @ N New
User

New
Item

New
User

New
Item

New
User

New
Item

HR @ 10 3.16% 2.53% 1.50% 1.40% � 0.01 �0.01
HR @ 20 3.13% 2.54% 1.47% 1.45% �0.01 <0.01
HR @ 30 2.96% 2.66% 1.44% 1.61% �0.01 < 0.01

Table 7.29: Hit rate for Top-N recommendation list - Amazon dataset

As shown in Table 7.29 for both the new user and the new item cases the model with
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stereotypes has a higher percentage of hits with respect to the SVD with metadata. The

table also shows the p-values of the test with null hypothesis: ‘The difference in the mean

of hit rate is not statistically significant’. Given the extremely low p-value obtained we are

confident at 99% that the improvements in HR given by the stereotype-based models are

significant for both the new user and new item case. In the table the symbol (�) is used

to indicate that the p-value is significantly less than the value shown as to be on a smaller

order of magnitude.

An important observation for the new user case is the fact that as N increases the HR

decreases, this is due to the number of hits identified being those ranking high, and not

identifying further hits down in the list, also probably due to the larger catalogue of un-

reviewed items that the RS is drawing its recommendations from. It is worth noting that

despite the slightly higher RMSE of the new item case, with respect to the new user case,

the latter displays a higher HR. This is explained as follows: while in the new user case

each single user is scored against all of the items (whether items were rated or not), be-

cause of the train test split in the new item case only 30% of the items are retained as new

item. Therefore, it is less likely that, when a new item is recommended to all users, that

item was actually reviewed by any of those users. For this very same reason, in all of the

rank accuracy metrics here analysed the new item case is likely to score lower than the new

user case.

Mean Reciprocal Rank (MRR) and Mean Average Precision (MAP). MRR is another

measure to evaluate systems that return a ranked list of answers to queries while MAP

provides a more suitable tool in the cases where we are interested in the ranking quality

of a list rather than just the highest-ranking item. It can be viewed as an extension of both

MRR and HR and it was discussed in Section 6.1.3.

Table 7.30 reports both MRR and MAP for the two cold start cases. While HR measured

the ability to provide more and more relevant recommendations when doing top-N, and we

concluded that stereotypes-based models contributed to a better system, the MRR measures

the quality of only the first ‘hit’ score, and in a similar way the first hit score deriving by

the use of stereotypes is almost twice that of the SVD with features for the new user case

and more than 50% better for the new item case. The same observation conducted when

discussing HR about the underlying reason of the new user case being much better than the

new item case also applies for this metric. Given the sparsity of the data, i.e. most users

rank very little number of items, we feel that it is sufficient to evaluate the MRR for the

top 10 list.

MAP can be viewed as an extension of both MRR and HR. For both the new user and the

new item cases, MAP is higher with statistical confidence well above 95% that the model
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with stereotypes does better than the SVD with features in the new user case. For the new

item case the performance improvement of the stereotypes have a stronger confidence. In

a similar way as we found analysing the ML/IMDb dataset, not only stereotypes lead to a

lower accuracy error but also to a higher user satisfaction as measured by HR and MAP.

Model with
stereotype

SVD with
features

p-value of
difference

New
User

New
Item

New
User

New
Item

New
User

New
Item

MRR @ 10 4.97% 3.66% 2.8% 2.28% �0.01 �0.01
MAP @ 10 2.89% 2.52% 2.25% 2.08% 0.03 <0.01
MAP @ 20 2.99% 2.71% 2.55% 2.13% 0.04 <0.01
MAP @ 30 3.22% 2.77% 2.66% 2.66% 0.02 < 0.05

Table 7.30: Mean reciprocal rank (MRR) and mean average precision (MAP) - Amazon dataset

Normalised Discounted Cumulative Gain (nDCG). nDCG is a single-number measure

of the effectiveness of a ranking algorithm that allows non-binary judgments of relevance.

nDCG has a discounting function as discussed in Section 6.1.3. The results obtained for

the two cold start scenarios using the stereotypes-based models and the matrix-factorisation

with metadata based models are reported in Table 7.31.

Model with
stereotype

SVD with
features

p-value of
difference

nDCG @ N New
User

New
Item

New
User

New
Item

New
User

New
Item

nDCG @ 10 5.8% 3.31% 3.4% 2.9% <0.01 0.08
nDCG @ 20 7.5% 4.47% 4.2% 4.1% < 0.01 0.07
nDCG @ 30 8.7% 6.0% 4.8% 5.6% <0.01 0.08

Table 7.31: Comparison nDCG for model with stereotypes and SVD with metadata - Amazon dataset

nDCG confirms the results obtained from the other ranking metrics analysed by measuring

how useful are our recommendation on average to users. The model with stereotypes out-

performs the SVD with metadata according to the nDCG values; for new user the improve-

ment is with a very high statistical confidence (above 99%); for new item the improvement

is lower and, given the variability embedded in the problem, we are around 92% confident

that such improvement is statistically significant.

Half-life Utility Metric (HLU). While the ranking metrics we have examined so far

were all adapted from different fields for use in the recommender systems domain, the

half-life utility metric was designed explicitly for recommender systems by Breese et al.

[36]. The metric was discussed in detail in Section 6.1.3. The HLU postulates that the
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probability that a user will select a relevant item drops exponentially down the list of

recommendation, and this reflects the smaller and smaller likelihood that the users will

browse down deeply in the list. Table 7.32 shows the comparison between the half-life-

utility value at a decay factor equal to 3 using the model with stereotypes versus the SVD

with metadata. For both tests we can assert that the model with stereotypes outperforms

the SVD model with metadata with more than 95% of confidence for the new user and

more than 99% confidence for the new item. This confirms what we found with the other

measures presented in the above sections where using the model with stereotypes appears

always outperforming the SVD model.

Model with
stereotype

SVD with
features

p-value of
difference in HLU

HLU @ N New
User

New
Item

New
User

New
Item

New
User

New
Item

HLU @ 10 2.52 2.33 1.54 1.14 <0.05 <0.01
HLU @ 20 2.41 2.30 1.49 1.13 <0.05 <0.01
HLU @ 30 2.29 2.29 1.44 1.12 <0.05 <0.01

Table 7.32: Comparison half-life utility for model with stereotypes and SVD with metadata using a decay
factor α equal to 3 - Amazon dataset

Serendipity. As discussed in Section 6.1.3, various definitions have been proposed for

the concept of serendipity in recommender systems. We discussed how a serendipitous re-

commendation should possess the property of being relevant as well as unexpected to the

user. Given that in the literature there is no accord in a universal definition of serendipity,

when we analysed the ML/IMDb dataset we introduced a metric of serendipity based on

the variety of labels being reccommened within the top-N recommendation for a complex

categorical feature, and in the case of the ML/IMDb database we examined genre. The

same definition can also be used for the Amazon dataset and its complex categorical fea-

ture: product category. The underlying idea for Amazon is that if a recommender system

obtains high prediction accuracy, but it does so by always recommending the same product

category (e.g. baseball caps) this would not be a serendipitous system, despite the high

accuracy that one may achieve.

Using the top-N recommendation lists produced for the new user case from both SVD

with metadata and stereotypes, we can measure how many distinct product categories are

recommended to a user. However, when we look at the top-N items, we are constrained in

proposing a predefined number of items for each user as, for this dataset, we do not have

any user metadata to differentiate between users, and this greatly limits the serendipity of

our predictions. Nevertheless, a comparison is possible on how much variety in product

category, derived from the stereotypes and the SVD with metadata based systems.
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One complication that was also discussed for ML/IMDb consists in the fact that when ex-

amining how a multi-value feature like product category is ‘variegate’ we need an operative

way to address items that are belonging to many product categories simultaneously. The

same operative definition as that introduced previously for the ML/IMDb can be employed,

in fact such an operative way of computing the variety in a complex categorical feature can

be employed for any complex categorical feature. To generalise the definition of k intro-

duced previously, when considering the top-N recommendation for a complex categorical

feature, the number of times of a label appearing in one or more recommended items in the

top-N is counted and we called this the score of the label. We can then claim that a label is

fully represented in the recommendation list if that label has a score larger than a threshold

value. The smaller the threshold k the more labels are represented. By comparing, for

a given threshold k, the number of labels covered by the top-N recommendations by the

two alternative RS, it is possible to indirectly conclude which one has more variety in its

recommendations, and hence be more serendipitous.

Figure 7.24: Product category diversity (number of distinct product categories recommended in the top-N
list) for the model with stereotypes

Figure 7.25: Comparison product category diversity for the model with stereotypes and the SVD with
metadata

In Figure 7.24 we show the number of product categories represented in the top-N recom-

mendation list (y-axis) as a function of the growing value of the threshold k (x-axis) for the

stereotype-based models. In Figure 7.24 we show the results obtained for the stereotype
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model for the new user case for 3 different N values, namely Top 10, 20 and 30. To note

that the feature product category has 72 distinct labels in total, so in this case, only less

than half of those categories are represented asymptotically when the top-N increases. The

parameter k ranges between 0 (i.e. no limit, all the product categories associated with the

recommended items are counted as being represented even if their score is really small)

and 5 (i.e. only product categories that have a weighted score above 5 are counted). As

the list of recommendation increases in size, moving from top 10 to 20 and 30, the variety

increases, as expected from a serendipitous RS.

As done for the ML/IMDb data, we also compare the variety (proxy for serendipity) metric

between the stereotype-based system and the SVD with metadata model. Figure 7.25

shows the comparison in the product categories diversity for the top 10 recommendation

lists produced by the model with stereotypes and the SVD with metadata. Across the full

spectrum of thresholds the category diversity of the stereotype-based RS is larger or equal

to the category diversity of the SVD-based RS with metadata. This observation allows

us to conclude that a stereotype-based RS is more serendipitous than (or at least equally

serendipitous as) SVD-based RS.

This section benchmarked the use of stereotypes against the recent advancement in recom-

mender systems when predicting cold start phase. Hence, it verified the research questions:

– How do stereotype-based item models compare to other state-of-the-art recommender

systems models in terms of predictive performance during the cold-start phases?

– Apart from recommendation accuracy, what are the other benefits of item-based ste-

reotypes?

7.5 Summary

In this chapter, we have constructed stereotypes automatically on the Amazon dataset and

shown a broad range of evaluations of the benefits of introducing stereotypes over the ori-

ginal metadata during the cold start phase. Our empirical experience proves the underlying

ideas on how to generate rating and preference-independent item-based stereotypes auto-

matically. We followed a statistically driven approach to the evaluation of the stereotypes.

The results confirmed a remarkable stability and consistency, thus paving the road to using

stereotypes in the context of recommendation.

We have benchmarked our methodology against the state-of-the-art techniques. SVD

representation provides an ideal framework for dimensionality reduction and, for com-

pleteness we presented an investigation and comparison between such techniques and the

stereotype-driven approach. An in-depth analysis was carried out of the recommendation

quality of the two approaches (stereoptypes and factorisation methods); such analysis is
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not limited to recommendation accuracy, but also other aspects and desirable properties of

recommendations, such as user utility and novelty. We have shown how stereotypes-based

recommendation improves the rating prediction accuracy metrics (MAE and RMSE) as

well as rank metrics compared to SVD with metadata. We also highlighted the extra bene-

fits of the proposed approach in improving computational efficiency and CPU run time.

The conclusions drawn after the ML/IMDb investigations have all been validated by the

experiments of the second dataset Amazon. Thus, we further validated answers to the

research questions:

– Can item-based stereotypes, not based on rating, be constructed automatically?

– Can automatically constructed item-based stereotypes improve recommendations dur-

ing the cold-start phases?

– How do stereotype-based item models compare to other state-of-the-art recommender

systems models in terms of predictive performance during the cold-start phases?

– Apart from recommendation accuracy, what are the other benefits of item-based ste-

reotypes?

The results on the second dataset Amazon provide validation that the methodology to auto-

matically construct stereotypes we proposed can be generalised to other datasets, retaining

a similar performance improvement.



CHAPTER 8

Conclusion and Future Work

8.1 Conclusion

When a set of users and a set of items are well known in terms of their metadata and other

implied or expressed preferences, that may span from the past ratings to item selections

and browsing histories, the recommender system community has developed very accurate

techniques that can provide well targeted recommendations. A problem that have not been

as widely studied is that of cold start, which is defined as the problem of providing mean-

ingful recommendations when a new user or a new item joins the platform. The cold start

remains an important area of improvement for modern RS, especially given the fact that

a new user or a new item content provider are likely to form a view of the usefulness of

the RS during the first use sessions, making the first impact of the system potentially even

more important than the recommendation accuracy tailored to well-known users and items.

In the literature there is not a unique agreement on the definition, but cold start has been

further split into extreme cold start and non-extreme cold start. The first is defined as the

situation in which the new user has consumed fewer than a handful of items (or a new

item has been consumed by fewer than a handful of users). As a new user and a new item

become known via more and more rating or consumption actions the RS gradually shifts

away from cold start and is able to apply a more personalised recommendation behaviour.

Several works discussed in the literature reviewed in Chapter 2 have demonstrated that

during cold start and especially during extreme cold start, before any meaningful person-

193
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alisation can be applied by the RS, it is extremely difficult for the most sophisticated RS

techniques (for example those using deep learning algorithms) to outperform naive and

baseline methodologies.

It is now widely acknowledged that user and item metadata can play a key role during

cold start, when nothing else is known about a new user or a new item, other than the

metadata accompanying it. The RS should use such metadata to provide a generalised level

of recommendation personalisation. Most of the recent research has focused on adapting

existing recommendation algorithms or defining new recommendation algorithms to cope

with cold start by resorting to user and item metadata [69, 88]. The main research efforts

still seem to be tailored mostly to improving the underlying recommendation technique,

embedding the metadata of users and items in the recommendation process, and fitting

patterns of recommendation based on the metadata from past ratings.

This thesis have researched and quantified the possibility of improving modern RS per-

formance during cold start using a different point of view, that of rating agnostic stereo-

types. The underlying hypothesis driving this research stems from the simple observation

that, when nothing else is known other than user and item metadata, it should be possible

to discover (using known users and items as a training set) whether there exists some ste-

reotypical relationships between particular sets of users and items that may explain some

general preference patterns. If that was the case it would lead to the ability of providing a

first level of personalisation when only metadata is available for the new user and the new

item. While this may seem not too dissimilar from what other researched recommendation

approaches have done there is a key underlying difference. In the literature the training

set of ratings are used to drive user and item metadata clustering, namely the associations

of metadata that will be used to provide cold start recommendations are discovered dir-

ectly via the ratings. In our proposed approach we take a step back and we suggest that

we should first discover associations between users and items driven by metadata simil-

arities/dissimilarities independently of past ratings. These associations are what we have

defined as stereotypes in the course of this work. Only once the stereotypes have been

formed one should then train a cold start dedicated RS to find relationships between ste-

reotypes and preferences. In fact, the cold start dedicated RS is trained on the stereotyped

users and items rather than on the raw data of users and items. While this may superficially

appear to be only a small variation, this thesis discusses how such an approach seems to

have been neglected in the literature and we have demonstrated that it does have a statist-

ically significative positive effect on the resulting cold start recommendation performance

as well as system efficiency.

The aim of this thesis, as stated in Chapter 1 was to fulfil the following:

How stereotypes can be built automatically, and most importantly in a way that is inde-
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pendent of user preferences and to demonstrate how stereotypes can effectively improve

recommendations during the cold start phase.

The research contributions will be outlined below, to show how the the research questions

presented in Chapter 1 are addressed.

1. Can item-based stereotypes, not based on rating, be constructed automatically?

2. Can automatically constructed item-based stereotypes improve recommendations dur-

ing the cold-start phases?

3. How do stereotype-based item models compare to other state-of-the-art recommender

systems models in terms of predictive performance during the cold-start phases?

4. Apart from recommendation accuracy, what are the other benefits of item-based ste-

reotypes?

Unlike previous work where stereotypes were built using expert knowledge or based on

user-to-item rating matrix, a methodology has been proposed to demonstrate the benefit

of building stereotypes automatically and independently of the user-to-item rating matrix.

Thus answering our first research question in Chapter 4. Our method consists of creating

clusters among items and users that provide the ability to fit general patterns that may

not be discoverable through the use of ratings. Chapter 5 discussed a statistically-driven

approach to the evaluation of the stereotypes and can be viewed as an element of novelty

arising from the present research.

The application of the stereotypes allow for better recommendation for new user and new

item and it is given in Chapters 6 and 7. While the same chapters provided an assessment

of the proposed systems against recommendations driven by standard factorisation meth-

ods as well as factorisation methods with the embedded item and user metadata. Thus

answering second and third research questions.

Traditionally, RS research has focused on forecasting the rating that users would give to

each item. Rating prediction continues to be an important performance evaluation aspect

of RS and has been adopted by recent research [124, 127]. Nevertheless, researchers have

acknowledged that accuracy of rating predictions alone is not sufficient for identifying a

quality RS, especially from a user-satisfaction and user-retention perspective. The ongoing

trend is to evaluate ranked lists of items, presenting users with ranked lists of items and

evaluating which RS-derived lists possess qualities such as being relevant and novel to the

user. Our presentation of results includes a wide range of metrics, from precise ratings pre-

dictions and metrics describing the quality of ranked lists to metrics attempting to capture

the serendipity of recommendations. The final research question is answered in Chapters 6

and 7 where in-depth analysis of the recommendation quality is presented.
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8.2 Contribution to knowledge

The output of the academic research has a direct impact on the advancements in industry.

Recommending technologies are gaining growing industry interest. Amazon has been us-

ing collaborative filtering for a decade to suggest products to their customers, and Netflix

appreciated improvements to the recommender technology behind their movie service.

Rapid growth of e-commerce business in recent years has generated an urgent need for

recommendation techniques. Recommendation algorithms occupy an important role to

recommend products for new user, or recommend newly added product to the catalogue.

Stereotyping in RS is known for its efficiency in solving cold start problem. However,

to the best of our knowledge, efforts in created them are limited to manual and/or user-

based approach. This thesis is proposing an automated approach for creating item-based

stereotypes for solving user and item cold start problems. The main contribution of the

present work is highlighted below.

Constructing stereotypes automatically and independently from user-to-item rating

The first aspect of novelty of our research in terms of importance, is the proposed algorithm

for the automated creation of stereotypes. Previous attempts at using clustering or other un-

supervised learning algorithms for creating stereotypes were all based on the user-to-item

rating matrix, or were done manually via expert knowledge of the problem at hand. We

have discussed and demonstrated how certain relationships arising between features might

have not been readily discoverable with expert knowledge of the problem. To accomplish

the automatic creation of stereotypes we have discussed a structured approach that sep-

arates the features of the metadata in three large groups, namely numerical, categorical

and complex categorical. During Chapters 3 and 4 we have discussed why certain al-

gorithms have been preferred to others (for example the use of hierarchical clustering over

k-mode type of algorithms), and how the algorithm chosen have led to the formulation of

stereotypes.

Stereotypes significantly reduces the dimension of the recommendation model

One of the novelty aspects of this thesis, rests on the result that stereotypes, when gener-

ated using logical relationships between items built in a way that is independent of past

user-to-item preferences, provide a reduced coordinate system that can aid the machine

learning model underlying the RS to discover patterns that would have not otherwise been

discovered if the raw users and items representations were employed. We have demon-

strated how the resulting cold start recommendation quality when employing stereotypes

is improved compared to both naive, baseline models and alternative models that make
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use of the primitive metadata features. In particular we have demonstrated how the im-

provement in recommendation quality reach beyond the simple improved accuracy, and it

instead embraces several aspects that are deemed to determine positive recommendation

characteristics.

In the body of the thesis we have discussed the effects of using stereotypes versus standard

metadata when predicting cold start item consumption, when predicting cold start ratings,

and also on predicting the quality of ranked lists produced for cold start new user and new

item experiments. In all these cases stereotypes add a statistically significant improvement,

therefore suggesting that stereotype lead to better cold start recommendation performance,

with ‘better’ referring to a wide range of metrics assessing the quality of recommendations.

Stereotypes improvements in cold start recommendations is independent of the re-
commendation technique used

The third finding, and probably one of the most important finding and contribution of this

work, was encountered and discussed during the cold start recommendation experiments.

We routinely observed that the improvement in recommendation quality deriving from us-

ing stereotypes was, at a first order of approximation, independent of the machine learning

algorithm employed to fit the effect of the ratings over the stereotyped user and item co-

ordinates. This observation, albeit with some noise, was drawn in a similar manner for

both of the datasets investigated and it leads us to suggest that the performance gains via

the stereotypes in cold start recommendations are independent of the machine learning

technique used to fit the user-to-item rating matrix. We deem this finding as one of the

most important findings of this work as it provides RS researchers with an extra dimension

for improvement. As discussed earlier in this thesis and in the present conclusions, most

efforts in the literature seem to have been dedicated to improve the machine learning al-

gorithm that connects users with ratings and make use of metadata. Such attempts could

be revisited with further aid from the stereotype-based coordinates.

Applicability of the approach on different features

Over the course of the thesis we demonstrated the flexibility of the approach by producing

stereotypes and stereotypes driven recommendations on two datasets that are extremely

different in their nature, that of movies (MovieLens coupled with IMDb extra metadata)

and that of retail purchases (Amazon). Both datasets have different features types like

numerical, categorical and complex categorical. Our suggested approach can be easily and

readily generalised to other datasets.

In a speculative way, one may also hypothesize that such stereotypical recommendation

framework could be created also for features that are not readily represented as one of our

three features group, but that could be transformed to such a state with the aid of an extra
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dedicated algorithm. For example, if a feature included images (for example a database

of vacation hotspots or of houses for sale) we could imagine using an image recognition

software that extracts ‘keywords’ from an image. Such keywords would be naturally used

for stereotyping the feature via a complex categorical feature approach. In the example of

houses for sale keywords collected via the image recognition software could be ‘wooden

floor’, ‘carpet’, ‘swimming pool’, ‘modern’, ‘wallpaper’, ‘fire place’ and ‘garden’. Such

keywords could also be parsed from the human readable text description of items. This

observation suggests that the scope and potential uses of the proposed algorithms is broader

than that investigated in this thesis.

A formal test framework to evaluate stereotypes before using them in a RS

The following aspect of novelty introduced by this thesis rests on our formulation of a

series of statistical tests that are aimed at evaluating whether or not the stereotypes dis-

covered are stable (when regenerated over new unseen data) and whether they are capable

of representing known preferences from an existing population of user-to-item ratings. In

the literature, when clustering of the rating matrix is performed and projected onto the

metadata as a way to improve cold start recommendations, no much is said about stability

of the clusters discovered. Somewhat this approach is justified by the use of unsupervised

learning algorithms for which we have no way to really know if the associations learnt are

‘correct’ or ‘wrong’ apart from the fact of whether they are helpful in producing good or

poor recommendations. In our context we argue that stereotypes must represent general

traits of users or items, and hence, if we assume that the dataset is homogeneous, we should

be able to discover extremely similar stereotypes if the procedure was carried out on a sep-

arate partition of the data. If that was not the case, we argue that any relationship across

stereotypes learnt on the data would not really represent a real underlying phenomenon in

the dataset. For our tests dataset we have demonstrated how stereotypes were indeed ex-

tremely stable. A situation where stereotypes would not be stable can be imagined as one

in which user tastes change over time. For example, if a long time history of reviews of

music were used one would be able to see that relationships discovered across stereotypes

representing general taste might change over time; like users in their teens would have pre-

ferred pop music in the 90s and perhaps ‘rap’ in the 2000s. Albeit we have discussed the

homogeneity of the datasets under investigation, we have not observed this characteristic

with our experimental datasets, we argue that we would still be able to cope with such a

situation. The system could be readapted for such case by using a time windowed approach

to data; stereotypes would be generated for each rolling time window (for example for the

last decade) and then patterns fit on such window.

The second part of the proposed stereotype testing phase tries to quantify whether each

stereotype is able to represent user preferences, this was done by examining how each
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user’s preferences, both excessive positive and negative preferences when compared to

that expected in the population, are actually captured by one or more stereotypes. We

demonstrated that stereotypes do indeed capture the in-sample user preferences, with all

stereotypes contributing to the preference representation. Some users may be more sens-

itive on average to the stereotypes of a feature (for example driven by movie genre, the

western and war movies are positively preferred by men in their 50s) and other users to the

stereotypes of a different feature (teenagers have preference for high budget movies).

A metric to evaluate serendipity for complex categorical features

Given the nature of stereotypes construction, we have introduced a proxy for measuring

how variegate and diverse a ranked list of items is; we have argued that such a metric can be

used directly as a representation of recommendation novelty and serendipity of the ranked

list presented to a new user. We have also confirmed that according to such serendip-

ity/novelty proxy metric the stereotype-driven recommendations prove to be of a higher

quality than the recommendations produced using the original metadata features. The for-

mulation of the proxy metric constitutes also a minor aspect of novelty, and it was dictated

by the lack of an agreed and quantifiable measure that represents novelty/serendipity in the

literature, which appears to have several authors introducing ad-hoc qualitative definitions

depending on the field of application.

8.3 Limitations and Future Work
As the number of ratings expressed by a new user, or given to a new item grows the

stereotype-based system in this current formulation is not designed to embed them. In

fact, in the formulation obtained the stereotypes are static and any RS driven by them

can be viewed as a specialised machinery to address the cold starts. It is however easy

to envisage possible ways to remedy this. The simplest way would be to mediate and mix

stereotype-driven recommendation with the personalised recommendations that a collabor-

ative filtering driven RS would give as ratings by the new user or for the new item become

available. More sophisticated ways could also be obtained, by introducing an intelligent

way that re-evaluate the stereotype classes of the new user and new item based on the

new acquired ratings recommendation. These points could be viewed as future areas of

research.

We have identified also other areas of future research stemming from the present work;

for instance, one more problem known to affect RS is that of overspecialisation in the

recommendations once a user or item becomes well known. In the thesis we have observed

that the ranked recommendation lists provided by stereotypes have a higher variety in terms

of the type of metadata features that they embrace. This finding was discussed when we

established that such higher variety is an indication of higher serendipity/novelty compared
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to a non stereotype-based system. Such property of the recommendations could be used to

reintroduce novelty and variety when overspecialisation is detected.

Other minor tasks identified in the course of the research as future work would be to exper-

iment the use of stereotypes in more sophisticated RS algorithm, and experiment with the

embedding of implicit feedback when the user-to-item ratings are introduced and used to

train the stereotype-driven RS. Ultimately more research should be dedicated to user-driven

stereotypes. Both datasets used in this research were extremely rich in item metadata but

less so with the regard to the user metadata. A research conducted in publicly available

datasets dedicated to the RS tasks revealed that most datasets are poor or totally lacking

in user metadata. This may be the result of publishing data trying to avoid any possible

privacy concern, thereby applying data anonymisation. Privately available datasets would

be the ideal candidate for the next steps of this research. Finally, as indicated in Chapter 2,

RS can be evaluated using either online methods or offline methods. The recommender

system evaluation conducted in the current research are based on offline methods. It will

be interesting to test serendipity and novelty of the proposed approach through online user

tests.

Overall, the work presented highlights a novel dimension for improvement in cold start

problems that is applicable to other RS techniques.

Availability of code and data. In case of future enquiries, the code and datasets (ML and

Amazon) are uploaded into a cloud folder: MovieLens and Amazon.

https://documentcloud.adobe.com/link/track?uri=urn:aaid:scds:US:7c02f923-b3ff-40aa-8e55-f9249ce720bf
https://documentcloud.adobe.com/link/track?uri=urn:aaid:scds:US:2c43951f-8a5e-4a2a-ad25-c39b9a1f6f21
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