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Abstract 

 

 

Surface albedo plays a significant role in the Earth’s climate system, dictating the amount of 

incoming solar radiation that is reflected by the surface. Historic land use change has been 

estimated to change this by 0.2 W m-2. Deforestation in the tropics now exceeds that at other 

latitudes and surface albedo changes associated with forest loss provide the second largest 

radiative impact, after CO2. 

This study evaluates the surface albedo changes associated with tropical deforestation 

across the Amazon and South East Asia using a range of observation methods. Satellite 

observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) is 

combined with data from aircraft campaigns and in-situ observations to investigate the 

albedo of forest and non-forested regions. 

A consistent overestimation of surface albedo changes associated with tropical deforestation 

is observed as a result of comparing such observations with modelling simulations within the 

literature, which is reflected both across the Amazon and South East Asia regions. 

Differences between the behaviour of surface albedo within oil palm concessions is 

highlighted, as is a dependency of surface albedo on the time since forest loss occurred 

across South East Asia. 

The influence the various surface albedo observations has on the global climate is assessed 

by radiative forcing calculations using the Suite of Community Radiative Codes based on 

Edwards and Slingo (SOCRATES), where the impacts of the overestimation of albedo changes 

in models is shown.
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Chapter 1: Introduction 

 Thesis Outline 

The use of surface albedo as an influential climatic variable is well accepted and is used 

widely in climatic modelling. This thesis aims to improve the understanding of how surface 

albedo varies with forest coverage in the tropics and how land use change may lead to 

changes in the climate as a result. 

This introductory chapter begins with an update on the global coverage of forests to date. It 

then lays out the important drivers of climate change, continuously touching on the role 

forests play. It explores a range of direct contributions, while discussing some of the smaller 

effects for completeness. Land-use change is then emphasised as a driving factor to alter the 

climate, with the individual processes stemming from deforestation being split into two 

broad areas: biogeochemical and biophysical. The overall impact from these is then 

discussed, before surface albedo (the focus of this work) is highlighted as a key, but largely 

unexplored, climate driver across the tropics. 

Chapter 2 describes the datasets for forest coverage and surface albedo observations used 

through the results chapters, including an overview of the data processing used within those 

chapters. 

In Chapter 3 the current usage of surface albedo in modelling studies is assessed and the 

values obtained through previous observational studies are also identified. The surface 

albedo over the Amazon is then explored using a range of observation types to identify the 

surface albedo of forested and non-forested land cover. Whether spatial analysis of forested 

and non-forested areas is able to be used to substitute for temporal changes in forest area 

(i.e. forest loss) is also explored. Finally, whether different observational techniques result in 

different albedo values and how closely observations match the current model usage is 

discussed. 

Chapter 4 explores the surface albedo over South East Asian landmasses across forested and 

non-forested regions. The influence of oil palm concessions and whether surface albedo 

differs within them is then examined. The dependency of surface albedo of previously 

deforested areas on the year of forest loss is also explored. 

In chapter 5, the radiative impact of albedo changes as a result of forest loss across the 

regions is quantified and compared to other radiative impacts. The magnitude of the 
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radiative effect due to surface albedo is estimated and the influence different observation 

techniques and different deforestation pathways has on the net climatic impact of 

deforestation is discussed. 

 The changing dynamics of forests 

Forests account for approximately 30 % of the world’s total land area (Food and Agriculture 

Organsiation of the United Nations, 2015), providing range of essential ecosystem services 

(Brandon, 2015; Foley et al., 2005; Myers, 1997). The majority (1.7 Gha / 39 %), is found in 

the tropics, with the boreal (31 %), temperate (15 %) and subtropical (7 %) making up the 

total of 4 Gha (Food and Agriculture Organsiation of the United Nations, 2015). 

Historically, the amount of forests has varied based on climatic factors, with Europe’s 

forested area peaking during the mid-Holocene (Zanon et al., 2018), however humans have 

undertaken significant forest clearance since the establishment of farming practices. Much 

of the early land use change was centred on Europe, followed by the North American 

temperate regions, since 1,000 AD (Williams, 2000). 

Increasing populations required expansion of agricultural land into forested areas, combined 

with use of forests for raw materials, a strong increase in deforested area followed 

population growth through the 19th and 20th century (Figure 1.1). 

 

Figure 1.1: Cumulative deforestation and population growth since 1800. Source: (Food and 
Agriculture Organization, 2016). 
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Much of this forest loss has been coupled with an increase in cropland and pasture, with 

estimates from Goldewijk, (2001) and Goldewijk et al., (2007), highlighting increases in 

cropland from 265 to 1,471 Mha and pasture from 524 to 3,451 Mha between 1700 and 1990. 

The last century has seen a shift from forest loss in the temperate regions to the tropics, 

which now accounts for the largest loss of forest area of the climatic regions. Between 1990 

to 1997, 34 Mha of tropical forest were reportedly lost, with greatest area occurring in South 

America, whilst South East Asia displayed the greatest percentage loss (Achard et al., 2002). 

South East Asia reflected past forest loss in being driven by a push for greater agricultural 

land (H. K. Gibbs et al., 2010; Holly K. Gibbs et al., 2008; Meijide et al., 2018; Miettinen et al., 

2011), and although these drivers are seen in South America, a push for land conversion to 

cattle ranches is a major factor (Fearnside, 2005; Rudel et al., 2009; Sakai et al., 2004).  

As tropical deforestation has been increasingly targeted by policy (e.g. Federative Republic 

of Brazil, 2015), the rate of deforestation in the tropics slowed in the first decade of the 21st 

century, driven by a reduction in Amazonian deforestation (Food and Agriculture 

Organization of the United Nations, 2015; M. C. Hansen et al., 2013; Moutinho et al., 2016; 

Reddington et al., 2015). However, large areas of forest continued to be cleared and rates 

increased in Indonesia, surpassing Brazil as undergoing the greatest forest loss (M. C. Hansen 

et al., 2013; Margono et al., 2014; Miettinen et al., 2011; Richards & Friess, 2016). 

However, measures in place, such as a moratorium on new concessions for oil palm, timber 

and logging in Indonesia, which accounts for approximately 60 % of South East Asia’s forest 

loss, has led to a reduction in deforestation in recent years (Busch et al., 2018; Estoque et al., 

2019). Conversely, Figure 1.2Error! Reference source not found. shows deforestation in the 

Amazon has begun to increase again over the last decade since 2012’s low (Stabile et al., 

2020). A result of economic drivers coupled with policy choices from the new government, 

it is not clear whether these rates will continue to rise in the near future (Ferrante & 

Fearnside, 2019; Freitas et al., 2018). 
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Figure 1.2: Deforestation rate in the Amazon since 2012. Value for 2020 is estimated from 
45% of the monitored area and is not yet final (Silva Junior et al., 2020). Data from PRODES. 

 Well-mixed Greenhouse Gases  

Anthropogenic activities have a strong impact on the climate, with global changes that 

influence all parts of the climate system. Direct emissions of CO2 from burning fossil fuels, 

cement production and flaring, forestry and land use changes have all increased heavily since 

preindustrial times (Forster et al., 2007; Pachauri et al., 2014). Such activities have driven an 

increase in global temperature of approximately 1 K since preindustrial (Allen et al., 2018). 

Carbon dioxide acts as a greenhouse gas (GHG), effectively trapping radiation reflected from 

the Earth’s surface in the atmosphere. The behaviour of GHGs, such as CO2, are important in 

the energy balance of the Earth system. Shortwave (SW) radiation from the Sun reaching the 

atmosphere and the Earth’s surface is both absorbed and reflected at different quantities, 

dependant on the properties of the surfaces that it interacts with.  

Seventy percent of the incoming solar radiation is absorbed by the atmosphere and the 

surface (Figure 1.4). As the Earth’s surface is colder than the Sun, its behaviour as a black 

body means that it emits radiation at a longer wavelength compared to that which it absorbs. 

This emitted radiation does not directly leave the Earth system, instead it gets reabsorbed 

by the atmosphere. This in turn requires the system to adjust and raise its temperature to 

keep the system balanced. 
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Perturbations to this energy balance, such as the result of CO2 emissions, can be calculated 

as a radiative forcing (RF); how much energy is required to restore equilibrium over a time 

period. A RF is defined as the change in net (down minus up) irradiance (solar plus long-wave; 

in Wm−2) at the tropopause after allowing for stratospheric temperatures to readjust to 

radiative equilibrium (Figure 1.3), but with surface and tropospheric temperatures and state 

held fixed at the unperturbed values (Ramaswamy et al., 2001). 

 

Figure 1.3: Energy balance (top) and atmospheric temperature profile (below) prior to a 
radiative energy perturbation (left), immediately after (centre) and once stratospheric 
temperatures have been allowed to equilibrate (right). The perturbation results in an 
instantaneous radiative forcing (ΔF1) and an adjusted radiative forcing (ΔF2). 
 

Through the global mean climate sensitivity parameter (λ), there exists a relationship 

between the global mean radiative forcing and the global mean equilibrium temperature 

response (ΔTS): 

     𝜆 𝑅𝐹 =  ∆𝑇𝑆    Equation 1.1 

The coupling of the troposphere and the surface through convective heat transfer, and the 

fast equilibration of the stratosphere (months as opposed to decades in the surface-

tropospheric system) mean the tropopause can be taken as the top of atmosphere for the 

RF definition, and Equation 1.1 holds.  

Due to the relative inertness of atmospheric CO2, it possesses a long atmospheric lifetime 

despite dynamic exchange between the atmosphere, ocean and terrestrial sources/sinks. As 

a result, increases of CO2 lead to long-term changes in the global temperature. Due to the 

long atmospheric lifetime, complete mixing across the atmosphere can be assumed and so 

changes in CO2 concentrations lead to a radiative forcing that is consistent across the Earth 

system. Driven by anthropogenic emissions, the annual mean concentration of CO2, as 

measured at the long-running observatory at Mauna Loa, surpassed 400 ppm for the first 

time in 2015 and continued to rise to 411 ppm in 2019, 45 % above the 1850 pre-industrial 
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concentration (280 ppm). However, where forcing agents are localised to a specific area or 

are relatively short-lived in the atmosphere, these exert a forcing that is spatially 

inhomogeneous, and so the climatic impact of these will also vary spatially. 

 

Figure 1.4: Global annual mean Earth's energy budget (W m-2) between March 2000 – May 
2004. Source: Trenberth et al., (2009). 
 

Other well mixed GHGs, such as methane (CH4), nitrous oxide (N2O) and other hydrocarbons 

are described as such due to their relatively long atmospheric lifetime, allowing an 

assumption of horizontal homogeneity across the atmosphere. These behave similarly to CO2, 

absorbing radiation and warming the atmosphere, but many of these other GHGs have a 

global warming potential (GWP) many times that of CO2. GWPs provide a simplified estimate 

of the climatic impact of emissions of different gases relative to CO2. It is defined in Equation 

1.2 as the ratio of the radiative forcing resulting from the instantaneous release of 1 kg of a 

trace substance relative to 1 kg of CO2, integrated over time: 

𝐺𝑊𝑃(𝑥) =
∫ 𝑎𝑥×[𝑥(𝑡)] 𝑑𝑡

𝑇𝐻

0

∫ 𝑎𝐶𝑂2×[𝐶𝑂2(𝑡)] 𝑑𝑡
𝑇𝐻

0

   Equation 1.2 

Where TH is the time horizon over which the GWP is calculated, ax is the radiative efficiency 

due to a unit increase in atmospheric abundance of the respective gas, [x(t)] is the time-

dependent decay in abundance of the instantaneous release of the respective gas, and 

where x is replaced with CO2, the quantities describe the same whilst using the values for 

CO2, as the reference gas. In general, concentrations of these have also been increasing as a 

result of anthropogenic activity, resulting in a warming effect (Figure 1.5). 
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Figure 1.5: Radiative forcing for the period 1750-2011. Source: Myhre et al., (2013) 
 

As forests cover a large proportion of the earth’s surface, they play an important role in the 

climate system. Through photosynthesis, forests take in atmospheric carbon in the form of 

carbon dioxide (CO2) and convert it to biomass. Tropical and boreal forests are able to store 

similar amounts of carbon (~2.4 Gt C ha-1), whilst temperate forests are reported to store 

approximately 1.5 Gt C ha-1 (Pan et al., 2011).  

Alongside behaving as carbon pools, storing ~45 % of terrestrial carbon, globally forests are 

important in regulating the global climate by acting as carbon sinks; absorbing approximately 

30 % of carbon emissions from fossil fuels and land use change (Bonan, 2008b). However, it 

is through land use change that forests can become a source of CO2 – removal and burning 

of forests release the stored carbon back into the atmosphere, as well as reducing the size 

of the carbon sink. 

 Short-lived climate pollutants 

Short-lived climate pollutants (SLCPs) are components of the atmosphere which primarily 

impact the climate system within the first decade after they’re emitted (Stocker et al., 2013). 

They have a shorter lifetime than well-mixed GHGs and therefore do not accumulate as an 
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atmospheric species on timescales beyond decadal or centennial, therefore their climate 

response is felt mainly in the near term. 

SLCPs: Aerosols 

Atmospheric particles interact with the climate in a variety of ways, comprising broadly of 

the direct effect, two indirect effects and the semi-indirect effect. Aerosols reflect, absorb 

and scatter solar radiation directly depending on their physical and chemical properties. 

Although certain particles, such as black carbon (BC), may be exceptionally strong absorbers 

of radiation (R. Wang et al., 2016), the global direct radiative forcing has resulted in a cooling 

overall (Figure 1.5). 

The non-direct effects of aerosols relate to aerosol-cloud interactions. In order to condense, 

atmospheric water vapour requires a surface provided by cloud condensation nuclei (CCN) 

upon which to condense and form cloud droplets. Once formed, these droplets are able to 

grow by further condensation of water vapour and collision-coalescence. Fewer particles in 

the atmosphere result in less opportunity for condensation to take place, resulting in larger 

cloud droplet particles. Conversely, more CCN results in more but smaller cloud droplets, 

which result in a more reflective cloud overall: the cloud albedo effect (Kreidenweis et al., 

2018; Twomey, 1977). The reduced cloud droplet size increases the time taken to coalesce 

into raindrops, reducing precipitation. This leads to longer lifetimes of the affected clouds, 

increasing the overall cloud coverage and thus the reflectivity of the atmosphere – resulting 

in a further cooling mechanism: the lifetime effect (Albrecht, 1989). A semi-direct effect also 

occurs as a result of specifically high-absorption particles (such as BC). As these particles 

absorb radiation, they increase the temperature and in turn reduce the amount of cloud 

cover. Although this effect was first proposed to result in a positive RF (e.g. J. Hansen et al., 

1997; Lohmann & Feichter, 2001), recent work has highlighted potential negative rapid 

adjustments in temperature as a result of greater longwave (LW) radiation emitted to space, 

creating greater uncertainty in the role of BC (Bellouin et al., 2019; Johnson et al., 2019; 

Stjern et al., 2017; Yang et al., 2019). 

Forests are an important source of natural biogenic volatile organic compounds (BVOCs), 

with approximately 70 % sourced from tropical forests (Karl et al., 2007). BVOCs are small, 

carbon-based molecules which are emitted by vegetation as a by-product of biological 

processes. Broadly speaking, monoterpenes and isoprene dominate the reaction profiles of 

these species due to their abundances, although different BVOCs are released by certain 

flora at different rates and their reaction profiles depend on the local atmospheric 
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composition (Guenther et al., 1995). The emitted species react quickly with oxidising agents 

in the atmosphere (Figure 1.6), the products of which can then go on to react further with 

other oxidising agents or oligomerise with each other, increasing the size and complexity of 

the compound (Camredon et al., 2007). These then undergo gas-particle phase transfer via 

nucleation, condensation and multiphase reactions, forming secondary organic aerosol (SOA) 

(Hallquist et al., 2009). 

This SOA formation plays a key role in the radiative balance of the Earth system, through 

both the direct radiative effects and the aerosol-cloud interactions described above. 

Although an important cooling mechanism, aerosol formation from sources other than BVOC 

emissions, such as sulfate, may play a more influential role on the climate (O’Donnell et al., 

2011; Rap et al., 2013). 

SLCPs: Ozone and methane 

The climate can also be perturbed through other means by reactions involving BVOCs. Firstly, 

the SLCP tropospheric ozone (O3) can be produced through a complex cycle involving NOx 

and hydroxyl radicals (Figure 1.6). However, the behaviour of the reaction depends on the 

conditions and the concentrations of NOx and volatile organic compounds (VOCs) relative to 

each other. The response of O3 to increased BVOC emissions can therefore vary in both 

location and magnitude (Situ et al., 2013). 

The majority of BVOC emissions in forested regions occur in areas of low pollution (i.e. NOx 

limited regimes). Studies have generally observed an increase in tropospheric O3 due to the 

effects of climate change, attributing a large role in biogenic emission increases due to 

increased temperature (Hogrefe et al., 2004; Knowlton et al., 2004). 

The effect of temperature alone is considered the biggest climatic factor influencing ozone 

concentrations, however there is a large discrepancy between the changes in the above 

studies and when emissions are fixed (Dawson et al., 2007). Using CHIMERE, a regional air 

quality model, Meleux et al., (2007) observe an increase in temperature results in increased 

BVOC emissions and ultimately higher O3 concentrations. Fu et al., (2007) also estimates 

higher O3 concentrations in South and East Asia as a result of higher observed BVOC 

emissions. 

While exposure to O3 has been shown to damage plants, there are also suggestions of a 

positive feedback with increased exposure resulting in enhanced VOC emissions in a number 
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of species (Kivimäenpää et al., 2016; Llusià et al., 2002; Peñuelas et al., 1999; Rinnan et al., 

2005). 

 

Figure 1.6: Simplified reaction scheme of the formation of ozone from VOCs. 
 

Atmospheric BVOC reactions are not limited to the production of O3; O3 is also destroyed as 

it oxidises VOCs and thus NOx concentrations control the fate of O3. However, by being 

oxidised in fast rate reactions, BVOCs effectively reduce the oxidising potential of the 

atmosphere and may impact the ability for isoprene to recycle hydroxyl radicals in low NOx 

regimes (Fuchs et al., 2013; Lelieveld et al., 2008; Peeters et al., 2014; Taraborrelli et al., 

2012). 

Atmospheric methane’s primary sink is through reactions with the hydroxyl radical and 

anthropogenic emissions of VOCs has already been suggested to increase methane lifetime 

in this way, therefore higher BVOC emissions may do likewise (Naik et al., 2013; Stevenson 

et al., 2013). Additionally, increased CO2 may reduce isoprene emissions, thus increasing 

hydroxyl radical concentrations and having the reverse effect on methane (Young et al., 

2009). The effects of deforestation may also counteract the increased BVOC emissions as a 

result of climate change in some locations, so the impact on their concentrations and thus 

the impacts on the lifetimes of methane, the hydroxyl radical and ozone are uncertain (Young 

et al., 2013; G. Zeng et al., 2007). 
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SLCPs: Air quality 

Impacts of atmospheric changes are not limited to the climate; both SOA and tropospheric 

O3 are extremely important in air quality. Not only is this a large economic issue, but it has 

profound implications for health, resulting in respiratory diseases, increased disability-

adjusted life years (DALYs) and even direct premature deaths (Stedman, 2004; Strong et al., 

2013; Turnock et al., 2016). Deforestation particularly has a significant impact on air quality 

in specific regions. Indonesian peat fires have been discussed already for their CO2 emissions, 

but such fires in the dry season often leads to large air quality issues across Indonesia, 

Malaysia and Singapore due to fires in Sumatra and Indonesian Borneo, particularly from the 

palm oil and timber industries (Marlier et al., 2015; Tosca et al., 2011). Peat fires are 

especially significant for air quality due to their two-stage burning; with a second hypoxic 

burning phase featuring a smokier burn, producing higher ratios of incomplete combustion 

products (CO, CH4, and multiple VOCs) (Elvidge et al., 2015; Rein et al., 2009). Such emissions 

can have a large role in both atmospheric chemistry and air quality. The formation of SOA is 

coupled alongside the primary aerosol and BC produced from the combustion process, all of 

which can have large impacts on human health and the climate (Heald & Spracklen, 2015; 

Karl et al., 2007; Reddington et al., 2015). However, similar arguments can be used for 

deforestation fires in regions such as the Amazon basin, boreal forests and across Africa, and 

are also mirrored in natural wildfires (M. C. Hansen et al., 2013; Lawrence & Vandecar, 2015; 

Reddington et al., 2015). 

 Land use change 

As a result of the conversion of forest to agricultural land, there has historically been a large 

warming due to the release of CO2. When forested land is cleared, it often results in decay 

of biomass or burning of forest as a means of removal. This results in the emission of CO2 

and contributes to the positive CO2 RF in Figure 1.5 potentially providing a warming effect of 

0.16 – 0.18 K (Pongratz et al., 2010). However, deforestation also leads to other climatic 

effects, the largest contributing a RF being the surface albedo effect. As forests are generally 

better absorbers than the replacement land surface afterwards (e.g. cropland, pasture), 

deforestation results in more radiation being reflected at the surface and a negative RF of 

approximately -0.4 W m-2 (Figure 1.5Error! Reference source not found., Andrews et al., 

2017). 
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 Biogeochemical mechanisms 

In general, forests influence the climate in two major ways: through mechanisms associated 

with chemical changes, biogeochemical mechanisms, and the direct, physical impacts, 

biogeophysical mechanisms (Figure 1.7).  

 

Figure 1.7: Representation of some of the (A) biogeochemical and (B) biophysical 
mechanisms of forests' climate interactions. 
 

The primary biogeochemical influence of forests is their role in the carbon cycle, storing 

approximately 2.4 GtC annum-1 (Pan et al., 2011). Deforestation removes the capacity of this 

sink process to occur and further releases CO2 as the removed vegetation decomposes or is 

burned, with such carbon losses in the Amazon forests potentially turning the region into a 

net source by 2040 (Hubau et al., 2020). Globally, this resulted in an increase in atmospheric 

CO2 of 0.9 GtC annum-1 between 2002-2011 (Stocker et al., 2013), approximately 10 % of the 

8.7 GtC annum-1 released by fossil fuel combustion, cement production and gas flaring in 

2008 (Le Quéré et al., 2009). 

Between 1750 and 1850, emissions from land use change substantially contributed to the 

rise in atmospheric CO2 concentrations (Reick et al., 2010). The relative contribution to 

anthropogenic CO2 emissions has reduced with time, due to a marked increase in emissions 

from fossil fuel burning. However its contribution is still significant, contributing 180 GtC 

(approximately 50 % of CO2 emissions from fossil fuel burning: 375 GtC) between 1750 and 

2011 (Stocker et al., 2013). 
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Although removal of trees both releases CO2 and reduces the potential for carbon uptake, 

different types of forests vary in their behaviour. Annual carbon emissions from tropical 

deforestation averaged 2.3 GtC between 2001-2013 (Zarin et al., 2016), resulting in greater 

losses in storage than in boreal or temperate forests (Y. Y. Liu et al., 2015). Indonesia’s 

mangrove forests have a high stored carbon content relative to other forests, making them 

one of the most carbon rich in the tropics (Donato et al., 2011; Richards & Friess, 2016; 

Siikamäki et al., 2012). As a result, deforestation of mangroves account for up to 31 % of the 

estimated emissions form Indonesia’s land use sector; accounting for 2-8 % of the emissions 

from global deforestation (Pendleton et al., 2012), despite contributing only 6 % of the 

overall deforestation within the country. Additionally, much of Indonesia’s forest clearance 

occurs on peatland, where the peat is drained and dried out, thus making it extremely 

flammable. When set aflame, they become a considerable contributor to the CO2 emissions 

of the region and the global land use change (LUC) sector (Van Der Werf et al., 2009, 2010). 

 Biophysical mechanisms 

While forest growth leads to a net CO2 uptake, forests also exert important biophysical 

factors, as observed in Figure 1.7. The effects forests have on the climate are dependent on 

location, partly because of the type of forest differs (i.e. the species of tree and the size of 

the forests) but also because of the nature of the location, the ground type, the radiation 

budget and the atmospheric dynamics (A. Wang & Price, 2007). It is in these biophysical 

effects that a large latitudinal dependence is observed. At high latitudes especially, these can 

lead to the biogeochemical cooling effects being masked, thus leading to an overall warming 

effect of forests. 

Surface Albedo 

One of the key parameters is the reflectance, or the albedo of the surface (Davin & de Noblet-

Ducoudre, 2010). Albedo is a dimensionless quantity, as it is defined as the ratio of radiant 

energy scattered by a surface to that received, described as a spectral albedo if restricted to 

a specific wavelength, or narrowband, wideband and broadband albedo if more wavelengths 

are measured over. Albedo is climatically important across as a broadband albedo (across 

the whole SW domain, 0.3 – 4 µm) in particular, as it dictates the amount of insolation that 

is absorbed or reflected. Table 1.1 lists typical surface albedo values for various natural 

surfaces. 
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Table 1.1: Typical albedo values of various natural surfaces. Data from (Coakley, 2002). 

Surface type Typical albedo value 

Mixed farming 0.16 – 0.18 

Grassland 0.20 – 0.21 

Evergreen forest 0.12 – 0.16 

Deciduous forest 0.17 – 0.18 

Tropical broadleaf forest 0.12 – 0.15 

Desert 0.36 

Tundra 0.17 

Snow/sea ice 0.62 – 0.66 

Ocean 0.07 

 

The scattering behaviour of a surface is anisotropic and can be described using the 

bidirectional reflectance distribution function (BRDF). BRDF measures the deviation from a 

pure Lambertian behaviour, where scattering occurs evenly in all directions. On many natural 

surfaces (e.g. vegetation, snow and bare soil), the anisotropic behaviour means that an 

increasing solar zenith angle results in an increased albedo (Bourgeois et al., 2006; 

Henderson‐Sellers & Wilson, 1983; Zheng et al., 2017). The interaction can be split into two 

parts – a diffuse component, where the surface generally behaves with a Lambertian albedo, 

and a direct component, where the albedo is dependent on the solar zenith angle. As such, 

the blue-sky albedo (ρ) is made up of the diffuse bihemispherical reflectance, or white-sky 

albedo (ρd), and the direct directional hemispherical reflectance, or black-sky albedo (ρb), via 

a weighting of the diffuse component (K) of radiation and the solar zenith angle (Z): 

𝜌 =  𝜌𝑑𝐾 +  𝜌𝑏(𝑍) (1 − 𝐾)   Equation 1.3 

Equation 1.3 leads to an increasing surface albedo as the solar zenith angle increases, with 

lower values around noon at the maximum of Z (Gueymard, 2009), but is also dependent on 

the atmospheric conditions which define K, or the balance between the diffuse and direct 

radiation. 
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As forest canopies tend to be darker than surrounding agricultural or open land, an effect 

enhanced during high-latitudinal winters due to snowfall, more incoming radiation is 

absorbed by the surface, resulting in a local warming. (Bala et al., 2007; R. A. Betts, 2000; 

Richard A. Betts, 2001; Bonan, 2008a; He et al., 2015; Jackson et al., 2008; Lee et al., 2011; 

Y. Li et al., 2015). However, albedo varies even within the same land cover class, which 

suggests studies defining albedo simply by land cover could be a gross simplification and may 

lead to discrepancies between models and observations (J. Wickham et al., 2015). It has also 

been shown that the forest canopy can act as a buffer to temperature change, effectively 

trapping warm air in cooler regions, further exacerbating this warming effect (Rotenberg & 

Yakir, 2011). A coupling between surface albedo and the ocean is also shown to result in a 

further cooling, due to increased surface albedo. This results from the higher albedo 

producing both a cooler and drier troposphere, reducing the amount of LW radiation 

transferred to the oceans from the atmosphere, resulting in a decreased ocean temperature 

(Davin & de Noblet-Ducoudre, 2010). 

Evapotranspiration and energy exchange 

Forests also display a greater surface roughness than open land or agriculture, which plays a 

key role in both energy and moisture exchanges with the atmosphere, as there is a greater 

area over which this exchange can take place. The roughness therefore directly influences 

the ratio between latent and sensible heat fluxes, known as the Bowen ratio. For a forest, a 

low Bowen ratio suggests that it exerts a high evaporative cooling effect, resulting from a 

large evapotranspirative flux, enhanced by the larger surface roughness. In the tropics, there 

is a large incoming solar energy budget, which leads to a high rate of evapotranspiration and 

thus a large latent heat flux. This gives rise to a high Bowen ratio and a strong local 

evaporative cooling. This cooling effect dominates the biophysical mechanism and also leads 

to a radiative cooling effect, as the increased moisture content of the air leads to the 

production of clouds, which in turn reflect more radiation away from the surface (Bonan, 

2008a; Jackson et al., 2008). At boreal latitudes, rates of evapotranspiration are 

comparatively low and so have a much lower latent heat flux and thus a lower Bowen ratio. 

Therefore this cooling effect is less influential, allowing the other effects, specifically albedo, 

to play enhanced roles (A. K. Betts et al., 2007). Where boreal and tropical forests sit at the 

extremes, temperate forests tend to lie in the middle; neither the warming nor the cooling 

effects dominate, thus making it difficult to determine the role of such forests in warming or 

cooling the climate (Bonan, 2008a; He et al., 2015). Such effects on warming and cooling the 
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local climate have the ability to influence the global climate through changes in circulation 

and precipitation (Swann et al., 2012). 

Forest recovery and succession 

Changes in boreal forests lead to large effects on the energy budget of the surface where 

such changes are amplified by snowfall. The effects of wildfire is a prime example – initially 

increasing winter albedo (increased snow coverage), while decreasing summer albedo (BC 

deposition) (B. M. Rogers et al., 2013). Lower surface roughness decreases energy transfer 

with the atmosphere, resulting in a greater surface temperature and an increase in outgoing 

LW radiation (H. Liu & Randerson, 2008). As succession progresses, the influence of BC in the 

summer diminishes in the early stages following a fire, as it is degraded and removed and as 

vegetation begins to recover, however the enhanced winter albedo continues (Jin et al., 

2012). Due to the speed of growth, vegetation in the initial decades following the fire event 

are dominated by shrubs and saplings which maintain an increased albedo, reduced surface 

roughness and a strong influence from snowfall compared to mature forests. 

The effects on the climate of these biophysical factors changes based on forest structure and 

composition. North American boreal forests contribute a greater negative forcing than 

Eurasian boreal forests, where such forests are dominated by species more resistant to 

crown fires and thus such fires are of lower intensities (B. M. Rogers et al., 2015). The 

biogeochemical effects of succession after wildfires are yet to be explored in the same 

context; while initial emissions from the fire itself are considered, the long-term changes in 

VOC emissions and aerosol production are less explored (B. M. Rogers et al., 2013). 

Additionally, the effects of succession climatically is less understood in lower-latitudes, 

where succession can be much more rapid, and as a result of anthropogenic LUC, where the 

effect on VOC fluxes, aerosol formation and energy fluxes after conversion to cropland is 

largely unexplored (Bazzaz & Pickett, 1980; Finegan, 1996; Saldarriaga & Luxmoore, 1991). 

 Balancing the impacts 

The impact of forests on the climate relies on a consideration of each of these factors and 

any feedbacks between them. Deforestation perturbs each of these processes individually 

(Table 1.2), altering the balance at both regional and global scales (Figure 1.8). Despite this, 

many studies focusing on land use change only consider one or two of these influences, 

leaving many important changes unaccounted for. 
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The balance between the biophysical warming of forests and the evapotranspirative cooling 

effect at various latitudes is complex and, especially in the mid-latitudes, possess a lot of 

uncertainty. Remote sensing and field observations have attempted to assess the local 

temperature differences between forested and adjacent open areas, taking direct 

measurements from both locations and attributing the differences to the type of land surface 

(He et al., 2015; Lee et al., 2011; Y. Li et al., 2015). Despite this, the results from such studies 

still display considerable variation, from a difference of a few degrees, to less than 1 K across 

all latitudes (Lee et al., 2011; Y. Li et al., 2015; Montenegro et al., 2009; Peng et al., 2014; 

Rotenberg & Yakir, 2011). 

Table 1.2: Description of some of the effects of deforestation and whether they contribute 
to an overall warming or cooling effect. These changes vary in magnitude depending on the 
type of forest and location, so the overall cooling/warming effect can vary accordingly. 

Effect of 

deforestation 

Biophysical or 

Biogeochemical 
Warming/Cooling 

CO2 release Biogeochemical Warming 

Reduced CO2 uptake Biogeochemical Warming 

Increase in surface 

albedo 
Biophysical Cooling 

Reduced 

evapotranspiration 
Biophysical Warming 

Reduced surface 

roughness 
Biophysical Warming 

Reduced biogenic 

VOC emissions 
Biogeochemical 

Slight warming (warming from reduced 

aerosol precursors, cooling from reduced 

ozone and methane formation) (Scott et al., 

2018) 

 

While this spatial difference approach has been used extensively in ecological studies, it can 

have limitations (Blois et al., 2013). It may fail to account for differences in altitude, solar 

exposure or other localised effects which may influence both plant growth and temperature. 

However, model-based simulations of deforestation also display a large variation in the 

regional climate effect of forests, with some studies suggesting a cooling in the temperate 

region (Bala et al., 2007; Claussen et al., 2001; Devaraju et al., 2015), despite observations 

suggesting otherwise (He et al., 2015; Montenegro et al., 2009; J. D. Wickham et al., 2013). 
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Figure 1.8: Difference in biophysical and biogeochemical factors (A) before and (B) after 
deforestation occurs. The size of the arrows indicates the direction of the resultant 
changes. The albedo change is greatest during snowfall at high latitudes. 
 

The magnitude of the warming/cooling effects have also varied between studies, with some 

suggesting tropical deforestation leads to a larger warming effect than boreal cooling (Bala 

et al., 2007; Devaraju et al., 2015), while others suggest caution when drawing such a 

conclusion (Bathiany et al., 2010; Lee et al., 2011; Montenegro et al., 2009). Additionally, 

differences between modelling studies and observations may be due to the lack of realistic 

forest cover change portrayed by model simulations (Arora & Montenegro, 2011). Remote 

sensing, in-situ and modelling studies all suggest a large difference between forests at high 

latitudes and in the tropics, with boreal deforestation resulting in a local cooling due to the 

biophysical contribution (Bala et al., 2007). 

Using direct satellite observations, Alkama & Cescatti, (2016) assessed the change in land 

and air surface temperatures from known locations of forest cover change between 2003 

and 2012. They observed that areas with 100 % forest loss displayed an increase in annual 

mean air surface temperature in all regions, except for high latitudinal Eurasia and local 

regions in high latitudinal North America. They conclude that deforestation in all regions 

contributes to a specific local warming. The lack of cooling from deforestation in boreal 
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regions is justified by the fine-scale variations in forest cover, which are measured, therefore 

large-scale interactions (e.g. ocean-albedo coupling) which may override local temperature 

variations are not captured.  

However, the actual biophysical changes arising from deforestation are yet to be quantified. 

The multiple roles that global forests have on the local and global climate mean that it is 

important for any strategy that changes the ecosystem in a dramatic way, to fully appreciate 

and understand the complexity and then target policy appropriately. However, often the 

direct CO2 benefit has been the only consideration when it comes to mitigation policy 

(Jackson et al., 2008). 

 The importance of surface albedo 

While the difference in the albedo of forested and non-forested surfaces is widely accepted, 

there has been discrepancy in the scale of the changes between observations and models. 

Satellite observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) 

and in-situ observations through flux towers have been shown to be in good agreement, for 

various vegetation types across a range of latitudes, and during snowfall (Román et al., 2009; 

Zhuosen Wang et al., 2014). Availability of data from MODIS has improved the estimates of 

surface albedo (Rechid et al., 2009). 

However, marked differences have been noted between satellite observations and albedos 

prescribed within climate models from lookup tables, with a number of studies suggesting 

that the albedos derived from such models are often higher than the observations and 

overlook key characteristics (Gao et al., 2014; Matsui et al., 2007; Tian et al., 2004; Zhuo 

Wang et al., 2004).  It has been argued that the difference between surface albedo of forest 

and cropland  is simulated as too large, therefore the land use change RF is artificially 

strengthened in these simulations (Kvalevåg et al., 2010; Gunnar Myhre et al., 2005). During 

the summer months, these differences are significant, yet remain relatively small, however 

Oleson et al., (2003) reported that winter values derived from the Community Land Model 

overestimate albedo by up to 20 %. Additionally, Loranty et al., (2014) concluded that 

declines in albedo due to tree cover are poorly represented by coupled climate models and 

tree cover fails to correlate with model albedo. 

The importance of surface albedo, and in turn improving the agreement between 

observations and modelling, has been highlighted by recent quantifications of the relative 

contributions to radiative forcing from deforestation experiments by Scott et al., (2018). Not 
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only does albedo change contribute a large negative RF in the high latitudes, resulting in an 

overall negative RF, the experiments also indicate surface a RF second in magnitude only to 

CO2 release on the global scale, mid-latitudes and in the tropics. Thus, better constraining an 

important radiative climate variable is important at all latitudes. 
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Chapter 2: Methodology and datasets 
 

This chapter introduces some of the core methodology and datasets used through this thesis, 

as relevant to chapters 3 and 4. Further data and tools used will be introduced in each 

respective chapter, alongside any additional information relating to the methods described 

here where relevant. 

 MODIS Data – MCD43A3 

Remote sensing of the Earth’s surface using instruments onboard satellites has cemented 

itself as a key tool in understanding the Earth’s climate system since initial observations of 

cloud reflectance and irradiance from Vanguard 2’s radiometers in 1959. This has allowed 

for atmospheric, terrestrial and oceanic observations to be made at temporal and spatial 

scales that were unachievable before. 

Since then, there have been large improvements in spatial resolution of the instruments’ 

viewing area and greater temporal range, as satellite and sensors have increased their 

durability (and in some cases, outlived their projected lifetime). 

From geostationary satellites, such as the Meteosat or the Geostationary Operational 

Environment Satellite (GOES) series, which provide regular data over specific locations of the 

Earth, to polar-orbiting satellites (including sun-synchronous orbits; designed to pass over 

the surface at the same local mean solar time, thus making temporal changes to the Earth 

system easier to assess) such as the A-train constellation, providing global coverage from 

their sensors, the number of satellites providing observational data has continued to grow. 

Earth observation of surface albedo was acquired from the MODerate resolution Imaging 

Spectroradiometer (MODIS), aboard the NASA Terra EOS AM-1 and the NASA Aqua EOS PM-

1 satellites. Both satellites travel with circular, near-polar, sun-synchronous orbits. Terra 

crosses the equator in an ascending node at 10:30 and Aqua in a descending node at 13:30. 

Terra was launched in 1999 as part of the Earth Observing System (EOS) program as the first 

NASA satellite to study Earth system science, with Aqua following as the earliest of the NASA 

A-Train satellites, launched in 2002. MODIS supplies data across 36 spectral bands, between 

0.4 μm and 1.4 μm, at multiple spatial resolution. In tandem, the instruments provide global 

coverage every 1 to 2 days with a nadir-viewed 2,300 km by 10 km footprint. Surface albedo 

from MODIS has undergone multiple verification and intercomparison studies to ensure 
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good agreement with its observations over a range of surface types (Cescatti et al., 2012; Jin 

et al., 2003; Oliveira & Moraes, 2013; Zhuosen Wang et al., 2014).  

The way a surface scatters incident light is described by the Bidirectional Reflectance 

Distribution Function (BRDF), which the MODIS algorithm calculates by combining 

measurements from both MODIS and the Multi-angle Imaging Spectroradiometer (MISR) 

instruments (Strahler et al., 1996). The spectral albedo of a surface as measured is dependent 

on both the BRDF of that surface and the scattering profile of the atmosphere that the 

radiation travels through between source, surface and instrument. 

The MODIS product, MCD43A3 version 5, provided surface albedo data at 500 m every 8 

days, with each file generated using 16 days of data, centred on the labelled day of the file 

(Schaaf et al., 2002). Each file provides both black-sky and white-sky albedo for each MODIS 

surface reflectance band (band 1 to band 7), and 3 broad spectral bands (visible, near 

infrared, and shortwave). For the MODIS observations presented in this thesis, black-sky, 

shortwave albedo was used. 

Issues with aerosol quantity measurements in MODIS C6 MYD09 and MOD09 surface 

reflectance products have been highlighted as potentially affecting downstream products, 

particularly over arid, bright surfaces for version 6 of MCD43 products. It is not believed this 

issue was existent for version 5, nor should retrievals over the Amazon and South East Asia 

be particularly affected by this issue. 

Previous studies have used both black-sky and white-sky albedo or have combined both with 

information on the atmosphere’s optical thickness to produce blue-sky albedo. Black-sky 

albedo alone was selected to be used in this study for multiple reasons. Firstly, limitations in 

processing power limited the ability to utilise both white- and black-sky albedo to calculate 

blue-sky albedo at the temporal presented scale in this thesis, and as Strahler et al., (1996) 

explains, as the albedo products are dependent only on the surface and not the atmospheric 

state, either black- or white-sky albedo products are able to be used to provide true surface 

albedo. As most ground-based retrievals occur close to solar-noon and under cloud-free 

conditions, a calculated blue-sky retrieval would be dominated by the directional-

hemispheric reflectance, or black-sky albedo, supported by the closer relationship between 

all-sky albedo to direct retrievals rather than diffuse in Giambelluca et al., (1997). 

Additionally, at low latitudes, Zhang et al., (2010) found black-sky albedo retrievals from 

MODIS to show less seasonal variation than white sky, meaning smaller changes are less 

likely to be masked by the seasonal pattern. 
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The MODIS observations were gridded on a 0.05° and 0.01° global grid for analysis. The 

MODIS MCD43 products contain up to 37 % data gaps as a result of cloud coverage, seasonal 

snow cover and sensor malfunction (N. F. Liu et al., 2013). For each pixel, the mean monthly 

value was calculated over 3 years at the start (2000-2002 for March to November, 2001-2003 

for January, February and December) and the end (2013-2015 for all months) of the study 

period to improve data coverage. A MODIS water cover mask at 250m was then used to 

determine the percentage of water cover featured in each gridded analysis pixel. Due to the 

optical properties of water leading to high surface reflectivity, only pixels featuring less than 

10 % surface water were considered for analysis.  

 Global Forest Change 

Data on forest cover, loss and gain were sourced from the Global Forest Change dataset, first 

published by Hansen et al., (2013). Using Google Earth Engine, Landsat 7 imagery was 

analysed using a machine-learning image interpretation method to map areas of tree cover 

across multiyear periods. Alternative data was used to improve the training of the 

interpretation. These provide a global map of forest cover for the year 2000, forest loss 

between 2000 – 2014 and forest gain over the same period at a spatial resolution of 30 m. 

The forest loss pixels also have a loss year associated, indicating the year the pixel 

transitioned from forest to non-forest, as defined by Hansen as either “a stand-replacement 

disturbance or the complete removal of tree cover canopy at the Landsat pixel scale”. Gain 

pixels were defined as the reverse, the emergence of forest canopy. For each product, trees 

were defined as vegetation with a minimum height of 5 m. Other definitions and information 

pertaining to these datasets can be found within the supplementary information of Hansen 

et al., (2013). Each of these datasets were also gridded to the same 0.05° and 0.01° global 

grids as the MODIS surface albedo data. As the loss and gain products are produced to supply 

a binary flag (either loss/gain or no loss/no gain), the percentage loss / gain was calculated 

over the grid cell and used in all analysis. For the Amazon analysis, the forest cover grid was 

clipped to the boundary of the Amazon basin using a shapefile from the Center for 

Geographic Analysis at Harvard University. 

 Flight data from field campaigns 

Although satellite data now provides unprecedented global coverage on a wide range of 

remote sensed products, in situ data obtained via permanent measurement stations, or field 

campaigns remain incredibly valuable. Although the spatial (and often temporal) coverage is 
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not as large as for satellites, with some campaigns only lasting weeks or months, in situ data 

provides fundamental observations with complete understanding of the location and 

conditions, while allowing for observations that are unable to be measured via remote 

sensing. Satellite retrievals are also validated against in situ observations, laying the 

groundwork to ensure satellite retrievals provide accurate measurements. 

2.3.1. SAMBBA 

The 2012 South American Biomass Burning Analysis (SAMBBA) campaign investigated the 

properties of pollution from biomass burning using a mix of satellite, ground and aircraft 

measurements, centred on Porto Velho, the capital of the state of Rondônia (Allan et al., 

2014; Brito et al., 2014; Marenco et al., 2016). The project was led by the UK Met Office and 

the National Institute for Space Research (INPE) Brazil, in partnership with seven UK 

universities (the University of Leeds, the University of York, the University of Manchester, 

the University of Exeter, the University of Reading, the University of East Anglia and King’s 

College London) and the University of São Paulo. During the campaign, the UK Facility for 

Airborne Atmospheric Measurements (FAAM) conducted 20 flights while carrying a range of 

scientific instrumentation to measure various atmospheric properties. The aircraft featured 

two pyranometers, one upward and one downward facing, which recorded the downwelling 

and reflected radiation throughout the flights at a rate of 1 Hz. Surface albedo is able to be 

calculated using the ratio of these measurements. However, as the primary aim of SAMBBA 

was to investigate biomass burning, a number of the flights that were conducted were over 

or through areas of fire or smoke from burning biomass, rather than open vegetation. 

Additionally, issues with airborne pyranometers maintaining thermal equilibrium during 

flights have been reported previously, due to slow equilibration of the instruments’ domes 

during altitude changes (Foot, 1982; Haeffelin et al., 2001). To account for this, and to 

minimise the effects of the aircraft’s movement on the pyranometer measurements, data 

featuring regular fluctuations of pitch and roll were chosen to be discarded. This was done 

by removing data points featuring a pitch greater than ± 10° and a roll greater than ± 15°. 

Data above an altitude of 1,000 m was also discarded to reduce the data acquisition during 

plume exposure. 

The aircraft feature an optical particle counter, namely a Passive Cavity Aerosol 

Spectrometer Probe (PCASP) instrument to measure the number concentration of aerosol 

particles as a function of particle size. Using a helium-neon laser, the scattering properties of 
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particles that enter the instrument’s focused inlet are measured and the size of the 

measured particle is determined based on the scattering intensity and Mie scattering theory. 

Using measurements from the PCASP instrument, data points acquired under high aerosol 

load were also determined and removed. Combining the number concentration across all 30 

bins to provide a total number concentration for each data point, measurements above 

6,000 cm-3 were discarded, consistent with the third quartile of measurements from the 

Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA-EUSTACH) during the 

burning season (Guyon et al., 2003). 

Measurements from the SAMBBA campaign carried a data flag indicating good data, minor 

issues, major issues or bad quality data. For the analysis presented here, only data points 

featuring the highest quality data for irradiance and from the GPS/Inertial Navigation 

equipment were used.  

Measurements from each flight were compiled and averaged onto the 0.01° global analysis 

grid to allow comparison with the MODIS measurements. 

2.3.2. GoAmazon 

The Observations and Modelling of the Green Ocean Amazon 2014-2015 (GoAmazon2014/5) 

experiment was another scientific campaign designed to investigate the impacts of human 

activities, specifically pollution, on a tropical environment (Martin et al., 2016). The campaign 

was centred on Manaus, the capital of the state of Amazonas, on the bank of the Amazon 

river. Multiple ground and aircraft measurements were taken in a mix of clean and polluted 

air across the 2-year study period. The aircraft used during the campaign were equipped 

similarly to the FAAM aircraft during SAMBBA, with two pyranometers measuring the 

irradiance throughout the flights. Similar data quality filtering was undertaken, with 

equivalent data removal based on tilt, roll, high aerosol load and altitude. Additionally, 

measurements with tilt up to 10 ° were corrected for as described in Long et al., (2010). An 

additional removal of data featuring clouds was able to take place, to ensure clear sky 

measurements were taken. Similarly, the measurements were compiled and averaged onto 

the same 0.01° global analysis grid as MODIS and SAMBBA. 

 Determination of forest cover and forest loss 

Through much of the MODIS analysis, pixels were defined as either forest or non-forest, and 

forest loss or no loss, depending on data from the Global Forest Change dataset. Initial 
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analysis conducted over the Amazon region consisted of analysing the MODIS albedo 

response with respect to percentage forest cover. By analysing the entire Amazon basin, a 

steeper decline in surface albedo with increasing forest cover was observed for forest cover 

greater than 70-75 % for all months (Figure 2.1). In order to determine areas of high forest 

cover, this change in response at 70 %, cover was used as a lower bound (70 – 100 %) with 

the upper bound for no forest determined by creating an equally sized bin from 0 % forest 

cover to 30 %. As the response to percentage forest loss remained linear, the same threshold 

was applied for the temporal analysis: areas of forest over 30 % which had seen forest loss 

of 70 % or more were assigned as loss, whereas pixels containing 30 % or greater forest and 

lower than 30 % forest loss were defined as no loss.  

Two main analysis approaches were used to compare the albedo changes. Firstly, a spatial 

analysis compared forested pixels with non-forested pixels, combining data within the two 

time periods (2000 – 2003 and 2013 – 2015), except for direct intercomparisons between 

them. Forested pixels and non-forested pixels were grouped together and the differences in 

their surface albedo were compared in Section 3.3. The temporal analysis compared each 

pixel in the 2000 – 2003 period directly with the same pixel in the 2013 – 2015 period to 

provide a change over time. These were grouped into forest loss pixels and no loss pixels and 

the behaviour between these two groups were also analysed. 

The analysis was undertaken across multiple spatial domains, selected for areas of 

transitioning forest area to enable the data to be collected and analysed at multiple scales. 

For each domain analysed, the forest (loss) and non-forest (no loss) pixels were selected for 

the spatial (temporal) analysis and analysed independently as both an annual average and 

monthly datasets. Across both analysis type (spatial and temporal) the term Δ albedo (Δα) is 

used to refer to both the difference between forested pixels and non-forested pixels during 

the spatial analysis (Δαs) and the change in albedo of pixels following forest loss (Δαt) during 

the temporal analysis. As the spatial analysis is conducted to investigate the viability of a so-

called spatial-for-temporal approach, whereby spatial differences are interpreted as the 

result of hypothetical land use change, the use of a general term for both analyses was 

selected. 
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Figure 2.1: Response of surface albedo from MODIS to fractional forest cover for each 
month. The reference line at 70 % forest cover was decided to be the cut-off for the forest 
category. Error bars show standard error for each data point. 

 Intercomparison between flight, MODIS and in-situ data 

To support the observations taken over the Amazon with MODIS, data from SAMBBA, 

GoAmazon and in-situ measurements from Culf et al., (1995) were used. As the flight and 

the MODIS data were gridded onto the same 0.01° global analysis grid, spatially overlapping 

pixels were selected and were categorised into either forest or non-forest based on the 

selection process described above. To match the data temporally as best as possible, the 

MODIS grid from September 2013 – 2015 was used for this comparison. Initially, the forested 

and non-forested categories were directly analysed as for the MODIS spatial analysis. 

However the pixels from the flight tracks designated as forest outnumbered the non-forest 

pixels by a factor of 13 from SAMBBA and 15 for GoAmazon, and the number of observations 

made by Culf et al., (1995) were substantially fewer than those from both flight campaigns. 

Additionally, non-normality within the flight data strongly reduces the robustness of results 

from ANOVA, which assumes normality (although the large number of data points means 

that such tests are still able to provide reasonable information when conducted on the raw 

data). To adjust for this, the data was bootstrapped with replacement to provide evenly sized, 

normally distributed datasets. Using these bootstrapped datasets, analysis of the forest and 

non-forest categories was undertaken to compare the measurement techniques. 
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Chapter 3: Albedo changes from deforestation in the Amazon  

 Introduction 

3.1.1. Chapter Outline 

This chapter seeks to understand the size of the albedo changes that have previously been 

reported across the tropics through an initial literature search. Using MODIS satellite 

observations, the albedo was determined for forested and non-forested areas at a number 

of sites in the Amazon, and across the Amazon basin at large. These measurements were 

then used to compare albedo change spatially across the Amazon, spatially as a proxy for 

time and temporally across the two time periods. Measurements from MODIS were 

compared to observations from aircraft campaigns, in-situ observations and values from 

modelling studies. 

3.1.2. Amazonian deforestation 

Globally, the tropical regions feature the greatest areas of deforestation, with the Amazon 

contributing the highest of any individual region. Land use change (LUC) in the Amazon has 

resulted in nearly 20 million ha of forest cleared between 2000 – 2015 due to pressure from 

logging, agriculture and ranching (Godar et al., 2015; Moutinho et al., 2016; Sena et al., 2013). 

Such changes have a variety of local and global impacts on the climate, by altering carbon 

stocks, emissions of biogenic volatile organic compounds (bVOCs), and the surface energy 

flux through evapotranspiration, surface roughness, and albedo (Heald & Spracklen, 2015; Y. 

Li, Zhao, et al., 2016; Pan et al., 2011; Le Quéré et al., 2009; Scott et al., 2017; Spracklen et 

al., 2008; Stocker et al., 2013). Forested areas also have a lower surface albedo than crop 

and grassland, therefore deforestation results in greater reflection of incoming radiation, 

producing a local cooling effect (Bala et al., 2007; Bathiany et al., 2010; Richard A. Betts, 2001; 

A. Wang & Price, 2007). Through altering the energy balance in the atmosphere, and a 

coupling with the ocean, a wider cooling effect is also modelled (Davin & de Noblet-Ducoudre, 

2010). 

The magnitude of the local effect is heavily latitudinally dependent, due to the influence of 

snowfall in the high and mid-latitudes, which exacerbates the difference in albedo between 

forested and non-forested land during the winter months (R. A. Betts, 2000; Lee et al., 2011; 

G. Myhre & Myhre, 2003). As such, it is suggested deforestation may cause a biophysical 

cooling in the high latitudes, while still producing a warming in the tropics due to the strength 

of evapotranspirative cooling (Y. Li et al., 2015). Comparisons between different levels of tree 
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cover have demonstrated cooler temperatures over forested areas when compared to non-

forested land in the tropics (Lawrence & Vandecar, 2015; Y. Li et al., 2015). 

Many previous studies have investigated how surface albedo varies between forest and non-

forest at mid to high latitudes, where the differences are at their greatest magnitude (See 

section 3.2.2 and Appendix A), but there have been few studies investigating the impact of 

albedo in the tropics; the world’s most heavily deforested regions. This work seeks to address 

that by bringing together previous observations with data from MODIS and two flight 

campaigns for analysis. 

The albedo effect from land use change at high latitudes has been regarded as an important 

climate driver both locally and radiatively, but recent work has highlighted its relative 

importance in the tropics too. Scott et al., (2018) model idealised deforestation scenarios 

globally and across the boreal, temperate and tropical regions, calculating the radiative 

forcing (RF) from changes in CO2 concentrations, short-lived climate forcings (SLFCs) 

concentrations, and surface albedo (Figure 3.1). The albedo changes were shown to 

contribute the largest RF in the boreal regions and was the next-largest after CO2 globally 

and for the other regions. 

 

Figure 3.1: Global annual mean radiative forcings (RF) due to changes in concentrations of 
CO2 (red), SLCFs (orange) and surface albedo (blue) under global and regional deforestation 
scenarios. Source: (Scott et al., 2018) 
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3.1.3. Previous albedo measurements 

While the decrease in albedo post deforestation is widely accepted, there has been some 

discrepancy between observations and modelling studies on the scale of the change. 

Observations of surface albedo from flux towers and the Moderate Resolution Imaging 

Spectroradiometer (MODIS) instruments have been shown to be in good agreement across 

a range of vegetation types and latitudes (Román et al., 2009; Zhuosen Wang et al., 2014). 

However, observational values have been shown to be lower than prescribed values for 

specific plant functional types (PFTs) in land surface models (Loranty et al., 2014; Matsui et 

al., 2007). Additionally, models lose much of the complexity of the vegetation surface by 

employing a certain homogeneity within PFT classes, whilst behaving differently between 

different models (Matsui et al., 2007; Tian et al., 2004). 

Observations of albedo have previously been limited to spatial-for-temporal analysis, where 

spatial differences are assumed to act as a proxy for temporal changes. However contrasting 

spatially-comparable regions of high and low forest cover may introduce biases by 

potentially overlooking certain geographical climatic influences (Alkama & Cescatti, 2016a; 

Culf et al., 1995; Y. Li et al., 2015; de Oliveira et al., 2016; Oliveira & Moraes, 2013). This study 

aims to overcome this, by directly tracking albedo changes during periods of active 

deforestation using satellite observations. 

 Literature search 

Using the scientific library Web of Knowledge, supplemented by searches on Google Scholar, 

a literature search for both modelling and observational studies featuring albedo changes 

was conducted. Two search strings were used: 

"Amazon*" & "Deforest*" & "Albedo" 

"Amazon*" "Albedo" "Observ*" OR "Amazon*" "Albedo" "Satellite" OR "Amazon*" "Albedo" 

"Tower*" 

The first search string was designed to highlight studies containing albedo changes due to 

deforestation, while the second was used to specifically investigate observational studies of 

albedo over the Amazon region as opposed to modelling experiments. 

The requirement for selected documentation was that it was published in a scientific peer-

reviewed journal, the literature included values of albedo (or albedo change between 

categories) for tropical, evergreen broadleaf forest and grassland or crops and must include 
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analysis of the Amazon, at least in part. From the initially highlighted papers, a number were 

rejected due to non-specific attribution of values across the scenarios and shared model 

setup between studies. Whilst many of the papers identified reported multiple simulations, 

generally one set of values was used, unless there were specific differences between the 

simulations (e.g. different replacement vegetation). This filtering resulted in albedo values 

of the difference between forested and non-forested (Δ albedo) being obtained for 55 

modelling studies and 13 observational studies (Figure 3.2). The studies and values obtained 

are presented in Appendix A. 
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Figure 3.2: Surface albedo differences (Δ albedo) between tropical forest and an equivalent 
deforested land cover from a systematic search of the literature using the Scientific library, 
Web of Knowledge highlighting modelling studies (n = 55), in situ (n = 9) and remote 
sensing (n = 4) studies. 

3.2.1. Modelling values 

A total of 55 simulations using a range of global circulation models (GCMs), land surface 

models (LSMs) or earth system models (ESMs) were identified containing albedo values from 

forest and an alternative vegetation surface in the Amazon region. Most (92 %) of the 

simulations were designed to analyse deforestation scenarios, converting evergreen 

broadleaf forest across the region into different vegetation (Figure 3.3). Simulations 
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compared evergreen broadleaf forest to a mix of grassland (57.1 %), pasture (23.1 %), bare 

soil (10.7 %), soybean (5.4 %) or using a forced albedo increase (3.6 %). 

Whilst albedo differences from forest for both grass and pasture yielded similar averages 

(Table 3.1), the grass simulations displayed a larger diversity, with a range from 0.02 to 0.10, 

as opposed to 0.046 to 0.081 with pasture. Soybean simulations averaged slightly higher 

(0.073), however only a small number of simulations modelled this change. Both Costa et al., 

(2007) and Sampaio et al., (2007) highlight how variable soybean albedo is in relation to its 

growing season, with high peaks at certain points through the year (Andre & Viswanadham, 

1983; Blad & Baker, 1971; Fontana et al., 1991). It is also suggested that the practice of 

double cropping may increase the albedo for longer periods throughout the year, were it to 

be employed, creating a greater albedo difference than for grassland and pasture. 

Table 3.1: Mean albedo change for different replacement vegetation from modelling 
studies following deforestation. 

Replacement vegetation Number of studies 
Mean albedo 

change 
Coefficient of 

Variation 

Grass 32 0.0601 0.5368 

Pasture 13 0.0612 0.1667 

Bare Soil 6 0.1248 0.3259 

Soybean 3 0.0733 0.1849 

Forced albedo increase 2 0.0600 0.2318 
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Figure 3.3: Published values of albedo differences within model simulations between 
Evergreen Broadleaf Forest and alternative vegetation types, generally used as a 
replacement in deforestation scenarios. 
 

The simulations that forced albedo values without specifying a resultant vegetation type are 

most likely to have mirrored the replacement of forest with grass or pasture, given the 

average of 0.060. Simulations resulting in bare soil display the greatest values of the 

simulations, with an average albedo difference of 0.125. 

3.2.2. Observational values 

Observations of the surface albedo of tropical forest taken in-situ are provided by use of an 

albedometer, which consists of an upward and a downward-facing pyranometer. The 

upward-facing pyranometer measures the global solar radiation, whilst reflected solar 

radiation is measured via the downward-facing pyranometer. The surface albedo is then 

given as the ratio between the reflected and the incoming radiation. 

Attaching an albedometer to a mast allows for the instrument to be raised above the forest 

canopy, and thus measurements of the albedo of the forest’s surface. Many initial studies in 
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albedo measurements were taken at high latitudes, often over snow-covered surfaces with 

a lack of tropical vegetation measurements undertaken. Values used in GCM simulations 

across the tropics were initially taken from measurements conducted at higher latitudes 

(Oguntoyinbo, 1970). Those that did feature vegetation in the tropics were limited to 

cultivated crops, overlooking the albedo of natural vegetation and forest. 

In 1995, Culf, Fisch and Hodnett analysed albedo measurements from the Anglo-Brazilian 

Climate Observational Study (ABRACOS). This featured multiple sites in the Brazilian Amazon 

to compare pasture on ranch land and forest over a three-year period, building on previous 

observations in the region from Bastable et al., (1993) during the Amazon Region Micro-

meteorological Experiment (ARME), and Bastable et al., (1993). Prior to Culf et al., (1995), 

albedo values for deforested areas used in deforestation experiments were taken from 

measurements over the vegetation type assumed to replace the forest. 

This experiment was the first to measure albedo from deforested land in the Amazon region 

and directly compared three forest-reserve sites to three post-deforestation cattle ranch 

sites. The long-term nature of this study allowed for observations of the seasonality of the 

absolute forest albedo, while the pasture sites remained stable throughout the year. 

Culf et al., (1995) presents higher forest albedo values, and lower pasture value (by 0.134 

and 0.180 respectively) than those used in GCM experiments; highlighting albedo changes 

may be too high in many of the highlighted experiments. 

Wright et al., (1996) built on the ABRACOS experiment results, with the seasonal variation of 

the forest albedo shown to correlate with soil moisture and suggestions of variation in the 

pasture sites’ albedo being explained by the amount of dead leaf material, whilst being 

independent of the height of the pasture grass. The ARME data was also furthered by Eltahir 

& Humphries, (1998), with an albedo difference between forest and pasture of 0.04 - 0.05. 

Progressive recovery of vegetation after deforestation was analysed by Giambelluca et al., 

(1997) at a single site within the Amazon. The albedo of secondary vegetation decreased 

with time since abandonment from 0.175 for unused pasture, to 0.163 as secondary 

vegetation recovered over 2 years. Advanced secondary vegetation (10 years growth) is 

shown to be in line with values of primary forest (0.132). All of the land cover types post-

deforestation were shown to have lower Δ albedo values from primary forest than those 

simulated in GCM experiments. 
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More recently, Oliveira & Moraes, (2013), and Souza et al., (2013) analysed tower 

measurements of forest, soybean and pasture within the Amazon. Both studies presented 

greater albedo differences between forest and post deforestation vegetation cover than 

previous in-situ measurements. Whilst Souza et al., (2013) reported soybean albedo values 

similar to other resultant cover types (0.15 – 0.22), they also presented forest albedo values 

lower than the other studies (0.09 – 0.11). The forest site used is a section of terra firme 

rainforest, approximately 180 km east of the Marajó Bay. These forest albedo measurements 

were similar to albedo measurements found by Carswell et al., (2002) in terra firme forest in 

the Caxiuanã National Forest. In the case of Oliveira & Moraes, (2013), daily mean albedo for 

forests was reported as 0.12, but measurements over pasture were high (0.24). The paper 

also used the Surface Energy Balance Algorithm for Land (SEBAL) model to calculate surface 

albedo from MODIS data, which resulted in forest albedo values in line with previous values 

(0.133) and pasture albedo values (0.173) similar to Culf et al., (1995). The authors published 

another set of values at different sites (de Oliveira et al., 2016), featuring albedo values for 

forest and pasture measured in-situ (0.110 and 0.169, respectively) and estimated using the 

SEBAL model (0.153 and 0.197 respectively). 

Using Landsat, Querino et al., (2016) found an albedo change within areas deforested 

between 1991-2011 of 0.08, with no change found in areas with no deforestation. Similarly, 

Loarie et al., (2011) compared pixels from MODIS albedo data with the INPE’s PRODES annual 

deforestation summaries for 2002, 2004 and 2006 and found pixels changes incurred an 

average albedo change of ~0.028. 

Of the observational studies highlighted, 69 % presented in-situ measurements, with 31 % 

remote sensed. The remote sensing studies display an average albedo difference of 0.041, 

while the in-situ values are higher and closer to the modelling average for grass at 0.057. 

However, this is influenced by the high value from Oliveira & Moraes, (2013), which if 

removed brings the average (0.049) in closer agreement to the remote sensing 

measurements.  

The observational studies display an average albedo difference lower than all the modelled 

land cover differences, only with the inclusion of the Oliveira & Moraes, (2013) value, does 

this value fall in a similar range to the lowest vegetation transition (forest to grass). 
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 Results/Discussion 

Forest cover and forest loss between 2000-2014 within the southern Amazon basin were 

extracted from the Global Forest Change dataset, compiled by Hansen et al., (2013), clipped 

to the Amazon basin using a shapefile from the Center for Geographic Analysis at Harvard 

University. Areas that had undergone forest loss between the periods 2000 – 2003 and 2013 

– 2015 were highlighted as in Figure 3.4. Surface albedo data from the MODIS albedo product 

MCD43A3 was overlaid on 0.01° and 0.05° analysis grids, with the tree cover data and both 

the change in albedo after forest loss, and the differences in albedo between forested pixels 

and non-forested pixels were evaluated. 

3.3.1. Domain selection and resolution 

Analysis was initially undertaken across approximately 1.5 million km2 of the southern 

Amazon at a resolution of 0.05° (Figure 3.4), with a number of areas with high deforestation 

rates then analysed at higher resolution (0.01°). These selected locations ranged from 4.3 % 

to 7.4 % of the forested area being lost between 2000 – 2015 (Table 3.2).  

 

Figure 3.4: Boundary of the 0.05° analysis domain, and the five (1 – 5) 0.01° analysis 
domains, as labelled in Panel A. Panels A and B display surface 3-year averaged albedo data 
from the MODIS product MCD43A3 for June. The lower panels (C and D) display percentage 
forest cover and loss as calculated using the Global Forest Watch dataset. 
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Table 3.2: Analysed domain and subdomain properties. Values give number of pixels that fall within each category, unless otherwise stated. 

Domain name 
Top right 
(latitude, 

longitude)  

Bottom left 
(latitude, 
longitude) 

Total pixel 
number 

Area / km2 
Forest in 

2000 
Non-forest in 

2000 
Forest loss No loss Water 

Domain (-5, -53) (-12, -70) 47600 1,439,900 
42,830 

(90.0 %) 
1146 (2.4 %) 150 (0.3 %) 

44671 
(93.8 %) 

0 (0.0 %) 

Subdomain 1 (-9, -64) (-11, -66) 40000 48,400 
36,465 

(91.2 %) 
947 (2.4 %) 2951 (7.4 %) 

30658 
(76.6 %) 

835 (2.1 %) 

Subdomain 2 (-9, -61) (-11, -63) 40000 48,400 
25,720 

(64.3 %) 
7511 

(18.8 %) 
1788 (4.5 %) 

29914 
(74.8 %) 

239 (0.6 %) 

Subdomain 3 (-3, -49) (-7, -52) 120000 145,200 
83,077 

(69.2 %) 
14673 

(12.2 %) 
5156 (4.3 %) 

84294 
(70.2 %) 

4346 (3.6 %) 

Subdomain 4 (-3, -54) (-5, -57) 60000 74,000 
56,029 

(93.4 %) 
1,520 (2.5 %) 

14,962 
(24.9 %) 

42,534 
(70.9 %) 

2051 (3.4 %) 

Subdomain 5 (-6, -54) (-9, -57) 90000 108,900 
87,043 

(96.7 %) 
811 (0.9 %) 3577 (4.0 %) 

80769 
(89.7 %) 

427 (0.5 %) 
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3.3.2. Albedo values 

Absolute values 

Spatial differences 

Forested pixels were defined as containing >70 % forest cover according to the Forest Cover Change 

dataset. These forested pixels exhibited a median surface albedo value of 0.136, similar to tropical 

rainforest albedos previously reported (Culf et al., 1995). Pixels featuring low forest cover (those 

below 30 % forest cover) were defined as non-forested, and at both 0.05° and 0.01° resolution showed 

higher surface albedo values than forested pixels by 0.018 and 0.017 respectively (Figure 3.5). Overall, 

the albedo difference between forested and non-forested pixels (Δαs) displayed a mean annual 

average of 0.017. 
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Figure 3.5: Annual mean albedo values for each tree cover category across the large analysis domain 
(0.05°), and the smaller subdomains (0.01°). Low tree cover categories feature a higher albedo than 
high tree cover categories. Boxes show interquartile range (IQR), with whiskers extending to 
minimum/maximum values excluding outliers (exceeding 3 times IQR from Q1 or Q3 respectively). 
 

A clear decline in surface albedo with increasing forest cover was observed across both time periods 

(Figure 3.6) and within each analysis area (Figure 3.7). The response of the albedo change to forest 
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cover is broadly linear, however the gradient tended to change close to 100 % forest cover. A similar 

response is seen between both time periods. 
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Figure 3.6: Albedo response to increasing forest cover percentage for each of the 5 small analysis 
domains for the month of July. Start and end refer to the periods 2000-2003 (black) and 2013 – 2015 
(red). 
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Figure 3.7: Albedo response to increasing forest cover percentage in July for the 2000 – 2003 period 
(top) and 2013 – 2015 period (bottom). Each small analysis domain is separated out. All other 
months are shown in Appendix B. 
 

Across the high-resolution subdomains, the annual average albedo of forests was consistent, with the 

median values averaging at 0.133, the same as measured in Culf et al., (1995). The average surface 

albedo for non-forest pixels across these analysis domains (0.150) was in line with the lower end of 

previous observations. 

Forested pixels displayed greater variability through the year than non-forest pixels (Figure 3.8), which 

remained consistently higher than non-forest pixels (Figure 3.9). Forest pixels displayed an increase in 

albedo through the dry season, leading to a peak in November, while displaying lowest measurements 

in June. 
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Figure 3.8 and Figure 3.9 also show little difference was observed between the two time periods, for 

forest and non-forest respectively. The intra-annual variability is supported by observations from both 

time periods, with the minimum in forested corresponding to the closest agreement between the 

periods. 
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Figure 3.8: Seasonality of albedo observations over forest (green) and non-forest (red) pixels. Data is 
separated into 2000 – 2003 (dark), 2013 – 2015 (light) and combined (middle).  
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Figure 3.9: Box plots for surface albedo for monthly forested (green) and non-forested (purple) 
pixels for subdomain 1, separated into the 2000 – 2003 period (labels 1 and 2) and 2013 – 2015 
(labels 3 and 4). The boxes display the interquartile ranges with the median line and mean values 
displayed as a square. Outliers are considered any value more than 3 standard deviations from the 
mean. 
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Spatial analysis 

Initially, spatial analysis was carried out on the surface albedo observations. This directly compared 

individual pixels featuring forest with non-forest within the same time periods: 2000 – 2003 and 2013 

– 2015 (Figure 3.10). 

 

Figure 3.10: Analysis of Subdomain 1, with MODIS surface albedo in the top two panels, with 
percentage forest cover and loss in the lower two panels. Spatial analysis compared pixels featuring 
different forest cover (designated by the bottom left panel) within the same time periods (either top 
left or top right panels individually). Temporal analysis used the forest loss (bottom right panel) to 
assess changes between the start time period (top left) and the 2013-2015 period (top right). 
 

Subdomains 1 and 2 displayed similar albedo values for the high forest pixels, however subdomains 3, 

4 and 5 showed slightly higher values (Table 3.3, Figure 3.11). The albedo of the low forest pixels was 

higher in subdomains 2 and 3 compared to the other locations analysed. 
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Within each subdomain, higher albedo values were observed for non-forested pixels consistently 

(Figure 3.11). The difference between the forested and non-forested pixel albedo values (ΔαS) in 

Subdomain 2 was considerably higher than in the other locations. Subdomain 2 contained both the 

smallest area of forested pixels, and the greatest area of non-forested pixels in the year 2000 (Table 

3.2), therefore although being geographically close to Subdomain 1, the inclusion of multiple 

settlements (such as Ji-Paraná) may lead to the increased non-forested albedo. 

 

Table 3.3: Mean MODIS albedo values from spatial analysis of each domain and subdomain across 
both the 2000-2003 and the 2013-2015 periods. 

 Domain 
Subdomain 

1 

Subdomain 

2 

Subdomain 

3 

Subdomain 

4 

Subdomain 

5 
Average 

Forested 

albedo 
0.12773 0.12689 0.12719 0.13947 0.13493 0.13034 0.13125 

Non-

forested 

albedo 

0.14614 0.14141 0.15104 0.15256 0.14351 0.14425 0.14819 

ΔαS 0.01841 0.01452 0.02385 0.01309 0.00858 0.01391 0.01694 
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Figure 3.11: Albedo values for high (green) and low (red) forest cover pixels within each subdomain. 
For each, the high forest pixels display a lower albedo than the low forest pixels. The box limits show 
the interquartile range, with the whiskers displaying the 5th and 95th percentiles. 
 

Differences between the forested and non-forested albedo of each subdomain were subjected to 

ANOVA analysis to ascertain whether the differences observed between the subdomains were 

significantly different from each other. It was found for all pairings that there was no significant 

difference in the means at the 0.05 level, except for subdomain 2, which presented the highest ΔαS 

values (Figure 3.12) and was shown to differ significantly from subdomains 3, 4 and 5. No significant 

differences were also observed between the 0.05° resolution domain and the 0.01° resolution 

subdomains, except for subdomain 2. This suggests that the behaviour in surface albedo between 

forested and non-forested regions across the Amazon is generally consistent. 
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Figure 3.12: Difference in albedo values between forested and non-forested forest pixels for the 
large analysis domain and each subdomain.  
 

The Δαs values observed across each subdomain peak in May-July, coinciding with the lowest observed 

albedo values over high forest areas. This declines during the dry season, culminating in a minimum 

in November; rising as the wet season begins (Figure 3.13). 
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Figure 3.13: Difference in surface albedo values for each subdomain between forested and non-
forested pixels. 
 

Temporal analysis 

Temporal analysis 

Direct impacts of deforestation on individual pixels was then analysed, using a temporal approach. 

Here, pixels featuring deforestation (forest loss ≥ 70 %) during the analysis period were selected using 



58 
 

the Global Forest Watch forest loss data. The changes between the start and the end (prior and post 

the forest loss) were analysed against those of unchanged pixels. 

Figure 3.8 indicated the similarity between high and low forest cover across the two time periods, but 

to assess whether any changes in either the surface albedo or the measurements from MODIS have 

occurred, pixels that have remained consistent with respect to forest cover (≤ 30 % forest loss) were 

initially analysed within the domains. These differences are presented in Figure 3.14. Subdomain 2 

showed a small increase, with the other domains displaying a decrease. Each of the domains only 

showed a percentage change of 2.8 % (subdomain 4), 1.8 % (subdomain 5) and less than 1 % (large 

analysis domain and subdomains 1-3). 
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Figure 3.14: Annual mean change in surface albedo for pixels featuring no change in forest cover 
between the periods 2000 – 2003 and 2013 – 2015. The shaded area represents 3 standard 
deviations. 
 

Table 3.4 displays the average change in surface albedo after forest loss occurred (ΔαT). Each 

subdomain experienced an increase in surface albedo for pixels containing forest loss, with the large 

analysis domain showing the largest change. Similarly to the spatial analysis, the response of the 

surface albedo to forest loss was almost linear (Figure 3.15). Following ANOVA analysis, no significant 

differences were found between any of the subdomain locations, however analysis at 0.05° resolution 

was shown to differ significantly to subdomains 3, 4 and 5 (all at 0.01°) at the 0.05 confidence interval. 
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Table 3.4: Albedo change values post forest loss for each subdomain 

 Domain Subdomain 1 Subdomain 2 Subdomain 3 Subdomain 4 Subdomain 5 Average 

Temporal Δ 

albedo (ΔαT) 
0.02096 0.0157 0.0169 0.0113 0.0128 0.0141 0.0153 
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Figure 3.15: Response of surface albedo to the fraction of forest loss within each pixel for every 
subdomain in July. All other months are shown in Appendix B. 
 

For each subdomain, the temporal analysis shows similar ΔαT to the ΔαS from the spatial analysis, with 

subdomain 2 showing the largest difference (Figure 3.16). The two analysis approaches also display 

similar Δ albedo values for much of the year, with the difference being less than 0.002 for 8 months 

(Figure 3.17). The seasonal pattern is largely the same for the temporal analysis as for the spatial; the 

greatest Δα occurring in May to July, with a minimum occurring during the October to November 

period. 
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Figure 3.16: Spatial (purple) and Temporal (red) Δ albedo values for each domain, with the 
difference between both shown in cyan. 
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Figure 3.17: Spatial (purple) and Temporal (red) Δ albedo values for each month, with the difference 
between both shown in cyan. 

Flights 

Data from aircraft irradiance measurements over the Amazon, during the South American Biomass 

Burning Assessment (SAMBBA, September/October 2012) and The Green Ocean Amazon Experiment 

(GoAmazon, 2014/15) campaigns were used to analyse remotely sensed surface albedo 

measurements within the atmosphere. Flights during SAMBBA took place from Porto Velho, the 

capital of the state of Rondônia, whilst GoAmazon was centred on the capital of the state of Amazonas, 

Manaus (Figure 3.18). 
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Figure 3.18: Flight tracks from GoAmazon (red) and SAMBBA (black). Manaus and Porto Velho are 
highlighted as the campaigns’ base locations. 
 

Albedo data from the flights was filtered based on quality assurance flags, atmospheric conditions and 

aircraft navigation data, as described in section 2.3, then placed on the same 0.01° resolution grid as 

the data from MODIS, with data in overlapping pixels averaged within each campaign. Forested and 

non-forested pixels were highlighted using the Global Forest Watch dataset (M. C. Hansen et al., 2013). 

Measurements from GoAmazon resulted in similar albedo values to SAMBBA (averaging 0.005 higher 

for high forest and 0.005 lower for the low forest category). Across both flight campaigns, the forested 

Manaus 

Porto Velho 
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pixels displayed an average surface albedo (0.157) lower than the non-forested pixels (0.161). 

However greater variance was displayed in the non-forested pixels (Figure 3.19). 
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Figure 3.19: Results from the bootstrap of surface albedo for forested pixels (green) and non-
forested pixels (red) for SAMBBA (dot-dash), GoAmazon (dot) and both campaigns combined (solid 
lines) 
 

The flight campaigns provided a much larger range of albedo measurements than obtained from 

MODIS, and whilst the GoAmazon flights displayed an increase in albedo between high forest cover 

and low forest cover, the SAMBBA flights appeared to show very little difference (Figure 3.20). 

The MODIS pixels across the flight tracks were compared directly to the flight pixels. Figure 3.20 shows 

that both the forested and non-forested MODIS values are at the lower end of the distributions of the 

observations made during the flight campaigns. The MODIS values over the flight tracks display similar 

albedo values for forested and non-forested pixels as the subdomains in the above analysis, however 

higher variance results from fewer pixels being analysed. This suggests the difference between the 

flight observations and MODIS results from the observation techniques. 

To test this further, in-situ measurements from Culf et al., (1995) for natural forest and cleared land 

were also compared. The study provided a full set of 3 years’ worth of monthly measurements across 

multiple sites, to which the results from this study could be compared. 

Forested pixels from the in-situ measurements were similar to those from MODIS, displaying an 

average albedo value approximately 0.025 lower than for the flights. However, the non-forested pixels 
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were shown to have higher values, being only 0.005 higher than the non-forested albedo measured 

by the GoAmazon campaign. 

An ANOVA analysis was performed across each set of measurements. Results from this suggested the 

mean albedos are significantly different at the 0.05 confidence interval, but individual pairings of the 

forested in-situ with the forested MODIS (over both flight tracks), the forested SAMBBA and 

GoAmazon, the non-forested GoAmazon and non-forested in-situ were indicated as not having 

significant differences at the 0.05 confidence level. This was also true for comparable MODIS 

categories over each set of flight tracks, and for both forested and non-forested categories measured 

during SAMBBA – suggesting that there’s no significant differences between the means of these 

measurements. 

Both flights produced datasets that were non-normally distributed (Figure 3.22), although normality 

for the low flight data for both SAMBBA and the combined flights was unable to be rejected based on 

the D’Agostino’s K-squared test for skewness, kurtosis and the omnibus K2 statistic. However, 

normality was rejected by both the Lilliefors-corrected Kolmogorov-Smirnov test and the Shapiro Wilk 

tests. 

Since there proved to be a large discrepancy between the size of the datasets, with forested pixels 

from both flight campaigns numbering fifteen and thirteen times as many non-forested pixels for 

SAMBBA and GoAmazon, and to address the non-normality of the data, the data was bootstrapped 

with replacement to provide evenly-sized datasets with normal distributions. For the resulting data, 

normality could not be rejected using the D’Agostino’s K2, Lilliefors or Shapiro Wilk tests on all but the 

low tree cover GoAmazon data at the 95 % confidence level. 
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Figure 3.20: Distributions of the measurements used in this section. In-situ data came from Culf et 
al., (1995), with MODIS data being separated into that recovered over the flight track of SAMBBA (S) 
and GoAmazon (G). The top panel shows the forested pixels (green), middle the non-forested pixels 
(red) and the bottom panel combines them both. 
 

Bootstrapping the data reduced the spread across the datasets, reducing the number of outliers and 

the ranges. However, the means for the flights remained the same, with forested pixels displaying a 

lower surface albedo than the non-forested pixels (Figure 3.21). This can be reasoned to help reduce 
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spread from other factors that might influence albedo between measurements, such as atmospheric 

conditions, differences between surface cover and altitude, that were only partly adjusted for in the 

processing of the data, as described in section 2.5.  
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Figure 3.21: Box Plot for bootstrapped albedo measurements from the flight campaigns 
 

 

Figure 3.22: Distributions of the raw flight data, displaying the overall flight datapoints (top row), the 
forested regions (middle row) and the non-forested regions (bottom row). 
 

The forested categories displayed similar means between the two flight campaigns, whilst the non-

forested was shown to be higher during the GoAmazon measurements, although the wider range of 

observations mean that the SAMBBA observations lay within the lower quartile of GoAmazon (Figure 

3.23). Due to similarities in observations from MODIS during March and September, this difference is 
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unlikely due to time of year, in spite of GoAmazon featuring flights during both months. Instead, it was 

reasoned to be due to differences in the measurement locations, with the SAMBBA flights covering a 

much greater area (Figure 3.18). 

The MODIS pixels across the flight tracks and the in-situ data from Culf et al., (1995) were processed 

using the same bootstrapping method. Figure 3.23 shows that both the forested and non-forested 

MODIS values are lower than measured during the flight campaigns. The in-situ measurements are 

similar in the high tree category to MODIS, but now display the highest albedo in the low forest 

category. This results in a Δ albedo value of 0.0471 (Table 3.5). As the spread of the data has been 

reduced by bootstrapping and the differences still remain between the datasets, it suggests again that 

the measurement technique may give different albedo values over different forest cover levels. 

 

Figure 3.23: Box plot showing the bootstrapped data from non-forested pixels (red, top panel) and 
forested pixels (green, bottom panel) albedo values for the flight campaigns, for MODIS over the 
same flight tracks and for data from (Culf et al., 1995). 
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Table 3.5: Albedo values for forested and non-forested measurements from each measurement 
technique. 

 Forested albedo Non-forested albedo ΔαS 

MODIS 0.1279 0.1460 0.0181 

SAMBBA 0.1574 0.1598 0.0023 

GoAmazon 0.1593 0.1655 0.0062 

Combined Flights 0.1577 0.1610 0.0043 

In-situ 0.1321 0.1792 0.0471 

 

The higher measuered albedo for low forest cover from Culf et al., (1995) compared to the 

measurements used within this study could be rationalised by looking at the albedo responses to 

forest cover (Figure 3.6 and Figure 3.15). The forested categories utilised in the MODIS and the flight 

measurements included forest cover greater than 70 %, with the non-forest categories having a range 

of lower than 30 %. Within these ranges, there is still significant albedo change as the forest cover 

increases or decreases. In-situ measurements were taken over areas of complete forest cover or 

pasture (Culf et al., 1995; Holdaway et al., 2010; Oliveira & Moraes, 2013), so present values at the 

extremes of the ranges used in this study. Figure 3.24 shows the effects of altering the high and low 

forest cover to include values closer to the extremes. Overall, were the forest cover categories 

reduced to encompass only 5 % from their extreme values (0 % and 100 %), the Δ albedo values 

observed increases to 0.0216 across the year. Even with this change, the in-situ measurements would 

still display a greater Δ albedo value. 
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Figure 3.24: Effect of altering the forest and non-forest categories on the measured Δ albedo 
through the year using MODIS. Blue indicates lower Δ albedo values, with red a higher response. 
 

Finally, the data from the modelling studies reviewed in section 3.2.1 are compared to the 

observations made on surface albedo in the Amazon. Measurements from the SAMBBA campaign 

displayed the lowest Δ albedo values, followed by GoAmazon – although the latter still retained a large 

spread. MODIS and in-situ measurements were both much higher than the flights, although there was 

some overlap between the highest GoAmazon values and those from MODIS. The values pulled from 

the modelling studies were shown to have the highest Δ albedo values, with a mean of 0.0649 (Figure 

3.25). 
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Figure 3.25: Δ albedo values for observations from MODIS, in-situ and flight campaigns and for 
values pulled from modelling studies featuring deforestation. 
 

Even though the observations lack agreement, the modelling studies appear to strongly overestimate 

the Δ albedo values compared to any measurement technique. Values from MODIS suggest that this 

overestimation is on the scale of 3.5 times. 

 Conclusions 

Surface albedo is shown to be lower for forested regions in the Amazon, both analysed spatially (by 

0.017) and via deforestation (by 0.015) using MODIS. The agreement between the spatial and the 

temporal approaches support the previous use of spatial-for-temporal analysis of surface albedo in 

the region. Although there is some variation across the Amazon basin in the absolute albedo values, 

the low forest cover is still shown to be higher, both across the region at 0.05° resolution and at 

multiple locations at 0.01° resolution. There is also a larger variation in surface albedo through the 

year for high levels of forest, which results in albedo differences as large as 0.025 being observed 

during May-August – although this difference was greater when the data was analysed spatially. 

The difference between high and low forest cover was also observed when considering flight 

observations made during the GoAmazon and SAMBBA campaigns and taking in-situ measurements 

from a previous study. Where MODIS observations led to a difference of 0.017, the flight campaigns 

displayed a difference of only 0.004, both of which were lower than the in-situ measurements 

presented (0.05). However, in spite of these differences, it was shown that each of these 

measurement types have still displayed lower albedo differences than what is commonly used in 
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modelling studies for deforestation in the Amazon (0.06), resulting in potential underestimation of the 

warming impact of such forest loss. 
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Chapter 4: South East Asia and the role of oil palm 

 Introduction 

4.1.1. Chapter Outline 

Using satellite data from MODIS, the surface albedo of forested and non-forested areas of South East 

Asia were investigated. Specific analysis of Borneo, Java, Sumatra, Sulawesi and the Malay Peninsula 

were carried out to understand the albedo differences across the region. The change in albedo with 

time, between the 2000 – 2003 and 2013 – 2015 periods, was also explored by investigating areas of 

forest that had undergone forest loss. Areas conceded to oil palm plantations were analysed 

separately to investigate the role of oil palm conversion on surface albedo in the region. Finally, the 

dependency of surface albedo changes due to forest loss occurring on the year of forest loss is 

examined.  

4.1.2. Land use change in South East Asia 

South East Asia is home to 5 % of the world’s forests and 12 % of tropical forests, featuring one of the 

world’s most biodiverse regions (Sodhi et al., 2004, 2010; Uryu et al., 2008; Wilcove et al., 2013). 

However, a range of anthropogenic pressures in the region has led to extensive deforestation (Abood 

et al., 2015; Estoque, et al., 2019). Habitat loss is the amongst the highest globally, with the region 

hosting some of the highest densities of threatened species across globe (Sodhi et al., 2004; Wilcove 

et al., 2013). 

Deforestation in the region is second by area only to that found in the Amazon basin, with 1.6 million 

ha of forest lost annually between 1990 and 2015 (Estoque et al., 2019; MacDicken, 2015). As a 

percentage loss, this deforestation rate is greater than Latin America and Africa (0.4 to 0.5 %), 

increasing from 0.83 % during 1990 – 2000, to approximately 1 % for the period 2000-2010 (FAO, 2006; 

Miettinen et al., 2011). Much of the region’s deforestation has occurred in Malaysia and Indonesia, 

which dominate Insular South East Asia’s deforestation (Achard et al., 2002; FAO, 2015; Wicke et al., 

2011). 

Much of the deforestation in the region is driven by industrial activities, including logging, agricultural 

concessions and mining (Abood et al., 2015). In the thirty years between 1975 to 2005, mature oil 

palm increased in area from 0.5 to 7.5 Mha across Malaysia and Indonesia, with a further increase of 

2 Mha of immature oil palm (Wicke et al., 2011). Malaysia and Indonesia are the greatest producers 
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of palm oil, however the expansion of oil palm in the region has mostly come at the expense of forest 

(Austin et al., 2015; Curtis et al., 2018; Koh & Wilcove, 2008). 

In conjunction with the different drivers of LUC, Caiazzo et al., (2014) highlight large differences in 

albedo between tropical rainforest in Amazonia (0.120) and South East Asia (0.066 – 0.091), as well as 

differences between other vegetation types in the region, although only a handful of sites are used 

for each classification. This chapter seeks to verify the surface albedo at scale and explore the size of 

surface albedo changes driven by land use change across South East Asia. 

4.1.3. South East Asia’s oil palm 

Chong et al., (2017) report that, as of 2015, 17 Mha of oil palm exists across Malaysia and Indonesia. 

The oil palm crop grows as a perennial tree crop, which despite being distinguishable due to its eight-

pointed star shape from above, resembles a forest tree more than other agricultural crops grown in 

the region (McMorrow, 2001). In spite of this, oil palm is able to be differentiated via remote sensing 

using high-resolution imagery (Shafri et al., 2011), microwave (Miettinen et al., 2015), and RADAR (L. 

Li et al., 2015) and a mix of moderate and high-resolution satellite measurements (Razali et al., 2014). 

Measurements of the differences in ecological and climatic factors between forests and oil palm has 

also been reported previously. Meijide et al., (2017) analysed the energy and water fluxes of young 

and mature plantations in-situ, finding lower evapotranspiration and sensible heat flux, and a higher 

Bowen ratio in the young plantation. Transpiration and evapotranspiration rates were also calculated. 

Meijide et al., (2018) explored the replacement of forests with monoculture rubber and oil palm 

plantations and highlight the impacts the 2015 El Niño Southern Oscillation (ENSO) had on each 

microclimate. They build on the idea that conversion from forest reduces biodiversity, but also leads 

to less stable, more open microclimates. Sabajo et al., (2017) used Landsat data to present increased 

Land Surface Temperature (LST) in plantations of oil palm and rubber compared to forest in 

Indonesia’s Jambi province. 

There have also been a few reported measurements of surface albedo over palm oil plantations. 

Sabajo et al., (2017) used Landsat measurements to calculate albedo using the equation presented by 

Liang, (2000). Although only a single July retrieval was used in the calculation, they presented an 

albedo 0.015 and 0.030 higher than forest from mature and young oil palm, respectively. This chapter 

seeks to explore the transition of surface albedo in oil palm concessions after forest has been cleared. 
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 Spatial variations of surface albedo in South East Asia 

Measurements of surface albedo were taken from the MODIS product MCD43A3 across the region, 

before being separated into five major landmasses within South East Asia: Borneo, Sumatra, Java, 

Sulawesi and the Malay Peninsula (Figure 4.1). Albedo measurements from MODIS were combined 

with the tree cover data from Hansen et al., (2013) to analyse the changes associated with tree loss. 

The area analysed covered approximately 2.6 million km2 of land, featuring 76 % tree coverage (Table 

4.1). Levels of forest loss between 2000-2015 were observed at this scale to be 4.6 % of the recorded 

forested area (Figure 4.2), however higher rates were found across Borneo, the Malay Peninsula and 

Sumatra (6.8 %, 9.5 %, and 12.6 % respectively). 

 

Figure 4.1: Areas analysed as individual landmasses in this chapter. Borneo (yellow), Java (green), 
Sulawesi (purple), Sumatra (red) and the Malay Peninsula (blue). 
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Figure 4.2: Percentage forest cover across the main landmasses analysed in this chapter. 
At the regional scale, forested pixels displayed an annual surface albedo mean of 0.119, with a higher 

albedo value of 0.127 observed for the non-forest pixels. A similar increase was observed across 

observation for each island (Figure 4.3). 
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Figure 4.3: Annual average albedo values for observed MODIS albedo values for each major 
landmass for forested (green) and non-forested (red) pixels. 
 

Annual average albedo values of forested pixels were highest over Sumatra, averaging 0.124, with 

Sulawesi displaying the lowest (0.113). Non-forest pixels were found to be between 0.124 (Malay 

Peninsula) to 0.133 (Sumatra) across the islands. 

Forested pixels gave consistent albedo values from MODIS across the year, with little variation 

between months (Figure 4.4). Non-forested pixels displayed greater variability, with a peak albedo 

value observed in June (0.134) and a minimum in October (0.118). 
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Table 4.1: Properties of analysed domains. Values give number of pixels that fall within each category, other than the albedo (α) values, which were 
retrieved from the MODIS analysis. Percentages are calculated with respect to the total dry pixel number. 

Domain name Dry pixelsa
 Area / km2 

High forest cover in 
2000 

Low forest 
cover in 

2000 
Forest loss No loss 

High tree 
α mean 

Low tree α 
mean 

South East 
Asia 

2,142,238 2,592,108 
1,640,660 

(77.0 %) 

191,508 
(1.6 %) 

75,818 

(0.6 %) 
1,838,149 (15 %) 0.11875 0.12688 

Borneo 583,520 706,059 
499,276 

(85.6 %) 

17,603 
(3.0 %) 

33,908 

(5.8 %) 
483,558 (82.9 %) 0.12108 0.12664 

Java 108,418 131,186 
22,342 

(20.6 %) 

52,022 
48.0 %) 

26 

(0.02 %) 
80,602 (74.3 %) 0.11527 0.12697 

Peninsula 117,606 142,303 
83,382 

(70.9 %) 

9,893 
(8.4 %) 

7,900 

(6.7 %) 
90,795 (77.2 %) 0.12244 0.12364 

Sumatra 363,789 440,185 
250,845 

(69.0 %) 

35,475 
(9.8 %) 

31,585 

(8.7 %) 
267,484 (73.5 %) 0.12363 0.13257 

Sulawesi 142,198 172,060 
104,981 

(73.8 %) 

13,355 
(9.4 %) 

919 

(0.7 %) 
129,199 (90.9 %) 0.11336 0.12895 

a Dry pixels refer to pixels featuring less than 10 % water, as determined by the MODIS water mask at 0.01° resolution   
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Figure 4.4: Absolute surface albedo measurements from MODIS for each month across the two time 
periods (2000 – 2003 and 2013 – 2015) 
 

Each of the selected islands exhibit similar maxima/minima around June/July and October for non-

tree pixels and remained consistent through the year for the forested pixels (Figure 4.5). Forested 

pixels for both Java and Sulawesi were shown to be lower throughout the year than the rest of the 

islands, displaying a reduction in albedo from July through to November not observed across the other 

islands. 

The profile of forest across Java is shown to be made up of smaller, less expansive forested area than 

the other landmasses (Figure 4.2 and Arjasakusuma et al., 2018; Guan et al., 2015) and the island 

typically receives less rainfall than the other islands (As-syakur et al., 2013). From June through to 

October, Java experiences a more pronounced dry season than the slightly more northern equatorial 

landmasses. Although not quite as distinct, As-syakur et al., (2013) also show a larger rainfall 

fluctuation across parts of Sulawesi during the same period. The reduction in albedo for these two 
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islands therefore aligns with the dry season (Y. Zhang et al., 2016), as the peak in forested albedo did 

over the Amazon (Chapter 3). 

Analysis from Zhang et al., (2016) support the low-magnitude seasonality of forests, where they found 

consistent normalised difference vegetation index (NDVI) anomalies through the year across the 

regions analysed in this study. The minima observed in non-forested pixels (Figure 4.4) coincide with 

slight maxima in incoming SW radiation in the region (Y. Zhang et al., 2016). 

The peak in non-forested albedo begins with the onset of the dry season over northern Indonesia in 

May through to October (Hendon, 2003).  

 

Figure 4.5: Absolute surface albedo measurements from MODIS across each major analysed 
landmass. Forested pixels are described in panel A (top) and non-forest pixels in B (bottom). 
 

Across Sulawesi and Java, high tree pixels maintained similar surface albedo between observations 

during 2000 – 2003 and 2013 – 2015, however small decreases in measured albedo were shown across 

Borneo, the Malay Peninsula and Sumatra. Non-forested pixels displayed similar magnitude 

differences between the two periods, although there was less consistency regarding the intraannual 
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pattern between them, with a low observed in October across Borneo, Sulawesi and the Malay 

Peninsula in the 2013-2015 period that was not observable during the 2000-2003 period. 

 Spatial analyses comparing forested and non-forested areas within the same 2000-2003 and 2013-

2015 time periods were carried out and the difference in albedo values (Δαs) were compared across 

each location.  

Within each island and the larger regional domain, higher albedo values were consistently observed 

for non-forest pixels compared to forested pixels (Figure 4.7). These annual average Δαs values range 

between 0.009 for Sumatra to 0.016 for Sulawesi. Noticeably, the absolute albedo values for forest 

and non-forest for the region were lower than those reported within the Amazon basin in Chapter 3 

(Table 4.2 and Table 3.3). The Δαs across the Malay Peninsula was comparable to the Amazon basin, 

however the broad region displayed smaller values than much of the Amazon. 

Through the year, the Δαs values peaked in July, corresponding to the maxima observed for the low 

forest pixels. The minimum in October also matches the behaviour of the low forest pixels, coinciding 

with the lowest observed albedo for low tree pixels. However, a second Δαs minimum is also shown 

to occur during March, where a decrease in the albedo of low tree pixels was also observed across 

Borneo and Sumatra. 

Table 4.2: Annual mean MODIS albedo values from spatial analysis of the domain and each 
individually analysed region. 

 
Regional 

domain 
Borneo Java Peninsula Sulawesi Sumatra 

Forested 

albedo 
0.11875 0.1201 0.11588 0.12267 0.1133 0.12202 

Non-forest 

albedo 
0.12688 0.1303 0.12475 0.13849 0.12904 0.13069 

Δαs 0.00813 0.0102 0.00887 0.01582 0.0159 0.00867 
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Figure 4.6: Absolute surface albedo values from MODIS across each major landmass for 2000 – 2003 
(grey) and 2013 – 2015 (red) for forest (top panel) and non-forest (bottom panel). 
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Figure 4.7: Absolute albedo values from MODIS across each major landmass for forest (green) and 
non-forest (purple) pixels. 
 

The Δαs were in similar ranges for each time period (Figure 4.8), although taken across the large 

regional domain, the observations corresponding to 2000 – 2003 were at the lower end of the 2013 – 

2015 observations. The 2000 – 2003 period also gave much smaller ranges of Δαs across the regional 

domain, Sumatra and Borneo in comparison to 2013 – 2015. 
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Figure 4.8: Δ albedo values across each major landmass for both time periods combined (grey), the 
2001-2003 period (red) and the 2013-2015 period (blue). 
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 Temporal analysis 

A temporal analysis approach was then employed to analyse the albedo changes associated with 

direct forest loss (Δαt). Pixels denoted as undergoing forest loss using the Global Forest Change dataset 

were analysed alongside those that were unchanged.  

Across the unchanged pixels, small changes were observed across the regional domain and across 

each of the individual islands between the 2000 – 2003 period and 2013 – 2015. These observed 

changes were shown to be slightly larger than those observed across the Amazon Basin (Section 3.3.2), 

with the whole region displaying a decrease of approximately 4.0 %. The Malay Peninsula showed the 

largest change, with a decrease of 5.2 %, whereas Java was the only selected location that showed an 

increase (+1.4 %) for the non-deforested pixels. 

By correcting for this, pixels which underwent tree loss underwent an average albedo increase of 

0.0172 across the regional domain. Table 4.3 displays the observed changes for each analysed location; 

Sulawesi displayed the greatest changes (0.0185), with Java having the lowest (0.0142). This lower 

value is observed strongly when the monthly Δαt is analysed (Figure 4.9), where Java behaves similarly 

to the other locations from December through to April, but then experiences a steady decline, with a 

sharp decrease in October to a value less than half of that observed in the other locations. Zhang et 

al., (2016) discusses strong differences between the incoming SW radiation observed in Java and the 

other landmasses in the region, with the decline in Δ albedo here coinciding with a sharp increase in 

incoming radiation at the end of the dry season. Other than this behaviour, there was no clear pattern 

observable through the year. 

Table 4.3: Average Δ albedo values of pixels undergoing tree loss across each analysis location. 

 
Regional 

domain 
Borneo Java Peninsula Sulawesi Sumatra Average 

Temporal 

Δ albedo 
0.0172 0.0190 0.0142 0.0170 0.0185 0.0162 0.0170 



83 
 

 

January February March April May June July August September October November December

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

0.020

0.022

A
lb

e
d

o

Month

 Domain

 Borneo

 Java

 Peninsula

 Sulawesi

 Sumatra

 

Figure 4.9: Monthly variation of ΔαT for each analysis location. 
 

Other than for Sulawesi, the temporal analysis displayed a greater ΔαT than during the spatial analysis 

(ΔαS). The largest difference occurred over Borneo, averaging 0.008 larger. 

 

 

Figure 4.10: Δαs and Δαt across each analysis location. 

 Oil palm concessions 

This section focuses on the behaviour of oil palm concessions in comparison to non-conceded land in 

the region. Due to the assignment of trees as vegetation over 5 metres in height with the Global Forest 

Change dataset, there is no direct differentiation between intact forest, degraded forest or managed 

oil palm. Therefore, maps of oil palm concessions from the Global Forest Watch were projected onto 

the analysis grid, allowing pixels to be marked as either part of concessions for oil palm, or not, 

alongside designations of forest cover and loss. 
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Both a spatial and a temporal approach were used to understand whether the albedo of forests within 

oil palm concessions behaved differently to that of forests not conceded. Although concession maps 

do not necessarily designate forests within them as oil palm, albedo differences could be a way to 

improve characterisation of oil palm plantations across forested areas in South East Asia. 

Across the regional domain, pixels within oil palm concession areas consistently displayed a higher 

surface albedo than outside across both areas of high forest and low forest. Across forested areas, 

these differences average 0.017 through the year. Comparing the values obtained across the two time 

periods for July, the average higher albedo of oil palm concessions of 0.019 matches well with the 

calculations from Sabajo et al., (2017). The notable difference between concession and non-

concession areas being around the measured range suggests these differences are attributable to oil 

palm. 

These higher albedo values were observed across each of the analysed islands (Table 4.4), with the 

largest difference in forested areas occurring on the Malay Peninsula (0.020), while Borneo displayed 

the largest difference between non-forested areas (0.021). 

 

Table 4.4: Annual average albedo values measured between pixels granted oil palm concessions and 
those not granted. 

 Forest Non-forest ΔαT 

 Concession 
No 

Concession 
Concession 

No 

Concession 
Concession 

No 

Concession 

SE Asia 0.134 0.117 0.139 0.123 0.0179 0.0169 

Borneo 0.134 0.119 0.141 0.120 0.0205 0.0161 

Java 0.120 0.115 0.129 0.125 0.0199 0.0156 

Peninsula 0.137 0.118 0.145 0.134 0.0177 0.0189 

Sulawesi 0.131 0.112 0.137 0.128 0.0208 0.0164 

Sumatra 0.134 0.119 0.137 0.126 0.0157 0.0185 

 

Through the year, high forest pixels remained relatively consistent (Figure 4.11 and Figure 4.12), 

displaying a small maximum in March both within and without granted concessions for most locations. 

The low forest pixels displayed larger variation in observed albedo, but this was much greater for pixels 

not marked as conceded land (Figure 4.14). As with the previous analysis in this chapter, the maxima 
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in July and the minima in October were observed away from concessions. However, these were not 

shared by pixels within concession areas (Figure 4.13). 

 

Figure 4.11: Annual variation of forested albedo within palm oil concession areas. 

 

Figure 4.12: Annual variation of forested albedo outside palm oil concession areas. 
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Figure 4.13: Annual variation of non-forested albedo within palm oil concession areas. 

 

Figure 4.14: Annual variation of non-forested albedo outside palm oil concession areas 
 

Table 4.4 also shows the average annual temporal albedo changes (Δαt) occurring with forest loss 

between the 2000-2003 and 2013-2015 periods. Across the region, this was slightly higher within 

concession areas, but this differed between the islands, with Sumatra and the Malay Peninsula giving 

higher values outside concession pixels. 
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islands. Outside concessions, two patterns were observed: one across the Malay Peninsula and 

Sumatra, with the other islands displaying different behaviour. Sumatra and the peninsula display 

similar levels of forest and forest loss, while also sharing a similar density of concession land. 

 

Figure 4.15: Average annual temporal albedo changes (Δαt) for concession pixels. 

 

Figure 4.16: Average annual temporal albedo changes (Δαt) for non-concession pixels. 
 

Both within and outside of oil palm concessions, ΔαT was shown to be greater than ΔαS in all locations, 

suggesting that undertaking a spatial analysis to assess the impact of deforestation leads to 

underestimating the associated albedo change. 
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 Year of forest loss 

The final section of this chapter explores the impact of tree loss year on the observed albedo changes. 

Here, the lossyear product from the Global Forest Watch is used to assign an average loss year of each 

pixel that had been marked as deforested and the gain product used to target pixels that had seen 

regrowth of forest. In order to test whether the age of oil palm, or other forest, affected the albedo, 

pixels featuring forest gain between 2000 – 2015 were analysed. 

As Sabajo et al., (2017) found higher albedo for young oil palm, it was reasoned that newly deforested 

pixels featuring forest gain, as indicated by the Global Forest Watch dataset, would also display higher 

albedo values within palm oil concessions compared to pixels deforested earlier. 

Firstly, pixels that featured forest gain of greater than 70 % within oil palm concessions were analysed. 

Between 2001 to 2012, a small decline in measured surface albedo was found – indicating that newer 

planted trees in the areas observed displayed a lower surface albedo (Figure 4.17). However, no pixels 

containing above 70 % forest gain and a forest loss year of later than 2012 were observed across the 

domain. In order to increase the number of observations of newer-growth trees, the forest gain 

percentage was relaxed to a 30 % threshold. 
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Figure 4.17: Average July absolute albedo values for 2013 – 2015 based on loss year across the South 
East Asia domain within oil palm concessions for pixels featuring at least 70 % forest gain since 2001. 
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Using this new dataset, observations across the domain were collected and a similar decline in surface 

albedo was still observed between 2001 – 2012. The updated observations allowed for surface albedo 

for pixels featuring gain between 2012 – 2014 to be observed, and these pixels showed a marked 

increase in surface albedo (Figure 4.18). 

This falls in line with observations from Sabajo et al., (2017), where young oil palm showed an albedo 

approximately 0.013 higher than mature oil palm, in line with the increase between trees planted 

before and after 2011 in these observations. Additionally, as the Global Forest Watch dataset only 

indicates forest gain once a tree height of 5 metres has been established, measurements of oil palm 

using this method would highlight more mature trees rather than youthful vegetation – as such the 

albedo difference is unlikely to persist for as long in our datasets. 
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Figure 4.18: Average July absolute albedo values for 2013 – 2015 based on loss year across the South 
East Asia domain within oil palm concessions for pixels featuring at least 70 % forest gain since 2001. 
 

At smaller geographic levels, a similar pattern is observed. Although no observations of pixels 

featuring forest gain above either threshold were found over Java and few observations were found 

over Sulawesi, analysis took place over Borneo, Sumatra and the Malay Peninsula. 

Both Borneo and Sumatra displayed a similar decline in surface albedo as the time since forest loss 

reduced, although the observations for a loss year of 2013 were the highest of all years across Sumatra 
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and 2013/2014 also rose across Borneo. However, surface albedo across the Peninsula was consistent 

and no surface albedo dependence on year of forest loss was observed for any month, although 

observations were only available up to a loss year of 2010 (Figure 4.19). 

 

Figure 4.19: Average July absolute albedo for 2013 – 2015 of forested pixels in oil palm concessions, 
featuring a percentage gain of at least 30 %, by year of forest loss. 
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Across South East Asia, analysis of MODIS observations show surface albedo for areas of non-forest is 

approximately 0.008 higher than forest, smaller than the difference in the Amazon. Although there 

are differences between the major land masses, the albedo change from tree loss between 2000 – 

2003 to 2013 – 2015 is shown to increase the albedo by a greater extent (approximately 0.017). 

Generally, this temporal change is seen to be larger than the spatial differences in the region. 

Analysing land within oil palm concessions displays distinct behaviour both for forested and non-forest 

albedo, with high forest showing a surface albedo 0.017 higher than forest outside of the concession 

areas, while non-forest areas display reduced variability through the year, alongside a higher albedo. 
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comparable, with similar magnitudes of differences. As with outside of concession areas, temporal 

changes following forest loss give a larger albedo change than the spatial differences observed within 

one time period. 

Finally, a slight decline in forested albedo for areas where forest loss has occurred is shown with 

increasing year of loss, except for forest established in the last three years of observations, which 

showed a surface albedo approximately 0.019 higher than the years immediately preceding them. 

Similar observations were shown across Sumatra and Borneo, although the other major landmasses 

lacked enough data to observe this phenomenon elsewhere. 
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Chapter 5: Climatic impact of Tropical Forest Loss 

 Introduction 

5.1.1. Chapter outline 

This chapter evaluates the albedo changes across the tropics as a result of deforestation using the 

Suite Of Community RAdiative Transfer codes based on Edwards and Slingo (SOCRATES) with respect 

to their radiative impact. A range of idealised deforestation experiments are conducted across the 

Amazon, South East Asia and the combined locations to assess the role different measurements 

techniques of surface albedo may have. Finally, experiments featuring deforestation consistent with 

the Intergovernmental Panel on Climate Change’s (IPCC) Representative Concentration Pathway 8.5 

(RCP8.5) from 2000 to 2050 and 2100 are conducted to analyse the impact of realistic deforestation 

across the same regions. 

5.1.2. Radiative forcing of albedo 

The global energy budget is strongly dependent on the albedo of the Earth’s surface, which dictates 

the fraction of incoming radiation that is either absorbed or reflected. As land use change occurs, the 

albedo of the surface changes with it – deforestation results in an increase as darker forest is replaced 

with vegetation of a higher surface albedo (Bonan, 2008a; Foley et al., 2005). Radiative forcing is able 

to compare different climate forcing mechanisms over time, driven by both natural and anthropogenic 

means (Houghton et al., 2001). 

Much of the radiative forcing of surface albedo changes as a result of land use change is associated 

with deforestation, driven by increased agricultural activity. Overall, this radiative forcing is estimated 

at approximately -0.2 W m-2 since pre-industrial times (Houghton et al., 2001; Pongratz et al., 2011). 

This forcing calculation has contained a large range of uncertainty, with this being attributed in part 

to uncertainty relating to the snow-albedo feedback mechanisms (R. A. Betts, 2000; Richard A. Betts, 

2001; Y. Li et al., 2015). However, further uncertainty also comes from the surface albedo of cropland, 

where using different albedo observations result in large differences in the radiative forcing (G. Myhre 

& Myhre, 2003). 
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 Model description 

The Suite Of Community RAdiative Transfer codes based on Edwards and Slingo (SOCRATES), was 

developed from the set of radiative codes derived by Edwards & Slingo, (1996) by the Met Office. As 

a suite of radiative transfer codes, SOCRATES is used to calculate radiative fluxes and heating rates 

based on input parameters describing the atmosphere and the surface. The radiative code takes the 

two-stream approach to calculate fluxes (where only radiative propagation in two discrete direction 

is considered) and uses spherical harmonics to calculate radiances (allowing the scattered radiation 

field to be defined by directly integrating along rays). Six shortwave (SW) bands and nine longwave 

(LW) bands are used to model the atmospheric absorption, each of which are modelled as a pair of 

fluxes (downward and upward).  

SOCRATES was built as the sophisticated radiative transfer scheme of the Unified Model (UM), but 

was used in an offline, standalone mode for this analysis. The model runs at 2.5 ° × 2.5 ° resolution, 

with 23 homogeneous vertical layers from the surface. The code utilises cloud fields taken from the 

International Satellite Cloud Climatology Project archive (ISCCP-D2) for the year 2000 (Rossow & 

Schiffer, 1999) and accounts for the radiative effects of cloud liquid, cloud ice and snow, with 

reanalysis data from the European Centre for Medium-Range Weather Forecasts (ECMWF) used to 

calculate monthly mean water vapour concentrations and temperatures. 

The top-of-atmosphere (TOA) all-sky radiative flux was calculated for control and deforestation 

experiments, with the difference between the two giving the radiative effect of the albedo change. 

Running the codes in this offline configuration allowed the clear isolation of the surface albedo effect, 

with the only changes in output stemming directly from changes in the magnitude of Δ albedo. 

Although exploring these changes using a full-scale climate model would allow for multiple feedbacks 

to be included, such work was out of the scope of this project due to the computational expensive and 

the need for an initial contribution of these values. 

 Radiative forcing contributions 

As mentioned in previous chapters, although deforestation results in increased CO2 concentrations in 

the atmosphere, contributing a positive (warming) radiative effect, the change in surface albedo due 

to LUC leads to a negative (cooling) radiative effect. As the net radiative effect is determined by the 

contributions from combining the CO2 and albedo (amongst other smaller contributions) effects, 

establishing an accurate albedo change post deforestation is important (Figure 5.1, Scott et al., 2018).  
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Figure 5.1: Global annual mean radiative forcings due to changes in the concentrations of CO2 (red), 
changes to surface albedo (purple) and changes to concentrations of short-lived climate forcings 
(SLCFs - orange) under an idealised tropical deforestation scenario. Figure adapted from Scott et al., 
(2018). 
 

Using the results obtained from previous chapters, this chapter seeks to analyse the influence of the 

albedo changes from tropical deforestation on the climate. In order to do this, the radiative impact of 

deforestation-induced albedo changes across the Amazon basin and South East Asia was calculated 

using the Suite Of Community Radiative Transfer codes based on Edwards and Slingo (SOCRATES).  

SOCRATES was then used to calculate the radiative effect of various deforestation experiments 

detailed below by calculating the difference in net top-of-atmosphere all-sky radiative flux with 

control runs. For each of the deforestation experiments, the forest cover was calculated, and areas of 

high forest had their albedo values altered to that of low forest cover. 

It has been calculated previously (Scott et al., 2018) that global deforestation results in an albedo RF 

of approximately 40 % of the RF due to changes in CO2. However, this weighting is reduced in the 

tropics to approximately 15 % of the CO2 change as there is no enhanced surface albedo change due 

to snow cover, as there is in the boreal regions. 

The first set of experiments were designed to investigate the contributions of albedo change from 

deforestation within the Amazon and South East Asia to global and tropical deforestation experiments. 

The control experiment utilises the distribution of forests within the Community Land Model 

(CLMv4.0), which are based on recorded plant functional types (PFTs) from MODIS data, to produce 
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global forest coverage maps. Idealised deforestation scenarios were then implemented, with forested 

regions of the land surface removed globally, within the Tropics (between 20° N – 20° S), across the 

Amazon (80° W – 35° W, 20° S – 13° N), and across South East Asia (90° E – 150° E, 15° S – 30° N, 

excluding China). 

The albedo changes from deforestation within these experiments were all calculated to give an annual 

mean negative radiative forcing. The albedo change from global deforestation led to an RF of -0.96 W 

m-2 (Table 5.1). Tropical deforestation accounted for 19 % (-0.18 W m-2) of this total. 

Table 5.1: Global annual mean radiative forcings due to idealised deforestation experiments 

Experiment number Experiment name RF due to Δ albedo (W m-2) 

1.1 Global deforestation -0.960 

1.2 Tropical deforestation -0.182 

1.3 Amazonian deforestation -0.072 

1.4 South East Asian deforestation -0.047 

 

Albedo changes from regional deforestation across the Amazon and South East Asia were calculated 

to contribute RFs 39 % and 26 % respectively, of the tropical deforestation scenario. 

 Amazon deforestation experiments 

In order to investigate how the observations of surface albedo across the Amazon from chapter 1, 

influence the radiative forcings, a second set of deforestation experiments were conducted. Each 

experiment resulted in deforestation of an area of high forest cover (≥70 %), as measured by the 

Global Forest Watch dataset (M. C. Hansen et al., 2013). The forested and non-forested pixels were 

assigned the average monthly albedo measurement from each measurement method (MODIS, flights, 

in-situ and modelling average) for the control runs of each experiment. The deforestation runs were 

then performed by replacing the forested pixels with non-forested pixels. 

Table 5.2 describes the annual mean RF of each experiment featuring Amazon deforestation. 

Experiments 2.1 – 2.5 utilised a control run, with forest and non-forest albedo values taken from 

MODIS spatial measurements. Replacement ‘deforested’ albedos were then selected from MODIS 

spatial, MODIS temporal, and modelling Δ albedo values for experiments 2.1 – 2.3 respectively. 
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Experiments 2.4 – 2.7 used individual control runs, where the high and low forest albedo were 

assigned based on the measurement technique prior to deforestation; i.e. non-forested regions were 

assigned the non-forest albedo measured during the aircraft campaigns or the in-situ campaigns, as 

were the forested regions. The deforestation runs for these experiments then updated the forested 

albedo accordingly to align with low forest, simulating widespread deforestation across forested pixels. 

Table 5.2: Global annual mean radiative forcings due to Amazon deforestation experiments.  

Experiment number 
Experiment name 

Δ albedoa RF due to Δ albedo (W 

m-2) 

2.1 MODIS spatial 

deforestation 
0.017 -0.027 

2.2 MODIS temporal 

deforestation 
0.015 -0.022 

2.3 Modelling deforestation 0.060 -0.097 

2.4 Flight forest deforestation 0.003 -0.006 

2.5 Flight change deforestation 0.003 -0.005 

2.6 In-situ forest deforestation 0.047 -0.075 

2.7 In-situ change 

deforestation 
0.048 -0.075 

aThe albedo change displayed here is the annual average for each experiment; the radiative code used monthly albedo values. 

The magnitude of the calculated RF increased with the magnitude of the Δ albedo within the 

deforestation experiments linearly (Figure 5.2). With a Δ albedo of 0.06, the modelling experiment 

resulted in the largest negative RF, whereas using values from each of the measurement techniques 

provide smaller RFs, reflecting their smaller Δα post deforestation.  

 South East Asia deforestation experiments 

The third set of experiments performed similar runs to the second but focus on measurements over 

South East Asia. Forested and non-forested pixels were determined using the Global Forest Watch 

dataset (M. C. Hansen et al., 2013) and the monthly albedo values changed for each experiment. 

Each experiment in this section used control runs displaying surface albedo values as calculated from 

the MODIS spatial analysis. The high forest pixels were then replaced with values of low forest pixels 
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from the MODIS spatial analysis (exp. 3.1), MODIS temporal analysis (exp. 3.2), oil palm albedo values 

(exp. 3.3), and increasing the low forest cover by Δα from modelling studies (exp. 3.4). 

The deforestation experiments based on MODIS observations of high and low forest cover display the 

smallest RF (Table 5.3). This again corresponds to the size of the Δ albedo measured across the 

domains, with a linear relationship shown (Figure 5.2). Simulating deforestation using values obtained 

from modelling studies resulted in the largest negative radiative forcing from the experiments. This is 

due to the modelling studies providing a greater Δα than those measured in the region using MODIS.  

Table 5.3: Global annual mean radiative forcings due to South East Asia deforestation experiments 

Experiment number Experiment name Δ albedoa 
RF due to Δ albedo (W 

m-2) 

3.1 
MODIS spatial 

deforestation 
0.009 -0.002 

3.2 
MODIS temporal 

deforestation 
0.017 -0.004 

3.3 Oil palm conversion 0.016 -0.003 

3.4 Modelling deforestation 0.060 -0.012 
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Figure 5.2: The response on Radiative forcing by changing Δ albedo across the different experiment 
sets. The calculated RF from the deforestation experiments in both the Amazon and South East Asia 
shows a linear relationship with the magnitude of the albedo changes featured in the experiments 
(R2 = 0.99). The response in South East Asia (Exp. 3, red line) is much weaker than across the Amazon 
(Exp. 2, black line); this is discussed further in Section 5.8. 

 Tropical deforestation experiments 

As has been shown, deforestation in the Amazon and South East Asia combined is calculated to 

contribute approximately 65 % of the RF form surface albedo changes due to tropical deforestation. 

As a result, deforestation across the two regions were combined to assess the potential deforestation 

across both regions on a global scale. 

Four different experiments were performed: three involving MODIS measurements directly and the 

fourth utilising the changes calculated from models (Table 5.4). Experiment 4.1 uses high and low 

forest cover observations, 4.2 used Δ albedo values calculated across time from the temporal analysis 

over each region. Experiment 4.3 utilises the same observations from the spatial analysis as 4.1 over 
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the Amazon but updates the low forest cover to observations over oil palm concessions over South 

East Asia to simulate oil palm conversion. 

As with the regional sets of experiments, the difference between the measured contributions to 

surface albedo change from MODIS and the changes contributed by modelling studies is large, with a 

much greater global annual mean radiative forcing calculated when using the modelling values.  

 

Table 5.4: Global annual mean radiative forcings due to deforestation experiments across the 
combined tropical regions of the Amazon and South East Asia 

Experiment number Experiment name RF due to Δ albedo (W m-2) 

4.1 MODIS spatial deforestation -0.028 

4.2 MODIS temporal deforestation -0.026 

4.3 Oil palm conversion -0.030 

4.4 Modelling deforestation -0.140 

 

 RCP8.5 scenario experiments 

To further understand the impact of deforestation-driven surface albedo changes, experiments 

utilising representative deforestation rather than idealised deforestation scenarios were conducted. 

For the IPCC’s fifth assessment report (AR5), a number of RCPs were developed to describe a 

representative pathway to reach a given greenhouse gas concentration trajectory by the year 2100 

(Moss et al., 2010). Four of these pathways were carried forward into AR5 (RCP2.6, RCP4.5, RCP6 and 

RCP8.5) to describe potential trajectories to reach a range of radiative forcing values (2.6, 4.5, 6 and 

8.5 W m-2 respectively) in 2100 (G. Myhre et al., 2013). 

RCP8.5 was often described as the ‘business as usual’ scenario, describing a trajectory where no policy-

driven mitigation of climate change was included, however it is better described as a “very high 

baseline” scenario, creating a forcing near the 90th percentile for baseline scenarios (van Vuuren et al., 

2011). The scenario was developed by the International Institute for Applied Systems Analysis (IIASA) 

Internal Assessment (IA) Modelling Framework; a set of models describing GHG-related industries 

(Riahi et al., 2007) and used the MESSAGE energy system model to link the forest management model 



100 
 

DIMA (Dynamic Integrated Model of Forestry and Alternative Land Use) with the world food system 

model AEZ-WFS (Agro-Ecological Zoning – World Food System). 

The scenario led to an increase in cultivated land by over 300 Mha between 2000 – 2100, coupled with 

a decrease in forested area by 300 Mha between 2000 – 2050, then a further 150 Mha from 2050 – 

2100 (Hurtt et al., 2011). Using the datasets created by the Land Use Harmonization project for World 

Climate Research Program Coupled Model Intercomparison Project phase 5 (CMIP5), forest cover 

projections consistent with the RCP 8.5 scenario were created for the years 2005, 2050 and 2100 to 

simulate deforestation consistent with such a scenario over these timescales (Hurtt et al., 2011). Using 

these projections, two experiments were executed to simulate the changes in forest between 2005 

and 2050/2100 respectively (Table 5.5). Forested pixels across the Amazon and South East Asia were 

assigned albedo values consistent with MODIS forest measurements and changes consistent with 

MODIS measurements and previous modelling studies were applied to simulate deforestation for non-

forested pixels. 

Table 5.5: Global annual mean radiative forcings due to deforestation across Amazon and South East 
Asia consistent with RCP8.5 from a base year of 2005 

Experiment number Experiment name RF due to Δ albedo (W m-2) 

5.1 2050 MODIS deforestation -0.002 

5.2 2100 MODIS deforestation -0.003 

5.3 2050 Modelling deforestation -0.011 

5.4 2100 Modelling deforestation -0.016 

 

As the rates of deforestation in these scenarios are lower compared to the idealised scenarios, where 

all areas of high forest cover are removed in the same regions, the annual mean radiative forcings for 

this set of experiments are also lower 

 Discussion 

The results from this chapter further show the importance of understanding albedo changes in the 

tropics. Using current model values for surface albedo changes from deforestation in the Amazon, the 

radiative forcing potentially offsets the carbon dioxide induced radiative forcing of tropical 

deforestation by 8 % (Figure 5.1). However, using measurements taken during this study, it is 

suggested this negative radiative forcing contribution is more likely to be approximately 2 %. Using in-
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situ measurements from Culf et al., (1995), this value could be raised to 6 %, again much lower than 

what is currently modelled. 

Similar conclusions are drawn from the South East Asia experiments; with the radiative forcing from 

modelling-assigned albedo changes being calculated almost an order of magnitude larger than those 

from MODIS observations. This additionally holds true for the modelled conversion to oil palm, which 

results in a similar radiative response to more general drivers of deforestation. 

Combining observations made across South East Asia and the Amazon results in a large range of 

calculated radiative forcings (Table 5.4). Using these values, the variation of Δ albedo measurements 

is carried forward into the RF calculations. Contributing a global annual mean radiative forcing 

between -0.14 W m-2 for modelling Δ albedo values, to -0.028 W m-2
 for MODIS observations, we can 

assess the impact this has on the net radiative forcing from tropical deforestation by using values from 

Scott et al., (2018). 

Firstly, the assumption is made that the relationship between radiative forcing contributions from 

each region and the area of forest loss is linear; that is each region gives the same contribution towards 

albedo change induced RF as it does to CO2 and SLCF RFs as a result of deforestation. By making this 

assumption, the contribution to CO2 and SLCF from South East Asia and the Amazon can be estimated. 

Using the contribution ratios calculated within the first set of experiments, the RF is attributed and 

the impact of changing the surface albedo is seen in Figure 5.3. The MODIS observations result in a 

reduced impact of surface albedo within the tropics, but updating the surface albedo changes to 

typical model values leads to large reductions in the potential net RF. 
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Figure 5.3: Global annual mean radiative forcings (RF) due to changes in the concentrations of CO2 
(red), changes to surface albedo derived from MODIS observations (purple) and changes to 
concentrations of short-lived climate forcings (SLCFs - orange) for deforestation across the combined 
regions of South East Asia and the Amazon (left panel), with individual regions of the Amazon (top 
right) and South East Asia (bottom right). Error bar on albedo and net RF show the potential RF when 
albedo changes are taken from modelling studies. Values for CO2 and SLCF RFs are calculated in Scott 
et al., 2018. 
 

Values of Δ albedo derived from MODIS measurements give a negative RF 5 % of the CO2 RF in the 

Amazon, 1 % in South East Asia and 3.5 % when combined over the two regions. Altering these Δ 

albedo to typical model values give a negative contribution to the net RF 20 %, 4 % and 17 % of the 

CO2 RF across the Amazon, South East Asia and the combined region respectively. This implies that 

estimating the impact of albedo changes from deforestation in the tropics can lead to an 

overestimation using current models by a factor of between 4 and 5. 

In the experiment set 1, South East Asia contributes 65 % of the Amazonian contribution for radiative 

forcing, however this relative contribution drops greatly for experiment set 3. As the model, and thus 

the selection of forest cover, are performed on a 2.5° grid, the nature of the islands across South East 

Asia mean many pixels in the region are unable to meet the requirement of 70 % forest cover, or 

overlap strongly with water and are thus excluded from the analysis. This resulted in only 75 Mha of 
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forest, compared to almost 260 Mha used in the RCP experiments (set 5), being deforested in the 

experiments. Two approaches were taken to overcome this issue and to investigate whether doing so 

increased the low contributions to deforestation induced radiative forcing from South East Asia. 

Firstly, the restriction on water cover was removed, allowing pixels with greater than 10 % water cover 

to be selected. Then two approaches were taken, firstly the threshold for forest cover was reduced 

from 70 % to 50 % of the pixel. This tripled the number of pixels that were selected for deforestation 

in the model scenarios, and the experiment set 3 were rerun (set 3a). The greater number of pixels 

resulted in larger radiative forcing (Table 5.6) and a stronger response to Δ albedo, although still not 

as strong as observed in the Amazon experiments (Figure 5.4). 

Table 5.6: Global annual mean radiative forcings due to South East Asia deforestation experiments 
using a 50 % forest cover threshold for selecting pixels to be deforested. 

Experiment number Experiment name Δ albedo 
RF due to Δ albedo (W 

m-2) 

3.1a 
MODIS spatial 

deforestation 
0.009 -0.006 

3.2a 
MODIS temporal 

deforestation 
0.017 -0.012 

3.3a Oil palm conversion 0.016 -0.011 

3.4a Modelling deforestation 0.060 -0.042 
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Figure 5.4: The response on Radiative forcing by changing Δ albedo across the different experiment 
sets. Decreasing the threshold to detect high forest cover to 50% of the pixel's area (Exp. 3a, blue 
line) results in a greater response than the original South East Asia experiments (Exp. 3, red line), 
although the Amazon’s response is still stronger (Exp. 2, black line). 
 

Pixels covering approximately 250 Mha were identified as forest using this method, the equivalent 

area of total forest in the region. However, the calculated RFs for South East Asia are between 

approximately 25 – 50 % those of the Amazon. 

The second method normalised the RF to the area deforested in experiment set 3, then calculated the 

expected RF given as a result of complete deforestation in the region. Using the 258 Mha calculated 

with the methodology from Hurtt et al., (2011) for experiment set 5, the RF associated with complete 

deforestation in the region was calculated (Table 5.7). 
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Table 5.7: Global annual mean radiative forcings due to South East Asia deforestation experiments, 
calculated by expanding the RF response to area deforested from experiment set 3 to 258 Mha, in 
line with the area of forest calculated for experiment set 5. 

Experiment number Experiment name Δ albedo 
RF due to Δ albedo (W 

m-2) 

3.1b 
MODIS spatial 

deforestation 
0.009 -0.006 

3.2b 
MODIS temporal 

deforestation 
0.017 -0.012 

3.3b Oil palm conversion 0.016 -0.011 

3.4b Modelling deforestation 0.060 -0.042 

 

Both methods result in a similar deforestation area in the region, and result in similar RFs, suggesting 

the model has a linear response to the deforestation area in the region, as well as to the magnitude 

of the surface albedo change.  

Changing the forest threshold over South East Asia allows a combined simulation using SOCRATES with 

the increased South East Asia contribution. Rerunning experiment set 4 results in a similar RF across 

each of the MODIS experiments of approximately -0.035, with the oil palm conversion slightly higher 

than the spatial and temporal Δα experiments (Table 5.8). As with the previous experiment sets in this 

chapter, the simulation using modelling Δα results in a greater radiative forcing. 

Table 5.8: Global annual mean radiative forcings due to deforestation experiments across the 
combined tropical regions of the Amazon and South East Asia, increasing the forest area deforested 
in South East Asia. 

Experiment number Experiment name RF due to Δ albedo (W m-2) 

4.1a MODIS spatial deforestation -0.033 

4.2a MODIS temporal deforestation -0.034 

4.3a Oil palm conversion -0.037 

4.4a Modelling deforestation -0.169 

Figure 5.5 shows the impact of increasing the deforested area across South East Asia; the RF 

contributed by the albedo changes is larger than the positive RF from SLCFs for the combined 

deforestation case and is approximately equal in South East Asia when the MODIS albedo changes are 
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used. Using model assigned Δα values, the combined regional deforestation now offsets 

approximately 20 % of the positive CO2 RF, and 12.5 % across South East Asia. 

 

Figure 5.5: As for Figure 5.3, with updated forest cover over South East Asia to align with a greater 
area of forest cover aligning with a lower (50 %) threshold as defined by the Global Forest Watch 
dataset. 
 

This strongly suggests using surface albedo values from models may be underestimating the net RF, 

and thus the warming impact of deforestation in these regions. 

 Conclusions 

The analysis presented here further enhance the argument that albedo changes within the tropics 

should be carefully considered when simulating deforestation in the region. As different measurement 

techniques appear to provide different surface albedo measurements, and thus variable surface 

albedo changes post deforestation, there is no consistency in global annual mean radiative forcing 

from such land use change. 
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Combined, the Amazon and South East Asia deforestation contribute 65 % of the RF due to albedo 

changes across the tropics, which in turn contributes 19 % of the albedo change RF for global 

deforestation. However, as albedo measurements differ in both regions, the albedo induced RFs are 

shown to be poorly constrained, with large variation observed dependent on measurement technique. 

The values obtained from the idealised deforestation scenarios are shown to be large, but differences 

between albedo measurements from MODIS and typical modelling study values are shown to give 

stark differences, even in non-extreme deforestation scenarios, following RCP8.5. 

Overall, a need for better constrained surface albedo measurements across the tropics is presented 

here. Without such improvements, models featuring deforestation in the tropics may be strongly 

overestimating the surface albedo cooling effect. As a result, the warming impact of deforestation 

may be strongly underestimated, potentially by 43 % of the warming effect that CO2 contributes. 
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Chapter 6: Conclusions and Further Work 

 Conclusions  

This project aimed to assess the changes in albedo after tropical deforestation and the role it plays in 

affecting the climate. Chapter 3 analysed previous measurements of albedo and its use in modelling 

scenarios, whilst using a range of observation techniques to lead a discussion on the albedo change of 

deforestation across the Amazon. Chapter 4 used MODIS satellite observations to compare 

deforestation-related albedo changes in South East Asia across its major land masses, whilst assessing 

the impact that oil palm conversion has had on the surface albedo in the region. Chapter 4 also 

explored the relationship of time since the occurrence of forest loss on the surface albedo. Chapter 5 

focused on the climatic implications of deforestation-driven albedo changes across the regions. 

In Chapter 3, evaluation of the literature resulted in 56 modelling studies and 13 observational studies 

highlighting albedo changes between forested areas and non-forested areas in the tropics. Surface 

albedo of forests is lower than that of replacement vegetation (e.g. grass for pasture, or crops), but 

values used in the modelling studies have previously prescribed changes 25 % higher than were 

presented in observations. 

MODIS observations of surface albedo, whilst providing good spatial and temporal data, presents 

challenges in data collection over the tropics due to cloud coverage. Aggregating the data over three 

years into monthly files presented near-complete coverage of the Amazon region. Areas of forest in 

the Amazon exhibit lower surface albedo than areas of non-forest across the entire region, displaying 

a near-linear response to percentage forest cover.  

Observations of surface albedo were similar between the periods 2000-2003 and 2013-2015, with the 

same monthly variation displayed across each domain analysed. Although areas of non-forest were 

consistent through the year, the forested pixels displayed a strong seasonal cycle through the year – 

with a peak albedo in October / November and a minimum in June / July. 

Both temporal and spatial approaches were used to improve validation of spatial-for-temporal 

analysis that has previously been undertaken. Across the Amazon, both approaches resulted in similar 

albedo differences between forest and non-forested pixels, with similar intra-annual variation also 

observed. 
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Observations from the SAMBBA and GoAmazon flight campaigns presented their own difficulties in 

their usage, as the campaigns were focused on air pollution monitoring, much of the data acquisition 

was unsuitable for surface albedo measurements due to poor atmospheric conditions. The usable data 

was scaled up with a bootstrapping method and observations from each campaign displayed similar 

surface albedo measurements to each other, although the absolute albedos of both forest and non-

forested areas were higher than MODIS observations. The flight campaigns also exhibited lower 

albedo differences between forested and non-forested pixels than those from MODIS over the same 

areas. 

Using a full dataset from an in-situ study, measured albedo values for forested areas were similar to 

MODIS observations (approximately 0.13), but non-forested measurements displayed a surface 

albedo 0.03 and 0.02 greater than MODIS and the flight data, respectively. Hence, differences 

between forest and non-forested land were shown to be higher using the in-situ data. 

Although the observations displayed varying albedo differences, the magnitude of each were 

significantly lower than those used in modelling studies in the literature. As a result, the observations 

over the Amazon suggest that modelling studies may be underestimating the warming impact of 

deforestation.  

Chapter 4 further analyses the relationship between surface albedo changes and deforestation. Across 

South East Asia, deforestation has been higher at times across the last decade than within the Amazon, 

with a major driver being conversion of forest to palm oil. Similar to the Amazonian region, the surface 

albedo differences between forest and non-forest (ΔαS) generally across the region is much lower than 

reported in modelling studies in the literature. However, the behaviour between albedo of non-

forested areas across the landmasses of Borneo, Java, the Malay Peninsula, Sulawesi and Sumatra 

showed considerable variability; with Sumatra and Borneo displaying a similar seasonal relationship. 

The change in albedo following forest loss also showed lower changes than are observed in modelling 

studies, with each landmass showing slightly higher albedo changes post-deforestation than ΔαS, 

although the size of difference between the two techniques was small. Similarly to the Amazonian 

analysis, a spatial-for-temporal analysis technique across the region appears to be a reasonable proxy 

for a direct temporal comparison. 

The conversion of forest to oil palm is an important driver of deforestation in the region and large 

areas of land are conceded to oil palm plantations. The albedo of both forest and non-forested land 



110 
 

within these concessions show significantly higher albedo observations than areas outside of 

concessions. Java, potentially as a result of its state-owned plantation companies focusing their 

plantations on tea, sugar, coffee and tobacco rather than oil palm, displayed consistently lower 

surface albedo within concession areas than the other islands’ concession areas (Potter, 2015). The 

higher albedo of non-forested land in concessions may point to less mature oil palm having been 

planted, but not reaching the size to be considered a tree using the Global Forest Watch dataset. 

Regarding the Δαs and ΔαT values observed between concession and non-concession areas, no 

discernible differences were observed. So, whilst analysis of the absolute albedo measurements 

appears to be a good indicator for locations of palm oil across South East Asia, this would be difficult 

to distinguish by assessing the change alone, provided no new concessions are granted. 

The albedo of forested areas that had undergone forest loss within concession areas showed a slight 

decrease with time since loss occurring, except for the most recent years of forest loss (2013 onwards), 

which display a surface albedo 0.19 higher than the immediately preceding years. This higher albedo 

could be an indicator of young oil palm in the region. 

Chapter 5 explores the radiative forcing that results from surface albedo changes from a range of 

idealised deforestation scenarios using the Suite Of Community RAdiative Transfer codes based on 

Edwards and Slingo (SOCRATES). Even in the tropics, the surface albedo change is the second largest 

radiative effect following deforestation, so modelling incorrect changes could lead to significant 

impacts in the overall radiative forcing. As forest loss results in an increase in surface albedo, a 

negative radiative forcing contribution from this change results. 

Crucially, these results indicate albedo values within South East Asia and the Amazon are both unique 

to each region and to the values commonly used in models. Therefore, modelling studies of 

deforestation in the tropics should carefully consider the magnitude of the smaller biophysical 

changes associated with deforestation to ensure that they are capturing accurate changes and further 

observational studies aimed to collect such data may be required. 

The magnitudes of the radiative forcing changes were explored across the Amazon and South East 

Asia based on the observations made in Chapters 3 and 4. Approximately 40 % of the RF contribution 

from albedo change due to tropical deforestation is due to changes across the Amazon, with 26 % 

from South East Asia. The magnitude of the radiative forcing depended on the magnitude of the 

albedo changes observed, thus modelling the change across the Amazon using the flight albedo 
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observations results in a smaller albedo RF contribution than using values from MODIS. In turn, in-situ 

observations were shown produce a larger RF than MODIS, although each based on observations were 

smaller than the changes based on model-prescribed changes.  

Similarly, simulations based on MODIS observations across South East Asia result in smaller RFs than 

simulations using model-prescribed changes as a result of the smaller Δ albedo. The RF in the region 

is strongly dependent on the replacement vegetation, however. Conversion from forest to oil palm, 

rather than to grass/crops, results in a much larger albedo change and thus an RF on a similar 

magnitude of the model-prescribed simulation. 

Combining the deforestation across the two regions results in more dramatic variation of the RFs. 

Increasing the surface albedo in line with the modelling studies highlighted in Chapter 3 results in a 

large RF (~-0.14 W m-2), approximately 8 times that derived from forest loss as measured by MODIS. 

Combining oil palm conversion in South East Asia with conversion to grass/crops in the Amazon also 

results in a larger change. Finally, the combined simulations allow for the separation of a spatial-for-

temporal approach with a purely temporal analysis. The former, where observations are made 

between land cover classes within the same time period, results in a lower RF than comparing direct 

change over time. Much of this difference is driven by the higher ΔαT across most of South East Asia, 

as seen in Chapter 3. This difference suggests that, whilst a spatial-for-temporal approach may lead to 

a reasonable estimation, measuring direct changes from forest loss is important. 

Realistic deforestation scenarios were also explored, with forest levels consistent with RCP8.5 for the 

years 2000, 2050 and 2100 simulated. Assigning the albedo changes to be consistent with the MODIS 

observations result in a small RF (-0.002 and -0.003) for both years, however model-derived values 

increase these approximately fivefold (-0.011 and -0.016). 

The results presented within this work suggest that the warming from tropical deforestation thus far 

has been underestimated. The reduction in the cooling influence of surface albedo in the tropics 

results in a larger net warming effect for deforestation. Previously, historic land use change between 

800 – 1992 has been estimated to result in an RF from surface albedo change of -0.2 W m-2, with 

strongly negative values in the tropical region, due to the combination of a large albedo change and 

high insolation (Houghton et al., 2001; Pongratz et al., 2011). These results suggest that this cooling is 

likely too large, and thus the net RF of +0.15 W m-2 that was calculated is likely larger. 
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As these results suggest tropical deforestation is contributing a larger positive radiative forcing than 

previously thought, putting a pause to the increasing rates and pushing to reduce the amount of 

deforestation in the tropics is more important to mitigate climate change than before.  

 Further Work 

Analysing the surface albedo across two of the continental tropical forests has shown their uniqueness 

in terms of albedo values and changes and grouping their values has been shown to lead to 

inconsistencies versus observations. As such, this work highlights the need for the albedo across the 

tropical forests of the African continent to also be analysed to ensure the correct changes are being 

captured in modelling studies. However, the discrepancies between observations are also important 

to highlight here: although MODIS has been evaluated multiple times previously over a range of 

vegetation surfaces, the inconsistency between previous in-situ observations and modelling studies is 

concerning. Therefore, further work on scaling up observations to the satellite pixel level would also 

be needed. Although the Amazon displayed relative consistency across the region, the behaviour of 

the surface albedo across the land masses of South East Asia contained significant variability. It would 

therefore be important to understand the type of land use and the types of forest between the islands, 

so that this variability can be attributed. Further observational studies in this area would allow for this. 

Integrating the use of high-resolution satellite imagery to improve identification of oil palm in the 

region (e.g. Descals et al., 2020) would also provide better awareness as to the climatic differences 

between plantations and forest classifications. 

Understanding the impact of historic land use on the current climate is important, and so there is 

scope for reevaluating the historic RF, as well as predicting the change based on other futuristic 

deforestation scenarios with updated surface albedo changes. Further to this, using a more complex 

model, such as an Earth system model (e.g. UKESM1), which both dynamically updates vegetation and 

the atmosphere as changes occur, would allow more accurate estimations of the RFs from surface 

albedo changes and would put it in context with RFs from changes in CO2 and SLCFs, as well as other 

the climate influences forests have, as discussed in Chapter 1. 

Whilst the design of further experiments to explore the research space surrounding albedo changes 

would provide valuable insight to the research community on the overall impact of LUC, the 

implementation of the findings reported here should be used in the continuous improvement of 

climate models. That models’ albedo values appear not to match observations across the tropics is 
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concerning and further verification should take place, potentially with a recommendation that more 

complexity should be focused on how albedo values of vegetated surfaces within models are derived. 

As computational expense of models becomes less of an issue with time and the complexity of models 

is able to grow, traditional land cover classifications should also be broken down to add further 

granularity regarding vegetation types and their climatic influence. Implementing both of these will 

enable our understanding of how changing forests in various regions will impact the climate to grow 

further. 
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Appendices 

Appendix A – Literature search albedo values 

 

Reference 
Modelling / 
Observation 

Replacement 
vegetation 

Publication 
year 

Model/observation 
method 

Δ 
albedo 

(Souza et al., 
2013) 

In Situ Soybean 2014 
3 metre tower (soybean), 
54 metre tower (forest) 

0.09 

(Eck et al., 
1998) 

Modelling Bare Soil 1998 
6S (Second Simulation of 
the Satellite Signal in the 

Solar Spectrum) 
0.088 

(Holdaway et 
al., 2010) 

In Situ Pasture 2010 
ABRACOS & LBA eddy 

covariance towers 
0.044 

(Voldoire & 
Royer, 2004) 

Modelling Grass 2004 ARPEGE + ISBA GCM 0.035 

(Bastable et 
al., 1993) 

In Situ Pasture 1993 
Automatic weather 

stations 
0.032 

(Wei et al., 
2001) 

Remote 
Sensing 

Grass 2001 AVHRR 0.0505 

(Wei et al., 
2001) 

Modelling Grass 2001 BATS 0.0775 

(Varejao-
Silva et al., 

1998) 
Modelling Grass 1998 BATS-SDM 0.02 
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(Varejao-
Silva et al., 

1998) 
Modelling Grass 1998 BATS-SDM 0.04 

(Mei & 
Wang, 2010) 

Modelling Grass 2009 CAM3-CLM3 0.06 

(Devaraju et 
al., 2015) 

Modelling Grass 2015 CAM5.0 - CLM4 0.075 

(Henderson-
Sellers et al., 

1993) 
Modelling Grass 1993 CCM 0.07 

(Dickinson & 
Kennedy, 

1992) 
Modelling Pasture 1992 CCM 0.07 

(McGuffie et 
al., 1995) 

Modelling Grass 1995 CCM1 + BATS GCM 0.07 

(H. Zhang et 
al., 1996) 

Modelling Grass 1996 CCM1 + BATS GCM 0.07 

(H. Zhang et 
al., 2001) 

Modelling Grass 2001 CCM1-Oz + BATS GCM 0.07 

(Pitman et 
al., 1993) 

Modelling Grass 1993 CCM1-Oz + BATS GCM 0.07 

(Pitman et 
al., 1993) 

Modelling Grass 1993 CCM1-Oz + BATS GCM 0.069 

(Pitman et 
al., 1993) 

Modelling Grass 1993 CCM1-Oz + BATS GCM 0.095 

(Pitman et 
al., 1993) 

Modelling Bare Soil 1993 CCM1-Oz + BATS GCM 0.115 
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(Hahmann & 
Dickinson, 

1997) 
Modelling Grass 1997 CCM2-BATS1e 0.07 

(Costa et al., 
2007) 

Modelling Soybean 2007 CCM3 0.09 

(Costa et al., 
2007) 

Modelling Soybean 2007 CCM3 0.08 

(Costa et al., 
2007) 

Modelling Pasture 2007 CCM3 0.048 

(Costa et al., 
2007) 

Modelling Pasture 2007 CCM3 0.057 

(Snyder et 
al., 2004) 

Modelling Bare Soil 2004 CCM3-IBIS 0.04 

(Sampaio et 
al., 2007) 

Modelling Soybean 2007 CPTEC-INPE AGCM 0.05 

(Sampaio et 
al., 2007) 

Modelling Pasture 2007 CPTEC-INPE AGCM 0.06 

(G. Myhre & 
Myhre, 
2003) 

Modelling Grass 2003 
DISTORT (radiative 
transfer method) 

0.06 

(Kleidon & 
Heimann, 

1999) 
Modelling Grass 1999 ECHAM-4 GCM 0.06 

(Kleidon & 
Heimann, 

1999) 
Modelling Grass 1999 ECHAM-4 GCM 0.08 
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(Branković et 
al., 2006) 

Modelling Grass 2006 ECMWF 0.05 

(Branković et 
al., 2006) 

Modelling Grass 2006 ECMWF 0.1 

(de Oliveira 
et al., 2016) 

In Situ Pasture 2016 Fluxnet 0.059 

(Manzi & 
Planton, 

1994) 
Modelling Grass 1994 

French spectral GCM + 
ISBA (Interactions 

between Soil, Biosphere 
and Atmosphere) 

0.05 

(Berbet & 
Costa, 2003) 

Modelling Grass 2003 GENESIS (V2) - IBIS 0.036 

(N. Zeng et 
al., 1996) 

Modelling Forced 1996 Gill GCM 0.05 

(Sud et al., 
1996) 

Modelling Grass 1996 GLA + SiB GCM 0.05 

(Bala et al., 
2007) 

Modelling Grass 2007 INCCA 0.04 

(Polcher & 
Laval, 1994) 

Modelling Pasture 1994 LMD + SECHIB A GCM 0.081 

(Polcher & 
Laval, 1994) 

Modelling Pasture 1994 LMD + SECHIB A GCM 0.079 

(Manzi & 
Planton, 

1994) 
Modelling Pasture 1994 

MCGA (Modelos de 
Circulação Geral da 

Atmosfera) 
0.07 
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(Oliveira & 
Moraes, 

2013) 
In Situ Pasture 2013 Microclimatic towers 0.12 

(de Oliveira 
et al., 2016) 

Remote 
Sensing 

Pasture 2016 MODIS 0.044 

(Loarie et al., 
2011) 

Remote 
Sensing 

Mixed 2010 MODIS 0.028 

(Oliveira & 
Moraes, 

2013) 

Remote 
Sensing 

Pasture 2013 MODIS (Terra) 0.04 

(Bathiany et 
al., 2010) 

Modelling Grass 2010 MPI-ESM 0.042 

(Dickinson & 
Henderson-

Sellers, 1988) 
Modelling Grass 1988 NCAR CCM1 + BATS GCM 0.07 

(Wei et al., 
2001) 

Modelling Grass 2001 NCAR LSM 0.0785 

(Correia et 
al., 2008) 

Modelling Pasture 2008 

NCEP Eta - SSiB model 
(National Center for 

Environmental Protection 
numerical regional model, 

coupled with Simplified 
Simple Biosphere Model) 

0.06 

(Nobre et al., 
1991) 

Modelling Pasture 1991 

NMC (National 
Meteorological Center) 
Global Spectral Model + 

SiB GCM 

0.07 

(Culf et al., 
1995) 

In Situ Pasture 1995 Radiometer (Tower) 0.0454 
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(Gandu et 
al., 2004) 

Modelling Pasture 2004 RAMS 0.05 

(N. Zeng & 
Neelin, 1999) 

Modelling Forced 1999 RCCM2/BATS 0.07 

(Franchito & 
Rao, 1992) 

Modelling Grass 1992 SDM 0.02 

(Franchito & 
Rao, 1992) 

Modelling Grass 1992 SDM 0.04 

(Eck et al., 
1998) 

Modelling Bare Soil 1998 SPCTRAL2 0.126 

(Eltahir & 
Humphries, 

1998) 
In Situ Pasture 1998 Tower 0.045 

(T. W. 
Giambelluca 
et al., 2000) 

In Situ Pasture 2000 Tower 0.04 

(Thomas W. 
Giambelluca 
et al., 1997) 

In Situ Pasture 1997 Tower 0.039 

(Lean & 
Rowntree, 

1997) 
Modelling Grass 1997 UKMO GCM 0.05 

(Lean & 
Rowntree, 

1997) 
Modelling Pasture 1993 UKMO GCM 0.052 

(Mylne & 
Rowntree, 

1992) 
Modelling Grass 1991 UKMO GCM 0.065 
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(Lean & 
Warrilow, 

1989) 
Modelling Pasture 1989 UKMO GCM 0.052 

(Lean & 
Rowntree, 

1997) 
Modelling Pasture 1997 UKMO GCM 0.046 

(Salati & 
Nobre, 1992) 

Modelling Grass 1991 
UKMO GCM & COLA GCM 

- SiB 
0.091 

(Y. Li, De 
Noblet-

Ducoudré, et 
al., 2016) 

Modelling Bare Soil 2016 
VEGAS (albedo fed by 

satellite data) 
0.26 

(Y. Li, De 
Noblet-

Ducoudré, et 
al., 2016) 

Modelling Bare Soil 2016 
VEGAS (albedo fed by 

satellite data) 
0.12 
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Appendix B – Monthly plots of surface albedo response to fractional 

forest cover and loss in the Amazon 

The following twenty-four plots show the response of surface albedo to fractional forest cover for 

each 0.01° domain in the Amazon for each month in chronological order (January to December). The 

first twelve correspond to the 2000 – 2003 period, the second to 2013 – 2015. 
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2013 – 2015: 
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The following twelve plots show the response of surface albedo to fractional forest loss between 

2000 – 2015 for each 0.01° domain in the Amazon for each month in chronological order (January to 

December). 
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