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Abstract

This thesis presents the measurement of the quadrupole moment of the

2+
1 in 12C as a way of benchmarking state-of-the-art nuclear structure

theories. Electromagnetic diagonal matrix elements are sensitive to the

details of the nuclear interaction and can constrain NN+3N Hamiltoni-

ans derived from chiral Effective Field Theories (EFT) used in ab initio

calculations. The large experimental uncertainty of the quadrupole mo-

ment of the 2+
1 state of 12C when compared to the most recent large-scale

No Core Shell Model calculations encouraged the remeasurement of this

electromagnetic property.

A Coulomb-excitation experiment was performed at the JYFL facil-

ity in Jyväskylä using a 12C ion beam and a 208Pb target. The Ju-

rogamII array was used to measure the 2+
1 state de-exciting γ-rays

in coincidence with backward-scattered 12C ions, measured with a CD

Si detector. From the Coulomb-excitation cross-section, the Q(2+
1 ) was

extracted by using the least-squares search code Gosia. The analy-

sis using a nuclear polarizability constant of k=1.435(27) yielded a fi-

nal value of the Q(2+
1 ) = 8.4+3.6

−3.9 efm
2 for the currently evaluated value

of the B(E2) = 39.7(2.0) e2fm4. Using a more recent measurement of

the B(E2) = 38.15(0.95) e2fm4, the extracted quadrupole moment was

Q(2+
1 ) = 9.3+3.5

−3.8 efm
2.

The measured value of Q(2+
1 ) is in excellent agreement with previ-

ous experimental data. The weighted average of the presented exper-

imental result with the literature value yielded Q(2+
1 ) = 8.1(2.3) efm2

and Q(2+
1 ) = 9.5(1.8) efm2 when using B(E2) = 39.7(2.0) e2fm4 or

B(E2) = 38.15(0.95) e2fm4, respectively. The results are compared with

the predictions of modern ab initio calculations.
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Chapter 1

Introduction

This chapter will begin with an introduction to the nuclear many-body problem and

will put the recently developed NN+3N interactions derived from chiral Effective

Field Theory into context. Subsequently, it gives a brief overview of the main ab

initio approaches of interest for this thesis, and it concludes by higlighting the

importance of the measurement of electromagnetic properties in light nuclei with an

emphasis on the Q(2+
1 ) in 12C.

1.1 The nuclear many-body problem

The atomic nucleus is a quantum many-body system consisting of two types of

fermions, protons and neutrons, collectively known as nucleons, which are bound by

the strong nuclear force. To understand the structure and dynamics of this system

has been the main goal of Nuclear Physics since the discovery of the nucleus by

E. Rutherford in 1911. Since then, many different models have been developed

throughout the years in order to describe the different observed phenomena at the

nuclear scale.

Although many of these models provide a partial description of the nuclear land-

scape, the microscopic understanding of the strong interaction between the nucleons

remains a challenge. The main difficulty lies in the complex nature of the strong nu-
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clear force, which emerges from the underlying theory of Quantum Chromodynamics

(QCD). At the low energies of relevance to Nuclear Physics, QCD is non-perturbative

and very difficult to solve. The relevant degrees of freedom for nuclei are nucleons

and pions, which are not fundamental particles but rather complex objects made of

quarks, antiquarks and gluons. As a consequence, the strong interaction between

nucleons is only an “effective” interaction emerging non-perturbatively from QCD

in a similar way to how Van der Waals forces emerge between atoms or molecules

[Mac11].

However, despite the intricacy of the nucleon-nucleon (NN) interaction, some

much simpler models are able to describe certain features and properties of nuclei.

For instance, Weizsäcker’s description of the atomic nucleus as a liquid drop [Wei35]

attempted to explain the nuclear binding energies. His semi-empirical mass formula

relied on a series of fitted coefficients that accounted for the attractive character of

the strong nuclear force, the repulsive nature of the Coulomb interaction between

protons, the balance between the number of protons and neutrons in the nucleus

(asymmetry term) and the overlap of wavefunctions for pairs of nuclei in various

states — also known as pairing.

Another of the first and most successful attempts to describe the structure of

the nucleus was accomplished by the widely known shell model, which describes

the motion of each nucleon in an average attractive field created by all the other

nucleons. Solving Schrödinger’s equation on such a mean field results in a set of

orbits or “shells” that, analogously to the ones in the atomic shell model, provide

greater stability to the nucleus when filled. In this way, when adding nucleons to

a nucleus, there are certain points where the binding energy of the next nucleon is

significantly less than the last one.

The experimentally observed number of nucleons corresponding to full shells,

known as “magic” numbers, for stable nuclei, were explained within the framework

of the shell model by parametrising the assumed nuclear average field as a Woods-
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Figure 1.1: Single-particle energies for a Woods-Saxon potential (left) and a
Woods-Saxon with spin-orbit coupling potential (right) [Cas90].

Saxon potential [Woo54] with a spin-orbit coupling [May49, Hax49] (Figure 1.1). For

their contribution to the development of the shell model, M. G. Mayer and J. H. D.

Jensen, shared with E. P. Wigner the 1963 Nobel Prize in Physics. As a result of this

success, “shell-model-based” methodology became one of the main approaches to the

nuclear many-body problem until now. The most recent shell-model-based models

are more refined and extend towards other observables and more exotic nuclei.

As a diametric opposite, another successful model developed during the decade

of the 1960s was the macroscopic model proposed by Bohr and Mottelson [Boh69],
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which explained the nuclear excitation spectrum from the dynamics of a rotating or

vibrating sphere.

More recently, and following a much more complex formalism, self-consistent

mean-field methods (SCMF) based on Density Functional Theory (DFT) [Ben03],

employ energy-density functionals that are primarily constrained by global nuclear

properties, such as binding energies or radii, to compute nuclear structure observ-

ables across the nuclear chart, primarily in the heavier regions. Often, these methods

would use a phenomenological interaction which in principle remains disconnected

to the underlying details of the strong force.

Ab initio methods, on the other hand, seek to describe the atomic nucleus from

first principles by solving the non-relativistic Schrödinger equation among all con-

stituent nucleons and the interactions between them. Due to the difficulties that a

direct use of QCD would imply, our knowledge on how nuclear observables emerge

from the NN interaction is limited to models at present, the most advanced and fun-

damental of which of are based on chiral Effective Field Theory (EFT or ChEFT)

[Mac11]. Testing ab initio methods using state-of-the-art interactions based on chi-

ral EFT is the goal of the present dissertation and the latter will be discussed in

more detail in sections 1.2 and 1.3 .

In general, the efforts of describing the structure of the atomic nucleus have been

extensive, and the large variety of modelling initiatives can be grouped fundamen-

tally into shell-model theories, macroscopic models, SCMF and ab initio methods.

Until now, the different models used different nuclear interactions in their calcu-

lations based on phenomenology or experimental data, which had a direct impact

in the applicability and accuracy of the different models to the various regions of

the nuclear landscape. The recent developments in the ab initio many-body meth-

ods have allowed the calculations of nuclear observables using state-of-the art chiral

EFT interactions. These interactions can now be tested giving a better insight into

the connection of the strong interaction to the underlying QCD, perhaps providing a
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more consistent approach to describe the NN interaction when using any many-body

solver to compute nuclear properties.

1.2 Chiral Effective Field Theory

In the 1990s an effective field theory (EFT) was introduced and applied to low-energy

QCD. In this EFT, at low energy, the effective degrees of freedom are pions and

nucleons rather than quarks and gluons, which could resemble previous theories of

the NN interaction such as Yukawa’s [Yuk55]. However, in the case of these effective

theories, it will be the broken chiral symmetry that will become a crucial constraint

that generates and controls the dynamics and establishes a clear connection with

the underlying theory, QCD.

Chiral EFT starts with the most general Lagrangian consistent with the (bro-

ken) symmetries of QCD. The interactions of pions must vanish at zero momentum

transfer and in the chiral limit (mπ → 0). The low-energy expansion of the La-

grangian is arranged in powers of derivatives and pion masses. Chiral perturbation

theory (ChPT) refers to the expansion of the Lagrangian in terms of powers of ν as

(Q/Λχ)ν and the chiral breakdown scale Λχ ≈ 1GeV . The effective Lagrangian can

then be formally written as

Leff = Lππ + LπN + · · · , (1.1)

where Lππ deals with the dynamics among pions, LπN describes the interaction

between pions and nucleons, and higher order terms describe interactions involving

pions and two or more nucleons. Each of these Lagrangians can be expressed as

Lππ = L(2)
ππ + L(4)

ππ + · · · (1.2)

LπN = L(1)
πN + L(2)

πN + L(3)
πN + · · · (1.3)
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Figure 1.2: Hierarchy of nuclear forces in chiral EFT based on power counting.
Solid and dashed lines denote nucleons and pions, respectively. Solid dots,
filled circles and filled squares refer, respectively, to the leading, subleading
and sub-subleading vertices in the effective Lagrangian. The crossed square
denotes 2N contact interactions with 4 derivatives. Figure from [KN11].

where the superscript refers to the number of derivatives or pion-mass insertions

(chiral dimension).

Chiral perturbation theory implies that nuclear forces emerge as a hierarchy con-

trolled by the power ν, which gives the finite set of terms that will contribute to the

effective Lagrangian and will also provide the relative size of the different contribu-

tions. This power counting hierarchy of nuclear forces is displayed in Figure 1.2. At

leading order (LO, ν = 0) the two contributions are the nucleon contact term and

the one-pion exchange. At next-to-leading order (NLO, ν = 1), the higher order

contact term is accompanied by multiple two-pion exchanges. From (N2LO, ν = 2)

onwards, sets of 3N forces arise, with 4N forces starting to appear at (N3LO, ν = 3).
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1.3 Ab initio

Ab initio many-body methods in nuclear physics start from the fundamental forces

among nucleons, typically chiral EFT interactions, and attempt to predict proper-

ties of nuclei from first principles. The strategy is then to solve the non-relativistic

Schrödinger equation with the inter-nucleon interaction as the only input. De-

spite an exact solution only being achievable for light nuclei (A = 3, 4) [Fri93,

Nog97, Bar01, Kam01], new ab initio methods using well-controlled approxima-

tions have made tremendous progress and have been able to compute much heavier

nuclei. There are many ab initio methods that are able to use chiral EFT inter-

actions, ranging from the No-Core Shell Model (NCSM), Coupled Cluster (CCM),

Self-Consistent Green’s Function (SCGF), In-Medium Similarity Renormalization

Group (IM-SRG) to Monte Carlo methods such as the Green’s Function Monte

Carlo Method (GFMC), Nuclear Lattice EFT or the Auxiliary-Field Monte Carlo

(AFDMC) method. However, the focus of the present thesis will be towards the ab

initio No-Core Shell Model (NCSM).

The initial problem is then to solve the Schrödinger equation

Ĥ |Ψ〉 = (T̂int + V̂ ) |Ψ〉 = E |Ψ〉 (1.4)

on the A-body hamiltonian Ĥ, which is composed of the intrinsic kinetic energy T̂int

and the nuclear interaction V̂ as

Ĥ =
1

A

A∑
i<j=1

(~̂pi − ~̂pj)
2

2m
+

A∑
i<j=1

V̂ NN
ij +

A∑
i<j<k=1

V̂ 3N
ijk + · · · , (1.5)

where m is the nucleon mass, ~pi is the momentum of the ith nucleon and the nuclear

interaction V̂ describes the strong and electromagnetic interaction among nucleons.

This interaction has to be treated in a perturbative manner, splitting the potential

into different many-body terms V̂ NN + V̂ 3N + · · · . The electromagnetic interaction
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is typically described by the Coulomb force, while the determination of the strong

interaction remains the biggest challenge.

Due to the non-perturbative character of QCD in the low-energy regime of in-

terest for nuclear physics, different phenomenological approaches to describe the

NN interaction have taken place. For instance, basic symmetries of the Hamil-

tonian and Yukawa’s meson-exchange theory [Yuk55] have inspired the develop-

ment of phenomenological high-precision NN interactions, namely the Argonne V18

[Wir95] and CD-Bonn [Mac01] potentials. These interactions have been able to

accurately describe NN systems but have failed to be extended to heavier systems

[Cau02, Nav02, Pie02]. This suggests the importance of many-nucleon interactions

beyond the two-body level and reveals the necessity for a consistent scheme to con-

struct the nuclear interactions [Nav16].

1.3.1 The No-Core Shell Model

The following section aims to give a brief introduction to ab initio No-Core Shell

Model (NCSM) calculations. A complete description of the method and formalism

can be found in [Bar13].

In the ab initio NCSM, a system of A point-like non-relativistic nucleons are all

considered to interact with each other by a realistic two- or two- plus three-nucleon

interaction as per equation 1.5, which means there is no inert core of the nucleus as

in standard shell model calculations. The term “realistic two-nucleon interactions”

refers to NN potentials that fit nucleon-nucleon phase shifts with high precision

up to a certain energy, typically up to 350 MeV. Realistic 3N interactions include

two-pion exchanges with an intermediate Delta excitation [Bar13].

In order to solve equation 1.5, in NCSM, the individual single-particle wave-

functions are expanded in the Harmonic Oscillator (HO) basis as

|φ〉 = |n1l1m1〉 ⊗ |s1ms〉 ⊗ |t1mt〉 , (1.6)
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where n is the principal quantum number and l,s and t are the angular momentum,

spin and isospin with respective projections ml,ms and mt. The A-body wave-

function can then be expressed as

|Ψ〉 =
Ntotmax∑

φ1<φ2<...<φA

Cφ1φ2...φA |φ1φ2 . . . φA〉 , (1.7)

where |φ1φ2 . . . φA〉 are Slater determinants defined as

|φ1φ2 . . . φA〉 =
1√
A!

∑
π

sgn(π)P̂π(|φ1〉 ⊗ |φ2〉 ⊗ · · · ⊗ |φA〉), (1.8)

since the basis needs to be antisymmetric due to the fermionic character of protons

and neutrons. Here Ntotmax denotes the chosen maximum of the sum of all HO

excitations, i.e. the model space truncation, which follows the condition

Ntotmax ≥
A∑
i=1

(2ni + li). (1.9)

Often, the parameter Nmax is introduced instead, which measures the maximum

allowed HO excitation energy above the unperturbed ground state. The Nmax trun-

cation is the only possible one that allows an exact factorisation of the c.m. motion

for the eigenstates, even when working with single-particle coordinates and Slater

determinants [Nav16]. The use of the HO basis allows preservation of translational

symmetry of the nuclear self-bound system, even if single-nucleon coordinates are

utilised.

The solution to equation 1.5 is finally obtained by diagonalising the respective

matrix or using a variational principle. The accuracy of the solution will nevertheless

depend on the size of the model space after the truncation, which needs to be

very large. In fact, the computational cost of the calculation increases with Nmax.

A way to improve this truncation is through the use of an iterative importance

truncation scheme and reducing the dimension of the model space of configuration
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by an a priori selection of the physically most relevant basis states [Rot09]. The

method uses an importance measure derived from multiconfigurational perturbation

theory in combination with an importance threshold and it constructs a model space

optimised for the description of individual eigenstates of a given Hamiltonian. As

a result, NCSM calculations with an importance truncated model space for nuclei

such as 12C or 16O can be performed up to a Nmax = 22 [Rot09]. This approach is

also known as Importance Truncated No-Core Shell Model (IT-NCSM).

1.3.2 The Similarity Renormalization Group

However, in general, it is still difficult to converge NCSM-type calculations beyond

the lightest nuclei. Also the inclusion of the relevant 3N contributions can be prob-

lematic for ab initio methods when a bare chiral interaction is used [Cal16]. As a

solution, the nuclear interaction can be softened by applying a unitary transforma-

tion or similarity renormalisation group [Bog07], which can be applied consistently

in the two- and three-body space. This approach is used in several nuclear structure

applications and calculations to soften the chiral NN+3N interactions used.

The basic concept of SRG is the continuous unitary transformation of the Hamil-

tonian

Ĥs = Û †s ĤÛs, (1.10)

defined by the first-order differential operator equation

d

ds
Ûs =

[
η̂s, Ĥs

]
, (1.11)

where Ûs is a unitary operator depending on the continuous flow-parameter s and

Ĥs is the SRG evolved Hamiltonian depending on the flow parameter s and the

anti-Hermitian dynamic generator

η̂s = −Û †s
d

ds
Ûs = −η̂†s. (1.12)
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The canonical generator, used in the majority of nuclear structure and reaction

applications, is the commutator of the kinetic energy with the Hamiltonian, which

reads

η̂s = (2µ)2
[
T̂int, Ĥs

]
, (1.13)

where µ is the reduced nucleon mass and Tint is the intrinsic kinetic-energy op-

erator. For this generator, the flow parameter s is associated with a momentum

scale Λ = s−1/4. The use of this generator makes the Hamiltonian drive towards

a diagonal in the momentum eigenbasis of the kinetic energy operator. This diag-

onalisation makes the low and high momentum parts of the Hamiltonian become

decoupled, allowing a significantly improved convergence.

As shown, the SRG can be used as a tool to “pre-process” the nuclear interactions

that are used as inputs for other many-body methods. However, SRG-like flow

equations can be used to decouple physics at different excitation energy scales of

the nucleus, and render the Hamiltonian matrix in configuration space block or

band diagonal. In other words, the many-body expansion can be re-organised in a

way in which correlations that are described explicitly by the configuration space

are absorbed into an RG-improved Hamiltonian. The extraction of eigenvalues and

eigenstates then becomes possible with the appropriate choice of decoupling strategy

giving rise to an ab initio method known as In Medium Similarity Renormalization

Group (IMSRG) [Her16b, Her16a, Tsu11]. An extension of this method, designed

for calculations of the ground-state properties of closed- and open-shell nuclei, is the

multi-reference IMSRG (MR-IMSRG) [Her16a].

The combination of the multireference IMSRG with the NCSM gives rise to a new

ab initio method which includes the advantages of the two methods: the decoupling

at the many-body level in the IM-SRG and the access to arbitrary nuclei, eigenstates

and observables in the NCSM. This new In-Medium NCSM (IM-NCSM) [Geb17]

enables fully converged no-core calculations for an unprecedented range of nuclei

allowing the study of the full-range of medium-mass nuclei.
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1.4 Electromagnetic properties in nuclei

As discussed above, Ab initio nuclear structure theories using NN+3N Hamiltonians

derived from chiral EFT connect to the underlying physics of the strong interaction

and provide a unique opportunity to understand the nuclear structure and its emer-

gence from first principles [Epe09]. Although calculations of excitation energies with

chiral NN+3N interactions in light and medium-mass (mainly closed-shell) nuclei

have been successful, their extension to other observables such as electromagnetic

properties remains a challenge.

Electromagnetic transitional and diagonal matrix elements constitute a sensitive

probe to the details of the nuclear interaction and can constrain NN+3N Hamilto-

nians derived from chiral EFT in ab initio calculations. Electric-quadrupole (E2)

matrix elements are therefore important quantities in probing nuclear structure. For

instance, they are very sensitive to nuclear deformation, the decoupling of proton

and neutron degrees of freedom, and they are often affected by small components of

the nuclear wave functions [For13].

The reduced transition probability associated with the radiative transition of

multipole order λ can be expressed as a function of the transitional matrix element

of the electromagnetic operator Eλ, as

B (Eλ, Ii→If ) =
1

2Ii + 1
| 〈If |M(Eλ)|Ii〉|2. (1.14)

The spectroscopic quadrupole moment (Q), i.e. quadrupole moment observed in the

laboratory frame, can also be expressed in terms of the diagonal matrix element by

calculating the expectation value of the quadrupole operator (16π/5)1/2r2Y20 in the
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laboratory system as

Q(I) =

(
16π

5

) 1
2

〈I,M = I|r2Y20|I,M = I〉 =

(
16π

5

) 1
2
(
I 2
−I 0

∣∣∣∣ II
)〈

I
∣∣∣∣r2Y20

∣∣∣∣I〉 =

=

(
16π

5
· I(2I − 1)

(I + 1)(2I + 1)(2I + 3)

) 1
2

〈I||M(E2)||I〉 . (1.15)

Connected to the spectroscopic quadrupole moment, the intrinsic “static” quadrupole

moment Q0,s is the value of Q that would be observed in the reference frame of the

nucleus if such measurement were possible. Within the framework of the rotational

model by Bohr and Mottelson [Boh69], it can be shown that for an axially symmet-

ric shape, the spectroscopic quadrupole moment Q(I) is connected to the intrinsic

quadrupole moment Q0,s via the formula

Q(I) =
3K2 − I(I + 1)

(I + 1)(2I + 3)
Q0,s, (1.16)

where K is the projection of the total angular momentum on the symmetry axis of

the intrinsically deformed nucleus.

Similarly, the reduced transition probability of order λ = 2 is connected to the

intrinsic “transitional” quadrupole moment Q0,t by

B(E2, Ii→If ) =
5

16π

(
Ii 2
K 0

∣∣∣∣ IfK
)
Q2

0,t. (1.17)

The combination of equations 1.16 and 1.17 gives a correlation between both quadrupole

observables, B(E2) and spectroscopic quadrupole moment Q(I), parametrised only

by the ratio Q0,t/Q0,s, i.e.

B(E2, Ii→If ) =
5

16π

(
(I + 1)(2I + 3)

3K2 − I(I + 1)

)2(
Ii 2
K 0

∣∣∣∣ IfK
)(

Q0,t

Q0,s

)2

Q(I)2, (1.18)

where the intrinsic transitionalQ0,t and staticQ0,s quadrupole moments are expected

to be equal within the rigid rotor model, Q0,t = Q0,s = Q0 [Cal16].
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1.4.1 Nuclear shapes: quadrupole deformation

The electric-quadrupole moment can be interpreted as the measurement of the extent

to which the nuclear charge distribution deviates from spherical symmetry [Boh69].

When a nucleus deviates from sphericity, its surface can be parametrised by the

length of the radius vector pointing from the origin to the surface

R = R(θ, φ) = R0

(
1 +

∞∑
λ=0

λ∑
µ=−λ

α∗λµYλµ(θ, φ)

)
, (1.19)

where R0 is the radius of the sphere with the same volume, αλµ are deformation

parameters and Yλµ(θ, φ) are the spherical harmonics. The terms corresponding to

λ = 0 in the sum, α0,0, describe changes in the nuclear volume while, for small

deformations, the terms λ = 1 describe mainly translations of the whole system,

thus the information of the nuclear shape is contained in the terms for λ ≥ 2.

For an axially symmetric deformation, choosing the z-axis as the symmetry axis,

all αλµ vanish except when µ = 0 and equation 1.19 can be rewritten as

R(θ) = R0

(
1 +

∞∑
λ=2

√
2λ+ 1

4π
βλPλ0(cos θ)

)
, (1.20)

where the deformation parameters αλ0 are defined as βλ.

For the case of quadrupole deformations (λ = 2), the deformation parameters β2

are linked to the intrinsic static quadrupole moment, Q0,s in equation 1.16, by

Q0,s =
3√
5π
ZR2

0β̄2, (1.21)
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Figure 1.3: Representation of the different types of quadrupole deformation
for the different signs and values of the intrinsic Qs,0 and spectroscopic Q(I)
quadrupole moments.

where β̄2 is given by the intrinsic relation [Lea88],

β̄2 = β2 +

√
5

π

(
2

7
β2

2 +
4

15
β2

3 +
20

77
β2

4 +
10

39
β2

5 +
98

386
β6 +

12

7
√

5
β2β4

20

21

√
7

11
β3β5 +

30

11

1√
13
β4β6

)
.

(1.22)

Assuming axial symmetry, the positive values of the intrinsic quadrupole moment

Q0,s, negative values of the spectroscopic quadrupole moment Q(I) measured in

the laboratory, will correspond to prolate deformations, while the negative values

of Q0,s and positive values of Q(I) will correspond to oblate shapes. Null values

of both intrinsic and spectroscopic quadrupole moments will represent a spherical

shape, i.e. without any deformation. A graphical representation of this is displayed

in Figure 1.3.

1.5 Electromagnetic properties of 12C

Within the nuclear chart, the Carbon Z=6 isotopes are excellent candidates to put

nuclear models under stringent tests; these isotopes are experimentally accessible up

to the neutron dripline and critical spectroscopic information can be extracted from

them.
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1.5.1 Theoretical calculations of quadrupole observables

Large-scale NCSM calculations have been performed for low-lying states of even-

even Carbon isotopes with A=10-20 [For13] using a CDB2k potential [Mac01] to

describe the NN interaction. Further IT-NCSM/SRG calculations using two- and

three-nucleon interactions from chiral EFT for the quadrupole moment of the first 2+
1

state in 12C have been performed, showing a drastically improved accuracy [Cal16].

Additionally, the recently developed IM-NCSM with improved convergence using

chiral NN+3N interactions have also aimed at calculating electromagnetic observ-

aboles in 12C [D’A20].Furthermore, spectroscopic properties of low-lying states and

cluster structures in 12C have been analyzed in a beyond mean-field framework based

on global energy-density functionals (EDFs) [Mac19] Testing the latest IT- and IM-

NCSM calculations is one of the main goals of this thesis and the latter calculations

will be discussed in more detail in section 1.5.2.

.

The astrophysical implications of 12C and its Hoyle state have attracted sig-

nificant theoretical attention with several nuclear models trying to reproduce the

spectroscopy of this nucleus. Recent examples are NCSM calculations using NN

and 3N interactions from chiral EFT [Mar14] and Nuclear Lattice EFT calculations

[Epe12].

1.5.2 NCSM calculations: the B(E2) and Q(2+
1 ) correlation

Importance-Truncated No-Core Shell Model (IT-NCSM) calculations using a set

of different two- and three-nucleon interactions from chiral effective field theory

have been performed to compute excitation energies as well as electric-quadrupole

(E2) and magnetic dipole (M1) moments and transition strengths for 12C [Cal16].

Figure 1.4 is an adaptation of Fig. 4 in Ref. [Cal16], illustrating the obtained
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reduced quadrupole transition strength B(E2; 0+
1→2+

1 ) and Q(2+
1 ) for the 2+

1 in 12C

using a set of chiral NN and NN+3N interactions (EM [Ent03] and EGM [Epe04])

for different model-space truncations from Nmax = 2 to 8. The calculations point

towards a strong and robust correlation between both E2 observables. Individu-

ally, both observables show a strong dependence on the underlying interaction and

truncation of the model space. The authors in Ref. [Cal16] interpreted this corre-

lation in terms of the rotational model by Bohr and Mottelson [Boh69] by fitting

equation 1.18 to the different theoretical calculations and yielding a ratio between

the intrinsic quadrupole moments of Q0,t/Q0,s = 0.964 (dashed black line). Using

this correlation between both quadrupole observables and the adopted value of the

B(E2) = 39.7(2.0) e2fm4, (shaded area in Figure 1.4), the IT-NCSM calculations

predict a value of Q(2+
1 ) = 5.91(15) efm2.

Similarly, and very recently, state-of-the-art In-Medium NCSM (IM-NCSM) cal-

culations have also targeted the calculation of the reduced quadrupole transition

strength B(E2; 0+
1→2+

1 ) and Q(2+
1 ) for the 2+

1 in 12C [D’A20]. These calculations use

a new family of chiral two- plus three-nucleon interaction presented in Ref. [Hut19].

Figure 1.5 shows the results obtained for both observables from Fig. 6. in Ref.

[D’A20], where a similar correlation to that shown in Figure 1.4 was observed and the

calculations were once more fitted using equation 1.18 and yielded Q0,t/Q0,s = 0.967

(dotted line). The hatched area corresponds to the new experimental value of the

B(E2; 0+
1→2+

1 ) = 38.15(95) e2fm4 presented in the same publication, which predicts

a value of the Q(2+
1 ) = 5.97(30) efm2 using the IM-NCSM correlation line.

17
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Figure 1.4: IT-NCSM calculations showing the correlation of the reduced
quadrupole transition strength B(E2; 0+

1→2+
1 ) with the quadrupole moment

Q(2+
1 ) obtained with different chiral NN (open symbols) and NN+3N interac-

tions (solid symbols): EM (box), N2LOopt (circle), and EGM with cutoffs
(Λχ/Λ̃χ) = {(450/500), (600/500), (550/600), (450/700), (600/700)} MeV/c
(diamond, triangle up, triangle down, hexagon, cross). The calculations are
performed at ~Ω = 16 MeV and α = 0.08 fm4 using a model space of Nmax = 2
(blue), 4 (green), 6 (violet), and 8 (red symbols). The error bars indicating
the uncertainties of the threshold extrapolations are not included in the plot.
The dashed curve is fitted to theoretical data points. The figure has been
adapted from Ref. [Cal16], where all details of the calculations can be found.
The shaded area in the figure corresponds to the currently adopted value of
the B(E2; 0+

1→2+
1 ) = 39.7(2.0) e2fm4 and the predicted vaulue of the Q(2+

1 )
by the correlation.
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Figure 1.5: IM-NCSM calculation showing the correlation of the reduced
quadrupole transition strength B(E2; 0+

1→2+
1 ) with the quadrupole moment

Q(2+
1 ) obtained with N2LO (open symbols) and N3LO (full symbols) interac-

tions for three different cutoffs 450 MeV/c (green), 500 MeV/c (blue) and 550
MeV/c (purple). The calculations are performed with N ref

max = 4 and the er-
ror bars indicate the combined many-body and interaction uncertainties. The
dotted curve is the correlation curve fitted to theoretical data points. The
figure has been adapted from Ref. [D’A20], where all details of the calcula-
tions can be found. The hatched area in the figure corresponds to the new
experimental value of the B(E2; 0+

1→2+
1 ) = 38.15(95) e2fm4 presented in the

same publication, which predicts a value of Q(2+
1 ) = 5.97(30) efm2 using the

dotted correlation line.
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1.5.3 Previous measurements of the Q(2+
1 )

Irrespective of the above, constraining these different theoretical approches by com-

paring their results for the Q(2+
1 ) in 12C with the available experimental data is very

challenging. The difficulties arise from the fact that the experimental uncertainty is

much larger than most of the theoretical calculations (see Figure 1.6), the currently

adopted value having an uncertainty of 6 ± 3 efm2 [Ver83]. In addition, there has

been a recent measurement of this property but the uncertainty in the result was es-

timated to be greater than the only previous experiment 5.3±4.4 efm2 [Raj18]. The

different theoretical calculations and experimental values available for the Q(2+
1 ) in

12C are shown in Figure 1.6.

The large experimental uncertainty of this electromagnetic property calls for a

more precise measurement of the Q(2+
1 ) in 12C as an opportunity to benchmark and

help fine-tune state-of-the-art ab initio calculations using chiral EFT interactions.

The measurement of this electromagnetic property with the aim of achieving an

improved accuracy is the work described in the present dissertation.

The details of the Coulomb excitation reorientation-effect experiment performed

at the JYFL in Jyväskylä will be described in detail in section 3. The experiment

consisted of the Coulomb excitation of both a 12C beam and a 208Pb target. By

measuring the de-exciting γ-rays from both the projectile and target, the Q(2+
1 ) in

12C can be extracted using the modern Coulomb excitation code Gosia [Czo83].

The details about the analysis as well as the results and their interpretation will be

discussed in chapters 4 and 5.
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IM-NCSM - NN+3N [D'A20]

IT-NCSM + NN+3N [Cal16]

Lattice EFT at LO [Epe11]

Global EDFs [Mac19]

W.J. Vermeer [Ver83]

M.K. Raju [Raj18]
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Figure 1.6: Different theoretical and experimental values for the Q(2+
1 ) in

12C. From the left to the right: IM-NCSM and IT-NCSM using chiral NN+3N
interactions [D’A20, Cal16], Nuclear Lattice EFT at LO [Epe12], Global EDFs
[Mac19], adopted value (experimental) [Ver83] and recent measurement result
[Raj18].
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Chapter 2

Coulomb excitation

This chapter aims to give a brief summary of the main aspects of the semi-classical

theory of Coulomb excitation relevant to the present dissertation. This will in-

clude first and higher-order perturbation theories, with an emphasis on the second-

order terms, such as the GDR effect, the reorientation effect, and the effect of the

quadrupole moment on measured Coulomb excitation cross section. Finally, an

overview of the Coulomb excitation code Gosia [Czo83] will be given. The detailed

derivations and more rigourous formalism can be found in [Ald75].

2.1 Introduction

The excitation of nuclear states by means of the electromagnetic field of impinging

nuclei, i.e. Coulomb excitation, is a powerful technique to probe nuclear collectivity.

Through Coulomb excitation, collective states are selectively populated with cross

sections that are a direct measure of the electromagnetic matrix elements [Czo83,

Ald75].

It has been proven that a semi-classical treatment is valid in almost all situations

studied in Coulomb excitations at energies well below the Coulomb barrier [Ald75].

The term “semi-classical” arises from the classical treatment of the particle tra-

jectories and the quantum-mechanical treatment of the electromagnetic excitation
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process. For higher energy collisions, a full quantum treatment might be necessary

for the computation of some observables, since the nuclear interaction distorts the

scattering waves appreciably [Ber09]. However, the use of full quantal codes in cur-

rent computers is impractical when handling the large number of coupled channels in

some, mostly heavy-ion, Coulomb excitation calculations. These calculations would

need to handle the long range of the Coulomb interaction, coupled with the small

integration step size required by the short wavelength, and the large number of par-

tial waves that make significant contributions, resulting in very high computation

times [Czo83].

2.2 The Semi-Classical Approximation

The great simplification of the semi-classical treatment exploits the fact that only

the Coulomb field (the monopole-monopole interaction, Z1Z2e
2/r) can ensure that

the projectile does not penetrate into the nucleus, and determines the relative mo-

tion of the two colliding nuclei. This means that the wavelength λ of the incident

projectile wave-packet must be small when compared to the dimensions of the clas-

sical hyperbolic trajectory, i.e. the half-distance of closest approach b in a head-on

collision. If this is fulfilled, the projectile wave-packet will follow the classical hyper-

bolic orbit quite accurately. This condition of applicability of classical physics for

the description of the relative motion of the nuclei can be expressed in terms of the

dimensionless Sommerfield parameter,

η =
b

2λ
=
Z1Z2e

2

~v
� 1, (2.1)

where Z1 and Z2 are the atomic numbers of the projectile and the target, and v is

the relative velocity between projectile and target at large distances.

The basic assumption of Coulomb excitation, and therefore another condition

for the validity of the semi-classical approximation, is that the interaction between
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Figure 2.1: Schematic representation of the inelastic-scattering process
(Coulomb excitation) of two colliding nuclei in the centre of mass frame.

both colliding nuclei is purely electromagnetic. The usual way to ensure this is

by defining a minimum “safe” separation distance between the surfaces of the two

collision partners, above which the contribution of the nuclear force is negligible.

This “safe” distance has been experimentally determined to be of approximately

5 fm [Cli86], giving a “safe” energy criterion for Coulomb excitation experiments

involving heavy-ions. Conversely, for the case of lighter nuclei (Z ≤ 6), a more

detailed analysis is required to estimate reliably the importance of both Coulomb-

nuclear interference effects and quantal effects on Coulomb excitation at near-barrier

bombarding energies. A complete analysis on the latter using different fully quantal

codes is included in section 4.3.

Furthermore, for the applicability of the classical picture, it is essential that the

energy loss by the projectile to the target nucleus due to electromagnetic excitation,

∆E, is small when compared to the incident projectile energy ∆E/E � 1. This

condition arises from the fact that the point of the trajectory at which the energy is

transferred is unknown, and therefore cannot be included in any accurate way. The

25



CHAPTER 2. COULOMB EXCITATION

semi-classical picture makes the assumption of the energy ∆E being exchanged at

the point of closest approach.

The Coulomb excitation experiment of 12C on 208Pb at an energy of 47.65 MeV

(see section 3.1 for further experimental details) yields a value of η ≈ 38.9� 1, and

a maximum relative energy loss due to projectile excitation for the high-lying 2+
1 of

∆E/E ≈ 0.09� 1. This makes the present Coulomb excitation study fulfil the re-

quirements for the use of the semi-classical approximation. As a result, the Coulomb

excitation cross section, can be expressed as the product of the “Rutherford” cross

section (σR) and the probability (Pn) of exciting a given state, |n〉,

dσn
dΩ

= Pn ·
dσR
dΩ

, (2.2)

where the classical Rutherford cross section is given by

dσR
dΩ

=
a2

sin4 θ
2

, (2.3)

where θ is the scattering angle in the center of mass frame and a is the half distance

of closest approach in a head-on collision, b (equation 2.1).

2.2.1 First-order Perturbation theory

When an incident projectile nucleus collides with a target nucleus, the resulting

inelastic-scattering process can be expressed in terms of the time-dependent Schrödinger

equation

i~
δ

δt
|Ψ1,2(t)〉 = H1,2 |Ψ1,2(t)〉 , (2.4)

where the numbers 1 and 2 denote the projectile or target excitation, respectively.

The excitation process can be described by the time-dependent Hamiltonian in terms
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of a multipole expansion [Boh69],

i~
δ

δt
|Ψ1,2(t)〉 =

[
H0

1,2 + V1,2 (~r(t))
]
|Ψ1,2(t)〉 , (2.5)

where H0
1,2 = Z1Z2e

2/r corresponds to the monopole-monopole term, which treats

the elastic “Rutherford” cross section , and V1,2 (~r(t)) is the monopole-multipole

term, which accounts for the inelastic excitation of either the projectile or target.

The missing higher-order multipole-multipole terms accounting for the mutual ex-

citation of both projectile and target are small when compared to the individual

excitation of either partner and can thus be neglected. The indices 1 and 2 referring

to either projectile or target are interchangeable and can therefore be omitted from

this point onwards.

The wave function of the scattered nucleus (projectile or target) after the collision

can be expressed as

Ψ(t) =
∑
n=0

an(t)Φn(t) =
∑
n=0

an(t) |n〉 , (2.6)

where n denotes the sum over all final states (n = 0 represents the elastic-scattering

case). The probability of exciting the atomic nucleus from its ground state to a state

|n〉 is given by

P0→n = |an|2, (2.7)

or in general, for the case of a multi-level system, the probability of exciting any

final state |f〉 from an initial state |i〉 with angular momentum Ii [Ald75],

Pi→f =
1

2Ii + 1

∑
Mi,Mf

|aif |2, (2.8)

where Mi and Mf denote the magnetic substates of the initial and final states,

respectively.
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The excitation amplitude aif can only be evaluated by first-order perturbation

theory if the interaction between projectile and target is weak, and if the excitation

amplitudes of all possible transitions from the ground state as well as from the final

state are also weak [Ald75]. Given this scenario, the excitation amplitude aif of the

final state |IfMf〉 from an initial state |IiMi〉 is given by

aif =
1

i~

∫ +∞

−∞
〈IfMf |V (~r(t))|IiMi〉 exp

{
i

~
(Ef − Ei) t

}
dt. (2.9)

Considering the case of an electric excitation (instead of magnetic excitation), the

monopole-multipole interaction, V (~r(t)), is given by

V (~r(t)) =
∞∑
λ=1

µ=λ∑
µ=−λ

4πeZ ′

2λ+ 1
(−1)µ

Yλµ (θ(t), φ(t))

r(t)λ+1
M(Eλ,−µ), (2.10)

where Z ′ is the atomic number of the opposite collision partner and Yλµ (θ(t), φ(t))

denotes standard normalised spherical harmonics. The symbolM(Eλ, µ) stands for

electric multipole moments of the excited nucleus and is given by [Boh69]

M(Eλ, µ) =

∫
ρ(~r)rλYλµ d

3~r. (2.11)

Here ρ(~r) being the spatial charge distribution of a free nucleus.

By introducing equation 2.10 into 2.9, the excitation amplitude yields

aif =
4πZ ′e

i~
∑
λ,µ

1

2λ+ 1
〈IfMf |M(Eλ, µ)|IiMi〉SEλ,µ(θ, ξ) (2.12)

Note that (−1)µM(Eλ,−µ) =M(Eλ, µ) and that notation to describe the orbital

integrals (SEλ,µ(θ, ξ)) has been introduced,

SEλ,µ(θ, ξ) =

∫ +∞

−∞
e

i
~(Ef−Ei)tS̄Eλ,µ(θ, ξ) dt =

∫ +∞

−∞
e

i
~(Ef−Ei)tYλµ (θ(t), φ(t))

r(t)λ+1
dt,

(2.13)
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where θ is the scattering angle and ξ represents the adiabacity parameter.

The Wigner-Eckart theorem can now be used to express equation 2.12 in terms

of the reduced matrix element

aif =
4πZ ′e

i~
∑
λ,µ

1

2λ+ 1
(−1)If−Mf

(
If λ
−Mf µ

∣∣∣∣ IiMi

)
〈If ||M(Eλ)||Ii〉SEλ,µ(θ, ξ)

(2.14)

Analogously, we can re-write equation 2.14 in terms of the dimensionless integral

Rλ,µ(θ, ξ) in order to separate the complicated dependence of the orbital integrals

Sλ,µ(θ, ξ) on the kinematics of the hyperbolic motion, from the dependence on the

scattering angle θ and adiabacity parameter ξ, which depend on the incident particle

energy and nuclear excitation energy

aif =
4πZ ′e

i~v
∑
λ,µ

1

aλ
(λ− 1)!

(2λ+ 1)!!

√
2λ+ 1

π
(−1)If−Mf

(
If λ
−Mf µ

∣∣∣∣ IiMi

)
×

× 〈If ||M(Eλ)||Ii〉Rλ,µ(θ, ξ). (2.15)

Using the orthogonality properties of the 3-j symbols, we can obtain a more compact

expression for the excitation probability of the state of spin If by using equations

2.8 and 2.15

Pi→f =
∑
λ

∣∣∣χ(λ)
i→f

∣∣∣2R2
λ(θ, ξ) (2.16)

where the dependence on θ and ξ has been separated through [Ald75]

R2
λ(θ, ξ) =

∑
µ

|Rλ,µ(θ, ξ)|2. (2.17)

The dimensionless quantity χ
(λ)
i→f is an indicator of the interaction strength for a

transfer of angular momentum λ~ and z-component −µ~, and is defined as

χ
(λ)
i→f =

√
16π(λ− 1)!

(2λ+ 1)!!

Z ′e

~v
〈If ||M(Eλ)||Ii〉
aλ
√

2Ii + 1
, (2.18)
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Figure 2.2: Schematic representation of the first-order contribution to the
Coulomb excitation process or single-step excitation.

and is subject to selection rules

|Ii − If | < λ < |Ii + If | (2.19)

−Mi +Mf = −µ. (2.20)

The differential cross section for each electric multipole excitations can be written

in the form

dσ =
∑
λ

dσEλ, (2.21)

and we can use equations 2.2 and 2.3 yielding

dσEλ =
a2

sin4 θ
2

· Pi→f dΩ. (2.22)

Finally, we can use equations 1.14, 2.16 and 2.18 to obtain an expression for the

differential Coulomb excitation cross section for each electric multipole:

dσEλ
dΩ

=

(
Z ′e

~v

)2

a−2λ+2B(Eλ, Ii→If )4π
[

(λ− 1)!

(2λ+ 1)!!

]2
R2
λ(θ, ξ)

sin4 θ
2

(2.23)

2.2.2 Higher-order perturbation theory

The Coulomb excitation probabilities, as well as the cross sections, are quadratic

expressions in the amplitudes and can therefore be expanded in a power series of
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the interaction strength χ,

Pf = a2χ
2 + a3χ

3 + a4χ
4 + · · · (2.24)

These χ parameters connect the initial and final states through all possible exci-

tation paths, and the coefficients aλ are functions of θ and ξ. The a2χ
2 term in

equation 2.24 corresponds to the first-order or one-step excitation. The second term

represents the interference of the first-order amplitude with the amplitude for a two-

step excitation. The third term corresponds to interference between first-order and

three-step amplitudes plus combinations of two-step amplitudes [Ver84a].

Alternatively, the excitation probability can be represented as a set of coupled

differential equations on the excitation amplitudes aif , which will now depend on

the couplings to all states z. Therefore, the amplitude for exciting a certain state f

from an initial state i, will depend on couplings to all other states as [Czo83]

daif
dt

= −i4πZ
′e

~
∑
z

az(t) exp

{
it

~
(Ef − Ez)

}∑
λµ

(−1)µ · S̄Eλ,µ(t) 〈Φf |M(λ, µ)|Φz〉 .

(2.25)

This set of coupled differential equations requires to be solved numerically, and

codes such as Gosia have been developed to perform this task. The code Gosia

will be introduced in section 2.3 and a detailed description of the different numerical

methods employed by this code can be found in [Czo83].

2.2.3 Second-order perturbation theory

It is of special interest to the present work to discuss in further detail the excitation

probabilities to a second-order, since some of the terms of order χ3 are particularly

relevant to the Coulomb excitation experiment of 12C in 208Pb. These χ3 terms

include the reorientation effect and the Giant Dipole Resonance (GDR) effect. A

schematic representation of the terms of order χ2 and χ3 are shown in Figure 2.3.
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Figure 2.3: Schematic representation of the interaction strength (or excitation
probability) terms of order χ2 and χ3. The blue arrows represent the single-
step first-order excitation interfering with the second-order multi-step terms in
red, which include different modes of multi-step excitations and reorientation
effects.

In relation to an even-even nucleus, the first-excited state is the 2+
1 which is

populated via one-step Coulomb excitation from the ground state and also through

a double-step excitation (see Figure 2.4 left). The probability of populating this 2+
1

state is, to a second-order, [Ald75]

P2+ =
∣∣∣χ(E2)

0+→2+

∣∣∣2R2
2(θ, ξ) (1 + y c(θ, s, ξ)) , (2.26)

where

y =
χ0+→IfχIf→2+

χ0+→2+
= χ0+→If

1√
2If + 1

〈2+||M(E2)||If〉
〈2+||M(E2)||0+〉

(2.27)

and c(θ, s, ξ) and R2
2(θ, ξ) are functions that isolate the dependence on scattering

angle and adiabacity parameter, and s = Ez−E0

E2+−E0
is the ratio of the excitation energies

between the 2+
1 state and the intermediate state If . Here it is assumed that the

multi-step excitation is the main relevant second-order effect contributing to the

excitation probability.

As it is stated in equation 2.26, the probability of exciting this 2+
1 to a second-

order is given by the total probability of populating this state through a single-
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Figure 2.4: Schematic representation of the 2+
1 excitation process of an even-

even nucleus through: multi-step excitation (left), single-step and reorientation
(middle) and through the GDR resonance (right).

step process, plus the interference between the latter and the multi-step excitation

process. This interference will be either constructive or destructive depending on

the sign of the matrix elements in equation 2.27.

2.2.4 The Reorientation effect

The authors Breit and Lazarus (1955) were the first to suggest the possibility of mea-

suring a static quadrupole moment by Coulomb excitation, and they also introduced

the term “reorientation effect” for the first time [Bre55].

Although the term “reorientation effect” is used in general to refer to the effects

of the static quadrupole moment in Coulomb excitation, it strictly describes virtual

transitions responsible for the redistribution of the final populations of the magnetic

substates of the final state. The term arises from the “reorientation” of the nuclear

spin of the final state. This change in the nuclear spin has an effect on, for example,

the distribution of the de-excitation γ rays and, as it will be shown shortly, in the

excitation probability, i.e. the Coulomb excitation cross section.

If we assume that the nuclear reorientation is the main second-order effect con-

tributing to the excitation of the 2+
1 state of an even-even nucleus, we can apply

equations 2.26 and 2.27 for the case where the final state If is a different magnetic
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substate of the same 2+
1 state (see Figure 2.4 middle). As a result, the excitation

probability will be given by

P2+ =
∣∣∣χ(E2)

0+→2+

∣∣∣2R2
2(θ, ξ)

(
1 + χ

(E2)

2+→2+ c(θ, s = 1, ξ)
)
, (2.28)

where

χ
(E2)

2+→2+ =
4

15

√
π

5

Ze

~va2

〈
2+
∣∣|E2|

∣∣2+
〉
, (2.29)

and using equation 1.15,

χ
(E2)

2+→2+ =

√
7

90

Ze

~v
Q2+ . (2.30)

As a result, through the accurate measurement of the excitation probability (i.e. the

cross section) to the 2+
1 state, one can extract a value for the quadrupole moment

of that 2+
1 . Figure 2.5 shows the Coulomb excitation differential cross section for

the 2+
1 in 12C calculated with Gosia for different values of the Q(2+

1 ). As it has

been shown, the sensitivity to the Q(2+
1 ) increases with the laboratory scattering

angle, which is the property that has been exploited in the present work by covering

the expected backward scattering angles with the particle detector in the planned

experiment (see Chapter 3 for the experimental details).

2.2.5 The GDR effect

A detailed theoretical description of the GDR effect can be found in [Ald75]. In this

section, a brief description of this effect together with the most relevant equations

for the present dissertation will be discussed.

The virtual excitations via the Giant Dipole Resonance are another second-order

effect accompanying the nuclear reorientation that may be measurable. To second-

order, this effect can be quantified by the interference between the direct Coulomb

excitation amplitude of a certain state and the amplitude for the two-step excitation

of that state, where the intermediate step consists of the virtual excitation of states
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Figure 2.5: Coulomb excitation differential cross section for the excitation of
the 2+

1 in 12C for different values of theQ(2+
1 ). The calculations were performed

with Gosia [Czo83].

within the GDR (see Figure 2.4 right). This GDR effect is also referred to as nuclear

polarization, which is an alternative picture where the electric field of the imping-

ing nucleus induces a transitory electric-dipole moment in the nucleus undergoing

Coulomb excitation.

The set of coupled differential equations introduced in 2.25 may be used as a

starting point for the description of the GDR effect. This set of equations can be

rewritten in a more compact form without expanding the interaction potential in

electric multipoles as [Ald75]

i~
dan
dt

=
∑
m

am(t) 〈n|V (t)|m〉 exp

{
it

~
(En − Em)

}
, (2.31)

where an denotes the excitation amplitude of the final state |n〉, (aif = an), and the

intermediate states coupled to the state |n〉 are denoted as |m〉, (az = am).

We can now denote the group of high-lying states within the GDR by |z〉 and
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|z′〉, which are strongly coupled to the low-lying |n〉 and |m〉 states, that are also

mutually strongly coupled. Then, equation 2.31 yields

i~
dan
dt

=
∑
m

am 〈n|V (t)|m〉 exp

{
it

~
(En − Em)

}
+

+
∑
z

az 〈n|V (t)|z〉 exp

{
it

~
(En − Ez)

}
(2.32)

and

i~
daz
dt

=
∑
z′

az′ 〈z|V (t)|z′〉 exp

{
it

~
(Ez − Ez′)

}
+

+
∑
m

am 〈z|V (t)|m〉 exp

{
it

~
(Ez − Em)

}
(2.33)

If we now assume that |Ez − En| � |Ez − Ez′ | and that |Ez − En| � |En − Em|, it

can be shown that the interaction potential in equation 2.33, V (t), can be modified

by the addition of a polarization potential Vpol(t) [Ald75],

i~
dan
dt

=
∑
m

am 〈n|V (t) + Vpol(t)|m〉 exp

{
it

~
(En − Em)

}
, (2.34)

where, to the first-order,

〈n|Vpol(t)|m〉 = −
∑
z

〈n|V (t)|z〉 〈z|V (t)|m〉
Ez − Em

. (2.35)

Here higher order terms such as (Ez − Em)−2 involving, for example, transitions

within the z→z′ states are neglected.

The potential V (t) in equation 2.35 can be expanded using a multipole expansion

and, eventually, a set of coupled differential equations for arbitrary spins and multi-

polarities is reached (see reference [Few78] for the full derivation of the complete set

of differential equations). However, many of the matrix elements involved in these

equations are unknown, most noticeably the ones connecting the GDR states with
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the low-lying excited states. This has led to the use of nuclear models, such as the

hydrodynamic model, to describe the previously mentioned polarization potential.

For nuclear states which are described by nuclear quadrupole deformation, the

nuclear surface can be parametrised in terms of spherical harmonics of the type

Y ?
2µ(θ, φ) as

R(θ, φ) = R0

[
1 +

∑
µ

α2µY
?

2µ(θ, φ)

]
, (2.36)

where R0 denotes the equilibrium radius of the nucleus and α2µ are the deforma-

tion parameters that describe the nuclear surface. As shown in [Ald75], within the

framework of the hydrodynamic model, the induced dipole moment on a deformed

nucleus of this type gives rise to a polarization potential Vpol of the form

Vpol = −P0
~E2

[
1 + 2

∑
µ

α2µY
?

2µ(θ, φ)

]
, (2.37)

where the electric field strength at the nucleus is

∣∣ ~E∣∣ = Z1
e

r2
, (2.38)

and P0 is the nuclear polarizability as defined by Levinger [Lev57]. This nuclear

polarizability can be estimated from the (−2) moment of the total photo-nuclear

absorption cross section, σ−2, as

P0 =
~c
4π2

σ−2. (2.39)

Hydrodynamic-model estimates for the total photo-nuclear absorption cross section

[Mig44], yield values for the σ−2 of the type

σ−2 =

∫
σ(E)E−2 dE = k0A

5/3. (2.40)

Moreover, values of the σ−2 have been measured experimentally and were fitted by
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Levinger [Lev57] concluding that k0 = 3.5 µb/MeV gave a fairly accurate fit to the

experimental data for heavy nuclei, whilst the same fit was not as good for the lighter

nuclei. Recently, other authors [Orc15] found the best fit for k0 = 2.4 µb/MeV by

using new experimental data available for the σ−2. The deviation of the σ−2 from

the hydrodynamic model estimates are typically accounted for by introducing a

parameter k, known as nuclear polarizability constant. The expression for the σ−2

then is

σ−2 = 3.5kA5/3 µb/MeV, (2.41)

using Levinger’s fit and corresponding k = 1 to the hydrodynamic-model estimate.

Assuming that vibrational and rotational models hold, we can express the defor-

mation parameters α2µ as

M(E2, µ) =
3

4π
Z2eR

2
0α2µ, (2.42)

and by using equations 2.41 and 2.39, and substituting 2.38 and 2.42 into 2.37, the

polarization potential results in

Vpol = −e
2Z2

1~c
4π2

σ−2

r4

[
1 +

8π

3eZ2R2
0

∑
µ

M(E2, µ)Y ?
2µ(θ, φ)

]
. (2.43)

The total effective interaction potential will then be an addition of the E2 interaction

with the above mentioned polarization potential,

Veff(E2) = VEE(λ = 2) + Vpol, (2.44)
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and using equations 2.10 (for λ = 2) and 2.43, the effective potential results in

Veff(E2) =
4πeZ1

5r3

[
1− 5Z1~cσ−2

6π2Z2R2
0

· 1

r

]∑
µ

M(E2, µ)Y ?
2µ(θ, φ) =

= VEE(λ = 2)

[
1− 5Z1~cσ−2

6π2Z2R2
0

· 1

r

]
. (2.45)

If we now substitute once more equation 2.41 into 2.45, and we consider R0 =

1.2A1/3,

Veff(E2) ≈ VEE(λ = 2)

[
1− 0.0056k

A2EMeVa

Z2
2(1 + A1/A2)r

]
, (2.46)

where EMeV is the energy in MeV and a is the half-distance of closest approach in

a head-on collision. Equation 2.46 is implemented in the Coulomb excitation code

used for the analysis of the experimental data, Gosia, and the value of the nuclear

polarizability constant k can be modified to account for the couplings to the GDR.

A description of the main features of the code will be presented in the following

section and the analysis of the nuclear polarizability (or GDR effect) for the present

experiment will be discussed in section 4.4.2.

2.3 Gosia

The development of a code to analyse data extracted from Coulomb excitation ex-

periments was first accomplished by Winther and deBoer in 1965 [Win66]. The

code COULEX used the semi-classical theory of Coulomb excitation developed by

[Ald75] to calculate, for the first time, multi-step Coulomb excitation amplitudes

using an assumed set of the reduced electromagnetic matrix elements. However, the

extraction of nuclear-structure properties in a model-independent way is still limited

by the large number of reduced matrix elements with a significant contribution to

the Coulomb excitation process in experiments involving heavy-ions.

The Gosia code was developed for this purpose at the Nuclear Structure Re-
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search Laboratory of the University of Rochester in 1980 by Tomasz Czosnyka,

Douglas Cline and Ching-Yen Wu. Gosia can calculate excitation cross sections

following multiple Coulomb excitation in a model-independent way treating higher-

order multipolarities which, amongst other limitations, was not possible with the

original Winther and deBoer code.

2.3.1 Introduction

Gosia is a suite of Coulomb excitation codes that was designed to handle heavy-

ion induced Coulomb excitation where the population of many excited states is

measured using coincident detection of the scattered ions and the de-excitation γ-ray.

Although providing the possibility of running theoretical calculations, Gosia is an

experiment-oriented program designed to fit matrix elements to best reproduce large

experimental data sets. These matrix elements are not only fitted to the measured

de-excitation γ-ray yields but also to other available spectroscopic information such

as branching ratios, E2/M1 mixing ratios, lifetimes and previously measured E1−

E6 and M1 matrix elements.

The population of the different nuclear states is calculated by integrating the

coupled differential equations 2.25 numerically, making use of the fast approximation

method (see Gosia manual [Czo83]). The subsequent decay is then treated by

computing the γ-ray’s angular distribution. The calculated γ-ray yields are used

in a least-squares minimisation process where a χ2-type least-squares statistic is

normalised to the total number of data points.

2.3.2 The minimisation process

Gosia starts with a set of matrix elements, or initial guess, given by the user. It also

receives information on the experimental conditions (detectors’ position and sizes,

beam energy, target thickness, etc.) and spectroscopic information (level scheme of

the collision partners, matrix elements, lifetimes, etc.) as an input. Then it cal-
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Figure 2.6: Gosia dataflow scheme

culates the corresponding γ-ray yields and subsequently constructs a least-squares

statistic, S(M̄), built on the observed and calculated γ-ray yields. For this last

step, it takes into account known spectroscopic data related to the matrix elements,

experimental γ-ray yields are integrated over the scattering angle and energy range

of the incident projectile, and includes effects influencing the γ-ray yields (such as

internal conversion, size of the Ge detectors, deorientation effect, γ-ray angular dis-

tribution, etc). The process is then repeated until reaching a minimum value which

corresponds to the set of matrix elements that better reproduces the experimental

γ-ray yields. Figure 2.6 shows a scheme of the dataflow in Gosia.

As described in the manual [Czo83], S(M̄) is χ2-type function normalised to the

number of data points rather than the number of degrees of freedom, i.e.

S(M̄) =
1

N
χ2 =

1

N

(
Sy + S1 +

∑
i

wiSi

)
, (2.47)

where the total number of data points, N , includes the measured γ-ray yields and

known spectroscopic information. The symbols Sy, SI and Si denote different con-

tributions to the χ2 function arising from various subsets of the data:
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• Sy is defined as

Sy =
∑
i′,j

wi′j
∑
k(i′,j)

1

σ2
k

(
Ci′jY

C
k − Y E

k

)2
(2.48)

and accounts for the contribution of the measured γ-ray yields. The sum-

mations extend over all experiments (i′), γ-detectors (j) and observed γ-ray

transitions (k). The weights (wij) can be chosen for each experiment and γ-

detector independently, and give control to the user during the minimisation.

Y C
k denote the calculated yields for the set of matrix elements at this point

of the minimisation, and Y E
k represent the measured γ-ray yields with uncer-

tainty σk. The coefficients Cij are normalisation factors, connecting calculated

and experimental yields.

• The quantity S1 is used to avoid finding physically unreasonable solutions by

preventing the minimisation procedure from producing γ-ray transitions which

were expected, but had not been observed.

• Si term is defined as:

Si =
∑
ni

(
dCni
− dEni

)2 1

σ2
ni

(2.49)

where ni stands for all the spectroscopic data included in the input to Gosia,

dCni
and dEni

represent the calculated (i.e. resulting from the fit) and experi-

mental (introduced in the input) spectroscopic data points respectively, and

σni
its associated uncertainty.

For the present analysis, Gosia2, a special version of Gosia designed to handle both

the projectile and target excitation was used. Gosia2 allows the performance of

the simultaneous χ2 minimisation of the matrix elements for both collision partners

by normalising to a reference known reduced matrix element in one of them. As it

will be shown in Chapters 3 and 4, the B(E3; 0+
1→3−1 ) in 208Pb was chosen as the

normalisation transition due to its reduced uncertainty.
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2.3.3 Systematic uncertainties and limitations

One of the main sources of systematic error to consider when using Gosia arises

from the accuracy of the semi-classical approximation. The difference between fully

quantal and the semi-classical calculations is largely corrected by the symmetrisa-

tion of the orbit; the remaining quantal correction to the calculated cross sections is

of the order of 1/η [Ald69, Ald72]. Nonetheless, quantal effects tend to cancel each

other out, as it is usually the ratios of γ-ray yields that are measured, as opossed

to absolute cross sections, and the relative corrections for states which lie close in

energy are of similar magnitude [Kav95]. Another difference between semi-classical

calculations and fully quantal are the already mentioned Coulomb-nuclear interfer-

ence effects, which are of particular relevance in Coulomb excitation experiments

involving light nuclei. These two sources of systematic uncertainty in the Gosia

analysis are relevant to the present experiment and have been investigated. The

outcome of this analysis can be found in Chapter 4, sections 4.3 and 4.4.

Other potential sources of systematic error include, but are not limited to, vir-

tual excitation of unobserved states, mutual excitation of projectile and target, and

uncertainties derived from the experiment, such as energy loss of ions in the tar-

get (i.e. target thickness), beam energy, detector efficiency, etc. These will all be

considered and investigated as part of Chapter 4.

Finally, the angular distribution of the de-excitation γ rays can be attenuated by

the hyperfine interaction between the nucleus and the atomic magnetic field, this is

known as the de-orientation effect. This attenuation is estimated by means of phe-

nomenological models for the hyperfine interaction, where attenuation coefficients

Gk are introduced to correct the angular distribution of the de-excitation γ rays.

This is implemented in Gosia by using the two-state model of Brenn and Spehl

[Bre77], which was tested by performing a model-independent analysis of available

data on the attenuation coefficients [Kav89]. This study resulted in both the coeffi-
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cients G2 and G4 being well reproduced, and the uncertainties in the model having a

negligible influence in the extracted E2 matrix elements [Kav95]. In addition, γ-ray

detector arrays covering a large fraction of the solid angle will make this effect aver-

age over the γ-ray angular distribution, further reducing its impact on the measured

cross sections [Czo83].
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Chapter 3

Experimental set-up

A Coulomb excitation experiment was performed in order to measure the quadrupole

moment Q(2+
1 ) via the reorientation technique. In this chapter, a description of the

set-up used during the experiment will be presented. The beam, targets, detec-

tion systems, calibrations, and the DAQ system and electronics used in the J22

experiment will be discussed.

3.1 The experiment: beam and targets

The experiment was conducted at the Accelerator Laboratory of the University of

Jyväskylä, Finland, in Spring 2017. The JYFL accelerator laboratory is equipped

with three large-scale accelerators: the K130 cyclotron, MCC30/15 cyclotron and

the 1.7 MV Pelletron. The K130 is an isochronous cyclotron equipped with three

external electron cyclotron resonance (ECR) ion sources and a multicusp light-ion

source, which can deliver a large variety of heavy- and light-ion beams up to the

energy of 130 Q2/A MeV for use in research and applications [Liu89, Hei01].

The K130 cyclotron was used accelerate the ions produced by the ECR source,

and a 12C4+ ion beam at an energy of 47.65 MeV and intensities ranging between

40 - 320 enA was produced. The energy of the beam was measured with a precision

of 0.1% and the spread in the beam energy distribution was of 1%.
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Figure 3.1: Sketch of the experimental set-up outside (left) and inside (right)
the vacuum chamber. On the left side, the (1) 12C 4+ beam, (2) SiCD (S2-
type) detector, (3) target, (4) scattering chamber, a (5) Clover detector and a
(6) Phase1 detector are indicated.

The 47.65 MeV 12C4+ ion beam delivered by the K130 cyclotron was used to bom-

bard a 208Pb target Coulomb-exciting both of projectile and target. The subsequent

de-exciting γ-rays following the population of excited states in the 12C projectile

and in the 208Pb target were measured using the JurogamII array. A double-sided

silicon CD-type detector (Micron S2), was used to detect backward-scattered 12C

particles in coincidence with the γ-rays (see Figure 3.1).

A set of 7 different 208Pb targets (99.0% enriched) were used throughout the

experiment. All targets included a 40 µg/cm2 12C backing, and their thicknesses

ranged from 294 to 314 µg/cm2 (Table 3.1). The thickness of the target was chosen so

that the systematic uncertainty arising from the energy straggling of the accelerated

12C inside the 208Pb target was minimised since the uncertainty in the beam energy

has a direct impact on the final precision with which the Q(2+
1 ) is extracted.

Figure 3.2 shows a photo of the experimental set-up; on the left side the target

chamber with half of the JurogamII detectors surrounding it, and on the right

side, the inside of the target chamber containing the SiCD detector and target. A

protecting mask was placed in front of the SiCD detector in order to avoid it being

damaged by the beam. The target chamber was custom designed to fit the SiCD
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Table 3.1: Targets sizes and thicknesses used for the experiment.

Diameter 12C thickness 208Pb thickness
(mm) (µg/cm2) (µg/cm2)

15 38 297
15 39 289
15 40 291
15 41 297
20 39 307
20 40 311
20 39 314

detector and target holder for this experiment.

Figure 3.2: Photos of the experimental set-up taken during the experiment:
outside view of the vacuum chamber and half of the JurogamII HPGe de-
tectors (left) and view of the interior of the vacuum chamber (right).

3.2 JurogamII

JurogamII a is γ-ray spectrometer consisting of an array of 39 detector modules,

each of which consists of a high-purity Germanium detector (HPGe) and a Compton-

suppression Bismuth Germinate shield (BGO). Technical details of the array can be

found in the recent review paper of its successor Jurogam3 [Pak20].

Of the 39 detectors in the JurogamII array, 15 are Eurogam Phase1 detectors

and 24 are Clover detectors. The Eurogam Phase1 (Figure 3.4) are large coaxial n-
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Figure 3.3: 3D representation of the JurogamII array (left) and transverse
view of the inside (right) [Sic13].

type HPGe detectors [Bea92]. The Clover detectors consist of four smaller coaxial n-

type HPGe crystals [Duc99]. The measured γ-ray energy in the Clovers can be added

up (add-back mode) on an event by event basis in order to maximise photopeak

efficiency and improve the peak-to-background ratio, expecially for high energy γ

rays. The different angles covered by JurogamII are included in Table 3.2 and a

3D representation of the detectors is shown in Figure 3.3.

In addition, each module is equipped with a heavy-metal collimator to prevent

γ rays from the target hitting the BGO shields directly. The BGOs act as anti-

coincidence detectors and they are used to improve the peak-to-background ratio of

the γ-ray spectrum. As such, if there is a signal in the detector in coincidence with

a BGO signal, the event will be discarded since it would be coming from a Compton

scattered γ-ray and not a full energy deposition in the crystal.

All of the detector crystals need to be operated at very low temperatures. Typ-

ically, the crystal is cooled down to approximately 90 K by using liquid Nitrogen

(LN2) [Pak05]. This low temperature is maintained by means of a cold finger pro-

viding a heat contact with the LN2, which is stored in a thermally isolated dewar.

Figure 3.4 shows a schematic of all the differents parts inside a Phase1 module,
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Table 3.2: JurogamII array specifications. (a) T is Phase1 detector and Q
is Clover detector. (b) θ is the polar angle, defined with respect to the beam
direction. (c) φ is the azimuthal angle, defined as vertically upwards and
increases in a clockwise direction when the array is viewed from a position
upstream. All angles are midpoint angles.

Ring # Array position (a) θo (b) φo (c)

1 T1 157.6 0
1 T2 157.6 72
1 T3 157.6 144
1 T4 157.6 216
1 T5 157.6 288
2 T6 133.57 18
2 T7 133.57 54
2 T8 133.57 90
2 T9 133.57 126
2 T10 133.57 162
2 T11 133.57 198
2 T12 133.57 234
2 T13 133.57 270
2 T14 133.57 306
2 T15 133.57 342
3 Q1 104.5 15
3 Q2 104.5 45
3 Q3 104.5 75
3 Q4 104.5 105
3 Q5 104.5 135
3 Q6 104.5 165
3 Q7 104.5 195
3 Q8 104.5 225
3 Q9 104.5 255
3 Q10 104.5 285
3 Q11 104.5 315
3 Q12 104.5 345
4 Q13 75.5 15
4 Q14 75.5 45
4 Q15 75.5 75
4 Q16 75.5 105
4 Q17 75.5 135
4 Q18 75.5 165
4 Q19 75.5 195
4 Q20 75.5 225
4 Q21 75.5 255
4 Q22 75.5 285
4 Q23 75.5 315
4 Q24 75.5 345
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Figure 3.4: Technical and schematic drawing of a Phase1 Eurogam detector
module [Nol94, Pak05].

including the collimator, crystal, BGO shielding, cold finger and dewar.

3.2.1 Add-back

As it was previously mentioned, each of the JurogamII Clovers consists of 4 smaller

crystals. Through Compton scattering, a γ ray may interact with two or more

crystals within a Clover, resulting in the energy deposited by the γ ray being shared

by the crystals. These type of events can be “added-back”, and the energy in each

of the crystals added together to determine the energy of the incident γ ray. By way

of example, Figure 3.5 illustrates how an incident photon may hit one, two or three

crystals before being absorbed.

The add-back is carried out at a later stage through software analysis, where

the sorting code adds up the deposited energy in simultaneous events within the

different crystals of a certain Clover. The add-back results in an improvement of

the peak-to-background ratio of the γ-ray spectra, since it reduces the number of

events from the Compton part of the spectrum and adds them to the photopeak.

Figure 3.6 shows a γ-ray spectra for the 66Ga calibration source (see section 3.2.2)
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Figure 3.5: Sketch of the four crystals inside a Clover detector in the Ju-
rogamII array. As an example, the events were there is one (a), two (b) or
three (c) hits of the incident γ ray is shown.

obtained with the JurogamII Clovers with and without this add-back feature.

The improvement in the peak-to-background ratio is more pronounced as the

probability of photoabsorption decreases and the probability of Compton scattering

increases with the incident photon energy, meaning that the effect of the add-back

is more noticeable for higher energy γ rays. Figure 3.7 shows the ratio between the

photopeak efficiency of the JurogamII Clovers (rings 3 and 4) with and without

add-back. The γ rays measured in the present work range from 2.6 MeV to 4.4 MeV,

for which the add-back provides an improvement in the photopeak efficiency in the

Clovers of a factor (add-back factor in Figure 3.6) of ∼1.7 and ∼1.85 respectively.

This shows how the add-back is a very useful tool to improve the statistics in the

photopeaks of the Clover detectors, especially when measuring high-energy γ rays,

as is the case in the present experiment.

In general, the Phase1 detectors are larger than the Clovers. The Clover detectors

provide a better energy resolution since the smaller crystals within each detector
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Figure 3.6: Energy calibrated 66Ga γ-ray spectrum obtained with the Ju-
rogamII Clovers with and without the add-back mode. As an example, a
zoomed-in photopeak of 66Ga source is displayed.
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Figure 3.7: Add-back factor measured for the different γ-ray transitions in the
152Eu and 66Ga source measurements.
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module give a more accurate position of interaction of the γ-ray with respect to the

emitting source, which translates into a smaller Doppler broadening. For the case of

added-back events, due to the small time resolution that would be required, it is not

possible to determine in which crystal of the Clover the γ-ray deposited energy first

— which is the position to be used for the Doppler correction. However, high-energy

γ rays have a higher probability of Compton scattering at angles of ∼90o [Kle29],

which corresponds to an energy deposition of half the incident energy of the photon

according to the Compton scattering formula [Com23]. Therefore, the crystal with

the highest energy deposition was considered as the first interaction point for the

Doppler correction. In section 4.1.1, the Doppler correction used for the analysis

will be discussed in further detail.

3.2.2 Energy and efficiency calibrations: the 66Ga source

The energy and efficiency calibrations were performed using EuBa and 66Ga sources.

The EuBa is a standard calibration source for γ-ray detectors. 133Ba emits γ rays

ranging from 80 keV to 384 keV [Rab95] and 152Eu covers the range from 122 keV to

1408 keV [AC96]. However, for experiments where high-energy γ rays are measured

(>2 MeV), the use of traditional calibration sources like these becomes insufficient, as

they only cover up to ∼2 MeV, and result in inaccurate extrapolations in the energy

and relative efficiency calibration curves, leading to larger systematic uncertaintes.

As such, 66Ga becomes an excellent source for high-energy γ-ray calibration,

since the emission probabilities for up to 18 strong lines, from 834 to 4806 keV,

are known to better than 1% accuracy for this radionuclide (Table 3.3) [Bag02].

The 66Ga source was produced with a 11 MeV proton beam on a natZn target via

the natZn(p,xn)66Ga channels. As previously mentioned, using this radioisotope

avoided using an inappropriate efficiency curve extrapolation, which is necessary

with conventional radioactive sources for calibration at high γ-ray energies. The

energy calibration as well as the efficiency calibration was performed for each Phase1
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Table 3.3: 66Ga decay recommended relative γ intensities [Bag02].

Eγ (keV) Iγ

833.5324(21) 15.930(50)
1039.220(3) 100.0(3)
1333.112(5) 3.175(12)
1418.754(5) 1.657(8)
1508.158(7) 1.497(7)
1898.823(8) 1.051(8)
1918.329(5) 5.368(21)
2189.616(6) 14.420(50)
2422.525(7) 5.085(22)
2751.835(5) 61.35(23)
3228.800(6) 4.082(19)
3380.850(6) 3.960(19)
3422.040(8) 2.314(14)
3791.036(8) 2.941(19)
4085.853(9) 3.445(18)
4295.224(10) 10.300(80)
4461.202(9) 2.260(30)
4806.007(9) 5.030(30)

detector and each Clover crystal separately, making use of the add-back mode for

the Clover detectors.

The output signals of each Phase1 and Clover are proportional to the deposited

energy by the detected γ ray. Equation 3.1 was used to relate the channel number

of the ADC (see section 3.4 for an explanation of the data acquisition system) into

the energy (E) of the known emitted γ-ray of each of the calibration sources in units

of keV,

E = p0 + p1 · x+ p2 · x2, (3.1)

where p0, p1, and p2 are the fitting parameters and x is the channel number. Fig-

ure 3.8 shows the total calibrated γ-ray energy spectra of the produced 66Ga cali-

bration source measured with the whole JurogamII array. The γ-ray transitions

used for the energy and efficiency calibration are labelled in the figure.

Furthermore, the experiment presented in this work involves the relative mea-

surement of the Coulomb excitation cross section of the first 2+
1 state in 12C, at 4439
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Figure 3.8: Total γ-ray energy spectra of the produced 66Ga calibration source
measured with the whole JurogamII array using add-back.

keV, with respect to the excitation cross section of the 3−1 state, at 2614 keV in

208Pb. This requires a relative efficiency calibration between both γ-ray transitions.

As shown in Table 3.3, the 66Ga source provides calibration points next to each γ-

ray transition energy of interest. The relative efficiency for each of the detectors at

each energy εrel was obtained by fitting the γ-ray peaks of the spectra to a Gaussian

distribution and integrating it. The obtained number of counts was then corrected

by their relative intensity

#corrected counts =
counts

Iγ/100
, (3.2)

and arbitrarily normalising it to one of the transitions, the 1039 keV in this case,

εrel =
# corrected counts

#corrected counts at 1039 keV
=

# counts

# counts at 1039 keV
·
I1039 keV
γ

Iγ
. (3.3)
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For wide energy ranges like this case, one commonly used formula to fit the exper-

imental relative efficiencies is a polynomial function relating the logarithm of the

efficiency to the logarithm of the energy [Kno89],

log ε (E) =
5∑
i=1

ai

(
log

E

E0

)i−1

(3.4)

where E0 is a fixed reference energy and the values of ai are the fitted parameters

to the efficiencies. The obtention of the experimental efficiencies and the fit to

equation 3.4 was performed independently for each one of the 15 Phase1 and 24

Clover detectors obtaining 39 set of parameters, each of which define the efficiency

curve for each of the detector modules. These sets of parameters will be used as part

of the Gosia input for the extraction of the matrix elements in a later stage of the

analysis (see section 4.4). Figure 3.9 shows the obtained total experimental relative

efficiencies for the used γ-ray transitions in the EuBa and 66Ga source, together with

the curve fit using equation 3.4 for the entire of the JurogamII array. The displayed

experimental data points include the uncertainty in the number of counts, statistical

uncertainty and the error arising from the fit, and the propagated uncertainty for

each γ-ray transition intensity.

During the experiment, γ-ray transitions coming from the 2+
1 in 12C at 4439 keV

and, 3−1 and 2+
1 in 208Pb at 2614 and 4085 keV respectively were observed. The 66Ga

calibration source used provided calibration points at 2752, 4086 and 4461 keV. It

can be noted from Figure 3.9, the high-statistics in the 66Ga γ-ray spectra recorded

with the whole JurogamII array translated into highly accurate calibration points

at these energies. For instance, the fitted total efficiency at 4439 keV relative to

the 1039 keV transition in 66Ga was found to be εrel = 0.3124(18). As shown, the

systematic uncertainty to be propagated to the extracted γ-ray yields (see section

4.2) was below 1% and thus considered negligible.
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Figure 3.9: Experimental total efficiencies for each of the used γ-ray transi-
tions in the EuBa and 66Ga source, and curve fit (equation 3.4) for the whole
JurogamII array (Phase1 and Clover detectors using add-back) relative to
the 1039 keV transition in 66Ga.

3.2.3 Neutron damage

The near perfection of the crystalline lattice is the key factor for the correct per-

formance of any semiconductor detector. Defects in this lattice induced by any

sort of radiation damage can lead to the trapping of charge carriers and incomplete

charge collection. HPGe semiconductor detectors used for γ-ray spectroscopy are

sensitive to radiation damage due to their large volume and long charge collection

paths [Kno89]. Radiation damage on HPGe detectors can often be caused by the

exposure to neutrons coming from the different reaction mechanisms taking place

during an experiment. This was the case for the JurogamII array, where the HPGe

detectors suffered from neutron damage caused in experiments using this array at

the Accelerator Laboratory of the University of Jyväskylä prior to the experiment

described in this work.
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Fast neutrons can produce the so called Frenkel defects, which are displacements

of atoms of the lattice from their normal lattice site. The displaced atoms, now at an

interstitial position, together with the vacancy (‘hole’) that they left behind become

a trapping site for normal charge carriers. In addition, more complex ‘clusters’ of

crystalline damage produced along the track of a primarily displaced atom with

sufficient energy are also produced.

These types of defects caused by neutron damage increase the amount of hole

trapping within the active volume of a detector. As a result, some of the pulses

produced by the active material will be subjected to a partial charge loss which will

vary from one to another. The measured peaks in the pulse height spectrum, i.e.

the energy spectrum, will then show a tailing towards the low-energy side [Kno89].

This effect was observed in the measured γ-ray spectra during the experiment and

the low-energy tail observed was included in the fitting and integrating procedures

performed during the analysis of the spectra. Figure 3.10 shows an example of the

2751 keV peak in 66Ga presenting different low-energy tails arising form neutron

damage for different Phase1 detectors. The observed neutron damage varied for

each detector and for each peak.
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Figure 3.10: Comparison of low-energy tail arising from neutron damage ob-
served for the 2751 keV γ-ray transition in 66Ga for different Phase1 detectors.
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3.3 SiCD

The double-sided CD-type silicon detector (S2 type) is a position sensitive particle

detector made of n-type based Silicon and segmented into 48 rings on one side,

giving the θ coordinate of the detected particle, and 16 sectors providing the φ

coordinate. The detector contains a hole of inner radius equal to 11.52 mm and outer

radius of 35.00 mm, which gives the detector a total sensitive area of approximately

3.43 cm2. Each concentric ring is 0.39 mm wide and therefore provides a good

position resolution for superior Doppler corrections. As illustrated in Figure 3.11,

the S2-type detector is not perfectly axially symmetrical, as it has a non-sensitive

area in some of the rings and sectors.

The detector was placed at backward-scattering angles at a distance of 57.9 mm

which provides an angular coverage of 149.0o to 168.6o, with a position resolution

of 0.4o in the θ coordinate of the scattered particle. The exact angle θ for each

corresponding ring can be calculated using the SiCD position, the inner radius of

the SiCD, the width of each ring, and simple trigonometry.

Figure 3.11: 3D design of the SiCD (S2 type) detector manufactured by Micron
Semiconductor Ltd.
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3.3.1 Energy calibration

The SiCD detector was calibrated using a triple α source containing 239Pu, 241Am

and 244Cm, together with higher-energy calibration points provided by the elastically

scattered 12C particles. The triple α source emits α particles at energies of around

5 MeV. Table 3.4 shows the emitted α particle energies for each of the isotopes. The

energy of the elastically scattered 12C was measured for each scattering angle, i.e.

each ring, with the SiCD detector. A polynomial fit was used to obtain the energy-

channel relation between known α particle energies and the calculated scattering

energies of the 12C ions, and the measured α particles and the detected elastically

scattered 12C channel numbers. Figure 3.12 illustrates the second-order polynomial

fit performed for sector 3 as an example of the above.
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Figure 3.12: Second-order polynomial fit performed for the calibration of sector
3 in the SiCD detector. The calibration points from the triple alpha source as
well as the 12C elastic-scattering energies are indicated. Plot changed
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Figure 3.13 shows an example of the calibrated particle energy spectra of the

detected 12C measured by one ring (ring 20), when a second hit has taken place in

a certain sector (sector 5), and one sector (sector 5), when a first hit took place in

a certain ring (ring 20). The largest peak shown in the specta corresponds to the

detected elastically scattered 12C particles. If the detector is properly calibrated,

the energy measured by a certain ring should be the same as the one measured by

the sector for the same scattering angle. As demonstrated, the energy calibration

between rings and sectors is consistent.

Table 3.4: Emitted alpha particle energies for the triple α source, 239Pu, 241Am
and 244Cm.

239Pu 241Am 244Cm
(MeV) (MeV) (MeV)

5.105 5.388 5.763
5.143 5.443 5.805
5.155 5.486
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Figure 3.13: Calibrated particle energy spectra of the detected 12C measured
by one ring (ring 20), when a second hit has taken place in a certain sector
(sector 5), and one sector (sector 5), when a first hit took place at a certain
ring (ring 20).
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3.4 Data Acquisition

More conventional data acquisition systems (DAQ) experience a common dead-time

where a trigger condition and a time gate are defined. Experiments which use such

DAQ systems are often limited by dead-time. Conversely, in this setup, we used a

Total Data Readout (TDR) technique which eliminates the need for a common dead-

time condition by recording all data from the individual channels at an accuracy of

10 ns [Laz01]. The TDR technique is triggerless and minimises the dead-time of the

system, since this dead-time is now limited to individual detector components.

The signal from all the detectors are converted and time stamped using shaping

amplifiers (NIM/CAMAC units) and constant fraction discriminators (CFDs). The

conversion and readout of the signals is performed by an ADC card (VXI-D format)

offering 32 independent channels (14 bits with sliding-scale correction and zero sup-

pression) [Laz01]. The timestamping requires the distribution and synchronisation of

a 100-MHz clock. A Metronome (VME module) controls the clock distribution and

maintains synchronisation of all the ADCs. An additional VME module provides a

method to include hit patterns in the data stream along with a timestamp.

The data items from all ADCs and pattern cards are then sent to buffering and

becomes ready for use by the event builder. Subsequently the data is then sent

to tape. Figure 3.14 is a schematic diagram of the described DAQ system and

electronics.
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Figure 3.14: Schematic diagram of the DAQ system and electronics (TDR
technique), adapted from [Laz01].

63



CHAPTER 3. EXPERIMENTAL SET-UP

64



Chapter 4

Data Analysis and Results

The following chapter describes the sorting, analysis process and results of the

Coulomb excitation experiment of 12C. First, the sorting of the data, Doppler cor-

rection, time and particle-energy gates and analysis of the obtained γ-ray spectra

will be discussed. The presence of Coulomb-nuclear interference will subsequently

be investigated, and finally the GOSIA analysis and results will be presented.

4.1 Sorting of the raw data

The java-based software package GRAIN [Rah08] was used to sort the raw TDR

data stream and produce the different histograms that were later analysed with the

ROOT data analysis framework [Ant09]. GRAIN can be used to form physically

meaningful events from the data stream and its sorting code can be modified to

extract physical results through the production of histograms that can be visualised

through a simple graphical user interface (GUI).

Despite the TDR data acquisition system being triggerless and all the electronic

channels operating individually in free running singles mode, a particle-γ coincidence

condition was set in GRAIN in order to extract the desired Coulomb excitation

events. For every backward-scattered 12C ion detected by the SiCD detector, the

coincident γ rays within a 1 µs time window, (0.5 µs before and 0.5 µs after each
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hit in the SiCD), were grouped as an event. This delayed trigger of 0.5 µs is intro-

duced in GRAIN through a configuration file, where additional options regarding

the pile-up or BGO Compton supression can be added for the different channels.

Another file was produced containing the parameters obtained for the calibration of

JurogamII (section 3.2.2) detector modules and the SiCD rings and sectors (sec-

tion 3.3.1). Consequently, GRAIN will read both of these files producing the desired

event structure with correctly calibrated particle and γ-ray energies.

The java-based sortcode can later be modified to include the Doppler corrections,

more accurate time gates (prompt and background) and particle-energy gates.

4.1.1 Doppler correction

For every event, the velocity of the backward-scattered 12C and the 208Pb recoiled

can be calculated for each scattering angle (each ring) using relativistic scattering

kinematics. The calculated velocities for 12C and the recoiled 208Pb nucleus are of

β ∼ 0.08c and β ∼ 0.01c, respectively. At these speeds, a substantial Doppler shift

of the measured γ rays takes place. During the sorting of the data, these Doppler-

shifted measured γ-ray energies were corrected on an event-by-event basis using the

expression

Eγ,i = Emeas
1− βi cosαγ,i√

1− β2
i

(i = C, Pb), (4.1)

where βi = vi/c, and vi is the speed of the projectile (or target) before emitting the

γ ray and,

cosαγ,i = sin θJG
γ sin θS2

i cos
(
ϕJG
γ − ϕS2

i

)
+ cos θJG

γ cos θS2
i (i = C, Pb), (4.2)

where αγ,i is the angle between the scattered particle and the γ ray, θJG
γ and ϕJG

γ

correspond to the angles of the JurogamII modules which detected the γ ray (table

3.2), and θS2
i and ϕS2

i are the angles that define the position of the scattered 12C or

208Pb which are given by the SiCD detector. Here, 12C is the only detected particle
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Figure 4.1: Scheme of the inelastic-scattering process where the angle between
the emitted γ ray and each nuclei can be expressed as a function of the Ju-
rogamII and the S2 SiCD detector angles, see Eq. (4.2.)

but the corresponding angle for 208Pb can be calculated via kinematics. A scheme of

this is shown in Figure 4.1. For the Doppler correction in the clovers, the total energy

deposited by the γ ray in each clover crystal was taken into consideration (add-back

mode), however, the angle of the crystal in which more energy was deposited was

the one used for the correction.

The βi values were calculated for each scattering angle θ (each ring) using

inelastic-scattering kinematics, providing a set of 48 values for both target and pro-

jectile. Due to the difference in mass between projectile and target, the lighter

particle will recoil with a much larger β, and therefore the γ ray emitted by the 12C

will have a more severe Doppler shift, which makes the Doppler correction highly

sensitive to the chosen set of βi values.

The decay process after the population of the excited states via Coulomb exci-

tation occurs almost instantly (42.2 fs [Kel17] for the 2+
1 in 12C and 16.7 ps [Mar07]

for the 3−1 in 208Pb ) and therefore it takes place inside the 208Pb target. After

the decay, the inelastically scattered 12C particles travel through the target material

before being detected by the SiCD. The energy loss in the target after the decay was

taken into account when calculating the βi values. Figure 4.2 shows the calculated

βi values for the projectile just after the decay and after passing through the target

(the energy loss in the target was calculated using the software SRIM [Zie10]). The
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Figure 4.2: Results of the inelastic-scattering calculation of the recoil velocity
(β) of the projectile after the decay. The results for before and after passing
through the target are shown together with their relative change.

relative change between the beta values before and after (∆β/β) going through the

target is also included in the plot and is of the order of ∼0.3%. Despite the Doppler

correction for 12C being very sensitive to the values of βi, such small changes did

not show a significant difference in the Doppler-corrected γ-ray spectrum. The same

calculations of energy loss in the target were performed for the 208Pb target, but the

corrections were negligible since the Doppler shift is much less severe in this case,

and the Doppler correction is less sensitive to the chosen βi values than in the case

of 12C. Figure 4.3 shows the effect of the Doppler correction on the 3−1 decay γ-ray

photopeak of 208Pb as an example of the effect of the Doppler corrections in the

γ-ray spectra.
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Figure 4.3: Total γ-ray energy measured with JurogamII Doppler-corrected
and non-Doppler-corrected for the 208Pb (3−1 ) target excitation.

4.1.2 Time gate

Each hit in SiCD detector by the backward-scattered 12C ion is assigned an event

time stamp (ts). The difference between the coincident JurogamII γ-ray time

(tJuro) and the time stamp (ts), ∆T , can be plotted versus the JurogamII γ-ray

energy —Doppler-corrected for the target excitation— in order to set the time gates

with the maximum precision possible. High precision in the time gates will result in

a cleaner final γ-ray spectra, since uncorrelated background events will be rejected.

Figure 4.4 shows a 2D-plot of the JurogamII γ-ray energy (Doppler-corrected for

the 208Pb excitation) as a function of the above mentioned time difference ∆T . At

2614 keV the peak coming from the 3−1 state in 208Pb can be observed. Different

time gates of different widths were explored until finding the one that maximises the

number of counts in the 3−1 peak and minimises the contribution of the uncorrelated
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Figure 4.4: Time difference, ∆T , between the coincident JurogamII γ-ray
time and the time stamp, ∆T = tJuro − ts, vs. the JurogamII energy.

events. Figure 4.4 also shows the final time gate of 90 ns that was set. This time

gate was used for the analysis of both the population of the states in 208Pb and in

12C since they occur almost precisely at the same time difference with respect to the

12C ion hit.

In addition to the 90 ns prompt gate, a further background time gate was set

including all events before and after the prompt gate. The width of the background

time gate was made as large as possible in order to obtain a background γ-ray spectra

with the best statistics possible. Figure 4.5 shows the time difference histogram

between the coincident JurogamII γ-ray time and the time stamp, ∆T . Figure 4.5

also displays the different time gates used to trigger the prompt and background

events, as well as the different “bumps” arising from the cyclotron frequency. The

highest peak in the figure corresponds to the prompt γ-ray events. Figure 4.6 shows

the prompt and background (scaled) γ-ray spectra resulting from the previously

described time gates. A detailed discussion of the analysis of the γ-ray spectra

including the background subtraction and scaling will be included in section 4.2.
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Figure 4.5: Prompt and background time gates for the data sorting, where
∆T = tJuro − ts.
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Figure 4.6: Measured JurogamII γ-ray Doppler-corrected energy spectrum
with a prompt and background (scaled) time gate.
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4.1.3 Particle-energy gates

The refined time gates helped improve the peak-to-background ratio of all the exper-

imentally observed γ-ray transitions, namely the 2+
1→0+

1 in 12C at 4439 keV, and the

3−1→0+
1 and 2+

1→0+
1 in 208Pb at 2614 and 4085 keV, respectively. However, the much

larger elastic-scattering cross section of 12C in 208Pb (several orders of magnitude

larger) produced random γ-ray concidences. These “random” γ rays (uncorrelated

to the inelastic-scattering of the projectile or target) spread as background around

the whole γ-ray spectrum, which made the analysis of the measured γ-ray spectra

more diffcult, particularly for the lowest cross section γ-ray transitions, the 2+
1→0+

1

in 12C and 208Pb.

Further particle-energy gates were set throughout the sorting process in order to

reduce background events in these γ-ray spectra. This was achieved by setting an

energy condition (a lower and higher bound) on the particle-energy measured by the

rings in the SiCD detector. The energy of the inelastically scattered 12C particles

will differ from the elastically scattered ones by the energy of the γ-ray (Eγ), i.e.

Einelast = Eelast − Eγ (4.3)

as per kinematics, where the inelastic (Einelast) and elastic (Eelast) particle energies

will differ for each scattering angle (each ring). Despite the elastic and inelastic

particle energies being able to be separated, the large tail of the much higher cross

section elastic-scattering distribution will sit on top of the inelastic-scattering peak,

making it practically unnoticeable. The goal is to find particle-energy gates for each

γ-ray transition that preserve the maximum amount of inelastic events whilst also

trying to minimise the elastic ones. This was achieved by centering each gate at the

inelastic-scattering distribution peak.

In order to be able to set the right gates for each γ-ray transition, an auxiliary

gate on the γ-ray spectrum can be set to “unbury” the inelastic-scattering peak from
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Figure 4.7: SiCD rings particle-energy spectra with and without a γ-ray energy
gate around the 2614 keV 3−1

208Pb photopeak.

the elastic-scattering background. Figure 4.7 shows how the inelastic-scattering peak

for the 3−1 γ-ray transition of 208Pb can be observed after applying a γ-ray-energy

gate around the 2614 keV γ-ray peak. This γ-ray-energy gate is also illustrated in

Figure 4.8.

For the purpose of accurately choosing the particle and γ-ray energy gates, several

2D-histograms were produced (Figures 4.8, 4.10 and 4.12) containing the measured

JurogamII γ-ray energies (Doppler-corrected for either 12C or 208Pb ) vs the SiCD

total ring energies – the sum of the energies of all the rings . The “cleaning” process

of the γ-ray spectra for each transition consisted of:

• setting a γ-ray-energy gate at the energy of the transition of interest wide

enought to include the whole photopeak (Figures 4.8 and 4.10),

• producing the γ-ray-energy-gated total ring particle-energy spectra by project-

ing the 2D-histogram into the X-axis (Figures 4.9 and 4.11),

• fitting the now visible inleastic scattering peak with a Gaussian distribution

plus a second order polynomial background, obtaining the Gaussians centroid
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(E0) and σ (Figures 4.9 and 4.11),

• removing the γ-ray-energy-gate, and

• setting an inelastic particle-energy gate centered at E0 and wide enough to

include the whole inelastic peak (whilst avoiding the elastic peak).
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Figure 4.8: JurogamII γ-ray energy Doppler-corrected for 208Pb vs the SiCD
total ring energy spectrum. The auxiliary γ-ray-energy gate used to produce
Figure 4.9 is shown with horizontal dashed lines and the final particle-energy
gate for the 3−1 transition in 208Pb is shown with vertical lines.

The width of the final particle-energy gates was chosen to be of 3.5σ in order

to ensure that the whole inelastic-scattering peak is included and the data is not

biased. The severe Doppler shift and the low statistcs for the case of the 2+
1 in 12C

did not allow the production of a γ-ray-energy-gated ring particle-energy spectra

where the inleastic scattering peak was visible. As a result, and in order to maintain

consistency, a gate of the same width to the one for the 2+
1 in 208Pb and centered at

E
12C(2+)
0 = E

208Pb(2+)
0 −

(
E12C(2+)
γ − E208Pb(2+)

γ

)
= E

208Pb(2+)
0 − 0.35 (MeV), (4.4)

was set. Table 4.1 includes the final particle-energy gates used to produced the final

γ-ray spectra.
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Figure 4.9: SiCD total rings particle-energy spectrum gated at the 3−1 2614
keV γ-ray-energy transition in 208Pb.
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Figure 4.10: JurogamII γ-ray energy Doppler-corrected for 208Pb vs the SiCD
total ring energy spectrum. The auxiliary γ-ray-energy gate used to produce
Figure 4.11 is shown with horizontal dashed lines and the final particle-energy
gate for the 2+

1 trainsition in 208Pb is shown with vertical lines.
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Figure 4.11: SiCD total rings particle-energy spectrum gated at the 2+
1 4085

keV γ-ray-energy transition in 208Pb.
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Figure 4.12: JurogamII γ-ray energy Doppler-corrected for 12C vs the SiCD
total ring energy spectrum. The final particle-energy gate for the 2+

1 trainsition
in 208Pb is shown with vertical lines.
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Table 4.1: Particle-energy gates used to produced the “cleaned” final γ-ray
spectra.

Gate Elow (MeV) Ehigh (MeV)
208Pb (3−1 ) 34.62 37.07
208Pb (2+

1 ) 33.02 35.80
12C (2+

1 ) 32.67 35.45
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4.2 Gamma-ray spectra

Using the inelastic particle-energy gates described in table 4.1, time-gated (prompt

and background) and Doppler-corrected γ-ray energy spectra were obtained for 2+
1

in 12C and the 3−1 and 2+
1 in 208Pb.

Figure 4.13 shows the particle-energy-gated prompt γ-ray spectra Doppler cor-

rected for the 2+
1 in 12C for each of the JurogamII rings. As it can be noted, there

is a high-energy background which is Doppler-shifted towards higher energies as the

JurogamII ring number increases, i.e. the detector angle θJG
γ decreases. This high-

energy background is believed to arise from random coincidences of prompt γ rays

from 12C +12C reactions of the beam with the backing material in the target. It sits

on top of the 4438 keV γ ray of the 2+
1 in 12C for the case of R3 and R4, causing a

substantial decrease in the peak-to-background ratio for this particular transition.
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Figure 4.13: Particle-energy-gated prompt γ-ray spectra Doppler corrected for
the 2+

1 in 12C measured with R1, R2, R3 and R4 of the JurogamII array.
The shaded region shows where the 2+

1→0+ γ ray in 12C is situated.
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As discussed in section 4.1.2, a background time gate was set and a background

spectrum was obtained which reproduces very accurately the “random” events of the

prompt γ-ray spectrum (Figure 4.6). The scaling and subtraction of this measured

background from the prompt spectra followed by the integration of the peaks was

the chosen approach in order to obtain the number of counts for all observed γ-

ray transitions, namely the 2+
1 in 12C, and 2+

1 and 3−1 peaks in 208Pb. As such, the

number of counts in each of the peaks can be obtained by integrating the background-

subtracted spectra around the peak region, this is

C = P − n ·B, (4.5)

where C stands for the “clean” (background-subtracted) spectra, and P and B stand

for the prompt and background γ-ray spectra respectively.

The normalisation factor n for each photopeak in 12C and 208Pb can be obtained

by subtracting the net number of background counts under the peak from the prompt

spectra. This is achieved by defining two normalisation regions at the left and right

hand sides of the peak (N1 and N2) and a photopeak region (PK) as illustrated in

Figure 4.14. The normalisation regions were chosen to be of the same size and large

enough to minimise statistical uncertainy. The effect of prompt Compton events on

the regions at the left hand side of the peak is negligible compared to the number of

background counts. The background normalisation factor was therefore defined as

n =
PN1 + PN2

BN1 +BN2

, (4.6)

with uncertainty

∆n = n ·

√
∆P 2

N1 + ∆P 2
N2

(PN1 + PN2)2
+

∆B2
N1 + ∆B2

N2

(BN1 +BN2)2
, (4.7)

where PN1, PN2, BN1 and BN2 refer to the number of counts in the regions N1
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Figure 4.14: a) Sketch of the prompt γ-ray spectra (solid black line) with
highlighted normalisation regions N1 and N2, net background under peak
(netBUP) and the number of estimated counts in the photopeak or γ-ray
yield (Yγ = CPK). The position where the normalised background would sit
is also indicated (dashed dark red line). (b) Sketch of the background γ-ray
spectra (solid dark red line) with highlighted normalisation regions N1, N2,
and PK. See the text for more details.
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and N2 of the prompt and background spectra respectively. Their uncertainties,

which are referred to as ∆PN1, ∆PN2, ∆BN1 and ∆BN2 in equation 4.7, are the

standard deviations for Poisson distributions, i.e. ∆PN1 =
√
PN1, ∆PN2 =

√
PN2,

∆BN1 =
√
BN1 and ∆BN2 =

√
BN2.

For the normalisation factor described by equation 4.6, it is trivial to show

that the net background under the peak (netBUP) for the “clean” spectrum (equa-

tion 4.5) is equal to zero, being the latter net background given by

netBUP =
PK

N1 + N2
(CN1 + CN2) (4.8)

where the factor PK/(N1+N2) scales for the sizes of the regions PK, N1 and N2 and

CN1 and CN2 stand for the number of counts of the background-subtracted spectrum

in the regions N1 and N2,

CN1 = PN1 − n ·BN1 (4.9)

CN2 = PN2 − n ·BN2. (4.10)

As discussed, the resulting clean spectra will then be given by equation 4.5 with the

normalisation factor from 4.6. The number of counts in each photopeak will then

be the integral of the clean spectra under the PK region, i.e.

CPK = PPK − n ·BPK, (4.11)

with uncertainty

∆CPK =
√

∆P 2
PK + (n ·∆BPK)2 + (BPK ·∆n)2, (4.12)

where ∆n is given by equation 4.7, and with ∆PPK and ∆BPK being again standard

deviations for Poisson distributions. It should be noted that for the background

factor given by equation 4.6, the estimated number of counts in the peak CPK cor-
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responds to the γ-ray yield (Yγ) with uncertainty ∆Yγ = ∆CPK.

At this point, equations 4.11 and 4.12 give the number of counts (or γ-ray yield

Yγ) and uncertainty for any given photopeak. However, as an alternative method

to directly integrate the spectra over the peak region PK (equation 4.11), the re-

sulting “clean”—background-subtracted—spectrum obtained using equation 4.5 can

be fitted to a Gaussian with two exponential tails —one on the lower energy side

and another one at the higher energy side. The uncertainty in each bin of the his-

togram can be propagated in an analogous way using equation 4.12 for each bin of

the histogram. The number of counts in the peak can be found by performing an

integral of the fitted function and the uncertainty can be obtained by propagating

the uncertainties in the fitted parameters and the covariance matrix of the fit.

For the 3−1 , the direct integration of the background-subtracted spectra and the

integration of the previously mentioned fitted function gave equivalent results. The

integral of the fit with the propagated uncertainty of the parameters was the number

adopted as the γ-ray yield for this transition. Figure 4.15 (up) shows the background-

subtracted γ-ray energy spectra for the 3−1 state in 208Pb and the obtained number

of counts is recorded in table 4.2.

Similarly, despite the integration and fitting also providing equivalent results for

the 2+
1 in 208Pb, the fit showed to be more unstable and its convergence dependent

on the initial parameters used. The low cross section for the population of this

excited state required a larger width of the bins used in the histogram (8 keV) in

order to adequately visualise the photopeak. In addition, the 2+
1 in 208Pb still sits

at 4085 keV, making it also vulnerable to the high-energy background discussed

in Figure 4.13, which further encouraged the use of a larger bin width in order to

increase the peak-to-background ratio. As a result, most counts of this photopeak

were contained within 3 to 4 bins, making it more difficult for a fitted function

to reproduce its shape. Consequently, the result arising from direct integration of

the spectra was the adopted value for this γ-ray yield. The background-subtracted
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Figure 4.15: Background subtracted and Doppler-corrected γ-ray energy spec-
tra with inelastic particle-energy gates for the 3−1 (up) and 2+

1 (down) excita-
tions in 208Pb. The inset in the upper plot shows the results of the fit of the
photopeak to a Gaussian with two exponential tails. The inset in the lower
plot shows an example of the peak (blue) and normalisation regions (red) at
the left and right hand side of the peak are displayed for the 2+

1 in 208Pb.
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γ-ray energy spectra for the 2+
1 state in 208Pb is shown in Figure 4.15 (down).

Different normalisation, N1 and N2, and peak regions, PK, were explored and the

number of counts in the peak and its systematic uncertainty were extracted for each

combination of regions using equations 4.11 and 4.12. The different obtained γ-ray

yields showed a very small standard deviation compared to the quoted statistical

uncertainty. As a result, the average number of counts found for these different

peak and normalisation regions was the final value used and is recorded in table 4.2

together with its average estimated uncertainty.

With regard to the 2+
1 in 12C, the extraction of the γ-ray yield was performed

in an analogous way to the 2+
1 in 208Pb. However, the analysis and extraction of

the number of counts of this photopeak was particularly challenging and with an

increased uncertainty to that which was anticipated prior to the experiment, mainly

due to: the relatively low statistics of the γ-ray peak combined with the wide Doppler

broadening that it exhibits (due to higher recoil velocity than the target nuclei), and

the decreased peak-to-background ratio arising from the unexpected high-energy

background previously discussed. Nevertheless, similarly to the 2+
1 in 208Pb, different

background normalisation (N1 and N2) and peak regions (PK) were explored and

different number of counts in the photopeak were obtained. The variation of the

normalisation regions was performed symmetrically and ranging from 70 keV to

130 keV at both sides of the peak. The standard deviation between the different

numbers of counts obtained showed to be small compared to the quoted uncertainty

and the final γ-ray yield and its uncertainty was determined to be the average

(see table 4.2). Figure 4.16 shows the background-subtracted γ-ray energy spectra

Doppler-corrected for 2+
1 excitation in 12C. The plot also displays an example of the

normalisation (left and right of the peak) and peak regions used.
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Figure 4.16: Background subtracted and Doppler-corrected γ-ray energy spec-
tra with inelastic particle-energy gates for 2+

1 excitation in 12C. An example
of the peak (blue) and normalisation regions (red) at the left and right hand
side of the peak are displayed.

Table 4.2: Final γ-ray yields measured with the JurogamII array for the 2+
1

in 12C and 3−1 and 2+
1 in 208Pb.

Photopeak Energy (keV) Counts Error
208Pb (3−1→0+) 2614 97962 401
208Pb (2+

1→0+) 4085 2115 252
12C (2+

1→0+) 4438 2023 255
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4.3 Nuclear interference

The main condition for the applicability of the semiclassical theory of Coulomb

excitation lies in the assumption that the interaction between the colliding partners is

purely electromagnetic. This condition applies when the separation distance between

both interacting nuclei is greater than the range of the nuclear force. The effect of

the Coulomb-nuclear interference has been studied in the past and it is known that

at bombarding energies near the Coulomb barrier, the Coulomb-nuclear interference

is destructive if the excitation function for pure Coulomb excitation is approaching

or at a maximum [Gui78]. This destructive effect reduces the inelastic-scattering

cross section at large scattering angles in a way consistent with the reorientation

effect produced by negative quadrupole moment or with a prolate deformation in the

laboratory frame. It is therefore of great importance to quantify the contribution

of the Coulomb-nuclear interference to the inelastic cross section for an accurate

extraction of the quadrupole moment.

4.3.1 Minimum distance between nuclear surfaces

Coulomb excitation cross sections increase with the bombarding energy whilst it

is still within the “safe”range. This has given rise to finding a balance between

maximising the cross section while minimising the effect of the Coulomb-nuclear

interference. As a result, systematic studies have taken place in order to estimate the

maximum bombarding energy at which the influence of the nuclear-excitation can be

neglected for second-order processes such as the reorientation effect [Cli69, Les72].

The analysis of these experiments led to establishing a “safe” energy criterion for

nuclei with Z≥6 supposed to ensure that nuclear excitation cross sections are <0.1%

if the distance of closest approach between nuclear surfaces in a head-on collision is
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less than 5 fm, i.e.

s = D(θCM = 180o)− 1.25 · (A1/3
1 + A

1/3
2 ) < 5 fm. (4.13)

Here the nuclear radii have been expressed as 1.25 · A1/3 for each colliding nuclei,

and the distance of closest approach at a scattering angle θCM is given by

D(θCM) = 0.71998
Z1Z2

ELAB

(
1 +

A1

A2

)(
1 + sin

(
θCM

2

)−1
)
, (4.14)

where Z1, A1 and Z2, A2 are the projectile and target atomic and mass numbers

respectively, ELAB is the energy of the incoming projectile in the laboratory frame in

MeV and D is the distance of closest approach in fm. Other authors prescribe a min-

imum distance between nuclear surfaces no greater than 6.5 fm at the experiment’s

scattering angle [Spe81].

Alternatively, the nuclear radii can be more accurately expressed in terms of the

matter half-density radii of a Fermi distribution [Mye74, Wil80] as,

Ci = Ri(1−R−2
i ) (4.15)

where Ri is the nuclear radius for an homogeneous mass distribution, which is param-

terised as

Ri = 1.28A
1/3
i − 0.76 + 0.8A

−1/3
i . (4.16)

The distance of closest approach could then be expressed as D(θCM) = C1 + C2 + s.

However, for the case of lighter nuclei distances larger than s = 5 fm may be re-

quired in order to ensure the “safety” of the experiment. Figure 4.17 shows ex-

perimental results for the minimum distance between nuclear surfaces necessary to

neglect Coulomb-nuclear interference effects [Wol92]. In this figure, the two 12C data

points relevant to the present work yield a minimum distance of D = 15.1(7) fm

and D = 15.6(8) fm. Equations 4.16 and 4.15 yield the value of C1 + C2 = 8.94 fm
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Figure 4.17: Experimental values of the minimum distance between nuclear
sufaces s (fm) vs. the sum of the radii of the interacting nuclei, C1 + C2

(fm), necessary to ensure a pure electromagnetic interaction and therefore
a “safe” Coulomb excitation experiment, for different projectile and target
combinations [Wol92].

for the case of 12C on 208Pb which, using the most conservative of the two previous

experimental values, gives a minimum distance between surfaces of s = 6.7(8) fm

necessary for the present work to be completely “safe”.

Figure 4.18 shows the distance between nuclear surfaces s, equation 4.14, as a

function of the center-of-mass scattering angle using 1.25 · (A1/3
1 + A

1/3
2 ) and equa-

tions 4.16 and 4.15 as the sum of the nuclear radii respectively. From this figure, it

can be seen that the present work fulfils the criteria of s > 5 fm at θCM = 180o (red

line). However, it can also be seen that for the more accurate description of the nu-

clear radii by using equations 4.16 and 4.15, the minimum distance between surfaces

ranges from 6.8 fm to 7.1 fm, which is within or beyond the experimental limits

provided by [Wol92] depending on the experimental error bar. A graphical repre-

sentation of this is presented in Figure 4.19. Here the hyperbolic elastic-scattering

trajectory of 12C into 208Pb has been computed in the target frame of reference. In
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Figure 4.18: Minimum distance between nuclear surfaces as a function of the
center-of-mass scattering angle using 1.25·(A1/3

1 +A
1/3
2 ) (red line) and equations

4.16 and 4.15 (green line) as the sum of the nuclear radii respectively. The
center-of-mass angles covered in the present experiment are shown as dotted
black liness.

addition, 12C and 208Pb have been represented as circumferences of radii equal to Ci

placed at distance of closest approach for a scattering angle of θCM = 160o for 12C,

and in the origin for 208Pb. The nuclear interaction limit of s = 6.7(8) fm has been

represented as a circumference of radius C2 + 6.7(8) fm and, as it can be seen the

experiment will be “safe” when the projectile circumference does not intersect with

the nuclear interaction one.

A Coulomb excitation experiment of 12C by a 208Pb target similar to the one

presented in this thesis was carried out by Vermeer and collaborators [Ver83, Spe83,

Ver84b]. The authors performed a systematic study of the Coulomb excitation

probability as a function of the beam energy for energies ranging from 52 to 58

MeV at a scattering angle of θLAB = 90o (θCM = 93.33o). In their published

work, it was concluded that Coulomb-nuclear interference effects started to arise
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Figure 4.19: Hyperbolic elastic-scattering trajectory of 12C into 208Pb com-
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approach for a scattering angle of θCM = 160o for 12C, and in the origin for
208Pb. The nuclear interaction limit of s = 6.7(8) fm shown as a circumference
of radius C2 + 6.7(8) fm.
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at 58 MeV (s = 5.1 fm) and were therefore not present in their measurement at

56 MeV (s = 5.6 fm) for the 12C + 208Pb system. Figure 4.19 shows the hyperbolic

elastic-scattering trajectory of a 56 MeV 12C beam into a 208Pb at a scattering angle

of θCM = 93.33o (green dashed line). As shown in Figures 4.19 and 4.18, the distance

between nuclear surfaces at the point of closest approach in the present experiment

is of the same order to that in Vermeer’s work at 56 MeV (∼5.6 fm), which strongly

suggests that Coulomb-nuclear interference effects are also negligible for the quoted

beam energy and scattering angle. Nevertheless, the degree to which experiments

may be regarded as free from nuclear effects will depend on factors specific to each

experiment, such as the Coulomb and nuclear reaction amplitudes at the specified

scattering angle and the sensitivity to nuclear effects of the particular manifestation

of the reorientation effect which is being observed [Spe81].

4.3.2 DWBA calculations

It would be highly desirable to determine the maximum safe bombarding energy

by measuring the excitation function through the Coulomb barrier region for the

particular experimental conditions. However, it can be challenging for low cross

section Coulomb excitation experiments, especially those involving the measurement

of γ rays.

An alternative approach is to use a fully quantal code, such as ptolemy [Mac78]

or fresco [Tho88], to reliably estimate the Coulomb-nuclear interference effect at

near-barrier bombarding energies. For the present work, initial calculations of the

inelastic-scattering cross sections were made with both quantal codes leading to the

same results, and therefore the final full analysis was performed only with ptolemy

due to its simplicity of the input files.

In ptolemy, the interaction between the two nuclei is represented by the ad-

dition of a Coulomb potential plus a nuclear potential. The Coulomb potential is

defined by a radial parameter rC0 such that its “radius” is RC = rC0A
1/3 and the
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reduced transition probability associated with the radiative transition of multipole

order Eλ, B(Eλ). The nuclear potential consists of a real (scattering) and an imag-

inary (absorptive) part, each of which is a Woods-Saxon function characterised by

a well depth V (or W ), radius r and surface diffuseness a. The relevant Schrödinger

equation for the scattering is solved using the distorted-wave Born approximation

(DWBA) for a single reaction channel.

The probability of exciting the 3−1 state in 208Pb by a 12C projectile at near bar-

rier energies has been studied by Robson and collaborators [Rob93]. In this study,

the authors used an optical-potential to reproduce experimental data on the inelastic

excitation probability of the 3−1 in 208Pb by a 12C beam at backward scattering angles

(θCM = 172o) and bombarding energies ranging from 42 to 62 MeV. In the DWBA

calculations, the imaginary part of the optical-potential was assumed to vary linearly

with the bombarding energy. The strength of the real part of the optical-potential

was calculated using the dispersion relation. The diffusiveness and radius parameters

for both the real and imaginary parts of the potential were assumed to be energy in-

dependent and were kept fixed to the values obtained by [Fri89] (rV = rW = 1.256 fm

and aV = aW = 0.56 fm) from a fit to the elastic-scattering cross section of 12C into

208Pb at 96 MeV. The similarity in the experimental conditions of [Rob93] together

with the excellent agreement between their DWBA calculations and the measured

inelastic cross sections at θCM = 172o encourages, in principle, the use of the above

mentioned optical-model parameters for the Coulomb-nuclear interference effect es-

timations of the present work. Table 4.3 shows the values used for the calculations

performed with ptolemy.

Figures 4.20 and 4.21 show the Coulomb excitation differential cross section

computed with ptolemy and the optical-potential parameters from Robson et al.

(table 4.3) for the 2+
1 in 12C, and the 2+

1 and 3−1 in transitions 208Pb, respectively.

As demonstrated, there is some destructive interference for the observed transitions

at backward scattering angles, most noticeably for the 2+
1 in 12C. This destructive
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Table 4.3: Optical model parameters from [Rob93] and [San01] used to esti-
mate the Coulomb-nuclear interference effect.

Parameter Robson et al. [Rob93] Santra et al. [San01]

V 49.03 MeV 74.13 MeV

rV 1.256 fm 0.426 fm

aV 0.56 fm 3.95 fm

W 0 MeV 1.282 MeV

rW 1.256 fm 1.261 fm

aW 0.56 fm 0.313 fm

interference can be accounted for by correcting the measured γ-ray yields by an

interference factor, INTF, defined as the ratio between the pure Coulomb excitation

(dashed line in Figures 4.20 and 4.21) and Coulomb plus nuclear interference (solid

line) solid-angle-integrated cross sections.

Nonetheless, the parameters of the optical-potential obtained in the DWBA anal-

ysis performed by Robson and collaborators were extracted only from fits to the

elastic-scattering cross section at 96 MeV and the inelastic excitation of the 3−1 in

208Pb at a specific angle (θCM = 172o). As a result, the extension of the applicabil-

ity of these parameters to estimate the interference effects in the 2+
1 in 12C at all

scattering angles is questionable, since the parameters have not been benchmarked

against the elastic-scattering cross sections at energies around 47.65 MeV nor the

inelastic-scattering cross section of the 2+
1 in 12C.

Alternatively, Santra and collaborators [San01] performed a systematic study of

the elastic-scattering cross section of 12C into 208Pb at energies ranging from 59 MeV

up to 118 MeV. In their published work, they performed a phenomenological optical-

potential fit to the elastic cross section as a function of the scattering angle for the

different energies. Their phenomenological fit of a Woods-Saxon-shaped potential

provided a good description of the elastic cross section at energies above the barrier

[Gas02]. The parameters from the fit to the elastic-scattering cross section at their

lowest incident energy (59 MeV), i.e. as close as possible to the 47.65 MeV beam
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Figure 4.20: Coulomb excitation differential cross section of the 2+
1 in 12C with

(dashed line) and without (solid line) Coulomb-nuclear interference computed
with the DWBA code ptolemy and the optical-potential parameters from
[Rob93]. The angles in the center-of-mass covered by the SiCD detector in
the present experiment are indicated by the red shaded area and the obtained
interference factor for those angles are displayed in the top left both as a factor
and equivalently as a percentage.

energy used in the present work, can also be used to estimate the Coulomb nuclear

interference effects in the inelastic-scattering cross section of the different excited

states in the projectile and target. Figure 4.22 shows the ratio between the Coulomb

excitation plus nuclear interference (dσCN/dθ) and the pure Coulomb excitation

(dσC/dθ) differential cross sections dσCN/dσC at 47.65 MeV using the parameters

from the fit to the elastic-scattering cross section at 59 MeV from [San01] (bottom)

and the parameters from [Rob93] (top). It can be noted that the optical-potential

parameters from Santra and collaborators yields almost no interference in all cross

sections (∼1.6% in the worse case), which is consistent with what was discussed in

section 4.3.1.

94



CHAPTER 4. DATA ANALYSIS AND RESULTS

0 50 100 150
θCM (o)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

dσ dθ
CM

 (m
ba

rn
/s

tr)

INTF = 0.9729 
PCT = 2.71 %

CLX
CLX + INTERF.

0 50 100 150
θCM (o)

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

dσ dθ
CM
 (m

ba
rn

/s
tr)

INTF = 0.9626 
PCT = 3.74 %

CLX
CLX + INTERF.

Figure 4.21: Coulomb excitation cross section of the 3−1 (top) and 2+
1 (bottom)

in 208Pb with (dashed line) and without (solid line) Coulomb-nuclear inter-
ference computed with the DWBA code ptolemy and the optical-potential
parameters from [Rob93]. The angles in the center-of-mass covered by the
SiCD detector in the present experiment are indicated by the red shaded area
and the obtained interference factor for those angles are displayed in the top
left both as a factor and equivalently as a percentage.
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In summary, as discussed in section 4.3.1, the present experiment complies with

most of the different prescriptions for a “safe” Coulomb excitation experiment. In

addition, the distance between nuclear surfaces, s, at the point of closest approach

is of the same order to that in the previous experimental work presented by Vermeer

and collaborators [Ver83], where the presence of Coulomb-nuclear interference at

such distances was discarded by the measurement of the Coulomb excitation prob-

ability at different beam energies. Nevertheless, a DWBA analysis of the Coulomb

nuclear interference has been performed with the code ptolemy and the available

optical-potential parameters from [Rob93] and [San01]. The investigations showed

that there is a significant dependence on the optical-potential parameters chosen

when one tries to estimate these effects using a DWBA code, making it therefore

desirable to have more cross section data in the sub-barrier energy range. The

optical-potential from [San01] is in agreement with the assumption of no nuclear

interference, whilst the one extracted from [Rob93] estimates an interference of up

to ∼12% for the 2+
1 in 12C. Since there is substantial experimental evidence from

[Ver83] suggesting that there is no nuclear interference effects, as well as the present

work complying or being within the limit of most “safe-energy” prescriptions for

Coulomb excitation experiments, it will be considered hereafter that this experi-

ment constitutes a “safe” Coulomb excitation experiment. Nevertheless, the impact

that a potential destructive Coulomb-nuclear interference would have in the final

result will also be presented in section 4.5. For this, the parameters from [Rob93]

will be used to correct the measured γ-ray yields and obtain additional values of the

Q(2+
1 ) in 12C.
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Figure 4.22: Ratio between the Coulomb excitation plus nuclear interference
(dσCN/dθ) and the pure Coulomb excitation (dσC/dθ) differential cross sections
dσCN/dσC. The calculations were performed with Ptolemy using a beam
energy of 47.486 MeV (center of the target) and the parameters from [Rob93]
(top) and the fit to the elastic-scattering cross section at 59 MeV from [San01]
(bottom).
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4.4 Gosia analysis

4.4.1 Gosia2 input

For the calculation of the excitation cross section and the fitting of the matrix

elements, Gosia2 requires two parallel inputs describing both collision partners.

Information regarding the beam and target species, along with beam energy and

scattering angle, will be common to both input files, whilst the nuclear-structure

information, energy levels and matrix elements will be introduced in separate input

files for the projectile and target nuclei respectively.

Additional experimental information, such as the γ-ray detection efficiency, tar-

get thickness or the particle detection angular range, is included in both projectile

and target input files in Gosia2. The γ-ray detection efficiency for each of the mod-

ules of the JurogamII array was implemented by introducing the set of coefficients

ai described in equation 3.4. The target thickness was defined using the incident

and exit beam energy, calculated using the SRIM software [Zie10]. The angular in-

tegration range in the laboratory frame of reference is given by the recoil detection

angles of the SiCD detector, where, since the S2 SiCD dectector is not symmetrical

in φ, the integration limits were introduced by means of a θ − φ map as described

in [Zie16] .

The measured γ-ray yields together with the associated uncertainty for each of

the observed transitions (table 4.2) are given in a separate file which is read by the

code at run time. A correction factor of 0.9899, calculated following the iterative

method described in [Zie16], was introduced to account for the impurities in the

99.0% enriched 208Pb target and multiplied to the 12C γ-ray yield.

The geometry of the JurogamII array, i.e. the position and size of each of the

detector module crystals, is also introduced in a separate input file read by the code

at the start of the run.
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Figure 4.23: Level schemes of 12C and 208Pb as implemented in Gosia2. The
solid lines denote experimentally observed transitions, whilst the dashed lines
are “virtual” or unobserved.

Figure 4.23 shows the level schemes of 12C and 208Pb as implemented in Gosia2.

These level schemes include experimentally observed γ-ray transitions, namely the

2+
1 in 12C and 3−1 and 2+

1 in 208Pb, as well as other unobserved states and matrix

elements that might contribute to the relevant Coulomb excitation cross sections

in the projectile or target. Both projectile and target constitute coupled-channel

systems, which makes it highly important to include higher unobserved states in

order to avoid the overestimation of the transition amplitudes to a certain level of

interest.

Spectroscopic data from previous measurements describing observed and unob-

served transitions are included as additional data points and those used for the

present analysis are included in table 4.4 together with the appropriate references.

The experimental data point for the Q(2+
1 ) in 208Pb was not used since, after review-

ing the original publication which provides the value ofQ(2+
1 ) = −0.7(3) eb [Ver84b],

it was noted that the former value of the quadrupole moment was obtained us-

ing B(E2; 0+
1→2+

1 ) = 0.329(16) e2b2 from (e, e′) experiments. The current adopted

value for the B(E2; 0+
1→2+

1 ) = 0.287(18)e2b2 [Pri17], which yields Q(2+
1 ) ≈ 0. As

a result, the matrix element was left as a free parameter during the fit. Finally,
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Table 4.4: Additional spectroscopic data of 12C and 208Pb used in the Gosia
analysis.

Nuclei Experimental Datum Gosia Datum Ref.

12C B(E2; 0+
1→2+

1 ) 39.7(2.0) e2fm4 〈2+
1 ||E2||0+

1 〉 0.0630(16) eb [Pri16]
12C B(E2; 2+

1→0+
1 )a 7.63(19)a e2fm4 〈2+

1 ||E2||0+
1 〉

a 0.06177(77)a eb [D’A20]
12C B(E2; 0+

2→2+
1 ) 8.25(82) W.u. 〈0+

2 ||E2||2+
1 〉 0.0367(19) eb [Kel17]

208Pb b.r.(2+
1→3−1 ) 0.0046(15) [Mar07]

208Pb T1/2(5−1 ) 294(15) ps τ(5−1 ) 424(22) ps [Mar07]
208Pb T1/2(2+

1 ) 0.80(4) fs τ(2+
1 ) 0.00115(6) ps [Mar07]

208Pb B(E3; 0+
1→3−1 ) 0.611(9) e2b3 〈3−1 ||E3||0+

1 〉 0.782(6) eb3/2 [Spe89]
208Pb Q(3−1 ) −0.34(15) eb 〈3−1 ||E2||3−1 〉 −0.26(12) eb [Mar07]
208Pb Q(2+

1 )b −0.7(3)b eb 〈2+
1 ||E2||2+

1 〉
b −0.53(23)b eb [Mar07]

a Very recent high precision measurement. Calculations will be performed with both B(E2).
b The Q(2+1 ) in

208Pb was left as a free parameter and the experimental data not used.

a new high precision value of the B(E2; 2+
1→0+

1 ) in 12C was published during the

writing of the present dissertation [D’A20]. Results using both the new B(E2) value

[D’A20] and the one from the most recent evaluation [Pri16] will be provided in the

subsequent stages of the analysis.

4.4.2 Nuclear polarizability

As discussed in section 2.2.5, the virtual excitations via the Giant Dipole Resonance

are another second-order effect accompanying the nuclear reorientation that may

be measurable and can pose an additional challenge when measuring quadrupole

moments, especially in the case of light nuclei. In this sense, a certain excited

state can be populated not through a single-step direct excitation, but through a

higher-step excitation via the GDR. These types of events must be excluded from

the measurement of the cross section, so as not to bias the extracted value of the

quadrupole moment.

The probability of a certain state being excited through the GDR is expressed

in terms of the (−2) moment of the total photo-absorption cross section (σ−2). This
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cross section can be correctly estimated by the hydrodynamic model for the heavier

regions of the nuclear chart, however for lighter nuclei, one relies on experimental

information, which is very scarce. The most featured compilation of photo-neutron

cross section data was evaluated by Dietrich and Berman in 1988 [Die88] and is

currently under question. A recent review on nuclear polarizability effects and the

present availability of experimental data is found in [Orc20].

The value of σ−2 can be introduced in Gosia2 by means of the polarizability

constant k (equation 2.41), and due to the scarce experimental data available in

this property, the final extracted Q(2+
1 ) in 12C will be expressed as a function of

the σ−2 (or k) for any later measurements of this cross section taking place in the

future. Nevertheless, there is some data on the total photoabsorption cross section

for 12C. The compilation by Dietrich and Berman includes only (γ,n) cross section

data, which for the case of 12C does not constitute a main contribution to the

total cross section. However, Ahrens and collaborators [Ahr75] measured with high

precision the total photo-absorption cross section for 12C using thick targets. The

main limitation in this type of experiments is that the atomic background for the

measurement needs to be calculated also very precisely. In principle this can be

achieved in light nuclei, therefore the value of the σ−2 cross section measured by

[Ahr75] will be used to quote the final results for the Q(2+
1 ) for the present work.

In addition, the total photo-absorption cross section measured by Ahrens and

collaborators yields a value of the nuclear polarizability constant of k = 1.435(27)

(σ−2 = 316(5)µb/MeV), which is in agreement with k = 1.5(1) obtained by re-

cent NCSM calculations using the chiral NN+3NF350 interaction [Raj18], (using

Levinger’s formula, equation 2.41). This further supports the use of the above men-

tioned value of σ−2.
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4.4.3 Fitting procedure

The use of Gosia2 avoids introducing free parameters or normalisation constants

that would normally become additional sources of systematic error, e.g. uncertainty

in the integrated beam current or in the measured Rutherford-scattering cross sec-

tion. The code handles the simultaneous analysis of both target and projectile

excitation by minimising the χ2 function (equation 2.47) in parallel for both nuclei

—χ2
P and χ2

T— whilst sharing some common normalisation constants as parameters

across both functions. These normalisation constants are calculated by making use

of a “reference” normalisation transition in the target, the 3−1 in 208Pb, and they vary

during the minimisation process. During the stage of fitting of the matrix elements,

Gosia2 switches between the two projectile and target input files resulting in a cor-

related set of matrix elements that best reproduces the observed γ-ray yields. The

solution then will correspond to the global minimum of the χ2
total function, which is

defined as the sum of the χ2 for the projectile and target as

χ2
total = NP χ

2
P +NT χ

2
T, (4.17)

where NP and NT stand for the number of projectile and target data. This is the

sum of the number of γ-ray yields plus the number of spectroscopic data points

introduced in Gosia2.

The fitting of the matrix elements follows a least-squares search which gives

the user the possibility of switching between different features during the minimi-

sation. Among these, the user can choose to use the fast approximation method or

the full Coulomb excitation formalism (the first speeds up the computation time),

the steepest-decent minimisation or a gradient-plus-derivative method, or choose

between using absolute or relative changes in the matrix elements to improve the

minimum. The details of the different minimisation options and the numerical as-

pects can be found in the Gosia manual [Czo83].
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4.4.4 χ2 map

The correlated and uncorrelated uncertainties in the fitted matrix elements can be

evaluated by constructing a χ2 hypersurface with respect to all parameters [Zie16].

In the case of the 2+
1 in 12C, the excitation process can be described as a function

of two parameters: the transitional 〈2+
1 ||E2||0+

1 〉 and diagonal 〈2+
1 ||E2||2+

1 〉 matrix

elements. As a result, the χ2 hypersurface can be simplified to a 2-dimensional χ2

surface where the transitional and diagonal matrix elements can be scanned until

finding the best solution at χ2
min. The uncertainties on the matrix elements can

be found by extracting the 1σ contour, which is defined as the region of the surface

where χ2 < χ2
min +1. The final error bars are obtained by projecting such 1σ contour

on the respective axes.

Figure 4.24 shows the total χ2 surface obtained with Gosia2 with respect to the

diagonal 〈2+
1 ||E2||2+

1 〉 and transitional 〈2+
1 ||E2||0+

1 〉 matrix elements in 12C and its

1σ contour. At each point of the surface, the corresponding transitional and diagonal

matrix elements were kept fixed and the remaining matrix elements in the projectile

and target were fitted to find the lowest χ2
total (equation 4.17) for all other dimen-

sions in the hypersurface at this point. The calculation was performed using the

evaluated value for the B(E2) from table 4.4, i.e. B(E2; 0+
1→2+

1 ) = 39.7(2.0) e2fm4,

the γ-ray yields from table 4.2 and a nuclear polarizability constant of k = 1.

The projected 1σ uncertainties yield a value of the diagonal matrix element of

〈2+
1 ||E2||2+

1 〉 = 0.088+0.041
−0.045 eb, which by using equation 1.15, corresponds to a value

of the spectroscopic quadrupole moment of Q(2+
1 ) = 6.7+3.1

−3.4 efm
2. The solid lines in

the figure correspond to the 1σ contour of the Coulomb excitation, i.e. the 1σ con-

tour of the equivalent χ2 that would be obtained without including the contribution

of the known B(E2) to the χ2. The dashed lines represent the 1σ uncertainty of the

B(E2).

Similarly, Figure 4.25 shows the total χ2 surface generated with the γ-ray yields
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Figure 4.24: Two-dimensional total χ2 surface obtained with Gosia2 with
respect to the diagonal 〈2+

1 ||E2||2+
1 〉 and transitional 〈2+

1 ||E2||0+
1 〉 matrix el-

ements in 12C (top) and its 1σ contour (bottom). The solid and dashed lines
correspond to the 1σ contours of the Coulomb excitation and lifetime data
[Pri16], respectively.
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from table 4.2 and a nuclear polarizability constant of k = 1, but using the new

high-precision B(E2) value from table 4.4 (B(E2; 2+
1→0+

1 ) = 7.63(19) e2fm4). The

χ2
min with projected 1σ uncertainties yields a value of the diagonal matrix element

of 〈2+
1 ||E2||2+

1 〉 = 0.100+0.039
−0.043 eb, which corresponds to a value of the spectroscopic

quadrupole moment of Q(2+
1 ) = 7.6+3.0

−3.3 efm
2. This new measurement of the B(E2)

has a reduced uncertainty of around a factor 2 compared to the value from the most

recent evaluation. However, the uncertainty in the extracted quadrupole moment

was only reduced by about 0.1 efm2. The reason behind this lies in the fact the

uncertainty in the number of counts is the main contributing factor to the error in

the extracted Q(2+
1 ). The high sensitivity to the reorientation effect at backward

scattering angles makes the final result highly sensitive to the uncertainty in the γ-

ray yields. Unfortunately, due to the unexpected high-energy background discussed

in section 4.2, the uncertainty in the extracted γ-ray yield makes the uncertainty in

the extracted value of the quadrupole moment proportionately even larger.

The above quoted uncertainties in the Q(2+
1 ) moments include the error in all

γ-ray yields and all propagated uncertainties from the spectroscopic data included

in the χ2 minimisation. This method accounts for all correlated and uncorrelated

uncertainties in the fitting of the matrix elements in the projectile and in the target.

The contribution of other parameters or factors such as the nuclear polarizability

or the nuclear interference corrections will not change the size of the 1σ contours of

Figures 4.24 and 4.25, as their effect is systematic and will only shift the position of

the χ2
min in the 〈2+

1 ||E2||2+
1 〉- 〈2+

1 ||E2||0+
1 〉 plane. The remaining potential sources

of systematic uncertainty will be discussed in the following section (4.4.5) and the

final results will be presented in section 4.5.
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Figure 4.25: Two-dimensional total χ2 surface obtained with Gosia2 with
respect to the diagonal 〈2+

1 ||E2||2+
1 〉 and transitional 〈2+

1 ||E2||0+
1 〉 matrix el-

ements in 12C (top) and its 1σ contour (bottom). The solid and dashed lines
correspond to the 1σ contours of the Coulomb excitation and lifetime data
[D’A20], respectively.
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4.4.5 Other systematic uncertainties

In most cases, there is no simple relationship between the measured matrix elements

and the experimental factors that can introduce potential sources of systematic un-

certainty. Consequently, the effect of such factors in the final result needs to be

investigated explicitly by varying the different experimental parameters and observ-

ing the changes in the extracted quadrupole moment.

The main source of systematic uncertainty that was found to have an apprecia-

ble effect on the final result was that which arose from the uncertainty in the beam

energy centroid (±0.1%). In order to make sure that there is no systematic uncer-

tainty unaccounted for, a more conservative value ±0.2% error in the beam energy

centroid was considered. Different incoming beam energies were tested varying from

47.555 to 47.745 MeV (47.65 − 0.2% to 47.65 + 0.2%) finding a maximum shift in

the extracted Q(2+
1 ) of ±0.35 efm2. A final systematic uncertainty of ±0.4 efm2 was

added to the final result.

Furthermore, the energy loss of the incoming beam in the target is already ac-

counted for by Gosia through the integration of the Coulomb excitation cross sec-

tion over the whole energy range. However, different targets were used throughout

the experiment with thicknesses ranging from 294 to 314 µg/cm2. The different

energy losses for the different target thicknesses were explored yielding differences

in the exit beam energy of ±0.02%, which had a negligible impact in the extracted

final result. In addition, the effect of the different number of reaction centres arising

from the different target thicknesses balances out by the normalisation to the target

excitation.

Furthermore, the hyperfine interaction of the excited nuclei recoiling in vacuum,

known as the deorientation effect, can perturb the γ-ray angular distribution of the

different excited states. However, the latter depends sensitively on the lifetimes of

the different excited states. In Gosia, the deorientation effect is modelled within
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the framework of the Brenn and Spehl two-state model of the hyperfine interaction,

which has been shown to give reasonable predictions [Czo83]. Due to its longer

lifetime, the 3−1 in 208Pb suffers from some γ-ray angular distribution attenuation,

in contrast to the relatively short-lived 2+
1 states in 12C and 208Pb, which do not

experience any.

The γ-ray yield of the 3−1 state in 208Pb was obtained for each of the JurogamII

rings. The different values of the g-factor parameter of the two-state model were

investigated in order to reproduce the observed γ-ray angular distribution whilst

keeping the rest of the parameters fixed at their default values. By default, Gosia

assumes a g-factor of Z/A, however this factor was modified until obtaining the γ-ray

angular distribution that better reproduced the experimental yields. The optimal

g-factor was found to be g = 0.36. Figure 4.26 shows the 3−1 γ-ray yield for each

ring (each θγ) and the different relative γ-ray angular distributions obtained with

Gosia in the cases of the default g-factor, optimal g-factor and no deorientation

considered. The effect that the different angular distributions had in the extracted

Q(2+
1 ) was investigated and the extracted quadrupole moments did not change for

all cases. Consequently, the impact of the nuclear deorientation on the final result

was considered negligible as the large solid-angle coverage of the JurogamII array

mitigates the effects.

Other investigated sources of systematic error include:

• The kinematic transformation from the laboratory to centre-of-mass frame

of reference depends on the Q-value of the inelastic reaction, or equivalently

the energy of the excited state. Gosia can only use a single Q-value for the

calculation of the cross sections for each collision partner. In our calculations

the values of the 2+
1 in 12C and the 3−1 in 208Pb were used. As a result, the

scattering angle, and therefore the cross section, corresponding to the 2+
1 in

208Pb will be calculated incorrectly. The magnitude of the error in the cross

section for this state was investigated by performing calculations with Gosia
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Figure 4.26: Relative γ-ray angular distribution of the 3−1 state in 208Pb nor-
malised to the yield of the JurogamII ring 2 (θ = 133.57o) for different values
of the g-factor.
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and was found to be 1.5%. Nevertheless, this cross section does not have a

severe effect on the final extracted Q(2+
1 ) in 12C, and the error inferred by it

was found to be negligible. In general, the error in the scattering angle is only

significant for cases where there are large differences in excited-state energies

of the order of several MeV.

• The effect of higher-lying excited states to the virtual 0+
2 in 12C, already in-

cluded in the analysis, as well as the impact of higher-lying excited states in the

target were investigated and also found to have no effect in the final extracted

result.

• The accuracy of the semi-classical approximation was explored by calculating

the pure Coulomb excitation cross section both with Gosia and comparing it

to the fully quantal code Ptolemy. The ratio between the integrated cross

sections was found to differ by < 0.5%, therefore this effect was considered

negligible.

• Other factors such as mutual excitations of projectile and target, slight pertur-

bations in the Rutherford trajectory by atomic screening, vacuum polarization

and relativistic effects have a minimal effect on the extracted matrix elements

[Czo83].

• Uncertainties arising from the lack of cylindrical symmetry of the clover detec-

tors, the positioning and size of the different crystals of the JurogamII array

and the positioning of the SiCD detector within the target chamber also do

not contribute significantly to the final result.

In summary, all potential sources of systematic uncertainty were investigated, and

it was found that only the uncertainty in the beam-energy centroid had an effect on

the final result for the present experiment (±0.35 efm2). Therefore, this uncertainty

alone will be added to the final results in section 4.5.
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4.5 Results

Figures 4.27 and 4.28 show the final result for the extracted Q(2+
1 ) in 12C for the eval-

uated [Pri16] and most recent [D’A20] B(E2) values respectively (dark green lines).

The resulting Q(2+
1 ) is displayed as a function of the nuclear polarizability constant k

or analogously the total photo-absorption cross section σ−2. The shaded area in the

graph corresponds to the final uncertainties, which include not only the 1σ contour

projections from χ2 surface maps, but also the ±0.4 efm2 systematic error from the

uncertainty in the beam energy. The values of the nuclear polarizability constant

k = 1, which correspond to the σ−2 value predicted by the hydrodynamic model,

and k = 1.435(27), from the measurement of Ahrens and collaborators [Ahr75], are

indicated in the figure as vertical shadowed regions in red and orange respectively.

The quadrupole moment corresponding to those values of k can be found as the

intersection of the above mentioned regions with the dark green line.

Table 4.5: Obtained result for the Q(2+
1 ) in 12C for the different available

B(E2) values, nuclear polarizability constants of k = 1 and k = 1.435(27),
and with and without Coulomb-nuclear interference. The Coulomb-nuclear
interference was estimated using the parameters from [Rob93].

Q(2+
1 ) k σ−2 B(E2) ↑ CN Interf.

[efm2] [µb/MeV] [e2fm4]

6.7+3.5
−3.8 1 220 39.7(2.0) No

8.4+3.6
−3.9 1.435(27) 316(5) 39.7(2.0) No

7.6+3.4
−3.7 1 220 38.15(95) No

9.3+3.5
−3.8 1.435(27) 316(5) 38.15(95) No

9.3+3.5
−3.8 1 220 39.7(2.0) Yes

11.1+3.6
−3.9 1.435(27) 316(5) 39.7(2.0) Yes

10.2+3.4
−3.7 1 220 38.15(95) Yes

12.0+3.5
−3.8 1.435(27) 316(5) 38.15(95) Yes
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Table 4.5 contains the final results of the Q(2+
1 ) in 12C from figures 4.27 and

4.28 for the quoted values of the nuclear polarizability constant. The effect of a

correction factor given by the DWBA analysis using the parameters from Robson

et al. (see figures 4.20, 4.21 and 4.22) is also included in the bottom half of the table.

It should be noted that the uncertainty in the Q(2+
1 ) for the case of k = 1.435(27)

is slightly larger since it accounts for the uncertainty in the measured value of σ−2.

Figure 4.27: Extracted Q(2+
1 ) (dark green line) from the Gosia2 fit to the ex-

perimental γ-ray yields from table 4.2 as a function of the nuclear polarizability
constant k (total photo-absorption cross section σ−2) using the evaluated value
of the B(E2) from [Pri16]. The uncertainties on the final result are represented
as the shaded grey area in the figure. The values of the nuclear polarizability
constant k = 1 and k = 1.435(27) are also indicated.
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Figure 4.28: Extracted Q(2+
1 ) (dark green line) from the Gosia2 fit to the

experimental γ-ray yields from table 4.2 as a function of the nuclear polar-
izability constant k (total photo-absorption cross section σ−2) using the new
high precision value of the B(E2) from [D’A20]. The uncertainties on the final
result are represented as the shaded grey area in the figure. The values of the
nuclear polarizability constant k = 1 and k = 1.435(27) are also indicated.
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Chapter 5

Discussion and Conclusions

This chapter will begin with a short revision of the previous measurements of the

Q(2+
1 ) in 12C, which will include new values of the Q(2+

1 ) updated to the most recent

B(E2) values and nuclear polarizability constant data. Subsequently, a comparison

of the obtained results in this work with the updated values and recent theory

calculations will be discussed. Finally, the conclusions will be presented.

5.1 Revision of previous experimental results

The previous experimental measurements of the Q(2+
1 ) were briefly presented in

section 1.5.3. Nevertheless, a revision of these measurements is essential in order to

compare and understand the impact of the experimental results presented in this

thesis.

The only two reorientation effect measurements of the 2+
1 in 12C have been the

experiments by Vermeer [Ver83] and Kumar Raju [Raj18] and collaborators. In Ver-

meer’s work, the inelastically scattered 12C ions by a 208Pb target were momentum

analyzed using a magnetic spectrometer and detected at the focal plane using a posi-

tion sensitive multi-wire proportional counter placed at a scattering angle of θ = 90o

in the laboratory frame. Using the adopted value ofB(E2; 0+
1→2+

1 ) = 38.8(2.2) e2fm4

at the time and considering a nuclear polarizability constant of k = 1 (using
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Figure 5.1: Coulomb excitation curves extracted from [Ver83] for different val-
ues of the nuclear polarizability constant k (solid black lines) and interpolated
for k = 1.435, 1.51 (solid red lines). The dashed black lines represent the
statistical uncertainty of 1σ obtained for k = 1. The B(E2) value used to
extract the final result and its uncertainty are displayed as a solid horizontal
pink line and shaded pink area. Finally, the currently adopted and most recent
higher-precision B(E2) values, [Pri16] and [D’A20] respectively, are displayed
as dashed horizontal lines.

Levinger’s formula), their experiment yielded a value of the Q(2+
1 ) of 6 ± 3 efm2

(Figure 5.1). The statistical uncertainty of ±1.7 efm2 and the error due to the un-

certainty in the value of the B(E2) (±2.3 efm2) added in quadrature yield their

quoted final uncertainty of 3 efm2.

In contrast, in the Coulomb excitation experiment by Kumar Raju and collabo-

rators, a 12C beam impinging on a 194Pt target was used to Coulomb-excite the 2+
1

state in 12C and measure the scattered 12C ions at θ = 30o− 60o in coincidence with

the de-exciting γ-rays from both projectile and target. Using the currently adopted
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Figure 5.2: Coulomb excitation curves extracted from [Raj18] for different val-
ues of the nuclear polarizability constant k (solid black lines) and interpolated
for k = 1.435 (solid red line). The dashed black lines represent the statistical
uncertainty of 1σ obtained for k = 1.51. The currently adopted value of the
B(E2) [Pri16] used to extract the final result and its uncertainty are displayed
as a solid horizontal blue line and shaded blue area. The most recent higher-
precision B(E2) value from [D’A20] is also displayed as a dashed horizontal
line.

value of the B(E2) = 39.7(2.0) e2fm4, their reorientation effect measurement yielded

a value of Q(2+
1 ) = 0.3± 5.4 efm2 with a nuclear polarizability constant of k = 1 (or

k = 1.46 taking the formula of [Orc15]), or Q(2+
1 ) = 5.4±4.4 efm2 with k = 1.51(14)

(or k = 2.2(2) taking the formula of [Orc15]) from NCSM calculations using the

chiral NN+3NF350 interaction (see Figure 5.2).

In order to compare the results obtained in the present work with these other

two experiments, it is necessary to take into account that the measured Coulomb

excitation cross section for the 2+
1 in 12C depends not only on the Q(2+

1 ), but also
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on the B(E2) and the nuclear polarizability constant. This means that it is only

possible to correctly compare with the data from [Ver83] and [Raj18] for results

extracted using the same B(E2) value and the same nuclear polarizability constant.

Figures 5.1 and 5.2 are an adaptation of the results obtained in the published work

from [Ver83] and [Raj18]. In the plots, the resulting Coulomb excitation curves for

different values of the nuclear polarizability constant are shown. When the curve

for that specific value of k was directly provided in the paper, the line is plotted

in black. When that was not the case (k = 1.435 and k = 1.51 for Vermeer’s

and k = 1.435 for Kumar Raju’s data), the line was obtained by interpolating

and is displayed in red. The dashed black lines in the figures represent the quoted

1σ statistical uncertainty for the values of k = 1 for Vermeer’s data (Figure 5.1)

and k = 1.51 for Kumar Raju’s work (Figure 5.2). The solid horizontal lines and

shaded areas in pink and blue show the B(E2) used in each experiment to extract the

quadrupole moment and its 1σ uncertainty. Finally, additional dashed lines showing

the currently adopted value [Pri16] and new precision measurement [D’A20] of the

B(E2) are also displayed in the figures. The resulting quadrupole moment for each

B(E2) and each value of k will therefore correspond to the intersection of the before

mentioned Coulomb excitation curves with the horizontal B(E2) lines. The resulting

quadrupole moments for k = 1, 1.435, 1.51 and B(E2) = 39.7(2.0), 38.15(95) e2fm4

are displayed in table 5.1 together with the results obtained for the present work.
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Table 5.1: Obtained result for the Q(2+
1 ) in 12C using the data from [Ver83] and

[Raj18], and the present work for values of the nuclear polarizability constant
of k = 1, 1.435, 1.51 and B(E2) = 39.7(2.0), 38.15(95) e2fm4.

Q(2+
1 ) k B(E2) ↑ Reference

[efm2] [e2fm4]

5.4(3.0) 1 39.7(2.0) [Ver83]

7.8(3.0) 1.435(27) 39.7(2.0) [Ver83]

8.2(3.0) 1.51(14) 39.7(2.0) [Ver83]

7.1(2.0) 1 38.15(95) [Ver83]

9.5(2.0) 1.435(27) 38.15(95) [Ver83]

9.9(2.0) 1.51(14) 38.15(95) [Ver83]

0.3(5.4) 1 39.7(2.0) [Raj18]

4.6(4.4) 1.435(27) 39.7(2.0) [Raj18]

5.3(4.4) 1.51(14) 39.7(2.0) [Raj18]

3.6(4.4) 1 38.15(95) [Raj18]

7.9(4.4) 1.435(27) 38.15(95) [Raj18]

8.7(4.4) 1.51(14) 38.15(95) [Raj18]

6.7+3.5
−3.8 1 39.7(2.0) This work

8.4+3.6
−3.9 1.435(27) 39.7(2.0) This work

8.7+3.7
−4.0 1.51(14) 39.7(2.0) This work

7.6+3.4
−3.7 1 38.15(95) This work

9.3+3.5
−3.8 1.435(27) 38.15(95) This work

9.6+3.6
−3.9 1.51(14) 38.15(95) This work
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5.2 Comparison with previous experiments

Figure 5.3 shows the obtained result for the Q(2+
1 ) in 12C in the present work to-

gether with the values obtained from the data from [Ver83] and [Raj18] (table 5.1).

As it can be seen there is an substantial agreement between the experimental re-

sults from [Ver83] for all values of the nuclear polarizability and B(E2). On the

other hand, the experimental result by [Raj18] shows varying levels of agreement

with this work depending on the adopted values of the k and B(E2). The only

instances where the values were more than 1σ apart were in the cases of k = 1 and

B(E2) = 39.7(2.0) e2fm4. Conversely, for the case of higher k and smallest B(E2),

all three experiments show a remarkable agreement.

At this point, it is also important to appreciate the sensitivity of the Coulomb

excitation cross section to the scattering angle. The three different experimental

results displayed in Figure 5.3 were performed at scattering angles of θLAB = 30o−60o

[Raj18], θLAB = 90o [Ver83] and θLAB = 158.8o (this work). Section 2.2.4 discussed

the ways in which the sensitivity to the reorientation effect is maximised at backward

scattering angles. An enhanced sensitivity of the reorientation effect translates into

a higher relative contribution of such effect to the Coulomb excitation cross section.

Consequently, a reduced sensitivity to the reorientation will result in the extracted

value of the Q(2+
1 ) exhibiting a higher sentitivity to the other observables controlling

the other excitation paths of the 2+
1 , namely the B(E2) (one-step excitation) and, to

a lesser extent, the nuclear polarizability constant (two-step excitation). As a result,

assuming the same statistical uncertainty, the error bars in the extracted Q(2+
1 ) will

be larger as the scattering angle decreases.

The picture described above can be observed in Figure 5.3, where the Q(2+
1 ) from

[Raj18] shows the highest sensitivity to the B(E2) and polarizability constant values

used. The result by [Ver83] varies less significantly with the B(E2), however the

most stable result is the one presented in this work. Quantitatively, the sensitivity of
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Figure 5.3: Comparison of the obtained Q(2+
1 ) in 12C in this work together

with the previous measurements of [Ver83] and [Raj18] for different values
of the B(E2; 0+

1→2+
1 ) and nuclear polarizability constant k (table 5.1). The

dashed and dotted curves represent the IT-NCSM and IM-NCSM correlation
lines from Figures 1.4 and 1.5, respectively.

121



CHAPTER 5. DISCUSSION AND CONCLUSIONS

6 8 10 12
Q(2 +

1 ) [efm2]

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

|d
B(
E2

)
dQ

(2
+ 1

)| 
[e

fm
2 ]

[Raj18]
[Ver83]
This Work

Figure 5.4: Absolute value of the derivative of the B(E2) with respect to the
Q(2+

1 ) for the different experiments by [Ver83] and [Raj18], and this work in
the range of 5 to 13 efm2.

an experiment to the reorientation effect can be expressed in terms of the derivative

of the B(E2) with respect to the Q(2+
1 ). Figure 5.4 shows the absolute value of the

derivative of the B(E2) with respect to the Q(2+
1 ) for the different experiments in

the range of 5 to 13 efm2. Once more, it can be seen how the present experiment

is considerably more sensitive to the reorientation effect than the others — around

3 times more sensitive compared to the case of [Raj18] and around a factor of 2

in comparison with [Ver83]. Graphically, this can be interpreted in terms of the

slopes of the Coulomb excitation curves in Figures 5.1 and 5.2, or alternatively, in

terms of the x-component of the gradient — or “steepness” of the minimum — of

the two-dimensional χ2 surfaces computed in the more sophisticated analysis shown

in this work in Figures 4.24 and 4.25. In general, this encourages the realisation of

reorientation effect experiments at backward scattering angles.
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5.3 Comparison with theory

In Figure 5.3, the correlation between quadrupole observables arising from the IT-

NCSM and IM-NCSM calculations are also displayed. Thus far, three values of the

nuclear polarizability constant have been considered, i.e. k = 1, 1.435 and 1.51.

However, the experiment from Ahrens et al , yielding k = 1.435(27) [Ahr75], sup-

ported by recent NCSM calculations, k = 1.51(14) [Raj18], encourages the use of

this k as a reliable value of the nuclear polarizability constant. Therefore, the results

for k = 1.435(27), and B(E2) = 39.7(2.0) and 38.15(95) e2fm4 will be the ones to

be compared with the latest ab initio calculations hereafter.

For the above mentioned values of the B(E2) and k (B(E2) = 39.7(2.0) and

38.15(95) e2fm4, and k = 1.435(27)) all three experiments agree with each other

within their 1σ uncertanity error bars. However, the result by [Raj18] has a large

error arising from the low sensitivity to the reorientation effect at small scatteting

angles. This can be seen in the gradient of the Coulomb excitation curve presented

in Figure 5.4. Consequently, since the experiment from [Ver83] constitutes the cur-

rently adopted value [Kel17], we will use this to compare with theory and yield our

final result.

From Figure 5.3, B(E2) = 39.7(2.0) e2fm4 and k = 1.435, it can be observed

that the ab initio correlation curves agree within error with this work’s experimen-

tal result and the data extrapolated from [Ver83]. However, the central values of

these two experimental data points consistently suggest a more pronounced oblate

shape of the 2+
1 in 12C than that predicted by the theory, i.e. a larger spectro-

scopic quadrupole moment. In addition, the larger values of Q(2+
1 ) — and thus the

disagreement with the NCSM calculations — become even more noticeable for the

new value of the B(E2) = 38.15(95) e2fm4, where the reduced uncertainty in the

B(E2) systematically reduces the error bar from [Ver83] and leaves the data point

considerably over 1σ apart from the theory predictions.
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If we now consider the Q(2+
1 ) by Vermeer together with the data from the exper-

iment presented in this dissertation, for k = 1.435(27), the weighted average yields

Q(2+
1 ) = 8.1(2.3) efm2 for B(E2) = 39.7(2.0) e2fm4 and Q(2+

1 ) = 9.5(1.8) efm2 for

the latest measurement of the B(E2) = 38.15(95) e2fm4. Figure 5.5 shows these

two results together with the IT-NCSM and IM-NCSM calculations of the B(E2)

and Q(2+
1 ) and the correlation curves (Figures 1.4 and 1.5 from section 1.5.2 com-

bined). The predicted values of the Q(2+
1 ) by the different NCSM calculations,

Q(2+
1 ) = 5.91(15) efm2 for the IT-NCSM and Q(2+

1 ) = 5.97(30) efm2 for the IM-

NCSM, are only just within the error bars of this new experimental value of the

Q(2+
1 ) using the adopted B(E2) and almost 2σ apart for the result using the new

B(E2).

It can also be seen from Figure 5.5 that regardless of the interaction or many-body

method used (IT or IM), the NCSM calculations can only reproduce values of the

Q(2+
1 ) . 6.5 efm2. In addition, Figure 5.6 shows a comparison between the obtained

Q(2+
1 ) moments and different theoretical calculations of the same observable. As

shown, it is only the calculation performed using Nuclear Lattice EFT at LO [Epe12]

that can reproduce such larger values of the spectroscopic quadrupole moment.
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Figure 5.5: Weighted average of the Q(2+
1 ) measured by [Ver83] with the result

extracted from this work for the two different available B(E2) values. The ab
initio IT-NCSM and IM-NCSM predictions for both quadrupole observables
(Figures 1.4 and 1.5) are also shown.
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Figure 5.6: Different theoretical values (blue squares) for the Q(2+
1 ) in 12C.

From left to right: IM-NCSM and IT-NCSM using chiral NN+3N interactions
[D’A20, Cal16], Nuclear Lattice EFT at LO [Epe12] and Global EDFs [Mac19].
The experimental results of this work averaged with the measurement from
[Ver83] are also displayed (red symbols) for the evaluated value of the B(E2)
(triangle) and most recent measurement of the B(E2) (circle).
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5.4 Conclusion

This thesis presents the measurement of the quadrupole moment of the 2+
1 in 12C

as a way of testing state-of-the-art nuclear structure theories. The measurement of

the Q(2+
1 ) was succesfully performed and the collected data was analysed. The aim

of the experiment was to extract a value of this electromagnetic property with a

reduced uncertainty to which it had been measured previously (±3 efm2) by means

of using the high sensitivity of the reorientation effect at backward scattering angles.

The Gosia analysis using a nuclear polarizability constant of k = 1.435(27) from

[Ahr75] yielded a final value of the Q(2+
1 ) = 8.4+3.6

−3.9 efm
2 for the currently evaluated

value of the B(E2) = 39.7(2.0) e2fm4 [Pri16] or Q(2+
1 ) = 9.3+3.5

−3.8 efm
2 using a more

recent measurement of the B(E2) = 38.15(95) e2fm4 [D’A20]. The main contribu-

tion to the final quoted error arose from the statistical uncertainty caused by an

unexpected high-energy background in the measured γ-ray spectrum coming from

12C+12C reactions of the beam with the backing material in the target.

The currently adopted value for the Q(2+
1 ) — which uses an outdated value

of the nuclear polarizability constant k = 1 and B(E2) — was interpolated for

k = 1.435(27) and B(E2)s from [Pri16] and [D’A20] using the data from Ref.

[Ver83]. The extracted quadrupole moments were of Q(2+
1 ) = 7.8(3.0) efm2 and

Q(2+
1 ) = 9.5(2.0) efm2 for the different B(E2) values, respectively. The results

from the present work are in excellent agreement with these two values. In addition,

despite the final quoted uncertainty not being as small as expected, the weighted av-

erage of our experimental result with the interpolated data from Ref. [Ver83] yielded

Q(2+
1 ) = 8.1(2.3) efm2 and Q(2+

1 ) = 9.5(1.8) efm2 for the B(E2)s from [Pri16] and

[D’A20] respectively. These two new values now have a significantly reduced uncer-

tainty and provide benchmarks for ab initio calculations using chiral interactions.

IT-NCSM [Mar14] and IM-NCSM [D’A20] calculations of the reduced quadrupole

transition strength B(E2; 0+
1→2+

1 ) and quadrupole moment for the 2+
1 in 12C using
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chiral NN and NN+3N interactions have shown a strong and robust correlation

between both E2 observables and a dependence on the underlying interaction and

truncation of the model space. The lower end of the error bar of the value of

Q(2+
1 ) = 8.1(2.3) efm2 only just includes the NCSM calculations for the quadrupole

moment whilst the result of Q(2+
1 ) = 9.5(1.8) efm2 is almost 2σ apart from the

theory predictions.

Other theoretical calculations predict values of the Q(2+
1 ) of the same order to

those obtained by the NCSM. Of these, the calculation performed using Nuclear

Lattice EFT at LO [Epe12] is the only one which can reproduce such large values

of the quadrupole moment (6(2) efm2) similar to the experimental results described

in this dissertation.

The possibility of the presence of Coulomb-nuclear interference has been investi-

gated using DWBA calculations with different sets of optical potential parameters.

Previous experimental work from [Ver83] suggests that there are not any Coulomb-

nuclear interference effects in the present experiment. However, some DWBA cal-

culations [Rob93] suggest an interference of around ∼ 12% for the excitation cross

section of the 2+
1 in 12C. The obtained quadrupole moments assuming such interfer-

ence are Q(2+
1 ) = 11.1+3.6

−3.9 efm
2 and Q(2+

1 ) = 12.0+3.5
−3.8 efm

2 for the currently evaluated

value and newest measurement of the B(E2) respectively. These results point to-

wards an even more pronounced oblate shape of 12C on its 2+
1 and therefore a more

substantial disagreement with the different theoretical calculations.

In summary, the presented experimental results strongly suggest larger values of

Q(2+
1 ) than those predicted by most ab initio methods and calls for additional and

more accurate measurements of this electromagnetic property as well as a thorough

revision of the underlying theory which aims to compute these observables.
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5.5 Future work

Despite the improved precision obtained for the Q(2+
1 ) in 12C through the weighted

average of the measurement presented in this work and that of [Ver83], an increased

accuracy in the determination of this electromagnetic property would be highly de-

sirable. As previously discussed, the high sensitivity to the reorientation effect at

backward scattering angles allows the measurement of such property with high pre-

cision. However, the high energy γ-ray background coming from 12C+12C reactions

of the beam with the target backing material decreased the peak-to-background ra-

tio in the observed photopeak, leading to an increased statistical uncertainty in the

extracted γ-ray yield.

As a result, a new Coulomb excitation experiment [Pet20] has been proposed and

accepted at the ATLAS facility in Argonne National Laboratory. In the experiment,

a 208Pb beam will impinge on a self-supporting 12C target producing the Coulomb

excitation of both projectile and target nuclei. A Si detector will be placed at center-

of-mass angles ∼ 137o− 165o (laboratory angles: 7o− 21o ) to measure the recoiling

target ions in coincidence with the de-exciting γ-rays, which will be measured with

GRETINA. This new experiment will deliver for the first time a precise experimental

value for the Q(2+
1 ) of 12C (±1 efm2) by taking advantage of:

• the superior γ-ray efficiency of GRETINA; 4.7% for 4.4 MeV γ-rays from

GRETINA vs 1% of the JurogamII array,

• the high-precision measurement of the beam energy at ATLAS,

• and the measurement in inverse kinematics with a self-supporting 12C target

alleviating the background issue that was faced in the JYFL experiment.

The new measured value of the Q(2+
1 ) in 12C will hopefully be able to critically

test theory and confirm the higher values obtained in the experiment presented in

this work.
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[Epe04] E. Epelbaum, W. Glöckle and U. Meißner. Eur. Phys. J. A 19 (2004) 401412.

[Epe09] E. Epelbaum, H.-W. Hammer and U.-G. Meißner. Rev. Mod. Phys. 81

(2009) 1773.

[Epe12] E. Epelbaum et al. Phys. Rev. Lett. 109 (2012) 252501.

[Few78] M. Fewell. Reorientation-effect measurements on 18O, 24Mg and 198Hg.

Ph.D. thesis, Australian National University (1978).

[For13] C. Forssén, R. Roth and P. Navrtil. J. Phys. G: Nucl. Part. Phys. 40, 5

(2013) 055105.

[Fri89] S. Fricke et al. Nucl. Phys. A 500, 2 (1989) 399 .

[Fri93] J. Friar et al. Phys. Lett. B 311, 1 (1993) 4 .

[Gas02] L. R. Gasques et al. Phys. Rev. C 65 (2002) 044314.

[Geb17] E. Gebrerufael et al. Phys. Rev. Lett. 118 (2017) 152503.

[Gui78] M. W. Guidry et al. Phys. Rev. Lett. 40 (1978) 1016.

132



BIBLIOGRAPHY

[Hax49] O. Haxel, J. H. D. Jensen and H. E. Suess. Phys. Rev. 75 (1949) 1766.

[Hei01] P. Heikkinen and E. Liukkonen, editors. Cyclotron development program at
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