
The Impact of Minimising Data

Movement on the Overall

Performance of the Simulation

of Complex Systems Applied to

FLAME GPU

Eidah M. Alzahrani

The Department of Computer Science

Faculty of Engineering

University of Sheffield

A thesis submitted for the degree of Doctor of Philosophy

January 2021

1

I would like to dedicate this thesis to my beloved husband and my great

parents for their love, support and encouragement...

Abstract

GPUs have been demonstrated to be highly effective at improving the per-

formance of Multi-Agent Systems (MAS). One of the significant limitations

of further performance improvements is in the memory bandwidth required

to move agent data through the GPU’s memory hierarchy. This thesis

investigates the impact of data dependency on the FLAME GPU framework’s

overall performance as an example of Agent Based Modelling (ABM) platforms.

This investigation includes discovering data dependency within FLAME GPU

models. Two methods are proposed in order to minimise data movement

during simulation using dependency information: (i) a functional method

which is based on the concept of merging and splitting agent function; and

(ii) data-aware method which uses of data dependency information to access

a subset of agent and message memory at the variable level. This thesis also

develops a method that allows automatic discovery of data dependencies from

existing FLAME GPU models. This method is based on parsing an agent

function file of a FLAME GPU model to extract all agent functions’ data

dependencies.

The scalability, computational complexity, internal memory requirements,

and homogeneity of the agent and population of the model are examples of

factors that may affect ABM applications’ overall performance. This thesis

presents a standard benchmark model designed to observe the system behaviour

while testing these factors. An evaluation of the performance impact of minimis-

ing data movement has been carried out by implementing the proposed FLAME

GPU methods using the benchmark model and the number of existing FLAME

GPU models. The comparison between the current and new system shows that

reducing data movement within a simulation improves overall performance.

2

Declaration

I hereby declare that I am the sole author of this thesis. The work presented in

this thesis is original work and have not been submitted for any other degree or

any other university. Parts of the work presented in Chapters 5, 7 and 8 have

been published in a journal and conference proceedings as follows:

• Alzahrani, E., Richmond, P. and Simons, A.J., 2017, August. A formula-

driven scalable benchmark model for ABM, applied to FLAME GPU.

In European Conference on Parallel Processing (pp. 703-714). Springer,

Cham.

• E. Alzahrani, A. J. H. Simons and P. Richmond, Data aware simulation

of complex systems on GPUs. Proc. 17th. International Conference on

High Performance Computing and Simulation (HPCS 2019), 15-19 July,

Dublin, Ireland (2019). In: HPCS 2019, 17th International Conference

on High Performance Computing and Simulation, eds. W. W. Smari, K.

Zine-Dine (Piscataway NJ: IEEE, 2019), 567-574.

3

Acknowledgements

There are many people who deserve to be acknowledged in this thesis, and to

whom I owe my sincere thanks:

To my supervisors Dr. Anthony Simons and Dr. Paul Richmond for their

excellent supervision. This thesis would not have been possible without the

immense support and patience offered by them. Their encouragement and

advice have sustained me throughout every stage of my PhD journey.

To my internal PhD panel Dr. Siobhan North whose expertise no doubt guided

me towards my chosen topic.

To my examiners Dr. Mike Stannett and Prof. Fiona Polack for valuable

comments and useful discussion during the final viva of my defence.

To my colleagues in the Visual Computing Lab who have provided feedback on

my work through informal discussion and research seminars.I would particularly

like to thank Robert Chisholm, Peter Heywood, James Pyle who have always

made themselves available to discuss issues regarding FLAME GPU and kindly

provided much needed proofreading. Special thanks to Prof. Alcione de Paiva

Oliveira for his support and help to understand FLAME GPU in the early

stage of my PhD journey.

To Mozhgan, Nazrina, Lubna, Fatima, Mashael,Sadeen, Rabab and Najwa for

their friendship and incredible support over the last few years.

To my dear parents Mohammad and shariffa for their prayers and keeping me

strong throughout this journey. To my brothers and sisters for the love and

support that I continuously receive.

To my husband Ahmed for unquestionable support throughout the more

4

5

difficult times of my PhD journey, and without his encouragement I would

most likely have given up on my research long ago. To my beloved kids:

Ghaida, Osama, Talah and Ali for their unconditional love and incredible

support.

Finally, this work presented in this thesis would not have been possible without

the financial support of AlBaha University and the Saudi Ministry of Education.

Contents

1 Introduction 1

1.1 Motivation . 3

1.2 Research focus . 3

1.3 Thesis Aims . 4

1.4 Contribution of knowledge . 6

1.4.1 A benchmark model . 6

1.4.2 Data-aware approach . 6

1.5 Outline of the thesis . 6

2 Background and Literature Review 9

2.1 Introduction . 9

2.2 Agent-Based Modelling and Simulation 9

2.2.1 Early developments . 10

2.2.2 Basic concepts of ABMS 11

2.2.3 ABMS paradigms and methodologies 11

2.2.4 Agent-based modelling vs. equation-based modelling . . 12

2.2.5 ABMS platforms . 15

2.2.6 Scalability of simulations in ABM 18

2.2.7 Agent-based models and parallelisation 18

2.3 Agent-Based Modelling on the GPU 20

2.3.1 GPU programming languages 20

2.3.2 CUDA . 21

2.3.3 Efficient performance of agent-based simulation on GPU 25

2.3.4 Techniques to implement ABMs on GPU 27

2.3.5 ABM frameworks using GPU 27

2.4 FLAME GPU framework . 28

2.4.1 Code generation in FLAME GPU 29

6

7 Contents

2.5 Impact of Data dependencies in Real-Time High Performance

Computing . 30

2.5.1 Data dependency techniques 31

2.5.2 Reduce memory movement 34

2.6 Summary . 35

3 Agent-Based Models for the GPU 38

3.1 Designing X-Agents Using FLAME GPU 38

3.1.1 X-machine . 38

3.2 FLAME GPU features: . 41

3.2.1 Agent Data Storage and Access 41

3.2.2 Birth and Death . 41

3.2.3 Agent Communication 42

3.3 Implementing a model using FLAME GPU 43

3.3.1 The Boids model . 43

3.3.2 Model specification . 44

3.3.3 Model Behaviour(Agent Function Scripts) 51

3.3.4 FLAME GPU Template Files 54

3.3.5 Model Execution and Visualisation 54

3.4 Summary . 55

4 Methods and Experimental Plan 57

4.1 Introduction . 57

4.2 Designing the Benchmark Model 57

4.2.1 Designing FLAME GPU Generator 58

4.2.2 Testing system scalability 59

4.2.3 Increasing Agent complexity 59

4.2.4 Increasing Population complexity 60

4.3 The Discovery of Data Dependency 60

4.4 Compiler Construction . 60

4.4.1 Flex and Bison . 61

4.5 The Scanner . 63

4.6 The Parser . 64

4.7 Research Validation . 67

8 Contents

5 Benchmarking Agent Based Modelling systems 68

5.1 Benchmarking ABM criteria . 68

5.2 Benchmarking ABM models (background review) 69

5.3 The benchmark Model . 71

5.3.1 Implementation . 72

5.3.2 The state diagram of the model 74

5.3.3 Model Generator . 75

5.4 Benchmarking Results . 80

5.4.1 Divergence within a population: 80

5.4.2 Divergence within an agent: 81

5.4.3 Population sizes: . 82

5.4.4 Level of communication and complexity: 83

5.5 Summary . 84

6 The Impact of Combining Agents Functions on Overall Perfor-

mance 86

6.1 Introduction . 86

6.2 Dependencies Between Model Functions and their Effect on Per-

formance . 87

6.3 Dependency Discovery (Manual version) 89

6.4 Merging Functions That Have no Dependency 92

6.5 Benchmark Results . 96

6.5.1 Divergence within the Population 96

6.5.2 Scalability . 96

6.5.3 Divergence within the Agent 98

6.6 Strengths and limitations . 99

6.7 Summary . 99

7 A Data Aware Model for Agent Representation 101

7.1 Introduction . 101

7.2 Implementing a FLAME GPU Scanner 102

7.2.1 C Tokens . 102

7.2.2 Special Tokens for FLAME GPU Functions 103

7.3 Implementing a FLAME GPU Parser 106

7.3.1 Definitions and Grammar Rules 106

7.3.2 Rule Actions . 107

9 Contents

7.3.3 User Subroutines . 108

7.3.4 Generating the Meta Data Output File 108

7.4 Data Aware Simulation . 110

7.5 XSLT-Transformations for Merging Metadata with Agent De-

scriptions . 113

7.5.1 Input Files and Output Files of Merging Metadata Process.113

7.5.2 The XSLT Template . 113

7.5.3 Results . 115

7.6 FLAME GPU Template Files 118

7.7 Summary . 121

8 Results 123

8.1 Introduction . 123

8.2 The Circle Model . 123

8.3 Our benchmark model . 125

8.3.1 Scalability . 125

8.3.2 Divergence within the Agent 126

8.3.3 Divergence within the Population 128

8.4 The keratinocyte (cell) model 129

8.4.1 Performance Results . 130

8.5 Validating the Results . 133

8.6 Discussion . 133

8.7 Summary . 134

9 Conclusion 135

9.1 Research Summary . 135

9.1.1 Functional Approach . 136

9.1.2 Data-Aware Approach 136

9.1.3 Evaluating and Validating the Use of the Proposed Ap-

proaches . 137

9.2 Limitations of the Research . 140

9.3 Future Work . 140

Appendices 141

A Functions.c File 142

10 Contents

B Scanner.l File 153

C Meta-data.xslt File 159

D Meta-data.xslt File 162

List of Figures

1.1 Reduce Memory . 2

1.2 Thesis Plan . 5

2.1 Bottom-up approach . 10

2.2 Top-down approach . 11

2.3 Formula A calculates agent memory. Formula B calculates model

memory . 16

2.4 CUDA Memories . 23

2.5 CUDA execution program . 24

2.6 The FLAME GPU-modelling and code-generation process. Fig-

ure after [22]. 30

3.1 Stream X-machine specification, M and M represent the agent

memory set before and after agent function F1, which inputs

and outputs messages to the message list. [126]. 40

3.2 The visual representation of the Boids model. 43

3.3 The Boids model state diagram showing the function depen-

dency relationship of functions required to implement the re-

quired flocking behaviour. 44

3.4 The Boids model description within the ’XMLModelFile.xml’ file. 44

3.5 Memory variables (Boids model). 45

3.6 States list (Boids model). 45

3.7 The definition of an agent functions list within the model de-

scription file. The source of the code [122]. 47

3.8 An example of message inputs (inputdata function) within the

Boids model. 47

3.9 An example of message outputs (outputdata function) within the

Boids model. 48

11

12 List of Figures

3.10 Example of a function condition with a recursive condition ele-

ment. 48

3.11 An example of a global function condition [122]. 49

3.12 Message description of the Boids model within the model speci-

fication file. 50

3.13 Function layers of the Boids model within the model specification

file. 51

3.14 Code snippet of automatically generated Boid data structures

within ’header.h’ file. 52

3.15 The code of the InputData Function within the Boids model. . . 53

3.16 The code of the OutputData Function within the Boids model. . 53

3.17 An initial state of a Boid agent taken from an initial agent XML

file as an argument. 55

4.1 Algorithm: parsing the formula syntax and generate FLAME

GPU model . 59

4.2 Modern compiler phases . 61

4.3 The dependency parsing system 62

4.4 Lexical analysis process . 63

4.5 Steps for generating a scanner using Flex. 64

4.6 Syntax Tree for simple If statement 66

4.7 Bison input file structure . 66

5.1 Part A: Screenshot of the first iteration showing agents A (red)

and B (yellow) moving randomly. Part B: Screenshot after 100

iterations showing agents C (blue) moving randomly and two of

A (red) and two of B (yellow) still moving. 74

5.2 Histogram generated by the model during the run time of the

simulation presenting the agent population count for A+B=C

against iteration number. This is to indicats that the implemen-

tation of the model behaviour was correct. 75

5.3 Short Title . 76

5.4 State graph of the model that represents A+B+C=D. 78

13 List of Figures

5.5 Histogram generated by the model during the run time of the

simulation presenting the agent population count for A+B+C=D

against the iteration number. This histogram shows that the

number of the master agents (A) is decreasing, the number of

combined agents (D) increases by the same amount and the total

number of all slave agent (B,C) types is equal to the number of

master agents in each cycle. 79

5.6 Median value of the execution time of the same environment size

against the type of agent that has been added at every step . . 80

5.7 Interquartile range values in seconds for simulation runs (Agent

complexity benchmark) . 81

5.8 Median value of the execution time against the number of slave

agents that have been added every time 81

5.9 Interquartile range values in seconds for simulation runs (Popu-

lation complexity benchmark) 82

5.10 Increasing population size led to increased simulation execution

time. 82

5.11 Interquartile range values in seconds of simulation runs (Scala-

bility benchmark) . 82

5.12 Decreasing the interaction radius led to increased time to produce

50 agents . 83

5.13 Decreasing the agent movement speed led to increased time to

produce 50 agents . 84

6.1 The state graph showing the data and message dependency and

the possibility to combine some functions marked with a red circle. 91

6.2 The state graph of the modified model 93

6.3 Function layers of our benchmark model before merging (9 layers

in total). 94

6.4 Function layers of our benchmark model after merging 3 functions

(6 layers in total . 95

6.5 The difference in execution time between the original model

(Red) and the modified model (blue) while increasing the di-

vergence of the population. 97

14 List of Figures

6.6 Interquartile range values in seconds for simulation runs (Popu-

lation complexity benchmark while applying the functional ap-

proach) . 97

6.7 Comparison of median processing time values against population

size, showing the original model (Red) and modified model (Green). 97

6.8 Interquartile range values in seconds for simulation runs (while

applying the functional approach and increasing the population

size) . 98

6.9 Comparison of median processing time values against the number

of communicating agents (slave-to-master), showing the original

model (purple) and modified model (green). 98

6.10 Interquartile range values in seconds for simulation runs (agent

complexity benchmark while applying the functional approach) 99

7.1 A part of the rules section from Scanner.l file showing FLAME

GPU functions keywords . 104

7.2 A part of the Bison declaration section shows token types. . . . 107

7.3 An example of some grammar rules that have been used to match

FLAME GPU syntax. 107

7.4 A part of the grammar rules from our parser file with the rule’s

action. 108

7.5 Stream X-Machine Specification, M and M’ represent the agent

memory set before and after agent function F1 which inputs and

outputs messages to the message list [126] 111

7.6 The smallest unit that can be processed through transition func-

tion is individual variables of agent memory instead of an agent’s

full memory set to minimise data movement. 112

7.7 Processing stages used to create the FLAME GPU runtime,

showing original (purple) and additional (red) data paths. . . . 112

7.8 Input files and output result of merging data dependency with

model specification using XSLT processor (msxsl.exe) 114

7.9 The XSLT template that generates in data dependency for each

function. Same loop can be applied to Out-data and In-message

to produce respective Out dependency, In message dependency

elements. 116

15 List of Figures

7.10 A: A part of the Circles model description showing function

’move’. B:The model description after adding meta-data. C:

The actual body of the function ’move’ from functions.c file . . 117

7.11 The original XSLT template generating code accessing all mem-

ory. 120

7.12 The modified XSLT template that generates code accessing re-

quired data only. 120

7.13 A part from the modified XSLT template that generates code

accessing required message only. 121

8.1 The total data movement reduction of each function within Cir-

cles model. 124

8.2 Comparison of average execution time against population size,

show-ing unmodified (blue) and modified (orange) FLAME GPU. 125

8.3 Comparison of average execution time against population size,

showing unmodified (blue) and modified (orange) FLAME GPU. 126

8.4 Interquartile range values in seconds for simulation runs (while

applying the functional approach and increasing the population

size) . 126

8.5 Comparison of processing time against number of communicating

agents (slave-to-master), showing unmodified agents (blue) and

modified (orange) FLAME GPU. 127

8.6 Interquartile range values in seconds for simulation runs (agent

complexity benchmark while applying the functional approach) 127

8.7 Comparison of median value of the execution time against popu-

lation divergence, showing unmodified of using current (blue)and

modified (orange) FLAME GPU. 128

8.8 Interquartile range values in seconds for simulation runs (Popu-

lation complexity benchmark while applying the functional ap-

proach) . 128

8.9 Comparison of average execution time against population size,

showing unmodified (blue) and modified (orange) FLAME GPU. 132

16 List of Figures

9.1 Comparison of the median value of execution time against the

population size, showing the original FLAME GPU (blue), using

the data-aware approach (orange) and the functional approach

(grey). 138

9.2 Comparison of the median value of processing time against the

number of communicating agents (slave-to-master), showing an

unmodified system (blue), a system modified to use the functional

approach (orange) and a modified system using the data-aware

approach (grey). 139

9.3 Comparison of the median value of execution time against the

population divergence, showing an unmodified system (blue), a

modified system using the functional approach (orange) and a

system modified to use the data-aware approach (grey). 139

List of Tables

2.1 Comparison of EBM and ABM 13

5.1 Agent specifications . 73

6.1 All agents functions of the model that represent A+B=C and

their relation dependencies to other functions 90

6.2 The reduction in data movement achieved after merging some

agent’s functions in the benchmark model. 92

7.1 The scanner recognises macro definitions of all FLAME GPU

functions as a keyword. 103

7.2 FLAME GPU syntaxes and extracted tokens 105

7.3 The additional elements over the current FLAME GPU XML

schema . 115

8.1 The total memory access for each agent function in the circle

model and the percentage of reduction after applying our ap-

proach . 124

8.2 Agent functions used within the Keratinocyte colony model. . . 130

8.3 The total memory access for each agent function in the Ker-

atinocyte model and the percentage of reduction after applying

our approach . 131

8.4 The total memory access for each message in the Keratinocyte

model and the percentage of reduction after applying our ap-

proach . 131

9.1 Comparison of Data-aware approach and Functional approach . 138

17

18 List of Tables

Chapter 1

Introduction

Agent-based modelling (ABM) is a simulation technique used to simulate the

actions and reactions of autonomous agents. Based on simple rules, these agents

can communicate with each other and with their environment; this makes ABM

a suitable approach for simulating complex systems. By using multi-core central

processing units (CPUs), distributed systems and accelerators such as graphic

processing units (GPUs), high performance computing (HPC) creates a suit-

able environment for handling complex operations. These operations may in-

clude, but are not limited to, big data, simulating complex systems, performing

large-scale simulations, and conducting similarly extensive processes. Operat-

ing large-scale simulations by using agent-based systems has gained attention

in many research areas, such as biology systems[61, 62, 129, 123, 112, 99], man-

ufacturing systems[12], social studies[137], supply chains[85] and epidemiology

systems such as those related to the COVID19 pandemic[136, 64, 161, 131, 135].

Parallelising such tasks within a simulation model can be achieved through

different approaches depending on the architecture of the HPC computer,

distributed clusters or even multi-core processors. However, the increase in

performance achieved through CPU parallelism may be affected by a number

of performance-limiting issues, including managing communication between

dynamic resources (e.g. clusters of cores, often referred to as nodes), load

balancing between cores and monitoring the state of a distributed simulation.

Exploiting the shared memory parallel architecture of a GPU to run simulations

has the potential to overcome many of these problems. CUDA technology

facilitates direct access to GPU hardware by using a C-like language; however,

achieving optimal performance using CUDA requires extensive knowledge of

GPU architectures.

1

2 1.1. Motivation

Figure 1.1: The gap between processor and memory performance over the

years1

The Flexible Large-Scale Agent Modelling Environment for the GPU

(FLAME GPU) framework allows agent-based modellers to run simulations

on GPUs without an explicit understanding of GPU programming. Both the

FLAME and FLAME GPU frameworks offer high efficiency in terms of the ex-

ecution of running models under diverse architectures, such as multi-core pro-

cessors and GPUs. The complexity of agent communication (which in FLAME

involves indirect sending and receiving of messages) is similar to data transfers

between different nodes in heterogeneous architectures. Agent transition func-

tions are used to move an agent from one state to another by reading and writing

the memories allocated to agent variables. In the case of data dependency be-

tween states, subsequent transition functions must wait for the new version of

the memory to be updated. On the other hand, FLAME GPU is best suited for

large populations with relatively simple memory requirements for each agent.

This enables a suitable balance with the large number of threads required to

hide memory access latencies with the limited register available. Thus, simu-

lation is restricted to the memory space available on a single GPU device, as

FLAME GPU lacks support for multiple GPU devices.

1Source: https://bitbashing.io/memory-performance.html

3 1.1. Motivation

1.1 Motivation

The complexity and heterogeneous memory of HPC systems poses challenges to

the minimization of the gap between processor speed and main memory cycle

time. This gap doubles every one to two years, which makes it one of the most

critical challenges in the computing industry according to Machanick [88], as

shown in figure 1.1. Managing data movement between processors and memory

(known as the memory wall problem) is the most obvious challenge, particularly

in systems that deal with large amounts of heterogeneous data—for example,

when simulating large models. Most simulators for ABM are therefore mem-

ory bound: the agent uses memory to hold its variables (or internal state) and

communication between agents. The memory wall problem has become more

evident, particularly in simulators using a streaming-based (data in, calculate,

data out) approach to iteratively transform the memory of agents. This situa-

tion significantly impacts overall performance for large populations and scalable

models since increasing amounts of data need to be moved.

Reducing data movement (data transfer between processors and system

memory) in such systems will improve overall performance. A number of tech-

niques (and associated studies) have focused on this goal, including load balanc-

ing [138, 66, 67], graph partitioning [13] [146], spatial partitioning (or spatial

messaging) [129] [127] and others [134, 157].

To address this issue, this thesis proposes two approaches that can be ap-

plied to the simulation of complex multi-agent systems (MAS) on GPUs. We

demonstrate a functional approach and a data-aware approach to simulation

experimentally using FLAME GPU. However, the underlying data-aware ap-

proach abstraction is appropriate for any streaming-based MAS platform or

model.

1.2 Research focus

The focus of this thesis is to investigate the impact of minimising data move-

ment on FLAME GPU performance. The first stage will focus on designing and

implementing a benchmark model that can be used to measure the performance

of the current FLAME GPU. This model also will be used to evaluate the use

of proposed approaches to enhance FLAME GPU performance. The concept of

4 1.3. Thesis Aims

this benchmark model can be implemented on other AMB platforms to collect

benchmark data. In the second stage, this research will propose a new method

that helps reduce the simulation execution time. The functional approach is

based on merging some agents’ functions after discovering data and message de-

pendencies. The functional approach is particularly suitable for FLAME GPU.

In the third stage, this thesis will focus on how the required data are extracted

from agent behaviour during the simulation and how this information can be

used to reduce data movement through what we term a data-aware approach.

In this stage, the FLAME GPU software will be extended to demonstrate this

technique. Finally, both approaches will be evaluated and validated in the last

stage by using a benchmark model and other existing FLAME GPU models. A

summary of the research focus is shown in figure 1.2

1.3 Thesis Aims

The aims of this thesis are as follows:

• Designing and implementing a general-purpose benchmark model using

FLAME GPU. The fundamental concept of this model can be imple-

mented in different ABM platforms to evaluate the modelling capabilities

of these applications.

• Exploring the benefit of applying a functional approach to FLAME GPU

through the new benchmark model. This approach is based on the concept

of merging and splitting agent functions within FLAME GPU models.

• Developing a method that allows automatic discovery of data dependen-

cies from existing CSmodels. This method is based on parsing an agent

function file of a FLAME GPU model to extract all data dependencies

between agent functions.

• Automating the processes of applying discounted variable level data

within the automated process of generating efficient GPU code in FLAME

GPU.

5 1.3. Thesis Aims

Figure 1.2: This is a summary of the research focus. It starts with design-

ing and implementing the benchmark model. In the second stage,

two approaches have been adopted to reduce memory access during

the simulation applied to FLAME GPU. The final stage focuses

on evaluation and validation of the proposed approaches.

6 1.4. Contribution of knowledge

1.4 Contribution of knowledge

The main contributions to knowledge are as follows:

1.4.1 A benchmark model

The growing number of frameworks for generating parallel ABMS applications

has led to an increase in the number of studies evaluating the modelling ca-

pabilities of these applications. The main factor for benchmarking in most of

these studies is based on observing system performance while increasing the

population size. However, system scalability is not the only issue that may

affect the overall performance of ABM applications. The first contribution of

this thesis is a benchmark model that can be a standard for measuring the

execution efficiency of the existing ABM systems. This benchmark model has

been implemented for FLAME GPU, though the fundamental concept of this

model can be implemented in different ABM platforms.

Our benchmark model can vary the following elements: system scalability,

system homogeneity (for both agent complexity and population complexity) and

the ability to handle an increase in the level of agent communication. These

results offer insight into the performance characteristics of simulations and pro-

vide a baseline for measuring simulator improvements. This work was published

in [8].

1.4.2 Data-aware approach

By adopting this approach, this thesis demonstrates that minimising data move-

ment at the variable level within a complex system (CS) simulation improves

overall performance. This contribution was achieved by automatically extract-

ing the data dependencies of agents’ functions and developing FLAME GPU to

access the required agent and message memory during the simulation. The ef-

fects of this approach on performance are evaluated using the benchmark model

and other existing CS models. This contribution was published in [9].

1.5 Outline of the thesis

The remainder of this thesis is presented in Chapters 2 to 9. These chapters

are organised as follows.

7 1.5. Outline of the thesis

• Chapter 2: Background and Literature Review. In this chapter,

four topics are covered in more detail, including ABM and simulation,

ABM on a GPU, and a brief introduction to FLAME GPU frameworks.

This chapter also presents the impact of data dependencies on real-time

high-performance computing by reviewing a number of studies and exist-

ing techniques for discovering data dependencies and reducing memory

movement.

• Chapter 3: Agent-Based Models for GPUs. Here, the FLAME GPU

platform is discussed in greater detail to provide the necessary context for

the work in this thesis.

• Chapter 4: Methods and Experimental Plan. This chapter de-

scribes the methodologies used and the description of the tools required

to perform both evaluation and validation of the proposed approaches

• Chapter 5: Benchmarking Agent-Based Modelling Systems. This

chapter presents an overview of benchmarking ABM systems and reviews

a number of tools that have been used for this purpose. New benchmark

criteria are discussed within this chapter, as well as a new benchmark

model that can help to measure the overall performance of ABM sys-

tems in different aspects. This new benchmark model is implemented in

FLAME GPU and its evaluation and testing are discussed in this chapter.

• Chapter 6: The Impact of Combining Agents’ Functions on

Overall Performance. This chapter presents an experiment to dis-

cover the impact of reducing data movement within agent-based models.

It is conducted through manual manipulation of existing models using a

guided data-dependency process. The technique proposed combines and

splits agent functions to reduce the amount of data movement during

simulation. This chapter also discusses some examples of results after

applying this approach to FLAME GPU using the benchmark model.

• Chapter 7: A Data-Aware Model for Agent Representation.

This chapter explains the automation of discovering data dependencies

and shows how the new discovery tool has been used and some exam-

ples of the results of its application. This chapter also presents a new

form representation of an agent within X-machine models that simulates

8 1.5. Outline of the thesis

data dependency at the variable level. After extracting data dependen-

cies from existing models, the automated process of merging metadata

with model specification files is described. The FLAME GPU software

contains a number of XSLT templates, which are used to generate the

dynamic GPU simulation code. This chapter describes modifying these

templates to generate efficient simulation code that is data-aware and

minimises data movement.

• Chapter 8: Results. This chapter evaluates the performance achieved

by applying the data-aware discounted representation approach with the

FLAME GPU software using a number of existing models. It also presents

the results of comparing the simulation execution time of both systems

(the current FLAME GPU and the extended FLAME GPU) to highlight

the impact of variable level data dependencies on simulation performance.

• Chapter 9: Conclusions. This chapter concludes the thesis and high-

lights potential directions for future work.

Chapter 2

Background and Literature

Review

2.1 Introduction

As outlined in the previous chapter, this thesis investigates the effects of min-

imising data movement on the overall performance of FLAME GPU. This chap-

ter covers the background and reviews the literature of four key topics: ABM

and simulation, ABM on the GPU, and FLAME GPU frameworks are included.

The influence of data dependencies in real-time high-performance computing is

also presented in this chapter.

2.2 Agent-Based Modelling and Simulation

In the last few years, the use of agent-based modelling and simulation (ABMS)

has increased rapidly in various fields, such as ecology [51, 92], social science

[70], economics [70, 104], computer science, businesses complexity [100] and

earth science [89]. According to Bajracharya and Duboz [11], ABMS enables

the construction of a complex system as a group of agents; all behaviours are

described with respect to the individuals within this system. Grimm et al. also

define the ABMS of complex systems as “dynamic networks of many interacting

agents” [52] p.987. Agent-based platforms are a form of architecture that

creates a suitable environment in which agents can exist and communicate to

achieve the goal of the simulated model [11]. The most common use of ABMS

in business is to support decision-making [86]. For example, it can be used

to compare different marketing strategies to choose the best one or, in social

9

10 2.2. Agent-Based Modelling and Simulation

life,to optimise problems such as crowd behaviour and traffic flow. Depending

on the number of agents, the agents’ communication and the complexity of the

model, modellers can build their systems on desktop computers, computing

clusters or even HPCs using different ABMS toolkits [7].

This section will give a brief introduction to modelling and simulation sys-

tems and present a number of ABMS toolkits and platforms popular in different

fields.

2.2.1 Early developments

ABMS initially came from AI and computer science, but it is now used for

modelling artificial or non-artificial systems and is an independent research

field. The earliest emergence of ABMS was in a device created by John Von

Neumann and later termed cellular automata. The game of life model developed

by Jon Conway in 1970 was the first simulation model to use cellular automata.

This model is based on two states, alive and dead, where the cell state depends

on the states of the neighbouring cells. In this game, Conway succeeded in

creating a complex system using simple rules. The game of life model has a

computational complexity as powerful as a Turing-complete computer, which

can generate new objects, including copies of original agents. In the 1990s,

ABMS developments continued to grow with the appearance of several tools

in different fields, namely Swarm and NetLogo in the mid-1990s, Repast and

MASON toolkits in the early 2000s and FLAME and FLAME GPU in the late

2000s.

Figure 2.1: Bottom-up approach

11 2.2. Agent-Based Modelling and Simulation

Figure 2.2: Top-down approach1

2.2.2 Basic concepts of ABMS

ABMS is a modelling approach that simulates the actions and reactions of

individual entities and measures their effects on the whole system. Many phe-

nomena, even complex ones, can be described as systems of autonomous agents

following a number of rules to communicate with each other. ABMS follows

a bottom-up approach, which means that each entity follows simple behaviour

rules, as shown in figure 2.1. In contrast, a simulation following a top-down

approach defines the behaviour of entities as a sequence of well-defined events,

as shown in figure 2.2 In both approaches, the simulation results ultimately

present the behaviours of the system as a whole, based on the behaviours of

individual entities [162]. ABMS is relevant to many other fields, such as sys-

tems science, complexity science, systems dynamics, traditional modelling and

simulation, and many branches of social sciences[86].

2.2.3 ABMS paradigms and methodologies

Two types of paradigms are used in ABMS:

• Autonomous agent models are used to study personal activities

and behaviour. This paradigm can be used to model systems in non-

computing-related scientific domains, such as life and ecological sciences

[52]. In this type of model, an agent is self-directed and can communicate

with its environment and other agents independently, such as cells in the

genetic programs.

1The resource shown in Figure 2.2 is http://www.asdl.gatech.edu/INIT:AGENT.html

12 2.2. Agent-Based Modelling and Simulation

• Agent-based models (system models), also known as multiagent sys-

tems, are used to study the actions and reactions of a collection of au-

tonomous entities called agents. This type of ABMS is used to simu-

late dynamic complex systems and usually uses the same computational

method as distributed artificial intelligence (DAI) systems. Computing

scientific domains, such as AI and distributed autonomous systems, use

this methodology in their applications [162]. Agent-based models follow a

pattern-oriented modelling approach, which is used in bottom-up complex

systems.

The most common paradigm used in ABM frameworks is object oriented

programming (OOP). OOP is based on the concept of objects which provide

a simple technique for creating models. Using features offered by the OOP

methodology, including classes and methods, engineers can easily represent

agents and agent behaviours as self-directed objects [7]. Most popular ABM

frameworks are based on OOP concepts. Some of these also use Unified Mod-

elling Language (UML) for system specification of high level agents. Some of

these toolkits use Application Programming Interfaces (APIs) to help the user

create model specifications. In these types of platforms, the API builds and

describes the models, and the framework implements agent communication and

agent behaviour scheduling [7]. The method of creating agents and defining

agent specifications and agents’ behaviour and attributes generally differ from

one platform to another, depending on the type of ABM approach. In frame-

works that use APIs, modellers can easily set up the input data visually using

graphical user interfaces (GUIs) to create agents or by writing agent specifica-

tions in external files with customised file formats [87].

2.2.4 Agent-based modelling vs. equation-based mod-

elling

In equation-based modelling (EBM), a system is simulated by executing a set

of equations that represent the relationships between the system’s variables.

In contrast, agent-based modelling (ABM) simulates the internal behaviour

of a collection of agents that combine to produce this high-level behaviour.

Both approaches are used to build models that simulate real systems and solve

complex issues and problems. However, they differ in how they execute the

13 2.2. Agent-Based Modelling and Simulation

models. Numerous studies have examined the difference between EBM and

ABM by using them to simulate systems in different domains [141, 149, 106].

In the commercial and business domain, Thawornchak [149] investigated the

dynamics of supply networks by simulating this system using both agent-based

and equation-based models. He designed a model of the same scenario using

each approach and focusing on the main categories: producer, dealers and con-

sumers. In the EBM approach, he used equations to identify the relationships

between these three categories to generate the simulation of the real system.

In the ABM simulation, he focused on the behaviour of every category as the

beheviour of an agent and how this agent communicates with other agents in

the system. From this experiment, he reached several findings: first, EBM can

be more easily implemented due to software with diagram-based interfaces that

makes specifying models simpler without requiring any programming skills. Sec-

ond, simulation results are easy to understand in EBM because this approach

uses both graphs and data to represent simulations. Third, ABM is more flexible

in running models that follow predetermined actions and in presenting mate-

rial and information flows. Finally, ABM allows modellers to study a system’s

behaviour in more detail, identifying any issues that may affect the system as

a whole. This final observation is vitally important as it means that ABM is

more practical for use in business to simulate some events that may occur in

real life.

Table 2.1: Comparison of EBM and ABM

Criteria ABM EBM

Compute requirements Intensive Minimal

Interactions within models Explicit Implicit

Time and Events Discrete Continuous

Level of model complexity High Low

Practical use Observing the emerg-

ing behaviour

Evaluation of what-if scenarios

Level of detail in implementation High Low

In social dynamics research, Tang et al. [147] have investigated the impact

of using ABM rather than EBM to model human education data. They im-

plemented ABM from existing equation-based models using Repast and then

compared the results from both approaches. As a result of this study, Tang

14 2.2. Agent-Based Modelling and Simulation

et al. concluded that ABM could identify predictions that were not found by

EBM. ABM could be verified by comparing the results with predictions made

by EBM.

In epidemiological research, Sukumar and Nutaro [141] have used EBM and

ABM to design a model to validate epidemiological disease-spread models, using

the 1918 Spanish flu as a case study. EBM provides more intuitive interface

than ABM for presenting facts. On the other hand, it was found that ABM

is more versatile, allowing users to easily update the model by changing the

network interactions, for example by adding a vaccination campaign to the

model; subsequent changes in the epidemic can then be observed. Table 2.1

shows an overview of the comparison of EBMs and ABMs based on number of

criteria reported by Sukumar and Nutaro [141].

To summarize the above literature review [141, 149, 106, 147, 44], the dif-

ference between EBM and ABM is as follows:

• Flexibility: The dynamic nature of the real world requires flexibility in

presenting and simulating systems. It is necessary to make changes during

the simulation process to represent updates that may occur in real life.

ABM is more flexible in running a model, which can easily maximise the

size of simulation and can also minimise it by adding or deleting agents

during the simulation. Every agent in the ABM approach can decide how

to communicate with other entities, which allows users to easily add or

move any specification to the agent to produce new results.

• Reality: Individuals in the real world communicate simultaneously. Us-

ing the ABM approach to simulate real systems could help maintain

this concurrency within the system because it can run the simulation

on distributed architectures, making agents’ communications occur con-

currently.

• System level or Individual level: ABM is based on individual be-

haviour, and each agent has their own variables; this enables the analysis

and validation of individual agents. In contrast, the EBM approach is

based on the system level, which represents the interactions between a

model’s variables as a set of equations. These equations represent the

system as a whole.

15 2.2. Agent-Based Modelling and Simulation

• System Representation: ABM represents the system as a series of

agents whose behaviour creates communication with other agents, while

EBM represents the system as equations that create the relationships

between the system’s variables.

2.2.5 ABMS platforms

Scheduling events and memory management are the most significant challenges

facin interactive real-time applications like simulators. The main concept of

scheduling is determining how a model’s events are presented in time and

how event execution order effects a simulation. However, depending on the

scheduling choices, the computation of each event may or may not fit into

the available memory, as “memory and storage have always been a limited

parameter for large computations” according to [90]. Side by side, the cost of

memory load during simulation time may also affect the overall performance.

In many ABMS platforms, the schedule of events follows a predetermined

order set by the modeller. This section presents the most popular platforms in

ABMS, which include Swarm, NetLogo, Repast and MASON. As for and in

more detail FLAME and FLAME GPU, they will be studied in more detail in

the next chapter.

Swarm Swarm is the first and one of the most popular ABMS platforms[7].

The Swarm platform follows the ‘framework and library’ paradigm [117]. All of

its libraries are written in Objective-C. It uses an object-oriented representation,

which models agents as objects. Agents within Swarm interact with each other

through discrete events to execute a schedule of actions. Swarm has a variety

of methods for scheduling the order of these actions. The simplest scheduling

method, called action group, is a collection of actions executed either in a

linear sequence or, if suitable hardware is available, in parallel [96]. Memory

space is managed within Swarm based on methods for allocating and freeing

memory. Every object in Swarm is created in the memory space called the

zone. The zone is responsible for tracking every object created there. To reuse

memory, for instance, a signal can be sent to all objects for self-destruction [59].

NetLogo is a popular tool for the modelling and simulation of complex

systems in the fields of natural and social sciences. NetLogo is written in Java,

16 2.2. Agent-Based Modelling and Simulation

and its modelling language is based on the Logo programming language, a

member of the Lisp family[152]. Modellers can easily create their models using

the model interface. Agents’ behaviour and actions can be added through the

procedure window. Programming in NetLogo is not object-oriented, and events

are scheduled by default. The tasks are executed following the order of actions

as they appear in the “go” procedure window [117]. For this reason, Meyer [93]

classified NetLogo as a toolkit that tends to constrain model execution to the

time-driven approach. NetLogo is designed to support learning and provides

a simple way to create a simulation. The simulation runs sequentially on a

single machine, but a BehaviorSpace tool is currently being integrated with

NetLogoto support parallelisation. By default, a model runs in parallel, one per

core, if the user has multiple processor cores. Memory is managed in NetLogo

automatically as written in Java language. Java has a garbage collector that

can delete unused objects and free up some memory automatically. However,

not all objects are eligible for garbage collecting even when not in use. For this

reason, there are two stages to follow to optimise memory usage in NetLogo. In

the first stage, the memory needed for the model is estimated; then, the memory

used is minimised. To calculate how much memory the model should consume,

users must follow the formulas that appear in figure 2.3. After amount of

memory needed is estimated, users can reduce memory use during the simu-

lation by auditing the NetLogo code and removing unused agents and variables.

Figure 2.3: Formula A calculates agent memory. Formula B calculates

model memory

The Recursive Porous Agent Simulation Toolkit (Repast) follows a

scheduling schema adapted from Swarm. Repast is an open source ABMS

platform started as Java version of Swarm, later becoming a separate modelling

tool [117, 7, 29]. Repast Simphony and its new version, Repast HPC, are

based on an OOP approach to specifying agents. The former is implemented

in Java while the latter is implemented in C++. Events in both versions

are driven by a discrete-event scheduler. Events are scheduled as a unit of

time known as a tick. The scheduling mechanism used by Repast consists

17 2.2. Agent-Based Modelling and Simulation

of three classes, which are used to manage event execution. The main class

is called Basic Action and contains all the basic actions set explicitly by

the modeller or set implicitly via schedule objects. The second class is called

Schedule. This class consists of objects and stores all the basic actions and

information about these actions’ execution time. The third class is called

Action Group and is responsible for grouping basic actions. It provides

methods of determining the order in which basic actions within the Action

Group will be executed [27, 29]. The dynamic discrete-event scheduler used by

Repast allows users to schedule events to be executed at a specific time, such

as at the start or the end of the simulation [29]. For a large simulation that

contains many agents or graphical components, the memory available to the

Java runtime must be increased. By using the text editor, the arguments -Xms

and -Xmx can be updated to allocate more memory in a similar situation.

Repast version 2.6 and above JVM can automatically re-allocate memory up

to the maximum system availability.

The multi-agent simulation of neighborhoods (MASON) is a free, open

source multi-agent simulation toolkit. MASON is also based on the discrete-

event simulation approach and is written in Java [82]. MASON was designed to

serve a multi-agent simulation with a high number of agents. Also, this toolkit

was implemented to work efficiently on single machine. MASON has a model

library and separate 2D and 3D visualization tools, which allow the modeller

to efficiently run up to a million agents [80]. MASON is written in three layers:

the utility layer, the model layer and the visualization layer. The model layer

and the visualization layer are independent, each having its own scheduler class.

In the model layer, the SimState class contains the random number generator

and the simulator’s schedule to organise the order of the objects’ occurrence at

any real-valued time. In the visualization layer, the GUIState class contains

a mini-schedule, which is kept in sync with the model’s basic schedule. This

allows two layers to work separately [81]. The large amount of memory re-

quired to run a complex simulation is one of the main limitations of MASON.

D-MASON was created to overcome this problem and run simulations that are

impractical or impossible to execute on a single computer [31]. D-MASON is

the parallel version of the MASON library and allows modellers to run simula-

tions on distributed hardware. D-MASON adds new layer called D-simulation,

18 2.2. Agent-Based Modelling and Simulation

which uses the usual visualization layer that exists in MASON and also lever-

ages the specific functionalities of the D-visualization layer that supports data

distribution[30]. As the simulation is distributed over several processors, each

processor has its own distributed memory and the memory management tech-

nique required to minimise the time of memory access. Managing memory

access is one of the most critical issues facing distributed systems.

2.2.6 Scalability of simulations in ABM

With the increasing complexity and increasing number of simulated entities, a

simulation environment’s scalability is a key indicator of its ability to cope with

the complexity of the modelled system. In general, scalability can be defined as

the property of a system compared to some other property of the same system

[79]. According to [79] scalability is a major requirement when selecting a

platform to deal with highly sophisticated and extensive models. Many large

simulation experiments have been conducted with millions of agents [26, 28,

129, 68] and thousands of runs [6, 118, 61]. These studies focused on increasing

both population size and the number of times the simulation was run. Some

research has also focused on scaling the simulation execution time, such as [158].

Lorig et al. define workload and complexity as two key factors affecting the

scalability of agent-based systems. The workload is derived from the amount

of memory and the CPU threads used by the multi-agent framework. Com-

plexity, by contrast, defines an agent-based system’s computational effort [79].

The scalability of any modelling application can be analysed by observing how

this application performs as the problem size increases. To measure system

scalability, performance metrics have to be defined. This thesis’s central mea-

surement unit (in the implemented models) is the execution time of simulation

experiments as the population size increases.

2.2.7 Agent-based models and parallelisation

The term ’large-scale’ in ABMS refers to the high number of agents within the

model, but it may also refer to the problems that could arise from model com-

plexity or how a single processor can deal with a massive number of instructions

during simulation [105]. To make the simulation more realistic and to represent

more complex environments found in real life, modellers add more agents, ex-

19 2.3. Agent-Based Modelling on the GPU

tra rules and extra parameters to examine the whole system’s behaviour. The

increased complexity of ABMS has stimulated researchers in this field to look

for solutions to accelerate the computation when a simulation is run. A number

of methodologies have been developed to support ABMS platforms in manag-

ing complex problems. A number of ABMS platforms reviewed in the previous

chapter support large-scale modelling in different ways, using parallel comput-

ing techniques to deal with the complexity of the modelled systems. Examples

of such systems include FLAME2, Repast HPC and D-MASON.

Parallel computing techniques require special architectures to allow tasks to

be executed simultaneously. These include multiple instruction multiple data

(MIMD) architectures and single instruction multiple data (SIMD) architec-

tures. In MIMD, different instructions can be executed on different data on

multiple independent processors simultaneously. Examples of this are found in

clusters of computers and GRID computing. In contrast, SIMD architecture

allows the same instructions to be replicated across multiple processors and on

different data. MIMD architecture’s high cost is its main drawback, which is

why only large institutions can support it. In the 1990s, the use of MIMD archi-

tecture in clusters and GRIDs became more popular because they offered more

powerful computation at low cost. Recently, the use of SIMD architecture re-

turned with new processing architectures, especially general-purpose computing

on graphics processing units [37].

GPU computing allows the CPU and GPU to operate together, producing

HPC solutions for processing data more quickly and with a high throughput.

More recently, a number of platforms and programs have been invented to pro-

vide an easier approach to GPU programming. Running ABMS applications on

GPU is an affordable way to achieve high performance. FLAME GPU (section

2.3 reviews FLAME GPU in more detail) is an example of a framework that

uses GPU architecture to run ABM applications. The development of ABM

frameworks is ongoing, and researchers in this field are investigating new ways

to apply them to HPC.

2http://flame.ac.uk/

20 2.3. Agent-Based Modelling on the GPU

2.3 Agent-Based Modelling on the GPU

A significant body of research focuses on the optimisation of agent-based models

using GPUs. Most of this work tries to solve specific problems using GPUs;

this process requires in-depth knowledge of GPU programming. Developing a

dedicated platform for GPUs has the potential to solve a number of problems

would otherwise have to be solved individually. This section presents a number

of ABM models, techniques and platforms that can be run on GPUs.

2.3.1 GPU programming languages

Previously, GPU devices were accessed through graphics application program-

ming interfaces (APIs) to render images and videos. More recently, researchers

and developers have found a way to present their applications to the GPU us-

ing a set of fixed functions (low-level language) through DirectX and openGL.

These APIs were originally used to design games and videos. However, the need

for high levels of computation has encouraged the development of DirectX and

openGL for programming platforms. Developers have also been motivated by

the need to run their imaging applications in different fields through accessing

GPU cards[103]. However, in reality, programming applications that use Di-

rectX and OpenGL require specific knowledge to operate on the GPU, which

is especially difficult for people unfamiliar with programming graphics cards

[140]. Another demand of the GPU relates to sequential instructions. These

are difficult to execute, which means there is a need for a new system through

which to access GPU devices. For this reason, NVIDIA and AMD developed

new systems (CUDA and OpenCL) that are easy to use. These systems provide

direct access to the GPU, making it more programmable than before [103].

OpenCL is a GPU programming model and a type of API platform that

allows parallel programming for heterogeneous systems, such as CPUs, GPUs

and other processors from different vendors [65]. OpenCL was initially proposed

by Apple. In 2008, it became available to the public after being tested by the

Khronos Group. The major feature of OpenCL its threading model similar

to the one that exists in CUDA, consisting of a similar hierarchical memory

structure [17]. OpenCL enables two types of parallel processing: data-based

and task-based[140].

It is worth clarifying that CUDA, another GPU programming model, was

21 2.3. Agent-Based Modelling on the GPU

designed only for NVIDIA’s graphics cards. CUDA has a massive parallel struc-

ture, hierarchical memory architecture and threading programming model. All

these features make GPU cards accessible and allow the CPU and GPU to work

together to process one program.

CUDA performed more efficiently than OpenCL in terms of the transforma-

tion of data between the CPU and GPU. Karimi et al. [65] and Su et al. [140]

conducted similar investigations whose findings supported this efficiency. They

compared CUDA and OpenCL through the use of specific real-world applica-

tions. The results of the Karimi et al. study revealed that the execution time of

CUDA’s kernel is faster than OpenCL’s although the two implementations run

nearly identical code. Su et al.’s [140] study compared the efficacy of C, CUDA

and OpenCL by applying five application benchmarks. The results showed that

the execution time of the CUDA driver API was 3.8-5.4 times faster than the

execution time of OpenCL.

Running different applications using CUDA and OpenCL showed that

CUDA performs 30 percent better than OpenCL at the most. To avoid gener-

alizability, Fang et al. [43] clarified that OpenCL performs similarly to CUDA

under fair-comparison conditions. This comparison requires more code for mem-

ory allocations and a different code for transfers of data for each type of hard-

ware used in OpenCL. This exposes the fact that OpenCL must be enabled for

any GPU device and requires a different optimisation for each hardware struc-

ture, while CUDA can use only NVIDIA GPUs that have the same hardware

architecture as each other. Consequently, a similar optimisation code can be

used with different applications. To summarise the previous literature, there is

a clear preference for CUDA in relation to GPU programming in the current

climate.

2.3.2 CUDA

CUDA is a programming model used for parallel processing. This technology

was invented in 2007 to develop software for NVIDIA’s graphics cards. The

highly parallel architecture offered by CUDA allows instructions to be run si-

multaneously on hundreds of GPU processor cores [60]. This section will exam-

ine CUDA from the perspective of CUDA architecture, CUDA memory models

and CUDA programming models.

22 2.3. Agent-Based Modelling on the GPU

2.3.2.1 CUDA architecture:

The CUDA architecture is represented by three basic components: threads,

blocks and the grid. The grid consists of a number of blocks, and every block

contains a number of threads. Blocks of threads within a grid can represent a

one-dimensional, two-dimensional or three-dimensional thread. Threads within

the block can represent one-dimensional or two-dimensional threads [60]. The

number of threads per block and the number of blocks within a grid depend on

the GPU architecture that CUDA accesses. The Fermi architecture is the most

recent computing architecture for GPUs.

It consists of 512 CUDA cores (threads per block). The 512 cores are divided

into 16 streaming multiprocessors (SMs); thus, there are 32 CUDA cores for each

SM. Each CUDA core consists of an integer arithmetic logic unit and a floating

point unit[60]. The maximum number of threads per block is 512 within the

graphics card hardware support with a 1.x compute capability, and the grid

can represent a one- or two-dimensional thread. In a graphics card with a 2.x

compute capability, the maximum number of threads per block is 1024, and the

grid can represent a one-, two- or three-dimensional thread [102].

Understanding the CUDA architecture allows programmers to write effective

CUDA code. A software program in CUDA can easily access the hardware

structure through four built-in variables representing the basic components of

the CUDA device architecture. The number of blocks within a gird can be

determined by the gridDim variable. The blockDim variable can present the

number of threads within a block. The blockIdx variable is used to access the

blockID, and the threadID can be accessed using the threadIdx variable.

Threads within the same grid are run by the same kernel function, but they are

not synchronised, whereas they are synchronised in the same block [102].

2.3.2.2 CUDA memories

CUDA consists of two kinds of memory structures, depending on their acces-

sibility by the CPU and GPU code. The device (GPU) code can access the

following memories:

• Register memory: used per thread for reading and writing data.

• Local memory: used per thread for reading and writing data.

23 2.3. Agent-Based Modelling on the GPU

Figure 2.4: CUDA Memories3

• Shared memory: used per block for reading and writing data.

• Global memory: used per grid for reading and writing data.

• Constant memory: used per grid for reading only.

• Texture memory: used for reading only.

The host (CPU) code can access global, constant and texture memory to

transfer data between the host and the device per grid. All these types of

memory can be accessed by the host for reading and writing (see figure 2.4).

In summary, the CUDA memory architecture consists of registers, shared

memory and constant memory, which can be easily accessed in parallel and with

higher speed than the global memory. Making the best use of these types of

memory and dealing with the limitations of the hardware will help in the design

of efficient code [69].

2.3.2.3 CUDA programming model

The structure of the CUDA program consists of a serial program code that calls

parallel functions (kernels). The CUDA programming model has the ability to

execute the serial code on CPUs using normal instructions from the C/C++

program and to execute the parallel code on GPU devices by calling up the

24 2.3. Agent-Based Modelling on the GPU

Figure 2.5: CUDA execution program

kernel functions [46]. Figure 2.5 shows the CUDA execution program.

In the CUDA programming model, the CPU is called the host and the GPU

card is called the device. The CUDA program starts in the host as a normal

C/C++ program and contains the usual main functions. Launching the kernel

function requires a specific function specially designed to enable the GPU card.

For example, -global- is a CUDA keyword that refers to all functions called

up from the host to be executed on the device. -device- is another CUDA

keyword that refers to all functions that are called up and that run only on

the device. A specific function is also required to access the allocated and

free memories on the device and to transfer variables between the host and the

device. cudaMalloc() is used to allocate memory, cudaMemcpy() is used to copy

data between the host and the device and cudaFree() is used to free up allocated

memories. The kernel is launched from the main() function in the host and

requires a triple-angle bracket to be written and filled with three configuration

parameters representing the number of blocks per grid, the number of threads

per block and the total required shared memory, which is an optional parameter

[69, 46]. A number of steps must be completed each time for any code is run

on the device. The steps listed below must written in the host:

• Declare all variables needed in this kernel for the CPU and GPU.

• Allocate a memory device for these variables.

• Copy these variables from the host to the device.

• Launch the kernel function, as mentioned previously.

5The source for figure 2.4 is http://cuda-programming.blogspot.co.uk/2013/01/what-is-

constant-memory-in-cuda.html

25 2.3. Agent-Based Modelling on the GPU

• Copy the result back to the host if there is a result.

• Free up the used memory on both sides.

The CUDA program will be compiled on an NVIDIA C Compiler (NVCC).

The NVCC will divide the program code into two parts. The CPU code will be

compiled using a standard C compiler, and the GPU code will be compiled by

the NVCC [69].

Exploiting the processing power of GPUs for the simulation of complex

systems offers a high computational power. Based on the reviewed literature

on CUDA technology, running a simulation application using CUDA seems to

be more a complicated process for modellers who are not familiar with GPU

computing. Flame GPU allows modellers to run their simulation models on

GPU without explicit understanding of CUDA programming.

2.3.3 Efficient performance of agent-based simulation on

GPU

In the field of ABM, creating a simulation by modelling individuals helps build

a natural and flexible environment in which to study a system’s behaviour, but

this process requires more computational power. Traditionally, ABM platforms

use serialised algorithms in their structures to run simulations and manipulate

mobile discrete agents. However, this technique limits simulation speed and

model scalability [124]. This implies the need for an HPC environment or

specialised workstation of parallel or distributed platforms [2]. Much research

has focused on enhancing the performance of ABM platforms using various

strategies. For instance, simulations can be distributed to minimise simulation

time; the distributed simulations of multi-agent systems can be implemented

using a dedicated computing cluster [144, 143, 97, 150] or a grid [151, 110].

However, the increase in performance achieved by applying CPU parallelism

using distribution techniques may be affected by a number of issues, including

the management of communication between dynamic resource allocations and

nodes and the monitoring of the state of the distributed simulation. The ability

of the shared memory parallel architecture of a GPU to run simulations could

be exploited to overcome many of these problems. A number of studies have

focused on using GPUs to implement ABM simulation, such as [75, 129, 83].

26 2.3. Agent-Based Modelling on the GPU

The next section presents examples of GPU agent-based models, frameworks

and techniques.

2.3.3.1 ABM models on GPU

To enhance their performance, a number of ABM models in different domains

have been re-implemented for GPU. A significant improvement in execution

time has been found when models optimised for parallel GPU execution are

used, compared to the use of a sequential model. In the field of biology and

medicine, Chen et al. [21] present the simulation of blood coagulation us-

ing GPU, and, for comparison, the simulations were implemented in NetLogo,

Repast and a direct C version. The experiment results showed that the ver-

sion with GPU implementation is 10 times faster than the C version, over 100

times faster than the Repast version and over 300 times faster than the NetL-

ogo simulation. Alberts et al. [4] implemented a version of the Toy Infection

Model (systemic inflammatory response syndrome) using CUDA and compared

it with the original version implemented in NetLogo. The parallel version of the

model offers a substantial gain in performance compared to the original version

with no loss in accuracy. The use of GPU allowed Campeotto et al. [19] to

increase the speed of simulating a protein structure prediction problem by up

to 36x. They used concurrent agents to explore the folding of different parts of

a protein. Less time is needed to find a solution in the new version (minutes)

compared with the CPU version (hours).

In the field of physics, the molecular dynamics (MD) simulation that was imple-

mented using parallel algorithms on the hybrid CPU-GPU platform performed

better than the previous parallel algorithms on the CPU cluster platform [77].

Ant Colony Optimization (ACO) is acknowledged as a powerful method of find-

ing the best solution to many optimisation problems, such as graph theory.

Several studies have presented a GPU implementation of the ACO algorithms

[20, 35, 33]. Each one of these studies focused on a specific problem and used

a specific technique to implement the GPU. The GPU implementation of ACO

offered better results in both speed and solution quality with some limitations

of GPU memory for large simulations [35].

27 2.3. Agent-Based Modelling on the GPU

2.3.4 Techniques to implement ABMs on GPU

The latency-hiding mechanism is one such technique used to implement ABM

simulation on GPU. Aaby et al. [1] approved the efficiency of this mechanism.

They separated the grid of agents into dependent blocks allotted to independent

processing elements. After updating agent states in each block, the data depen-

dencies between these blocks will be exchanged. This process takes advantage

of the fast shared memory that can be accessed by threads in the same block.

However, the large size and greater complexity and dimensionality of some sim-

ulations required intensive coding to apply this technique to GPU. Hermellin et

al. [56], [57] follow another technique based on a hybrid CPU/GPU approach,

which means the simulation’s execution can be divided between CPU and GPU.

In this approach, a clear separation is made between the agent behaviours (han-

dled by the CPU) and environmental dynamics (managed by the GPU). Leaving

part of the simulation on the CPU increases memory transfers between the CPU

and GPU and decreases parallelism. This paper [108] presents three approaches

using GPU to implement multi-agent simulation. All approaches are based on

the concepts of task allocation using the GPU. The authors mentioned possible

bottlenecks in each approach, but the main challenge is data transfer overheads

between CPU and GPU.

2.3.5 ABM frameworks using GPU

A few ABM frameworks use GPU: the TurtleKit framework [94], the many-core

multi-agent system (MCMAS) framework [74], the MASS CUDA library[72, 54]

and the FLAME GPU framework.

The TurtleKit framework is the future third version of the TurtleKit simu-

lation platform[95] that enables GPUs to handle environment dynamics while

the simulation of agent behaviours are implemented on the CPU. Agent be-

haviours that do not depend on the agent state will be performed on the GPU

to increase performance and reduce the impact of the GPU facilities on the ease

of maintaining the simulation code. However, the parallelism of this platform

is limited by the use of a hybrid approach and the division of the simulation

between the CPU and the GPU.

The MCMAS framework is based on two approaches. The first is the use

of a high-level Java interface to OpenCL code and the commonly used func-

28 2.4. FLAME GPU framework

tions and data structures (plugins) that are provided by the framework. The

second approach is the ability to define new plugins for MCMAS as OpenCL

code. The MCMAS library provides a set of famous algorithms, such as diffu-

sion, path-finding and population dynamics, that can be easily used. However,

the limited number of predefined data structures and functions supported by

MCMAS require low-level GPU coding to extend some modules.

MASS is a parallelising library for multi-agent spatial simulation [45, 24] de-

veloped by researchers at The University of Washington4. This project provides

Java, C++ and CUDA implementations of the MASS library. Currently, MASS

CUDA library developers are focusing on analysing typical agent behaviours and

developing GPU parallelisation techniques to address these behaviours.

2.4 FLAME GPU framework

FLAME GPU [128] is an extension of the FLAME5framework using GPU com-

putation. FLAME GPU follows a formal ABM specification schema called an

X-machine [32] that allows modellers to design a wide range of agent and non-

agent models. An agent-based model in FLAME GPU consists of collections of

agents of different types, interacting within an environment where each type of

agent is specified abstractly as an extended finite state machine. The particu-

lar EFSM model chosen is the X-Machine. Modellers define the agents, their

functions and internal memory in the X-machine Mark-up Modelling Language

(XMML) and use the FLAME GPU templates system to generate a simulation

program that can efficiently run the code in parallel on the GPU.

According to Tamrakar [145], there are three advantages of using the

FLAME GPU framework to design a model: first, modellers can implement

rules for agent behaviours and simulate ABMs on parallel architecture (GPU)

with a minimum understanding of parallel computing or any experience of pro-

gramming GPUs. Second, the computational performance achieved when sim-

ulating massive agent populations on GPU is far greater than when executed

on CPU. Finally, locating agent state variables in GPU memory makes visuali-

sation more efficient, as it is not necessary to copy the data from RAM to the

GPU for rendering.

3https://depts.washington.edu/dslab/MASS/
4The Flexible Large-scale Agent-based Modelling Environment (FLAME) is a template-

based simulation environment designed by Coakley et al. [25, 23].

29 2.4. FLAME GPU framework

2.4.1 Code generation in FLAME GPU

The FLAME GPU framework consists of a number of X-agents (the agent rep-

resentation of an X-machine [29]) specifications. Each instance of an X-agent

has its own memory that holds a set of variables. All instances of X-agents

have a start state, an end state and transition functions that can read and

write to their memory. Agents can communicate by sending and receiving mes-

sages, and their functions can read and write these messages at any time be-

tween the start and end states for each agent. The process of creating a model

using FLAME GPU is very similar to that of creating the original FLAME,

which required the model specification to be written in XML format within an

XMML document. However, the syntax used to write the model in FLAME

GPU uses an extended version of the FLAME XML schema. The GPUXMML

extension outlines the GPU-specific model description elements, such as the

maximum size of an agent’s memory [9]. This allows a formal agent specifica-

tion to be transformed to optimised C-based CUDA code through GPU-specific

templates. CUDA technology is a framework that allows programmers to de-

velop general purpose algorithms for the GPU. FLAME GPU uses extensible

stylesheet language translations (XSLT) to parse XML files, thus avoiding the

problems caused by XParser program in FLAME [125]. XSLT is a flexible lan-

guage used to translate XML documents to other formats, such as HTML or

other document formats. XSLT templates can be processed by any compliant

processor, such as Saxon, Visual Studio, Xalan or xsltproc. Figure 2.6 shows

the processing steps to generate a FLAME GPU simulation program.

30 2.5. Impact of Data dependencies in Real-Time High Performance Computing

Figure 2.6: The FLAME GPU-modelling and code-generation process.

Figure after [22].

2.5 Impact of Data dependencies in Real-Time

High Performance Computing

Data dependency analysis is a method of detecting parallelism between two

blocks or two statements. It is the key to optimising the code and provides

dependency information that can help to improve memory locality, load

balancing and efficient scheduling. In the area of high-performance computing,

data dependency analysis aims to improve performance by improving both

interprocess communication and accessing shared memory location [113, 114,

107]. Dependency analysis is a promising approach to detecting problems in

large systems. For this reason, starting in 1979, several authors have proposed

methods and techniques focusing on this matter in both data dependency and

task dependency [55, 109]. A number of studies also compared the accuracy

and efficiency of these techniques.

According to Patil and Jagtap[107], data dependency appears when two

statements following each other share the same memory location and one of

them writes to it. The authors classified dependency into three classes: true

dependency, anti dependency and output dependency. In true dependency,

statement 1 writes to the memory location while statement 2 reads from it

(read-after-write). In anti dependency, statement 1 reads from the memory lo-

31 2.5. Impact of Data dependencies in Real-Time High Performance Computing

cation while statement 2 writes to that location (write-after-read). In output

dependency, both statements write to the same memory location (write-after-

write). All these types of memory access are performed with scalar variables,

array variables or pointer references in a sequential program. These dependency

problems can be solved using a data dependency testing technique, such as the

Banerjee Test[154], I-test[71], GCD Test[153] or Omega Test[115]. These tests

are examples of code-based dependency analysis methods, according to Jagtapa

and Shrawankar[63]. They classified dependency analysis approaches into three

groups based on the input source: a code-base approach, a component-based

approach and a run-time analysis approach. The next section details these ap-

proaches and gives some examples covering various application areas in different

computing environments.

2.5.1 Data dependency techniques

Different dependency analysis techniques have been proposed in various areas.

Some of these methods are used to identify dependency relationships between

statements in a program, and some are used to work on the relationships be-

tween nodes in a large system that has heterogeneous hardware and software

components. This section follows [63]’s method of classifying dependency anal-

ysis techniques, which is based on the type of input source of information.

2.5.1.1 Code-based approach

The available methods that followed code-based approach can be applied to

program or code instructions. This approach helps to identify dependency

between statements, loops and variables in a program and can be used to

parallelise compilers and sequential code and for natural language processing

systems. Various methods available in this type, such as [154, 71, 153, 115,

160, 78, 15, 159]. Below is a brief description of a number of well-known data

dependency tests.

GCD Test: The greatest common divisor test is used to test data

dependency between loop statements: ”It is based on a theorem of elementary

number theory, which states that a linear equation has an integer solution if

and only if the greatest common divisor of the coefficients on the left-hand side

32 2.5. Impact of Data dependencies in Real-Time High Performance Computing

(LHS) of the equation evenly divides the constant term on the right hand side”

[113]. If there are no integer solutions to the linear equation, then there is no

dependency between statements. This test is unable to prove dependencies; it

can only disprove them[107].

Banerjee Test: The Banerjee test is the most widely used test in

compilers. It uses a simple concept and is efficient in disproving dependences.

It is based on the intermediate value theorem, which computes minimum and

maximum values of the equation on the left-hand side. If the constant from

the right-hand side lies within the two extremities of the left-hand side, then

the dependency exists. The direction information for the dependent instances

is provided using this test.

I-test: The I-test is based on and enhances both the GCD test and

Banerjee test but, unlike them, it disproves dependency. The I-test can

positively prove or disprove the existence of an integer solution in most cases.

This test was designed to analyse the dependency of linear subscripts. It is

a polynomial-time test, which can detect integer solutions for single-array

subscripts with constant bounds [73, 107].

Omega Test: The Omega test is an integer programming algorithm used

to detect the dependency between two array references. It is used to determine

whether there is an integer solution to a dependence equation. This test can also

handle many data dependence problems, such as symbolic variables, nested if-

statements and triangular, trapezoidal bounds [107]. The Omega test is based

on an extension of both the least remainder algorithm and Fourier-Motzkin

variable elimination [48]. In terms of accuracy, the Omega test can prove and

disprove more dependence problems than the Banerjee test and the I-Test[114],

but it has a higher computation cost in order to be exact[73].

2.5.1.2 Component-based approach

In this approach, system representation is based on models that describe the

structure and behaviour of systems such as UML, ADL6or IDL7models. These

models are used as input for different kinds of graph methods to represent the

communication between system components, such as the relationship between

33 2.5. Impact of Data dependencies in Real-Time High Performance Computing

program functions. This type of approach is used to parallelise the systems

and automatically partition software. Directed acyclic graph (DAG) and data

flow graphs (DFG) are examples of this approach.

Directed Acyclic Graph: DAG is a type of graph scheduling used to solve

a variety of computing problems. The application of DAG in scheduling will

represent the tasks as DAG nodes and the data dependencies between tasks as

DAG edges.

2.5.1.3 Run-time analysis approach

Both the code-based and component-based approach are used in the run-time

analysis approach to detect dependencies in applications that require run-time

monitoring. This section presents a number of systems used to detect depen-

dency and then schedule tasks for the runtime of hybrid applications.

DAGuE: The directed acyclic graph unified environment is a system

that allows scientific computing to work on distributed environments and

heterogeneous systems, such as systems with many cores, accelerators and

high-speed networks. It consists of a number of libraries, a run-time system

and a number of tools to help an application’s developers run difficult tasks

in diverse environments. DAGuE uses job data flow JDF for the internal

representation of DAG. This system has been merged with the PaRSEC

(parallel runtime scheduling and execution controller) project [40].

PaRSEC: The main aim of the ParSEC system is to create a new path

for scheduling tasks at run-time, which can be done using message-passing

interface (MPI) programing. Within each node, the data generated from a

completed task will be used to enable the execution of the next task in the

right place. The decision that is made depends on the message relayed back by

the completed task, which contains information about the available hardware

resources. MPI programing divides the data on different processors into tasks,

and these tasks can communicate by passing messages to each other.

StarPU: StarPU is a unified platform for scheduling and executing par-

allel tasks over heterogeneous hardware. It provides a unified runtime layer

34 2.5. Impact of Data dependencies in Real-Time High Performance Computing

for heterogeneous multicore processors and accelerator technologies. StarPU

also provides a high-level library that efficiently transfers data between hetero-

geneous machines using MSI caching protocol. This technique will minimize

data transfer and eviction heuristics to solve the limited memory availability

issue. StarPU also offers a uniform approach to the parallelisation on hetero-

geneous architectures by the defined abstraction of tasks that can be executed

asynchronously. Finally, the StarPU model works well on top of multicore pro-

cessors, the Cell processor and CUDA-enabled GPUs [34, 44].

2.5.2 Reduce memory movement

In large parallel architecture systems, interconnections become more hierar-

chical; this hierarchy increases the memory access gap, affecting both system

latency and bandwidth [111]. Reducing data movement (data transfer between

processors and system memory) in such systems would improve their overall

performance. A number of techniques and associated studies have focused on

this goal; these include load balancing [138, 66, 67], graph partitioning [13]

[146] and spatial partitioning (or spatial messaging) [129] [127]. Generally,

the graph-partitioning algorithm evenly divides work among computation

nodes to minimise data movement. To improve performance and reduce data

transfer across the system, Barrera et al. [13] used the graph-partitioning

technique. They automatically applied task-dependency graphs during system

runtime to collect information and then used advanced graph partitioning to

break the graphs into smaller parts. These partitions were used to minimise

data movement across the shared memory system. To minimise data move-

ment between processors and reduce workflow execution time, Tanaka and

Tatebe [146] applied the multi-constraint graph-partitioning method to the

workflow-directed acyclic graph (DAG), which represents task dependency.

The graph-partitioning method in this study helped to decrease workflow

execution time by 31% and reduce the remote file access from 88% to 14% of

total file access.

To reduce memory transfer in large-scale MAS, a number of data structure

accelerating algorithms have been used, one of which is spatial partitioning

6Architectural description language
7Interface description language

35 2.6. Summary

[76]. The main aim of the spatial-partitioning technique is to reduce the

communication overhead of the simulation agents. It needs only a subset of

interaction to allow reducing memory movement. This technique has notably

been used in interacting systems, such as swarm-based systems on GPUs [127]

[41], on computing clusters [50] and on the PS3 [119]. The spatial-partitioning

algorithm was used to minimise the number of messages read by each agent

based on the interaction radius of the message or particle [129].

Load balancing is another strategy to reduce data movement or balance

a compute load, especially in distributed applications. According to Mishra

[98], load balancing helps avoid too overloading the resources and minimises

the total waiting time for the resources. A number of studies have discussed

the concept of load balancing and improving system performance and efficiency,

such as [138, 66, 67]. In [138], an enhanced dynamic load-balancing algorithm

is proposed to improve performance in grid computing, whereas [66] and [67]

reviewed the implementation of a number of load-balancing algorithms in cloud

computing and discussed their effects on cloud-computing applications.

2.6 Summary

This chapter presented a review of ABM and simulation in general and on the

GPU, with some examples of both types. This was followed by an overview of

the FLAME GPU framework and the way its code is generated. The impact of

data dependencies in real-time high-performance computing were also reviewed,

as were the existing dependency analysis techniques.

All the platforms reviewed above (except NetLogo) follow an OOP approach

to building models. The dynamic relationships between agents in simulation

require a flexible technique to create a suitable environment in which agent be-

haviour can occur. In contrast, OOP has a fixed technique when objects com-

municate with each other following predefined relationships within the class. A

number of these platforms do not have the ability to run single models across

multiple computers without extra support, such as BehaviorSpace tool in Net-

Logo or the new functional layers in D-MASON to support data distribution in

MASON. FLAME, on the other hand, is based on the formal method of model

specification called X-machines, which provides a technique for both specifica-

36 2.6. Summary

tion and validation [7, 129]. This technique allows developers to create models

and software tools that are compatible with each other, and that, with little

effort, can be used to develop new models based existing models[7]. In some of

these platforms (NetLogo, MASON) and similarly they lack support for execu-

tion on the GPU. GPU is tailored to 3D graphics computations and requires

specific programming platforms to run a general-purpose application, such as

ABM, on it.

ABMS applications are inherently complex such that running a model’s

tasks simultaneously in parallel architectures, such as GPUs, provides a real

environment for the simulation. While some research into the use of the GPU

for ABM has been done, it has been limited to either fixing a specific problem

or implementing a specific model. The use of the hybrid CPU/GPU model

approach in both Turtlekit and MCMAS has led to decreased parallelism. This

hybrid approach also requires frequent memory transfers between CPU and

GPU. The MASS CUDA library is limited to improving the performance of

spatial simulations and implementing popular agents behaviours. MASS CUDA

still needs more work to be able to analyse typical agent behaviours and develop

GPU parallelisation techniques.

The FLAME GPU framework offers the ABMS community the power of

GPU computing without the need for specific skills. FLAME GPU users can

easily write model specifications in XML and in C, and these will be compiled

automatically to CUDA code. Furthermore, FLAME GPU accelerates the ex-

ecution time of ABMS applications by up to 250X faster than CPU execution

time [37]. The complexity and scalability of a large simulation requires more

processing power to increase the number of calculations per unit of time and

memory available to allow a high number of agents. Memory restrictions were

one of the motivations for researchers to develop platforms that support parallel

and distributed environments, such as Repast HPC and D-MASON. However,

even with the extra memory offered by the new environment, managing memory

access is one of the most critical issues facing distributed systems.

Data-dependency analysis is a method of detecting parallelism between two

blocks or two statements. Prior knowledge of data dependency is key to optimis-

ing the code and providing information that minimises memory access. In the

reviewed literature, various approaches have been applied to detect dependency,

including the component-based approach and run-time analysis approach. Such

37 2.6. Summary

approaches could be used to explore the dependencies within the FLAME GPU

models and thus reduce memory movement.

Chapter 3

Agent-Based Models for the

GPU

The previous chapter reviewed a variety of topics that cover the background of

this research. These topics include all related work on ABM and simulation,

ABM on GPU, an overview of FLAME GPU and the impact of data dependen-

cies in real-time HPC. This chapter focuses on the FLAME GPU framework in

more detail, and includes the design and implementation of models using Flame

GPU. The data handling mechanism and inter-agent communication within this

platform will also be discussed. Furthermore, this chapter also shows how to

implement the Boids model using FLAME GPU.

3.1 Designing X-Agents Using FLAME GPU

3.1.1 X-machine

The X-machine was first proposed in 1974 by Samuel Eilenberg [39] as one of

several different extensions to a basic Finite State Machine. The innovation

in the X-machine is that its transitions are labelled by processing functions

that act on memory. The X in (X-machine) represents the basic underlying

data type processed in a model. For example, when an X-machine is used to

describe a biological cell, X will represent the memory of the cell unit, such as

a vector of attributes; however, in general, X may represent any data structure.

X-machines are extended finite state machines with memory. A FSM is formally

defined as the 5-tuple (Q, Σ, q0, F, T), where:

• Q is a finite set of states

38

39 3.1. Designing X-Agents Using FLAME GPU

• Σ is a finite alphabet of input symbols

• q0 is the initial state where q0 is a member of Q

• F is the state transition function from Q × Σ to Q

• T is a set of final states where T ⊂ Q.

X-machines are extended FSMs (EFSMs) in that they also have memory and

a tuple of variables, which may be read or updated when executing a transition.

The particular variant of X-machine adopted here is the Stream X-machine

(SXM), which also processes inputs and outputs when executing a transition.

In the biological cell example, X-machine memory will hold all cell information,

such as cell cycle, cell size, cell position and cell bonds. The transitions between

states also update the cell’s variables in memory, for example, to move the cell,

‘cell position’ will be updated, and to grow the cell, ‘cell size’ will be updated

[25]. The state transition function, besides updating memory values, will receive

input symbols from the input stream and produce output symbols, which will

be part of the output stream. The formal definition of a stream X-Machine [32]

is a 9-tuple = (Σ; Γ; Q; M; Φ; F; I ; T; m0), where:

• Σ and Γ are the input and output alphabets.

• Q is the limited set of states.

• M is a infinite set called memory.

• Φ is a set of partial functions ϕ; each function of this type maps an input

and a memory value to an output and a possibly different memory value,

ϕ: Σ × M → Γ × M.

• F is the next state partial function, F : Q × Φ → Q. F is often described

as a state transition diagram.

• I and T are the sets of initial and final states.

• m0 is the initial memory.

Adding the ability to X-machines to communicate with each other can be

achieved by using communicating X-machines (CXM). The general defini-

tion of a CXM model that is able to exchange messages is the tuple [25]:

((Cx
i)i = 1..n, R), where:

40 3.2. FLAME GPU features:

Figure 3.1: Stream X-machine specification, M and M represent the agent

memory set before and after agent function F1, which inputs and

outputs messages to the message list. [126].

• Cx
i is the i− th communicating X-machine in the system, and

• R is a communicating relation between the n X-machines.

In FLAME GPU, an agent is represented as a form of state machine that

consists of internal memory (M as in the formal definition), an agent’s functions

(next state partial functions, F, in the formal definition) and a set of states (Q

as in the formal definition); X-machine agents can only communicate through

messages. This can be observed in Fig 3.1. This state diagram represents a set

of states, functions and input and output data that can be processed through

these functions. The agent’s memory can be updated every time step that is

needed through this process. The smallest unit that can be processed is an

agent, and whenever agents communicate with each other, all agent memory

needs to be copied in every transition function from one state to another.

41 3.2. FLAME GPU features:

3.2 FLAME GPU features:

3.2.1 Agent Data Storage and Access

As mentioned above, the formal representation of an agent within the current

FLAME GPU is based on the concept of a communicating X-machine as

with the original FLAME. Three major components are needed to execute a

model using FLAME GPU: agents, messages and layers. Agents present the

agent description, messages show how the agents communicate with each other

and layers show the order of agent behaviour during the simulation. Both

agents and messages have their own memory that holds agent properties and

information that needs to be passed between agents. Within FLAME GPU,

every GPU thread represents a single agent, and a (GPU) device wrapper

function is used for each agent function to hide GPU memory access [126].

However, even with special techniques for hiding the cost of memory access,

GPU memory bandwidth is a limited resource in large and complex models.

Within FLAME GPU, each agent function (the main representation of agent

behaviour) is represented by a unique GPU kernel. Using this process, global

synchronisation of the entire agent population is ensured after each transitional

stage. Agent data in parallel threads are stored temporarily in both the fast

multiprocessor register, and shared memory. When moving data from global

device memory, an array of structures (AoS) is used to allow more efficient

memory access for both reading and writing data. GPU memory coalescing

allows for more efficient use of memory; data is consecutively accessed and

fewer memory requests are issued [126].

3.2.2 Birth and Death

The addition of new agents in FLAME GPU requires pre-allocated memory

space. The entire agent population must be double buffered to provide suffi-

cient storage space for any new agents. The process of agent births can then

be achieved using linear mapping, where each agent in the current agent list

outputs to the same global position. Within the sparse new agent list, a simple

flag variable is used to indicate the presence of a new agent. This flag is then

used to perform the inclusive prefix sum[53]. The total number of new agents

42 3.3. Implementing a model using FLAME GPU

can easily be determined by considering the position of the last new agent.

The FLAME GPU uses stream compaction which uses a parallel primitive

algorithm from the Thrust [58] to avoid sparse data. From the source array,

stream compaction produces a smaller array and includes only the wanted ele-

ments. In parallel and without conflicted memory access writes, this compacted

data stream can be used to write agents to newly compressed, unique locations.

3.2.3 Agent Communication

In FLAME GPU, agent communication can be achieved through the use of

message lists. To ensure memory coalescing for agent memory, FLAME GPU

utilises structured, efficient access to data. An abstraction of messaging is used

for internal communication between agents. Message processing within FLAME

GPU supports three different techniques for reducing the transmission of data

which we refer to as the brute force distributed and discrete messaging tech-

niques. Each agent reads every available message in brute force messaging; to

accelerate this process, shared memory is used to load messages that are ac-

cessed by agents within a group of threads. Shared memory is much faster than

global memory because it is located per thread block, thus allowing a group of

threads to access the same shared memory [124]. In spatially-distributed mes-

saging, agents can read messages within a fixed radius in a 2D or 3D continuous

space. For this messaging type, FLAME GPU uses a parallel sort algorithm

to reorder agents and build a matrix containing the start and end index posi-

tions of any agents within a fixed (message) radius that is sized to represent the

agent’s environment. After iterating through message lists within neighbour-

ing partitions, only agents within the defined radius will be returned. Using

texture memory1to load messages accelerates message reading, as shared mem-

ory cannot be used in this technique because agents are in different locations

and access different messages stored in different positions. This is equivalent

to previous work on data structures for reducing memory transfer. Within the

discrete messaging technique, shared memory or the texture cache can be used

to load a 2D discrete grid of messages [124, 129].

1More detail about texture memory is available through this link: http://cuda-

programming.blogspot.com/2013/02/texture-memory-in-cuda-what-is-texture.html

43 3.3. Implementing a model using FLAME GPU

Figure 3.2: The visual representation of the Boids model.

3.3 Implementing a model using FLAME GPU

The following worked example presents the programming syntax required to

implement a simple Boids model in FLAME GPU. The Boids model has been

chosen for its simplicity. A number of examples of complex models are provided

within the FLAME GPU SDK.

3.3.1 The Boids model

Boids is an artificial life model developed by Craig Reynolds [121, 119] that

describes the behaviour of flocking fish or birds. According to Reynolds (2001),

flocking is an example of emergence, by which the interactions of simple local

rules produce a complex global behaviour. A visual representation of the Boids

model is shown in Fig.3.2, which shows group flocking behaviour. There are

three simple steering behaviours that an agent in the Boids model can follow: 1)

alignment, which is steering towards the average heading of nearby neighbours;

2) separation, steering to avoid crowding nearest neighbours; and 3) cohesion,

steering to move toward the average position of the immediate flockmates [120].

Fig.3.3 shows the state diagram for the implementation of the Boids model by

the FLAME GPU that includes the agent functions (Input data , Output data,

Move) that define the beahaviour of the Boid agents, the order of their execution

and the location message that allows the agents to indirectly communicate

information[121].

44 3.3. Implementing a model using FLAME GPU

Figure 3.3: The Boids model state diagram showing the function depen-

dency relationship of functions required to implement the required

flocking behaviour.

3.3.2 Model specification

The implementation of the Boids model using FLAME GPU required two user-

specified files. The first is an XML file called ’XMLModelFile.xml’ which con-

tains the model description. The second file, ’Function.c’, is the agent behaviour

functions file. There are three main components in the model description file:

agents, messages and layers. Agents refers to the definition of what an agent is

and consists of memory, functions and states. Messages refers to the informa-

tion that the agent needs to communicate to other agents. Layers refers to the

mechanisms that determine the order in which actions are performed. Fig 3.4

shows the outline structure of the XML code of the Boids model.

Figure 3.4: The Boids model description within the ’XMLModelFile.xml’

file.

3.3.2.1 Memory

Agent memory refers to the persistent variables that an agent stores throughout

its simulation lifetime. Agent memory consists of a number of variables used

45 3.3. Implementing a model using FLAME GPU

Figure 3.5: Memory variables (Boids model).

to store agent information, such as position, velocity, etc. These variables are

strictly typed using C basic data types. The Boids model contains the variables

that describe each agent’s location (x, y, z) and velocity (fx , fy, fz),

as well as an identifier (id). Figure.3.5 shows a screenshot of all Boids model

memory variables.

3.3.2.2 States

An agent has at least one state. States are used to distinguish between agents

of the same form that may have different life-cycle functional capacities. A bi-

ological cell agent, for example, may be in a state of normal activity or may be

in the division or dying phase. Having different representations of agents in dif-

ferent states ensures that complex systems exhibiting heterogeneous behaviour

can be represented by groups of homogeneous behaviours. This helps to avoid

a divergence within behavioural scripts, a problem known to negatively affect

GPUs’ performance. Within the Boids model, only a single state ’default’ is

required, as all agents within this model perform the same homogeneous be-

haviour throughout the simulation, as shown in Fig.3.6.

Figure 3.6: States list (Boids model).

46 3.3. Implementing a model using FLAME GPU

3.3.2.3 Functions

The optional agent function list within the X-machine agent representation

must contain at least one agent function element. The function describe the

behaviour script that dictates how an agent updates its internal memory. In

order to provide information about the functional operation, a description

of the scripted function must be provided in the model file. The function

definition must also include a non-optional name and optional description, a

current state, next state, an optional (single message input, single message

output, single agent output, global function condition, function condition), a

reallocation flag and a random number generator flag [122, 124]. The structure

of the agent functions list is shown in Fig.3.7 and consists of all optional and

non-optional elements.

The currentState value is used to filter agents by only applying the func-

tion to agents in the specified state. Once the agents complete their function,

they move into the next state that appeared within nextState the element.

Both the current and nextState values must exist as states in the state

list (states) definition. The reallocate agent is an indication that the agent per-

forming the agent function may die as a result and need to be removed from

the population. The reallocate element can be either true or false. By default,

this element is true to perform removing dead agents automatically; however,

when ’false’ is specified, removing dead agents is not performed, even if an agent

indicates that it has died. The RNG tag is used to indicate whether a random

number generation is required (RNG). If the flag is set to true, an additional pa-

rameter is passed to the agent function within the Function file, which contains

a number of seeds used to produce parallel random numbers[122].

Agent function message outputs and inputs: The inputs and outputs

are defined as a set of variables in XMML in the form of a named message type.

The message inputs of the agent function means that the agent function will

iterate through the list of messages with a name equal to the messageName

element specified within the function description. Within the Boids model,

message inputs can be found in a function called Inputdata as seen in Fig 3.8.

The outputs element in an agent function generates messages for other agents

to read on the message board. The outputs element includes the messageName

and type. The messageName element has therefore already been identified

47 3.3. Implementing a model using FLAME GPU

Figure 3.7: The definition of an agent functions list within the model

description file. The source of the code [122].

by an XMML file. A message can’t be an output without an actual message

specified within the XMML model file. The type element can either be a

single-message or optional-message, wherein a single-message means that only

one message is output by each agent executing the function, while the optional-

message allows for either a single-message or no message to be output [122].

An example of the implementation of message output within the Boids model

is shown in Fig.3.9.

Figure 3.8: An example of message inputs (inputdata function) within the

Boids model.

Agent function X-Agent outputs: The birth of an agent during the

simulation is handled by the xagentOutputs element. This consists of

non-optional xagentName and state elements. The name of the newly

added agent is equal to the value of the xagentName element, and the state

of this agent is the same as the one specified within the state element.

Both values must already be defined within the model specification file. The

development of new discrete agents is not permitted for continuous type agents

(which must also be continuous type agents) [122].

48 3.3. Implementing a model using FLAME GPU

Figure 3.9: An example of message outputs (outputdata function) within

the Boids model.

function conditions:As a mechanism for transiting sub-sets of agents into

various states, functions may have conditions. A function condition means that

the function must be applied to agents to meet the condition (and in the correct

state stated in the currentState). For example, a function that simulates

an agents death is applied only to the agents meeting the condition to move into

a dead state. Within a function condition, there are three main components:

a left-hand side statement, an operator and a right hand-side statement. Both

lhs and rhs statements may contain either an agentVariable (defined

within agent memory), or constant values or recursive conditions, as shown in

Fig.3.10. The function condition in this example performs the following pseudo

code: (variable name1) ((variable name2)+(1)).

Figure 3.10: Example of a function condition with a recursive condition

element.

Global function condition: A global function condition is similar to a

49 3.3. Implementing a model using FLAME GPU

function condition in its syntax, but acts globally to determine whether the

function should be applied to either all the agents or none of them (within

the correct state in the currentState). This can be implemented by us-

ing both values attached to the maxItterations and mustEvaluateTo

elements. The maxItterations element value determines the number of

iterations that the function can be executed before applying the global con-

dition and the mustEvaluateTo element to determine whether the global

function can be applied to all the agents or not based on the stated value. If

the mustEvaluateTo value is equal to true, the function is applied to all the

agents, whereas if the value is false, the function cannot be applied to any of

the agents. An example of a global function condition is shown in Fig.3.11. The

definition in this figure is the result of the pseudo code condition: (((movement)

(0.25)) == true). The global condition will be ignored before it reaches 200

iterations, after which the function will be applied to every agent.[122]

Figure 3.11: An example of a global function condition [122].

3.3.2.4 Messages

Messages enable agents to communicate with each other. Agents information

can be passed as variables of messages and are stored in the memory board

located in the global GPU memory, which is accessible to all agents. Defin-

ing agent messages within model specification files consist of a non-optional

name, or an optional, description of the message, a list of variables, a

partitioningType and a bufferSize. The bufferSize element is used

to define the maximum number of this message type that exists within the

simulation. For the partitioningType element, as mentioned in section

3.2.3, there are three partitioning techniques supported by FLAME GPU to

ensure that message variables are provided to agents in an optimal manner for

50 3.3. Implementing a model using FLAME GPU

processing. These techniques include non-partitioned (partitioningNone),

discrete 2D space partitioning (partitioningDiscrete) and 2D/3D spa-

tially partitioned space (partitioningSpatial). Furthermore, within the

Boids model, as mentioned before, there is only one message called location

Fig.3.12 shows the agent messages description of the Boids model.

Figure 3.12: Message description of the Boids model within the model

specification file.

3.3.2.5 Function Layers

The model execution layers should include all defined agent functions within

the model. The function layers represent the control flow of the simulation

processes. The complete execution of all agent function layers produce a single

simulation iteration that can be repeated any number of times. In FLAME

GPU, the user needs to describe the sequential order of the agent’s functions

using function layers within the XMML Model File. Based on the order of layers

the agent functions are executed. Each function layer can contain any number

of functions from different agents. The functions within a layer must have no

dependencies on each other and may only depend on outcomes generated by

the previous layer. If functions have no dependencies, they may be placed in

the initial layer. Functions that depend on some earlier processing of the same

agent must be placed in a subsequent layer (internal dependency). Functions

that depend on some earlier processing in another agent must also be placed in

a subsequent layer (communication dependency). Within the Boids model, as

shown in Fig. 3.13, two types of dependencies force the model functions to be

51 3.3. Implementing a model using FLAME GPU

in separate layers. There is, however, a dependency between the outputdata

function and the input data function via message location. The second type

of dependency is based on computation, as can be seen between the input

data function and the move function. The move function is dependant on the

computation of the velocity vectors carried out by the input data function and

is stored within the agent’s internal memory[122, 124].

Figure 3.13: Function layers of the Boids model within the model speci-

fication file.

3.3.3 Model Behaviour(Agent Function Scripts)

Agent functions are a mapping (or updating) of the agents’ internal memory;

this occurs when an agent moves from one state to another. Agent function

scripts containing agents’ behaviours must be defined within a suitable script

within the function.c file after adding the function description to the model

XML file. The agent functions’ behaviour is described from a single agent’s

perspective, but the simulator will apply the same agent function code to each

agent in the correct starting state in parallel (and applies any of the defined

function conditions). Agent function scripts are described using a simple C-

based syntax with agent function statements, and the function arguments de-

pend on the XMML function definition. The declaration of all FLAME GPU

functions have a prefix, FLAME GPU FUNC , followed by the name and

the set of function arguments. The name of the function must be exactly

the same as in the XMML template file. Agent and message data structures

are dynamically created and defined in the header file ’header.h’. The data

52 3.3. Implementing a model using FLAME GPU

of individual agents are passed as the first argument in the form of a struc-

ture (xmachine_memory_agent_name), where the agent name refers to

the agent name defined in the XMML model file. The internal memory vari-

ables of agents are updated by changing the members of this structure. Fig.3.14

shows the (xmachine_memory_agent_Boid) structure that is generated

from the Boids memory, as defined in Fig.3.5. Message variables are also in-

cluded within a structure named xmachine_message_message_name. The

structure of arrays that hold the agent and message list have also been in-

cluded within the header file. The xmachine_memory_agent_name_list

structure for the agent and message list is under the name of the

xmachine_message_message_name_list structure.

Figure 3.14: Code snippet of automatically generated Boid data struc-

tures within ’header.h’ file.

Since agents can affect and be affected by their neighbours, they also have

a simulation API that allows an agent to access their neighbours message vari-

ables. There are three basic steps in the process of accessing message variables.

First, a pointer has to be identified within an agent function to allow the data

structure with message variables to be accessed. Second, by the API function

get_first_message_name_message (arguments,..), an array with the

first group of messages are loaded into shared memory. Finally, within a while

loop, the simulation API function get_next_message_name_message (ar-

guments,..), which reads messages sequentially in shared memory, is called

until the first group of messages in the shared memory is exhausted. The

get next message name message function loads the next group of messages

into the shared memory after the first group message list is exhausted.

Fig.3.15 shows how to use the get_first_location_message and the

get_next_location_message functions within the inputdata function

Boids model. The existence of the xmachine_message_location_list

53 3.3. Implementing a model using FLAME GPU

argument within the function definition as a result of the XMML model file

indicates that this function inputs the location message.

Figure 3.15: The code of the InputData Function within the Boids model.

The outputdata function in Fig. 3.16 uses a dynamically generated func-

tion called add_location_message. As the definition in the XMML model

file states that it will output a message of type location, the agent function

can call upon the add_location_message. A value of 0 is returned by the

agent to announce that it is still alive. Any non-zero value indicates that the

agent is dead and should be removed from the simulation.

Figure 3.16: The code of the OutputData Function within the Boids

model.

54 3.3. Implementing a model using FLAME GPU

3.3.4 FLAME GPU Template Files

The FLAME GPU SDK has a number of XSLT templates that are linked to

function script files to generate a dynamic simulation code. These templates

can be summarised as follows:

• header.xslt This template generates the header file that consists of

any agent and message data structures and creates function prototypes

for simulation functions.

• main.xslt This template is responsible for producing a file that can

define the main function to handle the initialisation of the GPU device

and deal with the command-line options.

• io.xslt The source file that is generated by this template contains func-

tions for loading initial agent XML data into the simulation and saving

the state of the simulation in XML format.

• simulation.xslt The source file that is generated by this template

contains the host side simulation code.

• FLAMEGPU_kernels.xslt This template file produces a CUDA-

header file, which includes the CUDA kernels and device functions.

• visualisation.xslt This template is responsible for generating a

source file that allows for the basic visualisation of the simulation.

FLAME GPU generates simulations by applying these templates to the

model files, which are linked with the behaviour scripts to generate a simulation

program. All agent and message memory will be accessed during this process

using fast caches, shared memory for agent variables and texture memory for

message variables.

3.3.5 Model Execution and Visualisation

FLAME GPU simulations require a variety of arguments based on either console

or visualisation mode requirements. In both cases, the first argument is always

the file location of the initial agent XML file containing the initial agent data.

The agent’s initial variable values should be contained in tags using the name

of the variable. An example of the Boid agent taken from the initial agent file

55 3.4. Summary

Figure 3.17: An initial state of a Boid agent taken from an initial agent

XML file as an argument.

is shown in Fig.3.17. It is also possible to pass extra optional CUDA arguments

(i.e. device = 1) to set the CUDA enabled GPU device. The default value

for the argument for CUDA devices is 0. To specify the number of iterations

within the console mode, an additional argument is required. After running

the simulation, a number of XML output files are generated (where they are

in the same location of the input file). Output files can be used as inputs

for later runs or checking points, especially when it comes to validating the

results. Statistical information about the simulation can be collected by writing

scripts that parse the agent output files. For example, a Python script can be

specified to iterate over the output files and plot each agent’s average distance

between them over time. There are various macros within the FLAME GPU in

the generated simulation header file (header.h) that can be modified to output

extra information about the population, such as more detailed timing results or

population count per iteration. Running the simulation using the visualisation

mode only needs the initial agent data file, and the number of iterations is

not required as the simulation will continue to run until the user closes the

visualisation window [124].

3.4 Summary

FLAME GPU is a parallel, agent-based simulation framework that enables real-

time model interaction and visualisation via the GPU. This chapter demon-

strated how a simple multi-agent system (Boids model) is modelled using

FLAME GPU. This chapter also showed the features and capabilities of FLAME

GPU. However, a number of issues may negatively affect the performance of

FLAME GPU, as the GPU has limited memory resources. There are no spec-

ified limits on the maximum number of agent and message variables; however,

56 3.4. Summary

an increased number of variables (memory) will harm the overall performance.

Based on the formal definition of a communicating X-machine, function tran-

sitions between states requires updating all agent and message variables in the

memory. Updating a subset of agent and massage memory will reduce memory

usage. The following chapters propose a new approach (Data aware approach)

that allows FLAME GPU to run simulations with less memory movement. This

approach may enhance the overall performance and allow a larger population

using the same GPU device.

In FLAME GPU, function layers represent the control flow of the simulation.

All functions in the same layer are executed in parallel. Functions of the same

agent and those that have communication dependencies must be separated in

different layers in order for the executions to be sequential. The complete exe-

cution of all function layers represents a single simulation iteration. Reducing

the number of layers will reduce the time it takes to run the single iteration.

Later in this thesis, an approach (Functional approach) will be proposed to

discuss this matter.

Chapter 4

Methods and Experimental Plan

4.1 Introduction

This chapter describes the methods used to address the thesis goals stated in

the first chapter. It sets the rules for the benchmark model and describes how

to build the model generator to produce complex models following the same

rules. It also includes the techniques used to design, evaluate, and validate both

approaches using data dependency to enhance FLAME GPU performance.

4.2 Designing the Benchmark Model

The first focus in our work is on creating a new benchmark model that can

easily measure the system’s ability to deal with each of the following elements:

system scalability, system homogeneity, and the ability to handle increases in

the level of agent communication. A description of the proposed model can

be found in the next chapter. This chapter presents the simple rules to follow

during its implementation. In the first stage, the design is focused on creating a

model from scratch consisting of two types of molecules (e.g. A and B). A simple

reaction will occur when one A molecule interacts with one B molecule to create

a C molecule, assuming that A+B=C represents the relationship between the

three molecules. The simple formula syntax consists of at least two molecules,

a (+) operator between them, an equals sign, and a third type of molecule

(A+B=C). Assuming that A is the master agent, B is the slave agent, and C is

the combined agent. It is named this way to differentiate its functions within

the simulation, and it is a convenient way to construct our model. Converting

the formula syntax to moving agents requires a set of rules for each type of

57

58 4.2. Designing the Benchmark Model

agent. The following points show the basic rules for each agent type to create

the simulation using FLAME GPU:

• The first molecule in the formula (equation) is the master agent. All the

molecules after the master agent and before the equals sign are classified

as slave agents. The molecule after the equals sign will be the combined

agent.

• The master agent consists of a set of variables presenting the agent mem-

ory, five functions to describe agent behaviour, and two states (moving

and dead), as shown in Table 5.1. Only one master agent can be found

within one equation. The master agent can communicate with every slave

agent within the same equation.

• The slave agent consists of a set of variables presenting the agent memory,

four functions to describe agent behaviour, and two states (moving and

dead). The slave agent can be one agent or more within the same equation,

and it only communicates with the master agent.

• Every slave agent type requires three types of messages to communicate

with the master agent, and that will be multiplied every time an extra

slave agent is added to the model.

• The combined agent consists of a set of variables presenting the agent

memory, one function to describe agent behaviour, and one state (mov-

ing). There is one combined agent type for each slave agent that interacts

with the master agent.

• The movement speed and radius interaction value can be used as model

parameters to control agent behaviour.

4.2.1 Designing FLAME GPU Generator

The motivation for designing and building this tool is to produce complex mod-

els based on the simple model that has been designed. The complexity that

we are aiming to achieve is the ability to measure both system scalability and

system homogeneity, which cannot be done using the simple reaction of two

molecules. The design of the generator allows the benchmark model to increase

divergence within agents and populations.

59 4.2. Designing the Benchmark Model

The model generator is an object-oriented program written in c. It has been

designed to accept any number of equations, parse them, and generate FLAME

GPU model. Three files that can be generated by the model generator, which

is required to run the simulation using FLAME GPU. Figure 4.1, show how the

generator parses the input syntax.

Figure 4.1: Algorithm: parsing the formula syntax and generate FLAME

GPU model

Input: Formula syntax within text file

Result: XMLModelFile.xml, Functions.c. InitialAgentData.XML

1 Read in the f i l e s and c r e a t e a Fi leModel ob j e c t

2 f o r each unique agent name in a vec to r

3 c r e a t e a FLAMEGPU Agent

4 add any agent v a r i a b l e s and func t i on s that are the same as

master / s l av e /combined

5 I f agent i s ONLY a combined

6 then add i t s f unc t i on s (and va r i a b l e s)

7 I f agent i s a s l a v e

8 then add the f unc t i on s (and va r i a b l e s /messages) r equ i r ed to bind

with a master

9 I f agent i s a master

10 then add the f unc t i on s (and va r i a b l e s /messages) r equ i r ed to bind with

11 ALL of the s l a v e s .

12

13 add FLAMEGPU agent to FLAMEGPUModel

14 Open a f i l e

15 c a l l FLAMEGPUModel outputXML(f i l e)

4.2.2 Testing system scalability

To measure the ability of the system to scale and handle the large number of

populations, we used a simple model representing A+B=C produced by the

model generator to generate a new initial agent data file with extra popula-

tions. To measure scalability, in all experiments conducted in this research the

population starts with 100000 agents for each type and ends with 800000.

4.2.3 Increasing Agent complexity

The model generator is able to parse equations that consist of more than one

slave agent. Adding an extra slave agent to the equation increases the master

agent functions, which means an extra function layer is needed to execute and

an extra massage list will be iterated by the master agent. This experiment

60 4.3. The Discovery of Data Dependency

increases divergence within the agent and helps to measure the ability of the

system to deal with this type of problem.

4.2.4 Increasing Population complexity

The model generator helps to increase the divergence within the population by

parsing more than one line of the equation. Every line consists of one formula,

and each formula has a different type of molecule. This experiment will increase

the number of functions within each function layer.

4.3 The Discovery of Data Dependency

In the beginning of the research, data dependency between agent functions was

manually investigated in the benchmark model. The extracted dependency in-

formation was subsequently used to apply new approaches for minimising data

movement and thereby enhancing system performance. This investigation was

then further extended to automate the discovery of data and message depen-

dencies. One of the aims of this thesis is to design and implement automated

dependency parsing using Flex and Bison tools. The following section describes

the process of building the dependency parsing tool.

4.4 Compiler Construction

Programming languages are the route for communication between people and

computers, and a compiler translates a high-level programming language into

a low-level language [3]. There are different types of compilers. The most

common type converts high-level program code into intermediate-level assembly

language or low-level machine language. Converting intermediate code into

machine language is done by a type of compiler called an assembler. A trans-

compiler, or a source-to-source compiler, is another compiler type that converts

a high-level programming language to another programming language at the

same level.

The modern compiler structure consists of two phases: front-end and

back-end, as shown in Fig 4.2. The front-end phase consists of lexical analysis,

syntax analysis, and semantic analysis, while the back-end phase consists of

intermediate code generation, code optimisation, and target code generation.

61 4.4. Compiler Construction

In our implementation of dependency parsing, we are interested in the front-end

phase of the compiler. The following sections will discuss the stages of the

front-end phase in detail.

4.4.1 Flex and Bison

Building a compiler program from scratch is a complicated task. Using existing

compiler-construction tools will help to minimise and hide some details of the

generation algorithm [3]. Examples of these tools are scanner generators and

parser generators. Flex and Bison are free tools developed by the GNU Project1.

Flex is the fastest scanner generator, and Bison is a parser generator. Flex and

Bison can be connected to build a compiler, and they can also work separately,

depending on the software required. Flex and Bison have a large and active

community, and there are a large number of projects that have been designed

using these tools. There are many details available about how these tools work

and help to build interpreters and compilers. These tools are a good choice for

implementing dependency parsing.

Figure 4.2: Modern compiler phases

62 4.5. The Scanner

The Flex program is used to scan the source code. Flex (Fast LEXical

analyser generator) is used to scan and tokenise the input. Depending on the

predefined rules, the list of tokens will be different. So, in this case, a file of

rules will be supplied that supports the C language and all keywords that may

be included within agent function scripts.

The parsing stage also needs a predefined grammar for C syntax. The Bison

program (the parser to be used in this system) will be linked to Flex. The parser

will get the results of low-level parsing (tokens) from the first stage to produce

the parse tree. The parsing stage has general functions that can be used by

all parsing files (the extra program code that is linked to the parser, which

performs further analysis). These functions contain operations to optimise and

generate the final result. Fig 4.3 shows a summary of the system structure.

This is explained in more detail in the following sections.

Figure 4.3: The dependency parsing system

1http://www.gnu.org/software/bison/

63 4.5. The Scanner

4.5 The Scanner

Scanning, or lexical analysis, is the first step in the front-end of the compiler

phase. The scanner generated by Flex matches the input character stream

against one of the token patterns defined in the regular expression file (that

was used by Flex to generate the scanner). It presents a syntax error for any

word or character that does not match any of the given patterns. Figure 4.4

shows how the scanner works in a simple way. During this stage, the C code

is converted to a list of tokens. C code, as with any programming language,

consists of a number of tokens.

Figure 4.4: Lexical analysis process

The input to the Flex is generally a file with a “.l” extension, which contains

regular expressions for the language. This file needs a specific structure, as

shown below, to work correctly. It consists of three sections separated by two

percent symbols, as shown in the listing 4.1. The first one is a section of

declarations and option settings. It includes all header files, variables, and

function declarations that will be used in the C code section and the C definition

section. The rules section contains the list of regular expressions of the language

that need to be analysed. With each rule, there is an action to be applied

to matches; for example, (if you find this operator return this value). The

last section is the main part of this file, which contains the call for the main

Flex function yylex(). This function uses simulated finite-state machines

to identify each token and then return the numeric code of their types to the

parser. The function yylex() is called by the parser directly to obtain tokens

for parsing.

1 %{

64 4.6. The Parser

2 C declarations

3 %}

4 flex Definition section

5 %%

6 Rules section

7 %%

8 C code section

Listing 4.1: The Flex input file structure

Flex also includes a number of functions that work with yylex() to gener-

ate the list of tokens. After Flex reads the input file, it generates the yy.lex.c

file. Compiling this file using the C compiler will generate an output file a.out.

Executing the a.out file with a specified input file will analyse the input stream

and produce the list of tokens. Thus, in the end, this output file is the actual

scanner, as shown in Fig 4.52.

Figure 4.5: Steps for generating a scanner using Flex.

4.6 The Parser

Parsing is an important design step for the compiler. It requires a context-

free grammar (CFG) to generate the programming language that needs to be

parsed. The main goal of this stage is to make sure that the given list of tokens

is compatible with the language’s CFG. Parsing, or syntax analysis, will build

the syntax tree if all of the given tokens match with the rules. If any of these

tokens do not match with the rules, it will present a syntax error.

To understand the parsing process, a further explanation of the CFG is

needed, including an explanation of how to build a syntax tree using these

rules. A CFG is defined as a number of rules that are used to produce patterns

2http://alumni.cs.ucr.edu/ lgao/teaching/flex.html

65 4.6. The Parser

of tokens that help to define the syntax tree of the language [3]. It consists of

four components:

• Terminals The terminals in the grammar are the leaves of the parse tree,

and they can include digits or longer scanned tokens returned by the lexer.

X, 9, and 1 shown in Figure 4.6 are examples of terminals.

• Nonterminals are the branch nodes in the parse tree. Nonterminal sym-

bols are used to write every grammar rule.

• Start symbol is the special nonterminal symbol that serves as the start-

ing point for the rules and corresponds to the root node of the parse tree.

• Productions are the rules that were organised in a specific way to build

the grammar for the programming language.

Code listing 4.2 displays an example of a CFG for the IF statement. This ex-

ample is used to clarify the idea of a CFG and to demonstrate the expected syn-

tax tree. The start symbol of this CFG example is Ifstmt; IDEN, NUM, OP

are the terminal symbols that refer to different kinds of tokens; IDEN refers

to identifiers; NUM refers to integer literals; OP refers to operators; and the

nonterminal symbols of these rules are stmt, exp.

1 ifstmt-> if (exp) stmt

2 stmt -> exp

3 exp -> exp OP exp

4 exp -> IDEN | NUM

5 OP -> +|-|*|/|<|=

6 IDEN ->A|...|Z|a|...|z

7 NUM ->0|...|9

Listing 4.2: Analysing large textual units

Using this CFG example will produce the syntax tree for any example of

an IF statement. Figure 4.6 represents (if(x<9)x=x-1) as a parse tree

generated by the CFG shown in listing 6.3.

The Bison tool works as a parser in this phase to generate both syntax and

semantic analysis. Bison requires an input file with a (.y) extension that

consists of the CFG rules. The structure of this input file is similar to the Flex

66 4.7. Research Validation

Figure 4.6: Syntax Tree for simple If statement

Figure 4.7: Bison input file structure

input file, as shown in Fig 4.7. Bison generates a file named parser.tab.c after

reading the input file. Compiling the parser.tab.c file using any C compiler will

produce an executable file. This executable file is the parser, which is run with

the input file to build the syntax tree.

Semantic analysis will occur after syntax analysis, creating the abstract

syntax tree (AST) and the symbol table. This process will use both the AST

and symbol table to check the meaning of the line of the grammar; in addition, it

will check the type of symbol and determine its scope of use. It does this through

linked functions triggered during the parsing process. The implementation of

both stages to create the FLAME GPU model generator will be detailed in

Chapter 7

67 4.7. Research Validation

4.7 Research Validation

To validate the results of running the benchmark model using FLAME GPU

three functions have been included within the functional scripts to calculate

information about the simulation. These functions are user-defined functions

and need to be defined within the model specification XML file. The first

function is called the initialisation function and used to set constant global

variables. It will be called a single time automatically once the FLAME GPU

generates the simulation code. The second function is called a step function,

and it is called at the end of each iteration to calculate agent account. The

third function called exit function, and it will be called by the end of the whole

simulation to print out each agent type’s final population size. The output

results will be used to examine the simulation validation and verification. The

body structure of these functions can be found within the function.c file in

appendix A and figure 5.2 in Chapter 5 is an example of the output results of

these functions.

Chapter 5

Benchmarking Agent Based

Modelling systems

In most research areas, benchmarking is the quantitative basis of the software

or hardware devices created. The purpose of assessment is to demonstrate the

applicability of an approach under certain constraints and to provide decision-

making support for choosing the best approach to a certain problem. Bench-

marking, including a comparative assessment of various methods, is one way to

evaluate these issues [163]. The growing number of agent-based applications in

the simulation and AI fields has led to an increase in the number of studies fo-

cused on evaluating the modelling capabilities of these applications. Observing

system performance and how applications behave during increases in popula-

tion size is the main focus of benchmarking in most of these studies. However,

system scalability is not the only issue that may affect the overall performance

of an ABM. This chapter presents a new benchmark model and reports on its

performance characteristics within the FLAME GPU simulator as an example

of a parallel framework for ABM. The aim of this model is to provide parameters

to easily measure the following elements: system scalability, system homogene-

ity, level of communication and model complexity. The proposed benchmark

can provide insight into the overall performance characteristics of specific ABM

frameworks.

5.1 Benchmarking ABM criteria

As mentioned in Chapter Two, there are a number of popular agent-based mod-

elling and simulation frameworks that are used to build models. However, the

68

69 5.2. Benchmarking ABM models (background review)

scalability and performance limitations in these systems prevent modellers from

simulating complex systems at very large scales. This is because many of these

frameworks were designed to be run on a single CPU architecture, and as a re-

sult they cannot perform the necessary computation (within a reasonable time)

of a large number of agents. For this performance reason, a number of platforms

and simulators have arisen to deal with large-scale simulation. Repast HPC1,

D-Mason2and FLAME GPU3are examples of these kinds of platforms, which

use parallel and distributed approaches to run large-scale (HPC) simulations.

There have been several studies reporting on computational performance in

most ABM frameworks [42, 14, 83] for specific models. Varying the population

size to measure system scalability is the most common benchmark. A bench-

marking process is an excellent way to determine the characteristics of simula-

tor performance, but unfortunately there is no standard method to benchmark

ABM that considers characteristics of the model beyond scale. Thus, there is

a need to design a benchmark model that considers characteristics of an ABM

that affect performance. The OpenAB community 4summarised a number of

criteria that may affect this performance:

• Arithmetic intensity: the computational complexity of an agent or popu-

lation.

• Scale: varying population size.

• Model memory: the internal memory requirements of an agent or popu-

lation.

• Inter-connectivity: the level of communication between agents.

• Homogeneity: divergence of behaviour within an agent or population.

5.2 Benchmarking ABM models (background

review)

Numerous ABMs have been used to address a number of issues, such as testing

and analysing simulation tools and comparing ABM platforms, and they have

1https://repast.github.io/repast hpc.html
2https://sites.google.com/site/distributedmason/.
3http://www.flamegpu.com/
4http://www.openab.org/.

70 5.2. Benchmarking ABM models (background review)

been used as teaching tools for modelling real systems. This section reviews

some of these models and their purposes.

Railsback et al. [116] proposed a simple model called StupidModel that can

be easily implemented on any ABM platform. This model contains a number of

versions to increase simulation complexity, starting from moving agents to a full

predator–prey model. StupidModel was developed to be a teaching model for

ABM platforms, such as NetLogo and Swarm. It is also used as a benchmark

model to compare modelling capabilities and performance between several ABM

platforms [83, 117, 84, 139].

Predator–prey is the most commonly used model in the field of ABM and

simulation. Developed by Alfred Lotka (1925) and Vito Volterra (1926), it is

based on two differential equations and describes the dynamics of predator–prey

behaviour. The basic rules of predator–prey in ABM can be summarised as

follows: 1) two types of populations represent prey and predator agents; 2)

the prey population will increase by moving to food resources and decrease by

being eaten by the predators; 3) the predator population will increase by eating

the prey and will decrease by starvation; and 4) both populations are moving

randomly and following simple rules to communicate with the environment and

with each other.

Several studies have compared the execution efficiencies of different ABM

platforms using predator–prey models [42, 128]. Execution efficiencies have

also been used as a benchmark to show the modelling ability of Repast Sim-

phony [148] and to compare three approaches to simulation modelling: System

Dynamics, Discrete Events and ABM [16].

The Sugarscape model is an artificial society model presented by Epstein

and Axtell in their book Growing Artificial Societies: Social Science from the

Bottom Up [40]. This model was replicated by several ABM platforms, such as

NetLogo5, MASON [14] and Repast [130]. Agents in the basic Sugarscape model

follow very simple rules. They move towards deserted areas with high levels of

sugar resources. The Sugarscape Wealth Distribution model, as described by

Epstein and Axtell, is complex in terms of the relations between agents.

Boids or flocking models (introduced in section 3.3.1) have also been widely

used to measure the modelling ability of some ABM platforms [49, 117, 128,

101].

5http://ccl.northwestern.edu/netlogo/models/community/Sugarscape

71 5.3. The benchmark Model

Rousset et al. [133] used their reference model [132] to benchmark 10 ex-

isting platforms that support parallel and distributed systems. Their model is

based on three main behaviours for each agent: 1) agent perception, 2) agent

communication and 3) agent mobility. This benchmark model is used to eval-

uate the ability of each platform regarding their parallelism support. A large

and growing body of literature has focused on the comparison between parallel

and serial execution methods to run simulations [42, 83, 36, 1, 34, 123].

All ABMs reviewed above were used as benchmarks for two purposes: to eval-

uate modelling capabilities of platforms and/or to make comparisons between

simulators. Observing system performance and how applications behave as the

size of the agent population increases is the main focus of benchmarking in the

majority of these studies. System scalability is not the only issue that may af-

fect the overall performance of an ABM simulation; there are some issues that

need to be dealt with to create a standard benchmark model that meets all

ABM criteria.

5.3 The benchmark Model

Our model is based on the concept of an abstract molecular chemical system

in which a particle-based simulation represents each molecule in the system as

an individual entity. This entity has attributes, such as position, velocity and

molecule type. Entity movements and the reactions within the system will be

computed using these attributes to update system behaviour. The movement

of the molecule (agent) will follow Brownian Dynamics methods [155], where

each agent is represented as a point-like particle moving randomly in the envi-

ronment.

This type of model is relevant to a wider class of ABMs. For example,

both cellular and social system models have similar behaviours when considered

from the viewpoint of mobile agents with local interactions, birth and death and

binding (combining). To make this model controllable and variable with respect

to homogeneity and complexity, we propose a parameterised reaction-diffusion

model with different rules. Our model is able to convert formula syntax (such

as A+B=C) that represents a chemical reaction to a model specification with a

number of mobile agents that can communicate with each other while moving

within a virtual environment. Any combination of letters can be used by a

72 5.3. The benchmark Model

number of equations to vary the complexity and homogeneity of the population.

A simple reaction will occur when one A molecule combines with one B

molecule to produce a C molecule, assuming that A+B=C represents the rela-

tionship between the three molecules. The model that results from the example

above contains three agents, as follows: agent A (master agent), agent B (slave

agent) and agent C (combined agent)6. Each of these agent specifications is

defined by a set of variables and functions that help to establish the simula-

tion. At the beginning of the simulation, two populations A and B randomly

move within the continuous environment (Brownian motion). Individuals from

each population aim to interact with an individual from the other population

in a mutually exclusive pairwise interaction (i.e. one A will interact with one

B at a closest pre-calculated point). This model also consists of an additional

probabilistic test to increase stochasticity on agents’ movement through two

variables. The interaction rate is controlled by maximum individual movement

and the interaction radius as model parameters. Agent B will send its location,

and then agent A will choose the closest B, which will reply with its ID. Once

the ID of B is confirmed (a requirement of performing paralyse operations in

parallel), both agents will die and produce the new agent C. To ensure reliable

agent populations for benchmarking and evaluation, once a pairwise interaction

occurs, there is a counter for each population type to update the population

size of each type.

5.3.1 Implementation

This section consists of three parts: 1) how the benchmark model is imple-

mented using FLAME GPU, 2) the state diagram of the model and 3) dynamic

model generation from simple formula syntax. The FLAME GPU implementa-

tion of the above-mentioned example consists of three agents A, B and C. Each

agent is defined by a set of variables, transition functions, start and end states

and communication messages, as shown in Table 5.1.

At the beginning of the simulation, agents A and B are moving randomly

using their move functions to update their locations during each cycle, as shown

in Fig 5.1 Part A. Agent B will use send_locationB to output a locationB

6It is named this way to differentiate its functions within the simulation, and it is a

convenient way to construct our model. Every equation consists of one master agent, one

combined agent and one or more slave agents.

73 5.3. The benchmark Model

Table 5.1: Agent specifications

Agent

Type

Memory Function Name Function Description

Master

agent

Agent ID

Agent Position:

X,Y,Z

Closest_id

Closest_point

state

1.move_A

2.need_locationB

3. send_bindB

4. created_C

5. death_A

1.To update A’s location

2.Choose closest B

3.Send request to closest B

4.Output agent C

5.Remove agent A from sim-

ulation

Slave agent Agent ID

Agent position:

X,Y,Z

Closest_id

Closest_point

state

1.move_B

2.send_locationB

3. receive_bindB

4.send_combinedB

1.To update B’s location

2.Send B location

3.Verify and choose closest

A that is ready to bind.

4.Send notification to A to

combine and then remove

agent B from the simulation

Combined

agent

Agent ID

Agent position:

X,Y,Z

Closest_id

Closest_point

state

move_C To update C’s location

message holding all B information (agent ID, location, etc). After that, agent

A will get all B’s locations using a need_locationB function that inputs the

locationB message. This function will calculate the distance between A and

B and then compare it with the binding radius. If the distance is less than

or equal to the binding radius, the internal memory of A will be updated (the

state variable will be set equal to 2, the defined value of binding (2 is the defined

value of the combined state), and the closest ID of an A agent and the closest

point will be stored). The send_bindB function will output bindB messages

holding the updated information for agent A (only messages that have the

state variable equal to 2 as a function condition (An agent function condition

indicates that the agent function should only be applied to agents which meet

the defined condition), which are in the correct state specified by current the

74 5.3. The benchmark Model

current state [122]). In the next step, the receive_bindB function will input

bindB messages to check for the closest A that is ready to combine. B’s internal

memory will be updated (the state variable will be set to 3 (where 3 is the defined

value of the dead state), and the closest ID and closest point will be stored)

after finding the closest A that is ready to combine. The send_combinedB

function will output combinedB messages that meet the condition (the state

variable is equal to 2), and the B agent will be removed from the simulation.

The next function will be created_C. This function will input combinedB

messages (only messages that meet the condition that the state is equal to 3),

output agent C and update A’s internal memory (the state variable will be

updated to meet the next function condition). All A’s that meet the condition

of death_A will be removed at this stage. A visualisation of the model after a

number of iterations is shown in Fig 5.1 Part B. Each time that one A and one

B agent combine, they produced one C agent, as shown in Fig 5.2.

Figure 5.1: Part A: Screenshot of the first iteration showing agents A

(red) and B (yellow) moving randomly. Part B: Screenshot after

100 iterations showing agents C (blue) moving randomly and two

of A (red) and two of B (yellow) still moving.

5.3.2 The state diagram of the model

The representation of agents as a state machine is shown in Fig 5.3 for the

A+B=C example. This diagram represent a single iteration of the simulation,

where each type of agent will move from the starting state to the end state,

completing each function in turn. The diagram is divided into nine layers, show-

ing the agent-transition functions and the communication dependency messages

75 5.3. The benchmark Model

Figure 5.2: Histogram generated by the model during the run time of

the simulation presenting the agent population count for A+B=C

against iteration number. This is to indicats that the implemen-

tation of the model behaviour was correct.

(green) for each agent. Both agents A and B perform their movement behaviour

(move function) in the first layer, where agents use Brownian motion. B agents

in the second layer execute the Send locationB function, broadcasting

their location within the simulation environment to the Location message list.

This message list is iterated by A agents in the Need locationB function,

where A agents select the B agent they wish to interact with. In the fourth layer,

the Send bindB function broadcasts all selected A agents ready to combine

into the BindB message list. In the fifth layer, B agents iterate the message

list, deciding which A interaction they will participate in. The confirmation

message will be sent to the CombinedB message list using Send combinedB,

and dead B agents will be removed from the simulation. In the seventh layer, A

agents execute the Created C function, and B agents iterate the confirmation

messages to outputs of the new C agents. Death A function is responsible for

removing dead A agents from the simulation. In the last layer, C agents move

by applying the (Move c)function.

5.3.3 Model Generator

In the previous section, a simple reaction of A+B=C was implemented us-

ing FLAME GPU. Duplicating the behaviour while adding a different type of

76 5.3. The benchmark Model

Figure 5.3: State graph of the model that represents A+B=C. The di-

agram illustrates the order of agent functions (black rectangles)

and the interactions between individual agents using message lists

(green rhombuses) through a single iteration. Functions can run

simultaneously within a layer, indicated by blue dashed boxes.

molecule to the same simulation will result in more divergence, which is likely to

effect simulation performance, particularly on GPUs for which [22] highlighted

divergence as a key performance criterion. To save time and effort, and to

implement several chemical reactions at the same time automatically, a model

generator is required.

This section presents a FLAME GPU model generator that can easily con-

vert formula syntaxes to a valid model specification. This generator, after pars-

ing the formula syntax, will output three files that are required to run a FLAME

77 5.3. The benchmark Model

GPU model: 1) a FLAME GPU XML model (XMLModelFile.xml) file 3.3.2

that consists of model specifications, 2) a function.c file 3.3.3 that holds the

scripted agent functions and 3) initial values of each agent for the simulation

state data, which are stored in a FLAME GPU XML file (0.xml).

The representation of a state machine of the generated model that presents

(A+B+C=D) is shown in Fig 5.4, and the histogram of agent counts during

simulation of the same model is shown in Fig 5.5. Both figures show the results

that we expected in terms of how the model (A+B+C=D) should behave. The

extra slave agent was easily added to the model, resulting in more divergence of

agent behaviour within a population and more divergence of behaviour within

agents (the extra transition functions that have been added are shown in Fig

5.4). There is extra depth in the state diagram compared with Fig5.3, as the

divergence focuses on one type of agent (master agent) when more slave agents

have been added to the same equation.

The model generator also has the ability to accept more than one equation

at the same time (e.g. example A+B=C and D+E=F) under some conditions,

such as (must be written in separated lines and the letters must not be the

same in the same model to avoid the confusion). Converting more than one

equation to movement agents in FLAME GPU increases the width of the state

diagram every time an extra equation has been added. Thus, the main idea

of the model generator is to duplicate the main behaviour of a simple model

and produce a huge model that contains a large number of agents with different

types and complex relationships.

78 5.3. The benchmark Model

Figure 5.4: State graph of the model that represents A+B+C=D.

79 5.3. The benchmark Model

Figure 5.5: Histogram generated by the model during the run time of the

simulation presenting the agent population count for A+B+C=D

against the iteration number. This histogram shows that the num-

ber of the master agents (A) is decreasing, the number of combined

agents (D) increases by the same amount and the total number of

all slave agent (B,C) types is equal to the number of master agents

in each cycle.

80 5.4. Benchmarking Results

5.4 Benchmarking Results

The model generator can be used to vary the model in different ways and

allows modelling of different types of chemical reactions. The machine used

for benchmarking all three experiments has an NVIDIA TITAN Xp graphics

card with 5120 CUDA cores and 12 GB of memory. Each experiment was

run 30 times for each sample, and the median value of the execution time was

calculated and presented in a graph for each experiment.

5.4.1 Divergence within a population:

The purpose of this benchmark is to observe the FLAME GPU performance

when varying the type of agents within the population. This benchmark starts

with a simple model with three types of agent, ten agent functions and three

type of messages and ends with 30 agent types, 300 agent functions and 30

message types. Adding more equation input lines (every line contains three

different types of agent) increases the execution time, as shown in Fig 5.6,

and the interquartile range values can be seen in Fig 5.7. This benchmark

was implemented using an agent population of 100000 for each type of agent

with the same environment size, and each simulation was performed for 100

iterations.

Figure 5.6: Median value of the execution time of the same environment

size against the type of agent that has been added at every step

81 5.4. Benchmarking Results

Figure 5.7: Interquartile range values in seconds for simulation runs

(Agent complexity benchmark)

5.4.2 Divergence within an agent:

This benchmark gives us the median value of the execution time for increas-

ing slave agent types (more chemicals per line). This experiment will increase

divergence within the master agent of this line. Adding a new chemical will ex-

tend the master agent functions, which means more layers within the function

layers. In FLAME GPU, function layers represent the control flow of simula-

tion processes [122]. All agent functions are executed in a sequential order to

complete one iteration, and by adding more functions for the same agent, the

total number of layers will increase. More layers indicates serialised execution

and low utilisation of the device. This can be observed in the results in Fig 5.8,

and the interquartile range values can be seen in Fig 5.9. This benchmark was

implemented using an agent population of 100000 for each type of agent with

the same environment size.

Figure 5.8: Median value of the execution time against the number of

slave agents that have been added every time

82 5.4. Benchmarking Results

Figure 5.9: Interquartile range values in seconds for simulation runs (Pop-

ulation complexity benchmark)

5.4.3 Population sizes:

The goal of this benchmark is to measure the ability of ABM systems to scale.

The population size of each agent type starts with 100000 agents and ends

with 800000 agents. This benchmark uses A+B=C as an example to run this

experiment for 100 iterations each time. The performance of implementing our

model on FLAME GPU with respect to agent population size is shown in Fig

5.10, and the interquartile range values can be seen in Fig 5.11.

Figure 5.10: Increasing population size led to increased simulation execu-

tion time.

Figure 5.11: Interquartile range values in seconds of simulation runs (Scal-

ability benchmark)

83 5.4. Benchmarking Results

5.4.4 Level of communication and complexity:

Two changes have been made to agent behaviour to slow down the simulation

and vary arithmetic intensity within agent functions: 1) varying the interac-

tion radius and 2) decreasing the agent movement speed. Fig 5.12 shows the

relationship between decreasing the interaction radius with increasing overall

processing time to produce 50 agents C from the A+B=C equation with the

same movement speed. This experiment allows agents to move for a longer

period of time until reaching the needed radius. During this movement, several

operations occur, such as calculating agent position and sending and receiving

messages between agents looking for the nearest agent to combine with. The

next experiment is shown in Fig 5.13, which shows the relationship between

slowing down the agent speed and the number of iterations required to produce

50 agents. This experiment has been implemented with a constant radius and

same environment size. Slowing down the movement speed allows additional

operations during the simulation, which helps to measure the ability of the sys-

tem to handle many computational operations for a long time and how to utilise

the resources.

Figure 5.12: Decreasing the interaction radius led to increased time to

produce 50 agents

84 5.5. Summary

Figure 5.13: Decreasing the agent movement speed led to increased time

to produce 50 agents

5.5 Summary

Four benchmark experiments have been carried out, demonstrating the ability

of this benchmark model to examine each element. The first two experiments

focused on increasing agent and population divergence, which led to an increase

in execution time due to the additional agent functions, messages and commu-

nication information that is held by these messages. The third experiment

showed that we could easily scale the population size of this model to measure

the system scalability. The results showed that scaling the population size led

to varying the execution time from 0.9 seconds per 100 iterations for 100000

agents to 176 seconds per 100 iterations for 800000 agents. These results were

based on the median value of the execution time. In the last experiment, com-

putational complexity was varied by decreasing the value of two variables that

are used within agent functions to updating agents behaviour. This experiment

caused the model to reach a steady state at a slower rate, allowing control of

the arithmetic intensity of agents within the model.

Divergence in the agent population increases homogeneity within the model

and results in lower utilisation of the GPU, particularly when executing agent

functions, as confirmed by fewer agents executing the same function (addi-

tional serialised of execution) and our benchmark model. The obtained results

will be used for assessing simulator improvements to achieve improved scaling

85 5.5. Summary

with respect to population-level divergence and better overall performance to

increase the population size. The performance results indicate that our bench-

mark model is suitable for use as an experimental tool to evaluate the modelling

capabilities of an ABM system if it is replicated in a suitable way.

Chapter 6

The Impact of Combining

Agents Functions on Overall

Performance

6.1 Introduction

The second chapter highlighted that data dependency is one of the critical

issues in real-time HPC applications. Adopting an approach that reduces

memory access time could minimise this problem. Conceptually, the agents in a

simulation could execute in any random order; however, this is very inefficient,

as agents are waiting on results from each other. In FLAME GPU, the

parallel execution of agents is deliberately maximised by ordering all processing

based on perceived dependencies (through messages). Agent functions are

organised in layers (explained in section 3.3.2.5), where all functions within

a layer execute in parallel, and agent functions placed in subsequent layers

execute after those in preceding layers. This ensures that functions can execute

without any blocking or race conditions. However, an optimising process

could be devised to identify message and data dependencies between agents

automatically, and this could be used to re-organise the granularity of agent

functions, splitting and merging them in order to maximise device utilisation

and minimise data movement. This would reduce the execution time of the

simulation by increasing the amount of useful parallelism.

This chapter presents a functional approach for splitting and merging func-

86

87 6.2. Dependencies Between Model Functions and their Effect on Performance

tions based on function dependency analysis. As mentioned earlier, this ap-

proach is specific to the FLAME GPU, and it is an attempt to discover a way

to take advantage of the data dependency between FLAME GPU functions

to reduce simulation execution time. An investigation into data dependency

between agent functions will be applied to the benchmark model presented in

the previous chapter. Section 6.2 discusses data dependency between FLAME

GPU model functions and their effect on performance. Section 6.3 presents an

experiment for discovering dependencies between model functions. Section 6.4

describes the implementation of a functional approach to minimise the number

of model functions. In section6.5, strengths and limitations of this approach are

presented. Finally, section 6.5 reviews the results of applying this approach to

the benchmark model and compares it with the original model.

6.2 Dependencies Between Model Functions

and their Effect on Performance

The implementation of the original FLAME uses dependencies to determine

function and communication order, as described in section 3.3.2.5. Listing 6.1

shows the syntax for organising functions into layers. The pair function1, func-

tion2 are placed in one layer, as they are presumed to act independently with

no shared message inputs or outputs. The third function3 is placed in a subse-

quent layer and thus may depend, for its inputs, on the outputs of functions in

the previous layer.

An iteration is a full cycle in which all layers are executed at most one

time; however, some functions in each layer may not be triggered if the state

conditions are not favourable. Even so, in most cases, all functions of the same

agent are executed in a sequential order to complete one iteration. If our goal

is to minimise the time taken to execute one complete iteration, then we should

seek to minimise the number of layers in one iteration since layers are executed

sequentially, and each function require data movement of an agent’s internal

memory. To do this, we should seek to pack more agent functions into fewer

layers. This can only be done if we can identify the real data dependencies

between the functions (as opposed to perceived dependencies).

For example, if two functions of the same agent have been placed, for con-

ceptual modelling reasons, in subsequent layers and it is found that there is no

88 6.3. Dependency Discovery (Manual version)

external data dependency forcing this separation, then they can be combined

in a single function. Similarly, agent functions that have multiple data depen-

dencies may be split into simpler functions with simple data dependencies and

may possibly be re-grouped into larger functions according to their dependency

on the same data.

In this way, it may be possible (depending on the agent model) to reduce

the global number of agent functions by a process of splitting and merging,

and for these functions to be packed into fewer layers. A second consequence

of merging functions that depend on the same data is that our later technique

(see chapter 7) of accessing subsets of agent memory variables may also be used

to minimise data movement. Section 6.4 describes an experiment merging two

functions of the same agent. The next section presents the benchmark model

dependency analysis with a simple example.

1 <layers>

2 <layer>

3 <gpu:layerFunction>

4 <name>function1</name>

5 </gpu:layerFunction>

6 <gpu:layerFunction>

7 <name>function2</name>

8 </gpu:layerFunction>

9 </layer>

10 <layer>

11 <gpu:layerFunction>

12 <name>function3</name>

13 </gpu:layerFunction>

14 </layer>

15 </layers>

Listing 6.1: function layers

89 6.3. Dependency Discovery (Manual version)

6.3 Dependency Discovery (Manual version)

Initially, the data dependencies between agent functions have been discovered

manually for the benchmark model 5. As described earlier, this model is able

to convert formula syntax that represents a chemical reaction to a large number

of movement agents. These agents can communicate with each other and cap-

ture important ABM characteristics. This experiment focuses on a model that

represents the simple equation A+B=C . This model consists of three types of

agents and ten agent functions executed in nine layers. By analysing the agent

functions file (available in Appendix A), we can track variable read and write

operations within functions so that the dependency of later functions is based

on earlier function writes. Fig 6.1 shows the state diagram of the model after

manually evaluating all the data and message dependencies. As shown in the

figure (marked with a red circle), there is no dependency between some func-

tions. This can be noted in table 6.1; all the rows appearing in grey consists of

functions with no data or message dependencies. This table summarises the de-

pendencies of model functions. It lists each function’s name, the owning agent

and any other functions on which the function depends (conceptually). Each

dependency is then analysed to see whether it constitutes an internal data de-

pendency, an external message communication dependency or neither. Where

there are no real data or message dependencies and the functions belong to the

same agent, the two functions may be merged. This may result in reducing the

number of layers, which is hypothesised to decrease iteration execution time.

The next section discusses this functional approach in more detail.

90 6.3. Dependency Discovery (Manual version)

Table 6.1: All agents functions of the model that represent A+B=C and

their relation dependencies to other functions

Function Agent Dependent On Dependent

Data

Dependent

Message

Move A A

Move B B

Send locationB B Move B Yes No

Need locationB A
Move A

Send locationB

Yes

No

No

Yes

Send bindB A Need locationB No No

Send locationB B Move B Yes No

Receive bindB B
Send bindB

Send locationB

No

No

Yes

No

Send combinedB B Receive bindB No No

Created C A
Send combinedB

Send bindB

No

No

Yes

No

Death A A Created C No No

Move C C Created C Yes No

91 6.3. Dependency Discovery (Manual version)

Figure 6.1: The state graph showing the data and message dependency

and the possibility to combine some functions marked with a red

circle.

92 6.4. Merging Functions That Have no Dependency

6.4 Merging Functions That Have no Depen-

dency

According to the results of the previous section, the manual dependency analy-

sis of the benchmark model showed three independent functions, two of which

belong to agent A (send_bindB ,death_A), while one belongs to agent B

(send_combinedB). Each of these functions was combined with the preceding

function, as shown at the state graph in Fig 6.1. The new state graph of the

modified model can be seen in Fig 6.2. The benchmark model now consists of

seven functions executed in six layers. Fig 6.3 (old version) and Fig 6.4 (new

version) also present screenshots of how the function layers are represented in

the XML model files. Reducing the number of agent functions also has the

consequence of minimising data movement (agent variables do not need to be

transferred as frequently from main memory). Table 6.2 shows the reduction

in data movement. This table presents values of optimising a simple model

that represents an A+B=C equation, as mentioned earlier. In order to evaluate

the benefit of this manual optimisation (before we proceeded to automate this

process in the future work), we wanted to generate scalable models of the bench-

mark particle simulation both with and without the functional approach. To

generate the optimised models, a modification was made to the model generator

to force it to output models in which splitting and merging are applied.

Table 6.2: The reduction in data movement achieved after merging some

agent’s functions in the benchmark model.

Model No of Layer No of Functions Input Output

The original model 9 10 120 120

The modified model 6 7 84 84

93 6.4. Merging Functions That Have no Dependency

Figure 6.2: The state graph of the modified model

94 6.4. Merging Functions That Have no Dependency

Figure 6.3: Function layers of our benchmark model before merging (9

layers in total).

95 6.4. Merging Functions That Have no Dependency

Figure 6.4: Function layers of our benchmark model after merging 3 func-

tions (6 layers in total .

96 6.5. Benchmark Results

6.5 Benchmark Results

To evaluate the benefits of using the functional approach, this section presents a

comparison of the results regarding the execution time of running both versions

of the benchmark model using FLAME GPU. As described in Chapter 5, this

model is based on the concept of particle-based simulation and accepts input

parameters that control both system scalability and agent homogeneity. For

system scalability, the population size for each agent type will be increased. In

agent homogeneity, the focus will be on increasing the complexity for both indi-

viduals (by increasing communication) and the overall population (by increasing

the diversity of agent type). Three different experiments have been performed

to examine the performance efficiency of both versions: scalability, divergence

within the population and divergence within an agent. The machine used for

benchmarking both versions has an NVIDIA TITAN Xp graphics card with

5120 CUDA cores and 12 GB of memory. Each experiment was run 30 times

for each sample, and the median value of the execution time was calculated and

presented in a graph for each experiment.

6.5.1 Divergence within the Population

In this experiment, the number of agent types was increased in each step (by

adding additional equations) to observe system behaviour while increasing com-

plexity. This benchmark followed the same process that was applied to the

original model in using the same environment size and the same population

size, with the simulation running for 100 iterations. Fig 6.5 shows the pro-

cessing time of both versions, with a noticeable improvement in performance,

especially with a large model that consists of 10 lines of equations and 30 agent

types. The interquartile range values cross-runs for the functional approach

system can be seen in Fig 6.6.

6.5.2 Scalability

This benchmark will measure the scalability of the performance of both systems.

The population size of each agent type starts with 100000 agents and ends

with 800000 agents. This benchmark is based on the same example that was

described in section 5.4.3 in Chapter 5. It is representative of scaling the model,

and the simulation was performed for 100 iterations. A small improvement in

97 6.5. Benchmark Results

Figure 6.5: The difference in execution time between the original model

(Red) and the modified model (blue) while increasing the diver-

gence of the population.

Figure 6.6: Interquartile range values in seconds for simulation runs (Pop-

ulation complexity benchmark while applying the functional ap-

proach)

the execution time between both models can be seen in Fig 6.7, showing the

median values for cross-simulation runs; the interquartile range values for the

functional approach system can be seen in Fig 6.8.

Figure 6.7: Comparison of median processing time values against popu-

lation size, showing the original model (Red) and modified model

(Green).

98 6.5. Benchmark Results

Figure 6.8: Interquartile range values in seconds for simulation runs

(while applying the functional approach and increasing the popu-

lation size)

6.5.3 Divergence within the Agent

The same criteria for benchmarking the original model were used to run this

benchmark on the modified model. This benchmark gives us the average execu-

tion time for increasing slave agent types. This experiment increases divergence

within the master agent. Adding a new agent type (via more complex equation

formulas with additional terms) to communicate with the master agent will

extend its functions, which results in more functions in each layer every cycle.

This benchmark was implemented using an agent population of 100000 for each

type of agent with the same environment size, and each simulation was run for

100 iterations. The results of both benchmarks are shown in Fig 6.9. Figure

6.8 shows the interquartile range cross-run values for the functional approach

system.

Figure 6.9: Comparison of median processing time values against the

number of communicating agents (slave-to-master), showing the

original model (purple) and modified model (green).

99 6.6. Strengths and limitations

Figure 6.10: Interquartile range values in seconds for simulation runs

(agent complexity benchmark while applying the functional ap-

proach)

6.6 Strengths and limitations

The benchmark results above showed that the functional approach has the abil-

ity to enhance the FLAME GPU performance by saving execution time in each

simulation cycle by minimising the number of function layers. However, the

main strengths of this approach were the motivation to automate the process of

discovery of data dependency and the use the data to enhance the system per-

formance by applying a data-aware approach (7.4). However, some limitations

should be noted:

• This approach is specific to the FLAME GPU to reduce the execution

time of the single iteration.

• This approach does not reduce the time required for memory access during

the process of iterating message lists.

• This approach had a small direct effect on the performance of well-

structured FLAME GPU models.

6.7 Summary

In FLAME GPU, agent functions are organised into layers based on when

their state conditions are enabled. In this way, maximal parallelism may be

ex ploited by deterministically scheduling all agent functions that may be

executed together. This leads to a sequence of layers, denoting the order in

which agent functions may be executed. Every function within a layer may

be executed in parallel, and functions in a subsequent layer must wait for

functions in the previous layer to terminate.

100 6.7. Summary

In the case of data dependency between states, subsequent transition func-

tions must wait for the new version of the memory to be updated. This chapter

presented a new method that helped to reduce the simulation execution time.

The method is based on merging some agent functions after discovering data

and message dependencies. The benchmark model that has been presented in

chapter 5 was used to evaluate the benefits of using this method. The compar-

ison results showed that this approach improves performance where functions

can be merged. However, we could benefit more from discovering dependencies

by accessing only the required data. Accessing a subset of data during the sim-

ulation would reduce the amount of data that need to be moved. FLAME GPU

models could benefit more from this method due to the way of handling data

movement within the FLAME GPU. When an agent is modified by a function,

all of its variable values are transferred from shared memory to a local structure

passed into the function. When the function has terminated, the variable values

are copied back to the GPU’s main memory. For this reason, prior knowledge

of dependencies between agents functions may help to reduce the costs of data

movement.

As the discovery of dependencies has been made manually in this chapter,

the aim of the next chapter is to automate the process of identifying the data

and message dependencies between agent functions.

Chapter 7

A Data Aware Model for Agent

Representation

7.1 Introduction

In the previous chapter, the discovery of dependencies between agent functions

was implemented manually by considering functional dependencies. Knowledge

of data dependencies allowed some agent functions to be combined, which can

reduce the execution time of each iteration. This experiment was applied to

one model to evaluate the benefit of extracting data dependencies from exist-

ing models in FLAME GPU. Furthermore, it is hypothesised that dependency

analysis at the variable level provides an additional opportunity for optimisation

with data movement.

This chapter discusses the implementation of dependency parsing by using

Flex and Bison tools as mentioned in section 4.3. In FLAME GPU, agent

behaviour is specified through the use of an agent function, which uses a C-

like syntax with prefixing macros and function arguments, dependent on the

XMML function definition. The implementation of the parser,(for parsing and

analysing agent functions) requires the context-free grammar (CFG) for C and

the additional syntax for FLAME GPU’s agent function scripting. Section 7.2

describe the implementation of the scanning process and Section 7.3 discuss the

implementation of the parser.

This chapter also introduces a proposed modification to the X-machine

model to explicitly model data dependencies. It focuses on how to use depen-

dency information to optimise the simulation of FLAME GPU models. This

goal can be achieved through two steps. First, updating the agent specifi-

101

102 7.2. Implementing a FLAME GPU Scanner

cation file to include data dependencies of each function. Second, modifying

the FLAME GPU templates to generate optimised GPU code which is data

aware and as such is able to minimise data movement. Section 7.4 addresses

an alternative representation of an agent in FLAME GPU that allows access-

ing required memory. Section 7.5 covers merging meta-data that is produced

by the dependency generator with an agent specification file. In section 7.6,

the implementation of modifying FLAME GPU templates to access a subset of

message and agent memory variables. Finally, the summary of this chapter is

presented in section 7.7.

7.2 Implementing a FLAME GPU Scanner

Section 4.5 has described the tools that will be used to implement the scanning

stage for the dependency parsing process. This section discusses how the scanner

is implemented by identifying rules that match the C code and additional tokens

that are found in FLAME GPU agent functions. The main file in the lexical

analysis stage in our system is (Scanner.l). The Flex tool identifies this file

by identifying the tokens and generates a C file (lex.yy.c) for the next step.

The main part of implementing this stage is writing the Flex rules. As

agent functions are written in C like language with a special syntax for GPU

implementation, the Flex rules must include regular expressions to recognise

three kinds of syntax: standard C code, certain special macros, and certain

special formal argument names that are used in FLAME GPU agent functions.

7.2.1 C Tokens

FLAME GPU contains a number of templates used to generate the dynamic

simulation code. Some of these templates generate C (with a small amount of

C++ features like templates) function prototypes. Therefore, the rules need to

include a collection of C, C++ templates and the preprocessing directives, as

they will be included within the functions.c file. For ANSI C grammar, we

used the version that is based on the 2011 ISO C standard1. For preprocessing

directives and C++ grammar, we used the C++ BNF Grammar that is available

in [91] to cover all tokens missing from the previous source. The full version of

the rules that match all possible tokens that are required for C and C++ syntax,

including preprocessing and Pragma processing can be viewed in Appendix B.

103 7.2. Implementing a FLAME GPU Scanner

7.2.2 Special Tokens for FLAME GPU Functions

Two types of tokens exist in FLAME GPU functions: prefix macro definitions

and function arguments. All agent functions are first prefixed with the macro

definition. These macros are listed in the table 7.1 below with a summary

description for each one. The scanner recognises this type of token as a keyword.

Table 7.1: The scanner recognises macro definitions of all FLAME GPU

functions as a keyword.

Syntax Description

FLAME GPU FUNC Macro definition for all FLAME GPU functions

FLAME GPU INIT FUNC Macro definition for initialisation functions

FLAME GPU STEP FUNC Macro definition for step functions

FLAME GPU EXIT FUNC Macro definition for exit functions

For some of FLAME GPU function arguments, the scanner needs a method

to extract tokens as Flex reads the source code as a sequence of charac-

ters and recognises matching units to the rules. As an example, in the case

of FLAME GPU function arguments, such as the argument to the function

shown below in listing 7.1 , which is a pointer to an agent structure of

type xmachine memory myAgent called xmemory, the scanner reads this

pointer as one word, but in fact, it contains three components as follows:

xmachine memory as a keyword, myAgent as an agent type identifier and *

as an operator. To solve this problem, we designed a function to recognise large

textual units that are not included within the predefined keywords. This func-

tion is called check type() and it works as below in listing 4.2 . Another func-

tion called Xmachine specifier checker() has been designed to analyse

only function’s argument pointer or referred to as (xmachine specifier). All pos-

sible FLAME GPU syntaxes and extracted tokens can be seen in table 7.2. All

the keywords that appears in this table have been added to the rules sections

within the scanner.l file as shown in the Fig 7.1 below.

1 1 __FLAME_GPU_FUNC__ int function(xmachine_memory_myAgent* xmemory)

2 2 {

3 3 xmemory->x = xmemory->x += 0.01f;

1The rule section of Flex specification of ANSI C grammar:http://www.quut.com/c/ANSI-

C-grammar-l.html

104 7.2. Implementing a FLAME GPU Scanner

4 4 xmemory->no_movements += 1;

5 5 return 0;

6 6 }

Listing 7.1: Analysing large textual units

Figure 7.1: A part of the rules section from Scanner.l file showing FLAME

GPU functions keywords

105 7.2. Implementing a FLAME GPU Scanner

Table 7.2: FLAME GPU syntaxes and extracted tokens

FLAME GPU Syntax Tokens Token Type

xmachine memory AgentName*

xmachine memory

AgentName

*

keyword

Identifier

Operator

xmachine message MessageName*

xmachine message

MessageName

*

keyword

Identifier

Operator

AgentName agents
AgentName

agents

Identifier

keyword

MessageName messages
MessageName

messages

Identifier

keyword

xmachine memory AgentName list*

xmachine memory

AgentName

list

keyword

Identifier

keyword

Operator

xmachine message MessageName list*

xmachine message

list

MessageName

*

keyword

keyword

Identifier

Operator

xmachine message MessageName PBM*

xmachine message

MessageName

PBM

*

keyword

Identifier

keyword

Operator

get first MessageName message

get first

MessageName

message

keyword

Identifier

keyword

get next MessageName message

get next

MessageName

message

keyword

Identifier

keyword

partition matrix*
partition matrix

*

keyword

Operator

RNG rand48*
RNG rand48

*

keyword

Operator

106 7.3. Implementing a FLAME GPU Parser

7.3 Implementing a FLAME GPU Parser

Section 4.6 in chapter 4 discussed the way of generating both syntax and seman-

tic analysis using Bison tool. This section details the implementation of depen-

dency parsing based on the previous discussion. The main file in this stage of

our system is "FuncParser.y". Bison takes this file as input and produces

a C file which will be the actual parser. Implementing "FuncParser.y"

file focuses on three steps, which include writing the rules, semantic actions,

and extra functions to extract dependencies and produce the output file. The

following subsections explain these steps in more detail.

7.3.1 Definitions and Grammar Rules

As Flex and Bison are connected, all tokens are declared within the Bison dec-

larations section. This section contains declarations that define terminal (also

known as a token type) and nonterminal symbols. Fig 7.2 shows an example

of this section taken from "FuncParser.y" file. For example, line 7 in this

figure shows token type keyword in C (open bracket, close bracket, for and left

bracket). The grammar rules section consists just of the grammar rules; but

each individual rule consists of two parts: the BNF2syntax (e.g. IDENTIFIER

in line 2 Fig 7.4) and the associated action to perform (e.g. the C statement

in line 2 Fig 7.4), written as C code. Within the grammar rules section three

collections of syntax are used. It contains grammar rules of C, C++ and the

extra syntax of FLAME GPU all in BNF format. For BNF C grammar, the

version that is based on the 2011 ISO C standard3was used. For preprocessing

directives and C++ grammar, we used the C++ BNF Grammar that is avail-

able in [91] to cover all rules missing from the previous source. For the special

FLAME GPU syntax, we added a part of the rules to process the grammar. The

final BNF version can match both normal C and C++ code and any FLAME

GPU functions. Fig 7.3 below shows part of the added rules that match agent

function code. An example of an added rule, line 15, 16, 17 and 18 in Fig 7.3

consists of the macro definition of FLAME GPU function.

2Backus normal form (BNF) is a notation technique for context-free grammars (CFG),

used to describe the syntax of programming languages.
3The rule section of Bison or(Yacc) specification of ANSI C grammar:

http://www.quut.com/c/ANSI-C-grammar-y-2011.htmll

107 7.3. Implementing a FLAME GPU Parser

Figure 7.2: A part of the Bison declaration section shows token types.

Figure 7.3: An example of some grammar rules that have been used to

match FLAME GPU syntax.

7.3.2 Rule Actions

Each grammar rule can have an action written using C statements. This ac-

tion is executed every time the parser recognizes a match for that rule. In our

parser, we used more than one function call in some rules to complete the ac-

tion. We create a new node for the parsing tree by calling create_inode()

function. This function applies to each rule in the grammar to build the pars-

ing tree for the source code and to hold the semantic value. Beside call-

ing create_inode() function to create a new node, for specific rules, the

installId() function needs to be called to extract some information about

the variable of agent type dependency. This information will be processed and

108 7.3. Implementing a FLAME GPU Parser

used for generating the output file. Fig 7.4 shows a part of the grammar rules

from Funcparser.y file. Rules appear on the left side, and each rule ends with

one action using create_inode() function. For MNIDENTIFIER rule, for

example, we use two functions within the action. As this rule representing a

specific syntax, the installId() function (appears in line 7 in Fig 7.4) helps

to hold values for later processes.

Figure 7.4: A part of the grammar rules from our parser file with the

rule’s action.

7.3.3 User Subroutines

The last section of the bison input file consists of the main and the definitions

of create_inode() and installID() are supplied here, along with other

semantic functions. The rest are used to generate the final output code. Within

the main function, the yyparse() function, which initiates the parser, will be

called. This function is responsible for reading tokens, executing actions, and

ultimately returns with a value of 0 when it encounters end-of-input or with a

value of 1 when parsing failed because of invalid input (syntax error).

7.3.4 Generating the Meta Data Output File

During the parsing process, the installId() function added some remarks

to specific symbols within the symbol table. These remarks help with other

methods we have created to look for dependent data in each function. Certain

agent variables may be read, or written by an agent function and we seek to

identify these and make this explicit in a special output file in XML format. For

generating the final output, we create two methods to produce the final results

using both the AST and symbol table. The WriteXML() function writes the

header of the output file and calls the print_dependency function to print

out the data and message dependency of each agent function that has been

109 7.4. Data Aware Simulation

found in the functions.c file. An example of the input code is shown in List-

ing 7.2, and the output is shown in listing 7.3. Listing 7.2 shows a basic example

of a FLAME GPU function. This function is taken from the Circles model 8.2;

this model has one type of agent called a circle. This agent has six memory

variables. However, the move() function only needs to access 2 memory vari-

ables for reading and 2 variables for writing. listing 7.3 views the dependency

information in the move() function which has been written in an XML format

to combine it easily with the original XMLModelFile.xml file at a later stage.

1 __FLAME_GPU_FUNC__ int move(xmachine_memory_Circle* xmemory)

2 {

3 xmemory->x += xmemory->fx;

4 xmemory->y += xmemory->fy;

5 return 0;

6 }

Listing 7.2: The body of function move (circle model)

1 </functions>

2 <function>

3 <name>move</name>

4 <xagent><name>Circle</name></xagent>

5 <In data>true</In data>

6 <In datadependency>

7 <variable><name>fx</name></variable>

8 <variable><name>fy</name></variable>

9 </In datadependency>

10 <Out data>true</Out data>

11 <Out datadependency>

12 <variable><name>x</name></variable>

13 <variable><name>y</name></variable>

14 </Out datadependency>

15 </function>

16 </functions>

Listing 7.3: In and out meta-data dependency extracted from function

Move (circles model)

110 7.4. Data Aware Simulation

7.4 Data Aware Simulation

In the previous sections, the implementation of the dependency generator was

described, along with tools that have been used to build it. The dependency

generator can parse any functions.c file (that holds the scripted agent func-

tions), and produces an XML file consisting of messages and data dependencies

between agent functions. These data will be used to establish the process of

applying the data-aware approach.

Based on the formal definition of a communicating X-Machine (CXM) that

was described in chapter three 3.1.1 earlier, the smallest unit that can be pro-

cessed by current FLAME GPU is an agent. Whenever agents communicate

with each other, all agent memory variables need to be copied for reading and

writing to the memory. Moreover, this happens in every transition function

from one state to another as seen in Fig 7.5. As such automating variable level

data aware optimisation requires a new representation in which the smallest

unit of dependency is at the variable not agent level.

This section proposes an alternative representation of CXM model in which

individual units of m (members of the memory set M) for each agent function

(ϕ in Φ, in the formal definition) that can communicate using a subset of data

in the messages list r (members of the communicating relation set R). Focusing

on a subset of this data will minimise the data movement and remove unneces-

sary memory movement. Fig 7.6 shows the main idea of our proposed method.

Instead of reading and writing all agent memory in every state transition, the

focus will be on the dependent data of each function (the subset of agent mem-

ory that has been used within each function). Extracting data and message

dependencies of agents functions is the key to solving this issue. In the previous

chapter, an automated process was described which uses the flex and bison tools

to parse agent behaviour functions (C code) from FLAME GPU and produces

a meta-data description of all dependencies between transaction functions. The

following sections discusses the implementation of applying variable level data

aware movement. Fig 7.7 summarises how the proposed method is linked to the

current FLAME GPU SDK. In this figure, which describes the processing stages

used to create the FLAME GPU runtime, the existing data path is shown by

purple arrows and the data path used in our new pre-processing stage is shown

111 7.4. Data Aware Simulation

with red arrows. The next section discusses the implementation of merging

dependency meta-data with a FLAME GPU model description and section 7.6

demonstrates the necessary modifications to the FLAME GPU templates to

provide optimised data movement.

Figure 7.5: Stream X-Machine Specification, M and M’ represent the

agent memory set before and after agent function F1 which in-

puts and outputs messages to the message list [126]

112 7.4. Data Aware Simulation

Figure 7.6: The smallest unit that can be processed through transition

function is individual variables of agent memory instead of an

agent’s full memory set to minimise data movement.

Figure 7.7: Processing stages used to create the FLAME GPU runtime,

showing original (purple) and additional (red) data paths.

113 7.5. XSLT-Transformations for Merging Metadata with Agent Descriptions

7.5 XSLT-Transformations for Merging Meta-

data with Agent Descriptions

The first step in merging variable level meta data with modell descriptions

starts from the dependency meta data generation in the previous chapter.

The dependency parser generates an XML file which consists of function

names and the In_data, Out_data, and In_messages within each func-

tion. The second step described in this section is to generate a new annoted

XMLModelFile.xml. This can be achieved using an (XSLT) template. This

processing stage combining the original XMLModelFile.xml with the meta-

data requires file from the first stage. The output file contains the original model

with meta information describing data dependencies. The following subsections

explain this process providing some examples.

7.5.1 Input Files and Output Files of Merging Metadata

Process.

Two XML files (DataDependency.xml and XMLModelFile.xml) and

an XSLT template are the input files required to update the model specifi-

cation file. The root element of the meta-data file (produced from 7.3.4) called

Data Dependency.xml is <function>. This element consists of at least

one element called <function> which includes an agent’s name as attribute

and all dependency types that might be found during the parsing stage. The

second input file required to merge meta data with agent description is the

original XMLModelFile.xml file. This file consists of the model specification

that has been explained within chapter 3. The essential element of this XML

model description file is <function> which will be our target to insert the

meta-data as child elements once the function name matches. Table 7.3 sum-

marises the XML elements that may be inserted into the annoted model output

file. To perform the merge an XSLT template is described within the following

subsection. An overview of the complete merge process can be seen in Fig 7.8.

7.5.2 The XSLT Template

As described earlier in chapter 2 section 2.4.1, XSLT is a flexible language that

is used to translate XML documents to other formats such as HTML or other

114 7.5. XSLT-Transformations for Merging Metadata with Agent Descriptions

Figure 7.8: Input files and output result of merging data dependency with

model specification using XSLT processor (msxsl.exe)

document formats. An XSLT template has been designed to generate a new

version of the model description which contains the additional meta data infor-

mation.

The XSLT processor recursively matches XML nodes of both input files and

applies a template to it. In our case, the template needs to match nodes

that hold the function’s name. The name of the XSLT template that has

been designed is Meta-data.xslt. Once the processor matches a node,

(Meta-data.xslt) it will apply the following steps to generate the output

file:

• Print out any elements which may occur before our new dependency ele-

ments within parent element gpu:function. This includes the name of

the function, current states and the next state. The original description

of the function including any of the original elements.

• Output any elements for the dependency elements and this include

in dependency, out dependency and message dependency elements using

as shown in Fig 7.9.

• Output any elements which may occur after the new dependency elements.

This includes all cases of input/outputs/conditions/ global conditions.

The code samples below (from Meta-data.xslt) demonstrates how

115 7.5. XSLT-Transformations for Merging Metadata with Agent Descriptions

Table 7.3: The additional elements over the current FLAME GPU XML

schema

XML Element Parent Element Description

<in datadependency> </gpu:function>

Holds any number of

<dependencyVariable>

elements of in data depen-

dencies of the function.

<out datadependency> </gpu:function>

Holds any number of

<dependencyVariable>

elements of out data depen-

dencies of the function.

<in messagedependency> </gpu:function>

Holds any number of

<dependencyVariable>

elements of in message de-

pendencies of the function.

<dependencyVariable>

<in datadependency>or

<out datadependency>or

<in messagedependency>

Defines the <name> of de-

pendency Variable within

each type.

the iterative for-each element is used to generate dependencies for each

function_name within DataDependency.xml file (if there are any). The

template uses conditional statements to query if there is any data dependency

within each function. The complete code of our template (Meta-data.xslt)

can be found in Appendix D

7.5.3 Results

To demonstrate the flexibility of the approach the circle model is used. this

model is widely used as a FLAME GPU benchmark and demonstrate that

our technique is applicable to any FLAME GPU model. Fig 7.10 shows an

example of the dependency data that have been extracted from the function

called ’Move’ within the Circles model [128]. This function consists of in and

out data dependency as shown in Fig 7.10: the left side (A) of the figure shows

the original code of the model description while the right side (B) of the figure

shows the model description after adding meta-data. Both the dependency file

116 7.5. XSLT-Transformations for Merging Metadata with Agent Descriptions

Figure 7.9: The XSLT template that generates in data dependency for

each function. Same loop can be applied to Out-data and In-

message to produce respective Out dependency, In message de-

pendency elements.

and the model description file with mate-data can be found in Appendix D.

117 7.5. XSLT-Transformations for Merging Metadata with Agent Descriptions

Figure 7.10: A: A part of the Circles model description showing function

’move’. B:The model description after adding meta-data. C: The

actual body of the function ’move’ from functions.c file

118 7.6. FLAME GPU Template Files

7.6 FLAME GPU Template Files

Chapter 3 discussed the mechanism of data movements and internal communi-

cation during simulation of FLAME GPU model and how FLAME GPU deals

with the process of reading and writing data in global GPU memory. This

section demonstrates how the FLAME GPU templates 3.3.4 can be modified

to utilise annotated model descriptions to access required data only. The effect

of which minimised data movement during simulation.

FLAME GPU generates simulations by applying these templates to the

model files which is linked with the behaviour scripts to generate a simulation

program. All agent and message memory will be accessed during this process

using fast caches, shared memory for agent variables and texture memory

for message variables. With the proposed method the templates have been

modified to access only required data for both agent and messages. Two of the

FLAME GPU templates have been modified FLAMEGPU_kernels.xslt

and simulation.xslt. FLAMEGPU_kernels.xslt template. The output

of simulation.xslt is a source file containing the host side simulation

code which includes loading data to and from the GPU device and making

a number of CUDA kernel calls which perform the simulation process. To

access a subset of agent memory for reading and writing a part of the code in

FLAMEGPU_kernels.xslt has been modified to customise memory access.

The original template (that is accessing all agent memory) is shown in Fig

7.11 while Fig 7.12 shows an example of the updated template code accessing

a subset data for both reading and writing memory. In Fig 7.11, this template

is targeting all agent memory variables (appears in red boxes) to generate a

code (C structure which contains a member variable for each agent memory

variable) that allows memory access pattern for both reading and writing

data in global GPU memory. In Fig 7.12 the template specifically used the

dependency data in each function (appears in red boxes) to generate the data

movements (C structure which contains a member variable for each function

dependency variable) .

For accessing a subset of message variables both templates

above are modified. For iterating message lists (message input)

119 7.6. FLAME GPU Template Files

within agent functions, there are two functions are provided for

each message list get_first_*name*_message(args...) and

get_next_*name*_message(args...). The templates to allow these

function to access the required memory for each message were modified. In

the current version of the FLAME GPU templates the message variables are

copied to the texture memory by default whereas the updated version copies

only the dependent message variables, and initialises all unused values to 0.

An example of both versions of XSLT output can be seen in listing 7.4 for

the current version and listing 7.5 for the updated version. An example of the

code that accesses the message dependencies taken from simulation.xslt

template appears in Fig 7.13. Both templates which have been updated are

included in full within Appendix D.

1

2 //Using texture cache in the old version, copy all message

variables by default

3 temp_message.id = tex1Dfetch(tex_xmachine_message_location_id,

cell_index + d_tex_xmachine_message_location_id_offset);

4 temp_message.x = tex1Dfetch(tex_xmachine_message_location_x,

cell_index + d_tex_xmachine_message_location_x_offset);

5 temp_message.y = tex1Dfetch(tex_xmachine_message_location_y,

cell_index + d_tex_xmachine_message_location_y_offset);

6 temp_message.z = tex1Dfetch(tex_xmachine_message_location_z,

cell_index + d_tex_xmachine_message_location_z_offset);

Listing 7.4: The generated code from the current template which is coping

message memory by default.

120 7.6. FLAME GPU Template Files

Figure 7.11: The original XSLT template generating code accessing all

memory.

Figure 7.12: The modified XSLT template that generates code accessing

required data only.

121 7.7. Summary

Figure 7.13: A part from the modified XSLT template that generates code

accessing required message only.

7.7 Summary

This chapter explained the implementation of the dependency parsing system,

which consists of three main stages: scanning the source code to generate tokens

(lexical analysis), parsing the code to produce both the AST and the symbol

table (syntax analysis and semantic analysis), and finally, generating the meta-

data output file which consist variable dependency for each function. This

chapter also focused on how to use dependency information to optimise the

FLAME GPU models. By using the data dependency for each function, this

chapter described the process of modifying FLAME GPU templates to access

the required memory. In the next chapter, the evaluation of FLAME GPU

performance is conducted through the use of a number of models to test the

scalability, complexity and flexibility. It also presents the results by comparing

the simulation execution time of both systems (the current FLAME GPU and

extended FLAME GPU).

1

2 //Using texture cache in the updated version, copy only required

variables

3 if(d_location_message_read_deps[0]){

4 temp_message.id = tex1Dfetch(tex_xmachine_message_location_id,

cell_index + d_tex_xmachine_message_location_id_offset);

5 }else {

6 temp_message.id = 0;

7 }

8

9 if(d_location_message_read_deps[1]){

122 7.7. Summary

10 temp_message.x = tex1Dfetch(tex_xmachine_message_location_x,

cell_index + d_tex_xmachine_message_location_x_offset);

11 }else {

12 temp_message.x = 0;

13 }

14

15 if(d_location_message_read_deps[2]){

16 temp_message.y = tex1Dfetch(tex_xmachine_message_location_y,

cell_index + d_tex_xmachine_message_location_y_offset);

17 }else {

18 temp_message.y = 0;

19 }

20

21 if(d_location_message_read_deps[3]){

22 temp_message.z = tex1Dfetch(tex_xmachine_message_location_z,

cell_index + d_tex_xmachine_message_location_z_offset);

23 }else {

24 temp_message.z = 0;

25 }

Listing 7.5: The generated code from the updated template which is

copying the required variables from message memory.

Chapter 8

Results

8.1 Introduction

The previous chapter described the modification of the FLAME GPU framework

to make it data aware and reduce memory movement. To evaluate the benefits

of using the data-aware approach, this chapter shows a comparison of results

between current FLAME GPU and the data-aware version using three different

models. It is organised as follows, section 8.2 shows the comparison results

between both systems using a simple force resolution model (referred to as the

Circles model). Section 8.3 covers the benchmarking results of both versions

using the benchmark model that was explained in chapter 5. Within section

8.4, the keratinocyte (cell) model is further used to evaluate the performance

and demonstrates the advantages of the data-aware approach to a complex

(non-benchmark) model used with systems biology research.

8.2 The Circle Model

The Circles model is a simple force resolution model that has been used to

evaluate the simulation performance of different message communication tech-

niques between FLAME and FLAME GPU [128]. This model consists of a

single agent and message type with three agent functions. The first function to

output agent location information through a message and the second function

for reading location from the same message and the last function used to move

the agent according to interagent repulsive forces. The agent memory consists

of six variables, so using the current FLAME GPU, each function requires ac-

cess to all variables to update agent memory. Using the proposed method will

123

124 8.2. The Circle Model

Figure 8.1: The total data movement reduction of each function within

Circles model.

reduce memory access in each of function. Figure 8.1 and table 8.3 shows the

total reduction of memory access within each function after implementing the

model using data-aware FLAME GPU. The machine used for benchmarking

both versions in this experiment uses NVIDIA TITAN V graphics card with

5120 CUDA cores and 12 GB HBM2 of memory. Figure 8.2 shows the perfor-

mance of the Circles model using spatial partitioning of message communication

in both versions. The proposed method (orange line) shows significant speed

improvements when compared to current FLAME GPU (blue line). The per-

formance measurements, in ms, are made by averaging the performance over 10

iterations at various population sizes.

Table 8.1: The total memory access for each agent function in the circle

model and the percentage of reduction after applying our approach

Function: Input Output Move

Memory access 12 12 12

In-data 5 3 4

Out-data 2 0 2

Total reduction 41% 75% 50%

125 8.3. Our benchmark model

Figure 8.2: Comparison of average execution time against population size,

show-ing unmodified (blue) and modified (orange) FLAME GPU.

8.3 Our benchmark model

The benchmark model (described in chapter 5) is based on the concept of

particle-based chemical interaction simulation and accepts input parameters

that control both system scalability, population and agent homogeneity. For

system scalability, the population size for each agent type will be increased. In

agent homogeneity, the focus will be on increasing the complexity for both indi-

viduals (by increasing communication) and the overall population (by increasing

diversity of agent type). Three different benchmarks were used to examine the

performance efficiency for both systems: scalability, divergence within the pop-

ulation and divergence within an agent. The machine used for benchmarking

both versions has an NVIDIA TITAN Xp graphics card with 5120 CUDA cores

and 12 GB of memory. Each experiment was run 30 times for each sample, and

the median value of the execution time was calculated and presented in a graph

for each experiment.

8.3.1 Scalability

This benchmark will measure the scalability of the performance of both sys-

tems. The population size of each agent type starts with 100,000 agents and

126 8.3. Our benchmark model

Figure 8.3: Comparison of average execution time against population size,

showing unmodified (blue) and modified (orange) FLAME GPU.

ends with 800,000 agents. This benchmark is based on the same example that

was described within section 5.4.3 in chapter 5. It is representative of scaling

the model and the simulation was performed for 100 iterations. In figure 8.3

the proposed method (orange line) shows significant speed improvements when

compared to current FLAME GPU (blue line). With population size equal to

300,000 and above the average of improvement reaches 80%. The interquartile

range values for the data aware approach system of this experiment can be seen

in figure 8.4.

Figure 8.4: Interquartile range values in seconds for simulation runs

(while applying the functional approach and increasing the popu-

lation size)

8.3.2 Divergence within the Agent

The main concept of this experiment is to observe the effects of divergent be-

haviour (within an agent) on the execution time for both systems. Based on

the same example that is used by the benchmark model within section 5.4.2 in

chapter 5, this benchmark is representative of increasing the individual com-

plexity of an agent, and that means more functions in each layer every cycle. As

127 8.3. Our benchmark model

Figure 8.5: Comparison of processing time against number of communi-

cating agents (slave-to-master), showing unmodified agents (blue)

and modified (orange) FLAME GPU.

the function layers represent the control flow of simulation processes in FLAME

GPU, adding more agent functions every time will increase the number of the

layer in each cycle (as functions of the same agent need to be processed in

sequential order) and that will lead to increasing the execution time of each

iteration. The increase in execution time can be observed in figure 8.5 for both

versions (current version with the blue line and modified one with orange line)

with significant reduction of execution time when using the proposed system (as

more agent functions provides more opportunity for optimisation. The average

of improvement reaches 69%, and with more divergence within an agent, the

data aware system showed more time reduction in simulation execution time

compared with the current system. The population size that has been used

in this benchmark is 100,000 for each type of agent, and each simulation was

run for 100 iterations using the same environment size. Figure 8.6 shows the

interquartile range cross-run values for the data aware approach system.

Figure 8.6: Interquartile range values in seconds for simulation runs

(agent complexity benchmark while applying the functional ap-

proach)

128 8.4. The keratinocyte (cell) model

Figure 8.7: Comparison of median value of the execution time against

population divergence, showing unmodified of using current

(blue)and modified (orange) FLAME GPU.

8.3.3 Divergence within the Population

Observing the system performance while increasing population complexity will

be the focus of this benchmark. This experiment starts with a simple model

containing three types of agent, ten agent functions and three kind of message

and ends with 30 agent types, 100 agent functions, and 30 message types. The

execution time that has been performed in both systems can be observed in

figure 8.7, the blue line represents the current FLAME GPU, and the orange

line shows the system using the data aware approach. The graph has linear

performance as increasing agent types has a linear increase agent functions

within the model. The interquartile range values cross-runs for the data aware

approach system can be seen in Fig 8.8. Each simulation in this benchmark

was run for 100 iterations using the same environment size and the population

size of each agent type was 100,000 agent.

Figure 8.8: Interquartile range values in seconds for simulation runs (Pop-

ulation complexity benchmark while applying the functional ap-

proach)

129 8.4. The keratinocyte (cell) model

8.4 The keratinocyte (cell) model

As part of the Epithelium project [156], the Keratinocyte (cell) model [142]

was developed to model the behaviour of various types of skin epithelial cells.

This model is used to observe the interactions between cells during normal

and abnormal tissue growth. The simulation of Keratinocyte model represents

some different stages within the cell cycle. This includes the renewal of cells

by growing and dividing, which ultimately leads to increased agent population

within the model. There is also differentiation, the behaviour here represents

the change from Keratinocyte stem cells to fully specialised cells that can no

longer replicate. Once the specialised cells reach their limit, they begin to die

and the process of apoptosis eliminates such agents from the simulation.

Based on the model functionality that is described by Sun et al. [142],

the Keratinocyte model has been implemented in FLAME GPU with some

modifications [129]. It is also included within FLAME GPU SDK as one of

the example models and provides an opportunity to explore the result of our

data aware approach on a real ”research” model. The modified version of the

model within FLAME GPU consists of a single agent type, two message types,

a single initialisation function and seven agent functions. There are four cell

types implemented as different type values assigned to individual Keratinocyte

agents which are as follows.

• Stem Cells: are existed at cell colonies and divide to produce two stem

cells. They remain fairly static during the simulation.

• Transit Amplifying: same as stem cells, will divide to produce two transit

amplifying cells, if there is enough space.

• Committed Cells: both stem and transit amplifying cells become commit-

ted cells after the differentiation processes.

• Corneocyte Cells: When a cell in any of the three above types dies it

becomes a corneocyte cell.

Agent functions are used to simulate the biological processes of cell be-

haviour such as cell-cell and cell-substrate adhesion, migration, division and

differentiation. Table 8.2 summaries all agent functions and their role within

the model.

130 8.4. The keratinocyte (cell) model

Table 8.2: Agent functions used within the Keratinocyte colony model.

Function Name Description

output location Outputs the cell location

cycle
Simulates a cell cycle to allow the division process

after a predetermined time.

differentiate Simulates the differentiation process

migrate Simulates cell movement(cell migration).

death signal Decides if a cell should become a Corneocyte cell.

force reso lution out-

put

Outputs the cell location after the normal simula-

tion process of the cell.

resolve forces
Cell spatial location overlaps are resolved by this

function.

8.4.1 Performance Results

This experiment uses the original version of Keratinocyte model that is included

with FLAME GPU examples. There is an updated version by Chimeh and

Richmond [22] which is designated to reduce the impact of divergence within

the original model. The original model has been chosen to observe the impact

of data ware approach on overall performance for such complex behaviour. The

amount of data and message reduction as a result of using the data-aware

approach can be seen in table 8.3 agent memory and table 8.4 for message

memory with each function. All results were obtained on a single PC using

NVIDIA TITAN V graphics card with 5120 CUDA cores and 12 GB HBM2

of memory. Figure 8.9 shows the performance of the Keratinocyte model in

both versions. The proposed method (orange line) shows miner improvements

when compared to current FLAME GPU (blue line). This due to the complex

behaviour of agent communication within resolve_forces function as the

execution time of this function takes %90 of the iteration run time. There is a

relationship between the average of message memory reduction and the average

of the overall improvements when using this approach. The simulation was

performed for 500 iterations each time while scaling the model. Averages for

each experiment were obtained over 10 runs per sample.

131 8.4. The keratinocyte (cell) model

Table 8.3: The total memory access for each agent function in the Ker-

atinocyte model and the percentage of reduction after applying our

approach

Function Name Memory access In-data Out-data Total reduction

Output location 36 7 0 80%

Cycle 36 8 2 70%

Differentiate 36 8 2 70%

Death signal 36 4 1 86%

Migrate 36 5 4 75%

Force resolution output 36 5 0 86%

Resolve forces 36 7 4 69%

Table 8.4: The total memory access for each message in the Keratinocyte

model and the percentage of reduction after applying our approach

Function Name Message Name Memory Access In-data Total reduction

Differentiate location 9 4 55%

Death signal location 9 4 55%

Migrate location 9 4 55%

Resolve forces force 5 4 20%

132 8.4. The keratinocyte (cell) model

Figure 8.9: Comparison of average execution time against population size,

showing unmodified (blue) and modified (orange) FLAME GPU.

133 8.5. Validating the Results

8.5 Validating the Results

Within the FLAME GPU, the generated simulation header file (header.h) con-

tains multiple macros that can be changed to output to console additional pop-

ulation data, for example, agent count per iteration or effects of more particular

timing. Validating the results of both the Circle model and Keratinocyte model

has been done using the output files, consisting of all the information about

each iteration. For validating the benchmark model results, as mentioned in

Chapter 4, the generated histogram of agent accounts was used to compare all

of the experiments to ensure that the agent’s behaviour was the same for both

systems.

8.6 Discussion

The overall trend in performance of applying the data-aware technique to

FLAME GPU is an improvement in operational efficiency. The rate of im-

provements is between 47% to 80% based on the type of variable (either agent

or message) which has benefited from reduced data movement. The results

indicate that FLAME GPU is most likely to benefit from reducing movement

of message variables. This is can be observed from all benchmarking results

in section 8.2, 8.3.1 and 8.3.2. This results observed within the result of mod-

elling Keratinocyte model using are lower than that of the benchmark model

(i.e. 20% improvement). This can be attributed to the behaviour of the mode.

Within the Keratinocyte model a recursive force resolution step accounts for a

large percentage of the run-time. During this step the force message reading

is the dominant part of the execution time and as such the 20% overall per-

formance improvement can be expected from the outputs of the dependency

analysis. More generally the dependency analysis outputs which indicate the

total reduction in data movement can provide a good estimate of simulation

performance improvement when they are considered alongside profiling results

of the model to understanding which parts of the model are dominant with

respect to run-time. In addition to the results demonstrated an additional

benefit to the proposed approach is that the reduction in data movement re-

duces register and shared memory usage which are used within FLAME GPU

to cache agent and message variables. As registers and shared memory are an

134 8.7. Summary

limited resource the data-aware approach facilitates a modeller to design larger

models (i.e. more variables) without exceeding resource limitations. Overall

our results of using data-aware approach offer efficient performance for ABM

application which is similar to performacne results reported for other types of

run-time analysis 2.5.1.3 such as StarPU, PaRSEC and DAGuE. The distinction

between other approaches is that they use a task based approach to reschedule

the tasks to available resources rather than using prior knowledge of memory

variable dependencies to reduce the amount of memory usage.

8.7 Summary

This chapter has presented the performance results of using both (original and

data-aware) versions of the FLAME GPU to implement the simulation of three

different models. The Circles model and the Keratinocyte model have been

used to evaluate the benefits of applying a data-aware approach to FLAME

GPU. The benchmark results in both models proved that accessing a subset

of data memory reduces the execution time of the iteration. However, the

percentage of performance enhancement is based on the behaviour complexity

of each model. In our benchmark model, three benchmark experiments have

been used to evaluate the overall performance of the new system. These

experiments focused on measuring the ability for the new system to reduce

simulation execution time under specific criteria (scalability and system ho-

mogeneity). Comparing the benchmark results of the current and new system

show that reducing data movement within CS simulation improves overall

performance. The scaling population size experiment for both systems showed

that the new method helped to reduce execution time by approximately 80%

and tends to stabilise around this percentage as population size increases. A

significant improvement has resulted from using the proposed method within

the divergence benchmark. Execution time was reduced by 70% when running

the agent divergence benchmark and by around 45% while examining the

population divergence experiment.

Chapter 9

Conclusion

This thesis has investigated the impacts of discovering data dependency to

reduce data movement during the simulation of complex systems on a GPU.

A new benchmark model has also been designed to examine system scalability,

system homogeneity and the ability of the system to handle an increase of agent

communications within ABM systems.

9.1 Research Summary

The work presented in this thesis investigated the nature of the ABM system,

starting with developing a standard method of benchmarking ABM applica-

tions under a number of criteria for observing system performance. Measuring

system scalability is the most common benchmark that exists in the field of

ABM and simulation. In fact, the ability of such systems to scale is not the

only factor that may affect the performance in these systems, according to

the OpenAB community. The computational complexity, internal memory

requirements and homogeneity of the agent and population of the model are

other factors that may affect the overall performance. A standard benchmark

model has been designed to allow for observing system behaviour while testing

these factors. The performance results obtained by using the presented

benchmark model, as discussed in Chapter 5.4, indicate that the presented

benchmark model is suitable for use as an experimental tool in the evaluation

of modelling capabilities of an ABM system if it is replicated in a suitable way.

It also indicates that varying the population size is not the only factor that

may slow the execution time of a simulation. This thesis also proved that all of

the above factors have a clear impact on the performance of ABMS applications.

135

136 9.1. Research Summary

For the effect of data dependency on the performance of real-time applica-

tions, this thesis contends that the discovery of data dependency between agents

could help to reduce data movement during simulations. This ultimately im-

proves performance and reduces the execution time. By applying two proposed

approaches for reducing data movement using extracted dependency, this the-

sis proves that the execution time is reduced as a result of data movement

reduction. The approaches that were used are as follows:

9.1.1 Functional Approach

In a FLAME GPU, agent functions are organised into layers according to when

their state conditions are enabled. Prior knowledge of the functional depen-

dency helped to minimise the number of layers, leading to the minimisation of

execution time per iteration of the simulation. This approach, based on merg-

ing some agent functions that have no dependency conflicts, was experimentally

tested using the benchmark model with the FLAME GPU.

9.1.2 Data-Aware Approach

With FLAME GPU, all agent and message memory needs to be accessed dur-

ing the simulation process. The use of limited shared memory and registers

results in limitations on both the size of messages and the complexity of agent

behaviour. This thesis presented a data-aware approach based on the use of

data dependency information to access a subset of agent and message memory

during the simulation. The data-aware approach was tested using a number

of existing FLAME GPU models in addition to our benchmark model. The

automation process of this approach is a result of implementing the following

points:

• Automating the discovery of data dependency A dependency gen-

erator tool was created to easily parse the behavioural function scripts of

an agent and produce an XML file detailing the discovered data depen-

dencies. The XSLT processor was used to generate a new XML model

file with extra meta-information by combining the model specification file

with dependency data.

137 9.1. Research Summary

• A new representation of an agent in the X-machine model An

alternative representation of a CXM model was proposed, and the pro-

posed modification to the X-machine model allowed access to a subset of

agent memory within each function. The modification to FLAME GPU

templates to access the required memory was described.

9.1.3 Evaluating and Validating the Use of the Proposed

Approaches

Applying both approaches, the performance of the system was evaluated

through careful benchmarking against the original FLAME GPU. Figure 9.1

shows the comparison of the median value cross-runs of execution time for all

versions. This benchmark measures the scalability of the model of each version

and observes the performance, which is the same as reviewed in Section 5.4.3.

The agent complexity experiment discussed in Section 5.4.2 obtained results

that are presented in figure 9.2, which shows the median value of the processing

time in relation to the number of communicating agents (slave-to-master). The

performances of all systems were compared using the population complexity

benchmark referenced in Section 6.5.1, and the result is presented in figure 9.3.

For all experiments, the original FLAME GPU (blue), data-aware approach

(orange) and functional approach (grey) resulted in an average performance

enhancement of 10–20% when using the functional approach, while the data-

aware approach reached 80–90%. For validation, as mentioned in Chapter 4,

the generated histogram of agent accounts was used for comparison in all of

the experiments to ensure that the agent’s behaviour was the same for every

system.

In conclusion, both approaches showed a substantial improvement as com-

pared with the original FLAME GPU, but the extent of this enhancement

depended on the complexity of the model and the amount that data movement

can be reduced. Table 9.1 shows the comparison of the approaches.

138 9.1. Research Summary

Table 9.1: Comparison of Data-aware approach and Functional approach

Criteria Data-Aware approach Functional approach

Implementation Automatically Manually

Targeting all agent functions to

reduce agent memory access

All Only functions have been merged

Can reduce the message memory

access

Yes Has no effect

Tested using a number of FLAME

GPU existing models

Yes Only benchmark model

Can be applied to other ABM

simulation tools

Yes Specified for FLAME GPU

Figure 9.1: Comparison of the median value of execution time against the

population size, showing the original FLAME GPU (blue), using

the data-aware approach (orange) and the functional approach

(grey).

139 9.1. Research Summary

Figure 9.2: Comparison of the median value of processing time against the

number of communicating agents (slave-to-master), showing an

unmodified system (blue), a system modified to use the functional

approach (orange) and a modified system using the data-aware

approach (grey).

Figure 9.3: Comparison of the median value of execution time against

the population divergence, showing an unmodified system (blue),

a modified system using the functional approach (orange) and a

system modified to use the data-aware approach (grey).

140 9.2. Limitations of the Research

9.2 Limitations of the Research

All the work described in this thesis was demonstrated and tested using FLAME

GPU as an ABM software example. Despite this, it is important to consider the

limitations of each tool and approach proposed in this work. The major limita-

tion is that both the benchmark and performance enhancement approaches were

tested using FLAME GPU and were not tested on any other simulation tool.

The functional approach specifically for FLAME GPU, targeting the function

layers, reduced the limited amount of agent memory, and it had no effect on

reducing message memory access time. The next section highlights a number

of topics to be a baseline for further work in this area of research.

9.3 Future Work

The following points highlight potential areas for future research:

• The benchmark model was implemented for the FLAME GPU frame-

work. The ABM community will benefit from replicating this model in

a suitable way for other ABM platforms. To formalise and re-implement

this model, we aim to use the CoSMoS approach to make it more under-

standable for other users. The complex system modelling and simulation

(CoSMoS) approach [10] was developed to be used as a scientific instru-

ment for understanding a complex system. It offers a guide to modelling

and simulating complex systems and integrates all-round verification and

validation. The CoSMoS approach has already been successfully used in

a number of studies of biological systems, such as [5, 47, 18]. Despite

this specific use, CoSMoS can also be tailored and adapted for other uses,

according to [38].

• The great achievements of the data-aware approach make it a remarkable

choice for testing on other systems. Moreover, the underlying model ab-

straction is appropriate for any streaming-based MAS platform or model.

Appendices

141

Appendix A

Functions.c File

1 /*

2 *

3 * Functions.c for The Benchmark Model.

4 *

5 * Author: Eidah Alzahrani

6 *

7 */

8 #include <header.h>

9 #include <vector>

10

11 #ifndef _FLAMEGPU_FUNCTIONS

12 #define _FLAMEGPU_FUNCTIONS

13 #define AGENT_STATE_DEAD 3

14 #define AGENT_STATE_BIND 2

15 #define XMAX 10.0f

16 #define YMAX 10.0f

17 #define ZMAX 10.0f

18 #define radius 1.0f//Interaction radius

19 #define DT 0.01

20 #define MOVEMENT_TIME_RANGE 15//by increasing this we will make

agents move across a larger amount of area and increase the

chance that they will be within range of another agent to

interact with

21 #define MIN_MOVEMENT_TIME 5

22

23 std::vector<int>Acounter;

24 std::vector<int>Bcounter;

25 std::vector<int>Ccounter;

26 std::vector<int>iteration;

27 unsigned int h_iteration = 0;

142

143

28 #define AGENT_STATE_A_DEFAULT 1

29 #define AGENT_STATE_B_DEFAULT 4

30 #define AGENT_STATE_C_DEFAULT 5

31 /*

32 *init_Function.....

33 */

34 __FLAME_GPU_INIT_FUNC__ void initFunction(){

35

36 Acounter.push_back(get_agent_A_moving_A_count());

37 Bcounter.push_back(get_agent_B_moving_B_count());

38 Ccounter.push_back(get_agent_C_moving_C_count());

39 iteration.push_back(0);

40 fflush(stdout);

41 }

42 /*

43 *step_Function.....

44 */

45 __FLAME_GPU_STEP_FUNC__ void stepFunction(){

46

47 h_iteration++;

48 iteration.push_back(h_iteration);

49 Acounter.push_back(get_agent_A_moving_A_count());

50 Bcounter.push_back(get_agent_B_moving_B_count());

51 Ccounter.push_back(get_agent_C_moving_C_count());

52 fflush(stdout);

53 }

54 /*

55 *Exit_Function.....

56 */

57 __FLAME_GPU_EXIT_FUNC__ void exitFunction(){

58

59 FILE *output = fopen("output.dat", "w");

60

61 fprintf(output, "#IA B C \n ");

62

63 for (int i = 0; i < h_iteration; i++){

64 fprintf(output, "%u %d %d %d \n ", iteration[i],Acounter[i],

Bcounter[i], Ccounter[i]);

65 }

66 fclose(output);

67 }

68 /*

144

69 * move_A FLAMEGPU Agent Function

70 */

71 __FLAME_GPU_FUNC__ int move_A(xmachine_memory_A* agent, RNG_rand48*

rand48){

72

73 float vx;

74 float vy;

75 float vz;

76

77 float x = agent->x;

78 float y = agent->y;

79 float z = agent->z;

80

81 //generate a new direction by creating a new random velocity

82 if (agent->count == 0) {

83 float r_x = (rnd(rand48) - 0.5f)*2.0f;

84 float r_y = (rnd(rand48) - 0.5f)*2.0f;

85 float r_z = (rnd(rand48) - 0.5f)*2.0f;

86

87 agent->vx = r_x;

88 agent->vy = r_y;

89 agent->vz = r_z;

90

91 agent->count = (int)(rnd(rand48)*(float)MOVEMENT_TIME_RANGE)

+ MIN_MOVEMENT_TIME;

92 }

93 //get the velocity

94 vx=agent->vx ;

95 vy=agent->vy ;

96 vz=agent->vz ;

97

98 //move according to velocity

99 x = x + vx*DT;

100 y = y + vy*DT;

101 z = z + vz*DT;

102

103 //(Clamp position to environment)

104 x = x >= XMAX ? XMAX : x;

105 x = x <= 0.0 ? 0.0 : x;

106 y = y >= YMAX ? YMAX : y;

107 y = y <= 0.0 ? 0.0 : y;

108 z = z >= ZMAX ? ZMAX : z;

145

109 z = z <= 0.0 ? 0.0 : z;

110

111 agent->x = x;

112 agent->y = y;

113 agent->z = z;

114 agent->count--;

115 agent->state = AGENT_STATE_A_DEFAULT;

116

117 return 0;

118 }

119 /*

120 * death_A FLAMEGPU Agent Function

121 */

122 __FLAME_GPU_FUNC__ int death_A(xmachine_memory_A* agent){

123

124 return 1;

125

126 }

127 /*

128 * move_B FLAMEGPU Agent Function

129 */

130 __FLAME_GPU_FUNC__ int move_B(xmachine_memory_B* agent, RNG_rand48*

rand48){

131

132 float vx;

133 float vy;

134 float vz;

135

136 float x = agent->x;

137 float y = agent->y;

138 float z = agent->z;

139

140 //generate a new direction by creating a new random velocity

141 if (agent->count == 0) {

142 float r_x = (rnd(rand48) - 0.5f)*2.0f;

143 float r_y = (rnd(rand48) - 0.5f)*2.0f;

144 float r_z = (rnd(rand48) - 0.5f)*2.0f;

145

146 agent->vx = r_x;

147 agent->vy = r_y;

148 agent->vz = r_z;

149

146

150 agent->count = (int)(rnd(rand48)*(float)MOVEMENT_TIME_RANGE)

+ MIN_MOVEMENT_TIME;

151 }

152 //get the velocity

153 vx=agent->vx ;

154 vy=agent->vy ;

155 vz=agent->vz ;

156

157 //move according to velocity

158 x = x + vx*DT;

159 y = y + vy*DT;

160 z = z + vz*DT;

161

162 //(Clamp position to environment)

163 x = x >= XMAX ? XMAX : x;

164 x = x <= 0.0 ? 0.0 : x;

165 y = y >= YMAX ? YMAX : y;

166 y = y <= 0.0 ? 0.0 : y;

167 z = z >= ZMAX ? ZMAX : z;

168 z = z <= 0.0 ? 0.0 : z;

169

170 agent->x = x;

171 agent->y = y;

172 agent->z = z;

173 agent->count--;

174 agent->state = AGENT_STATE_B_DEFAULT;

175

176 return 0;

177 }

178 /*

179 * send_locationB FLAMEGPU Agent Function

180 */

181 __FLAME_GPU_FUNC__ int send_locationB(xmachine_memory_B* agent,

xmachine_message_locationB_list* locationB_messages){

182

183 int id, s, t, c_id;

184 float x, y, z, c_point;

185 id = agent->id;

186 x = agent->x;

187 y = agent->y;

188 z = agent->z;

189 s = agent->state;

147

190 t = agent->type;

191 c_point = agent->closest_point;

192 c_id = agent->closest_id;

193 add_locationB_message(locationB_messages, c_id ,c_point , id, s,t,

x, y, z);

194

195 return 0;

196 }

197

198 /*

199 * receive_bindB FLAMEGPU Agent Function

200 */

201 __FLAME_GPU_FUNC__ int receive_bindB(xmachine_memory_B* agent,

xmachine_message_bindB_list* bindB_messages,

xmachine_message_bindB_PBM* partition_matrix){

202 int c = 0, nearest_id = 0;

203 float nearest_distance = 0.0f;

204 xmachine_message_bindB* current_message = get_first_bindB_message(

bindB_messages, partition_matrix, agent->x, agent->y, agent->z);

205

206 while (current_message)

207 {

208 if (current_message->id != agent->id){

209 if (agent->id == current_message->closest_id){

210 if (c == 0){

211 c++;

212 nearest_distance = current_message->closest_point;

213 nearest_id = current_message->id;

214 }

215 else if (nearest_distance > current_message->

closest_point){

216 nearest_distance = current_message->closest_point;

217 nearest_id = current_message->id;

218 }

219 }

220 }

221 current_message = get_next_bindB_message(current_message,

bindB_messages, partition_matrix);

222

223 }

224 if (c == 1) {

225 agent->state = AGENT_STATE_DEAD;

148

226 agent->closest_point = nearest_distance;

227 agent->closest_id = nearest_id;

228 }

229 else{

230 agent->closest_id = -1;

231 }

232

233 return 0;

234 }

235 /*

236 * send_combinedB FLAMEGPU Agent Function

237 */

238 __FLAME_GPU_FUNC__ int send_combinedB(xmachine_memory_B* agent ,

xmachine_message_combinedB_list* combinedB_messages){

239

240 int id, s, t, c_id;

241 float x, y, z, c_point;

242 id = agent->id;

243 x = agent->x;

244 y = agent->y;

245 z = agent->z;

246 s = agent->state;

247 t = agent->type;

248 c_point = agent->closest_point;

249 c_id = agent->closest_id;

250 add_combinedB_message(combinedB_messages, c_id ,c_point , id, s,t,

x, y, z);

251 return 1;

252 }

253 /*

254 * need_locationB FLAMEGPU Agent Function

255 */

256 __FLAME_GPU_FUNC__ int need_locationB(xmachine_memory_A* agent,

xmachine_message_locationB_list* locationB_messages,

xmachine_message_locationB_PBM* partition_matrix){

257

258 int c = 0, nearest_id;

259 float distance_check, x1, x2, y1, y2, z1, z2;

260 float nearest_distance = 0.0f;

261 x1 = agent->x;

262 y1 = agent->y;

263 z1 = agent->z;

149

264

265 xmachine_message_locationB* current_message =

get_first_locationB_message(locationB_messages, partition_matrix

, agent->x, agent->y, agent->z);

266

267 while (current_message)

268 {

269 if (current_message->id != agent->id){

270 x2 = current_message->x;

271 y2 = current_message->y;

272 z2 = current_message->z;

273 distance_check = sqrt((x1 - x2)*(x1 - x2) + (y1 - y2)*(

y1 - y2) + (z1 - z2)*(z1 - z2));

274 if (distance_check <= radius) {

275 if (c == 0) {

276 c++;

277 nearest_distance = distance_check;

278 nearest_id = current_message->id;

279 }

280 else if (nearest_distance > distance_check){

281 nearest_distance = distance_check;

282 nearest_id = current_message->id;

283 }

284 }

285 }

286 current_message = get_next_locationB_message(current_message,

locationB_messages, partition_matrix);

287

288 }

289 if (c == 1) {

290 agent->state = AGENT_STATE_BIND;

291 agent->closest_point = nearest_distance;

292 agent->closest_id = nearest_id;

293 }

294 else{

295 agent->closest_id = -1;

296 }

297

298 return 0;

299 }

300 /*

301 * send_bindB FLAMEGPU Agent Function

150

302 */

303 __FLAME_GPU_FUNC__ int send_bindB(xmachine_memory_A* agent,

xmachine_message_bindB_list* bindB_messages){

304

305 int id, s, t, c_id;

306 float x, y, z, c_point;

307 id = agent->id;

308 x = agent->x;

309 y = agent->y;

310 z = agent->z;

311 t = agent->type;

312 s = agent->state;

313 c_point = agent->closest_point;

314 c_id = agent->closest_id;

315 add_bindB_message(bindB_messages, c_id ,c_point , id, s,t, x, y, z

);

316 return 0;

317 }

318 /*

319 * created_C FLAMEGPU Agent Function

320 */

321 __FLAME_GPU_FUNC__ int created_C0(xmachine_memory_A* agent,

xmachine_memory_C_list* C_agents,

xmachine_message_combinedB_list* combinedB_messages,

xmachine_message_combinedB_PBM* partition_matrix, RNG_rand48*

rand48){

322 int c = 0;

323

324 xmachine_message_combinedB* current_message =

get_first_combinedB_message(combinedB_messages, partition_matrix

, agent->x, agent->y, agent->z);

325

326 while (current_message)

327 {

328 if (current_message->id != agent->id){

329 if (current_message->closest_id == agent->id) {

330 c++;

331 }

332 else

333 {

334 current_message->state = AGENT_STATE_DEAD;

335 }

151

336 }

337 current_message = get_next_combinedB_message(current_message,

combinedB_messages, partition_matrix);

338 }

339 if(c >= 1) {

340 agent->state = 6;

341 add_C_agent(C_agents, 0.0, 0, agent->count, agent->id,

AGENT_STATE_C_DEFAULT, 1 ,agent->vx, agent->vy, agent->vz, agent

->x, agent->y, agent->z);

342 }

343 return 0;

344 }

345 /*

346 * move_C FLAMEGPU Agent Function

347 */

348 __FLAME_GPU_FUNC__ int move_C(xmachine_memory_C* agent, RNG_rand48*

rand48){

349

350 float vx;

351 float vy;

352 float vz;

353

354 float x = agent->x;

355 float y = agent->y;

356 float z = agent->z;

357

358 //generate a new direction by creating a new random velocity

359 if (agent->count == 0) {

360 float r_x = (rnd(rand48) - 0.5f)*2.0f;

361 float r_y = (rnd(rand48) - 0.5f)*2.0f;

362 float r_z = (rnd(rand48) - 0.5f)*2.0f;

363

364 agent->vx = r_x;

365 agent->vy = r_y;

366 agent->vz = r_z;

367

368 agent->count = (int)(rnd(rand48)*(float)MOVEMENT_TIME_RANGE)

+ MIN_MOVEMENT_TIME;

369 }

370 //get the velocity

371 vx=agent->vx ;

372 vy=agent->vy ;

152

373 vz=agent->vz ;

374

375 //move according to velocity

376 x = x + vx*DT;

377 y = y + vy*DT;

378 z = z + vz*DT;

379

380 //(Clamp position to environment)

381 x = x >= XMAX ? XMAX : x;

382 x = x <= 0.0 ? 0.0 : x;

383 y = y >= YMAX ? YMAX : y;

384 y = y <= 0.0 ? 0.0 : y;

385 z = z >= ZMAX ? ZMAX : z;

386 z = z <= 0.0 ? 0.0 : z;

387

388 agent->x = x;

389 agent->y = y;

390 agent->z = z;

391 agent->count--;

392 agent->state = AGENT_STATE_C_DEFAULT;

393

394 return 0;

395 }

396 #endif //_FLAMEGPU_FUNCTIONS

Listing A.1: Functions.c of the model that represents A+B

Appendix B

Scanner.l File

1

2 %{

3 //some C declarations

4 %}

5

6 //Flex Definition section

7 %option noyywrap

8 %option yylineno

9

10 O [0-7]

11 D [0-9]

12 NZ [1-9]

13 L [a-zA-Z_]

14 A [a-zA-Z_0-9]

15 H [a-fA-F0-9]

16 HP (0[xX])

17 E ([Ee][+-]?{D}+)

18 P ([Pp][+-]?{D}+)

19 FS (f|F|l|L)

20 IS (((u|U)(l|L|ll|LL)?)|((l|L|ll|LL)(u|U)?))

21 CP (u|U|L)

22 SP (u8|u|U|L)

23 WS [\t\v\n\f]

24 white_space [\t\n]

25 blank [\t]

26 other .

27

28 %%

29 "alignof" return ALIGNOF ;

30 "and" return AND ;

153

154

31 "and_eq" return and_EG ;

32 "asm" return ASM ;

33 "auto" return AUTO ;

34 "bitand" return BITAND ;

35 "bitor" return BITOR ;

36 "bool" return BOOL ;

37 "break" return BREAK ;

38 "case" return CASE ;

39 "catch" return CATCH ;

40 "char" return CHAR ;

41 "char16_t" return CHAR16_T ;

42 "char32_t" return CHAR32_T ;

43 "cin" return CIN ;

44 "class" return CLASS ;

45 "compl" return COMPLE ;

46 "const" return CONST ;

47 "constexpr" return CONSTEXPR ;

48 "const_cast" return CONST_CAST;

49 "continue" return CONTINUE ;

50 "cout" return COUT ;

51 "decltype" return DECLTYPE ;

52 "default" { return(DEFAULT); }

53 "delete" return DELETE ;

54 "do" return DO;

55 "double" return DOUBLE ;

56 "dynamic_cast" return DYNAMIC_CAST;

57 "else" return ELSE ;

58 "endl" return ENDL ;

59 "enum" return ENUM ;

60 "explicit" return EXPLICIT ;

61 "export" return EXPORT ;

62 "extern" return EXTERN ;

63 "false" return FALSE ;

64 "float" return FLOAT ;

65 "for" { return FOR ;}

66 "friend" return FRIEND ;

67 "goto" return GOTO ;

68 "if" return IF ;

69 "include" return INCLUDE ;

70 "inline" return INLINE ;

71 "int" { return INT ;}

72 "INT_MAX" return INT_MAX ;

155

73 "INT_MIN" return INT_MIN ;

74 "iomanip" return IOMANIP ;

75 "iostream" return IOSTREAM ;

76 "long" return LONG ;

77 "main " return MAIN ;

78 "MAX_RAND" return MAX_RAND ;

79 "mutable" return MUTABLE ;

80 "namespace" return NAMESPACE ;

81 "new" return NEW ;

82 "noexcept" return NOEXCEPT ;

83 "not" return NOT ;

84 "not_eq" return NOT_EG ;

85 "npos" return NPOS ;

86 "nullptr" return NULLPTR ;

87 "operator" return OPERATOR ;

88 "or" return OR ;

89 "or_eq" return OR_EQ;

90 "private" return PRIVATE ;

91 "protected" return PRPTECTED ;

92 "public" return PUBLIC ;

93 "register" return REGISTER ;

94 "restrict" return(RESTRICT);

95 "reinterpret_cast" return REINTERPRET_CAST ;

96 "return" return RETURN ;

97 "short" return SHORT ;

98 "signed" return SIGNED ;

99 "sizeof" return SIZEOF ;

100 "static" return STATIC ;

101 "static_assert" return STATIC_ASSERT;

102 "static_cast" return STATIC_CAST ;

103

104 "string" return STRING ;

105 "struct" return STRUCT ;

106 "switch" return SWITCH ;

107 "template" return TEMPLATE;

108 "this" return THIS ;

109 "thread_local" return THREAD_LOCAL ;

110 "throw" return THROW ;

111 "true" return TRUE ;

112 "try" return TRY ;

113 "typedef" return TYPEDEF ;

114 "typeid" return TYPEID ;

156

115 "typename" return TYPENAME ;

116 "union" return UNION ;

117 "unsigned" return UNSIGNED ;

118 "using" return USING ;

119 "virtual" return VIRTUAL ;

120 "void" return VOID ;

121 "volatile" return VOLATILE ;

122 "wchar_t" return WCHAR_T ;

123 "while" return WHILE ;

124 "xor" return XOR ;

125 "xor_eq" return XOR_EG ;

126 "_Alignas" return ALIGNAS;

127 "_Alignof" return ALIGNOF;

128 "_Atomic" return ATOMIC;

129 "_Generic" return GENERIC;

130 "_Imaginary" return IMAGINARY;

131 "_Noreturn" return NORETURN;

132 "__func__" return FUNC_NAME;

133

134 [L]([L]|[D])* {return(check_type()); }

135 {L}{A}* { return check_type(); }

136

137 {HP}{H}+{IS}? { return I_CONSTANT; }

138 {NZ}{D}*{IS}? { return I_CONSTANT; }

139 "0"{O}*{IS}? { return I_CONSTANT; }

140 {D}+{E}{FS}? { return F_CONSTANT; }

141 {D}*"."{D}+{E}?{FS}? { return F_CONSTANT; }

142 {D}+"."{E}?{FS}? { return F_CONSTANT; }

143 {HP}{H}+{P}{FS}? { return F_CONSTANT; }

144 {HP}{H}*"."{H}+{P}{FS}? { return F_CONSTANT; }

145 {HP}{H}+"."{P}{FS}? { return F_CONSTANT; }

146

147 ({SP}?\"([ˆ"\\\n]|{ES})*\"{WS}*)+ { return STRING_LITERAL; }

148

149 "..." return(ELLIPSIS);

150 ">>=" return(RIGHT_ASSIGN);

151 "<<=" return(LEFT_ASSIGN);

152 "+=" return(ADD_ASSIGN);

153 "-=" return(SUB_ASSIGN);

154 "*=" return(MUL_ASSIGN);

155 "/=" return(DIV_ASSIGN);

156 "%=" return(MOD_ASSIGN);

157

157 "&=" return(AND_ASSIGN);

158 "ˆ=" return(XOR_ASSIGN);

159 "|=" return(OR_ASSIGN);

160 ">>" return(RIGHT_OP);

161 "<<" return(LEFT_OP);

162 "++" return(INC_OP);

163 "--" return(DEC_OP);

164 "->" return(PTR_OP);

165 "&&" return(AND_OP);

166 "||" return(OR_OP);

167 "<=" return(LE_OP);

168 ">=" return(GE_OP);

169 "==" return(EQ_OP);

170 "!=" return(NE_OP);

171 ";" return(’;’);

172 ("{"|"<%") return(’{’);

173 ("}"|"%>") return(’}’);

174 "," return(’,’);

175 ":" return(’:’);

176 "=" return(’=’);

177 "(" return(’(’);

178 ")" return(’)’);

179 ("["|"<:") return(’[’);

180 ("]"|":>") return(’]’);

181 "." return(’.’);

182 "&" return(’&’);

183 "!" return(’!’);

184 "˜" return(’˜’);

185 "-" return(’-’);

186 "+" return(’+’);

187 "*" return (’*’);

188 "/" return(’/’);

189 "%" return(’%’);

190 "<" return(’<’);

191 ">" return(’>’);

192 "ˆ" return(’ˆ’);

193 "|" return(’|’);

194 "?" return(’?’);

195 "#endif" return ENDIF;

196 "#ifndef" return IFNDEF;

197 "#define" return DEFINE;

198 "\n" { yylineno= lineno++; };

158

199 %%

200

201 void parseFile(FILE *file) {

202

203 yyin = file;

204 }

Listing B.1: Functions.c of the model that represents A+B

Appendix C

Meta-data.xslt File

1 <xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL

/Transform"

2 xmlns:xmml="http://www.dcs.shef.ac.uk/˜paul/XMML"

3 xmlns:gpu="http://www.dcs.shef.ac.uk/˜paul/XMMLGPU"

4 exclude-result-prefixes="xmml gpu xsl " >

5

6

7 <xsl:output indent="yes" method="xml" encoding="utf-8" omit-xml-

declaration="yes"/>

8 <xsl:strip-space elements="*"/>

9 <xsl:variable name="lookup-source" select="document(’output1.xml’)"

/>

10 <xsl:key name="dependency" match="data_dependency" use="functions/

gpu:function/name" />

11

12

13 <xsl:template match="gpu:function" >

14 <gpu:function>

15 <xsl:variable name="function_name" select="xmml:name"/>

16

17 <!-- Output ANY elements which may occur before our new

dependency elements -->

18

19 <xsl:apply-templates select="xmml:name"/>

20 <xsl:apply-templates select="xmml:currentState"/>

21 <xsl:apply-templates select="xmml:nextState"/>

22

23 <!-- Output ANY elements for our new in_dependency elements -->

24 <xsl:for-each select="$lookup-source/functions/function[name=$

function_name]">

159

160

25 <xsl:if test="In_data=’true’">

26 <in_datadependency>

27 <xsl:for-each select="In_datadependency/variable">

28 <dependencyVariable><name>

29 <xsl:value-of select="name"/>

30 </name></dependencyVariable>

31 </xsl:for-each>

32 </in_datadependency>

33 </xsl:if>

34 </xsl:for-each>

35

36 <!-- Output ANY elements for our new out_dependency elements -->

37 <xsl:for-each select="$lookup-source/functions/function[name=$

function_name]">

38 <xsl:if test="Out_data=’true’">

39 <out_datadependency>

40 <xsl:for-each select="Out_datadependency/variable">

41 <dependencyVariable><name>

42 <xsl:value-of select="name"/>

43 </name></dependencyVariable>

44 </xsl:for-each>

45 </out_datadependency>

46 </xsl:if>

47 </xsl:for-each>

48

49 <!-- Output ANY elements for our new out_dependency elements -->

50 <xsl:for-each select="$lookup-source/functions/function[name=$

function_name]">

51 <xsl:if test="In_message=’true’">

52 <in_messagedependency>

53 <xsl:for-each select="In_messagedependency/variable">

54 <dependencyVariable><name>

55 <xsl:value-of select="name"/>

56 </name></dependencyVariable>

57 </xsl:for-each>

58 </in_messagedependency>

59 </xsl:if>

60 </xsl:for-each>

61

62 <!-- Output ANY elements which may occur after our new

dependency elements (TODO: All cases of input/outputs/conditions

/ global conditions etc.) -->

161

63 <xsl:apply-templates select="xmml:outputs"/>

64 <xsl:apply-templates select="xmml:inputs"/>

65 <xsl:apply-templates select="xmml:xagentOutputs"/>

66 <xsl:apply-templates select="gpu:globalCondition"/>

67 <xsl:apply-templates select="xmml:condition"/>

68 <xsl:apply-templates select="gpu:reallocate"/>

69 <xsl:apply-templates select="gpu:RNG"/>

70 </gpu:function>

71 </xsl:template>

72

73

74

75 <!-- identity transform -->

76 <xsl:template match="@*|node()">

77 <xsl:copy>

78 <xsl:apply-templates select="@*|node()"/>

79 </xsl:copy>

80 </xsl:template>

81

82

83 </xsl:stylesheet>

Listing C.1: Functions.c of the model that represents A+B

Appendix D

Meta-data.xslt File

1 <xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL

/Transform"

2 xmlns:xmml="http://www.dcs.shef.ac.uk/˜paul/XMML"

3 xmlns:gpu="http://www.dcs.shef.ac.uk/˜paul/XMMLGPU"

4 exclude-result-prefixes="xmml gpu xsl " >

5

6

7 <xsl:output indent="yes" method="xml" encoding="utf-8" omit-xml-

declaration="yes"/>

8 <xsl:strip-space elements="*"/>

9 <xsl:variable name="lookup-source" select="document(’output1.xml’)"

/>

10 <xsl:key name="dependency" match="data_dependency" use="functions/

gpu:function/name" />

11

12

13 <xsl:template match="gpu:function" >

14 <gpu:function>

15 <xsl:variable name="function_name" select="xmml:name"/>

16

17 <!-- Output ANY elements which may occur before our new

dependency elements -->

18

19 <xsl:apply-templates select="xmml:name"/>

20 <xsl:apply-templates select="xmml:currentState"/>

21 <xsl:apply-templates select="xmml:nextState"/>

22

23 <!-- Output ANY elements for our new in_dependency elements -->

24 <xsl:for-each select="$lookup-source/functions/function[name=$

function_name]">

162

163

25 <xsl:if test="In_data=’true’">

26 <in_datadependency>

27 <xsl:for-each select="In_datadependency/variable">

28 <dependencyVariable><name>

29 <xsl:value-of select="name"/>

30 </name></dependencyVariable>

31 </xsl:for-each>

32 </in_datadependency>

33 </xsl:if>

34 </xsl:for-each>

35

36 <!-- Output ANY elements for our new out_dependency elements -->

37 <xsl:for-each select="$lookup-source/functions/function[name=$

function_name]">

38 <xsl:if test="Out_data=’true’">

39 <out_datadependency>

40 <xsl:for-each select="Out_datadependency/variable">

41 <dependencyVariable><name>

42 <xsl:value-of select="name"/>

43 </name></dependencyVariable>

44 </xsl:for-each>

45 </out_datadependency>

46 </xsl:if>

47 </xsl:for-each>

48

49 <!-- Output ANY elements for our new out_dependency elements -->

50 <xsl:for-each select="$lookup-source/functions/function[name=$

function_name]">

51 <xsl:if test="In_message=’true’">

52 <in_messagedependency>

53 <xsl:for-each select="In_messagedependency/variable">

54 <dependencyVariable><name>

55 <xsl:value-of select="name"/>

56 </name></dependencyVariable>

57 </xsl:for-each>

58 </in_messagedependency>

59 </xsl:if>

60 </xsl:for-each>

61

62 <!-- Output ANY elements which may occur after our new

dependency elements (TODO: All cases of input/outputs/conditions

/ global conditions etc.) -->

164

63 <xsl:apply-templates select="xmml:outputs"/>

64 <xsl:apply-templates select="xmml:inputs"/>

65 <xsl:apply-templates select="xmml:xagentOutputs"/>

66 <xsl:apply-templates select="gpu:globalCondition"/>

67 <xsl:apply-templates select="xmml:condition"/>

68 <xsl:apply-templates select="gpu:reallocate"/>

69 <xsl:apply-templates select="gpu:RNG"/>

70 </gpu:function>

71 </xsl:template>

72

73

74

75 <!-- identity transform -->

76 <xsl:template match="@*|node()">

77 <xsl:copy>

78 <xsl:apply-templates select="@*|node()"/>

79 </xsl:copy>

80 </xsl:template>

81

82

83 </xsl:stylesheet>

Listing D.1: Functions.c of the model that represents A+B

Bibliography

[1] Brandon G Aaby, Kalyan S Perumalla, and Sudip K Seal. “Efficient sim-

ulation of agent-based models on multi-GPU and multi-core clusters”.

In: Proceedings of the 3rd international ICST conference on simulation

tools and techniques. ICST (Institute for Computer Sciences, Social-

Informatics and Telecommunications Engineering). 2010, p. 29.

[2] Sameera Abar et al. “Agent Based Modelling and Simulation tools: A

review of the state-of-art software”. In: Computer Science Review 24

(2017), pp. 13–33.

[3] Alfred V. Aho et al. Compilers: Principles, Techniques, and Tools (2nd

Edition). Boston, MA, USA: Addison-Wesley Longman Publishing Co.,

Inc., 2006. isbn: 0321486811.

[4] Samuel Alberts et al. “Data-parallel techniques for simulating a mega-

scale agent-based model of systemic inflammatory response syndrome on

graphics processing units”. In: Simulation 88.8 (2012), pp. 895–907.

[5] Kieran Alden et al. “Pairing experimentation and computational mod-

eling to understand the role of tissue inducer cells in the development of

lymphoid organs”. In: Frontiers in Immunology 3 (2012), p. 172.

[6] Kieran Alden et al. “Utilising a simulation platform to understand the

effect of domain model assumptions”. In: Natural computing 14.1 (2015),

pp. 99–107.

[7] Robert John Allan. Survey of agent based modelling and simulation tools.

Science & Technology Facilities Council, 2010.

[8] Eidah Alzahrani, Paul Richmond, and Anthony JH Simons. “A formula-

driven scalable benchmark model for ABM, applied to FLAME GPU”.

In: European Conference on Parallel Processing. Springer. 2017, pp. 703–

714.

165

166 Bibliography

[9] Eidah Alzahrani, Anthony JH Simons, and Paul Richmond. “Data Aware

Simulation of Complex Systems on GPUs”. In: 2019 International Con-

ference on High Performance Computing & Simulation (HPCS). IEEE.

2019, pp. 567–574.

[10] Paul S Andrews et al. “CoSMoS process, models, and metamodels”. In:

Proceedings of the 2011 Workshop on Complex Systems Modelling and

Simulation, Paris, France. 2011, pp. 1–13.

[11] Kishoj Bajracharya and Raphael Duboz. “Comparison of three agent-

based platforms on the basis of a simple epidemiological model (WIP)”.

In: Proceedings of the Symposium on Theory of Modeling & Simulation-

DEVS Integrative M&S Symposium. Society for Computer Simulation

International. 2013, p. 7.

[12] José Barbosa and Paulo Leitão. “Simulation of multi-agent manufac-

turing systems using agent-based modelling platforms”. In: 2011 9th

IEEE International Conference on Industrial Informatics. IEEE. 2011,

pp. 477–482.

[13] Isaac Sánchez Barrera et al. “Reducing Data Movement on Large Shared

Memory Systems by Exploiting Computation Dependencies”. In: (2018).

[14] Anthony Bigbee, Claudio Cioffi-Revilla, and Sean Luke. “Replication of

Sugarscape using MASON”. In: Agent-Based Approaches in Economic

and Social Complex Systems IV. Springer, 2007, pp. 183–190.

[15] William Blume and Rudolf Eigenmann. “Nonlinear and symbolic data

dependence testing”. In: IEEE Transactions on Parallel and Distributed

Systems 9.12 (1998), pp. 1180–1194.

[16] Andrei Borshchev and Alexei Filippov. “From system dynamics and dis-

crete event to practical agent based modeling: reasons, techniques, tools”.

In: Proceedings of the 22nd International Conference of the System Dy-

namics Society. Vol. 22. Citeseer. 2004.

[17] LB Bosi, M Mariotti, and A Santocchia. “GPU Linear algebra extensions

for GNU/Octave”. In: Journal of Physics: Conference Series. Vol. 368.

1. IOP Publishing. 2012, p. 012062.

[18] James Bown et al. “Engineering simulations for cancer systems biology”.

In: Current Drug Targets 13.12 (2012), pp. 1560–1574.

167 Bibliography

[19] Federico Campeotto, Agostino Dovier, and Enrico Pontelli. “Protein

structure prediction on GPU: a declarative approach in a multi-agent

framework”. In: 2013 42nd International Conference on Parallel Pro-

cessing. IEEE. 2013, pp. 474–479.

[20] José M Cecilia et al. “Enhancing data parallelism for ant colony opti-

mization on GPUs”. In: Journal of Parallel and Distributed Computing

73.1 (2013), pp. 42–51.

[21] Wenan Chen et al. “Agent based modeling of blood coagulation system:

implementation using a GPU based high speed framework”. In: 2011

Annual International Conference of the IEEE Engineering in Medicine

and Biology Society. IEEE. 2011, pp. 145–148.

[22] Mozhgan K Chimeh and Paul Richmond. “Simulating heterogeneous be-

haviours in complex systems on GPUs”. In: Simulation Modelling Prac-

tice and Theory 83 (2018), pp. 3–17.

[23] S. Chin. FLAME Overview. 2015. url: http://flame.ac.uk/

docs/overview.html (visited on 09/30/2018).

[24] Timothy Chuang and Munehiro Fukuda. “A parallel multi-agent spatial

simulation environment for cluster systems”. In: 2013 IEEE 16th Inter-

national Conference on Computational Science and Engineering. IEEE.

2013, pp. 143–150.

[25] Simon Coakley, Rod Smallwood, and Mike Holcombe. “Using x-machines

as a formal basis for describing agents in agent-based modelling”. In:

Simulation Series 38.2 (2006), p. 33.

[26] Simon Coakley et al. “Exploitation of high performance computing in the

FLAME agent-based simulation framework”. In: 2012 IEEE 14th Inter-

national Conference on High Performance Computing and Communica-

tion & 2012 IEEE 9th International Conference on Embedded Software

and Systems. IEEE. 2012, pp. 538–545.

[27] Nicholson Collier and Michael North. “Parallel agent-based simulation

with repast for high performance computing”. In: Simulation 89.10

(2013), pp. 1215–1235.

http://flame.ac.uk/docs/overview.html
http://flame.ac.uk/docs/overview.html

168 Bibliography

[28] Nicholson Collier and Michael North. “Repast HPC: A platform for

large-scale agent-based modeling”. In: Large-Scale Computing 10 (2012),

pp. 81–109.

[29] Nick Collier. “Repast: An extensible framework for agent simulation”. In:

The University of Chicago’s Social Science Research 36 (2003), p. 2003.

[30] Gennaro Cordasco et al. “Bringing together efficiency and effectiveness in

distributed simulations: the experience with D-MASON”. In: Simulation

89.10 (2013), pp. 1236–1253.

[31] Gennaro Cordasco et al. “D-Mason: A Distributed Framework for Agent

Based Simulations”. In: Submitted for Publication (2012).

[32] Anthony J Cowling et al. “Communicating stream X-machines systems

are no more than X-machines”. In: Journal of Universal Computer Sci-

ence 5.9 (1999), pp. 494–507.

[33] Laurence Dawson and Iain Stewart. “Improving Ant Colony Optimiza-

tion performance on the GPU using CUDA”. In: 2013 IEEE Congress

on Evolutionary Computation. IEEE. 2013, pp. 1901–1908.

[34] Christophe Deissenberg, Sander Van Der Hoog, and Herbert Dawid.

“EURACE: A massively parallel agent-based model of the European

economy”. In: Applied Mathematics and Computation 204.2 (2008),

pp. 541–552.

[35] Audrey DeléVacq et al. “Parallel ant colony optimization on graphics

processing units”. In: Journal of Parallel and Distributed Computing 73.1

(2013), pp. 52–61.

[36] Lorenzo Dematte. “Parallel particle-based reaction diffusion: a GPU im-

plementation”. In: Parallel and Distributed Methods in Verification, 2010

Ninth International Workshop on, and High Performance Computational

Systems Biology, Second International Workshop on. IEEE. 2010, pp. 67–

77.

[37] Lorenzo Dematté and Davide Prandi. “GPU computing for systems bi-

ology”. In: Briefings in Bioinformatics 11.3 (2010), pp. 323–333.

[38] Ali Afshar Dodson et al. “Using the CoSMoS approach to study

Schelling’s bounded neighbourhood model”. In: CoSMoS 2014 (2014),

p. 1.

169 Bibliography

[39] Samuel Eilenberg. Automata, languages, and machines. Academic press,

1974.

[40] Joshua M Epstein and Robert Axtell. Growing artificial societies: social

science from the bottom up. Brookings Institution Press, 1996.

[41] Ugo Erra et al. “Massive simulation using gpu of a distributed behavioral

model of a flock with obstacle avoidance”. In: Proceedings of Vision,

Modeling and Visualization 2004 (VMV) (2004).

[42] Nuno Fachada et al. “Towards a standard model for research in agent-

based modeling and simulation”. In: PeerJ Computer Science 1 (2015),

e36.

[43] Jianbin Fang, Ana Lucia Varbanescu, and Henk Sips. “A comprehensive

performance comparison of CUDA and OpenCL”. In: Parallel Processing

(ICPP), 2011 International Conference on. IEEE. 2011, pp. 216–225.

[44] Grazziela P Figueredo, Uwe Aickelin, and Peer-Olaf Siebers. “Systems

dynamics or agent-based modelling for immune simulation?” In: Interna-

tional Conference on Artificial Immune Systems. Springer. 2011, pp. 81–

94.

[45] Munehiro Fukuda. “Mass: Parallel-computing library for multi-agent

spatial simulation”. In: Distributed Systems Laboratory, Comput-

ing & Software Systems, University of Washington Bothell, Bothell,

WA, http://depts. washington. edu/dslab/SensorGrid/doc/MassSpec.

pdf (2010).

[46] Michael Garland et al. “Parallel computing experiences with CUDA”.

In: IEEE micro 4 (2008), pp. 13–27.

[47] Philip Garnett et al. “Using the CoSMoS process to enhance an exe-

cutable model of auxin transport canalisation”. In: CoSMoS 2010 (2010),

pp. 9–32.

[48] B DANTZIG GEORGE. “FOURIER-MOTZKIN ELIMINATION AND

ITS DUAL””. In: The Basic George B. Dantzig (2003), p. 255.

[49] Michael E Goldsby and Carmen M Pancerella. “Multithreaded agent-

based simulation”. In: Simulation Conference (WSC), 2013 Winter.

IEEE. 2013, pp. 1581–1591.

170 Bibliography

[50] Poonam Goyal et al. “A fast, scalable SLINK algorithm for commodity

cluster computing exploiting spatial locality”. In: 2016 IEEE 18th Inter-

national Conference on High-Performance Computing and Communica-

tions, IEEE 14th International Conference on Smart City, and IEEE

2nd International Conference on Data Science and Systems (HPCC/S-

martCity/DSS). IEEE. 2016, pp. 268–275.

[51] Volker Grimm and Steven F Railsback. “Agent-based models in ecology:

patterns and alternative theories of adaptive behaviour”. In: Agent-based

computational modelling. Springer, 2006, pp. 139–152.

[52] Volker Grimm et al. “Pattern-oriented modeling of agent-based complex

systems: lessons from ecology”. In: science 310.5750 (2005), pp. 987–991.

[53] Mark Harris, Shubhabrata Sengupta, and John D Owens. “Parallel prefix

sum (scan) with CUDA”. In: GPU gems 3.39 (2007), pp. 851–876.

[54] Nathaniel Breault Hart. “MASS CUDA: Abstracting Many Core Parallel

Programming From Agent Based Modeling Frameworks”. PhD thesis.

2015.

[55] Blake Haugen et al. “Visualizing execution traces with task dependen-

cies”. In: Proceedings of the 2nd Workshop on Visual Performance Anal-

ysis. ACM. 2015, p. 2.

[56] Emmanuel Hermellin and Fabien Michel. “GPU delegation: Toward a

generic approach for developping MABS using GPU programming”. In:

Proceedings of the 2016 International Conference on Autonomous Agents

& Multiagent Systems. International Foundation for Autonomous Agents

and Multiagent Systems. 2016, pp. 1249–1258.

[57] Emmanuel Hermellin and Fabien Michel. “Overview of case studies on

adapting MABS models to GPU programming”. In: International Con-

ference on Practical Applications of Agents and Multi-Agent Systems.

Springer. 2016, pp. 125–136.

[58] Jared Hoberock and Nathan Bell. Thrust: A parallel template library.

2010.

[59] Hitoshi Iba. Agent-based Modeling and Simulation with Swarm. Chap-

man and Hall/CRC, 2013.

171 Bibliography

[60] Rafia Inam. An introduction to gpgpu programming-cuda architecture.

Mälardalen University, Mälardalen Real-Time Research Centre, 2010.

[61] Tim Ingham-Dempster, Bernard Corfe, and Dawn Walker. “A cellular

based model of the colon crypt suggests novel effects for Apc phenotype

in colorectal carcinogenesis”. In: Journal of Computational Science 24

(2018), pp. 125–131.

[62] Tim Ingham-Dempster, Dawn C Walker, and Bernard M Corfe. “An

agent-based model of anoikis in the colon crypt displays novel emer-

gent behaviour consistent with biological observations”. In: Royal Society

Open Science 4.4 (2017), p. 160858.

[63] Vandana Jagtap and Urmila Shrawankar. “Dependency analysis for se-

cured code level parallelization”. In: Procedia Computer Science 78

(2016), pp. 831–837.

[64] Masoud Jalayer, Carlotta Orsenigo, and Carlo Vercellis. “CoV-ABM: A

stochastic discrete-event agent-based framework to simulate spatiotem-

poral dynamics of COVID-19”. In: ArXiv preprint arXiv:2007.13231

(2020).

[65] Kamran Karimi, Neil G Dickson, and Firas Hamze. “A performance

comparison of CUDA and OpenCL”. In: arXiv preprint arXiv:1005.2581

(2010).

[66] Rajwinder Kaur and Pawan Luthra. “Load balancing in cloud comput-

ing”. In: Proceedings of International Conference on Recent Trends in

Information, Telecommunication and Computing, ITC. Citeseer. 2012.

[67] Foram F Kherani and Jignesh Vania. “Load Balancing in cloud comput-

ing”. In: (2014).

[68] Mariam Kiran et al. “FLAME: simulating large populations of agents on

parallel hardware architectures”. In: Proceedings of the 9th International

Conference on Autonomous Agents and Multiagent Systems: volume 1-

Volume 1. 2010, pp. 1633–1636.

[69] DB Kirk and WH Wen-mei. “Programming massively parallel processors:

a hands-on approach. Newnes”. In: Google Scholar (2012).

172 Bibliography

[70] Dominik Klein, Johannes Marx, and Kai Fischbach. “Agent-Based Mod-

eling in Social Science, History, and Philosophy. An Introduction”. In:

Historical Social Research/Historische Sozialforschung 43.1 (163 (2018),

pp. 7–27.

[71] Xiangyun Kong, David Klappholz, and Kleanthis Psarris. “The I test:

an improved dependence test for automatic parallelization and vector-

ization”. In: IEEE Transactions on Parallel and Distributed Systems 2.3

(1991), pp. 342–349.

[72] Elizaveta Kosiachenko. “Efficient GPU Parallelization of the Agent-

Based Models Using MASS CUDA Library”. PhD thesis. 2018.

[73] Konstantinos Kyriakopoulos and Kleanthis Psarris. “Data dependence

analysis techniques for increased accuracy and extracted parallelism”.

In: International Journal of parallel programming 32.4 (2004), pp. 317–

359.

[74] Guillaume Laville et al. “MCMAS: a toolkit to benefit from many-core

architecure in agent-based simulation”. In: European Conference on Par-

allel Processing. Springer. 2013, pp. 544–554.

[75] Guillaume Laville et al. “Using GPU for multi-agent multi-scale simu-

lations”. In: Distributed Computing and Artificial Intelligence. Springer,

2012, pp. 197–204.

[76] Bo Li and Ramakrishnan Mukundan. “A comparative analysis of spa-

tial partitioning methods for large-scale, real-time crowd simulation”. In:

(2013).

[77] Dapu Li et al. “A efficient algorithm for molecular dynamics simulation

on hybrid CPU-GPU computing platforms”. In: 2016 12th International

Conference on Natural Computation, Fuzzy Systems and Knowledge Dis-

covery (ICNC-FSKD). IEEE. 2016, pp. 1357–1363.

[78] Zhiyuan Li, Pen-Chung Yew, and Chuag-Qi Zhu. “Data dependence

analysis on multi-dimensional array references”. In: Proceedings of the

3rd international conference on Supercomputing. ACM. 1989, pp. 215–

224.

173 Bibliography

[79] Fabian Lorig et al. “Measuring and comparing scalability of agent-based

simulation frameworks”. In: German Conference on Multiagent System

Technologies. Springer. 2015, pp. 42–60.

[80] Sean Luke. “Multiagent simulation and the MASON library”. In: George

Mason University 1 (2011).

[81] Sean Luke et al. “Mason: A multiagent simulation environment”. In:

Simulation 81.7 (2005), pp. 517–527.

[82] Sean Luke et al. “Mason: A new multi-agent simulation toolkit”. In:

Proceedings of the 2004 Swarmfest Workshop. Vol. 8. 2. Michigan, USA.

2004, pp. 316–327.

[83] Mikola Lysenko, Roshan M D’Souza, et al. “A framework for megascale

agent based model simulations on graphics processing units”. In: Journal

of Artificial Societies and Social Simulation 11.4 (2008), p. 10.

[84] Steven L Lytinen and Steven F Railsback. “The evolution of agent-based

simulation platforms: a review of NetLogo 5.0 and ReLogo”. In: Proceed-

ings of the Fourth International Symposium on Agent-based Modeling

and Simulation. 2012, p. 19.

[85] C Macal, D Sallach, and M North. “Emergent structures from trust

relationships in supply chains”. In: Proc. Agent 2004: Conf. on Social

Dynamics. 2004, pp. 7–9.

[86] Charles M Macal and Michael J North. “Agent-based modeling and sim-

ulation: ABMS examples”. In: Proceedings of the 40th Conference on

Winter Simulation. Winter Simulation Conference. 2008, pp. 101–112.

[87] Charles M Macal and Michael J North. “Tutorial on agent-based mod-

elling and simulation”. In: Journal of simulation 4.3 (2010), pp. 151–

162.

[88] Philip Machanick. Approaches to addressing the memory wall. Tech. rep.

School of IT and Electrical Engineering, University of Queensland, 2002.

[89] Steven M Manson. “Agent-based modeling and genetic programming

for modeling land change in the Southern Yucatan Peninsular Region

of Mexico”. In: Agriculture, Ecosystems & Environment 111.1-4 (2005),

pp. 47–62.

174 Bibliography

[90] Loris Marchal et al. “Parallel scheduling of DAGs under memory con-

straints”. In: 2018 IEEE International Parallel and Distributed Process-

ing Symposium (IPDPS). IEEE. 2018, pp. 204–213.

[91] Alessio Marchetti. Hyperlinked C++ BNF Grammar. Oct. 29, 2018. url:

http://nongnu.org/hcb/#original-namespace-name (vis-

ited on 08/24/2019).

[92] Adam J McLane et al. “The role of agent-based models in wildlife ecology

and management”. In: Ecological Modelling 222.8 (2011), pp. 1544–1556.

[93] Ruth Meyer. “Event-driven multi-agent simulation”. In: Interna-

tional Workshop on Multi-Agent Systems and Agent-Based Simulation.

Springer. 2014, pp. 3–16.

[94] Fabien Michel. “Translating Agent Perception Computations into En-

vironmental Processes in Multi-Agent-Based Simulations: A means for

Integrating Graphics Processing Unit Programming within Usual Agent-

Based Simulation Platforms”. In: Systems Research and Behavioral Sci-

ence 30.6 (2013), pp. 703–715.

[95] Fabien Michel, Grégory Beurier, and Jacques Ferber. “The TurtleKit

simulation platform: Application to complex systems”. In: SITIS: Signal-

Image Technology and Internet–Based Systems. 2005.

[96] Nelson Minar et al. “The swarm simulation system: A toolkit for building

multi-agent simulations”. In: (1996).

[97] Rob Minson and Georgios K Theodoropoulos. “Distributing RePast

agent-based simulations with HLA”. In: Concurrency and Computation:

Practice and Experience 20.10 (2008), pp. 1225–1256.

[98] Nitin Kumar Mishra and Nishchol Mishra. “Load Balancing Techniques:

Need, Objectives and Major Challenges in Cloud Computing-A System-

atic Review”. In: International Journal of Computer Applications 131.18

(2015).

[99] Daniel Moyo et al. “Macrophage Transactivation for chemokine Produc-

tion identified as a negative regulator of granulomatous inflammation

Using agent-Based Modeling”. In: Frontiers in Immunology 9 (2018),

p. 637.

http://nongnu.org/hcb/#original-namespace-name

175 Bibliography

[100] Michael J North and Charles M Macal. Managing business complexity:

discovering strategic solutions with agent-based modeling and simulation.

Oxford University Press, 2007.

[101] Michael J North et al. Visual agent-based model development with repast

simphony. Tech. rep. Tech. rep., Argonne National Laboratory, 2007.

[102] J. Oosten. CUDA Thread Execution Model. 3D Game Engine Program-

ming. 2011. url: https://www.3dgep.com/cuda- thread-

execution-model/ (visited on 09/28/2018).

[103] John D Owens et al. “GPU computing”. In: Proceedings of the IEEE

96.5 (2008), pp. 879–899.

[104] Dawn C Parker and Vicky Meretsky. “Measuring pattern outcomes in

an agent-based model of edge-effect externalities using spatial metrics”.

In: Agriculture, Ecosystems & Environment 101.2-3 (2004), pp. 233–250.

[105] Hazel R Parry and Mike Bithell. “Large scale agent-based modelling:

A review and guidelines for model scaling”. In: Agent-based Models of

Geographical Systems. Springer, 2012, pp. 271–308.

[106] H Van Dyke Parunak, Robert Savit, and Rick L Riolo. “Agent-based

modeling vs. equation-based modeling: A case study and users’ guide”.

In: International Workshop on Multi-Agent Systems and Agent-Based

Simulation. Springer. 1998, pp. 10–25.

[107] Monali Patil and Vandana Jagtap. “Survey of Different Data Dependence

Analysis Techniques”. In: International Journal of Advanced Engineer-

ing, Management and Science 2.7 ().

[108] Roman Pavlov and Jörg P Müller. “Multi-agent systems meet GPU:

deploying agent-based architectures on graphics processors”. In: Doctoral

Conference on Computing, Electrical and Industrial Systems. Springer.

2013, pp. 115–122.

[109] Josep M Perez, Rosa M Badia, and Jesus Labarta. “A dependency-aware

task-based programming environment for multi-core architectures”. In:

2008 IEEE International Conference on Cluster Computing. IEEE. 2008,

pp. 142–151.

https://www.3dgep.com/cuda-thread-execution-model/
https://www.3dgep.com/cuda-thread-execution-model/

176 Bibliography

[110] Manisa Pipattanasomporn, Hassan Feroze, and Saifur Rahman. “Multi-

agent systems in a distributed smart grid: Design and implementation”.

In: 2009 IEEE/PES Power Systems Conference and Exposition. IEEE.

2009, pp. 1–8.

[111] Aske Plaat, Henri Bal, and Rutger Hofman. Bandwidth and Latency

Sensitivity of Parallel Applications in a Wide-Area System. 1998.

[112] Fiona Polack and Alastair Droop. “Principled simulation of cell prolif-

eration dynamics using the CoSMoS approach”. In: Natural Computing

14.1 (2015), pp. 63–82.

[113] Kleanthis Psarris and Konstantinos Kyriakopoulos. “Data dependence

testing in practice”. In: 1999 International Conference on Parallel Archi-

tectures and Compilation Techniques (Cat. No. PR00425). IEEE. 1999,

pp. 264–273.

[114] Kleanthis Psarris and Konstantinos Kyriakopoulos. “The impact of data

dependence analysis on compilation and program parallelization”. In:

Proceedings of the 17th Annual International Conference on Supercom-

puting. ACM. 2003, pp. 205–214.

[115] William Pugh. “The Omega test: a fast and practical integer program-

ming algorithm for dependence analysis”. In: Supercomputing’91: Pro-

ceedings of the 1991 ACM/IEEE conference on Supercomputing. IEEE.

1991, pp. 4–13.

[116] Steve Railsback, Steve Lytinen, and Volker Grimm. “StupidModel and

extensions: A template and teaching tool for agent-based modeling plat-

forms”. In: Swarm Development Group. http://condor. depaul. edu/˜

slytinen/abm (2005).

[117] Steven F Railsback, Steven L Lytinen, and Stephen K Jackson. “Agent-

based simulation platforms: Review and development recommenda-

tions”. In: Simulation 82.9 (2006), pp. 609–623.

[118] Mark N Read. “Statistical and modelling techniques to build confidence

in the investigation of immunology through agent-based simulation”.

PhD thesis. University of York, 2011.

[119] Craig Reynolds. “Big fast crowds on ps3”. In: Proceedings of the 2006

ACM SIGGRAPH Symposium on Videogames. ACM. 2006, pp. 113–121.

177 Bibliography

[120] Craig Reynolds. “Boids background and update”. In: http://www. red3d.

com/cwr/boids/ (2001).

[121] Craig W Reynolds. “Flocks, herds and schools: A distributed behavioral

model”. In: ACM SIGGRAPH Computer Graphics. Vol. 21. 4. ACM.

1987, pp. 25–34.

[122] P Richmond. “Flame gpu technical report and user guide”. In: Depart-

ment of Computer Science Technical Report CS-11-03 (2011).

[123] Paul and Richmond. “Feasibility Study of Multi-Agent Simulation at

the Cellular Level with FLAME GPU.” In: FLAIRS Conference. 2016,

pp. 398–403.

[124] Paul Richmond and Mozhgan K Chimeh. “Flame GPU: Complex sys-

tem simulation framework”. In: 2017 International Conference on High

Performance Computing & Simulation (HPCS). IEEE. 2017, pp. 11–17.

[125] Paul Richmond, Simon Coakley, and Daniela Romano. “Cellular level

agent based modelling on the graphics processing unit”. In: High Per-

formance Computational Systems Biology, 2009. HIBI’09. International

Workshop on. IEEE. 2009, pp. 43–50.

[126] Paul Richmond, Simon Coakley, and Daniela M Romano. “A high perfor-

mance agent based modelling framework on graphics card hardware with

CUDA”. In: Proceedings of The 8th International Conference on Au-

tonomous Agents and Multiagent Systems-Volume 2. International Foun-

dation for Autonomous Agents and Multiagent Systems. 2009, pp. 1125–

1126.

[127] Paul Richmond and Daniela Romano. “Agent based gpu, a real-time

3d simulation and interactive visualisation framework for massive agent

based modelling on the gpu”. In: Proceedings International Workshop on

Supervisualisation. 2008.

[128] Paul Richmond and Daniela Romano. “Template-driven agent-based

modeling and simulation with CUDA”. In: GPU Computing Gems Emer-

ald Edition. Elsevier, 2011, pp. 313–324.

[129] Paul Richmond et al. “High performance cellular level agent-based sim-

ulation with FLAME for the GPU”. In: Briefings in Bioinformatics 11.3

(2010), pp. 334–347.

178 Bibliography

[130] Duncan A Robertson. “Agent-based models to manage the complex”.

In: Managing Organizational Complexity: Philosophy, Theory, and Ap-

plication 24 (2005), pp. 417–430.

[131] Rebecca J Rockett et al. “Revealing COVID-19 transmission in Aus-

tralia by SARS-CoV-2 genome sequencing and agent-based modeling”.

In: Nature Medicine 26.9 (2020), pp. 1398–1404.

[132] Alban Rousset et al. “A survey on parallel and distributed multi-agent

systems”. In: European Conference on Parallel Processing. Springer.

2014, pp. 371–382.

[133] Alban Rousset et al. “A survey on parallel and distributed multi-agent

systems for high performance computing simulations”. In: Computer Sci-

ence Review 22 (2016), pp. 27–46.

[134] Sergio Ruiz et al. “Reducing memory requirements for diverse animated

crowds”. In: Proceedings of Motion on Games. 2013, pp. 77–86.

[135] Giulia Russo et al. “In Silico Trial to test COVID-19 candidate vaccines:

a case study with UISS platform”. In: BMC Bioinformatics 21.17 (2020),

pp. 1–16.

[136] Petrônio CL Silva et al. “COVID-ABS: An agent-based model of COVID-

19 epidemic to simulate health and economic effects of social distancing

interventions”. In: Chaos, Solitons & Fractals 139 (2020), p. 110088.

[137] Karandeep Singh and Chang-Won Ahn. “An agent based model approach

for perusal of social dynamics”. In: IEEE Access 6 (2018), pp. 36948–

36965.

[138] Prabhat Kr Srivastava, Sonu Gupta, and Dheerendra Singh Yadav. “Im-

proving performance in load balancing problem on the grid comput-

ing system”. In: International Journal of Computer Applications (0975–

8887) Volume (2011).

[139] Russell K Standish. “Going stupid with EcoLab”. In: Simulation 84.12

(2008), pp. 611–618.

[140] Ching-Lung Su et al. “Overview and comparison of OpenCL and CUDA

technology for GPGPU”. In: Circuits and Systems (APCCAS), 2012

IEEE Asia Pacific Conference on. IEEE. 2012, pp. 448–451.

179 Bibliography

[141] Sreenivas R Sukumar and James J Nutaro. “Agent-based vs. equation-

based epidemiological models: A model selection case study”. In:

2012 ASE/IEEE International Conference on BioMedical Computing

(BioMedCom). IEEE. 2012, pp. 74–79.

[142] Tao Sun et al. “An integrated systems biology approach to understanding

the rules of keratinocyte colony formation”. In: Journal of the Royal

Society Interface 4.17 (2007), pp. 1077–1092.

[143] Vinoth Suryanarayanan and Georgios Theodoropoulos. “Synchronised

range queries in distributed simulations of multiagent systems”. In: ACM

Transactions on Modeling and Computer Simulation (TOMACS) 23.4

(2013), p. 25.

[144] Vinoth Suryanarayanan, Georgios Theodoropoulos, and Michael Lees.

“Pdes-mas: Distributed simulation of multi-agent systems”. In: Procedia

Computer Science 18 (2013), pp. 671–681.

[145] Shailesh Tamrakar. “Performance optimization and statistical analysis

of basic immune simulator (BIS) using the FLAME GPU environment”.

In: (2015).

[146] Masahiro Tanaka and Osamu Tatebe. “Workflow scheduling to minimize

data movement using multi-constraint graph partitioning”. In: Proceed-

ings of the 2012 12th IEEE/ACM International Symposium on Cluster,

Cloud and Grid Computing (ccgrid 2012). IEEE Computer Society. 2012,

pp. 65–72.

[147] Yuqing Tang, Simon Parsons, and Elizabeth Sklar. “Modeling human ed-

ucation data: From equation-based modeling to agent-based modeling”.

In: Multi-Agent-Based Simulation VII. Springer, 2007, pp. 41–56.

[148] Eric Tatara et al. “An indroduction to repast simphony modeling us-

ing a simple predator-prey example”. In: Proceedings of the Agent 2006

Conference on Social Agents: Results and Prospects. 2006.

[149] Wanwimol Thawornchak. “Equation-Based and Agent-Based Modeling

of Supply Networks”. In: (2001).

[150] Georgios Theodoropoulos and Brian Logan. “The Distributed Simula-

tion of Agent-Based Systems”. In: IEEE Proceedings Journal, Special

180 Bibliography

Issue on Agent-Oriented Software Approaches in Distributed Modeling

and Simulation. Citeseer. 2001.

[151] Georgios Theodoropoulos et al. “Large scale distributed simulation on

the grid”. In: Sixth IEEE International Symposium on Cluster Comput-

ing and the Grid (CCGRID’06). Vol. 2. IEEE. 2006, pp. 63–63.

[152] Seth Tisue and Uri Wilensky. “NetLogo: Design and implementation of a

multi-agent modeling environment”. In: Proceedings of Agent. Vol. 2004.

2004, pp. 7–9.

[153] Banerjee Utpal K. Dependence Analysis for Supercomputing. Kluwer

Academic Publishers, Norwell, MA, USA, 1988.

[154] Banerjee Utpal K. “Speedup of Ordinary Programs.” PhD thesis. Uni-

versity of Illinois at Urbana-Champaign, 1979.

[155] WF Van Gunsteren and HJC Berendsen. “Algorithms for Brownian dy-

namics”. In: Molecular Physics 45.3 (1982), pp. 637–647.

[156] DC Walker et al. “The epitheliome: agent-based modelling of the social

behaviour of cells”. In: Biosystems 76.1-3 (2004), pp. 89–100.

[157] Mitchell Welch et al. “Improving the efficiency of large-scale agent-based

models using compression techniques”. In: Multidisciplinary Computa-

tional Intelligence Techniques: Applications in Business, Engineering,

and Medicine. IGI Global, 2012, pp. 301–326.

[158] Richard A Williams. “User experiences using FLAME: A Case study

modelling conflict in large enterprise system implementations”. In: Sim-

ulation Modelling Practice and Theory 106 (2020), p. 102196.

[159] Michael Wolfe and C-W Tseng. “The power test for data dependence”.

In: IEEE Transactions on Parallel and Distributed Systems 3.5 (1992),

pp. 591–601.

[160] Jia-Hwa Wu and Chih-Ping Chu. “The quadratic test: And exact data

dependence test for quadratic expressions”. In: Compiler Techniques for

High-Performance Computing (CTHPC’03) (2003).

[161] Fabian Ying and Neave O’Clery. “Modelling COVID-19 transmis-

sion in supermarkets using an agent-based model”. In: arXiv preprint

arXiv:2010.07868 (2020).

181 Bibliography

[162] Hong Zheng et al. A primer for agent-based simulation and modeling in

transportation applications. Tech. rep. United States. Federal Highway

Administration, 2013.

[163] Anja Zöller et al. “Benchmarking of Multiagent Systems”. In: Multiagent

Engineering. Springer, 2006, pp. 557–574.

	Introduction
	Motivation
	Research focus
	Thesis Aims
	Contribution of knowledge
	A benchmark model
	Data-aware approach

	Outline of the thesis

	Background and Literature Review
	Introduction
	Agent-Based Modelling and Simulation
	Early developments
	Basic concepts of ABMS
	ABMS paradigms and methodologies
	Agent-based modelling vs. equation-based modelling
	ABMS platforms
	Scalability of simulations in ABM
	Agent-based models and parallelisation

	Agent-Based Modelling on the GPU
	GPU programming languages
	CUDA
	Efficient performance of agent-based simulation on GPU
	Techniques to implement ABMs on GPU
	ABM frameworks using GPU

	FLAME GPU framework
	Code generation in FLAME GPU

	Impact of Data dependencies in Real-Time High Performance Computing
	Data dependency techniques
	Reduce memory movement

	Summary

	Agent-Based Models for the GPU
	Designing X-Agents Using FLAME GPU
	X-machine

	FLAME GPU features:
	Agent Data Storage and Access
	 Birth and Death
	Agent Communication

	Implementing a model using FLAME GPU
	 The Boids model
	Model specification
	Model Behaviour(Agent Function Scripts)
	FLAME GPU Template Files
	Model Execution and Visualisation

	Summary

	Methods and Experimental Plan
	Introduction
	Designing the Benchmark Model
	Designing FLAME GPU Generator
	Testing system scalability
	Increasing Agent complexity
	Increasing Population complexity

	The Discovery of Data Dependency
	Compiler Construction
	Flex and Bison

	 The Scanner
	The Parser
	Research Validation

	Benchmarking Agent Based Modelling systems
	Benchmarking ABM criteria
	Benchmarking ABM models (background review)
	The benchmark Model
	Implementation
	The state diagram of the model
	Model Generator

	Benchmarking Results
	Divergence within a population:
	Divergence within an agent:
	Population sizes:
	Level of communication and complexity:

	Summary

	The Impact of Combining Agents Functions on Overall Performance
	Introduction
	Dependencies Between Model Functions and their Effect on Performance
	Dependency Discovery (Manual version)
	Merging Functions That Have no Dependency
	Benchmark Results
	Divergence within the Population
	Scalability
	Divergence within the Agent

	Strengths and limitations
	Summary

	 A Data Aware Model for Agent Representation
	Introduction
	Implementing a FLAME GPU Scanner
	C Tokens
	Special Tokens for FLAME GPU Functions

	Implementing a FLAME GPU Parser
	Definitions and Grammar Rules
	 Rule Actions
	User Subroutines
	Generating the Meta Data Output File

	Data Aware Simulation
	XSLT-Transformations for Merging Metadata with Agent Descriptions
	Input Files and Output Files of Merging Metadata Process.
	The XSLT Template
	Results

	FLAME GPU Template Files
	Summary

	Results
	Introduction
	The Circle Model
	Our benchmark model
	Scalability
	Divergence within the Agent
	Divergence within the Population

	The keratinocyte (cell) model
	Performance Results

	Validating the Results
	Discussion
	Summary

	Conclusion
	Research Summary
	Functional Approach
	Data-Aware Approach
	Evaluating and Validating the Use of the Proposed Approaches

	Limitations of the Research
	Future Work

	Appendices
	Functions.c File
	Scanner.l File
	Meta-data.xslt File
	Meta-data.xslt File

