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Abstract 

Developing an efficient public transport is an important initiative to ease traffic 

congestion and to reduce energy usage and air pollution. In addition to a well-planned 

network, an advanced public transport system should offer a comfortable, safe and 

reliable service for passengers, which requires an appropriate strategy of management 

and operation. The development of smart infrastructure in public transport ticketing 

systems has not only improved the operation efficiency and enhanced passenger travel 

experience, but the development has also made available millions of passengers’ daily 

travel records. This valuable data source can be used to analyse passengers’ travel 

behaviour and travel demand, which in turn can help bus companies offer  better public 

transport services for passengers. 

This study mainly aims to understand and predict the boarding and alighting behaviour 

of bus passengers, from smart card records, using machine learning (ML) approaches. 

Firstly, a gradient boosting decision tree (GBDT) ML model is trained with features of 

passengers’ boarding records, their travel history, as well as weather conditions and 

travel history. The model is then applied to estimate the alighting stop for each smart 

card trips. Secondly, a multi-stage deep learning-based ML framework is developed 

which utilises the fully connected network, recurrent neural network (RNN) and long 

short-term memory (LSTM) network, to predict the hourly boarding behaviour (on 

whether to travel and which bus stop to use) for every smart card user. Thirdly, a deep 

generative adversarial network (Deep-GAN) is proposed to counter the issue with 

imbalanced data, where positive instances (in our case a boarding instance in any given 
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hour) is much less than negative instances, and to improve the prediction on the hourly 

boarding demand from the smart card data. 

The studies indicate that: i) ML techniques are an effective predictive tool to deal with 

multiple variable and non-linear relations; ii) including weather conditions and travel 

history can significantly improve the performance of predictive models; iii) the problem 

of innumerable classes of data fields and imbalanced data records significantly reduce the 

accuracy of predictive models; iv) In addition to providing good prediction power, 

GBDT-based ML models provide  the ability to rank the relative importance of features; 

v) RNN and LSTM are capable of capturing the temporal characteristics (i.e. the peak 

hours) of passengers’ boarding behaviour; vi) Deep-GAN models can be effectively 

used for reducing the problem of data imbalance and enhancing the performance of the 

predictive models. 
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Chapter 1 

Introduction 

1.1. Smart public transport 

Cities are the engines of the growth and improvement of society, economy, culture and 

innovation, where the power of agglomeration and industrialisation create employment 

and wealth and promote human’s progress (Turok, 2014). Cities provide more national 

income than their share of the national population. For example, 12% of the population 

of the Philippines in Metropolitan Manila accounts for 47% of GDP (UN, 2016). The 

process of global urbanisation continues to move forward in an unstoppable trend. 

Figure 1.1 shows that more than half of all countries and regions have over 60% of the 

level of urbanisation in 2015, and most of North America can and Europe are urbanised 

over 90%. According to the report (UN, 2016), 54% of the world’s population resides 

in the urban area, and this percentage will go up to 68.4% by 2050. The rapid process 

of urbanisation in developing countries provides a window of opportunity to leap-frog 

the already developed and mature cities and ensure sustainable development.  
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Figure 1.1 The level of urbanization for each country and region in 2025. 

Data source: UN (2016). 

Although urbanisation has the potential to drive cities more prosperous and countries 

more developed, many cities have not been prepared for the challenges associated with 

urbanisation yet. The uncontrolled urbanisation brings more and more people into 

cities, which results in a surge in travel demand. The tremendous growth of travel 

demand can be a threat to transport system. For instance, the rapid increase in private 

cars, coupled with insufficient infrastructures, has caused severe traffic congestion in 

Seoul (Pucher, 2005). More than 210 million people in the EU are living in an 

environment full of traffic noise, which is harmful to human health (Jacyna et al., 2017; 

den Boer and Schroten, 2007). And, the air pollution from vehicle emissions damages 

to public health (Lim et al., 2012).  

Then the question arises, how to manage the transport system facing the constant 

upgrade of population and urbanisation. As a vital component of a sustainable city, 

achieving development of sustainable transport with advanced technology is becoming 

the best solution. It is well known that the public transport system is a green and 
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sustainable transport mode to solve the issues in cities, e.g. severe air pollution, excessive 

energy consumption, terrible traffic congestion, and excessive travel cost. Socially, the 

public transport is environmental-friendly. High patronage will share more traffic 

demand for private cars and thus result in a decrease in the use of cars, which can save 

many road-space resources. Further, the popularisation of electric buses has reduced the 

use of fossil fuels and the resulting carbon emissions and air pollution. The Munich 

Transport Company, which operates Munich’s underground, trams, and most of its 

buses, saves 160,000 metric tons of CO2 per year when compared with private vehicles 

(NASEM, 2009). For the public, public transport offers a cheap, convenient and health 

services. Taking public transport and living with one less car will help a family save 

nearly ten thousand U.S. dollar a year (Hughes-Cromwick and Dickens, 2020). Legrain 

et al. (2015) find out driving is the most stressful transport mode due to the traffic 

congestion and delay and taking public transport may help commuters avoid this kind 

of stress. Not only these, but public transport can also provide economic opportunities 

for cities. Hughes-Cromwick and Dickens (2020) reports that every ten million U.S. 

dollar in capital investment in public transport will produce five times in economic 

returns, add 500 new job positions and increase thirty million U.S. dollar in business 

sale. However, the public transport service is always being criticised owing to its poor 

image in terms of level-of-service caused by low reliability, accessibility and availability. 

In recent decades, the new generation of science and technology has contributed to the 

rise and spread of the ‘Smart Transport’ policy. Smart transport, as known as intelligent 

transport system (ITS), is the key for sustainable cities. The shared idea of smart transport 

is about managing and developing transport systems from a new angle of digital 

construction, which is of great significance for urban management and operation 

(Yigitcanlar et al., 2018). Smart transport armed with artificial intelligence (AI) will lead 

to the future development of cities (Deloitte, 2018). Since different places have different 
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aims and requirements for the transport system, the definition of smart transport varies 

from place to place. Each smart transport project has its own tools for information 

collection, analysis and delivery. For example, CIVITAS supports a public transport 

communication system in Tallinn, Estonia, based on the 3G mobile communication 

standard (Boschetti et al., 2014). This system enables faster share of information and 

better traffic management. Mobileye’s EyeQ® chip (Mobileye, 2020) applies the 

technologies of computer vision and image processing to deal with the video from the 

camera on bus vehicles. This product is able to monitor the bus headway and lane-

keeping and to warn drivers about forward collision and pedestrian and cyclist collision.  

With the development of the digitisation of the city and the intellectualisation of the 

transport systems, an intelligent public transport system (IPTS) as a subsystem of smart 

transport is proposed to address the problems and to improve the level-of-service. An 

IPTS relies on much-advanced communication, information processing, control and 

electronics technologies, which mainly encompasses five systems (Elkosantini and 

Darmoul, 2013). Figure 1.2 illustrates the different components of the IPTS. Automatic 

vehicle location (AVL) system provides real-time information about the vehicle, such 

as location and speed. Automatic passenger counters (APC) collects the number of 

passengers on-board and waiting at stops. Geographic information system (GIS) maps 

the information from AVL and APC to the network. Decision support system (DSS) 

suggests the control decisions to operators and decision-makers according to the analysis 

from the monitoring of AVL and APC. Traveller information system (TIS) informs 

passengers about the real-time situation of the public transport system, such as waiting 

time and travel time. 
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Figure 1.2 Illustration of IPTS (Elkosantini and Darmoul, 2013). 

For example, the city of Hangzhou, one of ten demonstrators for ITS in China, has 

developed an IPTS (Luo, 2020). The system utilises an AI-based platform hosted on Ali 

cloud computing cluster to analyse and process massive data. This platform can 

accurately measure the spatial-temporal dynamics of ridership, evaluate the 

performance of the network and schedule the services in real-time. Those tools will 

help significantly improve the level-of-service and enhance the attractiveness of public 

transport. However, the current construction of IPTS in many cities remains at an early 

stage of development, which independently involves in as many new technologies as 

possible but does not communicate or share information among sub-systems. An 

advanced technique, pay-by-face, has been applied to buses for the automatic fare 

collection (AFC) system in Yinchuan, China. This technique is intended to make it 

easier for passengers to use buses, and to reduce the boarding time. However, this pay-

by-face technique has not been applied to other public transport modes like metro. As 

a result, the survey from Sorrell (2019) finds that the occupancy of buses are still low, 
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and the advanced technique shows limited attraction to passengers. Therefore, the 

concept of novel smart city needs to put human foremost, to upgrade the city with the 

efforts of innovation and final to achieve the goal of sustainable development (Deloitte, 

2020). 

1.2. Machine learning in intelligent public transport 

systems 

Since the renaissance of AI in the 1980s, machine learning has greatly improved both in 

terms of algorithms and available datasets. Machine learning specialises in processing 

high-dimensional and multivariate data and capturing complex nonlinear relationships 

in the data (Witten et al., 2016). The advantages of machine learning lead to that 

thousands of AI applications has already been deeply embedded in the infrastructure of 

daily production (Kurzweil, 2005). An increasing number of studies has brought 

machine learning techniques in analysing kinds of data in public transport systems. This 

section will review the applications and state-of-arts methods of machine learning 

technique in several domains of public transport systems.  

1.2.1. Passenger mobility 

Passenger flow prediction is the premise of public transport planning and an important 

condition to ensure that the planning conforms to future development. One of the most 

common approaches is to predict the volume of ridership directly. The AFC system, 

employed in many urban rail networks, records the time and location of passengers’ 

entering and leaving the station. Then an origin-destination (OD) matrix of passenger 

flows and ridership can be easily obtained from the logs of AFC system. Such historical 

ridership can then be used to predict future ridership through time series analysis. For 
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example, the passenger flow of an underground (metro) system has been predicted based 

on the smart card AFC data using multiscale radial basis function (RBF) network under 

special events (Li et al., 2017), while long short-term memory  neural network (LSTM) 

has been applied to capture the temporal characteristics of passenger flows (Liu et al., 

2019b). Ding et al. (2016) model the ridership entering three underground stations by 

three independent gradient boosting decision tree (GBDT) models. To deal with the 

time series of ridership, the empirical model decomposition (EMD) model is a popular 

tool to decompose the original sequential passenger flow into several intrinsic mode 

functions (IMFs) and a residual. The EMD model is respectively hybridised with the 

back-propagation neural network (BP-NN) (Wei and Chen, 2012) and LSTM (Chen 

et al., 2019) to predict the time series of underground (metro) ridership. When applying 

the time series to LSTM for passenger flow prediction, Zhang et al. (2019) propose the 

K-Means clustering model to capture the variation trends and characteristics of ridership 

and thus to recommend a reasonable time granularity interval to aggregate passenger 

flows. Liu et al. (2018) compare the performance of the recurrent neural network 

(RNN), gated recurrent unit (GRU) and LSTM in predicting ridership through a 

sequences data, and the finding shows that the LSTM is better in learning and 

remembering over long sequences. The above works require the historical ridership 

that is based on the complete OD matrix. However, the AFC system in some bus 

networks does not contains both boarding and alighting information. 

For bus networks, the AFC system operates under a range of different regulations: 

boarding only, alighting only and both boarding and alighting. Alighting-only AFC is 

the least used system. Correspondingly, few studies have been done on alighting-only 

AFC. For both-boarding-and-alighting AFC, the smart card is used during both 

boarding and alighting. Directly from the data of this kind of AFC, we can obtain the 

boarding and alighting stops and time, so it is easy to measure the ridership, and the 
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following analysis and forecasting on ridership is similar to the rail system introduced 

above. For the boarding-only AFC, passengers are required to swipe smart cards during 

boarding. So, the smart card data records the boarding information for each trip. 

However, in some places such as Changsha and Shenzhen, there is no direct boarding 

stop or other geographic information in the smart card data. Therefore, to infer the 

boarding stops is the first step to analyse the smart card data. Since buses are equipped 

with a GPS device, it is easy to merge the geographic information from GPS to the AFC 

records. The research of boarding stop inference focuses on the AFC records with 

missing GPS data. Ma et al. (2015a) improve the Bayesian decision tree algorithm to 

calculate the likelihood of each possible boarding stop for the buses without GPS devices. 

Shalit et al. (2020) take the smart card data, of which we know the boarding stops, as 

the training dataset to train the linear regression (LR), random forest (RF) and extreme 

gradient boosting (XGBoost) models for predicting the boarding stops of the smart card 

data missing GPS. Other than the smart card data, smartphone sensors are also 

introduced to detect the boarding stops by monitoring the acceleration from support 

vector machine (SVM)-based predictive model (Chaudhary et al., 2016). After inferring 

the boarding location, the main task for boarding-only AFC is to determine the 

alighting stops of bus trips. There is not much research in the area of alighting stop 

estimation by machine learning techniques. The most classic and popular method is a 

rule-based method, the trip chain mode (Barry et al., 2002; Barry et al., 2009). To add 

the alight information into the OD matrix, Yan et al. (2019) use trip chain mode to 

obtain the alighting stops of a part of smart card data as the input training data, then use 

Naïve Bayesian, SVM, decision tree (DT), RF, k-nearest neighbours (kNN) and 

ensemble learning to classify the smart card data into different alighting regions, rather 

than specific alighting stops. Similarly, Jung and Sohn (2017) get some result of alighting 

stop estimation by the trip chain and infer the alighting stop from five candidate stops 
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for the boarding-only smart card data in Soul by using a deep neural network (DNN) 

model. However, this paper limits the possible alighting stops in five candidate stops. 

The case does not consider the difficulty of classifying the trips into hundreds of classes 

(alighting stops). These two studies belong to classification problem. However, either 

of them do not consider the poor quality of smart card data, such as the data imbalance. 

The number of instances in each class is different, and the skewed distribution will harm 

on the performance of machine learning models (Guo et al., 2017). The data imbalance 

will be discussed in detail in Chapter 4. 

The public transport system is a collaboration of multiple transport modes; a trip always 

involves in the choose and transfer among different public transport modes. Thus, 

choice modelling is an essential task in travel demand prediction. Many machine 

learning techniques are developed to be the adequate tools for the mode choice 

prediction, for example, artificial neural network (ANN) (Cantarella and De Luca, 

2003), SVM (Omrani, 2015) and DT (Rasouli and Timmermans, 2014). Celikoglu 

(2006) uses the RBF neural network and generalized regression neural network 

(GRNN) to propose a new calibration process for travel mode choice analysis in a 

transportation modelling framework. Hagenauer and Helbich (2017) present a 

systematic comparison of seven different machine learning classifier for travel mode 

choice prediction. This study finds out that the RF is the best way for the mode choice 

perdiction, which is much better than the commonly-used multinomial logit (MNL) 

model, and the classifiers are with high sensitivity for public transport. Zhou et al. (2019) 

use several machine learning techniques, such as kNN, SVM, DT, RF, and some 

ensemble models, such as AdaBoost, Bootstrap aggregating (Bagging) and gradient 

boosting decision tree (GBDT), to model the model choice between sharing bikes and 

taxis and analysis the impacts of the features on their choice. It shows that the choice of 

sharing bikes is most impacted by season and weather conditions.  
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1.2.2. Service planning and management 

The domain of traffic planning and management is defined as the process of planning 

and designing for future transportation needs of people and goods (McLeod et al., 2017). 

Traffic planning includes transport policies, legislative activities, operation, provision, 

facilities management, financial allocation, investments, economic activity, urban 

design and many other factors. The goal is to optimise the transport flow according to 

the resources available. Traffic management refers to all procedures and equipment that 

enable a proper operation both during regular and special circumstances. 

The key to traffic planning and management is to collect and analyse the transport 

information and to understand the situation of transport systems for appropriate policy 

and regulation. Therefore, the first research hotpot in this field is to understand the 

various parameters for describing the public transport system, such as travel time and 

arrival time. SVM is a useful method for multiple nonlinear data, which can deal with 

sequential data (Bin et al., 2006) and multiple independent variables (Zeng et al., 2015). 

Also, ANN is another popular method for the travel and arrival time prediction, which 

shows a good performance in the presence of a large database (Kumar et al., 2014).To 

discover the complex patterns of the distribution of bus travel time, Petersen et al. (2019) 

combine the architecture of convolutional neural network (CNN) and LSTM to use 

the non-static spatial-temporal correlations for the bus travel time prediction, by which 

the irregular peaks in bus travel time can be detected. In addition to exploring the 

feasibility of each machine learning model in forecasting tasks, some studies are focusing 

on the difference in the performance of various machine learning models. Ranjitkar et 

al. (2019) compare the performance of multivariate linear regression, decision tree, 

ANN and gene expression programming models in predicting the bus arrival time based 

on the real-world data in Auckland and show the input of time series can improve the 

accuracy of the prediction. The ANN is the best method for the bus travel time 
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prediction among the mentioned methods. However, it is difficult to explain the nodes 

and weights in ANN. Even though ANN is the best predictive model, it is of little help 

in our understanding of the influencing factors. So, it is important to understand and 

find out the features impacting on the bus travel time. Sun et al. (2019) develop a 

framework to extract features for capturing local-spatial correlation, global-spatial 

correlation, recent and distant historical information, temporal periodicity, as well as 

contextual information such as road network characteristics and other extrinsic factors, 

and investigate the intrinsic and extrinsic features that impact the bus speed and their 

significance in special scenarios when predicting the bus speed by ANN.  

Scheduling of public transport services is another vital role in public transport planning, 

and traditionally operation research (OR) methods are widely used for the scheduling 

problem (Ibarra-Rojas et al., 2015). To solve large-scale scheduling problem, heuristic 

algorithms, such as genetic algorithm (Yin et al., 2019), ant colony optimization (Wei 

et al., 2012) and simulated annealing algorithm (Hanafi and Kozan, 2014), are popularly 

employed. Recently, the development of unsupervised learning brings a new approach 

to solve scheduling problems, for example, reinforcement learning (RL) approach 

(Salsingikar and Rangaraj, 2020) and Deep Q-Network (DQN) (Obara et al., 2018). 

Khadilkar (2019) compares the RL and classic heuristic algorithms in solving the 

rescheduling problem and concludes that RL could i) utilise the value of objective for 

the learning processes, (ii) take advantage of the characteristics of specific problem 

instances, (iii) generalise from one problem instance to another, and (iv) not require a 

great deal of domain expertise for defining the scheduling rules.  

1.2.3. Maintenance and inspection 

To keep public transport users safe and ensure the smooth operation of public transport 

systems, the field of maintenance and inspection is a significant component in the public 
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transport system. The reliability, safety and vehicle life of public transport systems 

depend on the maintenance scheme (Haghani and Shafahi, 2002). The tasks of 

maintenance and inspection are to monitor conditions of equipment and infrastructure 

and make maintenance plan before the deterioration happens. However, Andrle (1986) 

point out that skilled experts for correct problem diagnosis are not always available, 

which requires a smart system to aid mechanics in diagnosis. 

Since the fault of train and bus has a different influence on the running statues and safety 

degree, the research of applying machine learning to the domain of maintenance and 

inspection in concentrated in the rail system. The first areas of applications in 

maintenance and inspection are to use machine learning techniques to detect the fault 

of infrastructures from multi-source data. For example, the health of track is diagnosed 

based on the signal pattern of dynamic vehicle response (Firlik and Tabaszewski, 2020), 

and other potential factors such as traffic volume, defect amplitude, track class, and speed 

(Hu and Liu, 2016). Gao et al. (2018) combine three independent data rouses, ultrasonic 

B-scans, eddy current testing probes and surface imaging video, for detection of squat-

like specific rolling contact fatigue defects. In these studies, machine learning techniques 

shows a remarkable ability to deal with the multi-source and high-dimension data in 

pattern recognition. Besides the external features, the deterioration of infrastructures 

shows some regularity in the temporal-spatial distribution, which can be measured by 

LSTM (Bruin et al., 2017) and deep convolutional neural networks (Krummenacher et 

al., 2018). Besides, how to improve the performance of machine learning models is also 

a focus of research interest. Lasisi and Attoh-Okine (2018) suggest that using principal 

components analysis (PCA) to reduce the dimension of the track geometry data, which 

contributes to the accuracy and efficiency of machine learning in rail exception and 

defects monitoring. These studies contribute to the use of data sources and feature 
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engineering. They prove that it is an excellent choice to use machine learning 

techniques in predictive tasks. 

Moreover, the current inspection strategy is visual inspection. The second area of 

applications is to use the techniques of computer vision and image processing for 

automatic visual inspection of the computer. Aydin et al. (2013) use canny edge 

algorithm and Hough-transform to obtain the height of the pantograph in the image 

from the pantograph-catenary system. Among the machine learning techniques, CNN 

is a popular and effective model to deal with image data. There are many studies based 

on the CNN model (Giben et al., 2015; Faghih-Roohi et al., 2016) and its 

improvement (Kang et al., 2019; Han et al., 2020). The studies above are based on 

image/video data, so improving the quality of data is an essential task for a good 

performance of machine learning models. Li and Ren (2012) improve the algorithm of 

the enhancement of image quality and automatic thresholding by the Michelson-like 

contrast measure (MLC), and proportion emphasized maximum entropy (PEME) 

thresholding algorithm in detecting discrete surface defects in a vision system. To 

improve the class balance, Hajizadeh et al. (2016) apply semi-supervised learning 

techniques such as self-training and co-training to identify and add new positive 

examples to the training dataset, which can obtain a higher performance in detecting 

the Squats from image data. There are several studies paying attention to the quality of 

the database and trying to improve data quality. However, this data issue, for example, 

the imbalanced data issue, have not been received researchers’ attention in the field of 

public transport studies. The review of imbalanced data issue will be discussed later in 

Chapter 4. 
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1.3. Ridership prediction in the bus system 

OD matrix is the foundation of spatial analysis of the ridership. It provides the 

information about the use (boarding and alighting) of bus stops and bus lines in a 

network. According to OD matrix, operators can easily obtain the distribution of 

ridership along the network and evaluate the rationality of the network structure, for 

example, where there is too much or too little demand. The bus lines and their 

scheduling can be optimised based on an accurate OD matrix. Accurate forecasting of 

bus OD matrix benefits on both passengers and bus operators. Bus passengers can re-

plan their trips by changing transport mode and postponing departure time to avoid the 

discomfort of being crowded (Brakewood and Watkins, 2019). Bus operators can re-

schedule the timetable to improve the reliability and level-of-service of buses. 

Therefore, the ridership prediction in bus system is of great importance. In this section, 

I will review the development of bus ridership prediction from aspects of predictive 

methods and data sources.  

1.3.1. Development of bus ridership prediction 

The most traditional method for bus ridership prediction is covered by the four-stage 

model. In the stage of trip generation, the total demand, including all transport modes, 

is built into a predictive model. Then the ridership of buses will be proportionally 

separated from overall demand in the stage of mode split. Meanwhile, there are many 

studies paying attention to how to predict the bus ridership directly. According to the 

review from Banerjee et al. (2020), the predictive models are classified into three groups: 

causal model, time series model and AI model. As the AI model is reviewed in Section 

1.2.1, the flowing context will introduce the causal and time series model. 
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1.3.1.1. Causal models 

The basic idea of the causal model tries to incorporate the explaining factors to the 

predictive models of bus ridership and to describe their correlations. Following this idea, 

we can build up the predictive regression functions, such as LR, based on the 

relationship between bus ridership and such related factors, e.g. populations, economic 

attributes, and land-use. Varagouli et al. (2005) fit a multiple linear regression model 

(MLRM) for the demand forecasting based on the variables of GPD, population, the 

number of cars and trip characteristics by car of the OD zones. Guo et al. (2007) use the 

MLRM to analyse the impact the independent weather variables on the bus ridership, 

which can also be used to predict the bus demand under different weather conditions. 

Carpio-Pinedo (2014) presents an MLRM to predict the bus demand at stop-level with 

the impacts of space syntax and other built environment factors. Zhou et al. (2017) 

model the relationship between bus demand and changes of weather conditions by 

MLRM and analyse their correlations and significance of the correlation. Khan et al. 

(2019) produce a bus demand prediction form the MLRM to investigate the potential 

users when giving the observations of bus passengers and the features of the day. Wei et 

al. (2019) propose the negative binomial models to model the relationship between bus 

demand and weather conditions. Unlike using the variables independently in the above 

research, this study also considers the interplay between the weather conditions. These 

models can explain the relationship between ridership and influencing factors and help 

us select the relative features in predictive models. However, most of these models 

assume that the relationship is linear, which is not consistent with reality. A more 

accurate prediction requires that the predictive model can measure a non-linear 

relationship even consider the interaction between variables. 
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1.3.1.2. Time series model 

Bus ridership generally shows regular periodic changes. For example, there are always 

two peaks in a day in the morning (from about 7 to 9 am) and evening (from 5 to 7 pm). 

Moreover, the number of commuters is relatively steady on Tuesday, Wednesday and 

Thursday. There would be more commuters on Monday and Friday due to the impacts 

of weekends and less demand at weekends (Nurul Habib et al., 2017; Long et al., 2012). 

Therefore, time series model is a suitable way to reflect the changes in demand over 

time (Washington et al., 2010). Autoregressive (AR) methods were developed for time 

series data. Later, the improvement of AR model appears, for example, autoregressive 

integrated moving average (ARIMA) and seasonal autoregressive integrated moving 

average (SARIMA) model (Zhang, 2003; Cryer and Chan, 2008). Gong et al. (2014) 

use a SARIMA model to predict the number of passengers arriving at bus stops from 

the historical boarding, empty space and GPS data. Xue et al. (2015) employ the 

ARIMA method to predict the bus demand at the weekly and 15-minute time interval 

and the SARIMA for daily demand. Zhou et al. (2013) find out that the ARIMA model 

presents a better performance for the prediction of bus demand at every bus stop when 

compared with the time-varying Poisson model and weighted time-varying Poisson 

model. Besides the ARIMA model, Ma et al. (2014) assume that the ridership is related 

to its hourly, daily and weekly pattern. This study thus suggests predicting the pattern 

of ridership at the hourly, daily and weekly scales. It then introduces the interactive 

multiple models (IMM) to capture the relationship and predict the final demand 

prediction. It is acknowledged that AR-based methods are one of the best ways to deal 

with the time series data and can receive an accurate result. However, this method needs 

to model the bus stops and bus lines one by one. The experience in one bus stops cannot 

be used to others. Considering hundreds of bus stops in a city, it is difficult to widely 

use this AR-based model to predict the ridership for every bus stop. Additionally, the 
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AR-based model only captures the regulation in ridership itself but ignores the external 

factors such as a sudden sport event and rainstorm (see Chapter 2 for details).  

1.3.2. Multi-source data for bus ridership prediction 

The prediction is always based on the initial conditions that could be the pattern of 

changes in their conditions and the influence of external factors. So, it is critical to 

capture the related variables.  

In the beginning, without such hi-technology, the ridership is obtained manually. The 

investigators counted the number of passengers at some bus stops or in a vehicle. We 

call these methods as site and rider check (Ceder, 2007). Another method is based on 

the questionnaire survey. The investigators use a survey to collect the characteristics of 

a small group of passengers and their travel pattern. The overall ridership will be inferred 

according to the result of the survey. These methods cost a lot of workforce and money 

for a small sample of demand.  

Recently, the Internet of Things connects all the facilities of people’s daily life, which 

enables data from various sensors is available to researchers for the bus ridership 

prediction. The APC system is developed to collect the direct number of boarding and 

alighting automatically. APC system uses a passive, non-radiating infrared technology 

to detect and count people moving through a door or gate (Gerland and Sutter, 1999). 

However, only 10%-10% of buses in the U.S. are equipped the APC devices (Barabino 

et al., 2014). Researchers and operators are trying to measure the readership information 

from indirect data sources. The smart card data is one of the cheapest and most valuable 

data sources, which has been widely used in the ridership prediction. There are two 

kinds of designs of AFC system: ‘open’ AFC system requires passengers to swipe their 

cards at boarding and records the boarding information, while ‘closed’ AFC system 

requires passengers to swipe their cards at both boarding and alighting. The open AFC 
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is one of the best data sources that can be used to analyse the total bus demand 

(Bordagaray et al., 2016). Dissimilarly, the closed AFC records the alighting informant, 

so that is can be used to do deep analysis on the OD matrix (Sun et al., 2016). 

Additionally, the GPS data provides the location of vehicles for the bus trips when the 

AFC system does not contain such geographic information (Zhou et al., 2013). The 

advanced communication technologies, especially 5G, have made mobile phones and 

the Internet indispensable for people's travelling. Cellular signalling data implies the 

passengers’ mobility and becomes a popular data source to track people’s movement 

(Gundlegård et al., 2016; Xing et al., 2019). The data from social media is also an 

excellent choice to analyse people’s movement (Yang et al., 2019b). As some bus stops 

and vehicles offer free Wi-Fi to passengers, the accessing actions can be used to follow 

users’ trajectory (Oransirikul et al., 2014). 

1.4. Summary of research gaps  

Although the previous studies and applications have made a great effort in bus ridership 

prediction, some research gaps are remaining.  

RG 1: Firstly, most of existing studies targeted to predict the total demand of the bus 

network, i.e. demand along certain bus lines as well as demand at specific bus stops. 

Although the advanced AR-family methods can achieve the goal accurately, they 

require building a single model for each bus stop and each bus line. This is 

computationally burdensome, and the workload is a huge challenge for public transport 

planner. Thus, it is essential to find a single method that can model the demand for all 

levels at once. 

RG 2: Secondly, not only do we need to know where passengers are coming from 

(boarding stops), we also need to know where they are going (alighting stop). The OD 
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matrix tells the planner more details of the passenger flow than the demand at boarding. 

Nevertheless, the smart card data in most bus-AFC systems do not record alighting 

information. Although a few studies use machine learning methods to predict alighting 

stops for bus trips, these studies can only be applied to a limited number of stops. For 

example, there are only five candidate alighting stop in the DNN model from the study 

of Jung and Sohn (2017). So, estimating alighting stops for bus trips in network level is 

still an important task. 

RG 3: Thirdly, the impact of environmental factors, like weather conditions, on travel 

behaviour and ridership is less considered. The bus trip is significantly affected by 

weather conditions, and passengers have different travelling decisions under different 

weather events. The related studies will be reviewed in detail in Chapter 2. However, 

some of the studies investigated the change and rules of passenger flow itself but 

neglected the impact of environmental factors. Some studies examined the role of a 

single factor in isolation but ignored the interaction between the factors. When 

analysing and predicting the OD matrix and passenger flow of bus ridership, considering 

the impact of weather conditions will make our model more realistic. 

RG 4: Finally, whilst the development of smart city brings the techniques of machine 

learning and AI to the research of bus ridership prediction, there are many difficulties in 

practice, including noise and missing data and imbalanced data issue (the number of data 

in different classes is not equal). These data issues result in the inaccuracy and learning 

errors for machine learning models. The related studies will be reviewed in detail in 

Chapter 4. Most of the existing studies have ignored the impact of low data quality on 

the performance of machine learning models. With this, analysis and guidance of how 

to improve the quality of the practical data are crucial for the application of machine 

learning techniques in the public transport system. 
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1.5. Research aims and objectives 

The overall objective is to understand and predict the boarding and alighting behaviour 

of bus passengers at the individual level. The boarding behaviour refers to who gets on 

a bus at which bus stop, for which bus line and during what time. The alighting 

behaviour identifies the alighting time and location (specific bus stops) for each bus trip. 

The smart card data will be the main data source to the predictive models. Since the 

smart card data does not contain the location of boarding stops, GPS data is used for 

boarding stop inference. Besides, the hourly weather monitoring data, including 

visibility, humidity, air pressure, temperature, and precipitation, is used to describe the 

environmental factors. To accomplish this aim, the following research objectives have 

been defined: 

a) To estimate the alighting stop and time for each bus trip recorded in the smart 

card data and to analyse the importance of the factors that may impact 

passengers’ alighting behaviour (RG 2); 

b) To predict the hourly boarding behaviour of whether to travel and the specific 

boarding stops for each smart card users (RG 1); 

c) To solve the imbalanced data issue in boarding behaviour prediction, that an 

extremely large percentage of the negative instances results in a poor and 

inaccurate performance of the predictive model in boarding demand 

prediction (RG 4); 

d) To apply a big public transport data, such as smart card and GPS data, and 

multi-source data, such as meteorological data, to the machine learning 

techniques for solving the tasks above (RG 3). 
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1.6. Thesis outlines and contributions 

The thesis comprises of five chapters, and Figure 1.3 illustrates the relationship among 

five chapters in this thesis. Chapters 1 and 5 are the Introduction and Conclusion of the 

thesis. Chapters 2 and 3 present machine learning methodology in predicting the 

alighting stops and the boarding behaviour of smart card users, respectively. These two 

chapters work on the two aspects of bus demand: boarding and alighting behaviour. 

Chapter 4 presents an enhancement to the prediction method of Chapter 3: it addresses 

the imbalanced data issue when prediction boarding behaviour. The work of each 

chapter is described in detail below. 

 

Figure 1.3 The relationship between the five chapters in this thesis. 

Chapter 1 introduces the background of the studying topic, the reason why we need to 

predict the bus demand, including the ridership and OD matrix and reviews the classic 

and state-of-arts methods on bus demand prediction. It introduces in general terms the 

machine learning techniques and their broad applications in transport systems, especially 

public transport systems. The chapter concludes with a summary of the research gaps, 

the objectives and the thesis outline. 
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Chapter 2 focuses on applying the novel machine learning technique, gradient boosting 

decision tree (GBDT) algorithm, on estimating the alighting stops of each smart card 

transaction that records only the boarding information. Origin-destination flow of 

passengers in bus networks is a crucial input to the public transport planning and 

operational decisions. Smart card systems in many cities, however, record only the bus 

boarding information (namely an open system), which makes it challenging to use smart 

card data for origin-destination estimations and subsequent analyses. This chapter 

addresses this research gap by proposing a machine learning approach and applying the 

GBDT algorithm to estimate the alighting stops of bus trips from open smart card data. 

It advances the state-of-the-art by including, for the first time, weather variables and 

travel history of individuals in the GBDT algorithm alongside the network 

characteristics. The method is applied to six-month smart card data from the City of 

Changsha, China, with more than 17 million trip-records from 700 thousand card users. 

The model prediction results show that, compared to classic machine learning methods, 

GBDT not only yields higher prediction accuracy but more importantly is also able to 

rank the influencing factors on bus ridership. The results demonstrate that incorporation 

of weather variables and travel history further improves the prediction capability of the 

models. The proposed GBDT-based framework is flexible and scalable: it can be readily 

trained with smart card data from other cities to be used for predicting bus origin-

destination flow. The results can contribute to improved transport sustainability of a city 

by enabling smart bus planning and operational decisions. 

Chapter 3 utilises the deep learning approaches to predict the travel pattern of bus 

passengers and develops a multi-stage framework to solve the imbalanced data issue and 

many-class problem in the practical dataset that may reduce the accuracy of deep 

learning models. A clear understanding of the travel pattern of passengers is critical to 

planning and managing smart public transport systems. Whilst in the past transport 
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planning rely only on survey responses to study the behaviour of transit passengers, in 

recent years, smart card data has emerged as a more comprehensive, accurate and cheap 

source of information. This chapter presents a multi-stage machine learning framework 

to predict passengers’ boarding stops using smart card data. The framework addresses 

the data challenges arising from the imbalanced nature of the data (e.g. many none-

travelling data) and the ‘many-class’ issues (e.g. many possible boarding stops) by 

decomposing the prediction for each hour of a daily into three stages: whether a smart 

card user is expected to travel or not in that one-hour time slot, which line they will 

use and at which stop they will get on board. I implement a simple neural network 

architecture, fully connected networks (FCN), and two deep learning architectures, 

recurrent neural networks (RNN) and long short-term memory networks (LSTM). 

The predictions also incorporate individual travel histories and weather conditions. The 

proposed approach is applied to the bus network in Changsha, China, with about 3 

million trip-records from 560 thousand card-users. The machine learning models do 

not show high performance on predicting the decision to travel by bus, and the choice 

of the line and the specific boarding stops at the individual level. However, aggregated 

ridership results show that RNN and LSTM are able to measure the temporal 

characteristics of the ridership but lack the ability to capture the spatial distribution 

through bus lines, while the opposite holds for FCN. 

Chapter 4 addresses the data imbalance issue by a generative adversarial network model 

to re-balance the number of major and minor instances in the training dataset and to 

improve the accuracy of the prediction model. Accurate estimation of bus ridership 

plays an important role in the planning and optimisation of the bus network and bus 

operations. Recent research has demonstrated that smart card data, using machine 

learning techniques, can be a promising approach for predicting the spatial and temporal 

patterns of bus boarding. However, the boarding from a specific stop at a given time 
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window is a rare event: most of the records denote negative (non-travelling) instances, 

and only a few are positive (travelling) instances. Such data imbalance in the smart card 

records can significantly reduce the efficiency and accuracy of machine learning models 

deployed for predicting hourly boarding numbers from a particular location. This 

motivates this chapter where I propose a deep generative adversarial network (Deep-

GAN) model to generate dummy travelling instances and to produce a training dataset 

with more balanced travelling and non-travelling instances. The synthesised dataset is 

used in a deep neural network-based (DNN) model to predict the travelling and non-

travelling instances from a particular stop in a given time window. The results show that 

addressing the data imbalance issue can significantly improve the performance of the 

predictive model and the dataset with the 1:5 imbalance rate (i.e. ration of travelling to 

non-travelling) best fits the actual profile of ridership. Further, a comparison of the 

performance of the Deep-GAN with other resampling methods (e.g. SMOTE and 

Random under-sampling) denote that the proposed method fits the profile of ridership 

better than other potential approaches. 

Chapter 5 provides an overall summary of the thesis and give recommendations for 

future work. 
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Chapter 2 

Incorporating weather conditions and travel 

history in estimating the alighting bus stops from 

smart card data 

2.1. Introduction 

‘By 2030, provide access to safe, affordable, accessible and sustainable transport systems 

for all, notably by expanding public transport (UN, 2015).’ 

The smart public transport system is an irreplaceable part of the ‘Smart City’ agenda (Ma 

et al., 2019). A well-planned and efficient bus system is a critical component of 

sustainable transport eco-system. The benefits of buses can be viewed from a range of 

different angles: (i) compared to cars, buses offer high capacity and low emission travel 

(Kwan and Hashim, 2016); (ii) buses are low-cost and quick to implement, relative to 

rail-based urban public transport systems such as metro; and (iii) bus operations have the 

flexibility to penetrate and respond to where and when the passenger demand is (Pei et 

al., 2019). However, many of the urban bus systems suffer from poor images of 

unreliability, crowding, bus bunching, and generally low level of services (Berrebi et al., 

2015; Bordagaray et al., 2013). One of the important factors affecting their level of 

services and reliability is the temporal and spatial variability in the bus ridership 

distributions (Liu and Sinha, 2007; Sorratini et al., 2008). Understanding the factors 
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driving the bus passenger behaviour and accounting for them to accurately estimate bus 

ridership are therefore the basic foundation for planning and operating a good public 

transport system (Hollander and Liu, 2008; Ibarra-Rojas et al., 2015; Wu et al., 2017; 

Wu et al., 2019; Wu et al., 2016).  

Bus ridership, or the origin-destination matrix of bus travel demand, is affected by many 

factors. Existing studies in the literature have tended to focus on the population density 

and bus service provision of the area (Johnson, 2003; Xie et al., 2019b), the socio-

economic-employment characteristics of the traveller such as their car ownership, 

income, etc. (Paulley et al., 2006; Xie et al., 2019a). Bus passengers are exposed to 

outdoor weather environment during their travel, much more possible than car drivers 

and metro train users are. As a result, people may choose destinations and routes 

differently under different weather conditions (e.g. small but closer shop versus larger 

but farther supermarket; going straight home versus stopping at an intermediate location 

to run an errand; route ‘without transfer’ but long walk versus ‘with transfer’ but no 

walking, etc.). In terms of empirical evidence, there have been recent interests in the 

weather impact on bus ridership on the demand side, and how bus operating strategies 

should respond to weather conditions on the supply side (see the review by Böcker et 

al., 2013).  For example, adverse weather is found to reduce the level of services of the 

bus system, while extreme weather (such as rainstorm and flood) could cause significant 

disruption to bus service (Hofmann and O'Mahony, 2005; Yin et al., 2016). Similarly, 

passengers’ travel behaviour, in terms of whether to travel, trip timing, route, and 

destination, could also be influenced by the different weather conditions. On the 

underlying mechanisms of the weather impact on changes in OD trips, my intuition 

suggests a variety of scenarios where the different weather conditions may have on the 

choice of passenger’s alighting stops. People may make destinations and routes 

differently under diverse weather conditions (e.g. small but closer shop versus larger but 
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further supermarket; going straight home versus stopping at an intermediate location to 

run an errand; route ‘without transfer’ but long walk versus ‘with transfer’ but no 

walking, etc.). Arana et al. (2014) show that wind and rain reduce trip-making, while 

mild temperature encourages passengers to travel. Aaheim and Hauge (2005) report that 

heavier precipitation and lower temperature shorten the distance people travel. Sabir 

(2011) points out that weather may change people’s decision in the travel destination, 

especially for leisure travel. Liu et al. (2015) find that, in Sweden, both commuters and 

non-commuters are more willing to choose a closer destination in heavier rain. Hereby, 

we speculate that the passengers may change their alighting stops due to the different 

weather conditions, and we consider the ambient weather variables in our estimation.  

Big data sources from the automatic data collection system can be utilised to support 

public transport planning and operation (Zannat and Choudhury, 2019; Zhang et al., 

2018). For example, the automatic fare collection and automatic vehicle location 

systems offer new opportunity to understand the behaviour and patterns of bus ridership. 

With automatic data collection, the methods to estimate the ridership have been 

gradually shifted from the traditional manual survey, such as point check and ride check 

(Ceder, 2007), to data mining using readily available and large automatically collected 

data. There have been remarkable research interests recently in ways to extract the 

relevant and useful information from automatically collected data. Public transport users’ 

smart card data from the automatic data collection system has been widely used as the 

most attractive resource to estimate bus ridership (Bagchi and White, 2005). Many of 

the bus systems, however, operate as a single-tap or open system, where passengers 

tap/swipe smart cards only at boarding, and thus we do not have information about their 

alighting. This raises challenges in using smart card data to directly derive bus origin-

destination demand information, more specifically bus passengers alighting stops. Most 

of the existing research on this topic has so far only been able to estimate the alighting 
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stops of regular commuter bus passengers, by approximating the alighting stops of their 

morning commuting bus journey as being the boarding stops of their evening return 

bus trip. In this paper, we attempt to provide a machine-learning-based framework to 

estimate the alighting stops for general bus trips, including regular and non-regular bus 

journeys. 

The remainder of this paper is structured as follows. Section 2.1.2 reviews the methods 

in estimating the bus ridership and introduces machine learning techniques used in 

mining automatically collected data. A review of the weather factors affecting bus 

ridership is also presented. Section 2.1.3 introduces the case study network and the open 

smart card data used in this paper and highlights the limitation of applying the existing 

methods (trip chaining, for example) to our case. A machine learning approach based 

on the recently developed gradient boosting decision tree (GBDT) algorithm is 

proposed in Section 2.2.4 to solve the multi-class classification problem of estimating 

the alighting stops for the trips. Section 2.2.5 describes the trip features used in the 

model and designs the experiments whose results are presented in Section 2.2.6. Finally, 

Section 2.7 summarises our findings and suggests future research interests. 

2.2. Literature review, research gaps and proposed 

improvements 

2.2.1. Bus ridership and alighting stop estimation using open smart 

card data 

Passengers’ travel history can be tracked by the smart card data and then used for 

inferring their travel behaviour and ridership (Pelletier et al., 2011). In the literature, 
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there are two main approaches to estimate bus ridership from the open smart card data: 

attraction rate and trip-chaining model (see the review by Li et al., 2018).  

Briefly speaking, the attraction rate modelling estimates the attractiveness of a bus stop 

to the passenger, considering its boarding stop, the bus line of travel, and other relevant 

factors. Dou et al. (2007) propose a method to calculate the alighting probability at bus 

stops from the travel distance and passenger numbers. Another method in the attraction 

rate model is the reverse ridership method (Hou et al., 2012), which proposes that the 

proportion of the boarding passengers is equal to the proportion of the alighting 

passengers at the same stop in the reverse bus service. The attraction rate model can 

hence approximate the total bus passenger origin-destination ridership over a day, 

which is useful for long-term bus planning purposes. It is not, however, suitable to 

estimate the within-day (such as hourly) ridership which is critical for short-term or 

real-time bus operation and management. It is also not suitable for application at the 

individual smart card user level, which can be useful for policy testing purposes (e.g. 

testing the implication of a policy to provide fare discount for frequent travellers). 

The second approach, trip-chaining model (Barry et al., 2002), uses open smart card 

data to estimate linked trips and uses the results to establish the associated alighting stops. 

This method has been applied in extensive studies in New York (Barry et al., 2002), 

Chicago (Zhao et al., 2007) and London (Gordon et al., 2013). The trip-chaining 

model makes two strong assumptions: (i) each passenger gets on-board at the station 

where he/she alighted at the last trip; and (ii) each passenger’s daily final alighting stop is 

the same as his/her first boarding stop of the day (Barry et al., 2009). These assumptions 

put a limit on the applicability of the method. As summarised by Li et al. (2018), such a 

naïve trip-chaining model is not applicable to the following groups of passengers: (i) 

who use an untraceable mode of transport, for example taking a taxi on a leg of the 

journey; and (ii) who do not return to their origin stops. Since then, various studies have 
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been making improvements to this naïve trip-chaining model. For the unlinked trips 

(e.g. those which involve a different untraced mode of transport in between bus trips), 

Trépanier and colleagues (Trépanier and Chapleau, 2006; He and Trépanier, 2015) 

suggest using passengers’ historic travel pattern, and they propose a density-based 

method using arrival time and distances corresponding to each potential stops to identify 

the probability of alighting at that stop. For the daily trips which do not go back to the 

first boarding stop, Munizaga et al. (2014) find that many midnight trips (between 0-2 

am) belong to trip chains on the previous day, and they suggest distinguishing the day 

at 4 am to reduce missed trips in recognising the trip chains. 

One of the key processes in trip-chaining based models is to identify the most likely 

alighting stop among possible stops in close proximation. Trépanier et al. (2007) search 

the possible alighting stops by minimising the distance to the boarding stop of the next 

trip. Nunes et al. (2016)  define a threshold of distance by the transaction fares system 

with distance-based fare structures. Munizaga and Palma (2012) replace the distance by 

a generalised time, while Nassir et al. (2011) combine smart card records with a range 

of additional data sources, including bus timetable, automatic passenger counter and 

automatic vehicle location system, to identify the alighting stop of the last trip.  

A common feature in these improved trip-chain models is that they rely on historical 

data to find the next boarding (alighting) stops. Studies using the attraction rate and trip-

chaining models have so far been mainly based only on the smart card data, with some 

incorporating the network characteristics into the studies. In reality, there are many 

other factors that can affect the ridership choices made by the passengers, such as the 

effect of weather on passengers’ habitual travel behaviour (see section 2.2.3 for details), 

special events, etc. This paper attempts to incorporate such weather-related factors in 

the estimation of bus ridership to address this research gap. 
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2.2.2. Data mining using machine learning technique 

Although the development of automatic data collection system offers detailed data on 

various aspects of the public transport system, the abundance of available data challenges 

the traditional data mining methods such as classification, clustering, and regression 

analysis. Machine learning as a data mining method is shown to be able to handle high-

dimensional and multivariate data in a complex, dynamic and even chaotic system, and 

to identify the patterns in the data and the relevant influential factors (Witten et al., 2016; 

Wu et al., 2016; Wu et al., 2020a). 

Recently, there has been an increase in the number of studies trying to bring machine 

learning to the analysis of public transport data (see examples listed in Table 2.1). For 

example, Yu et al. (2011) apply several machine learning models: support vector 

machine, artificial neural network, k nearest neighbours algorithm and linear regression 

to predict the bus arrival time from the bus running time on different routes. Corman 

and Kecman (2018) build Bayesian networks to predict train delays in real-time from a 

live data stream. Meanwhile, how to use the data in the automatic fare collection system 

is also an interesting topic for many studies.  

There are two types of automatic fare collection systems: the closed automatic fare 

collection system, which records both the boarding and alighting information, and the 

open automatic fare collection which records only the boarding information. For the 

closed (mostly metro) automatic fare collection system, there have been extensive 

studies applying machine learning to forecast the metro passenger flow from smart card 

data via the networks of hybrid empirical mode decomposition and back-propagation 

neural network (Wei and Chen, 2012), multiscale radial basis function network (Li et 

al., 2017) and long short-term memory neural networks (Liu et al., 2019b).  
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There are relatively limited studies of machine learning application to open automatic 

fare collection systems. Toqué et al. (2016) infer the alighting stops using the trip-

chaining model to predict the origin-destination matrices at stop level in 15-minute 

windows using long short-term memory neural networks. Jung and Sohn (2017) 

develop a deep learning model to predict the alighting stops for each transaction, taking 

account of variables on the land-use near the boarding and candidate alighting stops. 

The key literature on machine learning applications on public transport research is 

summarised in Table 2.1. 

Table 2.1 Selected literature on the applications of machine learning on public 
transport research. 

Literatures 
Public 

transport 
modes 

Targets 
Machine 
learning 
models 

Data resources 

Yu et al. (2011) bus arrival time 
SVM, ANN, 
k-NN, LR 

real-time traffic data 

Corman and 
Kecman (2018) 

train delay 
Bayesian 
network 

scheduled and real 
timetable 

Liu et al. 
(2019b) 

metro passenger flow LSTM 
closed smart card data; 
weather and holiday 
events 

Li et al. (2017) metro passenger flow MSRBF closed smart card data 
Wei and Chen 
(2012) 

metro passenger flow EMD - BPN 
closed smart card data; 
(holiday events) 

Toqué et al. 
(2016) 

bus 
origin-destination 

matrix 
LSTM open smart card data 

Jung and Sohn 
(2017) 

bus destination Deep learning open smart card data; 
land-use 

This study bus alighting stops GBDT 
open smart card data; 
travel history; 
weather conditions 
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Our study proposes a machine learning method to estimate bus passengers’ alighting 

stops from open smart card data where only the boarding stops are observed. Compared 

to the existing literature on the subject (Table 2.1), we employ an innovative new data 

mining approach, the gradient boosting decision tree (GBDT) model, to estimate the 

alighting stop for every bus trip recorded in the smart card data. Furthermore, we 

incorporate passengers travel history and their travelling environment – in terms of the 

ambient weather conditions, into the estimation. We examine the impact of these 

additional variables on the performance of the estimation. 

2.2.3. Weather impacts on bus ridership 

As noted in the Introduction, there has been existing research that established 

relationships between the varying weather conditions and overall bus ridership. Table 

2.2 summarises the key literature that examines the weather impact on public transport 

ridership. Generally, precipitation is found to be one of the most important factors 

affecting bus ridership. Hofmann and O'Mahony (2005) show that the number of smart 

card trip records decreases with rainfall. Similar conclusion, drawn by Saneinejad et al. 

(2012), is that commuting trips of all modes, including buses and private cars, is 

negatively affected by precipitation. In contrast, Singhal et al. (2014) find that urban 

transit ridership increases on snowy days as the poor driving conditions tend to shift 

people from private cars. Additionally, Guo et al. (2007) investigate how rain and snow 

affect the public transport ridership and report that rain and snow tend to reduce the 

ridership for both bus and rail, but heavy snow might actually increase the rail ridership. 

The temperature and wind are other important sensory weather variables. Stover and 

McCormack (2012) report that in a cold climate, the ridership decreases as the 

temperature dropped and increases on warmer days. Similarly, Guo et al. (2007) 

discover a significant positive impact of temperature on transit ridership in warm 
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weather but find no correlation between ridership and temperature in cold weather 

conditions. They speculate that the impacts are not caused by the prevailing temperature 

but the temperature changes and human perceptions. Kashfi et al. (2015) report that 

temperature has an insignificant effect on the daily bus ridership. For the impacts of 

wind, Arana et al. (2014) show that the wind, together with rain, leads to a reduction 

in transit ridership. Singhal et al. (2014) also find a negative effect of wind on hourly 

subway ridership, but the effect is not significant on daily ridership. Guo et al. (2007) 

note that increasing wind speed reduces bus ridership, but it has a negligible impact on 

rail ridership. Besides these three weather variables (temperature, rainfall and wind), 

Zhou et al. (2017) analyse the impact of weather condition on bus and metro system 

together with relative humidity and air pressure. Their study reports that increase in 

humidity, wind and rainfall is generally associated with a certain degree of transit 

ridership decrease while their degree and the significance of the impact vary from one 

weather variable to another, and between weekday and weekend. Wei et al. (2019) 

consider the weather impact on weekday and weekend travel by bus, train and ferry. 

They find that, unsurprisingly, ferry is mostly affected by bad weather. Poor weather 

conditions do not appear to affect train journeys during the weekdays, but to reduce 

train journeys made during weekends. They find that bus trips are negatively affected 

by rainfall, but not affected by temperature. 

The most common method to quantify the impact of weather on public transport 

ridership in these studies is regression modelling, and the most commonly used 

independent weather variables are temperature and precipitation. Guo et al. (2007) take 

into account discretised weather variables, such as heavy or light precipitation, and 

warm or cool temperatures. Zhou et al. (2017) replace the absolute value of weather 

variables by its deviation to the average condition. Wei et al. (2019) consider the 
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interplay of different weather variables in the model to formulate the complex impact 

of weather conditions on the ridership. 

Table 2.2 Correlations between public transport travel demand and weather 
conditions. 

↓: the negative correlation; ↑: the positive correlation; −: no correlation; ×: not 
discussed. 

‘Warm’ and ‘Cold’ means in warm or cold season. 

Literatures 
Public 

transport 
modes 

Precipitation Temperature 
Wind 

Warm Cold Warm Cold 

Hofmann and 
O'Mahony (2005) 

Bus ↓ × × 

Saneinejad et al. 
(2012) 

All ↓ ↑ × 

Singhal et al. (2014) Metro ↑ 
− (daily) 
↑ (hourly) 

− (daily) 
↓ (hourly) 

Stover and 
McCormack (2012) 

Bus ↓ ↑ (winter) 
↓ (except 
summer) 

Guo et al. (2007) 
Bus 

↓ 

↓ 

↑ − 

↓ 

Rail 
↑ (heavy 
snow) − 

Kashfi et al. (2015) Bus − − × 

Arana et al. (2014) Bus and 
train ↓ ↑ ↓ 

Zhou et al. (2017) Bus and 
metro ↓ ↓ ↓ 

Wei et al. (2019) 

Bus ↓ − − 

Train − (weekday) 
↓ (weekend) 

− (weekday) 
↓(weekend) − 

Ferry ↓ 
↑ (weekday) 
− (weekend) − 
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In this paper, we employ a machine learning method to independently evaluate the 

relative importance of different weather variables on bus ridership and consequently 

incorporate the important weather effects in the bus ridership prediction. 

2.3. Data sources 

2.3.1. Network description and data sources 

In this study, we estimate the alighting stops of individual bus trips made using the smart 

card in the city of Changsha. The city, in the central south of China, is separated by the 

Xiangjiang River: the city’s Central Business District (CBD) lies east of the river, while 

the west is principally residential zone. There are more than 200 bus lines in Changsha, 

operated by three bus companies. The study network, shown in Figure 2.1 is a subset 

of the Changsha bus network and includes seven bus lines, all operated by the same bus 

company. Despite it being only a sub-network of the city, the case network covers the 

key public transport interchanges in the city: the three bus terminals and two rail stations, 

as well as the three river crossings that connect the major geo-economical centres of the 

city. The seven bus lines are also representative in service characteristics, including long-

distance and sparse-stop lines (Line 063 and 168), long-distance and dense-stop lines 

(Line 147), short-distance and sparse-stop lines (Line 006 and 007) and short-distance 

and dense-stop lines (Line 123 and 150). 
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Figure 2.1 The case study bus network in Changsha, China. 

Changsha’s smart card system is a typical open automatic fare collection system, where 

passengers swipe cards only at boarding. The system records information on smart card 

ID, boarding time, line and the bus vehicle boarded. All buses in Changsha are fitted 

with GPS trackers, which record the vehicle ID, the longitude and latitude of the 

vehicle location every 10 sec. 

Six months (April to September 2016) of smart card data is made available to this study, 

in which 12 days’ data was missing. There are 17,159,076 smart card records in total or 

roughly 80000 records per day on average. The number of daily smart card records for 

the study period is shown in Figure 2.2. It shows that the ridership in holidays is 

markedly lower than that in working days. It is also noticeable that the four weeks 

between the end of July and mid-August have low ridership when the city typically 

experiences heatwaves with an average temperature around 35ºC and maximum 

temperature of 40 ºC. Besides the high temperature, July and August are also the school 

summer holiday, which may also contribute to a decrease in bus ridership. 
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Figure 2.2 The number of smart card trips by day. 

As part of a wider study of bus patronage, we are also interested in the effect of weather 

on passengers’ travel demand. We acquired weather data for those six months. The 

weather data includes hourly measurements of temperature, precipitation, pressure, 

humidity, visibility, wind speed, and an indicator/register of the type of weather event 

of the hour. The weather events registered include, for example, clear, cloudy, 

thunderstorm, rain, etc. Figure 2.3 illustrates the hourly changes in weather events, 

overlaid with the number of smart card trips during that day (and separated for weekdays 

and holidays). What is also overlaid is the ‘global’ daily bus ridership, averaged over all 

the six months of the study period. It can be seen that, on clear days, the number of 

smart card trips is smaller than the global average. Combining the pattern in Figure 2.2, 

the high temperature and blistering sun may reduce trip-making. Before sunrise and 

after sunset when the temperature is lower, the ridership on those individual days is 

similar to the global average. On cloudy days, the ridership during the morning and 

afternoon peaks of the weekday is lower than the global average, while the ridership on 

the holiday day is delayed by two hours.  Fog and haze have little or no impact on the 

bus passengers’ travel behaviour in the working day, while the ridership on holiday is 

consistently reduced. Rain appears to have reduced bus ridership on both holiday and 
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working days. In Section 2.3.2, we present a statistical analysis on the significance of the 

different weather events on ridership. 

 

Figure 2.3 Hourly ridership in a week for the typical weather events. 

2.3.2. Data pre-processing 

We consider a passenger’s travel from origin to destination as a journey, and each leg of 

their journey as a trip. To simplify the problem and clarify the data analysis process, the 

following assumptions are made: (A1) each passenger owns only one smart card, and 

each card can be only used by its owner; (A2) a journey that requires transfer among 

different lines is regarded as separate trips, each with its boarding and alighting stops. 

Although in practice, the same smart card may be used by family members or friends, 

by assuming (A1), we take each smart card user’s travel history into consideration in 

estimating his/her alighting stops. With the above definition and assumptions, a trip is 

composed of a single pair of boarding and alighting stops. 

The smart card records are firstly cleaned up based on the assumption (A1). If there are 

two or more records appear in the same vehicle at the same station in a very short time 

interval (defined as within 1 minute), the data is registered as repetitive records and 
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counted only once (the first record) in this study. 6.3% of the data is recorded as 

repetitive. The remaining smart card records are combined with the GPS tracking of 

bus vehicles to obtain the passengers’ boarding bus stops. 9.9% of trips cannot be 

matched with the GPS record of the vehicle number, perhaps due to poor quality of 

the data. Then, we capture the timestamps when a bus enters and leaves a bus stop, and 

match the boarding time with these timestamps to find out the boarding stops. Based 

on this boarding-stop inference method, an additional 15.5% of trips whose boarding 

stops could not be inferred. In total, 31.7% of the original smart card records are not 

useful, and the remaining 68.3% of the data (with 11.7 million smart card records) is 

applied in this study. 

In our proposed machine learning approach, the training set utilises the alighting stops 

as the label to teach the model how to do the classification, and the testing set also 

requires their alighting stops to validate the accuracy and performance of the model. 

However, with the open automatic fare collection system, the smart card records we 

have do not contain any alighting information. Here, we use the trip-chaining method 

(Wang et al., 2011) to synthetically generate the alighting stops for the trips in training 

and testing datasets and assume these as the ‘real’ alighting stops for our proposed 

method. Following this naïve trip-chaining method, the trips are categorised into the 

following four types: 

• Trips in a chain (X1); 

• Segments in transfer journey excluding last one (X2); 

• Last segment in the transfer journey (X3); and 

• Other trips (X4). 
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As presented in Table 2.3, types X1 and X2 trips account for 26.7% of the overall 

records. This percentage is much lower than the cases in previous studies, for example, 

75% in London (Gordon et al., 2013), 70% in Chicago (Zhao et al., 2007) and 90% in 

New York (Barry et al., 2002). One possible reason for the low share (of X1 and X2 

trips) could be that our study network is a subset of the Changsha bus network, covering 

only seven bus lines. It is quite possible that there are more trips of X1 and X2 types 

made using other bus lines (operated by different bus companies) that are not counted 

in our sample. This reflects the practical constraints imposed by the bus operating 

framework in Changsha, as well as in many other cities, where there is more than one 

bus company operating different bus lines in the city, and there is no central governing 

body (such as Transport for London) to combine and share the smart card data generated 

by the different companies. A consequence of not having full access to all smart card 

data in a city would lead to breaks during the trip chains and lower percentage of X1 

and X2 types of trips. 

Earlier, we saw in Figure 2.3 illustrations of the different weather events and their effect 

on overall bus ridership. Here, we examine statistically the significance of weather 

events on ridership of each type of trip (chain). We use the one-way analysis of variance 

to examine the significant differences in the number of trips made under different 

weather events; the results of the statistical analysis are presented in Table A.1 in 

Appendix A. We find that the all the p-values are less than 0.05, except those for the 

X3 and X4 types of trips, which proves that passengers, regardless of taking transfer trips 

or chaining trips, have a significantly different travel behaviour under different weather 

events. The results further support the hypothesis that the weather has a significant 

impact on trip chaining (X1 trips), and on trips that involve transfers (X2+X3, and 

X1+X2+X3).   
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Table 2.3 The smart card data records for the study network. 

Type The number of trips Percentage 

Invalid data 

Repetitive trips 1085500 6.3% 

No GPS data 1698515 9.9% 

No boarding stop 2661630 15.5% 

Cannot infer the 
alighting stops 

X4 6580433 38.3% 

X3 548182 3.2% 

Database for this study 
X2 746202 4.3% 

X1 3838614 22.4% 

Total 17159076 100.0% 
 

Following the trip-chaining method by Wang et al. (2011), the alighting trips can be 

only inferred for trips of X1 and X2 types. It may be noted that some of the types X3 

and X4 trips can also be used by the method proposed by He and Trépanier (2015).  For 

consistency, however, only the trips in X1 and X2 are used in our study with the 

machine learning model. 

2.4. A GBDT-based machine learning approach for 

alighting stop estimation 

In this section, we propose a machine learning classification approach to identify the 

alighting stop of the trip from an open automatic fare collection system, where the 

alighting information of the passenger is not recorded. We incorporate each smart card 

user’s travel history and the weather conditions into the machine learning estimation 

framework. 
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2.4.1. Notations 

The following notations are adopted in this paper. 

Table 2.4 Table of notations. 

Notations Description 
trip Vector containing the features and alighting stop of a trip 

r A feature representing a characteristic of the trip 

r The vector including all the features associated with the trip 

V The number of features employed in the model 

d Alighting stop of a trip 

k Index of an alighting stop 

K The number of alighting stops in the network 

merror Estimation error 

Mwrong The number of trips that estimate to the wrong alighting stops 

Mtotal The total number of trips in the dataset 

t Index of iteration 

T Maximum iteration 

Sa Training set 

m The number of data in the training set 

h(·) Probability function of alighting at stops 

R Disjoint region that collectively covers all the trips 
Notations Description 

j Index of the region 

J The number of regions 

c 
Coefficient corresponding to regions and defining the boundaries of 
regions 

f(·) Boost tree model 

L(·) Loss function 

p(·) 
Symmetric multiple logistic transform of the probability of alighting at 
stops 

g Decent direction 
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2.4.2. The machine learning estimation framework 

Machine learning approach works by training the algorithm to optimise a certain 

performance criterion using large data samples (Alpaydin, 2014). In machine learning 

languages, one data record is called an ‘instance’. An instance contains many observed 

(or model) ‘features’, and one ‘target label’ (or a class) to be estimated. The set of the 

observed features is called a ‘feature vector’. The observed features considered in our 

estimations are described in Section 2.5.1. In our study, the target label is the alighting 

stop we want to estimate. The instance, which in our study represents a bus trip, is 

mathematically represented as: 

 ( ),trip d= r  (2.1) 

where r denotes the vector of V observed features of the trip: 

  1 2, , Vr r r r=  (2.2) 

and d denotes the target label, i.e. the alighting stop of the trip: 

  1,2, ,kd d k K =  (2.3) 

where the set of dk represents all the possible alighting stops (or classes), and K is the total 

number of stops (which is 306 in our case study). Thus, our problem of predicting 

alighting stops is a multi-class classification problem.  

The first step in machine learning is to separate all the trips in smart card data into three 

datasets: training, verification and testing datasets. The training set is used to obtain a 

trained model; verification set is used to evaluate our trained model in the training 

process, while the trained and verified model is applied to the testing dataset to predict 

the alighting stops of the trips in the dataset. The performance of a trained model is 

measured in terms of an estimation error (merror), defined as: 

 wrong

total

M
merror

M
=  (2.4) 
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where Mwrong is the number of trips that is estimated to the wrong alighting stop and 

Mtotal is the total number of trips in the dataset. We calculate the merrors for each of the 

training and verification dataset, which are used as the stopping criterion after each 

iteration of the training process. 

Each model is trained with a set of hyper-parameters of the machine learning model. A 

range of initial hyper-parameter values is tested, resulting in a range of different trained 

models and model estimation errors. The final selected trained model is the one with 

the minimum estimation error, which is then applied to the testing dataset for estimating 

the alighting bus stops for the individual trips in that dataset. 

2.4.3. A multi-class GBDT algorithm 

2.4.3.1. General framework 

The training algorithm introduced in this study is the gradient boosting decision tree 

(GBDT) algorithm. Firstly proposed by Friedman (2001), the algorithm is based on the 

integration of statistical and machine learning methods. More specifically, since a single 

tree (as used in Friedman, 2001) is too weak to lead to an accurate result, GBDT uses a 

set of simple trees, in the form of a classification and regression tree, to calculate the 

results and draws the conclusion (i.e. to estimate the alighting stop of each trip in our 

model) together.  

Unlike most of the applications of GBDT which have only a binary choice, the problem 

of alighting stop estimation belongs to the multi-class classification problem (MCCP). 

We outline in Figure 2.4 the main processes for such a multi-class GDBT algorithm. 

Since there are 306 possible stops in the label, we consider the alighting stops one by 

one. The multi-class classification problem of estimating the alighting stops is then 

transformed to a set of regression problems and used to build the classification and 
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regression tree which calculates the alighting probability at each stop. The bus stop with 

the highest alighting probability is chosen as the final estimation result, i.e. the most 

probable alighting stop.  

 

Figure 2.4 The processes of a multi-class GBDT. 

2.4.3.2. Gradient boosting decision tree algorithm 

The GBDT model combines a decision tree algorithm, a gradient updating algorithm, 

and a boosting algorithm, in an iterative process (outlined in Figure 2.5) to improve the 

training results. 

 

Figure 2.5 The detailed algorithm of GBDT model for a single stop k. 
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The classification and regression tree algorithm in GBDT is the most widely used 

decision tree model. Each internal node on the tree represents a test on a feature of the 

trip, while the branch represents the test output (represented in probability terms). The 

terminal nodes of the tree represent the alighting probability at the bus stop along the 

branch. Let hkt(r) denotes the estimation result for a trip r from a simple regression tree 

for stop k at the tth iteration. The probability of alighting at the stop k at the tth iteration 

is measured as the additive form: 

 ( ) ( )
1

ktJ

kt jkt jkt

j

h c I R
=

= r r  (2.5) 

where Rjkt is the disjoint region j that collectively covers all the trips for stop k at iteration 

t, and Jkt is the number of regions for stop k at iteration t. These regions are represented 

by the terminal nodes of the tree. cjkt is a coefficient corresponding to region j for stop 

k at iteration t, which defines the boundaries of the regions. The indicator function I(·) 

has the value 1 if the argument is true, and zero otherwise. 

The idea of boosting is to identify ways to improve the simple trees. Let ft(r) denotes 

the estimation result of the boosted tree model after iteration t. Hence, the boosted tree 

model, or fT(r), can be obtained from:  

 ( ) ( )
1

T

kT kT

t

f h
=

=r r  (2.6) 

To increase the accuracy of the estimates, a loss function is being minimised step by step 

in the iterative GBDT process. A gradient algorithm is used to calculate the direction 

where the loss function decreases the most, and the gradient of numerical decent. The 

negative direction of the gradient refers to the direction where the loss function 

decreases the most. In GBDT, the loss function employs the log-likelihood loss 

function (Friedman, 2002): 
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 ( )( ) ( )10

1

, log
K

k k k k

k

L d f d p
=

= −r r  (2.7) 

where d denotes the real alighting stop; fk(r), calculated from Equation (2.6),  is the 

probability of the trip estimated to alight at stop k; and dk is the probability of the trip 

belonging to alighting stop k, where dk equals to 1 if k is the real alighting stop, otherwise, 

0. 

Following the method of Friedman et al. (2000), we use the symmetric multiple logistic 

transform: 

 ( )
( )( )

( )( )
1

exp

exp

k

k K

l

l

f
p

f
=

=



r
r

r

 (2.8) 

Then the decent direction of trip m at stop k and iteration t can be calculated as: 
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 (2.9) 

Equation (2.9) states that the error is the difference between the real probability of the 

alighting stop k that trip m maps and the corresponding estimated probability at iteration 

t-1.  

Next, a new tree can be generated by following Equation (2.5), where the coefficient 

can be optimised as:  

 ( )( ) ( ), 1

1 1 1

arg min ,

jk

M K J
m m

jkt k k t jk jt

m k j
c

c L d f c I R−

= = =

= +  r r  (2.10) 

Following Friedman et al. (2000), Equation (2.10) is approximated as: 
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With Equation (2.11), a new regression tree for each stop can be generated by Equation 

(2.5), and the boosted tree model can be updated by using Equation (2.6):  

 ( ) ( ) ( ), 1

1

ktJ

kt k t jkt jkt

j

f f c I R−

=

= + r r r  (2.12) 

The iterative process continues until an empirical stopping criterion is met by 

comparing the merrors of training and verification dataset from Equation (2.4). In our 

case, a pre-specified number of iterations is reached.  

Unlike many other machine learning methods, GBDT is able to evaluate the relative 

importance of the independent features of the trip. Since the depth of the tree is 

constrained by the hyper-parameter, the simple tree that is used in each iteration only 

includes a randomly chosen set of features (as opposed to all features). Hence, the 

frequency of the features used across all trees can be used to measure the relative 

importance.  

2.4.4. Model evaluation  

One measure of the performance of the model is the estimation error merror from 

Equation (4). However, it is a far too simple measurement to evaluate the machine 

learning models. Generally, a confusion matrix of measures, composed of True Positive 

(TP), True Negative (TN), False Positive (FP) and False Negative (FN), is used to 

evaluate the performance of the binary classification model (Stehman, 1997). For our 

multi-class classification model, we introduce a confusion matrix for the estimated 

results of each alighting stop and then calculate evaluation indexes (Powers, 2011; Zhou, 

2016). Table 2.5 presents the confusion matrix for a single alighting stop.  



- 50 - 

Table 2.5 The confusion matrix for the estimated results of a single alighting 
stop k. 

Real alighting stop 
Estimated alighting stop 

k 

(positive) 
Other stops except for k 

(negative) 

k 

(positive) TPk FPk 

Other stops except for k 
(negative) FNk TNk 

Our evaluation indexes then include precision (macro P), recall (macro R) and F1 score 

(macro F1), as defined in equations (2.13 – 2.15). Precision and recall reflect the quality 

of the model in terms of the reliability for the results and the applicability for the sample. 

The F1 score, the harmonic mean of the precision and recall, measures and provides an 

overall performance of the model. The higher F1 scores indicate more superior models. 

 1

1
 

K
k

k k k

TP
macro P

K TP FP=

=
+


 (2.13) 

 1

1
 

K
k

k k k

TP
macro R

K TP FN=

=
+


 (2.14) 

 
  

 1 2
  

macro P macro R
macro F

macro P macro R


= 

+  (2.15) 

2.5. Feature selection and experiment designs 

In this section, we introduce the features selected that characterise the trips, and the 

machine learning experiments designed to evaluate the relative performances of the 

algorithms and data features. 
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2.5.1. Feature selection 

Each trip in this study contains 18 observed features, denoted as r1 to r18 in Equation 

(2), and the one target label, d; these are listed in Table 2.6. The observed features 

contain three groups of data: (i) the basic bus trip information as recorded by the smart 

card and the boarding information as inferred from the GPS records of the bus services; 

(ii) the smart-card user’s recent travel history, also extracted from the historical smart 

card data; and (iii) the ambient weather data for the trips taken in (i). The temporary 

features and boarding stops are the necessary information from the smart card data and 

often used in the previous studies for the bus ridership estimation. To investigate the 

regularity of travels and describe the travelling preference, we introduce features about 

the passengers' recent travel history. As noted in the Introduction, weather can impact 

on the travel destinations (Sabir, 2011), we introduce independent weather variables in 

the estimation of alighting stops.  

Table 2.6 The selected model features and the target label. 

Feature 
groups 

Features Types Investigated range 

Basic smart 
card 

information 

Month Discrete 4 - 9 [for April to 
September] 

Day Discrete 1, 2, …, 31 [day] 

Hour Discrete 0, 1, 2, …, 23 [hrs] 

Days of week Categorised 
Mon., Tues., Wed., 
Thurs., Fri., Sat., Sun. 

Holiday Binary 
0: working day; 
1: holiday 

Boarding stop ID Nominal 060101, 060102, etc. 

Boarding line Nominal 
6, 7, 63, 123, 147, 
150, 168 
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Feature 
groups 

Features Types Investigated range 

Travel history 

Number of trips on the 
previous day Discrete 0, 1, 2, … 

Number of trips in the 
same hour on the previous 

day 
Discrete 0, 1, 2, … 

Number of trips on all the 
previous 7 days 

Discrete 0, 1, 2, … 

Number of trips on the 
same day of the last week 

Discrete 0, 1, 2, … 

Number of trips in the 
same hour on the same day 

of last week 
Discrete 0, 1, 2, … 

Weather 
conditions 

Temperature Continuous -6 - 40 [C] 

Precipitation Continuous 0 - 58mm 

Humidity Continuous 0 - 100 [%] 

Visibility Continuous 0 - 10 [km] 

Wind speed Continuous 0 - 10 [mph] 

Weather events Categorised 
Clear, rainy, misty, 
cloudy, overcast, 
unknown. 

Model label Alighting stop IDs Nominal 060101, 060102, etc. 
 

2.5.2. Experimental design 

As GBDT is a relatively new machine learning algorithm, we adopt two other classic 

algorithms, multinomial logistic regression (MLR) and neural network (NN), to 

compare their relative performances. MLR and NN are the two most popular 

algorithms used in machine learning approaches. Both have been used in a variety of 

transport applications, e.g. traffic forecasting, travel mode choice modelling and trip 

distribution modelling (Karlaftis and Vlahogianni, 2011). The hyper-parameters of the 
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GBDT and NN algorithms are set as inputs for the machine learning model. Table 2.7 

displays the different initial settings of the hyper-parameters for the algorithms during 

the training process. The training process tries the values of hyper-parameters in Table 

2.7 and applies trained model to the verification  data. After several attempts, we find 

the best performed model with a group of hyper-parameter values. 

Table 2.7 The initial setting of the hyper-parameters during the training 
process. 

The next two groups of experiments with GBDT follow this initial setting. 

Hyper-parameters GBDT NN 

Learning rate or step-size 
0.0005,0.001, 0.005, 

0.01, 0.05, 0.1 
0.0005,0.001, 0.005, 

0.01, 0.05, 0.1 
Maximum depth of each 

tree 
3,5,8,10,12,15 - 

Fraction of data for 
training next tree 

0.2, 0.4, 0.6, 0.8 - 

 

We conduct six experiments, with increasing total number of trips in the training and 

verification set, while keeping the same dataset as the testing set. Table 2.8 lists the 

details of the training and verification datasets used for the six experiments. All the six 

experiments employ the same testing dataset, the trips made on 30th September 2016. 

The other data are combined and used as training and verification data (depending on 

the sample sizes). In each of the six samples, 30% of the combined training and 

verification data is chosen randomly as the verification data and the rest 70% as the 

training data. From Samples 1 to 6, the number of days and data in the combined 

training and verification data increases. These experiments are designed to illustrate the 

relationship between the size of the training set and the accuracy of the results. 
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Table 2.8 Data sample for the experiments. 

Sample 4 – 6 exclude days when the data was missing. 

Experiments 

The training and verification 
data The testing data 

Days Number 
of records 

Day Number of 
records 

Sample 1 
01-29/09/2016 

(23 days) 
807136 

30/09/2016 
(1 day) 

22602 

Sample 2 
01/08 - 29/09/2016 

(54 days) 
1576132 

Sample 3 01/07 - 29/09/2016 
(85 days) 

2324989 

Sample 4 08/06 - 29/09/2016 
(108 days) 

2954072 

Sample 5 08/05 - 29/09/2016 
(123 days) 

3388117 

Sample 6 
08/04 - 29/09/2016 

(143 days) 3983788 

 

As introduced in Section 2.1, in this study, we are interested in the weather conditions 

and travel history of passengers’ behaviour. To test the hypothesis, we set up several 

GBDT models with four different combinations of feature groups (dubbed as FG 1 to 

4). The feature groups and the setting of hyper-parameters are displayed in Table 2.9. 

All four experiments use the dataset of Sample 6 experiment. FG 1 uses only the basic 

smart card information, similar to many previous methods. FG 2 adds only the travel 

history to FG 1, and FG 3 adds only the weather variables to FG1, while FG 4 includes 

the full set of features proposed in Table 2.6 (i.e. adds both travel history and weather 

conditions to FG 1). The experiments are designed to help us understand the effect of 

different groups of features. 
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Table 2.9 Experimental designs with different feature groups (FG). 

Experiments 
Basic smart card 

information 
Travel 
history 

Weather 
conditions 

FG 1    

FG 2    

FG 3    

FG 4    
 

2.6. Model results  

2.6.1. Model comparison 

Sample 6 and feature group FG 4 are applied to the GBDT model introduced in this 

paper, and to the MLR and NN models. For the GBDT and NN model, the final set 

of the hyper-parameters are displayed in Table 2.10.  

Table 2.10 Values of the hyper-parameters in GBDT and NN. 

Hyper-parameters GBDT NN 

Learning rate or step-size 0.005 0.001 

Iteration 150 30 

Maximum depth of each tree 8 - 

The fraction of data for training next tree 0.4 - 

Number of nodes in layers - (342,333,333,306) 

Activation function for hidden layers - Sigmoid 

Dropout rate - 0.3 

Activation function for output layer - SoftMax 

The relative estimation power of the three models, as measured by their precision 

(macro P), recall (macro R) and F1 score (macro F1), are illustrated in Figure 2.6. The 
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F1 score of a random classification is used as the baseline for comparison, as is indicated 

as the ‘baseline’ in Figure 2.6. It can be seen that the F1 scores of all these three 

algorithms are higher than that of the baseline, suggesting all three models are 

theoretically acceptable, while GBDT has the best performance according to macro P 

and macro F1. Looking at the precision and recall of the model estimations, we can see 

that the values of macro P are always higher than macro R for their respective machine 

learning algorithm. This suggests that the estimation accuracy in all three models is 

better than their recall power. GBDT has the highest prevision accuracy, while NN has 

slightly higher recall power than GBDT. Overall, GBDT performs the best, and its 

prediction power is higher in accuracy than in its comprehensiveness. 

 

Figure 2.6 Comparison of the performance of the three training algorithms. 

2.6.2. Effect of the training data size 

The different training datasets, as defined in Table 2.8, are applied to the GBDT model 

with feature group FG 4. The values of hyper-parameters are displayed in Table 2.11. 
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Table 2.11 Values of the hyper-parameters in Sample 1 to Sample 6. 

Setting Sample 
1 

Sample 
2 

Sample 
3 

Sample 
4 

Sample 
5 

Sample 
6 

Learning rate 0.001 0.001 0.001 0.005 0.001 0.005 

Iteration 70 70 100 120 110 150 
Maximum depth of 

each tree 
6 8 8 5 7 8 

Fraction of data for 
training next tree 

0.5 0.7 0.6 0.7 0.5 0.4 

 

The prediction measures are shown in Figure 2.7. We can see that, in general, increasing 

the training data size improves the prediction power. The most significant improvement 

happens between experiment Sample 1 and Sample 2, while the improvements 

gradually become smaller as the total sample sizes get larger. The level of precision is 

universally higher than the recall. It indicates that this model does better in the precision 

estimation than in the extensive estimation. 

 

Figure 2.7 The performance measurements of the model in different size of 

the training set. 
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2.6.3. Impact of weather condition and travel history 

We illustrate the impacts of including the weather variables and historical trips on our 

models by comparing the results of the four groups defined in Table 2.9. The final value 

of the hyper-parameters of each group is presented in Table 2.12.  

Table 2.12 Values of the hyper-parameters for the experiments with different 
feature groups. 

Experiments 

FG 1 FG 2 FG 3 FG 4 

Basic smart 
card 
information 

FG 1 + 
travel 
history 

FG1 + 
weather 
conditions 

FG1 + 
travel history + 
weather 
conditions 

Learning rate 0.05 0.05 0.005 0.005 

Iteration 80 80 120 150 
Maximum depth of 

each tree 
3 5 5 8 

Fraction of data for 
training next tree 

0.6 0.5 0.6 0.4 

 

In Figure 2.8, from FG 1 to 4, as reflected in the F1 scores, we see improvements in the 

performances of the models. Between FG 2 and 3, the improvement from adding 

historical trips is less compared to the improvement resulted from adding the weather 

conditions. We speculate that this is because the information about historical trips 

captures the regularity of the behaviour, but the travel behaviour of the passengers are 

affected more by the changing weather conditions. FG 4 has the best F1 scores 

indicating that including both travel history and weather leads to the best performance.  

Looking at the precision and recall sides of each model, the main increase from FG 1 to 

2 is in the recall index (macro R). The similar situation occurs from FG 3 to 4. When 

we remove the historical trips out of the model (from FG 2 to 3), the recall ability of 



- 59 - 

the model reduces slightly. However, there is a significant increase in precision from 

FG 2 to 3. The results suggest that the two groups of features can improve the model in 

different ways. Principally, the features about the historical trips improve the 

comprehensiveness of the model and the weather variable makes the estimation more 

accurate. 

 

Figure 2.8 Evaluation of the impacts of different feature groups. 

2.6.4. Relative importance of feature variables 

We capture the relative importance of the features in models FG 1 to 4 in Figure 2.9. It 

can be seen in Figure 2.9(a) that, for FG 1(when only considering smart card data), the 

boarding stops is the most significant feature. The month and day are not significant 

features. The feature of holiday is the least significant feature, for which the day in a 

week contains the information on holiday to some extent.  For FG 2 (as seen in Figure 

2.9(b)), almost all the features about historical trips score low on impact. In Figure 2.9(c) 

for FG 3, the boarding stop scores the highest followed by the weather events with the 

temperature being the most important of the group. However, the importance of other 

quantitative weather features, i.e. wind speed, humidity, visibility and precipitation, is 

not as significant. This may imply that where passengers decide to alight is not 
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influenced by their qualitative cognition (e.g. whether it is rainy or not) than by the 

quantitative information (e.g. how much the precipitation is). This is also reflected in 

practice how bus companies adjust their service frequency under different weather 

event, i.e. they provide more frequent bus services on a rainy day regardless of the level 

of precipitation. Even if the bus company cannot respond to individual weather 

variables, e.g. humidity and visibility, our study suggests that the simple register of a 

‘weather event’ would improve the origin-destination demand estimation and better 

(re)scheduling of their bus services. In Figure 2.9(d) for FG 4, we can see that the 

weather condition is a much more important group of features than the travel history 

in the model. This reinforces the findings drawn in Section 2.6.3. Thus, based on the 

importance analysis and performance measurement, FG 4 (the model including all the 

features) is demonstrated as the best model.  
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Figure 2.9 Ranking of the feature importance in different feature group 

experiments. 

2.6.5. Ridership estimation 

For bus planning, the overall demand (and distributions) of bus ridership is the most 

critical factor to consider. In this section, we apply our two trained models with and 

without weather features (FG 4 versus FG 2) to the test dataset, to predict the following 

aggregated bus ridership:  

• The number of alighting passengers at each station, 

• The load-profile and max load on each line. 

The models with feature groups FG2 and FG4 are used in the prediction, and the 

predicted alighting stops are compared with the ‘true’ alighting stops as inferred from 

the trip-chaining model (Wang et al., 2011).  We utilise the GEH Statistic (DfT, 1996) 

to compare the difference between the estimated and true alighting numbers at bus stops, 

which is formulated as: 

 ( )
2

2 e r

e r
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N N

−
= 

+
 (2.16) 

where Ne and Nr represent the number of correctly estimated and true alighting stops, 

respectively. Additionally, we add the signs to represent when Ne > Nr (positive) and 

when Ne < Nr (negative). Figure 2.10 presents the GEH statistics for seven bus lines (in 

both directions). In general, an absolute value of GEH less than 5 is considered 

acceptable (DfT, 1996). 

Overall, 98% of the alighting stops have a GEH value less than 5, suggesting that the 

estimation accuracy is high. There are six stops for FG 2 and seven stops for FG 4 with 

GEH value between 5 and 10, while four stops in both FG 2 and FG 4 have GEH values 
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greater than 10. We find that most of those stops (with GEH higher than 5) are the last 

stop of the bus route. It is possible that the accumulation of the errors at intermediate 

stops leads to those large errors at the last stops. Besides, in the middle of Line 150 

outbound services, there are two stops with high GEHs. We take Stop 16 in the model 

with FG 4 as an example: the true number of alighting is 7, while the weather-included 

model (FG 4) estimates that the number of alighting at this stop is 36. So, a small base 

number might cause a higher GEH value. Another possibility is that the trips alighting 

at this stop only make up 1.8% of the total training data. This load imbalance might also 

cause inaccuracy in the estimation. It is worth noting that the GEHs of Line 63, 123, 

147 and 168 are near 0, suggesting that both of the models with FG 2 and FG 4 produce 

accurate matches in the alighting numbers at bus stops along these four bus lines. 

Furthermore, comparing the two models, 60% of stops have lower GEH in FG 4 than 

in FG 2, suggesting that including weather conditions help our machine learning model 

estimate more accurate alighting stops. 

 

Figure 2.10 The GEH statistic of the alighting number at each station. 



- 63 - 

Figure 2.11 shows the ground truth and estimated ridership with FG 4 and FG 2, the 

two trained machine learning models with and without weather variables. As seen in 

the figure, the estimated load-profile has similar profiles as the ground truth and 

correctly matches the max-load stop in the ground truth with little differences in the 

absolute value of the maximum load. This is especially the case for Line 63, 123, 147 

and 168, which have fewer passengers and which get an almost perfect matching. 

Although both models reflect the ground truth reasonably well, the model containing 

the weather variables (FG 4) is closer to the ground truth. Again, this comparison 

confirms that including weather variables makes the ridership estimation more accurate.  

 

Figure 2.11 The one-day load-profile of each service in ground truth, 

weather-included model and weather-excluded model. 

Additionally, the significant errors occur at the downstream stops of each bus services, 

which can be attributed to accumulation effects. We take a closer look at the outbound 

services of Line 6 and 147 to gain better insights about the accumulation errors. Line 6 

has the largest error, while there are few errors in the latter one. Having a look at these 

two services in Figure 2.10, most stops in Line 6 has negative errors, and the only two 
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positive errors are in the middle and at the end, respectively. With accumulating the 

negative error, the increasing number of passengers are counted on board. So, the 

estimated ridership increases by these errors. The difference becomes larger and larger 

until the final positive error corrects the previous accumulated negative errors. However, 

the situation in Line 147 is different. The negative and positive errors occur alternately 

so that the following error can correct the previous errors in time, and the errors are not 

accumulated. 

2.7. Discussion and Conclusion 

Developing smart public transport system is a vital task in building sustainable cities. 

Understanding passengers’ origin-destination and travel pattern are of great importance 

to improve the level of services and attractiveness of buses.  

This study proposes a machine learning model with advanced gradient-boosting 

decision tree (GBDT) solution algorithm to estimate the alighting stops from the smart 

card logs of an open automatic fare collection system. We explicitly incorporate features 

that represent weather conditions and information of the individual’s travel history in 

the model, so the estimation is not only based on the characteristics of the trip itself but 

also referring to the impacts of the ambient environment and the passengers’ habitual 

travel behaviour.  

To illustrate the performance of our proposed method, we conduct three comparative 

studies: (i) GBDT method vs two commonly used machine learning models; (ii) the size 

of the training dataset; and (iii) the inclusion (or not) of weather conditions and travel 

history in the estimation model. The results show that the machine learning method 

can accurately estimate the alighting stops from smart card data and that GBDT performs 

better than NN and MLR overall, and in particular from the view of precision. 
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Intuitively, increasing the size of training dataset improves the estimation accuracy. 

However, we discover that there is less improvement after a certain point (in our case, 

3-month data in training dataset). The results also confirm that we can obtain a more 

accurate estimation when considering more features in the model, although the effect 

of the features varies. Weather conditions improve the accuracy (in precision), and 

historical trips improve the comprehensiveness (in recall). Additionally, the high 

ranking of the feature, weather events, and its significant contribution in increasing the 

precision of the GBDT model highlights that the effect of this variable is worthy of 

detailed testing when analysing and predicting passengers’ decision of alighting stops. 

Whilst the model trained in this paper with smart card data from Changsha is only 

applicable to this specific study network, the proposed GDBT framework is generic and 

can be applied to other smart card systems (open or closed): firstly using the smart card 

data to obtain a trained model, and then apply the trained model to predict bus ridership 

in the near future where travel conditions (such as weather conditions) can be readily 

predicted. Even the application in different cities can customise their model by easily 

adding or deleting the features in the model. 

This study can also be used to predict the alighting stops in short-term as opposed to 

long-term trend prediction. The short-term prediction emphasises on the detailed value 

and minor changes (dynamics) and leverages the availability of accurate short-term 

weather forecasts. The target application is to make minor adjustments in the schedule 

of high-frequency bus services. 

Overall, this paper makes new advances in these main aspects. Firstly, we employ a 

machine learning model with that GBDT algorithm in bus data mining, a novel 

technique in processing the massive smart card data. Secondly, our method is general 

and applicable to individual bus trips made by regular and irregular passengers as 

recorded in smart card data and fills the gap of the trip-chaining model, which requires 
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the identification of an unbroken trip chain for every smart card user. Third, we 

incorporate the impacts of weather conditions and travel history in the estimation of 

detailed origin-destination and ridership. Our model estimates the alighting stops for 

each smart card log, making it possible to readily compute the origin-destination-based 

load-profile for each bus line, important baseline information for planning more 

attractive bus services for the public.  

We conclude this paper by critically examining the limitations of the current study. By 

its very nature, the true alighting stops of the open smart card system are not known, 

and we did not have access to an alternate source of ground truth data. Rather, we only 

have access to smartcard data from one bus company and use the naïve trip-chaining 

method to generate/obtain an estimated ‘ground-truth’. Lack of validation from the real 

data is a limitation of this study. As a result, this study uses the alighting stops inferred 

by trip-chaining method as the labels to train and test the ML algorithm. Due to the 

absence of true alighting stops, the model cannot be examined by the ground truth. 

Lack of validation from the real data is a limitation of this study. If the smart card data 

with both boarding and alighting stops is accessible, the error between true alighting 

stops and estimated alighting stops can be tested. Further verification should tell us 

whether the trips labelled by trip chaining can be used to train the model. Also, 

validation against true alighting stops collected from surveys and/or inferred from other 

data sources (e.g. video recordings) will help verify the assumption and support the 

machine learning model estimation process. Additionally, this paper, in fact, applies the 

proposed machine learning model on the trip chains (X1) and part of transfer trips (X2) 

and we are not able to consider travellers who change their travel modes under different 

weather conditions. This could potentially lead to survivor bias for the model, as a result 

of the limited availability of data sources. As more multi-source data, such as bus video 

recordings and automatic passenger counted data, becomes readily available in the 
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future, they open opportunities for data fusion and new models for estimating bus 

ridership. 

Further, due to the limitation of data accessibility, our case study is a subset bus network 

in Changsha, which may have caused the underlying self-selection bias. As stated in 

Section 2.3.2, it is common for more than one bus companies to operate in a city and 

they do not share their data. In our study, we try to reduce the bias by selecting 

representative bus lines in the city (discussed in Section 2.3.1). However, this still leaves 

a certain level of self-selection bias, which we cannot completely avoid. It is worth 

further investigation to compare the deviation of the models trained by the data from 

the whole and subset network. 

Our model has 306 stops in the study sub-network of Changsha. In larger networks, 

the number of bus stops can be very big. A large number of stops can cause difficulty in 

training a good model; this is a general challenge for multi-class machine learning 

problem. As far as we are aware that machine learning methods have only been applied 

to cases with limited stops (classes), for example, Jung and Sohn (2017) consider only 

five candidate alighting stops in their model. One possible advance might be to separate 

the trips by bus lines and to build machine learning models line by line. This reduces 

the number of candidate stops (classes) in each model. However, the increased number 

of models are likely to make it more difficult for bus companies to use them, and to 

coordinate the different changes in service schedule at a network level.  

In the study, we select GBDT as the predictive algorithm and compared to other two 

machine learning models. There are still various models that are good at different 

domains. Understanding how these models will perform in this work is a valuable 

investigation in the future.The current study is only the first step in applying machine 

learning techniques to estimate bus ridership form open smart card data. We believe 

that there will be more efforts and gain that can be made from using machine learning 
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techniques to gather passenger origin-destination demand and ridership information to 

support developing a sustainable public transport system. 
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Chapter 3 

Multi-stage deep learning approaches to predicting 

boarding behaviour of bus passengers 

3.1. Introduction 

The rapid development of urbanisation at one hand brings convenience to people's lives 

but, on the other hand, causes problems such as traffic congestion and leads to an 

increase in energy demand and environmental pollution (Kwan and Hashim, 2016; 

AlRukaibi and AlKheder, 2019). As a sustainable transport mode, a well-planned public 

transport can play a key role in reducing transport externalities (Yao et al., 2020). With 

a high degree of accessibility and low implementation costs, bus transport is the most 

significant mode in urban public transport, accounting for 50% of trips made by all 

public transport modes in England (Department for Transport, 2019) and 45% in Beijing 

(Beijing Transport Institute, 2019). However, the bus system suffers from a poor image 

of unreliable services, crowding, bus bunching, and low level-of-services (Berrebi et al., 

2015; Bordagaray et al., 2013). Coupled with the rise of demand-response travel 

options such as Uber, bus ridership has been in decline in recent years (Department for 

Transport, 2019). To move towards a smart and sustainable city, an important goal in 

transport planning is to encourage and attract more people to travel by public transport 

(Ma et al., 2019; Tong, 2019). One way to sustain or to increase bus patronage is to 

provide more reliable bus system based on sound service planning and management. 
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The first and most important factor in bus planning is the bus ridership, which affects 

reliability and level of crowding (Liu and Sinha, 2007; Sorratini et al., 2008; Fonzone 

et al., 2015) as well as pricing (Sakai et al., 2017; Xu et al., 2018). Understanding travel 

patterns of bus passengers and accurately predicting ridership are therefore essential 

foundations for planning and operating a sound bus system (Hollander and Liu, 2008; 

Wu et al., 2017; Wu et al., 2019).  

It is well-known that the decision-making in car-drivers’ driving behaviour is related 

to their past travelling behaviour and habit formation (Goldenbeld et al., 2000). That 

daily human mobility can be reproduced by tracking previous trips (Schneider et al., 

2013). These theories can also be extended to public transport users who rely on their 

experience when making decisions, and who are more inclined to take their regular 

travel pattern. For example, if a typical commuter always travels from home to office in 

the morning and back from office to home in the evening, he/she may regularly take 

the same bus line at the same bus stop at the same time. Therefore, tracking their travel 

history helps us to identify and predict their regular travel pattern, such as when and 

where the trip is made.  

Travel behaviour may be regular, but not static (fixed). Travel behaviour is under the 

influence of many factors of the public transport system itself, such as travel time, 

headways, reliability and cost, and external factors such as weather conditions 

(Sierpiński, 2016). Level-of-service and reliability are the most critical factors. Passenger 

likes to take high-quality and reliable bus service. However, some other things, such as 

adverse weather conditions, may lead to irregular headway and longer travel time, 

which reduces reliability and level-of-service. So, when the travelling scenario changes, 

passengers are likely to change their travel choice. An increasing number of studies has 

claimed that weather conditions have a significant impact on the public transport system 

(Böcker et al., 2013), alongside level-of-service attributes such as travel time, cost, 
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waiting time, the number of transfers and other network characteristics. For example, 

adverse weather conditions may result in lower reliability, longer travel time or even 

disrupting the public transport services (Ma et al., 2015b; Koetse and Rietveld, 2009). 

Exclusively focusing on the buses, previous research has highlighted the varying impacts 

of weather on public transport. For example, Wei et al. (2019) report that rain and snow 

have a negative impact on bus ridership in Brisbane. There is, however, the different 

impact of the same weather conditions. Stover and McCormack (2012)  show that 

temperature has a positive impact on bus ridership in Washington, U.S., while Zhou et 

al. (2017) find the influence of high temperature on bus ridership being negative in 

Shenzhen, China. What is certain, nonetheless, is that weather conditions play a non-

negligible role in bus users travel decision, which in turn influences the overall travel 

patterns and demand levels.  

This study aims to predict the boarding behaviour of bus passengers at the individual 

level from smart card data. The boarding behaviour refers to whether to have a bus trip 

and which bus stop and bus line to use. As stated above, the regular boarding behaviour 

can be tracked by their travel history. In contrast, the change in boarding behaviour can 

be affected by other factors such as weather conditions. Therefore, the prediction in this 

study is to identify the boarding stops for each smart card user and the predictions are 

made for each of the operation hours of a day. We propose a three-stage framework to 

predict: (i) whether a smart card user is expected to travel or not in each one-hour time 

slot, (ii) which line they will use, and (iii) at which stop they will get on board. The 

predictions at each stage deploy three different architectures: a simple neural network 

(fully connected network) and two deep learning networks (recurrent neural network 

and long short-term memory network). Finally, the result of individual boarding stops 

will be aggregated to the hour ridership on the stop-, line- and network-level. Unlike 

calculating the ridership directly from the smart card data, using machine learning 
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techniques can make the prediction on the ridership. Public transport planning based 

on the future situation and changes in ridership will be more reliable and scientific. 

3.2. Related works 

The development in automatic data collection system offers an opportunity to 

understand travel demand and to plan the public transport system (Zhang et al., 2018). 

For example, GPS tracking of bus operation has been used to model the bus bunching 

(Wu et al., 2019); and smart card data (Bordagaray et al., 2016) and GPS data (Yang et 

al., 2019a; 2020) are used to capture the bike-sharing travel behaviour and to replicate 

the public transport system (Liu et al., 2019a). There is an extensive literature on 

observing and capturing the passenger flow from varying data resources. Yang et al. 

(2019b) use a smart card and social media data to explore the travel purpose and ridership 

of metro in Shenzhen. Oransirikul et al. (2014) present that the Wi-Fi activity correlates 

closely with the bus passenger flow at bus stops and on-board buses,  and demonstrate 

the feasibility to measure the passenger flow by monitoring the Wi-Fi transmissions. 

Zhou et al. (2013) combine GPS data from private mobile phones and buses to measure 

the bus passenger flow. Sun et al. (2016) analyse and visualise the metro passenger flow 

in Shanghai directly from a closed automatic fare collection (AFC) system, which 

records both of the boarding and alighting stops. On the other hand, in many cities, the 

entry-only AFC system is used where only the boarding information is recorded, but 

the alighting information is unknown. To address this issue, Barry et al. (2002) proposed 

a trip-chaining method to identify the alighting stop for each smart card transaction. 

This method has been wildly applied in New York (Barry et al., 2009), Chicago (Zhao 

et al., 2007) and London (Gordon et al., 2013). 
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Meanwhile, there are extensive research interests in predicting future passenger flow. 

Yang et al. (2009) develop the regression equations to forecast the number of boarding 

and onboard passengers. The forecast is based on the number of smart card transactions. 

Autoregressive integrated moving average (ARIMA) model is introduced to model and 

predict the public transport passenger demand, as a time series data (Washington et al., 

2010). Zhou et al. (2013) predict the total bus demand using the ARIMA model in 

conjunction with two other Poisson models. Gong et al. (2014) propose a sequential 

framework for a short-term prediction of the number of waiting passengers. In their 

framework, the seasonal ARIMA model is designed to predict the number of arrival 

passengers and empty space from the historical boarding, empty space and GPS data. 

With the help of real-time data from GPS and waiting passenger count, a Kalman Filter 

model follows the seasonal ARIMA model and predicts the number of waiting 

passengers. Ma et al. (2014) predict the short-term bus demand using time series and 

interactive multiple models (IMM). They construct the time series of weekly, daily and 

hourly demand and use IMM to combine the time series estimations and predict the 

final demand prediction. Following on from Ma et al. (2014), Xue et al. (2015)  employ 

the ARIMA for predicting the 15-minute and weekly demand prediction, and the 

seasonal ARIMA for daily demand. Meanwhile, working towards the same objective, 

recent studies use machine learning  methods, e.g. support vector machine (SVM) 

regression (Yang and Liu, 2016) and Shepard model (Jin et al., 2019) to predict bus 

passenger demand. One key common feature of these existing studies is that they rely 

on historical passenger flow on bus stops only, and they do not consider other external 

factors (e.g. weather conditions) in the prediction models. 

Machine learning techniques, such as neural networks and Bayesian networks, have 

been used in predicting the mode choice (Zhou et al., 2019), arrival times (Yu et al., 

2011) and train delays (Corman and Kecman, 2018), as well as public transport passenger 
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flow(Karnberger and Antoniou, 2020). Jiang et al. (2014) forecast the high-speed rail 

demand using ensemble empirical mode decomposition (EMD) and grey SVM models. 

Wei and Chen (2012) propose a method combining EMD and back-propagation neural 

networks for the short-term metro passenger flow prediction. Li et al. (2017) utilise the 

multiscale radial basis function networks to predict the metro passenger flow. The 

method can pinpoint the over-crowding stops under special events scenarios. Liu et al. 

(2019b) achieve the same objective through along short-term memory (LSTM) neural 

network. Since the AFC system in rail and metro records both alighting and boarding 

system, their historical passenger flow can be easily extracted from the smart card data. 

For the entry-only AFC system, Toqué et al. (2016) predict passengers origin-

destination matrices at stop level over 15-minute windows using the LSTM networks, 

and they infer the alighting stops by trip-chaining model. Recently, Tang et al. (2020b) 

incorporate weather conditions and travel history of travellers in the gradient boosting 

decision tree model to estimate the alighting stop for every smart card trip and give the 

ranking of the importance of features.  

As it is difficult to understand the travel behaviour of each bus passenger, there is an idea 

to cluster bus passengers and to analyse the group travel behaviour (Faroqi et al., 2018), 

which can significantly decrease the number of objects in the analysis. Faroqi et al. (2017) 

use histograms, Pearson correlation coefficients and hexagonal binning to analyse the 

smart card data in Brisbane. The results show a nonlinear spatial-temporal similarity 

correlation among bus passengers. Later, Faroqi et al. (2019) compare three methods 

based on the spatial-temporal characteristics of bus trips on clustering the bus passengers: 

S-T  clusters the spatial matrix firstly and then temporal matrix for each spatial group; 

T-S clusters the temporal matrix firstly and then spatial matrix for each temporal group; 

and ST combines both spatial and temporal similarity matrices into one matrix. The 

study concludes that S-T method is better used in the cases where spatial similarity is 
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more important, and T-S method is the opposite. ST method is a moderate method 

that considers the effects of time and space equally. He et al. (2017) propose a method 

by combining cross-correlation distance and hierarchical clustering to segment the time 

series of passengers’ travel pattern.  He et al. (2019) incorporate a sampling method in 

their previous study to classify the temporal pattern of bus passengers. Based on the 

development of the clustering methods from the previous two studies, He et al. (2020) 

uses time-series distance metrics and a hierarchical clustering method to classify the 

public transport users. However, the boarding behaviour of passengers is similar but not 

identical. Grouping passengers generalises the typical characteristics of group behaviour 

and ignores the differences between individuals. On the contrary, a bottom-up model 

is able to capture the heterogeneity of individual travellers. 

Summing up, the existing research focuses mainly on the total passenger demand over 

various time scales (e.g. only during peak hour or on a day). However, they do not 

identify the details, or the time-dependent load-profile, of the bus demand. According 

to the introduction from Ceder (2007), the load-profile and maximum load can help us 

better understand and plan the bus system and boarding behaviour is an essential part of 

the load-profile. Hence, this study contributes to predicting the boarding demand at 

different levels by starting with the prediction of individual boarding behaviour and 

takes account of the individual's travel history and the weather factors in the prediction.  

3.3. Framework for boarding stop prediction 

3.3.1. Problem statement 

In the proposed model, we take the boarding behaviour of a passenger during a one-

hour time slot as the instance of our model. The instance in a machine learning model 

contains a feature vector and a label vector. The feature vector consists of a set of 
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elements characterising the passengers in the analysed period. The label vector is a set of 

0 or 1 for each stop, with 1 [0] indicating that the passenger has [not] boarded a bus at 

the concerned stop in the reference period. Each stop is a class in the machine learning 

model, which also includes ‘NONE’ to represent the non-travelling instance. The 

classification process aims to assign each instance to the possible class. 

There are three data challenges in our case that affect the prediction accuracy when 

using machine learning techniques: 

• Multi-label problem: passengers may make more than one trip within an 

hour, for example, starting a journey at stop 1 and transferring to a different 

bus line in stop 2 within one hour. In such cases, an instance (the boarding 

behaviour in one hour) may be assigned to more than one label (stop). Our 

study, therefore, belongs to the multi-label problem.  

• Imbalanced data: there are about 98% instances where label vector is all 0, 

which means this passenger do not travel in this period and/or do not board 

at that particular stop. Boarding observations in a specific stop in a specific 

hour is hence a ‘rare occurrence’.  

• Many-class problem: a public transport system for a city has many bus stops, 

so there are many classes in the label. Such a many-class problem makes the 

classification more difficulty, which in turn reduces the accuracy of the 

model and the computational efficiency of the training and prediction 

process. 

These problems are common for most of the urban public transport systems. We 

propose a three-stage framework to address these issues. 
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3.3.2. A three-stage framework for predicting boarding stops 

In this section, we propose a framework with three sequential models to predict: (i) 

whether a smart-card user makes a trip in a given time slot (Stage 1), (ii) the bus lines 

the passengers used (Stage 2), and (iii) the boarding stop on the predicted bus line (Stage 

3). Figure 3.1 illustrates the overall framework. 

 

Figure 3.1 The processes of how the framework build up the models for each 

bus lines. 

In Stage 1, we predict whether a passenger makes a trip at a given time (one-hour slot). 

This is modelled separately from the bus line and boarding stop selection to address the 

data imbalance issue highlighted in the Problem Statement earlier. As the label of this 

model is ‘travelling' or ‘not travelling', this estimation is referred to as a binary 

classification problem (BCP) in machine learning.  
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Stage 2 considers only the travelling instances predicted from Stage 1. It predicts the bus 

line for each travelling instance. More than a single class in the label might cause lower 

accuracy and longer computing time, and the boarding stops can be disjointly grouped 

by bus lines. Hence, the boarding stops prediction is divided by bus lines firstly, before 

considering the bus stops. Through Stage 2, we cut off the number of classes in the label 

from hundreds even thousands to the tens. Since passenger can make transfers in the 

same one-hour time slot, there may be more than one bus line for an instance. 

Therefore Stage 2 is a multi-label classification problem (MLCP). 

Stage 3 works on our ultimate target, predicting the boarding stops for each bus trip. 

Here, we build up a prediction model (e.g. Model 3.1, 3.2, etc.) for each bus line. 

According to the difference in the number of stops along the bus lines, the number of 

classes in each model can vary from twenty to fifty. For the same reason in Stage 2, Stage 

3 also belongs to the MLCP.  

3.3.2. Architectures of neural network 

We employ the fully connected neural network (FCN) as the basic architecture to solve 

the problems in the proposed framework because it has the simplest structure. Since 

human trajectory is highly related to the temporal regularity (González et al., 2008), 

another two architectures, recurrent neural network (RNN) and long short-term 

memory neural network (LSTM), are used to solve the problems in the proposed 

framework. 

3.3.2.1. Fully connected neural networks (FCN) 

FCN is a classic architecture of neural networks (Svozil et al., 1997). Figure 3.2 

illustrates an example architecture of FCN. It consists of three layers: an input layer, an 

output layer and some hidden layers. Each layer has a different number of neural cells 
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(nodes). A node in the input layer represents an input feature. The nodes in the hidden 

layers are the results calculated by the activation function according to the information 

in the input layer. A node in the output layer presents the probability of the occurrence 

of a class. In FCN, the information moves from the input nodes, through the hidden 

nodes (if any) and to the output nodes. In our context, for Stage 1, there is only one 

node in the output layer of binary FCN architecture, which presents the probability of 

travelling. For Stage 2 and 3, the number of nodes in the output layer depends on the 

number of bus lines and bus stops on each line. The hidden layer is used to discover 

relationships between features through the activation functions.  

 

Figure 3.2 An example architecture of FCN. 

3.3.2.2. Recurrent neural networks (RNN) 

RNN architecture is good at dealing with sequential data (Connor et al., 1994). Like 

FCN, an RNN consists of an input, hidden and output layer, and each layer contains 

one or more nodes (as shown in Figure 3.3). Whilst the hidden layer in FCN is only 

calculated from one input instance, the hidden state in RNN is related to both the 

current instance and the hidden state of the previous instance. 
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Figure 3.3 The example architectures of RNN. 

The processes of RNN is formulated below. The input of RNN requires a sequence of 

instance: 

  1 2, , , , ,t Tx x x x   (3.1) 

where xt denotes the input instance at the position t in the sequence and T is the number 

of the sequences. In this study, the sequence is the time series of instances, and Section 

2.4.3 will introduce how we build up the sequence in this study. 

The current hidden state of an instance xt is measured from the instance itself and the 

previous hidden state: 

 ( )1t t th Ux Wh −= +   (3.2) 

where ht and ht-1 denote the current and previous hidden state at the position t and t-1 

in the sequence; U and W are the weight matrix from the input layer to the hidden layer 

and the hidden layer to the hidden layer; ϕ(·) is the activation function which is usually 

a tanh function. 
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Then, the output unit can be calculated as: 

 ( )t tz Vh=   (3.3) 

where V is the weight matrix from the hidden layer to the output layer and o(·) is the 

activation function which usually uses the sigmoid function for MLCP and BCP. 

3.3.2.3. Long short-term memory neural network (LSTM) 

LSTM, proposed by Hochreiter and Schmidhuber (1997), is an improvement on the 

RNN by solving the vanishing gradient problem Hochreiter et al. (2001). The 

architecture of LSTM is similar to RNN’s (shown in Figure 3.4). However, it utilises a 

new concept, called cell state, which is the horizontal line going through the top of the 

figure, to memorise the state at the previous position. LSTM is a gate-controlled 

architecture, including forget gate, input gate and output gate. The forget gate controls 

how much old information can be inherited from the previous position. 

  ( )1,t f t tf W h x −=    (3.4) 

where ft is the forget coefficient between 0 (totally forgetting) and 1 (totally 

remembering) at position t; Wf is the weight matrix for the forget gate; and σ(·) is the 

gate activation function which always uses the sigmoid function. 

The input gate controls how much new information can be inherited from the current 

position. 

  ( )1,t i t ti W h x −=    (3.5) 

where it is the input coefficient between 0 (barely inputting) and 1 (totally inputting) at 

position t and Wi is the weight matrix for the input gate. 

The output gate controls how much the cell state can be transferred to the next position. 

  ( )1,t o t to W h x −=    (3.6) 
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where ot is the output coefficient between 0 (barely outputting) and 1 (totally outputting) 

at position t and Wo is the weight matrix for the output gate. 

The final cell state at position t consists of the previous cell state at position t-1 and the 

new candidate cell state at position t: 

 
1t t t t tC f C i C−=  +    (3.7) 

  ( )1,t C t tC W h x −=    (3.8) 

where Ct and C  denote final and new candidate cell state at position t respectively; Wc 

is the weight matrix; μ(·) is an activation function which always uses the tanh function. 

The hidden state is computed by the output gate and the cell state. 

 ( )t t th o C=    (3.9) 

where μ(·) is an activation function which always uses the tanh function. 

 

Figure 3.4 The example architectures of RNN. 

3.3.3. Feature selection 

As noted in the Introduction, travel history and weather conditions are the most 

significant factors in understanding travel behaviour. We, therefore, define model 

features into three domains: boarding time, weather condition and travel history. 

Features concerning boarding time (e.g. time slot, season, etc.) are clearly relevant to 
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the boarding stop prediction problem. The weather conditions (e.g. temperature, 

precipitation, etc.) implies the impacts of different weather variables on public transport 

users’ behaviour. The travel history (e.g. boarding stops on the previous day, etc.) 

describes passengers’ regular travel patterns and habits. We take binary encoding for card 

ID and One-Hot encoding for other categorical features; this leads to a high-dimension 

vector for representing the categorical features. All the numerical features are normalised. 

Table B.1 in Appendix B lists all the features employed in machine learning models. 

3.4. Case study 

3.4.1. Case description 

The proposed framework is applied to a small bus network in the city of Changsha, 

China. Changsha is in the central south of China. Changsha has a subtropical monsoon 

climate. Temperature changes a lot in spring. The rainy season happens at the beginning 

of summer. Form the mid-summer to early autumn, the climate is very hot with little 

rain, and there are 85 days over 30℃ and 30 days over 35℃. In winter, the climate is 

not very cold, but ice sometimes freezes on the roads due to the freezing rain. The 

climate is distinctive in four seasons in Changsha. Thus, people’s trip is always affected 

by weather conditions. As one of the major cities in south central China, 8.4 million 

people are living in Changsha, and the urban area covers 1938 square kilometres. Three 

bus companies operate over 200 bus lines serving for more than two million trips per 

day. The whole bus network covers all the roads in six administrative districts. The 

accessibility of bus network touches every corner of the city. Besides for three tourism 

bus lines, the headway of other bus lines is normally 10 minutes and sometimes reaches 

to 5 minutes during the peak hour. The bus is always the main mode of public transport 

service. 



- 84 - 

Due to the limitation of data accessibility, data from only seven bus lines are available to 

our case study (in Figure 3.5). However, these bus lines are still representative. First of 

all, the study network is composed of three lengthwise and four transverse lines and 

connects significant centre business districts, high-tech zones and residential zones 

around the city. Besides, the study network covers the core public transport 

infrastructures of Changsha such as rail stations and long-distance coach terminals. The 

three bridges, which are the main routes connecting the east and west city, are included 

in the network. Finally, the study bus lines cover a variety of service characteristics in 

terms of length, station density and frequency of the lines. 

 

Figure 3.5 The map of the study case network in Changsha, China 

The smart card system in Changsha records the boarding behaviour of each trip, i.e. bus 

lines, vehicle ID, card ID, card type and boarding time, but does not contain the specific 

boarding stop. For the supervised machine learning model, it requires the boarding stops 

in training the model and evaluating the performance of the prediction. We hence 

utilise the GPS data to implement the geographic information and identify the boarding 

stops. The GPS devices are equipped for all the buses. Each device has its unique ID, 
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which corresponds to the vehicle ID in the smart card data. The GPS reports the latitude 

and longitude of the vehicle location every 10 seconds. 

3.4.2. Data pre-processing 

The available smart card data covers 32 days from 1st August to 1st September 2016. The 

bus services operate 19 hours a day from 6 am to 1 am on the following day. The raw 

smart card dataset includes 2,917,272 transactions and 564,803 card users for the selected 

lines. Processes are taken to clean the raw smart card data and to prepare the training 

and testing datasets for machine learning models. Figure 3.6 illustrates the data 

processing procedures and the resulting number of data records after each procedure. 

To simplify the problem, the following assumptions are made. 

 

Figure 3.6 Processes to prepare smart card data.  

(A1) Each card ID corresponds to a single passenger, and each passenger swipes the card 

only once at a single boarding. In a real-life situation, some passengers may (accidentally) 

swipe their cards more than once for one boarding, which causes two and more 

transactions during a short period. We consider these data as repetitive data. The first 

process cleans out 229,267 repetitive logs (8% of the raw data). 
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(A2) Smart card logs for which the boarding stop cannot be inferred are considered 

noise. Due to poor data quality, the GPS data for some vehicles is missing. In total, 

344,778 smart card transactions (12% of the raw data) do not have the corresponding 

GPS data. Then, we extract the boarding stop of each smart card transaction with the 

data fusion of GPS data. 270,699 smart card transactions (9% of the raw data) are 

removed from because they cannot be inferred the boarding stops.  

 (A3) This study only focuses on the regular smart card users who travel at least once a 

week.  Many card IDs appear only a few times during the 32 days of the study period. 

For example, 36% of users travelled only in August and not appeared on 1st September. 

37% of users travelled less than four times. To simplify the data, we exclude the 

infrequent users travelling less than four because this kind of users will generate too 

many non-travelling instances for the model and we have intended to reduce the 

number of non-travelling instances and to lighten the burden of calculation. 

Additionally, since there are few travelling instances for the infrequent users, they can 

provide limited information to the models. This assumption results in a remaining 

101,850 IDs for the rest of the study.  

Finally, we transform the smart card records to the instances used in our models. There 

are nineteen time slots (corresponding to the nineteen hours of service operation) in a 

day so that every user ID has nineteen instances for each day. If there are two or more 

smart card records for the same person at the same time, including time slot and day, 

the corresponding instance will have two or more labels which become an MLCP. If 

there is no smart card record in a time slot, we label such instances as ‘NONE’, i.e. not 

travelling. 
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3.4.3. Experimental environment and setting  

The training and testing process is conducted via Keras (Chollet and Others, 2015) with 

the R programming language. All the experiments are run on a graphics processing unit 

(GPU) platform with eight NVIDIA® K80 (GK210) and 12 GB GPU memory per unit.  

Since we do not know the travel history for the instances for the first seven days (from 

1st to 7th August 2016), the data concerning these seven days are excluded in the training 

dataset. The instances from 8th to 30th August are included in the training dataset; the 

instances on 31st August are in the verification dataset; while the testing dataset contains 

the instances on 1st September. Table 3.1 presents the number of instances in the 

different datasets of models. 

Table 3.1 The number of instances in the different datasets of models. 

Models Bus lines 
Number of instances 

Training 
dataset 

Validation 
dataset 

Testing 
dataset 

Stage 1 All network 44,508,450 1,935,150 

1,935,150 

Stage 2 All network 593,608 48,885 

Stage 3 

Model 3.1 LINE 006 280,907 10,220 

Model 3.2 LINE 007 290,628 10,544 

Model 3.3 LINE 063 81,906 3,257 

Model 3.4 LINE 123 147,917 5,235 

Model 3.5 LINE 147 112,611 4,164 

Model 3.6 LINE 150 296,020 11,159 

Model 3.7 LINE 168 121,771 4,828 
 

In Section 3.3.2, we introduced three popular architectures of neural network (FCN, 

RNN and LSTM) to solve the binary and multi-label classification problems. The 

specific architectures used in this study are presented in Table 3.2. The number of nodes 
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in the input and output layers are the same for each of the three architectures. The 

number of hidden layers and nodes in each hidden layer vary from model to model. 

The activation function from the input layer to the hidden layer and between two 

conterminous hidden layers is the rectified linear unit (ReLU) function for FCN and 

the tanh function for RNN. The activation functions used in LSTM are tanh and 

sigmoid function. The activation function from the hidden layer to the output layer is 

the sigmoid function for all the three architectures. 

Table 3.2 The structure of the specific machine learning models. 

Models Architectures 
The number of nodes Activation 

function In-
put 

Hidden 
Out-
put 

St
ag

e 1
 

M
od

el 
1 FCN 

133 
95 66 - 

1 

ReLU 
sigmoid 

RNN 133 128 64 tanh 
sigmoid LSTM 64 32 32 

St
ag

e 2
 

M
od

el 
2 FCN 

133 
100 75 - 

7 

ReLU 
sigmoid 

RNN 133 128 128 tanh 
sigmoid LSTM 64 32 32 

St
ag

e 3
 

M
od

el 
3.

1 FCN 
169 

128 128 64 
33 

ReLU 
sigmoid 

RNN 128 64 64 tanh 
sigmoid LSTM 128 128 64 

M
od

el 
3.

2 FCN 
169 

128 128 64 
33 

ReLU 
sigmoid 

RNN 128 64 64 tanh 
sigmoid LSTM 128 128 64 

M
od

el 
3.

3 FCN 
169 

128 128 64 
44 

ReLU 
sigmoid 

RNN 128 64 64 tanh 
sigmoid LSTM 128 64 64 
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Models Architectures 
The number of nodes Activation 

function In-
put 

Hidden Out-
put 

St
ag

e 3
 

M
od

el 
3.

4 FCN 
169 

128 128 64 
46 

ReLU 
sigmoid 

RNN 128 64 64 tanh 
sigmoid LSTM 128 128 64 

M
od

el 
3.

5 FCN 
169 

128 128 64 
63 

ReLU 
sigmoid 

RNN 128 64 64 tanh 
sigmoid LSTM 128 128 64 

M
od

el 
3.

6 FCN 
169 

128 128 64 
39 

ReLU 
sigmoid 

RNN 128 64 64 tanh 
sigmoid LSTM 128 128 64 

M
od

el 
3.

7 FCN 
169 

128 128 64 
48 

ReLU 
sigmoid 

RNN 128 64 64 tanh 
sigmoid LSTM 128 128 64 

 

As mentioned in Section 3.3.2, the input of FCN is the individual instance, but the 

input of RNN and LSTM is a sequence of instances which consists of a time series. 

Following Han et al. (2019), the input sequence in our study consists of the instances 

from the previous seven days, which is donated by the set of instances, X. However, the 

instances extracted in the previous days are from different time slots. For example, the 

time slot selected for the sequence is illustrated in Figure 3.7. The target time slot, xt, is 

9:00 - 10:00 on 1st September. The sequence firstly contains the instances in all time 

slots of the previous day (expressed as xt-m-s+1 to xt-s), i.e. from 6:00 on 31st August to 

1:00 on 1st September. In the previous second to sixth days, we only select the same 

time slot (expressed as xt-dm), i.e. 9:00 - 10:00 on 26th to 30th August. Finally, we 

consider that the same day of the previous week may have the similar behaviour, so all 
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time slots (xt-7m-s+1 to xt-6m-s) in that day are included, i.e. from 6:00 on 25th to 1:00 on 

26th August. Therefore, the input sequence is formulated below. 

 
( )

7 1 7 2 6 1 2, , , , , , , , ,

2,3, ,6

p p p p p p p p p

t m s t m s t m s t dm t m s t m s t s tX x x x x x x x x

d

− − + − − + − − − − − + − − + −=

=
  (3.10) 

where p represents a smart card user; t is the target time slot to be predicted; s is the 

position of the target number in that day; m is the total number of time slot in a day 

which equals to 19 in this study; d indicates the day.  

  

Figure 3.7 Example to illustrate the time slot selected for the sequence. 

3.5. Model results and discussion 

3.5.1. Performance measurements 

The direct result from machine learning models is the boarding stop for every instance. 

We adopt the confusion matrix (presented in Table 3.3) including precision, recall and 

F1 score to evaluate the performance of the models (Godbole and Sarawagi, 2004). The 

precision measures the fraction of correctly predicted instances among the truly positive 

instances, which reflects the ability to identify only the relevant instances; the recall 

measures the fraction of correctly predicted instances among the instances predicted 

positive, which expresses the ability to find all relevant instances; F1 score is the 
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harmonic mean of the value of precision and recall, which balances the precision and 

recall of the model. Their formulations are presented below. 

Table 3.3 The confusion matrix for the estimated results. 

 
Observation 

Positive Negative 

Prediction 
Positive 

true positive 
(TP) 

false positive 
(FP) 

Negative 
false negative 

(FN) 
true negative 

(TN) 
 

 
1

1 K
k

k k k

TP
precision

K TP FP=

=
+

   (11) 

 
1

1 K
k

k k k

TP
recall

K TP FN=

=
+

   (12) 

 1 2
precision recall

F
precision recall


=

+
  (13) 

where TP is the number of true-positive instances which are correctly predicted as 

positive; FP is the number of false-positive instances which are incorrectly predicted as 

negative; FN is the number of false-negative instances which are incorrectly predicted 

as positive. K denotes the total number of classes in the models, and k is the index of 

classes. 

Besides generalising the above three measurements, we introduce the Hamming Loss 

(HL) score to the evaluation (Schapire and Singer, 2000) which measures the fraction 

of the wrong labels to the total number of labels. Lower HL score indicates the higher 

performance of models. 

 ( )
( )

1

ˆ,1
ˆ,

M

m m

m m

m

xor y y
HL y y

M K=

=    (14) 
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where M is the total number of instances to be predicted where m is the index of 

instances; K denotes the total number of classes in the models; ym and ŷm respectively 

denote the ground truth and predicting results of instance m; xor(·) stands the XOR 

operation in Boolean logic. 

3.5.2. Model performance – disaggregated results 

Table 3.4 lists the running time (in seconds) of models. RNN is the fastest model. Since 

LSTM optimises RNN by adding the gate structure, it always takes longer to run. 

However, while FCN has the simplest architecture, its running time is consistently 

longer than RNN, and even longer than LSTM in some models, suggesting low 

computing efficiency of FCN compared to RNN and LSTM. 

Table 3.4 Running time (in seconds) of the machine learning models. 

Models FCN RNN LSTM 

Stage 1 Model 1 37,944 13,185 38,927 

Stage 2 Model 2 6,900 9,315 6,240 

Stage 3 

Model 3.1 4,788 4,488 8,086 

Model 3.2 2,961 2,052 2,376 

Model 3.3 2,405 1,054 2,002 

Model 3.4 2,548 2,592 2,296 

Model 3.5 1,498 864 1,152 

Model 3.6 6,757 4,851 4,068 

Model 3.7 451 868 3,510 

 

Table 3.5 lists the number of instances in four different categories of the confusion 

matrix for the machine learning models in Stage 1 and 2. We can see that many negative 
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instances are inaccurately predicted to be positive and positive to be negative. This 

inaccurate prediction (FP and FN) decreases the score of precision and recall. The 

difference in FN and TN between machine learning and random classification shows 

that machine learning approaches significantly improve the ability in distinguishing 

negative observations than the random classification. Also, machine learning approaches 

slightly improve the ability to find out the positive observations. 

Table 3.5 The number of TP, FP, FN and TN instances of the confusion matrix 
in Stage 1 and 2. 

Stages Architectures TP FP FN TN 

Stage 1 

FCN 28,482 20,039 16,674 1,869,955 

RNN 27,948 20,573 17,208 1,869,421 

LSTM 33,625 14,896 11,531 1,875,098 

Random classification 22,578 944,997 22,578 944,997 

Stage 2 

FCN 32,332 15,076 13,335 255,349 

RNN 29,181 17,809 16,486 252,616 

LSTM 30,597 17,893 15,070 252,532 

Random classification 22,834 135,212 22,833 135,213 

 

Figure 3.8 shows the performance measures of machine learning models. As reviewed 

by Tsoumakas and Katakis (2007), a good performance means the value of precision, 

recall and F1 score is greater than 0.5, and the HL score is less than 0.25.  
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Figure 3.8 The performance measurements on machine learning models: 

Precision, Recall, F1 score and Hamming Loss. 

Looking at all the architectures, precision, recall and F1scores of the models in Stage 1 

and 2 are all above 0.5, and the HL score of Stage 2 is only 0.002. The models in Stage 

1 and 2 perform well. Whereas the models of Stage 3 show some limitations. Although 

the HL score in Model 3.1 to 3.7 shows the high ability in the prediction, their precision, 

recall and F1 score are at a low level. Comparing Figure 3.8 with Table 3.1, one can 

observe that the performance of the models in Stage 3 is related to the size of the training 

dataset, with bigger datasets corresponding to relatively better performances. The 

number of classes, precisely the stops of the bus services in Stage 3, may have influenced 

the performance of the models. Larger numbers of stops increase the difficulty of the 
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prediction, a typical issue of over-many classes. Therefore, in Stage 2 and 3, even 

though we reduce the number of classes in the label to the tens, the prediction cannot 

reach high performance. Also, the predictor works well when there are a few classes in 

the label, e.g. Stage 2. Another possible reason is that our prediction models are 

consecutive. The error from an earlier stage will be transmitted to the next stages. For 

example, if a travelling instance is wrongly predicted as a non-travelling instance in 

Stage 1, the result will be wrong in Stage 2 and 3, no matter which stops it is predicted 

to get on.  

Comparing the performance measurements among the architectures, LSTM is good at 

recall, while FCN is the best architecture fort precision, F1 and HL scores. In models 

of Stage 1, LSTM is the best architecture in all aspects. The precision of FCN and RNN 

is similar; however, the recall of FCN is greater than RNN. In Stage 2, the bar charts 

show FCN is the best and RNN is the worst, but the difference between these three 

architectures are small. Additionally, the HL score of FCN is much higher than others 

even though the value of HL score of FCN is still less than 0.25. In Stage 3, LSTM 

always has a significantly high value of recall with the worst value of the HL score, 

which is higher than 0.25 for all the models. In Model 3.4, 3.5 and 3.7, RNN also has 

a bad HL score.  

We examine the influence of poor prediction of the previous stage on the next stage. 

The TP and FP instances of Stage 1 are used in the original testing dataset of Stage 2. 

However, the FP instances are always negative, no matter which bus line is predicted 

in Stage 2. These FP instances decreases the performance. Here, we only use TP 

instances of Stage 1 as the testing dataset of Stage 2 and measure the precision of new 

Stage 2. So do the models in Stage 3. Figure 3.9 presents precisions calculated in these 

scenarios. The results show that the precision with new testing datasets in Stage 2 is 

about 0.8 and in Stage 3 are around 0.5, which is significantly greater than what we 
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calculate before. This situation proves that the poor performance of Stage 1 decreases 

the precision of Stage 2 and 3. The error will be transformed and accumulated stage by 

stage. If we can improve the performance of Stage 1 or if we have already known the 

travelling instances, the rest of stages (Stage 2 and 3) are able to find out which bus lines 

and stops passengers use. 

 

Figure 3.9 The precision of the model with original testing dataset (with 

TP+FP) and new testing dataset (TP only). 

3.5.3. Accuracy of ridership - aggregated results 

For public transport planning, aggregated behaviour is more important than the 

individual ones, as the main input of interest to the planners and operators are the 

predicted ridership in each line during each time slot. Here, we measure the predicted 

aggregated demand from different architectures and compare them with the true 

ridership and the predicted ridership by the ARIMA model (Hillmer and Tiao, 1982).  
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First of all, the total real ridership at the network level is 45,156. The predicted ridership 

(from Stage 1) is respectively 48,521 from FCN, 49,609 from RNN, 45,667 from 

LSTM and 49093 from ARIMA. The absolute errors are less than 4,500 and the 

percentage errors are within 10%. Thus, results from four architectures are all 

considered close enough to the true ridership, with the result from LSTM falling within 

1% of the true value. 

To test the sensitivity of the predictive on feature, we make a demonstration by 

changing the temperature. The range of temperature in testing data is from 21 to 29 

degree. It is a nice day in summer. We manually increase and decrease the temperature 

by 10 degree respectively. The network ridership is presented in Figure 3.10. The 

change in temperature has caused a change in ridership. Higher temperature reduces 

bus trips, while cooler weather in summer motivates bus trips. However, these changes 

are subtle. The increment of ridership is only within 2%, and the reduction of ridership 

is within 4%. As can be seen from Chapter 2, temperature is not a very important feature. 

Moreover, due to the large number of features in this study, the sensitivity of the model 

to a single variable is not strong. 

 

Figure 3.10 The sensitivity of predictions of model on temperature. 
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The ridership distribution over the day is presented in Figure 3.11. The true ridership 

has two clear peaks around 8:00 and 18:00 respectively. LSTM, RNN and ARIMA 

have all accurately predicted when the peaks occurred. FCN also accurately predicted 

evening peak at 18:00, however, it predicted morning peak is later than the true one by 

two hours. Looking at the value of the ridership, LSTM matches the true ridership best 

where two distributions almost overlay on each other perfectly. The ridership predicted 

by RNN and ARIMA is similar, and both are higher than the truth before the evening 

peak. The ridership predicted by FCN is much lower than the truth during the morning 

peak and significantly higher during the evening peak. During the off-peak time, i.e. 

from 11:00 to 17:00, the ridership from FCN is close to the actual ridership and not 

worse than other architectures. Therefore, as LSTM, RNN and ARIMA consider the 

time series in their model, they have the ability to capture the temporal characteristics 

of the data. In contrast, FCN takes a poor performance in the time-dimension because 

it only uses independent features. 

 

Figure 3.11 Ridership at the network level in truth and predicted by different 

architectures and models in Stage 1. 
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Figure 3.12 presents the true and predicted ridership for bus lines from the results of 

Stage 2. The overall picture is similar to those in Figure 3.12 that: for each bus line, 

RNN, ARIMA and LSTM all accurately predicted the timing and the level of the 

morning and evening peaks, whereas FCN did not produce so accurate predictions. 

Errors concerning Line 006, 007 and 150 that have large numbers of instances are 

greater than errors for other lines with fewer instances. 

 

Figure 3.12 Ridership delivered to bus lines in truth and prediction by Stage 2. 

To investigate the demand distribution in detail, we compute the ridership for each bus 

stop from the results of the models in Stage 3. Figure 3.13 shows the true and predicted 
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ridership at stop-level from different machine learning architectures. The interpretation 

of the results in Figure 3.13 is complex. For all the seven bus lines, FCN is able to 

capture busy stops, which have more boarding passengers, even for the bus lines whose 

machine learning model does not perform well. The results concerning Line 006, 007, 

150 and 168 fits the observed ridership almost perfectly in terms of the position of busy 

stops.  

However, there is still an error between the real and predicted ridership from FCN. As 

for the other three lines, FCN captures the busy stops in reality but incorrectly predicts 

more other busy stops. For example, on Line 123, observed busy stops are the stop No. 

27, 43 and 46; besides, the model predicts the other six busy stops. Due to the poor 

performance of the models in Stage 3 (see Model 3.1 to 3.7 in Figure 3.8), we speculate 

that some instances are incorrectly labelled to other bus stops in addition to the actual 

stops. Hence, there are more predicted busy stops, and the total demand of bus lines is 

higher than the reality. For RNN and LSTM, their prediction differs from real 

observation. The indication from Figure 3.13 is opposite to that from Figure 3.11 and 

12. On most of bus lines, RNN points out some busy stops but they are not correct. 

For example, RNN suggests that the busy stops on Line 147 are No. 7, 26, 43 and 56 

but observed busy stops are No. 38 and 42. Looking at the results in LSTM, the 

distributions of the ridership along bus lines are predicted to a balanced result, where 

LSTM results are basically horizontal lines. It is hard to distinguish the busy and free 

stops according to the results from LSTM. Although the number of non-travelling 

instances is already reduced in Stage 1, the instances of travelling at each stop in the 

models of Stage 3 are still imbalanced. The three architectures we tested have different 

ability to deal with the issue of imbalanced data: FCN can replicate a part of the peak of 

data’s real distribution; the predictions of RNN are not reliable for many busy stops; the 

number of instances in each class is balanced from the results of LSTM.  
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Figure 3.13 True and predicted ridership at stop-level from different 

architectures. 

We show the temporal distribution of the demand at the stops with the largest ridership 

in Figure 3.14. For operational and planning reasons, it is important not just to identify 

the busiest stops but also to understand the peak demand. Furthermore, we want to 

check whether errors are less common when we have more instances. For lines 007, 

063 and 123, the predictions of LSTM and RNN have the same temporal trend, 

although the predicted demand is significantly low. The approach fails to reproduce the 

temporal distribution of the demand on Line 006, 147 and 168 the number of instances 
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assigned to peak stops is smaller than the real one due to the error discussed in the 

previous paragraph. The demand pattern on Line 150 predicted by LSTM and RNN 

differs from the observed one. As FCN assigns more instances to stops, it is much clearer 

to analyse their temporal distribution. FCN captures the pattern of the distribution of 

ridership of most bus lines, i.e. Line 006, 007, 123, 147 and 168. However, FCN fails 

to replicate the morning peak pattern; for example, there is a significant gap from 6 to 

9 am. For Line 150, the result of FCN is similar to LSTM and RNN, with no peak 

hours at all. 

 

Figure 3.14 True and predicted ridership at the largest-ridership stop from 

different architectures. 
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Besides, we are aware that Figure 3.14 presents a different result from Figure 3.13. In 

Figure 3.13, FCN is the best model to predict the busy stops while FCN is the worst 

model in Figure 3.14. It is because Figure 3.13 presents a whole-day ridership in 

different bus stops, and Figure 3.14 present the hourly ridership at one bus stop. This 

difference proves again that FCN is able to capture the spatial distribution (along with 

bus stops) of ridership but lacks ability on temporal characteristics (over time). 

Overall speaking, the aggregated results predicted from LSTM and RNN match well 

with the true ridership at the network- and line-levels and the results are better than 

those predicted from the classic ARIMA model. However, all models lack the ability to 

make the prediction at the stop-level. The accurately capturing of the temporal 

distribution of ridership is perhaps due to the consideration of the temporal relationships 

between the data. FCN can predict the distribution of ridership at stops better than the 

other architectures, but the results are not satisfactory in absolute terms. We believe that 

two key causes contribute to reducing the accuracy of the predictions: 

• A large number of classes (stops) in the system makes it difficult to predict 

at the stop level, even though we adopt the multi-stage framework to 

reduce the number of classes in each model. 

• LSTM and RNN do not work well with imbalanced data, which affects 

the quality of the stop-level predictions. 

3.6. Summary and Conclusion 

Understanding the travel pattern is important for improving the level-of-service of 

public transport systems and capturing passengers’ choice of boarding stops is the first 

step to predict the travel pattern. Predicting boarding behaviour tells planner the 
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situation and changes of ridership in the public transport network. An accurate 

prediction of ridership is the data basis of long-term scientific planning and short-term 

operation. It, therefore, improves the level-of-service of public transport systems. Thus, 

working on predicting the boarding behaviour and making the prediction more 

accurate will benefit in improving the attraction and patronage of public transport 

systems, which contributes to the sustainability of cities.  

This paper presents a framework to predict the boarding stops for each smart card user 

in every one-hour time slot. The proposed framework consists of three sequential stages. 

First, we predict the states, travelling or not, for each instance because 98% of instances 

are labelled to ‘non-travelling’ which causes the issue of imbalanced data. At the second 

stage, we only look at the travelling instances and predict the bus lines they travel on. 

This is to reduce the number of classes in machine learning models. Finally, we predict 

the boarding stops on every bus line. FCN, RNN and LSTM are separately used as the 

architectures in the framework, and weather conditions and travel histories are 

incorporated in the features of models. 

The direct output of the machine learning framework is the boarding stops of individual 

passengers at different hours. Given that the aggregated ridership is more important in 

public transport planning, we calculate the hourly ridership at stop-, line- and network-

level. Different from the direct predictions of ridership at the stop level (which has been 

the focus of most existing literature), this paper deals with the prediction at the 

individual smart card user level. The instance of our models is the boarding behaviour 

of a passenger in a one-hour time slot. The result of the method is a specific boarding 

stop for each bus trip. Using results concerning individual users, it is easy to obtain the 

aggregated ridership at stop-, line- and network-level. Moreover, when prediction the 

ridership at stop-level, the classic model, such as ARIMA, needs to build up a single 

model for each bus stop. Starting at the individual level, the results from our method 
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can produce the aggregated ridership at stop-, line- and network-level. Thus, it reduces 

the number of models required. LSTM and RNN are shown to produce the time-

dependent distribution of the line-level ridership accurately. 

Looking at the machine learning models, the accuracy of the predictions of the machine 

learning models is not high as one would like. The reasons are i) for Stage 1, the valid 

travelling instances are only 2% of the whole training dataset which is an extremely 

imbalanced data for machine learning models; and ii) for Stage 2 and 3, the error is 

transferred from Stage 1, i.e. the non-travelling instances that were wrongly predicted 

to travelling instances by Stage 1 are always wrong in Stage 2 and 3, no matter what bus 

stops or lines are predicted. Nevertheless, in some cases, our machine learning approach 

is able to predict correctly 2/3 instances. Comparing the different architectures, FCN is 

better on precision, F1 score and HL score, while LSTM is better on recall. 

Conclusively, FCN is better than other two architectures in the comprehensive ability 

(F1 score) and the ability to deal with MLCP (HL score), and LSTM has a more 

powerful ability to find all the possible instances in each class. On the ridership side, all 

of the architectures accurately predict the total number of travelling instances in the 

network and on each bus line but lack the ability to make the prediction at the stop-

level. To see the temporal distribution of the ridership, LSTM and RNN can predict 

the accurate ridership in each hour, which is more accurate than the classic time series 

ARIMA model. However, FCN has a poor performance to predict peak hours. It is 

because RNN and LSTM consider the temporal relationship in their learning process, 

while FCN only uses the features independently. On the side of the distribution along 

with bus stops, FCN is able to capture the pattern of boarding at the stop-level and find 

out busy stops, but LSTM and RNN do not perform well. Examining in details of 

ridership at busy bus stops, FCN has a good prediction on the absolute value and trend 

of ridership, especially after the morning peak of a day. Although LSTM and RNN 
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have a poor prediction on the absolute value of ridership, they can still reflect the 

changes of the ridership. The reason, we think, causing the poor prediction is because 

the training and testing datasets for the models in Stage 3 are still full of imbalanced data 

and these three architectures have different ability to deal with the imbalanced data. 

The predictive models are trained by the data in Changsha, so the trained model is only 

responsible for the data we used in the study. However, the prediction framework can 

be easily transferred to other bus systems trained. Operators can collect smart card data 

and train the model with local smart card datasets, which are generally available to 

operators. Also, operators can customise the predictive models by adding or removing 

features according to the situation in different cities. A trained model for a new bus 

system is easily obtained. We note that the data issues described in Section 3.1 are 

common to other networks. We expect our method can also deal with these data issue 

in other networks. Clearly, the quality of results in other bus networks should be tested. 

This study incorporates weather conditions and travel history in the prediction models. 

However, we have not examined how these features impact on prediction models. In 

the future, we will address the efforts of these features in different domains and attempt 

to rank the importance of these features. Secondly, we only use one-month data as the 

training dataset and one-day data as the testing dataset. This short period in this study 

limits the variability of weather conditions and subsequently limits the prediction of 

weather impacts on boarding behaviour. For example, the boarding pattern in winter 

has not been learned because the data do not contain such information. It needs to be 

brought into the model when more data is available. Due to the limitation of computer 

performance, the size of the data far exceeded computation capacity. We have to delete 

a part of the infrequent passenger in the case study. Moreover, the infrequent passengers 

can provide limited information about their boarding patterns. However, ignoring 

infrequent passengers leads to a lack of their boarding pattern in the models and also 
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results in a bias of model. It is worth to investigate how to predict the boarding 

behaviour of infrequent passengers and what the long-term impact of weather is. 

Thirdly, the number of bus stops and lines can be very big in a large network. Even if 

the framework proposes three successive stages to avoid the many-class issues, too many 

stops in a bus line still challenge machine learning models. Fourthly, this study is based 

on only seven bus lines. There should be many ignored trips made by those passengers 

on other bus lines. So, the dataset does not include all kinds of travel behaviour. This 

data limitation may cause the bias that the model only learns the boarding behaviour in 

the data but miss the boarding behaviour travelling outside the seven-line bus network. 

When smart card data from the whole network is available, the model can learn more 

complete boarding behaviour. Finally, the error accumulation in the multi-stage 

framework is a problem. In the future, we need to clearly understand how the error 

comes and provide a more accurate predictive models in every stage. When the error 

in each stage reduces, the total error will drop down. 

Next, the machine learning models, especially in Stage 3, have poor performances. 

Reflecting the aggregated ridership, FCN lacks the ability to capture the temporal 

characteristics while LSTM and RNN have a bad ability to assign the total ridership to 

stops. As we discussed in Section 3.5.3, we speculate that the imbalanced data and 

many-class issue still decreases the accuracy of the model. Although we adopted a multi-

stage framework to avoid such problems, further investigation needs to work on dealing 

with these data issues in machine learning models. Last, this study only focuses on 

predicting boarding behaviour. However, OD matrix that contains both the boarding 

and alighting information is more important to describe the ridership and to guide the 

public transport planning. Therefore, combining the alighting stop prediction (Tang et 

al., 2020b) to this study will be a way to understand the travel pattern clearly. 
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Chapter 4 

Modelling hourly bus passenger demand with 

imbalanced data 

4.1. Introduction 

The rapid progress of urbanisation leads to the expansion of population in the urban 

area. At the same time, people's need to travel is also growing up, which causes an 

increase in traffic congestion, energy consumption, and environmental pollution (Guo 

et al., 2016; Wu et al., 2020b). Public transport has been widely recognised as a green 

and sustainable mode of transportation to relieve such transport problems effectively. As 

a conventional mode in the public transport system, buses have always played a 

dominant role and are one of the most critical transport modes (Kwan and Hashim, 

2016). However, a low image of unreliable services, crowding, bus bunching, and low 

level-of-services for buses has also been criticised (Berrebi et al., 2015; Fonzone et al., 

2015; Schmöcker et al., 2016) and with the advent of ride-hailing services, the bus 

ridership has experienced a decline in many cities (Nelson and Sadowsky, 2019). In 

order to increase bus patronage, the bus system is required to find a way to enhance its 

attraction. Advanced operation and management for bus system can significantly 

improve those backwards and enhance the level-of-service (Liu and Sinha, 2007; 

Sorratini et al., 2008). It is not only necessary to understand the characteristics of the 

bus network, but also to understand the passenger behaviour for a sound service 
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planning and management (Hollander and Liu, 2008; Wu et al., 2016; 2017; Wu et al., 

2019). 

The smart card system is initially designed for automatic fare collection, but it also 

records the boarding information, for example, who gets on buses at where and when. 

In this way, smart card data has been a cheap and valuable data source for public 

transport planning (Bordagaray et al., 2016; Tang et al., 2020b; Zhang et al., 2018). 

From the smart card data, we can easily observe the flow at bus stops and on bus lines 

and reflect the spatial and temporal characteristic of bus trips (Yang et al., 2019b; Sun et 

al., 2016). Meanwhile, the big data also poses challenges to our analysing approaches, 

and the machine learning techniques have been approved to be an efficient and fast 

approach to deal with a lot of smart card data. 

In our recent research (Tang et al., 2020a), we have demonstrated that smart card data, 

using machine learning techniques, can be a promising approach for predicting the 

spatial and temporal patterns of bus boarding. However, the boarding from a specific 

stop at a given time window is a rare event: most of the records denote negative (non-

travelling) instances, and only a few are positive (travelling) instances. Such data 

imbalance in the smart card records can significantly reduce the efficiency and accuracy 

of machine learning models deployed for predicting hourly boarding numbers from a 

particular location. This motivates this study where we propose an over-sampling 

method, Deep-GAN model (developed in the context of image generation) to address 

the data imbalance issue in the context of predicting the boarding demand of travelling 

or not based on the synthetic dataset. The performance of the proposed approach is 

compared with other resampling methods (e.g. SMOTE and Random Under-

Sampling). 

The rest of the paper is organised as follows. Section 4.2 reviews some key resampling 

methods to balance datasets and their application in transport studies. Section 4.3 
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describes the data imbalance issue in predicting the hourly boarding demand. Section 

4.4 uses a Deep-GAN model to over-sample the training data and a DNN to predict 

the boarding conditions (boarding or not) for every smart card user. Section 4.5 applies 

our methods in a real-life case, Changsha and the results are discussed in Section 4.6. 

Finally, Section 4.7 summaries the main findings and contributions of this paper and 

suggests future investigation. 

4.2. Literature review 

The data imbalance is a common issue of real-world data in terms of fault diagnosis, 

anomaly detection and many others (Ali et al., 2015). In this section, we will review the 

methods to re-balance the datasets and their applications in transport systems 

(summarised in Figure 4.1). 

 

Figure 4.1 Reviewed key resampling techniques. 
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4.2.1. Resampling methods to balance datasets 

Classic machine learning models tend to deal with problems where the number of 

instances in every class are roughly the same. It is the case for many standard datasets 

commonly used to test models, including the MNIST data for hand-wiring recognition 

(LeCun et al., 2010), Iris Plants Database for pattern recognition (Dua and Graff, 2019) 

and ImageNet data of image recognition (Russakovsky et al., 2015). In many practical 

problems, however, the data is not all as good as those standard datasets. A particular 

issue is data imbalance, where there is a minority of positive instances, while the 

majority is negative instances. For example, when detecting dangerous behaviour and 

rare activities (Azaria et al., 2014; Gao et al., 2016), the event (dangerous) instances is 

much less than the normal instances. The skewed distribution of classes, or imbalanced 

data, challenges the traditional machine learning models. Some possible reasons for the 

drawback of data imbalance on machine learning models are summarised: i) rare minor 

instances may be treated as noise and vice versa (Beyan and Fisher, 2015); ii) minor 

instances overlap with other regions where the prior probabilities of classes are almost 

equal (Denil and Trappenberg, 2010); iii) it is challenging to detect rate patterns for the 

minor instances with high feature dimensions because of the lack of density (López et 

al., 2013). 

There are many methods developed to cope with the data imbalance. The basic idea to 

address this data issue is producing a new balanced dataset, called the resampling method. 

There are three main resampling methods: over-sampling, under-sampling and hybrid 

method (Guo et al., 2017). The over-sampling method is to create some imitated 

instances belonging to the minority class, while the under-sampling method is to 

remove some existing instances from the majority class. The hybrid method is to use 

the over-sampling for the minority and the under-sampling for the majority. 
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The simplest over-sampling method is random over-sampling (Batista et al., 2004), 

which randomly duplicates those minor instances. The new dataset by random over-

sampling emphasises the existing minor instances which cause the risk of overfitting. 

Many repetitive instances may lead to the specification of the classifier on the dominant 

instances. Also, if some of the instances are mislabelled or noisy, the error can easily be 

multiplied. Therefore, a distance-based over-sampling method, SMOTE (Chawla et 

al., 2002), and its modified version are developed. SMOTE stands for synthetic minority 

over-sampling technique. It uses k-nearest neighbours (kNN) algorithm to calculate 

the closest instances of each instance in the minority, randomly selects several 

neighbours according to the imbalanced rate and randomly generates a new instance 

between the central instance and neighbour instances. SMOTE does decrease the risk 

of overfitting. However, this method increases the possibility of overlapping, and it 

cannot provide new instances with useful information. Han et al. (2005) propose an 

improved SMOTE method, Borderline-SMOTE. Unlike the random selection of 

minor instances in SMOTE, Borderline-SMOTE does the over-sampling only for the 

minor instances which are close to the border of minority category. He et al. (2008) 

developed an adaptive synthetic sampling (ADASYN) method, which adds weight on 

minor instances according to the number of nearby major instances and then generates 

a different number of new instances. These methods improve the quality of generated 

instances comparing to the SMOTE. However, it cannot deal with some common 

failing of SMOTE: i) The spared data distribution, feature redundancy and feature 

irrelevance in high-dimension data challenge the algorithm to identify minor instances, 

and ii) The SMOTE method is not suitable for the categorised features (e.g. seasons) 

because their distance cannot be calculated. Besides distance-based methods, clustering 

can also be used for over-sampling. Jo and Japkowicz (2004) make use of the K-means 
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clustering to categorise the imbalanced dataset and does the over-sampling process for 

each category of data.  

As opposed to over-sampling, under-sampling method is another technique in 

resampling. Like the random over-sampling, the method of random selection is also 

applied in the under-sampling, which randomly removes some major instances. This 

method abandons a lot of data and information and may result in bias and overfitting in 

learning. Similarly, the distance-based and clustering-based approach can also be used 

in under-sampling. In distance-based methods, Wilson (1972) proposed the edited 

nearest neighbour (ENN) to balance the data. This method looks for and removes the 

major instances that are surrounded by the instances in the minority. Repetitive edited 

nearest neighbour (RENN) applies the ENN repeatedly until all neighbours of the 

major instance are within the majority class (Tomek, 1976). Besides, Mani and Zhang 

(2003) propose four NearMiss-family methods that use the kNN algorithm to select 

major instances. NearMiss-1 selects the major instances with the smallest average 

distances to three closest minor instances; NearMiss-2 selects the major instances with 

the smallest average distances to three farthest minor instances; NearMiss-3 selects a 

predefined number of the closest major instances for every minor instance; 

MostDistance selects the major instances with the most massive average distances to 

three closest minor instances. For the clustering-based method, Yen and Lee (2009) 

partition all the data into several clusters and randomly select the instances from each 

cluster. Zhang et al. (2010) apply k-means clustering in the partition process and use the 

number of major instances in every cluster as a weight to decide the number of selected 

major instance. As stated before, the under-sampling method may miss some 

information. To overcome the weakness of missing information, two methods, 

EasyEnsemble (Liu, 2009) and BalanceCascade (Liu et al., 2009), are developed. 

EasyEnsemble uses the idea of ensemble learning. It under-samples the majority with 
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replacement and generates several independent, balanced training datasets. Then, these 

datasets are trained for their base-classifier, and these base-classifiers are combined with 

ensemble learning approaches such as Bagging. BalanceCascade uses the idea of boosting 

learning. It generates a new balanced training dataset by the under-sampling method 

and trains a base-classifier. Then, the method only puts back the major instances that 

are wrongly classified for the next-round under-sampling, and so on. These ensemble 

methods contain most of the information from the majority from a global perspective. 

However, Ha and Lee (2016) evidence that the under-sampled data in the majority do 

not follow the original distribution, which tends to build a biased decision boundary. 

According to the data size of the minority class, Zhou (2013) and Loyola-González et 

al. (2016) suggest that the under-sampling is a more appropriate method for the training 

data with more minor instances while the over-sampling is more suitable to deal with 

the training data with less minor instances.  

If the size of the training dataset is too large, there are some research using the hybrid 

method to apply the over-sampling and under-sampling together. For example, the 

integration of SMOTE with ENN and SMOTE with Tomek links are developed by 

Batista et al. (2004). Jian et al. (2016) use SMOTE over-sampling and multiple random 

under-sampling with ensemble learning in support vector machine classification. Song 

et al. (2016) combine SMOTE over-sampling and k-means under-sampling method to 

resample the dataset. The hybrid method applies the over-sampling to the minority and 

the under-sampling to the majority, which always yields a better result than either in 

isolation (More, 2016). Although the hybrid method shows a greater ability on 

rebalancing dataset than using a single method, the performance of the different 

combination of methods also varies (see the examples of Ramentol et al., 2012; Liu et 

al., 2017; Gazzah et al., 2015).It will takes much time to test which combination is the 

best selection for our case. 
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4.2.2. Application of data imbalance issue in transport domain 

We typically face data imbalance in real-life applications where the minority class is the 

usually more important one (Krawczyk, 2016). In the field of transport, the problem of 

data imbalance is especially acute in accident detection, where the data representing 

accidents is in a rare minority while the usual scenario is in the majority. For example, 

Park and Ha (2014) prove that the over-sampling by the data mining tools, Hive and 

MapReduce, can improve the precision in prediction traffic accidents. Parsa et al. (2019) 

compare the performance of the SMOTE, Borderline-SMOTE and SVM-SMOTE 

used in over-sampling the minor accident instances. They find that all three methods 

have similar accuracy, but SMOTE tends to have a higher detection rate and lower false 

alarm rate. Sharifirad et al. (2014) enhance the SMOTE method for over-sampling the 

accident data, which weights the distance used in the kNN algorithm by the 

information entropy of attributes. Cai et al. (2020) use GAN-based model to generate 

the matrix of describing the car crash, which can provide a smoother distribution than 

other SMOTE and random over-sampling. 

Besides accident recognition, other fields in transport also face problems with data 

imbalance, such as recognising vehicle types (Dabiri et al., 2020) and identifying 

commercial vehicle activities (Low et al., 2020) Hajizadeh et al. (2016) use semi-

supervised techniques such as self-training and co-training to identify and add minor 

instances for detecting the rail defect from rail image data. The results by semi-

supervised techniques are better than other classic over-sampling methods like SMOTE 

and random over-sampling. Similarly, Mohammadi et al. (2019) apply the ADASYN 

method to overcome the imbalanced data issue when predicting rail defects by track 

geometry measurement dataset. Rahaman et al. (2017) predict the queue context in the 

airport through the imbalanced taxi and passenger queue contexts. The conclusion of 

their study suggests that the balanced dataset with any resampling method is much better 
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than the original dataset in every evaluation index and the random over-sampling 

performs best. 

4.3. Passenger boarding instances from the smart card 

data 

4.3.1. Description of the data imbalance issue 

The target of this study is to predict the hourly boarding demand for bus systems. We 

model the passengers’ boarding status, travelling or not, as the measure of demand. Thus, 

the instance in this study is the trip made by a passenger during a predefined time slot. 

Here, we select one hour as a time slot in this study. The state of a trip in this study is 

characterised as travelling or non-travelling. The instance consists of a feature vector 

describing the passenger and the time of travel, and a label identifying the state of trips. 

The instance is expressed as follows: 

 ( ),p p p

t t tr x y=   (4.1) 

where rp
t denotes the trip r of passenger p during the time slot t; xp

t is a feature vector 

describing the trip rp
t; and yp

t is the label to estimation on the travel behaviour of trip 

rp
t. Feature vector, x, contains several features that characterise the trip, such as boarding 

hour, temperature, the total number of trips on the previous day, etc. The individual 

features are denoted as v1, v2, etc. Features selected in this study will be introduced in 

the next section. The label, y, represents the state of the trip: 1 denotes the travelling 

trips, and 0 denotes the non-travelling trips. 

 ( )1 2 3, , ,x v v v=   (4.2) 

 1,         travelling

0,  non-travelling
y


= 


  (4.3) 
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Since the non-travelling trip is much more than travelling trips, the dataset is 

imbalanced. For example, for a typical 19-hour operation time of a day, we find that in 

the dataset used in this study, there are just 43 thousand travelling instances but about 

two million non-travelling instances in a day. The ratio of minority (travelling) class to 

majority (non-travelling) class is 1:44 in the case-study dataset, or only 2% is travelling 

instances while the remaining 98% represents non-travelling instances. As stated before, 

the skewed distribution can lead to bias in learning towards the pattern of non-travelling 

instances and significantly decrease the accuracy of the machine learning model. In the 

next section, we use the deep generative adversarial network to balance the data. 

4.3.2. Data cleaning and pre-processing  

The smart card data is initially designed for automatic fare collection. Each log in the 

smart card data records a bus trip, and more specifically, a boarding record.  

At first, we make the following assumptions to clean the data: 

• Each card ID corresponds to a single passenger, and each passenger swipes 

the card only once at a single boarding. In a real-life situation, some 

passengers may (accidentally) swipe their cards more than once for one 

boarding, which causes two and more transactions during a short period. 

We consider these data as repetitive data.  

• The number of bus trips made by each smart card users is reasonable. There 

is a situation in the smart card data that an ID appeared over 50 times in 

one day and never showed up on any other day. We, therefore, recognise 

the ID appearing over 19 times (at most once an hour on average) a day as 
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the testing smart card from the bus company and remove these IDs from 

the database. 

• This study only focuses on the regular smart card users who travel at least 

once a week. Many card IDs appear only a few times in the data. To 

simplify the data, we exclude the infrequent users as those who travelled 

less than five times during the study period, because this kind of users will 

generate too many non-travelling instances increasing computational 

burden but providing limited information to the models. 

After the initial data cleaning, we transform the remaining smart card data into instances 

described in Eq. (4.1) and label them according to Eq. (4.3). The cleaned and 

transformed dataset is used in data generation to balance the dataset and in bus boarding 

demand prediction, described in the following sections. 

4.4. Hourly boarding demand prediction coping with an 

imbalanced dataset 

This section will present how to predict boarding behaviour and method developed to 

cope with an imbalanced dataset. As shown in Figure 4.2, the data resources are the 

smart card data that offers the raw travelling data, GPS data that complements 

geographic information to smart card data for the boarding stop inference, and weather 

data that provides the impacts of weather conditions on the boarding behaviour. 

Through the preparing processes (explained in Section 4.3.2), we can obtain the original 

imbalanced dataset. Then, all the instances in the original dataset will be divided into 

three sub-datasets: training, validation and testing dataset. We will apply a deep 

generative adversarial network (Deep-GAN) to produce artificial travelling instances 
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for balancing the training dataset. The details in the Deep-GAN model will be 

presented in Section 4.2.1. Next, the synthesised training dataset will be used to train 

the DNN-based predictive model to predict the state, travelling or not, and the 

validation dataset will be used to examine the situation of the training process. The 

architecture of the predictive model will be described in Section 4.2.2. Finally, we apply 

the testing dataset to the well-trained model to measure the performance of the model. 

 
Figure 4.2 The flow chart on predicting the boarding behaviour from an 

originally imbalanced dataset. 

4.2.1. Deep generative adversarial network to balance the dataset 

The generative adversarial network (GAN), firstly introduced by Goodfellow et al. 

(2014), is a deep learning architecture which consists of two multi-layer perceptrons (a 

generator and a discriminator). Figure 4.3 illustrates the basic architecture of the GAN 

model. The generator utilises the noise vector, which is made of random numbers, to 

produce a fake data in the target format. The discriminator tries to distinguish between 

real data and fake data. 
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Figure 4.3. The basic structure of the GAN model. 

Deep generative adversarial network (Deep-GAN) is one of the updated GAN-based 

models. The framework of Deep-GAN is illustrated in Figure 4.4. The Deep-GAN 

replaces the perceptron used in naïve GAN by a deep neural network (DNN). DNN is 

an extension of the artificial neural network (ANN) in the field of deep learning. The 

‘deep’ in the name means DNN has deep layers in the architecture. In the generator, 

the activation function between every two layers is the Rectified Linear Unit (ReLU) 

function except for the output layer that uses the tanh function. The Leaky ReLU 

function is used on each layer in the discriminator.  
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where a is the value of the nodes in DNN layers and λ is a random parameter between 

0 and 1. 

 
Figure 4.4 The architecture of Deep-GAN model. 
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We define a discriminator D to identify if a data is sampled from the distribution of real 

travelling data pdata(x). The performance of the discriminator is measured by a 

logarithmic loss function of the positive instances that data are recognised as the real 

travelling data: 

 
( ) ( )~

F = log
data

D x p x
D x     (4.7) 

where [.] denotes a calculation of the expectation. Maximising Eq. (4.7) means that D 

can correctly predict ( ) 1D x =  when x follows the probability density of real travelling 

data, which is expressed as: 

 ( ) 1, ~ ( )dataD x x p x=   (4.8) 

On the other side, the role of generator G is to deceive D by generating fake data. Here, 

we build up the loss of the generator using a logarithmic loss function of negative 

instances so that data cannot be recognised as the real travelling data. 

 ( ) ( )( )( )~
F = log 1

z
G z p z

D G z −
 

  (4.9) 

where we premise that pz(z) is the prior distribution of random noise z used in the 

generator. The objective of the GAN model is formulated as follows: 

 ( ) ( ) ( ) ( ) ( )( )( )~ ~
min max , log log 1

data zx p x z p z
G D

V D G D x D G z = + −    
  (4.10) 

D and G play two-player minimax game with value function V(D,G). D tries to 

maximise the value, which represents the best ability of discrimination. At the same 

time, G wants to a minimum the value when the generated fake travelling data is much 

closer to the real travelling data. 
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4.2.2. A deep neural network (DNN) for predicting the boarding 

demand 

After applying the resampling techniques, the dataset would be relatively balanced. 

Using the balanced dataset, we predict boarding behaviour using a DNN-based 

predictive model. Comparing to a simple ANN model, DNN may have more hidden 

layers, as illustrated in Figure 4.5. 

 
Figure 4.5 An example of DNN’s architecture. 

The feature vector x comes into the DNN model via the nodes in the input layer, where 

each node represents a dimension of features. Then, we calculate the nodes in the next 

layers: 

 ( ) 1 1

1

I
l l l l l

j j ij i j

i

a z a b   − −

=

 
= = + 

 
  (4.11) 

where al
j represents the value of the node j in layer l (input layer is the first layer, l=1); 

zl
j is the weighted accumulated results from the nodes in the layer l-1 and the bias 

parameter bl-1
j; σ(·) represents the activation function. The weighted accumulation 

process is based on the value of each node 1 to I in layer l-1 and the weight ωl
ij from 

node i in layer l-1 to node j in layer l. Following the architecture of DNN, the 
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information in the feature vector will be revised and transferred through the hidden 

layers and to the output layer. 

4.2.3. Evaluating the prediction results 

Confusion matrix (CM) is one of the most used measurements for the classification 

problem (Godbole and Sarawagi, 2004). The CM for binary classification problem is 

demonstrated in Table 4.1. CM has two dimensions: real and predicted travelling 

behaviour, and each dimension has two situations: positive (travelling) and negative 

(non-travelling). So, each instance can be assigned to only one of the following four 

situations: 

• True positive (TP): travelling instance is correctly predicted as travelling 

instance. 

• Ture negative (TN): non-travelling instance is correctly predicted as a non-

travelling instance. 

• False negative (FN): travelling instance is wrongly predicted as a non-

travelling instance. 

• False-positive (FP): non-travelling instance is wrongly predicted as 

travelling instance. 

Table 4.1 Confusion matrix for binary classification problem. 

 
Real travelling behaviour 

Travelling 
(Positive) 

Non-travelling 
(Negative) 

Predicted 
travelling 
behaviour 

Travelling 
(Positive) 

True positive 
(TP) 

False positive 
(FP) 

Non-travelling 
(Negative) 

False negative 
(FN) 

True negative 
(TN) 
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According to CM, we calculate the precision and recall performance of the model. 

Precision is the fraction of TP instances among all the predicted travelling instances, 

which reflects the ability to identify only the relevant instances; Recall is the fraction of 

TP instances among all the real travelling instances, which expresses the ability to find 

all relevant instances. The precision and recall describe the two side of the model. Thus, 

the F-measure in Eq. (4.14) has been proposed in order to have a comprehensive 

consideration of precision and recall. When β=1, we can obtain the most common and 

classic performance metrics, F1-measure, to evaluate the overall performance of 

machine learning models. 

 TP
precision

TP FP
=

+
 (4.12) 

 TP
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TP FN
=

+
  (4.13) 
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4.5. Case study 

4.5.1. Smart card data resource 

The smart card data used in this study records the trips on seven bus lines from the bus 

network in Changsha, China. The dataset covers the period from 1st August to 1st 

September 2016. The operation time is nineteen hours between 5 am to 1 am of the 

next day. The raw dataset includes 2,917,272 transactions with 564,803 unique smart 

card IDs. Following the screening criteria of Section 3.2, 1,279,290 transactions from 

101,850 smart card ID are retained. As shown in Table 4.2, the smart card data records 
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eight fields: bus company, bus line, vehicle, engine ID of vehicle, smart card ID, smart 

card type, data, and boarding time. There are no specific boarding stops in the data. In 

this study, we are concerned only with whether travelling or not; we do not consider 

(or estimate) the bus line and stops they used.  

Table 4.2 An excerpt from smart card data. 

Compan
y Line 

Vehicl
e Engine Card_ID Type Date Time 

200 6 202111 159804 18725002 1 2016/8/1 11:43:15 

200 6 202311 161502 18725002 1 2016/8/1 14:32:59 

… … … … … … … … 

200 147 201674 128150 18729273 1 2016/8/1 16:14:51 

200 123 201869 145477 17991759 1 2016/8/1 16:14:51 

… … … … … … … … 

 

4.5.2. Feature selection 

We choose the features from three domains: boarding time, weather conditions and 

travel history, because these three domains all have an impact on passengers’ decision-

making during bus trips (Tang et al., 2020b). All features are listed in Table 4.3. In the 

domain of boarding time, we use the season and day of the week to describe the date, 

and a binary feature, holiday, to distinguish between holidays, including weekends and 

working days. Additionally, we use the time slot to restrict the time of travelling 

behaviour. To avoid multiple trips in a time slot, we determine that a time slot is one 

hour so there are 19 time slots in a day. For the domain of weather conditions, we 

include a range of independent weather indices in features listed in Table 4.3. Also 

included as a weather feature is the air pollution index (AQI) as a potential influencing 
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factor on travelling behaviour. Travel history describes the passengers’ regularity of 

using the bus services. This study considers two time points: the previous day (expressed 

as day-1 in the table) and the same day in last week (expressed as day-7 in the table), 

and the period between these two time points. 

Table 4.3 Investigated domain of features employed in machine learning 
models. 

Feature types: C- Categorical; Nom-Nominal; Num-Numerical. 

Feature 
domains 

Features Dimensions Feature 
types 

Explanation 

Boarding 
time 

Season 4 C 
Spring; summer; 
autumn; winter. 

Day of the 
week 

7 C 
Mon., Tues., Wed., 
Thurs., Fri., Sat., Sun. 

Holiday 2 C Holidays and working 
days. 

Time slot 1 Num 
One-hour time slot from 
6 am on a given to 1 am 
on the next day 

Weather 
condition 

Temperature 1 Num 
The average temperature 
during the time slot 

Precipitation 1 Num 
Total precipitation 
during the time slot 

Humidity 1 Num 
Average relative 
humidity during the time 
slot 

Visibility 1 Num 
Minimum visibility 
during the time slot 

Wind speed 1 Num 
Maximum instantaneous 
wind speed during the 
time slot 

Weather 
events 

6 C 
Clear, Cloudy, Fog, 
Overcast, Rain, 
Unknown 

AQI 1 Num Air quality index 
 



- 128 - 

Feature 
domains 

Features Dimensions 
Feature 

types 
Explanation 

Travel 
history 

Card ID 17 Nom 
Unique ID to identify 
the card users 

Total number 
of trips on 
day-1 

1 Num 
Number of trips made by 
the passengers on the 
previous day 

Total number 
of trips on 
day-7 

1 Num 
Number of trips made by 
the passengers on the 
same day last week 

Total number 
of trips from 
day-7 to day-
1 

1 Num 
Number of trips made by 
the passengers on all 
previous seven days 

Total number 
of trips in the 
same time slot 
on day-1 

1 Num 

Number of trips made by 
the passengers in the 
same time slot on the 
previous day 

Total number 
of trips in the 
same time slot 
on day-7 

1 Num 

Number of trips made by 
the passengers in the 
same time slot on the 
same day last week 

Total number 
of trips in the 
same time slot 
from day-7 to 
day-1 

1 Num 

Number of trips made by 
the passengers in the 
same time slot on all 
previous seven days 

 

Features are described in two data types: numerical and categorical. Numerical features 

can be used directly for the calculation. However, different features have different 

dimensions and units, which results in non-comparability between features. Here, a 

min-max normalisation on all numerical features is carried out, as follows: 

 min

max min

v v
v

v v

−
=

−
  (4.16) 
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where v is a numerical feather in feather vector x and vmin and vmax respectively represent 

the minimum and maximum value in the feature v. After the normalisation, all the 

numerical features are converted to a dimensionless value between 0 and 1. 

Categorical features are each assigned a unique value simply to register their categories; 

there is no direct relation or comparison can be made between categories. Here, we use 

One-hot Encoding to present a categorical feature using a sparse vector. For example, 

the feature of the holiday has two categories: ‘holiday day’ and ‘working day’. We use 

a vector with two dimensions to describe this feature. The vector (0,1) represents the 

category of ‘holiday’, and the vector (1,0) represents the category of ‘working days’. 

Moreover, the nominal feature, Card ID, is a special kind of categorical feature. The 

process of One-hot Encoding can generate sparse vectors with extremely high 

dimensions for this nominal feature. Thus, we use the feature hashing (Weinberger et 

al., 2009) to represent such categorical/nominal feature. There is a total of 18 features 

and 49 dimensions in the feature vectors. 

4.5.3. Experimental design 

The resampling and prediction processes are conducted via Keras (Chollet and Others, 

2015) with the Python programming language. All the experiments are run on an 

Aliyun cloud graphics processing unit (GPU) platform with an NVIDIA® V100 Tensor 

Core GPU and 32 GB GPU memory. 

As the features include the travel behaviour on the previous seven days, we use data 

from 8th to 31st August as the combined training and validation dataset and 1st December 

as the testing dataset. 80% instance of the combined dataset is randomly selected to be 

the training dataset, and the rest of 20% instance is used as the validation dataset. After 

the data pre-processing, it remains 101,850 smart card users and 1,935,150 instances in 



- 130 - 

a day (19 instances per smart card user). The number of instances in the original datasets 

is listed in Table 4.4. 

Table 4.4 The number of instances in the original datasets. 

Types of instances Training 
dataset 

Validation 
dataset 

Testing dataset 

Travelling instances 819,278 204,820 45,159 

Non-travelling 36,335,602 9,083,900 1,889,991 

Imbalanced rate 1:45 1:45 1:42 

Total 37,154,880 9,288,720 1,935,150 
 

Table 4.5 The synthetic training datasets with different imbalanced rates (by 
Deep-GAN). 

Experiments 
Real 

travelling 
instances 

Synthetic 
data 

Non-
travelling 
instances 

Imbalanced 
rate Total 

BL  
(original) 

819,278 

0 

36,335,602 

1:45 37,154,880 

E1:1 35,516,324 1:1 72,671,204 

E1:2 17,348,523 1:2 54,503,403 

E1:5 6,447,842 1:5 43,602,722 

E1:10 2,814,282 1:10 39,969,162 

E1:20 997,502 1:20 38,152,382 

 

The resampling method is applied to training dataset only. As the baseline (BL), the 

original data without any resampling method is directly used to predict travelling 

behaviour. The dataset is the same as the data using in Stage 1 in Chapter 3, but the 

predictive models are different. To analysis the impact of the balanced rate (minority to 
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majority), we design experiments E1:20 to E1:1 with different imbalanced rates. Table 4.5 

records the number of synthetic data and their imbalanced rate of training datasets in 

E1:20 to E1:1. The synthetic data in E1:20 to E1:1 is generated by Deep-GAN. 

In order to compare the different performance of Deep-GAN model to other existing 

over- and under-sampling methods, we select two the most commonly used over- and 

under-sampling methods, SMOTE method and random under-sampling (RUS) 

method respectively. Since the categorical features cannot be directly inputted in the  

SMOTE model, they are transferred to the numerical variable by LabelEncoder. The 

imbalanced rate is decided by the best performance of E1:20 to E1:1 above. So, the 

experiment with SMOTE method (ESMOTE) has the same training dataset with EDeep-

GAN, and ERUS with RUS has its own training dataset. Table 4.6 displays the number of 

synthetic training datasets in EDeep-GAN, ESMOTE and ERUS with the imbalanced rate of 

1:5. 

Table 4.6 The synthetic training datasets resampled by different methods 
(imbalanced rate = 1:5). 

Experiments 
Method to 

balance data 
Travelling 
instances 

Non-
travelling 
instances 

Total 

BL (original) None 819,278 36,335,602 37,154,880 

EDeep-GAN Deep-GAN 7,267,120 36,335,602 43,602,722 

ESMOTE SMOTE 7,267,120 36,335,602 43,602,722 

ERUS RUS 819,278 4,096,390 4,915,668 
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4.5.4. Model configuration 

There are two DNNs in the Deep-GAN model for generation and discrimination. 

Table C.1 in Appendix C displays the configurations of the generator and discriminator 

in Deep-GAN model for E1:20 to E1:1. There are six layers in the generator, including 

the input layer. The generator is to reshape and transform the noise vector with eight 

dimensions sampled from the uniform probability distribution and to produce a 49-

dimension tensor following the distribution of real travelling data. We use the ReLU 

function for the activation function between two layers and the tanh function for the 

activation function of the last layer. Moreover, we use a layer after the generator to 

normalise a batch of instances. The discriminator receives the tensor from both the 

generator and the real data and uses a five-layer deep neural network to distinguish 

whether the tensor is from the generator or the real data. In the discriminator, the Leaky 

ReLU function (λ = 0.2) is the activation function between two layers while the sigmoid 

function is the activation function for the output layer. The learning rate for both 

generator and discriminator is 0.0005; the batch size is 512; loss function is the 

binary_crossentropy function. 

Table C.2 in Appendix C displays the configurations of the DNN-based predictive 

model with six layers. The input of this model is a 49-dimension tensor. The ReLU 

function is used to be the activation function after the hidden layers, and the sigmoid 

function is the activation function between the last hidden layer and the output layer. 

The learning rate for the predictive model is 0.0005; the batch size is 512; loss function 

is the binary_crossentropy function. 
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4.6. Results and discussions 

In this section, we analyse the performance of the predictive models for the set of 

experiments designed above. We first examine the level of imbalanced rate in the 

training dataset, which increases the accuracy of the predictive model the most and 

which resampling method produces the best synthesised dataset. We will also analyse 

the aggregated results on the distributions of bus ridership. 

4.6.1. Performance of predictive models 

We use the same setting in our Deep-GAN model to generate different training dataset 

with different imbalanced rates and apply these training datasets to the same predictive 

model. Figure 4.6 shows the performance metrics, on the precision, recall and F1 of the 

predictive models trained by different training datasets with different imbalanced rates. 

The BL uses the original imbalanced training dataset of which imbalanced rate is up to 

1:45. From E1:20 to E1:1, we gradually increase the number of synthetic travelling 

instances in the training dataset, and hence reducing the imbalanced rate of the training 

dataset. Overall, we can find that model precision is lower than the recall in all the 

experiments. The main issue of the imbalanced dataset is that the trained model learns 

more on major negative instances, which predicts more FN instances and fewer FP 

instances (FP<FN). This learning bias leads to a higher recall than the precision score. 

The predictive model based on BL has the worst performance, where all three metrics 

are measured around 0.55. This result of BL is only slightly better than that from a 

random classification. This suggests that using an imbalanced training dataset can result 

in very poor predictive models, and with extremely imbalanced data, the predictive 

model is no better than a random classification. As noted in Section 4.2.1 earlier, the 

reasons of poor performance on imbalanced data are: i) few travelling instances may be 
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recognised as the noise and ii) a large number of non-travelling instances leads to 

learning the pattern from non-travelling instances.  

With reduced imbalance rates, the performance of the predictive model improves. 

Figure 4.6 shows that as the imbalanced rate reduces (from E1:20 to E1:1), the 

performance metrics increase. With an absolutely balanced training dataset (E1:1), the 

values of all three metrics are over 0.88. Thus, a more balanced training dataset will get 

a more accurate prediction result. However, a more balanced training dataset with a 

significantly increased number of instances requires a higher-performance computer 

and significantly longer time to train. We note in Figure 4.6 that there is a significant 

improvement in the performance of the predictive models between E1:10 to E1:5, and 

the improvements from E1:5 to E1:1 is relatively small. On the balance of computational 

burden and model prediction accuracy, we consider E1:5 with an imbalance rate of 1:5 

as an acceptable choice.  

 
Figure 4.6 The performance metrics (Precision, Recall and F1) and training 

speed for the training datasets with different imbalance rates. 
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Next, we compare the performances of three different resampling methods. For the 

experiments EDeep-GAN, ESMOTE and ERUS, we keep the same imbalanced rate (1:5) as 

suggested above. EDeep-GAN and ESMOTE use the over-sampling methods Deep-GAN 

and SMOTE respectively, and ERUS uses the under-sampling method RUS. Figure 4.7 

displays the performance metrics of the predictive models for these experiments. 

 
Figure 4.7 The performance metrics (Precision, Recall and F1) for the training 

datasets generated by different resampling methods. 

Overall, the prediction results in EDeep-GAN, ESMOTE and ERUS are much better than in 

BL and random classification. This result suggests that the accuracy of the predictive 

model will be improved as long as the imbalance rate can be reduced by any resampling 

method. Comparing EDeep-GAN and ESMOTE, both use the over-sampling method to 

generate synthetic travelling instances in the travelling data. Both EDeep-GAN and ESMOTE 

produce good prediction metrics. Using any performance metric, EDeep-GAN has a more 

accurate prediction than ESMOTE, suggesting that the synthetic training dataset produced 

by Deep-GAN is better than that by SMOTE. ERUS uses a different resampling method 

that randomly removes some non-travelling instances from the original dataset. 

According to F1 metric, ERUS is also an acceptable method to produce a reliable and 
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balanced training dataset. The precision of ERUS is much higher than EDeep-GAN and 

ESMOTE, at 0.83; however, its recall only scores 0.69.  

We note in Figure 4.7 that the precision scores of EDeep-GAN and ESMOTE are greater than 

their respective recall scores, while for ERUS, the opposite is true. This is due to the 

different principles of the sampling methods. The number of FN instances is less than 

the FP instances in EDeep-GAN and ESMOTE. It is because the two over-sampling methods 

artificially add extra information to the travelling instances, so the models are more likely 

to predict actual non-travelling instances as positive. On the contrary, the under-

sampling method used for ERUS deletes some non-travelling instances, which also 

reduces the information redundancy. Thus, the number of true negative instances 

increases, and the number of FP instances decreases, which contributes to the 

improvement of the precision score. 

4.6.2. Distribution of estimated bus ridership 

From the analysis on the perspective of the performance of machine learning models, 

we can see that the Deep-GAN model and DNN-based predictive model can 

accomplish the goal of predicting the boarding behaviour, travelling or not, for every 

smart card use at every hour from an imbalanced training dataset. An aggregated result 

of bus ridership is useful to public transport planners and operators, to guide a clear 

understanding and appropriate planning in the public transport system. In this section, 

we calculate the root mean square percentage error (RMSPE) and root mean square 

error (RMSE) to measure the accuracy of hourly ridership and analyse the distribution 

of bus ridership based on the individual estimation results of machine learning models. 
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where Riderh and Rider’h represent the predicted and observed ridership at hour h and 

H is the total time slots, which equals 19 in our case. 

Table 4.7 presents the RMSPE and RMSE of the first group of experiments (E1:1 to 

E1:20). After the resampling process, RMSPE and RMSE are significantly lower than 

BL. From the view of ridership, our method (Deep-GAN) can improve the 

performance of machine learning models on predicting boarding demand. E1:5 has the 

lowest RMSPE and RMSE. E1:5 contains more positive (travelling) instances than 

E1:20 and E1:10 and less than E1:2 and E 1:1. We will analyse this situation with the 

help of the profile of hourly ridership. 

Table 4.7 The RMSPE and RMSE of hourly ridership by different imbalanced 
rate. 

Experiments BL E1:20 E1:10 E1:5 E1:2 E1:1 

RMSPE 0.74 0.49 1.09 0.56 0.38 0.18 

RMSE 2483.44 712.35 1114.84 281.26 912.15 785.62 
 

Figure 4.8 shows the profiles of hourly ridership observed from smart card data (ground 

truth) and predicted by BL and E1:20 to E1:1. The observed ridership has two peaks: the 

morning peak from 7 to 9 am and evening peak from 6 to 7 pm. The prediction based 

on BL (totally imbalanced data) produced a delayed morning peak to 10 am, and very 

poor prediction on the amplitudes of two peaks: a much lower morning peak and a 

much higher afternoon peak, than the ground truth. E1:20 and E1:10 with minor 

improvements in balancing the dataset also predicted a delayed morning peak and 

underestimate the magnitude of the morning peak and overestimate the magnitude of 

the afternoon peak. By contrast, the prediction with E1:1 (absolutely balanced data) and 
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E1:2 accurately identified the timings of the two peaks. However, both E1:1 and E1:2 

significantly overestimate the magnitude of the morning peak and to a less degree 

underestimate the magnitude of the evening peak. By comparison, using dataset E1:5, 

the model accurately predicted both the timing and the magnitude of the peaks. It is 

understandable why BL performs poorly compared to E1:20 to E1:5, as imbalanced data 

leads to inaccuracy in machine learning models. We speculate that the errors in E1:2 and 

E1:1 estimation may be caused by information redundancy and repetition. The synthetic 

data follows not only the distribution of features but also the distribution of travelling 

instances. That is to say, the generated data has more data representing the travelling 

instances in two peaks. It emphasises the peaks and therefore causes bias in the hourly 

ridership. Even though E1:1 has the best performance metrics, it does not lead to the best 

profile of ridership. It is because that the profile of ridership is produced by the 

positively-predicted instances including TP and FP in Table 4.1. 

 
Figure 4.8 The profile of hourly ridership observed from smart card data and 

predicted by BL and E1:20 to E1:1. 

Table 4.8 presents the RMSPE and RMSE of hourly ridership by different resampling 

methods. All the resampling methods benefits on the improvement of the accuracy of 
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predicting boarding demand. Our methods, Deep-GAN, is better than the SMOTE 

and RUS method.  

Table 4.8 The RMSPE and RMSE of hourly ridership by different resampling 
methods. 

Experiments BL EDeep-GAN ESMOTE ERUS 

RMSPE 0.74 0.56 0.70 0.84 

RMSE 2483.44 281.26 483.77 650.85 
 

Figure 4.9 presents the profile of hourly ridership predicted based on EDeep-GAN to ERUS 

using different resampling methods and with imbalance rate 1:5. All three profiles of 

EDeep-GAN to ERUS follow closely to the observed one and are significant improvements 

from BL. The results of Deep-GAN (EDeep-GAN) and SMOTE (ESMOTE) are very similar, 

while the prediction of ridership based on the RUS (ERUS) is less than the observation 

during the bottom period and evening peak. It suggests that both over-sampling and 

under-sampling are valid methods for re-balancing the data and improving the accuracy 

of machine learning models.  

 
Figure 4.9 The profile of hourly ridership observed from smart card data and 

predicted by BL, EDeep-GAN, ESMOTE, and ERUS. 
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4.7. Conclusions 

In this research, we propose a Deep-GAN model to over-sample the travelling instances 

and to re-balance the rate of travelling and non-travelling instances in the smart card 

dataset in order to improve a DNN model of boarding behaviour. The performance of 

Deep-GAN is evaluated by applying the models on real-world smart card data collected 

from seven bus lines in the city of Changsha, China. Comparing the different imbalance 

rates in the training dataset, we find out that the performance of model gets better with 

the decrease of imbalance rate and there is a significant improvement in the performance 

when imbalanced rate decreases to 1:5. Comparing the different resampling methods, 

both over-sampling and under-sampling benefits to the performance of the model. 

Deep-GAN has the best recall score while RUS has the best precision score but the 

worst recall score. From the perspective of profile of ridership, the high imbalanced rate 

will cause the misleading of the profile and the absolutely balanced data may over-

predict the ridership during peak hours. 

It may be noted that despite the great performance of Deep-GAN and DNN models, 

there are still some limitations. Firstly, in this research Deep-GAN model is solely 

applied for the over-sampling. However, there is also a hybrid variant of Deep-GAN 

where positive instances are over-sampled and negative instances are under-sampled. 

The promising results of the Deep-GAN oversampling serve as a motivation to test the 

performance of the hybrid Deep-GAN in future research. Given that the RUS shows 

the excellent performance on the precision, one potential direction can be to combine 

the Deep-GAN with RUS. Secondly, this study makes the prediction at the individual 

level, which creates an explosion of information and makes the computation more 

difficult. Grouping the passengers may be useful in terms of reducing the size of the 
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dataset. Finally, the proposed Deep-GAN model used the features and instances 

independently.  

However, even in its current form, the research demonstrates the extent of 

improvement offered by the Deep-GAN method in addressing the data imbalance issue 

in modelling boarding behaviour. By better predicting the boarding behaviour, the 

findings can help the public transport authorities to improve the level-of-service and 

efficiency of the public transport system. It can also be extended to other components 

of the public transport usage behaviour – better prediction of the alighting behaviour, 

for instance.  
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Chapter 5 

Conclusion 

5.1. Summaries 

Buses, as an effective, economical and conventional public transport mode, have been 

catering to a major share of the travel demand not only from the public transport system 

but often the whole transport system as well. However, factors like poor level-of-

service and low reliability of the bus system have led to the loss of passengers and 

impeded it from achieving its full potential. Accurate predictions of bus travel patterns 

(boarding demand, boarding pattern, alighting pattern etc.) enable bus operators and/or 

public transport authorities to make better planning, operational and management 

decisions that can contribute to the efficiency and patronage of the bus system. The 

availability of large-scale smart card data and advancements in machine learning 

techniques have opened up the potential to improve the prediction of bus travel patterns 

and motivates this dissertation. The main focus and findings are listed below: 

a) Estimating the alighting stops of bus trips from their boarding information 

as recorded in smart card data and GPS records of bus journeys (Chapter 2) 

For the automatic fare collection (AFC) system in many cities, smart card data records 

only the boarding information but no information about alighting behaviour. 

Estimating the alighting stops for such ‘open’ smart card data is the first task to produce 

the OD matrix for bus ridership. In this chapter, I propose a new data-driven framework 
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for the estimation of the alighting stop from the ‘open’ smart card data. A machine 

learning algorithm, gradient-based decision tree (GBDT) algorithm, is used to model 

the multi-class classification problem and the model incorporates the features of weather 

conditions and travel history to measure the regularity and variance of passengers’ choice 

at alighting. The results show that GBDT outperforms traditional machine learning 

algorithms, e.g. MLR and ANN, on estimation precision. The inclusion of weather 

features further improves the precision of the estimation, while the inclusion of travel 

history enhances the recall ability of the model. Moreover, the GBDT-based model is 

able to rank the features by their importance to the prediction, and the results show that 

the boarding stop is the most important feature, followed by the weather event and the 

weather-related features are more important than the features about the travel history. 

This work provides a tool to understand the alighting stops, especially for the trips that 

cannot be linked to a trip chain. It helps to have a comprehensive and accurate 

understanding of the OD of bus trips, which will contribute to more appropriate 

planning and operation for the bus system. 

b) Predicting the hourly boarding behaviour for smart card users (Chapter 3) 

Since there are more than one classes (candidate boarding stops) in the model, the 

problem belongs to the multi-class classification problem. Moreover, passengers may 

travel more than once (i.e. transfer trips), so there will be more than one boarding stop 

for one instance. Thus, directly predicting the boarding stops is a multi-label multi-class 

classification problem, and it faces the difficulty that many classes and many negative 

(non-travelling) instances in the data set will reduce the accuracy and effectivity of the 

model. In this chapter, I propose a multi-stage deep-learning-based framework to 

predict the hourly boarding behaviour for each smart card users. To avoid the data issue 

of many-class and data imbalance, the proposed framework disassembles the aim to 

three stages: whether to travel, which bus line to use and which bus stop to get on. FCN, 
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RNN and LSTM architectures are used to solve the multi-label classification problem. 

The results show that as a set of historical boarding records are combined into a time 

series to be the input vectors, LSTM and RNN is able to capture the temporal 

characteristics of the ridership (e.g. the peak hour and the demand at the peaks), which 

is better than the other machine learning model FCN and the classic method ARIMA, 

while FCN is better than RNN and LSTM to find the busy stops that have the most 

boarding demand.  

This work provides a bottom-up model that minimises the traditional methods to 

model bus lines and stops. It also offers a more accurate prediction for the future 

condition of bus ridership, which guides the planning and operation to meet the travel 

demand. 

c) Predicting the hourly boarding demand coping with the data imbalance 

issue (Chapter 4) 

Although Chapter 3 uses a disassembling framework to avoid the data imbalance issue, 

the dataset for its Stage 1 is still imbalanced. In this chapter, I propose a novel resampling 

method, Deep-GAN, to improve the positive (travelling) instances in the dataset. The 

Deep-GAN employs a DNN to generate dummy travelling instances from random 

noise vector and another DNN to discriminate whether the generated travelling 

instances is like the real travelling instances. Then, the synthesised training dataset 

(original training data plus generated travelling instances) is used to train a DNN-based 

model for the boarding demand prediction. The results show that the dataset with the 

1:5 imbalanced rate has the best performance when considering both the accuracy and 

efficiency of the predictive model. Comparing to the most used over- and under-

sampling methods (SMOTE and RUS), the datasets generated by Deep-GAN can 

guide more accurate prediction on the boarding demand. 
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This work optimises the accuracy of the boarding demand prediction based on the work 

in Chapter 3. It also explores the usefulness of machine learning methods beyond 

predictive models (e.g. resampling the data). 

5.2. Contributions 

This thesis explores the application of various machine learning techniques in predicting 

the boarding and alighting demand for smart card users. This study shows the machine 

learning model is an effective technique to analyse the high-dimensional and massive 

smart card data. At the same time, there are still various issues to apply machine learning 

models such as data imbalance issue. This thesis also focuses on how to utilise algorithms 

and modify datasets for a best use of machine learning models. Comparing to the 

descriptive analyse of smart card data, this study supplements the details of the bus 

demand by estimating the alighting stops that do not appear in the raw smart card data. 

Also, this study extends duration when we can focus on the ridership by developing the 

predicting of ridership rather than analysing historical ridership in the past. Besides, 

models used in this these can incorporate more impacting factors and display how 

significant the impacts of factors are at the same time. The main contributions of this 

thesis are in the following aspects. 

• Two novel frameworks are proposed to predict the boarding and alighting 

behaviour of smart card users. The first framework addresses the problem 

of how to estimate the alighting stop of bus trips with the absence of real 

alighting stops. The second framework addresses inaccuracy and poor 

performance of machine learning models caused by many candidate classes 

in models and imbalanced original dataset. 
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• The frameworks present the ability of different machine learning models. 

For example, the tree-based model (GBDT) can rank the importance of 

every feature, which helps understand the relationship between features 

and the boarding and alighting behaviour. LSTM and RNN is a promising 

approach for the sequential data (e.g. time series data), which can measure 

the temporal characteristics of boarding behaviour. 

• The research demonstrates that a GAN-based model (Deep-GAN), 

developed and typically used in the domain of image processing and 

transport safety can be successfully used to deal with data imbalance issues 

in the context of predicting hourly bus boarding. 

• The predictive models incorporate the impacts of travel history and 

weather conditions in predicting the boarding and alighting behaviour and 

present the importance of those features in the prediction. 

Overall, machine learning, one of the most effective and useful techniques for 

predictions, is yet to reach its full potential in the domain of public transport planning.  

The dissertation contributes to achieving this by utilizing the remarkable ability of a 

wide variety of machine learning techniques to deal with the high-dimensional and 

multivariate data from smart cards. 

The predictive models developed in this thesis are based on individual smart card users. 

The bottom-up model preserves heterogeneity of behaviour between individuals, 

which is ignored in the traditional prediction at the aggregated level. 
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5.3. Suggestions and future directions 

The research applying machine learning techniques on bus ridership prediction has 

gained much attention in recent years. Although the field is developing very fast, it is 

far from mature. Further investigation of both machine learning techniques and their 

applications in transport are discussed below. 

The accuracy of the prediction depends on the quality of data sources. Due to the 

absence of real alighting stops, the estimated alighting stops cannot be verified with 

reality. Calibration using data from cities where the boarding and alighting stops are 

known should be carried out. Since the case study contains only seven bus lines, the 

data does not adequately describe all the boarding and alighting behaviour of smart card 

users in the whole city of Changsha. The processes of data pre-processing may remove 

some smart card trips and users that are normal in the whole bus network but appear 

abnormal in our data. For example, a passenger is used to travelling on the bus lines 

other than these seven lines. An occasional ride on the studying bus lines is recognised 

as an anomaly record. There may be some potential bias in the trained model in this 

study. Therefore, it is necessary to re-examine the proposed approaches in the context 

of a more comprehensive bus network and more adequate data. 

Moreover, the data covers only six months from April to September that belong to 

warm season. Thus, the data and trained models can only represent the boarding and 

alighting behaviour in the warm weather. The cases in this study ignore the boarding 

and alighting behaviour in the cold weather and cannot be applied to predict the 

demand in cold season. Therefore, I expect the data during a longer period, such as one 

year. A one-year data contains both warm and cold weather, which can obviate the bias 

in the model caused by the lack of data. 
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The data source used in this study is mainly the smart card data. This data ignores 

passengers who prefer to use cash or pre-paid monthly tickets. With the development 

of IoT and 5G, there will be more data sources, such as cellular signalling and Bluetooth 

data. The idea of multi-source data fusion can make up the limitation of smart card data. 

Also, some socioeconomic data, such as land-use, point of interest and population, can 

impact the choice of using bus stops. However, these data are confidential data 

controlled by the government. I cannot access them now. Therefore, a thorough 

consideration of multiple data sources to bring the prediction closer to reality will be 

the next research if the data is available. 

This thesis introduces many kinds of machine learning techniques. These methods can 

accomplish different predictive aims well. However, the employed methods consider 

only the relationship of various features. The topology of the bus network and spatial-

temporal information of ridership are ignored in these models. Combining such 

information may improve the performance of the models. Thus, it requires some more 

advanced machine learning techniques to process data about network, graph, and 

spatial-temporal characteristics. 

All the predictions (on the alighting stops or the boarding demand) studied in this thesis 

take one hour to be the length of the time slot. The future work can try 15-minute and 

shorter time slot. The shorter time slot will facilitate more advanced planning and 

operation. Moreover, the predictive models in this thesis are one-step prediction, 

which only predicts the situation in next day. It is because one-step prediction is the 

foundation. In the future, the longer-step prediction is worth to be studied, for example, 

the bus ridership in next week and month. 
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5.4. The impacts of COVID-19 

I encountered the break of COVID-19 while completing the research for Chapter 4. 

The global pandemic has kept me in China, and I cannot return to the UK to carry out 

my research. So, I continue my research at home in China. However, due to the loss of 

preliminary research results and the lack of access to computing facilities, my work has 

been greatly slowed down. I need more time to run the computer program; I need to 

wait for my colleagues to send me the data; I need to repeat the experiments in which 

the data was lost.  
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Appendix A 

One-way analysis of variance of trip types vs feature ‘weather event’ 

Table A.1 Results of the one-way analysis of variance of trip types vs feature ‘weather event’. 

Total number of trips in categories Trip types Homogeneity of test p-value 
Trips in a chain X1 0.737 0.023 

Segments in transfer journey excluding last one X2 0.338 0.004 
Last segment in the transfer journey X3 0.403 0.112 

Other trips X4 0.483 0.068 
Transfer trips X2+X3 0.559 0.020 

Trips chains and transfer trips X1+X2+X3 0.889 0.018 
All the trips X1+X2+X3+X4 0.588 0.032 

Trips used in the paper X1+X2 0.777 0.017 
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Appendix B 

Features selected for the boarding behaviour prediction in Chapter 3 

Table B.1 Investigated domain of features employed in machine learning models. 

Feature types: C- Categorical; Nom-Nominal; Num-Numerical. 

Feature 
domains 

Features 
Dimensions Feature 

types 
Explanation Stage 

1 & 2 
Stage 

3 

Boarding 
time 

Season 4 C Spring; summer; autumn; winter. 
Days in week 7 C Mon., Tues., Wed., Thurs., Fri., Sat., Sun. 

Holiday 2 C Holidays and working days. 
Time slot 1 Num One-hour time slot from 6 am on a given to 1 am on the next day 
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Feature 
domains 

Features 
Dimensions Feature 

types 
Explanation Stage 

1 & 2 
Stage 

3 

Weather 
condition 

Temperature 1 Num The average temperature during the time slot 
Precipitation 1 Num Total precipitation during the time slot 

Humidity 1 Num Average relative humidity during the time slot 
Visibility 1 Num Minimum visibility during the time slot 

Wind speed 1 Num Maximum instantaneous wind speed during the time slot 
Weather events 6 C Clear, Cloudy, Fog, Overcast, Rain, Unknown 

AQI 1 Num Air quality index 

Travel 
history 

Card ID 17 Nom Unique ID to identify the card users 
Bus lines/stops used on day-1 7 10 C Labels of bus lines/stops used by the passengers on the previous day, i.e. day-1 

Bus lines used on day-7 7 10 C Labels of bus lines/stops used by the passengers on the same day last week, i.e. 
day-7 

Bus lines/stops used from day-7 
to day-1 7 10 C Labels of bus lines/stops used by the passengers on all previous seven days, i.e. 

from day-7 to day-1 
Bus lines/stops used in the same 
hour on day-1 7 10 C Labels of bus lines/stops used by the passengers in the same hour on the 

previous day 
Bus lines/stops used in the same 
hour on day-7 7 10 C Labels of bus lines/stops used by the passengers in the same hour on the same 

day last week 
Bus lines/stops used in the same 
hour from day-7 to day-1 7 10 C Labels of bus lines/stops used by the passengers in the same hour on all 

previous seven days 
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Feature 
domains 

Features 
Dimensions Feature 

types 
Explanation Stage 

1 & 2 
Stage 

3 

Travel 
history 

Most used bus line/stop on day-1 7 10 C Label of the most used bus line/stop by the passengers on the previous day 
Most used bus line/stop on day-7 7 10 C Label of the most used bus line/stop by the passengers on the same day last week 
Most used bus line/stop from 
day-7 to day-1 7 10 C Label of the most used bus line/stop by the passengers on all previous seven 

days 
Most used bus line/stop in the 
same hour on day-1 7 10 C Label of the most used bus line/stop by the passengers in the same hour on the 

previous day 
Most used bus line/stop in the 
same hour on day-7 7 10 C Label of the most used bus line/stop by the passengers in the same hour on the 

same day last week 
Most used bus line/stop in the 
same hour from day-7 to day-1 7 10 C Label of the most used bus line/stop by the passengers in the same hour on all 

previous seven days 
Total number of trips on day-1 1 Num Number of trips made by the passengers on the previous day 
Total number of trips on day-7 1 Num Number of trips made by the passengers on the same day last week 
Total number of trips from 
day-7 to day-1 1 Num Number of trips made by the passengers on all previous seven days 

Total number of trips in the 
same hour on day-1 1 Num Number of trips made by the passengers in the same hour on the previous day 

Total number of trips in the 
same hour on day-7 1 Num Number of trips made by the passengers in the same hour on the same day last week 

Total number of trips in the 
same hour from day-7 to day-1 1 Num Number of trips made by the passengers in the same hour on all previous 

seven days 
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Appendix C 

Model configurations of Deep-GAN resampling model and DNN-based predictive 

model in Chapter 4 

Table C.1 The configurations of the generator and discriminator in Deep-GAN model for E1:20 to E1:1. 

Networks No. Name of Layer Configurations 

Generator 

1 Input layer input_shape = (batch_size, 8); output_shape = (batch_size, 8) 
2 Dense layer neurons = 8; input_shape = (batch_size, 8); output_shape = (batch_size, 8); activation v ‘relu’ 
3 Dense layer neurons = 16; input_shape = (batch_size, 8); output_shape = (batch_size, 16); activation = ‘relu’ 
4 Dense layer neurons = 32; input_shape = (batch_size, 16); output_shape = (batch_size, 32); activation = ‘relu’ 
5 Dense layer neurons = 36; input_shape = (batch_size, 32); output_shape = (batch_size, 36); activation = ‘relu’ 

6 Dense layer neurons = 49; input_shape = (batch_size, 32); output_shape = (batch_size, 49); 
batch_normalization = Yes; activation = ‘tanh’ 
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Networks No. Name of Layer Configurations 

Discriminator 

1 Input layer input_shape = (batch_size, 49); output_shape = (batch_size, 49) 

2 Dense layer neurons = 36; input_shape = (batch_size, 49); output_shape = (batch_size, 36); 
activation = ‘leakyrelu’; leaky_relu_alpha = 0.2 

3 Dense layer neurons = 25; input_shape = (batch_size, 36); output_shape = (batch_size, 25); 
activation = ‘leakyrelu’; leaky_relu_alpha = 0.2 

4 Dense layer 
neurons = 16; input_shape = (batch_size, 25); output_shape = (batch_size, 16); 
activation = ‘leakyrelu’; leaky_relu_alpha = 0.2 

5 Dense layer neurons = 1; input_shape = (batch_size, 16); output_shape = (batch_size, 1); activation = ‘sigmoid’ 
 

Table C.2 The configurations of the DNN-based predictive model. 

No. Name of Layer Configurations 
1 Input layer input_shape = (batch_size, 49); output_shape = (batch_size, 49) 
2 Dense layer neurons = 36; input_shape = (batch_size, 49); output_shape = (batch_size, 36); activation = ‘relu’ 
3 Dense layer neurons = 32; input_shape = (batch_size, 36); output_shape = (batch_size, 32); activation = ‘relu’ 
4 Dense layer neurons = 25; input_shape = (batch_size, 32); output_shape = (batch_size, 25); activation = ‘relu’ 
5 Dense layer neurons = 25; input_shape = (batch_size, 25); output_shape = (batch_size, 16); activation = ‘relu’ 
6 Dense layer neurons = 1; input_shape = (batch_size, 16); output_shape = (batch_size, 1); activation = ‘sigmoid’ 

 


