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Abstract

Reconstruction of Soil Stress-Strain Response Using Optimisation

by Jared A CHARLES

An Identification Method is a methodology by which the properties of a material can be
recovered by back analysis of experimental data. In the context of geotechnics, the relevant
data would be the displacement field of a body of soil undergoing deformation along with
the loading data that is causing the deformation. The recovered properties for a geotechnical
problem that would be most useful can be represented with a stress-strain curve.

Two Identification Methods are presented in this thesis. Both methods utilise optimisation
such that a stress-strain curve can be recovered that minimises the gap between internal
work, a function of the stress and strain fields, and external work, a function of loading
and load displacement. The first method, an evolution of existing work, splits the unknown
stress-strain curve into a number of segments, with the stress associated with each segment
being optimised. The second method, novel for this project, defines the unknown curve
with an arbitrary equation, the parameters of which are to be found through optimisation
or alternatively a brute force approach.

To validate the methods, a series of artificial datasets were produced using FEA and were
found to function very well. The datasets were subjected to a variety of artificial degrada-
tion strategies such as the addition of random noise with the finding that the peak stress is
lowered proportionally to the addition of noise. Laboratory tests were also carried out for
validation purposes. A series of footing tests were performed on undrained clay, with Dig-
ital Image Correlation (DIC) data recorded, and the recovered curves were compared with
triaxial and shear vane data. Depending on the quality of the individual data sets, the meth-
ods were found to be promising. More flawed data sets of course produced worse recovered
curves, but higher quality datasets resulted in recovered curves that were within the range
suggested by triaxial testing.

Keywords: Back analysis; Identification Method; Stress-Strain Response; Particle Image Ve-
locimetry (PIV); Physical Modelling; Optimisation
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Note that this list contains only the symbols that are likely to be of use to the reader through-
out this thesis. Symbols that are locally defined and used have been omitted.

Symbol Name Unit

W Work J
Wint Internal work J
Wext External work J
Wd Energy density J ·m−3

W f orce Work imparted by a force J
W f riction Work expended due to friction J
Wgravity Work relating to gravity J

P Point force N
µ Coefficient of Friction
M Mass kg
A Area m2

V Volume m3

u Displacement m
J Joule kg ·m2 · s−2

N Newton kg ·m · s−2

σ Stress tensor N ·m−2

σx Stress in x direction N ·m−2

σy Stress in y direction N ·m−2

τxy Shear stress N ·m−2

σ1 Major principal stress N ·m−2

σ2 Minor principal stress N ·m−2

θσ Stress plane of reference rad
θpσ Stress principal angle rad
s Mean stress N ·m−2

t Maximum shear stress N ·m−2

cu Undrained soil strength N ·m−2

ε Strain tensor
εx Strain in x direction
εy Strain in y direction
γxy Shear strain
ε1 Major principal strains



xxx

ε2 Minor principal strains
θε Strain plane of reference rad
θpε Strain principal angle rad
εv Volumetric strain
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(X, Y, Z) World coordinates m
(x0, y0) Principal point Pixels
( fx, fy) Scale factors
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s Skew factor
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(θ, φ, ψ) Yaw, pitch, and tilt rad
Kn The nth tangential distortion coefficient
Pn The nth radiall distortion coefficient
λ Refraction correction factor
H Camera to back of window distance m
t Window thickness m
n Window refractive index m
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Chapter 1

Introduction and Objectives

1.1 Background

In order for practising geotechnical engineers to design structures such as foundations, re-
taining walls, embankments, and cuttings, it is necessary to predict how the soil involved
in the design will behave. As it is typically either not possible or not economical to build
large scale prototypes in civil engineering, the behaviour of geotechnical structures must be
predicted using analytical or numeric methods.

For very simple problems, analytical hand calculations such as Terzhagi’s bearing capacity
equation may be used whereas for complex problems, numerical solutions governed by
constitutive models can be calculated in Finite Element Analysis (FEA) software.

Regardless of the complexity of the problem the practising geotechnical engineer faces,
methods have been developed to predict the response of a soil. What all these methods have
in common is the need for constitutive parameters as inputs. From the simplest linear elastic
model, in which the stress-strain response is governed by Young’s Modulus and Poisson’s
Ratio, to complex models governed by tens of parameters, the accuracy of the practising
engineer’s prediction is reliant on the accuracy of the constitutive parameters chosen.

Determining these constitutive parameters can be done by either obtaining them from ref-
erences or literature, based on broad characteristics of the soil or by extracting them experi-
mentally. Extracting the constitutive parameters of soils is typically done through a number
of physical tests (1D compression tests, shear box tests, triaxial tests etc.) in which the stress-
strain field is assumed to be simple and known. Depending on how many parameters are
required, multiple tests may need to be run.
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These methods of determining the constitutive parameters assume a uniform response through-
out the soil and potentially provide limited or incomplete data. As the true representative-
ness of the data obtained is unknown, the use of conservative safety factors may be neces-
sary to ensure any design is adequate. Having low confidence in the representativeness of
the parameters used could result in economic or environmental inefficiencies due to over-
design.

An Identification Method, as described extensively by Avril et al. (2008a), is a method devel-
oped for testing solids in order to recover the constitutive parameters of a sample based on
recorded loading data and PIV derived displacement data. Although numerous such meth-
ods are described in the aforementioned paper, with varying algorithms and data require-
ments, the principle is that constitutive parameters are to be found such that a modelled
response, using said parameters, is similar to the physically measured response. Identifica-
tion Methods have been used extensively in material science for a range of metallic objects.

The development of Particle Imaging Velocimetry (PIV), a subtype of Digital Image Cor-
relation (DIC), first adapted for geotechnical usage by White et al. (2001) allows access to
full-field displacement data of a sample undergoing testing. This process uses high resolu-
tion digital cameras to track the planar movement of specified patches of soil based on their
texture. This texture can either be natural or artificially applied using floc seeding. PIV is
a non-intrusive method that provides no further disturbance to the soil sample undergoing
testing.

One Identification Method, the Virtual Fields Method (VFM), as described by Grédiac and
Pierron (1998), requires full-field displacement data of a specimen undergoing testing, along
with data relating to the applied loading scheme. The principles of the conservation of
energy and of virtual work are then used to recover the parameters of a chosen constitutive
model. This method has been used in the field of material science, typically to recover elastic
parameters of metal dog bone specimens.

Preliminary work by Gueguin et al. (2015) demonstrated a geotechnical Identification Method
based on the principle of conservation of energy that can be seen as a less robust simpli-
fication of VFM, with applications to limited soil types and stress-strain responses. The
method, developed with the goal of recovering and reconstructing the stress-strain response
bypasses the requirement of kinematically and statically admissible stress and strain fields
required by VFM by presupposing the rough shape of the stress-strain response based on
engineering judgement.

This preliminary work has the potential to serve as a good starting point from which further
advancements of the methodology can be developed and tested. This will be the purpose of
this project. The aims and objectives will be summarised in the following section.
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1.2 Objectives

The primary aim of this project is to develop, test, and validate one or more Identifica-
tion Method that is suitable for extracting the stress-strain response of geotechnical physi-
cal models using full field PIV-derived displacement data. The preliminary work done by
Gueguin et al. (2015) serves as a starting point, however the existing implementation had a
number of limitations and little validation, with much of the available code requiring sig-
nificant revisions. As such, the following objectives were formulated.

1. Investigate existing Identification Methods developed in the field of material science
in order to determine their applicability to geotechnical problems and understand the
principles by which they operate. Factors to consider would relate to the methods
ability to work with plane strain data, and capabilities regarding highly non-linear
behaviour.

2. Carry out further review of literature relating to physical modelling techniques that
will be necessary to utilise in order to properly validate any developed Identification
Methods.

3. Analyse and assess the method proposed by Gueguin et al. (2015) and the associated
codebase. Make required changes to the code to fix bugs and generalise functions to
allow for future development. Significant work needed to be done on the algorithm
related to calculation of internal work.

4. Develop one or more additional approaches to the Identification Method using a shared
codebase such that existing pre and post processing functionality can be reused where
appropriate.

5. Generate a suite of artificial datasets using FEA such that any proposed Identification
Methods can be validated for a range of scenarios, varying both geometry of the prob-
lem and soil behaviour. Nonlinear stress-strain responses are of particular interest for
testing. The datasets can be further utilised by artificially degrading them through the
addition of noise to test the resilience of the proposed method or methods.

6. Design and carry out a series of laboratory physical model tests in order to build a set
of real datasets that can be used to examine the capabilities of the proposed methods.

7. Validate the proposed Identification Methods using both the artificially generated dataset
and the datasets derived via physical modelling. Discuss and solve any issues that
arise and compare and contrast the benefits and drawbacks of any proposed Identifi-
cation Methods.
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8. Produce a user friendly piece of software implementing one or more of the proposed
Identification Methods such that it would be useful for other researchers to use as a
means of examining PIV datasets produced during physical modelling.

1.3 Format of this Document

This thesis is split into a number of chapters. The titles and descriptions of these chapters
are as follows:

Chapter 1: Introduction and Objectives. This chapter contains a brief introduction and
summary of the main motivations behind the project, as well as a description of the key
aims and objectives. Finally, a summary of the content of each chapter is given.

Chapter 2: Literature Review. This chapter presents the literature review carried out as
part of this project. Commentary is first given on the use of existing Identification Methods,
primarily those used by material engineers but also on the preliminary work carried out in
adapting the methodologies to geotechnical engineering. Next, the theory behind Particle
Imaging Velocimetry is explained along with the associated photographic and photogram-
metric techniques necessary to properly utilise the technique. Finally, a summary of the
existing techniques geotechnical engineers use to obtain soil properties is provided along
with the limitations and drawbacks of these methods. To conclude the chapter, any notable
gaps in existing literature are identified along with explanation as to how these gaps relate
to this project.

Chapter 3: Derivation and Calculation of the Energy Equilibrium Equation. This chap-
ter derives from first principles the energy equilibrium equation that is at the heart of the
Identification Methods proposed in this document. Key terminology will be defined in this
chapter. Notes on the key assumptions and simplifications made are presented here along
with justifications behind these decisions. The method by which strains were calculated
from the displacement field is also explained.

Chapter 4: Programmatic Implementation of the Identification Method. This chapter pro-
vides a primer on optimisation for readers who are unfamiliar with the concept followed by
a description of what optimisation means in the context of the problem at hand. Derivations
and explanations for the two proposed Identification Methods can be found in this chapter.
Flow charts and Diagrams are presented to aid in the illustration of the inner workings of
each method. Commentary is given on the key similarities and differences between the two
methods.
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Chapter 5: Artificial Data Set Generation. This chapter explains the strategy by which
"perfect" artificial datasets will be used to test the proposed Identification Methods. The se-
lection of datasets is explained along with the methodology of their generation. The scheme
by which the addition of artificial noise was used to further test the Identification Methods
is also explained.

Chapter 6: Physical Modelling Data Set Generation. This chapter shows the laboratory
scheme by which real datasets will be produced using physical modelling. A detailed and
illustrated description of the required equipment is given along with the methodologies by
which the samples was prepared, and testing will be carried out. Commentary on data
processing, such as Particle Imaging Velocimetry is given and builds on the more theoretical
discussion of these topics provided in the literature review.

Chapter 7: Analysis of Artificial Datasets. This chapter validates the proposed Identifica-
tion Methods by testing them with the "perfect" artificial datasets presented in Chapter 5.
Qualitative assessment of the datasets is first provided, followed by the results of validating
the Identification Methods under optimal circumstances using the aforementioned datasets.
The rest of the chapter deals with artificially degrading the data, not only to test the rigour of
the methods to the limit, but also to gain insight that could be useful in diagnosing potential
issues with real datasets.

Chapter 8: Analysis of Real Datasets. This chapter discusses the capabilities of the pro-
posed Identification Methods when dealing with real datasets. Qualitative assessment of
these datasets is first given, identifying any noteworthy flaws or potential issues. The meth-
ods are then tested using the datasets. Key parameters such as resolution of PIV patches
will be varied with the effects explained. Discussion of the findings and the results of the
validation process are presented.

Chapter 9: Conclusions and Future Work. This chapter summarises the key findings of this
project. The objectives given in Chapter 1 will be discussed. Possibilities for future work in
this field are also given.

Appendix A: Reformulating Internal Work to use "Geotechnical" Parameters. This ap-
pendix contains the derivation necessary to reformulate the internal work equation such
that work can be calculated in terms of maximum shear stress and maximum shear strain,
instead of the stress and strain tensors. This content is relevant to the derivation contained
in Chapter 3.

Appendix B: Additional Data. This appendix contains investigations into parameter choice
and raw sensor data that was produced from the physical modelling tests. This content is
relevant to the analysis presented in Chapter 8.
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Chapter 2

Literature Review

2.1 Introduction

This chapter consists of a review of existing literature relating to Identification Methods and
processes by which constitutive parameters can be obtained from experimental data. Work
on this topic has most prominently been carried out by researchers in the field of material
science, on a range of materials, both structural and biological, with particular attention
paid to metals. As the goal of this project is the application of an Identification Method
to geotechnical engineering, a thorough background on a number of formerly proposed
Identification Methods is essential.

Many Identification Methods notably take advantage of full field displacement measure-
ments. This full field measurement is carried out using Digital Image Correlation (DIC), a
method by which the movement of material is tracked via digital imaging. As such, DIC is
of great importance to the project as it will be used to obtain and analyse physical data, with
the output from the DIC process used as an input for any developed Identification Methods.
Particle Imaging Velocimetry (PIV) is the form of DIC that is most applicable to geotechnics.
This chapter contains a description of the DIC process at the heart of PIV, along with a brief
account on how various authors have changed, improved, and implemented PIV over its
history. Most importantly provided is a description of the practical considerations of using
PIV, notably the need to calibrate the obtained image data, such that distortion is removed
and the user may freely convert between image space and object space coordinate systems.

A summary of existing techniques that are used to recover soil properties will be given. This
will include both laboratory and field tests that allow researchers or engineers to gain insight
into soil behaviour. Any Identification Method developed during this project is not intended
to supplant such techniques, but to complement them. An assessment of the benefits and
drawbacks of the existing techniques will also be provided.



8 Chapter 2. Literature Review

The final section in this chapter will be a summary of gaps in the literature, and how these
gaps associate with the aims and objectives of this project.

2.2 Identification Methods

An Identification Method is a process by which the parameters of a constitutive model
may be reconstructed from physical test data. Avril et al. (2008a) provide a detailed com-
parison of several prominent Identification Methods. These methods include: Finite Ele-
ment Model Updating (FEMU), Constitutive Equation Gap Method (CEGM), Virtual Fields
Method (VFM), Equilibrium Gap Method (EGM), and Reciprocity Gap Method (RGM). Avril
et al. (2008a) further categorise these methods as either: Updating Methods, in which an
initial guess for constitutive properties is used to numerically calculate the stress or dis-
placement fields, which is compared to measured values in order to iteratively improve the
constitutive properties; Non-Updating Methods, in which stress fields are to be calculated
from measured displacements and the to-be-found constitutive properties, allowing the for-
mation of equilibrium equations. Methods can be further described as requiring field mea-
surements over the domain, field measurements over only the boundary, or able to function
using either type of field measurements.

Each of the methods listed will be briefly described, with particular attention paid to the
Virtual Fields Method as it is regarded in the literature to be used more frequently than the
other methods, and appears to be the most applicable and promising method for geotech-
nical engineering. As such, a full derivation of VFM for elastic models will be provided,
whereas other methods, which are of significantly less importance for this project, will be
illustrated with either an abridged derivation or a description of the key equations. For all
methods, comments will be made on their usage in literature, with a example papers listed
for various problem types.

2.2.1 Finite Element Model Updating

FEMU consists of performing FEA simulations in order to find the constitutive properties
that give a numerical result closest to the measured experimental results. The relation-
ship between energy, displacement, and force in a discretised FEA system can be written
as shown in Equation 2.1, (Pagnacco et al., 2005). Note that for simplicity a particularly
basic FEA model is shown.

Π =
1
2

UT
GKGUG −UT

GFg (2.1)
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in which Π is the potential energy of the system, typically 0, KG represents the global stiff-
ness matrix (the constitutive parameters are encoded in this matrix), Fg is the global external
load vector, and UG is the discretised displacement vector.

There are two forms of FEMU: the Force Method (FEMU-F) in which the measured full field
displacement data is input into the FEA simulation in order to calculate force data, which
can be compared to measured force data, and the Displacement Method (FEMU-U) which is
the opposite, force data is input into the FEA simulation and displacement data is used for
the comparison.

The Force Method (FEMU-F) minimises the residual force RF(p), where p represents the
vector of unknown parameters, which is taken as the difference between simulated and
measured force. Measured stiffness is used for the global stiffness matrix i.e. UG = Umes. The
values for simulated force can be found by rearranging Equation 2.1. Thus, the following
equation is to be minimised (Pagnacco et al., 2005):

RF(p) = Fsim − Fmes = KG(p).Umes − Fmes (2.2)

The Displacement Method (FEMU-U) similarly minimises the residual displacement RU(p),
which is the difference between simulated and measured displacement. Simulated displace-
ment can be found from the output of the FEA simulation. The equation to be minimised is
as follows (Pagnacco et al., 2005):

RU(p) = Usim −Umes = UG(p)−Umes (2.3)

FEMU has been adapted for numerous problem types, including but not limited to, linear-
elastic (Kavanagh and Clough, 1971), elasto-plastic (Meuwissen et al., 1998), and hyperplas-
tic (Genovese et al., 2006). This method will function for any problem that can be expressed
in a form suitable for FEA analysis.

2.2.2 Constitutive Equation Gap Method

The Constitutive Equation Gap Method (CEGM) was originally used for the validation of
the results from FEA simulations, with the ability to calculate local and global errors, how-
ever Florentin and Lubineau (2010) formulated CEGM in such a way that it can be used for
parameter identification.

The method calculates the Constitutive Equation Gap (CEG), which, for linear elastic mod-
els, is the difference between a known stress field τ and a stress field calculated through a
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constitutive model, using elasticity tensor A and known displacement field v. The CEG can
be expressed as follows:

ε(v, τ,A) = 1
2

∫
Ω
(τ −A : ε[v]) : A−1 : (τ −A : ε[v])dV (2.4)

The goal of the method is to find an elasticity tensor A such that the CEG is minimised, i.e.
the measured (or analytically calculated) stress field is to be as close as possible to the stress
field calculated using a constitutive model.

As stated in Avril et al. (2008a), there are two forms of CEGM. The first is in which kinematic
measurements are enforced exactly, i.e. the measured displacement field û is introduced into
Equation 2.4 directly, as such the minimisation function remains unchanged as:

Min ε(û, τ,A) (2.5)

Whereas the second method enforces kinematic measurements using a penalty form. This is
useful for cases with noise in which the measured displacement field may not be kinemati-
cally valid. For this form, the minimisation problem is formulated as:

Min F (v, τ,A) = αε(v, τ,A) + β

2
‖v− û‖2 (2.6)

in which α and β are weighting factors.

CEGM has primarily been used for linear elastic problems, for example by Geymonat et
al. (2002), but more recently nonlinear constitutive models have been used, for example by
Latourte et al. (2009). In nonlinear cases, such as elasto-plastic, the CEGM as described in
this section must be performed for each timestep.

2.2.3 Equilibrium Gap Method

The Equilibrium Gap Method is a method by which damage within an elastic medium can
be located. First presented by Claire et al. (2004), the method assumes that full field displace-
ment data is available in a regular grid, with each point on the grid then input into a finite
element formulation as nodes between which elements will be constructed. To quantify
damage, a damage parameter De is assigned to each element e and determines the relation-
ship between the damaged elastic propertied and the reference undamaged elastic proper-
ties. This relationship can be seen in Equation 2.7, in which Kme and Kme0 are the reference
and damaged stiffness matrices for element e.
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[Kme](De) = (1− De)[Kme0] (2.7)

Additionally, elastic strain energy Eme for element e can be expressed in terms of the damage
parameter and reference stiffness matrix, as shown in Equation 2.8, in which {ue} is the
vector of nodal displacementd for element e.

Eme(De, {ue}) =
1− De

2
{ue}t[Kme0]{ue} (2.8)

With the known displacement field (and hence strain field), the damaged stiffness matrices
(in terms of the damage parameter) equations relating to stress and energy equilibrium can
be established such that the unknown damage parameters can be found. These equations
are present in the work by Claire et al. and summarised in the review paper by Avril et
al., but will not be reproduced here due to the EGM not being of particular relevance to
geotechnical problems. The concept of automatically identifying damage could instead be
applied to anomalous regions within a body of soil, however the limitation to elasticity and
the need to know the reference parameters would make adapting this Identification Method
to soils challenging.

2.2.4 Reciprocity Gap Method

The Reciprocity Gap Method (RGM) is considered by Avril et al. to be a varient of the VFM
in which only the displacements along the boundaries are known. As such, this method is
not as useful to problems that are relevant to geotechnical engineering in which for many
tests the full field displacement data will be available.

Several authors have used RGM for automated identification of cracks. Andrieux et al.
(1999) for example, uses the formulations derived originally by Calderón (2006) (note that
this paper is a reprint of work done in 1980) to identify and locate planar cracks in an elastic
material for static cases, provided boundary kinematics are overdetermined. Bui et al. (2004)
expands on the aforementioned work to apply the principal to elastodynamic cases, with
what Bui et al. terms the instantaneous reciprocity gap.

Although interesting, RGM appears to not be applicable to geotechnical problems that this
project is concerned with, and as such the equations and derivations relating to it will not be
presented. Plane strain problems are the focus of this research project. In such problems the
primary dataset available will be the displacement field of a cross section through a body
of soil (or a vertical surface in contact with a window). There is potential that the RGM
could be adapted to solve geotechnical problems in which surface deformation is known,
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potentially in the field, but this is beyond the scope of this work. The interested reader can
find the key equations and derivations of the RGM in the cited papers, or in the previously
cited review paper by Avril et al.

2.2.5 Virtual Fields Method

The Virtual Fields Method (VFM) uses the principle of virtual work along with full field dis-
placement data to identify constitutive parameters. For linear elastic materials, the careful
choice of one virtual field per parameter allows recovery of parameters by solving a system
of linear equations. For elasto-plastic or other cases in which the parameters are nonlinear,
an optimisation must be carried out (Avril et al., 2008a; Toussaint et al., 2006).

For a volume V with internal stress field σij, measured internal strain field εij, traction Ti on
surface S, and based on the principle of virtual work, virtual displacement field u∗i which is
kinematically admissible, and virtual strain field ε∗ij the following equation can be derived
(Pierron, 2012; Kramer and Scherzinger, 2014):

W∗int = W∗ext

∫
V

σijε
∗
ijdV =

∫
S

Tiu∗i dS (2.9)

in which:
ε∗ij =

1
2

(
u∗i,j + u∗j,i

)
(2.10)

and in which kinematically admissible u∗i refers to the displacement field being continuous,
differentiable, and consistent with the problems boundary conditions. Any virtual field
meeting these requirements may be used, an infinite number are possible, however some
may be better suited to recovering the constitutive parameters than others (Pierron, 2012).

With the assumption of plane strain (i.e. σ13 = σ23 = σ33 = 0) specimen thickness t, and
traction force Ti applied over a line L f Equation 2.9 can be reformulated as:

t
∫

S
(σ11ε∗11 + σ22ε∗22 + σ12ε∗12) dS = t

∫
L f

Tiu∗i dl (2.11)

which written in Voigt notation, canceling t, is:∫
S
(σ1ε∗1 + σ2ε∗2 + σ6ε∗6) dS =

∫
L f

Tiu∗i dl (2.12)
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Using an arbitrary constitutive model, linear-elasticity used in this example, the matrix Q
relates stress to strain:  σ1

σ2

σ6

 =

 Q11 Q12 0
Q12 Q22 0

0 0 Q66


 ε1

ε2

ε6

 (2.13)

where:

Q11 = Q22 =
E

1− ν2 Q12 =
νE

1− ν2 Q66 =
Q11 −Q12

2
=

E
2(1− ν)

(2.14)

allowing the expansion of Equation 2.12 into:

Q11

∫
S

(
ε1ε∗1 + ε2ε∗2 +

1
2

ε6ε∗6

)
dS + Q12

∫
S

(
ε1ε∗2 + ε2ε∗1 −

1
2

ε6ε∗6

)
dS =

∫
L f

Tiu∗i dl (2.15)

In the above case there are two unknowns E and ν, and as such two kinematically admissible
virtual fields are needed such that two linear simultaneous equations can be found. To
illustrate this process, a simple example (adapted from Pierron (2012)) will be followed.
Figure 2.1 shows a diametrically compressed disk.

FIGURE 2.1: A diagram of a diametrically compressed disk, with diameter d
applied force F, and a coordinate system (x1, x2) about origin O
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[
u∗1

(1)

u∗2
(1)

]
=

[
0

−k1x2

]  ε∗1
(1)

ε∗2
(1)

ε∗6
(1)

 =

 a
−k1

a

 (2.16)

[
u∗1

(2)

u∗2
(2)

]
=

[
k2x1

0

]  ε∗1
(2)

ε∗2
(2)

ε∗6
(2)

 =

 k2

0
0

 (2.17)

The Equations 2.16 and 2.17 show the two chosen virtual fields in which k1 and k2 are arbi-
trary constants, the first virtual field is vertical compression and the second vertical field is
horizontal swelling. Figure 2.2 shows a graphical representation of these fields. Note that
kinematic admissability can be trivially checked by calculating the displacement at the fixed
boundary to be 0.

FIGURE 2.2: An illustration of the deformations imposed on the disc during
each of the chosen virtual fields, the first being compression, and the second

swelling.

These virtual fields can be substituted into the equilibrium Equation 2.15, in which the inte-
gral of traction is taken as a point force F, at location d from the origin in x2 direction, giving
the following:

Virtual Field 1

Virtual Field 2

−k1Q11

∫
S

ε2dS− k1Q12

∫
S

ε1dS =
Fk1d

t

−k2Q11

∫
S

ε1dS− k2Q12

∫
S

ε2dS = 0

(2.18)
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with arbitrary constants cancelled:

Virtual Field 1

Virtual Field 2

−Q11

∫
S

ε2dS−Q12

∫
S

ε1dS =
Fd
t

Q11

∫
S

ε1dS + Q12

∫
S

ε2dS = 0

(2.19)

which reformulated into the matrix form AQ = B is:


∫

S
ε2dS

∫
S

ε1dS∫
S

ε1dS
∫

S
ε2dS

 [Q11

Q12

]
=

−Fd
t
0

 (2.20)

After integrating the strain fields, likely through summing discretised physically measured
elements, Equation 2.20 can be solved to find Q11 and Q12 and hence E and ν.

Work has been carried out to determine the optimal virtual field choice. Special virtual
fields, as developed by Grédiac et al. (2002), are virtual fields chosen such that the matrix A
is the identity matrix. Although not always possible, this allows the trivial solution of Q = B
without the need to carry out a matrix inversion, an operation that becomes increasingly
computationally expensive with matrix size.

The Virtual fields method has been applied to multiple problem types including in-plane
linear elastic (Grédiac and Pierron, 1998; Avril and Pierron, 2007), visco-elastic (Giraudeau
and Pierron, 2003), and elastic-plastic (Grédiac and Pierron, 2006; Avril et al., 2008b). In the
case of nonlinear models (i.e. elasto-plastic), it is not possible to solve for the constitutive
parameters, optimisation must instead be used to minimise the difference between internal
and external energy (Pierron, 2012).

2.2.6 Identification Methods in Geotechnics

The Identification Methods described were primarily used and developed by researchers in
the field of material science or mechanical engineering. The primary materials for which
properties were identified were solid blocks of metal. Geotechnical materials behave very
differently to metals such that the described methods would potentially require major mod-
ification, or at the very least novel methodologies for obtaining and processing data.

Prior to the commencement of this project, very little work has been carried out regarding
the development and use of an Identification Method in geotechnical engineering. A single
conference proceeding by Gueguin et al. (2015) is the only published work in this field.
The work (in which the second author is a supervisor to this PhD Project) describes an
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energy equilibrium based methodology which the author says is inspired by the VFM, CEG,
and EGM methods. Based on the literature describing these methodologies (as discussed
in the preceding sections), it appears that the proposed Identification Method cannot be
categorised as any of the above options. Although VFM is the closest, the concept of virtual
work is not used. Internal work based on the strain field and the unknown stress field is
equilibrated with external work based on the load. An unknown segmented stress-strain
curve is found using linear optimisation to find the closest match.

This work will form the foundations of this project. Three simple FEA models are shown to
validate the method for an elastic-perfectly-plastic soil response, but no cases for either real
data or more complex responses are shown.

As this work was carried out by researchers at the same institution as the author of this
project, the codebase and several internal notes detailing its use were available. Much of this
codebase is suitable for reuse. The changes and additions necessary to meet the objectives
of this project will be discussed in detail in later chapters of this report.

2.3 Particle Imaging Velocimetry

Particle Imaging Velocimetry (PIV) is a subtype of the Digital Image Correlation (DIC) method
by which the velocity field within a material can be found across a plane. In the case of flu-
ids, as the method was originally developed for by Adrian (1991), this would be a laser
illuminated plane within a liquid seeded with particles. In geotechnics however, the plane
could simply be the surface of a block of soil.

Although numerous now less commonly used methods were developed to achieve this
effect (the history of which is documented in the textbook Particle Image Velocimetry by
Adrian and Westerweel (2011)), Particle Imaging Velocimetry focusses on tracking the move-
ment of particles between a pair of images through computational analysis (Adrian, 1991).

The basis of PIV is to use a camera to record the movement of particles within the sample.
The particles could take the form of natural variation in the material, or could be artificially
added. In the case that the plane of interest is within a transparent material such as water or
transparent soil, laser light can be used to illuminate the particles along the desired plane.

According to Prasad (2000) there are two commonly used forms of PIV:

• Particle Tracking Velocimetry, in which individual particles are matched between im-
ages such that their distance can be measured, originally by hand, and more recently
algorithmically. A velocity vector would be found for each particle.
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• Correlation Based PIV, in which instead of tracking individual particles patches of
the image called "interrogation areas" are tracked by finding the best match for the
new location of the interrogation area. A velocity vector would be found for each
interrogation area, with areas typically arranged on a uniform grid, providing a full
vector field across the image.

2.3.1 Digital Image Correlation Algorithm

The DIC algorithm upon which PIV is based is commonly used for tracking soils. It func-
tions by splitting the image into "Interrogation areas" which contain multiple particles. The
movement of these Interrogation areas is then calculated by finding the location in the next
image that is most similar, usually requiring it to be within a specified "Search area" to min-
imise the portions of the image which must be searched (Huang et al., 1997).

Although higher order forumulations exist, the simplest forumulation allows the movement
of the interrogation area to be found by calculating the best fit for its location in the next
image. In a discretised pixel based input, as used in digital cameras, the following equation
defines the cross-correlation function used to determine the "degree of match" (Westerweel,
1993; Westerweel, 1999).

C(x, y) =
1

U ∗V

U

∑
u=1

V

∑
v=1

[I(u, v)− Ī][S(u + x, v + y)− S̄] (2.21)

In Equation 2.21 C(x, y) represents the correlation or "degree of match" for points x and y,
and in which x and y of zero indicates no movement. I(u, v) represents the pixel intensity of
the interrogation area within (u, v) space, S(u + x, v + y) is the intensity of the search area,
where x and y are the extensions outside of the interrogation area. U and V are the total
number of pixel rows and columns in the images. Ī and S̄ are the values for mean pixel
intensity in areas I(u, v) and S(u + x, v + y) respectively.

Equation 2.21 is the simplest formulation of the DIC correlation function. Higher order
methods that provided a significant advance in PIV accuracy involve the ability to reshape
and rotate interrogation areas. Described by Florio et al. (2002), an iterative process in which
after an initial run, interrogation areas are split, allows the resolution benefits of smaller
interrogation areas without the corresponding loss of accuracy. Deformation of the interro-
gation area (such as rotation, shearing, or stretching) allows a much more accurate repre-
sentation of what is going on. Methodologies such as this are likely to be implemented in
popular commercial or open source DIC packages and not only would allow for improved
patch displacement values but would potentially allow for the recovery of other values such
as patch rotation.
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There are two ways to calculate the correlation field C(x, y) : directly in the spatial domain,
or using Fast Fourier Transform (FFT) in the frequency domain (Huang et al., 1997). The
advantages and disadvantages for each are as follows (Thielicke and Stamhuis, 2014):

• Direct calculation allows for the interrogation and search area to be different sizes with
no loss of accuracy but potentially uses excessive computational recourses as area sizes
increase.

• FFT based calculation requires areas to be the same size but is much faster to calculate.
It is additionally more susceptible to random noise.

Numerous techniques to improve the accuracy of correlation-based PIV have been devel-
oped. The most prominent of which is called sub-pixel interpolation. Willert and Gharib
(1991) state that the technique allows the correlation peak and hence displacement for an
interrogation area to be found to sub-pixel accuracy, resulting in a reduction of error caused
during discretisation. The technique essentially takes the correlation field C(x, y) and fits a
curve to it, using some form of interpolation (spline or Gaussian being common methods)
and then finds the peak of said curve. This allows the location of the peak to be found to a
fraction of a pixel. A demonstration can be seen in Figure 2.3.

FIGURE 2.3: An diagram based on a similar figure from Thielicke and
Stamhuis (2014) showing a 1D representation of sub-pixel interpolation.

Post Processing

Once the output vector field for the image is found, post-processing is often necessary to
produce a valid output (Nogueira et al., 1997). The most common problem with data is
so called "wild vectors", i.e. vectors corresponding to an interrogation area that by eye are
anomalous compared to those around them and to what would be expected for the problem
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type. Nogueira et al. (1997) propose that these wild vectors may be dealt with by removing
them based on their deviance from the mean. Vectors outside of a specified number of stan-
dard deviations would be identified as anomalous and removed. Westerweel and Scarano
(2005) recommend using a "normalised median" test, in which vectors are compared to the
median of those immediately adjacent to them. Upon removing a vector, both papers pro-
pose replacing it with a value interpolated from its immediate neighbours.

2.3.2 PIV in Geotechnics

Geotechnical problems are fundamentally different from fluid dynamics problems. Fluid
dymaics problems will typically model flow, will have relatively large displacements, and
will tend to be transparent. Soils are typically not transparent, and under usual conditions,
will undergo relatively small deformations. Soil displacement fields were first measured by
burying lead shot within the sample such that xrays may be used to record the displacement
of these targets (Gerber, 1929). This method was also used by Roscoe et al. (1963) to calculate
strain fields within the soil sample.

Xray photography is somewhat unwieldily to use for testing, requiring specialist equipment
and safety considerations. Chen et al. (1996) used digital video cameras to record the move-
ment of targets added to a soil sample during a centrifuge test. This resulted in a similar
output, i.e. a discretised vector field with a value corresponding to each target. This method
utilised a computer algorithm to identify and track targets.

PIV software specifically for geotechnical problems was first developed by White and Take
(2002) allowing for digital correlation to be carried out on the soil surface, using the methods
developed for fluid dynamics, without the need for specific targets. Depending on the soil
texture, floc may be added to ensure enough texture, as a flat colour will cause PIV software
to fail.

2.3.3 Recent Advances in PIV

The work by Take (2014) describes advances in geotechnical PIV that have been developed
since the original release of GeoPIV in 2002. The review paper by Take provides a much
more exhaustive summary than what would be appropriate for this literature review, yet
it was particularly useful for finding several relevant papers that will be discussed in this
section. Of particular interest are the developments relating to quantifying and improving
PIV accuracy.

Pan et al. (2008) and Pan et al. (2010) provide quantitative methods by which the quality of
PIV patches and speckle patterns can be assessed. Pan et al. (2008) introduces the concept of
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Sum of the square of subset intensity gradients (SSSIG), in which the suitability of a patch
for DIC is assessed. To find the SSSIG, Equation 2.22 can be used, where gx(xij) and gx(xij)

are the derivatives of grayscale intensities of the subset at pixel location xij. N is the size of
the subset, assuming a square shape. Pan et al. states that these gradients were calculated
using the central difference of neighbouring points in the x and y directions.

sssig =
1
2

(
N

∑
i=1

N

∑
j=1

[gx(xij)]
2 +

W

∑
i=1

H

∑
j=1

[gy(xij)]
2

)
(2.22)

Pan et al. additionally provide plots demonstrating a negative correlation with SSSIG and
PIV error values.

In the later work by Pan et al. (2010), the concept of mean intensity gradient (MIG) is intro-
duced. Increases in MIG correlate with reductions in PIV error. Instead of providing a value
to assess each individual subset a single global parameter is provided. The methodology to
calculate MIG, represented by δ f , is as follows, in Equations 2.23 and 2.24:

δg =

W
∑

i=1

H
∑

j=1
|∇g(xij)|

W · H (2.23)

|∇g(xij)| =
√
[gx(xij)]2 + [gy(xij)]2 (2.24)

Unless specified, the notation is the same as the SSSIG equation, with the addition of W and
H being the size in pixels of the entire image. Pan et al. also state that given a global MIG
value, the SSSIG value of a subset can be estimated with Equation 2.25. Pan et al. state that
the accuracy of such an estimation will increase with subset size.

SSSIG ≈ N · δg (2.25)

2.3.4 Available PIV Packages

Implementing PIV software from scratch would be very time consuming and largely un-
necessary as many such packages have already been developed. Although paid commercial
software exists, there are several free and/or open source options available. Three different
PIV packages were examined for suitability. This section will detail the pros and cons as
well as explain the selection of the most appropriate.



2.3. Particle Imaging Velocimetry 21

The freely available GeoPIV-RG (Stanier et al., 2015) is the package most commonly used by
the geotechnical physical modelling community. This package was specifically designed for
soil. Command line functionality exists to generate meshes and run the analysis. Automa-
tion is difficult due to some steps requiring manual input. Of particular note is the software’s
ability to manage control points. A centroiding algorithm exists such that control points can
be located and tracked throughout the series of images. A built in calibration function exists
however the data is stored in standard text documents so an alternate or bespoke methodol-
ogy could be used for calibration. The main disadvantage of GeoPIV-RG is that it is closed
source. It’s Matlab functions are protected ".p" files, meaning they are highly obfuscated
to the point that the internal workings are opaque and no modifications are possible. This
means that manual inputs cannot be automated and methods cannot be verified. Finally,
post processing is lacking, requiring spurious vectors to manually be clicked for removal.

Another PIV implementation is the open source PIVlab (Thielicke and Stamhuis, 2014). This
software is available to download as an app via the Matlab app store and all code is freely
examinable. A graphical interface makes setting up images and meshes painless. Image
preprocessing functionality is also included allowing for improving contrast with methods
such as a high pass filter and adaptive histogram equalisation. Post analysis visualisation
also has several useful tools. For instance, an arbitrary line can be graphically selected across
the data such that a cross sectional displacement plot can be made. The software has many
settings allowing a choice of algorithms and allows for multiple passes with different mesh
resolutions. Postprocessing capability allows for wild vectors to be filtered by standard
deviation or local median, and includes an interpolation function to replace removed data.
The downside of this package is that it is primarily designed for fluid dynamics in which
significantly greater deformation is expected than in georechnics. Displacement is measured
only for image pairs as opposed to relative to the start as in GeoPIV-RG. Additionally, there
is no calibration function or means to identify control points.

The final package looked into is OpenPIV (Taylor et al., 2010). In terms of core functionality
is is roughly equivalent to PIVlab however lacks finer control for many features. Again,
there is a lack of calibration capability, providing means to only scale pixels to millimeters
in the x and y direction. The authors of this software recommend it’s use as a sanity check for
commercial PIV software as opposed to a stand alone tool. It seems there is no functionality
in OpenPIV that is not in PIVlab.

GeoPIV-RG would appear to be the most appropriate tool to use. Although lacking many
of the extras, such as automatic outlier filtering and contrast correction, the core process is
better suited to geotechnics. There is also the benefit that GeoPIV-RG is most commonly
used within the geotechnical research community, making collaboration and data sharing
easier.
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2.3.5 Photography

Readers familiar with the use of DSLR cameras will no doubt have sufficient background
knowledge on how cameras might be best used to obtain high quality images suitable for
PIV, however, key points will be summarised in this section. Note that although this section
is written based on the author’s own knowledge, numerous resources can be found online
by searching "beginners DSLR guide" or equivalent, for example the web article by Hook
(2013).

When a photo is taken, the shutter in the camera will open and light will enter through the
aperture via a lens and strike a sensor. After a predetermined time, the shutter will close.

An important concept is the exposure triangle. This is the relationship between three set-
tings on cameras. Aperture, Shutter speed, and ISO.

Aperture, measured as F-stop determines the size of the hole through which light passes.
This can be mechanically controlled within the camera lens. A high aperture allows for
more light to enter but causes a reduction in depth of field. Depth of field represents how
much of the image is in focus simultaneously. A smaller aperture will have an improved
depth of field but allow less light.

Shutter speed, or exposure, represents how long the shutter will be open for. A fast shutter
speed will let in less light than a longer shutter speed. However, with a longer shutter
speed image quality can be reduced by movement of either the camera or the object being
photographed. The use of a tripod or similar is necessary for particularly long exposures.

ISO, or exposure compensation, determines how sensitive the sensor is to light. It essentially
allows the signal to be amplified. High ISO value allow images to be taken when less light
is able to reach the sensor, either due to choices regarding aperture and exposure, or simply
due to poor lighting conditions. Unfortunately, amplifying the signal received will also
increase noise, potentially causing a grainy image.

The trade-offs between these three factors are a key part of photography. For PIV imaging
there are a number of considerations. Firstly, in a controlled laboratory environment good
quality lighting should not be an issue. LED lights can be set up and unhelpful natural
lighting can be blocked out. Secondly, the area that needs to be in focus is a single plane.
Depth of field can be short, allowing for a larger aperture. Shutter speed can therefore
be faster, allowing for a high frame rate with little movement during each image. A final
consideration is that many images are to be taken in the course of a laboratory test. It is of
paramount importance that camera setting do not change in between images. If an off the
shelf camera is to be used it must have the ability to disable any "auto" modes and allow for
manual control.
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2.3.6 Photogrammetry

The American Society for Photogrammetry and Remote Sensing, a scientific association
founded in 1934, defines photogrammetry as "... the art, science and technology of obtain-
ing reliable information about physical objects and the environment through processes of
recording measuring and interpreting images and patterns of electromagnetic radiant en-
ergy and other phenomena." (ASPRS, 2019)

To paraphrase, photogrammetry is the means by which quantitative information can be
determined about objects via photographs of them, particularly measurements and dimen-
sions.

The term photogrammetry (or more precisely the german equivalent) was first used by Al-
brecht Meydenbauer, a Prussian architect and building surveyor, in 1867 (Albertz, 2001),
however the foundations of such techniques go back much further. The work by Doyle
(1964) provides a detailed history of the technique and it’s development over the centuries,
and includes an exert from the notebook of Leonardo da Vinci in which vision is described
in a way that has much in common with the more recent pinhole camera model.

Uses of photogrammetry range from the relatively mundane building surveying as pio-
neered by Meydenbauer, to the more extraordinary use in aeriel reconnaissance. Pearse
(1994) for example, in a formerly classified document released from the CIA’s historical
archives, describes the use and development of photogrammetry for military intelligence
purposes. The ability to accurately measure Soviet equipment being an obvious improve-
ment over simply having images.

In this project, photogrammetry will be used to facilitate the accurate measurement of planar
soil displacement. PIV or other techniques, will provide a discretised displacement field that
is measured in pixels. To properly calculate the internal energy expenditure of a specimen
undergoing deformation, it is not only necessary to accurately convert pixel coordinates into
more appropriate units, but to do so taking into account various aberrations or distortions
that may be present in the photographs taken.

Whereas the previous section about photography briefly summarised the considerations
regarding taking "good" photographs, this section will examine the considerations regarding
obtaining accurate measurements from said photographs. The pinhole camera model will be
introduced, as will lens distortion and refraction. Finally, a number of preexisting software
tools to process image data will be evaluated.
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Intrinsic and Extrinsic Parameters

Intrinsic and Extrinsic parameters refer to properties of the pinhole camera model. This sim-
plified model assumes light travels in straight lines from the object being observed, through
an infinitesimally small hole, and strikes a flat plane behind. A simple diagram of the pin-
hole camera model can be seen in Figure 2.4.

FIGURE 2.4: A sketch representing the pinhole camera model. Light from the
3D tree travels through the pinhole resulting in a 2D image.

As all light paths are straight, and all intercept at a single point, trigonometry can be used
to relate the location of the object with the location on the image plane. In other words,
the pinhole camera model allows conversion between object space coordinates (X, Y, Z)
and image space coordinates (x, y). It should be noted that lens or other distortions or
abberations are not included in the pinhole camera model, and as such must be taken into
account separately (Davies, 2012; Forsyth, 2012). Also consulted was the web resource by
Simek (2013) in which a clear tutorial for programmatically implementing a pinhole camera
model is given.

Intrinsic parameters, as per the previously cited resources, allow for 2D transformation of
object coordinates into pixel coordinates. World objects are assumed to exist on a single
plane, and are projected onto a smaller plane within the camera via the pinhole. Three
different transformations are needed. Note that these transformations relate to the position
of the film or sensor behind the pinhole. The location of the pinhole is fixed.

First, translation to correct for the location of the sensor. The principle point of the image
(the center) is needed for this and has coordinates (x0, y0), measured in pixels. Second,
the world coordinates need to be scaled. The focal length F which is the distance from the
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pinhole to the sensor, measured in world coordinates, is needed but must first be converted
into pixel coordinates using factors in the x and y directions: fx and fy, where fx = F · px

and fy = F · py with px and py being the dimensions of a pixel measured in world units. The
final transformation is shear correction. It is unlikely, but possible, that the pixel sensor array
within a camera may not be perpendicular in the x and y direction. Shear can be removed
with a skew factor s.

The intrinsic matrix is labelled K and is made up of the aforementioned translations. Mul-
tiplying them together as shown in Equation 2.26 allows for construction of the intrinsic
matrix, with the final formulation shown in Equation 2.27. Note that for ease of later use an
additional column of zeros can be added, transforming the K into a four by three matrix.

K =

1 0 x0

0 1 y0

0 0 1


Translation

·

 fx 0 0
0 fy 0
0 0 1


Scaling

·

1 s/ fx 0
0 1 0
0 0 1


Shear

(2.26)

K =

 fx s x0

0 fy y0

0 0 1

→
 fx s x0 0

0 fy y0 0
0 0 1 0

 (2.27)

The Intrinsic parameters, also called internal parameters, only control what is going on in-
side the camera. The location of the camera relative to the object being photographed is not
included. The location and positioning of the camera is instead determined by the Extrinsic,
or eternal parameters.

Extrinsic parameters have two components. A rotation matrix R and a translation vector
t. The rotation matrix contains nine terms relating to the alignment of the camera, each of
which is a trigonometric function of yaw θ, pitch φ, and tilt ψ. The translation vector contains
three values representing the spatial location of the camera in the X, Y, and Z directions. The
rotation matrix R is shown in Equation 2.28 with the expanded trigonometric terms shown
in Equation 2.29 and the translation vector is shown in Equation 2.30.

R =

 r1 r2 r3

r4 r5 r6

r7 r8 r9

 (2.28)

R =

 cosψcosθ sinψcosθ −sinθ

−sinψcosφ + cosψsinθcosφ cosψcosφ + sinψsinθsinφ cosθsinφ

sinψcosφ + cosψsinθcosφ −cosψcosφ + sinψsinθsinφ cosθsinφ

 (2.29)
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t =

 tx

ty

tz

 (2.30)

The rotation matrix and translation vector can then be assembled into the extrinsic matrix.
Equation 2.31 shows the assembled matrix. Adding additional rows to R and t also allows
for a formulation in which the two translations are multiplicative and can be done as sepa-
rate steps. This is shown in Equations 2.32 and 2.33, where I is the identity matrix. Simply
assembling the extrinsic matrix is equivalent to the multiplication formulation, however
there may be programmatic reasons to favor one over the other.

E =

[
R t
0 1

]
=


r1 r2 r3 tx

r4 r5 r6 ty

r7 r8 r9 tz

0 0 0 1

 (2.31)

E =

[
R t
0 1

]
=

[
I t
0 1

]
·
[

R 0
0 1

]
(2.32)

E =


1 0 0 tx

0 1 0 ty

0 0 1 tz

0 0 0 1

 ·


r1 r2 r3 0
r4 r5 r6 0
r7 r8 r9 0
0 0 0 1

 (2.33)

The intrinsic matrix K and the extrinsic matrix E can then be used together for the complete
pinhole camera model. Note that the four by three form of the intrinsic matrix must be
used to allow for matrix multiplication. Equation 2.34 shows the full model. A previously
undefined term has been introduced, w, which is a scale factor.

w

 x
y
1

 = K · E


X
Y
Z
1

 =

 fx s x0 0
0 fy y0 0
0 0 1 0

 ·


r1 r2 r3 tx

r4 r5 r6 ty

r7 r8 r9 tz

0 0 0 1

 ·


X
Y
Z
1

 (2.34)

Having assembled the pinhole camera equation, it is now possible to convert between ob-
ject space and image space coordinates. There are however many unknowns. How these
unknowns might be recovered will be discussed later. The next section however, will dis-
cuss the addition of lenses to the model.
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Lenses

Lenses cause light to bend due to having a different refractive index, however unlike win-
dows which are a uniform flat plane (the optics of which will be described in the following
section) lenses are curved. The thickness of glass light must travel through, and hence how
much it bends, will vary depending on which part of the lens is passed through. A more
complex model was required to represent this phenomena (Slama, 1980). A commonly used
lens distortion model is Brown (1966), in which lens distortion can be split into tangential
and radial.

Tangential distortion takes place when the lens is not parallel to the image sensor and radial
distortion is caused by the lens curvature. Radial distortion increases in severity the further
from the center of the image, and tangential distortion changes linearly from one edge of
the image to the other. Each effect is modelled with an infinite series. J. de Villiers et al.
(2008) provide equations based on this model formulated for the removal of such distortion.
Equations 2.35, 2.36, and 2.37 for the aforementioned removal technique are shown below.

xu = xd + (xd − x0)(K1r2 + K2r4 + . . .)+

(P1(r2 + 2(xd − x0)
2) + 2P2(xd − x0)(yd − y0))(1 + P3r2 + . . .)

(2.35)

yu = yd + (yd − y0)(K1r2 + K2r4 + . . .)

+(2P1(xd − x0)(yd − y0) + P2(r2 + 2(yd − y0)
2))(1 + P3r2 + . . .)

(2.36)

r =
√
(xd − x0)2 + (yd − y0)2 (2.37)

Definitions for terms are as follows: (xd, yd) represents a pixel location in a distorted image,
(x0, y0) are the coordinates for the optical center in pixels, (xu, yu) represent a pixel location
in an undistorted image, as if it were taken using a perfect pinhole camera, Kn is the nth

tangential distortion coefficient, Pn is the nth radial distortion coefficient, and r is the distance
from a distorted location to the centre of the image.

The two most commonly occurring types of radial distortion are barrel and pin-cushion.
Barrel distortion, in which the centre of the image appears magnified, and pin-cushion dis-
tortion, in which the edges appear magnified, are inverses of each other. This property, along
with the Brown models ability to model both types of radial distortion, is the justification J.
de Villiers et al. (2008) provide for their adaption allowing removal of distortion.



28 Chapter 2. Literature Review

Recovery of Camera Parameters

Having demonstrated the models necessary to model both a pinhole camera and lens dis-
tortion, it is now possible to convert between image space coordinates and object space co-
ordinates for a real camera provided the relevant parameters are known. These parameters
can be found through a process called camera calibration.

The intrinsic parameters and lens parameters should remain constant for a camera provided
settings are not adjusted between images and and such need only be found once. Some of
these parameters may be provided by the manufacturer of the camera of lens. The extrinsic
parameters, based on camera location and orientation, will by definition be different for
every image taken.

Efficient and accurate means by which these parameters can be recovered is an area of active
research that is beyond the scope of this project. As such, a summary of the key concepts will
be presented, along with an illustrative selection of some of the more noteworthy methods.
The methods themselves are not of particular importance to this project as preexisting tools
(discusses in a following section) exist to solve the calibration parameters.

The kernel of all calibration processes is having a set of points in which both image space
and object space coordinates are known. This allows the suitability of a set of parameters to
be assessed. A good set of camera parameters will allow the image space coordinates to be
converted to object space coordinates that closely match the known values, whereas a poor
set of parameters may produce large errors.

Heikkila and Silven (1997) discusses how traditionally the intrinsic and extrinsic parameters
were estimated linearly through the process of direct linear transformation. The paper ex-
plains that this linear approach ignores nonlinear lens distortion and is susceptible to noisy
data, but can still be used as an initial estimate to seed more robust methods.

Further work by Heikkilä (2000) demonstrates a practical methodology in which a 3D ar-
ray of circular control points are processed. An iterative algorithm is used to obtain the
nonlinear parameters, presenting an evolution over earlier least-squares based approached.
Additionally, the parameters for the reverse camera model are found, allowing coordinate
conversion in both direction.

Zhengyou (2000) splits prior methods into "Three-dimensional reference object-based cali-
bration" such as the method described by Heikkilä (2000), and "Self-calibration" in which a
moving camera can observe an arbitrary rigid scene. Zhengyou presents an alternative in
which a 2D array or points can be photographed from multiple (a minimum of two) angles
in order to have enough constraints to recover the parameters.



2.3. Particle Imaging Velocimetry 29

Camera calibration is a field with extensive ongoing research, however this review will limit
the papers discussed to these few foundational papers describing the key points. The cut-
ting edge is far beyond what is necessary for this project but these papers, with over ten
thousand citations between them, should provide the reader with sufficient understanding
of the calibration procedure.

Refraction

In PIV testing, the soil will typically be behind at least one layer of glass or perspex relative
to the camera. Control points for photogrammetry likewise could be behind one or more
layers (or potentially zero if they are on the front of the window). One possible arrangement
would be two windows with the control points sandwiched in between.

Refraction is the bending of light due to entering a medium with a differing refractive index,
for instance light that was travelling through air, now travelling through perspex. This
bending will result in distortion changing the apparent location of objects photographed
through a refractive medium. For laboratory testing using PIV, this could be the location of
soil patches, the location of control points, or both, potentially to differing degrees.

Refraction is modelled with Snell’s Law and the degree of refraction will increase with dis-
tance from the principal point (assuming the camera is perpendicular to the glass). Snell’s
law is shown in Equation 2.38 in which α is the angle of incidence, β is the angle of refraction,
and n is the refractive index of the medium.

sin α = n · sin β (2.38)

Other researchers (Effendi, 2007; Stanier, 2011) carrying out PIV testing have used and val-
idated a set of equations derived by White (2002). The equations presented by White are as
follows, with Equation 2.39 providing the correction mechanism, Equation 2.40 providing
the refraction factor for a single layer of material, and Equations 2.41 and 2.42 define the
refraction factor for cases with two layers of material.

For the following equations ~Ractual , ~Rapparent, and ~R0 are position vectors representing the
actual and apparent position of a point, allowing with the position of the principle point.
Each vector contains the corresponding x and y coordinates. λ is the refraction correction
factor, H is the distance from the camera to the back of the window/s, t and n represent the
thickness and refractive index for a single window, whereas t1,t2,n1, and n2 are the equiv-
alent values for a pair of windows. The final term β1 is the angle of refraction for the first
window.
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FIGURE 2.5: The geometry of a single window refraction case.
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The meaning behind the above equations and terms are best shown in a diagram. Figures 2.5
and 2.6, reproduced based on the equivalent diagrams in White (2002), shows the geometry
for one and two window refraction problems respectively. Note the new term δ~R which
represents the total difference, i.e. δ~R = λ(~Rapparent − ~R0).
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FIGURE 2.6: The geometry of a two window refraction case.

Validation

After obtaining the camera, lens, and refraction parameters, a validation step should be
carried out. This consists of calibrating an image containing a known object, such as a dis-
tortion target, example manufactured by AppliedImage (2017) shown in Figure 2.7, and
measuring the known distances within. The distortion target contains an array of very ac-
curately drawn dots. By measuring the distances between them in a calibrated image, the
validity of data may be ensured.

Available Tools

Several tools exist which could be of use for photogrammetry. This section will discuss the
pros and cons of each.

Perhaps the simplest is the built in GeoPIV-RG calibration function. This uses a pinhole
camera model and lens model to calculate object space coordinates of locations within an
image (Stanier et al., 2015). There are a number of drawbacks. The assumption that the
control points are in the same plane as the soil is not necessarily true depending on how
laboratory equipment is set up. Having control points, e.g. in front of a window for instance
would invalidate the pinhole camera model. The assumption of coplanarity also allows for
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FIGURE 2.7: An example of a distortion target.

refraction to be ignored, an such the function will not be able to deal with laboratory models
where this is not the case. It is also unclear how the lens model has been implemented. As
stated in previous sections, solving lens parameters requires either control points in a 3D
array for a single image, or coplanar control points in multiple images from multiple angles.
The GeoPIV-RG calibration function has no capability for a 3D control point array and as
the camera is stationary during a PIV there will be negligible difference in camera location
between images. As the software is closed source, it is not possible to verify how GeoPIV-
RG is able to solve the lens model. It is possible that small camera movement is enough, or
assumptions have been made to allow a solution, but there is no documentation explaining
this.

Heikkilä, as referenced several times in the theory sections of this literature review, has pub-
lished a Matlab toolbox capable of recovering camera parameters (Heikkilä, 2000). This tool-
box features the capability to solve the pinhole and lens models with either one 3D control
point array or several coplanar array images. Additional functions are provided, including
the ability to remove distortion from image coordinates, find the camera location (extrinsic
parameters) for a single calibrated image, and is additionally able to solve the inverse model
(i.e. going from world coordinates to image coordinates). The code is also able to be exam-
ined freely to ensure it is functioning as expected and has ample documentation and papers
describing it. This is a general purpose tool that is not specific to PIV, as such it should
be seen as building blocks that must be assembled to provide PIV calibration capabilities.
Again, there is no refraction functionality, so this would have to be added as an additional
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step.

The final tool of potential use is the Matlab Computer Vision toolbox (MathWorks, 2017).
This is a very extensive toolbox with many features beyond the scope of this project. It also
has a license fee to use, which may make it unsuitable for implementation in any software
that isn’t intended as a research tool. Of particular note is the camera calibration app. This
app provides a graphical interface to allow for the selection of images with coplanar arrays
and then solves both the pinhole and lens models, with many settings to allow the user to
select assumptions etc. A graphical output showing the extrinsic locations of each image is
also provided. The camera calibration app is very user friendly and is able to automatically
detect control points (in the form of a chessboard pattern). After obtaining the camera and
lens parameters, a number of functions are provided for processing PIV data. Lens distor-
tion can be removed with the "undistortPoints" function. Extrinsic parameters for a single
image can be found with the "extrinsics" function, and the "pointsToWorld" function is able
to find the world coordinates for a set of given image coordinates for a set camera location.
Many easy to use functions are provided that could be assembled into a PIV calibration
script.

It seems likely that the Matlab computer vision toolbox is the best solution due to it’s exten-
sive capabilities and ease of use. None of the examined software packages have capability
for dealing with refraction, so bespoke scripts will have to be written. It is not anticipated
that this will be particularly difficult.

2.4 Traditional Laboratory and Field Methodologies

As obtaining soil properties has been necessary for engineering design for many years,
multiple methods exist to categorise and quantify soil as an engineering material. These
methodologies are commonly used either in the lab or in the field.

This section will list some of the available methods that have overlap with the properties
and parameters obtainable via an Identification Method, along with several others that are
useful for understanding broader soil behaviour. The intention of this section is to identify
tests that can be used to validate a geotechnical Identification Method during future labora-
tory testing. It is unlikely that these methods would be replaced by an identification based
approach, but that they could potentially coexist alongside one.
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2.4.1 Triaxial shear test

A triaxial test allows for a soil specimen to be loaded differently in 3 axes. A true triaxial test
allows this loading to be mechanically controlled in each direction whereas more standard
test apparatus allow only mechanically controlled loading in one (typically the vertical) di-
rection with the two other axis being loaded uniformly by water pressure. As the specimen
is loaded the normal stress applied and displacement can be recorded Head (1986).

There are several variations including Consolidated Drained (CD), and Consolidated Undrained
(CU), however the most applicable to this project is the Unconsolidated Undrained (UU) test
in which a specimen is loaded under a strain controlled regimen at a rate fast enough to dis-
allow consolidation. In a UU test, the specimen will be loaded until it fails by either a shear
band forming or by barrelling.

The output of a UU triaxial test will be a plot of axial strain against axial stress. This is
not equivalent to shear strain vs shear stress but a comparison is possible through empiric
factoring.

Detailed guidance on how UU triaxial tests (or indeed other variants) can be read in British
standards 1377-8:1990 (British Standards Institution, 1990d). Exact details for factors such
as sample preparation and size, confining pressure, loading rate, etc. will not be discussed
in the literature review but instead in the later physical modelling chapter (Chapter 6).

Although a commonly carried out test, samples must be extracted causing a potential for
disturbance. Even perfectly following the process specified in the standards specify, there is
no guarantee that the results will be truly representative.

2.4.2 Direct shear test

Volume seven of the BSI standard for soil testing described the process by which direct shear
testing is to be carried out British Standards Institution (1990c). The test involves placing
soils or rocks in a split shear box in which both parts can be slid past each other. The test can
be carried out for both frictional soils (i.e. sands) and cohesive soils (i.e. clays). Testing on
rocks is limited to weak rocks unless there are suitable discontinuities. Additional guidance
on carrying out a direct shear test is given by Head (1994)

Multiple confining pressures are used to record peak shear stresses. These values are then
plotted and a line of best fit is found. The y intercept is cohesion c and the slope is the angle
of friction θ. For cohesive soils, this line should be horizontal.
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These found values can be compared directly to a stress-strain curve found by other means.
For cohesive undrained soil, cohesion will be equal to the peak shear stress at the plateau of
the stress-strain curve.

2.4.3 Shear vane test

The procedure to carry out shear vane testing is described in BS 1377-9:1990 (British Stan-
dards Institution, 1990d). This is a field test that is carried out in situ. The method is carried
out by inserting a vane into the ground and rotating it until the soil immediately surround-
ing the vane shears in a circular pattern. The handle of the vane will have a spring mecha-
nism by which the required torque is measured and recorded.

The test can be used only for cohesive soils and recovers the peak shear stress. When com-
paring to stress-strain curve data, this would be the value of the horizontal plateau. The
standards describe the specification of the vane and the correct procedure which is relatively
simple.

It should be noted that this test is designed to be carried out in the field. Using it to test
a sample in a laboratory would not be compliant with BS 1377-9:1990, but may be able to
provide useful comparison data provided any considerations e.g. boundary conditions, are
taken into account.

2.4.4 Cone penetrometer test

A cone penetrometer test (CPT) is a test in which a rod with an angled tip is driven into the
ground. The force on the angled tip is recorded, along with the force on a sleeve around
the tip. The piezocone penetration test (CPTU) additionally records pore water pressure
from integral sensors around the cone. BS EN ISO 22476-1:2012 describes the apparatus and
procedure for carrying out a CPT (British Standards Institution, 2012).

The raw outputs for a CPT or CPTU provide insight into changes in soil behaviour with
depth. Several authors describe the ability to use CPT data to empirically obtain bearing
capacity (Meyerhof, 1956) and undrained shear strength (Rémai, 2013). Undrained shear
strength can be compared directly to the plateau of the stress-strain curve or peak shear
values from other tests, and bearing capacity can be used to estimate cohesion via Terzaghi’s
equation. CPT tests are traditionally carried out in situ, however smaller models may be
suitable for laboratory use.
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2.4.5 Oedometer test

Oedemeter tests are used to determine how a soil will behave during consolidation. BS
1377-5: 1990 which details compressibility, permeability and durability tests explains how
to prepare for and carry out one dimensional consolidation tests British Standards Institu-
tion (1990b). The oedemeter is apparatus in which a circular disc of soil is placed within a
consolidation cell and sandwiched between two porus plates. Vertical loading can be ap-
plied with displacement recorded. Loading is incrementally increased, either by manually
adding weights to a lever arm, or pneumatically.

After completing the test, a number of parameters relating to the consolidation of the soil
will be found. Although none of these are useful for direct comparison with the output
of an Identification Method, they may provide useful clues for cases where soil behaves
differently at different depths for example. These parameters can also be used to aid in the
consolidation of a specimen from slurry, or for determining whether a loading test will be
drained or undrained.

2.4.6 Water content test

Measurement of soil water content is useful for understanding behaviour, and a quick and
easy method for identifying differential soil properties thoughout a sample or accross a site.

Guidance on several possible procedures can be found in Head (1984). One particular test,
in which samples are weighed before and after oven drying is detailed by British Standards
Institution (1990a). Exceptable sample sizes and oven temperatures are given allong with a
step by step process.

The moisture content can be found with Equation 2.43, in which w is the moisture content,
m1 is the mass of the container, m2 is the mass of the container containing wet soil, and m3

is the mass of the container containing dry soil.

w =
m2 −m3

m3 −m1
· 100 (2.43)

2.4.7 Soil classification

Although not a way of directly obtaining properties, classifying the soil can allow for a
range of values to be taken from literature, either directly (perhaps not suitable for detailed
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design), or as a sanity check on values obtained by other means. Knowing the broad be-
havioural properties based on classification will also allow for better selection of more de-
tailed tests.

Head (1984) provides guidance on soil classification through the use of identification charts.
Visual descriptions are provided for broad classification (e.g. gravels, sands, peats) with
simple field tests for estimating compactness, strength, and structure. For example, a soft or
loose silt is "Easily moulded or crushed in the fingers" whereas a firm or dense silt "Can be
moulded or crushed by strong pressure in the fingers".

The cited manual provides numerous other tests including chemical analysis, particle size
distribution and specific gravity.

2.4.8 A note on "true" soil response

Despite there being numerous different means by which soil properties can be recovered, it
is worth considering whether any one model can be said to obtain the "true" soil response.
Every test mentioned above measures the soil in a slightly different manner with different
drawbacks. Most of the presented methodologies involve some form of disturbance that
bring into question the representativeness of the test.

It is likely that, for instance, a direct shear test would recover a different undrained strength
than a triaxial test. Several triaxial cores from the same body of soil are also likely to produce
different stress-strain responses. After performing a range of tests it is likely that some
could be discounted as anomalous, with many of the remaining tests being roughly, but not
exactly, similar in terms of the indicative soil response. There is ultimately no way of telling
which result would be truly representative of the soils behaviour. Instead, there would
be a range of possibilities, with the confidence in this range increasing as more tests are
performed.

An Identification Method would be an additional means by which a soil response can be
recovered. As with any method it is unlikely that the recovered response is exactly repre-
sentative of the soils behaviour. As with the other methods, this does not imply that an
Identification Method would be without use. Having an additional data point that is gener-
ated in a completely separate way has potential to increase confidence that the range of soil
responses recovered through various testing methodologies are approximately representa-
tive of the "true" response.
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2.5 Identified Gaps in Literature

There are a number of gaps in existing literature that can be filled during this project. The
most significant of which is the lack of Identification Methods that have been applied to
geotechnical problems.

Of the Identification Methods used in materials science, the majority of work has been car-
ried out on simple linear elastic constitutive models. Geotechnical problems are typically
highly nonlinear and as such methods focused on elastic behaviour will either be unsuitable
or require modification. Frictional soil in particular is in no way analogous to the work done
using metals.

2.6 Conclusion

This chapter has described a number of commonly used Identification Methods and as-
sessed their suitability for use with geotechnical problems. PIV and photogrammetry have
been discussed with practical considerations and relevent equations shown, and finally a
brief summary of commonly used laboratory and field tests used to recover soil properties
has been given.

All relevent information to understand, develop, and validate a geotechnical Identification
Method has been presented, along with a summary of the main challenges that are not
covered by existing literature.



39

Chapter 3

Derivation and Calculation of the
Energy Equilibrium Equation

3.1 Introduction

As stated in the Literature Review, the principle behind Identification Methods is typically
that of energy equilibrium. Although there are wide ranges of implementations, work acting
upon a specimen is assumed to be equal to work dissipated via deformation.

This chapter will therefore provide the derivation from first principles for the energy equi-
librium equation to be used with the methods presented in this thesis. Of particular note
is the formulation of the equilibrium equation in terms of common geotechnical parame-
ters: mean stress s, maximum shear stress t, volumetric strain εv, and shear strain εs. Using
such parameters allows for uniformity with common geotechnical constitutive models and
sample testing methodologies.

The chapter will contain several sections to achieve this aim. First, a derivation of work done
in terms of stress and strain will be presented. This will be followed by the definitions of
the stress and strain parameters listed in the previous paragraph, along with their graphical
representations in the form of Mohr’s circles. Finally, the derivation and proof for the energy
equilibrium will make up the remainder of the chapter.

At first glance, some of the content covered in this chapter may seem trivial, after all, most
readers could quote the definition of work if asked. However, in the course of writing this
thesis, it was found that there is a great deal of nuance involved, particularly when gener-
alising otherwise trivial cases. This chapter serves to show the foundations on which the
methodology presented in this thesis is built, along with what simplifications and assump-
tions can be made. The following sections will err on the side of completeness, with detail
given in places most relevant to this thesis. The intention of this chapter is that interested
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reader will be able to follow the presented derivations and proofs and have confidence in
the later methodology, without needing to piece together sections from multiple textbooks.

It should be noted that this derivation, and thesis, assumes a purely mechanical case in
which heat or sound production or other effects are assumed to be negligible and as such
are not included in energy equilibrium. Although such terms may be present in general and
rigorous continuum mechanics textbooks, these terms are almost universally discounted in
geotechnical engineering. An additional and important assumption is the use of infinites-
imal strain theory as opposed to finite strain theory. This is valid on the assumption that
deformations dealt with are small compared to the size of the material in question.

Additionally, it should be noted that this project is only concerned with plane strain cases,
and as such, unless otherwise stated, it should be assumed that the derivations, assump-
tions, and other presented work is valid only in plane strain. There is no reason that the
methodologies presented couldn’t be adapted to 3D problems, but doing so is beyond the
scope of this thesis.

3.2 Work

3.2.1 Work due to Forces

Mechanical work is commonly known to be calculated by multiplying a force P by a cor-
responding displacement u, i.e. W f orce = P · u. Although this is true, it is a simplification
based on the assumptions of a constant load applied to a single point. A more generalised
form, again for a point load, is as follows:

W f orce =
∫

P du (3.1)

Equation 3.1 describes work due to a force as the integral of force with respect to displace-
ment, or the area under the force-displacement curve. This is sufficient to describe move-
ment of a rigid object, for example a footing foundation, in which a solid block of concrete
moves by a measurable amount under the influence of a measurable force. In 2D (or in-
deed 3D) cases, it will likely be necessary to split both force and displacement into x and y
components, as the angles of the magnitudes will not necessarily be equal.

There are several cases worth mentioning. The first is work done due to gravity. This would
be non negligible and worth considering in any models with net vertical movement. In this
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case, the applied loading is the product of the mass of an object and gravitational accelera-
tion (9.81 m · s−1), resulting in a total work as shown in Equation 3.2, were M is mass and g
is gravitational acceleration and uy is vertical distance moved.

Wgravity =
∫

M · g duy (3.2)

In some situations, work done by gravity may in fact be negative, i.e. adding energy to
the system. Scenarios such as a failing embankment or retaining wall are good examples,
whereas other systems such as an anchor pullout may involve gravity removing energy
from the system. Horizontal movement has no effect on work done due to gravity.

Work done against friction is also of note. In this case, a resisting force F can be taken as
the coefficient of friction multiplied by a normal force N, which is then multiplied by the
distance moved against this friction. This case is worth mentioning as a geotchnical plane
strain tests are often carried out in glass or perspex fronted boxes and energy is expended
moving the soil against the glass. This will indeed be the case for the laboratory work that
will be presented in later chapters. Equation 3.3 shows work expended due to friction, in
which µ is the coefficient of friction and u is the distance moved against friction. It should be
noted that in some scenarios this concept would better be represented with adhesion rather
than friction. Although friction will be present in nearly all laboratory tests it will in many
cases be negligible. For the experimentation carried out as part of this project (described in
Chapter 5) it was found to be of little importance but is nonetheless included in this section
for completeness. Appendix B contains supplementary laboratory data demonstrating the
relatively minor influence of friction.

W f riction =
∫

N · µ du (3.3)

It is possible that gravity could add work to the system such as in cases where material is
moving downwards. In such a case the work done due to gravity would be negative. Work
due to friction will instead always be positive regardless of movement direction.

Figure 3.1 provides an example of the concepts discussed in this section. Note that in this
example, force P is now acting along the angle of the resulting movement due to the effects
of gravity, and would need to be split into x and y components. Friction however, always
acts opposite to the resultant movement angle.

The units for work are Joules J, or alternatively kg · m2 · s−2. This term derives from the
multiplication of force measured in newtons N (which in SI units is kg ·m · s−2) with distance
measured in metres m.
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FIGURE 3.1: An Infinitesimal particle moving ux and uy distance due to force
P, gravity, and friction

3.2.2 Work due to Stress and Strain

Simply considering work in terms of force and displacement cannot describe the work tak-
ing place in the soil beneath the footing. Even discretizing the soil doesn’t solve the issue,
as the soil isn’t simply moving, but instead is deforming. Work must therefore be described
in terms of stress and strain.

FIGURE 3.2: A block of sides X and Y undergoing a strain of ε due to a stress
of σ.

Figure 3.2 shows a simple 2D example of a block of material undergoing extension due to a
uniform distributed load. The dimensions are Xm by Ym with a depth of 1m into the page,
and a 2D area of Am 2 , where A = X ·Y. A constant stress of σ (measured in kg ·m−1 · s−2)
causes a strain of ε (measured in m ·m−1). Dimensional analysis of these terms shows that
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multiplication of stress and strain does not result in work, but instead energy density Wd i.e.
work per unit volume. Equation 3.4 shows this multiplication, along with the associated SI
units.

Wd = σ · ε J ·m−3 = kg ·m−1 · s−2 ·m ·m−1 (3.4)

It is clear that simply multiplying this value by the corresponding volume will provide
the work done. Examining the meanings behind stress and strain also intuitively shows
this. Stress is a force divided by an area, and strain is an extension over the original length.
Volume is a product of both the aforementioned area and depth. As such, the final equation
for work is as follows, where V is volume:

W = σ · ε ·V (3.5)

Again, it should be noted that Equations 3.4 and 3.5 are valid in trivial cases with constant
stress, or where constant stress is a reasonable assumption. The more generalised form
involves the integral of the stress-strain curve. It is typically assumed that stress is a function
of strain and as such, the previous equations can be rewritten as shown in Equations 3.6 and
3.7:

Wd =
∫

σ dε (3.6)

W =
∫

σ dε ·V (3.7)

Similarly, the above process can be repeated for shear strain γ and shear stress τ. Figure 3.3
shows a block of material of dimensions Xm by Ym with a depth of 1m into the page, and
again a 2D area of Am 2 undergoing deformation due to shear force. Note that the same
shear strain can be presented in two equivalent ways, as shown in Figure 3.3, in which γ is
equal to α + β.

It should be noted that shear strain is not a distance over original length as normal strain
is, but instead is an angle. However for small shear strains (less than 0.2 radians), the small
angle approximation accurate to an acceptable tolerance, allowing for tan(α) ≈ α. As such,
α = ∆X

Y and β = ∆Y
X with the sum of these equalling total shear strain γ = ∆X

Y + ∆Y
X .

It should be noted that the shear strain γ is twice the tensor notation shear strain εxy. As
before, multiplying shear stress by shear strain gives energy density, and multiplying energy
density by volume provides work done. The following equations demonstrate:
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FIGURE 3.3: A block of sides X and Y undergoing a shear strain of γ due to a
shear stress of τ.

Wd = τ · γ (3.8)

W = τ · γ ·V (3.9)

Or in the more generalised case allowing for changes in τ:

Wd =
∫

τ dγ (3.10)

W =
∫

τ dγ ·V (3.11)

The final factor to consider with regards to work due to stress and strain, is that objects
could undergo multiple stresses and strains simultaneously. Normal stresses and strains at
90 degrees to each other , as well as shear stress and strain. Fortunately, these different stress
and strain energy calculations do not interact with each other, and as such, the terms for
work and energy density discussed above can simply be added and are shown in Equations
3.12 and 3.13.

Wd =
∫

σx dεx +
∫

σy dεy +
∫

τxy dγxy (3.12)

W =

(∫
σx dεx +

∫
σy dεy +

∫
τxy dγxy

)
·V (3.13)

Or simplified based on the assumption of constant stress:
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Wd = σx · εx + σy · εy + τxy · γxy (3.14)

W =
(
σx · εx + σy · εy + τxy · γxy

)
·V (3.15)

In tensor notation, this can be expressed as the double dot product of the stress tensor and
the strain tensor, multiplied by volume:

W = [σ .. ε] ·V =

(
σx τxy

τxy σy

)
..

(
εx

γxy
2

γxy
2 εy

)
·V =

(
σx τxy

τxy σy

)
..

(
εx εxy

εxy εy

)
·V (3.16)

3.3 Stress and Strain

This section will show definitions of various stress-strain terms with reference to Mohr’s
circles.

FIGURE 3.4: A block of material subject to normal stresses σx and σy and shear
stress τxy. θpσ represents the principal angle for stress, and θσ represents an

arbitrary rotation of the frame of reference

Figure 3.4 shows a diagram of an infinitesimal block of soil subject to various stresses. Nor-
mal stresses σx and σy are at right angles to each other and as such change in one has no
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effect on the change in the other. Shear stress τxy likewise is independent. The plane of ref-
erence by which these stresses is measured is arbitrary. Rotating the plane of reference by θσ

will change the stresses, but is equally valid. Should the plane of reference be rotated by the
principal angle θpσ, no shear stress will be recorded, and the stresses the block is subjected
to can be described purely with normal stresses, in this case referred to by principal stresses
σ1 and σ3. It should be noted that there are two principal angles, 90◦ apart, that will achieve
this effect. This is because the plane of reference can be rotated in either direction. Either
of these angles can be used but for simplicity the smaller angle will be assumed for the di-
agrams given in this section. Figure 3.5 shows a Mohr’s circle, a visual representation of
this changing plane of reference. The circle allows for identification of the aforementioned
principal stresses geometrically, or through the following equations:

σ1 =
σx + σy

2
+

√(
σx − σy

2

)2

+ τ2
xy (3.17)

σ3 =
σx + σy

2
−

√(
σx − σy

2

)2

+ τ2
xy (3.18)

FIGURE 3.5: A stress Mohr’s circle presenting the forces shown in Figure 3.4.

The Mohr’s circle allows the definition of several additional terms, described in the follow-
ing equations:

s =
σ1 + σ3

2
=

σx + σy

2
(3.19)

t = Rσ =
σ1 − σ3

2
=

√(
σx − σy

2

)2

+ τ2
xy (3.20)
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Equation 3.19 shows mean stress. This is the hydrostatic component of stress, i.e. a uniform
component that is applied equally in all directions. Geometrically, the value can be found at
the centre of the circle, at point Cσ. The value can be found by averaging the normal stresses
regardless of the plane of reference used.

Equation 3.20 shows maximum shear stress. This is the non hydrostatic component of stress,
i.e. it is applied differently in different directions. Geometrically, maximum shear stress is
equivalent in magnitude to the radius, and the max shear stress (which is the point at the
very top of the circle). As the value is equivalent to the radius, it can be found trivialy in
cases of principal stresses, or using the Pythagorean theorem for any other reference plane.
Maximum shear stress is half of deviatoric stress.

The following set of equations relate to rotating the plane of reference by θσ. Stress terms
such as σx will be converted to σ′x as shown geometrically in the Mohr’s circle.

τ′xy = (σy − σx) · cos(θσ) · sin(θσ) + τxy · (cos2(θσ)− sin2(θσ)) (3.21)

σ′x = σx · cos2(θσ) + σy · sin2(θσ) + τxy · cos(θσ) · sin(θσ) (3.22)

σ′y = σx · sin2(θσ) + σy · cos2(θσ)− τxy · cos(θσ) · sin(θσ) (3.23)

The above equations can be combined as the rotation matrix Rσ, resulting in Equation 3.24,
which can be more concisely expressed as Equation 3.25. Note that in cases were θσ is equal
to the principal angle θpσ the τ′xy terms should work out to zero.

(
σ′x τ′xy

τ′xy σ′y

)
=

(
cos θσ sin θσ

− sin θσ cos θσ

)(
σx τxy

τxy σy

)(
cos θσ − sin θσ

sin θσ cos θσ

)
(3.24)

σ′ = Rσ · σ · RT
σ (3.25)

Equivalent diagrams and equations exist for strain.

Similarly to the stress diagram shown in Figure 3.4, Figure 3.6 shows an infinitesimal block
of material undergoing strains εx and εy at right angles to each other with shear strain εxy

applied along the edges. The plane of reference can be rotated by θε with a rotation of the
principal angle θpε resulting in a plane of reference with no shear strain. Figure 3.7 shows
the corresponding Mohr’s circle representing this plane of reference rotation. The following
equations define the principal strains:
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FIGURE 3.6: A block of material undergoing normal strains εx and εy and
shear strain εxy. θpε represents the principal angle for strain, and θε represents

an arbitrary rotation of the frame of reference

ε1 =
εx + εy

2
+

√(
εx − εy

2

)2

+ ε2
xy (3.26)

ε3 =
εx + εy

2
−

√(
εx − εy

2

)2

+ ε2
xy (3.27)

Several additional terms can be described based on the Mohr’s circle shown in Figure 3.7:

εv = ε1 + ε3 = εx + εy (3.28)

εs = Rε =
ε1 − ε3

2
=

√(
εx − εy

2

)2

+ ε2
xy (3.29)

Equation 3.28 shows volumetric strain. This represents the change in volume for an object
undergoing deformation. In cases where this is zero, ε1 will equal −ε3, i.e. any length
extension is equal and opposite to a width reduction, with no overall volume change. Any
pair of perpendicular normal strains can be used to calculate this value.

Equation 3.29 shows maximum shear strain, εs. The magnitude of εs is equivalent to the
radius of the circle, and geometrically is represented by the point at the very top. Maximum
shear strain represents deformation that doesn’t cause a volume change. As this value is
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FIGURE 3.7: A strain Mohr’s circle presenting the strains shown in Figure 3.6.

the radius, it is trivial to find using the principal strains, or slightly more complicated when
calculating it from arbitrary strains via the Pythagorean theorem. Maximum shear strain is
half of deviatoric strain.

Similar to those presented for strains, the following set of equations relate to rotating the
plane of reference by θε. Stress terms such as εx will be converted to ε′x as shown geometri-
cally in the Mohr’s circle.

ε′xy = (εy − εx) · cos(θε) · sin(θε) + εxy · (cos2(θε)− sin2(θε)) (3.30)

ε′x = εx · cos2(θε) + εy · sin2(θε) + εxy · cos(θε) · sin(θε) (3.31)

ε′y = εx · sin2(θε) + εy · cos2(θε)− εxy · cos(θε) · sin(θε) (3.32)

The above equations can be combined as the rotation matrix Rε, resulting in Equation 3.33,
which can be more concisely expressed as Equation 3.34. Note that in cases were θε is equal
to the principal angle θpε the ε′xy terms should work out to zero.

(
ε′x ε′xy

ε′xy ε′y

)
=

(
cos θε sin θε

− sin θε cos θε

)(
εx εxy

εxy εy

)(
cos θε − sin θε

sin θε cos θε

)
(3.33)



50 Chapter 3. Derivation and Calculation of the Energy Equilibrium Equation

ε′ = Rε · ε · RT
ε (3.34)

3.4 Discretisation and Equilibrium

The previous sections in this chapter have demonstrated how stress and strain can be used
to calculate work due to deformation along with how an externally applied load with a
corresponding displacement also represents work. Equation 3.16 provided an internal work
equation in terms of the stress componants σx, σy, τxy, and the strain componants εx, εy, γxy.
It is however much more useful to express internal work due to deformation with terms such
as maximum shear stress and maximum shear strain, as these are more commonly used in
constitutive models and found as the result of laboratory testing. Appendix A provides the
full derivation for this conversion. The final formulation for internal work can be examined
in Equation 3.35, which for simplicity is written assuming constant stress.

Wint =

[
sεv + 2tεs(1− 2 sin2(θσ − θε))

]
·V (3.35)

This section will discuss discretisations, in terms of both space and time, to allow the work
equations to be applied to real data, rather than an idealised infinitesimal block. The full
equilibrium equation will be presented, and finally, simplifications and assumptions that
can be made will be listed, along with justifications and situations for use.

As stated previously, external work must equal internal work. As constant stress is currently
being assumed, it shall first be assumed that the equivalent terms for external work are con-
stant (i.e. no integrals), however the more general form will shortly be provided. As such,
equilibrium can be expressed as follows for cases where forces and stresses are constant:

Wext = Wint + Wgravity + W f riction (3.36)

F · u =

[
sεv + 2tεs(1− 2 sin2(θσ − θε))

]
·V + M · g · uy + N · µ · u (3.37)

Equation 3.37 contains external work in the form of a load multiplied by a corresponding
displacement which is equal to internal work in terms of the "geotechnical" stress and strain
parameters, allowing for varying principle angles, a term for work expended by movement
against gravity and a term for work expended by movement against friction.
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Discretisation in time is relatively straight forward and will most likely be determined based
on available data. Force, displacement, and strain data will not be a continuum but a list of
values associated with a timestep. Previous sections have shown integrals for cases where
stress or force is not assumed to be uniform. These equations will be summated below. In
practical applications, simple methods such as the trapezium rule will be able to be used for
integration. Equation 3.38 shows the equilibrium equation for timestep j.

∫ uj

uj−1
P du =

[ ∫ ε
j
v

ε
j−1
v

s dεv + 2(1− 2 sin2(θσ − θε)) ·
∫ ε

j
s

ε
j−1
s

t dεs

]
·V

+
∫ uj

y

uj−1
y

M · g duy +
∫ uj

uj−1
N · µ du

(3.38)

Dicretisation in the spatial dimension essentially consists of splitting a continuous domain
into a series of elements. Overall applied force will be unchanged, but each element will
have its own distortion, and displacement (and hence gravity and friction) data. Simply
summing the work expended in each element will give the overall work, and be equal to
work done by the applied loading. Equation 3.39 shows this, for a case with E elements, in
which e is the element reference and Ve refers to the volume of element e.

∫ uj

uj−1
P du =

E

∑
e=1

([ ∫ ε
j,e
v

ε
j−1,e
v

s dεv + 2(1− 2 sin2(θσ − θε)) ·
∫ ε

j,e
s

ε
j−1,e
s

t dεs

]
·Ve

+
∫ uj,e

y

uj−1,e
y

M · g duy +
∫ uj,e

uj−1,e
N · µ du

) (3.39)

For cases with large datasets that are flawed through noise or other phenomena, there
is likely no possible soil behaviour that will achieve balance between internal and exter-
nal work. Many terms contained in Equation 3.39 will be different for each element and
timestep. Maximum shear stress, for example, will vary depending on shear strain, so the
unknown is the relation between the two values. This could be rephrased as saying that
stress is some function of strain, where this function is currently unknown. Depending on
how the soil is assumed to behave, the unknown relationships may be highly nonlinear and
require solving via an optimiser. Even optimal parameters will likely have a gap between
internal and external work, as such, the best answer is the one in which this energy gap is
minimised. Equation 4.3 shows how the relationship between internal and external work
for timestep j can be formulated with the addition of an energy gap term.

W j
ext = W j

int + W j
gravity + W j

f riction + localgapj (3.40)
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Depending on the exact soil used, or the constitutive equations assumed to model its be-
haviour, a number of assumptions can be made to simplify Equation 3.39. For ease of read-
ing, each simplification will be applied in turn, however in reality any number of combina-
tion of these assumptions could be made. Firstly, the assumption of associative flow, that
is the principal stress and principal strain angles being equal, allows for the sin2 term to be
cancelled. The resulting equation is as follows:

∫ uj

uj−1
P du =

E

∑
e=1

([ ∫ ε
j,e
v

ε
j−1,e
v

s dεv + 2 ·
∫ ε

j,e
s

ε
j−1,e
s

t dεs

]
·Ve +

∫ uj,e
y

uj−1,e
y

M · g duy +
∫ uj,e

uj−1,e
N · µ du

)
(3.41)

The second assumption to be discussed is taking volumetric strain as nil. This would be
valid in cases where the soil volume, and density, is constant. For linear elastic cases, this
would happen when Poisson’s ratio is 0.5. The equilibrium equation after this assumption
can be expressed as:

∫ uj

uj−1
P du =

E

∑
e=1

(
2 ·
∫ ε

j,e
s

ε
j−1,e
s

t dεs ·Ve +
∫ uj,e

y

uj−1,e
y

M · g duy +
∫ uj,e

uj−1,e
N · µ du

)
(3.42)

Next, cases in which work done by gravity is assumed to be zero. This would be valid
in computer simulated datasets in which the soil is specified to be weightless. Some real
test data, for example footing tests with zero volumetric strain, will have no net soil height
change. In these cases an equal amount of soil will move down as will move up, giving
no overall change in gravitational energy. With the term relating to gravity removed, the
equation is as follows:

∫ uj

uj−1
P du =

E

∑
e=1

(
2 ·
∫ ε

j,e
s

ε
j−1,e
s

t dεs ·Ve +
∫ uj,e

uj−1,e
N · µ du

)
(3.43)

The final term that can be removed is the frictional work term. This is unlikely to be achiev-
able in physical tests, however the influence of the term relative to work due to distortion
will vary, in some cases it may have negligible effect on the final solution. Simulated datasets
will be able to trivially discount friction. Having made all the aforementioned simplifica-
tions, the final work equilibrium equation is:

∫ uj

uj−1
P du =

E

∑
e=1

(
2 ·
∫ ε

j,e
s

ε
j−1,e
s

t dεs ·Ve

)
(3.44)
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3.5 Practical calculation of strain data

It had been stated that the measured strain field is not a continuum but discretised into a
number of elements. Although in simulated FEA datasets, it is possible to directly obtain
strain data, for physical testing only displacement data will be obtained via PIV and strains
must be calculated.

Although existing software exists to convert a displacement field to a strain field, the fol-
lowing section will demonstrate the key equations of the Constant Strain Triangle (CST)
formulation. As the full derivation exists in numerous text books it will not be included in
this document. What is presented is essentially an abridged version. The aptly named text-
book "Finite Element Analysis" (Bhavikatti, 2005) was consulted while writing this section,
although readers will be able to find many other similar resources online. This CST is an
FEA element by which a three node triangular element can be used to find strains from the
displacement data in each node. This technique is implemented in the Identification Method
code used for this thesis.

There are benefits and drawbacks of using CSTs, significant advantages are simplicity and
ease of use with PIV data. Triangulating an arbitrary arrangement of points is easy, so any
PIV data can be processed this way. Disadvantages include no compatibility between neigh-
bouring elements. This is not currently important as energy is calculated in each element
separately.

FIGURE 3.8: An arbitrary triangular element.
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Figure 3.8 shows a triangular element. It contains three nodes 1, 2, and 3. Each of these
points has a location (xi, yi) and a displacement (ui, vi) in the x and y directions respec-
tively. Shown in the middle of the triangle is an arbitrary point with coordinates (x, y) and
displacements (u, v).

If displacement points are available on a regular grid, it is trivial to arrange points into a
series of triangular elements from which strain can be calculated. It is likely that the grid
of displacement points would be irregular, either due to photogrammetric corrections or
removal of anomalous points. Delaunay triangulation (Delaunay et al., 1934) can be used
to generate a set of triangular elements from an arbitrary grid of points. There is a built in
Matlab function that can perform the triangulation procedure.

The equation describing the displacement of an arbitrary point is shown as follows, as per
Bhavikatti (2005):

(
u(x, y)
v(x, y)

)
=

(
N1 N2 N3 0 0 0
0 0 0 N1 N2 N3

)


u1

u2

u3

v1

v2

v3


(3.45)

The terms N1, N2, and N3 are shape functions, and are described in Equations 3.46, 3.46, and
3.46.

N1 =
a1 + b1x + c1y

2A
(3.46)

N2 =
a2 + b2x + c2y

2A
(3.47)

N3 =
a3 + b3x + c3y

2A
(3.48)

The value of each shape function can be found by substituting in the x and y terms. One
property of note is that each shape function must equal one at its corresponding node, i.e.
N1 = 1 at node 1, and equal zero at the other nodes. A number of terms have been intro-
duced, a1 to c3, are defined in Equation 3.49. The interested reader will be able to consult
any finite element analysis textbook for the derivation of these terms.
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a1 = x2y3 − x3y2 a2 = x3y1 − x1y3 a3 = x1y2 − x2y1

b1 = y2 − y3 b2 = y3 − y1 b3 = y1 − y2

c1 = x3 − x2 c2 = x1 − x3 c3 = x2 − x1

(3.49)

The final term from the shape function equations to define is area. This could be calculated
in numerous ways, however the most convenient is via the determinate of the coordinates.
This is a common mathematical method and as such the derivation is not included in this
document. The equation for area is as follows:

A =
1
2

det

 1 1 1
x1 x2 x3

y1 y2 y3

 (3.50)

It is now possible to calculate displacement at any point within the triangle. One point
of particular interest may be the centroid. This can either be obtained by averaging the
displacements of the nodes, or alternatively by taking each shape factor as one third.

The next stage is the process is the calculation of strains. The general definition of strains
within an element is given in Equation 3.51.

ε =

 εx

εy

γxy

 =


δu
δx
δv
δy

δu
δy + δv

δx

 (3.51)

Equation 3.52 together with the generalised displacement Equation 3.45 allow for strain to
be described with the following equation:

ε =

 εx

εy

γxy

 =


δN1
δx

δN2
δx

δN3
δx 0 0 0

0 0 0 δN1
δy

δN2
δy

δN3
δy

δN1
δy

δN2
δy

δN3
δy

δN1
δx

δN2
δx

δN3
δx





u1

u2

u3

v1

v2

v3


(3.52)

The Equations for the shape functions, 3.46, 3.47, and 3.48 are very easy to differentiate in
terms of x or y, allowing Equation 3.52 to be reformulated as shown in Equation 3.53
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ε =

 εx

εy

γxy

 =
1

2A

 b1 b2 b3 0 0 0
0 0 0 c1 c2 c3

c1 c2 c3 b1 b2 b3





u1

u2

u3

v1

v2

v3


(3.53)

Or in a more concise form, where [B
¯
] is the strain displacement matrix, and (δ) is the vector

of displacements:

ε = [B
¯
](δ) (3.54)

In which:

[B
¯
] =

1
2A

 b1 b2 b3 0 0 0
0 0 0 c1 c2 c3

c1 c2 c3 b1 b2 b3

 (3.55)

With the given equations, it is now possible to calculate both a central displacement value for
a triangular equation, as well as all components of strain. These components can be used
along with the methodologies presented earlier in this chapter to generate the necessary
formulations for internal energy within an element.

3.6 A note on anisotropic soils

Isotropy is the property of being the same in all directions. In the context of geotechnics, this
means the soil will behave the same way no matter what direction it is loaded from. The
equilibrium equation (before the assumption of associative flow is made), contains terms
for the principal angles of stress and strain. Within Equation 3.37 for instance, differences
in these angles are taken into account when calculating internal work done. Even in such a
case, there is no term to determine isotropy.

What does determine isotropy is the stress-strain response. Isotropic soils will have a single
response regardless of the principal angles. An anisotropic soil will have a different response
depending on the principal angle. Stress will not simply be a function of strain, but instead
a function of strain and one or both of the principal angles.
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For simplicity, the work presented in this thesis (most notably in Chapter 4 in which the pro-
grammatic implementation is derived) will assume soil is isotropic. Anisotropic behaviour
could be included in the future by implementing a constitutive relationship able to deal with
it.

3.7 Conclusion

This chapter has demonstrated the derivation of the energy equilibrium equation that forms
the basis of the methodology presented in this thesis. Simplifications and assumptions to
this equation have been discussed, along with how it might be discretised for use with real
data. The final equation, Equation 3.44, shows the energy equilibrium in its most simplified
form.

The aforementioned equation, although the heart of the methodology in this thesis, is on
its own insufficient to recover the soil stress-strain behaviour. It cannot simply be solved,
some commentary has been provided on the concept of "Energy Gap", the idea that the
physical realities of data prevent true equilibrium between internal and external work, let
alone a simple solution via a matrix inversion or other trivial method. The following chapter
will demonstrate programmatic methods by which Equation 3.44 can be used, and how the
"Energy Gap" can be satisfactorily dealt with, along with all relevant data processing and
optimisation procedures.
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Chapter 4

Programmatic Implementation of the
Identification Method

4.1 Introduction

This chapter will focus on the derivation for two different Identification Method formula-
tions along with discussion as to how they can be implemented programmatically.

Whereas the previous chapter derived the mathematical equilibrium equation, it was pointed
out that with realistic datasets it is unlikely that internal work and external work will exactly
match. The concept of an energy gap was introduced, with the stated goal that the "best"
soil properties are to be found, with "best" being defined as the properties that will cause
this energy gap to be as small as possible. As discussed in the preceding chapter, stress is
assumed to be an unknown function of strain, and as such the parameters to be found are
those that describe this function.

Therefore, to begin the chapter, a brief overview of optimisation will be given. A full deriva-
tion of the techniques used for this project would be long and unnecessary as such methods
have existed for decades and are used in this project via a pre-existing commercial software
package. The content presented is instead a short guide to optimisation designed such that
readers without experience in this area will understand the key concepts sufficiently to aid
in understanding later sections and chapters.

Next, the chapter will introduce what is being termed the "Equation based" Identification
Method, in which the soil stress-strain response is presupposed to follow the shape of an
equation defined by a small number of parameters. For example, if the stress-strain response
was assumed to follow the form of a quadratic equation t = a · ε2

s + b · εs + c, the variables
a, b, and c, could be optimized such that the energy gap is as small as possible.
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Although the quadratic equation serves as an easy example that many readers will be famil-
iar with, it however would be an exceedingly poor approximation of soil behaviour. Other
equations taken from literature will be significantly more relevant, and would typically be
termed constitutive equations. Some will be trivially simple such as elasticity, or elastic-
perfectly-plastic behaviour, but others may be significantly more complex.

This chapter will therefor present a generalised framework in which the parameters of ar-
bitrary constitutive equations can be optimised for. The implementation of a small number
of these constitutive equations will be presented, along with considerations and difficulties
of their application, along with a generalised discussion that would be of use should reader
attempt to implement their own choice of equations.

The second of the two proposed formulations will then be introduced. The "Segment based"
Identification Method uses a different approach. The unknown stress-strain curve will be
split into an arbitrary number of segments, the stiffness of each as variables to be found.
This is the methodology that was initially developed by Gueguin et al. (2015), however
the means by which internal work is summated in terms of the arbitrary segments was
completely reformulated for this project.

A number of additional ways of constraining the curve will be discussed, along with how
they are implemented. It will be shown how this second approach allows for significantly
more freedom in the shape of the curve and will discuss whether that is a benefit or a draw-
back.

For ease of reading, detailed diagrams and flowcharts of each methodology will be pro-
vided.

Finally, differences and similarities between the two methods will be discussed. Commen-
tary will be given on how such differences might effect the outcome of the usage of each
method.

4.2 Background

In previous chapters the concept of energy equilibrium has been introduced. The key take-
away is that work done to a soil sample by loading is equal to the work expended within
the sample by deformation. Other optional terms relating to gravity of friction can be added
as appropriate. This can be summarised with Equation 4.1.

Wext = Wint + Wgravity + W f riction (4.1)
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For simplicity, a number of assumptions will be made for the time being, firstly that strain
will be purely deviatoric with no volumetric strain, secondly, that flow is associative during
plastic deformation, and finally that friction and gravity are negligible. As such, the en-
ergy equilibrium equation can be stated as follows where P represents force, uj represents
displacement u for timestep j, the domain is split into E elements, each referenced with e,
where t and εs are maximum shear stress and maximum shear strain respectively, and finally
Ve is the volume of element e.

∫ uj

uj−1
P du =

E

∑
e=1

(
2 ·
∫ ε

j,e
s

ε
j−1,e
s

t dεs ·Ve

)
(4.2)

For non trivial datasets, it is unlikely that internal and external energy will exactly match
due to measurement errors etc. as such the concept of an energy gap was introduced, the dif-
ference between internal and external work for each timestep j, out of a total J, as shown in
Equation 4.3, with a goal of minimising the sum of these energy gaps, as shown in Equation
4.4.

W j
ext = W j

int + localgapj (4.3)

Minimise

√√√√( J

∑
j=1

(localgapj)2

)
(4.4)

Maximum shear strain εs is measurable via PIV, so in order to calculate internal work, max-
imum shear stress t must be found. The means through which t will be found is by the
reconstruction of a stress-strain curve. This chapter will detail two methodologies by which
this unknown stress-strain curve can be found.

4.3 A brief primer on optimisation

Optimisation is the process by which the best possible solution to a problem can be selected.
Optimisation is used in many fields including finance, logistics, and engineering. Examples
of problems in which optimisation can be used include finding the shortest route a deliv-
ery driver could take to visit multiple locations, finding the truss structure requiring the
lowest amount of material to support a given load, or to find the allocation of shares in an
investment portfolio providing the highest return for a specified risk level.
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Many categories of optimisation exist with multiple algorithms and many software pack-
ages, both commercial and open source, have been developed to facilitate solving them.

Linear optimisation is perhaps the simplest algorithm conceptually. An objective function
which is dependent on a set of variables is to be minimised or maximised by choosing values
for the variables. The possible values for these variables are restricted by a set of constraints.
Both the constraints and objective function are linear, i.e. none of the variables have an
exponent. The above paragraph can be condensed into the standard mathematical notation
for a linear optimisation problem, as shown in Equation 4.5. Although this generalised form
exists in multiple sources, the MOSEK optimiser documentation was consulted (MOSEK,
2020).

Minimise cTx + c f

Subject to lc ≤ Ax ≤ uc

And lx ≤ x ≤ ux

(4.5)

Vector c is the known coefficients relating to the objective function with c f representing
an arbitrary fixed constant, A is the matrix of known constraints, and x is the vector of
unknown variables, which are to be found. Vectors lc and uc represent the lower and upper
bounds for the constraints with vectors lx and ux representing the equivalent values for the
variables.

A simple example will now be presented in Equation 4.6.

Minimise
(

2 1
)(x

y

)

Subject to


−1 −1
−2 1
0.8 1

0.75 −1


(

x
y

)
≤


−3
2
10
4.5



And

(
x
y

)
≥
(

0
0

)
(4.6)

The objective function 2x + y must be minimised. Values of x and y should be chosen that
do not violate the constraints whilst providing the lowest value objective function. There
are several algorithms that would be suitable for solving this problem, however due to there
only being two variables, this problem can be solved graphically. Figure 4.1 shows the above
problem.
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FIGURE 4.1: A graphical representation of an example optimisation problem.

The constraints are plotted with a red gradient indicating the forbidden side. The permitted
values of x and y are therefor contained within the central polygon. Examining the vertices
allows for x and y values of 1

3 and 2 2
3 respectively, giving the objective function a value of

3 1
3 . The interested reader will be able to test that these values meet all the constraints.

The given example was particularly simple, allowing for a representation in two dimen-
sions. It would perhaps be possible to use the graphical method in three dimensions, but
a problem with ten thousand variables for instance would require a much more robust
methodology.

The Simplex algorithm is perhaps the most well known, however it is inefficient when com-
pared with more recent developments. The interior point algorithm was used for the work
carried out for this thesis. Although theoretically possible for several decades prior, the
first practical interior point algorithm was presented by Karmarkar (1984). Extensive work
has been carried out on the interior point algorithm but a full review would be far beyond
the scope of this thesis, as would a derivation of the algorithm. All that is required is the
knowledge that such algorithms exist and are able to solve large and complex problems in
relatively short time frames.

The interior point algorithm provides one additional piece of functionality of note: the abil-
ity to solve nonlinear problems. The simple example given has only linear constraints, how-
ever there are problems in which the constraints could be curves, or in higher dimensions,
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cones. Conic optimisation will be used for the Identification Methods presented in this the-
sis. Solving a conic optimisation by hand in the manner that the linear optimisation was
presented would not be possible. The standard conic optimisation form, however, will be
given in Equation 4.7. As before, the MOSEK optimiser documentation was consulted when
reproducing this standard form (MOSEK, 2020).

Minimise cTx + c f

Subject to lc ≤ Ax ≤ uc

lx ≤ x ≤ ux

x ∈ K

(4.7)

Many of the terms in the above equation are defined identically as in the general form of the
linear optimisation formulation, with the addition of K which represents a compound conic
constraint. The final term in the general form uses a compound conic constraint to represent
any number of individually defined conic constraints with one term. If a subset of variables
xt are constrained to be within the convex coneKt, and all variables x are contained in the set
of real numbers Rn, which is also a convex cone, it can be said that all variables are contained
within at least one convex cone. Smaller conic constraints can simply be multiplied together
allowing for a single complex conic constraint term to be used.

There are multiple types of cones that could be used as constraints in optimisation problems.
The type that is most applicable to this project is the quadratic cone. The general form for a
quadratic cone is given in Equation 4.8, as per MOSEK (2020).

Qn =

x ∈ Rn : x0 ≥

√√√√n−1

∑
j=1

x2
j

 (4.8)

Quadratic cones are essentially a constraint saying that one variable x0 must be greater than
or equal to the square root of the sum of squared values for a set of n− 1 additional variables.
An example use for this would be minimising the root mean square for a set of values for
curve fitting or similar usage. By including x0 in a minimisation objective function, the RMS
of other variables within the cone will be minimised.

Implementing an optimisation algorithm would be very time consuming and difficult. As
such the commercial MOSEK package was used. This software features many algorithms
including interior point and has programming interfaces for a range of languages includ-
ing Matlab and C++. At the time of writing this thesis licenses were available for free for
academic or educational usage (MOSEK, 2020).
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4.3.1 The existence of an optimal stress-strain response

Thought was given to what it means for there to be an optimal stress-strain curve. Although
the optimal curve is the curve resulting in the lowest energy gap between internal and ex-
ternal work, what can be deduced about the nature of this curve? Is there one single curve
that is obviously optimal, or are there a range of suitable curves that by eye could be quite
different?

Assume there exists a single pair of images; displacement is measured between them giving
a single set of strain data. Each element within the pair will have different strains corre-
sponding to different parts of the stress-strain curve. There will also be a single value of
external work. For such a simple case the reader may assume it is simple to find the correct
stress-strain response. In actual fact the curve can be any arbitrary shape.

For any arbitrary curve, in which the internal work is different to the external work for a
single pair of images, the curve can simply be scaled up or down in the y axis until the work
matches, the shape of the curve is irrelevant. Figure 4.2 demonstrates this. If, for example,
the calculated internal work was 10% lower than the external work, the curve can simply be
scaled by 10%.

FIGURE 4.2: The relationship between an arbitrary and scaled curve.

For a case in which there are two pairs of images, with two sets of strain data and corre-
sponding external work, it is possible to scale the arbitrary curve to be perfect for each pair
separately, but not such that it is a perfect match for both at once. There exists a compromise
scale factor such that the energy gap for each image pair is minimised when internal work
is calculated using this compromise curve. Figure 4.3 shows a graphical representation of
this concept.
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FIGURE 4.3: The relationship between scaled curves and a compromise curve.

The above process can be carried out for any number of arbitrary curves. Each curve can
be scaled separately to match energy for an individual pair, but a compromise must be
made to give the best match for two or more pairs. Trying many such curves and finding
their compromise location will give a range of energy gaps, some will be lower than others.
Figure 4.4 shows an additional set of curves to illustrate this point.

FIGURE 4.4: An additional set of arbitrarily chosen curves.

This thought experiment raises a number of points regarding optimisation of stress-strain
response. A lack of data will make it harder if not impossible to find a global minimum
energy gap. As demonstrated, a single pair of images can have its internal work and external
work matched with any arbitrary shape curve. It is also possible that synthetic datasets
could be chosen to achieve this effect with many image pairs.

Actual datasets are unlikely to have this issue, as data will be from tens or hundreds of
images with significant overlap with regards to observed strains. In the event a dataset
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does allow for arbitrary curves, this could be found by examining the energy gap. If it is
zero, or alternatively within the margin of error for the optimiser, there is a chance there is
insignificant data to properly constrain the curve.

4.4 Principals of the Equation Based Identification Method

As stated, a means by which maximum shear stress can be calculated is necessary to find
internal work. The so called Equation Method, assumes that maximum shear stress is a
function of maximum shear strain, as shown in Equation 4.9. An additional assumption
that stress and strain start at zero across the entire field is also made. There are scenarios
such as soil that has been preloaded or disturbed in which this assumption would not be
valid, but for simplicity a zero start shall be assumed and validation testing discussed in
later chapters will be designed with the aim to make this assumption valid.

t = f (εs) (4.9)

The exact equation is unimportant provided that the relationship can be described with a
small number of variables that can be optimised for. Later in the chapter a set of suitable
equations will be presented and discussed, but for now three particularly simple cases will
be used for demonstrative purposes.

The first equation to be examined is the trivially easy case of a fixed value of t. In this case,
the stress-strain curve is a horizontal line, and work is the area under it. Such a model could
be referred to as perfectly plastic. The only unknown in this model would be the value tmax.
Figure 4.5 shows an example of such a stress-strain curve.

Regardless of εs value, t is always constant. The constant t value has been defined as tmax.
The diagram shows four data points, labelled j0 to j3, representing measured strain values
for a single element. Where data is derived by PIV, each data point would represent a single
element within a single image. δεs1 etc. represent the change in maximum shear strain
between data points. As stated, the diagram is representative of a single element and total
internal work would require the area under a similar curve for every element.

It is trivial to see that the area under the curve for each image pair is simply the difference
in maximum shear strain values multiplied by tmax. Internal work for each element can then
be calculated by multiplying this value by 2 · Ve. To express this sentiment mathematically,
solving the integral in Equation 4.2 results in the following equation:
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FIGURE 4.5: A stress-strain curve in which the soil response is modelled as
perfectly plastic and represented by a horizontal line. j represents strain data

points.

∫ uj

uj−1
P du =

E

∑
e=1

(
2 ·Ve · tmax · [εj,e

s − ε
j−1,e
s ]

)
(4.10)

Assuming a soil sample undergoing testing is recorded using PIV, nearly every term within
Equation 4.10 is known. Force P and load displacement u can be recorded using a load
cell and LVDT respectively, the strain data εs is known via PIV, and element volume Ve

is specified based on PIV mesh size. The only unknown value is tmax, which is assumed
to be constant regardless of timestep. Splitting the equilibrium equation into matrices is a
useful next step. For illustrative purposes, four images resulting in three timesteps will be
assumed with the first image j = 0 having no strain, force, or displacement. Equation 4.3
can be formulated as follows:

W1
ext

W2
ext

W3
ext

 =

W1
int

W2
int

W3
int

+

localgap1

localgap2

localgap3

 (4.11)

Substituting in the relevant terms results in Equation 4.12.
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∫ u1

u0 P du∫ u2

u1 P du∫ u3

u2 P du

 =

∑E
e=1[(ε

1,e
s − ε0,e

s ) · 2 ·Ve]

∑E
e=1[(ε

2,e
s − ε1,e

s ) · 2 ·Ve]

∑E
e=1[(ε

3,e
s − ε2,e

s ) · 2 ·Ve]

 · (tmax

)
+

localgap1

localgap2

localgap3

 (4.12)

With the above equation, it is clear to see how changing the value of tmax will vary the
value of the local energy gaps, and in turn the global energy gap. It follows that there is a
value of tmax in which the global energy gap is minimised. This can be found through linear
optimisation or, for a trivial case such as this, a brute force approach.

The perfectly-plastic response is as simple as can be. A single variable is all that is required
to describe the soil response. A linear elastic case, if not any more realistic, is slighlty more
complex with two variables. The equation for a straight line is y = mx + c with the variable
m representing the slope and the variable c representing the intercept in the y axis.

In terms of the stress-strain curve used in geotechnical problems, the slope can be labelled
G for shear modulus, and y intercept c will be labelled ti. Typically the intercept would
be zero, however in cases in which there has been an unknown amount of loading prior to
beginning measurements for instance, the more genreal case may be appropriate and will be
used in the following derivation. The elastic equation for maximum shear stress is shown
in Equation 4.13.

t = G · εs + ti (4.13)

A diagram showing such an elastic curve is shown in Figure 4.6. As for the perfectly plastic
example, the diagram shows four data points, labelled j0 to j3, representing measured strain
values for a single element.

As before, to find the internal work done by an element, the area under the curve must be
found and multiplied by two and the volume of the element. 4.14 shows how the internal
work for a series of elements can be found in this way and summed to equal external work.

∫ uj

uj−1
P du =

E

∑
e=1

(
2 ·Ve ·

(
1
2
· G · [(εj,e

s )2 − (ε
j−1,e
s )2] + ti · [(ε

j,e
s )− (ε

j−1,e
s )]

))
(4.14)

Again, in order to facilitate use with optimisation software, separating the known values
from the unknown parameters is necessary. The unknown parameters G and ti will be
moved into a separate vector as shown in Equation 4.15. The example given has 3 timesteps.
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FIGURE 4.6: A stress-strain curve in which the soil response is modelled as
elastic and represented by a straight angled line. j represents strain data

points.


∫ u1

u0 P du∫ u2

u1 P du∫ u3

u2 P du

 =

∑E
e=1(

1
2 · [(ε

1,e
s )2 − (ε0,e

s )2] · 2 ·Ve) ∑E
e=1([(ε

1,e
s )− (ε0,e

s )] · 2 ·Ve)

∑E
e=1(

1
2 · [(ε

2,e
s )2 − (ε1,e

s )2] · 2 ·Ve) ∑E
e=1([(ε

2,e
s )− (ε1,e

s )] · 2 ·Ve)

∑E
e=1(

1
2 · [(ε

3,e
s )2 − (ε2,e

s )2] · 2 ·Ve) ∑E
e=1([(ε

3,e
s )− (ε2,e

s )] · 2 ·Ve)

 ·(G
ti

)

+

localgap1

localgap2

localgap3



(4.15)

Finally, a more complex response will be described in the following paragraphs. Although
an extremely poor representation of soil behaviour (or any other mechanical behavior for
that matter), the quadratic equation t = a · ε2

s + b · εs + c will be used. This equation has
multiple variables and requires the strain data to be used multiple times. Figure 4.7 shows
a diagram of a quadratic curve.

For this slightly more complex case, the area under the curve can be found by integration.



4.4. Principals of the Equation Based Identification Method 71

FIGURE 4.7: A stress-strain curve in which the soil response is modelled as a
polynomial equation. j represents strain data points.

Equations 4.16 and 4.17 demonstrates this process. The difference between the two afore-
mentioned equations is that Equation 4.17 has been factorised such that the parameters a,
b, and c have been separated from the other terms, such that they could be moved into a
vector.

∫ ε
j
s

ε
j−1
s

t dεs =
∫ ε

j
s

ε
j−1
s

a · (εs)
2 + b · εs + c dεs =

a
3
· (εj

s)
3 +

b
2
· (εj

s)
2 + c · (εj

s) + d− a
3
· (εj−1

s )3 − b
2
· (εj−1

s )2 − c · (εj−1
s )− d

(4.16)

∫ ε
j
s

ε
j−1
s

t dεs =
∫ ε

j
s

ε
j−1
s

a · (εs)
2 + b · εs + c dεs =

a
3
· [(εj

s)
3 − (ε

j−1
s )3] +

b
2
· [(εj

s)
2 − (ε

j−1
s )2] + c · [(εj

s)− (ε
j−1
s )]

(4.17)

With the integral solved, the area under the curve can be substituted into the work equilib-
rium Equation 4.2 to produce the following:
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∫ uj

uj−1
P du =

E

∑
e=1

(
2 ·Ve ·

(
a
3
· [(εj,e

s )3 − (ε
j−1,e
s )3]+

b
2
· [(εj,e

s )2 − (ε
j−1,e
s )2] + c · [(εj,e

s )− (ε
j−1,e
s )]

)) (4.18)

As with the perfectly plastic case, every term except for a,b, and c are known. Using a simple
case in which three timesteps are specified, the problem can be formulated as a matrix of
known values multiplied by a vector of unknowns as shown below in Equation 4.19. It
should be noted that this equation would be prohibitively large to fit on a page and as such
temporary labels have been defined. The definitions for these labels can be seen in Equation
4.20.


∫ u1

u0 P du∫ u2

u1 P du∫ u3

u2 P du

 =

l1,3 l1,2 l1,1

l2,3 l2,2 l2,1

l3,3 l3,2 l3,1

 ·
a

b
c

+

localgap1

localgap2

localgap3

 (4.19)



l1,3

l1,2

l1,1

l2,3

l2,2

l2,1

l3,3

l3,2

l3,1


=



∑E
e=1(

1
3 · [(ε

1,e
s )3 − (ε0,e

s )3] · 2 ·Ve)

∑E
e=1(

1
2 · [(ε

1,e
s )2 − (ε0,e

s )2] · 2 ·Ve)

∑E
e=1([(ε

1,e
s )− (ε0,e

s )] · 2 ·Ve)

∑E
e=1(

1
3 · [(ε

2,e
s )3 − (ε1,e

s )3] · 2 ·Ve)

∑E
e=1(

1
2 · [(ε

2,e
s )2 − (ε1,e

s )2] · 2 ·Ve)

∑E
e=1([(ε

2,e
s )− (ε1,e

s )] · 2 ·Ve)

∑E
e=1(

1
3 · [(ε

3,e
s )3 − (ε2,e

s )3] · 2 ·Ve)

∑E
e=1(

1
2 · [(ε

3,e
s )2 − (ε2,e

s )2] · 2 ·Ve)

∑E
e=1([(ε

3,e
s )− (ε2,e

s )] · 2 ·Ve)


(4.20)

Again, the equation has been formulated such that it is clear how a small number of vari-
ables effect the energy gap. Three variables will be possible to solve using a brute force
search depending on how fine the search and size of the search area, but it is likely to be
much easier to use optimisation.

Through these two simple examples the principles of the Equation based Identification
Method have been shown. To summarise, an equation representing t as a function of εs

must be chosen. This equation must then be integrated to find the area under the stress-
strain curve. After multiplying this by the volume of the element and 2, the equation can be
rearranged such that the unknown variables are moved to a vector.

Although the examples shown are unrealistic for soil behaviour, they make demonstrating
the process significantly easier. Derivations for more realistic equations will be covered in



4.4. Principals of the Equation Based Identification Method 73

later sections of this chapter.

4.4.1 An alternative "Brute Force" approach

The Equation based Identification Method allows for optimisation of the stress-strain re-
sponse curve shape using relatively few parameters. Although purpose built optimisation
software such as MOSEK is the most appropriate way of solving this problem, it is also pos-
sible to attempt a brute force approach in which all possible combinations are attempted.

The time taken to solve the problem will of course be much greater, potentially orders of
magnitude so depending on how many variables are used to describe the curve, but pro-
vides a number of advantages. Firstly, any bugs or flaws in the prebuilt optimiser can be
eliminated during any diagnostic process. Secondly, the optimal curve can be guaranteed
to be the global optimal as all possibilities are tested. Thirdly, a plot such as a contour map
or similar can be used to visualise how changing the parameters effects the energy gap. An
example of what such a plot may look like is given in Figure 4.8. It should be noted that
this plot does not use the previously described polynomial equation but instead the more
complex "Vardanega and Bolton" curve that will be discussed in the following section. And
finally, with the use of the aforementioned contour map insight can be gained into the na-
ture of the optimal solution. Is the solution part of a plateau of similarly good possibilities,
or are there other local optimal that would also be a reasonable if sub optimal answer.

To some extent, the issue of computational time can be reduced using a tiered brute force
approach. An initial coarse search of the parameter space could be carried out to gain a
rough initial estimate of the optimal parameter selection after which a finer search is carried
out on a subset of the parameter space immediately adjacent to the initial course estimate.
This approach has the downside of not guaranteeing that the global optimal can be found.
If the "zoomed in" fine search was of a sufficiently small area that did not contain the global
optimal solution, it would never be found. Nonetheless, this approach was ultimately im-
plemented in order to ensure that practical computational times were achieved.

There may be some equations in which linear optimisation is not possible. The approach
described for the perfectly plastic case and the quadratic equation case allow for easy sep-
aration of the known strain field from the unknown equation parameters. For cases where
the equation parameter is an exponent (3xa rather than ax3 for instance) it is not possible
to separate the parameters in this way. Nonlinear optimisation approaches may be possi-
ble but will not be considered in this thesis. These equations however can be optimised for
using a brute force approach. Although the brute force approach is in many ways worse in
terms of its functionality as a practical tool, the diagnostic benefits it brings make it useful
as a diagnostic tool during the validation of the Equation based Identification Method.
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FIGURE 4.8: A plot taken from Charles et al. (2019) showing an example con-
tour plot generated using a brute force approach.

4.4.2 Choice of Equations

Two somewhat realistic equations will be implemented and presented in this thesis.

The first is the elastic-perfectly-plastic curve, in which there is a fully elastic section followed
by a horizontal fully plastic section. This is a composite model in which there are two sec-
tions in which internal work is calculated differently. Delta strain values for an element and
timestep may be contained within a single phase or may spread across two. There will be
4 parameters: G and ti for the elastic phase, tmax for the plastic phase and the strain at the
interface between the phases εp. Equation 4.21 shows the equations determining maximum
shear stress as a function of shear strain.

t = G · εs + ti
f or 0≤εs≤εp

t = tmax
f or εp<εs

(4.21)

When using linear optimisation, G, ti, and tmax can be found trivially by assembling a matrix
with one row per timestep and one column per variable which can then by multiplied by the
vector of variables. An element that travels across the boundary can have its contribution to
each phase calculated and summed into the matrix separately. One complication is that the
fourth variable, εp, cannot be solved linearly. It is not a value that can simply be multiplied
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by to find internal work. The value of εp determines which phase an elements delta strain
will fall in to. The easiest way to find the optimal value is to try a range of values of εp and
carry out the optimisation for each possible value.

It should also be noted that the general form discussed above would allow for a non con-
tinuous curve, in which the elastic phase is not connected to the plastic phase. To elimi-
nate this problem, one variable can be replaced. tmax for instance, can be calculated with
tmax = G · εp + ti, with the problem then formulated to calculate internal work using this
new tmax value. Alternatively, G could be eliminated as a variable.

The location of the interface between the two phases must be found. Although more efficient
search processes exist, due to the simplicity of this equation, a brute force approach can be
used with an acceptable computational time penalty.

The second equation to be implemented is the "Vardanega and Bolton" curve as described by
Vardanega and Bolton (2011). This curve will similarly feature two phases, the "Vardanega
and Bolton" part, followed by a perfectly plastic phase. The "Vardanega and Bolton” curve
formula is shown in Equation 4.22. It should be noted that Vardanega and Bolton recom-
mended this curve only between 20% and 80% of yield strain. For the purposes of defining
an unknown curve, the simplification of extending this range has been taken.

t =
tmax

2
εb

s ε−b
sm2

(4.22)

There are three terms in this equation tmax, which is the peak maximum shear stress, εsm2

which is the shear strain at which half the peak maximum shear stress is achieved, and b
which is a dimensionless exponent governing the shape of the curve. No additional param-
eters are needed to describe the plastic phase. tmax is the same, and εp at the interface can
be determined with Equation 4.22 and the value for εsm2 . By setting t = tmax and rearrang-
ing the equation it can be shown that εp = 2

1
b · εsm2 . The equation defining t across the full

domain can thus be described as shown in Equation 4.23.

t =
tmax

2
εb

s ε−b
sm2

f or 0≤εs≤2
1
b ·εsm2

t = tmax

f or 2
1
b ·εsm2<εs

(4.23)

The area under the "Vardanega and Bolton" phase can be found by integration as demon-
strated before. Equation 4.24 shows the internal work expended on a set of E elements for a
timestep j.
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W j
int =

E

∑
e=1

[ ∫ ε
j
s

ε
j−1
s

tmax

2
εb

s ε−b
sm2

dεs · 2 ·Ve

]
(4.24)

Completing the integration yields the following, shown in Equation 4.25.

W j
int =

E

∑
e=1

[
tmax

2(b + 1)
·
(
εb+1

s(j,e)
− εb+1

s(j−1,e)

)
· 2 ·Ve

]
(4.25)

The above equation contains many nonlinear terms preventing optimisation using a linear
optimiser. A brute force approach is most appropriate for this curve. It should be noted
that the values for b are typically between 0.3 and 0.9 and the values for tmax and εsm2 can be
estimated by running a simpler case (for instance elastic-perfectly-plastic) and varying the
values found up and down by a certain percentage.

The two sets of equations given provide relatively realistic responses by each using two
different phases governed by their own equation. Unfortunately, the interface between these
phases, as well as some terms in the "Vardanega and Bolton" are nonlinear, resulting in the
need to use the less efficient brute force approach to recover parameters.

4.4.3 Flow chart of the equation method

A flow chart illustrating the algorith at the heart of the Equation based approach is given in
Figure 4.9.
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FIGURE 4.9: A flow chart explaining the algorithm for carrying out the Equa-
tion based Identification Method.
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4.5 Principals of the Segment Based Identification Method

The Segment based method divides the unknown curve into a series of segments. Each
segment will be represented by a start and an end maximum shear stress value. These values
will be shared with the segment before and after respectively, resulting in a continuous
curve. The curve being split in such a way allows for trivial integration using the trapezium
method. Figure 4.10 shows how the unknown stress-strain response will be represented
with the aforementioned segments.

It should be noted that the concepts of the Segment based approach are based on pre-existing
work that was completed prior to the commencement of this project and was presented by
Gueguin et al. (2015). Significant work has been carried out to improve and generalise the
methodology, particularly the work presented in this section regarding the calculation of
area under an unknown stress-strain curve.

FIGURE 4.10: The relationship between a continuous stress-strain response
and a segmented response.

An important consideration is that the number of segments is unrelated to the number of
images, the number of patches, or any other parameter. It can be set to whatever the user
deems fit. As such, the delta strain value for a given patch within a given image pair could
be represented by a fraction of a single segment or it could span across several. A robust
method for keeping track of where each patch is on the stress-strain curve, along with the
means to efficiently sum the internal work must therefore be derived.

As with the previous presented methodology, the measured strain field will be split into
a grid of triangular elements. Each element will have a fixed area and a strain value that
changes with each timestep (there is one timestep per image). Examining timesteps one
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at a time, it must be determined which segment (or segments) each element delta strain
occupies. Examining each element in turn, the start and end strains can be compared to the
strains allocated to each segment. If a segment is fully contained within the elements delta
strain, one multiplied by the element area can be added to its tally. If only part of a segment
is contained, the inclusion fraction can be multiplied by the area and tallied. This can be
repeated for every element within the timestep.

Figure 4.11 shows a case in which the contributions of three elements are to be found for a
single timestep. Element A, in which the measured maximum shear strain starts at εs,A1 and
ends at εs,A2 with the change represented by δεs,A. Similarly element B has the start, end,
and delta values as εs,B1, εs,B2, δεs,B and for element C: εs,C1, εs,C2, δεs,C. The diagram also
has segments on the stress-strain curve labelled 1 to 11.

FIGURE 4.11: The relationship between a series of stress-strain segments and
the area under the curve for a set of elements.

It can be seen that element A spreads across several segments. Segment 4 for instance is
fully contained within the strain increment, whereas segments 3 and 5 are only partially
contained. Element B contains only part of segment 6 and element C contains parts of 8 and
9. For each segment it would be possible to calculate an inclusion factor F and a location
factor L representing with numbers between 0 and 1 the percentage of inclusion for a seg-
ment and the percentage through the segment were the measured data starts. If a segment
is fully contained the location factor would be 0 and the inclusion factor 1.
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To work out the area under the curve which can be multiplied by two to find internal work,
values for maximum shear stress at the beginning and end of each segment are needed.
As the stress values at the start and end of each segment are the unknowns to be found,
the area under the curve must be formulated in a way to facilitate easy inclusion of these
unknown parameters. A matrix of the strain components of work will be multiplied by the
vector of stresses. In order to determine how this matrix should be arranged it is necessary
to examine how the trapezium rule equation will be used to deal with partial inclusion of
segments. Figure 4.12 shows the most general case, a segment with start and end strains εs,1

and εs,2 with (unknown) start and end stresses t1 and t2. The increment for the element (i.e.
the area to be calculated) has start and end strains εs,s and εs,e with (unknown) start and end
stresses ts and te.

FIGURE 4.12: A diagram illustrating how the area of under the curve for an
elements increment within one timestep relates to a predefined stress-strain

curve segment.

The area under the entire segment, As, is trivially shown in Equation 4.26 and similarly the
area under the element increment, Aei, is shown in Equation 4.27. Unfortunately, the area
for the element increment must be written in terms of t1 and t2 as these are the parameters
that will be optimised for and in which internal work must be expressed.
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As = 0.5 · (t1 + t2) · (εs,2 − εs,1) (4.26)

Aei = 0.5 · (ts + te) · (εs,e − εs,s) (4.27)

The values of εs,s and εs,e are already known as these are derived from the measured dataset.
The difference between them will be labelled δεs. The unknown ts and te can be written
in terms of the (also unknown) t1 and t2 via similar triangles. Equation 4.28 shows these
relationships, with Equations 4.29 and 4.30 showing the area under the curve for an element
increment in terms of t1 and t2.

ts = (t2 − t1) · L + t1 te = (t2 − t1) · (L + F) + t1 (4.28)

Aei = 0.5 · ((t2 − t1) · L + t1 + (t2 − t1) · (L + F) + t1) · δεs (4.29)

Aei = 0.5 · (t1 · (2− 2L− F) + t2 · (2L + F)) · δεs (4.30)

The next step is to extract the t1 and t2 into a vector. The result of this is shown in Equation
4.31

Aei =
[
0.5 · δεs · (2− 2L− F) 0.5 · δεs · (2L + F)

]
·
[

t1

t2

]
(4.31)

The above demonstrates how the area under the stress-strain curve (to find internal work
multiply by 2, see Equation 4.2) will be calculated for a case with a single element (with
unit area) and a stress-strain curve made up of a single segment. It is fairly easy to apply
the demonstrated principles to more complex cases. For an element increment that covers
multiple segments, a 1 × 2 matrix as shown in Equation 4.31 will be calculated for each
segment. These matrices can be added to a global matrix at the correct locations. Each
row in the matrix will represent a timestep and each column represents a strain segment.
Similarly, the areas under the curve for each element can be calculated and added to this
global matrix. In cases where the area of an element is not 1, simply multiply the 1 × 2
matrix by the area before adding it to the global matrix.

The Segment based approach results in a discretised stress-strain response. The curve will
not be smooth but instead split into a number of linear segments. For some cases, e.g. where
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the stress-strain response is assumed to be elastic or elastic-perfectly-plastic, it would be
satisfactory to describe the curve with only a handful of segments. For more complex cases,
tens or even hundreds of segments may be necessary.

The effects of the number of segments on the accuracy of the output curve is to be deter-
mined. It is obviously apparent that too few segments would cause issues but other ques-
tions arise. For instance, is it possible to have too many segments, or how would the opti-
misation process be affected if there were segments that have no corresponding data?

As stated, the presented algorithm represents a significant evolution over the methodologies
that were found in the inherited codebase and were used in the cited publication (Gueguin
et al., 2015). Major modifications were put in place during the course of this project to al-
low for improvements in the distribution of element strain data. The algorithm based on
the trapezium rule was implemented and energy gap calculations were changed to be in-
cremental rather than cumulative. The improved methodology presented here is adaptable
and could be used for cumulative energy calculation if necessary.

4.5.1 Curve Constraints

By default, the shape of the curve of the Segment based Identification Method is uncon-
strained. Every segment is independent of all others, save for its immediate neighbours
with which a node is shared. Although this freedom is in some ways a benefit in that ar-
bitrarily complex soil responses could be recovered, there could be issues with unexpected
outputs. The optimiser could for instance find that the curve with the lowest energy gap con-
tains negative maximum shear stresses, or stresses that fluctuate wildly as strain increases.
Sections of the curve with relatively low amounts of data constraining them may behave in
unusual ways, or noisy data could result in unpredictable curves.

The optimiser has no knowledge of geotechnical engineering. By asking it to recover the
best fit stress-strain response, that it exactly what it will give. What is actually needed is to
ask the optimiser to recover the best fit realistic stress-strain response. Constraints can be
added to limit the possible shape of the output curve in ways that force it to look somewhat
like a stress-strain response should. Although it would be possible to limit the shape of the
curve to a high degree based on the expected response, over constraining the curve could
limit identification of the true response, should there be some reason it doesn’t meet the
expectations. As such, as few common sense constraints will be listed and briefly discussed.
It should be noted that this thesis deals with monotonically loaded cohesive undrained soils
and these constraints are tailored as such. Other soil responses for e.g. granular soils or
dynamic loading will require a different approach.
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The simplest constraint is the requirement that the stress-strain curve is positive. MOSEK
allows the input of allowable ranges to optimisation variables so each maximum shear stress
value can be specified to be ≥ 0. This constraint prevents the optimiser artificially reducing
internal work by having sections of the curve below the x axis.

The next constraint is the requirement that maximum shear stress increases as shear strain
increases. This requires the curve to move in an upwards direction from the origin and
prevents a zig-zag shaped curve. Constraining the curve in this way prevents the need to
carry out any post-processing or smoothing. Implementation of this constraint is simple.
Subtract the variable for maximum shear stress at j− 1 from the maximum shear stress at j
and constrain the difference to be ≥ 0.

The third constraint will require the final segment or segments of the curve to be a flat
plateau. Segments beyond a user specified value of shear strain can be identified and forced
to be horizontal, or simply the final segment. This constraint can be added in the same way
as the "always increasing maximum shear stress" constraint, with the difference between
stresses at j and j− 1 fixed at exactly zero.

The final and most complex constraint to be implemented will force the slope of the curve
to gradually decrease. This constraint will ensure a curve that starts steep and smoothly
reduces in gradient until the plateau is reached. Implementing this requires the difference
in gradients between two segments to be greater than zero. The gradient however is not an
optimisation variable so this constraint must be formulated in terms of the maximum shear
stresses at the beginning and end of each segment. Figure 4.13 shows an illustration of the
geometry of this problem. Stresses at j− 1, j, and j + 1 are the optimisation variables, and
the delta strain values for the two segments, δεsj and δεsj+1, are known values.

The gradient for a segment is the change in maximum shear stress divided by the change in
shear strain. The gradient for the first segment minus the gradient for the second segment
must be greater than zero. The following Equations 4.32, 4.33, 4.34, and 4.35 show how this
concept can be rearranged such that it can be added to an optimisation matrix.

tj − tj−1

δεsj
−

tj+1 − tj

δεsj+1
≥ 0 (4.32)

δεsj+1 · (tj − tj−1)− δεsj · (tj+1 − tj) ≥ 0 (4.33)

tj−1 · −δεsj+1 + tj · (δεsj + δεsj+1) + tj+1 · −δεsj ≥ 0 (4.34)
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FIGURE 4.13: A diagram illustrating the geometry of constraining the stress-
strain response such that the gradient gradually decreases.

(
−δεsj+1 (δεsj + δεsj+1) −δεsj

)
·

tj−1

tj

tj+1

 ≥ 0 (4.35)

The formulation shown in Equation 4.35 can be easily expanded for curves with many seg-
ments. A global matrix can be assembled with one row per segment with the three terms
placed in the correct columns, forming a diagonal pattern.

As stated, these constraints are designed to allow for realistic stress-strain responses to be
found for monotonically loaded undrained soils. These constraints will be used during
testing and validation of the Segment based Identification Method, which will be presented
in Chapter 7 for testing with artificial datasets and in Chapter 8 for testing with real datasets.
These constraints were chosen as they closely represent the expected soil behaviour. Should
it turn out that the behaviour observed in later chapters poorly matches these constrains,
commentary will be given as to why.

4.5.2 Construction of Optimisation matrix

Optimisation problems consist of an equality matrix generated from strain data and con-
straints (as discussed above) multiplied by a vector of variables which are to be optimised.
The number of rows in the vector of variables must equal the number of columns in the
equality matrix. The result of this multiplication will be constrained. Two constraint vectors
will be used for this role, one with lower bound values and one with upper bound values.
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These vectors will have the same number of rows as the equality matrix. The results of the
multiplication must be within the upper and lower values.

The objective function is the goal which the optimiser will aim to achieve. The objective
function will be given as an equation in terms of a subset of the variables with the goal
of minimising the value of this equation while ensuring no constraints are violated. The
equation to be minimised is given at the start of this chapter in Equation 4.4. The goal is to
minimise the global energy gap, which is the square root of the sum of the squared values of
local increment energy gaps. Conic optimisation will be used for this. An additional global
energy gap variable, λ, will be used, which is defined as the square root of the sum of the
squared local energy gaps, with the objective function then simply being to minimise λ.

The introduction of energy gaps into the formulation is simple. A vector of incremental
internal works can be calculated by multiplying the matrix generated from strain data by
the vector of maximum shear stresses. As internal work plus local energy gap must equal
external work, the local energy gaps can be added to the vector of variables, which will be
multiplied by the identity matrix. The upper and lower bound constraints can both be set
to the vector of incremental external work terms.

The specification of the optimisation problem can be examined in Equation 4.36. Terminol-
ogy is the same as previously used with the addition of t which is the vector of maximum
shear stresses and Gj representing the gradient of the curve between tj and tj+1. A descrip-
tion of what each line represents is also included. A more detailed discussion of how these
constraints are implemented can be found in the preceding subsection.

Minimise λ Objective function
Subject to Wintj + localgapj = Wextj Energy equilibrium

Gj+1 − Gj ≤ 0 Reducing gradient
tj+1 − tj ≥ 0 Increasing stress

t ≥ 0 All stresses positive

And λ =
√

∑
nimages
j=1 (localgapj) Conic constraint

(4.36)

A diagram showing the layout of the optimisation problem is given in Figure 4.14. The
matrix and vectors are split to show what each section relates to with dimensions given,
where Nim is the number of images (and hence strain and external work increments) and
Nseg is the number of strain segments in the unknown stress-strain curve.
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FIGURE 4.14: The layout of the Segment Method optimisation problem.

4.5.3 Flow chart of the segment method

A flow chart illustrating the algorithm at the heart of the Segment based approach is given
in Figure 4.15.
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FIGURE 4.15: A flow chart explaining the algorithm for carrying out the Seg-
ment based Identification Method.
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4.6 Comparison of the two approaches

The two proposed Identification Methods, the Equation based approach and the Segment
based approach, at their core aim to achieve the same goal. A stress-strain response curve
is to be found such that the gap between internal and external work is as low as possible.
The two methods differ in how the unknown curve is described, with various practicalities,
drawbacks, and benefits.

The Equation based approach results in a significantly simpler optimisation problem with
only a few variables. The shape of the curve is very limited. If for instance the equation
for a perfectly elastic case was used, the only variation to the curve shape would be the
angle and the intercept of the straight line. Should the soil in actual fact respond in some
other way, the curve may in fact be a very poor fit. The Equation based approach also has
the additional drawback of some equations, particularly more realistic options, requiring
nonlinear optimisation. This requires more complex programming, or the use of a brute
force approach.

The Segment based approach is much more free. The curve is split into many segments, the
arrangement of which can be whatever the optimiser sees fit. Constraints can be added to
force the curve into shapes that are judged to be more likely and to eliminate artefacts that
would not be possible in reality. There are many more optimisation variables in the Segment
based approach than there are in the Equation based approach. Distributing the strain data
between the segments is also a relatively time consuming process, taking several times as
long as the final optimisation stage.

For this project, the goal is development and validation of the methods. As such, compu-
tational complexity and run time are not factors that will be used to judge the capabilities
of either method. Qualitative commentary will be given but there will not be a systematic
study. These factors may be of concern should an attempt to be made to implement one or
both methods in a commercial or research tool destined for public release in the future.

If time and computational complexity are discounted, the main difference between the meth-
ods is the degree of constraint. The Equation based approach will result in a highly con-
strained curve with very few degrees of freedom whereas the Segment based approach is by
default unconstrained, with optional constraints added as appropriate. The effects of this
difference will be an area of examination in later chapters. Questions such as whether the
optimiser produces more accurate curves with or without constraints will be answered.
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4.7 Conclusion

Two different Identification Method implementations have been derived and presented.
Each method builds upon the work equilibrium equation derived in Chapter 3 to provide a
practical means by which the unknown stress-strain response can be recovered such that the
energy gap between internal and external work is minimised. The first of the two methods
requires the curve to be defined by one or more equations, the parameters for which are to
be recovered. The second method splits the curve into a large number of segments of which
the arrangement is to be optimised.

The full derivation for each method has been presented along with commentary on use and
a flow chart illustrating the key steps in the algorithm for each method.
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Chapter 5

Artificial Data Set Generation

5.1 Introduction

In order to verify that the proposed Identification Methods are functioning as they are sup-
posed to, it is necessary to test them with datasets and compare the output with a known
correct answer. Although the end goal is to do this with real laboratory data (as will be dis-
cussed in Chapter 6), there are a number of complications with using such datasets. Noise,
experimental error, and even not knowing for sure if the known correct answer is truly rep-
resentative could make it difficult to identify the source of any errors of discrepancies.

To provide initial validation a small number of "handmade" datasets will be produced using
Matlab. Two slightly differing simple shear cases will be presented each of which will con-
sist of a grid of nodes displacing over time, with the required force to produce the specified
movement.

To provide for more complex and realistic test cases a suite of finite element models will be
developed and ran. A FEA analysis allows for the discounting of noise, gravity, and any
other factor that is not explicitly modelled. There is no need to take lens distortion into
account and it can be guaranteed that the simulated models will behave exactly as specified.
The Abaqus FEA software (Dassault Systèmes, 2014) package will be used.

Several FEA models will be run. The simplest will be a simple shear case, which should
match the "handmade" simple shear case and serve as validation for the FEA modelling
process. Aditionally a rotating wall case will be produced, and a rectangular footing case,
the observed peak loading of which can be validated with Terzaghi’s bearing capacity equa-
tion. For each FEA model two different input curves tested (elastic perfectly-plastic, and
the "Vardanega and Bolton" curve as described by Vardanega and Bolton (2011)). From each
model, loading and displacement will be recorded for the external action carried out, and
nodal displacement for the soil mesh will be recorded to allow for computation of internal
work.
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Although noise can be neglected in FEA models, it is reality for datasets produced by actual
laboratory experimentation. As such, any Identification Method that is to be of use must
be able to function with reasonable levels of nose present. To test resilience to noise, the
"handmade" and FEA datasets will be artificially degraded to determine how this affects
recovery of soil properties and to what degree.

This chapter will first describe the input stress-strain responses to be used with the artificial
datasets, the process by which the "handmade" datasets are generated, followed by the FEA
modelling methodologies, and finally the scheme by which the models can be artificially
degraded. Discussion of these generated datasets along with the results of using them with
the proposed Identification Methods will be found in Chapter 7.

5.2 Input stress-strain Curves

Two different soil responses were modelled to provide a range of material properties to
attempt to recover. Elastic Perfectly-Plastic was chosen as it is a particularly simple response,
and the "Vardanega and Bolton" curve was chosen to provide a more complex response. The
chosen curves are described in the following sections.

5.2.1 Elastic Perfectly-Plastic

The Elastic Perfectly-Plastic consists of a linear elastic section, between strains between
strains of 0 and 0.015 followed by a perfectly plastic plateau at shear stress of 90kPa. In
order to ensure the assumptions made during the derivation and implementation of the
Identification Methods are valid, Poisson’s Ratio would ideally be set to 0.5. This value
however causes issues due to the limitations inherent to FEA and as such Poisson’s Ratio
was set to 0.499 potentially allowing for a small amount of spurious volumetric strain.

Figure 5.1 shows the specified stress-strain response.

5.2.2 "Vardanega and Bolton" Curve

The "Vardanega and Bolton" curve, as described by Vardanega and Bolton (2011), can be
plotted using the equation shown below in Equation 5.1. This equation was originally de-
veloped by finding the empiric best fit to a large quantity of experimental data and as such
should be reasonably representative of real soil. The exact curve used is largely unimpor-
tant as the goal is to match the input used for the FEA model with the output from the
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FIGURE 5.1: The stress-strain response used for modelling the Elastic-
Perfectly-Plastic case.

Identification Methods, but it seems more appropriate to use a curve with some geotechni-
cal relevance rather than generate a curve based on a generic equation such as y =

√
x or

similar.

t =
cu

2
εb

s ε−b
sm2

(5.1)

This equation is used with the parameter set shown in Table 5.1.

cu 100kPa
b 0.5
εsm2 0.005

TABLE 5.1: Parameters used with the "Vardanega and Bolton" equation to
generate an artificial stress-strain response

The equation will be used only up to cu, after which a perfectly plastic response will be
assumed. The stress-strain response is reproduced in Figure 5.2.

5.3 "Handmade" datasets

Perhaps the simplest dataset to make is simple shear. This could be done with very simple
hand calculations. Shear strain can be calculated with γxy = 2 · εxy = δu

δy + δv
δx . More in-

formation on the calculation of strains can be found in Chapter 3. For a block of material
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FIGURE 5.2: The stress-strain response used for modelling the "Vardanega and
Bolton" case.

undergoing simple shear as shown in Figure 5.3, shear stress is equal to the movement in
the x direction divided by the height.

By arbitrarily choosing a set of time values, a corresponding set of displacement and strain
values can be chosen. For simplicity, a linear increase in shear strain was used but any
scheme would function for this purpose. Maximum shear strain εs can be calculated based
using the equations derived from Mohr’s circle (see Chapter 3). For this case in which εx

and εy are zero, this will simply be equivalent to εxy At this stage the shear strain values are
known for each timestep but the load displacement values still need to be calculated. The
displacement component is known as it is by definition the same as the displacement of the
soil. To find the load component maximum shear stress t must be found as an intermediary
stage.

As the stress-strain curves that will govern the behaviour of the simple "handmade" model
are already specified, finding maximum shear stress is as easy as reading it off the curve.
A known value of maximum shear strain will allow the corresponding value of maximum
shear stress to be found. The force required to produce such a stress can be found by mul-
tiplying the maximum shear stress value by the x dimension of the block of material. This
can be completed for every timestep allowing for plots of load, displacement, and maximum
shear strain against time. This is all the data required to carry out the Identification Method
process.

The hand calculations above however produce only a single element. If the goal is to have
a dataset that is representative of what would be produced by PIV then many elements will
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FIGURE 5.3: The geometry of the Simple Shear model, as previously pub-
lished in (Charles et al., 2018a)

be needed. The reason "handmade" is in quotation marks is that the actual datasets were
produced using Matlab. A set of nodes were generated in a uniform grid with the nodes
at the top displacing the full amount as calculated by hand and he nodes at the bottom
being fixed. Nodes in the middle will displace proportionally to their location. This grid of
displacing nodes provides a good approximation of PIV data and can be processed as such.
Strains can be calculated from the displacement field followed by, in turn, stress and force.

The exact model created was a block of soil with dimensions 8m by 8m with a grid of 33 by
33 displacement nodes. 50 timesteps were used and evenly distributed over 10 seconds. The
final horizontal displacement of the top row of nodes will be 0.96m, resulting in γxy = 0.12
or εxy = 0.06.

An additionally and slightly more complex scenario that can be generated in this manner
is a split simple shear case. A diagram for this scenario can be seen in Figure 5.4. For this
model both the top and bottom of the soil specimen is fixed with loading applied to a slightly
off-centre horizontal section through the soil. This could perhaps represent the pull-out of
a geomembrane. The scheme regarding overall size, node numbers, and timesteps as used
for the simple shear case will be reused here with the geomembrane at 5m from the top.

Nodal displacements were calculated such that they linearly increase from zero to the peak
value at the geomembrane in each direction. Due to the asymmetry in the model, differing
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FIGURE 5.4: The geometry of the Split Simple Shear model

shear strain values will be found in the top and the bottom with differing maximum shear
stress values obtained via the stress-strain curve for each part of the model. The force will
be the sum of each of these maximum shear stress values multiplied by the x dimension.

The split simple shear case represents a slight increase in complexity over the standard sim-
ple shear case. Simple shear produces a uniform strain field with one value across all el-
ements, whereas the split case has two separate areas with their own uniform strain field
across all elements. More realistic cases will likely have strain fields that are completely non
uniform but this would be prohibitively difficult to calculate by hand and as such FEA will
be used to produce more complex models.

5.4 FEA Modelling

ABAQUS was used to generate a series of artificial datasets generated via FEA. Each FEA
model was relatively simple, consisting of a two dimensional square of soil constructed
using a uniform mesh. The dimensions of both the soil block and the mesh will vary between
the individual models and will be discussed in the following sections.

The two generated soil responses were input using an elasticity model followed by a plas-
ticity model. This was done by first generating a list of strains and calculating the associated
deviatoric stres corresponding to each strain value. The first increment was assumed to be
elastic, with following increments plastic. It should be noted that ABAQUS requires the list
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of stresses and strain to be input as true stress and plastic strain. True stress was found by
multiplying the maximum shear stress values by

√
3, as per the von Mises yield criterion,

and plastic strains were calculated by subtracting true stress over Young’s Modulus from
the original strain value. Finally, Poisson’s ratio was set to 0.499.

This procedure was carried out to allow for direct comparison between an input stress-strain
response and the equivalent output curve recovered using the Identification Method. There
is the possibility that the soil model as input is not fully representative of what was intended,
either due to assumptions in the conversion between different kinds of stress and strain, or
other behaviour that is not defined in such a simple model. Initial experimentation however
indicates that the original input curve can be recovered successfully after using ABAQUS in
this manner. Additionally, a simple shear case was produced using both hand calculations
and FEA, allowing for validation of this process.

The Elastic Perfectly-Plastic response was modelled with only the three values at the begin-
ning, end, and vertex included whereas the "Vardanega and Bolton" response used 25 points
to describe the curve.

5.4.1 FEA Simple Shear Model

As in the "handmade" Simple Shear case, for the FEA Simple Shear case a block of soil
is fixed at the base and loading is applied parallel to the top edge. The block is loaded
purely and uniformly in shear by an amount that is trivial to calculate by hand. A Simple
Shear model was created using ABAQUS for both of the stress-strain responses specified in
section 5.2. Figure 5.3 shows the layout of this model. It should be noted that this model
should produce funtionally the same output as the simple shear "hand" calculation. It has
been completed as a FEA model in order to demonstrate the validity of the FEA process in
producing artificial datasets.

To accurately represent the model within ABAQUS, a fixed boundary condition was placed
along the base, and a constraint requiring uniform movement in the x direction was applied
to the top edge, along with a boundary preventing vertical movement. The mesh used
hybrid 3 node triangular elements, with the mesh having 16 elements in each direction.

Due to the horizontal movement of the nodes along the top edge being constrained to be
uniform, the traditional shear stress for a simple shear case can be modelled with a single
point of actuation. Thus, the node in the top left was programmed to move a total of 0.96m
over 10 seconds. As this is strain based actuation, the forces are unknown and will be calcu-
lated by the software based on the material response. ABAQUS was allowed to determine
how best to split this period into timesteps with an upper limit of 100 with the software
ultimately deciding on 11 for both soil responses.
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Two variations on the simple shear case were produced. First the true simple shear case
in which every node had its movement in the y direction fixed as zero. This is the case
that is functionally the same as the "hand" calculation. The second variation is without this
constraint of y direction movement. Both the loaded edge is still rigid and unable to move in
the y direction, however a more complex displacement field is produced within the middle
of the model. The timesteps were chosen in the same way, with ABAQUS deciding on 21 for
the "Vardanega and Bolton" response and 14 for the elastic perfectly-plastic response.

5.4.2 Rotating Wall Model

The second model that was implemented in ABAQUS is slightly more complicated. A block
of soil is supported along the base and right hand side, with the left hand side rotating about
a fixed point on the base. The soil is squashed by this wall rotating inwards and is forced to
move upwards. This model will result in significantly more complex stress and strain fields
than the simple shear case. Again, the model was implemented in ABAQUS for both of the
previously defined stress-strain responses. Figure 5.5 shows the layout of this model.

FIGURE 5.5: The geometry of the Rotating Wall model, as previously pub-
lished in (Charles et al., 2018a)

Again, the mesh used 16 triangular elements to a side. Unlike the simple shear case, hybrid
6-node triangles were used in place of 3-node triangles. Although it is ultimately unimpor-
tant as the goal is not to accurately model a rotating wall, but to simply get an internally
consistent dataset, it was decided that the more complex deformation pattern provided by
the higher order elements would be more interesting and useful for testing the Identification
Methods.
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The right hand boundary, as well as the base were implemented using simple supports, with
the base allowed to move horizontally and the right hand side allowed to move vertically.
The wall was modelled as a beam element, in which each node was fixed relative to its
neighbours. As these nodes formed the boundary of the soil, this had the side effect of
modelling the wall as fully rough.

For this model, load based actuation was used. Loading was applied as a horizontal point
load to the node at the very top of the rotating wall. As before, the load increases linearly
from 0 to 1MN for the "Vardanega and Bolton" curve and from 0 to 750kN for the elastic
perfectly-plastic curve. The loading was applied over 10 seconds with ABAQUS deciding
to use 21 timesteps for the "Vardanega and Bolton" response and 11 timesteps for the elastic
perfectly-plastic response.

5.4.3 Strip Footing Model

Perhaps the most complex of the three datasets generated is the strip footing. In this case,
a footing is pressed into a large area of soil resulting in downwards movement under the
footing, sideways movement going away from it, and upwards soil movement to the sides
of the footing. This model is also representing the same mechanism that will be used in the
laboratory to generate datasets from physical modelling (see Chapter 6). The mesh features
20 hybrid 6-node triangles to an edge. The model was implemented in ABAQUS and a
diagram showing the geometry can be examined in Figure 5.6.

FIGURE 5.6: The geometry of the Rectangular Footing model.
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The boundaries on the base and right hand side are simple supports, allowing sliding along
the boundary but not past it. The left hand edge is a symmetry boundary. This prevents
movement in the x direction as well as rotations around the z axis (the z axis being into the
page), but allows all other relevant degrees of freedom. The nodes representing the footing
are, as with the previous models, constrained to move as a single rigid object.

Loading was applied as a point load to the node directly above the mirror line. The mirror
does not affect energy equilibrium as doubling the soil area via the mirror would also double
the load, so for the purposes of the Identification Method process, the mirror can be ignored
and the method applied to just the single half. A strain based actuation was applied to the
footing node on the mirror line and displacment was increased linearly from zero, to 2m
for both the "Vardanega and Bolton" soil response and the elastic perfectly-plastic response.
The resultant load on this node will be calculated based on the soil rsponse. ABAQUS chose
to use 30 timesteps for the "Vardanega and Bolton" response and 14 for the elastic perfectly-
plastic response spread over 10 seconds.

5.5 Artificial Noise Generation

Datasets obtained during physical modelling will not be perfect. Many such sources of noise
exist that will adversely affect the quality of the recorded data.

The camera image is a potential source of noise. Although measures can be taken such as
ensuring good lighting will help to mitigate this, the issue is likely to persist to some degree.
The PIV process will additionally have potential to introduce noise. The DIC process as
discussed in Chapter 2 is used to track the movement of patches of soil by finding a new
location in future images that matches best. Although the methodology is good, there is
an upper degree of precision possible, and there is also the possibility for anomalous wild
vectors.

To more realistically simulate datasets derived from physical modelling, the artificial datasets
described in this chapter will be purposely degraded with the intention to assess the effects
of noise both qualitatively and quantitatively.

This section will first describe the methodology by which noise will be applied and then
discuss what effects noise is expected to have on internal energy calculations.

5.5.1 Noise Generation Methodology

Noise is random and unwanted variations in a signal, which in terms of this project ulti-
mately means random variations to the measured displacement field. As such, to artificially
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degrade the FEA datasets with noise, the recorded nodal displacements must be altered by
a random value. The noise will be applied to the displacement values for each node in each
timestep separately in the x and y direction.

It is necessary to give thought to how best to do this, not only to be representative to real
data, but to allow for a systematic quantitative study of the effects of noise. The amount
of noise added will also be varied. A trivially small addition to the dataset will likely have
no effect, but if the random variations are equivalent to or greater than the actual nodal
displacements, the data will likely be unusable. The signal to noise ratio will be a key factor
to consider.

The meaning of randomness is also a factor of consideration. If a random addition of x
axis movement between −10mm and 10mm were to be added to an arbitrarily large set of
nodal displacements, a decision would have to be made as to whether the random numbers
are to be distributed evenly as per a uniform distribution, or instead distributed such that
most nodes are near the middle (0mm in this case) with few near ±10mm as per a normal
distribution. Figure 5.7 shows a representation of these distributions.

FIGURE 5.7: A diagram showing a normal distribution (left) and a uniform
distribution (right).

It is most likely that normal distribution is most representative of the noise generated during
physical modelling, however both distributions will be trialled.

Now that the type of noise has been examined, the point raised regarding the amount of
noise can be addressed. As any noise generating function will be implemented in Matlab,
the functions available for each kind of noise will determine how this is to be specified. For a
uniform distribution, the "rand" function will be used, returning a random number between
0 and 1, which can be used in the equation r = rlim ∗ 2 ∗ (rand − 0.5) to give a random
number between ±rlim.

For a normal distribution the function "normrnd" will be used. This function takes a mean
value and a standard deviation value as an input. Mean will be zero, whereas standard
deviation will be 1

3 · rlim. Standard deviation is a statistical term determining variance in
a set of data, and for a normal distribution, 99.7% ≈ 100% of values are found within 3
standard deviations of the mean. Using the aforementioned Matlab functions in this way
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allows for the direct comparison between the two random distributions, with noise between
±rlim for each method with only the distribution changing.

The value for rlim can be adjusted to vary the amount of noise added. To link this to the
concept of signal to noise ratio, the mean observed change in displacement within an FEA
dataset can be calculated, and a ratio of this value can be used as rlim. A ratio of 0 would be
no noise added, and a ratio of 1 would be a case in which the magnitude of random noise is
equivalent to the actual observed displacements, however the datasets are likely to cease to
be meaningful much before a ratio of 1 is reached.

5.5.2 Prediction of the Effects of Noise

With either of the two noise addition methodologies, the mean noise added to a large num-
ber of nodes would be 0. This would also be the case for noise from physical datasets, note
however that this is different for systematic error which is not considered in this section in
which the average error is likely to not be 0.

The mean added displacement due to noise being zero does not imply that the overall effect
on the calculated internal energy will also cancel out. As per the equations regarding strain
calculation from a triangular element in Chapter 3, strains can be calculated from displace-
ments using Equation 5.2, in which the LHS contains the strain terms in the x, y, and shear
directions and the RHS contains the strain-displacement matrix [B

¯
] and the displacement

vector for points 1 to 3. The contents of [B
¯
] are discussed in depth in Chapter 3 and relate

to the original dimensions of the undistorted triangle but are unimportant for the current
discussion.

ε =

 εx

εy

γxy

 = [B
¯
]



u1

u2

u3

v1

v2

v3


(5.2)

An important point to raise is that total strain due to actual displacement and noise dis-
placement can be found by either summing both displacement values and calculating strain
in one step, or by calculating actual strains and noise strains and summing these. Equation
5.3 shows this relationship, where εxt, εxa, and εxn for instance represent the total, actual,
and noise values of εx
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(5.3)

Equations 5.2 and 5.3 demonstrate that the noisy strain field is in fact the "actual" strain field
with an extra noise field added on. The noise field can be examined separately.

As stated previously, the average displacement added due to noise is 0 in both the x and y
directions. It would follow that the average values for εxn, εyn, and γxyn are also 0, with the
distributions of these terms being the same as the distributions for the displacements.

Internal work was formulated in Chapter 3 not in terms of εx, εy, and γxy but instead in
terms of εv and εs, volumetric strain and maximum shear strain. The equations for these
terms, reproduced here for ease of readability are shown in Equation 5.4 and 5.5.

εv = εx + εy (5.4)

εs =

√(
εx − εy

2

)2

+ ε2
xy (5.5)

Of note is that should the mean strain in the x and y direction be zero, the mean volumetric
strain should also be zero. This makes intuitive sense as displacement nodes are shared by
several triangles. Movement of a node may increase the size of one triangle while shrinking
another, with the overall volume for the whole arrangement being relatively unchanged
should there be a sufficiently high number of points. Figure 5.8 illustrates this point.

FIGURE 5.8: A diagram illustrating how the addition of noise to a displace-
ment node could cause no overall volume change.
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Although the total volumetric change due to noise is zero, the energy is not necessarily zero
and will depend on which constitutive behaviour has been modelled. If, for instance, it takes
more energy to compress one triangular element than is recovered by the decompression of
another, there may still be a net spurious expenditure of energy due to noise with regard to
volumetric strain. For this project, the simplification of ignoring volumetric strain has been
taken as soil behaviour is assumed to be cohesive and undrained. Although elemental vol-
umetric strain due to noise will be present, it is currently not particularly important. Should
a different model be used for the Identification Method procedure in the future dealing with
this strain may become relevant.

Maximum shear strain however is an entirely different situation. In Equation 5.5, εx, εy,
and εxy are raised to the power of 2 before being square rooted. This means the value of
maximum shear strain will always be positive. It will typically be larger should the noise be
added via the uniform distribution rather than the normal distribution method as a higher
percentage of noise is further from the mean of zero. Even in the case shown in Figure 5.8
in which no volumetric strain takes place, every triangular element would see additional
positive shear strain due to the added noise.

Again, the effects on energy will depend on how exactly the Identification Method is mod-
elling the soil behaviour. Elements that are being loaded, and moving along the stress-strain
curve due to actual strains will move further along due to "noise" strains and elements be-
ing unloaded, should the model count this as negative energy, will move back less than they
otherwise would. Noise will always result in higher maximum shear strains being observer
than what is in reality happening.

As the goal of the Identification Methods developed during this project is to recover the
stress-strain curve, the effect of noise on the recovered curve is an important factor to con-
sider. The equation for work equilibrium, with terms cancelled due to assumptions about
the principal angles and nil volumetric strain (see Chapter 3 for details), is reproduced as
shown in Equation 5.6. External work is on the RHS which is twice the integral of the force
(P) displacement (u) curve for timestep j, and Internal work is on the LHS which is the
integral of the maximum shear stress (t) maximum shear strain (εs) curve for timestep j
multiplied by element volume Ve and summed for all elements E.

∫ uj

uj−1
P du =

E

∑
e=1

(
2 ·
∫ ε

j,e
s

ε
j−1,e
s

t dεs ·Ve

)
(5.6)

As demonstrated, for elements being loaded noise will increase measured maximum shear
strain by some degree. The start and end of the stress-strain integral in Equation 5.6 will be
increased. Although the exact stress-strain curve shape, and random chance must be taken
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into account, this will typically increase the area under the curve for any curve where stress
increases with strain. A sketch showing how such a movement would increase the area
under the curve for a timestep is shown in Figure 5.9.

FIGURE 5.9: A diagram illustrating how the addition of noise could increase
the area found by integrating the stress-strain curve.

As internal work for a timestep is the area under the curve summed for each element, such
a change due to noise would result in an increase in internal work. As energy equilibrium
is enforced, and external work is unaffected by this manner of noise, internal work must
also not change. As maximum shear strain is increasing, shear stress must decrease. The
addition of noise will cause the curve, and ultimately its cu value to be lower in order for the
Identification Method to enforce energy equilibrium.

It would also follow that the higher amounts of noise added to the displacement field will
result in greater reductions of cu and the height of the stress-strain curve. Experimentation
with the FEA derived artificial datasets described in this chapter will be used to determine
the validity of this statement. Understanding the effects of noise will also be of use with
diagnosing any issues with real physical modelling derived datasets.

5.6 Conclusion

This chapter has demonstrated the methodology by which a range of FEA models have
been used to generate artificial datasets with which the proposed Identification Methods
can be tested and validated. Additionally, a methodology by which noise can be added
to artificially degrade these datasets to better resemble real data has been developed, with
thought given to allowing for systematic application and measurement of this phenomenon.

Finally, an informal proof has been given that increasing the amount of noise in a dataset
will lower the recovered stress-strain response. Testing this hypothesis will take place in
Chapters 7 and 8.
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Chapter 6

Physical Modelling Data Set
Generation

6.1 Introduction

To validate the Identification Methods specified in Chapter 4 in a realistic manner, it is nec-
essary to obtain high quality physical model test data through laboratory experimentation.

Whereas perfect FEA derived data will, by definition, be perfect, physical model data will
suffer from noise, friction, calibration issues, and numerous other factors that would not be
apparent in artificial data.

It would follow that the physical modelling test data that would produce the best results us-
ing the Identification Methods would be as close to perfect as possible, however the methods
ability to cope with less than perfect data is something worth assessing. A method that only
works with extremely high quality data is still of value, but of less value than a method able
to robustly deal with noise etc.

As such, the laboratory schemes presented in this chapter will aim for high quality data
based on the best practices within the field for obtaining PIV data from physical modelling.
I.e. every piece of equipment and method will be commonly used for physical modelling
with no special alterations to facilitate the Identification Methods.

The end goal of such an approach is that researchers would be able to implement an Identi-
fication Method as an additional stage in arbitrary physical testing with little to no change
to the approach they would otherwise take.

To acquire the required datasets, a number of plane strain footing tests will be carried out at
1g, with digital cameras in place for PIV data acquisition. The Identification Methods will be
used to recover a stress-strain response, which will be compared to soil properties obtained
through a series of more traditional element tests.
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The purpose of the laboratory testing can be summarised as follows:

1. Obtain high quality PIV data from 1g plane strain footing tests on fine-grained soil,
loaded at a constant rate of strain at an undrained loading rate.

2. Determine the material properties, undrained shear strength and stiffness, and the
stress-strain curve such that they may be compared with the software output.

The rest of this chapter will describe in detail the equipment and methodologies required to
achieve these aims.

6.2 Equipment

The following sections provide a detailed description of all the equipment used, along with
commentary of the decisions made, benefits and drawbacks, and necessary compromises.
Where appropriate, calibration data will be provided, and images of apparatus will be given.

6.2.1 Box

The testing box consists of a modular aluminium frame of dimension 600 by 400 by 200mm.
The box is attached to a baseplate allowing for movement by forklift and is rated for cen-
trifuge testing, although current testing will be limited to 1g.

The modularity of the frame allows for the larger 600 by 400mm faces to be replaced de-
pending on current usage. During consolidation, these faces will be aluminium, whereas
during testing they will be perspex windows to allow for acquisition of imaging data from
both sides of the box.

The windows will be manufactured out of perspex of approximate thickness 55mm, with
additional sacrificial targeting windows of 3mm thick. Sacrificial windows will allow for
the addition of target calibration markers without causing damage to the larger and more
expensive structural windows.

The box features integrated draining channels and outlets to allow flow during consoli-
dation. To further enhance the box during consolidation, an aluminium extension can be
securely fastened to the top of the box to allow for an additional 200mm in height. A top
plate used during consolidation with further drainage channels is also available.

The horizontal size of the box allows for two tests to be run side by side, with each being
given half the area. This allows for twice as many datasets to be produced per consolidation
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than if only one central test were carried out, as well as allowing identification of any natural
variation across the specimen.

The base plate on which the box is mounted features numerous additional mounting points
to allow other equipment such as cameras and lighting to be securely fastened.

6.2.2 Targeting Windows

As mentioned in the previous section, the box is designed to accommodate non-structural
sacrificial targeting windows. The purpose of PIV targets is twofold:

1. Allow for conversion between pixel and world displacements by means of knowing
the world distance between fixed points within the image.

2. Filter global errors from displacement, i.e. if all targets are measured to displace by a
uniform amount, it is likely due to camera movement and can be subtracted from soil
displacement. Target points are assumed to be fixed.

Some thought was given to the arrangement of the target array. Many examples from liter-
ature have used a uniform grid of target points, however points in the way of "interesting"
parts of the soil will result in a loss of data. In cases of purely qualitative analysis, this is no
problem, however for this project the data is needed for further processing. As such, the tar-
get points were arranged in a double layered square around the edge of the area of interest.
Although somewhat arbitrary, the layout was chosen to ensure there were plenty of points
without obstructing the area adjacent to the footing. The number of points, 88 per footing,
is high, but it is better to have too many than not enough. In the event the large number of
control points causes issues, e.g. slows computational times, it is possible to discount some
of them and use a smaller subset for calibration and analysis.

The target window was laser etched with location markings upon which targeting stickers
were stuck. The stickers were purchased from a 3D imaging supplier and featured a white
circle within a black ring of diameter 4mm. The stickers were slightly asymmetrical (in that
the circles were not centered on the sticker center) and very hard to place perfectly by hand.
Fortunately, it is possible to calculate their exact locations using photogrammetry; this will
be discussed in later sections.

A total of four target arrays were prepared across two targeting windows. As mentioned
previously, images will be taken from both sides of the box, with space for two side by side
tests.
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6.2.3 Consolidation Rig

Soil will be consolidated within a large hydraulic press. The equipment, custom built for
the laboratory in which testing takes place provides sufficient force to prepare the samples
needed for this series of tests (Hakhamaneshi et al., 2016).

Control of the applied force is manual, with a lever to move the press up and down, and a
dial to control the force. This process is somewhat difficult due to the only feedback being
from the load cell, so it is important to alter loading slowly and conservatively, particularly
for the earlier stages.

6.2.4 Loading Rig

Loading will be applied using a 1g 3 axis robot. The robot is a bespoke piece of equipment
already available prior to starting this project. Primarily used for automated sand pluvia-
tion, the robot features linear actuators in 3 dimensions and hydraulic loading. It is fully
digitally controllable via LabView programming and has ample space for the large sample
boxes used with sufficient clearance for all imaging apparatus.

Although the loading capacity of the robot exceeds the required amounts, the robot is not
bolted to the floor. The upper limit of soil strength able to be tested is therefore the weight of
the robotic actuator. Although this weight is not known to the author, it is sufficiently high
that it should be inconsequential.

A shroud was constructed around the robotic actuator in order to allow precise lighting
control. The laboratory in which the testing will take place has many large windows and
high ceilings. Not only would natural lighting cause reflections in the sample box windows,
but would be highly inconsistent depending on the time of day and the weather outside. By
blocking natural lighting with the shroud, made of black plastic sheeting, the sample will
be illuminated only by artificial LED lighting.

One factor of importance is the speed at which loading is applied. The robotic actuator
allows it’s operator to specify an actuation speed. The choice of actuation speed should
be chosen to ensure undrained conditions are achieved. Randolph (2004), proposed the
following equation to determine the soils drainage status using a dimensionless velocity
value:

V =
v f · D

cv
(6.1)
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In which V is the dimensionless velocity value, v f is the actual displacement value, D is
the diameter, and cv is the coefficient of consolidation. It should be noted that diameter D
was designed for use with circular objects penetrating soil. For the footings used in this
laboratory experiment, width will be used in place of diameter.

The dimensionless velocity value V required for drained or undrained behavior has been
experimentally derived by multiple authors. Lehane et al. (2008) found drained conditions
for V ≤ 0.01 and undrained conditions for V ≥ 10. House et al. (2001) quotes several values
from literature: drained at V < 0.01 with undrained at V > 30, and drained at V < 0.2 and
undrained at V > 20. Stanier (2011) used values of V < 0.01 and V > 20 for drained and
undrained conditions respectively to ensure undrained behavior of helical pile tests.

The range of dimensionless velocities that could mean undrained conditions vary by a rea-
sonable amount, literature indicates that the value may be specific not only to the soil in
question but also the exact test carried out. It would be a significant undertaking to empir-
ically find the V resulting in undrained conditions for rectangular footing tests on clay, so
the best way to ensure undrained conditions is to take a value, and ensure it is exceeded by
a reasonable safety margin.

As actuation velocity is otherwise arbitrary, values would ideally taken such that there is
no danger of drained conditions even with the most conservative estimates of the required
V. This however must be balanced with the desire to obtain high quality imaging data.
Slower footing displacements will give more camera frames per unit of movement. Based
on the values from literature, it was therefore decided that V must exceed 20. As there are
two footings of different sizes, differing drive speeds could be chosen for each, however for
simplicity a single drive speed will be selected that meets the requirement for both footings.

6.2.5 Footings

Two footings have been manufactured from 20mm thick aluminium. Each will have a length
of 200mm, equivalent to the full depth of the box to simulate plane strain. The first footing
will have a width of 20mm and the second footing will be of width 40mm. These widths
correspond to areas of 4000mm2 and 8000mm2 respectively. Care will have to be taken to
ensure the actuator loading, footing areas, and soil strength are suitably matched.

The relatively small widths of the footings ensure there is ample room within the box such
that edge effects can be minimised, even if multiple tests are run on the same soil sample.

Each footing features an M10 threaded connection at the centre point to allow attachment to
loading apparatus. Two additional M5 threaded connectors were milled at the ends of the
footings to provide utility in case additional equipment is to be added in future testing.
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The edges that will contact the perspex window were trimmed immediately prior to testing
to allow the footings to fit, as a very small tolerance was specified. Additionally, rubber
"wipers" were added to the edges to minimise the chances of soil moving between the foot-
ings and the wall. A photograph of the two footings can be examined in Figure 6.1.

FIGURE 6.1: The two footings that will be used during testing.

6.2.6 Measurement Devices

A number of measurement devices were used throughout both the consolidation and testing
phases. This section will summarise the equipment used.

During consolidation the following devices were used:

• 25 ton load cell. This load cell was chosen based on availability of equipment. Its
capacity far exceeds what is necessary for consolidation, with loading unlikely to reach
10-20% of the maximum measurable amount. This is unfortunate as signal noise will
be significantly higher than what would be observed with a more suitably specced
device. As it is used for consolidation, a process taking place over a timescale in the
order of a week, this should have little effect in later stages as the noise will be small
compared to the applied load, however for earlier stages, extra care must be taken to
not apply excessive loading and squeeze the soil slurry out of the box. Calibration
data for the load cell can be examined in Figure 6.2.

• A draw string LVDT will be used to measure consolidation displacement. This choice
is standard and has but a few points of discussion to mention. The LVDT was securely
clamped to the consolidation rig with the end of the draw string screwed to the con-
solidation plate within the soil box. It is important to ensure there is enough capacity
as it would be disastrous for the length of the draw string to be exceeded. Calibration
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was carried out by extending the draw string to a known amount against a metre rule
and recording the output voltage. Accuracy is limited as a metre ruler cannot accu-
rately measure less than a millimetre, however due to the long draw length, significant
number of readings, and the accuracy of the consolidation displacement data not be-
ing particularly important (to the nearest millimetre is fine), the method was deemed
sufficient. Figure 6.3 shows the graph of the calibration data recorded for the draw
string LVDT

Additionally, during the consolidation phase, manual readings of displacement are to be
taken several times a day with a tape measure. Although significantly less useful than data
recorded on the order of seconds, this serves as a backup incase the PC recording the con-
solidation data were to suffer from a crash or data corruption. This measure is particularly
prudent to take as the consolidation process will take in excess of one week.

During testing the following devices were used:

• A 2kN in-line load cell will be used used to measure force between the actuator and
the footing. The capacity of the loacell is ideal for the footing sizes and desired soil
strengths, with enough headroom that it should be reused should further testing with
stronger soil or larger footings be required. The threading on the load cell is M10 which
matches the specified threading in the centre of the footings and the actuator, allow-
ing for easy assembly. The load cell was calibrated using a Budenberg hydraulic dead
weight tester. In this apparatus, a known set of metal disc weights is suspended by hy-
draulic pressure which is equally applied to the load cell, with voltage then recorded.
It should be mentioned that this methodology doesn’t allow for the recording of cal-
ibration data while the load cell is in tension. Although tension is likely of little im-
portance during testing (the exception being during pullout of the footing from the
ground), the assumption that tension voltages follow the same trendline as compres-
sion will have to be made. A photograph of the Bundenburg hydraulic dead weight
tester can be seen in Figure 6.4. The recorded calibration data for the 2kN load cell can
be seen plotted in Figure 6.5.

• Three LVDT sensors are to be used to record displacements. Two will be mounted
to an extruded aluminium frame above the footing to record displacement at each
end, allowing for the identification of differential displacement. The third LVDT will
be attached directly to the actuator. Although the actuator robots movement will be
specified, this LVDT will serve to record the actual movement, which may or may not
be equal to the input value. Each LVDT will have a range of over 20mm. It may be
necessary to reposition them in between testing such that there is enough stroke for
each test. The LVDT measuring actuation for instance, will not be able to be put in
place until the actuator is in position at the top of the soil. Calibration for the LVDTs
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was carried out using a micrometer screw gauge. The LVDT is securely fastened in a
jig such that turning the screw gauge will depress the sensor. A digital dial is used to
record true displacements accurate to a hundredth of a millimetre, with output voltage
from the LVDT also recorded. Although identical models, each of the three LVDTs
will be calibrated separately, as they are almost certain to require different calibration
values. A photograph of an LVDT within the micrometer screw gauge can be seen in
Figure 6.6. Plots of the calibration data for the three LVDTs (labelled LVDT 0, LVDT 1,
and LVDT 2) can be seen in Figures 6.7, 6.8, and 6.9.

FIGURE 6.2: Calibration data for the large 25 ton load cell.

FIGURE 6.3: Calibration data for the draw string LVDT.
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FIGURE 6.4: Bundenberg hydraulic dead weight tester. The weight discs can
be seen in the centre of the image.

FIGURE 6.5: Calibration data for the 2kN load cell.
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FIGURE 6.6: The micrometer screw gauge used to accurately measure dis-
placement during LVDT calibration.

FIGURE 6.7: Calibration data for LVDT 0.
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FIGURE 6.8: Calibration data for LVDT 1.

FIGURE 6.9: Calibration data for LVDT 2.
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6.2.7 Camera and Lighting Setup

Two industrial cameras will be used simultaneously to image each side of the box. The
chosen camera system is the Basler Pilot piA2400-17gc. Table 6.1 provides an abridged sum-
mary of the camera specifications as provided in the marketing material. The data is taken
from the website of a distributor (SodaVision, 2018):

Resolution (H x V pixels) 2454 px x 2056 px
Pixel Size horizontal/vertical 3.45 µm x 3.45 µm
Frame Rate 17 fps
Interface GigE
Sensor Vendor Sony
Sensor ICX625
Sensor Type CCD
Sensor Size (mm) 8.47mm x 7.10mm
Max. Image Circle 2/3 inch
Lens Mount C-mount

TABLE 6.1: Camera specifications for Basler piA2400-17gc

The camera was selected from those available within the laboratory stores due to its high
resolution and frame rate. Another advantageous feature is the GigE ethernet connection
allowing the camera to be easily linked with a computer, either directly or in the case of a
multi camera setup, via a network switch or router.

The C-mount lens mount allows for any compatible lens to be used regardless of lens man-
ufacturer.

The lens chosen was the Ricoh FL-CC0614A-2M. Table 6.2 provides an abridged summary
of the lens specifications as provided in the marketing material. The data is taken from the
website of the manufacturer (Ricoh, 2018):

Format size 2/3 inch format
Focal length 6mm
Maximum aperture ratio 1:1.4
Iris range 1.4-16
Lens Mount C-mount
Horizontal angle of view (2/3 inch format) 71.2 °

TABLE 6.2: Lens specifications for Ricoh FL-CC0614A-2M

The chosen lens has a fixed focal length and rings to adjust the focus and iris. The adjustment
rings features screws to securely lock the settings in place, this is particularly useful the
ensuring all photos taken will be uniform.
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The camera and lens setup will be fixed to an extruded aluminium frame that in turn is fas-
tened to the baseplate. This allows for the camera location and rotation to be fixed through-
out testing as changes would be adverse to the collection of high quality PIV data. Some
small movements due to vibration are still possible but should be minimised.

The camera frames will allow for the cameras to be moved in the horizontal direction. As
the box has room for two tests to be performed side by side, the camera position will be
adjusted between tests such that the second test can be carried out.

Lighting will be provided by two LED lighting panels powered wired into a variable voltage
power supply. Limitations in available equipment means only one light will be used on
each side of the sample, two would have been better, but this will be mitigated by use of
a reflective surface to increase uniformity of lighting. As the tests are carried out at 1g, no
structural assembly is needed to secure the lighting. The exact locations, along with power
setting will be determined by trial and error prior to the test beginning. Figure 6.10 shows a
photograph of one of the identical pairs of cameras that will be used to collect image data.

FIGURE 6.10: One of the cameras used during testing.

Testing the camera setup indicates that when both cameras are taking photos simultaneously
a frame rate of approximately 1 FPS is achievable.

6.2.8 Computing and Networking equipment

The computer used for data acquisition was a Dell manufactured desktop featuring an Intel
i7-3770 processor, 8gb of ram, a gigabit ethernet port, and two 1tb mechanical hard disk
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drives in a RAID 1 array.

The exact specifications are not important in terms of experimental method and/or repeata-
bility but a few factors stand out as worth mentioning. Firstly, a significant amount of image
data will be produced at a fairly fast rate. A processor and hard drive with the speed to keep
up is essential. A solid state drive would have been desirable to allow for faster data read
and write but was not present in the system controlling the actuator. The gigabit network
port is also essential to allow for the camera data to be obtained. In an ideal world the com-
puter would have multiple ports, as the data stream from a single camera could saturate a
gigabit link, and two cameras are to be used. The frame rate will therefore be lower than it
could have been but is still acceptable.

It was decided that due to the large number of ethernet devices being used a local network
would be created rather than use the university campus wide network. This allowed for full
admin level access to the network devices that otherwise would not have been available. A
cheap TP-link router was used along with an 8 port gigabit unmanaged switch produced by
Netgear.

6.2.9 Data Acquisition

Data from the sensors was acquired using National Instruments data acquisition equipment.

A NI cDAQ-9188XT chassis was used, featuring hot swappable slots for up to 8 I/O mod-
ules and an Ethernet port allowing for communication with the control computer via an IP
network.

Several I/O modules were used. For load cells, both during consolidation and testing, a
NI-9205 C Series Voltage Input Module was used. This module allows for measurements
between ±10 V. It features a D-sub socket allowing pre wired sensors to be swapped out.
The module has an aggregate sample rate of 250000 samples per second.

LVDT output was measured using the NI-9237 C Series Strain/Bridge Input Module. This
device measures between ±25 mV. The module has four channels and such the three LVDTs
were wired to the D-sub socket. The sample rate is 50000 samples per second for each
channel.

6.2.10 Control Software

LabView was used to manage both the consolidation and main test procedure.
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During consolidation displacement and loading were recorded and plot in real time in cal-
ibrated units so it was clear what was going on. As the consolidation rig required manual
control this was the only feedback available to determine the correct loading amount.

Testing required two instances of LabView to run simultaneously. The first was the pre-
existing control panel for the three axis robot used for actuation. Relative or absolute move-
ment could be specified with a given velocity, and manual movement was also possible.
A nudge function allowing movement of a single millimetre was used for final alignment.
The second LabView instance recorded sensor data and controlled the cameras. This Lab-
View was ran for around a minute prior to commencing actuation to ensure no data is lost
(i.e. from attempting a simultaneous start) and also to allow for a baseline dataset with no
expected movement.

6.3 Sample Preparation

Clay powder was mixed at a one to one ratio with water by mass. Imerys Speswhite was the
brand and product chosen, which the manufacturer, Imerys (2018), describes as "... a highly
refined kaolin of ultrafine particle size and high brightness from deposits in the South West
of England." The resulting slurry required further processing as detailed below to ensure it
is both representative and usable for PIV.

6.3.1 Consolidation

As specified, the soil used initially consists of powder mixed with water. In order to build
a representative model, this slurry must be consolidated. In this process an increasing dis-
tributed load is applied to the slurry within the sample box.

The sample box and the top plate used for consolidation feature drainage holes and tubing
to allow water to escape. Permeable Vyon filters are placed at the base of the sample box
and on top of the soil to minimise the amount of kaolin that will escape. The ends of the
tubes are submerged in a bucket of water to prevent air getting into the sample.

The consolidation press is used along with a large load cell and draw string LVDT. These
pieces of equipment have been described in previous sections.

After filling the box with soil slurry and assembling the top plate, the sample is left for 24h
to consolidate under its own self weight. The following day, a small load is applied which
will be doubled every 24 hours until the desired consolidation pressure is reached. After this
final pressure is achieved, the sample will be unloaded and allowed to rest for 24 hours. In
this phase the sample will reabsorb water so it is important to ensure the drainage tubes are
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submerged. Next, the metal walls of the sample box can be removed, the sample trimmed
and flocced (see following section), and the perspex windows put in place. A final 24 hours
of consolidation at the peak pressure will now be undertaken, after which the specimen is
ready for testing.

Variations on such a schedule are acceptable (i.e. timing to ensure testing takes place on
a certain day), provided the sample is not allowed to dry out. Additional time under the
press should cause negligible further displacement, whereas a prepared sample will dry out
if left long enough. A final consolidation pressure of 200kPa was used for all specimens. The
consolidation scheme is given in Table 6.3.

Day Consolidation Pressure
0 Self Weight
1 6kPa
2 12kPa
3 25kPa
4 50kPa
5 100kPa
6 200kPa
7 Unload
8 Trim, Flock, then 200kPa
9 Test

TABLE 6.3: A table showing the sheme by which specimens were consoli-
dated.

6.3.2 Floc

After trimming the specimen, floc was applied to provide texture that the PIV process is able
to identify or track. Floc most resembles the artificial grass powder that is commonly used
with model railways, indeed this or any similar substance would function adequately.

The exact floc used was 07206 Flock, dark green, manufactured by Noch.

To apply floc to the specimen, the aluminium side plates used during consolidation must
be removed from the box. Unfortunately as specimen could be only be tilted sideways to
around 30°sprinkling floc roughly uniformly more challenging, particularly if the centrifuge
in the laboratory was in use as there would be a substantial breeze. Floccing was achieved
by lightly sprinkling floc whilst gently fanning it onto the angled soil surface where much
will stick to the damp clay. This will be carried out on both sides of the specimen.

After floccing, the targeting windows and structural windows will be bolted in place. An-
other round of consolidation will be carried out to ensure uniformity along the freshly pre-
pared top and sides of the specimen.
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A photograph of the flocced sample can be seen in Figure 6.11

FIGURE 6.11: A soil sample after floccing with perspex windows in place.

6.4 Main Test Procedure

Testing will be carried out using the equipment and techniques described in this chapter.
This section will assume the equipment had been assembled and is filled with a prepared
soil specimen. The main test procedure is as follows:

1. Move box of consolidated soil into place within the actuation rig using a manual fork-
lift. Placement should be square to the rig as much as possible. Spacing washers or
similar miscellanea can be used to level the soil box along with a spirit level.

2. Attach the required footing via a load cell to the actuation rig. Put LVDTs in place
at either end of the footing, and an additional one to measure displacement of the
actuation rig.

3. Use LabView controls to move footing into place at the top of the box above the loca-
tion of the first footing site.

4. Measure friction between the footing and window by recording force and displace-
ment as the footing is moved into contact with the soil.

5. For the final approach and touchdown, images should be recorded incase of accidental
soil displacement. The goal of the touchdown stage is to have the footing flat and fully
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in contact with the soil. The load should stop either when the footing is visually in
contact or immediately when a non-negligible load is recorded.

6. With the shroud closed, and all cameras and sensors recording, wait for approximately
one minute of no movement such that there is data to use as a reference point, then
instruct the actuation rig to displace the footing by the desired amount into the soil. It
is important for the operator and any bystanders to not move near the experiment in
order to avoid vibrations travelling though the floor and causing camera movement.
Although this is likely to only be a minor effect, better safe than sorry.

7. Pullout data can similarly be recorded. Although there are no planned uses at this
time, this data could potentially allow for a more complete picture should future work
be carried out. Repeat step 6 with the actuator set to move the footing upwards and
out of the soil. The load cell may record negative load due to suction forces.

8. Use LabView to move the actuator into place above the location for the second footing
test. If necessary, replace the attached footing with the footing required for the second
test.

9. Repeat steps 4 to 7 for the second footing test.

10. Carry out supplementary tests, or alternatively wrap the soil in clingfilm in order to
preserve it for supplementary testing at a later date. Shear vane testing can be per-
formed immediately, whereas supplementary tests requiring cores or samples to be
taken can wait a small number of days provided the soil is suitably preserved.

11. After all testing is complete and samples taken, the soil box can be disassembled and
cleaned, the soil removed, before being reassembled for future testing.

6.5 Particle Imaging Velocimetry

Particle Imaging Velocimetry (PIV) is the process by the movement of patches of soil can be
identified via Digital Image Correlation (DIC). The history and workings of such a method
are described in the literature review (Chapter 2), along with a detailed guide to the math-
ematics behind photogrammetry. This section will therefore not re-tread ground already
covered and instead focus on how PIV and photogrammetry are utilised in the generation
of physical model dataset generation.
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6.5.1 GeoPIV-RG

GeoPIV-RG (Stanier et al., 2015) is the most commonly used PIV implementation used in
the geotechnical physical modelling community, and was selected for use in this project for
the reasons described in Chapter 2. As stated, it allows for tracking of soil patches and
automated identification and tracking of control points.

A number of considerations for how the software is used exist, mostly relating to exactly
how much (and how detailed) the dataset should be. The size and spacing of the patches
are the primary settings. Larger patches should provide more accurate displacement data
at the cost of lower resolution. Spacing allows for patches to overlap each other, or to have
gaps between. For qualitative PIV analysis these decisions are less important as nearly any
setup will allow a researcher to plot displacement vectors over images of the soil, however
for quantitative analysis choices regarding patch size and spacing could have a large effect.

It is unclear exactly what patch density would allow for the best results when the data is
used for an Identification Method process. A sparser density would be less computationally
expensive but could potentially miss finer distortions. A range of possible values will be
used (more discussion on this topic will be presented in Chapter 8).

PIV is a non-destructive process. It doesn’t affect the sample being photographed, and once
the photos exist they can be copied an infinite number of times. A single test can be analysed
via PIV as many times as necessary and any number of combinations for settings can be
examined.

6.5.2 Photogrammetry

Photogrammetry is the process by which image space coordinates can be converted to object
space coordinates. In PIV this consists of converting the pixel coordinate displacement field
output from the PIV process into a world unit displacement field. As stated in Chapter 2
the built in functions or GeoPIV-RG are insufficient for the goal for the exact use case in this
project and as such a bespoke methodology utilising the Matlab Computer Vision toolbox
(MathWorks, 2017) was developed.

Many parts of the photogrammetry process are trivial with pre-existing software. The cam-
era parameters (intrinsic, extrinsic, radial distortion, and tangential distortion) can be recov-
ered through the camera calibration app provided in the Matlab toolbox. Lens distortion can
be removed with a single function. However, there are a number of challenges to overcome
in order to carry out the photogrammetry process for the particular setup:

1. Identify both object space and image space control point coordinates.
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2. Deal with different levels of refraction for control points and patch data.

3. Find the exact position of each camera for every frame.

4. Recover world patch locations when control points are not coplanar with patch data.

The first point raised refers to the necessity of knowing both image and object space co-
ordinates for a set of control points. Image space coordinates are obtained through the
GeoPIV-RG centroiding process however object space coordinates require discussion. Laser
cut markings were etched into the sacrificial targeting windows, and the control points are
small stickers affixed at these locations. It would be possible to use the known locations
of the etchings, however the stickers had slight asymmetry and although care was taken to
accurately place them, this was done by hand so some inaccuracy is to be expected.

The exact world coordinates for the points can be found using the following process. The
targeting window should be placed flat with a chessboard pattern generated by the afore-
mentioned Matlab library printed and placed coplanar with the control points. The camera
pose (provided the intrinsic and lens parameters are already known) can be found from a
single image with a set of known points (the chessboard pattern in this case). With the cam-
era pose (also called the extrinsic parameters) known, the Matlab "pointsToWorld" function
can be used to find the exact world coordinates for each control point sticker.

The second point raised is relevant due to the control points having only the depth of the
thick structural window between themselves and the camera, whereas soil patches addi-
tionally have the thickness of the sacrificial targeting window. This factor is the primary
reason the built in GeoPIV-RG calibration function was unsuitable for use.

This can be dealt with relatively easily. Each control points image space coordinate can be
corrected for a single layer of refraction and the patches can be corrected with two layers.
The equations to carry this out, based on the work by White (2002) are shown and discussed
in the literature review.

The third consideration, finding the exact location of the camera for each image, is a nec-
essary but straightforward process. The Matlab computer image toolbox allows for camera
pose to be found for a single image with a set of known points provided the other parame-
ters are already known. Both of these requirements are met. The control points will be used
to estimate pose. Although the camera assembly will seek to minimise camera movement,
this cannot be guaranteed. Knowing the pose for each individual frame allows for error
caused by relative camera movement to be trivially removed.

The final consideration raised refers to the complication of the control points not being
coplanar to the soil patches. As the control points were used to find the camera pose for
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each image, simply using the "pointsToWorld" function would not work as it assumes copla-
narity. The extrinsic parameters must therefore be manually adjusted by the thickness of the
sacrificial targeting window. Although the difference is likely to be small, this will prevent
any distance related scaling affecting the results.

With these key difficulties solved the entire photogrammetry process will be summarised in
the following enumeration:

1. Use the Matlab Computer Vision toolbox (MathWorks, 2017) camera calibration app
to recover the parameters that do not change between images (intrinsic, and lens dis-
tortion parameters).

2. Recover the true world locations of the control points, should the estimated values be
deemed insufficiently accurate.

3. Carry out laboratory testing and obtain PIV data. See rest of this chapter for details!

4. Remove lens distortion from the PIV patch and control point image space locations.

5. Remove refraction errors from data. One layer for control points and two layers for
patch data.

6. Find extrinsic (also called camera pose) parameters for every frame.

7. Recover object space coordinates using recovered parameters, camera pose, and cor-
rected image space data.

8. Perform sanity check on output values (i.e. do found coordinates match well with
known values such as footing width).

6.5.3 Camera Parameters

The Matlab Computer Vision toolbox (MathWorks, 2017) camera calibration app was used
to recover the intrinsic and lens parameters for each of the two cameras. Many photographs
were taken of a chessboard pattern at varying distances and angles to provide a set of data
that the camera calibration app could use to find the optimal camera parameters. Figure
6.12 shows a screenshot in which the camera calibration app correctly identifies the vertices
of the chessboard.

The images were taken with no perspex in between the camera and the chessboard. On the
given image, the chessboard is on top of the sacrificial target window such that it is in the
same plane as the target dots. This would allow for photogrammetric principles to be used
to find the locations of the targets.
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FIGURE 6.12: A screenshot of the Matlab camera calibration app.

Kcam1 =

 1795 −1.0302 1266
0 1795 1017
0 0 1

 Kcam2 =

 1814 −0.2189 1254
0 1814 985.9
0 0 1

 (6.2)

Coefficient Camera 1 Camera 2
P1 −0.0619 −0.0578
P2 0.1141 0.1209
P3 −0.0453 −0.0716
K1 −5.775× 10−4 −2.235× 10−3

K2 8.328× 10−4 1.916× 10−4

TABLE 6.4: Lens Coefficients recovered using Matlab camera calibration tool-
box.

Equation 6.2 shows the intrinsic matrices for each of the two cameras. As the cameras are
identical models it would be expected that the matrices would contain approximately the
same values, allowing for some variations due to manufacturing tolerances. This is indeed
the case, with all parameters reasonably close to the corresponding value for the other cam-
era. The one exception is skew. Camera 2 had an issue in that the lens attachment mecha-
nism was slightly loose resulting in the lens drooping under its own weight a small amount.
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This is likely the reason behind the differing values for otherwise identical camera setups.

Table 6.4 shows the lens coefficients for each of the two lenses. Coefficients Pn represent
radial distortion and coefficients Kn represent tangential distortion. The lenses used were
identical. Radial coefficients seem to be fairly similar whereas there is a notable difference
in tangential coefficients between the cameras.

6.5.4 Validation of Photogrammetric Process

The photogrammetry process can be validated through use of a dot distortion target. This
is a metal plate that has an array of dots precisely drawn on it at distances specified by the
manufacturer. A test image can be taken with the target in place of the soil which will then
be calibrated and the locations of the dots can be compared to the expected values. An image
of the dot distortion target being used to validate the calibration of one of the cameras can
be seen in Figure 6.13.

FIGURE 6.13: A photograph showing the validation of the calibration process.

Validating the photogrammetry process in this way is important for several reasons. Firstly,
bespoke code was developed to carry out the photogrammetric process and proving it works
will add confidence to the process. Secondly, ensuring the PIV displacements recorded are
accurate requires the photogrammetric process to function correctly with errors here poten-
tially reducing the quality of the stress-strain responses recovered by the proposed Identi-
fication Methods. Error in the photogrammetric process could not only result in incorrect
strain calculations but also incorrect area calculations. As per Chapter 3 internal work is
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integrated across area so errors in scaling in the photogrammetric process will scale the re-
covered stress-strain curve by the inverse amount.

Two tests will be performed to validate each of the cameras. The first will be a plot of a subset
of the true and photogrammetrically recovered world coordinates of the dot displacement
targets. This direct comparison will demonstrate that the recovered world coordinates are
approximately equal to the true values. The second validation test will be a comparison
between the total area of the dot displacement target for the known world coordinates and
the recovered world coordinates.

FIGURE 6.14: Photogrammetric error for camera 1. Note that vectors are illus-
trative and not to scale.

Figures 6.14 and 6.15 show the error for the validation process for cameras 1 and 2 respec-
tively. The circular markings show the true world coordinates for the dot target points and
the plus markings are the photogrammetrically recovered world coordinates. It can be seen
that these markings are extremely close, and by eye cannot be distinguished. For this reason
scaled arrows have been added to the plot showing the direction of the errors identified. Of
note is that the recovered world coordinates tend to be more towards the centre of the target
indicating scaling is slightly incorrect.
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FIGURE 6.15: Photogrammetric error for camera 2. Note that vectors are illus-
trative and not to scale.

There are two potential causes for this discrepancy. The first is that the refraction correction
process assumes that the camera is perpendicular to the plane of the image. Although the
camera is fixed to an extruded aluminium frame there is the possibility that this assumption
has not been met in practice. The second is the use of the Matlab function "extrinsics". This
function is essentially a black box that recovers the camera location and rotation relative to
the control points, of which both world and pixel coordinates are known. The "extrinsics"
function is intended for use when the points it is given are unobstructed. Refraction correc-
tion was carried out such that the control points could be treated in this way but the effects
of this on the function are unknown.

Although the errors are systemic in that the recovered points are always closer to the center
than they should be the difference is relatively small, with the arrow plot being required
to identify it. The second validation check, comparing areas of the dot distortion target
illustrate this point. Area error percentages of −0.86% and −0.22% were found for cameras
1 and 2 respectively. This indicates that the photogrammetric process will result in element
areas from triangulated PIV data that are smaller than they should be by < 1%. This will
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result in the recovered stress-strain curves being scaled in the y axis by a corresponding
amount. This is not ideal but is something that will be taken into account when judging the
accuracy of the proposed Identification Methods.

Although the area underestimation is a negative factor, scaling the world coordinates in this
way will not effect the strain field. Scaling a triangular element undergoing straining up or
down will not effect the strains calculated. It would be possible to add a manual correction
factor, but as each camera would need a different factor and more validation images to be
sure it is correct, this will not be done at the current time and the photogrammetric process
will be assumed to be valid with the caveat regarding the likely effect on the recovered
stress-strain responses.

6.6 Supplementary Testing

6.6.1 Triaxial

The primary test carried out for comparison with the stress-strain response will be an un-
consolidated undrained (UU) triaxial test. Cores will be taken from the soil specimens after
the footing tests have been carried out and immediately preserved with cling film such that
moisture loss is minimised in the short time before triaxial testing will be carried out. Tests
will be carried out at cell pressures of 100kPa and 200kPa.

The results of the triaxial testing will be unavoidably compromised as the cores will be
taken from soil that has been loaded during the footing test. Although the samples will be
taken away from the footing sites, there will be additional disturbance due to the coring and
triaxial sample preparation process. These considerations are standard for triaxial tests and
represent the limitations of the method. Despite these factors, triaxial testing will allow for
a reasonably representative soil response to be recorded that will be comparable with the
outputs of the proposed Identification Methods. Values for cu obtained through the other
supplementary tests will not only allow for comparison with the outputs of the proposed
Identification Methods but will also allow for commentary on the quality of the triaxial test
results.

A single triaxial test is likely to be unrepresentative of the true soil behaviour for the reasons
discussed and as such a number of triaxial tests will be carried out. Four cores will be taken
near the four corners of the specimen, with each core long enough that two triaxial samples
can be prepared resulting in a total of eight triaxial tests per box. Eight tests will provide
a range of soil responses rather than a single curve such that an acceptable output of the
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proposed Identification Methods is likely to be within the range. Eight triaxial tests also
allows for redundancy in the case of experimental error.

There would be the possibility of using the triaxial tests to study variability of the soil either
across the specimen or with depth, however this is not the aim behind the triaxial testing
and the relatively small number of samples taken will likely mean the inherent variations in
the triaxial results prevent any meaningful conclusions. It will therefore be assumed that the
entire specimen has approximately uniform behaviour that is within the range of behaviours
recovered from multiple triaxial tests.

A photograph of a specimen undergoing triaxial testing can be examined in Figure 6.16.

FIGURE 6.16: A soil sample within triaxial testing apparatus.

6.6.2 Back analysis using Terzaghi’s bearing capacity equation

As the tests being carried out are footing tests, an additional means by which soil properties
can be carried out is by back analysis using Terzaghi’s bearing capacity equation. Given in
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Equation 6.3, the bearing capacity equation provides the bearing capacity qult where c′ is soil
cohesion, σ′zD is effective stress at the depth of the footing, γ is soil density, B is footing width,
and Nc, Nq, and Nγ are parameters. Simplifications can be made as the footing as purely
cohesive with zero friction, is at the surface resulting in the simplified equation shown in
Equation 6.4. As the bearing capacity will be known (the peak recorded load during each
test) cu can be calculated trivially and used as an additional means of validation for any
recovered stress-strain response.

qult = c′Nc + σ′zD Nq + 0.5γ′BNγ (6.3)

qult = 5.142 · c′ (6.4)

Although carrying out back analysis in this way results only in the cu value as opposed to
the full stress-strain response it still provides useful information for validation purposes.
As two footing tests are carried out per box two values of cu will be recovered using this
method.

Unlike the other supplementary tests, using Terzaghi’s equation for back analysis does not
result in any further soil disturbance and is effectively carried out simultaneously with the
footing tests so has potential to be representative of the soil behaviour during the actual test.

6.6.3 Shear Vane

Shear vane testing will be carried out on samples in order to recover the peak shear stress.
Testing was carried out according to the procedure described in BS 1377-9:1990 (British Stan-
dards Institution, 1990d).

The apparatus used was a hand shear vane manufactured by Edeco Pilcon with a blade
diameter of 33mm and blade height of 50mm. According to manufacturer instructions, the
strength shown on the dial, measured in kPa, was multiplied by a factor of 1.145 in order
to conform to the aforementioned standard. This value was printed on the shear vane dial
during manufacture to account for differences in the springs between individual vanes.

Four shear vane tests will be carried out per specimen in the four corners of the box. As
with the triaxial samples taken, the shear vane tests will be performed after the footings
have been driven into the soil so some degree of disturbance will be present. Shear vane
tests will be carried out immediately after the driven tests have been carried out such that
there will be negligible change in moisture content.
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6.7 Conclusion

This chapter has detailed the equipment and processes required to allow for the genera-
tion of datasets that can be used for the validation of the proposed Identification Methods.
Whereas FEA can be used to make "perfect" artificial datasets, the data obtained through
physical modelling will be flawed in that noise and measurement error will be present. This
is not a problem, but the point behind carrying out physical modelling. The purpose of the
proposed Identification Methods is to provide a practical tool that can be used as an addi-
tional step when researchers use physical modelling and as such testing the suitability of
the methods with real datasets is essential.
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Chapter 7

Analysis of Artificial Datasets

7.1 Introduction

In Chapter 5 the methodology by which a number of artificial datasets were produced was
described. The end goal of the production of such data is the validation of the Identification
Methods proposed in Chapter 4. The data produced, both from the simple "hand" calcula-
tions and the FEA analysis was designed to mimic displacement field datasets produced via
PIV during physical modelling along with corresponding load displacement plots.

Each dataset can be input into both proposed Identification Methods and the output stress-
strain curve will be compared with the curve used to generate the datasets. Similarities
and differences will be identified and discussed, giving reference to theoretical points in
Chapters 4 and 5 where appropriate.

As well as testing the raw data, two different schemes of degradation will be applied to the
datasets to better simulate real data. Firstly, noise will be added to the displacement field
in the manner described in Chapter 4 to simulate a flawed PIV dataset. Next, strains will
be calculated using only a subset of the available displacement nodes to simulate the effects
of a coarser displacement field. Additionally, an investigation into timestep spacing will be
presented. Note that not all datasets will have all effects applied to them as doing so would
result in many redundant figures showing almost the same thing, the graphs shown will be
the ones that are best able to illustrate points or which have interesting considerations.

Using "perfect" artificial data in this way allows for a starting point that is known to have no
issues. Proving that the software implementations work for perfect data is a key first step,
after which gradual artificial degradation of the datasets in a variety of ways will allow for
the rigour of the methods to be identified. Understanding the effects of dataset degradation
will allow useful clues when it comes time to analyse real datasets in Chapter 8.



138 Chapter 7. Analysis of Artificial Datasets

This chapter will first provide qualitative description and discussion of the artificial datasets,
particularly in terms of the obtained displacement and strain fields. Although the param-
eters of the datasets are largely arbitrary and not intended to represent any particular sce-
nario, simple hand calculations will be performed to demonstrate the validity of the FEA
analysis where appropriate. Next, the output curves of all datasets will be given and com-
pared with the expected curve used to generate the data, and finally the effects of the afore-
mentioned degradation strategies will be demonstrated and discussed.

7.2 Qualitative analysis of datasets

The datasets will be qualitatively analysed. Plots showing the deformed shape have been
produced to allow for comparison between models and colour maps of the strain field will
also be given. The load displacement plots will also be examined.

7.2.1 "Handmade" artificial datasets

First to be examined is the simple "handmade" data. These models were simple shear and
split simple shear cases. Each model was produced for both the "Vardanega and Bolton"
curve and the elastic-perfectly-plastic curve. The displacement and strain data will not
change with curve choice as it was the starting point from which stress and force data was
derived. To allow for the calculation of strain, three node triangular elements were mapped
on to the displacement grid through Delaunay triangulation, however for this uniform grid
a less robust triangulation methodology would also have worked. Additionally, there is no
issue of nodes moving out of the initial area. The location of every node is recorded for each
timestep regardless of how later values relate to the initial position.

Figure 7.1 shows the final deformed shape for both stress-strain responses undergoing sim-
ple shear. Every node has moved in the y direction an amount proportional to its distance
from the fixed edge. Peak displacement was 0.96m and the block of soil is 8m by 8m re-
sulting in each element having a shear strain εxy = 1

2 γxy of 0.06. As all strain components
other than shear are zero for the simple shear case, maximum shear strain εs is also the same
value. Figure 7.2 shows a plot of this. Note that due to rounding in the triangulation process
some elements have very slightly differing values, however all are correct to over 10 signifi-
cant figures. Slight rounding errors such as this will have no effect but will be present in all
datasets.

The final deformation of the split case can be seen in Figure 7.3. Again, the same displace-
ment and strain field was used as the starting point for both stress-strain responses.
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FIGURE 7.1: The final deformed shape of the Simple Shear case for both input
curves.

FIGURE 7.2: The final maximum shear strain field of the Simple Shear case for
both input curves.

The strain field for the split case can be seen in Figure 7.4 which shows the strain field for
the final frame. As the loading is applied to a horizontal cross section that is off centre, two
distinct regions of strain are present. A peak displacement of 0.6m is observed, and with
distance to the fixed edges being 3m and 5m the resulting shear strains εxy = εs can be hand
calculated to be 0.1 and 0.6.

Plots of the force-displacement curves for both the standard simple shear case and the split
simple shear case are shown in Figures 7.5 and 7.6 respectively. For each geometry, a model
was run using both stress-strain responses that were described in Chapter 5. The two re-
sponses are the "Vardanega and Bolton" curve and the elastic-perfectly-plastic curve.

Due to the uniform and linearly increasing strain values, it would be expected that the shape
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FIGURE 7.3: The final deformed shape of the split Simple Shear case for both
input curves.

FIGURE 7.4: The final maximum shear strain field of the split Simple Shear
case for both input curves.

of the force-displacement curves in Figure 7.5 would match that of the stress-strain curve,
the values simply being scaled based on the sizes of the block of soil and this is indeed the
case when resolution of the curves is taken into account. No curve fitting has been applied
and the plots simply have connected the dots for each of the 50 timesteps used which leads
to the force-displacement curves being somewhat less smooth that if they were continuous.
Of particular note is is point in which plasticity is reached during the elastic-perfectly-plastic
case. During one timestep every element of soil is undergoing elastic deformation whereas
in the next timestep every element is in the plastic part of the stress-strain curve.

The force-displacement plots in Figure 7.6 for the split cases look rather less like a scaled
version of the stress-strain curves than for the true simple shear cases. The split case is essen-
tially two simple shear cases added together, with each section having the same displacement-
time curve but differing strain, and hence stress and force values for each timestep. Plotting
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FIGURE 7.5: The force-displacement curves for the true simple shear "hand-
made" artificial dataset.

FIGURE 7.6: The force-displacement curves for the split simple shear "hand-
made" artificial dataset.

the force-displacement curve for both the upper and lower section of the split models sep-
arately would produce curves looking similar to those in Figure 7.5, but when these curves
are added to produce the global force-displacement curve they become less and less similar.
Generating models with increasing numbers of dissimilar simple shear areas would likely
result in force-displacement curves that are wildly different not only from the shape of the
stress-strain curve but also from each other. For more realistic data in which every element is
largely independent in the amount of strain it has this effect is likely to be more pronounced.
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7.2.2 Simple Shear FEA datasets

To allow for the modelling of more realistic and complex cases ABAQUS FEA software was
used to generate a number of artificial datasets. The first to be examined will be simple
shear. As stated in Chapter 5 two variations of simple shear have been used to generate
datasets. The first in which y movement is set to zero, i.e. functionally the same as the
hand calculations, and the second in which y movement is unrestrained resulting in a much
more complex mechanism. For both possibilities a total of two models were generated,
representing both input stress-strain curves. As each model used strain based actuation with
the same final displacement, plots of final strain or displacement fields will be largely the
same by eye so a subset of data will be presented to illustrate any points without including
multiple redundant graphs.

For this FEA model (and the following models), the nodal displacement data is extracted
from ABAQUS and used as if each node were a PIV displacement point. Delaunay tri-
angulation is used to generate an array of triangular elements from which strains can be
calculated. As with the handmade models, there is no concept of nodes or elements leaving
the area of interest, displacement points are simply tracked wherever they happen to go.

FIGURE 7.7: The final deformed shape of the FEA Simple Shear case using the
"Vardanega and Bolton" input curve.

Figures 7.7 and 7.8 show the distorted shape and the strain field of the simple shear model
generated using FEA. The shown plots are taken from the "Vardanega and Bolton" dataset
but would be the same for the elastic-perfectly-plastic model. As with the "handmade"
datasets, this is due to the model using strain based actuation and having a uniform strain
field.

This particularly simple FEA model produces an identical final frame as the "handmade"
simple shear datasets have. This indicates that the FEA model is functioning as expected. It
should be noted that as ABAQUS was allowed to choose its own timesteps that only the final
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FIGURE 7.8: The final maximum shear strain field of the FEA Simple Shear
case for the "Vardanega and Bolton" input curve.

frame is identical. The strain based actuation does of course increase linearly with time but
timesteps are not uniformly distributed. Figure 7.9 shows plots of the force-displacement
curves for the models for both stress-strain curves. Of note is that the same peak force is
observed as in the corresponding "handmade" dataset force-displacement curves.

FIGURE 7.9: The Force-Displacement curves for the FEA Simple Shear case
for both stress-strain responses.

For the cases in which movement is unfixed in the y direction (other than the top edge which
is rigid and fixed in y) a completely different displacement and strain field is produced.
Figures 7.10 and 7.11 show the distorted shape and the strain field of the shear model with
y movement allowed, generated using FEA.

As shown in Figure 7.10 allowing for movement in the y direction results in a slightly dif-
ferent mechanism. Soil is now able to move up and down. This change means that the
modelled mechanism is not simple shear, and indeed there are other strains than shear.
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FIGURE 7.10: The final deformed shape of the FEA Unfixed Shear case for the
"Vardanega and Bolton" input curve.

FIGURE 7.11: The final maximum shear strain field of the FEA Unfixed Shear
case for the "Vardanega and Bolton" input curve.

Whereas in the true simple shear case only εxy had non zero values with εx and εy being nil,
the unfixed shear case has non zero values for all strain components. This means that there
are volumetric strains present.

Examining the displacement field, it is easy to see that some elements have indeed became
smaller whereas some have grown, and that there is rotational symmetry in the displace-
ment field. As a key assumption with the current Identification Method formulations is that
volumetric strain is nil, the effects of this will be discussed later in this chapter. The sum of
all volumetric strains is very small with a value of −5.7640× 10−5 compared to the sum of
maximum shear strains of 999.2995. Effectively zero total volumetric strain is to be expected
as no soil was created or destroyed and Poisson’s ratio was set at 0.499.

It should be noted that the sum of the absolute values of volumetric strain is 99.2890, or
approximately 10% of the sum of the maximum shear strains. It can clearly be seen in the



7.2. Qualitative analysis of datasets 145

deformed shape plot that there is visible element size change, although every element ex-
pansion is matched by an equivalent compression. The current assumption is that energy
expenditure due to volumetric strain is nil, and although the sum of volumetric strain is ap-
proximately zero, if a different soil model were to be used in which compression takes more
work than is returned by expansion then this would have to be taken into account. However,
as the displacement field was generated in ABAQUS using 6-node triangles, it is possible
that this volumetric effect is an artefact due to later triangulating the nodal displacement
field with 3-node triangles in order to calculate strain.

FIGURE 7.12: The Force-Displacement curves for the FEA Unfixed Shear case
for both input stress-strain responses.

Figure 7.12 shows the force-displacement curves for models using both the "Vardanega and
Bolton" and elastic-perfectly-plastic stress-strain curves. A key differences is aparent when
comparing this figure to the equivalent for the true simple shear case (Figure 7.9): There is a
differing peak force.

Lower peak force is to be expected. The unfixed shear model is a superset of the true simple
shear model, anything simple shear can do, unfixed shear can also do. The mechanism re-
turned by the FEA software will be the one requiring the lowest force and with new avenues
of soil movement available, it seems apparent that it takes less energy to shear a block of soil
in this manner than compared to the true simple shear case.

7.2.3 Rotating Wall FEA datasets

The next set of models represents an increase in complexity. The rotating wall model as
described in Chapter 5 features a 2D square of soil of edge 8m, with the edge on the left
hand side rotating into the block of soil about a fixed point on the base. Unlike other models
these used a force based actuation scheme, in which applied loading increases linearly and
displacement is a function of load. As with the simple shear cases, a model was produced
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for each of the two soil responses defined in Chapter 5. Figures 7.13 and 7.14 show the
distorted shape and the strain field of the rotating wall FEA model for the "Vardanega and
Bolton" input curve.

FIGURE 7.13: The final deformed shape of the FEA Rotating Wall case for the
"Vardanega and Bolton" input curve.

FIGURE 7.14: The final maximum shear strain field of the FEA Rotating Wall
case for the "Vardanega and Bolton" input curve. The second plot has strains

above 0.1 trimmed.

Analysis of Figures 7.13 and 7.14 allow for some insight into the behaviour of the model. Of
note is the fact that relatively large areas of the model are undergoing little to no deforma-
tion or strain. This differs from the simple shear case, for both fixed and unfixed y direction
movement, in which every element was undergoing some degree of displacement and de-
formation. Whether significant regions of negligible strain effect the usage of Identification
Methods is something that will be discussed later in this chapter.

The sum of volumetric strain is again negligible with a value of −6.8464× 10−5 with the
sum of absolute volumetric strain as 27.7853 and the sum of maximum shear strain being
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408.3933. The ratio of absolute volumetric strain to maximum shear strain is approximately
7%, slightly lower than the unfixed simple shear case. Unlike in the simple shear cases in
which the solid "bounding box" stays the same size, the soil is squeezed such that upward
movement on the free edge is observed. In this case the soil was modelled as weightless so
considerations such as the effects of gravity need not be made. Should this scenario have
been modelled with a soil with mass a non negligible amount of work would be expended
moving the soil against gravity.

FIGURE 7.15: The Force-Displacement curves for the FEA Rotating Wall case
for both input stress-strain responses.

As stated previously, the rotating wall scenarios were modelled using load actuation. This
was done for two reasons. Firstly, for variety: although the change to load actuation should
have no impact on calculation of either internal or external work, it is still worth confirming
this. Secondly, for ease of modelling: the rigid tie used to allow for rotation of the left had
side did not allow for a specified displacement to be applied to one end. It is possible that
the model could have been adjusted to allow for this but seeing as there are benefits to
generating datasets using load based actuation this was deemed to be low priority.

Figure 7.15 shows the force-displacement curves for the two variations on the rotating wall
model that were generated. As load actuation was used each model was loaded linearly
with time until the specified load was reached. For the “Vardanega and Bolton" curve this
was 1MN and for the elastic-perfectly-plastic curve it was 0.75MN these values were chosen
by trial and error as ABAQUS was unable to solve the model with excessively high loading
applied. As the model ended when the chosen loading value was reached, the curves end
at differing displacement values.

The force-displacement curve for the "Vardanega and Bolton" model looks similar to what
has been presented in the sections regarding simple shear cases, a plateau has been reached
indicating a significant part of the soil is undergoing plastic deformation. The force-displacement
curve for the elastic-perfectly-plastic model does not look nearly as good. It has not reached
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the expected plateau indicating much of the soil is still in the elastic phase. The effects of this
on the recovery of stress-strain responses will be considered in later sections of this chapter.

7.2.4 Simple Footing FEA datasets

The next set of FEA models to be examined is the pair of simple footing models. A simple
footing test was carried out on a 50m square block of soil. Symmetry was used in the FEA
model, with 5m of footing modelled with another 5m on the other side of the line of sym-
metry. The simple footing datasets are perhaps the most interesting as they are most similar
to the physical modelling derived datasets. Two scenarios were modelled, again using both
the "Vardanega and Bolton" input curve and the elastic-perfectly-plastic input curve. As
with the previously shown models, the displacement and strain fields presented will be for
only one of these models.

FIGURE 7.16: The final deformed shape of the FEA Simple Footing case for
the "Vardanega and Bolton" input curve.

Figures 7.16 and 7.17 show the distorted shape and the strain field for the simple footing case
modelled with the "Vardanega and Bolton" soil response. Examining these figures, it is clear
to see a triangle of soil directly under the footing with relatively little internal distortion
with a shear band between it and the rest of the soil. Of particular note is the element in
the corner of the footing. A maximum shear strain of 1 is observed indicating distortion
of approximately the same size as the element its’ self. Singularities such as these are not
uncommon during FEA modelling and although not particularly representative of reality,
it shouldn’t affect the Identification Method procedures from recovering the soil response.
Also of note is the large region of relatively negligible strains, in this case it is even more
pronounced than in the rotating wall scenario. The effects of this will be discussed in the
following section.



7.2. Qualitative analysis of datasets 149

FIGURE 7.17: The final maximum shear strain field of the FEA Simple Footing
case for the "Vardanega and Bolton" input curve. The second plot has strains

above 0.2 trimmed.

Volumetric strain was observed in individual elements with the overall sum being approxi-
mately zero. The sum of volumetric strain for the presented case was 6.4300× 10−5 with the
sum of absolute values being 79.8694. For comparison the sum of maximum shear strains
was 748.9798.

FIGURE 7.18: The Force-Displacement curves for the FEA Simple Footing case
for both input stress-strain responses.

Figure 7.18 shows the force-displacement response for each of the aforementioned models.
For simple footing cases Terzaghi’s Bearing Capacity Theorem can be used for comparison.

Using the values of cohesion from the input stress-strain curves (100000 for the "Vardanega
and Bolton" soil response and 90000 for the elastic-perfectly-plastic soil response) bearing ca-
pacity values of 257000N and 231000N can be found for the "Vardanega and Bolton" and the
elastic-perfectly-plastic soil responses respectively. These are both lower than the measured
values. As the observed bearing capacity reduces with increased mesh density it is likely
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that further refinement would move the modelled values closer to the "true" values but this
is beyond the scope of this project. The FEA models are internally consistent, ABAQUS en-
forces energy equilibrium so the Identification Method processes should be able to find a
soil response to match internal and external work even if the data used is not particularly
representative of a real life case.

7.3 Verification using "perfect" datasets

This section will consist of verification of both the Segment based and Equation based Iden-
tification Methods for each of the models described in the previous section. Comparisons
between the recovered stress-strain curve and the expected curve will be given and any dis-
crepancies identified and discussed. The previously presented datasets will be used in this
section using both the "Vardanega and Bolton" and the elastic-perfectly-plastic input soil
responses. It should be noted that all curves recovered using the Segment based approach
are formed from 100 segments. An investigation into the impact of segment number will be
provided later in the chapter.

7.3.1 Simple Shear "Handmade" dataset

The "Handmade" simple shear dataset is the simplest model generated. Figures 7.19 and
7.20 show comparisons between the input stress-strain response and the output stress-strain
responses recovered via the two proposed Identification Methods.

FIGURE 7.19: The input and output stress-strain curves for the "Handmade"
Simple Shear case modelled with the "Vardanega and Bolton" soil response.
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FIGURE 7.20: The input and output stress-strain curves for the "Handmade"
Simple Shear case modelled with the elastic-perfectly-plastic soil response.

For both figures, it is clear that both the Equation based and Segment based Identification
Methods have been able to recover the curves nearly exactly as expected. For the "Vardanega
and Bolton" cases the global energy gap as a percentage of total external energy expenditure
was 5.5× 10−5% and 1.6× 10−3% for the Segment based and equation Identification Meth-
ods respectively. For the Elastic-perfectly-plastic case these values were 1.6 × 10−3% and
7.9× 10−4%. The energy gaps found are extremely low, indicating that the optimiser is able
to find a very good fit. It should be noted that this is a particularly simple case so this is
to be expected, with more complex cases likely having curves that not only do not match
the input curve by eye but also have a larger energy gap found. Of note is the very slight
discrepancy with the segment method curves for both soil responses, with the curve ap-
pearing to have cut the corner at the transition to plasticity. This is likely due to the segment
resolution forcing the optimiser to connect the dots.

FIGURE 7.21: The cumulative internal and external work for the "Handmade"
Simple Shear case modelled with the "Vardanega and Bolton" soil response.
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Figure 7.21 shows a plot of the cumulative internal and external work. The given plot is
for the "Vardanega and Bolton" soil response, however the equivalent plot for the elastic-
perfectly-plastic response is by eye identical. Of note in this plot is the energy for the three
lines plot (external work, segment method internal work, and equation method internal
work) are almost completely on top of each other. This is to be expected due to the incredibly
small energy gap. The distribution of timesteps can be seen in the markers on the plot, with
50 timesteps evenly distributed across the 10 seconds. Although this plot in and of itself is
not overly interesting, it will be useful to have for purposes of comparison with the models
discussed in later sections.

7.3.2 Split Shear "Handmade" dataset

The spit shear "Handmade" dataset differs from the simple shear handmade dataset in that
instead of there being one region with uniform strain, their are now two differing regions
of uniform strain. Loading and displacement are otherwise the same. Figures 7.22 and 7.23
show the comparison between input and output stress-strain curves for the two specified
soil responses.

FIGURE 7.22: The input and output stress-strain curves for the "Handmade"
Split Shear case modelled with the "Vardanega and Bolton" soil response.

As with the "handmade" simple shear models, the stress-strain responses output from both
the "Vardanega and Bolton" and elastic-perfectly-plastic scenarios are a near perfect match.
As before the Segment method output appears to have slightly cut the corner at the start of
the plastic parts of both curves for presumably the same reasons as before.

Global errors for the "Vardanega and Bolton" curves are 1.1× 10−3% and 1.6× 10−3% for the
segment and equation methods respectively and the errors for the elastic-perfectly-plastic
curves are 3.3× 10−3% and 6.5× 10−4%. These error gap percentages are similarly low to
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FIGURE 7.23: The input and output stress-strain curves for the "Handmade"
Split Shear case modelled with the elastic-perfectly-plastic soil response.

those found for the "handmade" simple shear case. For the Segment method, direct compar-
isons between the numeric values are not applicable for these simple cases as the MOSEK
optimiser reaches its tolerance values and can only say the given results are near optimal, so
seemingly meaningful differences in these error percentages could in fact be largely mean-
ingless. For the Equation based method there is no such limitation; as a brute force approach
is used it can be guarenteed that the found values are optimal provided the true values are
within the search area. As with the "handmade" Simple Shear case, the energy gap is lower
for the elastic-perfectly-plastic scenario but there is negligible difference between the split
shear and simple shear case.

FIGURE 7.24: A set of plots showing the search area the Equation Method
used for the "Handmade" Split Shear case modelled with the elastic-perfectly-

plastic soil response.

Figure 7.24 shows the contour plots for the cu and εlim variables for the elastic-perfectly-
plastic stress-strain response that is output by the Equation based Identification Method. It
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is clear that the outputs found using this method are the optimal solution. Although there
is a plateau of almost as good outputs, the chosen value is truly optimal.

A plot comparing the internal and external works will not be presented for this scenario as
it is identical by eye to the one presented for the "handmade" simple shear case. Lines for
external work, and internal works for both the Equation based and Segment based methods
are on top of each other with any differences too small to see in a plot.

7.3.3 Simple Shear FEA dataset

The simple shear FEA dataset is theoretically the same as the "handmade" simple shear
dataset in terms of force, displacement, and strain against time, with the exception that
timesteps are now irregular. The "handmade" datasets have 50 timesteps of length 0.2 sec-
onds. The FEA datasets (including the datasets to be discussed in following sections) have
both the number and spacing of their timesteps chosen by ABAQUS. The FEA software pre-
sumably seeks to balance accuracy with computational efficiency and chooses the timestep
arrangement that allows for the lowest number of steps without introducing unacceptable
errors. Both Identification Methods are able to handle arbitrarily spaced timesteps, the ef-
fects of which will be discussed shortly.

FIGURE 7.25: The input and output stress-strain curves for the FEA Simple
Shear case modelled with the "Vardanega and Bolton" soil response.

Figures 7.25 and 7.26 show the comparisons in input and output stress-strain curves. It is
clear that the output curves do not match quite as well as in the "handmade" case, with
both the "Vardanega and Bolton" and elastic-perfectly-plastic responses being too steep at
the start. In both cases the correct cu value is obtained regardless of which Identification
Method is used. Having the correct cu value even with slightly incorrect curve shapes is
promising if not ideal, as cu would be the parameter most relevant to engineering design.
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FIGURE 7.26: The input and output stress-strain curves for the FEA Simple
Shear case modelled with the elastic-perfectly-plastic soil response.

The energy gap for the segment method are extremely low for the "Vardanega and Bolton",
of the order of 1 × 10−13%. MOSEK indicates that the curve found is optimal. The gap
for the Segment based elastic-perfectly-plastic curve is 1.3× 10−3% which is also optimal.
The values for energy gap percentage found for the Equation based approach are 4.2 ×
10−3% and 3.5× 10−4% for the two soil responses, values comparable to those found with
the previously discussed models.

There are two possibilities for the reason for the mismatch in stress-strain curve that can
be considered and discounted. First, optimiser issues. This is unlikely as the optimiser is
reporting that everything is OK and the Segment based curve is very close to the Equation
based curve which doesn’t use the optimiser, especially for the elastic-perfectly-plastic case.
Second, pre-processing errors. This is unlikely as the exact same pre-processing is used as in
the "handmade" calculations in which the stress-strain curves recovered are all but perfect.
The final possibility to be discussed is the distribution of timesteps.

Figure 7.27 shows the comparison between internal and external work. As before the curves
are directly on top of each other. stress-strain responses have been found with very low
energy gaps. Of note however is the distribution of timesteps. ABAQUS used 11 timesteps
distributed irregularly throughout the 10 seconds the model ran for. Of these timesteps, 7
can be found before the 2 second mark and 6 are before the 1.5 second mark. As the model
is a simple shear case in which shear increases linearly with time, it is clear that a significant
percentage of data can be found in the earlier parts of the stress-strain curve. 2 and 1.5
seconds are the times at which full plasticity is reached for the two soil responses.

As the only difference between this scenario and the "handmade" simple shear model is
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FIGURE 7.27: The cumulative internal and external work for the FEA Simple
Shear case modelled with the "Vardanega and Bolton" soil response.

the number and arrangement of timesteps this seems to be the logical reason for a discrep-
ancy. Although real physical modelling data is likely to have uniform timesteps, further
investigation into this phenomenon using the simple shear case will be provided later in the
chapter.

7.3.4 Unfixed y Shear FEA dataset

The next set of models to examine is the Unfixed "y" simple shear scenario that was mod-
elled using FEA. As per the qualitative analysis sections these models have a much more
complex strain field. Each timestep will have elements at various places across the stress-
strain curve. Again, ABAQUS was allowed to choose its own timesteps and due to the
increased complexity, slightly more were necessary with the "Vardanega and Bolton" case
using 22 timesteps that were much more evenly distributed, although still with an overrep-
resentation at the start, that the simple shear case.

Figures 7.28 and 7.29 show the comparisons in input and output stress-strain curves. As
with the simple shear case the output curves are very close to the input curves, certainly
close enough that they could be used for design with appropriate safety factoring. A notable
difference to the simple shear case is that the cu values are very slightly lower for the elastic-
perfectly-plastic case, with values of 89.3kPa found rather than the expected 90kPa.

Energy gaps are still similarly low with percentage gaps of 2.1× 10−2% and 6.4× 10−3% for
the segment and Equation based methods for the "Vardanega and Bolton" soil response and
4.2× 10−3% and 1.5× 10−3% for the segment and Equation based methods for the elastic-
perfectly-plastic soil response. The segment method results were reported as optimal by the
MOSEK optimiser as opposed to the near optimal reported for the very simple "handmade"
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FIGURE 7.28: The input and output stress-strain curves for the FEA Unfixed
y Shear case modelled with the "Vardanega and Bolton" soil response.

FIGURE 7.29: The input and output stress-strain curves for the FEA Unfixed
y Shear case modelled with the elastic-perfectly-plastic soil response.

simple shear cases. Although the percentage energy gaps are still only fractions of a per-
centage, they do seem to be increasing in general, particularly the Segment based method
for the "Vardanega and Bolton" soil response which is now an order of magnitude higher
than the highest previously observed values.

Figure 7.30 shows the work comparison for the "Vardanega and Bolton" soil response. As
stated earlier the higher number of timesteps and their arrangement can be seen. The energy
gaps are still too negligible to see any daylight between the curves plotted.



158 Chapter 7. Analysis of Artificial Datasets

FIGURE 7.30: The cumulative internal and external work for the FEA Unfixed
y Shear case modelled with the "Vardanega and Bolton" soil response.

7.3.5 Rotating Wall FEA dataset

The rotating wall datasets represent the next increase in complexity for analysis. As before
ABAQUS decided how many timesteps to use for the modelling with 21 being chosen for the
"Vardanega and Bolton" soil response and 12 for the elastic-perfectly-plastic. The rotating
wall datasets have a significant difference to the other datasets in that load actuation was
used rather than strain actuation. For the "Vardanega and Bolton" datasets this is unlikely
to have much impact as plasticity was reached, the force-displacement plot can be seen
to plateau as expected. The elastic-perfectly-plastic dataset however does not reach this
plateau indicating that a significant number of elements are still in the elastic part of the
curve with only a few deforming plastically.

FIGURE 7.31: The input and output stress-strain curves for the FEA Rotating
Wall case modelled with the "Vardanega and Bolton" soil response.
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FIGURE 7.32: The input and output stress-strain curves for the FEA Rotating
Wall case modelled with the elastic-perfectly-plastic soil response.

Figures 7.31 and 7.32 show the comparisons in input and output stress-strain curves. The
quality of the outputs is reduced compared to the simpler datasets. cu values differ for both
stress-strain responses. The "Vardanega and Bolton" soil response has an input cu value of
100kPa and has output values of 101kPa and 97.3kPa for the Segment based and Equation
based approaches respectively. For the elastic-perfectly-plastic soil response which has an
input cu of 90kPa outputs for the two methodologies were found as 86.9kPa and 86kPa re-
spectively. The elastic-perfectly-plastic cu values are further from the actual value than those
of the "Vardanega and Bolton" soil response, with the values for both methodologies being
lower. As there is significantly lower data available to constrain the elastic-perfectly-plastic
curve in the plastic section it would follow that this part of the curve would be less repre-
sentative of actual behaviour. Later in this chapter the effects of trimming data at the start
and end of a dataset will be investigated in order to provide insight to confirm the cause of
this effect.

Despite the lower quality output the energy gaps are still very low with MOSEK indicating
that an optimal solution was found. For the "Vardanega and Bolton" soil response gaps of
9.5× 10−3% and 2.3× 10−2% were found for the two methods and of 1.4× 10−2% and 2.3×
10−3% for the elastic-perfectly-plastic response. The plot comparing internal and external
work is not presented for this dataset as it is extremely similar to the equivalent plots in
previous sections, in which internal and external work has no visible difference.

Figure 7.33 shows the Equation based Identification Methods plots of search area for the
parameters of the "Vardanega and Bolton" soil response. Note that the value of cu is found by
first assuming the soil response is elastic-perfectly-plastic. Although a plateau of reasonable
values is available, the software is able to identify a single optimal curve. Of note in the
example given is that a much higher resolution is needed for the b parameter. Using a
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FIGURE 7.33: A set of plots showing the search area the Equation Method
used for the Rotating Wall case modelled with the "Vardanega and Bolton"

soil response.

coarse search followed by a detailed search has been an effective compromise in finding a
good solution using this method.

It does at first appear that there are a large range of suitable values of b that are close to opti-
mal. A side effect of the relatively large search area is that small but important differences in
energy gap are hidden due to extremely high gaps that arise from very bad variable choices.
To illustrate this point further Figure 7.34 shows a plot of how varying the b variable by
0.01 effects the global energy gap. All other variables were kept the same, and despite b
being varied by a very small amount, it is clear that the recovered value is in fact the true
optimum.

7.3.6 Simple Footing FEA dataset

The final datasets against which the Segment based and Equation based Identification Meth-
ods will be validated is the simple footing case. In these models a footing is pressed into the
soil at a constant displacement rate. As well as resulting in a fairly complex strain field,
these models also feature a large area in which little to no strain is present. This scenario is
also most similar to the physical modelling that will be discussed in Chapter 8. Due to the
increased complexity of the problem, ABAQUS assigned 31 timesteps to the solution.

Figures 7.35 and 7.36 show the comparisons in input and output stress-strain curves. Ex-
amination of the curves for the "Vardanega and Bolton" soil response show that both the
Segment based approach and the Equation based approach overestimate cu and are initially
steeper. The curve for the Segment based approach also appears to have split into several
straight sections as opposed to a smooth curve as has been previously observed. The ob-
served cu values for the two methodologies ae 104kPa and 103kPa respectively. The curves



7.3. Verification using "perfect" datasets 161

FIGURE 7.34: Global energy gap change when slighly varying b for the Equa-
tion Method used for the Rotating Wall case modelled with the "Vardanega

and Bolton" soil response.

for the elastic-perfectly-plastic soil response however have found approximately the correct
cu values, with the elastic part of the curve being slightly steeper than expected. Addition-
ally, the Segment based approach has cut the corner at the interface between elastic and
plastic behaviour.

As with the previous scenarios, despite by eye the output curves not matching the input
curves, the optimiser reports that an optimal solution is found for the segment method and
the percentage global energy gaps are fractions of a percent. For the "Vardanega and Bolton"
soil response the gaps are 3.7× 10−2% and 8.9× 10−3% for the segment and equation meth-
ods and for the elastic-perfectly-plastic soil response 2.2× 10−1% and 5.7× 10−3%. Of note
is the energy gap for the segment method’s attempt at the elastic-perfectly-plastic soil re-
sponse. It has by far the highest energy gap observed so far. Examining the curves, it
is clear that in this case the equation method has found a much more suitable possibility,
despite this however, manually forcing the Segment based method to use the input curve
results in a larger error gap percentage of 0.43% that is almost double the error for the re-
covered curve. This indicates that the recovered curves truly are the best fit for the provided
datasets in terms of minimising the gap between internal and external work, even if they do
not match with the curve that would be expected based on the soil response input into the
FEA software.
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FIGURE 7.35: The input and output stress-strain curves for the FEA Unfixed
y Shear case modelled with the "Vardanega and Bolton" soil response.

FIGURE 7.36: The input and output stress-strain curves for the FEA Unfixed
y Shear case modelled with the elastic-perfectly-plastic soil response.

7.3.7 Overall Commentary on Validation Process

In the previous subsections it has been demonstrated that both the Equation based and
Segment based Identification Methods are able to recover realistic stress-strain responses.
In some cases, particularly for more complex examples, the stress-strain curve recovered is
slightly different that the input curve. Some possible reasons for this have been identified
such as the location and quantity of timesteps. This idea will be investigated in the following
section.

Also to be investigated is the number of increments used in the segment method. All the
examples specified use 100 segments in the output stress-strain curves but this number can
be set to anything. The arrangement of the segments is chosen programmatically such that
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each segment includes roughly the same amount of data. Segments in areas with lots of
data, typically at low strain levels, will be very small in relation to segments in areas with
less data, typically high strains. To some extent the discretisation into segments will effect
the shape of the curve. If the elastic limit in reality is at 0.015 but there is a segment that starts
and ends at 0.0145 and 0.0155 then the output response cannot possibly have the correct
elastic limit. This is not something that can happen with the Equation based approach in
which the interface between differing parts of the curve can move.

Another point raised is that the output curves are in fact the optimal shape. This is depen-
dent on the formulation of the problem, as the correct answer to the wrong question is still a
wrong answer, but as identical input and output curves are attainable for very simple cases
it would appear that the problem formulation is correct. For the elastic-perfectly-plastic soil
response for the simple footing, the actual input curve used in the FEA model was manually
selected and the global error percentage was nearly double that of the "ugly" curve that the
Segment based Identification Method recovered. There is the possibility that the recovered
curves for the scenarios discussed above are just one of many possibilities that are largely
the same error, or within the tolerance of the optimiser, but test such as this indicate that this
is not the case. The MOSEK optimiser indicates that the outputs for the more complicated
cases are the optimal answers. It was only for the simplest case, in which the output curve is
by eye correct, that MOSEK reported being near optimal rather than optimal. The Equation
based method is guaranteed to find the true global minimum provided that the search area
is realistic and sufficient resolution is provided. The plots of search area for the "handmade"
split case and the rotating wall demonstrate this.

A final possibility is that ABAQUS is behaving differently than expected. The FEA datasets
were modelled assuming isotropic soil with a Poisson’s ratio of 0.499 with the input stress-
strain response chosen as the soil behaviour. For the simple shear case, the displacement and
strain fields can be directly compared between the "handmade" and FEA datasets and they
are identical. Nodal displacement, strain, and force start and end at the same values and
increase linearly with the only difference being the arrangement of timesteps. This example
however is pure shear strain. No volumetric strain is present. The more complex cases do
feature volumetric strain with some elements increasing in size while others get smaller,
with the overall volume change being approximately equal to zero. The assumption of
both of the Identification Methods in their current implementation is that volumetric strains
acting in such a way would lead to zero work done, and although the problem in ABAQUS
has not been specified in any way that should contradict this, the internal workings of the
software are opaque. Unfortunately, it is not possible to produce "handmade" datasets for
comparison for the more complex cases.

A possible cause of the small discrepancies relating to the implementation in ABAQUS the
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discretisation process. 6-Node triangles were used for the mesh in ABAQUS in order to
generate the displacement field. Every node was taken (both corner and edge) from the
array of 6-node triangles to produce a uniform grid which was then triangulated into 3-
node triangles as part of the pre-processing of the Identification Method procedure. This
conversion to lower order triangular elements is a potential source of error. This is either due
to spurious volumetric strain being introduced at the expense of shear strain or a mismatch
in internal work. In a scenario in which both stress and strain are known, the work done
to a 6-node triangle could be trivially be calculated. Splitting this 6-node triangle into four
lower order 3-node triangles and calculating internal work would not necessarily produce
the same result.

Despite the slight discrepancies between input and output curves the results of this valida-
tion are very promissing. Of particular note is the fact that the cu values recovered, a key
parameter in geotechnical design, are always within a few percent of the expected value.

In the following sections the aforementioned investigations into the arrangement of timesteps
and segment method increments will be presented, followed by the artificial degradation of
this "perfect" data.

7.4 Investigation into Segment based method increments

One key variable in the Segment based Identification Method is the number of segments
used in the curve. A curve with only a handful of segments will have a poor resolution and
would be unable to recover stress-strain responses with any degree of nonlinearity. A curve
with many thousands of segments would take a very long time to run and may provide
no benefit. All the datasets used in the validation section used 100 segments. This section
will vary the number of segments to see how it affects output curve shape and global error
percentage. A subset of the previously described models will be used for this.

First examined will be the "handmade" split shear case. This model has a near perfect output
curve for the validation case with 100 increments and as such serves as a useful benchmark.
In order to investigate the effects on increment (or segment) numbers, the dataset was input
into the Segment based Identification Method for a range of increment numbers. Figure 7.37
shows a comparison between a subset of the output stress-strain responses.

It is clear to see in Figure 7.37 that increasing the number of increments improves the quality
of the output curve. As the soil response in question is elastic-perfectly-plastic it could
theoretically be described perfectly with only two increments, one for the elastic phase and
one for the plastic phase. The Segment based Identification Method however distributed
the start and end points of increments based on the distribution of strains. This means that
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FIGURE 7.37: The stress-strain curves for the "handmade" split shear case
modelled with the elastic-perfectly-plastic soil response for a range of Seg-

ment Method increment numbers.

for such a simple stress-strain response the main issue with a small number of increments is
that they are unlikely to line up with the input curve.

Perhaps the biggest disadvantage of the Segment based Identification Method is that the
arrangement of increments is fixed and cannot be adjusted in the strain axis. Despite this
the optimiser attempts to get the best output curve even with lower resolution. Examining
the curves for three and four increments it can be seen that if the limitation of few increments
forces an underestimate early in the stress-strain curve, the lost energy can be made up by
overestimating a later part of the curve. The areas under the curves shown however is
not likely to match due to different parts of the curve being used by differing amounts in
different timesteps, although for the split shear case the distribution of strains throughout
the curve is more uniform than is likely to be found in more realistic datasets.

Figure 7.38 shows a plot of global error percentage against number of increments. As pre-
dicted this quickly drops as the number of increments increases. For the very worst case
with only a three increments available the energy gap is 1.55%. This represents the dif-
ference between internal and external work should the soil behaviour be assumed to be the
recovered curve. Despite being a seemingly small value the stress-strain response associated
with it is unsatisfactory.

Of note in the plot is the fluctuations in global error percentage when single digit numbers of
increments are used. This is likely due to whether the boundaries of the specified increments
happen to line up with the actual elastic limit. As the number of increments increases this
becomes less of an issue with there always being a relatively close increment available to
capture curve features such as elastic limit. It can be seen that any increment number after
50 has roughly the same global error percentage. Increasing the number indefinitely offers
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FIGURE 7.38: Global error percentage against increment number for the
"handmade" split shear case modelled with the elastic-perfectly-plastic soil

response.

no further improvement, and although it has no negative effects on error or curve shape,
it is time consuming to have too many. 100 was chosen to ensure that there are more than
enough increments while not taking an unreasonable amount of time.

FIGURE 7.39: The stress-strain curves for the FEA rotating wall case modelled
with the "Vardanega and Bolton" soil response for a range of Segment Method

increment numbers.

Figure 7.39 shows the recovered stress-strain responses for the FEA derived rotating wall
dataset modelled using the "Vardanega and Bolton" soil response. Although the response
presented in the validation section for this dataset isn’t quite as good a match with the input
as the simpler "handmade" cases it still was acceptably good. This model also has a much
more complicated mechanism with elements in each timestep undergoing strains at various
parts of the stress-strain curve.
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As before, the recovered curves become closer to the input curve as the number of segments
increases. The curves in general are much better than for the elastic-perfectly-plastic case
discussed previously, with even the three increment curve being of an acceptable standard.
The cu values for every number of increments is not only consistent but also approximately
the same as the input curve. It appears that the rounded "Vardanega and Bolton" curve is
much easier to fit a low resolution segmented curve to than the elastic-perfectly-plastic. This
dataset also has the advantage that low strain elements are overrepresented in the model
due to there being areas of relatively low movement, forcing the distribution of increments
to mostly be in the curved part of the soil response.

FIGURE 7.40: Global error percentage against increment number for the FEA
rotating wall case modelled with the "Vardanega and Bolton" soil response.

Figure 7.40 shows how global error percentage changes with increased increment number
for the rotating wall case. The insights gained via this figure are largely the same as those
of the split shear case discussed previously. Of note is that the global error percentages
found are generally lower than for the split shear case, with the highest value for the three
increment recovered response being approximately half. As stated, due to the general higher
quality of responses found this is to be expected.

This investigation into the effects of number of increments on the output of the Segment
based Identification Method has a few key findings. Firstly, increasing the number of incre-
ments has a positive effect on both the quality of the recovered curve and the global error
gap. Secondly, there are diminishing returns for further increasing the increment above 50
or so. The choice to use 100 increments as a standard recommended amount is reasonable
with this in mind. Thirdly, the issue with low numbers of increments is that they likely do
not line up with features of the stress-strain response that need to be captured such as the
elastic limit. The exact shape of the true soil response and the distribution of strains will de-
termine how pronounced this effect is. Overall, although the recovered curves are sensitive
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to the number of increments used, it is straightforward to use a sufficiently high number
that this isn’t a major problem.

7.5 Investigation into timestep quantity and spacing

The comparison between the "handmade" simple shear datasets and the FEA simple shear
datasets identified a discrepancy that investigation into could potential provide insight into
the capabilities of the proposed Identification Methods. The two simple shear datasets were
specified to be identical with the same linearly increasing displacement and strain, with the
same force response. The only difference was the arrangement of timesteps. The "hand-
made" models had 50 evenly spaced timesteps across 10 seconds whereas the FEA models
had 11 timesteps, with over half of them in the first 2 seconds.

As the stress-strain responses recovered from two otherwise identical scenarios differed, this
phenomenon has been chosen for further experimentation. The "handmade" simple shear
dataset with the "Vardanega and Bolton" soil response will be used for this as it trivially
easy to specify the timesteps in an arbitrary manner and the dataset is known to otherwise
present no issues.

Although the FEA datasets have highly irregular timestep arrangements, this would be hard
to vary in a consistent manner such that graphs for comparison can be plotted. As such for
this section the timesteps will still be evenly distributed, but simply increase in number,
from 2 in which all nodes start at zero displacement in the first step and are at final displace-
ment in the last step, to 50 as used for the validation examples. Despite this, the timesteps
that the simple shear FEA model used were manually input into the "handmade" model
generation script and it has been confirmed that exactly the same dataset is produced.

For very low numbers of timesteps a lot of detail will be lost for both internal and external
work. For only 2 timesteps both the Force-Displacement plots and Strain-Time plots will
simply be a straight line. Unfortunately the implementation of the Identification Methods
does not allow for such low numbers of timesteps. 2 timesteps will simply not work due
to code that interpolates data with time for cases where the internal and external timesteps
do not match. The built in Matlab functions used for this process require at least 3 points.
3 timesteps is theoretically possible, however for the simple shear dataset in which all el-
ements have the same shear strains the Segment based approach is unable to find suitable
locations for the strain increments if the recommended increment number of 100 is used.
Reducing the number of increments can solve this problem but for uniformity of testing the
effects of changing timestep numbers, 5 will be used as the starting point.
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FIGURE 7.41: A plot showing how altering the number of timesteps affects
the force-displacement curve for the "handmade" simple shear case modelled

using the "Vardanega and Bolton" soil response.

Figure 7.41 shows the effect of reducing the temporal resolution on the force-displacement
curve. Shown is a subset of the timestep numbers tested. It can be seen that the same fi-
nal force and displacement are reached. Also of note is that the curves for lower numbers
of timesteps are simply connecting points on the higher timestep curves. Vertices for the 5
timestep curve are clearly at points on the 50 timestep curve, as are vertices on the interme-
diate resolution curves.

As external work is the integral of the force-displacement plot, i.e. the area under the curve,
it appears that lowering the temporal resolution in this way reduces external work. Examin-
ing by eye the area under the curve between a displacement of 0.24m and 0.48m it is obvious
that the 5 timestep curve represents less external work than the 50 timestep curve. Due to
this, it would be expected that recovered stress-strain responses will be altered such that less
internal work is present.

Figures 7.42 and 7.43 show how the recovered stress-strain response varies with a subset of
trialled timestep numbers for the Segment based Identification Method and the Equation
based Identification Method respectively. As per the verification section earlier in this chap-
ter, the 50 timestep curve is very close to the input curve which has been omitted to increase
readability.

It is clear that the quality of the recovered stress-strain responses worsens with lower num-
bers of timesteps. For the segment method the shapes of the recovered curves have stayed
suitably curved, the 5 timestep curve retains the familiar "Vardanega and Bolton" shape de-
spite the force-displacement curve being particularly segmented. The curves with lower



170 Chapter 7. Analysis of Artificial Datasets

FIGURE 7.42: A plot showing how altering the number of timesteps affects
the stress-strain curve recovered using the Segment based approach for the
"handmade" simple shear case modelled using the "Vardanega and Bolton"

soil response.

timesteps (including others trialled but not presented for clarity) are below the curves with
higher numbers of timesteps. As stated previously, lowering the temporal resolution re-
sulted in a reduction in external work, and as such an equivalent reduction in internal work
is to be expected. The Equation based identification is similarly, if slightly less, effected in
this manner.

Not presented, due to the plots already having several overlapping lines, were cases in
which 100 and 1000 timesteps were used. Increasing the temporal resolution to such a de-
gree has no further impact on the quality of the recovered stress-strain responses. There was
however a noticeable increase in time to run the code, with the Equation based approached
being extremely time-consuming for such large datasets.

A final point of consideration is that the cu values remained unchanged regardless of tem-
poral resolution. By eye, all recovered curves have the correct cu value, and examination of
the raw data indicated that the highest discrepancy is less than a thousandth of a percent
higher that the expected value of 100kPa. Depending on what parameters are needed for
future use (e.g. design) even datasets with low numbers of timesteps could be of use.

The presented investigation has been based on the assumption that the distribution of timesteps
is uniform, which wasn’t the case for the FEA dataset that identified this potential issue. A
thorough investigation into arbitrary timestep arrangements will not be included as there
would be a near infinite amount of combinations and also that irregular arrangements are
unlikely with real datasets in which data will be recorded fairly regularly by a digital cam-
era.
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FIGURE 7.43: A plot showing how altering the number of timesteps affects
the stress-strain curve recovered using the Equation based approach for the
"handmade" simple shear case modelled using the "Vardanega and Bolton"

soil response.

Despite these reasons, a simple trial has been carried out. Two datasets were produced, the
first in which the first quarter of the time range is modelled with the resolution of the 50
timestep models, and the rest with just one timestep per quarter, and the second model with
the inverse, the first quarter now has one timestep at zero, with the other 3

4 of the dataset at
the full resolution.

Figures 7.44 and 7.45 show comparisons between the expected and output stress-strain re-
sponses for the two scenarios, with Figure 7.44 being the case in which the first quarter
is high density data with the rest being sparse, and Figure 7.45 is the case where the first
quarter data is very sparse with the rest high density.

It would be possible to tell these figures apart even without labels. The Segment based
approach effectively ignores parts of the stress-strain response in which there is no data.
In the case where the first 1

4 of the time range is dense, the output curve follows the input
curve exactly, after which it cuts the corner and enters the plastic deformation phase. The
case where the first 1

4 is sparse simply draws a straight line from the origin to the point where
the dataset has actual values again, after which the input curve is almost exactly matched.

The likely reason behind this is the same as what was proposed for the uniformly spaced
timesteps. The areas with low density have effectively connected the dots for the force-
displacement curve which lowers external work. Internal work must additionally be lower,
however in this case this change has been applied only to a subset of the time range, with the
rest of the external work being unchanged. The stress-strain curves have been affected this



172 Chapter 7. Analysis of Artificial Datasets

FIGURE 7.44: The recovered stress-strain curve "handmade" simple shear case
modelled using the "Vardanega and Bolton" soil response in which the last 3

4
of data are at a very low temporal resolution.

way to allow for energy equilibrium in all parts. The curves recovered using the Equation
based approach can be seen to be slightly higher than the expected curve in the dense time
ranges and lower in the sparse time ranges. The Equation based curves are a single discrete
entity so a compromise has to be made between lowering them for the sparse time ranges
and keeping them the same for the dense time ranges.

It is likely that what is being observed is an artefact of the special case of simple shear. In
this model strain is uniform in every element and increases linearly. The data for a single
timestep is fully contained within one discrete part of the stress-strain curve with no overlap.
A more complex strain field would still be effected but since the stress-strain curve is a lot
more self constrained the effect would depend on the dataset in question. As with what was
observed with the Equation based approach, the Segment based approach would need to
find a compromise to ensure the lowest energy gap.

It has been shown in this section that both proposed Identification Methods are affected by
the arrangement of timesteps in the datasets. Fortunately, both the irregularity observed in
the FEA models, and the extremely sparse temporal resolutions trialled in this section are
unlikely in real data. A camera can be programmed to take photos regularly, and LVDTs and
Load cells will have sample rates at least one order of magnitude higher that the cameras
frame rate. Another finding from this section is that more timesteps is better, provided the
computational time is acceptable.
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FIGURE 7.45: The recovered stress-strain curve "handmade" simple shear case
modelled using the "Vardanega and Bolton" soil response in which the first 1

4
of data are at a very low temporal resolution.

7.6 Artificial degredation by addition of random noise

Perfect artificial datasets are by definition perfect. Nodal displacements are known exactly
to a large number of significant figures. There are no photogrammetric issues with lens dis-
tortion and no grainy images are taken and PIV is unnecessary to obtain the displacement
field. Real data will have the aforementioned issues and potentially more. Many of these is-
sues can be summed up as noise. Noise is random and unwanted variations to the dataset. A
scheme by which noise can be artificially applied to the perfect FEA or "handmade" datasets
was described in Chapter 5.

It was predicted in Chapter 5 that the addition of noise would affect the strain field by
causing maximum shear strains to increase in general while causing no change in total vol-
umetric strain (although some elements will change in size the sum of these changes will
on average be zero). The predicted result of this general increase in maximum shear strains
was that the stress-strain curves will be lowered, i.e. the observed cu values will be lessened
with increasing addition of noise.

Noise will be added in two separate ways. The first is the addition of noise as a normal
distribution, and the second is the addition of noise using a uniform distribution. The first
methodology will have a higher proportion of noise added be closer to zero. Noise will be
added as a percentage of mean displacement with a range of values trialled. Plots will be
presented showing how varying the amount of noise effects key parameters of the recovered
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stress-strain curves such as cu.

This section will present the results of this investigation. The "handmade" split shear case
will be used for this analysis and will be degraded through the addition of noise, with the
changes in cu recorded and analysed.. As well as being a case that has near perfect results
from the validation process, the relative uniformity facilitates adding noise in the manner
discussed. Cases such as the simple footing dataset have small areas of very high displace-
ment and vast areas with very low displacement so the addition of noise based on mean
observed displacement shows no effect for low percentages of noise, and high percentages
of noise effectively make the actual observed deformations irrelevant. Using the simpler
split shear dataset allows for meaningful analysis of noise, with up to 7.5% of the mean
displacement added, an amount that far exceeds what would likely be observed in labora-
tory testing. It should be noted that all testing carried out in the section used 100 segments
for the Segment based approach and the full temporal resolution of 50 timesteps for both
Identification Methods.

FIGURE 7.46: A plot showing how cu varies with the addition of noise ap-
plied to the "handmade" split shear case modelled using the "Vardanega and

Bolton" soil response.

Figure 7.46 shows the results of varying the amount of noise added for the "handmade" split
shear case modelled with the "Vardanega and Bolton" soil response. As predicted, increasing
the amounts of noise results in the observed cu values being lower. Interestingly, the plot
of cu against noise percentage is initially fairly flat, indicating that low amounts of noise
produce little effect, before dropping significantly and finally starting to level out again. This
levelling out is likely when the added displacements start to significantly overwhelm the
actual soil movement. Although 7.5% of the mean displacement may seem a low amount,
it is of displacements across all timesteps and is applied in both the x and y directions, so
data that is essentially simple shear will soon become meaningless, particularly in earlier
timesteps.
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With the Equation Based approach the plot soon flattens out and begins to fluctuate. This is
due to the lower limit of the search area being reached. As per Chapter 4, when the Equa-
tion based approach is used in a brute force approach, limits to curve parameters must be
selected. Lowering these limits would likely cause the noise plots to continue in the same
pattern as those of the Segment based approach, however the same settings were used as
for the validation stages. Were the method to be used in practice it would require engineer-
ing judgement to select these limits and if the user were confident that the limits selected
were valid, recovering a stress-strain curve that reaches these limits would serve as a useful
indicator that something has potentially gone wrong.

Also of note is that uniform noise distribution has had more of an effect. This was expected
as although the mean of noise added should be equal for both methods, the mean of absolute
noise added will be more for the uniform distribution.

As this section deals with randomness, the presented plots would vary every time this pro-
cess is carried out. In the "handmade" split shear case there are over 1000 nodes across 50
timesteps that have had a random displacement added to them. This is enough that the
chances of any significant variation between repeats of this noise investigation is negligible.
Initial trials indicate that this is the case. Although only one such plot is presented it serves
as a useful illustration of the effects of noise.

FIGURE 7.47: A plot showing how stress-strain curves recovered with the Seg-
ment based approach vary with the addition of noise applied to the "hand-
made" split shear case modelled using the "Vardanega and Bolton" soil re-

sponse.

Figure 7.47 shows a selection of the recovered stress-strain responses obtained from the
noisy datasets when using the Segment based approach. It can be seen how not only do
the cu values become lower, but the overall shape of the curves becomes worse.
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Overall, it would appear that the Identification Method is resilient to small amounts of noise,
however larger values, in which the signal to noise ratio is low could prevent the proposed
Identification Methods from recovering suitable stress-strain curves. It is likely that prepro-
cessing of real data will be necessary to mitigate the effects of noise.

7.7 Artificial degredation by reducing displacement field resolu-
tion

One notable downside of using FEA derived datasets for validation is that they are discrete
rather than continuous as real soil is. An FEA model consists of a grid of elements with
nodes, and these nodes are used as displacement points as PIV patches would be for real
soil. Whereas reducing or increasing the number of PIV patches is likely to have an effect on
the recovered curve due to areas of localised strain being missed, reducing the node number
in an FEA model would have no such effect as there can be no detail other than that which
is expressed with the available nodes. ABAQUS enforces energy equilibrium within the
simulation, so despite being fewer but larger elements, recovering a stress-strain response
using an Identification Method should give a similar, if not identical, result.

Although an investigation into PIV patch density will be presented in the following chapter
in which real datasets will be examined, a preliminary investigation will be carried out in
this section. For a subset of the presented FEA models, the effects of using only some of
the available nodes will be examined. As the FEA datasets were modelled using 6-node tri-
angles, it is straightforward to take displacements of only the three corner nodes. This will
result in a simulated patch density of half that of when the full node set is used. Whereas
simply running an FEA model with fewer nodes would not allow such an experiment, run-
ning a model at full density and then using only a subset of nodes as input for the Identifi-
cation Method process will allow the effects of sparsity to be examined.

The FEA unfixed y shear model was examined first. Figures 7.48 and 7.49 show the strain
fields, with Figure 7.48 including the full FEA nodal field in the strain calculations, and
Figure 7.49 showing the strain field in which only every other node is triangulated for strain
calculation. This model was tested using 100 segments for the Segment based approach and
every timestep available (21) from the FEA model. No noise was added to this model for
the purpose of this analysis.

As would be expected the half density grid is lower resolution but perhaps less expectedly
the highest observed maximum shear strains are lower. This does not however mean that the
sparser grid has undergone less straining, the mean shear strain is the same even with less
nodes sampled, and summing the shear strains (adjusting for the fact one model has 4 times
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FIGURE 7.48: The strain field for the FEA unfixed y shear case modelled using
the "Vardanega and Bolton" soil response with the full resolution of FEA nodes

included.

as many elements) also gives the same value. These statistics indicate that the half density
model hasn’t ended up with smaller shear strains in the strain field, if it had the recovered
stress-strain curve would be overly steep to ensure the internal work was sufficiently high.

Figures 7.50 and 7.51 show the comparison between input and output stress-strain curves
for the Segment based approach and Equation based approach respectively. The first point
of consideration is that although both node densities result in a different output curve, it
would be hard to say that one is better than the other. The lower density model has an
initially steeper response regardless of which Identification Method is used as well as a very
slightly lower cu value.

It is possible that the effects being so minimal is due to the simplicity of the problem. Al-
though the unfixed y shear case is more complex than the true simple shear cases, as the
number of sampled nodes reduces it will tend towards the simple shear case. The extreme
example of sampling the four nodes in the corners of the domain for example would result
in the true simple shear case. As such a more complex scenario will also be examined.

The simple footing FEA model using the "Vardanega and Bolton" soil response will similarly
be examined with every other node sampled. This model features extremely high strains at
small areas around the footing which will be smoothed out. The recovered stress-strain
responses for the simple footing model are already of a lower quality than the curves for
the simpler examples so this should be a more challenging scenario. As before, this model
was tested using 100 segments for the Segment based approach with full the full temporal
resulution included and no noise added.

Figures 7.52 and 7.53 show the strain field for the simple footing case at both full and halved
nodal density. As before, it can be seen that the highest recorded maximum shear strain
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FIGURE 7.49: The strain field for the FEA unfixed y shear case modelled us-
ing the "Vardanega and Bolton" soil response with every other FEA node in-

cluded.

observed is significantly lower for the model with halved nodal sampling rate. Unlike the
shear case however, there is a noticeable difference in the mean maximum shear strain and
the area adjusted sum of shear strains. The mean shear strain is 2.7% higher for the model
using the full nodal density and the area adjusted sum of shear strains is 1.5% higher.

As there is a meaningful discrepancy between the strain fields for these two models, there
will be a corresponding discrepancy between the recovered stress-strain curves. Were the
same stress-strain response to be used for both cases, the sparser model with its generally
lower strain values would have a lower internal work and significantly higher global energy
gap. This is indeed what can be observed.

Also of note is that there is a significant increase in the values of volumetric strain measured.
For the full nodal density case the sum of volumetric strains is approximately zero. This is
not the case for the sparse nodal density case. As the FEA model was specified to have a
Poisson’s ratio of 0.5 the total volumetric strain is expected to be zero, and this is indeed
the case when the full nodal density is used, however for the case in which every other
node is used a total negative volumetric strain that is 4.4% of total maximum shear strains is
observed. This implies the area of the soil is shrinking slightly. The most likely culprit is the
soil heave at the side of the footing. By selecting every other node, what would otherwise
have been a smooth curve now has had sections cut off.

Figures 7.54 and 7.55 show the comparison between stress-strain curves for the Segment
based approach and Equation based approach respectively.

As the reduction in nodal sampling rate resulting in generally lower strains across the field
(though the large areas of low strains are unlikely to be effected) there must be a correspond-
ing increase in shear stresses such that energy equilibrium can be maintained. This has been
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FIGURE 7.50: The stress-strain curves recovered with the Segment based ap-
proach for the FEA unfixed y shear case modelled using the "Vardanega and

Bolton" soil response with varying node density.

observed for the curves recovered using both the Segment and Equation based approached.
Observed cu values were found to increase by 1.1% when reducing nodal sampling rate for
the Segment based approach and by 2.2% for the Equation based approach. Further reduc-
tion in nodal sampling rate would likely cause even higher increases in cu.

It would appear that the quality of the recovered stress-strain curves and their significant
parameters such as cu can be negatively affected should the spatial resolution be sufficiently
low. As FEA models are themselves discrete there is an upper limit to spatial resolution that
is guaranteed to be the best density. Doubling the nodal density by linearly interpolating
new nodes for instance would be a pointless exercise. Real data however is continuous
and choice must be made as to what PIV patch density to use. The findings in this section
indicate that if the chosen density is low then localised features in the strain field are likely
to be missed which will tend to result in lower measured shear strain values, which in turn
will result in the recovered curve being either initially too steep or having an excessively
high cu value or both.
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FIGURE 7.51: The stress-strain curves recovered with the Equation based ap-
proach for the FEA unfixed y shear case modelled using the "Vardanega and

Bolton" soil response with varying node density.

FIGURE 7.52: The strain field for the FEA simple footing case modelled using
the "Vardanega and Bolton" soil response with the full resolution of FEA nodes

included.
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FIGURE 7.53: The strain field for the FEA simple footing case modelled us-
ing the "Vardanega and Bolton" soil response with every other FEA node in-

cluded.

FIGURE 7.54: The stress-strain curves recovered with the Segment based ap-
proach for the FEA simple footing case modelled using the "Vardanega and

Bolton" soil response with varying node density.
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FIGURE 7.55: The stress-strain curves recovered with the Equation based ap-
proach for the FEA simple footing case modelled using the "Vardanega and

Bolton" soil response with varying node density.
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7.8 Conclusion

This chapter has demonstrated that both the Segment based Identification Method and the
Equation based Identification Method are able to recover high quality stress-strain responses
for a number of artificial datasets. Differences between different datasets were qualitatively
analysed with the insights gained used to explain discrepancies in the recovered stress-strain
responses. Despite slight variations, the recovered curves consistently had reasonable val-
ues of cu which was never more than a few percent out from the expected value.

A number of supplementary investigations into the datasets were carried out, including
the effects of varying the number of timesteps, where it was shown that temporal sparsity
can negatively effect the quality of results. The number of increments used for the segment
method was also investigated, with the key finding that more is better up to a point of dimin-
ishing returns after which unnecessary computational resources are wasted. The prediction
made in Chapter 5 that increasing noise results in lower values of cu has been confirmed.
The effects of improperly trimming the datasets has also been discussed. Finally, an in-
vestigation into the effects of reducing the spatial resolution of the strain field has shown
that localised features of the strain field can be smoothed out resulting in generally lower
maximum shear strains and a higher cu value.

The findings of this chapter not only demonstrate that the proposed Identification Methods
function sufficiently that issues with real datasets are likely not issues of the programmatic
implementation but also provides a base of knowledge by which any issues can be diag-
nosed and ideally solved.
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Chapter 8

Analysis of Real Datasets

8.1 Introduction

This chapter will attempt to validated the proposed Identification Methods with the data
derived from physical model tests. The methodology used to generate these datasets can be
found in Chapter 6. The data consists of 8 simple footing tests on undrained clay, carried out
at 1g with a strain based actuator. Cameras were placed on either side of the sample box,
for a total of 16 sets of image data. The force and displacement of the footing was recorded
using several LVDTs and a load cell.

The first section of this chapter will discuss the techniques necessary to preprocess the data
into a usable form. Photogrammetric procedures will be carried out, as will PIV. PIV will
have several parameters that can be adjusted, notably patch size and patch spacing. Ad-
ditionally, the method by which experimental noise will be smoothed will be examined.
Discussion on how the zero point of each dataset was selected will also be provided.

The second section of this chapter will present a qualitative analysis of the available data.
Comparison between datasets will be given and any flaws or irregularities resulting from the
laboratory processes will be identified. Initial commentary on the effects of preprocessing
techniques will be given here.

Next will be the most important section of this chapter: carrying out the Identification
Method processes on all 16 available datasets. The quality of the recovered curves will be
analysed, with reference given to any flaws identified in the previous section. Discussion
will also be provided with regards to how the preprocessing techniques used are likely to
have affected the recovered curves.

After presenting the main data analysis, the assumptions made in the preprocessing stage
will be analysed. An investigation into PIV patch size and spacing will presented, as will an
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investigation into the effects of varying zero time. Confirmation that the smoothing scheme
used is valid will also be provided.

The final section of this chapter will provide discussion and commentary on the main find-
ings. Comparison between the artificial datasets presented in Chapters 5 and 7 and the real
datasets will be given.

8.2 Dataset Preprocessing Techniques

8.2.1 GeoPIV-RG

Much of the preprocessing required for the physical modelling derived datasets has been
previously discussed, either theoretically in Chapter 2 or practically in Chapter 6. A very
brief summary would be that GeoPIV-RG will be used to recover movement of the soil from
image data after which photogrammetric techniques will be used to remove lens distortion
and refraction. Photogrammetry will be carried out as previously specified. GeoPIV-RG has
a number of settings that will likely affect the quality of the results.

Many GeoPIV settings such as full field correlation tolerance and maximum number of
Gauss-Newton iterations have suggested starting values with instructions in the GeoPIV
documentation to gradually reduce them if the software is unable to find a satisfactory cor-
relation. These settings will not be investigated as part of this section, instead the instruc-
tions will be followed such that the image data can be processed while keeping as close to
the suggested values as possible. Table 8.1 shows the values that were used for processing
the datasets. These values allowed GeoPIV-RG to find a suitable correlation in every dataset.

Parameter Value
analysis_mode 2
cutoff_diffnorm 1× 10−5

cutoff_iteration 50
seed_zncc_tol 0.9
min_zncc_tol 0.6

TABLE 8.1: GeoPIV parameters used for processing image data.

The GeoPIV settings that will be considered are the size and spacing of the PIV patches. A
patch is a region of soil that will be tracked between images through the correlation process
described in Chapter 2. Small patches have less data that can be used for the correlation
process but excessively large patches may have non trivial internal deformations that make
finding a good correlation harder. As such it would seem apparent that there is an optimal
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intermediate patch size, however this will vary depending on the expected movement and
soil texture and the values used here will not necessarily be suitable for other datasets.

For the purposes of testing the proposed Identification Methods having a higher density of
patches would be beneficial. It was demonstrated in Chapter 7 that reducing the resolution
in artificially generated FEA datasets can cause localised features of the displacement field to
be smoothed out which results in recovery of a less accurate stress-strain response. A feature
of GeoPIV is that patch spacing is specified separately to patch size. This would allow for
patches to be more spaced out, or much more usefully allow them to overlap. Patches sized
to be large enough to allow for accurate correlation can be overlapped to provide a higher
resolution displacement field. As each patch will provide a single displacement node at its
centre there are no energy considerations to having an overlap. More patches however will
potentially be time consuming due to the extra computational expense.

Initial informal experimentation found that patches of size 50 by 50 pixels with a spacing of
25 pixels allows for good results and this is what will be used for validation of the proposed
Identification Methods. A formal investigation into the size and spacing on the outputs of
the proposed Identification Methods will be presented later in this chapter for a subset of
the available datasets.

8.2.2 Noise, smoothing, and spurious vectors

The PIV process can result in spurious vectors. These are nodal displacements that are by
eye incorrect. An example would be a region in which most nodes are moving several mil-
limetres to the left, amongst which there is a single node moving several centimetres to the
right. These will be manually removed. The most likely location for spurious vectors is
along the surface but it is possible that they could be found in the area of interest. Interpo-
lation of missing vectors would be possible, however the Delaunay triangulation process is
simply able to generate larger elements over the top of any area with missing vectors. A
possible cause of these spurious vectors is regions of poor texture in which the correlation
process is unable to distinguish between candidate displacements.

Another factor of preprocessing that has yet to be covered is noise. In Chapter 7 artificial
datasets were deliberately degraded through the addition of noise and it was shown that
doing so results in lower values of cu being recovered. Real displacement fields are likely
to have some degree of noise either resulting from the cameras or as an artefact of the PIV
correlation process. As the real datasets were loaded with a monotonically increasing strain
based actuation it would follow that strains should also be increasing. This is in fact an
assumption made in the programming of the Identification Methods.
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There would be a number of means of dealing with this such as fitting a curve or some
other means of smoothing. The method that was used was to simply disallow negative
differential strains. If strain at time t is less than strain at time t − 1, strain at time t is set
to be equal to strain at time t− 1. It was found in initial experimentation that elements in
which strain is a constant value (i.e. zero) were showing fairly large fluctuations such that
counting them as expended energy would significantly degrade the quality of the recovered
curve. Removing negative differential strain in this manner eliminates this problem and
does not have the possibility of incorrectly fitting a curve to elements in which the rate of
strain increase may vary throughout the test. The effects of this decision will be discussed
later in this chapter.

Additionally, there are likely to be large numbers of elements around the periphery of the
area of interest that have negligible strains. Images were taken to allow for the largest pos-
sible area, right up to the control points, to be recorded. As stated previously, these ele-
ments in which no strains are expected are particularly susceptible to spurious work due to
a lower signal to noise ratio than that which would be found nearer to the footing. Addition-
ally, the Segment based approach functions better with data points distributed more evenly.
An overwhelming amount of low strains would e.g. effect the distribution of segments. It
would be possible to simple select a smaller area of interest for the PIV process, but doing
so would mean the data for these unwanted regions would not be readily available should
it in fact turn out to be wanted.

As such, a programmatic means of trimming these negligible strain elements was imple-
mented. Every element whose largest strain is lower than a specified percentage of the
mean strain across the entire field can be trimmed. Choosing a threshold that is too high
will of course affect the quality of the recovered curve, as well as increase the recovered cu

value due to more work being done by fewer elements, and too low a threshold will have
no effect what so ever. Initial experimentation (see Appendix B) indicates that a threshold
of 1% of the mean observed strain has positive impact on the recovered curves. This value
had negligible impact on the recovered cu value yet significantly improved the distribution
of segments throughout the strain range. For the 20mm footing tests, this process resulted in
over 50% of strain elements being trimmed. For future datasets, a good value would be one
that removes as many zero strain elements as possible without having a meaningful impact
on the recovered cu value. This value was used for the validation trials presented in this
chapter.

As per the equilibrium equations derived in Chapter 3 there is the possibility to include
work due to gravity or soil-perspex friction. The exact density of the soil and friction co-
efficient were not recorded. Gravity is assumed to expend a net zero overall work due to
volumetric strain being assumed to be nil; the same amount of soil should be moving up
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as down. This hypothesis was tested and found to be accurate, with the data presented in
Appendix B. Examining the vector plots shown in the following section, this does visually
appear to be the case for all non anomalous datasets. A range of friction values were trialled,
from zero to the cu values obtained from shear vane testing. It was found that the work ex-
pended due to friction was negligible. Due to these points, along with the fact that the true
coefficient of friction is unknown, friction was not included in the presented analyses. As
with gravity, an investigation that demonstrates the negligibility of friction can be found in
Appendix B.

8.2.3 Sensor data preprocessing

As per Chapter 6, load and displacement data of the footing test will be recorded with a load
cell and a set of LVDTs. The LVDTs will be placed at either side of the footing.

The sensor data, for both the load cell and LVDTs will have noise. This is typical for sensors
and light smoothing was applied as standard practice with no further investigation. The
Matlab "smooth" function was used which carries out a moving average filter with a span of
5. It should be noted that loads and displacements have been sampled orders of magnitude
more frequently than images have been taken and as a single value of external work is
needed for each timestep much of the noise in the external sensor data will be ignored as a
side effect of this sampling process.

A final and particularly important preprocessing decision is how the start of a test will be
determined. The reality of the footing coming into contact with the soil provides some
challenges. If the footing is not exactly level for instance, work is being done only to one
side of the specimen. It was observed in some cases where this happened that negative
loads were recorded on the load cell due to the footing bending away from the actuator
when only one end was in contact with the soil, before increasing as expected when full
contact is achieved.

It was necessary to select a point from which the test can be zeroed, both the external force-
displacement data and the internal strain data. With the exception of Specimen One, in
which touchdown was recorded separately to the main test, it was decided that the point at
which data will be zeroed is when the image data indicates both ends of the footing are fully
in contact. Picking a value too early will result in excessively large loads being recorded,
particularly if the absolute load is negative at the start point, and too late would result in a
load that is lower.

The location of the start of the test will therefore effect the outcome of the Identification
Method. It is important that consistency is achieved for all datasets to ensure the verification
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process presented in this chapter is fair but as it is a manual process to select the start image
there is a possibility of error.

The effects of unrecorded (or trimmed) preloading on the soil is a further source of potential
error. The Identification Method assumes that the soil starts at zero stress and zero strain,
but the touchdown process brings this assumption into question. As the force-displacement
curve is also assumed to start at zero and is being similarly trimmed during the touch-
down, it is likely that the effects will be cancelled out. An investigation into the effects
of altering the start and end points of the tests will be presented later in the chapter. The
procedure specified in this section, in which the start images were manually selected, was
used for the verification process and was found to mostly work satisfactorily. The raw force-
displacement plots can be examined in Appendix B, along with tables indicating the start
and end times selected for each test.

A final point to consider is the effects of friction between the footing and the perspex win-
dow. A lubricated rubber wiper was present at each end of each footing which was designed
such that friction is minimised while preventing soil movement around the footing. The
friction between the footing and window would result in additional loading recorded that
isn’t applied to the soil, which would result in additional external work being erroneously
counted. Values for this friction were recorded but ultimately not needed. The process of
zeroing load-displacement at the point of full impact has the added effect of removing this
additional friction load.

8.3 Qualitative and Supplementary Analysis of Real Datasets

Four specimens were produced, each of which consists of an aluminium box of size 600 by
400 by 200mm filled with kaolin clay consolidated from slurry with a final consolidation
load of 200kPa. Two footing tests were carried out on the specimen, using footings of width
20mm and 40mm with a camera observing each test from both sides resulting in two sets
of PIV data per footing per specimen for a total of 16. Load and displacement data for
each footing test was also recorded. Chapter 6 contains a detailed description of both the
equipment used and the procedures carried out as part of this suite of tests.

Additional supplementary testing was carried out on each of the four specimens, primarily
in order to recover data points though more traditional means that can be compared with
the outputs of the proposed Identification Methods, but also to allow for qualitative analysis
and troubleshooting of potential issues. As described in Chapter 6, each specimen under-
went shear vane testing and had trixial cores taken and tested. A cu value was also obtained



8.3. Qualitative and Supplementary Analysis of Real Datasets 191

through back analysis of the load displacement data using Terzaghi’s bearing capacity equa-
tion.

This section will primarily deal with analysis of these supplementary tests and any insight
that can be gained into the behaviour of the soil tested from them. Observations from testing
will be reported where appropriate and discussed in context of the data points available. A
preliminary look at the imaging data will also be given, however the PIV process will not be
discussed at this time. The following section will analyse the optimal GeoPIV parameters
and processes prior to carrying out the PIV process on all datasets.

Each specimen will be analysed in turn, followed by overall comparison and commentary.
For illustrative purposes, an example of the raw image data can be seen in Figure 8.1.

FIGURE 8.1: An example of the raw imaging data that was produced and
processed using GeoPIV-RG for the purposes of this analysis.

8.3.1 Specimen One

Specimen One was the first specimen to be prepared and tested and as such had a number
of issues that were ironed out with later specimens. Although this specimen is of poorer
quality than the others, it is presented anyway such that the robustness of the proposed
Identification Methods can be assessed when dealing with lower quality datasets.
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FIGURE 8.2: Central Force and Displacement for the two footing tests carried
out on Specimen One.

A significant issue with this first specimen was that the consolidation top plate was slightly
bent. As this plate measured 200 by 600 by 30mm and was machined from aluminium this
was not expected when the plate was selected from amongst similar plates from the storage
shelf. It is likely that the damage to this consolidation plate was pre-existing as it was used
to consolidate clay of average strength, well within the specifications for the equipment
used. Nonetheless, the top plate resulted in the final surface of the consolidated clay to not
be level, with the soil at the centre of the box several millimetres lower than the edges.

This is unlikely to be meaningful in the context of the proposed Identification Methods, with
the exception of possible differential consolidation which would at most be minor. One issue
however is it would be difficult to begin the test with the footings properly in contact with
the soil. One edge would touchdown first and would produce force and disturb the soil
before the footing had made full contact. In attempt to minimise this issue, touchdown was
recorded separately to the main test, with a pause before recommencing loading. Doing this
enabled the loading process to be carried out with a level footing in full contact with the
soil, but resulted in a degree of preloading with drainage occurring during the pause.

For later specimens in which the soil surface was level, touchdown would be recorded as
part of the main test procedure, with force and displacement zeroed and the first instance
the image and sensor data indicate full contact has been achieved. However in this case
zeroing could be carried out only prior to starting the main test procedure which was likely
later than ideal due to the unlevel surface. The outcome of this is that the forces recorded
are likely to be an underestimate of what they should be, and indeed comparing Figure 8.2
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with the equivalent plots for the later tests this appears to be the case.

Another issue with the first test was unexpected equipment issues resulting in a delay in
testing even after the specimen was consolidated and prepared. Although the specimen was
wrapped in air tight cling film, several days of midsummer heat in a non airconditioned lab
potentially had a negative effect on the quality of the specimen.

Finally, floccing was insuffient to allow for the PIV process to adequatly recover the dis-
placement field in some areas of the area of interest.

FIGURE 8.3: The triaxial and shear vane tests and Terzaghi’s back analysis
carried out on Specimen One.

Figure 8.3 shows the stress-strain data recovered through supplementary testing including
a set of triaxial tests. Horizontal lines for the mean cu recovered by shear vane testing is
also provided, as is the mean cu obtained by back analysis using Terzaghi’s bearing capacity
equation with the loading data for each of the two footings.

The intention regarding triaxial testing was that eight tests were to be carried out, with
four core sample tubes used to extract soil, with each long enough to extrude two triaxial
specimens. As per the figure, data for just four triaxial tests is provided. Again, a number
of issues existing due to this being the first specimen were present. Two triaxial specimens
were inaccessible due to one of the core tubes being several millimetres too long to fit into the
extruder, which was trivially solved for future tests by selecting a different tube, and two
more were destroyed by experimental error due to the soil being both softer and stickier
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than the author of this work had experienced in previous triaxial testing. These issues were
solved, with the full complement of triaxial tests carried out for future tests.

Several points can be made regarding Figure 8.3. Firstly, the cu values recorded with shear
vane testing are slightly lower than those of other tests. This is possibly due to variance in
the consolidation process, as a particularly noisy load cell was used, or alternatively due to
the specimen drying slightly as discussed earlier. Secondly, the cu values obtained through
back analysis using Terzaghi’s bearing capacity equation are notably lower than both the
shear vane values and the triaxial values. As previously discussed, the irregular soil and
the touchdown process likely resulted in an underestimate in peak observed loading which
would result in a lower cu via Terzaghi’s equation. This observation is not present to nearly
the same extent in later testing with improved touchdown procedures. Finally, although
there is variance between the triaxial tests, save for one lower result, three have a similar
peak stress that is not dissimilar to the values obtained via shear vane testing.

FIGURE 8.4: The PIV derived displacement fields for both cameras for each
footing test carried out on Specimen One.

A plot showing vector plots representing the displacement fields obtained during testing
of Specimen One can be seen in Figure 8.4. Examining the plots, it is clear to see that the
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sample preparation for this first test was sub par with regards to the quality of PIV imaging
data obtained.

Large areas of the field are missing from some tests, particularly for the 40mm footing in
which both Camera One and Camera Two have regions with no data. Camera Two particu-
larly is missing data in what is likely to be a key area based on the surrounding vectors. For
the 20mm fields, Camera Two has some somewhat wild vectors directly under the footing.
Although obvious wild vectors were removed, it was particularly difficult in this case to
determine what to be removed as simply selecting all wild vectors would end up with huge
amounts of data missing and as such only the most obviously unacceptable wild vectors
were removed.

The effects on the stress-strain curve of having either wild vectors or missing areas will
be discussed further when the results are presented, but the effects can be predicted based
on knowledge of how the proposed Identification Methods function. Missing areas will
have lower strain than they should, which will mean internal work that should be counted,
isn’t. The recovered stress-strain response will therefore have to be higher and/or steeper
to make up for this. Wild vectors will have the opposite effect. They will typically cause
higher strains which will introduce internal work that shouldn’t be present and will result
in the recovered stress-strain curve to be lower. The mechanism by which this happens is
essentially the same as the randomised noise discussed in Chapter 7, albeit localised.

8.3.2 Specimen Two

Specimen 2 represented a significant procedural improvement over Specimen One. Lessons
learned during the preparation and testing of the first specimen were put into practice. A
new consolidation plate was assembled which resulted in a perfectly flat surface on the spec-
imen. Floccing was carried out more thoroughly, and timing of the consolidation allowed
for testing to be carried out promptly once the consolidation load was removed.

Perhaps the biggest difference is that the touchdown will now be part of the main test proce-
dure. The footing will be lowered in one stage by strain based actuation and begin to press
into the soil without pause with continuous image and sensor data recorded throughout.
As described in the previous section of this chapter, for the purposes of the Identification
Method the test will be considered to have commenced at the point at which both sides of
the footing are in contact with the specimen. Although the surface of the specimen was flat,
the floor wasn’t necessarily level. A spirit level was used to manually adjust the testing box.
This will be considered and discussed in the following sections of this chapter when the
analysis of the datasets is presented.
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FIGURE 8.5: Central Force and Displacement for the two footing tests carried
out on Specimen Two.

Figure 8.5 shows that loading is slightly higher than what was observed in specimen one.
Zeroing took place at a more appropriate time without the beginning of the test essentially
being missed by having a touchdown recorded separately. As would be expected, the load
observed for the 40mm footing is approximately double that of the 20mm footing.

Figure 8.6 shows the supplementary data that will be used in comparison to the results of
the proposed Identification Methods for Specimen Two. Both the mean shear vane cu value
and the mean Terzaghi’s back analysis cu are higher than the previous specimen and have a
smaller gap between them.

Triaxial testing for Specimen Two was significantly improved over the testing carried out
with Specimen One. All 8 tests were performed and, as per the figure, are mostly consistent.
There was one anomalous result that was far lower and shallower than the others and has
not been included.

As per Figure 8.7, the quality of the PIV data has improved compared to Specimen One for
most of the datasets. Both of the displacement fields for the 20mm footing look as expected,
as does Camera Two for the 40mm footing. Camera One for the 40mm footing unfortunately
still has missing areas. Examining the raw images for this it can be seen that floc is sparse
in the affected areas. Figure 8.8 shows a close up comparison between the floc quality of the
Camera one and Camera two datasets for the 40mm footing.

It is clear to see, particularly in the 20mm datasets, that a row of vectors directly above
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FIGURE 8.6: The triaxial and shear vane tests and Terzaghi’s back analysis
carried out on Specimen Two.

the footing are missing. This have been removed as wild vectors for reasons that are com-
mon throughout the four specimens. As the footing penetrates the soil, some soil moves
up between the footing and the perspex window. Although there is a rubber wiper a few
millimetres from the base of the footing, this few millimetres of soil movement is picked
up. In some cases, upward displacement is recorded which is obviously spurious. In other
cases, downward movement is recorded here, but at a lower magnitude than the row of
displacement vectors immediately below, which is also incorrect but is sometimes harder to
manually spot. Although the upwards movement is of only a small amount of soil, there is
the potential that this would slightly increase friction between the wiper and the window.

The commentary given for the effects of missing regions or wild vectors on the displacement
fields of Specimen One is also valid for this case.
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FIGURE 8.7: The PIV derived displacement fields for both cameras for each
footing test carried out on Specimen Two.

FIGURE 8.8: A comparison between floc on the Cam 1 (left) and Cam 2(right)
image data for the Specimen Two 40mm footing.
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8.3.3 Specimen Three

FIGURE 8.9: Central Force and Displacement for the two footing tests carried
out on Specimen Three.

Specimen Three is largely the same a Specimen Two. This specimen had no noteworthy
errors either during the preparation of the specimen or during testing. The only key point to
raise regarding the force-displacement data presented in Figure 8.9 is that the force recorded
for the 40mm footing is the highest observed by a small margin. Again, variance here is
possibly due to variance in the consolidation process but is more likely due to the difficulty
in knowing when to start the test for purposes of the proposed Identification Methods.

As with the other tests, zero force and displacement was chosen at the point when both
sides of the footing are visually in contact with the soil. The footing tests for this specimen
were the easiest in this regard as the footings were most level and came into contact much
more uniformly so it is possible that the levels of force recorded in this test are a better
representation than other specimens in which a slightly lower value was recorded.

Figure 8.10 shows the results of the supplementary tests carried out on Specimen Three. Tri-
axial tests for Specimen Three were fairly uniform, although less so than the triaxial results
from Specimen Two. In this case the variance between the plotted curves is slightly higher
but there are no curves that stand out as anomalies. Given the presented data it can be said
with a good degree of certainty that the true cu value for the soil in Specimen Three is around
20 to 25kPa.

The vector plots for Specimen Three, as shown in Figure 8.11, are perhaps the best obtained
during the suite of tests. There are no regions of missing data, indicating the floccing process
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FIGURE 8.10: The triaxial and shear vane tests and Terzaghi’s back analysis
carried out on Specimen Three.

was successful. Lessons learned from the previous tests, such as ensuring the metal side
plates of the consolidation box are sufficiently lubricated prior to filling with slurry resulted
in a much higher quality specimen.

Wild vectors were not observed in the immediate vicinity of the footings for any of the
datasets related to Specimen Three. A few were observed along the surface on the left hand
side of Camera Two for the 40mm test. A distinct missing line of vectors can be observed
here. Wild vectors in the peripheries of the dataset are much less of an issue than those in
the centre.
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FIGURE 8.11: The PIV derived displacement fields for both cameras for each
footing test carried out on Specimen Three.
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8.3.4 Specimen Four

FIGURE 8.12: Central Force and Displacement for the two footing tests carried
out on Specimen Four.

Specimen Four, was the final specimen to be produced and tested. A noteworthy issue
occurred during the consolidation phase for this specimen. As the kaolin slurry was mixed
for the same batch that was used for Specimen Three, it was left in the mixer for just over
a week while Specimen Three was being prepared and tested to save the need to decant
it into multiple buckets. When the time came to use this remaining slurry, it was briefly
mixed to undo any separation in the mixer and then transferred to the sample box using the
methodology specified in Chapter 6.

Possibly due to the slurry not being mixed enough after its week in the mixer, it proved to be
highly liquid when consolidation pressure was applied with lots of slurry escaping around
the top plate. Due to the load cell used to control the consolidation process being extremely
noisy at low stresses it was impossible to simply use a lower consolidation pressure for a day
or so. To solve this issue a vacuum pump and desiccator were attached to the drainage tubes
at the bottom of the specimen box overnight with a nominal consolidation pressure applied.
Overnight a small amount of water was removed and in the morning the vacuum pump
and desiccator were removed and the consolidation process was carried out as normal.

As this measure was applied for only one night of an eight day consolidation process, and
when a very low pressure was applied, it is unlikely to have had any effect on the final
properties of the prepared specimen.
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Other than this issue the specimen was the highest quality one that was produced. Specimen
trimming and floccing was carried out as per the specified methodology in a well practised
process.

Figure 8.12 shows the force-displacement curves observed during the footing tests carried
out on this specimen. There are no comments specific to this specimen that can be made
regarding this data.

FIGURE 8.13: The triaxial and shear vane tests and Terzaghi’s back analysis
carried out on Specimen Four.

It can be seen in Figure 8.13 that the results from the triaxial testing of Specimen Four are
much more varied than was observed in earlier specimens. Although there are no tests that
can be pointed to as anomalous, there is a significant range of possible curves. Variance
in triaxial test results is a reality of the method, however in this case it is much more pro-
nounced than in some of the earlier specimens. It is unclear what the cause for this would
be and it will potentially make comparisons with the outputs of the proposed Identification
Methods less useful for validation.

Other than the spread in triaxial results, the mean value of shear vane tests and of back
analysis using Terzaghi’s bearing capacity equation are largely the same as observed for
other tests. Notably, the back analysis cu is higher than observed in previous specimens.
It is likely the difficulty in correctly zeroing the footing tests that is the cause of this, as
mentioned in the discussion for previous specimens.

Similar to those of Specimen Three, the displacement field vector plots, Figure 8.14, of Spec-
imen Four are similarly high quality. Sample prep and floccing was carried out to a very
high standard, as fitting for the final specimen to be produced. Trimming of wild vectors
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FIGURE 8.14: The PIV derived displacement fields for both cameras for each
footing test carried out on Specimen Four.

was limited to either the row immediately below the footing, or to the peripheries along the
surface.

Camera One of the 40mm test stands out as deserving commentary. In this dataset, signifi-
cant movement can be observed throughout the field. Other specimen datasets are typically
zero around the edges, with the exception of 40mm tests in which an asymmetric failure
mechanism often has formed in which case sideways movement may extend to the nearest
border. This dataset does have this asymmetric failure mechanism, but unlike other datasets
where this can be observed (including Camera Two for the very same test) significant down-
wards movement can be seen across the whole field.

The possibility that this is systematic error caused by camera movement was considered,
but dismissed after looking into the displacements recorded for the control points in which
no such systematic movement can be observer, either numerically or by eye. Further exam-
ination was performed by simultaneously opening both the first and the last image of the
dataset and rapidly flicking between them. It can be seen through this method that soil is in
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fact moving out of the region of interest and past the control points in the manner shown in
the displacement field vector plot.

The reasons why this would be the case are unknown. Applied footing displacement was
the same as Specimen Three (save for a slight difference due to touchdown timing) and
lower than Specimen Two where such movement was not observed. As stated, the other
camera for the same test also does not see such a phenomenon.

The effects are likely to be similar to having missing regions of data, which is in fact what
has happened. The missing regions are not however in the centre of the region of interest
as observed in cases with sub par floccing, but extending outwards from the perimeter. The
effects will likely be that the recovered stress-strain response will be higher as more internal
work must be done by a smaller area.

Additionally, the assumption that boundary effects are not present is called into question.
There is no means to include boundary effects in the current paradigm of the proposed
Identification Methods and the effects of doing so are beyond the scope of this project. It is
likely that energy is being expended due to soil movement towards/past the metal specimen
box wall panels but not counted in the overall equilibrium process. As before, this will result
in the recovered stress-strain response being higher than it should be.

8.3.5 Comparison and Commentary

Throughout the discussion of the four specimens, a number of differences were pointed
out and explained, most notably due to the refinement of experimental technique after the
first test. Variance between later tests is due to the touchdown process. It proved diffi-
cult to achieve simultaneous contact along the length of the footing, resulting in one end
touching down before the other. The need to zero the force-displacement and displacement
field at some point after this touchdown proved difficult to do consistently. Every effort
was made to select the times of the very first images in which contact was observed, but
even being one image too late or early can have a large effect on the peak load, should the
force-displacement curve be particularly steep. Investigation into this phenomenon will be
presented later in the chapter.

What hasn’t been discussed to the same extent is the similarities between specimens. All
specimens were consolidated to the same target pressure, with some small differences in the
procedure as have been noted, and for the most part, the triaxial data, load data, and shear
vane data, shows a lot of similarities between tests. Plotting the triaxial curves for the four
specimens on a single plot, for instance, would make it hard to identify which curves belong
together. It does seem that, after taking into account the points raised in this section, that
the specimens have roughly the same material properties.
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To allow for easier comparison between the qualitative analyses carried out, a table has
been compiled summarising the key points. Table 8.2 presents this information. This com-
parison between differing cu values adds confidence to the load zeroing process. Excepting
Specimen One, the values obtained from Terzaghi’s bearing capacity equation back analysis
compare well with the cu values found from both shear vane and triaxial data. This implies
that the peak load values that were observed after the zeroing process are what would be
expected based on the soil strength.

Variable Specimen 1 Specimen 2 Specimen 3 Specimen 4
Peak Load 20mm (N) 209 321 341 428
Peak Load 40mm (N) 690 747 938 906
Mean Terzaghi’s cu (kPa) 13500 19200 19200 21600
Mean Shear Vane cu (kPa) 19000 22500 22600 23300
Mean Triaxial cu (kPa) 20300 22900 20400 24600

TABLE 8.2: Comparison between footing tests.

8.4 Verification using "real" datasets

This section will present a comparison between the recovered stress-strain responses for
each dataset and the representative responses and cu values obtained through supplemen-
tary testing. This comparison will be presented for both the Segment based Identification
Method and the Equation based Identification Method.

All 16 datasets (4 specimens with two tests, each with two cameras) will be processed for
the Segment based approach whereas only a subset of available datasets will be processed
using the Equation based approach due to the prohibitively computational expense of the
brute force process. As per the investigations on artificial datasets presented in Chapter 7,
although there are differences between the recovered curves using each method, the overall
quality is largely the same. It can therefore be assumed that commentary on the quality of
the stress-strain curves recovered using the Segment based approach, giving reference to the
qualitative analysis presented earlier in this chapter, will also be valid for stress-strain curves
recovered using the Equation based approach. Additionally, the Equation based approach
has very particular assumptions about the shape of the recovered curves that are unlikely to
be valid for real datasets.

After the presentation of the verification of the Identification Methods the following section
of this chapter will consider whether the decisions made regarding preprocessing parame-
ters and strategies were valid.
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8.4.1 Segment based approach

As per the analyses in Chapter 7, the Segment based approach was performed using 100
segments for each of the datasets. Preprocessing was uniform for every test, as per the
earlier section in this chapter. Timesteps were based on availability of images, with every
image utilised between the start and end time.

Specimen One

Specimen One was the first specimen produced and tested. As per the qualitative analysis
on this specimen, there were a number of issues. Firstly, the specimen was allowed to dry
slightly due to equipment availability delays for the actual test procedure. Secondly, the floc
patterns were poor, with regions in which GeoPIV was unable to pick up displacements.
Finally, touchdown was carried out separately to the main test, resulting in the data being
zeroed slightly later than it should be. The effects of these factors on the final recovered
stress-strain curves will be examined.

FIGURE 8.15: A comparison between the stress-strain curves recovered with
the Segment based approach and the supplementary data for Specimen One.

Figure 8.15 shows the recovered stress-strain responses for the four datasets corresponding
to Specimen One. The stress-strain curves are superimposed over the supplementary data
that was previously presented in Figure 8.3.

What immediately stands out from the recovered stress-strain curves is that the Camera
Two dataset for the 40mm footing significantly overestimates the cohesion of the soil. The
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triaxial plots seem to agree on a cu of a little over 20kPa, whereas the aforementioned recov-
ered curve has a cu value that is around 2.5 times larger. As per the qualitative discussion
on Specimen One, this dataset had a particularly poor displacement field, even compared
to other datasets from the same specimen. Not only was a large region missing due to poor
floc coverage, but it can be inferred from the field plot that it corresponds to a region with
significant strain. It does appear that the prediction that such a region results in an overesti-
mate of cu is supported by the presented data. Although it is possible to assess image quality
by eye, the future development of a tool to automatically quantify the quality of image data
would potentially be of use.

Although some imaging data from Specimen One is of lower quality, the confirmation that
poor PIV texture impacts the Identification Method performance in the expected way is of
value. Knowledge of this issue will be of use for the design of any future tests where it is
desired to use PIV data as input to an Identification Method.

The other three recovered curves have more reasonable cu values. The Camera One data
for the 40mm footing has a similar elastic region to the Camera One data for the 20mm
footing, although has a higher cu value. Although the cu value for this data is higher than
the supplementary triaxial data, this specimen only has four successful triaxial plots with
variance that is lower than shown amongst the larger number of triaxial plots presented for
other specimens, so it can’t be said with confidence whether the Camera One data for the
40mm footing is or isn’t within acceptable bounds.

The aforementioned responses are excessively steep, even if the plateau is at a reasonable
value. This indicates that the optimisation process is requiring more work to be done by
small strains. Throughout all datasets for all specimens, a significant majority of elements
have very low strains, and although some have been filtered in the manner described in the
preprossessing section, this doesn’t fully rectify the situation. It can easily be seen from
the relevant displacement plots that only a handful of elements will have strains in the
plateaued part of the curves.

Why this would happen is not known, possibilities relating to the issues with touchdown,
or poor displacement field are possible. Nonetheless, recovering cu is still of use even if the
shape of the curve is not of value. There is also the possibility that the triaxial responses
plotted are not representative of a footing response.

The final recovered stress-strain response is the one resulting from the Camera Two dataset
for the 20mm footing. This curve has a shape that is more similar to the triaxial data than
the other curves, and has a cu at an appropriate height.

The quality of a recovered stress-strain response in comparison to supplementary test data
is useful for validation, but would not be possible in cases in which only the recovered
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FIGURE 8.16: The difference between local internal and external energy for
Specimen One.

response is available. The quality of the recovered curves can be assessed further by exam-
ining the energy gap. Although this can be expressed as a single percentage value, the global
energy gap, it is more useful to look at the local gaps, of which one exists per image frame.
Figure 8.16 shows plots of cumulative internal and external work for the four datasets of
Specimen One.

It should be noted that for Specimen One, due to touchdown being carried out as a separate
stage, footing displacement data was taken as an average of the LVDT at either end. As
such, external work is identical for both cameras for this specimen.

As before, the standout dataset is Camera Two for the 40mm footing. After an initial over
estimate of internal work, the curve ends up having a fairly large energy deficit. It should
be noted, as per Chapter 4, that the optimiser doesn’t simply sum local energy gaps to find
the global energy gap, but uses the least square of the local energy gaps. The optimiser has
no motivation to attempt to make up for early energy surpluses with a later energy deficit.

The recovered stress-strain curve for the 40mm/cam2 dataset is significantly higher than
it should be, and one of the ways the optimiser can increase internal work is through a
higher stress-strain curve. Despite the extremely high cu value, there is still an energy deficit
indicating that moving the curve further higher would not improve the energy situation but
instead make it worse.

In comparison with the other datasets for this specimen, it appears that a large energy gap
is indicative of a poor recovered curve. This will be analysed further in later specimens.
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Specimen Two

As per the qualitative discussion, Specimen Two had an improved prep and testing process.
The displacement field is poor for the 40mm/cam1 test but significantly better for the other
three tests. Most notably, the touchdown process was recorded as part of the main test, with
no pause after soil impact. The load, displacement, and PIV displacement data was zeroed
at the earliest point where both ends of the footing can be seen to be in full contact with the
soil.

FIGURE 8.17: A comparison between the stress-strain curves recovered with
the Segment based approach and the supplementary data for Specimen Two.

Figure 8.17 shows the recovered stress-strain curves for the four datasets, along with plots
relating to the supplementary tests. A distinction can be drawn between the datasets col-
lected with Camera One and those collected with Camera Two. The Camera One datasets
for both footing widths are within the range that the triaxial test data would imply is accept-
able, whereas the curves recovered for Camera Two are initially too steep.

The reason for this discrepancy is the touchdown process. As stated previously, the speci-
men box was levelled with use of a spirit level, which it to say that there is a margin of error
involved. The footing was slightly off of parallel with the surface of the soil such that one
end touches down first. Although all data is zeroed only when both ends are in contact, the
side touching down first will already have small soil deformations whereas the side touch-
ing down second may not begin to measurably deform for a short while. The end of the
footing recorded with Camera One touched down first for both footings.
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It follows that the image data associated with the end that touches down first will record
overall higher strains throughout the test. Table 8.3 shows the mean and maximum values
of shear strain recorded for the tests carried out on Specimen Two which provides evidence
to support this. It should be noted that the values in the data are after the preprocessing
described in earlier sections of this chapter.

Test Mean εs Max εs
20mm/Cam1 0.0223 0.5943
20mm/Cam2 0.0124 0.3663
40mm/Cam1 0.0623 1.8725
40mm/Cam2 0.0325 0.7121

TABLE 8.3: A comparison between the mean and maximum observed shear
strains for Specimen Two.

Based on this discrepancy in strains, a dataset in which strains are generally higher would
be expected to have a lower stress-strain response, provided that in reality the soil behaviour
is the same for both datasets and the external work is the same or approximately the same.

FIGURE 8.18: The difference between local internal and external energy for
Specimen Two.

Figure 8.18 shows the energy plots for Specimen Two and will allow for further insight to
the phenomenon observed with this specimen. Note that the external work is not equal for
both cameras. Due to the touchdown process, one end of the footing was in contact before
the other so there is a short time before the footing levels out. The force data used is equal
for both datasets, however displacement was measured at both ends of the footing, with a
different Force-displacement plot used for each dataset.
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It can be seen in the cumulative energy plots that the difference is mostly in the first 30
images or so, after which the cumulative energy plots are parallel, indicating that the footing
is moving down into the soil uniformly.

The difference in energy between the datasets is relatively small, and as internal work and
external work are equilibrated incrementally, the difference is mostly limited to the first
part of the test. Although Camera Two has lower external work at the earlier stages of the
test, it is not enough to mitigate the lower strain values. The ability to accurately choose the
touchdown location appears to significantly impact the quality of results, particularly in this
case in which a compromise must be made due to the footing not touching down equally.

The cumulative energy plots for the 20mm footings are much closer to each other. Examin-
ing the chart closely, or indeed the numeric values, it is clear the same phenomenon can be
observed but to a lesser extent due to the overall lower strains and displacements.

Other than the discrepancies due to the touchdown process, the internal work and external
work are a close match for all four datasets, including the 40mm/Cam1 dataset which fea-
tured regions of missing PIV data. Examining the displacement field for this dataset (Figure
8.7) it seems that the missing regions are areas of lower strain than those of the problematic
dataset from Specimen One. Also these missing regions are smaller. It is also important to
understand that "missing" PIV data is not discounted, but instead has a displacement set to
zero (or approximately zero). A large patch of zero displacement will of course have zero
strain, but small patches surrounded by more typical non zero displacements may in fact
cause higher strain. Areas of uniform movement or no movement have low strains, and ar-
eas of non uniform movement have higher strains. It is possible that a better strategy would
be to delete the vectors in these areas as wild, however, for this dataset doing so would
result in removing a large percentage of the displacement field. A reinterpretation scheme
would be possible but would raise questions in the accuracy of the interpolation due to the
size of the area.

Specimen Three

Specimen Three, as described in the qualitative analysis section, with no noteworthy issues
that may effect the quality of results. The imaging data recorded with the cameras was of
good quality for all four datasets.

Figure 8.19 shows the recovered stress-strain curves for Specimen Three. Comparisons can
be made by splitting the datasets by both camera and footing width.

Comparing the different footing widths, both datasets for the 20mm footing have a reason-
able cu value that is within the range suggested by the triaxial data. The datasets for the
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FIGURE 8.19: A comparison between the stress-strain curves recovered with
the Segment based approach and the supplementary data for Specimen Three.

40mm footing have cu values that are much higher. It was noted that the observed force for
the 40mm test of Specimen Three was the highest observed across the suite of tests.

As mentioned several times before, choosing the start of the test is not an exact science, there
is difficulty in either visually selecting when the footing is in full contact, or doing so based
on the raw force-displacement data. The start was selected using the same methodology
as all other specimens. Selecting a start point even one image earlier or later could have a
meaningful impact on the observed peak strain. Although it would be possible to tweak
the start position to acheive a more favourable recovered curve, this has not been done as
it would be an unfair test and unrepresentative of the ability of the proposed Identification
Methods to recover a curve in cases where supplementary data for comparison is unavail-
able.

The other comparison to be made is the phenomenon of uneven touchdown. The ends of
the footing recorded by Camera One touched down first, and as with Specimen Two, have
lower cu values than the datasets recorded by Camera Two.

The plots of cumulative internal and external energy for the four datasets can be seen in
Figure 8.20. It can be confirmed that just as with Specimen Two, the external work for the
side of the footing that touches down first (Camera One) is higher. Much of the commentary
on this is given under Specimen Two and will not be repeated here.

An additional point that can be made regarding this specimen is that there is a significant
energy gap for the 40mm/Cam2 dataset. Initially there is a very large energy surplus, after
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FIGURE 8.20: The difference between local internal and external energy for
Specimen Three.

which there is an energy deficit in the middle of the dataset, and the final third or so has
approximately equal internal and external energy as per the parallel lines.

To better illustrate the energy errors of the 40mm/Cam2 dataset, an additional figure is pro-
vided. Figure 8.21 shows the local energy gap. Each marker represents one image increment
and is plotted at the time at the end of the increment. It can be seen from this that the assess-
ment given based on the cumulative plot is correct, but this additional plot makes it clear
the extent that internal energy is in surplus at the initial part of the dataset.

It should be remembered that the optimiser seeks to minimise root mean square of local
energy gaps. A surplus early is not cancelled out by a later deficit. This can be thought of
minimising the area between the plotted local energy gap and the x axis, with area above
and below the axis counted equally.

These relatively few early timesteps with a huge local gap no doubt have an impact on the
shape of the recovered curve. The possibility of refining the dataset by removing increments
with significant energy gaps was considered, but found to be of little benefit. This dataset
would have been a prime candidate for such refinement by simply not including the first 10
or so timesteps in the global energy gap calculation. Trials using this methodology found
that although the global energy gap was reduced, there was negligible change to the recov-
ered curve, with the cu value still being unacceptably high.
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FIGURE 8.21: The local energy gaps for the 40mm footing width, Camera Two
dataset of Specimen Three.

Specimen Four

The final specimen to be prepared and tested was Specimen Four. A detailed qualitative
analysis of this specimen can be found earlier in the chapter. The key points however were
that it was the best produced in terms of quality of the flocced surfaces and that one of the
datasets had significant movement outside of the area of interest, that appears to be genuine
and not simply an artefact of the photographic and/or photogrammetric processes.

The recovered stress-strain curves for Specimen Four are shown in Figure 8.22 along with
the relevant supplementary data to allow for assessment of the recovered curves. As done
with previous specimens, the most clearly incorrect recovered response will be discussed
first.

The recovered stress-strain response for the 40mm/Cam1 dataset is significantly higher than
the others with a cu of just over 40kPa, exceeding even the highest triaxial plot. As per the
qualitative discussion presented earlier, this is the dataset that featured significant move-
ment outside of the region of interest. It would be expected that the recovered stress-strain
response would be an over estimate as significant movement and potentially strains are sim-
ply not recorded, requiring more work to be done by the elements within the area of interest.
Why this has happened for this specific dataset is not known. Although small amounts of
lateral movement have been observed along the borders of 40mm footings failing assymet-
rically, no other dataset has such movement to this extent. Even the corresponding dataset
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FIGURE 8.22: A comparison between the stress-strain curves recovered with
the Segment based approach and the supplementary data for Specimen Four.

for Camera Two does not exhibit the same behaviour.

As with the previously discussed specimens, the curves recovered from the ends of each
footing that touch down second are higher. It should be noted that for this specimen the
datasets associated with Camera Two represent the ends of the footing that touched down
first, the opposite of the previously discussed specimens.

This specimen also has perhaps the best example of a recovered stress-strain response.
20mm/Cam2 has both an elastic phase and a plateau that are within the area of acceptability
based on the supplementary triaxial data, with even a slightly rounded transition.

Figure 8.23 shows the differences between the cumulative internal and external energy for
each of the four datasets associated with Specimen Four. There is little to add that hasn’t
already been covered with the discussion of previous specimens.

The differences in external work based on which footing touches down first are still present
(in this case Camera Two represents these datasets). Unlike previous specimens there is a
meaningful gap between the two external work curves for the 20mm footing. It does appear
that in this case the differences in alignment between the footing and the soil surface were
larger than in earlier tests.

As expected there is a significant energy gap for the 40mm/Cam1 dataset. Like the er-
roneous dataset from Specimen One, despite a very high cu being recovered with a steep
curve, the internal work is still lower than the external work. If the optimiser were able to
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FIGURE 8.23: The difference between local internal and external energy for
Specimen Four.

reduce the energy gap by further raising the curve it would have, but evidently doing so
would not represent an improvement.

Validation of the Segment based approach optimisation procedure

Although the Segment based approach theoretically recovers the stress-strain response with
the lowest energy gap, there is the question as to whether the recovered curve is genuinely
the best possibility. The recovered curve could instead be one of many possibilities that have
negligible difference in energy gap, with some of these curves being a better representation
of the true soil behaviour despite being found to be technically suboptimal. An example
is the bilinearity observed in many of the recovered curves. It would be potentially more
useful should a smooth curve exist that is almost as optimal.

The first thing to consider is whether the optimisation problem is convex. For the MOSEK
optimiser to find a global optimal solution, the optimisation problem must be convex. A
non-convex problem has the possibility of local minima being found. According to the
MOSEK documentation (MOSEK, 2020), there are built in checks for convexity. These checks
were left on their default setting which would return an error message should non-convexity
be identified. As stated in Chapter 4, conic optimisation is used. As conic optimisation uses
convex cones as a constraint, the problem is by definition convex. Combined with the built
in checks, it can with confidence be said that the recovered solutions are the optimal solu-
tions in terms of energy gap.
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The second consideration is a continuation of the point raised in the introductory paragraph.
There is the potential that a slightly sub-optimal stress-strain response exists that would be
of more practical use to a geotechnical engineer. Whereas the Equation based approach us-
ing a brute force approach allows for a contour plot to determine the existence of a near
optimal plateau, the Segment based approach is essentially a black box. It is however pos-
sible to investigate the effects of altering the recovered stress-strain curve. All the relevant
optimisation matrices are saved, and as such simply changing the values in the segmen-
tal maximum shear stress vector and completing the multiplication will allow for a new
global energy gap value to be calculated. Although only simple variations can be made (e.g.
scaling up or down all or some of the recovered curve), a brief investigation will allow for
increased confidence in the Segment based approach.

FIGURE 8.24: Scaling up and down the Cam 2, 20mm footing dataset from
Specimen Four.

Figure 8.24 is a plot showing how global energy gap varies with a scaled stress-strain re-
sponse. The recovered curve for Camera 2, 20mm footing, from Specimen Four was scaled
up or down by up to 20%. The x axis in the figure is the peak maximum shear stress at
the top of the scaled stress-strain curve. It can clearly be seen that the original curve was
optimal, with global energy gap varying in the form of a parabola. It is notable that the
global energy gap percentage (a percentage of external work) is changed by a relatively
small amount (1.47% to 3%) despite scaling the stress-strain response by ±20%. This is
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likely due to the uneven distribution of work across the stress-strain response; the vast ma-
jority of elements are represented earlier on where percentage based scaling will have lower
impact. It does however seem to follow that less populated portions of the stress-strain re-
sponse could be varied wildly with little impact to the global energy gap provided the more
populated portions are sufficiently accurate.

FIGURE 8.25: Adding stress uniformly to the Cam 2, 20mm footing dataset
from Specimen Four.

Figure 8.25 shows a plot of global energy gap in which stress has been uniformly added to
the recovered stress-strain response. The same dataset has been used as in the previous in-
vestigation. It should be noted that due to the programmatic implementation of the Segment
based approach, the stress-strain response is hard-coded to pass through the origin. As such
the first segment, representing 1% of elemental strain increments, has not been scaled to the
same degree as the other 99. This procedure is still much more uniform than the previous
investigation. It appears that the plot quickly approaches an asymptote in which any addi-
tional stress causes a linear increase in energy gap. As before, the original recovered curve
is the most optimal.

A detailed investigation in which all 100 segments are manually adjusted would not be
possible. This simple check does appear to confirm that the recovered stress-strain is the
global minimum. Small changes to e.g. cu are possible with negligible impact on global
energy gap, however these changes quickly result in linear (or worse) impact on energy
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gap. It is likely that other more localised adjustments to the recovered curves have a similar
impact. The plateau of "passable" but sub-optimal curves would appear to be fairly small,
as far as the checks carried out here indicate.

Having established that the recovered stress-strain response is optimal as per the problem
formulation, the question is raised as to whether changes to the formulation would allow
for "better" recovered curves. The Segment based approach implemented a number of con-
straints on the shape of the recovered curve that were intended to produce curves of more
practical use. Chapter 4 details these constraints. The constraint enforcing a gradually re-
ducing gradient stands out as worthy of investigation as a potential reason for the observed
segmentation or bilinearity.

FIGURE 8.26: Recovered stress-strain responses with and without the gradient
constraint activated.

Figure 8.26 shows the recovered curve for the Cam 2, 20mm footing dataset from Specimen
Four with and without the gradient constraint activated. It can be seen that without this
gradient based constraint the recovered curve is allowed to freely increase and decrease the
gradient as it sees fit. This results in a somewhat ugly staircase shaped curve. With the
constraint added, increases in gradient are disallowed and the recovered curve is forced to
change. The constrained curve essentially plots a straight line through the staircase region
of the unconstrained curve. As the recovered curve can never increase its gradient, if it re-
quired a certain stress value at a late stage of the curve it is necessary to ensure the recovered
curve is sufficiently steep to reach that stress value. In this example, if the earlier parts of the
curve were to be assigned more appropriate lower stress values, there would be no way that
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later parts of the curve also could. As such, the straight line is the best possible compromise
for the available data provided the reducing gradient constraint is present.

FIGURE 8.27: Local energy gap for responses with and without the gradient
constraint activated.

Insight can be gained from the energy considerations of this comparison. Figure 8.27 shows
the local energy gaps for the Cam 2, 20mm footing dataset from Specimen Four with and
without the gradient constraint activated. In general, and as expected, the energy gap is
smaller without the constraint active. Of particular note is the first three of so frames. Al-
though strains from each frame are spread throughout the stress-strain response, the lower
strains associated with the initial frames are likely to be over represented in the earlier parts
of the stress strain curve. It can be seen that the local gap with the constraint is significantly
higher than without the constraint for these initial frames. It appears that this is the result
of the constraint forcing the recovered curve to overestimate the stress associated with the
very small strains. The global energy gap matches the observation made regarding the local
gaps. With the constraint, the gap (as a percentage of external work) is 1.47%, and without
the constraint it is 1.27%.

Although the curve recovered without the reducing gradient constraint has a lower energy
gap and a reasonable cu value, it is clearly a less useful curve. Even if the true soil response
is not the almost bilinear recovered response, the staircase is almost certainly a less represen-
tative alternative. The reducing gradient constraint appears to be beneficial in making the
recovered curve more practically useful despite the slightly higher energy gap. The question
can be raised as to whether there are alternative constraints that could be used in addition
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or instead that may further improve the shape of the curve. The gradient could additionally
be constrained such that the rate at which it reduces must always increase which would
disallow sets of segments to form a straight line. Adding this, or a similar constraint, to
force a smoother curve instead of the segmented curve, would incur an increased energy
gap. Whether this is a worthwhile exchange would depend on the quality of the dataset.
It was demonstrated in Chapter 7 that perfect datasets can recover smooth curves without
any adjustment to the specified constraint.

The question is raised as to why some recovered curves are highly segmented or even bi-
linear, or would return a staircase without the gradient constraint. The Segment based
approach was allowed to choose the locations of 100 segments, yet in many cases it is re-
covering a stress-strain response that could be described with two or three. It was seen in
Chapter 7 that datasets of lower quality typically tend towards a more segmented recovered
curve whereas higher quality datasets have no such issue. The datasets that were artificially
degraded through the addition of noise tended towards bilinearity as noise was increased
(along with a reduced cu). It seems likely that this bilinearity is the result of carrying out the
optimisation process on a flawed dataset, however at the current time no one property has
been identified that could be pointed to as the reason for this. To pinpoint the exact cause
of the issue would allow either a quantitative assessment of dataset quality or potentially
the removal of the issue. Unfortunately, this is something that, if possible, will have to be
undertaken as future work.

It would be possible to force the recovered curve to be smooth in the same way that it is
possible to force the recovered curve to not feature a staircase pattern. Doing so when the
recovery of such a curve is not optimal for the dataset, for whatever reason, would make
it difficult to quantify the accuracy of the recovered stress-strain response. Any attempt
to constrain the shape of the curve will result in an increase in energy gap. As it would be
unknown what manner of curve is expected, writing a general constraint that has the desired
impact would prove challenging. The constraints defined during this project were intended
to be very general yet when faced with flawed data, unexpectedly resulted in bilinear or
almost bilinear curves. The definition of additional or replacement constraints will not be
carried out as part of this project but is something that would be of interest as future work.

A final check on the Segment based Identification Method is whether the number of seg-
ments can effect the recovered stress-strain response. It was demonstrated using artificial
datasets in Chapter 7 that increasing the number of segments improved both the shape of
the curve and the global energy gap. It was found that there are diminishing returns and
after 50 segments there is no observable change. For all analyses carried out in this chapter
100 segments were used. To confirm that this decision is suitable and is not having any un-
intended effects, the investigation into segment number was repeated for the Cam 2, 20mm
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footing dataset from Specimen Four.

FIGURE 8.28: An investigation into number of segments using a real dataset.

Figure 8.28 shows the results of the investigation into segment number. The findings are
essentially the same as with the equivalent study carried out for the artificial dataset. There
is no particular change in the segmentation of the recovered curve based on segment num-
ber. Every curve plotted is made up of two or three linear sections. It does appear that cu

increases with segment number for the initial few segments, however from seven segments
onwards, the cu value recovered is essentially the same as for 100 segments. Also plotted
is the variance of global energy gap with number of segments. After a few relatively poor
energy gaps, this quickly plateaus to the value of 1.47% that has been observed throughout
this discussion.

To conclude, it has been confirmed that the stress-strain responses recovered using the Seg-
ment based approach are optimal as per the current implementation of the optimisation
problem, and that the constraints and parameters used for the Segment based approach are
suitable. There is potential for improvements to be made to the curve constraints which will
form potential future work. Not included in this investigation is the effects of preprocessing
on the datasets. This will be covered later in the chapter.

8.4.2 Equation based approach

The Equation based approach is significantly more limited than the Segment based approach
in the recovery of curves, with the shape of any recovered curve being limited to a presup-
posed equation. Two equations were implemented, an elastic-perfectly-plastic response and
the "Vardanega and Bolton" response. The first features a straight line through the origin,
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followed by a horizontal plateau. The unknown variables are εlim and cu. The second equa-
tions features a power law curve followed by a horizontal plateau. More can be read about
these equations and how they are used in Chapter 4.

With artificial dataset analysis, these equations were able to capture the modelled soil be-
haviour as the same equations had been used to generate the properties input into ABAQUS.
With real datasets however, the true behaviour is unlikely to match. The elastic-perfectly-
plastic equation has potential to recover curves similar to what the Segment based approach
was able to achieve, with many of the presented recovered curves being approximately
elastic-perfectly-plastic. The "Vardanega and Bolton" equation is unlikely to match soil be-
haviour. Initial experimentation found that the Equation based approach using the "Var-
danega and Bolton" response chooses parameters such that the power law curve part of
the recovered response is very close to a straight line. Additionally, using the "Vardanega
and Bolton" equation takes a huge amount of computational time. For these reasons, only
the elastic-perfectly-plastic soil response will be used for assessment of the Equation based
approach.

The recovered curves using the elastic-perfectly-plastic response with the Equation based
approach are typically similar to the recovered curves from the Segment based approach,
and as such only a subset will be presented. Any commentary that could be given regard-
ing reasons why some datasets perform better than others is identical to that which was
presented for the Segment based approach. The same issues with touchdown timing or
displacement field quality still apply. As such, commentary given here will focus on any
differences between the two approaches. Specimen Four has been chosen as the dataset to
be analysed.

Figure 8.29 shows the recovered stress-strain curve superimposed over the supplementary
data. By eye, the curves recovered using the Equation based approach are very similar to
those recovered using the Segment based approach (Figure 8.29), with a few differences that
will be discussed. The Camera One datasets are very similar to what was shown previously.
The exact values can be found in Table 8.4. The Camera Two datasets have some mean-
ingful differences. The limitation of an elastic-perfectly-plastic response being presupposed
is apparent here, with the 40mm/Cam2 dataset being of a radically different shape than
before.

The reasons for the locations of each curve are the same as previously discussed. 40mm/Cam1
has an extremely high plateau due to uncounted internal work resulting from a significant
amount of soil movement outside the area of interest. The Cam 1 data was expected to be
both steeper and have higher plateaus than the Cam 2 data due to the flaws in the touch-
down process. This is not in fact the case for the 20mm footing datasets, where the inverse
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FIGURE 8.29: A comparison between the stress-strain curves recovered with
the Equation based approach and the supplementary data for Specimen Four.

is observed. The cam 2 dataset has a very slightly higher cu than the cam 1 dataset, however
cam 1 is extremely steep in comparison, which would perhaps make up for this discrepancy.

It should be noted that any curve recovered by the Equation based approach is theoretically
recoverable by the Segment based approach, so every curve should be a worse fit in terms
of energy. This will be considered by examining the cumulative energy plots.

Plots of cumulative internal and external work can be found in Figure 8.30. By eye, there
are a few points of consideration. Exact figures for global energy gap can be found in Table
8.4. The energy plots are approximately the same as before, with no significant deviations in
shape. Slight differences can be found in that the 20mm datasets appear to have small energy
deficits that were not present before, and the energy deficit for 40mm/Cam1 appears to be
smaller. Despite this unexpected result of plotting cumulative local energy gap, the global
error is worse for the Equation based approach as expected. This appears to be the case
for every dataset. Table 8.4 provides key figures to allow for comparison between the two
methods.

8.5 Investigation into Preprocessing techniques

In order to prepare the previously discussed datasets for use with the proposed Identifica-
tion Methods, a number of preprocessing techniques were used. A thorough investigation
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FIGURE 8.30: The difference between cumulative local internal and external
energy for Specimen Four using the Equation based approach.

Test Segment cu Equation cu
Segment

Energy Gap
Equation

Energy Gap
20mm/Cam1 27144 26567 1.1582% 1.1815%
20mm/Cam2 26196 27108 1.4733% 1.4925%
40mm/Cam1 39925 39783 3.5079% 3.7202%
40mm/Cam2 34269 29383 1.2142% 1.4445%

TABLE 8.4: A comparison between the two Identification Method Approaches
for Specimen Four.

in to how to best process the data would be a substantial challenge, due to a huge combina-
tion of different factors that interrelate in different ways, and the variance between datasets.
An optimal pre-processing strategy for one dataset may be suboptimal for another.

It is for this reason that initial informal experimentation was used to determine which tech-
niques should be used. Various combinations of preprocessing methodologies were tried
with datasets as they became available, with the techniques described earlier in this chapter
appearing to be best for most datasets. As supplementary data was available for compari-
son, it would have been possible to individually tweak the methods used for each individ-
ual dataset. One set may produce a stress-strain response closer to the triaxial data with less
smoothing for instance, while another could have a cu value closer to the shear vane data if
a sparser GeoPIV patch grid is used.

Doing this however would not allow for a set of recommendations for datasets in which the
"true" soil response is not known. It was decided that a single methodology of preprocessing
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techniques that appeared to give the best results on average would be uniformly applied
to each dataset, which is indeed what has been presented in the preceding section of this
chapter.

A number of issues with the datasets were identified, some independent of preprocessing
techniques such as soil movement outside of the area of interest, or areas with artificially
low movement due to floccing issues. Some issues, such as the difficulty of choosing the
exact start point of the test when the footing touchdown is slightly askew, are things that
can be affected through preprocessing decisions.

This section of the chapter will therefore investigate the effects of the processing decisions
made. Where there is little difference, or where one decision is clearly dominant, this will be
stated, as will cases where the recovered curve is extremely sensitive to the decision made.
A subset of datasets will be examined here. To investigate the effects of PIV patch size for
example for all 16 datasets would be hugely consuming in both time and space in the the-
sis. The goal of this section is not to optimise the process separately for each individual
dataset, but to broadly consider how such preprocessing decisions affect the proposed Iden-
tification Method such that commentary can be given on the uniform preprocessing strategy
employed and potentially how it could be refined.

8.5.1 Sensor Zero Time

The point at which the test is considered to have began was not trivial to find for many of
the datasets. Ideally, the point at which the footing comes into contact with the soil will im-
mediately be followed by both loading and displacement gradually increasing. In practice,
ensuring that both the footing and the soil surface were level and perfectly parallel proved
to be difficult with the available equipment. An analogue bubble spirit level along with
placing bolts under the feet of the specimen box proved to be insufficient and as such the
footing touched down slightly unevenly for many datasets, often with the load cell record-
ing a negative load briefly while the footing levels out.

As previously discussed, a point in time must be chosen from which the data can be zeroed,
and the point at which the footing is in contact at both edges was chosen. This seemed a
logical time to start, with the cu value obtained from using the peak observed load with
back analysis uses Terzaghi’s bearing capacity equation being of a similar value to the cu

values obtained through shear vane testing. The downside is that the same start time was
used for the datasets obtained on both sides of the box, with one undergoing small but
visible distortion in the soil prior to the designated start time. There is the possibility that
both sets of data could be used simultaneously, with a single curve recovered that is optimal
for the combination of datasets. Exploring this is a potential area of future work.
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Due to the flaws in the available data, the start time has a large impact on the recovered
curve. This was one of the considerations behind ensuring uniformity in the preprocessing
techniques used, particularly for the pairs of datasets obtained simultaneously. Simply ze-
roing the data several images earlier or later to get a better recovered curve would give an
unfair impression of the procedures used.

The effects of moving the zero point forwards and backwards by up to 10 seconds will be
presented for a two datasets. The recovered stress-strain responses will be provided, as will
the effects on cu value and global energy gap percentage. The data presented was generated
using the Segment based Identification Method, however similar plots would be produced
were this analysis carried out using the Equation based Identification Method.

FIGURE 8.31: The effects of varying the start time of the Specimen Two, Cam-
era One, 20mm dataset regarding the recovered stress-strain response.

Figure 8.31 shows that altering the zero time point in increments of two seconds causes the
recovered stress-strain response to increase or decrease relative to the time change. Each
time increment represents an average of two image frames. It is of note that the changes to
the recovered stress-strain curve directly correspond to the change in zero time; there is no
scenario in which starting later causes a lower stress-strain curve or starting earlier causes a
higher curve.

The primary mechanism behind this observation is that external work is essentially scaled
up. The load-displacement curve is initially very steep, such that two seconds is a significant
amount of load. Work done early in the dataset is of minimal concern, the later stages in the
dataset will see the same plateau in the load displacement curve, only now higher. Stresses
will have to be scaled up by a similar proportion in pursuit of energy equilibrium. A less
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significant but still present effect is that the strain field will also be altered at the earlier
stages.

The overall effect observed is large. It can clearly be seen in Figure 8.31 that the cu value
from the stress-strain response is over double based on a 20 second differential in the zero
time. This extreme time differential is somewhat large but unlikely in practice as it would
be equivalent to being out by at least 20 images when selecting which image has full touch-
down. Being out by a small handful of images is within the realm of possibility, which
would correspond to the plots for T − 2 and T + 2. This is still not ideal, but managable
provided there is awareness of the issue.

FIGURE 8.32: The effects of varying the start time of the Specimen Two, Cam-
era One, 20mm dataset regarding peak cu and the global energy gap.

Figure 8.32 confirms how cu alters and also plots global energy gap percentage against the
zero time adjustment. There does appear to be a correlation between energy gap and zero
time, with earlier zero times resulting in a slightly lower energy gap. This does not imply
that the stress-strain response for T − 10 is better, as it clearly isn’t due to far exceeding the
triaxial and shear vane data. A possible explanation for the improvements in energy gap are
that this dataset represents the end of the footing that touches down first. There are small
strains that are observable by eye prior to T = 0 but which are discounted due to needing
to start both datasets in the pair at the same time. Were it not for the compromised external
load data, it is likely that being able to include these earlier strains would be beneficial.
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FIGURE 8.33: The effects of varying the start time of the Specimen Three,
Camera Two, 40mm dataset regarding the recovered stress-strain response.

Figure 8.33 shows the recovered curves for the Specimen Three, Camera Two, 40mm dataset.
The same phenomenon can be observed for this dataset as can be seen for the previous case
study. Starting later lowers the recovered stress-strain curve and starting earlier raises it.
Whereas the previous case study was for a relatively good dataset, in which the recovered
curve at T = 0 was reasonable, this dataset is for a poorer dataset. This dataset was dis-
cussed previously for having a large energy gap, particularly in the first 5 seconds or so.
This can be seen in Figure 8.21 presented earlier in this chapter.

It can be seen in Figure 8.34 that the energy gap against zero time adjustment is significantly
different than in the previous case study. There is an overall movement towards a lower
energy gap as zero time is moved later, although it is not apparent until the point is reached
that the anomalous frames with a huge local gap are eliminated. This anomaly in the early
parts of the dataset prevents any conclusions being drawn that would be generally applica-
ble, but the fact that simply cutting the anomalous frames out has resulted in both a more
reasonable curve in comparison to the supplementary data and an improved energy gap
indicates that this is something that could be worthy of future consideration.

8.5.2 PIV Patch Spacing

Another preprocessing technique that was used was the patch spacing options in GeoPIV-
RG. It was possible to vary both patch size and patch spacing (both measured in pixels),
such that overlaps or gaps were possible. Having overlaps or gaps in the PIV patch set has



8.5. Investigation into Preprocessing techniques 231

FIGURE 8.34: The effects of varying the start time of the Specimen Three,
Camera Two, 40mm dataset regarding peak cu and the global energy gap.

no energy implications in and of itself, as the displacement and strain fields are based on
the central node of each patch. The means by which patch spacing or size will effect the
recovered curve is in the quality of the displacement and strain fields. A combination of size
and spacing has potential to cause strains to be overall higher or lower than they should
be. For instance, a sparse array of patches has potential to miss out localised features of the
strain field.

There is also the concern of the quality of the PIV process. Patches that are excessively
large, with significant internal deformation, or too small, with little texture, are unlikely to
be satisfactorily tracked using the DIC process. Incorrect sizing has the potential to cause
a higher number of wild vectors, or even to simply fail, as if GeoPIV-RG finds too many
patches to be below a user defined standard it will return an error without completing the
process.

A patch size of 50px and a spacing of 25px was selected based on preliminary informal
experimentation and this is what was used for the presented validation tests earlier in the
chapter. The chosen values appear to have been a good choice, in that the displacement
vector plots appear to be good representations of the expected mechanisms for a footing
test. Nonetheless, this section will present a brief investigation into the effects of altering the
selected size and spacing. To be able to pick a single value as a recommendation for future
use of the Identification Method is not the goal here, as every dataset will be different, but
instead to investigate how varying these factors could potentially impact the Identification
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Methods.

To achieve this, the Box 4, Camera Two, 20mm image set was selected and GeoPIV-RG was
used to extract a displacement field with every combination of patch sizes 25, 50, 75, and
100px and patch spaces 25, 50, and 75px. The datasets produced were otherwise identically
preprocessed using the usual methodologies. The Segment based approach was used with
100 segments. One point to note is the removal of wild vectors. It was decided that removal
of such vectors should be done as consistently as possible, however the differences between
the displacement fields made this somewhat difficult. Particularly for the sparser grids,
removing a single wild vector could represent an area almost as large as the footing width.
It also became increasingly hard to identify wild vectors as there are significantly less "good"
vectors to compare them too. As such, comparing patch sizes and spacings in the manner is
somewhat flawed as there are other uncontrollable factors that are inadvertently varied.

FIGURE 8.35: The effects of varying the PIV patch size and spacing of the
Specimen Four, Camera Two, 20mm dataset alters the recovered stress-strain

response.

Figure 8.35 shows the recovered stress-strain responses. The plot is at first somewhat messy,
but a few points can be made based on the available data. The recovered curves appear at
first to be very sensitive to the GeoPIV patch setup, however closer examination indicates
that much of the variance is for either sparse setups, or cases in which vary small or large
patches are used.

Examining only the curves recovered from datasets with a spacing of 25px (seen in red), it
can be seen that the variance between the recovered curves is much smaller. The variance
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between datasets with sparser spacing is much higher. Likewise, the curves for datasets
with a patch size of 50px (alternating dot and dash) area also reasonably close.

8.5.3 Strain Data Processing

The displacement field has some degree of inherent noise. This noise will also affect the
strain field. It was shown in Chapter 7 that the addition of noise to artificial datasets de-
grades the recovered curve and results in a lower value of cu. The mechanism by which this
happens is that negative incremental strains are introduced. A key assumption of the pro-
posed Identification Methods is that the soil undergoes a monotonically increasing load and
strains will similarly be increasing. Based on this assumption, the proposed Identification
Methods were implemented such that negative strain gradient is simply not counted. Mod-
els to correctly deal with this would be significantly more complex than the simple curve
recovery process is able to handle.

Despite negative strain not being counted, positive incremental strain is still increased by
the addition of noise. There are more "uphill" sections of the strain-time plots even if the
"downhill" sections are not counted for energy equilibrium purposes. Unlike the artificial
data, noise doesn’t need to be artificially added to real datasets as it is already present.
Elements with significant strain are less affected as the signal to noise ratio is much better,
however elements with negligible displacement and strain have a very poor signal to noise
ratio. A zero strain element that in actual fact would contribute zero to internal work could
instead contribute a substantial amount of work due only to noise. Taking into account the
fact that the vase majority of elements are low or zero strain it is clear that a strategy would
be required to deal with this issue.

What was ultimately decided was that negative strain increments should be removed. What
would previously be a jagged strain-time plot would instead look somewhat like a stair case.
Figure 8.36 shows a number of strain elements that have undergone this process, with the
plot in the top left being a zero strain element, the bottom right being a high strain element,
and the other two being somewhere in between. It is clear to see that from these plots the
signal to noise ratio is extremely poor for the zero strain element, and gradually improves
as the final strain increases. The staircase processing applied smooths out any negative
movement.

A downside of this process is that noise can also involve increasing strain. Particularly in the
zero strain case, a particularly high peak essentially forms the new high point of the dataset
causing an overall increase in strain between the first and last increment. This will result
in a small amount of spurious internal work being counted, but significantly less that were
the staircase processing not applied. An additional stage of removing elements with final
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FIGURE 8.36: A set of plots showing how noisy strain data is processed into a
"staircase" in which negative increments are removed.

maximum shear strains below a threshold was applied, and despite typically eliminating
several tens of percent of the total number of elements, the effects on the recovered stress-
strain curves were small.

Other methodologies were considered. A line of best fit could be used, but would risk
ignoring a genuine change in slope for elements with actual movement. Curves of best fit
are also possible, but with a polynomial order high enough to capture genuine features there
is still a risk of having negative strain movement. Various smoothing algorithms also have
this issue. Using techniques such as these also leads to the risk that negative shear strain
could be introduced. Not incremental negative strain but absolute negative strain in which
the strain-time plot would drop below the x axis. As a negative shear strain is not a physical
possibility, the implementation of the proposed Identification Methods would not function
correctly. The Segment based approach for instance, would be stuck in an infinite loop
during the process were strains are distributed into segments; an element with below zero
shear has no place on the stress-strain curve. Any methodology in which this is a possibility
would require additional logic to catch and deal with such an issue.
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Test cu Global Energy Gap
Strain Preprocessed 26196 1.4733%
Strain not Preprocessed 16410 1.7795%

TABLE 8.5: The effects of the proposed strain preprocessing methodologies
for the Specimen Four, Camera Two, 20mm dataset.

Table 8.5 shows how applying the described strain preprocessing techniques affects the
recovered stress-strain response. Not dealing with the negative incremental shear strains
causes the addition of significant spurious work, resulting in a much lower stress-strain
response. The global energy gap is also marginally worse.

8.6 Discussion

This section will contain overall discussion and commentary on the validation of the pro-
posed Identification Methods. First, key points will be drawn from the work presented relat-
ing to "real" datasets along with relevant discussion. Next, reference will be made to Chapter
7 such that differences between "real" and artificial datasets can be considered, along with
the potential insights that can be drawn from such a comparison. Finally, recommendations
will be given that will be of use to any reader who would seek to design physical modelling
experiments such that either of the proposed Identification Methods (or similar methods)
can best be utilised.

8.6.1 Overall Commentary on "Real" dataset analysis

A total of 16 datasets were produced through a series of 8 1g footing tests carried out across
4 specimens of undrained kaolin clay consolidated from slurry to a final consolidation pres-
sure of 200kPa. Load and displacement of the footing were recorded through use of LVDTs
and a load cell and the displacement field of the flocced soil was recorded on each side of
the specimen through digital photography.

The quality of the prepared specimens improved throughout the test procedure based on
experiences with earlier specimens. Fortunately, the slightly lower quality of earlier spec-
imens allowed for the identification of issues that might otherwise have been missed. Of
note is that should GeoPIV-RG or a similar PIV package have regions within the area of
interest in which data is missing, likely due to insufficient soil texture, this will result in an
internal energy deficit that must be made up by the remaining regions of soil. The 40mm
width datasets from Specimen One are a good example of this phenomenon.
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Other cases in which missing data can cause an energy deficit can also be identified. Soil
movement outside of the specified area of interest will not be considered for purposes of en-
ergy equilibrium, requiring the difference to be assigned to the energy expended by the soil
within the area of interest. In many of the 40mm footings in which an asymmetric failure
mechanism formed (i.e. the displacement pattern is predominantly going in one direction)
there is a small amount of movement perpendicular to a vertical edge of the area of interest.
In the Specimen Four, Cam 1, 40mm dataset this effect was particularly pronounced. The
reason behind this particular case was unknown, the loading and soil strength was no dif-
ferent than for other datasets, and systematic error due to camera movement was ruled out.
The effects were significant movement outside of the area of interest in multiple directions
that caused an extremely high recovered stress-strain response.

Although some sets of displacement/strain data had flaws, preprocessing was applied uni-
formly such that all datasets could be directly compared. GeoPIV-RG was selected as the
tool to convert raw image data into a displacement field. The key decision for the PIV pro-
cess is the size and spacing of DIC patches. Smaller patches would have insufficient texture
to allow for accurate tracking, and overly large patches would potentially have large inter-
nal deformations similarly preventing accurate tracking, as well as possibly smoothing out
localised displacement field features. Patch spacing is essentially denser the better. Patch
overlaps are not a concern regarding energy eqilibrium and a sparse patch would poten-
tially miss details, so the only downside of an overly dense grid or patches is increased
computational time.

A patch size of 50px and a spacing of 25px was chosen through informal experimentation
and was used for the validation analysis process. This patch size and spacing was later var-
ied as part of a more formal investigation into the effects of changing parameters and it was
found that a size of 50px and a spacing of 25px was a reasonably good choice. The investi-
gation into size and spacing however had issues that lower the value of direct comparison.
Consistency was hard as different combinations of size and spacing would give different
grids with different wild vectors needing to be removed such that it is difficult to know if
the differences between recovered curves are truly due to the different sizes and spacings.

Despite this concern, it was found that the variations between cases with a size of 50px and
between cases with a spacing of 25px were lower, indicating that the chosen parameters
were indeed suitable. A much more thorough investigation into the optimal GeoPIV-RG
settings would be possible but is beyond the scope of this work. To judge PIV parameters
by the outputs of the proposed Identification Methods requires the Identification Method
process to be fully validated, which is the purpose of this work. Having PIV parameters
that are "good enough" is sufficient for the purposes here and a patch size of 50px and a
spacing of 25px certainly appears to be just that. Further refinement of the PIV process for
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use with an Identification Method would however be a possibility for future work.

The remaining preprocessing of the strain fields is much less controversial. Wild vectors
were removed, as is standard practice for PIV analysis. Whereas in qualitative PIV a wild
vector is essentially an annoyance that makes vector plots ugly, for the purposes of the
proposed Identification Methods a wild vector represents spurious internal work. After
removal of such vectors, strains were calculated. The displacement field was triangulated
using Delaunay triangulation, a process that is resilient to irregular grids due to photogram-
metry or missing nodes due to wild vector removal. Strains were calculated based on the
three noded triangular element methodology described in Chapter 3. Noise in the strain
data was removed by converting the elemental strain-time data into staircases, replacing
any negative incremental shear strain with zero. Elements with very low strain were also
trimmed, allowing large areas of interest to be chosen for PIV with no ill consequences.

One important issue is the decision of when to consider a test to have started. As the footing
touches down it is not necessarily going to do so simultaneously across the entire length.
This could happen due to the surface of the soil not being level, or in this case due to the
footing simply not being parallel. The footing was rigidly fixed to a large robotic actuator
which was immobile and assumed to be level. The specimen box was levelled using a spirit
level and by placing bolts or other miscellanea under the feet of the box such that it was
level. This process was somewhat less than precise and resulted in uneven touchdowns for
some datasets.

When the footing touched down unevenly, there was enough soil strength that it wasn’t
simply driven in but instead caused the footing to flex, applying a moment to the rigidly
connected load cell which recorded a negative load. Zeroing the dataset at such a time
would result in the loading data recorded after full contact being excessively high. It was
chosen that the zero time would be when both sides of the footing were visibly in contact
which would be determined by manual examination of the imaging data. The peak loads ob-
served when zeroing in this manner compare reasonably well with what would be expected
when entering shear vane data into Terzaghi’s bearing capacity equation, or certainly better
than zeroing when nominal load is negative.

Unfortunately, the proposed Identification Methods were demonstrated to be highly sensi-
tive to changing the start time. An investigation was presented that showed that moving the
start time forwards or back, and hence decreasing or increasing external work, would have a
corresponding impact on the recovered stress-strain curve. Error in selecting the start point
would potentially cause an incorrect curve to be recovered. As supplementary data was also
collected, it would be possible to simply pick a start time that causes the recovered stress-
strain curve to most closely match the available triaxial data. This was not done however, as
individually tweaking each dataset rather than using a consistent approach would make the
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validation process meaningless, and would not be possible for any future use were supple-
mentary data was not available for comparison. Instead the approach of selecting the start
time was carried out as consistently as possible, such that pairs of datasets (e.g. both cam-
era views of a footing test) have exactly the same start time despite one end of the footing
coming in contact first.

The uneven touchdown process did have an identifiable effect on the recovered stress-strain
curves from such pairs of datasets. It was found that the dataset corresponding to the end
that touches down first has overall higher recorded strains, both average and maximum, as
although the displacement field is zeroed small deformations are already underway from
the very start. The opposite is true for the dataset corresponding to the second end to touch
down, in which strains are generally lower. This causes the recovered curves to be higher
and steeper. This was observed across all datasets with the touchdown discrepancy.

Discounting datasets in which flaws were identified, reasonable stress-strain responses were
recovered for the datasets corresponding to the end of the footing that touches down first.
cu values were typically within the range suggested by the supplementary triaxial or shear
vane data, and in many cases the earlier stages of the recovered stress-strain response prior
to the plateau were also within the region suggested by triaxial data. Most curves recovered
by the Segment based approach were of the form of an elastic-perfectly-plastic response
which is unlikely to be the true soil behaviour and instead the form that the proposed Iden-
tification Method returns with less perfect data (as seen in Chapter 7 where artificial datasets
are artificially degraded). Some recovered curves however have much smoother interfaces
between the elastic and plastic regions of the curve.

Although many datasets were able to be analysed successfully, some were not. In all these
cases the reasons were identified and were typically due to flaws in the data, such as PIV
issues, or the touchdown issue. This is both a point for and against the proposed Identifica-
tion Methods. On one hand, being able to deal with "good" datasets is promising, but on the
other hand, the resilience to less "good" datasets appears to be low. The most likely solution
is additional pre-processing rather than changes to the Identification Methods themselves.
An interpolation scheme, for example, could be used to fill in empty regions in the PIV
outputs, but this mitigation would only work for small empty regions.

Other issues such as the touchdown issue, will best be removed by designing experiments
where these issues simply aren’t present. There is not much to be done with the currently
available datasets, but any future research where there are plans to utilise an Identification
Method will no doubt be able to take into account lessons learned during this work.

In terms of the comparison between the two proposed Identification Methods, it appears
that the Segment based approach is superior for several reasons. Firstly, the Segment based
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approach is able to recover suitable curves for a wider range of soil behaviours than the
Equation based approach. As the equations that were programmed in, the "Vardanega and
Bolton" curve and the elastic perfectly-plastic curve, did not closely match the true soil be-
haviour the Equation based approach struggled to find a satisfactory output. The Equation
based approach, relying on a brute force methodology, also took much longer to run.

The following subsections will look at the differences between the "real" datasets analysed
in this chapter and the "artificial" datasets analysed in the preceding chapter, which lacked
many of the issues identified here, followed by recommendations that will allow physical
modelling to best be optimised for use with the proposed methodologies.

8.6.2 Comparison between "Real" and Artificial datasets

The artificial datasets produced and analysed in Chapter 7 facilitated the recovery of overall
better stress-strain curves. This is of course expected. Artificial datasets have very few
avenues by which the proposed Identification Methods could perform poorly.

It was found that the recovered curves would be of lower quality as the "perfect" artifi-
cial datasets were moved closer to real datasets, either by modelling increasingly complex
scenarios or by deliberately degrading the datasets by adding noise or reducing spatial or
temporal resolution.

There were a number of factors that were not considered when testing the artificial datasets.
Degradation by simply removing a region of the displacement field was not attempted.
Doing so would simulate the effects of missing regions of PIV data, but the effects are pre-
dictable and would closely match the commentary regarding this phenomenon earlier in
this chapter. Wild vectors are not present in artificial datasets. Extreme amounts of noise
added to a handful of elements would be the equivalent. The investigation into the effects
of the addition of noise however would be broadly applicable, although likely to a different
degree depending on the exact values used.

Noise was present in the "real" datasets but was dealt with rather painlessly. Singular
anomalies were simply deleted, and random noise was removed throgh the staircase pro-
cess. The exact signal to noise ratio varies between elements. Some, elements in the pe-
ripheries of the real dataset would be expected to have zero shear strain, but instead were
recorded to have a very noisy strain-time plot rather than a simple straight line along the
axis. Elements with lots of strain however had much better signal to noise ratios and re-
quired essentially no smoothing.

The touchdown issue was not present in the artificial datasets. Artificial datasets are discrete
sets of data, there is no before and there is no after. The model runs for exactly the time
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specified and starts at zero. This is not the case for real datasets in which the specimen has
been consolidating in the sample box for a week, moved around on a forklift, and has been
trimmed, flocced, and otherwise processed.

There is no discrepancy with an artificial dataset, the test starts at the point of contact with
a perfectly undisturbed 2D plane of soil. With much additional complexity, it would be
possible to create a 3D model of a footing test, including edge effects and an irregular touch-
down. It would also be possible to take the existing artificial datasets and desynchronise
the times for the internal and external components, or simply scale up external work. The
expected outcome would likely confirm the findings presented in this chapter regarding the
touchdown process.

A final difference is the quality of the comparison data. For artificial datasets, the true soil
behaviour is known exactly as it is used as an input for the ABAQUS model. Not only that,
but it is known to be of the same form as the equations specified for the Equation based
approach. There is no such luxury for the real datasets. The true behaviour is unknown.
Insight can be gained through supplementary testing, but this provides a fairly large range
of possibilities. There is of course no guarantee that the specified equations used in the
Equation based approach will be valid for real data, as was found in this chapter.

Knowing how the differences between real and artificial datasets affect the proposed Iden-
tification Methods, it would certainly be possible to further degrade artificial datasets to be
more representative, but there is no guarantee that the resilience of the proposed methods
could be improved to deal with this. A much better approach would be to ensure future
physical models are designed to best take advantage of the Identification Methods, should
a modeller plan to utilise them.

8.6.3 Recommendations for future Physical Models that are to utilise an Identi-
fication Method

This subsection will identify means by which physical models can be best designed to utilise
the proposed Identification Methods. Some will be based on parts of the presented experi-
mental program that causes issues, but also parts that went well. Many of these points will
be generally good experimental technique but will be identified due to particular relevance
to Identification Methods.

1. Displacement field quality. In cases were PIV is used qualitatively to provide a rough
overview of mechanisms with a body of soil, patch size and spacing are not overly
important. The numeric values for the vectors may not be used in any way, save
perhaps for plotting a strain field that is for illustrative purposes. It is imperative that
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the quality of the PIV derived displacement field is as high as possible. Gaps due to
poor texture have a meaningful effect on the recovered curve.

2. Inclusion of all work. All work that is done to the specimen must be measured and
included. This primarily requires PIV to be carried out anywhere where there is soil
movement. Overly conservative regions of interest potentially will miss interesting
data. Other factors such as boundary effects or friction should either be quantified
and included or the model should be designed such that these can be safely ignored.

3. Consideration of the test start. In the presented datasets, the touchdown process
caused issues as it became difficult to determine the time at which energy should be
measured from. Ideally there should be no ambiguity. Loading and Displacement
should begin to increase simultaneously. For the presented work, the footing could
have been placed on the soil surface with the actuation arm contacting via a ball bear-
ing when it lowers into contact. There are pros and cons to any methodology, including
the suggestion just given. Understanding the impacts of the start of the test is simply
another aspect to consider. Other tests such as a pipe rising through the soil or a slope
failing under its own weight (possibly due to increasing gravity during a centrifuge
test) could potentially eliminate this issue.

8.7 Conclusion

This chapter has provided proof of concept that the proposed Identification Methods have
potential to successfully recover stress-strain responses from datasets produced through
physical modelling. The datasets were qualitatively analysed and contrasted, with flaws
and special considerations identified. A number of issues with some datasets such as in-
sufficient PIV texture and footing touchdown irregularities were discussed, along with their
effects on the recovered curves.

The proposed Identification Methods can consistently recover soil strength of a reasonable
value when compared to supplementary testing results provided the available image and
footing data is of sufficient quality. For higher quality datasets, the recovery of a stress-strain
response that compares well with triaxial responses was demonstrated. Although there is
work still to be done in perfecting the Identification Methods such that they could be used
as a general purpose research tool, the potential of such a tool has been clearly established.

A preprocessing methodology regarding PIV parameters, strain smoothing, and zero time
selection was identified and justified. After using the methodology to prepare and run 16
datasets, the key assumptions and decisions were tested and found to be acceptable with
some caveats. It was found that the Identification Method is particularly sensitive to zero
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time selection, and although the starts of tests were selected appropriately there is a possi-
bility of human error negatively impacting the recovered curves. The effects of the irregular
touchdown were also considered in context of this finding.

Finally, overall discussion and commentary was given including identifying key differences
between the "real" datasets analysed in this chapter and the artificial datasets analysed in
Chapter 7 and key points that would be of use in the design of future physical models that
facilitate the utilisation of the proposed Identification Methods were given.
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Chapter 9

Conclusions and Future Work

This chapter contains list of the objectives of this project with commentary discussing to
what extent they have been achived. Additional findings that were made in the course of
completing these objectives have also been identified. Commentary on future work that
could be carried out, either by the author of this thesis or by others, will be provided.

9.1 Commentary on Objectives

The primary aim of this project was to develop, test, and validate one or more Identification
Method suitable for extracting the stress-strain response geotechnical physical models using
full field PIV-derived displacement data. This aim has been met. Two different approaches
have been developed, the Segment based approach which is built upon previous work with
significant improvements and additions, and the Equation based approach which is a novel
algorithm developed during this project. These Identification Methods have been validated
and tested with both artificial datasets and real datasets and have been shown to be gener-
ally functional. Commentary on the objectives identified in Chapter 1 is as follows:

1. An investigation into the existing techniques used by material scientists has been car-
ried out. It was found that existing methods are typically used for unit testing and
typically use linear constitutive models with nothing comparable to geotechnics. The
existing work in this field by Gueguin et al. (2015) was inspired by the Virtual Field
Method but removed some requirements such as kinematic admissibility in order to
allow for measurements of materials with significantly more deformation.

2. Literature relating to physical modelling techniques was examined. Of note was an
investigation into several possible PIV packages that could be potentially used, with
GeoPIV chosen as the most appropriate. Photogrammetric techniques were researched
with bespoke code developed to carry out the procedure. Existing methods by which
soil behaviour is measured were examined.
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3. The method proposed by Gueguin et al. (2015) and the associated codebase were anal-
ysed. A new algorithm for the Segment based approach was developed that allowed
for improved calculation of the area under the unknown stress-strain curve with re-
gard to differing timesteps and increments. Changes were made allowing for min-
imising of absolute energy difference rather than relative energy difference and to use
incremental internal and external work rather than cumulative.

4. While allowing for reuse of code relating to data management, an additional Iden-
tification Method was derived. The Equation based approach defines the unknown
stress-strain response in terms of an equation with only a few parameters. Although
allowing for less freedom in the recovered curve shape, this method allows for the
user to use their judgement to presuppose the curve shape.

5. A suite of artificial datasets were generated to allow for validation of the two pro-
posed Identification Methods. Matlab was used to produce "handmade" simple shear
and split shear datasets, with FEA used to produce two differing shear cases along
with a rotating wall model and a simple footing model. Each dataset was modelled
using both an elastic-perfectly-plastic response and the "Vardanega and Bolton" curve
as described by Vardanega and Bolton (2011). The datasets were degraded by adding
noise and by reducing the resolution of the displacement field.

6. A series of laboratory physical model tests were designed and carried out. The tests
were a set of 8 simple footing tests on undrained clay with two different footing
widths. PIV was used to recover the displacement fields. Supplementary testing in-
cluding shear vane and triaxial testing was carried out to provide comparison between
the proposed Identification Methods and existing techniques.

7. Both the artificial and real datasets were used to test and validate both of the pro-
posed Identification Methods. The artificial datasets were degraded with noise to find
the limits to the robustness of the methods, with the finding that addition of noise
reduces the recovered soil strength. It was found that the Segment based approach
functions well with 50 or more segments. Commentary was given on the benefits and
drawbacks of each method, with the Segment based approach being more adaptable
to unexpected soil behaviours whereas the Equation based approach is useful if the
used already has a good estimate. The Identification Methods were found to be over-
all promising and able to recover reasonable soil responses, depending on the quality
of the input data. The methods functioned very well for artificial datasets, and typi-
cally recovered good values for peak stress for real datasets, although with real data
the recovered curves were often bilinear rather than smooth.

8. The software used for this project was written using Matlab. Although measures to
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increase the usability of the code have been made, particularly with functionality to
allow for more automation, it is still fundamentally a piece of research software with
all the usual associated drawbacks. Rewriting the software, possibly in C++ with mul-
tithreading or potentially GPU support would be possible and beneficial, as would
adding a graphical interface.

9.2 Additional Findings

The key result of this work is the derivation, implementation, and validation of the two
proposed Identification Methods. Details of the overarching aims and objectives have been
given in the preceding section. A number of additional findings were made during the
course of analysing both the artificial and real datasets that were produced. These will be
listed as follows:

1. The effects of noise. It was theorised that adding random noise to a displacement field
would result in a general increase in observed shear strains, proportional to the added
noise, which would in turn result in lower stresses being required to meet the required
internal energy expenditure, with a final outcome of a lower recovered stress-strain
response. This was demonstrated through experimentation with artificial datasets in
which increasing degrees of both normal and uniformly distributed noise was added.
To further confirm the theory, the inverse was demonstrated with real datasets, which
naturally have noise. Smoothing the noise results in the opposite effect, and the recov-
ered stress-strain curve being raised such that it is in a location that is supported with
supplementary data.

2. The effects of start time. During the physical modelling tests that were carried out,
the footing often did not come into contact with the soil surface simultaneously which
causes ambiguity in selecting a start time from which data can be zeroed. It was
demonstrated that adjusting this start time forwards or backwards can have a large
effect on the recovered stress-strain curve, obviating a need to strategise a means of
dealing with this. Selecting a start time at the first point where both sides of the foot-
ing are visibly in contact was chosen and provided promising results. The effects of
this on pairs of datasets using the same footing was identified, as were methodologies
by which future experimentation may avoid this issue.
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9.3 Future Work

Future work can be split into four main areas:

1. Carry out further testing of the existing techniques. Currently, the physical models
used to test the Identification Methods are limited to simple footing tests on undrained
clay. Carrying out further testing with more variety would allow for increased confi-
dence in and further improvements of the proposed Identification Methods. Design-
ing testing that eliminates the issues identified regarding touchdown would allow for
further confidence in the validitiy of the proposed methodologies. Fortunately, many
researchers in geotechnics carry out physical model testing with many models pro-
ducing datasets that would potentially be suitable for analysis with the Identification
Methods so further validation would likely be possible without carrying out labora-
tory tests explicitly for this purpose. Work on novel load cases may be necessary for
some problems, for instance a slope failing under gravity with a weighted block at
the peak of the slope will require a very different energy equilibrium than a simple
footing problem. Adapting the proposed Identification Methods to work for datasets
produced during centrifuge testing is another logical step. Scaling internal work with
depth based on a varying gravity field would facilitate this addition.

2. Add additional features to the Identification Method pre/post processing stages. Al-
lowing for strains to be formulated in terms of 6-node triangles for instance would
allow for the higher order displacement field data output by GeoPIV-RG to be fully
utilised. Another possible improvement is allowing several datasets to be used simul-
taneously. A stress-strain response could be recovered that is the best fit for image
data recorded on both sides of the specimen box would potentially produce improved
results.

3. Improve the range of soil responses that can be recovered. As per Chapter 3 a number
of assumptions were made to simplify the problem for the purposes of this project.
Soil was assumed to be isotropic undrained clay with associative flow and unchanged
volume. Many of these assumptions can be removed by reformulating the equilibrium
equation to include variables relating to these concepts. Work done by volumetric
strain and mean stress could be incorporated, however measures would have to be
taken such that the recovered mean stress is compatible with the recovered maximum
shear stress that corresponds to maximum shear strain.

4. The final piece of future work is related to the last objective that was only partially
completed. Although the current codebase is functional it is not particularly user
friendly and some large datasets may be time-consuming to run depending on the
level of detail required. As the software was written and changed over time with new
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functions added it would likely be necessary to completely rewrite the code before it
would be suitable for sharing with other researchers. This opportunity could be used
to refactor many of the internal workings to allow for future development. Using as
faster language such as C++ and incorporating technologies such as multithreading
would also be worthwhile. Additionally, the Equation based approach currently uses
a brute force approach to recovering the stress-strain response. Investigating whether
nonlinear optimisation could be implemented could potentially allow for rapid in-
creases in speed, however this would depend on which equation is being optimised.
Parallelisation of the brute force search, possibly using graphics card based processing
would be a good alternative.
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Appendix A

Reformulating Internal Work to use
"Geotechnical" Parameters

In Chapter 3 internal work was derived in terms of the stress componants σx, σy, τxy, and
the strain componants εx, εy, γxy. The final internal work equation using these terms is
reproduced here, in Equation A.1.

W = [σ .. ε] ·V =

(
σx τxy

τxy σy

)
..

(
εx

γxy
2

γxy
2 εy

)
·V =

(
σx τxy

τxy σy

)
..

(
εx εxy

εxy εy

)
·V (A.1)

It is useful to express internal work due to deformation with terms such as maximum shear
stress t and maximum shear strain εs, as these are more commonly used in constitutive
models and found as the result of laboratory testing. This appendix contains the derivation
for expressing work in such a way. What is presented is a very generalised case that has
multiple simplifications that are be discussed in Chapter 3.

The significant complexity of the following derivation is due to the fact that the principal
angles for stress and strain θpσ and θpε are not necessarily the same. It should be noted that
the equations given in this section assume that stress is constant. This assumption has been
made for readability, as having multiple integral symbols per equation would make this
derivation somewhat harder to follow. Upon completion of the derivation, the final form
can simply be converted to the more general case in which stress varies with time.

Internal work due to deformation is found by taking the double dot product of the stress
tensor and strain tensor. In 2D this is stated as follows:

Wint = σ .. ε ·V (A.2)
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Which is the equivalent to:

Wint = (σx · εxx + σy · εyy + 2τxy · εxy) ·V (A.3)

Firstly, define the principal stress and strain tensors in terms of the known tensors and rota-
tion matrices corresponding to both the stress and strain Mohr’s circles.

σp = Rσ · σ · RT
σ (A.4)

εp = Rε · ε · RT
ε (A.5)

It is now possible to rearrange the above equations such that the principal tensors are in
terms of the known tensors:

RT
σ · σp · Rσ = RT

σ · Rσ · σ · RT
σ · Rσ = σ (A.6)

RT
ε · εp · Rε = RT

ε · Rε · ε · RT
ε · Rε = ε (A.7)

As such, internal work can be redefined based on the principal stress and strain tensors and
associated rotation matrices:

Wint = (RT
σ · σp · Rσ

.. RT
ε · εp · Rε) ·V (A.8)

Carrying out matrix multiplication results in the following expansion:

Wint =

(
cos θσ sin θσ

− sin θσ cos θσ

)(
σ1 0
0 σ2

)(
cos θσ − sin θσ

sin θσ cos θσ

)
..(

cos θε sin θε

− sin θε cos θε

)(
ε1 0
0 ε2

)(
cos θε − sin θε

sin θε cos θε

)
·V

(A.9)

Wint =

(
σ1 cos2 θσ + σ2 sin2 θσ (σ2 − σ1) cos θσ sin θσ

(σ2 − σ1) cos θσ sin θσ σ1 sin2 θσ + σ2 cos2 θσ

)
..(

ε1 cos2 θε + ε2 sin2 θε (ε2 − ε1) cos θε sin θε

(ε2 − ε1) cos θε sin θε ε1 sin2 θε + ε2 cos2 θε

)
·V

(A.10)
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Carrying out the double dot product, i.e. multiplying each element with the corresponding
element in the second matrix, as shown above gives the following equation for internal
work:

Wint = [(σ1 cos2 θσ + σ2 sin2 θσ)(ε1 cos2 θε + ε2 sin2 θε)

+(σ1 sin2 θσ + σ2 cos2 θσ)(ε1 sin2 θε + ε2 cos2 θε)

+2((σ2 − σ1) cos θσ sin θσ)((ε2 − ε1) cos θε sin θε)] ·V

(A.11)

Expanding the brackets results in Equation A.12 which can be factorised to give Equation
A.13.

Wint = [σ1ε1(cos2 θσ cos2 θε + sin2 θσ sin2 θε) + σ2ε2(sin2 θσ sin2 θε + cos2 θσ cos2 θε)+

σ1ε2(cos2 θσ sin2 θε + sin2 θσ cos2 θε) + σ2ε1(sin2 θσ cos2 θε + cos2 θσ sin2 θε)+

2(σ2 − σ1)(ε2 − ε1) cos θσ sin θσ cos θε sin θε] ·V
(A.12)

Wint = [(σ1ε1 + σ2ε2)(cos2 θσ cos2 θε + sin2 θσ sin2 θε)

+(σ1ε2 + σ2ε1)(cos2 θσ sin2 θε + cos2 θε sin2 θσ)

+2(σ2 − σ1)(ε2 − ε1) cos θσ sin θσ cos θε sin θε] ·V

(A.13)

In order to simplify further, the Pythagorian identity relating to the squared trigonometric
terms should be noted. The intention of this stage is to find a common factor.

(cos2 θσ cos2 θε + sin2 θσ sin2 θε) + (cos2 θσ sin2 θε + cos2 θε sin2 θσ) =

(cos2 θσ + sin2 θσ)(cos2 θε + sin2 θε) = (1)(1) = 1
(A.14)

Therefore:

(cos2 θσ cos2 θε + sin2 θσ sin2 θε) = 1− (cos2 θσ sin2 θε + cos2 θε sin2 θσ) (A.15)

Equation A.15 allows for a substitution resulting in a common factor. Minor adjustment to
signs within the third term has been carried out, with the contents of each bracket multiplied
by −1. These adjustments allow internal work to be expressed as Equation A.16.
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Wint = [(σ1ε1 + σ2ε2)(1− (cos2 θσ sin2 θε + cos2 θε sin2 θσ))

+(σ1ε2 + σ2ε1)(cos2 θσ sin2 θε + cos2 θε sin2 θσ)

+2(σ1 − σ2)(ε1 − ε2) cos θσ sin θσ cos θε sin θε] ·V

(A.16)

Next, expansion results in Equation A.17, which in turn can be simplified to Equation A.18.

Wint = [σ1ε1 + σ2ε2

+(cos2 θσ sin2 θε + cos2 θε sin2 θσ)(σ1ε2 + σ2ε1 − σ1ε1 − σ2ε2)

+2(σ1 − σ2)(ε1 − ε2) cos θσ sin θσ cos θε sin θε] ·V

(A.17)

Wint = [σ1ε1 + σ2ε2

+(cos2 θσ sin2 θε + cos2 θε sin2 θσ)(σ1 − σ2)(ε2 − ε1)

+2(σ1 − σ2)(ε1 − ε2) cos θσ sin θσ cos θε sin θε] ·V

(A.18)

The terms within the (ε2 − ε1) bracket can be reversed by taking a factor of -1, allowing for
more factorisation and simplification.

Wint = [σ1ε1 + σ2ε2

+(σ1 − σ2)(ε1 − ε2)(2 cos θσ sin θσ cos θε sin θε − cos2 θσ sin2 θε − cos2 θε sin2 θσ)] ·V
(A.19)

Wint = [σ1ε1 + σ2ε2

−(σ1 − σ2)(ε1 − ε2)(cos2 θσ sin2 θε + cos2 θε sin2 θσ − 2 cos θσ sin θσ cos θε sin θε)] ·V
(A.20)

The complex series of trigonometric terms at the end of Equation A.20 can be factorised by
finding the square root, as shown in Equation A.21, with the trigonometric terms further
simplified via the angle sum/difference formula.

Wint = [σ1ε1 + σ2ε2

−(σ1 − σ2)(ε1 − ε2)(cos θε sin θσ − cos θσ sin θε)
2] ·V

(A.21)

Wint = [σ1ε1 + σ2ε2 − (σ1 − σ2)(ε1 − ε2)(sin2(θσ − θε))] ·V (A.22)

The penultimate stage is dealing with the σ1ε1 + σ2ε2 term, which can be achieved with the
following steps.
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(σ1ε1 + σ2ε2) = (σ1 + σ2)(ε1 + ε2)− (σ1ε2 + σ2ε1) (A.23)

The final term in Equation A.23 can be expressed as follows:

(σ1ε2 + σ2ε1) = (σ1ε1 + σ2ε2)− (σ1 − σ2)(ε1 − ε2) (A.24)

Substituting Equation A.24 back into Equation A.23 results in Equation A.25. Rearangement
of this equation is shown in Equations A.26 and A.27.

(σ1ε1 + σ2ε2) = (σ1 + σ2)(ε1 + ε2) + [(σ1ε1 + σ2ε2)− (σ1 − σ2)(ε1 − ε2)] (A.25)

2(σ1ε1 + σ2ε2) = (σ1 + σ2)(ε1 + ε2)− (σ1 − σ2)(ε1 − ε2) (A.26)

(σ1ε1 + σ2ε2) =
1
2
(σ1 + σ2)(ε1 + ε2)−

1
2
(σ1 − σ2)(ε1 − ε2) (A.27)

Substituting Equation A.27 into Equation A.22 gives the following:

Wint =

[
1
2
(σ1 + σ2)(ε1 + ε2)+

1
2
(σ1 − σ2)(ε1 − ε2)− (σ1 − σ2)(ε1 − ε2)(sin2(θσ − θε))

]
·V

(A.28)

Wint =

[
1
2
(σ1 + σ2)(ε1 + ε2) + (σ1 − σ2)(ε1 − ε2)(

1
2
− sin2(θσ − θε))

]
·V (A.29)

Finally, substitute in the terms of mean stress s, maximum shear stress t, volumetric strain
εv, and shear strain εs.

Wint =

[
1
2
· 2sεv + 2t2εs(

1
2
− sin2(θσ − θε))

]
·V (A.30)

Simplifying to a final internal work equation of:

Wint =

[
sεv + 2tεs(1− 2 sin2(θσ − θε))

]
·V (A.31)
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Additional Data

B.1 Small strain trimming investigation

A preprocessing function was developed that trims small strain elements from the optimi-
sation problem. Due to the relatively large areas of interest recorded via GeoPIV-RG, there
are many strain elements with approximately zero strain. Elements were trimmed when
there strain, as a percentage of the maximum observed strain, falls below a threshold. Elim-
inating more elements will cause the recovered cu value to increase by a small amount, but
having too many unnecessary small strains elements will negatively impact the distribution
of Segment method segments. Figure B.1 shows a plot of how cu is altered by increasing the
threshold along with how many elements are trimmed. For reference, 1% was selected as a
compromise value, however this is largely arbitrary as altering this has only a small impact.
This investigation was carried out on the Specimen 2, 40mm, cam 1 dataset and uses 100
segments.

B.2 Gravity investigation

The assumption was made that during the physical model tests an approximately equal
quantity of soil moves up as down due to the assumption of nil volumetric strain. To deter-
mine whether this was valid, the work done due to gravity was calculated as a percentage of
external work for each dataset. A unit weight of 23kNm-3 was taken from a soil mechanics
textbook using the upper value suggested for stiff clay (Barnes, 2010). Additionally, a factor
of 1.5 was applied to this unit weight to further demonstrate the negligibility of gravity.

Table B.1 shows work done (positive) or work imparted (negative) by gravity as a percent-
age of external work. With the exception of the anomalous result in which large vertical
movement was observed (marked with an asterisk), work due to gravity is never more than
two tenths of a percent of external work and in many cases is far less than this.
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FIGURE B.1: The impact of changing the small strain trim threshold.

B.3 Friction investigation

As values for friction or adhesion between the clay and glass were not available, an in-
vestigation into the possible effects of friction was carried out. Work due to friction as a
percentage of external work was calculated for every specimen. Values were found both
with and without trimming of small strain elements. A threshold of 1% was used for the
small strain trimming process. Friction between the clay and window was conservatively
assumed to be the full cu value as recorded by shear vane, which is likely to be a large over-
estimate in reality. Table B.2 presents this data. Elemental displacements were smoothed
using a moving average filter with a window of 5.

It can be seen that work expended due to friction is typically very low, typically of the order
of 1% of external work or lower. As stated, cu was taken to be the adhesive stress between
the window and clay which is a large overestimate. A more realistic value would make the
contribution of friction even more trivial. The decision to ignore friction appears to be of
little importance. It should be noted that the cam 2, 40mm footing for specimen 4 dataset
features very large vertical movement which in turn results in large amounts of frictional
work.

B.4 Raw sensor data

As discussed in Chapter 8, choosing the correct start time of each test proved to be difficult.
Footing touchdown was not level, resulting in one side of the footing touching down first.
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Test Gravity work %
Specimen 1; 20mm, cam 1 −0.0114
Specimen 1; 20mm, cam 2 0.0175
Specimen 1; 40mm, cam 1 0.0301
Specimen 1; 40mm, cam 2 −0.0126
Specimen 2; 20mm, cam 1 0.0975
Specimen 2; 20mm, cam 2 0.0772
Specimen 2; 40mm, cam 1 0.0604
Specimen 2; 40mm, cam 2 0.129
Specimen 3; 20mm, cam 1 0.150
Specimen 3; 20mm, cam 2 0.0338
Specimen 3; 40mm, cam 1 0.192
Specimen 3; 40mm, cam 2 0.143
Specimen 4; 20mm, cam 1 0.119
Specimen 4; 20mm, cam 2 0.0447
Specimen 4; 40mm, cam 1 0.835*
Specimen 4; 40mm, cam 2 0.124

TABLE B.1: Work due to gravity as a percentage of external work.

This caused the inline load cell to flex and record negative force prior to full contact. Due
to this ambiguity, it was decided that all data would be zeroed based on the time when
both ends of the footing can be observed to be in contact via the imaging data. This manual
process is not an exact science and was a potential source of error. Table B.3 shows the start,
end, and LVDT used. As one LVDT was present on either end of the footing, each LVDT
was matched with the corresponding set of image data. Note that similar start times are
coincidental due to a similar "no movement" pause being recorded prior to commencing
actuation.

The untrimmed sensor data can be found in Figures B.2, B.3, B.4, and B.5. Plotted is Dis-
placement against time and Force against time. This data has been calibrated. Downsam-
pling and basic moving average smoothing has been applied in the same manner as used
for the final datasets.
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Test
Friction work %:

no trimming
Friction work %:
with trimming

Specimen 1; 20mm, cam 1 0.863 0.712
Specimen 1; 20mm, cam 2 1.130 0.839
Specimen 1; 40mm, cam 1 1.161 0.977
Specimen 1; 40mm, cam 2 0.583 0.542
Specimen 2; 20mm, cam 1 1.054 0.754
Specimen 2; 20mm, cam 2 0.707 0.558
Specimen 2; 40mm, cam 1 0.889 0.762
Specimen 2; 40mm, cam 2 1.132 1.081
Specimen 3; 20mm, cam 1 1.263 1.032
Specimen 3; 20mm, cam 2 0.969 0.824
Specimen 3; 40mm, cam 1 1.349 1.312
Specimen 3; 40mm, cam 2 1.089 1.011
Specimen 4; 20mm, cam 1 1.241 0.888
Specimen 4; 20mm, cam 2 1.127 0.941
Specimen 4; 40mm, cam 1 9.171* 8.059*
Specimen 4; 40mm, cam 2 1.371 1.183

TABLE B.2: Work due to friction as a percentage of external work.

Test Start time (s) End time (s) LVDT used
Specimen 1; 20mm, cam 1 28.2 68.2 avg
Specimen 1; 20mm, cam 2 28.2 68.2 avg
Specimen 1; 40mm, cam 1 28.21 127 avg
Specimen 1; 40mm, cam 2 28.21 127 avg
Specimen 2; 20mm, cam 1 84.5 166 4
Specimen 2; 20mm, cam 2 84.5 166 3
Specimen 2; 40mm, cam 1 84.5 250 3
Specimen 2; 40mm, cam 2 84.5 250 4
Specimen 3; 20mm, cam 1 52.08 126.17 4
Specimen 3; 20mm, cam 2 52.08 126.17 3
Specimen 3; 40mm, cam 1 50.37 115.16 4
Specimen 3; 40mm, cam 2 50.37 115.16 3
Specimen 4; 20mm, cam 1 63.55 141.8 4
Specimen 4; 20mm, cam 2 63.55 141.8 3
Specimen 4; 40mm, cam 1 64.79 146.01 3
Specimen 4; 40mm, cam 2 64.79 146.01 4

TABLE B.3: Start, end, and sensor selection parameters.
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FIGURE B.2: The untrimmed sensor data for Specimen One.

FIGURE B.3: The untrimmed sensor data for Specimen Two.

FIGURE B.4: The untrimmed sensor data for Specimen Three.
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FIGURE B.5: The untrimmed sensor data for Specimen Four.
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