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Abstract 

 
Periodontitis is a leading cause of tooth loss worldwide. The Gram-negative anaerobe, 

Porphyromonas gingivalis, has been implicated in the initiation and cyclical progression of this 

inflammatory disease, which may be associated with its ability to invade oral epithelial cells. 

The majority of studies investigating P. gingivalis invasion have utilised monolayer cultures of 

epithelial cells. However, these do not represent the oral mucosa due to the lack of a multi-

layered epithelium and fibroblast-embedded connective tissue. Therefore, a fibroblast-

containing, connective-tissue collagen scaffold was used to create three-dimensional oral 

mucosal models (OMM). These were constructed using oral fibroblasts and either the oral 

keratinocyte cell line (H357) or normal oral keratinocytes (NOK) isolated from healthy patients. 

OMM were raised to the air-to-liquid interface allowing keratinocyte stratification and 

differentiation (gingival/buccal OMM) or completely submerged resulting in epithelium 

consisting of 2-3 cell layers (junctional epithelial OMM). Both models resembled normal oral 

tissue in terms of immunohistochemical staining for several cytokeratin markers, laminin 5 and 

E-cadherin.  

 

A standard antibiotic protection assay was optimised for OMM and percentage invasion was 

shown to be similar to that of monolayer cultures. The optimal method was an incubation period 

of 3-6 hours of OMM with P. gingivalis in an aerobic atmosphere and release of intracellular P. 

gingivalis by homogenisation. Using these optimised conditions, a range of parameters of P. 

gingivalis invasion were investigated.  

 

At diseased periodontal sites there is an increase in the level of haemin and pocket temperature 

due to inflammation. The culture of P. gingivalis in both a haemin-rich and high temperature 

environment resulted in an increase in invasion, suggesting that active periodontal sites may 

preferentially support bacterial internalisation. Additionally, it was shown that following 

invasion, P. gingivalis can leave epithelial cells after as little as three hours, which may 

contribute to the periods of progression and remission commonly observed with this disease. 

Furthermore, the concentration of environmental haemin has previously been shown to 

influence the expression of P. gingivalis gingipains and it was thought that this may also 

influence invasion. Indeed, percentage invasion was shown to increase with loss of gingipain 

activity, particularly Arg-gingipain. This suggested that the degradation of epithelial cell 

receptors by gingipains may contribute to a decrease in the ability of this bacterium to invade. 

Candidate host receptors were the complement receptor CD46, tetraspanin family members and 

the integrin α5β1. These receptors were blocked using antibodies or cells transfected with 

siRNA to inhibit their function. A small effect on invasion was seen using anti-α5β1 but the 
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antibodies to other molecules did not influence the invasion of P. gingivalis suggesting that 

there may be some redundancy in the uptake system exploited by the bacteria.  

 

Finally, the response of epithelial cells to invasion by P. gingivalis in terms of cytokine release 

and expression was determined. Using a semi-quantitative cytokine array, there was a decrease 

in the majority of cytokines tested in the presence of P. gingivalis when compared with TNF-

stimulated control cells which was assumed to be due to the proteolytic action of P. gingivalis 

gingipains. Due to the conflicting nature of the literature regarding the modulation of CXCL8 

by P. gingivalis, this chemokine was selected for further quantification using monolayer 

cultures. ELISA and quantitative PCR indicated that, in the presence of P. gingivalis, CXCL8 

protein concentration decreased in a gingipain-dependent manner, whereas mRNA expression 

of CXCL8 increased following stimulation by P. gingivalis, suggesting post-transcriptional 

and/or post-translational modification of CXCL8 by gingipains. No change in protein 

concentration or mRNA expression was observed following stimulation of OMM which may 

reflect the multi-layered nature of this model. Differences between monolayer and OMM 

indicate a role for OMM to investigate bacterial invasion and resultant cytokine release due to 

its comparability with the oral mucosa.  

 

The work presented in this thesis has described the development, characterisation and 

optimisation of OMM to investigate invasion by P. gingivalis. Invasion was shown to be 

influenced by environmental changes and P. gingivalis protease expression. Although P. 

gingivalis degrades key surface molecules including CD46, tetraspanins and α5β1, blocking 

experiments with antibodies could not explain the protease-dependent effects on invasion. 

Modulation of cytokine production, particularly CXCL8, by P. gingivalis gingipains, may 

contribute to a disruption in leukocyte recruitment resulting in a dysregulated inflammatory 

response. Future development of OMM in terms of including an immune cell element and 

endothelial component to extend the study of P. gingivalis-host cell interactions will add value 

to this model. The data presented here indicate that P. gingivalis invasion of the epithelium is 

likely to be an important contributor to periodontal disease progression.   
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Chapter 1 Introduction 

 

1.1 Structure of the oral mucosa 

The tissue that lines the oral cavity is known as the oral mucosa. This mucosa consists primarily 

of three layers: the epithelium, basement membrane and connective tissue (fig 1.1). The 

epithelial layer provides a relatively impermeable barrier, protecting underlying tissues. The 

epithelium and connective tissue are separated by the basement membrane which aids in the 

attachment of these two layers. The connective tissue provides structural support and a matrix 

within which cells such as fibroblasts and immune cells reside (fig 1.1).  

 

Figure 1.1 Structure of oral mucosa. The oral mucosa is separated into three distinct layers: the epithelium, 

basement membrane and connective tissue. The epithelium may be differentiated or non-differentiated, keratinised or 

non-keratinised, depending on its location within the oral cavity. The three layers within the epithelium are 

designated basal, spinous and superficial. The basement membrane connects the epithelial layer with the connective 

tissue. Cells such as fibroblasts, neutrophils and blood vessels, held together within an extracellular matrix, form the 

connective tissue layer. A diagrammatical representation (A) and a haematoxylin and eosin stained section (B) of oral 

mucosa indicate the location of major structures. 

 

1.1.1 Epithelium 

The major cells within the epithelium are epithelial cells, and together these form a dense 

structure joined by cell-cell junctions (section 1.1.1.2) and cell adhesion receptors, including 

integrins (section 1.1.1.3). Oral epithelium is a stratified, squamous epithelium, which may or 

may not be keratinised. There are three distinct layers within the epithelium. These are known 

as the basal layer, spinous layers (prickle cell layers) and superficial layers (fig 1.1). The basal 
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layer is a single layer of cuboidal epithelial cells. Mitosis occurs at the basal layer and following 

each cell division the cells undergo maturational changes resulting in cell detachment and 

renewing of the epithelial surface. The spinous layers can be distinguished by the presence of 

several layers of spiky cells following histological fixation, and are located between the basal 

and superficial layers (fig 1.1). The superficial layers of oral epithelium differ in appearance 

depending on their location within the oral cavity. These layers may or may not be keratinised. 

Keratinisation is the result of keratohyaline granules being deposited within the cells resulting in 

an impermeable layer (orthokeratinised epithelia, e.g. gingival mucosa). The nuclei in non-

keratinised epithelia (e.g. buccal mucosa) become enlarged and intracellular vacuoles form 

(Moss-Salentijn and Hendricks-Klyvert, 1990). The cytokeratin expression within the epithelia 

of mucosal tissues can be an indicator of its origin (Moll et al., 1982; Chapple and Gilbert, 

2002) (section 1.1.1.1.1). 

 

Additional cells commonly found within healthy oral epithelium include melanocytes and 

merkel cells which are found in the basal layer. In addition, Langerhans cells can be found 

throughout the whole epithelium, and contribute to the host immune response by acting as 

antigen presenting cells (section 1.1.3.2). Other immune cells, such as neutrophils, may migrate 

into the epithelium when required (Liu et al., 2010).  

 

1.1.1.1 Epithelial cytoskeleton 

The cytoskeleton of epithelial cells, and indeed all eukaryotic cells, functions as a cellular 

scaffold. The dynamic nature of the cytoskeleton aids in intracellular trafficking, mitosis and 

cellular migration (Windoffer et al., 2011). Three types of protein filaments form the 

cytoskeleton, and these are known as intermediate filaments, microtubules and actin filaments.  

 

1.1.1.1.1 Intermediate filaments 

The main function of intermediate filaments is to provide support against extracellular forces 

(Reichelt, 2007). They also play a role in the transport of membrane organelles (Minin and 

Moldaver, 2008). Intermediate filaments anchor cells to each other at desmosomal junctions 

(section 1.1.1.2) and to the extracellular matrix at hemidesmosomes (section 1.1.2.1). There are 

four main types of intermediate filaments which are, type I (acidic keratins), type II (non-acidic 

keratins), type III (desmin (muscle cells), vimentin (fibroblasts, endothelial cells, leukocytes, 

mesenchymal cells), peripherin (peripheral neurons) and glial filament acidic protein (glia)), 

type IV (neurofilament proteins, largely expressed in neurons), type V (nuclear lamins, which 

provide structure to the cell nucleus) and type VI (located within the eye) (Minin and Moldaver, 

2008).  

 



Chapter 1 Introduction 

3 

 

Type I and type II keratins form heteropolymers, of which there are two types: epithelial 

keratins (described as cytokeratins) and trichocytic keratins (which are found in hair, wool, nails 

and horns). Cytokeratins are intracellular intermediate filament proteins only found within 

epithelial cells. There are over 20 different cytokeratins and the cytokeratin (CK) profile of a 

cell is an indicator of where the cell has originated (Moll et al., 1982; Chapple and Gilbert, 

2002). As epithelia differentiate or become dysplastic/cancerous, the expression of cytokeratins 

change (Moll et al., 1982). For example, simple epithelia (one cell thick) express CK8/CK18 

and CK7/CK19, whereas stratified epithelia express CK5/CK14, CK15 and CK6/CK16 

(Bragulla and Homberger, 2009). In addition, the basal and suprabasal expression of 

cytokeratins differs between keratinised and non-keratinised stratified epithelium (Bragulla and 

Homberger, 2009). For example, CK13 is expressed in the suprabasal layers of non-keratinised 

stratified epithelia (Waseem et al., 1998), but not in keratinised epithelia.  

 

1.1.1.1.2 Microtubules 

Microtubules have the largest diameter of all of the cytoskeletal proteins and are composed of a 

protein called tubulin. Microtubules polymerise and depolymerise, lengthening and shortening 

in length due to the requirements of the cell (Henderson et al., 1999). The main role of 

microtubules is in the intracellular trafficking of cellular components, e.g. chromosomes, aiding 

in mitosis (Henderson et al., 1999). 

 

1.1.1.1.3 Actin filaments 

Actin filaments play a major role in maintaining the shape of the cell. Actin filaments form 

linear bundles and are primarily found at the periphery of cells. This location aids in the 

maintenance of cellular form and may play a role in cellular migration (Henderson et al., 1999), 

and bacterial invasion (section 1.3.4.2). Actin filaments form part of adherins and tight 

junctions, which are important in cell-cell contact (section 1.1.1.2), and focal adhesions 

maintaining cell-extracellular matrix contact (section 1.1.2.1). 

 

1.1.1.2 Cell-cell junctions 

The major cell-cell junctions include tight, gap, adherin and desmosomal junctions (fig 1.2). 

Tight junctions involve integral membrane proteins (claudins and occludins), which are attached 

to the intracellular actin cytoskeleton and hold the cell membranes of two adjacent cells close 

together preventing the intercellular passage of molecules (Silverthorn, 2004). Gap junctions 

consist of a channel, which is formed from transmembrane connexin molecules and connects the 

cytoplasm of one cell with the cytoplasm of an adjacent cell, allowing the passage of small 

(<1kDa) molecules (Goodenough and Paul, 2009). Adherin junctions associate with the actin 

cytoskeleton and are involved in the adhesion of two adjacent cells. Cadherins are calcium-

dependent adherins. Homophilic adhesion of cadherins, mediated by calcium, specifies adhesion 
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between like cell types and hence these junctions are key to holding specific tissues together 

(Farquhar and Palade, 1963). The nomenclature for cadherins implies their site of origin. For 

example, E-cadherin is mainly found within epithelial tissue and N-cadherin in neuronal and 

endothelial tissue (Gumbiner, 2005). The desmosomal cadherins, desmogleins and 

desmocollins, are another type of calcium-dependent adherins which form heterotypic 

interactions in association with intermediate filaments within epithelial cells to form 

desmosomal junctions (also termed desmosomes) (Jamora and Fuchs, 2002). Desmosomes 

function in the resistance of shearing forces and are found in simple and stratified squamous 

epithelia (Mattey and Garrod, 1986). Cell-cell junctions not only function in the joining of 

individual epithelial cells but also play a role in the maintenance of cellular polarity and 

differentiation (Bryant and Mostov, 2008). 

 

Figure 1.2 Diagram of the major epithelial cell-cell junctions. Epithelial cells are connected by tight, gap, adherin 

and desmosomal junctions. Tight and adherin junctions involving integral membrane proteins, e.g. claudin and 

cadherin, respectively, are involved in cell adhesion via association with the actin cytoskeleton. Similarly 

desmosomes associate with intracellular intermediate filaments and involve the integral membrane protein, 

desmoglein. Gap junctions are cytoplasmic bridges created by connexin proteins allowing the passage of small 

molecules between adjacent cells. Adapted from Silverthorn (2004). 

 

1.1.1.3 Integrins 

Integrins are cell adhesion receptors found in all nucleated cells and are involved in cell-cell and 

cell-extracellular matrix (ECM) interactions. They are cell surface heterodimers composed of 

one α and one β subunit (fig 1.3). Within mammals, there are 18 α and 8 β subunits, comprising 

24 different combinations (Takada et al., 2007). Integrins are activated via inside-out signalling 

(Moser et al., 2009; Shattil et al., 2010). Activated integrins then bind extracellular ligands 

including ECM proteins (e.g. fibronectin, laminin and collagen) and other cell surface 

molecules, including intercellular cell adhesion molecule (ICAM-1) and vascular cell adhesion 

molecule (VCAM-1) aiding in epithelial adhesion to the ECM and adjacent epithelial cells 
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(Silverthorn, 2004). Integrins are closely associated with intracellular signalling mechanisms, 

and ligand binding results in the control of a number of cell functions including cell 

proliferation, cell survival, cytoskeletal rearrangement, cell migration and gene transcription 

(Lodish et al., 2008). The integrins expressed by gingival epithelial cells include α2β1, α3β1, 

α5β1, α6β1, αvβ6 and α6β4 (Andrian et al., 2006). 

 

Figure 1.3 Diagrammatical representation of an integrin heterodimer. Integrins are transmembrane-spanning 

heterodimeric proteins, composed of an α and a β subunit. There is a ligand binding site within the extracellular 

domain and a cytoskeletal binding site located intracellularly. 

 

In association with integrins, are tetraspanins (Berditchevski, 2001). These 4-transmembrane 

spanning proteins have two extracellular domains, one small (EC1) and one large (EC2) (fig 

1.4). Tetraspanins are important in clustering of integrins at the cell surface (Yang et al., 2004; 

Singethan and Schneider-Schaulies, 2008) and the recruitment of other molecules, including 

additional adhesion molecules and intracellular signalling proteins to form a network, known as 

a ‘tetraspanin web’, which plays a role in cellular processes including cell migration, 

differentiation and intracellular signalling (Charrin et al., 2009). 

 

Figure 1.4 Diagram to show the localisation of amino acid residues within a tetraspanin molecule. Tetraspanins 

are transmembrane spanning proteins with two extracellular loops, one small (EC1) and one large (EC2). 

Tetraspanins have intracellular -NH2 and -COOH domains. Each circle represents one amino acid residue. (Adapted 

from Levy et al. (1998)). 
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1.1.2 Basement membrane 

At the interface between epithelium and connective tissue is the basement membrane which 

consists of three distinct layers, the lamina lucida, lamina densa and lamina reticularis. The 

lamina lucida resides at the cellular interface and is composed primarily of collagen type XVII, 

laminins 5, 6 and 10, and integrins (including α6β4). The lamina densa is located at the cellular-

matrix interface and is composed of collagen type IV, laminin 1, nidogen, proteoglycans (e.g. 

perlecan, bamacan, collagen XVIII) and stored growth factors. The lamina reticularis forms the 

basal portion of the basement membrane, located at the matrix interface and is composed of 

collagen types I, III and V, proteoglycans and stored growth factors (Evans et al., 2010). 

Primarily the basement membrane functions in the attachment of the epithelium to the 

underlying connective tissue via cell-ECM junctions (section 1.1.2.1). In addition, the basement 

membrane is an important regulator in the movement of cytokines, chemokines, growth factors 

and metabolites between the epithelium and cells within the ECM, and vice versa (Iozzo, 1998; 

Evans et al., 2010). 

 

1.1.2.1 Cell-extracellular matrix junctions 

The major cell-extracellular matrix junctions are focal adhesions and hemidesmosomes. Focal 

adhesions involve epithelial cell integrins which anchor the actin cytoskeleton via binding to 

fibronectin within the ECM, resulting in the direct attachment of cells to the ECM (Wehrle-

Haller, 2011). Hemidesmosomes aid adhesion of epithelial cells to underlying basement 

membrane molecules and are important in epithelial stability (Koh et al., 2008). 

Hemidesmosomes consist of multi-protein complexes involving anchoring fibrils (collagen type 

VII) in the ECM, laminin in the lamina densa, integrin α6β4 in the lamina lucida, and 

intermediate filaments within the cell, functioning as adhesion molecules at the cell-ECM 

interface (Borradori and Sonnenberg, 1999). 

 

Figure 1.5 Diagrammatical representation of a hemidesmosme. Hemidesmosomes act as a linker between the 

connective tissue and the epithelium. Integrins and laminin within the basement membrane connect collagen type VII 

fibres within the connective tissue with intermediate filaments within the epithelial cells. Adapted from Borradori and 

Sonnenberg (1999). 
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1.1.2.2 Laminins 

Laminins are glycoproteins expressed abundantly throughout the basement membrane. 

Laminins are heterotrimers consisting of one α subunit, one β subunit and one γ subunit 

(Burgeson et al., 1994). Together these subunits form a cross-like structure (fig 1.6) held 

together by disulphide bonds. To date, there have been 18 laminins described in the literature 

(Durbeej, 2010), which are distributed throughout diverse tissues such as skin, lung, kidney, 

central nervous system, mammary gland, vascular smooth muscle and oral mucosa (Nguyen and 

Senior, 2006; Colognato et al., 2007; Gerthoffer, 2007; Rebustini et al., 2007; Sugawara et al., 

2008; Goldberg et al., 2010; Peña et al., 2010; Polyak and Kalluri, 2010). Laminins play an 

important role in the maintenance of tissue architecture, most significantly during 

embryogenesis (Dziadek, 1995, Schéele et al., 2005). Laminins bind matrix proteins, such as 

collagen, to maintain a sturdy matrix structure, and transmembrane receptors such as integrins, 

resulting in cellular-matrix interactions (fig 1.5), which are important in cell migration 

(Gerthoffer, 2007), proliferation (Koh et al., 2008), adhesion (Moore and Winder, 2010) and 

epithelial morphogenesis (Rebustini et al., 2007). 

 

Figure 1.6 Diagram of a laminin protein. Laminins are heterotrimers made up of an α, β and γ subunit. Laminins 

play important roles in cell migration, proliferation and adhesion via binding to integrins. Asterisks (*) represent the 

location of major integrin binding sites. Adapted from Belkin and Stepp (2000). 

 

1.1.3 Connective tissue 

Connective tissue consists of ground substance, fibrous proteins and cells, which include 

fibroblasts (section 1.1.3.1), endothelial, neuronal and immune cells (section 1.1.3.2). Ground 

substance is composed primarily of proteoglycans, glycoproteins, phosophoproteins and water, 

forming a gelatinous substance, known as the ECM, which provides mechanical support to 

epithelia, including the oral mucosa (Silverthorn, 2004). Of the four types of fibrous proteins 

found within the connective tissue, long, unbranched collagen fibres are the most abundant. 

Within the connective tissue of oral mucosa, type I and type III collagen fibres are the most 

common. Type I collagen is the principal collagen found in the connective tissue layer, forming 

thick fibres. Collagen type III forms delicate fibres and is more glycosylated than collagen type 

I (Moss-Salentijn and Hendricks-Klyvert, 1990). The three additional fibrous proteins are 

elastin, fimbrillin and fibronectin. Elastin and fimbrillin combine to form filaments, adding 
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strength and elasticity to the connective tissue. Fibronectin is important in connecting the ECM 

to the epithelium at focal adhesions via its association with cellular integrins (Barczyk et al., 

2010) (section 1.1.2.1). 

 

In addition to a structural support, the connective tissue allows the diffusion of metabolites into 

epithelial cells from the vast capillary networks within the ECM, and vice versa. Furthermore, 

the extravasation of neutrophils from the circulatory system, migration through the connective 

tissue and into the epithelium aids in defence against pathogenic attack. Also present within the 

connective tissue of oral mucosa are lymphatic vessels, nerves and salivary glands (Moss-

Salentijn and Hendricks-Klyvert, 1990). 

 

1.1.3.1 Fibroblasts 

As the most abundant cell type within the connective tissue, fibroblasts are responsible for 

synthesising precursors of ECM including the four types of protein fibres and ground substance, 

playing a critical role in wound healing. In addition, fibroblasts influence epithelial 

differentiation and keratinocyte adhesion by secreting numerous cytokines and growth factors, 

including keratinocyte growth factor (KGF), granulocyte-macrophage colony-stimulating factor 

(GM-CSF) and fibroblast growth factor 10 (FGF-10) (Saintigny et al., 1993; Werner and Smola, 

2001; Marchese et al., 2001). These factors stimulate keratinocytes to secrete cytokines 

including interleukin 1 (IL-1) which acts as part of a positive feedback loop to increase the 

secretion of KGF by fibroblasts thus contributing to the regulation of keratinocyte growth and 

differentiation (Boxman et al., 1993; Maas-Szabowski et al., 1999; Wong et al., 2007b). This is 

an example of fibroblast-epithelial cross-talk, which is important in maintaining epithelial 

integrity. 

 

1.1.3.2 Immune cells 

The major resident immune cells (leukocytes) within the connective tissue of oral mucosa are 

macrophages, mast cells and lymphocytes (Moss-Salentijn and Hendricks-Klyvert, 1990). 

Neutrophils migrate through the oral mucosa in response to a chemotactic stimulus. Immune 

cells are crucially important for the control of infection by bacteria, viruses, fungi or other 

microorganisms/particles/dead cells. The mouth, which is a warm and moist environment with a 

continuous supply of nutrients, provides optimum conditions for the survival and colonisation 

by such pathogens. Therefore the primary role of immune cells within the oral mucosa is to 

recognise ‘non-infectious self’ from ‘infectious non-self’ resulting in a targeted response 

culminating in the removal of pathogenic organisms and damaged tissue/cells (Janeway Jr, 

1992), maintaining oral health. There are two arms of the immune response: innate and adaptive 

immunity. Innate immunity is the initial, non-specific activation of immune cells such as 

macrophages and neutrophils, resulting in the rapid removal of invading pathogens. Adaptive 
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immunity occurs after hours to days following the first infection with a pathogen. This arm of 

the immune response involves the presentation of pathogenic antigens to cells including T and 

B lymphocytes by antigen-presenting cells, resulting in the increased killing of the pathogen, 

production of antibodies aiding the recognition of pathogens by macrophages, and the 

production of memory cells which are important for a rapid, specific immune clearance should 

the pathogen be encountered again (Silverthorn, 2004). Leukocytes are classified according to 

morphological and/or functional characteristics. 

 

Figure 1.7 A diagram to show the host cells and inflammatory mediators important in innate immunity. The 

epithelium, connective tissue and blood vessel forming part of the oral mucosa are depicted showing the major 

resident and infiltrating immune cells important in the phagocytosis of bacteria/bacterial products, chemotaxis 

resulting in extravasation of additional immune cells, and inflammation. The release of cytokines due to the 

association of bacteria with epithelial cells contributes to chemotaxis, release of secondary inflammatory mediators 

and mast cell degranulation. Abbreviations: CCL2 (monocyte chemoattractant protein 1), CXCL8 (interleukin 8), 

TNF-α (tumour necrosis factor alpha), IL-1 (interleukin 1), PAF (platelet-activating factor). 

 

Mast cells and neutrophils are known as granulocytes because within their cytoplasm there are 

many granules, which when activated by chemical stimuli (e.g. bacterial degradation products), 

degranulate, releasing their contents which include, heparin and cytokines that are involved in 

inflammation. Inflammation is characterised by redness, warmth and swelling, which is 

contributed in part by an increase in vascular permeability and blood vessel dilation 

(Silverthorn, 2004). Mast cell degranulation is triggered by cytokines, including interleukin 1 
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and complement proteins (fig 1.7). Neutrophils rapidly leave the surrounding blood vessels by 

extravasation, where they act as phagocytes. 

 

Macrophages and neutrophils are known as phagocytes. Phagocytes ingest and kill ‘foreign’ 

particles, which are recognised by the host as ‘non-self’ (Janeway Jr, 1992). Ingested particles 

such as whole bacterial cells, cell fragments and/or other particles, are engulfed by the 

phagocyte and enter a cytoplasmic vesicle, known as a phagosome. The fusion of phagosomes 

with intracellular lyosomes (which contain enzymes and oxidising agents) kills ingested 

pathogens. The precursors of macrophages are monocytes and these are commonly found within 

the circulation until they enter the connective tissue and differentiate into larger macrophages 

where they spend the rest of their lives (Silverthorn, 2004) (fig 1.7). 

 

Langerhans cells (dendritic cells) are also resident within the connective tissue and epithelia of 

oral mucosa and, along with macrophages, act as antigen-presenting cells, forming a link 

between the innate and adaptive immune responses. These immune cells ingest pathogens and 

present microbial antigens, complexed to major histocompatibility complex (MHC) class II, on 

the surface of the cell. These cells then migrate to local lymph nodes where naïve T-helper cells 

are activated and undergo clonal expansion. B-cells, also within local lymph nodes, recognise 

the antigen-MHC II complex, endocytose and process the antigen, presenting the antigen-MHC 

II complex on its surface. This aids in further activation of T-cells. In addition, B cells 

differentiate into plasma cells, which secrete antibodies specifically directed against the 

infecting pathogen, resulting in opsonisation (enhanced phagocytosis) of the antigen and an 

increase in phagocytic clearance (Janeway Jr, 1992; Silverthorn, 2004). T and B cells are found 

within connective tissue during chronic infection aiding in a more targeted removal of 

pathogens compared with innate immune cells such as macrophages and neutrophils. 

 

1.2 Periodontal disease 

1.2.1 Structure of the periodontium 

The periodontium includes the tissues that surround and support the teeth. The major 

components of the periodontium are the gingivae (i.e. soft tissue surrounding the teeth (oral 

mucosa)), periodontal ligament, root cementum and alveolar bone (fig 1.8).  

 

The structure of the epithelium that surround the teeth is related to its function in its primary 

role as part of the innate defence. As dental plaque builds up on the tooth surface, the epithelium 

(particularly the sulcular and junctional epithelium that faces the tooth surface) is exposed to 

challenge by bacteria and bacterial products. Therefore, the orthokeratinisation of gingival 

epithelium forms a partially impermeable barrier to bacteria/bacterial products. In addition, 

exfoliation of gingival surfaces aims to prevent the colonisation of bacteria on epithelial 
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surfaces (Walker, 2004). Furthermore, gingival crevicular fluid (GCF) bathes subgingival 

tissues and comprises a mixture of antimicrobial agents, including lysozyme, immunoglubulins 

and antimicrobial peptides (Walker, 2004). The presence of these agents and other extracellular 

proteins within the GCF and local environment may select for the colonisation and propogation 

of bacterial species that may contribute to periodontal disease progression (Marsh et al., 1994) 

(section 1.2.3).Sulcular epithelium faces the tooth enamel (fig 1.8) and is characterised by the 

absence of rete ridges, which are present in gingival epithelium. Cells of the sulcular epithelium 

are para-keratinised and there is a high turnover rate because it is highly prone to damage. As 

the epithelium progresses towards the cemento-enamel junction, it becomes junctional 

epithelium which is highly specialised. Junctional epithelium rapidly divides with a 2-6 day 

turnover (Chapple and Gilbert, 2002) and this high turnover rate prevents the accumulation of 

keratin resulting in non-keratinised epithelium (Heyden et al., 1992). Junctional epithelium 

tapers apically from approximately 20 cell layers thick to 1-2 cell layers finishing with a single 

cell at the cemento-enamel junction, which is in contact with the tooth surface (Hatakeyama et 

al., 2006).This epithelium possesses large intercellular gaps (Soames and Davies, 1977; 

Bosshardt and Lang, 2005) that forms an imperfect barrier to bacteria but enables the easy 

migration of polymorphonuclear (PMNs) cells and GCF to counteract pathogenic attack. 

Indeed, approximately 30,000 PMNs migrate per minute into the gingival sulcus to maintain 

periodontal health (Schiött and Löe, 1970). Oral epithelial cells secrete numerous cytokines and 

chemokines, including IL-1β, IL-6, TNF-α and CXCL8, particularly in response to bacteria and 

other microbes, which act as important inflammatory mediators and immune cell activators 

(Walker, 2004) (section 1.3.4.4). 

 

The periodontal ligament consists of periodontal ligament fibres, neurovascular channels, 

ground substance and cellular elements such as fibroblasts, osteoblasts and undifferentiated 

mesenchymal cells. Periodontal ligament fibres are surrounded by tissue fluid providing an 

environment in which the tooth is able to withstand mechanical forces (Chapple and Gilbert, 

2002). 

 

The root cementum anchors periodontal ligament fibres to the root of the tooth. There are two 

types of cementum: acellular and cellular. Acellular cementum forms next to the tooth dentine 

and cellular cementum, consisting of cementoblasts, attaches to acellular cementum and 

provides an anchor for periodontal ligament fibres (Chapple and Gilbert, 2002). 

 

Alveolar bone is connected to the cementum via periodontal ligament fibres (fig 1.8). Alveolar 

bone is a mineralised tissue involving the dynamic balance between bone-forming osteoblasts 

and bone-resorbing osteoclasts to maintain skeletal homeostasis (Sato and Takayanagi, 2006; 
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Hernández et al., 2011). An imbalance in favour of osteoclastic activity results in bone 

resorption (section 1.2.3.2) (Vernal et al., 2004). 

 

Figure 1.8 Diagram of the periodontium. Features of the periodontium are depicted here, including the gingival, 

sulcular and junctional epithelium, periodontal ligament, cementum and alveolar bone. These structures maintain the 

position and integrity of the tooth within its socket. 

 

1.2.2 Clinical features 

Periodontitis is characterised by an inflammation of the periodontium (fig 1.8), leading to 

progressive loss of tooth supporting structures including the periodontal ligament, gingival 

tissue, cementum and alveolar bone. In some cases tooth loss may occur (Caton and Lowenguth, 

1993; Priestland, 1994; Weinmann and Geron, 2011). Periodontitis is always preceded by 

gingivitis (gingival inflammation) (Schätzle et al., 2003). It is thought that periodontitis is the 

leading cause of tooth loss, within the adult population, worldwide (Choi and Seymour, 2010). 

The first sign of periodontal attachment loss occurs when there is an apical migration of the 

junctional epithelium leading to the formation of a periodontal pocket (Chapple and Gilbert, 

2002) (fig 1.9). The depth of the pocket is an indicator of the level of attachment loss and is 

measured using a periodontal probe. Therefore, an increase in pocket probing depth (>3mm) 

indicates an increase in the level of attachment loss, and progression of disease.  

 

Figure 1.9 Formation of a periodontal pocket. Periodontitis is characterised by inflammation of the gingivae, 

destruction of periodontal ligament, alveolar bone resporption and loss of cementum. Progression of disease may 

result in tooth loss as destruction of the periodontium continues. 
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Periodontitis can be separated into two distinct categories: chronic and aggressive. Aggressive 

periodontitis may be further categorised as localised or generalised. Chronic and aggressive 

periodontitis share similar clinical features such as the presence of dental plaque/calculus, 

gingival redness, oedema, bleeding upon probing, increased probing depth, decreased 

periodontal attachment and alveolar bone loss (Offenbacher et al., 2008). Differences between 

chronic and aggressive periodontitis include the age of onset, rate of progression, pattern of 

destruction, clinical signs of inflammation and the amount of plaque and calculus present (table 

1.1). Chronic periodontitis is characterised by a late onset of disease, typically after 35 years of 

age, where periodontal detachment shows no defined pattern. Aggressive periodontitis is most 

often seen in individuals at an early age, and commonly localised aggressive periodontitis is 

diagnosed when less than 30% of sites are affected and generalised aggressive periodontitis 

diagnosed when more than 30% of sites are affected (Stabholz et al., 2010). In terms of the rate 

of progression, it has been reported that aggressive periodontitis has a greater rate of 

progression compared with chronic periodontitis, hence the name designation (Frydman and 

Simonian, 2011). In the early stages of disease there are minimal signs of clinical inflammation 

associated with a minimal biofilm in aggressive periodontitis compared with chronic 

periodontitis (Stabholz et al., 2010). However, as the diseases progress, differences occur 

between localised and generalised aggressive periodontitis in that with generalised aggressive 

periodontitis more teeth are affected and there is a larger plaque biofilm present, compared with 

localised aggressive periodontitis.  

 

Table 1.1 Classification of periodontitis. Chronic and aggressive (localised and generalised) periodontitis may be 

categorised in terms of disease characteristics including age of onset, rate of progression, pattern of destruction, 

clinical signs of inflammation and the presence of dental plaque and/or calculus. Adapted from Stabholz et al (2010). 

 

As diagnosis is relatively subjective, there has recently been a move towards the development of 

rapid, objective screening tests based on individual biomarkers within the GCF or saliva, 

Characteristic Chronic Aggressive 

Localised Generalised 

Age of onset >35 years <35 years <35 years 

Rate of progression Slow/cyclical  Rapid Rapid 

Pattern of 

destruction 

No defined pattern <30% sites affected 

(primarily localised to 

first molars or incisors) 

>30% sites 

affected 

Clinical signs of 

inflammation 

High Low Medium 

Amount of dental 

plaque/calculus 

Considerable Minimal  Average 
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(Chapple, 2009). This would allow more accurate, early diagnosis and improved, customised 

treatment plans (Offenbacher et al., 2008). Biomarkers such as bacterial plaque composition, 

tissue breakdown products, host proteolytic enzymes and inflammatory mediators are all 

important in the pathogenesis of disease (section 1.2.3) and are currently being investigated as 

potential biomarkers for diagnosis (Khiste et al., 2011). Biomarkers such as beta glucuronidase 

(Lamster et al., 1994), cathepsin B (Eley and Cox, 1996) and the RANKL/OPG ratio 

(Belibasakis and Bostanci, 2012) show the most promise in terms of accuracy of diagnosis 

(Chapple, 2009; Buduneli and Kinane, 2011). However, as yet, there is not one distinct 

biomarker that is capable of objectively diagnosing periodontal disease. This is probably due to 

the multi-factorial nature of this disease, which is affected not only by a range of genetic 

(section 1.2.2.1) and environmental factors (section 1.2.2.2), but also inter-individual 

differences in the microbial composition of the plaque biofilm and the specific immune 

responses to bacterial challenge (section 1.2.3.1) (Stabholz et al., 2010; Khiste et al., 2011; 

Laine et al., 2012).  

 

1.2.2.1 Genetic factors 

There has been shown to be an association of periodontitis within families (Petit et al., 1994) 

suggesting that there is a genetic link for the initiation of periodontitis. Numerous candidate 

gene-association studies have been performed in an attempt to identify genetic polymorphisms 

associated with aggressive and chronic periodontitis. These have recently been extensively 

reviewed (Stabholz et al., 2010; Vijayalakshmi et al., 2010; Laine et al., 2012). Reports have 

indicated a wide range of polymorphisms within genes encoding cytokines (Kinane et al., 1999; 

Sumer et al., 2007; Reichert et al., 2008), host-derived proteases (Ustun et al., 2008), receptors 

involved in metabolic processes (de Brito Jr et al., 2004), immune activation (Sugita et al., 

1999) and antigen recognition (Bonfil et al., 1999), suggesting that changes in these processes 

may act as specific risk factors for disease initiation. However, determining which 

polymorphisms are the most crucial in disease development is difficult due to the multi-factorial 

nature of disease, inter-individual variation, and the limitations of individual gene association 

studies. As these studies are commonly performed using limited numbers of individuals, this 

may lead to false-positive or false-negative results, therefore genome wide association studies 

may be more informative in the future (Laine et al., 2012). 

 

1.2.2.2 Environmental factors 

The environmental factors that contribute to periodontitis include the state of oral 

hygiene/amount of dental plaque, smoking, stress and systemic factors (Stabholz et al., 2010). 

 

The positive correlation between the quantity of plaque and gingivitis is well known (Marsh, 

1994). All forms of periodontitis are preceded by gingival inflammation/gingivitis (Schätzle et 
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al., 2003), further implicating microbial aetiology in the initiation of this disease (section 

1.2.3.1). Therefore individuals with poor oral hygiene are more susceptible to developing 

gingival inflammation, which may progress to periodontitis if left untreated (Syed and Loesche, 

1978). 

 

Throughout the literature there are reports of the association of smoking with an increased risk 

of periodontitis (Preber et al., 1980; Laxman and Annaji, 2008; Heikkinen et al., 2008). This 

may be because smoking affects the oral microflora (Zambon et al., 1996), inflammatory 

responses (Bergstrom and Preber, 1986), and healing potential of periodontal connective tissues 

(Stabholz et al., 2010).  

 

Psychological stress has also been indicated as a risk factor for the development of periodontitis 

(Moss et al., 1996; Genco et al., 1999). The effect of stress may influence two factors, which 

could contribute to the development of disease. These are ‘health impairing behaviours’ and 

‘pathophysiological factors’ (Stabholz et al., 2010). ‘Health impairing behaviours’ include 

changes in behaviour due to a negative mental health status, e.g. depression, leading to a 

decrease in self welfare and oral hygiene, increased smoking and poor nutrition (Monteiro da 

Silva et al., 1996). ‘Pathophysiological factors’ include increased levels of glucocorticoid and 

catecholamine levels which may affect inflammatory and immunological responses contributing 

to an increase in the loss of tooth supporting structures (Boyapati and Wang, 2007). However, 

as ‘stress’ is difficult to quantify, the contribution to the pathogenesis of periodontitis is still 

debatable (Stabholz et al., 2010).  

 

Systemic diseases which have been shown to be associated with an increase in periodontitis 

include diseases that are related to the function of the immune response, in particular leukocyte 

deficiencies and immunosuppression, e.g. secondary to HIV infection (Lamster et al., 1998). 

Leukocyte disorders include neutropenia (Baehni et al., 1983; Stabholz et al., 1990), Chediak-

Higashi syndrome (Bailleul-Forestier et al., 2008), chronic granulomas (Buduneli et al., 2001) 

and histocytosis syndromes (Deas et al., 2003). These deficiencies in leukocyte function are 

commonly inherited genetic conditions and contribute to a decreased removal of pathogenic 

bacteria leading to an exacerbation in bacterial-related diseases, such as periodontitis. 

 

Periodontitis is also associated with a number of other diseases that have been shown to 

influence the host response to bacterial challenge or contribute to the clinical features of 

periodontitis. These include diabetes mellitus (Gurav and Jadhav, 2011), obesity (Suvan et al., 

2011), osteoporosis (Jeffcoat, 1998) and rheumatoid arthritis (Saini, 2011). 
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1.2.3 Pathogenesis  

A pre-requisite for the initiation of inflammation observed in periodontitis, is the presence of a 

polymicrobial plaque biofilm, which accumulates on the tooth surface (Kinane and Attström, 

2005). In terms of disease pathogenesis, the ecological plaque hypothesis has been proposed 

(Marsh et al., 1994). This hypothesis suggests that an excessive bacterial load, causing stress to 

the oral environment results in a change in the local environment, e.g. increase GCF flow, 

increased inflammation, which in turn allows growth of key organisms that contribute to local 

tissue destruction, directly or indirectly. Such ‘pathogenic organisms’ associated with 

destructive periodontitis are Porphyromonas gingivalis, Tannerella forsythia and Treponema 

denticola (Marsh, 1994; Ximenez-Fyvie et al., 2000; see section 1.2.3.1). However, the 

identification of a specific contributing factor and/or individual/group of microbes, leading to 

the initiation of disease, or the mechanisms behind this ‘microbial shift’, have not yet been 

elucidated (Darveau, 2010). This is due to the large number of different species described as 

associated with the disease (section 1.2.2), and inter-subject variation. The immune system and 

inflammatory response play a crucial role in the maintenance of periodontal health as shown by 

studies in which individuals with neutropenia or other leukocyte disorders have a greater 

incidence of periodontitis (section 1.2.2.1). Therefore, the balance between bacterial load and 

the host response is crucial for maintaining periodontal health. A disruption in this dynamic 

balance may result in disease progression (Darveau, 2010). It has been suggested that there are 

different patterns of disease progression, including linear and cyclical progression (Socransky et 

al., 1984). Linear progression involves the slow, continuous increase in periodontal detachment 

over time, whereas cyclical progression is recognised by intermittent bursts of periodontal 

detachment with longer periods of remission (Socransky et al., 1984). However, recently, 

Gilthorpe et al. (2003) evaluated the literature regarding periodontal disease progression and 

suggested that the linear and cyclical patterns of disease progression may be a manifestation of 

the same phenomenon, by which at some periodontal sites disease progressively worsens, and at 

other sites disease progression lessens and health improves (Gilthorpe et al., 2003). However, it 

still remains that disruptions in the fine balance between host-pathogen interactions may result 

in the progression of disease (Darveau, 2010). 

 

1.2.3.1 Microbial aspects 

It is well known that poor oral hygiene contributes to the development of diseases of the oral 

cavity. Poor oral hygiene leads to the build-up of dental plaque, which has been positively 

associated with the severity of periodontal disease (Grenier and Mayrand, 1986; Genco et al., 

1988). More than 600 different types of oral bacteria have been described (Chen et al., 2010). 

This wide variety of bacterial species adhere to teeth to form a biofilm. The establishment of a 

biofilm provides microorganisms with a more stable environment within which to multiply and 

propagate (Grenier and Mayrand, 1986; Dalwai et al., 2006). Early colonisers of oral structures 
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include Gram-positive cocci (Marsh, 1994; Rosan and Lamont, 2000), which generally 

contribute to the normal microbial flora of a healthy mouth (Marsh, 1994). As dental plaque 

accumulates, there is a shift from a predominantly supragingival Gram-positive 

aerobic/facultative population to an increased number of anaerobic Gram-negative bacilli. These 

migrate apically and so are particularly found within subgingival plaque (Listgarten, 1988; 

Marsh, 1994). As secondary colonisers of the oral cavity, the Gram-negative microbes, e.g. P. 

gingivalis, T. forsythia and T. denticola, adhere to these early colonisers, such as Streptoccocus 

gordonii and Actinomyces naeslundii (Syed and Loesche, 1978; Boyd and McBride, 1984; 

Mayrand and Holt, 1988).  

 

As understanding of the oral microbial ecology has developed, so have the theories behind the 

role dental plaque plays in the pathogenesis of periodontitis. Initially two hypotheses were 

proposed to describe the relationship between microbial load and disease initiation. These were 

the non-specific (Theilade, 1986) and the specific (Loesche, 1976) plaque hypotheses.  

 

The non-specific plaque hypothesis suggested that all microorganisms within dental plaque 

contribute to tissue inflammation and destruction. Therefore removal of a thick plaque biofilm 

would re-establish a healthy supra- and sub-gingival environment due to the decrease in 

microbial load. The specific plaque hypothesis suggested that specific organisms within dental 

plaque contribute to disease, such as the association of localised aggressive periodontitis and 

Aggregatibacter actinomycetemcomitans (Fine et al., 2007). Therefore, eliminating individual 

bacterial species may lead to the resolution of the disease.  

 

However, since those earlier hypotheses, the ecological plaque hypothesis has been proposed 

byMarsh (1994). This hypothesis suggests that an increase in microbial load, e.g. due to a 

decrease in oral hygiene, leads to an increase in inflammation (section 1.2.3.2) resulting in a 

change in the local environment, e.g. increase in GCF flow, decrease in pH. This change in 

environmental factors, such as an increase in environmental proteins, may result in the 

proliferation of proteolytic bacteria (e.g. Gram negative anaerobic bacteria), contributing to an 

imbalance in the resident microflora that is likely to increase inflammation. Prevention or 

resolution of disease therefore can be achieved by the targeting of ‘disease-causing’ organisms 

directly, as well as interfering with the environmental conditions responsible for their selection 

(Marsh, 2003). This importance of a change in environment for the enrichment of such 

organisms was determined through numerous pure culture (McDermid et al., 1988) and mixed 

culture (Bradshaw et al., 1998) studies.  

 

The ecological plaque hypothesis highlights the importance of determining the specific 

organisms within dental plaque and the environmental cues that result in a change in the 
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microbial flora. The Human Oral Microbiome Project (Chen et al., 2010) is currently 

sequencing the full and partial genomes of the approximately 600 prokaryotic organisms within 

the human oral cavity. A more comprehensive view of microbial ecology will contribute to a 

better understanding of the contribution of microorganisms to disease, and which specific 

organisms to target for the prevention/resolution of disease. 

 

Due to the close proximity of the microbial biofilm and periodontal tissues, and the few 

intercellular junctions within junctional epithelium (section 1.2.1), the exposure of the host to 

bacterial challenge is particularly high. Indeed, it has been reported that the most commonly 

detected bacterial species associated with gingival crevicular epithelial cells, were P. gingivalis, 

T. denticola, Prevotella intermedia, Streptococcus intermedius, Campylobacter rectus, 

Streptococcus sanguinis  and Streptococcus oralis (Colombo et al., 2007). These 

microorganisms possess numerous virulence features that may contribute to the tissue 

destruction observed in periodontitis. For example, Gram-negative anaerobic bacteria secrete 

numerous proteolytic enzymes that are capable of degrading components of the extracellular 

matrix (Al-Shibani and Windsor, 2008; Guo et al., 2010), and preventing host immune 

responses (Potempa et al., 2009). As metabolic end-products, some anaerobic bacteria produce 

volatile sulphur compounds, such as hydrogen sulphide (H2S), methyl mercaptan, and dimethyl 

sulphide. These compounds have been shown to be cytotoxic to epithelial cells and other 

cellular components of the periodontium (Yoshimura et al., 2000; Murata et al., 2008; Zhang et 

al., 2010). These metabolic end-products, in addition to other end-products including lactate, 

succinate, formate and ethanol may enter periodontal tissues resulting in an increase in tissue 

damage, activation of immune responses and/or dysregulation of host defences (Bartold et al., 

1991; Kurita-Ochiai et al., 1995; Dashper et al., 2011). Furthermore, these bacteria are capable 

of disrupting the host blood coagulation system, which may result in an increase in bleeding at 

sites of infection, contributing to an increase in the inflammatory response and an inhibition of 

tissue repair (Bamford et al., 2007).  

 

1.2.3.2 Host aspects 

In an attempt to prevent the deleterious effects of individual bacterial species, the host initiates 

an inflammatory and immune response to eliminate mucosal colonisation by bacteria. As it has 

been described previously (section 1.1.3.2), the oral mucosa is host to numerous immune cells 

that are capable of eliciting a non-specific, as well as a targeted immune response to bacterial 

colonisation, contributing to tissue inflammation. Inflammation and activation of immune cells 

is important in maintaining periodontal health. However, a disruption in the fine balance 

between bacterial load and host defence mechanisms plays a role in the pathogenesis of disease. 

As the bacterial load is usually too small to cause the high levels of periodontal destruction 

observed, it is thought that the exacerbated contribution (or dysregulation) of the host defences 
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causes the most damage. For example, excessive inflammatory responses (Preshaw and Taylor, 

2011), hyper-responsive neutrophils (Kantarci et al., 2003), defective immune activation (Sugita 

et al., 1999), and/or increased activation of host-derived proteases (Guo et al., 2010) may play a 

role in periodontal tissue destruction.  

 

The innate immune response is an important first line of defence against infiltrating pathogens. 

Initial innate defence barriers, include structural (epithelial membranes, cellular junctions), 

mechanical (mastication), and chemical (antimicrobial peptides (Gorr and Abdolhosseini, 2011), 

human β-defensins (Lu et al., 2004), soluble CD14 (Jin and Darveau, 2001) and 

lipopolysaccharide binding protein (LBP) (Ren et al., 2004; Choi et al., 2011)). These barriers 

are the initial attempts at controlling pathogenic colonisation. 

 

Once a pathogen or its secreted/released products, have gained access to the epithelium, 

epithelial cells secrete cytokines and chemokines, which act as chemoattractants for immune 

cells, including neutrophils from the blood supply and macrophages, dendritic cells and mast 

cells resident within the connective tissue. These cells target non-self molecules (section 

1.1.3.2), removing them from the site of infection. 

 

The favoured host response to bacterial colonisation is the rapid removal of the contaminating 

microbes with a quick inflammatory response, immediate immune cell activation and rapid 

resolution of inflammatory processes, once the threat has subsided. However, in some 

individuals unfavourable host responses are observed, including abscess formation and chronic 

inflammation (Van Dyke, 2011). 

 

The activation of the host cellular immune and inflammatory processes by bacteria and other 

pathogens occurs via pathogen associated molecular patterns (PAMPs), which include bacterial 

lipopolysaccharide (LPS) (section 1.3.3.1), capsule (section 1.3.3.7), flagellin, fimbrillin 

(section 1.3.3.2), peptidoglycan and bacterial DNA (Kawai and Akira, 2005). These conserved 

structures activate pattern recognition receptors (PRRs), including membrane bound Toll-like 

receptors, which are expressed intracellularly and on the surface of host cells including 

epithelial cells, fibroblasts and leukocytes (Janeway Jr, 1992; Kawai and Akira, 2005; Yoshioka 

et al., 2008). Activation of Toll-like receptors results in the secretion of chemokines and 

cytokines including, IL-6, IL-1β TNF-α and CXCL8 (fig 1.7). It has been reported that there is 

an increase in the detection of these cytokines within the gingival crevicular fluid of patients 

exhibiting periodontitis (Teles et al., 2010a; Teles et al., 2010b; Andrukhov et al., 2011), 

suggesting a role for these mediators in disease pathogenesis. These cytokines are known as 

pro-inflammatory cytokines and are important in the activation of secondary inflammatory 

mediators, including platelet activation factor (PAF), prostaglandins and histamine (fig 1.7) 
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(Bascones-Martínez et al., 2009). These secondary factors play important roles in vasodilation 

and increasing vascular permeability resulting in inflammation. The inflammatory response is 

also initiated via activation of complement proteins, which are small proteins within the serum. 

Complement proteins form a cascade, which culminates in the opsonisation of bacteria and 

increased bacterial lysis (Bascones-Martínez et al., 2009) (fig 1.7). The release of chemokines 

such as CXCL8 and CCL2 results in the recruitment of neutrophils and monocytes to the site of 

infection via a chemotactic gradient (Nussbaum and Shapira, 2011) (fig 1.7). This neutrophil 

response is crucial for the maintenance of periodontal health as it has been shown that 

individuals with neutropenia exhibit an increased susceptibility to periodontitis (section 1.2.2.2). 

Neutrophils release serine proteases including elastase and cathepsin G and metalloproteases 8 

and 9 via their activation and/or cell death (Figueredo et al., 2005). An increased number of 

neutrophils and/or hyper-responsive neutrophils at diseased sites (Kantarci et al., 2003; 

Guentsch et al., 2009) may contribute to tissue degradation by these host-derived proteases. 

However, in contrast, an aberrant expression of these proteins from leukocytes may also 

contribute to disease initiation, as it has been reported that patients exhibiting mutations within 

the genes encoding these enzymes may have an increased chance of developing periodontal 

disease (de Haar et al., 2004; de Haar et al., 2006). Impaired neutrophil chemotaxis to the site of 

infection may also play a role in disease pathogenesis. For example it has been reported that in 

some patients exhibiting localised periodontitis there is a dysregulation in neutrophil chemotaxis 

(Mizuno et al., 2011). Furthermore, an impaired chemotactic signal caused by the dysregulation 

of cytokine release due to the action of bacterial proteases (Van Dyke et al., 1982) may also 

result in disease progression due to the failure to remove bacterial load by ‘mis-informed’ 

immune cells, thus resulting in a prolonged/chronic inflammatory response. 

 

Chemokines and cytokines have been implicated in a number of processes contributing to 

disease progression (Preshaw and Taylor, 2011). Periodontal ligament fibroblasts from patients 

with periodontitis have been shown to over-express cytokines, including IL-6, which may result 

in the increased activation of immune cells and so contribute to chronic inflammation (El-

Awady et al., 2010). The location of these fibroblasts, deep within the periodontium, may be 

crucial in the degradation of more essential tooth supporting structures. Furthermore, it has been 

suggested that bone homeostasis is regulated by cytokines and an increase in pro-inflammatory 

cytokines may result in an increase in bone resorption (Cochran, 2008; Darveau, 2010). Bone 

resorption is a characteristic of periodontitis, which is thought to be due to an imbalance in the 

ratio of receptor-activator of nuclear factor-κB ligand (RANKL) and osteoprotegerin (OPG) 

(Boyle et al., 2003; Nagasawa et al., 2007). RANKL is a ligand for RANK, which is present on 

osteoclast precursors. Binding of RANKL to RANK results in the differentiation of these 

osteoclast precursors into macrophage-like cells, which results in bone degradation. OPG is a 

soluble receptor of RANKL preventing the binding of RANKL to RANK, thus inhibiting bone 
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resorption (Darveau, 2010; Belibasakis et al., 2010). The regulation of RANKL and OPG is 

achieved by cytokines, e.g. RANKL is induced by the pro-inflammatory cytokines TNF-α and 

IL-1β, whereas OPG is induced by transforming growth factor (TGF) β (Cochran, 2008; 

Mormann et al., 2008). Due to the presence of pro-inflammatory cytokines, such as TNF-α and 

IL-1β, at inflamed periodontal sites, it is not a surprise that there is also an upregulation of 

RANKL in patients exhibiting disease compared with healthy controls (Belibasakis and 

Bostanci, 2012). Therefore, suggesting a mechanism by which bone resorption occurs in 

patients exhibiting periodontal disease. With regards to the inflammatory role of fibroblasts 

within the oral mucosa, these cells also secrete many pro-inflammatory cytokines including 

CXCL8, IL-6, IL-1β and TNF-α. The activation of these fibroblasts may occur indirectly via 

stimulation by inflammatory cytokines initially secreted by epithelial cells, or directly once the 

epithelial barrier has been breached. 

 

In addition to cells of the innate immune response, cells of the adaptive immune system, e.g. T 

and B lymphocytes have also been implicated as effectors in the pathogenesis of periodontitis 

(Berglundh et al., 2007). Macrophages and dendritic cells secrete cytokines that aid in migration 

and activation of these lymphocytes. Upon activation by antigen presenting cells, T 

lymphocytes proliferate and differentiate into subsets, including T helper (Th) cells, cytotoxic T 

cells and regulatory T cells (Treg). Th cells can be further separated into Th1, which secrete 

interferon gamma (IFN-γ), IL-2, IL-12, TNF-α and TNF-β leading to the eradication of 

intracellular pathogens; Th2 which secrete IL-4, IL-5, IL-6, IL-9 and IL-13 stimulating antibody 

production by B cells and contributing to the eradication of extracellular pathogens (Mosmann 

and Coffman, 1989) and T17 cells which are pro-inflammatory and pro-resorptive. The 

secretion of IL-17 and RANKL by T17 cells has been shown to be upregulated in periodontitis, 

contributing to bone resorption and disease pathogenesis (Dutzan et al., 2009). Treg cells 

secrete IL-10 and TGF-β, which are anti-inflammatory cytokines (Vernal and Garcia-Sanz, 

2008). Alterations in the Th cell population subsets may lead to disease progression. For 

example, a Th1 response has been reported to result in ‘stable’ periodontitis and a Th2 response 

may result in disease progression, possibly due to the activation of B cells (Gemmell et al., 

2007). B cells and their differentiated subtypes, plasma cells, which secrete antibodies, have 

been found to be the most prominent immune cell type within periodontal lesions (Berglundh 

and Donati, 2005). Plasma cells have been implicated in tissue destruction via the secretion of 

cytokines, including IL-6, IL-1β and TNF-α. These cytokines induce the release matrix 

metalloproteases (MMPs), such as MMP-8 and MMP-13 from host cells (Berglundh et al., 

2007). MMP-13 is capable of degrading numerous matrix proteins including fibronectin, 

proteoglycans, laminin and collagen type IV (Wahlgren et al., 2002) and over-expression of 

MMP-8 is important in the degradation of collagen type I, II and III (Danielsen et al., 2011).  
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During normal tissue turnover and wound healing, host MMPs and their inhibitors, i.e., tissue 

inhibitors of MMPs (TIMPs) act in concert. These proteins are mainly secreted by matrix 

derived cells such as fibroblasts, but are also secreted by keratinocytes and leukocytes. MMPs 

degrade unwanted matrix proteins and TIMPs prevent excessive and uncontrolled tissue 

degradation (Amâlinei et al., 2010). However, when there is an imbalance in this relationship, 

unwanted tissue degradation occurs and this may explain the majority of damage observed in 

periodontitis (Offenbacher, 1996). In the gingival crevicular fluid of patients exhibiting 

periodontitis there has been shown to be an increase in the collagen degrading MMPs, such as 

MMP-8, MMP-1, and MMP-13 (Hayakawa et al., 1994; Kinane et al., 2003; Hernandez et al., 

2006). These MMPs are known as collagenases and are capable of degrading collagen, which is 

present in the ECM (Reynolds and Meikle, 1997). In addition, MMP-9 has been found at 

increased concentrations in periodontitis patients compared with healthy controls (Skurska et 

al., 2010). MMP-9 is known as a gelatinase and as such degrades collagen type IV, V, VII, X, 

XI and XIV, gelatine, elastin, proteoglycans and fibronectin (Reynolds and Meikle, 1997), all of 

which are found within the connective tissue of oral mucosa (section 1.1.3). The expression of 

TIMP-1 has also been shown to be decreased in patients with periodontitis (Hayakawa et al., 

1994), suggesting that disruptions in the balance between MMPs and TIMPs may result in the 

increased tissue loss observed in periodontitis. 

 

Recently it has been suggested that the failure of the resolution of inflammatory processes may 

be just as crucial in progression as the maintenance of the inflammatory process in the 

pathogenesis of periodontitis (Van Dyke, 2011). Pro-resolving lipid mediators therefore have 

been investigated for their potential in treating periodontitis and these are beginning to be of 

some use within the clinic (Van Dyke, 2011) (section 1.2.4). 

 

There seems to be a circular relationship between the host and microbial community, in which 

there is continuous host-pathogen cross-talk (Chapple, 2009). Maintenance of periodontal health 

may be initiated and prolonged via low level PRR stimulation (e.g. by commensal bacteria), 

however, it is not known whether it is the increase in microbial load, presence of specific 

microbial species, immune suppression, or other factors that trigger disease initiation and 

maintain progression. A confounding issue is also that the primary importance of each of these 

may differ between subjects, or even sites. 

 

1.2.4 Treatment 

As the clinical features of chronic and aggressive periodontitis are similar, so is the treatment 

regime. Chapple (2009) suggests that the treatment of periodontitis should include four steps: 

mechanical, antimicrobial, tissue regeneration and behavioural and economic. 
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The best strategy for preventing periodontal disease is the maintenance of good oral hygiene. 

Regular tooth-brushing and flossing prevents the build-up of bacterial biofilms which contribute 

to disease. If left to accumulate, gingival inflammation may progress to periodontitis, by which 

the irreversible loss of periodontal tissues surrounding the tooth may eventually result in tooth 

loss. The primary treatment of periodontal disease involves the mechanical removal of disease-

causing plaque and calculus from the teeth and surrounding structures by scaling and root 

planing, soft tissue curettage and, depending on the severity of disease, gingivoplasty, to reduce 

the periodontal pocket and so enable adequate removal of plaque by brushing (von Troil-Linden 

et al., 1995).  

 

However, mechanical therapies do not completely remove all bacteria from the periodontal 

tissues and may lead to the re-colonisation of treated sites, particularly by host cell internalised 

microbes that have escaped initial immune recognition. In the past the use of systemic antibiotic 

therapy was considered acceptable particularly for patients exhibiting active periodontal disease 

or for patients that failed to respond to surgical intervention (Walker et al., 1981; Slots and 

Rams, 1990). However, the problem with systemic antibiotics is that they do not reach the 

periodontal pocket in high enough concentrations (Mombelli and Samaranayake, 2004). 

Therefore, there has been a strategy of targeted application of antibiotics at the site of the 

disease (i.e. the periodontal pocket) to achieve therapeutic doses. The periodontal pocket is able 

to retain antibiotic-soaked devices inserted into it. Commonly used topical antimicrobials 

include metronidazole, chlorhexidine and doxycycline, and also systemically delivered 

antibiotics including amoxycillin and most recently, azithromycin (Wang, 2010; Hirsch et al., 

2011).  

 

One problem with the increasing use of antibiotics has been a rise in the incidence of bacterial 

resistance to once effective drugs. Consequently, alternative antimicrobial agents have been 

sought recently, and in particular there has been renewed interest in plant-derived antimicrobials 

(Takarada et al., 2004; Okamoto et al., 2004), and an increase in the research into other anti-

microbial treatments, including, light therapy (Silva et al., 2012), synthetic peptides (Daep et 

al., 2006), probiotics (Bosch et al., 2011) and prebiotics (Al-Hebshi et al., 2010). 

 

As research continues regarding the specific mechanisms involved in the initiation and 

progression of periodontal disease, the direct targeting of bactericidal therapy against individual 

bacterial species may be of use in treating disease, when the major causative organisms are 

known or suspected. For example, vaccines directed against virulence factors of pathogenic 

organisms and the stimulation of T cells towards a Treg subset may prove more useful in the 

future (Gibson III and Genco, 2001; Choi and Seymour, 2010). 
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As mentioned previously (section 1.2.3.2), the resolution of inflammation may be just as 

important as the initiation of inflammation in the progression of disease, therefore pro-resolving 

lipid mediators of inflammation such as lipoxins, resolvins and protectins have been 

investigated recently as potential treatments for periodontitis (Van Dyke, 2008; Serhan, 2008). 

 

The progression of periodontitis results in the irreversible loss of periodontal tissues, therefore 

the replacement of these hard and soft tissues has been quite extensively researched in recent 

years, as a way of restoring tooth supporting structures. The majority of these studies are 

currently in the initial stages of development, whereas some are already established periodontal 

therapies within the clinical setting (McClain and Schallhorn, 2000; Chen and Jin, 2010). 

Regeneration of individual tissues, including gingival soft tissue, periodontal ligament and 

alveolar bone is being developed and tested (Yang et al., 2006). However, due to the complexity 

of the periodontium, (i.e. including cementum, periodontal ligament, alveolar bone and oral 

mucosa), the regeneration of a complete mucosal structure is not yet possible. More recently 

there has been a move towards the use of stem cells which have the ability to differentiate into 

any cell type and show promise in the future of tissue regeneration (Yen and Sharpe, 2008; 

Grimm et al., 2011). 

 

Finally, behavioural and economic issues play an important role in the initiation and progression 

of periodontitis. Therefore, there may be a psychological basis for behavioural change, requiring 

additional mental health service intervention (Tonetti, 1998). In addition, changing individuals 

perceptions of oral hygiene and motivating them to take control of their own health are 

important strategies in preventing and controlling periodontitis (Chapple, 2009). 

 

1.3 Porphyromonas gingivalis 

Originally classified within the Bacteroides genus, Porphyromonas gingivalis has undergone 

significant reclassification since its initial isolation in 1921, by Oliver & Wherry, in which 

anaerobic Gram-negative rods were shown to produce black-pigmented colonies when grown 

on blood agar (Mayrand and Holt, 1988) (fig 1.10). After numerous changes of nomenclature 

and re-classification, the Bacteroides were taxonomically divided into 3 genera: Bacteroides – 

saccharolytic, non-pigmenting species, Prevotella – moderately saccharolytic, pigmenting and 

non-pigmenting species, and Porphyromonas – asaccharolytic, black-pigmenting species (Shah 

and Collins, 1988; Paster et al., 1994). 
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Figure 1.10 Black-pigmented Porphyromonas gingivalis colonies and Gram-stained P. gingivalis cells. On blood 

agar, P. gingivalis forms black-pigmented colonies (A). Cells appear as cocco-baccili on Gram-staining (B). 

 

Some reports have indicated that P. gingivalis plays a significant role in the initiation and 

progression of periodontitis (Zambon et al., 1981; Rautemaa et al., 2004; Dalwai et al., 2006). 

Supporting evidence comes from the observation that although P. gingivalis has been isolated 

from healthy individuals, the subgingival microflora, in severe forms of periodontitis, contains 

significantly higher numbers of P. gingivalis (Slots and Genco, 1984). Furthermore, Tanner et 

al. (2007) reported an association of P. gingivalis with periodontitis and attachment loss, as 

determined by 16S rDNA probe analysis and, in a hamster periodontitis model when P. 

gingivalis was introduced intra-orally an increase in alveolar bone resorption at the ligature site 

was observed (Hojo et al., 2008). 

 

In addition, P. gingivalis possesses numerous virulence features including fimbriae, proteases 

and LPS that are capable of activating the host immune system resulting in inflammation and 

disease progression (Darveau et al., 2004). Direct proteolytic activity of gingipains and 

collagenases may also contribute to loss of periodontal supporting structures leading to the 

phenotypic characteristics of periodontitis. Furthermore, immunisation with P. gingivalis 

fimbriae has been shown to protect against periodontal destruction in a rat model (Evans et al., 

1992), suggesting that P. gingivalis fimbriae may be responsible for periodontal destruction. 

Similarly this has been shown for immunisation with P. gingivalis gingipains (Genco et al., 

1999). Immune evasion through cellular invasion (Lamont et al., 1995) and cleavage of 

complement component C3 preventing serum opsonisation (Cutler et al., 1993), may be a 

strategy exhibited by P. gingivalis that may be necessary for its prolonged survival within the 

oral cavity where, should there be a change in the local environment, selection for the 

enrichment of P. gingivalis may occur. This may allow this organism, with its specific virulence 

features, to breach host defences, contributing to disease progression. 
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Recently, P. gingivalis has been described as a ‘keystone pathogen’ (Hajishengallis et al., 

2011). Working with murine models, the authors inoculated specific pathogen-free (SPF; 

harbour commensal oral bacteria) and germ-free (GF; raised aseptically) mice with low levels of 

P. gingivalis. It was found that only the SPF mice exhibited bone loss, GF mice did not. In 

addition, it was shown that there was an increase in the amount of the oral microflora and a 

change in its composition. Furthermore, engineered mice lacking the C5a receptor, inoculated 

with P. gingivalis did not develop bone loss (Hajishengallis et al., 2011). These results 

suggested that the presence of commensal bacteria and complement are crucial in P. gingivalis 

induced bone loss, which may be important in periodontitis. Therefore, P. gingivalis may 

transform the commensal microflora into a “dysbiotic state” compromising the host-pathogen 

relationship contributing to disease initiation and progression (Hajishengallis et al., 2012) 

 

1.3.1 Structure 

P. gingivalis is a Gram-negative, assacharolytic, short, anaerobic rod (fig 1.10). Within some 

human hosts, P. gingivalis colonises the periodontal pocket (see section 1.2.1) as part of a 

subgingival microbial biofilm. Particularly within this environment, there is a limited nutrient 

supply, low oxygen tension and a higher than physiological temperature (Mettraux et al., 1984; 

Haffajee et al., 1992). Therefore, P. gingivalis must be physiologically adapted to survive 

within this environment.  

 

As a Gram-negative bacterium, P. gingivalis possesses both an inner (cytoplasmic) and an outer 

membrane separated by a thin layer of peptidoglycan. The inner membrane is a phospholipid 

bilayer and the outer membrane is an asymmetric bilayer consisting of an inner phospholipid 

layer and an outer lipopolysaccharide layer (Yoshimura et al., 2009). Within the outer 

membrane, proteins are situated, designated as outer membrane proteins, including RagA and 

RagB proteins (section 1.3.3.6), fimbriae (section 1.3.3.2) and membrane bound cysteine 

proteinase-adhesin complexes, known as gingipains (section 1.3.3.3). Gingipains are also an 

important soluble enzyme secreted by P. gingivalis which have been shown to be important in a 

number of functions, including nutrient acquisition and immune cell evasion. P. gingivalis also 

possesses a capsule, which has been shown to be an important virulence feature of this organism 

(Singh et al., 2011). To survive within the oral cavity, P. gingivalis must first adhere to oral 

structures, i.e. epithelium, tooth surfaces, or most commonly primary bacterial colonisers. It 

does this via adhesins present on its cell surface, which include fimbriae (section 1.3.3.2) and 

haemagglutinins (section 1.3.3.4). After the initial adherence, P. gingivalis must colonise and 

survive within the subgingival environment. It achieves this via expression of molecules 

important for resisting oxidative stress (Capestany et al., 2008), nutrient acquisition (Smalley et 

al., 2011), immune evasion (Darveau et al., 1998), and it is thought, cellular internalisation 

(Lamont et al., 1995). 
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1.3.2 Growth requirements 

P. gingivalis has a number of specific growth requirements, including nutritional (iron), 

atmospheric (anaerobic) and environmental (including pH and temperature) factors. 

 

P. gingivalis is an asaccharolytic microorganism that obtains energy from the fermentation of 

nitrogenous substrates such as peptides containing glutamic acid and/or aspartic acid (Takahashi 

et al., 2000; Takahashi and Sato, 2001; Takahashi and Sato, 2002; Goulet et al., 2004). These 

substrates can be obtained from dental plaque (Hyatt and Hayes, 1975; Singer and Kleinberg, 

1983), GCF and through bacterial degradation of larger peptides (section 1.3.3.3) (Takahashi, 

2003). The fermentation of these substrates into organic acids, including butyrate, acetate, 

propionate, succinate, and ammonia (Takahashi, 2003) may contribute to maintaining a suitable 

environmental pH (Takahashi, 2003). As P. gingivalis is acid-sensitive and has shown maximal 

growth under the strict conditions of pH 6.5-7 (McDermid et al., 1988; Takahashi and 

Schachtele, 1990), this modulation of environmental pH may aid in the survival of P. gingivalis 

within the oral cavity. In addition, these end-products have been suggested to play a role in the 

pathogenesis of periodontitis via their contribution to tissue damage (Dashper et al., 2011) 

(section 1.2.3.1). 

 

P. gingivalis also requires iron for growth. It obtains this from the environment via haemophore 

and protease systems (Smalley et al., 2011), in the form of haemin (FeII-protoporphyrin IX). P. 

gingivalis stores haemin on its cell surface, giving it a black-pigmentation (Gibbons and 

Macdonald, 1960; Kuboniwa et al., 1998). This ability to store haemin may be a requirement for 

P. gingivalis survival, as haemin levels within the periodontal pocket are variable and P. 

gingivalis requires a constant supply for growth (Genco, 1995). Numerous sources of iron are 

available within human hosts, e.g. haemoglobin, cytochrome c, methaemoglobin, myoglobin 

(Bramanti and Holt, 1991) and non-porphyrin containing compounds, such as transferrin 

(Inoshita et al., 1991), lactoferrin and ferric and ferrous inorganic iron (Bramanti and Holt, 

1991). To promote survival and propagation, P. gingivalis accesses free haemin from these iron 

sources via proteolytic and haemolytic activity (Bramanti and Holt, 1991; Genco et al., 1994).  

 

P. gingivalis has been described as a strict anaerobe (Shah and Collins, 1988) but it can tolerate 

oxygen for a short time (Dashper et al., 2004). Under increased oxygen tension, P. gingivalis 

upregulates a number of genes, including those encoding bacterioferritin co-migratory protein 

(bcp) (Johnson et al., 2011), OxyR (Meuric et al., 2008), genes involved in the Clp system 

(Capestany et al., 2008), rubrerythrin (Mydel et al., 2006) and HtrA (Roy et al., 2006), which 

are important in bacterial tolerance to oxidative stress. P. gingivalis also possesses mechanisms 

for DNA repair following oxidative stress-induced mispairing (Robles et al., 2011). 
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Physiological temperature is typically around 37°C. However, elevated temperatures are 

observed within periodontal pockets exhibiting active periodontal disease, where the 

temperature can increase approximately 2°C above baseline (Haffajee et al., 1992; Niederman 

et al., 1995). At elevated temperatures it has been reported that there is a decrease in the 

expression of P. gingivalis fimbriae (Amano et al., 2001), a reduction in gingipain activity 

(Percival et al., 1999), and an increased resistance to oxidative stress (Vanterpool et al., 2010). 

Furthermore, there is a modification of LPS (section 1.3.3.1) at elevated temperature, increasing 

the proportion of expressed Lipid A towards a mono-phosphorylated, penta-acylated form, 

which acts as a TLR4 agonist (Curtis et al., 2011) (section 1.3.3.1). These factors may be 

important in the virulence and survival of this bacterium under the conditions of elevated 

temperatures observed in periodontitis. 

 

1.3.3 Virulence features 

As mentioned, P. gingivalis has been implicated in the pathogenesis of periodontitis (section 

1.2.3.1). As such, there are a number of features of this bacterium that have been suggested to 

play a role in its virulence, contributing to the severity and/or progression of disease (Hernández 

et al., 2011). Molecules, such as gingipains, haemagluttinins, other outer membrane proteins, 

lipopolysaccharide (LPS) and the bacterial capsule, which have direct contact with host tissues, 

have been implicated in the pathogenesis of disease. These virulence features will be introduced 

here and discussed in relation to their direct role in periodontitis. 

 

1.3.3.1 Lipopolysaccharide 

As a Gram-negative bacterium, P. gingivalis possesses LPS as a major macromolecule on the 

outer membrane. LPS consists of three domains. These are lipid A, which is the most conserved 

between bacterial species (Raetz et al., 2007) and the inner-most domain;  a short 

oligosaccharide core and an O-antigen, which is a long polysaccharide that interacts with the 

external environment (Jain and Darveau, 2010). LPS has been shown to induce a strong innate 

immune response, via binding to receptors present on numerous cell types. Peripheral blood 

leukocytes have a particularly high expression of these receptors, which aid in recognition of 

this Gram-negative bacterium (Zarember and Godowski, 2002). The lipid A portion of LPS acts 

as a PAMP, which in turn activates PRRs. LBP initially binds to LPS, converting oligomeric 

LPS into a monomeric form. This is then recognised by soluble or membrane-bound CD14, 

which binds to the MD-2-TLR4 complex resulting in an intracellular signalling cascade 

culminating in the release of pro-inflammatory chemokines and cytokines, including TNF-α, IL-

1β, IL-6 and CXCL8 (Takeuchi and Akira, 2001). This pro-inflammatory response aids in the 

recruitment of leukocytes to the site of infection and removal of bacteria/bacterial products 

resulting in a return to periodontal homeostasis. However, if this immune response becomes 
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over-active or uncontrolled an increase in damage to host tissues may be observed (Jain and 

Darveau, 2010).  

 

Figure 1.11 The structure of mono-phosphorylated, penta-acylated lipid A from P. gingivalis. Five acyl groups 

can be seen attached to a disaccharide backbone. This lipid A structure acts as a TLR4 agonist (table 1.2) but may 

also be di-phosphorylated via addition of a phosphate group to the 4’-phosphorylation site (*). Tetra-acylated species 

also exist. These are predominantly found at high haemin concentrations (table 1.2) (adapted from Coats et al., 2009). 

 

Lipid A is a β-1,6-linked ᴅ-glucosamine disaccharide which may be phosphorylated at the 1' 

and 4' positions and N- and/or O-acylated (fig 1.11). P. gingivalis lipid A is differentially 

modified in the presence of excess haemin and high temperatures typically observed in sub 

gingival periodontal pockets. Although there is a heterogeneous expression of lipid A, under 

conditions of excess haemin (10µg ml
-1

) the major lipid A species is tetra-acylated, mono-

phosphorylated, whereas at low haemin concentrations (e.g. 1µg ml
-1

) the major lipid A species 

is tetra-acylated, non-phosphorylated (Al-Qutub et al., 2006; Coats et al., 2009). In addition, 

when there is a small temperature increase of 2°C, from 37°C to 39°C, there is a shift from a 

predominantly tetra-acylated lipid A structure, which may be mono- or non-phosphorylated, to 

an increase in the proportions of mono-phosphorylated, penta-acylated lipid A structure (Curtis 

et al., 2011a). It has been shown that these lipid A structures differentially activate TLR4 (table 

1.2). For example, the penta-acylated mono-phosphorylated lipid A has been shown to be a 

TLR4 agonist, which is more susceptible to killing by human β-defensins (h-BDs) (Curtis et al., 

2011). At high haemin concentrations, an increase in the tetra-acylated, mono-phosphorylated 

lipid A acts as a TLR4 antagonist resulting in immune suppression (Coats et al., 2005; Reife et 

al., 2006). At low haemin concentrations, the predominant non-phophorylated lipid A structure, 

a result of the action of 1- and 4’-phosphatases (PG1773 and PG1587, respectively) (Coats et 

al., 2009), does not activate TLR4 resulting in immune evasion. These differential responses of 

P. gingivalis lipid A to environmental cues may contribute to the pathogenesis of disease 

through the suppression and evasion of the host immune response. However, high haemin and 

high temperature would be expected to be present together at diseased periodontal sites, so the 

effects on LPS structure in vivo are unclear. 
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1.3.3.2 Fimbriae 

P. gingivalis possesses fimbriae, which are short hair-like projections that protrude from the 

outer membrane of this organism. These proteinaceous filaments play important roles in host 

adhesion (Hamada et al., 1998; Sojar et al., 2002), cellular invasion of the bacterium (Isogai et 

al., 1988; Njoroge et al., 1997), auto-aggregation (Lin et al., 2006), colonisation of the oral 

cavity (Maeda et al., 2004), and stimulation of the host inflammatory response (Vaahtoniemi et 

al., 1993; Hajishengallis et al., 2009), contributing to the pathogenesis of disease. P. gingivalis 

possesses two fimbrial types, a major (FimA) type and a minor (Mfa1) type.  

 

The major fimbriae (FimA), encoded by the fimA gene, are composed of filaments of a 

repeating 43kDa protein, fimbrillin, and were originally isolated from P. gingivalis strain 381 

(Yoshimura et al., 1984). The fimA gene has been classified into 6 types: I, II, III, IV, V and Ib, 

based on their nucleotide sequences (Nakagawa et al., 2002). Much of the amino-terminal 

sequence of fimbrillin is conserved (Lee et al., 1991), however, molecular cloning and 

sequencing of the gene has shown little homology with other Gram-negative bacteria, 

suggesting the major fimbriae is specific for P. gingivalis (Dickinson et al., 1988). P. gingivalis 

expressing type II fimbriae have been shown to be the most prevalent strains isolated from 

patients exhibiting periodontitis (Amano et al., 1999), have an increased ability to adhere to and 

invade oral epithelial cells (Kato et al., 2007), and have been shown to be more virulent in 

animal models of periodontitis (Nakano et al., 2004). FimA fimbriae bind eukaryotic proteins 

such as collagen type I, laminin and fibronectin (Hamada et al., 1998), and prokaryotic proteins 

such as glyceraldehyde-3-phosphate dehydrogenase (Maeda et al., 2004), playing a role in the 

initial colonisation of the oral cavity.  
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Table 1.2 The differential expression of P. gingivalis lipid A. The mass ions, determined by matrix-assisted laser desorption ionisation-time of flight (MALDI-TOF) mass spectrometry, of various 

lipid A structures isolated from P. gingivalis LPS are shown. The acylation and phosphorylatin of these species are described in the presence of low (1ug ml-1) and high haemin (10ug ml-1) (Al-Qutub et 

al., 2006), and at physiological (37°C) and high (39-41°C) temperatures (Curtis et al., 2011). The TLR4 activation of these species is shown (Reife et al., 2006; Coats et al., 2005) and the prominent 

immune response exhibited in response to host cell challenge. 

m/z Acylation Phosphorylation TLR4 activation Predominant species in 

presence of haemin  

Predominant species at 

37°C and 39-41°C  

Prominent immune response 

1,693 Penta- Mono- Agonist Low (1ug ml
-1

) haemin- not 

predominant 

High temp (39-41°C) More susceptible to killing by β-

defensins 2 and 3 

1,449 Tetra- Mono- Antagonist  High (10ug ml
-1

) hamein-

predominant 

37°C Immune suppression 

1,368 Tetra- Non- No activation Low (1ug ml
-1

) haemin-

predominant 

37°C  Immune evasion 
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The minor fimbriae (Mfa1) are shorter (Hamada et al., 1996), and as such are hidden beneath 

the longer and more abundant FimA fimbriae (Yoshimura et al., 2009). These minor fimbriae 

are important in co-adhesion with early colonisers of the oral cavity such as Streptococcus 

gordonii (Park et al., 2005), therefore establishing colonisation, and auto-aggregation (Lin et 

al., 2006), contributing to the stability of this bacterium within the microbial biofilm. 

 

1.3.3.3 Gingipains 

P. gingivalis possesses cell surface-associated and extracellular cysteine proteinases 

(gingipains), which comprise two arginine (Arg)-specific proteinases (RgpA and RgpB) and one 

lysine (Lys)-specific proteinase (Kgp) (Potempa et al., 1995). Gingipains play a major role in 

degradation of host cell proteins (table 1.3), and may also contribute to host cell adhesion of P. 

gingivalis (Chen and Duncan, 2004) (section 1.3.4.1). Arg-specific gingipains cleave at Arg-X 

dipeptide bonds, and in all cases, Lys-gingipain cleaves at the C-terminal side of lysine residues 

within polypeptide chains (Pike et al., 1994). Arg- and Lys- specific gingipains are encoded by 

three genes: rgpA, rgpB (Arg-specific proteinases) and kgp (Lys-specific proteinase). RgpA and 

Kgp exist as multi-domain proteins consisting of a prepropeptide, a catalytic domain and 

associated adhesin domains (Potempa and Travis, 1996) (fig 1.12). The adhesin/hemagglutinin 

(HA) domains of both gingipains are virtually identical, particularly the HA2 domain, which 

have been shown to be identical (Slakeski et al., 1999).  

 

The different isoforms of RgpA include: i) the non-covalent association of the catalytic domain 

with haemagglutinin domains (HRgpA), ii) soluble/secreted monomeric catalytic domains 

(RgpAcat), or iii) monomeric, highly glycosylated membrane bound catalytic domains (mt-

RgpAcat). RgpB is not associated with an adhesin domain (fig 1.12), therefore exists only as a 

soluble (RgpB) and glycosylated membrane bound (mt-RgpB) catalytic domain. Similar to 

RgpA, Kgp isoforms include, catalytic-adhesin associated domains, soluble monomeric 

catalytic domains and highly glycosylated membrane bound catalytic domains (Curtis et al., 

2001). 

 

Figure 1.12 Catalytic processing and assembly of P. gingivalis gingipains. The major isoforms of RgpA, RgpB 

and Kgp are shown. All gingipains begin as a pro-peptide and catalytic processing removes the ‘pro’ fragment 

leaving catalytic domains (Rgpcat, RgpB, Kgpcat), which may be secreted into the extracellular domain, membrane 

bound domains which are glycosylated (  ), and non-covalently associated haemagglutinin-adhesin (HA) domains 

(HRgpA, Kgp). RgpB does not have associated HA domains. 
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Haemagglutinin domains are designated HA1, HA2, HA3 and HA4 (fig 1.12). Post-translational 

processing of gingipains is achieved primarily by Arg-specific cleavage, but also via Lys-

specific cleavage, resulting in membrane bound and soluble gingipain components (Potempa 

and Travis, 1996). In addition to self-processing, gingipains, particularly Rgps, are important for 

maturation of fimbriae indicated by the failure of a P. gingivalis Rgp knockout mutant to 

develop fimbriae, as analysed by Western blot and electron microscopy (Nakayama et al., 1996; 

Kadowaki et al., 1998). 

 

Gingipains have been shown to be important virulence features of this bacterium due to the 

large necrotising abscesses that are formed following introduction of wild-type P. gingivalis 

into animal models, when compared with gingipain-null mutant strains (Yoneda et al., 2003). 

The functions of gingipains are commonly distinguished via the use of gingipain knockout 

mutants, which have indicated roles of gingipains in adherence, nutrient acquisition, disruption 

of host defences and tissue destruction through the direct proteolytic degradation of ECM 

proteins (Baba et al., 2001) or the indirect activation of host MMPs (Andrian et al., 2007) (table 

1.3).  

 

The adherence of P. gingivalis to other microorganisms (co-aggregation), within the 

polymicrobial biofilm is important in the initial colonisation and survival of this bacterium. In 

addition, P. gingivalis gingipains are involved in adhesion of the organism to eukaryotic 

proteins, including ECM proteins (O'Brien-Simpson et al., 2005) and oral epithelial cells (Chen 

and Duncan, 2004). Adhesion is a prerequisite for the invasion of host cells, which is thought to 

aid in evasion of the host immune response. In particular, the haemagglutinin/adhesin domains 

of gingipain proteins are the most important domains contributing to the adherence of P. 

gingivalis (Chen and Duncan, 2004). Gingipains also work in concert with fimbriae (section 

1.3.3.2) enabling adhesion of P. gingivalis to host cells and molecules of the ECM. An example 

of this is the exposure of cryptic ligand binding sites by gingipains, in particular Rgps, within 

the host, exposing binding sites for subsequent fimbrial interactions (Kontani et al., 1997) (table 

1.3). 

 

For its continued survival, P. gingivalis must obtain nutrients from the environment. Gingipains 

are important proteolytic enzymes that are capable of degrading host polypeptides (Oda et al., 

2009), thereby processing environmental products into a nutritional source that can be 

metabolised. Due to the requirement of this microorganism for haem (section 1.3.2), gingipains 

are also important molecules in haemagglutination, haemoglobin binding, haemolysis and 

haem/iron uptake from haem-containing molecules present within inflamed periodontal pockets 

(Smalley et al., 2008) (table 1.3). Gingipains also manipulate blood coagulation pathways, 
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which may be important in the induction of inflammation (Inomata et al., 2009), and may 

provide a supply of nutrients via red blood cell leakage into the periodontal pocket. 

 

Gingipains are additionally capable of disrupting components of innate and adaptive immunity 

contributing to chaotic signalling events and so playing a role in the pathogenesis of disease. 

The majority of this disruption is due to the degradation of host proteins such as antimicrobial 

peptides (Carlisle et al., 2010), complement proteins (Schenkein, 1988), host cell surface 

receptors (Tada et al., 2002) and cytokines (Banbula et al., 1999). 

 

Gingipains have been shown to cleave protease activated receptors (PARs), e.g. PAR-1 to PAR-

4. These receptors are present on the surfaces of host cells, including epithelial cells, neutrophils 

and platelets. RgpB and HRgpA have been shown to activate PAR-1 and PAR-4 on stably 

transfected myofibroblasts (Lourbakos et al., 2001). Furthermore, activation of PAR-2 on the 

surface of neutrophils and cleavage of PAR-1 on oral epithelial cells, by Rgp-specific 

gingipains, results in receptor activation and release of proinflammatory cytokines including, 

IL1β, CXCL8 and TNF-a (Giacaman et al., 2009). This upregulation of pro-inflammatory 

cytokines may lead to the induction of RANKL (section 1.2.3.2), and in combination with the 

proteolytic degradation of OPG by the Kgp-specific gingipain (Yasuhara et al., 2009), may 

cause a disruption in bone homeostasis resulting in bone resorption. Activation of T cells also 

occurs via PAR-2, which may exacerbate the host immune and inflammatory responses 

(Belibasakis et al., 2010). Usually the tightly regulated activation of platelet PARs is achieved 

by thrombin. The uncontrolled activation of PARs in the presence of gingipains may therefore 

result in disruption of the host blood coagulation pathway (Lourbakos et al., 2001) (table 1.3) 

(fig 1.13). 
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Figure 1.13 Modulation of blood coagulation pathway by P. gingivalis gingipains. The clotting factors involved 

in the blood coagulation pathway, of which prothrombin, thrombomodulin, fibrinogen and factor XI are modulated 

by P. gingivalis gingipains. Block arrows indicate the factors affected by gingipains (see table 1.3). 
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Category Action Major contributing gingipains Reference 

Adherence Co-aggregation RgpB 

HRgpA, Kgp, HagA (HA1) 

Yamada et al., 2005 

Ito et al., 2010 

Adherence to ECM proteins: 

fibronectin, collagen type IV,  

RgpAcat, RgpBcat, Kgp O’Brien-Simpson et al., 2005, McAlister et al., 

2009 

Adherence to host cells 

(epithelial, endothelial cells) 

HRgpA (epithelial) 

HagA (epithelial and endothelial) 

Chen and Duncan, 2004, Pathirana et al., 2007b 

Belanger et al., 2011, Song et al., 2005 

Maturation of fimbriae RgpAcat, RgpBcat Nakayama et al., 1996, Kato et al., 2007 

Exposure of cryptic ligands Rgpcat 

Kgpcat 

Kontani et al., 1997 

Pathirana et al., 2007b 

Nutrient Acquisition Haemagglutination  HRgpA, RgpB, Kgp, HagA Shi et al., 1999, Grenier et al., 2003 

Haemolysis  Kgp (HA2/HA3 domain) 

RgpB 

Kgp, HRgpA 

Smalley et al., 2008, Dashper et al., 2004 

Li et al., 2010 

Simpson et al., 2004 

Haemoglobin binding RgpA, HagA (HA2 domain) 

Kgp 

Nakayama et al., 1998 

Kuboniwa et al., 1998 

Haem/iron uptake Kgp, HRgpA Simpson et al., 2004, Olczak et al., 2001 

Degradation of haem containing  

proteins: haptoglobin, transferrin, 

haemopexin 

Kgp 

Rgp, Kgp 

Sroka et al., 2001 

Brochu et al., 2001 

 

 

Table 1.3 Contribution of P. gingivalis gingipains and haemagglutinin (HagA) to the pathogenesis of periodontitis. The gingipain domains which are the major contributors within each 

category of nutrient acquisition, adherence, tissue damage, disruption of blood coagulation pathways and host defences are shown. Rgp=arginine-specific gingipains A and B (RgpA and 

RgpB), Kgp=lysine-specific gingipain, cat=catalytic domain, H/HA=haemagglutinin domains, HagA=haemagglutinin A, encoded by the hagA gene. 
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Degradation of serum proteins: 

albumin, immunoglobulin 

Rgp, Kgp Oda et al., 2007, 2009 

Disruption of blood 

coagulation system 

Disruption of fibrinogen Kgp McAlister et al., 2009 

Activation of prothrombin HRgpA Imamura et al., 2001 

Activation of factor IX HRgpA Imamura et al., 2001 

Degradation of thrombomodulin Rgps, Kgp Inomata et al., 2009 

Disruption of host 

defences 

Degradation of antimicrobial 

peptides 

Kgp, RgpA, RgpB Carlisle et al., 2010 

Gutner et al., 2009 

Degradation of complement 

proteins: C3, C4, C5 

HRgpA, RgpB, Kgp Schenkein, 1988, Grenier et al., 1992, 2003, 

Popadiak et al., 2007 

Binding complement protein C4b HRgpA Potempa et al., 2008 

Cleavage of host cell surface 

receptors: 

CD14 (monocytes, fibroblasts), 

CD4 and CD8 (T cells), ICAM-1 

(epithelial cells) 

HRgpA (CD14 fibroblasts) 

Rgp (CD14 macrophage-like cells) 

RgpA, RgpB, Kgp (CD4, CD8 T cells) 

Rgps (ICAM-1, epithelial cells) 

Tada et al., 2002 

Duncan et al., 2004 

Kitamura et al., 2002 

Tada et al., 2003 

 

Cytokine degradation: IL1β, IL-6, 

CXCL8, TNF-α (see section 

1.3.4.4) 

Rgp, Kgp 

HRgpA 

Banbula et al., 1999 

Uehara et al., 2008 

Mikolajczyk-Pawlinska et al., 1998 

Calkins et al., 1998 

Stathopoulou et al., 2009b 
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Cleavage of protease activated 

receptors: PAR-1 (epithelial cells, 

myofibroblasts), PAR-2 

(epithelial cells, fibroblasts, 

neutrophils, osteoblasts, T cells) 

RgpB, HRgpA (myofibroblasts) 

Rgp (PAR-1), Kgp (PAR-2) (epithelial 

cells) 

HRgpA, Kgp (epithelial cells) 

Rgp (osteoblasts) 

Rgp (neutrophils) 

Rgp (Jurkat T cells) 

Lourbakos et al., 2001 

Giacaman et al., 2009 

 

Uehara et al., 2008 

Abraham et al., 2000 

Lourbakos et al., 1998 

Belibasakis et al., 2010) 

Tissue damage Degradation of ECM proteins: 

fibrinogen, fibronectin, collagen 

type IV 

RgpAcat Baba et al., 2001 

Activation of host MMPs (MMP-

8, MMP-9, MMP-2) 

Rgps Andrian et al., 2007, Grayson et al., 2003 

Degradation of cellular adhesion 

molecules: ICAM-1, E-cadherin 

Rgpcat 

Kgp 

Baba et al., 2001 

Katz et al., 2002 

Induction of host cell apoptosis Rgp, Kgp Grenier et al., 2003 

Stathopoulou et al., 2009a 

Urnowey et al., 2006 
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1.3.3.4 Other haemagglutinins (HagA and HagB) 

P. gingivalis possesses additional genes, aside from gingipain genes, which encode 

haemagglutinin domains. There are five haemagglutinin genes: hagA, hagB, hagC, hagD and 

hagE, of which hagA shares 90% homology with the adhesin domains of rgpA and kgp (Han et 

al., 1996). The major haemagglutinins are HagA and HagB (Lépine et al., 1995) and are 

important in adhesion to and invasion of oral epithelial cells and endothelial cells by P. 

gingivalis (Song et al., 2005; Belanger et al., 2011). HagA is also important in co-aggregation 

of P. gingivalis with other bacterial species within the plaque biofilm (Ito et al., 2010) and haem 

acquisition via haemagglutination (Grenier et al., 2003) (table 1.3). 

 

1.3.3.5 Other proteases 

P. gingivalis also possesses other proteolytic enzymes, which may play a role in the virulence of 

this organism. These include SerB-phosphatase (Bainbridge et al., 2010), periodontain (Nelson 

et al., 2003), collagenase (PrtC; Kato et al., 1992, Wittstock et al., 2000), endothelin-like 

converting enzyme (PepO; Awano et al., 1999), dipeptidyl and tripeptidyl aminopeptidases 

(Oda et al., 2009), sialidase and sialoglycoproteases (Aruni et al., 2011). 

 

Although of all the proteases encoded by P. gingivalis, gingipains are the most predominant, 

these other proteases may also contribute to the pathogenesis of periodontitis via nutrient 

acquisition, (dipeptidyl and tripeptidyl aminopeptidases), immune cell evasion (sialidases and 

sialoglycoproteases), disruption of blood coagulation (endothelin-like converting enzyme), 

ECM degradation (collagenase), immune modulation (SerB phosphatase) and modulation of 

host proteases (periodontain). 

 

1.3.3.6 Other outer membrane proteins 

The surface of P. gingivalis is the structure which comes directly into contact with host tissue 

and hence outer membrane proteins are important in bacterial virulence. The most abundant 

outer membrane proteins are OmpA-like proteins and porins (Iwami et al., 2007; Yoshimura et 

al., 2009). P. gingivalis possesses an OmpA-like protein, which shares homology with the E-

coli OmpA protein (Nagano et al., 2005). This protein plays a role in membrane stability, host 

cell adhesion, invasion, biofilm formation and immune stimulation (Iwami et al., 2007; Smith et 

al., 2007). Additionally, OmpA proteins form a pore through which solutes can pass 

contributing to metabolic processes of this organism (Sugawara and Nikaido, 1992). 

 

RagA and RagB are also important outer membrane proteins that play a role in the virulence of 

this bacterium. RagA shows homology to Ton-B dependent outer membrane receptors. These 

receptors traverse the periplasmic space and are important in the recognition and active 

transport of extracellular ligands across the outer membrane (Postle and Kadner, 2003). RagB is 
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a lipoprotein (Curtis et al., 1999) and together with RagA serves in the uptake of extracellular 

macromolecules such as glycoproteins (Yoshimura et al., 2009), acting as a nutrient acquisition 

system important in the survival of this bacterium at the site of infection. 

 

Other nutrient acquisition outer membrane proteins include haem uptake systems performed by 

proteins such as HmuR (Olczak et al., 2008), IhtB (Dashper et al., 2000) and Tlr (Aduse-Opoku 

et al., 1997) and haemin-binding protein 35 (Shoji et al., 2011). 

 

1.3.3.7 Capsule 

Some strains of P. gingivalis possess a polysaccharide capsule. This surrounds the outer 

membrane of the bacterium, acting as a shield against host immune attack. Evading the host 

immune response may be an important mechanism in the survival of P. gingivalis at sites of 

infection, possibly contributing to prolonged inflammation. Indeed, the phagocytosis of 

encapsulated strains was significantly lower than non-encapsulated strains (Singh et al., 2011). 

In addition, it has been reported that encapsulated strains of P. gingivalis are more resistant to 

host-derived defensins (Igboin et al., 2011). This capsule has also been shown to be an 

important virulence determinant. This was confirmed using the murine abscess model (section 

1.4.3), in which encapsulated strains were shown to induce a greater abscess than non-

encapsulated strains, suggesting a role of the capsule in disease progression. Furthermore, 

different serotypes of the P. gingivalis capsule can induce differential activation of the host 

immune response. For example, serotypes K1 and K2 induced a higher cytokine response 

following stimulation of dendritic cells compared with serotypes K3-6 (Vernal et al., 2009), 

which may influence the host inflammatory response. Taken together, the capsule of P. 

gingivalis may be an important feature of this organism contributing to disease initiation and 

progression. 

 

1.3.3.8 Outer membrane vesicles 

P. gingivalis releases outer membrane vesicles into the extracellular environment. These may 

play a role in virulence because as components of these vesicles include LPS, gingipains (mt-

RgpA, HRgpA and Kgp) and other outer membrane proteins (Grenier and Mayrand, 1987). 

 

1.3.4 Interaction of P. gingivalis with host cells  

1.3.4.1 Adhesion 

Adherence is an essential first step in the colonisation of the oral cavity by P. gingivalis. 

Adhesion of microorganisms to oral structures and/or other microorganisms prevents the ever 

present risk of being ‘washed away’ by GCF (Gibbons, 1984). Adherence to oral structures is 

facilitated by numerous bacterial cell surface-associated components, including fimbriae, 

proteinases, haemagglutinins and LPS (Cutler et al., 1995; Njoroge et al., 1997). The major 



Chapter 1 Introduction 

41 

 

feature of P. gingivalis which is important in adhesion to host cells is thought to be fimbriae. 

Colonisation of subgingival areas requires suitable conditions for growth and proliferation, such 

as, epithelial attachment sites, decreased oxygen tension required for growth of this anaerobic 

microbe and availability of haemin and other nutrients (Nelson et al., 2003). 

 

In addition to adhering to early bacterial oral colonisers, P. gingivalis has the ability to adhere to 

and invade a variety of eukaryotic cells in vivo and in vitro, including various oral cell lines 

(Duncan et al., 1993; Madianos et al., 1996; Njoroge et al., 1997), fibroblasts (Pathirana et al., 

2007b), endothelial cells (Dorn et al., 2000), and oral epithelial cells (Lamont et al., 1995; 

Rautemaa et al., 2004). Invasion of host cells could provide protection against the host immune 

response and other local defences. Epithelial cells are one of the initial host cells that are 

exposed to P. gingivalis, therefore P. gingivalis association with epithelial cells will be focussed 

upon. 

 

There are a number of mechanisms exhibited by the host in which epithelial colonisation by 

bacterial cells may be hindered. Epithelial cell desquamation results in the reduced ability of 

bacteria to replicate to a high number on gingival and other oral cell surfaces (Gibbons and 

Houte, 1975). However, exfoliation of epithelial cells may also explain how P. gingivalis is 

transferred to other sites within the oral cavity (Rudney et al., 2001). In contrast, teeth do not 

desquamate, therefore colonisation of these structures, by early Gram-positive colonisers, may 

provide an anchor for the colonisation of later Gram-negative colonisers, providing stability and 

hence a greater opportunity for the invasion of oral epithelial cells. Whilst within an epithelial 

cell the bacterium is protected against higher oxygen tensions in the surrounding oral cavity and 

the detrimental effects of host serum components. Components of saliva such as histatins, 

cystatins, lactoferrin, mucin glycoprotein MG2 and fibronectin have the ability to inhibit P. 

gingivalis adherence to supragingival mucosa and viability (Lamont and Jenkinson, 2000). 

 

Adhesion of P. gingivalis to epithelial cells and subsequent cellular internalisation is not yet 

fully understood. Adhesion is thought to be via the association of fimbriae with epithelial cells, 

which is a two-way process, i.e., to adhere, bacterial fimbriae must bind to some receptor(s) 

located on the epithelial cell surface. It has been suggested that this is the fibronectin-binding 

integrin, α5β1 (Nakagawa et al., 2002). In the presence of antibodies directed against the α5 

integrin subunit, Nakagawa et al. (2002) reported inhibition of adherence and invasion of the 

human oral epithelial cell line, HEp-2, by type II recombinant FimA coupled to microspheres. 

Therefore, suggesting an importance of this integrin in adhesion of P. gingivalis to oral 

epithelial cells. In addition, Yilmaz et al. (2002) showed that the binding of P. gingivalis 

(ATCC 33277) to gingival epithelial cells in the presence of β1 integrin antibodies was inhibited 

in a dose-dependent manner. Although this suggests that there is a role for integrins in the 
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adherence of P. gingivalis to epithelial cells, this mechanism has not yet been fully elucidated 

and does not rule out the possible involvement of other mechanisms. 

 

This initial adherence of P. gingivalis to oral surfaces is a pre-requisite to, but the major rate-

limiting step in, host cell internalisation (Winkler et al., 1987). In response to adhesion of P. 

gingivalis to oral epithelial cells, numerous host cell changes occur that may aid bacterial 

internalisation. These include: intracellular Ca
2+

 fluxes, cytoskeleton rearrangement, stimulation 

of intracellular signalling pathways such as mitogen-activated protein kinases (MAPK) and 

other protein phosphorylation (Andrian et al., 2006). 

 

1.3.4.2 Invasion 

P. gingivalis invasion of oral epithelial cells correlates with the severity of inflammation of 

gingival tissue (O'Brien-Simpson et al., 2000), suggesting that P. gingivalis invasion is 

important in the pathogenesis of disease. 

 

Scanning electron micrographs show that P. gingivalis invades primary cultures of gingival 

epithelial cells (Lamont et al., 1995; Belton et al., 1999) and epithelial cell lines (Duncan et al., 

1993; Madianos et al., 1996). Invasion is a rapid process, shown by the internalisation of 

fluorescently labelled P. gingivalis within primary cultures of gingival epithelial cells. P. 

gingivalis cells located within the perinuclear region of the epithelial cells, after approximately 

10-15 minutes (Belton et al., 1999). P. gingivalis invasion of epithelial cells aids in P. gingivalis 

viability and it has been reported that P. gingivalis has the ability to replicate within epithelial 

cells (Lamont et al., 1995; Madianos et al., 1996). In addition, it has been reported that P. 

gingivalis can spread inter- and intra-cellularly (Hintermann et al., 2002; Yilmaz et al., 2006). 

 

The invasion of non-phagocytic host cells (such as epithelial cells) by bacteria has been reported 

throughout the literature, particularly for gastrointestinal bacteria. Two main mechanisms of 

cellular invasion have been described; these are the trigger and zipper mechanisms. The trigger 

mechanism involves the delivery of bacterial virulence factors, upon host cell contact, delivered 

into the host cell via bacterial type III secretion systems. This results in the direct activation of 

cytoskeletal proteins that can cause ruffling of the host cell membrane (fig 1.14) (Ofek et al., 

2003) and lead to bacterial entry. Salmonella typhimurium and Shigella flexneri utilise this 

mechanism for cellular invasion. The zipper mechanism is initiated via bacterial ligands binding 

to host-cell surface receptors. This results in receptor clustering and the formation of a 

‘phagocytic cup’. Invasion occurs following intracellular signalling and actin remodelling 

resulting in the engulfment of bacteria (Cossart and Sansonetti, 2004). Listeria monocytogenes 

and Yersinia pseudotuberculosis are thought to invade host cells via this mechanism.  
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P. gingivalis does not possess a type III secretion system (Lamont and Yilmaz, 2002), hence it 

is thought that the invasion of P. gingivalis into host cells is unlikely to occur via the trigger 

mechanism. As mentioned, the epithelial adhesion and invasion of P. gingivalis is thought to be 

via the α5β1 integrin and bacterial fimbriae (section 1.3.3.2). Invasion of primary gingival 

epithelial cells by P. gingivalis can be inhibited in the presence of cytochalasin D, which 

inhibits actin polymerisation, and nocodazole, which depolymerises microtubules, suggesting a 

significant role for cytoskeleton rearrangement in host cell internalisation (Lamont et al., 1995). 

Furthermore, following cellular invasion by P. gingivalis, Yilmaz et al., (2003) showed that the 

tyrosine kinase focal adhesion kinase (FAK), and its adapter protein paxillin, which are 

important for cystoskeletal remodelling, migrated from the cytosol and nuclear region to the cell 

periphery. This redistribution was reversed after 24 hour incubation, where paxillin and FAK 

co-localized with P. gingivalis in the perinuclear region (Yilmaz et al., 2003), thus further 

implicating cytoskeletal rearrangement in the cellular internalisation of P. gingivalis. The 

epithelial receptor-mediated entry of P. gingivalis and the rearrangement of the filamentous 

actin and microtubule networks, suggests a ‘zipping’ mechanism of invasion. However, there 

may be more than one mechanism of invasion operating due to the variety of virulence features 

expressed and different P. gingivalis strains may preferentially utilise a particular mechanism. 

These mechanisms may include clathrin-mediated endocytosis (Boisvert and Duncan, 2008) 

(section 1.3.4.2.1) or lipid rafts (Tsuda et al., 2008) (section 1.3.4.2.2), both of which have been 

implicated in P. gingivalis invasion. 

 

Figure 1.14 Mechanisms of host cell internalisation by invasive bacteria. The zipper mechanism involves the 

binding of bacteria to host cell receptors and formation of a phagocytic cup resulting in bacterial invasion. The trigger 

mechanism involves major cytoskeletal rearrangements, producing membrane ruffling, upon an influx of virulence 

factors secreted by bacteria via their type III secretion system, ultimately resulting in cellular internalisation. 

(Adapted from Cossart and Sansonetti, 2004). 

 

The modulation of intracellular signalling pathways by P. gingivalis may aid in the cellular 

internalisation of this bacterium, via cytoskeletal rearrangements, and may contribute to the 

pathogenesis of periodontal disease by inducing the secretion of pro-inflammatory cytokines 

(section 1.3.4.4). The association of mitogen-activated protein kinase (MAPK) pathways with 

P. gingivalis internalisation of oral epithelial cells has been reported (Watanabe et al., 2001). 

MAPK pathways involve numerous serine-threonine protein kinases which are sequentially 
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phosphorylated and dephosphorylated in response to external stimuli, ultimately regulating gene 

expression through activation of transcription factors, including NFκB. The MAPK superfamily 

includes c-Jun N-terminal (JNK), extracellular signal regulated kinase (ERK1/2), MEK 

(MAPK/ERK kinase), which is an upstream regulator of ERK1/2, and p38 MAPK (Robinson 

and Cobb, 1997) (fig 1.15). In response to P. gingivalis, the down-regulation of ERK1/2 activity 

after 15 minute infection has been shown, correlating with the previously observed time period 

of host cell invasion (Belton et al., 1999). However, P. gingivalis also activated JNK but had no 

effect on p38 or NFκB, and therefore shows selectivity towards activation of one MAP kinase 

pathway over another (Watanabe et al., 2001). Stimulation of oral epithelial cells with protein 

kinase inhibitor, staurosporine and tyrosine-specific protein kinase inhibitor, genistein, 

significantly reduced the ability of P. gingivalis to invade, suggesting an importance of signal 

transduction mechanisms, and more specifically JNK, in epithelial cell internalisation of P. 

gingivalis (Sandros et al., 1996; Watanabe et al., 2001). However, the application of toxin B 

from Clostridium difficile, a specific inhibitor of Rho family GTPases (Rho, Rac, and Cdc42), 

which are known to regulate signalling pathways culminating in cytoskeletal rearrangements 

(fig 1.15), did not inhibit phosphorylation of JNK by P. gingivalis, or retard invasion (Watanabe 

et al., 2001). A specific inhibitor of JNK would provide conclusive evidence regarding the 

involvement of this protein kinase in host cell internalisation. The association of JNK with 

cytoskeletal re-organisation further implicates JNK in P. gingivalis invasion. 

 

The role of phosphoinositide 3-kinase (PI3K) in bacterial-host cell internalisation is not fully 

understood, but it may correlate with rearrangements of the actin cytoskeleton through cellular 

signalling pathways resulting in the closure of the phagocytic cup (Cossart and Sansonetti, 

2004). The internalisation of fluorescent beads, coated with P. gingivalis membrane vesicles, 

was shown to decrease in the presence of PI3K inhibitors (wortmannin and LY294002), 

suggesting that there may be a role of PI3K signalling in the cellular internalisation of P. 

gingivalis. However, more work is required to elucidate the role, if any, of PI3K in the cellular 

internalisation of P. gingivalis.  

 

Calcium ion fluxes have been reported to occur following contact of P. gingivalis with epithelial 

cells (Izutsu et al., 1996; Belton et al., 2004). These transient increases in calcium ion 

concentrations may contribute to intracellular signalling pathways resulting in cytoskeletal 

rearrangement (Andrian et al., 2006). 
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Figure 1.15 Intracellular signalling pathways. Simplified signalling pathways culminating in the regulation of 

apoptosis and gene expression, which may influence cytokine release, apoptosis, cytoskeletal remodelling and 

cellular differentiation. Abbreviations: Janus Kinase (JAK), Signal Transducer and Activator of Transcription 

(STAT), apoptosis regulators (Bcl, Bax, Bak, Akt, Bad), phosphoinositide 3-kinase (PI3K), guanosine-5'-triphosphate 

(GTP), mitogen-activated protein kinase (MEK), c-Jun N-terminal kinase (JNK), phospholipase C (PLC), protein 

kinase C (PKC), nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB), family of GTP-ases 

(Rac/Cdc42, Ras). Adapted from Ruwhof et al. (2000), Robinson and Cobb (1997).  

 

1.3.4.2.1 Clathrin-mediated endocytosis 

Bacterial internalisation may occur via vesicular trafficking. This involves a dynamic system 

where vesicles bind at the cell membrane resulting in the carriage of extracellular molecules into 

the intracellular environment. Clathrin-coated vesicles have been implicated in the epithelial 

internalisation of P. gingivalis (Sandros et al., 1993; Boisvert and Duncan, 2008). Clathrin-

coated vesicles consist of the protein, clathrin, which forms a ‘basket-like’ structure, stabilised 

by proteins called adaptins. Dynamin, which is a GTP-binding protein, forms a ring around the 

neck of the vesicle resulting in scission of a ligand-bound vesicle, in a GTPase dependent 

manner (Lamaze et al., 2001), which may then be transported intracellularly with help from the 

actin cytoskeleton (Henderson et al., 1999). These vesicles may then be delivered to early or 

late endosomes. Early endosomes are involved in ligand dissociation and vesicular recycling, 

whereas late endosomes are involved in the delivery of vesicles to lysosomes, where they are 

hydrolysed and breakdown products delivered into the cell cytoplasm for recycling (Henderson 

et al., 1999). It has been proposed that the trafficking of P. gingivalis within early endosomes 

may present a mechanism of bacterial exit from the cell via endosomal recycling to the cell 

membrane (Takeuchi et al., 2011). P. gingivalis cells have been observed free within the 

cytoplasm and also surrounded by endosomal membranes (Sandros et al., 1994; Takeuchi et al., 

2011). It has been suggested that shortly after invasion, P. gingivalis traffics to autophagosomes 

(Dorn et al., 2001), which are multi-membranous vacuoles important in the recycling of cellular 



Chapter 1 Introduction 

46 

 

organelles. Autophagosomes mature into autolysosomes where degradation of the vacuole load 

occurs (Dunn, 1994). Dorn et al. (2001) showed the localisation of P. gingivalis within 

autophagosomes, which lack hydrolytic enzymes. The authors proposed that the bacteria are 

able to replicate within this vacuole, until released to cause re-infection (Dorn et al., 2001). In 

addition, this vacuole may provide a niche in which this organism can increase the 

concentration of free amino acids required for survival (Sinai and Joiner, 1997). 

 

The study reported by Boisvert and Duncan (2008), described evidence for clathrin in the 

association of fluorescent beads coated with the adhesin domain of Arg-gingipain (HA1). By 

fluorescence microscopy they showed that these fluorescent beads were surrounded by clusters 

of clathrin. Furthermore, gene silencing of clathrin resulted in the decreased association of HA1 

with epithelial cells (Boisvert and Duncan, 2008). However, conflicting data within the 

literature has indicated that P. gingivalis does not require clathrin for internalisation. For 

example, Tsuda et al. (2008) reported that an Eps15 mutant lacking EH-domains, of which 

clathrin is composed, did not inhibit the internalisation of fluorescent beads coated with P. 

gingivalis membrane vesicles (Tsuda et al., 2008). Therefore, these authors suggested a 

different mechanism of P. gingivalis invasion, i.e. via lipid rafts. 

 

1.3.4.2.2 Internalisation via lipid rafts 

Membrane subdomains rich in cholesterol, sphingolipids and glycosylphosphatidylinositol-

anchored proteins (GPI-APs), known as lipid rafts are thought to be utilised by bacteria to 

adhere to and invade host cells (Lafont and Van Der Goot, 2005). Tsuda et al. (2008) used 

fluorescence microscopy to show that the internalisation of fluorescent beads coated with 

bacterial membrane vesicles, which have surface components of P. gingivalis, was inhibited 

following treatment of epithelial cells with cholesterol-binding agents. Another type of lipid raft 

is thought to be rich in the protein caveolin, with which the ganglioside GM1 clusters. Caveolae 

form invaginations in the cell membrane and are thought to be involved in cholesterol 

homeostasis, endocytosis and cell signalling (Simons and Ikonen, 1997; Parton and Richards, 

2003). It has been shown that the fluorescent beads coated with P. gingivalis vesicles were 

shown to co-localise with GM1 and caveolin-1, further suggesting a role of lipid rafts in the host 

cell association of P. gingivalis (Tsuda et al., 2008). In addition, compounds used to disrupt 

lipid raft composition, such as filipin, nystatin and methyl-β-cyclodextrin (MβCD) were shown 

to decrease fluorescent bead internalisation as observed by microscopy (Tsuda et al., 2008). 

However, there is controversy regarding the existence of lipid rafts (Munro, 2003), and more 

research is required into the characterisation of these cholesterol and sphingolipid enriched 

microdomains before an understanding of the association of lipid rafts with bacterial 

pathogenesis is complete (Lafont and Van Der Goot, 2005).  
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Nevertheless, the mechanism of invasion of oral epithelial cells by P. gingivalis is not yet fully 

understood and as such requires more research.  

 

1.3.4.3 Intracellular lifestyle of P. gingivalis 

Intracellular P. gingivalis cells have been shown to up-regulate and down-regulate specific 

subsets of genes/proteins, compared with those bacteria that remain extracellular (Xia et al., 

2007; Suwannakul et al., 2010). Those factors that are down-regulated upon internalisation 

include FimA, gingipains (RgpA, RgpB, Kgp), and haemin acquisition proteins (HmuR, FetB, 

IhtB) (Xia et al., 2007). The decreased expression of FimA is thought to aid in evasion of 

intracellular microbial recognition systems (Kufer et al., 2006). Modulation of gingipains 

following internalisation is suggested to be important for the continued survival of the host cell. 

As the cytoplasm is rich in nutrients, it is thought that the expression of gingipains is not as 

important as within the extracellular environment, where nutrient acquisition within nutrient 

poor environments is key to survival (Xia et al., 2007). This has also been suggested as the 

reason for the decreased expression of haemin acquisition proteins, and an increase in the 

expression of haemin storage proteins by intracellular P. gingivalis, i.e. due to the high 

intracellular haemin concentrations (Xia et al., 2007).  

 

P. gingivalis is equipped with a cohort of stress-protector proteins including alkyl 

hydroxyperoxide reductase subunit C (Johnson et al., 2004), rubrerythrin (Mydel et al., 2006), 

superoxide dismutase (Ohara et al., 2006) and transcriptional activator oxyR (Diaz et al., 2006). 

As an anaerobic organism, P. gingivalis is unable to survive for prolonged periods in 

environments of increased oxygen tension (Madianos et al., 1996), for example during initial 

colonisation of the oral cavity and colonisation of additional sites, where there is a high 

probability of exposure to air, or increased oxidative stress as the result of host defences, e.g. 

neutrophils (Mydel et al., 2006; Diaz et al., 2006). However, the above ‘stress-protection’ 

systems appear to allow the organism sufficient time to become established in an anaerobic 

environment for successful colonisation. These systems are especially important in intracellular 

survival, as it has been shown that intracellular P. gingivalis show an enhanced expression of 

oxidative stress proteins, such as alkyl reductases, thiol peroxidise, rubrerethrin and members of 

the Clp family (Xia et al., 2007). 

 

In animal models of periodontitis, the formation of an abscess following infection with P. 

gingivalis is a sign of the pathogenic potential of this organism. As such, it could be assumed 

that this organism, in humans, may have the same effect, i.e. cause cell death. It has been 

reported in the literature that P. gingivalis induces apoptosis of oral epithelial cells (Sheets et 

al., 2006; O'Brien-Simpson et al., 2009). This induction of apoptosis may occur via up-

regulation of pro-apoptotic molecules, including Bax and caspase-9, which may be gingipain-
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dependent (Stathopoulou et al., 2009a). However, there is conflicting evidence in the literature. 

Some studies have suggested that intracellular P. gingivalis may protect the host from apoptotic 

cell death, possibly through the inactivation of pro-apoptotic Bad and inhibition of caspase-9 

activation (Yao et al., 2010), and/or through manipulation of the JAK/STAT signalling pathway 

(Mao et al., 2007) (fig 1.15). This suggests that P. gingivalis may be adapted to live in concert 

with the host and as such its definition as a ‘pathogenic’ organism may require revision (Xia et 

al., 2007). Whether P. gingivalis acts to prevent or induce apoptosis may be due to the 

experimental conditions of each study, such as the cells used, strains of P. gingivalis and length 

of incubation times. For example, over time, intracellular P. gingivalis has been shown to down-

regulate gingipains (Xia et al., 2007), which may contribute to prolonged cellular survival 

(Boisvert and Duncan, 2010), via preventing the activation of pro-apoptotic molecules 

(Stathopoulou et al., 2009a). 

 

1.3.4.4 Host response to P. gingivalis 

Epithelial cells secrete chemokines, including macrophage inflammatory protein-1α (MIP-

1α/CCL3), monocyte chemoattractant protein-1 (MCP-1/CCL2) and interleukin 8 (IL-

8/CXCL8), which aid leukocyte migration, regulating inflammatory responses (Huang et al., 

2001). In addition, the increased expression of pro-inflammatory cytokines, including the 

interleukins IL-1β, IL-6 and tumour necrosis factor-α (TNF-α) has been shown in patients 

exhibiting periodontitis, compared with healthy controls (Andrukhov et al., 2011). In relation to 

oral epithelial cell invasion by P. gingivalis it has been suggested that the expression of pro-

inflammatory cytokines, including TNF-α, IL-1β and IL-6, is positively correlated with the 

adhesive/invasive ability of P. gingivalis (Sandros et al., 2000), suggesting an importance of 

cellular invasion in the pathogenesis of disease. 

  

Up-regulation of CXCL8 and ICAM-1 in gingival epithelial cells in response to challenge by 

oral pathogens, such as Aggregatibacter actinomycetemcomitans and Fusobacterium nucleatum, 

has been reported to be the result of the host immune response culminating in the migration of 

leukocytes to the site of inflammation (Huang et al., 1998; Han et al., 2000). However, 

challenge by P. gingivalis has been shown to cause a down-regulation in the expression of 

CXCL8 and ICAM-1 (Madianos et al., 1997; Huang et al., 1998; Darveau et al., 1998). 

Interestingly, the transcription of CXCL8 and ICAM-1 genes was increased in the presence of 

all three bacteria, including P. gingivalis, suggesting that translational and/or post-translational 

regulatory mechanisms are in place resulting in the decrease in secretion of CXCL8 and ICAM-

1 by gingival epithelial cells in the presence of P. gingivalis (Huang et al., 2001) (table 1.4). 

This down-regulation of protein secretion by P. gingivalis has been termed local chemokine 

paralysis (Darveau et al., 1998). However, conflicting data remains in the literature as to the 

specific cause of this down-regulation, and, whether there is a decrease in cytokine expression 
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or not. Table 1.4 highlights specific studies using live, whole cell P. gingivalis incubated with 

oral epithelial cells, and indicates the wide variety, and often conflicting sets, of data reported in 

the literature regarding the up-regulation/down-regulation of pro-inflammatory cytokines. These 

differences may be due to the differences in experimental profile between studies, the epithelial 

cells and the strains of P. gingivalis used. Therefore, further work is required in this area to 

elucidate the specific mechanism and ramifications of the modulation of cytokine/chemokine 

protein expression by epithelial cells in the presence of live, whole cell P. gingivalis.  

 

The P. gingivalis gingipain cysteine proteinases have been shown to degrade purified CXCL8 

(Mikolajczyk-Pawlinska et al., 1998) and Huang et al. (2001) suggested that this may be the 

mechanism of decreased CXCL8 secretion, with the arginine-specific gingipain playing the 

greatest role (Giacaman et al., 2009; Stathopoulou et al., 2009b). However, it has been shown 

that P. gingivalis does not activate NF-κB due to down-regulation of ERK1/2 (Watanabe et al., 

2001), therefore this could explain the decreased secretion of CXCL8 in the presence of P. 

gingivalis. In addition, a P. gingivalis SerB knockout mutant has been shown to inhibit the 

suppression of CXCL8 secretion by epithelial cells (Hasegawa et al., 2008), suggesting that the 

presence of SerB expressed by wild-type P. gingivalis acts to suppress CXCL8 release. In 

contrast, P. gingivalis has been shown to inhibit the production of IL-6 (Moffatt and Lamont, 

2011). P. gingivalis has been shown to induce microRNA-203, which binds to suppressor of 

cytokine signalling 3 (SOCS3) in gingival epithelial cells. This protein targets STAT3, 

decreasing its activation and inhibiting IL-6 release. However, in the presence of P. gingivalis, 

the induction of microRNA-203 inhibits the action of SOCS3, resulting in an increase in the 

release of IL-6, which may contribute to bone resorption and further pro-inflammatory effects 

(Moffatt and Lamont, 2011). Despite these in depth studies, the precise mechanism of cytokine 

induction/down-regulation needs to be further investigated. 

 

The down-regulation of CXCL8 may play a role in tissue damage in periodontal disease due to 

the resulting decreased recruitment of neutrophils to aid in the host immune response against 

bacterial antigens (Madianos et al., 1997; Huang et al., 2001). Nakayama et al. (1995) presented 

data to suggest that secreted Arg-gingipain also contributes directly to the inhibition of PMNs. 

Using rgpA, rgpB and rgpArgpB knock-out mutants, the authors reported a decrease in 

chemiluminescence response of guinea-pig PMNs in the presence of the wild-type strain ATCC 

33277 compared to the mutants. The rgpArgpB mutant showed almost no inhibition of PMNs. 

This suggests the significance of gingipains in the inhibition of PMNs, which may result in 

progression of periodontal destruction due to decreased immune response to P. gingivalis 

challenge (Nakayama et al., 1995).  

 



Chapter 1 Introduction 

50 

 

Arg-gingipain and, to a lesser extent, Lys-gingipain, have the ability to degrade tumour necrosis 

factor-alpha (TNF-α) (Mezyk-Kopec et al., 2005). TNF-α exists in the soluble, excreted form 

and membrane bound form and is an important part of the inflammatory process involving 

immune cell activation. Release of the soluble form results from the proteolytic cleavage of 

membrane bound TNF-α by metalloprotease TNF-α converting enzyme (ADAM-17) (Black et 

al., 1997). TNF-α is secreted in response to bacterial LPS and IL-1. TNF-α activation of its 

specific receptor results in signal transduction via activation of NF-κB and MAPK pathways 

and induction of apoptosis.  

 

It has been reported previously that gingipains have the ability to degrade the major LPS 

receptor, CD14 (Sugawara et al., 2000; Duncan et al., 2004), leading to suppression of 

activation by LPS, thus reducing the secretion of TNF-α. Mężyk-Kopeć et al. (2005) showed 

that gingipains are able to degrade both soluble and membrane-bound TNF-α. However, an 

increase in TNF-α has been recorded in relation to periodontal disease (Górska et al., 2003). 

Nevertheless, an initial increase in TNF-α combined with the effects of other released cytokines 

at the site of inflammation aid the host in preventing bacterial invasion, whereas the degradation 

of such cytokines by P. gingivalis may contribute to disease progression. 

 

P. gingivalis LPS and fimbriae mediate cytokine release from gingival epithelial cell lines (Asai 

et al., 2001). Wang and Ohura (2002) proposed that P. gingivalis LPS binds to CD14 expressed 

on the surface of human gingival fibroblasts stimulating cytokine production (IL-1 and IL-6) via 

activation of NF-κB and activating protein (AP-1). However, this is not consistent with the 

other findings above and so further characterisation of LPS-mediated cytokine release is 

required to increase understanding of the mechanism(s) involved (Andrian et al., 2006).  

 

Gingipains are a major factor in the virulence of P. gingivalis (Katz et al., 2002) and it has been 

suggested that they contribute to tissue destruction and may also play a role in degradation of 

the basement membrane (Andrian et al., 2004). Stimulation of gingival epithelial cells by P. 

gingivalis induces the release of MMPs, specifically MMP-1, MMP-2, MMP-7, MMP-8, MMP-

9 and MMP-13, which have been shown to be associated with the severity of periodontal 

disease (Tervahartiala et al., 2000; Andrian et al., 2006) (section 1.2.3.2). These MMPs are 

specific collagenases and gelatinases, which degrade connective tissue components and 

basement membrane type IV collagen and so are likely to contribute to periodontal tissue 

destruction (Andrian et al., 2007). 
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Table 1.4 The effect of P. gingivalis on the secretion and mRNA expression of chemokines and cytokines by oral epithelial cells. This table shows selected references that outline the protein 

secretion and/or mRNA expression of chemokines and/or cytokines released in response to P. gingivalis. The cytokine(s) described in each article, the experimental profile, how the cytokine/chemokine 

was detected and the result of the experiment is shown. Only whole live bacterial cells are reported in the table, unless otherwise stated. Cytokines/chemokines: Interleukin 1 receptor-associated 

receptor-M (IRAK-M), monocyte chemoattractant protein (MCP-1/CCL2), interleukin (IL), interleukin 8 (CXCL8), tumour necrosis factor alpha (TNFα), macrophage inflammatory protein 3a 

(MIP3a/CCL20), granulocyte-macrophage colony-stimulating factor (GM-CSF), soluble intercellular adhesion molecule-1 (sICAM1). P. gingivalis strains (Pg): ATCC33277, 381, W83, W50, MS-1-2 

(clinical strain); gingipain mutant strains MT10 (∆rgpA), G-102 (∆rgpB), KDP133/E8 (∆rgpArgpB), KDP129/V2296/K1A (∆kgp), KDP136/KDP128 (∆rgpArgpBkgp); multiplicity of infection (MOI). 

Epithelial cells (EC): epithelial cell lines (KB, OKF6/TERT2, epi4); primary human gingival epithelial cells (HGEC); cultured as monolayers unless otherwise stated. Experimental profile: 

‘extracellularly’ (P. gingivalis incubated with epithelial cells for the specified time points→conditioned media analysed or mRNA expression tested); statistically significant increase/decrease/no change 

in secretion/expression relative to unstimulated cells is shown. Additional abbreviations: Polymerase chain reaction (PCR), protease inhibitor (PI), Tosyl-L-lysyl-chloromethane hydrochloride 

(TLCK). 

 

Cytokine(s) of 

interest  

Experimental profile Assessed by Increase/Decrease/no change? Reference 

CXCL8, ICAM1 EC: KB 

Pg: 381 

MOI: 150 

Profile: Pg 90min→wash 

→antibiotic 8hrs 

ELISA (CXCL8) 

Immunofluorescent staining 

(ICAM1) 

CXCL8, ICAM1 decrease Madianos et al., 

1997 

mRNA expression not analysed 

CXCL8, ICAM1 EC: HGEC  

Pg: ATCC33277 (live and heat-

killed) 

MOI: 100-2000 

Profile: Pg 2hr→wash→24hr 

metronidazole 

ELISA (CXCL8) 

Flow cytometry (ICAM1) 

CXCL8 and ICAM1 decrease (MOI100-2000) 

Heat-killed: CXCL8 increase (MOI500-2000) 

 

Huang et al., 

1998 

 

 

 

 

 

mRNA expression not analysed 
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CXCL8 EC: HGEC 

Pg: ATCC33277, 381 

MOI: 10
8
/well 

Profile:  extracellularly 18 

hours 

Cytoscreen CXCL8 Immunoassay 

kit (Biosource International, 

Camarillo, CA) 

CXCL8 decrease 

 

 

Darveau et al., 

1998 

Real-time PCR CXCL8 decrease 

 

 

CXCL8 EC: KB 

Pg: 381+/-PI (TLCK) 

MOI: 100 

Profile: extracellularly 30min 

 

ELISA CXCL8 decrease (no change with PI) Zhang et al., 1999 

Northern Maxikit (Ambion, Inc) CXCL8 increase 

 

CXCL8, ICAM1 EC: immortalised GECs  

Pg: ATCC33277;  

V2296 (∆kgp), parent W83;  

MT10 (∆rgpA), G-102 (∆rgpB), 

parent 381 

MOI: 500-2000 

Profile: Pg 2hr→wash→2-20hr 

metronidazole 

ELISA All strains: CXCL8 and ICAM1 decrease after 12 

hours 

Huang et al., 

2001 

 

 

 

 

 

 

 

 

Northern blot analysis 

 

ATCC33277: CXCL8 and ICAM1 increase up to 

4 hours, decrease after 8 hours 

5
2
 

C
h

a
p

te
r 1

 In
tro

d
u

ctio
n

 



Chapter 1 Introduction 

53 

 

IL1β, IL-6, 

CXCL8, TNFα 

EC: KB, pocket EC 

Pg: 381 

MOI: 150 

Profile: extracellularly 4 hours 

Immunohistochemistry All cytokines increase Sandros et al., 

2000 In situ hybridisation All cytokines increase 

IL1β, IL-6, 

CXCL8, TNFα 

EC: Palatal cell organotypic 

model 

Pg: ATCC33277 

MOI: 10
5
/model 

Profile: extracellularly 24 hours 

ELISA All cytokines increase Andrian et al., 

2004 

mRNA expression not analysed 

IL1β, IL-6, 

CXCL8, TNFα 

EC: KB 

Pg: ATCC33277 

MOI: 20 

Profile: 1hr Pg→wash→ 

metronidazole 1.5hr→wash 

→6hr-3days 

ELISA 

 

IL1β, IL-6 TNFα not detectable 

CXCL8 increase after 6 hours, up to 3 days 

Eick et al., 2006 

PCR→ gel electrophoresis→ 

densitometry 

CXCL8 increase after 3 days 

IL1β, TNFα, IL-6 initially increase but decrease 

after 3 days 

CXCL8, TNFα, 

IL-6, GM-CSF 

EC: HGEC 

Pg: ATCC33277 

MOI: 100 

Profile: extracellularly 4 hours 

Luminex 100 technology CXCL8, TNFα, IL-6, GM-CSF increase Eskan et al., 2007 

mRNA expression not analysed 
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CXCL8 EC: Immortalised GECs 

Pg: ATCC33277 

MOI: 100 

Profile: extracellularly 4 hours 

ELISA No change Hasegawa et al., 

2008 mRNA expression not analysed 

IL1α, IL1β, IL-

6, TNFα 

EC: OKF6/TERT2 

Pg: ATCC33277 (parent), 

KDP133∆rgpArgpB, 

KDP129∆kgp,  

KDP136 ∆rgpArgpBkgp 

MOI: 10, 100, 1000 

Profile: Pg 3hr→wash→0-48hr 

Protein secretion not analysed Giacaman et al., 

2009 
Real-time PCR 

 

IL1α: up to 6, 12hr (parent increase) 

           up to 6hr (∆kgp increase) 

IL-1β: up to 48hr (parent increase) 

            up to 12hr (∆kgp increase) 

TNFα: up to 6hr (parent and ∆kgp increase) 

IL-6: up to 12hr (parent and ∆kgp increase) 

All cytokines: after 48hr (∆rgpArgpB, 

∆rgpArgpBkgp no change) 

IL1α, IL1β, IL-

6, CXCL8, 

TNFα, CCL20, 

sICAM1, CCL2 

EC: KB 

Pg: W50 

MOI: 10, 50, 100, 500, 1000, 

10000 

Profile: Pg 

90min→wash→16hr 

ELISA 

 

sICAM1, CXCL8, IL-6 increase up to MOI100 

(MOI500 and 1000 decrease) 

CCL2 increase (MOI10), no change (MOI>10) 

CCL20 increase at MOI500-1000 

IL1α increase at MOI100-1000 

IL1β, TNFα not detected 

O’Brien-Simpson 

et al., 2009 

mRNA expression not analysed 
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IL1β, IL-6, IL8 EC: HGEC 

Pg: W50 (parent), E8 

(∆rgpArgpB), K1A (∆kgp), 

KDP128 (∆rgpArgpBkgp), 

ATCC33277 

MOI: 100 

Profile: extracellularly 4 and 24 

hours 

 

ELISA, Western blot 

 

 

 

ATCC33277: IL1β decrease (4hr), IL1β increase 

(24hr), IL-6 decrease (4 and 24 hr), CXCL8 

decrease (4 and 24 hr) 

Cytokine W50 E8 K1A KDP128 

IL1b Dcrease after 

4 hr 

Decrease 4 hr No change No change  

IL-6 Decrease 

after 30 min 

Decrease 

after 30 min 

No change No change 

IL-8 Decrease 

after 30 min 

Decrease 

after 1hr 

No change  No change 

 

Stathopoulou et 

al., 2009, 2010 

  

mRNA expression not analysed 

IL1β, IL10, IL 

12, IL-6, 

CXCL8, CCL2, 

TNFα 

EC: HGEC multilayer 

Pg: ATCC33277 

MOI: 100 

Profile: extracellularly  2&24 

hours  

Millipore MILLIPLEX Map 

kit Human Cytokine/Chemokine 

custom 7-Plex Multi- 

Cytokine Detection System  

No change in all tested cytokines Dickinson et al., 

2011 

mRNA expression not analysed 

 

IL-6, CXCL8 EC: KB 

Pg: ATCC33277, MS-1-2 

MOI: not specified 

Profile: extracellularly 18 hours 

ELISA 

 

ATCC33277: IL-6 increase, CXCL8 no change 

MS-1-2: IL-6 and IL8 decrease 

Kirschbaum et al., 

2010 

 

 

Real time-PCR IL-6 and CXCL8 increase 
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IRAK-M, 

CXCL8, CCL2 

EC: HGEC, epi4 

Pg: 381 (live and  

heat-killed) 

MOI: 50 

Profile: extracellularly 12 hours  

ELISA CXCL8 no change (live), CXCL8 increase 

(killed), CCL2 no change 

Takahashi et al., 

2010 

Real time PCR CCL2 no change, IRAK-M increase, CXCL8 

increase (live and killed) 

CCL20 EC: GEC 

Pg: ATCC33277 

MOI: 50 

Profile: extracellularly 16 hours 

Protein concentration not analysed Dommisch et al., 

2010 Real time PCR CCL20 increase 
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1.4 Experimental models 

1.4.1 Monolayer 

To investigate P. gingivalis invasion of oral mucosa, the most commonly implemented method 

is the antibiotic protection assay, using monolayer cultures of primary oral epithelial cells 

(Lamont et al., 1995; Weinberg et al., 1997) or oral epithelial cell lines (Duncan et al., 1993; 

Madianos et al., 1996; Umeda et al., 2006). The antibiotic protection assay involves the 

incubation of a known number of bacterial cells, commonly at a multiplicity of infection (MOI) 

of 100, i.e. 100 bacterial cells for each epithelial cell, incubated with a monolayer culture of 

cells. After incubation, non-adherent bacteria are washed away and adherent non-internalised 

bacteria are killed using antibiotics. Cells are lysed and a viable count of internalised bacterial 

cells can be determined.  

 

Monolayer cultures of oral derived cell lines are reproducible and easily obtainable. However, 

the use of cell lines has reduced value compared to primary cultures of oral epithelial cells as 

these virally transformed or tumour-derived cells almost certainly express different cell surface 

markers and have been shown to exhibit a lower percentage adherence and invasion by P. 

gingivalis (Duncan et al., 1993; Lamont et al., 1995). These differences were discussed in a 

review by Andrian et al. (2004), in which the authors suggest that the decreased number of 

receptors for P. gingivalis on KB cells, down-regulation of the MAPK/ERK1/2 signalling 

pathway in gingival epithelial cells in comparison to KB cells, and greater incidence of 

envelopment by endosomal vacuole of P. gingivalis within KB cells plays a role in the 

differences in percentage invasion noted between the two cell types. However, it has been 

shown that although originally isolated as an epidermal carcinoma of the mouth, there is now 

contamination of the KB cell line with the cervical carcinoma cell line, HeLa (Catalogue of Cell 

Lines and Hybridomas, ATCC). Therefore, comparison of P. gingivalis invasion of specific oral 

epithelial cell lines may help identify a suitable transformed/tumour-derived monolayer 

candidate to use in the event of limited primary cell availability. 

 

In 1975, Rheinwald and Green were the first to propose the in vitro culture of primary human 

keratinocytes using an irradiated mouse fibroblast 3T3 feeder layer. The feeder layer helped to 

promote cell survival, adhesion and proliferation of keratinocytes (Wang et al., 2001). However, 

the presence of mouse fibroblasts within cultured epithelial sheets is a disadvantage as there 

may be contamination with mycoplasma, viruses and prions, and as an animal-derived product, 

cannot be used in patient treatment/transplantation. Therefore, researchers have developed 

keratinocyte monolayer cultures using collagen-coated flasks, in the absence of a feeder layer 

(Riva et al., 2007). This resulted in pure keratinocyte cultures, in which data from subsequent in 

vitro studies may not be skewed by the presence of contaminating fibroblasts. 
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Monolayer cultures are useful because they are relatively easy to maintain and reproduce. 

However, the absence of a multi-layer, stratified squamous epithelium, fibroblast-infiltrated 

lamina propria and associated epithelial cell interactions and other features of normal oral 

mucosa indicate that P. gingivalis invasion of monolayer cell cultures will not provide a 

complete understanding of the complexity involved in bacterial invasion of periodontal tissues. 

Therefore, the engineering of a suitable model to represent normal oral mucosa may be a step 

towards a greater understanding of the mechanisms surrounding oral mucosal challenge by P. 

gingivalis. 

 

1.4.2 Tissue-engineered oral mucosa 

The development of full-thickness, multi-layer, engineered oral mucosa which resembles 

normal oral mucosa has a number of uses (Moharamzadeh et al., 2007a), including clinical 

applications involving grafting in reconstructive surgery (Izumi et al., 2004), and in vitro 

applications including biocompatibility testing and as models of disease, e.g. to assess the 

invasive capability of P. gingivalis (Andrian et al., 2004). 

 

Full-thickness engineered oral mucosa requires a connective tissue layer (lamina propria) with 

infiltrating fibroblasts, a continuous basement membrane and stratified squamous oral epithelial 

cell layers (Moharamzadeh et al., 2007a). The connective tissue layer may consist of a suitable 

scaffold, by which fibroblasts may be introduced, to provide sufficient support for the epithelial 

cell layer. Fibroblasts are commonly introduced by seeding onto the scaffold surface after which 

they infiltrate the scaffold synthesising extracellular matrix and collagen, providing 

multifactorial signalling between the connective tissue and epithelial cell layer, inducing 

cytokine and MMP release and facilitating differentiation and proliferation of epithelial cells 

(Atula et al., 1997; Andrian et al., 2004; Moharamzadeh et al., 2007a). Primary oral epithelial 

cells or oral cell lines may be introduced onto the scaffold surface (fig 1.16). Cells are then 

raised to the air-to-liquid interface after a few days to form a differentiated epithelial layer; cell 

lines form multilayered epithelium but show less differentiation than primary cultures. A 

number of scaffolds have been used to engineer full-thickness oral mucosa. These include 

naturally-derived scaffolds (acellular cadaveric dermis (AlloDerm™) and de-epidermalised 

dermis (DED)), collagen-based scaffolds (collagen gel) and synthetic scaffolds (polycarbonate-

permeable membranes) (Moharamzadeh et al., 2007a). A number of in vitro three-dimensional 

oral mucosal models are commercially available and have been developed by SkinEthic 

Laboratories (Nice, France) and MatTek Corp. (Ashland, MA, USA). These constructs are 

expensive but show little batch-to-batch variability and are commonly used for 

biocompatibility/safety testing and drug discovery/development.  
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Increased expression of proliferation marker Ki-67 and cytokeratins CK14, CK19 and secretion 

of metalloproteases, including, gelatinase A-type IV collagenase and gelatinase B-type IV 

collagenase, have been reported for an engineered oral mucosa consisting of a fibroblast-

populated collagen scaffold seeded with primary oral epithelial cells (Rouabhia and Deslauriers, 

2002). Analysis of the culture supernatant from this model indicated the constitutive presence of 

secreted cytokines, including IL-1β, IL-8 and TNF-α (Rouabhia and Deslauriers, 2002). The 

presence of fibroblasts within the scaffold is required in order to produce an engineered three-

dimensional construct that most closely represents oral mucosa. In a DED construct, the 

presence of fibroblasts within the collagen matrix showed an improved expression of 

differentiation markers, such as involucrin, loricrin and filaggrin, by seeded keratinocytes (Lee 

et al., 2000). The authors suggest that the presence of fibroblasts is essential in the formation of 

differentiated epithelium. The use of naturally-derived scaffolds, e.g. DED or AlloDerm™, 

provides a natural, highly durable collagen matrix with a high-tensile strength, in which one 

side consists of an intact basal lamina for the attachment of epithelial cells and the opposing 

side, which is more porous, allowing infiltration by seeded fibroblasts (Izumi et al., 1999). 

 

For the investigation of P. gingivalis invasion, there has only been one study using tissue-

engineered oral mucosa. Andrian et al. (2004) used a collagen-based scaffold of bovine skin 

type III collagen mixed with fibroblasts, supported with an anchor to prevent collagen 

contraction. Epithelial cells were seeded onto the engineered lamina propria and after 5 days 

were raised to the air-liquid interface, forming a three-dimensional construct consisting of 

stratified epithelium. Interaction of fibroblasts with epithelial cells induced the expression of β1 

and α2β1 integrins and secretion of basement membrane proteins, including laminin. P. 

gingivalis invasion of this model was visualised by transmission electron microscopy showing 

that P. gingivalis penetrated below the superficial layers and a few P. gingivalis cells reached 

the underlying connective tissue. This engineered oral mucosa was used by the same research 

group to show that P. gingivalis was able to regulate the production of MMPs and TIMPs by 

oral epithelial cells (Andrian et al., 2007). 

 

Figure 1.16 Culture of an organotypic model. Organotypic oral mucosal models are cultured within tissue culture 

inserts, within a tissue culture well, and then raised to the air-to-liquid interface using stainless steel stands to enable 

keratinocyte stratification and differentiation. 
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1.4.3 Animal models 

The most commonly used animal model to investigate the invasive ability/virulence of P. 

gingivalis is the murine abscess model (Chen et al., 1987; Chen et al., 1990; O'Brien-Simpson 

et al., 2001; Nakano et al., 2004; Kesavalu et al., 2007). A similar model exists for the use of 

guinea pigs instead of mice (Sundqvist et al., 1979; Mayrand and McBride, 1980). After 

subcutaneous injection of P. gingivalis the following signs are indicative of virulence: 

phlegmonous abscesses with pus or lesions and/or necrosis, ulcerative spreading lesions, 

secondary lesions, erythema, ruffling, septicaemia and death. The severity of disease 

presentation is indicative of the virulence of the bacterial strain (Steenbergen et al., 1987). 

Genco et al. (1991) modified this model creating a murine/guinea-pig chamber model which 

involves subcutaneous implantation of Teflon cages, allowing continual access to chamber 

contents (Genco et al., 1991), including secreted host factors and virulence factors from injected 

bacteria. This model increases the scope of investigating the virulence of P. gingivalis but is 

relatively expensive to establish and requires specialist husbandry facilities.  

 

Models simulating periodontal disease of the oral cavity in animals have been developed. 

Kesavalu et al. (2007) introduced bacterial species into a rat model by oral gavage to investigate 

polymicrobial infections and associated alveolar bone resorption. Similarly, bone resorption and 

gingipain proteolytic activity was reported following the induction of experimental periodontitis 

in a hamster model and murine model respectively, via the introduction of P. gingivalis at the 

gingival margins of maxillary molar teeth (Pathirana et al., 2007a; Hojo et al., 2008). These 

models provide data to explain the in vivo virulence of P. gingivalis, however, the study of the 

specific mechanisms involved in P. gingivalis virulence are limited.  

 

1.4.4 Summary of experimental models 

Monolayer cultures of tumour-derived or virally transformed cell lines show good 

reproducibility, little batch-to-batch variability and are readily available a day or two after sub-

culturing. Monolayer cultures of primary oral keratinocytes have lower availability compared to 

cell lines because there may be periods when biopsies may not be obtainable, the length of time 

taken to reach confluence is longer than that of a highly proliferative cell-line and the number of 

sub-cultures is vastly limited in comparison. However, primary cell cultures more closely 

resemble normal oral epithelial cells in vivo, which is important when investigating specific cell 

responses. Nevertheless, monolayer cultures are a quick and easy method to investigate a wide 

variety of invasive mechanisms of P. gingivalis, from cytoskeletal rearrangements (Yilmaz et 

al., 2003) and cytokine release (Huang et al., 2001) to the effects of knockout mutants on 

invasive ability (Pathirana et al., 2008). However, these in vitro methods only partly mimic the 

in vivo situation. There is incomplete differentiation of epithelial cells and there are no 

interactions between the epithelium and the extracellular matrix (Lee et al., 2000). Simulation of 
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the disease process in vivo by means of an animal model serves to provide a greater 

understanding of the mechanisms involved in invasion as cell-extracellular matrix interactions 

are present and host cell interactions/immune responses exist. These models assess the clinical 

features of periodontal disease, including bone resorption, cytokine release (Hojo et al., 2008) 

and tissue destruction (O'Brien-Simpson et al., 2001) but there is limited information from 

animal models about the mechanisms of invasion of P. gingivalis. Therefore, the development 

of multi-layered engineered three-dimensional oral mucosa, which resembles normal oral 

mucosa, may provide a suitable model for the investigation of P. gingivalis invasion. The 

absence of the ‘whole body’ still limits this in vitro system but the presence of epithelial-

extracellular matrix communication provides a better model than a single layered epithelial cell 

system. In addition, cells of the immune system can be introduced to the model (Schaller et al., 

2004) to better represent the in vivo situation, where host immune cells contribute to the host 

response in the presence of P. gingivalis. 

 

1.5 Summary 

The oral mucosa is a complex structure consisting of a multi-layered, differentiated and 

occasionally keratinised epithelium connected to an underlying connective tissue by means of a 

basement membrane. This connective tissue layer is home to fibroblasts, mast cells, 

macrophages and infiltrating neutrophils. The oral mucosa forms part of the periodontium, 

along with the periodontal ligament, root cementum and alveolar bone. Periodontitis is an 

inflammatory disease that has been shown to have a bacterial aetiology and P. gingivalis has 

been implicated in disease progression.  

 

The majority of studies on cell interaction with P. gingivalis utilise a simple monolayer culture 

of various types of epithelial cells, either primary cells obtained from a biopsy or carcinoma cell 

lines. However, this model is limited in terms of the absence of an epithelial multilayer and a 

fibroblast-embedded connective tissue scaffold, and is therefore not as representative of the 

normal oral mucosa as tissue-engineered mucosal equivalents. Such models, therefore, need to 

be used to gain more relevant information on how P. gingivalis is likely to interact with the 

periodontium. 

 

P. gingivalis is an invasive bacterium and has been shown to multiply intra-cellularly and to 

propagate inter- and intra-cellularly. However, the mechanism of cellular invasion by P. 

gingivalis is not yet fully understood. It is thought to occur via fimbrial interaction with the 

α5β1 integrin and subsequent cytoskeletal rearrangements, although other mechanisms have 

been proposed such as clathrin-mediated endocytosis and internalisation via lipid rafts. Also, 

gingipains have been suggested to contribute to this process in both a promotional and 
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inhibitory way. Therefore, the role of gingipains, α5β1 and accessory molecules on P. gingivalis 

invasion needs further study.  

 

One aspect on which there are conflicting data within the literature is the epithelial cytokine 

response to P. gingivalis. Both epithelial- and fibroblast-derived cytokines contribute to the 

pathogenesis of disease, e.g. resulting in bone resorption and/or dysregulated neutrophil 

chemotaxis. However, there are very few data on the cytokine responses of 3D tissue engineered 

constructs to P. gingivalis and its internalisation. Therefore, for a more representative picture of 

the cellular responses to P. gingivalis, studies should be conducted in mixed cell models. 

 

As well as the cellular features of the periodontium, the environment of the periodontal pocket, 

within which P. gingivalis resides, is quite unique with regards to the high levels of haemin 

available and higher than physiological temperatures. These factors have been shown to 

influence the expression of P. gingivalis virulence features including LPS and gingipains. Since 

P. gingivalis may utilise the host intracellular environment to evade immune attack, the effect of 

these environmental factors on cellular internalisation needs to be understood. 

 

1.6 Aims and Objectives 

The aims of this study were, therefore to:- 

 Develop  full-thickness three-dimensional organotypic oral mucosal models (OMM) to 

resemble normal oral mucosa, including junctional epithelium 

o Compare two fibroblast-embedded connective tissue scaffolds, rat-tail type I 

collagen and human de-epidermalised dermis and two types of epithelial cell: 

the oral squamous cell carcinoma of the tongue (H357) and normal oral 

keratinocytes (NOK) isolated from healthy patients 

o Characterise OMM comparing with normal oral mucosa, in terms of 

cytokeratin, laminin and E-cadherin expression 

o Optimise OMM for use in an antibiotic protection assay with P. gingivalis 

investigating the period of incubation, atmospheric conditions and methods of 

OMM lysis 

 Compare the percentage invasion of H357 and NOK monolayer and OMM cultures by 

P. gingivalis 

o Evaluate the advantages and disadvantages of each model system 

o Investigate the bacterial survival, intracellular multiplication and release of 

internalised P. gingivalis from monolayer and OMM cultures 

o Determine the effect bacterial culture conditions, including haemin 

concentration and culture temperature, have on P. gingivalis invasion 
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 Investigate the effect of gingipains on epithelial cell invasion by P. gingivalis and 

expression of cellular receptors 

o Compare the percentage invasion of P. gingivalis gingipain mutants 

o Observe changes in α5β1, CD46 and the tetraspanins CD9, CD63, CD81, 

CD82, CD151 following incubation with P. gingivalis gingipain mutants 

o Determine whether disruption of α5β1, CD46 or tetraspanin function influences 

epithelial internalisation by P. gingivalis 

 Investigate the cytokine/chemokine response of epithelial monolayers and OMM to P. 

gingivalis and its cellular internalisation 

o Using a cytokine antibody array, determine important epithelial pro-

inflammatory cytokines released in response to internalised P. gingivalis 

o Quantify levels of secreted individual cytokines (e.g. CXCL8) and their gene 

expression and how these responses may be modified by P. gingivalis 

gingipains 
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Chapter 2 Materials and Methods 

2.1 Materials 

All materials were purchased from Sigma, Poole, UK unless otherwise stated. 

 

2.2  Cell culture conditions 

The oral epithelial cell line, H357 (originally isolated from squamous cell carcinoma of the 

tongue, Health Protection Agency Culture Collections, Porton Down, Salisbury, UK), and 

primary oral keratinocytes (see section 2.3) were cultured in Green’s Medium (Rheinwald and 

Green, 1975) at 37°C in a humidified and 5% CO2/95% air atmosphere. Table 2.1 shows the 

supplements for Green’s Medium added in a 3:1 ratio of Dulbecco’s Modified Eagles Medium 

(DMEM) + GlutaMAX™-1 (Gibco
®
, UK) and Nutrient Mixture F-12 (Ham’s F-12). 

 

Primary oral fibroblasts (see section 2.4) were cultured in a humidified atmosphere at 37°C and 

5%CO2/95% air in complete medium (CDMEM), which consisted of DMEM + GlutaMAX™-1 

supplemented with foetal calf serum (FCS), penicillin/streptomycin and amphotericin B (table 

2.1). Medium was changed every 3-4 days and cells were passaged when 80-90% confluent. 

 

Cells were passaged by washing twice with phosphate buffered saline (PBS) without Ca
2+

 or 

Mg
2+

 and incubating with 0.05% (v/v) porcine trypsin/0.02% (v/v) ethylene diamine tetra-acetic 

acid (EDTA) at 37°C for 5-10 minutes (dependent on the cell type), until cells lifted from the 

surface of the flask. Medium containing 10% (v/v) FCS was added to the cell suspension to 

inhibit the enzymatic activity of the trypsin/EDTA, and cells were centrifuged at 200g for 5 

minutes. The supernatant was removed, the cell pellet resuspended in medium and re-seeded at 

0.5-1x10
6
 cells/T75 flask or 1-2x10

6
cells/T175 flask.  

 

All cells were maintained as frozen stocks and regularly tested for mycoplasma infection. 
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Table 2.1 The constituents of Green’s Medium and complete medium. All the following supplements were added 

in a 3:1 ratio of DMEM + GlutaMAX™-1:Ham’s F-12 for Green’s medium, to culture the H357 cell line and normal 

oral keratinocytes (NOK). Asterisked supplements alone were added to DMEM+GlutaMAX™-1 to achieve complete 

medium (CDMEM) to support the growth of primary oral fibroblasts. 

 

Supplement Final 

Concentration 

Foetal calf serum* 10% (v/v) 

Amphotericin B* 625ng ml
-1

 

Penicillin* 50U ml
-1

 

Streptomycin* 50U ml
-1

 

Adenine 0.1mM
 

Insulin 5µg ml
-1

 

Transferrin 5µg ml
-1

 

Triiodothyronine 5µg ml
-1

 

Hydrocortisone 0.4µM 

Epidermal growth factor 10ng ml
-1

 

 

 

2.3  Isolation and culture of normal oral keratinocytes 

Primary normal oral keratinocytes were isolated from oral biopsies as previously described 

(Bhargava et al., 2004). Briefly, buccal or gingival biopsies were obtained with written, 

informed consent from patients undergoing dental surgery at Charles Clifford Dental Hospital, 

Sheffield, or from healthy donors, under ethical approval granted by the Sheffield Research 

Ethics Committee (04/Q2305/78, STH Research Department: STH13793). Biopsies were 

washed with PBS supplemented with 50U ml
-1

 penicillin, 50U ml
-1

 streptomycin and 625ng ml
-1

 

amphotericin B, to remove debris, and incubated in 0.1% (w/v) trypsin overnight at 4°C. The 

epithelium was separated from the connective tissue by gentle scraping and seeded into a tissue 

culture flask (T-75/biopsy (dependent on the size of the biopsy)) with approximately 5x10
5
 

lethally irradiated murine 3T3 fibroblasts (i3T3) (XCELLentis, Gent, Belgium, irradiated with 

60 Grays using a cobalt-60 source irradiator). Keratinocytes were cultured in Green’s Medium 

and passaged a maximum of three times due to a lack of epithelial integrity after this time. At 

each passage NOK were seeded with a feeder layer of i3T3 fibroblasts. The culture purity was 

confirmed by cytokeratin staining (see Appendix 1) prior to seeding for 2D or 3D culture. 
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2.4  Isolation and culture of normal oral fibroblasts 

Primary normal oral fibroblasts (NOF) were isolated from the connective tissue of oral biopsies 

by incubating in 0.05% (w/v) collagenase type I (GibcoBRL, Paisley, Scotland) in CDMEM 

overnight at 37°C. Digested tissue was centrifuged at 1000rpm for 5 minutes. The pellet was 

resuspended in CDMEM and fibroblasts were expanded. Human fibroblasts were not used after 

passage 9 due to decreased proliferation rates and signs of cell death at later passages. 

 

2.5  Bacterial strains and growth conditions 

P. gingivalis strains (table 2.2) were cultured anaerobically (80% N2, 10% H2, 10% CO2) at 

37°C (miniMACS Anaerobic Workstation, Don Whitley Scientific, UK). Plate-cultured 

laboratory strains were grown on fastidious anaerobe agar (FA; LabM Limited, Lancashire, 

UK), supplemented with 10% (v/v) defibrinated horse blood (Oxoid, Hampshire, UK). Mutant 

strains were cultured on FA-blood agar plus the appropriate antibiotic for selection. P. 

gingivalis strains were stored at -80°C as frozen glycerol stocks and streaked onto FA-blood 

agar weekly. For use in experiments, P. gingivalis was sub-cultured from a stock FA-blood agar 

plate and used at 2 days old. Planktonic cultures were grown in brain heart infusion (BHI) broth 

(Oxoid, Hampshire UK), supplemented with yeast extract, haemin, vitamin K and cysteine 

(table 2.3). Overnight broth cultures were used in experiments. Culture purity was tested by 

Gram-staining and microscopic examination.  
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Table 2.2 P. gingivalis strains used in this study. The table below shows the designation of the P. gingivalis strain, 

the gene that has been mutated, the antibiotic selection marker, where the strain was obtained from and a reference to 

the original literature. 

 

Strain Mutation Antibiotic 

resistance 

Origin Reference 

NCTC 

11834 

Laboratory 

strain 

None National Collection of Type 

Cultures  

http://www.hpacultures.org.uk/ 

products/bacteria/search.jsp? 

searchtext=11834&dosearch=true  

accessed 27/07/11 

(Curtis et al., 

1991) 

W50 Laboratory 

strain 

None Liquid nitrogen stocks within the 

School of Clinical Dentistry, 

Sheffield, UK 

(Smalley and 

Birss, 1987, Sojar 

et al., 1997) 

E8 ΔrgpArgpB 

(parent strain 

W50) 

10µg ml
-1

 

erythromycin 

M. Curtis, Barts and The London 

School of Medicine and Dentistry, 

London, UK 

(Aduse-Opoku et 

al., 2000) 

K1A Δkgp (parent 

strain W50) 

10µg ml
-1

 

erythromycin 

M. Curtis, Barts and The London 

School of Medicine and Dentistry, 

London, UK 

(Aduse-Opoku et 

al., 2000) 

EK18 ΔrgpArgpBΔ

kgp (parent 

strain W50)  

10µg ml
-1

 

erythromycin, 

20µg ml
-1

 

chloramphenicol 

J. Higham, University of Sheffield, 

UK 

Manuscript in 

preparation. See 

Appendix 2 for 

verification of 

gene knockout. 

 

Table 2.3 The supplements added to brain heart infusion (BHI) broth for the culture of P. gingivalis strains. 

Yeast extract and brain heart infusion broth were autoclaved, and the additional filter sterilised supplements added 

prior to bacterial culture. 

 

Supplement Company Concentration 

Brain heart infusion broth Oxoid, Hampshire, UK 37g L
-1

 

Yeast extract Oxoid, Hampshire, UK 5mg ml
-1

 

Haemin  Sigma, UK 5µg ml
-1

 

Cysteine-hydrochloride ICN Biomedicals Inc, Basingstoke, 

UK 

0.5mg ml
-1

 

Vitamin K Sigma, UK 1µg ml
-1
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2.6 Characterisation of P. gingivalis mutants using the BApNA and tosyl-Gly-

Pro-LyspNA hydrolysing assay 

Overnight planktonic cultures of P. gingivalis W50, E8, K1A and EK18 were analysed using N-

α-benzoyl-L-Arg-p-nitroanilide (BApNA) and toluenesulfonyl-glycyl-L-prolyl-L-lysine p-

nitroanilide (tosyl-Gly-Pro-LyspNA) as substrates for arginine and lysine gingipains 

respectively. An increase in absorbance due to the cleavage of nitroaniline indicated the 

presence of Arg- or Lys-gingipain activity. BHI without bacteria was used as a negative control. 

 

2.6.1  BApNA Assay 

The assay was performed as described previously (O'Brien-Simpson et al., 2001). Briefly, 2mM 

BApNA in propan-2-ol (Fisher-Scientific, UK) was diluted 3:10 in enzyme buffer (pH8.0, table 

2.4) to form the substrate buffer. Overnight planktonic P. gingivalis cultures were adjusted to 

OD0.5 at 600nm (approximately equal to 1.7x10
9
 cells), with supplemented BHI broth, to 

ensure the same number of cells were present in each reaction, and added to a 96-well plate with 

PG buffer (table 2.5), fresh 100mM cysteine (pH8.0) and substrate buffer (table 2.6 shows the 

volumes of the buffers in each 231µl reaction). The 96-well plate was incubated at 37°C for 1 

hour and the absorbance read at 405nm using a microplate reader (POLARstar Galaxy, BMG 

Labtechnologies, Buckinghamshire, UK). All buffers were stored at 4°C except the 100mM 

cysteine, which was freshly prepared prior to each assay.  

 

Table 2.4 Enzyme buffer. Enzyme buffer was prepared by dissolving the following reagents in distilled water and 

adjusting to pH 8.0. 

Reagent Company Concentration 

Tris-HCl Sigma, UK 400mM 

Sodium 

Chloride (NaCl) 

Sigma, UK 100mM 

Cysteine BDH Ltd, Poole, UK 20mM 

 

Table 2.5 PG buffer. The following reagents were dissolved in distilled water to produce PG buffer, pH8.0. 

Reagent Company Concentration 

Tris-HCl Sigma, UK 50mM 

NaCl Sigma, UK 150mM 

Calcium Chloride (CaCl2) Sigma, UK 5mM 

Cysteine BDH Ltd, Poole, 

UK 

5mM 
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Table 2.6 BApNA reaction mixture. The volumes of each buffer added to a 96-well plate to assay arg-gingipain 

activity of P. gingivalis strains. 

Reagent Volume (μl) 

Broth cultured P. gingivalis (OD0.5) 8.9 

PG Buffer 91.1 

Fresh 100mM cysteine 20 

Substrate buffer 

(3:10 2mM BApNA:enzyme buffer) 

111 

 

2.6.2 Tosyl-Gly-Pro-Lys-pNA Assay 

Similar to the BApNA assay, whole cells of P. gingivalis wild-type and gingipain knockout 

mutants (OD0.5 at 600nm) were incubated with PG buffer (table 2.5) and 2µg ml
-1

 Tosyl-Gly-

Pro-Lys-pNA in 10mM dithiotreitol (DTT) for 2 hours and the absorbance read at 405nm using 

a microplate reader. The volumes of each component of the assay are shown in table 2.7 to give 

a total volume of 100µl. 

 

Table 2.7 Tosyl-Gly-Pro-Lys-pNA assay reaction mixture. The volumes of each buffer added to a 96-well plate to 

assay lys-gingipain activity of P. gingivalis strains. 

Reagent Volume (μl) 

Broth cultured P. gingivalis (OD0.5) 10 

PG Buffer 40 

Substrate buffer 

(Tosyl-Gly-Pro-Lys-pNA in 10mM DTT) 

50 

 

2.7  Isolation of human neutrophils from whole blood 

Human whole blood from healthy volunteers was collected with written informed consent 

(University of Sheffield Ethics Committee) and immediately added to 3.8% (w/v) sodium citrate 

(9:1 blood:sodium citrate) to prevent coagulation. Whole blood was centrifuged at 400g for 

20minutes and the upper serum layer was removed. Hanks Balanced Salt Solution (HBSS) 

without Ca
2+

 or Mg
2+

 was added at a 50:50 ratio. The blood HBSS mixture was delicately added 

to the surface of the density gradient medium Ficoll-Paque Plus (GE Healthcare) and then 

centrifuged at room temperature at 400g for 40 minutes (no brake). Following centrifugation the 

mononuclear leukocyte layer and the Ficoll-Paque Plus layers were removed leaving the red 

blood cell layer containing neutrophils. Red blood cells were lysed by adding sterile 

lipopolysaccharide-free water (Baxter, Berkshire, UK) and incubating for 30 seconds. The cells 

were then brought back to an isotonic solution by addition of an equal volume of 1.8% (w/v) 

NaCland centrifuged at 400g for 10 minutes. This lysis was repeated approximately 3-4 times 
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until all red blood cells were lysed leaving intact neutrophils. Neutrophils were counted using a 

haemocytometer and added directly to oral mucosal models (see section 2.9). 

 

2.8  Culture of Oral Mucosal Models (OMM) 

2.8.1 OMM based on de-epidermalised dermis (DED) 

2.8.1.1 Preparation of DED from glycerol-preserved skin 

Sterile, glycerol-preserved allografts of human skin were obtained from the Euro Skin Bank 

(Beverwijk, The Netherlands). The skin was washed 5 times in PBS and placed on a rolling 

shaker overnight at 4°C to remove the glycerol. Skin was then incubated with 1M NaCl 

overnight at 37°C, to allow complete de-cellularisation. The epidermis was removed by gentle 

scraping of the surface of the skin and washing in PBS. The sterility of the DED was confirmed 

by overnight incubation of DED in CDMEM at 37°C. 

 

2.8.1.2 Culture of DED OMM 

DED was used as a scaffold for keratinocyte culture in the construction of DED-OMM. DED 

was cut using a 12mm diameter sterile cork borer. Discs of DED were placed, basement 

membrane side up, into Costar® Snapwell™ tissue culture inserts (Fisher Scientific, 

Loughborough, UK) with a pore size of 0.4µm. NOF (5x10
5
/model) and H357 (5x10

5
/model) or 

normal oral keratinocytes (5x10
5
/model) were mixed and resuspended in Green’s Medium. 

Cells were added as a mixture to the surface of the DED and fully submerged in culture 

medium. Medium was added to the well surrounding the insert so that the level of medium was 

equal inside and out. Models were kept fully submerged for 3-4 days, after which the level of 

the medium was gradually reduced until they were completely at an air-to-liquid interface. 

Models were incubated in a humidified atmosphere at 37°C in 5% CO2 for 7-10 days, with 

medium changes every 2-3 days, to achieve a differentiated and stratified epithelium.  

 

2.8.2 OMM based on collagen 

2.8.2.1  Isolation of rat-tail type 1 collagen 

Rat-tail type I collagen was isolated from the tails of Wistar rats as previously described (Rajan 

et al., 2007). Briefly, redundant rat tails were kindly donated by Mrs Christine Freeman, 

University of Sheffield at the end of a licensed study and stored at -20°C. Prior to collagen 

isolation, tails were thawed overnight at 4°C. Under a sterile class II laminar flow hood, tails 

were folded and twisted approximately 4-5cm from the base of the tail and the bone removed to 

expose the tendons. Tendons were removed from the tails, cut, washed in PBS and dissolved for 

7 days in 0.1M sterile acetic acid at 4°C. The collagen solution was freeze dried (VirTis 

Benchtop K Manifold freeze drier, SP Scientific, Suffolk, UK), re-dissolved in 0.1M acetic acid 

to a stock concentration of 8mg ml
-1

 and stored at 4°C for use in culturing OMM. 
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2.8.2.2 Culture of collagen OMM (air-exposed and submerged) 

As an alternative to DED, collagen-based OMM models were also prepared and studied. 

Collagen models were constructed using the protocol adapted from Dongari-Bagtzoglou and 

Kashleva (2006). Keeping everything on ice, human buccal fibroblasts at a concentration of 

1x10
6
/model, in complete medium, were added to a solution of DMEM, reconstitution buffer 

(sodium bicarbonate, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) and sodium 

hydroxide), FCS, L-glutamine and rat-tail type I collagen (table 2.8). The solution was 

neutralised by addition of 1M sodium hydroxide until the solution turned light pink in colour, 

distributed into tissue culture inserts (0.4µm pore size or 8µm for neutrophil experiments, 

ThermoScientific, Northumberland, UK) and incubated in a humidified atmosphere at 37°C for 

2 hours. Inserts were then bathed in CDMEM for 2 days, after which 1x10
6
 oral keratinocytes 

(H357 or NOK) per model were seeded onto the surface of the collagen in Green’s Medium. 

After 2 days, models were raised to an air-to-liquid interface or left completely submerged for 0, 

4, 7, 10, 13, 16 days in Green’s Medium. 

 

Table 2.8 The concentration of each component used to prepare collagen-OMM cultures. 

Component Final Concentration 

DMEM 13.8mg ml
-1

 

Sodium Bicarbonate 2.25mg ml
-1

 

HEPES 2mM 

1M NaOH 6.3mM 

Foetal calf serum 8.5% (v/v) 

L-Glutamine 2.1mM 

Rat-tail type I 

collagen 

5.28mg ml
-1

 

Human Fibroblasts 1.4x10
6
/ml CDMEM 

 

2.9  Incorporation of neutrophils into OMM 

Neutrophils were isolated from whole blood as previously described (section 2.7). Air-exposed 

H357-OMM based on collagen were stimulated with 10ng ml
-1

 IL-1β for 4 hours aerobically. 

OMM were inverted and approximately 7x10
6
 neutrophils per model added to the underside of 

the insert membrane (8µm pore size) and incubated at 37°C for 2 hours to allow the neutrophils 

to adhere. Inserts were returned to their original orientation and incubated overnight at 37°C and 

5%CO2/95% air allowing for migration of neutrophils through the connective tissue of the 

OMM. 
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2.10  Histology of OMM 

OMM were removed from the inserts before or after infection, fixed in 10% (v/v) PBS-buffered 

formalin for a minimum of 24 hours, processed overnight using a Leica TP1020 benchtop tissue 

processor (Leica Microsystems, Milton Keynes, UK) (table 2.9) and embedded in paraffin wax 

using a Leica EG1160 embedding centre (Leica Microsystems). Sections (4µm) were prepared 

using a Leica RM2235 microtome (Leica Microsystems), floated onto a paraffin section 

mounting bath (Barnstead Electrothermal, UK), mounted onto glass slides and placed in an oven 

at 55°C for 2 hours. Sections were stained with haematoxylin and eosin using a Leica ST4040 

Shandon Linear Stainer (Leica Microsystems) (for staining protocol see table 2.10) to analyse 

the histology of the samples. In some experiments, immunohistochemical staining was 

performed (section 2.14).  

 

Table 2.9 Dehydration and embedding schedule for paraffin embedded tissue. The length of time the tissue was 

exposed to the following solutions using a Leica benchtop tissue processor is shown. 

 

Solution Length of time 

(hours) 

10 % (v/v) neutral buffered formalin 1 

70% ethanol 1 

70% ethanol 1 

90% ethanol 1 

90% ethanol 1 

100% ethanol 1 

100% ethanol 1 

100% ethanol 1 

Xylene 1.5 

Xylene 1.5 

Paraffin wax 2 

Paraffin wax 2 
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Table 2.10 Haematoxylin and eosin staining protocol using a Shandon linear stainer. The following protocol 

was performed to H&E stain paraffin embedded sections. Each step lasted for 1 minute. 

 

Step Solution 

1 Xylene (x3) 

2 100% ethanol (x2) 

3 95% ethanol (x2) 

4 Running tap water (x2) 

5 Shandon Harris Haematoxylin 

(Thermo Scientific) (x5) 

6 Running tap water 

7 Acid alcohol (1% HCl in 70% ethanol) 

8 Running tap water 

9 Eosin Y (Thermo Scientific) (x2) 

10 Running tap water 

11 95% ethanol (x3) 

12 100% ethanol (x3) 

13 Xylene (x3) 

 

2.11 Porphyromonas gingivalis cell invasion 

2.11.1 Invasion of oral epithelial cell monolayers 

An antibiotic protection assay, based on a previously described method (Lamont et al., 1995), 

was employed to assess the invasion and intracellular survival of P. gingivalis strains in oral 

epithelial cells (H357 or NOK). In the following section, the term invasion refers to bacteria 

internalised by mammalian cells. H357 and NOK were seeded at a density of 5x10
4
 cells/well in 

a 24 well plate and incubated in a humidified atmosphere at 37°C and 5% CO2 for 2 days. Prior 

to commencing the assay, epithelial cells were washed 3 times in PBS (Oxoid, Hampshire, UK) 

and incubated in serum-free medium (3:1 ratio of DMEM:Ham’s F-12, without antibiotics 

(SFM)) for 1 hour at 37°C, 5% CO2. To prevent non-specific binding of bacteria, 2% (w/v) 

bovine serum albumin (BSA) in SFM was added to the cells and incubated at 37°C, 5% CO2 for 

1 hour. A minimum of 3 wells containing cell monolayers were trypsinised (0.05% trypsin-

0.02% EDTA) and counted using a haemocytometer in order to obtain a mean number of cells 

per well. Plate-cultured P. gingivalis were swabbed from a plate into 1ml PBS and washed 3 

times by centrifuging at 13,000rpm for 3 minutes and resuspending in 1ml PBS. Bacteria were 

counted using a Helber counting chamber (Hawksley, Sussex, UK). The bacterial suspension 

was diluted in SFM to a multiplicity of infection of 100 (MOI100;  i.e. 100 bacterial cells for 

each epithelial cell), and incubated with the epithelial cells for 90 minutes at 37°C, 5% 

CO2/95% air or anaerobically (80% N2, 10% H2, 10% CO2) at 37°C. Cells were then washed 3 
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times with PBS to remove non-adherent bacteria and 200µg ml
-1

 metronidazole in SFM was 

added for 1 hour at 37°C, 5% CO2 to kill adherent bacteria. Cells were washed and lysed in 

sterile distilled water, using scraping and agitation, and the resultant suspension was serially 

diluted and plated, in duplicate, on blood agar plates. Viable counts of P. gingivalis were made 

4-5 days after incubation of plates in an anaerobic atmosphere at 37°C. The number of 

intracellular bacteria recovered was expressed as a percentage of the original innoculum. Assays 

were independently repeated three times in triplicate. Statistical analysis employed student’s 

unpaired t-test.  

 

For antibody blocking experiments, H357 epithelial monolayers were pre-blocked with 2% 

(w/v) BSA as previously described in this section. The monoclonal antibodies against CD9 

(20µg/ml), CD63 (20µg ml
-1

), CD81 (1:10), CD82 (1:10), CD151 (32.5µg ml
-1

), CD46 (10µg 

ml
-1

), alpha-5 (20µg ml
-1

) or an IgG1 isotype control (20µg ml
-1

) (see table 2.17 for suppliers) 

were incubated with the epithelial cells for 30 minutes, after which the cells were washed gently 

to remove any unbound antibody. P. gingivalis cells (strain W50, NCTC or E8; MOI100), with 

1x protease inhibitor cocktail (Complete Mini ETDA-free (Roche, UK)), were added for 1.5 

hours and metronidazole-treated (200μg ml
-1

) for 1 hour to kill the external adherent bacteria. 

Epithelial cells were lysed and intracellular P. gingivalis calculated as a percentage of the 

original bacterial suspension incubated in parallel as described previously in this section. 

 

2.11.2 Invasion of OMM 

Oral mucosal models were constructed and cultured at the air-to-liquid interface for 7-10 days 

or submerged for 3-5 days. The OMM were then washed 3 times in PBS and incubated at 37°C 

and 5% CO2 in SFM overnight. Plate-cultured P. gingivalis strains were washed 3 times and 

diluted to a final concentration of 2x10
7
 cells/300µl for each insert in SFM (assuming that a 

confluent 10mm diameter well contains approximately 2x10
5
 cells as a confluent monolayer, a 

MOI100 equivalent for the surface of a 10mm tissue culture insert would be approximately 

2x10
7
). Models were incubated with bacteria for 1.5, 3, 4, 6, 10 and 24 hours aerobically or 

anaerobically, metronidazole treated and lysed using mincing and vigorous cutting with a 

scalpel and pipetting or homogenised using a disperser (Tissue Ruptor, Qiagen, West Sussex, 

UK). Lysis of models was required to determine the viable intracellular bacteria compared with 

a viable count of the original bacterial suspension, which was serially diluted and plated during 

the invasion.  
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2.11.3 Intracellular bacterial survival and release 

To evaluate intracellular bacterial survival and release into the supernatant H357 monolayers 

were infected with P. gingivalis (strain NCTC 11834; MOI1 or MOI100 as previously described 

(section 2.11.1.)). Metronidazole (200µg/ml) was added for 1 hour to kill the external adherent 

bacteria. Following invasion and extracellular killing, SFM was added and epithelial cells were 

either lysed (time point 0 hour) or incubated aerobically at 37°C for 1.5, 3, 6, 24 or 48 hours, 

lysing with sterile water and scraping after each time point. Viable counts of the intracellular 

bacteria were made at each time point (section 2.11.1). Additionally, at each time point, viable 

counts of the supernatant prior to epithelial lysis were performed to investigate the percentage of 

intracellular bacteria that had been released. To consider whether the presence of intracellular 

bacteria in the supernatant was due to epithelial cell desquamation or not, desquamated cells 

were counted using a haemocytometer in triplicate from 3 individual wells at each time point. 

Experiments were performed in triplicate. 

 

2.12  Epithelial viability 

2.12.1 LDH assay 

The CytoTox 96
®
 Non-Radioactive Cytotoxicity Assay Kit (Promega, UK) was used to detect 

lactate dehydrogenase (LDH) release as a surrogate marker of epithelial cell death. We assessed 

the suitability of this assay as a tool to investigate epithelial viability in the presence of P. 

gingivalis. The effect of P. gingivalis on lactate dehydrogenase supplied as a positive control in 

the assay kit was determined. The LDH positive control (bovine heart LDH) was diluted 1:5000 

in SFM and incubated with or without P. gingivalis NCTC 11834 for 6 hours. Tris-buffered 

tetrazolium dye (INT-chloride) and Triton X-100 (Assay Buffer) were added to a reconstituted 

Substrate Mix (lyophilized diaphorase, lactate and NAD
+
) and incubated with centrifuged 

SFM+positive control, with or without P. gingivalis, in the dark at room temperature for 

approximately 20 minutes. The absorbance was measured using a plate reader (POLARstar 

Galaxy, BMG Labtechnologies) at 490nm. The LDH remaining after exposure to P. gingivalis 

was calculated as a percentage of the absorbance recorded in the absence of P. gingivalis. 

 

2.12.2 MTT Assay 

To assess the epithelial viability of OMM following P. gingivalis invasion MTT (3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay was performed. H357-OMM 

were infected with P. gingivalis NCTC 11834 (MOI100) for 4 hours. H357-OMM without 

bacteria acted as a control. OMM were washed with PBS and incubated with 0.5mg ml
-1

 MTT 

in PBS at 37°C for 1 hour. During this time the yellow tetrazole MTT was reduced to formazan 

(purple colour) in living cells. The purple dye was released from the epithelium with 100% 

propan-2-ol + 2.5mM hydrochloric acid (HCl) overnight at 4°C. The solution was measured 
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spectrophotometrically at a wavelength of 570nm using a microplate reader. Absorbance values 

were normalized to acidified propan-2-ol alone. 

 

2.13 Bacterial viability 

To assess the viability of P. gingivalis following homogenisation, plate cultured NCTC 11834 

was washed 3 times as previously described (section 2.11.1) and diluted in PBS to a 

concentration of 1x10
6
 cells/ml. Cells were subjected to homogenisation for 0, 3, 6, 9, 12, 15, 

18, 21 and 24 seconds to elucidate the optimum homogenisation time to release intracellular P. 

gingivalis from OMM without affecting bacterial viability. At each time point bacteria were 

serially diluted, plated onto blood-FA plates and colonies were counted 4-5 days later. 

 

2.14 Immunohistochemical staining of OMM and monolayer 

Gingival or buccal biopsies or OMM were paraffin embedded and 4µm sections cut and placed 

on SuperFrost
®
 PLUS slides (VWR International, Lutterworth, UK). The sections were 

deparaffinised in 2 washes of xylene (Fisher Scientific, Leicestershire, UK) for 5 minutes and 

re-hydrated for 2x5 minutes in 100% ethanol (Fisher Scientific). Peroxidase activity was 

quenched by incubating slides in 3% (v/v) hydrogen peroxide (Fisher Scientific) in 100% 

methanol (Fisher Scientific) for 20 minutes. Slides were washed in PBS and, dependent upon 

the primary antibody, subjected to high temperature antigen retrieval (table 2.11). This involved 

incubation of slides in 2.95mg ml
-1

 sodium citrate in distilled water (pH6.0) at high power in a 

microwave (Panasonic NN-E252W) for 8 minutes. Slides were washed twice in PBS and 

blocked with 100% horse serum for 30 minutes at room temperature. Primary mouse 

monoclonal antibodies were diluted in horse serum to an optimised concentration (see table 

2.11) and sections incubated overnight at 4°C in a humidified atmosphere. Slides were washed 

in PBS and incubated with mouse biotinylated secondary antibody (VECTASTAIN
®
 Elite 

ABC-Peroxidase Kits (Vector Laboratories, Peterborough, UK) prepared according to 

manufacturer’s instructions for 30 minutes. After washing, slides were incubated with Avidin 

Biotinylated enzyme Complex (ABC) reagent (Vector Laboratories) for 30 minutes, enabling 

binding to the biotinylated secondary antibody. Finally, slides were washed and 3,3’-

diaminobenzidine tetrahydrochloride (DAB) (Vector Laboratories) substrate was added, which 

produced a dark brown precipitate, corresponding to the location of the bound primary antibody. 

Slides were counterstained with haematoxylin (table 2.12), using the Leica ST4020 Small 

Linear Stainer (Leica Microsystems, Milton Keynes, UK) and mounted using DPX non-aqueous 

mounting medium (Merck, Nottingham, UK). 

 

Immunohistochemical staining for cytokeratin 14 and E-cadherin was performed by the 

Histology Department at the Northern General Hospital, Sheffield, UK. 
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Staining of the epithelial cell surface, as opposed to staining of tissue sections, was performed 

similarly as described above. Monolayers of H357 cells were cultured on sterile coverslips and 

infected with P. gingivalis NCTC 11834 as in section 2.11.1. Similarly, H357-OMM were 

infected with P. gingivalis NCTC 11834 as described (section 2.11.2). Monolayers and OMM 

were washed 3 times with PBS to remove any external adherent bacteria. Epithelial cells were 

fixed and permeabilised with cold 100% methanol for 15 minutes and endogenous peroxidase 

activity was quenched with 3% (v/v) hydrogen peroxide in methanol. OMM and monolayers 

were incubated with P. gingivalis antibody (table 2.11) overnight at 4°C. Secondary antibody 

and Vector ABC reagent was added, as described above, and DAB substrate was used to 

visualise P. gingivalis staining. Monolayers cultured on coverslips were mounted onto 

microscope slides (Menzel-Gläser, ThermoScientific) using aqueous mountant (Farrants 

medium (Gurr)). Epithelium from OMM was carefully removed from the connective tissue 

layer using forceps and also mounted onto microscope slides using the same aqueous mountant.  

 

All staining was visualised using the BX51 upright microscope (Olympus, Essex, UK) and 

cell^D imaging software (Olympus UK Ltd). An isotype mouse IgG1 control (Dako, 

Copenhagen, Denmark) antibody (1:50) was used during each staining procedure, to stain at 

least one tissue section, in order to confirm the specificity of the primary antibody under test. 
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Table 2.11 The primary antibodies used in immunohistochemical analysis of sections of buccal or gingival biopsy or H357-OMM or NOK-OMM. The table shows the commercial supplier of 

each antibody, the clone of the mouse monoclonal antibody, the expected locality of staining, the optimised concentration at which the antibody was used and the antigen retrieval method used to expose 

intracellular epitopes prior to immunohistochemical staining. 

Antibody Clone Company Predicted locality of staining Concentration Antigen retrieval 

Pancytokeratin AE1/AE3  DakoCytomation, Copenhagen, 

Denmark 

All epithelial cells 1:100 Citrate Buffer & high temp 

Cytokeratin 13 AE8 AbCam, Cambridge, UK Non-keratinising epithelium 1:50 Citrate Buffer & high temp 

Laminin V P3H9-2 AbCam, Cambridge, UK Basal epithelial cells 1:100 Citrate Buffer & high temp 

E-cadherin 36B5  Vectorlabs, Peterborough, UK Intercellular junctions 1:50 High pH target retrieval 

solution (Dako, Copenhagen, 

Denmark) 

Cytokeratin 14 LL002  Vectorlabs, Peterborough, UK  Basal cells of squamous 

epithelium 

1:20 High pH target retrieval 

solution (Dako, Copenhagen, 

Denmark) 

Neutrophil 

Elastase 

NP57 DakoCytomation, Copenhagen, 

Denmark 

Neutrophils 1:50 None 

P. gingivalis  MAb 1B5 M. Curtis, Barts and The London 

School of Medicine 

P. gingivalis RgpAcat, mt-

RgpAcat, mt-RgpB, APS (Curtis 

et al., 1999) 

1:50 Citrate Buffer & high temp 

P. gingivalis  MAb 1A1 M. Curtis, Barts and The London 

School of Medicine 

P. gingivalis adhesin domain of 

HRgpA (Curtis et al., 1996) 

1:50 Citrate Buffer & high temp 

7
8
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Table 2.12 Counterstaining protocol using the Small Linear Stainer. The table shows the order in which the 

slides were processed and stained, each step was for a duration of 30 seconds. 

 

Step Process 

1 Harris’s haematoxylin (x2) 

2 Running tap water 

3 1% (v/v) acid alcohol 

(1% HCl in 70% isopropanol) 

5 Running tap water 

4 Scott’s tap water substitute 

(3.5g L
-1

 sodium bicarbonate & 20g 

L
-1

 magnesium sulphate) 

5 Running tap water 

6 95% ethanol (x2) 

7 100% ethanol (x2) 

9 Xylene (x4) 

 

2.15 Embedding procedure for P. gingivalis 

Plate-cultured P. gingivalis NCTC 11834 cells were resuspended in PBS and washed 3 times. 

Bacterial cells were fixed in 10% (v/v) buffered formalin for 5 minutes. Excess formalin was 

removed by centrifugation and the pellet was resuspended in equal volumes of human serum 

and human fibrinogen (kindly donated by Dr Simon Tazzyman, Department of Infection and 

Immunity, University of Sheffield). A P. gingivalis embedded fibrin clot formed after 

incubation at room temperature for 15 minutes. The clot was inserted into a tissue processing 

cassette and processed for sectioning and immunohistochemical analysis using MAb1B5 (as 

described in sections 2.10 & 2.14). 

 

2.16 Immunofluorescence staining of OMM infected with P. gingivalis 

Plate cultured P. gingivalis NCTC 11834 were washed 3 times in PBS and labelled with 5-(6)-

carboxyfluorescin succinylester (Invitrogen) in PBS (0.4µg ml
-1

) (FITC) for 30 minutes in the 

dark at 4°C. Bacterial cells were washed 4 times with PBS by centrifuging at 13,000rpm for 3 

minutes. FITC-labelled P. gingivalis NCTC 11834 at an MOI of 100 in SFM was added to 

H357-OMM and incubated overnight at 5%CO2/37°C. OMM were fixed in 10% (v/v) buffered 

formalin and embedded in optimum cutting temperature (OCT) formulation of water-soluble 

glycols and resins (FisherScientific), at approximately -43°C. Sections (10µm) were prepared 

using a Microm HM560 cryostat (ThermoScientific), at -20 to -30°C, and mounted on 

microscope slides. Slides were flooded with 1µg ml
-1

 Hoechst 33342 (ThermoScientific, 

Northumberland, UK) and mounted using Prolong
®
Gold antifade reagent (Invitrogen, Paisley, 



Chapter 2 Materials and Methods 

80 

 

UK). Staining was visualised using the Zeiss Axiovert 200 inverted fluorescence microscope 

and the Axiovision imaging software (Zeiss, Ltd). 

 

2.17 Cytokeratin staining of normal oral keratinocytes 

Cytokeratin staining of normal oral keratinocytes was performed to confirm that there was a 

pure culture of epithelial cells for use in invasion assays and the culture of OMM (Appendix 1). 

Briefly, oral epithelial cells were isolated from biopsies (see section 2.3) and cultured on glass 

coverslips in 6 well plates until confluent. Cells were washed twice in PBS, fixed and 

permeabilised with cold 50/50 v/v methanol/acetone. Monoclonal mouse anti-human 

Cytokeratin, Clone MNF-116 (DakoCytokeratin), at a concentration of 10µg ml
-1

 diluted in PBS 

and 1% (v/v) normal goat serum (Vector Laboratories Incorporated) was added to the cells and 

incubated for 1 hour at room temperature. Cells were incubated with 10µg ml
-1

 anti-mouse IgM 

(µ chain specific)-FITC conjugated antibody (Sigma, UK), for 30-45 minutes at room 

temperature in the dark. Nuclei were counterstained with 300nM 4’, 6-diamidino-2-

phenylindole, dilactate (DAPI) (Invitrogen). Staining was visualised using the Zeiss Axiovert 

200 inverted fluorescence microscope and the Axiovision imaging software (Zeiss, Ltd). 

 

2.18 Detection of inflammatory cytokines from monolayer and OMM 

2.18.1 Antibody array 

NOK air-to-liquid interface or submerged oral mucosal models, or NOK monolayers, with or 

without fibroblasts, were washed three times with PBS and incubated in SFM with or without 

25ng ml
-1

 TNF-α (Peprotech, London, UK) at 37°C and 5% CO2 for 4 hours. Plate-cultured P. 

gingivalis NCTC 11834 were washed 3 times and added at MOI100 for monolayers and 

2x10
7
/model for 1.5 hours or 4 hours respectively, in SFM with or without 25ng ml

-1
 TNF-α, at 

37°C and 5% CO2. External, non-adherent P. gingivalis were removed with three washes of 

PBS and monolayers and models were incubated with 200µg ml
-1

 metronidazole in SFM with or 

without 25ng ml
-1

 TNF-α for 4 hours at 37°C and 5% CO2. The resultant conditioned media, 

from above and below the tissue culture inserts, were removed and analysed for the expression 

of secreted inflammatory cytokines using RayBio
®
 Human Inflammation Antibody Array 3 

(Insight Biotechnology Ltd, Middlesex, UK) according to the manufacturer’s instructions. 

Briefly, membranes were blocked with 1x Blocking Buffer (supplied in the kit) for 30 minutes 

at room temperature with gentle rocking. Neat conditioned media were added individually to 

membranes and incubated overnight with gentle rocking at 4°C to allow attachment of cytokine 

proteins to antibodies printed on the membrane. Membranes were washed and incubated with 

biotin-conjugated antibodies for 2 hours. A 1000-fold dilution of HRP-conjugated streptavidin 

was added for 2 hours, following which a HRP substrate buffer in combination with a stabilised 

chemiluminescent luminal (detection solution) was added. The array was exposed to CL-

XPosure Film (ThermoScientific) and the chemiluminescence signal detected using the 
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Compact X4 Automatic X-Ray Film Processor (Xograph Healthcare, Gloucester, UK). The 

intensities of signals were analysed using Quantity One software (Bio-Rad, UK). Internal 

positive controls and negative ‘background’ intensities were used as references to calculate the 

relative signal intensities of cytokines. The densities of cytokine dots of interest were averaged 

and the average background density subtracted. This value was divided by the average density 

of internal positive control dots to give the relative average density of each dot. The relative 

average density of corresponding cytokine dots on different membranes from OMM or 

monolayers and for each condition were compared. 

 

2.18.2 Enzyme-Linked Immunosorbent Assay (ELISA) 

As described in section 2.18.1, conditioned media from H357 monolayers and H357-OMM, 

infected with P. gingivalis were collected and analysed for interleukin 8 (IL-8/CXCL8) protein 

by enzyme-linked immunosorbent assay (ELISA). In addition, H357 or NOK monolayers and 

air-exposed H357-OMM were pre-incubated with or without 25ng ml
-1

 TNF-α or protease 

inhibitor cocktail (Roche, Hertfordshire, UK) for 4 hours and cells were infected by P. 

gingivalis NCTC 11834, W50, E8, K1A and EK18 overnight, with or without 25ng ml
-1

 TNF-α 

or protease inhibitor cocktail. Conditioned media or cell lysates (scraping after sterile water 

treatment) were collected, centrifuged at 13,000rpm for 3 minutes to remove any cell debris 

and/or bacteria, and stored at -80°C until analysed. Culture supernatants or cell lysates from 4 

hour invasion and overnight infection were analysed by ELISA using a kit from R&D Systems 

(Abingdon, UK) following the manufacturer’s instructions. Briefly, 96 well plates were coated 

with anti-human monoclonal capture antibody directed against CXCL8 overnight at room 

temperature. The plate was washed three times with wash buffer (R&D Systems) and blocked 

with reagent diluent (0.1% BSA, 0.05% Tween20 in Tris-buffered saline, pH 7.4 (R&D 

Systems)) for 1 hour at room temperature. After washing 3 times, standards and samples (with 

or without diluting 1:10-1:5000 in reagent diluent) were added to the plate for 2 hours at room 

temperature. After washing 3 times, the plate was incubated with biotinylated anti-human 

polyclonal detection antibody and was incubated for 2 hours. Following washing, streptavidin-

horseradish peroxidase conjugate was added for 20 minutes in the dark. A 

tetramethylbenzidine/hydrogen peroxide substrate solution was then added for a maximum of 

20 minutes and the reaction stopped with 2N sulphuric acid (H2SO4). ELISA plate absorbance 

values were read using a spectrophotometer (Infinite 200 PRO, Tecan, Reading, UK) at 450nm 

(with wavelength correction set to 570nm) and analysed using DeltaSoft Microplate Analysis 

Software (BioMetallics, Inc). Student t-tests were performed to assess any statistical differences 

in the release of CXCL8 from OMM and monolayers infected with different P. gingivalis 

strains. 
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2.18.3 Real-time Polymerase Chain Reaction 

As described in section 2.18.2, H357 monolayer and H357-OMM were infected overnight with 

the P. gingivalis strains W50, E8, K1A and EK18. The epithelial cells were then collected and 

analysed for interleukin 8 (IL-8/CXCL8), monocyte chemoattractant protein-1 (MCP-1/CCL2), 

interleukin 6 (IL-6) and regulated upon activation, normal T cell expressed and secreted 

(RANTES/CCL5) mRNA expression by real-time polymerase chain reaction (real-time PCR). 

In addition, H357 or NOK monolayers and air-exposed H357-OMM were pre-incubated with or 

without 25ng ml
-1

 TNF-α for 4 hours and cells were infected with P. gingivalis NCTC 11834, 

W50, E8, K1A and EK18 overnight, with or without 25ng ml
-1

 TNF-α. Treated and untreated 

cells were lysed using QiaShredder (Qiagen) according to the manufacturer’s instructions or 

lysed with lysis buffer (supplied in the RNeasy Mini Kit (Qiagen)) and drawn through a 

21guage hypodermic needle and syringe to mechanically lyse the cells. RNA was isolated using 

the RNeasy Mini Kit (Qiagen) according to the manufacturer’s instructions. The concentration 

of RNA was measured using a NanoDrop 1000 Spectrophotometer (ThermoScientific) at 

260/280nm. Complementary DNA (cDNA) was synthesised from 1μg RNA using High 

Capacity RNA-to-cDNA Kit (Applied Biosystems, Warrington, UK). The reagents shown in 

table 2.13 were mixed on ice and placed in a Peltier thermal cycler (MJ Research PTC-200 

Thermo Cycler, UK). The reverse transcription (RT) reaction consisted of 60 minutes at 37°C 

followed by 5 minutes at 95°C, after which the sample was stored at -20°C. Real-time PCR was 

performed using the StepOne Real-time PCR System (Applied Biosystems) or the 7900HT Fast 

Real-Time PCR System (Applied Biosystems) in a 48 (Invitrogen) or 96 clear well reaction 

plate (Sarstedt, Leicester, UK), respectively. The thermal cycles consisted of initial exposure of 

the samples to 50°C for 2 minutes and 95°C for 10 minutes, followed by 40 cycles of 

denaturation and extension steps at 95° for 15 seconds and 60°C for 1 minute, respectively. 

Quantification of CXCL8 and CD81 gene expression was performed using the TaqMan 

universal PCR master mix and Assays on Demand™ gene expression reagents for human 

CXCL8 (Assay ID: Hs00174103_m1, Applied Biosystems) and CD81 (Assay ID: 

Hs00174717_ml, Applied Biosystems). Reagents for the TaqMan assay are shown in table 2.14. 

Gene expression of CCL5, CCL2 and IL-6 was quantified using the SYBR Green (Applied 

Biosystems) method, which increasingly binds to double-stranded DNA as the PCR reaction 

progresses, intensifying the levels of fluorescence, which is detected in real-time. The reaction 

mixture contained reagents shown in table 2.15. The primer sequences used in this study are 

shown in Appendix 3. The housekeeping/endogenous controls for TaqMan and SYBR Green 

assays were β-2-Microglobulin (B2M) (VIC reporter, Applied Biosystems) and U6 (Sigma) 

respectively. The results were analysed using the 2
-ΔΔCT 

method. The threshold cycle (CT) values 

for each reaction, referring to the number of cycles with which the fluorescent signal passes a 

pre-selected threshold, were calculated using the RQ Manager Software (Applied Biosystems). 

The CT values of the relevant endogenous controls were used to normalise the amount of cDNA 
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in each sample by subtracting this CT value from the sample CT value, giving a ΔCT value. The 

ΔΔCT value was calculated by subtracting the untreated control (without TNF-α) from the ΔCT 

values of each sample. Finally, the fold change in gene expression, of each sample, relative to 

the untreated control was calculated. 

 

Table 2.13 The components used to synthesise cDNA. Reverse transcription was performed using the High 

Capacity RNA-to-cDNA Kit (Applied Biosystems). The following reagents were added to MicroAmp Fast reaction 

tubes (Applied Biosystems). Nuclease-free water was added to give a total volume of 20μl. 

 

Reagent Volume (μl) 

2x RT buffer 10 

20x RT enzyme mix 1.0 

RNA (1μg) Up to 9μl 

Total 20 

 

Table 2.14 The reagents used in TaqMan real-time PCR. Real-time PCR for CXCL8 and CD81was performed 

using the volumes of reagents shown in the table. All reagents were mixed on ice. Sample and endogenous control 

reactions were performed in the same well. 

 

Reagent Volume (μl) 

TaqMan Master Mix 5 

Primer (forward and reverse) 0.5 

Housekeeping gene (B2M) 0.5 

Nuclease-free water 3 

cDNA 1 

Total 10 

 

Table 2.15 The reagents used in SYBR Green real-time PCR. Real-time PCR for IL-6, CCL2 and CCL5 was 

performed using the volumes of reagents shown in the table. All reagents were mixed on ice. Sample and endogenous 

control reactions were performed in separate wells. 

 

Reagent Volume (μl) 

Power SYBR Green PCR Master Mix 10 

Forward Primer 7 

Reverse Primer 1 

Nuclease-free water 1 

cDNA 1 

Total 20 
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2.19 Two-dimensional agarose gel electrophoresis 

To determine the specificity of the real-time PCR primers, two-dimensional gel electrophoresis 

was performed. A 1% (w/v) agarose (Hi-Res Standard Agarose, GeneFlow Ltd, Staffordshire, 

UK) gel was prepared in 1x TAE buffer (table 2.16) by heating on full power in a microwave 

for approximately 2 minutes. The liquid was left to cool for 5-10 minutes and 1µl ethidium 

bromide added for every 50ml solution. Amplified PCR products for CCL5, IL-6 and CCL2 and 

a DNA ladder (exACT Gene 100bp, Fisher Scientific, UK) were added to the solidified gel, 

which was surrounded by 1x TAE buffer, placed in a Bio-Rad Mini-sub
®
Cell GT system 

(Hertfordshire, UK), attached to a Bio-Rad powerpack and run at approximately 75Volts. The 

gel was viewed under a UV transilluminator and images taken using the G:BOX (SynGene) and 

the GeneSnap software (SynGene). 

 

Table 2.16 Components of TAE buffer. The table shows the amounts of each component required to achieve 50x 

TAE buffer, diluted to 1L in distilled water. 

Component Company Mass or Volume 

Tris Base Fisher Scientific 242g 

Glacial acetic acid Sigma 57.1ml 

0.5M EDTA (pH 8.0) Fisher Scientific 100ml 

 

2.20 Separation of epithelial cells associated with P. gingivalis 

2.20.1 Using Dynabeads to separate epithelial cells  

In an attempt to separate epithelial cells that were associated with bacteria, from those that were 

not following an invasion assay, Dynabeads
®
 M-270 Epoxy (Dynal

®
, Invitrogen, UK) were 

used. These magnetic beads are coated with a hydrophilic layer of glycidyl ether (epoxy) 

functional groups, allowing for the direct binding of proteins, in this instance, on the surface of 

P. gingivalis cells. The Dynabeads
®
 were stored in dimethylformamide (DMF) at 4°C according 

to the manufacturer’s instructions. Prior to their use in experiments, Dynabeads
®
 were washed 4 

times in PBS to remove the DMF. This was achieved by applying a magnetic field 

(EasySep
®
Magnet, Stem Cell Technologies, Bath, UK), congregating the beads to the side of 

the tube allowing for the removal of liquid and the ease of washing. Beads (1x10
8
/ml) were 

blocked for 30 minutes in 0.1% (w/v) BSA in PBS, and incubated aerobically for 2 hours with 

or without approximately 2x10
9
/ml P. gingivalis NCTC 11834. Following incubation, adhesion 

of P. gingivalis to the beads was assessed microscopically. The beads were then washed 3 times 

with PBS to remove any unbound bacteria and the beads ± bacteria (MOI100) were incubated 

with pre-blocked (2% (w/v) BSA in SFM) epithelial cells (H357) for 1.5 hours. Cells were 

washed 3 times with PBS to remove the non-cell associated beads and 200μg ml
-1

 

metronidazole was added for 1 hour. The cells were washed 3 times and dissociated from the 

bottom of the tissue culture well using trypsin/EDTA. Epithelial cells associated with magnetic 
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beads (hence those associated with bacteria) were separated, using a magnet, into the pellet and 

those not associated with beads were removed in the supernatant. These two cell populations 

were counted using a haemocytometer and plated at a density of 1x10
5
/well in a 24-well plate. 

These cells were cultured, alongside wild-type H357, in Green’s Medium at 37°C/5%CO2 

overnight. The following day, an antibiotic protection assay with P. gingivalis NCTC 11834 

was performed (as in section 2.11.1).  

 

Figure 2.1 Separation of epithelial cells using magnetic beads associated with P. gingivalis. Dynabeads® were 

incubated with P. gingivalis NCTC 11834 for 2 hours and unbound bacteria were washed from the beads. P. 

gingivalis-associated beads were incubated with monolayer cultures of H357 epithelial cells for 90 minutes. Loosely 

adhered P. gingivalis-associated beads were washed from the epithelial cells and monolayers were trypsinised and 

separated using a magnet. Epithelial cells associated with P. gingivalis-beads were separated towards the magnet and 

epithelial cells not associated with P. gingivalis-beads were separated from the supernatant. These two cell 

populations, in addition to un-treated epithelial cells were seeded in a 24-well plate and cultured at 37°C/5% CO2 

overnight. The following day an invasion assay was performed on these epithelial cells. 

 

2.20.2 Identifying cell populations by flow cytometry 

P. gingivalis NCTC 11834 were fluorescently labelled using 0.4μg ml
-1

 FITC (as in section 

2.16). Pre-blocked H357 cells were incubated for 1.5 hours with MOI100 labelled P. gingivalis, 

fluorescent beads (4.5µm diameter, Fluoresbrite BB Carboxylate Microsphere, Polysciences, 

Inc, Warrington, UK), or a combination of both. After this incubation period, cells were washed 

3 times with PBS, trypsined and kept on ice. Cells were analysed for fluorescence using the 

LSRII Flow Cytometer (BD Biosciences) at the University of Sheffield Flow Cytometry Core 

Facility. Briefly, cells were separated according to their fluorescence and hence their association 

with P. gingivalis and/or fluorescent beads. Beads, P. gingivalis and H357 cells alone were 
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analysed in parallel and used as controls to adjust side scatter, fluorescence and particle size 

parameters. 

 

2.21 Tetraspanin and alpha-5 integrin expression analysed by flow cytometry 

H357 monolayers were cultured until approximately 90% confluent, washed 3 times with PBS 

to remove any serum or antibiotic and incubated in 2% (w/v) BSA in SFM for 1 hour. SFM 

(unstimulated) or W50, E8, K1A or EK18 (stimulated) was added at MOI100 overnight at 37°C 

and 5% CO2. Approximately 6x10
5
 cells were trypsinised (0.05%trypsin/0.02%EDTA) at 37°C 

and neutralised with Green’s Medium (50:50). Cells were pelleted at 6000rpm (Biofuge 13, 

Heraeus Instruments, Basingstoke, UK) for 2 minutes, resuspended in 10µg ml
-1

 primary 

antibody for CD9, CD63, CD151 and IgG1 and 1:10 dilution of α5, CD81 and CD82 (see table 

2.17) and incubated in FACs buffer (PBS+0.1% (v/v) sodium azide+0.1% (w/v) BSA) at 4°C 

for 30-40 minutes. Cells were washed with 1ml FACs buffer and incubated with AlexaFluor 

488-conjugated anti-human secondary antibody (1:100; Invitrogen, Paisley, UK) for 30-40 

minutes at 4°C in the dark. Cells were washed twice with FACs buffer. Prior to cell-surface 

tetraspanin determination on FACsCalibur (BD Biosciences, Oxford, UK), 5µl (approximately 

4µM) TO-PRO
®
-3 (Invitrogen) was added, which was used as a live/dead stain. TO-PRO

®
-3 

has a high affinity for double-stranded DNA and does not penetrate the cell membrane of 

intact/live cells. Alexafluor 488-conjugated secondary antibody was viewed under the FL-1 

channel and TO-PRO
®
-3 was viewed under FL-4. The fluorescence of each tetraspanin and 

alpha-5 was compared for both stimulated and unstimulated samples, gating around the live 

cells only, preventing false positive results. An overlay plot of IgG1 control (stimulated) and 

IgG1 control (unstimulated) was overlaid with each primary antibody (stimulated and 

unstimulated) and the median value was analysed using CellQuestPro Software (BD 

Biosciences). 

 

2.22 Knockdown of CD81 using siRNA 

Transfection was performed using CD81 siRNA (Applied Biosystems, siRNA ID: s2724) or 

non-target control siRNA (Applied Biosystems, Silencer
®
Select #1 negative control) and 

Oligofectamine™ (Invitrogen), according to the manufacturer’s instructions. Briefly, 0.5µl of 

50µM siRNA and 5µl Oligofectamine per 24well plate were incubated with Opti-MEM
®
 

(Invitrogen), to a total volume of 50µl, at room temperature for 30 minutes. An additional 50µl 

Opti-MEM
® 

was then added to this solution. H357 monolayers, at 60% confluence, were 

washed twice with Opti-MEM
® 

and 100µl of the transfection mixture added to the wells to a 

total volume of 250µl per well in Opti-MEM
®
. After 3 hours, 250µl of Green’s Medium 

(containing 20% serum) was added to the wells and incubated for 48 hours. Transfected cells 

were used to perform an antibiotic protection assay (section 2.11.1) to compare the percentage 

invasion of CD81 knockdown cells by P. gingivalis W50. The transfection efficiency was 
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determined by real-time PCR (as in section 2.18.3) using TaqMan primers (Applied Biosystems, 

Assay ID:Hs00174717_m1, see table 2.14). Knockdown of CD81 was also shown by flow 

cytometry (section 2.21). 

 

Table 2.17 Anti-tetraspanin, -CD46 and -α5 antibodies. The antibodies that were used in the analysis of 

tetraspanin, CD46 and alpha 5 integrin expression and antibody blocking prior to a P. gingivalis antibiotic protection 

assay. 

Antibody Clone Species Origin 

CD9 602.29 Mouse monoclonal Courtesy of Dr Pete Monk, 

Department of Infection and 

Immunity, University of Sheffield 

Medical School 

CD63 H5C6 Mouse monoclonal Courtesy of Dr Pete Monk, 

Department of Infection and 

Immunity, University of Sheffield 

Medical School 

CD81 (TAPA-1) 1D6 Mouse monoclonal Serotec, Oxford, UK 

CD82 (KAI1) B-L2 Mouse monoclonal Serotec, Oxford, UK 

CD151 14A2 Mouse monoclonal Courtesy of Dr Pete Monk, 

Department of Infection and 

Immunity, University of Sheffield 

Medical School 

α5/CD49e 238307 Mouse monoclonal R&D Systems, Abingdon, UK 

CD46 MEM-

258 

Mouse monoclonal Serotec, Oxford, UK 

IgG1 (Isotype 

control) 

DAK-

GO1 

Mouse monoclonal Dako, Copenhagen, Denmark 

 

2.23 Statistical Analysis 

All comparisons were analysed using a students’ unpaired, two-tailed t-test with unequal 

variance. Calculations were performed using Microsoft
®
 Excel, Microsoft

®
 Office, 2007. 
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Chapter 3 Characterisation and optimisation of oral mucosal models 

to study Porphyromonas gingivalis invasion 

 

3.1  INTRODUCTION 

For in vitro studies, the oral environment has, for a long time, been modelled using a simple 

monolayer culture of orally-derived cells (Aruni et al., 2011; Belton et al., 1999; Lamont et al., 

1995). However, with the dawn of tissue engineering, the in vitro culture of oral mucosal tissues 

has progressively been used as a more representative model of the oral environment (Andrian et 

al., 2004; Rouabhia and Deslauriers, 2002; Mackenzie and Fusenig, 1983).  

 

These engineered oral mucosal tissues have been used in the clinical setting as grafts to promote 

wound healing (MacNeil et al., 2011 Bhargava et al., 2008) and within the laboratory setting to 

study the effects of microbial infection (Andrian et al., 2004; Andrian et al., 2007; Décanis et 

al., 2009; Dickinson et al., 2011; Mostefaoui et al., 2004; Semlali et al., 2011; Yadev et al., 

2011 ), to model oral dysplasia and cancer invasion (Colley et al., 2011; Gaballah et al., 2008) 

and the biocompatibility of dental materials (Chai et al., 2010; Moharamzadeh et al., 2008a; 

Moharamzadeh et al., 2008b).  

 

Tissue-engineered oral mucosa may be cultured using a variety of supporting, fibroblast-

embedded scaffolds (Moharamzadeh et al., 2007a). Two scaffolds: acellular DED and type I 

collagen have been utilised previously for the culture of organotypic models (Dongari-

Bagtzoglou and Kashleva, 2006, Yadev et al., 2011) but have not been fully characterised in 

terms of histological comparisons with normal oral mucosa. This chapter provides information 

regarding these issues in an attempt to determine which scaffold is most suited to study bacterial 

invasion. 

 

To verify the comparability of oral mucosal models with the native tissue, novel models require 

characterisation in terms of expression of key proteins, comparing with normal oral mucosa for 

similarities and/or differences (Dongari-Bagtzoglou and Kashleva, 2006; Kinikoglu et al., 2009; 

Rouabhia and Deslauriers, 2002; Yadev et al., 2011). OMM based on collagen have previously 

been characterised in terms of the expression of Ki-67, E-cadherin (Dongari-Bagtzoglou and 

Kashleva, 2006), cytokeratins 14, 19 and 10, the integrin subunits β1, α2β1 (Rouabhia and 

Deslauriers, 2002), cytokeratin 13 and laminin 5 (Kinikoglu et al., 2009). This chapter provides 

characterisation of the popular air-exposed stratified epithelial model and also characterisation 

of a novel model which resembles junctional epithelium. Due to the close proximity of 

junctional epithelium with the poly-microbial plaque biofilm (Bosshardt and Lang, 2005), this 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Mackenzie%20IC%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Fusenig%20NE%22%5BAuthor%5D
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model was developed in an attempt to represent the oral epithelial-microbial interactions in 

periodontitis.  

 

There are many pathogenic bacteria that are capable of invading human cells (Bamburg, 2011; 

Hunstad and Justice, 2010). Therefore, the use of a three-dimensional model designed and 

optimised for the study of bacterial invasion seems logical in this present day when monolayer 

cultures are becoming recognised as a deficient model to study the host response adequately. 

This is due to its flaws, including the lack of a multi-layered epithelium and the incorporation of 

other contributing cell types (Altmann et al., 2009). However, in terms of microbial infection 

there are limited data regarding the optimisation of oral mucosal models for invasion by 

pathogenic bacteria, in particular, P. gingivalis. Two recent studies by Dickinson et al. (2011) 

and Andrian et al. (2004) describe P. gingivalis invasion of multi-layered epithelial cultures in a 

qualitative/semi-quantitative manner using microscopic analyses. However, throughout the 

literature there is a lack of quantitative data regarding the invasion of P. gingivalis into 

organotypic mucosal cultures. Therefore, this chapter provides data regarding the optimisation, 

and modification of the commonly used antibiotic protection assay, to study the invasion and 

recovery of viable intracellular P. gingivalis.  

 

3.1.1 Aims and Objectives 

The aim of the work described in this chapter was to develop and assess the use of a range of 

tissue engineered oral mucosal models for the study of P. gingivalis invasion into oral 

epithelium. To achieve this, the in vitro organotypic models were characterised by histological 

analysis and immunohistochemical staining. Subsequently the models were optimised for 

bacterial invasion in terms of the assay culture environment, period of infection and the lysis 

technique used to release intracellular bacteria. The viability of the model following invasion 

was assessed, as was the depth of penetration of P. gingivalis through the model. 

 

3.2  METHODS 

The following methods were used in this chapter: 

 Isolation and culture of NOK, H357 and human fibroblasts (sections 2.1, 2.2, 2.3 & 2.4) 

 P. gingivalis culture (section 2.5) 

 Culture of collagen and DED OMM (section 2.8) 

 Neutrophil isolation and incorporation into OMM (section 2.7 & 2.9) 

 Immunohistochemical staining (section 2.14) 

 Antibiotic protection assay (section 2.11.1) 

 Modified antibiotic protection assay (section 2.11.2) 

 Histology of OMM (section 2.10) 
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 Epithelial viability (LDH, MTT) (section 2.12) 

 Bacterial viability (section 2.13) 

 Immunofluorescence staining (section 2.16) 

 Formation of fibrin clot (section 2.15) 

 Statistical analysis (Section 2.22) 

 

 

3.3   RESULTS 

3.3.1 Characterisation of an oral mucosal model 

3.3.1.1 Comparison of collagen and DED OMM 

Tissue-engineered OMM based on DED and rat-tail type I collagen, previously described by 

Haddow et al. (2003) and Dongari-Bagtzoglou and Kashleva (2006) respectively, were cultured. 

DED-OMM and collagen-OMM seeded with the oral keratinocyte cell line H357, or NOK were 

fixed, sectioned and stained with haematoxylin and eosin (H&E), which is the routine 

histological stain used for examining tissue sections. Figure 3.1 shows H&E stained sections of 

H357 and NOK cultured on DED (Fig 3.1A and 3.1C respectively) and rat-tail type I collagen 

(fig 3.1B and 3.1D respectively) at the air-to-liquid interface. In these figures, the nuclei stained 

blue and the cytoplasm and connective tissue stained pink. In both DED-OMM and collagen-

OMM there was significant fibroblast infiltration (black arrows, fig 3.1) and a multi-layered 

epithelium. Keratinocyte differentiation could be recognised in NOK-OMM based on DED as a 

flattening of keratinocytes as the number of epithelial layers increased and the increased 

keratinisation and loss of cell nuclei in the upper-most layers (fig 3.1C). Only slight 

keratinocyte differentiation was detected in NOK-OMM based on collagen, whereas H357 

models did not show epithelial differentiation in either model. Other differences in the histology 

between DED-OMM and collagen-OMM can clearly be seen, such as the absence of rete ridges 

in collagen-OMM. For reasons that are unclear, sometimes DED-based models failed to grow 

properly and the epithelium remained at just two or three cells thick, but this was not apparent 

until several days of culture. However, models based on collagen were more reproducible, grew 

reliably, were less costly because the collagen was extracted in-house, were easier to manipulate 

and gave greater epithelial coverage of approximately 15 cell layers compared with 

approximately 10 cell layers in DED-OMM. These advantages were felt to outweigh the 

disadvantage of the lack of a basement membrane (which remains in tact in DED), so models 

based on collagen were used in all subsequent experiments. 
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3.3.1.2 Time course of epithelial growth 

After raising to an air-to-liquid interface, H357-OMM were cultured for a further 0, 4, 7, 10, 13 

and 16 days in order to determine the optimum length of time to culture OMM. Whilst 

submerged, the keratinocytes covered the collagen matrix with 1-5 cell layers (fig 3.2, day 0). 

When the models were raised to the air-to-liquid interface, the epithelium began to stratify, and 

the epithelial layers increased (fig 3.2). The optimal length of time to culture the models was 

determined to be 7-10 days after raising to the air-to-liquid interface. This time period resulted 

in maximal epithelial stratification without significant loss of tissue integrity. At later time 

points, invasion of H357 cells into the collagen was observed and, at day 16, extensive keratin 

deposits, often termed ‘keratin-pearls’ (pink), could be seen in the upper epithelial layers. 

  



Chapter 3 Characterisation and optimisation of OMM to study P.gingivalis invasion 

92 

 

 

 

 

Figure 3.1 Haematoxylin and Eosin (H&E) staining of the three-dimensional oral mucosal model and buccal 

biopsy. H&E stained buccal biopsy is shown (oral biopsy), in addition to H&E stained sections of organotypic 

mucosal model (OMM). To culture OMM, fibroblasts were suspended in rat-tail type I collagen or seeded onto the 

surface of de-epidermalised dermis (DED). After 0-3 days the H357 cell line or normal oral keratinocytes (NOK) 

were seeded onto the surface and raised to an air-to-liquid interface after 2-3 days. Following 7-12 days in culture, 

models were fixed in 10% formalin, paraffin embedded, sectioned and H&E stained. The keratinocytes proliferated to 

form a stratified epithelium and fibroblasts could be seen (black arrows) within H357 DED-OMM (A), H357 

collagen-OMM (B), NOK DED-OMM (C) and NOK collagen-OMM (D) (NOK-DED (C) was cultured by Dr 

Vanessa Hearnden, School of Clinical Dentistry, Sheffield). 
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Figure 3.2 Epithelial growth of H357-OMM over time. Fibroblast-embedded type I collagen was seeded with the 

H357 cell line and submerged in culture medium for 2 days, after which models were raised to the air-to-liquid 

interface for 4, 7, 10, 13 and 16 days. Models were formalin fixed, paraffin embedded and H&E stained. [N.B. The 

“block-like” appearance of the epithelium is an artefact due to folding of the tissue during processing and/or 

sectioning]  

 

3.3.1.3 Histological comparison of submerged and air-exposed OMM 

In terms of relevance to periodontitis, P. gingivalis is most likely to invade the junctional 

epithelium (Bosshardt and Lang, 2005), which is deep in the gingival sulcus in close proximity 

to the plaque-covered tooth surface.  The reduced oxygen tension and presence of complex 

nutritional components provides optimal conditions for the survival and propagation of this 

anaerobic bacterium. Therefore, in an attempt to more closely resemble junctional epithelium, 

which is only a few cell layers in depth (Gao and Mackenzie, 1992), models were left 

completely submerged for 3-5 days, and this produced models that were only 1-3 cell layers 

thick (fig 3.3).  
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Figure 3.3 Histological comparison of air-exposed and submerged OMM. Fibroblast-embedded rat-tail type I 

collagen models, seeded with H357 or NOK were raised to the air-to-liquid interface for 7-10 days or left completely 

submerged in culture medium for 3-5 days.  Haematoxylin stained paraffin-embedded sections are shown. 

 

3.3.1.4 Immunohistochemical comparison of OMM with normal oral 

biopsy  

Building on data from Rouabhia & Deslauriers (2002) and Dongari-Bagtzoglou & Kashleva 

(2006), models were further characterised against oral biopsies isolated from patients and 

volunteers at the Charles Clifford Dental Hospital, Sheffield, UK. Laboratory-engineered oral 

mucosa was compared immunohistochemically with gingival and buccal biopsies for 

similarities and/or differences. 

 

Air-exposed H357 and NOK models were stained for pan-cytokeratin (AE1/AE3), cytokeratin 

13, cytokeratin 14, laminin 5 and E-cadherin using specific antibodies. Control slides were 

stained using a non-immune murine IgG1 antibody as an isotype matched negative control, 

which did not show any staining (fig 3.4). 

 

Staining for pan-cytokeratin using anti-AE1/AE3 antibodies was positive in both models 

showing diffuse staining throughout the whole epithelium, which was comparable with the 

positive staining observed in both gingival and buccal biopsies (fig 3.5).  
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Figure 3.4 Immunohistochemical staining for murine IgG1 isotype control. Tissue sections of buccal mucosa 

(A), gingival tissue (B), H357-OMM (C) and NOK-OMM (D) were stained immunohistochemically using an IgG1 

negative control antibody. After 2-3 days OMM were raised to the air-to-liquid interface for approximately 7-10 

days. [N.B. A and B are shown at a lower magnification to include basal and apical epithelial layers and the upper 

sections of the connective tissue] 

 

 

Figure 3.5 Immunohistochemical staining for pancytokeratin (clone AE1/AE3). Tissue sections of buccal 

mucosa (A), gingival tissue (B), H357-OMM (C) and NOK-OMM (D) were stained immunohistochemically for 

pancytokeratin. After 2-3 days OMM were raised to the air-to-liquid interface for approximately 7-10 days.   
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Figure 3.6 Immunohistochemical staining for cytokeratin 13. Tissue sections of buccal mucosa (A), gingival 

tissue (B), H357-OMM (C) and NOK-OMM (D) were stained immunohistochemically for cytokeratin 13. After 2-3 

days OMM were raised to the air-to-liquid interface for approximately 7-10 days. [N.B. Buccal mucosa (A) is shown 

at a lower magnification to include basal and apical epithelial layers and the upper section of connective tissue] 

 

 

Figure 3.7 Immunohistochemical staining for laminin 5. Tissue sections of buccal mucosa (A), gingival tissue (B), 

H357-OMM (C) and NOK-OMM (D) were stained immunohistochemically for laminin 5. After 2-3 days OMM were 

raised to the air-to-liquid interface for approximately 7-10 days. [N.B. Buccal mucosa (A) is shown at a lower 

magnification to include basal and apical epithelial layers and the upper section of connective tissue] 
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Figure 3.8 Immunohistochemical staining for cytokeratin 14. Tissue sections of buccal mucosa (A), gingival 

tissue (B), H357-OMM (C) and NOK-OMM (D) were stained immunohistochemically for cytokeratin 14. After 2-3 

days OMM were raised to the air-to-liquid interface for approximately 7-10 days. [N.B. Gingival mucosa (B) is 

shown at a lower magnification to include basal and apical epithelial layers and the upper section of connective 

tissue] 

 

Differences in cytokeratin 13 staining can be seen between buccal and gingival biopsy. Figure 

3.6 shows that the buccal biopsy stained profusely throughout the whole epithelium, whereas 

the gingival biopsy stained the spinous epithelial layers only, distinctively lacking staining in 

the basal or keratinised layers. H357-OMM did not stain for cytokeratin 13, whereas NOK-

OMM showed staining in the upper-most differentiated epithelial layers (fig 3.6). 

 

Immunohistochemical analysis of the basement membrane protein laminin 5 showed a 

significant level of background staining. Despite this, staining of H357-OMM and NOK-OMM 

mirrored the staining observed in the buccal biopsy, showing expression in the basal epithelial 

layers only (fig 3.7). However, staining of the gingival biopsy showed diffuse epithelial 

expression, but lacked staining in the superficial keratinised layers (fig 3.7).  

 

Staining for cytokeratin 14 highlighted differences between H357- and NOK-OMM. In the 

H357-OMM, staining was not restricted to any epithelial layer and diffuse staining of all of the 

epithelium was seen (fig 3.8). This mirrored the staining observed in the gingival biopsy. NOK 

models were cultured using keratinocytes isolated from buccal biopsies, and in these, the basal 

epithelial layers only were stained, which was in line with staining observed in the oral biopsy 

taken from the buccal mucosa.  
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E-cadherin staining of intercellular junctions within H357-OMM and NOK-OMM was very 

similar to that seen in buccal and gingival biopsies (fig 3.9). 

 

Figure 3.9 Immunohistochemical staining for E-cadherin. Tissue sections of buccal mucosa (A), gingival tissue 

(B), H357-OMM (C) and NOK-OMM (D) were stained immunohistochemically for E-cadherin. After 2-3 days 

OMM were raised to the air-to-liquid interface for approximately 7-10 days.  

 

Submerged models were also stained immunohistochemically for the same markers, i.e. 

pancytokeratin, cytokeratin 13, laminin 5, cytokeratin 14 and E-cadherin (fig 3.10). The same 

expression profile for all markers was seen with submerged OMM compared with air-exposed 

OMM. For example, the only negative staining for the submerged OMM was for cytokeratin 13 

in the H357 model (fig 3.10), which was comparable to the air-exposed model (fig 3.6). All 

other submerged OMM stained positively for pancytokeratin, laminin 5, cytokeratin 14 and E-

cadherin. 

 

3.3.2 Incorporation of neutrophils into OMM 

The host immune response to bacterial challenge involves the recruitment of such immune cells 

as neutrophils to the site of infection. The oral mucosal model, which was characterised in this 

chapter, lacked any immune cells, which are important in the removal of bacterial species in 

vivo. Therefore, to try to make the models at least partially immune-competent, neutrophils were 

isolated from the whole blood of healthy volunteers and added to the basal surface of IL-1β-

stimulated H357-OMM until they adhered and then OMM were returned to the culture medium 

overnight, allowing neutrophil migration through the OMM. IL-1β-stimulated H357-OMM was 

used in order to generate a chemoattractant gradient to allow neutrophil recruitment. Figure 3.11 
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shows the presence of neutrophils in the connective tissue layer of stimulated H357-OMM. 

Multi-lobular nucleated cells were clearly visible in figures 3.11A & 3.11D (*) within the 

collagen layer. However, no neutrophils were detected in the epithelial layer. This may have 

been due to the thickness or type of the collagen scaffold or that the chemoattractant gradient 

was insufficient. Attempts were made to increase neutrophil migration using P. gingivalis as the 

stimulus but similar numbers of neutrophils were seen and again these were confined to the 

collagen layer. 
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Figure 3.10 Immunohistochemical staining of submerged H357-OMM and NOK-OMM. OMM were completely 

submerged in culture medium for 3-5 days, after which the models were formalin fixed, paraffin embedded, sectioned 

and stained immunohistochemically using antibodies directed against pancytokeratin, cytokeratin 13, laminin 5, 

cytokeratin 14 and E-cadherin. Murine IgG was used as an isotype-matched negative control. Inset boxes are 

approximately 2.3x magnified. 
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Figure 3.11 Neutrophil migration through H357-OMM. Neutrophils were isolated and incubated with H357-

OMM overnight in the presence of IL-1β. Sections of OMM were stained using an anti-neutrophil elastase primary 

antibody by immunohistochemistry (B & C). Murine IgG was used as an isotype-matched negative control (A). 

Arrows depict neutrophils. Multi-lobular nuclei can be seen (*). 
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3.3.3 Optimisation of OMM for Porphyromonas gingivalis invasion 

Following characterisation of the model, the experimental design of a standard antibiotic 

protection assay was modified to evaluate P. gingivalis invasion of OMM.  

 

The standard antibiotic protection assay, used in many studies of bacterial invasion (Choi et al., 

2011; Chu et al., 2010; Lamont et al., 1995), involves numerous steps which had to be 

optimised and adapted differently in the 3D model compared with 2D culture. The steps that 

were investigated were the length of time for optimal bacterial invasion, the atmosphere the 

assay would need to be performed under: anaerobic or aerobic, and the lysis technique used to 

recover intracellular bacteria. The viability of OMM following invasion was also assessed to 

ensure any changes to the experimental design did not compromise epithelial viability. 

 

3.3.3.1 Time course of P. gingivalis invasion 

Previously in the literature, the incubation time used to investigate P. gingivalis invasion of a 

similar organotypic mucosal model was 24 hours anaerobically (Andrian et al., 2004). As this 

was the only report regarding P. gingivalis invasion of a full-thickness organotypic model, 

initial experiments were performed overnight anaerobically. However, during this incubation 

period the epithelium showed signs of degradation and surface epithelial cell loss (fig 3.12). In 

particular, NOK-OMM showed the greatest epithelial disruption compared with H357-OMM. 

Shown later in this chapter, P. gingivalis may only invade the superficial layers of epithelium 

(fig 3.23) suggesting that, particularly with NOK-OMM, there was likely to be reduced levels of 

bacterial detection, when analysed using an antibiotic assay, due to the removal of epithelial 

layers during the washing steps. In particular, it was discovered that extensive washing of the 

models, over a 1 hour time period, was required to ensure the removal of metronidazole from 

the tissue. 
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Figure 3.12 Epithelial damage of H357-OMM and NOK-OMM following overnight anaerobic incubation with 

P. gingivalis. H357-OMM and NOK-OMM were cultured at the air-to-liquid interface for 7-10 days following which 

OMM were exposed to P. gingivalis NCTC 11834 (MOI100) overnight (approximately 16 hours) anaerobically. 

Control images are of representative models sacrificed prior to the experimental procedure. 

 

Therefore, to preserve epithelial integrity, a time course of invasion was performed aerobically, 

and was used to indicate the length of time with which to incubate P. gingivalis with the OMM 

to give maximal percentage invasion. Figure 3.13 shows the time course of invasion for air-

exposed OMM indicating that 3-6 hours incubation was maximal for P. gingivalis NCTC 

11834, to invade and to subsequently be recovered from the intracellular environment. Figure 

3.13 shows that invasion increased gradually, up to a maximum of 4.25±0.84% at 6 hours and 

decreased after 6 hours resulting in a very low percentage recovery of intracellular bacteria after 

24 hours (0.16±0.08%). The reduced percentage recovery of intracellular P. gingivalis at 24 

hours compared with 6 hours suggested that the viability of intracellular bacteria decreased over 

time. Indeed, when cultured extracellularly in culture medium alone, the viability of P. 

gingivalis NCTC 11834 decreased to zero after 24 hours (fig 3.14).  
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Figure 3.13 A time course for invasion of air-exposed H357-OMM by P. gingivalis. Air-exposed H357-OMM 

were cultured and exposed to 2x107 P. gingivalis (being a nominal MOI100 because OMM and 24-well plate 

monolayer cultures have similar surface areas) for 1.5, 3, 6, 12 or 24 hours. Metronidazole was added to kill external 

adherent bacteria and the intracellular bacteria were enumerated by colony counting after lysing the OMM by 

homogenisation. Bars indicate the percentage invasion relative to the original bacterial suspension plated during 

bacterial incubation with OMM. Percentage invasions are means (±SEM) of 3 independent experiments performed in 

triplicate.  

  

Figure 3.14 Percentage viability of P. gingivalis NCTC 11834 cultured aerobically in serum-free culture 

medium over time. Plate cultured P. gingivalis NCTC 11834 was harvested and resuspended in serum-free culture 

medium at 2x107 (representative of the number of bacterial cells added to epithelial cells in a typical 24-well invasion 

assay) for 48 hours at 5% CO2/95% air. Samples of the culture medium were removed at each time point, serially 

diluted and colonies were counted. Counted colonies were analysed as a percentage of the original bacterial 

suspension plated prior to aerobic incubation.  

 

Submerged models were also used to investigate the optimal infection time with P. gingivalis 

(fig 3.15). Similarities in the percentage invasion of P. gingivalis into submerged models 

compared with air-exposed models were observed, peaking at 3 hours (3.69±1.37%). Therefore, 

for subsequent experiments, a 4 hour incubation period with P. gingivalis was routine for both 

submerged and air-exposed OMM, as no significant difference in percentage invasion was 

observed between 3 and 6 hours. 
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Figure 3.15 A time course for invasion of submerged H357-OMM by P. gingivalis. Submerged H357-OMM were 

cultured and exposed to P. gingivalis (2x107) for 1.5, 3, 6, 10 or 24 hours. Metronidazole was added to kill external 

adherent bacteria and the intracellular bacteria were enumerated by colony counting after lysing the OMM by 

homogenisation. Bars indicate the percentage invasion relative to the original bacterial suspension plated during 

bacterial incubation with OMM. Percentage invasions are means (±SEM) of 3 independent experiments performed in 

triplicate.  

3.3.3.2 Bacterial recovery from OMM: Homogenisation or manual 

chopping? 

In order to release the intracellular bacteria from the model, two methods were investigated. 

These were mechanically chopping of the model with a scalpel and vigorously pipetting up and 

down, or homogenisation using a commercially available homogeniser (TissueRuptor, Qiagen). 

The release of P. gingivalis from H357-OMM using these two methods is shown in figure 3.16. 

No significant difference in percentage recovery was shown (p=0.533). However, 

experimentally it was found that cutting was more time consuming and did not give a 

homogeneous suspension, which proved difficult to pipette. Therefore, for subsequent 

experiments homogenisation was used to release internalised bacteria from OMM. 

 

 

Figure 3.16 Comparison of two lysis techniques to release intracellular P. gingivalis from H357-OMM. Air-

exposed H357-OMM were infected with P. gingivalis NCTC 11834 for 4 hours aerobically. Models were lysed by 

homogenisation or mechanical cutting with a scalpel. Invasion was calculated as the number of viable colonies 

counted as a percentage of the viable count of the original bacterial suspension. Data shown are means of three 

independent experiments performed in triplicate (±SD).  
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To ensure that the viability of P. gingivalis was not affected by homogenisation, a suspension of 

P. gingivalis was homogenised and the bacterial viability assessed by colony counting on blood 

agar. No significant difference in bacterial viability was found up to 10 seconds, which was the 

length of time used to release intracellular bacteria from OMM, although it did decline with 

longer periods of homogenisation (fig 3.17). 

 

Figure 3.17 The viability of P. gingivalis NCTC 11834 after homogenisation. Plate cultured NCTC 11834 was re-

suspended in PBS and subjected to homogenisation for 0, 3, 6, 9, 12, 15, 18, 21 and 24 seconds. Viable colony counts 

were made and bars indicate the mean percentage bacterial viability (± SD) after adjusting the colony counts of 0 

second homogenisation to 100%. Results shown are means of triplicate experiments.  

 

3.3.3.3 Anaerobic or aerobic incubation? 

As P. gingivalis is an anaerobic bacterium and the epithelial model is cultured in an aerobic 5% 

CO2 atmosphere, it was difficult to know in which atmosphere the assay should be performed to 

produce optimal results. It has been shown that incubation of OMM overnight anaerobically 

resulted in marked epithelial destruction (fig 3.12), but does the culture atmosphere affect 

bacterial invasion, particularly during the optimal 4 hour incubation period? Therefore, H357-

OMM were cultured and infected with P. gingivalis NCTC 11834 (MOI100) aerobically or 

anaerobically for 4 hours and the proportions of the recovered bacteria were compared. The 

percentage invasions shown in figure 3.18 indicated that when incubated aerobically there was a 

greater recovery of internalised bacteria, compared with anaerobic incubation (5.08±2.11% and 

2.89±0.74%, respectively). However, this was not significantly different (p=0.166) suggesting 

that the atmosphere the assay was performed under, at least over 4 hours, did not affect bacterial 

viability. Consequently, for subsequent experiments, the aerobic 5% CO2 condition was chosen 

for invasion assays as this method was technically easier to perform in terms of entering and re-

entering the anaerobic chamber during each incubation period and it was better for the 

maintenance of epithelial integrity. 
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Figure 3.18 Invasion of H357-OMM by P. gingivalis under anaerobic and aerobic conditions. Rat-tail type I 

collagen models seeded with the H357 cells were raised to the air-to-liquid interface for 7-10 days and infected with 

P. gingivalis NCTC 11834 (MOI100) for 4 hours aerobically or anaerobically. Models were lysed by homogenisation 

and invasion was calculated as the number of viable colonies counted as a percentage of the original bacterial 

suspension plated during bacterial incubation with OMM. Data shown are means of three independent experiments 

performed in triplicate (±SD).  

 

3.3.3.4 Viability of OMM following invasion 

Data in figure 3.13 shows that over a 4 hour time period, bacterial invasion was at a maximum. 

Therefore, the viability of H357-OMM was investigated following invasion by P. gingivalis 

over the same period. Epithelial viability was measured using a lactate dehydrogenase or MTT 

assay, whilst tissue damage was observed by H&E staining. 

 

3.3.3.4.1 H&E 

Histological staining of OMM following 4 hour invasion of H357-OMM by P. gingivalis NCTC 

11834 indicated that there were no macroscopic changes in epithelial morphology or loss of 

epithelial integrity over this time period (fig 3.19). 

 

Figure 3.19 H&E stained sections of H357-OMM incubated for 4 hours with P. gingivalis. H357-OMM were 

cultured at an air-to-liquid interface for 7-10 days following which OMM were exposed to P. gingivalis NCTC 11834 

(MOI100) for 4 hours aerobically. Control image is a representative model sacrificed prior to the experimental 

procedure. 
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3.3.3.4.2 LDH 

To quantitatively assess the viability of H357-OMM a lactate dehydrogenase assay was chosen. 

LDH is a soluble cytoplasmic enzyme that is released from cells when they undergo necrosis or 

apoptosis. The released enzyme is then able to reduce the assay substrate producing a coloured 

product, the absorbance of which can be measured by a spectrophotometer. Due to their short 

culture period and relatively low experimental cost, preliminary assays used monolayer cultures 

of H357. Monolayers were incubated with P. gingivalis overnight and an LDH assay was 

performed. Figure 3.20 shows that the baseline LDH release from uninfected monolayers was 

7.44±0.51%, relative to 100% cell lysis using saponin. However, in the presence of P. 

gingivalis, this percentage decreased to 0.68±0.51%, suggesting an increase in epithelial 

viability compared with the uninfected control. As this was thought to be unlikely, purified 

LDH (in the form of a positive control supplied in the LDH assay kit) was incubated with live 

P. gingivalis NCTC 11834 for 6 hours. The results showed an 88.2% decrease (p<0.05) in the 

reduction of the assay substrate (fig 3.21), suggesting that LDH was destroyed by P. gingivalis. 

Therefore, this assay could not be used to study epithelial viability in the presence of P. 

gingivalis. 

 

 

Figure 3.20 A lactate dehydrogenase assay to show lactate dehydrogenase release from epithelial cells treated 

with P. gingivalis. P. gingivalis NCTC 11834 was incubated H357 monolayers overnight. A LDH assay was 

performed on the conditioned medium and the bars show the percentage LDH (±SD) after incubation with or without 

P. gingivalis, relative to H357 monolayers lysed using saponin to indicate 100% cell death. The assay was performed 

in triplicate, bars are means±SD.  
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Figure 3.21 A lactate dehydrogenase assay to show destruction of the lactate dehydrogenase positive control by 

P. gingivalis. P. gingivalis NCTC 11834 was incubated with a LDH positive control supplied in the assay kit (bovine 

heart LDH, Promega) for 6 hours. A LDH assay was performed on the resulting solution and the bars show the 

percentage LDH (±SD) remaining after incubation with or without P. gingivalis. The assay was performed in 

triplicate, bars are means±SD. 

 

3.3.3.4.3 MTT 

The sensitivity of the MTT assay to P. gingivalis cells was assessed prior to using MTT to study 

epithelial cell viability. The reagent 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide was pre-incubated with live, whole P. gingivalis cells to see if the bacterium was 

capable of reducing the yellow tetrazole MTT to a purple formazan, a process which occurs in 

living cells. It was found that over the 1 hour incubation period (the manufacturer’s 

recommended time for use of MTT to detect cell viability), no change in colour was detected in 

the presence of P. gingivalis (data not shown) and so this assay was used to evaluate the 

epithelial viability of H357-OMM following invasion by P. gingivalis NCTC 11834 (fig 3.22). 

No significant difference in the viability of OMM was detected over the 4 hour invasion period 

when compared to the viability of un-infected OMM (p=0.733) thus confirming 4 hours as an 

optimal infection time for OMM with P. gingivalis. 

 

Figure 3.22 Viability of H357-OMM following invasion by P. gingivalis NCTC 11834 assessed by MTT. H357-

OMM were cultured at the air-to-liquid interface and incubated with or without NCTC 11834 (MOI100) for 4 hours. 

MTT reagent was added for 1 hour and the insoluble formazan released from the OMM by acidified isopropanol. The 

absorbance at 570nm was recorded and the histogram shows the mean absorbance values (±SD) from 3 individual 

experiments repeated in triplicate, normalised to acidified isopropanol alone. 
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3.3.4 How far does Porphyromonas gingivalis penetrate into the model? 

3.3.4.1 Immunohistochemical assessment 

A monoclonal antibody (MAb 1B5) raised against the P. gingivalis catalytic subunit of 

arginine-gingipain (RgpAcat) (Curtis et al., 1999), and also immunoreactive with P. gingivalis 

membrane type RgpAcat (mt-RgpAcat), membrane-type RgpB (mt-RgpB) and an anionic cell 

surface polysaccharide (APS), all of which possess a Manα1-2Manα-1-phosphate epitope 

(Rangarajan et al., 2008), was kindly provided by Professor Mike Curtis, Barts and The London 

School of Medicine. The specificity of the MAb 1B5 antibody was confirmed by staining fibrin-

embedded whole P. gingivalis cells (fig 3.23C). Immunohistochemistry using this antibody was 

performed on sections of H357- and NOK-OMM infected with P. gingivalis NCTC 11834 (fig 

3.23). Staining indicated that this bacterium invaded only the superficial layers of epithelium 

(fig 3.23). However, staining within NOK-OMM was not as conclusive as the staining observed 

in H357-OMM. This may be due to the possible desquamation of the surface epithelial layers 

seen in infected NOK-OMM. The penetration of P. gingivalis into the connective tissue layer 

may occur in submerged models where the epithelium is a lot thinner (fig 3.24). Although 

convincing, it was difficult to be certain that the intracellular staining was specific since the 

apparent P. gingivalis cells were so few, and it was difficult to accurately visualise individual P. 

gingivalis cells using this technique.  

 

Similar staining was observed within P. gingivalis infected H357-OMM, using a monoclonal 

antibody (MAb 1A1) directed against an epitope on the adhesin domain of the cysteine 

protease-adhesin heterodimer (HRgpA) (Curtis et al., 1996) (fig. 3.25). 
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Figure 3.23 Immunohistochemical staining to assess the tissue penetration of air-exposed H357-OMM and 

NOK-OMM by P. gingivalis NCTC 11834. Sections of air-exposed H357-OMM infected with P. gingivalis NCTC 

11834 overnight, were stained using immunohistochemistry (the primary antibody was MAb 1B5 (Curtis et al., 

1999)). Staining was detected in the superficial layers of H357-OMM (mag. 3480x) and possibly within NOK-OMM 

(mag. 3750x) (A) and adhered to the surface of H357-OMM (mag. 1800x) (B). Arrows depict possible staining of 

intracellular bacteria in OMM. Staining of a separate tissue section with the negative control antibody IgG2a showed 

no staining. To confirm the immunoreactivity of the P. gingivalis antibody, fibrin clots of P. gingivalis whole cells 

produced positive staining with MAb 1B5 (C). Images are representative staining of at least three independent 

experiments. 
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Figure 3.24 Immunohistochemistry to show the possible intracellular localisation of P. gingivalis within 

submerged OMM. Sections of submerged H357-OMM were stained using immunohistochemistry with MAb1B5 

primary antibody. Arrows show apparent penetration of P. gingivalis within the epithelium and connective tissue 

layer. Magnified box approximately 2x greater magnification. 

 

 

Figure 3.25 Immunohistochemical staining of H357-OMM using MAb 1A1 monoclonal antibody. Sections of 

air-exposed H357-OMM infected with P. gingivalis NCTC 11834 overnight, were stained using 

immunohistochemistry (with the primary antibody MAb 1A1 (Curtis et al., 1996)). Staining was detected in the 

superficial layers of H357-OMM. Arrows depict possible staining of intracellular bacteria. Inset box is approximately 

2.5x greater magnification. 
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3.3.4.2 Immunofluorescence assessment 

With immunohistochemical staining, determining the depth of epithelial penetration by P. 

gingivalis proved difficult. This was due to the small size of this bacterium and concern that 

small ‘brown specks’ may represent, non-specific staining, making it difficult to distinguish 

actual bacterial cells. Therefore, an immunofluorescence method was used in which P. 

gingivalis was fluorescently (FITC) labelled prior to the addition to the OMM. However, this 

technique showed some background fluorescence (fig 3.26), though P. gingivalis was identified 

within the superficial layers of epithelium (as with immunohistochemical staining) and small 

numbers appeared to be present in lower layers of the epithelium (fig 3.26). No staining was 

observed in the connective tissue layer of an air-exposed model. 

 

 

Figure 3.26 Immunofluorescence staining of P. gingivalis in H357-OMM. P. gingivalis NCTC 11834 was FITC-

labelled and incubated overnight with air-exposed OMM. Frozen sections were obtained and epithelial cell nuclei 

stained using Hoechst. White arrows indicate possible locations of P. gingivalis within the epithelium. Magnification 

400x, inset box is approximately 2.5x greater magnification.  



Chapter 3 Characterisation and optimisation of OMM to study P.gingivalis invasion 

114 

 

 

3.4  DISCUSSION 

Until recently there have been few reports in the literature regarding the use of three-

dimensional organotypic oral mucosal models to study P. gingivalis invasion. Organotypic 

models are more representative of normal oral mucosa than a simple monolayer and the use of 

these models to study bacterial invasion may provide further understanding of the pathogenesis 

of periodontitis. 

 

3.4.1 Characterisation of the oral mucosal model  

The use of a variety of connective tissue scaffolds for the culture of oral mucosal models has 

been evaluated previously (Moharamzadeh et al., 2007a). The comparison of a DED scaffold 

with a collagen type I scaffold in this study indicated differences in the histological and 

molecular structure of the cultured organotypic models. Differences such as the absence of rete 

ridges in collagen-OMM were obvious, but more importantly collagen-OMM did not possess a 

basement membrane as previously observed (Yadev et al., 2011) (fig 3.1). DED maintains 

components of the basement membrane such as laminin and collagens type IV and VII 

(Okamoto and Kitano, 1993; Ralston et al., 1999; Yadev et al., 2011), and so this is one 

advantage of using DED as a scaffold. However, when studied immunohistochemically, 

collagen-OMM weakly expressed laminin 5 (fig 3.7), which was in agreement with Costea et al 

(2003) who also showed staining for laminin 5 in the epithelium of collagen models. Laminin 5 

acts as an adhesive protein connecting the connective tissue layer with the epithelium. The 

presence of laminin 5 in collagen-OMM suggests that keratinocytes and/or fibroblasts play a 

role in the formation of basement membrane components (Okamoto and Kitano, 1993). In their 

particular favour though, collagen models showed high reliability and reproducibility in 

comparison with DED-OMM, which was a significant consideration for future experimental 

work. Additionally, compared with DED-OMM, collagen-OMM gave a greater epithelial 

coverage (fig 3.1) and were less costly because the collagen was isolated in-house. In spite of 

the deficiencies of collagen-OMM, these models were chosen for future work as they 

represented the in vivo situation more closely than monolayer cultures of epithelial cells, as 

there is the presence of a stratified epithelial layer and the capacity for fibroblast-epithelial 

cross-talk (Maas-Szabowski et al., 2001; Sanaie et al., 2002). 

 

Keratinocyte differentiation could be recognised in NOK-OMM based on DED as a flattening 

of cells accompanied by epithelial stratification, and a loss of cell nuclei in the upper most 

layers. Only slight keratinocyte differentiation was detected in NOK-OMM based on collagen. 

This may be due to differences in the origin of the oral biopsy. Biopsies obtained from gingivae 

were more likely to produce differentiated and keratinised epithelia (such as those that were 

cultured on DED (fig 3.1)), whereas biopsies isolated from buccal mucosa tended to remain 
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non-keratinised (such as those which were cultured on collagen (fig 3.1)). This has been noted 

previously where the origin of the oral biopsy influenced the morphology of reconstructed 

epithelia (Gibbs and Ponec, 2000). Therefore, to remain consistent and because of their 

availability, collagen OMM cultured throughout this study used NOK isolated from buccal 

biopsies. 

 

Positive staining for pan-cytokeratin confirmed the presence of an epithelial layer and further 

highlighted the differences between NOK- and H357-OMM. As a carcinoma cell line, H357 

showed epithelial cell invasion into the connective tissue layer as previously observed (Nystrom 

et al., 2005) (fig 3.5). In terms of the use of this model to study bacterial invasion, the 

infiltration of keratinocytes into the collagen support was considered negligible and not 

significant in the interpretation of future results.  

 

Organotypic collagen oral mucosal models have previously been shown to stain positively for 

E-cadherin (Dongari-Bagtzoglou and Kashleva, 2006), which is an important molecule in the 

maintenance of epithelial structural integrity. Similarly, in this chapter, staining for E-cadherin 

was positive in all epithelial layers of the buccal biopsy, NOK-OMM and H357-OMM (fig 3.9). 

Staining was also positive in the basal, suprabasal and prickle cell layers of the gingival 

epithelium. However, no staining was observed in the superficial keratinising layers (fig 3.9) 

(Ye et al., 2000), indicating a loss of cell-cell contacts between the more differentiated 

keratinocytes. In contrast to the study by Gasparoni et al. (2004) where a loss of E-cadherin 

expression in immortalised and cancerous cells was reported, here the intensity of staining seen 

in H357-OMM was the same as for NOK-OMM (fig 3.9). 

 

Immunohistochemical characterisation of air-exposed collagen H357- and NOK-OMM 

indicated similarities with normal buccal tissues in the expression of pan-cytokeratin, laminin 5 

and E-cadherin (figs 3.5, 3.7 and 3.9 respectively). This suggests that the organotypic models 

are valid comparators to normal oral mucosa, which has also been reported previously (Dongari-

Bagtzoglou and Kashleva, 2006; Horiguchi et al., 1994; Rouabhia and Deslauriers, 2002).  

 

The cytoplasmic expression of laminin 5 in the epithelial layers of the gingival biopsy was not 

expected. Laminin 5 is a major component of the basement membrane (Kinumatsu et al., 2009), 

and as such, staining would be expected to be confined to this area. The diffuse staining 

observed throughout the epithelium may be due to the staining technique or a degree of non-

specific staining, despite all efforts to reduce this. 
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In contrast to oral biopsies, cytokeratin 13 staining of H357-OMM was negative. As H357 

originated from a squamous cell carcinoma of the tongue, the absence of staining may be due to 

the previously reported reduction in expression of this cytokeratin in epithelial cell carcinomas 

(Yanagawa et al., 2007). NOK-OMM showed positive staining for cytokeratin 13, comparable 

to positive staining of the suprabasal epithelial layers of buccal tissues, which is in accordance 

with Costea et al. (2003). This suprabasal staining of NOK-OMM indicated that this epithelium 

was not keratinised, as cytokeratin 13 is specifically expressed in stratified, non-keratinised 

epithelia (Jacques et al., 2009). An example of this can be seen in figure 3.6 where staining of 

gingival mucosa was positive in the suprabasal layers but was absent from the upper keratinised 

layer. As NOK-OMM were cultured using keratinocytes isolated from buccal mucosa, positive 

staining in the superficial layers not only confirms the non-keratinised origin of these cells but 

also the maintenance of tissue-specific-expression markers (Gibbs and Ponec, 2000).  

 

Immunohistochemical analysis of cytokeratin 14 showed profuse staining of H357-OMM and 

gingival mucosa throughout the whole epithelium, whereas staining of NOK-OMM and buccal 

biopsy was restricted to basal epithelial layers only. The similarity in staining of NOK-OMM 

and buccal mucosa was to be expected as the NOK-OMM were cultured using fibroblasts and 

keratinocytes isolated from the buccal mucosa. Therefore, this staining verified the 

comparability of NOK-OMM with normal buccal mucosa. It is widely accepted that in oral 

mucosa, cytokeratin 14 is almost exclusively expressed in the basal layers of keratinised and 

non-keratinised epithelia (Sardella et al., 2012; van der Velden et al., 1999), regardless of the 

origin within the oral cavity. However, staining for cytokeratin 14 has also been detected 

suprabasally (Jacques et al., 2009), particularly in inflamed tissue. The gingival biopsy used in 

this study was obtained from a patient with periodontal disease which may account for the 

positive staining observed in all epithelial layers. As H357 is derived from a squamous cell 

carcinoma, this cell line will behave differently to ‘normal’ epithelial cells. Indeed, Heyden et 

al. (1992) reported that the staining of dysplastic lesions for cytokeratin 14 showed distribution 

throughout all epithelial layers. This may account for the differences observed in cytokeratin 

staining between NOK- and H357-OMM. Furthermore, this differential staining (fig 3.8) 

suggests that NOK-OMM shows sufficient similarity to normal buccal mucosa while H357-

OMM is similar to gingival mucosa.  

 

In vivo, the majority of oral tissues are continuously bathed in liquid, i.e. GCF. Multi-layered 

keratinocyte cultures which were left completely submerged in culture medium have been 

shown to lack markers of terminal differentiation, such as cytokeratin 10 (Parnigotto et al., 

1998; Roguet et al., 1994). In addition, junctional epithelium isolated from healthy individuals 

lacked the expression of many markers of differentiation and was shown to express markers of 
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simple epithelia (Gao and Mackenzie, 1992). Many researchers have attempted to replicate 

junctional epithelium in vitro (Pan et al., 1995; Papaioannou et al., 1999). Although these 

models formed a multi-layered epithelium, they lacked a connective tissue element containing 

fibroblasts, which is present in vivo. When totally submerged, OMM produced epithelia of only 

1-3 cell layers thick, which is similar to junctional epithelium (Hatakeyama et al., 2006). These 

submerged OMM stained similarly to their air-exposed counterparts for pan-cytokeratin, 

cytokeratin 13, laminin 5, cytokeratin 14 and E-cadherin suggesting comparability with normal 

mucosa. However, without the staining of a biopsy of junctional epithelium it is difficult to 

confirm full comparability with native tissue. In addition, there are currently no tissue-specific 

markers for junctional epithelium. In a review by Shimono et al. (2003) the authors suggested 

that cytokeratin 19 may be a differential marker for secondary junctional epithelium derived 

from gingival epithelium. However, cytokeratin 19 has also been shown to be a marker of 

simple epithelia and stains positively in the basal layers of stratified epithelia (Hatakeyama et 

al., 2006), indicating that this may not be a suitable differential marker for junctional 

epithelium. The absence of desmoglein 1 and 2 (which is expressed at cellular junctions), has 

been reported to be a feature of junctional epithelium (Hatakeyama et al., 2006). This absence 

of expression may suggest the origin of the epithelial cells but it is not a positive indicator. 

Junctional epithelium has been likened to cancerous epithelium (Heyden et al., 1992) in that it is 

non-keratinised, non-differentiating, has a high cellular turnover rate and expresses markers of 

specialised epithelia (Heyden et al., 1992; Mackenzie et al., 1989). As such, we suggest that 

H357 submerged OMM may be a relevant model of the junctional epithelium, particularly as a 

model with which to compare the full-thickness multi-layered OMM. Obtaining a biopsy of 

junctional epithelium is extremely difficult. Given the similarities mentioned above and due to 

the unreliability of tissue-specific markers for junctional epithelium, it can be assumed that the 

H357-OMM is sufficiently similar to junctional epithelium for it to be a reasonable model for 

the study of bacterial invasion. 

 

Air-exposed H357-OMM were cultured and maximal epithelial growth with minimal loss of 

epithelial integrity was confirmed after 7-10 days at the air-to-liquid interface as assessed 

histologically (fig 3.2). Although H357-OMM does not represent stratified oral mucosa as 

closely as NOK-OMM, H357-OMM was used in optimisation experiments for P. gingivalis 

invasion due to the submerged model resembling junctional epithelium and the high availability 

and ease of culture of the cell line. The highly invasive laboratory strain of P. gingivalis, NCTC 

11834 (Suwannakul et al., 2010), was used in optimisation experiments as small differences in 

percentage invasion would be more noticeable if invasion was high to begin with.  
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3.4.2 Optimisation of OMM for Porphyromonas gingivalis invasion 

Initial invasion assays were performed overnight anaerobically, as suggested in the literature 

(Andrian et al., 2004). However, the recovery of viable P. gingivalis was minimal after this 

time, which was probably due to the loss of epithelial integrity overnight in an anaerobic 

atmosphere (fig 3.12). It has previously been reported that, in the presence of P. gingivalis, there 

was a decrease in the transepithelial electrical resistance (TER) through a multilayer of 

immortalised gingival keratinocytes cultured on a polycarbonate membrane, after 24 hour apical 

introduction of P. gingivalis, suggesting that this bacterium is capable of destroying cell-cell 

contacts (Groeger et al., 2010). However, P. gingivalis at a MOI of 10
4
 was required to record a 

decrease in the TER. Interestingly, the researchers reported an accelerated reduction in 

transepithelial resistance when P. gingivalis was incubated basolaterally, suggesting that if P. 

gingivalis was to penetrate the connective tissue, the effect on tissue destruction would be 

greater, possibly due to the activation of host cell-derived MMPs (Andrian et al., 2007). 

However, no difference in TER was reported for P. gingivalis at a MOI of 100, even after 48 

hours (Groeger et al., 2010), which is in accordance with Dickinson et al. (2011), using a 

similar model of infection. Therefore, the loss of epithelial integrity as assessed by histology in 

this study was probably due to prolonged culture (24 h) in an anaerobic atmosphere (Shrieve et 

al., 1983; Nagaraj et al., 2004) and not directly due to the deleterious effects of P. gingivalis. 

Indeed, over 4 hours, no change in epithelial viability was detected (fig 3.19). 

 

The maintenance of an intact epithelial barrier is an essential first step in the host innate immune 

response (Chapple, 2002). Therefore, a time course of infection of H357-OMM by P. gingivalis 

NCTC 11834 was performed. It was shown that 3-6 hours was optimal (fig 3.13) with no 

change in epithelial viability over 4 hours (fig 3.22). In monolayer cultures, invasion assays are 

usually performed over 1-2 hours (Lamont et al., 1995; Duncan et al., 1993), during which P. 

gingivalis has been shown to maximally invade after 10-12 minutes (Belton et al., 1999; 

Rautemaa et al., 2004). The reason for this longer time period for invasion of OMM compared 

to monolayer culture may be due to: i) the expression of different cell surface receptors, ii) 

decreased bacterial cell death and/or intracellular bacterial replication/survival, iii) decreased 

epithelial cell loss or, iv) penetration of the bacteria through the epithelial layers ‘freeing up’ the 

upper most epithelial layers for additional invasion by extracellular bacteria. In fact, high 

numbers of oral bacteria have been detected in the gingival epithelium and adjacent connective 

tissue of patients with periodontitis, when assessed by Gram staining, although the identity of 

specific bacteria was unknown (Saglie et al., 1986). In addition, the intracellular detection of P. 

gingivalis throughout the majority of gingival and pocket epithelial layers of biopsies obtained 

from patients exhibiting periodontitis has been reported (Rautemaa et al., 2004). Visualisation 

of P. gingivalis was performed using an antibody directed against a membrane-bound thiol 
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proteinase of P. gingivalis (Rautemaa et al., 2004). This antibody has been shown to share 

sequence homology with the secreted form of thiol proteinase, lys-gingipains and 

haemagglutinins (e.g. HagA) from various P. gingivalis strains (DeCarlo and Harber, 1997). 

 

An antibody (MAb 1B5) directed against RgpAcat and shown to be immunoreactive against mt-

Rgpcat, mt-RgpB and APS (Rangarajan et al., 2008) was used in this study. 

Immunohistochemistry using this antibody to stain whole P. gingivalis cells identified single 

bacterial cells (fig 3.23), and although the majority of cells were clumped together, suggested 

that this antibody was suitable for detecting whole cells of P. gingivalis. Similar staining was 

also observed using the MAb 1A1 monoclonal antibody (Curtis et al., 1996). As these 

antibodies have been shown to be primarily active against Manα1-2Manα-1-phosphate 

(Rangarajan et al., 2008) and members of the haemagglutinin family (Curtis et al., 1996), 

respectively, there may be a limit to their usefulness for the detection of certain bacterial strains, 

particularly gingipain knock-out mutants. However, these antibodies were suitable for the 

identification of P. gingivalis NCTC 11834, in this study, but in the future an antibody directed 

against whole cell P. gingivalis may broaden the detection of this bacterium in tissue sections. 

 

With regards to how far P. gingivalis can penetrate the oral mucosa, Rautemaa et al. (2004) did 

not detect thiol proteinase within the connective tissue layer of oral biopsies, in agreement with 

immunohistochemistry staining in this study, suggesting that, particularly in thick, multi-layered 

epithelial biopsies, P. gingivalis primarily invades the epithelial layers only.  

 

The use of in vitro models of multi-layered epithelium has also attempted to answer the question 

of how far P. gingivalis is able to penetrate the oral mucosa. A study by Andrian et al. (2004) 

identified P. gingivalis ATCC33277 within the connective tissue scaffold of an organotypic oral 

mucosal model as analysed by TEM (Andrian et al., 2004). The authors used three-dimensional 

oral mucosal models cultured from cells obtained from palatal biopsies onto a scaffold of 

bovine type III collagen. The differences between the models used in this study may explain the 

differences in epithelial penetration observed. In contrast to the report by Andrian et al. (2004), 

but in agreement with results presented in this chapter, Papapanou et al. (1994) reported that 

after 4 hours, P. gingivalis was found in the superficial (upper) layer of an in vitro culture of 

multilayered epithelial cells, and after 8 hours had penetrated further than this superficial layer, 

suggesting the movement of P. gingivalis through oral epithelium. The authors commented that 

such rapidity of movement may counteract the slower act of epithelial desquamation indicating 

a possible mechanism by which P. gingivalis may breach host defences (Papapanou et al., 

1994). In addition, Dickinson et al. (2011) reported that following invasion of a three-layered 

gingival epithelial multilayer, P. gingivalis penetrated the upper 2 layers but was not found 
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within the bottom third layer, even after 24 hours, suggesting that P. gingivalis is unable to gain 

access deeper within the epithelium over this time period (Dickinson et al., 2011).  

 

Of future interest will be the question of how P. gingivalis gains access to lower epithelial cell 

layers. It has been reported that P. gingivalis is capable of intracellular spreading (Takeuchi et 

al., 2011; Yilmaz et al., 2006) and intercellular movement (Hintermann et al., 2002; Katz et al., 

2002; Balkovetz and Katz, 2003). In addition, it has previously been reported that P. gingivalis 

was able to penetrate a reconstituted basement membrane equivalent (fibroblast-containing 

bovine type III collagen seeded with primary oral keratinoctyes), after 24 hour incubation 

(Andrian et al., 2004). Although in this present study no bacteria were recovered from the lower 

chamber of the tissue culture insert after infection of H357-OMM, this does not mean to say that 

P. gingivalis is not able to gain access through a thinner epithelial and connective tissue layer. 

However, due to the restriction of the depth of collagen required for the culture of OMM in this 

study, this was not investigated further. Nevertheless, this phenomenon is important to 

investigate, particularly as in vivo the blood vessels are located close to the epithelial layers, and 

so P. gingivalis penetration could result in low level bacteraemia and play a possible role in 

atherosclerotic disease (Hayashi et al., 2011).  

 

Although P. gingivalis can be detected microscopically within oral biopsies and mucosal 

models, the intracellular viability of P. gingivalis is important for the continued survival of this 

bacterium within the oral cavity. Therefore, the invasion of OMM by P. gingivalis was 

determined using a modified antibiotic protection assay. This assay was optimised for invasion 

by this bacterium and determined that 4 hour incubation aerobically gave the optimal percentage 

invasion, and lysis of the epithelial cells was more efficient using a homogeniser (figs 3.13, 3.18 

& 3.16 respectively). 

 

The percentage with which P. gingivalis invaded the oral mucosal model in this study was 

approximately 4% (fig 3.13). The invasion of P. gingivalis reported throughout the literature for 

both monolayer and organotypic model varies considerably. This is due to the environmental 

conditions on any particular day of the assay, the strain of P. gingivalis, the particular epithelial 

cell used, whether internalisation was assessed by microscopy or viable colony counting and 

how the percentage invasion was calculated, i.e. was invasion calculated as a percentage of the 

original bacterial suspension plated before or after the completion of the assay, or as a 

percentage of the total cell associated bacteria. Therefore it is difficult to compare percentage 

invasions between individual studies.  Nevertheless, the percentage invasion of epithelial cells 

by P. gingivalis as assessed by colony counting is usually less than or equal to 10% (Lamont et 

al., 1995; Suwannakul et al., 2010; Saito et al., 2009). 
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This chapter provides evidence for the intracellular recovery of P. gingivalis from an 

organotypic oral mucosal model, in accordance with Papapanou et al. (1999) and Sandros et al. 

(1994), who report the recovery of intracellular P. gingivalis at a percentage of no greater than 

10% from multilayered cultures of pocket epithelial cells. The minimal recovery of P. gingivalis 

after 24 hour incubation with OMM, in this study (fig 3.13), may be due to the aerobic 

atmosphere with which the assay was performed, epithelial desquamation or may be due to the 

culture medium. Indeed, the viability of P. gingivalis in the culture medium decreased over time 

(fig 3.14), suggesting that the atmosphere and the environment may both play a role in the 

decreased survival and subsequent detection of this bacterium. 

 

The culture of an oral mucosal model which resembles junctional epithelium was investigated 

for the intracellular recovery of P. gingivalis. Certainly junctional epithelium possesses wide 

intercellular spaces and few desmosomes (Schroeder and Listgarten, 2003). Therefore it would 

be assumed that invasion of bacteria into the junctional epithelium may be greater than invasion 

into a stratified epithelial layer with many desmosomes and tight junctions. However, as seen in 

figures 3.15 and 3.13, the percentage invasion of submerged and air-exposed models were 

similar, at around 4%. This may be because the submerged models are not a perfect 

representation of the junctional epithelium in that they still hold tight cellular associations as 

shown by staining for E-cadherin (fig 3.9). Also, as H357 is a cancer cell and is always 

undergoing cellular proliferation, the cellular junctions are likely to remain identical throughout 

the epithelium (Hoteiya et al., 2009). P. gingivalis is able to degrade E-cadherin (Katz et al., 

2002; Katz et al., 2000), which may be important in the mechanism of invasion. However, this 

may only be important during increased incubation periods with P. gingivalis, and not the 4 

hour incubation used for this assay. Therefore, an OMM cultured using cells obtained from a 

biopsy of junctional epithelium would give more conclusive results as to the depth of 

penetration, survival and viable recovery of P. gingivalis in a more relevant and representative 

model for P. gingivalis invasion. 

 

The incorporation of neutrophils into OMM was successful (fig 3.11), however they did not 

migrate further than 200µm through the connective tissue layer when introduced basally. 

Schaller et al. (2004) report the transepithelial migration of PMNs through the commercially 

available mucosal model (SkinEthic Laboratory, Nice, France), in the presence of Candida 

albicans. Sections were stained using 1% toluidine blue and 1% pyronine G, which may have 

lead to the over identification of PMNs within the model as keratinocytes stained similarly to 

PMNs. Despite this, PMNs were shown to migrate through the polycarbonate membrane and 

were found close to the surface of the epithelium when introduced basally (Schaller et al., 
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2004). However, in this study the multi-layered epithelium was cultured on a polycarbonate 

membrane and not on a representative connective tissue scaffold which may indicate why the 

authors identified PMNs close to the epithelial surface. However, in accordance with data 

presented in this chapter, PMNs are capable of migration through a connective tissue layer, 

which may become more important as modifications of OMM to reduce the depth of the 

connective tissue layer become possible.  

 

3.4.3 Conclusion 

The organotypic oral mucosal model introduced in this chapter was characterised and shown to 

resemble normal oral mucosa, particularly NOK-OMM. In addition, OMM which were 

completely submerged in culture medium showed characteristics of junctional epithelium. 

These models were optimised to study the invasion of P. gingivalis and results presented here 

suggested that P. gingivalis was able to invade the superficial layers of epithelium and may 

penetrate further, although further work is required. Optimal incubation of OMM with P. 

gingivalis was 3-6 hours when assessed by viable counting. The complete culture of a model, as 

opposed to obtaining commercial equivalents, gives greater scope in the future for the 

development of this model to further represent the in vivo situation. Modifications may include 

the incorporation of endothelial cells, immune cells, basement membrane proteins, variation in 

the thickness of the connective tissue and epithelial components, and modulation of cellular 

protein expression. 
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Chapter 4 Porphyromonas gingivalis invasion of monolayer and 

organotypic oral mucosal model 

4.1 INTRODUCTION 

P. gingivalis has been shown to invade, survive and multiply within oral epithelial cells 

(Madianos et al., 1996), and to propagate intra- and inter-cellularly (Yilmaz et al., 2006; Katz et 

al., 2002), which may contribute to the progression of periodontal disease. Therefore, 

understanding the mechanisms involved in invasion could help the understanding of the 

pathogenesis of the disease and ultimately in the development of more effective therapeutic 

agents (Chapple, 2009). As mentioned in Chapter 3, the use of monolayer cultures of epithelial 

cells to study bacterial invasion has been common place. However, tissue-engineered, multi-

layered organotypic oral mucosal models have been recently used to study P. gingivalis 

invasion (Andrian et al., 2004; Papaioannou et al., 2003; Dickinson et al., 2011), and may be 

more representative of the oral environment. 

 

An organotypic oral mucosal model based on type I collagen was characterised and optimised 

for P. gingivalis invasion in Chapter 3. In this chapter, epithelial cell invasion of the simple, 

widely reported monolayer with P. gingivalis will be compared with organotypic epithelial 

cultures in an attempt to identify similarities or differences in degree of invasion and to report 

any advantages or disadvantages of the use of organotypic models over monolayer cultures.  

 

Invasion is reliant on a number of factors including host cell receptors, bacterial 

receptors/virulence features and the host cell environment. P. gingivalis possesses proteases, 

known as gingipains, which are an important virulence feature of this bacterium previously 

shown to influence epithelial cell invasion (Park and Lamont, 1998, Chen et al., 2001, 

Suwannakul et al. 2010). This study will also compare the contribution of gingipains to the 

invasion of P. gingivalis into monolayer and organotypic epithelial cultures. 

 

Bleeding upon probing and elevated periodontal pocket temperatures are clinical characteristics 

of periodontitis (Greenstein, 1984; Haffajee et al., 1992). Differences in the concentration of 

haemin and temperature influence the structure of P. gingivalis lipid A, a component of LPS 

(Al-Qutub et al., 2006; Curtis et al., 2011). For example, at high haemin concentrations the 

structure of lipid A contains predominantly mono-phosphorylated, tetra-acylated moieties, and 

as such acts as a TLR4 antagonist (Al-Qutub et al., 2006). However, at high temperatures the 

predominant lipid A species is penta-acylated and mono-phosphorylated, acting as a TLR4 

agonist (Curtis et al., 2011). Due to differences in the lipid A structure under conditions 

commonly observed at diseased periodontal sites, it is unclear what role LPS structure plays in 
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disease. The data presented in this chapter suggests that the concentration of haemin in the 

bacterial culture medium and the temperature at which P. gingivalis is grown, influences 

invasion of oral epithelial cells by this bacterium. 

 

It has been proposed that the intracellular environment may act as a protective niche for the 

survival and propagation of P. gingivalis (Houalet-Jeanne et al., 2011; Madianos et al., 1996), 

suggesting that invasion may be a critical factor in bacterial survival in vivo. This chapter will 

study the intracellular survival of P. gingivalis, in monolayer and organotypic cultures. In 

addition, since periodontitis is a disease that is thought to be cyclical in nature (Socransky et al., 

1984),  it is possible  that bursts of activity may be caused by re-infection, at the same site or at 

a different site within the oral cavity, when P. gingivalis ‘escapes’ from epithelial cells. 

Therefore, this chapter will assess whether intracellular P. gingivalis is released from epithelial 

cells and what the viability status is of the epithelial cells. 

 

P. gingivalis invasion into oral epithelial cells is not uniform, i.e. not every cell has the same 

number of intracellular bacteria but there seems to be some cells that have high numbers of 

intracellular bacteria, whereas others have very few or none. Presented here are preliminary data 

obtained using two methods to try to separate the two epithelial cell populations; those which 

have intracellular bacteria and those which do not. Successful isolation of P. gingivalis-

containing cells will aid future analysis to identify what factors these cells have that makes them 

preferentially internalise bacteria.  

 

4.1.1 Aims and Objectives 

The aims of this part of the study were i) to compare invasion of two models of the oral 

epithelium: monolayer and organotypic culture by P. gingivalis strains, ii) assess the differences 

or similarities in percentage invasion of these two models, iii) investigate the factors that may 

influence invasion, including gingipain expression, haemin and temperature culture conditions 

and iv) assess the viability of both internalised P. gingivalis and the invaded epithelial cells. 

 

4.2 METHODS 

The following methods were used in this chapter: 

 Isolation and culture of NOK, fibroblasts and H357 cell line (sections 2.2, 2.3 & 2.4) 

 Culture of P. gingivalis (section 2.5) 

 Culture of oral mucosal models (section 2.8) 

 P. gingivalis cell invasion (section 2.11) 

 Separation of epithelial cells associated with P. gingivalis (section 2.20) 

 Statistical analysis (section 2.22)  
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4.3 RESULTS 

4.3.1 P. gingivalis invasion of monolayer and OMM 

The tissue-engineered OMM, which was characterised and optimised for P. gingivalis invasion 

in Chapter 3, was used in the antibiotic protection assay to compare the epithelial invasion of P. 

gingivalis strains with monolayer cultures of oral epithelial cells. 

 

4.3.1.1 P. gingivalis strains: NCTC 11834 and W50 

Initially, standard antibiotic protection assays for monolayer cultures of the H357 cell line and 

NOK were performed using two laboratory strains of P. gingivalis, NCTC 11834 and W50. The 

invasion of H357 monolayers by strain NCTC 11834 (3.19±1.68%) was significantly higher 

than the percentage invasion by strain W50 (0.27±0.18%, p<0.05) (fig 4.1). Similarly, in NOK 

monolayers, NCTC 11834 invaded at a significantly higher percentage than W50 (2.15±0.90% 

versus 0.08±0.05% respectively, p<0.05) (fig 4.2). The total invasion of NOK was slightly 

lower than H357 for both P. gingivalis strains, which may be due to differences in the 

expression of cell surface receptors. 

 

Figure 4.1 Histogram to show the invasion of H357 monolayer by P. gingivalis strains NCTC 11834 and W50 

using a standard antibiotic protection assay. H357 monolayers were cultured and P. gingivalis added at MOI 100 

for 1.5 hours, after which metronidazole was added to kill the external, adherent P. gingivalis. Intracellular bacteria 

were released by osmotic lysis using sterile distilled water and scraping. Bacterial colonies were enumerated after 

serial dilution and plating onto blood-FA plates. The number of intracellular bacteria recovered is expressed as a 

percentage of the infecting inoculum. Graphs show mean±SD of three independent experiments performed in 

triplicate.  
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Figure 4.2 Histogram to show the invasion of NOK monolayer by P. gingivalis strains NCTC 11834 and W50 

using a standard antibiotic protection assay. NOK monolayers were cultured and P. gingivalis added at MOI 100 

for 1.5 hours, after which metronidazole was added to kill the external adherent P. gingivalis. Intracellular bacteria 

were released by osmotic lysis using sterile distilled water and scraping. Bacterial colonies were enumerated after 

serial dilution and plating onto blood-FA plates. The number of intracellular bacteria recovered is expressed as a 

percentage of the infecting inoculum. Graphs show mean±SD of three independent experiments performed in 

triplicate.  

 

Comparing the invasion of these two strains, NCTC 11834 and W50, in the organotypic model 

showed a similar trend, with NCTC 11834 invading at a significantly higher percentage than 

W50 (3.12±0.79% and 0.17±0.31 respectively, p<0.005) (fig 4.3). The total invasion of 

monolayer cultures was similar to the invasion of OMM for both strains of P. gingivalis, though 

the infection period used for OMM was longer (4 hours). 

 

Figure 4.3 Histogram to show the invasion of H357-OMM by P. gingivalis strains NCTC 11834 and W50 using 

a modified antibiotic protection assay. H357-OMM were cultured and P. gingivalis was added at MOI 100 for 4 

hours, after which metronidazole was added to kill the external adherent P. gingivalis. The models were lysed by 

homogenisation and the intracellular bacteria enumerated by serial dilution and plating onto blood-FA plates. The 

number of intracellular bacteria recovered is expressed as a percentage of the infecting inoculum. Graphs show 

mean±SD of three independent experiments performed in triplicate.  
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4.3.1.2 Epithelial cells: NOK and H357 

As shown in figures 4.1 & 4.2, the invasion of monolayer cultures of H357 and NOK were not 

significantly different for P. gingivalis NCTC 11834, e.g. 3.19±1.68% (H357) and 2.15±0.90% 

(NOK) (p>0.05).  

 

However, a significant difference in percentage invasion between H357-OMM and NOK-OMM 

by P. gingivalis NCTC 11834 was observed, i.e. 3.38±0.45% and 0.98±1.02% respectively 

(p<0.05) (fig 4.4). This suggests that when cultured in a multi-layered system, at an air-to-liquid 

interface on a collagen matrix, NOK are not as susceptible to invasion by P. gingivalis, 

compared with H357 cells. This could be due to differences in the cell surface expression of 

adhesion molecules, such as integrins (Tsuda et al., 2008, Nakagawa et al., 2005). 

 

Figure 4.4 Histogram to show the invasion of H357- and NOK-OMM by P. gingivalis NCTC 11834 using a 

modified antibiotic protection assay. H357- and NOK-OMM were cultured and P. gingivalis was added at MOI 

100 for 4 hours, after which metronidazole was added to kill the external adherent P. gingivalis. The models were 

lysed by homogenisation and the intracellular bacteria enumerated by serial dilution and plating onto blood-FA 

plates. The number of intracellular bacteria recovered is expressed as a percentage of the infecting inoculum. Graphs 

show mean±SD of three independent experiments performed in triplicate, p<0.05.  

 

4.3.2 Factors influencing P. gingivalis invasion 

Using the easier to culture and more readily available H357 cell line, preliminary data are 

presented to assess the influence of P. gingivalis gingipains, environmental haemin and 

temperature on the invasion of oral epithelial cells by P. gingivalis. 

 

4.3.2.1 Invasion by P. gingivalis gingipain mutants 

P. gingivalis possesses virulence features that may be important in influencing invasion of oral 

epithelial cells. It has been shown previously that a highly invasive P. gingivalis subtype 

possesses reduced Arg-gingipain activity, and that a double arginine knockout mutant 

(ΔrgpAΔrgpB) showed a significantly higher percentage invasion than the wild-type bacterium 

(Suwannakul et al., 2010). Shown in figure 4.5 are similar data indicating that the absence of 

the arginine-specific gingipain is important for the invasion of oral keratinocytes. This was 
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shown in the H357 monolayer as a statistically significant (p=0.02) 16-fold increase in invasion 

by strain E8 (ΔrgpAΔrgpB) compared with the wild-type parent strain (W50) (fig 4.5). In 

addition, the lysine-specific gingipain mutant (Δkgp or K1A) showed a significantly higher 

percentage invasion than W50 (0.34±0.17% and 0.03±0.03% respectively, p=0.04). K1A 

invaded at a slightly lower percentage than E8, although this was not significant (p=0.45).  

 

 

Figure 4.5 Histogram to show the invasion of H357 monolayer by P. gingivalis strains W50 (parent strain), E8 

(ΔrgpAΔrgpB) and K1A (Δkgp) using a standard antibiotic protection assay. H357 monolayers were cultured and 

P. gingivalis added at MOI 100 for 1.5 hours, after which metronidazole was added to kill the external adherent P. 

gingivalis. Intracellular bacteria were released by osmotic lysis using sterile distilled water and scraping. Bacterial 

colonies were enumerated by serial dilution and plating onto blood-FA plates. Significant differences between W50 

and E8, and W50 and K1A, p<0.05 (*) were observed. The number of intracellular bacteria recovered is expressed as 

a percentage of the infecting inoculum. Graphs show mean±SD of three independent experiments performed in 

triplicate.  

 

Using NOK monolayers, there was a similar 14-fold increase in invasion by strain E8 compared 

with the wild-type strain. The same trend in data was observed with NOK monolayers compared 

with H357 monolayers, i.e. E8 invaded at a higher percentage than W50 and K1A. Similarly, 

K1A invaded at a higher percentage than W50 but not as high as E8.  
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Figure 4.6 Histogram to show the invasion of NOK monolayer by P. gingivalis strains W50 (parent strain), E8 

(ΔrgpAΔrgpB) and K1A (Δkgp) using a standard antibiotic protection assay. NOK monolayers were cultured and 

P. gingivalis added at MOI 100 for 1.5 hours, after which metronidazole was added to kill the external adherent P. 

gingivalis. Intracellular bacteria were released by osmotic lysis using sterile distilled water and scraping. Bacterial 

colonies were enumerated by serial dilution and plating onto blood-FA plates. The number of intracellular bacteria 

recovered is expressed as a percentage of the infecting inoculum. Graph is representative of two independent 

experiments performed in triplicate. 

 

Comparing the data of P. gingivalis invasion of monolayer with the invasion of OMM, similar 

trends in the data was found, although there were differences in the total percentage invasion 

(fig 4.7). For the invasion of H357-OMM, strain E8 (0.19±0.04%) showed a significantly higher 

percentage invasion than wild-type W50 (0.04±0.03%, p=0.003). However, although the 

invasion of strain K1A (0.10±0.07%) was higher than W50, this was not statistically significant 

(p=0.14). The percentage invasion of H357-OMM by E8 was higher than K1A (as shown for 

monolayers in figures 4.5 & 4.6), but this was also not significant (p=0.07). 

 

 

Figure 4.7 Histogram to show the invasion of H357-OMM by P. gingivalis strains W50 (parent strain), E8 

(ΔrgpAΔrgpB) and K1A (Δkgp) using a modified antibiotic protection assay. H357-OMM were cultured and P. 

gingivalis was added at MOI 100 for 4 hours, after which metronidazole was added to kill the external adherent P. 

gingivalis. The models were lysed by homogenisation and the intracellular bacteria enumerated by serial dilution and 

plating onto blood-FA plates. The number of intracellular bacteria recovered is expressed as a percentage of the 

infecting inoculum. Graphs show mean±SD of three independent experiments performed in triplicate, p<0.05 (*). 
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It has been shown that invasion of oral epithelial cells by the double arginine- and single lysine-

knockout mutants were higher than the wild-type. However, it may be that the presence of either 

of these gingipains could compensate for the absent one. Therefore, a triple arginine- and lysine- 

knockout mutant was used in an antibiotic protection assay to further investigate the role of 

gingipains in P. gingivalis invasion. The invasion of the H357 epithelial cell line by the triple 

gingipain knockout mutant (∆rgpA∆rgpB∆kgp, EK18) was significantly lower than the invasion 

by the parent W50 strain (0.004±0.003% and 0.14±0.01% respectively, p<0.001) (fig 4.8). 

 

Figure 4.8 Histogram to show the invasion of H357 monolayer by P. gingivalis strains W50 (parent strain) and 

the triple gingipain mutant EK18 (ΔrgpAΔrgpBΔkgp) using an antibiotic protection assay. H357 monolayers 

were cultured and P. gingivalis was added at MOI 100 for 1.5 hours, after which metronidazole was added to kill the 

external adherent P. gingivalis. The monolayers were lysed and the intracellular bacteria enumerated by serial 

dilution and plating onto blood-FA plates. The number of intracellular bacteria recovered is expressed as a percentage 

of the infecting inoculum. Graphs show mean±SD of three independent experiments performed in triplicate. 

 

4.3.2.2 Effect of haemin concentration and elevated temperature on 

invasion 

As the total percentage invasion of OMM with P. gingivalis was not significantly different from 

that seen in monolayers and experimental trends were maintained, the following experiments 

were performed using monolayer cultures for ease of maintenance and reproducibility of cell 

culture.  

 

As gingivitis progresses to periodontitis the environment within the gingival crevice/periodontal 

pocket changes. The inflammatory response results in an increase in temperature and, as the 

disease progresses, increasing numbers of red blood cells and iron become available for 

utilisation by the organism, as bleeding of the gingiva occurs. Therefore, the effect of haemin 

concentration and elevated temperature on invasion was investigated to observe whether 

changes in the environment that P. gingivalis is exposed to predisposes an increase or decrease 

in the internalisation of P. gingivalis, which may propose a link between disease progression 

and bacterial invasion. 
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As shown in figure 4.9, as the concentration of haemin increased, the percentage invasion of 

H357 monolayers by NCTC 11834 increased in a dose-dependent manner: 2.17±0.89%, 

3.25±0.40% and 7.07±1.58% (1µg ml
-1

, 5µg ml
-1 

and 10µg ml
-1

 haemin in the growth medium 

of the infecting inoculum, respectively; p<0.05). Similarly, when the culture temperature for P. 

gingivalis was raised from 37°C to 41°C, the invasion of the H357 cell line by strain NCTC 

11834 increased approximately 4-fold, from 2.87±0.70% to 12.15±2.11% respectively (p<0.05) 

(fig 4.10). These results suggest an importance, not only of the virulence features of P. 

gingivalis in influencing invasion (e.g. gingipains) but also the environment in which P. 

gingivalis is accommodated. Of course, these may not be mutually exclusive, since gingipains 

have been shown to be important in the acquisition of haemin (Lewis et al., 1999). It must be 

mentioned that the experiment performed at high temperature was only performed once. This 

was due to difficulties obtaining growth at this high temperature and the lack of suitable 

equipment to ensure an adequate anaerobic atmosphere throughout culture. Therefore this result 

must be interpreted with caution, and as such, requires further work. 

 

 

Figure 4.9 Histogram to show the invasion of H357 monolayer by NCTC 11834 cultured in different 

concentrations of haemin. P. gingivalis NCTC 11834 was cultured overnight in BHI broth supplemented with 

cysteine, vitamin K and 1µg ml-1, 5µg ml-1 or 10µg ml-1 haemin. NCTC 11834 (MOI100) was incubated with H357 

monolayers for 1.5 hours, after which metronidazole was added to kill the external adherent bacteria. Intracellular 

bacteria were released by osmotic lysis using sterile distilled water and scraping. Bacterial colonies were enumerated 

by serial dilution and plating onto blood-FA plates. The number of intracellular bacteria recovered is expressed as a 

percentage of the infecting inoculum. Graphs show mean±SD of three independent experiments performed in 

triplicate, *p<0.05. 
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Figure 4.10 Histogram to show the invasion of H357 monolayer by NCTC 11834 cultured at 37°C and 41°C. P. 

gingivalis NCTC 11834 was cultured on blood FA-plates for 2 days at 37°C or 41°C. NCTC 11834 (MOI100) was 

incubated with H357 monolayers for 1.5 hours, after which metronidazole was added to kill the external adherent 

bacteria. Intracellular bacteria were released by osmotic lysis using sterile distilled water and scraping. Bacterial 

colonies were enumerated by serial dilution and plating onto blood-FA plates. The number of intracellular bacteria 

recovered is expressed as a percentage of the infecting inoculum. Graphs show mean±SD of three internal repeats of 

a single experiment. 

 

4.3.3 The fate of P. gingivalis following epithelial cell invasion 

Following epithelial cell invasion by P. gingivalis, it has been shown previously that this 

bacterium is capable of intracellular replication (Madianos et al., 1996). As periodontal disease 

is a cyclical disease in which there are periods of active disease followed by prolonged periods 

of remission (Socransky et al., 1984), survival of P. gingivalis and its release from oral 

epithelial cells was investigated. 

 

Figure 4.11 shows the survival of P. gingivalis in the epithelial cell culture medium used to 

maintain monolayers and OMM (3:1 DMEM:Ham’s F-12; SFM with or without supplements). 

The number of viable bacteria increased in most media but only for around 4 hours and then 

they declined, suggesting that P. gingivalis does not thrive in this medium (the presence of FCS 

within the medium caused an intial increase in growth probably due to the increased nutrient 

source). The same was true when intracellular survival of P .gingivalis was assessed. In both 

monolayer and OMM, the persistence of P. gingivalis within epithelial cells was limited to 24 

hours, and no significant intracellular replication was observed (fig 4.13 & 4.14, respectively). 

The percentage invasion of H357 monolayer cultures was higher when incubated with P. 

gingivalis MOI100 compared with MOI1, with initial percentage invasion values of 3.20±0.11% 

and 0.58% respectively. The percentage of viable P. gingivalis cultured from the supernatant for 

MOI100 and MOI1 cultures was maximal at 6 hours with percentages of 23.34±8.52% and 

19.00% of the total intracellular+extracellular bacteria respectively. The number of 

desquamated epithelial cells at 48 hours, recorded as a percentage of the total number of 

epithelial cells seeded at the start of the experiment (i.e. 2x10
5
) was similar after incubation of 

H357 monolayers with P. gingivalis MOI100 (10.0±2.5%) and MOI1 (13.75%). Similarly, the 
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invasion of organotypic cultures initially started at 3.84% but diminished to almost zero at 48 

hours (0.001%). At this time point there were still some viable colonies in OMM, whereas for 

monolayer cultures there were none. In contrast to monolayer cultures, the maximal detection of 

P. gingivalis in the culture supernatant was after 24 hours, with a percentage of 24.56%. The 

percentage of desquamated epithelial cells as a percentage of the estimated number available on 

the surface of the H357-OMM (i.e. 2x10
5
) increased over time and at 48 hours was similar to 

the values recorded for the monolayer cultures, i.e. 15.42%. 

 

Figure 4.11 Percentage viability of P. gingivalis NCTC 11834 cultured aerobically in different media. P. 

gingivalis NCTC 11834 cells were suspended in serum-free culture medium (SFM) at 2x107ml-1 (representative of 

the number of bacterial cells added to epithelial cells in a typical 24-well invasion assay) for 48 hours in 5% 

CO2/95% air. In addition, SFM was supplemented with 5µg ml-1 transferrin, 10% foetal calf serum (FCS), haemin 

(1µg ml-1, 5µg ml-1) or vitamin K (1µg ml-1)+cysteine(0.5m g ml-1)+haemin (1µg ml-1, 5µg ml-1). Samples of the 

culture medium were removed at each time point, serially diluted and colonies were counted. Counted colonies were 

expressed as a percentage of the original bacterial suspension. Data presented is representative of two experiments 

performed in triplicate. The histogram shows the mean±SD of a single representative experiment with 3 internal 

repeats. 
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Figure 4.12 Line charts to show the percentage invasion, CFU recovered from supernatant and number of 

desquamated epithelial cells after invasion of H357 monolayers with P. gingivalis (MOI1). H357 monolayers 

were cultured and exposed to P. gingivalis NCTC 11834 (MOI1) for 90 minutes. Following which H357 cells were 

washed, incubated with metronidazole for 1 hour to kill the external adherent bacteria and washed to remove residual 

metronidazole. The percentage invasion was then determined as the number of intracellular bacteria expressed as a 

percentage of the original bacterial suspension. Time 0 hours refers to measurements made immediately after 

metronidazole treatment. Additional measurements were made at 3, 6, 24 and 48 hours. Measurements included 

percentage invasion (A) and the number of bacteria released from the epithelial cells which is presented as the 

number of colony forming units (CFU) after viable counting on blood FA-agar plates (CFU/ml (C)), and extracellular 

CFU as a percentage of the total viable intracellular and extracellular CFU (B). The number of desquamated cells was 

also counted using a haemocytometer at each time point (D) and expressed as a percentage of the estimated total 

number of epithelial cells (2x105) at the start of the experiment. Graphs shown are representative of two independent 

experiments repeated in triplicate.    
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Figure 4.13 Line charts to show the percentage invasion, CFU recovered from supernatant and number of 

desquamated epithelial cells after invasion of H357 monolayers with P. gingivalis (MOI100). H357 monolayers 

were cultured and exposed to P. gingivalis NCTC 11834 (MOI100) for 90 minutes. Following which H357 cells were 

washed, incubated with metronidazole for 1 hour to kill the external adherent bacteria and washed to remove residual 

metronidazole. The percentage invasion was then determined as the number of intracellular bacteria expressed as a 

percentage of the original bacterial suspension. Time 0 hours refers to measurements made immediately after 

metronidazole treatment. Additional measurements were made at 3, 6, 18, 24 and 48 hours. Measurements included 

percentage invasion (A) and the number of bacteria released from the epithelial cells which is presented as the 

number of colony forming units (CFU) after viable counting on blood FA-agar plates (CFU/ml (C)), and extracellular 

CFU as a percentage of the total viable intracellular and extracellular CFU (B). The number of desquamated cells was 

also counted using a haemocytometer at each time point (D) and expressed as a percentage of the estimated total 

number of epithelial cells (2x105) at the start of the experiment. In all cases error bars indicate means±SEM of three 

independent experiments, repeated in triplicate.    
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Figure 4.14 Line charts to show the percentage invasion, CFU recovered from supernatant and number of 

desquamated epithelial cells after invasion of H357-OMM by P. gingivalis. H357-OMM were cultured and 

exposed to P. gingivalis NCTC 11834 (MOI100) for 4 hours. Following which H357 were washed, incubated with 

metronidazole for 1 hour to kill the external adherent bacteria and again washed extensively to remove residual 

metronidazole. The percentage invasion was then presented as the number of intracellular bacteria calculated as a 

percentage of the original bacterial suspension incubated with the epithelial cells. Time 0 hours refers to 

measurements made immediately after metronidazole treatment. Additional wells were then washed and incubated at 

37°C/5% CO2 in SFM and measurements made at 1.5, 4, 24 and 48 hours. Measurements included percentage 

invasion (A) and the number of bacteria released from epithelial cells presented as the number of colony forming 

units (CFU) counted by viable counting on blood FA-agar plates (CFU/ml (C)), and extracellular CFU as a 

percentage of the total viable intracellular and extracellular CFU (B). The number of desquamated epithelial cells 

were counted using a haemocytometer at each time point (D) and expressed as a percentage of the total number of 

epithelial cells estimated to be on the surface of OMM (2x105) to make comparisons with monolayer data. Graphs 

shown are representative of two independent experiments repeated in duplicate.  
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4.3.4 Use of methods to separate epithelial cells associated with P. gingivalis 

4.3.4.1 Rationale 

It was observed previously that P. gingivalis associates with individual epithelial cells 

differently (Rudney et al., 2005). For example, there seem to be some epithelial cells that have a 

high bacterial cell load compared with others that may have none or only a few associated 

bacterial cells. This was observed in both monolayer and OMM cultures (fig 4.15). Therefore, 

the question was posed as to what the difference is, if any, between cells that ‘preferentially’ 

internalise bacteria and those that do not. To investigate this, initially the process involved the 

separation of epithelial cells with intracellular/associated bacteria and those without. Due to the 

high adherence of this bacterium externally to epithelial cells it was difficult to separate cells 

that exclusively contained intracellular bacteria, hence cells associated with bacteria were 

sought to be separated from those that were not. Two methods are shown below, which show 

promising signs in the isolation of bacterial-associated epithelial cells from a mixed cell 

population. P. gingivalis NCTC 11834 was used
 
in these experiments because this strain invades 

at a relatively high level. 

 

Figure 4.15 Immunohistochemical analysis of H357 monolayer and H357-OMM incubated with P. gingivalis. 

H357 monolayers were cultured on coverslips and H357-OMM cultured in tissue culture inserts. P. gingivalis NCTC 

11834 was incubated with monolayers for 90 minutes and H357-OMM for 4 hours, following which the epithelial 

cells were fixed, permeabilised and immunohistochemical analysis performed using either the MAb 1B5 antibody to 

stain for P. gingivalis or an IgG2 antibody negative control. Areas of brown staining indicate localisation of P. 

gingivalis. Haemotoxylin counterstain rendered the epithelial cell nuclei blue. Inset boxes are approximately 2.5x 

magnified. 
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4.3.4.2 Magnetic beads 

When H357 monolayers were incubated with P. gingivalis-coated magnetic beads 

(Dynabeads
®
), and then the cells were released into suspension, separation of cell populations 

was possible using a magnetic field (fig 4.16). Figure 4.16 shows that following incubation of 

epithelial cells with P. gingivalis-coated beads there was approximately 9.24±3.73% cells 

associated with bacteria/magnetic beads compared with 90.75±3.73% not associated with 

bacteria/beads. In contrast, when epithelial cells were incubated with beads alone (not bound to 

P. gingivalis) there was a significantly lower proportion of epithelial cells associated with the 

uncoated beads (4.14±1.29%) (p=0.002), suggesting that P. gingivalis attached to the surface of 

the beads aided uptake of the magnetic beads by H357 cells. 

 

 

Figure 4.16 Epithelial cell counts of cells associated with magnetic beads and those not associated with 

magnetic beads after invasion of H357 epithelial cell line with P. gingivalis-coated or uncoated beads. Magnetic 

Dynabeads® were incubated with or without P. gingivalis NCTC 11834 to allow attachment of the bacteria to the 

beads. A standard invasion assay was performed using the H357 epithelial cell line with coated or uncoated beads. 

Following incubation of H357 with magnetic beads, epithelial cells were trypsinised to allow detachment from the 

culture plate and were exposed to a magnetic field. The epithelial cells which migrated towards the magnet are 

referred to as ‘associated’ and those epithelial cells not associated with magnetic beads referred to as ‘not associated’. 

The separation of epithelial cells after invasion of magnetic beads coated and not coated with P. gingivalis is shown. 

Epithelial cells associated and not associated with beads were counted using a haemocytometer and expressed as a 

percentage of the total cell count. Bars indicate means±SD of three independent experiments repeated in triplicate. 

The percentage of epithelial cells associated with beads was significantly higher (*p=0.002) when beads were coated 

with P. gingivalis compared with beads which were not. 

 

In order to investigate whether the epithelial cells that had been invaded by P. gingivalis (i.e. 

‘associated’ epithelial cells) were ‘different’ in some way that  favoured bacterial internalisation 

compared with ‘P. gingivalis-free’ epithelial cells (bars in +NCTC 11834 in fig 4.16,), these 

two cell populations were cultured overnight alongside fresh H357 epithelial cells (untreated) 

and an invasion assay was performed the next day to investigate whether P. gingivalis was 

capable of invading the previously invaded epithelial cells at a higher percentage than the ones 

not previously invaded. Figure 4.17 shows there was no significant difference between the 

invasion of the two cell populations (2.64% (bead-associated) and 2.41% (bead-not associated) 
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(p>0.05)) and the H357 untreated culture (2.55%, p>0.05), suggesting that the ‘invaded 

phenotype’ was not a stable feature in cell culture. However, there was no way of separating 

cells associated with un-coated beads that might have been present in the suspension from cells-

associated with P. gingivalis-coated beads. Nonetheless, the data suggest that there was no 

stable sub-population in the H357 cell culture. Epithelial cells not invaded by P. gingivalis were 

lysed as a control to see if residual P. gingivalis was present from the previous invasion assay, 

however no intracellular P. gingivalis was detected by viable counting. This is in agreement 

with previous data (fig 4.13) indicating that previously invaded P. gingivalis did not influence 

the viable counts. 

 

Figure 4.17 Invasion of H357 epithelial cells associated with or without magnetic beads by P. gingivalis NCTC 

11834. H357 epithelial cells were invaded by P. gingivalis NCTC 11834 bound to magnetic beads, trypsinised and 

separated using a magnet. Epithelial cells associated with the magnetic beads (and P. gingivalis) were removed by the 

magnet, washed and plated for an antibiotic protection assay. Similarly, epithelial cells which were not attracted to 

the magnet, hence those which were not associated with beads (or P. gingivalis), were processed identically. An 

invasion assay with each of these cell populations, and fresh (untreated) H357 plated simultaneously, was performed 

with P. gingivalis NCTC 11834. After metronidazole treatment the epithelial cells were lysed, the intracellular 

bacteria plated and colonies counted. Percentage invasion was recorded as the number of colonies counted as a 

percentage of the original bacterial suspension also plated on blood FA-agar for viable counting. Bar chart is 

representative of two independent experiments performed in triplicate. 

 

4.3.4.3 Flow cytometry 

As an alternative approach, H357 monolayer cultures were exposed to FITC-labelled P. 

gingivalis NCTC 11834 and blue fluorescent beads (Fluoresbrite BB Carboxylate Microspheres, 

Polysciences Inc) for 1.5 hours, trypsinised and the fluorescence of the epithelial cells analysed 

by flow cytometry. Data presented in figure 4.18 suggests that there were 4 populations of 

epithelial cells: cells alone (4.7%), cells associated with bacteria (20.5%), cells associated with 

beads (11.2%) and cells associated with both beads and bacteria (48.5%). Due to an overlap in 

fluorescence, 15.1% of epithelial cells were not assigned fluorescence (red dots on histogram, 

fig. 4.18). Data presented here suggest that epithelial cells associate with (either internally or on 

the surface) P. gingivalis at a higher percentage than fluorescent beads. There were epithelial 

cells that were associated with beads or bacteria alone, but also in combination. In addition, 
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some epithelial cells were not associated with either bacteria or beads suggesting that there may 

be differences between the epithelial surfaces within the same culture plate which preferentially 

favour attachment and/or invasion of ‘particles’, be it either bacteria or beads, or a combination. 

It may be possible by flow cytometric cell sorting to separate the cells associated with bacteria 

from the cells that have no bacteria. 

 

Figure 4.18 Populations of H357 cells associated with fluorescent beads and/or P. gingivalis. H357 monolayers 

were incubated with FITC-P. gingivalis and fluorescent beads (Fluoresbrite BB Carboxylate Microsphere, 

Polysciences Inc) for 90 minutes, then washed and trypsinised. The forward scatter (FSC)/side scatter (SSC) 

histogram shows a population of beads alone, not associated with cells (*). These were gated out of the analysis and 

cells only were analysed (P1). The UV 450/50/Blue 530/30 histogram shows the cell populations of bacterial-

associated H357 (FITC/purple), bead-associated H357 (beads/blue), both bacteria- and bead-associated H357 (dual 

positives/yellow) and H357 alone (cells/green). The table shows the percentage of the cell population for each 

variable within the P1 region.  
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4.4 DISCUSSION 

4.4.1 P. gingivalis invasion of monolayer and OMM 

The invasion of oral epithelial cells by P. gingivalis has been shown previously to be dependent 

on bacterial fimbriae, with type II fimbriae rendering the bacterium most highly invasive 

(Nakagawa et al., 2002; Kato et al., 2007). It is well known that W50 is a sparsely fimbriated 

strain of P. gingivalis (Sojar et al., 1997; Lee et al., 1991), and as such contributes to a 

significantly lower invasive capacity compared with P. gingivalis NCTC 11834, which is highly 

fimbriated (Suwannakul et al., 2010). This greater epithelial invasion was observed for both 

monolayer and organotypic cultures (figs 4.1and 4.3 respectively). 

 

The invasion of monolayer and OMM cultures were performed over different periods of time, 

i.e. 1.5 hours and 4 hours respectively. This was to achieve the maximal percentage invasion of 

these cultures by P. gingivalis. Therefore, a direct comparison of the levels of invasion between 

monolayer and OMM was not possible. Despite this, the total percentage invasion of OMM was 

almost identical to the recorded percentage invasion for monolayer, which may be due to 

similarities in their surface areas, suggesting that independent of the epithelial culture model 

there may be a maximal proportion of the original bacterial suspension that is able to invade 

and/or only a certain proportion of epithelial cells have the capacity to be invaded. Nonetheless, 

similarities in invasion between these two culture systems suggests that although OMM is more 

representative of the oral mucosa (Chapter 3), investigating cellular invasion by P. gingivalis 

may be suitable using the simpler monolayer model. 

 

As for the choice of NOK and H357 cells; there was no significant difference in the percentage 

invasion by P. gingivalis between these two cell types when cultured as a monolayer. Since 

H357 cells were more readily available than NOK, monolayer models with the former have an 

advantage. However, the invasion of NOK by P. gingivalis NCTC 11834 was significantly 

lower than that seen with the H357 cell line when both were cultured as organotypic models 

(OMM). This may be due to differences between the NOK-OMM and H357-OMM, in areas 

such as cellular differentiation, total receptor expression or polarity, and/or intracellular 

signalling pathways (Ertel, 2006), all of which may influence bacterial invasion. As mentioned, 

the organotypic model based on NOK has a multi-layered differentiated epithelium that is 

histologically representative of the oral mucosa (Chapter 3), suggesting that the use of NOK-

OMM to study the invasion of oral epithelial cells by P. gingivalis may be more relevant than 

monolayer cultures. However, as previously mentioned (section 3.3.1.4), submerged H357-

OMM were shown to resemble junctional epithelium and therefore may be just as appropriate to 

study P. gingivalis invasion as NOK-OMM. 
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Monolayer and OMM cultures may be used to study other aspects of host-pathogen interactions, 

rather than limited to invasion, and these include, protein release, gene expression, receptor 

expression and intracellular signalling. Therefore, considering data obtained from this study, i.e. 

monolayer (H357/NOK) or OMM (H357/NOK), the question may be posed; which culture 

system is the most suitable to study these interactions in the future? As a cell line, H357 is easy 

to obtain, reliable and quick to culture. No noticeable differences were observed between the 

total percentages of P. gingivalis invasion recorded for H357-OMM and H357 monolayer 

cultures for either strains W50 or NCTC 11834 (figs 4.1 & 4.3) and no significant difference 

was recorded between NOK and H357 monolayer cultures for the invasion of strain NCTC 

11834. Therefore, H357 monolayer cultures may be just as suitable to study trends between 

experimental variables, where such variables are not reliant upon the cell-type or absolute end-

point values. For example, invasion of NOK monolayers showed the same trend as invasion of 

H357 monolayers, with strain E8 (∆rgpArgpB) invading at a higher percentage than the parent 

strain (W50) (figs 4.5 & 4.6). However, as mentioned, monolayer cultures are not as 

representative of the oral mucosa as organotypic cultures. Furthermore, H357-OMM is not as 

representative of the oral mucosa as NOK-OMM because H357 cells are derived from an oral 

squamous cell carcinoma and differ from primary epithelial cultures. Data in this study suggests 

that if primary cells are in short supply or difficult to obtain or culture, then monolayer cultures 

of cell lines may be used to identify trends between experimental variables. However, NOK-

OMM (particularly cultured using isolated juctional epithelial cells) may be more useful in 

interpreting absolute percentage invasion or other absolute end-point values, which may 

influence further experimental procedures such as in vivo experimentation and/or drug 

development. In addition, as NOK may express different receptors or other cell surface proteins 

and intracellular signalling pathways, it should be recommended that NOK-OMM be the model 

of choice to answer such definitive questions. 

 

As a model system to study bacterial invasion, the mechanisms may differ between monolayer 

and OMM due to the contributing factors of the multi-layered epithelium and the presence of 

fibroblasts. However, whilst monolayers may be a useful, highly reproducible model to study 

invasion in vitro, the culture of a reproducible model incorporating primary human cells, a 

multi-layered epithelium and additional cell types, e.g. fibroblasts, supported by a matrix (as 

presented in this study), should be recommended as a relevant in vitro model of the in vivo 

cellular micro-environment encountered by P. gingivalis. 

 

4.4.2 Factors influencing P. gingivalis invasion 

Gingipains are a major virulence feature of P. gingivalis and have been shown to play a role in 

modulating the oral epithelial cell invasion of this bacterium. The invasion of H357 oral 

epithelial cells with P. gingivalis wild-type (W50) and gingipain knockout mutants (E8 
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(ΔrgpArgpB) and K1A (Δkgp)) has previously been reported (Suwannakul et al., 2010). The 

trend in invasion, with E8 invading monolayer cultures of oral epithelial cells at a significantly 

higher percentage than the wild-type was also shown in this chapter (fig 4.5). K1A invaded at a 

lower level (Suwannakul et al, 2010), not significantly different from the parent strain W50. 

Moreover, the invasion of H357-OMM with these P. gingivalis strains also showed the same 

trend in invasion, confirming the use of monolayer cultures to assess differences in 

experimental trends, rather than culturing OMM, which is more time consuming. However, in 

contrast to this data, it has previously been reported that Arg- and Lys-gingipain mutants of P. 

gingivalis cause smaller abscesses in a murine model of P. gingivalis infection (Yoneda et al., 

2001), decreased invasion in vitro of oral epithelial cells when compared with the parent strain 

(Park and Lamont., 1998), and decreased adhesion of P. gingivalis to epithelial cells in the 

presence of soluble gingipains (Chen et al., 2001). However, these particular studies have 

targeted gingipain knockout in the more highly fimbriated strains of P. gingivalis such as ATCC 

33277. The parent strain in this study was W50, which is sparsely fimbriated, and this may 

account for differences in the invasion trends observed. 

 

As mentioned previously, fimbriae have been shown to be a major virulence feature of P. 

gingivalis and are involved in epithelial cell adhesion via host cell integrins (Tsuda et al., 2008; 

Nakagawa et al., 2005). P. gingivalis gingipains, more specifically Arg-gingipains, have been 

shown to be important in prefimbrillin processing to fimbrillin that comprise the P. gingivalis 

fimbriae (Lee et al., 1991). Indeed, it has been reported that a P. gingivalis RgpARgpB-null 

mutant showed very little fimbrillin expression by Western blot or electron microscopy 

(Nakayama et al., 1996; Kadowaki et al., 1998). In addition, a triple gingipain-null mutant 

treated with exogenous gingipains was highly fimbriated, whereas the untreated mutant strain 

was sparsely fimbriated (Kato et al., 2007). Therefore, it could be assumed that the adhesion to, 

and subsequent invasion of epithelial cells by gingipain knockout mutants would be lower than 

the parent strain. However, as the P. gingivalis parent strain (W50) used in this study is sparsely 

fimbriated, gingipain knockout may not further influence fimbrillin expression significantly. 

Consequently, it could be speculated that invasion of oral epithelial cells by this strain of P. 

gingivalis may be via a mechanism independent of fimbriae, for example via clathrin-mediated 

endocytosis (Boisvert and Duncan, 2008) or lipid rafts (Tsuda et al., 2008).  

 

Using the same strains of P. gingivalis as the ones used in this chapter, Suwannakul et al. 

(2010) reported that a highly invasive sub-population of P. gingivalis showed a down-regulation 

in the gene encoding RgpB, and P. gingivalis cells with low gingipain activity showed higher 

epithelial cell invasion than P. gingivalis with high gingipain activity. In addition, Chen et al., 

(2001) report the increased adhesion to epithelial cells of a P. gingivalis double RgpARgpB 

knockout mutant compared with the parent strain (ATCC 33277) and single Rgp knockout 
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mutants (Chen et al., 2001). This further confirms the gingipains as important regulators of the 

invasion process, particularly in less fimbriated, less invasive strains of P. gingivalis. It could be 

speculated that gingipains may affect the epithelial cell surface by degrading host cell receptors 

thereby inhibiting invasion. Therefore, P. gingivalis with a lower gingipain activity may be 

internalised with greater efficiency due to the availability of an increased number of host cell 

receptors. This is explored further in Chapter 5. 

 

Also presented in this chapter is the epithelial cell invasion of a triple gingipain knockout 

mutant (∆rgpA∆rgpB∆kgp, EK18), kindly provided by J. Higham (University of Sheffield). 

Previous research has shown little tissue penetration and reduced basement membrane 

destruction by a P. gingivalis triple gingipain mutant compared to the wild-type strain in an in 

vitro organotypic model of the oral mucosa (Andrian et al., 2004). In this study, the invasion of 

EK18 was significantly lower than the parent strain, W50 (fig 4.8). This was also shown by 

Kato et al. (2007), where the invasion of a triple gingipain mutant was lower than that of the 

parent strain. This decrease in invasion may be due to the complete loss of fimbriae because of 

the loss of prefimbrillin processing by the gingipains or the lack of differential processing by 

gingipains of other, yet unidentified, cell surface adhesins important for P. gingivalis invasion.  

 

The gingipains are not the only modulator of P. gingivalis invasion. Numerous mechanisms are 

involved and the influence of increasing the temperature and concentrations of haemin within 

the bacterial culture medium was investigated in this study; mechanisms that may not be 

distinctly separate from the role gingipains play within the oral cavity. A sign of periodontitis is 

bleeding upon probing. The haemin within blood has been shown to be utilised by P. gingivalis 

as a growth source (Wyss et al., 1992). High concentrations of haemin have been shown to 

influence the structure of lipid A rendering it more of a TLR4 antagonist with mono-

phosphorylated, tetra-acylated form of lipid A predominantly expressed (Al-Qutub et al., 2006). 

In contrast, at elevated temperatures, lipid A acts as a TLR4 agonist exhibiting penta-acylated, 

mono-phosphorylated species (Curtis et al., 2011). The invasion of P. gingivalis was shown to 

be significantly higher when cultured at both high temperature (41°C) and high haemin 

concentrations (10µg ml
-1

) (fig 4.9 & 4.10 respectively). As it has been shown that different 

structures of lipid A exist at high temperature and high haemin concentrations, differences in the 

composition of lipid A may not be sufficient in explaining its role in invasion. More importantly 

it has previously been reported that P. gingivalis grown under haemin-limiting conditions only 

expressed 50% of the fimA promoter activity compared with bacteria grown under normal 

haemin concentrations (Xie et al., 1997). This suggests that the expression of fimbriae, which 

play an important role in invasion, may be diminished under haemin-limiting conditions and 

possibly explains why a lower percentage invasion of oral epithelial cells was found when P. 

gingivalis was cultured in 1µg ml
-1

 haemin than in 10µg ml
-1

. In addition, FimA expression was 
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shown to be increased in excess haemin conditions (Masuda et al., 2006), further suggesting a 

role for fimbriae in the increase in P. gingivalis invasion under increasing haemin 

concentrations. 

 

In summary, these data add to a hypothesis for the influence of environment on P.gingivalis 

invasion. Under conditions of inflammation, the environment within which P. gingivalis resides 

is rich in haemin and the temperature of the periodontal pocket is raised. The data presented 

here propose that this environment, in terms of haemin and temperature influence P. gingivalis 

entry within oral epithelial cells, enabling this bacterium to avoid immune cell detection. P. 

gingivalis possesses numerous virulence features, which modulate epithelial internalisation. In 

this high haemin and high temperature environment it may be that P. gingivalis gingipains are 

down-regulated as they are no longer required for haemin acquisition and/or are denatured at 

elevated temperatures (Lewis et al., 1999, Masuda et al., 2006). The consequence would be that 

cellular receptors may not be destroyed by gingipains. Therefore suggesting a mechanism by 

which the environment and gingipains act in concert to increase the epithelial colonisation by P. 

gingivalis. This may be particularly important in the pathogenesis of disease where high 

temperatures and high concentrations of haemin are present, contributing to the cycles of 

disease exacerbation observed in these individuals (Socransky et al., 1984). However, overall 

there is still limited information and further work is required to confirm or refute this 

hypothesis. 

 

4.4.3 The fate of P. gingivalis following epithelial cell invasion 

As a microorganism, it is within the interests of P. gingivalis to survive at sites within the mouth 

that it inhabits. The low oxygen tensions of the periodontal pocket and incorporation into the 

bacterial biofilm aid in the survival of this anaerobic bacterium. However, there is the constant 

threat from immune cells rendering extracellular bacteria more susceptible to killing. Therefore 

to be internalised by oral epithelial cells may aid immune evasion.  To remain viable 

intracellularly, P. gingivalis modulates host apoptotic pathways (Mao et al., 2007). In addition, 

the protein expression of P. gingivalis dramatically alters following invasion. It has been 

observed that there is an up-regulation of oxidative stress and heat-shock proteins and a down-

regulation of gingipains and fimbriae (Xia et al., 2007; Capestany et al., 2008), which may 

contribute to intracellular survival. In addition, Suwannakul et al. (2010) showed increased 

oxidative stress resistance, a down-regulation of rgpB and an up-regulation of iron acquisition 

genes in a more invasive sub-population of P. gingivalis. 

 

The data presented in this study indicated that the intracellular viability of P. gingivalis NCTC 

11834 within the H357 oral epithelial cell line, when cultured as a monolayer or OMM, began 

to decrease after 3 hours and intracellular persistence was limited to approximately 6 hours (figs 
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4.12, 4.13 & 4.14). This is in agreement with Li et al., (2008) who described a steep decline in 

the intracellular recovery of viable P. gingivalis after 6 hours, diminishing to almost zero 48 

hours after invasion of endothelial, KB (HeLa) and smooth muscle cells. However, this is in 

contrast to other data reported in the literature, which shows the intracellular persistence of P. 

gingivalis for up to approximately 4-8 days (Houalet-Jeanne et al., 2001; Madianos et al., 1996; 

Eick et al., 2006). Differences between the data reported in the literature and data presented in 

this chapter are difficult to explain but may be due to the differences in epithelial cells used 

(H357 oral keratinocytes compared with the HeLa contaminated, KB cell line) and differences 

in the strains of P. gingivalis used. Madianos et al. (1996) reported an initial invasion of 60% 

after incubating KB epithelial cells with P. gingivalis at a MOI of 1. This percentage invasion is 

very high but the authors explain that the low MOI may have prevented epithelial cell stress 

enabling a higher percentage invasion to be recorded. However, this seems unlikely as invasion 

has previously been shown to increase as the MOI increases, up to a maximum percentage after 

incubation of epithelial cells with P. gingivalis at MOI100 (Lamont et al., 1995; Li et al., 

(2008)). This has been our experience also, as reported in this chapter, where a lower percentage 

invasion was recorded after P. gingivalis invasion with MOI1 compared with MOI100 (fig 4.12 

and 4.13 respectively).  

 

There are numerous mechanisms by which the observed decrease in P. gingivalis intracellular 

survival over 24 h reported in this chapter may have occurred. It has been shown that the 

medium and the aerobic atmosphere, within which the experiment was performed, were not 

suitable for prolonged survival of P. gingivalis in the absence of epithelial cells (fig 4.11). 

Furthermore, additions of substrates, important in P. gingivalis growth, to the culture medium 

was not sufficient to maintain bacterial survival for longer than 4-6 hours, probably due to the 

aerobic atmosphere. Therefore, it may be assumed that this medium, over the time period of the 

experiment, had adverse effects on the survival and detection of viable P. gingivalis. The 

intracellular environment may also have contributed to the death of this bacterium via 

trafficking to phagolysosomes (Takeuchi et al., 2011). In addition, when epithelial cells undergo 

oxidative phosphorylation, reactive oxygen species are produced, e.g. superoxide species and 

hydrogen peroxide. Although intracellular P. gingivalis has been shown to upregulate proteins 

essential for combating oxidative stress, such as superoxide dismutase (Ohara et al., 2006), 

alkyl hydroperoxide reductase (Johnson et al., 2004) and rubererythrin (Mydel et al., 2006), and 

an invasive sub-population of P. gingivalis has been shown to have greater oxidative stress 

resistance (Suwannakul et al., 2010), this up-regulation may not be sufficient over the time 

periods described here to be protective, particularly as cells continue to respire. It should be 

mentioned that the H357 cell line was used in all these experiments and it has been reported that 

some cancer cells up-regulate genes involved in oxidative phosphorylation, suggesting that 

NOK may be a more suitable cell to use for these experiments. However, the data reported in 
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the literature regarding the intracellular survival of P. gingivalis has primarily been performed 

using the KB cell line, which has widely been shown to be contaminated with HeLa cells, 

originally isolated from cervical cancer. Therefore, the H357 cell line used in this study is a 

more relevant cell type as it was harvested from the oral cavity.  

 

In addition, the decreased detection of intracellular P. gingivalis after 6 hours may be the result 

of latency once internalised. This has been proposed as a mechanism for the intracellular 

persistence of uropathogenic E. coli within bladder epithelial cells (Hunstad and Justice, 2010) 

and for P. gingivalis within oral epithelial cells (Li et al., 2008). It has been suggested that 

unculturable intracellular bacteria within this ‘latent state’ may become culturable once in 

contact with fresh host cells (Li et al., 2008), reversing the quiescent state and indicating a 

mechanism by which intracellular bacteria may persist within host tissue, occasionally being 

released to cause exacerbations in disease (Socransky et al., 1984, Takeuchi et al., 2011). This 

aspect has not been explored here but would be useful further work. However, it has been 

shown here that P. gingivalis are found within the supernatant following invasion providing an 

opportunity for these external bacteria to re-enter previously invaded, or as yet un-invaded, 

epithelial cells. 

 

In terms of intracellular replication, Madianos et al. (1996) and Houalet-Jeanne et al. (2001) 

report the intracellular multiplication of P. gingivalis after the first or second day following 

invasion. This is in contrast to data presented in this chapter and by Li et al. (2008), where no 

bacterial replication was observed. The use of KB cells in those studies is not as relevant as oral 

keratinocytes, and as previously mentioned this may be the reason why differences in 

observations exist. Papapanou et al. (1994) have reported the possible intracellular replication 

of P. gingivalis within pocket epithelial cells by electron microscopy. However, without 

investigating this further, the intracellular replication within this more relevant cell type cannot 

be fully elucidated. 

 

The recolonisation of periodontal sites by intracellular bacteria has been suggested by Muller et 

al. (1996). The authors report that the number of intracellular bacteria is greater than the number 

of bacteria within subgingival plaque, suggesting that the high numbers within this intracellular 

store may be the origin for recolonisation (Muller et al., 1996). Therefore, the release of 

intracellular P. gingivalis may be an important mechanism in recolonisation. Indeed, it has been 

reported elsewhere that intracellular P. gingivalis is capable of exiting epithelial cells and 

infecting ‘new’ host cells, contributing to cell-to-cell transmission (Li et al., 2008, Yilmaz et al., 

2006). Data presented in this study also suggests that P. gingivalis is capable of exiting host 

epithelial cells. In agreement with data presented by Takeuchi et al. (2011), there was an 

increase in the number of extracellular bacteria following invasion, up to 6 hours, after which 
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there was a dramatic decline in detection (fig 4.13). Intracellular pathogens use a number of 

strategies to exit host cells, including induction of host cell apoptosis, actin-based protrusion, or 

extrusion (Hybiske and Stephens, 2008). In a recent study, P. gingivalis exit has been shown to 

be dependent on actin polymerisation, lipid rafts and microtubule assembly, suggesting that P. 

gingivalis release from epithelial cells may be an active process (Takeuchi et al., 2011). 

However, the extracellular P. gingivalis detected in this study was probably due, in part, to 

epithelial desquamation. These desquamated cells contained intracellular bacteria following the 

antibiotic protection assay and it was shown that the number of desquamated epithelial cells 

increased over time, particularly in monolayer cultures, compared with OMM. However, the 

percentage of P. gingivalis released into the supernatant showed a greater prolonged release 

from OMM compared with monolayer. As the number of desquamated epithelial cells detected 

from OMM at 48 hours was not higher than that from monolayer cultures this suggests that P. 

gingivalis may be released by mechanisms other than epithelial desquamation. However, the 

sensitivity of the method for detecting epithelial cell desquamation requires improvement, as 

only the cells that were completely or partially intact were counted, eliminating the detection of 

completely lysed cells, which may have occurred as a mechanism of P. gingivalis release. 

Indeed, it has been reported that a higher number of P. gingivalis cells are associated with dead 

epithelial cells compared with viable epithelial cells, suggesting that P. gingivalis release may 

also occur during epithelial cell death and desquamation (Dierickx et al., 2002). 

 

In terms of comparison of monolayer and OMM cultures, the persistence of P. gingivalis within 

OMM was significantly longer than monolayer, even though the percentage of desquamated 

epithelial cells was similar. As OMM consists of a multi-layered epithelium, the percentage of 

desquamated cells was recorded as a percentage of the number of epithelial cells estimated to be 

on the surface layer of the model and not the total number of epithelial cells. Therefore, as 

OMM is multi-layered there are other layers of cells that could be involved, which may explain 

the prolonged survival of this bacterium. However, in all the in vitro studies, there was an 

eventual decline in the recovery of viable P. gingivalis, which is consistent with reports in the 

literature and which may be due to the culture system used. It may not, therefore, be 

representative of the in vivo situation where there is constant desquamation. Indeed, within the 

mouth, shedding surfaces, i.e. mucosal tissues, are in the close vicinity of non-shedding 

surfaces, i.e. the tooth surface, which harbours many bacterial species. This may therefore 

provide a continuous reservoir of bacteria for the re-infection of oral epithelial cells and as such 

the experimental methods do not directly mimic the in vivo situation. Consequently, the data 

reported here should be interpreted with caution and further modifications to the experimental 

protocol and the in vitro culture model may be required to determine the in vivo relevance. 

Nonetheless, the experimental protocol and culture model used in this study to investigate P. 

gingivalis intracellular survival, suggests that P. gingivalis does not replicate intracellularly and 
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only survives within the epithelium for 3 hours. Following this, there is either bacterial cell 

death or P. gingivalis enters a dormant ‘unculturable’ state. 

 

4.4.4 Comparison of methods to separate epithelial cells associated with P. 

gingivalis 

For bacterial invasion of host cells there seems to be some cells that are ‘super-invaded’ and 

some cells not invaded at all. This was shown in figure 4.15, in which anti-P. gingivalis staining 

revealed the extent of invasion in H357 monolayers and H357-OMM. This has been reported 

previously by Rudney et al., (2005). Therefore it seemed reasonable to investigate what 

differences exist between epithelial cells which have high bacterial loads and those which do 

not, in an attempt to dissect the epithelial cell contribution to the invasion process. In order to do 

this, invaded and the non-invaded cell populations needed to be separated.  

 

There are a number of commercial cell separation kits available. Separation of a cell type of 

interest from a mixed cell population is commonly performed by labelling the required cell type 

using an antibody against a specific cell surface receptor and separating the mixed cell 

populations using magnetic or non-magnetic beads, or fluorescent-activated cell sorting 

(FACS). The major cell separation kits include MACS
®
 Cell Separation (Miltenyi Biotec Ltd, 

Germany), EasySep
®
 (StemCell™ Technologies, Grenoble, France) and Dynabeads

®
 

(Invitrogen, UK), which are based on magnetic beads and pluriBead (pluriSelect, Germany), 

CEDARLANE cellect™ Immunocolumn and CEDARLANE
®
 Lympholyte PURE (Cedarlane, 

Canada), which are non-magnetic systems relying on cell separation via density gradient media, 

a recovery column and sieve system. These magnetic and non-magnetic bead systems are 

limited to the availability of the specific antibody-coupled bead required for the specified cell 

type. Dynabeads
®
 have been further developed to allow binding of any antibody of interest to 

the beads, increasing its applications. In this study, Dynabeads
®
 were chosen as one of the 

methods to explore separation of invaded from non-invaded epithelial cells. In addition, H357 

epithelial cells were incubated with fluorescently-labelled P. gingivalis or fluorescent beads and 

the fluorescence of the epithelial cells was measured by flow cytometry to assess the 

populations of cells which preferentially took up any particulate matter (beads only) compared 

with cells that were associated with bacteria. It should be mentioned that neither of these 

separation systems differentiated adherent, non-internalised from internalised P. gingivalis. 

Therefore, the term ‘associated cells’ refers to the epithelial cells associated with bacteria, i.e. 

epithelial cells with P. gingivalis internalised as well as adhered to the cell surface. 

 

Data presented here indicate that it is possible to separate P. gingivalis associated epithelial cells 

from non-associated cells. A percentage of epithelial cells were shown to associate with 

magnetic beads alone, which were not coupled to P. gingivalis, suggesting that epithelial cells 
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are capable of internalising or associating with ‘particles’, in this case magnetic beads (fig 4.16). 

This was also observed when performing flow cytometry in which some epithelial cells were 

associated with fluorescent beads alone (fig 4.18). Using magnetic beads it was possible to 

separate a higher percentage of epithelial cells which associated with P. gingivalis-coated beads 

compared with un-coated beads. This suggests that there is a population of epithelial cells that 

preferentially associate with P. gingivalis-beads compared with beads alone. What is not clear 

though is whether those epithelial cells that associate with beads alone are also part of the 

population of epithelial cells that associate with P. gingivalis-beads, or whether they are a 

distinct population. Indeed, the flow cytometry data indicated that there were 4 distinct 

populations (fig 4.18), suggesting that there may be epithelial cells that associate with 

particulate matter regardless of the expression of specific adhesins etc, whereas other epithelial 

cells specifically ‘recognise’ P. gingivalis adhesins. Using the magnetic beads to separate 

epithelial cells that associate preferentially with P. gingivalis alone will prove difficult, 

however, there was a distinctly higher percentage of the population that did not associate with 

magnetic beads at all. However, because the magnetic beads are 2.8µm diameter, and a little 

larger when coupled with P. gingivalis, the entry into/association with epithelial cells may have 

been inhibited, accounting for the high number of epithelial cells recorded as not associated 

with magnetic beads. In addition, the intracellular localisation of one or two beads for example 

may have reduced the efficiency of the magnetic separation process. Indeed, the flow cytometry 

data suggested that the number of epithelial cells not associated with P. gingivalis was 15.9%, 

which seems a little more likely when compared with the immunohistochemical staining data 

(fig 4.15). Therefore, further work will be required to examine the percentage of epithelial cells 

that preferentially internalise/associate with P. gingivalis following infection. 

 

Despite these difficulties, it was shown that following separation of the two cell populations the 

epithelial cells could then be re-seeded and cultured. However, when an invasion assay using P. 

gingivalis was performed with these two cell populations, no significant difference in invasion 

was observed. This suggests that differences between the two populations in the original 

cultures were only transient and insufficiently stable to be manifest after re-culture. Actual 

epithelial cell separation and sorting by FACS was not attempted in this study. However, it was 

shown that there were distinct populations of cells that associated with fluorescent P. gingivalis 

and those that did not, making such cell sorting a possible way to study this further. 

 

4.4.5 Conclusion 

The invasion of oral epithelial cells by P. gingivalis is a complex process that relies on host-

pathogen-environmental cross-talk. P. gingivalis gingipains, environmental haemin and 

temperature have all been shown to be important modulators of this. In particular, within 

conditions that mimic the in vivo environment found at diseased periodontal sites, i.e. high 
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temperatures and haemin concentrations, invasion increased. Thus, suggesting a role for these 

factors in the pathogenesis of disease. However, more work is required to elucidate mechanistic 

and functional roles of these in the invasion process.  

 

Methods have been proposed to separate bacterial-associated epithelial cells and the future study 

of these may further scientific knowledge as to the epithelial contribution during P. gingivalis 

invasion. 

 

The fate of intracellular P. gingivalis in terms of survival and multiplication reported here was 

in contrast to some reports previously published as we failed to show bacterial survival for 

longer than 3 hours, or multiplication over the 48 hours the experiments were performed. This 

was observed with both monolayer and OMM cultures, although the survival within OMM was 

more prolonged than monolayer cultures. We proposed a mechanism by which P. gingivalis 

may re-infect periodontal sites, in vivo, by epithelial desquamation.  

 

However, additional work is required in order to identify the key step(s) important in the 

pathogenesis of disease, which may contribute to the development of novel therapeutic agents 

used in the treatment of periodontitis. Mimicking the periodontal environment in vitro is 

essential, in addition to the continued utilisation and development of organotypic cultures of 

primary, orally-derived cells as a more representative model of the oral mucosa. 
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Chapter 5 Modification of epithelial cell surface receptors by P. 

gingivalis and its influence on invasion 

 

5.1 INTRODUCTION 

Epithelial cell internalisation by P. gingivalis is a complex process. To date, the precise 

mechanism of invasion and the identification of all crucial epithelial cell receptors has not yet 

been fully investigated (section 1.3.4.2).  

 

It was shown in chapter 4 that P. gingivalis lacking the arginine-specific gingipains invaded 

keratinocytes at a higher percentage than the wild-type strain (section 4.3.2.1). It was reasoned, 

that gingipains may affect the epithelial cell membrane in some way, inhibiting invasion, and 

this may be due to the degradation of epithelial cell receptors important for the cellular 

internalisation of this bacterium. As it is currently thought that epithelial invasion by P. 

gingivalis occurs via the association of bacterial fimbriae with the integrin α5β1, the α5 integrin 

subunit was one of the molecules investigated in this chapter. However, P.gingivalis gingipains 

may also affect accessory molecules that interact with membrane integrins disrupting their 

normal clustering and function (Mahtout et al., 2009). Consequently, members of the 

tetraspanin family of molecules have also been investigated.  

 

Tetraspanins have been implicated in a number of host-pathogen interactions. For example, 

Human Immunodeficiency Virus (HIV) buds in cell membranes rich in CD9, CD81, CD53 and 

CD63 (Deneka et al., 2007). The Hepatitis C Virus (HCV) envelope glycoprotein, E2, binds to 

CD81, which is crucial for cellular internalisation of the virus (Pileri et al., 1998) and the 

blockade of Plasmodium falciparum and Plasmodium yoelii sporozoite internalisation of 

hepatocytes was achieved using CD81 monoclonal antibodies and CD81 silencing (Silvie et al., 

2002; Silvie et al., 2006). In addition, pre-treatment of epithelial cell lines with anti-CD9, -

CD63 and -CD151 antibodies, recombinant EC2 domains and small interfering RNA (siRNA), 

inhibited the adhesion of Neisseria meningitidis to epithelial cells (Green et al., 2011).  

 

The entry of P. gingivalis into oral epithelial cells has been suggested to involve the integrin 

α5β1 (Tsuda et al., 2008; Nakagawa et al., 2005), lipid rafts (Tsuda et al., 2008) and/or clathrin-

mediated endocytosis (Boisvert and Duncan, 2008). Tetraspanins have been implicated in these 

processes. HCV invades hepatocytes via clathrin-mediated endocytosis where CD81 

oligomerisation may lead to increased HCV internalisation (Meertens et al., 2006, Zeisel et al., 

2011). Also, although shown to be distinct from lipid rafts, cholesterol has been shown to be 

important in the organisation of tetraspanins required for the cellular invasion of malaria 

sporozoites. In addition, tetraspanins are involved in clustering of integrins and other cellular 
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proteins into ‘microdomains’ at the cell surface (Singethan and Schneider-Schaulies, 2008; 

Yang et al., 2004). Therefore, the question was posed as to whether the α5β1 integrin and/or 

tetraspanins were important in the invasion of epithelial cells by P. gingivalis.  

 

Finally, an epithelial membrane molecule that has been reported to be affected by P. gingivalis 

gingipains is the complement receptor CD46. CD46 acts as a co-factor in the proteolytic 

inactivation of complement proteins C3b and C4b (Liszewski et al., 1991) to prevent prolonged 

complement activation that can lead to host tissue damage. CD46 has been shown to associate 

with β1 integrins, including α5β1 (Lozahic et al., 2000), which is thought to be important in P. 

gingivalis invasion. In addition, CD46 interacts with the tetraspanins CD9, CD81, CD82 and 

CD151, as part of the tetraspanin web (Lozahic et al., 2000) and Mahtout et al. (2009) have 

reported proteolysis of CD46 by P. gingivalis whole cells and by purified Lys-gingipain. 

Consequently we considered it possible that such proteolysis may influence invasion and so 

explain the enhanced invasion seen with the gingipain mutants of P. gingivalis. 

 

5.1.1 Aims 

The aim of this study was to investigate the involvement, if any, of surface effector molecules, 

in particular the tetraspanins and the integrin α5β1 in the invasion of oral epithelial cells by P. 

gingivalis. Initially, the presence of a range of tetraspanins, including CD9, CD63, CD81, CD82 

and CD151, and the α5 integrin subunit on the epithelial cell surface, following incubation with 

P. gingivalis was analysed by flow cytometry. CD81 and α5 were shown to be degraded by P. 

gingivalis in a gingipain-dependent manner. Therefore CD81 was targeted by RNA silencing, 

and CD81, CD9, CD63, CD82, CD151, CD46 and α5 by blocking antibody, to determine 

whether these molecules are targets for gingpains and explain the enhanced invasion by 

gingipain mutants. Such findings should inform our understanding of the molecular process of 

the invasion of epithelial cells by P. gingivalis.  

 

5.2 METHODS 

The following methods were used in this chapter: 

 Culture of H357 cell line (section 2.2) 

 Culture of bacterial strains (section 2.5) 

 Tetraspanin and α5β1 integrin detection analysed by flow cytometry (section 2.20) 

 Knockdown of CD81 using siRNA (section 2.21) 

 mRNA extraction, cDNA synthesis and real-time PCR to confirm CD81 knockdown 

(section 2.18.3) 

 Porphyromonas gingivalis invasion of monolayer cultures of H357 (section 2.11.1) 

 Statistical analysis (section 2.22)  
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5.3 RESULTS 

5.3.1 P. gingivalis affects the presence of CD81 and the α5 integrin subunit on 

H357 cells 

H357 monolayers were treated overnight with or without P. gingivalis W50 and probed using 

monoclonal antibodies for cell surface presence of the tetraspanins CD9, CD63, CD81, CD82 

and CD151 and the α5 integrin subunit by flow cytometry. Only live cells were analysed, and 

were selected for by performing a live-dead stain using TO-PRO
®
-3 and gating around the live 

cells using the FACsCalibur software (fig 5.1). Figures 5.2 and 5.3 show the histograms for 

each tetraspanin and α5 integrin subunit overlaid with an IgG1 negative control, respectively. 

All tetraspanins and α5 integrin were expressed by the H357 cells as shown by a shift to the 

right in the recorded fluorescence. The most highly expressed tetraspanin was CD9, with a 

median fluorescence value of 330.77. CD81 was the next most highly expressed tetraspanin, 

followed by CD82 (with median fluorescence values of 194.56 and 111.4 respectively). CD63 

and CD151 were the least expressed of the tetraspanins investigated with median fluorescence 

values of 31.06 and 11.76 respectively. Interestingly, the only tetraspanin that was affected by 

overnight exposure to P. gingivalis W50 was CD81, with a 2.33-fold decrease in detection after 

exposure (fig 5.2). α5 detection also diminished in the presence of P. gingivalis W50 overnight, 

with approximately a 2-fold decrease in detection (fig 5.3). 

 

 

 

Figure 5.1 Dot plot of live-dead staining of H357 cells using TO-PRO®-3. H357 cells were stained with TO-

PRO®-3 which entered non-viable cells. This was detected as an increase in fluorescence on the dot plot, as shown. 

Live cells were gated (R1) to eliminate dead cells from subsequent analyses. This gating was performed for every 

flow cytometric analysis performed.  

 

R1 
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Figure 5.2 The detection of membrane-bound tetraspanins after overnight treatment with P. gingivalis W50. 

H357 monolayers were stimulated with P. gingivalis W50 cells overnight at 37°C/5% CO2. H357 cells without P. 

gingivalis were used as a control. The presence of cell membrane-bound tetraspanins CD9, CD63, CD81, CD82 and 

CD151 was assessed using flow cytometry. Primary anti-tetraspanin antibodies were incubated with H357 for 30min 

followed by FITC-conjugated secondary antibody. Cells were washed and analysed using the FACsCalibur 

cytometer. The dead cells were gated out of analysis (see figure 5.1) and median fluorescence values were plotted for 

each tetraspanin antibody with or without W50 (one representative experiment shown, repeated in duplicate). The 

IgG1 isotype control (IgG) for W50-treated H357 (thick black line) and IgG control for untreated H357 (filled peak) 

did not show any change in fluorescence. FL1-H indicates fluorescence intensity and SCC indicates the number of 

cells. 
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Figure 5.3 The detection of membrane-bound integrin subunit α5 after overnight treatment with P. gingivalis 

W50. H357 monolayers were stimulated with P. gingivalis W50 cells overnight at 37°C/5% CO2. H357 cells without 

P. gingivalis were used as a control. The cell surface presence of α5 subunit was assessed using flow cytometry (A). 

The median fluorescence values are plotted (B) for the α5 in P. gingivalis-treated and-untreated H357 cells. Bars 

represent means±SEM of three independent experiments. FL1-H indicates fluorescence intensity and SCC indicates 

the number of cells. 

 

5.3.2 Detection of CD81 and the α5 integrin subunit is affected by P. gingivalis 

gingipains 

To investigate whether the decrease in CD81 and α5 cell surface detection was due to P. 

gingivalis proteases, gingipain knockout mutants were incubated with H357 monolayer cultures 

overnight. Figures 5.4 and 5.5 show that after incubation with W50, as previously shown (fig 

5.2 & 5.3), there was reduction in the level of fluorescence for CD81 and α5 respectively, 

indicating a loss of the cell surface presence of these receptors. In the presence of E8 

(ΔrgpArgpB) and K1A (Δkgp), at a MOI of 100, there was a slight increase in the fluorescence 

intensity signal for both CD81 and α5 compared with H357 cells incubated with W50 (with 

median fluorescence values of 250.29 (E8), 296.93 (K1A) and 205.35 (W50) for CD81 and 

median fluorescence values of 7.32±2.52 (E8), 11.50±2.56 (K1A) and 2.75±0.15 (W50) for α5). 

When H357 cells were incubated overnight with the triple gingipain mutant (EK18, 

ΔrgpArgpBΔkgp) there was no reduction in the detection of CD81 or α5 compared with the 

fluorescent signal from untreated cells (median fluorescent values of 410.47 and 388.91, 

respectively for CD81 and median fluorescent values of 18.17±2.91 and 16.21±2.66, 

respectively for α5). These data suggest that, for CD81, the lysine-specific gingipain may be 

slightly more effective in reducing the cell surface detection of this tetraspanin as the arginine-

specific gingipain knockout mutant showed median fluorescent values closer to W50, whereas 

incubation of H357 cells with the lysine-specific gingipain knockout mutant showed less of a 

reduction in the median fluorescence value. Following incubation of epithelial cells with the 

Rgp and Kgp knockout mutants, there was decrease in the detection of the α5 integrin subunit 

compared with the un-treated control. This reduction was not as marked compared with that 
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seen in the presence of W50 indicating a partial role for each of the gingipains in modulating the 

presence of α5 on the surface of oral epithelial cells. 

 

Figure 5.4 CD81 cell surface detection following incubation of P. gingivalis strains with H357 monolayers. 

H357 monolayer cultures were exposed to P. gingivalis wild-type (W50) and P. gingivalis gingipain knock-out 

mutants (E8 (ΔrgpArgpB), K1A (Δkgp), EK18 (ΔrgpArgpBΔkgp)) or serum free medium (SFM) without P. 

gingivalis. Monolayers were trypsinised and incubated with primary antibody directed against CD81 or an IgG1 

isotype control. Alexa Fluor-conjugated antibody was incubated with the cells on ice and epithelial cells were 

analysed for fluorescence using the FACsCalibur flow cytometer. The representative histogram of fluorescence (FL1-

H) against SSC (cell number) is shown (A) and the median FL1-H values plotted for epithelial cells treated with 

W50, E8, K1A, EK18 and medium alone (SFM). The histogram is representative of duplicate experiments. The filled 

purple peak shown in the FL1-H/SSC histogram (A) represents IgG1 probed H357 cells in medium alone. No 

deviation in the peak was observed when P. gingivalis-treated H357 cells were probed. FL1-H indicates fluorescence 

intensity and SCC indicates the number of cells. 
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Figure 5.5 α5 cell surface detection following incubation of P. gingivalis strains with H357 monolayers. H357 

monolayer cultures were exposed to P. gingivalis wild-type (W50) and P. gingivalis gingipain knock-out mutants (E8 

(ΔrgpArgpB), K1A (Δkgp), EK18 (ΔrgpArgpB Δkgp)) or serum free medium (SFM) without P. gingivalis. 

Monolayers were trypsinised and incubated with primary antibody directed against alpha-5 or an IgG1 isotype 

control. Alexa Fluor conjugated antibody was incubated with the cells on ice and epithelial cells were analysed for 

fluorescence using the FACsCalibur Flow Cytometer. A representative histogram of fluorescence (FL1-H) against 

side scatter (SSC) is shown (A) and the median FL1-H values plotted for epithelial cells treated with W50, E8, K1A, 

EK18 and medium alone (SFM). Results are means±SEM of three independent experiments. The filled purple peak 

shown in the FL1-H/SSC histogram (A) represents IgG1 probed H357 cells in medium alone. No deviation in the 

peak was observed when P. gingivalis- treated H357 cells were probed. FL1-H indicates fluorescence intensity and 

SCC indicates the number of cells. 

 

5.3.3 Antibody blocking of CD9, CD63, CD81, CD151, CD46 or α5 does not 

influence invasion of epithelial cells by P. gingivalis 

5.3.3.1 Antibody blocking 

It has previously been shown that the pre-treatment of epithelial cells with anti-CD9, -CD63 and 

-CD151 inhibited the adhesion of Neisseria meningitidis as analysed by microscopy (Green et 

al., 2011). As adhesion is a pre-requisite for epithelial cell invasion by P. gingivalis an 

investigation of whether these antibodies would affect P. gingivalis invasion of oral epithelial 

cells was implemented. In addition, α5 has been suggested to be important in P. gingivalis 
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invasion (Nakagawa et al., 2005). As the detection of α5 and CD81 was shown to be affected by 

P. gingivalis gingipains (section 5.3.2), these proteins were also investigated as potential 

candidates that may modify P. gingivalis invasion. H357 monolayers were blocked using 

antibodies directed against CD9, CD63, CD151 (kindly provided by P. Monk, University of 

Sheffield), CD81 or α5 and an antibiotic protection assay was performed. Percentage invasion 

was compared for two strains of P. gingivalis, NCTC 11834 and W50. To minimise any 

degradation of the antibodies by proteases, protease inhibitors were added with the P. gingivalis 

cells. No significant difference was detected in percentage invasion following blocking of CD9, 

CD63, CD81 or CD151 for either P. gingivalis W50 or NCTC 11834, compared with the IgG1 

control antibody treated cells (fig 5.6 and 5.7 respectively). The anti-alpha-5 antibody resulted 

in a reduced invasion of P. gingivalis NCTC 11834, but in terms of percent invasion this did not 

reach significance, however, the value was 35% lower than that seen with the IgG control. In 

contrast, the reduction in invasion seen with strain W50 was less, at only 10%. Similarly, 

antibody blocking of either CD81 or α5 did not influence the invasion of P. gingivalis E8 

(ΔrgpArgpB) (data not shown). 

 

Figure 5.6 Invasion of epithelial cells by P. gingivalis W50 in the presence of anti-tetraspanin and α5 

antibodies. H357 monolayers were blocked for 30 minutes with anti-α5, -CD9, -CD63, -CD81, and -CD151 antibody 

or IgG1 isotype control antibody at 37°C/5% CO2. Invasion of blocked cells by P. gingivalis W50 in the presence of 

protease inhibitor cocktail was performed for 90 minutes, extracellular bacteria were killed with metronidazole and 

the intracellular bacteria released from the epithelial cells, serially diluted, plated onto blood-FA agar and colonies 

were counted. Invasion was calculated as the number of intracellular bacteria expressed as a percentage of the 

original bacterial suspension. Histogram bars indicate mean percentage (±SD) of two independent experiments 

repeated in triplicate.  
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Figure 5.7 Invasion of epithelial cells by P. gingivalis NCTC 11834 in the presence of anti-tetraspanin and 

alpha-5 antibodies. H357 monolayers were blocked for 30 minutes with anti-α5, -CD9, -CD63, -CD81, and -CD151 

antibody or IgG1 isotype control antibody at 37°C/5% CO2. Invasion of blocked cells by P. gingivalis W50 in the 

presence of protease inhibitor cocktail was performed for 90 minutes, extracellular bacteria were killed with 

metronidazole and the intracellular bacteria released from the epithelial cells, serially diluted, plated onto blood-FA 

agar and colonies were counted. Invasion was calculated as the number of intracellular bacteria expressed as a 

percentage of the original bacterial suspension. Histogram bars indicate mean percentage (±SD) of two independent 

experiments repeated in triplicate.  

 

It has previously been shown that P. gingivalis whole cells and purified Lys-gingipain were 

capable of degrading recombinant CD46 (Mahtout et al., 2009). Therefore, in addition to CD81 

and α5, it was thought that the degradation of CD46 may influence invasion. However, as with 

the data reported for CD81 and α5 (fig 5.6), preliminary data suggest that there is also no 

change in percentage invasion after CD46 antibody blocking, in the presence of protease 

inhibitors (data not shown). 

 

5.3.3.2 Knockdown of CD81 by transfection with siRNA 

The flow cytometry data indicated that detection of CD81 and α5 were diminished in the 

presence of P. gingivalis strain W50. To investigate whether the reduction in the presence of 

these proteins was important in invasion and to verify the antibody blocking data, H357 cells 

were transiently transfected with siRNA directed against CD81. Transfection with α5 siRNA 

was not attempted due to the importance of this molecule in epithelial cell adhesion (Gong et 

al., 1997). As such, reducing the expression of this integrin subunit was deemed impractical in 

terms of further culture of this cell line and the subsequent antibiotic protection assay, which 

requires many washing steps. Figure 5.8 shows that expression of CD81 after siRNA 

transfection was reduced by approximately 60%, as determined by quantitative (q)PCR.  
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Figure 5.8 Quantitative PCR of CD81 after siRNA transfection. Transient transfection of H357 monolayers was 

performed as previously described (section 2.22). Epithelial cells were washed, lysed and mRNA extracted. cDNA 

was synthesised and qPCR was performed for cells transfected with CD81 siRNA or a negative control siRNA 

(Applied Biosystems). The histogram shows the expression of CD81 mRNA in transfected cells normalised to 

β2microglobulin and relative to the negative control transfected cells. 

 

In addition to confirming the knockdown of CD81 by qPCR, flow cytometry was performed to 

assess the cell surface presence of CD81 protein following transfection. Figure 5.9 indicated 

that 69% of the cell population had CD81 knockdown by approximately 9.39-fold, compared 

with the siRNA negative control (as shown by the region highlighted as M2 compared to M1). 

However, this knockdown was not complete and all cells expressed a little CD81, as shown by 

an incomplete return to the IgG1 negative control median fluorescence value (median 

fluorescence values of 22.47 (M2) and 2.59 (IgG)). 

 

Figure 5.9 CD81 cell surface presence after siRNA transfection assessed by flow cytometry. Transient 

transfection of H357 monolayers was performed as previously described (section 2.22) using CD81 siRNA or the 

negative control siRNA. Monolayers were trypsinised and incubated with primary antibody directed against CD81 or 

an IgG1 isotype control. Alexa Fluor conjugated antibody was incubated with the cells and epithelial cells were 

analysed for fluorescence using the FACsCalibur flow cytometer. The histogram of fluorescence (FL1-H) against 

SSC (cell number) is shown. The grey-filled peak represents IgG1-probed H357 transfected with CD81 siRNA, the 

red and blue pe2ks represent CD81-probed H357 transfected with CD81 siRNA and negative control siRNA 

respectively. Within the population of cells transfected with CD81 siRNA, M1 indicates a sub-population expressing 

higher levels of CD81 compared with M2, which shows lower levels of CD81 detection. 
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H357 epithelial cells, treated with CD81 siRNA to knock down the expression of CD81, were 

used in an invasion assay with P. gingivalis W50. While numerically the difference in 

percentage invasion failed to reach significance (0.48±0.02% (negative siRNA) and 0.62±0.08% 

(CD81 siRNA), P. gingivalis invasion into the transfected cells was 23% lower than in the 

control non-transfected cells (5.10). 

 

 

Figure 5.10 Invasion of H357 monolayers by P. gingivalis W50 after CD81 siRNA transfection. H357 

monolayers were transiently transfected with CD81 siRNA or a negative control scramble siRNA. Invasion of 

transfected cells with P. gingivalis W50 in the presence of protease inhibitor cocktail was performed for 90 minutes, 

extracellular bacteria were killed with metronidazole and the intracellular bacteria released from the epithelial cells, 

serially diluted, plated onto blood-FA agar and colonies were counted. Invasion was calculated as the number of 

intracellular bacteria expressed as a percentage of the original bacterial. Bars indicate mean percentage (±SD) of two 

independent experiments, performed in triplicate.  
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5.4 DISCUSSION 

All the tetraspanins tested in this study and the α5 integrin subunit, were expressed on the 

surface of the H357 epithelial cell line as analysed by flow cytometry (fig 5.2 & 5.3). CD9, 

CD81 and CD82 were the most highly expressed, with CD63 and CD151 showing lower levels. 

CD63 and CD151 are abundantly expressed intracellularly (Pols and Klumperman, 2009; Penas 

et al., 2000) and, in agreement with the data presented here, Green et al. (2011) also showed 

low epithelial cell surface detection of CD63 and CD151.  

 

In terms of the detectionof tetraspanins, the overnight incubation of H357 monolayers with P. 

gingivalis W50 was shown to only reduce the presence of CD81, whereas the detection of CD9, 

CD63, CD82 and CD151 remained unchanged after P. gingivalis challenge (fig 5.2). The 

reduction in the detection of CD81 was shown to be gingipain dependent (fig 5.4), where the 

presence of the lysine-specific gingipain contributed more to its reduction compared with the 

arginine-specific gingipains (fig 5.4). Extracellularly, CD81 has one lysine and one arginine 

residue in the EC1 domain and 9 lysine and no arginine residues in the EC2 domain (appendix 

6). This may explain the slight increase in reduction in the detection of CD81 protein by flow 

cytometry in the presence of P. gingivalis E8 (ΔrgpArgpB) when compared with P. gingivalis 

K1A (Δkgp). However, there was still a reduction in CD81 detection following incubation of 

H357 with K1A, compared with EK18 (ΔrgpArgpBkgp), suggesting that the cleavage of the 

arginine residue in the EC1 domain decreased affinity of the antibody for this protein 

contributing to the reduction in protein detection. Antibodies for CD9, CD63 and CD151 were 

directed against the EC2 domain, however when H357 cells were incubated with P. gingivalis 

W50, there was no reduction in the detection of these proteins even though within the EC2 

domain, CD9 possesses 12 lysine and 1 arginine, CD63 possesses 9 lysine and 5 arginine and 

CD151 possesses 4 lysine and 6 arginine residues. Due to the high number of possible cleavage 

sites available for gingipains, the lack of reduction in fluorescence after incubation with P. 

gingivalis suggests that folding of the tetraspanins, interaction with other proteins or post-

translational modifications may influence access of the gingipains to these tetraspanins. Of 

interest, CD81 does not possess any potential sites for glycosylation, compared with all the 

other tetraspanins tested in this study (Levy and Shoham, 2005) and it is possible that 

glycosylation may protect these tetraspanins from proteolytic modification. This may account 

for the observed decrease in fluorescence of CD81 alone after incubation of epithelial cells with 

P. gingivalis W50. 

 

Similarly, the presence of P. gingivalis W50 was shown to result in a decrease in the cell 

surface detection of the α5 integrin subunit, in a gingipain-dependent manner (fig 5.5). This 

receptor in its heterodimer form, α5β1, has been implicated as an important means of P. 

gingivalis entry into epithelial cells (Nakagawa et al., 2005, Tsuda et al., 2004). However, when 
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this receptor was blocked by an antibody directed against α5, no significant difference in the 

invasion of the H357 cell line was observed for strain W50 (fig 5.6). However, preliminary data 

suggested that blocking the α5 integrin subunit may result in the decreased invasion of H357 by 

P. gingivalis NCTC 11834 (fig 5.7), although this was not significant. This antibody has not 

been verified as a blocking antibody and as such additional work is required to determine the 

role of α5 in the invasion of oral epithelial cells by P. gingivalis. Differences observed between 

the two strains of P. gingivalis may be a feature of the differences in expression of fimbriae 

between the two strains. W50 is sparsely fimbriated in comparison with NCTC 11834, 

suggesting that the mechanisms of invasion may differ between the two strains. For example, 

data presented here suggest that NCTC 11834 invasion of oral epithelial cells may require α5, 

and it has been shown previously that there is an association of the major fimbriae FimA with 

α5β1 that is important for invasion. Therefore, this more fimbriated strain may invade via α5 

whilst the sparsely fimbriated strain may invade via a different route, e.g. clathrin-mediated 

endocytosis or lipid rafts (Tsuda et al., 2008, Boisvert and Duncan, 2008). 

 

In terms of the contribution of tetraspanins to bacterial invasion, data in the literature are limited 

and, to date, no studies have investigated the role of tetraspanins in P. gingivalis invasion. It has 

been reported that there is a requirement for the tetraspanin CD81 in the invasion of HeLa cells 

by Listeria monocytogenes in vitro (Tham et al., 2010). However, for the invasion of oral 

epithelial cells by P. gingivalis, the data presented in this chapter suggests that CD81, CD9, 

CD63 and CD151 are not important, as no significant differences were observed after antibody 

blocking (fig 5.6) or CD81 silencing (fig 5.10). The data presented for CD81 is in agreement 

with, but for CD9, CD63 and CD151, is in contrast to Green et al. (2011) who observed that the 

epithelial adhesion of Neisseria meningitidis was reduced after treatment of endometrial and 

pharynx epithelial cells with recombinant EC2 domains and blocking antibodies, respectively, 

for the tetraspanins CD9, CD63 and CD151, but not for CD81 (Green et al., 2011). Similarly, 

preliminary data indicates that antibody blocking of CD46 does not influence P. gingivalis 

invasion suggesting that the proteolysis of this molecule at the cell surface by P. gingivalis 

gingipains does not affect the cellular internalisation of this bacterium. The limited role of 

CD46 and the tetraspanins tested here in the invasion of P. gingivalis may be due to the total 

lack of dependency for these molecules in the process of P. gingivalis invasion, or may be a 

result of the recruitment of other tetraspanins or proteins to the cell surface as part of the 

tetraspanin web, conserving the ‘cellular epitope(s)’ required for invasion. Indeed, tetraspanins 

have been shown to accumulate at the cell surface, in association with other tetraspanins and 

proteins, forming ‘adhesion platforms’ (Barreiro et al., 2008) and it has been proposed that 

within this ‘web’ there may be a tetraspanin redundancy where certain tetraspanins may be 

substituted for one another (Levy and Shoham, 2005; Charrin et al., 2009).  
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There are also experimental factors to take into consideration. Any incomplete protease 

inhibition of P. gingivalis gingipains by protease inhibitors may have lead to cleavage of the 

blocking antibody, rendering the tetraspanin/integrin ‘unblocked’ and as such no differences in 

invasion would be observed. To overcome this possibility, H357 cells were transfected resulting 

in the transient knock-down in the presence of CD81 at the cell surface. Although there was a 

small decrease in invasion, this was not significant. However, the knockdown of CD81 was 

incomplete (fig 5.8). The percentage of cells that showed CD81 knockdown was approximately 

70% yet invasion by P. gingivalis was unaffected. In order to verify the hypothesis that loss of 

CD81 prevents/decreases invasion, it would be expected that the transfected cells show a 

decrease in invasion by up to 70%, assuming no upregulation of additional receptors occurred. 

The percentage invasion of cells treated with the negative control siRNA was 0.62%, therefore 

after transfection it would be expected that invasion should be around 70% less, at 

approximately 0.19%. The experimental data revealed a percentage invasion of 0.48% after 

transfection with CD81 siRNA, suggesting that the invasion of H357 cells by P. gingivalis was 

marginally but not statistically significantly influenced by CD81. However, because all cells 

were not completely devoid of CD81, as shown by an incomplete knockdown in fluorescence to 

the IgG baseline level, it may be that a low level of this tetraspanin is all that is required to 

facilitate P. gingivalis invasion. In addition, the invasion of P. gingivalis into epithelial cells is 

not uniform (section 4.3.4.1) and, although not investigated here, the invasion efficiency may be 

greater in the non-transfected cells to compensate for the lack of CD81 expression on the rest of 

the cell population. 

 

In Chapter 4 it was shown that the P. gingivalis arginine-specific gingipain knockout mutant, 

E8, invaded H357 cells at a higher percentage than the wild-type strain (fig 4.6). It was 

therefore proposed that the degradation of tetraspanin proteins, CD46 or α5 at the cell surface 

by gingipains may prevent uptake. However, as shown in figures 5.4 and 5.5, the presence of 

CD81 and α5 was not significantly different after incubation of H357 cells with E8 when 

compared with the wild-type, suggesting both strains cleave CD81 and α5 to a similar extent, 

yet the invasion of oral epithelial cells by these two strains was significantly different. These 

data corroborate the suggestion that CD81 and α5 may not play a role in P. gingivalis W50 

invasion. 

 

As flow cytometry is a method limited by the binding ability of the chosen antibody to the 

epitope of interest, the data presented here do not rule out the fact that the extracellular domains 

of CD9, CD63, CD82 and CD151 may have been affected by P. gingivalis gingipains since 

there are potential sites for cleavage. The antibodies directed against CD9, CD63 and CD151 

were specific only for the EC2 domain limiting detection of cleavage to this domain alone. 

Therefore, there may be a wider role for the tetraspanins in periodontitis, which was not 



Chapter 5 Effect of P. gingivalis on receptor expression and subsequent invasion 

166 

 

observed in this study. For example, cleavage of the CD151 tetraspanin within the QRD(194-

196) site, by the P. gingivalis arginine-specific gingipain, may disrupt binding of the α3 and α6 

integrin subunits (Kazarov et al., 2002) resulting in altered cell migration, intracellular 

signalling and a decrease in cellular binding to laminin, suggesting a mechanism of the 

disruption of epithelial integrity observed in vitro (Andrian et al., 2004) and in vivo (Hernández 

et al., 2011). 

 

Although the results suggest CD81, CD46 and α5 do not influence P. gingivalis invasion, the 

degradation of these proteins may be important in the modulation of other cellular processes 

that could contribute to the characteristic features of periodontitis. For example, there is a high 

cellular expression of many tetraspanins, including CD81, on leukocytes, such as B-cells. Paired 

with CD19, CD81 is important in B-cell differentiation and cell signalling (Bradbury et al., 

1992; Shoham et al., 2003). Possible loss of this tetraspanin may occur in the presence of P. 

gingivalis resulting in an impaired immune response and prolonged bacterial survival. In 

addition, osteopontin is a ligand for the integrin α4β1 (Bayless et al., 1998), which associates 

with CD81 (Serru et al., 1999). Osteopontin is a chemoattractant aiding leukocyte migration 

(Morimoto et al., 2010). Therefore, disruption in the ability of CD81 to associate with other 

cellular molecules by the action of P. gingivalis gingipains may result in the impairment of the 

immune response promoting immune cell evasion and allowing bacterial survival at sites of 

infection. Perhaps the most important is the association of CD81 with intracellular signalling 

pathways, including phosphatidylinositol 4-kinase type II (PI4KII) (Yauch and Hemler, 2000), 

protein kinase C (PKC) (Zhang et al., 2001) and phosphoinositide-3-kinase (PI3K) (Kotha et 

al., 2008). Dysregulation of intracellular signalling events may compromise a wide range of 

cellular processes including protein secretion (e.g. cytokines, matrix metalloproteases (MMPs), 

antimicrobial peptides), cell survival, migration, proliferation, differentiation and intracellular 

trafficking, ultimately contributing to disease. Also, CD81 pairs with claudin-1 (Harris et al., 

2008), which is a component of tissue tight junctions and disruption in CD81 association may 

affect epithelial integrity and promote bacterial passage through the oral mucosa. In addition, 

shedding of membrane-bound CD46 by P. gingivalis renders host cells more susceptible to lysis 

due to impaired inactivation of complement proteins, which may in part, cause the characteristic 

tissue damage observed in periodontitis. Soluble CD46 has been shown to increase the secretion 

of CXCL8 from epithelial cells in a dose-dependent manner (Mahtout et al., 2009) which, if 

extrapolated to the in vivo situation, may contribute to a prolonged inflammatory response 

contributing to chronic periodontal inflammation. Furthermore, α5β1 has been shown to play a 

role in cell survival (Zhang et al., 1995), cell adhesion (Gong et al., 2007) and intracellular 

signalling (Howe et al., 1998). Therefore, disruption of processes including cell signalling and 

organisation of tetraspanin-enriched microdomains may occur in the presence of P. gingivalis, 
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suggesting a range of mechanisms that may be explored further to gain more understanding of 

the role of P. gingivalis in the pathogenesis of periodontitis. 

 

The importance of tetraspanins and α5β1 in bacterial invasion, or more specifically in the 

pathogenesis of disease, remains to be elucidated and further investigations are required. 

However, as it stands, the current data suggest that there are probably more important 

receptors/cell surface molecules than tetraspanins involved in the epithelial uptake of P. 

gingivalis and a possible role for α5β1 in strain-specific P. gingivalis invasion. The proteolytic 

activity of gingipains on another, as yet unknown, epithelial surface receptor may influence 

invasion.   

 

5.4.1  Conclusion 

In conclusion, the data presented here indicate differential cleavage of the tetraspanin CD81 and 

integrin subunit α5 by P. gingivalis gingipains. Although no effect of α5 or CD81 blockade or 

CD81 silencing was observed for P. gingivalis invasion of oral epithelial cells, future work to 

optimise the experimental technique or the utilisation of different techniques such as 

immunofluorescence may be required. However, the extensive involvement of tetraspanins in 

the recruitment of important cellular receptors, including CD46 and integrins, into 

microdomains lends itself to additional future study as to their combined and individual roles in 

bacterial adhesion/invasion and wider roles in terms of the pathogenesis of disease. 
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Chapter 6 Cytokine response of oral epithelial monolayer and OMM 

following Porphyromonas gingivalis infection 

6.1 INTRODUCTION 

Periodontitis is an inflammatory disease in which the presence of subgingival plaque has been 

implicated as a causative agent (Listgarten, 1988, Socransky et al., 1998). The close proximity 

of dental plaque to gingival tissues exposes the host to a constant challenge, with which the host 

quickly and initially responds by initiating the release of numerous inflammatory cytokines and 

chemokines. As such, the levels of serum cytokines, including interferon-gamma (IFN-γ), 

tumour necrosis factor-alpha (TNF-α) and interleukin 10 (IL-10) have been shown to be 

significantly increased in patients with periodontitis compared with healthy individuals 

(Andrukhov et al., 2011). In addition, cytokines/chemokines such as interleukin 8 (IL-

8/CXCL8), interleukin 6 (IL-6), interleukin 1-beta (IL-1β) and TNF-α have been detected in the 

gingival crevicular fluid (GCF) of patients exhibiting gingivitis or periodontitis (Teles et al., 

2010a; Teles et al., 2010b) and decreases in such inflammatory markers following treatment 

such as scaling and root planning have been reported (Thunell et al., 2010). 

 

The oral epithelium is the first line of defence against oral pathogens. The expression of 

pathogen-associated molecular patterns (PAMPs) by bacteria activate pattern recognition 

receptors (PRRs) on epithelial cell surfaces, initiating signal transduction events, which result in 

the release of cytokines, contributing to the innate immune response (Stadnyk, 1994). As an oral 

pathogen, P. gingivalis possesses PAMPs which include lipolysaccharide (LPS) (Herath et al., 

2011), capsular polysaccharide (d'Empaire et al., 2006) and fimbriae (Eskan et al., 2007, 

Hajishengallis et al., 2004). These differentially activate PRRs including TLR4, TLR2 and 

RP105 (Kimoto et al., 2003, Eskan et al., 2008, Eskan et al., 2007), modulating the host 

cytokine response. 

 

There is conflicting data in the literature regarding the cytokine response of oral epithelial cells 

to live P. gingivalis.  This may be due to the use of different strains of P. gingivalis, differences 

in epithelial cultures, the time period of incubation or the detection method used to quantify 

cytokine concentrations. However, there seems to be a consensus, although not thoroughly 

investigated to date, that P. gingivalis induces the transcription of inflammatory cytokines such 

as CXCL8, IL-6 and TNF-α, whereas, at the protein level, a decrease in detection is common. It 

is thought that this may be due to degradation by bacterial proteases, more specifically 

gingipains (Stathopoulou et al., 2009; Fletcher et al., 1997). 

 

There are few data though on the cytokine responses of 3D culture systems, so this chapter aims 

to compare these with monolayer cultures, evaluating the effect of P. gingivalis invasion on 
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cytokine release and gene expression. Also, the effect of gingipains on cytokine release will be 

investigated. 

 

Throughout this chapter the new nomenclature for chemokines (CCL- and CXCL-) will be used 

(Bacon et al., 2002), however for ease of description when dually referring to cytokines or 

chemokines, the term cytokine will be used interchangeably to refer to chemokines and 

cytokines alike.  

 

6.1.1 Aims and Objectives 

This chapter will examine the secretory cytokine response of monolayer and organotypic 

cultures of oral epithelial cells in response to P. gingivalis, by cytokine array, ELISA and at the 

transcriptional level by quantitative (q)PCR. 

 

6.2 METHODS 

The following methods were used in this chapter: 

 Isolation and culture of NOK and human fibroblasts and culture of H357 cell line 

(sections 2.3 & 2.4) 

 P. gingivalis culture (section 2.5) 

 Culture of air-exposed and submerged collagen OMM (section 2.8) 

 Detection of inflammatory cytokines from monolayer and OMM, i.e. antibody array, 

ELISA, real-time PCR (section 2.18) 

 Agarose gel electrophoresis (section 2.19) 

 Statistical analysis (section 2.22) 
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6.3 RESULTS 

6.3.1 Detection of multiple cytokine levels from monolayers and OMM in 

response to invasion by P. gingivalis 

There are few reports in the literature that have investigated the epithelial response to P. 

gingivalis invasion. The majority of these have shown that the invasion of oral epithelial cells 

by P. gingivalis results in a decrease in the cytokine release from epithelial cells (Madianos et 

al., 1997, Huang et al., 2001). However, there is conflicting data indicating that there may be an 

increase in the cytokine response following P. gingivalis invasion (Eick et al., 2006). Due to the 

conflicting nature of these data and the limited knowledge within the literature regarding the 

epithelial response to invasion, this was investigated here. A cytokine array was used (RayBio
®
 

Human Inflammation Antibody Array 3), allowing for the simultaneous detection of 40 

inflammatory cytokines from the conditioned media of NOK monolayer cultures and NOK-

OMM. NOK cultures were used as this cell type secretes a constitutively higher concentration 

of cytokines than H357 and it was thought that this may aid in the detection of any cytokine 

modifications in the presence of P. gingivalis. The strain of P. gingivalis that was used was 

NCTC 11834 as this strain has been shown to invade epithelial cells at a high level in 

comparison to other strains of P. gingivalis (Chapter 4).  

 

6.3.1.1 Comparison of TNF unstimulated and TNF stimulated monolayer 

Due to the previously reported degradation of cytokines by P. gingivalis gingipains 

(Stathopoulou et al., 2009), monolayers and OMM cultures were pre-stimulated with TNF-α 

prior to, and during, incubation with P. gingivalis. The concentration of TNF-α used in this 

study was 25ng ml
-1

, which is a saturating dose of TNF-α (Turner et al., 2010). It was not used 

to directly replicate the inflammatory response that occurs in vivo, rather to stimulate the 

epithelial cells to achieve their maximal cytokine response and to ensure that there was an 

adequate concentration of cytokines present in order to better quantify any possible changes in 

cytokine response. 

 

Initially, conditioned media from TNF-α stimulated NOK monolayers were compared with 

unstimulated monolayers, to assess the contribution of TNF-α to the detection of multiple 

cytokines using the cytokine array membranes (fig 6.1A).  Densitometry was used to semi-

quantify the responses. As expected, in the presence of TNF-α there was an increase in 

inflammatory cytokines including CXCL8, IL-1α, CCL2, GM-CSF, IL-6, CXCL10, CCL5 and 

TIMP-2 (fig 6.1). Of these the most increased in detectionfollowing TNF-α stimulation were 

CCL2 (47.3 fold), IL-6 (8.46 fold) and CXCL10 (4.93 fold), which was not surprising as TNF-α 

plays an important role in the early inflammatory process (Jackson, 2007; Jönsson et al., 2011). 

No decrease in cytokine response was detected.  
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Figure 6.1 Cytokine immunoblot of NOK monolayer cultures stimulated with TNF-α. NOK monolayers were 

stimulated with 25ng/ml TNF-α in serum free medium (SFM) or non-stimulated (SFM only) for 9.5 hours. 

Supernatants were incubated with the antibody membrane (A) and the density of each dot was analysed. Using the 

internal positive control (Pos) of each blot, the relative density was calculated allowing comparisons of fold-changes 

between blots.  The fold changes of important cytokines are shown (B) which compares unstimulated and TNF-α 

stimulated NOK monolayers. Data are from one representative experiment that was repeated in duplicate. 

 

6.3.1.2 Comparison of un-invaded and P. gingivalis-invaded monolayers 

The release of multiple cytokines from NOK monolayers (pre-stimulated with TNF-α) was 

assessed, in the presence of intracellular P. gingivalis. NOK monolayers were exposed to TNF-

α for 9.5 hours (un-invaded) or pre-stimulated with TNF-α and an antibiotic protection assay 

performed as follows (invaded).  

 

After stimulating for 4 hours with TNF-α, monolayers were incubated in serum free medium 

(SFM), with or without P. gingivalis NCTC 11834, for 1.5 hours aerobically, during which time 

the bacteria invaded the oral epithelial cells. In order to only detect the cytokines released into 

the supernatant in response to intracellular bacteria, metronidazole was added for 4 hours, 

during which time the extracellular bacteria were killed and the epithelial cells released 

cytokines into the supernatant. The conditioned medium was collected and incubated with the 

antibody cytokine array. The resultant arrays are shown in figure 6.2. In the presence of 

intracellular P. gingivalis there was a decrease in the detection of CXCL8, GM-CSF, IL-6, 

CCL2, CXCL10, CCL5, TIMP-2 and TNF-α (fig 6.2B) with fold-decreases ranging from 0.71 

to 0.99. There was only one cytokine that increased in detection following P. gingivalis invasion 

and that was IL-1α (2.33 fold, fig 6.3). 
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Figure 6.2 Cytokine immunoblot of NOK monolayer cultures stimulated with TNF-α and P. gingivalis NCTC 

11834. NOK monolayers were pre-stimulated with 25ng/ml TNF-α in serum free medium (SFM) for 4 hours. After 

which, cells were exposed to TNF-α with or without NCTC 11834 in SFM, for 1.5 hours. Following washing in PBS, 

cells were incubated for 4 hours with 200μg/ml metronidazole to kill the external adherent bacteria, during which 

time cytokines were released into the supernatant. Supernatants were incubated with the antibody membrane and the 

density of each dot was analysed. Using the internal positive control of each blot (Pos), the relative density was 

calculated allowing comparisons of fold-changes between blots. The fold changes of important cytokines are shown 

(B) which compares TNF-α stimulated with TNF-α + NCTC 11834 stimulated NOK monolayers. Negative values 

represent fold decreases and positive values represent fold increases. Data are from one representative experiment 

that was repeated in duplicate.  

 

Figure 6.3 Graphical representation of the fold changes in cytokines following the invasion of NOK monolayer 

by P. gingivalis NCTC 11834. NOK monolayers were invaded by P. gingivalis NCTC 11834 for 1.5 hours and the 

external adherent bacteria killed with 200μg/ml metronidazole. Culture supernatants were incubated with the 

antibody membrane and the density of each dot was analysed. Using the internal positive control of each blot, the 

relative density was calculated allowing comparisons of fold-changes between infected and non-infected arrays. Only 

data for positive cytokine spots was used. 
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6.3.1.3 Comparison of un-invaded and P. gingivalis-invaded OMM 

Oral mucosal models (OMM) cultured using normal oral keratinocytes (NOK) were 

subsequently assessed for the release of inflammatory cytokines into the supernatant following 

invasion by P. gingivalis NCTC 11834, comparing with un-infected NOK-OMM. As previously 

described, NOK-OMM were pre-stimulated with TNF-α for 4 hours, after which models were 

incubated in serum free medium with or without P. gingivalis NCTC 11834 for 4 hours 

aerobically. This time period was shown previously to result in the highest percentage invasion 

as analysed by an antibiotic protection assay (section 3.3.3.1). Metronidazole was added for 4 

hours and the medium above and below the culture insert was collected and incubated with the 

antibody cytokine array.  

 

The culture supernatant analysed directly above OMM following invasion by P. gingivalis 

resulted in a decrease in CCL2, CXCL10, CCL5, TIMP-2 and TNF-α (fig 6.4), showing fold 

decreases of 0.61, 0.99, 0.61, 0.10 and 0.10 respectively, compared with uninfected NOK-

OMM. However, following invasion there was an increase in CXCL8 (2.59 fold) and IL-6 (0.30 

fold) (fig 6.5), which differed from the fold decreases of 0.71 fold and 0.99 fold respectively in 

monolayer cultures (fig 6.3). 

 

The release of cytokines into the bottom of the culture insert was also analysed to see if there 

was any contribution from fibroblasts that would be missed by only analysing supernatants from 

above the insert. Figure 6.4 shows similar cytokines in both top and bottom chambers, although 

a little reduced in the lower chamber, which may be due to the decreased diffusion of cytokines 

through the collagen layer. In addition, TNF-α was absent from the bottom of the culture insert 

before infection, compared with supernatant from the top of the insert (fig 6.4), indicating the 

cytokine applied to the top of the model did not diffuse through the epithelial and connective 

tissue layers, and as such, indicated that OMM have a good permeability barrier and emphasised 

the localised effect of cytokines within the oral mucosa. Therefore, in subsequent assays, 

medium from above the insert only was analysed. 

 

Interestingly, the presence of intracellular P. gingivalis in OMM epithelial layers did not result 

in an increase in IL-1α, which was observed in monolayer (fig 6.3), but a decrease of 0.99 fold 

was detected (fig 6.5).  
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Figure 6.4 Cytokine immunoblot of NOK-OMM stimulated with TNF-α and P. gingivalis NCTC 11834. NOK-

OMM were pre-stimulated with 25ng/ml TNF-α in serum free medium (SFM) for 4 hours. After which, cells were 

exposed to TNF-α with or without NCTC 11834 in SFM, for 4 hours. Following washing in PBS, cells were 

incubated for 4 hours with 200μg/ml metronidazole to kill the external adherent bacteria, during which time cytokines 

were released into the supernatant. Supernatants from the top of the insert (top) and from the bottom of the insert 

(bottom) were incubated with the array membrane and the density of each resultant dot was analysed. Using the 

internal positive control of each blot (Pos), the relative density was calculated allowing for comparisons of fold-

changes between blots.  

 

Figure 6.5 Graphical representation of the fold changes in cytokines following the invasion of NOK-OMM by 

P. gingivalis NCTC 11834. NOK-OMM were invaded with or without P. gingivalis NCTC 11834 for 4 hours and 

the external adherent bacteria killed with 200μg/ml metronidazole. Culture supernatants from the top of the insert 

were incubated with the antibody membrane and the density of each resultant dot was analysed. Using the internal 

positive control of each blot, the relative density was calculated allowing comparisons of fold-changes between 

infected and non-infected blots. Only data for positive spots was analysed and presented. 
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6.3.1.3.1 Comparison of submerged and air-exposed 

In an attempt to assess whether the epithelial multi-layer of OMM contributed to the differences 

observed between monolayer and OMM, NOK-OMM were cultured in the submerged and air-

exposed culture conditions (described in section 2.8) and culture supernatant from above the 

OMM insert was analysed using the cytokine array (fig 6.6). Figure 6.6 shows only a slight 

difference between air-exposed and submerged models following invasion by P. gingivalis. 

These data suggest that there was an increase in the detection of IL-1α (1.79-fold) and slight 

increases in the detection of IL-6 (0.11-fold) and CCL2 (0.216-fold) from OMM cultured in the 

submerged condition compared with OMM cultured at the air-liquid interface. In addition, GM-

CSF was prominent in submerged OMM compared with air-exposed OMM. The remaining 

cytokines were slightly down-regulated in submerged OMM compared with air-exposed OMM, 

including CCL5, TIMP-2, TNF-α, MIP-1β and TGF-β1 (fig 6.6). 

 

Figure 6.6 Cytokine immunoblot of NOK-OMM cultured at the air-to-liquid interface compared with NOK-

OMM cultured completely submerged in culture medium and stimulated with P. gingivalis NCTC 11834. 

NOK-OMM were cultured at the air-to-liquid interface or completely submerged and were pre-stimulated with TNF-

α for 4 hours. OMM were then invaded with P. gingivalis NCTC 11834 for 4 hours and the external adherent bacteria 

killed with 200μg/ml metronidazole. Culture supernatants from the top of the insert were incubated with the array 

membrane (A) and the density of each dot was analysed. Using the internal positive control of each blot, the relative 

density was calculated allowing comparisons of fold-changes of infected submerged OMM versus air-exposed OMM 

(B). 

 

Notwithstanding the above relative values of cytokines, it should be mentioned that the 

sensitivity of each membrane embedded antibody is different. These differences are shown in 
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appendix 4. Care must be taken when analysing the data and from making direct comparisons of 

cytokines in relation to the size of their ‘dot’. As such the cytokine array was initially used to 

semi-quantitatively screen a number of pro-inflammatory cytokines in an attempt to determine 

the cytokines of importance in relation to P. gingivalis invasion. 

 

Results from the cytokine array data revealed that CXCL8, IL-6, CCL2 and CCL5 may be 

important pro-inflammatory cytokines in the oral mucosal response to P. gingivalis invasion. 

This was due to the incomplete reduction in the detection of these cytokines and the differences 

observed between monolayer and OMM cultures in the presence of intracellular P. gingivalis. 

 

6.3.2 Quantitative analysis of CXCL8 release from monolayers and OMM in 

response to P. gingivalis 

6.3.2.1 CXCL8 protein release from H357 monolayer following invasion 

by P. gingivalis gingipain mutants 

As there was a marked difference between the detection of CXCL8 between monolayer and 

OMM in the presence of intracellular P. gingivalis when analysed by cytokine array (figs 6.3 & 

6.5, respectively), the concentration of this cytokine was quantified using an ELISA. In 

addition, as there is limited data in the literature regarding the contribution from the individual 

arg- and lys-specific gingipains, on the release of cytokines, gingipain mutants were utilised to 

investigate this. Due to the lack of gingipain mutants constructed within the NCTC 11834 strain 

of P. gingivalis, the gingipain mutants used were constructed within the less invasive strain, 

W50, (wild-type). These were strains E8 (ΔrgpArgpB) and K1A (Δkgp) and a triple gingipain 

mutant EK18 (ΔrgpArgpBΔkgp) (table 2.2).  

 

It has previously been shown that there was no difference between the invasion of NOK and 

H357 monolayer cultures (Chapter 4). Therefore, due to the ease of culture and availability of 

the H357 cell line, this was used for protein quantification in ELISA studies. Compared with 

NOK, H357 cells constitutively produce lower concentrations of cytokines, and as ELISA is 

capable of detecting picogram concentrations of protein, this cell line was deemed suitable to 

assess the release of CXCL8 from oral epithelial cells. 

 

Initially, to directly compare previous findings from the cytokine array, monolayer cultures of 

H357 were pre-stimulated with or without TNF-α for 4 hours and exposed to P. gingivalis W50, 

E8 (ΔrgpArgpB) or K1A (Δkgp) for 1.5 hours. Metronidazole was added for 4 hours, after 

which the conditioned media were analysed using ELISA for CXCL8. 

 

Following invasion of P. gingivalis gingipain mutants there was no significant difference in the 

cytokine response from that released by un-invaded cells (SFM) (fig 6.7). This was in contrast 
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to the results reported using the cytokine array, which suggested that following invasion there 

was a 0.71-fold decrease in CXCL8 release in the presence of P. gingivalis NCTC 11834 (fig 

6.2). This may be due to the different cell type (H357 compared with NOK) or the use of a 

different strain of P. gingivalis (W50 compared with NCTC 11834).  

 

 

Figure 6.7 The concentration of secreted CXCL8 following invasion of H357 monolayers by P. gingivalis 

strains analysed by ELISA. Confluent monolayer cultures of the H357 cell line were exposed to serum free medium 

(SFM) +/- TNF-α for 4 hours. P. gingivalis wild-type and gingipain mutants (W50, E8 (ΔrgpArgpB), K1A (Δkgp)) in 

the presence of TNF-α, and SFM+/-TNF-α, were then incubated with H357 monolayers for 1.5hours, following 

which metronidazole (in SFM+/-TNF-α) was added to kill the external adherent bacteria. Subsequently the 

monolayers were incubated with SFM+/-TNF-α for 4 hours. The conditioned medium following invasion was 

analysed by ELISA and the concentrations of samples were correlated to a standard curve generated using DeltaSoft 

Microplate Analysis Software. This histogram shows the mean concentration±SEM of three independent experiments 

performed in duplicate.  

 

6.3.2.2 CXCL8 protein release from H357 monolayer following overnight 

incubation with P. gingivalis strains 

Given the discrepancy between the array data for CXCL8 with NCTC 11834 and the ELISA 

data for CXCL8 in the presence of strain W50, it seemed possible that this might be due to 

differences in proteolytic capability and/or the invasiveness of these bacterial strains. 

Consequently, CXCL8 release was assessed by ELISA after overnight incubation. Again, due to 

the lack of suitable gingipain-null mutants in the more invasive NCTC 11834 strain, W50 and 

its gingipain-null mutants were used. H357 monolayers were pre-treated with TNF-α for 4 hours 

and then infected with P. gingivalis wild-type and gingipain mutants. A protease inhibitor 

cocktail (appendix 5) was used in the presence of P. gingivalis wild-type (W50) and medium 

alone (without P. gingivalis), as a control to inhibit any protease activity that may have 

contributed to a decreased detection of cytokine release. Indeed, figure 6.8 indicates that in the 

presence of P. gingivalis wild-type there was a significant decrease in the detection of CXCL8, 

compared with culture medium alone (SFM) (8.9±15.5pg/ml and 1169.7±610.9pg/ml 

respectively, p=0.03). Medium without TNF-α was used as a negative control, which confirmed 

that H357 constitutively secreted approximately 101.8±44.8pg/ml CXCL8 over the 

experimental time period. This increased approximately 11.5-fold in the presence of TNF-α (fig 

6.8). Incubation of H357 monolayers with P. gingivalis gingipain mutants resulted in the 
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decreased detection of CXCL8, at similar levels, if not slightly higher, than the wild-type, but 

this was not statistically significant. Results indicated that both the arginine- and lysine-specific 

gingipains play a role in the reduction of CXCL8 detection. The detection of CXCL8 was 

slightly lower following stimulation with K1A compared with E8, with 98.2±109.8pg/ml and 

132.4±129.2pg/ml CXCL8 respectively, but this was not statistically significant (p>0.05).  

 

 

Figure 6.8 The concentration of secreted CXCL8 following overnight incubation of H357 monolayers with P. 

gingivalis strains analysed by ELISA. Confluent monolayer cultures of the H357 cell line were exposed to serum 

free medium (SFM) +/- TNF-α for 4 hours. P. gingivalis wild-type and gingipain mutants (W50, E8 (ΔrgpArgpB), 

K1A (Δkgp)) in presence of TNF-α, and SFM+/-TNF-α, were then incubated with H357 monolayers overnight. In 

addition, protease inhibitor (PI) cocktail (Roche) was added to cultures of W50 and SFM in the presence of TNF-α, 

and also incubated with the H357 cell line overnight at 37°C. The conditioned medium following overnight 

incubation was analysed by ELISA and the concentrations of samples were correlated to a standard curve generated 

using DeltaSoft Microplate Analysis Software. This histogram shows the mean concentration±SD of three 

independent experiments performed in duplicate. * Indicates statistically significant differences from SFM+TNF 

(p<0.05). 

 

Incubation of pre-stimulated H357 monolayers with P. gingivalis W50, in the presence of a 

protease inhibitor cocktail, resulted in the recovery of the detection of CXCL8 up to the level of 

CXCL8 secretion detected from pre-stimulated culture medium alone (1050.9±650.2pg/ml and 

1169.7±610.9 respectively, p=0.83) (fig  6.8). Furthermore, the overnight incubation of pre-

stimulated H357 monolayers with a P. gingivalis triple gingipain mutant (EK18, 

ΔrgpArgpBΔkgp) confirmed the importance of gingipains in the modulation and degradation of 

CXCL8 secreted by oral epithelial cells because there was no change in the concentration of 

CXCL8 in the conditioned medium following incubation with the triple mutant compared with 

the control (1450.6±459.2pg/ml, fig 6.8). 
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6.3.2.3 CXCL8 protein release from H357-OMM following overnight 

incubation by P. gingivalis strains 

Assessing the release of CXCL8 from pre-stimulated H357-OMM after incubating overnight 

with P. gingivalis gingipain mutants showed no difference in the detection of CXCL8 in the 

presence of the parent strain or any of the mutant strains (fig 6.9). In addition, no increase in 

CXCL8 detection was shown for TNF-α-stimulated positive control over the unstimulated 

negative control. CXCL8 release from H357-OMM was approximately 100-fold greater than 

from comparable monolayer cultures, which made assessment of the stimulatory/inhibitory 

effect of bacteria difficult to determine, even though all samples were diluted extensively to 

ensure absorbance values fell within the detectable standard curve range of the ELISA. In 

addition, differences between the invasion of NOK-OMM and H357-OMM cultures were 

previously shown (section 4.3.1.2), it was deemed that the use of NOK-OMM for determining 

the CXCL8 release would have been too great due to its higher constitutive release in 

comparison to H357. 

 

Figure 6.9 The concentration of secreted CXCL8 following overnight incubation of H357-OMM with P. 

gingivalis strains as analysed by ELISA. H357-OMM were exposed to serum free medium (SFM) +/- TNF-α for 4 

hours. P. gingivalis wild-type and gingipain mutants (W50 (parent), E8 (ΔrgpArgpB), K1A (Δkgp) and EK18 

(ΔrgpArgpBΔkgp)) in the presence of TNF-α, and SFM+/-TNF-α, were then incubated with H357-OMM overnight at 

37°C. The conditioned medium following overnight incubation was analysed by ELISA and the concentrations of 

CXCL8 were correlated to a standard curve generated using DeltaSoft Microplate Analysis Software. This histogram 

shows the mean concentration of two independent experiments performed in duplicate.  
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6.3.3 Expression of mRNA following incubation of monolayer and OMM 

overnight with P. gingivalis strains 

6.3.3.1 Interleukin 8 (CXCL8) 

6.3.3.1.1 Monolayer 

As it has been shown that overnight incubation of H357 monolayer cultures with P. gingivalis 

resulted in a reduction in the detection of CXCL8 protein, it is possible that this was due to the 

destructive effects of gingipains. Therefore, H357 monolayer cultures were pre-stimulated with 

TNF-α and assessed for the expression of CXCL8 mRNA following overnight incubation with 

P. gingivalis to determine at which point the gingipains exerted their effects. Figure 6.10 

indicates that in the presence of P. gingivalis wild-type and the two gingipain-null mutants (E8 

and K1A), there was a significant increase in the gene transcription of CXCL8 compared with 

the medium-only control (SFM) (p<0.05 in all cases). This suggests a role for the gingipains in 

the post-translational modification/destruction of CXCL8. 

 

Figure 6.10 The mRNA expression of CXCL8 following overnight incubation of H357 monolayers with P. 

gingivalis gingipain mutants as analysed by qPCR. Confluent monolayer cultures of the H357 cell line were 

exposed to serum free medium (SFM) +/- TNF-α for 4 hours. P. gingivalis wild-type and gingipain mutants (W50, E8 

(ΔrgpArgpB), K1A (Δkgp)) in the presence of TNF-α, and SFM+/-TNF-α, were then incubated with H357 

monolayers overnight at 37°C. The cells were lysed and RNA extracted using a RNeasy Mini Kit (Qiagen). 

Complementary DNA was synthesised using the high capacity RNA-to-cDNA Kit (Applied Biosystems) and qPCR 

was performed using TaqMan primers and probes (Applied Biosystems). This histogram shows the mean fold change 

in CXCL8 expression relative to the unstimulated control (-TNF)±SEM of at least three independent experiments 

performed in duplicate. * Indicates statistically significant differences from SFM (p<0.05). 

 

Following overnight incubation with the P. gingivalis triple gingipain knockout mutant (EK18) 

there was no significant increase in CXCL8 expression compared with the medium-only control 

(SFM) (2.65±1.6 fold, p>0.05) (fig 6.10). This suggests that the presence of gingipains, in 

combination or separately, (as with the wild-type and both E8 and K1A single and double 

gingipain knockout mutants), may play a role in the stimulation of CXCL8 mRNA transcription. 

Furthermore, invasion may also stimulate transcription because the gingipain-null mutant 
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showed extremely low percentage invasion in comparison to the other strains of P. gingivalis 

tested (fig 4.8). 

 

To ensure the increase in CXCL8 mRNA following incubation of H357 monolayers with W50, 

E8 and K1A was not due to a synergistic response in combination with the presence of TNF-α, 

the experiment was repeated in the absence of TNF-α (fig 6.11). As seen previously, there was 

significant up-regulation of CXCL8 mRNA expression in the presence of W50 (42.2±3.96 fold), 

E8 (26.03±6.00 fold) and K1A (33.53±8.79 fold), indicating that there was no synergistic 

response. 

 

Figure 6.11 The relative levels of CXCL8 mRNA following overnight incubation of unstimulated H357 

monolayers with P. gingivalis strains as analysed by real-time PCR. Confluent monolayer cultures of the H357 

cell line were exposed to serum free medium (SFM) without TNF-α for 4 hours. P. gingivalis wild-type and gingipain 

mutants (W50, E8 (ΔrgpArgpB), K1A (Δkgp)) in the absence of TNF-α, and SFM-TNF-α, were then incubated with 

H357 monolayers overnight at 37°C. The cells were lysed and RNA extracted using a RNeasy Mini Kit (Qiagen). 

Complementary DNA was synthesised using the high capacity RNA-to-cDNA Kit (Applied Biosystems) and qPCR 

was performed using TaqMan primers and probes (Applied Biosystems). This histogram shows the mean fold change 

in CXCL8 expression relative to the unstimulated control (-TNF)±SEM of three independent experiments performed 

in duplicate. *p<0.05 relative to the unstimulated control. 

 

6.3.3.1.2 OMM 

The expression of CXCL8 mRNA by H357-OMM following overnight incubation with P. 

gingivalis wild-type (W50) and gingipain-null mutants was assessed (fig 6.12). There was no 

difference between the mRNA expression of CXCL8 in the presence of P. gingivalis and that 

produced by the TNF-α-stimulated control. Similarly there was no change in the concentration 

of secreted CXCL8 protein detected (fig 6.10), suggesting a limited response to P. gingivalis. 
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Figure 6.12 The relative levels of CXCL8 mRNA following overnight incubation of H357-OMM with P. 

gingivalis strains as analysed by real-time PCR. H357-OMM were exposed to serum free medium (SFM) +/- TNF-

α for 4 hours. P. gingivalis wild-type and gingipain mutants (W50, E8 (ΔrgpArgpB), K1A (Δkgp), EK18 

(ΔrgpArgpBΔkgp) in presence of TNF-α, and SFM+/-TNF-α, were then incubated with H357-OMM overnight at 

37°C. The cells were lysed and RNA extracted using a Rneasy Mini Kit (Qiagen). Complementary DNA was 

synthesised using the high capacity RNA-to-cDNA Kit (Applied Biosystems) and qPCR was performed using 

TaqMan primers and probes (Applied Biosystems). This histogram shows the mean fold change in CXCL8 

expression relative to the unstimulated control (-TNF), data shown is representative of three independent experiments 

performed in duplicate.  

 

The mRNA of IL-6, CCL2 and CCL5 was then analysed following overnight incubation of 

H357 monolayers and H357-OMM with P. gingivalis W50, E8, K1A and EK18 to further 

elucidate the transcriptional response to P. gingivalis. In all circumstances, monolayers or 

OMM were pre-stimulated with TNF-α for 4 hours and incubated overnight in the presence or 

absence of TNF-α with or without P. gingivalis W50, E8, K1A or EK18. Cells were trypsinised, 

RNA isolated, cDNA synthesised and the expression of mRNA analysed using SYBR Green 

labelled primers to IL-6, CCL2 or CCL5 by qPCR. The specificity of the primers was assessed 

by running amplified PCR products after the qPCR on an agarose gel. The primers amplified a 

single portion of cDNA, specific for the gene of interest, as shown in figure 6.13. The product 

lengths of IL-6, CCL2 and CCL5 are shown as 97, 101 and 112 base pairs respectively. 

 

Figure 6.13 The specificity of IL-6, CCL2 and CCL5 primers assessed by gel electrophoresis. Amplified PCR 

products of qPCR reactions using the primers for IL-6, CCL2 and CCL5 described in appendix 3 were loaded onto a 

1% agarose gel and electrophoresis was performed. The single amplified product indicated the specificity of each 

primer pair to amplify the gene of interest. The negative control lane was the PCR product without cDNA. 
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6.3.3.2 Interleukin 6 (IL-6) 

6.3.3.2.1 Monolayer 

The expression of IL-6 following pre-stimulation with TNF-α and overnight incubation of H357 

monolayers with P. gingivalis W50, E8 and K1A is shown in figure 6.14. Stimulation with 

TNF-α did not induce a significant increase in transcription of IL-6 (p=0.16). In the presence of 

P. gingivalis wild-type (W50) and the gingipain knockout mutants (E8, K1A and EK18) there 

was up-regulation of IL-6 mRNA expression with fold increases of 5.04±0.83, 5.43±1.20, 

7.23±3.01 and 4.84±1.66 respectively, relative to the unstimulated control. However, the up-

regulation of IL-6 expression compared with the TNF-α stimulated control was not significant 

(p>0.05 for all strains).  

 

Figure 6.14 The relative levels of IL-6 mRNA following overnight incubation of H357 monolayers with P. 

gingivalis strains. Confluent monolayer cultures of the H357 cell line were exposed to serum free medium (SFM) +/- 

TNF-α for 4 hours. P. gingivalis wild-type and gingipain mutants (W50, E8 (ΔrgpArgpB), K1A (Δkgp) and EK18 

(ΔrgpArgpBkgp) in the presence of TNF-α, and SFM+/-TNF-α, were then incubated with H357 monolayers 

overnight at 37°C. The cells were lysed and RNA extracted using a Rneasy Mini Kit (Qiagen). Complementary DNA 

was synthesised using the high capacity RNA-to-cDNA Kit (Applied Biosystems) and qPCR was performed using 

SYBR Green primers (Applied Biosystems). This histogram shows the mean fold change in IL-6 expression relative 

to the unstimulated control (-TNF)±SEM of three independent experiments performed in duplicate.  

 

6.3.3.2.2 OMM 

For H357-OMM, no fold increase/decrease in IL-6 mRNA expression was detected either after 

stimulation with TNF-α or P. gingivalis (fig 6.15). 
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Figure 6.15 The relative levels of IL-6 mRNA following overnight incubation of H357-OMM with P. gingivalis 

strains. H357-OMM were exposed to serum-free medium (SFM) +/- TNF-α for 4 hours. P. gingivalis wild-type 

(W50) and the gingipain knock-out mutants (E8 (ΔrgpArgpB), K1A (Δkgp) and EK18 (ΔrgpArgpBkgp)) in presence 

of TNF-α, and SFM+/-TNF-α, were then incubated with H357-OMM overnight at 37°C. The cells were lysed and 

RNA extracted using a Rneasy Mini Kit (Qiagen). Complementary DNA was synthesised using the high capacity 

RNA-to-cDNA Kit (Applied Biosystems) and qPCR was performed using SYBR Green primers (Applied 

Biosystems). This histogram shows the mean fold change in IL-6 expression relative to the unstimulated control (-

TNF) of two independent experiments performed in duplicate.  

 

6.3.3.3 CCL2/Monocyte Chemotactic Protein 1 

6.3.3.3.1 Monolayer 

The expression profile of CCL2 following incubation of H357 monolayers with P. gingivalis 

W50, E8 and K1A is shown in figure 6.16 and partly mirrored the mRNA expression of CXCL8 

(shown in fig 6.11). There was an increased expression after incubation with W50, E8 and K1A 

compared with the unstimulated and TNF-α stimulated control, whereas following incubation 

with the triple mutant there was no significant fold change in CCL2 mRNA expression 

compared with the TNF-α stimulated control (2.16 and 2.49 respectively) (fig 6.16). However, 

although the experimental trends were identical, large differences in expression between 

experiments indicated no significant differences for any P. gingivalis strains, when compared 

with the unstimulated control. 
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Figure 6.16 The mRNA expression of CCL2 following overnight incubation of H357 monolayers with P. 

gingivalis strains. Confluent monolayer cultures of the H357 cell line were exposed to serum free medium (SFM) +/- 

TNF-α for 4 hours. P. gingivalis wild-type and gingipain mutants (W50, E8 (ΔrgpArgpB), K1A (Δkgp)) in presence 

of TNF-α, and SFM+/-TNF-α, were then incubated with H357 monolayers overnight at 37°C. The cells were lysed 

and RNA extracted using a Rneasy Mini Kit (Qiagen). Complementary DNA was synthesised using the high capacity 

RNA-to-cDNA Kit (Applied Biosystems) and qPCR was performed using SYBR Green primers (Applied 

Biosystems). This histogram shows the mean fold change in CCL2 expression relative to the unstimulated control (-

TNF), representative data from two independent experiments performed in duplicate.  

 

6.3.3.3.2 OMM 

For H357-OMM, no fold increase/decrease in CCL2 mRNA expression was detected either 

after stimulation with TNF-α or P. gingivalis (fig 6.17). 

 

 

Figure 6.17 The mRNA expression of CCL2 following overnight incubation of H357-OMM with P. gingivalis 

strains. H357-OMM were exposed to serum free medium (SFM) +/- TNF-α for 4 hours. P. gingivalis wild-type 

(W50) and the gingipain knock-out mutants (E8 (ΔrgpArgpB), K1A (Δkgp) and EK18 (ΔrgpArgpBkgp)) in presence 

of TNF-α, and SFM+/-TNF-α, were then incubated with H357-OMM overnight at 37°C. The cells were lysed and 

RNA extracted using a Rneasy Mini Kit (Qiagen). Complementary DNA was synthesised using the high capacity 

RNA-to-cDNA Kit (Applied Biosystems) and qPCR was performed using SYBR Green primers (Applied 

Biosystems). This histogram shows the mean fold change in CCL2 expression relative to the unstimulated control (-

TNF)±SEM of two independent experiments performed in duplicate.  
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6.3.3.4 CCL5/Regulated upon Activation Normal T-cell Expressed and 

Secreted (RANTES)  

6.3.3.4.1 Monolayer 

There was no significant change in the mRNA expression of CCL5, relative to the unstimulated 

control, from H357 monolayer cultures after TNF-α stimulation (1.75±0.22 fold), W50 

(1.57±0.43 fold), E8 (1.08±0.26 fold), K1A (1.79±0.89 fold) and EK18 (2.05±0.90 fold) (fig 

6.18). No fold increases were statistically significant when compared with the TNF-α stimulated 

control (p>0.05). 

 

Figure 6.18 The mRNA expression of CCL5 following overnight incubation of H357 monolayers with P. 

gingivalis strains. Confluent monolayer cultures of the H357 cell line were exposed to serum free medium (SFM) +/- 

TNF-α for 4 hours. P. gingivalis wild-type and gingipain mutants (W50, E8 (ΔrgpArgpB), K1A (Δkgp)) in presence 

of TNF-α, and SFM+/-TNF-α, were then incubated with H357 monolayers overnight at 37°C. The cells were lysed 

and RNA extracted using a Rneasy Mini Kit (Qiagen). Complementary DNA was synthesised using the high capacity 

RNA-to-cDNA Kit (Applied Biosystems) and qPCR was performed using SYBR Green primers (Applied 

Biosystems). This histogram shows the mean fold change in CCL5 expression relative to the unstimulated control (-

TNF)±SEM of three independent experiments performed in duplicate.  
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6.3.3.4.2 OMM 

For H357-OMM, no change in CCL5 mRNA expression was detected either after stimulation 

with TNF-α or P. gingivalis (fig 6.19). 

 

Figure 6.19 The mRNA expression of CCL5 following overnight incubation of H357-OMM with P. gingivalis 

strains. H357-OMM were exposed to serum free medium (SFM) +/- TNF-α for 4 hours. P. gingivalis wild-type 

(W50) and the gingipain knock-out mutants (E8 (ΔrgpArgpB), K1A (Δkgp) and EK18 (ΔrgpArgpBkgp)) in presence 

of TNF-α, and SFM+/-TNF-α, were then incubated with H357-OMM overnight at 37°C. The cells were lysed and 

RNA extracted using a RNeasy Mini Kit (Qiagen). Complementary DNA was synthesised using the high capacity 

RNA-to-cDNA Kit (Applied Biosystems) and qPCR was performed using SYBR Green primers (Applied 

Biosystems). This histogram shows the mean fold change in CCL5 expression relative to the unstimulated control (-

TNF) of two independent experiments performed in duplicate. 
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6.4 DISCUSSION 

6.4.1 Evaluation of cytokine protein release to P. gingivalis 

The release of cytokines and chemokines by oral epithelial cells forms part of the first line of 

defence in response to bacterial challenge (Stadnyk et al., 1994). The literature regarding the 

epithelial cytokine responses to intracellular P. gingivalis alone (i.e. the application of an 

antibiotic to kill the external bacteria) or both internalised and extracellular bacteria (i.e. no 

addition of antibiotic) is extremely varied (table 1.4). The cytokine response of epithelial cells to 

either internal or internal and external P. gingivalis was investigated in this chapter.  

 

In summary, it was found that the intracellular localisation of a highly invasive strain of P. 

gingivalis NCTC 11834, within monolayer cultures of primary oral epithelial cells, attenuated 

the epithelial cytokine response when analysed semi-quantitatively using a cytokine array. Due 

to the lack of gingipain-null mutants in this strain, subsequent quantitative analysis of the 

selected cytokine, CXCL8, was performed using the strain W50 (wild-type) and its gingipain 

mutants. However, this strain invades epithelial cells at approximately 20-fold less than strain 

NCTC 11834. Therefore, it was thought that to achieve the maximal epithelial CXCL8 

response, P. gingivalis must be incubated with epithelial cells for a longer time period. As there 

remains inconsistent data within the literature regarding the epithelial cytokine response to P. 

gingivalis (internalised and external), it was deemed that an overnight incubation of epithelial 

cells with P. gingivalis would be sufficient for the internalisation of this strain as well as 

allowing enough time for the epithelial cells to respond. When experiments were performed 

overnight, the presence of P. gingivalis (intra- and extracellular) also resulted in a decrease in 

CXCL8 release from monolayer cultures. Further experiments indicated that P. gingivalis 

gingipains play a role in the degradation of CXCL8. Subsequent mRNA expression data 

revealed CXCL8 was degraded at the protein level and not inhibited at the transcriptional level. 

Data reported for OMM were less conclusive, suggesting the presence of P. gingivalis, either 

internalised or both internalised and extracellular, may not induce this CXCL8 degradation. 

This is consistent with a recent study by Hajishengallis et al. (2011), in which CXCL8 was 

demonstrated in junctional epithelium in germ-free animals, suggesting a constitutive release of 

CXCL8 in vivo. However, the methodology employed here requires additional modifications, 

such as optimisation of the ELISA method to accurately assess small changes in the CXCL8 

response of OMM in the presence of P. gingivalis, to elucidate the role of OMM in determining 

the host cytokine response to P. gingivalis. 

 

Following TNF-α stimulation, there was secretion of numerous inflammatory cytokines from 

NOK monolayers into the surrounding medium. Cytokines such as CCL2, IL-6, CXCL10 and 

CCL5 were detected (fig 6.1). It is well known that TNF-α is an important pro-inflammatory 

cytokine in vivo and in vitro, inducing the release of other inflammatory cytokines (Wong et al., 
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2007a), therefore, experimentally this release was expected. The reason TNF-α stimulation was 

used as the ‘background’ against which to judge the effect of P. gingivalis stimulation was 

because it has been shown previously that live P. gingivalis results in the inhibition of cytokine 

accumulation (Stathopolou et al., 2009), even so much as to be coined the term ‘local 

chemokine paralysis’ (Darveau et al., 1998).  

 

In this study, live intracellular P. gingivalis were shown to attenuate the cytokine response of 

NOK monolayer cultures, as well as NOK-OMM cultures (for the majority of cytokines tested), 

as indicated by cytokine array (figs 6.2 & 6.4 respectively). Even in the presence of a 

stimulatory concentration of TNF-α, intracellular P. gingivalis caused a reduction in the 

detection of many cytokines, including CCL2, CCL5, CXCL10 and GM-CSF from both 

monolayer and OMM cultures. Attenuation of cytokine release in response to P. gingivalis 

(internalised or internal+external), has been well described in the literature, with no change or 

decreases in the concentrations of CXCL8, IL6 and TNF-α following stimulation with live, 

whole cells of P. gingivalis, for both monolayer (Stathopoulou et al., 2009, Huang et al., 2001) 

and multi-layered cultures of gingival epithelial cells (Dickinson et al., 2011).This attenuation 

of the host cytokine profile, in response to P. gingivalis, has been suggested to be important in 

the survival of this organism at the site of infection by depressing the host immune response 

(Darveau et al., 1998; Curtis et al., 2001), enabling bacterial replication and cell to cell 

spreading (Tribble and Lamont, 2010). The attenuation of chemokines such as CXCL8 and 

CCL2 may reduce the chemotactic gradient which is essential for the recruitment of neutrophils 

and monocytes to the infection site. Indeed, an in vitro study reported the reduced migration of 

neutrophils through a Transwell system in the presence of P. gingivalis, which was due to the 

abrogation of a CXCL8 chemotactic gradient (Madianos et al., 1997). 

 

In contrast, some reports in the literature suggest an induction of the pro-inflammatory cytokine 

response following intracellular or internal+external P. gingivalis challenge (Eick et al. 2006 

and Eskan et al. 2007). In addition, Andrian et al. (2004) reported the increased detection of 

CXCL8, IL-6, TNF-α and IL-1β, when analysed by ELISA, following incubation of organotypic 

oral mucosal models with P. gingivalis ATCC33277 for 24 hours. Similarly, Sandros et al. 

(2000) reported the increased detection, by immunohistochemistry, of CXCL8, IL-6 and TNF-α 

after overnight stimulation of monolayer cultures of KB and pocket/junctional epithelial cells by 

P. gingivalis 381. Differences within the literature may be a result of i) differences between 

strains of P. gingivalis (expressing different PAMPs), ii) the MOI used, iii) the viability of P. 

gingivalis (live P. gingivalis have been shown to attenuate the cytokine response, whereas heat-

killed P. gingivalis have not (Stathopolou et al., 2009) and invasive strains (P. gingivalis 381) 

were shown to induce CCL2, whereas less invasive strains (W50) did not (Kang et al., 2002), 

iv) the length of incubation (the longer the time the decreased detection of cytokines 
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(Stathopolou et al., 2009)) v) the type and origin of the oral epithelial cell (e.g. immortalised or 

primary) vi) the culture method (e.g. monolayer or multi-layer) and, vii) the detection method 

employed (e.g. immunohistochemistry is not quantitative whereas ELISA is). It is for these 

reasons that comparison of the literature is difficult. Overall, in terms of the data presented here, 

there seemed to be an overlap between the induction and attenuation of the cytokine response 

between the two model systems used. For example, P. gingivalis incubation with NOK and 

H357 monolayer cultures induced a reduction in the cytokine profile (figs 6.3 & 6.7 

respectively), supporting the findings of Darveau et al. (1998), whereas following invasion of 

H357- and NOK- OMM (figs 6.5 & 6.9 respectively), this reduction was not observed to the 

same extent, with levels of IL-6 and CXCL8 remaining unchanged, if not increased, compared 

with unstimulated control OMM cultures, which would be in keeping with the findings of  

Andrian et al. (2004). 

 

IL-6 and CXCL8 protein showed no change or a slight increase following invasion of H357- 

and NOK-OMM respectively, by P. gingivalis compared with OMM not exposed to P. 

gingivalis (figs 6.5 & 6.9 respectively), when analysed by ELISA and antibody array 

respectively. This lack of attenuation in the detection of these ligands may be due to the 

contribution of the additional layers of epithelial cells in the OMM and resulting in the 

increased autocrine response to pro-inflammatory cytokines and so the accumulation of these 

secondary cytokines. The contribution of cytokine release from fibroblasts (Ara et al., 2009) or 

the longer incubation time of OMM with P. gingivalis may also be factors. Invasion was 

performed for 1.5 hours in monolayer cultures and for 4 hours in OMM, as these time periods 

gave approximately similar percentage invasions (Chapter 4). However, it would be expected 

that the longer P. gingivalis was present extracellularly, the longer the opportunity for cytokine 

degradation to occur. However, this was not the observation made, suggesting intrinsic 

differences in overall cytokine responses between monolayer and OMM. 

 

Although the differences in parameters make individual comparisons of OMM and monolayer 

difficult, there was interestingly an up-regulation of IL-1α protein detected from monolayer 

cultures but decreased in OMM (figs 6.3 & 6.5 respectively). IL-1α is a pro-inflammatory 

cytokine that stimulates the activation of other important inflammatory cytokines (Okada and 

Murakami, 1998). This cytokine is initially synthesised as a pre-protein until it is cleaved by 

calpain intracellularly, resulting in the mature form of IL-1α protein prior to secretion 

(Kobayashi et al., 1990). Calpain is activated by the presence of calcium (Kobayashi et al., 

1990) and P. gingivalis has been reported to activate the influx of, or the release of intracellular 

stores of calcium (Izutsu et al., 1996, Belton et al., 2004), suggesting a possible mechanism for 

the induction of IL-1α secretion observed. The differences in IL-1α secretion between OMM 

and monolayers may be due to the decreased diffusion of IL-1α across the multi-layered 



Chapter 6 Cytokine response to P. gingivalis infection of monolayer and OMM 

191 

 

epithelium or the diffusion of IL-1α in a basal direction that is not available in monolayer 

cultures. Indeed, immunohistochemical analysis of tissue sections of HIV-positive and negative 

patients with oropharyngeal candidiasis showed parabasal expression of IL-1α and CXCL8 

(Tardif et al., 2004), suggesting the possibility of basal release of cytokines in this model 

system. However, in these patients, cytokine expression may have been immune cell derived, 

although the authors did not mention whether or not they detected any suprabasal staining of 

cytokines. Similar to monolayer cultures, there was approximately a 1.7-fold increase in IL-1α 

following invasion of the submerged model compared with the air-exposed model. Since the 

primary difference between these two models is the thickness of the epithelium, the multiple 

layers of epithelium appear to influence the secretion or detection of IL-1α protein. 

Furthermore, the collagen matrix was of similar depth in both so diffusion of IL-1α basally 

would be similar in both cases.  

 

Comparing submerged models with air-exposed models there was an increase in IL-1α, GM-

CSF, IL-6 and CCL2 in submerged OMM. This may be due to the contribution of the 

fibroblasts through the thin epithelial layer of the submerged model. Therefore, it may be 

assumed that the analysis of the conditioned medium above the fibroblast-positive, air-exposed 

OMM may not have included many cytokines released from the fibroblasts due to incomplete 

diffusion through the thick epithelial layer or the decreased stimulatory effect by P. gingivalis. 

Interestingly, decreases in the levels of IL1-α, CXCL10 and TIMP2 were detected in the 

medium above P. gingivalis NCTC 11834 infected air-exposed NOK-OMM when analysed 

using the cytokine array (fig 6.6), indicating that P. gingivalis may have the ability to 

specifically target individual cytokines for destruction, or modulate their release in this model of 

the oral mucosa. Submerged OMM has been shown to be more representative histologically of 

the junctional epithelium (Chapter 3). Therefore, the cytokine profile observed after stimulation 

of submerged OMM is the most interesting in terms of the qualitative analysis of the host 

response in vitro. However, the quantification of cytokines using the antibody array (relative to 

an in-built control) by densitometry depends upon the development of colour being linear in 

proportion to the amount of antigen. Since this may not have been the case, this method can 

only be viewed as semi-quantitative. As such, many changes in pro-inflammatory cytokines, 

including CXCL8, IL-1α, CCL5, TIMP2, MIP10, TGF-β and GM-CSF really required further 

quantification in relation to their modulation. Although differences were detected between 

submerged and air-exposed OMM with intracellular P. gingivalis, the majority of quantitative 

analyses, (i.e. ELISA and quantitative PCR), were performed with the air-exposed model 

mainly to compare findings with previously reported engineered oral mucosal constructs. 

Because the submerged model is novel, further investigation of the cytokine release from this 

model and any fibroblast contribution made, is required. 
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Results presented in this chapter, for the cytokine array, were specific for invasive bacteria 

because a bactericidal concentration of metronidazole was used during the secretion of 

epithelial/fibroblast derived cytokines into the conditioned medium. Although effects from 

extracellular proteases or other virulence factors, due to the presence of dead adherent P. 

gingivalis, cannot be ruled out, the results suggest that intracellular P. gingivalis may play a role 

in modulating the host cytokine response, which is a concept that has been suggested 

previously. For example, the most adhesive/invasive strains of P. gingivalis resulted in the 

greatest reduction in PMN migration (Madianos et al., 1997) and an increase in CCL2 from 

Human Umbilical Vein Endothelial Cells (HUVEC) was reported after stimulation with the 

highly invasive strain 381 but not the less invasive strains, W50 and DPG3 (Kang et al., 2002). 

In addition, the intracellular release of SerB, a phosphoserine phosphatase, has been shown to 

suppress CXCL8 secretion from gingival epithelial cells (Hasegawa et al., 2008) and miR-203 

was up-regulated in response to intracellular P. gingivalis (Moffatt and Lamont, 2011). This 

microRNA targets the gene encoding suppressor of cytokine signalling 3 (SOCS3), which may 

result in the modulation of cytokine release via diminished activation of signal transducer and 

activator of transcription 3 (Stat3), which is a downstream target of SOCS3.Therefore, if this 

can be extrapolated to the in vivo situation, a critical step in the survival of this bacterium may 

include its rapid internalisation into oral epithelial cells. 

 

In this study, the antibody array was primarily used to screen changes in a range of cytokines 

that may play a role in the oral epithelial cell response to P. gingivalis. As the cytokine array is 

based on an antibody-detection system, this method is dependent on whether the cytokines are 

degraded or not and/or where they are cleaved by P. gingivalis and whether these cleaved 

products are able to bind to the array antibodies. If IL-1α is only partially degraded by P. 

gingivalis, this might explain the high detection of IL-1α from monolayer cultures while the 

detection of all other cytokines was reduced. In addition, each dot of the array has its own 

specificity, which is shown in Appendix 4, therefore slight changes in the density of certain dots 

may or may not indicate large changes in actual protein within the conditioned medium and the 

fold changes indicated in the results section are only indicative rather than truly quantitative. 

The gingipains of P. gingivalis have been suggested to degrade cytokines in vivo (Mydel et al., 

2006) and in vitro (Darveau et al., 1998), with the possibility that the lysine-specific gingipain 

is responsible for the majority of CXCL8 degradation (Stathopoulou et al., 2009). Therefore, in 

this study the chemokine CXCL8 was taken forward for further analysis in order to determine 

the effects of P. gingivalis gingipains on the regulation of this secreted protein and whether or 

not this occurred at the transcriptional or post-transcriptional level.  

 

To investigate the effect of gingipains, the less invasive W50 strain and its mutants were used 

because of their availability. In addition, due to the similarities in percentage invasion between 
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NOK and H357 monolayers, H357 cells were used in these experiments due to their rapid 

growth rate and ready availability. As a consequence, comparisons with the array data are 

difficult due to these differences in parameters. However, using identical experimental 

procedures, H357 monolayer cultures were pre-stimulated with TNF-α and infected with P. 

gingivalis for 90 minutes. The metronidazole-treated conditioned medium was removed after 4 

hours and the concentration of CXCL8 determined by ELISA. In contrast to the data obtained 

from the cytokine array, in which there was a decrease in the CXCL8 response, analysis using 

ELISA suggested that there was no change in the amount of secreted CXCL8 compared with the 

TNF-α stimulated control (fig 6.7). This indicates that the induction of approximately 200 pg 

ml
-1

 CXCL8 by pre-stimulation of epithelial cells with TNF-α was too high a concentration of 

chemokine for intracellular P. gingivalis to degrade over the incubation period of 4 hours. 

However, when TNF-α pre-stimulated monolayers were exposed to P. gingivalis for a longer 

time, i.e. overnight without metronidazole treatment, there was a decrease in the detection of 

secreted CXCL8 by H357 monolayer cultures. This confirmed the data obtained from the 

cytokine array, in which intracellular P. gingivalis negatively modulated host cell cytokine 

release. This suggests that the time period of 4 hour post-invasion may not be long enough for 

cytokine modulation by this less invasive bacterium, in comparison with NCTC 11834. This 

decreased detection was firstly shown to be specifically due to the presence of proteases as W50 

plus protease inhibitor resulted in the detection of CXCL8 concentration up to the level of the 

bacteria-free TNF-α stimulated control.  

 

Gingipains have been shown to be important in the degradation of many proteins including 

transferrin, haemoglobin and defensins (Guo et al., 2010). The data presented here indicate that 

gingipains contribute to the degradation of CXCL8, with both the lysine-specific and the 

arginine-specific gingipains equally contributing to the abrogation of CXCL8 detection. As 

such, where one gingipain was present the CXCL8 response from epithelial cells matched the 

response obtained when challenged with W50 wild-type. These findings are in contrast to a 

previous study that found the lysine-specific gingipain solely responsible for the attenuation of 

CXCL8 detection (Stathopoulou et al., 2009). The authors used the same gingipain mutants that 

were used in this study but showed that there was no change in the detection of CXCL8 

following incubation with K1A for 4 hours (with overnight pre-stimulation of epithelial cells 

with heat-killed ATCC33277), whereas after stimulation with E8 and W50 no detection of 

CXCL8 was reported, suggesting the importance of the lysine-specific gingipain in the 

reduction of the CXCL8 response. The longer incubation period used in this chapter may 

explain why there was little detection with K1A as the lysine-specific gingipain may have a 

longer duration of action, which was not observed after 4 hours. Nonetheless, the suppression of 

CXCL8 in the presence of P. gingivalis was shown to be due to the action of gingipains, as a 

triple gingipain knock-out mutant reversed the reduction in CXCL8 detection (fig 6.8), which 
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was also shown by Stathopoulou et al. (2009). Therefore, data presented here suggests that all 

gingipains, are capable of cleaving CXCL8 if incubated with epithelial cells for a longer time 

period than 4 hours, e.g. for 16 hours. 

 

Using H357-OMM, stimulation with TNF-α alone showed no increase in CXCL8 release (fig 

6.9) compared with monolayer cultures (fig 6.8), and no decrease in CXCL8 concentration after 

incubation with P. gingivalis overnight (fig 6.9). This may be due to the very high levels of 

CXCL8 constitutively expressed by H357-OMM, which was in the region of 100-fold greater 

than H357 monolayers. The ELISA method employed was probably too sensitive and so not 

capable of differentiating these high concentrations. Due to the high levels of CXCL8 

production in the absence of TNF-α, when TNF-α was added to H357-OMM the levels of 

secreted CXCL8 were already at a maximum and therefore no further increase in CXCL8 was 

detected after stimulation. In addition, it may be that this high concentration of CXCL8 was not 

affected by the presence of P. gingivalis, or not enough as to be detected by the methods 

employed in this chapter.  

 

The modulation of cytokine and chemokine release via signalling pathways involving NFκB 

(Bagaitkar et al., 2010), phospholipase C (PLC) and p38 mitogen-activated kinase (MAPK) 

(Dommisch et al., 2010, Shpacovitch et al., 2002) may be important mechanisms by which P. 

gingivalis is able to exploit the host in an attempt to evade host defences, promoting bacterial 

survival. A chemotactic gradient initiated by CXCL8 release from epithelial cells is crucial in 

the recruitment of neutrophils to the site of infection and the removal of pathogenic bacteria. 

The attenuation of CXCL8 and other chemokine secretion by oral epithelial cells may play a 

protective role in preventing chronic inflammation and tissue damage. 

 

The modulation of cytokine protein release by epithelial cells following exposure to P. 

gingivalis was investigated further. It has been shown previously that gingipains play a role in 

this modulation. However, the question was whether this was at the protein level or the 

transcription level. Data presented so far in this chapter suggest that modification occurred post-

translationally as the triple gingipain knock-out mutant did not affect the protein detection of 

CXCL8, compared with the TNF-α stimulated control (fig 6.8). It must be acknowledged 

however that invasion of cells by the triple mutant (EK18) was lower than the other strains, 

which may have influenced results. In order to investigate this further, the mRNA expression of 

CXCL8 was analysed following pre-stimulation with TNF-α and overnight exposure to P. 

gingivalis wild-type (W50) and gingipain mutants (E8, K1A and EK18), as previously 

described. Data obtained from monolayer cultures indicated that P. gingivalis wild-type was a 

potent inducer of CXCL8 transcription (fig 6.10), even without pre-stimulation with TNF-α (fig 

6.11). In addition, the absence of one gingipain, regardless of whether it was arginine-specific 
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(E8) or lysine-specific (K1A), also resulted in the significant increase in mRNA expression 

relative to the TNF-α-stimulated and unstimulated control. However, when H357 epithelial 

monolayers were incubated overnight with the triple gingipain mutant, this increase in CXCL8 

mRNA expression was not observed, suggesting either gingipains are essential for initiation of 

signalling pathways leading to transcription of CXCL8, or a certain minimal level of invasion is 

required before up-regulation of this cytokine occurs. Indeed, CCL2 was similarly not up-

regulated by strain EK18, whereas there was up-regulation of this gene transcript in the 

presence of W50, E8 and K1A (figs 6.16), although it did not reach statistical significance. 

Gingipains have been shown to activate PARs expressed on the surface of oral epithelial cells, 

which are important in regulating CCR5, IL-1β, TNF-α, IL-1α and IL-6 expression (Giacaman 

et al., 2009). In addition, gingipains are important in processing pre-fimbrillin (Kadowaki et al., 

1998), which is also a major virulence feature of P. gingivalis. The absence of this processing 

may render the P. gingivalis triple mutant, either directly or indirectly (via a decreased invasive 

capacity), incapable of stimulating epithelial cell up-regulation of CXCL8, CCL2, IL-6 and 

CCL5 (figs 6.8, 6.16, 6.14 & 6.18 respectively), via fimbriae (Bagaitkar et al., 2010). 

 

IL-6 is a potent activator of B cells and contributes to the process of bone resorption (Okada and 

Murakami, 1998). Data from the cytokine array in this chapter indicated that IL-6 was induced 

in submerged NOK-OMM by P. gingivalis more than in air-exposed NOK-OMM (fig 6.6). 

However, in terms of mRNA expression, IL-6 was up-regulated after TNF-α stimulation, but 

this was not further induced significantly by P. gingivalis or any gingipain mutants (figs 6.14 & 

6.15). The reason for the detection of a higher concentration of IL-6 protein from submerged 

NOK-OMM than air-exposed NOK-OMM may be due to the possible activation of fibroblasts 

within the submerged model due to the thinner epithelial layer and the closer proximity of P. 

gingivalis to the fibroblast-embedded matrix.  

 

CCL5 is a chemoattractant for basophils, eosinophils, monocytes and T-helper 1 cells. Here we 

found NOK monolayer cells to release CCL5 protein constitutively, which was enhanced by 

TNF-α stimulation (fig 6.1). A slight increase in CCL5 expression, though not statistically 

significant, was observed only with Lys-gingipain mutants. There are a number of possible 

reasons for this. First, production of CCL5 may be temporal and may decline after an initial 

stimulation. Second, there may have been variation between cytokine arrays, where an observed 

increase in CCL5 following TNF-α stimulation in figure 6.1 may be an artefact and quantitative 

analysis needs to be performed. Third there may be an influence of the different cell types used, 

for example, the weak transcription of this gene in response to P. gingivalis may be due to the 

lack of receptors for P. gingivalis PAMPs on this cell type.  
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There was no change in the mRNA expression of CXCL8, IL-6, CCL2 and CCL5 after TNF-α 

stimulation or P. gingivalis treatment of H357-OMM (figs 6.12, 6.15, 6.17 and 6.19, 

respectively). This may be because within the multi-layered epithelium, the surface layers only 

are exposed to P. gingivalis. Overnight stimulation may not have been long enough to induce 

the transcription of cytokines further down the epithelial layers and therefore as a percentage of 

the total mRNA, the induced mRNA may have been insignificant. Alternatively, all of these 

may be under temporal control or that there is a high constitutive expression of these cytokines 

and this may have masked any subtle differences following stimulation with TNF-α or P. 

gingivalis.  

 

The cytokines studied here are part of a greater network of cytokines which induce and suppress 

each other via intracellular signalling pathways in response to external stimuli, in an attempt to 

protect the host from damage. For example, TNF-α stimulates IL-6 release (Yang et al., 2003), 

IL-6 induces CCL2 secretion (Eklassi et al., 2008) and the inhibitory/stimulatory effects of 

TGF-β1 and IL-2 work in concert to regulate Th1 and Th2 responses (Wahl and Chen, 2003). 

Occasionally, there is overproduction of these inflammatory mediators, or underproduction 

leading to dysregulation and consequent overgrowth of pathogens. It is the fine balance between 

these mechanisms that ensures a ‘healthy host’ and maintenance of tissue homeostasis. When 

this balance is disrupted by mechanisms including modulation of host cell signalling by 

pathogens, immunocompromisation or genetic polymorphisms leading to loss of cytokine 

function, disease takes hold and therefore investigating the host response to pathogenic bacteria 

is important. 

 

6.4.2 Conclusion 

For monolayer cultures of epithelial cells, there was attenuation in the cytokine response 

following invasion and overnight stimulation with P. gingivalis. More specifically for CXCL8, 

the attenuation in protein was shown to be directly modulated by gingipains, where the absence 

of all gingipains was required to abrogate this effect. This was confirmed by quantitative PCR, 

which showed up-regulation of the CXCL8 transcript in the presence of P. gingivalis. Thus 

suggesting that P. gingivalis has the ability to modulate the host immune response by 

dampening the chemotactic gradient essential for the recruitment of leucocytes to the site of 

infection, thereby preventing the removal of this bacterium from the periodontal pocket. 

Interestingly, the data presented here suggests that intracellular bacteria also play a role in 

dampening the host immune response. This is likely to be an important mechanism for the 

survival, intra- and inter-cellular transmission and invasion of pocket epithelium. 

 

Engineered oral mucosa, which resembles the normal oral mucosa, showed differences in the 

cytokine responses to P. gingivalis, compared with monolayer. In OMM, there seemed to be 
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limited activation of CXCL8 in response to P. gingivalis compared with monolayer cultures and 

no protein degradation was detected. No change in the transcript of CXCL8 was found 

suggesting a failure of P. gingivalis to stimulate the host tissue. 

 

Comparison of OMM with monolayer epithelial cultures has not been reported before. 

However, further work may be required to address the questions raised in this chapter regarding 

the experimental procedure when working with OMM. In particular, data revealed differences 

between multi-layered OMM (air-exposed) and OMM with fewer cell layers (submerged), 

suggesting epithelial multi-layers may contribute to the detection/modulation of host cytokine 

release. As the submerged model more closely resembles junctional epithelium, the epithelium 

most likely to be encountered by P. gingivalis (Chapter 3), further investigations using this 

model are required. Table 6.1 provides a summary of the findings within this chapter. 



 

 

 

 

 

 Strain Epithelial cell Culture Procedure Tested cytokines Result 

NCTC 

11834 

W50 NOK H357 Monolayer OMM Internal Internal

+ 

external 

CXCL8 IL6 CCL2 CCL5 Others 

Array 

(protein) 

✓  ✓  ✓  ✓  ✓ ✓ ✓ ✓ ✓ All decreased 

✓  ✓   ✓ ✓  ✓ ✓ ✓ ✓ ✓ All decreased apart from 

CXCL8 and IL6 

ELISA 

(protein) 

 ✓  ✓ ✓  ✓  ✓     No change 

 ✓  ✓ ✓   ✓ ✓     Decrease with ΔrgpArgpB 

and Δkgp but not 

ΔrgpArgpBkgp 

 ✓  ✓  ✓  ✓ ✓     No change 

Real-

time 

PCR 

(mRNA) 

 

 ✓  ✓    ✓ ✓     All increase except 

ΔrgpArgpBkgp 

 ✓  ✓  ✓  ✓ ✓     No change 

 ✓  ✓ ✓   ✓  ✓    No change 

 ✓  ✓  ✓  ✓  ✓    No change 

 ✓  ✓ ✓   ✓   ✓   All increase except 

ΔrgpArgpBkgp 

 ✓  ✓  ✓  ✓   ✓   No change 

 ✓  ✓ ✓   ✓    ✓  No change 

 ✓  ✓  ✓  ✓    ✓  No change 

 

 

Table 6.1 The cytokine response of monolayer and OMM to P. gingivalis. This table shows the strain of P. gingivalis used (NCTC or W50 (including gingipain mutants ΔrgpArgpB and Δkgp and 

ΔrgpArgpBkgp)), the epithelial cell (normal oral keratinocytes (NOK) or the oral epithelial cell line (H357)) cultured as a monolayer or oral mucosal model (OMM), the experimental procedure performed, i.e. 

incubation of epithelial cells with P. gingivalis with or without the addition of antibiotic (internal and internal+external, respectively), the tested cytokines and the result obtained from the cytokine array, ELISA 

and real-time PCR. 
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Chapter 7 General Discussion 

 

7.1 General Discussion 

Periodontitis is an inflammatory disease characterised by progressive loss of tooth supporting 

structures and is the leading cause of tooth loss worldwide (Choi and Seymour, 2010). 

Periodontitis has been shown to have a complex microbiological aetiology, although P. 

gingivalis is thought to be an organism that is pivotal to the progression of disease (Dalwai et 

al., 2006; Curtis et al., 2011). The initial colonisation of the oral cavity by P. gingivalis occurs 

either via adhesion to primary colonising bacteria (Park et al., 2005) and/or directly to the 

surface of oral structures, including the oral mucosa (Rautemaa et al., 2004). One consequence 

of adhesion to the latter is internalisation into the epithelium and this study has explored the 

relationships and responses of the epithelium to P. gingivalis. 

 

To investigate epithelial-P. gingivalis interactions in vitro, a model of the oral epithelium was 

required. The most commonly used model within the vast amount of literature is the epithelial 

cell monolayer (Lamont et al., 1995). While this model is easy to manipulate, gives high 

reproducibility and is cost-effective, it does not completely resemble the oral mucosa. The oral 

mucosa consists of a stratified and often differentiated epithelium supported by a connective 

tissue layer, within which oral fibroblasts and other cells such as macrophages, mast cells and 

endothelial cells reside (section 1.1.3.2). These two layers are separated by a basement 

membrane. Investigators have sought to reproduce such mucosa in vitro, and research is 

ongoing in this field (Colley et al., 2011, Kinikoglu et al., 2011) in an attempt to produce an 

organotypic model, more suitable than monolayer cultures, for experimental investigations. 

 

The development and characterisation of organotypic oral mucosal models, which resemble 

normal oral mucosa in terms of structure (by H&E staining), and cytokeratin, laminin and E-

cadherin expression were performed in this study. However, the periodontium comprises 

regions with multilayered epithelium, and the junctional epithelium which is just a few cells 

thick. Consequently, two models were developed and characterised, these were: i) a full-

thickness stratified mucosal model, which was raised to the air-to-liquid interface (air-exposed) 

during culture to enable keratinocyte stratification and differentiation, and ii) a ‘submerged’ 

model, not raised to the air-to-liquid interface, that most resembled junctional epithelium due to 

the resultant few epithelial layers and a lack of epithelial differentiation. The culture of OMM 

using two epithelial cell types was also compared. These were the tumour-derived oral epithelial 

cell line, H357 and NOK isolated from healthy patients. It was found that air-exposed OMM 

cultured using NOK showed a higher degree of epithelial differentiation when assessed by H&E 

staining, compared with OMM cultured using H357, whereas submerged OMM cultured using 



Chapter 7 General Discussion 

200 

 

H357 more closely resembled junctional epithelium due to the high turn-over rate of this 

epithelial cell line. Therefore, both models were used for invasion studies. 

 

The choice of connective tissue scaffold was also evaluated. The air-to-liquid interface culture 

of H357 and NOK on two different fibroblast-embedded scaffolds: rat-tail type I collagen and 

DED were compared. It was shown that models cultured on DED more closely resembled the in 

vivo mucosa due to the presence of an in-tact basement membrane, rete ridges and the fact that it 

was human in origin. However, we experienced considerable unreliability with models grown 

on DED and so for most experiments took the pragmatic step of using the collagen scaffolds 

because they proved to be more reproducible and reliable, had lower cost and were easy to 

manipulate in downstream procedures. Such procedures included lysis of OMM following 

invasion and greater manipulation of the depth of the connective tissue layer for the 

incorporation of neutrophils. Although the use of collagen scaffold was a compromise, it was 

felt that its use would be suitable for investigating epithelial-P. gingivalis interactions since its 

main function was as a matrix to support the underlying fibroblasts. Future work to improve the 

reproducibility of DED-OMM cultures may be useful, in particular when considering invasion 

of P. gingivalis into the connective tissue, since a basement membrane is formed in DED 

models. 

 

It has been widely reported that P. gingivalis has the ability to invade oral epithelial cells in vivo 

(Rautemaa et al., 2004) and in vitro (Lamont et al., 1995), which may aid this bacterium to 

evade host defences and so could contribute to re-infection. The commonly used method to 

investigate the cellular internalisation of P. gingivalis is an antibiotic protection assay (Lamont 

et al., 1995). However, due to the limited literature regarding the use of this assay to study P. 

gingivalis invasion of multi-layered epithelial models, optimisation the experimental conditions 

was necessary. Results suggested that the highest bacterial recovery occurred following 

incubation of OMM and bacteria for 3-6 hours in an aerobic atmosphere, and model lysis by 

homogenisation. Anaerobic conditions over prolonged periods proved too detrimental to the 

epithelium. 

 

Using the protocol developed, it was found that the invasion of H357-OMM was significantly 

higher than NOK-OMM by P. gingivalis NCTC 11834. Previous experiments had shown that 

there was no difference between the invasion of H357 and NOK when cultured as monolayers, 

suggesting that differences between these two cell types become apparent when cultured as part 

of an organotypic model. Therefore, it was proposed that because H357 are more readily 

available than NOK, the use of H357 to determine experimental trends may be just as suitable 

as NOK, particularly in investigating P. gingivalis invasion. However, when investigating 

absolute end-point values, NOK-OMM may be more suitable than H357-OMM due to possible 
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differences in receptor expression/activation, cellular differentiation and/or intracellular 

signalling pathways.  

 

P. gingivalis was shown to invade the superficial layers of the oral epithelium of OMM. It was 

discovered that some intracellular bacteria were capable of leaving these superficial layers, but 

it was difficult to ascertain whether this was because of active release or desquamation. 

Desquamation was observed but bacteria were detected free in the supernatant prior to 

significant desquamation. However, whatever the mechanism, the fact that P. gingivalis 

emerges into the environment provides a mechanism for re-infection. Although intracellular 

replication was not detected in this study, it has been proposed previously that P. gingivalis may 

enter a dormant uncultivable state until in contact with ‘uninfected’ epithelial cells (Li et al, 

2008). This may explain why intracellular P. gingivalis were not detected by viable counting 

after 24 hours but were detected immunohistochemically. This may implicate host cell 

internalisation by P. gingivalis in the pathogenesis of disease, particularly if these bacteria 

remain in a ‘dormant’ state (Li et al., 2008), preventing host cellular apoptosis (Yao et al., 

2010) and are subsequently released into the extracellular environment or spread intracellularly 

(Yilmaz et al., 2006) to cause re-infection.  

 

It is thought that penetration through to the connective tissue may result in increased periodontal 

detachment due to the action of bacterial collagenases (Kato et al., 1992) and activation of host 

MMPs (Tervahartiala et al., 2000). This may be more pronounced in junctional epithelium in 

vivo, where the distance to penetrate to the connective tissue is a lot less compared with the 

gingival and sulcular epithelium. There is a greater expression of β1 integrin subunits, in 

particular the fibronectin-binding integrin α5β1, on the underside of the epithelium and P. 

gingivalis may invade via this route (Nakagawa et al., 2002). For example, if P. gingivalis was 

able to penetrate the connective tissue, this may provide an additional mechanism of 

intra/intercellular spreading via re-infection of the epithelium from below, continuing the 

survival of this bacterium. However, attempts to assess the level of penetration through OMM 

by P. gingivalis were inconclusive because it was difficult to visualise individual bacteria using 

immunohistochemistry, and attempts to use immunofluorescence were hampered by high 

background signals, which could not be overcome. Future work using in situ hybridisation may 

prove more useful.  

 

The percentage invasion was shown to increase with change in the expression of P. gingivalis 

gingipains and with the growth of P. gingivalis in haemin-rich and high temperature conditions. 

Within the periodontal pocket of patients exhibiting active periodontal disease, there may be an 

increased concentration of haemin, which may originate from the increased level of bleeding at 

the site of infection (Offenbacher et al., 2008) and a higher than physiological temperature due 
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to inflammation. This increase in temperature and haemin concentration may influence the 

invasive capacity of this bacterium, possibly via modification of gingipain activity. Although 

the complete absence of gingipains rendered P. gingivalis almost unable to invade oral epithelial 

cells, possibly due to the lack of fimbrial protein processing, the absence of a single gingipain, 

in particular the Arg-specific gingipains, resulted in an elevated percentage invasion over the 

wild-type strain. It was considered that this may be due to receptor degradation by gingipains, 

resulting in a decrease in receptor-mediated cellular invasion. Although it was clearly 

demonstrated that gingipains degrade 5 and the accessory molecule tetraspanin CD81, 

antibody blocking (α5β1 and CD81) and RNA silencing (CD81) did not result in a decrease in 

P. gingivalis W50 invasion. This might suggest that there are other mechanisms of 

internalisation that need to be explored. In addition, the strain of P. gingivalis that was used in 

these experiments (W50) was only slightly fimbriated and invasion of a more highly 

fimbriated/invasive strain may, in contrast, preferentially invade via these epithelial receptors. 

This was indeed indicated by antibody blocking of the integrin subunit 5, which lowered 

epithelial cell invasion by NCTC 11834, suggesting that there may be differences in invasion 

strategies between P. gingivalis strains.  

 

The response of epithelial cells to challenge by P. gingivalis, in terms of cytokine release, is a 

widely debated subject within the literature. Data presented here suggests that there is a 

decrease in the detection of extracellular CXCL8 protein following incubation of P. gingivalis 

with epithelial cell monolayers overnight. This reduction in protein detection was shown to 

occur in a gingipain-dependent manner (either Arg-specific or Lys-specific gingipains) but this 

was not observed at the mRNA level.  Indeed there was a significant increase in CXCL8 gene 

expression following incubation of epithelial cells with P. gingivalis wild-type and single 

gingipain mutants when compared with the non-infected control, suggesting post-transcriptional 

and/or post-translational modification of CXCL8 by P. gingivalis. Incubation of epithelial cells 

with the triple (Arg- and Lys-specific gingipain) knockout mutant showed no increase in 

CXCL8 mRNA expression when compared with the non-infected control, suggesting that both 

the Arg- or Lys-specific gingipains may be important in initiating intracellular signalling 

pathways culminating in the initiation of CXCL8 gene transcription. As these experiments were 

only performed at a single time point of 16 hours, a time course of CXCL8 release may be more 

informative as to the rate of CXCL8 degradation by P. gingivalis gingipains. Due to the lack of 

availability of gingipain mutants locally in a more invasive strain of P. gingivalis, it was 

difficult to determine the cytokine response of epithelial cells to invasion, although preliminary 

data using an antibody array revealed a decrease in all inflammatory cytokines tested following 

epithelial invasion by strain NCTC 11834. Using this array, CCL2, CCL5 and IL-6 were 

selected as potential pro-inflammatory cytokines/chemokines for future investigations, due to 

their persistence following challenge by P. gingivalis. The lack of significant protein 
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degradation observed may contribute to their persistence at the site of infection resulting in the 

recruitment of immune cells, activation of additional pro-inflammatory cytokines and/or the 

initiation/progression of bone resorption. Determining the cytokine response of OMM requires 

additional work because results indicated that they produce high constitutive concentrations of 

pro-inflammatory cytokines, e.g. CXCL8, possibly due to their high cell number. Moreover, 

investigations into the individual cytokine contribution from fibroblasts and epithelial cells may 

prove interesting. In addition, determining the quantitative cytokine response from NOK-OMM, 

in particular submerged NOK-OMM, may give a greater understanding of the modulation of 

cytokine release by P. gingivalis in a more relevant model. NOK-OMM were not used in this 

study due to the high constitutive cytokine release from this cell type and the additional 

contribution from increased epithelial layers. 

 

In terms of modelling the epithelial response to P. gingivalis and other microorganisms in 

periodontitis, the epithelium is not the only aspect that needs to be considered. The plaque 

biofilm is home to approximately 900 species, of which the majority have yet to be identified 

and/or are as yet unculturable (Jenkinson, 2011). Therefore, the use of a single planktonic 

species, as was utilised in this thesis, is not representative of the in vivo situation (Peyyala et al., 

2012). The microbial biofilm is a dynamic structure providing nutrients and suitable 

atmospheric conditions contributing to species survival, and has been shown to contribute to an 

increase in the cellular invasiveness of oral bacteria such as Fusobacterium nucleatum (Gursoy 

et al., 2010), and may increase the virulence factors of P. gingivalis (Tenorio et al., 2011). In 

addition, the invasion of P. gingivalis has been shown to increase in the presence of other 

microbes including Fusobacterium nucleatum (Saito et al., 2008), Filifactor alocis (Aruni et al., 

2011) and Candida species (Tamai et al., 2011).  

 

As reconstructed oral mucosa becomes more sophisticated (e.g., by incorporation of immune 

cells (Schaller et al., 2004) and endothelial cells (Takei et al., 2006)), the contributions from 

cellular cross-talk (Murakami and Okada, 1997, Egles et al., 2010) will add to our 

understanding of host-microbial interactions. Oral mucosal models can be used for other 

applications and to investigate a range of other biological aspects, including cancer, 

therapeutics, toxicity testing, etc. Furthermore, the modification of these models by substituting 

cell types, e.g. oral epithelial cells for vaginal epithelial cells and/or incorporation of gene-

knockout cells, will completely change and multiply the uses of these highly adaptable models. 

 

7.2  Summary 

Oral mucosal models are currently not widely used in the literature, particularly to study 

bacterial infection. However, within recent years they have, and are becoming, a useful tool to 

investigate host-pathogen interactions, as an alternative to monolayer cultures. We have shown 
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the development, characterisation and optimisation of oral mucosal models, representative of 

the normal oral mucosa, to study cellular invasion by P. gingivalis. The level of invasion was 

modified by the abrogation of P. gingivalis gingipain expression and culture of this bacterium 

within a haemin-rich, high temperature environment. Although no effect on invasion was found 

by blocking CD81 or 5, data presented here, in combination with previously published 

literature suggests that the process of invasion is highly complex and is a culmination of the 

environment within which the bacterium and host cells reside, the expression of cellular 

proteins present on both the bacteria and host cells and is ultimately a fine balance between the 

host and invading pathogen. The cellular response to P. gingivalis reported here suggested that 

there is a decrease in the release of CXCL8 protein, which is due to protein degradation by P. 

gingivalis gingipains. Additional pro-inflammatory chemokines/cytokines of interest may 

include CCL2, CCL5 and IL-6, which may contribute to the pathogenesis of disease. The future 

development of OMM to make them more representative of the normal oral mucosa and the 

optimisation of experimental techniques may prove invaluable, particularly in investigating the 

host response to P. gingivalis challenge. 
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Appendices 

Appendix 1 

Isolated primary NOKs were stained by immunofluorescence for the epithlelial marker pan-

cytokeratin. Positive staining of all cells indicated absence of contaminating fibroblasts and 

confirmed culture purity. 

 

Figure A1.1 Pancytokeratin staining of normal oral keratinocytes (NOK). Briefly, oral epithelial cells were 

isolated from oral biopsy and cultured on glass coverslips until confluent. Cells were fixed and permeabilised with 

cold methanol/acetone. Monoclonal mouse anti-human cytokeratin (clone MNF-116) was added to the cells and 

incubated for 1 hour at room temperature. Cells were incubated with anti-mouse FITC-conjugated secondary 

antibody and nuclei were counterstained with DAPI. 

 

Appendix 2 

 

 

Figure A2.1 Characterisation of P. gingivalis 

strains using the BApNA (A) and tosyl-Gly-Pro-

LyspNA (B) hydrolysing assays. The gingipain 

activity of P. gingivalis strains was verified prior to 

experimentation. The methods are outlined in section 

2.6. Briefly, whole cell P. gingivalis strains (W50, E8 

(ΔrgpArgpB, K1A (Δkgp) and EK18 (ΔrgpArgpB 

Δkgp)) were incubated with N-α-benzoyl-L-Arg-p-

nitroanilide (BApNA) or toluenesulfonyl-glycyl-L-

prolyl-L-lysine p-nitroanilide (tosyl-Gly-Pro-

LyspNA). Hydrolysis of these substrates resulted in a 

colour change that was indicated by an increase in 

absorbance when compared with the brain heart 

infusion (BHI) negative control. Hydrolysis of 

BApNA (A) by W50 and K1A indicated that these 

strains possessed Arg-specific gingipain activity, 

whereas hydrolysis of the tosyl-Gly-Pro-LyspNA 

substrate (B) by W50 and E8 indicated that these 

strains possessed Lys-specific gingipain activity. 

Failure of EK18 to hydrolyse either substrate verified 

the absence of Arg- and Lys-specific gingipain 

expression. Results presented are means±SD of three 

independent experiments repeated in triplicate. 

Statistically significant data (*p<0.05) is shown 

relative to BHI negative control.  
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Appendix 3 

Table A3.1 Sequences of primers used in Chapter 6. The primer sequences for interleukin 6 (IL-6), monocyte 

chemoattractant protein-1 (MCP-1/CCL2), Regulated upon Activation Normal T-cell Expressed and Secreted 

(RANTES/CCL5) and the housekeeping gene U6 used in real-time PCR experiments.  

 

IL-6 
Forward 5' - ACCCCTGACCCAACCACAAAT 

Reverse 5' - AGCTGCGCAGAATGAGATGAGTT 

CCL5 
Forward 5' - GAGCTTCTGAGGCGCTGCT 

Reverse 5' - TCTAGAGGCATGCTGACTTC 

CCL2 
Forward 5' - CAAGCAGAAGTGGGTTCAGGA 

Reverse 5' - TTAGCTGCAGATTCTTGGGTTG 

U6 
Forward 5' - CTCGCTTCGGCAGCACA 

Reverse 5' - AACGCTTCACGAATTTGCGT 

 

Appendix 4 

Table A4.1 The sensitivity of cytokine array antibodies (Chapter 6). The sensitivity of the following antibodies 

(pg ml-1), embedded in the RayBio® Human Inflammation Antibody Array 3 membranes. Sensitivity values were 

retrieved online:  http://www.raybiotech.com/human_array_sensitivity.pdf (accessed 07/03/12). Abbreviations: C-C 

chemokine ligands (CCL), C-X-C chemokine ligands (CXCL), interleukin (IL), granulocyte colony-stimulating 

factor (GCSF), granulocyte macrophage colony-stimulating factor (GM-CSF), intercellular adhesion molecule-1 

(ICAM-1), interleukin 6 soluble receptor (IL-6 sR),  (CCL11/Eotaxin-1) (CCL24/Eotaxin-2), interferon gamma-

induced protein 10 (IP10/CXCL10), monocyte chemotactic protein 1 (MCP-1/CCL2), monocyte chemotactic protein 

2 (MCP-2/CCL8), macrophage colony-stimulating factor (M-CSF), monokine induced by gamma interferon 

(MIG/CXCL9), regulated on activation, normal T cell expressed and secreted (RANTES/CCL5), soluble tumour 

necrosis factor receptors I and II (sTNF RII/TNFRS1B, sTNF RI/TNFRS1A), transforming growth factor beta 1 

(TGF-β1).  

Antibody pg ml
-1

 Antibody pg ml
-1

 Antibody pg ml
-1

 Antibody pg ml
-1

 

Eotaxin-1 1 IL-2 25 IP-10 10 RANTES 2000 

Eotaxin-2 1 IL-3 100 MCP-1 3 
sTNF 

RII/TNFRS1B 
10 

GCSF 2000 IL-4 1 MCP-2 100 
sTNF 

RI/TNFRS1A 
100 

GM-CSF 100 IL-6 1 M-CSF 1 TGF-β1 200 

ICAM-1 100000 IL-6 sR 10 MIG 1 TIMP-2 1 

IL-1α 1000 IL-7 100 MIP-1α 10 TNF-α 10 

IL-1β 100 IL-8 1 MIP-1β 20 TNF-β 1000 
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Appendix 5 

Table A5.1 Concentrations of the individual components of the protease inhibitor complex. A combined 

cocktail of serine and cysteine proteases used to inhibit gingipain activity (complete Mini ETDA-free (Roche, UK)).  

 

Protease Concentration 

Chymotrypsin 1.5 µg ml
-1

 

Thermolysin 0.8 µg ml
-1

 

Papain 1 mg ml
-1

 

Pronase 1.5 µg ml
-1

 

Pancreatic extract 1.5 µg ml
-1

 

Trypsin 0.002 µg ml
-1

 

 

Appendix 6 

 

Figure A6.1 Potential cleavage sites of CD81 by P. gingivalis gingipains. Arginine (10) and lysine (1) residues are 

indicated on this schematic of the 4-transmembrane spanning tetraspanin, CD81. Each circle represents an amino 

acid. Adapted from Levy et al. (1998). 




