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Abstract 

Zika virus (ZIKV) an arbovirus that became widely known in 2015 due to the 

epidemic in Brazil, spreading across South and North America. Whilst previous 

Old World ZIKV outbreaks comprised largely mild, or even asymptomatic 

infections, the New World epidemic became notorious for its association with 

foetal microcephaly following maternal infection, and an increased incidence of 

various neurological symptoms, including Guillain-Barré syndrome.  

Mature, infectious ZIKV particles comprise three structural proteins, Capsid (C), 

small Membrane (M) and the envelope (E) glycoprotein; the latter is responsible 

for receptor binding and mediates membrane fusion upon encountering low pH 

within the acidifying endosome. However, the function of M within this context is 

unknown. 

Based upon its structural similarity to “viroporins”, a class of virus-coded ion 

channels mediating virus entry and uncoating, we investigated whether M could 

form alternative oligomeric forms to the dimeric structure seen within mature 

virions, and in so doing exhibit channel activity. Gratifyingly, M peptides adopted 

higher order structures within membrane-mimetic environments and displayed 

channel activity in vitro, sensitive to the prototypic viroporin inhibitor, 

Rimantadine. Accordingly, ZIKV entry was blocked in a dose-dependent fashion 

by the drug, which also prevented virus spread in mouse models of ZIKV 

infection. Molecular dynamics simulations supported that M protein is able to 

oligomerise into a hexameric viroporin channel, opening of which was within 

acidified environments via protonation of a conserved histidine residue. 

Rimantadine was predicted in silico to interact at a lumenal binding site, against 

which we derived improved inhibitors from a library of generic, FDA-approved 

and other bio-active small molecules, providing a basis for novel M protein 

targeted drug discovery. Significantly, due to its role during virus entry, M-

targeted drugs might either prevent or reduce the severity of ZIKV infections, 

including those crossing the placenta, and may also show activity against 

closely related M proteins from other Flaviviruses. 
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Chapter 1 Introduction 

1.1 Flaviviruses 

The Flavivirus genus within the Flaviviridae family comprises many viruses, all 

of which possess a genome with a unique 5' cap feature (m7GpppAmp). The 

positive sense viral single-stranded genomic RNA encodes an approx. 3000 

kDa polyprotein, which is processed by both viral and host proteases. All have 

three structural proteins C, E and prM/M which organise to form the enveloped 

virion, along with the genomic RNA. There are also seven non-structural 

proteins encoded by the genome: NS1, NS2A, NS2B, NS3, NS4A, NS4B and 

NS5, which enable viral replication.  

Flaviviruses are transmitted predominantly by arthropods and are known as 

arboviruses (arthropod-borne), utilising their capabilities to jump between hosts. 

Over half of Flaviviruses have been linked to human pathogenesis; many are 

well-known including yellow fever virus (YFV), dengue virus (DENV) and Zika 

virus (ZIKV). These infections often cause symptoms related to the central 

nervous system, fever, rashes and haemorrhagic fever. Fewer Flaviviruses are 

also known to cause pathogenesis in other animals including rodents.  

There are over 50 Flavivirus species, yet there are currently only three viruses 

with commercial vaccines: first introduced in 1937 the YFV 17D vaccine (Theiler 

and Smith, 1937), the Tick-borne Encephalitis virus (TBEV) vaccine (Kunz et 

al., 1976) then Japanese encephalitis virus vaccine (Yun and Lee, 2014). 

However, highly pathogenic and prevalent Flaviviruses including well-known 

DENV, ZIKV, and lesser-known Kyassanur Forest virus and Louping Ill virus 

have no current vaccines or antivirals (Kasabi et al., 2013; Jeffries et al., 2014). 

1.2 Zika virus (ZIKV) 

1.2.1 Origin and Discovery 

Discovered in 1947 in Uganda whilst surveying for yellow fever in the Zika 

forest, ZIKV was isolated from a sentinel rhesus monkey sample. The virus was 

isolated again in the following year, 1948, however, from an Aedes africanus 
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mosquito, again from within the Zika forest (Dick et al., 1952). It is not known 

when Zika crossed the species barrier and entered the human population, 

however in 1952 it was detected in human samples in both Uganda and 

Tanzania, and again in 1954 in Nigeria (Smithburn, 1952; Macnamara, 1954). In 

1964 the first symptomatic patient had Zika isolated from them. Symptoms were 

described as mild with a rash covering the majority of their body, and differing to 

DENV and the alphavirus chikungunya (CHIKV) by the absence of joint/bone 

pain (Simpson, 1964). The similarity of these symptoms highlights why ZIKV 

may not have been investigated previously. Throughout the 1970s and 80s, 

ZIKV was detected across equatorial Africa within mosquitoes and sentinel 

rhesus monkeys, as well as rare cases within the human population (Moore et 

al., 1975; Jan et al., 1978; Robin and Mouchet, 1975; Fagbami, 1977; Saluzzo 

et al., 1981). However, during this time ZIKV spread across India, Indonesia, 

Malaysia and Pakistan, again predominantly within mosquitos and rarely within 

humans (Marchette et al., 1969; Olson et al., 1981; Darwish et al., 1983). 

However, the presence of clinically similar virus infections, including CHIKV and 

DENV, could have masked the volume of ZIKV cases. 

1.2.2 Transmission 

Two different transmission cycles exist for ZIKV, the sylvatic and urban cycles 

involving Aedes mosquitos and either non-human primates or humans (Figure 

1.1).  

ZIKV is thought to only display tropism within humans, non-human primates and 

mosquitos. However, ZIKV is commonly used in cell culture in cell lines of other 

vertebrates (e.g. Baby Hamster Kidney (BHK) cells), and antibodies specific to 

ZIKV have been identified in other vertebrates including rodents and cattle, 

highlighting that they may play a role in virus circulation (Johnson et al., 1977).  

ZIKV is primarily transmitted to humans through a female Aedes mosquito bite, 

commonly A. aegypti, which are found only in tropical areas, or A. albopictus, 

which are more widespread and can survive in more temperate regions; the 

former species is thought to transmit the majority of ZIKV infections (Thomas et 

al., 2012; Ferreira-de-Brito et al., 2016; Peterson et al., 2016). However, the 

recent outbreaks in Yap and French Polynesia likely resulted from A. aegypti in 

addition to A. hensilli and A. polynesiensis, respectively (Duffy et al., 2009; 

Lazear and Diamond, 2016). 
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Figure 1.1  ZIKV transmission cycles schematic 

In Africa ZIKV circulates in the sylvatic transmission cycle between non-human primates and 

forest-dwelling Aedes mosquitoes.  However, in the suburban and urban environment ZIKV is 

primarily transmitted in a human – Aedes mosquito transmission cycle. Additionally, ZIKV can 

be transmitted between humans in utero, through sexual contact and blood transfusion. Figure 

taken from (Kurscheidt et al., 2019). 

 
The African lineage of ZIKV is sustained predominantly via the sylvatic cycle 

(Figure 1.1) through non-human primates and mosquitos, whilst humans 

occasionally become incidental hosts (Althouse et al., 2016). However, critical 

amino acid substitutions led to the evolution of an Asian lineage of ZIKV (Gong 

et al., 2017), which predominantly infects humans as opposed to non-human 

primates, sustaining transmission via the urban transmission cycle (Saiz et al., 

2016). This involves humans as the carrier, replicator and source of ZIKV for 

uninfected mosquitos, and the extrinsic incubation period of a mosquito is 

thought to be 10 days (Hayes, 2009; Boorman and Porterfield, 1956).   

Non-mosquito modes of ZIKV transmission also exist, albeit with much lower 

incidence. The most reported non-mosquito transmission event occurs vertically 

from pregnant mothers transmitting ZIKV to their foetus through the placenta 

(Mysorekar, 2017). It is reported this is most likely to occur and cause 

congenital defects when the mother becomes infected in the 1st trimester 

(Rasmussen et al., 2016). In murine models, ZIKV RNA and antigens have 

been found in amniotic fluid, placenta and foetal brain, whilst both blood and 

cerebrospinal fluid (CSF) are positive in human studies. Furthermore, infectious 
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ZIKV particles have been isolated from the brain (Tai et al., 2019; Brito et al., 

2018; Krauer et al., 2017). 

Other routes of perinatal transmission are possible. ZIKV RNA and infectious 

particles have been detected in breast milk of infected mothers. A study in 2014 

with two mother-infant pairs who were not infected throughout pregnancy 

detected ZIKV RNA in the milk and serum of the mothers, which then presented 

in the infants serum (Besnard et al., 2014). However, inoculation of Vero cells 

with breast milk did not result in virus replication. It is not certain ZIKV was 

transmitted via breast milk; other routes include transplacental, during delivery 

and by close contact between the mother and her newborn. However, breast 

milk transmission has previously been reported in DENV and WNV, but is 

thought to be very rare in both cases (Barthel et al., 2013; Hinckley et al., 2007). 

Furthermore, breastmilk has shown antiviral activity upon endogenous lipase-

dependent production of fatty acids known to disrupt enveloped viruses 

(Cortese et al., 2017; Pfaender et al., 2013)  

Additionally, sexual transmission has been reported. This was first indicated in 

2008 after an American scientist returned home from Senegal, upon his return 

he became symptomatic with ZIKV. The scientists’ wife had remained within the 

US and subsequently contracted ZIKV, likely to be transmitted sexually (Foy et 

al., 2011).  

Sexual transmission was again indicated when ZIKV particles were isolated 

from the semen of a patient from French Polynesia in 2013 as he underwent 

treatment for haematospermia (Musso et al., 2015). There have since been 

further reports of sexually transmitted ZIKV. As of January 2018 in non-endemic 

areas there have been 27 reports of sexually transmitted ZIKV from 18 studies 

(Kim et al., 2018). ZIKV RNA and replicative ZIKV have both been isolated from 

semen, and viral RNA has been detected up to 62 days post symptoms 

(Atkinson et al., 2016).  

Furthermore, Brazilian officials confirmed there had been two cases of ZIKV 

infections originating from blood transfusions, one of which was asymptomatic; 

these both happened in 2015 prior to the outbreak. Blood banks now only allow 

donations 30 days after a symptomatic infection of ZIKV (Magnus et al., 2018; 

Schnirring, 2016).  
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1.2.3 Symptoms 

Only 20-25 % of infected individuals present with classical ZIKV symptoms, the 

majority remaining asymptomatic. Classical symptoms present as a non-specific 

malaise and can mimic flu-like symptoms or other arbovirus infections e.g. 

DENV, CHIKV, making identification difficult in the absence of molecular 

diagnostics (Patterson et al., 2016). Symptoms include: skin rash, headache, 

fever, conjunctivitis, muscle pain, joint pain & joint swelling (Cerbino-Neto et al., 

2016).  

During the South American outbreak in Columbia, 270 of 2603 ZIKV infected 

individuals displaying classical symptoms developed Guillain-Barré syndrome 

(GBS), increasing the baseline average from 20 to 90 cases/month (Parra et al., 

2016). GBS comprises neurological symptoms including progressive weakness 

and loss of sensation in limbs, leading to paralysis of legs, arms, chest & facial 

muscles. GBS is an autoimmune disease attacking the peripheral nervous 

system and can be fatal due to ensuing respiratory failure occurring in 30 % of 

patients (Orlikowski et al., 2004). This was illustrated in 1976 when 5 % of GBS 

cases associated with a particular Influenza A virus (IAV) vaccine were fatal 

(Schonberger et al., 1979). The mechanism by which ZIKV causes GBS is 

unknown.  

During an outbreak of ZIKV in French Polynesia, GBS incidence was estimated 

to be approximately 20-fold higher than the normal incidence rate of 1-2 cases 

per 100,000 per year (Oehler et al., 2014). GBS is triggered by a preceding 

event including infection or immunisation and comprises two main types: Acute 

motor axonal neuropathy (AMAN) and Acute Inflammatory Demyelinating 

Polyradiculoneuropathy (AIDP). AMAN is caused by pathogen cross-reactivity 

with epitopes on peripheral nerves, resulting in degeneration of the axons, 

whereas in AIDP epitopes are cross-reactive with Schwann cells and/or myelin, 

resulting in axonal demyelination (Kuwabara, 2004). Studies have shown T cells 

infiltrate GBS neuronal lesions, implying a role in mediating the production of 

auto-antibodies (Yang, M. et al., 2015). 

Another serious ZIKV neurological consequence is microcephaly, where 

impaired foetal brain development results in heads of smaller than normal size 

and is associated with intellectual disability (Alcantara and O'Driscoll, 2014). 

During the 2015 Brazil outbreak, causal association between prenatal ZIKV 



6 

infection and microcephaly was documented, with a 405 % increase over 

baseline incidence (Microcephaly Epidemic Research, 2016; Magalhaes-

Barbosa et al., 2016). Retrospectively, analysis of the 2013 ZIKV outbreak in 

French Polynesia revealed out of 8750 ZIKV cases, 7 cases of microcephaly 

occurred when the mother was infected during the first trimester of pregnancy 

(de Oliveira et al., 2017a). 

The greatest loss of neurons in microcephaly occurs in the cerebral cortex 

found in the forebrain, encompassing 80 % of the total brain mass. The 

absence of a fully formed cortex results in impaired higher-order processes, 

including cognition and sensation (Geschwind and Rakic, 2013). Formation of 

the cortex during foetal development originates from three different types of cell 

divisions of the neural tube. Along with programmed cell death, the proportion of 

these different divisions is tightly regulated. Imbalances in the proportions of 

these divisions can impact the development of the central nervous system, 

therefore leading to microcephaly (Rakic, 2009). 

ZIKV impacts the development of the developing cerebral cortex by infecting 

neural progenitor cells often resulting in cytotoxic effects (Brault, J.B. et al., 

2016) and also infects cranial neural crest cells which develop into cranial 

bones and secrete hormones promoting neural differentiation (Bayless et al., 

2016). Upon infection, ZIKV promotes cell cycle arrest and apoptotic cell death 

(Li, C. et al., 2016b; Tang et al., 2016; Hanners et al., 2016; Garcez et al., 

2016) autophagy or possibly by early differentiation through hormone release 

(Merfeld et al., 2017). 

1.3 Epidemiology  

In 2007, the first large human ZIKV outbreak occurred on Yap, a small Pacific 

island of 11250 people. Surveys suspected 185 Zika cases and it was 

estimated 73 % of Yap residents were infected. However, there were no deaths, 

hospitalisations or neurological complications as a result of the outbreak (Duffy 

et al., 2009; Lanciotti et al., 2008). It is not known how ZIKV was introduced to 

Yap; it is possible mosquitoes can travel considerable distances by wind, yet it 

was most likely introduced by an infected person or mosquito by travel or trade. 

Unlike the African and Asian population, the Yap population are thought to lack 

herd immunity, an indirect protection occurring when the majority of the 
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population is immune to the pathogen, providing protection to those who are 

not.  

In 2012 Zika virus strain research for African strains: MR 766 (Prototype, 

Uganda, 1947); IbH 30656 (Nigeria, 1968) and ArD 41519 (Senegal 1984) and 

Asian strains: P6-740 (Malaysia, 1966); EC Yap (Yap Island, Micronesia, 2007) 

and FSS13025 (Cambodia, 2010) were published, indicating differing Asian and 

African lineages, strengthening the thought the ZIKV outbreak in Yap originated 

from Asia (Haddow et al., 2012) (Figure 1.2 & Figure 1.3). 

ZIKV subsequently caused outbreaks throughout 2013 and 2014 isolated to 

Pacific island groups including French Polynesia (Cao-Lormeau and Musso, 

2014; Roth et al., 2014), which generated thousands of suspected infections. 

For the first time ZIKV was suggested to be associated with GBS and 

congenital malformations (Oehler et al., 2014). However, during this time 

French Polynesia was also experiencing a DENV outbreak, which prevented 

conclusive studies (Cao-Lormeau et al., 2014). 

ZIKV was first detected in South America in 2015. In the February, an illness 

characterised by a rash was present in Brazil and by May it was identified as 

ZIKV and declared an outbreak by the National Ministry of Health. The illness 

was described as mild but caused 7000 cases in north-eastern states of Brazil. 

In July, reports of GBS associated with a prior virus infection were associated. 

However, by October, the cases of GBS had increased and Brazil first reported 

a rise in new-born microcephaly cases (de Oliveira et al., 2017b). Over the next 

year ZIKV spread throughout South America & Central America (Figure 1.4). As 

of 4th January 2018 throughout the Americas there have been over 1,000,000 

cases of ZIKV, and 3720 cases of confirmed congenital syndrome associated 

with ZIKV infection since 2015 (Zika Cumulative Cases, 2018).   
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Figure 1.2 Evolutionary timescales of ZIKV 

Maximum Clade Credibility (MCC) tree of ZIKV. The Asian and African lineages 

are highlighted in blue and orange respectively. Source (Gong et al., 2017).   
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Figure 1.3 ZIKV nucleotide and amino acid alignments 

Neighbour-joining phylogeny tree generated from ZIKV strain open reading frames. 

Tree routes with Spondweni virus. Genetic distance in nucleotide substitutions per site 

is shown by scale at the bottom. Numbers at the nodes represent percent bootstrap 

support values based on 1,000 replicates. Source (Haddow et al., 2012). 
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Figure 1.4 Countries and territories showing the spread of ZIKV (2013-2016) 

Source  (ZIKA VIRUS MICROCEPHALY GUILLAIN-BARRÉ SYNDROME 2016)
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1.4 Molecular biology of Zika virus (ZIKV) 

1.4.1 Zika virus genome structure 

Similar to all Flaviviruses, Zika virus has a single-stranded positive-sense RNA 

genome of around 11kb. The 5ʹ-end of the viral RNA possesses a type I cap (m-

7GpppAmp) and a 5ʹ untranslated region (UTR) of 106 nucleotides (nt). This is 

followed by a single open reading frame (ORF), then by a 3ʹ UTR of 428 nt. 

UTRs contain sequence motifs which play multiple roles during translation and 

replication of the RNA, functioning as positive and negative regulators (Song et 

al., 2019). 

Additionally, the 3ʹ UTR loop structure leads to formation of two subgenomic 

Flavivirus RNA (sfRNA) species, which are likely involved in virus transmission 

and replication. sfRNA is an extension of the 3ʹ UTR and is produced by 

incomplete degradation of the viral RNA by host RNA exonuclease protein 5'-3' 

exoribonuclease 1 (XRN1). Stalling of XRN1 at RNA stem-loops results in 

sfRNA formation (Pijlman et al., 2008). ZIKV sfRNA is reported to inhibit type 1 

IFN responses through antagonism of RIG-I and, to a lesser extent, MDA5 

(Donald et al., 2016). 

The ZIKV polyprotein is processed co- and post- translationally by both host 

and viral proteases, including furin and Non-structural protein (NS) 3 

respectively (Stadler et al., 1997; Amberg et al., 1994). NS2B – NS3 is known to 

cleave Capsid (C) – Intracellular capsid protein (Ci), NS2A – NS2B, NS2B – 

NS3, NS3 – NS4A, NS4A-2K, NS4B – NS5 on the cytoplasmic side of the ER 

and Ci – precursor membrane (prM), small membrane (M) – Envelope (E), E – 

NS1, NS1 – NS2, peptide 2K (2K) – NS4B within the ER lumen.  

1.4.2 Zika virus structural proteins 

Like all members of the Flaviviridae, ZIKV proteins are organised spatially with 

structural elements at the N-terminus and NS proteins at the C-terminus. There 

are three structural proteins: C, M synthesised as a longer precursor (prM) and 

E. The functions of these proteins have been studied in ZIKV to a degree, 

although some are inferred based upon related Flaviviruses. 

  



12 

1.4.2.1 Capsid protein 

The Capsid (C) protein has many different roles. Its primary role is to associate 

with viral RNA to form the nucleocapsid during assembly, protecting the RNA 

genome (Kuhn et al., 2002). However, C also interacts with multiple host 

proteins including Regulator of nonsense transcripts 1 (UPF1), Zinc Finger 

CCCH-Type Containing Antiviral 1 (ZC3HAV1) and La-related protein 1 (LARP) 

involved in evading the immune response through dysregulation or expression 

of specific transcripts (Fontaine et al., 2018; Scaturro et al., 2018; Scaturro et 

al., 2019) and interactions with Ly1 Antibody Reactive (LYAR) maintaining 

embryonic stem cell properties and neuroguidin (NGDN) preventing neuronal 

development (Scaturro et al., 2018; Scaturro et al., 2019). 

DENV C protein has been shown to act as an RNA chaperone, aiding viral RNA 

structure formation, by forming dimers which are capable of binding RNA (Pong 

et al., 2011). Moreover, YFV C protein inhibits the mosquito immune system by 

preventing RNA silencing mediated through binding to long dsRNAs, interfering 

with the production of virus-derived small interfering RNAs (vsiRNAs) by dicer 

(Samuel et al., 2016).  

Flavivirus C proteins localise in several cellular compartments after translation. 

C is found accumulated around endoplasmic reticulum (ER) derived organelles 

called lipid droplets, in parallel with other viruses including hepatitis C virus 

(HCV) (Samsa et al., 2009; Ogawa et al., 2009), which could help to sequester 

capsid proteins and allow genome encapsulation.  Nuclear localisation of capsid 

allows interactions with many different host proteins, primarily preventing 

apoptosis and interactions leading to increased replication. These include 

interactions of DENV C with Death Domain Associated Protein (DAXX) leading 

to Fas-mediated apoptotic activity, WNV C interactions with DDX56 after re-

locating from nucleolus to cytoplasmic site and phosphorylated WNV C 

interactions with HDM2 induce p53-dependent apoptosis. (Netsawang et al., 

2010; Limjindaporn et al., 2007; Xu, Z. et al., 2011; Yang, M.R. et al., 2008). 
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Figure 1.5 ZIKV genome organisation schematics  

A. Polyprotein structure showing 5 and 3 RNA structures. B. Polyprotein schematic 

of the proteases involved and cleavage products. C. Topology of the polyprotein 

in membrane. Source (ViralZone). 

 

  

A 
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1.4.2.2 PrM 

PrM protein acts as a chaperone protein assisting the folding of E during 

intracellular virion assembly. Preventing premature fusion of the immature virion 

prior to release from the host cell by maintaining E in a non-fusogenic state, 

masking and inactivating the E fusion peptide (Lorenz et al., 2002; Yu et al., 

2009; Li, L. et al., 2008). 

During the transport of the virion through the trans-Golgi network (TGN) the 

virion encounters a decrease in pH from neutral to around 6. Virion acidification 

causes the prM-E trimers to reorganise into a herringbone-like arrangement, in 

which prM molecules cover the fusion loop of E protein. Making the fusion loop 

of E inaccessible, prevents premature fusion of the virion in the acidic Golgi 

compartment prior to virion release. Subsequently, host protease furin and furin-

like proteases are responsible for cleaving prM to M protein (Yu et al., 2008; Yu 

et al., 2009; Stadler et al., 1997). 

The aforementioned prM cleavage is inefficient, and many virions remain only 

partially matured. These uncleaved prM proteins may play a role in immune 

evasion as immature DENV prM-containing particles are more likely to lead to 

Antibody Dependent Enhancement (ADE) in patients than an infection with fully 

mature DENV particles (Rodenhuis-Zybert et al., 2011). 

Additionally, a prM protein S139N substitution mutation, which first emerged in 

May 2013, has been shown to significantly increase infectivity of ZIKV when 

cultured with neural progenitor cells, leading to more pronounced microcephaly 

in foetal mice of infected mothers (Yuan et al., 2017). The mutation is found 

within the region of prM which is involved in interactions within trimeric spikes in 

the immature virus particle (Prasad et al., 2017). Therefore, the mutation may 

be involved in the transition of ZIKV from immature to mature virions; in turn the 

maturity heterogeneity of virus may affect “viral fitness” and so neurovirulence. 

The substitution mutation occurred prior to the French Polynesia outbreak in 

2013 and has been maintained in the epidemic strain that spread across the 

Americas (Yuan et al., 2017).  
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Figure 1.6  Flavivirus maturation 

The maturation pathway for Flaviviruses. The conformational changes of surface glycoproteins prM/M and E and the cleavage of prM by host 

protease furin, converting a spiky immature non-infectious virus to a mature infectious virus. Source (Sirohi and Kuhn, 2017).
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1.4.2.3 M 

Once pr is cleaved, M remains within the virion membrane as a short 

hydrophobic protein of 75 amino acids. The role of M within the mature virion 

membrane is unclear. However, several Flavivirus studies have investigated the 

possibility of M protein exhibiting viroporin activity, playing a role during virus 

entry and uncoating. It is thought the activity could compare to that of Influenza 

A virus (IAV) M2. However, there have been conflicting results of channel 

activity using lipid membranes in vitro and Xenopus oocytes (Premkumar et al., 

2005; Wong et al., 2011).  

DENV M protein has been shown to have cytotoxic effects and the ability to 

induce apoptosis. Through deletion mutagenesis, nine C-terminal amino acids 

were identified within the ectodomain of M protein that appeared responsible for 

this phenotype. This region is referred to as “ApoptoM”. Further investigation 

showed ApoptoM transport through the secretory pathway is an essential part of 

this process, and interactions of ApoptoM with pro-apoptotic protein Bax, of 

which levels increase during Flaviviral infection, may be required (Catteau et al., 

2003).  

Cryo-EM structures of mature virus particles reveal that mature M protein 

comprises two helical transmembrane domains within the mature virus particle 

membrane, which are present in a dimeric form (Section 1.9) (Sirohi et al., 

2016; Sevvana et al., 2018).  

1.4.2.4 E 

ZIKV E protein is a class II fusion protein with a unique structure of three 

ectodomains (EDI, II & III) and two transmembrane domains (TMD1 & 2) in a 

hairpin like structure (Figure 1.7). Upon virus entry via clathrin-mediated 

endocytosis (section 1.5.1), 90 envelope protein dimers transition from a 

herringbone-like formation on the virus surface, into 60 E trimers upon low pH 

conditions within endosomes. All domains of E protein are involved in this 

irreversible structural rearrangement leading to membrane fusion (Figure 1.8) 

(Dai et al., 2016; Sirohi et al., 2016). 

ZIKV has a broad tropism, mediated through a variety of receptors. The many 

different cell types include cells of the brain, placenta, skin, testis, kidneys, 

retina and immune cells. Known ZIKV receptors include: Axl receptor tyrosine 



 

17 

kinase (AXL), Tyrosine-protein kinase receptor TYRO3 (Tyro3), T-cell 

immunoglobulin and mucin domain 1 (TIM-1), Toll-like receptor 3 (TLR3), Toll-

like receptor 8 (TLR8), Melanoma-differentiation-associated gene 5 (MDA5) and 

Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Non-integrin 

(DC-SIGN) (section 1.5.1 and Table 1.1) (Meertens et al., 2017; Wang, Z.Y. et 

al., 2017; Nowakowski et al., 2016; Tabata, T. et al., 2016; Hamel et al., 2015).  

The receptor binding promotes virus attachment, followed by clathrin-mediated 

endocytosis, virion acidification and fusion of the virion membrane with the 

endosomal membrane during viral entry involving the structural rearrangement 

of E protein (section 1.5.1 and   

Figure 1.12) (Mukhopadhyay et al., 2005; Elshuber et al., 2003; Roby et al., 

2015; Saiz et al., 2016).  

E protein is translated in the endoplasmic reticulum and forms heterodimers 

with protein prM. The glycoprotein heterodimers reside within the ER membrane 

and RNA produced in the replication complexes associates with C protein and 

buds into the glycoprotein containing ER membrane. The newly formed 

immature particle is covered with 60 spikes composed of prM-E heterodimers 

(Figure 1.9). The virion is transported to the TGN where the low pH causes 

dissociation of the heterodimers and formation of E homodimers (Yu et al., 

2008). However, as previously mentioned in section 1.4.2.2, prM-E cleavage is 

inefficient, and majority of virions are only partially matured, contributing to host 

immune evasion. 
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Figure 1.7 E protein 

A. The E protein dimer in represented by ribbons, viewed down the two-fold 

axis. The colour code aligns with the standard labelling of E protein domains I 

(red), domain II (yellow) and domain III (blue). The stem and transmembrane 

residues are shown (pink). The fusion loop (green). B. Side view of the E-M 

dimer showing the three E ectodomains, the E stem/transmembrane domains 

(pink) and the M protein (light blue), annotated with virus membrane (grey). 

Source (Sirohi et al., 2016). 
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Figure 1.8 Flavivirus membrane fusion schematic 

Schematic of the Flavivirus membrane fusion process. A. Pre-fusion E dimer in a 

herringbone pattern on the virus surface. B. Low-pH-induced dissociation of E dimers 

(~pH6.6), E monomers project away from the membrane, and interact with proteins on 

target membrane. C. Trimer formation and “zippering” of the stem. D. Hemifusion 

intermediate, the outer leaflets mix. E. Formation of the post-fusion E trimer and pore 

opens.  E protein colour code as in Figure 1.7 (Stiasny et al., 2011) 
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Figure 1.9 Mature and Immature ZIKV structure  

A & B. The surface and cross-section view of mature ZIKV. C & D. Immature 
ZIKV. Both sections coloured corresponding to the adjacent key. The Black 
triangle in A & C shows the asymmetric unit. Numbered arrows in B & D 
indicate the icosahedral symmetry axes. Thick arrows in D show the difference 
in density of the RNA core and viral membrane. Double-ended arrows in D 
show the distance between the inner and outer layers of the virus membrane. 
Scale bar is 100  Å. (Prasad et al., 2017) 
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E proteins form the outer surface of the virion, interacting with M protein forming 

heterotetramers that arrange into an icosahedral virus surface. E has two 

transmembrane domains which reside adjacent to M protein, and three 

ectodomains which are found on the virion surface (Figure 1.7) (Sirohi et al., 

2016). The tetrameric E/M protein structure is formed of Envelope and M 

protein homodimers, however these structures do not remain throughout entry 

of the virus particle. Upon virion endocytosis, the virus particles are exposed to 

a drop in pH as the endosomes mature, and the structure of the TBEV and 

DENV envelope protein has been resolved at this point. The E dimer changes 

conformation from lying on the surface to protruding away from the virion, 

additionally the E proteins change from dimeric to trimeric (Figure 1.8) 

(Bressanelli et al., 2004; Modis et al., 2004). 

1.4.3 Zika virus Non-structural proteins 

1.4.3.1 NS1 

NS1 is a highly multi-functional protein, which adopts different tertiary and 

quaternary forms, each with diverse roles. Dimeric NS1 localises intracellularly, 

particularly to the ER membrane and lumen ( 

Figure 1.10) (Akey et al., 2014). By contrast, NS1 also forms a hexamer that is 

secreted from the infected cell, primarily known for its involvement in immune 

evasion. A single mutation in NS1 during the ZIKV African to Asian evolution 

exacerbate its immune evasion capabilities through the A188V substitution 

which interacts with TBK1 reducing its phosphorylation leading to a reduction in 

IFN-β production (Xia et al., 2018). 

Dimeric NS1 found associated with membranes (mNS1) is reported to be 

involved in viral genome replication. DENV and WNV mNS1 associate and 

rearrange liposome membranes in vitro, and mNS1 along with NS4A/B play an 

essential but poorly defined role in virus replication within the ER at replication 

complexes (Akey et al., 2014; Akey et al., 2015; Welsch et al., 2009). 

Furthermore, mNS1 interacts with 60S ribosome subunits, retargeting them to 

replication complexes (Cervantes-Salazar et al., 2015). 
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Figure 1.10 NS1 Structures 

A. Dimeric DENV NS1 3D crystal structure shown in ribbon representation (Protein 

Data Bank accession no. 4O6B) (Akey et al., 2014). The β-roll, Wing and β-ladder 

domains are highlighted in blue, yellow and red, respectively. B. Hexameric DENV 

structure shown by surface representation, colour coded in the same manner as A. 

Source (Scaturro et al., 2015). 
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Dimeric NS1 also localises to the TGN and interacts with host glycosidases and 

glycosyltransferases. This results in the removal of NS1 carbohydrate moieties, 

leading to the formation of a soluble hexameric NS1 complex with an open 

barrel shaped conformation that is secreted from the infected cell (sNS1) 

(Flamand et al., 1999; Gutsche et al., 2011; Muller et al., 2012). sNS1 interacts 

with Toll-like receptor (TLR) 4, leading to activation of macrophages and 

PBMCs and increased pro-inflammatory cytokine expression. This disrupts 

endothelial cell integrity, which is linked to increased disease severity during 

DENV infection (Modhiran et al., 2015). Both dimeric and hexameric NS1 

conformations are also thought to form membrane attack complexes (MAC), 

further increasing the secretion of vasoactive cytokines resulting in deteriorating 

disease (Avirutnan et al., 2006).  

An additional form of NS1 is reported in JEV, WNV & DENV. NS1’ results from 

the presence of a slippery heptanucleotide and pseudoknot structure causing a 

–1 ribosomal frameshift near the start of the NS1 sequence during translation, 

at a frameshifting efficiency of 20-50% (Firth et al., 2010). WNV NS1’ has a 52 

amino acid extension at the C terminus (Melian et al., 2010; Firth and Atkins, 

2009). Disrupting the formation of NS1’ reduces neuroinvasiveness and NS1’ 

can substitute for NS1 function (Melian et al., 2010; Ye, Q. et al., 2012; Young 

et al., 2013). Additionally NS1’ has been found to co-localise with NS3 and NS5 

within the replication complex (Satchidanandam et al., 2006; Takamatsu et al., 

2014). 

1.4.3.2 NS2A  

NS2A is small multifunctional hydrophobic protein and predominantly resides in 

the viral replication complex playing a role in virus RNA replication and virion 

assembly. However, ZIKV NS2A has also been shown to antagonise the host 

immune response (Mackenzie et al., 1998; Chambers et al., 1989; Munoz-

Jordan et al., 2003).  

The N-terminus of NS2A is cleaved in the ER lumen by an unknown host 

protease, and the C terminus is produced by NS2B/NS3 viral protease in the 

cytoplasm (Falgout and Markoff, 1995; Chambers et al., 1990).  

Once cleaved, Flavivirus NS2A along with NS4A and NS4B provide the 

scaffolding for the replication complex in the ER (Welsch et al., 2009). Within 
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this compartment, NS2A is involved with viral RNA synthesis, binding to the 

viral RNA 3'UTR, NS3 and NS5 (Mackenzie et al., 1998; Xie et al., 2015; Wu, 

R.H. et al., 2015). The mechanism ZIKV NS2A plays in viral RNA synthesis is 

not known. However, a single A175V mutation within NS2A was shown to 

impair ZIKV RNA synthesis in vivo (Zhu, X. et al., 2019).  

A further replicative role of NS2A is assembly of ZIKV virions. NS2A has been 

shown to recruit viral RNA, C-prM-E and NS2B/NS3 to assembly sites. The 

presence of NS2B/N3 cleaves the C-prM-E polyprotein, leading to RNA 

encapsidation by C and prM/E envelopment (Zhang, X. et al., 2019). 

Additionally, NS2A is involved in modulating the interferon response initiated by 

the infected host cell as an antiviral response (Munoz-Jordan et al., 2003; Liu, 

W.J. et al., 2006). NS2A along with NS4A and NS4B inhibits the JAK/STAT 

signalling pathway in DENV by decreasing STAT1 phosphorylation through 

“prohibiting its nuclear localisation and preventing IFN-β promoter driven 

transcription from two ISREs’ (Munoz-Jordan et al., 2003). NS2A downregulates 

IFN-β promoter, through inhibiting signal activation molecules of IFN-β such as 

interferon regulatory factors (IRFs). NS2A was also shown to suppress RIG-I 

(Ngueyen et al., 2019). 

NS2A alone has inferred a role in the cause of microcephaly. ZIKV NS2A 

depletes adherens junction proteins, reducing radial glial cell proliferation and 

premature differentiation of newborn neurons (Yoon et al., 2017). 

NS2A also contributes to the generation of the aforementioned NS1’, through a 

Flavivirus-conserved slippery heptanucleotide motif found at the N terminus of 

NS2A (Melian et al., 2010).  

1.4.3.3 NS2B & NS3  

NS2B is a small protein of 242 amino acids, with a conserved central 

hydrophilic region surrounded by three hydrophobic regions, likely to be 

transmembrane domains. It has been shown the hydrophilic region of NS2B is 

an essential cofactor for the activation of the viral protease NS3 (Falgout et al., 

1991). The NS2B-NS3 protease, alongside host proteases cleaves the viral 

polypeptide into individual viral proteins at the ER. The N terminal domain of 

NS3 is a chymotrypsin-like serine protease and can cleave the polyprotein in cis 

and trans (Bera et al., 2007; Chambers et al., 1990; Li, J. et al., 2005). The 
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necessary cofactor for the protease resides in the centre of NS2B between N 

and C terminal transmembrane domains (Clum et al., 1997).  

The vital roles of NS2B-NS3 during the virus life cycle have been explored as 

targets for inhibitors. However, despite the structural and biochemical 

information known about the protein no compounds have reached clinical trials. 

There have been difficulties in finding a peptide capable of competing with RNA 

binding due to the shallow binding pocket of the protease, and its exposure to 

the surrounding (Lim et al., 2013b).  

Additionally, NS3 also has further enzymatic activity on its own, as a helicase 

(Fairman-Williams et al., 2010). NS3 has three subdomains, subdomain 1 and 2 

contain conserved motifs which have RNA binding and ATP hydrolysis activity 

(Xu, S. et al., 2019). The third subdomain forms a ssRNA binding tunnel (Tian 

et al., 2016). NS3 also has RNA 5' triphosphatase activity (RTPase) and 

triphosphatase hydrolysis is the first step for viral RNA capping (Decroly et al., 

2011). 

1.4.3.4 NS4A 

NS4A is an integral membrane protein found within the ER playing a role in 

membrane rearrangement for virus replication. NS4A is linked to NS4B by a 23 

amino acid signal peptide conserved across Flaviviruses with a molecular 

weight of 2000 Da, named 2K. NS4A and 2K are cleaved by the 

aforementioned NS2B-NS3 protease, which is required prior to cleavage of 

NS4B from 2K by a host signalase (Lin, C. et al., 1993). 

In DENV and WNV, NS4A expressed alone and NS4A-2K are able to induce 

rearrangements to the ER membrane similar to that seen in virus infected cells, 

this is thought to anchor the replication complex to the ER membrane utilising 

the NS4A TMDs (Kaufusi et al., 2014; Miller et al., 2007; Roosendaal et al., 

2006). NS4A is also reported to oligomerise at its N-terminus and bind to host 

cell protein vimentin. Vimentin binds to NS4A within the replication complexes, 

providing supportive anchorage for the replication complexes during DENV 

replication forming a scaffold as well as rearranging the ER membrane (Stern et 

al., 2013; Teo and Chu, 2014).   

However, within the Flavivirus genus there are differences in the localisation of 

these integral membrane proteins. WNV NS4A-2K induces ER membrane 
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rearrangement, whereas without the 2K peptide, NS4A localises to the Golgi 

apparatus (Roosendaal et al., 2006). By contrast, DENV-2 NS4A does not 

require peptide 2K to rearrange the ER membrane and 2K inhibits this 

rearrangement (Miller et al., 2007), suggesting the mechanisms behind this 

rearrangement are distinct between Flaviviruses.   

DENV-2 NS4A keeps infected cells alive by inducing and upregulating 

autophagy and lipophagy to aid viral replication (McLean et al., 2011; Zhang, J. 

et al., 2018). To further maintain cells as virus factories, NS4A also plays a role 

in evading the host immune response. NS4A contributes to the inhibition of 

interferon signalling and completely blocks IFN signalling when expressed 

alongside NS2A and NS4B (Munoz-Jordan et al., 2003). It has been shown 

KUNV NS4A and NS4B induce the unfolded protease response (UPR), a 

cellular stress response linked to ER stress when unfolded or misfolded 

proteins accumulate in the ER lumen. UPR is thought to inhibit JAK-STAT 

signalling when IFN-α is produced (Ambrose and Mackenzie, 2011). 

Furthermore, NS4A interacts with NS3 helicase as a cofactor allowing it to 

conserve energy to keep unwinding the viral RNA when ATP levels are low 

(Shiryaev et al., 2009). 

1.4.3.5 NS4B 

NS4B is another membrane integral protein and is the largest hydrophobic non-

structural protein, consisting of three TMDs. NS4B is translocated into the ER 

lumen by the 2K signal sequence at the N terminus, after translocation 2K is 

cleaved off by a host signalase (Miller et al., 2007). Within the ER lumen NS4B 

is likely to form dimers, as it has been shown to be capable of dimerising when 

expressed alone and also during virus infection in vitro (Zou et al., 2014).  

Similarly to NS4A, NS4B interacts with and contributes to forming the replication 

complex (Miller et al., 2006; Yi, Z. et al., 2012) and evading immune response 

through ISRE-54 and ISRE-9-27 promoter activation inhibition, therefore leading 

to decreased STAT1 phosphorylation and IFN suppression, along with NS4A 

and NS2B (Munoz-Jordan et al., 2005; Munoz-Jordan et al., 2003). The 

similarity in these functions suggests that NS4A and NS4B may function 

cooperatively (Zou et al., 2015) and were shown to directly interact in JEV (Li, 

X.D. et al., 2015). More recently, ZIKV NS4A and NS4B interactions have been 

reported to induce autophagy to benefit the virus life cycle (Liang et al., 2016). 
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Additionally, NS4B interacts with NS3 within the replication complex, 

dissociating the NS3 helicase from ssRNA enhancing helicase activity 

(Umareddy et al., 2006). 

1.4.3.6 NS5 

NS5 is responsible for viral genome replication across the Flavivirus genus. The 

N terminus of NS5 contains a methyltransferase (MT) domain, which caps the 5' 

end of the positive strand viral RNA. The virus cap aids polyprotein translation 

and helps the virus to evade the host immune response, preventing 

identification by pattern recognition receptors (Egloff et al., 2002; Ray et al., 

2006; Issur et al., 2009; Daffis et al., 2010). The MT domain is followed by a 

short linker region to the RNA-dependent RNA polymerase (RdRp) domain. The 

RdRp has two mechanisms of RNA synthesis; de novo or primer-dependent 

initiation (Ackermann and Padmanabhan, 2001; Surana et al., 2014; Lim et al., 

2013a; Xu, H.T. et al., 2017; Potisopon et al., 2017; Hercik et al., 2017). The 

activity of NS5 RdRp is affected by the highly conserved MT domain, which can 

increase RNA synthesis by altering RdRp conformation (Zhao, B. et al., 2017). 

The presence of the MT domain is essential for RNA synthesis by either de 

novo or elongation of a primed template, as shown by loss-of-function mutations 

(Potisopon et al., 2014). The functional ZIKV RdRp forms three different 

channels, to interact with the template RNA, the nascent RNA and NTPs (Fig 

1.10) (Butcher et al., 2001). 

Comparative analysis between Ugandan ZIKV strain MR766 NS5 and Brazilian 

strain PE243 NS5 has identified over 35 amino acid substitutions, yet the NS5 

RdRp activities are very similar. Upon identification of these substitutions within 

the structure, they are found on the protein surface and do not affect the RNA 

synthesis activity in the RdRp centre. The substitutions could affect other host 

or viral protein interactions not currently identified (Zhao, B. et al., 2017). 
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Figure 1.11 ZIKV NS5 Structure  

A. Ribbon representation of ZIKV NS5 showing the arrangement of the MT and 
RdRp domains from top down and side on. B. Schematic of ZIKV NS5 protein 
showing structural motifs and key residues. Source (Zhao, B. et al., 2017).  
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1.5 Zika virus life cycle 

1.5.1 Entry 

ZIKV and other Flaviviruses are transmitted by a mosquito bite on the surface of 

the skin e.g. A. aegypti. The arboviral transmission route of a mosquito bite 

leads to skin cell and immune cell susceptibility. ZIKV particles enter the host 

cell by the envelope glycoprotein first binding multiple cellular receptors and 

adhesion factors (Table 1.1). Once engulfed into the cell by clathrin-mediated 

endocytosis the virus remains within the endosome as it matures until the virus 

fuses with the endosomal membrane. 

1.5.1.1 Receptor binding & susceptible tissues 

ZIKV infection utilises cellular receptors AXL, TIM-1 and others to infect dermal 

fibroblasts and epidermal keratinocytes, and DC-SIGN to enter dendritic cells 

and CD16+ monocytes (Hamel et al., 2015; Sun, X. et al., 2017; Persaud et al., 

2018; Foo et al., 2017; Michlmayr et al., 2017; Lum et al., 2018). ZIKV is also 

highly infectious within embryonic brains and, to a lesser extent, adult brains, 

requiring AXL & TLR3 for infection of neural progenitor cells, astroglial and 

microglial cells (Nowakowski et al., 2016; Wells et al., 2016; Wang, Z.Y. et al., 

2017; Meertens et al., 2017; Hamel et al., 2017; Stefanik et al., 2018). 

ZIKV can also be transmitted via sexual contact. The human testis is well 

established to be infectable by ZIKV, with viral RNA detectable up to 100+ days 

post infection (Eurosurveillance editorial, 2016; Paz-Bailey et al., 2018). Sertoli 

cells and spermatozoa are also known to require AXL and Tyro3 respectively to 

become infected (Ma et al., 2017; Sheng et al., 2017; Siemann et al., 2017; 

Salam and Horby, 2018; Bagasra et al., 2017).  

The most severe consequence of ZIKV infection is microcephaly of unborn 

children due to infection of neural progenitor cells (NPC), leading to restricted 

brain development (Qian et al., 2017; Li, C. et al., 2016a). Infection of NPC’s 

requires virus to pass through the placenta where ZIKV-susceptible 

trophoblasts, hofbauer and endothelial cells reside, rendering the tissue 

susceptible to virus infection via ZIKV interaction with receptors AXL, tyro3, 

TIM-1, TLR3 and TLR8 (Bayer et al., 2016; Quicke et al., 2016; Tabata, T. et 

al., 2016).  
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Additionally, other tissues have shown to be infected including the retina 

requiring AXL & tyro3 receptors (Zhao, Z. et al., 2017; Roach and Alcendor, 

2017) and kidneys, however the receptors for kidney cell infections are currently 

unknown (Alcendor, 2017). 

Primary Cell Receptor References 

Brain   

Neural progenitor cells 
(NPCs) 

AXL, TLR3 (Nowakowski et al., 
2016; Wells et al., 2016; 
Wang, Z.Y. et al., 2017) 

Astroglial cells AXL (Hamel et al., 2017; 
Stefanik et al., 2018; 
Chen, J. et al., 2018) 

Microglial cells AXL (Meertens et al., 2017) 

Placenta   

Hofbauer cells AXL, Tyro3, TIM1 (Bayer et al., 2016; 
Quicke et al., 2016; 
Tabata, T. et al., 2016) 

Trophoblasts AXL, Tyro3, TIM1, TLR3, TLR8 (Bayer et al., 2016; 
Quicke et al., 2016; 
Tabata, T. et al., 2016) 

Endothelial cells AXL, Tyro3, TIM1 (Tabata, T. et al., 2016; 
Miner et al., 2016) 

Skin   

Dermal fibroblasts AXL, TIM-1, TYRO3, TLR3, RIG-I, MDA5 (Hamel et al., 2015; 
Persaud et al., 2018) 

Epidermal keratinocytes AXL, TIM-1, TYRO3, TLR3, RIG-I, MDA5 (Hamel et al., 2015) 

Immune cells   

Immature dendritic cells DC-SIGN (Hamel et al., 2015; 
Bowen et al., 2018) 

Dendritic cells DC-SIGN (Sun, X. et al., 2017) 

CD14+ monocytes Unknown (Foo et al., 2017; Lum et 
al., 2018) 

CD14+CD16+ monocytes Unknown (Foo et al., 2017) 

Testis   

Sertoli cell AXL (Ma et al., 2017; Sheng 
et al., 2017; Siemann et 
al., 2017) 

Spermatozoa Tyro3 (Bagasra et al., 2017; 
Salam and Horby, 2018) 

Kidney   

Renal mesangial cell Unknown (Alcendor, 2017) 

Glomerular podocytes Unknown  

Renal Glomerular 
Endothelial Cell 

Unknown  

Retina   

Retinal pericytes Tyro3, AXL (Zhao, Z. et al., 2017) 

Retinal microvascular 
endothelial cells 

Tyro3, AXL  

Table 1.1 ZIKV Cellular Targets and receptors 
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1.5.1.2 Clathrin-mediated endocytosis 

Clathrin has been reported to associate with the virus-containing vesicles for 80 

seconds during DENV entry (van der Schaar et al., 2008), and is thought to be 

a necessary part of Flaviviruses entering cells, as WNV entry into Vero cells 

was inhibited with chloropromazine, preventing clathrin-coated pit formation 

(Nawa et al., 2003). However DENV-2 can enter cells in the absence of clathrin, 

insinuating it is cell and virus-type dependent (Acosta et al., 2009). 

Following receptor engagement adaptor proteins bind to the receptors 

cytoplasmic tails, subsequently a clathrin pit then surrounds the invaginating 

membrane containing the virion, eventually encapsulating it in a clathrin-coated 

vesicle (Chu and Ng, 2004). This separates from the plasma membrane via 

dynamin-mediated scission, forming an internalised clathrin-coated vesicle 

(Cocucci et al., 2014).  

Once the virus is encapsulated, clathrin disassociates from the vesicle 

membrane (van der Schaar et al., 2008) and is transported by lymphocyte 

antigen 6 locus E (LY6E) tubules through the endocytic pathway (Hackett and 

Cherry, 2018). Five minutes post-entry of WNV and DENV the vesicles have 

matured to early endosomes (van der Schaar et al., 2008; Chu and Ng, 2004) 

which further mature to late endosomes. The endocytic compartment where 

Flavivirus membrane fusion occurs varies dependent upon the virus in question. 

1.5.1.3 Membrane Fusion  

The low-pH environment inside endosomes triggers conformational changes of 

the envelope homodimers on the virion surface (Figure 1.8 &   

Figure 1.12).     

Flavivirus envelope proteins are well known for their pre and post fusion 

conformations. Prior to fusion the low pH environment in the endosomes results 

in one or more histidine residues on E become protonated (Harrison, 2008). 

Protonation results in the homodimers disassociating into monomers on the 

virion surface, releasing the fusion peptide loop previously hidden by 

interactions with domain I and II within a hydrophobic pocket. E proteins are 

very similar across the genus and contain three domains on the surface, the 

monomeric envelope proteins protrude domain II into the outer leaflet of the 

target membrane, exposing the fusion peptide at the tip of EDII (  
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Figure 1.12) (Bressanelli et al., 2004; Modis et al., 2005; Nayak et al., 2009; 

Zhang, Y. et al., 2004). Domain II of envelope mediates interactions between 

monomers leading to unstable trimerisation, which is then stabilised by domain I 

interactions (Liao et al., 2010).  

Once E protein oligomerises into trimers and is bound to the target membrane, 

domain III folds back into a hairpin-like conformation forming a hemifusion 

intermediate where the inner leaflets remain intact and the outer leaflets interact 

with the target membrane. As the envelope protein continues to fold, the fusion 

pore forms and enlarges releasing the nucleocapsid (Bressanelli et al., 2004; 

Modis et al., 2004; Modis et al., 2005; Nayak et al., 2009). 

Uncoating of the viral nucleocapsid is one of the least-studied steps in virus life-

cycles. After virus envelope fusion with the endosome, the viral nucleocapsid 

remains intact, enters the host cell cytoplasm and must uncoat to release the 

viral genome to establish initial translation. However, the capsid protein is 

bound to the viral RNA with high affinity due to its negative charge, and forms 

oligomers. It is not known in-depth how the nucleocapsid dissociates.  

The DENV capsid protein is degraded by a ubiquitin-proteasome-dependent 

process. During virus endocytosis, inhibition of host cellular E1 ubiquitin-

activating enzyme prevents viral RNA uncoating (Byk et al., 2016). Additionally, 

inhibition of Hsp70 strongly reduces capsid stability and function, and reduced 

capsid oligomerisation, therefore suggestive of a role during virus coating and 

uncoating (Byk et al., 2016). Furthermore, Valosin-Containing Protein (VCP) 

and p97 are proposed to disassemble ubiquitylated nucleocapsids of YFV 

(Ramanathan et al., 2019). ST-148 is a novel inhibitor of DENV uncoating and 

has shown to bind to capsid, however its mechanism is unknown (Byrd et al., 

2013). 
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Figure 1.12 Conformational states of the dengue virus E protein 

A. Dimeric DENV E protein structure present on the mature virion surface, viewed side 

on with the viral membrane represented in grey and the protein ectodomain in ribbons, 

with one monomer coloured coded as in previous figures, domains I, II and III in red, 

yellow and blue respectively. E stem and TM domains shown as helix-loop-helix. 

Structure based on (Zhang, W. et al., 2003). B. Trimeric DENV E protein conformation 

upon virion acidification (Schmidt et al., 2010). 

 

1.5.2 Translation  

The Flavivirus RNA genome comprises a single open reading frame (ORF), 

which is translated into a polyprotein. The N-terminus of the nascent polyprotein 

contains an ER-localisation signal that promotes rapid association of ribosomes 

translating the viral RNA within the ER membrane. The resulting translated 

polyprotein remains associated within the membrane and is then co- and post-

translationally processed by both host and viral proteases.  

Flavivirus RNA similarly to cellular mRNA contains a 5' cap enabling canonical 

translation initiation (Garcia-Blanco et al., 2016). Conversely, it does not 

possess a poly-A tail, which is required by cellular mRNA for stability and 

association with poly-(A) binding protein (PABP) to initiate translation. Although, 

viral RNA overcomes this, and DENV 3' associates with PABP through binding 

to the conserved 3’ stem-loop adjacent to the two dumb-bell structures. 

(Polacek et al., 2009). 

Additionally, DENV can also translate by cap-independent mechanisms when 

cap-dependent translation is inhibited, this is likely regulated by both 5' and 3' 

UTRs (Edgil et al., 2006). More recently, uncapped ZIKV RNA has been shown 

to initiate infection with a resulting high viral titre, suggesting the use of an 

internal ribosome entry site (IRES) to control translation. HCV and other 
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members of the Flaviviridae also use an IRES to initiate translation (Song et al., 

2019; Hercik et al., 2017). 

Furthermore, RNA stem-loop (SL) structures also modulate translation. A 

conserved 5' UTR SL structure within the capsid-coding region named capsid 

hairpin (cHP) is also involved in Flavivirus translation (Clyde and Harris, 2006; 

Li, P. et al., 2018) . Altering the structure of the cHP decreases initiation of the 

first AUG start codon, highlighting the role of cHP for correct translation initiation 

(Mazeaud et al., 2018). Moreover, other RNA structures are also involved in 

translation including two 3' UTR pseudoknots 5' Ψ and 3' Ψ (Manzano et al., 

2011); these have been identified in ZIKV, DENV, JEV and YFV  (Olsthoorn and 

Bol, 2001; Zhu, Z. et al., 2016). 

1.5.3 Polyprotein processing 

The ZIKV genome encodes fourteen functional subunits. Thus, during and after 

translation the ZIKV polyprotein needs to be processed and cleaved by viral and 

host proteases for the individual proteins to carry out their role during the virus 

life cycle. 

Viral protease NS3 and cofactor NS2B cleave seven of the 12 cleavage sites 

shown in   

Figure 1.5 (Assenberg et al., 2009). The viral protease cleaves the junctions 

between: C/Ci, pr/M, NS2A/NS2B, NS2B/NS3 (self-cleaved), NS3/NS4A, 

NS4A/2k, and NS4B/NS5. However, the host protease furin, present within the 

Golgi, is also capable of cleaving pr/M (Stadler et al., 1997). Four of the 

remaining cleavage sites Capsid/precursor, Membrane/Envelope, 

Envelope/NS1, and 2k/NS4B are presumed to be targets of one or more host 

proteases as they have high sequence conservation across the genus. The 

remaining cleavage site NS1/NS2A is also conserved across the genus, yet it is 

cleaved by an unknown protease (Sun, G. et al., 2017). It is important to 

consider that not all cleavage sites and proteases responsible have been tested 

experimentally, they have been inferred by analysis of ZIKV and related virus 

sequence alignments. 
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1.5.4 Virus genome replication 

The viral RNA genome is a template for multiple functions: the formation of new 

replication complexes, production of viral proteins and packaging into new virus 

particles. 

Replication takes place in remodelled ER membranous replication factories, 

where the concentration of necessary components is increased, and a scaffold 

is constructed. Vesicle packets are linked to the cytoplasm by a 10 nm pore 

opening (Paul and Bartenschlager, 2013; Hamel et al., 2015). This pore could 

lead to release of positive stranded viral genomes to be translated for viral 

protein production and/or packaging into virus particles, also occurring in the ER 

(Cortese et al., 2017; Welsch et al., 2009). 

NS5 protein is essential for replication to take place due to its RNA-dependent 

RNA polymerase (RdRp) activity. NS5 binds to stem-loop A at the 5' of the viral 

genome to initiate synthesis (Filomatori et al., 2006). The first round of 

synthesis generates a negative stranded viral RNA intermediate, which is 

subsequently used as a template to generate multiple positive stranded viral 

genomes. This results in a higher number of positive stranded RNA molecules 

to negative stranded, in DENV this is observed to be 10 to 100 times greater 

(Guyatt et al., 2001; Cleaves et al., 1981). 

For synthesis of the viral negative strand RNA, the genome must circularise into 

a panhandle-shaped conformation via 5' and 3' UTR interactions. Circularisation 

allows NS5 to transfer for the SL A structure on the 5' UTR to the 3' SL at the 3' 

UTR (Hodge et al., 2016), allowing NS5 to polymerise multiple positive stranded 

RNA copies from the one negative stranded RNA intermediate. 

Similar to translation, RNA secondary structures play a role in RNA genome 

synthesis. Previously mentioned pseudoknots 5' Ψ and 3' Ψ additionally 

regulate replication and mutations disrupting the pseudoknots reduce viral 

genome replication (Olsthoorn and Bol, 2001; Manzano et al., 2011). 

Additionally, NS3 is known to be involved in viral replication through direct 

interactions with NS5 (Takahashi et al., 2012). The mechanism of NS3 helicase 

within genome replication is not known, however it is thought if viral replication 

involves dsRNA forming as an intermediate, NS3 helicase may be required to 
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unwind the strands, thereby allowing for nascent viral RNA to be synthesised 

(Mazeaud et al., 2018).  

1.5.5 Capping 

The majority of cellular mRNAs contain a cap structure at their 5’ end, which 

consists of a N-7 methylguanosine (m7G) moiety linked through a 5’-5’ inverted 

triphosphate bridge to the first nucleotide of the nascent mRNA. Cellular mRNA 

caps are important for splicing, transport, stability and recognition for 

translation (Banerjee, 1980; Furuichi & Shatkin, 2000; Ghosh & Lima, 2010). 

Similarly, most virus RNAs contain a similar cap, functioning to evade the host 

immune response through protecting the 5ˈ triphosphates from the innate 

immune system (Pichlmair et al., 2006). The cap also mimics cellular mRNA 

though 2’-O methylation (Daffis et al., 2010; Zust et al., 2011), in addition to 

aiding viral replication through translation enhancement mediated by N-7 

methylation (Ray et al., 2006).  

Flavivirus RNAs are capped via the same mechanism as host mRNA, involving 

RTPase, GTPase and methyltransferase (MTase). However, the process 

occurs in the cytoplasm rather than the nucleus, so viral proteins carry out 

capping. RTPase activity is retained by the NS3 C-terminal domain and NS5 

domains function as a GTPase and a MTase (Li, K. et al., 2014; Issur et al., 

2009). The process of capping involves removing a phosphate from the 5ˈ end 

of the nascent RNA, generating 5ˈ diphosphate RNA from 5ˈ triphosphate RNA 

RTPase, followed by transferring GMP moiety from GTP to the 5ˈ diphosphate 

RNA forming the core structure of the cap, finally methylation of the guanine at 

N-7 and ribose at 2ˈ-O forming a type-1 cap structure (Dong et al., 2014). 

1.5.6 Virus assembly, budding, maturation and release 

The newly synthesised RNA within replication complexes must exit and initiate 

virus assembly. Assembly begins as the viral RNA genome associates with the 

basic capsid protein, which has a high affinity to negatively charged viral RNA 

due to its acidic charge. The nucleoprotein complex must then be packaged one 

copy per virus particle, however no packaging signal has currently been 

identified (Pong et al., 2011).  

The nucleoprotein complex is then enveloped by an invagination into the ER 

membrane, which displays E and prM heterodimers on its lumenal surface, 

https://www.microbiologyresearch.org/content/journal/jgv/10.1099/vir.0.062208-0#r4
https://www.microbiologyresearch.org/content/journal/jgv/10.1099/vir.0.062208-0#r38
https://www.microbiologyresearch.org/content/journal/jgv/10.1099/vir.0.062208-0#r42
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anchored through their TMDs, potentially recruited by NS2A (Welsch et al., 

2009). The nucleoprotein buds through catalysed by the endosomal sorting 

complex required for transport (ESCRT) and membrane scission occurs 

(Tabata, K. et al., 2016), forming an immature virus particle (Welsch et al., 

2009; Junjhon et al., 2014). Additionally this area of the ER will display an array 

of lipids which have been recruited by viral proteins, such as NS4A, to be 

included in the virus membrane (Leier et al., 2020). The virus particles then bud 

away from the ER and enter the secretory pathway as immature virions, 

characterised by the spikey appearance of E trimers on the surface, and the 

presence of the prM precursor protein within the particle (Sirohi and Kuhn, 

2017; Tan et al., 2020; Prasad et al., 2017). 

Upon transportation through the secretory pathway the virus particles mature; 

the acidic environment in the TGN results in major conformational 

rearrangements of the spikey trimeric E into an antiparallel dimeric E 

herringbone organisation (Yu et al., 2008). This rearrangement reveals the furin 

cleavage site within prM, cleavage of which within the TGN matures the virus 

particle; the characteristic spikes are no longer present (Stadler et al., 1997; 

Sevvana et al., 2018). However, the cleaved pr peptide remains associated with 

the E protein, preventing the exposure of the E fusion loop. Once released from 

the cell, the neutral environment stabilises the E protein resulting in dissociation 

of pr from the mature particle (Yu et al., 2009). 

However, the maturation step is inefficient; ~40 % of particles are not fully 

mature and undergo varying degrees of pr cleavage, which in turn determines 

their infectivity (Dowd et al., 2014; Junjhon et al., 2008). Upon maturation, 

virions are trafficked via multivesicular bodies (MVBs) from the TGN to the cell 

surface. This section of the virus life cycle is not well studied, yet it is thought 

the majority of virions are released as individual particles (Burlaud-Gaillard et 

al., 2014). There is some evidence suggesting the virions present in the ER 

undergo repackaging into individual membrane bound vesicles (Sager et al., 

2018). Though vesicles containing virus particles have been observed enclosed 

within larger membrane bound structures too (Liu, J. et al., 2018). Once at the 

cell surface, membrane bound vesicles fuse with the cell membrane, releasing 

virus particles into the extracellular millieu. 
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1.6 ZIKV model systems 

ZIKV is unable to replicate efficiently within immunocompetent mice. Commonly 

used model inbred mouse strains such as C57BL/6, CD-1 and BALB/c are not 

highly permissive hosts of ZIKV and detectable levels of viral RNA and/or 

infectious virions are very low (Lazear et al., 2016; Rossi et al., 2016). 

The resistance of mice becoming an efficient ZIKV host is likely due to the 

differences between human and mouse STAT2. In humans, the viral NS5 

protein degrades human STAT2, thereby inhibiting the type I IFN response 

(Grant et al., 2016). However, this same process does not occur in mice, as 

NS5 cannot degrade mouse STAT2, therefore the response to type I IFN is not 

interfered. 

Interferon receptor and STAT knockout mice models have been developed 

(Morrison and Diamond, 2017), however these models are not reliable for 

investigating the interactions of ZIKV with the host immune response. An 

alternative ZIKV mouse model has been developed with a knock-in human 

STAT2 replacing mouse STAT2, allowing mouse adapted ZIKV strains to 

replicate in the host and maintain the interferon responses (Gorman et al., 

2018). 

Non-human primates (NHPs) are an established animal model of disease 

pathogenesis and therapeutic research due to their relatedness to humans. 

NHPs are also thought to be part of the ZIKV sylvatic transmission cycle with 

mosquitos in the wild and are known to be permissive to the virus (Haddow et 

al., 2012). NHPs rhesus, cynomolgus, and pigtail macaques are infectable 

subcutaneously with the African MR 766 strain, or more recently adapted Asian 

ZIKV strains at doses comparable to those derived from infected mosquitos (Li, 

X.F. et al., 2016; Dudley et al., 2016). Moreover, the effect of ZIKV infection 

during pregnancy has been investigated utilising both mice and NHPs, with both 

displaying ZIKV associated pathological effects upon both the placenta and 

infected foetal brain, consistent with human disease (Mysorekar and Diamond, 

2016; Adams Waldorf et al., 2016). 

The in vivo experiment carried out herein comprised a model established by 

Marieke Pingen and Clive McKimmie. The model involves C57BL/6 mice 

injected with an anti-mouse IFNAR-1 antibody prior to virus inoculation, an 

effective Type I IFN receptor inhibitor (Lazear et al., 2016). Additionally 
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mosquito bites are included at the virus inoculation site, which is known to 

enhance virus infection (Pingen et al., 2016). 

1.7 Vaccines 

Vaccine development against ZIKV began after reports of microcephaly in 

babies of infected mothers in Brazil in late 2015. In 2017 there were forty ZIKV 

vaccines in development (Poland, 2018). The large number of vaccines 

included live-attenuated, inactivated whole viruses, peptide subunit vaccines, 

DNA and mRNA vaccines and viral vectored vaccines. The majority of these 

vaccines have been tested using non-human primates and/or 

immunosuppressed mice (Fragoso et al., 2018). 

In 2019 eight of the forty vaccines had reached Phase I studies, of which three 

are DNA vaccines and have advanced to human testing (Tebas et al., 2017; 

Gaudinski et al., 2018). Of these three vaccines one has reached phase II 

studies named ZKADNA085-00-VP, in development by VRC. ZKADNA085-00-

VP comprises of a DNA construct of full-length prM-Envelope from ZIKV strain 

H/PF/2013, with JEV stem and transmembrane regions, to enhance prM-Env 

protein expression and secretion (Dowd et al., 2016).  

As mentioned previously, due to the similarity between DENV and ZIKV, 

antibodies targeted at one virus may also recognise epitopes of the other. 

Although virus cross-reactivity could allow cross-protection, it can also cause 

antibody-mediated enhancement (ADE) of infection, which can prove fatal when 

patients are sequentially infected by different DENV serotypes. However, 

researchers designing vaccines investigate this throughout the process. 

Immunisation of mice with ZIKV E dimers resulted in dimer-specific antibodies 

protecting the host and its prospective foetus. The dimer lacks prM and contains 

a triple sulphide bond to keep the fusion loop epitope hidden, both of these 

features contribute to reducing cross-reactivity and ADE (Slon-Campos et al., 

2019). 

1.8 Antivirals and pharmacological disease management 

The current treatment for patients suffering from ZIKV involves rest, fluid and 

medication such as paracetamol to relieve symptoms. However, there is a need 

for targeted antivirals to prevent further spread of infection including across the 

placenta, and not just treatment of symptoms. 
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Direct-Acting Antivirals (DAA) directly target circulating virus particles or 

replicating virus within cells, to repress virus load to a point where the immune 

system can eliminate the virus-infected cells and prevent spread. Additionally, it 

is preferential for ZIKV antivirals to cross the blood-brain barrier due to the 

neurological symptoms associated with the ZIKV infection. Over recent years 

there have been many high-throughput screens and compound assays to help 

identify inhibitors of ZIKV infection. These have comprised potential inhibitors 

derived from small molecules and peptides, including both newly designed 

compounds and repurposed licenced/generic drugs. 

Peptide AH-D was engineered to be a brain penetrating antiviral that acts 

through disrupting the virus lipid envelope. AH-D is derived from the first 27 

amino acids of HCV NS5A, and has been shown to inhibit ZIKV infection in 

mice, and there is potential to translate this compound to other related 

enveloped viruses (Jackman et al., 2018). 

Another approach is to target host cell proteins involved in virus replication; 

abrogating infection by this method is less likely to result in resistance 

mutations. Hsp70 is thought to be required for several different stages of the 

virus life cycle and inhibiting its activity could therefore prevent virus replication. 

Additionally, use of the Hsp70 inhibitors including JG18 and JG40 in vitro have 

negligible toxic effects in human cells, although in clinical trials some Hsp 

inhibitors have shown adverse side effects (Taguwa et al., 2019; Pujhari et al., 

2019; Rajan et al., 2011). 

A popular route of antiviral identification is repurposing previously approved or 

identified compounds, due to the availability of clinical and toxicity data. Arbidol 

is a synthetic drug developed 30 years ago to target influenza A virus (IAV). 

However, Arbidol has shown potential to target viruses from a variety of 

families. Recently Arbidol was reported to have a dose dependent effect on 

ZIKV infection of both African and Asian lineages (Fink et al., 2018). The 

method by which Arbidol inhibits infection is not known, however it is thought it 

could target multiple stages of the virus lifecycle (Fink et al., 2018; 

Belokrinitskaya et al., 2012).  

A high throughput screen of almost 500 flavonoid derivatives, naturally found in 

plants and thought to have low toxicity, identified three hits which gave over 50 

% inhibition and positive cell viabilities (Lee, J.L. et al., 2019). Further screening 
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recognised that compound ST02393, known as pinocembrin, had the strongest 

inhibition and therefore was selected as the lead compound. Pinocembrin has 

previously been used for its antibacterial, anti-inflammatory, anti-fungal 

properties and cancer treatment (Rasul et al., 2013). Additionally, pinocembrin 

is reported to have neuroprotective effects, relevant due to the GBS and 

microcephaly symptoms of ZIKV. Phase I clinical trials showed pinocembrin 

given at 120 mg/day by IV is safe and tolerable in healthy adults (Lee, J.L. et 

al., 2019). However, its mechanism of action against ZIKV is not known. 

Moreover, a popular target for viruses is the polymerase through using 

nucleoside analogues/derivatives. BCX4430 (Galidesivir) and Sofosbuvir are 

both previously used analogues that additionally show activity against ZIKV. 

BCX4430 was originally derived from a HCV drug development programme, 

however it was developed as a potential treatment for Ebola and Marburg 

viruses (Filoviruses) (Julander et al., 2017). Similarly, Sofosbuvir inhibits HCV 

and was approved for a combination treatment by the FDA in April 2013 

(Ferreira et al., 2017). Other ZIKV targets, such as the methyltransferase 

activity of NS5 and NS2B/NS3 protease, have been targeted by potential small 

molecule inhibitors (Wang, L. et al., 2019) 

Since 2014 many antiviral candidates have shown to inhibit replication in vitro 

and some in vivo. The only therapeutic to have undergone clinical testing is 

monoclonal antibody Tyzivumab (ClinicalTrials.gov Identifier: NCT03443830, 

Sponsor: Tychan Pte Ltd). Thus far, no effective ZIKV antiviral has been 

licenced to date, indicating the difficulty of translating experimental results to the 

clinic (Saiz and Martin-Acebes, 2017). 

1.9 M protein as an antiviral target 

1.9.1 M protein structure and function 

Within the mature Flavivirus virion, M protein resides in the membrane forming 

heterodimers with E protein in a herringbone-like organisation forming a stable 

virus surface. Upon virus entry, the E proteins disassociate from M protein, 

forming E trimers and the M protein structure and stoichiometry is not known. 

Additionally, the role of M protein in this environment is not known.  

However, Flavivirus M protein shares characteristics with known viroporins, 

including small size and hydrophobicity. The C-terminus of DENV M was shown 
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to form a channel in vitro using lipid bilayers, with activity sensitive to 

hexamethylene amiloride (HMA), an ion channel inhibitor previously used to 

block HIV-1 Vpu viroporin activity, as well as by somewhat lower concentrations 

of amantadine, the classical inhibitor of IAV M2 proton channels (Premkumar et 

al., 2005). Accordingly, in the 1980’s it was also shown amantadine and its 

methylated derivative rimantadine were capable of suppressing DENV 

replication (Koff et al., 1981; Koff et al., 1980). Conversely, DENV M has been 

shown to be unable to form a channel when expressed in Xenopus laevis 

oocytes under acidified extracellular conditions (Wong et al., 2011). Our own 

collaborative studies (Dr Ian Tietjen, Simon Fraser University, CA) showed full 

length DENV M protein displayed channel activity within a surrogate cell culture 

model monitoring vesicular acidity using a pH-dependent fluorophore, 

“Lysotracker Red DND-99” (Invitrogen) (Wozniak et al., 2010). It was shown 

vesicular pH increased within M-transfected cells, is reversed by the addition of 

viroporin inhibitor rimantadine (unpublished, personal communication, Ian 

Tietjen, Wistar Institute, Philadelphia).  

1.10 Viroporins 

Viroporins are small hydrophobic membrane proteins encoded by numerous 

viruses, which form oligomeric channels within cellular membranes via 

hydrophobic interactions, allowing passage of ions and small molecules 

(Carrasco, 1995; Gonzalez and Carrasco, 2003; Scott and Griffin, 2015). 

Viroporin monomers are usually shorter than 120 amino acids in length, and 

play roles during various parts of the virus life cycle, namely virion 

morphogenesis and release, however others have distinct mechanisms in virus 

entry and genome replication. 

Many clinically relevant RNA and DNA viruses encode viroporins including 

hepatitis C virus (HCV) p7, Influenza A virus (IAV) M2, Human 

Immunodeficiency virus 1 (HIV-1) Vpu, Picornavirus VP4, and Human 

Papilloma virus type 16/18 (HPV) E5 (Clarke et al., 2006; Ewart et al., 1996; 

Pinto et al., 1992; Holsinger and Lamb, 1991; Sugrue and Hay, 1991; Wetherill 

et al., 2012; Danthi et al., 2003; Panjwani et al., 2014; Kalko et al., 1992). 

However, proteins encoded by other viruses also show potential to form 

viroporins, including Flavivirus M protein (Premkumar et al., 2005), Alphavirus 
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6k (Sanz et al., 1994; Melton et al., 2002) and Coronavirus (CoV) E protein 

(Wilson et al., 2004).  

Although viroporins vary in their structure and functions their simplicity often 

means they lack the same level of regulatory behaviour as cellular ion channel 

gating. Furthermore, the compact nature of virus genomes, results in functional 

redundancy making investigations into these proteins more difficult as they 

commonly have multiple functions additionally to their role as an ion channel. 

Despite their simplicity, many viroporins display weak ion selectivity and specific 

gating behaviour (Shimbo et al., 1996; Grice et al., 1997). For example, the 

well-characterised viroporin IAV M2 is a proton channel, which acidifies the 

virion interior. The M2 channel is gated via HIS37 which when neutral the 

channel is open to the external environment of the virus but closed to the 

interior of the virus. Upon diffusion of protons into the channel it becomes open 

to the virus interior, however closed to the external environment. Indicating a 

transporter-like mechanism which alternates between the two conformations 

(Figure 1.13)(Okada et al., 2001; Khurana et al., 2009).  

Ion channels are known to be highly effective drug targets. For example, 

Amlodipine, a calcium channel blocker, is used to treat hypertension and 

Zolpidem, a GABAA receptor antagonist, is used to treat insomnia. Therefore, 

channels encoded by viruses could also be an ideal drug target, to stop viral 

replication and prevent viral infection spreading. M2 was the first viroporin to be 

targeted by a licensed adamantyl drug, amantadine, in the 1960s (Baker et al., 

1969; Davies et al., 1964; Sabin, 1967; Togo et al., 1968; Wingfield et al., 

1969). However, the mode of action for amantadine was unknown until the 

1980s (Hay et al., 1985). Amantadine and amino-adamantane derivatives 

including rimantadine not only target M2, they can also inhibit HCV p7, E5 and 

CoV E and other viroporins, and have shown activity against dengue virus 

replication (Griffin, S.D. et al., 2003; Torres et al., 2007; Lin, C.C. and Chen, 

2016; Wetherill et al., 2012). However, amantadine and Rimantadine are no 

longer used to treat IAV due to mutations arising within the M2 sequence, 

rendering them unusable. Due to the failings of amantadine in the treatment of 

IAV, many viroporins have been disregarded as viable drug targets. 
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Figure 1.13 IAV M2 as a proton transporter 

Schematic of transporter-like mechanism of proton conductance through the IAV M2 

channel. M2-TM exists in two conformations. At high pH the VAL27 region opens while 

the HIS37 region narrows, and the opposite is found at low pH  (Khurana et al., 2009). 

 

1.10.1 Influenza A Virus (IAV) M2 

IAV encodes M2 a short transmembrane protein of 97 amino acids. M2 is a 

well-characterised viroporin oligomerising into a tetrameric proton selective 

channel (Lamb et al., 1985; Sugrue and Hay, 1991; Hay et al., 1985). M2 

comprises three domains, the N-terminal domain, a signal anchor TMD and a 

cytoplasmic domain, each playing roles during the virus life cycle.  The M2 

ectodomain is necessary for incorporation of M2 into virions (Park et al., 1998). 

The TMD mediates oligomerisation of four M2 monomers into a proton-selective 

homotetrameric ion channel (Duff and Ashley, 1992), driven by stabilising 

disulphide bridges and non-covalent bonds (Holsinger and Lamb, 1991; 

Castrucci et al., 1997). Lastly, the cytoplasmic tail is reported to be involved in 

genome packaging, virus budding, membrane scission and undergoes acylation 

and phosphorylation post-transcriptional modifications of three serine residues 

(McCown and Pekosz, 2005; Holsinger et al., 1995; Rossman and Lamb, 2013). 

In the life cycle of certain strains of IAV, the M2 homotetramer is responsible for 

modulating pH in the TGN during transport of the HA to the cell surface for 

virion assembly. IAV virions have two major surface glycoproteins 

hemagglutinin (HA) and neuraminidase (NA). HA is required to bind sialic acid 
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on the target cell, however if exposed to a low pH HA undergoes conformational 

changes preventing this binding, hence M2 must prevent pH lowering to 

maintain HA conformation (Cross et al., 2001; Ciampor et al., 1992; Grambas 

and Hay, 1992). Secondly, the M2 homotetramer present in the virion is 

involved in IAV entry, allowing protons into the virion interior leading to 

uncoating and dissociating viral ribonucleoproteins (RNPs) from M1 protein 

(Pinto et al., 1992; Zoueva et al., 2002; Helenius, 1992) 

Additionally M2 has minor roles during the life cycle including stabilising virus 

budding on the cell surface and alters the membrane curvature (Rossman et al., 

2010). The C-terminal of M2 contains a highly conserved region of 54 amino 

acids which had little impact on the M2 proton channel activity (Tobler et al., 

1999). It is reported this C-terminal region is vital for vRNPs being incorporated 

into budding particles (McCown and Pekosz, 2006; Grantham et al., 2010). 

The pore lining residues of the M2 homotetramer channel were investigated 

using cys scanning and oxidative disulphide cross-linking which showed 

SER22, SER23, VAL27, ALA30, SER31, GLY34, HIS37 and TRP41 lining the 

pore (Pinto et al., 1997; Bauer et al., 1999; Shuck et al., 2000). VAL27 and 

HIS37 both cause restrictions in the channel lumen, however HIS37 is a pH 

sensor, becoming protonated in an acidified environment and TRP41 acts as 

the gate (Stouffer et al., 2008; Wang, C. et al., 1995).  

Early studies investigating the channel activity of M2 involved patch clamping 

Xenopus laevis oocytes confirming M2 channel activity and its sensitivity to 

amantadine (Pinto et al., 1992). Additionally, TMD M2 peptides showed proton 

selective channel activity in vitro using planar lipid bilayers (Duff & Ashley, 

1992). Further studies identified acidic pH activation focussing on the conserved 

HIS37 residue (Shimbo et al., 1996; Wang, C. et al., 1993; Wang, C. et al., 

1994; Wang, C. et al., 1995). 

Structural information has been used to investigate the potential of alternative 

antiviral compounds targeting S31N, identifying compounds to be taken forward 

to in vivo testing (Drakopoulos et al., 2018; Li, F. et al., 2017; Li, F. et al., 

2016a; Li, F. et al., 2016b; Musharrafieh et al., 2019; Thomaston and DeGrado, 

2016; Wang, J. et al., 2013; Wang, Y. et al., 2018; Wu, Y. et al., 2014; Scott et 

al., 2020). There are over twenty M2 structures available, however all of these 

are of truncated proteins, either derived from the transmembrane region or C-
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terminally extended conductance domain peptides due to their role in channel 

formation. However TM and conductance domain (CD) amantadine binding 

varies from structure to structure (Schnell and Chou, 2008; Stouffer et al., 

2008). Structures of the TM region report a single amantadine molecule 

occluding the lumen, conversely too CD structures showing four rimantadine 

molecules binding to the channel periphery. This binding controversy has not 

been resolved due to a lack of comparative studies (Andreas et al., 2010; Cady, 

S. et al., 2011; Cady et al., 2010; Cady, S.D. et al., 2011; Du et al., 2009; Hu et 

al., 2011; Kozakov et al., 2010; Ohigashi et al., 2009; Pielak et al., 2011; Pielak 

et al., 2009; Rosenberg and Casarotto, 2010). 

1.10.2 Hepatitis C Virus (HCV) p7 

HCV p7 is a small hydrophobic protein of 63 amino acids, predicted to have two 

TMDs separated by a short cytosolic loop consisting of conserved basic 

residues (Carrere-Kremer et al., 2002). HCV p7 was discovered during 

characterisation of HCV polyprotein cleavage, which revealed the cleavage of 

E2-p7-NS2 and E2-p7 are inefficient processes (Lin, C. et al., 1994; Mizushima 

et al., 1994; Carrere-Kremer et al., 2004). 

HCV p7 is predominantly found in the endoplasmic reticulum membrane (Lin, C. 

et al., 1994; Griffin, S. et al., 2005; Bentham et al., 2013). Monomeric p7 is 

reported to form a hairpin structure in membranes (Montserret et al., 2010; 

Foster et al., 2014; Luik et al., 2009), although this has been debated (OuYang 

et al., 2013). Two monomeric NMR structures have been published (PDB 2MTS 

and 3ZD0) (Foster et al., 2014; Cook et al., 2013). However, there are 

variations potentially due to varying pH (PDB 2MTS, pH 4.0 and PDB 3ZD0, pH 

7.0) and varying conditions (detergent or Methanol).  Monomeric p7 

oligomerises into both hexameric and heptameric higher order structures 

(Clarke et al., 2006; Griffin, S.D. et al., 2003; Luik et al., 2009). p7 has been 

shown to exhibit channel activity in various in vitro assays including: Black lipid 

membranes (Premkumar et al., 2004; Griffin, S.D. et al., 2003; Pavlovic et al., 

2003; Saint et al., 2009; Whitfield et al., 2011; Clarke et al., 2006), patch-

clamping (Breitinger et al., 2016; OuYang et al., 2013) and liposome-based 

assays (Antoine et al., 2007; Madan et al., 2007; Montserret et al., 2010; 

StGelais et al., 2007). 
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To further investigate the structure of oligomeric p7, molecular dynamic 

techniques were used to construct an in silico heptameric channel  model 

(Foster et al., 2014). Conversely two hexameric structures have been 

published, firstly an electron microscopy structure of genotype 2a p7 with similar 

monomeric conformations to previous structures (Luik et al., 2009), secondly an 

NMR structure of genotype 5a (PDB 2M6X). However the structure of the 

monomers in 2M6X differ (OuYang et al., 2013). PDB 2M6X monomers have a 

staple-like conformation, whereas all other monomers exhibit hairpin like 

conformations. This dissimilarity could be due to the varying genotypes, 

however this structure has been queried due to potential artefacts from alkyl-

phosphocholine detergents (Oestringer et al., 2018), disputed by the authors 

(Chen, W. et al., 2018). 

Previous NMR studies using synthetic peptides determined the secondary 

structure elements and along with molecular dynamic simulations identified the 

pore lining helix and residues (Montserret et al., 2010; Chew et al., 2009). 

Similarly to M2, acidic pH enhances activity of some p7 proteins, which is 

hypothesised to be due to HIS17 protonation. However, for M2 this protonation 

leads to a conformational change in gating residue TRP41, whereas protonation 

of p7 HIS17 is reported to cause protomers to rotate. This protonation 

mechanism aligns with data suggesting p7 is stimulated by lower pH and can 

conduct protons (StGelais et al., 2007; Wozniak et al., 2010). However, HIS17 

are not well conserved between p7 proteins. Consequently, HCV genotypes 

respond to pH with varying levels of sensitivity (Atkins et al., 2014; Li, H. et al., 

2012). Mutation of HIS17 had little effect on HCV virion production of genotype 

2a isolate JFH-1 (StGelais et al., 2009). Additionally PHE25 is hypothesised to 

act as a gate of heptameric p7 channels, mutation resulted in a hyperactive 

channel in liposome assays (Foster et al., 2011). 

The HCV p7 channel is selective for positively charged ions in vitro (Griffin, S.D. 

et al., 2003; Premkumar et al., 2004; Pavlovic et al., 2003) and proton channel 

activity is seen within HCV infected cells (Wozniak et al., 2010). Thus, p7 can 

be substituted by IAV M2 in a cell-based assay transporting aforementioned pH 

sensitive HA (Griffin, S.D. et al., 2004). Additionally viral genomes containing 

mutant p7 cannot support infectious virus production, however can be restored 
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by trans-complementing with IAV M2 (Wozniak et al., 2010; Bentham et al., 

2013).  

Although p7 is not essential for viral replication, it is critical for efficient egress of 

virus particles, leading to identification as a HCV drug target (Steinmann et al., 

2007a; Yi, M. et al., 2007; Jones et al., 2007). Previously studied M2 inhibitors 

such as adamantanes and imino sugars can block some p7 genotypes channel 

function and virion production in cell culture (Griffin, S. et al., 2008; Steinmann 

et al., 2007b) however resistance mutations to rimantadine and imino sugars 

have been identified (Foster et al., 2011; Mihm et al., 2006).  

pH maturation happens at a late stage in HCV particle production either before 

or during particle release, directly influenced by p7 (Atkins et al., 2014; Wozniak 

et al., 2010). The majority of HCV particles reside in the ER at neutral pH 

(Gastaminza et al., 2008), p7 may play a role controlling and restricting 

secretion of the HCV particle, by increasing the pH of the secretory pathway. 

However, HCV cell-cell spread is less sensitive to p7 inhibitors (Meredith et al., 

2013) suggesting the pathway is less dependent upon channel activity 

(genotype dependent). 

Additionally p7 is suggested to have channel activity during the virus entry stage 

of the virus life cycle due to improved hepatocyte uptake of p7 containing HCV 

like-particles (Saunier et al., 2003) and infectious HCV was inhibited by p7 

channel inhibitors during entry (Griffin, S. et al., 2008), however p7 has not 

been detected in infectious particles (Vieyres et al., 2013; Catanese et al., 

2013).  

Furthermore, p7 interacts with both non-structural protein 2 (NS2) and NS5A 

and P7-NS5A co-localisation is required for virus assembly. Targeted mutations 

of p7, NS2 and E2 has suggested they contain signals, which act synergistically 

to direct NS2 towards an interaction with NS5A positive membrane lipid droplets 

(Jirasko et al., 2008; Jirasko et al., 2010; Boson et al., 2011). 

1.10.3 Human immunodeficiency Virus type-1 (HIV-1) Vpu 

HIV-1 Vpu protein is 81 amino acids long and contains three domains, a short 

endoplasmic domain and a TMD followed by a longer cytoplasmic domain. 

Unlike some other viroporins, Vpu is not found within HIV-1 virions and is 

translated late in the viral replication cycle along with Env from the same mRNA 
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(Cohen et al., 1988; Strebel et al., 1988). Vpu exhibits multiple roles including 

inducing CD4 degradation, preventing detection by the immune system (Willey 

et al., 1992a; Willey et al., 1992b), antagonising tetherin, promoting virion 

budding from the cell surface (Neil et al., 2008) and ability to form a viroporin 

(Schubert et al., 1996; Ewart et al., 1996) 

Vpu has shown channel activity when present in Xenopus oocytes (Schubert et 

al., 1996), planar lipid bilayers permeable to sodium and potassium ions and 

sodium-permeable E.coli membranes (Ewart et al., 1996).   

Inhibition studies of Vpu channels have reported amiloride derivatives can 

successfully inhibit Vpu peptide channels in vitro,  and inhibit budding of HIV-1 

VLP in cell culture (Ewart et al., 2002). Mutagenesis studies show an Ala18His 

substitution generates an amantadine-sensitive HIV-1, further supporting its role 

as a channel protein (Hout et al., 2006). The mechanism behind this sensitivity 

is the formation of a HxxxW tetrad in the Vpu sequence, which is present in the 

IAV M2 sequence (Sharma et al., 2011).  

Conversely Vpu is proposed to not exhibit channel activity itself, but by 

interfering with cellular channel Twik-related acid sensitive K+ (TASK) channel 

TMDs (Coady et al., 1998). Vpu is suggested to degrade the aforementioned 

channels, therefore preventing the flow of potassium ions (Hsu et al., 2004).  

1.10.4 Human Respiratory Syncytial Virus (hRSV) SH 

The SH protein encoded by hRSV is a small hydrophobic protein of 64-65 

amino acids predicted to have only one TMD and form higher order oligomeric 

channels (Gan et al., 2012; Perez et al., 1997; Carter et al., 2010). SH protein 

forms part of the virion, although in cell culture deletant viruses have shown 

RSV can replicate without SH. However, levels of IL-1B significantly increased 

suggesting a role of SH in immune evasion similarly to other viroporins (Russell 

et al., 2015). In vivo studies have shown using chimpanzees and small animals 

hRSV can replicate in the absence of SH, however leading to 40 and 10-fold 

lower virus titres respectively (Bukreyev et al., 1997; Jin et al., 2000; Whitehead 

et al., 1999). SH is therefore an important virulence factor. Furthermore, SH is 

thought to have roles in preventing infected cell death by preventing TNF-α 

signalling which leads to apoptosis (Fuentes et al., 2007). 
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SH has been shown to form pentameric and hexameric complexes with a 

predicted single TMD. Sedimenting SH protein using sucrose gradients, cross-

linking SH and using PFO-PAGE have all shown SH in a pentameric 

conformation (Collins and Mottet, 1993; Gan et al., 2008). Additionally using 

electron microscopy SH showed both five-fold and six-fold symmetry suggestive 

of pentameric and hexameric pores formed in detergent (Carter et al., 2010). 

SH channel activity has been shown in liposome-based assays used to study 

activity of many viroporins (Carter et al., 2010), as well as bacterial membrane 

permeability assays (Perez et al., 1997). Surprisingly, cation selectivity in vitro 

and cation transport is reduced when pH drops, conversely to the reaction of 

other viroporins including M2 (Carter et al., 2010; Gan et al., 2012). However 

deletion of conserved gating residues HIS22 and HIS51 results in non-

functional SH by patch clamping (Gan et al., 2012). Additionally, residues ARG 

59 and 61 in the C-terminal domain potentially play a role stabilising the 

oligomeric channel through protein-membrane interactions. 

Inhibition of SH has been reported using Pyronin B, which was identified using 

liposome-based assays. Upon further testing in cell culture the 250 nM of 

Pyronin B prevented RSV infection of Vero cells, however there have been no 

reports of other inhibitors since (Li, Y. et al., 2014) 

1.10.5 Human Papillomavirus type 16 (HPV-16) E5 

HPV’s are small dsDNA viruses and a subgroup of these including HPV-16 and 

18 are known to be oncogenic.  HPV-16 E5 is an 83 amino acid protein and is 

highly hydrophobic (Halbert and Galloway, 1988). E5 monomers consist of 

three TMDs and are known to oligomerise (Gieswein et al., 2003), however the 

only published structure model was constructed in silico and there is no 

confirmed structure of the monomer or oligomer (Wetherill et al., 2012). 

Moreover, expression of recombinant E5 formed an oligomeric species in a 

membrane-like environment, thought to be hexameric and showed channel 

activity of a defined lumen diameter (Wetherill et al., 2012). 

Additionally, E5 exhibited further viroporin characteristics. Channel activity was 

enhanced at lower pH when recombinant protein was expressed in a liposome-

based channel activity assay (Wetherill et al., 2012). Similarly channel activity 

was inhibited by the presence of rimantadine (Wetherill et al., 2012). 
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Furthermore, the in silico oligomeric model led to drug screening which 

highlighted compound MV006 as a potential compound. MV006 was found to 

inhibit E5 in the liposome based assay and reduced the E5-mediated EGFR 

signalling effects in cell culture (Wetherill et al., 2012; Suprynowicz et al., 2010; 

Pim et al., 1992). This implies that MV006 targets E5 oncogenic function. More 

recently further oncogenic properties of E5 channel activity within the HPV life 

cycle have been determined, increased ERK-MAPK activation and cyclin B1 

expression (Wetherill et al., 2018). 

1.10.6 Enterovirus VP4 

VP4 protein along with VP1, VP2 and VP3 comprise the icosahedral virus 

capsid. VP4 is found internally, however the capsid is dynamic and ‘breathes’, 

exposing internal components of the capsid on the surface of the non-

enveloped virus. During this process the N-terminus of VP4 is transiently 

present at the surface (Lin, J. et al., 2012; Li, Q. et al., 1994). Upon virus entry 

into the host cell VP4 is irreversibly externalised triggered by receptor binding or 

endosomal acidification (Tuthill et al., 2010). Localisation of VP4 on the virus 

surface has been shown to interact with cellular membranes, leading to viral 

RNA release (Davis et al., 2008; Fricks and Hogle, 1990; Panjwani et al., 2014; 

Strauss et al., 2013; Tuthill et al., 2006). However, VP4 does not arbitrarily 

disrupt membranes, it has been shown to induce discreet channel formation in 

vitro (Danthi et al., 2003). Similarly to many other viroporins, recombinant VP4 

protein also displays activity in liposome dye-release assays (Davis et al., 

2008). Furthermore, pentameric and hexameric complexes have been observed 

in DHPC and liposome membranes, and activity enhanced by reduced pH and 

myristoylation, consistent with the environment during virus endocytosis 

(Panjwani et al., 2014). VP4 N-terminus can form multimeric structures in a lipid 

bilayer (Panjwani et al., 2016), however VP1 is also thought to be involved in 

the release of viral genome into the host cell, forming an ‘umbilicus’, linking the 

virus particle to the membrane (Strauss et al., 2013). VP4 is thought to be 

suitable antiviral target for enteroviruses and the wider picornavirus family. Anti-

VP4 antibodies have shown to neutralise the virus in addition to antiviral 

compound WIN 52084, thought to lock VP4 inside the capsid, preventing virus 

attachment to the cell surface (Goncalves et al., 2007; Katpally et al., 2009).  
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1.11 Aims 

We hypothesise that ZIKV M protein (as well as M from other Flaviviruses) is 

able to form an ion channel within the acid-exposed mature virion that serves to 

promote virion uncoating during virus entry. This activity should be sensitive to 

inhibition using small molecules, providing not only an opportunity to target this 

process for therapy but also tools with which to further examine M protein 

function.  

Our approach combines medicinal chemistry, molecular dynamics and structure 

modelling with molecular virology and techniques for examining ion channel 

activity. First using computer modelling to assess the potential structure of a 

channel and its response to altered pH, followed by in vitro laboratory work 

investigating the oligomerisation of M through cryo-EM, and its role during the 

virus life cycle in cell culture and its potential as a drug target in vitro. 

1. Use Molecular Dynamics to understand the potential formation of 

an M protein viroporin 

2. To investigate whether M forms channels in vitro, in cell culture, 

and their potential function during the virus life cycle 

3. To identify M protein inhibitors utilising a Molecular Dynamic 

model with in silico high-throughput screening. 
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Chapter 2 Materials and Methods 

Vero and baby hamster kidney (BHK-21) cells were kindly provided by Dr 

Victoria Jennings and Dr Clive McKimmie, respectively. Both were originally 

sourced from ATCC and checked regularly for mycoplasma infection. 

2.1.1 Zika Virus 

ZIKV/H. sapiens/Brazil/PE243/2015 (PE243) Zika virus was kindly provided by 

Prof Alain Kohl, MRC Centre for Virus Research and University of Glasgow as a 

frozen viral stock derived from C6/36 cells at 6 x106 PFU/mL. A new stock was 

generated in house at 1.6 x10^6 PFU/mL (section 2.3.1). 

2.2 Mammalian Cell Culture 

2.2.1 Recovery of frozen cells 

Vero and BHK-21 cells were taken from liquid nitrogen and quickly thawed in a 

water bath at 37 °C. Cells were then diluted in 10 mL cell culture media 

(Appendix A.1 and A.2) in a 15 mL falcon tube. Cells were centrifuged at 1500 x 

g for 5 min at RT, separating the cells from the freezing media (Appendix). Cells 

were resuspended in 10 mL of cell culture media, prior to transferring to a T75 

tissue culture flask (Corning). Cells were cultured at 37 °C in 5 % CO2. 

2.2.2 Maintenance and Passage of Cells 

Vero and BHK-21 cells were cultured in complete Dulbecco’s modified essential 

cell culture media (Appendix A.1 and A.2) at 37 °C in 5 % CO2 in a humidified 

culture incubator. Every 2-3 days cells were passaged by washing in phosphate 

buffered saline (PBS) (Sigma), followed by incubation with trypsin (Sigma) to 

detach cells from the flask surface for 2-5 min at RT. Trypsin was then 

inactivated using an equal volume of serum-containing complete cell culture 

media. Vero and BHK-21 cells were sub-divided using ratios between 1:5 and 

1:10. 

2.2.3 Freezing cells 

Vero & BHK-21 cells were centrifuged at 1500 x g for 5 min. The cell pellet was 

resuspended in freezing media (Appendix A.3) at a density of 1x10^6 cells/mL. 
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Cells were frozen slowly, wrapped in tissue and placed in polystyrene box at -80 

°C, after 24 hr cells were transferred to liquid nitrogen for long-term storage. 

2.2.4 MTT Assay 

Vero cells were seeded at 3x103 cells/well into 96 well plates and left to adhere 

overnight. Cells were incubated with increasing concentrations of compounds 

(0-220 µM), or a DMSO solvent control, for 24 hr. Following incubation 20 µL of 

MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) 5 mg/mL 

was added to each well and incubated at 37 °C for 4 hr. Post-incubation the 

MTT & media was removed from the wells, washed with PBS twice and 150 µL 

DMSO was added and shaken for 10 min at RT. The OD550 absorbance was 

measured using a plate reader (Multiskan Ex, Thermo Scientific). Data was 

normalised to the appropriate DMSO solvent control. 

2.2.5 EGF Uptake Assay 

Vero cells were seeded at 1x106 per well in 6-well plates (Corning). After 4 hr 

Rimantadine was added to the cell culture media (Appendix A.1) and incubated 

overnight at 37 °C and 5 % CO2. Cells were then washed and treated with 

Epidermal growth factor complexed with Alexa Fluor™ 488 (ThermoFischer) for 

20 min. Fluorescence was quantified using flow cytometry, using the 488 laser 

and FITC channel (Cytoflex S), FITC positive cells were calculated as a 

percentage of total cells.  

2.2.6 Immunofluorescence 

Cells were plated onto sterile glass cover slips in a 12 well plate or directly in to 

a 96-well plate and cultured under normal cell culture conditions for 4 hr. Cells 

were infected with ZIKV for 1 hr, after which virus containing supernatant was 

replaced with fresh media. Cells were fixed with 4 % v/v paraformaldehyde for 

10 min and permeabilised using 0.1 % v/v Triton X-100 in PBS. Cells were 

washed with PBS and probed for Zika Envelope protein (1:500, mouse 

monoclonal, Aalto Bio Reagents #AZ1176), prM/M protein (1:200, rabbit 

polyclonal, Genetex #GTX133305), NS3 (1:500, rabbit polyclonal, Andres 

Merits) and NS5 (1:500, rabbit polyclonal, Andres Merits) in 10 % v/v FCS in 

PBS overnight at 4 °C. Cells were washed with PBS three times prior to adding 

the secondary Alexa Fluor-labelled antibody (Invitrogen) in 10 % v/v FCS in 

PBS. Cells were incubated in the secondary antibody for one hr at RT.  
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ProLong Gold (ThermoFisher) was placed on microscope slides and the 

coverslips mounted on top facing the solution. The edges of the coverslip were 

sealed using transparent nail varnish. Cells in 96 well plates were stored in 

PBS.  Stained cells on coverslips were viewed on an Eclipse Ti-E widefield 

microscope (Nikon) at 40x magnification. Cells in 96 well plates were imaged 

and quantified using an IncuCyte Zoom (Essen Bioscience) microscope using 

10x objective. Four images per well were taken to calculate the number of total 

cells and infected cells per well. Parameters for optimal detection of cells and 

fluorescent cells were setup using an image collection of positive and negative 

control wells allowing for alteration of the processing definition (Stewart et al., 

2015). 

2.3 Virus production and storage 

2.3.1 Virus stock propagation 

Vero cells were seeded at 4-6x106 per T75 flask and left to adhere for over 4 hr. 

Cells were washed once in PBS, prior to addition of PE243 virus in complete 

DMEM media + 10mM HEPES (Gibco), at a multiplicity of infection (MOI) of 

0.001 PFU/cell. After infection for 1 hr at 37 °C, 5 % CO2, media was replaced 

with fresh complete DMEM. Once cytopathic effect (CPE) was observed for 

~60% of the cells, virus containing media was clarified and stored 

2.3.2 Freezing virus 

Virus-containing supernatants were clarified by centrifugation (3184 x g, 20 min, 

4 °C) in an Eppendorf 5810 R centrifuge, supernatants were transferred to 0.5 

mL eppendorf tubes, and 1.0 mL cryovial tubes. Virus was snap frozen using 

liquid nitrogen. Once frozen virus was either kept at -80 °C for shorter term 

storage or liquid nitrogen for long term storage. 

2.3.3 Determination of Virus Titre 

For quantification of virus titre, both plaque assays and focus forming assays 

were performed. For plaque assays both Vero and BHK-21 cells were used at a 

confluency of 80 % in a 12-well plate with 10-fold virus serial dilutions in 0.75 % 

PBSA (PBS containing 0.75 % bovine serum albumin). 200 µL of serial dilutions 

was added to each well for 1 hr with rocking every 15 min. After 1 hr 2 mL 

overlay media of 2X MEM medium (Gibco) containing 4 % FCS (Gibco), 200 
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units/mL penicillin and 0.2 mg/ mL streptomycin, mixed with viscous 1.2 % 

Avicell (FMC Biopolymer). Vero and BHK-21 cells were incubated for 5 and 3 

days respectively at 5 % CO2 and 37 °C. After incubation, supernatant was 

removed and cells were fixed in 10 % PFA for one hr at 4 °C prior to staining 

with 0.1 % Toludine Blue (Sigma) for 30 min. Virus PFU titre was calculated 

using the following equation: 

PFU

mL
 =

average number of plaques

amount of inoculum x dilution factor
 

 

2.3.4 Virus assays 

2.3.4.1 Focus Forming assay 

Vero cells were seeded at 2000 cells per well in a 96 wells cell culture dish 

(Greiner Bio-one), after 4 hr cells were incubated with virus at an MOI of 1 

PFU/cell for one hour. Following a 1 hr infection, virus containing media was 

removed, cells were washed with PBS and replaced with fresh cell culture 

media (Appendix A.1). Cells were incubated at 37 °C and 5 % CO2 for 48 hr.  

Cells were fixed using 4 % PFA for 10 min at RT and permeabilised with 0.1 % 

Triton X-100.  For quantification, cells were stained using a primary ZIKV E 

antibody and a secondary AlexaFluor 488 anti-mouse antibody (section 2.2.6). 

IncuCyte Zoom was used to quantify infected cells. 

2.3.4.2 Plaque reduction assay 

Effectivity of compounds against ZIKV infection was determined using plaque 

assays (section 2.3.3). The number of plaques was compared between 

duplicate compound treated cells and DMSO negative control treated cells. 

Cells were incubated with the compound throughout the assay, or for 

combinations of the experiment as described in time of addition assays (section 

4.5.3).  

2.4 Preclinical in vivo models of ZIKV replication 

In vivo experiments, up to the point of sacrifice, were kindly carried out by 

Daniella Lefteri and Clive McKimmie (Leeds). Mice were dosed with 1.5 mg 

InVivoMAb anti-mouse IFNAR-1, a day prior to virus inoculation. The mice were 
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then anaesthetized using 0.1mL/10g of Sedator/Ketavet via intraperitoneal (I.P.) 

injection. Once anesthetized the mice were placed on top of mosquito cages 

using foil to expose only the dorsal side of one hind foot to the mosquitos. No 

more than 5 mosquitoes were allowed to feed on each mouse. 2000 PFU of 

C6/36 derived ZIKV was injected directly to the bite site using a 5 µL 75N 

syringe, 26ga (Hamilton) using small RN ga33/25mm needles (Hamilton). 

Mice were observed 4 times throughout the 24-hr experiment and weighed 

once. Mice were culled 24 hr post infection. Skin from the bitten foot and the 

spleen were dissected and placed in 0.5mL RNAlater (Sigma Aldrich, USA) in 

1.5mL tubes. I then took over the experiment and stored the tissues in RNAlater 

at 4 °C for a minimum of 16 hr preventing RNA degradation. Blood samples 

were also collected from the ventricles and centrifuged to isolate serum which 

was stored at -80 °C until used. 

2.5 Protein Biochemistry  

2.5.1 Western blot  

To analyse cellular protein levels, lysates were made using an appropriate 

volume of Enriched Broth Culture(EBC) lysis buffer (Appendix A.4). To lyse the 

cells growth media was removed, and cells were washed three times using 

PBS. After washing, cells were scraped off into PBS and the cells were pelleted 

by centrifugation at 2000 x g then resuspended in EBC lysis buffer (Appendix 

A.4) and kept on ice for 20 min. Lysates were normalised for protein 

concentration using a Pierce BCA Protein Assay Kit (Thermo Fisher Scientific). 

Then diluted with an equal volume of 2x Laemmli Buffer (Appendix A.5). 

Lysates were denatured by heating for 5 to 10 min at 95 0C. Lysates were 

normalised for concentration and run on hand-cast Tris-Glycine polyacrylamide 

gels with 5-15 µL of lysate per well; the polyacrylamide percentage of the gel 

depended on the protein of interest, either 8, 10, 12 or 15 %. Proteins were 

resolved by SDS-PAGE (sodium dodecyl sulfate-polyacrylamide gel 

electrophoresis) at 120-160 V for 1-2 hr using Tris glycine running buffer 

(Appendix A.6). 

Proteins were transferred from the polyacrylamide gels to PVDF (Polyvinylide 

fluoride- Immunoblot-FL Merck Millipore) membrane by semi-dry blot transfer 
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(Hoefer). PVDF membrane was activated with methanol for 30 s and placed 

along with the gel between thick blotting paper soaked in Towbin buffer 

(Appendix A.7). Transfer of proteins was performed at a constant current of 

120-240 mA for 1-2 hr depending on the number of gels and the molecular 

weight of the protein of interest. Membranes were blocked for non-specific 

binding using 5 % w/v fat-free milk in TBS-T (Tris buffered saline (Appendix A.9) 

with 0.1 % v/v Tween 20, Sigma-Aldrich) for 1 hr at RT. Membranes were 

probed with primary antibody for protein of interest (Zika Envelope protein 

(1:10000, mouse monoclonal, Aalto Bio Reagents #AZ1176), prM/M protein 

(1:5000, rabbit polyclonal, Genetex #GTX133305), NS3 (1:10000, rabbit 

polyclonal, Andres Merits) and NS5 (1:10000, rabbit polyclonal, Andres Merits)  

in either 5 % w/v fat-free milk in TBS-T or 5 % w/v BSA (Bovine Serum 

Antibody, Fisher Scientific) in TBS-T shaking at 4 °C overnight. Secondary 

antibodies (Goat anti-mouse IgG-Horseradish peroxidase (HRP) conjugate, 

#A4416, Sigma and Goat anti-rabbit IgG-HRP, #A6154, Sigma) were diluted 

1:5000 in either 5 % fat-free milk in TBS-T or 5 % BSA in TBS-T were incubated 

with the membranes shaking at RT for 1-2 hr. Membranes were washed for 3 x 

10 min in TBS-T, with shaking, between each step. Immunoblots were 

visualised using either prepared Enhanced ChemiLuminescence (ECL) 

substrate solution (A.9) or ECL prime western blotting detection reagent (GE 

Healthcare Life Sciences) on X-ray film using a Medical fil processor (SRX-

101A, Konica Minolta Medical & Graphic, Inc.). Protein sample sizes were 

compared with prestained molecular weight markers (prestained Seeblue® 

Plus2, Invitrogen). 

2.5.2 Native PAGE 

Protein was solubilised at 37 °C for 10 min in 300 mM detergent (1,2-

dihexanoyl-sn-glycero-3-phosphocholine (DH(6)PC), 1,2-diheptanoyl-sn-

glycero-3-phosphocholine (DH(7)PC), 1-palmitoyl-2-hydroxy-sn-glycero-3-

phospho-(1'-rac-glycerol) (LPPG) and 1-myristoyl-2-hydroxy-sn-glycero-3-

phospho-(1'-rac-glycerol) (LMPG)) in Liposome Assay Buffer (Appendix A.11). 

Native-PAGE loading dye (Appendix A.12) was added to samples, which were 

loaded onto gradient precast gels (4-20%) (Bio-Rad) and run using Native-

PAGE running buffer (Appendix A.13) at 140 V for 1 hr. Gels were stained with 
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Coomassie Brilliant Blue as described in section 2.5.3. Unstained SDS-free 

molecular weight marker (Sigma-Aldrich) was used to estimate protein size. 

2.5.3 Coomassie-blue staining 

Polyacrylamide gels were incubated in Coomassie Brilliant Blue stain (Appendix 

A.14) overnight at RT with continuous rocking. Gels were destained to visualise 

protein using Coomassie Blue destain solution (Appendix A.15). 

2.5.4 M peptide 

M peptide was purchased from Alta Bioscience and was provided lyophilised 

(Appendix). The peptide comprised the two TMDs and a truncated N-terminal 

helix. Details of the sequence are noted below: 

Ac – 

ESREYTKHLIKVENWIFRNPGFALVAVAIAWLLGSSTSQKVIYLVMILLIAPAYS 

2.6 In vitro liposome assay 

2.6.1 Liposome preparation 

Lipids (Avanti Polar Lipids) were kept on ice, combined in a glass tube and 

handled under non-oxygen gas (Nitrogen). 50 µL PA, 50 µL PC & 5 µL PE were 

mixed together to give 1 mg of lipid. The PE lipid head groups were labelled 

with lissamine rhodamine, giving a final concentration of 0.5 % w/w. Lipids were 

stored in chloroform, this was evaporated from the mixture overnight using a 

vacuum at room temperature (RT). Lipids were rehydrated to 2 mg/mL, at a 

self-quenching concentration of carboxyfluorescein (CF) buffer (Appendix A.16) 

and vigorously shaken overnight at RT. 

A 3 µL pre-extrusion sample was taken, followed by 15 passes through an 

Avanti extruder containing a 0.4 µM filter (Whatmann), at 37 °C. Unilamellar 

liposomes were washed three times with liposome assay buffer (Appendix A.11) 

to remove the remaining CF and purified via centrifugation at 35,000 rpm 

(100,000 x g) for 15 min at RT, using a MLS-50 rotor in a Beckman Coulter TLX 

ultracentrifuge. The last liposome pellet was resuspended in liposome assay 

buffer (500 µl). 
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Liposome concentration was determined by measuring the rhodamine 

absorbance (OD570) using a spectrophotometer (Jenway) of the pre-extrusion 

sample (3 µL diluted 1:20) and the post-extrusion samples (3 µL neat 

liposomes). The absorbance values were then entered into the following 

equation: 

𝐿𝑖𝑝𝑜𝑠𝑜𝑚𝑒 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 (𝑚𝑀) =  
2.75 𝑚𝑀 (𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑙𝑖𝑝𝑖𝑑 𝑚𝑜𝑙𝑎𝑟𝑖𝑡𝑦)

𝑂𝐷570𝑝𝑟𝑒 𝑒𝑥𝑡𝑟𝑢𝑠𝑖𝑜𝑛 ×𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 (20)
 × 𝑂𝐷570 𝑝𝑜𝑠𝑡 𝑒𝑥𝑡𝑟𝑢𝑠𝑖𝑜𝑛  

 

2.6.2 End-point in vitro M protein liposome dye release assay 

M peptides were reconstituted to 1 mM in Dimethyl Sulfoxide (DMSO). Further 

stock dilutions were made in DMSO; which was added to a maximum of 5 % 

w/w DMSO per well.  

End-point dye release assays were carried out using flat-bottomed, black 96 

well plates (Greiner Bio One). Each reaction comprised 50 µM liposomes and 

up to 800 nM peptide (780 nM for normal use) in liposome assay buffer 

(Appendix A.11) to 100 µl. FLUOstar Optima plate-reader (BMG Labtech) was 

used to measure CF release every after 30 min at 37 °C. All reactions were 

repeated in triplicate alongside 50 µM liposomes plus 5% (v/v) DMSO to 

calculate background fluorescence and 0.5 % v/v Triton X-100 to set gain 

adjustment of 90 % fluorescence.  

An increase of CF release and fluorescence indicated permeabilisation of 

liposomes induced by the addition of peptide. Assays were carried out at RT 

and kept on ice until inserted into the machine. End-point values were used to 

measure the level of permeability induced by the peptide. 

2.6.3 Inhibitor assays 

Inhibitors were added to reaction wells maintaining the 5 % v/v DMSO as 

mentioned in 1.8.2. Compounds were incubated with peptides for 5 min at RT 

prior to the addition of chilled liposomes and assay buffer.  End point values 

were taken and negative control (DMSO only) values were subtracted for each 

condition. Each biological replicate contained three technical repeats. 

2.6.4 pH Liposome assay 
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Determining the effect of pH on M peptide activity in liposomes was carried out 

using end-point measurement due to the quenching effect of acidic pH on CF 

fluorescence. Liposomes containing 50 µM CF were resuspended in Liposome 

assay buffer at different pH (6.2, 6.7 and 7.4). Liposome reactions were made 

as previously described (section 2.6.1), however after 30 min at 37 °C the 

samples were centrifuged at 100,000 x g for 15 min using a TLA45 rotor 

(Beckman) and a TL Ultracentrifuge (Beckman). The liposome-free supernatant 

was transferred to a 96-well plate and adjusted to pH 7.4 by the addition the 

same volume of 1M Tris-HCl pH 8.0. The endpoint CF fluorescence was then 

measured using a FLUOstar Optima plate-reader (BMG Labtech) at ex 485/ em 

520 nm.  

2.6.5 Lipids 

L-α-phosphatidic acid (α-PA), L-α-phosphatidyl choline (α-PC) and L-α-

phosphatidyl ethanolamine with lissamine rhodamine b labelled head groups (α-

PE), were purchased from Avanti Polar Lipids. All were derived from chicken 

eggs and supplied in chloroform as 10 mg/ml stock solutions, these were 

aliquoted using Hamilton glass syringes into glass vials, stored at -80 ˚C. 

2.6.6 Transmission Electron Microscopy 

5 µg of M peptide was incubated in 10 mM HEPES, 107 mM NaCl and varying 

concentrations of DHPC for 10 min at RT, this was added to copper grids, 

before washing with water and negatively stained with 2 % uranyl acetate and 

examined using a Tecnai F20 at 120 kV on a FEI CETA camera at a nominal 

magnification of 125000 providing a pixel sampling of 4.18 Å per pixel. Particle 

picking and 2D class averaging was carried out using RELION software, 2D 

class averaging was carried out with 25 iterations. 

2.7 Molecular Dynamics 

2.7.1 Coarse-grained simulations 

Coarse-grained (CG) Molecular Dynamic simulations of Monomeric and Dimeric 

M proteins were performed using Martini v2.2 force field (de Jong et al., 2013) 

and GROMACS (Abraham et al., 2015). The cryo-EM structure of ZIKV M 

protein structure (PDB: 5IRE) (Sirohi et al., 2016) was converted to coarse-grain 

resolution. An elastic network was only used in the monomer and dimer 
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simulations to maintain the secondary structure, however not the tertiary 

structure. Additionally, an elastic network was used when restraining the Cα 

during dimirising simulations as this would maintain the secondary and tertiary 

structure. The cryo-EM structure was used to simulate Model-1, however 

Modeller was used to generate Model-2 straightening the linker region between 

the two TMDs into a longer TMD (Fiser and Sali, 2003). 

A POPC bilayer or WNV emulated bilayer (POPC(57%): POPS(25%): 

POPE(3%): SM (15%) was built using INSANE (INSert membrANE) CG tool 

(Wassenaar et al., 2015). Systems were solvated with CG water particles and 

ions were added to neutralize the system to a final concentration of 150 nM 

NaCl. 

Prior to simulation, systems were energy minimised using the steepest descent 

algorithm for 500 steps in GROMACS and equilibrated for 10 ns with the protein 

backbone restrained. 

The temperature was set at 323 K and controlled by V-rescale thermostat 

(coupling constant of 1.0) (Bussi et al., 2007). Pressure was controlled by 

Parrinello-Rahman barostat (coupling constant of 1.0 and a reference pressure 

of 1 bar) (Parrinello and Rahman, 1981). Integration step in 20 fs Lennard-

Jones interactions were shifted to zero between 9 and 12 Å and Coulombic 

interactions between 0 and 12 Å respectively. 

2.7.2 Atomistic Simulations  

The all-atom hexameric and heptameric M protein oligomers were first energy 

minimised prior to conversion into CG using Martini and as above inserted into 

the bilayer system using INSANE, the systems were then equilibrated in CG 

restraining the protein. The systems were then converted back into atomistic 

resolution using the martini backward tool (Wassenaar et al., 2014). Simulations 

were then energy minimised, equilibrated for 20 ns with the protein Cα atoms 

restrained and run in CHARMM36 force field (Huang and MacKerell, 2013). 

Simulations ran for 200 ns. Temperature and pressure were controlled using the 

v-rescale thermostat (Bussi et al., 2007) and Parrinello-Rahman barostat 

(Parrinello and Rahman, 1981) respectively. Bond lengths were kept constant 

using the LINCS algorithm (Hess et al., 1997). The time-step was 2 fs and the 

temperature set to 323 K.  
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2.7.3 Design of Hexamer and Heptamers 

A python script was used to calculate the co-ordinates of each monomer within 

the oligomeric structure, a radii of 1.3 nm was used for hexamer. 

import math 
  
n = 6           # Number of sides 
x = 0           # Origin on x axis 
y = 0           # Origin on y axis 
r = 1.3      # Radius of Circle polygon is in 
  
for i in range (0, n): 
        posx = x + (r * math.cos (2 * math.pi * i / n)) 
        posy = y + (r * math.sin (2 * math.pi * i / n)) 
  
        print ("% 2d : %2.4f : %2.4f" % (i, posx, posy))  
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Chapter 3 In silico modelling of M protein 

3.1 Introduction 

Flavivirus M proteins are 75 amino acids in length, regions of which are highly 

conserved throughout the genus (Figure 3.1). M protein, known to play a role 

during assembly as a chaperone for the virus envelope protein, is first produced 

as part of the pr-M-E fusion peptide. However, after cleavage by furin or other 

trans-Golgi resident proteases (Stadler et al., 1997), the mature form of M 

resides within the virus membrane (Sirohi et al., 2016), where its role remains 

unknown. 

The function of mature M protein is poorly understood amongst the entire 

Flavivirus genus. All M proteins are highly hydrophobic, making them difficult to 

synthesise, express as recombinant proteins and purify; however, its presence 

within the virion is suggestive of a role during virus entry. 

The structure of M protein inside the virion has been resolved as dimeric across 

multiple examples within the genus by cryo-EM (Figure 3.2 and Figure 3.3) 

(Nieva et al., 2003; Melton et al., 2002; Raghava et al., 2011; Clarke et al., 

2006; Carter et al., 2010). However, as the virus enters the cell via clathrin-

mediated endocytosis (Persaud et al., 2018), the endosome containing the 

virion matures from early to late and acidifies, resulting in a harsh environment 

of around pH 5 (van der Schaar et al., 2008; Chu and Ng, 2004). At this stage, 

envelope glycoproteins re-arrange their conformation from dimeric to trimeric, 

providing dimeric M, which resides beneath envelope, a similar opportunity to 

change conformation. However, the structure of M protein in this environment is 

partially disordered, therefore has not been resolved, and so remains unknown 

(Zhang, W. et al., 2003; Klein et al., 2013; Zhang, X. et al., 2015). 

We hypothesised that M protein within this dynamic acidified environment may 

behave similarly to IAV M2 by playing a role during virus uncoating (Pinto et al., 

1992). As M is capable of dimerising, it could further oligomerise into a virus-

encoded channel, or “viroporin”. An M protein viroporin allowing H+ into the virus 

capsid may destabilise the interactions between these proteins and the viral 

genome, expediting the release of RNA into the host cell cytoplasm. Previous 

work with DENV-2 M protein C-terminal peptides has supported cation channel 

activity in vitro that was sensitive to the prototypic viroporin inhibitors, 
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amantadine and hexamethylene amiloride. Additionally, amantadine and its 

methylated derivative, rimantadine, inhibited DENV infection in vitro (Koff et al., 

1980; Koff et al., 1981). Conversely, the ability of M to act as a proton channel 

has been disputed in electrophysiology studies using Xenopus oocytes 

(Premkumar et al., 2005; Wong et al., 2011).  

Expression of viroporins by classic overexpression systems is challenging due 

to their hydrophobicity and small size. Previously, viroporins have been 

expressed using prokaryotic expression systems, either by targeting them to 

inclusion bodies, or in a soluble form with the addition of a tag (Nieva et al., 

2003; Melton et al., 2002; Raghava et al., 2011; Clarke et al., 2006; Carter et 

al., 2010) However, this requires large amounts of optimisation and yields are 

generally low. Once expressed, the proteins require extraction using detergents, 

which can be problematic following subsequent purification, and when 

introduced into membrane-containing systems. Accordingly, our own attempts 

at expressing M in bacteria using previously successful viroporin strategies 

yielded only minimal amounts of soluble protein with poor purity. Thus, we 

moved on from expressing M protein in the laboratory and instead undertook 

the modelling of M protein in silico using molecular dynamics (MD) simulations.  

MD simulations have been used previously with many other viroporins to 

complement wet laboratory techniques and provide molecular insights into 

structures, including generating models for monomeric and oligomeric p7 

(Chandler et al., 2012; Montserret et al., 2010; Saint et al., 2009) and 

highlighting the protonation states of HIS37 as a conductance mechanism of the 

M2 viroporin, (Khurana et al., 2009). This chapter describes the study of M 

protein structure and oligomeric interactions in different membrane 

environments using MD simulations 
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Figure 3.1 Amino acid sequence alignment of Flavivirus M proteins 

Flavivirus M proteins are 75 amino acids in length and contain highly conserved residues and regions, shown aligned here. Residues 35-

44, indicated above by parentheses, are particularly well conserved. This region contains the last 3 residues of the N-terminal helix (helix 

1) and the first residues of the N-terminal TMD helix (helix 2). The alignment was produced using Clustal Omega 

(https://www.ebi.ac.uk/Tools/msa/clustalo/) and ouput using BOXSHADE 3.21 (https://embnet.vital-it.ch/software/BOX_form.html)  

https://www.ebi.ac.uk/Tools/msa/clustalo/
https://embnet.vital-it.ch/software/BOX_form.html
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Figure 3.2 Cryo-EM structure of ZIKV E and M protein within the virion membrane 

Side view of E-M dimer. E proteins shown in black and white with the E ectodomains on the surface of the virion and the E 
transmembrane. M protein loop and transmembrane domains shown in green and blue with the linker region indicated by the arrow.   The 
E and M TMDs are found within the lipid bilayer as indicated in grey. Protein PDB: 5IRE (Sirohi et al., 2016) 
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Figure 3.3 M protein dimer structure 

M protein dimeric structure taken from cryo-EM ZIKV E-M heterodimer, one monomer shown in green, one shown in blue. A. Side view of 
dimeric M. B. Top down view of dimeric M.  
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3.2 In silico predictions of M protein secondary structure  

Flavivirus M protein within the mature virion cryo-EM structure has very short 

transmembrane domains of 13-14 amino acids, ~2.4 nm in length, whereas a 

typical lipid bilayer spans 3 nm (Ding et al., 2015). Therefore, we postulated the 

M linker region between the two TMDs highlighted in Figure 3.2 may be under 

high conformational stress and could change conformation upon virus 

acidification. When the virus arrives in the acidic endosome environment the E 

proteins change from dimeric to trimeric, potentially releasing M protein from 

underneath (Bressanelli et al., 2004). 

Using computational protein secondary structure prediction tools, we obtained 

conflicting results for the TM domains of monomeric M protein. The ‘TMHMM’ 

server uses a hidden Markov model (HMM) to predict the likelihood for each 

residue to be part of a TMD, incorporating hydrophobicity, charge bias and helix 

length. TMHMM inferred a strong probability for M protein to have a single TMD 

(Figure 3.4A). It predicted residues 1-34 to be cytoplasmic (probability of ~0.65, 

blue line), followed by one TMD from residue 35-54 (probability of  ~0.7, red 

lines) and residues 55-75 to be non-cytoplasmic (probability of ~0.6, pink line) 

(Moller et al., 2001). Additionally we used two other computational tools that 

predicted M protein to have one TMD, Phobius and TOPCONS (Figure 3.4) 

(Bernsel et al., 2009; Kall et al., 2007). Phobius, similarly to TMHMM, uses a 

HMM but is more reliable for proteins containing both a signal peptide as well as 

TMDs (Kall et al., 2004; Zhang, Xiaohui et al., 2009). Phobius (Figure 3.4C) 

predicted residues 1-41 to be non-cytoplasmic, (probability of ~0.6, blue line), 

followed by a single TMD spanning residues 42-71, (probability of ~0.8, grey 

lines), and residues 72-75 were predicted to be cytoplasmic (probability of 

~0.55, displayed by the green line).    

TOPCONS server uses a fundamental algorithm utilising BLAST and a 

consensus prediction to predict topology and measures this in reliability. 

TOPCONS (Figure 3.4B) predicted residues 1-40 to be cytoplasmic as 

displayed by the red line, followed by a TM-helix (in → out) from residue 41-62 

as displayed by the grey box, and residues 63-75 to be non-cytoplasmic as 

displayed by the blue line all with a reliability of over 0.9.  

Conversely, we also used MEMSAT and SPLIT, which predicted the presence 

of two TMDs (Figure 3.5). SPLIT (Figure 3.5A) predicts the two TMDs to be 39-
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56 and 58 to 75 by using method of preference functions. MEMSAT-SVM 

(Figure 3.5B) predicts the two TMDs to be from 37-52 and 56-72. MEMSAT-

SVM uses multiple support vector machines (SVM) to identify the many residue 

presences before combining these into a probability output (Nugent and Jones, 

2009),  

Thus, upon release from dimeric E it may be possible for the two TMD helices 

of M to flip, forming a single TMD spanning the membrane prior to oligomerising 

into a channel.  

The disparate results from TMD predictions led us to construct models based 

on both one TMD and two TMD conformations for analysis by MD. We also 

considered the composition of the virion membrane (Martin-Acebes et al., 

2014), and how this might influence the M protein properties; phospholipids with 

shorter chains may allow the linker region between the two TMDs to interact 

and maintain its position within the inner leaflet. 
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Figure 3.4 Single TMD predictions of the ZIKV M protein structure from 
TMHMM, TOPCONS and Phobius servers.  

A. TMHMM predicts ZIKV M residues 1-34 to be cytoplasmic with a probability 

of ~0.65 as displayed as a blue line, followed by one TMD from residue 35-54 

with a probability of ~0.7 as displayed by the red vertical lines and residues 55-

75 to be non-cytoplasmic with a probability of ~0.6 as displayed by the pink line. 

B. TOPCONS tool predicts ZIKV M residues 1-40 to be cytoplasmic as 

displayed by the red line, followed by a TM-helix (in→out) from residue 41-62 as 

displayed by the grey box, and residues 63-75 to be non-cytoplasmic as 

displayed by the blue line all with a reliability of over 0.9. C. Phobius tool 

predicts ZIKV M residues 1-41 to be non-cytoplasmic with a probability of ~0.6 

as displayed by the blue line, followed by one TMD from residue 42-71 with a 

probability of ~0.8 as displayed by the grey vertical lines and residues 72-75 to 

be cytoplasmic with a probability of ~0.55 as displayed by the green line.  

Non-cytoplasmic 
cytoplasmic 
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Figure 3.5 Two TMD predictions of the ZIKV M protein structure from 
SPLIT and MEMSAT-SVM servers. 

A. SPLIT v4.0 tool predicts ZIKV M to have two TMD from residue 39-56 and 

58-75 as displayed by the violet boxes, the red line indicates the 

transmembrane helix preference, which aligns with the prediction shown in the 

violet boxes. The beta preference shown in blue indicates a low probability of 

beta sheet presence.  B. MEMSAT-SVM   predicts ZIKV M to have two TMDs 

from residue 37 to 52 and 56 to 75 indicated by the yellow boxes.

 

A 

B 
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3.3 Modelling M protein monomers in silico  

M protein is dimeric in the mature virion, yet if the protein is capable of forming 

higher order oligomers then it is likely to be stable, maintaining its’ secondary 

and tertiary structure within a bilayer in its monomeric form. Additionally, as E-M 

heterotetramers dissociate during entry into E trimers, some M dimers are likely 

to also rearrange from dimers to monomers.  All simulations conducted 

throughout this chapter use an amino-terminally truncated M protein. The native 

75 amino acid protein was truncated to 58 amino acids for computational 

efficiency, removing a region of the N-terminal domain that was predicted to be 

unstructured, as seen in the cryo-EM structure (Figure 3.2) (Sirohi et al., 2016) 

and the TMD predictions (Figure 3.4 and Figure 3.5). The structure of the 

truncated protein is shown in Figure 3.6.   

The monomeric simulations described in this section assessed whether M 

protein may change conformation and membrane topology after dimer release 

from E during endosome acidification, based upon the stability of either single 

or double TMD M conformers. Initially, we generated a long single TMD protein 

comprising both helices present within the cryoEM structure, reflecting the 

prediction results of TMHMM, TOPCONS and Phobius shown in Figure 3.4. 

Secondly, M was simulated as a two TMD protein to assess whether the two M 

protein helices are long enough to span a membrane bilayer individually, 

reflecting the cryo-EM structure (Sirohi et al., 2016) and prediction results from 

SPLIT and MEMSAT shown in Figure 3.5. Finally, we generated a further 

truncated protein with the C-terminal TMD absent to determine whether the 

linker region between the two proposed TMDs can interact sufficiently with the 

inner leaflet to remain stably anchored or if the second TMD is required 

(Appendix B.1). Table 3.2 lists coarse-grained MD simulations performed for 

this chapter and atomistic MD simulations are listed in Table 3.3. Coarse-

grained MD simulations were run for 3 or 6 μs using martini 2.2 force field (de 

Jong et al., 2013) and atomistic MD simulations were run for 200 ns using 

CHARMM36 force field (Huang and MacKerell, 2013). A simulation snapshot of 

the coarse-grained MD simulation system containing protein, lipids, water and 

ions is shown in Figure 3.7.
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Figure 3.6 Structure and protein sequence of ZIKV M protein truncation  

M protein monomeric structure is shown in shades of grey, which correspond to the protein sequence shown below, highlighting 
structural regions. 
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Figure 3.7 Simulation system of coarse-grained MD simulations of the M protein monomer  

Simulation system showing M protein backbone in pink, phospholipid heads in orange, lipid tails represented by grey dots and 
water and ions represented by blue dots. 
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3.3.1 Is M protein stable as a one or two transmembrane domain M 

protein in a POPC bilayer? 

To simulate monomeric M, the structure of the protein in the mature ZIKV 

particle cryo-EM was taken from PDB: 5IRE (Sirohi et al., 2016). However, to 

convert the two TMD protein with short helices into a single TMD protein with 

one long helix, the structure of the hairpin linker region highlighted in Figure 3.6 

between the TMDs was straightened using Modeller software (Webb and Sali, 

2016). The protein was then inserted into a POPC model membrane with the N-

terminal helix outside the membrane bilayer as shown in  

Figure 3.8A. After simulating for 3 μs, the single TMD protein had surprisingly 

markedly changed conformation ( 

Figure 3.8B), partially reverting to a structure comparable to that of the mature 

virion two TMD cryo-EM structure and the same region can be seen forming the 

linker region, indicated by the blue arrow ( 

Figure 3.8C). During repeated simulations, it took 2 ns on average for the 

protein to adopt this revertant conformation. The conversion of the 1 TMD 

protein back into a 2 TMD protein results in the linker region between the two 

TMD helices interacting with the inner leaflet of the bilayer ( 

Figure 3.8B), thereby narrowing the membrane due to the short TMDs, and the 

second TMD (H3) residing within the bilayer, although without outer leaflet 

interaction. Root mean square deviation (RMSD) analysis of the simulation 

shows the structure changed a lot over the first few ns as the RMSD rapidly 

increased from 0 to 1 nm ( 

Figure 3.8D & E), where it became more stable in the altered TMD structure 

and stayed similar throughout the simulation.  

We then carried out a set of double TMD M protein simulations to compare with 

results for single TMD simulations. The input conformation for these comprised 

a double TMD protomer derived from the dimeric structure reported in the ZIKV 

virion cryo-EM structure (PDB: 5IRE), (Sirohi et al., 2016) with TMDs from 

residue 40-52 and 58-72 as this approximately reflected predictions from SPLIT 

(residues 39-56 and 58-75) and MEMSAT-SVM (residues 37-52 and 56-72). 

The two TMD species was inserted into a POPC membrane with the N-terminal 

helix outside the membrane bilayer, with the two TMDs resident within the 
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membrane. However, the helices were not long enough to span the POPC 

bilayer at the start of the simulation (Figure 3.9A).  

After the 3 μs of coarse-grained MD simulation, unexpectedly both TMDs 

remained within the membrane and were largely structurally unchanged 

throughout the simulation, although the bilayer had rearranged allowing for the 

shorter TMDs (Figure 3.9A and B). However, the N-terminal helix appeared very 

flexible throughout. Subsequent analysis of the distance between the tip of the  

N-terminal helix and the tip of C-terminal TMD (blue arrows) shows the N-

terminal helix was very flexible and often faced in the opposite direction to the 

starting conformation (Figure 3.9C). Additionally, the root mean square 

deviation (RMSD) plot (Figure 3.9D) shows an increase from 0 to 0.5 nm at the 

start of the simulation, as the monomer becomes established within the 

membrane. The RMSD then increases, aligning with the altered positioning of 

the N-terminal helix seen in fig Figure 3.9B. Overall the two TMD monomers 

remain stable throughout the 3 μs simulation, with a flexible N-terminal helix. 
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Figure 3.8 Monomeric M protein is not stable as a single TMD protein in a POPC lipid bilayer 
Conformations of M protein before and after 3 μs of simulation. Protein backbone shown in pink and phospholipid bilayer heads shown in 
orange. A. Monomeric single TMD M protein simulation starting conformation, shown side on with and without phospholipid bilayer 
heads, with the linker region position indicated. B. Monomeric single TMD M protein simulation after 3 μs, shown side on with and without 
phospholipid bilayer heads, with the linker region position indicated. C. Alignment of M 1TMD simulation next to the cryo-EM 2TMD 
structure with corresponding regions highlighted with arrows. D. Root mean square deviation over time (RMSD) of one representative 
simulation and RMSD for the first 50 ns of the same simulation. 



 

79 

 

Figure 3.9 Monomeric M protein with two TMDs is stable in a POPC bilayer 

A & B Conformations of M protein before and after the 3 μs simulation. Protein backbone shown in pink and phospholipid bilayer heads 
shown in orange. Shown side on with and without phospholipid bilayer heads. C. The distance between the two blue arrows in A, 
throughout the simulation. Showing the N-terminal helix is flexible and moves to face the opposite direction during the simulation. D. Root 
mean square deviation over time (RMSD) of one representative simulation. 
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3.3.2 Is M protein stable as a two transmembrane domain protein 

(Model-1) in a representative Flavivirus virion bilayer? 

In previous simulations the lipid bilayer simulated surrounding M protein has 

been entirely composed of POPC phospholipids. Although the majority of 

Flavivirus membranes contain a high proportion of POPC lipids (Martin-Acebes 

et al., 2014; de Oliveira Dos Santos Soares et al., 2017; Zhang, Q. et al., 2012), 

bilayers solely comprised of this fatty acid are neither representative of cellular 

membranes, nor, more importantly, a virus particle (Mackenzie et al., 2007; 

Welsch et al., 2009). Virion membranes are derived from the host cell lipid 

bilayers, yet their composition varies due to the recruitment of different lipids at 

varying compositions by non-structural proteins or the glycoproteins themselves 

(Aktepe and Mackenzie, 2018; Wewer and Khandelia, 2018).  

Thus, to determine whether lipid composition affects M protein behaviour the 

model membrane was altered to that of WNV, due to the absence of related 

data for ZIKV; specifically: POPC(57%): POPS(25%): POPE(3%): SM (15%) 

(Martin-Acebes et al., 2014).  

After 3 μs simulations of the two TMD M conformer (PDB: 5IRE) within a WNV 

composed membrane, the structure was the same as those when simulating M 

protein within a POPC membrane (Figure 3.9 and Figure 3.10). The change in 

lipids surprisingly appears to have little effect on the flexibility or final 

conformations of M protein as a monomer within the Flavivirus lipid bilayer in 

comparison to a 100 % POPC bilayer.  
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Figure 3.10 Monomeric M protein with two TMDs is stable in a WNV derived lipid bilayer 

A + B Conformations of M protein before and after the 3 μs simulation. Protein backbone shown in pink and phospholipid bilayer heads 
shown in orange. Shown side on with and without phospholipid bilayer heads. C. The distance between the two blue arrows in A, 
throughout the simulation. Showing the N-terminal helix is flexible and moves to face the opposite direction during the simulation. D. Root 
mean square deviation over time (RMSD) of one representative simulation. 
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3.4 Dimerisation of M protein in silico 

Section 0 supports that M protein is stable as a two TMD monomer within 

membranes in silico, yet the protein is known to be stable as a dimer within 

mature virions as seen by cryo-EM (Figure 3.2 and Figure 3.3) (Sirohi et al., 

2016). Within the virion, M protomers appear to interact through the two C-

terminal TMD helices (H3) with the N-terminal TMD helices (H2) on the 

periphery, adjacent to the E TMD anchors (Figure 3.3). Additionally, E subunits 

I-III reside on the surface of the virion and interact with M protein H1 and the 

unstructured region from above (Figure 3.2). Therefore, dimerisation of M may 

require the presence of E for stabilisation, or M dimers may form alone but may 

be less stable in the absence of E.  

If M protein is to oligomerise into a higher order structure, monomers and 

dimers of M protein must interact intermediately during the formation of the 

oligomer from dimers. M protein may oligomerise similarly to M2, which forms a 

tetramer starting from a dimeric conformation, creating a ‘dimer of dimers’ 

(Sharma et al., 2010), or the rearrangement of E dimers to trimers during 

acidification may result in the dissociation and rearrangement of M dimers into 

higher order oligomers. 

This section investigates whether two M protein monomers can interact to form 

dimers and the subsequent conformations thereof. All the coarse-grained 

simulations in section 3.4 were run for 6 µs each and 10 repeats were carried 

out. M proteins were situated 6 nm apart within the described lipid bilayer, using 

coarse-grained force field martini v2.2. 

3.4.1 M protein forms stable dimers in standard POPC bilayers 

Two M proteins were simulated at distance in a 100 % POPC bilayer to 

determine whether they could interact and dimerise. Ten simulations were run 

under the same conditions and dimerisation did indeed occur during each 

simulation. However, interestingly, dimeric interactions were not identical in 

each case (Figure 3.11). Dimers formed as one of four different classes; Class 

I: as per ZIKV virion cryo-EM dimers (Sirohi et al., 2016), where interactions 

occur between H3, and H2 is present upon the periphery; Class II: interactions 

occurring at H2 with H3 on the periphery; Class III: interactions occurring at 

both H2 and H3; Class IV: interactions at both H2 and H3 regions, yet 
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alternating in direction. In this set of ten simulations only one formed a Class I 

conformation, two formed Class II conformations, five formed Class III 

conformations and two formed Class IV conformations. Interestingly, class III 

adopted a conformation that might enable orientation of further protomers into a 

circular channel-like structure with H3 lining an aqueous pore based on the 

MEMSAT-SVM prediction (Figure 3.5) (see section 3.5). Representative graphs 

of which residues form the most interactions during simulations are shown 

under the corresponding classes. The residues forming the highest number of 

interactions for class III dimers are SER58, ILE49, ALA46, ALA45, ALA43, 

ASN34, VAL32, ARG31, HIS28, TYR25, GLU24, ARG23 and SER22. 

Moreover, classes did not correlate with the time taken for the dimers to come 

together; the average time taken was 1.46 µs, although times varied from 320 

ns to 4.64 µs due to randomisation of the simulation and the absence of 

structural viral proteins (Figure 3.12). 
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Figure 3.11. M protein dimerises in a POPC bilayer 

Dimerisation conformations of M protein monomers within a POPC bilayer after 
a 6 μs coarse-grained simulation. M protein shown in pink, side on and above. 
Representative protein-protein interaction graphs show one monomer in black 
and the other in red. Interactions are normalised to the largest number of 
contacts of a residue, with 1 equating to maximum interactions and 0 being no 
interactions. A. Dimeric M protein in a Class I conformation, with H3s forming 
interactions. C. Dimeric M protein in a Class II conformation with H2s 
interacting. D. Dimeric M protein in a Class III conformation with H3s interacting 
and H2s interacting. E. Dimeric M protein in a Class IV conformation with H3-H2 
interactions. 
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Figure 3.12 Dimerisation analysis of monomers in a POPC bilayer 

Time taken for monomers to dimerise in the ten repeat 3 μs simulations carried 
out in a POPC composed membrane.
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3.4.2 Dimerisation of M protein in WNV virion composition bilayer 

differs to a POPC bilayer 

Flavivirus virion membrane phospholipid composition, as described in section 0, 

is distinct from cellular organelles, although the precise composition of the ZIKV 

particle membrane has not yet been defined. Virion membranes are primarily 

formed from the ER membrane at the site of virus assembly, where viral 

proteins recruit and attract certain lipids for composition into the virus 

membrane (Mukhopadhyay et al., 2005; Gillespie et al., 2010). After this work 

was undertaken a study using MD techniques was published showing Zika E 

and M proteins specifically enrich the surrounding membrane with PS lipids 

(Wewer and Khandelia, 2018). The activity and interactions of M protein may 

therefore vary based on the surrounding lipids. The lipid bilayer composition for 

these simulations are the same as used in simulations in section 0, which 

recapitulated a Flavivirus WNV virion membrane (Martin-Acebes et al., 2014).  

Dimerisation of M proteins in a WNV lipid derived bilayer occurred within a 

similar timeframe, on average 1.49 µs compared to 1.46 µs in POPC bilayers, 

and time taken for dimerisation ranged from 140 ns to 3.34 µs (Figure 3.13). 

However, surprisingly two simulations did not result in M protein dimerization. 

Again, dimers formed were categorised into the aforementioned classes, 

however with an addition (Figure 3.14). Two dimers were classified as class I, 

similar to cryo-EM, four were class II and one class III. Additionally, one dimer 

class did not resemble the four previous POPC derived conformations as one 

H3 interacted with H2 from the other protomer, whilst the other TMD helices 

were adjacent (Figure 3.14). Furthermore, the classifications did not correlate 

with time taken to dimerise (Figure 3.13). The reduced number of dimer 

interactions demonstrated the WNV lipid derived bilayer as less favourable. 
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Figure 3.13  Dimerisation analysis of monomers in a Flavivirus derived 
lipid bilayer 

A. Time taken for monomers to dimerise in ten repeat 3 μs simulations, in a 
WNV composed membrane, x denotes a simulation where monomers did not 
dimerise.  



 

88 

 

 

Figure 3.14 M protein dimerises in a Flavivirus composed lipid bilayer  

Additional dimerisation conformation of M protein monomers within a WNV derived lipid bilayer after a 6 μs coarse-grained simulation. A. 
M protein shown in pink and phospholipid heads shown in orange, protein shown with and without bilayer side on. Dimeric M protein in a 
Class V conformation with a H3-H2 interaction. B. Graph displaying the residues with the normalised highest number of interactions. 
Monomers coloured black and red.
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3.4.3 Restraining M protein conformation during dimerisation alters 

dimer class preferences  

MD allows experimentation with protein dynamics not currently possible in the 

laboratory. We can simulate proteins with conformational restraints to observe 

the resulting difference of their interactions. In previous simulations (section 

3.4.1 and 3.4.2) it was noticed the N-terminal hydrophilic helix (H1) was very 

flexible and sometimes was the first point of interaction between dimers. 

Therefore, we questioned whether this H1 flexibility was required for M 

protomers to come together. In addition, the presence of E protein within the 

immature and mature virion prior to acidification may restrain M, favouring the 

formation of specific dimer conformations (Bressanelli et al., 2004; Sirohi et al., 

2016). To assess these factors we restrained the movement of all C-alpha 

atoms within M protein during the simulation, effectively preventing the dynamic 

structural variations observed in other systems by rigidifying the protein 

backbone. 

When M protein C-alpha (Cα) atoms were restrained and simulated within a 

POPC bilayer, dimerisation occurred on average within 2.74 µs (Figure 3.15), 

compared to 1.46 µs for unrestrained dynamic protein. However, one of the 10 

simulations did not dimerise within the 6 µs timeframe. Although the Cα 

restraints resulted in a slower dimerisation, the frequency of conformations also 

differed. Unlike the unrestrained protein forming class III conformations, the 

class I dimer which has a conformation similar to that found in the virion 

occurred most frequently, with four of the ten simulations adopting this H2-H2 

H3-H3 interacting conformation compared to just one when M was not 

restrained. Logically, this might therefore reflect the influence E protein has on 

M protein dimers forming within the virion, whereby the glycoprotein exerts 

structural restraints upon M, favouring the formation of class I dimers, as seen 

in the cryo-EM structure. No dimers formed a class II conformation, suggesting 

flexibility is required for this conformation to form. Only two dimers formed the 

class III conformation, which could form a higher order oligomer with a predicted 

aqueous channel due to the adjacently aligned protomers, in comparison to five 

dimers when not restrained. Additionally, no dimers formed the class IV 

conformation and three dimers formed the class V conformation in comparison 

to two and zero respectively when the Cα atoms were not restrained.  
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Similar results were seen when dimerization simulations were run with a WNV 

lipid composed bilayer and the Cα atoms of M proteins were restrained. The 

results of these ten simulations showed dimerisation happened in every 

simulation and occurred on average after 1.64 µs (Figure 3.16), which is quicker 

than when Cα atoms were restrained in a POPC bilayer (2.74 µs), however 

somewhat slower than when M was not restrained and simulated in a WNV 

virion derived membrane (1.49 µs). Moreover, the mean time to dimerization for 

each of the scenarios ranges from 1.46-2.74 µs, in this course-grained 

simulation the difference in time does not lend itself to any conclusions, except, 

the addition of Cα restraints appears to increase the time taken. 

The restrained dimers simulated in a WNV composed bilayer see similar 

proportions of classes to the restrained dimer in POPC bilayer and the patterns 

from not restrained to restrained are also comparable. The dimers formed five 

class I conformations, an increase from two when not restrained, again 

potentially reflecting the influence of E proteins on the dimers formed. One class 

II, one class III, no class IV and three class V conformations were also formed, 

compared to three class II, one class III, one class IV and one class V when not 

restrained.  

These changes in dimeric conformations do not seem to be influenced by the 

lipid membrane composition, however the changes may be due to the reduction 

of H1 structural flexibility. The dimers formed may provide an insight into the 

interactions that occur when E protein is acidified, oligomerises and no longer 

restricted M dimers. 
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Simulation set Dimeric classes as a % of all simulations 

 I II III IV V N/A 

POPC membrane 10 20 50 20 0 0 

WNV membrane 20 40 10 0 10 20 

POPC membrane 

restrained 

40 0 20 0 30 10 

WNV membrane 

restrained 

30 10 10 0 30 20 

Table 3.1 Dimeric classes formed across simulation sets 

The number of dimers which formed the differing class conformations across 

the simulations carried out in POPC membranes and WNV comprised 

membrane with and without Cα restraints.
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Figure 3.15 Dimerisation analysis of restrained monomers in a POPC lipid 
bilayer 

A. Time taken for monomers to dimerise, in ten repeat 3 μs simulations, with a 
POPC membrane and the Ca atoms of the protein restrained. X denotes a 
simulation where monomers did not dimerise. 
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Figure 3.16 Dimerisation analysis of restrained monomers in a Flavivirus 
derived lipid bilayer 

Time taken for monomers to dimerise, in a WNV composed membrane with Ca 
atoms of the protein restrained. X denotes a simulation where monomers did 
not dimerise. B. RMSF plot of dimers forming class III and IV conformations and 
those not dimerised. C. RMSF plot of dimers forming class I and II 
conformations. 
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3.5 Simulating M protein channels in silico  

We hypothesised that M protein is capable of forming a higher order oligomeric 

channel during virus entry once acidic pH promotes E protein conformational 

changes from dimeric to trimeric (Dai et al., 2016). This change in conformation 

would no longer restrain M protein in proximity to dimeric E, potentially allowing 

M protein to oligomerise further. Applying the data from section 3.4 we sought 

to identify possible prior interactions between monomers that might promote 

channel formation.  

Applying Cα restraints to M protein monomers during simulations in section 

3.4.3, caused an increase in the formation of class I dimers, reflecting the 

mature M protein dimeric structure, therefore these are potentially similar to the 

restraints applied by the presence of E dimers. However, M protein monomers 

simulated without restraints formed a higher percentage of dimers in 

orientations that favour forming an oligomeric channel, i.e. where helix 3 is in 

close apposition and aligned (class III), favouring the pore lining helix predicted 

by MEM-SAT SVM (Figure 3.5). 

Viroporins are typically small membrane proteins of 100 residues or less, 

comprising up to three TMDs, which subsequently oligomerise into a 

membranous pore, ranging from tetrameric, IAV M2 (Sakaguchi et al., 1997) to 

heptameric, HCV p7 (Clarke et al., 2006) with a single helix lining the pore. The 

aforementioned viroporin properties led to the generation of the schematic in 

Figure 3.17. As previously mentioned, known viroporins range from being 

tetrameric to heptameric, however when generating M protein oligomeric 

models, it became apparent the pore is lined by a minimum of five helices to 

ensure the radius for a water permeable channel to form, as pentameric 

channels had a narrow pore diameter of less than 3 Å (data not shown). 

Additionally, the presence of dimeric M within the virion, and the stable dimers 

formed in section 3.4 indicate that it is more likely for M protein monomers to 

remain closely associated in pairs. Consequently, we assumed M protein 

channels would form from a minimum of six pore-lining helices, in line with the 

stoichiometry of other viroporins such as p7, E5 and SH. In addition, ZIKV 

virions contain 180 M proteins and the presence of M at the point of 3-fold 

symmetry, where six M proteins are present, is suggestive of hexameric 
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channels. Therefore, we hypothesise M protein oligomers are unlikely to form 

channels from class I, II or V dimers, which require 12 monomers and are 

unlikely to form from class IV dimers due to both helix 2 and 3 lining the pore, 

which has not been seen with any previously identified viroporins.  

This highlights class III dimers may comprise the starting conformation of higher 

order oligomers leading to the formation of a channel. However, this would 

require the class I (cryo-EM) dimers to alter their interacting surface, to change 

to a class III dimeric conformation, the class III conformation may be more 

favourable once the restraints from envelope protein dimers have been 

released as discussed in section as discussed in section 3.4.3. If time had 

allowed, removing Cα restraints from class I cryo-EM dimers at a defined point 

during simulations, then observing whether dimers altered conformation, would 

have investigated this possibility.   

We began modelling hexameric channels using MD software GROMACS. 

GROMACS, as mentioned in chapter 1, is widely used and allows use of many 

different force fields and water models. Additionally, GROMACS has been used 

to successfully study ion channels or viroporins previously (Ulmschneider et al., 

2013; Bagneris et al., 2014; Shukla et al., 2015; Araujo et al., 2016; Shaw et al., 

2019).  Hexamers were constructed using class III dimers in different 

orientations with either helix 2 or helix 3 lining the pore. In addition, for both 

hexamer structures, monomers were further rotated from a ‘radial’ structure to a 

‘compact’ structure to increase inter-monomer interactions and investigate how 

this influenced the channel stability and activity, creating four different structures 

to simulate. Furthermore, structures were simulated at neutral pH, either with or 

without protonated HIS28 residues, reflecting the acidified endosome 

environment, which is known to activate or enhance activity of other viroporins 

(Wang, C. et al., 1995; Chizhmakov et al., 1996; Wetherill et al., 2012; StGelais 

et al., 2007; Wozniak et al., 2010; Atkins et al., 2014).  

Due to the complexity of the predicted interactions between monomers in 

channel conformations, atomistic simulations were carried out, allowing us to 

study the proteins’ conformational dynamics. Simulations were run three times 

for 200 ns using the all-atom CHARMM36 force field (Huang and MacKerell, 

2013) An example simulation system is shown in Figure 3.18. 
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Figure 3.17 Hexameric channel conformations based on dimeric classes 

Schematic displaying how dimeric classes I-V would fit together in a hexameric 

channel conformation, N-terminal TMD (H2) shown in light blue, C-terminal 

TMD (H3) shown in dark blue, helix 1 is not shown. 
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Figure 3.18 Simulation system visualisation of M protein channel  

Simulation system of an all-atom simulation. A. Cut away system side view 
showing protein as ribbons in black, water shown in red and lipids shown in blue 
as van der waals, Cl- and Na+ ions are not shown. B. System from above 
showing lipids present in white by a surface representation, and protein 
represented as ribbons in blue. 
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3.5.1 Which TMD helix lines the M protein pore? 

Pore-lining helices do not have readily definable characteristics. However, they 

usually contain a mixture of hydrophobic and polar residues compared with lipid 

facing helices.  Helix 2 is comprised wholly of non-polar residues (Figure 3.19). 

In this regard, helix 3 contains one polar and charged residue (Figure 3.19) and 

was predicted by MEMSAT-SVM to be the pore-lining helix of M protein 

viroporin channels (Figure 3.5).  

3.5.2 Are hexameric channels with pores lined by Helix 3 stable? 

MD simulations of M protein channels were run with helix 3 pore-lining in two 

different conformations, named ‘radial’ and ‘compact’. Channels were 

constructed with hexameric stoichiometry. Six monomers were packed and 

each rotated 60 or 80 degrees for the radial and compact conformations 

respectively (see section 2.7.3 for coordinates), producing two structures with 

different inter-monomer interactions without steric clashes. Next, all-atom 

simulations of the two conformations were run in a neutral pH environment, with 

and without protonation of the six HIS28 residues. This protonation imitates 

placing the protein in an acidic endosomal environment, where we hypothesise 

M protein channels are likely to form during virus entry. 

3.5.2.1 Simulating channels with pores lined by helix 3, within a neutral 

pH environment. 

The ‘radial’ conformation with helix 3 lining the pore was constructed with the N-

terminal helix protruding away perpendicular to the channel pore (Figure 3.20). 

The starting conformation of the channel exhibited a lumen radius of 4.137 Å 

with pore lining residues LYS60, TYR63, LEU64, ILE67 and LEU69 (Figure 

3.21). These residues are predominantly hydrophobic with the exception of the 

positively charged lysine residue, often found within Na+ channel lumens (Li, Y. 

et al., 2016). Lysine is regarded as an amphipathic residue, with its long 

hydrophobic carbon tail and a positively charged residue both found on its side 

chain. Due to the charge of the lysine, it may repel and destabilise the oligomer, 

although the lysine residue is found at the channel base, allowing it to interact 

with the lipids phosphate atoms, potentially neutralising its charge, stabilising 

the channel complex. 
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The start ‘radial’ conformation of the 200 ns atomistic simulations is shown in 

Figure 3.20. Helix 1 does not interact with the adjacent monomers, so the only 

interacting residues are found in the TMDs. Figure 3.22 shows a representative 

channel conformation at the end of one of the simulations, including a surface 

plot of pore radius generated using the HOLE programme. Out of three 200 ns 

simulations, all oligomers maintained their association to adjacent protomers, 

one channel retained a pore radius of 3.342 Å (Figure 3.22D), whereas the 

others closed after 6 and 40 ns, respectively (Figure 3.22A, C).  

In Figure 3.22B the orientation of the channels that closed during simulation is 

shown in more detail, with hydrophobic residues LEU64, ILE67 and LEU68 

playing major roles during channel closure. ILE67 occludes both channels with 

the addition of LEU68 in simulation one. However, LEU64 also restricts both 

channels.  An overlay of the start and end conformations is shown in Figure 

3.23.
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Figure 3.19 M protein amino acid properties determined by EMBOSS Pepinfo 

Properties of the 75 residues of M protein, aligned to the two TMDs helix 2 (H2) and 3 (H3). Properties shown are non-polarity, 

polarity, charge and positive charge.  
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Figure 3.20 Starting conformations of hexameric ‘radial’ channel with pore lined by Helix 3  

A. Ribbon representation side on and from above with HIS28 residues highlighted in red with helices indicated. B. Surface 
representation side on and from above with one protomer highlighted in orange. C. Ribbon and Surface overlay representation 
with HOLE profile through the centre displaying the space inside the pore.
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Figure 3.21 Hexameric helix 3 pore-lining ‘radial’ channel lumenal 
residues 

Pore lining residues of a Hexameric M protein channel in a ‘radial’ conformation 
with the C-terminal TMD (helix 3) lining the pore. Pore lining residues LEU68 in 
grey, ILE67 in white, LEU64 in grey, TYR63 green and LYS60 in blue. 
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Figure 3.22 200 ns conformation of hexameric 'radial' channel with pore lined by helix 3 
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A. Surface and Ribbon representation of simulation three at 200ns from above and side with one helix cut away and HOLE surface 
plot displayed. Areas inaccessible to water with a pore radius < 1.15 Å in red, referred to as a closed channel, areas that will allow 
passage of one water molecule 1.15 Å > pore radius < 2.30 Å in green, and areas accessible to greater than one water molecule 
pore radius > 2.30 Å in blue. B. Simulation three channel zoomed in with HOLE surface plot displayed and residues closing the 
channel shown with sticks. LEU64 in yellow, ILE67 in purple and LEU68 in orange.  C. Overlay of starting conformation in black and 
representative end conformation in white, with HIS28 in red. D. HOLE profile plot of pore radius, starting conformation shown in 
blue, simulation one, two and three in black, red and green respectively, with positions of residues LEU64 in yellow, ILE67 in purple 
and LEU68 in orange. 
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Figure 3.23 Helix 3 pore lining radial start and end conformation overlay 

Overlay from above of helix 3 pore lining radial start and representative end 
conformations in black and white respectively with HIS28 shown in red. 
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‘Radial’ structures, whilst remaining intact through the simulations, retained poor 

packing between protomers resulting in a low number of potentially stabilising 

interactions. However, rotation of the protomers by an additional 20 degrees in 

a clockwise direction, observed from the top of the channel complex, greatly 

increased the proportion of surface interactions between protomers (Figure 

3.25C). The more ‘compact’ hexameric structure (Figure 3.24) in comparison 

with the ‘radial’ structure (Figure 3.20), has a visibly increased number of 

interactions between monomers, including interactions of the N terminal helix 

with adjacent protomers similarly to those seen in class III dimers. We therefore 

hypothesised the N-terminal helices (helix 1) interactions would reduce the 

overall flexibility of the channel complex. In addition, this region contains a HIS 

at position 28 on helix 1 (Figure 3.24), which is likely to become protonated in 

the acidifying endosomes, and therefore could influence the overall structure. 

These interactions may influence the activity of the channel, especially due to 

the presence of HIS28 on helix 1, which would be protonated in an acidic 

environment, such as within an internalised endosome. HPV E5 also possesses 

a peripheral HIS residue, using a liposome-based assay, indirect E5 channel 

activity is enhanced at acidic pH (Wetherill et al., 2012). Moreover, DENV M 

HIS39 present on the N terminal helix was shown to be important for particle 

production (Pryor et al., 2004). 

The helix 3 pore-lining compact channel lumen has a radius of 5.233 Å at the 

start of the simulation compared to 4.137 Å when ‘radial’ due to protruding side 

chains, with pore lining residues THR57, VAL61, ILE62, VAL65, MET66, LEU68 

and LEU69 (Figure 3.25), very different from the ‘radial’ pore lining residues 

(Figure 3.21) with only LEU68 present in both channels. However, both channel 

lumens contain a high percentage of residues with hydrophobic side chains, the 

exceptions being positively charged amino acid lysine for radial channels and 

polar amino acid threonine for compact channels. 

Helix 3 pore lining compact oligomers also all maintained their interactions 

between protomers, not becoming dissociated. The compact channels closed in 

70, 80 and 176 ns, compared to 6, 40 and >200 ns for helix 3 pore lining radial 

channels. Therefore, compact channels are open for a greater time period on 

average, irrespective of a single radial channel remaining open for >200 ns, due 
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to the short periods of time the remaining channels were open for. Thus the 

helix 3 pore lining compact oligomer is more likely to be representative of those 

found in the virion as it remains open for a greater period of time.  

A representative closed conformation is shown in Figure 3.26A with the lower 

part of the channel closed, as seen across all three final channel conformations. 

However, upon closer inspection of the simulation one channel also closes in 

the middle and the closure of simulation two channel extends upwards to the 

middle of the channel. These closures involve LEU64 and LEU68 similarly to 

the radial conformations, despite LEU64 not being a pore-lining residue in the 

compact conformation at the start of simulations. Additionally, pore-lining 

residues VAL61 and VAL65 also cause channel closure in these conformations 

(Figure 3.26B, C). 

These differences in closures may be a consequence of the compact 

conformation, which retains a greater number of pore-lining residues compared 

to radial models. However, interestingly LEU64, a residue not pore-lining at the 

start, was involved in the closure and restriction of the channels. An overlay of 

the start and end conformations is shown in Figure 3.27.
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Figure 3.24 Hexameric Helix 3 pore-lining 'compact' channel, starting conformations 

A. Ribbon representation side on and from above with HIS28 residues highlighted in red. B. Surface representation side on 
and from above with one protomer highlighted in orange. C. Ribbon and Surface representation overlay with HOLE profile 
through the centre displaying the space inside the pore.

 

A      B      C 
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Figure 3.25 Hexameric helix 3 pore-lining ‘compact’ channel lumenal 
residues 

Pore lining residues of a Hexameric M protein channel in a ‘compact’ 
conformation with the C-terminal TMD (helix 3) lining the pore. Pore lining 
residues LEU69 in grey, LEU68 in grey, MET66 in purple, VAL65 in black, 
ILE62 in white, VAL61 in black and THR57 in green are shown from side on 
with two protomers hidden and from below. 
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Figure 3.26 Hexameric Helix 3 pore-lining 'compact' channel conformations after 200 ns simulation 
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A. Surface and Ribbon representation of simulation three at 200ns from above and side with one helix cut away and HOLE surface 
plot displayed. Areas inaccessible to water with a pore radius < 1.15 Å in red, referred to as a closed channel, areas that will allow 
passage of one water molecule 1.15 Å > pore radius < 2.30 Å in green, and areas accessible to greater than one water molecule 
pore radius > 2.30 Å in blue. B. Simulation two channel zoomed in with HOLE surface plot displayed and residues closing the 
channel shown with sticks. LEU64 in yellow, LEU68 in orange, VAL61 in mauve and VAL65 in cyan. C.  Overlay of starting 
conformation in black and representative end conformation in white, with HIS28 in red. D. HOLE profile plot of pore radius, starting 
conformation shown in blue, simulation one, two and three in black, red and green respectively, with residues LEU64 in yellow, 
LEU68 in orange, VAL61 in mauve and VAL65 in cyan.
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Figure 3.27 Helix 3 pore lining compact start and end conformation 
overlay 

Overlay from above of helix 3 pore lining compact start and representative end 
conformations in black and white respectively with HIS28 shown in red. 
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3.5.2.2 Does protonation of HIS28 change the structure of the hexameric 

helix 3 pore lining channels and their rate of closure? 

Simulations of hexameric M protein channels with helix 3 pore-lining in neutral 

pH showed stability by not disassociating upon equilibration, and have shown 

potential for channel activity by staying open for over 200 ns in one simulation. 

However, M protein channels are expected to form in an acidic environment 

within an endosome. Thus, we chose to mimic this environment by protonation 

of HIS28, located within the N-terminal helix 1, and to examine ensuing effects 

upon predicted channel structure and resultant switching between open and 

closed conformations.  

Interestingly, protonation of the ‘radial’ structure reduced the pore radius from 

4.137 to 3.8 Å (Figure 3.29 and Figure 3.22). However, protonated complexes 

displayed a similar propensity to close as did non-protonated radial structures 

during simulations (25, 27 and 172 ns), although direct comparison is 

challenging given that one of the non-protonated channels remained open for 

the duration (6, 40 and >200 ns) (Figure 3.22 and Figure 3.29). Had time 

permitted, an extended series of simulations may have yielded a more definitive 

measure of how HIS28 protonation affected the helical bundle. Similarly to non-

protonated simulations, channel closure involved LEU64, ILE67 and LEU68, 

with the addition of SER58 in one simulation (Figure 3.29). Despite the 

reduction in pore radius, the differences between protonated and non-

protonated HIS28 radial simulations are minimal, potentially due to the greater 

molecular distances separating HIS28 from the remainder of the channel in 

comparison to compact channels, resulting in the diminished influence of the 

associated positive charge. Measurement of the distance between the pore 

centre and HIS28 was found to be 31.28 Å. 

Conversely, protonation of the histidines on ‘compact’ helix 3 pore-lining 

channels had a greater impact upon channel behaviour. HIS28 protonation had 

minimal effect upon the channel radius, the narrowest point which remained 

virtually identical to non-protonated complexes: 5.233 compared with 5.207 Å 

(Figure 3.26D and Figure 3.31D). However, compared to non-protonated 

complexes, the presence of positive charge upon HIS28 led to an increase in 

the time taken for channels to close during three 200 ns simulations: 100, 130 
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and >200 ns compared with 70, 80 and 176 ns. Whilst again the lack of closure 

during one of the simulations makes it difficult to compare directly, the extended 

channel opening supports that M protein channels in this conformation are 

capable of responding to acidified environments. In comparison to radial 

channels, the distance between HIS28 and the pore centre in compact channels 

was reduced considerably to 16.8 Å, as opposed to 31.28 Å. This proximity may 

influence channel activity when HIS is protonated in an acidified environment. 

Furthermore, the remaining open channel exhibited a lumen radius of 2.533 Å 

at 200 ns, reducing by around half from 5.233 Å, yet still retaining a water 

column, providing an insight into the potential structure of an M protein viroporin 

(Figure 3.31). The conformation of a representative channel after 200 ns can be 

seen in Figure 3.31A, and in detail in Figure 3.23B, showing similarities 

between the protonated and not-protonated channels (Figure 3.26). Both sets of 

channels close similarly with residues VAL61, LEU64, VAL65 and LEU68 

occluding the pore, with the addition of residue ILE62 when channels are 

protonated.  

It is apparent from analysing the helix 3 pore-lining simulation sets that compact 

protonated channels remain open for the longest time periods, demonstrating 

that the compact channels respond as we would expect a channel to in a 

protonated environment, opening favourably in the acidic environment, 

mimicking the acidified endosome. Whereas the ‘radial’ structures did not 

respond to the protonation change. 
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Figure 3.28 Hexameric Helix 3 pore-lining ‘radial’ protonated channel starting conformations 

A. Ribbon representation side on and from above with histidine residues highlighted in red. B. Surface representation side on and 
from above with one protomer highlighted in orange. C. Ribbon and Surface overlay representation with HOLE profile through the 
centre displaying the space inside the pore. 
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Figure 3.29 Hexameric Helix 3 pore-lining 'radial' protonated channel conformation after 200 ns simulation 
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A.Surface and Ribbon representation of simulation three at 200ns from above and side with one helix cut away and HOLE surface 
plot displayed. Areas inaccessible to water with a pore radius < 1.15 Å in red, referred to as a closed channel, areas that will allow 
passage of one water molecule 1.15 Å > pore radius < 2.30 Å in green, and areas accessible to greater than one water molecule 
pore radius > 2.30 Å in blue. B. Representative channel zoomed in with HOLE surface plot displayed and residues closing the 
channel shown with sticks. LEU64 in yellow, ILE67 in purple and LEU68 in orange.  C. HOLE profile plot of pore radius, starting 
conformation shown in blue, simulation one, two and three in black, red and green respectively. D. Representative final 
conformation of the helix 3 pore lining radial simulation previously shown in Figure 3.22. 
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 Figure 3.30 Hexameric Helix 3 pore-lining 'compact' protonated channel starting conformations  

A. Ribbon representation side on and from above with histidine residues highlighted in red. B. Surface representation side on 
and from above with one protomer highlighted in orange. C. Ribbon and Surface overlay representation with HOLE profile 
through the centre displaying the space inside the pore 
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Figure 3.31 Hexameric Helix 3 pore-lining 'compact' protonated channel conformation after 200 ns simulation  
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A. Surface and Ribbon representation of simulation three at 200ns from above and side with one helix cut away and HOLE surface 
plot displayed. Areas inaccessible to water with a pore radius < 1.15 Å in red, referred to as a closed channel, areas that will allow 
passage of one water molecule 1.15 Å > pore radius < 2.30 Å in green, and areas accessible to greater than one water molecule 
pore radius > 2.30 Å in blue. B. Simulation two channel zoomed in with HOLE surface plot displayed and residues closing the 
channel shown with sticks. LEU64 in yellow, VAL61 in mauve and VAL65 in cyan and ILE62 in red.  C. HOLE profile plot of pore 
radius, starting conformation shown in blue, simulation one, two and three in black, red and green respectively. D. Representative 
final conformation of the compact not protonated simulation previously shown in Figure 3.25.
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3.5.2.3 Helix 1 truncation destabilises M protein channels 

M protein oligomers have shown stability with either Helix 2 or 3 pore lining, 

however Helix 3 channels retain a water permeable pore for extended periods 

of time in comparison. The role of Helix 1 in M protein channel stability has not 

been investigated. Through simulations of M protein channels with Helix 3 pore 

lining and a truncated Helix 1 we observed channels do not retain their pore. Of 

three repeat simulations, channels closed within 50 ns in each occurrence, 

suggesting Helix 1 plays a role in stabilising the open pore. Helix 1 may make 

vital interactions between monomers forming a more stable structure, or its 

residues may respond to the acidifying endosomal environment due to the 

presence of a HIS residue. 

 

Figure 3.32 Hexameric helix 3 pore lining channel simulations with 
truncated helix 1 

Ribbon representations of M protein channels with helix 3 pore lining and helix 1 
truncated before and after a 50 ns simulation.  
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3.5.3 Are channels with Helix 2 lining the pore stable? 

Helix 2 was not predicted to be a channel pore-lining helix using MEM-SAT 

SVM software (Figure 3.5). However, to control for whether these predictions 

would apply during simulations, additional experiments were performed using 

radial and compact models where helix 2 lines the pore, including the simulation 

of HIS28 protonation. MD simulations were run with either helix 3 (section 3.5.2) 

or helix 2 in the centre of the pore for comparison. Similarly to the helix 3 pore 

lining channels, simulations were run in differing conformations, either ‘radial’ or 

‘compact’ and both were simulated in a neutral and a protonated environment, 

as previously run for helix 3 pore-lining to determine activity in an acidic 

environment.  

3.5.3.1 Simulating channels with helix 2 lining the pore, in a neutral pH  

The radial conformation of M protein hexamer with the helix 2 lining the pore 

was constructed with the N-terminal helix protruding away from the channel, 

resulting in helix 3 wrapping around the outside of the channel (Figure 3.33). 

The channel has a pore radius of 3.2 Å at its narrowest point, wider than the 

radius of a water molecule at 1.375 Å, the residues lining the pore start with 

PRO40 at the neck followed by LEU44, ALA47 and TRP51 prior to simulation 

(Figure 3.34). 

Channels were simulated for 200 ns using atomistic resolution. The channels 

remained open for just 6 ns in each of the three simulations. In Figure 3.33 the 

channel formed through the hexamer is obvious at the start of the simulation, 

after 200 ns the conformation of the closed channels can be seen in Figure 

3.35A, B. The channels closed in different ways, however all channels were 

occluded at the bottom by TRP51.  

As seen in section 0 rotation of individual protomers of the helix 3 pore-lining 

channels into the compact conformation results in more interactions between 

them, potentially stabilising the channel in comparison to the ‘radial’ 

conformation. The same rotation was applied to helix 2 pore-lining radial 

channel protomers. However, due to the position of the connecting helix 3, 

clockwise rotation of M protomers was not possible, as this would lead to steric 

clashes over 
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Figure 3.33 Hexameric Helix 2 pore-lining ‘radial’ channel starting conformations 

A. Ribbon representation side on and from above with histidine residues highlighted in red. B. Surface representation side on 
and from above with one protomer highlighted in orange. C. Ribbon and Surface overlay representation with HOLE profile 
through the centre displaying the space inside the pore. 
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Figure 3.34 Hexameric helix 2 pore-lining ‘radial’ channel lumenal 
residues and comparison of radial and compact conformations. 

Pore lining residues of a hexameric M protein channel in a ‘radial’ conformation 
with the N-terminal TMD (helix 2) lining the pore. Pore lining residues PRO40 in 
white, LEU44 in black, ALA47 in pink and TRP51 in blue are shown from side 
on with two protomers hidden and from below. B. Comparison of radial and 
compact conformations in black and white respectively with HIS28 highlighted in 
red. 
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Figure 3.35 Hexameric Helix 2 pore-lining 'radial' channel conformation after 200 ns simulation 
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A.Surface and Ribbon representation of simulation three at 200ns from above and side with one helix cut away and HOLE surface 
plot displayed. Areas inaccessible to water with a pore radius < 1.15 Å in red, referred to as a closed channel, areas that will allow 
passage of one water molecule 1.15 Å > pore radius < 2.30 Å in green, and areas accessible to greater than one water molecule 
pore radius > 2.30 Å in blue. B. Representative channel zoomed in with HOLE surface plot displayed and residues closing the 
channel shown with sticks. PRO40 in orange, LEU44 in purple, ALA45 in yellow close the channel at the top and TRP51 in cyan at 
the bottom. C. HOLE profile plot of pore radius, starting conformation shown in blue, simulation one, two and three in black, red and 
green respectively. 
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the monomers overlapping. Therefore, the protomers were rotated anti-

clockwise for maximum interactions between protomers (Figure 3.33C).  

Starting conformations of the compact channels shown in Figure 3.36 had a 

radius of 4.236 Å, compared to the 3.2 Å of the radial conformation, explained 

by the different pore lining residues of PHE42, ALA45, ILE49 and LEU52 

(Figure 3.37). These compact channels also closed very quickly after 12 ns 

compared to 6 ns when radial, suggesting these channels are not a 

physiological representation of channel structure formed by M protein. 

A closed representative structure is shown in Figure 3.38A, and the pore-lining 

residues closing the structures are highlighted in Figure 3.38B. As seen with 

radial structures, all simulations close at the lower end of the channel by residue 

TRP51, for the compact structures the residues closing this region are TRP51, 

LEU52 and LEU53. Additionally, all channels are occluded at the top by 

residues GLY41, PHE42 and LEU44 (Figure 3.38B) in comparison to residues 

PRO40, LEU44 and ALA45 of the radial channels (Figure 3.35) These minor 

changes in pore closures demonstrate the change in structure due to rotation. 

3.5.3.2 Does protonation change the activity and structure of the 

hexameric helix 2 pore lining channels? 

Previously helix 2 pore-lining channels remained open for a very short period of 

time, 6 ns for ‘radial’ and 12 ns for ‘compact’ on average. However, upon 

protonation of HIS28 on the ‘radial’ structures the pore radius reduces to 3.0 

from 3.2 Å and the channels remain open longer, for 33 ns on average. By 

contrast, the same effect was not observed for ‘compact’ channels, where the 

pore radius reduced from 4.236 to 4.040 Å, but the channels only remained 

open for 5 ns on average. Determining protonation of HIS28 only improved the 

channel stability of ‘radial’ channels, potentially due to the direction of protomer 

rotation. The HIS28 residue is found on helix 1, which when highlighted on the 

radial structure (Figure 3.39A) is shown to be close to the adjacent protomer in 

a clockwise direction, however the location of HIS28 on the helix 1 on ‘compact’ 

channels this is found close to the adjacent protomer in an anti-clockwise 

direction (Figure 3.41A). 
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Figure 3.36 Hexameric Helix 2 pore-lining ‘compact’ channel starting conformations 

A. Ribbon representation side on and from above with histidine residues highlighted in red. B. Surface representation side on 
and from above with one protomer highlighted in orange. C. Ribbon and Surface overlay representation with HOLE profile 
through the centre displaying the space inside the pore 

A        B                          C 
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Figure 3.37 Hexameric helix 2 pore-lining ‘compact’ channel lumenal 
residues. 

A. Pore lining residues of a Hexameric M protein channel in a ‘compact’ 
conformation with the C-terminal TMD (H3) lining the pore. Pore lining residues 
PHE42 in blue, ALA45 in pink, ILE49 in white and LEU52 in grey are shown 
from side on with two protomers hidden and from below.  
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Figure 3.38 Hexameric Helix 2 pore-lining 'compact' channel conformation after 200 ns simulation 
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A. Surface and Ribbon representation of simulation three at 200 ns from above and side with one helix cut away and HOLE surface 
plot displayed. Areas inaccessible to water with a pore radius < 1.15 Å in red, referred to as a closed channel, areas that will allow 
passage of one water molecule 1.15 Å > pore radius < 2.30 Å in green, and areas accessible to greater than one water molecule 
pore radius > 2.30 Å in blue. B. Simulation two channel zoomed in with HOLE surface plot displayed and residues closing the 
channel shown with sticks. PHE42 closes the top, TRP51 and LEU52 close the bottom. C. HOLE profile plot of pore radius, starting 
conformation shown in blue, simulation one, two and three in black, red and green respectively. D. Simulation one of helix 2 pore 
lining radial conformation, previously shown in Figure 3.35.  
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Additionally, the pore-lining residues involved with channel closures are altered 

in the radial structures. Residue TRP51 still plays a role in closing channels, 

however this appears more of a restriction which leads to combinations of 

residues PRO40, GLY41, LEU44, ALA48 and LEU53 to close the channels 

(Figure 3.40). Residues PRO40, LEU44 also close the non-protonated channels 

with the addition of residue ALA45. Compact channels also observe similar 

closings, prior to protonation all channels were obstructed at both the top and 

bottom by combinations of GLY41, PHE42, LEU44 and TRP51, LEU52, LEU53 

respectively (Figure 3.38). However, after protonation only two channels were 

obstructed at the top, involving combinations of residues ASN39, GLY41 and 

PHE42 and only two channels were closed lower down by residues TRP51 and 

LEU52 (Figure 3.42). 

The subtle differences of residues involved in channel closure likely reflect the 

interactions induced by HIS28 protonation, the increase in time the helix 2 pore 

lining ‘radial’ protonated channels remained open could highlight the importance 

of the location of the HIS28 in relation to the channel. Furthermore the helix two 

pore-lining channel remained open for a much shorter average time than the 

helix 3 pore lining channels, and did not respond as positively to protonation, 

demonstrating they are unlikely to represent the structure of M protein 

viroporins within the acidified virion during entry and uncoating. Conversely 

helix 3 pore-lining channels remained open for over 100 ns on average, and the 

compact conformations responded positively to being protonated, taking the 

channels longer to close, or in some cases not close within the 200 ns 

simulations. The simulation data shown in this section indicates helix 2 is not 

likely to line the pore of the channel, in comparison to helix 3 simulation data 

shown in section 3.5.3.1.
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Figure 3.39 Hexameric Helix 2 pore-lining ‘radial’ protonated channel starting conformations 

A. Ribbon representation side on and from above with histidine residues highlighted in red. B. Surface representation side on 
and from above with one protomer highlighted in orange. C. Ribbon and Surface overlay representation with HOLE profile 
through the centre displaying the space inside the pore 
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Figure 3.40 Hexameric Helix 2 pore-lining 'radial' protonated channel conformation after 200 ns simulation 
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A.Surface and Ribbon representation of simulation three at 200ns from above and side with one helix cut away and HOLE surface 
plot displayed. Areas inaccessible to water with a pore radius < 1.15 Å in red, referred to as a closed channel, areas that will allow 
passage of one water molecule 1.15 Å > pore radius < 2.30 Å in green, and areas accessible to greater than one water molecule 
pore radius > 2.30 Å in blue. B. Simulation three channel zoomed in with HOLE surface plot displayed and residues closing the 
channel shown with sticks. PHE42 closes the top, TRP51 and LEU52 close the bottom. C. HOLE profile plot of pore radius, starting 
conformation shown in blue, simulation one, two and three in black, red and green respectively. D. Simulation one of helix 2 pore 
lining radial conformation, previously shown in Figure 3.27.  
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Figure 3.41 Hexameric Helix 2 pore-lining ‘compact’ protonated channel starting conformations 

A. Ribbon representation side on and from above with histidine residues highlighted in red. B. Surface representation side on 
and from above with one protomer highlighted in orange. C. Ribbon and Surface overlay representation with HOLE profile 
through the centre displaying the space inside the pore 

A          B                       C 
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Figure 3.42  Hexameric Helix 2 pore-lining 'compact' protonated channel conformation after 200 ns simulation 
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A. Surface and Ribbon representation of representative channel at 200ns from above and side with one helix cut away and HOLE 

surface plot displayed. Areas inaccessible to water with a pore radius < 1.15 Å in red, referred to as a closed channel, areas that 

will allow passage of one water molecule 1.15 Å > pore radius < 2.30 Å in green, and areas accessible to greater than one water 

molecule pore radius > 2.30 Å in blue. B. Representative channel zoomed in with HOLE surface plot displayed and residues 

closing the channel shown with sticks. ILE49 in green and PHE42 in grey close the top, ILE49 in purple occludes the middle and 

LEU52 in pink restricts the bottom. C. HOLE profile plot of pore radius, starting conformation shown in blue, simulation one, two 

and three in black, red and green respectively. D. Representative helix 2 pore lining compact conformation, previously shown in 

Figure 3.34. 
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3.6 Discussion 

Using MD simulation, we have predicted that M is capable of forming a stable 

two TMD monomer within a POPC lipid bilayer, as well as in a more complex 

membrane present within WNV virions (Figure 3.9 and Figure 3.10). The short 

TMD’s of the cryo-EM M protein structure raised questions regarding its 

capability to span a lipid bilayer, and potentially the need for a variety of lipids 

with different length hydrophobic tails for the protein to remain within the 

membrane. However, as a one TMD M protein, E would reside on the incorrect 

side of the virion membrane. Furthermore, our simulations in Figure 3.9, have 

shown M protein is stable within a more simple POPC bilayer. Although during 

simulations phospholipid heads of the lipid bilayer are seen pinching into the 

leaflets to meet the short TMDs maintaining the protein within the membrane.  

This feature is known as hydrophobic mismatching, a result of the difference in 

thickness of the lipid membrane and the proteins’ hydrophobic domain (Jensen 

and Mouritsen, 2004). Hydrophobic mismatching is seen with other viral and 

non-viral proteins, where hydrophobic TMDs are shorter (negative hydrophobic 

mismatch) or longer (positive hydrophobic mismatch) than the lipid bilayer. 

Appropriately hydrophobic mismatching is observed during MD simulations of 

HCV p7 viroporin channels, causing membrane pinching and straightening of 

the TMDs, reducing their tilt angle (Chandler et al., 2012). Conversely, HIV-1 

Vpu monomers undergo tilting of TMD helices due to a positive hydrophobic 

mismatch (Yeagle et al., 2007). M protein helices do not appear to change their 

tilt angle, however the mismatching is maintained by phospholipid tails tilting 

instead.  

The overall morphology of Flavivirus particles is stabilised by the icosahedral 

surface of E/M in the mature virions and through their anchoring into the virus 

membrane (Figure 3.2). The membrane underneath each region of the 

icosahedral surface exhibits either a concave, planar, convex or saddle shape, 

which together result in spherical membrane formation (Zhang, W. et al., 2013). 

The herringbone arrangement of E/M proteins on the surface of the ZIKV virion 

(Sirohi et al., 2016), is formed by units of three Envelope dimers and three M 

protein dimers. MD coarse-grained simulations of each of  these hexamers has 

a visible effect on the membrane curvature, particularly M protein which results 
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in a positive curvature of the lower leaflet, thought to be important in assembly 

of the virus particle into the icosahedral shape (Wewer and Khandelia, 2018).  

Additionally, we consistently observed the inner leaflet of the lipid bilayer where 

the linker region resides to be the area with most pronounced lipid 

rearrangements, in line with virion membrane curvature for vesicle formation. 

Furthermore, the M protein TMDs diverge from the linker region, resulting in a 

gap between them at the outer bilayer leaflet. This structure forms a wedge-like 

conformation, which along with hair-pin regions lends themselves to membrane 

curvature and ultimately vesicle formation (Jarsch et al., 2016). 

More recently, a variety of coarse-grained and all atom MD simulations of a 

DENV E/M homotetramer resulted in the same membrane pinching indentation 

on the lower leaflet as seen in the dimers in section 1.4, reducing membrane 

thickness (Wewer and Khandelia, 2018). Further simulations of 5 

homotetramers were arranged as seen at the five-fold axis however on a planar 

DENV derived lipid membrane, similar in shape to a square wafer. After 440 ns 

of simulation the E/M homotetramers caused the membrane to curve 

extensively resulting in a complete vesicle formed of 17.3 nm (de Oliveira Dos 

Santos Soares et al., 2017). 

Our monomeric and dimeric simulations were conducted in more simplistic 

POPC bilayers and bilayers emulating the composition of a WNV virion. 

However, the differences in stability observed for monomers and interactions 

between dimers were not obviously different between these lipid bilayers. Thus, 

we simulated higher order oligomeric structures in simple POPC bilayers, due to 

time restraints. However, a recent study simulating ZIKV and DENV E & M 

glycoproteins reported differential interactions between glycoproteins and 

certain phospholipids (Wewer and Khandelia, 2018). The simulated membranes 

consisted of PC : PS : PE : SM at the respective ratios of 57 : 25 : 3 : 15. ZIKV and 

DENV both enriched the surrounding membranes with PS and PE lipids in 

comparison to PC and SM, however PE localised closer to DENV proteins and 

conversely PS lipids localised closer to ZIKV proteins, hotspots on these 

proteins for the lipids were identified (Wewer and Khandelia, 2018). If time 

allowed, it would be interesting to analyse the lipid-protein interactions of the 

previously run simulations, to observe if similar interactions are seen with our 
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minimally different PC : PS : PE : SM lipid bilayer composition of 57 : 21 : 5 : 17 

(Martin-Acebes et al., 2014).  

As mentioned previously the class proportions of final dimer conformations did 

not vary widely between the lipid environments, however restraining C atoms 

resulted in a shift of the classes seen. Restraints saw an increase of the cyro-

EM dimeric M conformation (Sirohi et al., 2016) from 1 and 2 instances for 

POPC and WNV membranes to 4 and 3 when restrained. This dimeric 

conformation occurs in viruses due to the bringing together of two prM-E 

heterodimers, which upon pr cleavage by furin go on to form two E and M 

homodimers, therefore forming in a restrained environment. C restraints may 

partially mimic this physiological restraint on M protein held by E protein in the 

virion. Additionally, reductions in class II, III and IV dimers were observed upon 

restraining; this change in dimer class formation may reflect the need for helix 1 

flexibility for these dimer classes II, III and IV to form. As observed in Figure 

3.17 we expect dimers of Class III conformation to form higher order oligomers, 

these form more frequently when restraints are not applied. We hypothesise M 

channels form once the virion is acidified and dimeric M is released from 

underneath dimeric E; at this point, the restraints upon the dimers would be 

released. Therefore, future work could focus on simulating unrestrained M 

protein class I dimers in an acidic environment, or by histidine protonation 

observing if there are conformational changes from class I to class III dimers. 

M protein channel simulations uncovered a potential insight into the structure 

and activity of an M protein viroporin. Hexameric M channels closed within 

varying timeframes dependent on the pore-lining helix and the protonation state 

of the channels. M protein appears capable of functioning as a hexameric ion 

channel, however radial conformations with helix 2 lining the pore did not result 

in a stable open channel in a neutral environment, all channels closed their 

pores after only 5 or 6 ns. On the other hand, helix 3 lining the pore resulted in a 

water column remaining intact for much longer (6, 40 and over 200 ns) with one 

channel not closing within the 200 ns. These results align with the pore-lining 

helix prediction results mentioned in section 3.2 from MEMSAT SVM. The 

prediction software used in Figure 3.4 and Figure 3.5 were all the currently 

available online prediction tools, and MEMSAT-SVM was the only pore-lining 

helix predictor. Furthermore, the prediction of DENV M to be a single TMD 
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protein from the Phobius prediction tool was published (Tomar et al., 2019). 

However, the research suggests DENV M may also be a viroporin. 

Moreover, rotation of protomers results in both helix 2 and helix 3 pore-lining 

channels remaining open for longer, helix 2 pore-lining channels increased 

slightly from an average of 6 to 12 ns of channel activity and helix 3 pore-lining 

channels increased from an average of 82 to 108 ns. Rotation of the individual 

protomers increases the interactions between adjacent protomers, particularly 

with the N-terminal helix for helix 3 pore-lining channels (Figure 3.21 and Figure 

3.24) Furthermore, comparison of Figure 3.23 and Figure 3.27 shows the 

changes in structure are greater for the radial structure than the compact, 

possibly due to the more favourable conformation and the increase in inter-

monomer interactions. However, rotation also changed the pore-lining residues, 

which largely influences the stability of the water column. Helix 2 pore lining 

channel ‘radial’ conformation has a pore containing a proline, leucine, alanine 

and tryptophan (Figure 3.34). After rotation, the pore changes slightly to contain 

a phenylalanine, alanine, isoleucine and leucine (Figure 3.37). Both of these 

pores contain residues with similar properties of hydrophobic side chains. 

Helix 3 pore lining ‘radial’ conformation starts simulations with two leucines, an 

isoleucine, tyrosine and lysine lining the pore (Figure 3.21), however with 

rotation of protomers the channel is lined with two leucines, a methionine, two 

valines, an isoleucine and threonine (Figure 3.25). Both the ‘radial’ and 

‘compact’ helix 3 pore-lining channels are lined predominantly by hydrophobic 

amino acids with the addition of one or two polar of charged residues. The 

addition of an amphipathic or hydrophilic residue may increase the stability of 

the pore in comparison to helix 2, which does not have a hydrophilic residue in 

the pore lining.  

In comparison to other viroporin lumens, M2 contains a valine, alanine, glycine 

(Pinto et al., 1997) and the multiple computational p7 structures contain 

alanines, valines, leucines and isoleucines (Chandler et al., 2012). 

Comparatively M protein is also largely lined with hydrophobic residues, 

however the radial channel conformation contains a polar tyrosine and a 

positively charged lysine, or in a compact channel conformation a polar 

threonine, capable of being charged.  
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Moreover, protonation of the N-terminal histidine affected the closing of the 

channel lumens as well. Helix 2 ‘radial’ channels stayed open for 33 ns when 

protonated as opposed to 6 ns when not protonated, however their final HOLE 

conformations are comparable. Protonated helix 2 ‘compact’ channels remained 

open for 5 ns on average and 12 ns when not. Repeatedly the final 

conformations of the channel closures appear comparable. The opposing 

nature of these results could be due to the location of the protonated histidine 

and its proximity to the channel lumen. 

In contrast, helix 3 pore-lining ‘radial’ channel conformations remained open for 

72 ns with protonation and 82 ns without, with one non-protonated channel 

remaining open for the whole simulation. Helix 3 compact channels take 108 ns 

on average to close and this is lengthened to 137 ns when protonated. As 

mentioned previously the change in time taken for the channels to close is likely 

due to the location of the histidine, its proximity to the channel and which 

residues it interacts with. In Figure 3.29 the histidine is highlighted and can be 

seen much closer to the channel lumen at 16.8 Å and potentially interacting with 

adjacent protomers comparatively to Figure 3.32, showing the ‘radial’ 

conformation with the highlighted histidine much further away from adjacent 

protomers and the channel lumen than seen in the compact conformation at 

31.28 Å. Acid sensitive viroporin M2 and some genotypes of p7, both have a 

HIS residue present within the channel lumen (Ito et al., 1991; Oestringer et al., 

2019). However, viroporin E5 has two HIS residues present at the C-terminal 

tail of each monomer, similarly to the presence of the two M protein HIS 

residues found at the N-terminus leading to pH activation (DiMaio and Petti, 

2013), moreover both HIS residues of E5 are present in the unstructured C 

terminal region, whereas M protein contains one in both the structured and 

unstructured N terminal regions. Simulations of M2, compared to protonated M2 

showed differences in structure, comparable to the previously resolved 

structures in both environments (Khurana et al., 2009). 

As noted earlier, M protein channels are only likely to form within the endocytic 

pathway during virus entry. Endosomal pH is less than 6.5, and so will cause 

protonation of histidines present on the exposed N-terminal region of M, 

including helix 1 from our simulation that contains HIS28. MD simulations in this 

protonated environment contribute to simulating a more physiologically relevant 
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environment. Additionally, other viroporins contain conserved histidines, 

including IAV M2 and some HCV p7 genotypes. Protonation of M2 histidine 37 

causes channel activation and proton-selective conductance of the channel 

(Pinto et al., 1997; Betakova and Kollerova, 2006), p7 pore-lining HIS17 is 

conserved and is important for genotype 1b p7 channel activity (StGelais et al., 

2009; Chew et al., 2009). 

Evidence supporting that helix 3 may represent a pore-lining helix was first 

obtained through the MEMSAT-SVM prediction. However, its longer channel 

opening and positive reaction to protonation further supports that helix 3 

comprises the lining of the pore. Two channels simulated with helix 3 pore-lining 

remain open after 200 ns. However, upon closure of the remaining channels it 

appears ILE64 is involved in closure of all channel simulations regardless of 

protomer rotation and LEU68 is also involved in the majority of these. LEU68 as 

seen in Figure 3.1 is conserved in YFV and WNV however not in DENV, 

although ILE64 is not a conserved residue. Compact channels also are closed 

by VAL61 and 65 and again these are not conserved residues. As ILE64 and 

LEU68 cause the closure of most of these channels, they may be identified as 

gating residues.  

Conversely helix 2 pore-lining channels all close relatively quickly, indicative of 

an unfavourable channel. In radial channel simulations a non-conserved 

TRP51, and a conserved PRO40 and LEU44 are responsible for channels 

closing. Upon protonation an additional residue GLY41, found to be highly 

conserved throughout the Flavivirus genus, closes all channels alongside 

previously mentioned TRP51, PRO40 and GLY41. When helix 2 pore-lining 

channels are compact the residues lining the pore and closing the channels 

change, a conserved PHE42 closes all channels run in the absence of 

protonation alongside previously mentioned TRP51 and an additional LEU52. 

When protonated these channels remain closing by PHE42 and LEU52. The 

involvement of highly conserved residues in closure of channels is likely due to 

these channels being highly involved in maintaining the structure of the channel, 

however from a membrane-facing role as a peripheral helix, as opposed to a 

pore-lining helix. 

The four hexameric structures simulated suggest that helix 3 pore-lining 

compact oligomers are the most representative of those found in the virion, as 
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they remain open for the longest period of time. However, it is not clear how 

long channels would remain open during infection. p7 channels in DOPC rich 

bilayers remain open for ~500 ms by patch clamping, far longer than our 

simulations (Hyser, 2015), however Rotavirus non-structural protein 4 (NSP4) 

channels formed in planar lipid membranes remained open for just 65 ps (Pham 

et al., 2017). Additionally, compact helix 3 pore-lining channels do respond 

positively to being HIS-protonated indicating the model is the most accurate in a 

physiologically relevant environment. 

Heptameric M protein channels also formed stable oligomers which remained 

interacting throughout simulations. Helix 2 pore lining radial and compact 

conformations remained open for far longer than corresponding hexameric 

channels. However, upon protonation helix 2 pore lining heptamers closed more 

quickly, whereas protonated hexameric channels remained open for longer.  

With helix 3 pore lining, the majority of heptameric channels remained open 

throughout the simulation with many ‘compact’ conformations retaining a water 

column for almost 200 ns regardless of protonation. These channels take longer 

to close due to the high number of interactions between adjacent protomers, 

forming a highly stable structure. When protomers with pores lined by helix 3 

are radial, channels show an increased propensity to close, however both these 

averages reflect two out of three channels remaining open with one channel 

closing sooner.  

Although we are able to simulate heptameric channels, it is unlikely channels of 

seven would form due to the virion stoichiometry. Additionally, M protein is 

present within the virion as a dimer, and simulations of two M protein monomers 

(section 3.4) consistently show dimerisation in the vast majority. Disassociation 

of dimers has not been observed in the MD simulations, however, when the E-

M heterotetramers dissociate during entry, allowing E trimers to form, it could be 

possible for M dimers to also dissociate.  

Our MD simulations and analysis suggest hexameric channels with helix 3 pore-

lining are the most likely viroporin structure, due to these channels remaining 

open for longer periods of time and when protonated this time is extended. 

Conversely, heptameric channels remain open for long time periods regardless 

of the helix lining the pore, this lack of specificity highlights heptameric channels 
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exhibit a high level of inter-monomer interactions which are hard to interrupt 

(Appendix B2). 
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CG-simulation Membrane Composition  Duration 

Monomer 

1 TMD POPC POPC (100) 3 µs 

2 TMD POPC POPC (100) 3 µs 

2 TMD WNV POPC:POPS:POPE:SM 

(57:25:3:15) 

3 µs 

1 TMD truncated POPC POPC (100) 3 µs 

Dimer 

POPC POPC (100) 6 µs 

WNV POPC:POPS:POPE:SM 

(57:25:3:15) 

6 µs 

Restrained - POPC POPC (100) 6 µs 

Restrained - WNV POPC:POPS:POPE:SM 

(57:25:3:15) 

6 µs 

 

Table 3.2 Coarse-grained Simulation Overview   
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AA-simulation Membrane Composition  Duration 

Hexamer 

H2 Radial  POPC (100) 200 ns 

H2 Radial protonated POPC (100) 200 ns 

H2 Compact POPC (100) 200 ns 

H2 Compact Protonated  POPC (100) 200 ns 

H3 Radial  POPC (100) 200 ns 

H3 Radial protonated POPC (100) 200 ns 

H3 Compact POPC (100) 200 ns 

H3 Compact Protonated  POPC (100) 200 ns 

Heptamer 

H2 Radial  POPC (100) 200 ns 

H2 Radial protonated POPC (100) 200 ns 

H2 Compact POPC (100) 200 ns 

H2 Compact Protonated  POPC (100) 200 ns 

H3 Radial  POPC (100) 200 ns 

H3 Radial protonated POPC (100) 200 ns 

H3 Compact POPC (100) 200 ns 

H3 Compact Protonated  POPC (100) 200 ns 

Table 3.3 All-atom simulation overview 
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Chapter 4 M protein displays pH activated, rimantadine-

sensitive, channel activity with a role during ZIKV entry 

4.1 Introduction 

Increasing numbers of small (60-100 amino acids), hydrophobic viral membrane 

proteins are being recognised to form oligomeric complexes that exert channel 

activity. Such proteins, termed “viroporins”, play often-essential roles during 

virus life cycles, with many of them acting to expedite virus egress and/or entry 

(Scott and Griffin, 2015). Hence, based upon molecular dynamics simulations 

(Chapter 3) combined with its primary structure and studies on related M 

proteins (Premkumar et al., 2005), we hypothesised that ZIKV M bore the 

characteristic hallmarks of a viroporin and so should both oligomerise and 

display channel activity in vitro.  

Formation of higher-order viroporin structures can be induced using non-ionic, 

membrane-mimetic detergents (e.g. 1,2-dihexanoyl-sn-glycero-3-

phosphocholine (DH(6)PC) or 1,2-diheptanoyl-sn-glycero-3-phosphocholine 

(DH(7)PC)) at concentrations above the critical micellar concentration (CMC). 

These micelles stabilise membrane protein complexes (Wetherill et al., 2012; 

StGelais et al., 2009; Schnell and Chou, 2008; Luik et al., 2009; OuYang et al., 

2013; Panjwani et al., 2014), substituting for lipids such as POPC, which form 

vesicles and are more technically challenging for structural studies (Figure 4.1). 

Biochemical analysis of viroporin oligomerisation has previously comprised 

multiple techniques, including visualisation using native-PAGE and transmission 

electron microscopy (TEM).  

However, visualisation of oligomers is not sufficient to ascribe viroporin function 

to a given protein. We required an assay adaptable to the use of a truncated M 

protein peptide (section 2.5.4), to provide evidence of channel activity and to 

enable screening of potential inhibitors. Thus, we adapted a previously used, 

liposome-based, dye release assay as a robust indirect method (StGelais et al., 

2007; Tuthill et al., 2006; Davis et al., 2008) for assessing viroporin activity.  

This liposome-based assay is most suitable for observing channel activity and 

identifying potential inhibitors, as other systems struggle with scaling up, 

including BLMs and single cell patch clamping. We have shown the assay 

works routinely in a 96 well plate, furthermore, the liposome-based assay has 
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been used to screen compounds against HCV p7 channels, in a 384 well plate 

format, achieving a satisfactory z score (Gervais et al., 2011). 

Liposome-based systems have previously been used to investigate channel 

activity of viroporins including M2, alphavirus 6k, poliovirus 2B and HCV p7 

(Scott and Griffin, 2015; Antoine et al., 2007; Madan et al., 2007; Montserret et 

al., 2010; StGelais et al., 2007). Use of this assay has been disputed on one 

occasion (Gan et al., 2014), however many reports mentioned above support its 

indirect measurement of channel activity. Dye release assays can also identify 

other properties, including the use of fluorescent dextrans to determine pore 

size, the effect of pH on channel activity and viroporin inhibitors such as 

Rimantadine (Wetherill et al., 2012; Panjwani et al., 2014; Shukla et al., 2015; 

StGelais et al., 2007). The effect of pH was of considerable interest as we 

hypothesised that M protein forms channels during virion endocytosis. However, 

identification of inhibitors can also support proof of M protein oligomerisation, in 

addition to development of a potential antiviral compound. 

In vitro methods have been used successfully to identify inhibitors previously, 

however evidence of their activity in cell culture is further convincing. Incubating 

host cells and virus with potential antivirals throughout infection can show their 

effect of reducing virus titre. Furthermore, time of addition (TOA) assays 

determine the virus life cycle stage at which a virus inhibitor is active. TOA 

assays are carried out by adding an antiviral compound to the virus and host 

cells at different times in the virus life cycle. The distinct stages are: pre-treating 

host cells or the virus prior to inoculation, co-treatment of cell and virus during 

inoculation and treatment of virus-infected cells during the post-inoculation 

period. The stages can also be combined to see the effects of the compound 

when present in multiple stages of the virus life cycle (Pauwels et al., 1990; 

Kato et al., 2016; Daelemans et al., 2011; Chen, M. et al., 2017). Observing the 

lifecycle stage where a previously screened inhibitor has the greatest effect is of 

great interest to help identify the viral target.  

Additionally, successful inhibitors in cell culture can be translated into an in vivo 

model system to further investigate the effect an identified compound may have 

on a whole organism when infected, and whether the effects of the compound 

are comparable to those seen in cell culture.  
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This chapter presents evidence for M protein oligomerisation in a membrane 

mimetic environment and channel activity is demonstrated using liposome dye 

release assays. Additionally, M protein channels are found to be sensitive to the 

channel-blocking compound, rimantadine, in vitro, and the corresponding 

antiviral activity of this compound in cell culture supports a role for M protein 

channels during virus entry. Lastly, we demonstrate that rimantadine prevents 

ZIKV spread in vivo, supporting that M might be exploited as an effective 

therapeutic target. 
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Figure 4.1 Schematic comparing phospholipid structures 

Comparison of liposomes, micelles and membrane bilayers  
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4.2 ZIKV M protein forms oligomers in detergent micelles 

4.2.1 M protein oligomerises in DHPC detergent 

To explore whether M protein can oligomerise in a membrane mimetic 

environment, a truncated M peptide of 55 amino acids, lacking 20 N-terminal 

residues (Figure 4.2), was diluted in various non-ionic detergents which have 

previously been used in viroporin studies: 1,2-dihexanoyl-sn-glycero-3-

phosphocholine DH(6)PC, DH(7)PC, 1-palmitoyl-2-hydroxy-sn-glycero-3-

phospho-(1'-rac-glycerol) (LPPG) and 1-myristoyl-2-hydroxy-sn-glycero-3-

phospho-(1'-rac-glycerol) (LMPG). Other viroporins including p7, SH and E5 

have previously been shown to form higher order structures in detergent 

environments by both native PAGE and transmission electron microscopy 

(TEM) (StGelais et al., 2007; Carter et al., 2010; Wetherill et al., 2012; Li, Y. et 

al., 2014; Luik et al., 2009).    

M was insoluble in aqueous solution, therefore dissolved in DMSO prior to 

dilution in detergent. DH(6)PC, DH(7)PC, LMPG and LPPG were selected to 

stabilise M protein and characterise its oligomerising capabilities based on 

previous viroporin studies (Griffin, S.D. et al., 2003; Clarke et al., 2006; Carter 

et al., 2010; Luik et al., 2009). All detergents were used above their respective 

CMC’s and protein was diluted into each at 500 ng/µL. After 10 min at 37 °C, 

samples were separated by native PAGE and stained with Coomassie brilliant 

blue reagent (section 2.5.2 and 2.5.3) (Figure 4.3A).  

M peptide oligomerisation occurred in the presence of DH(6)PC, but not for the 

other detergents. Monomeric truncated M peptide is 6.3 kDa in molecular 

weight and the M-DH(6)PC detergent complexes migrated at a similar rate to 

the ~45 and ~66 kDa molecular weight markers. However, native PAGE 

separates proteins by net charge, molecular weight, and conformation; thus, 

protein migration cannot be accurately related to molecular weight using this 

technique. 

To gain an insight of the tertiary arrangements of oligomeric M protein in the 

detergent environment we chose to employ negative TEM to investigate 

whether this oligomer represents a channel-like structure, based upon previous 

studies of viroporins including, HCV p7, RSV SH, HPV E5.  
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Figure 4.2 M peptide of 55 amino acids with an N terminal truncation 

Protein shaded with sections corresponding to the structural regions of the protein sequence shown below. The site of the peptide 
truncation from the full-length M also indicated. 
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Figure 4.3 Oligomerisation of M protein in detergent environment by 
native PAGE 

Native PAGE analysis of M protein 5 μg in differing membrane mimetic 
detergents (300 mM), DH(6)PC, DH(7)PC, LPPG and LMPG. Gel stained using 
Coomassie Blue.  
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4.2.2  Visualisation of ZIKV M peptide oligomers by Transmission 

Electron Microscopy (TEM) 

Structural information for ZIKV M protein hails from the mature virion cryo-EM 

structures, where it resides as a dimer within the virion membrane (Sirohi et al., 

2016; Sevvana et al., 2018). M protein has not been visualised in isolation, or in 

the context of an acidified virus particle mimicking the entry process. Hence, the 

structure of M in the absence of adjacent E protein TM regions remains 

unknown (section 3.2). In section 3.4.3 M protein simulations gave insight into 

the potential influence of the presence of E protein on M protein dimers through 

N-terminal restraints, potentially causing preferential formation of ‘class III’ 

dimers which may represent a dimeric structure which leads to the formation of 

oligomers.  

Based upon native PAGE data (section 4.2.1), truncated M peptide was 

reconstituted across a range of DH(6)PC concentrations, deposited onto carbon 

coated grids and analysed using negative stain TEM. Ring-like structures with 

an electron-dense central pore were readily observable at all DH(6)PC 

concentrations (125-175 mM) (section 2.6.6 & Figure 4.4). Additionally, 

channels were seen at 300 mM, the concentration used in the native PAGE, but 

at far lower frequency. These structures resembled those observed for other 

viroporins under similar conditions, including HCV p7 (Clarke et al., 2006; Luik 

et al., 2009).  

Consistent with the presence of M protein oligomers, many channel structures 

with an average oligomer diameter of 8.6 nm were present at 150 mM 

DH(6)PC, which was the optimal in terms of the lowest signal noise ratio and 

particle heterogeneity (Figure 4.4B).  Particles seemingly aligned in a single 

plane relative to the grid surface displaying the presence of the electron-dense 

pore.  

The favourably aligned orientations of M protein channels appeared ideal for 

two-dimensional class averaging to determine channel stoichiometry. 9907 

particles were picked at 150 mM DH(6)PC (Figure 4.6B), yet the resolution of 

the images did not allow the stoichiometry to be determined. The issues with 

resolution may be due to the thickness of 2 % uranyl acetate stain and/or 

potential heterogeneity of the oligomers.  
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Additionally, the 125, 150 and 175 mM concentrations of DH(6)PC displayed 

seemingly different channel configurations (Figure 4.4).  Channels observed in 

150 mM DH(6)PC were chosen for further analysis due to their high levels of 

homogeneity and frequency. The average diameter of oligomers was 

determined by measuring all channels from two fields of view. Channels present 

in 150 mM DH(6)PC averaged 8.8 nm, comparatively oligomers in 125 mM 

DH(6)PC had an average diameter of 7.6 nm, with more smaller oligomers and 

an electron dense pore not being present (Figure 4.4A), furthermore at 175 mM 

DH(6)PC channels averaged 10.5 nm and the background noise had increased 

(Figure 4.5). 

This analysis represents the first visualisation of oligomeric channels for any 

Flavivirus M protein. The ZIKV M protein oligomers exhibiting electron dense 

pores, reminiscent of other viroporins is highly supportive of our ZIKV M 

viroporin hypothesis. To determine whether the channels seen by TEM can 

form membrane-permeabilising pores, we introduced the M peptide into a dye-

release assay.  
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Figure 4.4 M oligomerisation at varying DH(6)PC concentrations, visualised by TEM 

M protein diluted in DH(6)PC prior to staining with 2 % uranyl acetate and visualisation at 125 000 x magnification by transmission 
electron microscopy. A. M protein added to 125 mM DH(6)PC B. M protein added to 150 mM DH(6)PC C. M protein added to 175 
mM DH(6)PC. TEM images kindly generated by Dr Daniel Maskell and Dr Rebecca Thompson. 

 

A             B           C 

50 nm 
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Figure 4.5 Pore diameter of M protein oligomers in a detergent 
environment 

M protein channels in the presence of 125, 150 and 175 mM DH(6)PC were 
imaged using transmission electron microscopy and the channels formed were 
quantified for two fields of view. For 125, 150 and 175 n = 107, 68 and 222 
respectively 

 

 

Figure 4.6 Oligomerisation of M protein in detergent environment by 
Transmission Electron Microscopy 

A. A selection of M protein channels in the presence of 150 mM DH(6)PC 
stained with 2 % uranyl acetate, on average ~8.6 nm in diameter. B. 2D class 
averaging of 9907 channels with 25 iterations in 150mM DH(6)PC. TEM images 
kindly generated by Dr Daniel Maskell and Dr Rebecca Thompson. 
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4.3  M peptides mediate dose-dependent release of 

carboxyfluorescein from liposomes 

Visualisation of M protein by TEM in a detergent environment showed M 

peptide oligomerised to form a ring-like structure indicative of a channel. To 

determine whether this channel is functional in vitro, a published liposome-

based dye release assay was optimised for use with M peptides (StGelais et al., 

2007; Tuthill et al., 2006; Davis et al., 2008). 

Liposomes were made by extrusion using commercially available phospholipids: 

l-α-phosphatidic acid (PA), l-α-phosphatidylcholine acid (PC) and N-lissamine 

rhodamine labelled l-α-phosphatidylethanolamine (PE), and contain 

carboxyfluorescein (CF) at a self-quenching concentration (section 2.6.1). 

Positive controls comprising rimantadine resistant M2 derived peptides (channel 

activity) or Triton X-100 (maximal dye release) (Atkins et al., 2014; Scott et al., 

2020) (Figure 4.6A and B) were added to the liposomes releasing CF, diluting 

CF from its self-quenching concentration within the liposomes and into the 

surrounding buffer. The resulting fluorescence was monitored by fluorimetry 

over a 30 min period. Baseline levels were calculated from solvent controls (5 % 

DMSO or 5 % MeOH) (section 2.6.2).  

Increasing concentrations of M protein resuspended in DMSO were added to 

CF containing liposomes, resulting in a concentration-dependent increase in 

total CF released from liposomes (Figure 4.7C). However, reconstitution of M 

protein up to 50 nM in MeOH showed no activity (Figure 4.7B), and this applied 

up to 250 nM (data not shown). Therefore, M protein was resuspended in 

DMSO at a concentration of 780 nM in subsequent experiments. 

The indirect measurement of ZIKV M channel activity described in this section is 

the first case of in vitro quantified activity for ZIKV M protein, and results are 

comparable with those of well-characterised IAV M2, HCV p7 and HPV E5 in 

the same assay (Carter et al., 2010; Wetherill et al., 2012; StGelais et al., 2007; 

Atkins et al., 2014; Scott et al., 2020).  
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Figure 4.7 M peptide displays channel activity in the liposome-based 
assay when reconstituted in DMSO. 

M2 shows a concentration-dependent effect of CF released from liposomes 
when reconstituted in methanol (MeOH). B. ZIKV M protein does not show 
activity when reconstituted in DMSO. C. ZIKV M protein displays concentration-
dependent channel activity when titrated in the liposome assay between 97.5 
and 1590 nM. Released CF fluorescence was analysed by fluorimetry (ʎex 485 
nm/ʎem 520 nm). All data shown, n=3 biological repeats, Error bars represent 
standard deviation of the mean 

M2 in MeOH 

M in MeOH 

M in DMSO 
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4.3.1 ZIKV M protein channel activity is enhanced at acidic pH 

We hypothesise that M protein will oligomerise within endosomal 

compartments. During endosomal maturation pH decreases from 6.8-5.9 in 

early endosomes to 6.0-4.9 in late endosomes (Maxfield and Yamashiro, 1987; 

Huotari and Helenius, 2011), therefore it was important to determine whether 

pH affected the activity of M protein channels. 

The archetypical M2 viroporin is pH gated via HIS37 protonation (Wang, C. et 

al., 1995; Chizhmakov et al., 1996). M2 activity aids the entry and uncoating of 

IAV by allowing protons from the acidified endosome into the virus core, 

resulting in virion destabilisation. Additionally, other viroporins have displayed 

pH-dependent activity including E5 and p7, although p7 pH sensitivity is 

genotype specific (Wetherill et al., 2012; StGelais et al., 2007; Wozniak et al., 

2010; Atkins et al., 2014). 

The liposome-based assay was adapted to assess the effect of pH on M 

channel activity, as performed for p7 and E5 (StGelais et al., 2007; Wetherill et 

al., 2012). This published endpoint assay employed external buffers at differing 

pH, with liposome-depleted supernatants re-buffered prior to measurement of 

fluorescence due to acid quenching of CF. Additionally, Triton-X100 and DMSO 

controls were included to validate the reliability of the liposomes in each pH 

buffer (section 2.6.4). 

Figure 4.8 shows a statistically significant increase in levels of M-mediated CF 

release corresponding to decreasing pH between 6.2 and 7.4. Thus, these 

experiments suggest that M protein channel activity increases in response to 

acidic pH in vitro. The acidic buffer pH in this assay reflects the pH found within 

the endosomal pathway environment, corresponding to early endosomes (pH 

6.5-6.0). This suggests that M protein channels are potentially activated in  

endosomal compartments, consistent with studies on DENV entry (Cruz-

Oliveira et al., 2015). Further acidification to pH 6.0-5.5 would be reflective of 

late endosomes. 
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Figure 4.8 The effect of pH titration on M protein channel activity 

Levels of CF release mediated by M protein was enhanced by acidic pH. M 
peptide (1 µM) and Triton x-100 were added to CF liposomes resuspended in 
liposome assay buffer adjusted to pH 6.2, 6.7 and 7.4. Liposome-free 
supernatants were quantified by fluorimetry and the pH was adjusted to pH 7.4 
by the addition of 20 µL 1 M Tris-HCl pH 8.0 per 100uL of supernatant. Triton X-
100 (T) lysed controls were used to determine maximum fluorescence. Error 
bars represent standard deviation of three repeat experiments individually 
background subtracted. Data was normalised to pH 7.4. Statistical significance 
was determined using an unpaired t test, p value pH 7.4 to 6.8 = 0.14, *p value 
pH 7.4 to 6.2 = 0.023 n=3 biological repeats.  
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4.4 M peptide channel activity displays sensitivity to 

Rimantadine in vitro 

Rimantadine (Rimantadine hydrochloride ((RS)-1-(1-adamantyl)ethanamine) 

Maybridge), was originally licensed in the 1980s to treat influenza A virus (IAV) 

infection, along with its related compound, amantadine, which was licensed in 

the 1960s. Whilst originally targeted against the prototypic IAV viroporin M2 

(Hay et al., 1985; Schnell and Chou, 2008), Rimantadine is now also known to 

block HCV p7 (Clarke et al., 2006; Griffin, S.D. et al., 2003; Griffin, S.D. et al., 

2004; Hay et al., 1985; Schnell and Chou, 2008; StGelais et al., 2007), HPV E5 

(Wetherill et al., 2012), and evidence also suggests that it blocks channels 

formed by C-terminal peptides from DENV M protein (Koff et al., 1981; Koff et 

al., 1980; Premkumar et al., 2005). Rimantadine and its derivatives are 

promiscuous compounds due to their small size, 3-dimensional hydrophobic 

adamantyl-cage and polar amine group, which help it occupy a wide variety of 

diverse binding cavities with greater or lesser avidity. Previously, rimantadine 

has been used in our lab to identify druggable binding sites via low potency 

interactions, which can be further explored via rational drug discovery methods 

(Foster et al., 2011; Foster et al., 2014; Griffin, S. et al., 2008).   

M peptide was used in liposomes at a final concentration of 780 nM, as 

determined by previous M peptide titrations (Figure 4.7). Rimantadine was 

titrated from 1.95 µM to 4 mM. Inhibition of M protein channel activity was 

classified by a decrease in the endpoint fluorescence when compared to 

vehicle-only control (section 2.6.3).  

Rimantadine concentrations at or lower than 500 µM inhibited M protein activity 

(Figure 4.9). However, at higher concentrations rimantadine caused artefactual 

higher levels of CF release from liposomes. At the lowest concentration tested, 

390 nM of rimantadine displayed inhibition levels of around 40 % (Figure 4.9), 

moreover 1 µM gave the most consistent inhibition (Figure 4.10).Although 

rimantadine has previously shown inhibitory effects on DENV M peptide 

channels in vitro and DENV in cell culture, the drug has not been tested against 

ZIKV or ZIKV M protein. Inhibition of ZIKV M channels by rimantadine in vitro 

highlights the possibility of therapeutically targeting M protein channels. If 
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rimantadine consistently inhibits ZIKV in cell culture and in vivo, the compound 

and its respective binding site could be used for drug development.  

 

Figure 4.9 Rimantadine has a dose-dependent effect on M protein-
mediated CF release 

A. Titration of rimantadine from 4 mM to 1.95 µM and in the presence of M 

protein, rimantadine was added to 780 nM of M protein 5 min prior to addition to 

CF containing liposomes. B. Titration of rimantadine from 3.125 µM to 390 nM 

in the presence of 7.6 µM M protein. C. Titration of rimantadine in the absence 

of M protein. Released CF fluorescence was analysed by fluorimetry (ʎex 485 

nm/ʎem 520 nm). N=1 
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Figure 4.10 Rimantadine at 1 µM reproducibly reduces M protein-mediated 
CF release 

Addition of rimantadine at 1 µM in the presence of M protein (780 nM) was 
added to CF containing liposomes. Background fluorescence was subtracted 
from final values and channel activity was calculated relative to M alone. 
Rimantadine reduced the fluorescence released from 100 % to 52 % on 
average from 3 biological repeats of a single well. Error bars represent standard 
deviation of the mean and statistical significance of channel activity was 
assessed by unpaired t-test (*p=0.0278). 
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4.5 Rimantadine mediates dose-dependent inhibition of ZIKV 

in cell culture 

Previous identification of rimantadine inhibition of viroporins in dye release 

assays has been translatable to virus inhibition in cell culture (StGelais et al., 

2007; Griffin, S. et al., 2008). Therefore, if rimantadine could inhibit ZIKV 

replication in cell culture, it could suggest the presence of M protein channel 

formation. It has previously been published rimantadine has a dose-dependent 

effect on the replication of closely related DENV in cell culture (Koff et al., 

1981). However, its activity against ZIKV has not previously been reported. 

Vero cells were infected with ZIKV at a multiplicity of infection (MOI) of 0.1 

plaque forming units per cell (pfu/cell). Ensuing virus replication was assessed 

using immunofluorescence and western blotting 48 hours post infection, using 

αNS3, αNS5, αE and αM antibodies with Hoechst co-staining for αNS3 and 

αNS5 antibodies (Figure 4.12) (section 2.2.6, 2.5.1, αNS3, αNS5 gifted from 

Andres Merits, Tartu). However due to the lack of Hoechst staining, non-

infected stained cells and primary-only and secondary-only antibody staining, 

there are limitations of the staining, in particular the specificity of the antibodies. 

Optimisation of Immunofluorescence (Figure 4.11) revealed the likely 

localisation of NS3 and E to be cytoplasmic, whereas NS5 appeared to localise 

to the nucleus. Of note ZIKV M shown in the bottom panel, stained for using 

AlexaFluor 594 suggests M co-localises with Envelope in AlexaFluor 488. 

However, further controls would be needed to confirm the aforementioned 

findings. 

Western blot data in Figure 4.12 shows the sizes of probed ZIKV proteins, 

interestingly the blot probed the using αM antibody shows two bands at ~10 and 

25 kDa, suggesting both mature M and prM were present in the infected cell 

lysate. Downstream analysis for cell imaging and automated cell counting was 

carried out using the IncucyteZOOM determining titre represented as the 

number of infectious units per µL at 48 hpi, adapted from protocols developed 

for HCV (Stewart et al., 2015).   
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\ 

Figure 4.11 Optimisation of ZIKV specific antibodies for we/stern blot and 
immunofluorescence 

A. Immunofluorescence staining of cells treated with ZIKV at an MOI of 0.1 
PFU/cell. Cells were fixed and stained with anti-NS3 antibody, anti-NS5 
antibody or anti-E antibody with AlexaFluor 488 and Hoecsht, or anti-E and anti-
M antibody with AlexaFluor 488 and 594 respectively, then imaged at 40x 
magnification using a Ti-E widefield microscope.  
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Figure 4.12 Optimisation of ZIKV antibodies by western blot  

Detection of ZIKV positive cell lysate, by anti-E antibody, anti-NS3 antibody, 
anti-NS5 antibody and anti-M antibody. 
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4.5.1 Rimantadine does not affect cell cytotoxicity or endocytic 

uptake of EGF 

Prior to testing rimantadine in virus culture, we conducted a cell viability assay 

using a proxy measure of metabolic activity to determine the range of 

rimantadine concentrations to use for experiments upon vero cells. We tested 

the effect of rimantadine using MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide) for assays. Previous use of rimantadine in cell 

culture has been widely reported over a range of concentrations (Koff et al., 

1981; Black et al., 1993; Govorkova et al., 2004; Koff and Knight, 1979).  

Rimantadine was tested between 5 and 120 µM for cell toxicity effects over a 48 

hr incubation period using MTT assays, results show rimantadine does not 

induce cell toxicity when added at concentrations below 100 µM. MTT levels 

were quantified by absorbance at 590 nm (Figure 4.13) (section 2.2.4).  

Additionally, the effect of rimantadine on the clathrin-dependent endocytic 

pathway, used by Flaviviruses for cell entry (Chu and Ng, 2004; Sorkin and 

Waters, 1993), was investigated using uptake of fluorescently labelled EGF 

(section 2.2.5). Rimantadine at 80 µM and below had no effect upon clathrin 

dependent endocytic uptake of fluorescent EGF, when measured and quantified 

by flow cytometry. Moreover, Bafilomycin A1, which is known to inhibit 

endocytosis through targeting the V-ATPASE proton pump, was used as a 

positive control (Figure 4.14). There are no error bars in Figure 4.14 as this was 

not repeated due to time constraints, however 25000 cells were counted for 

each condition. 

4.5.2 Rimantadine suppresses ZIKV replication in cell culture  

To investigate the effects of rimantadine on ZIKV replication, cells were 

incubated with rimantadine at non-cytotoxic concentrations (section 4.5.1). 

Rimantadine and ZIKV at an MOI of 0.1 pfu/cell were added to cells in standard 

cell culture medium. After 1 hr of incubation allowing for uptake of the virus, the 

media was removed and replaced by rimantadine containing media (Figure 

4.15A) (section 2.3.4.1). Multicycle virus replication was measured 48 hours 

post-infection, by both western blot and quantification of infected cells using 

IncuCyte Zoom analysis of E-specific immunofluorescence.  
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Rimantadine exerted a concentration-dependent inhibition of ZIKV infection, 

evidenced by both reduced numbers of infected cells by IF (IncucyteZOOM) 

and diminished levels of ZIKV E protein by western blot. The presence of 10 µM 

rimantadine or above had a significant effect on ZIKV infection (Figure 4.15). 

Translating inhibition of ZIKV M protein channels in vitro to inhibition of ZIKV 

infection in cell culture, is a significant step in proving M protein forms 

oligomeric channels which can be targeted by therapeutics and subsequently 

reduce virus infection. Furthermore, rimantadine has the potential to inhibit ZIKV 

in vivo and if successful, indicates ZIKV M can be therapeutically targeted in 

vivo. 

 

 

Figure 4.13 The effect of Rimantadine on cell viability 

Vero cells were treated for 48 hr with increasing concentrations of rimantadine 
and were compared to DMSO treated cells. The cell viability was measured 
using an MTT assay, the output of this was read using a plate reader at an 
absorbance of 590 nm. n=3 technical repeats. Error bars represent standard 
deviation. 
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Figure 4.14 Rimantadine does not effect the uptake of fluorescently 
labelled EGF 

A.  Schematic of experiment used to determine if rimantadine effects uptake of 

fluorescently labelled EGF by endocytosis. B. Rimantadine pre-treated cells 

endocytosed fluorescently labelled EGF, independent of the rimantadine 

concentration between 5 and 80 µM. The fluorescent EGF uptake of cells was 

measured using flow cytometry and quantified using median FITC, displayed as 

a % of maximum fluorescent EGF uptake at 0 µM rimantadine. Bafilomycin A1 

was used at 1 µM. Single technical repeat, 25000 cells counted per condition.   
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Figure 4.15 Rimantadine has a dose-dependent effect on ZIKV infection in 
cell culture 

Rimantadine has a dose-dependent effect on ZIKV replication at an MOI of 0.1 
between 0 and 80 µM. A. Schematic showing experiment protocol. B. 
Quantified immunofluorescence staining for ZIKV E protein. C. Representative 
images of the immunofluorescence staining for ZIKV E protein at 0, 20 and 80 
µM D. Western blot micrographs probing for ZIKV E protein alongside 
housekeeping gene GAPDH at 0, 5, 10, 20, 40 and 80 µM. N=3 biological 
repeats for immunofluorescence and western blot experiments. Error bars 
represent standard deviation of the mean and statistical significance of ZIKV 
infected cells was assessed by unpaired t-test comparing rimantadine treated 
cells with untreated cells (*p<0.01, **p<0.001). 
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4.5.3 Rimantadine targets an early stage of the ZIKV life cycle 

Rimantadine was added over a time course corresponding to the early stages of 

infection to investigate at what stage of the virus life cycle rimantadine inhibits 

ZIKV replication; specifically we asked whether rimantadine targets ZIKV entry, 

when we believe M protein channels will form. The effects upon infectivity were 

determined via a plaque reduction assay (section 2.3.4.2).  

Rimantadine was pre-incubated with BHK-21 cells for 4 hr, or added at the 

same time as the virus inoculum or post inoculation for a 48 hour period, 

Rimantadine was also added at a combination of these stages for further 

analysis (Figure 4.16 A). Rimantadine was added to cells prior to infection to 

investigate whether it blocked virus uptake into the cells. Pre-incubation 

presumably causes rimantadine to be taken up and stored in endocytic vesicles 

for a short time after its removal from cell culture media during virus entry. While 

addition of rimantadine during virus inoculation examines the effect of it on virus 

entry. Finally, the treatment of virus-infected cells post-inoculation examines the 

effect of rimantadine on the later stages of the virus life cycle. Figure 4.16 

shows rimantadine has the most pronounced effect on inhibiting ZIKV prior to 

and during virus inoculation, therefore indicating rimantadine is likely to be 

inhibiting ZIKV replication via disruption of virus entry, further supporting our 

hypothesis of M protein forming channels during endocytosis and playing a role 

in virus entry, which has not been shown previously. 
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Figure 4.16 Rimantadine targets entry step of virus life cycle shown by 
time of addition plaque assay 

Rimantadine was added at 80 µM at various stages of the plaque assay 
protocol (section 2.3.4.2). Rimantadine was either added prior to inoculation for 
4 hr, during the 1 hr inoculation period, for the 48 hr post inoculation period or 
combinations of these. Error bars represent standard deviation of the mean and 
statistical significance of ZIKV titre was assessed by t-test comparing 
rimantadine pre-treated cells or cells treated pre and during inoculation to 
untreated cells (*p<0.01). Single biological repeat with two technical repeats per 
condition. 
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4.6 Rimantadine inhibits ZIKV infection in vivo 

Rimantadine reduced levels of ZIKV infection in vitro and in cell culture, yet it 

was unclear whether this would translate into an in vivo system. Murine models 

are popular ways of recapitulating viral infections, although ZIKV does not 

usually establish an infection in immunocompetent mice, due to its inability to 

antagonise the murine STAT2-dependent interferon (IFN) response (Grant et 

al., 2016). For this reason, ZIKV murine models either use IFN/IFNAR knock-

out (KO) mice, or mice treated with an anti-IFNAR1 antibody (Rossi et al., 

Lazear et al., 2016). Therefore, we decided upon IP treatment of mice with 1.5 

mg anti-IFNAR1 antibody allowing transient inhibition of the receptor, retaining 

the remaining immune response and preventing intracranial infection and 

subsequent encephalitis (Hayashida et al., 2019). The ZIKV infection was then 

given at the same site as up to five mosquito bites from an Aedes aegypti 

mosquito, the principal vector of ZIKV, which is reported to enhance 

transmission (Pingen et al., 2016).  

Ten C57BL/6 received a dose of 20 mg/kg rimantadine subcutaneously 30 min 

prior to ZIKV infection. The mice were then infected with ZIKV (1000 pfu) by 

injection into the sole of one hind foot and up to five female Aedes aegypti 

mosquitoes subsequently bit the foot once at the same site. Five hr post 

infection, a second dose of rimantadine in PBS at 20 mg/kg was administered. 

24 hr post infection the mice were sacrificed and tissue samples from the skin of 

the foot, spleen and the serum were taken from the ten treated mice and ten 

infected control mice. These chosen organs were chosen due to previous 

investigative experiments, where ZIKV was detected (McKimmie, unpublished) 

(section 2.4). 

This experiment was repeated, although the data from the first experiment was 

discounted due to use of incorrect needles for ZIKV injection, causing bleeding 

in some mice at the site of injection, therefore enhancing infection.  

The serum taken from the mice was titred by plaque assay on Vero cells due to 

issues with previously used focus forming assay (Figure 4.16) (section 2.3.3 

and 2.3.4.1). Rimantadine treated mice had significantly lower levels of ZIKV 

present in their serum. Conversely, the RNA was extracted from the skin and 

spleen, which are known to be sites of ZIKV replication and using the same 
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protocol in the absence of rimantadine ZIKV has been detected in these organs. 

The RNA was analysed by reverse transcription qPCR. However, the levels of 

ZIKV RNA in both skin and spleen samples of control and rimantadine treated 

mice were below the detection threshold for this experiment. 

The reduction of ZIKV titres measured in rimantadine treated mice compared to 

control mice show rimantadine acts systemically, inhibiting virus infection. From 

in vitro research reported in this chapter, rimantadine inhibits ZIKV through 

targeting M protein during virus entry.  
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Figure 4.17 Rimantadine reduces viral titres of ZIKV infected mice  

Mice were given 20 mg/kg rimantadine half an hr prior to infection with 2000 

PFU ZIKV and up to five A. aegypti mosquito bites, followed by a second dose 

of 20 mg/kg rimantadine post infection prior to taking samples 24 hr post 

infection. Serum from the 10 control infected mice and 10 rimantadine treated 

mice was titred for ZIKV on Vero cells.  The graph shows individual data points 

with the mean value and SD shown. Statistical significance of ZIKV titre was 

assessed by t-test comparing rimantadine treated mice with control treated mice 

(*p<0.0001). In vivo assay kindly carried out by Dr Daniella Lefteri and Dr Clive 

McKimmie.  
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4.7 Discussion 

The role of M protein during ZIKV entry and in the virus particle has not 

previously been investigated. However, we hypothesised that ZIKV M forms 

oligomeric channels during virus entry within acidified endosomes, aiding 

Flavivirus uncoating. Uncoating is an under explored stage of the virus life 

cycle, with few published reports into its mechanism. Over the years, research 

has uncovered the necessity for acidic pH, the requirement for a non-

degradative ubiquitination step and very recently a proposed role for Valosin-

Containing Protein (VCP) and p97 to disassemble VCP/p97 ubiquitylated 

nucleocapsids (Gollins and Porterfield, 1986; Byk et al., 2016; Ramanathan et 

al., 2019).  However, there is no defined role for M protein during virus entry, 

despite the protein residing in the virion. M is known to have a role in 

chaperoning envelope protein during virus assembly, although within this 

chapter we have identified a novel role for M during entry. 

Chapter 3 described M protein forming hexameric channels in an in silico 

system, however it is important to validate these in silico predictions through 

using M in isolation. Viroporins with similar channel-forming properties have 

been successfully studied using prokaryotic recombinant expression systems 

using large soluble tags to aid purification. These include GST tags for 

alphavirus 6K (Melton et al., 2002), HCV p7 (Clarke et al., 2006), SV40 VP4 

protein (Raghava et al., 2011), Maltose Binding Protein for picornavirus 2B 

(Nieva et al., 2003) and SUMO for HRSV SH (Carter et al., 2010). However, our 

own attempts at expressing M protein using GST and HIS tagged systems 

resulted in low levels of expression and subsequent purification difficulties.  

To circumvent difficulties in recombinant protein expression, a commercially 

synthesised N-terminal truncated 55 residue M peptide was commissioned from 

AltaBioscience. The purified peptide illustrated the capability of M protein to 

form oligomers in a membrane mimetic detergent, the structures of these 

oligomers by TEM and the activity of these channels by a liposome-based 

assay, showing a novel oligomeric ZIKV M structure and activity. 

Membrane mimetic detergents such as DH(6)PC and DH(7)PC have previously 

facilitated studies of viroporin oligomerisation, including p7 peptides (Luik et al., 

2009), M2 peptide (Schnell and Chou, 2008) and FLAG-tagged SH (Carter et 
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al., 2010), by both native-PAGE or TEM. M protein underwent similar protocols 

with 300 mM DH(6)PC and, as shown in Figure 4.2A by native-PAGE, two 

Coomassie stained bands at around 45 and 66 kDa indicated oligomerisation 

took place in the membrane mimetic environment. Determining the molecular 

weight of the proteins within individual bands is ambiguous due to the limitations 

of native-PAGE. However, these could resemble hexameric and heptameric or 

larger oligomers, as the monomeric form of the M peptide is 6264 Da. These 

bands could have relevance to the different oligomer sizes seen by EM at 

different DH(6)PC concentrations (Figure 4.4). Additionally, these two sizes of 

oligomers  could relate to heterogeneity of M protein, similarly seen with p7 

(Clarke et al., 2006; Griffin, S.D. et al., 2003; Luik et al., 2009). 

Further analysis of M protein in the DH(6)PC environment identified ring-like 

structures by TEM. The channel-like complexes appeared to have an average 

protein diameter of 8.8 nm in 150 mM DH(6)PC, and are reminiscent of p7 

visualised by EM (Clarke et al., 2006; Luik et al., 2009). Previously visualised 

viroporins SH and p7 were 8.7-9.3 and 8.1 nm in diameter respectively (Carter 

et al., 2010; Luik et al., 2009). However, the diameter of the oligomer is likely to 

appear greater by TEM due to staining effects, as uranyl acetate has a grain 

size of 4 to 5 Å (Scarff et al., 2018; Haschemeyer, 1970).  

Dimensions of M protein hexameric channels from MD simulations range from 

7.6 to 8.9 nm for helix 2 pore-lining and 5.7 to 7.7 nm for channels with helix 3 

pore-lining. Chapter 3 results led to a hypothesis of M protein forming 

hexameric channels with helix 3 lining the pore, and with each monomer rotated 

to maximise interactions with the adjacent protomer. However, this lipid-

anchored structure has a hexameric channel width of only 5.7 nm, compared to 

7.6-10.4 nm which reside in detergent micelles. A slight difference between 

these measurements is to be expected due to the membrane differences of 

lipids and detergents, and the likelihood of small differences between in silico 

data and in vitro.  

Though as seen in section 4.2.2 the channels formed exhibit heterogeneity, in 

addition the use of a 2 % uranyl acetate stain will increase the size of the 

channel, due to its grain-size of 4 -5 Å (Scarff et al., 2018; Haschemeyer, 1970).  
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In comparison, HCV p7 hexamers are around 42 kDa and exhibit a diameter of 

8.1 nm at their widest point when hexameric by EM (Luik et al., 2009) and 11.1 

nm by MD (Chandler et al., 2012). Additionally, RSV SH channels are 

separated into two distinct channel conformations, measuring 8.7 nm or 9.3 nm 

by EM (Carter et al., 2010). 

However, the properties of M protein in detergents may not wholly reflect their 

properties in the virion membrane. Detergents have shorter chain lengths than 

lipids and form micelles as opposed to bilayers. Although, detergent to protein 

ratio is crucial for the oligomerisation of viroporin monomers, and either p7 

monomers or hexamers are seen in the literature, dependent on the protein to 

detergent ratio (Oestringer et al., 2019; Chen, W. et al., 2019).  

Additionally, analysis of the amino acid charges within the M protein sequence 

revealed helix 1, which lies parallel to the membrane and perpendicular to the 

TMDs in the cryo-EM structure and MD simulations in chapter 3 (Sirohi et al., 

2016; Sevvana et al., 2018), contains multiple positively charged residues and 

through the sum of negative and positively charged residue the overall positive 

charge +0.9 at pH 7.4. This positive charge will potentially attract to the 

negatively charged grid, theoretically helping to orientate channels in a single 

plane for visualisation. The linker region of the peptide contains no charged 

residues and therefore will not be as strongly attracted to the grid. 

ZIKV M was further investigated in liposomes, which more closely resemble 

ZIKV virion membranes. The ability of ZIKV M protein to mediate the release of 

CF from liposomes (Figure 4.6) was the first demonstration in vitro of a function 

associated to M protein oligomerisation, and further reinforces the molecular 

dynamic data from chapter 3, identifying M as a novel member of the virus 

encoded channels or viroporins. Similarly to viroporins HRSV SH, HPV E5, 

HCV p7, and IAV M2 all previously were shown to have channel activity using 

the liposome-based assay (Carter et al., 2010; Wetherill et al., 2012; StGelais et 

al., 2007; Atkins et al., 2014; Scott et al., 2020).  

In M peptide liposome assays (Figure 4.4) the plotted endpoint fluorescence 

never reached the maximum fluorescence set by the Triton X-100 control, 

indicating CF was not released from a proportion of the liposomes and the 

protein to lipid ratio was the limiting step of CF release. Additionally, a dose-
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dependent effect of the endpoint fluorescence occurred upon increasing M 

peptide concentration. Furthermore, HCV p7, HRSV SH and HPV E5 all display 

dose-dependent effects when added to liposomes and were optimised to avoid 

maximum CF release (StGelais et al., 2007; Carter et al., 2010; Wetherill et al., 

2012). However, at high concentrations, greater than 5µM, M may form protein 

aggregates as is reported with HPV E5 and rhinovirus VP4, destabilising 

liposomal membranes (Davis et al., 2008; Wetherill et al., 2012). Therefore, 

amounts of M peptide that allowed sufficient CF release but did not cause 

membrane destabilisation were used in this assay (780 nM) evidenced by 

inhibition at these concentrations with small molecules.  

Additionally, if time permitted it would be of interest to determine the 

approximate hydrodynamic radius of the M peptide channels within liposomes, 

using a dextran size exclusion assay (Wetherill et al., 2012; StGelais et al., 

2007; Shukla et al., 2015). This would be done in conjunction with future TEM 

analysis of channel complexes. Furthermore, membrane flotation assays on 

sucrose gradients would determine whether M integrated within liposome 

membranes by incorporation of high pH washes and detergent treatment 

(StGelais et al., 2007; StGelais et al., 2009; Wetherill et al., 2012; Panjwani et 

al., 2014).  

Viroporin functions have been associated with several stages during the virus 

life cycle, including: entry (Ruigrok et al., 1991), assembly (Ye, Y. and Hogue, 

2007) or release (Beaton et al., 2002), and viroporins involved in virus entry are 

found within the virus particle (Gonzalez and Carrasco, 2003) as is seen with M 

proteins presence in the virus membrane. 

The presence of viroporin channels is known to alter membrane permeability 

within host cells and subcellular compartments. HCV p7 and IAV M2 sense 

proton electrochemical potentials and are gated by a decrease in pH (Sarkar et 

al., 2001; Pinto et al., 1997; Wang, C. et al., 1995; StGelais et al., 2007; 

Wozniak et al., 2010; Atkins et al., 2014). Amino acids arginine, lysine, and 

histidine detect variations in the pH and can become protonated and change 

conformation upon a decrease in pH (Bezanilla, 2008). 

Similarly, decreasing the pH to mimic the physiological endosomal environment 

during virus entry, resulted in a significant increase in M peptide channel activity 
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at pH 6.2 and 6.7, compared to pH 7.4 (Figure 4.7). We speculate that a change 

in external pH may result in protonation of HIS28, as investigated by simulations 

in chapter 3, causing extended opening and or stabilisation of the channel.  

It is known that protonation of M2 HIS37 leads to a conformational change in 

gating residue TRP41. In addition, it has been reported some genotypes of HCV 

p7 may use a similar gating motif as M2 (Meshkat et al., 2009). However, 

mutations of the p7 HIS17 and TYR21 to ALA did not affect particle production 

and although HIS17 is highly conserved, TYR21 is not conserved throughout 

HCV genotypes (Montserret et al., 2010). Additionally, it is highly unlikely for 

two structurally unrelated viroporins to have the same gating motif and it has 

been suggested the gating residue could be PHE25 (Foster et al., 2014). 

Furthermore, proton-sensing properties of HCV p7 are not present across all 

HCV genotypes, for example HCV-H77 (Atkins et al., 2014).  

Unlike M2 & p7 which have pore-lining HIS residues, ZIKV M HIS28 is present 

on the N-terminal helix of M protein peptide and so is not lumenal. Thus, HIS28 

being cytosolic is more similar to HPV E5, where HIS75/77 are present at the 

channel opening (Wetherill et al., 2012). It is plausible these histidines can also 

act as a pH sensor. Additionally, there is a second histidine in ZIKV M protein, 

however this lies further towards the N-terminus in the unstructured region, 

which is absent from our peptide and the model used for MD simulations in 

Chapter 3. Interestingly DENV-2 M protein contains an additional histidine 

residue to ZIKV M at residue 39, which when mutated results in loss of virus 

infectivity (Pryor et al., 2004). If DENV-2 M also forms channels, this would be 

located at the neck of the channel, between helix 1 and helix 2.  

The data showing M protein channel activity increasing upon a reduction of pH, 

align with the published data showing ZIKV fusion during virus entry is likely to 

occur is late endosomes. Data shows ZIKV co-localises with both Rab5 of early 

endosomes and Rab7 of late endosomes, raising speculation that ZIKV is 

transported though the endocytic pathway and the late endosome pH is suitable 

for ZIKV RNA release (Li, M. et al., 2020; Owczarek et al., 2019). Additionally, 

ZIKV hemifusion is sensitive to pH and is greatest at a pH of 5.5-.5 (Rawle et 

al., 2018). Furthermore, blocking endocytosis inhibits ZIKV infection in cell 

culture  (Delvecchio et al., 2016; Li, M. et al., 2020). 



 

184 

 

Although ZIKV M channel activity has not been previously reported, DENV M 

channel activity has been measured. C-terminal peptides were reconstituted 

into voltage clamped suspended bilayers, and the conductance of sodium and 

potassium ions was measured. Additionally, this current was blocked by the 

adamantane compound, amantadine hydrochloride. Conversely, M proton 

channel activity has been disputed. Voltage clamping of Xenopus laevis oocytes 

producing DENV prM/M did not vary in proton conductance compared to non-

expressing oocytes. Additionally, conductance did not vary with changes to the 

surrounding pH. However the form of DENV prM/M at the oocyte membrane 

was not validated (Premkumar et al., 2005; Wong et al., 2011).  

The DENV M peptide used by Premkumar et al. was 40 amino acids in length, 

containing only helix 2 and 3 (Premkumar et al., 2005). By contrast, the ZIKV M 

peptide used in this chapter was 55 amino acids, ZIKV peptides retained helices 

1, 2 and 3 as they are required for channel formation as discovered through M 

protein MD simulations (data not shown). Suggesting, unlike DENV M, ZIKV M 

protein channel formation and activity in vitro requires helix 1, possibly due to 

the presence of HIS28 on ZIKV M helix 1, whereas DENV contains an 

additional HIS39. 

Viroporins are attractive targets for antiviral therapy and identifying M protein as 

a viroporin in the liposome-based assay highlights a new ZIKV antiviral target, 

which upon further development could be applied across the Flaviviruses. The 

TEM data IN section 4.2.2 and MD results from Chapter 3 highlight that the 

model of a hexameric M protein channel, support that future structural studies 

might be feasible.  

We tested rimantadine against M protein, a licenced IAV M2 inhibitor and 

known inhibitor of other viroporins (Griffin, S. et al., 2008; Wetherill et al., 2012; 

Hay et al., 1985), a strategy used to identify druggable sites, followed by further 

development to identify suitable compounds. Previously, rimantadine has 

shown viroporin inhibitory activity in the liposome-based assay and in virus 

culture, however not previously with ZIKV.  

Rimantadine had a dose dependent effect (Figure 4.8 and Figure 4.9), and was 

inhibitory at very low concentrations, suggestive of binding specificity. However, 

at high concentrations, rimantadine caused artefactual increases in the release 
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of CF from liposomes when added alongside protein. This phenomenon has 

been observed previously with other compounds for other viroporins, including 

HMA when tested with M2 (SG, personal communication). The effect on CF 

release is not seen in the absence of protein, meaning that it is likely due to a 

drug-induced effect upon how M interacts with the membrane.  

Inhibition of M using rimantadine results also translated into cell culture as seen 

in figure 4.5, the dose-dependent effect was seen between 5 and 80 µM, 

however not taken above this dose due to the cytotoxicity observed in Figure 

4.13. However, DENV-2 growth in peripheral blood leukocytes was entirely 

suppressed when incubated in 116 µM rimantadine (Koff et al., 1981). Similar 

cytotoxicity effects of rimantadine have been observed. A ~5 % reduction of live 

cells at 80 µM and cytotoxic effects seen at concentrations over 40 µM in 

Madin-Darby Canine Kidney (MDCK) cells from two sources (Govorkova et al., 

2004; Scott et al., 2020). 

Rimantadine time of addition assays show the most pronounced effect on ZIKV 

inhibition to be prior to and during virus inoculation indicating rimantadine is 

likely to be inhibiting ZIKV replication via disruption of virus entry. However, 

there is little effect of rimantadine addition during and post inoculation and post 

inoculation. Addition of rimantadine after the inoculation period is likely to be 

less effective as the virus has already entered the cells and the first round of 

infection has started, furthermore the presence of rimantadine prior to and 

during infection allows rimantadine to be present in endosomes prior to cell 

entry, whereas addition of rimantadine solely during infection does not allow for 

this build-up of rimantadine within the cell prior to virus entry, and rimantadine 

does not appear to have an effect on virus post-entry steps. 

Considering the successful inhibition of ZIKV infection by rimantadine in cell 

culture we took to replicate the results in a murine mouse model in vivo. As 

described previously (section 4.6) the ZIKV rimantadine in vivo experiment 

involved treating mice subcutaneously with rimantadine 20 mg/kg 30 min prior 

to ZIKV infection and 5 hr post infection. This treatment plan was chosen due to 

prior literature searching as described above totalling 40 mg/kg in the 24 hr 

experiment. However, to prevent ZIKV infection being cleared by mice we used 

transient treatment with an anti IFNAR1 blocking antibody (Grant et al., 2016). 
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Additionally, to enhance the viral infection the site of injection was also 

subjected to up to five mosquito bites (Pingen et al., 2016). After 24 hr post 

infection, titres of ZIKV in the serum of rimantadine treated mice were 

dramatically lower than those in the untreated mice, however due to time 

limitations this was carried out only once and exhibited low plaque counts.  

Rimantadine use in murine mouse models has been well documented via the 

treatment of IAV. For example, during a transmission study, rimantadine was 

given to infected mice 40-60 mg/kg/day. Uninfected mice were then placed in 

the same cage as rimantadine treated or untreated mice. It was observed fewer 

infected mice became infected when kept alongside treated mice (Schulman, 

1968). Additionally, more recent drug combination studies have been carried 

out with up to 30 and 80 mg/kg rimantadine per day in mice (Simeonova et al., 

2012; Bantia et al., 2010). Moreover, mice have been given 40 mg/kg by IP and 

PO and did not mention issues with the health or symptoms of treated mice 

(Hoffman et al., 1988; Herrmann et al., 1989). Our in vivo dosing regime was 

based on the treatments used in these studies. 

Furthermore, a clinical trial in 1981 tested healthy adults for symptoms after 

giving rimantadine or amantadine for 4.5 days and either 200 or 300 mg/day. 

Patients in the 300 mg/day group were given 200 mg in the morning and 100 

mg in the afternoon. At lower concentrations both drugs were well tolerated. At 

higher concentrations a greater percentage of patients treated with amantadine 

complained of central nervous system symptoms including nervousness, 

lightheaded, insomnia and fatigue. This gave way to preferential treatment with 

rimantadine (Hayden et al., 1981), however treatment with 300 mg/day equates 

to 5 mg/kg for a 60 kg human. Many previous experiments have used much 

higher concentrations of rimantadine in mice up to around 40 mg/kg. 

Rimantadine was used at 20 mg/kg in the ZIKV in vivo assay described in 

section 4.6, thus at a much higher translated concentration in humans than in 

the aforementioned trials. Therefore, providing a rationale to find an improved 

drug to be used at a suitable concentration. 

This novel function of ZIKV M as an ion channel active during virus entry could 

reveal the mechanism behind virus uncoating, not only for ZIKV but also 

translated across the Flavivirus genus. Interestingly we have shown 
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commonality between previously identified viroporins and ZIKV M, including pH 

sensing, reminiscent ring conformations and inhibition by prototypic inhibitors. 

Furthermore, we have identified a novel ZIKV drug target, for future drug 

development. 
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Chapter 5 Rational development of improved inhibitors 

targeting M protein channel activity 

5.1 Introduction 

Currently, there are no licensed ZIKV vaccines available for prevention or 

treatment of infection. There are a number of vaccines in phase I and II clinical 

trials (Dowd et al., 2016; Larocca et al., 2016; Abbink et al., 2016; Xu, K. et al., 

2018; Richner et al., 2017; Pardi et al., 2017; Brault, A.C. et al., 2017). 

However, there are challenges to overcome, including antibody-dependent 

enhancement of DENV and ZIKV due to their similarity and resultant cross-

reactivity of non-neutralising antisera (Bardina et al., 2017; Stettler et al., 2016; 

Fowler et al., 2018; George et al., 2017). Additionally, there are no currently 

available antivirals targeting ZIKV, or other related Flaviviruses, despite 

extensive de novo design and efforts to repurpose candidates from drug 

libraries against both viral and cellular targets. However, targeting ZIKV M 

protein has not previously been investigated (Devillers, 2018; Han and 

Mesplede, 2018). The identification of a ZIKV targeting therapeutic would be 

highly valuable in reducing disease severity, particularly neurological effects 

such as microcephaly and Guillian-Barré syndrome. 

A number of viral proteins comprise ideal enzymatic drug targets, primarily the 

ZIKV NS5 polymerase. Nucleoside analogue drugs selectively target viral 

polymerases to prevent genome replication, usually via their misincorporation 

and ensuing termination of nascent nucleotide chains. They are also highly 

specific for viral RdRp compared with cellular RNA polymerases (Eyer et al., 

2016; Lu et al., 2017; Hercik et al., 2017). Several ZIKV polymerase inhibitor 

compounds have been identified in preclinical studies, including a nucleoside 

analogue BCX4430 (aka Galidesivir, Biocryst), and the nucleotide analogue 

prodrug, Sofosbuvir (Gilead), which is approved by the U.S Food and Drug 

Administration (FDA), Medicines and Health products Regulatory Agency 

(MHRA) and European Medicines Agency (EMA) for treatment of HCV infection 

(Eyer et al., 2016; Hercik et al., 2017; Zmurko et al., 2016; Julander et al., 2017; 

Bullard-Feibelman et al., 2017). BCX4430 (Galidesivir, BioCryst Pharma) is 

currently in Phase I clinical trials (NCT03800173). Other viral proteins exhibiting 

methyltransferase (NS5), protease (NS2B-NS3) and helicase (NS3) activity are 
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also being explored as potential drug targets (Coutard et al., 2017; Lee, H. et 

al., 2017; Cao et al., 2016). An ideal therapy would involve targeting a 

combination of these proteins, mitigating the emergence of resistance 

mutations. 

The newly identified viroporin activity exhibited by the M protein in chapters 3 & 

4 presents an opportunity for the development of new ZIKV and Flavivirus 

therapeutics. 

Viroporin inhibitors have been used previously to treat virus infected patients, 

with the first approved in the 1960’s. The adamantane compounds amantadine, 

and later rimantadine, were used to treat IAV (Davies et al., 1964; Dawkins et 

al., 1968; Togo et al., 1968; Wingfield et al., 1969; Sabin, 1967), although it was 

many years later that their mode of action targeting the M2 viroporin was 

discovered; adamantane mediated prevention of M2 proton conductance 

inhibits viral uncoating during entry (Hay et al., 1985; Pinto et al., 1992; Sugrue 

and Hay, 1991). Adamantanes have since displayed genotype-specific 

inhibitory effects against the HCV viroporin, p7 (StGelais et al., 2009; Griffin, S. 

et al., 2008) and combination therapy comprising amantadine, ribavirin and 

interferon has been tested using small treatment groups as a HCV combination 

therapy in clinical trials and a slight increase in efficacy was observed. 

Genotype 1a patients saw the most promising results, however genotype 1b 

patients exhibited L20F mutations, which locate to the peripheral adamantane 

binding site and have been shown experimentally to represent genuine 

resistance polymorphisms (Berg et al., 2003; Brillanti et al., 2000; Foster et al., 

2014; Foster et al., 2011; Mihm et al., 2006; Castelain et al., 2007). 

Viroporins have also been targeted using amiloride derivatives (e.g. 

hexamethylene amiloride (HMA) and BIT225). Previously HMA was used as a 

HIV therapeutic (Karlsson et al. 1993; Ewart et al. 2004) due to targeting 

viroporin vpu (Ewart et al. 2002). Similarly to adamantanes, HMA can also block 

other viroporins including HCV p7 in vitro (Premkumar et al. 2004) and in a pH 

monitoring cell-based assay (Wozniak et al. 2010). Furthermore, HMA also 

inhibits viroporins encoded by the E proteins of human coronavirus 229 (HCoV-

229), Severe acute respiratory syndrome 1 (SARS1) and mouse hepatitis virus 

(MHV) (Pervushin et al., 2009; Wilson et al., 2006). However, HMA is relatively 
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toxic, leading to a need for derivative development (Steinmann et al., 2007b; 

Chang et al., 2009). The inhibition of M2 by HMA was studied, however its 

inhibition was improved upon by the production of novel HMA derivatives, in 

addition to improved cytotoxicity (Jalily et al., 2016). Compound BIT225 

reportedly also has inhibitory activity against HCV p7 and specifically HIV-1 in 

monocyte-derived macrophages. The latter has led to phase II clinical trials 

within South East Asia, predominantly, comparing combination therapy of naïve 

HIV-1 patients with antiretrovirals and BIT225 or a placebo. The trials report a 

statistically significant benefit to patients CD8+ and activated CD4 T cell 

populations (Wilkinson et al., 2016). 

The effectiveness of antivirals targeting RNA viruses as monotherapies is 

limited. RNA viruses evolve quickly and administering viroporin inhibitors as a 

monotherapy potentially will become clinically unsuitable due to the selection of 

resistance mutations (Foster et al., 2011; Griffin, S.D., 2009). M2 and p7 gained 

resistance mutations to adamantane compounds, which were located to 

predicted binding sites (Pabbaraju et al., 2008; Castelain et al., 2007; Mihm et 

al., 2006; StGelais et al., 2009). However, the emergence of resistance of IAV 

M2 to amantadine was suppressed when given alongside neuraminidase-

targeting antiviral Oseltamivir (Ilyushina et al., 2006). Therefore, it remains 

important that the number of drug targets is expanded as even drugs with 

relatively low genetic barriers to resistance might have potential within 

combination therapies, and the lack of treatments to prevent or treat Flavivirus 

infection needs to be addressed.  

The development of new viroporin inhibitors is hindered by the difficulty in 

determining their structure and working with membrane proteins in high-

throughput systems. Therefore, our programme of drug development employed 

a rational approach involving structural information, in silico molecular models 

and compound docking software (Foster et al., 2014). This chapter describes 

our approach to discover compounds targeting using the in silico M protein 

hexamer model from chapter 1 as a structural template, and subsequent 

validation using the liposome-based dye-release channel activity assays used in 

chapter 2 and virus replication in cell culture. 
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5.2 M protein shows differential sensitivity to structurally 

distinct viroporin inhibitors 

Rimantadine inhibits the activity of sensitive variants of the M2 and p7 

viroporins (Wang, C. et al., 1993; Schnell and Chou, 2008; StGelais et al., 

2007). Now, based upon our findings (section 4.4, 4.5 & 4.6), we can place 

ZIKV M as another rimantadine-sensitive member of the viroporin family.  

Our previous work on viroporins has utilised rimantadine and other prototypic 

inhibitors to identify druggable sites upon channel complexes, which, in turn, are 

amenable to the development of more bespoke, and so more potent inhibitory 

series. Thus, we explored whether additional inhibitory compounds identified 

during previous viroporin studies could similarly block M protein channel activity. 

Whilst the effects of rimantadine appeared specific, its promiscuity made it 

desirable to ensure that the liposome assay was capable of discriminating 

effective inhibitory compounds from those lacking activity targeting M. Thus, we 

capitalised upon the availability of distinct compound series targeting a well-

characterised peripheral binding site upon the HCV p7 viroporin channel 

complex (Foster et al., 2014; Shaw et al., 2019). 

The series contains rationally developed compounds, with a defined structure 

activity relationship (SAR) versus the peripheral site and dramatically improved 

drug-like qualities. Thus, we predicted that the structural differences between 

hexameric M and heptameric p7 channel complexes should result in distinct 

patterns of activity for such compounds when tested functionally against M 

peptides. 

Small molecules designed to inhibit other viroporins were tested for inhibitory 

effects against M protein channels, these include ‘JK’ compounds. JK 

compounds are second generation compounds designed to target HCV p7 

channels, composed of an oxindole core, an N-alkyl substituent and a benzyl 

group. JK3/32 was the most active compound against HCV p7 (Shaw et al., 

2019), and is thought to target a peripheral p7 site. However, against ZIKV M 

JK3/34 and JK3/42 were the most effective. Although, these compounds were 

assayed in cell culture against p7, whereas they were tested against M in 

liposomes. In Figure 5.2 Rimantadine and JK3/42 significantly reduced channel 
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activity to 75% and 42 % respectively, however JK3/34 reduced activity to 51 %. 

Conversely, JK3/40 did not reduce channel activity in either assay. 

 

Figure 5.1 Representative JK compound chemical composition 

JK3/32 shown representing the p7 second generation compounds 
containing an oxindole core, an N/alkyl substituent and a benzyl group. 
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Figure 5.2 Inhibition of M protein channel activity by small molecules 

The Liposome-based channel activity assay was used to determine the activity 
of compounds against M protein channels. A. Inhibition of M protein channels 
by second generation p7 inhibitors alongside Rimantadine. Rimantadine, 
JK3/34 and JK3/42 reduced activity to 75, 51 and 42 % respectively. Data 
shown, JK3/32, JK3/40, JK3/42, DMSO and Rimantadine n=2 biological 
repeats, JK3/38, JK3/42 and JK3/46 n=1 biological repeat. Error bars represent 
standard deviation of the mean. Statistical significance was determined using 
an unpaired t test, ****p value JK3/42 <0.0001, *p value rimantadine 0.0167 
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5.3 Identification of candidate drug binding sites and docking 

of adamantanes into M protein channel models in silico 

Whilst no crystallographic, NMR or cryo-EM oligomeric M protein channel 

structure is available, the optimal in silico model generated and simulated in 

chapter 3 could comprise a surrogate template for the design and/or in silico 

screening of potential inhibitors, depending upon its accuracy. In this regard, 

previous studies utilising de novo models of both HCV p7 and HPV16 E5 

channel complexes enabled the design of bespoke inhibitory compounds 

(Foster et al., 2011; Wetherill et al., 2012). Thus, the in silico hexameric ‘helix 3 

pore-lining rotated’ model was scrutinised using Maestro software and SiteMap 

tool to identify potential drug binding sites (Halgren, 2009).  

SiteMap provides two analyses of potential binding sites, SiteScore and 

Druggability (Dscore). Sites with a SiteScore of >0.8 are classed as a possible 

binding pocket, and those with a score >1.0 are identified as binding sites with 

particular importance. Druggability categorises sites as either very druggable 

>1.0, druggable 1.0-0.8, intermediate 0.8-0.7 and difficult <0.7. 

The most favourable site, site L1 (GLU59, LYS60, VAL61, LEU64), was located 

within the channel lumen. This had a SiteScore of 1.111 and druggability score 

of 1.222, suggesting that this site had considerable potential for the 

development of novel ligands. Other drug binding sites (sites L2 and L3) 

identified within the lumen were less favourable according to prediction 

software, and were located towards the helix 1 neck of the lumen (site L2), and 

at the linker region between the TMDs at the opening of the pore (site L3) 

(Table 5.1).  

Binding site SiteMap Druggability 

L1 1.111 1.222 

L2 0.875 0.944 

L3 0.730 0629 

Table 5.1 SiteMap and druggability scores of Lumenal binding sites  
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Rimantadine was predicted to bind most strongly to site L1. Rimantadine, 

docked into this site using Maestro software, was predicted to make 

hydrophobic interactions with VAL61, LEU64, VAL65 and LEU68 (Figure 5.4A).  

However, unlike some docking packages, the SiteMap tool does not effectively 

identify binding sites that incur significant hydrophobic penalties for bound 

ligands, such as those upon the membrane-exposed surface of the M channel 

complex.  Prior experience of other viroporin inhibitor binding sites (Foster et al., 

2011) and the use of protein surface representation in visualisation software led 

us to select a peripheral cavity (P1) as an additional binding site of residues 

TYR63, LEU64, VAL65, MET66, ILE67 & LEU68 (Figure 5.3B).  

Docking of rimantadine into the identified binding sites, accounting for 

hydrophobic penalties, found it preferentially docked into L1 site, which had the 

highest SiteMap and druggability scores. The adamantyl cage of rimantadine 

was shown to form the interactions with the cavity, as did amantadine (Figure 

5.4B). Additionally, derivatives of rimantadine (N-methyl rimantadine and N-

acetyl rimantadine) bound to the same lumenal site. However, these 

compounds posed in the opposite direction with their adamantane cages facing 

the lumen, seen in Figure 5.4B, C, D and E, this could be due to less 

hydrophobic R-groups.  

  



 

196 

 

 

Figure 5.3 Identified drug binding sites on in silico M protein hexameric 
model 

Surface representation of M protein model in white with the chosen drug binding 
sites highlighted in blue, and other binding sites identified. A. Identified lumenal 
binding cavities 1, 2 and 3 (Table 5.1), two protomers hidden for representation 
and favoured lumenal site 1 highlighted in blue. B. Peripheral drug binding site 1 
highlighted in blue. 
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Figure 5.4 Docking of adamantane compounds into the lumenal 1 site of optimal hexameric M protein in silico model  

Adamantane compounds docked into lumenal (L) 1 site of the optimal in silico model, protein displayed top-down with the linker region 

facing up. A. Rimantadine docked with adamantane cage interacting with the lumenal cavity. B. Amantadine docked into model displayed 

top-down, with adamantane cage interacting with the luminal cavity. C. methyl-rimantadine docked into model displayed top-down, with 

methyl group interacting with the luminal cavity. D. acetyl-rimantadine docked into model displayed top-down, with methyl group 

interacting with the luminal cavity. E. Visualisation of interactions between protein and compound with Rimantadine docked. Docking and 

images kindly done by DR Ravi Singh.
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5.4 Identification and HTS targeting of peripheral and lumenal 

binding sites 

Identification of potential drug binding sites on ZIKV M protein led to screening 

of the structurally distinct targets with possible novel inhibitors. As rimantadine 

was not amenable to modification (Figure 5.4), and the previously screened JK 

compounds series didn’t prove promising (Figure 5.2), compounds identified in 

section 5.3 were screened in silico by Dr Ravi Singh.  

A TOCRIS drug-repurposing library was screened against L1 and P1 binding 

sites on the M protein in silico model. Of the 1280 compounds in the library the 

top ~50 docked compounds were picked to be assayed using the liposome-

based channel activity assay. These compounds were ranked using Glide by 

docking score and GlideScore. In the selection of the top 50 compounds per 

binding site, those common to both lists were eliminated, followed by a process 

of attrition to identify the compounds with the best molecular fit, through 

analysis of binding energies. Additionally, the lowest scoring compound of the in 

silico screening was selected as a negative control for each binding site. All the 

selected compounds are listed in Table 5.2 and Table 5.3 

5.4.1 Screening in silico selected compounds using dye release 

assays  

The top 50 compounds ranked by docking score for both drug binding sites, 

were tested using the liposome-based channel activity assay (section 2.6.3 & 

4.3). Compounds reconstituted in DMSO were assayed at 1 µM against M 

peptide alongside the positive control rimantadine, and negative control DMSO. 
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"Rank" Compound Name Tocris ID glide gscore Description 

N1 Mifepristone 1479 0.286 antiprogestogenic steroid 

N2 NAB 2 5131 0.603 Anti α-synuclein toxicity 

1 FR 139317 1210 -10.227 ETA antagonist 

2 ZCL 278 4794 -9.294 Cdc42 inhibitor 

3 Elinogrel 5316 -8.829 P2Y12 antagonist 

4 Taxol 1097 -8.711 Promotes microtubules 

5 UK 356618 4187 -8.401 MMP-3 inhibitor 

7 TC-1 15 4527 -8.216 α2β1 inhibitor 

8 AS 2034178 5035 -8.032 FFA1 (GPR40) agonist 

9 CP 775146 4190 -7.963 PPARα agonist 

10 GW 6471 4618 -9.092 PPARα antagonist 

11 Pravastatin sodium salt 2318 -7.825 HMG-CoA reductase inhibitor 

12 Fluvastatin sodium 3309 -7.717 HMG-CoA reductase inhibitor 

13 TC NTR1 17 5087 -7.683 NTS1 partial agonist 

14 VER 155008 3803 -7.686 Hsp70 inhibitor 

15 AMG PERK 44 5517 -7.618 PERK inhibitor 

16 Glibenclamide 0911 -7.537 KATP channel blocker 

17 Argatroban 1637 -7.454 Thrombin inhibitor 

18 KB SRC 4 4660 -7.444 c-Src inhibitor 

19 GBR 12909 dihydrochloride 0421 -7.965 DA uptake inhibitor 

20 (±)-NBI 74330 4528 -7.366 CXCR3 antagonist 

21 CU CPT 4a 4883 -7.331 TLR3 inhibitor 

22 A 887826 4249 -7.315 
voltage-dependent NaV1.8 channel 

blocker 

23 SR 2640 hydrochloride 1804 -7.296 LTD4 /LTE4 receptor antagonist 

24 NSC 74859 4655 -7.258 STAT3 inhibitor 

25 RWJ 67657 2999 -7.217 p38α and p38β inhibitor 

26 Lu AA 47070 4783 -7.659 adenosine A2A receptor antagonist 

27 Edaglitazone 4784 -7.176 PPARγ agonist; antidiabetic 

29 GSK 1562590 hydrochloride 5110 -7.11 urotensin II (UT) receptor antagonist 

30 Flurizan 4495 -7.098 γ-secretase inhibitor 

31 GW 9508 2649 -7.096 FFA1 (GPR40) agonist 

32 GSK 269962 4009 -7.051 ROCK inhibitor 

33 AC 5216 5281 -6.986 TSPO ligand 

34 DBZ 4489 -6.973 γ-secretase inhibitor 

35 PF 04418948 4818 -6.957 EP2 receptor antagonist 

36 GSK 2837808A 5189 -6.942 LDHA inhibitor 

37 Sal 003 3657 -6.935 Inhibitor of eIF2α 

38 PD 173212 3552 -7.029 CaV2.2 blocker 

39 NTRC 824 5438 -9.012 NTS2 antagonist 

40 ONO AE3 208 3565 -6.889 EP4 antagonist 

41 RS 17053 hydrochloride 0985 -6.88 α1A antagonist 

42 Pitavastatin calcium 4942 -6.864 HMG-CoA reductase inhibitor 

43 L-161,982 2514 -6.858 EP4 receptor antagonist 

44 AMN 082 dihydrochloride 2385 -6.871 mGlu7 agonist 

45 TC-N 1752 4435 -6.815 NaV channel blocker 

46 PF 431396 4278 -6.799 Dual FAK/PYK2 inhibitor 

47 GNF 5837 4559 -6.754 Trk inhibitor 

48 KS 176 4169 -6.731 BCRP inhibitor 

49 Sarpogrelate hydrochloride 3739 -6.769 5-HT2A antagonist 

50 GKA 50 5133 -6.689 Glucokinase activator 

Table 5.2 top 50 Lumenal in silico HTS compounds 

The top 50 compounds selected for the lumenal binding site are listed. As 
identified by glide. The two compounds identified as the least likely inhibitors by 
the in silico screen were selected as the two negative compounds, named N1 
and N2. The compounds are ranked according to docking score, the displayed 
glide score is the approximate ligand binding free energy. Channel activity 
colour coding: <30 % green, >30 % <70 % yellow, >70 % red. 
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"Rank" Compound Tocris ID glide gscore Description 

N2 AMG 548 3920 0.471 p38α inhibitor 

1 RWJ 21757 2719 -6.475 TLR7 agonist 

2 Ferrostatin 1 5180 -6.309 inhibitor of erastin induced 
ferroptosis 

3 AA 29504 3972 -6.31 Positive allosteric 
modulator of GABAA 

receptors 

4 L-732,138 0868 -6.167 NK1 antagonist 

5 API-2 2151 -6.158 Inhibitor of Akt/PKB 
signaling 

6 5-BDBD 3579 -6.13 P2X4 antagonist 

7 LY 225910 1018 -6.082 CCK2 antagonist 

8 Formoterol hemifumarate 1448 -6.065 β2 agonist 

9 TC-S 7006 5240 -5.979 Tpl2 inhibitor 

10 TCS 2210 3877 -6.005 Inducer of neuronal 
differentiation in MSCs 

11 Sumatriptan succinate 3586 -5.952 5-HT1A, 5-HT1B and 5-HT1D 
agonist 

12 MRS 3777 hemioxalate 2403 -6.964 A3 antagonist 

13 Thiamet G 4390 -6.079 O-GlcNAcase inhibitor 

14 Abacavir hemisulfate 4148 -5.894 Reverse transcriptase 
inhibitor 

15 DDR1-IN-1 5077 -5.99 DDR1 inhibitor 

16 Fexofenadine hydrochloride 2429 -5.859 H1 receptor antagonist 

17 6-Chloromelatonin 0443 -5.844 Melatonin agonist 

18 GSK 0660 3433 -5.864 PPARδ antagonist 

19 PCA 4248 0571 -5.783 PAF receptor antagonist 

20 Axtinib 4350 -5.765 VEGFR-1, -2 and -3 
inhibitor 

21 DSR 6434 4809 -5.971 TLR7 agonist 

22 Necrostatin-1 2324 -5.756 RIP1 kinase inhibitor 

23 Trifluorothymidine 4460 -5.838 Thymidylate synthetase 
inhibitor 

24 Cilnidipine 2629 -5.729 Dual CaV1.x and CaV2.x 
blocker 

25 Efonidipine hydrochloride monoethanolate 3733 -5.693 CaV1.x and CaV3.x blocker 

26 ITE 1803 -5.69 Endogenous agonist for the 
transcription factor aryl 
hydrocarbon receptor 

27 L-165,041 1856 -5.689 PPARδ agonist 

28 EB 47 4140 -6.033 PARP-1 inhibitor 

29 GSK 2830371 5140 -5.657 allosteric inhibitor of Wip1 
phosphatase 

30 AZD 1480  5617 -5.738 JAK2 inhibitor 

32 Amlodipine besylate 2571 -5.638 CaV1.x blocker 

33 Melatonin 3550 -5.628 agonist at MT1 and MT2 

34 Fludarabine 3495 -5.626 Purine analog 

35 PF 06447475 5716 -5.609 LRRK2 inhibitor 

36 SU 6668 3335 -5.608 PDGFR, VEGFR and 
FGFR inhibitor 

37 AZD 5438 3968 -5.836 Cdk inhibitor 

38 SU 11274 4101 -6.145 Inhibitor of MET tyrosine 
kinase activity 

39 FPL 64176 1403 -5.543 CaV1.x activator 

40 Sunitinib malate 3768 -5.543 VEGFR, PDGFRβ and KIT 
inhibitor 

41 YK 4-279 4067 -5.535 RNA helicase inhibitor 

42 Ralfinamide mesylate 4029 -5.678 Na+ channel blocker 

43 ML 298 hydrochloride 4895 -5.504 PLD2 inhibitor 

44 FH 1  5254 -5.485 Enhances iPSC-derived 
hepatocyte differentiation 

and maturation 
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45 PLX 647 dihydrochloride 5102 -6.23 dual Fms/KIT inhibitor 

46 GPi 688 3967 -5.438 Allosteric glycogen 
phosphorylase inhibitor 

47 CP 94253 hydrochloride 1317 -5.441 5-HT1B agonist 

48 CGP 57380 2731 -5.44 Mnk1 inhibitor 

49 BW 723C86 hydrochloride 1059 -5.433 5-HT2B agonist 

50 LY 364947 2718 -5.84 TGF-βRI inhibitor 

Table 5.3 Peripheral HTS in silico top 50 compounds 

The top 50 compounds selected for the peripheral P1 binding site are listed. As 
identified by glide. The two compounds identified as the least likely inhibitors by 
the in silico screen were selected as the two negative compounds, named N1 
and N2. The compounds are ranked according to docking score, the displayed 
glide score is the approximate ligand binding free energy. : <50 % green, >50 % 
<70 % yellow, >70 % red. 
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5.4.1.1 Screening of compounds docked to the lumenal binding site 

The top 50 compounds predicted to bind in silico to the M protein lumenal 

cavity, as ranked by glidescore, are listed in Table 5.2. The activity of these 

compounds was first assessed using the liposome-based channel activity assay 

(Figure 5.4) (section 2.6.3 & 4.1).   

Of the 50 compounds, several increased the fluorescence release from 

liposomes containing M protein, potentially fluorescing, activating the channels 

or disrupting liposome membranes similar to high concentrations of rimantadine 

(Figure 4.9). These included: GBR 12909, a dopamine reuptake inhibitor; KS 

176 a Breast Cancer Resistance Protein inhibitor; PF 04418948, a 

prostaglandin E2 receptor antagonist; and PF 431396, a focal adhesion kinase 

and proline-rich tyrosine kinase 2 inhibitor. However, most compounds reduced 

the fluorescence released from liposomes and 26 % of compounds reduced 

fluorescence by over 50 %, presumably through inhibiting M protein channels. 

The most active of these compounds included (±)-NBI 74330 a CCRX3 

antagonist (Piotrowska et al., 2018), GNF 5837 a Trk inhibitor (Albaugh et al., 

2012) and GSK2837808A a lactate dehydrogenase A (LDHA) inhibitor 

(Thongon et al., 2018). A cut-off of 50 % channel activity was used to choose 

compounds to be tested in cell culture. Of the 13 compounds below this cut off, 

which all improved upon rimantadine by over 25% channel activity inhibition, 

three were taken forward: GNF 5837, GSK2837808A and KB SRC 4. These 

compounds were selected from others below the cut-off based on their rapid 

commercial availability. However, in Figure 5.5 the negative control compounds 

Mifepristone and NAB 2 also reduced channel activity by over 50%, showing the 

docking process is not flawless, and only refines a list of compounds into those 

most likely to bind into identified sites. 

 



 

203 

 

Figure 5.5 Inhibition of M 
peptide channels by lumen-
targeting compounds using 
liposome-based channel 
activity assay 

Compounds identified by in 
silico docking to the L1 site were 
used in the liposome-based 
channel activity assay at 1 µM 
alongside M protein at 390 nM. 
Released fluorescence of M 
was normalised to 100 % and 
the inhibitory effects of 
compounds were compared. 
Assay cut off shown in red at 
50%. N=3 biological repeats.
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5.4.1.2 Screening of compounds docked to the peripheral binding site 

The top 50 ranked compounds docked into the M protein membrane-facing 

peripheral cavity are listed in Table 5.3. Screening of these 50 compounds 

against M by the in vitro liposome-based channel activity assay (Figure 5.5) 

(section 2.6.3) similarly showed some compounds at 1 µM increased 

fluorescence similarly to the effects of high rimantadine concentrations. These 

included: abacavir, a nucleoside analogue reverse-transcriptase inhibitor; 

ferrostatin 1, an inhibitor of non-apoptotic cell death; and ralfinamide mesylate, 

a sodium channel blocker. However, a variety of compounds also reduced 

fluorescence release, although not to the same extent as a proportion of the 

lumenal compounds. The compounds which reduced levels of CF released 

included formoterol hemifumarate, a β2-adrenoceptor agonist licensed for 

treatment of chronic asthma and Chronic obstructive pulmonary disease 

(Descalzi et al., 2008), AA 29504 an allosteric modulator of GABAA receptors 

(Hoestgaard-Jensen et al., 2010) and L 732,138, a tachykinin NK1 receptor 

antagonist (Munoz et al., 2010). A cut-off of 55% channel activity was used to 

choose compounds to be tested in cell culture and the negative control AMG 

548 resulted in a channel activity of almost 100%. Of the 6 compounds below 

this cut off 3 were taken forward: AA 29504, Formoterol hemifumarate, L-732 

138. These compounds were selected from others below the cut-off based on 

their commercial availability.
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Figure 5.6 Inhibition of M 
peptide channels by 
peripherally targeting 
compounds using 
liposome-based channel 
activity assay 

Compounds identified by in 
silico docking to P1 site were 
used in the liposome based 
channel activity assay at 1 
µM alongside M protein at 
390 nM. Released 
fluorescence of M was 
normalised to 100 % and the 
inhibitory effects of 
compounds were compared. 
Assay cut off shown in red at 
55%. N=3 biological repeats. 
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5.4.2 In silico docking of generic hits into ZIKV M viroporin model 

Three of the top hits from each of the binding sites were chosen for further 

testing. In Figure 5.7 and Figure 5.8 the structures of these compounds and the 

orientation in which they are predicted to bind to the cavities of M protein in 

silico structure are presented. In Figure 5.9 and Figure 5.10 the interactions the 

compounds are predicted to make with the M protein hexamer are shown, 

carried out by Dr Ravi Singh.  

All compounds are shown to make at least one hydrogen bond with M protein, 

shown by a pink line. Lumenal compounds are predicted to form a hydrogen 

bond with THR57 on either one or two monomers per interacting compound. 

Peripheral compounds are predicted to form a hydrogen bond with TYR63 in 

addition to ALA43 for formoterol. Furthermore, aromatic rings of L 732, 138 and 

AA 29504 interact through a non-covalent interaction with the aromatic ring of 

TRP51 and TYR63 respectively forming π–π stacking interactions shown in by 

green lines. The conservation of these binding site-defined residues varies; 

ALA43 is highly conserved throughout the Flavivirus genus (Figure 3.1), whilst 

TRP51 and TYR63 are partially conserved, found in WNV, and WNV/DENV4 

respectively. However, DENV2 and DENV4 retain residues with similar aromatic 

properties. Conversely, THR57 is not conserved across closely related viruses. 

As for ALA43, TRP51 and TYR63 are more highly conserved the peripheral site 

may be a more robust binding site, reducing the risk of resistance mutations. 
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Figure 5.7 GNF 5837 and M protein predicted interaction data  

A. Surface plot of M protein hexamer in silico model with the GNF 5837 shown 
docked into the lumenal cavity, represented as sticks in white, orientated 
towards the linker region.  B. Predicted interactions between GNF 5837 and M 
protein lumenal cavity in Maestro software. Hydrophobic residues highlighted in 
green, positively charge residues in dark blue, polar residues in light blue and 
hydrogen bonds shown as pink lines. Maestro image kindly generated by Dr 
Ravi Singh. 
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Figure 5.8 GSK 2837808A and M protein predicted interaction data 

A. Surface plot of M protein hexamer in silico model with the GSK 2837808A 
shown docked into the lumenal cavity, represented as sticks in white, orientated 
towards the linker region.  B. Predicted interactions between GSK 2837808A 
and M protein lumenal cavity in Maestro software. Hydrophobic residues 
highlighted in green, positively charge residues in dark blue, polar residues in 
light blue and hydrogen bonds shown as pink lines. Maestro image kindly 
generated by Dr Ravi Singh. 
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Figure 5.9 KB SRC 4 and M protein predicted interaction data 

A. Surface plot of M protein hexamer in silico model with the KB SRC 4 shown 
docked into the lumenal cavity represented as sticks in white, orientated 
towards the linker region. B. Predicted interactions between KB SRC 4 and M 
protein lumenal cavity in Maestro software. Hydrophobic residues highlighted in 
green, positively charge residues in dark blue, polar residues in light blue and 
hydrogen bonds shown as pink lines. Maestro image kindly generated by Dr 
Ravi Singh. 
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Figure 5.10 AA 29504 and M protein predicted interaction data 

A. Surface plot of M protein hexamer in silico model with the AA 29504 shown 
docked into the peripheral cavity represented as sticks in yellow, orientated 
towards the linker region. B. Predicted interactions between AA 29504 and M 
protein peripheral cavity in Maestro software. Hydrophobic residues highlighted 
in green, glycine highlighted in white and hydrogen bonds shown as pink lines. 
Maestro image kindly generated by Dr Ravi Singh. 
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Figure 5.11 L-732, 183 and M protein predicted interaction data 

A. Surface plot of M protein hexamer in silico model with the L-732, 183 shown 
docked into the peripheral cavity represented as sticks in yellow, orientated 
towards the linker region. B. Predicted interactions between L-732, 183 and M 
protein peripheral cavity in Maestro software. Hydrophobic residues highlighted 
in green, hydrogen bonds shown as pink lines and π–π stacking interactions 
shown in green. Maestro image kindly generated by Dr Ravi Singh. 
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Figure 5.12 Formoterol and M protein predicted interaction data 

A. Surface plot of M protein hexamer in silico model with the Formoterol shown 
docked into the peripheral cavity represented as sticks in yellow, orientated 
towards the linker region. B. Predicted interactions between Formoterol and M 
protein peripheral cavity in Maestro software. Hydrophobic residues highlighted 
in green and hydrogen bonds shown as pink lines. Maestro image kindly 
generated by Dr Ravi Singh. 
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5.4.3 Testing selected screened compounds in cell culture 

The in silico screen of 100 TOCRIS library identified a number of compounds 

which reduced M protein channel activity in vitro. Three of the top inhibitory 

compounds which had a greater than 50 % reduction of M protein channel 

activity in vitro from both sites were selected to be further tested in cell culture. 

Compounds selected targeting the Lumenal site comprised: GNF 5837, GSK 

2837808A and KB SRC 4. Peripherally targeting selected compounds were AA 

29504, formoterol hemifumarate and L-732,138. 

Additionally, the effects of JK3/34 and JK3/42 (section 5.2) in viral cell culture 

was investigated, however upon addition to cell culture media the compounds 

were toxic and caused media discolouration at low concentrations.  

The TOCRIS repurposing library contains previously licensed generic 

compounds and biologically active compounds shown to have activity against 

GPCRs, ion channels, kinases, enzymes, nuclear receptors and transporters. 

The effect of these compounds on Vero cells was investigated, to determine the 

concentrations used in the future cell culture screening against ZIKV. MTT 

assays were used to quantify the effect of the compounds on cell viability 

(section 2.2.4). 

Selected lumen-targeting compounds for cell culture assays were found to have 

no adverse effects upon cellular metabolism when applied to cells across the 

µM range, with the exception of GNF 5837, which was only tolerated by cells at 

nM concentrations (Figure 5.13). Similarly, the majority of chosen peripherally 

targeting compounds did not affect cell viability at µM (Figure 5.14). Chosen 

concentrations are shown in Table 5.3. 
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Figure 5.13 The effect of lumen-targeting TOCRIS selected compounds on 
cell viability  

A. The effect of GNF 5837 on cell viability at 48 hr between 0 and 80 nM. B. 
The effect of GSK 2837808A on cell viability at 48 hr between 1 and 40 µM. C. 
The effect of KB SRC 4 on cell viability at 48 hr between 0 and 1 mM.  
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Figure 5.14 The effect of peripherally targeting TOCRIS selected 
compounds on cell viability 

A. The effect of L-732, 138 on vero cell viability at 48 hr between 0 and 100 µM. 
B. The effect of formoterol hemifumate on vero cell viability at 48 hr between 0 
and 100 µM. C. The effect of AA 29504 on vero cell viability at 48 hr between 0 
and 20 µM. 

Compound Concentration (µM) 

GNF 5837 0.08 

GSK 2837808A 40 

KB SRC 4 0.25 

L-732, 138 40 

Formoterol 80 

AA 29504 10 

Table 5.4 Concentrations of screened compounds for use in cell culture  
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5.4.3.1 Do selected TOCRIS compounds target ZIKV in cell culture? 

The selected six compounds were assayed in cell culture to determine their 

effect on ZIKV infection. (section 2.3.4.2) Cell viability assays as shown in 

section 2.2.4 led us to suitable concentrations. Compounds were all 

reconstituted in DMSO and were added to both plaque assay virus innoculae 

and overlay.  

Figure 5.15 shows the results from the plaque assay of the six different 

compounds, showing ZIKV infected cells treated with GNF 5837 and AA 29504 

significantly inhibited ZIKV in cell culture at 10 µM and 80 nM respectively. 

Notably these concentrations are a considerable improvement on rimantadine, 

used at 80 µM to achieve similar antiviral effects. Additionally, when these two 

compounds thought to target different sites were used in combination at the 

previously described concentrations, they did not have a synergistic effect, 

however a smaller significant inhibitory effect was still observed. For 

comparison, a negative control, JK3/32, was chosen due to its lack of activity 

against M protein channels using the liposome-based dye release assay, 

furthermore this compound did also not have an effect on ZIKV infection in cell 

culture. 

Throughout this chapter, we have researched the potential for repurposed 

compounds to inhibit ZIKV M protein in vitro and cell culture. When tested in 

vitro more compounds predicted to target M protein lumenal cavity were 

inhibitory compared to those targeting the peripheral cavity. However, of the six 

compounds taken forward into cell culture lumenal targeting AA 29504 and 

peripheral targeting GNF 5837 were the most potent ZIKV inhibitors of the drug 

repurposing library.  
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Figure 5.15 Effects of selected TOCRIS compounds on viral titre   

TOCRIS compounds were added to cells at the same time as cells were 
inoculated with virus. Compounds were used at the following concentrations: 
AA 29504 10 µM, GNF 5837 80 nM, KB SRC 4 250nM, Formoterol hemifumate 
80 µM, GSK 2837808A 40 µM, L-732, 183 40 µM, Rimantadine 80 µM, and 
negative control JK3/32 40 µM. Data shown of triplicate wells from one 
experiment, except for AA 29504 and GNF 5837 which contain 3 biological 
repeats of triplicate wells. Data shown from three biological replicates subjected 
to T tests of the mean. AA 29504, p value=0.0005, GNF 5837 p value=0.0002. 
Combined AA29504 and GNF 5837 treatment data is from two biological 
replicates, p value=0.0032. 
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5.5 Discussion 

The current treatment of ZIKV infection is solely best supportive care, therefore 

will not prevent the virus crossing the placenta of pregnant women and 

establishing an in utero infection. There are compounds undergoing research 

and testing for their ability to treat ZIKV infected patients, however no therapies 

are currently licensed for the treatment of ZIKV. Additionally, the current ZIKV 

vaccine development is ongoing, and a vaccine may not address the need for a 

treatment preventing cross-placental infection prior to the third trimester. 

We have previously identified M protein channels as a novel target throughout 

chapter 3 and 4. However, the lack of structural data has prevented screening 

and identification of new or repurposed compounds, capable of inhibiting M 

protein. We have avoided the inherent problems associated with hydrophobic 

membrane protein purification and adopted a rational approach to identifying 

repurposed drugs capable of inhibiting M protein channels, providing progress 

in the Flavivirus antiviral development field. 

The licensed M2 viroporin inhibitor rimantadine was screened in vitro, in cell 

culture and in vivo, and inhibited M protein and ZIKV infection respectively in a 

dose-dependent manner (chapter 4). Additionally, in the liposome-based assay 

the levels of rimantadine needed to inhibit the channel were similar to those 

used for p7 inhibition (1 μM) (StGelais et al., 2007; StGelais et al., 2009), 

whereas inhibition of E5 required much higher concentrations (>400 μM) 

(Wetherill et al., 2012).  

M protein activity was reduced to ~60 % by 1 μM rimantadine. Rimantadine is 

known to target multiple viroporins and is therefore relatively promiscuous. 

Thus, we used the liposome-based channel activity assay to test other 

compounds previously used or developed against viroporins. The compounds 

included JK3 compounds developed as potential p7 inhibitors (Shaw et al., 

2019). The repeated testing of these compounds at 1 μM found the most active 

and repeatable being JK3/42. JK3/32, which has been identified as a potent p7 

inhibitor does not show any inhibitory effects on ZIKV M protein and was 

subsequently used a negative control (Figure 5.15) (Shaw et al., 2019).  

Small molecules with greater efficacies for ZIKV M are clearly needed and a 

rational approach was taken to identifying potential compounds from a 
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repurposing library. The drug-repurposing library from TOCRIS is made up of 

1280 compounds, which are known to target, GPCRs (27%), kinases (20%), 

enzymes (19%), ion channels (14%), cell biology (10%), nuclear receptors 

(5%), transporters and other pharmacology (5%). 

Although an atomic channel structure remains elusive, our work in silico 

constructing and simulating a model has provided us with a template for rational 

drug library screening. Our first step utilised computational tools to identify 

potential binding cavities to go forth and screen the large repurposing library.  

Our preferred in silico model of ZIKV M protein hexameric channel was studied 

to identify potential drug binding sites. In silico software Maestro identified 

rimantadine is predicted to bind to a lumenal cavity of the model, with a 

promising glide/binding score compared to other binding sites identified on the 

model. Rimantadine is predicted to bind to this cavity positioned with its 

adamantyl cage away from the channel lumen (Figure 5.4A), similarly 

rimantadine docks to the HPV E5 channels in a lipophilic luminal binding site, 

although with the adamantyl cage facing the lumen pocket, however the binding 

of rimantadine onto HCV p7 resides on the periphery (Foster et al., 2011; 

Wetherill et al., 2012). Similarly, amantadine docked in the same predicted 

orientation to rimantadine, however N-acetyl and N-methyl rimantadine were 

positioned with their adamantyl cage towards the lumen (Figure 5.4) this could 

be due to more hydrophobic R-groups. Furthermore, rimantadine is shown to 

interact most closely with VAL61, LEU64, VAL65 and LEU68. These pore lining 

residues, particularly LEU64 and 68 were found in Chapter 2 to be consistently 

involved with closure of the MD simulation channels.  

Additionally, Maestro software was not capable of considering the peripheral-

membrane, so we identified a potential peripheral cavity, which bared a 

resemblance to the peripheral rimantadine binding cavity of p7 (Foster et al., 

2014). Furthermore, these two binding sites were taken forward for in silico drug 

screening.  

After screening the 1280 compounds against the two binding sites in silico the 

top 50 ranked according to binding capacity were screened in vitro using the 

liposome dye release assay, the liposome assay has been previously used and 

published with other viroporins (StGelais et al., 2007; Carter et al., 2010; 
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StGelais et al., 2009; Wetherill et al., 2012). This system has also been used as 

a high throughput in vitro screen  of a Pharmaceutical company drug library, 

although some components of the liposomes were altered to improve stability 

(Gervais et al., 2011). A higher proportion of lumenal targeting compounds 

effectively inhibited M protein than periphery-targeting, this could be due to the 

hydrophobic and polar interactions of lumenally targeting compounds. Also due 

to the biased nature of this screen by utilising in silico screening, the success 

rate of these compounds was much higher than a blind drug screen (Lionta et 

al., 2014).  

Three of the top lumen-targeting compounds and peripherally targeting 

compounds were taken forward for testing in cell culture against ZIKV infection. 

However, AA 29504 and GNF 5837 showed the highest level of ZIKV inhibition, 

which are known as an allosteric modulator of GABAA receptors (Hoestgaard-

Jensen et al., 2010) and a Trk inhibitor respectively (Albaugh et al., 2012).  

The in silico predicted interaction data between the compounds and its binding 

cavities interestingly shown rimantadine is not predicted to form any hydrogen 

bonds or π–π stacking interactions with the residues in the lumenal cavity. 

However, the six identified compounds taken forward into cell culture all form at 

least one hydrogen bond with the cavity, namely THR57 for the three lumenal 

compounds, with two THR57 hydrogen bonds forming for one molecule of GSK 

2837808A. For periphery targeting compounds TYR63 forms a hydrogen bond 

to all compounds in addition to ALA43 for formoterol. Furthermore, π–π 

stacking interactions are also found for AA 29504 and L-732, 138 between 

TYR63 and TRP51 respectively. The presence of these bonds would suggest 

the compounds are more likely to strongly inhibit M protein viroporins in 

comparison to the weak binding of Rimantadine. 

AA 29504 a triamino-benzene compound enters the brain modulating GABAA 

receptors and is effective in vivo. Additionally, in vivo dosing has been carried 

out in rats at 4 mg/kg and 10 mg/kg successfully (Hoestgaard-Jensen et al., 

2010). AA29504 is predicted to bind to the periphery of the M protein viroporin 

complex by virtue of its planar composition (Figure 5.10), and successfully 

reduced ZIKV plaque formation in cell culture by ~50 % at a concentration of 10 

μM (Figure 5.15). 
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GNF 5837 is an orally-administered potent and selective TRK-inhibitor, which 

inhibits mice Xenograft tumour growth (Albaugh, 2012). Interestingly GNF 5837 

is also a planar compound, but contains an oxindole core, similar to the p7-

targeted JK compound series. However, GNF 5837 was predicted to bind to the 

lumenal cavity of ZIKV M protein channels (Figure 5.7), and similarly to AA 

29504 was seen to reduce ZIKV infection in cell culture by ~50 %. Moreover, 

GNF 5837 was used at a 1000-fold lower concentration than rimantadine, 

indicative of a promising improvement in inhibitory properties. 

The in silico approach undertaken to identify inhibitors of the ZIKV M protein 

viroporin was validated, as compounds AA 29504 and GNF 5837 exhibited 

specific, inhibition of M peptide viroporin activity in vitro and in cell culture. 

These compounds could represent the first step towards ZIKV M protein 

viroporin inhibitors. 
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Chapter 6 Final Conclusion 

Controversy over the channel activity of Flavivirus M proteins exists due to 

conflicting published DENV data. Previous work with DENV-2 M protein C-

terminal peptides supported cation channel activity in vitro, sensitive to 

prototypic viroporin inhibitors, amantadine and hexamethylene amiloride. In 

addition, amantadine and rimantadine have also inhibited DENV infection in 

vitro (Koff et al., 1980; Koff et al., 1981). However, no evidence was found 

supporting the ability of M to act as a proton channel in electrophysiology 

studies using Xenopus oocytes (Premkumar et al., 2005; Wong et al., 2011). 

This study has demonstrated ZIKV M protein can form oligomeric channels 

through work in silico, in vitro, in cell culture and in vivo. MD simulations have 

shown M protein can dimerise within a lipid bilayer in different orientations and 

can be influenced by lipid composition and structural restraints. Furthermore, 

MD simulations have shown M can remain stable as a hexameric oligomer and 

possess a water channel with helix 3 lining the pore. In addition, rotating the 

monomers to increase interactions causes the pore to remain open for a greater 

proportion of time upon HIS28 protonation; this may be reflective of the 

physiological environment experienced by the virus during endocytosis.  

The first indication in vitro of M protein oligomers was seen in a DH(6)PC 

detergent environment using native-PAGE, where oligomers suggestive of 

hexamers or heptamers were seen on a Coomassie-stained gel. Subsequent 

visualisation by TEM of M protein channels in this detergent environment 

showed that varying the detergent concentrations generated protein oligomers 

in different orientations and oligomeric sizes. Unfortunately, the stoichiometry 

could not be determined. 

M protein channel activity was demonstrated in an in vitro liposome assay, used 

previously with many other viroporins. The assay showed M peptide 

concentration-dependent activity and dose-dependent inhibition with 

rimantadine.  

Discovery of rimantadine as an inhibitor of ZIKV M protein was successfully 

translated to cell culture and in vivo. Mice infected with ZIKV and treated with 

rimantadine showed significant reduction in serum viral titre by plaque assay. 
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These results show M protein as a successful drug target in vivo, however as 

rimantadine did not reduce viral titre fully and due to it is promiscuity, history 

and simplicity. This pipeline was applied to discover other potential M protein 

inhibitors. 

Thus, the most favourable in silico model comprising the rotated M protein 

channel with the pore lined by helix-3 was used to identify potential inhibitor 

binding sites. These two identified sites L1 and P1 are found in the lumen and 

periphery respectively. The chemistry department assisted the TOCRIS drug 

repurposing library in silico screening for potential hits, the top 50 appropriate 

hits were taken forward per binding site. 

The in vitro liposome assay was used for a rapid throughput screen based upon 

in silico enrichment, which highlighted several promising compounds. 

Implementation of the pipeline using six compounds identified in vitro, confirmed 

the activity of two compounds in cell culture, one for each P1 (AA 29504) and 

L1 (GNF 5837) binding sites were seen to have significant ZIKV infection 

inhibitory effects at 10-fold and 1000-fold reduction in concentration. 

Future work testing these compounds ensuring they have no off-target effects 

and testing in vivo is crucial to determining their role in targeting ZIKV infection, 

however the nature of the library reduces the likelihood of this. Furthermore, 

looking at the effect of targeting ZIKV M protein in utero with Rimantadine and 

the identified AA29504 and GNF5837 would prove instrumental at displaying 

the effect of a drug targeting ZIKV M in a clinical anti-microcephaly setting.  

Moreover, determining the stoichiometry and structure of ZIKV M protein 

oligomers by cryo-electron microscopy would provide not only functional 

information, but also serve as an improved template for further development of 

inhibitors. 
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Appendix 

Appendix A Recipes 

A.1 Vero cell culture media: 

DMEM + 10% FCS + 5% PenStrep 

A.2 BHK-21 Cell culture media: 

BHK-21 media + 10% FCS + 5% PenStrep 

A.3 Freezing media: 

Cell culture media + 10% DMSO 

A.4 EBC lysis buffer 

50 mM Tris HCl pH 8.0, 140 mM NaCl, 100 mM NaF, 200 µm Na3VO4, 0.1 % 

SDS, 1 % Triton X100, 1 tablet protease inhibitor per 50 ml (complete ULTRA 

tablets, Roche) 

A.5 2x Laemmli Buffer 

100 mM Tris HCl pH 6.8, 4 % SDS, 20 % Glycerol, 10 mM DTT (Dithiothreitol), 

0.025 % Bromophenol Blue   

A.6 Tris Glycine running buffer 

25 mM Tris base pH 8.0, 250 mM Glycine, 0.1 % SDS 

A.7 Towbin 

A.8  

25mM Tris base, 250 mM Glycine, 20 % Methanol  

A.9 Tris-buffered Saline 

50 mM Tris HCl pH 7.5, 150 mM NaCl  

A.10 ECL Solutions: 

a. Solution 1: 0.4 mM p-Coumaric acid, 2.5 mM Luminol, 0.1 Tris 

pH 8.5;  

b. Solution 2: 0.02 % H2O2 0.1 mM Tris pH 8.5 

A.11 Liposome Assay Buffer 

10 mM HEPES pH 7.4 107 mM NaCl  

A.12 Native-PAGE Loading Dye  

150 mM Tris-Cl pH 7.0 30 % v/v Glycerol 0.05 % w/v bromophenol blue 
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A.13 Native-PAGE running buffer: 

0.025 mM Tris-base 0.192 mM Glycine pH 8.5 

A.14 Coomassie Blue Stain solution 

0.1% Coomassie Blue, 10% acetic acid, 50% methanol, 40% H2O 

A.15 Coomassie Blue destain solution 

10% acetic acid, 50% methanol, 40% H2O 

A.16 Carboxyfluorescein (CF) Buffer  

50 mM CF 10 mM HEPES-NaOH pH 7.4 107 mM NaCl 
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M peptide HPLC and Mass Spec traces (Alta Bioscience). 
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Appendix B Supplementary Data 

Simulating M protein in the absence of the second TMD 

The linker region between the two transmembrane domains is only short, 

however the simulations of M protein with two TMDs shown in Figure 3.9 

Monomeric M protein with two TMDs is stable in a POPC bilayer (Figure 3.9 

and Figure 3.10) shows this region interacts with the lower leaflet of the lipid 

bilayer causing the membrane conformation to alter, pinching up due to the 

short length of the transmembrane domains. To determine whether this linker 

region alone, without the presence of the C-terminal TMD could still interact with 

the inner leaflet and cause the membrane conformational change we ran an 

additional set of simulations with M protein truncated at the C-termini of 20 

amino acids, forming a 38 amino acid protein. 

After 3 μs of coarse grain simulation the absence of the C-terminal TMD did not 

affect the conformation or interactions of the truncated protein with the 

membrane (Figure B1.). The same membrane alterations occurred and there 

was less RMSF variation between repeated simulations (Figure B1). From this 

set of simulations, it appears H3 is not important for M protein to remain 

anchored within the membrane; H2 and the linker region alone results in this 

strong interaction. 
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Figure B.1 Monomeric M protein truncated after the linker region is stable 
in a POPC bilayer 

Conformations of monomeric H3-truncated M protein before and after 3 μs 

simulation. Protein backbone shown in pink and phospholipid bilayer heads 

shown in orange. A. Monomeric M protein simulation starting conformation, 

shown side on with and without phospholipid bilayer heads. B. Monomeric M 

protein simulation after 3 μs, shown side on with and without phospholipid 

bilayer heads. 
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B.2 Simulating heptameric M protein channels in silico 

Oligomerisation of channels such as viroporins can result in multiple higher 

order structures forming. Previous work of HCV viroporin p7 displayed the 

capability of forming both hexameric and heptameric channels with the 

possibility of less favourable tetrameric and pentameric complexes additionally 

forming (Chandler et al., 2012). In light of this we additionally generated and 

simulated Heptameric M protein channels using the same protocol used in 

section 3.5 simulating Hexameric M protein channels. 

B2.2 Helix 2 pore lining radial conformation 

Heptameric channels with helix 2 pore-lining in the same radial conformation as 

mentioned in section 3.5.3.1 were simulated for 200 ns. Channels had a wider 

pore radius of 7.122 Å compared to the 3.2 Å pore radius of hexameric 

channels. Increasing the number of protomers forming these channels results in 

an increase in both pore size and interactions holding the channels together 

(Figure B.2.1). The residues lining the pore were LEU52, TRP51, ALA48, 

ALA45 and GLY41. 

Analysis of simulations showed two of the channels remained open throughout 

the 200 ns with respective channel radius of 4.253 and 4.146 Å and the third 

began to close after 112 ns and fluctuated between open and closed for 28 ns 

before closing at 140 ns (Figure B.2.2).  

However, protonation of the channels did not increase the duration they 

remained open, one channel closed after 25 ns, opening and closing twice 

before closing fully at 58 ns, the other channels remained open for 110 and 58 

ns before closing fully. The protonated channels had an increased pore radius 

prior to simulation beginning with a radius of 7.43 Å, resulting in closure of all 

channels with end pore radii of 1.336, 0.940 and 1.823 Å respectively (Figure 

B.2.3). 
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Figure B2.1 Heptameric Helix 2 pore-lining ‘radial’ channel starting 
conformations 

A. Ribbon representation side on and from above with histidine residues 
highlighted in red. B. Surface representation side on and from above with one 
protomer highlighted in orange.  
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Figure B2.2 Heptameric Helix 2 pore-lining radial channel conformation 
after 200 ns simulation 

A-C, Surface and Ribbon representation of simulations at 200ns from above 
and side (with one helix cut away) B. HOLE profile pore radius of simulations 1-
3 and the starting conformation in black, red, green and blue respectively. 
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Figure B2.3 Heptameric Helix 2 pore-lining 'radial' protonated channel 
conformation after 200 ns simulation 

A-C, Surface and Ribbon representation of simulations at 200ns from above 
and side (with one helix cut away) B. HOLE profile pore radius of simulations 1-
3 and the starting conformation in black, red, green and blue respectively.  
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B2.3 Helix 2 pore lining compact conformation  

The compact Helix 2 pore lining heptamer structure has a pore radius of 6.815 

Å (Figure B2.4) at the start of the simulations with LEU52, ILE49, ALA48, 

ALA45, PHE42 and GLY41 lining the pore. 

Over the 200 ns simulations two of the neutral pH channels remain open for 

over 20 0 ns and the remaining channel closed with a final pore radii of 2.85, 

1.827 and 0.994 Å (Figure B2.5). After protonation the channel has an 

increased pore radius of 6.88 Å and remain open for 40, 200 and 23 ns with 

respective pore radii of 0.81, 2.9 and 0.66 Å respectively (Figure B2.6). 

B2.4 Helix 3 pore lining radial conformation 

As previously, heptameric channel conformations were arranged comparably to 

the hexameric channel conformation. However, this resulted in the pore radius 

decreasing to 2.41 Å, due to the angles of the pore-lining helices, allowing for 

closer placement of protomers without overlapping (figure B2.7). The residues 

lining the pore were LYS60, TRP63, LEU64, ILE67 and LEU68. 

Despite the much smaller pore of the channel all three repeat simulations 

remained open for the 200 ns with respective pore radii of 4.64, 1.34 and 2.5 Å 

(Figure B2.8). Upon histidine protonation the simulations the starting pore 

radius was 2.35 and channels remained open for 195, 192 and 200 ns with pore 

radii of 0.46, 0.5 and 4.04 A respectively (Figure B2.9) 

B2.5 Helix 3 pore lining compact conformation 

The rotated conformation of the Helix 3 pore lining channel is more compact in 

comparison to the radial conformation, resulting in increased interactions 

between protomers, particularly increasing the interactions between the N-

terminal helices which are no longer as flexible, due to their proximity to the 

neighbouring protomer. The starting conformation of the channel exhibits a pore 

radius of 7.012 Å allowing many water molecules to fill the lumen with THR57, 

LYS60, VAL61, VAL65, LEU68, LEU69, PRO72 and ALA73 lining the pore 

(Figure B2.10). 

After 200 ns of simulation two channels remained open with a water column and 

pore radii of 3.8 Å and 3.78 Å, however one channel did close after 75 ns 

resulting in a final pore radius of just 0.16 Å (Figure B2.11). 
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After protonation of the Helix 3 pore lining rotated channel the simulations 

started with a pore radius of 7.0 Å. Once more two of the three channels 

remained open with radii of 2.5 Å and 5.8 Å, and the remaining channel closed 

after 90 ns of simulation resulting in a pore radius of 0.8 Å (Figure B.12). 

 

 

Figure B2.4 Heptameric Helix 2 pore-lining ‘compact’ channel starting 
conformations 

A. Ribbon representation side on and from above with histidine residues 
highlighted in red. B. Surface representation side on and from above with one 
protomer highlighted in orange.  
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Figure B2.5 Heptameric Helix 2 pore-lining 'compact' channel 
conformation after 200 ns simulation 

A-C, Surface and Ribbon representation of simulations at 200ns from above 
and side (with one helix cut away) B. HOLE profile pore radius of simulations 1-
3 and the starting conformation in black, red, green and blue respectively.  
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Figure B2.6 Heptameric Helix 2 pore-lining ‘compact’ protonated channel 
conformation after 200 ns simulation 

A-C, Surface and Ribbon representation of simulations at 200ns from above 
and side (with one helix cut away) B. HOLE profile pore radius of simulations 1-
3 and the starting conformation in black, red, green and blue respectively.  
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Figure B2.7 Heptameric Helix 3 pore-lining ‘radial’ channel starting 
conformations 

A. Ribbon representation side on and from above with histidine residues 
highlighted in red. B. Surface representation side on and from above with one 
protomer highlighted in orange.  
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Figure B2.8 Heptameric Helix 3 pore-lining 'radial' channel conformation 
after 200 ns simulation 

A-C, Surface and Ribbon representation of simulations at 200ns from above 

and side (with one helix cut away) B. HOLE profile pore radius of simulations 1-

3 and the starting conformation in black, red, green and blue respectively 
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Figure B2.9 Heptameric Helix 3 pore-lining 'radial' protonated channel 
conformation after 200 ns simulation 

A-C, Surface and Ribbon representation of simulations at 200ns from above 
and side (with one helix cut away) B. HOLE profile pore radius of simulations 1-
3 and the starting conformation in black, red, green and blue respectively. C. 
RMSD of simulations in corresponding colours to B 
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Figure B2.10 Heptameric Helix 3 pore-lining ‘compact’ channel starting 
conformations 

A. Ribbon representation side on and from above with histidine residues 
highlighted in red. B. Surface representation side on and from above with one 
protomer highlighted in orange 
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Figure B2.11 Heptameric Helix 3 pore-lining ‘compact’ channel 
conformation after 200 ns simulation 

A-C, Surface and Ribbon representation of simulations at 200ns from above 
and side (with one helix cut away) B. HOLE profile pore radius of simulations 1-
3 and the starting conformation in black, red, green and blue respectively. 
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Figure B2.12 Heptameric Helix 3 pore-lining 'compact' protonated channel 
conformation after 200 ns simulation 

A-C, Surface and Ribbon representation of simulations at 200ns from above 
and side (with one helix cut away) B. HOLE profile pore radius of simulations 1-
3 and the starting conformation in black, red, green and blue respectively. 

 


