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ABSTRACT

Wet granulation processes are difficult to scale up because conventional methods require ample

experimental data at all scales to determine the most favourable operating conditions. A systematic

model-driven design framework can facilitate this scale-up process by reducing the number of

experiments required. To achieve this, a predictive model is required which should be developed

based on a good understanding of all major wet granulation mechanisms. Such a model can give a

better insight into the process and the effects of the operating conditions on the granulation endpoint

which is needed for process design and scale-up studies.

In this study, a new nucleation model is developed to predict the nuclei size distribution. For the

first time, model predictions are in good agreement with nucleation experiments over a wide range

of operating conditions.

A novel predictive high-shear wet granulation model is developed using a one-dimensional

population balance modelling framework. The wet granulation mechanisms are represented by

rate expressions which are based on mechanistic understanding. Material characterisation tests and

granulation experiments are designed to verify critical modelling assumptions and determine the

modelling parameters. Based on a generic sensitivity analysis approach, the impactful parameters

to estimate are identified: critical pore saturation, and coefficients for consolidation, collision and

breakage. The model is validated based on predictions of experiments across four different scales

from 2 L to 70 L, which is a novelty.

A novel model-driven design approach for process scale-up is proposed and applied to a high-

shear wet granulation process in a case study. The model predictions are used for process design

at pilot scale by visualising the predicted process behaviour in new operating performance maps

for the key granule properties like size and porosity. The optimum operating range is identified by

predicting the required conditions to fulfil product specifications. For the industrial implementation,

detailed guidelines are given for all essential model-driven design tasks that are required for scale-up.

Using model-driven design, industrial scale-up is improved to significantly reduce the experimental

effort.
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Chapter 1

INTRODUCTION

Particle technology is the study of dispersed materials, in particular solid particles and powders.

The isolated behaviour and the interactions between particles are investigated to make use of their

effects in particulate processes. Particle technology has many applications in different industrial

sectors, e.g. chemical, petrochemical, pharmaceutical, food, energy, and environmental industries.

These industries combined are worth several 100 billion pounds sterling in the UK alone [HM

Treasury, 2010; CIA, 2015], which makes particle technology a commercially attractive discipline.

Within particle technology, wet granulation is an important process, which is widely applied to

manufacture pharmaceuticals, among many other products. Wet granulation is a size enlargement

process whereby granules are formed from a particulate feed using a liquid binder. The motivation

to wet granulate for different industrial sectors is summarised in Table 1.1. The granules produced

usually have a more uniform property distribution than the particulate feed [Agrawal and Naveen,

2011; Shanmugam, 2015]. This is crucial for the production of pharmaceutical tablets because tablet

blends are composed of different materials, namely API and excipients. The goal of the process is to

achieve specific granule properties which are suitable for pressing good quality tablets. Additionally,

the advantages of granular materials over fine powders are essential for the further handling of the

tablet blend. The most relevant advantages of granular materials are improved flowability, reduced

dustiness, homogeneity, and tablettability.

Wet granulation equipment can be divided into low-shear and high-shear technologies (Figure

1.1). Low-shear wet granulation can be carried out in fluid bed granulators, drum granulators and

low-shear mixers. For high-shear wet granulation, twin-screw granulators and high-shear mixers are

most commonly used. In high-shear mixers, the impeller can have a vertical or horizontal axis. The

right choice of equipment often depends on feed material properties or product specifications.

High-shear wet granulation is governed by the following rate processes (Figure 1.2): wetting and

nucleation, consolidation, layering, coalescence, breakage, and attrition. In wetting and nucleation,

1
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Table 1.1: Motivation for wet granulation of powder [Litster, 2016]

Reason to wet granulate Typical application

Improve powder flowability All applications

Reduce health and safety issues due to dust All applications

Prevent caking during storage Fertilizers, detergents

Increase bulk density for packaging Detergents, food products

Control dispersion and dissolution Food products

Prevent segregation of powder blends Pharmaceuticals, agricultural
chemicals, ore smelting

Control porosity and surface to volume ratio Catalysts, absorbents

Improve permeability for future processing Ore smelting

Provide useful structural forms Powder metallurgy

Improve product appearance Food products, consumer goods

Improve compressibility for tabletting Pharmaceuticals

(a) Fluid bed granulator (b) Drum granulator

(c) High-shear mixer with a vertical axis (d) Twin-screw granulator

Figure 1.1: Types of wet granulation equipment (Reprinted from [Kumar et al., 2013])
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a liquid binder is sprayed onto the surface of the powder bed. The liquid binder drops penetrate the

powder and form nuclei by combining with powder particles. As a result of collisions, the granules

consolidate. During this process, liquid binder is squeezed out and forms a liquid layer on the

surface of the granule. More powder particles adhere to the liquid layer (layering), or two granules

might stick together during a collision (coalescence). The granule size can also decrease during the

granulation process. Granules break into two or more daughter granules upon impacts (breakage),

or fine particles abrade, especially when the granules are surface-dry (attrition).

(a) Wetting and nucleation

(b) Consolidation (c) Layering

(d) Coalescence (e) Breakage

(f) Attrition

Figure 1.2: The most relevant rate processes in high-shear wet granulation [Ennis and Litster,

2008] (Reprinted from [Pohlman, 2015])

Processes are often designed and scaled up based on heuristics and experiments. This approach is
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not very efficient, and optimising process conditions is often not investigated intensively. Employing

process modelling helps to improve the process design and scale-up stages (model-driven design

(MDD)). Firstly, less experimental data is required which makes this approach more economical

and time-efficient [National Research Council, 2003]. Secondly, process conditions can be studied

more systemically. Adequate models are key to this approach and essential to benefit from MDD.

Having said this, modelling decisions are usually complex and not easy to make. On the one hand, a

sufficient level of detail is important to provide accurate results for the quantities of interest, but on

the other hand, the model should be concise and focus on the essentials to avoid a time-consuming

development stage and lengthy simulations. Furthermore, process modelling is needed for other

computational engineering disciplines, for instance: process control and optimisation.

Until recently, process modelling has not been applied widely to wet granulation processes

due to the complexity of particulate processes and computational limitations. Nevertheless, the

understanding of the phenomena in the wet granulation process has improved significantly, and

advances in computing technology facilitate the use of computationally expensive simulations. Due

to this progress in recent years, significant progress has also been made in process modelling of wet

granulation processes, and various promising approaches have been proposed for wet granulation.

However, every modelling approach focuses on capturing specific details of the process to generate

the output of interest with the desired accuracy. For this reason, the objectives should be taken

into account to choose a modelling approach because the most promising approach depends on the

application.

In particle technology, process-scale and particle-scale modelling approaches are of particular

interest. Particle-scale modelling is computationally expensive, and its complexity increases with

the equipment scale, which makes it unfavourable for scale-up purposes. Process-scale modelling is

a practical tool to track particle properties at process level, which can be applied at any equipment

scale. Therefore, process-scale modelling is more promising for scale-up studies which focus on

the particle or product properties. At process-scale, utilising mechanistic process understanding is

crucial to generate a predictive model, and empirical correlations can be used additionally. A suitable

process-scale tool is population balance modelling (PBM) because a combination of mechanistic

and empirical elements can be incorporated. In PBM, capturing the rate processes with appropriate

mathematical expressions is key. For this purpose, empirical and mechanistic expressions are

available in the literature. Empirical expressions are purely based on statistical approaches. In
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many cases, the effects of some physical properties are taken into account additionally; the resulting

expressions are semi-empirical. Mechanistic expressions are based on first principles. Amechanistic

expression that includes fitting parameters is classified as semi-mechanistic. Mechanistic expressions

have several advantages over empirical expressions, e.g. more predictive and less experimental data

required for parameter estimation. However, the wet granulation mechanisms are complex and

difficult to capture, and that is why mechanistic expressions have been less investigated in the past.

In this study, the use of predictive modelling tools for scale-up of high-shear wet granulation is

investigated.

1.1 Research objectives

1. Develop a predictive model for high-shear wet granulation employing the process-scale tool

population balance modelling.

2. Validate the model developed at different process scales and varying process conditions for

high-shear wet granulation using a model pharmaceutical formulation.

3. Develop a framework which gives guidance for the development, calibration and validation of

a predictive model.

4. Develop a novel model-driven design workflow for scale-up of particulate processes based on

predictive modelling.

1.2 Thesis structure

Relevant literature is critically reviewed in Chapter 2. All experimental methods used in this study

are described in Chapter 3. Nuclei size distribution modelling approaches are proposed and experi-

mentally validated in Chapter 4 to identify the most appropriate approach for further applications. In

Chapter 5, population balance modelling (PBM) is employed to develop a high-shear wet granulation

model which incorporates rate expressions based on mechanistic understanding. An Experimental

investigation to determine the impact of equipment scale and critical process parameters (CPPs) on

critical quality attributes (CQAs) is conducted in Chapter 6. The model developed is applied, and

its predictive power is assessed in Chapter 7. In Chapter 8, a model-driven design framework is

proposed and assessed for scale-up purposes. Conclusions and recommendations are in Chapter 9.



Chapter 2

LITERATURE REVIEW

2.1 Wet granulation mechanisms

Wet granulation is a particle enlargement process. By agglomeration of fine powder particles, larger

particles (granules) are formed with the help of liquid binder. The desired size of granules depends

heavily on the application and can range from 0.1 mm to 10 mm. Granular material is easier to

handle and has less health and safety concerns due to better flowability, improved tablettability, and

less dust formation.

The wet granulation process consists of several rate processes: wetting and nucleation, consol-

idation, layering and coalescence, and breakage and attrition. In the following, these rate processes

will be described, and modelling approaches will be presented.

2.1.1 Wetting and nucleation

The wetting and nucleation rate process starts with the spraying of liquid binder onto a dry powder

bed. In order to evenly wet the powder, the powder is moved through the spray zone where one

or more nozzles spray liquid binder on the surface of the powder bed. The drops penetrate into

the bed and form nuclei by combining with powder particles (primary particles). In high-shear wet

granulation, the drops are typically larger than the powder particles which means each drop forms a

nucleus out of many primary particles. This assumption has been confirmed by showing that the drop

size is directly related to the size of the nuclei [Abberger et al., 2002; Ax et al., 2008]. Having said

that, drops might overlap on top of the powder bed and coalesce before penetrating. Consequently,

only one large nucleus will be formed. The probability of drop coalescence can be estimated using

two dimensionless groups, the dimensionless drop penetration time and the dimensionless spray flux.

The dimensionless drop penetration time g? is the ratio of the time the drop needs to fully penetrate

the powder bed to the time interval between leaving and re-entering the spray zone [Hapgood et al.,

2003]:

6



2.1 Wet granulation mechanisms 7

g? =
C?

C2
(2.1)

where C? is the drop penetration time and C2 is the circulation time. The circulation time can

be measured experimentally, determined using modelling tools like DEM or estimated based on the

impeller rate. For high-shear mixers, 15 % of the impeller tip speed is a reasonable estimate for the

surface velocity. The drop penetration time can be estimated using different approaches. Hapgood

et al. [2002] proposed and validated a model for the drop penetration time assuming a constant

drawing area:

C? = 1.35
+

2/3
3

Y2
4 5 5

'4 5 5

`

W;E cos \
(2.2)

where+3 is the drop volume, Y4 5 5 is the effective bed porosity, '4 5 5 is the effective pore radius,

` is the binder viscosity, W;E is the liquid-vapour surface tension, and \ is the dynamic contact angle

of the liquid within the solid capillary. The effective porosity takes macro-voids into account, which

inhibit the liquid flow through the capillary. The effective bed porosity Y4 5 5 can be estimated:

Y4 5 5 = YC0? (1 − Y1D;: + YC0?) (2.3)

where Y1D;: is the bulk porosity and YC0? is the tap porosity. The effective pore radius can be

estimated using the Kozeny approach:

'4 5 5 =
i332Y4 5 5

3(1 − Y4 5 5 )
(2.4)

where i is a shape factor and 332 is the Sauter mean diameter of the powder bed particles.

The effect of the process conditions on the nucleation process can be evaluated with a second

dimensionless group the dimensionless spray flux [Litster et al., 2001]. The dimensionless spray

flux is the ratio of the flux of the area wetted to the flux of the powder bed surface area as it passes

through the spray zone:

R0 =
3 ¤+

2 ¤�33
(2.5)

where ¤+ is the volumetric spray rate, 33 is the drop diameter, and ¤� is the flux of the powder bed

surface area through the spray zone. By evaluating the two dimensionless groups the dimensionless

drop penetration time and the dimensionless spray flux, the operating regimes of the nucleation
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process can be determined. In experimental studies, Hapgood et al. [2003] identified three different

regimes (Figure 2.1): drop-controlled regime, intermediate regime, and mechanical dispersion

regime.

Figure 2.1: Nucleation regime map (R0 dimensionless spray flux, g? dimensionless drop

penetration time) [Hapgood et al., 2003]

In the drop-controlled regime, only few drops coalesce, hence the size distribution of nuclei

formed is rather narrow. In the mechanical dispersion regime, formation of large lumps is very likely

which is usually undesired. Nevertheless, these lumps can be broken up by the impeller or chopper

in a high-shear mixer. It is favourable to operate in the drop-controlled regime because of a narrower

nuclei size distribution. If a higher binder spray rate is required, an operation in the drop-controlled

regime is often not feasible.

While a drop penetrates the powder bed, it forms a nuclei which is larger in size than the drop due

to the addition of solid and gas. Consequently, this can lead to more coalescence due to overlapping

of nuclei during their formation. The size increase can be quantified by the diameter ratio of nuclei

to drop and can be measured experimentally [Abberger et al., 2002; Ax et al., 2008]. Wildeboer

et al. [2005] incorporated this nuclei-to-drop diameter ratio  3 and introduced the dimensionless

nucleation numberR= as a new dimensionless group for nuclei coalescence:
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R= =  3
2 3 ¤+

2 ¤�33
=  3

2R0 (2.6)

The assumption of a constant drawing area during the drop penetration might not be valid for all

cases [Hapgood et al., 2002]. If the drop penetrates the bed very slowly, the drop might remain on

the surface of the powder bed until it is covered up with powder. In this case, drop penetration with

a decreasing drawing area can be assumed [Hapgood et al., 2002]. In any case, fine powder particles

adhere to the drop surface and immerse into the drop until a nearly uniform solid content is reached.

The volume of the resultant nucleus is larger than the volume of the drop due to the addition of

solids. If the spray drops are smaller the primary particles, wetting and nucleation are governed by

different mechanisms. A qualitative description of this scenario can be found in Litster [2016].

Wetting and nucleation rate expressions

Two types of models are required for the wetting and nucleation process. One model should

determine the drop or nuclei size distribution based on the spray characteristics, and additionally, a

second model which considers the kinetics of the nuclei formation process is needed to predict the

increase in volume.

Ideally, every nucleus is formed by exactly one drop, and this assumption has been used in

modelling leading to uniform nuclei size distribution [Poon et al., 2008; Barrasso and Ramachandran,

2016]. To achieve this experimentally, rapid penetration of drops and a low spray rate is required.

However, this is usually not realisable in practice. That is why, this assumption does not lead to

accurate results for the nuclei size distribution due to overlapping and coalescence of drops.

Hapgood et al. [2004] carried out Monte Carlo simulations (MCS) to determine the nuclei size

distribution assuming a uniform distribution of drops, spatial randomness, and uniform drop size.

Furthermore, they proposed an analytical solution based on the Poisson distribution (PD) function.

This approach has been extended by Hapgood et al. [2009] to determine the probability of drop

coalescence based on the dimensionless spray fluxR0:

%= = exp (−4R0)
(4R0)=

=!
(2.7)

where %= is the probability for a single drop to coalesce with = other drops. By comparing

the results of the PD model to experimental data, it could be seen that this model is able to predict

the nuclei size distribution in the drop-controlled regime [Hapgood et al., 2009]. However, the PD
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model does not predict broad or multi-modal distributions outside the drop-controlled regime which

were observed in the experiments.

Wildeboer et al. [2005] extended and assessed the MCS approach proposed by Hapgood et al.

[2004]. A truncated normal distribution of drops has been assumed over the width of the spray zone;

this approach is based on spray characteristics experiments [Wauters et al., 2002]. Furthermore,

the model takes drop coalescence during the nuclei formation into account. A larger nuclei size

distribution is predicted if it is assumed that coalescence can occur after nucleation. The reason for

that is the addition of solid and gas during nucleation and the resultant increase in total volume. A

log-normal distribution is considered for the drop diameter.

Liu et al. [2013a] developed a model which includes a nuclei size distribution model [Hapgood

et al., 2009] and a breakage model [Liu et al., 2009] to capture the effects of nuclei breakage on the

nuclei size distribution.

The kinetics of nuclei formation are often neglected inmodelling studies because drop penetration

can be assumed to be rapid, especially for non-viscous binders [Chaudhury et al., 2014b]. However,

models which capture the nuclei formation are available in the literature. Poon et al. [2008] developed

a model and applied it in 3-D population balance modelling (PBM). The model predicts the nuclei

formation rate  =D2 based on a spreading coefficient _:

 =D2 = :=D2 ¤+ exp
(
_

')

)
(2.8)

where :=D2 is the nucleation rate constant, ' is the ideal gas constant, and ) is the temperature.

The spreading coefficient is a measure of the ability of a liquid to spread over a solid. The drop

penetration has been modelled by applying the Washburn equation [Denesuk et al., 1993]. The

volume of unpenetrated liquid is:

+D= = +3 − cA2
3Y

(
'?W

;E cos \
2`

C

)1/2

(2.9)

where +D= is the liquid volume on the surface of the powder bed, +3 is the drop volume, A3 is

the radius of the drawing area, and '? is the pore radius. However, the model developed by Poon

et al. [2008] assumes for long drop penetration times that liquid that did not penetrate at the time of

bed turnover is added to the existing granules to avoid overlapping of drops in the spray zone.

Hounslow et al. [2009] has developed two mechanistic models which both capture the immersion

mechanism but consider different driving forces to be dominant. The first model assumes that the
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primary particles are drawn into the drop by the surface tension at the liquid-solid-air interface. This

model predicts the change in solid volume inside the nucleus:

dEB
dC

=
1

2C<0G
E2
;

EB

(1 − q2?
q2?

)2
(2.10)

and the final volume of the nucleus:

E = E;

(
1 +

1 − q2?
q2?

√
o

C<0G

)
(2.11)

with

C<0G =
18.75`A2

3

W3

1 − q1/3
2?

q3
2?

(2.12)

where EB is the solid volume, C<0G is the time to complete the nucleation process for spherical

drops, E; is the liquid volume, q2? is liquid volume fraction at critical packing state, E is the nucleus

volume, o is the age of the granule, A3 is the initial radius of the drop, W is the capillary force per

unit length, and 3 is the primary particle diameter. The similar approach of both kinetic approaches

becomes evident when Eqs. 2.2 and 2.12 are compared. This shows that the surface tension-driven

immersion mechanism is closely related to the drop penetration mechanism investigated by Hapgood

et al. [2002].

The second model assumes that liquid is squeezed out of a nucleus onto the solid surface by

small deformations. In consequence, the primary particles diffuse further into the drop. This

model assumes that the process is deformation-driven and the particle flow due to surface tension is

negligible. The change in solid volume can be determined:

dEB
dC

= 12�4 5 5
(4cq2?

3E;

)2/3 (1 − q2?
q2?

E; − EB
)

(2.13)

as well as the final volume of the nucleus:

E �
E;

q2?

(
1 −

(
1 − q2?

)
exp

(
−

12�4 5 5 q2/3
2?

A2
3

o

))
(2.14)

where �4 5 5 is the binary effective diffusivity for particles and liquid as a consequence of

repeated deformations. The models developed by Hounslow et al. [2009] have not been validated

experimentally so far.
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Critical review of wetting and nucleation rate expressions

• The effect of spray characteristics on the nuclei size distribution is not well investigated

quantitatively.

• Monte Carlo simulations are a promising tool to predict the nuclei size distribution, however,

it is not feasible to include them in PBM.

• The analytical model developed can only give accurate predictions at low spray rates.

• Drop penetration time is often assumed to be negligible in modelling studies because penet-

ration is often a relatively quick process.

2.1.2 Consolidation

During the consolidation rate process, the porosity of the granules reduces, which leads to an increase

in (envelope) density. Consolidation results from plastic deformation which occurs due to collisions

with other granules and equipment surfaces. It is important to investigate consolidation based on

envelope density (or envelope porosity) because bulk and tap density are largely dependent on the

particle packing fraction and therefore particle size distribution (PSD) [Hoffmann and Finkers, 1995].

The dynamic yield strength of the granules and the impact energy of the collision control the

consolidation rate. A granule can be considered to behave like an elastic-perfectly plastic material.

Under this assumption, plastic deformation will occur if the dynamic yield strength is exceeded

during a collision. Hence, an important dimensionless group to evaluate consolidation is the Stokes

deformation number, which is the ratio of the internal stress resulting from the collision to dynamic

yield strength [Iveson and Litster, 1998b]:

(C34 5 =
d6E

2
2>;;

2.3
(2.15)

where d6 is the envelope density of the granules, E2>;; is the collision velocity, and .3 is the

dynamic yield strength, which depends on the strain rate. In order to calculate the Stokes deformation

number, a value for the collision velocity is required which is difficult to determine. However, a good

estimation for the collision velocity in high-shear mixers is 15 % of the impeller tip speed [Forrest

et al., 2003; Tran, 2015]. The dynamic yield strength should be measured at low strain rates [Iveson

et al., 2003; Iveson and Page, 2005]. Alternatively, the dynamic yield strength for non-spherical

particles can be estimated using a relationship developed by Smith [2007]:
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(CA∗ =
(
7 + 221�00.58

)
�'−4.3 (2.16)

with

(CA∗ =
.33?

W;E cos \
(2.17)

where (CA∗ is the dimensionless strength, �0 is the Capillary number, �' is the aspect ratio

of primary particles, and 3? is the diameter of the primary particles. Experimental observations

have also shown that the strength can be strongly dependent on pore saturation [Iveson et al., 2002;

Kayrak-Talay and Litster, 2011; Pohlman and Litster, 2015]. The Capillary number is the ratio of

viscous dissipation to capillary force in the granule:

�0 =
`E2>;;

W;E cos \
3?

36
(2.18)

where ` is the liquid binder viscosity and 36 is the granule diameter.

Another relevant dimensionless group is the viscous Stokes number (CE , which is the ratio of the

kinetic energy to the energy dissipated by viscous forces [Ennis et al., 1991]:

(CE =
4d6E2>;;36

9`
(2.19)

Understanding consolidation is important due to its effects on the granule properties, which

influence other rate processes. Especially, the increase in surface liquid enhances the granule growth

process significantly. Liquid which is entrapped in the pores of the granule gets squeezed out during

the consolidation process.

Consolidation rate expressions

Several consolidationmodels are available in the literature. Ouchiyama and Tanaka [1980] developed

a consolidation model based on capillary pressure of the binder:

dY
dg2>=B

= −
[
1 − (1 − Y)

3

Y Y

]=
(2.20)

where g2>=B is the dimensionless consolidation time,  Y is the dimensionless granule consolid-

ation rate, and = is a parameter describing a distribution of granule impact energies.
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Ennis et al. [1991] focused on the effect of binder viscosity on consolidation and developed a

relationship between the inter-particle gap ΔG and the viscous Stokes number (CE :

ΔG = X; [1 − exp(−(CE )] (2.21)

where X; is the thickness of the liquid layer. Alternatively, consolidation can be modelled using

an exponential decay model. Iveson et al. [1996] and Iveson and Litster [1998a] have shown that

the decrease in porosity Y is similar to exponential decay by applying the following model to a drum

granulation process:

Y − Y<8=
Y0 − Y<8=

= 4−:2>=B= (2.22)

where :2>=B is the consolidation rate constant, and = is the number of drum revolutions. This

model is very easy to use, and it is most commonly used to describe consolidation. However, this

model is empirical, that is why all parameters have to be estimated using experimental data. An

approach to make this model more mechanistic has been proposed by [Litster and Ennis, 2004].

They suggested to employ the Stokes deformation number to determine the consolidation rate:

:2>=B = :2>=B,0 exp(0(C34 5 ) (2.23)

where :20 is a pre-exponential factor and 0 is an adjustable parameter. Even though including

the Stokes deformation number makes the model more mechanistic and potentially more predictive,

more fitting parameters (:20 and 0) are also introduced. Gantt et al. [2006] proposed to replace :20

with a size-dependent impact rate which they determined using DEM.

An expression for the consolidation rate process, which is also based on the Stokes deformation

number, has been proposed by Barrasso et al. [2015b]:

d+6
dC

= −:2>=B+? 52>;;
[
1 − exp(−(C34 5 )

]
(2.24)

where+6 is the granule volume,+? is the pore volume, and 52>;; is the collision rate. This kernel

only contains one fitting parameter :2>=B. However, the impact rate can only be determined using

DEM since there is no experimental technique available to measure it.

The two models developed by Hounslow et al. [2009] (see Section 2.1.1) can also be used to

model consolidation. Employing these models would be a more mechanistic approach to represent
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consolidation. However, further research is needed to validate the model experimentally before it

can be used for this purpose.

The influence of liquid binder content and viscosity on consolidation has been observed ex-

perimentally [Kristensen et al., 1985a,b; Iveson et al., 1996]. On this basis, Maxim et al. [2004]

proposed a correlation for the minimum porosity which depends on the presence of surface liquid.

Nevertheless, these influences are often neglected in modelling studies for the sake of simplicity.

Critical review of consolidation rate expressions

• Consolidation is well understood but is usually modelled using empirical kernels.

• More mechanistic approaches have been proposed but not validated experimentally.

2.1.3 Layering and coalescence

A granule can grow by layering and coalescence. The layering rate process occurs when the surface

of a granule is wet. In this case, layers of fine powder particles adhere to the wet surface of the

granule. Additionally to granule growth by layering, granules can also grow by coalescence. During

a particle-particle collision, the granules might stick together due to the formation of a liquid bridge

[Iveson et al., 2001a]; this mechanism is called coalescence. The conditions under which two

granules coalesce are determined by the impact energy and the granule properties, such as size, yield

strength, surface liquid, and liquid viscosity.

Granules will initially be surface-dry due to capillary action. Since granules usually need surface

liquid to grow the granules need to consolidate first. At this stage, granules can already grow by

layering because it requires only a small amount of surface liquid. This initial phase is also called

induction phase. When sufficient surface liquid is present, the growth phase starts. In this phase,

the granules also grow by coalescence. However, weak granules can consolidate very quickly, that

is why granule growth can occur without a significant induction time. This phenomenon is also

called steady growth. A significant induction time can usually be observed for strong granules; this

phenomenon is called induction growth.

The growth regime depends on the consolidation rate and hence also on the impact energy and

strength of the granules. For this reason, the Stokes deformation number (C34 5 has been used to

propose a growth criterion:
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(C34 5 < 2 × 10−3 for induction growth (2.25)

(C34 5 > 2 × 10−3 for steady growth. (2.26)

Furthermore, it is important that the liquid content of the granules is sufficient to generate surface

liquid while consolidating [Iveson et al., 2001b]. Therefore, the granule liquid pore saturation ( (Eq.

2.27) should be in between two critical values: 0.7 and 1. Only nucleation and layering will occur

if the liquid pore saturation is below 0.7, and rapid growth might occur if the liquid pore saturation

exceeds 1. All regimes including the critical values are shown in Figure 2.2.

( =
!/(dB (1 − Y)

d;Y
(2.27)

where !/( is the mass-based liquid-to-solid ratio, dB and d; are the solid and liquid density

respectively, and Y is the granule porosity.

Figure 2.2: Growth regime map (Reprinted from [Iveson et al., 2001b])

Layering rate expressions

Coalescence is often the most dominant growth process if both rate processes occur simultaneously.

For this reason, layering has not been investigated as much as coalescence and is, therefore, often not
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considered in wet granulation modelling. However, layering models can be found in the literature.

Barrasso and Ramachandran [2016] and Sayin [2016] proposed a rate expression which assumes that

the increase in solid volume is proportional to the surface area of the wet granule and the volume of

fine particles:

dE(
dC

= :;
c32<?

dB
(2.28)

where E( is the solid volume of the granule, :; is the layering rate constant, 3 is the granule

diameter, and <? is the mass of primary particles. A mechanistic rate expression should take the

availability of fine particles as well as the amount of surface liquid into account. This rate expression

captures the effects of the availability of fine particles but ignores the effect of surface liquid. As a

result, the surface liquid will consequently influence the parameter estimation, especially the layering

rate constant.

Cameron et al. [2005] and Wang et al. [2006] proposed and applied a layering model based on

the Monod model (kinetic model for microbial growth [Levenspiel, 1980]). This model predicts

layering to occur as soon as a critical moisture content 2∗ is exceeded:

dE(
dC

= �<0G
<?

:
∑
8

<8 + <?
exp

[
−0 (2 − 2∗)2

]
(2.29)

where �<0G is the maximum growth rate, <8 is the mass of particles in the 8th size class, 2 is the

moisture content, and 0 and : are adjustable parameters.

The models developed by Hounslow et al. [2009] (see Section 2.1.1) are theoretically capable of

modelling granule growth by layering, and few researchers have applied this approach [Oullion et al.,

2009; Yu et al., 2017]. The usage of these models would be a more mechanistic way of modelling

the layering rate process. However, these models have not been validated so far, that is why further

research is required before this approach can be applied reliably.

Coalescence rate expressions

Modelling of coalescence has been well investigated in previous studies. An overview of relevant

coalescence kernels are shown in Table 2.1. Empirical and mechanistic kernels have been proposed

in the literature.
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Table 2.1: Coalescence kernels (modified from Kumar et al. [2013]) (3 granule diameter, E granule

volume, V0 rate constant, 2 moisture content, ∗ critical value, 1/2 colliding granules, ˜ reduced

quantity)

Approach Kernel

Size-independent

[Kapur and Fuerstenau, 1969]
V = V0

Based on granule size
Size-dependent

[Kapur, 1972a]
V = V0

(31+32)0

(3132)1

Time- and size-dependent

[Sastry, 1975] V = V0(C) (32
1 + 3

2
2)

(
1
33

1
+ 1
33

2

)

Cut-off

[Adetayo and Ennis, 1997]

V =


V0, , ≤ ,∗

0, , > ,∗

where, =
(E1E2)1
(E1+E2)0

Based on collision theory
Equipartition of translational
momentum

[Hounslow, 1998]
V = V0 (31 + 32)2

√
1
36

1
+ 1
36

2

Equipartition of kinetic energy

[Hounslow et al., 2001]
V = V0 (31 + 32)2

√
1
33

1
+ 1
33

2

Based on Stokes criterion [Ennis et al., 1991]

Stokes criterion

[Cryer, 1999]
V = V0

(C∗E∫
−∞

5 (q, C) dq

where 5 (q, C) is a discrete probability function for (CE

Stokes criterion,
plastic deformation

[Liu et al., 2000]
V =


V1, for coalescence without deformation

V2, for coalescence with deformation

0, for rebound

Continued on next page
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Table 2.1 – continued from previous page

Approach Kernel

Stokes criterion,
plastic deformation

[Immanuel and Doyle III, 2005]

V = V0
4cE2>;; (31+32)2

,

where, is the Fuch stability ratio

Stokes criterion

[Rajniak et al., 2009]
V = V0k123

W

43 (31 + 32)2
√

1
33

1
+ 1
33

2

where k12 is the success factor
Based on granule liquid content

Sequential

[Adetayo et al., 1995]
V =


V1((), C ≤ C∗

0, C > C∗; ( ≤ (∗

V2(31, 32), C > C∗; ( > (∗

where ( is the pore saturation

Liquid fraction-dependent

[Biggs et al., 2003]
V = V0

(max(21,22)/2∗)48

1+(max(21,22)/2∗)48 5 (E1, E2)

Liquid fraction-dependent

[Madec et al., 2003]
V = V0

(
33

1 + 3
3
2
) (
(21 + 22)U

(
1 − 21+22

2
) X)U

Surface liquid-dependent

[Darelius et al., 2006]

V = V0
E1,;−E1,;?

4c
(
31
2

)2 E1,B+E1,;
E1

E2,;−E2,;?

4c
(
32
2

)2 E2,B+E2,;
E2

where E; ? is the liquid volume in pores

Wet surface area-dependent

[Chaudhury et al., 2014b]

V =


V0

�1,F4C �2,F4C
�1�2

, (̃C ≤ (̃C∗

0, (̃C > (̃C
∗

where (̃CE = 8<̃E2>;;
3c`3̃2 and � is the surface area

Empirical coalescence kernels typically include a (time-dependent) coalescence rate parameter

V0 and a size-dependent term V∗ [Sastry, 1975]:

V = V0V
∗ (31, 32) , (2.30)

where 31 and 32 are the diameters of two granules. Kernels with a time-dependent function
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[Sastry, 1975] or switching time [Adetayo et al., 1995] have been proposed. However, as Hounslow

et al. [2001] pointed out, the need for a time-dependent function only indicates an unidentified

physical property which changes over time and influences the rate process.

A more mechanistic approach to determine the coalescence rate is to assume that the coalescence

rate is the product of collision frequency and coalescence probability [Gantt et al., 2006]. The colli-

sion frequency is usually estimated using experimental data. However, it can also been determined

using DEM simulations [Tan et al., 2004a; Gantt et al., 2006; Barrasso and Ramachandran, 2016].

In order to predict the coalescence probability, researchers tried to identify physical properties which

have significant effects on coalescence. In experimental studies, the effects of the liquid binder con-

tent have been observed [Scott et al., 2000]. For this reason, kernels have been proposed that capture

the effect of liquid fraction [Biggs et al., 2003; Madec et al., 2003] and especially surface liquid [Liu

et al., 2000; Darelius et al., 2006; Rajniak et al., 2009; Chaudhury et al., 2014b]. (Semi-)mechanistic

kernels will be discussed in more detail in the following due to their higher predictive power (see

Section 2.3.1).

Le et al. [2009] selected two kernels a size-independent kernel and the equipartition of kinetic

energy (EKE) kernel. The size-independent kernel assumes that coalescence occurs when the

liquid fraction of at least one colliding granule exceeds some critical value. As opposed to that,

the EKE kernel neglects any effects of the liquid on coalescence. They compared both kernels to

experimental data and concluded that the size-independent kernel is able to model the coalescence

rate more accurately. This supports the hypothesis that the liquid layer has a significant effect on

coalescence.

Apart from kernels that determine coalescence probability, coalescence kernels have been pro-

posed that are based on collision theory. These kernels are also called collision frequency functions.

Since coalescence rate is considered to be the product of collision frequency and coalescence prob-

ability, the combination of two coalescence kernels has been investigated. Lee et al. [2017] assessed

several collision frequency functions by comparing them to DEM simulation results and concluded

that the EKE kernel provides results which are in good agreement with the DEM data. The EKE

kernel has been applied by several researchers to estimate the collision frequency [Tan et al., 2004a;

Le et al., 2009; Oullion et al., 2009; Rajniak et al., 2009; Bouffard et al., 2012].

Ennis et al. [1991] proposed a criterion based on the viscous Stokes number to determine the

outcome of a collision (coalescence or rebound). The criterion was developed using an energy
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balance which determines whether or not the liquid layer is sufficient to dissipate the impact energy.

In this case, granules are assumed to be perfectly elastic and non-deformable. This approach has been

used to develop a number of coalescence kernels [Cryer, 1999; Liu et al., 2000; Rajniak et al., 2009].

Cryer [1999] and Rajniak et al. [2009] developed coalescence kernels for the fluid bed granulation

process. Due to low collision velocities in this process, plastic deformation upon impact is negligible

[Ennis and Litster, 2008]. Hence, the assumption of perfectly elastic and non-deformable granules

applies. Rajniak et al. [2009] combined the approach of Ennis et al. [1991] with the EKE kernel

developed by Hounslow et al. [2001].

Liu et al. [2000] extended the Stokes criterion developed by Ennis et al. [1991] to account for

absorption of impact energy by deformation using contact mechanics principles for elastic-plastic

solids [Johnson, 1985]. The coalescence kernel proposed also predicts the plastic deformation of

the granules after the collision. Most recently, the coalescence kernel was extended by Pohlman

and Litster [2015] for usage in a 3-D PBM framework. The coalescence kernel has been applied

by Liu and Litster [2002], Liu et al. [2012] and Pohlman and Litster [2015], and it could be shown

that the predictions are in good agreement with experimental data for different materials and process

conditions. Figure 2.3 shows the predictions of this coalescence kernel. Coalescence without

deformation (Type I) is only predicted for small granules with a low porosity - low impact energy

and surface liquid available. Coalescence with deformation is predicted for larger granules - surface

liquid layer not sufficient to absorb impact energy. Granules with a high porosity do not have a surface

liquid which is sufficiently thick to absorb the impact energy, that is why rebound is predicted. The

coalescence kernel by Liu et al. [2000] has been further developed by Immanuel and Doyle III [2005]

to account for dynamic changes in the process.

Critical review of layering and coalescence rate expressions

• Layering is a relevant wet granulation rate process but often neglected in modelling studies.

• Only simplistic models have been proposed but not validated.

• Coalescence has been well investigated in the past, and a series of models has been proposed

and validated experimentally.

• While coalescence is often modelled using empirical approaches, more mechanistic ap-

proaches have only been investigated more extensively in recent years.

• Amechanistic coalescence model should include the effect of the liquid layer which dissipates
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Figure 2.3: Simulation results of the coalescence kernel as a function of granule diameter and

porosity (Reprinted from [Pohlman and Litster, 2015])

impact energy. In high-shear wet granulation, plastic deformation should also be considered.

2.1.4 Breakage and attrition

The breakage and attrition rate processes lead to a reduction in granule size. Granules can break into

several smaller granules due to collisions with other granules or equipment surfaces. Additionally,

attrition of dry granules can occur which results in the generation of very fine particles. Since fine

particles are unwanted in the granulation product, attrition of granules should be avoided. However,

breakage of particles is often desired to be able to control the (maximum) granule size and to achieve

the desired size distribution. In high-shear wet granulation, the granules are most likely to break

close to the impeller or chopper due to the high energy input. Having said this, the effect of chopper

rate and design has been determined to be negligible in vertical axis high-shear mixers [Michaels,

2003; Holm, 1987].

A breakage criterion has been developed by Tardos et al. [1997]:

(C34 5 ,<0G > (C
∗
34 5 (2.31)
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where (C34 5 ,<0G is the maximum Stokes deformation number. To capture collisions with the

impeller or chopper, the collision velocity can be assumed to be equal to the tip speed. Very high

breakage rates were observed when the Stokes deformation number exceeded a critical value of 0.2,

which agrees with the crumb regime in Fig. 2.2 [Tardos et al., 1997; Liu et al., 2009].

An alternative breakage criterion based on themaximum strain n<0G was developed byKeningley

et al. [1997]:

n<0G > n
∗ (2.32)

with

n2
<0G =

1
540

Y2

1 − Y2
d6E2>;;33,2

`
(2.33)

where n∗ is the critical value for the maximum strain. In experiments, it has been found out that

breakage can occur if the maximum strain exceeds a critical value of 0.1.

Attrition is a rate process that has been observed for dry granules in fluid bed granulators at high

gas velocity [Litster, 2016]. Since the evaporation rate in high-shear mixers is negligible, attrition

can generally be neglected.

Breakage and attrition rate expressions

Sanders et al. [2003] attempted to model breakage with a coalescence model by adjusting the rate

constant. However, the model failed to predict experimental results, since coalescence is a second-

order process while breakage is a first-order process [Tan et al., 2005a]. In the following years,

breakage models have been developed and applied to wet granulation. Furthermore, it has been

observed that particle breakage in impact mills behaves similarly to granule breakage in granulators.

That is why, milling models are often applied to model breakage in high-shear wet granulation

processes [Kumar et al., 2016].

In order to describe particle breakage quantitatively, mathematical expressions that determine

the breakage probability and size distribution of daughter particles are required. Therefore, Table

2.2 gives an overview of breakage probability functions, and fragment size distribution functions are

listed in Table 2.3.
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Table 2.2: Breakage probability functions (3 granule diameter, :1A rate constant, � shear rate)

Approach Kernel

Based on granule size
Power law
[Kapur, 1972b]  1A = :1A3

:1

Power law
[Klimpel and Austin, 1984]  1A = :1A

(
3
3∗

) :1 1
1+(3/3̄):2

Based on shear rate
Power law
[Pandya and Spielman, 1983]  1A = :1A�3

:1

Semi-empirical
[Soos et al., 2006]  1A =

√
4

15c� exp
(
− :1A
�23

)
Based on fracture mechanics

Crack propagation
[Vogel and Peukert, 2003]

 1A = :1A
[
1 − exp

(
− 5"0C=3

(
�<,:8= − �<,<8=

) ) ]
where = is the number of impacts, 5"0C is the material strength
parameter, and �<,:8= and �<,<8= is the kinetic and minimum
breakage energy respectively

Crack propagation
[Capece et al., 2014b]

 1A = :1A

[
1 − exp

(
5"0C3

=∑
8=1

52>;;,8
(
�<,:8= − �<,<8=,8

) )]
where 52>;; is the collision frequency

Stress-strength ratio
[Ramachandran et al., 2009]

 1A =
∑
®G2

f
?
4GC ( ®G1, ®G2)
f8=C ( ®G1) =(®G2)#�

�?
�?+�F+�8

+ f
F
4GC ( ®G1)
f8=C ( ®G1)

�F
�?+�F+�8 +

f84GC ( ®G1)
f8=C ( ®G1)

�?
�?+�F+�8 +

f
5 ;
4GC ( ®G1)
f8=C ( ®G1)

where ?, F, 8, and 5 ; stand for particle, wall, impeller, and
fluid, ®G are the properties of colliding particles,
f4GC is the external stress, f8=C is the intrinsic strength,
f4GC is the external stress, = is the particle density,
#� is the Avogadro constant, � is the surface area

The first approaches to determine were purely empirical and were often based on the power law
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[Kapur, 1972b; Pandya and Spielman, 1983]. However, breakage models based on more mechanistic

approaches have several advantages (see Section 2.3.1), that is why they will be discussed in more

detail in the following.

Vogel and Peukert [2003] developed a semi-mechanistic breakage model, which is based on

a fracture mechanics approach developed by [Rumpf, 1973]. This model has been extended for

determining particle breakage in impact mills [Vogel and Peukert, 2004, 2005], and successfully

applied to predict breakage of pharmaceutical powders [Meier et al., 2008]. Further modifications to

adapt the breakage model to batch or continuous processes were proposed by Capece et al. [2014b,a].

Dhanarajan and Bandyopadhyay [2007] proposed an energy-based model, which determined

the breakage rate with the ratio of impact energy to granule strength. This approach was applied

by Ramachandran et al. [2009] to develop a mechanistic breakage model. For the experimental

validation of the model, binary breakage has been assumed.

The size distribution of daughter particles can be determined using a discrete fragment size

distribution function 1, which can be expressed as a function of the cumulative function � [Austin

et al., 1981]:

1(8, 9) = �(8, 9) − �(8, 9 + 1) (2.34)

Additionally, the conservation of mass leads to the following equation:

�(8, 9) =
8−1∑
9=1

1(8, 9) (2.35)

Accurate predictions and reliable experimental validation of the number and size of daughter

particles are challenging, that is why binary breakage is often assumed in modelling of breakage. A

further simplification can be made by assuming that a granule can only break into two equi-sized

particles. However, fragment size distribution functions have been proposed in the literature (Table

2.3). Many fragment size distribution functions are based on the power law.

Attrition has not been well investigated since its effect is often dominated by breakage. An

approach to model attrition has been proposed by [Kostoglou et al., 1997] by assuming that one very

small particle breaks off a granule.

Tan et al. [2004b] proposed a model for attrition. This approach has been extended by Tan et al.

[2005b] to model both breakage and attrition assuming one collision can lead to breakage of granules

as well as abrasion of fine particles.
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Table 2.3: Fragment size distribution function (� cumulative function, 3 granule diameter, 8 parent

particle, 9 daughter particle, 3<0G maximum fragment diameter, and 3 9,<8= minimum fragment

diameter)

Name Kernel

Exponential
[Broadbent and Callcott, 1956] �(8, 9) = 1−exp(−3 9/38)

1−exp(−1)

Power law
[Kapur, 1972b] �(8, 9) =

(
38
3 9

)@
Sum-type
[Austin et al., 1976]

�(8, 9) = q
(
38
3 9

)@1
+ (1 − q)

(
38
3 9

)@2

with q 9 = q1

(
3 9

3<0G

)−@3

Power law
[Berthiaux et al., 1996]

�(8, 9) =  (3 9)/ (38)

Sum of powers
[Kostoglou and Karabelas, 1998]

�(8, 9) =
=∑
:=1

2:

(
38
3 9

)@:
with

=∑
:=1

2:
@:+2 = 1

Power law
[Hounslow et al., 2001] �(8, 9) =

(
38
3 9

)3

Velocity-dependent
[Vogel and Peukert, 2005]

�(8, 9) =
(
38
3 9

)@ 1
2

[
1 + tanh

(
3 9−3 9,<8=
3 9,<8=

)]
with @ = 21E + 22, where E is the impact velocity
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Critical review of breakage and attrition rate expressions

• Granule breakage is similar to particle breakage in milling processes.

• More mechanistic approaches to determine the breakage probability have been proposed in

recent years.

• Fragment size distribution of granule breakage is poorly understood and models have not been

fully validated.

• Attrition can be neglected in high-shear wet granulation.

2.1.5 Understanding wet granulation mechanisms

Understanding the wet granulation process means understanding the mechanisms in wet granulation.

Based on this understanding, the process can be controlled effectively to produce the product desired.

Furthermore, a qualitative and quantitative understanding of all occurring mechanisms is key to a

mechanistic modelling approach.

In order to understand all rate processes, every rate process should be investigated separately

in experiments and simulations. Therefore, process conditions should be identified that favour one

specific rate process. At these conditions, the other rate processes should be suppressed. Some

processes do not occur in the absence of specific compounds: nucleation (penetrating drops),

layering (fine particles), or coalescence (surface liquid). Others are negligible at specific conditions:

coalescence (very high impact energy) breakage (low impact energy). Consolidation cannot be

suppressed completely since surface tension is sufficient to initiate this rate process.

Critical review of wet granulation mechanisms

• Wet granulation can be divided into rate processes which can be investigated separately.

• While some rate processes can be isolated more easily (e.g. nucleation), others are difficult to

separate (e.g. consolidation/coalescence or consolidation/breakage).

• Mechanistic modelling of some rate processes (coalescence and breakage) has been well

investigated, while other rate processes are often neglected in modelling studies or modelled

simplistically (nucleation, consolidation, and layering).
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2.2 Operation and scale-up

Experimental studies on high-shear wet granulation have been conducted to identify operating

regimes and their impact on the granulation process. Operating regimes that are closely linked to

rate processes are discussed in the respective section.

Tran [2015] identified different powder flow patterns in a high-shear mixer. The two major

patterns are bumping flow, which occurs at lower impeller rates and roping flow, which can be

observed at higher impeller rates. In the bumping flow regime, limited axial mixing has been

identified, which can lead to inhomogeneous product properties. In order to achieve good axial

mixing, roping flow is required. The powder flow regime can be determined using the Froude

number �A:

�A =
�8<?l

2

26
(2.36)

where �8<? is the impeller diameter, l is the angular velocity, and 6 is the gravitational

acceleration. To ensure roping flow, the Froude number at the operating point should be at least 20

[Litster, 2016].

Conventionally, high-shear wet granulation is scaled up by using simplistic scaling rules, which

advise to keep certain input parameters or dimensionless groups constant. Most importantly, the

equipment should be geometrically similar, which means that essential size ratios should be kept

constant across scales [Litster et al., 2002; Michaels, 2003]. The following parameters are typically

considered to be very relevant: mixer height �, mixer diameter �, impeller diameter �8<?, and

bed height �1. The following size ratios, which should be kept constant, can be derived: �
�
, �8<?

�
,

and �1
�

[Ameye et al., 2002]. For equipment that is not geometrically similar across scales, the bed

height can also be determined by keeping the ratio to the impeller diameter constant: �1
�

[Mort,

2005].
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Table 2.4: Scaling rules for equipment and operational parameters proposed in the literature (�8<?

impeller diameter, =8<? impeller rate, <; liquid binder mass, <B solid powder mass, ¤+ volumetric

spray rate, ¤� area powder flux through the spray zone, 33 drop diameter, !/( liquid-to-solid ratio,

d; liquid density, C:= kneading time, C total granulation time, �F wall surface area, + granulator

volume, +8<? impeller volume, % impeller power consumption)

Name Scaling rule

Determine impeller rate
Constant tip speed
[Ameye et al., 2002; He et al., 2008; Aikawa et al., 2008] =8<?�8<? = 2>=BC

Constant Froude number
[Horsthuis et al., 1993; Tao et al., 2015; Smrčka et al., 2015] =8<?�

0.5
8<?

= 2>=BC

Constant shear stress
[Tardos et al., 2004; Rahmanian et al., 2008a; Michaels et al., 2009] =8<?�

0.8
8<?

= 2>=BC

Constant relative swept volume
[Kristensen and Schaefer, 1987; Schæfer et al., 1993]

=8<?+8<?
+

= 2>=BC

Determine binder liquid amount
Constant liquid-to-solid ratio
[Sato et al., 2005; Michaels et al., 2009; Kayrak-Talay et al., 2013] !/( = <;

<B
= 2>=BC

Constant pore saturation
[Iveson and Litster, 1998b]

!/(dB (1−Y<8=)
d; Y<8=

= 2>=BC

Determine spray rate
Constant dimensionless spray flux
[Litster et al., 2001; Hapgood et al., 2010; Luo et al., 2017]

3 ¤+
2 ¤�33

= 2>=BC

Constant spray time
[Campbell et al., 2011; Kayrak-Talay et al., 2013]

<B!/(
¤+ d;

= 2>=BC

Determine granulation time
Constant kneading time
[Kayrak-Talay et al., 2013; Rohrer, 2017] C:= = 2>=BC

Continued on next page



30 Literature review

Table 2.4 – continued from previous page

Name Scaling rule

Constant granulation time
[Sato et al., 2005] C = 2>=BC

Extended kneading time
[Tao et al., 2015]

C:=
�8<?

= 2>=BC

Constant granulation rate
[Rahmanian et al., 2008a,b]

C �F
+

= 2>=BC

Constant specific energy input
[Landin et al., 1999; Sirois and Craig, 2000; Clancy, 2017]

∫
%
<B

dC = 2>=BC

Apart from geometrical parameters, operational parameters have a significant impact, and it is

typically recommended to keep the most crucial operational parameters constant to achieve similar

conditions and product properties. Common scaling rules suggested previously can be found in

Table 2.4.

Many researchers have studied and compared different scale-up approaches by keeping either

the Froude number, impeller tip speed, shear stress, or relative swept volume constant [Horsthuis

et al., 1993; Rahmanian et al., 2008a; Tao et al., 2015; Rohrer, 2017]. While a constant Froude

number preserve the powder flow regime [Tran, 2015], a constant tip speed implies a constant

Stokes deformation number, which leads to the same growth regime [Iveson and Litster, 1998b].

Unfortunately, the performance of each scaling rule seems to depend on other factors, since different

scale-up studies concluded that different rules are most suitable for high-shear wet granulation. Other

influencing factors could be the granulator design or formulation properties. Even though it is not

possible to keep all crucial operational parameters constant, all crucial parameters should still be

monitored to ensure the operation in the desired operating regime [Litster, 2003].

The amount of liquid required at large scale is usually determined by initially keeping the liquid-

to-solid ratio !/( constant. However, the liquid-to-solid ratio is often altered at large scale if the

product does not meet the specification. Iveson and Litster [1998b] identified the effect of granule

porosity on granule growth, hence proposed to keep the pore saturation constant (see Section 2.1.3).

Having said that, product characterisation is required to determine the pore saturation because
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porosity strongly depends on process conditions [Iveson et al., 1996; Mackaplow et al., 2000;

Oulahna et al., 2003].

The spray rate is often chosen arbitrarily for various reasons. Nevertheless, approaches have

been suggested to keep the spray time [Kayrak-Talay et al., 2013] or dimensionless spray flux [Litster

et al., 2001] constant. A constant spray time ensures that the time provided for rate processes is

maintained. This concept relies on the assumption that the kinetics do not change drastically across

scales. Keeping the dimensionless spray flux constant produces similar nucleation conditions (see

Section 2.1.1).

Kneading time is another crucial operational parameter, that has a significant effect on the

granulation endpoint. Michaels et al. [2009] suggest that the process should reach steady state so

that the endpoint is fairly independent of kneading time. The advantage of this approach would

be less variability between experiments. Others suggested short kneading times if higher granule

porosity is desired [Shi et al., 2011; Pandey and Badawy, 2016] or avoid rapid growth [Shi et al.,

2010]. In these cases, the kneading time is often kept constant [Kayrak-Talay et al., 2013] or estimated

using empirical correlations [Rahmanian et al., 2008a]. Alternatively, the kneading time can be used

as an operational parameter, which means the experiment is ideally stopped when the product has

the desired properties [Faure et al., 2001]. Process control strategies are applicable to the latter

approach, and the power consumption of the impeller is usually selected as the controlled variable

with a feedback control system [Faure et al., 1999; Holm et al., 2001; Levin, 2007; Campbell et al.,

2011; Clancy, 2017].

Overall, conventional scaling rules are based on keeping critical equipment and operational para-

meters constant. Many successful scale-up studies have been conducted using various approaches.

However, comparative studies often result in contradicting conclusions which indicates the presence

of unidentified factors. As a consequence, manual adjustment is often required at large scale, which

should be avoided due to the high associated costs. Additionally, it is very challenging to predict all

product properties at larger scale. That is why, the most critical property is usually identified, and

other properties are only monitored.

In order to reduce experimental effort especially at larger scale, computational modelling has

been explored to predict favourable conditions. However, an efficient workflow is needed to benefit

from computational modelling. Wang et al. [2019] developed a suitable workflow (Figure 2.4) by

applying model-driven design (MDD). For MDD approaches, the usage of a model that is predictive
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Figure 2.4: Model-driven design workflow (Reprinted from [Wang et al., 2019])
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across scales is essential. Since the process is known to be scale-dependent, capturing the scale-

dependent aspects should be emphasised [Gavi, 2019]. Several suitable modelling techniques have

been explored: population balance modelling (PBM) [Pohlman and Litster, 2015; Yu et al., 2017],

discrete elementmethod (DEM) [Nakamura et al., 2013; Chan et al., 2015], and empirical approaches

[Wehrlé et al., 1993; Miyamoto et al., 1997; Landin, 2017]. PBM is based on the assumption that

particles with the same characteristics behave similarly. In this way, particle properties can be

tracked more easily, especially at large scale. Applying PBM approaches has good potential because

the computational time for simulations of large-scale equipment is low, and the experimental effort

required to develop a predictive model is reasonable [Kumar et al., 2013]. Although PBM is widely

used to model wet granulation, it has only been used in few scale-up studies. The alternatives

(DEM and empirical approaches) do not fulfil both requirements. Additionally to identifying

favourable conditions, good predictions of product properties are valuable for process design and

scale-up [Litster, 2003]. For this reason, PBM is the most promising modelling approach for these

applications [Niklasson Björn et al., 2005].

2.2.1 Critical review of operation and scale-up

• Usage of geometrically similar equipment is essential for process scale-up.

• Useful scaling rules have been derived from mechanistic understanding of wet granulation.

• Conventional scaling rules alone do not work reliably due to unidentified influences.

• The population balance modelling approach is promising for scale-up purposes.

2.3 Modelling techniques

Various modelling techniques have been employed to model particulate processes like wet granula-

tion. The most frequently used method is population balance modelling (PBM). PBM is a process-

scale approach which keeps track of particle properties over time. However, it is challenging to

capture particle-scale behaviour in process-scale modelling because particle-scale behaviour cannot

be observed easily and is, therefore, not well understood. For this reason, the use of the particle-scale

modelling tool discrete element method (DEM) has been investigated in addition to PBM. Compared

to PBM, DEM is a first-principles modelling approach. Other first-principles modelling tools like

computational fluid dynamics (CFD) have also been employed, especially in modelling of fluid bed

granulation processes [Fries et al., 2011; Sen et al., 2014]. Since both modelling approaches have
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their benefits, combined approaches have also been investigated. This combination is also called

multi-scale modelling (Figure 2.5). Alternative approaches include purely empirical modelling tools

like artificial neural network (ANN) [Landin and Rowe, 2013]. PBM and DEM will be reviewed in

more detailed in the following because they are the most promising tools to model high-shear wet

granulation mechanistically.

Figure 2.5: Multi-scale modelling approach

2.3.1 Population balance modelling

Population balance modelling (PBM) is a widely used tool which is typically employed to model

particulate processes like crystallisation [Costa et al., 2007; Sulttan and Rohani, 2019], polymerisa-

tion [Sood et al., 2016; Brunier et al., 2017], granulation [Meyer et al., 2015; Shirazian et al., 2018],

milling [Kumar Akkisetty et al., 2010; Capece et al., 2011], andmixing [Sen et al., 2012; Boukouvala

et al., 2012]. Population balance equations are partial integro-differential equations which include

conservation laws of integral fluxes.

In PBM, one ormore properties are selected to group the particles into bins; all remaining particle

properties are averaged. Consequently, this approach is based on the assumption that all particles

in one bin have similar properties. It is evident that the selection of properties of interest and bin

size can have a significant effect on the accuracy of the method. Due to this simplification, only the

number of particles in each bin and their properties are tracked over time rather than tracking every

particle individually. The changes in particle properties is determined by evaluating rate processes.

A population balance equation can be written as [Ramkrishna and Mahoney, 2002]:
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m+=(®G, C)
mC

+ m

m®G

[
+=(®G, C) d®G

dC

]
= ¤+8==8= (®G, C) − ¤+>DC=>DC (®G, C) ++

[ ¤1(®G, C) − ¤3 (®G, C)
]

(2.37)

where+ is the control volume, = is the volume-specific number density of particles, ®G is the set of

granule properties of interest, C is time, ¤+8= and ¤+>DC are the volumetric flowrates which are entering

and leaving the control volume, and ¤1 and ¤3 are the volume-specific birth and death rates resulting

from rate processes which result in a discrete change of properties: nucleation, coalescence, and

breakage. The term m

m®G

[
+=(®G, C) d ®G

dC

]
accounts for a continuous change of properties, which occurs

due to the rate processes consolidation, layering, and attrition. However, the effects of attrition

are usually negligible in high-shear wet granulation, that is why it does not need to be considered.

Hence, the population balance equation becomes:

m+=(®G, C)
mC

+ m

m®G
[
+=(®G, C)

( ¤�;0H + ¤�2>=B ) ] = ¤+8==8= (®G) − ¤+>DC=>DC (®G)
++

[ ¤1=D2 (®G) + ¤12>0; (®G) + ¤11A (®G) − ¤32>0; (®G) − ¤31A (®G)] (2.38)

where ¤�;0H and ¤�2>=B are the rate of change due to layering and consolidation respectively,
¤1=D2, ¤12>0; and ¤11A are the birth rates due to nucleation, coalescence and breakage, and ¤32>0; and
¤31A are the death rates due to coalescence and breakage. This population balance equation can be

either 1-D or multi-D. The dimensionality is defined by the number of properties of interest, which

are represented by ®G.

Compartmental modelling

In PBM, the remaining granule properties are averaged over the entire control volume, that is why

this modelling approach should only be applied to ideally mixed systems. Having said that, it has

been shown that most granulators cannot be assumed to be ideally mixed because of equipment

design, segregation, flow regime, etc. [Scott et al., 2000]. Furthermore, different rate processes

might be dominant in different regions of the granulator due to the sprayer, impeller or chopper

[Bouffard et al., 2012] and affect the granule properties. Therefore, zones (or compartments) need

to be identified which have homogeneous process conditions throughout and an even distribution

of remaining granule properties. Primarily, the process conditions and granule properties which

influence the rate processes should be considered at this point, e.g. flow kinematics and presence of



36 Literature review

liquid or fine particles. PBM can be applied to these identified compartments [Bouffard et al., 2012;

Li et al., 2013b]. This approach is called compartmental modelling (CM).

CM is applicable to represent twin-screw granulators [Barrasso et al., 2015a,b; McGuire et al.,

2018a,b; Shirazian et al., 2019], fluid bed systems [Maronga and Wnukowski, 1997; Börner et al.,

2013], rotating drums [Ramachandran and Chaudhury, 2012; Kumar et al., 2015], and high-shear

mixers with vertical axis [Bouffard et al., 2012; Chaudhury et al., 2015; Tran, 2015; Chaturbedi

et al., 2017; Yu et al., 2017; Abrahamsson et al., 2018] and horizontal axis [Portillo et al., 2007; Li

et al., 2013b; Sen et al., 2013a; Pohlman, 2015; Davis, 2016; Lee et al., 2017].

In high-shear mixers, the following compartments are most commonly identified: spray, bulk,

and breakage compartment. Only the dominant rate processes need to be represented in each

compartment [Davis, 2016; Yu et al., 2017]. The dimensions and location of compartments are

often derived from generic process understanding and heuristics. The spray compartment can be

constructed around the spray area [Bouffard et al., 2012; Chaturbedi et al., 2017], and the impeller

or chopper depicts the breakage compartment [Davis, 2016]. Approaches to identify compartments

based on experimental techniques [Tran, 2015] and CFD simulations [Yu et al., 2017] have been

studied as well. A method to estimate the spray zone depth based on a collision kernel is proposed

by Yu et al. [2016].

The powder flow between compartments can be estimated by evaluating the flow regime and

powder velocity. Experimental techniques, like PEPT [Tran, 2015], and DEM simulations [Bouffard

et al., 2012] have been used for this purpose. Empirical correlations to determine the flow regime

(see Section 2.2) and powder velocity (see Section 2.1.2) have also been proposed.

This approach is of particular interest for design and scale-up purposes because the CM decisions

are based on the equipment design. Hence, slight design variations (e.g. for geometrically different

equipment) can be accounted for without modifying the remaining model.

Model formulation

Empirical and mechanistic expressions have been developed to quantify the wet granulation rate

processes (see Section 2.1). Empirical expressions, which are more commonly used, require a lot of

experimental data since many parameters need to be estimated. Furthermore, empirical approaches

might only be applicable to the equipment or formulation investigated and typically result in poor

predictions outside their experimental design space.
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While an empirical approach is based on experimental observation, a mechanistic approach is

derived from first principles. Empirical approaches that include the effects of physical properties

are also classified as semi-empirical, and mechanistic expressions that require fitting parameters can

be called semi-mechanistic. Mechanistic expressions try to account for the physical phenomena and

are, therefore, based on process parameters and material properties. Process parameters and material

properties can often be measured. However, conventional parameter estimation techniques might

be required to determine process parameters or material properties which cannot be determined

otherwise. Mechanistic approaches have been developed to make the prediction of experimental

results more reliable. The development of mechanistic expressions is more challenging because

the mechanisms of the rate processes have to be identified correctly. For this reason, only few

mechanistic kernels have been proposed in the literature, and only a small fraction of those kernels

have been applied in modelling studies which also included adequate validation of the model.

Many models in the literature are one-dimensional (1-D) and can consequently only track one

property of interest, typically granule size. However, it might not possible to represent all rate

processes accurately if only 1-D PBM is employed [Iveson, 2002]. An uneven distribution of granule

properties (e.g. liquid content and porosity) can have a significant effect on the rate processes [Scott

et al., 2000; Reynolds et al., 2005; Štěpánek et al., 2009]. Therefore, multi-D PBM has been

proposed to be able to track more than one property of interest. In addition to granule size, liquid

content and porosity are often chosen as properties of interest [Braumann et al., 2007; Poon et al.,

2008; Ramachandran and Barton, 2010; Barrasso et al., 2013; Pohlman, 2015]. Alternatively or

additionally, the granule composition can be defined as a property of interest to investigate multi-

component wet granulation [Lee et al., 2008; Matsoukas et al., 2009; Barrasso and Ramachandran,

2012]. However, validating the distribution of these additional properties is challenging. While the

granule size distribution can be easily determined by mechanical screening (e.g. sieve analysis), the

other property distributions cannot be determined accurately without screening a very large number

of granules individually. Furthermore, multi-D PBM is very computationally expensive compared

to 1-D PBM.

By applying reduced order modelling techniques, the computational time can be drastically

reduced without completely neglecting the effects of the uneven property distribution. The most

commonly used technique is the lumped parameter approach proposed by Hounslow et al. [2001].

The lumped parameter approach assumes that one or more granule properties (e.g. liquid content
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and porosity) depend on the property of interest (e.g. size). Therefore, the multi-D PBM approach is

lumped into the property of interest. As a consequence, a uniform distribution of granule properties

is assumed for every interval of the property of interest. For example, all granules in one size bin have

the same liquid content and porosity. For this approach, it is presumed that the granule properties

mainly depend on the granule size. The difference to a conventional 1-D PBM approach is that

a conventional 1-D PBM approach assumes uniform distribution of all other properties across the

control volume, which is been shown to be inaccurate [Wauters et al., 2003]. That is why, the lumped

parameter approach is advantageous. Reducing the population balance equation by one dimension

results in a decrease in the computational time of around 95 % [Barrasso and Ramachandran, 2012].

This approach has been applied in various modelling studies [Biggs et al., 2003; Barrasso and

Ramachandran, 2012, 2016].

Solution techniques

The population balance equation is typically solved using a numerical solution technique since only

simplified population balance equations can be solved analytically [Ramkrishna, 1985]. Therefore,

several different approaches have been developed in the past. The method of moments solves the

population balance equation by solving for moments [Hulburt and Katz, 1964]. The types of this

method which are most commonly used are the quadrature method of moments [Marchisio et al.,

2003; Su et al., 2007], the direct quadrature method of moments [Marchisio and Fox, 2005; Selma

et al., 2010] and the extended quadrature method of moments [Yuan et al., 2012; Passalacqua et al.,

2018; Pigou et al., 2018]. Alternatives to the method of moments are discretised and stochastic

methods which solve the population balance equation for the granule property distributions. The

following discretised methods have been proposed: fixed pivot technique [Kumar and Ramkrishna,

1996a; Vale and McKenna, 2005], moving pivot technique [Kumar and Ramkrishna, 1996b], finite

element method [Nicmanis and Hounslow, 1996; Mantzaris et al., 2001c; Mahoney and Ramkrishna,

2002; John et al., 2009], finite difference method (FDM) [Mantzaris et al., 2001a; Sheshadri and

Fritzson, 2011], finite volume method (FVM) [Verkoeĳen et al., 2002; Filbet and Laurençot, 2004;

Gunawan et al., 2004], cell average technique [Kumar et al., 2006, 2008b,a; Kostoglou, 2007;

Chaudhury et al., 2013], and other methods [Hounslow et al., 1988; Mantzaris et al., 2001b].

Alternatively, the stochastic Monte Carlo method has been used, which can be time-driven [Liffman,

1992] and event-driven [Smith and Matsoukas, 1998; Lin et al., 2002; Haibo et al., 2005]. The most
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relevant solution techniques are discussed in more detail in the following.

Hounslow et al. [1988] developed a discretised method for the population balance equation. This

discretised method was extended by Litster et al. [1995] andWynn [1996] to an adjustable geometric

discretisation.

The fixed pivot technique developed by Kumar and Ramkrishna [1996a] is a simplistic method

which is similar to the discretised method developed by Hounslow et al. [1988]. The technique

focuses on predicting selected moments accurately. As a result, the granule property distributions in

the large granule size range are consistently over-predicted, which leads to a diverging behaviour of

the higher moments [Kumar, 2006]. To avoid over-predicting the granule property distribution, the

more complex moving pivot technique has been proposed by [Kumar and Ramkrishna, 1996b].

FVM solves the population balance by transforming the problem to mass conservation laws

[Filbet and Laurençot, 2004]. Good predictions of the granule property distributions can be obtained

using this method. However, the 0th moment cannot be predicted accurately. In FVM, the properties

of interest are tracked at the midpoint of each bin. For this reason, discrete changes of properties

can be incorporated well using FVM. FDM is based on an approximation of the differential form

of the partial differential equation [Mantzaris et al., 2001a]. In FDM, the properties of interest are

evaluated at the boundaries of each bin. Therefore, FDM is appropriate to include continuous change

rates. FVM and FDM are used to solve the PBM equation in the process modelling software package

gPROMS (Process Systems Enterprise Ltd).

The cell average technique was developed to overcome the issues encountered with other discret-

ised methods [Kumar et al., 2006]. Kumar et al. [2006] compared the cell average technique with

the fixed pivot method and concluded that the granule property distributions and higher moments

can be calculated more accurately using the cell average technique. Furthermore, the computational

time required by the cell average technique to determine the final solution is comparable to the time

required by the fixed pivot method. In a comparison study by Kumar et al. [2009], it was shown that

the cell average technique is able to predict the moments more accurately, while the finite volume

method (FVM) gives better predictions of the granule property distributions. Additionally, it was

observed that the type of grid has an influence on the accuracy of the predictions, especially for the

FVM. While good predictions can be achieved using the cell average technique on fine as well as a

coarse grid, the FVM requires a fine grid to predict results accurately.

The Monte Carlo method determines the solution based on a probability function which results
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in a certain degree of uncertainty. Zhao et al. [2007] analysed four different Monte Carlo methods

and recommended event-driven methods since they are generally faster and more accurate than

time-driven methods. Marshall et al. [2011] assessed an event-driven Monte Carlo method and the

direct quadrature method of moments by comparing the results to a direct discrete solution. They

concluded that the Monte Carlo method provides a good level of accuracy, while the accuracy of the

method of moments highly depends on the complexity of the kernel applied.

To solve a multi-D population balance equation, the Monte Carlo method is a good option, since

other solution techniques can become computationally expensive [Braumann et al., 2010b; Kumar

et al., 2013]. As an alternative, Kumar [2006] and Chaudhury et al. [2016] proposed to employ

reduced order modelling techniques to overcome this issue (see Section 2.3.1). In conclusion,

the choice of solution technique is a trade-off between the accuracy of results and computational

efficiency.

Parameters can be estimated using a set of experimental data. Apart from an effective parameter

estimation technique, experimental data that shows the sensitivity to the parameters is crucial to

determine accurate values for the parameters.

Ideally, the effects of parameters should be isolated to estimate each parameter separately. Effects

of parameters can be isolated by examining the process mechanisms individually. The predictive

power of amechanisticmodel can be increased significantlywith this technique because the parameter

values estimated are more likely to be applicable outside the experimental design space. However,

parameters are often interdependent. That is why, it is often necessary to estimate several parameters

simultaneously. Parameters can be estimated using mathematical optimisation techniques.

Effects of parameters can be isolated by creating conditions that highly favour one mechanism

and suppresses others. This approach has been applied to isolate various wet granulation mech-

anisms [Hapgood et al., 2004; Ramachandran et al., 2009; de Koster, 2018]. They carried out a

parameter estimation study using a breakage-only granulator, in order to estimate the parameters of

the consolidation and breakage kernels.

A common alternative approach is the factorial design of experiments. This approach has the

advantage that combined effects of operational parameters can be identified and quantified which

is valuable for wet granulation due to the high number of important parameters [Braumann et al.,

2010a; Chaudhury et al., 2014a].

In order to estimate parameters, an optimisation problem has to be solved which minimises the
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discrepancy between the experimental data and the simulation results by varying the parameters

(least squares method):

min
®G

5 (®G) =
=∑
8=1
($8 − �8 (®G))2 , (2.39)

where ®G is the set of parameters, = is number of experiments, $8 is the set of experimental

results, and �8 is the set of simulation results. Different optimisation techniques are available

for this purpose [Rao, 2009]: derivative-free methods [Nelder and Mead, 1965], gradient-based

methods [Levenberg, 1944; Broyden, 1970; Goldfarb, 1970; Shanno, 1970], and stochastic methods

[Braumann et al., 2011].

Parameter estimation is often a multi-objective optimisation problem because the goal is to

predict more than one granule property. A solution to a multi-objective optimisation problem is

a trade-off between several objectives, while none of the objectives might be optimal. Since the

problem can have more than one solution, identifying the best trade-off can be challenging. For this

reason, methods to solve this problem have been proposed: weighted sum method and ε-constraint

method.

The weighted sum method converts a multi-objective optimisation into a single-objective optim-

isation problem by summing the products of objective functions �8 (G) and the assigned weighting

factors F8:

min
®G

5 (®G) =
<∑
8=1

F8�8 (®G), (2.40)

where< is the number of objective functions. More important objectives can be weighted higher.

In order to apply ε-constraint method, a primary objective function has to be selected. This

primary objective function �9 (G) is then minimised while constraints Y8 are introduced for the other

objectives:

min
®G

5 (®G) = �9 (®G)

s.t. �8 (®G) ≤ Y8 , 8 = 1, . . . ,<, 8 ≠ 9 .

(2.41)

Model validation

In order to assess the accuracy of the simulation results, the model developed must be validated.

Therefore, experimental data is commonly employed. A series of models which have been validated
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using experimental data can be found in Table 2.5. In the following, the more recent model validation

studies are discussed in more detail.

In most modelling studies, the wet granulation rate processes are not clearly separated and studied

individually. This means that the results of the parameter estimation depend on the experimental

range chosen, and the parameter values estimated might not be applicable outside the experimental

range. As a consequence, less accurate model predictions can be obtained with these parameter

values.

Models are usually validated by comparing the simulation results to experimental results using

parameter values estimated. Therefore, only the experimental data which was used for the parameter

estimation study is commonly used. Typically, models are not assessed further by comparing

predictions to additional experimental results. Critical assessment of model predictions is valuable

for models that are subsequently used for process design and scale-up purposes [Chaudhury et al.,

2014a]. The aim of this approach is to use a limited amount of experimental data. As a consequence,

the approach relies heavily on the accuracy of the predictions. That is why assessing the model

predictions is inevitable.

Table 2.5: Model validation studies for wet granulation in high-shear mixers (MC Monte Carlo)

Source Mixer type
Modelling
approach

Solution
technique

Mechanisms

Ramachandran et al.

[2009]

Vertical axis
(4.7 L Kenwood) 3-D PBM

Finite volume
method

Consolidation,
breakage

Pohlman [2015]
Ploughshare
(10 L, 20 L, 50 L
Lödige)

3-D PBM,
CM

Finite volume
method

Nucleation,
consolidation,
coalescence,
breakage

Kastner et al. [2013]
Ploughshare
(5 L Kenwood) 5-D PBM

Direct
simulation
MC method

Nucleation,
penetration,
solidification,
consolidation,
coalescence,
breakage

Continued on next page
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Table 2.5 – continued from previous page

Source Mixer type
Modelling
approach

Solution
technique

Mechanisms

Biggs et al. [2003]

Vertical axis
(10 L Roto
Junior,
7.9 L Gral)

2-D PBM
Hounslow’s
method

Coalescence

Darelius et al. [2006]
Vertical axis
(4 L DIOSNA) 3-D PBM

Volume-based
approach

Consolidation,
coalescence

Lee et al. [2017]
Ploughshare
(5 L Kenwood)

5-D PBM,
CM, DEM

Direct
simulation
MC method

Nucleation,
penetration,
solidification,
consolidation,
coalescence,
breakage

Bouffard et al. [2012]
Vertical axis
(4 L Caleva
Spheronizer)

2-D PBM,
CM, DEM

Event-driven
MC method

Wetting,
coalescence,
breakage

Yu et al. [2017]
Vertical axis
(1.9 L MiPro,
4 L DIOSNA)

2-D PBM,
CM, CFD

Constant
volume
MC method

Nucleation,
layering,
coalescence,
breakage

Le et al. [2009]
Vertical axis
(10 L Roto
Junior)

2-D PBM
Hounslow’s
method

Coalescence

Oullion et al. [2009]
Vertical axis
(10 L Roto
Junior)

2-D PBM
Constant
number
MC method

Nucleation,
layering,
coalescence

Sanders et al. [2003]
Vertical axis
(10 L Roto
Junior)

1-D PBM
Hounslow’s
method

Coalescence

Wauters et al. [2003]
Ploughshare
(50 L Lödige) 1-D PBM

Hounslow’s
method

Consolidation,
coalescence

Chaudhury et al. [2014a]
Vertical axis
(1 L DIOSNA) 3-D PBM

Cell-average
technique

Coalescence,
breakage

Žižek et al. [2013, 2014]
Vertical axis
(4 L DIOSNA) 1-D PBM

Hounslow’s
method

Coalescence

Dhanarajan and

Bandyopadhyay [2007]
Vertical axis
(0.25 L MiPro) 1-D PBM

Discretised
method

Breakage

Continued on next page
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Table 2.5 – continued from previous page

Source Mixer type
Modelling
approach

Solution
technique

Mechanisms

Chaturbedi et al. [2018]
Vertical axis
(10 L DIOSNA)

1-D PBM,
CM

Cell-average
technique

Dissolution,
consolidation,
coalescence
breakage

Critical review of population balance modelling

• PBM is an efficient tool to model high-shear wet granulation.

• A compartmental modelling approach is required for non-ideally mixed systems.

• A multi-D PBM framework is required to capture the effects of an uneven granule properties

distribution.

• Mechanistic kernels are preferable in predictive modelling.

• Parameters in mechanistic kernels should be measured directly or estimated using efficient

techniques.

• The number of parameters which are estimated simultaneously should be limited by isolating

rate processes in order to understand the effects of the individual parameters better.

• In model validation studies, predictions are usually not compared to experimental results

which would be required to benefit from modelling for process design and scale-up purposes.

2.3.2 Discrete element method

The discrete element method (DEM) has been applied to a large variety of particulate processes, like

wet granulation [Kuo et al., 2004; Hassanpour et al., 2013; Kulju et al., 2016], coating [Freireich

et al., 2011a, 2015; Li et al., 2013b], milling [Cleary et al., 2003; Capece et al., 2014b], and powder

mixing [Liu et al., 2013b; Sen et al., 2013b]. The use of this method has increased extensively in

recent years, since computational limitations have been overcome [Ketterhagen et al., 2009].

DEM is a modelling approach which is able to track the motion of individual particles in a system

by applying Newton’s laws of motion, while accounting for the effects of external force fields, like

gravity, and capturing collisions with equipment surfaces and other particles:
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<8
dE8
dC

= �8,4GC + �8,2>;; (2.42)

where <8 and E8 are the mass and velocity of particle 8, and �8,4GC and �8,2>;; is the force exerted

by external force fields and collisions respectively.

In order to represent interactions between particles, contact models are required. The use of two

contact models has been extensively investigated: hard-particle models and soft-particle models.

Hard-particle models assume that all particles are rigid, and collisions are instantaneous and ideal

without the loss of energy [Liss and Glasser, 2001; Lasinski et al., 2004]. The use of hard-particle

models is limited because of their fundamental assumptions. However, these assumptions are a

reasonable approximation in dilute systems [Ketterhagen et al., 2009]. Soft-particle models are

typically based on a more sophisticated approach. Several soft-particle models have been proposed

to be able to capture different collision mechanisms. Which soft-particle model is most appropriate

should be decided based on the material properties, such as particle stiffness and coefficient of

restitution. Soft-particle models are usually preferred tomodel particle interactions in dense systems,

such as high-shear wet granulation [Ketterhagen et al., 2009]. Soft-particle models simulate an

overlapping of particles to account for particle deformation. The most relevant soft-particle models

are described in more detail in the following.

The linear spring, dashpot model assumes that the particles behave like a spring-damping system

during the collision [Cundall and Strack, 1979; Haff and Werner, 1986; Cleary and Sawley, 2002].

Johnson [1985], Lee [1994], Ristow and Herrmann [1994], and Zhang et al. [2004] proposed to

extend this model by including a non-linear spring force based on the theory of elastic contact by

Hertz [1881]. However, the simulation results do not agree with experimental data [Taguchi, 1992]

(as cited in Ketterhagen et al. [2009]). For this reason, a non-linear spring, non-linear dashpot model

was proposed [Kuwabara and Kono, 1987; Brilliantov et al., 1996]. This model assumes viscoelastic

behaviour and is based on experimental data. Walton and Braun [1986] proposed a partially latching,

hysteretic spring model to take the effect of plastic deformation on the repulsive force into account.

Fewer particles can be tracked with the soft-particle model compared to a hard-particle model due

to higher computational cost.

DEM is limited to simulating experiments at laboratory scale due to the very large number of

particles at larger scales [Kumar et al., 2013]. For this reason, wet granulation processes are often

modelled using fewer larger particles [Hassanpour et al., 2009]. Freireich et al. [2009] analysed the
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sensitivity of DEM results to particle size and concluded that flow-scale behaviour is represented

well at a larger particle size. However, particle-scale information like collision frequency and impact

velocity is sensitive to particle size and cannot be determined accurately using this approach.

An alternative approach to reduce the complexity of a model is periodic sectioning, which takes

advantage of the effect of symmetry [Gao et al., 2012a,b]. Therefore, only a part of the system needs

to be modelled and simulated which can reduce the computational time significantly. However,

granulators are usually not symmetric, since choppers, spray nozzles and other components are

commonly installed eccentrically.

Validation studies have shown that the particle velocity and mixing behaviour predicted by DEM

simulations is in good agreement with experimental data using measuring techniques: positron

emission particle tracking (PEPT) [Stewart et al., 2001; Yang et al., 2003; Hassanpour et al., 2011;

Marigo et al., 2013], magnetic resonance imaging (MRI) [Yamane et al., 1998], video imaging

[Pandey et al., 2006], and particle image velocimetry (PIV) [Muguruma et al., 2000; Jain et al.,

2002]. However, Freireich et al. [2009] showed that validating particle velocity is not sufficient

to validate collision frequency since a change in material properties can have opposite effects on

the particle velocity and collision frequency. Experimental data to fully validate DEM simulation

results is difficult to obtain. While flow patterns and particle velocity in high-shear mixers can be

determined experimentally, an experimental method to obtain the collision frequency is currently

not available. Determining an accurate estimate for the collision frequency would be of great interest

in predictive modelling of granulation processes.

Critical review of the discrete element method

• DEM can be used to determine specific particle-scale information preferably at small scale.

• Soft-particle contact models are recommended for high-shear wet granulation processes.

• DEMhas not been experimentally validated, especially particle-scale information like collision

frequencies, which are of great interest in wet granulation modelling.

2.3.3 Coupling of PBM and DEM

While PBM has been developed to determine process-level information, DEM can obtain particle-

scale information and the flow regime. In PBM, particle-scale information is usually estimated using

expressions which are often based on experimental data. Employing DEM simulations is a more
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mechanistic and predictive way of determining particle-scale information. Despite the advantageous

of DEM, the method also has limitations. The computational time for DEM simulations is extremely

high compared to PBM, which makes DEM unsuitable for modelling a large-scale wet granulation

process accurately [Chaudhury et al., 2017]. However, in order to take full advantage of both

modelling tools, PBM and DEM can be coupled [Ingram and Cameron, 2004, 2005]. In order to

benefit from coupling the two modelling tools, the usage of both tools should be limited to a specific

scope. Options for coupling are discussed in the following.

A practicable way of coupling of PBM and DEM is one-way coupling [Freireich et al., 2011b;

Sen et al., 2013b; Li et al., 2013a]. In one-way coupling, a DEM simulation is carried out, and the

results obtained will be used as PBM inputs. The advantage of this method lies in its simplicity.

However, finding a set of appropriate input parameters for theDEM simulation is challenging because

many parameters are changing over time in wet granulation processes, especially the granule size

distribution. For this reason, one-way coupling (one DEM simulation) is not sufficient to provide

particle-scale information which is size-dependent.

An alternative to one-way coupling is two-way coupling. In two-way coupling, results are

exchanged by both PBM and DEM and subsequently used as inputs by the other method [Barrasso

et al., 2015b; Barrasso and Ramachandran, 2015, 2016] (Figure 2.6). Therefore, it is necessary to run

the two models alternately, and the scheduling of the simulations can be determined by evaluating

the change in granule properties (e.g. size distribution). This option is very computationally

expensive since several DEM simulations are required to provide inputs. Additionally, automated

communication between the PBM and DEM environment can be challenging.

Due to the high computational cost, reduced order modelling techniques have been investigated

to include the results from DEM simulation in PBM [Boukouvala et al., 2013]. The following

reduced order modelling techniques are feasible: artificial neural network (ANN) [Kumar Akkisetty

et al., 2010; Barrasso et al., 2014, 2015c], Kriging method and response surface methodology [Jia

et al., 2009; Boukouvala et al., 2010]. In reduced order modelling, a simplistic model is developed

which can represent the DEM simulation results. The model development usually requires a very

large amount of DEM results to ensure accurate results from the simplistic model. In contrast to

the DEM model, the simplistic model is not predictive, that is why it can only be applied within the

design space.

Data tables can also be employed to include DEM data in PBM. Therefore, DEM simulation
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Figure 2.6: Two-way coupling of PBM and DEM (Reprinted from [Barrasso, 2015])

results need to be generated for the whole range of expectable granule properties. These results are

then saved in data tables and used as an input for PBM. Since granule properties are changing over

time, it is not possible to generate DEM data with the exact granule property distribution. That is

why, a method needs to be developed to generate data for the granule properties from the data tables,

e.g. by interpolation.

Critical review of coupling of PBM and DEM

• One-way coupling is not suitable to model wet granulation processes because of changes in

granule properties.

• Two-way coupling is complex and computationally expensive.

• Reduced order modelling is not predictive and requires a lot of input data.

• Data tables are a good and simple option. However, an appropriate interpolation method is

required to employ data tables.

2.4 Critical summary

Table 2.6 shows an overview of the critical review of the literature given after every subsection.
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Table 2.6: Critical review summary

Critical review of subsection

Wetting and nucleation rate expressions

• The effect of spray characteristics on the nuclei size distribution is not well investigated

quantitatively.

• Monte Carlo simulations are a promising tool to predict the nuclei size distribution, however,

it is not feasible to include them in PBM.

• The only analytical nuclei size distribution model fails to predict experimental results at higher

spray rates.

• Drop penetration time is often assumed to be negligible in modelling studies because drop

penetration is usually a relatively quick process.
Consolidation rate expressions

• Consolidation is well understood but is usually modelled using empirical kernels.

• More mechanistic approaches have been proposed but not validated experimentally.
Layering and coalescence rate expressions

• Layering is a relevant wet granulation rate process but often neglected in modelling studies.

• Only simplistic models have been proposed but not validated.

• Coalescence has been well investigated in the past, and a series of models has been proposed

and validated experimentally.

• While coalescence is oftenmodelled using empirical approaches, moremechanistic approaches

have only been investigated more extensively in recent years.

• Amechanistic coalescence model should include the effect of the liquid layer which dissipates

impact energy. In high-shear wet granulation, plastic deformation should also be considered.
Breakage and attrition rate expressions

• Granule breakage is similar to particle breakage in milling processes.

• More mechanistic approaches to determine the breakage probability have been proposed in

recent years.

• Fragment size distribution of granule breakage is poorly understood and models have not been

fully validated.

• Attrition can be neglected in high-shear wet granulation.
Continued on next page
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Table 2.6 – continued from previous page

Critical review of subsection

Wet granulation mechanisms

• Wet granulation can be divided into rate processes which can be investigated separately.

• While some rate processes can be isolated more easily (e.g. nucleation), others are difficult to

separate (e.g. consolidation/coalescence or consolidation/breakage).

• Mechanistic modelling of some rate processes (coalescence and breakage) has been well

investigated, while other rate processes are often neglected in modelling studies or modelled

simplistically (nucleation, consolidation, and layering).
Operation and scale-up

• Usage of geometrically similar equipment is essential for process scale-up.

• Useful scaling rules have been derived from mechanistic understanding of wet granulation.

• Conventional scaling rules alone do not work reliably due to unidentified influences.

• A population balance modelling approach is promising for scale-up purposes.
Population balance modelling

• PBM is an efficient tool to model high-shear wet granulation.

• A compartmental modelling approach is required for non-ideally mixed systems.

• A multi-D PBM framework is required to capture the effects of an uneven granule properties

distribution.

• Mechanistic kernels are preferable in predictive modelling.

• Parameters in mechanistic kernels should be measured directly or estimated using efficient

techniques.

• The number of parameters which are estimated simultaneously should be limited by isolating

rate processes in order to understand the effects of the individual parameters better.

• In model validation studies, predictions are usually not compared to experimental results which

would be required to benefit from modelling for process design and scale-up purposes.
Discrete element method

• DEM can be used to determine specific particle-scale information preferably at small scale.

• Soft-particle contact models are recommended for high-shear wet granulation processes.

• DEMhas not been experimentally validated, especially particle-scale information like collision

frequencies, which are of great interest in wet granulation modelling.
Continued on next page



2.4 Critical summary 51

Table 2.6 – continued from previous page

Critical review of subsection

Coupling of PBM and DEM

• One-way coupling is not suitable to model wet granulation processes because of changes in

granule properties.

• Two-way coupling is complex and computationally expensive.

• Reduced order modelling is not predictive and requires a lot of input data.

• Data tables are a good and simple option. However, an appropriate interpolation method is

required to employ data tables.

PBM is suitable to develop a predictive model for the high-shear wet granulation process, which

can be applied at different scales. (Semi-)mechanistic expressions should be employed to model wet

granulation rate processes in PBM. In order to obtainmeaningful parameter values, parameters should

be measured or determined using first-principles modelling tools if possible. Fitting parameters can

be estimated, but having said that, an effective parameter estimation method should be applied with a

limited number of parameters estimated simultaneously. By coupling PBM and DEM, particle-scale

information can be included; however, the DEM simulations should be carefully designed, and an

efficient coupling method is recommended to reduce the computational effort.

Several (semi-)mechanistic rate expressions are available in the literature formost wet granulation

rate processes. Nevertheless, nuclei size distribution modelling is underdeveloped in the literature.

The consequence is that inappropriate assumptions are often used in modelling studies.

High-shear wet granulation models are often not validated adequately in order to be able to make

use of them for process design and scale-up purposes because comparison of model predictions to

experimental data is usually not included, which is essential to assess the model’s predictive power.
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EXPERIMENTAL MATERIALS AND METHODS

The experiments were performed at F. Hoffmann-La Roche AG in Basel, Switzerland. Therefore,

the equipment and standard experimentalmethods are provided by Formulation and Process Sciences,

F. Hoffmann-LaRocheAG.A team of technicians helped to run experiments: Andreas Ewert, Alessia

Schönemann, Georg Hummel and Vincent Spittler.

3.1 Formulation

For the granulation experiments, a model formulation from F. Hoffmann-La Roche AG is selected.

The formulation contains the API naproxen sodium, and the excipients lactose monohydrate and

microcrystalline cellulose [Rohrer, 2017]. Polyvinylpyrrolidone is used as a binder and added as a

powder to the mixture. The composition of the powder mixture can be found in Table 3.1, and the

bulk density of the powder mixture is 416.7 kg
m3 [Rohrer, 2017]. The skeletal density dB and nuclei-to-

drop diameter ratio  3 are determined to be 1.412 ± 0.006 kg
L and 1.26 ± 0.07 respectively. During

the experiments, purified water is sprayed onto the powder bed to liquefy the binder.

Table 3.1: Composition of powder mixture used for granulation experiments

Component Mass fraction
[

kg
kg

]
Naproxen sodium 0.518

Lactose monohydrate 0.171

Microcrystalline cellulose 0.207

Polyvinylpyrrolidone 0.104

The feedstock materials are sieved (1.2 mm) to break up lumps before the experiments.
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3.2 Equipment

The following equipment is used for the granulation experiments: 2 L, 10 L, 25 L and 70 L DIOSNA

granulators (Dierks & Söhne GmbH). Figure 3.1 shows the granulator design. The dimensions of

all four granulators are compared in Table 3.2. To spray liquid, a Pharmabehälter JC 1 pressure pot

(Wilhelm Schmidt GmbH) is used for all granulators up to 25 L, and for the 70 L granulator, a 520 U

peristaltic pump (Watson-Marlow Ltd) is used. Nozzles (Düsen-Schlick GmbH) with the following

orifice diameters and spray cone angles are used: 0.4 mm, 30°; 0.8 mm, 30°; 0.8 mm, 45°; 1.1 mm,

45°.

Figure 3.1: Granulator design

Table 3.2: Comparison of granulator dimensions at different scales (+ granulator volume, �

height, � diameter, �8<? impeller height, �2ℎ chopper diameter, !2ℎ chopper length)

+ [L] �/� [−] �8<?/� [−] �2ℎ/� [−] !2ℎ/� [−]

2 0.56 0.15 0.20 0.11

10 0.54 0.15 0.38 0.21

25 0.50 0.19 0.45 0.18

70 0.69 0.12 0.27 0.19
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3.3 Experimental methodology

3.3.1 Granulation experiments

In order to achieve an equivalent fill level of 48 %, 2 L experiments are carried out with 0.4 kg of dry

powder mixture, 10 L with 2 kg, 25 L with 5 kg, and 70 L with 14 kg of dry powder mixture. The

process steps are listed in Table 3.3.

Table 3.3: Process steps of the granulation experiments

Phase Time [min] Spray rate
[ mL

min
]

Impeller rate
[ 1

min
]

Chopper rate
[ 1

min
]

Loading − 0 0 0

Mixing 5 0 100 1200

Wetting 1 − 15 57 − 240 250 − 760 0 − 1200

Kneading 0 − 5 0 250 − 760 0 − 1200

Discharging − 0 100 0

After the experiments, representative samples (60 g each) are dried in a tray oven (Vinci Tech-

nologies) for 6 h (moisture content below 0.04 kg
kg ). An additional sample of 2 kg (if available) is

dried separately in a 12 L fluid bed dryer GPCG 2 LabSystem (Glatt GmbH). The fluid bed dryer is

operated at 60 °C and a gas supply of 50 m3

h (moisture content 0.1 g
kg ). The sample is dried until the

granules reach a moisture content of 0.04 kg
kg (approximately 45 min).

3.3.2 Nucleation-only experiments

In order to isolate nucleation, the granulation experiment needs to be stopped after a very short period

of time. Hence, the spray time is limited to 20 s, and no kneading step is included. Furthermore, the

chopper is not used. The 10 L granulator is used for these experiments, and the spray rate ranges

between 60 g
min and 200 g

min . This methodology is adapted from Hapgood et al. [2004]. A sieve

analysis is carried out to identify any nuclei formed. It is assumed that the size distributions of

the dry powder mixture and nuclei are not overlapping. Additionally, nuclei breakage is neglected.

Therefore, the nuclei size distribution is determined by subtracting the particle size distribution (PSD)

of the dry powder mixture.
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3.3.3 Sieve analysis

The granule size distribution is determined by sieve analysis of a dry sample of approximately 100 g.

Two sieve towers (Fritsch GmbH/Retsch GmbH) are used for the size analysis: for coarse product

(with sieve trays of 5000, 4000, 3150, 2240, 1800, 1400, 1250 and 1000 µm) and for fine product

(1000, 710, 500, 355, 250, 180, 125 and 90 µm). The sample is poured onto the top sieve of the

sieve tower used, and the tower is placed on a shaker for 5 min with amplitude of 2 mm. The sieve

analysis for coarse product is only applied for samples that contain a significant amount (> 0.02 kg
kg )

of larger particles (> 1000 µm). Every sieve is weighed with and without material to determine the

particle masses Δ<8 . From the results, the mass frequency 5<,8 and log mass frequency 58 (ln G) are

determined [Allen, 1968]:

5<,8 =
Δ<8
=∑
9=1
Δ< 9

1
G8 − G8−1

(3.1)

58 (ln G) =
Δ<8
=∑
9=1
Δ< 9

1
log10 (G8/G8−1)

(3.2)

where G8 is the maximum particle diameter of size range 8. For determining the mass frequencies,

all particles are assumed to be between 45 µm and 7 mm. The cumulative mass fraction, (< G8) is:

, (< G8) =

8∑
9=1
Δ< 9

=∑
9=1
Δ< 9

(3.3)

and the cumulative residue mass fraction, (> G8) is:

, (> G8) = 1 −, (< G8) (3.4)

To plot the PSD results, the geometric mean diameter Ḡ8 is used:

Ḡ8 =
√
G8−1G8 (3.5)

To calculate the granulated mass fraction,6A0=, the dry powder mass fraction <? is subtracted:
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,6A0= =

=∑
9=1
Δ< 9 − Δ<?, 9

=∑
9=1
Δ< 9

(3.6)

An example analysis calculation is provided in Appendix A.1.

3.3.4 Density

The skeletal density is measured using an AccuPyc II 1340 (Micromeritics Instrument Corporation).

Therefore, the sample is weighed, and placed in the chamber. Gas is drawn out of the chamber,

and helium is injected until a gauge pressure of 19.5 psig is reached. An equilibrium rate of

0.005 psig/min is chosen. Helium penetrates the pores of the particles; in this way, the skeletal

volume is measured. 20 cycles of low and high-pressure steps are applied, and the average skeletal

density dB is determined:

dB =
<B

+B
(3.7)

where <B and +B are the solid skeletal mass and volume respectively.

The envelope density is determined using a GeoPyc 1365 Envelope Density Analyzer (Micro-

meritics Instrument Corporation). Before the measurement, the product is sieved to control the

granule size between 1 mm and 1.4 mm. A sample is taken and weighed (0.2 g − 0.25 g). A bed

of small, rigid powder particles (Dry Flo), which have a high flowability, is placed in the cylinder.

The volume of the powder bed is between 1.3 cm3 and 1.7 cm3. The bed is compressed 10 times

with piston, applying a force of 28 N, and the volume is measured and averaged. The sample is

added to the powder bed, and both are well-mixed. The volume of the powder bed with the sample

is measured in the same manner, and the volume displaced by the sample is calculated. During the

volume measurement, the powder bed is slightly agitated to fill the void spaces around the granules.

The small powder particles are assumed to surround the granules without penetrating into the intra-

granule pores. This measurement is carried out 3 times per experiment, and the average envelope

density d4=E is determined:

d4=E =
<B

+B ++?
(3.8)
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where +? is pore volume. (Envelope) porosity Y is the ratio of pore volume to total volume, and

for a dry sample, it can be determined using Eqs. 3.7 and 3.8:

Y =
+?

+B ++?
=

(
+? ++B

)
−+B

+B ++?
= 1 − +B

+B ++?
= 1 − <Bd4=E

dB<B
= 1 − d4=E

dB
(3.9)

The bulk density and tap density of dry samples are measured using glass cylinders. A tap

density tester JEL Stampfvolumeter STAV 2003 (J. Engelsmann AG) is used for bulk samples with a

250 m3 glass cylinder, and manual taps are used for all other measurements. The material is weighed

and poured into a glass cylinder. The cylinder is handled carefully, and the bulk volume is recorded.

Then, the tap volume is determined after 10, 500, 1250 and 2500 taps, or 10 s, 1 min, 2 min and

3 min for manual taps. The following glass cylinders are used, depending on the sample size: 10 m3,

25 m3, 50 m3 and 250 m3. The bulk or tap density d1D;:/C0? is determined as follows:

d1D;: =
<B

+1D;:
(3.10)

dC0? =
<B

+C0?
(3.11)

where +1D;: and +C0? are the bulk and tap volume respectively.

Additionally to bulk samples, samples with a narrow size range are analysed (500 µm− 710 µm).

To avoid dry powder particles in the sample, the narrow size range should not overlap with the dry

powder PSD. It is ensured that the diameter of the glass cylinder is at least 15 times larger than the

maximum particle diameter. The tap density of a sample with a narrow size range is a measure for

envelope density because a similar packing fraction (or inter-particle void volume fraction) can be

assumed for every measurement. The bed porosity (or inter-particle void fraction) of a settled bed is

typically between 0.36 and 0.38 [Dullien, 1979; Hoffmann and Finkers, 1995], and 0.38 is assumed

in this study. The bed porosity Y143 is here defined as:

1 − Y143 =
+B ++?
+C0?

(3.12)

The envelope density d4=E is therefore determined from Eqs. 3.8, 3.11 and 3.12:

d4=E =
<B

+B ++?
=

<B

+C0? (1 − Y143)
=

dC0?

1 − Y143
(3.13)

An example analysis calculation is shown in Appendix A.2.



58 Experimental materials and methods

3.3.5 Spray characteristics

The spray characteristics of the nozzles used are determined; especially, the drop size and spatial

drop distribution are of interest. A SprayTec laser diffraction system (Malvern Panalytical) is used

to measure the drop size distribution. The different nozzles are tested at the distance of 9 cm, the

average distance between nozzle and powder bed (not in motion) in the 10 L granulator. Apart from

the centre of the spray cone, the drop size distribution on the sides are measured for comparison

(+30 mm and −30 mm). It is assumed that the spray cone is symmetrical.

In order to measure the spatial drop distribution, a grid of cuvettes (10 × 10 containers with size

1 cm × 1 cm) is placed 9 cm below the spray nozzle (Figure 3.2). The cuvettes are supported with

a frame to prevent spillage during the measurement. It is ensured that the grid is large enough to

capture the entire spray cone. After spraying for a short period of time, the cuvettes are weighed to

determine the amount of liquid. The cumulative mass in each row or column is determined to obtain

the spatial drop distribution and standard deviation.

Figure 3.2: Experimental setup to measure the spatial drop distribution

The range of operating conditions of the nozzles used are listed in Table 3.4. The pressure is

measured in the headspace of the pressure pot.

3.3.6 Drop nucleation experiments

The powder mixture is poured into a Petri dish. Any additional powder is carefully removed to

produce a powder bed with a flat surface. A syringe with a small needle is placed 9 cm above the

static powder bed. Through gentle taps, single water drops are formed, which fall onto the bed
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Table 3.4: Overview of nozzles and operating conditions tested

Orifice [mm] Spray angle [°] Spray rate
[ mL

min
]

Pressure [bar]

0.4 30 60 − 85 1.5 − 5

0.8 30 200 − 300 2 − 5

0.8 45 285 4

1.1 45 410 − 445 2.5 − 4

and form granules. To ensure reproducible conditions, the powder bed is roughly 4 times deeper

than the granule diameter, and the distance to the walls is at least 5 times larger than the granule

diameter. In total, 15 granules are formed and analysed. The experimental method has previously

been demonstrated by Pitt et al. [2018] and de Koster et al. [2019].

The mass of the water drops is measured using a microbalance. Overall, 4 drops are weighed,

and the results are averaged. The granule volume is measured using the GeoPyc 1365 Envelope

Density Analyzer (see Section 3.3.4). Therefore, 5 granules are measured simultaneously. The

nuclei-to-drop diameter ratio  3 can be calculated from the results as follows:

 3 =
31
33

=

(
+1
+3

) 1
3

=

(
+1d;
<3

) 1
3

(3.14)

where 31 and +1 are the (single-drop) nuclei diameter and volume respectively, 33 , +3 , <3 are

the drop diameter, volume and mass respectively, and d; is the liquid water density.

With the method applied, the drop diameter (2680 ± 15 µm) significantly larger than the typical

spray drop diameter (60 µm−300 µm). Hence, the underlying assumptions are that the nuclei-to-drop

size ratio is not size-dependent, and drops with a consistent size can be produced manually with a

syringe. Both assumptions have been confirmed experimentally [Ax et al., 2008; de Koster, 2018].



Chapter 4

NUCLEI SIZE DISTRIBUTION MODELLING IN WET

GRANULATION

This work was originally published in:

Bellinghausen, S., Gavi, E., Jerke, L., Ghosh, P. K., Salman, A. D., and Litster, J. D. (2019).

Nuclei size distribution modelling in wet granulation. Chemical Engineering Science: X,

4:100038.

4.1 Introduction

In this chapter, two new nuclei size distribution models are proposed and assessed. The emphasis

of this work is to address the weaknesses of the previously published modelling approaches since a

reliable nuclei size distribution model is needed for anymechanistically-based wet granulation model

but not available (see Section 2.1.1). For the development of the models, two different approaches

are considered, one empirical and one semi-mechanistic. The empirical approach applies the log-

normal distribution (LND) function, and the semi-mechanistic approach is based on the Poisson

distribution (PD) function. Both models can be included in a population balance modelling (PBM)

framework without increasing the computational cost significantly. Monte Carlo simulations (MCS)

data is used to estimate modelling parameters of both models. The model assessment includes a

comparison to experimental data from the literature. A sensitivity analysis is conducted to assess

the MCS modelling assumptions and the applicability of the LND model.
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4.2 Model development

4.2.1 Log-normal distribution model

An empirical model is proposed that can determine the nuclei size distribution. First, we define

the a dimensionless mass frequency and dimensionless nuclei diameter. The dimensionless mass

frequency 5 ′< can be derived from the mass frequency 5< and the diameter of a nucleus formed by

a single drop 31:

5 ′< = 5<31 (4.1)

and the dimensionless nuclei diameter 3 ′= is defined as the ratio of the nuclei diameter 3= to the

diameter of a nucleus formed by a single drop 31:

3 ′= =
3=

31
(4.2)

The model assumes that the dimensionless nuclei mass frequency follows a log-normal distribu-

tion (LND):

5 ′<(3 ′=, `=,f=) =
1

3 ′=f=
√

2c
exp

(
−

(
ln 3 ′= − `=

)2

2f2
=

)
(4.3)

where `= and f= are the logarithmic mean and logarithmic standard deviation of the dimension-

less nuclei diameter.

It is assumed that the two parameters `= and f= depend on the dimensionless nucleation number

R= as well as the standard deviation of the spatial drop distribution in the spray fG . Based on this

assumption, the following two functions are proposed:

`= = (<1fG + <2)R= + <3 (4.4)

and

f= = (B1fG + B2)R= + B3 (4.5)

where <1, <2, <3, B1, B2, and B3 are fitting parameters. Combining Eqs. 4.3, 4.4, and 4.5:

5 ′< =
1

3 ′= ((B1fG + B2)R= + B3)
√

2c
exp

(
−

(
ln 3 ′= − ((<1fG + <2)R= + <3)

)2

2 ((B1fG + B2)R= + B3)2

)
(4.6)
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In order to predict the nuclei size distribution, the diameter of a nucleus formed by a single

(average) drop needs to be known. By transformation, the dimensionless results can be converted:

5< =
1

3= ((B1fG + B2)R= + B3)
√

2c
exp

©«−
(
ln 3=

31
− ((<1fG + <2)R= + <3)

)2

2 ((B1fG + B2)R= + B3)2
ª®®¬ (4.7)

with

31 =  333 (4.8)

The six fitting parameters <1, <2, <3, B1, B2, and B3 need to be estimated; in this study, the

average nuclei mass frequency 5̄ ′< derived from MCS data is used for this purpose. Therefore, a

weighted optimisation is chosen with the dimensionless diameter values 3 ′= as weights. The weights

are chosen to improve the match at larger nuclei sizes. The final objective function is solved using

the least squares method:

min
®G

6∑
8=1

10∑
9=1

∑
:

3 ′= (:)
(
5̄ ′< (8, 9 , :) − 5 ′<

(
fG (8),R= ( 9), 3 ′= (:), ®G

) )
(4.9)

with

®G = [<1,<2,<3, B1, B2, B3] (4.10)

where 8 and 9 are the levels tested for spatial standard deviation and dimensionless nucleation

number respectively and : are the nuclei size levels.

4.2.2 Modified Poisson distribution model

The semi-mechanistic Poisson distribution (PD) model approach was proposed by Hapgood et al.

[2004, 2009]. This approach has been used to predict drop coalescence on powder beds. However,

it is also suitable to predict nuclei coalescence by accounting for substituting the smaller drop size

with the larger nuclei size. For the development of Hapgood’s model, the PD function is applied to

determine the probability of a (new) drop/nucleus to coalesce with = other drops/nuclei:

%= = exp (−_�) (_�)
=

=!
(4.11)
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where _ is the intensity of distribution, and � is a subregion. Hapgood et al. [2009] assumed

that the intensity _ is a function of the dimensionless spray flux only since drop coalescence was

considered. Furthermore, it was assumed that the area that leads to coalescence is 4 times larger than

the area of a single drop and is independent of the number of drops already coalesced (see Figure

4.1):

_� = 4R0 (4.12)

In this study, nuclei coalescence rather than drop coalescence is assumed. Therefore, the

dimensionless nucleation numberR= and the cross-sectional area of a single drop nuclei 01 are used

to determine the intensity of distribution:

_ =
R=

01
(4.13)

In this case, subregion � is the area that leads to nuclei coalescence (nuclei exclusion area). If

the centre point of a new drop lands inside this nuclei exclusion area, the drop will coalesce with

the nucleus. The nuclei exclusion area is effectively assumed to be one radius larger than the nuclei

in every direction. The nuclei exclusion area increases with the number of drops as illustrated in

Figure 4.1. For the development of the MPD model, the constant nuclei exclusion area is replaced

with a function for the nuclei exclusion area 0= which depends on the number of drops:

� = 0= (=) (4.14)

From Eqs. 4.13 and 4.14, the term _� of the MPD model can be derived:

_� =
0= (=)
01

R= = : (=)R= (4.15)

where : (=) is the ratio of nuclei exclusion area to single nucleus area. Combining Eqs. 4.11 and

4.15:

%= = exp (−: (=)R=)
(: (=)R=)=

=!
(4.16)

To represent the spatial distribution of drops, a uniform distribution is assumed in the direction

of the powder flow, and a normal distribution is applied perpendicular to the powder flow. Therefore,

the spray zone is divided into 10 equal-size sections to model the normal distribution of drops. The
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(a) Single drop nucleus (Hapgood’s PD

model) (b) Large nucleus (MPD model)

Figure 4.1: Illustration of nuclei exclusion area and criterion for nuclei coalescence (31 single drop

nucleus diameter)

nuclei size distribution is determined based on the average dimensionless nucleation number of each

section:

R= (G, `G ,fG) =
R̄=

%fG
√

2c
exp

(
− (G − `G)

2

2f2
G

)
(4.17)

where G is a dimensionless coordinate, R̄= is the dimensionless nucleation number averaged over

the spray zone, % is the percentage of drops within the spray zone, and `G and fG are the mean

and the standard deviation of the distribution function respectively. The following power function is

applied to determine the nuclei exclusion area ratio:

: (=) = 4 + 1=2 (4.18)

where 1 and 2 are fitting parameters. Here, : (0) equals 4 which is the nuclei exclusion area ratio

for a single drop nucleus. This power function is the essential contrast to Hapgood’s PD model,

which assumes: : (=) = 4. The average nuclei exclusion area for up to 1000 drops is determined

using a MCS approach. The non-linear least squares method ’fit’ from MATLAB is used to fit the

power function to the simulation results.

In order to calculate the factorial of the MPD, Ramanujan’s approximation is used [Andrews and

Berndt, 2005]:

=! ≈
√
c

(=
4

)= 6

√
8=3 + 4=2 + = + 1

88
. (4.19)
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This approximation is also used to scale the equation. Scaling is needed since terms of the PD

function can exceed numerical limits of mathematical solvers especially at higher coalescence rates.

From Eqs. 4.16 and 4.19, the scaled equation can be derived:

%= =

(
=
√

exp (−: (=)R=) 4= : (=)R=
)=

√
c 6
√

8=3 + 4=2 + = + 1
88

. (4.20)

While the PD function is normalised, the modifications made lead to a model, which results in

a sum of probability greater than 1. The reason for that is the intensity function _� which increases

with the number of drops =; the PD function was developed for a constant intensity function. As a

consequence, the probability distribution results from Eq. 4.20 need to be normalised.

After determining the probability distribution using Eq. 4.20, the nuclei size distribution is

determined by discretising the normalised results applying a linear grid with the bin boundaries 3 ′
=,: :

3 ′=,: = 0.5: (4.21)

4.2.3 Monte Carlo simulations for parameter estimation

Two sets of Monte Carlo simulations (MCS) are conducted to determine the model parameters for

both models. In the first set of MCS, the entire spray zone is simulated to generate data to fit the

empirical LNDmodel (Eq. 4.7). The second set of MCS determines the nuclei exclusion area, which

is needed for the MPD model (Eq. 4.18). In both approaches, the spray zone is assumed to be a flat

surface, and nuclei are represented as circles. A flowchart of the simulations is shown in Figure 4.2.

In the first set ofMCS, circular nuclei are randomly placed on a quadratic areawhich represents the

liquid addition onto a powder bed surface using a nozzle. This approach is adapted from Wildeboer

et al. [2005]. The simulations are based on only one input parameter - the dimensionless nucleation

number. The circles represent nuclei because the approach is based on nuclei coalescence rather

than drop coalescence. Instead of representing the spray as drops which vary in size [Wildeboer

et al., 2005], a uniform drop diameter is assumed in this case. In the direction of the powder flow,

the spatial distribution of drops is assumed to be uniform over the spray zone because the surface

of the powder bed is moving steadily through the spray zone. A truncated normal distribution is

applied perpendicular to the direction of the powder flow:
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Figure 4.2: Flowchart of the MCS [Wildeboer et al., 2005]
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# (G, `G ,fG) =
1

%fG
√

2c
exp

(
− (G − `G)

2

2f2
G

)
(4.22)

where G is a dimensionless coordinate, % is the percentage of drops within the spray zone, and `G

and fG are the mean and the standard deviation of the distribution function respectively. The mean

location is set to the centre of the spray zone, and the standard deviation is varied between 0.15 and

0.25 of the width of the spray zone, which is a typical range for spray systems [Wauters et al., 2002;

Sehmbi, 2019]. The normal distribution is truncated at the boundaries of the spray zone. In order to

determine whether or not nuclei coalesce, an overlapping criterion is applied:

(
G8 − G 9

)2 +
(
H8 − H 9

)2 ≤
(
31,8 + 31, 9

)2

4
(4.23)

where G and H are the centre coordinates of the drops 8 and 9 . Based on this criterion, nuclei

are identified, and their sizes are determined. The results are discretised to generate a nuclei size

distribution using a linear grid. The bin boundaries 3 ′
=,: are given by:

3 ′=,: = 0.5: (4.24)

The size of the spray zone is 2000 × 2000 pixels, and the single drop nuclei diameter 31 is 10

pixels. The number of drops per simulation varies between 5100 and 51 000 which correlates to

a dimensionless nucleation number between 0.1 and 1.0. The MCS results are averaged over 10

simulations. The model to carry out the MCS is implemented in Python; one simulation can take

between several minutes and several hours depending on the dimensionless nucleation number used.

Additional MCS are carried out based on the same approach. In these simulations, the following

inputs are varied: the standard deviation of the spatial drop distribution in the direction perpendicular

to the powder flow ( 1
16 −

1
2 of the spray zone width) and the nuclei diameter (10 − 20 pixels).

Furthermore, a log-normal drop size distribution is introduced with a logarithmic standard deviation

between 0.1 and 0.6 of the logarithmic mean diameter.

In the second set of MCS, nuclei with up to a 1000 drops are simulated. The objective is to

determine the average nuclei exclusion area (Figure 4.1). Therefore, every drop is added individually;

and after every drop, the nuclei exclusion area is determined. Every drop (except for the first drop)

is placed randomly applying a uniform distribution with a minor constraint: the new drop has to

overlap with the existing nucleus (Overlapping criterion: Eq. 4.23). The final results are averaged

over 100 simulations.
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4.2.4 Model assessment

For the model validation and assessment, the deviation of the model results from the reference data

at every grid point is determined, and the sum of squared errors is calculated. To be able to utilise

different sets of reference data, the relative sum of squared errors is reported, while all results are

relative to the results of Hapgood’s PD model.

4.3 Literature experiments for model validation

In order to assess the model predictions, experimental data is used, as well as MCS data. The

deviation of the model predictions is quantified with the sum of squared errors at every grid point.

The results reported are relative to Hapgood’s PD model results.

Two sets of experiments are selected which were published by Litster et al. [2001, 2002]. An

overview of all experiments can be found in Table 4.1.

Table 4.1: Overview of experiments

Source Equipment
Dimensionless nucleation

numberR= [−]

Litster et al. [2001] Ex-granulator 0.5; 0.6; 0.7; 1.2; 2.7

Litster et al. [2002] High-shear mixer 0.5; 0.7; 1.2

Litster et al. [2001] conducted ex-granulator nucleation experiments using a powder bed on a

rotating table with different rotational velocities. A nozzle was placed above the powder bed to spray

liquid onto the powder bed. Litster et al. [2002] conducted nucleation-only experiments in a Fielder

PharmaMATRIX 25 L high-shear mixer with a spray time of 5 s. Experiments at different impeller

frequencies are conducted to test the impact of the dimensionless nucleation number on the nuclei

size distribution.

In all experiments, the powder bed consisted of lactose monohydrate which was screened before

to facilitate the separation of nuclei during the characterisation. Water was used as binder liquid

which was delivered by a single flat spray nozzle. The spray pressure applied was 3.1 bar, which

lead to an average drop diameter of 96 µm, a spray rate of 58 mL
min , and a spray zone width of 8 cm. A
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relative standard deviation of the spatial drop distribution of 0.25 of the width of the spray zone can

be derived from characterisation measurements for the spray nozzle and pressure applied [Wauters

et al., 2002], and a nuclei-to-drop diameter ratio of 1.5 has been determined. The experiments are

described in more detail by Litster et al. [2001, 2002] and Hapgood et al. [2004, 2009].

4.4 Results and discussion

The nuclei size distribution in the spray zone is simulated using MCS, and a selection of the results

are illustrated in Figure 4.3. The MCS results show clearly the uniform distribution in the vertical

direction and the normal distribution horizontally.

(a)R= = 0.1 (b)R= = 0.5 (c)R= = 0.8 (d)R= = 1.0

Figure 4.3: Surface area coverage in spray zone at different dimensionless nucleation number

values from MCS data (fG = 0.25)

4.4.1 Log-normal distribution model

First, two parameter estimation studies are carried out to estimate parameter values for the log-

normal distribution (LND) model (Eq. 4.6). Therefore, the model is fitted to the MCS results for

each dimensionless nucleation number individually (1st parameter estimation; Eq. 4.3) and for all

results simultaneously (2nd parameter estimation; Eq. 4.6). A comparison of the parameter values of

both studies is shown in Figure 4.4. The results of the 1st parameter estimation show that the values

estimated increase almost linearly with increasing dimensionless nucleation number. Furthermore,

both parameter estimation studies result in very similar parameters for the dimensionless nucleation

number range chosen. This confirms that both model parameters can be represented with linear
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(a) Logarithmic mean diameter (b) Logarithmic standard deviation of the diameter

Figure 4.4: Parameter values estimated in the 1st and 2nd parameter estimation using Eqs. 4.3 and

4.6 respectively, of the LND model (fG = 0.25)

functions of the dimensionless nucleation number only (Eqs. 4.4 and 4.5). The results of the

parameter estimation are given including a 95 % confidence interval (using Eq. 4.6):

<1 = −3.0 ± 0.88 (4.25)

<2 = 1.9 ± 0.18 (4.26)

<3 = −0.046 ± 0.050 (4.27)

B1 = −3.4 ± 0.87 (4.28)

B2 = 0.98 ± 0.18 (4.29)

B3 = 0.32 ± 0.024 (4.30)

The Monte Carlo simulations (MCS) and the fitted LND model results are compared in Figure

4.5. The MCS data shows that most nuclei do not coalesce at a low dimensionless nucleation

number, giving a very narrow size distribution. With increasing dimensionless nucleation number,

more large nuclei are predicted. Due to the formation of more larger nuclei, a distribution with a long

tail is predicted. However, the peak of the mass frequency remains at a very small nuclei diameter.

The fitted LND model results agree very well with the MCS at low as well as high dimensionless

nucleation number values. The narrow size distribution at a low dimensionless nucleation number

is correctly represented as well as the long tail at a higher dimensionless nucleation number. This

shows that the LNDmodel is suitable for representing theMCS data for the dimensionless nucleation
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number range chosen. The LND model can be applied to predict the nuclei size distribution for a

wide range of conditions using the parameter values reported (Eqs. 4.25 to 4.30).

(a)R= = 0.1 (b)R= = 0.5

(c)R= = 0.8 (d)R= = 1.0

Figure 4.5: Comparison of the LND, MPD, and Hapgood’s PD model results with MCS data

(fG = 0.25)

4.4.2 Poisson distribution model

The nuclei exclusion area results determined using MCS are shown in Figure 4.6. The 95 %

confidence interval of the MCS shows that the uncertainty of the results is an acceptable range. The

results show that the power function fitted is in very good agreement with the simulation results.

The parameters 1 and 2 of Eq. 4.18 are estimated, and the respective 95 % confidence intervals are

determined:
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Figure 4.6: Average exclusion area ratio with a 95 % confidence interval from MCS data and the

power function fitted

1 = 2.70 ± 0.01 (4.31)

2 = 0.708 ± 0.001 (4.32)

In Figure 4.5, the MPD model and Hapgood’s PD model are compared to MCS data. The

MCS data used for this comparison is not used to estimate model parameters of the MPD model,

and Hapgood’s PD model does not require any parameter estimation. Therefore, all model results

compared to MCS data in this section are predictions. Hapgood’s PD model predicts the nuclei

size distribution forR= = 0.1 very accurately. Also, the mass frequency of small nuclei (3 ′= < 1.5)

is in very good agreement with the MCS data which corresponds with previous model assessment

results [Hapgood et al., 2004]. As described in Section 4.2.2, only the area of larger nuclei is

underpredicted but the area of very small nuclei is determined accurately. The fact that this model

is capable of predicting specific MCS results shows the strength of this model; the MCS approach

is very computationally expensive compared to Hapgood’s PD model. However, the nuclei size

distribution is clearly underpredicted outside the drop-nucleation regime because the formation of

larger nuclei is not predicted (Figure 4.5b,c,d).

While the predictions of theMPDmodel agree reasonably well at lower dimensionless nucleation

numbers, the discrepancy of the predictions becomes apparent at higher dimensionless nucleation

numbers. Both theMCS and theMPDmodel predict the average nuclei size to increase; however, the
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resulting distributions do not match. The MCS results show a much broader distribution at higher

dimensionless nucleation numbers with a long tail of large nuclei while the peak of the distribution

remains always at 3 ′= ≈ 1−2. This is in contrast to theMPDmodel predictionswhich show a narrower

nuclei size distribution and a large increase of the peak at higher dimensionless nucleation numbers.

The MPD model does not contain an overlapping criterion like the MCS. It solely determines the

likelihood of = nuclei/drops to land within the area 0= (=) (average nuclei exclusion area formed by

= drops). This can lead to an overprediction of larger nuclei since the drops that land in 0= do not

necessarily overlap.

A quantitative comparison of the accuracy of the model predictions can be found in Figure 4.8.

Hapgood’s PD model underpredicts the nuclei size distribution outside the drop-controlled regime

while the MPD model overpredicts the nuclei size distribution. Neither model captures the breadth

of the nuclei size distributions atR= ≥ 0.5.

4.4.3 Comparison of model predictions with experimental results

Both the semi-mechanistic MPDmodel and the empirical LNDmodel are compared to experimental

data from Litster et al. [2001, 2002] in order to assess the accuracy of the model results. Although

these two models require parameter fitting, only MCS results are used for this purpose. The

experimental data shown is only used to assess model predictions. The experiments selected are

ex-granulator experiments as well as nucleation-only experiments in a high-shear mixer. The

dimensionless nucleation number in these experiments ranges between 0.5 and 2.7.

The model predictions are compared to the experimental data in Figure 4.7. The experimental

data shows a narrowdistributionwith a small average size at lower dimensionless nucleation numbers,

which indicates that only few drops coalesced to agglomerates. However, a significantly broader

bi-modal distribution is obtained at higher dimensionless nucleation numbers (R= = 1.2, 2.7), which

confirms the speculation that drop coalescence on the powder bed surface can have a significant

effect on the nuclei size distribution. Nevertheless, the (first) peak of the distribution remains at a

low nuclei diameter, even at the highest nucleation number tested (R= = 2.7). A comparison between

the two experimental techniques shows that the high-shear mixer experiments (Figure 4.7b,e,g) result

in a slightly larger nuclei size distribution than the ex-granulator experiments (Figure 4.7a,d,f) even

at the same dimensionless nucleation numberR=. This potentially indicates nuclei growth during

the high-shear mixer experiments, which is not considered by any of the models assessed.
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(a) Ex-granulator,R= = 0.5 (b) High-shear mixer,R= = 0.5

(c) Ex-granulator,R= = 0.6 (d) Ex-granulator,R= = 0.7

(e) High-shear mixer,R= = 0.7 (f) Ex-granulator,R= = 1.2

(g) High-shear mixer,R= = 1.2 (h) Ex-granulator,R= = 2.7

Figure 4.7: Comparison of model results with experimental data
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The MPD model predictions diverge from the experimental results. At lower dimensionless

nucleation numbers, the experimental nuclei size distributions are slightly overpredicted; and with

increasing dimensionless nucleation number, the MPD model predicts a shift of the peak to larger

nuclei diameters rather than a significantly broader distribution. The LND model results are in

good agreement with the experimental data at lower dimensionless nucleation numbers, which are

within the empirical design space of this model (R= ≤ 1.0). A comparison with experimental data

outside the empirical design space shows a qualitative mismatch because bi-modal distributions are

not predicted. Nevertheless, broad distributions are predicted which capture the experimental data

reasonably well.

Figure 4.8: Sum of squared errors of the model results to MCS and experimental data (relative to

Hapgood’s PD model results)

The performance is also assessed quantitatively based on the sum of squared errors. This

assessment is based on lumped results, Figures 4.5 and 4.7 provide the detailed results. The results

show that the LND model provides the most accurate predictions out of all the models evaluated

(Figure 4.8). Overall, the LND model agrees well with the experimental data, even though the

experimental conditions were not fully characterised and reported. Therefore, the LND model can

be applied to a wide range of wet granulation processes that operate under similar conditions. The

fact that the LNDmodel does not only agree with ex-granulator results but also with nucleation-only

experiments in a high-shear mixer shows that this model can be applied to predict the nuclei size

distribution in different wet granulation processes.
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4.4.4 Sensitivity analysis for the LND model

A sensitivity analysis is conducted to gain more insight into the LND model results. The sensitivity

analysis is based on Monte Carlo simulations (MCS) data which have been used to estimate the

parameter values for the LND model. These MCS are based on assumptions about the spray

characteristics which should capture experimental conditions well. In this sensitivity analysis, the

effects of the spray characteristics on the results are studied, and the critical assumptions, which

have to be validated experimentally, are identified. All MCS results shown are obtained applying

the default settings withR= = 1.0 as described in Section 4.2.3 unless reported otherwise.

Figure 4.9: Assessment of repeatability based on 5 MCS with default settings

First, the repeatability of MCS is assessed. For this purpose, the results from 5 simulations

are compared in Figure 4.9. A slight quantitative difference between the results can be noticed

at large nuclei diameter. However, the uncertainty is rather low and the resulting distributions are

qualitatively equivalent. Consequently, a qualitative assessment can be based on a sensitivity analysis

without averaging MCS results.

A normal spatial drop distribution with a standard deviation fG of 1
4 is applied in the MCS. In

order to understand the impact of the spatial drop distribution on the nuclei size distribution, the

standard deviation of the normal distribution is varied as shown in Figure 4.10. The results show that

although the location of the (first) peak of the nuclei size distribution remains unchanged, a much

broader or narrower nuclei size distribution can be observed when the spatial distribution varied.

While a broader spatial distribution (fG = 1
2 ) results in a very narrow nuclei size distribution with no
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(a) Spatial drop distribution

(b) Nuclei size distribution

Figure 4.10: Assessment of the impact of the spatial drop distribution on the nuclei size

distribution (fG standard deviation of the normal distribution)
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large nuclei, a very narrow spatial distribution (fG = 1
8 ; 1

16 ) generates a very broad spatial distribution

with few very large nuclei. With fG = 1
2 , the distribution is almost uniform and the dimensionless

nucleation number is similar across the whole spray zone. At fG = 1
16 , the dimensionless nucleation

number is very high at the centre and very low at the edges, leading to a very broad nuclei size

distribution. This shows that the spatial drop distribution has a significant impact and should,

therefore, be well characterised for the nozzle system of interest.

(a) Spray drop size distribution

(b) Nuclei size distribution

Figure 4.11: Impact of the spray drop size distribution on the nuclei size distribution with a

constant Sauter mean drop diameter (f logarithmic standard deviation of drop size distribution)

The uniform drop size assumption is assessed by introducing a log-normal drop size distribution

while maintaining a constant Sauter mean diameter (Figure 4.11). As the results show, the spray
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drop size distribution has a very small impact on the nuclei size distribution, which is of the same

of magnitude as the uncertainty (see Figure 4.9). Overall, it is concluded that a mono-modal drop

size distribution can be assumed to be uniform for this purpose. However, only log-normal drop

size distributions with a maximum logarithmic standard deviation f of 0.5 have been tested in this

sensitivity analysis. Even broader or multi-modal drop size distributions could have a significant

impact on the nuclei size distribution.

Figure 4.12: Assessment of mean drop size with a constant volumetric flowrate (31 single-drop

nuclei diameter;R= dimensionless nucleation number)

The effect of increasing the mean drop diameter while keeping the volumetric flowrate constant

is also tested (Figure 4.12). According to Eq. 2.6, the dimensionless nucleation number decreases

as a result. As expected, the results show that an increase in drop diameter results in an increase

of minimum nuclei size. However, due to the constant volumetric flowrate, the total cross-sectional

area of drops (and consequently the dimensionless nucleation number) decreases which leads to less

coalescence. The resulting nuclei size distribution is significantly narrower with less large lumps due

to the drop diameter increase. This result shows that measuring the mean drop diameter is essential

to predict the breadth of the nuclei size distribution.

The LND model with the parameter values reported (see Section 4.4.1) can be applied to any

process if the MCS assumptions capture the spray characteristics well. In practice, deviations of the

spatial drop distribution and the spray drop size distribution are expected. Considerable deviations

from the MCS assumptions might require additional MCS data to re-estimate the parameters before

the LND model can be applied.
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4.4.5 Recommendations for nuclei models to use in PBM

Based on the results presented in this chapter, we recommend the LND model (Eqs. 4.4 to 4.6) for

systems with any dimensionless spray flux from 0 to 5. The model parameters <1, <2, <3, B1, B2,

and B3 are sensitive to spatial drop distribution and will need to be recalibrated with MCS from the

values given in Eqs. 4.25 to 4.30 if the standard deviation of this distribution is distinctively outside

the range used in this study (0.15 to 0.25). That aside, this is a simple, general and very robust

model for incorporation in process level population balance models for high-shear, drum and fluid

bed granulators that meet the criteria for immersion nucleation. The spray characteristics required

as input for the model (spray geometry, spray drop size, and spatial drop distribution) are relatively

easy to measure using standard techniques.

There is an implicit assumption in this model that drop immersion into the powder bed is fast

(g? < 0.1), and it can be assumed that the nuclei form instantaneously. This is common in practice

where a low viscosity binder is used that wets the powder bed well. Where the binder liquid is

more viscous or the powder is very fine, we may have a case where g? > 0.1. The kinetics of the

immersion process cannot be neglected, and powder will take a finite time to imbibe into the drop.

This process can be modelled using the model of Hounslow et al. [2009] where the LND model

can still be used to describe the drop size distribution that is the starting point for the immersion

process. Additionally, a developed spray or drop atomisation is required for this approach, which

can be challenging for very viscous liquids.

In some specialist applications such as detergent manufacture, where extremely viscous or semi-

solid binders are used, binders cannot be atomised in a nozzle. For these cases, the LNDmodel is not

applicable. Instead, a breakage model for nuclei formation is needed to determine the initial binder

"drop" distribution [Davis, 2016], and Hounslow’s immersion model can still be used to account

for the kinetics by which solid is embedded into the binder particle. Thus, we now have a suite of

models that can be used to cover the full range of behaviours on Hapgood’s regime map (Figure

4.13).

4.5 Conclusions

The LND model is able to represent MCS data very accurately at low and high dimensionless

nucleation numbers. The model results are also in good agreement with experimental results, even at

dimensionless nucleation numbers well above 1. While the MPDmodel gives acceptable predictions
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Figure 4.13: Choice of model for granule nucleation for the full nucleation regime map

at low dimensionless nucleation numbers, it fails to predict MCS and experimental data at high

dimensionless nucleation numbers. Especially, the LND model is a significant improvement of the

state of the art (Hapgood’s PD model [Hapgood et al., 2009]), which underpredicts the nuclei size

distribution significantly outside the drop-nucleation regime.

The LND model is suitable for determining the nuclei size distribution and can be easily applied

for processmodelling studies. A sensitivity analysis has shown that spray characteristics have amajor

impact on the nuclei size distribution. Especially, the spatial drop distribution in the spray needs

to determined because the LND model requires it as an input parameter, and the MCS assumption

about the drop size distribution needs to be validated experimentally before applying the LND

model. A PD model could reduce the high computational effort that is required for MCS. Moreover,

selected results are in very good agreement with MCS data. Nevertheless, a coalescence criterion

that captures this mechanism well is required before the PD function can be applied for this purpose.



Chapter 5

HIGH-SHEAR WET GRANULATION MODELLING

5.1 Introduction

In this chapter, a high-shear wet granulation model is proposed, and all relevant modelling decisions

and assumptions are explained. Experiments are designed to assess the most critical decisions and

assumptions. The aim is to develop a predictive model that can be used within a model-driven

design (MDD) framework.

5.2 Model development

The model is based on the population balance modelling (PBM) approach (see Section 2.3.1). In the

following, the essential model components are described in detail including the kernels which have

been chosen to mechanistically represent the major wet granulation rate processes. A review of wet

granulation kernels that are available in the literature can be found in Section 2.1.

Table 5.1: Overview of model including key modelling equations and assumptions*

Rate process Details

Population balance

1-D PBM:

• Granule size as property of interest

• Lumped parameter approach

Pore saturation

Liquid layer thickness:

X; =


3
Y ((−(2A8C )

6 for ( ≥ (2A8C

0 for ( < (2A8C
• Critical value needs to be reached to form surface liquid

Continued on next page

82
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Table 5.1 – continued from previous page

Rate process Details

Nucleation and wetting

Nuclei size distribution:

5< =
1

3= ( (B1fG+B2)R=+B3)
√

2c
exp

(
−

(
ln 3=
 333

−( (<1fG+<2)R=+<3)
)2

2( (B1fG+B2)R=+B3)2

)
• LND model can predict the nuclei size distribution

• Pore penetration is rapid

Consolidation

Consolidation rate:
dY
dC = −:2>=B (Y − Y<8=)=8<?

[
1 − exp(−(C34 5 )

]
• Endpoint porosity depends on !/( and tip speed

Layering

Layering rate:

dE
dC =



X;
Y(
c32 for <? > <?,2A8C and ( > (2A8C

X;
Y(
c32 <?

<?,2A8C
for <?,2A8C > <? > 0 and ( > (2A8C

0 for <? = 0 or ( ≤ (2A8C
• Layering is rapid

• Occurs as long as powder particles and liquid layering are present

Coalescence

Coalescence rate:

V = E2>;; (31 + 32)2
√

1
33

1
+ 1
33

2

[
10−:� b� + 10−:� � (1 − b� ) b� �

]
• Collisions result in coalescence if kinetic energy is absorbed

Breakage

Breakage rate:

 1A (3) = : ′1A
[
1 − exp

(
− 5"0C3

(
�<,:8= − �<,<8=

) ) ]
• Only granules near the impeller tip can break

• Effect of chopper is negligible (see Section 2.1.4)

Mixing

1-comp PBM:

• Granulator is well-mixed

2-comp PBM:

• Every compartment is well-mixed

• Powder flow follows roping flow regime

*Definition of symbols is given in the nomenclature and in Section 5.2
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5.2.1 Population balance modelling framework

A one-dimensional (1-D) PBM approach is used to track product properties. The most crucial

property, granule diameter, is selected to be the property of interest and hence discretised into bins.

All other properties are averaged. By applying the lumped parameter approach [Hounslow et al.,

2001], the following properties are tracked and averaged over only one size bin to capture the size

dependency: liquid volume and void volume. Other important properties are calculated from the

properties that are tracked. An implied assumption of PBM is that the equipment is ideally mixed and

conditions are homogeneous. To overcome this issue, compartmental modelling (CM) is applied.

In 1-D PBM for any well-mixed compartment, the particle size distribution (PSD) is determined

by tracking the volume-specific number density of particles = for every size bin 8 over time C

[Ramkrishna and Mahoney, 2002]:

m+=(E, C)
mC

+ m

mE

[
+=(E, C)

( ¤�;0H + ¤�2>=B ) ] = ¤+8==8= (E) − ¤+>DC=(E)
++

[ ¤1=D2 (E) + ¤12>0; (E) + ¤11A (E) − ¤32>0; (E) − ¤31A (E)] (5.1)

where = is the volume-specific number density of particles, E is the particle volume, + is the

control volume, ¤+8==8= and ¤+>DC=>DC are the particle flowrates which are entering and leaving the

control volume, ¤�;0H and ¤�2>=B are the rate of change due to layering and consolidation respectively,
¤1=D2 , ¤12>0; and ¤11A are the birth rates due to nucleation, coalescence and breakage, and ¤32>0; and
¤31A are the death rates due to coalescence and breakage. Even though a batch system is modelled,

the terms ¤+8==8= and ¤+>DC=>DC are required for compartmental modelling (CM) because specific parts

of the granulator are modelled as one control volume. The rates of change ¤� are defined as:

¤�2>=B = E
(
dY
dC

)
2>=B

(5.2)

¤�;0H =
(
dE
dC

)
;0H

(5.3)

where Y is the porosity. The birth ¤1 and death ¤3 rates are defined as:

¤1=D2 (E8) =
¤+=D2
 3
3
+
5= (E8) (5.4)
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¤12>0; (E8) =
1
2

E∫
0

V (E8 , E2) = (E) = (E2) dE2 (5.5)

¤11A
(
E 9

)
=

∞∫
E9

1
(
E8 , E 9

)
 1A (E8) = (E8) dE8 (5.6)

¤32>0; (E1) =
∞∫

0

V (E1, E2) = (E1) = (E2) dE2 (5.7)

¤31A (E8) =  1A (E8) = (E8) (5.8)

where ¤+=D2 is the rate of liquid volume that forms nuclei,  3 is the nuclei-to-drop diameter

ratio, 8 is the nucleated/coalesced/parent particle, 1 and 2 are colliding particles, 9 indicates daughter

particles, and 1 is the discrete fragment size distribution. The volume of coalesced/mother particles

E is equal to the sum of colliding/daughter particle volumes:

E8 = E1 + E2 (5.9)

E8 =

=∑
9=1
E 9 (5.10)

where = is the number of daughter particles. All particles are assumed to be spherical:

E = c
33

6
(5.11)

The discrete fragment size distribution 1 is defined as:

1
(
38 , 3 9

)
=

d�
(
38 , 3 9

)
d3 9

(5.12)

where � is the cumulative fragment size distribution.

The mass balance to determine the fine powder mass <? is:

d<?
dC

= d1D;:
©« ¤+=D2 3

3 +
∞∫

0

+=(E) ¤�;0H (E) dE
ª®¬ (5.13)

where d1D;: is the bulk density. An overall mass balance determines the total mass in each

compartment "C>C :
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d"C>C
dC

=

∞∫
0

d
(
<(E) ¤+=(E)

)
dC

dE =
∞∫

0

<(E)
( ¤+8==8= (E) − ¤+>DC=(E)) dE (5.14)

5.2.2 Pore saturation

In wet granulation, it is important to understand the distribution of the liquid phase. Only liquid at

the surface of the granule is available for granule growth. Pore saturation ( is defined as the ratio of

liquid to pore volume:

( =
E;

E?
(5.15)

where E; is the liquid volume and E? is the pore volume. It is assumed that the liquid volume in

the pores is limited, and above the critical pore saturation (2A8C , any additional liquid will remain on

the granule surface (Figure 5.1). Consequently, the pore volume E? is calculated:

Figure 5.1: Formation of liquid layer

E? = Y
(
E − E;,4GC

)
= Y

(
EB + E; + EE − E;,4GC

)
(5.16)

where E, EB, E; and EE are the granule, solid, liquid and void volume respectively. The liquid

volume on the granule surface E;,4GC is calculated under the assumption that granules are spherical

and much larger than the liquid layer (3 � X;):

E;,4GC = c3
2X; (5.17)

The liquid layer thickness X; is determined [Liu et al., 2000]:
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X; =


3
Y ((−(2A8C )

6 for ( ≥ (2A8C

0 for ( < (2A8C
(5.18)

where 3 is the granule diameter and Y is the granule porosity.

5.2.3 Nucleation and wetting

When spray drops come in contact with fine powder that passes through the spray zone, nuclei

are formed. For formulations with rapid drop penetration, nucleation kinetics can be neglected.

However, overlapping and coalescence of drops in the spray zone can lead to a significant size increase

[Hapgood et al., 2004]. This effect is included by applying the log-normal distribution (LND) model

(see Chapter 4). Therefore, the dimensionless nucleation numberR= is used to characterise the spray

pattern and formation of nuclei [Wildeboer et al., 2005]:

R= =  3
2 3 ¤+

2 ¤�33
(5.19)

where  3 is the nuclei-to-drop diameter ratio, ¤+ is the volumetric spray rate, ¤� is the flux of

the powder bed surface area through the spray zone, and 33 is the Sauter mean drop diameter. It is

assumed that the powder velocity at the surface is similar to the average powder velocity to estimate

the powder bed surface area flux ¤� [Tran, 2015]:

¤� = FE143 = 2�= tan
(U

2

)
0.15EC (5.20)

where F is the width of the spray zone and E143 is the bed velocity, U is the spray cone angle,

�= is the nozzle height, and EC is the impeller tip speed.

The mass frequency 5< of the nuclei size distribution is predicted using:

5< (3=) =
1

3= ((B1fG + B2)R= + B3)
√

2c
exp

©«−
(
ln 3=
 333

− ((<1fG + <2)R= + <3)
)2

2 ((B1fG + B2)R= + B3)2
ª®®¬ (5.21)

where 3= is the nuclei diameter, fG is the standard deviation of the spatial drop distribution in

the spray, and <1..3 and B1..3 are empirical parameters. The conversion from number frequency 5=

to mass frequency 5<, under the assumption of uniform nuclei mass density d=:
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5< (3=) =
5= (3=) E (3=) d=∫
5= (3=) E (3=) d= d3=

=
5= (3=) E (3=)∫
5= (3=) E (3=) d3=

(5.22)

The liquid sprayed is distributed over all particles that pass through the spray zone. While drops

that land on dry fine powder form nuclei, drops that land on granules are picked up by the granules.

The additional liquid penetrates into the granule pores or remains on the surface, depending on pore

saturation. Consequently, the liquid volume E; increases, while the porosity is not affected. However,

the granule void volume EE is tracked rather than the porosity. Thus, an additional rate expression

is required. If the pore saturation ( is below its critical value (2A8C , any liquid added penetrates into

the pores and replaces void. As a result, the void volume decreases. If the critical pore saturation

is reached, the additional liquid is assumed to remain on the granule surface, and the void volume

remains constant. The effect of wetting at different pore saturations is illustrated in Figure 5.2. To

represent this mathematically, a decision variable bF is introduced:

bF =


1 for ( ≥ (2A8C

0 for ( < (2A8C
(5.23)

(a) Pore saturation ( < (2A8C

(b) Pore saturation ( ≥ (2A8C

Figure 5.2: Effect of wetting (increase in E;) or consolidation (decrease in Y) on granule properties

(E; liquid volume, Y porosity, E;,4GC external liquid volume, EE void volume)

Based on bF , the void volume change rate dEE
dC is determined:
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(
dEE
dC

)
F4C

= − (1 − bF )
(
dE;
dC

)
F4C

(5.24)

The rate of total liquid volume added to granules ¤+F4C is:

¤+F4C =
∞∫

0

+=(E)
(
dE;
dC

)
F4C

dE (5.25)

where =(E) is the volume-specific number density of particles. The fraction of drops that land

on granules is estimated based on the fine powder mass fraction. Therefore, it is assumed that the

particle distribution is uniform throughout the compartment. Consequently, the liquid balance is:

¤+F4C = ¤+ − ¤+=D2 = ¤+
(
1 −

<?

<?,0

)
(5.26)

where ¤+ is the volumetric spray rate, ¤+=D2 is the rate of liquid volume that forms nuclei, <? is

the fine powder mass present, and <?,0 is the initial fine powder mass.

5.2.4 Consolidation

The consolidation rate is expressed as the rate atwhich the granule pore volume decreases. A decrease

in pore volume E? can have two different effects depending on the pore saturation (Eq. 5.27). If

the critical pore saturation is not reached, void volume EE is being removed during consolidation.

However, when the pore saturation is above its critical value, EE remains constant. In this case,

a decrease in pore volume only leads to internal pore liquid being squeezed out of the pores and

becoming external liquid. The effect of consolidation on the granule properties is illustrated in

Figure 5.2. The decision variable bF is used to determine if the critical pore saturation is reached.

(
dEE
dC

)
2>=B

= (1 − bF ) E
(
dY
dC

)
2>=B

(5.27)

The decrease in granule porosity Y is determined by the consolidation kernel [Barrasso and

Ramachandran, 2016]:

(
dY
dC

)
2>=B

= −:2>=B (Y − Y<8=)=8<?
[
1 − exp(−(C34 5 )

]
(5.28)

where :2>=B is the (kinetic) consolidation coefficient, Y<8= is the endpoint porosity for specific

experimental conditions, =8<? is the impeller rate and (C34 5 is the Stokes deformation number. Y<8=
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is difficult to predict a priori but is expected to be a function of !/( and impeller tip speed (see

Section 2.1.2). Here, we use an empirical correlation which must be fitted to porosity data from

lab-scale granulation experiments for the formulation of interest:

Y<8= =


0.6 for Y′

<8=
> 0.6

Y′
<8=

for 0.6 > Y′
<8=

> 0.3

0.3 for 0.3 > Y′
<8=

(5.29)

and

Y′<8= = 41EC
s
m
(42 − !/() + 43 (5.30)

where Y′
<8=

is an auxiliary variable, EC is the impeller tip speed, !/( is the liquid-to-solid

ratio, and 41..3 are empirical parameters. In the empirical correlation, the units s
m are needed for

dimensional consistency because a dimensional parameter EC is used to characterise impact forces

instead of the dimensionless group (C34 5 . In contrast to Barrasso and Ramachandran [2016], an

endpoint porosity Y<8= that depends on the operating conditions is considered (Eq. 5.30). The

Stokes deformation number (C34 5 and dimensionless strength (CA∗ are defined as:

(C34 5 =
d4=EE

2
2>;;

2.3
(5.31)

and

(CA∗ =
.33?

W;E cos \
(5.32)

where d4=E is the envelope density, .3 is the dynamic tensile strength, 3? is the primary particle

diameter, W;E is the surface tension, and \ is the dynamic contact angle. The collision velocity E2>;;

and dimensionless strength (CA∗ are estimates using correlations from the literature [Tran, 2015;

Smith, 2007]:

E2>;; = 0.15EC = 0.15c=8<?�8<? (5.33)

(CA∗ = � + ��0= (5.34)

where �, � and = are empirical parameters. The capillary number �0 is defined as:
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�0 =
`E2>;;

W;E cos \
3?

3
(5.35)

where ` is the binder viscosity and 3 is the mean granule diameter.

5.2.5 Layering

It is assumed that as long as fine powder is present, surface-wet granules grow by layering [Sayin,

2016; Barrasso and Ramachandran, 2016]. The mechanism is illustrated in Figure 5.3. Furthermore,

layering is assumed to be a rapid rate process for hydrophilic powders. The layering rate is con-

sequently considered to be proportional to the liquid layer thickness X;. The new layer is assumed to

have the same pore saturation ( and porosity Y as the granule. The increase in granule volume E is

determined accordingly:

(
dE
dC

)
;0H

=



X;
Y(
c32 for <? > <?,2A8C and ( > (2A8C

X;
Y(
c32 <?

<?,2A8C
for <?,2A8C > <? > 0 and ( > (2A8C

0 for <? = 0 or ( ≤ (2A8C

(5.36)

Figure 5.3: Layering ( X;
Y(

is the diameter increase through layering per unit time)

where X; is the liquid layer thickness, ( is the pore saturation, 3 is the granule diameter, <? is

the mass of fine powder, <?,2A8C is the critical mass of fine powder, and (2A8C is the critical pore

saturation. In contrast to Sayin [2016] and Barrasso and Ramachandran [2016], it is assumed that

the mass of fine powder does not affect the layering rate if it is above a critical value. Below this

critical value, a linear function represents the dependency on the remaining mass of fine powder.

The critical value <?,2A8C is assumed to be 10 % of the initial fine powder mass <?,0.
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5.2.6 Coalescence

The coalescence kernel proposed and extended by Liu et al. [2000]; Liu and Litster [2002]; Pohlman

and Litster [2015] is used. The concept of this kernel is that a collision between two granules needs

to have exactly one of the three following outcomes: coalescence without deformation (Type I),

coalescence with deformation (Type II), or rebound. As a consequence, the rate of coalescence V is:

V =


V� for coalescence without deformation

V� � for coalescence with deformation

0 for rebound

(5.37)

In order to characterise the granule collision, the reduced mass <̃ and diameter 3̃, average liquid

layer thickness X̄;, reduced viscous Stokes number (̃CE , reduced Stokes deformation number (̃C34 5 ,

reduced Young’s modulus �̃ , and reduced dynamic yield strength .̃3 are defined for the two colliding

granules 1 and 2:

<̃ =
<1<2
<1 + <2

(5.38)

3̃ =
3132
31 + 32

(5.39)

X̄; =
X;,1 + X;,2

2
(5.40)

(̃CE =
8<̃E2>;;
3c`3̃2

(5.41)

(̃C34 5 =
<̃E2

2>;;

23̃3.̃3
(5.42)

�̃ =
1

(1−a2)
�1
+ (1−a

2)
�2

=
�1�2(

1 − a2) (�1 + �2)
(5.43)

.̃3 =
.3,1.3,2

.3,1 + .3,2
(5.44)

where a is Poisson’s ratio. The dimensionless Young’s modulus �∗ is defined as:
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�∗ =
�3?

W;E cos \
(5.45)

and an empirical correlation is applied [Pohlman and Litster, 2015]:

�∗ = :��0
?� Y@� (A� (5.46)

where :� , ?� , @� and A� are empirical parameters.

The Stokes criterion [Ennis et al., 1991] is applied to predict coalescence without deformation

(Type I):

(̃CE < ln
(
X̄;

ℎ0

)
(5.47)

where ℎ0 is the height of asperities. Additionally, contact mechanics principles for elastic-plastic

solids are considered to account for the absorption of impact energy by deformation [Johnson, 1985].

Coalescence with deformation (Type II) is predicted if:

)� < )� (5.48)

with

)� =

(
.̃3

�̃

) 1
2 (
(̃C34 5

)− 9
8 (5.49)

)� =
0.172
(̃CE

(
3̃

X̄;

)2 [
1 − 1

(̃CE
ln

(
X̄;

ℎ0

)] 5
4
[(
X̄2
;

ℎ2
0

− 1

)
+ 2X̄;
X′′

(
X̄;

ℎ0
− 1

)
+

2X̄2
;

(X′′)2
ln

(
X̄;

ℎ0

)] [
1 − 7.36

.̃3

�̃

(
(̃C34 5

)− 1
4

(
1 − 1

(̃CE
ln

(
X̄;

ℎ0

))− 1
2
]2 (5.50)

where )� and )� are auxiliary terms. The plastic deformation X′′ is determined:

X′′ =

(
8

3c

) 1
2

3̃
(
(̃C34 5

) 1
2

[
1 − 1

(̃CE
ln

(
X̄;

ℎ0

)] [
1 − 7.36

.̃3

�̃

(
(̃C34 5

)− 1
4

(
1 − 1

(̃CE
ln

(
X̄;

ℎ0

))− 1
2
]

(5.51)

Two decision variables are introduced to determine the collision scenario:
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b� =


1 for coalescence Type I

0 for Coalescence Type II or rebound
(5.52)

b� � =


1 for coalescence Type II

0 for rebound
(5.53)

A function for the coalescence rate is derived from Eqs. 5.37, 5.52 and 5.53:

V = [V� b� + V� � (1 − b� ) b� � ] (5.54)

The equipartition of kinetic energy (EKE) kernel [Hounslow et al., 2001] is applied to provide

estimates for the collision rates V� and V� � :

V� /� � = 10−:�/� � E2>;; (31 + 32)2
√

1
33

1
+ 1
33

2
(5.55)

where : � and : � � are collision coefficients. Combining Eqs. 5.54 and 5.55:

V (31, 32) = E2>;; (31 + 32)2
√

1
33

1
+ 1
33

2

[
10−:� b� + 10−:� � (1 − b� ) b� �

]
(5.56)

It is assumed that the collision rate is independent of the type of coalescence:

: � /� � = : � = : � � (5.57)

5.2.7 Breakage

The kernel selected to determine the breakage rate  1A40: is proposed by Vogel and Peukert [2005]

and Capece et al. [2014b]:

 1A = :
′
1A

[
1 − exp

(
− 5"0C3

(
�<,:8= − �<,<8=

) ) ]
(5.58)

with

�<,<8=3 = 0.3
J m
kg

(5.59)
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where : ′
1A

is a breakage rate variable, 5"0C is themass-basedmaterial strength parameter, 3 is the

granule diameter, �<,:8= is themass-specific impact energy, and �<,<8= is themass-specific threshold

energy. For 1-comp PBM, it is assumed that the circulation time is proportional to the impeller rate

=8<?. In 2-comp PBM, breakage is assumed to occur in the entire breakage compartment. : ′
1A

is

consequently defined as:

: ′1A =


:1A=8<? for 1-comp PBM

:1A
s for 2-comp PBM

(5.60)

where :1A is the breakage coefficient.

The cumulative fragment size distribution �(8, 9) with parent particle 8 and daughter particles 9

described in the following Vogel and Peukert [2005]:

�(38 , 3 9) =
(
38

3 9

)@ 1
2

[
1 + tanh

(
3 9 − 3 9,<8=
3 9,<8=

)]
(5.61)

where 38 is the parent particle diameter, 3 9 is the daughter particle diameter, @ is the power law

exponent, 3 9,<8= is the minimum fragment diameter.

5.2.8 Compartmental modelling

Breakage commonly just occurs in a small zone of the granulator. In one-compartment (1-comp)

PBM, this phenomenon is captured by using the circulation time as a measure for the residence time

outside the breakage zone, and this circulation time is assumed to be proportional to the impeller

rate =8<?. Alternatively, a 2-comp model is developed based on compartmental modelling (CM).

The 2-comp model consists of a bulk compartment and a breakage compartment (Figure 5.4). To

predict the powder flow between compartments, an operation in the roping flow regime is assumed

because this regime is favourable for the operation of high-shear mixers [Tran, 2015]. It is assumed

that breakage mainly occurs in the area of the impeller tip, and all other mechanisms only occur

in the bulk compartment. The length of the impeller tip !C is assumed to be 5 % of the impeller

diameter �8<?. The breakage compartment volume +1A is determined:

+1A = c�8<?�8<?!C = 0.05c�2
8<?�8<? (5.62)

where �8<? is the impeller height. In order to determine the residence time g1A , all particles are

assumed to pass the entire length of the impeller tip !C to represent roping flow [Tran, 2015]:



96 High-shear wet granulation modelling

Figure 5.4: 2-comp PBM approach

g1A =
!C

E1
=

!C

0.15EC
(5.63)

The remaining powder is in the bulk compartment. Its volume +1D;: can be determined:

+1D;: = +143 −+1A = q 5 + −+1A (5.64)

where +143 is the bed volume, q 5 is the fill level, and + is the granulator volume. The residence

time in the bulk compartment g1D;: is determined assuming constant powder flow rates:

g1D;: = g1A
+1D;:

+1A
(5.65)

The outlet flowrate ¤+>DC= of a well-mixed compartment is:

¤+>DC =
+

g
(5.66)

5.3 Solution method

All simulations are run in gPROMS FormulatedProducts v1.5 (Process Systems Enterprise Ltd).

The model is based on the gPROMS FormulatedProducts high-shear granulation library model,

that is commercially available. The standard gPROMS solver for differential-algebraic equations

DAEBDF is used to numerically solve the equation system. The finite volume method (FVM) is used

to include the production rate processes (nucleation, coalescence and breakage). The transport rate
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processes (consolidation and layering) are included by applying the finite difference method (FDM).

Both solution techniques are described in more in detail in Section 2.3.1.

For the implementation of the model, certain submodels are readily available in gPROMS, others

needed to be included, partially by modifying existing code. An overview of all submodels is given

in Table 5.2. Since the library model can be operated in a continuous mode, the 2-comp PBM

approach is implemented by creating a flowsheet with interconnected models (see Appendix C.1).

Table 5.2: Overview of submodels

Submodel Origin Implementation

Population balance Ramkrishna and Mahoney [2002];
Hounslow et al. [2001] Available in gPROMS

Pore Saturation Liu et al. [2000] Modification

Nucleation and wetting Barrasso and Ramachandran [2016] Available in gPROMS

Nuclei size distribution See Chapter 4 Own implementation

Consolidation Barrasso and Ramachandran [2016] Own implementation

Layering Sayin [2016];
Barrasso and Ramachandran [2016] Own implementation

Coalescence

Liu et al. [2000];
Liu and Litster [2002];
Pohlman and Litster [2015];
Hounslow et al. [2001]

Own implementation

Breakage Vogel and Peukert [2005];
Capece et al. [2014b] Available in gPROMS

Compartmental modelling Tran [2015] Own implementation

A logarithmic grid is chosen with 10 bins for the granule size distribution (45 µm-7000 µm)

and 5 bins for the primary powder size distribution (45 µm-355 µm). The PSD is determined using

the gPROMS FormulatedProducts sieve analysis library model, and the discretisation is identical

to that used for sieve analysis (see Section 3.3.3). This explained in more detail in Appendix C.1.

Flowsheets for the 1-comp and 2-comp PBM approach are displayed in Figure 5.5.

A numerically robust model is required to reliably run the simulation. In order to improve the

robustness of themodel, discontinuities during the simulation should be avoided. Piecewise functions

are known to cause discontinuities, which can lead to long computational times and failures. That
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(a) 1-comp PBM approach

(b) 2-comp PBM approach

Figure 5.5: gPROMS flowsheets
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is why, piecewise functions are implemented using a continuous trigonometric approximation. To

determine the presence of surface liquid, a decision variable bF is introduced (Eqs 5.23, 5.24 and

5.27). bF should be ≈ 0 for ( < (2A8C and ≈ 1 for ( > (2A8C . This is achieved using a trigonometric

approximation:

bF =
1
2
+ 1

2
tanh [2 (( − (2A8C )] (5.67)

where 2 is a constant.

A comparison between approximation and target is displayed in Figure 5.6. The approximation

represents the piecewise function well and is sufficient for this purpose, as the approximation only

deviates slightly from the piecewise function for ( ≈ (2A8C .

Figure 5.6: A hyperbolic tangent approximation for (2A8C = 0.75 and 2 = 40

In order to determine X; (Eq 5.18) with continuous functions, an auxiliary variable X′
;
is intro-

duced:

X′; = 3
Y (( − (2A8C )

6
(5.68)

An approximation is used to convert X′
;
values ≤ 0 into negligibly small positive values while

representing positive values with very high precision (see Appendix D.5):

X;

µm
=

10−5 + 106 X
′
;

µm +
√(

10−5 − 106 X
′
;

µm

)2
+

(
10−5)2

2 × 106 (5.69)
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By introducing two decision variables b< and b<,2A8C , a continuous function for layering rate

(Eq. 5.36) is derived:

(
dE
dC

)
;0H

=
X;

Y(
c32bFb<

(
1 − b<,2A8C + b<,2A8C

<?

<?,2A8C

)
(5.70)

with

b< =
1
2
+ 1

2
tanh

[
2

(
<?

<?,0
− 10−3

)]
(5.71)

and

b<,2A8C =
1
2
+ 1

2
tanh

[
2

(
<?,2A8C − <?

<?,0

)]
(5.72)

Trigonometric approximations are also applied to generate continuous function for the decision

variables b� and b� � (Eqs. 5.52 and 5.53):

b� =
1
2
+ 1

2
tanh

[
2

(
ln

(
X̄;

ℎ0

)
− (̃CE

)]
(5.73)

b� � =
1
2
+ 1

2
tanh [2 ()� − )�)] (5.74)

Additionally, divisions are avoided by rearranging equations, as very small values in the denom-

inator can lead to large errors (e.g. in Eqs 5.38 to 5.43). This is shown with the aid of a generic

example, with the minimum of |�3 | being ≈ 0:

�1 =
�2
�3

(5.75)

where �1..3 are terms. Eq 5.75 is transformed to:

�1�3 = �2 (5.76)

5.4 Methodology for model verification

To verify the model, critical model assumptions are assessed using a range of experimental methods,

as well as mechanistic understanding and model sensitivity analyses. An overview of the model

verification methods is given in Table 5.3.
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Table 5.3: Methodology to assess critical model assumptions

Model assumption Method

Rapid drop penetration Estimation of drop penetration time (see Appendix B.2)

LND model predictions Nucleation-only experiments (see Section 6.3.4)

Breakage Breakage-only experiments (see Section 6.3.7)

Role of chopper Experiments with and without chopper (see Section 6.3.7)

Number of grid points Sensitivity analysis 5.5

Mixing Assessment of 1-comp and 2-comp PBM (see Section 7.3.3)

To evaluate the number of grid points, the grid is refined and coarsened by varying the number

of grid points between 5-20. Computational time and model precision of the 1-comp PBM approach

are used for this assessment, and the precision ? 9 is based on the relative deviation of the PSD to the

simulation results generated using 40 grid points:

? 9 = 1 −
(
F8, 9 − F8,40

F8,40

)2
(5.77)

where F8, 9 is the mass fraction on sieve 8 with 9 PBM grid points.

5.5 Model verification

The effect of the number of grid points on the computational time and model precision is shown in

Figure 5.7. On one hand, the computational time increases significantly with an increasing number

of grid points, but on the other hand, the model precision improves. Especially the coarse grid with

5 grid points resulted in an intolerable precision of roughly 50 % without speeding up the simulation

greatly and refining the grid from 10 to 15 grid points nearly triples the computational time without

improving the precision considerably. For comparison, a simulation with 40 grid points takes almost

5 h. In conclusion, a trade-off has to be made to determine the optimum number of grid points, and

with 10 grid points, an acceptable computational time is achieved and the precision is with 99 %

sufficient for the purpose.

Figure 5.8 shows important model outputs of a 1-comp PBM simulation (input parameters are

listed in Appendix C.2). The dry powder mass fraction <?/<?,0 starts at 1 and then decreases
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Figure 5.7: Computational time and model precision with different grid points (data labels)

continuously until it reaches 0. This result is consistent with the model assumptions because the

granulator only contains dry powder initially, which is consumed by nucleation and layering as long

as it is present during the experiment. The granule porosity Y starts at high value of above 0.6 because

only a few porous nuclei have formed after the spraying phase started. Subsequently, the porosity

decreases to 0.6, which is the lowest possible porosity Y<8= at low liquid-to-solid ratio !/( (< 42).

Towards the end of the spraying phase, another decrease in porosity is observed. The continuous

liquid addition leads to an increase in !/( and eventually Y<8= below 0.6. In the kneading phase,

no liquid is added, and Y<8= remains constant. When the porosity approaches Y<8=, consolidation

slows down. This porosity trajectory qualitatively agrees with a postulate by Maxim et al. [2004].

Initially, the mass-median diameter �50 is equal to the �50 of dry powder (≈ 100 µm). Due to the

formation of granules, the �50 slowly increases. Due to consolidation, granules reach the critical

pore saturation (2A8C , and liquid cumulates on the granule surface. This phenomenon enhances

size increase because it leads to granule growth by layering. Coalescence does not occur while

large amounts of dry powder are still present because coalescence requires more surface liquid than

layering and layering is assumed to be rapid. As soon as the dry powder is consumed, layering stops.

Due to consolidation and further liquid addition, the amount of surface liquid increases rapidly. This

increases eventually leads to coalescence, which results in the rapid size increase. The �50 levels

off towards the end of the experiment. An increase in granule size leads to a significant increase in

breakage. A constant size represents an equilibrium between coalescence and breakage.

This behaviour corresponds to the induction growth regime, which has been identified experi-
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Figure 5.8: Predicted trajectories for porosity Y, dry powder mass fraction <?/<?,0 and

mass-median diameter �50

mentally [Iveson et al., 2001b]. The characteristics of this regime are only marginal size change

during the induction time and rapid size increase after the end of the induction. In this example, the

induction time is around 6 min, which is incidentally equal to the spray time.

5.6 Model benefits and limitations

Themodels developed havemany benefits because of the modelling approach and submodels chosen.

First of all, the process-scale PBM approach provides the opportunity to efficiently capture complex

particle-scale phenomena. Consequently, the models are suitable for rigorous analysis techniques

like sensitivity analysis, parameter estimation and optimisation due to their short simulation time.

Mechanistic understanding is used to develop and select approaches to model the particle-scale

phenomena, especially the wet granulation mechanisms and powder flow regime. Overall, the

models contain a limited number of essential model parameters which cannot be measured in

isolated experiments. For this reason, a limited number of experiments is required for parameter

estimation, and promising model predictions can be made. This process is described in Section 7.2.

All in all, the models proposed are suitable to be used for model-driven design (MDD).

Despite the benefits, the models are also limited due to critical assumptions made in the devel-

opment. 1-D PBM is employed with granule size as the property of interest, and liquid content is
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averaged over each size bin (see Section 5.2.1). As the liquid content plays an important role in

wet granulation, an accurate representation for this property is required. As the lumped parameter

approach can only capture narrow distributions well, the models are less capable to accurately predict

experiments with broad distributions of liquid content. In this case, a multi-D PBM approach with

liquid content as an additional property of interest is more promising [Iveson, 2002]. Apart from

that, an implicit assumption in this PBM framework is a well-mixed control volume or compartment.

To overcome this, compartmental modelling (CM) is applied, and the powder flow between com-

partments is determined by assuming roping flow conditions. For this reason, predictions outside

this regime might less accurate. Even though CM is a suitable approach to capture the effect of

powder flow, it is limited to predict the effect on breakage in 1-D PBM. In multi-D PBM, CM

is more beneficial than in 1-D PBM because the mechanisms in the spray zone can be captured

more appropriately. In the spray zone, wetting of granules can lead to a broad distribution of liquid

content. The drawback of CM is the increased computational effort which makes the model less

suitable for methods that are based on a large number of simulations like sensitivity analysis and

parameter estimation. In the model developed, CM increases the required computational time by a

factor of almost 3.

5.7 Conclusions

A high-shear wet granulation model is developed applying 1-D PBM. This model is customised for

high-shear mixer with a vertical axis. Inhomogeneous conditions inside the granulator are taken

into account through CM. Mechanistic understanding is applied to generate or select kernels for all

wet granulation rate processes, and all modelling parameters are assumed to be scale-independent.

All critical model assumptions can be assessed and confirmed based on experimental results. In

conclusion, this is a promising predictive modelling approach for the high-shear wet granulation

process, which can be applied and tested in a model-driven design (MDD) case study.

In chapter 6, model assumptions are assessed experimentally and empirical porosity parameters

are estimated. In chapter 7, the model is calibrated and validated based on a sensitivity analysis,

parameter estimation and predictions. In chapter 8, the model is applied in MDD case study.



Chapter 6

EXPERIMENTAL INVESTIGATION OF HIGH-SHEAR

WET GRANULATION MECHANISMS

6.1 Introduction

In this chapter, experiments are designed and analysed for a model-driven scale-up case study. This

experimental design focusses on the following objectives:

• determine appropriate processing and measurement techniques

• assess the reproducibility of experiments

• study the effects of operating parameters on high-shear wet granulation mechanisms

• verify critical model assumptions

• estimate modelling parameters

• validate the models developed in Chapter 5

To achieve these objectives, experiments are designed at different process scales. The experi-

mental findings are compared to literature findings to assess and extend the established mechanistic

process understanding.

6.2 Experimental design

In experimental design (especially scale-up), all relevant dimensionless groups have to be evaluated

individually. For high-shear wet granulation, the dimensionless groups are: dimensionless spray

fluxR0 (Eq. 2.5), Froude number �A (Eq. 2.36), Stokes deformation number (C34 5 (Eq. 2.15) and

pore saturation ( (Eq. 2.27). As �A and (C34 5 cannot be kept simultaneously constant across scales

due to equipment limitations, the �A is prioritised because operating in the roping flow regime is

considered more important. To evaluate (, porosity measurements or estimates are required. The

conceptual experimental design framework to achieve the objectives is shown in Table 6.1.
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Table 6.1: Constraints for operating parameters

Objective Method

Determine drying technique Compare fluid bed drying to tray drying (see Sec-

tion 3.3.1)

Determine porosity measurement technique Assess GeoPyc and tap density measurements (see

Section 3.3.4)

Assess reproducibility Repeat experiments at critical conditions

Study wet granulation mechanisms Isolate mechanisms and vary critical parameters

Verify modelling assumptions See Table 5.3

Estimate modelling parameters Focus on critical operating range

Validate models Cover operating space

Generic engineering principles (see Sections 2.1 and 2.2) impose constraints for the operating

parameters as shown in Table 6.2. Additionally, equipment-specific safety measures limit the

operation. For this equipment, safety measures for spray pressure (% < 5 bar) and impeller tip

speed (EC < 7 m
s ) are followed. When more than one constraint is imposed, desired operating

conditions might not be achievable due to conflicting constraints. Spray conditions are limited due

to the limited spray pressure range available. As the spray pressure affects the spray rate and drop

diameter, the achievable dimensionless spray flux range is limited, and an operation in the drop-

controlled nucleation regime is not feasible at 2 L. The impeller rotational speed is under similar

conflicting constraints because the tip speed safety limit is scale-independent but the tip speed needs

to be increasedwith increasing scale to ensure roping flow conditions. For these reasons, an operation

in the drop-controlled and roping flow regime is not feasible at every scale as shown in Table 6.3.

The critical process parameters (CPPs) of high-shear wet granulation are liquid-to-solid ratio

!/(, volumetric spray rate ¤+ , impeller tip speed EC and kneading time C:=. The critical quality

attributes (CQAs) are mass median diameter �50, fines mass fraction , (< 90 µm), coarse mass

fraction, (> 1 mm) and granule porosity Y. An overview of the phenomena investigated is given in

Table 6.4. The reproducibility is assessed based on the CQAs of replicate experiments. Nucleation-

only experiments (R0 = 0.3 − 0.5) are conducted to isolate nucleation and wetting (see Section
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Table 6.2: Engineering principles for operation of high-shear wet granulation

Operating condition Constraint Reason

Spray conditions
Dimensionless spray fluxR0 < 0.5 Drop-controlled nucleation

Spray pressure % > %<8= Well-developed spray1

Impeller speed Froude number �A > 20 Roping flow
1Drop diameter �3,90 < �50 of desired granular product and standard deviation of spatial drop

distribution fG > 0.15

Table 6.3: Equipment-specific operating range chosen (R0 dimensionless spray flux, �A Froude

number)

Scale R0 [−] �A [−]

2 L 0.9 − 1.2 23 − 41

10 L 0.3 − 0.5 20 − 26

25 L 0.4 22

70 L 0.2 − 0.3 12
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3.3.2). The nucleation-only experimental results are used to validate the LND model (Eq. 5.21) for

this system and determine the Sauter mean nuclei diameter 3=. Additionally, the spray conditions

(3= = 230 µm − 570 µm) are varied in granulation experiments (see Section 3.3.1) to determine the

effect on the granulation endpoint. Consolidation and growth are investigated at range of liquid-

to-solid ratios (!/( = 0.13 kg
kg − 0.3 kg

kg ) and impeller tip speeds (EC = 2 m
s − 7 m

s ) by measuring

the porosity and particle size distribution (PSD). Based on the PSD results, the transition between

layering and coalescence is investigated, and the critical !/( and critical pore saturation (2A8C

are determined. Experiments in the rapid growth (( � (2A8C ) and nucleation-only (breakage-

only) regime (( � (2A8C ) are conducted to strongly favour and investigate coalescence and breakage

respectively. The role of the chopper is assessed by varying the chopper rate (=2ℎ = 0 1
min−1200 1

min ).

The kneading time (C:= = 0 min − 5 min) is varied to study all kinetic mechanisms (consolidation,

layering, coalescence and breakage) over time.

Table 6.4: Phenomena investigated and experimental design approach

Phenomenon Type of experiment Experimental conditions varied

Reproducibility Granulation Replicates of critical conditions

Nucleation & Nucleation-only
Spray conditionsR0 = 0.3 − 0.5

Wetting Granulation

Consolidation & Granulation Liquid-to-solid ratio !/( = 0.13 kg
kg − 0.3 kg

kg

Growth Granulation Impeller tip speed EC = 2 m
s − 7 m

s

Coalescence Granulation Favour coalescence ( � (2A8C

Breakage
Granulation Favour breakage ( � (2A8C

Granulation Chopper rate =2ℎ = 0 1
min − 1200 1

min

In the model-driven design (MDD) study, determining the critical conditions (( ≈ (2A8C ) is of

particular importance. For this reason, the experimental design for parameter estimation includes

experiments at these critical conditions at 10 L lab scale with varying kneading time. Furthermore,

the porosity parameters (Eq. 5.30) are estimated using experiments over a wide range of !/( and

EC . It is assumed that the minimum porosity is reached after 5 min of kneading, and tap density

measurements are chosen to determine porosity. Overall, appropriate experimental results from a
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range of scales (2 L, 10 L, 25 L and 70 L) are used to estimate the set of porosity parameters ®G.

The experimental design is not ideal for scale-up studies because of the requirement of large-scale

experimental data. An experimental design with !/( and EC varied over a wide range at lab scale

(2 L and 10 L) is to be preferred. For the parameter estimation, the following objective function is

applied:

min
®G

25∑
8=1

(
Y
4G?

<8=
(8) − YB8<<8= (EC (8), !/((8), ®G)

)
(6.1)

with

®G = [41, 42, 43] (6.2)

where Y4G?
<8=

is the granule porosity measured at the endpoint, YB8<
<8=

is the simulated endpoint

porosity and 8 is the experiment number.

Based on the logic above, the full experimental design at all scales is listed in Table 6.5. A total

of 42 experiments are performed. The full datasets of experimental results are given in Appendix B.



110
Experim

entalinvestigation

Table 6.5: Plan of granulation experiments including conditions and relevant dimensionless groups

(+ granulator volume, =8<? impeller speed, ¤+ spray rate, CB? spray time, !/( mass-based liquid to

solid ratio, EC impeller tip speed, �A Froude number, (C34 5 Stokes deformation number,R0

dimensionless spray flux, =2ℎ chopper rate, C:= kneading time)

Exp + [L] =8<?
[ 1

min
] ¤+

[ mL
min

]
CB? [s] !/(

[
kg
kg

]
EC

[m
s
]

�A [−] (C34 5 [−] R0 [−] =2ℎ
[ 1

min
]

C:= [min]

1 2 485 60 60 0.15 4.4 23 2.5 × 10−3 0.9 1200 5

2 2 550 68 53 0.15 5.0 30 3.2 × 10−3 1.0 1200 5

3 2 650 80 45 0.15 5.9 41 4.4 × 10−3 1.2 1200 5

4 2 485 60 52 0.13 4.4 23 2.5 × 10−3 0.9 1200 5

5 2 485 60 68 0.17 4.4 23 2.5 × 10−3 0.9 1200 5

6 2 485 60 84 0.21 4.4 23 2.5 × 10−3 0.9 1200 5

7 2 485 60 100 0.25 4.4 23 2.5 × 10−3 0.9 1200 5

8 2 485 60 60 0.15 4.4 23 2.5 × 10−3 0.9 1200 0

9 2 485 60 60 0.15 4.4 23 2.5 × 10−3 0.9 1200 1

10 2 485 60 60 0.15 4.4 23 2.5 × 10−3 0.9 1200 2

11 2 485 60 60 0.15 4.4 23 2.5 × 10−3 0.9 1200 3

12 10 350 60 300 0.15 6.2 23 4.7 × 10−3 0.3 1200 5

13 10 375 64 281 0.15 6.6 26 5.3 × 10−3 0.3 1200 5

14 10 325 74 243 0.15 5.7 20 4.5 × 10−3 0.5 1200 5

Continued on next page
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Table 6.5 – continued from previous page

Exp + [L] =8<?
[ 1

min
] ¤+

[ mL
min

]
CB? [s] !/(

[
kg
kg

]
EC

[m
s
]

�A [−] (C34 5 [−] R0 [−] =2ℎ
[ 1

min
]

C:= [min]

15 10 350 60 260 0.13 6.2 23 4.7 × 10−3 0.3 1200 5

16 10 350 60 340 0.17 6.2 23 4.7 × 10−3 0.3 1200 5

16-1 10 350 300 68 0.17 6.2 23 4.7 × 10−3 0.7 1200 5

17 10 350 60 420 0.21 6.2 23 4.7 × 10−3 0.3 1200 5

18 10 350 60 500 0.25 6.2 23 4.7 × 10−3 0.3 1200 5

19 10 250 57 316 0.15 4.4 12 2.5 × 10−3 0.4 1200 5

20 10 350 80 225 0.15 6.2 23 4.7 × 10−3 0.5 1200 5

21 10 350 200 90 0.15 6.2 23 4.7 × 10−3 0.4 1200 5

22 10 350 60 300 0.15 6.2 23 4.7 × 10−3 0.3 1200 5

23 10 350 60 300 0.15 6.2 23 4.7 × 10−3 0.3 1200 5

24 10 350 60 20 0.01 6.2 23 4.7 × 10−3 0.3 0 0

27 2 485 60 100 0.25 4.4 23 2.5 × 10−3 0.9 1200 5

28 2 485 60 120 0.30 4.4 23 2.5 × 10−3 0.9 1200 5

29 2 485 60 116 0.29 4.4 23 2.5 × 10−3 0.9 1200 5

30 10 350 60 300 0.15 6.2 23 4.7 × 10−3 0.3 1200 0

31 10 350 60 340 0.17 6.2 23 4.7 × 10−3 0.3 1200 0

32 10 350 60 340 0.15 6.2 23 4.7 × 10−3 0.3 1200 1

34 10 350 60 340 0.17 6.2 23 4.7 × 10−3 0.3 1200 3

Continued on next page
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Table 6.5 – continued from previous page

Exp + [L] =8<?
[ 1

min
] ¤+

[ mL
min

]
CB? [s] !/(

[
kg
kg

]
EC

[m
s
]

�A [−] (C34 5 [−] R0 [−] =2ℎ
[ 1

min
]

C:= [min]

36 10 350 60 340 0.17 6.2 23 4.7 × 10−3 0.3 1200 5

37 10 350 60 340 0.17 6.2 23 4.7 × 10−3 0.3 0 5

38 25 300 78 731 0.19 6.9 22 5.7 × 10−3 0.4 1200 5

39 25 300 78 654 0.17 6.9 22 5.7 × 10−3 0.4 1200 5

40 25 300 78 808 0.21 6.9 22 5.7 × 10−3 0.4 1200 5

41 25 100 78 731 0.19 2.3 2 6.8 × 10−4 1.2 600 5

42 70 200 196 814 0.19 5.6 12 3.9 × 10−3 0.2 840 0

43 70 200 226 706 0.19 5.6 12 3.9 × 10−3 0.3 840 2.5

44 70 200 240 595 0.17 5.6 12 3.9 × 10−3 0.3 840 5

45 70 200 200 798 0.19 5.6 12 3.9 × 10−3 0.2 840 5

46 70 200 207 730 0.18 5.6 12 3.9 × 10−3 0.2 840 5
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6.3 Results and discussion

6.3.1 Drying techniques

The effect of drying techniques on the particle size distribution (PSD) is assessed by comparing

fluid bed dried and tray dried samples from a range of granulation experiments (Figure 6.2). The

drying technique has an effect on the PSD, as the �50 of fluid bed dried samples is consistently

smaller compared to tray dried samples. In addition, significantly more fine powder (< 90 µm) is

present after fluid bed drying (Figure 6.2b); however, the mass fraction of coarse particles (> 1 mm)

decreases only to a small extent (Figure 6.2c). These results clearly confirm the size reduction during

fluid bed drying. Attrition appears to be the dominant rate process as , (< 90 µm) is increasing

drastically. The attrition rate for larger particles seems to be much lower, possibly due to smaller

specific surface area or higher resistance. In conclusion, the assumption that tray drying has a smaller

impact on the PSD is confirmed. The PSD should be determined using tray dried samples for this

reason.

Figure 6.1: PSD of a fluid bed dried and a tray dried sample (Exp 36: + = 10 L; !/( = 0.17;

C:= = 5 min)

6.3.2 Porosity measurement techniques

GeoPyc and tap density porosity measurements are compared in Figure 6.3a. The results of both

techniques are quantitatively similar; nevertheless, small differences are apparent. While tap density
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(a) Mass-median diameter �50

(b) Fines mass fraction, (< 90 µm)

(c) Coarse mass fraction, (> 1 mm)

Figure 6.2: PSD results of fluid bed dried and tray dried samples (Exp 30-37: + = 10 L;

CB? = 6 min; !/( = 0.17; �A = 23; EC = 6.2 m
s )
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porosity is reproducible in replicate experiments at !/( = 0.17, GeoPyc measurements vary signific-

antly. This potentially is a result of the limited availability of material for the GeoPyc measurements

(> 1 mm), as only very few granules of that size are formed in most experiments (Figure 6.3a).

For this reason, the GeoPyc porosity results are not representative and remain questionable. All in

all, the tap density porosity results are more representative because of the applicability at a more

representative particle size range (Figure 6.3b).

6.3.3 Reproducibility

Overall, the qualitative reproducibility is very high, and only minor quantitative discrepancies are

determined for experiments with significant growth (Figure 6.4). Figure 6.5 shows the moderate

scattering of the replicate results which confirms the high reproducibility. Significant growth

occurred at high liquid-to-solid ratio (!/( > 0.17), s, and the lower reproducibility is depicted

by wider scattering. Poor liquid distribution inside the granulator is assumed to be primarily

responsible for this lower reproducibility. At high !/(, the impeller and chopper might not be

sufficient to distribute the liquid evenly assuming that the liquid is initially poorly distributed.

6.3.4 Wetting and nucleation

Results from a nucleation-only experiment using the method described in Section 3.3.2 are compared

to LND model predictions in Figure 6.6. The experiment results in a very narrow PSD with a peak

at around 300 µm and a short tail. The LND model predicts this result fairly accurately. The peak

is predicted to be slightly broader, and the short tail is in good agreement. The accuracy of the

model prediction verifies that the LND model is capable of predicting the nuclei size distribution

(see Section 5.5).

The effect of spray conditions on the process is investigated at 10 L by varying the dimensionless

spray flux and drop diameter (Table 6.6). As described by Hapgood et al. [2004] and Ax et al.

[2008], increasing each of the parameters individually leads to a larger nuclei diameter. However,

the combined effect is not easy to predict, as illustrated in Table 6.6. In this case, the dimensionless

spray flux Ψ0 decreases but the drop diameter increases 33 which overall leads to an increase in

nuclei diameter 3=. For this reason, the nuclei diameter 3= is used to quantify the spray conditions

because the strong impact of both parameters Ψ0 and 33 on 3=. The Sauter mean nuclei diameter

3= is predicted qualitatively by evaluating the logarithmic mean of the nuclei size distribution
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(a) Porosity Y and coarse mass fraction, (> 1 mm)

(b) Applicability of technique and size range chosen for measurements (illustrated by the dashed area

)

Figure 6.3: Comparison of GeoPyc and tap density porosity measurement techniques (Exp 12,

15-17, 22, 23, 36 and 37: + = 10 L; �A = 23; EC = 6.2 m
s ;R0 = 0.3)
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(a) Exp 12, 22 and 23: + = 10 L; CB? = 5 min; !/( = 0.15; �A = 23;R0 = 0.3; C:= = 5 min

(b) Exp 16 and 36: + = 10 L; CB? = 5.7 min; !/( = 0.17; �A = 23;R0 = 0.3; C:= = 5 min

(c) Exp 7 and 27: + = 2 L; CB? = 5.7 min; !/( = 0.17; �A = 23;R0 = 0.9; C:= = 5 min

Figure 6.4: PSD of replicate experiments at various conditions
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Figure 6.5: Individual and average CQA results of replicate experiments

Figure 6.6: Experimental validation of nuclei size distribution prediction (Exp 24: + = 10 L;

CB? = 20 s; EC = 6.2 m
s ; �A = 23;R0 = 0.3;R= = 0.5; 33 = 98 µm; fG = 0.17)
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(`=31) using the LND model (Eqs. 4.4 and 4.8). However, a quantitative comparison between the

experimental Sauter mean and predicted logarithmic mean is not possible.

Table 6.6: Overview of spray conditions (see Appendices B.1 and B.3)

Exp R0 [−] 33 [µm] 3= [µm] `=31 [µm]

20 0.5 69 230 340

22 0.4 98 230 250

21 0.3 232 570 830

Figure 6.7 shows that the granulation experiment with varying spray conditions do not result in

any very large particles, most likely due to the low !/( of 0.15. Nevertheless, an effect of spray

conditions on the PSD is observed. At 3= = 230 µm, the PSD shows a single, narrow peak, while

a much larger nuclei diameter 3= of 570 µm results in relatively broad PSD. Apart from that, the

maximum granule diameter increases with increasing 3=. This shows that the spray conditions have

a considerable influence on the PSD which is directly related to 3=. In conclusion, spray conditions

have an impact on the width of the PSD, and it is necessary to monitor the nuclei diameter 3= to

control the granulation process.

Figure 6.7: Effect of spray conditions (Exp 20-22: + = 10 L; !/( = 0.15; �A = 23; C:= = 5 min)
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6.3.5 Consolidation

In Figures 6.3a and 6.8, the effect of liquid-to-solid ratio !/( on porosity is illustrated at different

scales (2 L, 10 L, 25 L and 70 L). Porosity decreases significantly with increasing !/( at all scales.

The porosity is rather high (> 0.6) at low !/( (< 0.15). With increasing !/(, the porosity decreases

significantly until it reaches a minimum value of below 0.4. The decrease in porosity is almost linear;

however, a drastic drop is observed at some critical !/( value. At this critical !/(, the coarse mass

fraction , (> 1 mm) starts to increase considerably (Figure 6.3a). Very low porosities (< 0.4) are

primarily observed at very high, (> 1 mm) of above 0.3 kg
kg (illustrated by the solid fill � in Figure

6.8; see Appendix B.4).

Figure 6.9 shows the effect of the impeller tip speed EC on the porosity at different liquid-to-solid

ratios !/( (0.15 and 0.19) and different scales (2 L, 10 L and 25 L). Increasing EC is expected to

result in a decreasing porosity, as the Stokes deformation number (C34 5 (Eq. 2.15) is determined

to have an increasing effect on consolidation (see Section 2.1.2). At 2 L and 10 L, EC is varied at

low !/( of 0.15. Porosity decreases with EC at 2 L but a significant effect of EC on porosity is not

determined at 10 L (Figure 6.9a,b). The results at 25 L are obtained at !/( = 0.19, and a decrease

in porosity with increasing EC is observed (Figure 6.9c). It is concluded that the effect of EC is more

pronounced at high !/(.

An approach to correlate the endpoint porosity Y<8= with the liquid-to-solid ratio !/( and

impeller tip speed EC is tested. To sum up the findings, the !/( dependency appears linear for the

range investigated, and the effect of EC is increasing with increasing !/(. The empirical correlation

for the endpoint porosity (Eq. 5.30) represents both observations, and the empirical parameters 41..3

are determined including the 95 % confidence intervals:

Y<8= = 41EC
s
m
(42 − !/() + 43 (6.3)

41 = 0.58 ± 0.13 (6.4)

42 = 0.13 ± 0.03 (6.5)

43 = 0.67 ± 0.10 (6.6)

By assessing the effect of operating parameters (Figures 6.3a, 6.8 and 6.9), a reasonable qualitative

agreement between the empirical correlation and experimental results is determined. At low !/(,
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(a) Exp 1, 4-7, 27 and 28: + = 2 L; �A = 23; EC = 4.4 m
s ;R0 = 0.9

(b) Exp 38-40: + = 25 L; �A = 22; EC = 6.9 m
s ;R0 = 0.4

(c) Exp 44-46: + = 70 L; �A = 12; EC = 5.6 m
s ;R0 = 0.3

Figure 6.8: Effect of liquid-to-solid ratio !/( on porosity and PSD at different scales +
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(a) Exp 1-3: + = 2 L; C:= = 5 min; !/( = 0.15

(b) Exp 12-14 and 19: + = 10 L; C:= = 5 min; !/( = 0.15

(c) Exp 38 and 41: + = 25 L; C:= = 5 min; !/( = 0.19

Figure 6.9: Effect of tip speed EC on porosity at different liquid-to-solid ratios !/( and scales +
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minor deviations are observed but the correlations captures the effect of the two input parameters

very well. Having said that, a significant mismatch is observed above the critical !/(. Under

these conditions, the measured porosity drops non-linearly (see Figures 6.3a and 6.8). This is not

captured well by the empirical correlation because a linear relationship is assumed. Maxim et al.

[2004] postulated a significant decrease in porosity above the critical !/( due to the presence of

surface liquid. Their prediction is qualitatively consistent with the experimental observation. To

include the effect of surface liquid, pore saturation ( and (2A8C need to be considered. Since (

depends on porosity (Eq. 2.27), an implicit correlation with more empirical parameters is required

for the endpoint porosity to overcome this mismatch at high !/(. As more empirical parameters

are undesired, this interrelation between porosity and pore saturation (shown in Figure 6.10) is not

considered.

The empirical correlation proposed is in good agreement with lab-scale experimental data at 2 L

and 10 L (Figures 6.3a and 6.8a). This indicates that an experimental design based exclusively on

lab-scale experiments is very promising to achieve a similar accuracy. This makes the inclusion of

large-scale experimental data unnecessary.

Figure 6.10: Interrelation between pore saturation ( and porosity Y

Overall, the empirical correlation is in acceptable quantitative agreement with the experimental

results (Figure 6.11). Having said this, the empirical correlation tends to overpredict low porosities.
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While porosities below 0.4 are observed experimentally, the empirical correlation does not predict

that within the operating range. Very low porosities are especially observed in experiments with a

high coarse mass fraction (, (> 1 mm) > 0.3 kg
kg ; indicated by the solid fill � in Figure 6.11).

Figure 6.11: Comparison of simulated and measured endpoint porosity Y<8=

Figure 6.12 shows the effect of kneading time on porosity Y at three different liquid-to-solid

!/( (pore saturations () and scales (2 L, 10 L and 70 L). The porosity remains almost constant at

a low !/( of 0.15 and ( < (2A8C (Figure 6.12a), which depicts a a high endpoint porosity and fast

consolidation kinetics. At ( ≈ (2A8C , a small drop in porosity is observed at the beginning of the

kneading phase (Tap density, Figure 6.12b). Only at ( � (2A8C , a significant effect of kneading time

is observed (Figure 6.12c). The porosity appears to decrease continuously at this condition, and the

porosity at the endpoint is distinctly lower than at the start of kneading. In conclusion, a porosity

decrease due to consolidation occurs especially at a higher pore saturation (. This investigation

includes at different scales; however, it is assumed that the effect of pore saturation on consolidation
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is dominant compared to the effect of scale.

6.3.6 Layering and coalescence

Figure 6.13 shows the effect of !/( on the PSD at various scales + . At !/( = 0.15 and below, the

PSD is mono-modal and rather narrow with a relatively high mass fraction of fines , (< 90 µm)

and practically no particles above 1 mm. With increasing !/(,, (< 90 µm) continuously decreases

until it finally reaches 0. Experiments with, (< 90 µm) ≈ 0 show the formation of particles above

1 mm, and a bi-modal PSD is observed. The transition from mono-modal to bi-modal PSD is

detected at the critical !/( (non-linear drop in porosity). It is concluded that the critical !/( marks

the transition between the nucleation-only and induction growth regime. In the nucleation-only

regime, particles grow mainly by layering (see Section 2.1.3). When the amount of liquid suffices

to consume all surrounding fine particles (through nucleation and layering), liquid is assumed to

accumulate on the granule surface, which leads to the formation of large particles due to coalescence

(see Section 2.1.3). At the critical !/(, the drastic drop in porosity leads to an increase in pore

saturation (, so that ( > (2A8C , which is assumed to increase the surface liquid layer and enhance

growth further. Beyond the critical !/(, , (> 1 mm) reaches 1 which depicts the rapid growth

regime. Even though the transition between these regimes is observed at all scales, the critical value

for !/( varies from scale to scale. The difference in porosity (due to different EC ) is assumed to be

a reason for this scale-dependent critical !/(. Liquid typically penetrates into granule pores, and

only liquid on the granule surface promotes growth. Overall, these findings show that liquid-to-solid

ratio !/( and porosity need to be considered to understand granule growth, and the combined effect

is characterised in pore saturation (:

( =
!/(dB (1 − Y)

d;Y
(6.7)

where dB is the skeletal solid density and d; is the liquid density.

At a low pore saturation (( < 0.2), ( only has a small effect on particle size (Figure 6.14).

The direct effect of ( on both the �50 and , (> 1 mm) becomes apparent when a critical value is

exceeded, as a significant particle size increase is observed. (2A8C appears to decrease with increasing

scale. At 2 L, (2A8C is determined to ≈ 0.7, and a much lower value of 0.2 − 0.3 is determined at

25 L and 70 L. At small scales, better mixing conditions are usually observed, which can lead to

more controlled growth due to improved liquid distribution and reduced circulation time. Improved
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(a) ( = 0.14 < (2A8C (Exp 1 and 8-11: + = 2 L; CB? = 1 min; !/( = 0.15; �A = 23; EC = 4.4 m
s )

(b) ( = 0.2 ≈ (2A8C (Exp 16 and 30-37: + = 10 L; CB? = 6 min; !/( = 0.17; �A = 23; EC = 6.2 m
s )

(c) ( = 0.52 � (2A8C (Exp 42, 43 and 45: + = 70 L; CB? = 13 min; !/( = 0.19; �A = 12; EC = 5.6 m
s )

Figure 6.12: Consolidation at different pore saturations ( and scales +
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(a) PSD

(b) Mass-median diameter �50, fines mass fraction, (< 90 µm) and coarse mass fraction, (> 1 mm)

Figure 6.13: Effect of liquid-to-solid ratio !/( on PSD (Exp 12, 15-17, 22, 23, 36 and 37:

+ = 10 L; �A = 23; EC = 6.2 m
s ;R0 = 0.3)
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(a) Mass-median diameter �50

(b) Coarse mass fraction, (> 1 mm)

Figure 6.14: Effect of pore saturation on particle size at different scales
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liquid distribution leads to less wet lumps that grow rapidly, and a reduced circulation time is likely

to increase breakage because particles are exposed to high shear forces near the impeller more

frequently. For these reasons, the measured (2A8C is the effective critical pore saturation.

To characterise liquid distribution, the granulated mass fraction ,6A0= is determined as it is

assumed that powder particles do not contain any liquid. ,6A0= heavily depends on pore saturation

( (Figure 6.15a). While only around 50 % powder is granulated at ( < 0.2, ,6A0= increases

continuously with ( until nearly all powder is granulated at ( > 0.6. Under these conditions, liquid

is assumed sufficiently distributed over all granules. To take the effect of liquid distribution on

granule growth into account, �50 is evaluated as a function of granule-specific pore saturation (6A0=

(Figure 6.15b). By transforming ( to (6A0= all results are shifted for experiments with,6A0= < 1.

The critical range for (6A0= is with 0.35-0.75 consequently higher than (2A8C . The critical (6A0=

value appears to be scalable because the scales + ≥ 10 L show similar results for the critical (6A0=.

Having said this, a considerably higher critical (6A0= shows that the 2 L scale does not show similar

process behaviour. It is concluded that growth should not be studied at 2 L for scale-up purposes.

Figure 6.16 shows effect of granulation time C on PSD at 10 L and !/( = 0.17. At these

conditions, only marginal changes PSD are observed during the first 7 min. Having said this,

the PSD starts to increase considerably after that, and a broad PSD with a long tail is the result

(7 min − 11 min). This significant size increase is an indication for coalescence. The phenomenon

is identified as induction growth, as growth only started after an induction time of about 7 min.

During the induction time, it is assumed that granules mainly grow by layering, as it is assumed that

little surface liquid is sufficient for this mechanism (see Section 2.1.3). At this time, an overall size

reduction can occur due to breakage. As soon as all fine particles are depleted, a drop is porosity is

assumed to result in a formation of a surface liquid layer and granule growth by coalescence.

Figure 6.17 shows effect of granulation time C on PSD at 70 L and !/( = 0.19. The initial

growth behaviour observed is similar to induction growth (Figure 6.16) with practically no change

in PSD during the first 14 min. However, after 18 min, a large amount of coarse particles (> 1 mm)

are present, and a significant drop in porosity is observed (Figure 6.12c). It is concluded that a drop

in porosity leads to an increase in pore saturation ( and growth. This behaviour indicates rapid

growth (see Section 2.1.3). The experimental findings agree well with the qualitative granulation

understanding captured in the growth regime map [Iveson and Litster, 1998b], as the main growth

regimes are identified for the formulation chosen.
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(a) Granulated mass fraction,6A0= as a function of pore saturation (

(b) Mass-median diameter �50 as a function of granule-specific pore saturation (6A0=

Figure 6.15: Relationship between pore saturation ( and granulated mass fraction,6A0=
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(a) PSD

(b) Mass-median diameter �50, fines mass fraction, (< 90 µm) and coarse mass fraction, (> 1 mm)

Figure 6.16: Induction growth conditions ( ≈ (2A8C (Exp 16 and 30-36: + = 10 L; CB? = 5.7 min;

!/( = 0.17; �A = 23;R0 = 0.3)
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(a) PSD

(b) Mass-median diameter �50, fines mass fraction, (< 90 µm) and coarse mass fraction, (> 1 mm)

Figure 6.17: Rapid growth conditions ( � (2A8C (Exp 42, 43 and 45: + = 70 L; CB? = 13 min;

!/( = 0.19; �A = 12;R0 = 0.3)
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6.3.7 Breakage

Figure 6.18 shows PSD results of experiments at low !/( of 0.15. At these conditions, significant

growth is not expected due to ( < (2A8C , and breakage is assumed to be the dominant mechanism. A

continuous reduction in size is observed, as �50 and, (> 1 mm) continuously decrease with time.

Additionally, , (< 90 µm) continuously increases with time. These findings indicate that granules

break potentially due to high shear forces near the impeller tip. This confirms one of the critical

model assumptions (see Section 5.4) because breakage consequently needs to be incorporated in

modelling studies.

Experiments with and without chopper are compared in Figure 6.19. The PSD of the experiment

without chopper is quantitatively very close to the other results. Moreover, the deviation from the

original experiments appears smaller than the experimental error, and a size reduction is not observed

at any particle size. Based on these results, it is concluded that the chopper does not have any effect

on the mechanisms. This finding verifies the model assumption that the chopper does not have a

significant effect (see Section 5.5).

6.4 Conclusions

In this chapter, a systematic experimental design approach for model-driven design (MDD) is

demonstrated, in which experiments are designed at a wide range of operating conditions and

four different process scales. The experimental design complies with process-specific engineering

principles and safety guidelines. An assessment of drying methods shows that the conventional fluid

bed drying method leads to a significant size reduction compared to tray oven drying. Since an

accurate PSD measurement is essential for experimental investigations and downstream processing,

tray dried samples should be used for product characterisation. Granule porosity is determined

reliably from tap density measurements. The method produces representative results because it is

applicable to any sample with a narrow size range.

It is demonstrated that all relevant wet granulation mechanisms can be isolated for systematic

investigation. The findings of this investigation are in good agreement with mechanistic wet granu-

lation understanding. By varying spray conditions in nucleation-only and granulation experiments,

nucleation is investigated. The LND model is experimentally validated by assessing the nuclei size

distribution predictions. To understand the effect spray conditions on nucleation, the drop diameter

has to be taken into account as well as the dimensionless spray flux. Overall, spray conditions are
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(a) PSD

(b) Mass-median diameter �50, fines mass fraction, (< 90 µm) and coarse mass fraction, (> 1 mm)

Figure 6.18: Breakage-only conditions (Exp 1 and 8-11: + = 2 L; CB? = 1 min; !/( = 0.15;

�A = 23;R0 = 0.9)
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Figure 6.19: PSD of experiments with and without chopper (Exp 16, 36 and 37: + = 10 L;

CB? = 5.7 min; !/( = 0.17; EC = 6.2 m
s ; �A = 23;R0 = 0.3; =2ℎ = 1200 1

min ; C:= = 5 min)

found to have a small impact on the granulation endpoint.

The porosity is measured at a wide range of operating conditions to study consolidation. Consol-

idation and the endpoint porosity heavily depends on liquid-to-solid ratio and impeller tip speed, and

an empirical correlation for the endpoint porosity is assessed that is in acceptable agreement with

the experimental data. Nevertheless, the empirical correlation overpredicts the porosity when rapid

growth is observed. An accurate correlation for the endpoint porosity is beneficial for modelling

and scale-up studies due to the impact of porosity on the granulation endpoint. Apart from denser

granules, a lower porosity leads to significantly more growth. This finding shows the importance of

evaluating the pore saturation to determine the growth regime. By evaluating pore saturation and

PSD results, the growth regimes (nucleation-only, induction growth and rapid growth) are identified,

and the critical range of the pore saturation is determined that marks the transition between these

three regimes. In this study, the critical pore saturation is found to decrease with increasing scale.

A range of phenomena are identified as reasons for the difference in behaviour at different scales:

different mixing conditions which affect the distribution of liquid and different circulation timewhich

affect granule breakage.

In breakage-only experiments, granule breakage is observed. It is concluded that breakage occurs

mainly near the impeller tip because a significant effect of the chopper is not determined. These

findings verify critical model assumptions. Overall, liquid-to-solid ratio is confirmed to be the most
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crucial operating parameter. A significant impact of kneading time and impeller tip speed is only

observed at high liquid-to-solid ratio.



Chapter 7

PREDICTIVE POPULATION BALANCE MODELLING

OF HIGH-SHEAR WET GRANULATION

The parameter sensitivity study is supported by Aaron Yeardley, who trained a Gaussian Process

metamodel with PBM simulation results to determine Sobol’ indices under the supervision of Dr.

Solomon Brown and Dr. Robert Milton.

7.1 Introduction

In this chapter, a case study is carried out applying the population balance modelling (PBM)

framework developed in Chapter 5. The goal is to critically assess this model based on predictions of

product properties (particle size distribution (PSD) and porosity) in the conventional operating space

at different scales. A model assessment workflow is proposed that is suitable within a model-driven

design (MDD) framework. In MDD, accurate predictions are important to derive key outputs such as

the optimum operating range. The workflow is customised for scale-up purposes, as the experimental

effort is reduced by minimising the requirement of small- and large-scale experimental data. Based

on a systematic parameter sensitivity analysis approach, input parameters are determined from a

combination of measurements, parameter estimation, literature data and assumptions with the goal

to minimise the experimental effort and improve the model’s predictive power. Compartmental

modelling is assessed by comparing performance of the 1-comp and 2-comp PBM approaches. The

model performance is assessed based on the accuracy of predictions at different scales. This is of

particular importance because predicting the effect of scale on product properties and the critical

!/( is crucial in scale-up and often fails with conventional scale-up approaches.

137
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Figure 7.1: Workflow to determine model parameters
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7.2 Methodology

A workflow is proposed which gives guidance on all critical decisions to determine the modelling

parameters (Figure 7.1). The aim of this workflow is to limit the number of parameters to estimate.

Reduced usage of parameter estimation improves the predictive power of models (see Section 2.3.1).

The model requires input data for 34 physical properties and modelling parameters (Table 7.1).

Table 7.1: Overview of parameters

Parameter Value Source

dB

[
kg
m3

]
1412 ± 6 Measurement

Section 3.1 and

Appendix B.2
3? [µm] (Eq. 5.32) 102

 3 [−] (Eq. 5.19) 1.26 ± 0.07

d;

[
kg
m3

]
1000 Tilton and Taylor [1922]

d1D;:

[
kg
m3

]
(Eq. 5.13) 416.7 Rohrer [2017]

` [mPa s] (Eq. 5.35) 1 Korson et al. [1969]

W;E
[mN

m
]
(Eq. 5.32) 72.9 Pallas and Harrison [1990]

\ [°] (Eq. 5.32) 0 Assumption

ℎ0 [µm] (Eq. 5.47) 1 Assumption

5"0C

[
kg m

J

]
(Eq. 5.58) 1 Assumption

�<,:8=

[
J

kg

]
(Eq. 5.58) 1000 Assumption

@ [−] (Eq. 5.61) 1 Assumption

3 9,<8= [µm] (Eq. 5.61) 10 Assumption

a [−] (Eq. 5.43) 0.03 Pohlman and Litster [2015]

:� [−] (Eq. 5.46) 24.2 Pohlman and Litster [2015]

?� [−] (Eq. 5.46) 0.17 Pohlman and Litster [2015]

@� [−] (Eq. 5.46) −6.9 Pohlman and Litster [2015]

A� [−] (Eq. 5.46) −1.5 Pohlman and Litster [2015]

� [−] (Eq. 5.35) 7 Smith [2007]

� [−] (Eq. 5.35) 221 Smith [2007]

Continued on next page
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Table 7.1 – continued from previous page

Parameter Value Source

= [−] (Eq. 5.35) 0.58 Smith [2007]

<1 [−] (Eq. 5.22) −3.0 ± 0.9

Parameter estimation

(PSD, 600 MCS)

Section 4.4.1

<2 [−] (Eq. 5.22) 1.9 ± 0.2

<3 [−] (Eq. 5.22) −0.05 ± 0.05

B1 [−] (Eq. 5.22) −3.4 ± 0.9

B2 [−] (Eq. 5.22) 1.0 ± 0.2

B3 [−] (Eq. 5.22) 0.32 ± 0.02

41 [−] (Eq. 5.30) 0.58 ± 0.13 Parameter estimation

(Porosity, 25 experiments)

Section 6.3.5

42 [−] (Eq. 5.30) 0.13 ± 0.03

43 [−] (Eq. 5.30) 0.67 ± 0.10

Measurement data is already available for the physical properties dB, d;, d1D;: and 3? (see

Section 3.1). Furthermore, the empirical parameters <1..3, B1..3 and 41..3 are determined previously

(see Sections 4.4.1 and 6.3.5). <1..3 and B1..3 are estimated based on data from 600 Monte Carlo

simulations (MCS) which predict the nuclei size distribution. 41..3 are estimated using endpoint

porosity data from 25 experiments at different scales. Experimental data that includes the effect of

!/( and impeller tip speed EC is selected for this parameter estimation. The selection of experiments

is not ideal for scale-up purposes because large-scale experimental data (25 L and 70 L) is used as

input.

All remaining parameters are unknown. For these parameters, reasonable parameter ranges are

identified, and four critical quality attributes (CQAs) are selected to represent the results: volume

moment mean diameter 343, fines mass fraction, (< 90 µm), coarse mass fraction, (> 1 mm) and

granule porosity Y.

A parameter sensitivity analysis is required to determine the impact of all unknown parameters

on the CQAs. This parameter sensitivity analysis is carried out by applying a global sensitivity

analysis (GSA) approach. In GSA, parameters are varied simultaneously to determine both the

individual and combined effects of parameters [Iooss and Lemaître, 2015]. A new set of parameter
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values is generated for each sampling point of the GSA. All parameter values are generated using a

pseudo-random sampling method [Matsumoto and Nishimura, 1998] applying a normal distribution

within the parameter ranges. 740 sampling points are generated, and the 1-comp PBM approach is

used to determine the predicted values of the CQAs applying the experimental conditions of Exp

17 (+ = 10 L, !/( = 0.21). The GSA tool of gPROMS is used to generate the sampling points and

determine the predicted values of the CQAs.

A Gaussian Process metamodel is fitted to the GSA results with the goal to determine Sobol’

indices for each parameter-CQA combination [Sobol’, 2001; Marrel et al., 2009]. First-order Sobol’

indices Z8, 9 quantify the relative impact of parameters on specific model outputs by determining

the ratio of the variance +0A of output H 9 due to input G8 to the total variance +0A of output H 9

(Eq. 7.1). On this basis, the most important parameters are identified. First-order Sobol’ indices

only characterise the main effect of individual input parameters. Total parameter interactions are

determined based on the sum of indices, which is 1 for each output (Eq. 7.2). This method is

described in detail by Milton and Brown [2020].

Z8, 9 =
+0A

(
G8 |H 9

)
+0A

(
H 9

) (7.1)

Σ8Z8, 9 = 1 (7.2)

All parameters with low impact (Z8, 9 < 0.01) are determined by applying reasonable assumptions.

Physical parameters with high impact (Z8, 9 > 0.01) are measured, and only empirical parameters with

high impact are estimated using results from designed experiments (see Table 6.5). The parameter

estimation workflow shown in Figure 7.2 is applied to separately determine the parameters of both

models (1-comp and 2-comp PBM). Overall, the goal of this parameter estimation is to obtain

estimates that provide accurate predictions across scales + to accurately determine the optimum

operating range and the CQAs in this operating range. To estimate the set of parameters ®G, the

discrepancy between experimental (Y4G?, 5 4G? (ln(G))) and simulation (YB8<, 5 B8< (ln(G))) results

is optimised using the maximum likelihood objective function:

min
®G

=∑
8=1

[
Y4G? (8) − YB8< ( ®?(8), ®G)

f2
Y

+ 5
4G? (ln(G)) (8) − 5 B8< (ln(G)) ( ®?(8), ®G)

f2
5

]
(7.3)

with
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®G =
[
(2A8C , :2>=B, :1A , : � /� �

]
(7.4)

where 8 is the experiment number, f2 is the measurement variance and ®? is the set of operating

parameters.

Figure 7.2: Workflow for parameter estimation

To estimate parameters, experiments are selected that isolate the effect of individual parameters

by promoting the relevant rate process. In a 1st estimation, the best fit is determined for the four

parameters individually, and the residual three parameters are kept constant. At this stage, the

parameters are estimated in the following order to minimise the effect of parameters which are

still unknown: (2A8C ; :2>=B; :1A ; : � /� � . The parameter values determined are used as inputs

for subsequent estimations. For this estimation, parameters are varied manually as well as using

the gPROMS optimisation algorithm to find the best fit. :2>=B is estimated using porosity data

of selected experiments, and the discrete PSD profile is used for the remaining parameters (see

Chapter 6). Experiments with varying kneading time C:= are selected to estimate kinetic modelling
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parameters for better results (see Section 6.2).

To estimate (2A8C , experiments that show the transition between nucleation-only (below critical

!/() and induction growth regime (critical !/() are selected (Exp 12 and 16: + = 10 L; !/( =

0.15 − 0.17), and it has to be ensured that the estimate for (2A8C is between the pore saturation ( of

the two experiments chosen. :2>=B is estimated using porosity data in the induction growth regime

with varying time (Exp 16, 30, 31, 32, 34 and 36: + = 10 L; !/( = 0.17; C = 6 min − 11 min).

:1A is estimated using breakage-only experiments, in which breakage is more dominant than growth

(Exp 1, 8, 9, 10 and 11: + = 2 L; !/( = 0.15; C = 1 min − 6 min). : � /� � is estimated using PSD

data in the induction growth regime, in which coalescence is dominant (Exp 16, 30, 31, 32, 34 and

36: + = 10 L; !/( = 0.17; C = 6 min − 11 min). Experimental data in the rapid growth regime is

not considered for parameter estimation because it is considered outside the conventional operating

space. Finally, all parameters are estimated simultaneously for fine-tuning (2nd estimation) using

experiments in the induction growth regime because all rate processes occur simultaneously (Exp

16, 30, 31, 32, 34, 36 and 37: + = 10 L; !/( = 0.17; C = 6 min − 11 min). The experimental dataset

chosen to estimate these parameters is very promising because the experiments selected isolate the

mechanisms and focus on the critical operating regimes. Furthermore, all experiments are conducted

at lab scale (2 L and 10 L) which is ideal for scale-up purposes.

The parameter estimates are assessed based on the experimental data used previously. For the

model validation, the model is assessed based on predictions of new experimental data. This more

rigorous assessment includes experimental data at various scales (2 L, 10 L, 25 L and 70 L), which

is necessary to assess the performance of a predictive model for scale-up. The performance at 25 L

and 70 L is particularly important because experiments at these scales are not used for parameter

estimation.

The model performance is also assessed based on the relative sum of squared errors '((�$ for

the four CQAs:

'((�$ =
1
=

=∑
8=1

(
$4G? −$B8<

max
(
$4G?,$B8<

) )2
(7.5)

with

$ = [�50,, (< 90 µm) ,, (> 1 mm) , Y] (7.6)

where $4G? and $B8< are the experimental and simulation CQA results respectively, and = is
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the total number of experiments. Additionally, predictions of the critical liquid-to-solid ratio !/(

are assessed using experimental findings (see Section 6.3.6). The critical !/( is here identified as

the highest !/( at which �50 < 500 µm and, (> 1 mm) < 0.1 kg
kg .

7.3 Results and discussion

7.3.1 Parameter sensitivity analysis

All Sobol’ indices Z8, 9 above 0.01 are displayed in Figure 7.3. The results show that 6 out of

20 parameters ( 3 , :2>=B, (2A8C , :1A , : � ,� � and ℎ0) have a significant impact (Z8, 9 > 0.01). All

other 14 parameters have a negligible impact on the four CQAs (Z8, 9 < 0.01). Full results are

shown in Appendix D.3. Overall, the consolidation coefficient :2>=B has the most decisive impact,

especially on fines mass fraction and porosity. Interactions are identified for all CQAs related to

particle size (volume moment mean diameter, fines mass fraction, coarse mass fraction). This is

expected as all these parameters have direct or indirect impact on mechanisms that influence granule

size. For porosity, the interaction is determined to be negligible as only one parameter :2>=B has

a significant impact. The material property nuclei-to-drop diameter ratio  3 is measured using a

characterisation method. The modelling parameters consolidation coefficient :2>=B, critical pore

saturation (2A8C , collision coefficient : � ,� � and breakage coefficient :1A cannot be measured and are

estimated. Additionally, the height of asperities ℎ0 is identified to have a small impact on the CQAs

(Z8, 9 ≈ 0.01). However, a strong interaction between ℎ0 and (2A8C is determined based on an analytical

assessment (see Section 5.2.6). Therefore, a reasonable value for ℎ0 is assumed. Consequently,

those parameter values are determined based on literature data and reasonable assumptions. Figure

7.4 shows that reasonable parameter values are obtained from different sources, and only a relatively

small proportion of parameters need to be estimated, which is crucial for predictive modelling. Table

7.1 lists all modelling parameters that are not estimated using the PBM approach.

7.3.2 Parameter estimation

The parameter estimates are displayed in Table 7.2. The relatively narrow confidence intervals show

that promising estimates are obtained. Furthermore, the 2nd estimates of both modelling approaches

are very similar to the 1st estimates, confirming that the parameters are only fine-tuned in the 2nd

estimation. Having said this, one parameter :2>=B is estimated with a wide confidence interval,
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Figure 7.3: Relevant first-order Sobol’ indices results (Z8, 9 > 0.01) and total parameter interactions

Figure 7.4: Usage of parameter determination methods
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and the 2nd estimate deviates significantly from the 1st estimate. Both observations indicate that

the parameter’s effect is not significant in this range. A sensitivity analysis shows that :2>=B has a

significant impact on the results when :2>=B < 1. For :2>=B > 1, the impact of :2>=B is marginal

because the endpoint porosity is reached nearly instantly. This indicates that consolidation is rapid

for :2>=B > 1 (see Appendix D.4).

Compared to the 1-comp PBM results, the 2-comp PBM gives slightly deviated values for the

kinetic parameters (:2>=B, :1A and : � /� � ) because of shorter exposure times to their respective rate

processes. In 2-comp PBM, each rate process is assumed to occur only in one specific compartment

(see Section 5.2.8).

Table 7.2: Parameter estimation results (95 % confidence interval)

Parameter 1-comp PBM 2-comp PBM

1st estimation 2nd estimation 1st estimation 2nd estimation

(2A8C [−] 0.15 0.149 ± 0.002 0.15 0.149 ± 0.002

:2>=B [−] 1 3 ± 2 1 4 ± 2

:1A [−] 0.0027 ± 0.0002 0.0034 ± 0.0003 0.029 ± 0.002 0.033 ± 0.003

: � /� �
[
log10 µm1.5] 13.51 ± 0.04 13.56 ± 0.08 13.41 ± 0.04 13.38 ± 0.02

The parameter correlations (2nd estimation using 1-comp PBM) are shown in Table 7.3. Any

parameter pair with a correlation greater than 0.7 is considered strongly correlated, a correlation less

than 0.5 is considered to be low, and a negligible correlation is depicted by a correlation less than

0.25 [Munro, 2005]. (2A8C shows strong correlations of around 0.7 with :2>=B and : � /� � . These

results support that the impact of (2A8C and :2>=B on the time needed to form a liquid layer are both

significant. (2A8C and : � /� � are correlated because coalescence strongly depends on both parameters

(see Section 5.2). :2>=B has a low correlation of around 0.3 with two parameters : � /� � and :1A .

Consolidation does not directly interact with coalescence and breakage. Nevertheless, all three rate

processes have an effect on the PSD. That is why a low correlation between the main parameters for

these three rate processes is reasonable. :1A does not show a significant correlation (< 0.15) with

the two remaining parameters (2A8C and : �/� � because breakage does not depend on pore saturation

or directly interact with coalescence.



7.3 Results and discussion 147

Table 7.3: Parameter correlation for the 1-comp PBM

Parameter (2A8C :2>=B :1A : � /� �

(2A8C 1

:2>=B 0.73 1

:1A 0.13 0.31 1

: � /� � 0.70 0.33 0.10 1

Simulation results are compared to experimental data used previously for parameter estimation

(Figures 7.5, 7.6 and 7.7). The comparison includes PSD profiles of selected experiments, porosity Y

and three PSD parameters (mass-median diameter �50, fines mass fraction, (< 90 µm) and coarse

mass fraction , (> 1 mm)). Both modelling approaches (1-comp PBM and 2-comp PBM) give

nearly identical results because both approaches are based on very similar assumptions (see Section

5.2). The PSD profiles at both experimental conditions agree well with the experimental results, as

the peak is well captured (Figure 7.5). The trajectories of the porosity represent the measurements

well (Figure 7.6), and also the�50 and, (< 90 µm) are in very good agreement (Figure 7.7a). While

the trend of , (> 1 mm) is captured well, a small quantitative mismatch occurs at kneading times

above 3 min (Figure 7.7c). This mismatch is slightly higher for the 1-comp PBM approach. This

small mismatch becomes more apparent by examining the PSD profiles more closely (Figure 7.5).

The experiments show a mono-modal PSD at low kneading times, and a broad, bi-modal PSD at high

kneading times. While the mono-modal PSD is represented very well, PSD at higher kneading times

disagrees slightly because it remains mono-modal. Considering all this, both models are capable

of representing this experimental data, as they capture the trend for porosity and important PSD

parameters at these critical conditions.

Figure 7.8 compares the PSD profile of the simulations with experimental duplicates. Both

models give very similar results, and the experimental PSD is represented well. The peaks of the

model PSD are between the peaks of the experimental duplicates, which indicates that the model

error is smaller than the experimental error for these conditions. Having said that, the aforementioned

mismatch at larger particle size is also observed in this case. The experimental data shows a broad,

bi-modal PSD with particles well above 2 mm, and the models result in mono-modal PSD with a
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(a) Exp 32: C:= = 1 min

(b) Exp 34: C:= = 3 min

Figure 7.5: Comparison of experimental PSD data and fit (Exp 32 and 34: + = 10 L; !/( = 0.17;

�A = 23)
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Figure 7.6: Comparison of experimental porosity data and fit (Exp 16 and 30-36: + = 10 L;

CB? = 5.7 min; !/( = 0.17; �A = 23;R0 = 0.3)

negligible amount above 2 mm. All things considered, both models are promising approaches and

are further assessed because experimental data is well represented. For further model assessment,

new experimental data is predicted at a wider range of conditions and different equipment scales.

7.3.3 Model validation

Liquid-to-solid ratio

Figures 7.9, 7.10 and 7.11 show a comparison of PSD predictions and experimental data with

varying !/( at three different scales: 10 L, 25 L and 70 L. The 1-comp PBM predictions are in

good qualitative and quantitative agreement at these scales. The strong effect of !/( on the PSD,

which is observed experimentally, is predicted well. Additionally, the predictions are in very good

quantitative agreement at low !/( (( < (2A8C ). The critical !/(, at which the PSD starts to increase

significantly, is slightly underpredicted by around 0.01 at 25 L and 70 L (Figures 7.10 and 7.11). This

small mismatch results in a marginal offset (in �50 and, (> 1 mm)) and quantitative mismatch at

the critical !/(. The predicted optimum operating range is slightly smaller than in practice due to

this offset. Consequently, the model prediction for the operating range is too conservative which is

only minor concern in process design and scale-up. This mismatch is not observed at 10 L because

experimental data at critical !/( is used to estimate parameters (see Section 7.2). The models predict
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(a) Mass-median diameter �50

(b) Fines mass fraction, (< 90 µm)

(c) Coarse mass fraction, (> 1 mm)

Figure 7.7: Comparison of experimental particle size data and fit (Exp 16 and 30-36: + = 10 L;

CB? = 5.7 min; !/( = 0.17; �A = 23;R0 = 0.3)
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Figure 7.8: Assessment of fit based on PSD (Exp 16 and 36: + = 10 L; !/( = 0.17; �A = 23;

C = 11 min)

the PSD to increase further above the critical !/(. However, the predictions do not show the drastic

increase which is observed experimentally (( � (2A8C ). Consequently, experimental data at very

high !/( is not predicted accurately. Overall, the predictions of the critical !/( and PSD in the

optimum operating range is in good agreement with experimental data across three different scales.

Therefore, it is concluded that the predictive modelling approach is applicable for scale-up purposes.

Figure 7.12 compares PSD predictions and experimental data with varying liquid-to-solid ratio

!/( at 2 L scale. At low !/(, the predictions for�50 and, (> 1 mm) are in good agreement with the

experimental data. Bothmodelling approaches predict a significant size increase at !/( = 0.17−0.21

and an almost constant particle size above !/( = 0.19. The experimental data shows a slight size

increase upto !/( = 0.25 and a significant increase for !/( > 0.25. This shows that the model

qualitatively disagrees with experimental data for !/( > 0.17 at 2 L scale. It is concluded that the

mismatch is a result of the dissimilar process behaviour at 2 L, which is described in Section 6.3.6.

Kneading time

Predictions for porosity and PSD are compared to experimental data with varying time at 70 L in

Figure 7.13. Only the trajectory of the porosity is a model prediction because the porosity at the

endpoint is used to estimate empirical parameters (see Section 6.3.5). Even though the endpoint

porosity is considerably overpredicted, the porosity at the beginning of the kneading phase is in

reasonable agreement (Figure 7.13a). The experiments show a decrease in porosity at the beginning
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Figure 7.9: 1-comp PBM predictions and experimental data with varying !/( at 10 L (Exp 12,

15-17, 22, 23, 36 and 37: �A = 23)

Figure 7.10: 1-comp PBM predictions and experimental data with varying !/( at 25 L (Exp 38-40:

�A = 22)
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Figure 7.11: 1-comp PBM predictions and experimental data with varying !/( at 70 L (Exp 44-46:

�A = 12)

Figure 7.12: 1-comp PBM predictions and experimental data with varying !/( at 2 L (Exp 1, 4-7,

27 and 28: �A = 23)
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of the kneading phase, while the models predict a very similar decrease slightly before that. The

PSD prediction is very accurate at the beginning of the kneading phase (Figure 7.13b). As porosity

decreases over time (see Figure 7.13a), pore saturation ( is increasing. For this reason, the effect

of granulation time is similar to the effect of increasing !/(. With increasing time, a slight offset

at the start of the significant size increase is observed at C ≈ 13 min (( ≈ (2A8C ), and the PSD at the

granulation endpoint is drastically underpredicted (( � (2A8C ). On the one hand, the mismatch in

the endpoint porosity is likely to lead to a slight underprediction of growth, but on the other hand,

growth is predicted to slow down, as �50 and, (> 1 mm) are levelling off. This indicates that the

models are not capable to predict a significantly larger particle size.

Overall performance

1-comp PBM predictions of the critical !/( are compared to experimental data in Figure 7.14. The

predictions are in very good agreement with the experimental data at the scales 10 L, 25 L and 70 L.

For scale-up, accurate predictions of the critical !/( are important, especially for these larger scales.

As the 1-comp PBM is capable of predicting the critical !/(, it is a useful tool to predict the desired

operating range. The critical !/( is considerably underpredicted at 2 L but this mismatch is not

severe for scale-up purposes as this scale is smaller than the initial scale of 10 L.

All model CQA results are compared to experimental data in Figures 7.15 and 7.16. Experiments

with a kneading time greater than 2 min are predicted to reach the endpoint porosity Y (Figures

7.6 and 7.13a), and experiments with very low !/( (< 0.15) are predicted to reach maximum

endpoint porosity of 0.6 (see Section 5.2.4). High porosity measurements are represented well as

the predictions only slightly deviate from the experimental data. A more significant mismatch is

observed for low porosity measurements which are observed under at high, (> 1 mm) above 0.3 kg
kg

(indicated by the solid fill � in Figure 7.15a). This mismatch is a direct consequence of the mismatch

of the empirical correlation for the endpoint porosity which is observed at the same experimental

conditions (see Section 6.3.5).

As shown in Figure 7.15b, the �50 predictions are in acceptable agreement with the experimental

data. The models are capable of predicting the experimental �50 results below 1000 µm. In this

range, themodels tend to overpredict the experimental data confirming that the predictions are slightly

too conservative. Having said this, high experimental �50 results are noticeably underpredicted

confirming the quantitative mismatch in the rapid growth regime. A quantitative mismatch in the
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(a) Porosity Y

(b) Mass-median diameter �50 and coarse mass fraction, (> 1 mm)

Figure 7.13: 1-comp PBM predictions and experimental data with varying granulation time C at

70 L (Exp 42, 43 and 45: !/( = 0.19; �A = 12)
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Figure 7.14: Critical !/( predictions across scales

rapid growth regime is not a concern for this application because an operation in this regime is not

desired.

Figure 7.16a shows that, (< 90 µm) is predicted well by the 1-comp PBM. Most experimental

results are predicted accurately, and no trend is identified for the small mismatches. The comparison

of the , (> 1 mm) results follows the trend identified for the �50 results. Most experiments are

predicted accurately but conservative overpredictions are observed for , (> 1 mm) < 0.2 kg
kg and

underpredictions for, (> 1 mm) � 0.2 kg
kg .

To sum up, the PBM approach is capable of predicting the critical !/( across scales. This

is necessary for scale-up because the optimum operating range depends heavily on this critical

!/(. Predicting the optimum operating range has been a challenge in scale-up of high-shear wet

granulation because conventional scale-up approaches, which are based on dimensionless groups

and heuristics, often fail to provide accurate predictions. Additionally, experimental PSD data below

(2A8C is predicted very accurately with both modelling approaches. For ( ≈ (2A8C , results are slightly

overpredicted but still in good agreement. Outside the optimum operating range (( � (2A8C ), a

drastic size increase is predicted but the final PSD is underpredicted significantly.

7.3.4 Compartmentalisation

Figure 7.17 compares the �50 predictions of the 2-comp PBM approach to the experimental data

at 10 L, 25 L and 70 L. The model predictions are similar to the predictions of the 1-comp PBM
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(a) Porosity Y

(b) Mass-median diameter �50

Figure 7.15: Comparison of simulation and experimental porosity and �50 results across scales
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(a) Fines mass fraction, (< 90 µm)

(b) Coarse mass fraction, (> 1 mm)

Figure 7.16: Comparison of simulation and experimental mass fraction results across scales
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approach (see Figures 7.9, 7.10 and 7.11). The critical !/( is predicted well at these scales, and the

�50 predictions are in good agreement below the critical !/(. Above the critical !/(, a quantitative

mismatch between the predictions and experimental data is observed.

Figure 7.17: 2-comp PBM predictions and experimental data with varying !/( at 10 L-70 L

Figure 7.18 compares PSD predictions of the 1-comp and 2-comp PBM approaches with varying

liquid-to-solid ratio !/( at 2 L scale. While the predictions of the 1-comp and 2-comp PBM

approaches are very similar at 10 L and larger, the predictions differ considerably at 2 L. The 2-

comp PBM approach predicts a considerably larger �50 and higher , (> 1 mm) are predicted by

the 2-comp PBM approach. Both modelling approaches fail to predict critical !/(, at which the

size significantly increases and the PSD at !/( > 0.19. As the 1-comp PBM with the well-mixed

assumption (see Section 5.2) results in a better agreement overall (Figure 7.12), it is concluded that

this assumption is more applicable at the small 2 L scale.

Figure 7.19 shows a prediction at low Froude number �A of 2 at 25 L. The model parameters

are estimated using experimental data in the roping flow regime (�A > 20). With �A � 20, the

model is used to predict behaviour in the bumping flow regime (see Section 2.2). Both models

include assumptions that are considered to be inappropriate in the bumping flow regime at large

scale: well mixed (1-comp) and roping powder flow pattern (2-comp). Having said this, both PSD
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(a) Mass-median diameter �50

(b) Coarse mass fraction, (> 1 mm)

Figure 7.18: Predictions and experimental data with varying !/( at 2 L (Exp 1, 4-7 and 27:

�A = 23)
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model predictions are in acceptable agreement with the experimental data. A small mismatch is

identified at smaller particle size. While the models predict the presence of fine particles below

90 µm, the experimental data only shows a negligible amount in this size range. Overall, the accuracy

of this prediction is close to the accuracy in the roping flow regime. This finding indicates that both

modelling approaches can predict results outside the roping flow regime.

Figure 7.19: PSD prediction in the bumping flow regime (Exp 41: + = 25 L; !/( = 0.19; �A = 2)

The relative sum of squared error '((�$ is shown for the CQA predictions in Figure 7.20 to

compare both modelling approaches (1-comp PBM and 2-comp PBM). The average relative error is

very similar for both modelling approaches but 1-comp PBM predictions result in a slightly smaller

'((�$ of all CQAs results. The poor predictions of the 2-comp PBM approach at the 2 L scale

are identified as the cause for this. The errors for the porosity results are similar because both

approaches apply the same correlations to model porosity (Section 5.2.4). It is emphasised that

'((�$ of different CQA results is not comparable because the error is divided by the absolute result

to determine the '((�$. Especially , (< 90 µm) and , (> 1 mm) tend to have results close to 0

which produces very large relative errors for minor deviations.

Both modelling approaches (1-comp and 2-comp PBM) only disagree at the 2 L scale due to a

high coarse mass fraction predicted by the 2-comp PBM approach. This overprediction is likely to

be a consequence of inappropriate assumptions made about the mixing regime in compartmental

modelling (CM). At the small 2 L scale, the experimental mixing conditions are likely to be better

compared to the larger scales, which lead to a reduced circulation time andmore breakage. As roping
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Figure 7.20: Relative sum of squared errors '((�$

flow is assumed at all scales to derive the powder flow in the 2-comp PBM approach, breakage is

likely to be underpredicted. In the 1-comp PBM approach, the granulator is assumed to be well-

mixed which appears to be the more appropriate assumption at 2 L due to the better agreement

with experimental data. Overall, the 1-comp PBM approach is to be preferred for this 1-D PBM

approach (see Section 5.2) because of slightly higher accuracy and 65 % lower computational time

(see Section 5.2.8). The application of CM is limited in 1-D PBM because it is only beneficial to

represent the breakage zone. The results indicate that the effect of circulation time on breakage

is sufficiently captured with appropriate assumptions in the 1-comp PBM approach (see Section

5.2.7). The usage of CM for multi-D PBM needs to be assessed independently. In a multi-D

PBM framework (see Section 2.3.1), CM can be used to improve the representation of the spray

zone to predict liquid distribution and the effect on wet granulation mechanisms. Additional model

predictions are compared to experimental data in Appendix D.1.

7.3.5 Model limitations

While the model is proved to be a powerful tool, there are three areas in which its limitations are

apparent: (1) Growth after induction time at ( ≈ (2A8C , (2) Rapid growth at ( � (2A8C and (3) Nuclei

breakage in mechanical dispersion regime.

In the induction growth regime (( ≈ (2A8C ), experimental data shows the formation of a bi-modal

PSD, while the original peak remains below 500 µm (Figure 7.21a). Even though the models predict
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a size increase with increasing (, the results contradict the experimental finding (Figure 7.21b).

The PSD remains mono-modal but the peak shifts to larger particle sizes. This mismatch becomes

more apparent at high ( (here: C = 11 min). Since a 1-D PBM framework is employed, the liquid

content is assumed to be equal for all granules of the same size (see Section 5.2.1). Especially

under poor mixing conditions, this assumption is not applicable, as granules are likely to have a

broad distribution of liquid content. As a result, some very wet granules are likely to coalesce and

form large granules, while the liquid content of most granules is not sufficient for further growth

(bi-modal PSD). Furthermore, the liquid content of large (coalesced) granules is likely to be higher

than average because they have been formed from very wet smaller granules (illustrated in Figure

7.22). This phenomenon potentially further increases growth for large granules. In contrast to

that, all granules of the same size start coalescing simultaneously under the assumption of equal

liquid content. The result is a more continuous shift of the peak, which qualitatively disagrees

with experimental observations at ( ≥ (2A8C . For this reason, 1-D PBM is not suitable to capture

coalescence well because of the effect of broad liquid content distribution.

In the rapid growth regime (( � (2A8C ), very large particles (> 5 mm) are formed in experiments

(Figure 7.23). The model predicts that particles do not exceed a diameter of 3 mm, and for this

reason, the model fails to predict the outcome at very high (. This mismatch is likely caused by the

aforementioned representation of granule liquid content in 1-D PBM. The experimental data used for

parameter estimation is obtained at ( ≈ (2A8C . At these conditions, only a fraction of granules contains

sufficient liquid for coalescence. To account for this, the collision coefficient : �/� � is underestimated.

At ( � (2A8C , a majority of granules fulfil the coalescence criterion. Using the value estimated for

: � /� � , the predicted coalescence rate is several times lower than observed experimentally (illustrated

in Figure 7.22). Consequently, a 1-D approach is unable to predict experimental data accurately over

a wide range of pore saturation conditions. Furthermore, (granule) tensile strength is assumed to be

a function of capillary number only (see Section 5.2.4). Having said that, experimental observations

have shown that tensile strength can also increase with increasing pore saturation and decreasing

porosity [Pohlman and Litster, 2015]. In the rapid growth regime, pore saturation is very high, and

porosity is typically quite low compared to the induction growth regime. For this reason, the model is

likely to underestimate tensile strength and hence overpredict breakage. However, the representation

of tensile strength is believed to have a minor impact of the PSD due to the typically stronger impact

of coalescence.
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(a) Exp 16, 30, 31, 32 and 34

(b) 1-comp PBM

Figure 7.21: Evolution of particle size distribution (arrows indicate change with time C)
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Figure 7.22: Effect of liquid distribution on coalescence (depending on pore saturation () and

consequences for 1-D PBM

Figure 7.23: PSD prediction of rapid growth experiment (Exp 17: + = 10 L; !/( = 0.21; �A = 23)
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The effect of breakage is more decisive when coalescence does not occur. This can be observed

at very low pore saturation. To illustrate this, predictions of experiments with large nuclei (> 1 mm)

are assessed. This is achieved experimentally by a high dimensionless spray fluxR0 and/or large drop

diameter 33 (mechanical dispersion regime; see Section 2.1.1). Nuclei are very porous granules with

low pore saturation. For these reasons, tensile strength is underestimated, and especially breakage of

large nuclei is underpredicted. As a consequence, the PSDs of these experiments are overpredicted

by both PBM approaches (Figure 7.24).

(a) Exp 8: + = 2 L;R0 = 0.9; 33 = 100 µm; C:= = 0 min; !/( = 0.15; �A = 23

(b) Exp 16-1: + = 10 L;R0 = 0.7; 33 = 230 µm; C:= = 5 min; !/( = 0.17; �A = 23

Figure 7.24: PSD prediction of experiments in the mechanical dispersion regime
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7.4 Conclusions

A PBM approach is applied to model high-shear wet granulation, and the model’s predictive power is

critically assessed based on a case study. Through sensitivity analysis, the most important modelling

parameters are identified and subsequently estimated using data from 7 small-scale experiments.

Both models are assessed and validated based on experimental predictions at four scales (2 L-

70 L) with a wide range of operating conditions. Model predictions are in good agreement with

experimental results for the optimum operating range (critical !/() and the CQAs within this

optimum operating range at scales above 10 L. The modelling approach is hence considered to be

predictive across scales. Therefore, it is useful for model-driven design (MDD) including scale-up

purposes. Conventional scale-up approaches often fail to provide reliable predictions.

By comparing two versions of this model (1-comp and 2-comp PBM), compartmental modelling

(CM) assumptions are assessed. Even though both modelling approaches are suitable for further

usage (e.g. model-driven design), the 1-comp PBM approach is recommended due to its simplicity

and slightly better performance. Extreme conditions, which result in rapid growth or mechanical

binder dispersion, are predicted qualitatively but results for porosity and particle size distribution

(PSD) can differ substantially, possibly due to the fundamental modelling approaches chosen.



Chapter 8

MODEL-DRIVEN DESIGN: A NOVEL SCALE-UP

FRAMEWORK FOR PARTICULATE PROCESSES

8.1 Introduction

As the experimental effort strongly increases with scale, reducing the number of large-scale experi-

ments by maximising the informative value of experimental data is of great interest in scale-up. In

model-driven design (MDD), this is achieved by utilising small-scale experimental data effectively

to predict behaviour at lab, intermediate and large scale. This approach is very beneficial for experi-

mental design because the behaviour is studied rigorously using simulation data to derive the critical

and optimum operating. The incentives of MDD for scale-up are discussed further in Section 2.2.

In this chapter, a MDD approach for scaling up particulate processes is proposed. The framework

is applied and evaluated in a case study based on wet granulation in a high-shear mixer.

8.2 Method development

Wang et al. [2019] presented an MDD approach for particulate processes. An extension of this

approach for scale-up purposes is presented in Figure 8.1.

First, critical quality attributes (CQAs) are identified based on process and product understanding.

The CQAs capture the most relevant product properties, and reliable measurement techniques have

to be available to determine them. The product could be an intermediate product if the focus lays on

a specific process unit.

The modelling approach needs to be conceptualised by defining the problem and characterising

the system. At this stage, the effect of scale needs to be addressed by understanding all influences

that change with scale. On this basis, suitable modelling approaches are identified that fulfil

the requirements formulated previously. A model or submodels only need to be developed if no

appropriate approach is available. The model is verified by studying the underlying theory of the

168
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Figure 8.1: Model-driven design workflow for scale-up
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model, critically evaluating the main assumptions and analysing the model behaviour based on

simulation results. Thereby, it has to be ensured that the model includes sufficient mechanistic

understanding and captures the effect of scale.

A verified model is first applied at lab scale. The critical process parameters (CPPs) are identified

based on a sensitivity analysis including all operating parameters. In the sensitivity analysis, the

parameter ranges have to be selected carefully to cover the full space, and parameters need to be varied

simultaneously to assess the combined effect. A second sensitivity analysis is required to identify

the essential modelling parameters. Only essential modelling parameters have to be measured or

estimated to keep the experimental effort at a minimum. The remaining parameters are obtained by

making reasonable assumptions and based on literature data (see Section 7.2).

Experiments are designed for parameter estimation and material characterisation. The identified

CPPs and their critical ranges should be considered in the experimental design. The uncertainty

of the experimental results needs to be determined to evaluate the accuracy of model results. The

uncertainty should be determined based on replicates of the most relevant or critical conditions.

Physical properties are derived from the characterisation tests. The remaining essential paramet-

ers are estimated from lab-scale experiments. A reliable parameter estimation technique is described

in Section 7.2.

The model is validated based on model predictions. For this purpose, model predictions are

visualised in operating performance maps (OPMs). Important operating conditions are identified

using OPMs to design additional experiments for model validation. Important operating conditions

include the optimum and critical conditions as well as conditions that show model limitations. The

model is validated at lab scale by assessing the accuracy of the model predictions at the important

operating conditions.

After a successful model validation at lab scale, themodel is used to predict the process behaviour

at large scale. The optimum operating range is identified using OPMs, and experiments are designed

to validate model predictions. After successful model validation, these tasks need to be completed

for every process scale included until the target scale is reached. At target scale, the process is

designed using OPMs that visualise product specifications.
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8.3 Case study: high-shear wet granulation

A case study is conducted to assess the MDD approach developed. High-shear wet granulation is

chosen for this scale-up case study. This process is known to be challenging to scale up. The key

decisions and outcomes are summarised in Table 8.1.

Table 8.1: Overview of MDD tasks

Task Outcome Explanation

Identify CQAs (see Sec-

tion 6.2)

PSD (�50, , (< 90 µm),

, (> 1 mm)) and porosity

Decisive for many other material

characteristics and very relevant for

downstream processes

Model conceptualisation

(see Chapter 2)

PBM approach including

(semi-)mechanistic kernels

Predictive process model over wide

operating range and across scales

Model verification (see

Section 5.4)

Critical assumptions verified

andmodel behaviour analysed

Based on simulations and experi-

ments

Identify CPPs (see Ap-

pendix D.2 and Section

6.3)

!/(, impeller tip speed EC and

kneading time C:=

Based on their impact on CQAs de-

termined by sensitivity analysis and

confirmed experimentally

Modelling parameter

sensitivity analysis (see

Section 7.3.1)

Impactful parameters identi-

fied: (2A8C , :2>=B, : � /� � , :1A

Based on their impact onCQAs iden-

tified by Sobol’ indices

Experiments to determ-

ine parameters (see

Chapter 6)

Vary CPPs with strong focus

on critical conditions

Improve parameter estimates and

model predictions

Parameter determination

(see Section 7.3.2)

Universal values for model-

ling parameters

Based on characteristic tests/literat-

ure data and limited number of para-

meters to estimate

Model predictions OPMs and individual predic-

tions

Screen wide operating range and in-

vestigate important behaviour in de-

tail

Continued on next page
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Table 8.1 – continued from previous page

Task Outcome Explanation

Identify important oper-

ating conditions

Optimum operating range and

extreme conditions

Assess model predictions rigorously

and identify model limitations (lab

scale only)

Model validation (see

Section 7.3.3)

Predictive model for process

design and scale-up

Assessment of model predictions

and identification of model limita-

tions

Process design to meet

product specifications

Optimum operating condi-

tions at target scale

Identify operating conditions using

OPMs

In this chapter, the validated model is used to study and compare the process behaviour across

scales. Therefore, the process behaviour is predicted at three different scales following the constant

Froude number (CFN) scale-up approach. CFN is chosen to ensure an operation in the roping

flow regime (see Section 2.2). Additionally, a wide range of operating conditions is evaluated by

visualising the key results on operating performancemaps (OPMs), and the desired operating range is

identified based on the predicted outcome. As key results, the mass-based median diameter �50 and

granule porosity Y at the granulation endpoint are visualised. To determine �50, 700 simulations

(1-comp PBM approach) are carried out at each scale, and the porosity profile is determined by

evaluating Eq 5.29. Furthermore, product specifications are formulated for the CQAs to identify

desired operating range (Table 8.2). To validate the predictions, the results are compared to large-

scale experimental data which covers the critical range of conditions.

Table 8.2: Product specifications

Critical quality attribute Minimum Maximum

Fines mass fraction, (< 90 µm)
[

kg
kg

]
0 0.1

Coarse mass fraction, (> 1 mm)
[

kg
kg

]
0 0.15
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8.3.1 Investigating process behaviour upon scale-up

The performance at different scales is predicted in Figure 8.2. For this comparison, the constant

(a) Mass-median diameter �50

(b) Coarse mass fraction, (> 1 mm)

Figure 8.2: CFN scale-up prediction from 10 L to 70 L (�A = 23)

Froude number (CFN) scale-up approach is applied. At all scales, the �50 and , (> 1 mm) are

almost constant up to a critical !/( and increase significantly above this critical !/(. The critical

!/( ranges from 0.16 to 0.17 depending on the scale. The predictions show that the �50 and

, (> 1 mm) level off at very high !/(, however, it is concluded that these results are distinctly
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underpredicted (see Section 7.3.5). While the results at low !/( are very similar at all scales, the

behaviour differs considerably at larger !/(. With increasing scale, the critical !/( is predicted to

decrease continuously. Additionally, the size increase around the critical !/( is stronger at larger

scales. Consequently, !/( needs to be reduced with increasing scale to produce a similar �50 and

, (> 1 mm), and a narrower operating range is available to achieve these critical conditions, which

are desired in many applications. This demonstrates that a CFN approach cannot be used to predict

the operating range at larger scales because !/( is commonly kept constant across scales.

With increasing scale, !/( needs to decrease to achieve similar product properties because of

an increasing tip speed in the CFN approach. To maintain a constant Froude number, a higher tip

speed is required at large scale which results in a decrease in porosity. Additionally, poor mixing

conditions at large scale can lead to a decrease in granule breakage and poor liquid distribution.

The trends identified in this analysis agree with experimental observations (see Section 6.3). The

requirement to adjust the operating conditions continuously with increasing scale has been identified

previously [Iveson and Litster, 1998b]. Even though this requirement is widely known, an approach

that gives further guidance on the specific adjustment needed is currently not available.

8.4 Operating performance maps

Operating performance maps (OPMs) are diagrams that visualise the most important results over a

wide range of operating conditions. By analysing OPMs, the process behaviour can be explored, and

critical and optimum operating ranges can be identified. This approach has the potential to support

important design and scale-up decisions.

The porosity profile after a kneading time of 5 min is visualised in Figure 8.3. The predicted range

of endpoint porosity ranges from 0.45 to 0.6. This shows that EC and !/( have a significant impact

on porosity, in addition to granulation time. This OPM shows that the experimental conditions need

to be well chosen if granule porosity is critical for further processing. In addition to the effect on

the granulation process, porosity is known to have a decisive impact on important quality attributes

such as compressibility and flowability [Kawashima et al., 1994; Abdullah and Geldart, 1999]. As it

has been concluded that only EC and !/( have a decisive impact on the endpoint porosity, this OPM

is applicable at all scales.

The predicted mass-median diameter �50 after a kneading time of 5 min is shown in Figure 8.4.

The results of the three scales investigated are in very good qualitative agreement. At all scales, the
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Figure 8.3: Predicted porosity profile after 5 min kneading (�A for 70 L scale)

�50 ranges from 200 µm to above 600 µm. For this case study, it is considered that a �50 above

600 µm is not suitable for further processing. At low !/( of up to almost 0.17, the �50 is rather small

and does not exceed 250 µm. Under these conditions, the !/( is not sufficient for high consolidation

or layering rates, and the pore saturation ( does consequently not suffice for coalescence. A larger

�50 is achieved when a critical !/( is exceeded. At this point, the critical pore saturation (2A8C is

reached, and granule size increases significantly due to coalescence. This significant size increase

is depicted by narrow �50 ranges. The critical !/( strongly depends on EC due to the impact of EC

on the porosity. Finally, ( � (2A8C leads to a very large �50 above 600 µm due to rapid growth.

With increasing scale, a more significant size increase is observed for ( > (2A8C . A combination

of influencing factors are responsible for this trend. Firstly, an equivalent EC implies a lower impeller

speed =8<? and lower Froude number �A at large scale. As =8<? directly affects the circulation time,

particles reach the breakage zone less often which consequently results in a lower breakage rate.

A low �A indicates poor mixing conditions and poor liquid distribution. Poor liquid distribution

promotes the formation of large, dense lumps and rapid growth. Secondly, the processing time

increases because the dimensionless spray flux R0 is kept in the same range across scales. A

constantR0 approach requires longer spray times at large scale if the spray area does not increase

proportionally to the equipment scale, and a longer processing time results in more growth as

coalescence is dominant under these conditions. This shows that constant EC andR0 lead to lower
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(a) 10 L

(b) 25 L

(c) 70 L

Figure 8.4: Predicted �50 [µm] after 5 min kneading withR0 = 0.2 − 0.4 (10 L:

CB? = 5 min − 6 min; 25 L: CB? = 10 min − 12 min; 70 L: CB? = 11 min − 13 min)
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breakage rates, poor liquid distribution and longer processing times and hence, a larger �50.

Due to equipment limitations, a relatively long spray time is required at 25 L, and spray conditions

differ substantially at 70 L. This explains the very narrow �50 ranges at 25 L. The nuclei size

distributions are predicted based on the dimensionless spray fluxR0 and Sauter mean drop diameter

33 (Figure 8.5). The nuclei size distribution at 10 L and 25 L are rather narrow with very little large

nuclei, while the nuclei size distribution at 70 L is significantly broader with a peak that is shifted to

the right. All in all, the amount of large nuclei is considerably higher at 70 L. Overall, it is concluded

that spray conditions at 10 L and 25 L are comparable because of the similar nuclei size distribution.

The spray conditions at 70 L, however, differ substantially due to the significant increase in nuclei

size distribution.

Moreover, these results show that the nuclei size distribution does not just depend on theR0 but

also on 33 . In this case, the effect of 33 even dominates because a larger and broader nuclei size

distribution is observed with decreasingR0. This can just be explained by the significant increase in

33 .

Figure 8.5: Nuclei size distribution and spray conditions (R0 dimensionless spray flux; 33 Sauter

mean drop diameter)

Figure 8.6 shows the experimental conditions required to fulfil the product specifications listed

in Table 8.2. At very low tip speed EC and liquid-to-solid ratio !/(, the product specifications are

not met because the fines mass fraction, (< 90 µm) exceeds the upper limit of 0.1. By increasing
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(a) 10 L scale

(b) 25 L scale

(c) 70 L scale

Figure 8.6: Predicted kneading time C:= to fulfil product specifications (0 min < C:= < 5 min)
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either EC or !/(, growth is promoted, and, (< 90 µm) decreases. At first, a high kneading time C:=

of at least 4 min is required to meet the product specifications. By increasing EC or !/( further, the

minimum C:= decreases continuously until it reaches 0. In this operating range, any C:= is suitable to

meet the product specification (tested: 0 min < C:= < 5 min). At very high EC and !/(, the product

specifications are not met at high C:= because the coarse mass fraction , (> 1 mm) exceeds the

upper limit of 0.15. , (> 1 mm) > 0.15 indicates an operation in the rapid growth regime. In this

range, the maximum C:= decreases continuously with EC and !/(.

Even though the results are qualitatively similar across scales, quantitative differences are ob-

served. At low EC and !/(, minor differences are identified, as a slightly longer C:= is required at

10 L due to the rather short spray time. Significant differences are identified at high EC and !/(,

as the regimes (here: maximum C:=) are considerably narrower at larger scales. As a result, the

optimum operating range decreases continuously with increasing scale. This consequently makes

the operation at large scale more challenging. As the effect of scale is much more pronounced at

high EC and !/( than at low EC and !/(, it is concluded that the longer spray time does not have a

great effect. Since results are compared at equivalent EC and !/( (similar to constant tip speed (CTS)

approach), the breakage rate and liquid distribution decrease significantly with increasing scale, as

explained previously. These reasons are responsible for the shift of the rapid growth and the decrease

in the optimum operating range. This shows that a CTS approach is insufficient to predict the op-

erating regimes (especially rapid growth) at larger scales reliably because !/( should be decreased

with increasing scale to ensure a similar operation. Decreasing EC is not recommended for scale-up

because this would result in a drastically lower Froude number �A at large scale. A low �A is likely

to lead to poor mixing because of a different mixing regime [Tran, 2015]. However, the mixing

regime is not represented appropriately to study this effect, as a 1-comp PBM approach is used to

predict these results. For this reason, decreasing EC might have an unfavourable impact on the CQAs

which is not predicted well by this modelling approach.

8.5 MDD for scale-up and comparison to conventional approach

An experimental design for parameter estimation at lab scale is shown in Table 8.3. Lab scale is the

smallest scale that shows comparable process behaviour. In this case study, the 10 L is identified to

be the appropriate lab scale. The particle size distribution (PSD) and porosity of every experiment

need to be determined. In Exp 1 − 6, the impeller tip speed EC and liquid-to-solid ratio !/( are
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varied. Based on the porosity data, the endpoint porosity parameters 41..3 (Eq 5.30) are estimated.

The critical !/( at high EC is derived from Exp 1 − 4 by identifying the minimum !/( at which a

bi-modal PSD is observed (see Section 6.3.6). Triplicates are performed at critical conditions in Exp

7 − 8 to assess the reproducibility. The process behaviour during the kneading phase is investigated

by reducing the kneading time C:= at critical conditions in Exp 9−11. It is recommended to evaluate

the power input to identify the critical kneading time range [Levin, 2007]. Exp 7 − 11 (critical !/()

are recommended for the parameter estimation of the four rate parameters: (2A8C , :2>=B, :1A and

: �/� � . The sequential parameter estimation method described in Section 7.2 is recommended. The

remaining experiments (Exp 1−6) can be used to validate the estimates for the rate parameters at lab

scale. Additional experiments with extreme conditions to identify model limitations are not essential

because limitations of this model are already identified (see Section 7.3.5).

Table 8.3: Recommended experimental design at lab scale (specific for the case study and generic

guidelines)

Exp EC
[m

s
]

!/(
[

kg
kg

]
C:= [min] Explanation

1 − 4 6.5 (high) 0.13, 0.15, 0.17, 0.19 5 (high) Vary !/( to determine critical !/(

5 − 6 5.5 (low) 0.15, 0.19 5 (high) and estimate 41..3

7 − 8 6.5 (high) 0.17 (critical) 5 (high) Triplicates to assess reproducibility

9 − 11 6.5 (high) 0.17 (critical) 0, 1, 3 Reduce C:= to determine critical C:=

Consolidation can potentially be primarily investigated at smaller scale (< 10 L because the

consolidation kinetics is identified to be very comparable over a wider range of scales (see Section

6.3.5). Consequently, material consumption can be reduced by carrying out Exp 5 − 6 at smaller

scale. When rapid consolidation kinetics are observed, it is recommended to set :2>=B = 2 − 3.

Formulations with rapid drop penetration are likely to show rapid consolidation kinetics.

At intermediate and target scale, the optimum operating range is identified using OPMs, and

experiments are designed within this optimum operating range to validate the model predictions.

For the experimental design, choosing the most critical conditions is essential. Most critical are the

corner points of the desired operating range (Figure 8.7a). If the desired operating range is a regular

rectangle, the most critical extremes can be chosen alternatively (Figure 8.7b). Additionally, the
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(a) Recommended experimental design

(b) Reduced experimental design

Figure 8.7: Experimental design at intermediate and target scale including kneading time C:= (here

at 70 L scale)
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desired operating point (eg. midpoint) is recommended to consider in the experimental design. If

kneading time is considered as an additional degree of freedom, the most critical kneading times

are recommended for all corner points and extremes as shown in Figure 8.7. To reduce material

consumption, it is possible to skip model validation at intermediate scale. This is only recommended

if the experience with a variety of formulations justifies a high level of confidence in the direct

scale-up from lab scale to target scale. Theoretically, this modelling approach is suitable for direct

scale-up to target scale (see Section 7.3.3).

Conventional scale-up approach are based on a factorial design of experiments (DOE) [Rohrer,

2017]. The experimental effort of a factorial DOE increases with the number of factors or CPPs

[Montgomery and Runger, 2014]. To study the effects of the three CPPs of high-shear wet granula-

tion, 11 experiments are required. Additional experiments might be required if the product does not

meet the specifications.

Table 8.4 compares the experimental effort of the two scale-up approaches. To estimate the

effort, both approaches are assumed to be well established. While both approaches recommend the

same number of experiments at lab scale, the MDD approach requires significantly less experiments

at intermediate and target scale. Choosing a scale-up approach that requires a limited number of

intermediate- and target-scale experiments is beneficial because the experimental effort and material

consumption is significantly higher than at lab scale. The keys to the MDD approach are predictive

modelling and OPMs. In OPMs, promising predictions of the optimum operating range are obtained,

which are very beneficial for the experimental design at intermediate and target scale. Consequently,

the experimental effort of theMDDscale-up approach is significantly lower compared to conventional

approaches and the estimated reduction in material consumption is between 33 % − 63 %.

Table 8.4: Experimental effort required for MDD and conventional scale-up approaches and

material consumption for this case study

Scale MDD Conventional

Lab 11 exp. 11 exp.

Intermediate 0 − 5 exp. 11 exp.

Target 3 − 5 exp. 11 exp.

Material consumption 37 % − 67 % 100 %
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8.6 Conclusions

In this chapter, a MDD approach is proposed for scale-up of particulate processes. Guidance on

all tasks required for this approach is given, and an appropriate experimental design method is

described based on a case study. Applying MDD effectively is beneficial for scale-up because the

process behaviour can be investigated more rigorously. Additionally, it substantially reduces the

demand for experimental effort compared to conventional scale-up approaches. The approach is

assessed based on a high-shear wet granulation case study. The results demonstrate that the CQAs

and operating space can be predicted well across scales using the predictive modelling approach.

The operating space is explored, and the results show that the optimum operating range decreases

significantly with increasing scale. To achieve an equivalent granulation endpoint, the operating

conditions (e.g. liquid-to-solid ratio !/() consequently need to be adjusted across scales. This is

necessary to avoid rapid growth behaviour, which is known to become an increasing operational

risk at larger scales. Conventional scale-up approaches like constant Froude number (CFN) and

constant tip speed (CTS) fail to predict the optimum operating range due to inherent principles.

Additionally, the product can be designed using the operating performance maps (OPMs) as the

CQAs are predicted over a wide range of operating conditions. OPMs are a practical tool to identify

the optimum operating range if the product is subject to specifications.



Chapter 9

CONCLUSIONS AND RECOMMENDATIONS

9.1 Conclusions

The key scientific contributions of this study are:

1. A new predictive nuclei size distribution model is developed and validated based on a log-

normal distribution (LND) for formulations with rapid drop penetration.

2. A novel model verification, sensitivity analysis, parameter estimation and validation workflow

is developed and applied using a novel predictive high-shear wet granulation model.

3. A model-driven design (MDD) workflow is customised for scale-up of particulate processes

with the objective to minimise the experimental effort required.

4. Operating performance maps (OPMs) are developed as a visualisation tool for key results and

product specifications to investigate the process behaviour over a wide operating range and

identify the optimum conditions.

In this section, the main conclusions of the thesis, organised by chapters, are summarised:

In Chapter 4:

1. The log-normal distribution (LND) model is capable of predicting the nuclei size distribution

for awide range of spray conditions. The empirical parameters of the LNDmodel are estimated

using data from Monte Carlo simulations (MCS).

2. Predictions of both alternatives (modified Poisson distribution (MPD) model and Hapgood’s

PD model) diverge from experimental and MCS results at a high dimensionless nucleation

numbers (R= > 0.5). Neither model contains a nuclei coalescence criterion that is applicable

under these circumstances.

In Chapter 5:

184
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3. For the development of a predictive model, the effects of the operating parameters and equip-

ment design/scale need to be explicitly addressed. Consequently, a single set of modelling

parameter values is applicable for the relevant operating range and across scales.

In Chapter 6:

4. Each wet granulation mechanism is isolated to improve the quality of experimental results and

reduce the experimental effort.

5. Experimental design needs to consider experiments that are useful to verify critical modelling

assumptions, estimate modelling parameters and assess model predictions over a wide range

of operating conditions.

In Chapter 7:

6. The newGaussian Process approach to sensitivity analysis is successful in reducing the number

of fitting parameters by focussing on impactful parameters.

7. For scale-up purposes, the modelling parameters should be estimated primarily based on

lab-scale granulation experiments, and characterisation test results should be used to derive

parameters that depend on physical properties.

8. A predictive scale-up model successfully predicted the performance at different scales and

over a wide range of operating conditions.

9. Appropriate assumptions about the powder flow pattern results in a better model performance

than the application of compartmental modelling (CM).

10. A quantitative mismatch between model predictions and experimental results is observed at

rapid growth conditions. This is the result of poor liquid distribution which is not appropriately

captured in the 1-D PBM approach.

In Chapter 8:

11. Scale-up of particulate processes can be performed by model-driven design (MDD).

12. The operating performance maps (OPMs) are a useful visualisation and decision-making tool,

in which a wide operating range is explored for experimental design and process scale-up.

9.2 Recommendations for future work

In future work, it is recommended to apply theMDD approach in design and scale-up studies for other

particulate processes that are applied heavily in industry. This approach is particularly beneficial
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for processes that are difficult to scale up using conventional methods: wet and dry granulation,

crystallisation, spherical agglomeration, spray drying, among other processes.

To further establish the MDD approach for high-shear wet granulation, it should be applied

with different equipment, materials and formulations. Especially, formulation that are difficult to

process e.g. due to a high contact angle between powder and liquid should be investigated. These

formulations might require substantial modifications or new (sub)models because current modelling

approaches typically assume low contact angles.

To further improve the high-shear wet granulation model, the Young’s modulus (Eq 5.46) should

be represented as a function of the Capillary number similarly to dimensionless strength (Eq 5.32)

to include more mechanistic understanding of physical properties. Additionally, the representation

for granule properties (e.g. porosity, dynamic yield strength or Young’s modulus) can be improved

by capturing additional influences.

The liquid content or liquid distribution is known to have an effect, and this influence typically

also varies across scales. For these reasons, model predictions for the granule properties can be

improved by capturing the effect of liquid distribution appropriately. A 1-D PBM is not suitable to

capture this effect because the liquid distribution is not tracked. Amulti-D PBM approach is required

to utilise such improved representations. Especially, poor liquid distribution can be captured using

a multi-D PBM approach. Therefore, an appropriate representation of the spray zone is beneficial

which adds liquid only to solid material that is exposed to the spray. This can be achieved using

appropriate assumptions or by compartmental modelling (CM).

The empirical porosity correlation (Eq 5.30) can be improved by including key dimensionless

groups as inputs instead of operating conditions. The Stokes deformation number relates the effect

of the impeller tip speed to granule strength. Compared to the impeller tip speed, the Stokes

deformation number has a more decisive impact on porosity and should be evaluated to determine

the minimum porosity. For this purpose, it is recommended to measure the dynamic granule strength

atminimumporosity and representative size for the chosen formulation. Amoremechanistic porosity

correlations, which includes the relevant granule properties, is beneficial because the consolidation

behaviour of different formulations can be directly compared to each other. Additionally, a drastic

drop in porosity is observed when the critical pore saturation is reached. For this reason, pore

saturation is recommended as an input instead of the liquid-to-solid ratio. However, the inclusion of

pore saturation would result in an implicit porosity correlation because pore saturation depends on
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porosity. Consequently, estimating the empirical parameters would be more challenging.

Parameter estimation should be based on lab-scale granulation experiments, and the usage of

characterisation tests to derive first estimates should be investigated additionally. To estimate the

empirical porosity parameters, the impeller tip speed/Stokes deformation number should be varied

at low and high pore saturation in lab-scale experiments. Additionally, first estimates for modelling

parameters (e.g. critical pore saturation) could be derived from characterisation tests like drop

nucleation experiments to reduce material consumption.

9.3 Recommendations for industrial implementation

This work shows that MDD principles improve the workflow for industrial scale-up of particulate

processes. The benefits of applying MDD are more accurate predictions of the process behaviour at

larger scales which reduces experimental effort and material consumption.

Especially the lower experimental effort at intermediate and target scales is a key benefit of

applying MDD. This is achieved by employing a model that is predictive across scales. A rigorous

model calibration and assessment is consequently recommended at lab scale. At intermediate and

target scales, critical model predictions only need to be validated experimentally.
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Appendix A

ANALYSIS CALCULATIONS

A.1 Particle size distribution

The particle mass and maximum particle diameter of size range 8 are Δ<8 and G8 respectively. All

particles are assumed to be between 45 µm and 7 mm.

Cumulative mass fraction, (< G8):

, (< G8) =

8∑
9=1
Δ< 9

=∑
9=1
Δ< 9

(A.1)

Cumulative residue mass fraction, (> G8):

, (> G8) = 1 −, (< G8) (A.2)

Results from two measurements are used to cover the particle size range using both sieve

towers (for fine and coarse product; one representative sample for each analysis). The fine product

sieve analysis results Δ<8 are not adjusted, and to determine the particle size distribution (PSD)

above 1 mm, the coarse product sieve analysis results Δ<′
8
are normalised by using mass fraction

, (> 1 mm) from the fine product sieve analysis:

Δ<8 =
Δ<′

8

=∑
9=1
Δ<′

9

, (> 1 mm)
, ′ (> 1 mm) (A.3)

where ′ indicates the coarse product measurements.

Sieve analysis results (Table A.1) are used to determine the PSD. Eqs A.1, A.2 and A.3 are

applied:

, (> 1 mm) = Δ< (> 1 mm)∑
9

Δ< 9

=
15.7 g
100 g

= 0.157 (A.4)
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Table A.1: Sieve analysis results (Exp 16)

Fine product 8 G8 [µm] Δ<8 [g]

0 45

< 90 µm 1 90 2.6

90 µm-125 µm 2 125 4.7

125 µm-180 µm 3 180 15.4

180 µm-250 µm 4 250 20.8

250 µm-355 µm 5 355 19.7

355 µm-500 µm 6 500 13.0

500 µm-710 µm 7 710 5.5

710 µm-1000 µm 8 1000 2.6

> 1000 µm 15.7

Coarse product 8 G ′
8
[µm] Δ<′

8
[g]

< 1000 µm 1000 83.6

1000 µm-1250 µm 9 1250 1.6

1250 µm-1400 µm 10 1400 1.0

1400 µm-1800 µm 11 1800 2.9

1800 µm-2240 µm 12 2240 2.6

2240 µm-3150 µm 13 3150 3.8

3150 µm-4000 µm 14 4000 1.7

4000 µm-5000 µm 15 5000 1.2

> 5000 µm 16 7000 1.7
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, ′ (> 1 mm) =

9∑
9=1
Δ<′

9
− Δ<′ (> 1 mm)∑
9

Δ<′
9

=
100.1 g − 83.6 g

100.1 g
= 0.165 (A.5)

Δ<9 =
Δ<′

8∑
9

Δ<′
9

, (> 1 mm)
, ′ (> 1 mm) =

1.6 g
100.1 g

0.157
0.165

= 0.015 g (A.6)

Δ<10..16 are calculated using the same approach.

The calculation of the mass frequency 5<,1 and log mass frequency 51(ln G) are demonstrated as

examples:

5<,1 =
Δ<1

16∑
9=1
Δ< 9

1
G1 − G0

=
2.6 g

100.1 g
1

90 µm − 45 µm
= 0.000 58

1
µm

= 0.58
1

mm
(A.7)

51(ln G) =
Δ<1

16∑
9=1
Δ< 9

1
log10 (G1/G0)

=
2.6 g

100.1 g
1

log10 (90 µm/45 µm) = 0.086 (A.8)

The geometric mean diameter Ḡ1 is determined:

Ḡ1 =
√
G0G1 =

√
45 µm 90 µm = 64 µm (A.9)

The PSD results of Exp 16 are displayed in Table A.2.

A.2 Porosity

Average envelope density d4=E measured (GeoPyc; Exp 36):

d4=E = 0.657
kg
m3 (A.10)

Porosity Y (GeoPyc; Exp 36) using skeletal density dB result (see Section 3.1:

Y = 1 − d4=E
dB

= 1 −
0.657 kg

m3

1.412 kg
L

= 0.53 (A.11)

Tap density dC0? measured (Exp 36):

dC0? = 0.422
kg
m3 (A.12)
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Table A.2: PSD results (Exp 16)

8 G8 [µm] Ḡ8 [µm] Δ<8 [g] 5<,8
[ 1

mm
]

58 (ln G) [−]

−1 10

0 45 21 0 0 0

1 90 64 2.6 0.58 0.09

2 125 106 4.7 1.34 0.33

3 180 150 15.4 2.80 0.97

4 250 212 20.8 2.97 1.46

5 355 298 19.7 1.88 1.29

6 500 421 13 0.90 0.87

7 710 596 5.5 0.26 0.36

8 1000 843 2.6 0.09 0.17

9 1250 1118 1.5 0.06 0.16

10 1400 1323 1.0 0.06 0.19

11 1800 1588 2.8 0.07 0.25

12 2240 2008 2.5 0.06 0.26

13 3150 2656 3.6 0.04 0.24

14 4000 3550 1.6 0.02 0.16

15 5000 4472 1.1 0.01 0.12

16 7000 5916 1.6 0.01 0.11

17 13000 9539 0 0 0
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Estimated envelope density d4=E (Tap density; Exp 36) assuming a bed porosity Y143 of 0.38:

d4=E =
dC0?

1 − Y143
=

0.422 kg
m3

1 − 0.38
= 0.680

kg
m3 (A.13)

Porosity Y (Tap density; Exp 36):

Y = 1 − d4=E
dB

= 1 −
0.680 kg

m3

1.412 kg
L

= 0.52 (A.14)
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EXPERIMENTAL DATA

B.1 Spray characteristics

(a) 0.4 mm nozzle; 30° spray cone angle; G direction (b) 0.8 mm nozzle; 30° spray cone angle; G direction

(c) 0.4 mm nozzle; 30° spray cone angle; H direction (d) 0.8 mm nozzle; 30° spray cone angle; H direction

Figure B.1: Spatial drop distribution results
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Table B.1: Standard deviation of spatial drop distribution (normalised with width of spray cone)

Nozzle Pressure [bar] fG [−] fH [−]

0.4 mm; 30° 1.6 0.150 0.179

0.4 mm; 30° 2.0 0.166 0.143

0.4 mm; 30° 4.8 0.191 0.162

0.8 mm; 30° 2.0 0.141 0.107

0.8 mm; 30° 4.0 0.173 0.168

0.8 mm; 30° 4.8 0.197 0.182

Figure B.2: Spray rate as a function of pressure
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Figure B.3: Sauter mean drop diameter as a function of pressure

(a) 0.4 mm nozzle; 30° spray cone angle; centre (b) 0.8 mm nozzle; 30° spray cone angle; centre

(c) 1.1 mm nozzle; 45° spray cone angle; centre

Figure B.4: Drop size distribution results
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(a) 0.4 mm nozzle; 30° spray cone angle; 1.6 bar

spray pressure

(b) 0.4 mm nozzle; 30° spray cone angle; 2.0 bar

spray pressure

(c) 0.4 mm nozzle; 30° spray cone angle; 4.8 bar

spray pressure

(d) 0.8 mm nozzle; 30° spray cone angle; 2.0 bar

spray pressure

(e) 0.4 mm nozzle; 30° spray cone angle; 4.0 bar

spray pressure

(f) 0.4 mm nozzle; 30° spray cone angle; 4.8 bar

spray pressure

Figure B.5: Drop size distribution results
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B.2 Drop penetration time

The drop penetration time C? is estimated (see Section 2.1.1):

C? = 1.35
+

2/3
3

Y2
4 5 5

'4 5 5

`

W;E cos \
(B.1)

with

Y4 5 5 = YC0? (1 − Y1D;: + YC0?) (B.2)

'4 5 5 =
i332Y4 5 5

3(1 − Y4 5 5 )
(B.3)

where+3 is the drop volume, Y4 5 5 is the effective bed porosity, '4 5 5 is the effective pore radius,

` is the binder viscosity, W;E is the liquid-vapour surface tension, \ is the dynamic contact angle,

Y1D;: is the bulk porosity, YC0? is the tapped porosity, i is a shape factor, and 332 is the Sauter mean

diameter of the powder bed particles. The bed velocity is assumed to be 15 % of the impeller tip

speed to estimate the circulation time C2:

C2 =
0.15
=8<?

(B.4)

where =8<? is the impeller rate. The dimensionless drop penetration g? is defined as:

g? =
C?

C2
(B.5)

The penetration time of water into the powder bed is estimated for Exp 1 (+ = 2 L; EC = 4.4 m
s )

using Eq. B.1 to B.5. The viscosity and surface tension of water is 1 mPa s and 72.9 mN
m respectively

[Korson et al., 1969; Pallas and Harrison, 1990]. The dynamic contact angle of 0° is assumed.

A Sauter mean diameter is determined for the dry powder 3? and spray drops 33: 102 µm and

98 µm respectively. The drop penetration time C? and dimensionless drop penetration time g? are

determined:

C? = 3.1 × 10−5 s (B.6)

g? = 0.002 (B.7)
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The drop penetration time is negligibly small. Hence, nucleation can be assumed to be rapid.

The dimensionless drop penetration time is smaller than 0.1 which confirms the applicability of the

LND model to determine the nuclei size distribution.

B.3 Nucleation-only experiments

Additional results from nucleation-only experiments can be found in Figure B.6, and the experimental

conditions are listed in Table B.2. However, the spray conditions of Exp 25 lead to a rather small

Sauter mean drop diameter of 69 µm, and only nuclei above 180 µm is only identified. As a result,

it is that a significant amount of small nuclei is not determined. This could explain the mismatch

between the predictions and experimental data at small nuclei diameters. The spray characteristics

of Exp 26 showed that a pressure of 2.0 bar is not sufficient to form a fully developed spray pattern

(0.8 mm nozzle): significantly narrower spatial drop distribution and a wide drop size distribution

with drops above 1 mm (see Appendix B.1)
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entaldata

Table B.2: Plan of nucleation-only experiments including conditions and relevant dimensionless

groups (+ granulator volume, =8<? impeller rate, ¤+ spray rate, CB? spray time, !/( mass-based

liquid to solid ratio, �A Froude number, (C34 5 Stokes deformation number,R0 dimensionless spray

flux, =2ℎ chopper rate, C:= kneading time, fG standard deviation of spatial drop distribution)

Exp + [L] =8<?
[ 1

min
] ¤+

[ mL
min

]
CB? [s] EC

[m
s
]

�A [−] (C34 5 [−] R0 [−] =2ℎ
[ 1

min
]

C:= [min] fG [−]

24 10 350 60 20 6.2 23 4.7 × 10−3 0.3 0 0 0.17

25 10 350 80 20 6.2 23 4.7 × 10−3 0.7 0 0 0.17

26 10 350 200 20 6.2 23 4.7 × 10−3 0.5 0 0 0.15
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(a) Exp 24 (b) Exp 25

(c) Exp 26

Figure B.6: Nuclei size distribution results from nucleation-only experiments

B.4 Granulation experiments

GeoPyc and tap density porosity results are plotted including the coarse mass fraction, (> 1 mm)

according to Figure B.7.
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(a) GeoPyc (b) Tap density

Figure B.7: Symbols of porosity results depending on the coarse mass fraction, (> 1 mm)

Experimental data from granulation experiments is shown in Figures B.8, B.9, B.10 and B.11.

(a) Exp 1, 4-7 and 27: + = 2 L; �A = 23; EC = 4.4 m
s ;R0 = 0.9

(b) Exp 12, 15-17, 22, 23, 36 and 37: + = 10 L; �A = 23; EC = 6.2 m
s ;R0 = 0.3

Figure B.8: Effect of liquid-to-solid ratio on porosity and PSD at 2 L
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(a) Exp 38-40: + = 25 L; �A = 22; EC = 6.9 m
s ;R0 = 0.4

(b) Exp 44-46: + = 70 L; �A = 12; EC = 5.6 m
s ;R0 = 0.3

Figure B.9: Effect of liquid-to-solid ratio on porosity and PSD at different scales
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(a) Exp 1-3: + = 2 L; C:= = 5 min; !/( = 0.15

(b) Exp 12-14 and 19: + = 10 L; C:= = 5 min; !/( = 0.15

(c) Exp 38 and 41: + = 25 L; C:= = 5 min; !/( = 0.19

Figure B.10: Effect of impeller tip speed on porosity and PSD at different liquid-to-solid ratios and

scales
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(a) Exp 1 and 8-11: + = 2 L; CB? = 1 min; !/( = 0.15; �A = 23;R0 = 0.9

(b) Exp 16 and 30-36: + = 10 L; CB? = 5.7 min; !/( = 0.17; �A = 23;R0 = 0.3

(c) Exp 42, 43 and 45: + = 70 L; CB? = 13 min; !/( = 0.19; �A = 12;R0 = 0.3

Figure B.11: Effect of kneading time on porosity and PSD at different liquid-to-solid ratios and

scales

B.5 Drying techniques

Figures B.12 and B.13 compare the PSD of tray dried and fluid bed dried samples.
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(a) Exp 39: EC = 6.9 m
s (b) Exp 41: EC = 2.3 m

s

Figure B.12: PSD results of fluid bed dried and tray dried samples (+ = 25 L; CB? = 12.2 min;

!/( = 0.19; C:= = 5 min)
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(a) Exp 30: !/( = 0.15; C:= = 0 min (b) Exp 31: C:= = 0 min

(c) Exp 32: C:= = 1 min (d) Exp 34: C:= = 3 min

(e) Exp 36: C:= = 5 min (f) Exp 37: C:= = 5 min

Figure B.13: PSD results of fluid bed dried and tray dried samples (+ = 10 L; CB? = 5.7 min;

!/( = 0.17; EC = 6.2 m
s )

After 70 L experiments, only a 300 g sample is taken, and the residual wet material (> 14 kg)

is dried in a 90 L DIOSNA fluid bed processor CAP70 (Dierks & Söhne GmbH). The product was

milled before and after drying with a 10 mm and 2 mm conical sieve mill respectively. Any size

reduction might be a result of milling or the fluid bed conditions (Figure B.14).
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(a) Exp 42 (b) Exp 43

(c) Exp 44 (d) Exp 45

(e) Exp 46

Figure B.14: PSD results of fluid bed dried and tray dried samples of 70 L experiments
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MODELLING

C.1 Flowsheets

Flowsheets for the 1-comp and 2-comp PBMapproach are displayed in Figure C.1. The sieve analysis

model determines the PSD by taking the granule and powder size distribution and their respective

mass fraction into account. Therefore, the grid of sieve trays for the experimental characterisation

(see Section 3.3.3) is applied as discretisation method.

247
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(a) 1-comp PBM approach

(b) 2-comp PBM approach

Figure C.1: gPROMS flowsheets
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C.2 Input parameters for model verification

The input parameters for the model verification simulation are listed in Table C.1.

Table C.1: Overview of parameters

Parameter Value

dB

[
kg
m3

]
1412

3? [µm] (Eq. 5.32) 102

 3 [−] (Eq. 5.19) 1.26

33 [µm] (Eq. 5.19) 98

F [m] (Eq. 5.20) 0.06

fG [−] (Eq. 5.21) 0.17

!/(
[

kg
kg

]
0.18

EC
[m

s
]
(Eq. 5.33) 6.2

(2A8C [−] 0.149

:2>=B [−] 3

:1A [−] 0.0034

: � ,� �
[
log10 m1.5] 13.56

d;

[
kg
m3

]
1000

d1D;:

[
kg
m3

]
(Eq. 5.13) 416.7

` [mPa s] (Eq. 5.35) 1

W;E
[mN

m
]
(Eq. 5.32) 72.9

\ [°] (Eq. 5.32) 0

ℎ0 [µm] (Eq. 5.47) 1

5"0C

[
kg m

J

]
(Eq. 5.58) 1

�<,:8=

[
J

kg

]
(Eq. 5.58) 1000

@ [−] (Eq. 5.61) 1

3 9,<8= [µm] (Eq. 5.61) 10

a [−] (Eq. 5.43) 0.03

:� [−] (Eq. 5.46) 24.2

Continued on next page
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Table C.1 – continued from previous page

Parameter Value

?� [−] (Eq. 5.46) 0.17

@� [−] (Eq. 5.46) −6.9

A� [−] (Eq. 5.46) −1.5

� [−] (Eq. 5.35) 7

� [−] (Eq. 5.35) 221

= [−] (Eq. 5.35) 0.58

<1 [−] (Eq. 5.22) −3.0

<2 [−] (Eq. 5.22) 1.9

<3 [−] (Eq. 5.22) −0.05

B1 [−] (Eq. 5.22) −3.4

B2 [−] (Eq. 5.22) 1.0

B3 [−] (Eq. 5.22) 0.32

41 [−] (Eq. 5.30) 0.58

42 [−] (Eq. 5.30) 0.13

43 [−] (Eq. 5.30) 0.67

C.3 Model implementation

Modelling code for the custom kinetics models implemented within the gPROMS Formulated-

Products high-shear granulation library model is provided:

Pore saturation (Calculate_porosity_gFP):

EQUATION

FOR phase IN active_phases DO

FOR z:=1 TO no_grid_pts(phase) DO

porosity(phase,z) * (total_volume_per_size_protected(phase,z) *

↩→ (1 + high_threshold)

- liquid_volume_on_surface_per_size_protected(phase,z) +
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↩→ effective_zero)

= pore_volume_per_size_protected(phase,z) ;

void_fraction(phase,z) = intra_particle_void_volume(phase,z)

/ (total_volume_per_size_protected(phase,z) -

↩→ liquid_volume_on_surface_per_size_protected(phase,z) +

↩→ volume_threshold) ;

2*pore_saturation_protected(phase,z)*10^6 =

(1.0e-5 + pore_saturation(phase,z)*10^6) + SQRT((1.0e-5 -

↩→ pore_saturation(phase,z)*10^6)^2 + (1.0e-5)^2);

2*porosity_protected(phase,z)*10^6 =

(1.0e-5 + porosity(phase,z)*10^6) + SQRT((1.0e-5 - porosity(

↩→ phase,z)*10^6)^2 + (1.0e-5)^2);

2*liquid_volume_total_per_size_protected(phase,z)*10^6 =

(1.0e-5 + liquid_volume_total_per_size(phase,z)*10^6) + SQRT

↩→ ((1.0e-5 - liquid_volume_total_per_size(phase,z)*10^6)

↩→ ^2 + (1.0e-5)^2);

2*void_fraction_protected(phase,z)*10^6 =

(1.0e-5 + void_fraction(phase,z)*10^6) + SQRT((1.0e-5 -

↩→ void_fraction(phase,z)*10^6)^2 + (1.0e-5)^2);

2*pore_volume_per_size_protected(phase,z)*10^6 =

(1.0e-5 + pore_volume_per_size(phase,z)*10^6) + SQRT((1.0e-5

↩→ - pore_volume_per_size(phase,z)*10^6)^2 + (1.0e-5)^2);

2*liquid_layer_thickness_protected(phase,z)*10^6 =

(1.0e-5 + liquid_layer_thickness(phase,z)*10^6) + SQRT((1.0e

↩→ -5 - liquid_layer_thickness(phase,z)*10^6)^2 + (1.0e-5)

↩→ ^2);

2*liquid_volume_on_surface_per_size_protected(phase,z)*10^6 =

(1.0e-5 + liquid_volume_on_surface_per_size(phase,z)*10^6) +

↩→ SQRT((1.0e-5 - liquid_volume_on_surface_per_size(phase,

↩→ z)*10^6)^2 + (1.0e-5)^2);

END # FOR z:=2 TO no_FVBs(phase) DO



252 Modelling

# Calculate pore volume per size class, including liquid.

FOR i:=1 TO has_liquid(phase) DO

FOR z:=1 TO no_grid_pts(phase) DO

liquid_volume_total_per_size(phase,z) =

SIGMA(mass_components_distributed(phase,liquid_components*

↩→ components_in_phase(phase),z))

/ SIGMA(liquid_density(,active_phases_liquid)) ;

pore_volume_per_size(phase,z) =

liquid_volume_in_pores_per_size(phase,z)

+ intra_particle_void_volume(phase,z)

* Status_signal_distributed_void(phase,z) ;

liquid_volume_on_surface_per_size(phase,z) =

pore_volume_per_size_protected(phase,z)

* (pore_saturation_protected(phase,z) -

↩→ pore_saturation_critical(phase,z)) ;

liquid_volume_total_per_size_protected(phase,z) =

liquid_volume_in_pores_per_size(phase,z) +

↩→ liquid_volume_on_surface_per_size_protected(phase,z

↩→ ) ;

END # FOR z:=1 TO no_grid_pts(phase) DO

END # FOR i:=1 TO has_liquid(phase) DO

# Calculate pore volume per size class for phases without liquid.

FOR i:=1 TO 1 - has_liquid(phase) DO

FOR z:=1 TO no_grid_pts(phase) DO

pore_volume_per_size(phase,z) =

SIGMA((mass_components_distributed(phase,liquid_components

↩→ *components_in_phase(phase),z)))

/ SIGMA(liquid_density(,active_phases_liquid))

+ (intra_particle_void_volume(phase,z)) *
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↩→ Status_signal_distributed_void(phase,z) ;

END # FOR z:=1 TO no_grid_pts(phase) DO

END # FOR i:=1 TO 1 - has_liquid(phase) DO

CASE operating_status OF

WHEN unit_on:

CASE porosity_status OF

WHEN porosity_high:

FOR z:=1 TO no_grid_pts(phase) DO

liquid_volume_total_per_size_protected(phase,z) *

↩→ high_threshold

= (pore_saturation(phase,z) *

↩→ pore_volume_per_size_protected(phase,z))

* high_threshold ;

END #For z

SWITCH TO porosity_low IF MAX(ABS($pore_saturation(,) /

↩→ porosity(,))) > 1E5

AND MAX(pore_saturation(,)) > 1E2

AND MIN(porosity(,)) < 2E-2 ;

WHEN porosity_low:

FOR z:=1 TO no_grid_pts(phase) DO

$pore_saturation(phase,z) * high_threshold = (

↩→ liquid_volume_total_per_size_protected(phase,z)

/ (pore_volume_per_size_protected(phase,z)

+ standard_threshold *

↩→ liquid_volume_total_per_size_protected(

↩→ phase,z))

- pore_saturation(phase,z)) * high_threshold ; END

↩→ #For z

SWITCH TO porosity_high IF MAX(ABS($pore_saturation(,) /

↩→ porosity(,))) < 1E-3
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OR MAX(pore_saturation(,)) < 1E1

OR MIN(porosity(,)) > 5E-2 ;

END # CASE porosity_status OF

FOR z:=1 TO no_grid_pts(phase) DO

density_envelope(phase,z) =

MIN(SIGMA(composite_skeletal_density(,phase)),

MAX(SIGMA(composite_skeletal_density(,phase)) * 0.1,

total_mass_per_size_protected(phase,z) /

↩→ total_volume_per_size_protected(phase,z))) ;

$liquid_layer_thickness(phase,z) = 1 * (sdd(phase).L(z) *

↩→ porosity_protected(phase,z)

/ shape_fac_area(phase)

* shape_fac_vol(phase)

* (pore_saturation_protected(phase,z) -

↩→ pore_saturation_critical(phase,z))

- liquid_layer_thickness(phase,z)) ;

END #For z

SWITCH TO unit_off IF operating_status < 0.5

OR SIGMA(mass_components_distributed(active_phases,,)) /

SIGMA(mass_components_distributed(,,)) < mass_threshold ;

WHEN unit_off:

FOR z:=1 TO no_grid_pts(phase) DO

$density_envelope(phase,z) = (total_mass_per_size_protected(

↩→ phase,z)

/ (total_volume_per_size_protected(phase,z) +

↩→ volume_threshold) - density_envelope(phase,z)) ;

$pore_saturation(phase,z) = ( MIN(

↩→ liquid_volume_total_per_size_protected(phase,z)
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/ pore_volume_per_size_protected(phase,z) ,

↩→ pore_saturation_critical(phase,z) )

- pore_saturation(phase,z) ) ;

#Calculate liquid layer thickness

$liquid_layer_thickness(phase,z) = (sdd(phase).L(z) *

↩→ porosity_protected(phase,z)

* (pore_saturation_protected(phase,z) -

↩→ pore_saturation_critical(phase,z))

- liquid_layer_thickness(phase,z)) ;

END #For z

SWITCH TO unit_on IF operating_status > 0.5

AND SIGMA(mass_components_distributed(active_phases,,)) /

SIGMA(mass_components_distributed(,,)) > 1E-2 ;

END # CASE operating_status OF

# Calculate total volume per size class.

FOR z:=1 TO no_grid_pts(phase) DO

2*total_mass_per_size_protected(phase,z)*10^6 =

(1.0e-5 + total_mass_per_size(phase,z)*10^6) + SQRT((1.0e-5 -

↩→ total_mass_per_size(phase,z)*10^6)^2 + (1.0e-5)^2);

2*total_volume_per_size_protected(phase,z)*10^6 =

(1.0e-5 + total_volume_per_size(phase,z)*10^6) + SQRT((1.0e-5

↩→ - total_volume_per_size(phase,z)*10^6)^2 + (1.0e-5)^2)

↩→ ;

total_mass_per_size(phase,z) = SIGMA(mass_components_distributed(

↩→ phase,,z)) ;

total_volume_per_size(phase,z) =

SIGMA(mass_components_distributed(phase,,z)

/ solid_skeletal_density(,active_phases_solid)))

+ liquid_volume_total_per_size_protected(phase,z)

+ intra_particle_void_volume(phase,z) ;
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END # FOR z:=1 TO no_grid_pts(phase) DO

END # FOR phase IN active_phases DO

FOR phase IN active_phases DO

# Calculate per-particle volumes and masses.

FOR z:=1 TO no_grid_pts(phase) DO

V(phase,z) = shape_fac_vol(phase) * sdd(phase).L(z)^3

* conv_mu_to_m^3 * volume_conversion_factor ;

M(phase,z) = density_envelope(phase,z) * V(phase,z) ;

END # FOR z:=1 TO no_grid_pts(phase) DO

END # FOR phase IN active_phases DO

INITIAL

liquid_layer_thickness(,) = 0 ;

density_envelope(,) = 1000 ;

pore_saturation(,) = pore_saturation_initial ;

Nuclei size distribution (Nucleation_empirical_gFP):

SET

m_1 := -3.019 ;

m_2 := 1.875 ;

m_3 := -0.045650818 ;

s_1 := -3.432 ;

s_2 := 0.9784 ;

s_3 := 0.3243647 ;

EQUATION

bed_velocity = Calculate_bed_velocity.bed_velocity ;

mu_log_normal = LOG(L0/SQRT(1+sd^2/L0^2));

sigma_log_normal_unprotected = SQRT(LOG(1+sd^2/L0^2));
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2*sigma_log_normal*10^6 =

(1.0e-5 + sigma_log_normal_unprotected*10^6) + SQRT((1.0e-5 -

↩→ sigma_log_normal_unprotected*10^6)^2 + (1.0e-5)^2);

mu_log_normal = LOG(d32_drops_spray) + ((m_1 *

↩→ spatial_standard_dev_spray + m_2) *

↩→ nucleation_number_dimensionless + m_3) ;

sigma_log_normal = (s_1 * spatial_standard_dev_spray + s_2) *

↩→ nucleation_number_dimensionless + s_3 ;

2*total_volume_flowrate*10^6 =

(1.0e-5 + Volume_flowrate_calculation.total_volume_flowrate*10^6) +

↩→ SQRT((1.0e-5 - Volume_flowrate_calculation.

↩→ total_volume_flowrate*10^6)^2 + (1.0e-5)^2);

area_flux_powder_spray_zone = width_spray_zone * bed_velocity ;

spray_flux_dimensionless * area_flux_powder_spray_zone * d32_drops_spray

↩→ / conversions.length_conversion("micron") = 3 *

↩→ total_volume_flowrate / 2 ;

nucleation_number_dimensionless = spray_flux_dimensionless *

↩→ nucleation_diameter_ratio^2 ;

Consolidation (Custom_consolidation_kinetics_gFP):

UNIT

Calculate_porosity AS Calculate_porosity_gFP

Calculate_bed_velocity AS Calculate_bed_velocity_gFP

SET

Kinetic_parameter_names := ["Rate coefficient", "Minimum porosity

↩→ ", "Maximum porosity", "e1 parameter", "e2 parameter", "e3
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↩→ parameter"] ;

mega_conversion_factor := 1E6 ;

milli_conversion_factor := 1E-3 ;

very_large_number := 1E9 ;

large_number := 1E3 ;

EQUATION

FOR phase IN consolidating_phase DO

FOR i:=1 TO Number_of_grid_points-1 DO

density_envelope(i+1) = Calculate_porosity.density_envelope(

↩→ phase,i)

* Calculate_porosity.mass_conversion_factor /

↩→ Calculate_porosity.volume_conversion_factor ;

porosity_FVB(i+1) = Calculate_porosity.porosity_protected(

↩→ phase,i) ;

END # FOR i:=1 TO Number_of_grid_points-1 DO

density_envelope(1) = Calculate_porosity.density_envelope(phase

↩→ ,1)

* Calculate_porosity.mass_conversion_factor /

↩→ Calculate_porosity.volume_conversion_factor ;

porosity_FVB(1) = Calculate_porosity.porosity_protected(phase,1)

↩→ ;

END # FOR phase IN consolidating_phase DO

Rate_coefficient = Kinetic_parameters("Rate coefficient") ;

porosity_min = Kinetic_parameters("Minimum porosity") ;

porosity_max = Kinetic_parameters("Maximum porosity") ;

e_1_porosity = Kinetic_parameters("e1 parameter") ;

e_2_porosity = Kinetic_parameters("e2 parameter") ;
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e_3_porosity = Kinetic_parameters("e3 parameter") ;

porosity_endpoint = MIN(porosity_max, MAX(porosity_min,

↩→ e_1_porosity * Calculate_bed_velocity.tip_speed * (

↩→ e_2_porosity - liquid_to_solid_ratio) + e_3_porosity)) ;

impact_frequency = Calculate_bed_velocity.impeller_frequency

/ Calculate_bed_velocity.minute ;

impact_velocity = Calculate_bed_velocity.bed_velocity ;

2*mass_solids_protected*10^6 =

(1.0e-5 + mass_solids*10^6) + SQRT((1.0e-5 - mass_solids*10^6)^2

↩→ + (1.0e-5)^2);

FOR i:=1 TO Number_of_grid_points DO

Consolidation_rate_unprotected(i) = Rate_coefficient * (

↩→ porosity_FVB(i) - porosity_endpoint) * impact_frequency

* (1 - EXP(-Stokes_deformation_number(i))) ;

2*Consolidation_rate(i)*10^6 =

(1.0e-5 + Consolidation_rate_unprotected(i)*10^6) + SQRT((1.0

↩→ e-5 - Consolidation_rate_unprotected(i)*10^6)^2 + (1.0e

↩→ -5)^2);

capillary_number(i) * surface_tension * milli_conversion_factor *

↩→ COS(contact_angle) * Length(i)

= liquid_viscosity * impact_velocity * primary_particle_size

↩→ ;

strength_dimensionless(i) = A_str + B_str * MAX(0,

↩→ capillary_number(i))^n_str ;

strength_dimensionless(i) * surface_tension *

↩→ milli_conversion_factor * COS(contact_angle)
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= yield_stress_dynamic(i) * primary_particle_size ;

Stokes_deformation_number(i) * yield_stress_dynamic(i) *

↩→ mega_conversion_factor

= density_envelope(i) * Calculate_porosity.

↩→ mass_conversion_factor

/ Calculate_porosity.volume_conversion_factor *

↩→ impact_velocity^2 / 2 ;

END

Layering (Custom_layering_kinetics_gFP):

UNIT

Calculate_porosity AS Calculate_porosity_gFP

SET

Kinetic_parameter_names := ["Rate coefficient"] ;

fines_fraction_threshold := 0.1 ;

large_number := 1e2 ;

EQUATION

Rate_coefficient = Kinetic_parameters("Rate coefficient") ;

pore_saturation_initial = Calculate_porosity.

↩→ pore_saturation_initial ;

FOR phase IN active_phase DO

FOR i:=1 TO Number_of_grid_points-1 DO

liquid_layer_thickness(i) = Calculate_porosity.

↩→ liquid_layer_thickness(phase,i) ;

pore_saturation(i) = Calculate_porosity.

↩→ pore_saturation_protected(phase,i) ;

END # FOR i:=1 TO Number_of_grid_points-1 DO
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pore_saturation(Number_of_grid_points) = Calculate_porosity.

↩→ pore_saturation_protected(phase,no_grid_pts(phase)) ;

liquid_layer_thickness(Number_of_grid_points) =

↩→ Calculate_porosity.liquid_layer_thickness(phase,

↩→ no_grid_pts(phase)) ;

END # FOR phase IN consolidating_phase DO

FOR phase IN active_phase DO

FOR i:=1 TO Number_of_grid_points-1 DO

pore_saturation_critical(i) = Calculate_porosity.

↩→ pore_saturation_critical(phase,i) ;

END # FOR i:=1 TO Number_of_grid_points-1 DO

pore_saturation_critical(Number_of_grid_points) =

↩→ Calculate_porosity.pore_saturation_critical(phase,

↩→ no_grid_pts(phase)) ;

END # FOR phase IN consolidating_phase DO

total_mass_holdup_solids = SIGMA(mass_components_distributed(,,))

↩→ ;

FOR z:=1 TO Number_of_grid_points DO

2*layering_occurs_protected(z)*10^6 =

(1.0e-5 + layering_occurs(z)*10^6) + SQRT((1.0e-5 -

↩→ layering_occurs(z)*10^6)^2 + (1.0e-5)^2);

layering_occurs(z) * 2 - 1 =

TANH((liquid_layer_thickness(z) - very_high_threshold) *

↩→ 10) ;

donor_present(z) * 2 - 1 = TANH((fines_fraction -
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↩→ very_high_threshold) * 10) ;

fine_fraction_low(z) * 2 - 1 = TANH((fines_fraction_threshold

↩→ - fines_fraction) * large_number) ;

2*Layering_growth_rate(z)*10^6 =

(1.0e-5 + Layering_growth_rate_unprotected(z)*10^6) + SQRT

↩→ ((1.0e-5 - Layering_growth_rate_unprotected(z)

↩→ *10^6)^2 + (1.0e-5)^2);

Layering_growth_rate_unprotected(z) = Rate_coefficient *

↩→ layering_occurs_protected(z)

* liquid_layer_thickness(z) * donor_present(z)

/ inter_particle_volumetric_void_fraction /

↩→ pore_saturation_initial

* ( (1 - fine_fraction_low(z))

+ fines_fraction / fines_fraction_threshold *

↩→ fine_fraction_low(z) ) ;

END

Coalescence (Custom_agglomeration_rate_gFP):

UNIT

Calculate_collision_scenario_Liu AS Calculate_collision_scenario_Liu_gFP

SET

Kernel_parameter_names := ["Rate Type I II"] ;

Number_of_particles := 2 ;

EQUATION

beta_1 = Kernel_parameters("Rate Type I II") ;

beta_2 = Kernel_parameters("Rate Type I II") ;



C.3 Model implementation 263

FOR i:=1 TO Number_of_grid_points_1 DO

FOR j:=1 TO Number_of_grid_points_2 DO

Agglomeration_rate_kernel(i,j) =

↩→ Agglomeration_rate_kernel_unprotected(i,j) ;

Agglomeration_rate_kernel_unprotected(i,j) =

Calculate_collision_scenario_Liu.Calculate_bed_velocity.

↩→ bed_velocity

* ( Length_1(i) + Length_2(j) )^2 * SQRT( 1 / (Length_1(i)

↩→ )^3 + 1 / (Length_2(j))^3 )

* ( 10^(-beta_1) * Calculate_collision_scenario_Liu.

↩→ coalescence_I_occurs(i,j)

+ 10^(-beta_2) * Calculate_collision_scenario_Liu.

↩→ deformation_occurs_protected(i,j)

* Calculate_collision_scenario_Liu.

↩→ coalescence_II_occurs(i,j) )

* ( 1 - Calculate_collision_scenario_Liu.

↩→ surface_dry_occurs_protected(i,j) ) ;

END #For j

END #For i

Collision scenario (Calculate_collision_scenario_Liu_gFP):

UNIT

Calculate_porosity AS ARRAY(Number_of_particles) OF

↩→ Calculate_porosity_gFP

Calculate_bed_velocity AS Calculate_bed_velocity_gFP

SET

mega_conversion_factor := 1E6 ;

milli_conversion_factor := 1E-3 ;

large_number := 1E1 ;
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EQUATION

FOR part:=1 TO Number_of_particles DO

FOR i:=1 TO no_grid_pts(part) DO

liquid_layer_thickness(part,i) = Calculate_porosity(part).

↩→ liquid_layer_thickness_protected(active_phases(part),i) ;

porosity(part,i) = Calculate_porosity(part).porosity_protected(

↩→ active_phases(part),i) ;

pore_saturation(part,i) = Calculate_porosity(part).

↩→ pore_saturation_protected(active_phases(part),i) ;

mass_granule(part,i) = Calculate_porosity(part).M(active_phases(

↩→ part),i) ;

END # FOR i:=1 TO Number_of_grid_points_1 DO

END # FOR p:=1 TO Number_of_particles DO

impact_velocity = Calculate_bed_velocity.bed_velocity ;

FOR part:=1 TO Number_of_particles DO

FOR i:=1 TO no_grid_pts(part) DO

capillary_number(part,i) * surface_tension *

↩→ milli_conversion_factor * COS(contact_angle) * Length(part

↩→ ,i)

= liquid_viscosity * impact_velocity * primary_particle_size

↩→ ;

strength_dimensionless(part,i) = A_str + B_str *

↩→ capillary_number_protected(part,i)^n_str ;

strength_dimensionless(part,i) * surface_tension *

↩→ milli_conversion_factor * COS(contact_angle) =

yield_stress_dynamic(part,i) * mega_conversion_factor

* primary_particle_size / conversions.length_conversion("

↩→ micron") ;
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Youngs_modulus_dimensionless(part,i) * surface_tension *

↩→ milli_conversion_factor * COS(contact_angle)

= Youngs_modulus(part,i) * mega_conversion_factor

* primary_particle_size / conversions.length_conversion("

↩→ micron") ;

2*capillary_number_protected(part,i)*10^6 =

(1.0e-5 + capillary_number(part,i)*10^6) + SQRT((1.0e-5 -

↩→ capillary_number(part,i)*10^6)^2 + (1.0e-5)^2);

END #For i

END # FOR p:=1 TO Number_of_particles DO

CASE operating_status OF

WHEN unit_on:

CASE porosity_status OF

WHEN porosity_high:

FOR i:=1 TO no_grid_pts(1) DO

FOR j:=1 TO no_grid_pts(2) DO

deformation(i,j) = (deformation_occurs_protected(i,

↩→ j) *

( ( 8 / 3 * pi )^(1/2) *

↩→ diameter_granule_reduced(i,j)

* (Stokes_deformation_number_reduced_protected(i

↩→ ,j))^(1/2)

* ( 1 - 1 /

↩→ viscous_Stokes_number_reduced_protected(i

↩→ ,j)

* LOG( MAX(standard_threshold,

↩→ liquid_layer_thickness_mean_protected(

↩→ i,j) + standard_threshold)

/ height_asperities) )

* ( 1 - 7.36 *
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↩→ yield_stress_dynamic_reduced_protected(i,

↩→ j) / Youngs_modulus_reduced(i,j)

* (Stokes_deformation_number_reduced

↩→ _protected(i,j))^(-1/4)

* term_A_protected(i,j) ) ) ) ;

END #For j

END #For i

FOR i:=1 TO no_grid_pts(1) DO

FOR j:=1 TO no_grid_pts(2) DO

CASE term_A_status(i,j) OF

WHEN term_A_low:

(term_A(i,j)^2 * (1 - 1 /

↩→ viscous_Stokes_number_reduced_protected(i

↩→ ,j)

* LOG( MAX(standard_threshold,

↩→ liquid_layer_thickness_mean_protected(

↩→ i,j) + standard_threshold) /

↩→ height_asperities ) ) )

= 1 ;

viscous_Stokes_constant(i,j) =

↩→ viscous_Stokes_number_reduced_protected(i

↩→ ,j) ;

coalescence_I_constant(i,j) =

↩→ coalescence_I_occurs(i,j) ;

SWITCH TO term_A_high IF coalescence_I_occurs(i,j)

↩→ > 0.3 ;

WHEN term_A_high:

$(term_A(i,j))
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= 1 / SQRT((0.5 * LOG((1 -

↩→ coalescence_I_constant(i,j) * 2 + 1)

/ (1 + coalescence_I_constant(i,j) * 2 -

↩→ 1)))

/ (10 * viscous_Stokes_constant(i,j)))

- term_A(i,j) ;

$viscous_Stokes_constant(i,j) = 0 ;

$coalescence_I_constant(i,j) = 0 ;

SWITCH TO term_A_low IF coalescence_I_occurs(i,j

↩→ ) < 0.1 ;

END # CASE term_A_status OF

END #For j

END #For i

SWITCH TO porosity_low IF MAX(pore_saturation(,)) > 1E2

AND MIN(porosity(,)) < 2E-2 ;

WHEN porosity_low:

FOR i:=1 TO no_grid_pts(1) DO

FOR j:=1 TO no_grid_pts(2) DO

$deformation(i,j) * standard_threshold = ((

↩→ deformation_occurs_protected(i,j)) *

( ( 8 / 3 * pi )^(1/2) *

↩→ diameter_granule_reduced(i,j)

* (Stokes_deformation_number_reduced_protected(i

↩→ ,j))^(1/2)

* ( 1 - 1 /

↩→ viscous_Stokes_number_reduced_protected(i

↩→ ,j)

* LOG( MAX(standard_threshold,

↩→ liquid_layer_thickness_mean_protected(

↩→ i,j) + standard_threshold )

/ height_asperities) )
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* ( 1 - 7.36 *

↩→ yield_stress_dynamic_reduced_protected(i,

↩→ j) / Youngs_modulus_reduced(i,j)

* (Stokes_deformation_number_reduced

↩→ _protected(i,j))^(-1/4)

* (term_A_protected(i,j)) ) ) - deformation(

↩→ i,j)) * standard_threshold ;

viscous_Stokes_constant(i,j) =

↩→ viscous_Stokes_number_reduced_protected(i

↩→ ,j) ;

coalescence_I_constant(i,j) =

↩→ coalescence_I_occurs(i,j) ;

$((term_A(i,j))) =

SQRT(1 / ( 1 - 1 / (

↩→ viscous_Stokes_number_reduced_protected(i

↩→ ,j))

* LOG( MAX(standard_threshold,

↩→ liquid_layer_thickness_mean_protected(

↩→ i,j)

+ standard_threshold) / height_asperities

↩→ ) ) ) - (term_A(i,j)) ;

END #For j

END #For i

SWITCH TO porosity_high IF MAX(pore_saturation(,)) < 1E1

OR MIN(porosity(,)) > 5E-2 ;

END # CASE porosity_status OF

FOR i:=1 TO no_grid_pts(1) DO

FOR j:=1 TO no_grid_pts(2) DO
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(coalescence_II_occurs(i,j) * 2 - 1) * low_threshold

= (TANH( ( 0.172 /

↩→ viscous_Stokes_number_reduced_protected(i,j)

* ( diameter_granule_reduced(i,j) /

liquid_layer_thickness_mean_protected(i,j) )^2

* ( term_A_protected(i,j)^(-2) )^(5/4)

* ( ( (liquid_layer_thickness_mean_protected(i,j) /

↩→ height_asperities)^2 - 1 )

+ 2 * liquid_layer_thickness_mean_protected(i,j) /

↩→ (deformation_protected(i,j))

* ( liquid_layer_thickness_mean_protected(i,j) /

↩→ height_asperities - 1 )

+ 2 * liquid_layer_thickness_mean_protected(i,j)^2

↩→ / (deformation_protected(i,j))^2

* LOG( MAX(standard_threshold,

↩→ liquid_layer_thickness_mean_protected(i,j) +

↩→ standard_threshold)

/ height_asperities) )

* ( 1 - 7.36 * yield_stress_dynamic_reduced_protected(

↩→ i,j) / Youngs_modulus_reduced(i,j)

* (Stokes_deformation_number_reduced_protected(i,j)

↩→ )^(-1/4)

* (term_A_protected(i,j)) )^2

- (yield_stress_dynamic_reduced_protected(i,j) /

↩→ Youngs_modulus_reduced(i,j))^0.5

* (Stokes_deformation_number_reduced_protected(i,j)

↩→ )^(-9/8) ) ) ) * low_threshold ;

END #For j

END #For i

FOR part:=1 TO Number_of_particles DO
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FOR i:=1 TO no_grid_pts(part) DO

Youngs_modulus_dimensionless(part,i) = (k_E *

↩→ capillary_number_protected(part,i)^p

* porosity(part,i)^q * pore_saturation(part,i)^r) ;

END

END

SWITCH TO unit_off IF operating_status < 0.5

OR SIGMA(mass_components_distributed(active_phases(1),,))

+ SIGMA(mass_components_distributed(active_phases(2),,)) <

↩→ mass_threshold

OR MAX(liquid_layer_thickness_mean_protected(,)) <

↩→ high_threshold

OR MAX(deformation_occurs_protected(,)) < 0.1 ;

WHEN unit_off:

FOR i:=1 TO no_grid_pts(1) DO

FOR j:=1 TO no_grid_pts(2) DO

$(term_A(i,j)) =

SQRT( MAX( standard_threshold, 1 / ( 1 - 1 / (

↩→ viscous_Stokes_number_reduced_protected(i,j))

* LOG( MAX(standard_threshold,

↩→ liquid_layer_thickness_mean_protected(i,j)

+ standard_threshold) / height_asperities ) ) )

↩→ ) - (term_A(i,j)) ;

coalescence_II_occurs(i,j) = 0 ;

viscous_Stokes_constant(i,j) =

↩→ viscous_Stokes_number_reduced_protected(i,j) ;

coalescence_I_constant(i,j) = coalescence_I_occurs(i,j) ;

deformation(i,j) = diameter_granule_reduced(i,j)/100 *

↩→ deformation_occurs_protected(i,j) ;
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END #For j

END #For i

FOR part:=1 TO Number_of_particles DO

FOR i:=1 TO no_grid_pts(part) DO

$Youngs_modulus_dimensionless(part,i) = MIN(6000, k_E *

↩→ capillary_number_protected(part,i)^p

* MAX(0.5, porosity(part,i))^q * pore_saturation(part,

↩→ i)^r)

- Youngs_modulus_dimensionless(part,i) ;

END

END

SWITCH TO unit_on IF operating_status > 0.5

AND (SIGMA(mass_components_distributed(active_phases(1),,))

+ SIGMA(mass_components_distributed(active_phases(2),,)))

/ SIGMA(mass_components_distributed(,,)) > 1E-4

AND MAX(liquid_layer_thickness_mean_protected(,)) >

↩→ height_asperities

AND MAX(deformation_occurs(,)) > 0.9 ;

END # CASE operating_status OF

# Express the agglomeration rate kernel for each pair of size classes.

FOR i:=1 TO no_grid_pts(1) DO

FOR j:=1 TO no_grid_pts(2) DO

(- deformation_occurs(i,j) * 2 + 1)

= (TANH( 10 * (LOG( MAX(standard_threshold,

↩→ liquid_layer_thickness_mean_protected(i,j) +

↩→ standard_threshold)

/ height_asperities ) -

↩→ viscous_Stokes_number_reduced_protected(i,j)) ) ) ;
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(surface_dry_occurs(i,j) * 2 - 1) * low_threshold

= (TANH(height_asperities -

↩→ liquid_layer_thickness_mean_protected(i,j))) *

↩→ low_threshold ;

coalescence_I_occurs(i,j) = 1 - deformation_occurs_protected(i,j)

↩→ ;

2*surface_dry_occurs_protected(i,j)*10^6 =

(1.0e-5 + surface_dry_occurs(i,j)*10^6) + SQRT((1.0e-5 -

↩→ surface_dry_occurs(i,j)*10^6)^2 + (1.0e-5)^2);

2*term_A_protected(i,j)*10^6 =

(1.0e-5 + term_A(i,j)*10^6) + SQRT((1.0e-5 - term_A(i,j)

↩→ *10^6)^2 + (1.0e-5)^2);

2*deformation_protected(i,j)*10^6 =

(1.0e-5 + deformation(i,j)*10^6) + SQRT((1.0e-5 - deformation

↩→ (i,j)*10^6)^2 + (1.0e-5)^2);

2*deformation_occurs_protected(i,j)*10^6 =

(1.0e-5 + deformation_occurs(i,j)*10^6) + SQRT((1.0e-5 -

↩→ deformation_occurs(i,j)*10^6)^2 + (1.0e-5)^2);

2*mass_reduced_protected(i,j)*10^6 =

(1.0e-5 + mass_reduced(i,j)*10^6) + SQRT((1.0e-5 -

↩→ mass_reduced(i,j)*10^6)^2 + (1.0e-5)^2);

2*viscous_Stokes_number_reduced_protected(i,j)*10^6 =

(1.0e-5 + viscous_Stokes_number_reduced(i,j)*10^6) + SQRT

↩→ ((1.0e-5 - viscous_Stokes_number_reduced(i,j)*10^6)^2 +

↩→ (1.0e-5)^2);

2*yield_stress_dynamic_reduced_protected(i,j)*10^6 =

(1.0e-5 + yield_stress_dynamic_reduced(i,j)*10^6) + SQRT((1.0

↩→ e-5 - yield_stress_dynamic_reduced(i,j)*10^6)^2 + (1.0e

↩→ -5)^2);

2*Stokes_deformation_number_reduced_protected(i,j)*10^6 =
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(1.0e-5 + Stokes_deformation_number_reduced(i,j)*10^6) + SQRT

↩→ ((1.0e-5 - Stokes_deformation_number_reduced(i,j)*10^6)

↩→ ^2 + (1.0e-5)^2);

mass_reduced(i,j) = mass_granule(1,i) * mass_granule(2,j) / (

↩→ mass_granule(1,i) + mass_granule(2,j) ) ;

viscous_Stokes_number_reduced(i,j) * 3 * pi * liquid_viscosity

* (diameter_granule_reduced(i,j) / conversions.

↩→ length_conversion("micron"))^2 * standard_threshold

= (8 * mass_reduced_protected(i,j) / mass_conversion_factor *

↩→ impact_velocity) * standard_threshold ;

Stokes_deformation_number_reduced(i,j) * 2 * (

↩→ diameter_granule_reduced(i,j) / conversions.

↩→ length_conversion("micron"))^3

* yield_stress_dynamic_reduced_protected(i,j) *

↩→ mega_conversion_factor

= (mass_reduced_protected(i,j) / mass_conversion_factor *

↩→ impact_velocity^2) ;

( ( 1 - Poisson_ratio^2 ) * Youngs_modulus(2,j) + ( 1 -

↩→ Poisson_ratio^2 ) * Youngs_modulus(1,i) )

* Youngs_modulus_reduced(i,j) = Youngs_modulus(1,i) *

↩→ Youngs_modulus(2,j) ;

liquid_layer_thickness_mean(i,j) * 2 = (liquid_layer_thickness(1,

↩→ i) + liquid_layer_thickness(2,j)) ;

2*liquid_layer_thickness_mean_protected(i,j)*10^6 =

(1.0e-5 + liquid_layer_thickness_mean(i,j)*10^6) + SQRT((1.0e

↩→ -5 - liquid_layer_thickness_mean(i,j)*10^6)^2 + (1.0e

↩→ -5)^2);

yield_stress_dynamic_reduced(i,j) * ( yield_stress_dynamic(1,i) +

↩→ yield_stress_dynamic(2,j) )

= yield_stress_dynamic(1,i) * yield_stress_dynamic(2,j) ;
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END #For j

END #For i

INITIAL

term_A(,) = 0 ;

Youngs_modulus_dimensionless(,) = 100 ;

Bed kinetics (Calculate_bed_velocity_gFP):

EQUATION

bed_velocity = 0.15 * tip_speed ;

tip_speed = pi * impeller_frequency * impeller_diameter / minute ;

Compartmental modelling (Compartmentalisation_gFP):

UNIT

Calculate_bed_velocity AS Calculate_bed_velocity_gFP

EQUATION

volume_total * fill_level = volume_effective ;

volume_spray = thickness_spray * length_spray * width_spray ;

volume_breakage = diameter_chopper^2 * length_chopper ;

volume_effective = volume_breakage + volume_spray + volume_bulk ;

volume_fraction_spray * volume_effective = volume_spray ;

volume_fraction_bulk * volume_effective = volume_bulk ;

volume_fraction_breakage * volume_effective = volume_breakage ;

residence_time_spray * bed_velocity = length_spray ;

residence_time_breakage * bed_velocity = diameter_chopper ;

residence_time_spray * residence_time_breakage * volume_fraction_bulk

= residence_time_bulk * residence_time_spray *

↩→ volume_fraction_breakage
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+ residence_time_bulk * residence_time_breakage *

↩→ volume_fraction_spray ;

split_fraction_to_spray * (diameter_chopper * length_chopper +

↩→ thickness_spray * width_spray)

= thickness_spray * width_spray ;

split_fraction_to_breakage * (diameter_chopper * length_chopper +

↩→ thickness_spray * width_spray)

= diameter_chopper * length_chopper ;

bed_velocity = Calculate_bed_velocity.bed_velocity ;
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SIMULATION DATA

D.1 Model results and assessment

(a) Mass-median diameter �50

(b) Coarse mass fraction, (> 1 mm)

Figure D.1: Predictions and experimental data with varying tip speed at 10 L (Exp 12-14 and 19:

!/( = 0.15; C:= = 5 min)
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(a) Porosity Y

(b) Mass-median diameter �50

(c) Coarse mass fraction, (> 1 mm)

Figure D.2: Predictions and experimental data with varying time at 2 L (Exp 1 and 8-11:

!/( = 0.15; CB? = 1 min; �A = 23)
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(a) Mass-median diameter �50

(b) Coarse mass fraction, (> 1 mm)

Figure D.3: Predictions and experimental data with varying !/( at 2 L (Exp 1, 4-7 and 27:

�A = 23)
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(a) Mass-median diameter �50

(b) Coarse mass fraction, (> 1 mm)

Figure D.4: Predictions and experimental data with varying !/( at 10 L (Exp 12, 15-17, 22, 23, 36

and 37: �A = 23)
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(a) Mass-median diameter �50

(b) Coarse mass fraction, (> 1 mm)

Figure D.5: Predictions and experimental data with varying !/( at 25 L (Exp 38-40: �A = 22)
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(a) Mass-median diameter �50

(b) Coarse mass fraction, (> 1 mm)

Figure D.6: Predictions and experimental data with varying !/( at 70 L (Exp 44-46: �A = 12)
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(a) Mass-median diameter �50

(b) Coarse mass fraction, (> 1 mm)

Figure D.7: Predictions and experimental data with varying impeller tip speed at 2 L (Exp 1-3:

!/( = 0.15; C:= = 5 min)
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(a) Mass-median diameter �50

(b) Coarse mass fraction, (> 1 mm)

Figure D.8: Predictions and experimental data with varying granulation time C at 70 L (Exp 42, 43

and 45: !/( = 0.19; �A = 12)
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Figure D.9 compares model predictions to experimental data. Here, the nuclei diameter is varied

by adjusting the dimensionless spray fluxR0. The experiments are carried out a low !/( of 0.15.

The model predictions are in very good qualitative and quantitative agreement.

(a) Mass-median diameter �50

(b) Coarse mass fraction, (> 1 mm)

Figure D.9: Predictions and experimental data with varying nuclei diameter at 10 L (Exp 12 and

20-23: C:= = 5 min; !/( = 0.15)

Comparison of all model and experimental results are displayed in Figures D.10, D.11, D.12,

D.13, D.14, D.15 and D.16.
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(a) Exp 1 (b) Exp 2

(c) Exp 3 (d) Exp 4

(e) Exp 5 (f) Exp 6

Figure D.10: Model and experimental PSD results (Exp 1-6)
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(a) Exp 7 (b) Exp 8

(c) Exp 9 (d) Exp 10

(e) Exp 11 (f) Exp 12

Figure D.11: Model and experimental PSD results (Exp 7-12)
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(a) Exp 13 (b) Exp 14

(c) Exp 15 (d) Exp 16

(e) Exp 16-1 (f) Exp 17

Figure D.12: Model and experimental PSD results (Exp 13-17)
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(a) Exp 19 (b) Exp 20

(c) Exp 21 (d) Exp 22

(e) Exp 23 (f) Exp 27

Figure D.13: Model and experimental PSD results (Exp 19-27)
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(a) Exp 30 (b) Exp 31

(c) Exp 32 (d) Exp 34

(e) Exp 36 (f) Exp 37

Figure D.14: Model and experimental PSD results (Exp 30-37)
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(a) Exp 38 (b) Exp 39

(c) Exp 40 (d) Exp 41

(e) Exp 42 (f) Exp 43

Figure D.15: Model and experimental PSD results (Exp 38-43)
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(a) Exp 44 (b) Exp 45

(c) Exp 46

Figure D.16: Model and experimental PSD results (Exp 44-46)
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(a) Porosity Y

(b) Mass-median diameter �50

Figure D.17: Comparison of simulation and experimental porosity and �50 results across scales
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(a) Fines mass fraction, (< 90 µm)

(b) Coarse mass fraction, (> 1 mm)

Figure D.18: Comparison of simulation and experimental mass fraction results across scales
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D.2 Operating parameter sensitivity analysis results

First-order Sobol’ indices Z8 9 determined for all operating parameters are shown in Figure D.19.

Liquid-to-solid ratio shows a dominant effect on all CQAs (Z8 9 > 0.7). Impeller tip speed and

kneading time have a small impact (0.01 < Z8 9 < 0.1). Liquid spray rate has a negligible impact

(Z8 9 < 0.01). Based on these results, the liquid-to-solid ratio, impeller tip speed and kneading time

are identified as critical process parameters (CPPs).

Figure D.19: First-order Sobol’ indices results for operating parameters
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D.3 Modelling parameter sensitivity analysis results

First-order Sobol’ indices Z8 9 determined for all modelling parameters are shown in Figure D.20.

Figure D.20: All first-order Sobol’ indices results for modelling parameters
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D.4 Consolidation coefficient sensitivity

The parameter estimation resulted in a 95 % confidence interval of the consolidation coefficient

:2>=B = 1 − 5 (see Section 7.3.2). Figure D.21 shows that :2>=B does not have a great effect

on the consolidation kinetics within the confidence interval because the porosity profile is almost

unchanged. Only :2>=B = 1 results in slightly slower kinetics, and more significant mismatch with

the experimental data.

Figure D.21: Sensitivity to :2>=B (Exp 16, and 30-36: + = 10 L; C = 11 min; !/( = 0.17; �A = 23;

R0 = 0.3)

D.5 Approximation

Figure D.22 shows that the approximation successfully avoids zero and negative outputs, while

providing very precise values for inputs > 10−10.
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Figure D.22: Approximation for liquid layer thickness X; (Eq. 5.69)
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ADDITIONAL DOCUMENTS

All experimental and simulation data is available in the documents attached:

Size distribution.xlsx - Drop size distributions

Ubersichtstabelle Naproxen Finish.xlsx - Experimental data and observations

Analysis of granulation results.xlsx - Particle size distributions of granulation experi-

ments

Results comparison with MCS and exp data - 10exp 10psi - nucleation number.

xlsx - Nuclei size distribution of experiments and all simulations

Results_spatialdist_015_025.xlsx - LND model calibration using Monte Carlo simulation

results

Sauter mean powder mixture and nuc-only.xlsx - Sauter mean calculations

SBellinghausenKuevetten.xlsx - Spatial drop distribution results of spray

Sensitivity analysis own MCS version 2.xlsx - Sensitivity analysis of MCS

Calculate Hapgoods PD model.xlsx - Implementation of Hapgood’s PD model

Calculate Modified PD model.xlsx - Implementation of MPD model

Drop nucleation results.xlsx - Results of drop nucleation experiments

Density measurements V2.xlsx - Porosity results from tap density and GeoPyc measurements

Fitting results - 1comp - 4 parameters.xlsx - 1-comp PBM results and comparison of

experimental and all PBM results

SSE calculcation.xlsx - Overview and statistical assessment of PBM results

Fitting results - 3comp - 4 parameters.xlsx - 2-comp PBM results

GSA_for_OPM.rar - All GSA results for the operating regime maps
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