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Abstract

This thesis is mainly focused on the regularity problem for the three-dimensional

Navier-Stokes equations.

The three-dimensional freely decaying Navier-Stokes and Burgers equations are com-

pared via direct numerical simulations, starting from identical incompressible initial

conditions, with the same kinematic viscosity. From previous work by Kiselev and

Ladyzenskaya (1957), the Burgers equations are known to be globally regular thanks

to a maximum principle.

In this comparison, the Burgers equations are split via Helmholtz decomposi-

tion with consequence that the potential part dominates over the solenoidal part.

The nonlocal term −u · ∇p invalidates the maximum principle in the Navier-Stokes

equations. Its probability distribution function and joint probability distribution

functions with both energy and enstrophy are essentially symmetric with random

fluctuations, which are temporally correlated in all three cases.

We then evaluate nonlinearity depletion quantitatively in the enstrophy growth

bound via the exponent α in the power-law dQ
dt

+ 2νP ∝ (QaP b)α, where Q is en-

strophy, P is palinstrophy and a and b are determined by calculus inequalities.

Caffarelli-Kohn-Nirenberg theory defines a local Reynolds number over parabolic

cylinder Qr as δ(r) = 1/(νr)
∫

Qr
|∇u|2 dx dt. From this we determine a cross-over

scale r∗ ∝ L

(

‖∇u‖2
L2

‖∇u‖2
L∞

)1/3

, corresponding to the change in scaling behavior of δ(r).

Following the assumption that E(k) ∝ k−q (1 < q < 3), it is shown that r∗ ∝ νa

where a = 4
3(3−q)

− 1.

Direct numerical simulations of isotropic turbulence with Rλ ≈ 100 and ran-

dom initial data result in the scaling δ(r) ∝ r4, which extends throughout the

inertial range. This follows from the smallness of the intermittency parameter

a ≈ 0.26. From this value, the β-model predicts a dissipation correlation expo-

nent µ = 4a
1+a

≈ 0.8 which is much larger than the experimental observations of

0.2 − 0.4. This suggests that the β-model is valid qualitatively but not quantita-

tively. The scale r∗ gives a practical method for estimating intermittency.



By studying the steadily propagating shock wave solutions of the one-dimensional

Burgers equation with passive scalar, we determine a relationship between the dis-

sipation rate ǫθ of passive scalar and Prandtl number Pr as ǫθ ∝ 1/
√
Pr for large Pr.

The profile of the passive scalar manifests as a sum of tanh2n+1 x for suitably scaled

x when ν → 0, implying that we must distinguish between different orders of the

Heaviside function H and Hn. If we do not account for this, we obtain the incorrect

relationship ǫθ ∝ 1/Pr. The correct evaluation of this dissipation anomaly therefore

requires Colombeau’s theory for multiplication of distributions.
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Chapter 1

Introduction

1.1 Equations and definitions

The Navier-Stokes equations, along with the continuity equation describe the motion

of viscous incompressible fluids. They are derived via physical conservation laws

and the application of Newton’s laws of motion to a continuous distribution of fluid.

These equations can be extended to d spatial dimensions, but the physically relevant

cases are those of two and three dimensions. We mostly (unless otherwise stated)

consider here the case with unit density in three dimensions:

∂u

∂t
+ (u · ∇)u = −∇p+ ν∇2u + F , (1.1)

∇ · u = 0, (1.2)

where u = u(x, t) denotes the fluid velocity, p = p(x, t) is the pressure, ν the

kinematic viscosity and F = F (x, t) the external body force, with x = (x, y, z)

for the case of three dimensions. Depending on the physical situation, appropri-

ate initial and boundary conditions may also be applied. In the incompressible

case, we are dealing with velocities which are small in comparison to the speed of

sound in the fluid. We also assume homogenity (constant density) throughout the

fluid. The terms, from left to right are widely known as; the time derivative, incom-

pressible/advection term, nonlocal pressure gradient, viscous/diffusion term and the

forcing term.

Another important quantity is the vorticity, which is physically twice the local

angular velocity of a fluid element, and is defined as:

ω = ∇× u, (1.3)
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which clearly also satisfies the incompressibility condition.

We define the physical quantities energy E(t), enstrophy Q(t) and palinstrophy

P (t), given by spatial integrals as follows

E(t) =
1

2

∫

|u|2 dx, Q(t) =
1

2

∫

|ω|2 dx, P (t) =
1

2

∫

|∇ × ω|2 dx. (1.4)

These will be important later in the thesis.

1.2 Kolmogorov Theory

We briefly summarize Kolmogorov’s theory (K41), to which we make reference sev-

eral times throughout the thesis.

For fully-developed statistically-steady turbulent flow, energy is added to the

system at large scales becoming kinetic energy in the fluid. This kinetic energy is

then transferred from large scale (low wavenumber) turbulent structures to small

scale (high wavenumber) ones and is eventually converted into heat. This is called

the ’energy cascade’, and it is assumed that at each stage, the eddies ’space-fill’,

meaning that as smaller eddies are formed, these eddies occupy the space left by

the breakdown of their ’parent’ eddies. Here, eddies are loosely defined as localized

turbulent structures of a certain size.

To begin with we must make some physical assumptions. Firstly, the external

energy injected into the system is transferred to smaller and smaller scales with

negligible loss of energy between scales until it is dissipated to heat at the final

stage. The quantity ǫ can therefore be defined as either the rate of injection, transfer,

or dissipation of energy. We also assume statistical isotropy at small scales, thus

these small scale flows are essentially uniform, and because of the physics involved

in the cascade, depend only on the energy injection/transfer/dissipation rate ǫ and

the kinematic viscosity ν. The inertial scale motions are also essentially uniform,

depending only on ǫ, as no dissipation is present in this range.

A set of length scales ln = l0/2
n (∼ 1/kn), are defined. Here l0 represents the

largest length scales at which the energy is supplied to the system, ln and kn are the

length scale and wavenumber after n generations, respectively, taken throughout the

range, defined for successively smaller eddies as the integer n increases. Eddies of

this size/wavenumber have kinetic energy per unit mass given by

En =

∫ kn+1

kn

E(k) dk ∼ v2
n,
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where vn is defined as the change in velocity over ln. The time scale, known as ’eddy

turnover time’ can now be formulated as tn ∼ ln/vn, which means that the energy

transfer rate (which we have assumed to be independent of length scale) is given by

ǫ ∼ En/tn ∼ v3
n/ln.

We concern ourselves with three main transitory periods, characterized by three

length scales; the integral or “production” range, the inertial range, and the dissi-

pation range.

The integral (production) range is the largest length scale, containing most of

the energy in the system. This is the scale at which energy is introduced to the

system. Eddies typically spend almost all of their lifetime in this range, thus the

dissipation to heat occurs relatively quickly. This range corresponds to the integral

length scale l0, the size of the largest eddies in the flow.

Throughout the intermediate stages, known as the inertial range, the nonlinear

term dominates, no energy is being injected and negligible dissipation of energy

occurs. The only mechanism present is the transfer of energy from larger to smaller

scales represented by ln. Using the above definitions, we can redefine vn ∼ ǫ1/3l
1/3
n ,

tn ∼ ǫ−1/3l
2/3
n and En ∼ ǫ2/3k

−2/3
n , and so the Kolmogorov spectrum is defined as

E(k) = Cǫ2/3k−5/3, (1.5)

where k is the wavenumber and C is known as the Kolmogorov constant. At the

shorter end of this scale lies the Taylor microscale λ at which viscosity begins to

take effect.

As we continue to smaller scales, the viscous term dominates, this is the dissipa-

tive range. The time scale in this case is tdn ∼ l2n/ν, which when equated with the

previous definition of tn produces the Kolmogorov length scale η ∼ (ν3/ǫ)1/4, this

scale corresponds to the final stage of the process, indicating the size of the smallest

eddies in the flow. Most of the actual dissipation takes place at scales larger than

the Kolmogorov length, but smaller than those of the inertial subrange.

So in summary the mechanism is as follows: Energy enters the system at large

scales, producing turbulence in the form of large eddies, which break up and transfer

their kinetic energy to smaller eddies, which break up again, transferring their kinetic

energy to still smaller eddies and so on until the flow is smooth enough for the

viscosity to dissipate the kinetic energy, converting it into heat. This means that

(by conservation of energy assumption) the rate of dissipation of energy ǫ at the

smallest scales is dependent on the rate of energy injection into the system at the

3



largest scales [4, 5, 6, 7].

1.3 The Beta Model for Intermittency

For the case of fully-developed turbulence with intermittency, assuming space filling

at the largest scale, eddies fill progressively less space as the energy cascade prop-

agates to smaller scales. Here we use the same notation as in the previous section,

this time corresponding only to regions which are occupied by eddies. At each stage,

let an eddy of size ln produce an average of N smaller eddies of size ln+1. Thus, after

n progressions, the fraction of the total space occupied by turbulent motions is

βn =

(

N

23

)n

= 2−n(3−D) =

(

ln
l0

)3−D

, where
N

23
≤ 1 (1.6)

with N = 2D where D is the self-similarity (or fractal) dimension. We can now

redefine the quantities for the intermittent case (tn ∼ ln/vn as before);

En ∼ βnv
2
n,

ǫ ∼ βnv
3
n/ln,

vn ∼ ǫ1/3l1/3
n (ln/l0)

−(3−D)/3,

tn ∼ ǫ−1/3l2/3
n (ln/l0)

(3−D)/3,

En ∼ ǫ2/3l2/3
n (ln/l0)

(3−D)/3.

Thus, the energy spectrum, corrected for intermittency is

E(k) ∼ ǫ
2
3 l

− 3−D
3

0 k−( 5
3
+ 3−D

3
) ∼ ǫ

2
3 l

−µ
3

0 k−
1
3
(5+µ), (1.7)

where µ = 3 − D. We will later see that (as D ≥ 0) the k-dependence is steeper

than that of the Kolmogorov energy spectrum (1.5). Physically, we would expect

that the velocity difference vn across smaller and smaller eddies would decrease with

eddy size. In this case we should expect that D > 2 [7, 8].

1.4 Colombeau Theory for Multiplication of Dis-

tributions

For certain mathematical distributions, such as the Heaviside function H, macro-

scopic changes occur over microscopic intervals. In classical distribution theory,

these points of discontinuity are usually neglected.
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For some problems in physics, however, certain systems require us to evaluate

terms involving products of these discontinuous distributions, for example of the

form Hδ, where δ is a Dirac delta function (which it can be shown is the derivative

of H). These products are clearly meaningless at the points of discontinuity within

the functions.

Colombeau’s non-classical theory allows for this microscopic behavior by gener-

alizing the classical concept of equality of distributions ’=’ into the less strict case

of association ’∼’ defined below.

For generalized functions, which have essentially the same properties as C∞

functions, we say that the functions G1 and G2 are associated if
∫

G1(x)ψ(x) dx =

∫

G2(x)ψ(x) dx, (1.8)

for any C∞ test function ψ. This association is usually written as G1 ∼ G2. Due to

the nature of integration by parts, we see thatG′
1 ∼ G′

2. In contrast with the equality,

however, we cannot simply multiply functions on both sides of the association; i.e.

GG1 ∼ GG2 does not follow from G1 ∼ G2. So, for an illustrative example of this

contrast, from (1.8) we can say that

Gn ∼ G

differentiating gives

Gn−1G′ ∼ 1

n
G′ (1.9)

multiplying by G

GnG′ ∼ 1

n
GG′

from (1.9) GnG′ ∼ 1
n+1

G′ and GG′ ∼ 1
2
G′ so that

1

n+ 1
G′ ∼ 1

2n
G′. (1.10)

However, if we follow the same calculation through assuming that Gn = G, instead

of (1.10) we would have
1

n+ 1
G′ =

1

2n
G′. (1.11)

This is clearly valid only if n = 1, for example if we try n = 2, we would have

1

3
G′ =

1

4
G′ → 1

3
=

1

4
.

Therefore, we conclude that Gn 6= G for n 6= 1.
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This powerful method can be applied to specific physical systems in which mi-

croscopic behavior occurs, allowing for analysis of discontinuities subject to their

particular physical environment. Colombeau theory is of particular interest to our

cause in the case of shock waves, a microscopic behavior found in solutions of the

1D Burgers equation (see Chapter 4). A typical shock wave solution of this type is

of the form

u(x, t) = ∆uH(x− vt) + ul, ∆u = ur − ul,

where v is the wave speed and ul and ur are the velocities to the left and right of

the shock, respectively [9, 10, 11, 12].

1.5 Regularity of the Navier-Stokes Equations

The Navier-Stokes equations are used in a wide range of applications to describe

both laminar and turbulent flows, and sometimes regularity is taken for granted

in physical applications. This is not however guaranteed, in fact the question of

whether the 3D Navier-Stokes equations are regular for all times is one of the most

pertinent unsolved problems in mathematics, justifying an entire subject area within

research, and boasting an extremely large number of publications to that effect. In

spite of all of these attempts, none has yet been able to prove that the 3D Navier-

Stokes equations have unique smooth regular (classical) solutions for all time and

space. This is of more significance than just that of mathematical technicality. If

these equations do not in fact admit classical solutions then this calls into question

the validity of the small-scale physical assumptions used in their derivation. In this

case, by applying the Navier-Stokes model we would be “glossing over” some of

the fundamental physical properties of the real fluid. There are several standard

approaches of guaranteeing global regularity of the Navier-Stokes equations. These

include bounding either the velocity (or its gradient |∇u|), energy or enstrophy of

the equations, or constructed solutions to the equations, for all time and space, and

proving the non-existence of singular solutions (discussed later).

First we briefly explore some of the attempts to bound the relevant quantities

mentioned above. This has been solved for the two-dimensional case, proving reg-

ularity for all time by showing that the enstrophy and velocity gradient norms are

bounded for all time if they are initially. We can transform the Navier-Stokes equa-
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tions in terms of ω. First we rewrite (1.1), neglecting the forcing term, as

∂u

∂t
+ ∇

(

1

2
|u|2 + p

)

− u × (∇× u) = ν∇2u, (1.12)

where we have rewritten the nonlinear term using a standard vector identity. Taking

the curl
∂ω

∂t
−∇× (u × ω) = ν∇2ω, (1.13)

using another identity with the incompressibility condition, we obtain the vorticity

equation
∂ω

∂t
+ (u · ∇)ω = (ω · ∇)u + ν∇2ω. (1.14)

Identifying the terms from left to right, we have; the time derivative, nonlinear term,

vortex stretching term, and viscous/diffusion term. The reason that global regularity

can be guaranteed in the 2D case is that vortex-stretching term disappears in lower

than three dimensions (shown below).

If we define a 2D velocity field u(x, y, t) = (u1(x, y, t), u2(x, y, t), 0), so that

ω =
(

0, 0, ∂u2

∂x
− ∂u1

∂y

)

, the vortex-stretching term is calculated as

(ω.∇)u =

(

∂u2

∂x
− ∂u1

∂y

)

∂u

∂z
≡ 0.

The presence of the vortex-stretching term in the 3D case has the consequence

that regularity cannot be guaranteed for all time. Bounds can guarantee regularity

only for short time intervals, assuming that the initial conditions of the flow are

sufficiently smooth.

The rate of change of enstrophy can be bounded in terms of the enstrophy it-

self, by taking the scalar product of ω with (1.14) and integrating over the spatial

range (note: throughout this derivation, c denotes a positive constant that is not

neccessarily the same in each step).

1

2

∫

∂|ω|2
∂t

dx =

∫

ω · (ω · ∇)u dx −
∫

ω · (u · ∇)ω dx + ν

∫

ω · ∇2ω dx. (1.15)

The intergration (by parts) in the third term gives
∫

ω · (u · ∇)ω dx =
1

2

∫

(u · ∇)|ω|2 dx = 0,

where we have made use of incompressibility and boundary conditions. For the

final term, after applying some vector identities along with Gauss’ theorem, (1.15)

becomes
dQ

dt
=

∫

ω · (∇u) · ω dx − ν

∫

|∇ × ω|2 dx, (1.16)
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in which the definition of enstrophy in (1.4) is used. We now transform the second

term - first using the Cauchy-Schwartz inequality, so that

∫

ω · (∇u) · ω ≤
(
∫

|ω|4 dx
)1/2(∫

|∇u|2 dx
)1/2

,

and then, by the Gagliardo-Nirenberg inequality, which is in integral form

∫

|Djf |p dx ≤ c

(
∫

|Dmf |r dx
)pa/r (∫

|f |q dx
)p(1−a)/q

.

where

1

p
=
j

d
+a

(

1

r
− m

d

)

+
1 − a

q
, 1 ≤ q, r ≤ ∞, 0 ≤ j < m, j,m ∈ Z, and

j

m
≤ a < 1,

if m− j − d/j is an non-negative integer then, then a is restricted to j/m.

Therefore, taking p = 4, q = r = 2, j = 0, d = 3, a = 3/4 and m = 1, we obtain

∫

ω · (∇u) · ω ≤ c

(
∫

|∇ × ω|2 dx
)3/4(∫

|ω|2 dx
)1/4(∫

|∇u|2 dx
)1/2

.

Then (1.16) can be re-written using (1.4) as

dQ

dt
≤ cQ3/4P 3/4 − 2νP. (1.17)

We can transform still further to eliminate P via the inequality

apbq ≤ pa+ qb, with a, b > 0, 0 < p, q < 1 and p+ q = 1,

so that

cQ3/4P 3/4 = (c4ν−3Q3)1/4(νP )3/4 ≤ c4

4
ν−3Q3 +

3

4
νP

and apply the Cauchy-Schwartz inequality again to the make Q2 ≤ EP so P ≥
Q2/E ≥ Q2/E(0), and finally

dQ

dt
≤ c

4
ν−3Q3 − 5

4
ν
Q2

E(0)
, (1.18)

where c4 has been renamed as c. The inequalities (1.17) and (1.18) are alternate

forms of the so-called enstrophy bound for the 3D Navier-Stokes equations. The

latter form involves only energy and enstrophy, which are physical quantities more

frequently associated with the question of regularity.
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A related but simpler system is that of the 3D Burgers equations, which are

known to possess globally regular solutions, thanks to a maximum principle.

∂v

∂t
+ (v · ∇)v = ν∇2v, (1.19)

where the velocity v = v(x, t) is compressible. The difference with respect to the

Navier-Stokes equations (1.1) is clearly that these equations lack the nonlocal pres-

sure gradient, which plays a significant role in the question of regularity of the

Navier-Stokes equations. Taking the dot product of u with (1.19) produces the local

energy density equation

(

∂

∂t
+ v · ∇

) |v|2
2

= νv∇2v = −ν|∇v|2 + ν∇2 |v|2
2
, (1.20)

The second term on the left vanishes because the velocity gradient is zero at local

maxima of energy density, and the first term on the right is negative definite, so we

obtain the inequality
∂

∂t

|v|2
2

≤ ν∇2 |v|2
2
. (1.21)

From this, global-in-time regularity of Burgers equations is proven by a maximum

principle of the form

max
x

|v(x, t)| ≤ max
x

|v(x, 0)|,

which guarantees that the magnitude velocity field at time t never exceeds that of

the initial velocity field, hence if we have a finite initial velocity field it will remain

finite for all time [13].

For the Navier-Stokes equations we seek a similar proof of conservation of energy:

The equation of local energy density can be calculated by taking the scalar product

of u with (1.1) to give (see Chapter 2 for derivation):

∂

∂t

|u|2
2

≤ −u · ∇p+ ν△|u|2
2
. (1.22)

The second term on the right hand side is positive definite, so if we did not have

the nonlocal pressure term, which may be unboundedly positive or negative, the

maximum principle would apply as in the case of the Burgers equations and we

would have global regularity.

The first attempt at a global regularity proof was that of Leray [14], who in-

troduced the idea of a weak (or “turbulent”) solution. Weak solutions for a partial

differential equation are obtained by taking the dot product of the equation with a
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smooth test function and then integrating by parts, taking into account the periodic

boundary conditions, so that the derivatives in each term are transferred onto the

test function (which is smooth by definition). Solutions to this new equation are

known as weak solutions to the original equation. In the case of Navier-Stokes equa-

tions, the derivatives are transferred so that the velocity vector is not differentiated.

The consequence of this is that the spatial derivatives of the velocity field need not

be regular (or even exist) for weak solutions to exist. Once weak solutions have

been shown to exist for a partial differential equation, the equation can be shown to

be regular if the weak solution is in fact smooth. Unfortunately in the case of the

Navier-Stokes equations, this can only be guaranteed for a finite time [15].

Leray succeeded in proving global existence of weak solutions but could only

guarantee the existence of classical solutions for a finite time, dependent on the

initial conditions. These results hold for any viscosity. For the special case of suf-

ficiently large viscosity (or sufficiently small initial velocity), however, a classical

solution exists globally. Leray also predicted possibility of finite time singularities

(singularity meaning, in this context, unbounded velocity), but was unable to specify

any examples of this behavior. However, he was able to show that if these singular-

ities did indeed occur, they were restricted to a temporal set of measure zero. Hopf

[16] reworked these ideas from the perspective of a Galerkin approximation of the

Navier-Stokes equations. Since Leray and Hopf, there has been little progress made

in proving regularity via the construction of solutions, and another strategies have

been implemented. The idea behind these methods is to discount the possibility

of singularities in the 3D Navier-Stokes equations, in both space and time. This

approach was used by Scheffer [17], who showed that the Hausdorff dimension of the

possible singular sets of solutions in (3+1) dimensional space-time cannot be greater

than 5/3. Later, Caffarelli, Kohn and Nirenberg (CKN) [18] refined Scheffer’s result

and showed that the Hausdorff dimension does not in fact exceed 1. CKN theory

states that: For a suitable weak solution of the Navier-Stokes equation, if there is a

positive dimensionless constant ǫCKN such that

δ(r) =
1

νr

∫

Qr(x,t)

|∇u|2 dx dt ≤ ǫCKN , (1.23)

where Qr is a parabolic cylinder within R
3 × R, then (x, t) is a regular point.

To calculate the Hausdorff dimension (and measure) of the singular set, it must

first be acknowledged that for a point (x, t) ∈ S, where S represents the singular
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set (in space-time) of solutions to the Navier-Stokes equations,

δ(r) =
1

νr

∫

Qr(x,t)

|∇u|2 dx dt > ǫCKN , (1.24)

Before proceeding, some definitions are required:

Vitali covering lemma: A Vitali covering of a real set A is a set B of closed

balls (elements) of arbitrarily small radius, whose union contains all points in A.

Therefore pairwise disjoint elements of B can be chosen which cover almost all A.

Hausdorff measure and dimension: The Hausdorff α-measure of real set P

is defined as the infimum over all countable covers Cδ of P by closed sets Q with

diameter dQ ≤ δ, taken in the limit δ → 0, written mathematically as

µα(P ) = lim
δ→0

inf
Cδ

∑

Q∈Cδ

dα
Q, (1.25)

with:

µα(P ) =

{

∞ α < αc,

0 α > αc,
(1.26)

where µαc
(P ) is the Hausdorff measure and αc(P ) ≥ 0 is the Hausdorff dimension

of P . Note: The Hausdorff dimension of a smooth n-dimensional surface is n.

Using Vitali’s covering lemma (above) one sees that the singular set, S in can be

covered by a family of parabolic cylinders Qri
such that ri < δ, for any δ > 0.

Rewriting (1.24) in these terms,

1

νri

∫

Qri
(x,t)

|∇u|2 dx dt > ǫCKN , (1.27)

and rearranging
∑

i

ri <
1

νǫCKN

∫

Qri
(x,t)

|∇u|2 dx dt, (1.28)

So, as δ → 0, the Hausdorff dimension of the singular set is restricted to αc(S) ≤ 1,

with measure zero. [18, 19].

These results suggest that the Navier-Stokes equations are, for the most part,

regular, and that if singularities do occur, they do so very rarely at infrequent

locations within the space-time region. Although, to date, there is no evidence for

a singularity, the possibility cannot be ruled out.
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The subject of intermittency is concerned with situations when the velocity gradi-

ent at a particular spatial and/or temporal location suffers a sudden large deviation

from the spatial average. These deviations occur rather sporadically, and may also,

in the case of singularities, become infinite. Intermittency is growing area of study,

with many publications on the subject, most notably for this work is that of Frisch,

Sulem and Nelkin [7] who extended Kolmogorov’s theory to develop the so called

“β-model”, which incorporates intermittency into the dynamics of fully developed

turbulence. See also [20, 21, 22].

We now proceed to the main body of the thesis. In Chapter 2 we compare the

Navier-Stokes and Burgers equations. In Chapter 3 we calculate the CKN local

Reynolds number and formulate a new cross-over scale where it’s exponent changes.

In Chapter 4 we study dissipation anomaly in Burgers equation with passive scalar.

Chapter 5 is dedicated to summary and conclusion.
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Chapter 2

Numerical study on comparison of

Navier-Stokes and Burgers

equations
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Abstract

We compare freely decaying evolution of the Navier-Stokes equations with that of the

3D Burgers equations with the same kinematic viscosity and the same incompressible

initial data by using direct numerical simulations. The Burgers equations are well-

known to be regular by a maximum principle [Kiselev and Ladyzenskaya (1957)]

unlike the Navier-Stokes equations.

It is found in the Burgers equations that the potential part of velocity becomes

large in comparison with the solenoidal part which decays more quickly. The proba-

bility distribution of the nonlocal term −u·∇p, which spoils the maximum principle,

in the local energy budget is studied in detail. It is basically symmetric, i.e. it can be

either positive or negative with fluctuations. Its joint probability density functions

with 1
2
|u|2 and with 1

2
|ω|2 are also found to be symmetric, fluctuating at the same

times as the probability density function of −u · ∇p.
A power-law relationship is found in the mathematical bound for the enstro-

phy growth
dQ

dt
+ 2νP ∝

(

QaP b
)α
, where Q and P denote the enstrophy and the

palinstrophy, respectively and the exponents a and b are determined by calculus

inequalities. We propose to quantify nonlinearity depletion by the exponent α on

this basis.
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2.1 Introduction

The regularity of the 3D Navier-Stokes equations is a well-known open problem

despite lots of progress made in recent years. The mathematical literature are un-

doubtedly too numerous to cite them all here and we only quote [19, 23, 24, 25,

26, 27, 28, 29, 30, 31, 15] and references cited therein. In the areas of physical and

engineering sciences, the regularity is more or less taken for granted. Nevertheless,

the problem itself is also regarded as important in physical areas because the regu-

larity is controlled by enstrophy, a physically important quantity closely related with

turbulence. Indeed there are publications in this spirit [6, 32, 33, 34, 35, 36, 37].

In mathematical fluid mechanics, proofs of global regularity are obtained in a

rather sporadic fashion. It is well known that the incompressible 2D Euler equations

are regular for all time. The proof is based on conservation of scalar vorticity, which

is a special property of the equations and no other proofs are known which do not

depend on it.

As a related but simpler system, the 3D Burgers equations are known to possess

globally regular solutions [13, 38]. In this case, because the nonlocal pressure term is

absent, the maximum principle is valid and we conclude that the velocity is bounded

at any time, if it is so initially. On the other hand, for the 3D Navier-Stokes equa-

tions, the possible formation of finite time singularities has not been ruled out, where

a singularity means unbounded velocity. Nonetheless, the solutions of the Burgers

equations are more singular than those of the Navier-Stokes equations in the sense

that the width of shock waves ∝ ν is thinner than the Kolmogorov dissipative scale

∝ ν3/4 in Navier-Stokes turbulence. Furthermore the inviscid Burgers equations are

known to have solutions that blow up in finite time, whereas for the Euler equations

this is not known. For the Burgers equations, see also [39, 40, 41, 42]. Thus it makes

sense to give a more detailed comparison of these equations.

The purpose of this paper is (i) to compare these two equations in some details by

numerical experiments and (ii) to characterize the notorious nonlocal effects in the

Navier-Stokes equations by observing how the maximum principle actually breaks

down. A comparison of probability density functions (PDFs) of the velocity with

those of a passive scalar are also made. In Section II, mathematical formulation

is given with a summary of known properties of these equations. In Section III,

we compare numerically the Navier-Stokes with Burgers equations in detail. In

Section IV, dynamics of a passive scalar is studied, centering on how its behavior is
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affected by a maximum principle. Performance of the enstrophy bounds are assessed,

including the quasi-4D Navier-Stokes equations. Section V is devoted to summary

and discussion. All the numerical experiments concerned in this chapter are those

of freely decaying simulations.

2.2 Mathematical Formulation

We consider the incompressible 3D Navier-Stokes equations under periodic boundary

conditions. With standard notations they read

∂u

∂t
+ (u · ∇)u = −∇p+ ν△u, (2.1)

∇ · u = 0, (2.2)

together with a smooth initial condition

u(x, t = 0) = u0(x). (2.3)

We can rewrite them equivalently as

∂u

∂t
= u × ω −∇

(

p+
|u|2
2

)

+ ν△u (2.4)

= P (u × ω) + ν△u,

where P denotes a solenoidal projection.

We also consider the 3D Burgers equations

∂v

∂t
+ (v · ∇)v = ν△v, (2.5)

which are valid in any d-dimensions (d = 1, 2, 3, . . .). Because the velocity v is not

incompressible in general ∇ · v 6= 0, the energy budget equation takes the form

d

dt

∫ |v|2
2

dx +

∫

(v · ∇)
|v|2
2

dx = −ν
∫

|∇v|2 dx. (2.6)

Unlike the Navier-Stokes equations, the second term on the left does not vanish

because of the compressible character of the velocity when d ≥ 2. That is, we have

no energy inequality for d ≥ 2. However, for the 3D Burgers equations a maximum

principle of the form

max
x

|v(x, t)| ≤ max
x

|v(x, 0)|
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is valid, which guarantees global-in-time regularity [13]. See Appendix A for first

integrals in the inviscid case.

It is a bit ironic that global regularity is known for the Burgers equations because

of the maximum principle, even though we cannot establish the existence of weak

solutions by the method of energy inequality as in the case of the Navier-Stokes

equations.

A sketch of the argument is as follows. The local energy budget for the Navier-

Stokes equations reads

(

∂

∂t
+ u · ∇

) |u|2
2

= −u · ∇p+ νu△u

= −u · ∇p− ν|∇u|2 + ν△|u|2
2

It follows that, because the advection term is zero at local maxima of the energy

density,
∂

∂t

|u|2
2

≤ −u · ∇p+ ν△|u|2
2
. (2.7)

Because of the pressure term, we do not have a maximum principle unlike the case of

the Burgers equations, e.g. [43]. For the Navier-Stokes equations, global regularity

is obtained only for sufficiently large viscosity, or for sufficiently small initial data.

With arbitrary viscosity and initial data, only the local existence of classical solutions

has been established.

We consider the Helmholtz-Hodge decomposition for the Burgers equations tak-

ing a constant term to be zero,

v = v⊥ + v‖, (2.8)

where v⊥ and v‖ denote solenoidal and compressible components, respectively, and

∇ · v⊥ = 0, ∇× v‖ = 0. (2.9)

The solenoidal component can be written as

v⊥ = ∇× A with ∇ · A = 0, (2.10)

whereas the potential component as

v‖ = ∇φ. (2.11)
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Only when v⊥ = 0 can the Cole-Hopf transform

v = −2ν∇ logψ

be applied to yield [44]

vt + v · ∇v − ν△v = −2ν∇
(

ψt − ν△ψ
ψ

)

, (2.12)

which reduces (2.5) to a heat diffusion equation. Needless to mention, global regu-

larity is obvious in this case.

The governing equations for each component can be derived as follows. By a

well-known identity ∇ |v|2
2

= v · ∇v + v × ω, we recast (2.5) as

∂v

∂t
= v × ω −∇|v|2

2
+ ν△v.

Writing v×ω = P (v×ω)+(I−P )(v×ω) = ∇×B+∇ψ with B ≡ −△−1∇×(v×ω)

and ψ = △−1∇ · (v × ω), we find














∂v⊥

∂t
= P (v⊥ × ω) + ν△v⊥ + P (v‖ × ω),

∂v‖

∂t
= −∇|v|2

2
+ (I − P )(v × ω) + ν△v‖,

(2.13)

where I is the identity matrix.

Note that the first equation of (2.13) reduces to the 3D Navier-Stokes equations if

we ignore the final term on the right-hand-side of it. If we use the impulse formalism

we may choose a gauge where the solenoidal component solves the Navier-Stokes

equations and the potential component the Burgers equations (see Appendix B).

For more quantitative comparison we define some norms. The total energy may

also be split in two parts:

1

2

〈

|v|2
〉

=
1

2

〈

|v⊥|2
〉

+
1

2

〈

|v‖|2
〉

, (2.14)

which may be written e(t) = e⊥(t)+e‖(t). Here the brackets denote a spatial average

〈〉 = 1
(2π)3

∫

dx. We also have

1

2

〈

|∇v|2
〉

=
1

2

〈

|∇v⊥|2
〉

+
1

2

〈

|∇v‖|2
〉

, (2.15)

which can be written q(t) = q⊥(t) + q‖(t).

An overall comparison between the Navier-Stokes equations and the Burgers

equations is summarized in Table 2.1. Some, but not all, of the features listed
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Table 2.1: Navier-Stokes and Burgers equations (for ν ≪ 1). In each category,

features emphasized in bold represent more singular nature than the other.

Navier-Stokes Burgers

Energy inequality Yes No (n ≥ 2)

Global weak solutions Yes No

Energy spectrum E(k) k−5/3 k−2

Smallest scale ν3/4 ν

Maximum principle No Yes

Global strong solutions Unknown Known

Blowup of ideal cases Unknown Known

above suggest that the Burgers equations are more singular than the Navier-Stokes

equations. It makes sense to take a closer look at the comparison in order to better

understand the role played by the pressure term associated with incompressibility

in maintaining the regularity.

2.3 Comparative experiments to the Burgers equa-

tions

For this purpose we set up the following experiment: Assume that we solve the

3D Navier-Stokes equations and the 3D Burgers equations starting from identical

incompressible initial data and with the same viscosity. What will happen to the two

components v⊥ and v‖ in the Helmholtz decomposition of the Burgers solution ? We

will consider more specific questions below.

Direct numerical simulations of the Navier-Stokes equations are done under pe-

riodic boundary conditions in double-precision arithmetic, using a standard Fourier

pseudo-spectral method. The time-marching is done by the fourth-order Runge-

Kutta method. Typically we use 2563 grid points with aliasing errors removed by

the so-called 2/3-rule.

We consider for the most part Navier-Stokes flows starting from random initial

conditions. The initial conditions are generated to have the energy spectrum

E(k) = ck2 exp(−k2), (2.16)
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where the phases of Fourier components are randomized by pseudo-random numbers

and the prefactor c is determined to give unit enstrophy. Here we define the energy

spectrum by

E(k) =
1

2

∑

k≤|k|<k+1

|u(k)|2, (2.17)

where u(k) is the Fourier coefficient of the velocity. The values of kinematic viscosity

used are ν = 0.005 and ν = 0.01. We mainly discuss the case with ν = 0.005 (used

in all the figures) and ν = 0.01 is used to check numerical accuracy. The typical

time increment is ∆t = 2 × 10−3.

We consider freely-decaying flows only, mostly those developing from random

initial conditions and also the Taylor-Green initial condition at the end of this pa-

per. We consider the decomposition v = v⊥ + v‖ for the solution of the Burgers

equation, assuming initially that v‖(0) = 0 (due to the incompressible initial data),

and feed the Navier-Stokes equations the same initial data u(0) = v⊥(0). We begin

confirming that our numerical experiments have some standard properties known

for these flows.

2.3.1 Energy and enstrophy

We study what happens to the decomposition of the Burgers equations. In Fig.2.1a,

we show how each component of the energy evolves in the Burgers equations together

with the energy in the Navier-Stokes equations. For the Burgers equations, the

incompressible component e⊥(t) decays rapidly while the compressible part e‖(t)

grows rapidly from zero, reaching a maximum just before t = 2. Both components

keep decaying and become comparable later. For the Navier-Stokes equations, the

decay of energy takes place but more slowly than the sum of the two components

of the Burgers equations. In Fig.2.1b, we show a similar comparison in terms of the

enstrophy. The compressible part rapidly increases from zero to attain a maximum

around t = 2, which is twice as large as the peak value of the incompressible part.

The peak value of the total enstrophy of the Burgers equations is larger than that of

the Navier-Stokes equations by a factor of 3 and a mild maximum is attained for the

Navier-Stokes equations later around t = 6. These results are consistent with a view

that the Burgers equations are more singular than the Navier-Stokes equations.
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Figure 2.1: Comparison of norms for the Navier-Stokes and Burgers equations: (a)

the energy (left) and (b) the enstrophy (right). Here N-S stands for the Navier-

Stokes equations, B for the Burgers equations, with B⊥ and B‖ representing the

solenoidal and potential components of the Burgers equations respectively.

2.3.2 Energy spectra

Now we examine the difference by studying the energy spectra. In Fig.2.2, we show

each component of the Fourier energy spectra

E(k) = E⊥(k) + E‖(k) (2.18)

for the Burgers equations together with that of the Navier-Stokes equations. They

are taken at the same time t = 5. For the Navier-Stokes equations the higher

wave number part decays rapidly, while the Burgers equations have much more

excitations in that range, which is marginally resolved. In the lower wave number

range, we observe power-law behaviors close to k−2 in both E‖(k) and E⊥(k). For

the Navier-Stokes equations, it is not clear if the flow displays k−5/3 or not, because

the viscosity ν = 0.005 is not sufficiently small. Note that using the Navier-Stokes

equations at a smaller value of viscosity and with a forcing term we may generate

a power-law range consistent with E(k) ∝ k−5/3 (not shown). Actually, even at the

current spatial resolution of 2563 we can choose a smaller ν = 0.0025 for the Navier-

Stokes equations, but not for the Burgers equations because of truncation errors (see

Appendix C). Judging from the excitations at higher wavenumbers we observe that

the Burgers equations are far more singular than the Navier-Stokes equations.

A few remarks regarding numerical accuracy for the computations are in order.

We fit the energy spectrum as E(k) = A(t)kn(t) exp(−µ(t)k), where A(t), n(t) and

µ(t) are determined by the least-squares method. At t = 2, which is the least-
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resolved instant of time, the flow is somewhat under-resolved with µ(t = 2) =

2.25 × 10−2 < 2π
N

= 2.45 × 10−2(mesh size) where N = 256. The flow is found to be

better resolved at other times. We have conducted the same computation with 5123

grid points to double-check that the evolution of the enstrophy in each component

is independent of spatial resolutions (figure omitted). We have also confirmed that

the dominance of the potential part over the the solenoidal part is seen in a well-

resolved computation with ν = 0.01. We conclude that the properties of the Burgers

equations obtained here are genuine, not numerical artifacts.
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Figure 2.2: Energy spectra E(k) of the Navier-Stokes equations at t = 5 (solid),

with corresponding E(k) (dashed), E(k)‖ (short-dashed) and E(k)⊥ (dotted) for

the Burgers equations at the same time. Symbols have the same meaning as in

Fig.1.

2.3.3 Probability density function (PDF) of velocity

Now we consider how the absence of a maximum principle affects the dynamics

of Navier-Stokes equations. It is well-known that the one-point PDF of a velocity

component is close to a Gaussian distribution for Navier-Stokes turbulence. Fig.2.3a

shows the time evolution of the PDF of the velocity, which is normalized to have unit

variance. As time goes on, the tail parts spread out toward larger amplitudes, getting

closer to the normal Gaussian distribution. In contrast, for the Burgers equations the

PDF behaves differently. That is, their wings remain restricted close to the initial
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profile (Fig.2.3b). This can be explained because the maximum principle precludes

excitations at large amplitudes. Similar observations were made, for example, in [45]

in a different context. We note that the PDFs of the velocity gradients distinguish

the two equations more clearly; the Burgers equations are more intermittent than

those of the Navier-Stokes equations (not shown here). We only consider the PDFs

of velocity gradients because we are interested in the presence or absence of the

maximum principle.
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Figure 2.3: PDFs of velocity field for a) the Navier-Stokes (left) and b) the Burgers

(right) equations. Both are normalized to have unit variance: Plotted at t = 2

(solid), 5 (dashed), 8 (short-dashed) and 10 (dotted). The thicker dot-dashed lines

denote the standard normal distribution N(0, 1).

2.3.4 Nonlocal Term −(u · ∇)p

It is this term which is responsible for the breakdown of the maximum principle for

the Navier-Stokes equations. Therefore it makes sense to study the behaviors of the

quantity in some detail. First, we show the PDF of −(u · ∇)p in Fig.2.4.
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(right) for the Navier-Stokes equations. The quantities are not normalized. Contour

levels are set at a(t)/2n, for n = 0, 1, 2, ..., 10, where a(t) is the maximum value of

the PDF at the time instant (in this case t = 4).
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We see that it is basically symmetric, that is, no preference is observed for positive

or negative values. However, if we examine −(u · ∇)p at several different times in

more detail, we see some fluctuations from time to time, occasionally making it

skewed positively, e.g. at t = 4 (this point is to be examined below).

We study a possible correlation of these fluctuations with large energy or en-

strophy, both of which are related with extreme events in Navier-Stokes equations.

Shown in Fig.2.5a is a joint PDF between −(u · ∇)p and the local energy density
1
2
|u|2. There is no systematic trend of the sign of −(u · ∇)p correlated with large

or small energy density. In fact, average of the local energy or enstrophy density

conditioned on the sign of −(u · ∇)p is 1:1 to within relative error of 1 %. A similar

joint PDF with the local enstrophy density 1
2
|ω|2 is given in Fig.2.5b. Again, there

is no overall trend to be correlated with large or small enstrophy density, although

a small negative fluctuation is seen for small values of |ω|2 at t = 4. We have an-

alyzed the data at other times and the slight fluctuations occur rarely and do not

seem to follow any particular pattern. We conclude that the term −(u ·∇)p neither

contributes to the formation of a singularity, nor to avoid it; it simply makes the

maximum principle invalid.
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Figure 2.6: Time evolution of (a) max |u|2 (left) and (b) the skewness factor of

−(u · ∇)p (right) for the Navier-Stokes equations.

In Fig.2.6a we plot the time evolution |u|2max, which sometimes exceeds its initial

value. In Fig.2.6b we plot the skewness of −(u · ∇)p. It should be noted that local

maxima of |u|2max at t ≈ 2, 4, 6 are just preceded by those of the skewness factor.

This means that fluctuations of the skewness factor correlate with local increase (or

decrease) of the energy. If −(u · ∇)p is positively skewed instantaneously, it pumps

up the energy at that time, as this term represents the inviscid contribution of the
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Lagrangian time derivative of local energy density.

2.4 Passive scalar as quasi-4D Navier-Stokes flow

2.4.1 Passive scalar

We will consider a passive scalar field θ(x, t) subject to the velocity in this section.

The motivation is two-fold: 1) because differences between the Navier-Stokes and

Burgers equations stem from the nonlocal pressure term, it makes sense to take a

detailed look at the effect of nonlocality and 2) to quantify numerically, in several

spatial dimensions, the performance of the enstrophy bounds available mathemati-

cally. It should be kept in mind that the pressure has both nonlocal and nonlinear

characters, as is clear from its definition

p = −△−1

(

∂ui

∂xj

∂uj

∂xi

)

.

The equation for the passive scalar is given by

∂θ

∂t
+ (u · ∇)θ = ν△θ, (2.19)

where θ is a passive scalar, u is the solution of the 3D Navier-Stokes equations.

We take the diffusivity at the same value as the viscosity (unit Prandtl num-

ber) to make the comparison as parallel as possible. We initialize a passive scalar

by θ(x, 0) = u1(x, 0). Therefore any differences that may arise in the subsequent

evolution between u1(x, t) and θ(x, t) for t > 0 should be attributed to the pres-

sure gradient term [46]. In particular, by tracing the subsequent deviation we may

monitor how the maximum principle breaks down for a component of velocity.

In Fig.2.7, we compare evolution of the enstrophy q(t) with the spatial average

of the square of passive scalar gradient

qθ(t) =
1

2

〈

|∇θ|2
〉

. (2.20)

We note that qθ(t) attains a maximum around t = 3 earlier than that of the enstrophy

q(t) at t = 7. Peak values are comparable. In Fig.2.8, we show energy spectra E(k)

and passive scalar spectrum Eθ(k) at several different times.

Eθ(k) =
1

2

∑

k≤|k|<k+1

|θ(k)|2. (2.21)
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We observe that the slope of Eθ(k) is shallower than that of E(k).

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  2  4  6  8  10

q
(t

)

t

q(t)

qθ(t)

Figure 2.7: Time evolution of q(t) and

qθ(t) for the Navier-Stokes and passive

scalar equations.
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Stokes and passive scalar equations at
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scending order from the top line).

In order to study the difference in behavior of θ2 and u2
1, we show in Fig.2.9 the

time evolution of their maximum values. It should be noted that u2
1 increases in

the early stage in contrast to a monotonic decay of θ2, the latter behavior of course

comes from the maximum principle. In Fig.2.10 we also show the time evolution of

〈(u1 − θ)2〉.
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Figure 2.9: Time evolution of maxu2
1

and max θ2 for the Navier-Stokes and

passive scalar equations.
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Figure 2.10: Time evolution of

〈(u1 − θ)2〉 for the Navier-Stokes and

passive scalar equations.

Because of the initialization of θ, this is 0 at t = 0, and then grows in time
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because of the non-local effects. It attains a maximum around t = 4, which is

between the times of maxima in q(t) and qθ(t). This suggests the nonlocal pressure

term is intimately connected with the stretching of the vorticity and of the passive

scalar gradient.

In Fig.2.11 we show iso-surface plots of (u1−θ)2, together with those of enstrophy.

The large deviations and high enstrophy are correlated not only temporally but

spatially. This indicates that the maximum principle breaks down in the vicinity

of near-singular structure associated with large enstrophy, see also [45, 47]. In Fig.

2.12, we compare the PDFs of the velocity and passive scalar. The tails of the PDF

of the passive scalar spread out, because of a faster decay of its variance than the

kinetic energy.

Figure 2.11: Iso-surfaces of |ω|2 (grey, blue in color copies) and (θ−u1)
2 (white), for

the Navier-Stokes and passive scalar equations. The threshold is chosen as |ω|2 =

4 〈|ω|2〉 and (θ − u1)
2 = 4 〈(θ − u1)

2〉 .
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normal distribution N(0, 1).

2.4.2 Performance of enstrophy bounds

Here, we will consider the existing mathematical bounds for enstrophy growth. We

will study their performance numerically, thereby quantifying the so-called depletion

of nonlinearity. We define spatial integrals, which are not averaged by volume, as

follows

E(t) =
1

2

∫

|u|2dx, Q(t) =
1

2

∫

|ω|2dx and P (t) =
1

2

∫

|∇ × ω|2dx. (2.22)

They correspond to squared L2, H1 and H2 norms of the velocity, respectively.

It follows from the vorticity equation

∂ω

∂t
+ (u · ∇)ω = (ω · ∇)u + ν△ω (2.23)

that
dQ

dt
=

∫

ω · (∇u) · ωdx − ν

∫

|∇ × ω|2dx. (2.24)

By standard procedures we can derive an enstrophy bound [48]

dQ

dt
≤ cQ3/4P 3/4 − 2νP (2.25)

≤ c

4
ν−3Q3 − 5

4
ν
Q2

E(0)
. (2.26)

(In inequalities in this chapter c denotes positive constants, which may be different

from each other.) This is done in two steps: 1) applications of the Cauchy-Schwartz
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and Gagliardo-Nirenberg inequalities to get (2.25) and 2) that of the Hölder inequal-

ity to get (2.26). The details may be found in, e.g. [25, 48] and here we recall step

2 only.

We have apbq ≤ pa+qb for a, b > 0 with 0 < p, q < 1, p+q = 1 by a version of the

Hölder inequality. Thus we find cQ3/4P 3/4 = (c4ν−3Q3)1/4(νP )3/4 ≤ c4

4
ν−3Q3 + 3

4
νP.

By the Cauchy-Schwartz inequality, we have Q2 ≤ EP or P ≥ Q2

E
≥ Q2

E(0)
. Renaming

c4 as c, we obtain (2.26). This procedure breaks down in the four dimensional case

d = 4 (see below) because we cannot take p or q to be equal to 1.

The well-known bound (2.26) has been discussed numerically in the literature,

e.g. [48, 49, 50, 51, 52]. We note also that in the one-dimensional case we have

dQ

dt
≤ cν−1/3Q5/3 − 2νP, (2.27)

which was studied in [42] and [48].

To study how the performance of mathematical estimates depend on the govern-

ing equations and the spatial dimensions they are defined in, we also consider the

so-called quasi-4D (sometimes called 3.5D) Navier-Stokes equations. This class is

defined by the following principle:

If u solves the 3D Navier-Stokes equations and θ is the passive scalar subject to it,

then by setting

u4D =

(

u(x1, x2, x3, t)

θ(x1, x2, x3, t)

)

, (2.28)

u4D solves the 4D Navier-Stokes equations because ∂p
∂x4

= 0 [53]. It is a very special

class of higher-dimensional Navier-Stokes flows, yet is physically relevant because

the fourth component is a passive scalar. Care should be taken that genuine 4D

Navier-Stokes flows cannot be formed by this construction. With this reservation, it

is still of interest what scaling behaviors the 3.5D Navier-Stokes flows exhibit. More

general 4D Navier-Stokes equations have been discussed in a number of different

contexts, see [54, 55, 56, 57, 58, 59, 60, 61].

We note that Q has [LdT−2] and ν has [L2T−1] as physical dimensions, where

L, T denote length and time, respectively. We thus find on dimensional grounds in

d-dimensions as a counterpart to (2.26),

dQ

dt
≤ cν−

d
4−dQ(t)

6−d
4−d , (2.29)

for d < 4 we kept the contribution from the nonlinear term only. Thus, as known
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in the folklore of mathematical fluid dynamics, at d = 4 the exponent 6−d
4−d

becomes

divergent and the bound becomes useless [62].

However, step 1 yields a bound in d-dimensions

dQ

dt
+ 2νP ≤ cQ

6−d
4 P

d
4 , (2.30)

which is still valid at d = 4. For the 4D Navier-Stokes equations, we have for the

enstrophy bound

dQ

dt
≤ cQ1/2P − 2νP.

The mathematical results are summarized in the second column of Table 2.2. We

understand that in one dimension we redefine E(t), Q(t) and P (t), respectively by

E(t) =
1

2

∫

u2dx, Q(t) =
1

2

∫

(∂xu)
2dx, and P (t) =

1

2

∫

(∂2
xu)

2dx. (2.31)

Also, in four dimensions we replace E(t) by 2π
(

E(t) + 1
2

∫

|θ|2dx
)

, Q(t) by

2π
(

Q(t) + 1
2

∫

|∇θ|2dx
)

and P (t) by 2π
(

P (t) + 1
2

∫

|△θ|2dx
)

, respectively. We ex-

amine performance of those bounds by numerical simulations.

We begin with the 1D Burgers equation under periodic boundary conditions

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
(2.32)

with an initial condition

u(x, 0) = − sin x (2.33)

and viscosity ν = 5 × 10−3. In view of

dQ

dt
+ 2νP ≤ cQ5/4P 1/4, (2.34)

we plot in Fig.2.13 dQ
dt

+ 2νP against Q5/4P 1/4. Here we have estimated dQ
dt

by a

finite-difference scheme in time. It shows a clear linear behavior with a slope close

to 1 and also with a prefactor close to 1. In this sense, the inequality (2.34) is in

fact very close to an equality, that is, it is doing a good job. (See Appendix D for a

result for other initial data).

We show a similar plot in Fig.2.14 for the 3D Navier-Stokes equations. Unlike

the 1D Burgers equation, no linear behavior is observed.
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Figure 2.13: Enstrophy growth for the

1D Burgers equation.
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Figure 2.14: Enstrophy growth for the

3D Navier-Stokes equations.
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Figure 2.15: Enstrophy growth for

the 3D (solid) and quasi-4D (dashed)

Navier-Stokes equations. The straight

line denotes a slope 0.4. Also included

are enstrophy growth for the 3D (dot-

ted) and quasi-4D (short-dashed) for the

Taylor-Green initial condition (see the

text for further discussion).
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Figure 2.16: Enstrophy growth for the

3D Burgers equations (solid) and the 3D

Navier-Stokes equations (dashed). The

straight line denotes a slope 0.7.

In Fig.2.15 we try an alternative presentation, where dQ
dt

+ 2νP is presented

against Q3/4P 3/4 in a log-log plot. It is noted that here we have a clear straight

line behavior with a slope of about 0.4. In fact, the same scaling with the exponent

is obtained even if we change the pseudo-random number sequences in the initial

conditions (figures omitted).

In the same figure, a corresponding plot is made for the quasi-4D Navier-Stokes

equations as well. It also shows a power-law with exponent 0.4. These power-law
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behaviors imply that the bounds over-estimate the enstrophy growth excessively.

Moreover, we can quantify the excess by determining the exponent, which may be

regarded as a characterization of nonlinearity depletion. It is noted that the quasi-

4D Navier-Stokes equations share the same exponent 0.4 with the 3D Navier-Stokes

equations. One explanation for this is that the quasi-4D Navier-Stokes equations

are essentially three-dimensional in character. We expect that if we do the same

experiment using the genuine 4D Navier-Stokes equations they would show more

depletion, with exponent < 0.7.

In Fig.2.16 we compare the 3D Navier-Stokes with the 3D Burgers equations,

using a similar log-log plot. The 3D Burgers equations show a similar power law

behavior, but with an exponent 0.7 which is closer to 1 than that of 3D Navier-Stokes

equations. This implies that while the bound over-estimates the enstrophy growth

in 3D Burgers equations as well, the excess is not large in comparison with the 3D

Navier-Stokes equations. In Fig.2.17, we put all the cases in one figure, where we

can grasp the excesses of the mathematical bounds for different cases intuitively.

Basically, as the graph is shifted to the right and the slope becomes shallower, the

bounds over estimate the reality drastically.
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3D Burgers

4D N-S

3D N-S

Figure 2.17: Enstrophy growth for the 1D and 3D Burgers equations and for the 3D

and quasi-4D Navier-Stokes equations.

Finally, we show a result of comparison of the 3D Navier-Stokes with Burgers
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Table 2.2: Navier-Stokes and Burgers equations

Equations Mathematical bounds Numerics Verdict

1D Burgers dQ
dt

+ 2νP ≤ cQ5/4P 1/4 dQ
dt

+ 2νP ≈ Q5/4P 1/4 Good

3D Navier-Stokes dQ
dt

+ 2νP ≤ cQ3/4P 3/4 dQ
dt

+ 2νP ∝
(

Q3/4P 3/4
)0.4

Over-estimate

3D Burgers dQ
dt

+ 2νP ≤ cQ3/4P 3/4 dQ
dt

+ 2νP ∝
(

Q3/4P 3/4
)0.7

Intermediate

Quasi-4D Navier-Stokes dQ
dt

+ 2νP ≤ cQ1/2P dQ
dt

+ 2νP ∝
(

Q1/2P
)0.4

Over-estimate

equations using another initial condition (the Taylor-Green vortex). This is defined

as follows














u1 = cosx sin y sin z,

u2 = − sin x cos y sin z,

u3 = 0.

(2.35)

In Fig.2.18a we compare energy norms. We see that the solenoidal component decays

very quickly to zero. At late times, the entire flow field is dominated by the potential

part. In terms of the enstrophy, the solenoidal part does not increase at all, but it

monotonically decreases to zero (Fig.2.18b). For the Navier-Stokes equations, the

enstrophy attains its peak later and the peak value is lower than that of the Burgers

equations. The dominance of the potential component is even more prominent in

the case of Taylor-Green initial condition.
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Figure 2.18: Comparison of the norms for the Navier-Stokes and Burgers equations

for the Taylor-Green vortex: (a) the energy (left) and (b) the enstrophy (right).

Labels are as in Fig.2.1.

To conclude this section we comment on robustness of the power-laws found here.

We have already mentioned that for different random initial conditions we observe

the same power-laws. We point out that the power-law behavior (with α = 0.4) is
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also observed for the Taylor-Green vortex, both with 3D and quasi-4D Navier-Stokes

equations where we take θ = u1 initially, see Fig.2.15. Because it is a flow developing

from a completely different initial condition, this indicates that such a power-law

holds for a wider class of initial data. More work needs to be done to investigate

how robust the scaling is.

2.5 Summary and Discussion

In this chapter we have compared the Navier-Stokes equations with the Burgers

equations and that of a passive scalar, centering on the effect of the absence or

presence of the maximum principle.

In the PDF of the velocity, the Burgers equations have limited excitations at

large amplitude, whereas the Navier-Stokes equations’ wings are spread close to a

Gaussian distribution. Breakdown of a maximum principle for the Navier-Stokes

equations is due to the term −u · ∇p in the energy budget. Its PDF is basically

symmetric, so are the joint PDFs of −u ·∇p with 1
2
|u|2 and 1

2
|ω|2. This term neither

contributes to enhance nor to avoid singularity formations, but simply makes the

maximum principle invalid.

We have studied a passive scalar by initializing it as one component of the ve-

locity, again to see the effect of the pressure term. Their deviation is maximized in

the L2-norm, at a time between the peak times of the enstrophy and the average of

the squared passive scalar gradient.

Finally, we have introduced a method for estimating performance of the en-

strophy bounds (that is, a log-log plot at step 1) and tested it against numerical

experiments. This includes the quasi-4D Navier-Stokes equations using the passive

scalar as the fourth component. In contrast to the 1D Burgers equation, for the 3D

Burgers equations the bound over-estimates the enstrophy growth to some degree.

In the 3D and 4D Navier-Stokes equations, the excess is more significant. Thus the

bounds are less sharp in higher dimensions and under the incompressible condition.

Let us consider an analogy. In [8] it was shown that if Ẽ(k) ∝ k−n, n > 8
3

then

the energy spectral flux Π(k) → 0 as k → ∞ using flows with finite total kinetic

energy. Here Ẽ(k) denotes the energy spectrum based on the total energy. Indeed,

if we use the total kinetic energy for dimensional analysis we would get [8]

Ẽ(k) ∝ ǫ̃2/3k−8/3 (2.36)
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for the energy spectrum, where ǫ̃ is the dissipation rate of total kinetic energy.

Note that here Ẽ(k) is an extensive variable, that is, it grows in proportion to its

volume. This scaling is also consistent with global weak solutions of the Navier-

Stokes equations, see [63].

Later, in connection with Onsager conjecture, a r1/3-behavior was derived in [64]

using Besov space techniques (see also [65]). This of course is consistent with the

Kolmogorov scaling

E(k) ∝ ǫ2/3k−5/3, (2.37)

if we use energy and energy dissipation rate per unit volume, which are intensive

variables themselves.

Standard mathematical analyses use extensive variables, such as the total en-

strophy Q(t) to find
dQ

dt
≤ c

Q3

ν3
, (2.38)

However, if we use instead the enstrophy q(t) per unit volume, we find

dq

dt
≤ cq3/2 (2.39)

in any spatial dimensions. Note that we may derive the above using the Karman-

Howarth equation under the assumption of constancy of the skewness factor (see e.g.

[51]). This suggests a possibility that using an intensive variable may improve the

situation. Indeed, an envelope of volume averaged enstrophy follows (2.39), see [51].

Pursuing this line of analysis looks interesting, although it is yet to be justified.
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Chapter 3

Intermittency and local Reynolds

number in Navier-Stokes

turbulence: a cross-over scale in

the Caffarelli-Kohn-Nirenberg

integral
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Abstract

We study space-time integrals which appear in Caffarelli-Kohn-Nirenberg (CKN)

theory for the Navier-Stokes equations analytically and numerically. The key quan-

tity is written in standard notations δ(r) = 1/(νr)
∫

Qr
|∇u|2 dx dt, which can be

regarded as a local Reynolds number over a parabolic cylinder Qr.

First, by re-examining the CKN integral we identify a cross-over scale r∗ ∝

L

(

‖∇u‖2
L2

‖∇u‖2
L∞

)1/3

, at which the CKN Reynolds number δ(r) changes its scaling behav-

ior. This reproduces a result on the minimum scale rmin in turbulence: r2
min‖∇u‖∞ ∝

ν, consistent with a result of Henshaw et al. (1989). For the energy spectrum

E(k) ∝ k−q (1 < q < 3), we show that r∗ ∝ νa with a = 4
3(3−q)

− 1. Parametric rep-

resentations are then obtained as ‖∇u‖∞ ∝ ν−(1+3a)/2 and rmin ∝ ν3(a+1)/4. By the

assumptions of the regularity and finite energy dissipation rate in the inviscid limit,

we derive limp→∞
ζp

p
= 1 − ζ2 for any phenomenological models on intermittency,

where ζp is the exponent of p-th order (longitudinal) velocity structure function. It

follows that ζp ≤ (1 − ζ2)(p − 3) + 1 for any p ≥ 3 without invoking fractal energy

cascade.

Second, we determine the scaling behavior of δ(r) in direct numerical simulations

of the Navier-Stokes equations. In isotropic turbulence around Rλ = 100 starting

from random initial conditions, we have found that δ(r) ∝ r4 throughout the inertial

range. This can be explained by the smallness of a ≈ 0.26. If the β-model is perfectly

correct, the intermittency parameter a is related to the dissipation correlation expo-

nent µ as µ = 4a
1+a

≈ 0.8 which is larger than the observed µ ≈ 0.20. Corresponding

integrals are studied using the Burgers vortex and the Burgers equations. The scale

r∗ offers a practical method of estimating intermittency.

This paper also sorts out a number of existing mathematical bounds and phe-

nomenological models on the basis of the CKN Reynolds number.
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3.1 Introduction

The question of regularity of the three-dimensional Navier-Stokes equations is one

of the most prominent unsolved problems in mathematics. The relevance of this

issue exceeds that of pure mathematics, as the equations themselves represent an

important physical process of turbulence. The integrity of this model, and our

interpretation of the related physics involved, thus rests on whether the equations

do admit unique classical solutions.

It is well-known that in the two-dimensional case the regularity is maintained

with unique smooth solutions being defined for all time. This is the case because the

quantity ‖ω‖2
L2 is bounded from above for all time. In the case of three dimensions,

however, this is known to hold for short time intervals only, assuming sufficiently

smooth initial conditions. This cannot be guaranteed for an arbitrary time interval

due to the vortex-stretching term, which is absent in two dimensions. At high

Reynolds numbers, where turbulence becomes pronounced, the possibility that the

Navier-Stokes equations may develop finite time singularities cannot be ruled out

[23, 24, 25, 27, 43].

There have been many previous attempts to tackle the regularity problem, no-

tably Leray [14], who first introduced the concept of weak solutions, followed by

Hopf [16]. Later Scheffer [17], subsequently refined by Caffarelli, Kohn and Niren-

berg (hereafter, CKN) [18], set limits on the dimension of the possible singular set

of solutions. Others have produced a range of global weak, and local or particu-

lar strong solutions, but the existence of global classical solutions has not yet been

established for general smooth initial conditions.

This mathematical problem is connected with the problem of turbulence. A con-

ventional picture of energy cascade in 3D Navier-Stokes turbulence goes as follows.

For a flow with huge Reynolds number Re = UL/ν > Recr, where U , L, ν and Recr

denote the velocity, length scale, kinematic viscosity and critical Reynolds number,

respectively, the large-scale disturbances are subject to instability and they gener-

ate disturbances with a length scale l1 and velocity scale v1. The corresponding

Reynolds number Re1 = v1l1/ν is still large and first-order disturbances are unsta-

ble and break down, resulting in smaller length l2 and velocity v2, whose Reynolds

number is Re2 = v2l2/ν. This process continues until ReN = vnln/ν becomes O(1),

or on the order of Recr. In a nutshell, the regularity can be monitored by watching

a suitably defined local Reynolds number. The CKN criterion was originally devel-
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oped for testing the regularity of Navier-Stokes flows, but here we will show how

useful it is in the characterization of intermittency in turbulence. See also [66] for

another approach to intermittency.

In recent years, much progress has been made, both analytically (see in particular

[24], [29] and [32]) and numerically. There have been numerous contributions to the

field from the latter perspective, of which mention here only a few closely related to

the main focus of the present paper. In particular, studies of possible singularities

[33, 34, 35] and the monitoring of enstrophy and vorticity growth rates [48, 51].

See also [6, 19, 28, 30, 31, 15, 36, 38, 47, 49, 50, 67, 68] for various aspects of the

Navier-Stokes equations.

In Section 3.2 we introduce the equations that will be the main subject of study of

the paper. Section 3.3 presents numerical results on the scaling of the CKN integral.

Section 3.4 gives examples by exact solutions. Section 3.5 is devoted to a summary

and discussion.

3.2 Mathematical Formulation

3.2.1 Caffarelli-Kohn-Nirenberg integrals

The three-dimensional Navier-Stokes equations

∂u

∂t
+ (u · ∇)u = −∇p+ ν∇2u + F , (3.1)

together with the continuity equation

▽ · u = 0, (3.2)

describe the motion of viscous incompressible fluids, where u denotes the fluid ve-

locity, p the pressure, ν the kinematic viscosity and F the external body force, with

appropriate initial and boundary conditions.

These equations can be transformed into vorticity equations

∂ω

∂t
+ (u · ∇)ω = (ω · ∇)u + ν∇2ω + ∇× F , (3.3)

where ω = ∇× u is the vorticity.

The function δ(r) is a local average of ∇u over a parabolic cylinder. This non-

dimensional quantity is defined by the space-time integral

δ(r) =
1

νr

∫

Qr

|∇u|2 dx dt, (3.4)
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where r is the distance from the center point x0. The integral is taken over the

space-time region, a parabolic cylinder,

Qr(x, t) =

{

(x, t) : |x − x0| < r, t0 < t < t0 +
r2

ν

}

, (3.5)

where x = (x, y, z), with a center point x0 = (x0, y0, z0) and reference time t0.

According to the CKN theory [18, 19, 28], if δ(r) ≤ ǫCKN near (x0, t0), where

ǫCKN is a positive constant, then (x0, t0) is a regular point, that is, the velocity

must be bounded there. In fact, the CKN theory refines Scheffer’s previous estimate

[17], to show that the Hausdorff dimension of the possible singular sets of velocity

in (3 + 1)-dimensional space-time does not exceed 1. See [69, 70] for more recent

works.

We may interpret δ(r) as the local Reynolds number as follows [28]

Re =
r2

ν

(

1

|Qr|

∫

Qr

|▽u|2 dx dt
)1/2

=

(

3

4π
δ(r)

)1/2

. (3.6)

We will study the following questions: What kind of scaling behavior do we expect

for δ(r) ? and in which range are these power-laws observed ?

We consider a theory for the case of R
3 first and then translate the result to the

case of T
3 or homogeneous turbulence. Let us consider the total kinetic energy, the

enstrophy and the energy dissipation rate

E ′ =

∫

R3

|u|2
2
dx, Q′ =

∫

R3

|∇u|2
2

dx, ǫ′ = ν

∫

R3

|∇u|2dx,

where ′ denotes un-averaged spatial integrals in R
3.

We examine the power-laws for δ(r) by examining the definition (3.4). The

volume of the parabolic cylinder (3.5) is |Qr| = 4πr3/3 · r2/ν = 4πr5/3ν. A normal-

ization of (3.4) over the volume gives

δ(r; x0, t0) =
4π

3

r4

ν2

1

|Qr|

∫

Qr

|∇u|2 dx dt,

which means that in the limit of r → 0 we have

δ(r) → 4π

3

r4

ν2
|∇u|2 (x0, t0), (3.7)

picking up a point-wise value of the strain rate at (x0, t0). On the other hand, in

the limit of r → ∞ we have

δ(r) → r

ν2

1

r2/ν

∫ t0+r2/ν

t0

dt

∫

R3

|∇u|2 dx =
r

ν2

∫

R3

|∇u|2 dx, (3.8)
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where the bar denotes a long time-average. Hence, the function δ(r) shows two

distinctive behaviors and the cross-over takes place at r = r∗, where

r∗ =

(

3

4π

∫

R3 |∇u|2 dx
‖∇u‖2

∞

)1/3

=

(

3

4π

ǫ′

ν‖∇u‖2
∞

)1/3

. (3.9)

Here we have taken the point (x0, t0) as the point of maximum |∇u|2, which is

equal to |∇u‖2
∞ [25]. Because small-scale structure of finite-energy turbulence is

expected to be not much different from that of homogeneous turbulence [8], the

above expression translates to

r∗ = L

(

3

4π

1
L3

∫

T3 |∇u|2 dx
‖∇u‖2

∞

)1/3

= L

(

3

4π

ǫ

ν‖∇u‖2
∞

)1/3

(3.10)

in the case of T
3. Here ǫ = ν

L3

∫

T3 |∇u|2 dx is the energy dissipation rate averaged

over a cube of size L. From the above we can see that as the numerator is the

temporal average of the L2 norm of |∇u|2 and the denominator is its L∞ norm (or

maximum value), therefore a smaller r∗ implies more intermittency. Solving (3.10)

for ‖∇u‖∞, we find

‖∇u‖∞ ≈
√

3

4π

√

ǫ

ν

(

L

r∗

)3/2

. (3.11)

Plugging this into (3.7) and assuming that the maximum strain is attained at x0,

we find

δ(r) ≈
(

L

r∗

)3
ǫr4

ν3
(3.12)

for small r. By demanding that δ(rmin) = 1, we determine the smallest scale excited

in the flow as

rmin ≈
(

ν3

ǫ

)1/4
(r∗
L

)3/4

. (3.13)

Eliminating r∗ from (3.11) and (3.13), we obtain a condition

r2
min‖∇u‖∞ ∝ ν.

This is equivalent to a rigorous result on the estimate of the smallest length scale in

turbulence [25, 71, 72]

rmin ∝
√

ν

‖∇u‖∞
.

It is defined as a reciprocal of the wavenumber therein, beyond which Fourier coef-

ficients decay exponentially. See also [73] on how the minimum scale is affected by

intermittency. In what follows, we will write simply ǫ for ǫ(t) because its temporal

fluctuations are not large.
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3.2.2 The ν-dependence of r∗

We show that a power-law of r∗ follows from that of E(k). The following assumptions

are made in the subsequent argument.

1. The energy dissipation rate ǫ and viscosity ν are independent in the inviscid

limit.

2. The energy spectrum follows E(k) ∝ k−q in the inertial subrange, with 1 <

q < 3.

3. An ensemble and a spatial average are equal (ergodic hypothesis).

4. The velocity gradient is finite for a small, but fixed ν.

We write
r∗
L

= F (ν),

because if F were independent of ν, we would have non-intermittent turbulence

(K41). We have therefore

‖∇u‖∞ ∝
√

ǫ

ν
F (ν)−3/2 (3.14)

and

rmin ≈
(

ν3

ǫ

)1/4

F (ν)3/4. (3.15)

By the assumptions 1), 2) and the definition of ǫ

ǫ = 2ν

∫ kd

0

k2E(k)dk

together with kd = 1/rmin, we have

ǫ ≈ 2ν

3 − q

(

(

ν3

ǫ

)− 1
4

F (ν)−
3
4

)3−q

.

It follows that

F (ν) ≈
(

2

3 − q

ν

ǫ

)
4

3(3−q)
(

ν3

ǫ

)− 1
3

,

that is,

F (ν) ∝ νa,
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where

a ≡ 4

3(3 − q)
− 1. (3.16)

Thus, r∗ also has a power-law dependence on ν. Inverting (3.16) we obtain

q =
5 + 9a

3(1 + a)
. (3.17)

3.2.3 Parametrization of intermittency via a

By writing
r∗
L

=
( η

L

)4a/3

∝ νa,

where η denotes the Kolmogorov length scale, we find from (3.11) and (3.13)

‖∇u‖∞ ≈
√

3

4π

√

ǫ

ν

(

L

η

)2a

, (3.18)

and

rmin ≈ η
( η

L

)a

(3.19)

as parameterizations of the maximum strain and the minimum scale excited in tur-

bulence. We also note in passing that Kolmogorov velocity (with intermittency effect

taken into account) is given by

vKol ∝ (ǫν)1/4

(

L

η

)a

and acceleration A by

A ∝ v3
Kol

ν
.

To summarize, in terms of a we have the following parametrizations

‖∇u‖∞ ∝ ν−
1+3a

2 , rmin ∝ ν
3(a+1)

4 , r∗ ∝ νa. (3.20)

Under the assumption of the β-model [7], we can write

‖∇u‖∞ ∝ ν−
5−D
1+D , rmin ∝ ν

3
1+D , r∗ ∝ ν

3−D
1+D (3.21)

in terms of the self-similarity dimension D. Equivalently, under the same assump-

tion, using the exponent of dissipation correlation µ = 3 −D, we have

‖∇u‖∞ ∝ ν−
2+µ
4−µ , rmin ∝ ν

3
4−µ , r∗ ∝ ν

µ
4−µ . (3.22)
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Note that the parametrization in terms of a does not require the assumption of fractal

cascade. In Table 3.1 we compare some phenomenological models of intermittency

[7, 8, 74]. In [74], the distribution of Lyapunov exponents for the Navier-Stokes

equations was studied and its behavior was found to change at µ = 2/5 on the basis

of the β-model. In [75], a model of intermittency was developed on the basis of

log-Poisson statistics of the energy dissipation rate (see Appendix E), which shows

agreement with experiments. The relationship a = µ/(4 − µ) is depicted in Fig.3.1.
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Table 3.1: Comparison of models of intermittency

General K41 Ruelle She-Leveque (SL) Burgers Sulem-Frisch (SF)

Intermittency exponent a 0 1/9 1/5 1/3 3

D 3−a
1+a

3 13/5 7/3 2 0

µ 4a
1+a

0 2/5 2/3 1 3

‖∇u‖∞ ν−(1+3a)/2 (ǫ/ν)1/2 ν−2/3 ν−4/5 ν−1 ν−5

rmin ν3(a+1)/4 η = (ν3/ǫ)
1/4

ν5/6 ν9/10 ν ν3

vKol ν(1−3a)/4 (ǫν)1/4 ν1/6 ν1/10 ν0 ν−2

Hölder continuity C
1−3a

3(1+a) C1/3 C1/5 C1/9 C0 C−2/3

E(k) ∝ k−q q = 5+9a
3(1+a)

q = 5/3 q = 9/5 q ≈ 5/3 + 0.03 < 17/9 q = 2 q = 8/3
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Figure 3.1: The a-µ diagram, with relationship

a = µ
4−µ

. The horizontal line denotes a = 1/3.

3.2.4 A constraint on the scaling exponents

We derive one constraint on the p-th order scaling exponents ζp for the velocity

structure function (for theory see [4])

〈(δur)
p〉 ∝ rζp ,

where δur is the velocity increment between two points separated by r and the angled

brackets denote an ensemble average.

Again, by 1),

ǫ = 2ν

∫ kd

0

k2E(k)dk

is independent of ν in the limit ν → 0. Because kd is related with the L∞-norm of

the velocity gradient and E(k) with the L2-norm, it should give a constraint on ζp.

We will determine what this is.

By the definition
〈(

δur

r

)p〉 1
p

∝ r
ζp
p
−1,

with [76] we have

‖∇u‖Lp = lim
r→rmin

〈(

δur

r

)p〉 1
p

∝ ν
3(a+1)

4

“

ζp
p
−1

”
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and

‖∇u‖L∞ = lim
p→∞

lim
r→rmin

〈(

δur

r

)p〉 1
p

∝ ν
3(a+1)

4
(α−1), (3.23)

where α ≡ limp→∞
ζp

p
is finite by 2) [77]. Here we essentially make use of the

regularity of the Navier-Stokes solutions. An asymptotic linearity of ζp follows from

the finiteness of α. In fact, we can obtain a more precise expression for the exponents.

By (3.23) and (3.20)1, we find in the limit of ν → 0

α =
1 − 3a

3(1 + a)
. (3.24)

(It is of interest to note that a =
1 − 3α

3(1 + α)
, hence the inverse has the same functional

form). Because of E(k) ∝ k−q and (3.17) and the definition q = 1 + ζ2, we have

ζ2 + 1 =
5 + 9a

3(1 + a)
. (3.25)

Eliminating a between (3.24) and (3.25), we obtain

ζ2 + lim
p→∞

ζp
p

= 1. (3.26)

Up to here, fractal energy cascade such as in the β-model is not assumed. The

condition (3.26) implies

ζp = (1 − ζ2)p+ o(p) (3.27)

for large p. A super-linear behavior in ζp, as in the log-normal model, is thus excluded

by finiteness of α. In other words, this argument supports an asymptotic linear

behavior of the scaling exponent predicted in the β-model. See [78] for ’asymptotic

linearization’ of scaling exponents in more general cases.

A simple inequality for ζp follows from this. Setting

ζp = (1 − ζ2)p+ fp, with lim
p→∞

fp = 0,

we have f3 = 1 − 3(1 − ζ2) by ζ3 = 1. By the convexity fp ≤ f3 for p ≥ 3, we find

ζp ≤ (1 − ζ2)(p− 3) + 1. (3.28)

We note that the prediction from the β-model

ζp =
p

3
− µ

3
(p− 3)
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satisfies (3.26) for arbitrary µ(> 0), that is, we cannot fix µ by the ’constraint’

(3.26), as it becomes an identity.

If ζ2 = 2
3
, (3.28) implies that

ζp ≤
p

3
, for any p ≥ 3.

On the other hand, if ζ2 = 2
3

+ µ
3
, we would have

ζp ≤
p

3
− µ

3
(p− 3),

which means (3.28) places the scaling of β-model as an upper-bound of the possible

scaling.

It should be noted that all the above results are obtained by balancing powers

of ν, hence the arguments are valid only in the limit of ν → 0. For finite Reynolds

number turbulence, (3.28) would not hold as is.

By a rigorous analysis in [63], notations in being the same as those of [63]. As

seen above, we have ‖∇u‖∞ ∝ Re(1+3a)/2 for r∗ ∝ νa. It follows that
〈

κ2
n,1

〉

≤
cnL

−2Re
3
2
(a+1), where Re ∝ 1/ν. Then we have (in the limit that small constant

δ = 0)
〈

κ2
n

〉

≤ Re
3
2
(a+1) n−1

n Re
1
n

= Re
3
2
(a+1)− 3a+1

2n ,

in place of (78) and (79) of [63]. Using Lemma 1 of [63], we find

L2n
〈

κ2
n

〉n ≤ cnRe
3
2
(a+1)n− 3a+1

2 ,

or

L 〈κn〉 ≤ cnRe
3
4
(a+1)− 3a+1

4n .

Comparing this with Re
1

3−q
− 1

2n
q−1
3−q , we get

q ≤ 5 + 9a

3(a+ 1)
=

5

3
+

4a

3(1 + a)

for the exponent of the energy spectrum E(k) ∝ k−q. From this we obtain

ζ2 + lim
p→∞

ζp
p

≤ 1.

It can also be obtained by writing (3.28)

1 − ζ2 ≥
ζp − 1

p− 3
for p ≥ 3

and passing to the limit p → ∞. See also [20, 21, 79] for mathematical works on

intermittency.
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3.3 Numerical Experiments

3.3.1 Numerical Methods

The pseudo-spectral method was used for the evaluation of nonlinear terms and the

fourth-order Runge-Kutta for time-stepping. The initial data are generated with the

energy spectrum

E(k) = k4e−k2

, (3.29)

where the phases of the Fourier coefficients are randomized.

The numerical simulations have been performed for various values of Reynolds

number by choosing the number of grid points N , and viscosity ν to ensure that the

turbulence is developed and resolved. Results were obtained from a N = 256 cubic

grid, with mesh size ∆x = 2π/N and time increment ∆t = 2 × 10−3. Typically, in

the case of forced simulations, we have as an estimate of accuracy kmaxη ≥ 1.5 for

ν = 0.005 and kmaxη ≥ 1.1 for ν = 0.0025 throughout the time evolution. For the

latter (slightly under-resolved) case a check was performed with a N = 512 cubic

grid to ensure agreement, and hence that none of our results are numerical artifacts.

The integral δ(r) is calculated for a sequence of values of r, increasing outwards

from the center point x0 of the spatial integration region. The increasing radii of

integration are taken as

rj =
2πdj−1

N
, for j = 1, 2, 3, ..., p, (3.30)

to determine the power-law relationship between δ(r) and r. The fundamental period

is 2π, and d > 1 is chosen such that the sphere at rp covers at least 10% of the total

spatial range 2π.

By monitoring the time-evolution of the energy and the enstrophy, the lower

limit of the time integral t0 is set after the turbulence reaches a statistically steady

state. The time integral is taken over the range t0 < t < t0+r2/ν. The quantity δ(r)

was calculated for various different center points in order to determine the effect of

position. These points were chosen, some at fixed (0, 0, 0), (π, 0, 0), (0, π, 0), (π, π, 0),

and others at points of local (in space and time) maxima of |∇u|2.
Two important quantities are E(t) = 1

2
〈|u|2〉 and Q(t) = 1

2
〈|ω|2〉, which denote

the spatial average of kinetic energy and the enstrophy, respectively.
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3.3.2 Freely-decaying case

We first study freely-decaying turbulence. In this case we take t0 after the time

corresponding to the peak enstrophy as this is the point at which turbulence begins

to decay [19]. The parameter d is chosen to be 1.92.

Because the Reynolds number is not sufficiently large, the energy spectrum does

not display the characteristic Kolmogorov power-law for fully-developed turbulence

[6, 30] for sufficiently long time to evaluate the space-time integral accurately. This

can be seen in Fig.3.2, which shows a log-log plot of the energy spectra as a function

of the wavenumber for various times throughout the time range covered by the

integral. Figure 3.3 shows the evolution of the enstrophy, for the two values of

viscosity throughout this time interval.
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Figure 3.2: The energy spectra for the

freely-decaying case with ν = 5 × 10−3:

the upper to lower dashed lines show

spectra for t = 10, 30, 50, 70 and 86, re-

spectively. The solid line represents a

slope k−5/3.
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Figure 3.3: Evolution of the enstrophy

for the freely-decaying case with ν = 5×
10−3 (solid) and ν = 2.5×10−3 (dashed).

In Fig.3.4 we show local Reynolds number δ(r) against r. Due to the rapid decay

of energy mentioned earlier, a clear power-law behavior is not observed. Nevertheless

we do observe an r4 behavior for small r and a shallower power-law for larger r.
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Figure 3.4: The CKN integral δ(r) against r for

various center points, compared with r4 (solid)

for ν = 5 × 10−3. Line conventions are x0 =

(0, 0, 0); +, (π, 0, 0);×, (0, π, 0); ∗, (π, π, 0); �.

3.3.3 Forced Turbulence

To integrate δ(r) for a sufficiently long time to ensure its convergence, we introduce

a forcing term. At every time step, the vorticity components for wavenumber |k| =

1, are held fixed at their initial values, effectively injecting energy back into the

system and sustaining a statistically steady state of turbulence. As can be seen

from Fig.3.5, the energy spectra display a power-law close to −5/3, corresponding

to the Kolmogorov spectrum in turbulence. This persists throughout the whole time

interval required for the evaluation of the space-time integral. Figure 3.6 shows the

evolution of enstrophy associated with this forced computation.

At first, we see an increase up to a maximum, it then levels out into a statistically

steady state, which fluctuates about an average value. Figure 3.7 is shown to verify

that the dissipation rate ǫ(t) is independent of ν.
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Figure 3.5: Energy spectra for the forced

case: ν = 2.5×10−3 compared with k−5/3

(solid), the dashed lines show spectra for

times 10, 30, 50, 70 and 90, respectively.
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Figure 3.6: Time evolution of the enstro-

phy for the forced case: ν = 1 × 10−2

(solid), 5×10−3 (dashed) and 2.5×10−3

(dotted).
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Figure 3.7: Time evolution of the energy dissipa-

tion rate for the forced case. The plot shows the

independence of ǫ(t) and ν. Line convention is

the same as in Fig 3.6.

We can then calculate a value for the Kolmogorov length scale based on the

time average of the enstrophy in each case of viscosity, using η = (ν3/ǫ)
1/4

= 1/kd,

where ǫ = 2νQ is the time-averaged energy dissipation rate. It is η ≈ 2.2 × 10−2

for ν = 5 × 10−3, and η ≈ 1.3 × 10−2 for ν = 2.5 × 10−3. The estimates of η,

corresponding to the values of viscosity, are indicated by an arrow on Figs.3.8 and

3.9.

53



This statistically steady state produces a clearer power-law behavior. The in-

tegral was evaluated at different center points, for two different values of viscosity

and d = 1.92. The double-log plots of δ(r) with r4 for each viscosity are shown in

Figs.3.8 and 3.9.
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Figure 3.8: The CKN integral δ(r) vs. r

for various center points, compared with

r4 (solid) for ν = 5× 10−3. Line conven-

tion is the same as in Fig.3.4. The arrow

indicates the Kolmogorov length scale η.
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Figure 3.9: The CKN integral δ(r) vs. r

for various center points, compared with

r4 (solid) for ν = 2.5 × 10−3. Line con-

vention is the same as in Fig.3.4. The

arrow indicates the Kolmogorov length

scale η.

At least at this moderately high Reynolds number, the function δ(r) displays a

clear power-law δ(r) ∝ r4 throughout the inertial subrange. As noted above this is

expected only in the dissipative range.

Then why do we have δ(r) ∝ r4 in the whole the inertial subrange ? To explain

this, we compare in Fig.3.10, the time evolution of r∗ with those of the Taylor micro-

scale λ(t) =
√

10νE(t)/ǫ(t), and the Kolmogorov scale η(t) = (ν3/ǫ(t))1/3 , where

ǫ(t) = 2νQ(t). It is clear that they are very different; r∗ takes a value which is a

multiple of λ and it is larger than η by almost two orders-of-magnitude. It should

be noted that the cross-over scale lies close to the energy-containing range. It makes

a marked contrast to the exact solutions of Burgers vortex and equations, where r∗

lies in the dissipative scale. (See Section IV below.)

To study its behavior more precisely, we show the time-averaged r∗ for various

values of ν in Fig.3.11. (The original definition r∗/L =
(

3
4π

ǫ(t)
ν‖∇u‖∞

)1/3

is used for its

evaluation here, but no change is observed even if we take time-average ǫ(t) first .)
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Figure 3.10: Time evolution of r∗ (solid)

together with that of the Taylor micro-

scale λ(t) (dashed) and the Kolmogorov

length scale η(t) (dotted) for ν = 0.005.
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Figure 3.11: The cross-over scale r∗ as

a function of viscosity: r∗ ∝ νa. The

straight line shows a least-squares fit

with a = 0.26.

It shows that r∗ depends weakly on ν, that is, r∗ ∝ νa with a ≈ 0.26. More

importantly, r∗ = O(1) in the energy-containing range for all the values of ν used.

This is why we do not observe a transition to δ(r) ∝ r within the inertial subrange.

We have noted above that ζp behaves linearly at large p just like the β-model. If

the β-model is perfectly correct that would imply the dissipation correlation expo-

nent µ(= 3−D) takes µ = 4a
1+a

≈ 0.8, which is much larger than the experimentally

accepted range 0.2-0.4. Indeed, we see in Fig.3.12 that the plot of dissipation corre-

lation against distance r gives µ = 0.20.
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Figure 3.12: The dissipation correlation

〈ǫ(x)ǫ(x + r)〉 ∝ |r|−µ with a least-squares fit

µ = 0.20.
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This value of µ is calculated via the same data as for r∗ against ν which suggests

that as the value of µ lies within the accepted range, our value of a then implies

that although the β model may not be quantitatively perfect, it remains valid qual-

itatively. For experimental works on dissipation correlation and intermittency, see

[80, 81, 82] and more recent [83, 84, 85, 86, 87, 88].

3.3.4 Colliding Orthogonal Lamb Dipoles

We now investigate another initial condition of colliding orthogonal Lamb dipoles

[52, 89]. It is defined as a solution of the two-dimensional Euler equations. The

dipoles travel in a straight path at a constant speed, preserving their structure as

they do so. If viscosity is taken into account, they start to diffuse and slow down with

time. When two dipoles are set orthogonally and allowed to collide, they interact,

producing areas of very high vorticity. It is these areas of the maximum velocity

gradient |∇u|2 that we are interested in for the evaluation of δ(r).

The general form of the vorticity is given in polar coordinates, centered on the

dipole, by

ω =

{

−2UK J1(Kr)
J0(KR)

sin(θ − θ0) r < R,

0 r ≥ R.
(3.31)

The radius, r is given by, for example r =
√

(x− x0)2 + (y − y0)2, with (x0, y0) being

the dipole’s center point. Here, U denotes the travel speed of the dipole, θ = θ0 its

direction with respect to the separatrix, R its constant outer radius. The parameter

K is a constant such that KR ≈ 3.8317 gives the first positive zero of the Bessel

function J1.

We have taken U = 0.5, R = π/4, and ν = 2.5 × 10−3. We solve the Navier-

Stokes equations subject to this initial condition, until the time of maximum |▽u|2

is attained. One dipole is aligned parallel to the z-axis with its center along the

line (π, π
2
, z) (0 ≤ z ≤ 2π) and travels in the direction of increasing y. The other is

aligned parallel to the x-axis with its center along the line (x, 3π
2
, π) (0 ≤ x ≤ 2π),

traveling in the direction of decreasing y. As they approach each other they begin

to deform, and then collide, interacting via reconnection to produce areas of high

vorticity mentioned above. We show in Fig.3.13 the iso-surface plot of |∇u|2.
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Figure 3.13: Configuration of Lamb dipoles at

time of maximum |∇u|2, t = 5.8. The threshold

is |∇u|2 = 3 〈|∇u|2〉, where 〈|∇u|2〉 = 1.58. The

dipoles have collided and reconnection is occur-

ring at the corners, producing intense vorticity.
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Figure 3.14: Evolution of maximum

|∇u|2 with Lamb dipole initial condi-

tions, ν = 2.5 × 10−3.
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Figure 3.15: δ(r) vs. r for Lamb dipole.

For the CKN integral, we take the center point x0 at the spatial location of
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maximum |∇u|2. We choose d = 1.37 so that we obtain a sufficient number of

points for δ(r) as we integrate over the time range, taken from t = 0 to the time of

maximum |∇u|2, which can be seen in Fig.3.14. In the situation of moving dipoles,

the maximum point does not remain fixed in space for long periods of time. We

observe in Fig.3.15 a generic tendency that the exponent of δ(r) becomes shallower

for larger r, in agreement with the above theory.

3.4 Examples by exact solutions

3.4.1 Burgers Vortex

We consider the Burgers vortex, an exact solution of the Navier-Stokes equations

subject to a constant straining flow. The velocity for the Burgers vortex tube in

cylindrical polar coordinates is given by















ur = −αr,
uθ = Γ

2πr

(

1 − e−
αr2

2ν

)

,

uz = 2αz,

(3.32)

and the vorticity by

ω =
αΓ

2πν
exp

(

−αr
2

2ν

)

.

Here, the constant α denotes rate of strain and Γ velocity circulation. It can be

shown that

|∇u|2 = 6α2 +

(

∂uθ

∂r

)2

+
(uθ

r

)2

, (3.33)

see e.g. [43]. The definition of δ(r) is similar to the one in previous section. In this

case, the integral to be calculated is

δ(r) =
1

ν

∫

Q2D
r

|∇u|2 dx dt. (3.34)

The bounds of Q2D
r are given by the disc |x − x0| < r and |t − t0| < r2/ν, where

x = (x, y). Because this is a steady state solution, the time integral simplifies to a

multiplication by r2/ν [19], we have

δ(r) =
r2

ν2

∫

V 2D
r

|∇u|2 dx, (3.35)
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where V 2D
r denotes a disc of radius r. Noting that as r → 0,

1

|V 2D
r |

∫

V 2D
r

|∇u|2 dx → |∇u|2(x0),

with |V 2D
r | = πr2, we have

δ(r) →























πr4

ν2
|∇u|2(x0) as r → 0,

r2

ν2

∫

R2 |∇u|2dx as r → ∞.

(3.36)

The cross-over takes place at r = r∗, where

r4

ν2
|∇u|2(x0) ≈

r2

ν2

∫

R2

|∇u|2dx,

or,

r∗ =

(

∫

R2 |∇u|2dx
|∇u|2(x0)

)1/2

.

Using |∇u|2 ≈ ω2 =
(

αΓ
2πν

)2
and ǫ = ν

∫

R2 |∇u|2dx ≈ αΓ2

4π
, we find

r∗ ≈
(πν

α

)1/2

.

This is proportional to the core radius of the Burgers vortex.

We can confirm this result by using the exact solution. In the limit of large

Reynolds number, r/ν ≫ 1, we may neglect the first term on the right hand side of

(3.33). The spatial part of the integral becomes

1

ν

∫ r

0

|∇u|2 2πr dr ≃ 2π

α

(

αΓ

4πν

)2 ∫ αr2

2ν

0

[

(

2e−ξ − 1 − e−ξ

ξ

)2

+

(

1 − e−ξ

ξ

)2
]

dξ,

(3.37)

where ξ = αr2/2ν [43]. It follows that

∫ r

0

|∇u|2 2πr dr →
{

r2|∇u|2 for r ≪
√

ν/α,
∫

R2 |∇u|2dx for r ≫
√

ν/α.
(3.38)

This confirms the transition at r ≈
√

ν/α and we have as r → 0

δ(r) ∝ 1

π

(

Γ

ν

)2

ξ2,

which is consistent with the above δ(r) ∝ r4. We note that in this case r∗ lies in

the dissipation range. Unlike Navier-Stokes turbulence, a typical multi-scale phe-

nomenon, this example has a single scale.
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3.4.2 Burgers equation

As another example, we consider the Burgers equation

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
. (3.39)

As a comparison, we compute δ(r), which in one dimension is given by;

δ(r) =
r

ν

∫

Q1D
r

(

∂u

∂x

)2

dx dt, Q1D
r (x, t) =

{

(x, t) : |x− x0| < r, tmax −
r2

ν
< t < tmax

}

.

(3.40)

The power-law can be worked out by a simple analysis for

δ(r) =
r3

ν2

∫

Q1D
r

(

∂u

∂x

)2

dx. (3.41)

In the limit r → 0 the integral scales as ∝ r(∂u/∂x)2, and we have

δ(r) ∝















2
r4

ν2

(

∂u

∂x

)2

as r → 0,

r3

ν2

∫∞
−∞

(

∂u

∂x

)2

dx as r → ∞
(3.42)

The cross-over occurs at

r∗ =

∫∞
−∞

(

∂u

∂x

)2

dx

2 supx

(

∂u

∂x

)2 .

An exact steadily traveling wave solution can be written as

u = U tanh
Ux

2ν
,

after a translation. For this solution, we have ∂u
∂x

= U2

2ν
sech2 Ux

2ν
and

∫∞
−∞
(

∂u
∂x

)2
dx =

2U3

3ν
, thus we find

r∗ =
4

3U
ν.

The cross-over scale is on the order of the width of the shock wave. Again, r∗ is in

the dissipative range unlike for the Navier-Stokes flows.

We can confirm this by the exact solution. It gives in this case

δ(r) = 4ξ3

(

tanh ξ − 1

3
tanh3 ξ

)

,
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where ξ = Ur
2ν
. It follows that

δ(r) ≈ 4ξ4 as ξ → 0,

in agreement with the above analysis.

Finally, a pseudo-spectral calculation is performed in a way analogous to that

of the three-dimensional integral, starting from initial data u0 = sin x, with x0 = π

located at the position of shock wave formation for the velocity field. The upper

limit tmax (≈ 1.6) is the time of maximum enstrophy, which can be seen in Fig.3.16.

We integrate from tmax back in time over successively larger increments as r increases

spatially outwards from x0, with the lower time limit t = 1. The radii of integration

rj are given as in (3.30), with the number of grid points N and viscosity ν chosen

to ensure that the flow is well-resolved. In this case we have used N = 4096,

ν = 2 × 10−3 and ∆t = 1 × 10−4.
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Figure 3.16: Enstrophy evolution for the

1D Burgers equation with viscosity ν =

2 × 10−3, maximum is at t = 1.57.
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Figure 3.17: δ(r) vs. r for center

point x0 = π (solid), compared with r4

(dashed) and r3 (dotted), for viscosity

ν = 2 × 10−3.

We can see in Fig.3.17 that the scaling is close to r4 for small r. As r increases,

it becomes closer to a shallower r3, consistent with the above argument.

3.5 Summary and discussion

Intermittency in turbulence is related with the mathematical problem of the Navier-

Stokes equations in that it is associated with rapid growth of local vorticity. By
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using the CKN local Reynolds number, we have developed a systematic method of

characterization of intermittency.

First, we have re-examined the CKN integral and identified a cross-over scale r∗,

at which the scaling behavior of δ(r) changes. On this basis, we have introduced

the parameter a characterizing intermittency as r∗ ∝ νa. As a by-product we have

derived the constraint limp→∞
ζp

p
= 1−ζ2 for the scaling exponents ζp of the velocity

structure functions in the limit ν → 0. This in turn implies that ζp = (1−ζ2)p+o(p).
Second, we have performed direct numerical simulations of the Navier-Stokes

equations at moderately high Reynolds numbers (≈ 100) to examine the behavior of

the CKN integral δ(r). We have found a scaling δ(r) ∝ r4 in the whole inertial range,

not only in the dissipative range. We explain the absence of cross-over phenomenon

by finding r∗ is actually in the energy-containing range. The intermittency parameter

a is found to be 0.26. If the β-model is perfectly correct, a = 0.26 would imply

µ = 0.8 for the dissipation correlation exponent, which is beyond the acceptable

range of 0.2 − 0.4 within which our experimentally determined value lies. We point

out that while the β-model may not be quantitatively perfect, its prediction serves

as an upper-bound for the scaling exponents. Similar cross-over phenomena have

been studied on the basis of exact solutions of the Burgers vortex and the Burgers

equation.

All the results obtained here are based on the framework of phenomenology,

but we have double-checked their consistency against rigorous mathematical theory,

where possible e.g. [63, 72]. It would be interesting to make the present theory

solid, say, by applying Besov-space techniques [22, 90, 91]. This will be left for

future study.
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Chapter 4

Burgers equation with a passive

scalar:

Dissipation anomaly and

Colombeau calculus
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Abstract

A connection between dissipation anomaly in fluid dynamics and Colombeau’s

theory of products of distributions is exemplified by considering Burgers equation

with a passive scalar. Besides the well-known viscosity-independent dissipation of

energy in the steadily propagating shock wave solution, the lesser known case of

passive scalar subject to the shock wave is studied. An exact dependence of the

dissipation rate ǫθ of the passive scalar on the Prandtl number Pr is given by a

simple analysis: we show in particular ǫθ ∝ 1/
√
Pr for large Pr. The passive scalar

profile is shown to have a form of a sum of tanh2n+1 x with suitably scaled x, thereby

implying the necessity to distinguish H from Hn when Pr is large, where H is the

Heaviside function and n is a positive integer. An incorrect result of ǫθ ∝ 1/Pr

would otherwise be obtained. This is a typical example where Colombeau calculus

for products of weak solutions is required for a correct interpretation. A Cole-Hopf-

like transform is also given for the case of unit Prandtl number.
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4.1 Introduction

One of the most important properties of fully-developed turbulence is that the dis-

sipation rate ǫ of the total kinetic energy remains non-zero even in the limit of

vanishing viscosity: ǫ → const 6= 0, see e.g. [4]. It is called anomaly because in

the case of totally inviscid fluid ν ≡ 0, ǫ ≡ 0. This empirical observation is called

“dissipation anomaly” and is believed to form the basis for turbulence theory. In the

case of the 3D Navier-Stokes equations this is just a conjecture and no mathematical

proof is available to support it.

Here we consider a much simpler model of fluid equation to study a similar

phenomenon. More precisely we consider the Burgers equation [92, 93] together

with a passive scalar:

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
, (4.1)

∂θ

∂t
+ u

∂θ

∂x
= κ

∂2θ

∂x2
, (4.2)

where u denotes the velocity field, θ the passive scalar field, ν the kinematic viscosity

and κ the diffusivity. As boundary conditions, we consider constant values of velocity

and scalar at infinity (see below). We note that Burgers equation with a passive

scalar has been considered in [94] in connection with its non-Gaussian statistics.

In Section II, we study steadily propagating waves in u and θ and study whether

the dissipation rate ǫθ of θ is independent of ν or of κ. In Section III we derive an

expression ǫθ in terms of the Prandtl number Pr = ν/κ and investigate its depen-

dency on Pr. In Section IV, we determine the profile for θ and note that Colombeau

calculus for the product of distributions [9, 10, 11] is required to interpret the result.

We also discuss a generalization of the so-called Cole-Hopf transform [95, 96, 97] to

the case of the passive scalar in Section V. Section VI is devoted to a Summary.

4.2 Steady-State Solutions in a Moving Frame

We consider (4.1) under the boundary conditions u(x = ±∞) = ∓u1. If we seek a

solution steady in a frame moving with a constant speed U we find using a change

of variables X = x− Ut, T = t [98];

u = U − u1 tanh
u1

2ν
(x− Ut+ c), (4.3)

65



where c is a constant of integration. The dissipation rate of total kinetic energy

ǫ = ν

∫ ∞

−∞

(

∂u

∂x

)2

dx,

is given by

ǫ =
u3

1

2

∫ ∞

−∞

dξ

cosh4 ξ
,

where ξ = u1

2ν
(x − Ut + c). Because this (convergent) integral no longer involves

viscosity, we see that ǫ is independent of ν in the limit ν → 0 without evaluating

the definite integral (actually, = 4/3).

Now we consider θ. From (4.2), the steady-state should satisfy

(u− U)
dθ

dX
= κ

d2θ

dX2
. (4.4)

Using (4.3), it follows from (4.4) that

dθ

dX
= c′

[

cosh
u1

2ν
(X + c)

]−2 ν
κ

. (4.5)

Hence we find that

θ = c1

∫ ξ

0

dη

cosh2Pr η
+ c2, (4.6)

where c1 = 2νc′/u1 and c2 are constants of integration. Under the boundary condi-

tion θ(x = ±∞) − U = ∓θ1 we may fix the constants as c1 = − θ1

Iα(∞)
and c2 = U .

Here, for convenience. we have introduced a function Iα(ξ) defined by

Iα(ξ) ≡
∫ ξ

0

dη

cosh2α η
.

4.3 Dissipation Rate of a passive scalar

By (4.5), the dissipation rate of passive scalar variance ǫθ is evaluated as follows:

ǫθ = κ

∫ ∞

−∞

(

∂θ

∂x

)2

dx

= κc̃′
2
∫ ∞

−∞

[

cosh
u1

2ν
(X + c)

]−4Pr

dX

= κ
(u1θ1)

2

4ν2IPr
(∞)2

2ν

u1

∫ ∞

−∞
cosh−4Pr(ξ)dξ,

thus we find

ǫθ = u1θ
2
1

1

Pr

I2Pr
(∞)

IPr
(∞)2

. (4.7)
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Because the integral IPr
(∞) depends on ν and κ through Pr, we must evaluate it in

full.

For integer-numbered Pr, say = n we may explicitly carry out the integration

in IPr
(ξ). The first two (n = 1, 2) are

∫ ξ

0

dη

cosh2 η
= tanh ξ,

∫ ξ

0

dη

cosh4 η
= tanh ξ − 1

3
tanh3 ξ.

More generally, noting that:

1

cosh2n ξ
=

1

cosh2 ξ
(1 − tanh2 ξ)n−1 =

1

cosh2 ξ

n−1
∑

r=0

(−1)r

(

n− 1

r

)

tanh2r ξ (4.8)

we find

In(ξ) =

∫ ξ

0

dη

cosh2n η
=

n−1
∑

r=0

(−1)r

(

n− 1

r

)

tanh2r+1 ξ

2r + 1

and

In(∞) =
n−1
∑

r=0

(−1)r

(

n− 1

r

)

1

2r + 1
.

Actually we have [99]

In(∞) =
22(n−1){(n− 1)!}2

(2n− 1)!
.

For Pr = n we obtain an exact expression

ǫθ = u1θ
2
1

{(2n)!}4

(4n)!(n!)4
.

(For more general real-valued Pr = α, we have Iα(∞) =
√

π
2

Γ(α)

Γ( 1
2
+α)

and thus ǫθ =

u1θ
2
1

2√
π

Γ(2α)Γ( 1
2
+α)2

αΓ(α)2Γ( 1
2
+2α)

, where Γ(α) is the gamma function.)

By Stirling’s formula n! ≃
√

2πnnne−n for n≫ 1, we deduce that

In+1(∞) ≃ 1

2

√

π

n
.

Therefore the dissipation rate of θ in the limit of large Pr is

ǫθ ≃ u1θ
2
1

√

2

πPr

, as Pr → ∞, (4.9)

which decays as P
− 1

2
r with Pr. Even in this simple 1D model, the problem of dissi-

pation anomaly is subtle, in that ǫθ does depend on Pr in a nontrivial fashion.
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On the other hand, it can be checked that

lim
Pr→0

1

Pr

I2Pr
(∞)

IPr
(∞)2

= 1

so

ǫθ → u1θ
2
1, as Pr → 0.

In the cases Pr ≪ 1 or Pr = O(1), ǫθ remain finite. Thus, there is anomaly in

the dissipation ǫθ of the passive scalar because it remains non-zero in the limit of

ν → 0, when we take Pr = const or Pr ≪ 1.

4.4 Connection to Colombeau calculus

In the case of ν → 0, care should be taken in the interpretation. Indeed, in the

expression

θ(ξ) = − θ1

In(∞)

n−1
∑

r=0

(−1)r

(

n− 1

r

)

tanh2r+1 ξ

2r + 1
+ U, (4.10)

formally tanh ξ → 2H(ξ) − 1 as ν → 0, where H is the Heaviside function, but this

does not necessarily mean that tanh2r+1 ξ → 2H(ξ) − 1 for r(> 0).

Colombeau theory has been developed to account for multiplication of distribu-

tions to some extent [9, 10, 11], by generalizing Schwartz theory of distributions.

For details, see [12, 100, 101]. Later its connection to non-standard analysis has

been pointed out [102]. We note that this theory has been applied to the Burgers

equation, e.g. [10, 103, 104] but not to the problem with a passive scalar.

A notable feature of Colombeau theory is that it can handle not only H, but

also Hn (n 6= 1). In this sense the problem in question is a typical example to which

Colombeau theory applies. If we naively identify tanh2r+1 ξ with tanh ξ in the limit

of vanishing viscosity ν → 0, we would get In(ξ) ≈ In(∞) tanh ξ, or

θ(ξ) ≈ −θ1 tanh ξ + U.

It follows that

ǫθ ≈
1

Pr

u1θ
2
1

∫ ∞

0

dξ

cosh4 ξ
= u1θ

2
1

2

3Pr

, (4.11)

or ǫθ ∝ 1/Pr rather than the correct asymptotic dependence ǫθ ∝ 1/
√
Pr. Therefore

the above naive identification would lead to a completely wrong dependence on Pr.
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Figure 4.1: Non-dimensionalized dissipation rate of the passive scalar ǫθ(Pr)

u1θ2
1

as a func-

tion of Pr (solid line) and the large-Pr asymptotics
√

2
πPr

(dashed line). The dotted

line shows the incorrect behavior 2
3Pr

obtained by discarding the subtle differences

among tanhn ξ.

In Fig. 4.1 we plot the dependency of ǫθ on Pr as given by (4.7). (For numerical

purposes it is convenient to write Iα(∞) =
∫ 1

0
(1 − τ 2)α−1 dτ.) It shows how quickly

ǫθ asymptotes to (4.9) and that how poor a job the naive (4.11) does.

The above results on dissipation anomaly suggests that Colombeau calculus is

required for a correct description of the present problem. In order to check this view

we see how jump conditions [10] come out of Colombeau calculus. Below the symbol

∼ denotes association which is a weaker relationship than equality (=).

Case 1.

We start from

ut + uux ∼ 0, θt + uθx ∼ 0,

u(x, t) = ∆uH(x− Ut) + U + u1,

θ(x, t) = ∆θK(x− Ut) + U + θ1,

where ∆u = u(∞) − u(−∞) = −2u1 and ∆θ = θ(∞) − θ(−∞) = −2θ1. Here H

and K are Heaviside step functions. Recall that H and K may not be equal to each

other, as Colombeau’s theory can handle different Heaviside functions. From the

first condition we have

−U∆uH ′ + (∆u)2HH ′ + (U + u1)∆uH
′ ∼ 0.
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Since HH ′ ∼ 1
2
H ′, we obtain

1

2
∆u+ u1 = 0.

We have from the second relation

−UK ′ + ∆uHK ′ + (U + u1)K
′ ∼ 0.

Because K ′ ∼ δ, the above shows that HK ′ ∼ Aδ with some function A =

A(∆u,∆θ, u1, U), we have

A∆u+ u1 = 0.

From these we can fix A = 1/2, consistently.

Case 2.

On the other hand, if we start from imposing a more stringent condition on θ, that

is,

ut + uux ∼ 0, θt + uθx = 0,

we have from the second equation

(∆uH + u1)K
′ = 0

or

(1 − 2H)K ′ = 0.

This is satisfied if we define H(0) = 1/2. See [105, 106] for similar analyses.

Case 3.

ut + uux = 0, θt + uθx = 0

The first of the equations was shown to lead to a contradiction [10].

4.5 Generalization of the Cole-Hopf Transform

In this section we consider a flow with finite total kinetic energy. For the Burgers

equation (4.1) it is well known that the Cole-Hopf transform [95, 96, 97]:

u(x, t) = −2ν
∂

∂x
logψ = −2ν

ψx

ψ

linearizes (4.1) to the diffusion equation

∂ψ

∂t
= ν

∂2ψ

∂x2
.
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For some historical backgrounds on the Cole-Hopf transform, see e.g. [107, 108, 44].

The equation (4.2) for a passive scalar is already linear, but it is of interest to

seek a similar transform which expresses its solution in a closed form.

We assume
∂φ

∂t
= κ

∂2φ

∂x2
, (4.12)

and attempt to find a solution in the quotient form

θ =
φ

ψ
.

Then we find that

φt = (θψ)t = 2νψxθx + κψθxx + νθψxx.

Because φxx = θxxψ + 2θxψx + θψxx and

θxx =
φxxψ − φψxx

ψ2
− 2

φxψ − φψx

ψ3
ψx,

we obtain

φt = κφxx + (ν − κ)

[

2
ψxφx

ψ
+

(

ψxx

ψ
− 2

ψ2
x

ψ2

)

φ

]

.

Therefore when ν = κ (i.e. Pr = 1) we may reduce the equation for the passive

scalar to a heat diffusion equation (4.12). Note that u and θ, (or equivalently ψ and

φ), can be chosen independently. In particular, for the special case u = θ we have

φ = −2νψx and recover the original Cole-Hopf transform.

In the general case Pr 6= 1, it is not known whether we may reduce (4.2) to a

diffusion equation although it is known that (4.2) is regular for all time. To search

for such a transformation left for future study. That might help in clarifying whether

there is anomaly in passive scalar dissipation for the case of finite total energy and

passive scalar variance.

4.6 Summary and Discussion

In this chapter we treat a steadily propagating solution of a passive scalar subject

to Burgers equation. We have two results on this model.

First, there is anomaly in the dissipation of the passive scalar. In spite of its

simplicity (after all, what we have solved is an ODE by a quadrature), it manifests

a nontrivial behavior in its dissipation rate. Second, a lesson to be learned here is
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that if we do not distinguish tanhn ξ for different n, we would obtain a wrong answer

for the dissipation rate. This suggests that Colombeau calculus plays an important

role even for this simple example.

It may be in order to recall that in the case of 2D Navier-Stokes equations, the

dissipation rate η of enstrophy is estimated from above [109] as η ∝ (logRe)−1/2,

where Re is the Reynolds number. In the large-Re limit, η decays to zero, but

does so very slowly (as a transcendental function). In contrast, the decay of ǫθ with

Prandtl number is much more rapid.

Dissipation anomaly is a subtle problem; a special care is required even in this

linear, 1D model problem, let alone possible dissipation anomaly in the 3D Navier-

Stokes equations for which we have only experimental or numerical evidence.
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Chapter 5

Summary and Conclusions

The principal drive behind this work was the three-dimensional Navier-Stokes reg-

ularity problem. We have investigated the behavior of some of the quantities which

must be bounded in order to guarantee global regularity. Building on the foun-

dations of work carried out by others, most prominently for this thesis, Caffarelli,

Kohn and Nirenberg, we have investigated the issue of regularity both numerically

and analytically, formulating our own phenomenological theories and evaluating oth-

ers already established.

In the second chapter, we carried out a comparison of the decaying Navier-Stokes

and Burgers equations in three dimensions, beginning from identical initial condi-

tions and subject to the same viscosity. Because the Burgers equtions are known to

exhibit global regularity due to the maximum principle, this comparison charts the

effect of nonlocality and incompressibility. By employing the Helmholtz-Hodge de-

composition, we can split the Burgers equations up into incompressible (solenoidal)

and compressible (potential) components.

We saw from the plots of energy and enstrophy that the incompressible term

quickly becomes subserviant while the compressible term dominates, attaining a

much higher peak enstrophy. The two terms become comparable at later times as

the energy and enstrophy decay away. The Burgers equations clearly also attain a

much larger peak value of enstrophy than the Navier-Stokes equations. Compar-

ison of the fourier energy spectra reveals that the Burgers equations retain more

excitations at higher wavenumbers. These observations all suggest that the Burgers

equations, though known to be globally regular, behave far more singularly than the

Navier-Stokes equations. We know, however, that the maximum principle bounds
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the Burgers equations for all time. This seems to suggest that the Navier-Stokes

equations should be globally regular (as is widely assumed in physical applications),

albeit with sporadic intermittent events, despite the lack of mathematical verifica-

tion.

Examination of the velocity PDFs confirmed the maximum principle in that

higher amplitude excitations are prohibited for the Burgers equations, in contrast

to those of the Navier-Stokes equations, which spread out, becoming increasingly

Gaussian with time.

The maximum principle was originally attained by forming the local energy equa-

tion from the Burgers equation and bounding the rate of energy increase (see Intro-

duction for sketch of proof). If the same procedure is attempted for the Navier-Stokes

equations, we hit a road block in the form of the nonlocal pressure gradient term

−(u·∇)p. This term precludes the possibility of bounding the rate of energy increase

as it can be impartially positive or negative. Upon inspection of its PDF and joint

PDFs with both energy and enstrophy, we see that they are basically symmetrical,

with temporally rare random fluctuations which seem to have no correlation with

either energy or enstrophy density. Our conclusion, therefore, was that the term

−(u · ∇)p neither encourages nor stifles formation of singularity, it just invalidates

the maximum principle.

To examine how this maximum principle breaks down, we investigated the three-

dimensional Navier-Stokes equations with passive scalar θ initialized identical to the

first component of velocity u1, with κ = ν. These are known as the quasi-4D (or

3.5D) Navier-Stokes equations. By studying the subesquent deviation of (u1 − θ)2,

we observed that the maximum of its spatial average occured between those of peak

enstrophy and peak spatial average of squared passive scalar gradient. From an

iso-surface visualisation of (u1 − θ)2 with enstrophy, we saw a strong spatial and

temporal correlation indicating that the maximum principle breaks down when the

enstrophy becomes large (near-singular structure approached).

The performance of the established bounds for enstrophy growth (see introduc-

tion for derivation) were then evaluated. The method involves using a log-log plot

after the application of the Cauchy-Schwartz and Gagliardo-Nirenberg inequalities

to the enstrophy growth equation. This method was tested against numerical data

for the 1D and 3D Burgers equations and the 3D and quasi-4D Navier-Stokes equa-

tions. It was found that for the 1D Burgers equation the exponent was 1, implying
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that the bound is very accurate, almost an equality. For the 3D case, with exponent

0.7, the bounds over-estimate the situation slightly, but the discrepancy is not huge.

In the case of 3D and quasi-4D Navier-Stokes equations, the exponent was observed

as 0.4, revealing that the bounds greatly over-estimate the physical situation. Our

conclusion was therefore that the bounds are less accurate in higher dimensions and

for incompressible systems.

A possible reason for the same exponent in the 3D and quasi-4D Navier-Stokes

equations may be due to the quasi-4D case being characteristically 3D, we would

expect from our conclusion that in the case of genuine 4D Navier-Stokes equations,

the bounds would be less accurate, with exponent < 0.7. Future work employing

this analysis to the genuine 4D Navier-Stokes equations, under a range of different

initial conditions would further clarify this hypothesis.

These results were also confirmed with other random, and also Taylor-Green

initial data, suggesting that this is a non-specific law and may hold more generally.

Further studies with a wide range of distinctly different initial conditions would be

an excellent test of the universality of these exponents.

More intensive research into the breakdown of maximum principle (preferably at

higher spatial resolutions) would help to illuminate a possible path to a solution of

the Navier-Stokes regularity problem.

In the third chapter we estimated the local reynolds number δ(r) from CKN theory

using numerical simulations of the forced Navier-Stokes equations in 3D at mod-

erately high Reynolds numbers (Re ≈ 100). We examined the dependence on the

distance from the center point over a parabolic cylinder. The exponent r4 were pre-

dicted earlier in the chapter and confirmed by the numerical results. The unexpected

revelation, however, was that a positive exponent continues throughout the inertial

subrange.

By CKN theory, a point is regular if near that point δ(r) ≤ ǫCKN . This corre-

sponds to a scaling of rα where α > 0 as r → 0. Our results therefore imply that

the flow is far from singularity at these points, some of which were chosen at points

of local maximum |∇u|2. The analogous calculation for 1D Burgers equation also

confirmed this theory, with an exponent of r4 for small r, which decreases to r3,

becoming less regular as r increases.

The case of colliding orthogonal Lamb dipoles provided the opportunity to in-

75



vestigate δ(r) in regions of high vorticity. In this case a lower, but still positive,

exponent r1 is observed. From CKN theory this indicates that these points are less

regular.

To quantify the transition between different exponents which is seen in the rela-

tionships between δ(r) and r, we introduced a cross-over scale r∗ ∝ L

(

‖∇u‖2
L2

‖∇u‖2
L∞

)1/3

,

where ‖∇u‖2
L2 = 1

L3

∫

|∇u|2 dx, at which the CKN Reynolds number δ(r) changes

its scaling behavior

δ(r) ≈











4π

3

r4

ν2
|∇u|2 (x0, t0), as r → 0

r

ν2

∫

R3 |∇u|2 dx as r → ∞.

where the bar denotes time-average.

This scale was then evaluated for the particular cases mentioned above. In addi-

tion, the exact solution of Burgers vortex in 2D verifies theories in a purely analytical

way.

A method of quantitatively testing the β-model was then implemented. The

analysis suggests that while the β-model may not be perfect, its qualitative predic-

tion survives, irrespective of the validity of the underlying assumption of a fractal

energy cascade.

On the basis of the mathematically well-established CKN local Reynolds num-

ber, the cross-over scale r∗ offers a practical method of estimating and quantifying

intermittency.

The use of larger numerical grids would enable better resolution of small scale,

high Reynolds number events, resulting in greater accuracy. This in turn would fa-

cilitate the evaluation of CKN quantities at less regular locations, and yield scaling

exponents for these interesting phenomena.

In the fourth chapter we considered the steady-state case of the 1D Burgers equa-

tion with associated passive scalar. For the passive scalar, we observe a dissipation

anomaly, that is the average dissipation rate does not vanish as the Reynolds num-

ber approaches infinity. Instead it exhibits a pronounced dependence on the Prandtl

number Pr = ν/κ. Due to the nature of the problem, we were obliged to em-

ploy Colombeau calculus in order to obtain the correct dissipation rate. This rate

(ǫθ ∝ 1/
√
Pr) decays much faster with increasing Pr than the dissipation rate of

enstrophy for the 2D Navier-Stokes equations (η ∝ 1/
√

logRe) in the limit of large
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Re (small ν).

In the case of the 3D Navier-Stokes equations, the only information available on

this topic is that of experimental or numerical data. Further analytical work on this

problem may shed light on this subtle characteristic.

For the most part of this work, we were limited by spatial resolution and the

associated time constraints to 2563 numerical grids. Higher resolution numerical

analysis of the regularity issues of the 3D Navier-Stokes equations discussed here

(and elsewhere) would improve the level of knowledge greatly and allow us to delve

into yet finer, more extreme structures within the flow field, with a view to finally

establish whether these enigmatic equations do in fact admit singularities, or remain

regular for all space and time.
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Appendices
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A: Cauchy formula for the Burgers equations

In the incompressible 3D Euler equations, vortex lines are material. In the 3D

Burgers equations, vortex lines are still material but the first integrals should be

modified. It is straightforward, but in view of the comparison of these two equations,

it is best to state it here.

The vorticity equations read

∂ω

∂t
+ (u · ∇)ω = (ω · ∇)u − (∇ · u)ω. (1)

Introducing a new variable

ω̃(a, t) = ω(a, t) exp

(
∫ t

0

(∇ · u)(a, t)dt′
)

, (2)

it satisfies
∂ω̃

∂t
+ (u · ∇)ω̃ = (ω̃ · ∇)u. (3)

It follows from this

ω̃(a, t) = ω̃(a, 0) · ∂
∂a

x(a, t), (4)

a generalized Cauchy formula. Because ω̃-lines are frozen, so are ω-lines. Noting

that the Jacobian Jij = ∂xi

∂aj
, (i, j = 1, 2, 3) satisfies

DJ

Dt
= V J , V = ∇u, (5)

where x = a at t = 0. By Abel’s formula

D

Dt
det J = (det J)tr

(

DJ

Dt
J−1

)

, (6)

we may write

ω(a, t) =
J(a, t) · ω(a, 0)

| det J(a, t)| (7)

or, equivalently

ω(a, t) =
ω(a, 0) · ∂

∂a
x(a, t)

∣

∣det
(

∂x
∂a

)∣

∣

. (8)
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B: Burgers gauge

We have seen that even if we take a general velocity field which has both solenoidal

and potential parts, under the dynamics of the Burgers equations the potential part

dominates quickly. We may ask whether and how we can find a field whose solenoidal

part solves the Navier-Stokes equations whilst the potential part solves the Burgers

equations. This is readily done by choosing an appropriate gauge in the so-called

impulse formalism [110].

∂γ

∂t
= u × ω + ∇Λ + ν△γ, (9)

∂φ

∂t
= p+

|u|2
2

+ Λ + ν△φ. (10)

where the two scalar fields are related by λ = Λ+u ·γ. If we choose these as follows,

“Burgers gauge”,

Λ = −p− |u|2 + |∇φ|2
2

, (11)

the potential part of γ solves the Burgers and the solenoidal part the Navier-Stokes

equations.

C: Burgers equation with higher Reynolds num-

ber

As an illustration, we present energy spectra of the 3D Burgers equations at a spatial

resolution of 2563 with viscosity ν = 2.5 × 10−3, for various instants of time.

The 3D Burgers spectra suffer from some truncation errors at high wavenumbers,

as can be seen in Fig.1, nevertheless, this plot shows clearly that the Burgers equa-

tions (for which global regularity is well known) display far more singular behavior

than the Navier-Stokes equations (for which global regularity is not known), whose

energy spectra quickly decay to zero. Although this is not a mathematical proof, it

gives us some insight into the question of regularity, suggesting that, given the con-

trast in behavior of the two systems, we would expect the Navier-Stokes equations

to be globally regular.

82



10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 1  10  100

E
(k

)

k

N-S

B

B||

B⊥

Figure 1: Energy spectra E(k) of the Navier-

Stokes equations at t = 5 (solid), with corre-

sponding E(k) (dashed), E(k)⊥ (short-dashed)

and E(k)‖ (dotted) for the Burgers equations at

the same time, all with viscosity ν = 2.5 × 10−3.

Symbols have the same meaning as in Fig.1.

D: Another initial condition for 1D Burgers equa-

tion

We test the bound (2.34) using another initial condition

u(x, 0) = − sin x− sin 2x. (12)

As can be seen in Fig.2 Some deviation from (2.34) is noticeable at large ampli-

tudes, while an overall scaling with α = 1 works as an upper-bound.

E: Log-Poisson model

The Log-Poisson model has

ζp =
p

9
+ 2

(

1 −
(

2

3

)p/3
)

for the scaling exponents. It follows that

α = lim
p→∞

ζp
p

= 1/9 ≈ 0.111,
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Figure 2: Enstrophy growth for the 1D Burgers

equation, the initial conditions (12)(solid) and

(2.33)(dashed). The dotted straight line denotes

the bound (2.34).

and

1 − ζ2 = 2

(

2

3

)
2
3

− 11

9
≈ 0.304 6= lim

p→∞

ζp
p
.

This model is thus not consistent with the fundamental constraint (3.26).

Equivalently, in terms of E(k) ∝ k−q, a = 1−3α
3(1+α)

= 1/5 implies q = 5+9a
3(1+a)

= 17
9
≈

1.888, whereas actually it has ζ2 + 1 = 29
9
− 2

(

2
3

)2/3 ≈ 1.6959.
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