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Abstract 

Air quality is the largest environmental health risk in the UK, contributing to chronic illness. 

Long-term exposure to ambient PM2.5 results in more than 29,000 premature deaths each year 

and leads to a reduction in life-expectancy of 7-8 months. However, throughout the year air 

pollutant concentrations vary, controlled by the complex interaction between emissions, 

meteorology, chemistry and topography, leading to short-term high pollution events.  The 

complexity of the relationships between these factors means that it is challenging to untangle 

the drivers of high air pollutant concentrations. An improved understanding of the drivers and 

impacts of high air pollution episodes is vital in informing policy to reduce the impact of short-

term air pollutant exposure on population health.  

The aim of this thesis was to quantify the impact of different sources and processes on short-

term changes in ambient PM2.5 across the UK as epidemiology studies have shown that short-

term exposure to PM2.5 is associated with increased mortality and morbidity. Several studies 

had previously shown that the varied meteorology the UK experiences plays a large role in 

controlling the concentrations of nitrogen dioxide and ozone. Therefore, we extend this 

analysis to ambient PM2.5 concentrations. Additionally, wildfires are an emerging threat in the 

UK due to climate change. The impacts of UK wildfires on air quality and health had not 

previously been studied, since they had been so rare in the past. Quantifying the impacts of 

wildfires on air quality and health is particularly important as wildfires since projected to 

continue to occur more often in the future due to climate change. This is likely to result in 

pollution from wildfires representing a larger fraction of the population’s annual exposure to 

air pollution in the future. Therefore, it is important that the impacts are minimised through 

effective science-led policy. This thesis is split into two key themes as a result: the impact of 
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synoptic weather on ambient PM2.5 concentrations and the impact of wildfires on air quality 

and health.  

Ground-based observations of PM2.5 concentrations, a back-trajectory model and output from 

an atmospheric chemistry transport model were used to investigate the impact of synoptic 

weather on ambient PM2.5 concentrations. This indicated that synoptic meteorology has a 

substantial influence on ambient PM2.5 across the UK. Easterly, south-easterly and southerly 

winds transport pollutants from continental Europe to the UK, increasing ambient 

concentrations observed. Alongside this, anticyclonic conditions lead to higher PM2.5 

concentrations due to the build-up of local emissions under slack winds. This indicates that 

population exposure to ambient PM2.5 concentrations is closely linked to synoptic weather. 

Therefore, policies which only consider reductions in local emissions may not yield the greatest 

reductions in PM2.5 and international cooperation is also required.  

The Saddleworth Moor and Winter Hill fires in 2018 were one of the first large wildfires in the 

UK to occur close to a large urban population. They were used as a case-study for the potential 

impacts of a UK wildfire on ambient air pollutant concentrations and human health. A 

combination of observational data from satellites, ground-based monitoring, an aircraft flight 

and an atmospheric chemistry transport model (WRF-Chem) were used to investigate the 

impacts of the fires. Observations showed that concentrations of pollutants close to the fires 

were high but, in areas downwind (> 80 km away), concentrations were also enhanced above 

background values, exposing populations to high concentrations far from the fires. Alongside 

this, secondary pollutants, such as ozone, were formed in the downwind smoke plume. 

Modelling results indicated that a large proportion of the population in the region to the west 

of Saddleworth Moor and Winter Hill were exposed to PM2.5 concentrations above the WHO 

guideline limit and the moderate DAQI limit. The fires led to increases in the number of deaths 
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brought forward due to exposure to PM2.5 compared to if there were no fires and as a result had 

a large economic impact.  

Finally, the impacts of the 2019/2020 Australian bushfires were estimated using WRF-Chem. 

Fire emissions from FINN indicated PM2.5 emissions from the fires were unprecedented. The 

WRF-Chem model was used to quantify the air quality and health impacts of PM2.5 from the 

fires. This indicated that large proportions of the population were exposed to dangerous 

(‘Poor’,’V. Poor’ and ‘Hazardous’) air quality levels between September 1st 2019 and January 

31st 2020. The impacts of the bushfires on AQ were concentrated in the cities of Sydney, 

Newcastle-Maitland and Canberra-Queanbeyan and Melbourne, with Brisbane and Adelaide 

less severely affected by the fires. Exposure to PM2.5 from the fires led to an estimated 180 

(95% CI: 74, 294) deaths being brought forward between October 1st and January 31st. The 

health impacts were largest in New South Wales, Queensland and Victoria. At a city-level the 

health impacts were concentrated in Sydney, Melbourne and Canberra since they have large 

populations that were exposed to high PM2.5 concentrations for prolonged periods during the 

fires. 

Overall, this thesis aimed to quantify the drivers and impacts of short-term air pollution 

episodes across the UK. Synoptic weather was shown to play and important role in ambient 

PM2.5 concentrations through the build-up of local emissions and long-range transport of PM2.5 

to the UK under continental air masses. This highlights the need for continued cooperation to 

reduce emissions across Europe. The impact of short-term emerging threats, such as wildfires, 

was also quantified. This indicated that short-term high pollution events have the potential to 

have a substantial impact on air quality and health. With increased wildfire frequency projected 

in the future due to climate change, the results of this work highlight that more research is 
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required to quantify the cost-benefits of public health interventions or changes in land-

management practices that may reduce the risk of wildfires in the UK and Australia. 
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concentration averaged over all LWT regimes (2010-2016) (in µg m-3), shown 

in Figure 26) under different flows directions is shown in panels (a) to (f).  For 

clarity, we show the three flow directions with the largest positive anomaly ((a) 

easterly, (b) south-easterly and (c) southerly) and the three flow directions 

with the largest negative anomaly ((d) northerly, (e) westerly and (f) north-

westerly). The mean, 75th and 90th percentile PM2.5 concentrations calculated 

from all sites are shown on the top right of each panel. Sites where the anomaly 

is statistically significant (p <0.05) are indicated by black contouring and the 

percentage of sites where anomalies are statistically significant is also 

indicated in the top right panel (% sig). The frequency of each LWT (in %) 

for the 2010-2016 period is also indicated. ................................................ 115 

Figure 28. AURN annual mean PM2.5 anomalies (relative to multi-annual mean 

concentration averaged over all LWT regimes (2010-2016 (in µg m-3), shown 

in Figure 26). Concentrations and anomalies sampled under (a) anticyclonic 

(b) cyclonic and c) unclassified weather types are shown. The mean, 75th and 

90th percentile PM2.5 concentration calculated from all sites is shown on the 

top right of each panel. Sites where the anomaly is statistically significant (p 

<0.05) are indicated by black contouring and the percentage of sites where 

anomalies are statistically significant is also indicated in the top right panel 

(% sig). The frequency of each LWT (in %) for the 2010-2016 period is also 

indicated. ....................................................................................................... 116 

Figure 29. Median UK (background AURN sites) integrated PM2.5 emissions (µg m-

2) accumulated over the daily (12 UTC, 2010-2014) ROTRAJ back trajectories 

(4 days – 15-minute time steps), with a 7-day e-folding lifetime, binned by 

LWT flow directions. Red circles represent the UK fractional contribution to 

trajectory accumulated PM2.5 emissions. ................................................... 118 

Figure 30. The multi-annual mean PM2.5 anomaly relative to annual mean 

concentration averaged over all LWT regimes (relative to multi-annual mean 

concentration averaged over all LWT regimes (2010-2016) (in µg m-3)) under 

different flow directions from the EMEP4UK model. 10m winds, also from the 

EMEP4UK model (nudged to 3-hourly GFS analysis), are over plotted. All 

LWT wind directions and synoptic types are shown. ............................... 121 

Figure 31. Percentage occurrence (defined as the percentage of occurrences of 

easterly, south-easterly and southerly (and westerly north-westerly and 

northerly) LWTs in each bin) of easterly, south-easterly and southerly 

weather types and westerly, north-westerly and northerly in each DAQI PM2.5 

concentration bin. Bins 1-10 indicate PM2.5 concentrations of 0-11, 12-23, 24-

35, 36-41,42-47,48-53,54-58,59-64,65-70, >71 (all in µg m-3). ................... 123 
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Figure 32. CEISIN population count (2015). Black triangles indicate the locations 

of Saddleworth Moor (SM) and Winter Hill (WH), the cities of Manchester 

(Man) and Liverpool are also marked. Black circles indicate AURN 

observation sites used in Figure 33. The flight path of the FAAM aircraft on 

29th June 2018 is also shown in grey, with near-field and downwind sections 

(Figure 35-Figure 37) of the flight highlighted in red and blue. .............. 140 

Figure 33. AURN observations of volatile and non-volatile PM2.5 for 16th June – 14th 

July 2018. Non-volatile PM2.5 is indicated by the red solid line (2018) and pink 

shading (2013-2017 standard deviation). Volatile PM2.5 is indicated by the blue 

solid line (2018) and light blue shading (2013-2017 standard deviation). The 

total PM2.5 concentration for 2018 is also indicated by the black dashed line 

and the fire period in grey. The WHO 24-hour guideline limit is also in green 

for reference. ................................................................................................ 144 

Figure 34. TROPOMI total carbon monoxide (TCCO, moles m-2) measurements of 

the Saddleworth Moor wildfire (25th – 30th June 2018). Black and purple 

polygon-outlined regions represent the fire plume (>0.03 moles m-2) and edge 

of plume (0.025-0.03 moles m-2). Black dots show pixels where MODIS fire 

radiative power (FRP) is > 50 mW m-2. White dots show the location of the 

Saddleworth Moor and Winter Hill fires. Blue dots show the location of 

Manchester and Liverpool. The box and whisker schematics represent 

TROPOMI tropospheric column nitrogen dioxide (TCNO2, 10-5 moles m-2) 

sub-sampled “in-plume”, “edge of plume” and “out of plume” TCCO 

thresholds. TCNO2 is also sub-sampled under fire pixels (FRP > 50 mW m-2) 

and non-fire pixels (FRP < 50 mW m-2). Red, green and blue represent the 

median, 25th and 75th percentiles and 10th and 90th percentiles, respectively.

 ....................................................................................................................... 146 

Figure 35. Facility of Airborne Atmospheric Measurements (FAAM) observations 

of carbon monoxide (CO, ppbv) and ozone (O3, ppbv) from the Saddleworth 

Moor wildfires on 29th June 2018. (a) CO concentration along flight path (b) 

O3 concentration along flight path (c) time-altitude CO profile, (d) time-

altitude O3 profile, e) CO (black) and O3 (red) time-series. Time stamps for 

the flight are included in (a) for reference to in (c) and (d). The sections 

bounded by the red and blue dashed lines in panels (a), (b), (e) and (f) 

represent the near-field (NF) and downwind (DW) time phases of the flight. 

The horizontal purple dashed line in (e) indicates the “in-plume” (> 125 ppbv) 

versus “out of plume” (< 125 ppbv) threshold. ......................................... 150 

Figure 36. Box and whisker schematic of CO (left, ppbv), O3 (centre, ppbv) and NO2 

(right, ppbv) “in-” and “out of plume” (CO > 125 ppbv). Red, green and blue 

represent the median, 25th and 75th percentiles and minimum and maximum 

concentrations, respectively. NF and DW represent the near-field and 

downwind phases of the plume. .................................................................. 153 
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Figure 37. CO (ppbv) and O3 (ppbv) relationship for different Saddleworth Moor 

fire plume phases (29th June 2018). Black circles represent all data defined as 

“out of plume” (<125 ppbv CO), red circles are “in plume” near field and blue 

symbols are “in plume” downwind. Blue crosses, diamonds and circles 

represent measurements between 0.25-0.5 km, 0.6-0.85 km and above 0.9 km. 

Dashed lines represent the CO-O3 regression for different fire plume altitudes 

where all downwind relationships are significant at the 95% confidence level 

(*). .................................................................................................................. 155 

Figure 38. Population count (km-2) (2015) in model domain with Automated Urban 

and Rural Network (AURN) sites used in model evaluation over plotted 

(Supplementary Material: Table 12). Sites where elevated PM2.5 was observed 

are indicated by red stars and those where concentrations remained below 50 

µg m-3 by black circles. The locations of Saddleworth Moor and Winter Hill 

are indicated by black triangles. Fire emissions, from FINNv1.5 (time-varying 

scaling), between June 23rd and June 30th are indicated by red circles – each 

circle represents a fire hotpot from MODIS, while the size of the circles is 

relative to the mass of PM2.5 emitted in kg day-1 (scale on left). The area over 

which scaling was applied to the FINN fire emissions is also shown by the blue 

box. More details on AURN sites can be found in Supplementary Material: 

Table 12. ........................................................................................................ 176 

Figure 39. Hourly observed and simulated surface PM2.5 between June 16th 2018 

and July 14th 2018. Modelled values are from the time-varying scaling 

simulation (see Wildfire emissions and Model Evaluation sections and Table 

8), in magenta, and observations from AURN sites are in black. Locations 

where PM2.5 observations are elevated are shown by red stars and time series 

site names in red. The period when the Saddleworth Moor and Winter Hill 

fires occurred is indicated in grey shading. ............................................... 185 

Figure 40. (a) Areas of low (≤ 36 µg m-3), moderate (36 - ≤53 µg m-3), high (54 - ≤70 

µg m-3) and very high (>71 µg m-3) PM2.5 as defined by the Daily Air Quality 

Index (DAQI). Coloured numbers correspond to total number of people 

exposed to each DAQI level on at least one day between June 23rd and June 

30th 2018. See Supplementary Material: Table 13 for more information on the 

DAQI.  (b) Areas where PM2.5 is above the WHO 24-hour limit of 25 µg m-3 

and total population exposed to PM2.5 below (green) and above (red) this 

threshold on at least one day between June 23rd – June 30th. (c) Mean increase 

(%) in PM2.5 due to fires between June 23rd and June 30th 2018. Calculated as, 

𝑷𝑴𝟐. 𝟓 𝑭𝒊𝒓𝒆𝒔 − 𝑷𝑴𝟐. 𝟓 𝑵𝒐 𝑭𝒊𝒓𝒆𝒔𝑷𝑴𝟐. 𝟓 𝑵𝒐 𝑭𝒊𝒓𝒆𝒔 x 𝟏𝟎𝟎, where 10 

represents a 10% increase in PM2.5. Locations of large urban areas and 

Saddleworth Moor (SM) and Winter Hill (WH) are also indicated for 

reference. ...................................................................................................... 191 
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Figure 41. (a) Total Excess Mortality (Em) across the entire simulation domain from 

PM2.5 in the fires and no fires simulations. The fraction of mortality due to 

fires across the model domain between June 16th – July 14th 2018 is also shown, 

calculated as (𝐄 𝐦 𝐅𝐈𝐑𝐄𝐒 − 𝐄 𝐦 𝐍𝐎 𝐅𝐈𝐑𝐄𝐒  𝐄𝐦 𝐅𝐈𝐑𝐄𝐒x 𝟏𝟎𝟎). 95% 

confidence intervals, based on uncertainty in the concentration-response 

function, are indicated by red and blue shading. (b) Percentage increase in 

excess mortality (Em) due to fires (𝐄 𝐦 𝐅𝐈𝐑𝐄𝐒 −
𝐄 𝐦 𝐍𝐎 𝐅𝐈𝐑𝐄𝐒  𝐄𝐦 𝐍𝐎 𝐅𝐈𝐑𝐄𝐒x 𝟏𝟎𝟎), with the economic cost of mortality 

from fires (in millions of pounds (M GBP)) also shown. .......................... 194 

Figure 42. PM2.5 fire emissions (Tg day-1) across Australia between March 2019 and 

March 2020 from the FINN near-real time fire emission dataset. The 

timeseries shows the 2010-2018 25th and 75th percentiles of daily PM2.5 

emissions each day (red) and the mean 2019-2020 daily PM2.5 emissions (blue). 

Inset map: Map of PM2.5 fire emissions (Tg day-1) across eastern Australia 

between March 2019 and March 2020. ...................................................... 223 

Figure 43. (a) Observed (black) and simulated (magenta and cyan) daily mean PM2.5 

concentrations. Simulations shown are no fires (cyan) and fires (magenta). 

The mean PM2.5 concentration from all 64 observational sites across eastern-

Australia is shown for the model and observations. (b) The same as above but 

for individual cities. The observed (black) and simulated (magenta and cyan) 

mean PM2.5 concentrations are shown for each city. The total number of sites 

in each city is also shown on the left of each panel. .................................. 225 

Figure 44. Daily population exposure (in millions) to Australian Air Quality Index 

Values across eastern-Australia (nudged_BL_fires simulation) between 

September 1st and January 31st. More information on how the AQI is 

calculated in Supplementary Material: Table 25. Daily population-weighted 

bushfire PM2.5 exposure across all states in model domain (red) and regionally 

for Victoria (green), Australian Capital Territory blue (yellow) and 

Queensland (purple) (nudged_BL_fires-nudged_BL_no_fires simulation) 

between September 1st and January 31st. .................................................. 228 

Figure 45. Daily population exposure (in millions) to Australian Air Quality Index 

Values in individual cities (Brisbane (Queensland), Sydney (NSW), Newcastle-

Maitland (NSW), Canberra-Queanbeyan (ACT) and Melbourne (Victoria)) 

between September 1st and January 31st. More information on how the AQI is 

calculated in Supplementary Material: Table 25. Daily population-weighted 

bushfire PM2.5 concentration in the cities of Brisbane (blue), Newcastle-

Maitland (purple), Sydney (green), Canberra-Queanbeyan (yellow), 

Melbourne (grey) and Adelaide (orange) (nudged_BL_fires- 

nudged_BL_no_fires simulation) between September 1st and January 31st.
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Figure 46. Estimated increase in the number of deaths brought forward across 

model domain (red) and the states of Victoria (green), Australia Capital 

Territory [ACT] (blue), New South Wales [NSW] (yellow) and Queensland 

(purple) due to PM2.5 from bushfires (fires only) between October 1st and 

January 31st. Shading indicates the 95% confidence intervals of the estimate. 

The number of deaths brought forward due to bushfire PM2.5 (fires only) (red) 

between October 1st and January 31st is also broken down by city and region 

and the total number of deaths shown above the bars. The estimated number 

of deaths brought forward in each state due to bushfire PM2.5 (fires only) (red) 

in this study are compared to the Borchers Arriagada et al. (2020) estimate 

(indigo) and Ryan et al. (2021) for the same period. ................................. 235 

Figure 47. Sources of uncertainties within modelling health impacts from wildfire 

pollutants. ..................................................................................................... 261 

Figure 48. Median UK (background AURN sites) total accumulated PM2.5 emissions 

(µg m-2) accumulated over the daily (12 UTC, 2010-2014) ROTRAJ back 

trajectories (4 days – 15-minute time steps), with a (a) 1-day (b) 3-day (c) 7-

day and (d) 14-day e-folding lifetime, binned by LWT flow directions. Red 

circles represent the UK fractional contribution to trajectory accumulated 

PM2.5 emissions. ............................................................................................ 329 

Figure 49. 2010-2016 daily modelled (cyan and magenta) and observed (blue and 

red) PM2.5 concentrations, binned by LWT. Mean (red/magenta), 10th, 25th, 

75th and 90th percentiles are shown. The mean modelled (magenta) and 

observed (red) PM2.5 concentration for all LWTs is shown by the dashed line.
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Figure 50. Annual mean concentration and anomaly between 2010-2016 for daily 

modelled (EMEP4UK) and observed PM2.5 concentrations at AURN 

observation sites, binned by LWT. The Pearson correlation (r) is shown at the 

top of each panel. ......................................................................................... 332 

Figure 51. ERA-Interim 1200Z mean sea level pressure (hPa 0.5° × 0.5° grid)) with 

ERA5 geopotential height (m) at 850 hPa overplotted in red for June 19th-30th 

2018 over Northern England. The black dots represent the location of 

Saddleworth Moor and Winter Hill. .......................................................... 337 

Figure 52. ECMWF ERA-Interim 2-m temperature (K, 0.5° × 0.5° grid) for June 

19th-30th 2018 over Northern England. The black dots represent the location 

of Saddleworth Moor and Winter Hill. ...................................................... 338 

Figure 53. ECMWF ERA-Interim 10-m wind speed (m s-1, 0.5° × 0.5° grid) for June 

19th-30th 2018 over Northern England. The black dots represent the location 

of Saddleworth Moor and Winter Hill. ...................................................... 339 

Figure 54. MODIS visible images, from NASA’s Aura and Terra satellites, of the 

Saddleworth Moor and Winter Hill fires between June 25th-30th. The locations 

of Saddleworth Moor and Winter Hill are indicated in white, while the 

locations of Manchester and Liverpool are shown in cyan. ..................... 341 

Figure 55. MODIS fire radiative power (FRP, mW m-2, 0.1° × 0.1° grid) for June 

19th-30th 2018 over Northern England. The white dots represent the location 

of Saddlworth Moor and Winter Hill. ....................................................... 343 
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Figure 56. Back trajectories from HYSPLIT for the aircraft flight on June 29th 2018. 

Trajectories are released from various locations at 250-1000m heights based 

on the aircraft altitude and track during the near-field and downwind sections 

of the flight. The path of each trajectory is indicated on the map, while the 

altitude above ground level is indicated on the bottom plot. ................... 345 

Figure 57. TROPOMI tropospheric column nitrogen dioxide (TCNO2, 10-5 moles 

m-2) measurements of the Saddleworth Moor wildfire (June 25th – 30th 2019). 

Black and purple polygon-outlined regions represent the TROPOMI total 

column carbon monoxide (TCCO) fire plume (>0.03 moles m-2) and edge of 

plume (0.025-0.03 moles m-2). Black dots show pixels where MODIS fire 

radiative power (FRP) is > 50 mW m-2. White dots show the location of the 

Saddleworth Moor and Winter Hill fires. Blue dots show the location of 

Manchester and Liverpool. The box and whisker schematics represent TCNO2 

sub-sampled under the plume, edge of plume and out of the plume TCCO 

thresholds. TCNO2 is also sub-sampled under fire pixels (FRP > 50 mW m-2) 

and non-fire pixels (FRP < 50 mW m-2). Red, green and blue represent the 

median, 25th & 75th percentiles and 10th & 90th percentiles, respectively.349 

Figure 58. Total column averaging kernels reflecting the altitude sensitivity of the 

CO total column TROPOMI retrieval during the Saddleworth Moor fire days 

(June 25th-30th 2018) for three specific location, Manchester, Liverpool and 

Saddleworth Moor. ...................................................................................... 350 

Figure 59. Facility of Airborne Atmospheric Measurements (FAAM) aircraft path 

(hours since 00 UTC) and altitude(m above ground level (AGL))  from the 

Saddleworth Moor wildfires on June 29th 2018. ....................................... 352 

Figure 60. Facility of Airborne Atmospheric Measurements (FAAM) aircraft 

measurements of nitrogen dioxide (NO2, ppbv) (red) and carbon monoxide 

(CO, ppbv) (black) from the Saddleworth Moor wildfires on June 29th 2018. 

The sections bounded by the red and blue dashed lines represent the near-field 

(NF) and downwind (DW) time phases of the flight. The horizontal purple 

dashed line indicates the “in-plume” (> 125 ppbv) versus “out of plume” (< 

125 ppbv) threshold. .................................................................................... 355 

Figure 61. Facility of Airborne Atmospheric Measurements (FAAM) time-series 

observations of carbon monoxide (CO, ppbv) (black) and PM2.5 concentration 

(µg m-3) (red) from the Saddleworth Moor wildfires on June 29th 2018. The 

sections bounded by the red and blue dashed lines represent the near-field 

(NF) and downwind (DW) time phases of the flight. The horizontal purple 

dashed line indicates the “in-plume” (> 125 ppbv) versus “out of plume” (< 

125 ppbv) threshold. .................................................................................... 356 

Figure 62. Box and whisker schematic of PM2.5 aerosol concentration (µg m-3) and 

CO (right, ppbv “in-” and “out of plume” (CO > 125 ppbv). Red, green and 

blue represent the median, 25th and 75th percentiles and minimum and 

maximum concentrations, respectively. NF and DW represent the near-field 

and downwind phases of the plume............................................................ 357 
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Figure 63. Aircraft transect representing the fire plume the near-field (NF) flight 

segment. Red crosses represent where the aircraft was sampling “in-plume” 

air defined as CO concentrations > 125 ppbv. The plume width is 

approximately 4482 m and the plume thickness is approximately 52 m, 

representing an approximate rectangular cross-section. ......................... 359 

Figure 64. IASI total column carbon monoxide (TCCO, 1018 molecules cm-2) for 

June 25th - 30th 2018. Daily background concentrations have been subtracted 

based on the 1-0°W, 55-56°N average sub-region column value. The black 

circle representations the location of the Saddleworth Moor fires. ........ 361 

Figure 65. Area over which scaling was applied (blue) to FINNv1.5 emissions for 

use in WRF-Chem simulations over plotted on peat coverage in domain (Xu, 
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Figure 66. Hourly observed and simulated surface PM2.5 between June 16th and July 

14th 2018. Modelled values are from the no fires (green), no scaling (yellow), 

10x scaling (cyan) and time-varying scaling simulations (magenta) (see 

Manuscript: Model Evaluation and Table 8). Observations from AURN sites 

are indicated in black. ................................................................................. 369 

Figure 67. (a) Time-varying scaling, (b) 10x scaling and (c) no scaling simulated and 

observed hourly PM2.5 concentrations at all sites. Individual sites are shown in 

(d-f), with the mean for each observational site between June 16th – July 14th 

2018 indicated by coloured crosses. The 1:1, 0.5:1 and1:0.5 lines are shown for 

reference. The mean correlation coefficient (r), mean bias (MB), normalised 

mean bias (NMB) and root mean squared error (RMSE in µg m-3) across all 

sites for the simulation period (June 16th – July 14th 2018) are also indicated in 
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Figure 68. Areas of low (0-35 µg m-3), moderate (36-53 µg m-3), high (54-70 µg m-3) 

and very high (>71 µg m-3) PM2.5, as defined by the Daily Air Quality Index 

(DAQI). Coloured numbers correspond to total number of people exposed to 

each DAQI level on each day. Saddleworth Moor (SM) and Winter Hill (WH) 

are indicated by black triangles, while highly populated urban areas are 

indicated by black circles and abbreviated in line with definitions in Figure 

65. See Table 13 for more information on the DAQI. .............................. 375 

Figure 69. Areas where PM2.5 is above the WHO 24-hour limit of 25 µg m-3 and total 

population exposed to PM2.5 below (green) and above (red) this threshold on 

each day between June 23rd and June 30th 2018. Saddleworth Moor (SM) and 

Winter Hill (WH) are indicated by black triangles, while highly populated 

urban areas are indicated by black circles and abbreviated in line with 

definitions in Figure 65. ............................................................................... 376 

Figure 70. Daily mean percent increase in PM2.5 due to fires between June 23rd and 

June 30th 2018. Calculated as, 𝑷𝑴𝟐. 𝟓 𝑭𝒊𝒓𝒆𝒔 −
𝑷𝑴𝟐. 𝟓 𝑵𝒐 𝒔𝑭𝒊𝒓𝒆𝒔𝑷𝑴𝟐. 𝟓 𝑵𝒐 𝑭𝒊𝒓𝒆𝒔 x 𝟏𝟎𝟎, where 10% represents a 10% 

increase in PM2.5. Saddleworth Moor (SM) and Winter Hill (WH) are 

indicated by black triangles, while highly populated urban areas are indicated 

by black circles and abbreviated in line with definitions in Figure 65. .. 377 
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Figure 71. Areas of low (0-35 µg m-3), moderate (36-53 µg m-3), high (54-70 µg m-3) 

and very high (>71 µg m-3) PM2.5 as defined by the Daily Air Quality Index 

(DAQI) in the no fires simulation. Saddleworth Moor (SM) and Winter Hill 

(WH) are indicated by black triangles, while highly populated urban areas are 

indicated by black circles and abbreviated in line with definitions in Figure 

38. See Table 13 for more information on the DAQI. .............................. 378 

Figure 72. Comparison of FINNv1.5 and FINN near-real time (NRT). 2010-2019 

FINNv1.5 PM2.5 emissions (red) and 2018-2020 FINN near real time (NRT) 

PM2.5 emissions are plotted against MODIS hotspots. The linear fit for 2010-

2019 FINNv1.5 is shown in blue. ................................................................ 392 

Figure 73. Annual fire PM2.5 emission estimates for Australia in 2019. The five key 

fire emissions datasets are shown: GFED, FINN, GFAS, QFED and FEER 

(Liu, et al., 2020)........................................................................................... 393 

Figure 74. Ground-based observational sites used in model evaluation of daily mean 

PM2.5 concentrations. ................................................................................... 394 

Figure 75. Comparison of PM2.5 concentrations from model sensitivity simulations 

with PM2.5 observations from 80 observational sites across eastern-Australia. 

The fires, no_fires, plume_rise and scaled_1.5 simulations, in which all 

meteorological variables above the BL were nudged, while within the BL only 

horizontal and vertical winds were nudged. In the fires and scaled_1.5 

simulations fire emissions were released evenly through the BL, while in 

plume_rise the plume rise module was used. The fires and plume_rise 

simulations used FINN NRT emissions and in the scaled_1.5 simulation these 

emissions were scaled by 1.5 in Australia. In the nudged_BL, 

nudged_BL_no_fires and nudged_BL_scaled_1.5 simulations nudging was 

performed for all vertical levels and all meteorological variables. The 

nudged_BL and nudged_BL_1.5 simulations used FINN NRT emissions and 

in the nudged_BL_1.5 simulation these emissions were scaled by 1.5 in 

Australia and fire emissions were released evenly through the BL. In both the 

no_fires and nudged_BL_no_fires simulations no fire emissions were released.
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Figure 76. Comparison of daily mean PM2.5 concentrations from model sensitivity 

simulations with PM2.5 observations from 80 observational sites across 

eastern-Australia. Observations are shown in black, nudged_BL_fires in 

magenta and nudged_BL_no_fires in cyan for each site.......................... 400 
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over plotted. .................................................................................................. 401 

Figure 78. Monthly mean percentage of PM2.5 attributable to fires, calculated as 
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Figure 80. Daily population exposure to Air Quality Index Values across eastern-

Australia between September 1st and January 31st in the nudged_BL_no_fires 

simulation. More information on how the AQI is calculated in Table 25.404 
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 - Introduction 

Motivation 

Exposure to ambient air pollution has been shown to increase mortality, as well as shorten life 

expectancy (United States Environmental Protetion Agency (US EPA), 2009); World Health 

Organization, 2005). Within the UK, air quality is the largest environmental health risk, 

contributing to chronic illness (Department for Environment Food & Rural Affairs, 2019). 

Health is adversely affected through both exposure to short-term high pollution events, such as 

long-range transport or a wildfire, and long-term lower-level pollution, from ambient 

concentrations (Department for Environment Food & Rural Affairs, 2019). Long-term 

exposure to ambient PM2.5 in the UK results in more than 29,000 premature deaths each year 

(Committee on the Medical Effects of Air Pollutants, 2010) and leads to a reduction in life-

expectancy of 7-8 months (Department for Environment Food and Rural Affairs, 2007). The 

main economic cost of air pollution stems from the adverse health impacts of population 

exposure to PM2.5 and is estimated to be between £8.5 and £20.2 billion each year (Department 

for Environment Food and Rural Affairs, 2007). It is estimated that if no additional measures 

are implemented, on top of current targets, the economic cost will remain high, at £6.2 to £14.7 

billion in 2020, and average life expectancy will continue to be reduced, by 5.5 months 

(Department for Environment Food and Rural Affairs, 2007).  

The concentration of air pollutants varies in space and time, meaning that the air pollutant 

concentrations which a population is exposed to at any one location is affected by several 

sources (Figure 1):  
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1) Local emissions, such as those from traffic or power generation. 

2) Long-range transport of non-local (regional or international) emissions.  

3) Sporadic events, such as wildfires. 

Additionally, other secondary factors can interact with these sources to enhance or decrease air 

pollutant concentrations, including:  

1) tropospheric chemistry (through the production of secondary pollutants and the removal 

of primary and secondary pollutants) 

2) meteorology (through accumulation and removal processes)  

3) topography (through accumulation and removal processes) 

These secondary factors vary both spatially and temporally (Vallero, 2014). Therefore, their 

relative contributions vary throughout the year on monthly, daily and hourly timescales, and 

also vary between different pollutants. This leads to concentrations and population exposure in 

Figure 1. Schematic profile of source contributions to air pollutant concentrations at a given 

location. Local emissions, which determine the background concentrations, in grey 

(LOCAL), long-range transport of regional and international emissions, in magenta 

(LRT), and emissions from events such as fires, in cyan (EVENTS). 
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a specific location being influenced by a range of sources and factors at different scales and 

magnitudes (Figure 1). The complexity of the temporal and spatial variability between 

emissions, secondary factors and concentrations means that it is challenging to untangle the 

drivers of high air pollutant concentrations. This inhibits effective legislation to reduce 

population exposure over both short- and long- time scales, since both long-term and short-

term exposure to air pollutants have a measurable impact on health. In order to reduce the 

negative health impacts of air pollution by half the UK Government set stringent emission 

reduction targets for 2020 and 2030 (Department for Environment Food & Rural Affairs, 

2019). However, in order to achieve these targets in 2030, an improved understanding of the 

sources of pollutants and their relative contribution to concentrations at a given location are 

vital in providing a robust evidence base.  

1.1 Air Pollutants 

Air pollution can be defined as any natural or man-made trace constituent that has a measurable 

effect on humans, animals, materials or the natural environment between emission and removal 

(Seinfield, 1986). Pollutants can exist in gaseous, particulate (aerosol) or semi-volatile form. 

They can either be directly emitted as ‘primary pollutants’, or formed through reactions 

between primary emissions after they have been released into the atmosphere, known as 

‘secondary pollutants’. Primary pollutants include sulfur dioxide (SO2), nitrogen oxides (NOx 

which includes NO and NO2), carbon monoxide (CO), ammonia (NH3) and particulate matter 

(PM) (Figure 2) (Public Health England, 2018). These are emitted from a range of 

anthropogenic sources, shown in Figure 2, but can also be emitted from natural sources such 

as deserts and oceans. 
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Figure 2. UK anthropogenic air pollution sources sectors. The fractional contribution of each 

pollutant to emissions from each sector are shown as a percentage (white) and the 

dominant air pollutant of each sector is indicated (orange). (Public Health England, 

2018). 

 

Secondary pollutants include nitrogen dioxide (NO2), ozone (O3) and several species of PM, 

including ammonium sulfate (NH4NO3) and ammonium nitrate (NaNO3). Once emitted, 

pollutants generally exist as trace constituents, however concentrations can vary greatly 

spatially and temporally depending on emission, chemical transformation, transport and 

removal processes.  
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 Atmospheric Particles  

Aerosol particles are suspensions of solid, liquid, or mixed particles (Putaud, et al., 2010). They 

are very variable in chemical composition and have a wide range of sizes, dependent upon their 

formation (Figure 3). Particles can be separated into four distinct modes based on their particle 

diameter: the nucleation, Aitken, accumulation and coarse modes (Figure 3). The particle 

diameters, sources, formation, growth and removal of each of these particle modes are shown 

in Figure 3 and Table 1. Table 1 also gives the number/mass concentration and atmospheric 

lifetime. 

 

 

Figure 3. Schematic multi-modal particle size distribution. The four key size modes are labelled 

– ‘nucleation’, ‘Aitken’ ‘accumulation’ and ‘coarse’. Typical transformations and 

example particle types within each mode are also shown (Deutscher Wetterdienst, 2017). 
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Aerosol Mode Particle 

diameter 

(µm) 

Formation Growth 

Processes 

Removal 

Processes 

Number 

Concentration 

/ Mass   

Atmospheric 

Lifetime 

Nucleation < 0.01 Nucleation Gas to particle 

conversion 

(condensation

) 

Growth to 

larger modes by 

condensation 

and coagulation  

High number 

concentration 

Low mass 

 

< 1 hour 

Aitken < 0.1  Condensation Coagulation 

and 

coalescence  

Growth to 

larger modes by 

condensation 

and coagulation  

High number 

concentration 

Low mass 

 

A few days 

Accumulation 0.1 – 2.5 Condensation/ 

coagulation  

Collision of 

particles, 

condensation 

of gases onto 

particles 

Inefficient 

removal and 

slow growth to 

larger modes 

Low number 

concentration 

High mass 

1-2 weeks 

Coarse 2.5 –  

10 

Condensation/ 

coagulation 

Coagulation Sedimentation Low number 

concentration 

High mass 

Hours to days 

 

 Particulate Matter  

The three largest aerosol modes (Aitken, accumulation and coarse (Figure 3 and Table 1)) are 

often used to classify particulate matter aerosol (PM), based on particle diameter. PM is split 

into the ultrafine fraction (diameter ≤0.1 µm), the fine fraction (diameter 0.1 µm and ≤2.5 

µm – PM2.5) and the coarse fraction (diameter 2.5 µm but ≤10 µm – PM10) (Figure 3 and 

Table 1). Though PM is generally classified by its size, the composition and shape of PM within 

each size fraction can vary greatly (Seinfield, et al., 2016), based on many factors including 

Table 1. Overview of aerosol modes shown in Figure 3 (Willeke, and Whitby, 1975).  
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emission sources, secondary formation, meteorology and geography (Department for 

Environment Food & Rural Affairs, 2019).  

The size of PM and duration of exposure are key in determining the potential adverse human 

health effects. Generally, PM10 is too large to be respirable so is deposited in the nose or throat 

(Figure 4). However, PM2.5 is small enough to be inhaled deep into the lungs, where it can have 

a negative impact on health (Figure 4, Figure 5). PM1 can penetrate into the alveoli, through 

the bronchioles (Figure 4) and PM0.1 can cross through the capillaries in the alveolar walls into 

the blood (Figure 4).  

 

Figure 4. Particulate matter size and penetration into the body (Clean Fuels Development 

Coalition, 2019) 

 

The strongest epidemiological evidence is associated with exposure to PM2.5 (Harrison, et al., 

2004; Pope III, 2007; Pope III, and Dockery, 2006; Public Health England, 2018). Exposure to 

PM2.5 is associated with increases in morbidity and mortality over short and long-time scales 

(GBD Collaborators 2015, 2017) (Figure 5). The exacerbation of asthma and respiratory 

inflammation is shown to be associated with short-term exposure (Public Health England, 

2018) (Figure 5). Long-term exposure is associated with increases in heart disease, stroke, lung 
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cancer and lower respiratory tract infection (GBD Collaborators 2015, 2017; Pope III, and 

Dockery, 2006).  

 

Figure 5. Dominant UK primary PM2.5 emission sources and health impact mechanisms 

(Department for Environment Food & Rural Affairs, 2019).  

 

 Atmospheric Gases 

 Nitrogen Oxides 

Nitrogen oxide (NOx) is formed of two species; Nitric oxide (NO) and nitrogen dioxide (NO2) 

and is produced during the combustion of fossil fuels (in 2017 99% of NOx was from the 

combustion of fuels) (National Atmosphere Emissions Inventory, 2017a). Road transport 

(~34%), other forms of transport (16.8%) and power/energy production (22%) dominate 

emissions (Figure 2) (National Atmosphere Emissions Inventory, 2017a; Public Health 

England, 2018). In the transport sector emissions are largely from diesel vehicles, which emit 

a larger fraction of NO2 (between 12% and 70% of total NOx emissions) (European 
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Environment Agency, 2013). Alongside this, total NOx emissions are higher for diesel vehicles 

(European Environment Agency, 2013).  

NOx emitted as NO, can interconvert to form NO2 (and back to NO) very quickly (~100s) 

(Department for Environment Food & Rural Affairs, 2019). This occurs through the reaction 

with ozone (O3) (Equation (1)) and the photolysis of NO2 by sunlight to return to NO (Equation 

(2)). This process leads to a net null reaction to re-form O3 (Equation (3)) (Wood, et al., 2009).   

 

𝑁𝑂 +  𝑂3  → 𝑁𝑂2 +  𝑂2 

 

 

(1) 

 

 

𝑁𝑂2 + ℎ𝑣 ( < 400 nm) →  𝑁𝑂 +  𝑂(3𝑃) 

 

 

(2) 

 

 

𝑂(3𝑃) +  𝑂2 +  𝑀 →  𝑂3 + 𝑀 

 

 

(3) 

 

Hydroperoxy radicals (HO2) and organic peroxy radicals (RO2) can also oxidise NO to NO2 

(through the reactions in Equations (4) and (5)), leading to O3 formation through NO2 

photolysis in the daytime (Equations (2) and (3)) (Wood, et al., 2009) (Figure 6). Typically > 

95% of NO2 formed (Equations (4) and (5)) undergoes photolysis, leading to the production of 

O3 (Wood, et al., 2009).   
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𝐻𝑂2 + 𝑁𝑂 → 𝑂𝐻 + 𝑁𝑂2 (4) 

 

𝑅𝑂2 + 𝑁𝑂 → 𝑅𝑂 + 𝑁𝑂2 (5) 

 

NOx emissions have reduced by 72% since 1990 due to reductions in emissions from all sectors. 

In the road transport sector the introduction of catalytic converters (77% reduction) and tighter 

regulations in production of new vehicle engines (Euro standards) have reduced emissions 

(National Atmosphere Emissions Inventory, 2017a). Though, real-world emissions are higher 

than in laboratory tests and also higher than emission standards (European Environment 

Agency, 2017a). In other transport types, emissions have halved due to reductions in emissions 

from vehicles and changes in fuel types in shipping. Power/energy emissions have also been 

reduced by >75% due to the combination of better emission control, reduced fuel oil usage and 

reduced kiln emissions (National Atmosphere Emissions Inventory, 2017a).  

Despite reductions in NOx emissions, the UK is currently in breach of the EU limit for 24-hour 

NO2 concentrations of 200 µg m-3 in two cities and in breach of the annual mean limit (40 µg 

m-3) in 37 cities. As a result, the UK has been taken to court over failures to meet these targets, 

which should have been met by 2010. This is as a result of population exposure to NO2 being 

shown to cause respiratory irritation and inflammation, which can lead to lower resistance to 

respiratory infections such as bronchitis (Public Health England, 2018). The Department for 

Environment Food & Rural Affairs (DEFRA) estimates that in areas exceeding the EU legal 

limit 80% of NOx emissions are from transport (largely diesel cars and vans) (Department for 

Environment Food and Rural Affairs, 2017).  
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 Carbon Monoxide 

Carbon monoxide (CO) is a tasteless, colourless and odourless gas released during incomplete 

combustion in vehicles, wildfires and biomass burning, as well as some industrial activities. 

CO is associated with negative impacts on human health, passing into the bloodstream and 

replacing oxygen on haemoglobin, thus reducing oxygen uptake. If exposed to high enough 

CO concentrations (>700 ppmv) this can lead to death through suffocation, however ambient 

concentrations are much below this at ~2-100 ppmv. CO is also associated with ozone 

formation in rural areas where NOx concentrations are low (Figure 6). 

The largest CO source in the UK in 2017 was residential combustion, accounting for 25% of 

the UK’s total emissions (National Atmosphere Emissions Inventory, 2017a). This represents 

a doubling in contribution since 1990 and is due to much more rapid reductions in emissions 

from transport (from 65% in 1990 to 16% of emissions in 2017) and industry. These reductions 

have been driven by the transition from solid fuels to cleaner fuels, such as gas and electricity, 

and decline in the metal industries. The net effect has been total CO emissions reducing by 

79% since 1990. This is in line with the aim of meeting the EU limit on CO concentrations of 

10 mg m-3, which the UK has met since 2005. 

 Non-Methane Volatile Organic Compounds (NMVOCs) 

Non-Methane Volatile Organic Compounds (NMVOCs/VOCs) are carbon containing 

compounds that vary extensively in chemical composition but exhibit very similar behaviour 

in the atmosphere (National Atmosphere Emissions Inventory, 2017b). VOCs are emitted from 

a wide range of sources, including combustion and vapours from solvents/petrol. The key 

sources of VOCs are the industry, transport, fossil fuel extraction, agriculture and residential 

sectors (National Atmosphere Emissions Inventory, 2017b). However, VOCs can also be 
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naturally emitted by vegetation (Biogenic VOCS (BVOCs)) (Carlton, et al., 2009; Kroll, and 

Seinfeld, 2008; Scott, et al., 2014). Once in the atmosphere, VOCs are involved in the 

formation of secondary air pollutants, such as O3 and secondary organic aerosols (SOA). SOAs 

are formed when VOCs are oxidised to form lower volatility products that can partition into 

the aerosol phase (Scott, et al., 2014). O3 is formed as a result of photochemical reactions of 

VOCs in the presence of nitrogen oxides (NOx), heat and sunlight (European Environment 

Agency, 2016). Some VOC species are directly associated with negative health impacts (e.g. 

benzene) due to being carcinogenic (National Atmosphere Emissions Inventory, 2017b). Other 

VOCs are associated with negative health impacts due to their role in forming secondary 

pollutants in the atmosphere (e.g. O3 and PM2.5) (Atkinson, et al., 2016; Jerrett, et al., 2009; 

Pope III, and Dockery, 2006).  

 Ammonia 

Ammonia is a gas that is emitted largely by agricultural processes (e.g. 87% of the total 

ammonia in 2016) such as manure, slurry and fertilizer storage and spreading (Department for 

Environment Food & Rural Affairs, 2019) (Figure 2). The remaining 12% of ammonia 

emissions are split equally between other emissions sources (Figure 2).  

Ammonia has an important role in a range of environmental issues such as nitrification, 

eutrophication, acidification (National Atmosphere Emissions Inventory, 2017a). Alongside 

this, ammonia is also indirectly linked to the health impacts of exposure to PM2.5 due to being 

a precursor species in the formation of secondary PM. The atmospheric lifetime of ammonia 

increases from a few hours, as a gas, to a few weeks, as a particle, meaning ammonia is 

important on both local and regional, even national, scales (Department for Environment Food 

& Rural Affairs, 2019).  
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In contrast to emissions of primary PM2.5, which decreased by 55% between 1990 and 2017, 

emissions of ammonia only decreased by 13% between 1990 and 2017. However, there has 

been a trend of increasing emissions from 2015 to present. The increase has been attributed to 

increased cattle emissions and spreading resulting from the widespread increased use of 

anaerobic digestion for non-manure waste (National Atmosphere Emissions Inventory, 2017a).  

As a result, agricultural emissions of ammonia have been identified to be drivers of several of 

the high PM2.5 episodes in the UK in recent years (Vieno et al., 2016; Vieno et al., 2016; Public 

Health England, 2018).  

 Secondary PM2.5   

Secondary PM2.5 (ammonium/sodium nitrate (NH4NO3/NaNO3) and ammonium sulfate 

(NH4SO4)) contributes to between 50 and 75% of total UK PM2.5 mass in ambient and high 

pollution conditions. These secondary PM species are formed from the mixing of precursor 

emissions of NH3, SO2 and NOx in the atmosphere (Air Quality Expert Group, 2005). The 

reactions involved in PM formation are predominantly inorganic in nature, complex and 

compete with each other (Sharma, et al., 2007). They depend on solar radiation and 

meteorological factors such as relative humidity and temperature.  

The mechanism forming sulfate and nitrate species of PM2.5 are described below in Equations 

(6) - (10) (CENR, 2000).  

1.1.2.5.1 Sulfate PM species  

Sulfur dioxide (SO2) is created during combustion, through the oxidation of sulfur. SO2 is 

subsequently oxidised by the hydroxyl radical (OH) to form sulfuric acid (H2SO4) (Equation 

(6)). Sulfuric acid can then react with ammonia (NH3) to create ammonium sulfate ((NH4)2SO4) 

(Equation (6)). 
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2𝑂𝐻 + 𝑆𝑂2  → 𝐻2𝑆𝑂4 

 

(6) 

 

 

2𝑁𝐻3 + 𝐻2𝑆𝑂4 →  (𝑁𝐻4)2𝑆𝑂4 

 

(7) 

 

1.1.2.5.2 Nitrate PM species 

The formation of ammonium nitrate is shown in Equation (8). Nitric acid (HNO3) is formed 

when nitrogen dioxide (NO2) reacts with the hydroxyl radical (OH) (Equation (8)). Ammonia 

(NH3) and nitric acid (HNO3) can then react on pre-existing particles to form ammonium nitrate 

(NH4NO3) (Equation (9)). As a result, ammonium nitrate is associated with an increase in 

overall PM mass, but not an increase in number density. Ammonium nitrate is a semi-volatile 

species meaning it can readily transition between the gas (ammonia and nitric acid) and 

particulate phase (ammonium nitrate). The phase change of ammonium nitrate can occur over 

minutes to hours, dependent upon atmospheric conditions (Air Quality Expert Group, 2012).      

Finally, the formation of sodium nitrate (NaNO3) (Equation (10)) requires nitric acid (HNO3) 

and sodium chloride (NaCl) as precursor emissions. This reaction forms sodium nitrate 

(NaNO3) as well as hydrochloric acid (HCl) (Rossi, 2003). 

𝑁𝑂2 + 𝑂𝐻 + 𝑀 →  𝐻𝑁𝑂3 + 𝑀 

 

(8) 
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𝑁𝐻3 + 𝐻𝑁𝑂3  ←→  𝑁𝐻4𝑁𝑂3 

 

(9) 

 

𝐻𝑁𝑂3 + 𝑁𝑎𝐶𝑙 → 𝑁𝑎𝑁𝑂3 + 𝐻𝐶𝑙 (10) 

The formation of ammonium sulfate (Equation (6)) is favoured over the formation of 

ammonium nitrate (Equation (9)). However, where sulfate concentrations are low and nitrogen 

oxide concentrations are high ammonium nitrate is formed preferentially (CENR, 2000).  

 Ozone 

Tropospheric ozone (O3) is a gaseous secondary pollutant, formed by photochemical reactions 

between precursor emissions of carbon monoxide (CO), methane (CH4) and Volatile Organic 

Compounds (VOCs) in the presence of nitrogen oxides (NOx), heat and sunlight (Crutzen, et 

al., 1999). Tropospheric O3 precursors are largely emitted from the transport, industrial and 

chemical sectors, though VOCs are also emitted by natural sources (vegetation) (National 

Atmospheric Emission Inventory, 2016). Although emission sources are predominantly located 

in urban areas, NO2 can be transported away from source regions to rural areas, leading to 

ozone formation downwind.  
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O3 formation 

The various mechanisms for tropospheric O3 formation (Figure 6) will be discussed below.  

 

Figure 6. Schematic of the annual tropospheric ozone budget from a global chemistry-transport 

model. Data is taken from (Denman, et al., 2007). Adapted from (Centre for Ecology and 

Hydrology, 2016). 

 

Tropospheric O3 is formed by the oxidation of CO, CH4 and VOCs (also known as non-

methane hydrocarbons (NMHCs)) by the hydroxyl radical (OH) in the presence of nitrogen 

oxides (NOx) (Figure 6). This leads to the formation of hydroperoxyl radicals (HO2 and RO2), 

which can then react with NO to form NO2 (Figure 6). Finally, NO2 is photolysed to form O3, 

leading to net O3 production (Wood, et al., 2009).  

However the formation of tropospheric O3 is highly non-linear, dependent upon the relative 

amounts of NOx and VOCs in a given location (Monks, et al., 2015). 
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Figure 7. Tropospheric ozone mixing ratio (in parts per billion (ppb)) as a function of VOC and 

NOx emissions. Regions of (A) high-NOx (O3 titration), (C) high-VOC (O3 loss) and (A-

C, B-C) efficient conversion of NO-NO2 to then form tropospheric O3 with increasing 

NOx and VOC emissions. (Archibald, et al., 2011; Monks, et al., 2015).  

 

1) In VOC-limited regimes (high NOx, low VOC) (Figure 7 (A)) O3 formation is inhibited 

by the availability of VOCs. There is a null O3 cycle, due to the titration of O3 by high 

levels of NOx, and therefore NO, to form NO2. NO2 is then photolysed to form O3 

(Equation (1)). In this regime, NO2 is reduced over time as it is converted to HNO3 

through the reaction with OH and then washed out.  

2) In NOx-limited regimes (low NOx, high VOC) (Figure 7 (C)) O3 formation is inhibited 

by the availability of NOx. Here, net O3 loss occurs through the reaction with HO2 to 

form OH (Figure 6).  

3) O3 production is most efficient in high NOx, high VOC regimes (Figure 7 (B)) due to 

an abundance of VOCs and NOx to form hydroperoxyl radicals (HO2 and RO2), which 

can convert NO to NO2 (Figure 6). In this regime NOx is a catalyst to O3 production. 
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4) In regimes between these, the relative contribution of both VOC and NOx emissions 

must be considered in order to achieve reductions in O3. This is because O3 

concentrations do not decrease linearly with VOC and NOx emission reductions. For 

example, reducing VOC emissions in a high NOx regime would lead to an increase in 

O3 mixing ratios (Figure 7).  

The dependence of tropospheric O3 formation on sunlight and heat means ozone is a spring and 

summer pollutant. As a result of the complex formation cycles, dependent on the relative 

amounts of precursor emissions (Figure 7), reductions in O3 can be difficult to achieve by 

reducing a single precursor in isolation. This is important because human exposure to O3 has 

been shown to be associated with inflammation of the respiratory tract, eyes, nose and throat 

and long-term, chronic exposure has been linked to increased mortality (Department for 

Environment Food and Rural Affairs, and Department for Transport, 2017).  

Alongside this, O3 can also cause a wide-range of damage to crops and other vegetation through 

stomatal conductance during photosynthesis (Emberson, et al., 2018). This can lead to cell 

damage during respiration and leads to plant leaf damage, visible via discolouration, and 

subsequent reductions in photosynthesis (US Environmental Protection Agency, 2020). As a 

result, plant O3 exposure can lead to reductions in the quality and quantity of crop yields 

(Emberson, et al., 2018).  

O3 removal  

The dominant source of O3 loss in the troposphere is through photolysis in the presence of 

water vapour or with the hydroxyl radical (OH) and the hydroperoxyl radical (HO2) (Figure 6). 

O3 is photolyzed to form molecular oxygen (O2) and ‘excited oxygen’ (O(1D)). The excited 

oxygen atom subsequently reacts with water vapour (H2O) to form the hydroxyl radical (2OH). 
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Tropospheric O3 can also be removed by OH and HO2, though these mechanisms of removal 

generally account for a much smaller fraction of the total ozone sink (Tadic, et al., 2020). In 

urban environments where NOx concentrations are high, the removal of O3 by NO dominates. 

Here, O3 is quickly removed through titration with NO (Equation (1)). This leads to very low 

O3 concentrations and high NO2 concentrations in urban environments (Figure 7 (A)).  

1.2 Physical Atmospheric Processes 

 Removal of Air Pollutants 

The removal of air pollutants has a strong influence on pollutant lifetime and therefore plays a 

crucial role in determining whether pollutants are subject to long-range transport. Removal 

occurs through both wet and dry deposition. 

 Dry Deposition of Air Pollutants 

Dry deposition is the removal of gases and particles from the atmosphere in the absence of 

precipitation (Seinfield, et al., 2016). Particles and gases are transferred to the Earth’s surface 

by turbulent fluxes toward the surface. The efficiency of dry deposition is determined by the 

deposition velocity, which is a function of turbulence (Harrison, 2014; Seinfield, et al., 2016). 

The key processes which affect the deposition of particles and gases are: 

• The shape and surface and the species reactivity of aerosol particles affects the 

efficiency of dry deposition (Harrison, 2014; Seinfield, et al., 2016). Generally, high 

levels of turbulence and rougher, less spherical particle surfaces lead to increased 

deposition (Seinfield, et al., 2016).  

• The efficiency of dry deposition of gases is affected by turbulence and species reactivity 

(Harrison, 2014; Seinfield, et al., 2016). In general, higher levels of turbulence and 

higher reactivity of gases lead to increases in deposition (Seinfield, et al., 2016).  
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Aerosol particles can also be removed through sedimentation as they grow to larger sizes, 

causing the mass of particles to increase (Figure 3). Growth reduces the likelihood of the 

particle remaining airborne and they eventually fall out of the air (sedimentation) (Vallero, 

2014). This process occurs continuously in the boundary layer due to turbulent fluxes.  

The time taken for different particulate species to be removed through dry deposition varies 

but for some species, such as sulphate and nitrate, it is large enough (~5 days) to allow for their 

transport over long distances to occur (Harrison, 2014).  

 Wet Deposition of Air Pollutants 

Wet deposition of air pollution occurs when rain (or snow, hail etc.) removes chemical species 

from the atmosphere.  The process occurs in three steps:  

1) The species of gas or aerosol comes into contact with precipitation in a cloud or when 

rain is falling. 

2) The species is scavenged by a hydrometeor in precipitation or forms a cloud drop. 

3) The species is deposited at the surface, thus removing it from the atmosphere.  

Large, soluble aerosol particles are efficiently scavenged by precipitation meaning wet 

deposition significantly reduces their atmospheric lifetime (Harrison, 2014). However, this 

process is episodic in nature.  

 Dispersion of Air Pollutants 

 Impact of Meteorology 

Once emitted into the atmosphere, pollutants move away from the emission source in a plume 

in the direction of the mean wind (Harrison, 2014). As the plume moves away from the source, 

cleaner air is entrained, leading to an increase in plume size and a decrease in concentrations 

within the plume over time (and therefore distance). However, the dispersal of pollutants within 
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the atmosphere varies spatially and temporally. Conditions can vary between the effective 

dispersal of pollutants (and lower concentrations) and conditions inhibiting dispersion (thus, 

accumulation and higher concentrations). Several key processes control the dispersion of 

pollutants in the vertical and horizontal. Atmospheric stability controls the vertical movement, 

while wind speed and direction control the horizontal movement of pollutants.  

1.2.2.1.1 Atmospheric Stability 

The stability of the atmosphere is determined by the vertical temperature gradient (Jacob, 

1999). The vertical temperature structure of the atmosphere is controlled by solar heating of 

the Earth’s surface, causing changes in the vertical structure of the atmosphere close to the 

surface (boundary layer) diurnally and seasonally (Hu, 2015). The boundary layer grows in 

height during the day due to solar heating of the Earth’s surface, and is also higher in summer 

than winter for the same reason. Since temperature changes with changes in height (and 

therefore pressure), potential temperature is often used to describe the evolution of the 

atmosphere with height. Potential temperature () can be defined as the temperature of a parcel 

of air if it were returned to 1000 hPa without any heat transfer between the parcel and its 

surroundings (adiabatically), allowing for easy comparison of temperature at different heights. 

The structure of the boundary layer can be characterised most basically by three states, shown 

in Figure 8.  
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Figure 8. Examples of stability and instability in relation to air parcel temperatures (adapted 

from Nugent et al. (2019)). 

 

Potential temperature can either: 

1) increase with height (inversion conditions) ( 
𝝏𝜽

𝝏𝒛
<  𝟎)  

In an unstable atmosphere, the potential temperature of an air parcel is higher, and density 

lower, than the surrounding air (due to solar heating). This leads to the air parcel rising until it 

reaches a region in the atmosphere where it is in equilibrium with the surrounding environment. 

These conditions promote turbulence and dispersal of pollutants, therefore decreasing 

concentrations (Department of Environmental Affairs and Tourism, 2018).  
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2) decrease with height (lapse conditions) ( 
𝝏𝜽

𝝏𝒛
>  𝟎)  

In lapse conditions (a stable atmosphere), the potential temperature of an air parcel is the lower, 

and density higher, than its surroundings. The air parcel therefore remains at the surface, 

resisting movement upwards. This would lead to pollution accumulation and increased 

concentrations at the surface (Department of Environmental Affairs and Tourism, 2018).  

3) be constant with height (isothermal) ( 
𝝏𝜽

𝝏𝒛
=  𝟎)  

Finally, in a neutral atmosphere, an air parcel would remain at the same height it was released 

because the potential temperature of the air parcel would be in equilibrium with the surrounding 

environment (Department of Environmental Affairs and Tourism, 2018). If emitted from a 

stack the parcel would remain at the same pressure/height it was emitted at.  

Thus, inversion conditions inhibit stability, while lapse and isothermal conditions generally 

favour stability. The stability of the atmosphere varies throughout the year and the day, due to 

seasonal and diurnal variations in solar heating (Hu, 2015). Generally, the boundary layer is 

more stable in the winter than summer and more stable at night and the early morning than in 

the middle of the day.  

1.2.2.1.2 Wind Flow 

Wind speed and direction govern the horizontal movement of pollutants within air (Jacob, 

2000). Increases in wind speed lead to increased dispersion of pollutants, while wind direction 

controls the course of pollution transport. Large-scale wind is caused by atmospheric pressure 

gradients and so varies with space and time. At the synoptic scale, pollution dispersion is 

controlled by high and low-pressure systems. 

High-pressure systems are generally associated with: 
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• the subsidence of air and therefore stable conditions, with generally light winds.  

• reduced pollutant dispersal and increased pollutant concentrations locally.  

Low-pressure is usually associated with: 

• rising air and instability with increased wind speeds due to large pressure gradients.  

• improved pollutant dispersal and often wet deposition, leading to lower pollutant 

concentrations.  

Locally, the topography of the Earth’s surface can affect wind direction and speed. Examples 

of this include sea breezes, urban heat islands and mechanical turbulence caused by buildings 

(Cheremisinoff, 2002). This can have an impact of the concentrations of pollutants at local and 

regional scales.  

1.2.2.1.3 Long-range transport 

The long-range transport of pollutants is linked to both atmospheric stability and wind flow. 

Usually plumes of pollutants are released just above the surface, within the turbulent boundary 

layer, so that pollutants are dispersed but do not travel far from the source before being 

deposited at the surface. However, if the height at which a plume of pollutants is released is 

above the height of these convective and turbulent processes, it is capable of travel for hundreds 

of miles in favourable winds and weather conditions (Vallero, 2014).  

The long-range transport of air pollutants was not known about until the 1960s when scientists 

discovered that air pollutants emitted thousands of kilometres away were a significant 

contributor to acid rain in the northern hemisphere (United Nations Economic Commission for 

Europe, 1979). This led to the establishment of the Convention on Long-Range Transboundary 

Air Pollution (CLRTAP), which sought to create understanding that air pollution can cross 

borders (United Nations Economic Commission for Europe, 1979). The key air pollutants 
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identified to be subject to long-range transport were SOx, NOx, tropospheric O3 and PM. This 

is because the lifetimes of these species are large enough (days to weeks) for them to be 

transported over large distances under favourable meteorological conditions. The long 

atmospheric lifetime of PM2.5 means that, on an annual basis, long-range transport has a 

significant contribution (20%) towards UK PM2.5 concentrations (Department for Environment 

Food and Rural Affairs, 2016) (Figure 10).  

Secondary PM2.5 has been shown to represent a relatively large fraction of total UK PM2.5 

(Figure 9) (Department for Environment Food and Rural Affairs, 2016). As a result, several 

studies have investigated the impact of reductions of precursor emissions on PM2.5 

concentrations to identify which precursors to target for the most effective reductions in PM2.5 

(Air Quality Expert Group, 2013; Harrison et al., 2013; Megaritis et al., 2013; Vieno et al., 

2016). All studies identified that reductions in precursors led to a much smaller reduction in 

total PM2.5 (i.e. X% reduction in precursor → reduction in PM2.5 < X%) due to the non-linear 

relationship between emissions and PM2.5 concentrations. On a species specific basis studies 

suggest that the largest reduction in UK PM2.5 concentrations could be achieved through 

reductions in ammonia (Air Quality Expert Group, 2013; Megaritis, et al., 2013) or sulfate 

(Harrison et al., 2013; Vieno et al., 2016). However, there is less clarity between studies on the 

magnitude of resulting reduction in PM2.5 from reductions in precursors, and whether the 

reduction in UK or continental European precursors are most important. Despite this, when 

public exposure is taken into account, reductions in primary PM2.5 yield the largest reductions 

in population-weighted PM2.5 (Air Quality Expert Group, 2013). In urban areas, where the 

largest proportion of the population live, primary PM2.5 emissions dominate, while in rural 

areas reductions in ammonia lead to the greatest reductions in PM2.5. 
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UK concentrations of PM2.5 were not routinely monitored until 2008. Therefore, previous 

studies focussing on the drivers of high pollution episodes have analysed PM10 observations or 

specific pollution episode case-studies, using atmospheric chemistry transport models. Vieno 

et al. (2016) showed that a large spring pollution episode in 2014 was driven by ammonium 

nitrate, which was formed from agricultural emissions released outside of the UK and 

subsequently transported to the UK under favourable winds. Other studies have used back 

trajectories alongside PM10 observations to investigate possible source regions of PM10 

episodes (King, and Dorling, 1997; Stedman, 1996). These studies found that on days that high 

PM10 concentrations were observed, the contribution of local emissions to the total 

concentration was small. The high PM10 days were dominated by easterly flow, suggesting that 

there was a large contribution from long-range transport to the overall PM10 concentrations 

observed, since the back trajectories emanated from mainland Europe. The study concluded 

that more work was required to confirm this, over a longer period with observations at rural 

sites. More recent studies have used PM2.5 observations, from 2009, to investigate processes 

affecting PM2.5 concentrations (Harrison, et al., 2012). PM2.5 concentrations were also found to 

be highest for south-easterly, easterly and north-easterly flows and lower for westerly flows. 

The increase in PM2.5 was attributed to the long-range transport of emissions from continental 

Europe under easterly and south-easterly flow. The results suggested that the long-range 

transport of pollutants to the UK is associated with specific meteorological conditions. 

However, due to the short observational record at the time, the sample size for individual wind 

directions was small. This meant relationships between wind direction and PM2.5 observations 

could not be established over a longer period of time to be statistically robust. 

The influence of different synoptic conditions on total column NO2 and O3 across the UK was 

investigated using Lamb weather types, a classification system for synoptic meteorology (Pope 

et al., 2015; Pope et al., 2016). The study highlighted that pollutant concentrations are strongly 
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influenced by wind and circulation patterns. The highest O3 concentrations occurred under 

summer anticyclonic conditions due to large scale subsidence limiting vertical mixing. South-

easterly and north-easterly flow also increased mean UK O3 concentrations by between 10 and 

15 μg m-3 (Pope et al., 2016). NO2 concentrations were found to significantly increase under 

winter-time anticyclonic conditions through pollutant accumulation. Concentrations were also 

enhanced under south-easterly flow due to long-range transport of pollutants from continental 

Europe (Pope, et al., 2015). The wintertime increase was attributed to the combined effect of 

increased emissions, more stable conditions and decreased photolysis, allowing accumulation 

over emission sources. Due to the relatively short UK PM2.5 observational record and 

frequently cloudy conditions inhibiting satellite retrievals of aerosol optical depth (AOD) the 

same analysis is yet to be applied to UK PM2.5 concentrations.  

 Impact of Topography 

The topography of regions can enhance or reduce pollution concentrations and is therefore an 

important factor controlling the ambient concentrations. The topography of some regions can 

be conducive to the development of temperature inversions, which can increase concentrations 

of pollutants at the surface, leading to high pollution events (Wallace, et al., 2010). A 

temperature inversion occurs when the potential temperature of air at the surface is lower than 

air above, leading to the cooler, denser surface air becoming trapped below less dense, warmer 

air aloft. These conditions aid the accumulation of pollutants by preventing vertical mixing and 

dispersion, trapping pollutants at the surface and therefore increasing their concentrations. 

There are three key types of inversions caused by topography, which subsequently impact 

pollutant concentrations at the surface:  

1) Radiation inversions – usually occur on cold nights under clear skies. Radiation 

inversions are characterised by rapid heat loss at the Earth’s surface, warming air above. 
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If this occurs in a valley or basin, cold air from the side of the valleys flows down slope, 

becoming trapped beneath the layer of warmer air that was heated by the surface.  

2) Advective inversions – occur close to coastlines which are bordered by cold oceans or 

lakes. The differential heating between the air over the land and sea in the daytime 

causes a pressure gradient to form. As a result, a land-sea breeze is initiated where cold 

low-level oceanic/lake air moves landwards, underneath the warm continental air, 

setting up a return flow of continental air aloft. 

3) Subsidence inversions – are associated with areas where high pressure dominates and 

a large layer of air descends. As the air descends it is heated by the increase in 

atmospheric pressure (adiabatic heating). This can also occur as air is compressed in 

flow over a hillside. The adiabatic heating can lead to the air aloft being warmer than 

at the surface, therefore forming a temperature inversion at the surface or within a 

valley.  

1.3 UK PM2.5 Concentrations  

 PM2.5 Chemical Composition  

The chemical composition of PM2.5 can vary greatly, dependent upon emission source (Figure 

2), chemical transformations and atmospheric conditions (Air Quality Expert Group, 2012). 

This means PM2.5 concentrations measured in a specific location can be a mixture of many 

different chemical species from different sources. Some of the common species of PM2.5 (and 

their emission sources) include: 

• Elementary carbon (soot) (emitted by burning fossil fuel by traffic and biomass 

burning) 

• Calcium salts (CaSO4 • 2H2O) (from construction and demolition dust and wind-blown 

soil)  
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• Sea salt (NaCl) (from sea spray). 

• Iron-rich dusts (emitted from combustion (traffic, shipping and industry), brake and 

tyre wear (traffic) and wind- and traffic-generated suspension of crustal material).  

• Organic matter, including dioxins, polycyclic aromatic hydrocarbons and alkanes 

(emitted as a result of combustion in industry and engines and naturally from biomass 

burning).  

• Secondary inorganic ions, such as nitrate, sulfate and ammonia (the primary precursors 

for which are emitted from agriculture, industry and transport). 

• Secondary Organic Aerosol (SOA) (formed through the oxidization of VOC emissions 

from fuel combustion, industrial processes, vehicles and fires and BVOCs from 

vegetation). 

The composition of UK PM2.5 was characterised using observations from a background site in 

Birmingham between 2004 and 2006 (Figure 9) (Yin, and Harrison, 2008). Overall secondary 

species, including ammonium nitrate, sodium nitrate and ammonium sulfate, accounted for 

45% of the total PM2.5 mass (Figure 9 (a)). However, on high pollution days (PM10 > 50 µg m-

3) the contribution of secondary PM2.5 increased to ~75%, with a doubling of the ammonium 

nitrate and sodium nitrate contribution (from 21% to 46%) (Figure 9 (b)). Although these 

findings are for one location, the increase in nitrate PM species during polluted days is in line 

with findings elsewhere in Europe (Vieno et al., 2016). This also fits with the results of a 

modelling study which examined an extended pollution episode (Vieno et al., 2016). This study 

indicated that nitrate, from a combination of local emissions and long-range transport 

dominated during the pollution episode (Vieno et al., 2016). 
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Figure 9. (a) Average composition of UK PM2.5 (2004-2006) and (b) on days where PM10 > 50 

µg m-3. From (Air Quality Expert Group, 2012), adapted from (Yin and Harrison, 2008). 

 

 PM2.5 Sources 

The relative contribution of UK emissions to total PM2.5 mass can vary between background 

conditions and high pollution events. On an annual basis a combination of local emissions 

(traffic and non-traffic) and long-range transport (regional and international emissions) have 

been shown to affect the concentration of PM2.5 at monitoring sites (Figure 10) (Department 

for Environment Food and Rural Affairs, 2016). The largest contributions to concentrations at 

background locations comes from regional UK emissions (45%) and then from international 

emissions (20%) and urban non-traffic emissions (21%). Regional and international emissions 
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can include primary emissions, such as those from anthropogenic sources (e.g. industry) or 

natural sources (e.g. dust or wildfires), and secondary species formed in the atmosphere from 

precursor emissions (e.g. ammonium nitrate from ammonia emissions) (Figure 9).  

 

Figure 10. Percentage contributions (%) to total modelled annual mean ambient PM2.5 

concentrations at UK urban background locations (Department for Environment Food 

and Rural Affairs, 2016). 

 

However, the relative contribution of each source varies during high pollution episodes 

(Department for Environment Food & Rural Affairs, 2019), reflected by changes in 

composition (Figure 9 (a) and (b)). Increases in PM2.5 concentrations across the UK, which 

often occur under easterly winds, are thought to be linked to the long-range transport of PM2.5 

and secondary PM2.5 precursor emissions (Harrison, et al., 2013). However, the relative 

contribution of UK and non-UK emissions on UK PM2.5 concentrations is yet to be quantified.  

 Seasonal Cycle in PM2.5 Concentrations  

There is clear seasonal variation in monthly PM2.5 concentrations across all regions of the UK 

(Figure 11), with the highest concentrations observed between January and April and the lowest 
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concentrations between June and September (Harrison, et al., 2012). The combination of an 

increase in local emissions of primary PM2.5 and secondary PM precursors, alongside a more 

stable boundary layer during winter months is believed to lead to higher PM2.5 concentrations. 

While in summer months, increased boundary layer height, a decrease in emissions and the 

evaporative loss of semi-volatile PM is believed to lead to lower PM2.5 concentrations. 

However, the relative contributions of emission sources to PM2.5 concentrations observed is yet 

to be quantified. Alongside this, the mechanisms leading to the large increase in PM2.5 

concentrations in April have not been studied.   

 

Figure 11. 2009 monthly variation in PM2.5 concentrations (μg m−3) at urban background sites 

at sites in ‘Northern UK’ (n = 8), ‘Central UK’ (n = 17), ‘Southern UK’ (n = 8) and 

‘London’ (n = 8). The 95% confidence interval is indicated by shading. (Harrison, et al., 

2012). 
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 Spatial Variations in Air Pollutant Concentrations  

Air pollutant concentrations also vary spatially, based on their emission sources, chemical 

reactions in the atmosphere and therefore lifetime, as pollutants disperse. Environmental 

inequality, especially with regards to air pollution, is well documented since socioeconomically 

disadvantaged areas are often located close to emissions sources, such as roads (Williams, et 

al., 2018). Socioeconomically disadvantaged communities may also have higher rates of 

morbidity and may therefore also be more susceptible to the negative health-effects of air 

pollution (Forastiere, et al., 2007; O’Neill, et al., 2003). This has been shown in urban areas 

where the negative health impacts of exposure to air pollutants are not as prevalent within less 

deprived populations (Forastiere, et al., 2007). It is estimated that in England 1.3-3.5 million 

years of life are lost as a result of health inequalities (Marmot, and Bell, 2012). Substantial 

differences in mean air pollutant concentrations were identified between the most and least 

deprived fifth of wards across the UK in 2011 (Williams, et al., 2018). The difference was 

highest for NO2, likely due to the short lifetime and steep concentration gradients in the 

pollutant from emissions sources (roads). In the UK, wards with higher proportions of Black, 

Asian and minority ethnicity (BAME) residents and deprivation were found to be closer to 

roads. The study found that the differences in NO2 were larger between white and BAME 

populations than deprived and non-deprived populations (Williams, et al., 2018). Differences 

were also observed for PM2.5 and O3 between the most and least deprived fifth wards, though 

these were smaller (Williams, et al., 2018). This is likely to be due to the large secondary 

component and long lifetime of PM2.5, and due to O3 being titrated in high NOx conditions 

(close to roads). 

1.4 Pollution Monitoring and Legislation 

The concentration of an air pollutant can be measured in several ways. For emission sources, 

such as power generation, emissions are measured at source through point source measurement 
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within the stack (Environment Agency, 2019) or remote sensing (Liu, et al., 2016; Wang, et 

al., 2010). Emissions are reported to the United Nations Economic Commissions for Europe 

Convention on Long-Range Transboundary Air Pollutants (CLRTAP) and must fall within 

emissions ceilings guidelines (Department for Environment Food and Rural Affairs, 2011). 

Alongside this, the Gothenburg Protocol sets national emissions reductions targets to be 

achieved by 2020 (Department for Environment Food and Rural Affairs, 2011).  

Once pollutants have been emitted they can be detected by ground-based observation sites (Lin, 

et al., 2010), satellites (Beirle, et al., 2011; Pope, et al., 2018) and aircraft (Martin, et al., 2006; 

Wang, et al., 2004) as the plume begins to disperse into the atmosphere. Ground observation 

sites are used by governments to monitor pollutant concentrations (Liang, 2013). 

 Automatic Urban and Rural Network Observations 

In the UK, Automatic Urban and Rural Network (AURN) observation sites are used to ensure 

that concentrations are within the limits set by the European Union Air Quality Directive 

(European Parliament, 2008; Stevenson, et al., 2009), which are legally binding and must not 

be exceeded (European Environment Agency, 2017b). The concentration limits chosen for each 

pollutant are based on epidemiological and toxicological evidence for the adverse health 

impacts due to exposure (Liang, 2013). The concentrations at which adverse effects are seen 

in the human population vary with pollutant and exposure time, leading to different limits and 

averaging periods for different species (Table 2) (European Comission, 2017).   

The 2005 World Health Organisation guideline limits are also shown (Table 2) (World Health 

Organization, 2005). These are global guidelines on thresholds for key air pollutants that pose 

health risks and limits are based on associations between exposure and increases in non-

communicable diseases.  
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Table 2. EU Directive Limits (European Comission, 2017) and WHO Guidelines (World 

Health Organization, 2005) for air pollutants.  

 

EU Air Quality Directive Limits WHO 

Guidelines 

Pollutant Time Period European Objective Date to be 

achieved by 

Concentration 

PM10 Annual mean Limit - 40 µg m-3 01/01/2005 20 µg m-3 

24-hour mean Limit - 50 µg m-3 (<35 

exceedances year-1) 

01/01/2005 50 µg m-3 

PM2.5 Annual mean Limit - 25 µg m-3 01/01/2015 10 µg m-3 

24-hour mean -  25 µg m-3 

NO2 1-hour mean Limit - 200 µg m-3 (<18 

exceedances year-1) 

01/01/2010 200 µg m-3 

Annual mean Limit - 40 µg m-3 01/01/2010 40 µg m-3 

O3 8-hour mean Target - 120 µg m-3 (<25 

exceedances year-1 averaged 

over 3 years) 

31/12/2010 100 µg m-3 

CO Maximum daily 8-

hour running mean 

Limit - 10 µg m-3 01/01/2005 -  

NOX Daily mean Limit - 30 µg m-3 19/07/2021 -  
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The UK AURN includes ~170 sites, ranging from rural to kerbside sites and measures a large 

range of meteorological variables (e.g. wind speed, ambient temperature and relative humidity) 

as well as key air pollutants (including those in Table 2) (Stevenson, et al., 2009). The sites are 

generally situated in or close to areas of high population and provide high time-resolution 

(hourly) measurements of pollutants (Stevenson, et al., 2009). 

PM2.5 and NO2 are the two pollutants of most concern in the UK and Europe currently. UK air-

quality management areas have been declared (Committee on the Medical Effects of Air 

Pollutants, 2010; Royal College of Physicians, 2016; World Health Organization, 2013). For 

NO2 an annual mean of 40 μg m−3 and an hourly mean of 200 μg m−3 (with no more than 18 

exceedances per year) have been set as targets. While for PM2.5 the annual mean target is 25 μg 

m−3. Alongside this, the European Commission (EC) Directive 2008 also required member 

states to determine the average exposure index (AEI) for PM2.5 through measurements of PM2.5 

over a ten-year period. A national exposure reduction target (NERT) was then calculated for 

2020, using the AEI. Measurements used to calculate the AEI were taken from background 

locations over a 3-year period between 2009-2011 and will be compared with measurements 

between 2018-2020 in order to assess compliance. The UK AEI was calculated to be 13.6 µg 

m-3 using measurements from 47 of the UK AURN sites. The NERT for 2020 was therefore a 

reduction of 15%, equating to 2 µg m-3 (i.e. an AEI of 11.6 µg m-3). However, since the 

monitoring network is sparse, representing the exposure of the whole population is challenging 

(Willocks, et al., 2012). 

 Satellite Observations 

Concentrations of air pollutants can also be measured by satellites; these measurements are 

more spatially complete than ground observations, which generally give sparse coverage. 

However, they lack the temporal detail of ground observations since they are often in sun-
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synchronus polar-orbits, meaning they only pass over a region once a day. Satellites measure 

a range of air pollutants, including CO, NO2 and O3 (e.g. Tropospheric Monitoring Instrument 

(TROPOMI) (Veefkind, et al., 2012)). Satellites provide measurements of the total 

tropospheric column for NO2 and CO, this is a measure of the total number of molecules (e.g. 

CO molecules) per unit area (e.g. cm-2) in the atmosphere (specifically between the surface of 

the Earth and the tropopause) (WMO OSCAR, 2020). Satellites use different spectral bands in 

order to measure the total column of different pollutants (e.g. ultraviolet-visible (UV), infrared 

(IR) and visible). Differential Optical Absorption Spectroscopy (DOAS), based on Lambert 

Beer’s Law, is used to measure gaseous species. Since the intensity of light at the end of a light 

path is dependent upon the absorption by a particular air pollutant species, the total column of 

the air pollutant species can be derived based on the total absorption. O3 is measured in the UV, 

visible, IR wavelengths (Gorshelev, et al., 2014). Satellite measurements focus on using the 

Hartley (200-300 nm) (Miles, et al., 2015), Huggins (310-340 nm) (Katayama, 1986; Miles, et 

al., 2015; Zhu, et al., 2005), Chappuis (450-650 nm) (Chappuis, 1880; Miles, et al., 2015) and 

infrared (4.7, 9.6 and 14.1 m) (Boynard, et al., 2009; Miles, et al., 2015) bands, all of which 

are absorbed by O3, to measure the concentration of O3 through the atmosphere. For aerosols, 

the extinction as a function of wavelength at specific points between the UV and IR, per km 

through the atmosphere, is used to measure concentrations (Remer, et al., 2013).  

 Aircraft Observations 

Aircraft flights are also used to measure key air pollutants in field campaigns. They provide 

measurement at high temporal resolution (often a few seconds) through their flight path. 

However, they lack coverage over long time periods or large areas. The UK Facility for 

Airborne Atmospheric Measurements (FAAM) aircraft has been used for many field 

campaigns and measures a range of pollutants, including NOx (NO and NO2), PM, O3, and CO, 

among others (Harris, et al., 2017). The transect of measurements the aircraft can collect is 
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very useful in understanding the evolution of pollutants over space and time, from emission at 

source to a population’s exposure, characterising emissions, meteorological and chemical 

processes.  

 Model Predictions 

Atmospheric-chemistry transport models, such as WRF-Chem (Grell, et al., 2005), can also be 

used to give more spatially complete predictions of many air pollutants, using ground and 

satellite observations to evaluate simulated concentrations. Concentrations can be simulated at 

a range of resolutions, from global models at ~100 km to regional models at ~5-30 km and to 

high resolution models at ~1 km (Seigneur, and Dennis, 2011). This allows concentrations to 

be predicted where observational networks are sparse or do not measure the species of interest. 

Models also allow for a range of scientific scenarios to be investigated (Jacob, 2006), for 

example emissions reductions or sectoral contributions to air pollutant concentrations. 

Therefore, they are a very useful tool in atmospheric science.  

1.5 Health Impacts of air pollution 

 Attributing exposure to health impacts 

Two main approaches are used to understand the effect of air pollutants on health: 

• Epidemiology is used to determine if exposure to a pollutant is associated with disease 

outcomes; it is the study of how often diseases occur in an exposed population (Coggon, et 

al., 2009). 

• Toxicology is able to identify the specific biologically plausible mechanism responsible 

for the associations found in epidemiology (United States Environmental Protetion Agency 

(USEPA), 2009).  
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Epidemiology 

Epidemiological studies use comparisons between groups to discover whether exposure to a 

risk factor (e.g. air pollution) is associated with a particular outcome (e.g. death from heart 

disease). There are three main study designs used in epidemiology: cross sectional, cohort and 

case-control. For exposure to air pollution two study designs are primarily used, (1) cross 

sectional and (2) cohort:  

1. cross-sectional  

Figure 12. Cross-sectional study design and study outcome. 

 

2. retrospective cohort studies.  

Figure 13. Cohort study design and outcome. 

 

Cross-sectional studies allow a snapshot of a particular population at one point in time (Figure 

12) (Song, and Chung, 2010). Usually, subjects are chosen because they are part of a target 

population at a certain time (e.g. smokers and non-smokers and in London). Data is collected 
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on participants regardless of exposure or disease status. This study design can determine 

disease prevalence within the population (e.g. how many smokers have lung cancer). However, 

a relative risk cannot be directly derived (i.e. how much smoking increases the relative risk of 

lung cancer) (Song, and Chung, 2010).  

In contrast, cohort studies look at a population group over time retrospectively or prospectively 

(though for air pollution this is generally retrospectively) (Figure 13) (Song, and Chung, 2010). 

In this study design the population is categorised based on whether they were exposed to risk 

factors of interest, regardless of disease status. They are then followed over time to determine 

whether health outcomes develop. Since this study type follows participants over time, the 

relative risk can be directly derived (Song, and Chung, 2010).  

Two key concerns in all epidemiology studies are confounding variables and effect-measure 

modification (Bovbjerg, 2020a, 2020b). Confounding variables distort the association 

observed, because both the exposure being measured and the outcome are affected by another 

factor (Bovbjerg, 2020a; Howards, 2018). Effect-measure modification occurs when the 

magnitude of a health outcome being measured varies dependent on a third variable (e.g. 

temperature) and can often vary based on circumstances (Bovbjerg, 2020b; Corraini, et al., 

2017). Within epidemiology confounding variables and effect-measure modification are 

controlled for through statistical adjustments (Corraini, et al., 2017). For example, in the 

association of physical activity with heart disease, age is a confounding factor because old 

people tend to exercise less, but also have a higher risk of heart disease. Though confounders 

can be controlled for through statistical adjustments, identification and measurement of all 

confounding variables is required (Howards, 2018). Therefore, prior knowledge of both the 

likely sources and magnitudes of the confounders and effect-modifiers, as well as their 

distribution within the population, is needed.  
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Toxicology 

Alongside identifying associations, a plausible mechanism needs to be identified to infer 

causality of a relationship (Adami, et al., 2011). As a result, toxicology is used alongside 

epidemiological studies to identify causality through biologically plausible mechanisms, using 

tightly controlled conditions in a laboratory setting (Adami, et al., 2011; United States 

Environmental Protetion Agency (USEPA), 2009).   

Four key factors affect toxicity (Figure 14):  

1) Dose – the amount of pollutant in the body, which is controlled by 3 variables: 

a.   Intake: how much pollutant someone is exposed to. 

b.  Type/Route of exposure: Inhalation, dermal, ingestion. 

c.  Time period: how long someone is exposed for. 

2) Subject susceptibility – factors which could impact someone’s response to exposure 

e.g. underlying health conditions, age. 

3) Substance – varying properties affecting absorption e.g. PM2.5 composition. 

4) Interactions – how different substances mix and affect response e.g. multi-pollutants. 

The risk associated with a substance is then assessed against the four toxicity factors using a 

3-step risk assessment: 

1) Exposure assessments on mice/rats and humans. Within exposure assessments 

subjects are exposed to pollutants, and the effects are monitored in air and within the 

body (biomonitoring) using biomarkers of inflammation from urine and blood. 

2) Effects and consequence assessments on mice and rats in vivo (live mice/rats) and in 

vitro (cells from mice/rats) methods. These assess the effects of exposure on organs.  
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3) Risk characterization integrates all of the toxicological information, including dose-

response curves to estimate a risk associated with a substance.  

The ethical concerns regarding randomised control trials of exposure to air pollutants means 

that causality of the associations identified between air pollutants and health impacts are 

determined by combining evidence from epidemiological and toxicological studies (Figure 14). 

There is overlap in many principles used to infer causality (Figure 14). 

 

Figure 14. Evidence that is combined from toxicological and epidemiological studies to infer 

causal inference (Adami, et al., 2011).  

 

The level of agreement between epidemiology studies over different time periods and locations, 

toxicological and controlled human exposure studies are combined to determine causality 

(Figure 14, Figure 15). Causality cannot be proven, only inferred with varying degrees of 

certainty (Adami, et al., 2011). For a ‘likely’ causal relationship, there must be strong 

epidemiological evidence for an association and toxicological evidence of a biologically 

plausible mechanism for the association (Figure 14, Figure 15) (Adami, et al., 2011).  
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Figure 15. Schematic indicating how causal inference is inferred combining epidemiological 

and toxicological evidence (Adami, et al., 2011). 

 

 Mechanism for Health Impacts from PM2.5 

The mechanism for the health impacts of PM exposure are complex and change with the length 

of exposure. Epidemiological studies suggest that the fine fraction of PM (PM2.5) plays a 

substantial role (Pope III, and Dockery, 2006). These particles are small enough to be inhaled 

deep into the lungs. Exposure and dose are also likely to be higher for PM2.5 since atmospheric 

lifetime is long, meaning transport over long distances can occur and infiltration into indoor 

environments is much more likely due to the small diameter of PM2.5 (Pope III, and Dockery, 

2006). 

Toxicological studies have identified a range of biologically plausible pathways, following 

inhalation, that may lead to the association between cardiovascular morbidity and mortality 

and long-term exposure to PM2.5, which have been identified in epidemiological studies (Pope 

III, and Dockery, 2006) (Figure 16). Exposure to PM2.5 has been linked to inflammation and 
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oxidative stress within the lungs, changes in blood characteristics and changes to vein structure, 

altered heart function and changes within the brain (Figure 16) (Pope III, and Dockery, 2006). 

Though this is still an active area of research, it is now widely acknowledged that there is a 

causal, mechanistic link between exposure to PM2.5 and cardiovascular morbidity and mortality 

(Pope III, and Dockery, 2006).  

 

 

Figure 16. The hypothetical physiological processes that link PM exposure with 

cardiopulmonary morbidity and mortality (Pope III, and Dockery, 2006). 

 

Although the composition of PM2.5 can vary greatly, dependent upon emission source and 

chemical processes, the associations found between PM2.5 and various disease endpoints has 

been fairly consistent (Pope III, and Dockery, 2006). However, there is currently a lack of 

understanding as to which characteristics of PM2.5 are most responsible for toxicity. Alongside 

this, the role of specific pollutants, pollutant sources, co-pollutant mixtures and pollutant 

characteristics in the health outcomes observed is not well understood. The concept that 

characteristics of PM do not have any significance on its health effects contradicts basic 
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toxicological principles and has led to scepticism from some in the plausibility of the 

associations observed (Harrison, and Yin, 2000; Schwarze, et al., 2006). However, others 

studies have highlighted that the similarity in health outcomes of exposure, despite differences 

in PM components, may be due to the inflammatory reactions that are thought to be central to 

the development of cardiovascular and pulmonary diseases associated with PM exposure 

(Schwarze, et al., 2006). 

Due to the lack of understanding regarding the specific components responsible for the health 

impacts of PM2.5, the concentration response functions currently used in health impact 

assessment studies assume that all PM2.5 is equally toxic, independent of composition 

(Atkinson, et al., 2014; Liu, et al., 2019; World Health Organization, 2013). 

 Epidemiological Studies  

Prior to the 1990s it was largely believed that PM acted as a vector, which allowed SO2 to be 

transferred deep into the lung. Thus, this SO2 and PM mixture was believed to be the 

mechanism responsible for the negative health impacts associated with exposure (Harrison, 

and Yin, 2000). However, a number of studies later demonstrated that ambient concentrations 

of particulate matter previously thought to be safe, unless in the presence of high SO2 

concentrations, were associated with a negative effect on health (e.g. (Schwartz, et al., 1996)). 

As a result, many studies have since investigated the association of exposure to particulate 

matter and mortality. The associations found by studies between PM and increased risk of 

cardiopulmonary morbidity and mortality over both long- and short-time scales have been 

relatively consistent (Nemery, et al., 2001; Pope III, 2007; Schrenk, et al., 1949). Exposure to 

PM2.5 is the most consistent and robust predictor of mortality in studies of long-term air 

pollutant exposure (Kivimäki, et al., 2015; Yang, et al., 2013). Associations for long-term 

exposures have been found to be much larger than with exposures over short-time periods 
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(Pope III, 2007). Short-term studies focus on daily variations in ambient PM and the impacts 

of this on health, using time-series designs (Figure 12). Whereas long-term studies focus on 

the impacts of spatial changes in ambient PM between regions over years or decades on health, 

using cohort studies (Figure 13) (Pope III, 2007).  

 Short-Term Exposure 

Short-term exposure studies have developed in complexity, from simple methodologies that 

assumed a linear relationship between variables, to more complex methods that allowed 

flexible fitting for non-linear associations (e.g. season and temperature), through to case-

crossover designs, multicity studies and meta-analyses most recently (Pope III, and Dockery, 

2006). Case-crossover studies replace the need for statistical modelling to account for non-

linear associations (e.g. seasonality) by choosing control periods which account for this. Case-

crossover studies match exposures at the time of death (e.g. within a high pollution episode) to 

control periods when the death didn’t occur, so that deceased individuals act as their own 

controls (Jaakkola, 2003). Excess risk is estimated using regression, where logistic regression 

is applied to the exposed and unexposed individuals (Jaakkola, 2003). A benefit of this study 

design is that it allows the impact of susceptibility to be observed (Pope III, and Dockery, 

2006). However, results are sensitive to the selection of control periods and case-crossover 

studies also have a lower statistical power than the short-term time series analysis because only 

control periods are included (and so information is lost outside of these) (Pope III, and Dockery, 

2006).  

Multi-city studies reduce the risk of biases (e.g. city or publication) (Pope III, 2007) but are 

less common. A study of six US cities (Schwartz, et al., 1996) was one of the first multicity 

studies. The study found that daily mortality was significantly associated with PM10, PM2.5 and 

sulfate exposure, and most strongly with PM2.5. Every 10-µg m-3 increase in two-day mean 
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PM2.5 was associated with a 1.5% increase in daily mortality. The study has been repeated 

several times (Klemm, et al., 2000; Laden, et al., 2000) and similar associations remain (1.2 % 

per 10 µg m-3).  

Many short-term single-city PM mortality studies have been carried out since the 1990s, which 

means that it is possible to estimate the pooled effects by combining multiple published studies 

in a large quantitative review or meta-analyses (Pope III, and Dockery, 2006). There have been 

several multi-city and meta-analysis studies for short-term exposure of PM2.5 in recent years 

(Atkinson, et al., 2014; Franklin, et al., 2007; Liu, et al., 2019; Mills, et al., 2015; Ostro, et al., 

2006; World Health Organization, 2013; Zanobetti, and Schwartz, 2009). PM2.5 associated 

mortality estimates ranged from 0.4 to 1.2 % per 10 µg m-3 increase in concentrations. The 

meta-analysis of Atkinson et al. (2014) found that there was a large degree of variation in 

estimates worldwide (0.25% to 2.08%) and that associations for specific diseases varied. 

Despite this, overall the results of short-term exposure mortality studies are very consistent, 

regardless of the method applied, indicating total mortality increases by ~1% (0.4 – 1.3%) per 

10 µg m-3 increase in PM concentrations (Atkinson, et al., 2014; Harrison, and Yin, 2000; Liu, 

et al., 2019; Pope III, 2007; World Health Organization, 2013). As with toxicological studies, 

this appears to be irrespective of location and therefore composition (Harrison, and Yin, 2000). 

However, since studies are observing small effects, the uncertainties in estimating these effects 

are relatively large (Harrison, and Yin, 2000). 

 Wildfire pollutant exposure and mortality 

Emissions for biomass burning are the dominant air pollution source in many areas of the 

world, including Canada and Australia (Lelieveld, et al., 2015). Therefore, epidemiology of 

smoke exposure from wildfires is an area of increasing research (Johnston, et al., 2012). This 

is also owing to the increased statistical power gained from studying prolonged high exposure 
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fire events, regions with frequent wildfires and high populations or much more common 

outcomes (e.g. prescriptions for medicine) (Johnston, et al., 2012).  

Studies have found consistent associations between wildfire smoke exposure and respiratory 

morbidity and asthma and chronic obstructive pulmonary disease (COPD) exacerbations 

(Alman, et al., 2016; Borchers Arriagada, et al., 2019; Cascio, 2018; Delfino, et al., 2009; 

Dennekamp, and Abramson, 2011; Liu, et al., 2015; Morgan, et al., 2010; Rappold, et al., 2011; 

Reid, et al., 2016; Shaposhnikov, et al., 2014). These have been documented through increased 

healthcare visits (including doctors, emergency departments and hospitalizations) (Borchers 

Arriagada, et al., 2019; Delfino, et al., 2009; Johnston, et al., 2014; Morgan, et al., 2010; Yao, 

et al., 2016). There is also increasing evidence to suggest that exposure to wildfire smoke is 

associated with all-cause mortality (Borchers Arriagada, et al., 2019; Faustini, et al., 2015; 

Johnston, et al., 2011).  

However, in order to better understand the impact of wildfires on mortality and diseases (e.g. 

cardiovascular disease) more large studies with increased statistical power are needed. 

Alongside this, little information is currently available on whether health effects vary from 

different smoke pollutants or the age of smoke. However, recent toxicological evidence 

suggests the age of smoke may lead to changes in toxicity (Paraskevopoulou, et al., 2019). Due 

to there currently being very few epidemiological studies of wildfire health impacts, it is not 

possible to determine whether the shape of the concentration response function for PM 

represents the health impacts of wildfire smoke accurately (Cascio, 2018; Reid, et al., 2016). 

As a result, studies on the short-term health impacts of wildfires commonly use concentration 

response functions derived for un-speciated anthropogenic PM (Borchers Arriagada, et al., 

2020; Crippa, et al., 2016; Johnston, et al., 2012).  
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 Long-Term Exposure 

More recently, studies have used cohort populations to examine the effects of exposure on 

mortality over long-time periods. Some of the first cohort mortality studies focused on chronic 

exposure to PM2.5 in the USA (the Harvard Six Cities Studies (HSCS) and the American Cancer 

Study (ACS)) (Dockery, et al., 1993, 1989; Pope, et al., 1995). The studies used a 14-16- year 

and 7- year follow-up of 8,000 and 500,000 adults in 6 cities and 151 areas, respectively. 

Information on pollutants was taken from the national air quality monitoring network in the 

ACS. Both studies controlled for confounders such as age, sex and smoking among others and 

both found cardiopulmonary mortality to be most strongly and significantly associated with 

exposure to PM2.5 and sulfate. Long-term exposure to PM2.5 is associated with a larger increase 

in mortality relative risk (~6 to 17% per 10 µg m-3) than short-term studies (~ 1 % per 10 µg 

m-3) (Pope III, 2007).  

 Concentration response function shape 

The shape of the concentration response (CR) curve describes the increase in mortality with 

increasing air pollutant concentrations. In these relationships the population-weighted PM2.5 

concentration is used as a proxy for dose (Avery, et al., 2010). This is because PM2.5 exposure 

is generally through inhalation, and the particles at this size are respirable, but also because 

there is currently a lack of data on personal exposures within populations. However, several 

recent studies have developed methods to account for population mobility in pollutant exposure 

estimates (de Nazelle, et al., 2009; Reis, et al., 2018; Shekarrizfard, et al., 2017).  

The CR curve is affected by several variables:  

1) the toxicity of a pollutant. 

2) the susceptibility of the population. 

3) the conditions that the pollutant interacts with (e.g. weather).   
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The shape of the PM-mortality concentration response functions and the no-effects threshold 

(theoretical minimum risk exposure level (TMREL)) is one of the large areas of continuing 

research. The TMREL is particularly important in setting and evaluating ambient air quality 

limits across the world and in public policy estimating the health costs of pollution (Pope III, 

and Dockery, 2006; Wong, et al., 2008).  

Many studies have focused on trying to constrain the shape and no-effect threshold (TMREL), 

using methods that vary in complexity. Initially studies focused on single cities (Pope III, and 

Kalkstein, 1996; Schwartz, 1993; Schwartz, et al., 1996; Schwartz, and Marcus, 1990), finding 

that the function was linear or near-linear with no clear no-effects threshold (Schwartz, and 

Marcus, 1990). However, these single city studies could not be generalized for other areas and 

lacked statistical power to make strong statistical inferences regarding the shape of the 

function. As a result, studies moved onto calculating the shape of the concentration-response 

function across multiple cities using daily time-series studies (Daniels, et al., 2000; Samoli, et 

al., 2005; Schwartz, et al., 2001).  These studies were based in North America and Europe and 

found the function shape to be near linear with no clear no-effect threshold. Therefore, for 

regions where concentrations are within those observed in these analyses, this suggests that 

reductions in ambient air quality are likely to improve health even at low levels. However, it 

should be noted that the shape of the concentration-response function remains uncertain at 

concentrations above those observed in these regions (i.e. developing countries) (Cohen, et al., 

2004). This problem has become increasingly challenging as the ambient PM2.5 concentrations 

in many developing countries, and during high pollution episodes, are much above the levels 

studied previously. As a result, integrated exposure-response (IER) functions were developed 

to help account for these high concentrations. IER functions combine risk estimates from 

studies of ambient air pollution, household air pollution, second-hand smoke and active 

smoking (GBD Collaborators 2015, 2017). This allows the shape of the IER to be determined 



 51 

for much higher concentrations. However, this approach requires the assumption of equal 

exposure and toxicity between sources to be made. A recent study by Burnett et al. (2018) 

combined the results of 41 cohort studies, from 16 countries, examining PM2.5 associated 

mortality to construct the Global Exposure Mortality Model (GEMM). The large number of 

cohort studies included allowed the study to consider population-weighted average PM2.5 

concentrations over a much larger range than any previous study (15 to 84 μg m-3). For the five 

specific causes of death that were examined in the Global Burden of Disease (GBD) (Lower 

Respiratory tract Infection, Stroke, Lung cancer, Ischemic Heart Disease and Chronic 

Obstructive Pulmonary Disease) the GEMM predicted a PM2.5 disease burden that was 30% 

higher than the GBD estimate (GBD Collaborators 2015, 2017). This suggests that there may 

be additional causes of PM2.5-associated mortality that were not considered in the GBD 

(Burnett, et al., 2018). Additionally, it may suggest that creating an IER function using PM2.5 

sources such as cigarette smoking may underestimate the PM2.5 disease burden, particularly at 

higher concentrations (Burnett, et al., 2018). 

1.6 Burden of Disease from Air Pollutants  

 Global and Regional Burden of Disease from PM2.5 

In the UK, long-term exposure to PM2.5 and O3 are the third and seventh leading environmental 

risk factors for mortality (Institute for Health Metrics and Evaluation, 2015). Long-term 

exposure to PM2.5 is also the second leading environmental risk factor for Years Lived with 

Disability. Each year 29,000 deaths are brought forward across the UK due to long-term 

exposure to PM2.5.  

Globally, exposure to ambient air pollution increases morbidity and mortality and is also a 

leading cause of disease burden (GBD Collaborators 2015, 2018). Ambient air pollution is the 

fourth highest-ranking risk factor for mortality globally, with 85% of the global population 
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living in areas where recommended air quality guidelines are exceeded (GBD Collaborators 

2015, 2018). Long-term exposure to PM2.5 alone is estimated to have caused 4.2 million deaths 

and 103.1 million lost years of healthy life in 2015 (GBD Collaborators 2015, 2016). This 

represents 7.6% of global mortality. 

Thus, reducing population exposure to ambient PM2.5 could yield large public health benefits. 

However, in order to achieve this, targeted reductions (e.g. sector specific/region specific) are 

necessary.  

 Long-Term (Chronic) Exposure  

1.6.1.1.1 Global  

The most recent Global Burden of Disease (GBD) study estimated that long-term exposure to 

ambient PM2.5 was responsible for 4.2 million deaths and 103.1 million lost years of healthy 

life in 2015 (GBD Collaborators 2015, 2018, 2017). This accounted for 7.6% of total global 

mortality in 2015. Mortality from PM2.5 was calculated using disease-specific IERs developed 

by Cohen et al. (2017), for ischemic heart disease (IHD), cerebrovascular disease (ischemic 

stroke and haemorrhagic stroke (stroke)), lung cancer, chronic obstructive pulmonary disease 

(COPD) and lower respiratory infections (LRI). Age-specific functions were applied to IERs 

for IHD and stroke. The study found that PM2.5 attributable mortality was dominated by 

cardiovascular disease.  

Trends in PM2.5 attributable mortality reflect population demographics and underlying 

mortality rates, as well as ambient PM2.5 concentrations. Since there has been a decrease in 

both the underlying cardiovascular mortality rates and ambient PM2.5 in World Bank high-

income countries, such as the UK, this has led to a decrease in PM2.5 attributable mortality 

(Figure 17) (GBD Collaborators 2015, 2017). Despite this, in England, where the majority of 

the UK population live, long-term exposure to ambient particulate matter led to ~12,500 (~23 
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per 100,000 population) deaths being brought forward in 2015 (Figure 17) (GBD Collaborators 

2015, 2017; Institute for Health Metrics and Evaluation, 2015).  

 

 

 

Figure 17. Total deaths (per 100,000 population) attributable to ambient particulate matter 

pollution in 2015 globally (GBD Collaborators 2015, 2017; Institute for Health Metrics 

and Evaluation, 2015).  

 

In order to achieve targeted reductions in PM2.5 concentrations, and therefore the associated 

health impacts of exposure, the contribution of emission sectors to the total PM2.5 burden must 

be known. Atmospheric chemistry transport models can be used to simulate the impacts of 

removing/reducing emissions from individual source sectors (industry, land traffic, residential 

and commercial energy use, biomass burning, power generation, agriculture and power 

generation) on pollutant concentrations (Seigneur, and Dennis, 2011). This allows the change 

in annual mean PM2.5 concentrations and the sectoral contribution to ambient PM2.5 and PM2.5 

attributable mortality due to population exposure to be investigated (Lelieveld, et al., 2015). 
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Regionally, source categories responsible for the largest contribution to PM2.5 attributable 

mortality are shown in Figure 18.  

 

 

Figure 18. Source categories responsible for the largest impact on mortality linked to outdoor 

air pollution in 2010. Source categories that are colour coded are: IND, industry; TRA, 

land traffic; RCO, residential and commercial energy use (e.g. heating, cooking); BB, 

biomass burning; PG, power generation; AGR, agriculture; and NAT, natural. In the 

white areas, annual mean PM2.5 is below the concentration–response threshold. 

(Lelieveld, et al., 2015).  

 

Globally, residential and commercial energy use (RCO) dominates the PM2.5 health impact, 

responsible for around a third of the total global PM2.5 attributable mortality (~1 million deaths 

brought forward) (Lelieveld, et al., 2015). This is because a large proportion of the global 

population live in India and China where the RCO sector dominates the PM2.5 contribution, 

annual mean ambient PM2.5 concentrations are very high and underlying mortality rates from 

disease are also high (Figure 18). By land area, agricultural and natural emissions dominate 
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PM2.5 concentrations (AGR and NAT). Agricultural emissions contribute to around a fifth of 

the total PM2.5 attributable mortality, being the dominant source of PM2.5 attributable mortality 

in Europe (one fifth of the total 285,000 deaths brought forward in 2010 in Europe). This is 

due to the release of ammonia from agricultural processes forming secondary PM2.5 species 

(ammonium nitrate and ammonium sulphate). However, it should be noted that this study used 

a coarse global model (~100 km resolution). As a result, the model is likely to be unable to 

accurately represent local and regional scale processes, as well as the steep concentration 

gradients within urban areas.  

In Europe ammonium nitrate contributes significantly to PM concentrations, with mean 

contributions of 6-16% to PM2.5 and 6-20% to PM10 (Putaud, et al., 2010). However, it should 

be highlighted that secondary formation is complex, dependent upon whether a region is nitrate 

or ammonia limited. In addition, the results of precursor reductions on total secondary PM2.5 

formation is non-linear (Petetin, et al., 2015). Therefore, global models, at coarse spatial 

resolutions, may not be able to capture these processes accurately. Observational sites across 

the European Monitoring and Evaluation Program network have indicated that secondary PM2.5 

formation is nitrate limited across continental Europe (Pay, et al., 2012). This indicates that 

continental Europe is ammonia rich and therefore there is enough ammonia to neutralise 

sulphate and nitrate, forming ammonia nitrate and ammonium sulphate (Petetin, et al., 2015). 

However, large areas close to coasts, such as Spain and England, have been found to be 

ammonia limited, meaning ammonium sulphate and ammonium nitrate formation are limited 

by the amount of ammonia available (Pay et al., 2012). This is due to high emissions of sulphur 

dioxide and nitrogen oxides from shipping and low emissions of ammonia over marine regions. 

The coarse model resolution (100 km) is also unlikely to capture the regional variation in 

regime seen in observational data. Particularly because the secondary fraction of PM2.5 is 

difficult to quantify and predict from measurements due to the complexity of emitted precursors 
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and transformational processes (Department for Environment Food & Rural Affairs, 2015). A 

reduction in ammonia does not necessarily lead to a reduction in secondary PM2.5 in either of 

these environments due to differences in the lifetime between the gas and aerosol phases of 

secondary PM2.5. For example, a reduction in sulphate emissions leads to an increase in 

secondary PM2.5 concentrations due to an increase in ammonia availability for ammonium 

nitrate formation, and the increased lifetime of ammonium nitrate (Davidson, and Wu, 1990).  

Biomass burning has a small global contribution to global mortality from PM2.5 (~5% of the 

total 3,150,000 deaths brought forward in 2010 globally) (Lelieveld, et al., 2015).  However, 

in regions of the world frequently affected by large wildfires (e.g. Canada, South America, 

South-east Asia and Australia) it is the main source of ambient PM2.5. However, since the health 

impacts of biomass burning emissions of PM2.5 are uncertain, as well as the relative toxicity of 

specific components of PM2.5, this estimate is based on uniform PM2.5 toxicity across species.  

The global mortality burden from landscape fire smoke (LFS (PM2.5)) was estimated annually 

between 1997 and 2006, using GEOS-Chem (Johnston, et al., 2012). 339,000 deaths were 

attributed to LFS annually, of which 267,000 were in South-east Asia and sub-Saharan Africa. 

LFS associated mortality was lower in Australia but the burden was concentrated around the 

south-east coast of the country. 81% of the total global annual mortality due to LFS was a result 

of chronic exposure and 19% was due to sporadic exposure. The total mortality burden 

increased in El Niño years and decreased in La Niña years due to the associated change in 

rainfall that lead to changes in the number and intensity of fires (Johnston, et al., 2012).  

1.6.1.1.2 UK 

In the UK 29,000 deaths are brought forward due to long-term exposure to PM2.5 annually 

(Committee on the Medical Effects of Air Pollutants, 2010) and the associated Years of Life 



 57 

Lost (YLL) is 340,000. YLL is a measure of morbidity, calculated as a function of mortality 

and life-expectancy specific to an age group.  

The number of deaths brought forward regionally due to long-term exposure to PM2.5 has also 

been estimated (Gowers, et al., 2014). Since the total PM2.5 attributable deaths are influenced 

by the total population, the population demographics and underlying mortality rate, comparison 

between different regions is difficult. Therefore, the attributable fraction (AF) was presented 

instead. The AF is the percentage of deaths that are attributable to long-term PM2.5 exposure 

and is therefore independent of population characteristics and underlying mortality rates. Thus, 

it allows for easy comparison of different regions more easily. The AF and annual mean PM2.5 

concentrations indicated that England was worst affected by long-term exposure to PM2.5 (5.6% 

and 9.9 µg m-3), compared with Wales (4.3% and 7.5 µg m-3), Scotland (3.9% and 6.8 µg m-3) 

and Northern Ireland (3.8% and 6.6 µg m-3) (Gowers, et al., 2014). In England, there were large 

regional variations in the AF and annual mean PM2.5 concentrations (4.6% to 7.2% and 8.1 µg 

m-3 to 12.7 µg m-3) (Gowers, et al., 2014). The London region was worst affected by long-term 

exposure to PM2.5 (7.2%). In contrast, the South East had largest PM2.5 attributable mortality 

(4,034 deaths brought forward) and years of life lost (YLL) (41,729 YLL). This reflects the 

much higher population and underlying mortality rate in the South East, since the annual mean 

PM2.5 concentration and AF were lower in the South East (9.7 µg m-3 and 5.5%) than London 

(12.7 µg m-3 and 7.2%) (Gowers, et al., 2014).  

Alongside this, a number of policy scenario experiments were also carried out in order to 

estimate the impact of reductions in ambient PM2.5 on health (Committee on the Medical 

Effects of Air Pollutants, 2010). The effect on health was described as life-years gained, 

essentially a reduction in the YLL, and the corresponding increased life expectancy. Policies 

simulated included the removal of all anthropogenic PM2.5 emissions, reducing annual average 
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PM2.5 concentrations by 1 µg m-3 and enforcing a maximum annual mean PM2.5 concentration 

of 7 µg m-3 (Table 3).  All scenarios were for the UK. 

Table 3. Change in life expectancy for 2008 UK population following implementation of 

different policy scenarios (Committee on the Medical Effects of Air Pollutants, 2010).  

 

Policy  Population-weighted 

mean concentration 

removed 

Increased life expectancy (days) for 2008 

birth cohort 

Men Women  

Annual mean PM2.5 concentrations 

reduced by 1 µg m-3 

1 µg m-3 21 21 

All anthropogenic PM2.5 removed 8.97 µg m-3 191 177 

Maximum annual mean PM2.5 

concentration 7 µg m-3 

3.50 µg m-3 74 69 

 

Results from the scenarios tested indicated that there was a fairly linear response in life 

expectancy increase with population weighted mean PM2.5 concentrations (Table 3). As would 

therefore be expected, the most effective scenario was to remove all anthropogenic PM2.5, 

which accounts for a population weighted mean concentration of 8.97 µg m-3. Removing all 

anthropogenic PM2.5 led to an increase in life expectancy of between 177 and 191 days (~6 

months) for the 2008 birth cohort throughout their lifetime (Table 3) (Committee on the 

Medical Effects of Air Pollutants, 2010). However, this is not plausible in a real-world 

scenario. Modest improvements were made in the 7 µg m-3 maximum annual mean policy, 

accounting for the removal of a population-weighted mean concentration of 3.5 µg m-3 (Table 
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3). This, more likely scenario, led to an increase in life expectancy of ~70-75 days (~2.5 

months).  

In order to achieve reductions in annual mean PM2.5 concentrations it is essential to first 

quantify the contribution of different emission sectors. Yim and Barrett (2012) investigated the 

contribution of combustion emissions sectors on annual mean PM2.5 across the UK and the 

subsequent impact on PM2.5-attributable mortality (Figure 19). In the study combustion sectors 

were segregated into a) power generation, b) commercial, institutional, residential and 

agricultural sources, c) industry, d) road transport, e) other transport and f) all UK combustion 

sources.  

 

Figure 19. Annual average PM2.5 concentrations due to combustion emissions from (a) power 

generation; (b) commercial, institutional, residential, and agricultural sources; (c) 

industry; (d) road transport; (e) other transport; and (f) all UK combustion sources (Yim, 

and Barrett, 2012).  
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Road transport contributed the largest fraction of population weighted PM2.5 (0.75 µg m-3), 

particularly in the south-east of England (Figure 19) (Yim, and Barrett, 2012). Other transport 

and power generation were the next largest contributors to population weighted PM2.5 (0.51 

and 0.42 µg m-3) (Figure 19) (Yim, and Barrett, 2012). The resulting annual health impact of 

exposure to combustion PM2.5 indicated 9,000 deaths were brought forward in total, with the 

most substantial health burden from road transport, (3,300 deaths brought forward), other 

transport (1,800 deaths brought forward) and power generation (1,700 deaths brought forward) 

(Yim, and Barrett, 2012). Alongside this, the contribution of non-UK combustion emissions 

on PM2.5-attributable mortality was also estimated. Up to 2 µg m-3 of the population-weighted 

PM2.5 concentrations were from non-UK combustion emissions (Figure 19), this equated to 

4,100 PM2.5-associated deaths (Yim, and Barrett, 2012). Thus, indicating non-UK combustion 

emissions have a considerable impact on UK PM2.5, and therefore health.  

 Short Term Exposure 

Globally and regionally, short-lived high PM2.5 concentration events can be caused by a variety 

of factors, including meteorology (e.g. inversions, long-range transport) and emissions (e.g. 

wildfires). Though short in duration these pollution events can have a substantial impact on 

population exposure to PM2.5 and health.  

1.6.1.2.1 Global 

PM2.5 emissions from wildfires in south-east Asia and Australia are so large that they are the 

dominant source of annual mean PM2.5 concentrations in these regions (Lelieveld, et al., 2015). 

During the fire season populations in these regions can be exposed to concentrations far above 

the WHO guideline daily limit. Since these fires are generally episodic in nature, studies use 

short-term exposure response functions to estimate the acute health impact (Borchers 

Arriagada, et al., 2020; Crippa, et al., 2016).  
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Studies that have focused on the impacts of exposure to PM2.5 from large wildfires, such as 

those in Asia and Australia, indicate the health impacts are considerable. The fires in Equatorial 

Asia in September and October 2015 led to an estimated 69 million people being exposed to 

unhealthy air quality, leading to 11,880 PM2.5 associated deaths from short-term exposure 

(Crippa, et al., 2016). The first estimate of the impact of  PM2.5 exposure from fires during the 

2019/2020 Australian wildfires indicates there were an estimated 417 PM2.5-asscociated 

deaths, 1124 cardiovascular and 2027 respiratory PM2.5-associated hospital admissions due to 

bushfire PM2.5 between October 1st 2019 and February 10th 2020 (Borchers Arriagada, et al., 

2020). However, this study may underestimate the impact on health due to reliance on 

estimating population exposure using ground-based observations from the Australian air 

quality monitoring network. The Australian monitoring network is sparse and sites are 

generally located in city centres, meaning it may be difficult to capture the steep concentration 

gradients between cities and suburban areas. The fire contribution to PM2.5 concentrations was 

estimated by using the 95th percentile of historical PM2.5 concentrations to identify ‘fire days’ 

and then subtracting the historical mean PM2.5 concentration of all days. This may lead to an 

under or overestimation in the contribution of fires to PM2.5 concentrations dependent upon 

whether this method accurately captures background concentrations.  

1.6.1.2.2 UK 

Due to the UK’s unique geographical location, close to continental Europe in the north Atlantic, 

concentrations of air pollutants are subject to many different meteorological processes (e.g. 

long-range transport, wash-out), which can influence concentrations on a range of time and 

spatial scales.  

Synoptic meteorology plays a large role in controlling concentrations (Pope et al., 2014; Pope 

et al., 2016; Stirling et al., 2020). Lamb weather types, a classification for synoptic 
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meteorology, have been used to investigate the influence of regional weather on NO2 and O3 

concentrations throughout the year (Pope et al., 2014; Pope et al., 2016; Stirling et al., 2020). 

Both NO2 and O3 were found to be strongly influenced by wind and circulation patterns. 

NO2 concentrations were significantly increased under winter-time anticyclonic conditions, 

through pollutant accumulation, and were also enhanced under south-easterly flow due to long-

range transport of pollutants from continental Europe (Pope, et al., 2014; Stirling, et al., 2020). 

The winter increase in NO2 was attributed to the combined effect of increased emissions, more 

stable conditions and decreased photolysis allowing accumulation over emission sources 

(Pope, et al., 2014). The highest O3 concentrations occurred under summer anticyclonic 

conditions due to large scale subsidence and limiting vertical mixing. The study also identified 

that south-easterly and north-easterly flow increased mean UK ozone concentrations by 

between 10 and 15 μg m-3 (Pope et al., 2016). The health burden of short-term exposure to O3 

was estimated to be 41 deaths per day under anticyclonic conditions and 42-53 deaths per day 

under easterly flows. The meteorological drivers of two episodes of high O3 and PM2.5 

concentrations in 2006 were also found to be anticyclonic conditions with light easterly and 

south-easterly winds (Fenech, et al., 2019), broadly in agreement with Pope et al. (2016). The 

health impact from short-term exposure to O3 was estimated to be 70 deaths brought forward, 

between 36% and 54% higher than if concentrations were at the seasonal-mean (Fenech, et al., 

2019).  

Other studies have focussed on the impacts of specific high pollution events on health 

(Stedman, 2004; Vieno et al., 2016; Macintyre et al., 2016). Population exposure to high 

PM2.5 concentrations during a 10-day spring pollution episode in 2014 brought forward an 

estimated 600 deaths, 840 emergency respiratory and 730 emergency cardiovascular hospital 

admissions (Macintyre, et al., 2016). This equated to a doubling of hospital admissions 

compared with those under typical springtime conditions. The impact of high ozone and PM10 
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concentrations during the summer 2003 heatwave was also estimated (Stedman, 2004). The 

study found that 471 deaths were brought forward, attributable to exposure to PM10 during the 

two-week pollution event, representing an increase of 207 deaths compared to the same period 

in 2002. This is in agreement with previous work that found a large proportion of the deaths 

brought forward resulted from elevation of pollutant concentrations rather than the direct 

impact of high temperatures (Rooney, et al., 1998). Previous work has therefore highlighted 

the substantial short-term, acute impact of air pollution episodes on public health. 

1.7 Thesis Aims 

The work in this thesis aims to address several key gaps in current knowledge. This will be 

achieved through four key aims: 

• Investigate the impact of synoptic weather on UK ambient PM2.5 concentrations and 

quantify the relative contributions of local (UK) and regional (non-UK) emissions to 

PM2.5. 

• Explore the air quality impacts of the 2018 Saddleworth Moor fire using observational 

data.  

• Quantify the air quality and health impacts of the 2018 Saddleworth Moor fire using 

the WRF-Chem model. 

• Quantify the air quality and health impacts of the 2019/2020 Australian mega fires 

using the WRF-Chem model. 
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 - Methods 

This thesis has two themes: the use of observational data and modelling. In Papers 1 and 2 

observational datasets are used to understand factors affecting air quality at different spatial 

and temporal scales. While, Papers 3 and 4 use an atmospheric-chemistry transport model to 

quantify the impact of wildfires on PM2.5 air quality and health. Papers 1, 2 and 3 are published 

and Paper 4 is in draft format. Table 4 and Table 5 give an overview of the datasets used in 

each of the papers. More detailed information on the datasets and methods is given in the 

following sections and within the papers themselves.   

Observational Papers 

Paper 1: Ailish M. Graham, Kirsty J. Pringle, Stephen R. Arnold, Richard J. Pope, Massimo 

Vieno, Edward W. Butt, Luke A. Conibear, Ellen L. Stirling and James B. McQuaid. Impact 

of weather types on UK ambient particulate matter concentrations. Atmospheric Environment: 

X, 5, p. 100061. DOI: https://doi.org/10.1016/j.aeaoa.2019.100061, 2019.  

Paper 1 used ground-based observational data to investigate the influence of synoptic scale 

weather patterns (characterised by Lamb weather types) on ambient PM2.5 across the UK (from 

AURN ground-based observational sites). The contributions of local and non-local primary 

PM2.5 emissions to changes in ambient PM2.5 concentrations under different weather patterns 

were investigated using the ROTRAJ back trajectory model and bottom-up anthropogenic 

emissions datasets.  

 

Paper 2: Ailish M. Graham, Richard J. Pope, James B. McQuaid, Kirsty J. Pringle, Stephen 

R. Arnold, Antonio G. Bruno, David P. Moore, Jeremy J. Harrison, Martyn P. Chipperfield, 

https://doi.org/10.1016/j.aeaoa.2019.100061
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Richard Rigby, Alberto Sanchez-Marroquin, James Lee, Shona Wilde, Richard Siddans, Brian 

J. Kerridge, Lucy J. Ventress and Barry J. Latter. Impact of the June 2018 Saddleworth Moor 

wildfires on air quality in northern England. Environmental Research Communications, 2(3), 

p.031001. DOI: https://doi.org/10.1088/1748-9326/ab8496, 2020.  

Paper 2 used ground-based, satellite and aircraft observations to investigate the impact of the 

2018 Saddleworth Moor fire on air pollutant concentrations across the north-west of England. 

The emission and evolution of key air pollutants, including CO, NO2, O3 and PM2.5, were 

investigated using a combination of the time series and in-situ datasets that are listed above.  

Modelling Papers 

Paper 3: Ailish M. Graham, Richard J. Pope, Kirsty P. Pringle, Stephen R. Arnold, Martyn P. 

Chipperfield, Luke A. Conibear, Edward W. Butt, Laura Kiely, Christoph Knote, James B. 

McQuaid. Impact on air quality and health due to the Saddleworth Moor Fire in Northern 

England. Environmental Research Letters. DOI: https://doi.org/10.1088/2515-7620/ab7b92, 

2020. 

Paper 4: Ailish M. Graham, Richard J. Pope, Kirsty P. Pringle, Stephen R. Arnold, Luke A. 

Conibear, Helen Burns, Richard Rigby, Nicholás Borchers-Arriagada, Edward W. Butt, Laura 

Kiely, Carly Reddington, Dominic V. Spracklen, Matt Woodhouse, Christoph Knote, James B. 

McQuaid. Impact of the 2019/2020 Australian megafires on Air Quality and Health. Draft 

Format 

Papers 3 and 4 applied the same method to different regions of the world (UK and Australia). 

The WRF-Chem model was used to investigate the impacts of the 2018 Saddleworth Moor 

(Paper 3) and 2019/2020 Australian (Paper 4) wildfires on PM2.5 concentrations. WRF-Chem 

was used to calculate the impacts of the fires on air quality by simulating PM2.5 concentrations 

https://doi.org/10.1088/1748-9326/ab8496
https://doi.org/10.1088/2515-7620/ab7b92
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with and without fire emissions. Observations of PM2.5 (from ground-based monitoring) were 

used to evaluate the model runs with fire emissions. Once the model performance was 

quantified the increase in PM2.5 concentrations due to the fires was calculated using the two 

simulations (PM2.5 Fires – PM2.5 No Fires). Using gridded population data (Australian Bureau 

of Statistics, 2019; NASA Socioeconomic Data and Applications Center (SEDAC) Center for 

International Earth Science Information Network (CIESIN), and Columbia, 2018) the 

population-weighted PM2.5 concentration was determined and used as a proxy for dose. A 

short-term concentration-response function (Atkinson, et al., 2014; World Health 

Organization, 2013) was applied to the population-weighted PM2.5 concentration, alongside 

underlying mortality rates (Australian Bureau of Statistics, 2020; Institute for Health Metrics 

and Evaluation, 2015) to quantify the health burden of population exposure to PM2.5 from the 

fires (PM2.5 Fires – PM2.5 No Fires). 

Detailed information on the datasets used in the observational papers is provided in the 

supplementary material of Papers 1 and 2 – therefore only an overview is provided in Table 4. 

The focus of the following sections is to provide a more detailed model description and further 

information on the methods used in the modelling papers (Paper 3 and 4), as these are not 

described in detail in the papers themselves. 
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Table 4. Overview of datasets used in Papers 1 and 2. These papers focused on the use of observational datasets, using models to support 

understanding of relationships identified through the observational datasets.  

 

  

Paper Region 

Air Pollutant Datasets Emissions Datasets 

Other 

Datasets Model 

Ground 

Observations 

Satellite 

Observations 

Aircraft 

Measurements 

Anthropogenic 

Emissions 

Fire 

Emissions 

Synoptic 

Meteorology  

Back 

Trajectories 

Atmospheric 

Chemistry 

Transport 

Model 

1 UK AURN PM2.5 

    

 EDGAR-

HTAP2, EMEP, 

NAEI PM2.5 

  

Lamb 

Weather 

Types 

Reading Offline 

Trajectory Model 

(ROTRAJ) 

The European 

Monitoring 

and Evaluation 

Program 

Unified Model 

for the UK 

(EMEP4UK) 

2 UK AURN PM2.5 

TROPOMI 

Tropospheric 

Column NO2, 

CO 

FAAM NO2, 

CO, CO2, O3, 

PM2.5 

  

FINN,  

MODIS 

Fire 

Radiative 

Power   

The Hybrid 

Single Particle 

Lagrangian 

Integrated 

Trajectory Model 

(HYSPLIT)   
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Table 5. Overview of datasets used in Papers 3 and 4. These papers focused on the application of air quality modelling to quantify the impacts of 

wildfires on health through population exposure to PM2.5.  

Paper Region 

Air Pollutant Datasets Emissions Datasets Other Datasets Model 

Ground Observations 

 

Anthropog

enic 

Emissions 

Fire 

Emissions 

Population 

Count 

Mortality 

Rate 
Concentration 

Response Function 

Atmospheric Chemistry 

Transport Model 

3 UK 

AURN PM2.5 

  

EDGAR-

HTAP2 
FINNv1.5 

Gridded 

Population of 

the World v4  

(GPWv4) 

(2015) 

Global Burden 

of Disease 

(North-west 

England) 

(2015) 

Atkinson et al. 

(2014):  1.04% 

(95% CI: 0.52 - 

1.56%) per 10 μg 

m−3 

Weather Research and 

Forecasting Model 

coupled with Chemistry 

(WRF-Chem) v3.7.1 

4 Australia 

PM2.5 observations from 

government 

departments in 

Queensland, New South 

Wales, Australian 

Capital Territory and 

Victoria. 

EDGAR-

HTAP2 

FINN near-

real time  

Australia 

Bureau of 

Statistics 

population 

count data 

(2018) 

Australia 

Bureau of 

Statistics (state 

specific) 

(2018) 

WHO (2013):  

1.0123 (95% CI: 

1.0045, 1.0201) per 

10 μg m−3 

Weather Research and 

Forecasting Model 

coupled with Chemistry 

(WRF-Chem) v3.7.1 
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2.1 WRF-Chem Model: Paper 3 and 4 

Concentrations of pollutants in the atmosphere are controlled by four key processes: emissions, 

chemistry, transport and removal (Jacob, 2006). These processes and interactions can be 

represented numerically in 3-D Atmospheric Chemical Transport Models (Dore, et al., 2015), 

such as the Weather Research and Forecasting Model with Chemistry (WRF-Chem) (Grell, et 

al., 2005). Models can therefore be used to simulate concentrations of pollutants across many 

scales, from global to local. Ground-based observations are often sparse, and are generally only 

representative of a small region surrounding their location. In contrast, satellite observations 

give a more complete picture spatially but often lack temporal detail due to their orbits (i.e. 

polar orbiters overpass only once per day). Modelled concentrations can be very useful in 

understanding the distribution of concentrations over larger areas than is available from 

ground-based monitoring and at higher temporal-resolution than is available from satellites. 

Despite this, ground-based and satellite observations are still useful in validating modelled 

pollutant concentrations both spatially and temporally. Provided the simulated concentrations 

agree well with observations, the impact of different scenarios can be simulated (e.g. changes 

in emissions). In papers 3 and 4 PM2.5 concentrations were simulated for two scenarios: 1) with 

fire emissions 2) without fire emissions. This isolated the contribution of each wildfire event 

to PM2.5 concentrations and allowed the impact of pollutants emitted by wildfires on air quality 

and health to be quantified.  

 The WRF-Chem Model System 

The Weather Research and Forecasting Model with Chemistry (WRF-Chem) has become a 

popular tool for investigating regional air quality across the world in recent years. The model 

development was a collaborative effort, led by NOAA and ESRL scientists, to convert WRF 
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into a coupled model with chemistry that is free to use. WRF-Chem is a fully online-coupled 

model, in which the air quality and meteorology are fully integrated using the same coordinate 

system, transport and time-step (Grell, et al., 2005). This is achieved by including modules for 

both gas-phase and aerosol chemistry. Online chemistry allows complex interactions between 

emissions, chemistry, transport and removal to be captured (e.g. chemistry impacts on 

meteorology through interaction of aerosols on CCN), since these interactions occur on time-

scales shorter than the model output (Grell, et al., 2005).  

WRF is a fully compressible, non-hydrostatic model, which was designed for research and 

forecasting. There are two dynamical cores in the WRF model: The Advanced Research WRF 

(ARW) and Non-hydrostatic Mesoscale Model (NMM). Both cores are Eulerian mass 

dynamical that use terrain-following hydrostatic pressure vertical coordinates and include 

advection, Coriolis, diffusion, pressure gradients and time-stepping. The work presented in this 

thesis used the ARW core (within WRF-Chem version 3.7.1). The ARW solver is used to 

calculate chemistry and meteorology using the same coordinates, timestep and physics (Grell, 

et al., 2005; Skamarock, and Klemp, 2008).  

The WRF and WRF-Chem modelling systems are constructed of two main components, which 

will be discussed in the following sections, with specific focus on the WRF-Chem model: 

1. The WRF pre-processing system (WPS) 

2. The WRF model (REAL and ARW model) 

The WRF-Chem model differs from the WRF model due to the addition of chemistry, which 

needs additional gridded data for emissions of chemical species (see ‘External Data Source’ in 

Figure 20). This additional information is provided by the WPS (dust emissions) or read in 

(e.g. fire emissions, biogenic emissions) during initialisation (see ‘External Data Source’ in 

Figure 20). Alongside this, anthropogenic emissions are also read into the WRF ARW solver 
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(see ARW model in Figure 20) and an additional step is added in post processing (3) to 

calculate the concentrations of some air pollutant species (see ‘Post-Processing & 

Visualisation’ in Figure 20).  

In this work a set of scripts (WRFotron) written by Christoph Knote were used to automate 

WRF-Chem simulations and scripts from and Christoph Knote and Luke Conibear were used 

for post-processing. WRFotron scripts were used to submit the three key stages of simulations:  

• pre-processing (pre.bash) (‘WPS’, ‘Real data’ and ‘wrfchembc’ Figure 20) 

• the ARW model (main.bash) (‘ARW model’ Figure 20)  

• post-processing (post.bash) using Python/NCL scripts (‘NCL’ Figure 20).  

This work used the same model set-up as has been extensively used in air quality studies across 

many regions of the world previously (Conibear et al., 2018a, 2018b; Conibear et al., 2018; 

Kiely et al., 2019, 2020; Reddington et al., 2019; Conibear et al., 2020; Silver et al., 2020; 

Thorp et al., 2020).  
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Figure 20. Flowchart of the WRF-Chem Modelling System (Peckham, et al., 2015).  
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 Domain and Model Set-up 

An overview of the model set-up used for Papers 3 and 4 is provided in Table 6, further 

information on the settings used is given in the following sections and within the papers and 

their supplementary material.   



 74 

Table 6. Model and Domain settings used for Paper 3 and 4.  

Model Configuration and 

Parametrizations 

Paper 3 Paper 4 

Model Simulation Time Period June 16th – July 14th 2018 September 1st 2019 – January 31st 2020 

Model Domain -4.9 – 0.7E and 53.0 – 54.4N             128.9 – 170.6E and -9 – -48N            

Horizontal Resolution 17x39 grid boxes 10 km 130x150 grid boxes 30 km 

Vertical Resolution 33 levels and 27 meteorological 

levels 

33 levels and 38 meteorological levels 

Model Timestep 60 seconds 180 seconds 

Meteorological Initial 

Boundary Conditions 

NCEP GFS and NCEP FNL 6-hourly 

analyses at 0.5º  

ERA5 6-hourly analyses at 0.1º 

resolution 

Chemical Initial Boundary 

Conditions 

WACCM 6-hourly simulation data  WACCM 6-hourly simulation data  

Fire emissions FINNv1.5 FINN near-real time 

Fire emissions release 100% at the surface called every 30 

seconds 

Evenly distributed through the 

boundary layer/plume-rise, both called 

every 30 seconds 

Anthropogenic emissions EDGAR-HTAP 2010 EDGAR-HTAP 2010 

Dust emissions GOCART with Air Force Weather 

Agency (AFWA) modifications 

GOCART with Air Force Weather 

Agency (AFWA) modifications  

Land surface  NOAH Land surface model NOAH Land surface model 

Boundary Layer Scheme The Mellow-Yamada-Nakanishi-

Niino Level 2.5(MYNN2) scheme 

called every 60 seconds 

The Mellow-Yamada-Nakanishi-

Niino Level 2.5(MYNN2) scheme 

called every 3 minutes 

Gas-phase Chemistry MOZART-4 with aqueous chemistry 

(202) called every 60 seconds 

MOZART-4 with aqueous chemistry 

(202) called every 3 minutes 

Photolysis Scheme Madronich fTUV (phot_opt=3) 

called every 10 mins 

New full fTUV (phot_opt=4) called 

every 30 mins 

Aerosol Scheme MOSAIC 4-bin with aqueous 

chemistry (202) (apart from in 

stratocumulus clouds) called every 60 

seconds 

MOSAIC 4-bin with aqueous 

chemistry (202) (apart from in 

stratocumulus clouds) called every 3 

minutes 

Convection Parameterization Grell 3-D ensemble Grell 3-D ensemble 
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Microphysics Thompson scheme Thompson scheme 

Radiation Scheme RRTM longwave called every 60 

seconds and Shortwave radiation 

RRTM shortwave called every 60 

seconds 

RRTM longwave called every 3 

minutes and Shortwave radiation 

RRTM shortwave called every 3 

minutes 

Meteorological Nudging All vertical levels - potential 

temperature, horizontal and vertical 

winds and the water vapour mixing 

ratio using 3-hourly GFS reanalysis. 

1. All vertical levels - potential 

temperature, horizontal and vertical 

winds and the water vapour mixing 

ratio using 6-hourly ERA5 reanalysis. 

2. Within the boundary layer 

horizontal and vertical winds are 

nudged using 6-hourly ERA5 

reanalysis. Above the boundary layer - 

potential temperature, horizontal and 

vertical winds and the water vapour 

mixing ratio using 6-hourly ERA5 

reanalysis 
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 UK 2018 Saddleworth Moor Wildfire 

Simulations for the Saddleworth Moor wildfire were performed between June 1st to July 14th 

2018 at 10 km resolution for a domain covering northern England (Figure 21). The first two 

weeks of the simulation were discarded as model to spin-up. Therefore, the simulation analysed 

spanned June 16th to July 14th 2018. The domain size was 17x39 grid boxes with 33 pressure 

levels (from the surface to 10 hPa). The domain included the north-west England region, which 

ground-based and satellite observations indicated was most severely affected by pollutants 

from the fires. The spatial resolution was 10 km, therefore a model timestep of 60 seconds was 

used in order not to breach courant (C) stability (i.e. how much information (u) moves across 

a grid cell (x) within a given model timestep (t), since 𝐶 =
𝑢 t

x
). This allowed the model 

simulation time and cost to be reasonable, without the model becoming unstable. 

 

Figure 21. WRF-Chem domain for Saddleworth Moor Fires 2018 simulations 
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 Australia  

Simulations over Australia were performed for August 1st 2019 to January 31st 2020 at 30 km 

resolution for a domain covering eastern Australia and New Zealand (Figure 22). Model output 

was discarded between August 1st and August 31st to allow the model to spin-up in the first 

month. The domain size was 130x150 grid boxes with 33 pressure levels (from the surface to 

10 hPa). For these simulations, only eastern Australia was included in the model domain for 

several reasons. Firstly, ~90% of the population live in this region, secondly this was the region 

the fires affected most severely, thirdly, satellite observations indicated that pollutants were 

transported within this region by prevailing winds, and finally, computing cost and time meant 

that including all of Australia and New Zealand would have been challenging. Since the 

resolution of this model simulation was coarser (30 km) a larger model timestep was used (3 

minutes).  

 

Figure 22. WRF-Chem domain for Australia wildfires 2019/2020 simulations 
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Data used for Initial Conditions 

 Initial Boundary Meteorology  

Meteorological Reanalysis  

UK 

Meteorological conditions were initialised using NCEP GFS 6-hourly analyses at 0.5º 

resolution on 27 pressure levels (NCEP, 2007). In between the 6-hourly analyses, GFS 3-hourly 

forecasts were used for boundary conditions and nudging of meteorological variables (NOAA, 

2020). Nudging was used in order to keep simulated meteorology in line with the 

meteorological analyses. The variables which were nudged in all of the vertical levels included, 

potential temperature, the horizontal and vertical winds and the water vapour mixing ratio. 

Meteorology was re-initialised every week using meteorological boundary conditions in order 

to minimise model drift. 

Australia  

Meteorological conditions were initialised using ERA5 6-hourly analyses at 0.1º resolution on 

38 pressure levels (Hoffman et al., 2019; ECMWF, 2020). Nudging was performed in the same 

way as with GFS reanalysis but using 6-hourly ERA5 meteorological analysis. Two nudging 

options were tested, firstly, meteorological variables (potential temperature, horizontal and 

vertical winds and the water vapour mixing ratio) were nudged for all vertical levels. Secondly, 

only horizontal and vertical wind components were nudged within the boundary layer and 

above the boundary layer potential temperature, horizontal and vertical winds and the water 

vapour mixing ratio were nudged.  

 Initial Chemical Boundary Conditions 

Initial boundary chemistry was provided by the Whole Atmosphere Community Climate 

Model (WACCM) 6-hourly simulation data (Marsh, et al., 2013; UCAR, 2020a), since this is 

the only dataset available at near-real time. WACCM meteorology is driven by the NASA 
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GMAO GEOS-5 model. Anthropogenic emissions for 2014 from CEDS (used in CMIP6) and 

FINN-v1 fire emissions are used in WACCM. Model output is given on 88 vertical levels at 

0.9x1.25º (UCAR, 2020b). WACCM initial boundary conditions were used to initialise 

chemistry at the start of the simulation in both the UK and Australia model simulations.  

 Anthropogenic Emissions 

For both the UK and Australia model simulations, global anthropogenic emissions were taken 

from the Emission Database for Global Atmospheric Research with Task Force on 

Hemispheric Transport of Air Pollution version 2.2 (EDGAR-HTAP2) (Janssens-Maenhout, 

et al., 2015) at 0.1° resolution for 2010. Sector specific diurnal cycles were subsequently added 

to the emissions after they have been read in, using diurnal cycles from Olivier et al. (2003). 

EDGAR-HTAP2 is a global, gridded, air pollution emission inventory compiled of officially 

reported, national gridded inventories. Where national emissions datasets or specific sectors 

were not available EDGAR v4.3 grid maps are used. Emissions include SO2, NOx, CO, 

NMVOC, NH3, PM10, PM2.5, BC and OC. The resulting EDGAR-HTAP2 dataset provides 

emissions of these pollutants on a monthly and annual grid map and contains emission factors 

that are fuel-, technology-, process- and human activity- dependent, as well as considering end-

of-pipe abatement. Emissions include all anthropogenic emissions except large-scale biomass 

burning (e.g. wildfires). Emissions are split into 7 sectors: aircraft, international shipping, 

power industry, industry, ground transport, residential and agriculture.  

Within EDGAR-HTAP2, European emissions are from the TNO-MACC-II (EMEP-TNO) 

(Kuenen, et al., 2014) dataset at 0.125°x0.0625° (converted to 0.1° x 0.1°), spanning from 

30°W-60°E and 30-72°N. EDGAR-HTAP2 2010 data for Europe is based on EMEP-TNO 

2009 data but uses the trend in EMEP-TNO data between 2006 and 2009 to estimate 2010 

emissions. The EMEP-TNO dataset includes all activities, except international shipping and 
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international aviation (this was taken from EDGARv4.3), and all emissions, except OC and 

BC. OC and BC were derived using a ‘PM-split’ table, that provides recommendations on PM 

composition carbonaceous profiles for each sector and country (Visschedijk, et al., 2009) using 

PM2.5 and PM10. From the annual totals, monthly profiles were calculated using monthly 

scaling factors for each country and sector.  

Australian emissions in EDGAR-HTAP2 are taken from EDGAR v4.3. The dataset provides 

global emissions of anthropogenic and greenhouse gases between 1970 and 2010, including 

OC, BC and PM2.5. Emissions are provided at country level for individual sources. These are 

mapped onto the EDGAR-HTAP2 grid using proxy data such as population data, roads, 

railways and animal density, among others (more information in Janssens-Maenhout et al. 

(2013)). Once the data has been mapped, monthly profiles for each HTAP sector from EDGAR 

v4.3 are applied to create a monthly varying dataset – for Australia profiles for the southern 

hemisphere are used.   

EDGAR-HTAP2 emissions are used in place of local emissions datasets (e.g. NAEI emissions 

for the UK) because during fire events the PM2.5 signal is likely to be dominated by fire 

emissions of PM2.5 (e.g. PM2.5 fires – PM2.5 no fires).  

 Fire Emissions 

Wildfire emissions were taken from the Fire Inventory from NCAR version 1.5 (FINNv1.5) 

(UK) and FINN version 1 near real time (FINNv1 NRT) (Australia), which were provided with 

chemical speciation profiles for MOZART-4. Both versions of FINN combine satellite 

observations, land cover, biomass consumption estimates and emissions factors to calculate 

daily fire emissions globally at 1 km resolution. FINN emissions are chosen over GFED due 

to their higher spatial resolution (1 km vs 5 km). FINN uses satellite observations from the 

MODIS Thermal Anomalies Product to provide detections of active fires. Burned area is 



 81 

assumed to be 1 km2 for each fire identified and scaled back based on the density of vegetation 

from the MODIS Vegetation Continuous Fields (VCF) (i.e. if 50% bare = 0.5 km2 burned area). 

The type of vegetation burned during a detected fire is determined using the MODIS Collection 

5 Land Cover Type (LCT). Each fire pixel is assigned to one of 16 possible land cover/land 

use classes and also the density of vegetation at 500 m resolution, scaled to 1 km. The 16 land 

cover types are then aggregated into 8 generic categories to which fuel loadings are applied 

(Wiedinmyer, et al., 2011). Fuel loadings are from Hoelzemann et al. (2004) and emissions 

factors are from Akago et al. (2011), Mcmeeking (2008) and Andrae and Merlet (2001). FINN 

includes all emissions from above ground vegetation but not from the combustion of peat 

(Kiely, et al., 2019). Fire types included are wildfires, prescribed and agricultural burning. 

However, trash burning or biofuel use are not included.  

The key difference between FINN v1 NRT and FINN v1.5 is that FINN v1 NRT uses MODIS 

near real time fire counts rather than the reprocessed fire counts, which v1.5 uses. This is due 

to FINN v1 NRT being a near real time product. The near real time product (FINN v1 NRT) is 

used for paper 4 because FINNv1.5 emissions had not been released at the time of the model 

simulations. However, the differences between the two datasets over Australia for the year 

2018 (and 2019 following the v1.5 release) were quantified to identify any differences in PM2.5 

emissions. 

Release of Fire Emissions 

WRF-Chem is set-up to emit fire emissions using a plume-rise parameterisation by default 

(Freitas, et al., 2007). Plume-rise is a 1-D cloud-resolving model that parameterises how 

plumes transport hot gases and particles vertically. Plume-rise uses meteorological fields and 

land-use from the WRF-Chem simulation as input and then explicitly simulates each plume. 
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The height of each plume is then used as the injection height for flaming fire emissions within 

the model (Freitas, et al., 2007).  

Several studies focussed on peat fires have found that, due to the lower burning temperatures, 

the plume-rise scheme potentially represents an incorrect vertical distribution of the emissions 

(Archer-Nicholls, et al., 2015; Crippa, et al., 2016). Given the relatively small size of the 

Saddleworth Moor fires (8 km2) and the low peak height of flames (4 m), the plume-rise 

parameterization is likely to overestimate the injection height of the emissions from the fires. 

Therefore, in these simulations 100% of emissions were released at the surface. The much 

larger Australia bushfires are likely to have had a substantially higher flame height and 

produced such intense heat that they created pyro-cumulonimbus clouds. Therefore, in these 

simulation two emissions release options were implemented in order to investigate which lead 

to the best comparison with observations:  

1) distributing emissions evenly within the boundary layer, following the method of Kiely 

et al. (2020, 2019).  

2) Plume-rise. 

Kiely et al. (2020, 2019) used a similar WRF-Chem set-up to the Australia simulations and 

found that for simulations of Indonesian fires surface and boundary layer emission release 

options improved agreement between simulated surface PM2.5 concentration and observations 

compared with the plume-rise module. 

In both papers, the fire_emiss pre-processor was used to re-grid FINN emissions to the domain 

spatial resolution and to map the FINN chemical speciation to the model aerosol scheme. The 

size distribution of aerosol was then calculated online. Fire_emiss also applies separate diurnal 

cycles to emissions from wildfire, prescribed burning and agricultural burning, using WRAP 
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data (Western Regional Air Partnership, 2005). >90% of wildfire emissions are released 

between 10:00 and 19:00 local time.  

 Dust Emissions 

Three options to calculate dust emissions are available in WRF-Chem v3.7.1: 1) GOCART-

WRF (dust_opt=1) (LeGrand, et al., 2019), 2) GOCART AFWA (dust_opt=3) (LeGrand, et 

al., 2019) and 3) GOCART UoC (dust_opt=4) (Shao, 2001). In this work the GOCART with 

Air Force Weather Agency (AFWA) modifications (LeGrand, et al., 2019) scheme was used 

(dust_opt=3), which calculates dust emissions online. The AFWA scheme is based on the 

parametrisation of Marticorena and Bergametti (1995) and builds upon the original GOCART 

dust emission scheme (Ginoux, et al., 2001), first incorporated into WRF-Chem as GOCART-

WRF. GOCART was designed to use a topographically based source function to fixed 

geographic variability in substrate erodibility. This removed the need to obtain soil and surface 

characteristic data, which are difficult to acquire. In GOCART AFWA the erodible fraction of 

soil is fixed to a constant mix of sand, silt and clay. Dust emissions are calculated using wind 

speed, soil moisture and general soil characteristics, which are already available in WRF-

Chem. Emissions are calculated separately for discrete soil grain size bins in a two-stage 

process, where wind shear triggers large particle saltation, leading to the emission of fine 

particles by saltation bombardment. The AFWA scheme is able to better represent dust 

emissions by saltation bombardment and particle disaggregation than the GOCART-WRF 

scheme by utilising an independent series of 9 bins for saltation (between 1.42 m and 250 

m) and 5 bins for emitted dust (0.2-2 m , 2-3.6 m, 3.6-6 m, 6-12 m and 12-20 m) 

(LeGrand, et al., 2019). Dust mass fluxes calculated by the scheme are used to represent the 

dust mass flux that is injected into the surface atmospheric model level. Separate modules in 

the model, for atmospheric transport and removal, are then used to estimate dust concentrations 

in model levels above this.  
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 Land-use 

Land-use (vegetation) data is from MODIS at 30 arc-second resolution (~1km) using 

International Geosphere-Biosphere Programme (IGBP) classes. 18 land-use classes are used, 

with 7 tree/shrubland, 3 savanna/grassland, 2 cropland, wetland, ice and snow, urban, bare-

ground and water categories. More information is available from UCAR (2020c).  

 Model set-up 

 Land-surface Model 

The NOAH land-surface model (LSM) was used to represent land surface processes and 

provide lower boundary conditions (Ek, et al., 2003). The NOAH LSM simulates surface 

energy and water fluxes and the surface energy and water budgets due to near-surface 

atmospheric forcing. The associated changes in soil moisture and temperature and snowpack 

are important to the surface energy and water budgets on daily, seasonal and annual timescales. 

This allows the model to account for sub-grid fluxes and also has knock on effects on boundary 

layer and cumulus schemes. The three key inputs that the LSM needed as input were: land-use 

(vegetation) type, soil texture and slope. From this, the LSM provides WRF with: surface 

sensible heat flux, surface latent heat flux, upward long-wave radiation (or skin temperature 

and surface emissivity), upward (reflected) short-wave radiation (or surface albedo, including 

snow effect).   

 Boundary Layer Scheme  

The planetary boundary-layer scheme (PBLS) used was the Mellow-Yamada-Nakanishi-Niino 

Level 2.5 (MYNN2) scheme (Nakanishi, and Niino, 2006). The PBLS is important in 

determining the concentration of pollutants. The most important variables within the PBL, 

which determine concentrations, are PBL height, wind speed and direction, temperature and 

relative humidity. These are characterised using parameterisations. Within the MYNN2 
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scheme a database of large eddy simulations was used to tune these variables, with the aim of 

overcoming typical biases seen in PBLSs (e.g. a convective boundary layer which doesn’t grow 

sufficiently and underestimated turbulent kinetic energy).  

 Gas-phase and Aerosol Chemistry Scheme 

The Model for Ozone and Related Chemical Tracers, version 4 (MOZART-4) scheme was used 

for gas-phase chemistry (Emmons, et al., 2009), driven by model meteorology. The MOZART-

4 scheme includes 85 gas-phase species, 12 bulk aerosol compounds, 39 photolysis 

(phot_opt=3)/109 photolysis (phot_opt=4) reactions relevant to tropospheric and stratospheric 

chemistry, and 157 gas-phase reactions (Emmons, et al., 2009). The scheme, which allows the 

online calculation of aerosol, updates MOZART-2 (Horowitz, et al., 2003), which was based 

on the Model of Atmospheric Transport and Chemistry (MATCH) (Rasch, et al., 1997). The 

scheme has also been extended to include detailed treatment of monoterpenes, aromatics, 

nitrous acid (HONO.- an important source of the hydroxyl radical), acetylene (C2H2) and an 

updated isoprene scheme (Knote et al., 2014). This is coupled to the Model for Simulating 

Aerosol Interactions and Chemistry (MOSAIC) sectional aerosol scheme with the Kinetic Pre-

Processor (KPP). Within MOSAIC, four sectional aerosol bin sizes are used: 0.039–0.156, 

0.156–0.625, 0.625–2.5 and 2.5–10 µm. The MOSAIC scheme includes the interaction of 

aerosol with radiation through the direct effect of aerosol on radiation (scattering) and the effect 

of aerosols and clouds on photolysis (Emmons, et al., 2009). MOZART-4 also includes aerosol 

interactions with clouds via aerosol number determining cloud drop number and size, the first 

indirect aerosol effect, aqueous chemistry (in these simulations aqueous chemistry in 

stratocumulus clouds was not included) and wet removal through scavenging. 

The physical processes within MOZART-4 are the same as within MOZART-2 (Horowitz, et 

al., 2003). Within the MOZART model convective mass fluxes are calculated, using the 
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shallow and mid-level convective transport formulation of Hack (1994) alongside the deep 

convection scheme of Zhang and McFarlane (1995). A parameterisation is used for vertical 

diffusion in the boundary layer (Holtslag, and Boville, 1993). Wet deposition is from Brasseur 

et al. (1998). A flux form semi-Lagrangian transport algorithm is used for advective transport 

(Lin, and Rood, 1996).  

The updated gas-phase chemical mechanism in MOZART-4 uses a volatility basis set 

description of secondary organic aerosol (SOA) formation, based on Lane, Donahue and Pandis 

(2008a, 2008b) (Knote et al., 2014). This allows the oxidation of several biogenic and 

anthropogenic precursor species to form new species with varying volatilities (Knote et al., 

2014). These then partition between the gas- and aerosol-phase, dependent upon total organic 

aerosol load and temperature. The effect of continuous oxidation on reducing the volatility is 

also included, as well as the removal of secondary inorganic VOCs. Primary organic aerosols 

(POAs) are considered non-volatile in the model. More detailed information on the updated 

scheme is available in Hodzic and Knote (2014) and Knote et al. (2014).  

2.1.3.3.1 Aerosols 

The MOZART-4 scheme includes the calculation of black carbon, sulfate, ammonium nitrate, 

primary and secondary organic aerosol (POA and SOA) and sea salt. Sulfate aerosols are 

formed from precursor emissions of SO2 and DMS (Barth, et al., 2000). Black carbon (BC) and 

organic carbon (OC) emissions are split between hydrophobic (50%) and hydrophilic forms 

(80%) (Chin, et al., 2002). BC and OC are converted from hydrophobic to hydrophilic at a time 

constant of 1.6 days (Horowitz, 2006; Tie, et al., 2005). SOA is formed through the oxidation 

of monoterpenes and toluene (Chung, and Seinfeld, 2002). A parameterization of gas/aerosol 

partitioning (Metzger, et al., 2002) and ammonia emissions are combined to determine the 

distribution of ammonium nitrate. Based on the amount of sulphate present, the parametrisation 
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applies a set of approximations to the equilibrium constant calculation (Seinfield, 1986). The 

uptake of dinitrogen pentoxide (N2O5), HO2, NO2 and nitrate (NO3) onto aerosols is included. 

The surface area is calculated, using the assumption of a lognormal distribution, using a 

different geometric mean radius and standard deviation for each type of aerosol (Chin, et al., 

2002). Sea salt aerosol is calculated online (Mahowald, et al., 2006) and is included using four 

size bins (0.1–0.5, 0.5–1.5, 1.5–5, and 5–10 µm). Monthly mean distributions of dust in the 

Community Atmosphere Model (CAM) are used to set the distribution of dust, in four size bins 

(0.05–0.5, 0.5–1.25, 1.25–2.5, and 2.5–5.0 µm). Ambient relative humidity is used to determine 

hygroscopic growth of aerosols, with different rates applied to individual types of aerosols 

(Chin, et al., 2002). While, washout is 20% of the HNO3 washout rate for all aerosol species, 

expect hydrophobic OC and BC (Horowitz, 2006; Tie, et al., 2005).  

2.1.3.3.2 Photolysis 

The online f-TUV (fast Tropospheric Ultraviolet-Visible) scheme (Tie, et al., 2003) (39 

reactions) and the new TUV scheme (UCAR, 2020d) (109 reactions) were used in the UK and 

Australia simulations, respectively. These settings are recommended for use with MOZART-4 

(Hodzic, and Knote, 2014). The f-TUV scheme is a simplified, much faster and 

computationally cheaper version of the TUV model (Madronich, and Weller, 1990). The f-

TUV scheme was updated to allow the impact of aerosols on clouds to also be included (Tie, 

et al., 2003). A lookup table, which is based on the Mie calculations in the NCAR Community 

Atmosphere Model (CAM3), is used in the treatment of aerosols in fixing photolysis 

frequencies and aerosol optical depth. The new TUV scheme uses the updated TUV model 

(TUV v5.3), which now includes aerosol and cloud feedback on photolysis rates, improving 

TUV model performance when compared with observations (UCAR, 2020e).  
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2.1.3.3.3 Dry Deposition 

Dry deposition velocities were calculated online using the parameterisation of Wesley (2007), 

Walmsley and Wesley (1996) and Wesley and Hicks (2000). The parametrisation uses the 

distribution of vegetation, and the diffusion coefficient, reactivity and water-solubility of gases, 

to calculate surface resistance. The distribution of vegetation is taken from monthly land cover 

maps of plant functional type fraction and leaf area index (Bonan, et al., 2003). The flux of air 

pollutants (aerosols and gases) to the surface is calculated by multiplying the spatio-temporal 

deposition velocity by air pollutant concentrations in the model surface layer.  

2.1.3.3.4 Biogenic Emissions  

The Model of Emissions of Gases and Aerosols from Nature (MEGAN) (Guenther, et al., 2006) 

was used to calculate biogenic emissions of isoprene and monoterpenes online (at 1 km 

resolution). Therefore it should be used with the updated gas-phase chemical mechanism in 

MOZART-4 (Hodzic, and Knote, 2014). MEGAN online emissions are based on the emission 

factor of each compound, an emissions activity factor and a factor that accounts for canopy 

gain or loss. Other biogenic emissions are taken from the POET inventory, these vary at 

monthly temporal resolution but do not vary for different years. Lumped monoterpene 

emissions in MOZART-4 are the sum of alpha-pinene, beta-pinene, limonene, myrcene, 

ocimene, sabinene, and delta-3-carene in the MEGAN emission factor maps.  

 Radiation Scheme 

The Rapid Radiative Transfer Model (RRTM) option was used for both short and long wave 

radiation (Iacono, et al., 2008). The RRTM includes several long-wave absorbing molecules: 

water vapour, carbon dioxide, ozone, methane, nitrous oxide, oxygen, nitrogen and the 

halocarbons, and short-wave absorbing molecules: water vapour, carbon dioxide, ozone, 

methane and oxygen. Extinction from aerosols, clouds and Rayleigh scattering are also 

included in the model. 
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 Microphysics Scheme 

The Thompson scheme was used for cloud microphysics (Thompson, et al., 2008). The scheme 

is a single-moment scheme, other than the double-moment ice. The mixing ratios of 5 liquid 

and ice species (cloud water, rain, cloud ice, snow and graupel), as well the number 

concentration of cloud ice, are explicitly simulated. The use of only one moment for all species 

(except ice) means that computing costs and run time for simulations are reduced.  

 Convection Parameterisation Scheme 

The Grell 3-D scheme was used for convection parameterisation (Grell and Dévényi, 2002) as 

this is the only scheme integrated with cloud chemistry and tracer transport (Hodzic, and Knote, 

2014). The parameterisation framework is based on an earlier convective parameterization, 

which used dynamic control, static control and feedback to split cumulus parametrisation 

(Grell, 1993). Dynamic control determines the modulation of convection by the environment, 

determining where convection will occur and how strong it will be. Feedback distributes the 

total integrated heating and drying in the vertical, therefore specifying the modification of the 

environment by convection. Finally, static control controls updraft and downdraft 

characteristics, including mechanisms such as entrainment, detrainment and microphysics. The 

Grell 3-D scheme expands this scheme to enable the inclusion of other commonly used 

assumptions. This gives a large spread in the solution calculated by the parameterisation. 

Ensemble and data assimilation are then used to identify the most likely solution.  

 Model Uncertainties 

Model uncertainties can arise from a range of factors. Uncertainties from input datasets include 

the resolution of emissions datasets not capturing the strong concentration gradients of 

emissions due to averaging (Kushta, et al., 2018; Thompson, et al., 2014). Alongside this, 

model set-up can affect results. The trade-off between model resolution, computation time and 

expense means that simulations are often performed at resolutions that do not capture strong 
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concentration gradients in highly populated areas (Kushta, et al., 2018). This can lead to an 

underestimation of population exposure to pollutants and can therefore lead to an 

underestimation in the health impact calculated. Parameterisations of complex processes (e.g. 

boundary layer height diurnal cycle, convection), and the subsequent poor representation of 

them, can also lead to concentrations of air pollutants at the surface being in poor agreement 

with observations.  

2.2 Health Impact Assessment 

 Concentration-Response Function 

The concentration-response function (CRF) of Atkinson et al (2014) was used to estimate the 

impact of short-term exposure to PM2.5 on mortality in Paper 3. The CRF was derived using a 

meta-analysis of 110 peer-reviewed time-series and case-crossover studies. The key strength 

of meta-analyses is that they strengthen evidence by combining findings of many studies.  

Studies within the meta-analysis were found using keyword searches on the main medical 

journal databases and included studies published up to 2011. Once a relevant study was 

identified, it was only included if the study design, statistical methods and regression estimates 

fitted the criteria for the meta-analysis. This was achieved using 4 selection criteria:  

1) estimates were for PM2.5  

2) daily data for at least one year  

3) confounding factors were controlled for  

4) sufficient information was available for the calculation of a regression estimate and 

standard error for comparison in the meta-analysis. 



 91 

Studies selected were also filtered for the time lag between population exposure to PM2.5 and 

health effects presented, selecting the results from only one lag (the lag that the author focused 

on or was most statistically significant), if several were given. In order to reduce the over-

representation of a single city within the meta-analysis, single-city studies were also filtered 

and only included if they were not within in any of the multi-city studies already selected.  

Studies selected for the meta-analysis were grouped globally and also split into WHO regions 

(Africa, Eastern Mediterranean, Europe, Americas, South-East Asia and West Pacific), which 

were further split by the mortality rates for children and adults. For each of these regions, a 

meta-analysis was performed if 4 or more single city-estimates or a multi-city study estimate 

was available. Separate meta-analyses were performed for the single city-estimates and the 

multi-city estimates in each region. The single-city and multi-city effect estimates were then 

combined to calculate a global summary estimate. A random effects model was used to identify 

the proportion of variability in effect estimates that was due to unobserved differences 

(heterogeneity) across WHO regions. This indicated that there was a high level of heterogeneity 

in all-cause mortality effect estimates across regions (I2 = 93%) from 0.25% to 2.08% per 10 

µg m-3 increment in PM2.5. 

In order to ensure that the results of Paper 4 were directly comparable to previous work by 

Borchers Arriagada et al. (2020), the World Health Organisation (2013) CRF was used. The 

WHO CRF was derived using the Air Pollution Epidemiology Database (APED) meta-

analysis, which included 12-single city time-series studies and 1 multi-city study, all of which 

were all-cause, all-age mortality studies. All studies included were based in Europe (WHO 

European region), with the multi-city study including 9 French cities. Studies included were 

carried out between 1991 and 2006. Single-city study estimates ranged between -0.66% and 

2.57% per 10 µg m-3, while the multi-city study estimate was 1.59% per 10 µg m-3.  
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 Premature Mortality Estimate 

In order to calculate the health burden of short-term exposure from PM2.5 three key factors were 

used. Firstly, the ‘safe limit’, known as the theoretical minimum risk exposure level (TMREL), 

below which there is no increase in mortality or morbidity. Secondly, the baseline mortality 

rate of the population exposed. Thirdly, a CRF, which relates population exposure above the 

‘safe limit’ to an increase in mortality or morbidity.  

Paper 3 and 4 used different CRFs (as discussed above). However, the CRFs were applied in 

the same way for both papers. For both papers, since there is little evidence to suggest a safe-

limit of exposure to PM2.5, a TMREL (X0) of 0.0 µg m-3 was assumed, in line with others 

(Borchers Arriagada, et al., 2020; Holgate, 1998; Macintyre, et al., 2016; Schmidt, et al., 2011). 

However, a sensitivity analysis was also carried out in paper 3 to investigate the impact of the 

assumed TMREL on the results, using a TMREL of 2.4 and 5.9 µg m-3. These values were 

chosen to match the lower and upper TMREL used in the Global Burden of Disease 2015 study 

(GBD Collaborators 2015, 2017). For Paper 3 the all-cause, all-age background mortality rate 

for north-west England was taken from the Global Burden of Disease (IHME, 2018). Whilst in 

paper 4 state specific all-cause, all-age background mortality rates were taken from the 

Australian Bureau of Statistics (Australian Bureau of Statistics, 2020).  

In order to estimate the number of deaths brought forward due to exposure to PM2.5 the CRF, 

TMREL and background mortality rate were combined together with population level exposure 

to PM2.5 in three steps in Equation (11):  
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(a)    𝑅𝑅 = 𝑒𝑥𝑝𝛽(𝑋−𝑋0)  

 

(b)    𝐴𝐹 = (
𝑅𝑅−1

𝑅𝑅
) 

 

(𝑐)    𝐸𝑚 =  ∑ 𝐵𝑑 . 𝑝𝑜𝑝𝑖 . 𝐴𝐹𝑖

𝑁

𝑖=1

 

 

(11) 

 

Firstly, the relative risk (RR) was calculated (Equation (11)(a)). This is the probability of 

mortality from a disease endpoint within an exposed population compared with the probability 

of mortality within an unexposed population (ß) (Equation (11)(a)). X is the concentration of 

PM2.5 the population is exposed to in a given grid box (i) and X0 is the TMREL below which 

there is no risk from exposure. The beta values used were a 1.04% (95% CI: 0.52%, 1.56%) 

increase in mortality per 10 μg m−3 increase in PM2.5 concentration in paper 3 (Atkinson, et al., 

2014) and 1.0123% (95% CI: 1.0045%, 1.0201%) in paper 4 (World Health Organization, 

2013). Most North American and Western European epidemiology studies clearly show a linear 

exposure-response relationship for short-term exposure to PM, without a threshold (Daniels et 

al. 2000; Pope and Dockery 2006; Samoli et al. 2005). Therefore, a linear exposure-response 

relationship was applied, like other studies (Crippa, et al., 2016; Macintyre, et al., 2016; 

Schmidt, et al., 2011).  

Secondly, the relative risk was then used to calculate the attributable fraction (AF) (Equation 

(11)(b)). The AF is the fraction of the excess mortality attributable to exposure to PM2.5. 

Finally, the AF was combined with population count, from each grid box, and the baseline 

mortality rate of the population to calculate the daily all-cause mortality burden of exposure to 

PM2.5. Short-term health impacts are assumed to be equal across ages, therefore baseline all-

cause, all-age mortality rates and population data for all ages were used in the calculations.  
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In both papers 3 and 4, the health impact assessment was carried out using the “subtraction” 

method, which is the one most commonly used in health impact studies (Crippa et al., 2016; 

Macintyre et al., 2016b; Conibear et al., 2018a; Reddington et al., 2019). The number of deaths 

brought forward due to exposure to PM2.5 in the simulations with fire (Em FIRES) and without 

fire (Em NO FIRES) emissions were both calculated. The number of deaths brought forward due 

to PM2.5 from fires alone (Em FIRES ONLY) was then calculated as the difference between Em FIRES 

ON and Em FIRES OFF (Equation (12)). 

   

 𝐸𝑚 𝐹𝐼𝑅𝐸𝑆 𝑂𝑁𝐿 𝑌 =  𝐸𝑚 𝐹𝐼𝑅𝐸𝑆 𝑂𝑁 − 𝐸𝑚 𝐹𝐼𝑅𝐸𝑆 𝑂𝐹𝐹 

 

 

(12) 

 

 Baseline Mortality Data 

The 2015 baseline mortality rate data for north-west England was taken from the Institute for 

Health Metrics and Evaluation (IHME) (Institute for Health Metrics and Evaluation, 2018), 

originally from the Office of National Statistics (ONS) mortality statistics. The IHME is the 

overarching body responsible for the GBD studies and data stored by the IMHE  is used in the 

Global Burden of Disease studies (GBD Collaborators 2015, 2016). Baseline mortality data for 

2015 was used for this study since data for subsequent years is extrapolated.  

State specific all-cause, all-age background mortality rates for 2018 were taken for Australia 

from the Australian Bureau of Statistics (Australian Bureau of Statistics, 2020) to match the 

method of Borchers Arriagada et al. (2020). 

For both papers, the annual baseline mortality was equally divided by the number of days in 

the year as others have also done (Stedman, 2004; Macintyre et al., 2016b; Pope et al., 2016). 
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Uncertainties at the 95% confidence interval are provided in the IMHE baseline mortality data 

for north-west England and these were applied within the health impact assessment (11). 

 Population Data 

Population count data for north-west England was taken from the Gridded Population of the 

World dataset version 4 (GPWv4) at the Centre for International Earth Science Information 

Network () (v10.4) (CIESEN, 2018). GPWv4 is a minimally-modelled population dataset for 

the distribution of the human population on a continuous global raster (pixel) surface. In order 

to create a global dataset, population data was collected from the 2010 censuses (these were 

carried out between 2005 and 2014) at the highest possible resolution. Population estimates 

from the national statistics office or the United Nations were used for countries where census 

results were not available or yet released. In some countries, multiple levels of administrative 

data were available. In this case, the highest resolution data was always used for given regions 

in the country and was merged with lower level data for the rest of the country. Annualized 

growth rates were applied to the collected census data in order to account for discrepancies in 

when census data was available (since this was between 2005 and 2014). The annualized 

growth rate was then used to estimate the population count in the target years of 2000, 2005, 

2010, 2015 and 2020 published in the GPWv4 dataset. The data was then proportionally 

allocated to pixels by uniform areal-weighting. The resulting population count estimates used 

in paper 3 were at 0.05º resolution for the year 2015.  

Paper 4 used population count data for Australia from the Australian Bureau of Statistics 

(Australian Bureau of Statistics, 2019) to match the method of Borchers Arriagada et al. (2020). 

Population count data is from the 2016 census, with regional population growth applied each 

year. Population count data used were at 0.01º resolution for the year 2018. 
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Uncertainties 

Previous work has shown that the largest uncertainties in health impact assessments stem from 

the concentration-response function 95% CI (±30%), rather than from model resolution (2.4%), 

vertical distribution of the PM2.5 (0.6%) or resolution of the RR (0.8%) (Kushta, et al., 2018). 

Alongside this, uncertainty arises from the TMREL since it is not well established whether 

there is a safe level of exposure to PM2.5 (Pope III, and Dockery, 2006; Schwarze, et al., 2006). 

Further work is required to reduce these uncertainties in the future.  
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3.1 Abstract 

Each year more than 29,000 premature deaths in the UK are linked to long term-

exposure to ambient particulate matter (PM) with a diameter less than 2.5 µm 

(PM2.5). Many studies have focused on the long-term impacts of exposure to PM, 

but short-term increases in pollution can also exacerbate health effects, leading to 

deaths brought forward within exposed populations. This study investigates the 

impact of different atmospheric circulation patterns on UK PM2.5 concentrations 

and the relative contribution of local and transboundary pollutants to variations in 

PM2.5 concentrations. Daily mean PM2.5 observations from 42 UK background 

sites indicate that easterly, south-easterly and southerly wind directions and 

anticyclonic circulation patterns enhance background concentrations of PM2.5 at 

all UK sites by up to 12 µg m-3. Results from back trajectory analysis and the 

European Monitoring and Evaluation Programme for UK model (EMEP4UK) 

show this is due to the transboundary transport of pollutants from continental 

Europe. While back trajectories indicate under easterly, south-easterly and 
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southerly flow 25-50% of the total accumulated primary PM2.5 emissions 

originate outside of the UK, with a very polluted footprint (0.25-0.35 µg m-2). 

Anticyclonic conditions, which occur frequently (21%), also lead to increases in 

PM2.5 concentrations (UK multi-annual mean 14.7 µg m-3). EMEP4UK results 

indicate this is likely due the build-up of local emissions due to slack winds. Under 

westerly and north-westerly flow 15-30% of the total accumulated primary PM2.5 

emissions originate outside of the UK, and are much less polluted (0.1 µg m-2) 

with model results indicating transport of clean maritime air masses from the 

Atlantic. Results indicate that both wind-direction and stability under anticyclonic 

conditions are important in controlling ambient PM2.5 concentrations across the 

UK. There is also a strong dependence of high PM2.5 Daily Air Quality Index 

(DAQI) values on easterly, south-easterly and southerly wind-directions, with 

>70% of occurrences of observed 48-71+ µg m-3 concentrations occurring under 

these wind directions. While north-westerly and cyclonic conditions reduce PM2.5 

concentrations at all sites by up to 8 µg m-3. PM2.5 DAQI values are also lowest 

under these conditions, with >80% of 0-11 µg m-3 concentrations and >50% of 12 

to 23 µg m-3 concentrations observed during westerly, north-westerly and 

northerly wind directions. Indicating that these conditions are likely to be 

associated with a reduction in the potential health effects from exposure to 

ambient levels of PM2.5.  

3.2 Introduction 

Air pollution is the fourth highest-ranking risk factor for mortality globally, with 85% of the 

global population living in areas where the WHO recommended air quality guidelines (10 µg 

m−3 for particulate matter with a diameter less than 2.5 µm (PM2.5)) are exceeded (GBD 

Collaborators 2015, 2018). Exposure to air pollutants, including PM2.5, on both short and long-

time scales has been shown to be strongly associated with mortality and morbidity (GBD 

Collaborators 2015, 2018). Exposure to PM2.5 is associated with increases in diseases such as 

cardiovascular disease, ischemic heart disease, stroke, lower respiratory tract infections and 
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chronic obstructive pulmonary disorder (Atkinson, et al., 2014; GBD Collaborators 2015, 

2017). In the UK, it is estimated that more than 29,000 premature deaths each year are linked 

to long term-exposure to ambient PM2.5 (Committee on the Medical Effects of Air Pollutants, 

2010). Short-lived high pollution episodes can lead to acute health impacts from exposure to 

PM2.5 over shorter time periods, leading to deaths being brought forward among an exposed 

population (Stedman, 2004). PM2.5 is composed of both solid and liquid droplets suspended in 

the atmosphere, which are small enough to be inhaled deep into the lungs (Raaschou-Nielsen, 

et al., 2013). Emissions of primary PM2.5 and secondary PM2.5 precursors come from a wide 

range of sources including combustion for power generation, heating and from vehicles, as well 

as dust and sea spray. There is little evidence to suggest which chemical constituents of the PM 

present an increased health risk and whether there is a safe limit of exposure for health effects 

(Committee on the Medical Effects of Air Pollutants, 2009). 

Previous research on UK air pollution has focussed on the health impacts or mechanisms of 

short-term high pollution event case-studies (Stedman, 2004; Vieno et al., 2016; Macintyre et 

al., 2016b). Macintyre et al. (2016) found exposure to high PM2.5 concentrations (maximum 

hourly concentration - 83 μg m−3 at urban background sites) during a 10-day spring pollution 

episode in 2014 brought forward 600 deaths, 840 emergency respiratory and 730 emergency 

cardiovascular hospital admissions. This equated to a doubling of hospital admissions 

compared with those under typical springtime conditions. Stedman (2004) quantified the 

impact of high ozone and particulate matter with a diameter less than 10 µm (PM10) 

concentrations during the summer 2003 heatwave using a dose-response function. They found 

that 471 deaths were brought forward, attributable to exposure to PM10 during the two-week 

pollution event, representing an increase of 207 deaths compared to the same period in 2002. 

This agrees with previous work that found a large proportion of the deaths brought forward 
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resulted from elevation of pollutant concentrations rather than the direct impact of high 

temperatures (Rooney, et al., 1998).   

Since UK concentrations of PM2.5 were not routinely monitored until 2008, when the New Air 

Quality Directive was introduced by the European Union, previous studies focussing on the 

drivers of high pollution episodes have analysed PM10 observations. These studies used back 

trajectories to link observations of high PM10 concentrations with possible source regions 

(King, and Dorling, 1997; Stedman, 1996). King and Dorling (1997) found that on days where 

PM10 concentrations exceeded 50 µg m−3 in 12 UK cities and at two rural sites, local emissions 

represented a small fraction of the total concentration and each episode was dominated by 

easterly flow. They suggested that, since the back trajectories emanated from mainland Europe, 

long-range transport has a large contribution in the overall PM10 concentrations observed. They 

concluded that more work was required to confirm this, over a longer period with observations 

at rural sites.  

Harrison et al. (2012) used 37 urban-background observational sites from the UK Automated 

Urban and Rural Network (AURN) to examine PM2.5 concentrations for the year 2009 in order 

to better understand processes affecting concentrations across the UK. The study used 

meteorological data from 8 sites to determine the wind direction and wind speed at the AURN 

sites. They found that PM2.5 concentrations were below the annual mean when winds were from 

westerly flows, while for south-easterly, easterly and north-easterly flows they were above the 

annual mean. This was attributed to emissions from continental Europe under easterly and 

south-easterly flow. The work of Harrison et al. (2012) suggest that the long-range transport 

of pollutants to the UK is associated with specific meteorological conditions. However, due to 

the short observational record at the time, the research used only one year of PM2.5 

observations, the sample size for individual wind directions was small. This meant 
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relationships between wind direction and PM2.5 observations could not be established over a 

longer period of time to be statistically robust.  

This study builds upon the work of Harrison et al. (2012) with observations that have increased 

coverage both spatially (42 sites compared to 37) and temporally (2010-2016). Additionally, 

we use Lamb Weather Types (LWTs) rather than local meteorological observations to 

investigate the relationship between synoptic meteorology and the transport of pollutants. 

LWTs reflect the synoptic-scale conditions, rather than local meteorology, and so are more 

closely related to the transport of pollutants.  

In recent years Lamb weather types (LWT) (Lamb, 1972) and circulation weather types (CWT) 

have become an increasingly popular method of investigating the impact of regional 

atmospheric circulation patterns on pollutant concentrations (Demuzere et al., 2009; Tang et 

al., 2009; Tang, Rayner and Haeger-eugensson, 2011; Pope et al., 2014; Russo et al., 2014; 

Grundstrom et al., 2015; Pope et al., 2016; Grundström et al., 2017). These can be used to 

classify synoptic scale atmospheric circulation patterns over regions such as the UK using wind 

direction, speed and circulation strength. The application of LWTs alongside observations of 

pollutant concentrations (PM10, NO2, O3 and birch pollen) allows the association of different 

wind directions with the long-range transport of pollutants and the build-up or dispersion of 

pollutants for large areas. This allows relationships to be derived between specific weather 

types and higher pollutant concentrations over longer time periods. Previous work by 

Demuzere et al. (2009) in the Netherlands found that PM10 concentrations increased when air 

was transported from the east and south during summer when there were dry conditions and 

high temperatures. Liu et al. (2017) also found that PM2.5 concentrations in the United States 

were closely controlled by temperature, finding tropical weather types were associated with 
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significantly higher PM2.5 concentrations and polar weather types with low PM2.5 

concentrations.  

The UK, given its close proximity to Europe, is often subject to pollution episodes propagating 

from the continent. Pope et al. (2016, 2014) used LWTs to investigate the influence of 

meteorology on NO2 and O3 concentrations in the UK. The research found that both pollutants 

are strongly influenced by wind and circulation patterns. The highest O3 concentrations 

occurred under summer anticyclonic conditions due to large scale subsidence limiting vertical 

mixing. The study also identified that south-easterly and north-easterly flow increased mean 

UK O3 concentrations by between 10 to 15 µg m-3 (Pope et al., 2016). NO2 concentrations were 

found to significantly increase under winter-time anticyclonic conditions through pollutant 

accumulation and were enhanced under south-easterly flow due to long-range transport of 

pollutants from continental Europe (Pope, et al., 2014). They attributed the winter increase to 

be a result of the combined effect of increased emissions, more stable conditions and decreased 

photolysis allowing accumulation over emission sources.  

Here, we present the first study to use long-term (2010-2016) observations of PM2.5, sub-

sampled under LWTs, back trajectories and an atmospheric chemistry transport model, to 

investigate how climatological weather regimes influence UK surface particulate matter air 

quality.  

3.3 Data and Methods 

An overview of the methods used in this study can be found in Figure 23 for reference. 
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 Observations 

 Lamb Weather Types  

Lamb Weather Types (LWTs) are a synoptic classification of daily weather patterns across the 

UK (Lamb, 1972). LWTs are a useful tool for UK air pollution studies. They indicate the large-

scale atmospheric flow and air mass origins, linking each air mass to specific dispersion 

conditions and mesoscale meteorology that control the regional transport of air pollution 

(Dayan, and Levy, 2004) . In this work we use LWTs calculated automatically (using the 

algorithm from Jenkinson and Collinson (1977)) from NCEP reanalysis between 1948 and 

present (Jones, et al., 2013). NCEP reanalysis are available at 2.5° at 00, 06, 12 and 18Z each 

day (Kalnay, et al., 1996). The 12Z reanalysis is used to calculate the LWT each day. We have 

confidence in the reliability of LWT classification from NCEP reanalysis since Jones et al. 

(2013) found LWT calculated from NCEP reanalysis correlated well (0.65-0.79) with the 

subjective LWTs of Lamb (1972). Each LWT is calculated using the daily mean of three 

Figure 23. An overview of the datasets and method used in this study. Lamb weather types (LWT) are 

combined with observations of PM2.5 concentrations from the Automated Urban and Rural Network 

(AURN), back trajectories from the Reading Offline Trajectory Model (ROTRAJ) and a gridded 

emission dataset. We also compare our results to a chemistry transport model (EMEP4UK). 
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variables from NCEP reanalysis, which characterise the circulation at the surface over the UK 

at 1200Z. Variables used are (i)  the mean flow direction, (ii) the strength of mean flow and 

(iii) the mean strength of the circulation pattern (vorticity) (Jones, et al., 2013). Based on this 

analysis, conditions on a given day are classified as one of 28 LWTs. The 28 different LWTs 

comprise of three circulation types: Anticyclonic (0), Cyclonic (20) and Unclassified (-1), and 

eight wind types: N, NE, E, SE, S, SW, W, NW. We use a similar grouping method to O’Hare 

and Wilby (1995) and Pope et al. (2014), grouping the LWTs into eight wind types (Table 7). 

We however, use 0, 20 and -1 to classify the synoptic types, like Otero et al. (2018). This allows 

the independent examination of circulation and wind direction on pollutant concentrations.   
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Table 7. 27 LWT classifications (Jenkinson, and Collison, 1977), the 11 LWTs used in 

this study are indicated in bold (NE, E, SE, S, SW, W, NW, N, Anticyclonic, Neutral & 

Cyclonic). There are 8 wind types (NE, E, SE, S, SW, W, NW & N, shown in the left 

columns, and 2 circulation types (anticyclonic, cyclonic), in the top row, and unclassified 

days, where wind speed and shear were too low to allow classification. Following our 

grouping of LWT into 11 types, LWT index 3 (ASE) would fall under the anticyclonic 

and south-easterly classifications (see outer column and row of Table 7). There is also 

one other LWT (-9: non-existent day) not used in this study.  

 

 

This Study Anticyclonic Neutral Cyclonic 

  -1 UC  

- 0 A - 20 C 

NE 1 ANE 11 NE 21 CNE 

E 2 AE 12 E 22 CE 

SE 3 ASE 13 SE 23 CSE 

S 4 AS 14 S 24 CS 

SW 5 ASW 15 SW 25 CSW 

W  6 AW 16 W 26 CW 

NW 7 ANW 17 NW 27 CNW 

N 8 AN 18 N 28 CN 
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 Automated Urban and Rural Network  

We use observed PM2.5 concentrations taken from the Automated Urban and Rural Network 

(AURN). AURN is the largest automated air quality monitoring network in the UK with 145 

sites measuring species including PM2.5, NO2, SO2 and O3. AURN sites are classified as urban 

traffic/kerbside, urban or suburban background, and rural background. For this study 

background sites are used (urban background, suburban background and rural background). 

Background sites are chosen as they are considered to be more representative of the 

surrounding region than kerbside sites. This is because their locations are chosen so as to be 

influenced by the integrated contribution of all sources upwind rather than by a single souce or 

street (Department for Environment Food and Rural Affairs, 2018a). Data from 42 sites is used; 

39 of which are urban background (UB), 2 rural background (RB) and 1 background suburban 

(BS) (Supplementary Material: Table 10). We use daily mean PM2.5 concentrations (calculated 

from hourly measurements) from the 42 background sites for the period of 1st January 2010 – 

31st December 2016. Quality assurance checks are perfromed by Department for Environment 

Food and Rural Affairs before data release (DEFRA, 2009). Thus, we only perform basic data 

quality control on the daily data on two different time scales: annual and monthly. For annual 

statistics, sites are only used if fewer than 10% of days (per year) are missing. Monthly data 

for seasonal statistics is only used if fewer than 10% of days (per month) have missing data. 

3.4 Back Trajectories and Integrated Emissions  

Reddington et al. (2014) showed that the use of back trajectories and emissions can be a 

powerful tool in understanding the influence of emissions on local air quality due to long-range 

transport in air masses arriving in Singapore. Following a similar method, we quantify the 

importance of the relationship between LWT and AURN PM2.5 concentrations. 
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 Emissions  

Emissions from the National Atmospheric Emission Inventory (NAEI), European Monitoring 

and Evaluation Programme (EMEP) and Emission Database for Global Atmospheric Research 

with Task Force on Hemispheric Transport of Air Pollution (EDGAR-HTAP) are combined to 

create a gridded emission dataset (Figure 24). More details in Supplementary Material: 

Emissions section.  
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Figure 24. Gridded emissions of primary PM2.5 for 2010 are shown as an example (annual 

varying emissions were used between 2010 and 2014). For the outer domain (Purple 

Box), gridded annual EMEP emissions at 0.5° resolution from the Centre for Emission 

Inventories and Projections (CEIP, www.ceip.at) are used. While for the inner domain 

(Red Box) gridded annual National Atmospheric Emissions Inventories (NAEI) 

emissions at 0.01° resolution are aggregated to 0.05° resolution. Emissions outside of 

Europe are provided by the Emission Database for Global Atmospheric Research with 

Task Force on Hemispheric Transport of Air Pollution (EDGAR-HTAP) version 2.2 

emissions for 2010 at 0.1° resolution (Janssens-Maenhout, et al., 2015). More 

information in Supplementary Material: Emissions section. 

 

 Reading Offline Trajectory Model (ROTRAJ) 

We combine back trajectories and bottom-up emission estimates in order to investigate the 

influence of long-range transport of pollutants on ambient pollutant concentrations under 

different LWTs in the UK. We use primary PM2.5 emissions integrated over air mass back-

trajectories to determine the relative influence of direct PM2.5 emissions on air masses (i.e. 

ROTRAJ back trajectories) arriving at different times and locations over the UK. Back-

trajectories are calculated using the ROTRAJ offline Lagrangian transport model (Methven, 

2003). The model uses ERA-Interim reanalysis from the European Centre for Medium Range 

Weather Forecasting (ECMWF) to provide velocity fields for the simulations at 1.0125° 

horizontal resolution. After a trajectory parcel is released the location of each trajectory parcel 

is calculated every 6 hours by vertical cubic Lagrange interpolation and horizontal bilinear 

interpolation. This method accounts for large scale advection since the winds are resolved but 

does not resolve small scale sub-grid turbulent transport.  

In this study, ROTRAJ back trajectories were initialised from just above the surface (0.99 

sigma level; a terrain following coordinate system where 1 is the surface) at 12:00 UTC to 

match the LWT dataset between 2010 and 2014 at all background AURN sites (42 sites), 

extending back 4 days in 6-hourly time steps. PM2.5 emissions were accumulated along each 

trajectory over 4 days at 15-minute time intervals (interpolated linearly from 6-hourly position 

output). PM2.5 emissions were only accumulated when the trajectory path was at pressures 
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greater than 850 hPa (as an approximation of being within the boundary layer). At each 

location, we accumulate the entire emission within an emission grid box over which the 

trajectory passes. The surface area of each grid box that the trajectory points passed over is also 

accumulated over time. To approximate for dilution and chemical loss of PM2.5 along the 

trajectory path, e-folding lifetimes were applied to the total PM2.5 accumulated emission in the 

air parcel. A range of lifetimes of 1, 3, 7 and 14 days were applied to investigate the sensitivity 

of the final PM2.5 accumulation, on arrival to the respective AURN sites, to loss processes 

(Supplementary Material: Sensitivity of Integrated Back Trajectories to assumed e-folding 

lifetime). The along-trajectory emission accumulation can be represented by Equation (13): 

 

               

where EN is total accumulated PM2.5 mass (kg), N is the number of time steps within the 

trajectory (384), Ei is accumulated PM2.5 (kg) at any given point i along the trajectory, ϕi is the 

emissions flux of PM2.5 (kg m-2 s-1) at point i, ∆t is the 15-minute time step, αi is the surface 

area of the grid box (m2) at point i and τ is the assumed e-folding PM2.5 lifetime(s). 

To remove the dependence on emission grid resolution (since we assumed the air mass has the 

same width as the emission grid box), the total accumulated PM2.5 mass (E) was divided by 

accumulated surface area (S) and then scaled by 109.  This results in E having units of µg m-2.  

S is given by Equation (14): 

𝐸𝑖 =  [𝐸𝑖−1 + 𝜙𝑖 . ∆𝑡. 𝛼𝑖]𝑒−∆𝑡/𝜏      

 

i=1,N (=384) and E0=0.0 

 

(13) 
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𝑆 =  ∑ 𝛼𝑖

𝑁

𝑖=1

 

 

(14) 

 

EUK is also determined using the same approach, but only implemented when the trajectories 

enter the UK region defined by a longitudinal-latitudinal box (8°W-2°E, 50-60°N). To derive 

EUK in units of µg m-2 the accumulated PM2.5 mass from the UK is divided by the accumulated 

surface area (S) over the full trajectory path. The ratio between EUK/E represents the fractional 

contribution of UK sources towards the total accumulated PM2.5 emissions.  

Finally, the daily (12:00 UTC) total accumulated emission and EUK/E ratios from all sites are 

binned by the LWTs. This methodology provides a powerful tool to identify which flow 

directions, as classified by the LWTs, are the most polluted and the proportion of pollutant 

emissions from long range transport (e.g. continental Europe) versus local sources. 

  European Modelling and Evaluation Programme for the UK 

(EMEP4UK) PM2.5 Data 

Since the UK observational network is very sparse and so only gives limited spatial coverage 

we sample the European Modelling and Evaluation Programme for the UK (EMEP4UK) 

(v4.17) model (Centre for Ecology and Hydrology, 2018)  under different LWTs to look further 

into the spatial distribution of PM2.5 concentrations. The model covers the UK at 0.05º 

resolution using a nested approach from the coarser European wide EMEP model (Simpson, et 

al., 2012). Further details of the model set-up can be found in the Supplementary Material: 

EMEP4UK Evaluation section. 

We tested the model’s skill in reproducing variability in UK PM2.5 concentrations both 

temporally and spatially. The model captures the variability in PM2.5 concentrations and their 

relationship with LWT well and shows strong correlation with observations and anomalies at 
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each site (r = 0.887 and 0.905 respectively) with only a small negative bias (1 µg m-3) 

(Supplementary Material: EMEP4UK Evaluation section). Therefore, we can have good 

confidence in the model’s ability to represent ambient PM2.5 concentrations. 

3.5 Results 

3.6 AURN PM2.5 Observations 2010-2016 

 

 

Figure 25. (a) Annual observations and (b) seasonal: (i) spring (ii) summer (iii) autumn (iv) 

winter observations of PM2.5concentrations from 42 UK AURN sites between 2010-2016 

under different Lamb Weather Types (LWTs) (µg m-3). Mean concentrations are shown 

in red, with the 10th, 25th, 75th and 90th percentiles in blue. The mean of all LWTs, is 

shown by the green dashed line. The frequency of each LWT (in %) for the 2010-2016 

period, annually and seasonally is also indicated. 
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We find a strong dependency of observed PM2.5 abundance on wind flow and circulation 

pattern, as characterised by the LWTs, with enhanced PM2.5 concentrations under easterly, 

south-easterly and southerly flow and anticyclonic and unclassified weather types. Figure 25 

(a) shows the daily mean AURN concentrations of PM2.5 binned into the 11 different LWT 

regimes for the years 2010 to 2016. The multi-annual mean for all sites and all LWTs is 11 µg 

m-3. We find that the average PM2.5 concentrations binned according to LWT regimes follow a 

coherent pattern; mean concentrations of PM2.5 in easterly, southerly and south-easterly flow 

directions are elevated above the annual mean (15 to 20 µg m-3). Easterly, southerly and south-

easterly flow regimes also have 90th percentile concentrations of 28 to 35 µg m-3 (10 to 20 µg 

m-3 higher than other flow directions). 10th percentile concentrations under these regimes are 

also elevated (2.5 to 4.5 µg m-3 higher than other regimes). These flow types occur on 3, 5 and 

8% days of the year. Northerly, north-easterly, south-westerly, westerly and north-westerly 

flows all give mean PM2.5 concentrations below the multi-annual mean. The lowest 

concentrations in the 75th and 90th percentiles also occur under westerly, north-westerly and 

northerly flow types (<10.0, <11.0 & <20.0 µg m-3 respectively). Westerly, north-westerly and 

south-westerly weather types occur on a larger proportion of days each year (17, 9 and 16% of 

days). Mean PM2.5 concentrations are also affected by the circulation type; elevated 

concentrations are found under anticyclonic and unclassified conditions (mean concentrations 

of 14.7 and 16.6 µg m-3), exceeding the annual mean concentration. Although anticyclonic 

conditions are associated with lower mean PM2.5 concentrations than easterly, south-easterly 

and southerly flow, they occur much more frequently (21% of days). Therefore, they have a 

more important contribution to the annual mean concentration and thus, the population’s long-

term exposure to PM2.5. In contrast, PM2.5 below the annual mean concentrations are found 

under cyclonic flows (9.6 µg m-3), occurring on 14% of days.  
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The distribution of observed concentrations with LWT and proportion of occurrences of LWT 

for spring (MAM), summer (JJA) and winter (DJF) follows a similar pattern as that seen 

annually (Figure 25  (b) (i, ii, iv)), although there is some seasonal variability. In autumn (SON) 

(Figure 25 (b) (iii)) the highest PM2.5 concentrations are found under easterly, south-easterly 

and unclassified flows, occurring 2-8% of the time. Whereas in winter the highest 

concentrations are found in southerly, south-easterly and anticyclonic flows, with a small 

increase in the number of occurrences of southerly types (10%). 90th percentile concentrations 

are highest in spring under the unclassified type and are the highest observed of any season 

(47.6 µg m-3), although they only occur 2% of the time.  

 

Figure 26. Multi-annual mean PM2.5 concentrations from 42 UK AURN monitoring sites 

(2010-2016 average in µg m-3) averaged over all LWT regimes. The mean, 75th and 90th 

percentile PM2.5 concentration calculated from all sites is shown on the top right of each 

panel. 

 

Figure 26 shows the geographical distribution of annual mean PM2.5 concentrations under all 

LWTs. Concentrations are highest in the south of England (12 to 16 µg m-3) and decrease 

northward, with the lowest concentrations observed in Scotland and Northern Ireland (0 to 4 
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µg m-3). 33 of the 42 sites in England have multi-annual mean concentrations above 10 µg m-

3, the WHO recommended limit, and 20 are above the multi-annual mean of all sites (11 µg m-

3).   

To examine the geographic distribution of the effect of LWT on PM2.5 concentrations (Figure 

27 (a-f)), we calculate the PM2.5 anomaly under each LWT for individual sites with respect to 

the multi-annual mean concentration at that site (Figure 26). We also test for statistical 

significance at each AURN site under each LWT using a one million sample Monte Carlo 

simulation, in which we randomly sample PM2.5 concentrations for all LWT between 2010 and 

2016 to build up a distribution of concentrations containing one million random samples. We 

then take the mean PM2.5 concentration for a given LWT and site (e.g. SE site 1), if this lies 

above the 95th or below the 5th percentile of the one million-sample distribution we can 

conclude that the concentration observed did not occur by chance and is significantly different 

statistically. The process is repeated for each LWT, creating a new distribution each time. 

Statistically significant anomalies (p <0.05) are subsequently circled in black (Figure 27 (a-f)). 

In line with the previous analysis, PM2.5 concentrations are enhanced by between 28-35% under 

easterly, south-easterly and southerly flow (Figure 27 (a), (b) and (c)). Some sites experience 

LWT flow direction anomalies of up to 12 µg m-3 (Wigan Centre), and 40 of the 42 sites exhibit 

a positive anomaly under south-easterly and southerly flow with a mean anomaly of 6.1 µg m-

3 and 4.4 µg m-3 respectively under these flows. PM2.5 concentrations are affected by LWT 

across the whole of the UK with the northernmost extent reaching to Scotland and Northern 

Ireland. Northerly, westerly and north-westerly are the three flow directions associated with 

the largest PM2.5 reductions (-5 µg m-3, equivalent to a 30-44% reduction) (Figure 27 (e), (f) 

and (g)). The negative anomalies under these flow regimes are present at the same number of 

sites (40 of 42) but the anomaly is smaller in magnitude than the positive anomaly from the 

easterly, south-easterly and southerly flows with mean negative anomalies of -2 to -3 µg m-3.  
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Figure 27. The multi-annual mean PM2.5 anomaly relative to annual mean concentration 

averaged over all LWT regimes (relative to multi-annual mean concentration averaged 

over all LWT regimes (2010-2016) (in µg m-3), shown in Figure 26) under different flows 

directions is shown in panels (a) to (f).  For clarity, we show the three flow directions 

with the largest positive anomaly ((a) easterly, (b) south-easterly and (c) southerly) and 

the three flow directions with the largest negative anomaly ((d) northerly, (e) westerly 

and (f) north-westerly). The mean, 75th and 90th percentile PM2.5 concentrations 

calculated from all sites are shown on the top right of each panel. Sites where the anomaly 

is statistically significant (p <0.05) are indicated by black contouring and the percentage 

of sites where anomalies are statistically significant is also indicated in the top right panel 

(% sig). The frequency of each LWT (in %) for the 2010-2016 period is also indicated. 

 

The effect of circulation pattern on PM2.5 concentrations is generally weaker than that of flow 

direction. This suggests that long-range transport of PM2.5 rather than the build-up of local 

pollutant emissions is more important in controlling PM2.5 concentrations. Despite this, the 
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presence of anticyclonic and cyclonic conditions has an influence on PM2.5 across the UK, with 

a maximum multi-annual anomaly of 4.6 and -4.4 µg m-3 respectively (Figure 28 (a) and (b)). 

This represents a 20% increase and 24% decrease, respectively. Both of these flow types also 

occur more frequently (21% and 14%), meaning they are more important in contributing to the 

annual mean concentration and thus, the population’s long-term exposure to PM2.5.   

 

Figure 28. AURN annual mean PM2.5 anomalies (relative to multi-annual mean concentration 

averaged over all LWT regimes (2010-2016 (in µg m-3), shown in Figure 26). 

Concentrations and anomalies sampled under (a) anticyclonic (b) cyclonic and c) 

unclassified weather types are shown. The mean, 75th and 90th percentile PM2.5 

concentration calculated from all sites is shown on the top right of each panel. Sites where 

the anomaly is statistically significant (p <0.05) are indicated by black contouring and 

the percentage of sites where anomalies are statistically significant is also indicated in 

the top right panel (% sig). The frequency of each LWT (in %) for the 2010-2016 period 

is also indicated. 
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 Back Trajectories and Integrated Emissions  

Variability in the back-trajectory integrated emissions sampled at the UK AURN sites further 

supports the relationships between in-situ observed PM2.5 and wind direction discussed above. 

Figure 29 shows the median accumulated primary PM2.5 emissions along ROTRAJ back 

trajectories arriving between 2010 and 2014, binned by the LWT flow directions. Here a 

representative 7-day e-folding lifetime (Seinfeld and Pandis, 2006) is used to approximate for 

physical/chemical loss processes from the air parcel. In the supplementary material 

(Supplementary Material: Sensitivity of Integrated Back Trajectories to assumed e-folding 

lifetime section) we explore the sensitivity of the accumulated PM2.5 emissions to different e-

folding lifetimes. This showed that for shorter e-folding lifetimes (1 and 3 days) integrated 

emissions are dominated by UK emissions and there is little change between the total summed 

emission with different LWT. While, at larger e-folding lifetimes (7 and 14 days) the total 

integrated emission UK contribution and the total summed emission varies more between 

LWT.  Since this method cannot account for secondary PM2.5, the total accumulated PM2.5 

emissions should be interpreted as a proxy of how polluted each air mass is, and the fractional 

contribution of emissions inside and outside of the UK to the total loading (akin to using CO 

as a tracer), rather than an estimate of PM2.5 in the atmosphere.  
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Figure 29. Median UK (background AURN sites) integrated PM2.5 emissions (µg m-2) 

accumulated over the daily (12 UTC, 2010-2014) ROTRAJ back trajectories (4 days – 

15-minute time steps), with a 7-day e-folding lifetime, binned by LWT flow directions. 

Red circles represent the UK fractional contribution to trajectory accumulated PM2.5 

emissions. 

 

Overall, the results support the LWT-AURN PM2.5 relationships with peak median 

accumulated emissions (E) from the south-easterly, southerly and easterly directions (0.25 to 

0.3 µg m-2 accumulated primary PM2.5 emission). This supports the idea that continental 

European primary emissions are contributing to poor UK air quality when UK-bound air 

masses pass over polluted source regions (e.g. the Benelux region and west Germany). The 

fractional contribution from UK emissions under these flow directions is between 25-50%, 

indicating that under these flows more than 50% of emissions contributing to UK primary 
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particulate pollution originates in continental Europe. The north-westerly and westerly flow 

directions correspond to the cleanest air masses (< 0.1 µg m-2 accumulated primary PM2.5 

emission), again in agreement with the LWT-AURN PM2.5, as the back trajectories primarily 

originate from over the North Atlantic. Here, the UK fractional contribution is much larger 

(~70-85%) as the majority of the accumulated PM2.5 emission (E) is from within the UK 

domain (i.e. EUK is relatively large). Exterior emissions sources will include Ireland and 

potentially sources where back trajectories tails originate in Europe, over source regions, but 

loop around to the UK west coast.  

 EMEP4UK modelled PM2.5 and LWT 

Since AURN observations give sparse coverage of the UK, we use EMEP4UK surface PM2.5 

fields to further investigate the processes affecting ambient PM2.5 concentrations under 

different LWT classifications. In the supplementary material, we show that the model has skill 

in reproducing PM2.5 concentrations (r=0.887) and anomalies (r=0.905) under different LWTs 

when compared with AURN observations. Therefore, we have confidence in EMEP4UK’s 

representation of ambient PM2.5 concentrations when sub-sampled under the LWTs. 

EMEP4UK reproduces the back trajectory and AURN-LWT analysis with the largest positive 

PM2.5 anomalies observed under easterly, south-easterly and southerly weather types due to the 

long-range transport of PM2.5 from continental Europe (positive anomalies of 6-12 µg m-3). The 

addition of the model 10-m winds, also sub-sampled under the LWTs, adds valuable 

information of the flow characteristics. Here, the flow clearly originates from the continent 

(typically around 5 m s-1) and is closely aligned with the spatial anomaly features (Figure 30). 

The largest negative anomalies (-10 to -4 µg m-3) are associated with the transport of clean air 

masses from the Atlantic, as indicated by the back-trajectory analysis. Northerly, north-

westerly and westerly flow all have wind speeds between 5 and 10 m s-1 transporting PM2.5 
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offshore away from source regions. However, under north-easterly and south-westerly flow 

directions, a strong PM2.5 anomaly gradient can be observed across the UK. Negative anomalies 

(-6 to -2 µg m-3) over the northern (south-western) UK represent the more gradual replacement 

of polluted air masses under north-easterly (south-westerly) flow. Transport of the polluted air 

mass yields positive anomalies (2-6 µg m-3) over the southern (north-eastern) UK region. Here, 

the model adds important spatial details which are less reliably captured in the observations.  

Circulation influences are also further investigated using the model, where anticyclonic 

conditions show reduced onshore transport of pollutants due to relatively weak easterly winds 

(under 5 m s-1) from continental Europe. This leads to conditions favourable for the build-up 

of PM2.5 (2-6 µg m-3) predominantly from local emissions/formation. While under cyclonic 

conditions, PM2.5 is transported offshore, into the North Sea, by strong westerly winds (10 m 

s-1) from the Atlantic leading to decreased concentrations over the UK mainland (-6 to -2 µg 

m-3). Unclassified weather types are characterised by slack winds (0-2 m s-1) over the UK 

leading to the build-up of local emissions due to stagnant air masses (4-10 µg m-3). This all 

further supports the importance of how flow characteristics (i.e. long-range transport and 

stagnation) influence UK PM2.5 concentrations. 
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Figure 30. The multi-annual mean PM2.5 anomaly relative to annual mean concentration 

averaged over all LWT regimes (relative to multi-annual mean concentration averaged 

over all LWT regimes (2010-2016) (in µg m-3)) under different flow directions from the 

EMEP4UK model. 10m winds, also from the EMEP4UK model (nudged to 3-hourly GFS 

analysis), are over plotted. All LWT wind directions and synoptic types are shown.  
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 Contribution of LWTs to the Daily Air Quality Index (DAQI) 

To put the results of AURN PM2.5 Observations 2010-2016 in a public health context, we bin 

the daily mean PM2.5 concentrations under the different LWTs according to the 10 UK Daily 

Air Quality Index (DAQI) PM2.5 concentration bands.  The UK Daily Air Quality Index 

(DAQI) is a public health air quality warning system used by the UK Department for 

Environment, Food and Rural Affairs (DEFRA) to communicate current and future pollutant 

levels in the UK to the general public (COMEAP, 2011). Five key pollutants have been 

identified to monitor by the Committee on the Medical Effects of Air Pollutants (PM10, O3, 

NOx, SO2 and PM2.5). In order to gain an overall DAQI each of these pollutants are given an 

individual score between 1 (low) and 10 (very polluted).  The overall DAQI is then assigned 

based on the highest individual DAQI value for each of the 5 pollutants at a given time. For 

example, if O3 scored a DAQI value of 9, and all other species scored a value of 2, the overall 

DAQI would be 9. As we only investigate PM2.5, we can only comment on the effect of LWT 

on PM2.5 within the DAQI (PM DAQI). However, since the DAQI score is assigned the highest 

individual species score from each of the 5 pollutants, air masses with high or very high PM2.5 

scores are likely to have the same overall DAQI score.  

We find that 71% of days classed as “very polluted” (PM DAQI of 10) occur with south 

easterly, southerly and south westerly flows, whereas only 12% of days with the cleanest air 

(PM DAQI of 1) occur with these air masses (Figure 31). North westerly, northerly and 

westerly air flows dominate the cleanest air days (59% of days with PM DAQI of 1 occur with 

these flows) and there are no occurrences of the highest PM DAQI values (9 and 10) on days 

with north westerly, northerly or westerly air flows (Figure 31). For PM DAQI values of 4 and 

above, at-risk individuals (e.g. those with asthma or heart conditions) are advised to reduce 

strenuous activity if they experience symptoms. These results suggest a strong dependence of 

periods of increased risk for such individuals on meteorological conditions. 
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Discussion and Conclusions 

This study investigated the role that synoptic weather plays in controlling variability of ambient 

PM2.5 concentrations in the UK.  

Observations of PM2.5 concentrations under different LWTs indicate that both annually and 

seasonally, anticyclonic circulation and easterly, south-easterly and southerly flow increase the 

mean PM2.5 concentrations observed. Results from the EMEP4UK model suggest 

transboundary transport is likely responsible for the increases in PM2.5 observed under the wind 

types (easterly, south-easterly and southerly flow) and the build-up of local emissions under 

Figure 31. Percentage occurrence (defined as the percentage of 

occurrences of easterly, south-easterly and southerly (and 

westerly north-westerly and northerly) LWTs in each bin) of 

easterly, south-easterly and southerly weather types and 

westerly, north-westerly and northerly in each DAQI PM2.5 

concentration bin. Bins 1-10 indicate PM2.5 concentrations 

of 0-11, 12-23, 24-35, 36-41,42-47,48-53,54-58,59-64,65-70, 

>71 (all in µg m-3). 
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stagnant air masses under anticyclonic and unclassified types. Results also indicate that 

although PM2.5 concentrations are higher under easterly, south-easterly and southerly flow than 

under anticyclonic conditions, anticyclonic conditions occur on a much larger fraction of days 

and so have a larger impact on the annual PM2.5 concentration and the population’s exposure 

to increased PM2.5 concentrations. These findings are in agreement with previous work which 

has examined different species and short-lived pollution episodes as case studies (Vieno et al., 

2010, 2014; Pope et al., 2014; Vieno et al., 2016; Pope et al., 2016). Pope et al. (2014) also 

found that under anticyclonic conditions NO2 concentrations were significantly increased 

through pollutant accumulation and that south-easterly flow enhanced NO2 concentrations. 

They attributed this to long-range transport from continental Europe. A similar relationship 

was found for ozone in summer months, with enhanced concentrations under north-easterly 

and south-easterly flow and anticyclonic conditions leading to increased ozone concentrations 

due to large scale subsidence and little vertical mixing (Pope et al., 2016). Demuzere et al. 

(2009) found PM10 concentrations were highest in the Netherlands under easterly, south-

easterly and southerly wind directions, attributing the increase in PM10 concentrations to air 

masses passing over large source regions.  

The results of the back-trajectory analysis indicate that the transport of pollutants from large 

source regions outside of the UK is an important contributor to the total accumulated emission 

under easterly, south-easterly and southerly flow. Since secondary PM2.5 typically represents 3 

- 8 µg m-3 (20-50%) of the total PM2.5 concentration at background sites in Europe (Querol, et 

al., 2004) a method accounting for secondary PM2.5 (nitrate, sulphate and ammonium) would 

need to be applied to quantify the contribution of non-UK emissions to total PM2.5 in the UK. 

Nevertheless, our results suggest a substantial non-UK burden on UK pollution under 

continental air masses.  
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This study further reinforces that synoptic weather in the UK plays an important role in 

controlling PM2.5. It is important, therefore, that air quality models are able to accurately 

simulate synoptic meteorology in order to reliably forecast PM2.5 concentrations in forecasts. 

Given the large impact on health that short-term exposure to PM2.5 has been shown to have in 

previous studies (e.g. Macintyre et al. (2016)), the ability of air quality forecast models to 

accurately predict PM2.5 concentrations is key in preparing for and mitigating the associated 

health impacts of exposure. 

The results of the back-trajectory analysis indicate that quantifying the contribution of UK and 

non-UK pollution sources is extremely important in evaluating the impact of local emission 

controls on UK pollutant concentrations. This is particularly relevant given that we have shown 

variations in background PM2.5 concentrations are highly variable under different weather 

patterns.  
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4.1 Abstract 

The June 2018 Saddleworth Moor fires were some of the largest UK wildfires on record and 

lasted for approximately three weeks. They emitted large quantities of smoke, trace gases and 

aerosols which were transported downwind over the highly populated regions of Manchester 

and Liverpool. Surface observations of PM2.5 indicate that concentrations were 4-5.5 times 

higher than the recent seasonal average. State-of-the-art satellite measurements of total column 
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carbon monoxide (TCCO) from the TROPOMI instrument on the Sentinel 5 – Precursor (S5P) 

platform, coupled with measurements from a flight of the UK BAe-146-301 research aircraft, 

are used to quantify the substantial enhancement in emitted trace gases. The aircraft measured 

in-plume enhancements with near-fire CO and PM2.5 concentrations >1500 ppbv and >125 µg 

m-3 (compared to ~100 ppbv and ~5 µg m-3 background concentrations). Downwind in-plume 

ozone (O3) values were larger than the near-fire location, indicating O3 production with 

distance from source. The near-fire O3:CO ratio was (ΔO3/ΔCO) 0.001 ppbv/ppbv, increasing 

downwind to 0.060-0.105 ppbv/ppbv, suggestive of O3 production enhancement downwind of 

the fires. Emission rates of CO and CO2 ranged between 1.07 (0.07-4.69) kg s-1 and 13.7 (1.73-

50.1) kg s-1, respectively, similar to values expected from a medium sized power station.  

4.2 Introduction 

Vegetation fires contribute a large source of trace gases and aerosols into the Earth’s 

atmosphere (Cheng, et al., 1998; HelasGand Pienaar, 1996; Lobert, and Warnatz, 1993; 

Peterson, et al., 2018; Reddington, et al., 2014; Wooster, et al., 2018), which have substantial 

implications for climate (Cruz Núñez, et al., 2014; Hamilton, et al., 2018; Liu, et al., 2014; 

Rowlinson, et al., 2019; Sommers, et al., 2014) and air quality (AQ) (Bravo, et al., 2002; 

Konovalov, et al., 2011; Moore, 2019; Phuleria, et al., 2005; Reddington, et al., 2015). Unlike 

many fire-prone regions, vegetation fires in the United Kingdom (UK) are relatively small and 

rare (Davies, et al., 2016; Van Der Werf, et al., 2017; Yallop, et al., 2006). However, on the 

June 24th 2018, large-scale wildfires broke out for approximately three weeks over 

Saddleworth Moor and Winter Hill, in north west England (BBC, 2018), requiring over 100 

firefighters to tackle the blaze (Day, and Green, 2018). At their peak, the Saddleworth Moor 

fires covered approximately 8 km2 of moorland (Greater Manchester Combined Authority, 
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2019), representing the largest wildfires close to an urban population in the UK on record 

(Figure 38) (NASA Socioeconomic Data and Applications Center (SEDAC) Center for 

International Earth Science Information Network (CIESIN), and Columbia, 2018). Therefore, 

this provided the first opportunity to measure the mixing of fire emissions with anthropogenic 

emissions in the UK. The fires forced the evacuation of several dozen properties and closure 

of many schools (Pidd, and Rawlinson, 2018). The fires primarily burned heather-dominated 

moorland with an underlying area of dry peat (Bain, et al., 2011; Greater Manchester Combined 

Authority, 2019; Xu, et al., 2018). Flames ranged between to 2-4 m in height, depending on 

the overlying vegetation type and wind conditions (Greater Manchester Combined Authority, 

2019). Fires also propagated vertically and laterally through the peat layer, which would be 

expected to lead to large emissions of greenhouse gases and air pollutants (Wooster, et al., 

2018). As peat is a substantially oxygenated fuel source, it can burn underground for long 

periods (e.g. weeks to months (Hu, et al., 2018; Roulston, et al., 2018)) making peat fires 

extremely difficult to control. Emissions from peat are poorly understood but it is thought that 

during the flaming stage, fires emit large amounts of soot and nitrogen oxides (NOx), while in 

the smouldering stage they emit much more carbon monoxide (CO), methane (CH4), volatile 

organic compounds (VOCs) and particulate matter (PM) (Turetsky, et al., 2015).  

Throughout the period of June 22nd to 29th, meteorological conditions were favourable for the 

development and spread of the Saddleworth Moor and Winter Hill fires. Between June 22nd 

and 29th 2018, the UK experienced strong anticyclonic conditions from enhancement of the 

Azores high pressure system in the North Atlantic. Mean sea level pressure (MSLP) and 

geopotential height at 850 hPa (850GPH), from ERA-Interim and ERA5 reanalysis, indicate 

the stable high-pressure system (MLSP >1020 hPa and 850GPH 1560-1600 m over northern 
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England) resulted in low 10 m wind speeds (<5 m/s) and high surface temperatures (~27 °C on 

June 26th) (ERA-Interim, ECMWF), which dried out vegetation and reduced the likelihood of 

precipitation (see Supplementary Material: Meteorological Conditions and Figure 57 - Figure 

59). In the future, conditions such as this are likely to become more common within the UK 

(Guerreiro, et al., 2018). Projections suggest that, as a result, UK wildfires are likely to become 

more frequent and intense (Albertson, et al., 2010) yielding more hazardous AQ situations in 

nearby populated areas. 

Visible images between the June 25th to 30th, from the Moderate Resolution Imaging 

Spectroradiometer (MODIS) instruments, on-board NASA’s Aura and Terra satellites, clearly 

show fire initiation followed by a westward propagation of the fire smoke plume (see 

Supplementary Material: Figure 60). Following the substantial visible impact (i.e. smoke and 

burned area) of the Saddleworth Moor and Winter Hill fires and the related high-level media 

coverage, we use state-of-the-art satellite observations from the newly launched (October 

2017) TROPOMI instrument on-board ESA’s Sentinel-5 Precursor (S5P), which provides, for 

the first time, high resolution observations of trace gases to quantify the impact of the pollutants 

from fires from space. We combine these observations with ground and specialised aircraft 

campaign observations to investigate the influence these fires had on atmospheric composition 

and AQ across north-western England. The Data & Methods section describes the observations 

used, the Results section presents our results and the Discussion and Conclusions section 

summarises the implications of our findings. 
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4.3 Data & Methods 

 Automated Urban and Rural Network Observations 

Surface observations of particulate matter (PM2.5 – atmospheric aerosol with a diameter less 

than 2.5 microns) are taken from Manchester Piccadilly, Salford Eccles and Wigan Centre 

Automated Urban and Rural Network (AURN) sites. AURN is the largest automated air quality 

monitoring network in the UK with 145 sites. These sites use the FDMS (Filter Dynamics 

Measurement System) analyser, which is based on the TEOM (Tapered Element Oscillating 

Microbalance) (Department for Environment Food & Rural Affairs, 2008). Air is drawn in 

through inlets for PM2.5 and PM10 where it is dried and weighed on a filter held at 30°C. This 

system measures non-volatile and volatile fractions by cycling through cold and warm 

chambers to evaporate volatile species before re-weighing the sample. Further information on 

data quality checks and uncertainties can be found in Stevenson et al. (2009). We use daily 

mean PM2.5 concentrations (calculated from hourly measurements, where > 75% of hourly 

measurements each day are available) for June 16th to July 12th 2013-2018 to assess the impact 

of the fires on downwind populated areas (e.g. Manchester Piccadilly, Salford Eccles and 

Wigan) (see Figure 33) and to compare with longer term averages for the particular time of 

year.   

 Satellite Observations  

Satellite measurements of total column carbon monoxide (TCCO) and tropospheric column 

nitrogen dioxide (TCNO2) are obtained from the TROPOMI instrument on-board ESA’s 

Sentinel-5 Precursor (S5P) satellite (Veefkind, et al., 2012). S5P was launched in October 2017 

into a sun-synchronous polar orbit with a local overpass time of 13:30 (Veefkind, et al., 2012). 

The instrument has a nadir-viewing spectral range of 270-500 nm (ultraviolet-visible, UV-Vis), 
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675-775 nm (near-infrared, NIR) and 2305-2385 nm (short wave-infrared, SWIR). TROPOMI 

represents the next generation of satellite instruments for observing global and regional AQ 

(Pope, et al., 2019) with an unparalleled nadir horizontal spatial resolution of 3.5 km × 7.0 km 

for UV-NIR bands and 7.0 km × 7.0 km for SWIR bands. For comparison, its predecessor, the 

Ozone Monitoring Instrument (OMI), had a horizontal spatial resolution of 24 km × 13 km 

(Boersma, et al., 2011). We also use fire radiative power (FRP) data from the MODIS 

instruments on-board NASA’s Aqua and Terra satellites, launched in 1999 and 2002, 

respectively. Both instruments are nadir viewing (spectral range, 0.41-15 μm) with sun-

synchronous local overpass times of 10:30 and 13:30, respectively (Remer, et al., 2005). The 

approach of Pope et al. (2018) is used to map TROPOMI TCCO data onto a 0.03° × 0.03° grid 

over the UK, while the FRP data (Level 3 product) is on a 0.1° × 0.1° grid.  

Garane et al. (2019) find a typical global bias of 0-1.5% between TROPOMI TCCO and surface 

validation sites. For the Saddleworth Moor fires, we see precision errors of approximately 3.3-

4.3%. Further information on the instrumentation and uncertainties can be found in Lambert et 

al. (2019).  

  FAAM Aircraft Data 

The UK’s BAe-146-301 Large Atmospheric Research Aircraft flew on June 29th 2018 to target 

the Saddleworth Moor fires (flight number C110). The aircraft is operated by the Facility for 

Airborne Atmospheric Measurements (FAAM, Ryder et al., 2015) and detailed information on 

the aircraft instrumentation and their uncertainties is given by Harris et al. (2017). For this 

flight, in-situ measurements of carbon monoxide (CO), ozone (O3) nitrogen dioxide (NO2) and 

particulate matter with a diameter less than 2.5 µm (PM2.5) amongst other species, were 

obtained.   
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PM2.5 data is calculated from data collected by optical particle counters mounted under the 

wing that measure aerosol size distributions. The instrument used was the passive cavity 

aerosol spectrometer probe 100-X (PCASP). The PCASP measures particles in the 0.1 - 3 µm 

diameter size range. Further information on the method the instruments used to calculate 

aerosol diameter and the calibration method used is described in Rosenberg et al. (2012). We 

find uncertainty within the integrated volume in the PM2.5 range dataset to be ~30-35% at the 

1-sigma confidence interval. Further information on sources of these uncertainties can be found 

in the Supplementary Material: Instrumentation section. 

Measurements of NO were made using a custom built chemiluminescence instrument (Air 

Quality Design Inc), with NO2 measured on a second channel by photolytic conversion to NO 

at 395 nm using a blue light converter (BLC), followed by detection by chemiluminescence 

(Lee, et al., 2009). Estimated accuracies are 4% for NO and 5% for NO2, with associated 

precision of 31 and 45 pptv, respectively (for 1Hz data). Further information is in the 

Supplementary Material: Instrumentation section. 

Ozone was measured by an ultraviolet (UV) absorption photometer (Thermo Fisher, model 

49C) with an uncertainty of 2% and a precision of 1 ppb for 4-s measurements (Harris, et al., 

2017).  

CO was measured by a vacuum UV fluorescence analyzer (Aero Laser GmbH, model AL5002; 

(Gerbig, et al., 1999)). The instrument was calibrated in flight every ~45 min using a synthetic-

air working standard (Air Liquide, ∼500 ppb). The 1-Hz CO measurements have a 2% 

uncertainty and 3-ppb precision (Harris, et al., 2017). 
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The aircraft left Cranfield, Bedfordshire at approximately 10:00 UTC, then undertook targeted 

fire plume measurements over Saddleworth Moor (near-field) at 10:30-11:30 UTC 

(Supplementary Material: Figure 60 and Figure 35 (a)) before taking downwind measurements 

over the Irish Sea (12:00-13:00 UTC). The aircraft returned to Cranfield around 15:00 UTC.  
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Figure 32. CEISIN population count (2015). Black triangles indicate the locations 

of Saddleworth Moor (SM) and Winter Hill (WH), the cities of Manchester 

(Man) and Liverpool are also marked. Black circles indicate AURN 

observation sites used in Figure 33. The flight path of the FAAM aircraft on 

29th June 2018 is also shown in grey, with near-field and downwind sections 

(Figure 35-Figure 37) of the flight highlighted in red and blue.  
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4.4 Results 

 MODIS visible images  

MODIS visible images (Supplementary Material: Figure 54) clearly show the ignition and 

time-evolution of the Saddleworth Moor and Winter Hill fires. Fire ignition occurs on June 25th 

2018 on Saddleworth Moor. The smoke plume initially moves northwards (26th June) before 

shifting westwards, propagating over Manchester and Liverpool (27th-30th June). The size of 

the smoke plume peaks on 27th June. The Winter Hill fire then begins on June 30th and 

propogates westwards towards the Lancashire coast.  

 Automated Urban and Rural Network Observations  

Observations of surface PM2.5 at the Manchester Piccadilly, Salford Eccles and Wigan Centre 

AURN sites show enhanced concentrations during the fire period (grey shading in Figure 33). 

At all sites, PM2.5 concentrations peak above 40 µg m-3 (black dashed line), which is 

substantially larger than concentrations before and after the fire event (note Manchester 

Piccadilly is the only site where July 2018 data was available). These concentrations are well 

above the World Health Organisation (WHO) 24-hour guideline limit of 25 µg m-3, 

highlighting the potential population exposure risks even over this short time period.  

We also use volatile and non-volatile PM2.5 observations to investigate the relative influence of 

the primary and secondary components of PM2.5 from the fire. Non-volatile PM2.5 comprises 

of unreactive solid particles (e.g. elemental carbon, primary organic aerosol) (Chowdhury, et 

al., 2007; Tian, et al., 2009) whereas volatile PM2.5 comprises of gaseous reactive precursors 

(e.g. sulfate, nitrate and VOCs) which can switch between the gas and solid phase through 

condensation. Considerable uncertainties exist in the apportionment of fire-emitted PM2.5 due 

to the complex range of factors controlling emissions, which include fuel type, fuel moisture 
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content and organic aerosol mass concentration. Here, the AURN measurements indicate that 

during the Saddleworth Moor fires non-volatile PM2.5 was strongly correlated with total PM2.5 

during the fire period. In 2018, the non-volatile fraction of total PM2.5 is between 3 and 18% 

higher than between 2013 and 2017, contributing to up to 93% of total PM2.5 (see 

Supplementary Material: Table 11). Compared with previous years (June 2013-2017 

observational spread), the non-volatile PM2.5 concentrations are 4-5.5 times higher than 

average.  
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Figure 33. AURN observations of volatile and non-volatile PM2.5 for 16th June – 14th 

July 2018. Non-volatile PM2.5 is indicated by the red solid line (2018) and pink 

shading (2013-2017 standard deviation). Volatile PM2.5 is indicated by the blue 

solid line (2018) and light blue shading (2013-2017 standard deviation). The 

total PM2.5 concentration for 2018 is also indicated by the black dashed line and 

the fire period in grey. The WHO 24-hour guideline limit is also in green for 

reference. 
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 TROPOMI Observations 
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The time evolution (25th-30th June) of the Saddleworth Moor and Winter Hill fires can also 

clearly be seen in the TROPOMI TCCO data where the fire plume propagates westwards (top 

six panels of Figure 34) over Manchester and Liverpool (blue circles). Over Saddleworth Moor, 

TCCO peaks at over 0.04-0.05 moles m-2 (26th and 27th June) with background concentrations 

of 0.02-0.025 moles m-2. Between June 27th–29th the plume has dispersed westwards with “in-

plume” concentrations remaining above 0.030 moles m-2. By the 30th June, the Saddleworth 

Moor plume has diminished but the Winter Hill fires have fully developed with a north-

westerly plume direction (TCCO >0.04 moles m-2). The time-evolution of the TCCO plume 

correlates strongly with the MODIS visible images (see Supplementary Material: Figure 54) 

supporting the robustness of the novel TROPOMI composition data. This is also seen in TCCO 

data from the Infrared Atmospheric Sounding Infererometer (IASI) satellite (see 

Supplementary Material: Comparison of TROPOMI with IASI (Infrared Atmospheric 

Sounding Infererometer) and Supplementary Material: Figure 64), further supporting 

TROPOMI. As TCCO enhancements flow out over Manchester and Liverpool, both densely 

populated, there will likely be substantial increases in other prominent air pollutants (e.g. NO2, 

PM2.5 and O3) as shown in Figure 33. 

Figure 34. TROPOMI total carbon monoxide (TCCO, moles m-2) measurements of the 

Saddleworth Moor wildfire (25th – 30th June 2018). Black and purple polygon-outlined 

regions represent the fire plume (>0.03 moles m-2) and edge of plume (0.025-0.03 moles 

m-2). Black dots show pixels where MODIS fire radiative power (FRP) is > 50 mW m-2. 

White dots show the location of the Saddleworth Moor and Winter Hill fires. Blue dots 

show the location of Manchester and Liverpool. The box and whisker schematics represent 

TROPOMI tropospheric column nitrogen dioxide (TCNO2, 10-5 moles m-2) sub-sampled 

“in-plume”, “edge of plume” and “out of plume” TCCO thresholds. TCNO2 is also sub-

sampled under fire pixels (FRP > 50 mW m-2) and non-fire pixels (FRP < 50 mW m-2). Red, 

green and blue represent the median, 25th and 75th percentiles and 10th and 90th percentiles, 

respectively. 
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Inspection of the TROPOMI TCNO2 data (see Supplementary Material: Satellite Observations 

of Tropospheric Column Nitrogen Dioxide section and Supplementary Material: Figure 57) 

highlights concentration enhancements over both Manchester and Liverpool during the 

Saddleworth Moor fire time period. However, the prevailing anticyclonic meteorological 

conditions have been shown in other studies (e.g. Pope et al. (2015, 2014)) to significantly 

increase NO2 concentrations over urban regions due to accumulation of anthropogenic 

emissions. Therefore, to isolate potential fire-sourced NO2 signal, a quantitative classification 

of “fire-influenced” pixels was used to sub-sample the TCNO2 data. Firstly, satellite pixels with 

FRP > 50 mW m-2 were classed as “fire” (black circles in Figure 34), while those with FRP < 

50 mW m-2 were classed as “non-fire”. Secondly, the TCCO was used to identify the 

observations as “in-plume” (TCCO > 0.03 moles m-2, black polygon-outlining - Figure 34), 

“edge of plume” (0.025 moles m-2 < TCCO < 0.030 moles m-2
, purple polygon-outlining) and 

“out of plume” (0.020 moles m-2 < TCCO < 0.025 moles m-2). The “out of plume” lower limit 

was set to 0.020 moles m-2 to ensure that near-plume satellite pixels are used and not 

background pixels across the domain. Several different thresholds were tested and this 

combination yielded the most realistic spatial plume distributions when compared to MODIS 

visible images.  

When sub-sampled under “fire” pixels (bottom panel, Figure 34) the median TCNO2 

concentration is approximately 8.0 x10-5 moles m-2, which is significantly larger than the “non-

fire” pixel TCNO2 median (6.0-7.0 x10-5 moles m-2) (95% confidence level (CL) based on 

student t-test, using the mean). The “fire” TCNO2 10th, 25th and 75th percentile concentations 

are also larger than the non-fire-TCNO2 equivalant. However, the “non-fire” TCNO2 90th 

percentile value is marginally larger. The TCNO2 data sub-sampled under the TCCO plume 
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definitions show a similar pattern. “Out of plume” median TCNO2 is the lowest (5-6 x10-5 

moles m-2) of all classifications (also true for the 10th, 25th, 75th and 90th percentiles). Though 

downwind of the fire location, the “edge of plume” and “in plume” classifications have the 

largest median TCNO2 values of 10.0-11.0 x10-5 moles m-2 and 12.0-13.0 x10-5 moles m-2, 

respectively. These two classifications both overlap regions of enhanced anthropogenic NO2 

sources (i.e. Manchester and Liverpool), so their median and percentile concentrations are 

larger (see Supplementary Material: Satellite Observations of Tropospheric Column Nitrogen 

Dioxide section and Supplementary Material: Figure 57). By using the TCCO data as a tracer 

for the fire plume, we detect a NO2 fire response on top of the anthropogenic NO2 signal. This 

is supported by aircraft results in the FAAM Aircraft Observations section, though we note that 

there is a substantial level of noise in the TROPOMI NO2 data (unlike for CO). Here, the 

median and percentile concentrations are all larger “in plume” than “edge of plume” where the 

medians are significantly different at the 95% CL (student t-test, using the mean). This 

indicates that the increased spatial resolution of TROPOMI (when compared to previous 

satellites such as OMI) is able to both, detect the impacts of fires on air pollutants and to 

quantify them, something not possible with the sparse coverage of the AURN sites. We can 

therefore conclude that the Saddleworth Moor and Winter Hill fires, observed by TROPOMI, 

significantly enhanced observed NO2 and CO concentrations. 
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 FAAM Aircraft Observations  
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 Pollutant Concentrations “in-plume” and “out-of-plume” Near-Field and 

Downwind 

To verify the satellite results and investigate other air pollutants, we use FAAM aircraft 

observations of CO, O3 and NO2, from June 29th 2018. Between approximately 11:00-11:30 

UTC the aircraft was sampling the near-field fire plume southwest-west of Saddleworth Moor 

(black circle – Figure 35 (a) and (b)) at 500-1000 m above ground level (AGL). Measurements 

within the plume show enhanced CO concentrations peaking at over 1500 ppbv, while 

background CO ranged between 80-100 ppbv (Figure 35 (c) and (e)). This correlates well with 

measurements of PM2.5 aerosol concentration, which also indicate enhanced PM2.5 in the plume 

(15 - >120 µg m-3) and much lower background values (~5 µg m-3) (Supplementary Material: 

Figure 61). Here, we define this segment of the flight as “near-field” (NF) (Figure 35 (e)). 

While there was a large step-change in CO and PM2.5 measurements, there were no clear 

changes in the measured O3 concentrations. Before the NF flight segment, O3 concentrations 

ranged between 45-85 ppbv, when the aircraft was north-northeast-east of Saddleworth Moor 

(i.e. ~10:30-11:00 UTC, Figure 35 (a), (d) and (e)). The NF O3 concentrations are slightly 

lower, ranging between 45-80 ppbv. 

Figure 35. Facility of Airborne Atmospheric Measurements (FAAM) observations of carbon 

monoxide (CO, ppbv) and ozone (O3, ppbv) from the Saddleworth Moor wildfires on 29th 

June 2018. (a) CO concentration along flight path (b) O3 concentration along flight path (c) 

time-altitude CO profile, (d) time-altitude O3 profile, e) CO (black) and O3 (red) time-series. 

Time stamps for the flight are included in (a) for reference to in (c) and (d). The sections 

bounded by the red and blue dashed lines in panels (a), (b), (e) and (f) represent the near-field 

(NF) and downwind (DW) time phases of the flight. The horizontal purple dashed line in (e) 

indicates the “in-plume” (> 125 ppbv) versus “out of plume” (< 125 ppbv) threshold. 
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In the “downwind” (DW) flight segment (approximately 12:00-13:00 UTC– Figure 35 (e)), the 

aircraft made plume measurements over the Irish Sea. Here, the aircraft flew between 250-

1000 m making multiple passes in and out of the plume. This can be clearly seen in Figure 35 

(c) and (d) where there are sudden step-changes in CO (100-115 ppbv to > 150 ppbv) and O3 

(50-60 to > 80 ppbv) concentrations with change in altitude. Figure 35 (e) and Supplementary 

Material: Figure 60 and Figure 61 indicate this even more clearly, with CO, O3, NO2 and PM2.5 

concentrations varying between 100-300 ppbv, 45-80 ppbv, ~1-8 ppbv and ~5-130 µg m-3, 

respectively, as the aircraft samples the composition in and out of the plume. To isolate in and 

out of plume concentrations, a CO threshold of 125 ppbv was used to define plume from 

background concentrations (purple dashed line – Figure 35 (e)).  

Figure 36 shows CO, O3 and NO2 concentrations sub-sampled “in-plume” and “out of plume” 

(based on the CO 125 ppbv threshold) for the NF and DW flight segments. In the NF, the 

median CO concentrations are substantially larger “in-plume” than “out of plume” at 

approximately 725 (220-860, 25th-75th percentiles) ppbv and 107 (104-111) ppbv, respectively. 

In the DW flight segment, median CO concentrations are substantially lower “in-plume” at 

approximately 190 (90-260) ppbv, while “out of plume” concentrations are slightly larger (111, 

102-115 ppbv) than the NF “out of plume”. Again, the same pattern is seen in the results for 

PM2.5 (Supplementary Material: Figure 62). NF “in-plume” concentrations are also much larger 

for PM2.5 (55.9 µg m-3, 14.1-71.8 µg m-3) than the “out-of-plume” median (7.5 µg m-3, 5.8-10.0 

µg m-3). PM2.5 is also substantially lower DW “in-plume” (18.43 µg m-3) than NF “in-plume” 

(55.9 µg m-3) and DW “in-plume” (18.43, 11.1 and 28.2 µg m-3) is also higher than DW “out-

of-plume” (7.15, 4.47 and 9.61 µg m-3).   
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NF O3 is larger “out of plume” (68, 47-76 ppbv) than “in-plume” (60, 58-61 ppbv). This is 

consistent with other studies, which show that fire plumes decrease local O3 concentrations, 

primarily through titration with freshly emitted NO (Verma et al., 2009). The opposite occurs 

for NO2 where concentrations are larger “in-plume” (2.05, 1.9-2.2 ppbv) than “out of plume” 

(0.9, 0.1-2.1 ppbv). However, the “out of plume” NO2 range (10th-90th percentiles) is much 

larger with concentrations peaking above 5 ppbv as the NF NO2 “in-plume” sample size is 

small with less spread (n=27). In the DW, O3 concentrations show enhancements “in-plume” 

when compared with the NF. DW “in-plume” concentrations are 66 (61-70) ppbv, this is 

substantially larger than the DW “out of plume” concentrations (O3 is 59 (57-63) ppbv). This 

enhancement compared with the surrounding air mass is suggestive of production of O3 “in-

plume” with distance away from the Saddleworth Moor. However, this O3 enhancement may 

also be influenced by downwind NOx sources (i.e. Liverpool and Manchester). The DW NO2 

concentrations are larger “in-plume” (3.2 (2.1-4.1) ppbv) than “out of plume” (1.2 (0.8-1.8) 

ppbv), while also larger than the NF “in-plume” concentrations of 2.05 (1.9-2.2) ppbv. This 

enhancement of NO2 concentrations “in-plume” corroborates the satellite TCNO2 results in 

Figure 34, but also the larger DW NO2 levels. To determine if these pollutant samples were 

significantly different from each other, the student t-test was used to compare the mean NF “in-

plume” with NF “out of plume”, NF “in-plume” with DW “in-plume” and DW “in-plume” 

with DW “out of plume” for each pollutant separately. Overall, we found that all combinations 

were significantly different for each pollutant at the 95% CL. Thus, concentrations of NO2, O3, 

PM2.5 and CO within the plume are statistically significantly enhanced compared to outside of 

the plume in NF and DW locations. Alongside this, concentrations are statistically significantly 

enhanced within the plume NF compared to within the plume DW. 
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 “In Plume” Ozone Production Near-Field and Downwind  

To quantify the enhancement of “in-plume” O3 with distance from source, we have used a 

similar approach to Arnold et al. (2015) and Jaffe and Wigder (2012). The linear fit between 

CO and O3 concentrations was determined for the NF (red symbols) and DW (blue symbols) 

Figure 36. Box and whisker schematic of CO (left, ppbv), O3 (centre, 

ppbv) and NO2 (right, ppbv) “in-” and “out of plume” (CO > 125 

ppbv). Red, green and blue represent the median, 25th and 75th 

percentiles and minimum and maximum concentrations, 

respectively. NF and DW represent the near-field and downwind 

phases of the plume. 
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flight segments (Figure 37), where measurements with CO concentrations < 125 ppbv were 

excluded (black circles). NF CO ranges between 125 to > 500 ppbv (i.e. CO data > 500 ppbv 

is used for the statistics, but not plotted to clearly display the DW relationship), whereas O3 

remains between 53-60 ppbv (note two points peak at ~70 ppbv). The O3 enhancement, as a 

function of CO concentration, for the NF is ΔO3/ΔCO = 0.001 ppbv/ppbv indicating no clear 

O3 enhancement with increasing CO. In the DW flight segment there are three distinct positive 

CO:O3 slopes at approximately 0.25-0.5 km (crosses), 0.6-0.85 km (diamonds) and above 0.9 

km (circles) altitudes. Here, the O3 enhancements are ΔO3/ΔCO = 0.060, 0.067 and 0.105 

ppbv/ppbv, respectively, all of which are significant at the 95% CL (i.e. the trends lie outside 

of the variation observed in the data (outside of ± 2 standard deviations)). This indicates a 

significant enhancement of “in-plume” O3 production increasing with altitude. One likely 

reason for the larger ΔO3/ΔCO rate with altitude is that there is more photochemical production 

of ozone at top of the plume (i.e. incoming solar radiation reaches this part of the plume first 

and is attenuated further into the plume) (Jaffe and Wigder, 2012). However, we do not have 

the detailed chemical measurements necessary to test this hypothesis. Though NO2 is enhanced 

DW from urban sources, the ΔO3/ΔCO variation with altitude is predominantly from the 

Saddleworth Moor fires. As shown in Figure 35 and Supplementary Material: Figure 60, there 

is a strong correlation with enhancements in all pollutants as the aircraft flies in and out of the 

plume (also see Aircraft Instrumentation and Cross-section section). The ΔNO2/ΔCO ratio (not 

shown here) has the opposite pattern to ΔO3/ΔCO ratio and decreases with height. This 

potentially suggests that the anthropogenic signal is reducing with altitude or that NO2 is being 

processed more quickly with more active photochemistry. However, to accurately diagnose the 

influence of anthropogenic and fire NOx sources on O3 production, a high-resolution regional 

modelling frame work is required, which is beyond the scope of this study. 



155 

 

 

 Back Trajectories  

Backward trajectories from the NOAA Hybrid Single-Particle Lagrangian Integrated 

Trajectory model (HYSPLIT) (Stein, et al., 2015) released from the aircraft sampling regions 

near-field and downwind can assist estimating the age of air mass which the smoke plume was 

in when pollutants were sampled. Trajectories were released from the most northerly and 

Figure 37. CO (ppbv) and O3 (ppbv) relationship for different Saddleworth Moor fire plume 

phases (29th June 2018). Black circles represent all data defined as “out of plume” (<125 

ppbv CO), red circles are “in plume” near field and blue symbols are “in plume” 

downwind. Blue crosses, diamonds and circles represent measurements between 0.25-0.5 

km, 0.6-0.85 km and above 0.9 km. Dashed lines represent the CO-O3 regression for 

different fire plume altitudes where all downwind relationships are significant at the 95% 

confidence level (*). 
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southerly points of the near-field (2.2°W, 53.75°N at 1100 UTC and 1.9°W, 53.25°N at 1200 

UTC) and downwind (3.4°W, 53.75°N at 1200 UTC and 3.4°W, 52.75°N at 1300 UTC) 

sections of the flight from a range of altitudes during these profiles (500, 750 & 1000 m and 

250, 500 and 1000 m, respectively) (Figure 56). The results of the back-trajectory analysis 

indicate the air mass which near-field samples were taken from was likely 30 mins – 1 hour in 

age, showing little variation in age with changes in sample height (500, 750 and 1000 m). The 

air mass of the downwind samples was likely 2-7 hours in age, with the age of the air mass 

decreasing with increasing altitude (250, 500 and 1000 m) in the northernmost (southernmost) 

sample location from 4-6, 3-4 and 2-3 hours (6-7, 4-5 and 3-4 hours). 

Deriving CO emissions from the fires 

To determine CO emissions from the Saddleworth Moor fires, we consider the cross section 

made by the aircraft through the plume on June 29th (see Supplementary Material: Figure 63). 

Here, the plume has an approximate width and thickness of 4482 m and 52 m, respectively. 

The fire emissions were calculated by: 

𝐸𝐶𝑂 =  ∆𝐶𝑂̅̅ ̅̅ ̅̅  𝑤̅ ℎ 𝑑) 
(15) 

where 𝐸𝐶𝑂 (kg s-1) represents the emissions of CO, ∆𝐶𝑂̅̅ ̅̅ ̅̅  (kg m-3) is the mean fire enhancement 

between the “in-plume” and “out of plume” CO concentrations, 𝑤̅ (m s-1) is the mean wind 

speed at the flight altitude (assumed to be in the direction of plume flow and perpendicular to 

the aircraft flight path), ℎ (m) is the plume thickness and 𝑑 (m) is the plume width. The 

limitations of this approach are the assumptions that 𝑤̅ is representative of the full plume wind 

speed, that the plume cross-section is regular, and the estimate values of ℎ and 𝑑 (the aircraft 

might not have included the entire plume in the transect). Here, 𝑤̅ = 7.31 m s-1 and ∆𝐶𝑂̅̅ ̅̅ ̅̅  = 
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6.4×10-7 kg m-3, so 𝐸𝐶𝑂 = 1.07 kg s-1. To estimate the uncertain range of this emission rate, we 

perturb the values of ℎ and 𝑑 by 50% (these variables represent the largest source of 

uncertainty) and use lower and upper limits of 𝑤̅ and ∆𝐶𝑂̅̅ ̅̅ ̅̅  ± 1.0 standard deviation. This 

provides a range of 𝐸𝐶𝑂 = 1.07 (0.07-4.69) kg s-1, which is in reasonable agreement with remote 

sensing estimates from the Global Fire Assimilation System (GFAS, 0.54 kg s-1) and the Fire 

Inventory from NCAR (FINN, 2.15 kg s-1). When this is repeated for CO2, also measured 

during the aircraft campaign, ECO2 = 13.7 (1.73-50.1) kg s-1 while GFAS and FINN have 

emission rates of 7.84 kg s-1 and 33.1 kg s-1, respectively. 

4.5 Discussion and Conclusions 

Historically, the UK is prone to relatively small vegetation fires (e.g. in comparison to tropical 

and other boreal fire, van der Werf et al. (2017)) often used in moorland burning for the 

purposes of agricultural grazing (Davies, et al., 2016; Yallop, et al., 2006). However, in recent 

years, the UK has experienced several substantially larger fires which have gained much media 

interest and resulted in the evacuation of surrounding populated areas. In this study, we have 

successfully used ground-based observations, state-of-the-art satellite and aircraft 

measurements to quantify the impact of the Saddleworth Moor and Winter Hill fires on regional 

atmospheric composition and air quality. 

Using ground-based observations, the impact of pollutants from the fire can be quantified at 

the surface. Pollutants from the fire were transported westwards during the peak of the fires 

(27th, 29th and 30th June) over large populations (e.g. Manchester). Consequently, the fire had 

a significant impact on PM2.5 concentrations in Manchester and in regions further afield 

(including Wigan – 50 km away). Surface PM2.5 during the fires was 4-5.5 higher than average 

and dominated by the non-volatile PM2.5 fraction. Since concentrations were up to 2 times the 
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WHO recommended guideline limit (25 µg m-3) there are likely to have been considerable 

negative health impacts for individuals exposed, particularly those with underlying health 

conditions.  

The unprecedented spatial resolution of the new S5P TROPOMI satellite instrument now 

allows us to detect trace gases from such fires. The time-evolution of total column carbon 

monoxide (TCCO) measurements during June 25th-30th shows the westward propagation of the 

Saddleworth Moor fire plume out towards the Irish Sea over the highly populated cities of 

Manchester and Liverpool. By using quantitative classification of the fire plume (i.e. TCCO 

concentration and fire radiative power, FRP), we have isolated a significant enhancement in 

tropospheric column NO2 (TCNO2), a key air pollutant, on top of the enhanced anthropogenic 

signal from prevailing anticyclonic meteorological conditions (i.e. accumulation of pollutants 

over source regions). Measurements from the FAAM aircraft flight on June 29th support this, 

with clear enhancement of boundary layer (<1 km) CO concentrations within the plume. Near 

Saddleworth Moor, in-plume CO and PM2.5 measurements peak at over 1500 ppbv and 127.5 

µg m-3, while downwind of the plume over the Irish Sea they are somewhat lower at 200-400 

ppbv and 96.1 µg m-3. The opposite occurs for ozone (O3) where the downwind plume shows 

a significant increase, highlighting its downwind production. Based on CO:O3 correlations 

within the plume, the O3 production increases significantly from ΔO3/ΔCO = 0.001 ppbv/ppbv 

near-field to ΔO3/ΔCO = 0.060-0.105 ppbv/ppbv (depending on the altitude between 250-1000 

m) downwind. Our estimates lie within the range of values found in previous studies of similar 

fires (boreal region mean: 0.018-0.15) (Jaffe, and Wigder, 2012). Though urban sources of 

NOx (i.e. Manchester and Liverpool) may also be contributing to the DW O3 enhancements as 

has been found in previous studies of wildfires near highly populated urban areas (McKeen et 
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al., 2002; Morris et al., 2006). Emission rates from Saddleworth Moor, during the smouldering 

stage of the fire’s life cycle, are estimated to be 1.07 (0.07-4.69) kg s-1 and 13.7 (1.73-50.1) kg 

s-1 for CO and CO2, respectively. This CO2 emission rate is similar to those of the Grangemouth 

(near Edinburgh) or Enfield (north of London) power stations (~16.0 kg s-1; (NAEI, 2018)). 

We have shown that the Saddleworth Moor and Winter Hill fires produced large quantities of 

some key air pollutants, including O3, PM2.5 and CO, which were transported over Manchester 

and Liverpool yielding a substantial degradation in AQ. In the future, with accelerating climate 

change leading to enhanced temperatures and drought conditions within the UK (Guerreiro, et 

al., 2018), wildfires are likely to become more frequent and intense (Albertson, et al., 2010) 

yielding more hazardous AQ situations in nearby populated areas. Therefore, work is required 

to accurately determine the surface enhancement in air pollutant concentrations from such fires. 

As the surface monitoring network (Automated Urban and Rural Network, (Department for 

Environment Food and Rural Affairs, 2018b)) is sparse, satellite observations and modelling 

can play an important role. Future work is also needed to assess the corresponding health 

impacts of exposure to air pollutants from wildfires. 
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5.1 Abstract 

On June 24th 2018 one of the largest UK wildfires in recent history broke out on 

Saddleworth Moor, close to Manchester, in north-west England. Since wildfires 

close to large populations in the UK have been relatively small and rare in the 

past, there is little knowledge about the impacts. This has prevented the 

development of effective strategies to reduce them. This paper uses a high-

resolution coupled atmospheric-chemistry model to assess the impact of the fires 

on particulate matter with a diameter less than 2.5 µm (PM2.5) across the region 

and the impact on health from short-term exposure. We find that the fires 

substantially degraded air quality. PM2.5 concentrations increased by more than 

300% in Oldham and Manchester and up to 50% in areas up to 80 km away, such 

as Liverpool and Wigan. This led to one quarter of the population (2.9 million 
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people) in the simulation domain (-4.9-0.7°E and 53.0-54.4°N) being exposed to 

moderate PM2.5 concentrations on at least one day, according to the Daily Air 

Quality Index (36-53 µg m-3), between June 23rd and 30th 2018. This equates to 

4.5 million people being exposed to PM2.5 above the WHO 24-hour guideline of 

25 µg m-3 on at least one day. Using a concentration-response function we 

calculate the short-term health impact, which indicates that in total over the 7-day 

period 28 (95% CI: 14.1-42.1) deaths were brought forward, with a mean daily 

excess mortality of 3.5 deaths per day (95% CI: 1.8-5.3). The excess mortalities 

from PM2.5 due to the fires represented up to 60% of the total excess mortality (5.7 

of 9.5 excess deaths), representing an increase of 3.8 excess mortalities (165% 

increase) compared to if there were no fires. We find the impact of mortality due 

to PM2.5 from the fires on the economy was also substantial (£21.1m).  

 

5.2 Introduction  

The Saddleworth Moor fire in June 2018 was the largest UK wildfire in recent decades, with 

over double the burnt area of the most recent large wildfire in 2011, in Swinley, Berkshire 

(Royal Berkshire Fire and Rescue Service, 2011). It led to the evacuation of many residents 

from their homes, and caused elevated atmospheric pollutant concentrations across the Greater 

Manchester urban region. The fires began on June 24th 2018 and burned for three weeks over 

Saddleworth Moor (1.96°W, 53.54°N) and Winter Hill (2.52°W, 53.63°N) (Figure 38).  The 

fires, which are thought to have been deliberately started, peaked in size on 27th June, covering 

8 km2 with flames reaching 4 m in height (Greater Manchester Combined Authority, 2019). 

The fires burned on moorland that was dominated by heather with an underlying layer of peat 

(Greater Manchester Combined Authority, 2019) (Supplementary Material: Figure 65). Peat is 

exceptionally vulnerable to ignition during periods of drought and once alight it is extremely 
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difficult to control and extinguish because it is a well oxygenated fuel source (Rappold, et al., 

2011). As a result, peat fires can smoulder underground for long periods, re-emerging away 

from the original source (Rappold, et al., 2011). Fuel consumption is relatively large in peat 

fires, emissions per unit area are much higher than for other fuel types (Geron, and Hays, 2013). 

Consequently, peat fires emit large dense ground level plumes, meaning that local populations 

may be more susceptible to smoke exposure than for other wildfire types (Tinling, et al., 2016). 

Alongside this, although other studies have suggested that flaming smoke may be more toxic 

than smouldering smoke on a mass basis (Kim, et al., 2019, 2018), peat burning produces more 

smoke and so it has been suggested that the toxicity of smoke from peat fires is different to 

other wildfires (Reisen, et al., 2015; Tinling, et al., 2016), however there is currently limited 

research on this topic. 

June 2018 was anomalously warm and dry across the UK. Average daily maximum 

temperatures were between 18 - 22 °C (2.5 °C warmer than the 1981-2010 average) (UK Met 

Office, 2018) and less than 75 mm rainfall fell during the month (50% of the 1981-2010 

average rainfall). There were fewer than 4 days with > 10mm rainfall (UK Met Office, 2018). 

These conditions led to the peat on the moor becoming particularly susceptible to ignition.  

Wildfires emit large amounts of pollutants and have substantial impacts globally on the 

radiative balance (Hodzic, et al., 2007; Rappold, et al., 2011), cloud microphysical properties 

(Jiang, et al., 2016; Lu, and Sokolik, 2013), air quality (Crippa, et al., 2016; Jaffe, and Wigder, 

2012; Reddington, et al., 2014) and therefore health (Johnston, et al., 2012; Jones, et al., 2015; 

Liu, et al., 2015; Rappold, et al., 2011). Wildfires are an increasing environmental and health 

concern that are projected to occur more frequently, become more intense and spread much 

more quickly in the future (Barros, et al., 2014). It is projected that by 2080 the combination 
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of higher temperatures, decreased summer rainfall and drier soils could lead to a 30-50% 

increase in UK wildfire risk (HM Government, 2012). Peat bogs, which account for over 

22,000 km2 of UK land cover (Xu, et al., 2018), are particularly vulnerable to wildfire.  

As a result of the predicted increase in wildfires, population exposure to pollutants from fires 

is also expected to increase. Substantial evidence supports the association of short-term 

exposure to PM2.5 from fires and respiratory and cardiac morbidity and mortality from both 

epdiemiological (Delfino, et al., 2009; Johnston, et al., 2011; Reid, et al., 2016; Zanobetti, and 

Schwartz, 2009) and toxicology studies (Naeher, et al., 2007). However, there is a large amount 

of conflicting research on the toxicity of different species and so equal toxicity between PM 

components is still commonly assumed but is an active area of research (Atkinson, et al., 2014). 

The health burden of fires in the tropics and United States, Australia and Canada is well 

documented in the literature (Crippa, et al., 2016; Finlay, et al., 2012; Johnston, et al., 2011; 

Landis, et al., 2018; Liu, et al., 2015; Reid, et al., 2016; Reisen, et al., 2015) and is significant. 

The large wildfires during 2015 in Equatorial Asia led to 69 million people being exposed to 

unhealthy levels of PM2.5 and are estimated to have caused 11,880 excess mortalities due to 

short-term exposure (Crippa, et al., 2016). 

Alongside the significant health impacts of wildfires, there is also a large associated 

socioeconomic cost (Fann, et al., 2018; Kochi, et al., 2012). The concept of Value of Statistical 

Life, how much society is willing to pay to preserve a life or extend it, is used by studies to 

estimate the economic value of short-term excess deaths and hospital admissions during 

wildfires. Using this method it is estimated that in the US between 2008 and 2012 the economic 

cost of short-term exposure to wildfire air pollutants was $63bn (95% CI $6bn-$170bn), while 
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for long-term wildfire air pollutant exposure the cost was $450bn (95% CI $42bn-$1200bn) 

(Fann, et al., 2018).  

Since wildfires close to highly populated areas are relatively rare in the UK, little research into 

the health and economic impacts of UK wildfires has been carried out. However, as fires are 

predicted to increase with the warming climate and land-use change it is becoming increasingly 

important to examine wildfires in a UK context. Previous studies elsewhere in the world have 

found that public health tools and educational programmes to reduce exposure yield significant 

health benefits from reduced mortality and exacerbations of underlying illnesses (Rappold, et 

al., 2014). Many countries also have both ‘Fire Danger Ratings’ and ‘Fire Warning Systems’. 

These are used to inform the public of the daily fire risk, based on weather forecasts and fuel 

loading, and provide updates on current active fires. Other countries also often have severe 

penalties for arson, with high conviction rates every year, and high rewards for information on 

suspected arsonists (up to $50 K (Department of Fire and Emergency Services, 2018)). 

However, at present, a lack of knowledge about the impacts of wildfires in the UK prohibits 

the development of effective strategies to reduce their impacts.   

In this paper we use the Saddleworth Moor Fires in June 2018 as a case study to calculate the 

potential health and economic impacts of exposure to PM2.5 from wildfire on the UK population 

using a high-resolution air quality model. The results of this study aim to quantify the 

population’s exposure to PM2.5 from the fires and the subsequent health impact. This will help 

to inform legislation makers, based on the impacts of the Saddleworth Moor Fires, whether 

there is a need to introduce preventitive measures and emergency planning for fires to reduce 

the population’s exposure to harmful pollutants. 
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5.3 Method 

 WRF-Chem 

This study uses WRF-Chem v3.7.1 (Grell, et al., 2005), a fully coupled atmospheric chemistry 

model at 10 km resolution, to simulate hourly PM2.5 concentrations during the Saddleworth 

Moor fires 2018. The study domain covers northern England (-4.9-0.7°E and 53.0-54.4°N) and 

Figure 38. Population count (km-2) (2015) in model domain with Automated 

Urban and Rural Network (AURN) sites used in model evaluation over 

plotted (Supplementary Material: Table 12). Sites where elevated PM2.5 

was observed are indicated by red stars and those where concentrations 

remained below 50 µg m-3 by black circles. The locations of 

Saddleworth Moor and Winter Hill are indicated by black triangles. Fire 

emissions, from FINNv1.5 (time-varying scaling), between June 23rd 

and June 30th are indicated by red circles – each circle represents a fire 

hotpot from MODIS, while the size of the circles is relative to the mass 

of PM2.5 emitted in kg day-1 (scale on left). The area over which scaling 

was applied to the FINN fire emissions is also shown by the blue box. 

More details on AURN sites can be found in Supplementary Material: 

Table 12. 
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a population of 14 million people. Our simulations are performed using the same model version 

and set-up as Conibear et al. (2018a), Reddington et al. (2019) and Kiely et al. (2019). For a 

more detailed model description refer to Conibear et al. (2018a). 

Meteorological initial boundary conditions (IBC) were provided by the National Centers for 

Environmental Prediction (NCEP) Global Forecasting System (GFS) reanalysis (meteorology) 

at 6-hour time steps and 0.5° resolution. Chemical IBC are from the Whole Atmosphere 

Community Climate Model (WACCM) (Marsh, et al., 2013) (UCAR, 2020a). An updated 

MOZART-4 (Emmons, et al., 2009) scheme is used to calculate gas-phase chemical reactions. 

Aerosol dynamics and processes were represented by the Model for Simulating Aerosol 

Interactions and Chemistry (MOSAIC), which included aqueous chemistry and extended 

treatment of organic aerosol (Hodzic, and Knote, 2014). Four bins were used represent aerosol 

size: 0.039-0.156 µm, 0.156-0.625 µm, 0.625-2.5 µm and 2.5-10 µm. WRF was nudged on all 

33-vertical terrain following levels every 3 hours in order to keep mesoscale meteorology in 

line with the reanalysis meteorology from GFS (National Centre for Atmospheric Research, 

2007). Variables nudged included horizontal and vertical wind, potential temperature and water 

vapour mixing ratio. 

Monthly anthropogenic emissions were from the Emission Database for Global Atmospheric 

Research with Task Force on Hemispheric Transport of Air Pollution version 2.2 (EDGAR-

HTAP2) (Janssens-Maenhout, et al., 2015) at 0.1° resolution for 2010 (see Supplementary 

Material: Anthropogenic Emissions for more information). Biogenic emissions were calculated 

online by the Model of Emissions of Gases and Aerosols from Nature (MEGAN) (Guenther, 

et al., 2006). Dust emissions are also calculated online using the GOCART with Air Force 

Weather Agency (AFWA) modifications (LeGrand, et al., 2019).  
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We calculate the contribution of the fires between June 16th and July 14th 2018 on PM2.5 surface 

concentrations by comparing simulations with and without fire emissions included.  

 Wildfire emissions 

Wildfire emissions are taken from the Fire Inventory from NCAR version 1.5 (FINNv1.5). The 

FINNv1.5 emissions dataset combines satellite observations, land cover, biomass consumption 

estimates and emissions factors to calculate fire emissions globally at 1 km resolution every 

day. Satellite observations from the MODIS Thermal Anomalies Product provide detections of 

active fires with a nominal horizontal resolution of ~ 1 km2. Burned area is assumed to be 1 

km2 for each fire identified and scaled back based on the density of vegetation from the MODIS 

Vegetation Continuous Fields (VCF) (i.e. if 50% bare = 0.5 km2 burned area). The type of 

vegetation burned during a detected fire is determined using the MODIS Collection 5 Land 

Cover Type (LCT). This assigns each fire pixel to one of 16 possible land cover/land use classes 

and also the density of vegetation at 500 m resolution, scaled to 1 km. The 16 land cover types 

are then aggregated into 8 generic categories to which fuel loadings are applied (Wiedinmyer, 

et al., 2011). Fuel loadings are from Hoelzemann et al. (2004) and emissions factors are from 

Akagi et al. (2011), McMeeking (2008) and Andrae and Merlet (2001). FINNv1.5 includes all 

emissions from above ground vegetation but not from the combustion of peat (Kiely, et al., 

2019). 

We compare the FINN burned area (1 km resolution) with MODIS burned area (500 m 

resolution) in order to evaluate whether the resolution of the MODIS hotspot data used within 

FINN to estimate emissions is able to represent the fire size correctly, and thus emissions. We 

find the burned areas to be very similar for FINN (9.77 km2) and MODIS (8.43 km2) and the 

datasets to be in agreement spatially. The burned area in FINN is likely to be slightly higher 



179 

 

than MODIS because of the lower resolution of the dataset. Since the Saddleworth Moor fires 

occurred on an area that is dominated by peat bog, with overlying vegetation including heather, 

grass and juniper (Greater Manchester Combined Authority, 2019; Xu, et al., 2018) 

(Supplementary Material: Figure 65), we are confident the need for scaling emissions is due to 

the missing peat emissions rather than an error relating to fire size.  

We therefore scale all FINN emissions over the Saddleworth Moor region (Figure 38 and 

Supplementary Material: Figure 65) to account for the underestimation of emissions in the 

dataset due to the missing peat emissions. Scaling is performed equally across all FINN 

emission species, and is altered daily to match the daily mean observations of PM2.5 at AURN 

sites (see Supplementary Material: Table 12 for AURN sites). We scale emissions by a factor 5 

on June 26th and a factor 10 on 27th, 28th and 29th. On all other days, we use the original unscaled 

FINN emissions. More details on the evaluation of FINN scaling can be found in the 

Supplementary Material (Supplementary Material: Wildfire Emissions Scaling and Model 

Evaluation and Supplementary Material: Figure 66 and Figure 67).  

 Model Evaluation 

Hourly observations of PM2.5 from the Automated Rural and Urban Network (AURN) in the 

UK are used to evaluate the model’s performance at hourly and daily temporal resolution. We 

evaluate the model against all AURN sites in the north-west and Yorkshire and Humber regions 

of England, which are mostly urban sites (see Supplementary Material: Table 12 and Figure 38 

for more details). Daily means are calculated from hourly data for days where >90% of data is 

available at a given site.  
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 Health Impact Assessment 

The health impact from short-term exposure to elevated pollutants from the Saddleworth Moor 

fires can be calculated using an exposure response function:  

𝐸𝑚 =  ∑ 𝐵𝑑. 𝑝𝑜𝑝𝑖. 𝐴𝐹𝑖

𝑁

𝑖=1

 

 

(16) 

 

where: 

𝐴𝐹 = (
𝑅𝑅 − 1

𝑅𝑅
) 

(17) 

and: 

𝑅𝑅 = 𝑒𝑥𝑝𝛽(𝑋−𝑋0)   

 

(18) 

 

Em represents the excess mortality caused by exposure to PM2.5 over the safe limit of exposure 

(X-X0) each day. N is the number of days within the simulation and i is the day in simulation, 

Bd is the baseline death rate, pop is the population exposed and AF is the attributable fraction 

of mortality due to exposure to PM2.5. The AF is calculated using the concept of relative risk 

(RR), this is the probability of mortality from a disease endpoint within an exposed population 

to the probability of mortality within an unexposed population (ß). The concentration a 

population is exposed to is given by X and the safe-limit of exposure is X0. Since there is little 

evidence to suggest a safe-limit of exposure to PM2.5 we assume X0 to be zero (Holgate, 1998; 

Macintyre, et al., 2016; Schmidt, et al., 2011). We use beta values from Atkinson et al. (2014) 

for PM2.5 (1.04% (95% CI: 0.52%,1.56%) per 10 μg m−3 increase). Since short-term health 
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impacts are assumed to be equal across ages, we use baseline mortality rates for all ages and 

population for all ages in the calculations (Atkinson, et al., 2014).  

The health impact assessment is carried out using the “subtraction” method, which is the 

method most commonly used in short-term health impact studies (Crippa, et al., 2016; 

Macintyre, et al., 2016). This method calculates the excess mortality from fires (Em FIRES ONLY) 

to be the difference between the excess mortality from PM2.5 in the simulation with fires on (Em 

FIRES ON) and excess mortality from PM2.5 when there are no fires in the simulation (Em FIRES 

OFF) (Equation (19)). 

𝐸𝑚 𝐹𝐼𝑅𝐸𝑆 𝑂𝑁𝐿𝑌 =  𝐸𝑚 𝐹𝐼𝑅𝐸𝑆 𝑂𝑁 − 𝐸𝑚 𝐹𝐼𝑅𝐸𝑆 𝑂𝐹𝐹 (19) 

We use population count data from the Gridded Population of the World, Version 4.11 (NASA 

Socioeconomic Data and Applications Center (SEDAC) Center for International Earth Science 

Information Network (CIESIN), and Columbia, 2018) for 2015 at 5 km resolution. The dataset 

is created by the Centre for International Earth Science Information Network (CIESIN) and 

was accessed from the National Aeronautics and Space Administration (NASA) 

Socioeconomic Data and Applications Centre (SEDAC).  The dataset uses estimates of human 

population based on the national census and population registers. Input data from 2005-2014 

are extrapolated to produce estimates of population for 5-year increments. A map of this 

population data in the north-west of England is available for reference (Figure 38). Baseline 

mortality rate data for north-west England is taken from the Global Burden of Disease for 2015 

(Institute for Health Metrics and Evaluation, 2018).  
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 Economic Cost of Fires 

The economic cost of mortality caused by exposure to PM2.5 from the fires is calculated using 

the ‘Value of Prevented Fatality’ (VPF) from the UK Department for Transport. The VPF was 

initially used to evaluate transport projects which entail expected reductions in fatalities (Guria, 

et al., 2005). However, in recent years, many other government sectors, such as the UK 

Environment Agency and Health Protection Agency, have begun to utilise the concept (Deloitte 

UK, 2009). Several other studies have used this method to quantify the benefits of air quality 

improvements from reduced mortality (Krupnick, et al., 1996; US Environmental Protection 

Agency, 1997). There is a large range in estimates for VPF so we use values from the 

Department for Transport since these are based on UK costs of mortality and lie within the 

range of other estimates (see Supplementary Material: Table 15 and Supplementary Material: 

Economic Cost of the fires for more details). The estimates are broken down into human costs, 

medical costs, lost output and other costs. Values are given in GBP for 2008, which we scale 

to 2018 values in line with inflation (Bank of England, 2019). The human cost component 

reflects the pain and suffering felt by the victim and relatives and the reduction in life quality 

during the period of injury. Thus, the human cost is derived from the ‘Willingness to Pay’ of 

the population to reduce this risk. Medical costs represent all treatment costs and lost output 

represents working days lost and therefore, the total expected lost earnings before tax, as well 

as national insurance payments. Other costs represent emergency services and benefits. 

5.4 Results 

 AURN Observations 

AURN observations (Figure 39) indicate PM2.5 concentrations at 5 locations in the north-west 

exceeded 100 µg m-3 between June 16th and July 14th 2018. As expected, concentrations were 
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highest at sites near to Saddleworth Moor, reaching 140 and 225 µg m-3 on June 27th and 28th 

at Manchester Piccadilly and Salford Eccles respectively (Figure 39). They also reached >175 

µg m-3 at Wigan Centre, 50 km from the fires. Other sites in the network were relatively 

unaffected by the fires, with little variation in concentrations during the fires (Figure 39). 
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 Model Evaluation 

The model is evaluated using Pearson correlation coefficient (r), mean bias (MB), normalised 

mean bias (NMB), root mean square error (RMSE), mean absolute error (MAE) and normalised 

mean absolute error (NMAE). Firstly, when assessing model performance at the daily 

resolution, without scaling FINN fire emissions (no scaling), the model performs relatively 

poorly (Table 8 and Supplementary Material: Figure 66). The Pearson correlation score is 

similar to the simulation without fire emissions (no fires) (0.69 and 0.62 respectively). RMSE 

(5.06 µg m-3), NMB (-0.22) and NMAE (0.33) are also similar to with no fire emissions (5.30 

µg m-3, -0.24 and 0.34 respectively). Referring to the time series from each AURN site it 

becomes clear the poor performance of the model is dominated by sites where fire emissions 

are not being captured well (see Supplementary Material: Figure 66 and Figure 67). When a 

factor 10 scaling (10× scaling) is applied to FINN emissions over Saddleworth Moor the 

correlation is improved (0.74) and NMB is substantially improved (0.10) (Table 8). The RMSE 

(4.31 µg m-3) and NMAE (0.31) also improve. However, the model still over predicts PM2.5 in 

the early stages of the fire (see Supplementary Material: Figure 66). The over prediction may 

be due to a changing fuel source through the fire lifetime, from the surface vegetation (heather 

and grass) initially, which FINN accounts for, to underlying peat once the surface vegetation 

has been consumed (Greater Manchester Combined Authority, 2019). Peat has much higher 

emissions per unit burnt (9.1 g kg-1 burned (but estimates range from 6-30 g kg-1) compared 

with 6.3–15.3 g kg-1 for other vegetation types burned (GFEDv4) (Giglio, et al., 2013)). 

Figure 39. Hourly observed and simulated surface PM2.5 between June 16th 2018 and July 14th 

2018. Modelled values are from the time-varying scaling simulation (see Wildfire 

emissions and Model Evaluation sections and Table 8), in magenta, and observations from 

AURN sites are in black. Locations where PM2.5 observations are elevated are shown by 

red stars and time series site names in red. The period when the Saddleworth Moor and 

Winter Hill fires occurred is indicated in grey shading. 
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Alongside this, FINNv1.5 does not account for whether burning is smouldering or flaming, 

which can change emissions significantly, particularly in peat fires where emissions are highest 

during smouldering due to colder combustion temperatures (Stockwell, et al., 2016). To try to 

account for the change in fuel type we perform a simulation where we adjust the scaling of the 

fire emissions each day (see Wildfire emissions and Model Evaluation section for more details 

on scaling). Using a daily time-variant scaling (Time-varying scaling) we improve RMSE (4.27 

µg m-3) and Pearson correlation (0.77) and find the simulation has a similar NMAE (0.31) when 

compared with factor 10 scaling (10× scaling: RMSE = 4.31 µg m-3, r = 0.74 and NMAE =0.31) 

(see Table 8). Time-varying scaling also performs best at hourly time resolution with improved 

correlation (0.42), RMSE (7.11 µg m-3) and NMAE to 0.47 (compared with factor 10 scaling 

and no scaling simulations (r = 0.37 and 0.351, RMSE = 7.78 and 7.557 µg m-3)) and the 

removal of the over prediction at the start of the fires (see Supplementary Material: Figure 66). 

We therefore use the time-variant scaling of FINN emissions as our best-estimate (more details 

in Supplementary Material: Wildfire Emissions Scaling and Model Evaluation).  
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Table 8. Model evaluation statistics for WRF-Chem simulations with different FINNv1.5 

options for daily mean PM2.5. Statistics shown are the mean value of Pearson correlation 

coefficient (r), mean bias (MB), normalised mean bias (NMB), root mean squared error 

(RMSE), mean absolute error (MAE) and normalised mean absolute error (NMAE) at 

each AURN site for the entire simulation (June 16th 2018 to July 14th 2018). Simulations 

shown are for FINNv1.5 with no alterations (no scaling), FINN v1.5 with factor 10 

scaling over Saddleworth Moor (10x scaling), FINN v1.5 with changing scaling to 

account for the different stages of the fire (time-varying scaling) and simulations with 

(no fire emissions). See Model Evaluation and Supplementary Material: Figure 65 for 

more details on time-varying scaling. 

 

 

 

  

Daily Evaluation 

Statistic 

Time-varying 

Scaling 

10x Scaling 

 

No Scaling 

 

No Fire Emissions 

Pearson 

Correlation (r) 

0.77 0.74 0.69 0.62 

Mean Bias (MB) -1.59 -0.95 -1.84 -1.98 

Normalised Mean 

Bias (NMB) 

-0.19 -0.10 -0.22 -0.24 

Root Mean Square 

Error (RMSE) 

4.27 4.31 5.06 5.30 

Mean Absolute 

Error (MAE) 

2.30 2.22 2.48 2.59 

Normalised Mean 

Absolute Error 

(NMAE) 

0.31 0. 31 0.33 0.34 
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 Impact on Air Quality 

Using WRF-Chem simulations we calculate the percentage increase in PM2.5 at the surface due 

to fires as (
𝑃𝑀2.5 𝐹𝑖𝑟𝑒𝑠−𝑃𝑀2.5 𝑁𝑜 𝐹𝑖𝑟𝑒𝑠

𝑃𝑀2.5 𝑁𝑜 𝐹𝑖𝑟𝑒𝑠
  x 100), where PM2.5 from the simulation with fire emissions 

is labelled as PM2.5 Fires and PM2.5 from the simulation without fire emissions is labelled as 

PM2.5 No Fires. Between June 23rd and June 30th 2018 model simulations indicate the mean 

increase in PM2.5 due to fires (Figure 40 (c)) is largest in the area surrounding Oldham (> 300% 

increase). However, there is also a 150-200% increase in PM2.5 in Manchester, Bolton and 

Wigan. Areas as far away as Liverpool, Preston and Warrington are also affected with 10-50% 

increases in PM2.5 observed. Daily mean percentage increase in PM2.5 from fires indicates that 

the largest increase in PM2.5 observed is due to the Saddleworth Moor fires (Supplementary 

Material: Figure 70) on the 26th and 27th June. Results indicate PM2.5 increases of > 600% in 

Manchester, Bolton and Wigan and >1000% in Oldham are due to the fires (Supplementary 

Material: Figure 70). Large areas of the north-west also experience > 350% increase in PM2.5, 

including Wigan, 50 km from the fires, and a 100% increase is observed as far west as the Irish 

Sea. Simulations indicate the Winter Hill fires on June 29th and 30th were also associated with 

PM2.5 increases of 100 to >600% in Bolton, Wigan and Southport (40 km away) 

(Supplementary Material: Figure 70). The Winter Hill fire was substantially smaller and 

occurred further north where the population density is lower. In summary, WRF-Chem 

simulations of wildfire impacts on atmospheric composition indicate an extensive area in which 

particulate matter concentrations are enhanced, far above normal regional and UK levels.  

 Daily Air Quality Index and WHO guideline 

To put these results into the context of air quality guidelines, we use the Daily Air Quality 

Index (DAQI) values and the World Health Organisation (WHO) 24-hour guideline for PM2.5 

combined with population count to estimate the population exposure (Figure 40 (a) and (b)). A 

limitation of this method is that it assumes the population living in the affected area is exposed 
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to PM2.5 from the fires, however this may vary based on whether the environment they are in 

provides any passive or active filtration (e.g. indoor air filtration) and does not account for how 

much time is spent outdoors. The DAQI is used to advise the UK population on recommended 

behaviour changes during air pollution events. For example, the advice for PM2.5 within the 

very high DAQI band is for everyone to reduce outdoor activity, and for those with asthma to 

be aware for the potential need for increased medication (see Supplementary Material: Table 

13 for more details on DAQI bands). Between June 23rd and June 30th 0.8 million people were 

exposed to the highest DAQI band (very high: >71 µg m-3) in areas close to the Saddleworth 

Moor fire (Figure 40 (a)). This exposure was dominated by PM2.5 on June 27th (0.5 million 

exposed) but 0.2 million people were also exposed to very high levels of PM2.5 on June 26th 

(see Supplementary Material: Figure 68) (note totals may not add up due to rounding). 0.8 

million people were exposed to concentrations above 54 µg m-3 (high DAQI: 54-70 µg m-3) 

and 1.3 million people to 36-54 µg m-3 (moderate DAQI) (Figure 40 (a)). The degradation in 

air quality was dominated by the Saddleworth Moor fires since exposure to the Winter Hill fire 

accounted for only 5% of the total moderate DAQI exposure (0.06 million to moderate DAQI 

levels on June 30th) (see Supplementary Material: Figure 68). This is likely in part because the 

area surrounding Winter Hill is more sparsely populated. Nonetheless, these results indicate 

almost a quarter of the population within our simulation domain (22% of the total 14 million 

people in the model domain) were exposed to concentrations of > 36 µg m-3 on at least one day 

between June 23rd and 30th due to the Saddleworth Moor and Winter Hill fires. When we 

compare these results with the PM2.5 No Fires simulation (Supplementary Material: Figure 71), in 

which no day exceeds the low DAQI, it is clear that the fires are responsible for the degradation 

in air quality during this time period.  
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We also frame our results in the context of the WHO 24-hour guideline of 25 µg m-3 (Figure 

40 (b)). Results show that 4.5 million people were exposed to PM2.5 above this guideline for at 

least one 24-hour period between June 23rd and 30th. The impact was widespread, affecting 

Oldham, Manchester, Wigan and areas of high population on the coast north of Liverpool (for 

further detail see Supplementary Material: Figure 69).   

In addition, we examine the fraction of the total annual DAQI high (48-71) and very high (71+) 

hourly exceedances which the fires represent at each of the AURN sites used in this study. We 

find that hourly DAQI exceedances during the fire period (June 23rd – June 30th) represent a 

large fraction of the total annual high (48-71) and very high (71+) DAQI hourly exceedances 

at many sites (Supplementary Material: Table 16 (a)). At Manchester Piccadilly, Salford Eccles 

and Wirral Tranmere 31%, 77% and 58% of total annual hourly DAQI very high exceedances 

occurred within the week of the fires (see Supplementary Material: Table 16 (b) for more 

details). Thus, not only did the fires have a large impact on air quality between June 23rd and 

30th but they also represented a large fraction of the annual hourly DAQI exceedances.  

  

Figure 40. (a) Areas of low (≤ 36 µg m-3), moderate (36 - ≤53 µg m-3), high (54 - ≤70 µg m-3) 

and very high (>71 µg m-3) PM2.5 as defined by the Daily Air Quality Index (DAQI). 

Coloured numbers correspond to total number of people exposed to each DAQI level on 

at least one day between June 23rd and June 30th 2018. See Supplementary Material: 

Table 13 for more information on the DAQI.  (b) Areas where PM2.5 is above the WHO 

24-hour limit of 25 µg m-3 and total population exposed to PM2.5 below (green) and above 

(red) this threshold on at least one day between June 23rd – June 30th. (c) Mean increase 

(%) in PM2.5 due to fires between June 23rd and June 30th 2018. Calculated as, 

(
𝑃𝑀2.5 𝐹𝑖𝑟𝑒𝑠−𝑃𝑀2.5 𝑁𝑜 𝐹𝑖𝑟𝑒𝑠

𝑃𝑀2.5 𝑁𝑜 𝐹𝑖𝑟𝑒𝑠
 x 100), where 10 represents a 10% increase in PM2.5. Locations 

of large urban areas and Saddleworth Moor (SM) and Winter Hill (WH) are also indicated 

for reference.  
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 Health Impact Assessment 

Finally, we calculate the short-term mortality burden due to exposure to PM2.5 from the fires 

and the economic cost, using the subtraction method detailed in the Health Impact Assessment 

Section. We use the concentration response function of Atkinson et al. (2014) with zero 

assumed safe-limit of exposure (0 µg m-3) since there is little evidence in the current literature 

to suggest that there is a safe level. In total over the 7-day period of the fires there were 28 

(95% CI: 14.1-42.1) deaths brought forward with a mean daily excess mortality of 3.53 deaths 

per day (95% CI: 1.77-5.26) (Figure 41 (a)). This comprises a large fraction of the total 81 

deaths brought forward over the four-week simulation (16th June – 14th July). When the fraction 

of daily mortality from fires is calculated (i.e. 
Em Fires−Em No Fires 

Em Fires
 x 100) the impact of the fires 

is even more apparent (Figure 41 (a)). On June 23rd and 24th, the fraction of total excess 

mortality caused by fires is very low (0.08-0.9%) but substantially increases during the fires 

(25th and 26th – 11-39%), peaking at ~60% on June 27th and 33% on June 30th. Thus, the 

increase in excess mortality observed during June 23rd – 30th 2018 was dominated by the 

Saddleworth Moor and Winter Hill fires  

In order to make our results comparable to other research in the literature we also calculate the 

percentage increase in excess mortality (Em) due to short-term exposure to PM2.5 from the fires 

only (
𝐸𝑚 𝐹𝑖𝑟𝑒𝑠−𝐸𝑚 𝑁𝑜 𝐹𝑖𝑟𝑒𝑠 

𝐸𝑚 𝑁𝑜 𝐹𝑖𝑟𝑒𝑠
 x 100). This gives a result that is independent of the population size, 

since the population in the domain is relatively small (14 million) in comparison to other 

studies. The results indicate that up to 3.8 of 6.4 excess mortalities were due to exposure to 

PM2.5 from the fires, representing a 165% (95% CI: 84-246%) increase in Em across the region 

due to exposure to PM2.5 from the fires (Figure 41 (b)). While, the Winter Hill fire was 

associated with 1.9 of 2.8 total excess mortalities, a 96% (95% CI: 48-131%) increase in Em. 

In total over the 7-day period of the fires there were 7 (95% CI: 4-11) deaths brought forward 
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with a mean daily excess mortality of 0.9 deaths per day (95% CI: 0.5-1.4) (Figure 41 (a)). This 

comprises a large fraction of the total 20 deaths brought forward over the four-week period 

simulated (June 16th –July 14th 2018).  
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Figure 41. (a) Total Excess Mortality (Em) across the entire simulation domain from PM2.5 

in the fires and no fires simulations. The fraction of mortality due to fires across the 

model domain between June 16th – July 14th 2018 is also shown, calculated as 

(
E m FIRES −E m NO FIRES  

Em FIRES
x 100). 95% confidence intervals, based on uncertainty in the 

concentration-response function, are indicated by red and blue shading. (b) Percentage 

increase in excess mortality (Em) due to fires (
E m FIRES −E m NO FIRES  

Em NO FIRES
x 100), with the 

economic cost of mortality from fires (in millions of pounds (M GBP)) also shown.  
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Table 9. (a) The economic cost of fatality during the Saddleworth Moor Fires, calculated using 

the value of protected fatality (VPF) from the Department for Transport (DfT). The cost 

is calculated using the lower, mid and upper excess mortality from short-term exposure 

to PM2.5 between June 23rd and 30th 2018 and the VPF for 2018 (£1.9M - see 

Supplementary Material Table 15 (a) for more details). (b) The cost breakdown is also 

shown (see Supplementary Material: Table 15 (b) for further details), based on the central 

excess-mortality estimates. 

 

 

 

  

a) Lower Mid Upper 

Excess Mortality Estimate (June 23rd -30th) 4.4  8.6 12.7 

Economic Cost of Fatality (using 2018 DfT VPF) £ 10.7 M £ 21.1 M £ 31.3 M 

b) Cost breakdown based on mid excess-mortality values 2018 £ 

Total VPF 21.1 M 

Human Cost 13.9 M 

Medical 0.07 M 

Lost Output 7.0 M 

Other costs 0.15 M 
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 Economic Impact 

The economic cost of mortality caused by exposure to PM2.5 from the fires is calculated using 

the ‘Value of Prevented Fatality’ (VPF) from the Department for Transport (see Economic 

Cost of Fires section, Supplementary Material: Table 15 and Supplementary Material: 

Economic Cost of the fires section for more details). Our results indicate the fires were 

associated with a £21.1m economic cost between 23rd-30th June (95% CI: £10.7m – 31.2m 

based on calculated excess mortality uncertainty (95% CI)) (see Table 9 (a) for more details). 

The estimates are broken down into human costs, medical costs, lost output and other costs 

(Table 9 (b)) (see Economic Cost of Fires section for more details). This indicates the economic 

cost of the fires is dominated by the human cost (£13.9m) and lost output (£7.0m). The 

estimated economic cost of the fires suggests there are large economic gains to be made through 

the introduction of policies and education programmes to reduce the population’s exposure to 

harmful air pollutants from fires.  

5.5 Discussion and Conclusions  

In order to contextualise our work, we compare our results to previous studies on wildfires and 

UK air quality. Work by Kollanus et al. (2017) calculated the mortality across Europe from 

vegetation fires during 2005 and 2008, aggregated by country. They found that in the UK the 

total attributable deaths in 2005 and 2008 from vegetation fires were 52 (95% CI: 40 & 65) and 

42 (95% CI: 32 & 52), respectively. Equivalent to a total of 0.08 (95% CI: 0.06 & 0.11) and 

0.07 (95% CI: 0.05 & 0.08) deaths per 100,000 population. Although our results are not directly 

comparable to those of Kollanus et al. (2017), due to their estimate being for long-term 

exposure, it is still interesting to note that the Saddleworth Moor and Winter Hill fires alone 

led to 0.008 deaths per day per 100,000 population.   
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Our results lie within the range of estimates from studies on the short-term health impacts of 

fires elsewhere in the world. Hänninen et al. (2009) found that long-range transport of PM from 

wildfires in eastern Europe led to an additional population-weighted exposure of 15.7 µg m-3 

for 2 weeks in August 2002. The study estimated the excess mortality burden to be 17 deaths 

in a population of 3.4 million during the 2-week period. This equated to 0.0353 deaths per day 

per 100,000 population – substantially higher than the estimates in this study (0.008). This may 

be as a result of Hänninen et al. (2009) overestimating exposure in non-urban areas of Finland, 

since they used 8 monitoring sites to characterise exposure over a 100,000 km2 area with 3.4 

million inhabitants. Our estimates are closer to those of Fann et al. (2018) who calculated the 

health and economic impact of wildfires across the US between 2008-2012. The study used the 

same method as this study but using the CMAQ air quality model run with and without fire 

emissions. They found that on average 0.00171 excess mortalities per 100,000 population each 

day were caused by PM2.5 exposure from wildfires. A limitation of our work and previous work 

is that the exposure response function used treats all PM2.5 as equally toxic and the effects of 

concentration to be linear. This is because of a lack of studies in the literature investigating 

toxicity of PM2.5 and composition. Despite this, recent toxicology and epidemiological studies 

suggest that particulate matter from peat fires causes lung inflammation and cardiac responses 

and has a significant effect on respiratory and cardiac health (Kim, et al., 2014; Rappold, et al., 

2012).  

Finally, although they are not directly comparable, it is important to put the calculated health 

impact of the fires into context of the long-term impact of exposure to ambient pollution in this 

region. The long-term impact of ambient PM2.5 on the population in the north-west and 

Yorkshire regions is ~4,400 deaths per year, based on 2010 PM2.5 concentrations (Gowers, et 

al., 2014). This long-term chronic effect of ambient PM2.5 is somewhat larger than the 
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calculated impact of the fires, however the impact of the fire episode represents an important 

acute increase in mortality over the short-term. 

To conclude, this study is the first to quantify the impact of the 2018 UK wildfires on human 

health. We have shown that the fires had a substantial impact on air quality in the north-west 

of England, with observations of PM2.5 concentrations reaching up to 225 µg m-3 at some 

locations. This equated to up to a > 1000% increase in PM2.5 and led to 22% of the population 

(2.9 million) in the simulation domain being exposed to PM2.5 concentrations of 36 µg m-3 or 

above on at least one day during the fires (June 23rd -30th). 4.5 million people (or 32% of the 

population) were exposed to PM2.5 above the WHO 24-hour guideline of 25 µg m-3 on at least 

one day. When we calculated the excess mortality from fires we found that there were 81 (28) 

excess deaths over the month (fire week) simulation due to PM2.5 exposure, with 8.6 (8.6) 

excess deaths attributable to PM2.5 from fires. Daily excess mortality indicated that during the 

fires (June 23rd - 30th 2018), up to 60% of mortality (3.8 of 6.4 excess mortalities) was 

attributable to PM2.5 from fires. This represented up to a 165% increase in excess mortality 

compared to without fires. In addition to this, the fires also had a substantial economic impact 

(£21.1m). Previous studies have found public health tools and educational programs to reduce 

exposure yield significant health and economic benefits from reduced mortality and 

exacerbations of underlying illnesses. Since wildfires are likely to become more common due 

to climate change our work demonstrates the importance of the introduction of both public 

health tools and educational programs to reduce the impacts of such events.  
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6.1 Abstract 

The Australian 2019/2020 bushfires were unprecedented in both their extent and 

intensity, causing a catastrophic loss of habitat and human and animal life across 

eastern-Australia. Between October 2019 and February 2020 hundreds of fires 

burned, peaking in size in December and January and releasing the equivalent of 

half of Australia’s annual carbon emissions. We use a high-resolution 

mailto:ee15amg@leeds.ac.uk
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atmospheric-chemistry transport model to assess the impact of the bushfires on 

particulate matter with a diameter less than 2.5 µm (PM2.5) concentrations across 

south-east Australia. The health burden from short-term population exposure to 

PM2.5 is also quantified. We find that between September 1st 2019 and January 

31st 2020 large proportions of the population in eastern-Australia were exposed to 

dangerous (‘Poor’,’Very Poor’ and ‘Hazardous’) air quality index levels. The 

impact of the bushfires on AQ was concentrated in the cities of Sydney, 

Newcastle-Maitland and Canberra-Queanbeyan during November, December 

and, also in Melbourne, in January. The health impact of exposure to PM2.5 from 

bushfires across eastern-Australia, regionally and at city level is also estimated 

using a short-term exposure response function. Our estimate indicates that 

between October 1st and January 31st 180 (95% CI: 74-294) deaths were brought 

forward due to the fires. The number of deaths brought forward from exposure to 

bushfire PM2.5 was largest in New South Wales (109 (95% CI: 41-176)), 

Queensland (24 (95% CI: 15-41)) and Victoria (35 (95% CI: 13-56)). At a city 

level the health impacts of PM2.5 exposure due to the bushfires were concentrated 

in Sydney (65 (95% CI: 24-105)), Melbourne (23 (95% CI: 9-38)) and Canberra-

Queanbeyan (9 (95% CI: 4-14)), where large populations were exposed to high 

PM2.5 concentrations due to the bushfires.   

6.2 Introduction  

The Australian 2019/2020 bushfires were unprecedented in both their extent and intensity 

(Brew, et al., 2020), causing a catastrophic loss of habitat and human and animal life. Between 

October 2019 and February 2020 hundreds of fires burned in the south-east of the country, 

peaking in size in December and January. By burned area the bushfires were the largest in 

south-east Australia since European occupation (Wintle, et al., 2020), burning more than 10 

million hectares of vegetation. The burned area for the 2019/2020 fires was larger than the Ash 

Wednesday and Black Saturday (1983 and 2009) fires combined (Brew, et al., 2020). The 

immediate impacts of the bushfires included the destruction of almost 6,000 buildings and the 
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deaths of 34 people and more than three billion terrestrial vertebrates. However, the impacts of 

the bushfires on biodiversity are not likely to be fully understood for many years (Wintle, et 

al., 2020). More than 100 of the significantly impacted species have lost at least 50% of their 

habitat and almost 50 of these species have lost >80% of their habitat. Therefore the impacts 

of extinction debts are yet to be realised (Wintle, et al., 2020).  

The severity of the 2019/2020 bushfire season was promoted by a decrease in rainfall and 

increase in temperatures due to a combination of meteorological and climatic conditions 

(Australian Bureau of Meteorology, 2019a). Australia had experienced two very dry years prior 

to 2019 (2017, 2018), with 2019 being the warmest and driest on record (van Oldenborgh, et 

al., 2020). This was combined with a strong positive Indian Ocean Dipole (IOD) phase from 

July 2019 onwards (Australian Bureau of Meteorology, 2020) and a negative Southern Annular 

Mode (SAM) event (Australian Bureau of Meteorology, 2019b), both of which reduce rainfall 

across south-eastern Australia.  

The vegetation cover in east Australia is dominated by native tree and grass species (native 

forests and woodlands, native shrublands and heathlands, native grasslands and minimally 

modified pasture), annual crops and highly modified pastures (Australia State of the 

Environment, 2016). The forests are temperate broadleaf and are principally eucalypts, one of 

the most fire prone species in the world. Fires in eucalypt forests spread largely through leaf 

litter layer, the dryness of this layer effectively controls the occurrence of fires (Boer, et al., 

2020). In 2019, the moisture content of leaf litter reached record low levels and the total area 

of leaf litter exceeded critical flammability levels; being the highest in the past 30 years (van 

Oldenborgh, et al., 2020). Typically, <2% of eucalypt forests burn in the most extreme fire 

seasons (Boer, et al., 2020). However, during the 2019/2020 bushfires 21% of the biome 

burned, well above the burned percentages seen anywhere else in the world.  
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Emissions from the bushfires also had a large impact at a global scale, releasing >300 tonnes 

of CO2 between August and January, equivalent to half of Australia’s annual carbon emissions 

(Lee, 2019). In addition, plumes from the fires (carbon monoxide) circumvented the Southern 

hemisphere (Pope, et al., in press.).  

Substantial epidemiological and toxicological evidence supports the association between 

wildfire PM2.5 exposure and respiratory and cardiac morbidity (Delfino, et al., 2009; Johnston, 

et al., 2011; Naeher, et al., 2007; Reid, et al., 2016; Zanobetti, and Schwartz, 2009). There is 

also increasing evidence to suggest that exposure to wildfire smoke is associated with all-cause 

mortality (Faustini, et al., 2015; Johnston, et al., 2011). However, research to identify the 

toxicity of different PM2.5 species is ongoing and so equal toxicity is commonly assumed in 

health impact assessments. The health burden of wildfires is concentrated in the tropics, 

Australia, Canada and the USA and is substantial (Black, et al., 2017; Crippa, et al., 2016; 

Johnston, et al., 2012; Liu, et al., 2015; Reid, et al., 2016). In these countries the PM2.5 

associated health burden from long-term exposure is dominated by exposure to wildfires 

(Lelieveld, et al., 2015). Therefore, reducing population exposure to pollutants from wildfires 

is likely to yield an immediate, large health benefit in these regions (Johnston, et al., 2012).  

Alongside the immediate impacts of wildfires on health, from exposure to air pollutants, many 

studies have highlighted the psychological impacts of these disasters (Norris et al., 2002; Norris 

et al., 2002; Bryant et al., 2014). An increase in the number of adults experiencing distress 

(42% compared to 23%) was reported in adults affected by the Ash Wednesday bushfires, 

compared to those who were unaffected (McFarlane, 1988; McFarlane, et al., 1997). Alongside 

this, children (12%) also suffered from severe emotional distress in the months following 

bushfires (McDermott, and Palmer, 1999).  
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Climate change is projected to increase the frequency, intensity and spread of wildfires globally 

(Sutton, et al., 2011) and in Australia (Lucas, et al., 2007). Fire weather conditions in Australia 

are predicted to worsen, with forest fire danger index (FFDI) projected to increase in all climate 

change scenarios (0-10% by 2020 and 0-30% by 2050) (Lucas, et al., 2007). Alongside this, 

the number of days where fire danger is ‘very-high’ or ‘extreme’ was projected to increase by 

between 5-65% by the end of 2020, with an increase in the length of the fire season (Lucas, et 

al., 2007). The largest changes in FFDI were predicted to be seen in New South Wales due to 

the Mediterranean climate of the region. Mild, wet winters encourage the growth of fuel, and 

hot, dry summers lead to an increase in the FFDI (Lucas, et al., 2007). The increase in bushfire 

frequency and intensity is likely to increase population exposure to pollutants from bushfires, 

and therefore the health burden of bushfire events.  

The first study to investigate the impact of the 2019/2020 bushfires on mortality from exposure 

to PM2.5 used PM2.5 concentrations observed at ground-based air quality monitoring sites across 

eastern Australia to estimate daily mean PM2.5 exposure (Borchers Arriagada et al., 2020). 

Inverse distance weighting was used to interpolate PM2.5 monitoring data spatially to statistical 

area level 2 (SA2s) centroids within 100 km of each monitoring site. SA2s generally include a 

population of ~10,000 (3,000 – 25,000) and are designed to be representative of individual 

communities that interact together socio-economically. The entire SA2 population was then 

assumed to be exposed to a the interpolated PM2.5 concentration. Bushire smoke affected days 

were defined, at each monitoring site, as days where the daily mean PM2.5 concentration 

exceeded the 95th percentile of historical daily mean PM2.5 concentrations. The contribution of 

bushfire smoke to the total PM2.5 mass (bushfire smoke PM2.5) was estimated using the 

difference between the observed PM2.5 concentration and the long-term historical monthly-

mean PM2.5 concentration at each monitoring site. Using the bushfire smoke PM2.5 the health 

impacts of bushfire PM2.5 exposure were estimated, applying the WHO (2013) short-term 
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exposure-response function for all-cause, all-age mortality. The estimated health impact on 

mortality was substantial, with 417 (153 – 680) deaths brought forward across eastern-Australia 

due to bushfire smoke between October 1st 2019 and February 10th 2020. The health impact on 

mortality was highest in New South Wales and Victoria (219 (95% CI: 81 – 357) and 120 (95% 

CI: 44 – 195)).  

Another study by Ryan et al. (2021) used a random forest model, trained using ground-based 

observations, to predict air pollutant concentrations, including PM2.5, without bushfires. These 

were compared with ground-based observations during the period of the bushfires to estimate 

the bushfire contribution to PM2.5 concentrations each day. Population-weighted bushfire PM2.5 

exposure and short-term health impact in Victoria and New South Wales was then estimated 

in the same way as Borchers Arriagada et al. (2020). The estimated health impact lay within 

the lower limit of Borchers Arriagada et al. (2020) in Victoria and New South Wales at 92 

(95% CI: 57 – 126) and 152 (95% CI: 95 – 209), compared with 120 (95% CI: 44 – 195) and 

219 (95% CI: 81 – 357). The difference was attributed to the different approaches to 

quantifying the bushfire fraction of PM2.5, as well as the study by Ryan et al. (2021) only 

including populations within the large cities (~80% of the state) rather than the entire state 

population.  

This research will build upon the work of Borchers Arriagada et al. (2020) and Ryan et al. 

(2021) by using an atmospheric chemistry transport model (ACTM) to simulate PM2.5 

concentrations between September 1st 2019 and January 31st 2020 at 30 km resolution. This 

will provide a more accurate daily estimation of the bushfire smoke contribution to total PM2.5 

mass due to explicitly simulating PM2.5 concentrations for the same meteorological conditions 

without fires. Alongside this, regionally, population exposure is likely to be better captured, 
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given the sparse monitoring network and strong concentration gradients likely to have been 

observed. 

6.3 Method 

 Model Description 

PM2.5 concentrations between September 1st 2019 to January 31st 2020 were simulated using 

WRF-Chem (version 3.7.1), a fully coupled atmospheric chemistry model. The model set-up 

and version used in this study is the same as (Conibear et al., 2018a,2018b; Conibear et al., 

2018; Kiely et al., 2019,2020; Reddington et al., 2019; Silver et al., 2020). A detailed model 

description can be found in Conibear et al. (2018a). The model domain covered eastern-

Australia (128.9 to 170.6E and -9 to -48N) at 30 km horizontal resolution (130x150 grid 

boxes), with 33 vertical levels (to 10 hPa) and included 89% (22.1 m) of the Australian 

population. The contribution of bushfires to surface PM2.5 concentrations between September 

1st and January 31st was calculated by simulating two scenarios, with and without fire 

emissions. This allowed the contribution of the fires to air quality and health be quantified 

(PM2.5 Fires - PM2.5 NO Fires = PM2.5 Fires Only).  

Meteorological conditions were initialised using ERA5 6-hourly analyses at 0.1º resolution on 

38 pressure levels (Hoffmann, et al., 2018). Nudging was used in order to keep simulated 

meteorology in line with the meteorological analyses. Several nudging sensitivity experiments 

were carried out to investigate the sensitivity of simulated PM2.5 concentrations to the nudging 

option used (Supplementary Material: Figure 75). Nudging of potential temperature, the 

horizontal and vertical winds and the water vapour mixing ratio in all vertical levels improved 

simulated PM2.5 concentrations by reducing the Root Mean Square Error (RMSE), Normalised 

Mean Absolute Error (NMAE) and Normalised Mean Bias (NMB) (r = 0.42, RMSE = 24.1, 

NMB = -0.49, NMAE = 0.74 compared with r = 0.39, RMSE = 22.9 g m-3, NMB = -0.17, 



 218 

NMAE = 0.72) (Supplementary Material: Table 17). Therefore, the results of the simulations 

where all meteorological variables in all vertical levels were nudged are presented here.  

Initial boundary chemistry was provided by the Whole Atmosphere Community Climate 

Model (WACCM) 6-hourly simulation data (Marsh, et al., 2013; UCAR, 2020a). WACCM 

meteorology is driven by the NASA GMAO GEOS-5 model. Anthropogenic emissions for 

2014 from CEDS (used in CMIP6) and FINN-v1 fire emissions are used in WACCM. Model 

output is given on 88 vertical levels at 0.9x1.25º (UCAR, 2020b).  

Global anthropogenic emissions were taken from the Emission Database for Global 

Atmospheric Research with Task Force on Hemispheric Transport of Air Pollution version 2.2 

(EDGAR-HTAP2) (Janssens-Maenhout, et al., 2015) at 0.1° resolution for 2010. Sector 

specific diurnal cycles were subsequently added to the emissions, using diurnal cycles from 

Olivier et al. (2003). EDGAR-HTAP2 is a global, gridded, air pollution emission inventory 

compiled of officially reported, national gridded inventories. Where national emissions 

datasets or specific sectors are not available EDGAR v4.3 grid maps are used. Emissions 

include SO2, NOx, CO, NMVOC, NH3, PM10, PM2.5, BC and OC. Emissions include all 

anthropogenic emissions except large-scale biomass burning (e.g. wildfires).  

 Wildfire emissions 

Wildfire emissions were taken from the Fire Inventory from FINN v1 near real time (FINNv1 

NRT), since FINNv1.5 was not available at the time model simulations were run. FINN 

combines satellite observations, land cover, biomass consumption estimates and emissions 

factors to calculate daily fire emissions globally at 1 km resolution. FINN emissions are chosen 

over GFED due to their higher spatial resolution (1 km vs 5 km) and availability at near-real 

time. FINN uses satellite observations from the MODIS Thermal Anomalies Product to provide 

detections of active fires. Burned area is assumed to be 1 km2 for each fire identified and scaled 
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back based on the density of vegetation from the MODIS Continuous Fields (VCF) (i.e. if 50% 

bare = 0.5 km2 burned area). The type of vegetation burned during a detected fire is determined 

using the MODIS Collection 5 Land Cover Type (LCT). This assigns each fire pixel to one of 

16 possible land cover/land use classes and also the density of vegetation at 500 m resolution, 

scaled to 1 km. The 16 land cover types are then aggregated into 8 generic categories to which 

fuel loadings are applied (Wiedinmyer, et al., 2011). Fuel loadings are from Hoelzemann et al. 

(2004) and emissions factors are from Akagi et al. (2011), Mcmeeking (2008) and Andrae and 

Merlet (2001). Fire types included are wildfires, prescribed and agricultural burning. However, 

trash burning or biofuel use are not included.  

The key difference between FINN v1 NRT and FINN v1.5 is that FINN v1 NRT uses MODIS 

near real time fire counts rather than the reprocessed fire counts, which FINN v1.5 uses. The 

differences between the two datasets over Australia for the year 2018 (and 2019 following the 

v1.5 release) are quantified (Supplementary Material: Figure 72) to identify any differences in 

emissions. Generally, emissions for 2019 indicate that emissions per fire hotspot were much 

higher than previous years (2010-2018). This is likely due to the high levels of dry fuel 

availability during 2019 (van Oldenborgh, et al., 2020). Emissions in FINN v1.5 and NRT are 

in good agreement for 2018, while for 2019 FINN NRT PM2.5 (~1 Tg) are slightly higher than 

FINNv1.5 (~0.9 Tg). However, there is a much larger range of disagreement in the estimates 

of 2019 annual fire emissions between the five key fire emissions datasets (~1 to >7.5 Tg) 

(Supplementary Material: Figure 73).  

 Release of Fire Emissions 

The high temperatures associated with combustion mean that wildfires can often inject 

emissions above the surface. Therefore, in WRF-Chem, a plume-rise parameterisation is set-

up to release fire emissions at the appropriate height by default (Freitas, et al., 2007). Plume-
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rise uses meteorological fields and land-use from the WRF-Chem simulation as input and then 

explicitly simulates each plume. The height of each plume is then used as the injection height 

for flaming fire emissions within the model (Freitas, et al., 2007). Despite this, several studies 

have found that the plume-rise scheme potentially represents an incorrect vertical distribution 

of the emissions (Archer-Nicholls, et al., 2015; Crippa, et al., 2016). Kiely et al. (2020, 2019) 

found that releasing emissions evenly through the boundary layer improved agreement between 

simulated surface PM2.5 concentration and observations for Indonesian fires. Therefore, we test 

two options: 1) releasing emissions evenly through the boundary layer and 2) plume-rise. The 

results of this sensitivity study indicate that simulated PM2.5 concentrations are relatively 

insensitive to the emission option was used (Supplementary Material: Figure 75) but that 

releasing emissions evenly through the BL performs better. Therefore, we present the results 

of releasing emissions evenly through the boundary layer in this paper.   
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 Observations 

 Ground-based monitoring sites  

Hourly PM2.5 observations from ground-based monitoring are used to assess model 

performance in simulating PM2.5 concentrations. Data from the New South Wales, Queensland, 

Australian Capital Territory Government and the Victoria EPA monitoring networks were 

combined, providing data across 80 observational sites. A map of sites used is available in the 

Supplementary Material (Supplementary Material: Figure 74). Daily means were calculated 

from hourly data if >18 hours of data was available each day, otherwise a missing data flag 

was applied. Model performance was evaluated using Pearson correlation (r), Normalised 

Mean Bias (NMB), Root Mean Square Error (RMSE) and Normalised Mean Absolute Error 

(NMAE) (Supplementary Material: Table 17). Multiple observations were available in many 

of the large cities (Newcastle, Sydney, Canberra, Melbourne), allowing the model performance 

to be evaluated in locations where populations are likely to have been exposed to high 

concentrations of PM2.5.  

 Health Impact Assessment 

The health impact from short-term exposure to elevated PM2.5 from the Australian fires can be 

calculated using a concentration-response function (CRF). The CRF of the World Health 

Organisation (2013) was used to estimate the impact of short-term exposure to PM2.5 on 

mortality.  

𝐸𝑚 =  ∑ 𝐵𝑑 . 𝑝𝑜𝑝𝑖 . 𝐴𝐹𝑖 

𝑁

𝑖=1

 (20) 
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𝐴𝐹 = (
𝑅𝑅 − 1

𝑅𝑅
) 

 

(21) 

 

𝑅𝑅 = 𝑒𝑥𝑝𝛽(𝑋−𝑋0)  

 

(22) 

 

 

𝛽 =
ln(𝑅𝑅)

∆𝐶
 

 

(23) 

 

Here, Em represents the excess mortality caused by exposure to PM2.5 over the safe limit of 

exposure (X–X0) each day. N is the number of days within the simulation and i is the day in 

simulation, Bd is the baseline death rate, popi is the population exposed each day and AFi is the 

attributable fraction of mortality each day due to exposure to PM2.5. The AF is calculated using 

the concept of relative risk (RR), which is the probability of mortality from a disease endpoint 

within an exposed population compared to within an unexposed population (ß). The 

concentration a population is exposed to is given by X and the safe- limit of exposure is X0. 

Since there is little evidence to suggest a safe-limit of exposure to PM2.5 we assume X0 to be 

zero (Holgate, 1998; Macintyre, et al., 2016; Schmidt, et al., 2011). We use relative risk values 

from the World Health Organisation (2013) of 1.0123 (95% CI: 1.0045, 1.0201) per 10 g m-

3, which we use to estimate beta (ß) using Equation (23). Since short-term health impacts are 

assumed to be equal across ages, we use all-cause, all-age baseline mortality rates in the 

calculations. 

 Population and Baseline Mortality Data 

Population count data for 2018 is from the Australia Bureau of Statistics (Australian Bureau of 

Statistics, 2019) at 1 km resolution. This indicates our model domain includes 89% of the 

Australian population. Baseline all-cause, all-age 2018 mortality rate data for each state in our 
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model domain is taken from the Australia Bureau of Statistics (Australian Bureau of Statistics, 

2020) (Supplementary Material: Table 22).  

6.4 Results 

 Fire Emissions 

FINN emissions clearly indicate that the PM2.5 emissions between late-October 2019 and mid-

January 2020 were unprecedented, lying far above the 95th percentile of emissions observed in 

the previous 8 years (Figure 42 and Supplementary Material: Table 17). The Australian 

bushfires in 2019-2020 began in the northern region of east-Australia (close to Brisbane and 

Newcastle) and shifted south through the season (Figure 42). As the fires moved southwards, 

PM2.5 emissions also increased, with the highest PM2.5 emissions occurring in south-eastern 

Australia in late December- early January. 

Figure 42. PM2.5 fire emissions (Tg day-1) across Australia between March 2019 and March 

2020 from the FINN near-real time fire emission dataset. The timeseries shows the 2010-

2018 25th and 75th percentiles of daily PM2.5 emissions each day (red) and the mean 2019-

2020 daily PM2.5 emissions (blue). Inset map: Map of PM2.5 fire emissions (Tg day-1) 

across eastern Australia between March 2019 and March 2020. 
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The impact of the fires on PM2.5 air quality (AQ) is clear from ground-based observations 

across south-east Australia (Figure 43). Observations indicate that between October 2019 and 

February 2020 daily mean PM2.5 concentrations averaged across all sites reached 70 g m-3 on 

several days. Whereas, in the no fires simulation concentrations remain below 20 g m-3. 

Therefore, indicating that a large fraction of the total PM2.5 mass observed is due to fires. The 

impact of the fires on populations can be more clearly seen when PM2.5 concentrations 

individual cities are examined (Figure 43). Newcastle-Maitland and Sydney exhibit the same 

pattern of PM2.5 variability, following the pattern seen regionally across eastern-Australia 

closely. High PM2.5 concentrations are first observed in late October and affect the cities 

sporadically until mid-January, reaching ~75 g m-3. In contrast, the impacts of the fires on 

PM2.5 AQ in Canberra are not seen until November and December. However, concentrations 

are much higher in Canberra, reaching >100 g m-3 in November and >300 g m-3 in 

December. PM2.5 AQ in Melbourne is affected latest, with PM2.5 concentrations reaching 50 to 

>150 g m-3 in December and January.  
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a) 

b) 

Figure 43. (a) Observed (black) and simulated (magenta and cyan) daily mean PM2.5 

concentrations. Simulations shown are no fires (cyan) and fires (magenta). The mean 

PM2.5 concentration from all 64 observational sites across eastern-Australia is shown for 

the model and observations. (b) The same as above but for individual cities. The observed 

(black) and simulated (magenta and cyan) mean PM2.5 concentrations are shown for each 

city. The total number of sites in each city is also shown on the left of each panel.  
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 Model Evaluation 

Evaluation of the WRF-Chem model indicates that the model generally underestimates PM2.5 

in early September (by ~70%) but then tends to overestimate PM2.5 (by ~30%) in early October 

(before the fires) across all sites (Figure 43). This is also generally true at city scale (Figure 

43). During the fire period (late-October – November) there is a substantial enhancement in 

PM2.5 in both the observations and WRF-Chem nudged_BL_fires simulation. The 

nudged_BL_fires simulation captures the variability in PM2.5 observations reasonably well 

(r=0.39), particularly compared to the nudged_BL_no_fires simulation (r=0.14). The 

nudged_BL_fires simulation also captures the concentrations observed in the peaks and 

ambient conditions well (RMSE = 22.9 g m-3, NMB = -0.17), compared to the 

nudged_BL_no_fires simulation (RMSE = 25.3 g m-3, NMB = -0.45) and the nudged_BL_1.5 

simulation (RMSE = 24.3 g m-3, NMB = -0.03). The model performs well in all of the cities 

which have several observational sites (Sydney, Newcastle-Maitland and Melbourne), 

capturing the variability and magnitude of the peaks in PM2.5 well. The model struggles more 

to capture the magnitude of the PM2.5 peaks observed in Canberra-Queanbeyan but this is likely 

due to the lack of observations (3 sites), meaning the model struggles to represent a small 

number of point measurements. Whereas the cities where PM2.5 concentrations are represented 

better by the model had many more observations (5 - 24 sites). The improvement in model 

performance in cities where there are multiple observations gives confidence in the ability of 

the model to represent the population exposure to PM2.5 from the fires.  

 Monthly mean PM2.5 concentration (Supplementary Material) 

Monthly mean PM2.5 concentrations are calculated for the model and observations between 

October and February (Supplementary Material: Figure 77). This indicates monthly mean 

concentrations are low across east-Australia (0-30 g m-3) in October but increase through 

November in Newcastle-Maitland and Sydney (10-75 g m-3), both in New South Wales 
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(NSW) (Supplementary Material: Figure 77). As the fires shift southwards, concentrations 

increase in the NSW region and to the south, around Canberra-Queanbeyan, Australia Capital 

Territory (ACT), and Melbourne, South Australia, (10-100 g m-3) in December. Using the 

nudged_BL_fires and nudged_BL_no_fires simulations the percentage of PM2.5 due to fires 

(
𝑃𝑀2.5 𝑓𝑖𝑟𝑒𝑠−𝑃𝑀2.5 𝑛𝑜 𝑓𝑖𝑟𝑒𝑠 

𝑃𝑀2.5 𝑓𝑖𝑟𝑒𝑠
× 100) and the increase in PM2.5 due to fires 

(
𝑃𝑀2.5 nudged_BL_𝑓𝑖𝑟𝑒𝑠−𝑃𝑀2.5 nudged_BL_𝑛𝑜_𝑓𝑖𝑟𝑒𝑠 

𝑃𝑀2.5 nudged_BL_𝑛𝑜_𝑓𝑖𝑟𝑒𝑠
× 100) can be estimated. This indicates that increases 

in December monthly mean PM2.5 concentrations around Sydney, Newcastle-Maitland and 

Canberra-Queanbeyan of 250-1500% are observed due to the fires (Supplementary Material: 

Figure 78). The highest concentrations are seen in January in the region between Melbourne 

and Canberra-Queanbeyan (>150 g m-3). This represents an increase in PM2.5 due to fires of 

>3500%. From Supplementary Material: Figure 78 it is clear that the fires had a considerable 

impact on the monthly mean PM2.5 concentrations observed. Although monthly mean 

concentrations are relatively low in October and November (monthly mean  25 g m-3), a 

large fraction of PM2.5 is from fires. In the region to the south of Brisbane, 20-30% of the total 

PM2.5 is from fires in October. While, in the area around Newcastle and Sydney 20-100% of 

PM2.5 is from fires. In December and January, the impact of the fires on PM2.5 air quality is 

widespread, when >70% of PM2.5 is from fires over a large region including Melbourne, 

Canberra-Queanbeyan, Sydney, Newcastle-Maitland and Brisbane.  
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 Air Quality Impacts 

Combining simulated PM2.5 concentrations with population data (at 1 km) allows the impact of 

the fires on population exposure to poor AQ to be estimated across eastern-Australia (Figure 

44, Supplementary Material: Figure 80) and in individual cities (Figure 45). Across eastern-

Australia exposure to Air Quality Index (AQI) values in September and October dominated by 

‘V.Good’ and ‘Good’ values (Figure 44 and Supplementary Material: Table 18). During 

Figure 44. Daily population exposure (in millions) to Australian Air Quality Index Values across 

eastern-Australia (nudged_BL_fires simulation) between September 1st and January 31st. More 

information on how the AQI is calculated in Supplementary Material: Table 25. Daily 

population-weighted bushfire PM2.5 exposure across all states in model domain (red) and 

regionally for Victoria (green), Australian Capital Territory blue (yellow) and Queensland 

(purple) (nudged_BL_fires-nudged_BL_no_fires simulation) between September 1st and 

January 31st. 
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September ~21.4 million people were exposed to ‘V. Good’ and ‘Good’ AQI concentrations 

(Supplementary Material: Table 18), while ~6,000 people were exposed to concentrations 

poorer than ‘Good’ AQI. In October, there was an increase in population exposure to poor 

PM2.5 AQ (‘Fair’, ‘Poor’, ‘V.Poor’ and ‘Hazardous’ PM2.5 AQI values) (Figure 44). 

Throughout October an average of 2.1 m, 298,000, 12,100 and 93 people were exposed to 

‘Fair’, ‘Poor’, ‘V.Poor’ and ‘Hazardous’ PM2.5 AQI values. This increased throughout October 

and November as a large proportion of the population are exposed to ‘Fair’, ‘Poor’ or ‘V.Poor’ 

PM2.5 AQI from November onwards (Figure 44). Between November 1st and January 1st the 

average population exposed to ‘Poor’, ‘V.Poor’ and ‘Hazardous’ PM2.5 AQI values was ~1.5 

m  in November, 935,000 in December and ~1.3 m in January.  

By comparing population AQI exposure with fires to if there were no fires (Supplementary 

Material: Table 18 and Table 19) exposure to high DAQI value can be attributed to the fires 

rather than as a result of other effects (e.g. long-range transport of PM2.5). This indicates that 

in the no fires simulation between September and the end of January ~163,000 people in total 

would have been exposed to AQI values of ‘V. Poor’ and 130,000 people were exposed to 

‘Hazardous’ AQI values if there were no fires.  

Population-weighted bushfire PM2.5 concentrations for the states most severely affected by the 

fires (Figure 44 and Supplementary Material: Table 21) indicate that the population in ACT 

was exposed to the highest PM2.5 due to the fires. Here, population-weighted concentrations 

reaching 155.1 g m-3 on January 4th and exceeding 100 g m-3 on several days. This is far 

above the maximum population-weighted PM2.5 concentrations in any of the other states 

(Queensland (22.9 g m-3) NSW (53.4 g m-3) Victoria (81.8 g m-3)) and far above the 

maximum between September 1st and January 31st  across all states of 58.3 g m-3. The mean 

population-weighted PM2.5 concentration between September 1st and January 31st across all 
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states was 11.6 g m-3
, with the highest mean population-weighted PM2.5 concentrations in 

ACT (14.1 g m-3) and NSW (13.4 g m-3). Comparing these results with Borchers Arriagada 

et al. (2020), population-weighted bushfire PM2.5 concentrations are considerably lower in this 

study (Supplementary Material: Table 21). This is evident from the difference in the mean and 

maximum population-weighted PM2.5 concentrations across all states (mean: 11.6 g m-3 vs 

23.7 g m-3 and maximum: 58.3 g m-3 vs 98.5 g m-3). The disparity is dominated by the large 

differences between estimates for ACT and Victoria (Supplementary Material: Table 21), 

where observations were relatively sparse.  

When individual cities are considered (Figure 45) the effect of the southward shift of fires 

between October and January on population exposure to ‘Fair’, ‘Poor’, ‘V. Poor’ and 

‘Hazardous’ PM2.5 AQI can be clearly seen. In October, there is widespread exposure to ‘Fair’ 

and ‘Poor’ PM2.5 AQ. The effects of population exposure are largest in Brisbane, Newcastle-

Maitland, Sydney and Melbourne with 343,000, 897,000, 780,000, and ~2.2 m people exposed 

to ‘Fair’ and ‘Poor’ PM2.5 AQ (Figure 45 and Supplementary Material: Table 20). The impacts 

of fires on PM2.5 AQ becomes most evident from November. During November population 

exposure to ‘Poor’, ‘V. Poor’ and ‘Hazardous’ PM2.5 AQ is evident in Sydney (112,000, 86,000 

and 10,000) and Newcastle-Maitland (235,000, 170,000, and 2,500). Alongside this, in 

Canberra-Queanbeyan 15,000, 1,100 and 174 people are exposed to ‘Poor’, ‘V. Poor’ and 

‘Hazardous’ PM2.5 AQ. The pattern of increasing population exposure to poor PM2.5 AQ 

continues in December, as the fires intensify, with a clear southward shift (Figure 45). 

Populations in Sydney, Newcastle-Maitland and Canberra-Queanbeyan continue to be exposed 

to ‘Poor’ and worse AQ. This leads to 3.6 m, 1.7 m and 237,000 people being exposed to ‘Poor’ 

or worse AQ in Sydney, Newcastle-Maitland and Canberra-Queanbeyan, respectively in 

December (Supplementary Material: Table 20). During this time in Brisbane, Melbourne and 
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Adelaide ~5,000, 1.1 m and 53,000 people are exposed to ‘Poor’ or worse AQ. Finally, in 

January, the southward shift in fires continues, with a clear decrease in exposure to ‘Poor’ or 

worse AQI in Brisbane, Sydney and Newcastle-Maitland but increases in exposure to poor AQ 

in Canberra-Queanbeyan, Melbourne and Adelaide. This leads to 286,000, 979,000 and 

~48,000 people being exposed to ‘Poor’, ‘V. Poor’ and ‘Hazardous’ PM2.5 AQI values in 

Canberra-Queanbeyan, Melbourne and Adelaide (Supplementary Material: Table 20). Despite 

reductions in the total population exposed to hazardous AQI values in Newcastle-Maitland and 

Sydney, widespread population exposure to ‘Poor’, ‘V. Poor’ and ‘Hazardous’ PM2.5 AQI 

values continues during January. In total 515,000 and ~820,000 people are exposed to ‘Poor’, 

‘V. Poor’ and ‘Hazardous’ PM2.5 AQ in Newcastle-Maitland and Sydney (Supplementary 

Material: Table 20).  

Population-weighted bushfire PM2.5 (nudged_BL_fires- nudged_BL_no_fires) for individual 

cities can be used to identify the cities most severely affected by the fires (Figure 45, 

Supplementary Material: Table 21). In line with the state population-weighted PM2.5 

concentrations, Canberra-Queanbeyan (ACT) is affected most severely by PM2.5 from the fires. 

Population-weighted PM2.5 concentrations in Canberra-Queanbeyan reach 156.2 g m-3 and 

average 14.2 g m-3 between September 1st and January 31st. The maximum population-

weighted PM2.5 concentrations in Sydney (58.4 g m-3) and Newcastle-Maitland (48.7 g m-3) 

is much below Canberra-Queanbeyan. However, as a result of the prolonged exposure to poor 

AQ in Syndey and Newcastle-Matiland, the mean population-weighted PM2.5 concentrations 

in both cities (13.8 g m-3 and 14.3 g m-3) are similar to Canberra-Queanbeyan.  

This clearly indicates widespread population exposure to dangerous PM2.5 AQI levels 

throughout November, December and January. This is likely to have a large impact on public 

health due to short-term exposure to high PM2.5 concentrations.  
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Figure 45. Daily population exposure (in millions) to Australian Air Quality Index Values in individual 

cities (Brisbane (Queensland), Sydney (NSW), Newcastle-Maitland (NSW), Canberra-

Queanbeyan (ACT) and Melbourne (Victoria)) between September 1st and January 31st. More 

information on how the AQI is calculated in Supplementary Material: Table 25. Daily 

population-weighted bushfire PM2.5 concentration in the cities of Brisbane (blue), Newcastle-

Maitland (purple), Sydney (green), Canberra-Queanbeyan (yellow), Melbourne (grey) and 

Adelaide (orange) (nudged_BL_fires- nudged_BL_no_fires simulation) between September 1st 

and January 31st. 
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 Health Impacts 

Using the World Health Organisation (2013) concentration response function the number of 

deaths brought forward by the fires between October 1st and January 31st can be estimated as 

the difference between the number of deaths brought forward in the nudged_BL_fires and 

nudged_BL_no_fires simulations (Figure 46). This indicates the impact of short-term exposure 

to bushfire PM2.5 has a substantial impact on health from mid-October to mid-January (Figure 

46). In total 180 (95% CI: 74-294) deaths were brought forward as a result of PM2.5 exposure 

from the bushfires (Supplementary Material: Health Impacts and Table 23) and 624 (95% CI: 

229-1008) from exposure to all PM2.5.  

The health impact of exposure to PM2.5 was largest in New South Wales (NSW), Queensland 

and Victoria (Figure 46). We estimate that exposure to PM2.5 between October 1st 2019 and 

January 31st 2020 led to 287 (95% CI: 107-463), 112 (95% CI: 41-181), and 155 (95% CI: 57-

250) deaths being brought forward in New South Wales (NSW), Queensland and Victoria, 

respectively. Of these deaths, 109 (95% CI: 41-176), 24 (95% CI: 15-41) and 35 (95% CI: 13-

56) deaths brought forward were due to exposure to PM2.5 from the bushfires (Supplementary 

Material: Table 24). Comparing these estimates with the results of Borchers Arriagada et al. 

(2020) and Ryan et al. (2021) (Figure 46) the estimates in this study are within the range of 

both studies in New South Wales (109 deaths brought forward (95% CI: 41 – 176) compared 

with Borchers Arriagada et al. (2020): 219 (95% CI: 81 – 357) and Ryan et al. (2021): 152.1 

(95% CI: 95 – 209) and lie below the lower end of estimates in Victoria (35 deaths brought 

forward (95% CI: 13 – 56) compared with Borchers Arriagada et al. (2020): 120 (95% CI: 44 

– 195) and Ryan et al. (2021): 92 (95% CI: 57 – 126)). The differences found between these 

studies are despite of all three using the same population and baseline mortality datasets and 

concentration-response function.  The disparity in results between the studies is likely due to a 

number of factors. Firstly, our study uses modelled PM2.5 concentrations, rather than 
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observations. Since the model generally underestimates PM2.5 concentrations, the overall health 

impact estimated is likely to be underestimated due to a reduction in the population-weighted 

PM2.5. Additionally, the bushfire fraction of the total PM2.5 mass could be overestimated in the 

Borchers Arriagada et al. (2020) study due the use of monthly mean historical PM2.5 

concentrations to account for the no fire fraction of PM2.5. The estimate of Ryan et al. (2021), 

which used a random forest model to account for the non-bushfire PM2.5 fraction, is also lower 

than Borchers Arriagada et al. (2020), further supporting this. Additionally, the disparity 

between results could be, in part, due to the methods used to calculate population-exposure in 

the studies. The inverse weighting method used to estimate PM2.5 concentrations in the 

Borchers Arriagada et al. (2020) and Ryan et al. (2021) studies may struggle to account for 

meteorological or orographic effects on PM2.5 concentration gradients.  However this is also a 

limitation in this study given the relatively coarse model resolution (30 km) which may also 

struggle to resolve the strong concentration gradients around cities and the fires.   

When individual cities are considered in the health impact assessment it becomes clear that the 

health impact is concentrated in cities with high populations, where PM2.5 concentrations due 

to fires were high (Figure 46). Of the large cities we investigated, the health impact of exposure 

to PM2.5 from fires was largest in Sydney (65 (95% CI: 24-105)), Melbourne (23 (95% CI: 9-

38)) and Canberra-Queanbeyan (9 (95% CI: 4-14)) (Figure 46, Supplementary Material: Table 

24).  
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Figure 46. Estimated increase in the number of deaths brought forward across model domain (red) and the 

states of Victoria (green), Australia Capital Territory [ACT] (blue), New South Wales [NSW] 

(yellow) and Queensland (purple) due to PM2.5 from bushfires (fires only) between October 1st and 

January 31st. Shading indicates the 95% confidence intervals of the estimate. The number of deaths 

brought forward due to bushfire PM2.5 (fires only) (red) between October 1st and January 31st is also 

broken down by city and region and the total number of deaths shown above the bars. The estimated 

number of deaths brought forward in each state due to bushfire PM2.5 (fires only) (red) in this study 

are compared to the Borchers Arriagada et al. (2020) estimate (indigo) and Ryan et al. (2021) for the 

same period. 
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6.5 Conclusions  

We use the WRF-Chem regional air quality model to estimate the impact of the 2019/2020 

Australian bushfires across eastern Australia, building upon the work of Borchers Arriagada et 

al. (2020). FINN fire emissions indicate PM2.5 emissions from the 2019/2020 bushfires were 

unprecedented. Around 1 Tg of PM2.5 was emitted during 2019 and ~0.3 Tg between January 

and February 2020. This is likely due to the high levels of dry fuel availability across the region 

during 2019 (van Oldenborgh, et al., 2020).  

Two model simulations were performed 1) with FINN fire emissions (nudged_BL_fires) and 

2) without FINN fire emissions (nudged_BL_no_fires), which allowed the impact of the 

bushfires on PM2.5 air quality (AQ) and health to be quantified. Simulated PM2.5 concentrations 

from the nudged_BL_fires simulation reproduced observed daily mean concentrations 

relatively well but with a low bias (r = 0.39, RMSE = 22.9 g m-3, NMB = -0.17, NMAE = 

0.72). Despite this, modelled PM2.5 concentrations captured the variability and magnitude of 

peaks seen in the observations across eastern-Australia and for specific cities. 

We find that between September 1st 2019 and January 31st 2020 large proportions of the 

population were exposed to dangerous (‘Poor’,’V.Poor’ and ‘Hazardous’) air quality levels. 

Almost 350,000 people were exposed to hazardous AQI levels in December and January, 

compared with 130,000 across December and January people in the nudged_BL_no_fires 

simulations. The impact of the bushfires on AQ was concentrated in the cities of Sydney, 

Newcastle-Maitland and Canberra-Queanbeyan during November, December and, also in 

Melbourne, in January. While, generally Brisbane and Adelaide were less severely affected by 

the fires, with only 14 people exposed to Hazardous AQ.  

We estimate the health impacts of exposure to PM2.5 from fires across eastern-Australia, 

regionally and at city level using a short-term exposure response function (World Health 
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Organization, 2013). Our estimate indicates that between October 1st and January 31st 180 (95% 

CI: 74-294) deaths were brought forward due to the fires, 624 (95% CI: 229-1008) due to all 

PM2.5 and 444 (95% CI: 155, 714) if there were no fires. The health impacts were largest in 

New South Wales, Queensland and Victoria with 109 (95% CI: 41, 176), 24 (95% CI: 15, 41) 

and 35 (95% CI: 13-56) deaths brought forward due to fires in these regions (287 (95% CI:107-

463), 112 (95% CI: 41-181) and 155 (95% CI: 57-250) all PM2.5), respectively. Our results lie 

within the range of estimated bushfire PM2.5 health impacts from both Borchers Arriagada et 

al. (2020) and Ryan et al. (2021) for New South Wales but below the lower limit for other 

states, such as Victoria. This is most likely due to differences in how PM2.5 attributable to fires 

was estimated in each study and also differences in the estimated population-weighted bushfire 

PM2.5 concentrations. This study builds upon previous work by using an atmospheric chemistry 

transport model to isolate the impacts of the fires on air quality and also to investigate the 

impacts regionally, away from observational sites. At a city-level, the health impacts of PM2.5 

exposure due to fires were concentrated in the cities with large populations and high PM2.5 

concentrations due to fires (Sydney (65 (95% CI: 24-105)), Melbourne (23 (95% CI: 9-38)) 

and Canberra-Queanbeyan (9 (95% CI: 4-14)).  

This work confirms that there was a substantial AQ and health impact across eastern-Australia 

from the 2019/2020 bushfires. Our study only considered one health outcome, therefore the 

full health impact of exposure to PM2.5 is likely to be higher and requires further studies 

addressing the impacts on hospital admissions, ambulance call outs and primary health care 

visits. Alongside this, the impact of other pollutants on health (e.g. O3) could also be quantified. 

In the future, further work is required to characterise the health impacts of exposure to 

pollutants for wildfires. This would allow for more comprehensive estimates of the health 

impacts associated with population exposure. Finally, with more dry years like 2019/2020 

projected to occur in the future due to climate change the impact of wildfires such as 2019/2020 
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are likely to be seen again. Therefore, fire risk management policies should be developed 

further to consider the impact of climate change on wildfire frequency and intensity across the 

country. 
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 - Summary 

The work in this thesis was divided into four papers which aimed to investigate some of the 

key factors affecting air pollutant concentrations over different time-scales. Two main focusses 

were chosen, the impact of variability in synoptic weather on UK PM2.5 concentrations (Paper 

1) and the impact of case-study wildfire events on PM2.5 air quality and human health in the 

UK (Papers 2 and 3) and Australia (Paper 4). In Papers 1 and 2 observational datasets were 

used to understand factors affecting air quality at different spatial and temporal scales. While, 

Papers 3 and 4 used an atmospheric-chemistry transport model to quantify the impact of 

wildfires on PM2.5 air quality and health.  

Paper 1 focussed on the influence of synoptic weather on the local and long-range transport of 

emissions on PM2.5 concentrations in the UK. The key aims of this work were:  

• To investigate the influence of synoptic weather on UK ambient PM2.5 concentrations 

using Lamb weather types (LWTs). 

• To identify the mechanisms responsible for variations in UK ambient PM2.5 

concentrations under different LWTs.  

• To quantify the contribution of UK and non-UK emissions to local summed emissions.  

 

Paper 2 used observational data to investigate the spatio-temporal evolution of pollutants 

within the 2018 Saddleworth Moor wildfire plume. The key aims were: 

• To investigate the temporal and spatial evolution of the plume using satellite 

observations of tropospheric column carbon monoxide (TCCO) and nitrogen dioxide 

(TCNO2). 
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• To explore population exposure to fire pollutants at the surface using ground-based 

observations.  

• To explore how key air pollutants in the plume evolve between emission (near-field) 

and downwind over the Irish Sea (downwind) using aircraft data.  

• To quantify emissions of CO and CO2 from the fire using aircraft data.  

Papers 3 and 4 used the WRF-Chem model to quantify the impacts of the 2018 Saddleworth 

Moor wildfire and 2019/2020 Australian megafires on PM2.5 air quality and health. The key 

aims of both studies were: 

• To simulate PM2.5 concentrations and quantify the contribution of the wildfires to 

simulated PM2.5 concentrations using WRF-Chem simulations with and without fire 

emissions.  

• To investigate the impact of the wildfires on population exposure to poor PM2.5 air 

quality, using the country-specific air quality index (AQI) bands and the WHO 24-hour 

guideline limit for PM2.5. 

• To quantify the health impact of exposure to PM2.5 from the fires due to short-term 

exposure.  

 

The motivation and key results from this work will be discussed below.  

7.1 Paper 1: Impact of weather types on UK ambient particulate matter 

concentrations  

Previous work, primarily based on satellite data, investigated the impact of synoptic scale 

meteorology on nitrogen dioxide (NO2) and ozone (O3) concentrations across the UK using the 
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Lamb weather types (LWTs) (Pope, et al., 2016, 2015). Increases in concentrations of both 

NO2 and O3 were found to be strongly associated with synoptic conditions that lead to boundary 

layer pollutant accumulation (e.g. anticyclonic) or with long-range transport of pollutants from 

continental Europe (e.g. easterly flows). Due to the relatively short time period that routine 

ground-based monitoring of PM2.5 had been carried out for (since the late 2000s), there was 

previously not enough data to carry out the same analysis using ground-based observations of 

PM2.5. This work used ground-based observations of PM2.5 from 42 background sites, spanning 

2010 to 2016, sampled under LWTs. The relationships found between particulate matter with 

a diameter less than 2.5 micrometres (PM2.5) observations and LWTs were investigated further 

using EMEP4UK modelled PM2.5 concentrations and a back-trajectory methodology (Stirling, 

et al., 2020).  

The key findings of the work were:  

i) Both annually and seasonally anticyclonic circulation and easterly (easterly, south-

easterly) and southerly flow were associated with increases in mean ambient UK PM2.5 

concentrations. 

ii) The EMEP4UK model indicated the increase in PM2.5 concentrations observed was 

likely due to trans-boundary transport of PM2.5 under the easterly, south-easterly and 

southerly flow. While, under anticyclonic and un-classified conditions, the 

accumulation of local emissions under stagnant air masses led to increases in PM2.5 

concentrations. 

iii) Anticyclonic conditions had the largest impact on the population’s exposure to 

increased PM2.5 concentrations due to their increased frequency compared to the wind 

flows.  



 

 

250 

iv) The back-trajectory model indicated that the long-range transport of pollutants from 

outside of the UK was an important contributor (25–50%) to total accumulated 

emissions under the wind flows. However, this only accounted for primary PM2.5, and 

20-50% of total PM2.5 has been found to be secondary at European background sites 

(Querol, et al., 2004). Therefore, a method that accounts for the secondary fraction of 

PM2.5 would be necessary to quantify the contribution of non-UK emissions to total UK 

PM2.5. Despite this, these results indicated there was a substantial contribution from 

non-UK emissions to UK PM2.5 under continental air masses.  

v) Synoptic weather plays an important role in controlling PM2.5 concentrations, therefore, 

it is vital that air quality models can accurately simulate synoptic meteorology in order 

to reliably forecast PM2.5 concentrations. This is also key in preparing for and mitigating 

the associated health impacts of short-term exposure to increased PM2.5 concentrations. 

vi) The back-trajectory analysis indicated that quantifying the contribution of UK and non-

UK pollution sources is important in evaluating the impact of local emission controls 

on UK pollutant concentrations. This is particularly relevant given that variations in 

background PM2.5 concentrations are highly variable under different weather patterns. 
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7.2 Paper 2: Impact of the June 2018 Saddleworth Moor wildfires on air 

quality in northern England 

In the past wildfires in the UK have generally been small. However, in recent years the UK has 

begun to experience an increase in the number of larger fires (> 5 km2). These fires have the 

potential to: 

i) expose urban populations, close to moorlands, to high concentrations of air pollutants. 

ii) lead to chemical interactions between fire emitted air pollutants and those from 

anthropogenic sources (e.g. urban emissions).   

 

Analysis of observations was used to quantify the impact of the fires on atmospheric 

composition. A wide range of observations were used to investigate how pollutant 

concentrations evolved spatio-temporally due to the Saddleworth Moor and Winter Hill fires. 

Ground-based observations of PM2.5 in large urban centres (Manchester and Wigan) downwind 

of the fires were used to investigate the impact of the fires on surface concentrations and PM2.5 

type. Satellite observations of CO and NO2 from TROPOMI were combined with fire-radiative 

power to investigate the temporal evolution of the plumes from the fires. Finally, observations 

of CO, NO2, O3 and PM2.5 from the FAAM aircraft flight on 29th June were used to explore the 

in-plume composition evolution of key air pollutants between near-field and down-wind 

samples.  

The key findings of this work were: 

Ground-based Observations  
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i) Increased PM2.5 concentrations were observed in Manchester and areas further afield 

(e.g. Wigan) during the peak of the fires (27th, 29th and 30th June). Surface 

concentrations were 4-5.5 times higher than the average of previous years (2013-2017).  

ii) Concentrations were up to 2 times the WHO guideline 24-hour limit (25 g m-3). There 

are likely to have been considerable negative health impacts for individuals exposed, 

particularly for those with underlying health conditions.  

iii) PM2.5 mass was dominated by the non-volatile PM2.5 fraction and the largest increase in 

concentrations from the 2013-2017 mean was observed in this fraction.  

 

Satellite Observations  

i) Total column CO (TCCO) observations between June 25th and June 30th exhibited a 

clear westward propagation of the plume from the Saddleworth Moor fire to the Irish 

Sea, over the cities of Manchester and Liverpool.  

ii) Fire-radiative power and TCCO concentrations were used alongside visible images to 

define threshold concentrations for the boundary of the plume. Values chosen for 

TCCO plume boundaries were therefore based on a best-match to both TCCO 

concentrations and visible images.  

iii) TCCO was used as a tracer of fire and allowed the isolation of enhancements in total 

column NO2 (TCNO2) due to the fires. This indicated that the TCNO2 concentrations 

observed were composed of: 

iv) fire emissions  
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v) anthropogenic emissions, from the accumulation of NO2 over source regions (e.g. 

Manchester) (due to stagnant meteorology conditions during the fire period).  

 

Aircraft Observations 

i) Measurements from the FAAM aircraft flight on June 29th allowed the composition of 

the plume near-source (close to Saddleworth Moor) and downwind (over the Irish Sea) 

to be investigated.  

ii) Measurements indicated clear enhancement in CO concentrations within the plume, 

throughout the boundary layer (0-1 km). In-plume CO concentrations peaked at >1500 

ppbv, while downwind concentrations peaked at 200-400 ppbv.  

iii) In-plume PM2.5 concentrations peaked at 127.5 g m-3 and downwind concentrations 

peaked at 96.1 g m-3.  

iv) The relative enhancement of O3 compared to CO (the O3/CO ratio) was used to 

evaluate photochemical O3 formation in-plume near-field and downwind of the fires, 

using CO as a plume tracer.  The O3/CO ratio indicated O3 concentrations 

significantly increased downwind (O3/CO = 0.001 ppbv/ppbv) compared to near-

field (O3/CO = 0.060-0.105 ppbv/ppbv, 250m-1000m). This suggested downwind 

production of O3 and titration of O3 near-source by freshly emitted NO.  

v) The interaction of pollutants within the plume, with anthropogenic NO2, as the plume 

passed over Manchester and other urban areas may have contributed to the downwind 

O3 enhancements, through photochemical production of O3. The ΔNO2/ΔCO ratio 

supported this, exhibiting the opposite pattern to the ΔO3/ΔCO ratio, and decreasing 
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with increasing height. This suggested that either the anthropogenic signal was reducing 

with altitude or that NO2 was being processed more quickly with more active 

photochemistry closer to the surface. However, data was not available to investigate 

this further.  

vi) Downwind O3 increases (higher O3/CO ratios) were also larger with increasing 

altitude. One possible reason for this is an increase in photochemical production of O3 

at the top of the plume. Incoming solar radiation would reach the top of the plume first 

and then be attenuated further into the plume, leading to decreasing O3 production with 

decreasing altitude.  

vii) CO and CO2 emission rates of the fires, on the 29th June (when the fire was smoldering), 

were 1.07 (0.07-4.69) kg s-1 and 13.7 (1.73-50.1) kg s-1. The CO2 emission rate was 

similar to that of a moderately sized power station such as Grangemouth or Enfield 

(Edinburgh and London) (~16.0 kg s-1).  

 

7.3  Paper 3: Impact on air quality and health due to the Saddleworth 

Moor fire in northern England 

Observational data used in Paper 2 (Paper 2: Impact of the June 2018 Saddleworth Moor 

wildfires on air quality in northern England) indicated the potential for wide-spread negative 

health impacts due to poor air quality. Therefore, in paper 3 a regional air quality model (WRF-

Chem) was used to simulate PM2.5 concentrations due to the Saddleworth Moor fire in 2018 

(June 23rd – June 30th). The model simulation was carried out at 10 km resolution between June 

16th and July 14th. Two simulations were performed; one with wildfire emissions, and one 

without wildfire emissions. This approach allowed the impacts of the fires on PM2.5 
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concentrations to be isolated from other processes (e.g. meteorology) and allowed the impact 

of PM2.5 from the fires on air quality and health to be quantified.  

The key findings of the work were:  

i) Simulated daily mean surface PM2.5 concentrations from the WRF-Chem model 

captured the peaks in PM2.5 concentrations observed at ground-based monitoring sites 

(r=0.69), but underestimated the absolute concentrations (NMB = -0.22, RMSE = 5.06 

g m-3). This was likely because the fires burned peat moorland and the fire emissions 

(FINN) used in the model did not include emissions for peat. Since these fires would 

have burned through the surface vegetation (i.e. heather, grass and juniper), FINN does 

provide some estimation of emission, though with a low bias. Therefore, a time-varying 

scaling was applied to the original emissions to account for the missing peat source. 

This yielded a more robust comparison between the model and ground-based 

observations with r=0.77, NMB=-0.19 and RMSE = 4.27 g m-3. 

ii) The wildfires had a substantial impact on PM2.5 concentrations across the north-west of 

England with hourly concentrations reaching 225 g m-3 in some locations.  

a. million people were exposed to PM2.5 concentrations  36 g m-3 (moderate 

DAQI and above) on at least one day between June 23rd and 30th.   

iii) 4.5 million people were exposed to PM2.5 concentrations above the WHO 24-hour 

guideline limit of 25 g m-3 on at least one day in the same period.  

iv) The health impact of exposure to PM2.5 was estimated using the concentration-response 

function of Atkinson et al. (2014) alongside the population-weighted PM2.5 

concentrations and the baseline mortality rate for north-west England (both for 2015). 

This indicated the fires brought forward 6.4 deaths (95% CI: 4–11) during the week of 



 

 

256 

June 23rd-30th due to exposure to PM2.5. During this period the up to 60% (3.6 of 6.4) of 

the total deaths brought forward due to PM2.5 exposure were attributable to PM2.5 from 

the fires, representing an increase of up to 165% compared to without fires.  

v) The economic impact of the fires was also estimated using the number of deaths brought 

forward and the value of prevented fatality (VPF) from the Department for Transport. 

This indicated that the cost of the fires was £21.1 m (95% CI: 10.7 – 31.1 m). 

 

Papers 2 and 3 indicate the impacts of wildfires in the UK have the potential to have measurable 

effects on air quality and health. The health impacts are likely to be underestimated in paper 3 

since the modelled PM2.5 concentrations exhibit a negative bias and only the health impacts of 

exposure to PM2.5 were considered. Additionally, wildfires are likely to become more common 

due to climate change. This work demonstrates the importance of the introduction of public 

health tools and educational programmes to reduce the impacts of such events. The impacts of 

changes in land-management on the likelihood of fire occurrence could also be studied further 

in order to identify whether this could reduce fire risk on moorlands under a warmer, drier 

summer climate.  
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7.4 Paper 4: Impact of the 2019/2020 mega-fires on air quality and health 

in Australia 

Following the same method as Paper 3, a regional air quality model (WRF-Chem) was used to 

simulate PM2.5 concentrations due to the Australia bushfires in 2019 and 2020. Simulations 

were carried out at 30 km resolution between September 1st and January 31st. Two simulations 

were performed; one with wildfire emissions, and one without wildfire emissions, in the same 

way as in paper 3.  

i) FINN fire emissions indicated PM2.5 emissions from the 2019/2020 bushfires were 

unprecedented compared with emissions between 2010-2018. Around 1 Tg of PM2.5 

was emitted during 2019 and ~0.3 Tg between January and February 2020. The high 

emissions were likely attributable to the high levels of dry fuel availability across the 

region during 2019.  

ii) Simulated PM2.5 concentrations from the nudged_BL_fires simulation reproduced 

observed daily mean concentrations from 80 ground-based observation sites well but 

with a low bias (r = 0.39, RMSE = 22.9 g m-3, NMB = -0.17, NMAE = 0.72). Model 

simulations captured the variability and magnitude of peaks seen in PM2.5 observations 

across eastern-Australia and for specific cities. 

iii) Between September 1st 2019 and January 31st 2020 large proportions of the population 

were exposed to dangerous (‘Poor’,’V.Poor’ and ‘Hazardous’) air quality levels. 

Almost 350,000 people were exposed to hazardous AQI levels in December and 

January, compared with 130,000 across December and January people in the 

nudged_BL_no_fires simulations. The impact of the bushfires on AQ was concentrated 

in the cities of Sydney, Newcastle-Maitland and Canberra-Queanbeyan during 
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November, December and, also in Melbourne, in January. While, generally Brisbane 

and Adelaide were minorly affected by the fires, with only 14 people exposed to 

Hazardous AQ.  

iv) A short-term exposure response function (World Health Organization, 2013) was used 

to estimate the health impacts of exposure to PM2.5 from fires across eastern-Australia, 

regionally and at city level. An estimated 180 (95% CI: 74-294) deaths were brought 

forward due to the fires between October 1st and January 31st, 624 (95% CI: 229-1008) 

from all PM2.5 and 444 (95% CI: 155-714) if there were no fires. 

v) The health impacts were largest in New South Wales, Queensland and Victoria with 

109 (95% CI: 41-176), 24 (95% CI: 15-41) and 35 (95% CI: 13-56) deaths brought 

forward due to fires in these regions (287 (95% CI:107-463), 112 (95% CI: 41-181) and 

155 (95% CI: 57-250) all PM2.5), respectively. These results estimated a lower regional 

health impact from PM2.5 from the bushfires than Borchers Arriagada et al. (2020) and 

Ryan et al. (2021). This is most likely due to differences in how PM2.5 attributable to 

fires was estimated in each study and also differences in the estimated bushfire 

population-weighted PM2.5 concentrations. This study builds upon previous work by 

using an atmospheric chemistry transport model to investigate the impacts of the fires 

on air quality.  

vi) At a city-level, the health impacts of PM2.5 exposure due to fires were concentrated in 

the cities with large populations and high PM2.5 concentrations due to fires (Sydney (65 

(95% CI: 24-105)), Melbourne (23 (95% CI: 9-38)) and Canberra (9 (95% CI: 4-15)). 

vii) This work confirms that there was a substantial AQ and health impact across eastern-

Australia from the 2019/2020 bushfires. However, this study only considered one 

pollutant, therefore the full health impact of exposure to PM2.5 is likely to be higher and 
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require further studies addressing the impacts on hospital admissions, ambulance call 

outs and primary health care visits. Alongside this, the impact of other pollutants on 

health (e.g. O3) could also be quantified.  

viii) In the future, further work is required to characterise the health impacts of 

exposure to pollutants for wildfires. This would allow for more comprehensive 

estimates of the health impacts associated with population exposure. Finally, with more 

dry years like 2019/2020 projected to occur in the future due to climate change the 

impact of wildfires such as 2019/2020 are likely to be seen again. Therefore, fire risk 

management policies should be developed further to consider the impact of climate 

change on wildfire frequency and intensity across the country. 
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Critical Discussion and Implications for Future Work 

7.5 Uncertainties 

 Back-trajectory method 

In paper 1 a back-trajectory method was used to investigate the influence of UK and non-UK 

primary PM2.5 emissions on summed emissions arriving at observational sites across the UK. 

In order to represent atmospheric loss processes an e-folding lifetime was applied to the 

summed emissions along the back-trajectory path. The sensitivity of results to the assumed 

lifetime was also tested. The representation of loss processes could be developed further to 

account for changes in deposition velocity with changes in wind speed using meteorological 

reanalysis to adjust the e-folding lifetime at each timestep. Alongside this, the boundary layer 

height was assumed to be 850 hPa and emissions were only summed if the pressure of trajectory 

points was higher than this. However, boundary layer height varies on temporal (diurnally, 

seasonally) and spatial (marine and continental) scales. Therefore, in future meteorological 

reanalysis could be used to determine boundary layer height for each trajectory point.  

 Satellite Data 

In paper 2 TCCO and TCNO2 data from the TROPOMI satellite were used to investigate the 

impact of the Saddleworth Moor wildfires. This analysis would not have been possible with its 

predecessor (OMI) due to the much spatial lower resolution of OMI. However, the polar orbit 

of both satellites means it is only possible to measure the concentration of air pollutants once 

each day. This means that a large amount of valuable information on the spatio-temporal 

evolution of fire plumes is lost. Alongside this cloud cover is often an issue, meaning often 

multiple days or weeks of measurements need to averaged together. The new geostationary 

satellites (Geostationary Operational Environmental Satellite (GOES) (Zhang, et al., 2020)  and 
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Tropospheric Emissions: Monitoring of Pollution (TEMPO) (Zoogman, et al., 2017)) will 

provide observations of fires (FRP), aerosols (AOD) and trace-gases (including O3 and NO2) 

at even higher spatial resolution than TROPOMI (2 km and 2.1 km) and temporal resolution 

(5-minutes and hourly) in the future.  

 Modelling 

 

Figure 47. Sources of uncertainties within modelling health impacts from wildfire pollutants.   

 

Uncertainties within this work arise from several factors, from uncertainties within the input 

data used (e.g. emissions, concentration-response function) to model parameterisations of 

processes (e.g. plume height, atmospheric chemistry processes) and finally, to gaps in our 

current understanding that mean assumptions have to be made.  

Gaps in our current knowledge and uncertainties that were not covered in detail in the 

supplementary material of the papers will be discussed below. The uncertainties in the 

estimated health impacts from wildfires can be split into 5 main factors (Figure 47). These can 

be grouped into emissions (fire emissions), modelling (smoke plume, atmospheric 

chemistry/transport) and health impact assessments (population exposure, health impacts).  

 Emissions  

7.5.3.1.1 Fire Emissions 

There are large differences between different global fire emissions datasets, which arise from 

uncertainties detecting fires based on satellite product used and uncertainties within the 
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emissions factors applied (though many are known with an uncertainty of ~30% (Andreae, et 

al., 2001)) (Liu, et al., 2020). These differences can lead to large spatial and temporal variability 

in emissions datasets and can therefore impact on simulated concentrations of air pollutants. 

Unfortunately, due to time and computational cost limits, it is rare that multiple simulations 

with different emissions datasets can be carried out in modelling studies. Liu et al. (2020) 

identified 5 key sources of bias in the major global fire emission datasets (GFEDv4s, 

FINNv1.5, GFASv1.2 Quick Fire Emissions Dataset (QFEDv2.5r1) and Fire Energetics and 

Emissions Research (FEERv1.0-G1.2)), which lead to uncertainties. Biases stem from the 

satellite product used to derive fire emissions (active fires/burned area), difficulties detecting 

fires through cloud/haze, burned area fragmentation, complex topography leading to 

shadowing, and difficulties with small fire detection. As a result of these biases, in some 

regions emissions estimates can vary by an order of magnitude, dependent upon the remote 

sensing technique used (Andreae, et al., 2001). Difficulty detecting small fires could be 

improved through the use of new high spatial and temporal resolution satellite datasets, such 

as the Geostationary Operational Environmental Satellite (GOES) (Zhang, et al., 2020). GOES 

will provide observations of fires (FRP) and aerosols (AOD) at high spatial (2 km) and 

temporal resolution (5-minutes) (Zhang, et al., 2020). This will provide new temporal 

information about wildfire life-cycles and emissions. The increased temporal resolution will 

also help in constraining model simulations through assimilation of FRP data on fires 

throughout the day, rather than by a single overpass. Therefore, aiding the constraint of 

uncertainties in fire emissions and plume characteristics. Alongside issues with detection, there 

are discrepancies in speciation and emissions factors between the five main fire emissions 

datasets. These arise from the inherent difficulties estimating fire emissions. The largest 

differences in emissions factors are between PM2.5 and CH4, where the coefficient of variation 
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is 20.3 and 26.7% (Liu, et al., 2020). This is, in part, due to the absence of peat emissions in 

FINN, QFED and FFER, since the emission factors for peat emissions of CH4 (and CO) are 

much higher than other land use types (Wiedinmyer, et al., 2011). Peat emissions were the 

dominant source of emissions for the 2018 UK moorland fires, likely leading to 

underestimation in FINN emissions. However, over the past few years there has been continued 

work to incorporate peat emissions in to FINN where fire emissions from peat are high. Peat 

emissions have now been added into FINN (FINNpeat) for Indonesia (Kiely, et al., 2019). In 

the future, this work could be extended for global peat fire emissions.  

7.5.3.1.2 Anthropogenic Emissions 

Uncertainties arise when combing regional anthropogenic emission inventories to create global 

anthropogenic emissions inventories (EDGAR HTAP v2.2). Uncertainties stem from 

considerable discrepancies between the assumptions made (activity, technology, end-of-pipe) 

and emissions factors applied during the construction of each of the regional inventories. This 

leads to inconsistencies at the borders of regions (Janssens-Maenhout, et al., 2015). 

Uncertainties in emissions are generally smaller for industrialised countries (e.g. UK and 

Australia) but vary for species and sector. The largest uncertainties are within NH3, PM10, PM2.5 

and BC/OC in the shipping (PM, BC/OC), transport (NH3, PM10, PM2.5 and BC/OC), 

residential (NH3, PM10, PM2.5 and BC/OC) and agriculture (NH3, PM10, PM2.5 and BC/OC) 

sectors (≤100% uncertainty). Anthropogenic emissions from 2010, which were used in papers 

3 and 4 are likely to be higher than the years simulated (2018 and 2019/2020). However, since 

both papers focus on the fire contribution to PM2.5, rather than that of the background 

anthropogenic emissions, this is unlikely to have any effect on the calculated health impact due 

to fires. Uncertainties in anthropogenic emissions datasets could be reduced through the use of 



 

 

264 

new high spatial resolution satellite measurements to derive emission rates of different species 

(e.g. (Beirle, et al., 2011)) and improved activity and diurnal cycle information, particularly in 

developing countries. 

 Modelling 

Initial and boundary conditions can have a large impact on simulated air pollutant 

concentrations. Previous studies have found simulated PM2.5 concentrations are strongly 

influenced by meteorological initial and boundary conditions (Ritter, et al., 2013). 

Additionally, climatological dust-fields are often currently used within initially boundary 

chemical conditions, which has led to overestimations in some regions (Georgiou, et al., 2018). 

Updates to future model runs could include higher resolution chemical and meteorological 

boundary conditions and CAM-Chem (Community Atmosphere Model with Chemistry) dust, 

which uses simulated wind speed and surface conditions (e.g. Crippa et al. (2016)). Alongside 

this, chemical assimilation could be implemented to improve agreement between simulated 

pollutant concentrations and observations (Li, et al., 2013; Ukhov, et al., 2020; Werner, et al., 

2019).  

 Health Impact Assessment 

7.5.3.3.1 Health Impacts  

Emissions from wildfires are complex, varying based upon the fire type, landscape, fuel 

consumption and meteorology (Cascio, 2018). Alongside this, the chemical composition of 

smoke plumes change with aging, as secondary pollutants are formed (e.g. O3) and if plumes 

interact with anthropogenic emissions (Jaffe, and Wigder, 2012). Wildfire smoke is likely to 

become a more important source of air pollutants to populations in future years. This is due to 

the combined effect of reductions in anthropogenic air pollution, due to increased regulatory 
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efforts, and the increasing risk of wildfires due to climate change (Black, et al., 2017). This has 

led to increased research into the impacts of wildfires on health. Recent work has identified an 

association between exposure to PM2.5 from wildfires and respiratory morbidity, with 

increasing evidence suggesting an association with all-cause mortality (Reid, et al., 2016). 

Despite this, further research is required to clearly identify the link with cause-specific 

mortality and to identify whether using un-speciated PM adequately characterises the health 

effects of exposure to wildfire smoke (Reid, et al., 2016). The effect of co-pollutant mixtures, 

which are found in wildfire smoke, on health also require further research in order to provide 

more comprehensive health impact assessments for wildfire events. An improved 

understanding of these relationships would allow for more targeted policies regarding fires and 

would help to identify and mitigate the health impacts of exposure for the most at-risk groups.    

Another key gap in current knowledge stems from a lack of understanding of which 

components (e.g. species of PM2.5), sources (e.g. industry/transport) and characteristics of air 

pollution are responsible for the health impacts observed (Pope III, and Dockery, 2006). 

Currently, evidence suggests that, for PM, particle size plays the main role in the health impacts 

observed. This is due to particle size controlling whether it is of respirable size, able to penetrate 

into indoor environments and controlling its atmospheric lifetime (Pope III, and Dockery, 

2006). Similar associations between exposure and mortality are observed across developed and 

less developed regions, despite differences in PM2.5 composition (Harrison, and Yin, 2000), 

further supporting this. However, other factors which may affect PM2.5 toxicity (e.g. reactivity 

and solubility) still require further research.  

As a result, in most current work focussing on the health impacts of sporadic events, short-term 

concentration response function (CRF) derived from ambient PM2.5 exposure (Atkinson, et al., 
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2014; World Health Organization, 2013) are applied for all-age, all-cause mortality. This 

assumes all species of PM2.5 are equally toxic, which may not be true. Alongside this, there is 

a large degree of uncertainty in the exposure-response, which stems from uncertainties in 

population response to air pollution exposure. The effect of the uncertainty in the CRF has been 

shown to dominate the uncertainty in health impact assessments (Kushta, et al., 2018). There 

is continued work to understand the health impacts of short-term exposure to PM2.5, in the 

future this may allow disease-specific mortality and morbidity exposure-response functions to 

be derived, similar to those for long-term exposure (Burnett, et al., 2018; GBD Collaborators 

2015, 2017).    

7.5.3.3.2 Population Exposure 

In addition to this, the assumption that population weighted concentration is a proxy for 

exposure, which is commonly applied in health impact assessments (Crippa et al., 2016; 

Macintyre et al., 2016b; Conibear et al., 2018a) introduces the potential for inaccuracy. 

Generally, population data (from residential censuses) is combined with modelled 

concentrations of pollutants, without adjusting for variation in personal exposure (e.g. time 

spent in the home compared to at work, time spent outside, filtration in buildings). Several 

studies have developed methods to account for population mobility (e.g. workday vs home, 

active vs home and travel-time), finding this changed population exposure to NO2, O3 and 

PM2.5 in large conurbations (de Nazelle, et al., 2009; Reis, et al., 2018; Shekarrizfard, et al., 

2017). In addition, computing packages have been developed that use synthetic data to mimic 

the relationships found in confidential population datasets (Nowok, et al., 2016). This avoids 

the need for access to sensitive personal data. In the future, with the addition of data on personal 

exposures in populations, better representation of exposure could improve results (Kanjo, et 

al., 2018). Since modelled pollutant concentrations are used to represent exposure, model 
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resolution also plays an important role in capturing accurate population exposure to pollutants. 

At a resolution of 10 or 30 km, gradients in concentrations at local levels (e.g. street canyons) 

are not captured and this therefore introduces error in exposure estimations. Increased model 

resolution could improve the representation of concentration gradients and diurnal cycles in 

concentrations.  
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7.6 Implications for Future Work 

 

Wildfires close to populated areas have generally been rare in many regions of the world in the 

past, including the UK. However, they are projected to become more common in the future, 

both globally and in Europe (Krawchuk, et al., 2009; Liu, et al., 2010; Syphard, et al., 2018). 

The impact of increased wildfire frequency on health due to short-term acute exposure has not 

yet been quantified. However, this could prove useful to policy makers in quantifying the cost-

benefits of the introduction of policy and land management techniques to reduce fire risk 

(Cascio, 2018).  

Coordinated emission estimates of CO, using FRP and burned area remote-sensing, alongside 

inversion modelling, may help to constrain emission estimates (Andreae, 2019). For PM 

specifically, emission estimates could be improved through increased understanding of the 

impact of fuel moisture and fire type on emission factors (Andreae, 2019). Studies in the future 

could also focus on how emissions vary regionally and seasonally, in order to better capture 

spatial and temporal variability in fire emissions (Andreae, 2019). This is important in 

modelling the impacts of wildfire pollutants on populations exposed.  

New high-resolution satellite data, such as the GOES (Zhang, et al., 2020) and TEMPO 

(Zoogman, et al., 2017), will provide observations of fires (FRP), aerosols (AOD) and trace-

gases (including O3 and NO2) at high spatial (2 km and 2.1 km) and temporal resolution (5-

minutes and hourly) in the future (Zhang, et al., 2020; Zoogman, et al., 2017). This will provide 

new temporal information about emissions from wildfires and their day-time evolution, as well 

as plume height (from TEMPO). The increased temporal resolution of these instruments will 
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also help to better predict the precursor emissions for secondary species, such as SOA and O3, 

and therefore the downwind formation of these pollutants. Furthermore, the improved spatial 

and temporal resolution of GOES and TEMPO will help in constraining model simulations 

both through validation and data assimilation. Therefore, aiding the constraint of uncertainties 

in emissions, fire and plume characteristics and chemical interactions as plumes age.  

Health impact assessments, which calculate the number of deaths brought forward due to 

exposure to PM2.5, have large uncertainties, which stem from the exposure-response 

relationships used within them and assumptions made about exposure. A particular weakness 

of the exposure-response functions used in this thesis (Atkinson, et al., 2014; World Health 

Organization, 2013) is that short-term exposure-response functions generally do not include 

studies looking mortality risk at high PM2.5 concentrations (e.g. those observed in pollution 

from fires). Therefore, the shape of the exposure response is assumed to be linear (Harrison, 

and Yin, 2000; Pope III, and Dockery, 2006). In future work, a similar approach could be 

adopted to Burnett et al. (2018), where the shape of the exposure-response is constrained using 

studies that derive associations for mortality at higher PM2.5 concentrations, but for short-term 

exposure in this case. This method also has the added benefit of avoiding the need to integrate 

exposure-responses from several sources (e.g. ambient air pollution with passive and active 

smoking) meaning assumptions about equal toxicity can be avoided.  

Many gaps remain in our understanding of the health impacts of exposure to PM from wildfires 

(Reid, et al., 2016). Currently, associations between wildfire smoke/PM and all-cause 

mortality, respiratory morbidity, hospitalisations and accident and emergency visits are best 

understood (Cascio, 2018; Reid, et al., 2016). Research focused on ambient PM has found 

much stronger associations between chronic PM exposure and mortality (Pope III, and 
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Dockery, 2006), though work is yet to identify whether PM composition is important. As yet 

no study has quantified the health impact of chronic PM exposure, such as that seen in southeast 

Asia (Black, et al., 2017; Reid, et al., 2016). Finally, since the composition of wildfire PM can 

vary greatly, it is not known whether the current concentrations used for public health warnings 

(based on evidence of health impacts from anthropogenic emissions) adequately characterise 

the health effects of wildfire PM. However, recent work by Borchers Arriagada et al. (2019) 

derived wildfire smoke PM2.5-specific summary effect estimate for asthma-related outcomes. 

The study found the relative risk was higher for wildfire PM2.5 than for a typical ambient PM2.5 

mixture. These results suggest that health impact assessments using relative risk estimates from 

ambient PM2.5 may underestimate the health impacts of wildfire smoke PM2.5. Future work 

could focus on other disease endpoints, such as cardiovascular morbidity and mortality and a 

range of PM2.5 sources. These could then be used in future health impact assessments for 

wildfire pollutant impacts.  

Alongside this, few studies have quantified the health impacts of exposure to ozone (O3) from 

wildfires (Black, et al., 2017). This is likely due to very few epidemiology studies having 

addressed the impact of wildfire pollutants other than PM (e.g. O3) on morbidity or mortality 

(Black, et al., 2017). A study by Reid et al. (2019) that examined a case-study US wildfire in 

2008 found that there was no association between O3 and emergency respiratory admissions 

during wildfires, when PM2.5 was adjusted for. The study also highlighted that the health 

impacts of wildfire O3 are understudied and further research was needed for different fire types 

and regions. Given that the interaction between wildfire smoke and anthropogenic pollutants 

can produce secondary pollutants, such as O3, downwind, an increase in the number of studies 
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addressing the health impacts of exposure to wildfire ozone would help to quantify the full 

impact of pollutants from wildfires on health. 

The impact of interactions between pollutants on exposure-response is also yet to be uncovered, 

since epidemiology studies generally report the associations between a single pollutant and 

health. However, it is not clear whether the calculation of health impacts for pollutants 

individually is realistic, given that the population is exposed to multiple pollutants 

simultaneously. Further work is needed to better understand the effect of multi-pollutant 

mixtures on health.  

A better representation of population exposure would also enhance our ability to quantify the 

health impacts of population pollutant exposure. This could be achieved by improving the 

representativeness of dose, through increasing information on population mobility and/or using 

population level exposure data, collected from personal monitors (for pollutants and heart-

rate/respiratory rate/oxygen consumption) (Kanjo, et al., 2018). Better representativeness of 

dose could be combined with increased model resolution, as computational power advances 

and models become quicker and therefore cheaper to run. Increased model resolution would 

allow the strong air pollutant concentrations seen in urban areas to be better represented 

(Kushta, et al., 2018). However, the largest uncertainties in health impact assessments stem 

from the estimates of population response to air pollutant concentrations, which are derived 

from epidemiology studies (30% (Kushta, et al., 2018)). Therefore, constraining uncertainties 

in health responses, through better understanding of factors such as composition and source 

(e.g. wildfires, anthropogenic, natural) are a key factor in improving the quantification of health 

impacts.  
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 - Conclusions 

Within the UK, air quality is the largest environmental health risk (Department for 

Environment Food & Rural Affairs, 2019). Health is adversely affected through both exposure 

to short-term high pollution events and long-term lower-level pollution (Department for 

Environment Food & Rural Affairs, 2019). This results in more than 29,000 premature deaths 

each year being linked to long term-exposure to ambient PM2.5 (Committee on the Medical 

Effects of Air Pollutants, 2010). Despite this, previously the impact of synoptic meteorology 

on ambient PM2.5 concentrations had not been quantified. Alongside this, widfires close to large 

populations had been relatively rare in the UK in the past so little work had looked at their 

impacts. As ambient pollutant concentrations continue to decrease, through decreased 

anthropogenic emissions, improved emission abatement and tighter legislation, short-term high 

pollution events (including wildfires) are likely to have an increased impact on overall 

population exposure and health. Alongside this, wildfires are projected to become more 

common in the future due to climate change and as a result are likely to represent a larger 

fraction of the population’s annual exposure to air pollution in the future.  

The aims of this thesis were to quantify the impact of different sources and processes on short-

term changes in ambient PM2.5 across the UK. Synoptic meteorology has a considerable 

influence on ambient PM2.5 across the UK. Easterly, south-easterly and southerly winds were 

shown to transport pollutants from continental Europe, increasing ambient concentrations 

observed. In contrast, anticyclonic conditions led to the build-up of local emissions under slack 

winds.  

Wildfires, such as the Saddleworth Moor and Winter Hill fires in 2018, have the potential to 

substantially influence regional pollutant concentrations. Concentrations of pollutants close to 
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the fires were high but, in areas downwind (> 80 km away), concentrations were also enhanced 

above background concentrations, exposing populations to high concentrations far from the 

fires. Secondary pollutants, such as ozone, were formed in the downwind smoke plume. More 

research is required to investigate the interaction between pollutants from fires and 

anthropogenic emissions when plumes pass over large urban areas, as this may happen more 

commonly in the future with the increased likelihood of wildfires in the future due to climate 

change. The WRF-Chem model was used to quantify the air quality and health impacts of PM2.5 

from the fires. A large proportion of the population in the region around Saddleworth Moor 

and Winter Hill were exposed to PM2.5 concentrations above the WHO guideline limit and the 

moderate DAQI limit. The fires led to increases in the number of deaths brought forward due 

to exposure to PM2.5 (165%) compared to if there were no fires and as a result had a large 

economic impact (£21.1m).  

The 2019/2020 Australian bushfires were unprecedented in their burned area size (10 million 

hectares) and PM2.5 emissions (1.3 Tg), burning from October 2019 through to February 2020. 

Again, the WRF-Chem model was used to quantify the air quality and health impacts of PM2.5 

from the fires. Between September 1st 2019 and January 31st 2020 large proportions of the 

population were exposed to dangerous (‘Poor’,’V.Poor’ and ‘Hazardous’) air quality levels. 

The impact of the bushfires on AQ was concentrated in the cities of Sydney, Newcastle-

Maitland and Canberra-Queanbeyan during November, December and, also in Melbourne, in 

January. While, generally Brisbane and Adelaide were much less severely affected by the fires, 

with few people exposed to Hazardous AQ. Exposure to PM2.5 from the fires led to an estimated 

180 (95% CI: 74-294) deaths being brought forward between October 1st and January 31st. The 

health impacts were largest in New South Wales, Queensland and Victoria. In line with this, at 
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a city-level the health impacts of PM2.5 exposure due to fires were concentrated in cities within 

Queensland and Victoria that have large populations that were exposed to high PM2.5 

concentrations due to fires, including Sydney, Melbourne and also Canberra. 

This thesis highlighted that there are a range of factors affecting the population’s exposure to 

PM2.5 on short time scales. The build-up of local emissions and long-range transport of 

pollutants to the UK under continental air masses were shown to play an important role in 

controlling ambient UK PM2.5 concentrations. Thus, highlighting the need for continued 

cooperation in reducing emissions across Europe in order to improve air quality. The impact 

of short-term emerging threats, such as wildfires, was quantified, indicating that short-lived 

high pollution events have the potential to have a substantial impact on air quality and health. 

With a warming climate and increased wildfire frequency projected in the future, the results of 

this work highlight that more research is required to quantify the cost-benefits of public health 

interventions or changes in land-management practices that may reduce the risk of wildfires.  

 

  



 

 

275 

8.1 References  

1) Adami, H.O., Berry, S.C.L., Breckenridge, C.B., Smith, L.L., Swenberg, J.A., Trichopoulos, 

D., Weiss, N.S., Pastoor, T.P., 2011. Toxicology and epidemiology: Improving the science with 

a framework for combining toxicological and epidemiological evidence to establish causal 

inference. Toxicol. Sci. 122, 223–234. https://doi.org/10.1093/toxsci/kfr113 

2) Air Quality Expert Group, 2013. Mitigation of United Kingdom PM2.5 Concentrations 

Mitigation of. 

3) Air Quality Expert Group, 2012. Fine Particulate Matter (PM2.5) in the United Kingdom. 

4) Air Quality Expert Group, 2005. Particulate Matter in the UK: Summary. 

https://doi.org/10.1201/9780203743676-3 

5) Akagi, S.K., Yokelson, R.J., Wiedinmyer, C., Alvarado, M.J., Reid, J.S., Karl, T., Crounse, 

J.D., Wennberg, P.O., 2011. Emission factors for open and domestic biomass burning for use 

in atmospheric models. Atmos. Chem. Phys. 11, 4039–4072. https://doi.org/10.5194/acp-11-

4039-2011 

6) Albertson, K., Aylen, J., Cavan, G., McMorrow, J., 2010. Climate change and the future 

occurrence of moorland wildfires in the Peak District of the UK. Clim. Res. 45, 105–118. 

https://doi.org/10.3354/cr00926 

7) Alman, B.L., Pfister, G., Hao, H., Stowell, J., Hu, X., Liu, Y., Strickland, M.J., 2016. The 

association of wildfire smoke with respiratory and cardiovascular emergency department visits 

in Colorado in 2012: A case crossover study. Environ. Heal. A Glob. Access Sci. Source 15, 

1–9. https://doi.org/10.1186/s12940-016-0146-8 

8) Andreae, M.O., 2019. Emission of trace gases and aerosols from biomass burning - An updated 

assessment. Atmos. Chem. Phys. 19, 8523–8546. https://doi.org/10.5194/acp-19-8523-2019 

9) Andreae, M.O., Melret, P., Merlet, P., Metlet, P., 2001. Emission of trace gases and aerosols 

from biomass burning. Global Biogeochem. Cycles 15, 955–966. 

https://doi.org/10.1029/2000GB001382 



 

 

276 

10) Archer-Nicholls, S., Lowe, D., Darbyshire, E., Morgan, W.T., Bela, M.M., Pereira, G., 

Trembath, J., Kaiser, J.W., Longo, K.M., Freitas, S.R., Coe, H., McFiggans, G., 2015. 

Characterising Brazilian biomass burning emissions using WRF-Chem with MOSAIC 

sectional aerosol. Geosci. Model Dev. 8, 549–577. https://doi.org/10.5194/gmd-8-549-2015 

11) Archibald, A.T., Levine, J.G., Abraham, N.L., Cooke, M.C., Edwards, P.M., Heard, D.E., 

Jenkin, M.E., Karunaharan, A., Pike, R.C., Monks, P.S., Shallcross, D.E., Telford, P.J., 

Whalley, L.K., Pyle, J.A., 2011. Impacts of HOx regeneration and recycling in the oxidation of 

isoprene: Consequences for the composition of past, present and future atmospheres. Geophys. 

Res. Lett. 38, 1–6. https://doi.org/10.1029/2010GL046520 

12) Arnold, S.R., Emmons, L.K., Monks, S.A., Law, K.S., Ridley, D.A., Turquety, S., Tilmes, S., 

Thomas, J.L., Bouarar, I., Flemming, J., Huijnen, V., Mao, J., Duncan, B.N., Steenrod, S., 

Yoshida, Y., Langner, J., Long, Y., 2015. Biomass burning influence on high-latitude 

tropospheric ozone and reactive nitrogen in summer 2008: A multi-model analysis based on 

POLMIP simulations. Atmos. Chem. Phys. 15, 6047–6068. https://doi.org/10.5194/acp-15-

6047-2015 

13) Atkinson, R.W., Butland, B.K., Dimitroulopoulou, C., Heal, M.R., Stedman, J.R., Carslaw, N., 

Jarvis, D., Heaviside, C., Vardoulakis, S., Walton, H., Anderson, H.R., 2016. Long-term 

exposure to ambient ozone and mortality: A quantitative systematic review and meta-analysis 

of evidence from cohort studies. BMJ Open 6, 1–10. https://doi.org/10.1136/bmjopen-2015-

009493 

14) Atkinson, R.W., Kang, S., Anderson, H.R., Mills, I.C., Walton, H.A., 2014. Epidemiological 

time series studies of PM2.5 and daily mortality and hospital admissions: A systematic review 

and meta-analysis. Thorax 69, 660–665. https://doi.org/10.1136/thoraxjnl-2013-204492 

15) Australia State of the Environment, 2016. Vegetation. 

16) Australian Bureau of Meteorology, 2020. Australian Climate Influences: IOD [WWW 

Document]. URL http://www.bom.gov.au/climate/about/?bookmark=iod 



 

 

277 

17) Australian Bureau of Meteorology, 2019a. Tracking Australia’s climate through 2019 [WWW 

Document]. URL http://www.bom.gov.au/climate/updates/articles/a036.shtml 

18) Australian Bureau of Meteorology, 2019b. Southern Annular Mode [WWW Document]. URL 

http://www.bom.gov.au/climate/about/?bookmark=sam 

19) Australian Bureau of Statistics, 2020. Deaths, Year of occurrence, Age at death, Age-specific 

death rates, Sex, States, Territories and Australia [WWW Document]. URL 

http://stat.data.abs.gov.au/Index.aspx?DataSetCode=DEATHS_AGESPECIFIC_OCCUREN

CEYEAR (accessed 1.7.21). 

20) Australian Bureau of Statistics, 2019. Regional Population Growth, Australia, 2017-18 [WWW 

Document]. URL https://www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/3218.02017-

18?OpenDocument (accessed 1.7.21). 

21) Avery, C.L., Mills, K.T., Williams, R., McGraw, K.A., Poole, C., Smith, R.L., Whitsel, E.A., 

2010. Proxies for Personal Exposures. Epidemiology 21, 215–223. 

https://doi.org/10.1097/EDE.0b013e3181cb41f7.Estimating 

22) Bain, C., Bonn, A., Stoneman, R., Chapman, S., Coupar, A., Evans, M., Gearey, B., Howat, 

M., Joosten, H., Keenleyside, C., Labadz, J., Lindsay, R., Littlewood, N., Lunt, P., Miller, C., 

Moxey, A., Orr, H., Reed, M., Smith, P., Swales, V., Thompson, D., Thompson, P., Van de 

Noort, R., Wilson, J., Worrall, F., 2011. IUCN UK Commission of Inquiry on Peatlands. 

23) Bank of England, 2019. Bank of England 2019 Inflation Calculator [WWW Document]. URL 

https://www.bankofengland.co.uk/monetary-policy/inflation/inflation-

calculator?number.Sections%5B0%5D.Fields%5B0%5D.Value=4900000&start-

year=671.8&end-year=1110.8 

24) Barros, V., Field, C., Dokken, D., Mach, K., Bilir, T., MChatterjee, K., Ebi, K., Estrada, Y., 

Genova, R., Girma, B., Kissel, E., Levy, A., Maccracken, S., Mastandrea, P., White, L., 2014. 

IPCC 2014 Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional 

Aspects.Contribution of Working Group II to the Fifth Assessment Report ofthe 



 

 

278 

Intergovernmental Panel on Climate Change. 

25) Barth, M.C., Rasch, P.J., Kiehl, J.T., Benkovitz, C.M., Schwartz, S.E., 2000. Sulfur chemistry 

in the National Center for Atmospheric Research Community Climate Model: Description, 

evaluation, features, and sensitivity to aqueous chemistry. J. Geophys. Res. Atmos. 105, 1387–

1415. https://doi.org/10.1029/1999JD900773 

26) BBC, 2018. Saddleworth Moorfire is out after more than three weeks. 

27) Beirle, S., Boersma, K.F., Platt, U., Lawrence, M.G., Wagner, T., 2011. Megacity emissions 

and lifetimes of nitrogen oxides probed from space. Science, 333, 1737–1739. 

https://doi.org/10.1126/science.1207824 

28) Black, C., Tesfaigzi, Y., Bassein, J.A., Miller, L.A., 2017. Wildfire smoke exposure and human 

health: Significant gaps in research for a growing public health issue. Environ. Toxicol. 

Pharmacol. 55, 186–195. https://doi.org/10.1016/j.etap.2017.08.022 

29) Boer, M., Resco de Dios, V., Bradstock, R., 2020. Unprecedented burn area of Australian mega 

forest fires. Nat. Clim. Chang. 10, 170. https://doi.org/10.1038/s41558-020-0710-7 

30) Boersma, K.F., Eskes, H.J., Dirksen, R.J., Van Der A, R.J., Veefkind, J.P., Stammes, P., 

Huijnen, V., Kleipool, Q.L., Sneep, M., Claas, J., Leitão, J., Richter, A., Zhou, Y., Brunner, D., 

2011. An improved tropospheric NO2 column retrieval algorithm for the Ozone Monitoring 

Instrument. Atmos. Meas. Tech. 4, 1905–1928. https://doi.org/10.5194/amt-4-1905-2011 

31) Bonan, G.B., Levis, S., Sitch, S., Vertenstein, M., Oleson, K.W., 2003. A dynamic global 

vegetation model for use with climate models: Concepts and description of simulated 

vegetation dynamics. Glob. Chang. Biol. 9, 1543–1566. https://doi.org/10.1046/j.1365-

2486.2003.00681.x 

32) Borchers Arriagada, N., Horsley, J.A., Palmer, A.J., Morgan, G.G., Tham, R., Johnston, F.H., 

2019. Association between fire smoke fine particulate matter and asthma-related outcomes: 

Systematic review and meta-analysis. Environ. Res. 179, 108777. 

https://doi.org/10.1016/j.envres.2019.108777 



 

 

279 

33) Borchers Arriagada, N., Palmer, A.J., Bowman, D.M.J.S., Morgan, G.G., Jalaludin, B.B., 

Johnston, F.H., 2020. Unprecedented smoke-related health burden associated with the 2019–

20 bushfires in eastern Australia. Med. J. Aust. 2019–2020. https://doi.org/10.5694/mja2.50545 

34) Bovbjerg, M., 2020a. Confounding, in: Foundations of Edpidemiology. Oregon State 

University. 

35) Bovbjerg, M., 2020b. Effect Modification, in: Foundations of Edpidemiology. Oregon State 

University. 

36) Boynard, A., Clerbaux, C., Coheur, P.F., Hurtmans, D., Turquety, S., George, M., Hadji-

Lazaro, J., Keim, C., Meyer-Arnek, J., 2009. Measurements of total and tropospheric ozone 

from IASI: Comparison with correlative satellite, ground-based and ozonesonde observations. 

Atmos. Chem. Phys. 9, 6255–6271. https://doi.org/10.5194/acp-9-6255-2009 

37) Brasseur, G.P., Hauglustaine, D.A., Walters, S., Rasch, P.J., Mfiller, J., Granter, C., Tie, X.X., 

1998. MOZART, a global chemical transport model for ozone. Model description (called 

MOZART) developed in the flamework of the NCAR Community Climate Model (CCM) and 

aimed at studying the distribution and budget of tropospheric and boundary layer transp. J. 

Geophys. Res. 103. 

38) Bravo, A.H., Sosa, E.R., Sánchez, A.P., Jaimes, P.M., Saavedra, R.M.I., 2002. Impact of 

wildfires on the air quality of Mexico City, 1992-1999. Environ. Pollut. 117, 243–253. 

https://doi.org/10.1016/S0269-7491(01)00277-9 

39) Brew, N., Richards, L., Smith, L., 2020. 2019–20 Australian bushfires—frequently asked 

questions: a quick guide. 

40) Bryant, R.A., Waters, E., Gibbs, L., Gallagher, H.C., Pattison, P., Lusher, D., Macdougall, C., 

Harms, L., Block, K., Snowdon, E., Sinnott, V., Ireton, G., Richardson, J., Forbes, D., 2014. 

Psychological outcomes following the Victorian Black Saturday bushfires. Aust. N. Z. J. 

Psychiatry 48, 634–643. https://doi.org/10.1177/0004867414534476 

41) Burnett, R., Chen, H., Szyszkowicz, M., Fann, N., Hubbell, B., Pope, C.A., Apte, J.S., Brauer, 



 

 

280 

M., Cohen, A., Weichenthal, S., Coggins, J., Di, Q., Brunekreef, B., Frostad, J., Lim, S.S., Kan, 

H., Walker, K.D., Thurston, G.D., Hayes, R.B., Lim, C.C., Turner, M.C., Jerrett, M., Krewski, 

D., Gapstur, S.M., Diver, W.R., Ostro, B., Goldberg, D., Crouse, D.L., Martin, R. V., Peters, 

P., Pinault, L., Tjepkema, M., Van Donkelaar, A., Villeneuve, P.J., Miller, A.B., Yin, P., Zhou, 

M., Wang, L., Janssen, N.A.H., Marra, M., Atkinson, R.W., Tsang, H., Thach, T.Q., Cannon, 

J.B., Allen, R.T., Hart, J.E., Laden, F., Cesaroni, G., Forastiere, F., Weinmayr, G., Jaensch, A., 

Nagel, G., Concin, H., Spadaro, J. V., 2018. Global estimates of mortality associated with 

longterm exposure to outdoor fine particulate matter. Proc. Natl. Acad. Sci. U. S. A. 115, 9592–

9597. https://doi.org/10.1073/pnas.1803222115 

42) Carlton, A.G., Wiedinmyer, C., Kroll, J.H., 2009. A review of Secondary organic aerosol 

(SOA) formation from isoprene. Atmos. Chem. Phys. 9, 4987–5005. 

https://doi.org/10.5194/acp-9-4987-2009 

43) Carthy, T., Chilton, S., Covey, J., Hopkins, L., Jones-Lee, M., Loomes, G., Pidgeon, N., 

Spencer, A., 1998. On the Contingent Valuation of Safety and the Safety of Contingent 

Valuation: Part 2 - The CV/SG “Chained” Approach. J. Risk Uncertain. 17, 187–214. 

https://doi.org/10.1023/a:1007782800868 

44) Cascio, W.E., 2018. Wildland fire smoke and human health. Sci. Total Environ. 624, 586–595. 

https://doi.org/10.1016/j.scitotenv.2017.12.086 

45) CENR, 2000. Atmospheric Ammonia : Sources and Fate A Review of Ongoing Federal 

Research and. October. 

46) Centre for Ecology and Hydrology, 2018. The European Monitoring and Evaluation 

Programme for the UK (EMEP4UK) [WWW Document]. URL 

http://www.emep4uk.ceh.ac.uk/ (accessed 12.1.18). 

47) Centre for Ecology and Hydrology, 2016. Air Pollution Information System: Ozone [WWW 

Document]. URL http://www.apis.ac.uk/overview/pollutants/overview_o3.htm 

48) Chappuis, J., 1880. Sur le spectre d’absorption de l’ozone. C. R. Acad. Sci. Paris. 91, 985. 



 

 

281 

49) Cheng, L., Mcdonald, K.M., Angle, R.P., Sandhu, H.S., 1998. Forest fire enhanced 

photochemical air pollution. A case study. Atmos. Environ. 32, 673–681. 

https://doi.org/10.1016/S1352-2310(97)00319-1 

50) Cheremisinoff, N.., 2002. Handbook of Air Pollution Prevention and Control, Handbook of Air 

Pollution Prevention and Control. https://doi.org/10.1016/b978-0-7506-7499-7.x5000-7 

51) Chin, M., Ginoux, P., Kinne, S., Torres, O., Holben, B.N., Duncan, B.N., Martin, R. V., Logan, 

J.A., Higurashi, A., Nakajima, T., 2002. Tropospheric aerosol optical thickness from the 

GOCART model and comparisons with satellite and sun photometer measurements. J. Atmos. 

Sci. 59, 461–483. https://doi.org/10.1175/1520-0469(2002)059<0461:taotft>2.0.co;2 

52) Chowdhury, Z., Zheng, M., Schauer, J.J., Sheesley, R.J., Salmon, L.G., Cass, G.R., Russell, 

A.G., 2007. Speciation of ambient fine organic carbon particles and source apportionment of 

PM2.5 in Indian cities. J. Geophys. Res. Atmos. 112. https://doi.org/10.1029/2007JD008386 

53) Chung, S.H., Seinfeld, J.H., 2002. Global distribution and climate forcing of carbonaceous 

aerosols. J. Geophys. Res 107, 4407. https://doi.org/10.1029/2001JD001397 

54) Clean Fuels Development Coalition, 2019. What’s in our gasoline is killing us Mobile Source 

Air Toxics (MSATs) and the Threat to Public Health. 

55) Coggon, D., Barker, D., Rose, G., 2009. Epidemiology for the Uninitiated, 5th ed, Wiley. BMJ 

Books. 

56) Cohen, A.J., Anderson, H.R., Ostro, B., Pandey, K.D., Krzyzanowski, M., Ku¨nzli, N., 

Gutschmidt, K., Pope III, C.A., Romieu, I., Samet, J.M., Smith, K.R., 2004. Comparative 

Quantification of Health Risks Global and Regional Burden of Disease Attributable to Selected 

Major Risk Factors, in: Ezzati, M., Lopez, A.D., Rodgers, A., Murray, C.J. (Eds.), World Health 

Organization. Geneva, Switzerland, pp. 1353–1433. 

57) Committee on the Medical Effects of Air Pollutants, 2010. The Mortality Effects of Long-Term 

Exposure to Particulate Air Pollution in the United Kingdom. https://doi.org/ISBN 978-0-

85951-685-3 



 

 

282 

58) Committee on the Medical Effects of Air Pollutants, 2009. Long-term Exposure to Air 

Pollution: Effect on Mortality. 

59) Conibear, L., Butt, E., Knote, C., Arnold, S., Spracklen, D., 2018a. Residential energy use 

emissions dominate health impacts from exposure to ambient particulate matter in India. Nat. 

Commun. 9, 1–9. https://doi.org/10.1038/s41467-018-02986-7 

60) Conibear, L., Butt, E., Knote, C., Arnold, S., Spracklen, D., 2018b. Stringent Emission Control 

Policies Can Provide Large Improvements in Air Quality and Public Health in India. GeoHealth 

2, 196–211. https://doi.org/10.1029/2018gh000139 

61) Conibear, L., Butt, E., Knote, C., Spracklen, D., Arnold, S., 2018c. Current and Future Disease 

Burden From Ambient Ozone Exposure in India. GeoHealth 2, 334–355. 

https://doi.org/10.1029/2018gh000168 

62) Conibear, L.A., Butt, E.W., Knote, C., Lam, N.L., Arnold, S., Tibrewal, K., Venkataraman, C., 

Spracklen, D. V, Bond, T.C., 2020. A complete transition to clean household energy can save 

one–quarter of the healthy life lost to particulate matter pollution exposure in India. Environ. 

Res. Lett. https://doi.org/10.1088/1748-9326/ab8e8a 

63) Corraini, P., Olsen, M., Pedersen, L., Dekkers, O.M., Vandenbroucke, J.P., 2017. Effect 

modification, interaction and mediation: An overview of theoretical insights for clinical 

investigators. Clin. Epidemiol. 9, 331–338. https://doi.org/10.2147/CLEP.S129728 

64) Crippa, P., Castruccio, S., Archer-Nicholls, S., Lebron, G., Kuwata, M., Thota, A., Sumin, S., 

Butt, E., Wiedinmyer, C., Spracklen, D., 2016. Population exposure to hazardous air quality 

due to the 2015 fires in Equatorial Asia. Sci. Rep. 6, 1–9. https://doi.org/10.1038/srep37074 

65) Crutzen, P., Lawrence, M., Pöschl, U., 1999. On the background photochemistry of 

tropospheric ozone. Tellus B Chem. Phys. Meteorol. 51, 123–146. 

https://doi.org/10.1034/j.1600-0870.1999.t01- 1-00010.x 

66) Cruz Núñez, X., Ruiz, L.V., García, C.G., 2014. Black carbon and organic carbon emissions 

from wildfires in Mexico. Atmosfera 27, 165–172. https://doi.org/10.1016/S0187-



 

 

283 

6236(14)71107-5 

67) Daniels, M., Dominici, F., Samet, J.M., Zeger, S.L., 2000. Estimating Particulate Matter-

Mortality Dose-Response Curves and Threshold Levels: An Analysis of Daily Time-Series for 

the 20 Largest US Cities. Am. J. Epidemiol. 152, 397–406. 

68) Davidson, C.I., Wu, Y.-L., 1990. Dry Deposition of Particles and Vapors. Springer, New York, 

NY, pp. 103–216. https://doi.org/10.1007/978-1-4612-4454-7_5 

69) Davies, G.M., Kettridge, N., Stoof, C.R., Gray, A., Ascoli, D., Fernandes, P.M., Marrs, R., 

Allen, K.A., Doerr, S.H., Clay, G.D., McMorrow, J., Vandvik, V., 2016. The role of fire in UK 

peatland and moorland management: The need for informed, unbiased debate. Philos. Trans. 

R. Soc. B Biol. Sci. 371. https://doi.org/10.1098/rstb.2015.0342 

70) Day, R., Green, C., 2018. The devastating toll of this summer’s moorland wildfires has been 

revealed - as firefighters tackle ANOTHER blaze - Manchester Evening News. Manchester 

Evening News. 

71) Dayan, U., Levy, I., 2004. The Influence of Meteorological Conditions and Atmospheric 

Circulation Types on PM10 and Visibility in Tel Aviv. J. Appl. Meteorol. 44, 606–619. 

72) de Nazelle, A., Rodríguez, D.A., Crawford-Brown, D., 2009. The built environment and health: 

Impacts of pedestrian-friendly designs on air pollution exposure. Sci. Total Environ. 407, 2525–

2535. https://doi.org/10.1016/j.scitotenv.2009.01.006 

73) Delfino, R.J., Brummel, S., Wu, J., Stern, H., Ostro, B., Lipsett, M., Winer, A., Street, D.H., 

Zhang, L., Tjoa, T., Gillen, D.L., Ostro, B., Zhang, L., Street, D.H., Lipsett, M., Brummel, S., 

Delfino, R.J., Gillen, D.L., Stern, H., 2009. The relationship of respiratory and cardiovascular 

hospital admissions to the southern California wildfires of 2003. Occup. Environ. Med. 66, 

189–197. https://doi.org/10.1136/oem.2008.041376 

74) Deloitte UK, 2009. Highways Agency Value of Life Estimates for the Purposes of Project. 

75) Demuzere, M., Trigo, R.M., Vila-Guerau de Arellano, J., van Lipzig, N.P.M., 2009. The impact 

of weather and atmospheric circulation on O3 and PM10 levels at a rural mid-latitude site. 



 

 

284 

Atmos. Chem. Phys. 9, 2695–2714. https://doi.org/10.5194/acp-9-2695-2009 

76) Denman, K.L., Brasseur, G., Chidthaisong, A., Ciais, P., Cox, P.M., Dickinson, R.E., 

Hauglustaine, D., Heinze, C., Holland, E., Jacob, D., Lohmann, U., Ramachandran, S., Dias, 

P.L. da S., Wofsy, S.C., Zhang, X., 2007. Couplings Between Changes in the Climate System 

and Biogeochemistry, Climate Change 2007: The Physical Science Basis. Contribution of 

Working Group I to the Fourth Report of the Intergovernmental Panel on Climate Change. 

Cambridge, United Kingdom and New York, NY, USA. 

77) Dennekamp, M., Abramson, M.J., 2011. The effects of bushfire smoke on respiratory health. 

Respirology 16, 198–209. https://doi.org/10.1111/j.1440-1843.2010.01868.x 

78) Department for Environment Food & Rural Affairs, 2019. Clean air strategy. 

79) Department for Environment Food & Rural Affairs, 2015. A review of the state-of-the-science 

relating to secondary particulate matter of relevance to the composition of the UK atmosphere. 

80) Department for Environment Food & Rural Affairs, 2008. Site Operational Procedures For 

TEOM FDMS Analysers. Wiley. 

81) Department for Environment Food and Rural Affairs, 2018a. Pollutant information. 

82) Department for Environment Food and Rural Affairs, 2018b. Automatic Urban and Rural 

Network (AURN) [WWW Document]. URL https://uk-air.defra.gov.uk/networks/network-

info?view=aurn (accessed 12.10.20). 

83) Department for Environment Food and Rural Affairs, 2017. Improving air quality in the UK: 

tackling nitrogen dioxide in our towns and cities Draft UK Air Quality Plan for tackling 

nitrogen dioxide. 

84) Department for Environment Food and Rural Affairs, 2016. Sources and Effects of PM2.5 

[WWW Document]. Air Pollut. UK. https://doi.org/10.1111/j.1528-1167.2012.03717.x 

85) Department for Environment Food and Rural Affairs, 2011. Emissions of Air Quality 

Pollutants. 

86) Department for Environment Food and Rural Affairs, 2007. The Air Quality Strategy for 



 

 

285 

England , Scotland , Wales and Northern Ireland: Volume 1. 

87) Department for Environment Food and Rural Affairs, Department for Transport, 2017. UK plan 

for tackling roadside nitrogen dioxide concentrations: An overview 1–11. 

88) Department of Environmental Affairs and Tourism, 2018. Air Pollution Dispersion and 

Topographical Effects, in: National Air Quality Management Programme Phase Transition 

Project. pp. 1–113. 

89) Department of Fire and Emergency Services, 2018. Prepare For a Bushfire - Department of Fire 

and Emergency Services [WWW Document]. URL 

https://www.dfes.wa.gov.au/bushfire/prepare/ (accessed 12.11.20). 

90) Deutscher Wetterdienst, 2017. Wetter und Klima - Deutscher Wetterdienst - Überblick [WWW 

Document]. URL 

https://www.dwd.de/EN/research/observing_atmosphere/composition_atmosphere/aerosol/co

nt_nav/particle_size_distribution_node.html (accessed 6.29.20). 

91) Dockery, D.W., Pope III, C.A., Xu, X., Spengler, J.D., Ware, J.H., Fay, M.E., Ferris, B.G., 

Speizer, F.E., 1993. An Association between Air Pollution and Mortality in Six U.S. Cities. N. 

Engl. J. Med. 329, 1753–1759. https://doi.org/10.1056/NEJM199312093292401 

92) Dockery, D.W., Speizer, F.E., Stram, D.O., Ware, J.H., Spengler, J.D., Ferris, B.G., 1989. 

Effects of Inhalable Particles on Respiratory Health of Children. Am. Rev. Respir. Dis. 139, 

587–594. https://doi.org/10.1164/ajrccm/139.3.587 

93) Dore, A.J., Carslaw, D.C., Braban, C., Cain, M., Chemel, C., Conolly, C., Derwent, R.G., 

Griffiths, S.J., Hall, J., Hayman, G., Lawrence, S., Metcalfe, S.E., Redington, A., Simpson, D., 

Sutton, M.A., Sutton, P., Tang, Y.S., Vieno, M., Werner, M., Whyatt, J.D., 2015. Evaluation 

of the performance of different atmospheric chemical transport models and inter-comparison 

of nitrogen and sulphur deposition estimates for the UK. Atmos. Environ. 119, 131–143. 

https://doi.org/10.1016/j.atmosenv.2015.08.008 

94) Ek, M.B., Mitchell, K.E., Lin, Y., Rogers, E., Grunmann, P., Koren, V., Gayno, G., Tarpley, 



 

 

286 

J.D., 2003. Implementation of Noah land surface model advances in the National Centers for 

Environmental Prediction operational mesoscale Eta model. J. Geophys. Res. Atmos. 108, 1–

16. https://doi.org/10.1029/2002jd003296 

95) Emberson, L.D., Pleijel, H., Ainsworth, E.A., van den Berg, M., Ren, W., Osborne, S., Mills, 

G., Pandey, D., Dentener, F., Büker, P., Ewert, F., Koeble, R., Van Dingenen, R., 2018. Ozone 

effects on crops and consideration in crop models. Eur. J. Agron. 100, 19–34. 

https://doi.org/10.1016/j.eja.2018.06.002 

96) Emmons, L.K., Walters, S., Hess, P.G., Lamarque, J.-F., Pfister, G.G., Fillmore, D., Granier, 

C., Guenther, A., Kinnison, D., Laepple, T., Orlando, J., Tie, X., Tyndall, G., Wiedinmyer, C., 

Baughcum, S.L., Kloster, S., 2009. Description and evaluation of the Model for Ozone and 

Related chemical Tracers, version 4 (MOZART-4). Geosci. Model Dev. Discuss. 2, 1157–

1213. https://doi.org/10.5194/gmdd-2-1157-2009 

97) Environment Agency, 2019. Guidance: Monitoring stack emissions: technical guidance for 

selecting a monitoring approach [WWW Document]. URL 

https://www.gov.uk/guidance/monitoring-stack-emissions-technical-guidance-for-selecting-a-

monitoring-approach#the-different-approaches-to-monitoring-stack-emissions 

98) European Comission, 2017. Standards - Air Quality - Environment - European Commission. 

Europa. https://doi.org/10.1016/j.vetimm.2013.04.003 

99) European Environment Agency, 2017a. Air quality in Europe — 2017 report, EEA Technical 

Report. https://doi.org/10.2800/22775 

100) European Environment Agency, 2017b. Air quality standards — European 

Environment Agency [WWW Document]. Eur. Environ. Agency. URL 

https://www.eea.europa.eu/themes/air/air-quality-concentrations/air-quality-standards 

(accessed 6.29.20). 

101) European Environment Agency, 2016. Tropospheric ozone: background information 

[WWW Document]. URL https://www.eea.europa.eu/publications/TOP08-98/page004.html 



 

 

287 

102) European Environment Agency, 2013. Air quality in Europe—2013 Report: EEA 

report no 9/2013, European Union. 

103) European Parliament, C. of the E.U., 2008. DIRECTIVE 2008/50/EC OF THE 

EUROPEAN PARLIAMENT AND OF THE COUNCIL. 

104) Fann, N., Alman, B., Broome, R.A., Morgan, G.G., Johnston, F.H., Pouliot, G., 

Rappold, A.G., 2018. The health impacts and economic value of wildland fire episodes in the 

U.S.: 2008–2012. Sci. Total Environ. 610–611, 802–809. 

https://doi.org/10.1016/j.scitotenv.2017.08.024 

105) Faustini, A., Alessandrini, E.R., Pey, J., Perez, N., Samoli, E., Querol, X., Cadum, E., 

Perrino, C., Ostro, B., Ranzi, A., Sunyer, J., Stafoggia, M., Forastiere, F., Angelini, P., Berti, 

G., Bisanti, L., Catrambone, M., Chiusolo, M., Davoli, M., De’donato, F., Demaria, M., 

Gandini, M., Grosa, M., Ferrari, S., Pandolfi, P., Pelosini, R., Pietrodangelo, A., Pizzi, L., 

Poluzzi, V., Priod, G., Randi, G., Rowinski, M., Scarinzi, C., Stivanello, E., Zauli-Sajani, S., 

Dimakopoulou, K., Elefteriadis, K., Katsouyanni, K., Kelessis, A., Maggos, T., Michalopoulos, 

N., Pateraki, S., Petrakakis, M., Rodopoulou, S., Sypsa, V., Agis, D., Artiñano, B., Barrera-

Gómez, J., Basagaña, X., De La Rosa, J., Diaz, J., Fernandez, R., Jacquemin, B., Karanasiou, 

A., Linares, C., Sanchez, A.M., Tobias, A., Bidondo, M., Declercq, C., Le Tertre, A., Lozano, 

P., Medina, S., Pascal, L., Pascal, M., 2015. Short-term effects of particulate matter on mortality 

during forest fires in Southern Europe: Results of the MED-PARTICLES project. Occup. 

Environ. Med. 72, 323–329. https://doi.org/10.1136/oemed-2014-102459 

106) Fenech, S., Doherty, R.M., Heaviside, C., Macintyre, H.L., O’Connor, F.M., 

Vardoulakis, S., Neal, L., Agnew, P., 2019. Meteorological drivers and mortality associated 

with O3 and PM2.5 air pollution episodes in the UK in 2006. Atmos. Environ. 213, 699–710. 

https://doi.org/10.1016/j.atmosenv.2019.06.030 

107) Finlay, S.E., Moffat, A., Gazzard, R., Baker, D., Murray, V., 2012. Health impacts of 

wildfires. PLoS Curr. 1–23. https://doi.org/10.1371/4f959951cce2c 



 

 

288 

108) Forastiere, F., Stafoggia, M., Tasco, C., Picciotto, S., Agabiti, N., Cesaroni, G., Perucci, 

C.A., 2007. Socioeconomic status, particulate air pollution, and daily mortality: Differential 

exposure or differential susceptibility. Am. J. Ind. Med. 50, 208–216. 

https://doi.org/10.1002/ajim.20368 

109) Franklin, M., Zeka, A., Schwartz, J., 2007. Association between PM2.5 and all-cause 

and specific-cause mortality in 27 US communities. J. Expo. Sci. Environ. Epidemiol. 17, 279–

287. https://doi.org/10.1038/sj.jes.7500530 

110) Freitas, S.R., Longo, K.M., Chatfield, R., Latham, D., Silva Dias, M.A.F., Andreae, 

M.O., Prins, E., Santos, J.C., Gielow, R., Carvalho, J.A., 2007. Including the sub-grid scale 

plume rise of vegetation fires in low resolution atmospheric transport models. Atmos. Chem. 

Phys. 7, 3385–3398. https://doi.org/10.5194/acp-7-3385-2007 

111) Garane, K., Koukouli, M.-E., Verhoelst, T., Fioletov, V., Lerot, C., Heue, K.-P., Bais, 

A., Balis, D., Bazureau, A., Dehn, A., Goutail, F., Granville, J., Griffin, D., Hubert, D., 

Keppens, A., Lambert, J.-C., Loyola, D., McLinden, C., Pazmino, A., Pommereau, J.-P., 

Redondas, A., Romahn, F., Valks, P., Van Roozendael, M., Xu, J., Zehner, C., Zerefos, C., 

Zimmer, W., 2019. TROPOMI/S5P total ozone column data: global ground-based validation 

&amp; consistency with other satellite missions. Atmos. Meas. Tech. Discuss. 1–38. 

https://doi.org/10.5194/amt-2019-147 

112) GBD Collaborators 2015, 2018. Global, regional, and national comparative risk 

assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters 

of risks for 195 countries and territories, 1990-2017: A systematic analysis for the Global 

Burden of Disease Stu. Lancet 392, 1923–1994. https://doi.org/10.1016/S0140-

6736(18)32225-6 

113) GBD Collaborators 2015, 2017. Estimates and 25-year trends of the global burden of 

disease attributable to ambient air pollution: an analysis of data from the Global Burden of 

Diseases Study 2015. Lancet 389, 1907–1918. https://doi.org/10.1016/S0140-6736(17)30505-



 

 

289 

6 

114) GBD Collaborators 2015, 2016. Global, regional, and national comparative risk 

assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters 

of risks, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 

388, 1659–1724. https://doi.org/10.1016/S0140-6736(16)31679-8 

115) Georgiou, G.K., Christoudias, T., Proestos, Y., Kushta, J., Hadjinicolaou, P., Lelieveld, 

J., 2018. Air quality modelling in the summer over the eastern Mediterranean using WRF-

Chem: Chemistry and aerosol mechanism intercomparison. Atmos. Chem. Phys. 18, 1555–

1571. https://doi.org/10.5194/acp-18-1555-2018 

116) Gerbig, C., Schmitgen, S., Kley, D., Volz-thomas, A., Dewey, K., 1999. An improved 

fast-response vacuum-UV resonance fluorescence CO instrument. J. Geophys. Res. 104, 1699–

1704. 

117) Geron, C., Hays, M., 2013. Air emissions from organic soil burning on the coastal plain 

of North Carolina. Atmos. Environ. 64, 192–199. 

https://doi.org/10.1016/j.atmosenv.2012.09.065 

118) Giglio, L., Randerson, J.T., Van Der Werf, G.R., 2013. Analysis of daily, monthly, and 

annual burned area using the fourth-generation global fire emissions database (GFED4). J. 

Geophys. Res. Biogeosciences 118, 317–328. https://doi.org/10.1002/jgrg.20042 

119) Ginoux, P., Chin, M., Tegen, I., Goddard, T., In-, G., 2001. Sources and distributions 

of dust aerosols simulated with the GOCART model. J. Geophys. Res. 106, 20255–20273. 

120) Gorshelev, V., Serdyuchenko, A., Weber, M., Chehade, W., Burrows, J.P., 2014. High 

spectral resolution ozone absorption cross-sections - Part 1: Measurements, data analysis and 

comparison with previous measurements around 293 K. Atmos. Meas. Tech. 7, 609–624. 

https://doi.org/10.5194/amt-7-609-2014 

121) Gowers, A.M., Miller, B.G., Stedman, J.R., 2014. Estimating Local Mortality Burdens 

associated with Particulate Air Pollution About Public Health England. 



 

 

290 

122) Greater Manchester Combined Authority, 2019. Response to Freedom of Information 

Request 1920-057. 

123) Grell, G.A., 1993. Prognostic Evaluation of Assumptions Used by Cumulus 

Parameterisations. Mon. Weather Rev. 764–787. 

124) Grell, G.A., Peckham, S.E., Schmitz, R., McKeen, S.A., Frost, G., Skamarock, W.C., 

Eder, B., 2005. Fully coupled “online” chemistry within the WRF model. Atmos. Environ. 39, 

6957–6975. https://doi.org/10.1016/j.atmosenv.2005.04.027 

125) Grundström, M., Dahl, Å., Ou, T., Chen, D., Pleijel, H., 2017. The relationship between 

birch pollen, air pollution and weather types and their effect on antihistamine purchase in two 

Swedish cities. Aerobiologia (Bologna). 33, 457–471. https://doi.org/10.1007/s10453-017-

9478-2 

126) Grundstrom, M., Tang, L., Hallquist, M., Nguyen, H., Chen, D., Pleijel, H., 2015. 

Influence of atmospheric circulation patterns on urban air quality during the winter. Atmos. 

Pollut. Res. 6, 278–285. https://doi.org/10.5094/APR.2015.032 

127) Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P.I., Geron, C., 2006. 

Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases 

and Aerosols from Nature). Atmos. Chem. Phys. 6, 3181–3210. https://doi.org/10.5194/acp-6-

3181-2006 

128) Guerreiro, S.B., Dawson, R.J., Kilsby, C., Lewis, E., Ford, A., 2018. Future heat-

waves, droughts and floods in 571 European cities. Environ. Res. Lett. 13. 

https://doi.org/10.1088/1748-9326/aaaad3 

129) Guria, J., Leung, J., Jones-Lee, M., Loomes, G., 2005. The willingness to accept value 

of statistical life relative to the willingness to pay value: Evidence and policy implications. 

Environ. Resour. Econ. 32, 113–127. https://doi.org/10.1007/s10640-005-6030-6 

130) Hack, J.J., 1994. Parameterization of moist convection in the National Center for 

Atmospheric Research community climate model (CCM2). J. Geophys. Res. 99, 5551–5568. 



 

 

291 

https://doi.org/10.1029/93JD03478 

131) Hamilton, D.S., Hantson, S., Scott, C.E., Kaplan, J.O., Pringle, K.J., Nieradzik, L.P., 

Rap, A., Folberth, G.A., Spracklen, D. V., Carslaw, K.S., 2018. Reassessment of pre-industrial 

fire emissions strongly affects anthropogenic aerosol forcing. Nat. Commun. 9. 

https://doi.org/10.1038/s41467-018-05592-9 

132) Hänninen, O.O., Salonen, R.O., Koistinen, K., Lanki, T., Barregard, L., Jantunen, M., 

2009. Population exposure to fine particles and estimated excess mortality in Finland from an 

East European wildfire episode. J. Expo. Sci. Environ. Epidemiol. 19, 414–422. 

https://doi.org/10.1038/jes.2008.31 

133) Harris, N.R.P., Carpenter, L.J., Lee, J.D., Vaughan, G., Filus, M.T., Jones, R.L., 

Ouyang, B., Pyle, J.A., Robinson, A.D., Andrews, S.J., Lewis, A.C., Minaeian, J., Vaughan, 

A., Dorsey, J.R., Gallagher, M.W., Le Breton, M., Newton, R., Percival, C.J., Ricketts, H.M.A., 

Bauguitte, S.J.B., Nott, G.J., Wellpott, A., Ashfold, M.J., Flemming, J., Butler, R., Palmer, P.I., 

Kaye, P.H., Stopford, C., Chemel, C., Boesch, H., Humpage, N., Vick, A., MacKenzie, A.R., 

Hyde, R., Angelov, P., Meneguz, E., Manning, A.J., 2017. Coordinated airborne studies in the 

tropics (CAST). Bull. Am. Meteorol. Soc. 98, 145–162. https://doi.org/10.1175/BAMS-D-14-

00290.1 

134) Harrison, R.M., 2014. Pollution: Causes, Effects and Control - Google Books, 5th ed. 

Royal Society of Chemistry, London. 

135) Harrison, R.M., Jones, A.M., Beddows, D.C.S., Derwent, R.G., 2013. The effect of 

varying primary emissions on the concentrations of inorganic aerosols predicted by the 

enhanced UK Photochemical Trajectory Model. Atmos. Environ. 69, 211–218. 

https://doi.org/10.1016/j.atmosenv.2012.12.016 

136) Harrison, R.M., Laxen, D., Moorcroft, S., Laxen, K., 2012. Processes affecting 

concentrations of fine particulate matter (PM2.5) in the UK atmosphere. Atmos. Environ. 46, 

115–124. https://doi.org/10.1016/j.atmosenv.2011.10.028 



 

 

292 

137) Harrison, R.M., Smith, D.J.T., Kibble, A.J., 2004. What is responsible for the 

carcinogenicity of PM2.5? Occup. Environ. Med. 61, 799–805. 

https://doi.org/10.1136/oem.2003.010504 

138) Harrison, R.M., Yin, J., 2000. Particulate matter in the atmosphere: Which particle 

properties are important for its effects on health? Sci. Total Environ. 249, 85–101. 

https://doi.org/10.1016/S0048-9697(99)00513-6 

139) HelasGand Pienaar, J., 1996. The influence of vegetation fires on the chemical 

composition of the atmosphere. S. Afr. J. Sci. 92, 132–136. 

140) HM Government, 2012. UK Climate Change Risk Assessment. 

141) Hodzic, A., Knote, C., 2014. MOZART gas-phase chemistry with MOSAIC aerosols 

7. 

142) Hodzic, A., Madronich, S., Bonn, B., Massie, S., Menut, L., Wiedinmyer, C., 2007. 

Wildfire particulate matter in Europe during summer 2003: Meso-scale modeling of smoke 

emissions, transport and radiative effects. Atmos. Chem. Phys. 7, 4043–4064. 

https://doi.org/10.5194/acp-7-4043-2007 

143) Hoelzemann, J.J., Schultz, M.G., Brasseur, G.P., Granier, C., Simon, M., 2004. Global 

Wildland Fire Emission Model (GWEM): Evaluating the use of global area burnt satellite data. 

J. Geophys. Res 109, 14–18. https://doi.org/10.1029/2003JD003666 

144) Hoffmann, L., Günther, G., Li, D., Stein, O., Wu, X., Griessbach, S., Heng, Y., 

Konopka, P., Müller, R., Vogel, B., Wright, J.S., 2018. From ERA-Interim to ERA5: 

considerable impact of ECMWF’s next-generation reanalysis on Lagrangian transport 

simulations. Atmos. Chem. Phys. Discuss. 1–38. https://doi.org/10.5194/acp-2018-1199 

145) Holgate, S., 1998. Quantification ofthe Effects ofAir Pollution on Health in the United 

Kingdom. The Stationary Office, London. 

146) Holtslag, B., Boville, A., 1993. Local Versus Nonlocal Boundary-Layer Diffusion in a 

Global Climate Model. J. Clim. 6, 1825–1842. https://doi.org/https://doi.org/10.1175/1520-



 

 

293 

0442(1993)006<1825:LVNBLD>2.0.CO;2 

147) Horowitz, L.W., 2006. Past, present and future concentrations of tropospheric ozone 

and aerosols: Methodology, ozone evaluation, and sensitivity to aerosol wet removal. J. 

Geophys. Res. Atmos. 111, 22211. https://doi.org/10.1029/2005JD006937 

148) Horowitz, L.W., Walters, S., Mauzerall, D.L., Emmons, L.K., Rasch, P.J., Granier, C., 

Tie, X., Lamarque, J.F., Schultz, M.G., Tyndall, G.S., Orlando, J.J., Brasseur, G.P., 2003. A 

global simulation of tropospheric ozone and related tracers: Description and evaluation of 

MOZART, version 2. J. Geophys. Res. Atmos. 108. https://doi.org/10.1029/2002jd002853 

149) Howards, P.P., 2018. An overview of confounding. Part 1: the concept and how to 

address it. Acta Obstet. Gynecol. Scand. 97, 394–399. https://doi.org/10.1111/aogs.13295 

150) Hu, X.M., 2015. Boundary Layer (Atmospheric) and Air Pollution: Air Pollution 

Meteorology. Encycl. Atmos. Sci. Second Ed. 1, 227–236. https://doi.org/10.1016/B978-0-12-

382225-3.00499-0 

151) Hu, Y., Fernandez-Anez, N., Smith, T.E.L., Rein, G., 2018. Review of emissions from 

smouldering peat fires and their contribution to regional haze episodes. Int. J. Wildl. Fire 27, 

293–312. https://doi.org/10.1071/WF17084 

152) Iacono, M.J., Delamere, J.S., Mlawer, E.J., Shephard, M.W., Clough, S.A., Collins, 

W.D., 2008. Radiative forcing by long-lived greenhouse gases: Calculations with the AER 

radiative transfer models. J. Geophys. Res 113, 13103. https://doi.org/10.1029/2008JD009944 

153) Institute for Health Metrics and Evaluation, 2018. GBD Compare Data Visualization 

[WWW Document]. URL https://vizhub.healthdata.org/gbd-compare/ (accessed 3.6.18). 

154) Institute for Health Metrics and Evaluation, 2015. GBD Compare: IHME Viz Hub 

[WWW Document]. Glob. Burd. Dis. https://doi.org/http://ihmeuw.org/3pgz 

155) Jaakkola, J., 2003. Case-crossover design in air pollution epidemiology. Eur. Respir. 

Journal, Suppl. 21. https://doi.org/10.1183/09031936.03.00402703 

156) Jacob, D., 2006. Chapter 1: Chemical Trace Models - An Introduction. Atmos. Model. 



 

 

294 

Transp. Chem. 1–9. 

157) Jacob, D.J., 2000. Introduction to atmospheric chemistry. Choice Rev. Online 37, 37-

6318-37–6318. https://doi.org/10.5860/choice.37-6318 

158) Jaffe, D.A., Wigder, N.L., 2012. Ozone production from wildfires: A critical review. 

Atmos. Environ. 51, 1–10. https://doi.org/10.1016/j.atmosenv.2011.11.063 

159) Janssens-Maenhout, G., Crippa, M., Guizzardi, D., Dentener, F., Muntean, M., Pouliot, 

G., Keating, T., Zhang, Q., Kurokawa, J., Wankmüller, R., Denier Van Der Gon, H., Kuenen, 

J.J.P., Klimont, Z., Frost, G., Darras, S., Koffi, B., Li, M., 2015. HTAP-v2.2: A mosaic of 

regional and global emission grid maps for 2008 and 2010 to study hemispheric transport of air 

pollution. Atmos. Chem. Phys. 15, 11411–11432. https://doi.org/10.5194/acp-15-11411-2015 

160) Janssens-Maenhout, G., Pagliari, V., Guizzardi, D., Muntean, M., 2013. Global 

emission inventories in the Emission Database for Global Atmospheric Research (EDGAR)–

Manual (I). https://doi.org/10.2788/81454 

161) Jenkinson, A., Collison, F., 1977. An Initial Climatology of Gales over the North Sea, 

Synoptic Branch Memorandum. 

162) Jerrett, M., Burnett, R.T., Pope III, C.A., Ito, K., Thurston, G., Krewski, D., Shi, Y., 

Calle, E., Thun, M., 2009. Long-Term Ozone Exposure and Mortality. N. Engl. J. Med. 360, 

1085–1095. https://doi.org/10.1056/nejmoa0803894 

163) Jiang, Y., Lu, Z., Liu, X., Qian, Y., Zhang, K., Wang, Y., Yang, X.Q., 2016. Impacts 

of global open-fire aerosols on direct radiative, cloud and surface-albedo effects simulated with 

CAM5. Atmos. Chem. Phys. 16, 14805–14824. https://doi.org/10.5194/acp-16-14805-2016 

164) Johnston, F., Hanigan, I., Henderson, S., Morgan, G., Bowman, D., 2011. Extreme air 

pollution events from bushfires and dust storms and their association with mortality in Sydney, 

Australia 1994-2007. Environ. Res. 111, 811–816. 

https://doi.org/10.1016/j.envres.2011.05.007 

165) Johnston, F.H., Henderson, S.B., Chen, Y., Marlier, M., DeFries, R.S., Kinney, P., 



 

 

295 

Bowman, D.M.J.S., Randerson, J.T., Marlier, M., DeFries, R.S., Kinney, P., Bowman, 

D.M.J.S., Brauer, M., 2012. Estimated global mortality attributable to smoke from landscape 

fires. Environ. Health Perspect. 120, 695–701. https://doi.org/10.1289/ehp.1104422 

166) Johnston, F.H., Purdie, S., Jalaludin, B., Martin, K.L., Henderson, S.B., Morgan, G.G., 

2014. Air pollution events from forest fires and emergency department attendances in Sydney, 

Australia 1996-2007: A case-crossover analysis. Environ. Heal. A Glob. Access Sci. Source 

13, 1–9. https://doi.org/10.1186/1476-069X-13-105 

167) Jones, P.D., Harpham, C., Briffa, K.R., 2013. Lamb weather types derived from 

reanalysis products. Int. J. Climatol. 33, 1129–1139. https://doi.org/10.1002/joc.3498 

168) Jones, R.R., Hogrefe, C., Fitzgerald, E.F., Hwang, S., Garcia, V.C., Lin, S., Jones, R.R., 

Hogrefe, C., Fitzgerald, E.F., Hwang, S., Özkaynak, H., Garcia, V.C., Lin, S., Jones, R.R., 

Hogrefe, C., Fitzgerald, E.F., Hwang, S., Özkaynak, H., Garcia, V.C., Lin, S., 2015. Respiratory 

hospitalizations in association with fine PM and its components in New York State Respiratory 

hospitalizations in association with fine PM and its components in New York State. J. Air Waste 

Manage. Assoc. 65, 559–569. https://doi.org/10.1080/10962247.2014.1001500 

169) Kalnay, E., Collins, W., Deaven, D., Gandin, L., Iredell, M., Jenne, R., Joseph, D., 

1996. The NCEP_NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 77, 437–472. 

170) Kanamitsu, M., 1989. Description of the NMC Global Data Assimilation and Forecast 

System. Weather Forecast. 4, 335–342. https://doi.org/10.1175/1520-

0434(1989)004<0335:DOTNGD>2.0.CO;2 

171) Kanjo, E., Younis, E.M.G., Sherkat, N., 2018. Towards unravelling the relationship 

between on-body, environmental and emotion data using sensor information fusion approach. 

Inf. Fusion 40, 18–31. https://doi.org/10.1016/j.inffus.2017.05.005 

172) Katayama, D.H., 1986. The UV Huggins bands of ozone. J. Chem. Phys. 85, 6809–

6810. https://doi.org/10.1063/1.451416 

173) Kiely, L., Spracklen, D. V., Wiedinmyer, C., Conibear, L., Reddington, C.L., Archer-



 

 

296 

Nicholls, S., Lowe, D., Arnold, S.R., Knote, C., Firoz Khan, M., Talib Latif, M., Kuwata, M., 

Hapsari Budisulistiorini, S., Syaufina, L., 2019. New estimate of particulate emissions from 

Indonesian peat fires in 2015. Atmos. Chem. Phys. 19, 11105–11121. 

https://doi.org/10.5194/acp-19-11105-2019 

174) Kiely, L., Spracklen, D. V, Wiedinmyer, C., Conibear, L.A., Reddington, C.L., Arnold, 

S.R., Knote, C., Khan, M.F., Latif, M.T., Syaufina, L., Adrianto, H.A., 2020. Air quality and 

health impacts of vegetation and peat fires in Equatorial Asia during 2004 – 2015. Environ. 

Res. Lett. https://doi.org/10.1088/1748-9326/ab9a6c 

175) Kim, Y., Tong, H., Daniels, M., Boykin, E., Krantz, Q., McGee, J., Hays, M., Kovalcik, 

K., Dye, J.A., Gilmour, M., 2014. Cardiopulmonary toxicity of peat wildfire particulate matter 

and the predictive utility of precision cut lung slices. Part. Fibre Toxicol. 11, 29. 

https://doi.org/10.1186/1743-8977-11-29 

176) Kim, Y.H., King, C., Krantz, T., Hargrove, M.M., George, I.J., McGee, J., Copeland, 

L., Hays, M.D., Landis, M.S., Higuchi, M., Gavett, S.H., Gilmour, M.I., 2019. The role of fuel 

type and combustion phase on the toxicity of biomass smoke following inhalation exposure in 

mice. Arch. Toxicol. 93, 1501–1513. https://doi.org/10.1007/s00204-019-02450-5 

177) Kim, Y.H., Warren, S.H., Krantz, Q.T., King, C., Jaskot, R., Preston, W.T., George, 

B.J., Hays, M.D., Landis, M.S., Higuchi, M., Demarini, D.M., Gilmour, M.I., 2018. 

Mutagenicity and lung toxicity of smoldering vs. flaming emissions from various biomass 

fuels: Implications for health effects from wildland fires. Environ. Health Perspect. 126, 1–14. 

https://doi.org/10.1289/EHP2200 

178) King, A., Dorling, S., 1997. New directions special issue on the origins of PM10 

particulate matter: particulate matter PM10 - the significance of ambient levels. Atmos. Environ. 

31, 2379–2381. https://doi.org/https://doi.org/10.1016/S1352-2310(97)00001-0 

179) Kivimäki, M., Vineis, P., Brunner, E.J., 2015. How can we reduce the global burden of 

disease? Lancet 386, 2235–2237. https://doi.org/10.1016/S0140-6736(15)00129-4 



 

 

297 

180) Klemm, R.J., Mason, R.M., Heilig, C.M., Neas, L.M., Dockery, D.W., 2000. Is daily 

mortality associated specifically with fine particles? data reconstruction and replication of 

analyses. J. Air Waste Manag. Assoc. 50, 1215–1222. 

https://doi.org/10.1080/10473289.2000.10464149 

181) Knote, C., Hodzic, A., Jimenez, J.L., 2014. The effect of dry and wet deposition of 

condensable vapors on secondary organic aerosols concentrations over the continental US, 

Atmospheric Chemistry and Physics Discussions. https://doi.org/10.5194/acpd-14-13731-2014 

182) Knote, C, Hodzic, A., Jimenez, J.L., Volkamer, R., Orlando, J.J., Baidar, S., Brioude, 

J., Fast, J., Gentner, D.R., Goldstein, A.H., Hayes, P.L., Knighton, W.B., Oetjen, H., Setyan, 

A., Stark, H., Thalman, R., Tyndall, G., Washenfelder, R., Waxman, E., Zhang, Q., 2014. SOA 

formation from glyoxal in a 3-D model Atmospheric Chemistry and Physics Simulation of 

semi-explicit mechanisms of SOA formation from glyoxal in a 3-D model SOA formation from 

glyoxal in a 3-D model. Atmos. Chem. Phys. Discuss 13, 26699–26759. 

https://doi.org/10.5194/acpd-13-26699-2013 

183) Kochi, I., Champ, P.A., Loomis, J.B., Donovan, G.H., 2012. Valuing mortality impacts 

of smoke exposure from major southern California wildfires. J. For. Econ. 18, 61–75. 

https://doi.org/10.1016/j.jfe.2011.10.002 

184) Kollanus, V., Prank, M., Gens, A., Soares, J., Vira, J., Kukkonen, J., Sofiev, M., 

Salonen, R.O., Lanki, T., 2017. Mortality due to Vegetation Fire–Originated PM2.5 Exposure 

in Europe—Assessment for the Years 2005 and 2008. Environ. Health Perspect. 125, 30–37. 

https://doi.org/10.1289/EHP194 

185) Konovalov, I.B., Beekmann, M., Kuznetsova, I.N., Yurova, A., Zvyagintsev, A.M., 

2011. Atmospheric impacts of the 2010 Russian wildfires: Integrating modelling and 

measurements of an extreme air pollution episode in the Moscow region. Atmos. Chem. Phys. 

11, 10031–10056. https://doi.org/10.5194/acp-11-10031-2011 

186) Krawchuk, M.A., Moritz, M.A., Parisien, M.A., Van Dorn, J., Hayhoe, K., 2009. 



 

 

298 

Global pyrogeography: The current and future distribution of wildfire. PLoS One 4. 

https://doi.org/10.1371/journal.pone.0005102 

187) Kroll, J.H., Seinfeld, J.H., 2008. Chemistry of secondary organic aerosol: Formation 

and evolution of low-volatility organics in the atmosphere. Atmos. Environ. 42, 3593–3624. 

https://doi.org/10.1016/j.atmosenv.2008.01.003 

188) Krupnick, A., Harrison, K., Nickell, E., Toman, M., 1996. The value of health benefits 

from ambient air quality improvements in Central and Eastern Europe: An exercise in benefits 

transfer. Environ. Resour. Econ. 7, 307–332. https://doi.org/10.1007/bf00369622 

189) Kuenen, J.J.P., Visschedijk, A.J.H., Jozwicka, M., Denier Van Der Gon, H.A.C., 2014. 

TNO-MACC-II emission inventory; A multi-year (2003-2009) consistent high-resolution 

European emission inventory for air quality modelling. Atmos. Chem. Phys. 14, 10963–10976. 

https://doi.org/10.5194/acp-14-10963-2014 

190) Kushta, J., Pozzer, A., Lelieveld, J., 2018. Uncertainties in estimates of mortality 

attributable to ambient PM2.5 in Europe. Environ. Res. Lett. 13. https://doi.org/10.1088/1748-

9326/aabf29 

191) Laden, F., Neas, L.M., Dockery, D.W., Schwarts, J., 2000. Association of Fine 

Particulate Matter from Different Sources with Daily Mortality in Six U.S. Environ. Health 

Perspect. 108, 941–947. 

192) Lamb, H., 1972. British Isles weather types and a register of daily sequence of 

circulation patterns. Geophys. Mem. 116, 1861–1971. 

193) Lambert, J.-C., Keppens, A., Hubert, D., Langerock, B., Eichmann, K.-U., Kleipool, 

Q., Sneep, M., Verhoelst, T., Wagner, T., Weber, M., Ahn, C., Argyrouli, A., Balis, D., Chan, 

K.L., Compernolle, S., Smedt, I. De, Eskes, H., Fjæraa, A.M., Garane, K., Gleason, J.F., 

Goutail, F., Granville, J., Hedelt, P., Heue, K.-P., Jaross, G., Koukouli, M., Landgraf, J., Lutz, 

R., Niemejer, S., Pazmiño, A., Pinardi, G., Pommereau, J.-P., Richter, A., Rozemeijer, N., Sha, 

M.K., Zweers, D.S., Theys, N., Tilstra, G., Torres, O., Valks, P., Vigouroux, C., P. Wang, 2019. 



 

 

299 

Sentinel-5 Precursor Mission Performance Centre Quarterly Validation Report of the 

Copernicus Sentinel-5 Precursor Operational Data Products # 03 : July 2018 – May 2019. S5P 

MPC Routine Oper. Consol. Valid. Rep. Ser. 2, 1–125. 

194) Landis, M.S., Edgerton, E.S., White, E.M., Wentworth, G.R., Sullivan, A.P., Dillner, 

A.M., 2018. The impact of the 2016 Fort McMurray Horse River Wildfire on ambient air 

pollution levels in the Athabasca Oil Sands Region, Alberta, Canada. Sci. Total Environ. 618, 

1665–1676. https://doi.org/10.1016/j.scitotenv.2017.10.008 

195) Lane, T.E., Donahue, N.M., Pandis, S.N., 2008a. Simulating secondary organic aerosol 

formation using the volatility basis-set approach in a chemical transport model. Atmos. 

Environ. 42, 7439–7451. https://doi.org/10.1016/j.atmosenv.2008.06.026 

196) Lane, T.E., Donahue, N.M., Pandis, S.N., 2008b. Effect of NOx on secondary organic 

aerosol concentrations. Environ. Sci. Technol. 42, 6022–6027. 

https://doi.org/10.1021/es703225a 

197) Lee, H., 2019. Bushfires Release Over Half Australia’s Annual Carbon Emissions. 

Bloom. Green. 

198) Lee, J.D., Moller, S.J., Read, K.A., Lewis, A.C., Mendes, L., Carpenter, L.J., 2009. 

Year-round measurements of nitrogen oxides and ozone in the tropical North Atlantic marine 

boundary layer. J. Geophys. Res. Atmos. 114, 1–14. https://doi.org/10.1029/2009JD011878 

199) LeGrand, S.L., Polashenski, C., Letcher, T.W., Creighton, G.A., Peckham, S.E., 

Cetola, J.D., 2019. The AFWA dust emission scheme for the GOCART aerosol model in WRF-

Chem v3.8.1. Geosci. Model Dev. 12, 131–166. https://doi.org/10.5194/gmd-12-131-2019 

200) Lelieveld, J., Evans, J.S., Fnais, M., Giannadaki, D., Pozzer, A., 2015. The contribution 

of outdoor air pollution sources to premature mortality on a global scale. Nature 525, 367–371. 

https://doi.org/10.1038/nature15371 

201) Li, Z., Zang, Z., Li, Q.B., Chao, Y., Chen, D., Ye, Z., Liu, Y., Liou, K.N., 2013. A 

three-dimensional variational data assimilation system for multiple aerosol species with WRF-



 

 

300 

Chem and an application to PM2.5 prediction. Atmos. Chem. Phys. 13, 4265–4278. 

https://doi.org/10.5194/acp-13-4265-2013 

202) Liang, J., 2013. Particulate matter, in: Chemical Modeling for Air Resources. Elsevier, 

pp. 189–219. https://doi.org/10.1016/B978-0-12-408135-2.00009-4 

203) Lin, J., Nielsen, C.P., Zhao, Y., Lei, Y., Liu, Y., McElroy, M.B., 2010. Recent changes 

in particulate air pollution over china observed from space and the ground: Effectiveness of 

emission control. Environ. Sci. Technol. 44, 7771–7776. https://doi.org/10.1021/es101094t 

204) Lin, S.J., Rood, R.B., 1996. Multidimensional flux-form semi-lagrangian transport 

schemes. Mon. Weather Rev. 124, 2046–2070. https://doi.org/10.6052/j.issn.1000-

4750.2015.05.0420 

205) Liu, C., Chen, R., Sera, F., Vicedo-Cabrera, A.M., Guo, Y., Tong, S., Coelho, M.S.Z.S., 

Saldiva, P.H.N., Lavigne, E., Matus, P., Valdes Ortega, N., Osorio Garcia, S., Pascal, M., 

Stafoggia, M., Scortichini, M., Hashizume, M., Honda, Y., Hurtado-Díaz, M., Cruz, J., Nunes, 

B., Teixeira, J.P., Kim, H., Tobias, A., Íñiguez, C., Forsberg, B., Åström, C., Ragettli, M.S., 

Guo, Y.-L., Chen, B.-Y., Bell, M.L., Wright, C.Y., Scovronick, N., Garland, R.M., Milojevic, 

A., Kyselý, J., Urban, A., Orru, H., Indermitte, E., Jaakkola, J.J.K., Ryti, N.R.I., Katsouyanni, 

K., Analitis, A., Zanobetti, A., Schwartz, J., Chen, J., Wu, T., Cohen, A., Gasparrini, A., Kan, 

H., 2019. Ambient Particulate Air Pollution and Daily Mortality in 652 Cities. N. Engl. J. Med. 

381, 705–715. https://doi.org/10.1056/nejmoa1817364 

206) Liu, F., Beirle, S., Zhang, Q., Dörner, S., He, K., Wagner, T., 2016. NOx lifetimes and 

emissions of cities and power plants in polluted background estimated by satellite observations. 

Atmos. Chem. Phys. 16, 5283–5298. https://doi.org/10.5194/acp-16-5283-2016 

207) Liu, J.C., Pereira, G., Uhl, S.A., Bravo, M.A., Bell, M.L., 2015. A systematic review 

of the physical health impacts from non-occupational exposure to wildfire smoke. Environ. 

Res. 136, 120–132. https://doi.org/10.1016/j.envres.2014.10.015 

208) Liu, T., Mickley, L.J., Marlier, M.E., DeFries, R.S., Khan, M.F., Latif, M.T., 



 

 

301 

Karambelas, A., 2020. Diagnosing spatial biases and uncertainties in global fire emissions 

inventories: Indonesia as regional case study. Remote Sens. Environ. 237, 111557. 

https://doi.org/10.1016/j.rse.2019.111557 

209) Liu, Y., Goodrick, S., Heilman, W., 2014. Wildland fire emissions, carbon, and 

climate: Wildfire-climate interactions. For. Ecol. Manage. 317, 80–96. 

https://doi.org/10.1016/j.foreco.2013.02.020 

210) Liu, Y., Stanturf, J., Goodrick, S., 2010. Trends in global wildfire potential in a 

changing climate. For. Ecol. Manage. 259, 685–697. 

https://doi.org/10.1016/j.foreco.2009.09.002 

211) Liu, Y., Zhao, N., Vanos, J.K., Cao, G., 2017. Effects of synoptic weather on ground-

level PM2.5 concentrations in the United States. Atmos. Environ. 148, 297–305. 

https://doi.org/10.1016/j.atmosenv.2016.10.052 

212) Lobert, J., Warnatz, J., 1993. Emissions from the combustion process in vegetation. 

Fire Environ. 13, 15–37. 

213) Long, C.M., Nascarella, M.A., Valberg, P.A., 2013. Carbon black vs. black carbon and 

other airborne materials containing elemental carbon: Physical and chemical distinctions. 

Environ. Pollut. 181, 271–286. https://doi.org/10.1016/j.envpol.2013.06.009 

214) Lu, Z., Sokolik, I.N., 2013. The effect of smoke emission amount on changes in cloud 

properties and precipitation: A case study of Canadian boreal wildfires of 2007. J. Geophys. 

Res. Atmos. 118, 11,777-11,793. https://doi.org/10.1002/2013JD019860 

215) Lucas, C., Hennessy, K., Mills, G., Bathols, J., 2007. Bushfire Weather in Southeast 

Australia : Recent Trends and Projected Climate Change Impacts. Consult. Rep. Prep. Clim. 

Inst. Aust. 84. 

216) Macintyre, H.L., Heaviside, C., Neal, L.S., Agnew, P., Thornes, J., Vardoulakis, S., 

2016. Mortality and emergency hospitalizations associated with atmospheric particulate matter 

episodes across the UK in spring 2014. Environ. Int. 97, 108–116. 



 

 

302 

https://doi.org/10.1016/j.envint.2016.07.018 

217) Madronich, S., Weller, G., 1990. Numerical integration errors in calculated 

tropospheric photodissociation rate coefficients. J. Atmos. Chem. 10, 289–300. 

https://doi.org/10.1007/BF00053864 

218) Mahowald, N.M., Lamarque, J.F., Tie, X.X., Wolff, E., 2006. Sea-salt aerosol response 

to climate change: Last Glacial Maximum, preindustrial, and doubled carbon dioxide climates. 

J. Geophys. Res. Atmos. 111, 1–11. https://doi.org/10.1029/2005JD006459 

219) Marmot, M., Bell, R., 2012. Fair society, healthy lives (Full report). Public Health 126, 

S4–S10. https://doi.org/10.1016/j.puhe.2012.05.014 

220) Marsh, D.R., Mills, M.J., Kinnison, D.E., Lamarque, J.F., Calvo, N., Polvani, L.M., 

2013. Climate change from 1850 to 2005 simulated in CESM1(WACCM). J. Clim. 26, 7372–

7391. https://doi.org/10.1175/JCLI-D-12-00558.1 

221) Marticorena, B., Bergametti, G., 1995. Modeling the atmospheric dust cycle:. Design 

of a soil-derived dust emission scheme. J. Geophys. Res. 100, 16415–16430. 

https://doi.org/10.1029/95jd00690 

222) Martin, R. V., Sioris, C.E., Chance, K., Ryerson, T.B., Bertram, T.H., Wooldridge, P.J., 

Cohen, R.C., Neuman, J.A., Swanson, A., Flocke, F.M., 2006. Evaluation of space-based 

constraints on global nitrogen oxide emissions with regional aircraft measurements over and 

downwind of eastern North America. J. Geophys. Res. Atmos. 111, 1–15. 

https://doi.org/10.1029/2005JD006680 

223) McDermott, B.M.C., Palmer, L.J., 1999. Post-disaster service provision following 

proactive identification of children with emotional distress and depression. Aust. N. Z. J. 

Psychiatry 33, 855–863. https://doi.org/10.1046/j.1440-1614.1999.00611.x 

224) McFarlane, A.C., 1988. The phenomenology of posttraumatic stress disorders 

following a natural disaster. J. Nerv. Ment. Dis. 176, 22–29. https://doi.org/10.1097/00005053-

198801000-00003 



 

 

303 

225) McFarlane, A.C., Clayer, J.R., Bookless, C.L., 1997. Psychiatric morbidity following 

a natural disaster: An Australian bushfire. Soc. Psychiatry Psychiatr. Epidemiol. 32, 261–268. 

https://doi.org/10.1007/BF00789038 

226) Mcmeeking, G.R., 2008. The Optical, Chemical, and Physical Properties of Aerosols 

and Gases Emitted by the Laboratory Combustion of Wildland Fires 321. 

227) Megaritis, A.G., Fountoukis, C., Charalampidis, P.E., Pilinis, C., Pandis, S.N., 2013. 

Response of fine particulate matter concentrations to changes of emissions and temperature in 

Europe. Atmos. Chem. Phys. 13, 3423–3443. https://doi.org/10.5194/acp-13-3423-2013 

228) Methven, J., 2003. Estimating photochemically produced ozone throughout a domain 

using flight data and a Lagrangian model. J. Geophys. Res. 108, 4271. 

https://doi.org/10.1029/2002JD002955 

229) Metzger, S., Dentener, F., Pandis, S., Lelieveld, J., 2002. Gas/aerosol partitioning: A 

computationally efficient model. https://doi.org/10.1029/2001JD001102 

230) Miles, G.M., Siddans, R., Kerridge, B.J., Latter, B.G., Richards, N.A.D., 2015. 

Tropospheric ozone and ozone profiles retrieved from GOME-2 and their validation. Atmos. 

Meas. Tech. 8, 385–398. https://doi.org/10.5194/amt-8-385-2015 

231) Mills, I.C., Atkinson, R.W., Kang, S., Walton, H., Anderson, H.R., 2015. Quantitative 

systematic review of the associations between short-term exposure to nitrogen dioxide and 

mortality and hospital admissions. BMJ Open 5, 1–8. https://doi.org/10.1136/bmjopen-2014-

006946 

232) Monks, P.S., Archibald, A.T., Colette, A., Cooper, O., Coyle, M., Derwent, R., Fowler, 

D., Granier, C., Law, K.S., Mills, G.E., Stevenson, D.S., Tarasova, O., Thouret, V., Von 

Schneidemesser, E., Sommariva, R., Wild, O., Williams, M.L., 2015. Tropospheric ozone and 

its precursors from the urban to the global scale from air quality to short-lived climate forcer. 

Atmos. Chem. Phys. 15, 8889–8973. https://doi.org/10.5194/acp-15-8889-2015 

233) Moore, D.P., 2019. The October 2017 red sun phenomenon over the UK. Weather 74, 



 

 

304 

348–353. https://doi.org/10.1002/wea.3440 

234) Morgan, G., Sheppeard, V., Khalaj, B., Ayyar, A., Lincoln, D., Jalaludin, B., Beard, J., 

Corbett, S., Lumley, T., 2010. Effects of bushfire smoke on daily mortality and hospital 

admissions in Sydney, Australia. Epidemiology 21, 47–55. 

https://doi.org/10.1097/EDE.0b013e3181c15d5a 

235) Naeher, L.P., Brauer, M., Lipsett, M., Zelikoff, J.T., Simpson, C.D., Koenig, J.Q., 

Smith, K.R., 2007. Woodsmoke health effects: A review. Inhal. Toxicol. 19, 67–106. 

https://doi.org/10.1080/08958370600985875 

236) NAEI, 2018. Download emission maps [WWW Document]. URL 

https://naei.beis.gov.uk/data/map-uk-das?pollutant_id=2&emiss_maps_submit=naei-

20190625105934 (accessed 12.10.20). 

237) Nakanishi, M., Niino, H., 2006. An improved Mellor-Yamada Level-3 model: Its 

numerical stability and application to a regional prediction of advection fog. Boundary-Layer 

Meteorol. 119, 397–407. https://doi.org/10.1007/s10546-005-9030-8 

238) NASA Socioeconomic Data and Applications Center (SEDAC) Center for 

International Earth Science Information Network (CIESIN), Columbia, U. of, 2018. Gridded 

Population of the World, Version 4 (GPWv4): Population Count, Revision 11. 

https://doi.org/https://doi.org/10.7927/H4JW8BX5 

239) National Atmosphere Emissions Inventory, 2017a. Pollutant information - NAEI, UK 

[WWW Document]. URL https://naei.beis.gov.uk/overview/pollutants?pollutant_id=8 

(accessed 6.30.20). 

240) National Atmosphere Emissions Inventory, 2017b. Pollutant Information: Non-

Methane VOC [WWW Document]. URL 

https://naei.beis.gov.uk/overview/pollutants?pollutant_id=9 

241) National Atmospheric Emission Inventory, 2016. Air Pollutants [WWW Document]. 

URL https://naei.beis.gov.uk/overview/ap-overview 



 

 

305 

242) National Centre for Atmospheric Research, 2007. NCEP Global Forecast System 

(GFS) Analyses and Forecasts [WWW Document]. URL https://rda.ucar.edu/datasets/ds084.6/ 

(accessed 12.11.20). 

243) Nemery, B., Hoet, P.H.M., Nemmar, A., 2001. The Meuse Valley fog of 1930: An air 

pollution disaster. Lancet. https://doi.org/10.1016/S0140-6736(00)04135-0 

244) Norris, Fran H., Friedman, M.J., Watson, P.J., 2002. 60,000 Disaster victims speak: 

Part II. Summary and implications of the disaster mental health research. Psychiatry 65, 240–

260. https://doi.org/10.1521/psyc.65.3.240.20169 

245) Norris, Fran H, Friedman, M.J., Watson, P.J., Byrne, C.M., 2002. 60,000 disaster 

victims speak : Part I . an empirical review of the empirical ... Heal. (San Fr. 2747. 

246) Nowok, B., Raab, G.M., Dibben, C., 2016. Synthpop: Bespoke creation of synthetic 

data in R. J. Stat. Softw. 74. https://doi.org/10.18637/jss.v074.i11 

247) Nugent, A., DeCou, D., Russell, S., Alison Nugent, David DeCou, Shintaro Russell, 

2019. Atmo 200: Atmospheric Processes and Phenomenon. Press Books, University of 

Hawai’i, Mānoa. 

248) O’Hare, G., Wilby, R., 1995. A Review of Ozone Pollution in the United Kingdom and 

Ireland with an Analysis Using Lamb Weather Types. Geogr. J. 161, 1–20. 

249) O’Neill, M.S., Jerrett, M., Kawachi, I., Levy, J.I., Cohen, A.J., Gouveia, N., Wilkinson, 

P., Fletcher, T., Cifuentes, L., Schwartz, J., Bateson, T.F., Cann, C., Dockery, D., Gold, D., 

Laden, F., London, S., Loomis, D., Speizer, F., Van den Eeden, S., Zanobetti, A., 2003. Health, 

wealth, and air pollution: Advancing theory and methods. Environ. Health Perspect. 111, 1861–

1870. https://doi.org/10.1289/ehp.6334 

250) Olivier, J., Peters, J., Granier, C., Pétron, G., Müller, J., Wallens, S., 2003. Present and 

future surface emissions of atmospheric compounds. 

251) Ostro, B., Broadwin, R., Green, S., Feng, W.Y., Lipsett, M., 2006. Fine particulate air 

pollution and mortality in nine California counties: Results from CALFINE. Environ. Health 



 

 

306 

Perspect. 114, 29–33. https://doi.org/10.1289/ehp.8335 

252) Otero, N., Sillmann, J., Butler, T., 2018. Assessment of an extended version of the 

Jenkinson–Collison classification on CMIP5 models over Europe. Clim. Dyn. 50, 1559–1579. 

https://doi.org/10.1007/s00382-017-3705-y 

253) Paraskevopoulou, D., Bougiatioti, A., Stavroulas, I., Fang, T., Lianou, M., Liakakou, 

E., Gerasopoulos, E., Weber, R., Nenes, A., Mihalopoulos, N., 2019. Yearlong variability of 

oxidative potential of particulate matter in an urban Mediterranean environment. Atmos. 

Environ. 206, 183–196. https://doi.org/10.1016/j.atmosenv.2019.02.027 

254) Pay, M.T., Jiménez-Guerrero, P., Baldasano, J.M., 2012. Assessing sensitivity regimes 

of secondary inorganic aerosol formation in Europe with the CALIOPE-EU modeling system. 

Atmos. Environ. 51, 146–164. https://doi.org/10.1016/j.atmosenv.2012.01.027 

255) Peckham, S., Grell, G., McKeen, S., Ahmadov, R., Marrapu, P., 2015. WRF-Chem 

version 3.7 user’s guide. User’s Guid. 1, 73. https://doi.org/10.1017/CBO9781107415324.004 

256) Peterson, D.A., Campbell, J.R., Hyer, E.J., Fromm, M.D., Kablick, G.P., Cossuth, J.H., 

DeLand, M.T., 2018. Wildfire-driven thunderstorms cause a volcano-like stratospheric 

injection of smoke. Clim. Atmos. Sci. 1, 1–8. https://doi.org/10.1038/s41612-018-0039-3 

257) Petetin, H., Sciare, J., Bressi, M., Rosso, A., Sanchez, O., Sarda-Estève, R., Petit, J.E., 

Beekmann, M., 2015. Assessing the ammonium nitrate formation regime in the Paris megacity 

and its representation in the CHIMERE model. Atmos. Chem. Phys. Discuss. 15, 23731–23794. 

https://doi.org/10.5194/acpd-15-23731-2015 

258) Phuleria, H.C., Fine, P.M., Zhu, Y., Sioutas, C., 2005. Air quality impacts of the 

October 2003 Southern California wildfires. J. Geophys. Res. Atmos. 110, 1–11. 

https://doi.org/10.1029/2004JD004626 

259) Pidd, H., Rawlinson, K., 2018. Saddleworth Moor fire declared major incident as 

residents evacuated. The Guardian.  

260) Pope, C.A., Thun, M.J., Namboodiri, M.M., Dockery, D.W., Evans, J.S., Speizer, F.E., 



 

 

307 

Heath, C.W., 1995. Particulate Air Pollution as a Predictor of Mortality in a Prospective Study 

of U.S. Adults. Am. J. Respir. Crit. Care Med. 151, 669–674. 

https://doi.org/10.1164/ajrccm/151.3_Pt_1.669 

261) Pope III, C.A., 2007. Mortality effects of longer term exposures to fine particulate air 

pollution: Review of recent epidemiological evidence. Inhal. Toxicol. 19, 33–38. 

https://doi.org/10.1080/08958370701492961 

262) Pope III, C.A., Dockery, D.W., 2006. Health effects of fine particulate air pollution: 

Lines that connect. J. Air Waste Manag. Assoc. 56, 709–742. 

https://doi.org/10.1080/10473289.2006.10464485 

263) Pope III, C.A., Kalkstein, L.S., 1996. Synoptic weather modeling and estimates of the 

exposure-response relationship between daily mortality and particulate air pollution. Environ. 

Health Perspect. 104, 414–420. https://doi.org/10.2307/3432686 

264) Pope, R., Kerridge, B., Siddans, R., Latter, B., Ventress, L., Chipperfield, M., Arnold, 

S., Pimlott, M., Graham, A., Rigby, R., n.d. Large enhancements in southern hemisphere 

satellite-observed carbon monoxide due to 2019/2020 Australian wildfires. “unpublished.” 

265) Pope, R.J., Arnold, S.R., Chipperfield, M.P., Latter, B.G., Siddans, R., Kerridge, B.J., 

2018. Widespread changes in UK air quality observed from space. Atmos. Sci. Lett. 19, 1–8. 

https://doi.org/10.1002/asl.817 

266) Pope, R.J., Butt, E.W., Chipperfield, M.P., Doherty, R.M., Fenech, S., Schmidt, A., 

Arnold, S.R., Savage, N.H., 2016. The impact of synoptic weather on UK surface ozone and 

implications for premature mortality. Environ. Res. Lett. 11, 124004. 

https://doi.org/10.1088/1748-9326/11/12/124004 

267) Pope, R.J., Graham, A.M., Chipperfield, M.P., Veefkind, J.P., 2019. High resolution 

satellite observations give new view of UK air quality. Weather 2, 2–6. 

https://doi.org/10.1002/wea.3441 

268) Pope, R.J., Savage, N.H., Chipperfield, M.P., Arnold, S.R., Osborn, T.J., 2014. The 



 

 

308 

influence of synoptic weather regimes on UK air quality: Analysis of satellite column NO2. 

Atmos. Sci. Lett. 15, 211–217. https://doi.org/10.1002/asl2.492 

269) Pope, R.J., Savage, N.H., Chipperfield, M.P., Ordóñez, C., Neal, L.S., 2015. The 

influence of synoptic weather regimes on UK air quality: Regional model studies of 

tropospheric column NO2. Atmos. Chem. Phys. Discuss. 15, 18577–18607. 

https://doi.org/10.5194/acpd-15-18577-2015 

270) Public Health England, 2018. Health matters: air pollution. 

271) Putaud, J.P., Van Dingenen, R., Alastuey, A., Bauer, H., Birmili, W., Cyrys, J., Flentje, 

H., Fuzzi, S., Gehrig, R., Hansson, H.C., Harrison, R.M., Herrmann, H., Hitzenberger, R., 

Hüglin, C., Jones, A.M., Kasper-Giebl, A., Kiss, G., Kousa, A., Kuhlbusch, T.A.J., Löschau, 

G., Maenhaut, W., Molnar, A., Moreno, T., Pekkanen, J., Perrino, C., Pitz, M., Puxbaum, H., 

Querol, X., Rodriguez, S., Salma, I., Schwarz, J., Smolik, J., Schneider, J., Spindler, G., ten 

Brink, H., Tursic, J., Viana, M., Wiedensohler, A., Raes, F., 2010. A European aerosol 

phenomenology: Physical and chemical characteristics of particulate matter from 60 rural, 

urban, and kerbside sites across Europe. Atmos. Environ. 44, 1308–1320. 

https://doi.org/10.1016/j.atmosenv.2009.12.011 

272) Querol, X., Alastuey, A., Ruiz, C.R., Artiñano, B., Hansson, H.C., Harrison, R.M., 

Buringh, E., Ten Brink, H.M., Lutz, M., Bruckmann, P., Straehl, P., Schneider, J., 2004. 

Speciation and origin of PM10 and PM2.5 in selected European cities. Atmos. Environ. 38, 6547–

6555. https://doi.org/10.1016/j.atmosenv.2004.08.037 

273) Raaschou-Nielsen, O., Andersen, Z.J., Beelen, R., Samoli, E., Stafoggia, M., 

Weinmayr, G., Hoffmann, B., Fischer, P., Nieuwenhuijsen, M.J., Brunekreef, B., Xun, W.W., 

Katsouyanni, K., Dimakopoulou, K., Sommar, J., Forsberg, B., Modig, L., Oudin, A., Oftedal, 

B., Schwarze, P.E., Nafstad, P., De Faire, U., Pedersen, N.L., Östenson, C.G., Fratiglioni, L., 

Penell, J., Korek, M., Pershagen, G., Eriksen, K.T., Sørensen, M., Tjønneland, A., Ellermann, 

T., Eeftens, M., Peeters, P.H., Meliefste, K., Wang, M., Bueno-de-Mesquita, B., Key, T.J., de 



 

 

309 

Hoogh, K., Concin, H., Nagel, G., Vilier, A., Grioni, S., Krogh, V., Tsai, M.Y., Ricceri, F., 

Sacerdote, C., Galassi, C., Migliore, E., Ranzi, A., Cesaroni, G., Badaloni, C., Forastiere, F., 

Tamayo, I., Amiano, P., Dorronsoro, M., Trichopoulou, A., Bamia, C., Vineis, P., Hoek, G., 

2013. Air pollution and lung cancer incidence in 17 European cohorts: Prospective analyses 

from the European Study of Cohorts for Air Pollution Effects (ESCAPE). Lancet Oncol. 14, 

813–822. https://doi.org/10.1016/S1470-2045(13)70279-1 

274) Rappold, A.G., Cascio, W.E., Kilaru, V.J., Stone, S.L., Neas, L.M., Devlin, R.B., Diaz-

sanchez, D., 2012. Cardio-respiratory outcomes associated with exposure to wildfire smoke are 

modified by measures of community health 1–9. 

275) Rappold, A.G., Fann, N.L., Crooks, J., Huang, J., Cascio, W.E., Devlin, R.B., Diaz-

Sanchez, D., 2014. Forecast-based interventions can reduce the health and economic burden of 

wildfires. Environ. Sci. Technol. 48, 10571–10579. https://doi.org/10.1021/es5012725 

276) Rappold, A.G., Stone, S.L., Cascio, W.E., Neas, L.M., Kilaru, V.J., Carraway, M.S., 

Szykman, J.J., Ising, A., Cleve, W.E., Meredith, J.T., Vaughan-Batten, H., Deyneka, L., Devlin, 

R.B., 2011. Peat Bog Wildfire Smoke Exposure in Rural North Carolina Is Associated with 

Cardiopulmonary Emergency Department Visits Assessed through Syndromic Surveillance. 

Environ. Health Perspect. 119, 1415–1420. https://doi.org/10.1289/ehp.1003206 

277) Rasch, P.J., Mahowald, N.M., Eaton, B.E., 1997. Representations of transport, 

convection, and the hydrologic cycle in chemical transport models: Implications for the 

modeling of short-lived and soluble species. J. Geophys. Res. Atmos. 102, 28127–28138. 

https://doi.org/10.1029/97jd02087 

278) Reddington, C., Conibear, L., Knote, C., Silver, B., Li, Y., Chan, C., Arnold, S., 

Spracklen, D., 2019. Exploring the impacts of anthropogenic emission sectors on PM2.5 and 

human health in South and East Asia. Atmos. Chem. Phys. 19, 11887–11910. 

https://doi.org/10.5194/acp-19-11887-2019 

279) Reddington, C.L., Butt, E.W., Ridley, D.A., Artaxo, P., Morgan, W.T., Coe, H., 



 

 

310 

Spracklen, D. V., 2015. Air quality and human health improvements from reductions in 

deforestation-related fire in Brazil. Nat. Geosci. 8, 768–771. https://doi.org/10.1038/ngeo2535 

280) Reddington, C.L., Yoshioka, M., Balasubramanian, R., Ridley, D., Toh, Y.Y., Arnold, 

S.R., Spracklen, D. V., 2014. Contribution of vegetation and peat fires to particulate air 

pollution in Southeast Asia. Environ. Res. Lett. 9, 094006. https://doi.org/10.1088/1748-

9326/9/9/094006 

281) Reid, C.E., Brauer, M., Johnston, F.H., Jerrett, M., Balmes, J.R., Elliott, C.T., E., R.C., 

Michael, B., H., J.F., Michael, J., R., B.J., T., E.C., 2016. Critical review of health impacts of 

wildfire smoke exposure. Environ. Health Perspect. 124, 1334–1343. 

https://doi.org/10.1289/ehp.1409277 

282) Reid, C.E., Considine, E.M., Watson, G.L., Telesca, D., Pfister, G.G., Jerrett, M., 2019. 

Associations between respiratory health and ozone and fine particulate matter during a wildfire 

event. Environ. Int. 129, 291–298. https://doi.org/10.1016/j.envint.2019.04.033 

283) Reis, S., Liška, T., Vieno, M., Carnell, E.J., Beck, R., Clemens, T., Dragosits, U., 

Tomlinson, S.J., Leaver, D., Heal, M.R., 2018. The influence of residential and workday 

population mobility on exposure to air pollution in the UK. Environ. Int. 121, 803–813. 

https://doi.org/10.1016/j.envint.2018.10.005 

284) Reisen, F., Duran, S.M., Flannigan, M., Elliott, C., Rideout, K., 2015. Wildfire smoke 

and public health risk. Int. J. Wildl. Fire 24, 1029. https://doi.org/10.1071/WF15034 

285) Remer, L.A., Kaufman, Y.J., Tanré, D., Mattoo, S., Chu, D.A., Martins, J. V., Li, R.R., 

Ichoku, C., Levy, R.C., Kleidman, R.G., Eck, T.F., Vermote, E., Holben, B.N., 2005. The 

MODIS aerosol algorithm, products, and validation. J. Atmos. Sci. 62, 947–973. 

https://doi.org/10.1175/JAS3385.1 

286) Remer, L.A., Mattoo, S., Levy, R.C., Munchak, L.A., 2013. MODIS 3 km aerosol 

product: Algorithm and global perspective. Atmos. Meas. Tech. 6, 1829–1844. 

https://doi.org/10.5194/amt-6-1829-2013 



 

 

311 

287) Ritter, M., Müller, M.D., Jorba, O., Parlow, E., Liu, L.J.S., 2013. Impact of chemical 

and meteorological boundary and initial conditions on air quality modeling: WRF-Chem 

sensitivity evaluation for a European domain. Meteorol. Atmos. Phys. 119, 59–70. 

https://doi.org/10.1007/s00703-012-0222-8 

288) Rooney, C., McMichael, A.J., Kovats, R.S., Coleman, M.P., 1998. Excess mortality in 

England and Wales, and in Greater London, during the 1995 heatwave. J. Epidemiol. 

Community Health 52, 482–486. https://doi.org/10.1136/jech.52.8.482 

289) Rosenberg, P.D., Dean, A.R., Williams, P.I., Dorsey, J.R., Minikin, A., Pickering, 

M.A., Petzold, A., 2012. Particle sizing calibration with refractive index correction for light 

scattering optical particle counters and impacts upon PCASP and CDP data collected during 

the Fennec campaign. Atmos. Meas. Tech. 5, 1147–1163. https://doi.org/10.5194/amt-5-1147-

2012 

290) Rossi, M.J., 2003. Heterogeneous Reactions on Salts. Chem. Rev. 103, 4823–4882. 

https://doi.org/10.1021/cr020507n 

291) Roulston, C., Paton-Walsh, C., Smith, T.E.L., Guérette, A., Evers, S., Yule, C.M., Rein, 

G., Van der Werf, G.R., 2018. Fine Particle Emissions From Tropical Peat Fires Decrease 

Rapidly With Time Since Ignition. J. Geophys. Res. Atmos. 123, 5607–5617. 

https://doi.org/10.1029/2017JD027827 

292) Rowlinson, M.J., Rap, A., Arnold, S.R., Pope, R.J., Chipperfield, M.P., McNorton, J., 

Forster, P., Gordon, H., Pringle, K.J., Feng, W., Kerridge, B.J., Latter, B.L., Siddans, R., 2019. 

Impact of El Niño Southern Oscillation on the interannual variability of methane and 

tropospheric ozone. Atmos. Chem. Phys. Discuss. 2, 1–20. https://doi.org/10.5194/acp-2019-

222 

293) Royal Berkshire Fire and Rescue Service, 2011. Press Release: Freedom of 

Information. 

294) Royal College of Physicians, 2016. Report of a working party February 2016. 



 

 

312 

295) Russo, A., Trigo, R.M., Martins, H., Mendes, M.T., 2014. NO2, PM10 and O3 urban 

concentrations and its association with circulation weather types in Portugal. Atmos. Environ. 

89, 768–785. https://doi.org/10.1016/j.atmosenv.2014.02.010 

296) Samoli, E., Analitis, A., Touloumi, G., Schwartz, J., Anderson, H.R., Sunyer, J., 

Bisanti, L., Zmirou, D., Vonk, J.M., Pekkanen, J., Goodman, P., Paldy, A., Schindler, C., 

Katsouyanni, K., 2005. Estimating the exposure-response relationships between particulate 

matter and mortality within the APHEA multicity project. Environ. Health Perspect. 113, 88–

95. https://doi.org/10.1289/ehp.7387 

297) Sanchez-Marroquin, A., Hedges, D.H.P., Hiscock, M., Parker, S.T., Rosenberg, P.D., 

Trembath, J., Walshaw, R., Burke, I., McQuaid, J., Murray, B., 2019. Characterisation of the 

filter inlet system on the BAE-146 research aircraft and its use for size resolved aerosol 

composition measurements. Atmos. Meas. Tech. 12, 5741–5763. 

https://doi.org/https://doi.org/10.5194/amt-12-5741-2019 

298) Schmidt, A., Ostro, B., Carslaw, K.S., Wilson, M., Thordarson, T., Mann, G.W., 

Simmons, A.J., 2011. Excess mortality in Europe following a future Laki-style Icelandic 

eruption. Proc. Natl. Acad. Sci. 108, 15710–15715. https://doi.org/10.1073/pnas.1108569108 

299) Schrenk, H.H., Heimann, H., Clayton, G.D., Gafafer, W.M., Wexler, H., 1949. Air 

Pollution in Donora, Pa.- Epidemiology of the Unusual Smog Episode of October 1948, in: 

Public Health Service. Washington, DC. https://doi.org/10.1017/CBO9781107415324.004 

300) Schwartz, J., 1993. Air Pollution and Daily Mortality in Birmingham, Alabama. Am. 

J. Epidemiol. 137, 1136–1147. https://doi.org/10.1093/oxfordjournals.aje.a116617 

301) Schwartz, J., Ballester, F., Saez, M., Pérez-Hoyos, S., Bellido, J., Cambra, K., Arribas, 

F., Cañada, A., Pérez-Boillos, M.J., Sunyer, J., 2001. The concentration-response relation 

between air pollution and daily deaths. Environ. Health Perspect. 109, 1001–1006. 

https://doi.org/10.1289/ehp.011091001 

302) Schwartz, J., Dockery, D.W., Neas, L.M., 1996. Is Daily Mortality Associated 



 

 

313 

Specifically with Fine Particles? J. Air Waste Manag. Assoc. 46, 927–939. 

https://doi.org/10.1080/10473289.1996.10467528 

303) Schwartz, J., Marcus, A., 1990. Mortality and air pollution J London: A time series 

analysis. Am. J. Epidemiol. 131, 185–194. https://doi.org/10.1093/oxfordjournals.aje.a115473 

304) Schwarze, P.E., Øvrevik, J., Låg, M., Refsnes, M., Nafstad, P., Hetland, R.B., Dybing, 

E., 2006. Particulate matter properties and health effects: Consistency of epidemiological and 

toxicological studies. Hum. Exp. Toxicol. 25, 559–579. 

https://doi.org/10.1177/096032706072520 

305) Scott, C.E., Rap, A., Spracklen, D. V., Forster, P.M., Carslaw, K.S., Mann, G.W., 

Pringle, K.J., Kivekäs, N., Kulmala, M., Lihavainen, H., Tunved, P., 2014. The direct and 

indirect radiative effects of biogenic secondary organic aerosol. Atmos. Chem. Phys. 14, 447–

470. https://doi.org/10.5194/acp-14-447-2014 

306) Seigneur, C., Dennis, R., 2011. Atmospheric Modeling. Tech. Challenges 

Multipollutant Air Qual. Manag. 299–337. https://doi.org/10.1007/978-94-007-0304-9_9 

307) Seinfield, J., 1986. Atmospheric Chemistry and Physics of Air Pollution - John H. 

Seinfeld, Professor Department of Chemistry John H Seinfeld - Google Books. Wiley, 

University of Michigan. 

308) Seinfield, J., Pandis, S., Steinfeld, J.I., 2016. Atmospheric Chemistry and Physics: 

From Air Pollution to Climate Change, 5th ed, Environment: Science and Policy for Sustainable 

Development. Wiley. https://doi.org/10.1080/00139157.1999.10544295 

309) Shao, Y., 2001. A model for mineral dust emission. J. Geophys. Res. 106, 20239–

20254. 

310) Shaposhnikov, D., Revich, B., Bellander, T., Bedada, G.B., Bottai, M., Kharkova, T., 

Kvasha, E., Lezina, E., Lind, T., Semutnikova, E., Pershagen, G., 2014. Mortality related to air 

pollution with the Moscow heat wave and wildfire of 2010. Epidemiology 25, 359–364. 

https://doi.org/10.1097/EDE.0000000000000090 



 

 

314 

311) Sharma, M., Kishore, S., Tripathi, S.N., Behera, S.N., 2007. Role of atmospheric 

ammonia in the formation of inorganic secondary particulate matter: A study at Kanpur, India. 

J. Atmos. Chem. 58, 1–17. https://doi.org/10.1007/s10874-007-9074-x 

312) Shekarrizfard, M., Faghih-Imani, A., Tétreault, L.F., Yasmin, S., Reynaud, F., 

Morency, P., Plante, C., Drouin, L., Smargiassi, A., Eluru, N., Hatzopoulou, M., 2017. Regional 

assessment of exposure to traffic-related air pollution: Impacts of individual mobility and transit 

investment scenarios. Sustain. Cities Soc. 29, 68–76. https://doi.org/10.1016/j.scs.2016.12.002 

313) Siddans, R., Gerber, D., Miles, G., 2015. Optimal Estimation Method retrievals with 

IASI , AMSU and MHS measurements. 

314) Silver, B., Conibear, L., Reddington, C., Knote, C., Arnold, S., Spracklen, D., 2020. 

Pollutant emission reductions deliver decreased PM2.5-caused mortality across China during 

2015–2017. Atmos. Chem. Phys. 2017, 1–18. https://doi.org/10.5194/acp-2019-1141 

315) Simpson, D., Benedictow, A., Berge, H., Bergström, R., Emberson, L.D., Fagerli, H., 

Flechard, C.R., Hayman, G.D., Gauss, M., Jonson, J.E., Jenkin, M.E., Nyúri, A., Richter, C., 

Semeena, V.S., Tsyro, S., Tuovinen, J.P., Valdebenito, A., Wind, P., 2012. The EMEP MSC-

W chemical transport model Technical description. Atmos. Chem. Phys. 12, 7825–7865. 

https://doi.org/10.5194/acp-12-7825-2012 

316) Skamarock, W.C., Klemp, J.B., 2008. A time-split nonhydrostatic atmospheric model 

for weather research and forecasting applications. J. Comput. Phys. 227, 3465–3485. 

https://doi.org/10.1016/j.jcp.2007.01.037 

317) Sommers, W.T., Loehman, R.A., Hardy, C.C., 2014. Wildland fire emissions, carbon, 

and climate: Science overview and knowledge needs. For. Ecol. Manage. 317, 1–8. 

https://doi.org/10.1016/j.foreco.2013.12.014 

318) Song, J., Chung, K., 2010. Observational Studies: Cohort and Case-Control Studies. 

Plast. Reconstr. Surg. 126, 2234–2242. https://doi.org/10.1007/s00415-017-8487-y 

319) Stedman, J.R., 2004. The predicted number of air pollution related deaths in the UK 



 

 

315 

during the August 2003 heatwave. Atmos. Environ. 38, 1087–1090. 

https://doi.org/10.1016/j.atmosenv.2003.11.011 

320) Stedman, J.R., 1996. A U.K.-wide episode os eleveated particle (PM) concenrtration 

in March 1996. Science, 80. https://doi.org/https://doi.org/10.1016/S1352-2310(97)88638-4 

321) Stein, A.F., Draxler, R.R., Rolph, G.D., Stunder, B.J.B., Cohen, M.D., Ngan, F., 2015. 

NOAA’s hysplit atmospheric transport and dispersion modeling system. Bull. Am. Meteorol. 

Soc. 96, 2059–2077. https://doi.org/10.1175/BAMS-D-14-00110.1 

322) Stevenson, K., Yardley, R., Stacey-Aea, B., Maggs, R., Veritas, B., 2009. QA/QC 

Procedures for the UK Automatic Urban and Rural Air Quality Monitoring Network (AURN): 

Executive summary. 

323) Stirling, E.L., Pope, R.J., Graham, A.M., Chipperfield, M.P., Arnold, S.R., 2020. 

Quantifying the transboundary contribution of nitrogen oxides to UK air quality. Atmos. Sci. 

Lett. 21, 1–11. https://doi.org/10.1002/asl.955 

324) Stockwell, C.E., Jayarathne, T., Cochrane, M.A., Ryan, K.C., Putra, E.I., Saharjo, B.H., 

Nurhayati, A.D., Albar, I., Blake, D.R., Simpson, I.J., Stone, E.A., Yokelson, R.J., 2016. Field 

measurements of trace gases and aerosols emitted by peat fires in Central Kalimantan, 

Indonesia, during the 2015 El Niño. Atmos. Chem. Phys. 16, 11711–11732. 

https://doi.org/10.5194/acp-16-11711-2016 

325) Sutton, M.A., van Grinsven, H., Billen, G., Bleeker, A., Bouwman, A.F., Bull, K., 

Erisman, J.W., Grennfelt, P., Grizzetti, B., Howard, C.M., Oenema, O., Spranger, T., 

Winiwarter, W., 2011. Summary for policy makers. Eur. Nitrogen Assess. 

https://doi.org/10.1017/cbo9780511976988.002 

326) Syphard, A.D., Sheehan, T., Rustigian-Romsos, H., Ferschweiler, K., 2018. Mapping 

future fire probability under climate change: Does vegetation matter? PLoS One 13, 1–23. 

https://doi.org/10.1371/journal.pone.0201680 

327) Tadic, I., Crowley, J.N., Dienhart, D., Eger, P., Harder, H., Hottmann, B., Martinez, 



 

 

316 

M., Parchatka, U., Pari, J.D., Pozzer, A., Pozzer, A., Rohloff, R., Schuladen, J., Shenolikar, J., 

Tauer, S., Lelieveld, J., Lelieveld, J., Fischer, H., 2020. Net ozone production and its 

relationship to nitrogen oxides and volatile organic compounds in the marine boundary layer 

around the Arabian Peninsula. Atmos. Chem. Phys. 20, 6769–6787. 

https://doi.org/10.5194/acp-20-6769-2020 

328) Tang, L., Chen, D., Karlsson, P.E., Gu, Y., Ou, T., 2009. Synoptic circulation and its 

influence on spring and summer surface ozone concentrations in southern Sweden. Boreal 

Environ. Res. 14, 889–902. 

329) Tang, L., Rayner, D., Haeger-Eugensson, M., 2011. Have Meteorological Conditions 

Reduced NO2 Concentrations from Local Emission Sources in Gothenburg? Water. Air. Soil 

Pollut. 221, 275–286. https://doi.org/10.1007/s11270-011-0789-6 

330) Thompson, G., Field, P.R., Rasmussen, R.M., Hall, W.D., 2008. Explicit forecasts of 

winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of 

a new snow parameterization. Mon. Weather Rev. 136, 5095–5115. 

https://doi.org/10.1175/2008MWR2387.1 

331) Thompson, T.M., Saari, R.K., Selin, N.E., 2014. Air quality resolution for health 

impact assessment: Influence of regional characteristics. Atmos. Chem. Phys. 14, 969–978. 

https://doi.org/10.5194/acp-14-969-2014 

332) Thorp, T., Arnold, S.R., Pope, R.J., Spracklen, D. V, Conibear, L., Knote, C., 2020. 

Late-Spring and Summertime Tropospheric Ozone and NO2 in Western Siberia and the Russian 

Arctic : Regional Model Evaluation and Sensitivities. Atmos. Chem. Phys. Discuss. 

https://doi.org/10.5194/acp-2020-426 

333) Tian, D., Hu, Y., Wang, Y., Boylan, J., Zheng, M., Armistead, R., 2009. Assessment 

of biomass burning emissions and their impacts on urban and regional PM2.5: A Georgia case 

study. Environ. Sci. Technol. 43, 299–305. https://doi.org/10.1021/es801827s 

334) Tie, X., Madronich, S., Walters, S., Edwards, D.P., Ginoux, P., Mahowald, N., Zhang, 



 

 

317 

R.Y., Lou, C., Brasseur, G., 2005. Assessment of the global impact of aerosols on tropospheric 

oxidants. J. Geophys. Res. D Atmos. 110, 1–32. https://doi.org/10.1029/2004JD005359 

335) Tie, X., Madronich, S., Walters, S., Zhang, R., Racsh, P., Collins, W., 2003. Effect of 

clouds on photolysis and oxidants in the troposphere. J. Geophys. Res 108, 4642. 

https://doi.org/10.1029/2003JD003659 

336) Tinling, M.A., West, J.J., Cascio, W.E., Kilaru, V., Rappold, A.G., 2016. Repeating 

cardiopulmonary health effects in rural North Carolina population during a second large peat 

wildfire. Environ. Heal. A Glob. Access Sci. Source 15, 1–12. https://doi.org/10.1186/s12940-

016-0093-4 

337) Turetsky, M.R., Benscoter, B., Page, S., Rein, G., Van Der Werf, G.R., Watts, A., 2015. 

Global vulnerability of peatlands to fire and carbon loss. Nat. Geosci. 8, 11–14. 

https://doi.org/10.1038/ngeo2325 

338) Twigg, M., Ilyinskaya, E., Beccaceci, S., Green, D., Jones, M., Langford, B., Leeson, 

S., Lingard, J., Pereira, G., Carter, H., Poskitt, J., Richter, A., Ritchie, S., Simmons, I., Smith, 

R., Sim Tang, Y., Van Dijk, N., Vincent, K., Nemitz, E., Vieno, M., Braban, C., 2016. Impacts 

of the 2014-2015 Holuhraun eruption on the UK atmosphere. Atmos. Chem. Phys. 16, 11415–

11431. https://doi.org/10.5194/acp-16-11415-2016 

339) UCAR, 2020a. WRF-Chem MOZART-4 Download [WWW Document]. URL 

https://www.acom.ucar.edu/wrf-chem/mozart.shtml (accessed 9.16.20). 

340) UCAR, 2020b. WACCM Download [WWW Document]. URL 

https://www.acom.ucar.edu/waccm/download.shtml (accessed 9.16.20). 

341) UCAR, 2020c. Static Data Downloads [WWW Document]. URL 

http://www2.mmm.ucar.edu/wrf/users/download/get_sources_wps_geog.html (accessed 

9.16.20). 

342) UCAR, 2020d. Release of Tropospheric Ultraviolet-Visible (TUV) Model Version 5.3 

[WWW Document]. URL https://nar.ucar.edu/2016/acom/31-release-tropospheric-ultraviolet-



 

 

318 

visible-tuv-model-version-53 (accessed 11.6.20). 

343) UCAR, 2020e. WRF-Chem Model Development [WWW Document]. URL 

https://nar.ucar.edu/2016/acom/32-wrf-chem-model-development (accessed 11.6.20). 

344) UK Met Office, 2018. UK actual and anomaly maps [WWW Document]. URL 

https://www.metoffice.gov.uk/research/climate/maps-and-data/uk-actual-and-anomaly-maps 

(accessed 12.11.20). 

345) Ukhov, A., Mostamandi, S., Da Silva, A., Flemming, J., Alshehri, Y., Shevchenko, I., 

Stenchikov, G., 2020. Assessment of natural and anthropogenic aerosol air pollution in the 

Middle East using MERRA-2, CAMS data assimilation products, and high-resolution WRF-

Chem model simulations. Atmos. Chem. Phys. 20, 9281–9310. https://doi.org/10.5194/acp-20-

9281-2020 

346) United Nations Economic Commission for Europe, 1979. The Convention and its 

achievements - Air Pollution - Environmental Policy. 

347) United States Environmental Protetion Agency (USEPA), 2009. Integrated Science 

Assessment for Particulate Matter. 

348) US Environmental Protection Agency, 2020. Ozone Effects on Plants. 

349) US Environmental Protection Agency, 1997. The Benefits and Costs of the Clean Air 

Act 1970 to 1990 (Appendix G) 45, 327–331. 

350) Vallero, D.A., 2014. Fundamentals of Air Pollution, Fundamentals of Air Pollution. 

https://doi.org/10.1016/B978-0-12-373615-4.X5000-6 

351) Van Der Werf, G.R., Randerson, J.T., Giglio, L., Van Leeuwen, T.T., Chen, Y., Rogers, 

B.M., Mu, M., Van Marle, M.J.E., Morton, D.C., Collatz, G.J., Yokelson, R.J., Kasibhatla, P.S., 

2017. Global fire emissions estimates during 1997-2016. Earth Syst. Sci. Data 9, 697–720. 

https://doi.org/10.5194/essd-9-697-2017 

352) van Oldenborgh, G.J., Krikken, F., Lewis, S., Leach, N., Lehner, F., Saunders, K., van 

Weele, M., Haustein, K., Li, S., Wallom, D., Sparrow, S., Arrighi, J., Singh, R., van Aalst, M., 



 

 

319 

Philip, S., Vautard, R., Otto, F., 2020. Attribution of the Australian bushfire risk to 

anthropogenic climate change. Nat. Hazards Earth Syst. Sci. 1–46. 

https://doi.org/10.5194/nhess-2020-69 

353) Veefkind, J.P., Aben, I., McMullan, K., Förster, H., de Vries, J., Otter, G., Claas, J., 

Eskes, H.J., de Haan, J.F., Kleipool, Q., van Weele, M., Hasekamp, O., Hoogeveen, R., 

Landgraf, J., Snel, R., Tol, P., Ingmann, P., Voors, R., Kruizinga, B., Vink, R., Visser, H., 

Levelt, P.F., 2012. TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global 

observations of the atmospheric composition for climate, air quality and ozone layer 

applications. Remote Sens. Environ. 120, 70–83. https://doi.org/10.1016/j.rse.2011.09.027 

354) Vieno, M., Dore, A.J., Stevenson, D.S., Doherty, R., Heal, M.R., Reis, S., Hallsworth, 

S., Tarrason, L., Wind, P., Fowler, D., Simpson, D., Sutton, M.A., 2010. Modelling surface 

ozone during the 2003 heat-wave in the UK. Atmos. Chem. Phys. 10, 7963–7978. 

https://doi.org/10.5194/acp-10-7963-2010 

355) Vieno, M, Heal, M., Twigg, M., MacKenzie, I., Braban, C., Lingard, J., Ritchie, S., 

Beck, R., Móring, A., Ots, R., Di Marco, C., Nemitz, E., Sutton, M., Reis, S., 2016. The UK 

particulate matter air pollution episode of March-April 2014: More than Saharan dust. Environ. 

Res. Lett. 11, 044004. https://doi.org/10.1088/1748-9326/11/4/044004 

356) Vieno, M., Heal, M.R., Hallsworth, S., Famulari, D., Doherty, R.M., Dore, A.J., Tang, 

Y.S., Braban, C.F., Leaver, D., Sutton, M.A., Reis, S., 2014. The role of long-range transport 

and domestic emissions in determining atmospheric secondary inorganic particle 

concentrations across the UK. Atmos. Chem. Phys. 14, 8435–8447. 

https://doi.org/10.5194/acp-14-8435-2014 

357) Vieno, M., Heal, M.R., Twigg, M.M., MacKenzie, I.A., Braban, C.F., Lingard, J.J.N., 

Ritchie, S., Beck, R.C., Móring, A., Ots, R., Di Marco, C.F., Nemitz, E., Sutton, M.A., Reis, 

S., 2016a. Corrigendum: The UK particulate matter air pollution episode of March–April 2014: 

more than Saharan dust (2016 Environ. Res. Lett. 11 044004). Environ. Res. Lett. 11, 059501. 



 

 

320 

https://doi.org/10.1088/1748-9326/11/5/059501 

358) Vieno, M., Heal, M.R., Williams, M.L., Carnell, E.J., Nemitz, E., Stedman, J.R., Reis, 

S., 2016b. The sensitivities of emissions reductions for the mitigation of UK PM2.5. Atmos. 

Chem. Phys. 16, 265–276. https://doi.org/10.5194/acp-16-265-2016 

359) Visschedijk, A., Denier van der Gon, H., Droege, R., 2009. A European high resolution 

and size-differentiated emission inventory for elemental and organic carbon for the year 2005. 

Utrecht, the Netherlands. 

360) Wagner, R., Jähn, M., Schepanski, K., 2018. Wildfires as a source of airborne mineral 

dust - Revisiting a conceptual model using large-eddy simulation (LES). Atmos. Chem. Phys. 

18, 11863–11884. https://doi.org/10.5194/acp-18-11863-2018 

361) Wallace, J., Corr, D., Kanaroglou, P., 2010. Topographic and spatial impacts of 

temperature inversions on air quality using mobile air pollution surveys. Sci. Total Environ. 

408, 5086–5096. https://doi.org/10.1016/j.scitotenv.2010.06.020 

362) Walmsley, J.L., Wesely, M.L., 1996. Modification of coded parametrizations of 

surface resistances to gaseous dry deposition. Atmos. Environ. 30, 1181–1188. 

https://doi.org/10.1016/1352-2310(95)00403-3 

363) Wang, S., Streets, D.G., Zhang, Q., He, K., Chen, D., Kang, S., Lu, Z., Wang, Y., 2010. 

Satellite detection and model verification of NOxemissions from power plants in Northern 

China. Environ. Res. Lett. 5. https://doi.org/10.1088/1748-9326/5/4/044007 

364) Wang, Y.X., McElroy, M.B., Wang, T., Palmer, P.I., 2004. Asian emissions of CO and 

NOx: Constraints from aircraft and Chinese station data. J. Geophys. Res. D Atmos. 109, 1–26. 

https://doi.org/10.1029/2004JD005250 

365) Werner, M., Kryza, M., Pagowski, M., Guzikowski, J., 2019. Assimilation of PM2.5 

ground base observations to two chemical schemes in WRF-Chem – The results for the winter 

and summer period. Atmos. Environ. 200, 178–189. 

https://doi.org/10.1016/j.atmosenv.2018.12.016 



 

 

321 

366) Wesely, M.L., 2007. Parameterization of surface resistances to gaseous dry deposition 

in regional-scale numerical models. Atmos. Environ. 41, 52–63. 

https://doi.org/10.1016/j.atmosenv.2007.10.058 

367) Wesely, M.L., Hicks, B.B., 2000. A review of the current status of knowledge on dry 

deposition. Atmos. Environ. 34, 2261–2282. https://doi.org/10.1016/S1352-2310(99)00467-7 

368) Western Regional Air Partnership, 2005. 2002 Fire Emission Inventory for the WRAP 

Region – Phase II, Prepared for the Western Governors Association/Western Regional Aia 

Partnership. 

369) Wiedinmyer, C., Akagi, S.K., Yokelson, R.J., Emmons, L.K., Al-Saadi, J.A., Orlando, 

J.J., Soja, A.J., 2011. The Fire INventory from NCAR (FINN): a high resolution global model 

to estimate the emissions from open burning. Geosci. Model Dev. 4, 625–641. 

https://doi.org/10.5194/gmd-4-625-2011 

370) Willeke, K., Whitby, K.T., 1975. Atmospheric aerosols: size distribution interpretation. 

J. Air Pollut. Control Assoc. 25, 529–534. https://doi.org/10.1080/00022470.1975.10470110 

371) Williams, M.L., Beevers, S., Kitwiroon, N., Dajnak, D., Walton, H., Lott, M.C., Pye, 

S., Fecht, D., Toledano, M.B., Holland, M., 2018. Public health air pollution impacts of 

pathway options to meet the 2050 UK Climate Change Act target: a modelling study. Public 

Heal. Res. 6, 1–124. https://doi.org/10.3310/phr06070 

372) Willocks, L.J., Bhaskar, A., Ramsay, C.N., Lee, D., Brewster, D.H., Fischbacher, C.M., 

Chalmers, J., Morris, G., Scott, E.M., 2012. Cardiovascular disease and air pollution in 

Scotland: No association or insufficient data and study design? BMC Public Health 12. 

https://doi.org/10.1186/1471-2458-12-227 

373) Wintle, B.A., Legge, S., Woinarski, J.C.Z., 2020. After the Megafires: What Next for 

Australian Wildlife? Trends Ecol. Evol., 1–5. https://doi.org/10.1016/j.tree.2020.06.009 

374) WMO OSCAR, 2020. Details for Instrument ALADIN [WWW Document]. URL 

https://www.wmo-sat.info/oscar/variables/view/342 (accessed 6.30.20). 



 

 

322 

375) Wong, Chit Ming, Vichit-Vadakan, N., Kan, Haidong, Qian, Zhengmin, Vajanapoom, 

N., Ostro, B., Wong, C. M., Thach, T.Q., Chau, P.Y.K., Chan, K.P., Chung, R.Y., Qu, C.Q., 

Yang, L., Thomas, G.N., Lam, T.H., Hadley, A.J., Peiris, J.S.M., Wong, T.W., Kan, H., Chen, 

B., Zhao, N., Zhang, Y., Kan, H., London, S.J., Song, G., Jiang, L., Chen, G., Qian, Z., Lin, 

H.M., Bentley, C.M., Lin, H.M., He, Q., Kong, L., Yang, N., Zhou, D., Xu, S., Liu, W., 2008. 

Public Health and Air Pollution in Asia (PAPA): A multicity study of short-term effects of air 

pollution on mortality. Environ. Health Perspect. 116, 1195–1202. 

https://doi.org/10.1289/ehp.11257 

376) Wood, E.C., Herndon, S.C., Onasch, T.B., Kroll, J.H., Canagaratna, M.R., Kolb, C.E., 

Worsnop, D.R., Neuman, J.A., Seila, R., Zavala, M., Knighton, W.B., 2009. A case study of 

ozone production, nitrogen oxides, and the radical budget in Mexico City. Atmos. Chem. Phys. 

9, 2499–2517. https://doi.org/10.5194/acp-9-2499-2009 

377) Wooster, M.J., Gaveau, D.L.A., Salim, M.A., Zhang, T., Xu, W., Green, D.C., Huijnen, 

V., Murdiyarso, D., Gunawan, D., Borchard, N., Schirrmann, M., Main, B., Sepriando, A., 

2018. New tropical peatland gas and particulate emissions factors indicate 2015 Indonesian 

fires released far more particulate matter (but Less Methane) than current inventories imply. 

Remote Sens. 10, 1–31. https://doi.org/10.3390/rs10040495 

378) World Health Organization, 2013. Health risks of air pollution in Europe – HRAPIE 

project. World Heath Organ. 

379) World Health Organization, 2005. Air quality guidelines—global update 2005. 

380) Xu, J., Morris, P.J., Liu, J., Holden, J., 2018. PEATMAP: Refining estimates of global 

peatland distribution based on a meta-analysis. Catena 160, 134–140. 

https://doi.org/10.1016/j.catena.2017.09.010 

381) Yallop, A.R., Thacker, J.I., Thomas, G., Stephens, M., Clutterbuck, B., Brewer, T., 

Sannier, C.A.D., 2006. The extent and intensity of management burning in the English uplands. 

J. Appl. Ecol. 43, 1138–1148. https://doi.org/10.1111/j.1365-2664.2006.01222.x 



 

 

323 

382) Yang, G., Wang, Y., Zeng, Y., Gao, G.F., Liang, X., Zhou, M., Wan, X., Yu, S., Jiang, 

Y., Naghavi, M., Vos, T., Wang, H., Lopez, A.D., Murray, C.J.L., 2013. Rapid health transition 

in China, 1990-2010: Findings from the Global Burden of disease study 2010. Lancet 381, 

1987–2015. https://doi.org/10.1016/S0140-6736(13)61097-1 

383) Yao, J., Eyamie, J., Henderson, S.B., 2016. Evaluation of a spatially resolved forest 

fire smoke model for population-based epidemiologic exposure assessment. J. Expo. Sci. 

Environ. Epidemiol. 26, 233–240. https://doi.org/10.1038/jes.2014.67 

384) Yim, S.H.L., Barrett, S.R.H., 2012. Public health impacts of combustion emissions in 

the United Kingdom. Environ. Sci. Technol. 46, 4291–4296. 

https://doi.org/10.1021/es2040416 

385) Yin, J., Harrison, R.M., 2008. Pragmatic mass closure study for PM1.0, PM2.5 and PM10 

at roadside, urban background and rural sites. Atmos. Environ. 42, 980–988. 

https://doi.org/10.1016/j.atmosenv.2007.10.005 

386) Zanobetti, A., Schwartz, J., 2009. The effect of fine and coarse particulate air pollution 

on mortality: A national analysis. Environ. Health Perspect. 117, 898–903. 

https://doi.org/10.1289/ehp.0800108 

387) Zhang, G.J., McFarlane, N.A., 1995. Sensitivity of climate simulations to the 

parameterization of cumulus convection in the canadian climate centre general circulation 

model. Atmos. - Ocean 33, 407–446. https://doi.org/10.1080/07055900.1995.9649539 

388) Zhang, H., Kondragunta, S., Laszlo, I., Zhou, M., 2020. Improving GOES Advanced 

Baseline Imager (ABI) aerosol optical depth (AOD) retrievals using an empirical bias 

correction algorithm. Atmos. Meas. Tech. 13, 5955–5975. https://doi.org/10.5194/amt-13-

5955-2020 

389) Zhu, H., Qu, Z.W., Grebenshchikov, S.Y., Schinke, R., Malicet, J., Brion, J., Daumont, 

D., 2005. The Huggins band of ozone: Assignment of hot bands. J. Chem. Phys. 122. 

https://doi.org/10.1063/1.1825380 



 

 

324 

390) Zoogman, P., Liu, X., Suleiman, R.M., Pennington, W.F., Flittner, D.E., Al-Saadi, J.A., 

Hilton, B.B., Nicks, D.K., Newchurch, M.J., Carr, J.L., Janz, S.J., Andraschko, M.R., Arola, 

A., Baker, B.D., Canova, B.P., Chan Miller, C., Cohen, R.C., Davis, J.E., Dussault, M.E., 

Edwards, D.P., Fishman, J., Ghulam, A., González Abad, G., Grutter, M., Herman, J.R., Houck, 

J., Jacob, D.J., Joiner, J., Kerridge, B.J., Kim, J., Krotkov, N.A., Lamsal, L., Li, C., Lindfors, 

A., Martin, R. V., McElroy, C.T., McLinden, C., Natraj, V., Neil, D.O., Nowlan, C.R., 

O׳Sullivan, E.J., Palmer, P.I., Pierce, R.B., Pippin, M.R., Saiz-Lopez, A., Spurr, R.J.D., 

Szykman, J.J., Torres, O., Veefkind, J.P., Veihelmann, B., Wang, H., Wang, J., Chance, K., 

2017. Tropospheric emissions: Monitoring of pollution (TEMPO). J. Quant. Spectrosc. Radiat. 

Transf. 186, 17–39. https://doi.org/10.1016/j.jqsrt.2016.05.008 

 

  



 

 

325 

 - Appendices A 

Supplementary Material: Impact of weather 

types on UK ambient particulate matter 

concentrations  

Ailish M. Graham1, Kirsty J. Pringle1, Stephen R. Arnold1, 

Richard J. Pope1,2, Massimo Vieno3, Edward W. Butt1, Luke 

Conibear1, Ellen L. Stirling1 and James B. McQuaid1 

1 School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK 

2 National Centre for Earth Observation, University of Leeds, Leeds, LS2 9JT, UK 

3 Natural Environment Research Council, Centre for Ecology and Hydrology, Penicuik, 

EH26 0QB, UK 

Correspondence to: Ailish M. Graham (ee15amg@leeds.ac.uk) 

 

9.1 Site Information  

AURN sites are classified as urban traffic/kerbside, urban or suburban background, and rural 

background. For this study background sites are used (urban background, suburban background 

and rural background). Background sites are chosen as they are considered to be more 

representative of the surrounding region than urban sites. This is because their locations are 

chosen so as to be influenced by the integrated contribution of all sources upwind rather than 

by a single souce or street (Department for Environment Food and Rural Affairs, 2011). Data 

from 42 sites is used; 39 of which are urban background (UB), 2 rural background (RB) and 1 

background suburban (BS) (Table 10). 

  

mailto:ee15amg@leeds.ac.uk


 

 

326 

Table 10. Automated Urban and Rural Network sites used for PM2.5 analysis. AURN sites and 

classifications (UB = Urban Background, RB = Rural Background, BS = Background 

Suburban). 

Site Name Type Site Name Type 

Aberdeen (1) UB London N. Kensington (23) UB 

Auchencorth Moss (2) RB London Teddington Bushy Park 

(24) 

UB 

Belfast Centre (3) UB Manchester Piccadilly (25) UB 

Birmingham Acocks Green (4) UB Newcastle Centre (26) UB 

Blackpool Marton (5) UB Newport (27) UB 

Bristol St Paul’s (6) UB Norwich Lakenfields (28)  UB 

Cardiff Centre (7) UB Nottingham Centre (29) UB 

Chesterfield Loudsley Green (8) UB Oxford St Ebbes (30) UB 

Chilbolton Observatory (9) RB Plymouth Centre (31) UB 

Coventry Allesley (10) UB Portsmouth (32) UB 

Derry Rosemount (11) UB Preston (33) UB 
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9.2 Emissions  

The emissions used for the back trajectories are the same as those used in the EMEP4UK 

model, which uses two emissions datasets and a nested domain to cover the UK within the 

coarser European domain. Annually varying emissions for the 2010 – 2014 period were used 

as this matches the time period the back trajectories were available for. Emissions of primary 

PM2.5 for 2010 are shown in Figure 24 for reference. For the outer domain (Figure 24: Purple 

Box), gridded annual EMEP emissions at 0.5° resolution from the Centre for Emission 

Inventories and Projections (CEIP, www.ceip.at) are used. While for the inner domain (Figure 

24: Red Box) gridded annual National Atmospheric Emissions Inventories (NAEI) emissions 

Eastbourne (12) UB Reading New Town (34) UB 

Edinburgh St Leonards (13) UB Rochester Stoke (35) UB 

Glasgow Townhead (14) UB Salford Eccles (36) UB 

Hull Freetown (15) UB Sheffield Devonshire Green (37) UB 

Leamington Spa (16) UB Southampton Centre (38) UB 

Leeds Centre (17) UB Southend-on-Sea (39) UB 

Leicester University (18) UB Stoke-on-Trent Centre (40) UB 

London Bexley (19) BS Sunderland Silksworth (41) UB 

London Bloomsbury (20) UB Wigan Centre (42) UB 
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at 0.01° resolution are aggregated to 5 km resolution. Within the UK domain where emissions 

are not available at 0.05° resolution or less, EMEP 0.5° resolution emissions are interpolated 

to the required resolution of 0.05°. Emissions outside of Europe are provided by the Emission 

Database for Global Atmospheric Research with Task Force on Hemispheric Transport of Air 

Pollution (EDGAR-HTAP) version 2.2 emissions for 2010 at 0.1° resolution (Janssens-

Maenhout, et al., 2015). The EDGAR-HTAP emission dataset uses emissions databases from 

the US Environmental Protection Agency (US EPA) including Canada, the model inter-

comparison study for Asia Phase II (MICS –Asia) and EMEP-TNO emissions for Europe 

(which are replaced with emissions from the EMEP4UK model). EMEP4UK PM2.5 emissions 

are interpolated onto the EDGAR-HTAP emissions grid to replace EDGAR-HTAP PM2.5 

emissions for the European domain.  

PM emissions for all datasets also include elemental carbon (EC), organic matter (OM) and 

other compounds. Emissions of each species are provided for 10 anthropogenic source-sectors 

(SNAP sectors) (Simpson, et al., 2012).  
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9.3 Sensitivity of Integrated Back Trajectories to assumed e-folding lifetime 

 

 

 

Integrated PM2.5 emissions (Figure 48) indicate that the total integrated emission of the parcel 

accumulated along the trajectory path is sensitive to the e-folding lifetime chosen however the 

fractional contribution is less sensitive. With a change in the e-folding lifetime the fractional 

Figure 48. Median UK (background AURN sites) total accumulated PM2.5 

emissions (µg m-2) accumulated over the daily (12 UTC, 2010-2014) 

ROTRAJ back trajectories (4 days – 15-minute time steps), with a (a) 1-day 

(b) 3-day (c) 7-day and (d) 14-day e-folding lifetime, binned by LWT flow 

directions. Red circles represent the UK fractional contribution to trajectory 

accumulated PM2.5 emissions. 
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contribution changes by less than 15% for all LWTs, however the total emission changes by 

an order of magnitude, from < 0.05 µg m-2 (1 hour) to < 0.5 µg m-2 (14 days) (Figure 48 (a) 

and (d)).  

At a 1-hour life time total accumulated emissions are dominated by UK emissions for NW and 

N flows (10% from outside of the UK). This increases to around 30% under NE, W and SW 

flows and almost 70% under E, SE and S flow. The total emissions accumulated over the back 

trajectory show very little variation over this e-folding lifetime with NE, N and NW flows 

indicating the same emission total as E, SE and S flow. This suggests that the e-folding lifetime 

of PM2.5 emissions is very important in predicting the total accumulated emission over the 

back-trajectory path. At lifetimes of 3 and 7 hours large changes are observed in the total 

accumulated emission but not the fractional contribution. Between a lifetime of 3 and 7 hours 

(Figure 48 (b) and (c)) there is negligible change in the fractional contribution of UK emissions 

to the total accumulated emission. However, the total accumulated emission of PM2.5 observed 

under different flow directions changes substantially. This is seen most clearly under E, SE and 

S flow, doubling from ~0.2 to ~0.4 µg m-2 (SE), but is also seen in the cleaner wind directions 

(N, NW, W from 0.05 to > 0.15 µg m-2).  The same is seen when the lifetime is increased from 

7 to 14 hours (Figure 48 (c) and (d)), with negligible changes in fractional contribution but 

substantial changes in total accumulated emissions. Although the total accumulated emission 

under all flow directions increases with the increased e-folding lifetime, the contrast in total 

accumulated emissions between N, NW and W flow regimes and E, SE and S flow regimes 

increases significantly. This follows the same pattern as that seen in the AURN PM2.5 

concentration observations, indicative that under E, SE and S flow a large proportion of the 
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primary PM2.5 emission total originates outside of the UK. This indicates long-range transport 

due to changing meteorology plays an important role in UK pollutant concentrations. 

9.4 EMEP4UK Evaluation  

Here we evaluate EMEP4UK against observations to test the model skill to simulating surface 

PM2.5. When daily modelled PM2.5 concentrations at each site are compared with observations 

under each LWT, the model captures the distribution of concentrations well (Figure 49). The 

model also has skill in predicting mean PM2.5 concentrations, with a negative bias ≤ 1 µg m-3 

under most LWTs and an annual mean negative bias of ~1 µg m-3 across all LWTs (Figure 49). 

Positive biases are also evident, of similar magnitude under most LWTs and under easterly and 

south-easterly flows biases of up to 15 µg m-3 are apparent at some sites (Figure 50). Despite 

this, the model shows good overall agreement with observations, with a Pearson correlation 

coefficient of 0.887 (Figure 50). PM2.5 anomalies are also well captured by the model (Figure 

50), with the same pattern as was seen in the observations and a Pearson correlation coefficient 

of 0.905.  

In conclusion, overall the model captures the variability in PM2.5 concentrations with LWT well 

and shows good correlation with observations at each site (r = 0.887) with only a small negative 

bias. Therefore, we can have good confidence in the model’s ability to predict regional PM2.5 

changes with different LWTs.  
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Figure 49. 2010-2016 daily modelled (cyan and magenta) and observed (blue and red) PM2.5 

concentrations, binned by LWT. Mean (red/magenta), 10th, 25th, 75th and 90th percentiles 

are shown. The mean modelled (magenta) and observed (red) PM2.5 concentration for all 

LWTs is shown by the dashed line. 

 

Figure 50. Annual mean concentration and anomaly between 2010-2016 for daily modelled (EMEP4UK) 

and observed PM2.5 concentrations at AURN observation sites, binned by LWT. The Pearson 

correlation (r) is shown at the top of each panel. 
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10.1 Meteorological Conditions 

Meteorological reanalysis data (i.e. ERA-Interim and UK Met Office surface charts) were 

obtained from the European Centre for Medium-Range Weather Forecasts (ECMWF) on a 0.5° 

× 0.5° horizontal grid and the UK Met Office data archive. ERA-interim meteorological 
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variables include mean sea level pressure (MSLP), ERA5 geopotential, 2-m temperature and 

10 m u & v wind components.. The ERA-Interim data were downloaded from 

https://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/.  

Figure 51 shows the time evolution of 1200 Z mean sea level presssure and geopotential height 

at 850 hPa (850GPH) from the 19th-30th June 2018. Over northern England pressure minima 

occur on June 19th and 20th (1010-1020 hPa), with 850GPH between 1400-1560 m and 

indicating a westerly flow. From the 21st June high pressure begins to build from the west 

(>1030 hPa) (850GPH 1580 m), peaking at >1030 hPa over much of the UK over Saddleworth 

Moor on June 22nd and 850GPH of 1560-1620 m, and persisting (>1020 hPa and 1540-1620 

m) until the 30th June (1010-1020 hPa and 850GPH 1520-1540 m). These high pressure 

conditions are associated with enhancements in synoptic pressure in the North Atlantic yielding 

strong anticyclonic conditons over the UK. This is confirmed by the Lamb Weather Types 

(LWTs, (Jones, et al., 2013)) which represent the daily classification of UK circulation patterns. 

Based on data from the University of East Anglia, 

(https://crudata.uea.ac.uk/cru/data/lwt/static_files/ERA5_1979_2018_12hrs_UK.dat), June 

22nd-29th experienced strong anticyconlic conditions (LWT = 0).  

This enhancement in pressure across the UK yielded substantial increases in temperature and 

reduced wind speeds. Temperatures increased from June 22nd, peaking at 22-27 °C (~295-

300°K)  over Saddleworth Moor on the 26th June (Figure 52). This coincided with the full 

development of the Saddlworth Moor fire. The high temperatures helped to dry out the surface 

vegetation (and underlying peat) which led to the rapid spreading of the fire once ignition had 

occurred. From June 24th – 30th, temperatures never dropped below 22°C (~290°K) at 

Saddleworth Moor. Between June 24th-26th, when peak temperatures occurred, the 10 m wind 

https://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/
https://crudata.uea.ac.uk/cru/data/lwt/static_files/ERA5_1979_2018_12hrs_UK.dat
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speeds never rose above 3 m s-1 (Figure 53), likely to have aided the fire development. On the 

other days of the observation period, the wind speeds over the land (sea) ranged between 3 and 

9 m s-1 (5 to > 10 m s-1). 
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Figure 51. ERA-Interim 1200Z mean sea level pressure (hPa 0.5° × 0.5° 

grid)) with ERA5 geopotential height (m) at 850 hPa overplotted in red 

for June 19th-30th 2018 over Northern England. The black dots represent 

the location of Saddleworth Moor and Winter Hill. 
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Figure 52. ECMWF ERA-Interim 2-m temperature (K, 0.5° × 0.5° grid) for 

June 19th-30th 2018 over Northern England. The black dots represent 

the location of Saddleworth Moor and Winter Hill. 
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Figure 53. ECMWF ERA-Interim 10-m wind speed (m s-1, 0.5° × 0.5° grid) 

for June 19th-30th 2018 over Northern England. The black dots 

represent the location of Saddleworth Moor and Winter Hill. 
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10.2 Satellite Visible Images of Saddleworth Moor Fire Development 

The Moderate Resolution Imaging Spectroradiometer (MODIS) visible images of the 

Saddleworth Moor (Figure 54) show the time-evolution of the fire smoke plume from space. 

The first detection of the fire plume can be seen on the 25th June and remains in-situ until the 

26th June. On the 27th June, there is a westwards propagation of the plume out towards 

Manchester and Liverpool. On June 28th and 29th, the plume has become more dispersed but is 

still visible and shifted slightly southwards. On the 30th June, the Saddleworth Moor plume is 

no longer detectable in the visible image, but now the Winter Hill fire plume is clearly flowing 

out towards the Irish Sea with a north-west trajectory. On later days, the MODIS instruments 

on both satellite platforms (local overpass times of 13.30 and 10.30) are obstructed by cloud 

when retrieving the visible images. 
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Figure 54. MODIS visible images, from NASA’s Aura and Terra 

satellites, of the Saddleworth Moor and Winter Hill fires 

between June 25th-30th. The locations of Saddleworth Moor and 

Winter Hill are indicated in white, while the locations of 

Manchester and Liverpool are shown in cyan. 
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10.3 MODIS Fire Radiative Power   

Figure 55 represents the fire radiative power (FRP, mW m-2) observed by the MODIS 

instruments over the northern England between June 19th and 30th. The data was downlaoded 

from the Global Fire Assimilation System (GFAS, https://apps.ecmwf.int/datasets/data/cams-

gfas/). Between June 19th to 26th MODIS detected no fires in north-western England. On June 

25th and 26th, when MODIS visible images capture the Saddleworth Moor fire (Figure 55), the 

strength of the fire was insufficient for detection of thermal anomalies. On June 27th, MODIS 

FRP detects the fire over Saddleworth Moor peaking at over 100 mW m-2. On June  28th and 

29th, as seen in the visible images, the fire intensity has decreased to under 100 mW m-2 and 

covers a smaller area. On June 29th, the Winter Hill fires are detected at approximately 30 mW 

m-2 and on the 30th June this has increased to over 100 mW m-2, while Saddlworth Moor retains 

the same thermal intensity over both days.  

  

https://apps.ecmwf.int/datasets/data/cams-gfas/
https://apps.ecmwf.int/datasets/data/cams-gfas/
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Figure 55. MODIS fire radiative power (FRP, mW m-2, 0.1° × 0.1° grid) 

for June 19th-30th 2018 over Northern England. The white dots 

represent the location of Saddlworth Moor and Winter Hill. 
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10.4 HYSPLIT Trajectories    

Meteorological data for the HYSPLIT model is taken from The Global Data Assimilation 

System (GDAS), used by the National Centre for Environmental Prediction (NCEP) Global 

Forecast System (GFS) model to place observations into a gridded model space for the purpose 

of starting, or initializing, weather forecasts with observed data 

(https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-data-assimilation-

system-gdas).  Meteorological data is at 0.5° spatial resolution and 3-hourly temporal 

resolution. Meteorological data is interpolated on the 18 model levels, which extend from ~995 

hPa to 20 hPa (Kanamitsu, 1989) 

The HYSPLIT model results shown are from single release points at aircraft sampling points 

in the near-field and downwind regions. Trajectories were released from the most northerly 

and southerly points of the near-field (2.2°W, 53.75°N and 1.9°W, 53.25°N) and downwind 

(3.4°W, 53.75°N and 3.4°W, 52.75°N) sections of the flight from a range of altitudes during 

these profiles (500, 750 & 1000 m and 250, 500 and 1000 m, respectively). The age of the air 

mass the sample was taken within can be estimated using the time at which these back-

trajectories pass over Saddleworth Moor. See Stein et al. (2015) for more information on the 

HYSPLIT model (Figure 56).  

 

 

 

 

 

  

https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-data-assimilation-system-gdas)
https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-data-assimilation-system-gdas)
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Figure 56. Back trajectories from HYSPLIT for the aircraft flight on June 29th 2018. 

Trajectories are released from various locations at 250-1000m heights based on the 

aircraft altitude and track during the near-field and downwind sections of the flight. 

The path of each trajectory is indicated on the map, while the altitude above ground 

level is indicated on the bottom plot. 
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10.5 Satellite Observations of Tropospheric Column Nitrogen Dioxide 

TROPOMI measurements of tropospheric column nitrogen dioxide (TCNO2, 10-5 moles m-2) 

increase in magnitude coinciding with the Saddleworth Moor fire occurrence (Figure 57). This 

is most noticeable on June 27th to 29th as TCNO2 peaks at over 20 x10-5 moles m-2 with a 

substantial spatial extent coinciding with the fire plume (Figure 57). This is reinforced by the 

total column carbon monoxide (TCCO) plume location (black polygon-outlined region, TCCO 

> 0.03 moles m-2) as seen in the main manuscript. However, while the CO sources over 

Manchester and Liverpool are barely detectable by TROPOMI (see Figure 34 and Figure 57), 

the Saddleworth Moor and Winter Hill fires show strong enhancements relative to the 

background concentrations (see Satellite Observations of Tropospheric Column Nitrogen 

Dioxide section and Figure 60 for more details). The enhancement of TCNO2 on June  27th-

29th is linked to fire nitrogen oxide (NOx) emissions and increases from other NO2 sources. As 

shown by Pope et al. (2015, 2014), anticyclonic conditions lead to the accumulation of NO2, 

yielding larger concentrations than the seasonal average. When comparing TROPOMI TCNO2 

over Manchester and other cities (e.g. London) for these few days against the June-July 2018 

average, there are substantial enhancements over the source regions (not shown here) across 

the UK. Unfortunately, given the relatively short TROPOMI data record, it is difficult to find 

other meteorological situations similar to that of the Saddlworth Moor fires to investigate 

whether the 27th-29th June 2018 NO2 enhancement was more exteme than at other times. 

Therefore, the TCCO plume is used to sub-sample the TCNO2 data “in-plume”, “edge of 

plume” and “out of plume” with TCCO thresholds of >0.03 moles m-2, 0.025-0.03 moles m-2 

and 0.02-0.025 moles m-2, respectively. A minimum threshold for “out of plume” was set at 
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0.020 moles m-2 so NO2 was sampled close to but not within the plume, and to ensure large 

swaths of background NO2 within the domain were not used in this classification. 

When TCNO2 is sub-sampled under the fire pixels (FRP > 50 mW m-2), the median 

concentration is approximately 8.0 x10-5 moles m-2, which is significantly larger than the 

median TCNO2 concentration (6.0-7.0 x10-5 moles m-2) in non-fire pixels (same locations as 

fire pixels but on days were FRP <50 mW m-2) at the 95% confidence level (based on the 

student t-test). The fire-TCNO2 10th, 25th and 75th percentile concentations are also larger than 

the non-fire-TCNO2 equivelant. However, the non-fire-TCNO2 90th percentile value is 

marginally larger. The TCNO2 data sub-sampled under the TCCO plume definitions show a 

similar pattern. “Out of plume” median TCNO2 is the lowest (5-6 x10-5 moles m-2) of all 

classifications (true for the 10th, 25th, 75th and 90th percentiles as well). Though downwind of 

the fire location, the “edge of plume” and “in plume” classifciations have the largest median 

TCNO2 values of 10.0-11.0 x10-5 moles m-2 and 12.0-13.0 x10-5 moles m-2, respectively. These 

two classifications both overlap with regions of enhanced anthropogenic NO2 sources (i.e. 

Manchester and Liverpool), so their median and percentile concentrations are larger. In the six 

time panels of Figure 57, the “edge of plume” and “in plume” classifications both experience 

larger TCNO2 concentations depending on the day. Therefore, by using the TCCO data as a 

tracer for the fire plume, we can detect an NO2 fire response on top of the anthropogenic NO2 

signal. Here, the median and percentile concentations are all larger “in plume” than “edge of 

plume”, compared with out of plume, where the medians are significantly different at the 95% 

confidence level (student t-test). So, our results suggest that, while not as clear as the 

TROPOMI TCCO signal, the Saddleworth Moor and Winter Hill fires significantly enhanced 

observed NO2 concentrations.  
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10.6 TROPOMI Total Column Carbon Monoxide Averaging Kernels 

The total column averaging kernels (AKs) reflect the altitude sensitivity of the CO total column 

retrieval. The AKs for three different locations (Saddleworth Moor, Manchester and Liverpool) 

during the Saddleworth Moor fire days are shown in the six panels of Figure 58. The AKs 

indicate a significant reduction of the retrieval sensitivity near the surface on the 27th June at 

Saddleworth Moor (Figure 58 (c)) and in Manchester and Liverpool on June 28th (Figure 58 

(d)). TROPOMI detects reflected sunlight in the SWIR and, in principle, a TROPOMI 

measurement of CO is sensitive from the surface upwards. However, there can be reduced 

sensitivity in TROPOMI measurements near the surface due to smoke and aerosols. 

  

Figure 57. TROPOMI tropospheric column nitrogen dioxide (TCNO2, 10-5 moles m-2) measurements 

of the Saddleworth Moor wildfire (June 25th – 30th 2019). Black and purple polygon-outlined 

regions represent the TROPOMI total column carbon monoxide (TCCO) fire plume (>0.03 

moles m-2) and edge of plume (0.025-0.03 moles m-2). Black dots show pixels where MODIS 

fire radiative power (FRP) is > 50 mW m-2. White dots show the location of the Saddleworth 

Moor and Winter Hill fires. Blue dots show the location of Manchester and Liverpool. The box 

and whisker schematics represent TCNO2 sub-sampled under the plume, edge of plume and out 

of the plume TCCO thresholds. TCNO2 is also sub-sampled under fire pixels (FRP > 50 mW 

m-2) and non-fire pixels (FRP < 50 mW m-2). Red, green and blue represent the median, 25th & 

75th percentiles and 10th & 90th percentiles, respectively. 
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Figure 58. Total column averaging kernels reflecting the altitude 

sensitivity of the CO total column TROPOMI retrieval during the 

Saddleworth Moor fire days (June 25th-30th 2018) for three specific 

location, Manchester, Liverpool and Saddleworth Moor. 
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On June 25th and 26th, the AKs over the urban regions lose some sensitivity near the surface, 

independent of the fire signal. The Saddleworth Moor AKs have already lost sensitivity near 

the surface below approximately 800 hPa due to the influence of smoke particles within the 

plume. On June 27th, the Saddleworth Moor AK has greater sensitivity (just over 1.0) than the 

urban regions above 800 hPa. As winds transport the smoke plume over Manchester and 

Liverpool (June 29th and 30th), the AK loses sensitivity at approximately 900 hPa and reduces 

to approximately 0.7.  

Typically, the signal from surface urban CO is smeared out over the satellite pixel (with some 

loss of sensitivity if there are aerosols) and it can be difficult to distinguish from the background 

due to instrumental noise. The SWIR CO overtone band is relatively weak, so detecting small 

CO enhancements above the background can be difficult. The fires are likely to emit more CO 

than the urban regions, so sources such as Manchester and Liverpool are more difficult to 

detect, but with clear enhancements from the fires. 
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10.7 Aircraft Instrumentation and Cross-section 

 

  

Figure 59. Facility of Airborne Atmospheric Measurements (FAAM) aircraft path (hours since 00 

UTC) and altitude(m above ground level (AGL))  from the Saddleworth Moor wildfires on 

June 29th 2018. 
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 Instrumentation 

PM2.5 mass was calculated using data from the passive cavity aerosol spectrometer probe 100-

X (PCASP) instrument. Uncertainty in the PCASP dataset comes from poisson counting (i.e 

the number of particles in each of the size bins) and the bin width (originating in the optical 

property corrections that are applied) (Sanchez-Marroquin, et al., 2019). We find this to be 

~30-35% at the 1-sigma confidence interval for the integrated volume in the PM2.5 range. 

Further uncertainty in the PM2.5 concentration data (which we calculate from the raw dataset) 

comes from our assumption of density of the particles, which we apply to the dataset to 

calculate the mass of PM2.5. We take this value to be 1.4 kg m-3 (black carbon), which is in the 

range of values (1.2 -1.8 kg m-3) given by Long et al. (2013). We believe this is a conservative 

estimation since the flight sample will likely also include dust particles, which have a higher 

density (Wagner, et al., 2018). We carried out a sensitivity analysis to the density value used 

and found that changing the density value by ±10% lead to a linear change in the PM2.5 mass 

calculated (i.e. ±10%). We also use a refractive index of 1.56+0i, which we believe to be a 

good choice given that the aerosol sampled are very likely heterogeneous (Sanchez-Marroquin, 

et al., 2019). Finally, since the data is based on particles in the 0.1 - 3µm diameter size range, 

we are likely to slightly underestimate the total PM2.5 mass. Though this this is likely to be 

small since the ultrafine section (< 0.1 µm) contains very little mass.  

Measurements of NO were made using a custom built chemiluminescence instrument (Air 

Quality Design Inc), with NO2 measured on a second channel by photolytic conversion to NO 

at 395 nm using a blue light converter (BLC), followed by detection by chemiluminescence 

(Lee, et al., 2009). In flight calibrations were carried out by adding a small flow of NO 

calibration gas (5 ppm NO in nitrogen, BOC) to the sample inlet, such that the calibration was 
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in the same humidity regime as the ambient measurements. The NO2 conversion efficiency was 

measured by titration of the NO in the calibration to NO2 using O3. Calibrations were carried 

out at the beginning and end of each flight whilst the aircraft was above the boundary layer and 

hence flying in very low and stable NOx conditions. The calibration factors were interpolated 

throughout the flight to account for any sensitivity drifts in the instrument. Estimated 

accuracies are 4% for NO 5% for NO2, with associated precision of 31 and 45 pptv respectively 

(for 1Hz data). 
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Figure 60. Facility of Airborne Atmospheric Measurements (FAAM) aircraft 

measurements of nitrogen dioxide (NO2, ppbv) (red) and carbon monoxide (CO, 

ppbv) (black) from the Saddleworth Moor wildfires on June 29th 2018. The 

sections bounded by the red and blue dashed lines represent the near-field (NF) 

and downwind (DW) time phases of the flight. The horizontal purple dashed line 

indicates the “in-plume” (> 125 ppbv) versus “out of plume” (< 125 ppbv) 

threshold. 

 

 



 

 

356 

 

 

 

  

 

Figure 61. Facility of Airborne Atmospheric Measurements (FAAM) time-series observations of 

carbon monoxide (CO, ppbv) (black) and PM2.5 concentration (µg m-3) (red) from the 

Saddleworth Moor wildfires on June 29th 2018. The sections bounded by the red and blue 

dashed lines represent the near-field (NF) and downwind (DW) time phases of the flight. The 

horizontal purple dashed line indicates the “in-plume” (> 125 ppbv) versus “out of plume” 

(< 125 ppbv) threshold. 



 

 

357 

 

  

Figure 62. Box and whisker schematic of PM2.5 aerosol concentration (µg m-3) and 

CO (right, ppbv “in-” and “out of plume” (CO > 125 ppbv). Red, green and 

blue represent the median, 25th and 75th percentiles and minimum and 

maximum concentrations, respectively. NF and DW represent the near-field 

and downwind phases of the plume. 
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 Cross section 

Figure 63 represents the “in-plume” flight transect (CO concentration > 125 ppbv) used for the 

emissions calculation in Equation (15) of the main manuscript. Here, the plume width is 4482 

m and plume thickness is 52 m, and we assign a 50% uncertainty to these values which are 

assumed to be fixed. We tried different CO concentration thresholds, but 125 ppbv gave the 

best results. For example, if 100 ppbv were used then background values from other transects 

would be included and the plume transect would not be continuous. If larger values were used, 

the sample size within the transect would rapidly reduce. It is also possible that the aircraft 

might not have flown through the centre of the plume, so the values here might be 

underestimated. Finally, we assume the cross-section of this part of the transect is regular (i.e. 

approximately rectangular), providing further uncertainty in our methodology. However, the 

emission rates for CO and carbon dioxide (CO2) compare reasonably with remote sensing 

estimates, thus providing some confidence in our results. 
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Figure 63. Aircraft transect representing the fire plume the near-field (NF) flight segment. Red 

crosses represent where the aircraft was sampling “in-plume” air defined as CO concentrations 

> 125 ppbv. The plume width is approximately 4482 m and the plume thickness is 

approximately 52 m, representing an approximate rectangular cross-section. 
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10.8 Comparison of TROPOMI with IASI (Infrared Atmospheric 

Sounding Infererometer) 

Evaluation of total column carbon monoxide (TCCO) from the TROPOMI satellite is not 

possible using the aircraft data due to a lack of vertical information in the aircraft dataset, which 

prevents the derivation of a total column. We therefore use the Infrared Atmospheric Sounding 

Interferometer (IASI), onboard ESA's MetOP-A to evaluate TCCO from TROPOMI. The IASI 

TCCO data is provided by the Rutherford Appleton Laboratory (RAL), which uses their 

Infrared & Microwave Sounding (IMS) scheme (Siddans, et al., 2015). Typical precision 

uncertainty in the data used is approximately 12%. More information is provided by Siddans, 

Gerber and Miles (2015).  

TCCO data from IASI clearly detects fire-enhanced TCCO, despite much less dense sampling 

from this satellite (Figure 64). However, daily background column values show large 

variability so we calculate a daily fire anomaly using the average background TCCO between 

1-0°W and 55-56°N. Consistent with TROPOMI TCCO (Figure 34), on June 26th, a large 

enhancement in TCCO can be observed over the fire region of enhancement between 0.3 ×1018 

molecules cm-2 and 0.4 ×1018 molecules cm-2 (Figure 64). On June 27th, free tropospheric winds 

transport CO towards the urban regions of Manchester and Liverpool (> 0.4 ×1018 molecules 

cm-2). This is less well captured on June 28th and 29th, but TCCO enhancements are still co-

located with that of TROPOMI. On June 30th, the Saddleworth Moor fires are no longer 

detected, but the Winter Hill fires show slight CO enhancements (0.25-0.3 ×1018 molecules 

cm-2) consistent with TROPOMI TCCO. 
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Figure 64. IASI total column carbon monoxide (TCCO, 1018 molecules cm-2) for June 25th - 

30th 2018. Daily background concentrations have been subtracted based on the 1-0°W, 

55-56°N average sub-region column value. The black circle representations the location 

of the Saddleworth Moor fires. 
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10.9 AURN PM2.5 observations  

Table 11. Mean daily non-volatile fraction of PM2.5 for 2013-2017 and 2018 at Manchester 

Piccadilly, Salford Eccles and Wigan Centre AURN sites. 

 

 

 

 

 

  

Date Manchester Piccadilly Salford Eccles Wigan Centre 

Non-volatile 

fraction 2013-

2017 

Non-volatile 

fraction 2018 

Non-volatile 

fraction 2013-

2017 

Non-volatile 

fraction 2018 

Non-volatile 

fraction 2013-

2017 

Non-volatile 

fraction 2018 

25/06/018 0.96 0.84 0.81 0.81 0.76 0.80 

26/06/018 0.87 0.92 0.80 0.84 0.72 0.90 

27/06/018 0.90 0.93 0.74 0.90 0.70 0.88 

28/06/018 0.82 0.86 0.63 0.66 0.61 0.80 

29/06/018 0.96 0.83 0.76 0.80 0.70 0.75 
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11.1 AURN data 

 

Table 12. shows details of AURN sites used in model evaluation within this study. 

 

Site Name Site Type Latitude 

(ºN) 

Longitude 

(ºE) 

Blackpool Marton (0) Urban Background 53.80 -3.01 

Carlisle Roadside (1) Urban Traffic 54.89 -2.95 

Hull Freetown (2) Urban Background 53.75 -0.34 

Leeds Centre (3) Urban Background 53.80 -1.55 

Leeds Headingley (4) Urban Traffic 53.82 -1.76 

Liverpool Speke (5) Urban Industrial 53.35 -2.84 

Manchester Piccadilly (6) Urban Background  53.48 -2.24 

Preston (7) Urban Background 53.77 -2.68 

Salford Eccles (8) Urban Background 53.48 -2.33 

Sheffield Centre (9) Urban Traffic 53.41 -1.46 

Sheffield Devonshire Green (10) Urban Background 53.38 -1.48 

Warrington (11) Urban Industrial 53.39 -2.62 

Wigan Centre (12) Urban Background 53.55 -2.64 

Wirral Tranmere (13) Urban Background 53.37 -3.0 

York Fishergate (14) Urban Traffic 53.95 -1.08 

York Bootham (15) Urban Background 53.97 -1.09 
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11.2 Wildfire Emissions Scaling 

Since FINNv1.5 does not include emissions from peat we scale FINN emissions over 

Saddleworth Moor (Figure 65) to try to account for this. We use observations of PM2.5 from 

AURN sites and modelled surface PM2.5 from WRF-Chem simulations to tune our scaling. We 

find that increasing scaling by a factor of 1-10 of the original FINN values throughout the fires 

results in the lowest root mean square error (RMSE) when the model is compared to 

observations (see Table 8). This is likely due to changing fuel source through the fire lifetime, 

from the surface vegetation (heather and grass) initially, which FINN accounts for. Once 

surface vegetation had been burnt the fire began to burn the peat underneath (Greater 

Manchester Combined Authority, 2019), which has much higher emissions per unit burnt area. 

Thus, later in the fire lifecycle (26th – 28th), using a larger scaling for emissions improves 

agreement with observations.  
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Figure 65. Area over which scaling was applied (blue) to FINNv1.5 emissions for use in WRF-

Chem simulations over plotted on peat coverage in domain (Xu, et al., 2018) 
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Figure 66. Hourly observed and simulated surface PM2.5 between June 16th and July 14th 2018. Modelled values are from the no fires (green), no scaling 

(yellow), 10x scaling (cyan) and time-varying scaling simulations (magenta) (see Manuscript: Model Evaluation and Table 8). Observations from 

AURN sites are indicated in black. 
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Figure 67. (a) Time-varying scaling, (b) 10x scaling and (c) no scaling simulated and observed hourly PM2.5 concentrations at all sites. 

Individual sites are shown in (d-f), with the mean for each observational site between June 16th – July 14th 2018 indicated by coloured 

crosses. The 1:1, 0.5:1 and1:0.5 lines are shown for reference. The mean correlation coefficient (r), mean bias (MB), normalised mean 

bias (NMB) and root mean squared error (RMSE in µg m-3) across all sites for the simulation period (June 16th – July 14th 2018) are also 

indicated in (a)-(c).  
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11.3 Model set-up  

 Release of emissions  

Although WRF-Chem is set-up to emit fire emissions using a plume-rise parameterisation by 

default (Freitas, et al., 2007), several studies have found that emissions from fires are released 

and remain in the boundary layer (BL). This scheme potentially represents an incorrect vertical 

distribution of the emissions (Archer-Nicholls, et al., 2015). Given the size of the Saddleworth 

Moor fires (8 km2) and the peak height of flames (4 m), the plume-rise parameterization is 

likely to overestimate the injection height of the emissions from the fires. Therefore, we release 

100 % of emissions at the surface. Kiely et al. (2019) found that releasing emissions at the 

surface for WRF-Chem simulations of Indonesian fires, using a similar model set-up to this 

study, increased the average simulated surface PM2.5 concentration by a factor of 1.34-1.36 

compared with injecting 50% at the surface and 50% in the boundary layer. 

 Anthropogenic Emissions  

Anthropogenic emissions are from EDGAR-HTAP2 (Janssens-Maenhout, et al., 2015), a 

compilation of different gridded inventories that give global coverage. Emissions include SO2, 

NOx, CO, NMVOC, NH3, PM10, PM2.5, BC and OC. European emissions are from the EMEP-

TNO (MACCII) dataset, which includes all activities except international shipping and 

international aviation. All gaps in EDGAR-HTAP2 are filled with bottom-up emissions from 

EDGAR v4.3.  
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11.4 Model Evaluation 

Assessing model performance at hourly resolution, without scaling FINN fire emissions (no 

scaling), the model performs relatively poorly across all sites. Pearson correlation score is 

similar to simulations without fire emissions (no fires) (0.35 and 0.32 respectively). RMSE, 

NMB and NMAE are also similar to the simulation with no fire emissions (7.56 µg m-3 and 

7.70 µg m-3, -0.24 and -0.26, 0.47 and 0.48, respectively). Poor performance of the model is 

dominated by sites where fire emissions are not being captured well (see Figure 66). When a 

10-times scaling (10x scaling) is applied to FINN emissions over Saddleworth Moor the 

correlation is improved (0.37) and NMB is substantially improved (0.16). However, the RMSE 

(7.78 µg m-3) and NMAE (0.50) worsen since the model over predicts PM2.5 emissions in in 

the early stages of the fire (Figure 66).  

The improvement in model performance is also clear in Figure 67. Figure 67 (a-f) indicate 

much better agreement between the model and observations with the time-varying scaling 

(time-varying scaling) compared to (10x scaling) and no scaling (no scaling). The site averages 

are also much better predicted by the model with scaling applied (Figure 67 (c) & (d)). All 

model predictions of mean concentrations lie within the 1:0.5 and 0.5:1 range when scaling is 

applied (Figure 67 (d)).  

11.5 Population Exposure to PM2.5  

We use population count data for 2015 (NASA Socioeconomic Data and Applications Center 

(SEDAC) Center for International Earth Science Information Network (CIESIN), and 

Columbia, 2018) to assess population exposure to PM2.5 during the period of the fires (June 

23rd – June 30th).  
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Firstly, we calculate exposure to several PM2.5 concentration bins in line with the Daily Air 

Quality Index (DAQI), used by the UK Government to advise the public on how to reduce the 

associated health effects of exposure to pollutants. We use the four bins (Table 13) for PM2.5 

concentrations and calculate the total number of people exposed to each concentrations bin 

each day within the week-long period (June 23rd-30th 2018).  

Table 13. Daily Air Quality Index (DAQI) bands for PM2.5 (µg m-3) and associated behaviour 

advised by the UK government to reduce the population’s risk. Concentrations for each 

band are also indicated. 

 

Results indicate PM2.5 concentrations remained within the low DAQI bin between June 23rd 

and June 25th and on June 29th, with no exposure to higher concentrations (Figure 68). 

However, during the Saddleworth Moor (June 26th and 27th) and Winter Hill (June 30th) fires 

air quality was substantially degraded and many were exposure to the highest DAQI values. A 

total of 1 million and 1.7 million people were exposed to PM2.5 concentrations of >36 µg m-3 

DAQI Band Advice  

Low  

(0-35 µg m-3) 

Enjoy outdoor activities as normal 

 

Moderate   

(36-53 µg m-3) 

Adults and children with lung problems and adults with heart problems who 

experience symptoms should consider reducing strenuous activity, especially 

outdoors 

High 

 (54-70 µg m-3) 

Anyone who experience symptoms should consider reducing strenuous 

activity, especially outdoors, those at risk should reduce strenuous activities 

Very High 

 (>71 µg m-3) 

Everyone should reduce outdoor activity – those with asthma may need to use their 

reliever inhaler more  
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on June 26th and 27th, concentrations where the DAQI suggests behaviour alterations to reduce 

exposure (see Figure 68). Within this total, 0.2 million and 0.5 million were exposed to the 

highest DAQI values (71+ µg m-3) and another 0.2 and 0.6 million to high DAQI values (54 – 

70 µg m-3). During the Winter Hill fires, another 0.06 million were exposed to PM2.5 above 36 

µg m-3 on June 29th and 30th. When this is compared to the no fires simulation (Figure 71) it 

becomes clear that the degradation in the DAQI seen (Figure 40 (a) and Figure 68) was 

dominated by the fires.  

To put this into a global context we calculate exceedances of the WHO 24-hour threshold of 

25 µg m-3. This also allows the impact of the fires on air quality and health to be considered 

(Figure 69). Over the week of the fires (June 23rd – June 30th 2018) 4.5 million people were 

exposed to concentrations above the WHO 24-hour PM2.5 safe-limit on at least one day (Figure 

40 (b)).  This represents 30% of the population being exposed to unhealthy PM2.5 

concentrations. The total exposure was dominated by the Saddleworth Moor fires on 26th and 

27th June, with 1.5 and 2.6 million people exposed above the WHO limit (Figure 69). Another 

0.05 and 0.3 million people were exposed above the limit on the 29th and 30th June. This 

indicates exposure above the WHO limit over the week-long period (June 23rd and 30th) was 

dominated by PM2.5 from the fires (note totals may not add up due to rounding). These 

exceedances have the potential to have harmful effects on health across the region and put a 

large strain on medical services.  



 

 

375 

 

 

Figure 68. Areas of low (0-35 µg m-3), moderate (36-53 µg m-3), high (54-70 µg m-3) and very 

high (>71 µg m-3) PM2.5, as defined by the Daily Air Quality Index (DAQI). Coloured 

numbers correspond to total number of people exposed to each DAQI level on each day. 

Saddleworth Moor (SM) and Winter Hill (WH) are indicated by black triangles, while 

highly populated urban areas are indicated by black circles and abbreviated in line with 

definitions in Figure 65. See Table 13 for more information on the DAQI. 
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Figure 69. Areas where PM2.5 is above the WHO 24-hour limit of 25 µg m-3 and total population 

exposed to PM2.5 below (green) and above (red) this threshold on each day between June 

23rd and June 30th 2018. Saddleworth Moor (SM) and Winter Hill (WH) are indicated by 

black triangles, while highly populated urban areas are indicated by black circles and 

abbreviated in line with definitions in Figure 65. 
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Figure 70. Daily mean percent increase in PM2.5 due to fires between June 23rd and June 30th 

2018. Calculated as, (
𝑃𝑀2.5 𝐹𝑖𝑟𝑒𝑠−𝑃𝑀2.5 𝑁𝑜 𝑠𝐹𝑖𝑟𝑒𝑠

𝑃𝑀2.5 𝑁𝑜 𝐹𝑖𝑟𝑒𝑠
 x 100), where 10% represents a 10% 

increase in PM2.5. Saddleworth Moor (SM) and Winter Hill (WH) are indicated by black 

triangles, while highly populated urban areas are indicated by black circles and 

abbreviated in line with definitions in Figure 65. 
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Figure 70 can be used to further understand why the DAQI and WHO thresholds were exceeded 

during the week-long period. There are large increases in PM2.5 across the same regions where 

the concentrations thresholds were exceeded (Figure 68,  Figure 69 and Figure 70). On 26th 

and 27th June the daily mean increase in PM2.5 reaches >1000% and >1800%, respectively over 

the fire source. This decreases steeply with distance from the fire sources but over Manchester 

and Bolton PM2.5 increases of between 100-850% are observed and increases of 100% are 

observed as far west as the Irish Sea. During the Winter Hill fires (29th and 30th September) 

increases in PM2.5 concentrations are also increased by 100% over a large region including 

Wigan, Bolton and Manchester and >300% over Southport. 

 

Figure 71. Areas of low (0-35 µg m-3), moderate (36-53 µg m-3), high (54-70 µg m-3) and very 

high (>71 µg m-3) PM2.5 as defined by the Daily Air Quality Index (DAQI) in the no fires 

simulation. Saddleworth Moor (SM) and Winter Hill (WH) are indicated by black 

triangles, while highly populated urban areas are indicated by black circles and 

abbreviated in line with definitions in Figure 38. See Table 13 for more information on 

the DAQI. 
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We also use this dataset to calculate the health impact of the fires due to short-term exposure 

to PM2.5. The impact is dependent upon several factors including the assumed safe level of 

exposure to PM2.5 below which no negative impacts of health would occur, known as the 

theoretical minimum risk exposure level (TMREL). We present the findings of a 0 µg m-3 limit 

in the main manuscript since there is little evidence to suggest a safe-level of exposure. 

However, we also explored the impact of the TMREL (referred to as X0 in the manuscript) on 

our results using the lower (2.4 µg m-3) and upper (5.9 µg m-3) limits from the global burden 

of disease 2015 study (GBD Collaborators 2015, 2017) in Table 14.  

The results indicate that the mean number of deaths brought forward between June 23rd-30th 

are a factor 2.5 (0.91 vs 0.37), 6.3 (0.63 vs 0.10) higher for the Fires ON and OFF simulations 

for a TMREL of 0.0 µg m-3 compared to TMREL of 5.9 µg m-3. Despite the differences in total 

excess mortality calculated using the different thresholds, the number of mortalities due to the 

fires (i.e. Fires ON – Fires OFF) is the same for all three thresholds. Alongside this, both the 

mean and the maximum increase in mortality due to fires (mortality increase Fires ON – Fires 

OFF) are similar for all three threshold values (~1.07 excess deaths per day and ~3.85 excess 

deaths per day, respectively). This is likely due to the population being exposed to 

concentrations much above the TMRELs used (i.e. PM concentrations due to fires were much 

above 2.4 or 5.9 µg m-3), leading to the TMREL used having little effect on the results. 

However, the percentage increase in mortalities and the percentage of mortalities due to fires 

both vary substantially depending on the TMREL used as a result of the decreased excess 

mortality in the no fires simulation when using a TMREL of 2.4 and 5.9 µg m-3, compared with 

0.0 µg m-3. For the 2.4 and 5.9 µg m-3 thresholds the mean increase in excess mortalities is 60.9 

and 260.3% (compared with 39.5% for 0.0 µg m-3). The percentage of mortalities attributable 
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to the fires is also higher for the 2.4 and 5.9 µg m-3 limits at 28.7 and 61.3% (compared to 

22.2% for 0.0 µg m-3).
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Table 14. Sensitivity of short-term exposure excess mortality results between 23rd and 30th June on theoretical minimum risk exposure level 

(TMREL) used. Lower confidence level (lcl), medium confidence level (mcl) and upper confidence levels (ucl) are indicated, based on the 

95% confidence intervals of the exposure response function. 

 

Safe threshold 

value used 

(X0) 

mean mortality (Fires 

ON) 

mean mortality (Fires 

OFF) 

mean mortality (Fires 

ONLY) 

mortality 

increase (Fires 

ON-Fires OFF) 

% mortality 

increase (Em Fires 

ON – Em Fires 

OFF/ Em Fires 

ON)*100 

% mortalities from 

fires 

(Em Fires ON – Em 

Fires OFF/Em 

Fires OFF)*100 

95% CI lcl mcl ucl  lcl mcl ucl  lcl mcl ucl  mean max  mean max mean max 

0.0 1.77 

 

3.53 5.26 1.22 2.45 3.67 0.55 1.08 1.59 1.07 3.84 39.5 148.5 22.2 59.8 

2.4 1.33 2.65 3.95 0.79 1.57 2.36 0.54 1.08 1.59 1.07 3.85 60.9 225.6 28.7 69.3 

5.9  0.73 1.44 2.14 0.20 0.40 0.60 0.53 1.04 1.61 1.04 3.86 260.3 922.1 61.3 100.0 
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11.6 Economic Cost of the fires 

The economic cost of the fires is calculated using the Department for Transport (DfT) ‘Value 

of Prevented Fatality’ (VPF) estimate. We choose this estimate over estimates from other UK 

based studies (Table 15 (a)) because it is widely used across different government sectors to 

value the economic impact of mortality. The DfT estimate also lies within the range of values 

found in other studies (see Table 15 (a)). 

The Dft VPF is comprised of three parts: the ‘Willingness to Pay’ (WtP) component, medical 

costs and gross lost output. WtP considers what an individual would be willing to pay to reduce 

the risk of being killed or injured. The estimated WtP value uses a contingent valuation 

approach, based on a survey by Carthy et al. (1998), in which 167 respondents were asked how 

much they would be willing to pay to reduce the risk of death or injury. The gross lost output 

is estimated using the human capital approach, this places a monetary value on loss of health 

based on the loss of economic productivity due to mortality. Finally, medical costs are 

estimated using the average cost of a fatality in 1984/1985 based on data provided by the 

Department of Health for ambulance and hospital treatment. These were scaled to 2008 values 

by the DfT.  

There are clear limitations within the DfT VPF method to estimate the economic value of 

prevented fatality and these should be considered within the total £5.5 M estimate. Firstly, the 

WtP survey sample is small and so this reduces the representativeness of the final estimate for 

the entire UK population. The small sample size is due to the high money and time cost of 

carrying out lengthy one-to-one interviews with respondents to ensure they are able to answer 

in a way that reflects their preferences fairly. Since the WtP survey was carried out over a long 

period, up to 2 years in some cases, using a large amount of evidence to support estimates we 
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can have some confidence that estimates are reasonable. However, within this study we 

introduce some uncertainty into the results by scaling 2008 estimates to 2018 using inflation 

from the Bank of England. This assumes that underlying values remain applicable over time, 

which may or may not be true and so this should be kept in mind when interpreting the 

economic cost results.  
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Table 15. a) Previous studies estimating the Value of Prevented Fatality in the UK and 

government estimates across the world. The value used for this study from the 

Department for Transport, UK is highlighted in grey. b) Detailed values of VPF used to 

calculate cost of mortality during fires – these values were multiplied by the excess 

mortality from PM2.5 from fires (i.e. PM2.5 Fires – PM2.5 No Fires). Values are taken from 

Viscusi et al. (2003) and Deolitte (2009).  

a)  Study Sample / Approach Value of 

Statistical 

Life in £ M 

in 2000 

(converted 

to GBP)  

Value of Statistical Life 

in £ M in 2018 (2000 

values scaled to 

inflation)  

Marin and 

Psacharapoulos (1982) 

General Household Survey  

 

2.8  4.6  

Human Capital 

Siebert and Wei (1994) General Household Survey  

 

6.2 - 7.6 10.3 – 12.6 

Human Capital 

Sandy and Elliott 

(1996) 

Social change and Economic Life 

Initiative Survey 

3.4 – 45.9 5.6 – 74.4  

Human Capital 

Arabsheibani and Marin 

(2000) 

General Household Survey 13.2 21.8 

Human Capital 

Sandy et al. (2001) Social change and Economic Life 

Initiative Survey 

3.8 - 49.0 6.3 – 81  

Human Capital 

Government Reports Sample / Approach Value of 

Statistical 

Life in £ M 

in 

2008/2002 

(converted 

to GBP)  

Value of Statistical Life 

in £ M in 2018 (2008 

values scaled to 

inflation)  
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Department for 

Transport, UK 

Willingness to Pay Survey 1.9 (2008) 2.5  

Contingent Valuation & Human 

Capital 

European Commission Willingness to Pay Survey 0.9 (2002) 1.4  

Contingent Valuation 

US VPF  Willingness to Pay Survey 3.1 (2008) 4.1 

Contingent Valuation 

 

b) Department for Transport, 

UK 

2008 £ 2018 £ 

Total VPF 1,876,830  2,469,513 

Human Cost 1,232,800  1,622,105 

Medical 6,310  8,303 

Lost Output 624,190  821,303 

Other costs 13,540 17,816 
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Table 16. (a) Number of hours within each DAQI bin (0-24, 24-48, 48-71, 71+ µg m-3) in 2018 

(2018/01/01-2018/12/31), simulation period (2018/06/16 – 2018/07/14) and fire period 

(2018/06/23 – 2018/06/30). (b) Percentage of total annual hourly DAQI occurrences that 

occurred within the simulation or fire period (i.e. for 0-24 µg m-3 bin: simulation period 

(5471/65870*100) and fires period (1375/65870*100)). 

 

  

a)  

 

 

 

 

AURN Site 

Hourly Daily Air Quality Index (DAQI) occurrences  

2018 

(2018-01-01 to 2018-12-31) 

Simulation period  

(2018-06-16 to 2018- 07-14) 

Fire Period  

(2018-06-23 to 2018-06-30) 

0-24  24-48 48-71 71+ 0-24 

 

24-

48 

48-

71 

71+ 0-24 24-

48 

48-

71 

71+ 

Blackpool 

Marton 

6847 270 23 6 621 5 - - 168 - - - 

Leeds Centre 7442 669 57 9 633 6 - - 163 - - - 

Liverpool 

Speke 

8009 282 6 5 664 8 - - 164 4 - - 

Manchester 

Piccadilly 

7462 567 55 26 575 64 14 11 123 25 11 8 

Preston 8004 319 26 6 625 7 - - 167 1 - - 

Salford 

Eccles 

6935 332 23 13 472 35 3 10 132 23 3 10 

Warrington 7368 382 19 4 634 24 - - 158 7 - - 

Wigan 

Centre 

6239 455 33 12 587 43 5 7 139 14 5 7 

Wirral 

Tranmere 

7564 407 17 5 660 9 - - 161 6 - - 

Total hours 65870 3683 259 86 5471 201 22 28 1375 80 19 25 
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b)  

 

AURN Site 

Percentage of Annual DAQI hourly occurrences within simulation 

periods (%) 

Simulation period  

(2018-06-16 to 2018- 07-14) 

Fire Period  

(2018-06-23 to 2018-06-30) 

0-24 24-48 48-71 71+ 0-24 24-48 48-71 71+ 

Blackpool Marton 9.1 1.9 - - 2.5 - - - 

Leeds Centre 8.9 0.9 - - 2.2 0.7 - - 

Liverpool Speke 8.3 2.8 - - 2.0 1.4 - - 

Manchester Piccadilly 7.7 11.3 25 42 1.6 4.4 20 31 

Preston 7.8 2.2 - - 2.1 0.3 - - 

Salford Eccles 6.8 10.5 13.0 76.9 1.9 6.9 13.0 76.9 

Warrington 8.6 6.3 - - 2.1 1.8 - - 

Wigan Centre 9.4 9.5 15.2 58.3 2.2 3.1 15.2 58.3 

Wirral Tranmere 8.7 2.2 - - 2.1 1.5 - - 



 

 

388 

11.7 References 

1) Archer-Nicholls, S., Lowe, D., Darbyshire, E., Morgan, W.T., Bela, M.M., Pereira, G., 

Trembath, J., Kaiser, J.W., Longo, K.M., Freitas, S.R., Coe, H., McFiggans, G., 2015. 

Characterising Brazilian biomass burning emissions using WRF-Chem with MOSAIC 

sectional aerosol. Geosci. Model Dev. 8, 549–577. https://doi.org/10.5194/gmd-8-549-2015  

2) Carthy, T., Chilton, S., Covey, J., Hopkins, L., Jones-Lee, M., Loomes, G., Pidgeon, N., 

Spencer, A., 1998. On the Contingent Valuation of Safety and the Safety of Contingent 

Valuation: Part 2 - The CV/SG “Chained” Approach. J. Risk Uncertain. 17, 187–214. 

https://doi.org/10.1023/a:1007782800868.  

3) Cohen, A.J., Brauer, M., Burnett, R., Anderson, H.R., Frostad, J., Estep, K., Balakrishnan, K., 

Brunekreef, B., Dandona, L., Dandona, R., Feigin, V., Freedman, G., Hubbell, B., Jobling, A., 

Kan, H., Knibbs, L., Liu, Y., Martin, R., Morawska, L., Pope III, C.A., Shin, H., Straif, K., 

Shaddick, G., Thomas, M., van Dingenen, R., van Donkelaar, A., Vos, T., Murray, C.J.L., 

Forouzanfar, M.H., 2017. Estimates and 25-year trends of the global burden of disease 

attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases 

Study 2015. Lancet 389, 1907–1918. https://doi.org/10.1016/S0140-6736(17)30505-6.  

4) Freitas, S.R., Longo, K.M., Chatfield, R., Latham, D., Silva Dias, M.A.F., Andreae, M.O., 

Prins, E., Santos, J.C., Gielow, R., Carvalho, J.A., 2007. Including the sub-grid scale plume 

rise of vegetation fires in low resolution atmospheric transport models. Atmos. Chem. Phys. 

7, 3385–3398. https://doi.org/10.5194/acp-7-3385-2007.   

5) Greater Manchester Combined Authority. 2019. Response to Freedom of Information Request 

1920-057. Available at: Unpublished.  



 

 

389 

6) Janssens-Maenhout, G., Crippa, M., Guizzardi, D., Dentener, F., Muntean, M., Pouliot, G., 

Keating, T., Zhang, Q., Kurokawa, J., Wankmüller, R., Denier Van Der Gon, H., Kuenen, 

J.J.P., Klimont, Z., Frost, G., Darras, S., Koffi, B., Li, M., 2015. HTAP-v2.2: A mosaic of 

regional and global emission grid maps for 2008 and 2010 to study hemispheric transport of 

air pollution. Atmos. Chem. Phys. 15, 11411–11432. https://doi.org/10.5194/acp-15-11411-

2015.   

7) Kiely, L., Spracklen, D. V., Wiedinmyer, C., Conibear, L., Reddington, C.L., Archer-

Nicholls, S., Lowe, D., Arnold, S.R., Knote, C., Firoz Khan, M., Talib Latif, M., Kuwata, M., 

Hapsari Budisulistiorini, S., Syaufina, L., 2019. New estimate of particulate emissions from 

Indonesian peat fires in 2015. Atmos. Chem. Phys. 19, 11105–11121. 

https://doi.org/10.5194/acp-19-11105-2019.  

8) NASA Socioeconomic Data and Applications Center (SEDAC) Center for International Earth 

Science Information Network (CIESIN) and Columbia, U. of (2018) Gridded Population of 

the World, Version 4 (GPWv4): Population Count, Revision 11. 

https://doi.org/10.7927/H4JW8BX5.  

9) Xu, J., Morris, P.J., Liu, J., Holden, J., 2018. PEATMAP: Refining estimates of global peatland 

distribution based on a meta-analysis. Catena 160, 134–140. 

https://doi.org/10.1016/j.catena.2017.09.010.  



 

 

390 

 - Appendices D 

Supplementary Material: Impact of the 

2019/2020 Australian megafires on Air 

Quality and Health 

Ailish M. Graham1, Richard J. Pope1,2, Kirsty P. Pringle1,3, 

Stephen R. Arnold1, Luke A. Conibear1, Helen Burns1, Richard 

Rigby1, Nicholás Borchers-Arriagada4, Edward W. Butt1, 

Laura Kiely1, Carly Reddington1, Dominic V. Spracklen1, Matt 

Woodhouse5, Christoph Knote6, James B. McQuaid1 

1 School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK  

2 National Centre for Earth Observation, University of Leeds, Leeds, LS2 9JT, UK  

3 Edinburgh Parallel Computing Centre, Bayes Centre, Edinburgh, EH8 9BT, UK 

4 Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000 

Australia 

5 The Commonwealth Scientific and Industrial Research Organisation, Australia  

6 Meteorological Institute, LMU Munich, Munich, Germany 

Correspondence to: Ailish M. Graham (ee15amg@leeds.ac.uk) 

12.1 Fire Emissions 

FINN near real-time (NRT) emissions for 2019 and 2020 are used within the WRF-Chem 

model simulations since FINNv1.5 emissions were not yet available during the time the model 

simulations were run. In order to evaluate FINN NRT emissions, we compare the relationship 

between the annual total PM2.5 emissions and annual total MODIS fire hotspots in 2018, 2019 

and 2020 to the relationship in previous years (2010-2017) (Figure 72). Data for 2019 indicate 
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that PM2.5 emissions per fire hotspot were much higher than previous years (Figure 72). This 

is likely due to the high levels of dry fuel availability during 2019 (van Oldenborgh, et al., 

2020). Following completion of the model simulations, FINNv1.5 emissions became available 

for 2019 meaning FINNv1.5 and FINN NRT annual PM2.5 emission totals for 2018 and 2019 

could be directly compared. Generally, FINN v1.5 and NRT PM2.5 emissions are in good 

agreement for 2018, while for 2019 FINN NRT PM2.5 emissions (~1 Tg) are slightly higher 

than FINNv1.5 PM2.5 emissions (~0.9 Tg) (Figure 72). However, the magnitude of difference 

between the FINN emission datasets is small given that there is such a large range in PM2.5 

emission estimates between the five key fire emissions datasets (~1 to >7.5 Tg) (Figure 73).  
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Figure 72. Comparison of FINNv1.5 and FINN near-real time (NRT). 2010-2019 FINNv1.5 

PM2.5 emissions (red) and 2018-2020 FINN near real time (NRT) PM2.5 emissions are 

plotted against MODIS hotspots. The linear fit for 2010-2019 FINNv1.5 is shown in blue. 



 

 

393 

 

12.2 Model Evaluation 

Daily mean PM2.5 concentrations from ground-based observational sites across Victoria, New 

South Wales, Queensland and Australian Capital Territory were used to evaluate model 

performance between September 1st and January 31st. The locations of sites used are indicated 

in Figure 74.  

Figure 73. Annual fire PM2.5 emission estimates for Australia in 2019. The five key fire 

emissions datasets are shown: GFED, FINN, GFAS, QFED and FEER (Liu, et al., 2020). 
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Figure 74. Ground-based observational sites used in model evaluation of daily mean PM2.5 

concentrations. 
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The performance of model simulations was compared with observations (Figure 75). Two 

options were tested for nudging. Firstly, potential temperature, the horizontal and vertical 

winds and the water vapour mixing ratio (all meteorological variables) were nudged above the 

boundary layer and only horizontal and vertical winds were nudged within the boundary layer, 

using the 6-hourly ERA5 reanalysis (fires, no fires, plume_rise and scaled_1.5). Secondly, 

nudging was performed for all meteorological variables in all vertical levels using the 6-hourly 

ERA5 reanalysis (nudged_BL_fires, nudged_BL_no_fires and nudged_BL_scaled). In both 

cases, meteorology was re-initialised every two weeks using meteorological boundary 

conditions in order to minimise model drift. Nudging for all meteorological variables in all 

vertical levels improved simulated PM2.5 concentrations by reducing the Root Mean Square 

Error (RMSE), Normalised Mean Absolute Error (NMAE) and Normalised Mean Bias (NMB) 

([fires] r = 0.42, RMSE = 24.1 g m-3, NMB = -0.49, NMAE = 0.74 compared with 

[nudged_BL_fires] r = 0.39, RMSE = 22.9 g m-3, NMB = -0.17, NMAE = 0.72) (Table 17). 

Alongside this, two fire emission release options were tested, releasing emissions evenly 

distributed through the boundary layer [fires, nudged_BL_fires] and releasing emissions using 

the plume-rise module [plume_rise]. When the fires and plume_rise simulations are compared, 

results indicate that there is little sensitivity to the emission release option chosen ([fires] r = 

0.42, RMSE = 24.1 g m-3, NMB = -0.49, NMAE = 0.74 compared with [plume_rise] r=0.41, 

RMSE = 24.2 g m-3, NMB = -0.51, NMAE = 0.75) (Table 17). Evenly distributed emissions 

throughout the boundary layer was therefore chosen as the emissions release option to use. 

Finally, scaling FINN emissions over the model domain was also performed, since FINN 

emissions lie at the low-end of emission dataset estimates (Figure 73). FINN emissions for 
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October 1st to January 31st were scaled by 1.5 in order to match the annual total for GFED. 

When nudging in the boundary layer was not performed (scaled_1.5, this led to improved 

correlation with observations ([scaled_1.5] r =0.41) but a slightly worse RMSE, NMB and 

NMAE (Table 17). However, when scaled emissions were used for the simulation with nudging 

in the boundary layer (nudged_BL_1.5), although correlation decreased slightly 

([nudged_BL_1.5] r =0.41) and RMSE and NMAE were worse, the NMB decreased 

substantially ([nudged_BL_1.5] NMB =-0.03) (Table 17). Overall, scaling led to 

overestimating peak PM2.5 concentrations observed during the fires. As a result, the 

nudged_BL_fires and nudged_BL_no_fires were chosen to carry out the analysis with.  
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Figure 75. Comparison of PM2.5 concentrations from model sensitivity simulations with PM2.5 

observations from 80 observational sites across eastern-Australia. The fires, no_fires, 

plume_rise and scaled_1.5 simulations, in which all meteorological variables above the BL 

were nudged, while within the BL only horizontal and vertical winds were nudged. In the fires 

and scaled_1.5 simulations fire emissions were released evenly through the BL, while in 

plume_rise the plume rise module was used. The fires and plume_rise simulations used FINN 

NRT emissions and in the scaled_1.5 simulation these emissions were scaled by 1.5 in 

Australia. In the nudged_BL, nudged_BL_no_fires and nudged_BL_scaled_1.5 simulations 

nudging was performed for all vertical levels and all meteorological variables. The 

nudged_BL and nudged_BL_1.5 simulations used FINN NRT emissions and in the 

nudged_BL_1.5 simulation these emissions were scaled by 1.5 in Australia and fire emissions 

were released evenly through the BL. In both the no_fires and nudged_BL_no_fires 

simulations no fire emissions were released.  
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Table 17. Model evaluation statistics for each of the WRF-Chem simulations for daily mean 

PM2.5. Statistics shown are the mean value of Pearson correlation coefficient (r), root 

mean squared error (RMSE), normalised mean bias (NMB), and normalised mean 

absolute error (NMAE) at each observational site for the full simulation time period 

(September 1st 2019 to January 31st 2020). Simulations shown are: fires, no_fires, 

plume_rise and scaled_1.5 simulations, in which all meteorological variables were 

nudged above the BL, while within the BL only horizontal and vertical winds were 

nudged. In the fires and scaled_1.5 simulations fire emissions were released evenly 

through the BL, while in plume_rise the plume rise module was used. The fires and 

plume_rise simulations used FINN NRT emissions and in the scaled_1.5 simulation these 

emissions were scaled by 1.5 in Australia. In the nudged_BL, nudged_BL_no_fires and 

nudged_BL_1.5 simulations nudging was performed for all vertical levels and all 

meteorological variables. The nudged_BL and nudged_BL_1.5 simulations used FINN 

NRT emissions and in the nudged_BL_1.5 simulation these emissions were scaled by 1.5 

in Australia, in both cases fire emissions were released evenly through the BL. In both 

the no_fires and nudged_BL_no_fires simulations no fire emissions were released. 
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Simulation r RMSE (g m-3) NMB NMAE 

Fires 0.42 24.1 -0.49 0.74 

No_fires 0.19 26.5 -0.75 0.82 

Plume_rise 0.41 24.2 -0.51 0.75 

Scaled_1.5 0.37 25.1 -0.49 0.78 

Nudged_BL_fires 0.39 22.9 -0.17 0.72 

Nudged_BL_no_fires 0.14 25.3 -0.45 0.77 

Nudged_BL_1.5 0.41 24.3 -0.03 0.76 
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Evaluating the performance of the model simulations by comparing the nudged_BL_fires and nudged_BL_no_fires PM2.5 daily mean 

concentrations at each observational site between September 1st and January 31st indicates that the model performs relatively well. Generally, the 

model replicates the observed PM2.5 concentrations well, though with a negative bias, as was seen across all sites (Table 17). However, it is clear 

that the model under predicts observed PM2.5 concentrations across some sites, these are all located in NSW and ACT where the most intense fire 

occurred (Figure 76). Therefore, it is likely that the model is unable to capture the high concentrations observed by point measurements due to 

strong concentration gradients close to the fires that would not be captured at the model resolution (30 km). 

Figure 76. Comparison of daily mean PM2.5 concentrations from model sensitivity simulations with PM2.5 observations from 80 observational sites 

across eastern-Australia. Observations are shown in black, nudged_BL_fires in magenta and nudged_BL_no_fires in cyan for each site.  
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12.3 Monthly Mean PM2.5 concentrations 

 

  

Figure 77. Monthly mean modelled PM2.5 concentrations across eastern-

Australia from the fires (nudged_BL_fires) simulation. Monthly mean 

observations are over plotted.  
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Figure 78. Monthly mean percentage of PM2.5 attributable to fires, calculated as 
𝑃𝑀2.5 𝑓𝑖𝑟𝑒𝑠−𝑃𝑀2.5 𝑛𝑜 𝑓𝑖𝑟𝑒𝑠 

𝑃𝑀2.5 𝑓𝑖𝑟𝑒𝑠
 using the nudged_BL_fires and nudged_BL_no_fires simulations. 

Monthly mean PM2.5 concentrations from the nudged_BL_fires simulation are also over 

plotted in contours for reference.  
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Figure 79. Monthly mean percentage increase in PM2.5 attributable to fires, calculated as 
𝑃𝑀2.5 𝑓𝑖𝑟𝑒𝑠−𝑃𝑀2.5 𝑛𝑜 𝑓𝑖𝑟𝑒𝑠 

𝑃𝑀2.5 𝑛𝑜 𝑓𝑖𝑟𝑒𝑠
 using the nudged_BL_fires and nudged_BL_no_fires simulations.  
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12.4 Population Exposure 

 

 

  

Figure 80. Daily population exposure to Air Quality Index Values across eastern-Australia between 

September 1st and January 31st in the nudged_BL_no_fires simulation. More information on how the 

AQI is calculated in Table 25. 



 

 

405 

Table 18. Monthly population exposure to PM2.5 AQI values in the nudged_BL_fires 

simulation (calculated as the monthly mean of daily sum population exposure). More 

information on how the AQI is calculated in Table 25. 

 

 

 

 

 

 

 

 

  

AQI September October November December January 

V. Good 20.7 m 10.2 m 8.9 m  8.4 m 5.7 m 

Good 726,000 9.6 m 8.6 m  9.0 m 12 m 

Fair  13,400 2.1 m 2.4 m 3.8 m  3.2 m 

Poor 5891 298,000 1.1 m 746,000  787,000 

V. Poor 41 12,100 255,000 80,000 253,000 

Hazardous 0 93 122,000 109,000 238,000 
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Table 19. Monthly population exposure to PM2.5 AQI values in the nudged_BL_no_fires 

simulation (calculated as the monthly mean of daily sum population exposure). More 

information on how the AQI is calculated in Table 25. 

 

 

 

 

 

 

 

 

 

 

AQI September October November December January 

V. Good  20.7 m 10.8 m  12.2 m  11.5 m 7.8 m 

Good 726,000 9.3 m  7.8 m  7.7 m  11.1 m 

Fair  13,000 1.9 m 1.2 m 2.5 m 2.3 m  

Poor 6,000 164,000 273,000 508,000 652,000 

V. Poor 41 9,000 6,500 530 147,000 

Hazardous 0 0 0 0 130,000 
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Table 20. Monthly population exposure to PM2.5 AQI in cities (calculated as the monthly mean 

of daily sum population exposure). More information on how the AQI is calculated in 

Table 25. 
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Brisbane 

AQI September October November December January 

V. Good 3.5 m  1.3 m 728,000 1 m 1.4 m 

Good 150,000 2.1 m 2.2 m 2.5 m 2 m 

Fair  0 250,000 561,000 261,000 342,000 

Poor 0 93,000 161,000 5,300 2,000 

V. Poor 0 0 904 144 205 

Hazardous 0 0 0 0 0 

Sydney 

AQI September October November December January 

V. Good 6.2 m 2.8 m 1.1 m  155,000 1.3 m 

Good 83,000 2.9 m  2.7 m  980,000 2.9 m  

Fair  1,050 731,000 900,000 1.8 m 1.4 m  

Poor 0 49,000 112,000 1.6 m 615,000 

V. Poor 0 0 86,000 582,000 204,000 

Hazardous 0 0 10,000 1.4 m 6,400 
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Newcastle-Maitland 

AQI September October November December January 

V. Good 5.4 m  3.4 m 3.4 m 1.4 m 2.5 m  

Good 39,000 1.4 m 1.1 m  1.8 m 1.9 m 

Fair  145 677,000 578,000 719,000 677,000 

Poor 0 162,000 235,000 769,000 272,000 

V. Poor 0 58,000 170,000 463,000 210,000 

Hazardous 0 0 2,500 418,000 33,000 

Canberra-Queanbeyan 

AQI September October November December January 

V. Good 629,000 510,000 514,000 162,000 155,000 

Good 2,000 129,000 88,000 131,000 121,000 

Fair  0 12,900 13,000 122,000 92,000 

Poor 0 896 15,000 84,000 85,000 

V. Poor 0 0 1,100 63,000 69,000 

Hazardous 0 0 174 90,000 132,000 
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Melbourne 

AQI September October November December January 

V. Good 5.2 m  1.8 m  1 m  1.1 m 2.5 m  

Good 1.2 m 2.6 m  3.5 m 2.9 m 2.1 m  

Fair  1,500 1.7 m 994,000 1.6 m 1 m 

Poor 0 468,000 905,000 1.1 m 352,000 

V. Poor 0 0 59,000 0 37,000 

Hazardous 0 0 0 0 590,000 

Adelaide 

AQI September October November December January 

V. Good 1.2 m  424,000 530,000 495,000 910,000 

Good 408,000 920,000 669,000 811,000 631,000 

Fair  3,300 302,000 311,000 298,000 67,000 

Poor 0 10,000 92,000 53,000 47,000 

V. Poor 0 0 0 0 781 

Hazardous 0 0 0 0 14 

 

 



 

 

411 

Table 21. Mean and maximum (September 1st – January 31st) population-weighted PM2.5 

concentrations for states and cities in eastern-Australia.  

State 

 

Mean Population-

weighted PM2.5 (g m-3)  

Maximum population-

weighted PM2.5 (g m-3) 

 

 This Study 

Borchers 

Arriagada et 

al. (2020) This Study 

Borchers 

Arriagada et 

al. (2020) 

Australian Capital Territory 14.1  113.1 155.1 920.1 

New South Wales 13.4 21.5 53.4 80.9 

Queensland 9.7 18.9 22.9 87.2 

Victoria 9.1 26.9 81.8 270.6 

All domain 11.6 23.7 58.3 98.5 

City 

Mean Population-

weighted PM2.5 (g m-3) 

Maximum population-

weighted PM2.5 (g m-3) 

 

Brisbane 9.7 26.4 

Newcastle Maitland 14.3 48.7 

Sydney 13.8 58.4 

Canberra-Queanbeyan 14.2 156.2 

Melbourne 9.0 80.5 

Adelaide 7.0 26.5 
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Table 22. 2018 regional all-cause, all-age mortality rates per 100,000 for Australia (Australian 

Bureau of Statistics, 2020).  

State Mortality Rate 

Australian Capital Territory 479.142911 

New South Wales 603.286756 

Queensland 574.890405 

South Australia 736.687279 

Tasmania 772.433221 

Victoria 543.519059 

 

  



 

 

413 

12.5 Health Impacts 

Table 23. The total number of deaths brought forward between October 1st and January 31st 

due to short-term exposure to PM2.5 in the nudged_BL_fires and nudged_BL_no_fires 

simulations. Using the subtraction method, the number of deaths brought forward due to 

exposure to PM2.5 from fires has also been estimated (fires only).  

 

 

 

 

 

 

 

  

Simulation Deaths brought forward 

Fires 624 (95% CI: 229, 1008) 

No Fires 444 (95% CI: 155, 714) 

Fires Only 180 (95% CI: 74, 294) 
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Table 24. The total number of deaths brought forward due to fires (nudged_BL_fires-

nudged_BL_no_fires) between October 1st and January 31st due to short-term exposure 

to PM2.5 in each state and the large cities. Note the entire area of the Northern Territory 

and South Australia states was not included in the model domain so the total for these 

states is not included here.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Region Deaths brought forward 

New South Wales 109 (95% CI: 41, 176) 

Victoria 35 (95% CI: 13, 56) 

Queensland 24 (95% CI: 15, 41) 

Tasmania 2 (95% CI: 1, 2) 

Australian Capital Territory 9 (95% CI: 3, 15) 

City Deaths brought forward 

Brisbane 9 (95% CI: 3, 14) 

Newcastle Maitland 6 (95% CI: 2, 10) 

Sydney 65 (95% CI: 24, 105) 

Canberra Queanbeyan 9 (95% CI: 4, 15) 

Melbourne 23 (95% CI: 9, 38) 

Adelaide 2 (95% CI: 1, 3) 
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Table 25. Australian Quality Index (AQI) values and description. The 24-hour AQI is 

calculated based on the relevant Air National Environment Protection Measure (NEPM) 

standard, or advisory standard, for each pollutant using the equation (AQI = air pollutant 

concentration/air pollutant standard x 100). The 24-hour standard for PM2.5 is 25 g m-3.  

 

 

  

 

Category AQI Range Description 

Very Good 0-33 Air quality is considered very good, and air pollution poses little 

or no risk.  

Good 34-66 Air quality is considered good, and air pollution poses little or no 

risk. 

Fair 67-99 Air quality is acceptable. However, there may be a health concern 

for very sensitive people. 

Poor 100-149 Air quality is unhealthy for sensitive groups. The general 

population is not likely to be affected in this range. 

Very Poor 150-199 Air quality is unhealthy, and everyone may begin to experience 

health effects. Sensitive people may experience more serious 

health effects. 

Hazardous 200+ Air quality is very unhealthy. Everyone may experience more 

serious health effects. 
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