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Abstract

Behavioural neuroscience uses a variety of animals to model human diseases,
test novel drugs and study how certain factors affect or alter natural behaviour.
In its arsenal, it contains a number of different experimental procedures involving
navigation and locomotion tasks inside constrained environments and a number of
analysis techniques to draw conclusions about various aspects of neuroscience such
as the development of learning and memory. With the advancements in technology
and the rise of artificial intelligence in many areas of our society, machine learning
algorithms and applications are commonly used to draw, with limited user interaction
and in a speedy manner, as much intelligence as possible from collections of data.
Machine learning has greatly boosted behavioural neuroscience research but in many
cases it provides experiment-specific analysis methods requiring domain knowledge
in order to be used. This work addresses the first limitation of experiment-specific
analysis methods by bringing an integration of common metrics used in different
experimental procedures involving path analysis. For the second limitation it proposes
a machine learning agnostic framework for data analysis in a common experimental
procedure called Morris Water Maze which can also be used to other experiments
involving behavioural categorisation tasks. In addition, it proposes a novel machine
learning method for detailed analysis of locomotion that can be applied to any
navigation task for both automatic categorisation and pattern recognition tasks.
Other objectives of this study are to present detailed benchmarks of machine learning
techniques that can be used for data analytics in behavioural neuroscience and to
expand the usability of the methods it presents by making them easy to use by the
research community. For this reason, all the source codes of the presented algorithms
and pipelines is publicly available and, when applicable, graphical user interfaces or
software tools have been engineered to help executing them.
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Notations

Unless specified otherwise inside the text,

� The vector notation xi: = [xi1, xi2, . . . , xip] specifies the i-th element of the
matrix containing the data set X consisting of n observations and p dimensions
(or features or data attributes). j is an index on the p dimensions.

� Given K number of groups (clusters) C = {c1, c2, . . . , cK}, with n1, n2, . . . , nK
number of elements in each group respectively (n without an index will refer
to the number of elements of the whole data set), the vector notation mk: =
[mk1,mk2, . . . ,mkp] specifies the k-th group center (centroid). This group center
is the mean of the data in the group.

� The notation µ1: refers to the global center of the data set, which is unique,
and µ1: = [µ11, µ12, . . . , µ1p].

� Given K class labels ` then n` are the number of elements belonging to each
class and n

(k)
` is the number of elements of class ` belonging to cluster k.

� The letters w and a are reserved to specify the weights of each dimension, i.e.
w1, w2, . . . , wp and a1, a2, . . . , ap.

� The stylized letter k is used to indicate the k-fold cross validation.

� The notation,

nk∑
( i=1
xi:∈ck

)

xi: =

nk∑
( i=1
xi:∈ck

)

p∑
j=1

xij

specifies a summation of all the p-dimensional data points xi:, i = 1 . . . nk
which belong to the k-th group (xi: ∈ ck).
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Chapter 1

Introduction

Behavioural neuroscience has a rich history of experimental procedures with
different animal models in order to identify factors that affect the natural behaviour
of organisms. Often such procedures involve navigation into constrained environments,
under certain conditions. Understanding the different animal actions throughout
an experimental procedure can provide valuable information in various aspects of
neuroscience such as how certain areas of the brain operate, how learning and
memory is developed, and how the organism is affected by specific stimuli, effects
and conditions.

With the advancements in technology, the collection of data in many fields of
neuroscience has greatly increased and with that the need for new methods aiming
at drawing intelligence from them [Vu et al., 2018]. To this end, the field of machine
learning plays an important role in data analysis and applications of machine learning
in neuroscience include automatic classification of neuron cell types [Armañanzas
and Ascoli, 2015] and neuronal firing patterns (spike-sorting) [Horton et al., 2007],
identification of neuron structural boundaries in electron microscopy (EM) images
[Jain et al., 2010; Zhu et al., 2014] and recognition of subtypes of depression from
functional magnetic resonance imaging (fMRI) [Drysdale et al., 2017]. Applications
of machine learning specifically for behavioural neuroscience include measurement,
identification, and categorization of different animal behaviours [Han et al., 2018;
Hong et al., 2015] during experimental procedures [Illouz, Madar, Clague, Griffioen,
Louzoun and Okun, 2016], especially in the procedure of the Morris Water Maze
[Garthe et al., 2009; Illouz, Madar, Louzon, Griffioen and Okun, 2016].

For such behavioural tasks involving animal path tracking there is an interest
for behaviour as a whole against to the detailed listing of certain path attributes
and performance measurements. Examples of such analyses are available mainly for
the Morris Water Maze experimental task where, behavioural analysis has proven
superior to the performance measurements as behaviours can clearly show different
stages of learning and memory and identify differences among animal groups [Dalm
et al., 2000; Gehring et al., 2015; Graziano et al., 2003; Wolfer and Lipp, 2000]. In
addition, existing procedures for behavioural analysis that are based on machine
learning methods are focused on the automatic classification of existing stereotypical
behaviours and not on the identification of new ones. Furthermore, many analysis
pipelines with one or more machine learning components require a degree of expertise
in that field since many methods require manual tuning and adaptation to the specific
data at hand. Such expertise is not always available and adaptation may require
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additional research.
To this end, the main objective of this dissertation is to bring together behavioural

neuroscience and machine learning by proposing and designing auto-tunable solutions
and tools for detailed analysis of animal behavioural motifs inside experimental
procedures. Aims of this dissertation are as follows:

� To benchmark existing K-Means initialisation methods and their effects on
clustering variations to identify the most appropriate and robust methods.

� Design a semi-supervised K-Means clustering methodology capable of per-
forming feature selection and assessment without affecting the classification
performance.

� Collect and/or engineer generic features that describe aspects of animal pathing
inside constrained environments regardless of the type of the subjects and the
experimental procedure that were used.

� Create a generic framework for detailed classification of animal behaviours
inside the Morris Water Maze which also provides information about the effect
of each feature on the classification task.

� Propose extensions of the researched methods to experimental procedures
beyond the Morris Water Maze where information about stereotypical animal
behaviours is not available.

This dissertation is built around the following material:

1. Vouros, A., Gehring, T.V., Szydlowska, K., Janusz, A., Tu, Z., Croucher, M.,
Lukasiuk, K., Konopka, W., Sandi, C. and Vasilaki, E., 2018. A generalised
framework for detailed classification of swimming paths inside the Morris Water
Maze. Scientific reports, 8(1), p.15089.

2. Huzard, D., Vouros, A., Monari, S., Astori, S., Vasilaki, E. and Sandi, C.,
2019. Constitutive differences in glucocorticoid responsiveness are related to
divergent spatial information processing abilities. Stress, pp.1-13.

3. Chhabria, K., Vouros, A., Gray, C., MacDonald, B. R., Jiang, Z., Wilkinson,
R. N., Plant, K., Vasilaki, E., Howarth, C., Chico, T. J. A., 2019. Sodium
nitroprusside prevents the detrimental effects of glucose on the neurovascular
unit and behaviour in zebrafish. Disease Models & Mechanisms 2019 12:
dmm039867.

4. Vouros, A., Langdell, S., Croucher, M. and Vasilaki, E., 2019. An empirical
comparison between stochastic and deterministic centroid initialisation for
K-Means variations. arXiv preprint arXiv:1908.09946. Revised and resubmitted
to Machine Learning.

5. Vouros, A., & Vasilaki, E. (2020). A semi-supervised sparse K-Means al-
gorithm. arXiv preprint arXiv:2003.06973. Submitted to Pattern Recognition
Letters.
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6. Vouros, A., & Vasilaki, E. (2020). An extended framework for behavioural
classification and feature selection in the Morris Water Maze experimental
procedure. Poster presentation. 12th FENS Forum of Neuroscience, 11-15 July
2020.

The dissertation structure is as follows:

� Chapter 2 consists of a short literature review on relevant aspects of this
PhD study: (a) behavioural neuroscience experiments (the Morris Water Maze
and the light/dark preference task), (b) K-Means methods, feature engineering,
selection and weighting, clustering initialisation techniques; K-Means variations,
K-Means sparse clustering, semi-supervised learning and clustering tuning and
performance evaluation methods, (c) review old and existing data analysis
methods for the aforementioned behavioural neuroscience experiments.

� Chapter 3 is based on [Vouros et al., 2019; Vouros and Vasilaki, 2020] and
provides an extensive benchmark on stochastic and deterministic initialisation
methods for K-Means clustering and presents a new clustering technique that
combines sparse clustering with semi-supervised learning. The benchmark aims
to provide experimental evidence that deterministic initialisation methods can,
on average, surpass the performance of stochastic methods. Compared with
previous benchmark studies synthetic data set models were used in order to
generate multiple data sets with different attributes and incorporate hypothesis
testing to strengthen the benchmark conclusions. In addition, multiple K-
Means algorithms and K-Means inspired methods were considered including
K-Medians, Sparse K-Means and semi-supervised K-Means variations. The
latter includes a novel modification of the Sparse K-Means algorithm named
Pairwise Constrained Sparse K-Means (PCSK-Means).

� Chapter 4 is focused on feature engineering for experimental procedures
involving animal movements. Such features are generic and applicable to any
procedure regardless of the animal. A case study is the work of [Chhabria
et al., 2019] where I performed behavioural analysis on zebrafish larvae inside
the light/dark preference task. This study is based on manual investigation
and detection of features for capturing behavioural information.

� Chapter 5 explores the continuation of the work of [Gehring et al., 2015] for
detailed classification of rodents behaviours inside the Morris Water Maze and
it is build based on the publications [Vouros et al., 2018] and [Huzard et al.,
2019]. In the first study an improved methodology for detailed classification
inside the Morris Water Maze using semi-supervised learning is proposed. This
improvement is based on a classification boosting technique that nullifies the
need of manual tuning of its underline machine learning methods. In addition
research was conducted to identify under which path length the different
animal behaviours are identifiable. An open=source software called RODA
(ROdent Data Analytics) [Vouros et al., 2017] was also implemented to make
the framework and the methods proposed in [Vouros et al., 2018] publicly
available. RODA was latter used in the study of [Huzard et al., 2019].

� Chapter 6 describes a real-world application of the PCSK-Means algorithm
proposed in this dissertation. The aim of this study is to provide an automatic
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way of feature selection and assessment for the Morris Water Maze behavioural
task that can also be adopted to other experiments. In this study PCSK-Means
is compared against MPCK-Means which is the algorithm used in [Gehring
et al., 2015; Huzard et al., 2019; Vouros et al., 2018] and is able to handle
both classification and identification of important path features. Results from
this chapter were presented in a poster session at the Federation of European
Neuroscience Societies (FENS) 2020.

� Chapter 7 contains the conclusions of this PhD study and discussion on
alternative methods for feature engineering and behavioural classification
using neural networks and deep learning summarising their advantages and
disadvantages.
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Chapter 2

Literature review

This chapter aims to introduce the reader to the relevant topics of this PhD study.
These topics are split into three distinctive sections: (a) behavioural experiments,
(b) machine learning concepts and (c) data analytics methods for the aforementioned
behavioural experiments. In more detail this Chapter,

(a) Describes some generic concepts about navigation tasks in behavioural neuro-
science and introduce the experimental procedures of the Morris Water Maze
and the light/dark preference task.

(b) Briefly describe the concepts of supervised and unsupervised machine learning
and introduce the K-Means clustering. Description of K-Means formulation,
variations and algorithms will be provided including semi-supervised modifi-
cations. Finally, this section will include common criteria used for clustering
tuning and performance evaluation.

(c) Bridges sections (a) and (b) by describing common data analytics methods
for the experimental procedures of the Morris Water Maze and the light/dark
preference task and proceed on describing how machine learning has influenced
them.

2.1 Behavioural experiments involving navigation

2.1.1 Navigation tasks in animal models

Navigation, the ability to learn and remember various locations, is an essential
survivability process for nearly every animal specie. As a whole, the navigation task
is achieved by two processes: the allocentric and the egocentric [Braun et al., 2012].
The allocentric process involves mainly the hippocampus and the entorhinal parts
of the brain (refer to Figure 2.1) and is referring to the ability of encoding spatial
information of a specific object in relation to other objects in space [Vorhees and
Williams, 2014]. The egocentric process involves mainly the dorsal striatum (refer
to Figure 2.1) and is referring to the ability of encoding spatial information of the
objects in relation to the observer [Vorhees and Williams, 2014].

Navigation tasks is one of the main methods for studying spatial learning and
memory and most of the research on this field has been focused on various such
tasks which are performed by rodents inside mazes [Paul et al., 2009]. By designing
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2.1. Behavioural experiments involving navigation

Figure 2.1: Parts of the brain involved in navigation. Allocentric process involves mainly
the hippocampus and the entorhinal cortex; egocentric process involves mainly the dorsal striatum
(image adapted from https://bit.ly/2Vu3AW2).

specific experimental procedures it is possible to study specific structures of the
brain, investigate how certain conditions affects them and how to design specialized
treatments to undo the damage caused by negative effects (e.g. ageing [Wei et al.,
2005], diseases [Ingram et al., 1994], various accidents). The preferred experimental
animals for these procedures are usually rodents and specifically rats and mice
because of their anatomical, physiological and genetic similarities to humans [Bryda,
2013].

Apart from rodents, other animal models are also being used including octopuses
[Boal et al., 2000], zebrafish [Avdesh et al., 2012; Roberts et al., 2013] and bees
[Hammer and Menzel, 1995; Menzel and Erber, 1978]. Some experimental procedures
have also been adapted in virtual reality environments to be applicable on human
subjects [Gillner and Mallot, 1998; Waller et al., 2001].

Throughout the bibliography there is a variety of different mazes and experimental
procedures because the brain is a complex system which consists of many networks.
Thus, it is impossible to completely isolate a specific task or a specific condition only
to a particular brain region [Vorhees and Williams, 2014]. Moreover, nearly every
experiment is affected by a variety of factors such as sex, age, specie and nutrition
of the participant animal subjects [D’Hooge and De Deyn, 2001]. For these reasons
this dissertation will consider only two distinctive experimental procedures: the
Morris Water Maze (MWM) [Morris, 1981; Morris et al., 1986] with rodents and the
light/dark preference task with zebrafish [Maximino et al., 2012].

2.1.2 The Morris Water Maze

The Morris Water Maze (MWM) is one of the most commonly used tasks in
behavioural neuroscience. It was designed by Richard Morris and was first described
back in 1981 on a study regarding the spatial localization of rats [Morris, 1981, 2008].
The popularity of this task was massive and by the end of eighties a large number
of published work using the MWM had been reported [Brandeis et al., 1989]. In
addition, the review work of D’Hooge and Deyn mentions more than 2000 scientific
reports regarding the Morris Water maze task in the decade 1990-2001 [D’Hooge and
De Deyn, 2001]. Finally, this task remains popular even to-date since in the work
of Daugherty et. al. (published on 2015) a virtual MWM had been used on human
subjects to study the effects of ageing in navigation [Daugherty et al., 2015]. The
same concept has also been used in further studies with human participants such as
[Piber et al., 2016] and [Korthauer et al., 2017].
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2.1. Behavioural experiments involving navigation

Throughout the years since the MWM was first reported a number of variations,
paradigms and training protocols were implementing for this experiment, specifically
targeting different aspects of learning and memory and the different brain regions
implementing them [Vorhees and Williams, 2014]. Furthermore MWM has extensively
been used to test, validate and evaluate neurocognitive treatments or conditions
[D’Hooge and De Deyn, 2001]. Next, the general procedure and the most common
protocols of MWM will be described.

2.1.2.1 Basic procedure

In a typical MWM experiment (illustrated in Figure 2.2) the rodent is placed
inside a circular pool filled with water and is tasked to find a hidden platform which
is placed in one of the four quadrants of the pool [Morris, 2008]. Since it is unable
to see the platform it has to relay on external visual cues in order to navigate inside
the pool and finally find the platform [Morris, 1984]. After many trials it is expected
that the animal will have memorize the location of the platform thus it will be able
to find it more quickly. Over the years this procedure has been changed in numerous
ways thus this dissertation will limit itself only to the more commonly used ones.

Starting from the pool and the platform, there are no exact standards nor
systematic research on their exact sizes. On his first experiments with rats Morris
used pools with diameters 132 cm and 214 cm, but with no clear description of these
decisions. Other researchers used smaller pools in order to experiment with mice with
success. In their work, Vorhees and Willians [Vorhees and Williams, 2014] conclude
that in case the pool is too small then the task is solved very quickly thus less
information about learning is obtained and, furthermore, there is the risk that the
animal will complete the task without using any cues of its environment. Moreover
there seems to be a difference between the rats and the mice; rats have the ability
to solve the task even in large environments while mice fail to do so. Regarding to
the platform, Vorhees and Willians [Vorhees and Williams, 2006] refer to a typical
squared 10 cm2 or 11 cm2 platform or to a circular one with diameter 10 to 12 cm.

Another important parameter in the MWM is the water temperature. Nearly
every review on the MWM (e.g. [Brandeis et al., 1989; D’Hooge and De Deyn, 2001;
Sahgal, 1993; Vorhees and Williams, 2014]) has a reference to the disadvantage of
the sudden immersion of the subject into the water as this can cause extensive stress
to the animal resulting into the failure of the experiment. Moreover there is the
risk of hypothermia which causes disruptions on learning and memory [Lindner and
Gribkoff, 1991; Panakhova et al., 1984; Rauch et al., 1989]. Fundamental factor for
the temperature selection is to trigger the escape motivation of the animal in order
to finish the task [Tonkiss et al., 1994], but there are also more factors that needs to
be considered such as the housing conditions [Tonkiss et al., 1994] and the age of the
animals (older animals have higher risk of hypothermia [Lindner and Gribkoff, 1991]).
A method which is used to ensure that temperature is not affecting the experiment is
to place each animal inside a warming cage after each trial to warm it up [Weitzner
et al., 2015]. Finally it should be mentioned that the above concepts are applicable
on both rats and mice. For example on the reference studies [Bromley-Brits et al.,
2011; Stackman et al., 2012], mice have been used instead of rats and the procedures
used were almost equivalent.

An additional point regarding the MWM experiment is the visual cues. The
animal needs to be able to navigate based on the cues of the room surrounding
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2.1. Behavioural experiments involving navigation

Figure 2.2: The basic Morris Water Maze task. A round pool is filled of opaque water and
the rodent needs to find a hidden platform (black circle) within the specified time period of the
trial. The rodent trajectory (red line) is recorded throughout the trial. The animal navigates based
on the surrounding environment with no direct cues to the platform location

the pool [Brandeis et al., 1989]. More cues (e.g. images, geometric objects, etc.
[Buccafusco, 2000]) could be placed intentionally or hidden (in some trials a curtain
is placed around the pool [Weitzner et al., 2015]). Moreover the room surrounding
the pool is important to remain totally unchanged as visual cues might be obscured
otherwise [Vorhees and Williams, 2006]. On the other hand the location of the
platform needs to be absolutely hidden and this can be achieved by making the water
opaque (e.g. by using milk) [Morris, 2008] or, in case of clear water, the platform
needs to be made from plexiglass [Buccafusco, 2000].

Finally it should be mentioned that the starting location of the animals inside
the maze is random but researchers must make sure to place each animal into all the
four quadrants of the pool [Buccafusco, 2000]. Each trial begins the moment that
the animal is placed in the pool until it reaches the platform and during the trial the
whole animal swimming path (trajectory) is recorded [Buccafusco, 2000].

2.1.2.2 Test protocols

� Pre-training and Cued trials: These trials target to make the animal
familiar with the MWM set-up in order to eliminate nonspatial behaviours
[Vorhees and Williams, 2014]. Examples of nonspatial behaviours can be the
sudden stress of putting the animal into water, the inability for the animal
to recognize the platform as the escape point or extended use of a strategy
called Thigmotaxis where the animal is moving only around the wall of the
pool or tries to climb it [Vorhees and Williams, 2014; Weitzner et al., 2015].
Usually in these trials the platform is totally visible or has a very distinctive
cue like a flag [Weitzner et al., 2015]. Finally these kind of trials are important
to identify any cognitive or sensory impairment (e.g. the animal may have
impaired vision or motor skills) [Buccafusco, 2000]. It has been reported that
cue trials can be performed before or after the hidden trials (described next)
but they are beneficial mainly before [Vorhees and Williams, 2014].

8 Chapter 2 Avgoustinos Vouros



2.1. Behavioural experiments involving navigation

� Hidden platform trials: The main acquisition phase of the MWM experiment
where the platform is completely hidden and the animal needs to be able to
find it in order to escape the maze. There is a huge variation in the number
of trials per day but the most common number is four trials per day [Vorhees
and Williams, 2014]. The animal is usually having a timeout of 90 seconds in
order to find the platform and if it fails to do so then it is manually placed at
the location of the platform [Buccafusco, 2000].

� On-demand trials: This kind of procedure was introduced by Buresova et
al. [Burešová et al., 1985] some years after the introduction of the MWM. In
this modification of the original MWM the hidden platform was collapsible
and it was raised only after the animal remained at the platform’s location
for a specific time [Brandeis et al., 1989]. Buresova et al. used this procedure
to increase the accuracy of the MWM on experiments regarding the cognitive
maps of the animals and the implications that arise after specific interventions
[Brandeis et al., 1989]. This kind of technique (also known as the Atlantis
platform) is also useful as sometimes the animals tend to jump from the
platform as soon as they have reached it [Morris, 2008].

� Reversal trials: As the name suggests, during these trials the platform is
moved to the opposite quadrant of the pool from which it was first located
[Vorhees and Williams, 2014]. The reversal trials may be used to assess if
the animal has fully learn the platform position, thus it moves straight to it
[Vorhees and Williams, 2006], detect damage in the hippocampus area of the
brain [Morris et al., 1986] or investigate how quickly the animal adapts to the
situation and starts searching for the new platform location [Morris, 2008].
Specifically for the last case, there are differences between the behaviour or rats
and mice; rats quickly learn to search for the new platform location whereas
mice remain focused on the old platform location for longer amount of time
[Vorhees and Williams, 2006].

� Transfer or Probe trials: In this kind of trials the platform is completely
removed from the pool offering a way to assess the spatial memory of the animal
[Morris, 2008]. This is achieved as the animal will typically swim straight to
the quadrant of the platform thus various measurements can be collected such
as quadrant preference and the number of crossings over the location in which
the platform was previously located [Buccafusco, 2000; Vorhees and Williams,
2014].

� Discrimination trials: Same as in the cue trials the location of the platform
during the discrimination trials is visible. The difference here is that two
platforms are used inside the pool; one rigid, which can support the animal
and one floating, which will immerse in the water due to the animal weight
[Brandeis et al., 1989]. These kind of trials can be used to assess both spatial
and nonspatial learning as the platforms can be visually identical or each one
can have a distinctive appearance (different colour or shape). In the first case
the animal is required to learn the location of the correct one using the distal
cues of the room while in the other it needs to learn the different appearance
of the correct one [Morris, 2008; Vorhees and Williams, 2006].
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2.1. Behavioural experiments involving navigation

� Working Memory trials: In the working memory procedure the location of
the hidden platform is changing every day and generally only 2 types of trials are
performed per day; the sample trial and the successive (test) trial(s) [Vorhees
and Williams, 2006]. These trials are useful to assess how well the animal
obtains information about the location of the platform during the sample trial
and use it to find the platform faster during the successive trial(s) [Brandeis
et al., 1989; Morris, 2008]. This specific task can be altered by increasing or
decreasing the time between the sample and the successive trial(s), which is
known as inter-trial interval (ITI) or memory delay [Buccafusco, 2000; Morris,
2008].

2.1.2.3 Applications of the Morris Water Maze

The MWM has been successfully used in many studies focused on specific areas
of the brain which are closely connected to learning and memory, the assessment of
animal models for neurocognitive disorders, the research on neurocognitive therapies
and the neuropharmacology of spatial learning [D’Hooge and De Deyn, 2001; Morris,
1984]. All of these studies approach learning and memory from a different prospective
but they share a lot of similarities; for example the Alzheimer’s disease has been
extensively examined using animal models imitating different stages of the disease
and at the same time many different treatments has been tested on these models to
alleviate its severe neurocognitive dysfunctions.

2.1.2.4 Conclusions about the Morris Water Maze

After the discussion on some of the procedures of the MWM as well as a limited
review on its vast number of applications, the following advantages can be stated
about this experimental procedure:

1. Simplicity of the problem. It is easy for the animals to learn the MWM
procedure and since rodents are natural swimmers little training is required
[Vorhees and Williams, 2014].

2. Extremely flexible to adaptation [Buccafusco, 2000]. A variety of different
test procedures and protocols has been implemented over the years for the
MWM targeting specific aspects of learning and memory. Nevertheless, the
basic set-up of the MWM remains the same.

3. Minor to none dependency on appetite, sense motivators (e.g. electrical shocks),
body weight and non-spatial (e.g. odour-based) behaviours [Brandeis et al.,
1989]. Behavioural experiments conducted with other mazes have been heavily
criticized because of the use of a variety of factors which may lead to false
assumptions. For example the T-maze and its variations (e.g. multiple T-maze,
Y-maze) are based on food reward which can cause implications when the
treatment affects the appetite of the animal [Vorhees and Williams, 2014].

4. Easy to distinguish spatial from non-spatial behaviours (e.g. sensory informa-
tion) [Brandeis et al., 1989].

On the other hand the MWM holds specific disadvantages that have receive
significant criticism:

10 Chapter 2 Avgoustinos Vouros



2.1. Behavioural experiments involving navigation

1. The animal is prone to receiving extensive stress due to its sudden water
immersion and due to the fact that it is placed into a trapped-like environment
[D’Hooge and De Deyn, 2001; Morris, 2008; Vorhees and Williams, 2014].

2. It is sensitive to animal characteristics which leads to species-specific behaviours
inside the MWM [D’Hooge and De Deyn, 2001; Vorhees and Williams, 2014].

3. There are still not enough evidence to support that the MWM working memory
procedures are superior to the ones used with other mazes (such as the the
radial-arm maze) [Vorhees and Williams, 2014].

2.1.3 The light/dark preference task

The light/dark preference task was originally used with rodents (where it is
named as light-dark box test) primarily for the study of anxiety [Blumstein and
Crawley, 1983; Crawley and Davis, 1982; Crawley and Goodwin, 1980] and the
effects of anxiolytic (anxiety reduction) and anxiogenic (anxiety increase) drugs
and substances [Blaser and Penalosa, 2011]. The structure of the test has different
variations [Bourin and Hascoët, 2003] but it is generally consisted of two areas, one
lighted and one dark [HascoëT and Bourin, 1998; Serchov et al., 2016]. With the
growing interest of behavioural research on zebrafish [Maximino et al., 2012], the
light/dark task was used as a paradigm in many studies using zebrafish models [Blaser
and Penalosa, 2011; DePasquale and Leri, 2018; Magno et al., 2015; Steenbergen
et al., 2011].

The general procedure of the task is straightforward, the animal is left free
to explore the area as its path is recorded. Based on the protocol of [Takao and
Miyakawa, 2006] for mice and the recent tank and procedure design protocol of
[Liu and Sitaraman, 2019] for zebrafish, a separator is used between the light and
dark areas of the experimental area with one (in mice) or multiple (in zebrafish)
entrances/exit between the two areas (refer to Figure 2.3). In case of zebrafish larvae,
the subjects are placed within round wells in a plate format and then the plate is
placed in a room with a light switch [Schnörr et al., 2012]. In our study [Chhabria
et al., 2019] (refer to Chapter 4) the half of each well was covered by cellophane films
(blue, green and yellow) to create the ‘dark’ area.

Even though the light/dark preference task has been criticised for its inconsistency
and unreliability it still remains a popular behavioural test [Ennaceur, 2014]. When
experimenting with rodents, since they are nocturnal animals, the task relies on the
fact of natural avoidance of open and well-lit areas by rodents [Champagne et al.,
2010] (a behaviour known as scototaxis [Liu and Sitaraman, 2019]). On the other
hand, zebrafish are diurnal animals and should prefer bright environments for mating,
foraging and predator avoidance [Champagne et al., 2010]. However, the transference
of the light/dark preference task to zebrafish still produces inconsistent results among
different studies on the animal preference between light or dark compartments of
the experimental arena [Liu and Sitaraman, 2019]. Based on the study of [Liu and
Sitaraman, 2019] such inconsistencies might be the result of the experimental arena
structure (i.e. the material of the walls), the dividers between the light and dark
parts as well as the source of lighting.
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Figure 2.3: Typical configurations of light/dark preference task. (a) Commonly two
transparent rectangle boxes, one of which is covered, are connected with a single passage in order
to create the experimental structure of the light/dark task [Takao and Miyakawa, 2006]. (b) When
the task is applied to zebrafish a single tank is used and half of it is covered to create the dark
area. A separator with one or multiple entrances/exits may be used to separate the two areas [Liu
and Sitaraman, 2019]. (c) Wells arranged in a plate format are used when the procedure involves
zebrafish larvae. In this case each larvae is placed on a well and then the wells are placed in a room
with a light switch [Schnörr et al., 2012]. (d) In the study of [Chhabria et al., 2019] half of each
well was covered with cellophane films to create the ’dark’ compartment [Chhabria et al., 2019].

2.2 Data clustering

Clustering is a branch of machine learning that aims to detect patterns in data.
In a usual clustering scenario, given a set of data points a clustering algorithm
is employed in order to partition them in distinctive groups, where each group is
composed of elements as similar as possible [Aggarwal, 2014].

More specifically, clustering falls under the category of unsupervised learning
where there is no prior knowledge of categories, i.e. class labels that specify distinctive
groups [Gehring, 2018]. At this point there should be a clear distinction between the
concepts of classification and clustering. The number of natural classes in a data
set do not necessary equal to the number of natural clusters. As an example, we
can consider the classification task between the handwritten digits 0 and 1 shown
in Figure 2.4. Clearly we are having two distinctive classes and the classification
task is to train a system to detect which digits are 0 and which are 1. However in
a clustering framework each class would be split into multiple clusters because the
structural similarities (or dissimilarities) of each class elements.

In clustering frameworks three aspects need to be specified: similarity, number
of target clusters and clustering evaluation. A way to express similarity are the
distances between the data points in a data set [Soler et al., 2013]. Distance is
associated with the data attributes or features of the data set, i.e. how far away are
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two data points between each other based on a distance metric such as Euclidean or
Minkowski [Soler et al., 2013]. Target number of clusters K is a meta-parameter that
requires tuning and there are various methods and algorithms that aim on finding an
optimal value for K. Clustering evaluation is a method or criterion that is deployed
to tune the meta-parameter in order to have the best possible clustering performance.
This is usually achieved by running the clustering solution using different values for
K and the one that leads to the best clustering is then adopted.

As a comparison, in supervised scenarios, e.g. neural networks classifying digits,
we have a lot of meta-parameters that require tuning and a common concern is the
overfitting of a classification system. Overfitting occurs when the system has learned
to classify only a specific data set but its accuracy is not generalizable to unseen
data even from the same source. To avoid overfitting we use the method of cross
validation (shown in Figure 2.4). More details on this method will be provided later
(refer to section 2.2.8) but in summary, during cross validation, a given data set is
separated into training and test sets; the training set is used to train the system
and the test set to test its classification quality with unseen data [Arlot et al., 2010].
This process is executed a number of times with different sections of the data as
training and test sets.

The concept of cross validation is applicable to the area of Machine Learning that
combines unsupervised and supervised learning and it is known as semi-supervised
learning [Zhu and Goldberg, 2009]. More information about this type of learning
as well as semi-supervised algorithms will be given in section 2.2.4. In general,
semi-supervised systems learn by using both labelled (supervised) and unlabelled
(unsupervised) data.

Next, there is going to be a discussion on the literature of clustering methods
and techniques that are going to be used in this dissertation.

2.2.1 Feature engineering, selection and weighting

Feature engineering is an important process in clustering when domain knowledge
of the data is available. Since clustering algorithms are detecting similarities within
the data, it is useful to obtain measurements that transform these data in a way
that the clustering algorithm can easily detect internal structures. Such structures
are usually dense regions in the feature space which are formed by data having the
same patterns thus are closer together from other data. Such measurements are
the features (or data attributes or data variables) and can be “hand-crafted” based
on the nature of the data. In the work of [Gehring et al., 2015] features have been
designed from trajectory data recorded during a Morris Water Maze procedure in
order to capture similar behavioural motifs. Performance measurements from other
similar studies can also be used as features for the same purpose. Chapter 4 contains
a section which is dedicated to feature engineering for path data recorded during
experimental procedures.

Apart from feature engineering, feature selection is an important step of clustering
and it is sometimes embedded inside a clustering algorithm. Because not all features
are relevant on finding patterns in the data if all the available features are used
during clustering this can have a negative effect on the clustering solution. Selecting
the most important features is challenging and again depends on the application
or prior knowledge about the data. Usually subsets of features are tested and the
ones that led to the best clustering are adopted. A close related concept to feature
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Figure 2.4: Classification and clustering procedures. (a) In a classification procedure there
is prior knowledge of the target classes, in this case 0 and 1, and the task is to separate our data
into the different classes. (b) In a clustering procedure there is no knowledge of the target classes
and the data are separated into groups based on their similarities or dissimilarities. In such tasks
the target number of groups (number of clusters, K) needs to be defined by the user. (c) Cross
validation is a method to avoid overfitting in classification systems. A given data set is separated
into training and test sets, the training set is labelled and is used to train a classification system,
the testing set is unlabelled and it is used to assess the classification accuracy of the trained system.
Cross validation cannot directly be used for clustering since there are no labels. For assessing the
clustering quality there are various methods depending on the application, the clustering system
and the nature of the data set.

selection is feature reduction where methods such as Principal Components Analysis
(PCA) [Bro and Smilde, 2014] are used to reduce the dimensionality and capture the
variance inside the data set by creating linear combinations of the initial features.
The new features are likely to be more useful for separating the data into clusters
and in the literature there are various examples of studies who used PCA and then
fed the resulted, reduced dimensionality data sets to unsupervised algorithms [Ding
and He, 2004; Honda et al., 2010; Park et al., 2008]. However, there is no guarantee
that the new features will lead to better clustering [Chang, 1983]. Moreover, the new
features are not directly interpretable.

Another method which can be considered as a generalization of feature selection
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is feature weighting. In this dissertation two cases of feature weighting will be
considered: (a) weights are applied to each feature in order to shape the feature
space accordingly to achieve better clustering [Bilenko et al., 2004] (this concept is
known as metric learning, refer to section 2.2.4); (b) feature assessment. The idea is
that each feature receives a weight based on its contribution to the clustering [Modha
and Spangler, 2003]. In this concept a completely uninformative feature will receive
a weight of 0, thus it will be discarded (for an algorithm performing this procedure
refer to section 2.2.3). Feature weighting can have benefits over the dimensionality
reduction methods since the interpretation of the features is not lost, and it can
rather be used to better describe the clustering outcome.

2.2.2 K-Means clustering

K-Means is the most well-studied clustering method for grouping data based on
their similarities [Jain, 2010]. The problem of data grouping can be formulated by
equation 2.1,

Jkmeans =
K∑
k=1

nk∑
( i=1
xi:∈ck

)

p∑
j=1

(xij −mkj)
2 (2.1)

where a set of data points is partitioned into K clusters so that equation 2.1 is
minimized, i.e. for each cluster the distance (usually squared Euclidean) of every
data point xi: to each respective centroid mk: is as small as possible. Equation 2.1
(also known as within-cluster-sum-of-squares, WCSS) specifies a convex function and
setting ∂Jkmeans

∂mkj′
= 0, in order to minimize it, leading to the centers of the clusters

m1:, . . . ,mK: (for all the steps of this proof refer to Appendix A.2):

∂Jkmeans
∂mk′j′

= 0⇒ ∂

∂mk′j′

K∑
k=1

nk∑
( i=1
xi:∈ck

)

p∑
j=1

(xij −mkj)
2 = 0⇒

mk′j′ =
1

nk′

nk′∑
( i=1
xi:∈ck′

)

xij′ (2.2)

2.2.2.1 Alternative objective functions for K-Means clustering

In the literature [Witten and Tibshirani, 2010] there are some alternative objective
functions for K-Means clustering such as the maximization of the between-cluster-
sum-of-squares (BCSS) specified in equation 2.3,

JBCSS =
n∑
i=1

p∑
j=1

(xij − µ1j)
2 −

K∑
k=1

nk∑
( i=1
xi:∈ck

)

p∑
j=1

(xij −mkj)
2 (2.3)

where the first term of the equation,
∑n

i=1

∑p
j=1(xij − µ1j)

2, is a constant specifying
the global WCSS (the squared Euclidean distance of all the points from the global
centroid). Thus maximizing the function 2.3 is equivalent on minimizing the function
2.1. The maximization of 2.3 will be used latter for the Sparse K-Means algorithm.
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In the same study of [Witten and Tibshirani, 2010] the authors also use equation 2.4
instead of equation 2.1,

J ′kmeans =
K∑
k=1

1

2nk

nk∑
( i=1
xi:∈ck

)

nk∑
( i′=1
xi′:∈ck

)

p∑
j=1

(xij − xi′j)2 (2.4)

which uses the pairwise distances between the data points of each cluster. These two
equations are equivalent (for the proof refer to Appendix A.3).

2.2.2.2 Lloyd’s K-Means algorithm

The most common algorithm to minimize equation 2.3 is the Lloyd’s K-Means
algorithm described below [Jain, 2010]:

Lloyd’s K-Means algorithm
1. Initialise K initial centroids M = {m1j, . . . ,mKj} using some initialisa-

tion method.

2. Assign each data point to cluster ck∗ so that,

k∗ = argmin
k

{ p∑
j=1

(xij −mkj)
2

}

3. Recompute the cluster centroids,

mkj =
1

nk

nk∑
( i=1
xi:∈ck

)

xij

4. Go to step 2 until converge.
The algorithm returns the final clusters (centroids and element assignments).

2.2.2.3 Hartigan-Wong’s K-Means algorithm

Hartigan-Wong’s K-Means algorithm is an alternative to Lloyd’s K-Means and in
the study of [Slonim et al., 2013] it is shown that this method has lower probability
of converging to a local minima solution compared to Lloyd’s method in exchange of
extra complexity. The algorithm starts by executing the first two steps of Lloyd’s
K-means algorithm and then proceeds as follows [Hartigan and Wong, 1979; Slonim
et al., 2013]:
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Hartigan-Wong’s K-Means algorithm
1. Initialise K initial centroids M = {m1j, . . . ,mKj} using some initialisa-

tion method.
2. Assign each data point to cluster k′ so that,

k′ = argmin
k

{ p∑
j=1

(xij −mkj)
2

}
3. Recompute the cluster centroids,

mkj =
1

nk

nk∑
( i=1
xi:∈ck

)

xij

4. Set an indicator s = 0.
5. For each data point xi′::

(a) Remove it from its cluster ck′ and compute the within cluster sum
of squares of ck′ ,

wcssk′ =

nk′∑
( i=1
xi:∈ck′

)

p∑
j=1

(xij −mk′j)
2 (2.5)

(b) For each cluster ct where t = 1, · · · , K and t 6= k′:

i. Temporarily assign xi′: to ct and compute the wcsst using
equation 2.5 replacing k′ with t.

ii. If wcsst < wcssk′ set s = t and wcssk′ = wcsst.

(c) If s > 0, assign xi′: to cluster cs, update the centroids mk′: and ms:,
and set s = −1. Else assign xi′: to its original cluster ck′ .

6. If s 6= 0, go to step 4. Else terminate.
The algorithm returns the final clusters (centroids and element assignments).

2.2.3 Sparse K-Means clustering

It is possible to define a the sparse clustering algorithm as a weighted version of
the BCSS (refer to equation 2.3) subject to certain constraints on the weights. One
such method is proposed by Witten and Tibshirani [Witten and Tibshirani, 2010]
and is given in equation 2.6,

Jskmeans =
n∑
i=1

p∑
j=1

wj(xij − µ1j)
2 −

K∑
k=1

nk∑
( i=1
xi:∈ck

)

p∑
j=1

wj(xij −mkj)
2 ⇒ (2.6)

Jskmeans =

p∑
j=1

wjγj , with γj =
n∑
i=1

(xij − µ1j)
2 −

K∑
k=1

nk∑
( i=1
xi:∈ck

)

(xij −mkj)
2 (2.7)

subject to

p∑
j=1

w2
j ≤ 1,

p∑
j=1

|wj| ≤ s, wj ≥ 0 ∀j
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where
∑p

j=1 w
2
j is the L2 penalty or ridge regression [Hoerl and Kennard, 1970] and∑p

j=1|wj| is the L1 penalty or lasso regression [Tibshirani, 1996]. The minimization
of the L1 penalty will result in a constant shrinkage of the weights meaning that
some weights will reach 0 (feature selection mechanism, see also Appendix A.7).
On the other hand, the minimization of the L2 penalty will result to proportional
shrinkage of the weights meaning that the wights will never reach 0 (feature weighting
mechanism, see also Appendix A.7). The parameter s is known as sparsity and
regulates the amount of sparsity, i.e. how many weights will become 0 (for a graphical
representation of L1 and L2 refer to the Appendix A.8).

In order to optimise equation 2.6 we can use a two stage optimization [Witten
and Tibshirani, 2010]. The first step aims to optimise the BCSS holding the weights
fixed and the second stage aims to optimise the weights holding the centroids fixed.
The first stage is equivalent on minimising the weighted WCSS since the first term
of equation 2.5 regarding the global centroid is fixed. The second stage can take the
following form,

maximize
wj

{ p∑
j=1

wjγj

}
subject to

p∑
j=1

w2
j ≤ 1,

p∑
j=1

|wj| ≤ s, wj ≥ 0 ∀j

(2.8)

Based on [Boyd and Vandenberghe, 2004; Witten et al., 2009] the solution to the
convex problem of 2.8 is,

wj =
sign(γj)(|γj| −∆)+√∑p
j′=1

(
sign(γj′)(|γj′| −∆)

)2
(2.9)

where the function x+ = H (x) · x, where H is the Heaviside function, x ∈ R and
there are the assumptions that γj has a unique maximum and that 1 ≤ s ≤ √p (for
the proof of this solution and for an explanation of the upper bound of s refer to
the Appendix A.8). There are two possibilities for the variable ∆, it can be either
equal to 0 if that results in

∑p
j=1|wj| ≤ s or it has to be assigned with a positive

value so that
∑p

j=1|wj| = s. In the latter case, to find an appropriate value for ∆ the
Bisection Search algorithm is used (description of this algorithm is provided latter
as part of the Sparse K-Means).

An iterative algorithm for maximizing the function 2.6 is given by the Sparse
K-Means (SK-Means) algorithm below:

Sparse K-Means algorithm [Witten and Tibshirani, 2010]
1. Initialise K initial centroids M = {m1j, . . . ,mKj} using some initialisa-

tion method and the feature weights as w1 = · · · = wp = 1√
p
.

2. Holding the weights fixed, maximize 2.6 with respect to M . This can be
achieved by performing K-Means on the scaled data, i.e. multiply each
feature j with

√
wj.

3. Holding M fixed optimize equation 2.6 with respect to the weights
applying the proposition given in equation 2.9. Choose ∆ = 0 if that
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leads to
∑p

j=1|wj| ≤ s, otherwise find ∆ > 0 that results in
∑p

j=1|wj| = s
To find ∆ the Bisection algorithm can be used.

4. Go to step 2 until the convergence criterion in equation 2.10∑p
j=1|wrj − w

r−1
j |

wr−1
j

< 10−4 , if r > 1 (2.10)

where r refers to the current iteration, and wr−1
j to the weights of the

previous iteration.
The algorithm returns the final clusters (centroids and elements) and the
weight of each feature.

Bisection algorithm

1. Assume lim1 < ∆ < lim2, lim1 = 0 and lim2 = max(γ1, ..., γp)

2. Compute ∆ = lim1+lim2

2
and set{

lim2 = ∆ , if
∑p

j=1|wj| < s

lim1 = ∆ , if
∑p

j=1|wj| ≥ s

}

3. If lim2 − lim1 ≥ 10−4 go to step 2.

2.2.4 Semi-supervised pairwise constrained learning

In the field of semi-supervised learning there are clustering algorithms that
incorporate prior knowledge in the form of labels or constraints in order to achieve
better clustering solutions [Bar-Hillel et al., 2003; Basu et al., 2003; Bilenko et al.,
2004; Xing et al., 2003]. Specifically the study of Bilenko et al. [Bilenko et al., 2004]
proposed a semi-supervised algorithms called Metric Pairwise Constrained K-Means
(MPCK-Means) which learns a distance metric based on constraints imposed by
labelled data points in the dataset. The constraints are imposed between pairs of
points and can be either MUST-LINK, i.e. the two points must be in the same
cluster or CANNOT-LINK, i.e. the two points must not be in the same cluster
[Wagstaff et al., 2001].

The algorithm is a variant of the Pairwise Constrained K-Means (PCK-Means)
algorithm [Basu et al., 2004] with metric learning [Bar-Hillel et al., 2003; Xing et al.,
2003]. The PCK-Means algorithm incorporates constraints to guide the clustering
solution, the constraints are considered as soft meaning that violations are permitted
as opposed to its predecessor the COP-KMeans [Wagstaff et al., 2001] algorithm
which stops if constraints violation is unavoidable. Metric learning is the adaptation
of a distant metric to satisfy the similarity imposed by the pairwise constraints
(supervised similarity [Bilenko et al., 2004]). These constraints may not results in
separable clusters, thus a metric should be learnt to create distinctive clusters but at
the same time satisfy the supervised similarity.

A key concept of both PCK-Means and MPCK-Means algorithms is the centroids
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intialisation procedure known as seeding [Basu et al., 2002]. This PhD study will
consider separately the centroid initialisation method from the clustering algorithm
and description of seeding initialisation will be described in section 2.2.7.7.

2.2.4.1 Pairwise Constrained K-Means (PCK-Means)

Originally, the PCK-Means objective function is defined by equation 2.11 [Basu
et al., 2004]

Jpckm =
K∑
k=1

nk∑
( i=1
xi:∈ck

)

( p∑
j=1

(xij −mkj)
2+

∑
(xi:)ML(xi′:)

bxi,xi′ 1
[
(xi:)���ML(xi′:)

]
+

∑
(xi:)CL(xi′:)

b̄xi,xi′ 1
[
(xi:)��CL(xi′:)

])
(2.11)

where the second and third terms of the equation are two functions that indicate the
severity of violating the imposed MUST-LINK and CANNOT-LINK constraints of the
i-th element belonging to the k-th cluster; 1 is a boolean function that specifies if in
case of a MUST-LINK ((xi:)ML(xi′:)) or CANNOT-LINK ((xi:)CL(xi′:)) constraint,
this constraints has been violated;

[
(xi:)���ML(xi′:)

]
specifies violation of a MUST-

LINK constraint and
[
(xi:)��CL(xi′:)

]
violation of a CANNOT-LINK constraint. The

terms bxi,xi′ and b̄xi,xi′ are providing a way of specifying individual costs for each
constraint violation. A value of 0 for the cost terms will result to unsupervised
K-Means clustering while a large value will lead to Constrained K-Means clustering
[Basu et al., 2002], where the clustering process will be forced to respect all the given
constraints [Basu et al., 2004]. Finally, an intermediate value will result in a tradeoff
between minimizing the total distance of the data points to the cluster centroids and
satisfying the constaints [Basu et al., 2004].

Specifying appropriate values for constraint costs can be challenging and requires
extensive knowledge about the data set under analysis or the constraints quality. In
the later study of [Bilenko et al., 2004] the authors specified two distance functions
to calculate the amount of penalty for violating the constraints which can also been
incorporated in equation 2.11 resulted in equation 2.12,

Jpckm =
K∑
k=1

nk∑
( i=1
xi:∈ck

)

( p∑
j=1

(xij −mkj)
2+

∑
(xi:)ML(xi′:)

p∑
j=1

bxi,xi′ (xij − xi′j)
2
1
[
(xi:)���ML(xi′:)

]
+

∑
(xi:)CL(xi′:)

p∑
j=1

b̄xi,xi′
(
(xIj − xI′j)2 − (xij − xi′j)2

)
1
[
(xi:)��CL(xi′:)

])
(2.12)

where, based on the second term the severity of the penalty for violating a MUST-
LINK constraint between the i-th element and another point xi′j distant from the
i-th element is higher than if this pair of point were nearby. Analogously, based
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on the third term, where the xI: and xI′: is the maximally separated pair of points,
the severity of the penalty for violating a CANNOT-LINK constraint between the
i-th element and another point near the i-th element is higher than if this pair of
points were far from each other. The terms bxi,xi′ and b̄xi,xi′ are still providing a way
of specifying individual costs for each constraint violation but, for the rest of this
thesis, they will be assumed to have the constant value of 1.

Conceptually, the way of specifying the severity of constraints violation in equation
2.12 is beneficial for metric learning (such as in the case of MPCK-Means algorithm
that will be described afterwards) [Bilenko et al., 2004], where we have to estimate
how severe modification is needed for a metric to satisfy the constraints. In the
case of PCK-Means objective given by equation 2.12, if two data points are far
from each other and are having a MUST-LINK constraint or if two data points are
close to each other and are having a CANNOT-LINK constraint then in both cases
these constraints are likely to be violated within the K-Means iterations thus a huge
penalty needs to be applied in order to compensate these violations.

Minimizing equation 2.12 leads to the centers of the clusters similar to K-Means,

∂Jpckm
∂mk′j′

= 0⇒ ∂

∂mk′j′

K∑
k=1

nk∑
( i=1
xi:∈ck

)

p∑
j=1

(xij −mkj)
2 = 0⇒

mk′j′ =
1

nk′

nk′∑
( i=1
xi:∈ck′

)

xij′

An iterative algorithm for minimizing the function 2.12 is given by the algorithm
below:
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Pairwise Constrained K-Means algorithm
1. Initialise K initial centroids M = {m1j, . . . ,mKj} using some initialisa-

tion method.

2. Assign each data point to cluster k∗ so that,

k∗ = argmin
k

{( p∑
j=1

(xij −mkj)
2+

∑
(xi:)ML(xi′:)

p∑
j=1

bxi,xi′ (xij − xi′j)
2
1
[
(xi:)���ML(xi′:)

]
+

∑
(xi:)CL(xi′:)

p∑
j=1

b̄xi,xi′
(
(xIj − xI′j)2 − (xij − xi′j)2

)
1
[
(xi:)��CL(xi′:)

])}
(2.13)

3. Recompute the cluster centroids,

mkj =
1

nk

nk∑
( i=1
xi:∈ck

)

xij

4. Go to step 2 until converge.
The algorithm returns the final clusters (centroids and elements).

To avoid any confusion with the study of [Bilenko et al., 2004], in the imple-
mentation of the latter, PCK-Means uses the semi-supervised seeding method to
initialise the cluster centroids.

2.2.4.2 Metric Pairwise Constrained K-Means (MPCK-Means)

Integrating the metric learning to the PCK-Means objective function in equation
2.12 results in the objective function of the MPCK-Means algorithm given by equation
2.14 [Bilenko et al., 2004],

Jmpckm =
K∑
k=1

nk∑
( i=1
xi:∈ck

)

( p∑
j=1

aj(xij −mkj)
2 −

p∑
j=1

log(aj)+

∑
(xi:)ML(xi′:)

p∑
j=1

bxi,xi′aj(xij − xi′j)
2
1
[
(xi:)���ML(xi′:)

]
+

∑
(xi:)CL(xi′:)

p∑
j=1

b̄xi,xi′
(
aj(xIj − xI′j)2 − aj(xij − xi′j)2

)
1
[
(xi:)��CL(xi′:)

])
(2.14)

where aj is a weight on the j-th dimension of the features and
∑p

j=1 log(aj) is a
normalization constant [Xing et al., 2003] that does not allow the weights to grow to
large.
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In order to minimize equation 2.14 we can use a two stage optimization [Bilenko
et al., 2004]. The first stage is the minimization of equation 2.14 with respect to the
centroids, which results in the standard K-Means algorithm, and the second stage
with respect to the weights. The second optimization step has the following form,

aj = n

(
K∑
k=1

nk∑
( i=1
xi:∈ck

)

(
(xij −mkj)

2+

∑
(xi:)ML(xi′:)

bxi,xi′ (xij − xi′j)
2
1
[
(xi:)���ML(xi′:)

]
+

∑
(xi:)CL(xi′:)

b̄xi,xi′
(
aj(xIj − xI′j)2 − (xij − xi′j)2

)
1
[
(xi:)��CL(xi′:)

]))−1

(for more details on how these equations were derived refer to Appendix A.4).

An iterative algorithm for minimizing the function 2.14 is given by the algorithm
below [Bilenko et al., 2004]:

MPCK-Means algorithm
1. Initialise K initial centroids M = {m1j, . . . ,mKj} using some initialisa-

tion method and W as a diagonal matrix with values w1 = · · · = wp = 1.

2. Assign each data point to cluster k∗ so that,

k∗ = argmin
k

{( p∑
j=1

aj(xij −mkj)
2 −

p∑
j=1

log(aj)+

∑
(xi:)ML(xi′:)

p∑
j=1

bxi,xi′aj(xij − xi′j)
2
1
[
(xi:)���ML(xi′:)

]
+

∑
(xi:)CL(xi′:)

p∑
j=1

b̄xi,xi′
(
aj(xIj − xI′j)2 − aj(xij − xi′j)2

)
1
[
(xi:)��CL(xi′:)

])}
(2.15)

3. Recompute the cluster centroids,

mkj =
1

nk

nk∑
( i=1
xi:∈ck

)

xij
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4. Update the weights ∀j,

aj = n

(
K∑
k=1

nk∑
( i=1
xi:∈ck

)

(
(xij −mkj)

2+

∑
(xi:)ML(xi′:)

bxi,xi′ (xij − xi′j)
2
1
[
(xi:)���ML(xi′:)

]
+

∑
(xi:)CL(xi′:)

b̄xi,xi′
(
aj(xIj − xI′j)2 − (xij − xi′j)2

)
1
[
(xi:)��CL(xi′:)

]))−1

(2.16)

5. Go to step 2 until converge. Various criteria can be used for convergence
e.g. maximum number of iteration reached or minimum changes in the
objective function.

The algorithm returns the final clusters (centroids and elements) and feature
weights. The weights correspond to the learnt metric that shapes the feature
space accordingly to satisfy the input constraints.

To avoid any confusion with the study of [Bilenko et al., 2004], in the imple-
mentation of the latter, MPCK-Means uses the semi-supervised seeding method to
initialise the cluster centroids. For this PhD study it is considered that a single
metric is used for all clusters which is parameterized by a diagonal matrix. This
corresponds to feature weighting where each feature fj of a p−dimensional data set
is multiplied with the corresponding element of the diagonal of the matrix Ajj (for
more information refer to the Appendix A.1).

2.2.5 K-Medians clustering

A variation K-Means objective function shown in equation 2.1 can be the min-
imisation of the function 2.17 for each dimension j,

Jkmedians =
K∑
k=1

nk∑
( i=1
xi:∈ck

)

p∑
j=1

|xij −mkj| (2.17)

It can be shown that minimizing equation 2.17 leads to the median of each dimension
of the clusters (refer to Appendix A.5). K-Medians corresponds to the L1-norm
(taxicab or Manhattan distances) as opposed to the L2-norm of K-Means [Aggarwal,
2014]. The benefits of K-Medians is the use of the median to compute the cluster
centroids instead of the mean that K-Means uses. The median is a robust to outliers
statistic [Feldman and Schulman, 2012] and has a breaking point of 0.5, i.e. even if
half of the data set is corrupted by outliers the median of the corrupted data set will
be similar to the median of the original data set [Lopuhaa et al., 1991].

2.2.5.1 K-Medians algorithm

An iterative process for minimising equation 2.17 is given by an algorithm similar
to Lloyd’s K-Means,
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K-Medians algorithm
1. Initialise K initial centroids M = {m1j, . . . ,mKj} using some initialisa-

tion method.

2. Assign each data point to cluster k∗ so that,

k∗ = argmin
k

{ p∑
j=1

(xij −mkj)
2

}

3. Recompute the cluster centroids by taking the median on each dimension
of the data points assigned to them.

4. Go to step 2 until converge.
The algorithm returns the final clusters (centroids and element assignments).

2.2.6 Geometric K-Medians clustering

In the literature there is another variant of K-Means that uses the geometric
median instead of the median on each dimension by minimizing the equation 2.18

Jgkmedians =
K∑
k=1

nk∑
( i=1
xi:∈ck

)

∣∣∣∣ p∑
j=1

(xij −mkj)

∣∣∣∣ (2.18)

It can be shown that minimizing equation 2.17 leads to the following expression for
the clusters centroids, (refer to Appendix A.6 for all the steps),

∂Jgkmedians
∂mk′j′

=
∂

∂mk′j′

K∑
k=1

nk∑
( i=1
xi:∈ck

)

∣∣∣∣ p∑
j=1

(xij −mkj)

∣∣∣∣ = 0

⇒ mk′j′ =

∑nk′

( i=1
xi:∈ck′

)
xij′√

(xij′−mk′j′ )2∑nk′

( i=1
xi:∈ck′

)
1√

(xij′−mk′j′ )2
(2.19)

2.2.6.1 Weiszfeld’s algorithm

With 1-dimensional data sets the median is similar to the geometric median
[Haldane, 1948]. However, in high dimensions there is no close form for the geometric
median [Whelan et al., 2015], thus one can use an iterative form of equation 2.19

known as the Weiszfeld’s algorithm. In this algorithm the m
(l)
kj term is the l-th

estimate of mkj and l = 1, . . . , nk.

Weiszfeld’s algorithm
1. Initialise K initial centroids M = {m1j, . . . ,mKj} using some initialisa-

tion method.
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2. Assign each data point to cluster k∗ so that,

k∗ = argmin
k

{ p∑
j=1

(xij −mkj)
2

}

3. Recompute the cluster centroids using the Weiszfeld’s algorithm,

(a) For each cluster k and dimension j:

(b) Initialise the k-th centroid,

mkj =
1

nk

nk∑
( i=1
xi:∈ck

)

xij

(c) Update the centroid estimation, m
(l)
kj =

∑nk

( i=1
xi:∈ck)

xij√∑p
j=1

(xij−m
(l)
kj

)2∑nk

( i=1
xi:∈ck)

1√∑p
j=1

(xij−m
(l)
kj

)2

, l =

1, . . . , nk

4. Go to step 2 until converge.
The algorithm returns the final clusters (centroids and element assignments).

2.2.7 Clustering initialisation methods

In the literature there are various studies regarding the importance of the initial
cluster centroids for the performance of the K-Means algorithm [Jain, 2010] and
extensive testing on various initialisation techniques [Celebi et al., 2013; Fränti
and Sieranoja, 2019]. In this section there is going to be a description of the
techniques that will appear in the PhD thesis. Benchmarking on unsupervised and
semi-supervised K-Means variations using each one of these methods is available in
Chapter 3.

Before proceeding to the initialisation methods we will introduce the following
notation. Let D(xi:) to denote the distance between data point xi: and the nearest of
the selected cluster centroids, mk:, k = 1, . . . , L, with L being the number of selected
centroids (L ≤ K):

D(xi:) = min
k

√√√√ p∑
j=1

(xij −mkj)2.

2.2.7.1 Random

The initialisation method of [MacQueen et al., 1967] proposes a random selection
of data points from the data set which will be the initial centroids. This is one of the
earliest clustering initialisation techniques and an improvement of Jancey’s method
[Jancey, 1966]. The latter study suggested the centroids to be at random locations
within the hypersphere of the data set but this might result in empty clusters to be
generated after the execution of the K-Means algorithm.
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2.2.7.2 K-Means++

K-Means++ [Arthur and Vassilvitskii, 2007] is a standard clustering initialisation
technique in many programming languages, such as MATLAB and Python. It has
linear complexity O(N) and it uses a probabilistic approach in order to select initial
centroids data points that are well separated. The steps of this algorithm are as
follows:

1. Select randomly a data point xi: as the first centroid m1: and set k = 2.

2. Choose another data point xi′: as the next centroid mk: with probability

p(xi′:) =
D(xi′:)

2∑n
i=1 D(xi:)2

and set k = k + 1.

3. While k ≤ K go to step 2.

2.2.7.3 Maximin

The Maximin method of [Gonzalez, 1985] picks data points as cluster centroids
that are far apart form each other. The steps in the algorithm are:

1. Select randomly a data point xi: as the first centroid m1: and set k = 2.

2. Select as the next centroid mk: = xi′: with i′ = argmax
i
{D(xi:)} and set

k = k + 1.

3. While k ≤ K go to step 2.

Maximin has linear complexity O(N). The study of [Katsavounidis et al., 1994]
proposed a modification in the first step of the algorithm to select as the first centroid
the data point with the maximum Euclidean norm [Celebi et al., 2013]. In this way
the method can become deterministic.

2.2.7.4 Kaufman

Kaufman and Rousseeuw [Kaufman and Rousseeuw, 2009] proposed a determin-
istic method for centroids initialisation. Their method is as follows [Pena et al.,
1999]:

1. Select the closest data point to the global centroid of the data set as the first
centroid m1: and set k = 2.

2. For every two non-selected data points xi: and xi′: calculate,

Ci′i = max

{
D(xi:)−

√√√√ p∑
j=1

(xij − xi′j)2, 0

}
.

3. Select as the next centroid mk: = xi∗:, with i∗ = argmax
i
{
∑

i′ Ci′i} and set

k = k + 1.
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4. While k ≤ K go to step 2.

Kaufman’s and Rousseeuw’s algorithm has quadratic complexity O(N2) because of
the computation of the pairwise distances [Celebi et al., 2013].

2.2.7.5 ROBust INitialisation (ROBIN)

ROBIN [Al Hasan et al., 2009] is an initialisation method that is robust to
outliers. It uses the Local Outlier Factor (LOF) [Breunig et al., 2000] in order to
select as initial centroids data points that are far away from each other and also
representative points of dense regions in the data set. In addition it requires one more
tuning parameter which is the number of neighboring data points mp to be consider
when computing the LOF of each data point. The LOF score of each data point,
LOF (xi:,mp), is given by the algorithm below [Al Hasan et al., 2009]: N(xi:,mp) is
the set of the mp nearest data points to the xi,: data point, with |N(xi:,mp)| ≥ mp.

1. Compute the density of each data point xi:,

density(xi:,mp) =
|N(xi:,mp)|∑

xi′:∈N(xi:,mp)

√∑p
j=1(xij − xi′j)2

, i 6= i′. (2.20)

2. Compute the average relative density of each data point xi:,

ard(xi:,mp) =
density(xi:,mp) |N(xi:,mp)|∑
xi′:∈N(xi:,mp)

density(xi′:,mp)
. (2.21)

3. Compute the LOF score of each data point xi:,

LOF (xi:,mp) =
1

ard(xi:,mp)
. (2.22)

The ROBIN algorithm (K > 1) is described below [Al Hasan et al., 2009]:

1. Pick a reference data point xr: from the data set.

2. Sort the data points in decreasing order of their distance from xr:.

3. For each xi: in sorted order, pick the first data point xi′: for which
LOF (xi′:,mp) ≈ 1 as the first centroid m1: and set k = 2.

4. Sort the data points in decreasing order based on D(xi:).

5. For each xi: in sorted order, pick the first data point xi′: for which
LOF (xi′:,mp) ≈ 1 as the next centroid mk: and set k = k + 1.

6. While k ≤ K go to step 4.

The computational cost of this method is dominated by the complexity of sorting,
which is O(N log N) [Celebi et al., 2013] but for the LOF score calculation we have
a choice of algorithms varying from O(N) to O(N2), that can be chosen based on
dimensionality-related constraints, see [Breunig et al., 2000]. Regarding the 4th step of
the algorithm, in an R implementation (refer to the study of [Brodinová et al., 2017])
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the formula LOF (xr′:,mp) < 1.05 was used but since the LOF score can also be
lower than 1, in our experiments, we used the formula 1− ε < LOF (xr′:,mp) < 1 + ε
where ε was set to 0.05. In the original algorithm [Al Hasan et al., 2009] the authors
used the algorithm in a deterministic manner by setting the reference point on step 2,
xr : to the origin. In the R implementation of [Brodinová et al., 2017] the reference
point is chosen at random. In this study we test both methods, ROBIN(S) will refer
to the stochastic method of [Brodinová et al., 2017] while ROBIN(D) will refer to
the deterministic method of [Al Hasan et al., 2009].

2.2.7.6 Density K-Means++ (DK-Means++)

DK-Means++ [Nidheesh et al., 2017] is a deterministic method for centroids
initialisation based on data density. It is an improved method of [Lan et al., 2015;
Rodriguez and Laio, 2014] since it requires only to define the number of clusters K
and utilizes a heuristic to detect dense regions in the data set based on a radius ε in
order to select optimal centroids. The radius ε can be computed form the following
algorithm [Nidheesh et al., 2017]:

1. Construct the minimum spanning tree of the distance matrix of the data set.

2. Let Λ be the weights of edges of the Minimum Spanning Tree and IQR the
Inter Quartile Range. Then,

ε = 3 · IQR(Λ) + 75thpercentile(Λ).

The DK-Means++ algorithm is described below [Nidheesh et al., 2017]:

1. Compute the the local density p(xi:) of each data point using the formula:

p(xi:) =
∑

xi′∈ε-neighbors(xi:)

exp

(−√∑p
j=1(xij − xi′j)2

ε

)
.

where ε-neighbors(xi:) are the data points falling under the hypersphere with
centroid xi: and radius ε.

2. Normalize p(xi:) using the min-max normalization.

3. The first cluster centroid m1: is the data point xi∗: for which p(xi∗:) =
max{p(x)}. Then m1: = xi∗: and k = 2.

4. Compute the prospectiveness all data points that are not selected as centers
given the formula, φ(xi:) = p(xi:) ·D(xi:).

5. The next centroid mk: is the data point with maximum prospectiveness: mk: =
xi∗: with i∗ = argmax

i
{φ(xi:)} and k = k + 1.

6. While k ≤ K go to step 4.

The computation of ε-neighbors contributes to the complexity of DK-Means++. It
is dominated by the distance matrix computation, which is O(N(N − 1)/2). The
computation of the Minimum Spanning Tree depends of the algorithm used to
compute it and varies from O(N log N) (Kruskal’s algorithm) to O

(
(2N − 1) log N

)
(Prim’s algorithm) [Moret and Shapiro, 1992].
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2.2.7.7 Semi-supervised initialisation: the seeding method

In the studies of [Basu et al., 2004; Bilenko et al., 2004] the PCK-Means and
MPCK-Means algorithms are initialized using a semi-supervised procedure based on
the MUST-LINK constraints imposed to the data set that specify which elements
should belong to the same cluster. This method is known as seeding [Basu et al.,
2002].

In more detail, the given set of MUST-LINK constraints is first augmented
using the transitive closure [Flaška et al., 2007] that infers additional constraints
based on the existing relationship between the data points, e.g. if x1: MUST-LINK
x2: and x2: MUST-LINK x3: then x1: MUST-LINK x3:. These kind of inferred
relationships are discovered using the depth-first search algorithm [Korf, 1985]
and form Ξ = {ξ1, ξ2, . . . , ξΩ} neighborhoods. The given set of CANNOT-LINK
constraints is then augmented with additional constraints between pairs of points
in neighborhoods that have at least one pair of CANNOT-LINK constraints, e.g if
(x1: ∈ ξ1) CANNOT-LINK (x1: ∈ ξ2) then CANNOT-LINK constraints are created
between every pair of points (xi: ∈ ξ1) and (xi′: ∈ ξ2).

After this augmentation step, the centroids of each neighborhood are computed
by taking the mean of the elements assigned to each neighborhood to obtain Ω
centroids, m1:,m2:, . . . ,mΩ:. If K target number of clusters are required, thus K
initial centroids, then MPCK-Means executes one of the following options:

� If Ω = K: Every neighborhood centroid becomes an initial cluster centroid.

� If Ω > K: K neighborhoods are picked based on a weighted farthest-first
traversal [Gonzalez, 1985]. The latter is a process where a point is selected
arbitrarily and each successive point is selected so that maximum distance
between the newly selected point and the previous selected points is achieved.
The weighted form of this process is based on the size of the neighborhoods
meaning that we are searching for neighborhood centroids that are both far
away from each other but also represent large neighborhoods. The weighted
distance metric that determines the next neighborhood based on its centroid
mω: and size nmω from a previous neighborhood with centroid ξ(ω−1): and size
nξω−1 is given by the equation 2.23

dist =

√√√√ p∑
j=1

(mωj −m(ω−1)j)2 · √nξω · nξω−1 (2.23)

This heuristic is favoring K-Means-based clustering algorithms since it promotes
initial cluster centers that are far apart from each other but also represent
large portions of the dataset.

� If Ω < K: Every neighborhood centroid becomes an initial cluster centroid
and the rest K − Ω centroids are generated at random. In the MPCK-Means
implementation the number 42 is used as a random seed in order to have
deterministic results [Bilenko et al., 2004].

2.2.8 Clustering tuning and performance evaluation

Clustering tuning refers to the selection of values for the meta-parameters of
the algorithm. Since different turnings lead to different solutions for the clustering
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problem these solutions are then evaluated with one or more validity methods. The
solution that yields the best performance is then adopted.

The validity methods fall under two distinctive groups, external validation meth-
ods and internal validation methods [Rendón et al., 2011]. External methods are
using previous knowledge about the data to assess the clustering solutions and such
knowledge is commonly the ground truth of the data set, i.e. the cluster of each
element. Internal methods are using only intrinsic to the data information such as
clusters compactness or separability to access the clustering solution [Kovács et al.,
2005; Rendón et al., 2011].

2.2.8.1 Internal validity methods

2.2.8.1.1 The elbow method

The most simplistic method to validate a clustering solution is to compare the
values of the objective function that the algorithm tries to minimize or maximize. In
the K-Means algorithm the only meta-parameter is the target number of clusters
K. Assuming that the goal is the minimization of the objective function then for a
range of different k values the K-Means algorithm WCSS can be plotted against the
different k values. The assumption is that a value for the number of clusters far less
than the “optimal” number of clusters of the data set will have a significant larger
WCSS than a value further away from the “optimal” number of clusters [Hardy,
1994]. However, as we are getting closer to the “optimal” then there is going to be a
sudden drop of the WCSS value which will result on the “elbow” point to appear.
That value will be a good candidate for the number of target clusters. Due to its
simplicity, the elbow method can provide ambiguous results and is not very accurate
especially in cases where there is not well-separable cluster as shown in Figure 2.5.

2.2.8.1.2 The silhouette index

The silhouette index [Rousseeuw, 1987] is a value that specifies the degree of
similarity between a data point and other data points of the same cluster and the
dissimilarity between a data point and other data points in different clusters. The
silhouette index of the data point xi: ∈ ck is given by the formula 2.24[Starczewski
and Krzyżak, 2015]

Sxi: =
bxi: − axi:

max{bxi: , axi:}
(2.24)

where axi: is the average distance of xi: and all the other data points in the cluster
that xi: belongs to,

axi: =
1

nk − 1

nk∑
( i′=1
xi′:∈ck

)

√√√√ p∑
j=1

(xij − xi′j)2 (2.25)

and bxi: is the minimum average distance of xi: and all the other data points in other
clusters,

bxi: = min
k′

1

nk′

nk′∑
( i′=1
xi′:∈ck′

)

√√√√ p∑
j=1

(xij − xi′j)2, k′ 6= k (2.26)
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Figure 2.5: The elbow method for tuning the target number of clusters meta-parameter.
Two examples of the elbow method. The upper plots illustrate the given data sets where the
distinctive clusters are marked with separate colors. The bottom plots illustrate the WCSS values
resulted by running, on each data set, the Lloyd’s K-Means algorithm using the DK-Means++
initialization procedure and different values for K. Based on the elbow method, the correct number
of clusters is the value for K where there is a clear “elbow” in the graphs. In the left-hand scenario
the correct number of clusters can be identified correctly as 4 using the elbow method. However in
the right-hand scenario the elbow method indicates wrongly that K should be equal to 3 instead
on 6 because based on that criterion the clusters are not well-separable.

The silhouette index of each cluster can then be specified as the average silhouette
index of the data points that belongs to it,

Sck =
1

nk

nk∑
( i=1
xi:∈ck

)

Sxi: (2.27)

Finally there are two different formulas for defining the overall silhouette index of a
clustering solution. The first formula is the average silhouette index of the clusters
define as,

S =
1

K

K∑
k=1

Sck (2.28)

an the second one (which is the original based on [Rousseeuw, 1987]) is the average
silhouette of all the data points in the data set,

S ′ =
1

n

n∑
i=1

Sxi: (2.29)

In the study of [Starczewski and Krzyżak, 2015] the performance of the two
formulas for the silhouette index of a clustering solution 2.28 and 2.29 has been
tested and the formula 2.29 was empirically superior to 2.28 on finding the right
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number of clusters in a data set. An example of the silhouette method is depicted in
Figure 2.6. An advantage of the silhouette over other methods is that it is bounded
between -1 and 1, where 1 specifies maximum separation of clusters and maximum
within cluster density while other indexes, such as the distortion score (or the WCSS)
gives only an estimation of the latter.

Figure 2.6: The silhouette method for tuning the target number of clusters meta-
parameter. Two examples of the silhouette method. The upper plots illustrate the given data
sets where the distinctive clusters are marked with separate colors. The bottom plots illustrate the
two formulas for the silhouette method, S = 1

K

∑K
k=1 Sck (2.28) and S′ = 1

n

∑n
i=1 Sxi: (2.29). The

number of clusters for which the silhouette index is maximized specifies the best clustering model.
The superiority of the formula 2.29 as indicated in [Starczewski and Krzyżak, 2015] can be seen in
the right hand side where the silhouette method using the formula 2.28 provides a wrong indication
for the number of clusters (red line at number of clusters equal to 3 above the dashed line) while
the formula 2.29 correctly identifies the number of clusters to be 6 (blue line at number of clusters
equal to 3 below the dashed line).

2.2.8.1.3 The gap statistic

The gap statistic compares the within-cluster dispersion with that of a reference
distribution [Tibshirani et al., 2001]. For the K-Means clusters the within-cluster
dispersion is the within-cluster-sum-of-squares given in Equation 2.1. Here we
will assume any algorithm resulting in a solution that optimises the within-cluster
dispersion J . For the reference distribution the authors of [Tibshirani et al., 2001]
propose two methods:

� Generate each feature of the original data set X uniformly over the range of
the observed values that each feature has.

� Same as above but using the transformed data set X ∗ which is generated
by centering the data of X around their mean (resulting to X̂ ), applying
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singular value decomposition on the centered data, X̂ = USV T and create the
transformed data set X ∗ = X̂V .

The second method is more complex, but accounts for the shape of the data distribu-
tion, and it is expected to be better in practice [Yan and Ye, 2007]. The gap statistic
is then given by the formula,

Gap(k) = EB{log(J ∗k )} − log(Jk) (2.30)

where k is the number of target clusters, log(Jk) is the logarithmic within-cluster
dispersion obtained by running the clustering algorithm on the original data set
and EB{log(J ∗k )} is the expected logarithmic within-dispersion which is obtained by
running the clustering algorithm on B reference data sets, generated using either of
the methods explained before, and taking the average of the resulted (logarithmic)
within-dispersions,

EB{log(J ∗k )} =
1

B

B∑
b=1

log(J ∗k (b)) (2.31)

Equation 2.30 is repeated for different values for k. The choice of k∗ is the smallest
k such that,

Gap(k) ≥ Gap(k + 1)− Sk+1 (2.32)

where Sk =
√

1 + 1
B
· σk
(
EB{log(J ∗k )}

)
(σ stands for the standard deviation) and

accounts for the simulation error.
Overall the gap statistic method aims to determine the appropriate elbow

point of the within-cluster dispersion curve (refer to 2.2.8.1.1). This is achieved by
comparing the within-cluster dispersion of the clustering algorithm on the original
data for some k with that of reference data with the expectation that log(Jk) will
decrease faster for k ≤ k∗ and more slowly for k > k∗. If log(Jk) falls farthest
below the expectation EB{log(J ∗k )} then we have the best estimate for k∗; this
implies that k∗ maximises Gap(k). The stopping criterion in Equation 2.32 applies
the 1-standard-error rule which empirically works well according to the authors
[Tibshirani et al., 2001].

Some modification of the gap statistic have been proposed. The study of [Yan
and Ye, 2007] proposes the weighted gap statistic Ḡap(k) which is applied on the
weighted within-cluster dispersion: Let Jk =

∑
1Jk · · · kJk to be the summation

of the within-cluster dispertion of each cluster; the weighted version is then J̄k =∑
1

2nk(nk−1)
(1Jk · · · kJk). The study of [Mohajer et al., 2011] compares the gap

statistic definitions with and without the logarithm. Furthermore the study of
[Witten and Tibshirani, 2010] proposes a modification of the gap statistic for the
tuning of the sparsity parameter s. Since in sparse clustering (see 2.2.3 we aim to
maximise the objective function of the algorith, i.e. maximize the between-cluster
dispersion J ′ then the gap static for s will be given by the formula,

Gap(s) = log(J ′k)− EB{log(J ′∗k )} (2.33)

where,

EB{log(J ′∗k )} =
1

B

B∑
b

log(J ′∗k ) (2.34)
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In this way, and similarly to the gap statistic in 2.2.8.1.3, we choose the s∗ that
corresponds to the largest value of Gap(s) or, similarly to the stopping criterion in
2.32, s∗ is choosen to equal the smallest s such that,

Gap(s) ≥ Gap(s+ 1)− Ss+1 (2.35)

where Ss =
√

1 + 1
B
·σs
(
EB{log(J ′∗k )}

)
The authors of sparse clustering [Witten and

Tibshirani, 2010] assumed that we k and we want to estimate only s but the latter
study of [Brodinová et al., 2017] showed empiricly that k and s needs to be tunes
together and for each pair of for different values of these two parameters executed
the Gap(s) method.

An advantage of the gap statistic compared to the silhouette is that it can
be computed also for target number of clusters equal to 1 giving it the ability to
test the null case of k = 1 against the alternative case of k ≥ 2. However, it is
computationally far more expensive than other methods since for any value of k
to be tested the clustering method under analysis has to be executed B + 1 times
where B is the number of reference data sets. In addition, it seems to be no direct
indication of selecting a value for B. In the experiments of [Brodinová et al., 2017]
and [Dudoit and Fridlyand, 2002] B = 10 was arbitrary selected and this value
seems to be dominant for many third person implementations of the gap criterion;
MATLAB [MATLAB, 2019] and R [R Core Team, 2017] have B = 100 by default.

2.2.8.2 External validity methods

2.2.8.2.1 Purity

Assuming that the number of clusters equals the number of class, the purity
index estimates how much each cluster contains elements of only one class [Rendón
et al., 2011]. For each cluster the purity index is defined as,

Pck =
1

nk
max
`
{n(k)

` } (2.36)

where max
`
{n(k)

`k
} specifies the dominant class of the k-th cluster. The overall

clustering purity index is then computed as,

P =
K∑
i=1

nk
n
Pck (2.37)

The purity index is bounded between (0 1] [Aggarwal, 2014]; larger values of purity
correspond to better performance accuracy and a purity of 1 specifies an accuracy of
100% meaning that each cluster has data points from only one class.

2.2.8.2.2 F-score

F-score (or F-measurement) is a method used in the field of information retrieval.
Mathematically, it is a harmonic mean of precision and recall [Schütze et al., 2008]
using pair of data points (for a full explanation on pair of data points computation
refer to [Pfitzner et al., 2009]). In general, if a pair of data points is having the same
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class then it should be assigned in the same cluster (true positive, TP ) while if a
pair of data points is having a different class it should not be assigned to the same
cluster (true negative, TN). Alternatively, it is wrong to assign a pair of data points
with the same class to different clusters (false negative, FN) and it is also wrong to
assign a pair of data points with different class in the same cluster (false positive,
FP ) [Pfitzner et al., 2009]. Using the above logic then the clustering precision can
be defined as,

precision =
TP

TP + FP
(2.38)

and clustering recall can be specified as,

recall =
TP

TP + FN
(2.39)

Finally, the F-score is given by the formula,

F -score =
2× recall × precision
precision+ recall

(2.40)

The F-score is bounded between [0 1]. In some extreme case (refer to the github
repository of [Usbeck et al., 2015]) the above formulas can cause a division by 0. In
such cases:

� If TP , FP and FN are equal to 0 then precision, recall and F-score are equal
to 1.

� If TP is equal to 0 and FP or FN are not equal to 0 then precision, recall and
F-score are equal to 0.

2.2.8.3 Cross validation for semi-supervised clustering

Cross validation is a supervised process for avoiding overfitting, i.e. ensure that
our system is generic and performs well on classifying unseen data. In this thesis
cross validation will refer to the k-fold cross validation where our data set is split
into k folds. k− 1 folds (the training set) are used to train the system and one fold
(the testing set) is used to evaluate its performance. This process is executing until
all the folds have been used as a test set, i.e. k times. The average performance of
the system is then used as an index of performance.

In semi-supervised learning the same process can be used is order to evaluate the
performance of a semi-supervised system, e.g. how the number and type of given
constraints affect its performance. This is achieved using the partial labelled data of
our data set, and using only these data to create the folds and proceed with the cross
validation process as described before (refer to Figure 2.7). However, some previous
studies [Bilenko et al., 2004; Gehring et al., 2015] have chosen a slightly alternative
process, where the test data are also used in the training process but unlabelled
(refer to Figure 2.8). This kind of route adds a bias in the process since testing data
are used for the system training. Nevertheless, in the first study [Bilenko et al., 2004]
the authors want to access supervised component of the MPCK-Means algorithm
which is dependent only on labelled data. In the second study [Gehring et al., 2015],
manual labelling of a small percentage of data points is part of the analysis process
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Figure 2.7: Semi-supervisor cross validation technique. Cross validation for semi-supervised
learning is similar to the one used in classification. (a) The labelled data set is partitioned into
test and training sets (e.g. in the 5-fold cross validation, as shown in the figure, we have 5 folds, 1
for testing and 4 for training). Using only the training set the labels are removed from the data
and are used to generate MUST-LINK and CANNOT LINK constraints (b) The now unlabelled
training set is fed into the semi-supervised clustering system (which is composed by a clustering
initialisation method and a clustering algorithm one or both of which is semi-supervised, i.e. it uses
constrains) among with a given number of clusters K which is equal to the number of labels and
a certain number of constraints. Specifically for the constraints, a function is used to specify the
type of constraints (z: MUST-LINK and/or CANNOT-LINK) as well as their number (x: number
of MUST-LINK constraints, y: number of CANNOT-LINK constraints). After the result of the
semi-supervised system is obtained, the part that corresponds in the test set is taken and the
performance of the system is tested based only on it. The process is repeated as many times as
the number of folds we have specified and each time the testing fold is swapped with a different
training fold. The overall performance of the system is the average performance over all the folds.
For the testing procedure, each element of the test set is assigned to its nearest cluster (which now
represents a class) and the classification accuracy is obtained. The average accuracy over all the
folds represent the cross validation metric of the system.

thus the aim is not to create a generic classifier but a classifier which is good only
for the specific data set under consideration.

2.3 Data analysis in behavioural experiments

In the literature there are various ways to analyse data from behavioural ex-
periments involving navigation but in general they all fall under two categories:
performance measurements and behavioural quantification. The first category in-
volves metrics that express various aspects of performance such as, the time that
the subject spent inside an experimental procedure in order to solve a task, while
the second category tries to match such metrics to stereotypical motifs of behaviour
and then to link such motifs to different stages of learning and memory. The recent
developments in the field of machine learning has brought much automation to the
latter category and techniques for the automatic recognition of behavioural motifs. In
this section a summary is presented with the most common techniques for analysing
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Figure 2.8: An alternative semi-supervisor cross validation technique. (a) The labelled
data set is partitioned into test and training sets (e.g. in the 5-fold cross validation, as shown in
the figure, we have 5 folds, 1 for testing and 4 for training). Using the training sets the labels are
removed from the data and are used to generate MUST-LINK and CANNOT LINK constraints;
from the testing set labels are also removed but no constraints are created. (b) The now unlabelled
data set is fed into the semi-supervised clustering system (which is composed by a clustering
initialisation method and a clustering algorithm one or both of which is using semi-supervised,
i.e. it uses constrains) among with a given number of clusters K which is equal to the number of
labels and a certain number of constraints. Specifically for the constraints, a function is used to
specify the type of constraints (z: MUST-LINK and/or CANNOT-LINK) as well as their number
(x: number of MUST-LINK constraints, y: number of CANNOT-LINK constraints). After the
result of the semi-supervised system is obtained, the part that corresponds in the test set is taken
and the performance of the system is tested based only on it. The process is repeated as many
times as the number of folds we have specified and each time the testing fold is swapped with a
different training fold. The overall performance of the system is the average performance over all
the folds. For the testing procedure a number of options are available e.g. the performance can be
based of the F-score [Bilenko et al., 2004], the classification accuracy [Gehring et al., 2015] or the
purity index.

path data from the experimental procedures of the Morris Water Maze and light/dark
preference task described before. The Morris Water Maze contains the most rich
bibliography and best highlights the different data analytics approaches mentioned
before thus this short review will start from there.

2.3.1 Data analytics in the Morris Water Maze

Most of the studies using the Morris Water Maze experiment utilise several
measurements of performance in order to assess learning and memory. Many of these
measurements have also been used to ensure that the animal groups have equal skills
and abilities (e.g. swimming ability, speed, ‘understanding’ of the escape mechanism)
[Maei et al., 2009; Vorhees and Williams, 2014]. Common measurements include the
time that the animal spends inside each quadrant of the pool, the latency of finding
the platform in each trial, the directionality and the total swimming distance in each
trial [Brandeis et al., 1989; Lindner, 1997; Morris, 1984]. There are also a number
of more sophisticated measurements such as the body temperature of the animals
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throughout the experiment [Lindner and Gribkoff, 1991] or the cumulative distance
to platform, which is the distance between the animal location and the platform
location calculated a number of times with a specific sampling rate [Dalm et al., 2000;
Gallagher et al., 1993]. The reader is also redirected to the study of [Tucker et al.,
2018] which is focused on translational traumatic brain injury research but contains
an informative overview and description of various performance measurements.

These simplistic measurements and statistics have been criticised as being insuffi-
cient to capture all of the different animal behaviours that are observed during the
Morris Water Maze experiments [Dalm et al., 2000; Gehring et al., 2015]. For this
reason researchers started to study the various behaviours that the animals were
expressing inside the pool, which are known as exploration strategies. Notable are the
studies of Wolfer et al., who computed a large amount of measures for each swimming
path inside the maze in order to categorise the various strategies [Wolfer and Lipp,
2000; Wolfer et al., 1998] and also developed two softwares, TRACK-ANALYZER
[Wolfer and Lipp, 1992] and Wintrack [Wolfer et al., 2001] to make their methods
publicly available to the scientific community. Other studies include the automatic
classification procedures of Graziano et al. [Graziano et al., 2003] and Garthe et al.
[Garthe et al., 2009], both of which specified regions of interest inside the arena. The
categorisation method of Graziano et al. was based on a number of path measures
while in the work of Garthe et al. a hierarchical classification algorithm was used
and the categorisation of each swimming path was primarily based on the amount
of time that the animal spent in each region of the arena. The latter method was
also used in more recent studies ([Rogers et al., 2017; Yeshurun et al., 2017]). Illouz
et al. [Illouz, Madar, Louzon, Griffioen and Okun, 2016] proposed a classification
technique based on support vector machines (SVM) [Cortes and Vapnik, 1995]. Based
on their method, the SVM was trained on 800 labelled trials where the animal [X,
Y] coordinates of the paths had been converted to a set of 11 features. The final
classicifation was the result of a series of binary choices that were classifying the
trials from generic classes (e.g. long and short trials) to more specific ones (e.g.
Thigmotaxis and Chaining). Their method was generic enough to detect these
behavioural strategies on a variety of different Morris Water Maze setups and the
same analysis procedure was also used latter in another behavioural task the Barnes
maze [Illouz, Madar, Clague, Griffioen, Louzoun and Okun, 2016].

2.3.2 Data analytics in light/dark preference task

Common measurements in the light/dark preference task regardless of the subject
type (rodent or zebrafish) include the total or percentage of time that the animal
remained in the light or dark compartment of the arena [Aulich, 1976; Hascoët
et al., 2001; Magno et al., 2015; Rodgers and Shepherd, 1993], the latency to switch
between the light and the dark compartments for the first time and the number of
entrances/exits to and from the light and dark compartments (number of transitions)
[Blumstein and Crawley, 1983; Crawley and Goodwin, 1980; Magno et al., 2015].
Other measurements include total path length of the animals, turning angles and
immobility and thigmotactic (amount of time spent near walls) duration [Araujo
et al., 2012; Blaser and Penalosa, 2011].

Compared with the Morris Water Maze data analytics methods for the light/dark
preference task are limited and there is no direct classification of animal behaviours.
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Thigmotaxis, which is a behaviour where the animal moves around the walls of the
arena, and exploration as well as light or dark avoidance are measured based on the
aforementioned measurements.
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Chapter 3

New clustering techniques and
benchmarking

This chapter consists of benchmarks aiming at detecting optimal K-Means clustering
initialisation methods and comparing a novel semi-supervised algorithm with other
existing ones in terms of classification accuracy and feature selection capabilities.
The goal is to identify and engineer methods that can be used to analyse data from
behavioural neuroscience experiments consisted of biological features with unknown
informative power. In more detail:

� Stochastic and deterministic initialisation methods are compared under different
unsupervised variations of K-Means clustering in order to access their goodness
on clustering and their robustness towards the different algorithms (for relevant
material refer to [Vouros et al., 2019]).

� A modification of Sparse K-Means clustering is proposed in order to include
pairwise constraints. The new algorithm, called PCSK-Means, is compared
against other unsupervised and semi-supervised K-Means variations in the
following aspects:

– classification accuracy,

– feature selection,

– robustness of the above under different conditions such as different initial-
isation methods.

(for relevant material refer to [Vouros and Vasilaki, 2020]).

3.1 Comparison between stochastic and determin-

istic centroid initialisation for unsupervised

K-Means variations

This section will cover the published material of [Vouros et al., 2019] which aims
to benchmark existing initialisation methods for K-Means clustering algorithms as
well as common K-Means variations. Compared with the published material the
benchmark of this section contains an additional K-Means variation which is the
Weiszfeld algorithm.
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3.1.1 Introduction

The most well-known algorithm in the field of clustering analysis is the K-Means
algorithm. Its simplicity, versatility and efficiency makes it popular in many different
research fields [Jain, 2010; Pena et al., 1999]. Despite its reputation and success in
many different studies, it has a series of disadvantages such that it can detect only
spherical and well-separated clusters, it is sensitive to outliers, highly dependent
on the features (dimensions) of the data set and it only converges to local minima
[Jain, 2010]. Over the years a number of K-Means variations (Lloyd’s K-Means
[Slonim et al., 2013], Hartigan-Wong’s K-Means [Hartigan, 1975]), K-Means inspired
algorithms (K-Medians [Aggarwal, 2014]), and K-Means initialisation methods [Celebi
et al., 2013] have been proposed in order to overcome some of these issues. Such
methods have also enhanced KMeans with additional properties such as feature
selection mechanisms [Kondo et al., 2016; Witten and Tibshirani, 2010] and outliers
robustification [Al Hasan et al., 2009; Brodinová et al., 2017].

In the literature there are various studies regarding the importance of the initial
selection of cluster centroids for the performance of the K-Means algorithm [Jain,
2010] and extensive testing on various initialisation techniques [Celebi et al., 2013;
Fränti and Sieranoja, 2019], but a detailed comparison on the effects on these
techniques on common K-Means variations is not available. It is hypothesized that
sophisticated initialisation methods alleviate the need for complex clustering and, if
deterministic, they could lead to satisfactory solutions within a single execution of
the clustering algorithm. Consequently, they would alleviate the need for executing
a stochastic method multiple times and picking the best clustering based on some
criterion.

In order to investigate this hypothesis a comparison of different clustering ini-
tialisation methods, namely Random [MacQueen et al., 1967], K-Means++ [Arthur
and Vassilvitskii, 2007], Maximin [Gonzalez, 1985] ROBust INitialisation (ROBIN)
[Al Hasan et al., 2009], Kaufman [Kaufman and Rousseeuw, 2009] and Density
K-Means++ (DK-Means++) [Nidheesh et al., 2017], and their effects on common
K-Means variations, Lloyd’s K-Means [Jain, 2010], Hartigan-Wong’s K-Means [Harti-
gan, 1975; Hartigan and Wong, 1979] and K-Medians [Aggarwal, 2014] is performed.
It is shown that more sophisticated initialisation methods reduce on average the
performance difference among the K-Means implementations and that the determin-
istic DK-Means++ method can achieve better average performance than stochastic
methods. Nevertheless there is a trade-off, simplistic stochastic methods can achieve
better clustering performance if executed multiple times due to the potential of
discovering better local minima. For very large data sets where execution time is a
factor, a single run using a deterministic initialisation method can be competitive
compared to multiple runs using stochastic initialisation methods.

A similar study comparing many different intialisation methods has been per-
formed by [Celebi et al., 2013] but it is focused on algorithms of linear complexity
without considering various K-Means implementations. Recently, another study
[Fränti and Sieranoja, 2019] was performed on stochastic initialization heuristics for
K-Means and on how much the algorithm can be improved by repetition. They based
their conclusions on a clustering benchmark [Fränti and Sieranoja, 2018, 2019] which
contains standalone data sets with different properties and they showed that K-Means
performance is in general poor on unbalanced data sets and that the algorithm is not
affected by high dimensionality while more iterations can improve its performance
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on overlapping clusters. A more extensive benchmarking is performed in the current
study that takes into consideration data set generation models as well as standalone
data sets. The models gave us the ability to perform hypothesis testing in order to
strengthen our conclusions and to account for variability.

The code of the clustering methods, data set model generators, scripts and a
standalone application to reproduce this research are available in the GitHub repos-
itory https://github.com/avouros/Code-KMeans-benchmark (under the branch
PhD-additions).

3.1.2 Methods

This work will make use of the algorithms described in chapter 2. The clustering
algorithms are as follows: Lloyd’s K-Means (see 2.2.2.2), Hartigan-Wong’s K-Means
(see 2.2.2.3), K-Medians (see 2.2.5) and Weiszfeld (see 2.2.6.1). The clustering
initialisation methods are as follows: Random (MacQueen, see 2.2.7.1), K-Means++
(see 2.2.7.2), Maximin (see 2.2.7.3), Kaufman (see 2.2.7.4), ROBust INitialisation
(ROBIN(S) and ROBIN(D), see 2.2.7.5) and Density K-Means++ (DK-Means++)
(see 2.2.7.6). For the clustering evaluation the purity and silhouette indexes are used
(see 2.2.8.2.1 and 2.2.8.1.2).

3.1.2.1 Benchmark

In the experiments, the synthetic data set models from the studies of Tibshirani et
al. (gap statistic) [Tibshirani et al., 2001], Yan and Ye (weighted gap statistic) [Yan
and Ye, 2007] and Brodinova et al. [Brodinová et al., 2017] are used. A summary of
the models can be found in Table 3.1 grouped by specific properties of the models.
For more information refer to the relevant studies and also to Figure 3.1 for a sample
visualization of each model. Model 1 from the gap statistic study [Tibshirani et al.,
2001] is excluded since it contains only one cluster. The Brodinova et al. [Brodinová
et al., 2017] generator was used to generate high-dimensional data sets consisting
of informative and non-informative features. No noise injection (attributes with
noise contamination) was considered in the current study. To avoid situations of
overlapping clusters the minimum Euclidean distance between any two points in
different clusters was set to 3 and data sets violating this rule were re-generated. A
summary of the models can be found in Table 3.2. Next, novel synthetic data sets
models consisted of clusters with mixed properties are considered. These are referred
to as mixed models (refer to Figure 3.1 for a sample visualization of these models):

• model 1 generates 3-dimensional clusters, 1 spherical and 2 elongated. The
spherical cluster is an 80 points Gaussian cluster at the origin with standard
deviation of 0.1. The two elongated clusters have 100 points each and are
generated as follows: x1 = x2 = x3 = t with t taking 100 equally spaced values
from -1 to 1. Gaussian noise with standard deviation of 0.3 was then added to
each dimension. The second dimension of the first elongated cluster was shifted
by 2 from the centre of the spherical cluster. Similarly the second dimension
of the second elongated cluster was shifted by -2 and the first dimension was
rotated by 1800.

• model 2 generates 3-dimensional non-Gaussian and normal clusters. It gener-
ates: (a) a cluster from an exponential distribution with rate of 1 and truncated
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at [−1 1] containing 80 points, (b) a cluster from an exponential distribution
with rate of 1 and and truncated at [2 3] with 100 points, (c) a Gaussian cluster
of 80 points with mean [0.5, 2.5, 2.5] and standard deviation of 0.1 in every
dimension and (d) a Gaussian cluster of 100 points with mean [2.5, 0.5, 0.5]
and standard deviation of 0.2 in every dimension.

• model 3 generates 3-dimensional Gaussian clusters with different standard
deviations. The first cluster has 80 points with mean at the origin and standard
deviation of 0.1 on each dimension. The second cluster has of 100 points with
mean [2, 0, 0] and standard deviation of 0.2 on each dimension. The third
cluster has of 120 points with mean [0, 2, 0] and standard deviation of 0.3 on
each dimension. The forth cluster consists of 140 points with mean [0, 0, 2] and
standard deviation of 0.4 on each dimension.

• model 4 generates 3-dimensional mixed Gaussian clusters. The first cluster
consists of 80 points with mean [0, 0, 0] and standard deviations [0.1, 0.1, 0.2].
The second cluster consists of 100 points with mean [2, 0, 0] and standard
deviations [0.1, 0.2, 0.3]. The third cluster consists of 120 points with mean
[0, 2, 0] and standard deviations [0.2, 0.4, 0.6]. The forth cluster consists of 140
points with mean [0, 0, 2] and standard deviations [1.0, 0.1, 0.1].

Other data sets are the S-sets [Fränti and Virmajoki, 2006] and the A-sets
[Kärkkäinen and Fränti, 2002] obtained from the “clustering basic benchmark” which
were used in the studies of [Fränti and Sieranoja, 2018, 2019]. The aforementioned
studies were dedicated to the K-Means properties, advantages and disadvantages.
Both models contain 2-dimensional data; S-sets contains 4 data sets with 5000 data
points distributed among 15 Gaussian clusters with different degree of clustering
overlap [Fränti and Virmajoki, 2006] and A-sets contains 3 data sets with 20, 35 and
50 clusters and 150 data points per cluster [Kärkkäinen and Fränti, 2002]. For more
information about these data sets refer to the relevant studies. Finally, a selection
of real-world data sets from the UCI repository [Asuncion and Newman, 2007] is
considered. These data sets are the following: Iris, Ionosphere, Wine, Breast Cancer,
Glass and Yeast. More information about these data sets are shown on Table 3.3.

3.1.3 Results

This study tests the performance of the K-Means variations, Lloyd’s [Jain, 2010]
Hartigan-Wong’s [Hartigan, 1975; Hartigan and Wong, 1979], K-Medians [Aggarwal,
2014] and Weiszfeld [Whelan et al., 2015] initialised using the eight different clustering
initialisation methods named: Random [MacQueen et al., 1967], K-Means++ [Arthur
and Vassilvitskii, 2007], Maximin(S) [Gonzalez, 1985], ROBIN(S) [Brodinová et al.,
2017], Kaufman [Kaufman and Rousseeuw, 2009], ROBIN(D) [Al Hasan et al., 2009],
DK-Means++ [Nidheesh et al., 2017] and Maximin(D) [Katsavounidis et al., 1994].
For the ROBIN variations the mp parameter specifying the number of neighbor
data points was set to 10 as in the original study [Al Hasan et al., 2009]. For the
Hartigan-Wong’s algorithm NAG’s implementation was used [Numerical Algorithms
Group (NAG), 2019].

A “sophistication” scale is considered for the initialisation methods based not
only on their execution time but also on the complexity of their underlying operators.
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Table 3.1: Gap [Tibshirani et al., 2001] and weighted gap statistic [Yan and Ye, 2007]
data sets models. Points: the number of data points per cluster, or indicates that a random
number was selected among the specified numbers for each cluster, to indicates that a random
number was selected between the specified numbers for each cluster; D: number of features or
attributes of the data set (dimensions); C: number of generated clusters. Gaussian models: clusters
of low dimensionality generated from Gaussian distributions. 10-D Gaussian models: clusters of
higher dimensionality generated from Gaussian distributions. Elongated models: clusters generated
by adding Gaussian noise across lines. Unbalanced model: data sets containing Gaussian clusters of
very different sizes, exponential: non-Gaussain clusters generated from the exponential distribution.
Visualization (when possible) of a data set from each model is available in Figure 3.1.

Gaussian
models

Points D C
Unbalanced

model
Points D C

gap model
(gap 2)

25,25,50 2 3
weighted gap

model 2
(wgap 2)

100,15 2 2

gap model 3
(gap 3)

25 or 50 3 4

weighted gap
model 1
(wgap 1)

25 to 50 2 6
Exponential

model
Points D C

weighted gap
model 6
(wgap 6)

50 each 2 6
weighted gap

model 3
(wgap 3)

50 each 2 4

10-D Gaussian
models

Points D C
Elongated

models
Points D C

gap model 4
(gap 4)

25 or 50 10 2
gap model 5

(gap 5)
100 each 3 2

weighted gap
model 5
(wgap 5)

25 to 50 10 2
weighted gap

model 4
(wgap 4)

100 each 2 2
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mixed model 1 mixed model 2 mixed model 3 mixed model 4

gap 2 gap 3

wgap 1 wgap 6

gap 4

wgap 5

wgap 2

wgap 3

D

A B C

Figure 3.1: Data set models visualization. Examples of data used in this study. Gap (gap)
and weighted gap (wgap) models are separated into three categories: (A) 4 Gaussian models, (B)
2 elongated models and (C) one highly unbalanced model (wgap2) and one non-Gaussian model
(wgap3) in which the clusters are generated from the exponential distribution. (D) Mixed models:
these are models proposed in this study that contain clusters with mixed properties such as different
sizes (unbalanced) and/or generated from Gaussian and non-Gaussian distributions.

Table 3.2: Brodinova model generator [Brodinová et al., 2017]. The minimum allowed
Euclidean distance between two data points in different clusters was set to 3 and no noise injection
was considered. Name: name of the model; Points: the total number of data points in the data
set; D: number of features or attributes of the data set, Informative (+) indicates attributes that
are required to describe the data set while Non-informative (-) indicates variables that should be
ignored; C: number of generated clusters. These models are creating high-dimensional Gaussian
clusters of different shapes using two different distributions, one for the informative and one for
the uninformative variables. Left table: Each cluster contains 40 data points. The parameters
of these models are selected to test the performance of the clustering algorithm in data sets
with different degrees of informative and/or uninformative features Right table: The first four
models create higher-dimensional balanced clusters (clusters of equal sizes) and the last two higher-
dimensional unbalanced clusters each with number of points randomly selected between 50 to 100.
The parameters of these models are selected to test the performance of the clustering algorithm
in balanced and unbalanced data sets of higher dimensionality with increasing number of clusters.
The input space was selected to be sparse, i.e. a few hundred points in 1000 or 1500 dimensions to
avoid the slow computation of the Kaufman algorithm.

Name Points
D

C
+ -

brod 1 120 20 0 3
brod 2 400 20 0 10
brod 3 120 15 5 3
brod 4 400 15 5 10
brod 5 120 10 10 3
brod 6 400 10 10 10

Name Points
D

C
+ -

brod 7 120 1000 0 3
brod 8 400 1000 0 10
brod 9 400 1500 0 10
brod 10 1250 1500 0 50
brod 11 50 to 100 1000 0 3
brod 12 50 to 100 1000 0 10
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Table 3.3: Real data sets from the UCI repository [Asuncion and Newman, 2007].
Points: the number of data points per cluster; D: number of features or attributes of the data set
(dimensions); C: number of generated clusters.

Name Points D C
Iris 50,50,50 4 3
Ionosphere 225,126 34 2
Wine 59,71,48 13 3
Breast Cancer 444,239 9 2

Glass
70,76,17,
19,9,29

9 6

Yeast
463,5,35,44,
51,163,244,
429,20,30

8 10

For example DK-Means++ and ROBIN would be considered more sophisticated
than Kaufman since they incorporate more advanced statistics while Kaufman uses
only distances and still has a complexity of O(N2). Our scale is as follows: Random
< K-Means++ < Maximin < Kaufman < ROBIN < DK-Means++.

In the experiments the synthetic data sets models from the studies of gap statistic
[Tibshirani et al., 2001] and weighted gap statistic [Yan and Ye, 2007] (refer to Table
3.1, 10 sets in total), Brodinova [Brodinová et al., 2017] (refer to Table 3.2, 12 sets
in total) and other four custom data sets models (refer to Methods and Figure 3.1, 4
sets in total) are used. From each model 40 data sets are generated and for each
data set the stochastic methods are executed 50 times. The “clustering data sets”
(S-sets [Fränti and Virmajoki, 2006] and A-sets [Kärkkäinen and Fränti, 2002]) from
the studies of [Fränti and Sieranoja, 2018, 2019] are also used as well as real-world
data sets from the UCI repository [Asuncion and Newman, 2007]: Iris, Ionosphere,
Wine, Breast Cancer, Glass and Yeast (see Table 3.3). For each of these data sets
the same setup of executing the stochastic methods 50 times is considered.

All the hypothesis testing on the data set models is based on the Paired Samples
Wilcoxon Test, a non-parametric alternative to paired t-test, For the outcome of
the test the following symbols indicate the corresponding level of significance, ∗ for
p-value < 0.05; ∗∗ for p-value < 0.01; ∗ ∗ ∗ for p-value < 0.001; ∗ ∗ ∗∗ for p-value
< 0.0001. For the clustering performance measurements there was evaluation on
the monotonic relationship of Silhouette and Purity via a large sample of clustering
results on the multiple executions of the methods across all the data sets (20000 cases).
Spearman’s rank correlation coefficient indicated that Purity and Silhouette have
a strong monotonic relation (Spearman’s Rho 0.97). As a side note, the distortion
score, which is essentially the outcome of the objective function of the algorithm (for
K-Means clustering this is the WCSS) and has been used before in other studies
[Al Hasan et al., 2009; Celebi et al., 2013], had a weaker monotonic relationship with
Purity (Spearman’s Rho 0.65).
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3.1.3.1 Comparison on the average performance among stochastic and
among deterministic methods

First this study assesses the average performance of stochastic methods as well as
the performance of deterministic methods. For the former the average performance
of stochastic methods is assessed based on 50 different runs across 40 different data
sets for each one of our 26 models (10 gap and weighted gap, 12 Brodinova, 4 mixed
models). Deterministic methods are executed once on the 40 data sets.

Based on Figure 3.2 the average performance of K-Means variations increases
by using more sophisticated initialisation methods and ROBIN(S) initialisation
provides the best average performance followed by Maximin(S) and K-Means++
while Random initialisation results in the poorest performance. For the deterministic
methods, shown on Figure 3.3, it is observed again that the average performance
of K-Means variations increases by using more sophisticated initialisation methods.
DK-Means++ achieved the best average performance followed by ROBIN(D) and
then by Kaufman and Maximin(D). Finally, it is assessed if more sophisticated
initialization methods alleviate the need for complex clustering. For this reason
comparisons among the K-Means variations initialised with either Random and
K-Means++ or Kaufman and DK-Means++ methods are performed. Maximin and
ROBIN have both stochastic and deterministic variations of equal sophistication
thus they were excluded them. As shown in Table 4, deterministic methods 3.4
deterministic methods that are more sophisticated (as per our definition) reduce
performance differences among the different variants of the K-Means algorithms.

3.1.3.2 Comparison of the average performance between stochastic and
deterministic methods

Following on from the previous conclusions, it is assessed if overall deterministic
methods provide on average better performance than stochastic methods. For
this reason the following comparisons are performed: stochastic and deterministic
variations of Maximin and ROBIN as well as the best stochastic performer (ROBIN(S)
see Figure 3.2) and the best deterministic performer (DK-Means++ see Figure 3.3).
Based on the results in Figure 3.4: (a) Maximin(D) is on average better than
Maximin(S); (b) ROBIN(D) and ROBIN(S) are on average equivalent; (c) DK-
Means++ is better than ROBIN(S).

3.1.3.3 Comparison of the maximum performance across multiple runs
of stochastic and deterministic methods

Next, there is an additional comparison between the stochastic and the deter-
ministic methods but based on the maximum performance that the former can
achieve on multiple repetitions. Each stochastic method was run 50 times and the
best outcome was selected based on the silhouette index. Its corresponding value
is reported according to the purity index. It is expected that due to the many
repetitions, stochastic methods can find different local minima and potentially result
in a better performance at the cost of multiple repetitions.

Firstly, comparison is repeated among the different stochastic methods but based
on the maximum performance that they can achieve. Figure 3.5 shows the relevant
results and, opposite to our observations on the average performance, stochastic
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Significantly better
average performanceInitialization

method
Total number
of instances HW Ll KMed Weis

Random vs K-Means++ 26 0 vs 23 0 vs 23 0 vs 24 0 vs 23
Random vs ROBIN(S) 26 1 vs 22 3 vs 22 2 vs 23 2 vs 22
Random vs Maximin(S) 26 6 vs 15 6 vs 16 6 vs 16 0 vs 19
K-Means++ vs ROBIN(S) 26 1 vs 21 3 vs 21 2 vs 22 2 vs 22
K-Means++ vs Maximin(S) 26 8 vs 13 9 vs 14 7 vs 13 6 vs 15
ROBIN(S) vs Maximin(S) 26 17 vs 1 18 vs 3 19 vs 1 17 vs 2

Figure 3.2: The average performance of K-Means variations increases by using more
sophisticated stochastic initialisation methods. Each plot shows the performance of the
Hartigan-Wong’s K-Means clustering solution using the Silhouette index (y-axis) on different data
sets models (x-axis) and initialized with different stochastic methods. To calculate performance, the
average Purity index across the 50 initial conditions and 40 data sets for each model (gap, weighted
gap, Brodinova and mixed) is considered. The errorbars are showing the (average) standard
deviation across the 40 data sets. Solid lines on any two bars underline the level of significant
difference between the corresponding methods (cases of no significant differences are not showing).
The accompanied Table below the figure shows a summary of the comparisons through all the
K-Means variations (Hartigan-Wong’s K-Means (HW), Lloyd’s K-Means (Ll), K-Medians (KMed)
and Weiszfeld (Weis)) where there is a significant performance difference between the compared
methods. Based on the results ROBIN(S) achieves the best performance followed by Maximin(S),
K-Means++ and Random.
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Significantly better
average performanceInitialization

method
Total number
of instances HW Ll KMed Weis

Kaufman vs DK-Means++ 26 3 vs 10 3 vs 9 4 vs 8 4 vs 8
Kaufman vs ROBIN(D) 26 4 vs 8 6 vs 9 4 vs 6 5 vs 8
Kaufman vs Maximin(D) 26 8 vs 5 11 vs 5 9 vs 5 9 vs 6
DK-Means++ vs ROBIN(D) 26 6 vs 0 7 vs 0 6 vs 1 3 vs 0
DK-Means++ vs Maximin(D) 26 9 vs 0 11 vs 0 10 vs 1 7 vs 0
ROBIN(D) vs Maximin(D) 26 9 vs 1 10 vs 1 9 vs 1 8 vs 1

Figure 3.3: The average performance of K-Means algorithm increases by using the
more sophisticated deterministic initialisation methods. Each plot shows the performance
of the Hartigan-Wong’s K-Means clustering solution using the Silhouette index (y-axis) on different
data sets models (x-axis) and initialized with different stochastic methods. To calculate performance,
the average Purity index across the 40 data sets for each model (gap, weighted gap, Brodinova and
mixed) is considered. Solid lines on any two bars underline the level of significant difference between
the corresponding methods (cases of no significant differences are not showing). The accompanied
Table below the figure shows a summary of the comparisons through all the K-Means variations
(Hartigan-Wong’s K-Means (HW), Lloyd’s K-Means (Ll), K-Medians (KMed) and Weiszfeld (Weis))
where there is a significant performance difference between the compared methods. Based on
the results DK-Means++ achieves the best performance followed by ROBIN(D), Kaufman and
Maximin(D).
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Table 3.4: More sophisticated initialisation methods alleviates the need for complex
clustering. Each row compares two K-Means variations (Hartigan-Wong’s K-Means: HW, Lloyd’s
K-Means: Ll, K-Medians: KMed and Weiszfeld: Weis) initialised with the same method on 26
occasions (10 gap and weighted gap, 12 Brodinova and 4 mixed models). To calculate performance,
the average Purity index across the 50 initial conditions and 40 data sets for each model is considered
and the comparison is based on the times that there was significant difference between the two
algorithms. The ROBIN and the Maximin variations were excluded from this analysis since their
stochastic and deterministic versions have equivalent sophistication. Based on the results using
a deterministic method reduces the observed average performance differences among clustering
algorithms.

Significantly better
average performanceInitialization

method
Total number
of instances HW vs Ll HW vs KMed Ll vs KMed

Random 26 13 vs 0 18 vs 4 6 vs 4
K-Means++ 26 10 vs 0 13 vs 3 2 vs 5
Total 52 23 vs 0 39 vs 12 8 vs 9
Kaufman 26 1 vs 1 2 vs 6 1 vs 6
DK-Means++ 26 1 vs 0 2 vs 4 1 vs 5
Total 52 2 vs 1 4 vs 10 2 vs 11

Significantly better
average performanceInitialization

method
Total number
of instances HW vs Weis Ll vs Weis KMed vs Weis

Random 26 16 vs 1 8 vs 4 14 vs 4
K-Means++ 26 14 vs 2 6 vs 2 4 vs 2
Total 52 30 vs 3 14 vs 6 18 vs 6
Kaufman 26 1 vs 5 2 vs 4 2 vs 1
DK-Means++ 26 2 vs 5 1 vs 4 1 vs 1
Total 52 3 vs 10 3 vs 8 3 vs 2
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gaussian20-dimensional 1000/1500-dimensional elongated mixed

20-dimensional 1000/1500-dimensional

Initialization
method

Total number
of instances

Significantly better
average performance

HW Ll KMed Weis
Maximin(S) vs Maximin(D) 26 1 vs 12 3 vs 12 0 vs 13 1 vs 12
ROBIN(S) vs ROBIN(D) 26 1 vs 1 1 vs 2 1 vs 0 1 vs 0
ROBIN(S) vs DK-Means++ 26 0 vs 5 0 vs 7 1 vs 5 0 vs 3

Figure 3.4: Deterministic methods for K-Means clustering provide, on average, equally
good or better performance than stochastic methods. Each plot shows the performance of the
Hartigan-Wong’s K-Means clustering solution using the Silhouette index (y-axis) on different data
sets models (x-axis) and initialized with different stochastic methods. To calculate performance, the
average Purity index across the 50 initial conditions and 40 data sets for each model (gap, weighted
gap and Brodinova) is considered. The errorbars (on the stochastic methods only) are showing the
average standard deviation across the 40 data sets. Solid lines on any two bars underline the level of
significant difference between the corresponding methods (cases of no significant differences are not
showing). The accompanied Table below the figure shows a summary of the comparisons through
all the K-Means variations (Hartigan-Wong’s K-Means (HW), Lloyd’s K-Means (Ll), K-Medians
(KMed) and Weiszfeld (Weis)) where there is a significant performance difference between the
compared methods. Based on the results (a) Maximin(D) is on average better than Maximin(S);
(b) ROBIN(D) and ROBIN(S) are on average equivalent; (c) the best deterministic method
DK-Means++ (see Figure 3.3) is better than the best stochastic method ROBIN(S) (see Figure
3.2).
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methods have higher chances of obtaining a better clustering result with multiple
execution. K-Means++ is the best method followed by Random while ROBIN(S)
and Maximin(S) have almost similar performance.

Afterwards, the maximum performance of stochastic methods with the perfor-
mance of deterministic methods is compared similarly to our previous experiment
(refer to Figure 3.4). The comparison includes the stochastic and deterministic varia-
tions of Maximin and ROBIN as well as the best stochastic performer of the current
experiment (K-Means++) and the best deterministic performer (DK-Means++ see
Figure 3.3). Based on the results in Figure 3.6, stochastic variations of Maximin and
ROBIN achieve overall better performance than their deterministic counterparts and
K-Means++ is better than DK-Means++.

K-Means variations are also compared using different intialisation methods. Based
on the result on Table 3.5 K-Medians achieves the best performance followed by
Hartigan-Wong’s; Lloyd’s was the worst performer. Nevertheless, these systematic
differences correspond to only 1.5% purity difference.

3.1.3.4 Standalone synthetic and real-world data sets

Standalone data sets were regarded as cases where supervised information is
unknown and the assessment of the performance of the algorithms on them was based
on the silhouette index. Detailed results for each data set (minimum, maximum,
average performance and variance for each K-Means variation) are illustrated in
Appendix A.8. It should be noted that DK-Means++ was always able to achieve the
best performance of the unsupervised methods while ROBIN(D) failed to achieve
the best performance in the cases of A-sets 1, S-Sets 3 and S-Sets 4 when Lloyds and
K-Medians were considered; Kaufman and Maximin(D) where the worst performers.
From the stochastic methods ROBIN(S) always managed to achieve the maximum
performance apart from one case of S-Sets 3 when the Harigan-Wong K-Means was
considered; Random was the worst performer. For the real-world data sets most
algorithms behaved the same but Maximin(S) outperformed everyone else in the
cases of Yeast (all K-Means variations) and Ionosphere (Lloyd’s K-Means only). In
the case of Glass (all K-Means variations) K-Means++ and Maximin(S) had the best
performances. However, with the real data sets it is rare for the number of clusters
to equal the number of classes [Gehring et al., 2015]. Thus these data sets might
not be the best examples for clustering benchmarking. Also the relatively better
performance of Maximin(S) only appears in these few cases where the Silhouette index
indicates poor clustering results in general. In such cases comparative conclusions
may not be meaningful as these specific results could a product of chance.

3.1.3.5 Average number of runs for which stochastic methods reach or
surpass deterministic methods

The aforementioned experiments consider 50 executions of the clustering algorithm
using stochastic methods. On average deterministic methods provide better results
than stochastic methods but overall stochastic methods may lead to a better clustering
solution. In this analysis it will be quantified how often this happens based on the
following estimation: a division of the number of total repetitions (50) by the number
of cases where the stochastic method performed better than the deterministic. Table
3.6 summarises the results of this analysis on selected data sets based on their

Chapter 3 Avgoustinos Vouros 53



3.1. Comparison between stochastic and deterministic centroid initialisation for
unsupervised K-Means variations

gaussian 10-dimensional elongated unbalanced / exponential

mixed properties

20-dimensional 1000/1500-dimensional

bro
d 1

bro
d 2

bro
d 3

bro
d 4

bro
d 5

bro
d 6

bro
d 7

bro
d 8

bro
d 9

bro
d 1

0

bro
d 1

1

bro
d 1

2
0

0.5

1 1 1 1 1 0
.9

8
3

0
.9

8
1

0
.9

7
3

0
.9

6
2

***
***
**
**

1 1 1 1 0
.9

7
7

0
.9

7
5

0
.9

4
8

0
.9

5
1

***
***
***
***

0
.9

9
9

0
.9

9
9

0
.9

9
9

0
.9

9
9

0
.9

5
5

0
.9

5
4

0
.9

5
2

0
.9

5
4

*

*

1 1 1 1 0
.9

6
6

0
.9

9
2

0
.9

5
2

0
.8

1
5

**

****
***
****
****

0
.9

4
0

.9
9

0
.9

3
0

.8
0

3

****

****
****
****
****

0
.6

1
4

0
.6

2
5

0
.6

5
5

0
.5

4
2

****
****
****
****
****

1 1 1 1

0
.9

6
4

0
.9

9
6

0
.8

8
4

0
.8

2
6

**
****
****
****
****
***

gap 2

gap 3

w
gap 1

w
gap 6

gap 4

w
gap 5

gap 5

w
gap 4

w
gap 2

w
gap 3

0

0.5

1 0
.9

9
7

0
.9

9
7

0
.9

9
7

0
.9

9
7

0
.9

8
7

0
.9

9
9

0
.9

9
9

0
.9

9
9

0
.9

8
8

0
.9

8
8

0
.9

8
8

0
.9

8
8

0
.8

5
8

0
.9

6
9

0
.9

9
4

0
.9

9
4

*
****
****

***
***

0
.9

8
7

0
.9

8
7

0
.9

9
9

0
.9

9
9

0
.9

9
9

0
.9

9
9

0
.9

9
9

0
.9

9
9

1 1 1 1 0
.9

2
6

0
.9

2
6

0
.9

1
7

0
.9

2
6

***

***

***

0
.9

9
1

0
.9

9
1

0
.9

9
0

.9
9

1

1 1 1 1

P
u

ri
ty

 f
o

r 
b

e
st

 S
il

h
o

u
e

tt
e

(g
a

p
, w

e
ig

h
te

d
 g

a
p

 m
o

d
e

ls
)

m
ix

ed 1

m
ix

ed 2

m
ix

ed 3

m
ix

ed 4
0

0.5

1 0
.8

9
6

0
.8

9
6

0
.8

9
7

0
.8

9
6

1 1 1 1 0
.9

9
8

0
.9

9
8

0
.9

9
8

0
.9

9
8

0
.9

8
6

0
.9

8
6

0
.8

8

0
.9

8
6

****

****

****

Random

K-Means++

ROBIN(S)

Maximin(S)

Legend

Standard

deviation

Significance level*

P
u

ri
ty

 f
o

r 
b

e
st

 S
il

h
o

u
e

tt
e

(B
ro

d
in

o
v

a
 m

o
d

e
ls

)

P
u

ri
ty

 f
o

r 
b

e
st

 S
il

h
o

u
e

tt
e

(m
ix

e
d

 m
o

d
e

ls
)

Initialization
method

Total number
of instances

Significantly better
maximum performance

Purity for best Silhouette
HW Ll KMed Weis

Random vs K-Means++ 26 0 vs 4 0 vs 4 1 vs 4 0 vs 5
Random vs ROBIN(S) 26 6 vs 3 8 vs 2 6 vs 2 6 vs 2
Random vs Maximin(S) 26 6 vs 1 9 vs 1 9 vs 1 6 vs 1
K-Means++ vs ROBIN(S) 26 7 vs 2 9 vs 2 8 vs 2 9 vs 1
K-Means++ vs Maximin(S) 26 6 vs 1 9 vs 1 9 vs 1 8 vs 0
ROBIN(S) vs Maximin(S) 26 4 vs 3 4 vs 4 4 vs 2 5 vs 5

Figure 3.5: The maximum performance of K-Means variations increases by using
stochastic initialisation methods. Each plot shows the performance of the Hartigan-Wong’s K-
Means clustering solution using the purity corresponding to the best silhouette score achieved within
50 different executions (y-axis) on different data sets models (x-axis) and initialized with different
stochastic methods. Purity for best silhouette score was averaged over the 40 data sets for each
model (gap, weighted gap and Brodinova) The errorbars are showing the standard deviation across
the 40 data sets. Solid lines on any two bars underline the level of significant difference between
the corresponding methods (cases of no significant differences are not showing). The accompanied
Table below the figure shows a summary of the comparisons through all the K-Means variations
(Hartigan-Wong’s K-Means (HW), Lloyd’s K-Means (Ll), K-Medians (KMed) and Weiszfeld (Weis))
where there is a significant performance difference between the compared methods. Based on the
results K-Means++ achieves the best solution followed by Random, Maximin(S) and ROBIN(S).
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Purity for best Silhouette
HW Ll KMed Weis

Maximin(S) vs Maximin(D) 26 9 vs 1 11 vs 1 10 vs 1 12 vs 0
ROBIN(S) vs ROBIN(D) 26 6 vs 0 6 vs 0 6 vs 0 5 vs 0
K-Means++ vs DK-Means++ 26 6 vs 2 6 vs 2 7 vs 2 9 vs 0

Figure 3.6: Stochastic methods can reach better performance with multiple runs than
determinsitc methods. Each plot shows the performance of the Hartigan-Wong’s K-Means
clustering solution using the purity corresponding to the best silhouette score achieved within 50
different executions (y-axis) on different data sets models (x-axis) and initialized with different
stochastic methods. Purity for best silhouette score was averaged over the 40 data sets for each
model (gap, weighted gap and Brodinova). The errorbars are showing the standard deviation across
the 40 data sets. Solid lines on any two bars underline the level of significant difference between
the corresponding methods (only cases with significant difference are showed). The accompanied
Table below the figure shows a summary of the comparisons through all the K-Means variations
(Hartigan-Wong’s K-Means (HW), Lloyd’s K-Means (Ll), K-Medians (KMed) and Weiszfeld (Weis))
where there is a significant performance difference between the compared methods. Based on the
results (a) and (b) the stochastic versions of Maximin and ROBIN can surpass the performance
of their deterministic versions when executed multiple times; (c) K-Means++ the best stochastic
method based on the maximum performance it can achieve over multiple runs (see Figure 3.5)
surpass the performance of DK-Means++, the best deterministc method (see Figure 3.3).
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Table 3.5: Comparison on K-Means variations using different initialisation methods
Each row compares two K-Means variations (Hartigan-Wong’s K-Means: HW, Lloyd’s K-Means: Ll,
K-Medians: KMed and Weiszfeld: Weis) initialised with the same method on 26 occasions (10 gap
and weighted gap, 12 Brodinova and 4 mixed models). The comparison is based on the number of
times that there was significant difference between the two methods on their maximum performance
based on the purity for the best silhouette score. This score was computed by obtaining over 50
executions the best execution of each stochastic method and matching it to its respective purity
and then averaging over the 40 data sets of each model (for deterministic methods this is the
average purity over the 40 data sets of each model). Based on the results K-Medians appears to
be the best performer surpassing the performances of Hartigan-Wong’s and Lloyd’s K-Means and
has almost equivalent performance with Weiszfeld’s algorithm; Lloyd’s K-Means appears to be
the worst performer and between Hartigan-Wong’s K-Means and Weiszfeld’s algorithm stochastic
methods seems to favor the former and deterministic methods the latter. However, it should be
highlighted that these differences among the alogirthms add up to 1.5% of purity difference in total.

Significantly better
maximum performanceInitialization

method
Total number
of instances HW vs Ll HW vs KMed Ll vs KMed

Random 26 4 vs 1 3 vs 7 1 vs 7
K-Means++ 26 5 vs 1 2 vs 7 1 vs 4
ROBIN(S) 26 4 vs 0 1 vs 3 1 vs 7
Maximin(S) 26 2 vs 1 3 vs 5 2 vs 3
Total 104 15 vs 3 9 vs 22 5 vs 21
Kaufman 26 1 vs 1 2 vs 6 1 vs 6
DK-Means++ 26 1 vs 0 2 vs 4 1 vs 5
ROBIN(D) 26 6 vs 0 2 vs 2 1 vs 6
Maximin(D) 26 7 vs 0 2 vs 2 1 vs 6
Total 104 15 vs 1 8 vs 14 4 vs 23

Significantly better
maximum performanceInitialization

method
Total number
of instances HW vs Weis Ll vs Weis KMed vs Weis

Random 26 5 vs 2 1 vs 3 2 vs 1
K-Means++ 26 7 vs 2 1 vs 4 2 vs 2
ROBIN(S) 26 5 vs 1 1 vs 7 2 vs 1
Maximin(S) 26 6 vs 0 0 vs 4 0 vs 1
Total 104 23 vs 5 3 vs 18 6 vs 5
Kaufman 26 1 vs 5 1 vs 4 2 vs 2
DK-Means++ 26 1 vs 5 0 vs 6 1 vs 1
ROBIN(D) 26 0 vs 3 0 vs 4 1 vs 1
Maximin(D) 26 1 vs 3 1 vs 6 2 vs 2
Total 104 3 vs 16 2 vs 20 6 vs 6
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size, dimensionality and number of clusters among two stochastic (Random and
K-Means++) and two deterministic methods (DK-Means++ and ROBIN(D)). Based
on the results the number of repetitions required for the clustering method using
K-Means++ in order to match or surpass the performance of DK-Means++ and
ROBIN(D) are less compared with Random. This was expected given the performance
comparison of Random and K-Means++ but an important result is the following:
there are cases (Yeast, A-sets 2 and A-sets 3) where these stochastic methods fail
to match or surpass the performance of deterministic methods under 50 runs. It is
also observed that when the size of the data set surpasses the 1000 data points the
number of required repetitions is significantly high. Finally it should be mentioned
that these performance differences are minor, in the order of 10−3 on average.

3.1.3.6 Execution time analysis

Finally, an execution time analysis was performed on the initialisation methods
using a selection of the data sets depending on their size, dimensionality and number
of clusters; data sets with equivalent properties were omitted. The analysis was
performed as follows: each initialisation methods followed by K-Means clustering
(Lloyd’s K-Means) was executed 50 times and the average running time was taken into
consideration. Regarding this analysis the following aspects should be considered:

• The benchmarking was exclusively performed on a personal laptop with the
following properties: Dell G7; Intel i7-9750H processor; 16 GB RAM; Windows
10 Pro edition.

• All the algorithms were written in MATLAB but the LOF score for ROBIN
was computed using R code (specifically the dbscan package [Hahsler et al.,
2019]) because MATLAB’s implementation was very slow.

• The running time recording includes only the initialisation methods without
the K-Means algorithm. For ROBIN the computation of LOF was included in
the execution duration as well as the computation of ε for the DK-Means++

Based on the results in Figure 3.7 Kaufman is the worst method in terms of exe-
cution duration and it is affected both by the size, dimensionality and number of
clusters. Randoma nd K-Means++ are the fastest methods followed by Maximin(S).
DK-Means++ is almost always better than ROBIN(D) in terms of speed for our
implementation.

Furthermore, and based on the results of Table 3.6 an additional analysis was
performed on the time requirements of the stochastic methods to reach or surpass
the performance of deterministic methods with multiple executions of the clustering
algorithm using different seeds. Figure 3.8 shows the single run execution time of
the stochastic initialisation (plus the clustering overhead) multiplied by the number
of iterations required to surpass the deterministic methods (see Table 3.6). Based
on the results shown in Figure 3.8 it is observed that in many occasions running
DK-Means++ once is better in terms of execution time than repeated runs of the
clustering with a stochastic method. Equivalent conclusions can also be obtained
from the Maximin(S) initialisation method (see Appendix B, Figure B.3).

The number of iterations required for the clustering algorithm to reach convergence
using stochastic and deterministic methods was also investigated. Based on the results
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Rand
DKM++

Rand
ROBIN(D)

KM++
DKM++

KM++
ROBIN(D)

size,
dimensions,
number of

clusters
gap 2 5 5 4 4 100,2,3
wgap 2 6 6 4 4 115,2,2
wgap 4 6 6 5 5 200,2,2
wgap 3 3 3 3 3 200,2,4
gap 5 4 2 4 2 200,3,2
wgap 6 8 8 7 6 300,2,6
gap 3 5 5 4 4 143,3,4
gap 4 10 10 6 6 158,10,2
wgap 1 7 7 6 6 227,2,6
wgap 5 14 14 6 6 141,10,2
brod 1 4 4 5 5 120,20,3
brod 2 18 17 17 17 400,20,3
Iris 7 7 3 3 150,4,3
Wine 3 3 2 2 178,13,3
Glass 7 7 6 6 214,9,6
Ionosphere 3 3 2 2 351,34,2
Breast
Cancer

12 12 7 7 683,9,2

Yeast N/A 16 27 14 1484,8,10
A-sets 1 28 26 26 16 3000,2,15
S-Sets 1 34 34 26 15 5000,2,15
A-sets 2 N/A N/A 34 33 5250,2,35
A-sets 3 N/A N/A N/A N/A 7500,2,50

Table 3.6: Average number of runs for which stochastic initialisations achieve equivalent
or better performance than deterministic initialisations. Each column shows a comparison
between clustering initialised with stochastic and deterministic methods (Rand = Random, DKM++
= DK-Means++, KM++ = K-Means++). Each cell value corresponds to the number of executions
of the K-Means clustering initialised with the stochastic method to reach or surpass its performance
if it was initialised with the deterministic method and executed once. N/A values mean that in
these occasions the stochastic clustering was not able to match or surpass the performance of the
deterministic clustering under 50 executions. Values equal or more than 10 are marked in bold
since in real world situations one would not normally repeat the same procedure more than 5 to 10
times. The data sets are arranged based on their size, dimensionality and number of clusters (see
info on last column; numbers in italics correspond to the average number of elements should the
model generated data sets of different sizes.
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Figure 3.7: Execution time analysis. (a) Each line shows the execution duration of an
initialisation method on different data sets selected based on size, dimensions and number of
clusters. The average execution time is considered over 50 repetitions and, in case of models, across
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Figure 3.8: Execution time until stochastic methods reach or surpass the performance
of deterministic methods. Each bar shows the running time requirements of the clustering
algorithm initialised with a stochastic method to reach or surpass the performance of the same
algorithm initialised with a deterministic method. The time requirements of the clustering algorithm
using a deterministic method are shown as lines for comparison. Cases where bars are not shown
mean that, up to 50 runs, the clustering algorithm using a stochastic method was unable to surpass
the performance of the deterministic method.
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(refer to Table 3.7) stochastic methods overall provide worst initial conditions (with
the exception of ROBIN(S) vs Maximin(D)), and as a consequence the clustering
algorithm requires more iterations to converge, which adds to the overhead of the
stochastic initialisation methods (for detailed results see Appendix B, Figure B.1 for
the stochastic methods and Figure B.2 for the deterministic methods).

3.1.4 Discussion

K-Means clustering remains one of the most common clustering techniques in
many different research fields and frequently it is used as a component of more
complex algorithms (e.g. hierarchical clustering [Jain, 2010]). Following similar
benchmark studies on K-Means [Celebi et al., 2013; Fränti and Sieranoja, 2018,
2019], this study compares stochastic and deterministic initialisation methods on
K-Means variations. In particular, the methods of ROBIN and DK-Means++ wew
investigated since to the best of the author’s knowledge they have not been studied
as extensively as other initialisation methods. Experimentally this study showed:
• More sophisticated initialisation methods can lead, on average, to better

clustering regardless of the K-Means variation (see Table 3.4). From the
stochastic methods, ROBIN(S) can achieve the best average performance
compared with Random, K-Means++ and Maximin(S) (see Figure 3.2). From
the deterministic methods, DK-Means++ can achieve the best performance
compared with Kaufman, Maximin(D) and ROBIN(D) (see Figure 3.3). In
addition, DK-Means++ can achieve better performance from the average
performance of stochastic methods (see Figure 3.4). Overall, deterministic
methods have on average less performance variability across the data sets of
each tested model and lead to more stable solutions than stochastic methods
(see Appendix B) and can surpass the performance of stochastic methods (see
Figure 3.4).

• When executed multiple times stochastic methods can achieve better perfor-
mance than deterministic methods. Opposite the the first point, in that case,
less sophisticated methods (such as Random and K-Means++ as opposed to
ROBIN(S)) can achieve better performance (see Figure 3.6). K-Means++ with
50 executions achieved the best performance followed by Random (see Figure
3.5). The only deterministic method that can still compete to an extent is
DK-Means++ (see Appendix B) where a full list of all comparisons is provided
among all the initialisation methods considered in this study).

• As indicated by [Slonim et al., 2013] Hartigan-Wong K-Means is better than
Lloyd’s K-Means (see Table 3.5) and as shown by [Brusco et al., 2017] (only
for one K-Means variant) K-Medians is better than both Hartigan-Wong and
Lloyd’s K-Means. However these differences add up to performance difference
of only 1.5% as measured by the purity index.

• Regarding execution time requirements, Random and K-Means++ are fastest
performers in terms of single runs while Kaufman the slowest (see Figure
3.7). Maximin(S) is slightly slower than K-Means++. Nevertheless these
methods require multiple executions in order to reach the performance of
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Initialization
method

Total number
of instances

Significantly more iterations
for K-Means to converge

Random vs K-Means++ 26 23 vs 0
Random vs ROBIN(S) 26 24 vs 0
Random vs Kaufman 26 23 vs 0
Random vs DK-Means++ 26 25 vs 0
Random vs ROBIN(D) 26 24 vs 0
Random vs Maximin(S) 26 23 vs 2
Random vs Maximin(D) 26 23 vs 0
K-Means++ vs ROBIN(S) 26 22 vs 0
K-Means++ vs Kaufman 26 21 vs 2
K-Means++ vs DK-Means++ 26 24 vs 0
K-Means++ vs ROBIN(D) 26 22 vs 0
K-Means++ vs Maximin(S) 26 21 vs 3
K-Means++ vs Maximin(D) 26 19 vs 1
ROBIN(S) vs Kaufman 26 11 vs 7
ROBIN(S) vs DK-Means++ 26 14 vs 0
ROBIN(S) vs ROBIN(D) 26 3 vs 2
ROBIN(S) vs Maximin(S) 26 1 vs 21
ROBIN(S) vs Maximin(D) 26 1 vs 19
Kaufman vs DK-Means++ 26 8 vs 4
Kaufman vs ROBIN(D) 26 7 vs 10
Kaufman vs Maximin(S) 26 3 vs 15
Kaufman vs Maximin(D) 26 3 vs 14
DK-Means++ vs ROBIN(D) 26 0 vs 15
DK-Means++ vs Maximin(S) 26 0 vs 20
DK-Means++ vs Maximin(D) 26 1 vs 18
ROBIN(D) vs Maximin(S) 26 1 vs 21
ROBIN(D) vs Maximin(D) 26 1 vs 17
Maximin(S) vs Maximin(D) 26 8 vs 1

Table 3.7: Summary of comparisons for the number of iterations until convergence for
the Lloyd’s K-Means algorithm using different initialisation methods. Each row shows
a comparison between different initialisation methods on the number of times that each method
resulted on the Lloyd’s K-Means algorithm to have greater number of iterations until convergence.
As indicator of performance, a method resulted to lower number of iterations is consider better,
thus the lower the score the better the methods. Based on the results, ROBIN(S) is the best
stochastic method and results to the less iterations for the K-Means algorithm to reach convergence;
DK-Means++ is the best deterministic method and results to the less iterations for the K-Means
algorithm to reach convergence. Overall, deterministic methods result to lower number of iterations
for the K-Means algorithm.
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determinsitic methods (refer to Table 3.6) especially with bigger data sets
(number of elements to thousands). Multiple executions of these methods
have almost similar requirements as a single run of deterministic methods
DK-Means++ and ROBIN(D) (refer to Figure 3.8). This is due to the fact
that the clustering algorithm requires more iterations to reach converge when
stochastic methods are used (refer to the supplementary material). Between
DK-Means++ and ROBIN(D) the former is faster than the latter.

Overall, and from a practical point of view, the stochastic Random and the
deterministic Kaufman methods are not advisable. The first method despite being
the simplest and the fastest can be replaced with K-Means++ that has better
probability of achieving superior performance. The latter method is extremely slow
and there are better alternatives such as the DK-Means++ that has both better
performance and execution time. Maximin(D) and ROBIN(S) are not advisable
either since the former is relatively fast and multiple executions of Maximin(S) can be
performed instead while the latter has much more time requirements, small variability
on its solutions and when an approximate clustering is required ROBIN(D) can be
used instead. DK-Means++ is a good option when determinism is required since with
a single run it can achieve better performance compared with other deterministic
methods and comparable performance to multiple executions of stochastic methods
that would require the same or more running time. In applications where exhausted
search of optimal initial centroids needs to be performed K-Means++ should be
considered (the study of [Celebi et al., 2013] has also benchmarked a greedy version
of this method which is also recommended). In these cases if time requirements
are flexible a strategy would be to perform first DK-Means++ which would give
an indication about the clustering capabilities of the data set and then multiple
executions of K-Means++. It should be added that in the mixed model 4, ROBIN(S)
and ROBIN(D) performed significantly low compared with other cases because
both where placing two initial centroids on the sides of the most elongated cluster
while DK-Means++ were placing correctly a centroid almost in the middle of the
cluster. This indicates that the DK-Means++’s heuristic might be more robust to
applications than the LOF score of ROBIN for clusters detection. It should be noted
that more complex techniques like DK-Means++ can be considered as clustering
algorithms themselves since they produce good initial clusters. This observation was
mentioned in the study of [Celebi et al., 2013] and in this thesis another study was
performed (see Figure 3.7) on the number of iterations until the K-Means algorithm
reaches convergence when it is initialized with different methods. Based on the
results deterministic methods causes K-Means to converge faster than when it is
initialized with stochastic methods. As expected, ROBIN(S) and DK-Means++ were
again the best stochastic and deterministic methods on that account.

These conclusions were based on extensive benchmarking considering many
different clustering models from other studies: Gaussian, high-dimensional (10
dimensions), elongated, unbalanced, non-Gaussian from the studies of [Tibshirani
et al., 2001] and [Yan and Ye, 2007]; high-dimensional (20 dimensions) containing
informative and uninformative features and higher-dimensional (1000 and 1500
dimensions) with varying number of clusters (3, 10, 50 clusters) and cluster sizes
(50-100 points) [Brodinová et al., 2017]. This study also uses novel models containing
clusters with different properties (unbalanced, elongated and Gaussian; unbalanced
Gaussian and non-Gaussian; unbalanced, Gaussian with different variability among
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their dimensions).

With the use of synthetic data set generators there is the ability to generate
multiple data sets and run hypothesis testing to further strengthen the resulted
conclusions but standalone data sets were also considered. The “clustering data
sets” S-sets [Fränti and Virmajoki, 2006] and A-sets [Kärkkäinen and Fränti, 2002]
were selected from the studies of [Fränti and Sieranoja, 2018, 2019] because both are
containing more clusters and data points than the generated ones and also because in
the case of the S-sets the clusters are having different overlap degrees. The conclusions
that are obtained from the data set generators match with the conclusions of the
standalone S-sets and A-sets data sets. Specifically the higher dimensional data sets
(1000, 1500 dimensions) generated using the Brodinova generator [Brodinová et al.,
2017] (see Table 3.2), are having small clusters due to the Kaufman initialization
method which requires significant amount of time to be executed. However, data
sets with larger clusters (approximately five times bigger) were also generated and
the ROBIN(D) and DK-Means++ methods were tested on them. The results (not
shown) and conclusions were similar to the ones reported already.

Based on the previous studies [Fränti and Sieranoja, 2018, 2019] the authors
have clearly demonstrated that K-Means performs worse as the number of clusters
increases (similar to our study the A-set was the data set with the larger number of
clusters which were 50) and that dimensionality does not have a direct effect on the
performance of the algorithm. In the experiments that use the Brodinova models
(see Figures 3.3, 3.6 brod 1 to brod 12) it was observed that indeed the performance
of all the methods drops when the number of clusters is increased regardless of the
dimensionality, especially in the case of Brodinova brod 10 model where the generated
data sets are having 50 clusters. Apart from the last extreme case, it was observed
that multiple executions of stochastic methods improve the performance of K-Means.
It should also be noted that the deterministic DK-Means++ method achieves (similar
to multiple executions of stochastic methods i.e. Random, K-Means++, Maximin(S)
and ROBIN(S)) the highest performance on the clustering basic benchmark [Fränti
and Sieranoja, 2018, 2019] in all the cases (see Appendix B)) even thought these data
sets have high number of clusters (A-sets: 20, 30, 50; S-sets: 15). The same authors
[Fränti and Sieranoja, 2018, 2019] also demonstrated that strong cluster unbalances
(i.e both dense and sparse clusters) affect negatively the K-Means clustering. In the
experiments and superficially for the weighted gap 2 model it was observed that data
sets with unbalanced clusters do not cause any particular issues to the maximum
performances of the algorithms. For the performance between K-Means and K-
Medians, similar to the results of [Brusco et al., 2017], it was found that K-Medians
outperforms K-Means on synthetic data set models but on a small difference of 1%
of purity and on standalone data sets (both synthetic and real-world) any particular
differences among the K-Means variations couldn’t be clearly detected.

In order to show application to “real world problems” previous studies have
chosen to use standard classification data sets as benchmarks for clustering. While
this approach is commonly used, in these data the mapping from classes to clusters is
somehow forced: it is possible that data from one class belong to different clusters, and
assuming that number of clusters equals number of classes is likely to underestimate
the true number of clusters. This can be seen from the low value of the Silhouette
index especially in the cases of Ionosphere and Yeast data sets. For this reason the
conclusions were based mostly on the benchmark models that allows us to generate
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multiple samples and evaluate the statistical significance of the results. In fact,
there was consideration of a broad combination of different clusters, in terms of
normality (Gaussian, non-Gaussian), shape (spherical, elongated) and size (clusters
with different number of data points) including high dimensional data, as found in
real world applications such as bioinformatics [Wang et al., 2008].

It should also be noted that many clustering frameworks designed to deal with
complex data sets (e.g. sub-clustering [Biswas and Jacobs, 2014], or sparse clustering
[Brodinová et al., 2017; Kondo et al., 2016; Witten and Tibshirani, 2010]) are using
the K-Means or some variant of it and are dependent on good clustering initialisation.
This experimental work revealed that there are deterministic methods (DK-Means++
[Nidheesh et al., 2017]) that lead to a good clustering solution with a single execution
of the K-Means algorithm.

A limitation of the current study is that the execution time analysis is subject to
the machine that executed it. More powerful machines or code optimisation of the
algorithms and initialisation methods can change time analysis results. Nevertheless
the rest of the analysis including the number of different seeds for stochastic methods
to reach the performance of deterministic is, on average, reproducible. Statistics on
average performance comparison are representative since,similar analysis had been
also performed on 25 instances of the various data sets models instead of 50 and led
to the same conclusions.

3.2 Comparison among K-Means inspired semi-

supervised algorithms and the novel PCSK-

Means algorithm

This study (refer also to [Vouros and Vasilaki, 2020]) considers the problem of data
clustering with unidentified feature quality but with the existence of small amount of
labelled data. In the first case a sparse clustering method can be employed in order to
detect the subgroup of features necessary for clustering and in the second case a semi-
supervised method can use the labelled data to create constraints and enhance the
clustering solution. This work proposes a K-Means inspired algorithm that employs
these techniques. It is shown that the algorithm maintains the high performance of
other semi-supervised algorithms and in addition preserves the ability to identify
informative from uninformative features. The study examines the performance of the
algorithm on synthetic and real world data sets. A series of scenarios with different
number and types of constraints as well as two different clustering initialisation
methods is considered.

3.2.1 Introduction

In many learning tasks there is a plethora of unlabelled data in a high-dimensional
space consisted of series of features that have some interpretation and a limited
number of labelled data since the latter are expensive to be generated. In many cases
there is no knowledge of the actual contribution of each features on the learning task
and often conditionality reduction methods are employed in order to keep only the
most relevant features to the given task. However, many dimensionality reduction
methods, such as Principal Component Analysis (PCA) [Bro and Smilde, 2014;
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Shlens, 2014], result in a transformation of the original features which limits their
interpretability, especially if each feature has specifically designed to have a biological
meaning. In unsupervised scenarios a number of authors [Maugis et al., 2009; Pan
and Shen, 2007; Raftery and Dean, 2006; Wang and Zhu, 2008; Xie et al., 2008] have
proposed clustering algorithms that have the ability to keep the initial features intact
and assign a certain weight to them based on their contribution on clustering. These
algorithms result in feature selection and sparse clustering.

In the work of [Witten and Tibshirani, 2010] a generic sparse clustering framework
is presented which incorporates L1 (Lasso regression) and L2 (Ridge regression)
penalties in order to eliminate the uninformative feature and weight the rest based
on their contribution on clustering [Witten et al., 2009]. Such method requires the
tuning of the sparsity hyper-parameter which essentially regulates the amount of
L1 application. This framework have been applied with K-Means and Hierarchical
clustering but can also be applied to semi-supervised scenarios where pairwise
constraints are given as an additional input to the algorithm, such constraints are
generated from partly labelled data and indicate which data points should (MUST-
LINK) or should not (CANNOT-LINK) belong to the same cluster. Previous work on
semi-supervised learning [Bar-Hillel et al., 2003; Basu et al., 2002; Klein et al., 2002;
Wagstaff et al., 2001; Xing et al., 2003] has indicated that incorporated constraints
can result in superior performance of the learning algorithm. This is achieved by
guiding the clustering solution either with the alternation of the objective function of
the algorithm to include satisfaction of the constraints [Demiriz et al., 1999] or with
the initialisation of the centroids to more appropriate locations of the feature space
based on the constraints [Basu et al., 2002]. Another technique is to train a metric
that satisfy the constraints as in [Xing et al., 2003] in which pairwise constraints
were used to train a Mahalanobis metric.

Based on the previous work of [Witten and Tibshirani, 2010] on sparse K-Means
clustering this study proposes a modification to the objective function of the algorithm
to incorporate constraints. It is shown that using this method the best of both worlds
can be achieved since constraints result to better clustering performance without
affecting the sparsity capabilities of the algorithm. This novel algorithm is named as
Pairwise Constrained Sparse K-Means (PCSK-Means) and it is tested under different
conditions such as different number and kind of constraints (CANNOT-LINK, MUST-
LINK or both). In the previous section (refer also to the study [Vouros et al., 2019])
the superiority of the deterministic initialisation method of Density K-Means++
(DK-Means++) was presented and thus this method was selected to initialise all
the algorithms along with the seeding method proposed in the study of [Bilenko
et al., 2004] and discussed in Chapter 2 (refer to 2.2.7.7). The benchmark includes
synthetic data sets from the study of [Brodinová et al., 2017] with known feature
quality and real world data sets from the UCI [Asuncion and Newman, 2007] and a
real world data set from the behavioural neuroscience study of [Vouros et al., 2018]
which contains ten known uninformative features.

The data sets used in this study, including their constraints, and the MATLAB
code to run the simulations are available on the GitHub repository
https://github.com/avouros/Code-PCSKM.
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3.2.2 Methods

This work will make use of the algorithms described in Chapter 2. The clustering
algorithms are as follows: Lloyd’s K-Means (see 2.2.2.2), Sparse K-Means (see 2.2.3,
PCSK-Means (see 2.2.4.1), MPCK-Means (see 2.2.4.2) and PCSK-Means that will
be described next. The clustering initialisation methods are as follows: Density
K-Means++ (DK-Means++) (see 2.2.7.6) and Seeding (see 2.2.7.7). F-score (see
2.2.8.2.2) was used for evaluation.

3.2.2.1 The Pairwise Constrained Sparse K-Means Algorithm

The MPCK-Means algorithm (refer to 2.2.4.2) is using the pairwise constraints
in order to learn a metric capable of shaping the feature space in a way that
clusters are formed based on both the similarity of the elements (features) as well
as their constraints (which elements should or should not be together). This use
of constraints can be incorporated by Sparse K-Means clustering to create a semi-
supervised algorithm with feature selection capabilities.

Using the constraints and the sparse clustering the objective function of equation
3.1 is defined,
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where the terms inside the outer parenthesis is the WCSS that K-Means minimizes
based on constraints (see Jpckm equation 2.12).

Based on the Sparse K-Means problem given in 2.8, the PCSK-Means problem
can be specified as,
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where,
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Analogously to Sparse K-Means 2.2.3, the solution to the convex problem of 3.2
is,

wj =
sign(γ′j)(|γ′j| −∆)+√∑p
j′=1

(
sign(γ′j′)(|γ′j′ | −∆)

)2
(3.4)

which follows the same proof as the one in the Appendix A.8 accounting also the
constraints. In addition, a similar algorithm used for the Sparse K-Means (refer to
Chapter 2, section 2.2.3) can be used for the PCSK-Means with minor modification
to include the penalty of the imposed constraints,

Pairwise Constrained Sparse K-Means (PCSK-Means) algorithm
1. Given a dataset, number of clusters K, MUST-LINK and CANNOT-

LINK constraints and constraints costs (optional), initialise K initial
centroids M = {m1j, . . . ,mKj} using some initialisation method and the
feature weights as w1 = · · · = wp = 1√

p
[Witten and Tibshirani, 2010].

2. Holding the weights fixed, maximize 3.1 with respect to M . This can
be implemented by performing an equivalent algorithm as in K-Means
where the point assignment to the nearest cluster is given by equation
3.5,
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3. Step 3 of Sparse K-Means algorithm replacing γj with γ′j.

4. Step 4 of the Sparse K-Means algorithm.
The algorithm returns the final clusters (centroids and elements) and the
weight of each feature.

One important note is that K-Means and Sparse K-Means are element order
invariant meaning that with the same initialisation method (and the same random
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seed if the centroids initialisation method is stochastic) it will produce the same
results. This is true for PCSK-Means but only if the elements are processed in
the same order due to the constraints. Based on the experimental study using the
benchmark described next, shuffling the elements does not have any significant effects
on the performance of the algorithm.

3.2.2.2 Benchmark

The benchmark of this study includes the real world data sets fisheriris, ionosphere
and digits from the UCI repository [Asuncion and Newman, 2007] which have
unknown feature quality. From the original digits data set 10 different sub-sets were
created by randomly sampled elements of three classes, 0-4-8 and 3-8-9, 50 elements
per class (3-8-9 digits were also used in the study of [Bilenko et al., 2004]). Two
synthetic data sets were also added. These data sets were generated based on the
generator of [Brodinová et al., 2017] which was used before (refer to section 3.1.2
and the published work [Vouros et al., 2019]). These synthetic data sets consist of
known informative and uninformative features without noise. More specifically, they
consist of 120 10-dimensional data points spread equally across 3 clusters. The first
set has 5 informative and 5 uninformative features while the second 3 informative
and 7 uninformative features. Finally, two reduced data sets from the studies of
[Gehring et al., 2015; Vouros et al., 2018] were used that consist of 8 features of
unknown importance that describe rodent path segments in the Morris Water Maze
experiment. The first set (named TT-SC-ST) contains a total of 424 data points and
3 classes (Thigmotaxis: 168, Scanning: 182 and Scanning Target: 74 data points);
the second set (named TT-CR-ST) contains a total of 406 data points and 3 classes
(Thigmotaxis: 168, Chaining Response: 164 and Scanning Target: 74 data points).
The dimensionality of both sets was increased with the addition of 10 features. The
9th feature is the path segment length which is uninformative given the fact that all
the segments were created to have approximately the same length and the next 9
features were generated from random shuffling of the segment length feature.

Table 3.8: Data set constraints. Column Points shows the total amount of data points of
each data set; CV10 labels shows the number of labels that can be used for training (90% of the
Points since the 10-fold cross validation was used); CV10 constraints shows the total number of
constraints generated from these labels, i.e. the size of the pool. The last column refers to the
number of constraints (minimum and maximum) that were randomly sampled from the pool and
used in the training. The minimum corresponds to the 1% and the maximum to the 10% of CV10
constraints. MWM stands for Morris Water Maze.

Data set Points
CV10
labels

CV10
constraints

CV10
constraints
[1% , 10%]

fisheriris 150 135 9045 [90 , 905]
ionosphere 351 316 49738 [497 , 4974]
digits 0-4-8 and 3-8-9 150 135 9045 [90 , 905]
MWM TT-SC-ST 424 382 72618 [726 , 7262]
MWM TT-CH-ST 406 365 66576 [666 , 6658]
Brodinova (2 sets) 120 108 5778 [58 , 578]

68 Chapter 3 Avgoustinos Vouros



3.2. Comparison among K-Means inspired semi-supervised algorithms and the novel
PCSK-Means algorithm

3.2.3 Results

The first experiment assesses the performance of PCSK-Means (PCSKM) com-
pared with other unsupervised algorithms (Lloyd’s K-Means, LKM and Sparse
K-Means, SKM) and semi-supervised algorithms (PCK-Means, PCKM and MPCK-
Means, MPCKM). The deterministic initialisation technique of DK-Means++
(DKM++) [Nidheesh et al., 2017] was used for all the algorithms. The semi-supervised
algorithms were also tested with different number and types of constraints including,
only MUST-LINK, only CANNOT-LINK, and random selection from both MUST-
LINK and CANNOT-LINK. Finally all the algorithms initialised with the seeding
method of [Basu et al., 2002] (refer to section 2.2.7.7) were tested considering only
random selection from both MUST-LINK and CANNOT-LINK constraints in order
to have a direct comparison with [Bilenko et al., 2004].

For this experiment the results for the fisheriris, ionosphere and the Morris Water
Maze data sets are shown since all the algorithms, as expected, performed equally
well on the synthetic data due to their distinctive clusters. Figure 3.1 shows the
results of the performance comparison. Our algorithm (PCSKM) was designed for
its feature selection property rather than its performance and yet it is demonstrated
that it has better performance in most cases and, where its performance is worse,
the difference to the best performing algorithm is relatively small. Interestingly the
use of only MUST-LINK constraints has a negative effect in the performance of all
the semi-supervised algorithms except for the digits data sets. Using either ROBIN
or Maximin initialisation leads to similar conclusions (see Appendix B, Figures B.4,
B.5, B.6 and B.7).

The performance was tested using a similar evaluation as the one used in [Basu
et al., 2004; Bilenko et al., 2004] (see also section 2.2.8.3). The 10-fold cross validation
was executed using all the data but splitting the labels into training and test sets.
The performance on each fold was assessed based on the F-score, an information
retrieval measure, adapted for evaluating clustering by considering same-cluster pairs
similar to [Bilenko et al., 2004]. The clustering algorithm was run on the whole data
set, but the F-score was calculated only on the test set. Results were averaged over
25 runs (each run with a random selection of constraints) of 10 folds. For the number
of given constraints 1% to 10% with step of 0.5% of the constraints generated from
the training labels of each fold (Table 3.8) were given as input. This was done so that
all the data sets are tested under equal conditions proportional to their sizes. Sparse
algorithms (i.e. SKM and PCSKM) have one parameter than needs to be tuned, the
sparsity parameter s. A value for this parameter was selected in the following way:
The clustering process for s = 1.1 to s =

√
p, where p is the dimensionality of the

data set with step 0.2 was executed. Among these s values the one that yields the
best value of the F-score was selected.

To quantify the overall performance of PCSKM versus other algorithms, for each
initialisation method (Seeding, DKM++, ROBIN, Maximin) constraints type (both,
MUST-LINK only and CANNOT-LINK only) and data set (6 data sets in total)
the average performance over the number of constraints (60 cases in total, since
Seeding has only both constraints) was calculated per algorithm (PCSKM, PCKM,
MPCKM, KM, SKM). Afterwards the Paired Samples Wilcoxon Test was used
hypothesizing that the performances between any algorithm and PCSKM have the
same distributions with the same medians. A p-value less than 0.05 in our analyses,
lead us to discard the null hypothesis. Based on the results, there is significant
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difference between PCSKM and KM (p < 1−10), SKM (p < 1−10), PCKM (p < 1−10),
MPCKM (p < 0.001) in favor of the PCSKM.

The performance difference among the different types of constraints (both, MUST-
LINK only and CANNOT-LINK only) was also quantified in a similar manner as was
done with the overall performance. For each initialisation method (DKM++, ROBIN,
Maximin), semi-supervised algorithm (PCKM, MPCKM, SKM, PCSKM) and data
sets (6 in total excluding the synthetic), the average performance over the number
of constraints (72 cases in total) was calculated. Afterwards the Paired Samples
Wilcoxon Test was used setting again a p-value less than 0.05 to discard the null
hypothesis. Based on the results, there is significant difference between MUST-LINK
only and CANNOT-LINK only constraints in favor of the latter (p-value < 0.01)
and there is significant difference between MUST-LINK only and both constraints in
favor of the latter (p-value < 0.001). No significant difference was detected between
the CANNOT-LINK only and both constraints (p-value > 0.1).

The second experiment assesses the feature selection capabilities of the novel
algorithm. Two synthetic data sets and the Morris Water Maze data set were used
since, for them, there is knowledge towards the features of importance. The results
are shown in Figure 3.10 where the feature selection capabilities of MPCKM, SKM
and PCSKM are shown. For SKM and PCSK average results are shown over different
values of s from 1.1 to

√
p, where p is the dimensionality of the data set, with step

0.2 as in [Brodinová et al., 2017]. This is to demonstrate that the feature selection
does not strongly depend on optimally selecting the value of s. The weight values
are plotted as a function of number of constraints (where applicable) demonstrating
that the feature selection capabilities of PCSKM are not affected by it. Furthermore,
the digits data sets were contaminated with 4 uninformative features generated
from exponential distributions (see Appendix B, Figure B.8) and again the PCSKM
algorithm was able to assign a 0 weight to them. On the contrary, the MPCKM
algorithm, which learns a metric, makes use of uninformative features, see Figure 3.10
Seeding MPCKM. In addition, in both contaminated digit sets, the uninformative
features have on average higher weights that the original features, and this is true
across all initialisation methods (Seeding, DKM++, ROBIN, Maximin).

3.2.4 Discussion

This study proposes a modification on an existing clustering algorithm with a
feature selection mechanism to address semi-supervised problems where few labels
are available. It was hypothesized that the ability of this algorithm in detecting
informative and non-informative features is better than an alternative semi-supervised
algorithm with metric learning, while its performance will be at least equal. It is
also demonstrated that the constraints improve the performance of our algorithm on
classification problems in comparison to its unsupervised version.

The modified algorithm (PCSKM) was tested under different initial conditions.
It was found that its performance is almost equivalent to other semi-supervised
algorithms and in many cases better, regardless of the initialisation method (DKM++,
MPCKM, ROBIN or Maximin), type (MUST-LINK only, CANNOT-LINK only,
both) or number of constraints. It is shown that its feature selection mechanism is
robust to the initialisation method and the number of constraints, and its weight
assignments can be used to indicate informative or uninformative features in all the
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data sets that were tested. On the contrary the MPCKM algorithm, which learns a
metric, while it performs best or in par with PCSKM when the Seeding initialisation
method is used (with the exception of the data sets ionosphere and digits 0-4-8),
it makes use of the uninformative features. As a consequence the learned weights
cannot be used to evaluate the quality of the features.

It is also shown that the performance of semi-supervised algorithms can be
affected by initialisation procedures, similar to unsupervised methods [Vouros et al.,
2019], and by the type of constraints. By experimenting with different number of
constraints, different initialisation methods and different semi-supervised algorithms
conclusions can be drawn about the goodness of each constraints type. Only MUST-
LINK constraints have a negative effect on the performance for all the data sets
that were tested (apart from the digits). It is speculated that this may be the case
because data points belonging to the same class do not necessarily belong to the
same cluster, while CANNOT-LINK constraints are more informative: data points
belonging to different classes should not belong to the same cluster. Nevertheless,
PCSKM could cope with the MUST-LINK constraints much better than MPCKM
and PCKM.

In addition, the Seeding initialisation method proposed for the MPCKM in the
study of [Bilenko et al., 2004] has mostly a positive effect on that particular algorithm.
In the case of Morris Water Maze data sets, the initial 8 features were also engineered
to perform best with the MPCKM algorithm [Gehring et al., 2015]. Nevertheless,
the proposed PCSKM algorithm maintains a close performance to MPCKM and
based on our hypothesis testing, it has on average the best overall performance. This
is, perhaps, due to the use of quality features that should have in general a positive
effect on the overall clustering performance.

Finally, the proposed PCSKM algorithm, similar to SKM, requires an additional
sparsity parameter s. In the study of [Brodinová et al., 2017] both s and the number
of clusters K are chosen using the gap statistic. Due to the semi-supervised setting,
K can be set equal to the number of classes and the F-score can be used to select the
sparsity parameter s avoiding the computationally more expensive gap criterion.
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Figure 3.9: Performance of PCSKM as opposed to other unsupervised and semi-
supervised algorithms. Each row compares the algorithms on six data sets (ionosphere, fisheriris,
digits 0-4-8 and 3-8-9 and Morris Water Maze TT-SC-ST and TT-CH-ST) using different types
of constrains. First row (Seeding both constraints): Seeding was used for cluster initialisation
and a random selection from all the constraints, both MUST-LINK and CANNOT-LINK. Second
row (DKM++ both constraints): similar as before but DKM++ initialisation was used. Third
and fourth rows (MUST-LINK, CANNOT-LINK): DKM++ initialisation was used and a random
selection of only MUST-LINK or CANNOT-LINK. For the SKM and PCSKM the sparsity value
with the best performance was selected. For the ionosphere and digits 0-4-8 data, our algorithm
has a clear advantage compared with the other methods. For the fisheriris, digits 3-8-9 and Morris
Water Maze TT-SC-ST data, cluster initialisation with Seeding offers an advantage to the MPCKM
algorithm compared to the DKM++ initialisation method. For all the data sets apart from the
digits, using only MUST-LINK constraints has a negative effect. Clearly, the type of constraints
can greatly affect the clustering performance while the initialisation method has less effect apart
from the case of the MPCKM algorithm. PCSKM is in general more robust to initial conditions
and its performance either surpass or is close to the performance of the other algorithms.
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Figure 3.10: PCSKM feature selection capabilities as opposed to other algorithms
in synthetic and the Morris Water Maze data sets using both constraints. Red bars:
MPKM (semi-supervised), blue bars PCSKM (semi-supervised), gray bars: SKM (unsupervised).
For SKM and PCSKM the bars show the average weight value of a feature over different sparsity
(s) values (from s = 1.1 to s =

√
p, where p is the dimensionality of the data set, with step 0.2).

The + and − signs indicate the number of informative and uninformative features (uninformative
features are always plotted last). In the case of the Morris Water Maze the quality of the first 8
features is unknown but the last 10 are uninformative. The SKM and PCSKM correctly identifies
the known uninformative features regardless of the choice of the s parameter in all the cases. The
feature selection mechanism of the PCSKM is not affected by the number of constraints. The
weights of the MPCKM algorithm are not indicative of the feature quality and in all the cases
the algorithm uses the uninformative features. The plots shows only the case when both type of
constraints are used but the same result is observed for the other constraint types cases regardless
of the initialisation method.
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Chapter 4

Manual behavioural difference
detection using path features

This chapter is split into two sections. The first section contains a detailed listing
of features that can be extracted from path coordinates and be used to capture animal
behaviours or indicate behavioural differences among different animal groups. The
second section is devoted to the published work of Chhabria, Vouros et al. [Chhabria
et al., 2019] where some of these features were used for the manual detection of
behavioural differences in zebrafish larvae inside a light/dark preference task. For
more information about this particular experimental procedure refer to 2.1.3 and
2.3.2.

4.1 An overview description of generic path fea-

tures

In Chapter 2 it was described that path analysis in behavioural experiments is tra-
ditionally performed by performance measurements. Such measurements can provide
insights of different behavioural motifs or indicate certain classes of behaviour and
Machine Learning techniques make use of them to perform automatic classification.

Here, there will be an attempt to list and group some of these measurements
which will be referred to as features. These features are generic and applicable to
any experimental procedure involving path tracking of animals inside constrained
environments and do not require timestamps in order to be computed.

4.1.1 Geometry concepts

Given a set of points in the plane the minimum enclosing ellipsoid is defined as
the unique closed ellipse of smallest volume which enclose these points [Gärtner and
Schönherr, 1998; Todd and Yıldırım, 2007]. The unique circle which passes through
the vertices of a triangle formed by any three points is called circumcircle [Weisstein,
n.d.]. Refer to Figure 4.1 for a graphical illustration of the aforementioned concepts.
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Figure 4.1: Minimum enclosing ellipse and circumcircle. A. The minimum enclosing ellipsoid
over a set of points; blue dots are the points and the black dot corresponds to the center of the
ellipse. B. Ellipsoid enclosing metrics: center of the ellipse (x,y); major and minor axes of the
ellipse; inclination of the ellipse. C. Let A, B and C be three points in space which form the triangle
4ABC if are used as vertices. The unique circle O with radius r which passes through the vertices
A, B and C is then called circumcircle.

4.1.2 Geometric features engineering

These features aims to capture geometric aspects that specify the shape of the
paths. These features require only path x and y coordinates in order to be computed
and assume consistency on the lengths of the paths under comparison. Refer to
Figure 4.2 A for a graphical illustration of the measuremtns used to form these
features.

� Path focus. A measurement of how concentrated a path is on specific locations.
It is defined as f = 1 − 4A

πl2
, where A is the area of the minimum enclosing

ellipse if the path and l is the total length of the path. With this definition a
focus of 0 means that the path is perfectly circular; larger focus values give an
indication of increasingly closed paths [Gehring et al., 2015].

� Path eccentricity. A measurement of how elongated are the paths. It is defined

as ε =
√

1− b2

a2
, where a and b are the semi-major and semi-minor axis of the

enclosing ellipse of the path [Gehring et al., 2015]. An eccentricity value of
0 means that the path is perfectly circular while more oval-shaped enclosing
ellipse will yield larger eccentricity values.

� Path loops. A path loop is the result of self-intersecting sub-segments. To
compute a path loop, all pairs of lines defined by two consecutive path points
are tested for intersection. Identifying all the path loops can result to the
generation of a series of features such as number of loops, average length of
loops and length of the longest loop (the latter feature was used in the study
of [Gehring et al., 2015]).

� Path distance to center of the enclosing ellipse. Statistics such as the average
or the variation of the distances of each point of the path to the center of the
enclosing ellipse can indicate useful information and capture focus exploration
on a certain location or non-strategic movements through an area. The study
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of [Gehring et al., 2015] used a formula for the coefficient of variation over the
distances, named inner radius variation. It is expected that the distances of
more elongated paths will have more spread values thus this family of features
can indicate more or less focused paths along with a degree of how much
focused they are.

� Path sinuosity. Sinuosity is a measurement of the tortuosity of a path. It
can simply be the straightness of the path [Almeida et al., 2010], which is
defined as the distance between the first and the last point of the path divided
by the total length of the path [Benhamou, 2004]. The study of [Benhamou,
2004] suggests that such simplistic measurement is not enough for paths that
are completely random or exhibit both random and targeted behaviours and
proposes a more sophisticated index of sinuosity can take into account the
distribution of the turning angles. In the aforementioned study there are two
indexes described by the equations 4.1 and 4.2

S = 2 ∗
√
p ∗ 1 + c

1− c
+ b2 (4.1) S = 2∗

√
p ∗ 1 + c2 − s2

(1− c)2 + s2
+ b2 (4.2)

where p is an expected step length and b the coefficient of variation of p and s
and c are the mean sine and cosine of the turning angles. Given these formulas
equation 4.2 is more generic while equation 4.1 assumes a Gaussian distribution
of the turning angles since s = 0. A way to adjust the given equations for path
coordinates could be to set p equal to the average of the lengths between the
successive points forming the path and b to the ratio of the standard deviation
of the lengths and p.

� Path curvature. The curvature is computed between any three points and it is
equal to the radius of their circumcircle. When we have a sequence of points
then a sequence of curve radii can be computed for each segment formed by
two successive points. The curve radius of each segment is then equal to the
average of the two curve radii which specify the segment. Finally the curvature
of a path as a whole is normally computed by adding the length of the segments
whose radius is less than a certain threshold [Franco, 2016] (refer to Figure 4.2
C for a graphical illustration of the circumcircle). Curvature is expected to be
a measurement of the straightness of the path, thus it can differentiate random
or targeted movements.

4.1.3 Spatial features engineering

Spatial features capture location aspects of the path in relation to a specified
experimental area which is normally circular or sometimes square. Similar to
geometric features they require only path x and y coordinates in order to be computed.
Refer to Figure 4.2 B for a graphical illustration of the measuremtns used to form
these features.

� Path distance to center of the arena. The distance to the center of the arena is
a useful measurement that indicates if the animal spends most of its time next

76 Chapter 4 Avgoustinos Vouros



4.2. Manual behavioural analysis in zebrafish larvae inside the light/dark preference
task using Morris Water Maze path features

to the walls or to the more central parts of the arena. Statistics such as the
average or the variation of these distances can then be used as features as in
the study of [Gehring et al., 2015].

� Central displacement. The central displacement is the Euclidean distance of the
centre of the minimum enclosing ellipsoid to the centre of the arena, dividing
with the arena radius. This measurement may be used to identify concentric
paths with the arena [Gehring et al., 2015].

� Path angle to center. Using the center of the arena as a reference point the
angle between each point and the arena center can be calculated. Statistics
such as the average or the variation of these distances can be considered as
features.
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Figure 4.2: A graphical illustration of various metrics for feature engineering. A. The
minimum enclosing ellipsoid of a path. Dotted red line indicates a path; dashed black line indicates
the minimum enclosing ellipsoid (MEE) of the path with center at the dotted circle, major axis a,
minor axis b and area A; ui is the distance between the center of the MEE to a particular point of
the path; `i indicates a path loop. B. Metrics of path in relation to a constrained environment.
Solid circle indicates a circular constrained environment, centered at the star, with radius R; d is
the distance between the MME of the path and the center of the constrained environment; vi is the
distance between the center of the constrained environment and a particular point of the path; ô the
angle formed between a particular point of the path and the center of the constrained environment.
C. The curvature of a path. Let the points A to E be coordinates of a path illustrated by red line.
For each sequence of three points there is a intersecting circle with radius r and a triangle formed
by connecting the first to the last of the three points. The segment formed between each two points
is then having a curve radius equal to the average radius of the radii for the triangles it is part of.
For example The curve radius of segment BC is equal to r1+r2

2 and the curve radius of segment
CD is equal to r2+r3

2 . In this example the first segment AB and the last segment DE are having
curve radii equal to r1 and r3 [Franco, 2016].

4.2 Manual behavioural analysis in zebrafish lar-

vae inside the light/dark preference task using

Morris Water Maze path features

In this study [Chhabria et al., 2019] a series of features used before for behavioural
analysis in the Morris Water Maze with rodents were adopted and used to quantify
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behaviour differences among four groups of zebafish larvae in the light/dark task.
This research aimed to study the effects of glucose exposure on the neurovascular
unit and behaviour of zebrafish.

4.2.1 Introduction

Diabetes is a disease associated with high levels of glucose which is the main
source of energy for cells. It is caused when there is poor regulation of insulin which
is a hormone produced by the pancreas to allow glucose to enter the cells. Diabetes
is linked to dysfunctions of the neurovascular coupling which is the connection
between neurons and their energy source and to-date there is no definite treatments
to these negative effects [Chhabria et al., 2019]. In the study of [Chhabria et al.,
2018] it is reported that the nitric oxide (NO) donor sodium nitroprusside (SNP)
prevents the negative effects of glucose on neurovascular coupling in zebrafish and
the followed study of [Chhabria et al., 2019] investigates the wider effects of glucose
in the neurovascular coupling and behaviour of zebrafish and how SNP treatment
prevents them. This dissertation will be focused and present the behavioural analysis
and results of the aforementioned study.

4.2.2 Methods

4.2.2.1 Locomotion analysis

The full swimming paths of the animals where segmented based on entrances/ex-
ists to/from the light/dark areas of the arena. Small path segments with lengths
less than the first percentile of the segments lengths generated as an artefact from
light/dark transitions were discarded from further analysis.

For each segment, a number of features (refer to Figure 4.2) inspired from the
Morris Water Maze with rodents [Gehring et al., 2015; Vouros et al., 2018] that
capture geometrical and positional aspects of the segments, were computed. In
addition to these features the experiment specific feature of the number of light/dark
transitions is also considered.

The analysis was performed for both the segments and the whole swimming paths,
in blocks of 15 minutes in order to obtain a more detailed insight of drug-induced
changes.

A prior analysis of some extra attributes of the animals swimming paths is included.
These attributes are, the percentage of time spent in the light and the percentage of
time spent in low and high speed locomotion in light and dark region of the arena.
Speed thresholds were set as high speed > 6.4mm/s, low speed ∈ [3.3 6.3] mm/s
and inactive < 3.3 mm/s.

4.2.2.2 Light/dark task and data properties

Analysis of light/dark preference of the larval zebrafish was designed on a similar
principle to that of the adult zebrafish light/dark preference test [Blaser and Penalosa,
2011]. A 12-well plate was modified by adhering three cellophane films (blue, green
and yellow) to half of each well to create a dark side that allowed the camera to track
larvae movement by infrared (IR) (refer to Figure 2.3 (d) for a sample visualisation
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of this setup). Larvae from different treatment groups were placed on the light side
of the well. The plate was placed inside a Viewpoint Zebrabox system.

The data set was consisted of four different groups of zebrafish larvae, two of the
groups were consisted of zebrafish larvae incubated at embryonic period in mannitol
while the others in glucose. One mannitol and one glucose group was also inducted
in SNP co-treatment during their incubation (refer to Table 4.1 for details about
the number of animals per group). The mannitol group without treatment was
considered the control group. The zebrafish larvae were left in the wells for 1 hour in
total. For more detailed specifications refer to [Chhabria et al., 2019].

Table 4.1: Visualization of the experimental procedure and animal counting per group
for the light/dark preference task.

mannitol glucose
no treatment 50 44

SNP treatment 45 56

4.2.2.3 Statistical analysis

Statistical comparisons were executed on GraphPad Prism [Jolla, 2016]. All inter-
group comparisons were performed using two-way ANOVA with post-hoc multiple-
comparison tests (Sidak’s test [Šidák, 1967]), where appropriate. P -values < 0.05
were considered to be statistically significant; degrees of significant are as follows: ns
or no stars P ≥ 0.05, ∗P < 0.05, ∗ ∗ P < 0.01, ∗ ∗ ∗P < 0.001, ∗ ∗ ∗ ∗ P < 0.0001.
Data are shown as mean ± standard error of mean (s.e.m.).

4.2.3 Results and discussion

Based on common locomotion analysis of the zebrafish larvae swimming paths
the two mannitol exposed larvae groups showed a significant preference for the
light as opposed with the untreated glucose exposed group (metric: time spent in
light area). The latter group also showed significant increased time in both low
and high speed locomotion while in light compared with the two mannitol exposed
groups (metric: low/high speed locomotion in light area). There was no significant
locomotion differences in the dark area. These behavioural differences were prevented
with co-treatment with SNP. For relevant results refer to [Chhabria et al., 2019].
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Based on the features (refer to Table 4.2) analysis, there was a significant increase
in the number of transitions between the untreated glucose exposed group and the
two mannitol exposed larvae groups and this increase was prevented by co-treatment
with SNP (refer to Figure 4.3 (A)). In addition, the untreated glucose exposed group
was showing a significant increase in both exploratory behaviours (eccentricity and
MPDE) and thigmotaxis (MPDC) in the light side of the well as opposed to the
mannitol exposed larvae groups (refer to Figure 4.4). Again these differences were
prevented with co-treatment with SNP.

The same analysis was performed in blocks of 15 minutes. Based on the results,
the glucose exposed group showed an increased number of transitions on the 30
minutes time stamp (refer to Figure 4.3 (B)) but no statistical significant different
could be established between this group and the other three groups. For the rest of
the features (refer to Figure 4.5) there was a more evenly increase on path eccentricity,
MPDE and MPDC for the glucose-exposed zebrafish indicating significant difference
in exploration (light area: eccentricity 15 minutes and 30 minutes timestamps, MPDE
30 minutes timestamp; dark area: eccentricity 30 minutes and 45 minutes timestamps,
MPDE 45 minutes timestamp) and thigmotactic behaviour (light area: MPDC 30
minutes and 45 minutes timestamps; dark area: MPDC 30 minutes timestamp)
compared with the other three groups. Again, SNP prevented the effect of glucose
on these aspects of behaviour.

Previous studies have described larval zebrafish behavioural differences with
anxiolytic or anxiogenic treatments [Egan et al., 2009; Richendrfer et al., 2012] as
well as increased exploration and thigmotaxis [Blaser et al., 2010; Egan et al., 2009].
This is the first study that characterise the effect of hyperglycemia on geometrical and
positional aspects of zebrafish locomotion. Glucose exposure resulted in an increase
in both exploration (as measured by the geometric features, eccentricity and MPDE)
and thigmotaxis (as measured by an increase in the positional feature, MPDC).
The latter point may indicate an association of glucose exposure and diabetes to
anxiety-related brain activation but this requires further investigation.

Finally, this study shows the importance of path features in the quantification of
various behavioural motifs that are observed throughout experimental procedures.
Here, the feature selection was performed manually by careful consideration and
experimentation of various geometrical and positional aspects of the paths. Later
(refer to Chapter 6) a new behavioural analysis framework based on semi-supervised
sparse clustering will be proposed for automatic feature selection.
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Table 4.2: Manual feature selection for the light/dark experimental procedure with
zebrafish larvae (source: [Chhabria et al., 2019]).

Eccentricity (ε)

ε =
√

1− β2

α2

Mean point distance
from ellipsoid (MPDE)

MPDE =

∑√
(xi−xe)2+(yi−ye)2

n

R

Mean point distance
from center (MPDC)

MPDC =

∑√
(xi−xα)2+(yi−yα)2

n

R

A geometric fea-
ture measuring
the absolute
elongation of a
path [Gehring
et al., 2015].
More elongated
paths have
higher eccentric-
ity indicating
more explo-
ration. For a
complete circular
path, ε = 0. α
and β are the
semi-major and
semi-minor axes
of the minimum
enclosing ellip-
soid indicated by
a blue circle.

A geometric feature measur-
ing the average elongation
of a path. It is defined as
the average Euclidean dis-
tance between every point
of the path (xi,yi) and cen-
ter of the minimum enclos-
ing ellipsoid (xe,ye), normal-
ized over the well radius, R.
Larger values of MPDE in-
dicate paths that are more
scattered across the given
area of the well.

A positional feature
measuring the position
of the path in relation
to the center of the
well. It is defined as
the average Euclidean
distance between ev-
ery point of the path
(xi,yi) and center of
the well (xα,yα), nor-
malized over the well
radius R. Paths closer
to the walls of the well
(thigmotaxis) have a
higher value of MPDC.

Number of
light/dark
transitions

Number of times the ze-
brafish larvae transitioned
between light and dark re-
gions of the well.
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Figure 4.3: Effect of mannitol/glucose treatment with/without sodium nitroprusside
(SNP) on larval zebrafish light/dart behaviour (source: [Chhabria et al., 2019]).
Quantification of number of transitions into the light/dark regions for the zebrafish larvae. (A)
Overall number of light/dark transitions for each zebrafish larvae group. (B) Number of light/dark
transitions within 15 minutes time intervals.
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Figure 4.4: Effect of mannitol/glucose treatment with/without sodium nitroprusside
(SNP) on various features of zebrafish locomotion (source: [Chhabria et al., 2019]).
Quantification of mean frequency of eccentricity (A, D), mean point distance to ellipsoid (MPDE;
B, E) and mean point distance to centre (MPDC; C, F) for the swimming path segments of the
zebrafish larvae in the light (A-C) and dark (D-F) regions of the well.
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Figure 4.5: Effect of mannitol/glucose with/without within 15 minute time intervals
on various features of larval zebrafish behaviors; eccentricity, MPDE and MPDC in
corresponding light and dark sides of the well (source: [Chhabria et al., 2019]).
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Chapter 5

A generalized framework for
detailed classification of swimming
paths inside the Morris Water
Maze

This chapter describes the published work of Vouros et al. [Vouros et al., 2018]
and its further application in the work of Huzard et al. [Huzard et al., 2019]. This
study generalises the method of Gehring et al. [Gehring et al., 2015] and proposes a
framework and software for detailed behavioural analysis inside the Morris Water
Maze procedure (MWM). For more information about this experimental procedure
refer to Chapter 2. This framework uses the concept of semi-supervised learning
with the MPCK-Means algorithm described in Chapter 2.

5.1 Introduction

The Morris Water Maze is commonly used in behavioural neuroscience for the
study of spatial learning with rodents. Over the years, various methods of analysing
rodent data collected during this task have been proposed. These methods span
from classical performance measurements to more sophisticated categorisation tech-
niques which classify the animal swimming path into behavioural classes known as
exploration strategies. Classification techniques provide additional insight into the
different types of animal behaviours but still only a limited number of studies utilise
them. This is primarily because they depend highly on machine learning knowledge.
In the work of [Gehring et al., 2015] there has been a demonstration that the animals
implement various strategies and that classifying entire trajectories can lead to the
loss of important information.

In this work, an automatic boosted classification procedure based on majority
voting, which improves on the classification error, and a validation framework which
leads to conclusions with a high degree of confidence are presented. Majority voting
refers to the fact that more than one classifier are used in order to assign a swimming
path segment into a class. This framework has been implemented into a fully
working software capable of performing all of the analyses, without requiring machine
learning knowledge from the user. This software is called RODA (ROdent Data
Analytics) [Vouros et al., 2017] and is focused on the MWM experiment. It provides
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an easy to use graphical user interface (GUI) for loading the data and defining
the experimental specifications. It also supports automatic segmentation and semi-
automatic classification, and produces quality figures which can be exported into
various image formats. RODA’s framework is applied to two MWM experimental
procedures ([Huzard et al., 2019; Vouros et al., 2018]) focused on the effects of stress
in learning and memory.

5.2 Methods

5.2.1 Analysis overview

In the proposed analysis method, the swimming paths of the animals inside the
Morris Water Maze are divided into segments of approximately equal length and
a fixed overlap percentage. For each segment a set of eight features is computed
(refer to Section 5.2.2) and then used in the classification procedure. Finally, a small
portion of the segments needs also to be assigned manually to a specific strategy
(labelling); this information is used as prior knowledge to guide the classification
procedure.

The classification procedure, which assigns segments to classes of behaviour, is
based on a semi-supervised clustering algorithm called Metric Pairwise Constrained
K-Means (MPCK-Means) [Bilenko et al., 2004]. This algorithm incorporates the two
main approaches of semi-supervised clustering: metric learning (the measuring of
similarity, ‘distance’, between data) and constrained-based learning (the use of labels
or constraints that produce a better grouping of the data). To turn the algorithm
into a classifier, the labelled data were used not only to guide the clustering process
but also to assign clusters to classes based on the labbelled elements of each cluster
(refer to Section 5.2.3).

A common issue with many clustering algorithms, including MPCK-Means, is that
a predefined number of target clusters needs to be provided; this number indicates
the number of clusters into which the data will be partitioned. Determining the
optimal number of target clusters is challenging and, although many different quality
measures were proposed over time [Kovács et al., 2005], this value will depend on
the specific clustering method and data at hand.

In this work, instead of searching for an optimal number of clusters and attempting
to generate an optimal classifier, a pool of ‘strong’ classifiers whose ‘goodness’ is
assessed based on the 10-fold cross validation error is generated. The strong classifiers
are then used to form an ‘ensemble’ which uses majority voting to reach a classification
decision. The two conditions of having both strong and diverse classifiers are essential
in majority voting in order to reach an optimal classification solution [Sharkey and
Sharkey, 1997; Zhou et al., 2002]. This will be discussed in more detail later. In
order to assess the labelling procedure (if enough and consistent labels have been
provided) the criterion of having a minimum of 40 strong classifiers has been added
prior to majority voting. Finally, the classification result of the ensemble is expected
to have a low percentage of unclassified segments (less than 7%) because, since the
classifiers are diverse, they will have different errors or will fail to classify different
segments. Thus if they work together and form an ensemble, the individual errors
will be compensated by the correct responses of the other members of the ensemble
[Sharkey and Sharkey, 1997]. A diagram of the procedure is illustrated in Figure 5.1.
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Figure 5.1: Workflow diagram illustrating the analysis procedure. After the trajectory
segmentation, eight trajectory features for each segment are computed and a certain number of
segments are manually labelled. Afterwards, a pool of classifiers is generated using different number
of initial clusters ranging for 10 to 100. ‘Strong’ classifiers (cross validation error < 25%) are then
selected from the pool and work together (majority voting) as a team (ensemble) to produce the
classification results. It is expected that the ensemble is large enough (number of classifiers ≥ 40).
Throughout the process the labelling quality is constantly assessed and in case of weak classification
results (small ensemble or 7% or more of the segments remained unclassified) the user is directed
back to the labelling stage.
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5.2.2 Trajectories segmentation, features computation and
partial labelling

To assign one trajectory to multiple classes, the earlier work of [Gehring et al.,
2015] proposed the division of the full animal swimming paths into segments. Based
on this method, each segment overlaps significantly with its previous one (percentages
of 70% and 90% have been performed on this analysis) to make sure that important
information is not lost due to an unfavourable segmentation. In this study focus
was given on the segment length under which there is consistency in the analysis
conclusions thus multiple segmentations with different tunings where performed
(refer to Table 5.1). If the segment length is too short it might be difficult to identify
to which class segments belong; if it’s too long it might happen that more than one
class of behaviour is represented. The latter case can be seen in the results section,
where the large segment length (3 times the arena radius) causes some classes to be
overshadowed by the more common classes (refer to Figure 5.9).

For each segment a set of 8 features (refer to Table 5.2) was computed. These
features were adopted from the earlier study of [Gehring et al., 2015] and are able to
capture geometrical and positional aspects of the segments. The features, along with
manually labelled data that will be described next, were used during the classification
procedure.

In this study, nine predefined strategies were adopted (see section 5.2.9). Em-
pirically is was found that the amount of data that needs to be labelled should
be roughly between 8% to 12% of the total segment number but the exact value
depends greatly on the dataset under investigation. As a rule of thumb, if fewer
labels are provided then the classification results will be poor in the sense that a lot
of segments will remain unclassified or fall under the wrong class. Since the labelling
procedure is prone to error and subjectivity a number of validation criteria have
been implemented throughout the proposed analysis.

Segmentation
I

Segmentation
II

Segmentation
III

Segmentation
IV

Segment
Length (cm)

300
(3 ·R)

250
(2.5 ·R)

250
(2.5 ·R)

200
(2 ·R)

Segment
Overlap

70% 70% 90% 70%

Number of
Segments

8847 10388 29476 13283

Number of
Segments Labelled

988
(12%)

1261
(12%)

2445
(8%)

1227
(9%)

Total Number
of Labels

1022 1313 2568 1232

Table 5.1: Parameters for the classification of four different segmentation configurations
with variable segment lengths and overlaps. For each segmentation a percentage of segments
(between 8% and 12%) was manually labeled (Number of Segments Labelled). Multiple labels could
be given to each segment; in this study no more than two labels were given simultaneously to a
segment (Total Number of Labels). The segment length was selected to be proportional to the arena
radius (R), which was equal to 100cm. The segment overlap was used to avoid any unfavourable
segmentation (see Methods)
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5.2.3 Semi-supervised classification

The classification procedure is the one described in the work of [Gehring et al.,
2015] which is based on the Metric Pairwise Constrained K-Means (MPCK-Means)
clustering algorithm implemented by Bilenko et al. [Bilenko et al., 2004] (for more
information about the algorithms refer to 2.2.4.2).

With the use of labelled data it is possible not only to guide the clustering
procedure (with the creation of MUST-LINK and CANNOT-LINK constraints as
described in 2.2.4.2) but to also combine clusters together and form larger groups
(classes) which are actually the categories of the labelled data. This mapping of
clusters into classes is done by converting a cluster into a class based on the number
of labelled segments within the cluster and its size (based on the number of points
within the cluster) as it is shown in the equation below:

mi ≡ dni ∗ pmin,ie, where , pmin,i ≡ max(n−γi , pmin) and (5.1)

mi ≡ minimum amount of labels , ni ≡ cluster size, γ = 0.75, pmin = 0.01 (or 1%)

Based on equation 5.1 smaller clusters require more labelled data in order to be
assigned to a class while larger clusters require less labelled data. pmin acts as a
threshold in the sense that is must always be 1% of labelled data available within
the cluster in order to be assigned to a class disregarding its size. For example if a
cluster has 100 points then pmin = 0.03 and the minimum number of labelled data
needs to be mi = 3. In case that the criterion described by equation 5.1 fails or if
multiple labels of different classes are present within the cluster then the cluster is
marked as undefined.

Regarding the constraints, a MUST-LINK constraint is generated between two
datapoints with the same label and a CANNOT-LINK constraint is generated
between two datapoints with a different label. Multilabelled datapoints are considered
distinctive meaning that if for example a datapoint is labelled as thigmotaxis and
incursion then a MUST-LINK constraint will be generated only with datapoints that
are also labelled as thigmotaxis and incursion. In addition, a constraint is created
only between relatively close datapoints, i.e. if the Euclidian distance between the
two labelled datapoints is less that 0.25 (the features of the datapoints are normalized
between [0 1]). The last rule has been implemented in the previous work of [Gehring
et al., 2015] to limit the number of generated constraints since too many constraints
can create computational issues.

In order to improve the classification quality the ‘two-stage clustering’ of [Gehring
et al., 2015] was performed. In the first stage the data were clustered using only the
CANNOT-LINK constraints and then clusters that could not be mapped to a class
(ambiguous clusters) are sub-divided by another clustering step, this time, however,
both CANNOT-LINK and MUST-LINK constraints are used [Gehring et al., 2015].
Moreover multiple target number of clusters are tried in succession from 2 up to two
times the initial number of clusters used in the first clustering. A sub-portioning is
considered correct if one of the sub-clusters could be classified. The stages of this
process are shown in Figure 5.2.
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Table 5.2: List of features used during the classification procedure. For the figure: Outer
(solid) circle: the Morris Water maze arena with radius RRR and center at star; black (filled)
circle: the hidden platform with radius rrr; red dots: sample of points forming a trajectory segment;
dashed ellipse: the minimum enclosing ellipse (MEE) to the trajectory segment with center at the
dotted circle, the MME is defined as the smallest enclosing ellipsoid of a set of points [Gärtner
and Schönherr, 1997]; AAA, aaa and bbb: area of the MEE, the semi-major and semi-minor axes of the
MEE; ddd: distance between the center of the arena and the center of the MEE; uiuiui: distance between
the center of the MEE to the segment point iii, UUU is the set of all these distances. vivivi: distance
between the center of the arena to the segment point iii, VVV is the set of all these distances.

u
i

a

b

d

R

A

r

v
i

6r

δ

Feature name Definition Purpose

Eccentricity ε =
√

1− b2

a2
Measure the elongation of the segments.

Focus f = 1− 4A
πl2

Measure how much the animal is search-
ing a specific area of the arena.

Inner radius
variation

IRV = IQR(U)
median(U)

Measures the relative dispersion of
points related to a circle. The specific
formula was used to increase the robust-
ness and stability against outliers.

Maximum loop
length

MLL = δ
l
, where

δ is the length of
the longest self-
intersecting loop and
l is the total length
of the segment. If no
intersection is present,
the value 0 is assigned.

It is used mainly as a measurement of
the self-oriented movements

Central
displacement

CD = d
R

It is used to identify concentric paths
with the arena.

Median distance
to center

DCm = median(V )
R

It is used to identify the amount of time
that the animal spends next to the walls
of the arena.

IQR distance
to center

DCiqr = IQR(V )
R

It is used to identify the spread of the
time during which the animal is moving
next to the walls of the arena.

Target proximity

Percentage of the path
lying within an area
centered at the plat-
form and 6 · r.

It is used to identify if the animal spends
time actively searching for the platform
or to capture random crosses through
or close to the platform.
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Figure 5.2: Stages of the semi-supervised classification algorithm [Gehring et al., 2015].
As inputs the computed features of the segments along with a partial set of labels of the segments are
provided. In addition, a predefined number of target clusters needs to be provided, which specifies
the number of clusters that the algorithm needs to detect. As output the algorithm provides the
class in which each segment falls into. The labels are used to formed the list of constraints of which
data should not be (CANNOT-LINK) or should be (MUST-LINK) in the same clusters. In the
first-stage clustering only the CANNOT-LINK constrains are used to guide the clustering procedure
and then clusters that could not be mapped into classes (ambiguous clusters) are sub-divided and a
second clustering stage begins this time with both CANNOT-LINK and MUST-LINK constraints.

5.2.4 Classification boosting with majority voting

The classification boosting is an ensemble technique that is based on the idea
that many weak learners can be converted to a strong learner [Kearns and Valiant,
1993]. In machine learning terms an ensemble of weak classifiers (classifiers that
make mistakes) can be used to form a strong classifier (classifier that makes fewer
mistakes) by combining each individual’s opinion [Gerecke et al., 2003; Jurek et al.,
2011]. This approach has been used in various classification tasks (see Oza et al. [Oza
and Tumer, 2008] for a survey) and in addressing complex real-world problems, when
single algorithmic classification solutions are unable to achieve high performance
[Acharya et al., 2011].

One way to perform classification boosting is through majority voting [Gerecke
et al., 2003]: many classifiers form an ensemble, vote for the class of each datapoint
and the class with the most votes wins. The output of the ensemble is expected to
have improved accuracy since individual errors of each classifier are compensated by
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the correct responses of the other members of the ensemble [Sharkey and Sharkey,
1997]. In order to achieve such an outcome, the classifiers need to at least be diverse
in the sense that they should not share the same errors [Gerecke et al., 2003; Schapire,
1990]. It should be noted, however, that diversity alone is insufficient to ensure
that randomly selected, arbitrarily weak, classifiers will achieve high classification
accuracy [Sharkey and Sharkey, 1997; Zhu, 2015]. Individual classifiers have to also
be strong meaning that they should be sufficiently accurate on their own ([Ruta and
Gabrys, 2002; Zhu, 2015] indicate an accuracy of at least 50%).

5.2.4.1 Majority voting implementation

In the proposed framework, the need is to classify different trajectory segments
into animal behavioural classes (strategies) having only a partial set of labelled data.
The classification is parameterised by the target number of clusters of the clustering
algorithm, a value that is difficult to estimate in advance. In order to overcome
this problem a number of classifiers were generated by providing different numbers
of target clusters in succession; At the end of this process a pool of classifiers is
generated. 10-fold cross validation [Varma and Simon, 2006] process is then used, as
proposed in [Bilenko et al., 2004; Gehring et al., 2015], to evaluate different numbers
of target clusters from 10 to 100 (for more information about the cross validation
procedure refer to 2.2.8.3). More number of clusters can be tested but this will result
on a significant rise of the classification time requirements and, empirically, it can
be avoided with better labeling. Only classifiers with a validation error lower than
25% are used to form an ensemble. The minimum number of required classifiers
that fulfill this criteria was set to 40. The reasoning behind this requirement is to
ensure that there is a satisfactory sample size of ‘strong’ classifiers since this will
be used later to provide a degree of confidence to the quality of the results (refer to
5.2.7). For the majority voting, a simple scheme was adopted where the vote of each
classifier has the same weight [Bouziane et al., 2011; Liaw and Wiener, 2002] and
that in case of a tie the data point (segment) is marked as undefined.

5.2.5 Framework validation

The new framework was validated thoroughly by assessing all the procedures in
terms of robustness and results consistency. Overall, four different segmentations
were performed with the aim to find the bounds (error margins) for the segment
length between which there are consistent analysis conclusions. As it is discussed in
the results section, it is expected that the segmentation length affects the results
and it is shown that consistency for the MWM can be achieved with segmentation
lengths between 2 times and 2.5 times the arena radius. For more information refer
to Figure 5.9 where it is shown that longer segment lengths fails to capture the
difference between the two groups of the Chaining Response behavioural strategy.

For each of the four different segmentations the performance of the classifiers, the
ensemble and multiple ensembles formed by random sample of ’strong’ classifiers are
compared. Table 5.3 shows the relevant results of the last stage of analysis, where
the overlapped segments have been mapped back to the original swimming paths.
For the latter the smoothing function is applied on the segments (refer to section
5.2.6) and this detail is important because the smoothing procedure increases the
performance of the classifiers (for the statistical analysis prior to the smoothing
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function refer to the Appendix C). As expected, ensembles have higher accuracy,
a lower percentage of unclassified segments and a higher percentage of agreement
among them in comparison to individual classifiers. However, since cross validation
was used for both tuning and testing, additionally the error of the ensembles was
manually assessed on two out of the four segmentations (see Table 5.4 for the manual
error estimation).

Segmentation
I

Segmentation
II

Segmentation
III

Segmentation
IV

Number of generated
Classifiers

42 78 91 64

Performance: Classifiers
Average Error (%)
[min-max]

16.8
[5.4 24.9]

17.5
[3.7 25.0]

13.9
[1.8 21.5]

18.0
[7.3 24.9]

Unclassified (%)
Segments

2.5 2.5 1.3 3.7

Agreement (%) 58.7 61.0 59.6 56.3
Performance: Ensemble(s)

Error (%) < 0.01 0.2 < 0.01 < 0.01
Unclassified (%)
Segments

0.0 0.0 0.0 0.1

Agreement (%) 83.4 82.6 82.3 80.0

Table 5.3: Classification statistics (average) for the four segmentation configurations
of Table 5.1 and benefits of majority voting. (1) Number of generated classifiers: based
on each segmentation, only classifiers with cross-validation error lower than 25% were selected to
take part in the classification analysis procedures (ensemble and binomial confidence intervals).
As a rule of the thumb a minimum number of 40 ‘strong’ classifiers is required to be generated in
order to trust the classification results. (2) Error: the 10-fold cross validation was used in order
to select ‘strong’ classifiers based on their validation error. 10-fold cross validation was also used to
compute the average accuracy of the ‘strong’ classifiers and the accuracy of the ensemble (in case
of the ensemble, the same folds used by the classifiers were re-used). The ensemble significantly
benefits the classification accuracy. Because the cross validation was used for both tuning and
testing the error of the ensembles was manually assessed on two out of the four segmentations
(see Appendix C). (3) The percentage of unclassified segments was computed separately
(again based on cross-validation); since the classifiers are ‘strong’ only a few segments remain
unclassified, nevertheless the ensemble almost totally nullifies the unclassified segments. (4) The
average agreement between the classifiers was computed by first calculating the percentage
of agreement within each pair (agreement is formed when two classifiers have assigned the same
label on a particular segment) and then averaging all the agreements together (refer to Validity
Measurements for more information). In order to perform the same statistical measurement in the
ensemble domain, 21 ensembles were created by picking a random sample of 11 ‘strong’ classifiers
from the pool. The agreement between the classifiers is better than moderate and, as expected,
the agreement of the ensembles is high. A sample smaller than 40 was chosen to avoid a large
overlapping of classifiers across ensembles.

5.2.5.1 Classifier diversity

To evaluate the diversity of the classifiers, the percentage of their agreement is
assessed for the class of each segment. The result is a symmetric matrix with rows
and columns representing the classifiers where each element shows the percentage of
segments for which two classifiers agree on the assigned class. The diagonal values of
this matrix equal to 100 as each classifier is in 100% agreement with itself (refer to
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Segmentation II Segmentation IV
TT error 1.4% 1.0%
IC error 8.0% 1.5%
SC error 6.6% 4.1%
FS error 6.0% 3.7%
CR error 11.5% 12.6%
SO error 11.0% 8.1%
SS error 9.6% 3.2%
ST error 2.3% 1.0%

average error 5.7% 4.4%
total error 6.3% 2.8%

Table 5.4: Manual estimation of ensemble error. The ensemble error was manually assessed
for the segmentations II and IV. The table shows both the total error and the error among the
different classes (including the average). The total manually estimated error of the ensembles is
still significantly lower than the average error of the classifiers (6.3% vs 17.5% for Segmentation II
and 2.8% vs 18.0% for Segmentation IV). The results of the ensembles were manually assessed for
two reasons: (i) to estimate the overfitting, which is likely to be caused because the same data were
used for both tuning and testing, and (ii) because the testing set was very small since a limited
amount of labels were provided, the error estimation is likely to be overly optimistic.

the Appendix C for an example of an agreement matrix). An overall agreement can
be computed by averaging the upper or lower triangular of the matrix. In addition,
the average cross validation error (accuracy) over the classifiers is considered. In
order for the classifiers to be both diverse and strong it is expected that they should
have an average percentage of agreement well below 100% (in this case around 60%)
and low cross validation error (refer to Table 5.3).

As previously reported [Sharkey and Sharkey, 1997], ensembles have far less
variance in comparison with individual classifiers thus it is expected to have much
higher agreement. To demonstrate this observation, a number of ensembles is
generated by picking classifiers at random from the pool. Afterwards the same
statistical measurement of agreement is performed for the ensembles, similar to the
one described for the classifiers. In contrast to the classifiers, the ensembles have
high agreements among them (more than 80%) and nearly nullify the cross validation
error of the classifiers (see Table 5.3). However, since in this particular occasion
the cross validation was used for both tuning and testing [Gehring et al., 2015],
additionally manually assessment of the error was performed on the ensembles in
two out of the four segmentations (see Table 5.4 for the manual error estimation).

5.2.5.2 Percentage of unclassified segments

A useful measure for the quality of the classification is the percentage of unclas-
sified segments. For certain segments, it is expected that none of the classifiers in
the ensemble will be able to determine a class, or that there could be a draw for
segments that transit between classes (refer to Table 5.5). This, however, does not
have an impact on the consistency of results.
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Segmentation
I

Segmentation
II

Segmentation
III

Segmentation
IV

Thigmotaxis 27.7% 24.0% 24.6% 22.5%
Incursion 19.0% 18.9% 20.6% 17.0%
Scanning 10.2% 12.3% 10.5% 11.9%
Focused Search 9.2% 8.9% 8.2% 10.0%
Chaining Response 4.5% 5.8% 5.5% 9.8%
Self Orienting 7.1% 8.8% 8.2% 8.4%
Scanning Surroundings 17.4% 15.8% 16.8% 12.9%
Target Scanning 4.9% 5.6% 5.6% 7.4%
Unclassified 0.0% 0.0% 0.0% 0.1%

Table 5.5: Percentage of segments falling under each class for the four segmentation
configurations of Table 5.1. Some differences among the four segmentations are visible although
based on the results of Figure 5.9 consistency on the conclusions is preserved in segmentations
II, III and IV. Regarding segmentation I, where there is no indication of any difference between
the two animal groups based on the Chaining Response strategy, more segments are identified as
Thigmotaxis and Scanning Surroundings. This indicates the possibility that some segments which
transit between Chaining Response and one of these strategies are classified either as Thigmotaxis
or Scanning Surroundings.

5.2.6 Mapping segment classes to the full swimming paths

The classification has been performed on overlapping segments of the animals’
swimming paths, thus they need to be mapped back to the whole trajectories.

As a first approach, the classified segments are considered as continuous parts of
the trajectories ignoring the overlap percentage. This method provides consistent
results on the significant differences of the strategies but fails to detect differences
on strategy transition between groups (refer to the Appendix C for the relevant
result). The reason for this is that sparse segments within each swimming path fall
under different classes thus viewing them as a sequence leads to an overestimation of
transitions (a transition occurs when a segment falls under a different class after a
sequence of segments that fall under the same class).

To address this limitation, a smoothing technique is implemented with parameters
independent of the segmentation choice. This was done for two reasons: (i) to avoid
subjective conclusions based on a specific segmentation configuration and (ii) to be
able to directly compare different segmentations. In more detail, given that R equals
to the radius of the arena, the swimming paths are now divided into intervals of
length R. Each of the intervals is assigned to a certain class based on a weighed voting
of all the overlapping segments. The mathematical expression for this operation is
shown in equation 5.2,

CTi ≡ argckmax
∑

( Sj∈ck
Ti∩Sj 6=∅)

wk · e−
d2ij

2·σ2 (5.2)

where Ti is the ith interval, di,j is the distance from the centre of the jth segment (Sj)
overlapping with the ith interval to the centre of the ith interval, ck is the kth segment
class and wk is a class weight normalised so that

∑
wk = 1. The sum is to be taken

over the segments intersecting with the interval Ti, belong to class ck (unclassified

segments are excluded) and fulfill the threshold requirement e−
d2ij

2·σ2 >= 0.14, where
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σ is the variance of the Gaussian and the value 0.14 is obtained when dij = 2 · σ.
The reason for the latest requirement is to create a cutoff for the segments that are
too far away from the centre of the interval. The parameter σ controls the weight of
the vote of each segment based on its distance from the interval and in this analysis
it was set equal to R in order to achieve proportionality with the arena dimensions
(other values have also been tested, refer to the Figure 5.3). Finally, the class weight
wk was defined as wk = 1

P (ck)
, where P (ck) is the percentage of segments belonging

to class k. The intuition for setting the class weights inversely proportional to the
amount of segments that fall under each class was to prevent rare classes from being
overshadowed by common ones. To prevent having too small or too large class
weights the bounds of [0.01 0.5] were set, which means that if less than 1% or more
than 50% of the segments fall under a certain category then this class will receive
weight equal to 0.5 or 0.01 respectively.

Figure 5.3: Empirically defined area of tuning for the smoothing function. R refers to
the arena radius (in cm); x-axis (sigma) refers to a particular value of σ (variance of the Gaussian);
y-axis (interval) refers to a particular value of the length of the interval; green boxes indicate areas
under which the smoothing function (refer to section 2.7 Mapping Segment Classes to the Full
Swimming Paths) yields consistent results for every segmentation (excluding Segmentation I where
the segments length is too large). Interval of length 2 ·R is at the limit and from this point onwards
consistency cannot be sustained.

5.2.7 Statistics

The non-parametric Friedman test [Siegel, 1956] was used for the analysis of
variance of each strategy between the two animal groups. This test was selected
because the data are not normally distributed and because of its ability to control
the variability among subjects over the different observations [Theodorsson-Norheim,
1987].

For the analysis the null hypothesis is that there in no difference between the two
animal groups (stressed and control) over each one of the strategies (refer to section
5.2.9) as well as over the number of times that the animals change their behaviour
within single trials (strategy transitions). Small p-values (< 0.05) generated by the
Friedman test lead us to discard the null hypothesis that the results are identical and
that any differences are only due to chance (random sampling). When the test is
used the Friedman test p-value and the Friedman’s chi-square statistic (Q) [Hollander
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and Wolfe, 1999] are reported. Since the comparison is between two animal groups,
stress and control, there are k = 2 variables and the degrees of freedom are equal to
df = 1.

In addition to the Friedman test, the 95% confidence intervals of a binomial distri-
bution [Wallis, 2013] are being used, where the significance of a specific classification,
as judged by each of the classifiers that form the ensemble, is viewed as a random
process generating one (significant differences) or zero (non-significant differences).
In more detail, the confidence intervals indicate the degree of confidence that the
classifiers forming the ensemble are on average pointing to the same conclusion as the
ensemble (i.e. the majority agrees that there is significant difference over strategies
or strategies transitions). Given that the Friedman test can have two outcomes, it
is hypothesised that the outcomes are the result of a binomial distribution. It is
required that the 95% confidence intervals to be clearly above 0.5 (or 50%) in order
to be confident that the result in not due to chance [Brown et al., 2001; Peck, 2012].

5.2.8 The RODA software

RODA [Vouros et al., 2017] consists of a series of graphical user interfaces (GUIs)
which offer straightforward analysis of trajectory data extracted from the Noldus
Ethovision System [Noldus et al., 2001]. Every stage of the process can be tuned
to meet the user’s needs. The generated figures can be exported into a variety of
different image formats (JPEG, TIFF, etc.) while the numerical data depicted in
the figures are also saved in Comma Separated Values (CSV) file format in case the
user wishes to generate the figures using a different software (e.g. Microsoft Excel).

The software is entirely written in MATLAB [MATLAB, 2016b] and uses a modi-
fied version of the WEKA library [Frank et al., 2016] written in Java which is known as
WekaUT (for more information refer to http://www.cs.utexas.edu/users/ml/risc/code/).

The code of RODA is open-source and available on the github repository
https://github.com/Rodent-DataAnalytics/mwm-ml-gen. The code requires the
MATLAB’s Statistics Toolbox [MATLAB, 2016a] to be installed. Compiled versions
of the software are also available for Windows and MAC OS (see the releases tab of
the repository https://github.com/RodentDataAnalytics/mwm-ml-gen/releases).

5.2.9 Classes of behaviour and strategy transitions

The choice of the classes of behaviours (strategies) in this analysis is motivated
by previous studies (e.g. [Graziano et al., 2003; Wolfer and Lipp, 1992; Wolfer et al.,
1998]) which have observed and reported stereotypical animal behaviours inside the
MWM (for an example of each strategy refer to Figure 5.4).

� Thigmotaxis (TT). The animal moves exclusively on the periphery of the
arena and most of the time it touches the walls of the arena.

� Incursion (IC). The animal starts to distant itself from the arena periphery
with visible inward movements.

� Scanning (SC). A behaviour associated with random searches focused in the
centre of the pool. Another characteristic of this behaviour is that the animal
rapidly turns away from the arena walls if it touches them [Graziano et al.,
2003].
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Thigmotaxis Incursion Scanning

Focused

Search

Chaining

Response

Self
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Figure 5.4: Stereotypical classes of behaviour. Each figure shows an example of a trajectory
segment falling under each behavioural class. Throughout the experiment, the animals implement
different strategies in order to solve the maze. By detailed analysis of each trial trajectory data
into segments the interchange of these stereotypical animal behaviours becomes visible.

� Focused Search (FS). This behaviour is also associated with random searches
but here the animal actively searches a particular small region of the arena.

� Chaining Response (CR). A behaviour first observed in the study of Wolfer
et al. [Wolfer and Lipp, 2000] where the animal appears to have memorised
the distance to the platform from the arena wall and swims circularly in order
to find it.

� Self Orienting (SO). The animal performs a loop and orients itself inside
the arena [Graziano et al., 2003].

� Scanning Surroundings (SS). The animal crosses a region very close to the
platform of the arena but moves away [Gehring et al., 2015].

� Scanning Target (ST). The animal actively searches for the arena by swap-
ping paths around it.

� Direct Finding (DF). The animal navigates straight to the platform.

� Strategy Transitions (tr). In addition to the behavioural strategies, analysis
on the number of times that the animals change their behaviour within single
trials was also performed.
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5.2.10 Morris Water Maze experimental procedure and data
properties

The data have been collected from experiments performed at the Laboratory
of Behavioural Genetics, EPFL at Lausanne, Switzerland. All procedures were
conducted in conformance with the Swiss National Institutional Guidelines on Animal
Experimentation and approved by a license from the Swiss Cantonal Veterinary
Office Committee for Animal Experimentation.

The water maze had a diameter of 200cm with a submerged platform of diameter
12cm. The recordings of the animals trajectories were performed by using the tracking
software, Noldues EthoVision [Noldus et al., 2001] version 3.1. The data set contains
57 rats, 30 of which were inducted into stress at peripubertal age [Márquez et al.,
2013] and 27 of which were the control group. In the previous study of [Gehring
et al., 2015], 3 stress animals were removed due to missing trials and low levels of
stress based on the animal speeds. A total of 12 trials were performed per animal
divided into 3 consecutive days with 4 trials per day. The timeout of each trial was
90 seconds and if the animal failed to find the platform within the time limit it was
guided to it. The inter-trial interval between the trials of the same day was only a
few minutes. The starting position of the animals was altered between trials.

The data are available in the same GitHub repository that hosts RODA (https://
github.com/RodentDataAnalytics/mwm-ml-gen). RODA has a demo function em-
bedded for importing the data and reproducing the results of this work (see the Wiki
section of the repository).

5.3 Results

5.3.1 Trajectory Segmentation Analysis (TSA) & the RODA
software

The generic framework allows Morris Water Maze trajectory segmentation analysis
that requires little input from the user. Trajectories are divided into overlapping
segments, a percentage of which (8% to 12%) are labelled by an expert user as
belonging to one of eight different behavioural strategies. Multiple labels can also be
used for a segment (see Methods for more information about the behavioural classes).
The remaining segments are automatically classified via a semi-supervised clustering
algorithm to one of the user-defined strategies, and via a smoothing procedure are
mapped back to the full trajectories. This procedure allows the identification of
multiple strategies in a single trial.

The user, in addition to providing labels, needs to define the segmentation length
and overlap. For the segmentation parameters, appropriate regimes have been
identified for the MWM with dimensions from 2 up to 2.5 times the arena radius
(see Results: Robustness across different segmentation configurations).

In order to reduce the required tuning from the user (an issue of the previous
work of Gehring et al. [Gehring et al., 2015]) and improve the objectivity of the
classification, ensembles of classifiers were employed that vote to assign the segment
to a strategy according to a simple majority voting rule.

A software, called RODA [Vouros et al., 2017] (shown in Figure 5.5), has
been developed in order for the proposed framework to be available for usage
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Figure 5.5: Screenshots of the software RODA. Each window is numbered to denote a
separate stage of the workflow, which consists of: (1) the data input GUI, which is used to load
the trajectory data extracted from Ethovision and select the specific tracks that will be used in
the analysis; (2) the segmentation panel, which offers full control over the segmentation options;
(3) the labelling GUI, which offers visualisation of entire trajectories and their segments allowing
easy labelling of the segments; (4) the classification GUI, which contains options to tune various
parts of the classification process (a default option is also available); (5) the results panel; which
generates the analysis results. The results are generated in both graphical and textual formats.
The user also has control over the output format of the image files as well as the elements of the
generated figures such as text size, line width, etc. The arrow connecting (5) with (3) indicates
that if the analysis results are not consistent then there is the need to go back to the labelling stage
and provide additional or improved labels.

by the scientific community. The software is available on the github repository
https://github.com/RodentDataAnalytics/mwm-ml-gen under the GNU General
Public License version 3 (GPL-3.0). A manual of the corresponding software can be
found under the wiki section of the repository (https://github.com/RodentDataAnalytics/
mwm-ml-gen/wiki) details on the methodology and technical information about
RODA can be found under Materials and Methods.

5.3.2 Advantages of Trajectory Segmentation Analysis (TSA)

The proposed methodology finds quantitative behavioural differences beyond
those identified by standard metrics on the full swimming paths of the animals. It is
able to detect additional significant differences between the behavioural strategies
employed by the two or more animal groups in comparison to the categorisation of
the whole animals trajectories. In more detail, from a manual behavioural analysis
of the whole swimming paths of the animals the strategies thigmotaxis, incursion,
scanning, self oriented, target scanning and direct finding are detected and analysed.
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By using TSA the additional behavioural classes of focused search, chaining response
and scanning surroundings were able to be identified and analysed (for more details
on the aforementioned classes of behaviour refer to Methods and Figure 5.4).

The framework was applied to the data set of Gehring et al. [Gehring et al.,
2015] composed of two rodent groups (stressed and control rats). The same data
was selected as a benchmark to show the improved method of this study and to
demonstrate its robustness and generality. The two animal groups differ on the
strategies of Thigmotaxis (Friedman test p-value = 0.004, Q = 8.516, k = 2),
Incursion (Friedman test p-value = 0.009, Q = 6.811, k = 2) and Chaining Response
(Friedman test p-value = 0.007, Q = 7.220, k = 2) in favour of the stressed group
meaning that stressed animals implement these strategies more often than the control
group. In addition, stressed animals tend to transit between different strategies more
often than the control animals (Friedman test p-value = 0.037, Q = 4.340, k = 2).
For relevant results refer to Figure 5.6.

Commonly used measurements of learning (animal speed, escape latency and
path length) suggest that there is a significant difference among the two animal
groups in the sense that the stressed animals are faster (Friedman test p-value
= 2x10−8, Q = 31.510, k = 2) and swap longer paths (Friedman test p-value = 0.002,
Q = 9.836, k = 2) within the trials but they still fail to find the platform in less time
than the control animals (Friedman test p-value = 0.154, Q = 2.030, k = 2). For
relevant results refer to Figure 5.7 for the relevant results). Manual classification of
the full swimming paths to different behavioural strategies was performed due to the
small amount of data; this analysis suggests that the reason for this phenomenon
is because stressed animals tend to use the low level strategy of Thigmotaxis more
than the control group (Friedman test p-value = 0.015, Q = 5.888, k = 2), which
lowers their chances of finding the platform since they spent most of the time close
to the arena periphery (refer to Figure 5.8 for the relevant results). TSA agrees
on that conclusion but it is also able to detect that stressed animals tend to use
a series of low level strategies, both Thigmotaxis (Friedman test p-value = 0.004,
Q = 8.516, k = 2) and Incursion (Friedman test p-value = 0.009, Q = 6.811, k = 2,
refer to Figure 5.6), which lower their chances of finding the platform since they spent
most of the time on or close to the arena periphery. In addition, stressed animals
implement the Chaining Response strategy more often than the control animals
(Friedman test p-value = 0.007, Q = 7.220, k = 2, refer to Figure 5.6), which implies
that they haven’t memorised the location of the platform but its distance to the wall
[Wolfer and Lipp, 2000]; so they swim at that distance in hope to find it by chance;
a behaviour that is again, on average, time consuming. Furthermore, TSA allows
the detection and quantification of behavioural switching which shows that stressed
animals change their behaviour inside the arena more often than the control animals
(Friedman test p-value = 0.037, Q = 4.340, k = 2, refer to Figure 5.6). These results
are relevant to studies such as [Aston-Jones et al., 2000; Luksys et al., 2009; Luksys
and Sandi, 2011] which suggest that high levels of stress lead to weak attention and
frequent behavioural switches.

Chapter 5 Avgoustinos Vouros 101



5.3. Results

p=0.004 p=0.009 p=0.502

p=0.444 p=0.007 p=0.718

p=0.229 p=0.827 p=0.037

Figure 5.6: Percentage of segments falling under each strategy for the stressed (black)
and control (white) animal groups over each trial. All the animals were tested for a set of
12 trials divided in to 3 sessions (days). Each segment (path interval; see Methods) is considered to
be of length equal to the length of the arena radius (100cm). For the transitions: bars represent the
first and third quartiles of the data; the black (control group) or white (stressed group) horizontal
lines are the medians, crosses are the outliers and whiskers indicate the minimum and the maximum
values. These results were generated by using a segmentation length of 2.5 times the arena radius
(250cm) and 90% overlap; for the classification an ensemble of classifiers was created by using
classifiers with validation error less than 25%. The Friedman test p-value (shown on the top
right) was used to compare both animal groups for the complete set of trials. According to the
plots Thigmotaxis and Incursion strategies show a clear difference in favour of the stressed groups
(Friedman test p-value = 0.004, Q = 8.516, k = 2 and p-value = 0.009, Q = 6.811, k = 2) along with
Chaining Response (Friedman test p-value = 0.007, Q = 7.220, k = 2). The number of transitions
between strategies shows that the stressed animals change their behaviour more often than control
animals within single trials (Friedman test p-value = 0.037, Q = 4.340, k = 2). Segmentation
analysis is able to distinguish more behavioural differences between the two groups in comparison
with the classification of the full swimming paths (see Figure 5.8), which are then consistent
with the performance measurements (see Figure 5.7); stressed animals, despite running faster and
sweeping longer swimming paths, require the same amount of time to detect the arena because
they implement a series of inefficient strategies (i.e. Thigmatoxis and Incursion) or less effective
strategies (i.e. Chaining Response). Furthermore they are switching behaviours (transitions) more
often than the control animals indicating a loss of focus of finding the platform. The Direct Finding
class was excluded from this figure because for this class the statistical analysis gives quantitatively
the same results as in Figure 5.8)
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p=0.154 p=0.002 p=2x10-8

Figure 5.7: Full swimming path standard metrics for the stressed (black) and control
(white) animal groups. All the animals were tested for a set of 12 trials divided in 3 sessions
(days). Bars represent the first and third quartiles of the data; the grey line that splits the bars
represents the median, crosses are the outliers and whiskers indicate the minimum and the maximum
values. The Friedman test p-value over the trials is shown on the top right of each plot. Stressed
animals find the platform as fast as the control group (escape latency, p-value = 0.154, Q = 2.030,
k = 2) even though they run faster (path length, p-value = 2x10−8, Q = 31.510, k = 2) and sweep
(on average) longer swimming paths (speed, p-value = 0.002, Q = 9.836, k = 2) within the trials
than the control group.

5.3.3 Robustness across different segmentation configura-
tions

It is expected that the segmentation length affects the results, i.e. a full trajectory
will not reveal more than one strategy or a very small segment will not have enough
information for mapping it onto a strategy. Therefore focus was given on segmentation
lengths between 2 times and 3 times the arena radius in order to investigate the
robustness of the process.

The animal swimming paths inside the maze were segmented using four different
segmentation configurations (different segment length and/or segment overlap). For
each segmentation, labels were provided to approximately 10% of the segments
(refer to Table 5.1 for a summary of the different configurations) and the framework
was used to classify the rest. The conclusions were based on both the ensemble
classification result as well as the percentage of classifiers in an ensemble that agree
to this result (95% binomial confidence intervals clearly above 50%). Three out of
four segmentation configurations (with segment lengths 2 and 2.5 times the arena
radius) led to the conclusion that the two animal groups (stressed and control)
have significant difference on the strategies of Thigmotaxis, Incursion and Chaining
Response and strategy transitions (Friedman test p-value < 0.05 and 95% binomial
confidence intervals clearly above 50%, see Figure 5.9 for detailed statistics) in favour
of the stressed group meaning that stressed animals implement these strategies and
transit between different strategies more often than the control animals. One out of
four segmentations (segment length of 3 times the arena radius) failed to capture
significant difference in the Chaining Response strategy and a probable reason is
that the segment length is too large, thus strategies that are rarer and significantly
smaller are overshadowed by more common ones (e.g., Chaining Response may be
overshadowed by Scanning Surrounding or Thigmotaxis, refer to Table 5.5). This
is an issue introduced already during the labelling procedure. For example, in
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p=0.015
p=0.107 p=0.078

p=0.487 p=0.263 p=0.443

Figure 5.8: Manual classification of the full swimming paths. White bars: control group;
Black bars: stressed group; the two groups were compared over the complete set of trials using
the Friedman test (shown on the top right corner of each graph). In the manual classification
of the full swimming paths, certain behavioural classes (Focused Search, Chaining Response and
Scanning Surroundings) couldn’t be identified. Significant difference (Friedman test p-value = 0.015,
Q = 5.888, k = 2) was detected only for the Thigmotaxis strategy in favour of the stressed animal
group, indicating that stressed animals are implementing it more often than the control animals
and have less chances of detecting the platform. This is relevant to the performance measurements
(see Figure 5.7) where stressed animals run faster and sweep longer swimming paths, but still fail to
find the platform in less time than the control group. For more information about each behavioural
strategy refer to Methods.

Segmentation 1 only 0.67% of the samples were single-labelled as chaining response
vs 1.58%, 0.72%, 1.06% in the Segmentations 2 to 4 correspondingly. The larger
segment makes it more difficult for the human expert to distinguish rare classes that
are adjoint to frequent ones.

5.4 Discussion

Methodologies that classify swimming paths in MWM to behavioural classes
can reveal different stages of learning in animal groups. However, up to now, there
are very few examples of earlier research that have made use of machine learning
techniques to automatically detect animal behaviours. Most of them have proposed
methods that are difficult to generalise and require machine learning knowledge. In
the previous study of [Gehring et al., 2015] the limitations of the previous techniques
were addressed by focusing on the fact that forcing whole swimming paths into
a single class of behaviour can be suboptimal as each trajectory incorporates a
number of different behaviours. The methodology of detailed trajectory classification
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p-val TT IC SC FS CR SO SS ST tr

I 0.008 0.011 0.450 0.205 0.156 0.960 0.271 0.571 0.035

II 0.005 0.013 0.157 0.278 0.004 0.639 0.190 0.345 0.019

III 0.004 0.009 0.502 0.444 0.007 0.718 0.229 0.827 0.037

IV 0.004 0.005 0.156 0.821 0.008 0.749 0.436 0.389 0.038

Q TT IC SC FS CR SO SS ST tr

I 6.996 6.442 0.571 1.607 2.015 0.003 1.213 0.320 4.425

II 8.003 6.187 1.998 1.176 8.537 0.221 1.718 0.891 5.516

III 8.516 6.811 0.451 0.585 7.220 0.131 1.445 0.048 4.340

IV 8.236 8.008 2.013 0.051 7.128 0.102 0.607 0.742 4.291

Ensemble Result

Friedman test p-values and Q  per strategy and transi!ons (k=2)

Figure 5.9: Conclusive results from the classification of each segmentation configuration
(see Table 5.1). Each plot shows the 95% binomial confidence intervals for the classifiers of each
segmentation regarding their agreement on the significant difference between the two animal groups
for each strategy and the strategy transitions. Squares indicate the mean of the classifiers; errorbars
represent the 95% confidence intervals; the dashed line indicates the threshold of interest (0.5 or
50%). Confidence intervals clearly above 0.5 (or 50%) confirm that there is indeed a significant
difference between the the two animal groups on the strategies and the strategy transitions. The
table below the plots shows the Friedman test p-values (upper table) and the equivalent Friedman’s
chi-square statistic (lower table) for the classification result of the ensemble; in all cases k = 2,
control and stress columns. Segmentation configurations are arranged in columns and strategies
in rows; each element has the relevant p-value and chi-square statistic and bold cells indicate
significant difference, i.e. p-value < 0.05. Abbreviations: Thigmotaxis (TT), Incursion (IC),
Scanning (SC), Focused Search (FS), Chaining Response (CR), Self Orienting (SO), Scanning
Surroundings (SS), Target Scanning (ST), Strategy Transitions (tr) (refer to Methods for more
information on each behavioural strategy). It is shown that in three cases (Segmentations II, III, IV)
the two animal groups show significant differences in the strategies of Thigmotaxis (TT), Incursion
(IC) and Chaining Response (CR) and transition between strategies (tr). It is observed that while
Segmentations II, III, IV agree that there is significant differences on the Thigmotaxis, Incursion,
Chaining Response and transitions, Segmentation I fails to capture the significant difference on the
Chaining Response because of the lengthy segments which caused this strategy to be overshadowed
by other strategies and disappear (refer also to Table 5.5).
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can reveal additional behavioural differences between two groups of animals and
can be used even when small amount of trajectory data are available since the
segmentation process, due to overlapping, typically creates a significant amount
of data. Nevertheless, the previously proposed method of segmented trajectories
classification required a certain degree of machine learning knowledge to be used
correctly, and allowed an amount of subjectivity when choosing classifiers.

This work addresses these issues by proposing to improve the robustness of
the technique via majority voting. The results are no longer based on a single
classification tuning (classifier) but on the agreement of many. This technique
alleviated the subjective assignment of the swimming path segments to classes since,
in practice, many classifiers that seemingly perform equally well in validation, have
relatively high disagreement, and how to best chose among them might be unclear.
Here, different segmentation configurations are systematically investigated to identify
the bounds under which the method produces meaningful results. The bounds refer
to the minimum and maximum segmentation length and the number of labels that
needs to be provided. Furthermore, the binomial confidence intervals on the ensemble
of the classifiers are informative regarding the quality of the results.

The data set from the previous work of [Gehring et al., 2015] was used as a
benchmark of the new methodology and also as a way to demonstrate its robustness
and generality. There is a similarity of the results of this study and the study of
[Gehring et al., 2015] but with one difference; in this study significant difference
for the scanning strategy is not detected as it was the case in [Gehring et al., 2015]
based on the result of a single classifier. This is due to a number of factors: (i)
the use of only one classifier, which results in higher error (see also the confidence
intervals in Figure 5.9), (ii) the merging of three different segmentations that resulted
in classifications that did not fully agree with each other. Here the conclusions are
based on the majority voting of many classifiers that are shown to have an improved
performance versus the simple classifiers, and therefore lead to more reliable results.

One important point that should be mentioned is that despite the fact that for
each segmentation the ensemble formed has extremely low to zero error percentage,
the largest segmentation failed to indicate difference on the Chaining Response
strategy. The cause of this issue was identified to be the difficulty involved when
labelling large segments; in this case the Chaining Response can be masked by
more dominant classes such as Thigmotaxis. It is worth noting that the smoothing
function, which is used to map the segments back to the whole trajectories, again
do not affect the conclusions formed based on the strategies. Even without the
smoothing function, again, three segmentations agree on the differences between the
two animal groups on the Thigmotaxis, Incursion and Chaining Response strategies
while the segmentation with the more lengthy segments cannot capture the difference
on Chaining Response (refer to the Appendix C for the non-smoothed classification
results). For this reason, the criterion for correct classification cannot be based on
the classification error alone. Consistent results within a reasonable variation of the
segmentation length is also a requirement, in this particular case the variation was
between 200 and 250cm, i.e., 2R and 2.5R, with R being the radius of the maze.
These segmentation parameter arranges are verified and directly applicable to other
Morris Water Maze experiments (refer to [Huzard et al., 2019] or section 5.5 of this
dissertation).

To facilitate the use of this methodology by the scientific community, a complete
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software incorporating of the framework is provided which includes a Graphical User
Interface (GUI) to guide the user throughout all the analysis stages and allows for
the manual configuration of each procedure.

Although the proposed framework is able to detect behavioural information in
much detail it should highlighted that it has a substantial limitation; it is not able
to detect behavioural strategies of lengths shorter than 2 ·R. Thus if groups have
different lengths, e.g. if only one group is having lengths more than 2 ·R then the
current method is still applicable but it will not provide much information about
behavioural differences because most of the segments will be classified as Direct
Finding. Main reasons for this limitation are the following: (a) it is difficult to
put manual labels to segments with lengths below 2 · R and (b) trajectories with
lengths below the length of the segmentation tuning will be automatically classified
as Direct Finding. To alleviate this limitation the user has the ability to provide
labels to trajectories shorter than the specified segmentation tuning. Nevertheless,
this happens only after the classification procedure meaning that these trajectories
are not taking part in the semi-supervised clustering and classification; this implies
that if the majority or all of the path lengths are shorter than 2 · R the proposed
framework is reduced to completely manual behavioural classification. In such cases
traditional performance measurements would potentially be more effective.

A proposed future application of the current framework is to address differences
in sequence of behavioural strategies. As it was suggested in the literature [Hamilton
et al., 2004; Whishaw and Mittleman, 1986], strategies within one trial occur in
reliable sequences. Since the output of the method are sequences of strategies, one
could potentially apply a Markovian analysis [Gagniuc, 2017] on the sequences and
detect differences between animal groups on the probabilities of transition between
behavioural strategies. A more detailed analysis on the different kinds of transition
has the potential to reveal additional differences among animal groups. Such analysis
can be viewed as a Markov model where each behavioural strategy is a state and
when the animal is in a particular state it can either remain in the same state, i.e.
repeat the same behaviour, or transit to another behaviour.

Finally, it should be noted that the work that is presented here can generalise to
other species of rodents inside the MWM (e.g. mice) as well as other experiments
similar to the MWM (e.g. open field tasks, place avoidance). Two main significant
changes to be made are the strategy definitions and the trajectory features. In
the unpublished work of [Gehring et al., 2017] the issue of pre-defined strategies is
addressed by using a fully unsupervised procedure to find patterns of behaviour in
the active allothetic place avoidance task. In that experiment there is no previous
knowledge of animal behaviours thus supervised or semi-supervised techniques cannot
be applied. However, it is mentioned that the classification of this study depends on
the trajectory features that are used. A combined work of the classification boosting
technique, an unsupervised methodology [Gehring et al., 2017], and the engineering
of trajectory features that not linked to a specific experiment has the potential to
lead to a robust generalised framework of trajectory analysis for many different
animal species used in experimental procedures (e.g. octopus [Boal et al., 2000] and
zebrafish [Gerlai, 2017]).
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5.5 Further application

The RODA procedure described before has been further applied in the study
of [Huzard et al., 2019]. The purpose of this study was to investigate whether
endogenous differences in glucocorticoid responses influenced spatial learning, long-
term memory, and reversal learning abilities inside the Morris Water Maze (MWM)
at early aging.

In more detail, it has been reported that stress modulates the navigation in
animals [Schwabe et al., 2010; Schwabe and Wolf, 2010] and humans [Van Gerven
et al., 2016] during spatial tasks and rats that were inducted to stress during early
stages of their life are showing impaired navigation in the MWM by performing
low level strategies such as Thigmotaxis and Incursion and adapting non-spatial
strategies such as Chaining Response [Gehring et al., 2015; Vouros et al., 2018].
The inverted U-shape relationship between stress and spatial memory proposition of
[Yerkes et al., 1908] suggests that cognitive performance is best under optimal stress
based on the difficulty of the task and levels of stress above or below the optimal
will result to impaired performances [Salehi et al., 2010]. Based on this proposition
the hypothesis is that rats with low level of corticosterone response would perform
worse in navigation tasks such as the MWM in comparison with rats with medium
level of corticosterone response. Rats with specifically modulated higher levels of
corticosterone response to match the stress challenge of the MWM would potentially
be the best performers.

5.5.1 Experimental procedure properties

The maze consisted of a black circular pool (diameter of 200cm and height of
45cm) filled with 30cm of water at 23±1oC and virtually divided into four equivalent
quadrants: northeast (NE), northwest (NW), southeast (SE), and southwest (SW).
A circular hidden platform (diameter of 10cm and distance between platform center
point and pool wall was 30cm) was submerged 1 to 2cm below the water surface.
The testing room was illuminated (50± 10 lux) by lights placed below the pool to
avoid light reflections. To monitor the animals, a camera was mounted to the ceiling
above the center of the pool. The water maze was surrounded by extra-maze cues of
different shape, size, and color.

The data were consisted of male rats with Low, Intermediate and High lines of
corticosterone response (for more details on the selected breeding refer to [Huzard
et al., 2019]). Each group had 10 subjects but one rat from the High line was
excluded from the experiment, in accordance with the Swiss Animal Experimentation
Guidelines, due to critical health issue at 15 months of age (tumor growth on forelimb).
The experiment setup (shown in Figure 5.10) was chronologically the following:

� 23 training trials between days 1 to 5 as follows: 5 trials the first three days
and 4 trials the last two days. This subset of data will be refereed to as train1.

� 1 probe trial on the 5th day. This subset of data will be refereed to as probe1.

� 1 probe trial on the 17th day. This subset of data will be refereed to as probe2.

� 3 training trials on the 17th day. This subset of data will be refereed to as
train2.
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Figure 5.10: Schematic representation of the experimental protocol. During day 1 to day
5 (train1 ), rats were training to escape the maze by reaching the platform in the northeast (NE)
quadrant. After training on day 5, a first probe trial was performed probe1. On Day 17, a second
probe trial was performed probe2 followed by 3 re-training trials (train2 ). On day 18, the platform
was placed in the southwest (SW) quadrant and rats were trained for 4 trials (reverseT ). Starting
positions followed a semi-random sequence and are indicated below each training days. The pool
was surrounded by visual cues of different shape, size and color.

� 4 reversal trials on the 18th day. This subset of data will be refereed to as
reverseT.

5.5.2 RODA tuning and data analytics

The swimming paths of the animals were firstly analysed using the RODA
software software version 4.0.2 [Vouros et al., 2017, 2018] which implements an
updated analysis procedure based on the previous study of Gehring et al. [Gehring
et al., 2015]. RODA has the ability to segment the swimming paths and classify
each segment allowing detailed analysis on the different behaviours within each
experimental trial. Because the segmentation procedure is based on overlapping
segments, the segments are then mapped to the original trajectories considering
specific path intervals. These intervals, which essentially represent the different
behaviours of the animal during a specific trial, were collected for more sophisticated
statistical analysis than the one offered in RODA. Tuning of RODA was performed
based on [Vouros et al., 2017, 2018] which is as follows:

� Segmentation: The length of the segments was selected to be 2.5 times the
arena radius (2.5 · 100cm) with 70% overlap.

� Labelling: Labels were manually provided to the subsets probe1, probe2,
train2, reverseT of the data set.

� Intervals: The intervals are of length equal to the arena radius (100cm).

The analysis procedure was also performed for path segments of 2.7 times the
arena radius (2.7 · 100cm) with 70% overlap (results not shown). There were no
qualitatively differences between the two analyses. Manual assessment on all the
classified segments was also performed. There were two statistical analyses performed
on the data leading to the same conclusions. The published analysis (see [Huzard
et al., 2019]) was performed in EPFL and presents the findings in a more concise
way. It was based on the analysis that is described in this dissertation.
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5.5.2.1 Statistical analysis methods

Statistical analysis and comparison among the animal groups was performed on
the path intervals (each interval has length equal the arena radius) falling under
9 different classes (refer to Figure 5.4). When the compared animal groups had
equal number of animals but contained missing values (missing trials) statistical
comparison was performed by trial using the Skillings-Mack test [Chatfield and
Mander, 2009] instead of the Friedman test that RODA offers. Skillings-Mack test
is a generalization of the Friedman test when there are randomly missing data, for
a relevant study regarding this test refer to [Lai et al., 2012]. In this particular
case some animals performed 22 instead of 23 trials thus the Friedman test was not
appropriate. Skillings-Mack test was used only on the train1 subset since it was
the only one containing missing values. The rest of the data were analysed using
the Friedman test [Siegel, 1956]. Statistical analysis testing was not performed for
the probe trials since the Friedman test requires at least three different occasion
measurements on each group, but for complicity strategies distribution graphs for
the probe trials are placed into the Appendix C.4.

For the analysis the null hypothesis is that there in no difference between any
two animal groups (Low, Intermediate, High) over each one of the strategies as well
as over the number behavioural transitions within single trials (strategy transitions).
P-values lower than 0.05 generated by either the Skillings-Mack or the Friedman
test lead us to discard the null hypothesis that the strategies distributions are
identical and that any differences are only due to chance (random sampling). These
two tests are non-parametric because the data are not normally distributed and
because they control the variability among subjects over the different observations
[Theodorsson-Norheim, 1987].

In addition to these tests, 95% confidence intervals of a binomial distribution
[Wallis, 2013] were also used in the following case; when the High animal group
was compared with either the Low or the Intermediate group. Because the High
animal group has one animal less from the other two groups, in order to perform
the hypothesis testing both groups under comparison had to be equalised thus one
animal was excluded from either the Low or the Intermediate group. However, in
order to avoid effecting the results on a particular exclusion each animal was excluded
in a rotational basis. This process was executed 10 times in total (because Low and
Intermediate groups are both having 10 animals while High group is having 9) thus
different p-values were generated. Each p-value can indicate significant difference if it
is below 0.05 or not significant difference otherwise, thus the process was considered
as binomial and it was concluded that the result was significant only if the binomial
confidence intervals were well-above 50% indicating that the result was not due to
chance [Brown et al., 2001; Peck, 2012]. A similar process has also been used in the
study of [Vouros et al., 2018], and here, since the process is executed 10 times, 9 out
of 10 p-values need to be below 0.05 in order for the intervals to be well-above 50%.

5.5.3 Results and discussion

The three animal groups were compared and this section provides a report of
the percentage of strategies distributions over trials for each experimental procedure.
For each figure, green bars correspond to the Low corticosterone response animal
group; blue bars correspond to the Intermediate corticosterone response animal
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group; red bars correspond to the High corticosterone response animal group. The
five experimental procedures, in chronological order as indicated in the Methods
sections, are: the train1 on days 1 to 5 (Figures 5.11, 5.14, 5.17); the probe1 on day
5; the probe2 on day 17; the train2 on day 17 (Figures 5.12, 5.15, 5.18); the reverseT
on day 18 (Figures 5.13, 5.16, 5.19). Statistical analysis testing was not performed
for the probe trials since the Friedman test requires at least three different occasion
measurements on each group (for complicity strategies distribution graphs for the
probe trials are placed into the Appendix C).

If the path intervals are now the path segments then the strategy percentages are
calculated by counting the number of path segments falling under each strategy, for
each group and for each trial, multiplied by 100 and divided by the total number of
segments. Thus for each figure with regards to each experimental procedure the sum
of all the bars of all the behavioural strategy plots will equal to 100. This was done
so that the visual inspection on the differences between the two animal groups under
comparison can be performed both among the trials for each strategy and among
the strategies of the experimental procedure as a whole. The plot for the strategy
transitions is separate and illustrates the number of transitions between behavioural
strategies on each trial between the two animal groups under comparison.

In order to compare the Low or the Intermediate corticosterone response group
with the High corticosterone response group, 1 animal was excluded from the Low or
the Intermediate group in rotation and the hypothesis test was executed 10 times.
Then the significant difference based on the multiple p-values was assessed using the
95% binomial confidence intervals where a p− value < 0.05 indicates that the null
hypothesis should be discarded while a p− value > 0.05 indicates that it should not.
The intervals are required to be clearly 50% in order to discard the null hypothesis
that there is no significant difference between the two groups.

Overall, the results of this analysis are as follows:

� During train1 there are the following significant differences:

◦ In favor of the Intermediate group there is more Thigmotactic behaviour
than the other two groups (Figure 5.11, Thigmotaxis, p− value = 0.003
and Figure 5.17, Thigmotaxis, p − value < 0.05) and more Incursion
behaviour than the Low group (Figure 5.11, Incursion, p− value = 0.048).

◦ In favor of the Low group there is more Self Orienting behaviour than the
Intermediate group (Figure 5.11, Self Orienting, p− value = 0.002)

These results suggest that the Intermediate animals perform poorly during
training when compared with both the Low and the High animals because they
are using Low level behavioral strategies. The Low animals are better than
the Intermediate since the results suggest that they try to navigate inside the
maze using orient themselves based on the surroundings.

� During train2 there are the following significant differences:

◦ In favor of the Intermediate group there is more Direct Finding behaviour
than the low group (Figure 5.12, Direct Finding, p− value = 0.022) and
more Chaining Response than the High group (Figure, Chaining Response,
5.18, p− value < 0.05).
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◦ In favor of the Low group there is more Self Orienting behaviour than
the other two groups (Figure 5.12, Self Orienting, p− value < 0.03 and
Figure 5.12, Self Orienting, p − value < 0.05) and this group transit
between different behaviours more often than the High group (Figure 5.15,
Transitions, p− value < 0.05).

◦ In favor of the High group there is more Direct Finding behaviour than
the Low group (Figure, Direct Finding, 5.15, p− value < 0.05).

These results suggest that Low animals have long-term memory memory deficits
and they have to re-learn the task by orienting themselves inside the arena
(Self Orienting behaviour). On the other hand, the other two groups directly
navigate to the location of the arena (Direct Finding). The Chaining Response
behaviour of the Intermediate animals suggest that this group even though it
performs better than the Low group it does not learning the exact location of
the platform rather its distance from the wall of the arena. Thus these animals
swim around this distance in hopes to find to find the platform. On average,
the Intermediate group would require more time to reach the platform, but
based on performance measurements (refer to Results: Spatial learning in the
water maze of [Huzard et al., 2019]) it is the fastest group and speed favors a
behaviour such as Chaining Response. The High group remembers the exact
location and directly navigates to it (Direct Finding). It should be mentioned
is that the hypothesis testing did not show any significant difference between
the Low and the High animal groups on the Chaining Response strategy even
though the High group does not perform any Chaining Response. Probably
this is because of the statistical power of the Friedman test which requires
more evidence to indicate significant difference.

� During reverseT there are the following significant differences:

◦ In favor of the Low group there is more Thigmotaxis behaviour than
both the other two groups (Figure 5.13, Thigmotaxis, p− value = 0.038
and Figure 5.16, Thigmotaxis, p − value < 0.05), more Self Orienting
and Scanning Target behaviours than the Intermediate group (Figure
5.13, Self Orienting, p− value = 0.038 and Figure 5.13, Scanning Target,
p− value = 0.006) and more Incursion behaviour as well as more often
transitions between different strategies than the High group (Figure 5.16,
Incursion, p− value < 0.05 and Figure 5.16, transitions, p− value < 0.05)

◦ In favor of the Intermediate group there is more Chaining Response
behaviour than both the other two groups (Figure 5.13, Chaining Response,
p− value = 0.025 and Figure 5.19, Chaining Response, p− value < 0.05)

These results further quantify the observations of procedure train2. Based
on performance measurements (refer to Results: Reversal learning of [Huzard
et al., 2019]) Low animals spent more time to reach the platform and this is
indicated by their behaviours. They cover more distance inside the maze in
order to find the platform because they re-learn the task using Thigmotaxis
and Self Orienting. After they have memorized the platform location they
show better cognitive abilities than the Intermediate group since they actively
searching the platform (Scanning Target) while the Intermediate animals having
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only memorize the distance between the platform and the walls of the arena
they swim around this distance (Chaining Response). Overall both Low and
Intermediate groups exhibit lower cognitive abilities in comparison with the
High animals who perform less Incursion and behavioural transitions than the
Low and less Chaining Responses than the Intermediate animals.

Figure 5.12: train2 experimental procedure; comparison between Low (green bars)
and Intermediate (blue bars) animal groups. Significant differences based on the Friedman
test are in Self Orienting (favor of the Low) and Direct Finding (favor of the Intermediate).
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Figure 5.11: train1 experimental procedure; comparison between Low (green bars) and
Intermediate (blue bars) animal groups. Significant differences based on the Skillings-Mack
test are in Thigmotaxis (favor of the Intermediate), Incursion (favor of the Intermediate) and Self
Orienting (favor of the Low).
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Figure 5.13: probe1 experimental procedure; comparison between Low (green bars)
and Intermediate (blue bars) animal groups. Significant differences based on the Friedman
test are in Thigmotaxis (favor of the Low), Self Orienting (favor of the Low), Scanning Target
(favor of the Low) and Chaining Response (favor of the Intermediate).
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Figure 5.14: train1 experimental procedure; comparison between Low (green bars)
and High (red bars) animal groups. There are no significant differences between the two
groups. To equalize the groups, 1 animal was excluded on rotational basis from the Low group
and then the Skillings-Mack was executed. On the top right of each plot are the 95% binomial
confidence intervals, indicating the number of successes i.e p-values < 0.05 with a red dot. The
intervals are required to be clearly above 0.5 in order to drop the null hypothesis that there is no
significant difference between the two groups.

116 Chapter 5 Avgoustinos Vouros



5.5. Further application

Figure 5.15: train2 experimental procedure; comparison between Low (green bars)
and High (red bars) animal groups. There are significant differences on Self Orienting (favor
of the Low), Direct Finding (favor of the High) and transitions (favor of the Low). To equalize the
groups, 1 animal was excluded on rotational basis from the Low group and then the Friedman test
was executed. On the top right of each plot are the 95% binomial confidence intervals, indicating
the number of successes i.e p-values < 0.05 with a red dot. The intervals is required to be clearly
above 0.5 in order to drop the null hypothesis that there is no significant difference between the
two groups.
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5.5. Further application

Figure 5.16: reverseT experimental procedure; comparison between Low (green bars)
and High (red bars) animal groups. There are significant differences on Thigmotaxis, Incursion
and transitions (all in favor of the Low). To equalize the groups, 1 animal was excluded on rotational
basis from the Low group and then the Friedman test was executed. On the top right of each plot
are the 95% binomial confidence intervals, indicating the number of successes i.e p-values < 0.05
with a red dot. The intervals is required to be clearly above 0.5 in order to drop the null hypothesis
that there is no significant difference between the two groups.
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5.5. Further application

Figure 5.17: train1 experimental procedure; comparison between Intermediate (blue
bars) and High (red bars) animal groups. There is a significant difference on Thigmotaxis
(favor of the Intermediate). To equalize the groups, 1 animal was excluded on rotational basis from
the Low group and then the Friedman test was executed. On the top right of each plot are the 95%
binomial confidence intervals, indicating the number of successes i.e p-values < 0.05 with a red dot.
The intervals is required to be clearly above 0.5 in order to drop the null hypothesis that there is
no significant difference between the two groups.

Chapter 5 Avgoustinos Vouros 119



5.5. Further application

Figure 5.18: train2 experimental procedure; comparison between Intermediate (blue
bars) and High (red bars) animal groups. There is a significant difference on Chaining
Response (favor of the Intermediate). To equalize the groups, 1 animal was excluded on rotational
basis from the Low group and then the Friedman test was executed. On the top right of each plot
are the 95% binomial confidence intervals, indicating the number of successes i.e p-values < 0.05
with a red dot. The intervals is required to be clearly above 0.5 in order to drop the null hypothesis
that there is no significant difference between the two groups.
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5.5. Further application

Figure 5.19: reverseT experimental procedure; comparison between Intermediate
(blue bars) and High (red bars) animal groups. There is a significant difference on Chaining
Response (favor of the Intermediate). To equalize the groups, 1 animal was excluded on rotational
basis from the Low group and then the Friedman test was executed. On the top right of each plot
are the 95% binomial confidence intervals, indicating the number of successes i.e p-values < 0.05
with a red dot. The intervals is required to be clearly above 0.5 in order to drop the null hypothesis
that there is no significant difference between the two groups.
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5.5. Further application

5.5.4 Conclusions

Three groups of male rats with different levels of corticosterone response, Low,
Intermediate and High were compared. The comparison was performed based on
the different behavioural strategies that the animals were implementing in order to
solve the Morris Water Maze task. Firstly, the RODA software [Vouros et al., 2017,
2018] was used to perform detailed classification of the animal paths inside the maze
leading to the generation of path segments, classified under 9 different behaviours.
Afterwards, these segments were used to quantify behavioural differences between the
three groups using statistical analysis based on hypothesis testing. The statistical
analysis was validated based on the one performed by Huzard et al. [Huzard et al.,
2019] as well as with performance measurements performed in the aforementioned
study.

� The Low group animals utilizes more consistent learning by gradually evolving
their behaviours. The dominant strategy of the Low animals is the Self Ori-
enting which allows them to orient themselves inside the maze and gradually
to evolve their behavioural strategies from Low level (Thigmotaxis and Incur-
sion) to medium (Focused Search, Scanning) and then High level (Scanning
Target). However, this animal group suffers from long-term memory deficits
and it requires to re-learn the location of the platform as we observe from
its pattern of behaviours during the different experimental procedures (days
17-18). Nevertheless, once the location has again been memorized this group
shows improved performance and implements High level strategies (Scanning
Target) to navigate to the location of the platform.

� The Intermediate group utilizes weak learning (Thigmotaxis) and ultimately
it adapts to less intelligent behavioural strategies (Chaining Response). The
dominant strategy of the Intermediate animals is the Chaining Response which
means that these animals have memorized the distance from the walls of
the arena to the platform and swim around this distance hoping to find the
platform. Evidence suggests that these animals have better long-term memory
during latter trials (day 5 and days 17-18) even though less effective learning.
Nevertheless, these animals have been adapted to a behaviour (Chaining
Response) which is beneficial only because the platform was located on the
same distance from the wall during all the procedures, excluding the probe trials,
and since they are significantly faster than Low and High animals they show
improved performance measurements during long-term memory procedures.
The Low animals, even through they are slower in both learning and speed
they have developed better behavioural strategies and this is shown during the
reversal trials where they implemented High level strategies (Scanning Target)
to find the platform while the Intermediate animals remain focused on the
Chaining Response strategy which implies no cognitive behaviour.

� The High group is supported by enough evidence to be have the best performers.
High animals essentially follow the same behavioural strategies evolution of the
Low group but they learn faster and at the same time they maintain better
memory of the platform location.
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Chapter 6

A semi-supervised algorithm with
feature selection mechanism for the
Morris Water Maze task

This Chapter builds on Chapter 5 and replaces the MPCK-Means component of
the RODA framework [Vouros et al., 2017, 2018] with the PCSK-Means algorithm
presented in Chapter 3. The aim is to add a feature selection capability in the frame-
work which would allow to in-detailed study of the features used in the classification
task.

6.1 Introduction

As described in Chapter 5, to analyse rodents trajectories from the Morris Water
Maze (MWM) experiments the initial animal paths were split into segments of a
certain length and a percentage of overlap. A set of eight features is then computed
for each segment and a percentage of data is then manually labeled. Finally a
classification framework based on MPCK-Means and classification boosting is using
the features and the partially labeled data to classify the rest.

An extension of the previously described pipeline is to also provide information
about the effect of each feature on the classification task i.e. how much each feature
contributed to the separation of the classes. Since the features are engineered to have
a biological interpretation, such information can be of importance and favor further
researched on targeted subset of features. In the study of [Chhabria et al., 2019]
(refer to Chapter 4) such work had to be done manually in order to link features to
animal behaviours.

In this study the classification framework described of [Vouros et al., 2018] (refer
also to Chapter 5) will be modified in order to incorporate the Pairwise Constrained
Sparse K-Means (PCSK-Means) algorithm described and tested in [Vouros and
Vasilaki, 2020] (refer also to Chapter 3). As it is shown in the aforementioned
study, PCSK-Means has a feature selection mechanism and can be used to extract
information about the importance of each feature. It will be shown that by changing
only the semi-supervised algorithm the framework for detailed classification of
swimming paths inside the Morris Water Maze would then be capable of outputting
information about the importance of each feature.
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6.2 Methods

6.2.1 Two-stage classification using PCSK-Means algorithm

The same two-stage classification framework with majority boosting as the one
described in Chapter 5 (see also the published work of [Vouros et al., 2018]) was
used for this study. The only difference is that the clustering was performed using
the PCSK-Means algorithm (see 3.2.2.1) instead of the MPCK-Means (see 2.2.4.2).
The algorithm was initialised using the seeding method (see 2.2.7.7) as was the
case with the MPCK-Means algorithm since based on the benchmark of Chapter 3
PCSK-Means is robust to the initialisation method.

6.2.2 PCSK-Means algorithm tuning

The PCSK-Means algorithm requires the tuning of two parameters the target
number of clusters K and the sparsity S. The first parameter is auto-tunable based
on the majority voting method implemented and described in Chapter 5 (see also
[Vouros et al., 2018]) under which different numbers of target clusters are tested
and the ones that result to the best classifiers based on the 10-fold cross validation
procedure are adapted and form an ensemble. The results of the selected classifiers
and the ensemble are then used to form the final analysis conclusions.

For the tuning of the second parameter S, which specifies how many features
will receive 0 weight (amount of sparseness), the studies of [Brodinová et al., 2017;
Witten and Tibshirani, 2010] propose a modification of the gap statistic [Tibshirani
et al., 2001] (see section 2.2.8.1.3 for more information). Another option would have
been the 10-fold cross validation across different values of S. However, both of these
methods require a lot of computations thus for this study the silhouette method
(see 2.2.8.1.2) was used to identify an appropriate value for S between the interval
[1
√
p] (p is the dimensionality of the data set) with a step of 0.2 (for an explanation

of these specific bound of S refer to Appendix B). Using the silhouette method did
not cause any difference in the classification results which match that of the original
study described in Chapter 5.

6.2.3 Morris Water Maze data properties

The data set used in this study is one of the sets that contain segmented animal
trajectories from two animal groups, stress and control, in the Morris Water Maze
procedure from the study of [Vouros et al., 2018] (refer also to Chapter 5). Specifically
it is the segmentation with segment length of 250cm (2.5 times the arena radius) and
overlap 70% (refer to Table 5.1). It contains 10388 data points 1261 of which are
labeled and 8 behavioural classes. Apart from the 8 original features computed for
each trajectory segment (named Median distance to center, IQR distance to center,
Focus, Central displacement, Inner radius variation, Target proximity, Eccentricity,
Maximum loop length; refer to Table 5.2 for more information) a 9th feature was
added in the data set which is the Segment length. This feature is known to be
uninformative since all the segments have approximately the same length. Random
permutations of this feature were also generated (features 10th to 13th) and added to
the data set resulted to a total of 13 features.
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6.3 Results

A comparison between the conclusions of the study described in Chapter 5 using
the original classification of RODA [Vouros et al., 2017, 2018] and the proposed one
is performed. Some differences are visible among the two classifications (refer to
Table 6.1) but based on the comparison in Figure 6.1 both frameworks result to the
same conclusions.

PCSK
Classification

MPCK
Classification

Number of generated
classifiers

64 78

Classifiers
(average)

Ensemble
Classifiers
(average)

Ensemble

Thigmotaxis 23.7% 24.0% 23.0% 24.0%
Incursion 18.9% 18.2% 19.3% 18.9%
Scanning 11.8% 12.2% 12.2% 12.3%
Focused Search 6.3% 7.4% 7.4% 8.9%
Chaining Response 9.0% 8.0% 7.8% 5.8%
Self Orienting 7.4% 8.5% 7.6% 8.8%
Scanning Surroundings 14.6% 16.6% 14.8% 15.8%
Target Scanning 5.0% 5.1% 5.4% 5.6%

Table 6.1: Percentage of segments falling under each class for the PCSK and MPCK
classification frameworks. For each classification (the original using the MPCK-Means algorithm,
refer to Chapter 5 and the proposed using the PCSK-Means algorithm) the number of generated
classifiers to form an ensemble is presented. The statistics for each class are shown separately
for the classifiers (average) and the ensemble. Some differences between the classifiers and the
ensemble as well as the two classification procedures are visible but based on the results of Figure
6.1 consistency on the conclusions is preserved.

Afterwards, the capabilities of the new framework are assessed by studying the
feature weights assigned after the classification procedure. It should be noted that
MPCK-Means cannot be used for feature assessment as shown in the experimental
work of Chapter 3, rather it learns a metric that best fit the data to the constraints.
Table 6.2 presents the weight of each feature based on the classifiers that were used
to form the ensemble. Based on the results, the 9th to 13th features have correctly
been identified as uninformative. For the rest of the features, which are also used
in the previous study of [Gehring et al., 2015], the Inner radius variation, Target
proximity and Eccentricity are also having low feature weights.

6.4 Discussion

In this study a potential update for the RODA framework [Vouros et al., 2017,
2018] is proposed and tested. This new framework has feature selection and assessment
capabilities to provide more information about the underlying value of each feature
used during the classification of the animal trajectory segments inside the Morris
Water Maze experimental procedure.

Based on the results (see Table 6.2 and Figure 6.1) the new framework does not
alter the conclusions of the previous study (refer to Chapter 5 and the published study
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6.4. Discussion

Figure 6.1: Comparison between MPCK-Means (MPCK) and PCSK-Means (PCSK)
on the conclusive results from the classification of the data set. Each plot shows the 95%
binomial confidence intervals for the classifiers of each segmentation regarding their agreement
on the significant difference between the two animal groups of the data set for each strategy and
the strategy transitions. Squares indicate the mean of the classifiers; errorbars represent the 95%
confidence intervals; the dashed line indicates the threshold of interest (0.5 or 50%). Confidence
intervals clearly above 0.5 (or 50%) confirm that there is indeed a significant difference between the
the two animal groups on the strategies and the strategy transitions. The table below the plots
shows the Friedman test p-values for the classification result of the ensemble for each classification
(PCSK and MPCK). Each element of the table has the relevant p-value and gray-marked cells
indicate significant difference, i.e. p-value < 0.05. Abbreviations: Thigmotaxis (TT), Incursion
(IC), Scanning (SC), Focused Search (FS), Chaining Response (CR), Self Orienting (SO), Scanning
Surroundings (SS), Target Scanning (ST), Strategy Transitions (tr) (refer to section 5.2.9 for more
information on each behavioural strategy). We see that using the PCSK-Means instead of the
MPCK-Means algorithm in the classification framework of RODA [Vouros et al., 2017, 2018] (refer
to Chapter 5, section 5.2.3) does not alter the conclusions of the study.
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Weight value
Feature name

min max mean var
Median distance to center 0.32 0.37 0.36 0.01
IQR distance to center 0.41 0.45 0.44 0.01
Focus 0.56 0.61 0.58 0.01
Central displacement 0.23 0.30 0.29 0.01
Inner radius variation 0.02 0.07 0.05 0.01
Target proximity 0.04 0.18 0.10 0.05
Eccentricity 0 0.08 0.04 0.02
Maximum loop length 0.48 0.54 0.49 0.01
Segment length 0 0.01 0 0
Segment length (permutation) 0 0.01 0 0
Segment length (permutation) 0 0.01 0 0
Segment length (permutation) 0 0.01 0 0
Segment length (permutation) 0 0.01 0 0

Table 6.2: Feature weight values for the Morris Water Maze. The Table shows the weight
of each feature used in the Morris Water Maze studies of [Gehring et al., 2015] and [Vouros et al.,
2018] as assigned by the new classification framework proposed in this study using all the classifiers
that formed the ensemble. Five extra uninformative feature were added which are the length of
each segment (Segment length) and four random permutations of this feature. The uninformative
feature has correctly being assigned the minimum weight value. Other features that also have been
assigned with low weight values are marked in gray.

[Vouros et al., 2018]) and it is able to identify correctly the known uninformative
feature of segment length among its permutations by assigning a weight of 0 to
them (see Table 6.2, Segment length and permutations). In the current work the
features: Inner radius variation, Target proximity and Eccentricity used in the
studies of [Gehring et al., 2015; Vouros et al., 2018] have also been identified to be
uninformative based on their low weight value.

Eccentricity, which was also used in the study of [Chhabria et al., 2019] (refer to
Chapter 4), was expected to capture long straight paths, when the animal traverses
through the arena without being focused to certain areas. Target proximity was
expected to capture behaviours related to the platform, when the animal searches
or crosses close to it. Inner radius variation is a more abstract feature but the
expectation was to capture differences between focal and eccentric paths since the
more focal to an area the path is (thus the minimum enclosing ellipsoid to the path
would tend to be circular) the more this feature value tends to 0.

Nevertheless, the remaining features are enough to differentiate path aspects
described by features indicated as informative by the algorithm: distance to center
metrics and central displacement can be used to indicate thigmotactic behaviours;
focus can be used to indicate when the animal searches particular areas of the arena.
These features are enough to differentiate strategies like Thigmotaxis, Incursion,
Scanning, Focused Search and Chaining. Given also the partial labeling, platform
related strategies like Scanning Target and Scanning Surrounding can also be iden-
tified. Finally maximum loop length is identified as important since it is the only
feature capturing patterns indicating Self Orientated behaviours.
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Chapter 7

Conclusions and future work

7.1 PhD contribution

Behavioural neuroscience uses a variety of experimental procedures involving
locomotion. Analysing animal paths inside constrained environments can provide
valuable information about how certain factors such as diseases and drugs can alter
the natural behaviour and how such alternations affect certain brain regions and
brain functionalities such as the development of learning and memory. Over the years
different machine learning methods have been designed to automate the process of
drawing intelligence from animal data involving behavioural task but such methods
are experiment-specific and require domain-specific machine learning knowledge in
order to be deployed and used. This PhD work is focused on integrating different
analysis techniques together in a unified machine learning framework in order to
design pipelines capable of extracting as much information as possible from any
experimental procedure. The researched and engineered machine learning methods
are built around pre-existing knowledge of animal behaviours to nullify the need of
domain-specific machine learning knowledge. When such knowledge is not available
then application is still possible in order to yield information about which aspects
of the animal pathing are important thus direct further research towards them. In
general, this PhD contributions are directed towards the fields of machine learning
and behavioural neuroscience.

More specifically, this PhD study contributed to field of machine learning in the
following ways (Chapter 3, [Vouros et al., 2019; Vouros and Vasilaki, 2020]):

1. There has been an extended benchmark study on unsupervised and semi-
supervised K-Means initialisation methods and variations with detailed listing
of their performance. This study includes:

(a) the K-Means initialisation methods: Random, K-Means++, Maximin,
Kaufman, ROBIN and DK-Means++;

(b) the K-Means unsupervised variations: Lloyd’s K-Means, Hartigan-Wong’s
K-Means, K-Medians and Weiszfeld’s algorithm;

(c) Sparse K-Means and the semi-supervised variations of Pairwise Con-
strained K-Means and Metric Pairwise Constrained K-Means which are ini-
tialised by both the unsupervised DK-Means++ and the semi-supervised
Seeding methods;
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and showed that, regardless of the K-Means clustering algorithm used, DK-
Means++ can achieve the best performance on average compared with the
other methods, while if exhaustive search is possible K-Means++ can achieve
the best performance. K-Medians is, marginally, the best K-Means variation
followed by Hartigan-Wong’s K-Means.

2. A semi-supervised K-Means algorithm named Pairwise Constrained Sparse K-
Means (PCSK-Means) was engineered. This algorithm brings together Sparse K-
Means clustering and Pairwise Constrained K-Means clustering with the goal to
achieve automatic feature selection and assessment and increased classification
performance when data labels are available. Experimental work showed that the
feature selection mechanism is unaffected by the type of constraints, number of
constraints or initialisation method used. For classification tasks PCSK-Means
can achieve better performance that the unsupervised Sparse K-Means and
almost the same performance of other semi-supervised K-Means algorithms
(MPCK-Means). This makes it an ideal candidate in scenarios when feature
selection is important and should not detriment classification performance.

In the neuroscience field there has been research and collection of universal path
features that can analyse animal paths in a constrained open area regardless of
the animal subject or the experimental procedure. Using such features behavioural
information can be extracted manually or semi-automatically with the use of a
framework (RODA) that requires few examples of animal behaviours to be given as
input and then classifies the rest listing also information about the importance of
each feature during the classification task. Application of manual features analysis
in the light/dark preference task using zebrafish larva animal models for diabetes
(Chapter 4, [Chhabria et al., 2019]) identified that:

1. Hyperglycemia results in an increase to both exploration and thigmotactic
behaviours of the subjects.

2. Such behaviours are return to normal with SNP treatment.

3. SNP treatment does not cause any behavioural alternations to non-diabetic
subjects.

Application of the RODA framework [Vouros et al., 2018] and software [Vouros et al.,
2017] on Morris Water Maze studies in rodents aiming to explore the effects of stress
in learning and memory (Chapters 5 [Huzard et al., 2019; Vouros et al., 2018] and 6)
showed that:

1. Stressed animals exhibit impaired learning and utilise low level strategies
(Thigmotaxis, Incursion) for a longer duration than control animals. They
adapt to sub-optimal strategies (Chaining response) to solve the task. They
also transit between different behaviours more often than control animals which
is not a beneficial learning process.

2. Corticosterone response level affects learning and memory in the following
ways:

(a) Low corticosterone response levels result to consistent but slow learning
accompanied with long-term memory deficits.
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(b) High corticosterone response levels result to fast learning and reduce the
long-term memory deficits.

(c) Intermediate levels of corticosterone response result to the adaptation
of sub-optimal behaviours (Chaining response) which benefit from the
increased animal speed.

3. Identifying the sub-optimal strategy of memorising the distance from the
walls of the arena to the hidden platform and navigating in a circular path
passing through the hidden platform (Chaining response) is not possible using
traditional metrics such as the amount of time to solve the task or other analysis
methods that classify the whole animal path during a trial to one stereotypical
behaviour. The proposed framework though, is able to distinguish different
strategies during each trial resulting to the identification of the Chaining
response strategy and its disadvantages in learning.

4. Only a subset of features is important for classifying the different animal
behaviours inside the Morris Water Maze task.

7.2 Disadvantages, limitations and future work

The work presented in this PhD study aims to design and propose ways of
extracting detailed behavioural information from experimental procedures involving
navigational tasks. To achieve this aim, a segmentation methodology of the animal
paths is proposed. This methodology is first reported in the study of [Gehring et al.,
2015] and further researched and improved (refer to Chapter 5 and the publication
of [Vouros et al., 2018]). The segmentation is based on overlapping, where an animal
path is separated into pieces which overlap with a certain percentage. A disadvantage
of this method is the generation of a large amount of data which are used as an
internal step to extract useful information. One could argue that a certain feature
could be used to segment the data without the overlapping procedure to reduce the
computational processing as in the study of [Gehring et al., 2017]. However, such
feature is difficult to be detected and it would be subjected to a specific analysis,
temporal (e.g. latency of performing a specific action), positional (e.g. entrances/exits
to/from specific areas of the experimental arena) or spatiotemporal (e.g. sudden
changes of speed) and might be affected from aspects such as the recording frequency
and resolution [Benhamou, 2014]. In the field of animal movement ecology there are
various studies regarding segmentation and behavioural analysis of animals pathing
[Barraquand and Benhamou, 2008; Edelhoff et al., 2016; Thiebault and Tremblay,
2013] based on various criteria but the translation of such methods in the constrained
environment of experimental procedures is not straight forward. In the latter cases,
conclusions are drawn from the full animal pathing during a specific trial (e.g. in
the Morris Water Maze a trial ends when the animal reaches the hidden platform
[Morris, 1984]) or specific aspects of the experimental arena (e.g. in the light/dark
task the amount of pathing in the light area is separated from the one in the dark
area [Maximino et al., 2012]).

Other important points are the assumptions on the data quality and the specifi-
cations of the experimental procedure. All the features and the methods presented
on this dissertation were designed based on experiments involving navigation tasks
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inside constrained open arenas such as the Morris Water Maze [Morris, 1984], the
light/dark preference task [Araujo et al., 2012] and the Allothetic Place Avoidance
task [Stuchlik et al., 2004]. Such procedures exclude constrained mazes [Olton,
1979] and selection-based arenas such as the T-maze [Graeff et al., 1998], the Arm
Radial maze [Juraska et al., 1984] and the double-H maze [Pol-Bodetto et al., 2011].
Furthermore, for the Morris Water Maze studies the features that were engineered
and fed to the RODA framework [Vouros et al., 2017] are based on spatial or posi-
tional aspects of the animal paths. More features may be considered that take into
consideration timing information such as speed, acceleration, duration of inactivity or
duration until sudden changes of the animal directionality. In addition, the features
were designed for 2-D animal paths which are composed of a series of coordinates
extracted from tracking software such as Ethovision [Noldus et al., 2001]. These
paths are assumed to be continues and smoothed. A potential future work would
be to investigate the minimum sampling rate requirements for the features in order
for the latter to be informative; this can greatly reduce the feature computation
workload which, throughout this PhD study, is executed per sampling point.

In the machine learning domain, a disadvantage of the classification framework
presented in Chapter 5 and extented in Chapter 6 for the Morris Water Maze
procedure (refer to [Vouros et al., 2018]) is that it does not aim to create a generic
classification procedure but a specific one based on the data under analysis. This
is due to the fact that an amount of labels needs to be provided for every new
data set. Compared with other studies [Cooke et al., 2019; Illouz, Madar, Louzon,
Griffioen and Okun, 2016; Wolfer et al., 2001] that do automatic classification this
can be considered as a serious limitation, but such techniques are limited only to
specific classes and re-training is required on any new category. This is also another
difference between the previous work and [Vouros et al., 2018], by using the RODA
software [Vouros et al., 2017] the user is free to provide custom categories and assess
the classification based on the 8 features as described in the aforementioned study.
To this end, and based on the extension of the RODA software described in Chapter
6 and the path features of Chapter 3, the users can perform (a) custom classification
and feature assessment from a database of potential features for the Morris Water
Maze and (b) excluding the features specifically designed for the Morris Water
Maze (such as target proximity), they can have classification on any constrained
experimental environment.

It should be mentioned that in case that no prior knowledge of the animal
behaviours is available (in the form of labelled data) and the aim of the analysis is
pattern recognition and informative feature detection, then expertise in the field of
machine learning is required. In the proposed framework of this PhD study in Chapter
5 [Vouros et al., 2018] and Chapter 6, it is expected that the user is familiar in the
field of behavioural neuroscience and able to manually access the animal behaviours
in order to partially label the data; after the partial labelling, the other procedures
such as the features computation and the classification are automatic. However, in
the case of pattern detection using the sparse clustering methodology presenting in
Chapter 3 there should be expertise on assessing the clustering quality since some
clusters might belong to the same categories. Unsupervised pattern detection and
feature assessment were investigated in the benchmark of the semi-supervised sparse
clustering presenting in Chapter 3 (see also [Vouros and Vasilaki, 2020]) but it has a
number of applications. For example a collection of path features from Chapter 3
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can be used along with sparse clustering to analyse experimental procedures without
prior knowledge of class labels such as the Allothetic Place Avoidance task [Stuchlik
et al., 2004]. A potential difficulty of such application is that, if the overlapping
segmentation methodology of [Gehring et al., 2015; Vouros et al., 2018] is used, it
would create a natural continuum to the clusters, i.e. clusters might not be clearly
separatable. An experiment-specific criterion can be used instead to segment the
paths without overlapping as was the case in Chapter 4 (see also [Chhabria et al.,
2019]) where the entrances/exits to/from the light/dark areas of the arena were used
as criterion of segmentation. For the Allothetic Place Avoidance task such criterion
can be sudden spikes of angular speed [Gehring et al., 2017].

Finally, this PhD study has left some room for future work towards benchmarking
regarding the sparse clustering K-Means methods. The proposed semi-supervised
Sparse K-Means (PCSK-Means) algorithm is indicated that can be tuned by less
computationally intense methods than its predecessor the Sparse K-Means. Both
these algorithms require the tuning of two parameters, the number of clusters (K )
and the degree of spareness (S ). Based on the work of [Brodinová et al., 2017]
both these parameters can be optimised using the modified gap statistic used in the
original study of sparse K-Means clustering [Witten and Tibshirani, 2010]. This
method (refer to section 2.2.8.1.3) is computationally expensive and it might be
avoided with the use of silhouette. A preliminary analysis (results not conclusive)
showed that silhouette can indicate an optimal values for (S ) for each (K ) but fails to
tune both these parameters together. Nevertheless, a potential tuning method would
have been to run the silhouette index for multiple value of (S ) over the same values
of (K ) and for each (K ) to identify the optimal (S ). Then for these values of (S ) to
execute the modified gap statistic over the values of (K ). This procedure will not
nullify the need of the modify gap statistic but it will greatly reduce its additional
executions. For semi-supervised learning, the k-fold cross validation 2.2.8.3 can be
used along with the silhouette index as in Chapter 6.

Apart from the tuning of the sparse clustering procedures two more expansions
can be proposed for the PCSK-Means algorithm. In the study of [Witten and
Tibshirani, 2010] sparse clustering is extended to hierarchical clustering [Johnson,
1967], another common method with both clustering and classification applications in
different fields such as environmental [Govender and Sivakumar, 2020] and biological
studies [Seo and Shneiderman, 2002]. The PCSK-Means algorithm can possibly be
applied to the same hierarchical clustering framework. In addition, the study of
[Brodinová et al., 2017] proposes a method to incorporate the LOF score of the
ROBIN initialisation procedure (refer to section 2.2.7.5) to the sparse clustering
framework of [Witten and Tibshirani, 2010] in order to identify outliers in the data.
It is envisaged that such method is directly applicable to the PCSK-Means algorithm.

To conclude, the application of Sparse K-Means clustering and its proposed semi-
supervised version on behavioural experiments requires further testing. Chapter 6
showed that the feature selection capabilities of the PCSK-Means algorithm produces
interpretable and logical results but are the conclusions applicable to any similar
experimental procedure towards stressed animal capabilities inside the Morris Water
Maze or they are affected by the specific animals and data? Also, in a possible
collection of generic path features (e.g. the ones listed in Chapter 3) will their
application to different experiments be consistent towards identification of possible
patterns and biomarkers or will they be dependent on the specific data under analysis?
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Further research is required to answer these questions but the methods developed in
this PhD have the potential to be engineered and improved or be attached to various
pipelines thus they are directly applicable to a variety of experimental procedures
requiring path analysis.

7.3 Alternative machine learning methods

The machine learning methods that were described in this PhD study (refer to
Chapter 2 for a literature review), researched and developed (refer to Chapter 3 for the
new methods and benchmarking) and finally applied to behavioural experiments (refer
to Chapters 5 and 6) are based on clustering and specifically the K-Means clustering.
Another machine learning approach that is popular in many fields for classification
are the artificial neural networks (ANN) [Prieto et al., 2016]. Deep learning networks,
which are essentially multilayered ANNs, have been used extensively for image
processing task in the fields of medicine [Litjens et al., 2017] and bioinformatics
[Min et al., 2017]. In the study of [Higaki, Mogi, Iwanami, Min, Bai, Shan, Kukida,
Kan-no, Ikeda, Higaki et al., 2018] a deep learning ANN was used in to analyse mice
performance inside the Morris Water Maze during the first few days of the task in
order to predict their performance on the final day. In this way the authors propose
that the duration of the experimental procedure can be reduced. The same authors
also developed a deep neural network capable of classifying behavioural classes inside
the Morris Water Maze [Higaki, Mogi, Iwanami, Min, Bai, Shan, Kan-no, Ikeda,
Higaki and Horiuchi, 2018]. Their network performance was above 90% accuracy
when classifying between 2 and 3 behavioural classes but dropped to 65% with 6.
This is one of the issues of deep learning ANNs, that they require large amount of
data in order to be trained for classification compared with other “shallow” methods
such as support vector machines (SVM) [Illouz, Madar, Clague, Griffioen, Louzoun
and Okun, 2016; Illouz, Madar, Louzon, Griffioen and Okun, 2016]. The amount of
data produced during a common experimental procedure is usually not that great
but with the overlapping segmentation method of [Gehring et al., 2015], which was
furthered researched in this PhD study (refer also to [Vouros et al., 2018]), more data
can be generated from the original animal paths. Thus it can potentially be beneficial
for classification with ANNs. Artificially created data is also another way to deploy
ANN solutions. Such data can be created by determining best fit distributions on
real data [Scott and Wilkins, 1999].

Furthermore, and regarding deep learning ANNs, there are some additional issues.
First of all, ANNs require extensive development process for determining the proper
network structure and hyperparameter tuning. Moreover, deep learning ANNs are
suffering from interpretability issues regarding on how they use the features to
establish a solution. In this PhD work, much effort was made in order to develop
pipelines for feature assessment, behavioural clustering and classification in a clear
interpretable manner. ANNs ability to perform well comes from the automatic
selection of feature quantities [Higaki, Mogi, Iwanami, Min, Bai, Shan, Kan-no,
Ikeda, Higaki and Horiuchi, 2018] which might not have a clear interpretation.
Towards unsupervised learning, autoencoders [Baldi, 2012] are dedicated ANNs for
reconstructing the original data using compressed information from their features.
This, however results in losing the original features and, as explained before, this might
be a disadvantage since the new features might not a direct biological interpretation
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as the original. Sparse autoencoders are also available [Luo et al., 2017] but still
they are more complex methods that the ones developed in this PhD study.

Apart from ANN and related to clustering there are other approaches beyond
K-Means such as spectral [Ng et al., 2002] and kernel [Shawe-Taylor et al., 2004]
methods. These methods were not researched in this study mainly because they are
using data transformation. Spectral methods transform the data projecting them
to a lower dimensionality based on similarity matrices while kernel methods project
the data to a higher dimensionality using a kernel function such as a polynomial,
a gaussian or a sigmoid. Both methods are performing well on identifying clusters
that are non-linearly separable and they can both be followed K-Means clustering on
the transformed data. However, the new features forming the transformed data are
not maintaining the biological interpretation of the original features thus more work
needs to be done afterwards to reconstruct the biological information that the new
features represent. With Sparse K-Means clustering [Witten and Tibshirani, 2010]
as well as the new semi-supervised Sparse K-Means algorithm developed in this PhD
study (refer to Chapter 3 and [Vouros and Vasilaki, 2020]) both pattern recognition
performance as well as feature assessment and selection are directly possible.

An alternative approach to analyse path data given their currently low dimen-
sionality could have been to detect and examine local correlations [Xie et al., 2013].
Such correlations may occur for a certain duration as the animals navigate inside the
constrained environment of the experimental procedure and indicate behavioural pat-
ters (clusters [Papadimitriou et al., 2003]) and outlying observations [Papadimitriou
et al., 2003], ultimately resulting to behavioural differences recognition among animal
grounds. This kind of analysis would also include timing information [Papadimitriou
et al., 2006] which has not been utilized by the current study.

Finally, another approach for unsupervised behavioural motifs detection using
timing information would have been a probabilistic annotation such as the one
implemented in the study of [Szigeti et al., 2015]. A probabilistic annotation is
essentially the association of a single or multiple groups of features to specific patterns
[Del Carratore et al., 2019]. The method developed by [Szigeti et al., 2015] is free
of threshold values which are usually used to define sliding windows that segment
time series data (such as the position of animals at specific points of time) [Brown
et al., 2013]. It also offers quantification of uncertainty, e.g. how much discrete or
stereotypical are the detected animal motifs.
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Appendix A

A.1 Metric parameterization

Assume the matrix X containing a data set consisting of n observations and p
features and A a square p−by−p matrix parameterizing a metric.

� If A is a diagonal matrix then XA results in feature weighting since,


x11 x12 · · · x1p

x21 x22
...

. . .

xn1 xnp

 ·

a11 0 · · · 0
0 a22
...

. . .

0 app

 =


x11a11 x12a22 · · · x1papp
x21a11 x22a22

...
. . .

xn1a11 xnpapp

 =

= XA = X diag(A)T

� If A is a full matrix then XA results in feature generation, i.e. the resulted
features are linear combinations of the original ones, since,


x11 x12 · · · x1p

x21 x22
...

. . .

xn1 xnp

 ·

a11 a12 · · · a1p

a21 a22
...

. . .

ap1 app

 =

=


x11a11 + x12a21 + · · ·+ x1pap1 · · · · · · x11a1p + x12a2p + · · ·+ x1papp

...
. . .

...
. . .

xn1a11 + xn2a21 + · · ·+ xnpap1 · · · · · · xn1a1p + xn2a2p + · · ·+ xnpapp


This case is not considered in this PhD study.
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A.2 K-Means cluster centers

At convergence, ∂Jkmeans
∂mk′j′

= 0⇒

∂

∂mk′j′

K∑
k=1

nk∑
( i=1
xi:∈ck

)

p∑
j=1

(xij −mkj)
2 = 0⇒

2

nk′∑
( i=1
xi:∈ck′

)

(xij′ −mk′j′)(−1) = 0⇒

nk′∑
( i=1
xi:∈ck′

)

xij′ =

nk′∑
i

mk′j′ ⇒

nk′∑
( i=1
xi:∈ck′

)

xij′ = nk′mk′j′ ⇒

mk′j′ =
1

nk′

nk′∑
( i=1
xi:∈ck′

)

xij′

Note: Jkmeans is convex since,

∂2Jkmeans
∂2mk′j′

=
∂

∂mk′j′
2

nk′∑
( i=1
xi:∈ck′

)

(xij′ −mk′j′)(−1) = 2

nk′∑
( i=1
xi:∈ck′

)

1 > 0
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A.3 Equivalent expressions for WCSS

We will show that:

WCSS =
K∑
k=1

nk∑
( i=1
xi:∈ck

)

p∑
j=1

(xij −mkj)
2 =

K∑
k=1

1

2nk

nk∑
( i=1
xi:∈ck

)

nk∑
( i′=1
xi′:∈ck

)

p∑
j=1

(xij − xi′j)2 (1)

Starting from the right hand side of equality (1)

K∑
k=1

1

2nk

nk∑
( i=1
xi:∈ck

)

nk∑
( i′=1
xi′:∈ck

)

p∑
j=1

(xij − xi′j)2 =
K∑
k=1

1

2nk

nk∑
( i=1
xi:∈ck

)

nk∑
( i′=1
xi′:∈ck

)

p∑
j=1

(xij −mkj +mkj − xi′j)2 =

=
K∑
k=1

1

2nk

nk∑
( i=1
xi:∈ck

)

nk∑
( i′=1
xi′:∈ck

)

p∑
j=1

(
(xij −mkj)

2 + (mkj − xi′j)2 + 2(xij −mkj)(mkj − xi′j)
)

=

=
K∑
k=1

1

2nk

nk∑
( i=1
xi:∈ck

)

nk∑
i′=1

p∑
j=1

(xij −mkj)
2 +

K∑
k=1

1

2nk

nk∑
i=1

nk∑
( i′=1
xi′:∈ck

)

p∑
j=1

(mkj − xi′j)2+

+
K∑
k=1

1

2nk

nk∑
( i=1
xi:∈ck

)

nk∑
( i′=1
xi′:∈ck

)

p∑
j=1

2(xij −mkj)(mk − xi′j) =

=
K∑
k=1

1

2nk

nk∑
( i=1
xi:∈ck

)

p∑
j=1

(xij −mkj)
2

nk∑
i′

1 +
K∑
k=1

1

2nk

nk∑
( i′=1
xi′:∈ck

)

p∑
j=1

(xi′j −mkj)
2

nk∑
i=1

1+

+
K∑
k=1

1

�2nk

nk∑
( i=1
xi:∈ck

)

nk∑
( i′=1
xi′:∈ck

)

p∑
j=1

�2(xijmkj − xijxi′j −mkjmkj +mkjxi′j) =

=
K∑
k=1

1

2��nk

nk∑
( i=1
xij∈ck

)

p∑
j=1

(xij −mkj)
2
��nk +

K∑
k=1

1

2��nk

nk∑
( i′=1
xi′:∈ck

)

p∑
j=1

(mkj − xi′j)2
��nk+

+
K∑
k=1

1

nk

nk∑
( i=1
xi:∈ck

)

nk∑
i′=1

p∑
j=1

xijmkj −
K∑
k=1

1

nk

nk∑
( i=1
xi:∈ck

)

nk∑
( i′=1
xi′:∈ck

)

p∑
j=1

xijxi′j+

+
K∑
k=1

1

nk

nk∑
i=1

nk∑
( i′=1
xi′:∈ck

)

p∑
j=1

mkjxi′j −
K∑
k=1

1

nk

nk∑
i=1

nk∑
i′=1

p∑
j=1

mkjmkj =
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=
K∑
k=1

1

2

nk∑
( i=1
xi;∈ck

)

p∑
j=1

(xij −mkj)
2 +

K∑
k=1

1

2

nk∑
( i′=1
xi′:∈ck

)

p∑
j=1

(mkj − xi′j)2+

+
K∑
k=1

1

nk

nk∑
( i=1
xi:∈ck

)

p∑
j=1

xijmkj

nk∑
i′=1

1−
K∑
k=1

1

nk

nk∑
( i=1
xi:∈ck

)

p∑
j=1

xij

nk∑
( i′=1
xi′:∈ck

)

p∑
j=1

xi′j+

+
K∑
k=1

1

nk

nk∑
( i′=1
xi′:∈ck

)

p∑
j=1

mkjxi′j

nk∑
i=1

1−
K∑
k=1

1

nk

nk∑
i=1

nk∑
i′=1

p∑
j=1

mkjmkj =

=
K∑
k=1

nk∑
( i=1
xi:∈ck

)

p∑
j=1

(xij −mkj)
2 +

K∑
k=1

nk∑
( i=1
xi:∈ck

)

p∑
j=1

xijmkj −
K∑
k=1

p∑
j=1

1

nk
nkmkjnkmkj+

+
K∑
k=1

nk∑
( i′=1
xi′:∈ck

)

p∑
j=1

mkxi′j −
K∑
k=1

1

nk

p∑
j=1

mkmknknk =

=
K∑
k=1

nk∑
( i=1
xi:∈ck

)

p∑
j=1

(xij −mkj)
2 +

K∑
k=1

p∑
j=1

mkjmkjnk−

−
K∑
k=1

p∑
j=1

nkmkjmkj +
K∑
k=1

p∑
j=1

mkjmkjnk −
K∑
k=1

p∑
j=1

nkmkjmkj =

=
K∑
k=1

nk∑
( i=1
xi:∈ck

)

p∑
j=1

(xij −mkj)
2 = WCSS, Q.E.D.

We note that we make use of the following equalities,

nk∑
i=1

1 =

nk∑
i′=1

1 = nk

and

nk∑
( i=1
xi:∈ck

)

p∑
j=1

xij =

nk∑
( i′=1
xi′:∈ck

)

p∑
j=1

xi′j =

p∑
j=1

nkmkj , since

p∑
j=1

mkj =
1

nk

nk∑
( i=1
xi:∈ck

)

p∑
j=1

xij

(refer to Appendix A.2).
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A.4 MPCK-Means algorithm

We define,

Jmpckm =
K∑
k=1

nk∑
( i=1
xi:∈ck

)

( p∑
j=1

aj(xij −mkj)
2 −

p∑
j=1

log(aj)+

∑
(xi:)ML(xi′:)

p∑
j=1

bxi,xi′aj(xij − xi′j)
2
1
[
(xi:)���ML(xi′:)

]
+

∑
(xi:)CL(xi′:)

p∑
j=1

b̄xi,xi′
(
aj(xIj − xI′j)2 − aj(xij − xi′j)2

)
1
[
(xi:)��CL(xi′:)

])

At convergence,
∂Jmpckm
∂mk′j′

= 0⇒

∂

∂mk′j′

K∑
k=1

nk∑
( i=1
xi:∈ck

)

p∑
j=1

aj(xij −mkj)
2 = 0⇒

2aj′
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( i=1
xi:∈ck′

)

(xij′ −mk′j′)(−1) = 0⇒

nk′∑
( i=1
xi:∈ck′

)

xij′ =
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i=1

mk′j′ ⇒
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)

xij′ = nk′mk′j′ ⇒

mk′j′ =
1

nk′
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( i=1
xi:∈ck′

)

xij′

and,
∂Jmpckm
∂aj′

= 0⇒

∂

∂aj′

(
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k=1

nk∑
( i=1
xi:∈ck

)

(
aj(xij −mkj)

2 − log(aj)+

∑
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2
1
[
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]
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∑
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(
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)
1
[
(xi:)��CL(xi′:)
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= 0⇒
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∂

∂aj′
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A.5 K-Medians cluster centers

At convergence, ∂Jkmedian
∂mk′j′

= 0⇒

∂

∂mk′j′

K∑
k=1

nk∑
( i=1
xi:∈ck

)

p∑
j=1

|xij −mkj| = 0 (2)

We note that

∂

∂|x|
=

{
1 , x > 0
−1 , x < 0

}
= sign(x)

Therefore equation 2 becomes,

nk′∑
( i=1
xi:∈ck′

)

sign(xij′ −mk′j′) = 0

Assuming that for i = 1, . . . , z xij′ ≤ mk′j′ and for i = z + 1, . . . , nk′ xij′ > mk′j′ ,
then:

z∑
( i=1
xi:∈ck′

)

(−1) +

nk′∑
( i=z+1
xi:∈ck′

)

(1) = 0⇒ −z + (nk′ − z) = 0⇒ z =
nk′

2

which imposes that we have the same amount of data points above and below mk′j′ ,
thus mk′j′ is the median.
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A.6 Geometric K-Medians cluster centers

At convergence,
∂Jgkmedians
∂mk′j′

= 0⇒
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A.7 Minimizing a function with L1 and L2 penal-

ties

We will show that the L1 penalty is not affected by the magnitude of w while L2

does. Let the function f(x) and a constant λ > 0.
Applying L1 to the function and minimizing the penalty leads to a fixed penal-

ization:

∂

∂L1

(f(x) + λL1) = 0⇒ ∂

∂wi
(f(x) + λ

∑
i

|w|) = 0⇒

∂

∂wi
f(x) + λ sign(wi) = 0⇒ ∂

∂wi
f(x) = −λsign(wi)

i.e. the gradient is independent of the magnitude of w.
Applying L2 to the function and minimizing the penalty leads to a penalization

proportional to the weight:

∂

∂L2

(f(x) + λL2) = 0⇒ ∂

∂wi
(f(x) + λ

∑
i

w2
i ) = 0⇒

∂

∂wi
f(x) + 2λwi = 0⇒ ∂

∂wi
f(x) = −2λwi

i.e. the gradient is dependent of w.
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A.8 Sparse clustering optimization with L1 and L2

constraints

In section 2.2.3 we define the problem,

maximize
wj

{ p∑
j=1

wjγj

}
subject to

p∑
j=1

w2
j ≤ 1,

p∑
j=1

|wj| ≤ s, wj ≥ 0 ∀j (3)

where in the case of Sparse K-Means clustering,

γj =
n∑
i=1

(xij − µ1j)
2 −

K∑
k=1

nk∑
( i=1
xi:∈ck

)

(xij −mkj)
2 (4)

Here, the full solution of this problem is presented (for the notations refer to the
beginning of this dissertation).
Using Lagrange multipliers we can rewrite 3 as,

f(wj) =

p∑
j=1

wjγj − λ
( p∑
j=1

w2
j − 1

)
−∆

( p∑
j=1

|wj| − s
)
, λ > 0, ∆ > 0, ∀j (5)

We differentiate with respect to wi and set the derivative to 0,

∂f(w)

∂wi
= γi − 2λwi −∆

∂|wi|
∂wi

= 0. (6)

where,

Γi =
∂|wi|
∂wi

=
∂
√
w2
i

∂wi
=
∂(w2

i )
1
2

∂wi
= 2wi

1

2
(w2

i )
− 1

2 =
wi
|wi|

(7)

For wi 6= 0, Γi = sign(wi) else for wi = 0, Γi ∈ [−1, 1] (proof at the end of this
section) Since our constraints also have inequalities we use the Karush-Kuhn-Tucker
conditions (an extension of the Lagrange multipliers) [Boyd and Vandenberghe, 2004]

[1] γi − 2λwi −∆Γi = 0 (6).

[2] λ(
∑p

j=1w
2
j − 1) = 0 (L2 constraint).

[3] ∆(
∑p

j=1 |wj| − s) = 0 (L1 constraint).

We have from condition [1] above,

wi =
γi −∆Γi

2λ
⇒ wi =

sign(γi)|γi| −∆Γi
2λ

(8)

� If Γi = 1 i.e. wi ≥ 0 then,

(8)⇒wi =
sign(γi)|γi| −∆ · 1

2λ
⇒ wi =

γi −∆

2λ
and wi ≥ 0 thus γi −∆ ≥ 0⇒ γi ≥ ∆ (9)
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A.8. Sparse clustering optimization with L1 and L2 constraints

� If Γi = −1 for wi ≤ 0 then,

(8)⇒wi =
sign(γi)|γi| −∆ · (−1)

2λ
⇒ wi =

γi + ∆

2λ
and wi ≤ 0 thus γi + ∆ ≤ 0⇒ γi ≤ −∆ (10)

Hence from (9) and (10) we can only have two cases, γi ≥ ∆ and γi ≤ −∆. These
can be combined as, sign(γi)(|γi| −∆)+ ≥ 0 which leads to equation (11),

(8)⇒ wi =
sign(γi)(|γi| −∆)+

2λ
(11)

Defining S(γi,∆) = sign(γi)(|γi| −∆)+,

(11)⇒ wi =
S(γi,∆)

2λ
(12)

From condition [2] and equation (12),
p∑
i=1

w2
i = 1⇒

p∑
i=1

[
S(γi,∆)

]2
(2λ)2

= 1⇒

(2λ)2 =

p∑
i=1

[
S(γi,∆)

]2 ⇒ 2λ =

√√√√ p∑
i=1

[
S(γi,∆)

]2
(13)

Thus equation (12) can be written as,

wi =
sign(γi)(|γi| −∆)+√∑p
j=1

(
sign(γj)(|γj| −∆)+

)2
(14)

Finally for the s parameter in condition [3], figure A.1 shows geometrically that
the upper bound for the parameter s is

√
p, where p is the dimensionality of the

problem.

Figure A.1: A graphical representation of L1 and L2 constraints for sparse clustering.
In both plots, the solid circle with radius R = 1 illustrates the L2 =

∑p
j=1 w

2
j ≤ 1 and the two

dashed squares the L1 =
∑p

j=1|wj | ≤ s for s = 1 (inner square) and s =
√

2 (outer square). In this

2-dimensional scenario, for both constraints to be active s needs to be between 1 and
√

2. In higher
dimensional problems s upper bound is

√
p where p is the number of dimensions. This upper bound

can be explained from the right plot where, AB = AΓ and BΓ2 = AB2 +AΓ2 ⇒ BΓ =
√

2 = A∆.
For p dimensions BΓ =

√
p.
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Convexity of |x|

Let the function f defined on a real interval [I1, I2] and x, y ∈ [I1, I2]. f is
convex if,

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

Let f(x) = |x| then,

|λx+ (1− λ)y| ≤ |λx|+ |(1− λ)y| ⇒ λ|x|+ (1− λ)|y| ≤ λ|x|+ (1− λ)|y|

which is true based on the triangle inequality: |a+ b| ≤ |a|+ |b|. Q.E.D.

Subdifferential of |x| at 0

The subdifferential of |x| at 0 is the interval [−1, 1] since |x| is convex and,

∂|x|
∂x

= lim
δx→0

|x+ δx| − |x|
δx

where, limδx→0+
|δx|
δx

= 1 and limδx→0−
|δx|
δx

= −1
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Appendix B

Table B.1: Detailed comparison on the maximum performance of stochastic methods
with the performance of deterministic methods. Each row compares a stochastic with
a deterministic method over the Hartigan-Wong’s K-Means (HW), Lloyd’s K-Means (Ll), K-
Medians (KMed) and Weiszfeld’s (Weis) algorithms on 26 occasions (10 gap and weighted gap, 12
Brodinova and 4 mixed models). The comparison is based on the times that there was significant
difference between the two methods on their maximum performance. Based on the results stochastic
methods are better that deterministic on achieving the best performance but the more sophisticated
the stochastic method is the less performance difference it achieves compared with deterministc
methods for which the opposite is observed. This Table accompanies Figure 3.5 and Figure 3.6
which show the maximum performance of the initialisation methods and show comparisons only for
the Hartigan-Wong’s algorithm.

Initialization
method

Total number
of instances

Significant better
maximum performance

Purity for best Silhouette
HW Ll KMed Weis

Random vs Kaufman 26 9 vs 3 9 vs 4 9 vs 4 9 vs 3
Random vs DK-Means++ 26 5 vs 3 4 vs 2 5 vs 3 5 vs 1
Random vs ROBIN(D) 26 6 vs 3 8 vs 2 7 vs 2 8 vs 2
Random vs Maximin(D) 26 10 vs 2 12 vs 1 11 vs 1 12 vs 1
K-Means++ vs Kaufman 26 10 vs 0 12 vs 0 10 vs 0 11 vs 1
K-Means++ vs DK-Means++ 26 6 vs 2 6 vs 2 7 vs 2 9 vs 0
K-Means++ vs ROBIN(D) 26 8 vs 2 9 vs 2 8 vs 2 9 vs 1
K-Means++ vs Maximin(D) 26 10 vs 1 12 vs 1 11 vs 1 13 vs 0
ROBIN(S) vs Kaufman 26 9 vs 4 8 vs 6 8 vs 4 9 vs 6
ROBIN(S) vs DK-Means++ 26 0 vs 2 1 vs 3 2 vs 2 1 vs 2
ROBIN(S) vs ROBIN(D) 26 6 vs 0 6 vs 0 6 vs 0 5 vs 0
ROBIN(S) vs Maximin(D) 26 8 vs 0 9 vs 1 9 vs 0 9 vs 0
Maximin(S) vs Kaufman 26 9 vs 4 9 vs 4 8 vs 4 11 vs 4
Maximin(S) vs DK-Means++ 26 2 vs 4 2 vs 5 3 vs 5 4 vs 4
Maximin(S) vs ROBIN(D) 26 4 vs 4 6 vs 4 4 vs 4 6 vs 4
Maximin(S) vs Maximin(D) 26 9 vs 1 11 vs 1 10 vs 1 12 vs 0



Table B.2: Summary of comparisons on average performance of stochastic and deter-
ministic methods over different K-Means variations on synthetic data set models. In
the first part of the table, each row compares two different methods over the Hartigan-Wong’s
K-Means (HW), Lloyd’s K-Means (Ll), K-Medians (KMed) and Weiszfeld’s (Weis) algorithms on
26 occasions (10 gap and weighted gap, 12 Brodinova and 4 mixed models). The comparison is
separate among the stochastic and deterministic methods and based on the times that there was
significant difference between the two methods over the 40 data sets of each model. Based on the
results ROBIN(S) is the best performer of stochastic methods and DK-Means the best performer
of deterministic methods, both over all the clustering algorithms. The second part of the table
groups all the stochastic and deterministic methods together and counts the overall percentage
of observed significant differences. Based on the results the performance differences among the
deterministic methods are less compared to the stochastic methods suggesting less performance
variability. This Table accompanies Figure 3.2 and Figure 3.3 of the main manuscript which show
the average performance of the initialisation methods based on Silhouette.

Significant better
average performance
Silhouette (Purity)Initialization

method
Total number
of instances HW Ll KMed Weis

Random vs K-Means++ 26
0 vs 23

(0 vs 21)
0 vs 23

(0 vs 22)
0 vs 23

(0 vs 24)
0 vs 23

(0 vs 21)

Random vs ROBIN(S) 26
1 vs 22

(1 vs 22)
3 vs 22

(3 vs 22)
2 vs 23

(2 vs 23)
0 vs 22

(2 vs 22)

Random vs Maximin(S) 26
0 vs 17

(6 vs 15)
1 vs 19

(6 vs 16)
1 vs 19

(6 vs 16)
0 vs 19

(2 vs 17)

K-Means++ vs ROBIN(S) 26
1 vs 22

(1 vs 21)
3 vs 22

(3 vs 21)
2 vs 23

(2 vs 22)
2 vs 22

(2 vs 21)

K-Means++ vs Maximin(S) 26
5 vs 14

(8 vs 12)
5 vs 16

(9 vs 14)
5 vs 15

(7 vs 13)
6 vs 15

(8 vs 13)

ROBIN(S) vs Maximin(S) 26
17 vs 1

(17 vs 1)
17 vs 3

(18 vs 3)
18 vs 1

(19 vs 1)
17 vs 2

(18 vs 2)

Kaufman vs DK-Means++ 26
3 vs 8

(3 vs 9)
3 vs 9

(3 vs 10)
3 vs 7

(4 vs 8)
4 vs 8

(5 vs 10)

Kaufman vs ROBIN(D) 26
5 vs 8

(4 vs 8)
6 vs 8

(6 vs 6)
5 vs 6

(4 vs 6)
5 vs 8

(6 vs 8)

Kaufman vs Maximin(D) 26
8 vs 5

(8 vs 5)
10 vs 6

(10 vs 6)
9 vs 5

(9 vs 5)
3 vs 7

(4 vs 8)

DK-Means++ vs ROBIN(D) 26
2 vs 1

(4 vs 0)
5 vs 1

(6 vs 0)
4 vs 1

(6 vs 1)
3 vs 0

(5 vs 0)

DK-Means++ vs Maximin(D) 26
7 vs 0

(9 vs 0)
9 vs 0

(11 vs 0)
7 vs 0

(10 vs 1)
7 vs 0

(9 vs 0)

ROBIN(D) vs Maximin(D) 26
8 vs 1

(8 vs 1)
9 vs 1

(10 vs 1)
8 vs 1

(9 vs 1)
8 vs 1

(9 vs 1)

Observed significant
performance differences
on average performance

Silhouette (Purity)Initialization
methods

Total number
of instances HW Ll KMed Weis

Stochastic:
Random, K-Means++,
ROBIN(S), Maximin(S)

156
78.8%

(80.1%)
86.0%

(87.8%)
84.6%

(86.5%)
82.1%

(82.1%)

Deterministic:
Kaufman, DK-Means++,
ROBIN(D), Maximin(D)

156
36.0%

(37.8%)
42.9%

(44.2%)
36.0%

(41.0%)
34.6%

(41.7%)
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Figure B.1: Average number of iterations until convergence for the stochastic methods.
Each plot shows the number of iteration of the Lloyd’s K-Means algorithm (y-axis) until it reaches
convergence using different stochastic initialisation methods on different data sets models (x-axis).
To calculate the average number of iterations, we averaged the number of iterations across the 25
runs on the 40 data sets for each model (gap, weighted gap, Brodinova and mixed). The standard
deviation corresponds to the average standard deviation over the 25 runs of each data set. Solid
lines on any two bars underline the level of significant difference between the corresponding methods
(cases of no significant differences are not shown).
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Figure B.2: Average number of iterations until convergence for the stochastic methods.
Each plot shows the number of iteration of the Lloyd’s K-Means algorithm (y-axis) until it reaches
convergence using different deterministic initialisation methods on different data sets models (x-axis).
To calculate the average number of iterations, we averaged the number of iterations across the 25
runs on the 40 data sets for each model (gap, weighted gap, Brodinova and mixed). The standard
deviation corresponds to the average standard deviation over the 25 runs of each data set. Solid
lines on any two bars underline the level of significant difference between the corresponding methods
(cases of no significant differences are not showing). Table 3.7 shows a summary of the comparisons
among all the different initialisation methods.
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Figure B.3: Execution time analysis for K-Means clustering with Maximin(S) initiali-
sation to reach the performance of DK-Means++ and ROBIN(D). Each bar shows the
execution duration of K-Means clustering algorithm executed multiple times with the Maximin(S)
initialisation method until reaching the performance of the clustering algorithm running once using
DK-Means++ and ROBIN(D) methods. Lines indicate the execution time of K-Means clustering
running once using the deterministic methods ROBIN(D) and DK-Means++. The clustering
algorithm was given 50 execution repetitions with the stochastic Maximin(S) method to reach an
equal or better solution than deterministic methods. Data sets without a bar means that no equal
or better solution compared to the respective clustering with a deterministic method was found.
The data sets are arranged based on their size, dimensionality and number of clusters (see info on
top, underlined numbers means that for these models the generated data sets had different sizes).
Results were averaged over 40 data sets for the data set models.
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Table B.3: Comparison of the initialisation methods on standalone clustering data sets
based on Silhouette index. Each stochastic method (Random, K-Means++, ROBIN(S) and
Maximin (S)) was executed 50 times and the minimum, maximum and mean performance is shown
followed by the performance variation for four K-Means variations. For the maximum performance
the cases where a method has achieved the maximum performance is shown in bold.

K-Means (Hartigan-Wong) K-Means (Lloyd) K-Medians Weiszfeld
min max mean std min max mean std min max mean std min max mean std

A
-s

et
s

1

Random 0.446 0.595 0.521 0.029 0.475 0.595 0.518 0.031 0.434 0.57 0.507 0.036 0.462 0.569 0.514 0.031
K-Means++ 0.482 0.595 0.548 0.03 0.484 0.595 0.548 0.024 0.469 0.595 0.531 0.029 0.5 0.595 0.548 0.021
ROBIN(S) 0.567 0.595 0.586 0.013 0.568 0.595 0.58 0.014 0.567 0.595 0.585 0.013 0.567 0.595 0.586 0.013
Maximin(S) 0.52 0.595 0.56 0.019 0.519 0.595 0.56 0.023 0.499 0.595 0.553 0.03 0.512 0.595 0.553 0.02
Kaufman 0.567 0.567 0.567 0 0.567 0.567 0.567 0 0.567 0.567 0.567 0 0.568 0.568 0.568 0
DK-Means++ 0.595 0.595 0.595 0 0.595 0.595 0.595 0 0.595 0.595 0.595 0 0.595 0.595 0.595 0
ROBIN(D) 0.567 0.567 0.567 0 0.568 0.568 0.568 0 0.567 0.567 0.567 0 0.567 0.567 0.567 0
Maximin(D) 0.556 0.556 0.556 0 0.556 0.556 0.556 0 0.538 0.538 0.538 0 0.546 0.546 0.546 0

A
-s

et
s

2

Random 0.475 0.568 0.523 0.022 0.444 0.551 0.515 0.022 0.433 0.569 0.506 0.027 0.475 0.535 0.499 0.019
K-Means++ 0.505 0.598 0.543 0.02 0.483 0.584 0.547 0.024 0.473 0.58 0.531 0.021 0.488 0.582 0.54 0.023
ROBIN(S) 0.58 0.598 0.591 0.008 0.581 0.598 0.59 0.008 0.581 0.597 0.59 0.008 0.581 0.598 0.589 0.008
Maximin(S) 0.504 0.574 0.54 0.019 0.5 0.58 0.536 0.022 0.49 0.575 0.536 0.022 0.487 0.571 0.541 0.021
Kaufman 0.565 0.565 0.565 0 0.565 0.565 0.565 0 0.538 0.538 0.538 0 0.564 0.564 0.564 0
DK-Means++ 0.598 0.598 0.598 0 0.598 0.598 0.598 0 0.598 0.598 0.598 0 0.597 0.597 0.597 0
ROBIN(D) 0.598 0.598 0.598 0 0.598 0.598 0.598 0 0.597 0.597 0.597 0 0.598 0.598 0.598 0
Maximin(D) 0.555 0.555 0.555 0 0.555 0.555 0.555 0 0.56 0.56 0.56 0 0.561 0.561 0.561 0

A
-s

et
s

3

Random 0.478 0.556 0.519 0.019 0.465 0.551 0.512 0.018 0.457 0.552 0.502 0.021 0.487 0.543 0.512 0.016
K-Means++ 0.514 0.588 0.547 0.017 0.506 0.601 0.548 0.017 0.485 0.576 0.533 0.019 0.506 0.575 0.542 0.017
ROBIN(S) 0.601 0.601 0.601 0 0.601 0.601 0.601 0 0.601 0.601 0.601 0 0.601 0.601 0.601 0
Maximin(S) 0.525 0.585 0.556 0.016 0.525 0.589 0.558 0.015 0.52 0.586 0.559 0.017 0.532 0.571 0.554 0.012
Kaufman 0.53 0.53 0.53 0 0.53 0.53 0.53 0 0.529 0.529 0.529 0 0.529 0.529 0.529 0
DK-Means++ 0.601 0.601 0.601 0 0.601 0.601 0.601 0 0.601 0.601 0.601 0 0.601 0.601 0.601 0
ROBIN(D) 0.601 0.601 0.601 0 0.601 0.601 0.601 0 0.601 0.601 0.601 0 0.601 0.601 0.601 0
Maximin(D) 0.588 0.588 0.588 0 0.588 0.588 0.588 0 0.588 0.588 0.588 0 0.588 0.588 0.588 0

S
-s

et
s

1

Random 0.52 0.711 0.616 0.037 0.545 0.663 0.612 0.035 0.497 0.662 0.587 0.047 0.495 0.66 0.594 0.046
K-Means++ 0.58 0.711 0.654 0.039 0.529 0.711 0.655 0.044 0.517 0.711 0.651 0.044 0.579 0.711 0.665 0.034
ROBIN(S) 0.711 0.711 0.711 0 0.711 0.711 0.711 0 0.711 0.711 0.711 0 0.711 0.711 0.711 0
Maximin(S) 0.611 0.711 0.676 0.036 0.575 0.711 0.66 0.038 0.58 0.711 0.648 0.038 0.591 0.711 0.672 0.04
Kaufman 0.711 0.711 0.711 0 0.638 0.638 0.638 0 0.654 0.654 0.654 0 0.592 0.592 0.592 0
DK-Means++ 0.711 0.711 0.711 0 0.711 0.711 0.711 0 0.711 0.711 0.711 0 0.711 0.711 0.711 0
ROBIN(D) 0.711 0.711 0.711 0 0.711 0.711 0.711 0 0.711 0.711 0.711 0 0.711 0.711 0.711 0
Maximin(D) 0.651 0.651 0.651 0 0.651 0.651 0.651 0 0.652 0.652 0.652 0 0.652 0.652 0.652 0

S
-s

et
s

2

Random 0.464 0.626 0.555 0.034 0.486 0.626 0.571 0.036 0.407 0.626 0.53 0.055 0.416 0.595 0.529 0.045
K-Means++ 0.516 0.626 0.586 0.031 0.505 0.626 0.577 0.032 0.485 0.626 0.566 0.035 0.532 0.626 0.584 0.028
ROBIN(S) 0.575 0.626 0.617 0.02 0.575 0.626 0.61 0.024 0.568 0.626 0.606 0.028 0.572 0.626 0.611 0.025
Maximin(S) 0.533 0.626 0.595 0.033 0.546 0.626 0.577 0.022 0.503 0.626 0.569 0.027 0.501 0.626 0.562 0.032
Kaufman 0.57 0.57 0.57 0 0.57 0.57 0.57 0 0.571 0.571 0.571 0 0.571 0.571 0.571 0
DK-Means++ 0.626 0.626 0.626 0 0.626 0.626 0.626 0 0.626 0.626 0.626 0 0.626 0.626 0.626 0
ROBIN(D) 0.626 0.626 0.626 0 0.626 0.626 0.626 0 0.626 0.626 0.626 0 0.626 0.626 0.626 0
Maximin(D) 0.529 0.529 0.529 0 0.526 0.526 0.526 0 0.521 0.521 0.521 0 0.526 0.526 0.526 0

S
-s

et
s

3

Random 0.412 0.492 0.461 0.019 0.427 0.493 0.463 0.018 0.395 0.493 0.455 0.022 0.413 0.493 0.459 0.02
K-Means++ 0.431 0.492 0.467 0.018 0.429 0.493 0.465 0.017 0.409 0.493 0.459 0.02 0.428 0.493 0.46 0.018
ROBIN(S) 0.431 0.466 0.462 0.01 0.452 0.467 0.464 0.005 0.423 0.468 0.457 0.015 0.422 0.465 0.458 0.014
Maximin(S) 0.431 0.492 0.469 0.018 0.427 0.492 0.469 0.019 0.422 0.493 0.469 0.021 0.438 0.493 0.463 0.019
Kaufman 0.492 0.492 0.492 0 0.492 0.492 0.492 0 0.493 0.493 0.493 0 0.493 0.493 0.493 0
DK-Means++ 0.493 0.493 0.493 0 0.493 0.493 0.493 0 0.493 0.493 0.493 0 0.493 0.493 0.493 0
ROBIN(D) 0.466 0.466 0.466 0 0.467 0.467 0.467 0 0.464 0.464 0.464 0 0.464 0.464 0.464 0
Maximin(D) 0.457 0.457 0.457 0 0.464 0.464 0.464 0 0.471 0.471 0.471 0 0.468 0.468 0.468 0

S
-s

et
s

4

Random 0.426 0.48 0.467 0.012 0.434 0.48 0.465 0.012 0.4 0.479 0.45 0.021 0.431 0.48 0.461 0.017
K-Means++ 0.431 0.48 0.469 0.012 0.433 0.48 0.469 0.012 0.412 0.479 0.456 0.017 0.43 0.48 0.461 0.013
ROBIN(S) 0.457 0.48 0.468 0.007 0.435 0.47 0.458 0.012 0.45 0.466 0.461 0.006 0.439 0.459 0.452 0.007
Maximin(S) 0.443 0.48 0.47 0.007 0.456 0.471 0.468 0.004 0.438 0.479 0.456 0.014 0.44 0.48 0.463 0.011
Kaufman 0.48 0.48 0.48 0 0.48 0.48 0.48 0 0.458 0.458 0.458 0 0.48 0.48 0.48 0
DK-Means++ 0.48 0.48 0.48 0 0.48 0.48 0.48 0 0.479 0.479 0.479 0 0.48 0.48 0.48 0
ROBIN(D) 0.48 0.48 0.48 0 0.435 0.435 0.435 0 0.466 0.466 0.466 0 0.439 0.439 0.439 0
Maximin(D) 0.47 0.47 0.47 0 0.469 0.469 0.469 0 0.462 0.462 0.462 0 0.457 0.457 0.457 0
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Table B.4: Comparison of the initialisation methods on real-world data sets based on
Silhouette index. Each stochastic method (Random, K-Means++, ROBIN(S) and Maximin (S))
was executed 50 times and the minimum, maximum and mean performance is shown followed by
the performance variation for four K-Means variations. For the maximum performance the cases
where a method has achieved the maximum performance is shown in bold.

K-Means (Hartigan-Wong) K-Means (Lloyd) K-Medians Weiszfeld
min max mean std min max mean std min max mean std min max mean std

Ir
is

Random 0.517 0.553 0.549 0.012 0.5 0.553 0.543 0.016 0.467 0.551 0.542 0.016 0.41 0.51 0.5 0.013
K-Means++ 0.517 0.553 0.551 0.009 0.5 0.553 0.548 0.011 0.526 0.551 0.55 0.006 0.5 0.51 0.5 0.009
ROBIN(S) 0.553 0.553 0.553 0 0.551 0.551 0.551 0 0.551 0.551 0.551 0 0.51 0.51 0.51 0
Maximin(S) 0.553 0.553 0.553 0 0.551 0.553 0.552 0.001 0.551 0.551 0.551 0 0.43 0.51 0.493 0.03
Kaufman 0.553 0.553 0.553 0 0.551 0.551 0.551 0 0.551 0.551 0.551 0 0.51 0.51 0.51 0
DK-Means++ 0.553 0.553 0.553 0 0.551 0.551 0.551 0 0.551 0.551 0.551 0 0.51 0.51 0.51 0
ROBIN(D) 0.553 0.553 0.553 0 0.551 0.551 0.551 0 0.551 0.551 0.551 0 0.51 0.51 0.51 0
Maximin(D) 0.553 0.553 0.553 0 0.553 0.553 0.553 0 0.551 0.551 0.551 0 0.51 0.51 0.51 0

Io
n
os

p
h
er

e

Random 0.296 0.296 0.296 0 0.246 0.368 0.296 0.013 0.231 0.334 0.283 0.013 0.287 0.291 0.289 0.002
K-Means++ 0.296 0.296 0.296 0 0.266 0.296 0.295 0.006 0.246 0.408 0.286 0.015 0.258 0.291 0.289 0.007
ROBIN(S) 0.296 0.296 0.296 0 0.296 0.296 0.296 0 0.284 0.284 0.284 0 0.291 0.291 0.291 0
Maximin(S) 0.296 0.296 0.296 0 0.295 0.408 0.314 0.038 0.284 0.408 0.311 0.05 0.287 0.408 0.31 0.043
Kaufman 0.296 0.296 0.296 0 0.295 0.295 0.295 0 0.284 0.284 0.284 0 0.287 0.287 0.287 0
DK-Means++ 0.296 0.296 0.296 0 0.296 0.296 0.296 0 0.284 0.284 0.284 0 0.291 0.291 0.291 0
ROBIN(D) 0.296 0.296 0.296 0 0.296 0.296 0.296 0 0.284 0.284 0.284 0 0.291 0.291 0.291 0
Maximin(D) 0.296 0.296 0.296 0 0.296 0.296 0.296 0 0.284 0.284 0.284 0 0.291 0.291 0.291 0

W
in

e

Random 0.548 0.571 0.57 0.005 0.54 0.571 0.57 0.005 0.566 0.571 0.568 0.002 0.548 0.572 0.568 0.009
K-Means++ 0.548 0.571 0.562 0.01 0.548 0.571 0.566 0.007 0.566 0.571 0.57 0.002 0.548 0.572 0.559 0.012
ROBIN(S) 0.571 0.571 0.571 0 0.571 0.571 0.571 0 0.566 0.566 0.566 0 0.572 0.572 0.572 0
Maximin(S) 0.553 0.571 0.558 0.008 0.553 0.571 0.561 0.005 0.571 0.571 0.571 0 0.548 0.572 0.555 0.011
Kaufman 0.571 0.571 0.571 0 0.571 0.571 0.571 0 0.571 0.571 0.571 0 0.571 0.571 0.571 0
DK-Means++ 0.571 0.571 0.571 0 0.571 0.571 0.571 0 0.571 0.571 0.571 0 0.571 0.571 0.571 0
ROBIN(D) 0.571 0.571 0.571 0 0.571 0.571 0.571 0 0.566 0.566 0.566 0 0.572 0.572 0.572 0
Maximin(D) 0.548 0.548 0.548 0 0.56 0.56 0.56 0 0.571 0.571 0.571 0 0.548 0.548 0.548 0

B
re

as
t

C
an

ce
r

Random 0.597 0.597 0.597 0 0.597 0.597 0.597 0 0.597 0.597 0.597 0 0.596 0.596 0.596 0
K-Means++ 0.597 0.597 0.597 0 0.597 0.597 0.597 0 0.597 0.597 0.597 0 0.596 0.596 0.596 0
ROBIN(S) 0.597 0.597 0.597 0 0.597 0.597 0.597 0 0.597 0.597 0.597 0 0.596 0.596 0.596 0
Maximin(S) 0.597 0.597 0.597 0 0.597 0.597 0.597 0 0.597 0.597 0.597 0 0.596 0.596 0.596 0
Kaufman 0.597 0.597 0.597 0 0.597 0.597 0.597 0 0.597 0.597 0.597 0 0.596 0.596 0.596 0
DK-Means++ 0.597 0.597 0.597 0 0.597 0.597 0.597 0 0.597 0.597 0.597 0 0.596 0.596 0.596 0
ROBIN(D) 0.597 0.597 0.597 0 0.597 0.597 0.597 0 0.597 0.597 0.597 0 0.596 0.596 0.596 0
Maximin(D) 0.597 0.597 0.597 0 0.597 0.597 0.597 0 0.597 0.597 0.597 0 0.596 0.596 0.596 0

G
la

ss

Random 0.192 0.456 0.43 0.056 0.194 0.452 0.345 0.09 0.137 0.442 0.268 0.077 0.181 0.417 0.24 0.057
K-Means++ 0.271 0.587 0.457 0.053 0.278 0.585 0.454 0.064 0.211 0.592 0.432 0.089 0.233 0.593 0.571 0.093
ROBIN(S) 0.447 0.452 0.447 0.001 0.43 0.448 0.443 0.005 0.257 0.397 0.384 0.028 0.254 0.388 0.376 0.037
Maximin(S) 0.555 0.587 0.582 0.009 0.43 0.585 0.563 0.048 0.433 0.592 0.576 0.03 0.401 0.593 0.576 0.039
Kaufman 0.452 0.452 0.452 0 0.448 0.448 0.448 0 0.238 0.238 0.238 0 0.257 0.257 0.257 0
DK-Means++ 0.447 0.447 0.447 0 0.431 0.431 0.431 0 0.435 0.435 0.435 0 0.194 0.194 0.194 0
ROBIN(D) 0.447 0.447 0.447 0 0.444 0.444 0.444 0 0.392 0.392 0.392 0 0.388 0.388 0.388 0
Maximin(D) 0.584 0.584 0.584 0 0.583 0.583 0.583 0 0.58 0.58 0.58 0 0.58 0.58 0.58 0

Y
ea

st

Random 0.142 0.186 0.166 0.011 0.136 0.189 0.164 0.011 0.117 0.175 0.144 0.012 0.13 0.177 0.148 0.01
K-Means++ 0.15 0.217 0.177 0.012 0.148 0.192 0.173 0.01 0.119 0.184 0.157 0.013 0.141 0.181 0.165 0.01
ROBIN(S) 0.18 0.183 0.181 0.001 0.178 0.19 0.183 0.006 0.161 0.172 0.164 0.005 0.163 0.176 0.167 0.007
Maximin(S) 0.189 0.224 0.202 0.01 0.173 0.225 0.204 0.014 0.166 0.213 0.194 0.018 0.176 0.22 0.2 0.017
Kaufman 0.161 0.161 0.161 0 0.159 0.159 0.159 0 0.151 0.151 0.151 0 0.154 0.154 0.154 0
DK-Means++ 0.155 0.155 0.155 0 0.156 0.156 0.156 0 0.14 0.14 0.14 0 0.147 0.147 0.147 0
ROBIN(D) 0.183 0.183 0.183 0 0.19 0.19 0.19 0 0.172 0.172 0.172 0 0.176 0.176 0.176 0
Maximin(D) 0.192 0.192 0.192 0 0.191 0.191 0.191 0 0.175 0.175 0.175 0 0.182 0.182 0.182 0
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Figure B.4: Performance of PCSKM as opposed to other unsupervised and semi-
supervised algorithms using the ROBIN initialisation method. Each row compares the
algorithms over six data sets (ionosphere, fisheriris, digits 0-4-8 and 3-8-9 and Morris Water Maze
TT-SC-ST and TT-CH-ST) using different types of constrains. First row (ROBIN both constraints):
ROBIN was used for clustering initialisation and there has been a random selection from all
the constraints, both MUST-LINK and CANNOT-LINK. Second and third rows (MUST-LINK,
CANNOT-LINK): ROBIN initialisation was used and there was a random selection of only MUST-
LINK or CANNOT-LINK. For the SKM and PCSKM the sparsity value with the best performance
was selected.
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Figure B.5: Performance of PCSKM as opposed to other unsupervised and semi-
supervised algorithms using the Maximin initialisation method. Each row compares
the algorithms over six data sets (ionosphere, fisheriris, digits 0-4-8 and 3-8-9 and Morris Water
Maze TT-SC-ST and TT-CH-ST) using different types of constrains. First row (ROBIN both
constraints): ROBIN was used for clustering initialisation and there has been a random selection
from all the constraints, both MUST-LINK and CANNOT-LINK. Second and third rows (MUST-
LINK, CANNOT-LINK): Maximin initialisation was used and there was a random selection of
only MUST-LINK or CANNOT-LINK. For the SKM and PCSKM the sparsity value with the best
performance was selected.
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Figure B.6: PCSKM feature selection capabilities as opposed to other algorithms
in synthetic and the Morris Water Maze data sets using the ROBIN initialisation
method. Each bar plot shows the value of each one of the features of the data set over the number
of constraints. Red bars: MPKM (semisupervised), blue bars PCSKM (semi-supervised), gray bars:
SKM (unsupervised). Red bars: MPKM (semi-supervised), blue bars PCSKM (semi-supervised),
gray bars: SKM (unsupervised). For SKM and PCSKM the bars show the average weight value of
a feature over different sparsity (s) values (from s = 1.1 to s =

√
p, where p is the dimensionality

of the data set, with step 0.2). The + and − signs indicate the number of informative and
uninformative features (uninformative features are always plotted last). In the case of the Morris
Water Maze the quality of the first 8 features is unknown but the last 10 are uninformative.
The SKM and PCSKM correctly identifies the known uninformative features regardless of the s
parameter value in all the cases. Specifically for the PCSKM the feature selection mechanism is not
affected by the constraints. The MPCKM algorithm fails to show any indication about the feature
quality based on the feature weights and in all the cases it uses the uninformative features. In the
plots we show only the case when both type of constraints are used but we observe the same result
for the other constraint types cases regardless of the used initialisation method.
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Figure B.7: PCSKM feature selection capabilities as opposed to other algorithms
in synthetic and the Morris Water Maze data sets using the Maximin initialisation
method. Each bar plot shows the value of each one of the features of the data set over the number
of constraints. Red bars: MPKM (semisupervised), blue bars PCSKM (semi-supervised), gray bars:
SKM (unsupervised). Red bars: MPKM (semi-supervised), blue bars PCSKM (semi-supervised),
gray bars: SKM (unsupervised). For SKM and PCSKM the bars show the average weight value of
a feature over different sparsity (s) values (from s = 1.1 to s =

√
p, where p is the dimensionality

of the data set, with step 0.2). The + and − signs indicate the number of informative and
uninformative features (uninformative features are always plotted last). In the case of the Morris
Water Maze the quality of the first 8 features is unknown but the last 10 are uninformative.
The SKM and PCSKM correctly identifies the known uninformative features regardless of the s
parameter value in all the cases. Specifically for the PCSKM the feature selection mechanism is not
affected by the constraints. The MPCKM algorithm fails to show any indication about the feature
quality based on the feature weights and in all the cases it uses the uninformative features. In the
plots we show only the case when both type of constraints are used but we observe the same result
for the other constraint types cases regardless of the used initialisation method.
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Figure B.8: PCSKM feature selection capabilities as opposed to other algorithms in
the digits data sets contaminated with 4 uninformative features.
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Appendix C

C.1 Agreement matrix

Figure C.1: Agreement matrix for the classifiers of Segmentation III. The classifier of
each column is being compared with the classifier of each row. The comparison is based on the
percentage of segments which both classifiers agree belong to the same class. The diagonal values
of the matrix indicate 100% agreement since each classifier is compared with itself.
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C.2. Results of each segmentation without the smoothing function

C.2 Results of each segmentation without the

smoothing function

Figure C.2: Conclusive pre-smoothing results from the classification of each segmen-
tation configuration. Considering segments as continuous parts of the trajectories ignoring
the overlapping provides consistent results when differences between the implemented strategies
of the groups are being investigated but creates an overestimation on the number of transitions
between strategies. Each plot shows the 95% binomial confidence intervals for the classifiers of each
segmentation regarding their agreement if there is significant difference between the two animal
groups (i.e Friedman test p-value < 0.05) on each strategy and strategy transitions or not. Squares
indicate the mean of the classifiers that shows that there is a significant difference in this particular
case; errorbars are the 95% confidence intervals; the dashed line indicates the threshold of interest
(0.5 or 50%). The table below the plots shows the Friedman test p-values (upper table) and the
equivalent Friedman’s chi-square statistic (lower table) for the classification result of the ensemble;
in all cases k = 2, control and stress columns. Segmentation configurations are arranged in columns
and strategies in rows; each element has the relevant p-value and chi-square statistic and bold cells
indicate significant difference, i.e. p-value < 0.05. In order to be confident that there is indeed a
significant difference between the two animal groups on each strategy and the strategy transitions
the confidence intervals should be clearly above 0.5 (or 50%). Compared to the results in the main
manuscript, we see that the smoothing function which maps the segments to the full swimming
paths is actually beneficial for revealing the animal transitions between strategies. Other than that,
the results lead to the same conclusions.
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C.2. Results of each segmentation without the smoothing function

Segmentation
I

Segmentation
II

Segmentation
III

Segmentation
IV

Classifiers
Unclassified (%)
Segments

24.8 24.3 30.0 29.0

Agreement (%) 53.2 55.5 48.8 52.1
Ensemble(s)

Unclassified (%)
Segments

1.2 0.7 0.8 1.1

Agreement (%) 84.7 83.3 79.8 80.0

Table C.1: Classification statistics for the four segmentation configurations prior to
smoothing. In comparison with the results of the main manuscript we see that the percentage
of unclassified segments among the classifiers is higher and the agreement between them lower.
However, the ensemble (or ensembles in case of the agreement) again nearly nullifies the unclassified
segments and significantly boosts the agreement percentage.
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C.3. Ensemble results of each segmentation

C.3 Ensemble results of each segmentation

Figure C.3: Percentage of segments falling under each strategy for the stressed (black)
and control (white) animal groups over each trial for the Segmentation I. All the animals
were tested for a set of 12 trials divided in 3 sessions (days). Each segment is considered to be of a
length equal to the arena radius (100cm). For the transitions: bars represent the first and third
quartiles of the data; the black (control group) or white (stressed group) horizontal lines denotes
the median, crosses are the outliers and whiskers indicate the minimum and the maximum values.
The Friedman test p-value (shown on the top right) was used to compare both animal groups for
the complete set of trials. According to the plots, stressed animals produce longer paths since the
average number of strategy implementations is higher than in the control group. Thigmotaxis and
Incursion strategies show a clear difference in favor of the stressed group along with the strategy
transitions. This Segmentation configuration fails to reveal significant differences on the Chaining
Response because of the segment length which causes some rarer strategies to disappear.

Chapter Avgoustinos Vouros 161



C.3. Ensemble results of each segmentation

Figure C.4: Percentage of segments falling under each strategy for the stressed (black)
and control (white) animal groups over each trial for the Segmentation II. All the
animals were tested for a set of 12 trials divided in 3 sessions (days). Each segment is considered
to be of a length equal to the arena radius (100cm). For the transitions: bars represent the first
and third quartiles of the data; the black (control group) or white (stressed group) horizontal lines
denotes the median, crosses are the outliers and whiskers indicate the minimum and the maximum
values. The Friedman test p-value (shown on the top right) was used to compare both animal
groups for the complete set of trials. According to the plots, stressed animals produce longer
paths since the average number of strategy implementations is higher than in the control group.
Thigmotaxis and Incursion strategies show a clear difference in favor of the stressed group along
with Chaining Response. The number of transitions between strategies shows that the stressed
animals change their behaviour more often within single trials.
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C.3. Ensemble results of each segmentation

Figure C.5: Percentage of segments falling under each strategy for the stressed (black)
and control (white) animal groups over each trial for the Segmentation IV. All the
animals were tested for a set of 12 trials divided in 3 sessions (days). Each segment is considered
to be of a length equal to the arena radius (100cm). For the transitions: bars represent the first
and third quartiles of the data; the black (control group) or white (stressed group) horizontal lines
denotes the median, crosses are the outliers and whiskers indicate the minimum and the maximum
values. The Friedman test p-value (shown on the top right) was used to compare both animal
groups for the complete set of trials. According to the plots, stressed animals produce longer
paths since the average number of strategy implementations is higher than in the control group.
Thigmotaxis and Incursion strategies show a clear difference in favor of the stressed group along
with Chaining Response. The number of transitions between strategies shows that the stressed
animals change their behaviour more often within single trials.
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C.4 Further application: strategy distributions on

the probe trials

Figure C.6: Comparison between Low (green bars) and Intermediate (blue bars)
animal groups on the probe1 (trial 1) and probe2 (trial 2) experimental procedures.
Statistical analysis testing wasn’t performed for the probe trials since the Friedman test requires at
least three different occasion measurement on each group.

164 Chapter Avgoustinos Vouros



C.4. Further application: strategy distributions on the probe trials

Figure C.7: Comparison between Low (green bars) and High (red bars) animal groups
on the probe1 (trial 1) and probe2 (trial 2) experimental procedures. Statistical analysis
testing wasn’t performed for the probe trials since the Friedman test requires at least three different
occasion measurement on each group.
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C.4. Further application: strategy distributions on the probe trials

Figure C.8: Comparison between Intermediate (blue bars) and High (red bars) animal
groups on the probe1 (trial 1) and probe2 (trial 2) experimental procedures. Statistical
analysis testing wasn’t performed for the probe trials since the Friedman test requires at least three
different occasion measurement on each group.
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Kärkkäinen, I. and Fränti, P. [2002], Dynamic local search algorithm for the clustering
problem, Technical Report A-2002-6, Department of Computer Science, University
of Joensuu, Joensuu, Finland.

Katsavounidis, I., Kuo, C.-C. J. and Zhang, Z. [1994], ‘A new initialization technique
for generalized lloyd iteration’, IEEE Signal processing letters 1(10), 144–146.

Kaufman, L. and Rousseeuw, P. J. [2009], Finding groups in data: an introduction
to cluster analysis, Vol. 344, John Wiley & Sons.

Kearns, M. J. and Valiant, L. G. [1993], Cryptographic limitations on learning
boolean formulae and finite automata, in ‘Machine Learning: From Theory to
Applications’, Springer, pp. 29–49.

Klein, D., Kamvar, S. D. and Manning, C. D. [2002], From instance-level constraints
to space-level constraints: Making the most of prior knowledge in data clustering,
Technical report, Stanford.

Kondo, Y., Salibian-Barrera, M., Zamar, R. et al. [2016], ‘Rskc: an r package for a
robust and sparse k-means clustering algorithm’, Journal of Statistical Software
72(5), 1–26.

Korf, R. E. [1985], ‘Depth-first iterative-deepening: An optimal admissible tree
search’, Artificial intelligence 27(1), 97–109.

Korthauer, L., Nowak, N., Frahmand, M. and Driscoll, I. [2017], ‘Cognitive correlates
of spatial navigation: Associations between executive functioning and the virtual
morris water task’, Behavioural brain research 317, 470–478.
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