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Abstract

In this thesis, we investigate questions about the ways to analyse the stability of

input-output systems with delays that may be variable.

After detailing the necessary background, the focus switches to analysing the

H∞-stability of the transfer function. This stability depends on whether the transfer

function is bounded in the right half plane. Moreover, a generalisation of the

Walton-Marshall method [39] is given for matrices and some operator cases.

Then, the focus becomes on different kinds of stability, BIBO stability and

H∞-stability, of variable delay systems. Via a convenient extension of results on

such stability notions due to Bonnet and Partington [5], it becomes possible to

consider a more general version of stability, which is Lp -stability for all 1 ≤ p ≤ ∞.

Next, by changing the variables, the variable delay system can often be transformed

into an ordinary system with weights. The transformed equation can sometimes be

solved and we discuss the instability that makes the output of the system not lie in

L2 whereas its input is in L2.

After that, the main focus is on the stability, which is BIBO stability and L2-stability,

of autonomous and non-autonomous systems without delay but with weights, g1

and g2, under suitable conditions on g1 and it is illustrated by special examples.

Furthermore, we give some results of types of stability that link the output of the

ordinary delay system with the output of the variable delay system. Last, we get

results involving stability using weighted L2 spaces which correspond by the Laplace

transform to Zen spaces on the half plane. We extend the theory of Zen spaces

v



(weighted Hardy/Bergman spaces on the right-hand half-plane) to the Hilbert-space

valued case, and describe the multipliers on them; it is shown that the methods of

H∞ control can therefore be extended to certain weighted L2 input and output

spaces.

Finally, we give some suggestions for further research.
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Chapter 1

Background

1.1 Introduction

In this thesis, we investigate questions about the ways to analyse the stability of

input-output systems with delays that may be variable. This investigation divides

the thesis into six chapters of which four present ways to analyse the stability and

they are linked to each other directly or indirectly.

After detailing the necessary background in Chapter 1, the focus switches in Chapter

2 to analysing the H∞-stability of the retarded ordinary delay system with constant

delays and operator-valued transfer function. This is achieved by developing an

extension of the Walton-Marshall technique [39, 47], originally presented in the

purely scalar case, to matrices and some operator cases. Therefore, we start with

the main result of the second chapter which is concerned with the transfer function in

operator-valued H∞. Then we adapt their methods to study a system with bounded

operators, which requires us to consider the spectrum of the operators. From this

we have a complex version of the Walton-Marshall formula. Additionally, we have

a simple result about subnormal operators.

From analysing the H∞-stability of ordinary delay systems, we move in the third
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1.1. INTRODUCTION

chapter to looking at different kinds of stability of variable delay systems. This

can be approached by considering the stability of an ordinary delay system that

is very close to the variable delay one in order to ensure similar properties under

specific conditions. Because of this we looked at a particular paper of Bonnet and

Partington [5] in order to make extensions to the BIBO stability and H∞-stability

results covered in their paper and to consider a more general version of stability,

namely Lp stability for 1 ≤ p ≤ ∞. Additionally, we analyse the three main versions

of stability for normal or subnormal operators.

Next, by changing the variables, the variable delay system mentioned in the previous

chapter can often be transformed into an ordinary system with weights and constant

delays, which may enable us to analyse the stability of the varying delay system.

The transformed equation can sometimes be solved and we discuss the nature of

instabilities that make the output of the system fail to lie in L2 (or L∞) whereas its

input is in L2 (or L∞).

The main result of the fifth chapter is a theorem that combines two results. The first

one is due to Jacob, Partington and Pott [29], which will be seen as a scalar version

of our results. It involves stability using weighted L2 spaces which correspond by the

Laplace transform to Zen spaces on the half plane. However, we extend the theory

of Zen spaces (weighted Hardy/Bergman spaces on the right-hand half-plane) to the

Hilbert-space valued case. The second result that we are generalizing is Plancherel’s

Theorem [2, Thm. 1.8.2] which is for Hilbert-space valued functions, but with

different spaces. Then we describe the multipliers on weighted Hardy/Bergman

spaces on the right-hand half-plane. It is shown that the methods of H∞ control can

therefore be extended to certain weighted L2 input and output spaces. Additionally,

we focus on the BIBO stability and L2-stability of autonomous and non-autonomous

systems without delay but with weights, g1 and g2, under suitable conditions on g1

and this is illustrated by special examples. Furthermore, we give some results on

types of stability that link the output of the ordinary delay system with the output

of the variable delay system.

Finally, we give some suggestions for further research.
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CHAPTER 1. BACKGROUND

Now we start by mentioning some essential background. The thesis combines ideas

from operator theory, complex analysis, and linear systems theory, and so this

chapter gives the basic concepts and results used later. These include Hardy spaces,

Laplace transforms, semigroups, normal operators, subnormal operators, stability of

basic linear systems and the theory of delay systems. There will be no new results

and therefore we state most of the theorems without proof.

1.2 Hardy Spaces and Laplace Transforms

Some definitions are needed, which can be found in [2, 16, 27, 34, 37, 39, 41, 42, 48].

Definition 1.2.1. If 1 ≤ p < ∞ and if f is a complex measurable function on X,

where X is an arbitrary measure space with a positive measure µ, define

‖f‖p =

{∫
X

|f |p dµ

} 1
p

,

and let Lp(µ) consist of all f for which

‖f‖p <∞,

where we identify two functions if they are equal almost everywhere.We call ‖f‖p
the Lp-norm of f .

Theorem 1.2.2. (Hölder’s Inequality) If p and q are conjugate exponents, i.e.
1

p
+

1

q
= 1, 1 < p <∞, and if f ∈ Lp(µ) and g ∈ Lq(µ), then fg ∈ L1(µ),and

‖fg‖1 ≤ ‖f‖p‖g‖q.

Definition 1.2.3. Let X be a Banach space; for 1 ≤ p < ∞ the Hardy space

Hp(C+;X ) of the right half plane C+ may be defined as the set of all analytic

functions f : C+ → X such that

‖f‖p =

(
sup
x>0

∫ ∞
−∞
‖f(x+ iy)‖p dy

)1/p

<∞.

3



1.3. SEMIGROUPS

Likewise, the space H∞(C+;X ) consists of all analytic and bounded functions in C+,

and the norm is given by

‖f‖∞ = sup
z∈C+

‖f(z)‖.

Definition 1.2.4. For suitable functions z defined on (0,∞) the Laplace transform

ẑ = Lz, is given by

ẑ(s) =

∫ ∞
0

z(t)e−st dt (s ∈ C+).

Theorem 1.2.5. (Paley-Wiener) Let H be a Hilbert space then

‖ẑ‖H2(C+;H) =
√

2π‖z‖L2(0,∞;H).

Theorem 1.2.6. Let X be a Banach space then

‖ẑ‖H∞(C+;X ) ≤ ‖z‖L1(0,∞;X ).

Proof. Suppose z ∈ L1(0,∞;X ) and ẑ(s) =

∫ ∞
0

z(t)e−st dt. Then for all s ∈ C+,

‖ẑ(s)‖ =

∥∥∥∥∫ ∞
0

z(t)e−st dt

∥∥∥∥
≤ max

t≥0

∣∣e−st∣∣ ∫ ∞
0

‖z(t)‖ dt

≤
∫ ∞

0

‖z(t)‖ dt = ‖z‖L1(0,∞;X ).

Since this holds for all s ∈ C+, we have the result.

1.3 Semigroups

From [39, p. 22], we introduce:

Definition 1.3.1. Let X be a Banach space. Then a strongly continuous semigroup

(or C0-semigroup) (T(t)) is a collection of bounded operators {T(t) : t ∈ R, t ≥ 0},

satisfying the following conditions:

4



CHAPTER 1. BACKGROUND

1. T(0) = 1, the identity operator on X .

2. T(s)T(t) = T(s+ t) for every s, t ≥ 0.

3. The mapping from R+ into X defined by t → T(t)x is continuous for every

x ∈ X .

One important and easy example is obtained by defining T(t) = eAt, where A is a

fixed bounded operator on X .

Definition 1.3.2. Let T(t) be a C0 semigroup on a Banach space X . Then its

infinitesimal generator is the linear operator A : D(A)→ X defined by

Ax = lim
h→0+

T(h)x− x
h

,

with domain D(A) ⊆ X given by D(A) =

{
x ∈ X : lim

h→0+

T(h)x− x
h

exists

}
.

Some facts in [17, p.16, 36, 57, 112, 302] are needed.

Proposition 1.3.3. If A ∈ L(X ) where X is a complex Banach space with norm

‖ · ‖ and L(X ) is the Banach algebra of all bounded linear operators on X endowed

with the operator norm, which again is denoted by ‖ · ‖, then (etA)t≥0 is a semigroup

on X such that

R+ 3 t 7→ T (t) := etA ∈ (L(X ), ‖ · ‖),

is continuous.

Definition 1.3.4. A one-parameter semigroup (T (t))t≥0 on a Banach space X is

called uniformly continuous (or norm continuous) if

R+ 3 t 7→ T (t) ∈ L(X ),

is continuous with respect to the uniform operator topology on L(X ).

5



1.4. NORMAL OPERATORS

Definition 1.3.5. A strongly continuous semigroup (T (t))t≥0 is called eventually

norm continuous if there exists t0 ≥ 0 such that the function t 7→ T (t) is norm

continuous from (t0,∞) into L(X ). The semigroup is called immediately norm

continuous if t0 can be chosen to be t0 = 0.

With this terminology, we can restate Proposition (1.3.3) by saying that (etA)t≥0 is

a uniformly continuous semigroup for any A ∈ L(X ). The converse is also true.

1.4 Normal Operators

Definition 1.4.1. To any linear operator A we associate its spectral bound defined

by

s(A) := sup{Reλ : λ ∈ σ(A)},

where the spectrum of A is

σ(A) = {λ ∈ C : A− λI not invertible}, (1.1)

and if A is a finite matrix, which is a bounded operator, then σ(A) will be the set of

eigenvalues.

The following standard facts can be found in [33, Chapter 1].

Definition 1.4.2. If A and B are two linear operators on the vector space X to the

vector space Y , their linear combination αB + βA is defined by

(αB + βA)u = α(Bu) + β(Au),

for all u ∈ X, and is again a linear operator on X to Y . Let us denote by L(X, Y )

the set of all operators on X to Y ; L(X, Y ) is a vector space with the bounded linear

operations defined as above.

6



CHAPTER 1. BACKGROUND

Definition 1.4.3. A ∈ L(H) is said to be normal if A and A∗ commute :

A∗A = AA∗.

This is equivalent to

‖A∗u‖ = ‖Au‖ for all u ∈ H.

An important property of a normal operator A is that

‖An‖ = ‖A‖n, n = 1, 2, ....

This implies in particular that (r denotes the spectral radius) r(A) = ‖A‖ where

r(A) = max{|λ| : λ ∈ σ(A)}.

We have also the following properties:

• If A is normal, P(A) is normal for any polynomial P .

• A−1 is normal if A is normal and nonsingular.

• If A is a bounded normal operator, then its semigroup (eAt) consists of normal

operators. Additionally, by the spectral mapping theorem in [14, Chapter VII]

σ(eAt) = {eλt : λ ∈ σ(A)}.

From the spectral theorem we have [15, p.911]:

Corollary 1.4.4. Let A be a normal operator in the Hilbert space H. Then there

exists a regular positive measure space (S,Σ, µ), a bounded µ-measurable scalar

function f on S , and U unitary mapping H onto L2(S,Σ, µ) which preserves the

inner product and is such that

A = U∗MfU,

7



1.5. SUBNORMAL OPERATORS

where Mf : L2(S) → L2(S) is the multiplication operator such that Mfu(x) =

f(x)u(x), x ∈ S.

Remark 1.4.5. For A a normal operator we can prove ‖eAt‖ = eat where s(A) = a.

That requires the existence of a multiplication operator Mf such that A = U∗MfU ,

so A is unitarily equivalent to Mf , on X, where f is a bounded function on X;

σ(A) = σ(Mf ) = {f(x) : x ∈ X)} ⊂ {λ ∈ C− : Reλ ≤ s(A) = a}.

Therefore, ‖eAt‖ = ‖Mef(t)‖ and so

‖eAt‖t>0 = sup{|ef(x)t| : x ∈ X},

=et sup(Ref),

=eat.

Remark 1.4.6. For the finite-dimensional case the matrix A is diagonalizable with

respect to an orthonormal basis if and only if it is normal. An infinite diagonal

matrix gives a normal operator.

1.5 Subnormal Operators

The following standard facts can be found in [6] and [9].

Definition 1.5.1. An operator A acting on a Hilbert space K is said to be subnormal

if, on some space H containing K, there exists a normal operator B such that

Bf = Af for every f in K; then B is called a normal extension of A. Equivalently,

A is a subnormal on K, a subspace of H, if the normal operator B, acting on H,

leaves K invariant, and A is the restriction of B to H.

Next, some relationships exist between various concepts associated with a subnormal

operator and the corresponding constructs of its normal extension. The normal

extension B acting on H, is a minimal normal extension of A if it has the property

that no proper subspace L with K ⊂ L ⊂ H satisfies that B|L is a normal extension.

8



CHAPTER 1. BACKGROUND

Proposition 1.5.2. 1. σ(B) ⊂ σ(A) where σ(T ) denotes the spectrum of the

operator T .

2. σ(A) ⊂ σ(B) ∪ H(B) where H(B) =
⋃∞
n=1 Un; where each Un is a bounded

component of C \ σ(B) (holes in σ(B)).

3. ‖f(A)‖ = r(f(A)) = r(f(B)) = ‖f(B)‖ where f is any function in one

variable that is analytic on a neighbourhood of σ(A) where r(T ) denotes the

spectral radius of the operator T .

1.6 Stability

As mentioned in [38], we are concerned here with linear operators (system operators)

R defined on Lp(0,∞) for some 1 ≤ p ≤ ∞. Conventionally, we shall write y = Ru,

where u, y ∈ Lp, and u is called the input and y the output of the system.

A time-invariant convolution operator in continuous time on Lp can be defined by

y(t) = (Rgu)(t) = (g ∗ u)(t) =

∫ t

0

g(t− τ)u(τ) dτ,

where g is called the impulse response. Additionally, we associate u(t) with its

Laplace transform û = Lu, where

û(s) =

∫ ∞
0

e−stu(t) dt,

and similarly let G = ĝ = Lg and ŷ = Ly. Then ŷ(s) = G(s)û(s) where G(s)

is called the transfer function. These definitions apply to both time-varying and

time-invariant systems.

Definition 1.6.1. BIBO Stability means if u ∈ L∞(0,∞;H) then y ∈ L∞(0,∞;H).

It implies that Rg : L∞ → L∞ is bounded using the closed graph theorem.

Definition 1.6.2. L1 Stability means if u ∈ L1(0,∞;H) then y ∈ L1(0,∞;H). It

implies that Rg : L1 → L1 is bounded.

9



1.6. STABILITY

Definition 1.6.3. L2 Stability means if u ∈ L2(0,∞;H) then y ∈ L2(0,∞;H). It

implies that Rg : L2 → L2 is bounded.

The next theorem says that for time invariant systems BIBO stability is the same

as L1 stability.

Theorem 1.6.4. For p = 1 and ∞, the (continuous-time) convolution operator

Rg : Lp(0,∞;H)→ Lp(0,∞;H),

is bounded if and only if g ∈ L1(0,∞; L(H)) : if so, then ‖Rg‖ = ‖g‖1. For

p = 2 the operator Rg is bounded if and only if G(s) ∈ H∞(C+,L(H)) : if so,

then ‖Rg‖ = ‖G‖∞.

1.6.1 The Stability of Semigroups

There are different kinds of stability [17, p. 18, 296, 298].

Definition 1.6.5. (uniform exponential stability)

A semigroup (T (t))t≥0 on a Banach space X is called uniformly exponentially stable

if there exist constants ε > 0, M ≥ 1 such that

‖T (t)‖ ≤Me−εt,

for all t ≥ 0.

Definition 1.6.6. (exponential stability)

A strongly continuous semigroup (T (t))t≥0 with the generator (A,D(A)) is called

exponentially stable if there exists ε > 0 such that

lim
t→∞

eεt‖T (t)x‖ = 0,

10
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for all x ∈ D(A).

Definition 1.6.7. A strongly continuous semigroup (T (t))t≥0 is called uniformly

stable if

lim
t→∞
‖T (t)‖ = 0.

Remark 1.6.8. From the previous definitions, the following can be deduced:

(1) (T (t))t≥0 is uniformly exponentially stable if and only if it is uniformly stable.

(2) If (T (t))t≥0 is uniformly exponentially stable or uniformly stable, then it is

exponentially stable.

Theorem 1.6.9. An eventually norm-continuous semigroup (T (t))t≥0 is uniformly

exponentially stable if and only if the spectral bound s(A) of its generator A satisfies

s(A) < 0.

The following facts are given in [39, chapter 2].

Theorem 1.6.10. Let A be the infinitesimal generator of a C0 semigroup (T (t))

defined on X . Then A is a closed operator, and D(A) is dense in X .

Definition 1.6.11. (The Mild Solution)

If A is the infinitesimal generator of a C0 semigroup (T (t)) on X , then the function

t→ z(t) is said to be a mild solution to the Cauchy problem

dz(t)

dt
= Az(t) t > 0, z(0) = z0, (1.2)

if z0 ∈ X and z(t) = T (t)z0.

Example 1.6.12. [10, chapter 2](Here, A is an unbounded operator generating a

semigroup in the Cauchy Problem, the Heat Equation).

11
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Equation (1.2) comes out of the heat equation

∂z

∂t
(y, t) =

∂2z

∂y2
(y, t), z(y, 0) = z0(y),

∂z

∂y
(0, t) = 0 =

∂z

∂y
(1, t),

(1.3)

where z(y, t) represents the temperature at position y and time t, and z(., t) ∈

L2(0, 1) for each t ≥ 0. Here z0(y) is the initial temperature, and we take the

operator A on L2(0, 1) to be

Aw =
d2w

dy2
, with

D(A) = {w ∈ L2(0, 1)|w, dw
dy

are absolutely continous,

d2w

dy2
∈ L2(0, 1) and

dw

dy
(0) = 0 =

dw

dy
(1)}.

A has the eigenvalues λn = −n2π2, n ≥ 0 and so A is given by an infinite diagonal

matrix as follows:

A =



0 0 0 . . . 0 . . .

0 −π2 0 . . . 0 . . .

0 0 −4π2 0 . . .

0 . . . 0
. . . 0 . . .

. . . . . . . . . . .

0 0 0 0 . . . . . .


,

The set of eigenvalues is unbounded, which makes A an unbounded operator.

However, they lead to a uniformly bounded even compact semigroup

T (t) =



1 0 0 . . . 0 . . .

0 e−π
2t 0 . . . 0 . . .

0 0 e−4π2t 0 . . .

0 . . . 0
. . . 0 . . .

. . . . . . . . . . . .

0 0 0 0 . . . . . .


,

12
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where ‖T (t)‖ ≤ 1. Because of that, the solution of (1.2),

z(t) = eAtz0, z0 ∈ D(A),

is bounded. Similarly the equation

∂z

∂t
(y, t) =

∂2z

∂y2
(y, t) + u(y, t),

can be written as
dz(t)

dt
= Az(t) +Bu(t),

where B = I.

1.7 Solutions of Basic Linear Systems

First, equations with known solutions are identified, primarily from [39].

1.7.1 Equation Without Delay

Finite-Dimensional Case

ẋ(t) = Ax(t) +Bu(t), x(0) = 0, t ∈ [0,∞). (1.4)

Here x(t) ∈ Cn is a vector, u(t) ∈ Cm, A is an n × n matrix and B is an n × m

matrix. The solution for equation (1.4) using a Laplace transform is

sx̂(s) = Ax̂(s) +Bû(s),

(sI − A)x̂(s) = Bû(s),

x̂(s) = (sI − A)−1Bû(s),

here (sI − A)−1B is the transfer function. x̂ and û are the Laplace transforms of x

and u respectively.

13
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Additionally, equation (1.4) can be multiplied by the exponential e−At and solved,

where A is a matrix and the solution as follows:

e−At
(
dx

dt
− Ax(t)

)
= e−AtBu(t),(

e−Atx(t)
)′

= e−AtBu(t),

x(t) = eAt
∫ t

0

e−AyBu(y) dy,

x(t) =

∫ t

0

eA(t−y)Bu(y) dy, (1.5)

which is a convolution between the function u(y) and the exponential.

Infinite-Dimensional Case

More generally we have equation (1.4) with x(t) ∈ X, u(t) ∈ U (where X and U

are Hilbert spaces), A : X → X and B : U → X. If A is a bounded (continuous)

operator, then ekA =
∑∞

n=0
kn

n!
An will be defined to allow A to be used to write ekA

where k is a scalar and (1.5) will be the solution of equation (1.4). However, later

we want to do this when A is not bounded. That will be more difficult as we have

to think what we mean by the exponential of an operator and use semigroups.

1.7.2 Equation with a Constant Delay

The theory of delay differential systems

pmx
(m)(t) + pm−1x

(m−1)(t) + ...+ p1ẋ(t) + p0x(t)

+ qnx
(n)(t− h) + qn−1x

(n−1)(t− h) + ...+ q1ẋ(t− h) + q0x(t− h) = u(t),

is analysed in [3].

14
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The General Case

More generally we can consider the case

ẋ(t) = Ax(t− τ) +Bu(t), (1.6)

and so

(sI − Ae−sτ )x̂(s) = Bû(s),

x̂(s) = (sI − Ae−sτ )−1Bû(s).

Here, x̂(s) is obtained when û(s) is known, but explicit calculation of x(t) is more

difficult. An example of such a case can be found in [39, p.123].

A Special Case

When A = −1, τ is constant, B = 1 and u(t) = e−t, equation (1.6) transforms into

ẋ(t) = −x(t− τ) + e−t, x(0) = 0.

This is a normal delay equation that can be solved as follows:

sx̂(s) = −e−sτ x̂(s) +
1

1 + s
,

x̂(s) =
1

(1 + s)
· 1

(e−sτ + s)
,

x(t) =
1

2πi

∫ c+i∞

c−i∞
est
(

1

(1 + s)
· 1

(e−sτ + s)

)
ds.

15
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1.8 Stability of Basic Linear Systems

1.8.1 Undelayed Case

The stability of the equation

ẋ(t) = Ax(t) +Bu(t), x(0) = 0, (1.7)

was studied in [39, Chapter 6] and [38, Chapter 8] for different statuses of A and B.

Here, we mention some of this study as follows:

• A, B Scalars

Laplace transform of equation (1.7)

sx̂(s) = Ax̂(s) +Bû(s),

x̂(s) =
Bû(s)

s− A
.

This shows that the property of stability can not hold if A ≥ 0. Because of

the singularity of A, x̂ is not analytic in C+ which means x̂ /∈ H2 for some

choices of û. Thus x /∈ L2(0,∞).

• A, B Matrices

The transfer function of equation (1.7)

x̂(s) = (sI − A)−1Bû(s),

shows that if A has eigenvalues in C+, x̂ will not be stable.

• A, B Operators and A Generates a Semigroup (T (t))t≥o

16
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The solution of equation (1.7) for operators will be

x(t) =

∫ t

0

T (t− y)Bu(y) dy,

where [39, p 22]

‖T (t)‖ ≤Meωt, M > 0 constant, ω ∈ R.

If ω > 0, then the stability can not be guaranteed. Whereas, if ω < 0, then

the stability can be obtained.

1.8.2 Delay System Case

• A Bounded Operator

The stability of delay systems was analysed in [36, p. 4], where the equation

ẋ(t) = Ax(t− τ) +Bu(t), (1.8)

was considered with A and B bounded operators. By taking Laplace

transforms as in (1.6) we obtain

x̂(s) = (sI − Ae−sτ )−1Bû(s).

So

x̂ ∈ H2(C+;H) for all û ∈ H2(C+;H) ⇐⇒ (sI − Ae−sτ )−1B is bounded in C+,

⇐⇒ (sI − Ae−sτ )−1B ∈ H∞(C+;H),

⇒ (sI − Ae−sτ )−1B exists ∀s; s ∈ C+,

17
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if B = I

⇒ Ae−sτ − sI is always invertible for s ∈ C+,

⇐⇒ A− sesτI is always invertible for s ∈ C+,

⇐⇒ sesτ /∈ σ(A) for s ∈ C+.

• A Unbounded Operator

We can get the stability of equation (1.8) for unbounded operators, by using

the steps that have been followed when A is a bounded operator.

1.8.3 Classification of Simple Delay System

If G(s) = 1/(P (s) +Q(s)e−sh) we describe the system as follows (see [39]):

degP < degQ advanced type

degP = degQ neutral type

degP > degQ retarded type.

1.8.4 Some Relevant Literature

There is a large literature on the stability of delay systems, analysed by various

techniques. We mention in particular the following:

• [7] is a self-contained monograph that provides a large collection of results on

linear parameter-varying systems.

18
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• In [12] stability conditions for systems with large time-varying delays are

provided under the assumption of the closeness of the delays instead of the

delays’ smallness.

• In [19], the input–output approach is extended to consider the stability of

neutral type systems with uncertain time-varying delays and norm-bounded

uncertainties.

• In [20] a stability criterion is derived in the general multiple delay case without

any constraints on the delay derivative.

• In [21] the main results state that if certain linear matrix inequalities hold,

then the system is Lyapunov stable.

• [22] gives sufficient conditions involving linear matrix inequalities for the

stability and state feedback H∞ control of of neutral systems with time varying

delays.

• In [23] stability is discussed for linear time-delay systems assuming that the

time-varying delay consists of two parts, an ordinary constant-delay and a

time-varying perturbation delay.

• [31, 32] the stability of systems is studied in the presence of bounded uncertain

time-varying delays in the loop.

• In [44], the authors study delay systems of the form

x′(t) = Ax(t) + Ad

∫ ∞
0

K(θ)x(t− θ) dθ,

where x ∈ Rn, A and Ad ∈ Rn×n and K(t) is a scalar.
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Chapter 2

Location of Poles

2.1 Introduction

In this chapter we consider the differential equation

ẋ(t) + Ax(t− h) = u(t), for t ≥ 0, (2.1)

where x(t) = 0 for t ≤ 0 and similar equations, where x(t), u(t) ∈ X (where X is a

Banach space), A : X → X is a bounded operator and h ≥ 0 is the delay, and we

mainly focus on analysing the H∞ stability of the delay system with more general

transfer function
(
P (s)I +Q(s)Ae−sh

)−1
where P (s), Q(s) are complex polynomials

(see Subsection 1.8.2). This will depends on whether it has poles in the right half

plane or not. The Walton-Marshall method [39] did such analysis in the purely scalar

case. The method is based on the observation that the zeros of P (s) + Q(s)e−sh

vary continuously with h (by Rouché’s theorem) and so that if they cross from the

left half-plane to the right half-plane or vice-versa, then there will be values of h for

which they cross the axis. Moreover, the crossing points do not depend on h. This

method was clarified in a proposition which shows that if (P (s) + Q(s)e−sh) has a

zero at point s ∈ iR and the real polynomials P (s), Q(s) are not zero then such an
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s satisfies the equation

P (s)P (−s) = Q(s)Q(−s). (2.2)

Additionally, at such point s the direction in which the zeros cross the axis is

identified by

sgnRe
ds

dh
= sgnRe

1

s

[
Q′(s)

Q(s)
− P ′(s)

P (s)

]
. (2.3)

However, we develop the Walton-Marshall method further to apply to matrices and

some operator cases. Some of this work will be published in [1].

We basically start with the easier case where A is a finite square matrix to

study the stability of the transfer function (sI + Ae−sh)−1. Using a theorem of

Schur [28, Theorem 2.3.1] [28] we manage to adopt the Walton-Marshall method.

The theorem says that A can be transformed into a triangular matrix T whose

eigenvalues λk; 1 ≤ k ≤ n are its diagonal entries, although they might be complex

numbers. Therefore, by knowing the zeros of the determinant of the transfer

function as it is equal to
∏n

k=1(sI + λke
−sh) we find that the zeros cross the axis

at s = ±i|λk| and from this we deduce that the system is stable on (0, h) where

h = min
(

1
|λk|

arg
(
i |λk|
λk

)
, 1
|λk|

arg
(
i λk|λk|

))
.

Then, we generalize the Walton-Marshall method for operators in different systems

of ordinary constant-delay to get the formula

P (s)P (−s) = |λ|2Q(s)Q(−s), (2.4)

which applies to P (s)+λQ(s)e−sh and λ ∈ C where P (s), Q(s) are real polynomials.

The formula (2.4) is the same of the Walton-Marshall formula (2.2), however, the

right side of (2.4) is multiplied by |λ|2. Moreover, the direction of the zeros crossing

is deduced to be given by (2.3) as in the work of Walton and Marshall. Furthermore,

the improved formula is obtained easily when A is a bounded normal operator to

study the stability of the system with a constant delay. In [15, Corollary X.5.4], it

is shown that A is unitarily equivalent to a multiplication operator that tells us the
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spectrum of A and then the location of the poles of the transfer function for the

delay system.

At the last but not least we introduce the H∞ stability theorem that analyses the

bounded operator case to know where the transfer function
(
P (s)I +Q(s)Ae−sh

)−1

is bounded in the right half plane where P (s), Q(s) are complex polynomials. The

theorem does not apply unless degP > degQ, the case of a retarded delay system.

Bonnet and Partington [4] give an interesting example clarifying how the stability

can not be determined from the location of the poles when degP = degQ, a neutral

delay system.

Proposition 2.1.1. (Walton-Marshall Method) [47], [39, p.132] Let P (s) and

Q(s) be real polynomials. If

Rh(s) = P (s) +Q(s)e−sh, (2.5)

where h is the delay in the delay system, has a zero at a point s ∈ iR, and P (s) and

Q(s) are not zero there, then such an s satisfies the equation

P (s)P (−s) = Q(s)Q(−s). (2.6)

Moreover, at such a point s we have

sgnRe
ds

dh
= sgnRe

1

s

[
Q′(s)

Q(s)
− P ′(s)

P (s)

]
.

Example 2.1.2. The H∞ stability of the scalar delay system

ẋ(t) = Ax(t− h) +Bu(t),

where A,B ∈ R gives

x̂(s) =
Bû(s)

s− Ae−sh
,

and depends on the transfer function
B

s− Ae−sh
being in H∞(C+).

By using the previous proposition we can show specifically for A = −λ ∈ R; λ > 0
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and B = 1 when exactly the transfer function
1

s+ λe−sh
is bounded in C+ as follows

[39, p. 132]:

Consider the denominator of the transfer function to be Rh(s) = s + λe−sh, which

for h = 0 has no right half-plane zeros. Equation (2.6) indicates that imaginary axis

zeros can occur only if −s2 = λ2; that is, if s = ±λi. It is only necessary to consider

one of the conjugate pair, say s = λi and solving for h we have

λi+ λe−λih = 0, that is, h =
π

2λ
+ 2nπ, n ≥ 0.

Further we have

sgnRe
ds

dh
= sgnRe

(
− 1

s2

)
> 0,

indicating that zeros cross from left to right. We may deduce that Rh(s) is stable

(has no right half-plane zeros) and so
1

s+ λe−sh
=

1

Rh(s)
is bounded if and only if

0 ≤ h < π/2λ.

2.2 H∞ Stability

In this section, we consider the H∞ stability of retarded delay system with transfer

function of the form G(s) =
(
P (s)I +Q(s)Ae−sh

)−1
, where P and Q are complex

polynomials and A a bounded operator on a Banach space X . We shall see that, even

in the operatorial case, for systems of retarded type invertibility of P (s)I+Q(s)e−shA

is equivalent to the inverse function being in H∞: this is true for retarded systems,

but not for systems of neutral type.

Theorem 2.2.1. If A is a bounded operator in Banach space X such that h ≥ 0

and P (s), Q(s) are complex polynomials with degP > degQ then the following

three statements are equivalent:

(i)
(
P (s)I +Q(s)Ae−sh

)−1 ∈ H∞(L(X )).

(ii)
(
P (s)I +Q(s)Ae−sh

)
is invertible ∀s ∈ C+.
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(iii) P (s)I +Q(s)λe−sh 6= 0 ∀s ∈ C+, ∀λ ∈ σ(A).

Proof. (i) =⇒ (ii): The condition
(
P (s)I +Q(s)Ae−sh

)−1 ∈ H∞(L(X )) implies

that
(
P (s)I +Q(s)Ae−sh

)
is always invertible for s in the closed half plane.

(ii) =⇒ (iii): This is straightforward. The operator
(
P (s)I +Q(s)Ae−sh

)
is

invertible ∀s ∈ C+ if and only if 0 /∈ σ
[
P (s)I +Q(s)Ae−sh

]
; but for fixed

s, we get σ
[
P (s)I +Q(s)Ae−sh

]
=
{
P (s) +Q(s)λe−sh; λ ∈ σ(A)

}
which means

P (s) +Q(s)λe−sh 6= 0 ∀s ∈ C+, ∀λ ∈ σ(A).

(iii) =⇒ (i): Suppose P (s) + Q(s)λe−sh 6= 0 ∀s ∈ C+, ∀λ ∈ σ(A) and so(
P (s)I +Q(s)Ae−sh

)
is invertible ∀s ∈ C+. We show that the inverse is bounded as

a function of s;

First: there is an R > 0 such that for s ∈ C+ with |s| > R, we have

|P (s)| > |Q(s)|‖A‖|e−sh|+ 1,

and so for x ∈ X we get

‖P (s)x‖ >
(
|Q(s)|‖A‖|e−sh|

)
‖x‖+ ‖x‖,

and so

‖P (s)Ix+Q(s)Ae−shx‖ ≥ ‖P (s)x‖ −
(
|Q(s)|‖A‖|e−sh|

)
‖x‖ ≥ ‖x‖.

That means

‖
(
P (s)I +Q(s)Ae−sh

)−1 ‖ ≤ 1,

and so
(
P (s)I +Q(s)Ae−sh

)−1
is bounded for |s| > R, s ∈ C+.

Second, to prove
(
P (s)I +Q(s)Ae−sh

)−1
is uniformly bounded for |s| ≤ R, s ∈ C+,

we suppose not, so ∃(xn) ⊂ X , ‖xn‖ = 1 and a sequence (sn) ⊂ S where
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S = {s ∈ C+ : |s| ≤ R} such that

(
P (sn)I +Q(sn)Ae−snh

)
xn → 0,

and because S is a compact set then there is a subsequence (snk)k≥0 and s0 ∈ S

such that (snk) → s0. Now ‖P (sn)I + Q(sn)Ae−snh − P (s0)I − Q(s0)Ae−s0h‖ → 0

and so
(
P (s0)I +Q(s0)Ae−s0h

)
xn → 0 which means that

0 ∈ σ
(
P (s0)I +Q(s0)Ae−s0h

)
,

so there exists a λ ∈ σ(A) such that P (s0)I +Q(s0)λe−s0h = 0.

Remark 2.2.2. 1. The result does not hold in general if A is unbounded (and in

this case the linear system may even be destabilised by an arbitrarily small

delay). For example, if A is a diagonal operator on a Hilbert space with

orthonormal eigenvectors and eigenvalues λn = (ni+ 1/n)(n ≥ 1), then s+λn

has no zeros in C+ but (sI + A)−1 is unbounded on C+.

2. The location of the poles of a neutral delay system does not determine its H∞

stability; as the following example indicates [4].

Consider R(s) = 1
s+1+se−s

. If Res > 0 then we cannot have e−s = −1 − 1

s
,

since the left-hand side has modulus < 1 and the right-hand side has modulus

strictly > 1; thus this system has no poles in C+, nor indeed on iR (as is easily

verified), although it does have a sequence of poles zn with Imzn ≈ (2n + 1)π

and Rezn → 0. The system is not stable, as an analysis of its values at

s = i

[
(2n+ 1)π +

1

(2n+ 1)π

]
, n ∈ Z, shows that it is not even in H∞.

26



CHAPTER 2. LOCATION OF POLES

2.3 Generalization of the Walton-Marshall

Method for Operators in Different Systems

of Constant Delay

In this section, we use the Walton-Marshall method to study the stability of different

retarded systems of ordinary constant-delay given by the equation

pmx
(m)(t) + pm−1x

(m−1)(t) + ...+ p1ẋ(t) + p0x(t)

+ A[qnx
(n)(t− h) + qn−1x

(n−1)(t− h) + ...+ q1ẋ(t− h) + q0x(t− h)] = u(t), (2.7)

where u ∈ L2(0,∞;H), p0, ..., pm, q0, ..., qn ∈ R and A : H → H is a bounded

operator. The Walton-Marshall method requires writing equation (2.7) in its Laplace

transform

(pms
m + pm−1s

m−1 + ...+ p1s+ p0)x̂(s)

+ A(qns
n + qn−1s

n−1 + ...+ q1s+ q0)x̂(s)e−sh = û(s),

by putting P (s) = (pms
m+pm−1s

m−1+...+p1s+p0) and Q(s) = (qns
n+qn−1s

n−1+

...+ q1s+ q0) where degP > degQ , we get

[P (s)I + AQ(s)e−sh]x̂(s) = û(s),

and so

x̂(s) = [P (s)I + AQ(s)e−sh]−1û(s).

Then, we need x̂(s) ∈ H2(C+;H) when û(s) ∈ H2(C+;H). That means that

[P (s)I + AQ(s)e−sh]−1 ∈ H∞(C+;L(H)) where [P (s)I + AQ(s)e−sh]−1 will be the

operator such that [P (s)I+AQ(s)e−sh]−1 : H2(C+;H)→ H2(C+;H). We can study

the stability of system (2.7) by knowing for which s ∈ iR

P (s) + λQ(s)e−sh = 0 for some λ ∈ σ(A). (2.8)
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From (2.8), we get P (s) = −λQ(s)e−sh that gives for s̄ = −s; s ∈ iR

equation P (−s) = −λ̄Q(−s)esh and so

P (s)P (−s) = |λ|2Q(s)Q(−s), (2.9)

where P (s), Q(s) are real polynomials. Formula (2.9) is the same of the

Walton-Marshall formula (2.6), however, the right side of formula (2.9) is multiplied

by |λ|2. Solving (2.9) gives the required values of s and then from (2.8) the delay

h can be obtained and for each λ. Finally, we can deduce the suitable interval of h

when system (2.7) is stable.

2.4 The Walton-Marshall Method for Bounded

Normal Operators in Different Systems of

Constant Delay

In this section, we use the Walton-Marshall method to study the stability of system

(2.7) where x, u ∈ H; here H is Hilbert space and A : H → H is a bounded

normal operator. We need x̂(s) ∈ H2(C+;H) when û(s) ∈ H2(C+;H). That means

[P (s)I + AQ(s)e−sh]−1 ∈ H∞(C+,L(H)). Having [P (s)I + AQ(s)e−sh] invertible,

requires knowing the spectrum of A, σ(A), where

σ(A) = {λ ∈ C : λI − A not invertible}.

Recall from Corollary 1.4.4 that a normal operator A is unitarily equivalent to a

multiplication operator Mf on a space L2(Ω) with f ∈ L∞(Ω), so

0 ∈ σ(P (s)I +Q(s)Ae−sh),

⇐⇒ 0 ∈ {(P (s) +Q(s)λe−sh); λ ∈ σ(A)},

⇐⇒ 0 ∈ {(P (s) +Q(s)λe−sh); λ ∈ σ(Mf )},

⇐⇒ 0 ∈ {(P (s) +Q(s)λe−sh); λ ∈ {f(x) : x ∈ Ω}}.
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Then formula (2.9) can be obtained. Solving (2.9) gives the required values of s and

then from

P (s) + λQ(s)e−sh = 0, (2.10)

the delay h can be obtained for each λ. Additionally, to know the direction of the

zeros crossing that can be got by deriving (2.10) with respect of h where s is a

function of h as follows:

P ′(s)
ds

dh
+ λQ′(s)

ds

dh
e−sh − sλQ(s)e−sh − hλQ(s)e−sh

ds

dh
=0,[

P ′(s) + λQ′(s)e−sh − hλQ(s)e−sh
] ds
dh
− sλQ(s)e−sh =0

with λe−sh = −P (s)

Q(s)
, gives:

[
P ′(s)− Q′(s)

Q(s)
P (s) + hP (s)

]
ds

dh
= −sP (s),

and so
1

−s

[
P ′(s)

P (s)
− Q′(s)

Q(s)
+ h

]
ds

dh
= 1.

Then
ds

dh
= −s

[
P ′(s)

P (s)
− Q′(s)

Q(s)
+ h

]−1

.

Now sgn Re u = sgn Re u−1 for any u ∈ C\0 and h
s

purely imaginary so

sgn Re(
ds

dh
) = sgn Re

1

s

(
Q′(s)

Q(s)
− P ′(s)

P (s)

)
. (2.11)

If (2.11) greater than zero then the zeros go to C+ as h increases, but if (2.11) less

than zero then the zeros go to C−. Finally, we can deduce the suitable interval of

h when system (2.7) is stable. To summarize since even real matrices may have

complex spectrum, we require a complex version of Proposition 2.1.1, as follows:

Proposition 2.4.1. Let P (s) and Q(s) be real polynomials. If

P (s) + λQ(s)e−sh,

where h is the delay in the system, has a zero for some h ∈ R, λ ∈ C and s ∈ iR,
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and P (s), Q(s) are not zero there, then such an s satisfies the equation

P (s)P (−s) = |λ|2Q(s)Q(−s). (2.12)

Moreover, at such a point s we have

sgnRe
ds

dh
= sgnRe

1

s

[
Q′(s)

Q(s)
− P ′(s)

P (s)

]
.

Proof. The proposition has already been proven (see (2.9)).

Remark 2.4.2. If P (s) and Q(s) in Proposition 2.4.1 are real polynomials, the

equation (2.12) becomes

P (s)P (s) = |λ|2Q(s)Q(s), (2.13)

that is by putting P (−s) = P (s) and Q(−s) = Q(s) and so (2.13) is obtained.

Example 2.4.3. (Continuous Spectrum) Suppose in (2.7), we have the normal

multiplication operator A = M 2
1+y2

on L2(R); f(y) =
2

1 + y2
; {f(y) : y ∈ R} =

(0, 2]. Let us take P (s) = s+ 1
2
, Q(s) = 1 and σ(A) = σ(M 1

1+y2
) = {f(y) : y ∈ R} =

{λ : λ ∈ [0, 2]}. Then we consider the equation

s+
1

2
+ λe−sh = 0, for each 0 ≤ λ ≤ 2. (2.14)

First, we need to study the stability for h = 0 from (2.14) where we get

s = −(
1

2
+ λ) /∈ C+, 0 ≤ λ ≤ 2,

therefore the undelayed system

ẋ(t) +
1

2
x(t) + Ax(t) = u(t)

is stable. Then, we need to study the stability for h > 0 and 0 ≤ λ ≤ 2 where in

(2.9)

s2 =
1

4
− λ2
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and so

s = ±
√

1

4
− λ2, (2.15)

as follows:

• For 0 ≤ λ < 1
2

from (2.15) we get s = ±
√

1
4
− λ2 /∈ iR, so the system

ẋ(t) +
1

2
x(t) + λx(t− h) = u(t), (2.16)

is stable.

• For λ = 1
2

from (2.15) we get s = 0, so from (2.14) we require h where

e−sh = −1; s = 0: there is no solution which means the system (2.16) is

stable.

• For 1
2

< λ ≤ 2 from (2.15) we get s = ±i
√
λ2 − 1

4
, so from

(2.14) we can find h where e−sh =
−( 1

2
+i
√
λ2− 1

4
)

λ
; s = i

√
λ2 − 1

4
that

gives cos
(
h
√
λ2 − 1

4

)
= −1

2λ
and sin

(
h
√
λ2 − 1

4

)
=

√
λ2− 1

4

λ
such that

sin2
(
h
√
λ2 − 1

4

)
+ cos2

(
h
√
λ2 − 1

4

)
= 1 and so

h =
cos−1(−1

2λ
)√

λ2 − 1
4

+ 2nπ, n ∈ Z

and so hmin can be obtained when λ = 2 that gives

hmin =
2 cos−1(−1

4
)

√
15

≈ 0.941.

Further from (2.11) we have

sgn Re(
ds

dh
) = sgn Re

−1

s

(
1

(s+ 1
2
)

)
,

sgn Re(
ds

dh
) = sgn Re

(
−1

(s2 + 1
2
s)

)
,

sgn Re(
ds

dh
) = sgn Re

(
−1

s2

)
> 0,

31



2.5. SUBNORMAL OPERATORS

indicating that zeros cross from left to right. Then we may deduce the system

ẋ(t) +
1

2
x(t) + Ax(t− h) = u(t),

is stable if and only if 0 ≤ h < 0.941. For λ = 0, the only zero from (2.14) is

at s = −1
2

and these calculations are not used.

2.5 Subnormal Operators

Let A be a subnormal operator with minimal normal extension N , we have

from Theorem 2.2.1 that (P (s)I + Q(s)Ae−sh)−1 ∈ H∞(L(X )) if and only if

P (s) + Q(s)λe−sh 6= 0 for all λ ∈ σ(A) and for all s ∈ C̄+. We refer to Section

1.5 for the necessary notation.

Proposition 2.5.1. Under the hypotheses of Theorem 2.2.1 if P (s)+Q(s)λe−sh 6= 0

for all s ∈ C+ and for all λ ∈ σ(N)∪H(N) then (P (s)+Q(s)Ae−sh)−1 ∈ H∞(L(X )).

Conversely, if (P (s) + Q(s)Ae−sh)−1 ∈ H∞(L(X )) then P (s) + Q(s)λe−sh 6= 0 for

all s ∈ C+ and for all λ ∈ σ(N) so that it gives a way of testing whether the transfer

function is in H∞.

Proof. This follows from Proposition 1.5.2 (Section 1.5) and Theorem 2.2.1.

2.6 The Walton-Marshall Method for Finite

Square Matrices

As we have mentioned in the previous two sections, the formula (2.6) of

Walton-Marshall, which is

P (s)P (−s) = Q(s)Q(−s),
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where P (s) and Q(s) are real polynomials, is applied on (2.5), which is

Rh(s) = P (s) +Q(s)e−sh,

to identify which values of s ∈ iR that make the system unstable and then the delay

h can be found.

In this section, we will again study the stability of system (2.1) in the special case

that A is any finite square real matrix. Studying the stability as we have mentioned

in the previous section will be via applying the formula (2.6) on the determinant

of our transfer function sI + Ae−sh that equals zero but here it will be done by

matrix methods.

2.6.1 Transformation of A into a Triangular Matrix

We recall that the eigenvalues of a triangular matrix are its diagonal entries.

Furthermore, the next theorem [28, P.79], asserts that any finite matrix can be

transformed into an upper triangular matrix by conjugation with a unitary matrix.

Recall that a matrix U is unitary if U∗U = I, or equivalently its columns are

orthonormal.

Theorem 2.6.1. (Schur). Given A ∈ Mn with eigenvalues λ1, ..., λn in any

prescribed order, there is a unitary matrix U ∈Mn such that

U∗AU = T = [tij],

is upper triangular, with diagonal entries tii = λi, i = 1, ..., n. That is, every square

matrix A is unitarily equivalent to a triangular matrix whose diagonal entries are

the eigenvalues of A in a prescribed order. Furthermore, if A ∈ Mn(R) and if all

the eigenvalues of A are real, then U may be chosen to be real and orthogonal.

Because of that and since the determinant of T is the product of its eigenvalues, we
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get

det(sI + Ae−sh) = det(sI + T e−sh) =
n∏
k=1

(sI + λke
−sh), (2.17)

where λk is a real or complex eigenvalue of T, and T the triangular matrix of A. That

means factorizing the determinant of (sI+Ae−sh) gives us for each eigenvalue λ the

formula (2.5) for which we can use Walton-Marshall formula (2.6) for λk real number

by putting P (s) = sI, P (−s) = −sI, Q(s) = Q(−s) = λk and so −s2 = λ2
k, that

gives

s = ±iλk. (2.18)

However, we need to extend the Walton-Marshall formula to complex eigenvalues,

so we do the following

• We have s+ λke
−sh = 0 and so

s = −λke−sh. (2.19)

• Because s ∈ iR satisfies (2.19) its complex conjugate s̄ = −s satisfies

−s = −λ̄kesh. (2.20)

• From (2.19) and (2.20), we get a special case of (2.9), namely

(s)(−s) = (−λk)(−λ̄k),

−s2 = |λk|2,

and so

s = ±i|λk|, (2.21)

The formula (2.21) can be the general formula applied for each λk. Then we can

find the smallest h that makes the determinant (2.17) vanish as follows:
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By putting s = i|λk| in (2.19), we get

e−i|λk|h = −i|λk|
λk

,

and so

ei|λk|h = − λk
i|λk|

= i
λk
|λk|

,

then we get

h =
1

|λk|
arg

(
i
λk
|λk|

)
, (2.22)

whereas for s = −i|λk| we get

h =
1

|λk|
arg

(
i
|λk|
λk

)
, (2.23)

where i λk|λk| and i |λk|
λk

are complex numbers on the circle of modulus one and we look

at the smallest positive angle that gives h. Note that, if λk is real, then (2.22) and

(2.23) give the same answer.

Remark 2.6.2. We assume the stability at h = 0 holds if and only if s + λk has

no roots in C+, which means if and only if Reλk > 0.

Example 2.6.3. Suppose we have A =


1 0 0

0 2 1

0 0 2

, which is not diagonalisable,

but it is triangular. From (2.17) where P (s) = s,Q(s) = λk and the eigenvalues

λk ∈ {1, 2, 2} we must check the zero sets of s + e−sh and s + 2e−sh. The equation

(2.18) giving the points where zeros cross the axis with increasing h are s = ±i and

s = ±2i, respectively, and from (2.22) or (2.23) we arrive at stability ranges [0, π/2)

and [0, π/4), respectively. Thus the system (2.1) is stable for 0 ≤ h < π/4.

Example 2.6.4. For the normal operator A =

1 −1

1 1

 we have the transformation

T = U−1

1 −1

1 1

U =

1 + i 0

0 1− i

 ,
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where U = 1√
2

 1 −i

−i 1

 which is unitary. From (2.17), we get

(s+ (1 + i)e−sh)(s+ (1− i)e−sh) = 0. (2.24)

To study the stability we need first to check it from (2.24) at h = 0, which gives

s = −(1 ± i) /∈ C+ and so the system (2.1) is stable at h = 0. Then, we apply

(2.21), (2.22) and (2.23) for each factor as follows:

• For the factor (s+ (1 + i)e−sh) = 0 where λ = 1 + i, we get s = ±i
√

2 and so

– For s = i
√

2, h = 1√
2

arg
(
i1+i√

2

)
and so h = 3π

4
√

2
.

– For s = −i
√

2, h = 1√
2

arg
(
i
√

2
1+i

)
and so h = π

4
√

2
which is rejected.

• For the factor (s+ (1− i)e−sh) = 0 where λ = 1− i, we get s = ±i
√

2 and so

– For s = i
√

2, h = 1√
2

arg
(
i1−i√

2

)
and so h = π

4
√

2
which is rejected.

– For s = −i
√

2, h = 1√
2

arg
(
i
√

2
1−i

)
and so h = 3π

4
√

2
.

36



Chapter 3

Delays with Small Variation

3.1 Introduction

In this chapter we look at the stability of the variable-delay input-output systems.

There are other approaches in references [5, 19, 20, 22, 31, 32, 43, 49] that consider

stability, but not from an input output point of view (eg. autonomous systems).

Because of that, we are going to look at the particular paper of Bonnet and

Partington [5] to make an extension to different cases of stability, BIBO stability

and H∞-stability, which are covered in their paper and to consider a more general

version of stability, which is Lp-stability for all 1 ≤ p <∞. Paper [5] showed that if

the nominal system with constant delay and output z(t) ∈ Cn and input w(t) ∈ Cp

v̇(t) = Av(t)+
J∑
j=1

Ajv(t−hj)+
∫ D

0

h(θ)Iv(t−θ) dθ+Bu(t)+
K∑
k=1

Bku(t−Tk) (t > 0),

is stable where the delay θ and h1, ..., hj are positive, then under certain conditions

the time varying system

ẋ(t) = Ax(t)+
J∑
j=1

Ajx(t−τj(t))+

∫ δ(t)

0

h(θ)Ix(t−θ) dθ+Bu(t)+
K∑
k=1

Bku(t−σk(t))

(t > 0),

37



3.2. STABILITY OF TIME-VARYING DELAY SYSTEMS

is stable where x(t) ∈ Cn denotes the output and u(t) ∈ Cp the input, the matrices

A,Aj, B,Bk and I (identity matrix) have the appropriate sizes, and the delays τj(t)

and σk(t) are positive. Bonnet and Partington give a theorem that gives us sufficient

conditions for the variable-delay input-output systems to be BIBO and H∞ stable.

Their technique plays an essential role to get the BIBO stability, L1-stability and

even the Lp-stability; 1 < p <∞ for our system

ẋ(t) = Ax(t− τ(t)) +Bu(t) (t > 0),

where x(t) is the output in the Hilbert space H, and u(t) is the input in the Hilbert

space K, the operators A : H → H and B : K → H are bounded, and the delay

τ(t) is positive. Additionally, we introduce corollaries about the three versions of

the stability which apply when A is a bounded normal operator. The corollaries are

motivated by an example before being stated.

3.2 Stability of Time-Varying Delay Systems

In this section, we shall consider the variable-delay input-output system

ẋ(t) = Ax(t− τ(t)) +Bu(t) (t > 0), (3.1)

where x(t) is in the Hilbert space H denotes the state and u(t) is the input in the

Hilbert space K, both assumed zero for t ≤ 0, the operators A : H → H and

B : K → H are bounded, and the delay τ(t) is positive.

We have followed the approach in [5] to consider our system (3.1) as a small

perturbation of the ordinary constant-delay system

v̇(t) = Av(t− h) +Bu(t) (t > 0), (3.2)

where h− µ ≤ τ(t) ≤ h+ µ and µ is a small real positive number. Then, we try to

see how the solution of (3.1) changes and behaves when the delay is almost constant.
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After that, we can go back and look at the other way around to know how to make

(3.1) unstable by showing how big the delay we can put in (3.2). We also write

y = x− v, which gives

ẏ = ẋ− v̇,

= Ax(t− τ(t))− Av(t− h),

= A[x(t− τ(t))− x(t− h)] + A[x(t− h)− v(t− h)],

= Ay(t− h) + A[x(t− τ(t))− x(t− h)].

We may write

ẏ(t) = Ay(t− h) + Af(t), (3.3)

with f(t) = x(t− τ(t))−x(t−h). We now need supplementary conditions to ensure

that the function f lies in L∞(0,∞;H), L1(0,∞;H) or Lp(0,∞;H) for 1 < p <∞

(including L2(0,∞;H)). The calculations are slightly different in each case.

3.2.1 BIBO Stability

Proving BIBO stability of the system (3.1) requires us first introduce some constants

which we call M∞,M
d
∞,M

nom
∞ and Mnomd

∞ . The definitions of the constants are as

follows:

• M∞ is the maximum L∞ gain from w to z for the BIBO stable system

ż(t) = Az(t− h) + w(t). (3.4)

Saying that the system (3.4) is BIBO stable means that the mapping w� z

is bounded. Because of that, the norm of this mapping is the constant M∞

and

‖z‖∞ ≤M∞‖w‖∞. (3.5)
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• Md
∞ is the maximum L∞ gain from w to ż. It can be obtained from (3.4) as

follows:

‖ż‖∞ = sup
t≥0
‖Az(t− h) + w(t)‖,

≤ ‖A‖‖z‖∞ + ‖w‖∞.

From (3.5), we get

‖ż‖∞ ≤M∞‖A‖‖w‖∞ + ‖w‖∞,

and so
‖ż‖∞
‖w‖∞

≤M∞‖A‖+ 1,

then

Md
∞ = sup

w 6=0

‖ż‖∞
‖w‖∞

≤M∞‖A‖+ 1. (3.6)

• Mnom
∞ is the maximum L∞ gain from u to v for the BIBO stable system (3.2)

and so

‖v‖∞ ≤Mnom
∞ ‖u‖∞.

• Mnomd
∞ is the maximum L∞ gain from u to v̇ for the BIBO stable system (3.2).

It can be obtained as follows:

‖v̇‖∞ = sup
t≥0
‖Av(t− h) +Bu(t)‖,

≤ ‖A‖‖v‖∞ + ‖B‖‖u‖∞,

≤Mnom
∞ ‖A‖‖u‖∞ + ‖B‖‖u‖∞,

and so
‖v̇‖∞
‖u‖∞

≤Mnom
∞ ‖A‖+ ‖B‖,

then

Mnomd
∞ = sup

u6=0

‖v̇‖∞
‖u‖∞

= Mnom
∞ ‖A‖+ ‖B‖.

Remark 3.2.1. It is easy to prove that if M∞ for the system (3.4) is finite, then
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Mnom
∞ for the system (3.2) will be finite. That is because by putting z = v and

w = Bu in (3.5) we get

‖v‖∞ ≤M∞‖Bu‖∞,

≤ (M∞‖B‖) ‖u‖∞ =: Mnom
∞ ‖u‖∞.

Theorem 3.2.2. Suppose that the system (3.4) is BIBO stable. If Md
∞µ‖A‖ < 1

then the system (3.1) is BIBO stable. Also Md
∞ ≤M∞‖A‖+ 1.

Proof. We have Md
∞ ≤M∞‖A‖+ 1 by (3.6). The basic calculation is as follows:

‖ẋ‖∞ ≤ ‖v̇‖∞ + ‖ẏ‖∞,

≤ ‖v̇‖∞ +Md
∞‖A‖‖f‖∞.

and then we shall bound ‖f‖∞ in term of ‖ẋ‖∞.

We have

‖f‖∞ = sup
t

∥∥∥∥∫ t−h

t−τ(t)

ẋ(s) ds

∥∥∥∥ ≤ µ‖ẋ‖∞.

So that, provided that M = Md
∞µ‖A‖ < 1, we have

‖ẋ‖∞ ≤ ‖v̇‖∞ +Md
∞µ‖A‖‖ẋ‖∞, (3.7)

≤ ‖v̇‖∞ +M‖ẋ‖∞,

≤Mnomd
∞ ‖u‖∞ +M‖ẋ‖∞,

≤ (1−M)−1Mnomd
∞ ‖u‖∞.

and hence there is a bound on ‖f‖∞. Now x = v + y and so by (3.2) and (3.3) we
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have

‖x‖∞ ≤ ‖v‖∞ + ‖y‖∞,

≤Mnom
∞ ‖u‖∞ +M∞‖A‖‖f‖∞,

≤Mnom
∞ ‖u‖∞ +M∞µ‖A‖‖ẋ‖∞,

≤Mnom
∞ ‖u‖∞ +M∞µ‖A‖(1−M)−1Mnomd

∞ ‖u‖∞.

which gives a finite L∞ gain from u to x.

3.2.2 L1 Stability

Proving L1 stability of the system (3.1) requires us first to introduce some constants

which we call M1,M
d
1 ,M

nom
1 and Mnomd

1 . The definitions of the constants are as

follows:

• M1 is the maximum L1 gain from w to z for the L1-stable system (3.4) and so

‖z‖1 ≤M1‖w‖1. (3.8)

• Md
1 is the maximum L1 gain from w to ż. It can be obtained from (3.4) as

follows:

‖ż‖1 ≤ ‖A‖‖z‖1 + ‖w‖1.

From (3.8), we get

‖ż‖1 ≤M1‖A‖‖w‖1 + ‖w‖1

and so
‖ż‖1

‖w‖1

≤M1‖A‖+ 1,

then

Md
1 = sup

w 6=0

‖ż‖1

‖w‖1

≤M1‖A‖+ 1. (3.9)
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• Mnom
1 is the maximum L1 gain from u to v for the L1-stable system (3.2) and

so

‖v‖1 ≤Mnom
1 ‖u‖1.

• Mnomd
1 is the maximum L1 gain from u to v̇ for the L1-stable system (3.2). It

can be obtained as follows:

‖v̇‖ ≤Mnom
1 ‖A‖‖u‖+ ‖B‖‖u‖,

and so
‖v̇‖1

‖u‖1

≤Mnom
1 ‖A‖+ ‖B‖,

then

Mnomd
1 = sup

‖v̇‖1

‖u‖1

≤Mnom
1 ‖A‖+ ‖B‖.

Remark 3.2.3. It is easy to prove that if M1 for the system (3.4) is finite, then

Mnom
1 for the system (3.2) will be finite. That is because by putting z = v and

w = Bu in (3.8) we get

‖v‖1 ≤M1‖Bu‖1,

≤ (M1‖B‖) ‖u‖1 =: Mnom
1 ‖u‖1.

Theorem 3.2.4. Suppose that the system (3.4) is L1-stable. If Md
1µ‖A‖ < 1, then

the system (3.1) is L1-stable in the sense that there is a finite L1 gain between u and

x. Also Md
1 ≤M1‖A‖+ 1

Proof. We have Md
1 ≤M1‖A‖+ 1 by (3.9).

First, we have, recalling that x(t) = ẋ(t) = 0 for t ≤ 0,
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‖f‖1 =

∫ ∞
t=0

∥∥∥∥∫ t−h

s=t−τ(t)

ẋ(s) ds

∥∥∥∥ dt ≤
∫ ∞
t=0

∫ t−h

s=t−h−µ
‖ẋ(s)‖ ds dt,

=

∫ ∞
s=0

∫ s+h+µ

t=s+h

‖ẋ(s)‖ dt ds,

= µ

∫ ∞
s=0

‖ẋ(s)‖ ds = µ‖ẋ‖1.

That is from Fubini’s theorem and the assumption that τ(t) ≤ µ + h, which gives

t− τ(t) ≥ t− (µ+h). In the case of L1 stability, we start with the similar inequality

to the proof of the previous theorem, which is (3.7). Hence again, provided that

M = Md
1µ‖A‖ < 1, we have

‖ẋ‖1 ≤ ‖v̇‖1 +M‖ẋ‖1,

≤ (1−M)−1Mnomd
1 ‖u‖1,

and hence there is a bound on ‖f‖1.

By (3.2) and (3.3) we have

‖x‖1 ≤ ‖v‖1 + ‖y‖1,

≤Mnom
1 ‖u‖1 +M1µ‖A‖‖ẋ‖1,

≤Mnom
1 ‖u‖1 +M1µ‖A‖(1−M)−1Mnomd

1 ‖u‖1,

which gives a finite L1 gain from u to x.

3.2.3 Lp Stability for 1 < p <∞

Proving Lp stability of the system (3.1) requires us first to introduce some constants

which we call Mp,M
d
p ,M

nom
p and Mnomd

p . The definitions of the constants are as

follows:
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• Mp is the maximum Lp gain from w to z for the Lp-stable system (3.4) and so

‖z‖p ≤Mp‖w‖p. (3.10)

• Md
p is the maximum Lp gain from w to ż. It can be obtained from (3.4) as

follows:

‖ż‖p ≤ ‖A‖‖z‖p + ‖w‖p.

From (3.10), we get

‖ż‖p ≤Mp‖A‖‖w‖p + ‖w‖p

and so
‖ż‖p
‖w‖p

≤Mp‖A‖+ 1,

then

Md
p = sup

w 6=0

‖ż‖p
‖w‖p

≤Mp‖A‖+ 1. (3.11)

• Mnom
p is the maximum Lp gain from u to v for the Lp-stable system (3.2) and

so

‖v‖p ≤Mnom
p ‖u‖p.

• Mnomd
p is the maximum Lp gain from u to v̇ for the Lp-stable system (3.2). It

can be obtained as follows:

‖v̇‖p ≤Mnom
p ‖A‖‖u‖p + ‖B‖‖u‖p,

and so
‖v̇‖p
‖u‖p

≤Mnom
p ‖A‖+ ‖B‖,

then

Mnomd
p = sup

‖v̇‖p
‖u‖p

≤Mnom
p ‖A‖+ ‖B‖.

Remark 3.2.5. It is easy to prove that if Mp for the system (3.4) is finite, then

Mnom
p for the system (3.2) will be finite. That is because by putting z = v and
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w = Bu in (3.5) we get

‖v‖p ≤Mp‖Bu‖p,

≤ (Mp‖B‖) ‖u‖p =: Mnom
p ‖u‖p.

Theorem 3.2.6. Suppose that the system (3.4) is Lp-stable, where 1 < p < ∞. If

Md
pµ‖A‖ < 1, then the system (3.1) is Lp-stable in the sense that there is a finite

Lp gain between u and x. Also Md
p ≤Mp‖A‖+ 1

Proof. We have Md
p ≤Mp‖A‖+ 1 by (3.11).

First, we have, recalling that x(t) = ẋ(t) = 0 for t ≤ 0 and letting q = p/(p− 1), it

follows from the fact that τ(t) ≤ µ that

‖f‖pp =

∫ ∞
t=0

(∥∥∥∥∫ t−h

s=t−τ(t)

ẋ(s) ds

∥∥∥∥p
)

dt,

≤
∫ ∞
t=0

((∫ t−h

s=t−h−µ
1q ds

) p
q
∫ t−h

s=t−h−µ
‖ẋ(s)‖p ds

)
dt,

=

∫ ∞
t=0

(
µ
p
q

∫ t−h

s=t−h−µ
‖ẋ(s)‖p ds

)
dt,

=

∫ ∞
s=0

µ
p
q

∫ s+h+µ

t=s+h

‖ẋ(s)‖p dt ds,

= µ
p
q

+1

∫ ∞
0

‖ẋ(s)‖p ds = µ
p
q

+1‖ẋ‖pp = µp‖ẋ‖pp,

by Hölder’s inequality. Therefore, ‖f‖p ≤ µ‖ẋ‖p. In the case of Lp stability, we

start with the similar inequality in the proof of the previous theorem, which is (3.7).

Hence again, provided that M = Md
pµ‖A‖ < 1, we have

‖ẋ‖p ≤ ‖v̇‖p +M‖ẋ‖p,

≤ (1−M)−1Mnomd
p ‖u‖p,

and hence there is a bound on ‖f‖p.
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By (3.2) and (3.3) we have

‖x‖p ≤ ‖v‖p + ‖y‖p,

≤Mnom
p ‖u‖p +Mpµ‖A‖‖ẋ‖p,

≤Mnom
p ‖u‖p +Mpµ‖A‖(1−M)−1Mnomd

p ‖u‖p,

which gives a finite Lp gain from u to x.

Example 3.2.7. Putting h = 0, A = −λ; λ = a + bi ∈ C+ and ‖A‖ = |λ| =
√
a2 + b2 = k in (3.4), gives the system

ż(t) = −λz(t) + w(t). (3.12)

If system (3.12) is BIBO stable and if µ < 1
Md
∞‖A‖

, (for example if µ < 1
(M∞‖A‖+1)‖A‖)

then from Theorem 3.2.2 the system

ẋ(t) = −λx(t− τ(t)) + u(t), (3.13)

is BIBO stable for 0 ≤ τ(t) < µ. So for A = −λ, we have

µ <
1

(M∞k + 1)k
. (3.14)

M∞ can be obtained from the solution of system (3.12) as follows:

z(t) =

∫ t

0

w(s) e−λ(t−s) ds, (3.15)

and so

‖z‖∞ ≤ sup
t>0
‖w‖∞

∫ t

0

e−a(t−s) ds,

= sup
t>0
‖w‖∞

1− e−at

a
,

≤ 1

a
‖w‖∞,
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and so M∞ ≤ 1
a

and then from (3.14), we get the condition

µ <
1

k2

a
+ k

.

However, if system (3.12) is L1-stable and if µ < 1
(M1‖A‖+1)‖A‖ and µ < 1

Md
1 ‖A‖

,

then from Theorem 3.2.4 the system (3.13) is L1-stable for 0 ≤ τ(t) < µ. So we

have

µ <
1

(M1k + 1)k
. (3.16)

M1 can be obtained from (3.15) as follows:

∫ ∞
0

|z(t)| dt ≤
∫ ∞
t=0

∫ t

s=0

|w(s)| |e−λ(t−s)| ds dt,

=

∫ ∞
s=0

∫ ∞
t=s

|w(s)| |e−λ(t−s)| dt ds,

=

∫ ∞
0

|w(s)| 1

a
ds,

=
1

a
‖w‖1,

and so M1 ≤ 1
a

and then from (3.16), we get the condition

µ <
1

k2

a
+ k

.

However, if system (3.12) is L2-stable and if µ < 1
(M2‖A‖+1)‖A‖ and µ < 1

Md
2 ‖A‖

,

then from Theorem 3.2.6 the system (3.13) is L2-stable for 0 ≤ τ(t) < µ. So we

have

µ <
1

(M2k + 1)k
. (3.17)

M2 can be obtained from the system (3.12) as follows:

sẑ(s) = −λẑ(s) + ŵ(s),
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then

ẑ(s) =
1

s+ λ
ŵ(s),

and so

‖ẑ‖2 ≤ sup
s∈C+

‖ŵ‖2

∣∣∣∣ 1

s+ λ

∣∣∣∣ ,
so that

‖ẑ‖2 ≤
1

a
‖ŵ‖2,

and so M2 ≤ 1
a

and then from (3.17)

µ <
1

k2

a
+ k

.

Example 3.2.8. This example simulates the example mentioned in [5, p. 12].

Consider the ordinary delay system

ẋ(t) + x(t− h) = u(t),

with transfer function Gh(s) = 1/(s + e−sh). This is L2 and BIBO stable provided

that 0 ≤ h < π/2 (see, for example, [39, Chap.6]).

Now we consider the perturbed system

ẋ(t) + x(t− τ(t)) = u(t),

with 0 ≤ τ(t) and |τ(t)− h| < µ

By Theorem 3.2.6, we have L2 stability if µ < (‖Gh‖∞ + 1)−1 or we can suppose

µ < (Md
2 )−1 = µ2, which is more precise, where Md

2 = ‖s/(s+ e−sh)‖∞.

For h = 0, 0.5, 1 and 1.5 the values of µ2 are 1, 0.63, 0.32 and 0.03 respectively;

naturally h+ µ2 < π/2 in all cases.

For BIBO stability a similar result holds, except that we require the BIBO norm of
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Gh which is not easy to calculate as we do not have explicit form of impulse response.

One way round this is to use the Hardy-Littlewood inequality given in [24, p. 182]

(see also [4]), namely that

‖Gh‖BIBO ≤
1

2
‖G′h‖L1(iR).

The L1 norm of G′h can be found by the inequality

‖f‖L1(iR) ≤ ‖fg‖∞‖
1

g
‖L1(iR),

such that f = G′h and g = (s + c)2; c > 0. Because of that to calculate the BIBO

norm of Gh for each h, we pick an appropriate c to maximize the estimate stability

margin. For h = 0, 0.5, 1 and 1.5 we take c = 1, 2, 1.5 and 1 respectively. Then the

calculation steps will be as follows:

• A =

∥∥∥∥(iy + 1.2)2 1− he−hiy

(iy + e−hiy)2

∥∥∥∥
∞

= 1, 4.13, 27.21 and 2369.57,

• B = ‖G′h‖L1(iR) ≤ A

∥∥∥∥ 1

(iy + 1.2)2

∥∥∥∥
L1(iR)

= A
( π

1.2

)
, where

A
( π

1.2

)
= 3.14, 6.49, 56.99, 7444.22,

• C = ‖Gh‖BIBO = M∞ ≤ B

(
1

2

)
= 1.57, 3.24, 28.5, 3722.11.

Then, BIBO stability can be obtained for µ < (Md
∞)−1 = µ∞; µ∞ ≥ 1

C+1
. The values

of µ∞ are at most 0.39, 0.24, 0.034 and 0.00027 respectively; naturally h+µ∞ < π/2

in all cases.

Example 3.2.9. (An example with matrices) If A =

1 0

0 2

 is a diagonal matrix

in

ẋ(t) + Ax(t− τ(t)) = u(t),

then Md
2 = ‖s/(s + Ae−sh)‖∞ = max

{
‖s/(s+ e−sh)‖∞, ‖s/(s+ 2e−sh)‖∞

}
where

0 ≤ h < π
4
.
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Example 3.2.10. From supposing that h = 0 in system (3.4) and taking A to be a

bounded normal operator such that:

• σ(A) ⊂ {λ ∈ C− : Reλ ≤ −a} where s(A) = −a; a > 0;

• ‖A‖ = max{|z| : z ∈ σ(A)} = q;

• T (t) = eAt is the semigroup of A, where

‖T (t)‖t>0 = ‖eAt‖t>0 =r(eAt),

= sup{|µ| : µ ∈ σ(eAt)},

= sup
{
|µ| : µ ∈ {eλt : λ ∈ σ(A)}

}
,

= sup{|eλt| : λ ∈ σ(A)},

=et sup(Reλ),

=e−at; with supRe σ(A) = −a < 0,

and

‖(sI − A)−1‖∞ ≤ max
s∈C+

max
λ∈σ(A)

∣∣∣∣ 1

s− λ

∣∣∣∣ =
1

a
,

we get the system

ż(t) = Az(t) + w(t). (3.18)

If system (3.18) is BIBO stable and if µ < 1
(M∞‖A‖+1)‖A‖ and µ < 1

Md
∞‖A‖

, then from

Theorem 3.2.2 the system

ẋ(t) = Ax(t− τ(t)) + u(t), (3.19)

is BIBO stable for 0 ≤ τ(t) < µ. So we have

µ <
1

(M∞q + 1)q
.
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M∞ can be obtained from the solution of system (3.18) as follows:

z(t) =

∫ t

0

T (t− s)w(s) ds; (3.20)

by putting t− s = y, we get

‖z‖∞ ≤ sup
t>0
‖w‖∞

∫ t

0

‖T (y)‖ dy,

= sup
t>0
‖w‖∞

∫ t

0

e−ay dy,

= sup
t>0
‖w‖∞

1− e−at

a
,

≤ 1

a
‖w‖∞.

and so M∞ ≤ 1
a

and then

µ <
1

q2

a
+ q

.

Now system (3.19) is BIBO stable for 0 ≤ τ(t) < µ.

However, if the system (3.18) is L1-stable and if µ < 1
(M1‖A‖+1)‖A‖ and µ < 1

Md
1 ‖A‖

,

then from Theorem 3.2.4 the system (3.19) is L1-stable for 0 ≤ τ(t) < µ. So we

have

µ <
1

(M1q + 1)q
.

M1 can be obtained from the system (3.20) as follows:

∫ ∞
0

‖z‖ dt ≤
∫ ∞
t=0

∫ t

s=0

‖w(s)‖ ‖T (t− s)‖ ds dt,

=

∫ ∞
s=0

∫ ∞
t=s

‖w(s)‖ ‖T (t− s)‖ dt ds,

=

∫ ∞
s=0

∫ ∞
t=s

‖w(s)‖ e−a(t−s) dt ds,

=

∫ ∞
0

‖w(s)‖ 1

a
ds,

=
1

a
‖w‖1,
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and so M1 ≤ 1
a

and then

µ <
1

q2

a
+ q

.

Now system (3.19) is L1-stable for 0 ≤ τ(t) < µ.

However, if the system (3.18) is L2-stable and if µ < 1
(M2‖A‖+1)‖A‖ and µ < 1

Md
2 ‖A‖

,

then from Theorem 3.2.6 the system (3.19) is L2-stable for 0 ≤ τ(t) < µ. So we

have

µ <
1

(M2q + 1)q
.

M2 can be obtained from the system (3.18) as follows:

sẑ(s) = Aẑ(s) + ŵ(s),

then

ẑ(s) = (s− A)−1 ŵ(s),

and so

‖ẑ‖2 ≤ sup
s∈C+

‖ŵ‖2

∥∥(s− A)−1
∥∥ ,

so that

‖ẑ‖2 ≤
1

a
‖ŵ‖2,

and so M2 ≤ 1
a

and then

µ <
1

q2

a
+ q

.

Now system (3.19) is L2-stable for 0 ≤ τ(t) < µ.

Remark 3.2.11. A bounded diagonal matrix is a special case of a bounded normal

operator. If A in system (3.18) is a diagonal matrix with eigenvalues (λn), then that

requires to be

Reλn ≤ −a ∀n ∈ N; − a = maxRe σ(A) < 0,
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and then we can get the same µ we got in the previous example.

The same result hold for subnormal A as if sup{Reλ : λ ∈ σ(A)} = −a then

σ(N) ⊂ {λ ∈ C− : Reλ ≤ −a} if N is a minimal normal extension (see Section

1.5). Therefore

• If ‖etN‖ = e−at, then ‖etA‖ = e−at;

• If ‖(s−N)−1‖ ≤ 1
a

Then ‖(s− A)−1‖ ≤ 1
a
; Re s > 0;

and so M∞,M1,M2 ≤ 1
a
.

Using Example 3.2.10 we have the following corollaries:

Corollary 3.2.12. Suppose that the system (3.4) with h = 0 is BIBO stable and A

is a subnormal operator with σ(A) ⊂ {λ ∈ C− : Reλ ≤ −a} where a > 0. Then

M∞ ≤ 1
a

and Md
∞ ≤M∞‖A‖+1 and if Md

∞µ‖A‖ < 1 then the system (3.1) is BIBO

stable.

Corollary 3.2.13. Suppose that the system (3.4) with h = 0 is L1-stable and A is a

subnormal operator with σ(A) ⊂ {λ ∈ C− : Reλ ≤ −a} where a > 0. Then M1 ≤ 1
a

and Md
1 ≤M1‖A‖+ 1 and if Md

1µ‖A‖ < 1 then the system (3.1) is L1-stable.

Corollary 3.2.14. Suppose that the system (3.4) with h = 0 is L2-stable and A is a

subnormal operator with σ(A) ⊂ {λ ∈ C− : Reλ ≤ −a} where a > 0. Then M2 ≤ 1
a

and Md
2 ≤M2‖A‖+ 1 and if Md

2µ‖A‖ < 1 then the system (3.1) is L2-stable.
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Chapter 4

Changing Variables

4.1 Introduction

The variable delay system plays a significant role in representing many phenomena

in physics. This chapter will focus on complicated delay equations, which have a

multi-step solution. Thus, the following delay equation will first be considered

ẋ(t) = Ax(t− τ(t)) +Bu(t), x(0) = 0, t ∈ [0,∞) and t ≥ τ(t), (4.1)

where x(t) = 0 for t < 0; thus, x(t − τ(t)) = 0 when t − τ(t) < 0. Here we

suppose that x(t) is the output in the Hilbert space H, and u(t) is the input in the

Hilbert space K, the operators A : H → H and B : K → H are bounded, and the

delay τ(t) is positive. By changing variables we obtain an alternative equation with

constant delays, which may be easier to analyse. Additionally, at the end of the

chapter we discuss examples of instability that make the output of the system not

in L∞ whereas its input is in L∞.
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4.2 An Example of the Equation in the

Finite-Dimensional Case

In this section, equation (4.1) is examined such that x : (0,∞) → Cn, A : Cn →

Cn, B : Cm → Cn and u ∈ L∞(0,∞;Cm). A and B are bounded operators (given

as matrices).

Here, we consider the case t− τ(t) = λt, 0 < λ < 1 in equation (4.1) to get

ẋ(t) = Ax(λt) +Bu(t), 0 < λ < 1. (4.2)

Then, the variable is changed to t = λ−y, −∞ < y <∞ , which gives:

1. λt = λ−(y−1). Additionally, supposing x(t) = x(λ−y) = z(y) leads to be

x(λt) = x(λ−(y−1)) = z(y − 1),

2.
dt

dy
=

d

dy
elnλ−y = − lnλ · λ−y.

We suppose also u(t) = v(y). Since
dz

dy
=
dt

dy
ẋ(t) which is

dz

dy
= [− lnλ ·λ−y] ẋ(t),

from (4.2) we get:

dz

dy
= [− lnλ · λ−y] [Az(y − 1) +Bv(y)]. (4.3)

This formula is a delay system with an extra function multiplied, whereas with a

constant, the Laplace transform could be used. By taking

− lnλ.λ−y = − lnλe−y lnλ = cecy,

where c = − lnλ > 0 as λ < 1 and lnλ < 0, equation (4.3) turns into

dz

dy
= cecy [Az(y − 1) +Bv(y)]. (4.4)
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Solving equation (4.4) may require looking at the operator Gz(y) = cecyAz(y− 1).

Some considerations for this case

• G is an unbounded operator on L∞(0,∞;Cn) because of the exponential, which

gives
dt

dy
= cecy;

• The assumption t = λ−y leads to y = − ln t
lnλ

= f(t);

• By changing the variable, x(t− τ(t)) = z(y − 1), where

y − 1 = f(t)− 1,

= − ln t

lnλ
− 1,

= − ln t+ lnλ

lnλ
,

= − ln(t− τ(t))

lnλ
,

= f(t− τ(t)).

4.3 Generalization of the Previous Case

In this section, equation (4.1) is studied in the case when we can use a change of

variables as follows:

1. Choosing y to be the function y = f(t), ∀t > 0, where f needs to be injective

and C1 (so y is increasing) with f(t) > 0 for t > 0;

2. x(t) = z(y) = z(f(t)) so that leads to:

• x(t− τ(t)) = z(f(t− τ(t))). Then, the following is needed:

x(t− τ(t)) = z(y − α), α > 0,

and f(t1) = α, where t1 is the solution of the equation t − τ(t) = 0
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(i.e., τ(t1) = t1), and so we must have f(t− τ(t)) = f(t)− α, ∀t > t1.

Thus, t > t1 is necessary to give t− τ(t) > 0;

• dx

dy
=
dx

dt

dt

dy
.

3. u(t) = v(y).

Then the equation will be as follows:

• For y ≤ 0 we have z(y) = 0;

• For 0 ≤ y ≤ α we have
dz

dy
=
dt

dy
Bv(y), giving the solution

z(y) =

∫ y

0

dt

dy
Bv(y) dy;

• For y ≥ α we have:

dz

dy
=
dt

dy
[Az(y − α) +Bv(y)],

dz

dy
=
dt

dy
Az(y − α) +

dt

dy
Bv(y). (4.5)

It is clear that equation (4.1) turns from a variable-delay differential equation

into equation (4.5) with constant delay, but time-varying. A suitable solution

of equation (4.5) is based on the next theorem.

It is worth mentioning that there is possibility of writing equation (4.5) to be

dz

dy
= Gz(y) +Hv(y), (4.6)

such that:

– Gz(y) =
dt

dy
Az(y − α), where z 7−→ dt

dy
Az(y − α).

– H =
dt

dy
B.

We do not know how to solve equation (4.6) yet, as G is an operator taking

functions to functions, while A is an operator taking X to X.
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Theorem 4.3.1. Given the delay equation (4.5) with A,B bounded such that the

function y = f(t) satisfies that f(t) − α = f(t − τ(t)), ∀t > t1 and suppose the

derivative
dt

dy
is continuous and v ∈ L1

loc(0,∞;U), then the equation is well-posed,

and we can obtain the solution of (4.5) by iteratively solving the equation on

intervals.

Proof. The equation

dz

dy
= g(y)Az(y − α) + g(y)Bv(y),

dt

dy
= g(y),

with z(y) = v(y) = 0 for y ≤ 0, can be solved iteratively on intervals. So

z(y) =

∫ y

0

g(p)Bv(p) dp, (4.7)

for 0 ≤ y ≤ α.

Then for α ≤ y ≤ 2α,

z(y) = z(α) +

∫ y

α

g(p)Az(p− α) dp+

∫ y

α

g(p)Bv(p) dp, (4.8)

and we know z(α) and z(p− α) from (4.7).

Then for 2α ≤ y ≤ 3α,

z(y) = z(2α) +

∫ y

2α

g(p)Az(p− α) dp+

∫ y

2α

g(p)Bv(p) dp,

and we know z(2α) and z(p− α) from (4.8). And so on.

Remark 4.3.2. If u ∈ L2
loc(0,∞;U) and f ′ ∈ L2

loc(0,∞) then v ∈ L1
loc(0,∞;U)

by the Cauchy - Schwarz inequality. Note that x(t) = z(y) = z(f(t)), so we get a

solution for equation (4.1). Also If u ∈ L∞loc(0,∞;U) and f ′ ∈ L1
loc(0,∞) then

v ∈ L1
loc(0,∞;U).
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Remark 4.3.3. From the previous explanation, the equation can be rewritten as

equation (4.6), where Gz(y) =
dt

dy
Az(y − α) and H =

dt

dy
B. It is clear that G is a

bounded operator as A and
dt

dy
are bounded. That means that

‖Gz‖L∞
‖z‖L∞

≤ ‖A‖
∥∥∥∥ dtdy

∥∥∥∥
L∞

and so ‖G‖ ≤ ‖A‖
∥∥∥∥ dtdy

∥∥∥∥
L∞

.

Example 4.3.4. Suppose we have the relation:

y(t) = t2.

We can see the following:

1. The function y is increasing as
dy

dt
= 2t > 0, ∀t > 0.

2.
dt

dy
is bounded for t ≥ 1 as t =

√
y and

dt

dy
=

1

2
√
y

=
1

2t
.

3. By choosing t1 = 1 we have f(t1) = f(1) = α = 1.

4. From f(t)− α = f(t− τ(t)), ∀t ≥ 1, we can find that:

τ(t) = t−
√
t2 − α =

√
y −
√
y − α and τ(1) = 1.

We obtain
dz

dy
=

1

2
√
y
Az(y − α) +

1

2
√
y
Bv(y).

Theorem 4.3.1 can be applied here since

z(y) =

∫ y

0

g(p)Bv(p) dp,

=

∫ f(t)

0

Bu(s) ds,

which converges for u ∈ L1
loc(0,∞;U).
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Example 4.3.5. Suppose we have the relation:

y(t) = t− 1

2

t

t+ 1
.

We can see the following:

1. The function y is increasing as
dy

dt
= 1− 1

2

1

(t+ 1)2
> 0, ∀t > 0.

2.
dy

dt
is bounded as

1

2
≤ dy

dt
≤ 1 and so

dt

dy
is bounded with 1 ≤ dt

dy
≤ 2.

3. By choosing t1 = 1 we have f(t1) = f(1) = α =
3

4
.

4. From (3) and f(t)− α = f(t− τ(t)), ∀t ≥ t1, we can find that:

τ(t) =

√
16t4 + 40t3 + 17t2 − 34t− 23 + 4t2 + 11t+ 5

8t+ 8
, ∀t ≥ 1

and when t = 1, it will be τ(1) = 1.

We obtain

dz

dy
=

2(t+ 1)2

2(t+ 1)2 − 1
Az(y − α) +

2(t+ 1)2

2(t+ 1)2 − 1
Bv(y),

which is

dz

dy
=

2y +
√

4y(y + 3) + 1 + 3

2
√

4y(y + 3) + 1
Az(y − α)

+
2y +

√
4y(y + 3) + 1 + 3

2
√

4y(y + 3) + 1
Bv(y), (4.9)

where g(y) =
2y+
√

4y(y+3)+1+3

2
√

4y(y+3)+1
.

5. If we put α = 0, A = −λ and B = 1 in equation (4.9), we get

dz

dy
= −λ

2y +
√

4y(y + 3) + 1 + 3

2
√

4y(y + 3) + 1
z(y) + v(y). (4.10)
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Equation (4.10) can be solved by using the integrating factor

exp

(
λ

∫ y

1

2y +
√

4y(y + 3) + 1 + 3

2
√

4y(y + 3) + 1
dy

)
,

to get the solution

z(y) = C exp

[
−λ
4

(
√

4y(y + 3) + 1 + 2y)

]
+exp

[
−λ
4

(
√

4y(y + 3) + 1 + 2y)

] ∫ y

1

exp

[
λ

4
(
√

4ζ(ζ + 3) + 1 + 2ζ)

]
v(ζ) dζ,

which is bounded when v(y) is bounded.

4.4 Instability of Ordinary Delay Systems

In this section, we discuss instability of the ordinary-delay input-output system

z′(y) = Ag(y)z(y − α) +Bv(y) (y > 0), (4.11)

where z(y) is in the Hilbert space H and v(y) is in the Hilbert space K, both

assumed zero for y ≤ 0, the operators A : H → H,B : H → K are bounded and

we assume B is invertible, g(y) is a continuous function and the delay α is positive.

The instability is obtained by choosing a specific output z(y) /∈ L2 (resp. not in L∞)

that gives an input v(y) ∈ L2 (resp. in L∞). L2 stability of the mapping from v to

z is not always the same as L2 stability of the mapping from u to x, because there

is a change of variables. It corresponds to mappings between weighted L2 spaces,

which are discussed further in Chapter 5.

4.4.1 L2-instability

Theorem 4.4.1. Suppose z in equation (4.11) is a function on (0,∞) with z(y) /∈

L2, z′(y) ∈ L2 and g(y)z(y − α) ∈ L2 then v(y) ∈ L2 and the system is unstable.
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Proof. From the assumptions where the output z(y) /∈ L2 and as

v(y) = B−1 [z′(y)− Ag(y)z(y − α)] ,

is the input where its terms in L2 that gives v(y) ∈ L2 which proves the

instability.

Example 4.4.2. Suppose that 0 < α ≤ 1. Take B = I = A, z(y) = (y + 1)γ and

g(y) = (y + 1)β where −1
2
≤ γ < 1

2
, β ≥ −1 and γ + β < −1

2
in (4.11). In this

example we have g(y) /∈ L1, which we want since g(y) = dt
dy

and t→∞ as y →∞.

Therefore

v(y) = γ(y + 1)γ−1 − (y + 1)β(y + 1− α)γ,

which is in L2. For such choices the L2-instability is obtained.

In particular, z(y) = g(y) = (y + 1)−
1
2 gives

t = 2(y + 1)
1
2 − 2, (4.12)

and so

v(y) = −1

2
(y + 1)−

3
2 − (y + 1)−

1
2 (y + 1− α)−

1
2 .

For this particular example we can get τ(t) as follows:

First, from 4.12 where y = f(t) = 1
4
(t + 2)2 − 1, and from Section 4.3 where

f(t)− α = f(t− τ(t)) that satisfies for every t ≥ t1, we get

1

4
(t+ 2)2 − 1− α =

1

4
(t− τ(t) + 2)2 − 1,

that gives

τ 2(t)− 2(t+ 2)τ(t) + 4α = 0,

and so

τ(t) = (t+ 2)−
√

(t+ 2)2 − 4α ∀t ≥ t1.
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Then, we can find t1 from Section 4.3 where

t1 = τ(t1),

t1 = (t1 + 2)−
√

(t1 + 2)2 − 4α,

and so

t1 =
√

4 + 4α− 2,

that becomes t1 =
√

8−2 for α = 1. Additionally, the α needs to satisfy f(t1) = α

and we can check that

f(
√

8− 2) = 1.

Therefore from (4.1)

ẋ(t) = Ax
(
−2 +

√
(t+ 2)2 − 4

)
+Bu(t) ∀t ≥ t1.

4.4.2 BIBO instability

Theorem 4.4.3. Suppose z in equation (4.11) is a function on (0,∞) with z(y) /∈

L∞, z′(y) ∈ L∞ and g(y)z(y − α) ∈ L∞ then v(y) ∈ L∞ and the system is unstable.

Proof. From the assumptions where the output z(y) /∈ L∞ and as

v(y) = B−1 [z′(y)− Ag(y)z(y − α)] ,

is the input where its terms in L∞ that gives v(y) ∈ L∞ which proves the

instability.

Example 4.4.4. Suppose that 0 < α ≤ 1. Take B = I = A, z(y) = (y + 1)γ and

g(y) = (y + 1)β where 0 < γ ≤ 1, β ≥ −1 and γ + β < 0 in (4.11). Therefore

v(y) = γ(y + 1)γ−1 − (y + 1)β(y + 1− α)γ,

which is in L∞. For such choices the BIBO instability is obtained.
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In particular, z(y) = (y + 1)
1
2 and g(y) = (y + 1)−

1
2 gives t = 2(y + 1)

1
2 − 2, and

so

v(y) =
1

2
(y + 1)−

1
2 − (y + 1)

1
2 (y + 1− α)−

1
2 .

For this particular example τ(t) with α = 1 is the same as we obtained in Example

4.4.2.
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Chapter 5

Autonomous and

Non-Autonomous Systems with

Weight

5.1 Introduction

In this chapter we investigate the stability for the system

dz

dy
= g1(y)Az(y − α) + g2(y)Bv(y), y ≥ 0, (5.1)

with α ≥ 0, z(y) = f(y) in H a Hilbert space for −α ≤ y ≤ 0, where g1, g2

are continuous functions on [0,∞) and A, B are matrices, bounded or unbounded

operators. Stability means that if the input v ∈ L2(0,∞;H) or v ∈  L∞(0,∞;H),

the output z will be also in the same space.

We begin by giving conditions for stability of autonomous systems with and without

delay, and then we consider non-autonomous systems. At the end of the chapter

we discuss the significance of changing variables where we have to use weighted

L2 spaces. Additionally, we extend the recent theory of Zen spaces [25, 26, 39] to
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functions taking values in a Hilbert space H, where the Laplace transform L provides

an isometric embedding from a weighted function space L2(0,∞, w(t)dt;H) into a

space A2
ν(C+, H) of analytic operator-valued functions. From this we prove a result

showing that the H∞ norm can be used to measure the gain (operator-norm) in the

context of a wide variety of weighted L2 spaces, and thus show that various notions

of stability are equivalent.

5.2 The Stability of Autonomous Systems

Without Delay

5.2.1 Introduction

If we have an equation with non-zero initial conditions

dz

dy
= g1(y)Az(y) + g2(y)Bv(y), z(0) = z0, (5.2)

then if we can solve

dz1

dy
= g1(y)Az1(y), z1(0) = z0,

dz2

dy
= g1(y)Az2(y) + g2(y)Bv(y), z2(0) = 0,

the solution to (5.2) is z = z1 + z2. So we start by looking at the stability of the

autonomous equation

dz(y)

dy
= g1(y)Az(y), z(0) = z0 6= 0. (5.3)

The stability of this system means that the solution z ∈ L2(0,∞;H) or z ∈

L∞(0,∞;H) for every z0 ∈ H where H is a Hilbert space. Because of that, a

bounded solution of equation (5.3) makes the system BIBO stable. This will depend

on A and its properties. A could be a scalar, a matrix or an operator.
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5.2.2 A is an operator that generates a semigroup

For such A we need before discussing the stability to give the solution of equation

(5.3).

Getting the solution

Let us take A in equation (5.3), which has an initial condition z0 ∈ H, is an operator

that generates a bounded semigroup T (t) and g1(y) > 0 for y > 0. From the solution

of the scalar case, we can expect that the solution of this case should be

z(y) = T

(∫ y

0

g1(t) dt

)
z0. (5.4)

Now we need to check that (5.4) is the right solution of equation (5.3) as follows:

First: Checking for g1(y) = 1

For g1(y) = 1, the mild solution is:

z(y) = T (y)z0. (5.5)

By differentiating (5.5) for z0 ∈ D(A), we get

z′(y) = AT (y)z0,

= Az(y),

that is exactly equation (5.3) with g1(y) = 1. So (5.4) is the right solution.

Then: Checking for g1(y) ≥ 0
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By differentiating (5.4), we get

z′(y) = AT

(∫ y

0

g1(t) dt

)
z0g1(y),

= Ag1(y)z(y).

We can conclude that if A in equation is an operator that generates a bounded

semigroup, then (5.4) is the mild solution of equation (5.3) with z0 ∈ H.

Theorem 5.2.1. If δ > 0 and g1(y) ≥ δ for all y ≥ 0 in equation (5.3) and A an

operator that generates a semigroup that is uniformly exponentially stable then the

solution (5.4) of this equation will satisfy z ∈ L∞(0,∞;H) ∩ L2(0,∞;H).

Proof. Suppose ∥∥∥∥T (∫ y

0

g1(t) dt

)∥∥∥∥ ≤Me−β
∫ y
0 g1(t) dt,

for all t and some M ≥ 1, β > 0. Then

‖z(y)‖ =

∥∥∥∥T (∫ y

0

g1(t) dt

)
z0

∥∥∥∥ ,
≤ ‖z0‖Me−β

∫ y
0 g1(t) dt,

≤ ‖z0‖Me−β
∫ y
0 δ dt = ‖z0‖Me−βδy,

and so z ∈ L∞(0,∞;H) ∩ L2(0,∞;H).

5.2.3 Special Cases of A

• A is a scalar, a matrix or a bounded operator

In this case we can take z0 ∈ H not just D(A). Equation (5.3) can be solved

directly using an integrating factor as follows:

70



CHAPTER 5. AUTONOMOUS AND NON-AUTONOMOUS SYSTEMS WITH
WEIGHT

Multiplying it by F (y) = e−
∫ y
0 Ag1(t) dt gives

F (y)
dz(y)

dy
− g1(y)AF (y)z(y) = 0,

(F (y)z(y))′ = 0.

By the integration

F (y)z(y) = constant,

z(y) = e(
∫ y
0 g1(t) dt)Az0. (5.6)

where z0 = z(0) is the starting point at y = 0. Here, the behaviour of F (y)

determines the stability of z(y) in (5.6).

From the above, we can deduce that the absence of the input leads to the

behaviour of z being controlled by F .

Example 5.2.2. Suppose H = C, A = −λ, where λ ∈ C+, Re λ = m > 0

and δ > 0 and g1(y) ≥ δ for all y ≥ 0 . From (5.6), we get

|z(y)| = |e−λ
∫ y
0 g1(t) dtz0|,

≤ |z0|e−mδy. (5.7)

The solution z is clearly bounded, and in fact in L2(0,∞) as well, since (5.7)

gives

∫ ∞
0

|z(y)|2 dy ≤ |z0|2
∫ ∞

0

e−2mδy dy,

=
|z0|2

2mδ

<∞.

Example 5.2.3. Suppose

A =

0 1

0 0

 ,
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then it is clear that A does not have a basis of eigenvectors. Next, we will solve

equation (5.3) depending on this A and with

z(y) =

z1(y)

z2(y)

 ∈ C2,

as follows:

We have the equationdz1(y)
dy

dz2(y)
dy

 = g1(y)

0 1

0 0

z1(y)

z2(y)

 , z(0) =

z1(0)

z2(0)

 ,
where g1(y) ≥ δ for all y and δ > 0. From the above, there are two differential

equations

dz1(y)

dy
= g1(y)z2(y), (5.8)

dz2(y)

dy
= 0. (5.9)

The solution of equation (5.9) is z2(y) = z2(0) and then the solution of equation

(5.8) is z1(y) = z2(0)
∫ y

0
g1(y) dy+z1(0). So it is possible here to solve equation

(5.3), but it has a different solution as A does not have a basis of eigenvectors.

We see this system is an unstable here.

Another method

From A we can get the semigroup

T (y) = eAy = I + Ay +
A2y2

2!
+ ...,

but because A2 = 0, then

eAy =

1 y

0 1

 ,
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is not bounded and then the solution given by (5.6) which is

z1(y)

z2(y)

 =

1
∫ y

0
g1(y) dy

0 1

z1(0)

z2(0)

 ,
is not stable.

• A is an unbounded operator generates a bounded semigroup

We have to be careful when we solve equation (5.3) with an unbounded A

that generates a semigroup T (y). Here, A is not defined everywhere on the

Banach space X . However, the domain of A , D(A), is a dense subspace of X .

In addition, the mild solution of the equation is

z(y) = T

(∫ y

0

g1(t) dt

)
z0.

This is a classical solution if z0 ∈ D(A).

Example 5.2.4. (Infinite Diagonal Matrix)

Let us take H a Hilbert space, (xn) an orthonormal basis in H and A an

infinite diagonal matrix which means

Axn = λnxn,

where λn is an eigenvalue for every n. Then, we can write

eAyxn = eλnyxn, y ≥ 0. (5.10)

To get the stability, we suppose that Re λn ≤ 0 and so |eλny| ≤ 1.

To make what was written above clear, let take z ∈ H and then it is possible

to write z as infinite sum

z =
∞∑
n=1

〈z, xn〉xn,
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where 〈z, xn〉 is the coefficient zn and z depends on y and so d
dy
z(y) =∑∞

n=1
d
dy
〈z(y), xn〉xn. From Az(y) =

∑∞
n=1 λn〈z(y), xn〉xn, and from equation

(5.3), we can get
d

dy
zn(y) = g1(y)λnzn(y). (5.11)

Equation (5.11) is very easy to solve as it is just scalar equation and from

(5.4) its solution is

zn(y) = e(λn
∫ y
0 g1(t) dt)zn(0),

where z0 =
∑∞

0 zn(0)xn =
∑∞

0 cnxn is the starting point. Then, the end is

just

z(y) =
∞∑
0

zn(y)xn,

=
∞∑
0

cne(λn
∫ y
0 g1(t) dt)xn.

Because |e(λn
∫ y
0 g1(t) dt)| ≤ 1 since Re λn ≤ 0 and g1(y) ≥ 0, we get

|cne(λn
∫ y
0 g1(t) dt)| ≤ |cn|,

which ensures z(y) is a vector in H and then we get the solution of equation

(5.3), which is BIBO stable since ‖z(y)‖ ≤ ‖z0‖. If Reλn ≤ −ε for all n and

g1(y) ≥ δ for all y then ‖z(y)‖ ≤ e−εδy‖z0‖ so the solution is L2 stable.

Remark 5.2.5. From (5.10)

T (y)x = eAyx =
∞∑
n=1

eλny〈x, xn〉xn,
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and so

‖T (y)x‖2 =
∞∑
n=1

|eλny|2 |〈x, xn〉xn|2,

≤
∞∑
n=1

|〈x, xn〉|2,

= ‖x‖2,

and so

T (y) (with fixed y) is bounded ⇐⇒ sup
n
|eλny| <∞,

⇐⇒ supRe λn <∞.

5.3 Autonomous Systems with delay

The autonomous version of equation (5.1), which is

dz

dy
= g1(y)Az(y − α), z(y) = f(y); − α ≤ y ≤ 0, (5.12)

where f ∈ C[−α, 0] can be solved in intervals as shown in the next theorem.

Theorem 5.3.1. Given the delay equation (5.12) with A bounded such that f ∈

C[−α, 0] then we can obtain the solution of (5.12) by iteratively solving the equation

on intervals. For g1 ∈ L1
loc(0,∞) the solution is locally bounded.

Proof. The equation
dz

dy
= g1(y)Az(y − α),

with z(y) = 0 for y ≤ −α, can be solved iteratively on intervals. So

z(y) = f(y), (5.13)

for −α ≤ y ≤ 0.
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Then for 0 ≤ y ≤ α,

z(y) = z(0) +

∫ y

0

g1(p)Az(p− α) dp, (5.14)

and we know z(α) and z(p− α) from (5.13).

Then for α ≤ y ≤ 2α,

z(y) = z(α) +

∫ y

α

g1(p)Az(p− α) dp,

and we know z(α) and z(p− α) from (5.14). And so on.

It is clear that z is bounded on each interval [nα, (n+ 1)α], with n ∈ N.

5.4 The Stability of Non-Autonomous Systems

Without Delay

In this section we study BIBO stability, which is L∞ stability, and L2 stability of

non-autonomous systems without delay

dz

dy
= Ag1(y)z(y) + v(y), z0 = 0. (5.15)

Because BIBO stability is the easiest case, we start with it.

5.4.1 BIBO Stability

Getting this stability requires starting with v ∈ L∞(C+;H), we suppose that

‖v‖∞ = ε, then to get z ∈ L∞(C+;H) that depends on A and putting specific

conditions on the continuous function g1(y).

76



CHAPTER 5. AUTONOMOUS AND NON-AUTONOMOUS SYSTEMS WITH
WEIGHT

• A is a scalar or a diagonal matrix

Putting H = C, A = −λ, λ ∈ C+ and Reλ = m > 0 in equation (5.15)

gives the equation

dz

dy
= −λg1(y)z(y) + v(y), z0 = 0, (5.16)

which can be solved using the integrating factor F (y) = eλ
∫ y
0 g1(t) dt as follows:

F (y)z′(y) + λg1(y)F (y)z(y) = F (y)v(y),

(F (y)z(y))′ = F (y)v(y),

z(y) =
1

F (y)

∫ y

0

F (t)v(t) dt,

z(y) = e−λ
∫ y
0 g1(t) dt

∫ y

0

eλ
∫ t
0 g1(s) dsv(t) dt.

Then

|z(y)| ≤ εe−m
∫ y
0 g1(t) dt

∫ y

0

em
∫ t
0 g1(s) ds dt. (5.17)

Getting z(y) ∈ L∞ requires

em
∫ y
0 g1(t) dt ≥ γ

∫ y

0

em
∫ t
0 g1(s) ds dt, where γ > 0, (5.18)

which holds if

|F (y)| ≥ γ

∫ y

0

|F (t)| dt,

and that can be obtained when g1(y) satisfies the conditions given in the

following theorem, which is the main result of this section.

Theorem 5.4.1. If δ > 0 and g1(y) ≥ δ for all y ≥ 0 in equation (5.16) and

v ∈ L∞(R+) then the solution of this equation will be bounded for y ≥ 0, i.e.,

z ∈ L∞(R+).

Note Satisfying (5.18) is sufficient to prove BIBO stability of equation (5.16)
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Proof. From the integrating factor of equation (5.16)

F (y) = exp

(
λ

∫ y

0

g1(t) dt

)
,

we can take t < y to get

F (y) = exp

(
λ

∫ y

0

g1(t) dt

)
,

= exp

(
λ

∫ t

0

g1(s) ds + λ

∫ y

t

g1(s) ds

)
,

= exp

(
λ

∫ t

0

g1(s) ds

)
exp

(
λ

∫ y

t

g1(s) ds

)
,

= F (t) exp

(
λ

∫ y

t

g1(s) ds

)
.

That means

|F (y)| = |F (t)| exp

(
m

∫ y

t

g1(s) ds

)
,

|F (y)| ≥ |F (t)| exp (mδ(y − t)) ,

and so

|F (t)| ≤ |F (y)| exp (−mδ(y − t)) ,

by integrating

∫ y

0

|F (t)| dt ≤ |F (y)|
∫ y

0

exp (−mδ(y − t)) dt,

putting x = y − t gives

∫ y

0

|F (t)| dt ≤ |F (y)|
∫ y

0

exp (−mδx) dx,

≤ |F (y)|
∫ ∞

0

exp (−mδx) dx,

=
|F (y)|
mδ

.

which means (5.18) is obtained by choosing γ = mδ. Applying (5.18) in (5.17)
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gives

|z(y)| ≤ εe−m
∫ y
0 g1(t) dt em

∫ y
0 g1(t) dt

mδ
,

→ ε

mδ
as y →∞,

and so z ∈ L∞.

Corollary 5.4.2. Theorem 5.4.1 can be applied if A in equation (5.15) is a

diagonal matrix with eigenvalues −λii ∈ C−, i = 1, 2, ... such that ∃ c > 0 with

Re λii ≥ c for all i.

Remark 5.4.3. 1. We know if δ > 0 and g1(y) ≥ δ for all y ≥ 0, equation

(5.16) is stable. In general suppose g1(y) = G′(y), where G(y) is an

absolutely continuous and increasing function. Because of that, from the

inverse function theorem, G is an invertible function and from Section

4.3 we have

g1(y) =
dt

dy
; y = f(t),

and to get more results we may suppose g1(y) not continuous but locally

L1, and so

t(y) = f−1(y) = G(y). (5.19)

Therefore

y(t) = G−1(t) = f(t). (5.20)

2. For the previous G, we can find τ(t) as in Section 4.3 as follows:

f(t)− α = f(t− τ(t)),

from (5.19) and (5.20), we get

G−1(t)− α = G−1(t− τ(t)),

G(G−1(t)− α) = t− τ(t),
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and so

τ(t) = t−G(G−1(t)− α). (5.21)

Examples

Example 5.4.4. (The Heat Equation with a weight)

Let us take H a Hilbert space, (xn) an orthonormal basis in H, A in equation

(5.15) to be as we have mentioned in Example 1.6.12, where the eigenvalues

of A are −n2π2 (λn = n2, n = 1, 2, ...), δ > 0 and g1(y) ≥ δ and the input

v ∈ L∞(0,∞;H) to be

v(y) =
∞∑
n=1

vn(y)xn,

such that

‖v‖2 =
∞∑
n=1

|vn|2.

Then, we get the output

z(y) =
∞∑
n=1

zn(y)xn,

such that

‖z‖2 =
∞∑
n=1

|zn|2.

where zn satisfies equation (5.15) with vn and λn. From Theorem 5.4.1, we get

sup
y
‖z‖ <∞,

which means BIBO stability.

Example 5.4.5. For the equation

dz

dy
= −λ

(
1 +

1

2
√
y

)
z(y) + v(y),

it is obvious that g1(y) = 1 + 1
2
√
y
> 1, y > 0. Then, for ‖v‖∞ = ε and
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Reλ = m > 0, we have

|F (y)| = exp

(
m

∫ y

0

1 +
1

2
√
t
dt

)
,

= exp

(
m

∫ t

0

1 +
1

2
√
s
ds

)
exp

(
m

∫ y

t

1 +
1

2
√
s
ds

)
,

= exp

(
m

∫ t

0

1 +
1

2
√
s
ds

)
exp

(
m

∫ y

t

1 +
1

2
√
s
ds

)
,

≥ |F (t)| exp(m(y − t)).

And so

∫ y

0

|F (t)| dt ≤ |F (y)|
∫ y

0

exp(−m(y − t)) dt,

≤ |F (y)|
∫ y

0

exp(−mx) dx,

≤ |F (y)|
m

. (5.22)

Applying (5.22) in (5.17) gives the bounded solution of our equation as it

satisfies

|z(y)| ≤ 1

m
→ 1

m
as y →∞.

For this example, we can obtain y = f(t) as follows:

g1(y) =
dt

dy
= 1 +

1

2
√
y
,

and so

t = y +
√
y = f−1(y) = G(y), (5.23)

giving the quadratic equation

y +
√
y − t = 0,

where a = 1, b = 1 and c = −t. Therefore

√
y =
−1±

√
1 + 4t

2
,
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and for y > 0 we choose the positive sign of the square root to get

y =

(
−1 +

√
1 + 4t

2

)2

= f(t) = G−1(t). (5.24)

In addition, we can find τ(t) by using (5.21) from (5.23) and (5.24) as follows:

τ(t) = t−G

((
−1 +

√
1 + 4t

2

)2

− α

)
,

= t−

((
−1 +

√
1 + 4t

2

)2

− α

)
−

√(
−1 +

√
1 + 4t

2

)2

− α.

Example 5.4.6. For equation (5.16) we choose g(y) to be

g1(y) =

2, y ∈ (2n− 2, 2n− 1)

1, y ∈ (2n− 1, 2n)

, n ∈ N.

This is an example of a switching system (for other resources on switching

systems see [8, 45, 35]) and we can obtain the solution on intervals, showing

that the system is well-posed. Therefore we find the following functions:

1. Let I be the integrating factor, which is

I =

e2λ(y−2(n−1)), y ∈ (2n− 2, 2n− 1)

eλ(y−(2n−1)), y ∈ (2n− 1, 2n)

, n ∈ N.

2. z(y) the solution of equation (5.16) for

– y ∈ (2n− 2, 2n− 1) is given by

z(y) = z(2n−2)e−2λ(y−2(n−1))+e−2λ(y−2(n−1))

∫ y

2n−2

e2λ(ζ−2(n−1))v(ζ)dζ,

– y ∈ (2n− 1, 2n) is given by

z(y) = z(2n− 1)e−λ(y−(2n−1)) + e−λ(y−(2n−1))

∫ y

2n−1

eλ(ζ−(2n−1))v(ζ) dζ,
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where

z(2n− 1) = z(2n− 2)e−2λ + e−2λ

∫ 2n−1

2n−2

e2λ(ζ−(2n−2))v(ζ) dζ

z(2n) = z(2n− 1)e−λ + e−λ
∫ 2n

2n−1

eλ(ζ−(2n−1))v(ζ) dζ

.

By choosing v(y) = 1 in z(y) and in the initial conditions, we get

z(y) =



z(2n− 2)e−2λ(y−2(n−1)) + 1
2λ

(1− e−2λ(y−2(n−1))),

y ∈ (2n− 2, 2n− 1)

z(2n− 1)e−λ(y−(2n−1)) + 1
λ
(1− e−λ(y−(2n−1))),

y ∈ (2n− 1, 2n)

,

where 
z(2n− 1) = z(2n− 2)e−2λ + 1

2λ
(1− e−2λ)

z(2n) = z(2n− 1)e−λ + 1
λ
(1− e−λ)

,

which means

z(y) =



1
2λ

(1− e−2λy), y ∈ (0, 1)

z(1)e−λ(y−1) + 1
λ
(1− e−λ(y−1)) y ∈ (1, 2)

z(2)e−2λ(y−2) + 1
2λ

(1− e−2λ(y−2)) y ∈ (2, 3)

z(3)e−λ(y−3) + 1
λ
(1− e−λ(y−3)) y ∈ (3, 4)

.

,
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where 

z(0) = z0 = 0

z(1) = 1
2λ

(1− e−2λ)

z(2) = z(1)e−λ + 1
λ
(1− e−λ)

z(3) = z(2)e−2λ + 1
2λ

(1− e−2λ)

.

.

To prove that the solution z(y) is bounded, we need to do the following

steps:

(a) Prove that the sequence (z(2n)) is bounded where

z(2n) = z(2n− 1)e−λ +
1

λ
(1− e−λ),

= [z(2n− 2)e−2λ +
1

λ
(1− e−2λ)]e−λ +

1

λ
(1− e−λ),

and so

z(2n) = z(2n− 2)e−3λ +
1

λ
(1− e−2λ)e−λ +

1

λ
(1− e−λ). (5.25)

By putting A = e−3λ, B = 1
λ
(1−e−2λ)e−λ+ 1

λ
(1−e−λ) and z(2n) = an,

we can get from (5.25)

– For n = 1

z(2) = a1 = B.

– For n = 2

z(4) = a2 = a1A+B,

= BA+B.

– For n = 3

z(6) = a3 = a2A+B,

= BA2 +BA+B,
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and so on...

So the general formula of z(2n) is

z(2n) = an = BAn−1 +BAn−2...+BA+B,

= B(An−1 + An−2... ∗+A+ 1),

= B

n∑
m=1

Am−1,

where
∑n

m=1 A
m−1 is geometric series with the sum 1−An

1−A and because

|A| = |e−3λ| = e−3m < 1, where m = Reλ > 0,

the sum converges as n → 0 which proves the sequence (z(2n)) is

bounded.

(b) Prove that the sequence (z(2n− 1)) is bounded where

z(2n− 1) = z(2n− 2)e−2λ +
1

2λ
(1− e−2λ). (5.26)

By putting C = e−2λ, D = 1
2λ

(1− e−2λ) and z(2n− 1) = bn, we can

get from (5.26)

– For n = 1

z(1) = b1 = D.

– For n = 2

z(3) = b2 = z(2)C +D.

– For n = 3

z(5) = b3 = z(4)C +D,

and so on...

So the general formula of z(2n− 1) is

z(2n− 1) = bn = z(2n− 2)C +D.

Therefore the sequence (z(2n − 1)) is bounded because of the
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convergence of (z(2n)).

(c) Prove that the solution z(y) is bounded between the intervals

(2n− 1, 2n) where

z(y) = z(2n− 1)e−λ(y−(2n−1)) +
1

λ
(1− e−λ(y−(2n−1))),

and we know that

|z(y)| ≤ |z(2n− 1)|+ 2

|λ|
.

Therefore, |z(y)| is bounded and the bound does not depend on y

because |z(2n − 1)| is bounded and the bounds does not depend on

n and so |z(y)| is bounded in the interval (2n − 1, 2n). Similarly,

|z(y)| is bounded and the bound does not depend in n the interval

(2n − 2, 2n − 1). That proves |z(y)| is bounded everywhere by a

constant.

For this example, we can obtain y = f(t) by finding t(y) that equals to G(y)

as follows:

– On y ∈ (2n− 2, 2n− 1), we get

t(y) = 2[y − (2n− 2)] + t(2n− 2),

= 2y − 4n+ 4 + t(2n− 2). (5.27)

– On y ∈ (2n− 1, 2n), we get

t(y) = y − (2n− 1) + t(2n− 1). (5.28)
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From (5.27) and (5.28) we can get t(y) as follows:

t(y) =



2y + t(0), y ∈ (0, 1) for n = 1

y − 1 + t(1), y ∈ (1, 2)

2y − 4 + t(2), y ∈ (2, 3) for n = 2

y − 3 + t(3), y ∈ (3, 4)

.

,

and so 

t(1) = 2, where t(0) = 0,

t(2) = 3,

t(3) = 5,

.

.

Therefore, we can obtain that t(2n−2) = 3n−3 and t(2n−1) = 3n−1 which

turns t(y) in (5.27) and (5.28) into

t(y) =

2y − (n− 1), y ∈ (2n− 2, 2n− 1)

y + n, y ∈ (2n− 1, 2n)

, n ∈ N.

Therefore y(t) can be obtained from t(y) as follows:

– As t(y) = 2y − (n− 1) for y ∈ (2n− 2, 2n− 1), then

y(t) =
1

2
[t+ (n− 1)] for t ∈ (3n− 3, 3n− 1).

– As t(y) = y + n for y ∈ (2n− 1, 2n), then

y(t) = t− n for t ∈ (3n− 1, 3n).
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and so

y(t) = f(t) =


1
2
[t+ (n− 1)], t ∈ (3n− 3, 3n− 1)

t− n, t ∈ (3n− 1, 3n)

, n ∈ N.

In addition, we can deduce τ(t) from y = f(t) which satisfies

f(t)− α = f(t− τ(t)),

and such that for t ∈ (3n − 3, 3n − 1) or t ∈ (3n − 1, 3n) and which α = 1
2

gives

τ(t) =

1, t ∈ (3n− 3, 3n− 1)

1
2
, t ∈ (3n− 1, 3n)

, n ∈ N.

Remark 5.4.7. We can solve equation (5.16) with the constant delay α = 1
2
,

which is
dz

dy
= −λg1(y)z(y − 1

2
) + 1,

in each interval. However, the formula of the solution would be more

complicated.

• A is an operator that generates a semigroup

For such A we need before discussing the stability to get first the solution

of equation (5.15).

Getting the solution

Let us take H to be a Hilbert space, A in equation (5.15) is an operator

that generates a bounded semigroup T (
∫ y

0
g1(t)dt) and g1(y) > 0 where y > 0.

From the solution of the scalar case, we can conjecture that the solution of
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this case should be

z(y) =

∫ y

0

T

(∫ y

t

g1(s)ds

)
v(t) dt. (5.29)

Now we need to check that (5.29) is the right solution of equation (5.15) as

follows:

First: Checking for g1(y) = 1

For g1(y) = 1, the suggested solution is:

z(y) =

∫ y

0

T (y − t)v(t) dt. (5.30)

By differentiating (5.30), we get

z′(y) =

∫ y

0

AT (y − t)v(t) dt+ v(y),

= A

(∫ y

0

T (y − t)v(t) dt

)
+ v(y),

= Az(y) + v(y),

which is exactly equation (5.15) with g1(y) = 1. So (5.29) is the right solution.

Then: Checking for g1(y) ≥ 0

By differentiating (5.29), we get

z′(y) =

∫ y

0

AT

(∫ y

t

g1(s) ds

)
g1(y)v(t) dt+ v(y),

= Ag1(y)

∫ y

0

T

(∫ y

t

g1(s) ds

)
v(t) dt+ v(y),

= Ag1(y)z(y) + v(y).

We can conclude that if A in equation (5.15) is an operator that generates a

bounded semigroup, then (5.29) is the mild solution of the equation.
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Proving the stability

For this A we can obtain uniform exponential stability as we will show in

the next result, which is the first main result of this section.

Theorem 5.4.8. If δ > 0 and g1(y) ≥ δ in equation (5.15), v ∈ L∞(0,∞;H)

and A is an operator that generates a semigroup that is uniformly exponentially

stable then the solution of this equation will be bounded, i.e., z ∈ L∞(0,∞;H).

Proof. Suppose ∥∥∥∥T (∫ y

x

g1(t) dt

)∥∥∥∥ ≤Me−β
∫ y
x g1(t) dt, (5.31)

for all t and some M ≥ 1, β > 0. Then

‖z(y)‖ =

∥∥∥∥∫ y

0

T

(∫ y

t

g1(s)ds

)
v(t) dt

∥∥∥∥ ,
≤
∫ y

0

∥∥∥∥T (∫ y

t

g1(t) dt

)∥∥∥∥ ‖v(t)‖ dt,

≤
∫ y

0

Me−β
∫ y
t g1(t) dt‖v(t)‖ dt, (5.32)

≤Mε

∫ y

x=0

e−βδx dx, where x = y − t and ‖v‖∞ = ε,

≤Mε

∫ ∞
x=0

e−βδx dx,

≤ Mε

βδ
.

5.4.2 L2 Stability

To obtain stability of (5.15) in this sense we suppose that v ∈ L2(0,∞;H); then to

get z ∈ L2(0,∞;H) we use Theorem 1.6.4 and again the result depends on A and
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the specific conditions on g1(y).

Theorem 5.4.9. If δ > 0 and g1(y) ≥ δ in equation (5.15), v ∈ L2(0,∞;H) and

A is an operator that generates a semigroup that is uniformly exponentially stable

then the solution of this equation satisfies z ∈ L2(0,∞;H).

Proof. By (5.32),

‖z(y)‖ ≤
∫ y

0

Me−βδ(y−t)‖v(t)‖ dt.

Now let

I(y) =

∫ y

0

Me−βδ(y−t)‖v(t)‖ dt =

∫ y

0

Mg(y − t)‖v(t)‖ dt;

where g : x → e−βδx ∈ L1(0,∞) and so from Theorem 1.2.6 G = Lg ∈ H∞(C+),

and then Î = MGŵ where w(t) = ‖v(t)‖. Then from Theorem 1.6.4

‖I‖2 ≤M‖G‖∞‖w‖2

=

∥∥∥∥ M

s+ βδ

∥∥∥∥
∞
‖v‖2

=
M

βδ
‖v‖2.

The proof is done.

5.5 Further Stability Results

5.5.1 Introduction

In the previous part, we have discussed the stability of the ordinary delay equation

dz

dy
= g(y)Az(y − α) + g(y)Bv(y), z0 = 0, (5.33)

for z(y) ∈ H and v(y) ∈ K where H,U are Hilbert spaces; A : H → H or

A : D(A) → H and B : K → H are operators where D(A) is the domain of A

and g(y) = dt
dy

is a continuous function such that g(y) ∈ C for each y. Recall
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that the stability of equation (5.33) means that if the input v ∈ L2(0,∞;H) or

v ∈ L∞(0,∞;H), the output z will be also in the same space. However, this section

does not give results of the stability that links the output of equation (5.33) with its

input. It gives results of the stability that links the output of equation (5.33) with

the output of our original variable delay equation

ẋ(t) = Ax(t− τ(t)) +Bu(t), (5.34)

where x(t) ∈ H and u(t) ∈ K and x(t) = 0 for t < 0; thus, x(t − τ(t)) = 0 when

t− τ < 0.

Equation (5.33) is obtained by changing the variables in equation (5.34) as we have

done in Section 4.3 by putting
dt

dy
to be g(y) in equation (5.33), where y = f(t)

and f : (0,∞)→ (0,∞) is a continuous bijection. .

Proposition 5.5.1. If the solution of equation (5.34) is bounded then the solution

of equation (5.33) will be so. That means,

x ∈ L∞(0,∞;H) ⇐⇒ z ∈ L∞(0,∞;H).

Proof. The formula relating x and z is x(t) = z(y), where y = f(t). That means x

and z take the same values but we just change the time axis from t into y. Because

of that,

‖x(t)‖∞ = ess sup |x(t)| = ess sup |z(y)| = ‖z(y)‖∞.

We now discuss L2 stability, which is a more complicated question because of the

change of variables. The next results show why it is essential that g,
1

g
∈ L∞ to get

both of the solutions (outputs) of equation (5.33) and equation (5.34) in L2 when

one of them is in it.

Theorem 5.5.2. If g,
1

g
∈ L∞ then f ′,

1

f ′
are bounded and

x ∈ L2(0,∞;H) ⇐⇒ z ∈ L2(0,∞;H).
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Proof. Because f(t) = y, we get f ′(t) =
d

dt
f(t) =

dy

dt
= 1/

(
dt

dy

)
= 1/g(y) and so

f ′ is bounded. We can prove that
1

f ′
is bounded using the same way. Let us now

suppose that x ∈ L2(0,∞;H) and we will find

‖z‖2
2 =

∫ ∞
0

‖z(y)‖2dy,

=

∫ ∞
0

‖x(t)‖2dy

dt
dt,

as
dy

dt
is bounded this leads to z ∈ L2(0,∞;H). Conversely, if z ∈ L2(0,∞;H) then

we will find

‖x‖2
2 =

∫ ∞
0

‖x(t)‖2dt,

=

∫ ∞
0

‖z(y)‖2 dt

dy
dy,

as
dt

dy
bounded this leads to x ∈ L2(0,∞;H).

Let w(t) be a positive measurable function. Then for a separable Hilbert space H

we write L2(0,∞, w(t)dt,H) for the space of measurable H-valued functions f such

that the norm ‖f‖, given by

‖f‖2 =

∫ ∞
0

‖f‖2w(t) dt,

is finite. We write L2
w for L2(0,∞;w(t) dt).

Proposition 5.5.3. If the solution of equation (5.33) is in L2 then the solution of

equation (5.34) will be in a weighted L2 space and vice versa. That means

x ∈ L2(0,∞;H) ⇐⇒ z ∈ L2(0,∞;
dt

dy
dy;H).

Additionally,

z ∈ L2(0,∞;H) ⇐⇒ x ∈ L2(0,∞;
dy

dt
dt;H).
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Proof. As in the previous proof, it is enough to prove that

z ∈ L2(0,∞;
dt

dy
dy;H)⇒ x ∈ L2(0,∞;H).

Suppose that z ∈ L2(0,∞; dt
dy
dy;H) and then we have

‖x‖2
2 =

∫ ∞
0

‖x(t)‖2dt,

=

∫ ∞
0

‖z(y)‖2 dt

dy
dy,

and so x ∈ L2(0,∞;H), which means ‖x‖L2(0,∞;H) = ‖z‖L2(0,∞; dt
dy
dy;H). The second

part is similar.

Remark 5.5.4. Sometimes for the equation

dz

dy
= −λg(y)z(y − α) + v(y), λ ∈ C, Reλ > 0,

we can find τ(t) when we know f(t). The simple example for that is when y = Ct,

where C > 0 is a constant and it is clear that y = 0 when t = 0. Then we can get

f ′(t) =
dy

dt
= C and so

dt

dy
= g(y) =

1

C

where both of dy
dt
, dt
dy

are bounded. And so from

f(t)− α = f(t− τ(t)),

Ct− α = Ct− Cτ(t),

we have τ(t) = α
C

, which is a constant delay.

Example 5.5.5. From Example 4.3.4, we suppose that

y = f(t) = t2.

And so

f ′ = 2t and
1

f ′
=

1

2t
,
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are not bounded for t ≥ 0. So

x ∈ L2(0,∞;H) ⇐⇒ z ∈ L2(0,∞;
dy

2
√
y

;H).

Additionally,

z ∈ L2(0,∞;H) ⇐⇒ x ∈ L2(0,∞; 2t dt;H).

The next proposition from [29] shows an isometric map between L2
w and A2

ν , a

weighted Bergman space.

Definition 5.5.6. A2
ν

Let ν̃ be a positive regular Borel measure on [0,∞) satisfying the following

42-condition:

sup
t>0

ν̃[0, 2t)

ν̃[0, t)
<∞. (5.35)

This is sometimes referred to as a doubling condition, and such measures have been

studied in the theory of harmonic analysis and partial differential equations for many

years. Let ν be the positive regular Borel measure on C+ = [0,∞) × R given by

dν = dν̃ ⊗ dλ, where λ denote Lebesgue measure. In this case, for p = 2, we call

A2
ν =

f : C+ → C analytic: sup
ε>0

∫
C+

|f(z + ε)|2 dν(z) <∞

 ,

a Zen space on C+. If ν̃{0} > 0, then by standard Hardy space theory, f has

a well-defined boundary function f̃ ∈ L2(iR), and we can give meaning to the

expression
∫
C+

|f(z)|2 dν(z). Therefore, we may write

‖f‖A2
ν

=

∫
C+

|f(z)|2 dν(z)


1
2

.

Proposition 5.5.7. Let A2
ν be a Zen space, and let w : (0,∞)→ R+ be given by

w(t) = 2π

∫ ∞
0

e−2rt dν̌(r) (t > 0).
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Then the Laplace transform defines an isometric map L : L2
w(0,∞)→ A2

ν.

Example 5.5.8. There are isomorphisms between L2
w and spaces of functions that

are related to Hardy spaces such as

• The map between L2(dt
t
) and the Bergman space A2 which is

z ∈ L2(
dt

t
) ⇐⇒ ẑ ∈ A2,

where

A2 =

f : C+ → C analytic ;

∫∫
C+

|f(x+ iy)|2 dxdy <∞

 .

See also [11].

• The map between L2(t dt) and the Dirichlet space D2 which is

x ∈ L2(t dt) ⇐⇒ x̂ ∈ D2,

where

D2 =

f : C+ → C analytic ;

∫∫
C+

|f ′(x+ iy)|2 dxdy <∞

 .

However, this example is not a Zen space.

5.5.2 Stability on Weighted L2 Spaces

There is an extensive literature on the use of the H∞ norm of an analytic

(operator-valued) function on the right-hand half-plane C+, which describes the gain

of a linear time-invariant system from (vector-valued) L2(0,∞) inputs to L2(0,∞)

outputs; we mention here some well-known books on the subject, namely, [13, 18, 46].

In this section we show that H∞ methods can be applied to stability questions in a

wide variety of weighted L2(0,∞) spaces [1].
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We start by showing that in many cases the Laplace transform induces an isometry

between L2(0,∞, w(t)dt,H) and a space of H-valued analytic functions on C+.

Let ν̃ be a positive regular Borel measure on [0,∞) satisfying the doubling condition

(5.35). Again let ν be the positive regular Borel measure on C+ = [0,∞)×R given

by dν = dν̃⊗dλ, where λ denote Lebesgue measure. The Zen space A2
ν(H) is defined

to consist of all analytic H-valued functions F on C+ such that the norm, given by

‖F‖2 = sup
ε>0

∫
C+

‖F (s+ ε)‖2 dν̃(x) dy

is finite where we write s = x+ iy for x ≥ 0 and y ∈ R.

The best-known examples here are:

1. For ν̃ = δ0, a Dirac mass at 0, we obtain the Hardy space H2(C+, H).

2. For ν̃ equal to Lebesgue measure (dx), we obtain the Bergman space

A2(C+, H).

Often we shall have ν̃{0} = 0, in which case ‖F‖2 can be written simply as

∫
C+

‖F (s)‖2 dν̃(x) dy.

Theorem 5.5.9. Suppose that w is given as a weighted Laplace transform

w(t) = 2π

∫ ∞
0

e−2rt dν̃(r), (t > 0). (5.36)

Then the Laplace transform provides an isometric map

L : L2(0,∞, w(t)dt,H)→ A2
ν(H). (5.37)

Proof. This result was given in the scalar case H = C in [29] (see also [30], where

applications to admissibility and controllability were given, and [25, 26] for earlier

related work) the general case follows using the standard method for proving the

Hilbert space-valued case of Plancherel’s theorem [2, Thm. 1.8.2]: (en)∞n=1 be an
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orthonormal basis for H, and write

f(t) =
∞∑
n=1

fn(t)en,

where fn ∈ L2(0,∞, w(t)dt,C). Then F := Lf =
∑∞

n=1 Fnen, where Fn = Lfn ∈

A2
ν(C) and ‖fn‖ = ‖Fn‖ from [29, Prop. 2.3].

Now ‖f‖2 =
∑∞

n=1 ‖fn‖2 and ‖F‖2 =
∑∞

n=1 ‖Fn‖2, so the result follows.

In this case that ν̃ = δ0, we have the vectorial version of the well-known Paley-Wiener

result linking L2(0,∞) and the Hardy space H2(C+); for ν̃ equal to Lebesgue

measure, we find that the weighted signal space L2(0,∞, dt/t) is isometric (within

a constant) to the Bergman space on C+.

We now have a result for input-output stability which generalizes the case p = 2 of

Theorem 1.6.4.

Theorem 5.5.10. Let G ∈ H∞(C+, L(H)). Then the multiplication operator MG

defined by

(MGF )(s) = G(s)F (s) (s ∈ C+, F ∈ A2
ν(H))

is bounded on A2
ν(H) with ‖MG‖ ≤ ‖G‖∞. In the case when the Laplace transform

(5.37) is surjective onto A2
ν(H) we have equality.

Proof. It is clear that

sup
ε>0

∫
C+

‖G(s+ ε)‖2‖F (s+ ε)‖2 dν̃(x)dy ≤ ‖G‖2
∞ sup

ε>0

∫
C+

‖F (s+ ε)‖2 dν̃(x)dy,

so that ‖MG‖ ≤ ‖G‖∞.

For the converse inequality we begin by noting that by (5.36) we have the inequality

w(t) ≥ 2πe−2εtν̃[0, ε) for every ε > 0. Hence, if z = x + iy ∈ C+, we have for

0 < ε < x the inequality

∫ ∞
0

|e−z̄t/w(t)|2w(t) dt ≤
∫ ∞

0

e−2xt 1

2πν[0, ε)
e2εt dt <∞.
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Thus the function kz : t 7→ e−zt/w(t) lies in L2(0,∞, w(t)dt) for every z ∈ C+, and

we have

Lf(z) = 〈f, kz〉L2(0,∞,w(t)dt)

for all f ∈ L2(0,∞, w(t)dt). That is, A2
ν = LL2(0,∞, w(t)dt) is a reproducing

kernel Hilbert space with kernel Kz := Lkz (see, for example, [40] for more on such

spaces). For x ∈ H we write Kz⊗x for the function s 7→ Kz(s)x in A2
ν(H) and note

that for a function F ∈ A2
ν(H) we have 〈F,Kz ⊗ x〉A2

ν(H) = 〈F (z), x〉H . Moreover

‖Kz ⊗ x‖A2
ν(H) = ‖Kz‖A2

ν
‖x‖H .

Now for F ∈ A2
ν(H) and G ∈ H∞(L(H)) we have, for every x ∈ H and z ∈ C+,

that

〈F,M∗
G(Kz ⊗ x)〉A2

ν(H) = 〈MGF,Kz ⊗ x〉A2
ν(H) = 〈G(z)F (z), x〉H

= 〈F (z), G(z)∗x〉H = 〈F,Kz ⊗G(z)∗x〉A2
ν(H),

and so M∗
G(Kz ⊗ x) = Kz ⊗G(z)∗x, and ‖MG‖ = ‖M∗

G‖ ≥ ‖G∗‖∞ = ‖G‖∞.

Summing up the ideas above, we see that getting L2 stability in all (0,∞) might be

inaccessible, but the stability of system (5.33) might be achieved if we work with

weighted L2 spaces.

Suppose u ∈ L2(0,∞), then

∫ ∞
0

‖u(t)‖2 dt <∞;

as y = f(t), that leads to

∫ ∞
0

‖v(y)‖2 dt

dy
dy <∞,

which means v ∈ L2((0,∞); | dt
dy
|dy) and it might be z ∈ L2((0,∞); some weight).

Then, by changing the variable again we would get x ∈ L2((0,∞); some weight).
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Chapter 6

Possibilities for further research

In this section we identify some areas where questions remain open for investigation.

6.1 Chapter 2

We could study the stability of the delay systems

dz

dy
= g(y)λz(y − α) + v(y), (6.1)

where g is a continuous function on [0,∞) and Re λ > 0 using the Walton-Marshall

method in Chapter 2. The Walton-Marshall method depends on having
‖ẑ‖H2

‖v̂‖H2

<∞

which means identifying the poles of
ẑ

v̂
or the zeros of

v̂

ẑ
on the imaginary axis

iR, to get when the system is unstable. Because of that, we would start by choosing

z(y) and g(y) to be specific functions such as z(y) = eσy where σ ∈ R and g(y) = 1√
y
.

Then, by finding ẑ and v̂ from (6.1), we might apply the method. However, we have

not yet concluded with a clear result on stability as
ẑ

v̂
includes different variables.
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6.2 Chapter 4

We can study the stability of the equation

dz

dy
= g1(y)Az(y − α) + g2(y)Bv(y). (6.2)

Additionally, we may do more research about the non-standard Laplace transform

Z(s) =

∫ ∞
0

e−sf(t)z(t) dt;

to determine its inverse in order to obtain x(t) explicitly. What is more, we could

try to find the solution of equation (4.6), which we have tried to solve by using the

generalized semigroup. In addition, we are still investigating how to express the

solution of equation (4.6) using integral transforms, as we can when g(y) ≡ 1.

Furthermore, we want to discuss stability properties of equation (4.1), e.g. if

u ∈ L2(0,∞;U) does x ∈ L2(0,∞;X)? and if we are given z /∈ L2(0,∞)

and (6.2) is satisfied, then we can calculate v, and if v ∈ L2(0,∞) the system is

unstable. A suitable choice may be z(y) = eβy with β ∈ iR.

6.3 Chapter 5

We would like to investigate more switching systems with varying parameters and to

study the stability of them with giving examples. Additionally, we still investigate

the link between L2 stability and weighted L2 stability in the time-varying case.
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