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Abstract

Physics-based vision explores computer vision and graphics problems by applying methods based

upon physical models. On the other hand, deep learning is a learning-based technique, where a

substantial number of observations are used to train an expressive yet unexplainable neural network

model. In this thesis we propose the concept of a model-based decoder, which is an unlearnable

and differentiable neural layer being designed according to a physics-based model. Constructing

neural networks with such model-based decoders afford the model strong learning capability as well

as potential to respect the underlying physics.

We start the study by developing a toolbox of differentiable photometric layers ported from classical

photometric techniques. This enables us to perform the image formation process given geometry,

illumination and reflectance function. Applying these differentiable photometric layers into a bidi-

rectional reflectance distribution function (BRDF) estimation network training, we show the network

could be trained in a self-supervised manner without the knowledge of ground truth BRDFs.

Next, in a more general setting we attempt to solve inverse rendering problems in a self-supervised

fashion by making use of model-based decoders. Here, an inverse rendering network decomposes a

single image into normal and diffuse albedo map and illumination. In order to achieve self-supervised

training, we draw inspiration from multiview stereo (MVS) and employ a Lambertian model and a

cross-projection MVS model to generate model-based supervisory signals.

Finally, we seek potential hybrids of a neural decoder and a model-based decoder on a pair of practical

problems: image relighting, and fine-scale depth prediction and novel view synthesis. In contrast to

using model-based decoders to only supervise the training, the model-based decoder in our hybrid

model serves to disentangle the intricate problem into a set of physically connected solvable ones. In

practice, we develop a hybrid model that can estimate a fine-scale depth map and generate novel view

synthesis from a single image by using a physical subnet to combine results from an inverse rendering

network with a monodepth prediction network. As for neural image relighting, we propose another

hybrid model using a Lambertian renderer to generate initial estimates of relighting results followed

by a neural renderer performing corrections over deficits in initial renderings.

We demonstrate the model-based decoder can significantly improve the quality of results and relax

the demands for labelled data.
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Chapter 1

Introduction

RGB images are formed by complicated interactions between lighting, scene and camera. Based on

our understandings of lighting transportation in the space, this image formation process can be de-

scribed by the underlying physical models. Physics-based vision represents a class of researches using

such image formation physical models to estimate intrinsic properties of the captured scene. Practical

applications regarding this topic includes reflectance model estimation, illumination estimation and so

on. For example, the Lambertian reflectance can model perfect diffuse reflections of a matte surface.

More generally, the Bidirectional Reflectance Distribution Function (BRDF) of an object explains the

directional dependence of light reflecting from the surface and can be estimated given a collection of

images captured in calibrated experimental environments. Under this definition, the employed phys-

ical models are only related to image formation process. However, in this thesis, we would like to

explore the potential benefits when deep learning model meets physical model, which should include

the models not only simulating the image formation process but also being exploited in more general

vision methods. For this reason, we firstly need to broaden the definition of physics-based vision by

including more vision techniques built from underlying physical models. For example, multi-view

stereo (MVS), which is a very robust 3D reconstruction vision technique, relies on the physics of

3D geometry and camera perspective projection. Through performing optimisation over such phys-

ical models, the objective semantic properties of captured scenes can be inferred. Under our new

definition, however, we can find physics-based vision methods are often inherently imperfect, like

1
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the Lambertian reflectance model ignores the effects of specularities. MVS suffers from requiring a

large number of input images and fails in untextured regions devoid of matchable features. Thus, this

thesis presents a study on a promising candidate for alleviating potential issues in physics-based vi-

sion methods, which is the combination of deep learning framework and differentiable physics-based

network modules ported from the physical vision models.

Over the last decade, deep learning has become the most powerful tool in computer vision and com-

puter graphics. Learning-based algorithms built on deep neural networks have achieved unprece-

dented successes in many fundamental problems in these fields, for example monocular depth esti-

mation [84, 26, 25, 29, 152, 39], semantic image segmentation [169, 90, 55, 48], image and video

rendering [106, 66, 119, 105, 142], etc. The explosion of deep learning related algorithms initiated

from ones attacking recognition problems [72], where the model was trained in an end-to-end setting

while assuming that the database along with ground truth is large and diverse enough for training.

Such a CNN, however, contains no semantic or interpretable operational kernels inside the network

but is only a problem-oriented black box. More importantly, the prerequisite of large-scale labelled

data restricts the scope of its applicability. To address these inherent limitations in deep learning

method, combining model- and learning-based vision could provide us with a better solution than

simply learning a black-box model with annotations. One way to do this is to incorporate physical

models into a CNN by introducing layers that explicitly implement physical models. This potentially

offers a route to unsupervised learning of physics-based vision tasks with CNNs. For example, a black

box encoder that transforms images to physically meaningful parameters can be trained by pairing it

with a physics-based decoder that renders an image from the estimated parameters allowing a self-

supervised loss to be computed between the original and rendered images. Many other architectures

are also possible that exploit these physics-based layers.

More recently, increasing attempts to embed physics-based vision techniques into deep neural net-

works have been proposed. Compared with preceding CNN-based methods, the embedded physical

model introduces the interpretability of underlying physical processes so as to regularise the learned

model, and it provides a physics-based supervisory signal to achieve self-supervised learning which

relaxes the need of data labels. This family of works inspires us to study the potential that incor-

porating classical physics-based vision techniques into CNN can improve the performance over the
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existing physics-based vision and deep learning methods.

An intuitive way of combining physics-based vision and deep learning is to construct a subnet inside

the existing CNN that simulates the physical process. In BRDF modelling, for example, a subnet

reproducing observed images with BRDF function estimated by a deep BRDF modelling network en-

ables self-supervised learning. To achieve similar self-supervised training, another example could be

the Lambertian reflectance model being used as an image formation decoder in image decomposition

networks. There are many more possibilities in combining two models due to the versatility of CNNs

and the great variation of physics-based vision algorithms. In common practice, physics-based neural

embedding layer is structured subsequently to an encoder or a decoder, and it works as an untrain-

able decoder, so we call it model-based decoder as opposed to neural decoder, the latter consisting of

trainable parameters.

In this thesis, we will first seek the insight of the definition of model-based decoder by introduc-

ing differentiable neural network layers for photometric vision and simple Lambertian model, and we

will show that they are essential components for self-supervised BRDF estimation and inverse render-

ing networks. Next, we present a self-supervised inverse rendering network as well as a model-based

decoder implementing physical model of multi-view stereo that serves to enable self-supervised train-

ing. To demonstrate their effectiveness, both qualitative and quantitative evaluation is performed on

the BRDF modelling network and inverse rendering network. Here, model-based decoders are used

in the training phase to grant the training process a self-supervisory loss signal, therefore allowing our

proposed network to be trained without ground truth labels. The learned model itself, however, re-

mains structurally free from model-based decoders. Instead of only applying model-based decoders in

training, an alternative is to embed model-based decoders into neural networks such that the learned

model for inference is a union of two types of decoders. Also, from a modelling perspective, the

model-based decoder has degraded performance compared to learnable neural decoder yet retaining

the physical properties over neural decoder, which encourages us to build neural networks with both

model-based decoder and neural decoder. To this end, we present another category of work focusing

on the hybrid model of model-based and neural decoder. For this, we show a depth estimation net-

work yielding detailed depth predictions by imposing a derivative relationship between deep depth

and normal estimate, and an image relighting renderer employing a rendering network to transfer a
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Lambertian rendering exhibiting deficits to a photorealistic rendering. Their impressive performance

again confirms the significant advantages conferred by model-based decoders.

We develop our study for the topic of “Physics-based vision meets deep learning” by approaching

different vision or graphic problems mentioned above using varying combinations of the model-based

decoder and neural networks. To better illustrate them, the detailed problem specific contexts are

introduced in the rest of this chapter.

1.1 Self-supervised neural network for BRDF estimation

The key to modelling photometric image formation is the knowledge of reflectance properties of the

target object, namely Bidirectional Reflectance Distribution Functions (BRDF). A BRDF is a 4D

function describing the ratio relationship between exitant radiance and incident irradiance, where

function inputs are incident and exitant directions represented by two individual 3D vectors (each

with 2 angular degrees of freedom, hence the BRDF is a 4D function. The level of fidelity of BRDFs

employed in the rendering process considerably affects the level of realism of the rendered images. To

capture high-fidelity BRDFs, standardised capturing devices have been proposed in some early works,

which are prohibitively high-end and complicated. Then more efforts have been made to simplify

the cumbersome BRDF measuring procedure by using image-based methods, spherical gantries etc.

These methods proposed to efficiently capture BRDF data followed by fitting the raw data to BRDF

models so as to achieve efficient storage and computation.

Unlike classical methods outlined above, learning-based approaches make use of deep learning tech-

niques to directly estimate BRDFs of captured objects by one or a few unstructured input images.

This branch of work provides faster performance and greater generality, while strictly requiring suf-

ficient data for training network parameters. The challenge in such learning-based approaches is the

acquisition of training data since acquiring images with accurate reflectance functions is itself an open

problem. One way around this is to use synthetic training data, where the images are rendered from

models. However, the ability of CNNs to generalise to real world data is limited by the realism of

the synthetic training data. Moreover, such a black box reveals nothing about the underlying physical
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processes, and the model must be retrained in order to estimate different physical quantities or solve

various problems. In Chapter 3, we present a differentiable renderer supporting tabulated BRDF rep-

resentation and show how to use the renderer to overcome both problems of necessitating labelled

training data and of lacking interpretability in terms of the physical process. As a result, we show a

BRDF estimation network trained in a self-supervision regime.

1.2 Deep inverse rendering

Inverse rendering is the problem of estimating one or more of illumination, reflectance properties

and shape from observed appearance (i.e. one or more images). In Chapter 4, we tackle the most

challenging setting of this problem; we seek to estimate all three quantities from only a single, uncon-

trolled image of an arbitrary scene. Specifically, we estimate a normal map, diffuse albedo map, cast

shadow map and spherical harmonic lighting coefficients. This subsumes, and is more challenging

than, several classical computer vision problems: (uncalibrated) shape-from-shading, intrinsic image

decomposition, shadow removal and lighting estimation.

Classical approaches [7, 79] cast these problems in terms of energy minimisation. Here, a data term

measures the difference between the input image and the synthesised image that arises from the esti-

mated quantities. We approach the problem as one of image to image translation and solve it using a

deep, fully convolutional neural network. However, inverse rendering of uncontrolled, outdoor scenes

is itself an unsolved problem, and so labels for supervised learning are not available. Instead, we use

the data term for self-supervision via a differentiable renderer.

Single image inverse rendering is an inherently ambiguous problem. For example, any image can be

explained with zero data error by setting the albedo map equal to the image, the normal map to be

planar and the illumination such that the shading is unity everywhere. Hence, the data term alone

cannot be used to solve this problem. For this reason, classical methods augment the data term with

generic [7] or object-class-specific [5] priors. Likewise, we also exploit a statistical prior on lighting.

However, our key insight that enables CNN to learn good performance is to introduce additional

supervision provided by an offline multiview reconstruction or from a time-lapse video.
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While photometric vision has largely been confined to restrictive lab settings, classical geometric

methods are sufficiently robust to provide multiview 3D shape reconstructions from large, unstruc-

tured datasets containing very rich illumination variation [40, 31]. This is made possible by local

image descriptors that are largely invariant to illumination. However, these methods recover only

geometric information and any recovered texture map has illumination “baked in” and so is useless

for relighting. We exploit the robustness of geometric methods to varying illumination to supervise

our inverse rendering network. We apply a multiview stereo (MVS) pipeline to large sets of images of

the same scene. We select pairs of overlapping images with different illumination, use the estimated

relative pose and depth maps to cross-project photometric invariants between views and use this for

supervision via Siamese training. Here, MVS geometry enables us to align invariants in images with

different illuminations and from different viewpoints, and then compute and minimise the distance

between aligned invariants. The similar methods is usually used in training networks on time-lapse

images. In other words, geometry provides correspondence that allows us to simulate varying illu-

mination from a fixed viewpoint. Finally, the depth maps from MVS provide coarse normal map

estimates that can be used for direct supervision of the normal map estimation. This is important

for our training schedule but note that the subsequent self-supervised learning allows the network to

perform significantly better normal map estimation than simply training a network in a supervised

fashion with MVS normal maps. Time-lapse video provides another useful constraint since albedo

and surface normal maps remain constant while lighting (and therefore shading and shadowing) vary.

1.3 Depth estimation meets inverse rendering

Depth estimation from a single image is usually learnt in a supervised fashion, where the training

examples come from a depth sensor [153] or multiview stereo reconstructions from image collections

[84]. These methods are now capable of providing robust performance on real world images and

the recovered depth often correctly estimates ordinal relationships between objects and components

within a scene. By texture-mapping the depth map with the original image, it is possible to synthesise

new images with a novel viewpoint. However, the depth maps estimated by these approaches do not

capture fine-scale local detail, and they do not provide any reflectance or lighting estimates. So, the
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output cannot be used for rendering novel illumination conditions, i.e. for relighting.

In a different direction, inverse rendering (or intrinsic image decomposition) provides a decompo-

sition of the image into shading and reflectance, perhaps with shading further decomposed into a

normal map and lighting estimate. Here, the challenge is that no existing method can provide training

examples for real world scenes since inverse rendering in the wild is still an open problem. For this

reason, state-of-the-art methods use self-supervision (see Chapter 4). Estimated surface normal and

albedo maps are sufficient for relighting and often capture fine-scale, high frequency shape details.

However, with no absolute geometric information, viewpoints cannot be edited and cast shadows

cannot be predicted.

In Chapter 5, we take a model-based decoder to refine geometric related predictions from deep depth

estimation and deep inverse rendering networks, which yields depth predictions that capture fine

surface shape detail.

1.4 Single-image neural relighting

Virtual relighting of real world outdoor scenes is an important problem that has wide applications. For

example, synthesised relighting images could be used in film creations. Image relighting technique

can also be used in content creations for virtual reality applications and video games. The image

relighting technique can generate time-lapse videos of the target scene, which is an inspiring and

efficient tool for architectural designer. Performing such a relighting task involves correctly estimating

and editing the various scene components – geometry, reflectance and the direct and indirect lighting

effects. Measuring these high-dimensional parameters traditionally required the use of instruments

such as LIDAR scanners and gonioreflectometers and extensive manual effort [145, 148].

Multi-view and multi-illumination constraints have proved to be effective in solving this problem

[75, 24, 122]. 2D images of a scene from different viewpoints and under different lighting conditions

provide the necessary constraints to reconstruct the geometry of the scene and disambiguate the light-

ing from the reflectance. For example, the method of Laffont et al. [75], along with multi-view 3D
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reconstruction, also uses manual interactions to perform an intrinsic decomposition of the scene im-

ages into reflectance and shading layers. By reprojecting the reflectance layer from one viewpoint to

another and recombining with the original shading image, lighting conditions of one image of a scene

can be transferred to another. While this technique is effective, it is limited in its relighting capability

because it cannot relight the scene under an arbitrary lighting condition of choice. The method of

Duchêne et al. [24] also performs a similar intrinsic decomposition of multi-view images, and ad-

ditionally estimates the shadows and the parameters of a sun-lighting model for the scene. These

parameters are then modified in a geometrically accurate way to achieve scene relighting. Philip et

al. [122] similarly estimate shadows and sun-light model parameters but skip the inverse rendering

process and instead use a deep neural network to generate relighting results directly. Their network

takes as input several ‘illumination buffers’ that are rendered using the reconstructed geometry and

estimated sun-light model parameters. This method relies on high-quality ground-truth renderings

of synthetic 3D models of outdoor scenes, requiring the availability of high-end computational hard-

ware. While these techniques have been shown to generate high-quality relighting results on real

scenes, they are limited by the availability of multi-view images of the scene. They also rely on a

sun-lighting model that only works for bright sunlight conditions and does not generalise to cloudy

overcast skies, night-time lighting, or other desired target illumination conditions.

Another class of methods circumvent the problem of estimating the scene parameters by achieving

relighting directly through lighting style transfer. These methods [136, 77] change the lighting in a

scene by learning the colour characteristics of images at different times of the day. Another set of

methods [71, 93] learn a more general class of style-transfer in which characteristics of a reference

image are transferred to a target image, including the scene lighting. Such methods are not physically

based and are limited in relighting a scene either based on a reference image or a particular time of

the day.

In contrast, the method of inverse rendering network (Chapter 4) proposes a novel formulation for the

problem that allows for fully controlled relighting based on a single image of the scene. It demon-

strates a learning method that at training time uses the constraints available from multi-view casual

images of outdoor scenes sourced from the internet, to learn to estimate the scene appearance pa-

rameters. The network can then at test time estimate these parameters from a single image. By
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modifying the lighting to the desired lighting environment, the image can be relit. While this method

enables relighting of a scene from a single 2D image to any arbitrary lighting, it is also limited by the

low-frequency lighting model used in the decomposition that leads to non-photorealistic relighting

results.

In Chapter 5, we present a hybrid model combining a Lambertian rendering model with a neural

decoder. In this hybrid model, the embedded Lambertian model provides us with the controllability

of new lighting, and the learned neural decoder is able to generate high quality relighting results that

introduce non-Lambertian effects being missed by pure Lambertian model.

1.5 Outline

We study the theme of “Physics-based vision meets deep learning” under different frameworks and

applications, which are organised as follows:

• Chapter 2: We present related work regarding the general discussion of the model-based de-

coder and specific applications relevant to our proposed frameworks.

• Chapter 3: A set of concrete model-based decoders are defined in this chapter. For qualify-

ing these model-based decoders, we present experiments and an exemplar BRDF estimation

network, empirically showing their contributions in deep learning.

• Chapter 4: We show how to use a model-based decoder to achieve self-supervised training in

learning a deep inverse rendering network.

• Chapter 5: We broaden our discussion onto the hybrid model of model-based and neural de-

coder and demonstrate its effectiveness on two applications, one each for neural networks of

detailed depth prediction and self-supervised single image relighting renderer.

• Chapter 6: A discussion of conclusions and future works based on each topic presented in this

thesis is provided in this chapter.



Chapter 2

Related work

In this chapter, we will first review related work on differentiable renderers derived from physical

models inside a deep neural network. We take the perspective from this branch of work for analysing

model-based decoders as it has been an important and well-studied field. As a comparison, recent

works about neural renderers will be reviewed in the same section. The main theme of this thesis

is organised by reviewing how to leverage the problem-orientated model-based decoder in different

practical problems: BRDF estimate, inverse rendering, depth estimate refinement and image relight-

ing. Hence a thorough review covering these practical topics is provided in the rest of this chapter.

2.1 Model-based and neural decoders

In order to include physics-based models in a CNN, the key component is a differentiable layer

that can integrate specific physical models into a feed-forward neural network whilst enabling back-

propagation during training. Hence, we begin by reviewing related work that utilises trainable or

fixed, differentiable renderers for vision tasks.

10
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2.1.1 Differentiable renderer

In energy minimisation approaches to inverse graphics problems, there is a need for differentiable

renderers that model the physical process of image intensity formation. This allows minimisation

of an appearance error using gradient descent or other first-order optimisation algorithms. Loper et

al. [91] developed differentiable renderer package called OpenDR as a framework. OpenDR could

reproduce the observed images with latent variables like appearance, geometry and camera, then the

error between reproduced image intensity map and the observation can be minimised. Zienkiewicz

et al. [175] applied a similar idea for estimating height maps in a real-time robotic system. The

rendering objective is height map rather than RGB intensities in their case.

2.1.2 Trainable render layer

Some work has investigated the idea of a trainable renderer. Dosovitskiy et al. [21] proposed a neural

network for image reconstruction from extracted feature maps resulting from different hand-crafted or

learned descriptors like HOG, SIFT or trained deterministic CNN. They trained an up-convolutional

network against the loss function comparing original inputs and reconstruction. Similarly, using

differentiable rendering layers inside a network to perform image reconstruction were implemented

by [22, 44, 35, 171, 73]. All trainable rendering networks introduced by these works are generative

models simulating the probabilistic process of RGB image synthesis. In contrast, our network models

a discriminative process on statistical BRDF parameter estimation problem and uses a fixed rendering

architecture to formulate the loss function.

Goodfellow et al. [43] proposed the idea of Generative Adversarial Nets (GANs), which trains a gen-

erative model together with a discriminator. The discriminator is trained to classify real and generated

images, and generator is trained to fool the discriminator. This adversarial training mechanism en-

courages the generative model to generate realistic images capturing the hidden features in the input

images. Radford et al. [123] applied the adversarial training with convolutional neural networks in

their DCGANs. By employing CNN-based generative and discriminative models, their generative

model could be trained in an unsupervised fashion to generate realistic images of different domains.
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The trained generator in GANs, however, can only take input of random noise vectors but cannot

perform rendering based on semantic inputs. Jaderberg et al. [53] proposed a plugin renderer layer to

seamlessly work along with existing CNN architectures, in order to activate the network’s capability

on recognising images with spatial transformation. Hinton et al. [50] proposed the idea of capsules

which are designed to capture features along with their positions, and used these capsules to construct

their transforming auto-encoders. The capsule unit enables neural networks to extract translation in-

variant features while remaining the position information. Following the similar idea, another work

that considers positional information is Spatial Transformer Networks presented by Jaderberg et al.

[53], which introduces spatial transformation unit into regular convolutional neural networks. This

new method provides the networks with the ability to perform image transformation, such that con-

volutional layers can localise the region of interest.

Nalbach et al. [109] explored the graphical shading problem by using rendering layers. Specifically,

their Deep Shading net explicitly takes as input the meaningful scenery attributes defined in common

shaders and use well-trained neural network to act as a self-taught shader as opposite to manually

designed shader. Gregor et al. [44] employed an recurrent architecture in their DRAW net that learns

to generate images in an iterative manner. They applied attention modules to make their network

only focus on part of the image canvas at each step, and hence accumulating and gathering the gen-

erated pieces in the final results. In each step, the encoder generates latent codes conditioned on the

input image and previous outputs from decoder, which is combined with attention model to achieve

impressive performance. Gatys et al. [35] tackled the problem of auto-generate images with respect

to the specified artistic style. The fundamental insight supporting the method is that the representa-

tions of content and style are independently captured by hierarchically different sub-networks inside

CNNs. Thus the target image could be generated by minimising the content matching loss and style

matching loss derived from a pre-trained VGG net [140]. Dosovitskiy et al. [22] developed a model

to render images given scenes description parameters, like camera position and appearance style. But

the effectiveness of the generator is only validated by synthetic laboratory images. Zhmoginov and

Sandler [171] proposed a face image rendering network being able to construct face image from a

pair of guiding image and identity embedding vector. Similar to Gatys et al. [35], Zhmoginov and

Sandler [171] formulated network training losses by measuring the feature distance computed by the
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pre-trained FaceNet, which is proposed by Schroff et al. [130].

2.1.3 Render layers in CNNs

Another group of differentiable rendering layer embedded in CNN are untrainable rendering layers

that usually make their network attack a specific problem. The BRDF estimation network proposed

in Chapter 3 falls into this group of work. The attractive feature of such a fixed rendering layer is

that the decoder acts as prior based on assumed physical model that can provide constraint during

unsupervised training. Richardson et al. [126] facilitated such a hand-crafted rendering layer for face

images. Their fixed differentiable rendering layer works on finetuning results estimated from a pre-

ceding discriminative model, and it plays the role of encouraging similarity between rendered images

and original input face images. Tung et al. [150] concentrated on a similar idea of inverse graphics

and incorporate an adversarial architecture into the network. By employing physics-based rendering

layers in conjunction with GANs architecture [43], their network can be trained in a self-supervised

way to deal with many different vision problems ranging from human post estimation, structure from

motion (SfM), super-resolution and inpainting. This paper introduces a general discussion about how

physics-based neural network layer can be used to train network on various physics-based problems.

A demonstration diagram is visualisation in Figure 2.1. Specifically, the human skeleton projection

layer is employed in human pose estimation network, a multi-view stereo cross-projection layer fa-

cilitates self-supervised SfM network, a downsamping layer provides self-supervision for learning

super-resolution network, and a rendering layer that applies binary masking operation is used to train

an inpainting network. Their network setups are too simple to provide strong and reliable supervision

signals, hence their training scheme heavily relies on the adversarial loss. Along with this direction,

we are exploring the similar topics like using physical model behind MVS and Lambertian reflectance

to supervise our network training. But we propose to use multiple models together to better constraint

the learning problem rather than heavily depending on adversarial loss.

A variety of works [33, 38, 47, 146, 161] focused on specific physics-based vision problems and re-

alised unsupervised learning by utilising deep learning in conjunction with a problem-oriented render-

ing layer. Some efforts has been made to apply unsupervised methods to train monodepth prediction
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Figure 2.1: Samples of different model-based decoders in neural network training. 3D Human pose
estimation can be projected to the original image to formulate self-supervised network training (a).
This idea can be extended to other applications like depth estimation network supervised by stereo
image pair (b), super-resolution image generation network supervised by downsampling based self-
reconstruction (c), and image inpainting network supervised by self-reconstruction combined with
binary masking layer. Image taken from [150].

networks, like Garg et al. [33] and Godard et al. [38]. These two works share the same fundamental

motivation that the correct depth prediction allows a pair of images with known baseline and focal

length to align with each other. Godard et al. [38] outperforms Garg et al. [33] by introducing addi-

tional left-right consistency loss and structural appearance loss. Handa et al. [47] introduced a library

of differentiable neural network layers providing implementations for frequently used operations de-

fined in the field of geometric computer vision. Namely, the library includes 3D rotation, translation

and scaling, perspective projection for 3D points, pixel-wise affine transformation, and loss functions

based on different M-estimators. A practical application is shown to validate their library, where they

trained a network to learn odometry from a pair of images in an unsupervised manner. In an attempt

of using unsupervised training to learn an inverse rendering networks for face images, Tewari et al.

[146] proposed to decompose a facial image into model-based geometry, diffuse reflectance and low-

frequency lighting. The model-based decoder in their model performs physics-based image formation

to reconstruct the input image, hence providing supervisory signals without ground truth labels. An-

other unsupervised training attempt to estimate 3D object skeletons was proposed by Wu et al. [161].

A projection layer mapping the 3D skeleton estimate to the input 2D image is used in their network,

which bridges the gap between the skeleton in 3D and the keypoint annotations in 2D.
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Other than using rendering layers as a tool for learning in an unsupervised setting, Cole et al. [17]

achieved great frontal-face rendering results by using a warping layer with the landmark and texture

extraction networks to generate input image reconstruction. Their loss function consists of two por-

tions: errors of landmark and texture predictions and error of rendered frontal-face image and both of

them need ground truth in training. Tang et al. [144] assumed Lambertian reflectance in their render

layer and perform a multiplicative rendering process with the outputs from their generative model.

Tulsiani et al. [149] presented an unsupervised learning scheme to address the problem of geometry

estimation from a single image through their special ray tracing loss function, which is similar in func-

tion to a render layer. The geometry is represented by occupancy probability distribution over voxel

grids, and the differentiable ray tracing layer models the interactions between geometry prediction

and observation related rays in a probabilistic manner. This differentiable ray tracing layer formulates

the training loss by measuring the consistency between observations and its ‘rendered’ reconstruc-

tions. Liu et al. [89] simulated the rasterisation and z-buffering operation as a series of probabilistic

processes, hence enabling gradient flows from loss function defined in 2D image domain to intrinsics

and extrinsics (geometry, camera etc.) defined in 3D space. Kato et al. [63] instead leveraged the

standard forward rasterisation operation, while replacing the original derivative formulations with ap-

proximated ones induced by continuous samplings. More recently Kato et al. [62] proposed a survey

of differentiable rendering that summarised important works in the field.

2.2 BRDF estimation and modelling

Traditional BRDF estimation and modelling often places much greater restrictions on data capture.

Nielsen et al. [117] proposed a statistical model of BRDFs, but their BRDF reconstruction requires

images under constrained, calibrated capture conditions. Just like Nielsen’s work, traditional BRDF

estimation methods heavily relies on sampling algorithms and the reconstruction quality is determined

by sampling results. In early work, White et al. [159] set up a gonioreflectometer gantry to capture

the 4D BRDF in a brute force way. Foo [28] optimised the gantry for measuring isotropic BRDFs

by dropping one axis of movement. The exhaustive sampling is time consuming and unwieldy, so

some other lightweight sampling tricks have been proposed. Ward et al. [157] designed an imaging
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gonioreflectometer consisting of a fixed fish-eye camera, a movable illuminant and a half-silvered

plastic hemisphere, which enable users to capture light reflections in all hemispherical directions at

once. Dana et al. [18] built a measuring apparatus comprising a fixed lighting source, a camera with

limited mobility and a sample plane being available for limited tilting movements. Marschner et al.

[96] performed sampling on a sphere or curved object to simplify the gonioreflectometer measure-

ment. Following the similar idea, Ngan et al. [116] measured anisotropic BRDFs by wrapping the

flat object stripes towards varying directions onto the cylindrical template, and they introduced a pre-

cision motor for an additional degree of measurement. Ghosh et al. [37] proposed to simplify the

process of reflectance sampling by using spherical zonal basis function. Ben-Ezra et al. [10] used 151

calibrated cameras along with their flash lights to construct their capturing rig. Naik [108] proposed

to use scattered light source and light reflections off the target object to capture BRDFs information

with only a fixed laser emitter and a fixed camera. Fuchs et al. [30] applied adaptive sampling over

their setup to overcome the most common aliasing problems. Tunwattanapong et al. [151] applied

lighting conditions fitted to spherical harmonic patterns through a rotating LED arm, such that they

can efficiently estimate diffuse and specular components of the target BRDFs from captured reflec-

tion patterns. Very close to the statistical model proposed by Nielsen et al. [117], Matusik et al. [100]

derived similar BRDF model from MERL dataset but with linear PCA method that is less able to

capture the distinctive features of a BRDF.

BRDF estimation using CNNs has recently been considered. Kim et al. [69] assumed the Ward

BRDF model and trained their network to predict the Ward model parameters of objects. One of their

proposed networks contains a fixed layer to perform pre-processing on voxel grids which are inputs

for the following CNN architecture. Georgoulis et al. [36] used their DeLight-Net to estimate Phong

model parameters and environment maps given a reflectance map of a captured material and illumina-

tion. Rematas et al. [125] tried to extract the reflectance map from a single RGB image through their

deep network. They proposed to use a fixed sampling layer and domain conversion layer bridging

two subnets that work on surface normal prediction and dense reflectance map prediction respec-

tively. Meka et al. [103] used a neural network to estimate BRDF represented by the Blinn-Phong

model [14] for the captured material from a single image while performing in real time. Through us-

ing a cascaded network model, they tackled this problem by decoupling the full task into a sequence
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of simpler ones, namely segmentation, specular estimation, albedo estimation and mirror reflection

estimation. For training this intricate model, synthetic data with ground truth is required. Li et al.

[86, 85] also proposed to use a cascaded network architecture to approach the reflectance estimation

problem. Instead of only estimating uniform BRDF, their networks tackles a more challenging prob-

lem, which decomposes a single input image to SVBRDF, normal and illumination. Likewise, other

recent efforts has been made on modelling SVBRDF by CNNs, for example works from Gao et al.

[32] and Li et al. [81]. Here, their models separate BRDF as a diffuse component being represented by

Lambertian model and a specular component that is approximated by a phenomenological model or a

physically based model. The direct supervision for learning BRDF predictions leads to the necessity

of considerable labelled data, which is the key problem their methods attempted to solve.

2.3 Inverse rendering

Inverse rendering tackles the problem of factoring captured scenes into reflectance, geometry and

environmental illumination. Instead of considering the full inverse rendering problem, there has been

many efforts on optimising the performance of sub-problem, for example depth estimate and intrinsic

image decomposition, where geometry and illumination are treated as a joint quantity of shading. In

this section, we will review recent work on classical and learning-based inverse rendering approaches,

and relevant techniques on learning-based depth prediction and intrinsic image decomposition.

2.3.1 Classical approaches

Classical methods estimate intrinsic properties by fitting photometric or geometric models using

optimisation. Most methods require multiple images. From multiview images, a structure-from-

motion/multiview stereo pipeline enables recovery of dense mesh models [64, 31] though illumination

effects are baked into the texture. From images with fixed viewpoint but varying illumination, photo-

metric stereo can be applied. More sophisticated variants consider statistical BRDF models [6], the

use of outdoor time-lapse images [79] and spatially-varying BRDFs [41]. Attempts to combine geo-

metric and photometric methods are limited. Haber et al. [45] assumed known geometry (which can
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be provided by MVS) and inverse render reflectance and lighting from community photo collections.

Kim et al. [68] represented the state-of-the-art and again use a MVS initialisation for joint optimisa-

tion of geometry, illumination and albedo. Some methods consider a single image setting. Jeson et al.

[56] introduced a local-adaptive reflectance smoothness constraint for intrinsic image decomposition

on texture-free input images which are acquired with a texture separation algorithm. Barron et al.

[7] presented SIRFS, a classical optimisation-based approach that recovers all of shape, illumination

and albedo using a sophisticated combination of generic priors. Chen et al. [15] performed intrinsic

image decomposition from an RGB-D image whose additional depth channel enabled them to better

model shading.

2.3.2 Deep depth prediction

Direct estimation of shape alone using deep neural networks has attracted a lot of attention. Eigen et

al. [26, 25] were the first to apply deep learning in this context. Subsequently, performance gains were

obtained using improved architectures [76], post-processing with classical CRF-based methods [156,

87, 163] and using ordinal relationships for objects within the scenes [29, 84, 16]. Zheng et al. [170]

used synthetic images for training but improve generalisation using a synthetic-to-real transformatoin

GAN. However, all of this work requires supervision by ground truth depth. An alternative branch

of methods explores using self-supervision from augmented data. For example, binocular stereo

pairs can provide a supervisory signal through consistency of cross projected images [65, 33, 38].

Alternatively, video data can provide a similar source of supervision [173, 154, 155, 39]. Tulsiani et

al. [149] used multiview supervision in a ray tracing network. While all these methods take single

image input, Ji et al. [57] tackled the MVS problem itself using deep learning.

2.3.3 Deep intrinsic image decomposition

Intrinsic image decomposition is a partial step towards inverse rendering. It decomposes an image

into reflectance (albedo) and shading but does not separate shading into shape and illumination. Even

so, the lack of ground truth training data makes this a hard problem to solve with deep learning.
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Recent work either uses synthetic training data and supervised learning [111, 46, 80, 13, 27] or self-

supervision/unsupervised learning. Very recently, Li et al. [83] used uncontrolled time-lapse images

allowing them to combine an image reconstruction loss with reflectance consistency between frames.

This work was further extended using photorealistic, synthetic training data [82]. Ma et al. [94] also

trained on time-lapse sequences and introduced a new gradient constraint which encourage better

explanations for sharp changes caused by shading or reflectance. Baslamisli et al. [8] applied a similar

gradient constraint while they used supervised training. Shelhamer et al. [134] proposed a hybrid

approach where a CNN estimates a depth map which is used to constrain a classical optimisation-

based intrinsic image estimation.

2.3.4 Deep inverse rendering

To date, solving the full inverse rendering problem using deep learning has received relatively little

attention. One line of work simplifies the problem by restricting to a single object class, e.g. faces

[146, 67], meaning that a statistical face model can constrain the geometry and reflectance estimates.

This enables entirely self-supervised training. Shu et al. [138] extended this idea with an adversarial

loss. Sengupta et al. [132] on the other hand, initialised with supervised training on synthetic data, and

fine-tuned their network in an unsupervised fashion on real images. Nestmeyer et al. [114] targeted

realistic face relighting, combining an inverse rendering network with a renderer that combines both

physics-based and learnt elements. Going beyond faces, Kanamori and Endo [60] considered whole

body inverse rendering for relighting. Here, occlusion of the illumination environment becomes im-

portant, so they show how to infer a light transport map. Aittala et al. [4] restricted geometry to almost

planar objects and lighting to a flash in the viewing direction , and under these assumptions they can

obtain impressive results. Gao et al. [32] considered the same planar scenario but with multiple im-

ages, enabling recovery of spatially varying reflectance properties. More general settings have been

considered including natural illumination [81]. Philip et al. [122] focused on relighting of outdoor

scenes but require multiple images and a 3D geometric proxy. Kulkarni et al. [73] showed how to

learn latent variables that correspond to extrinsic parameters allowing image manipulation. The only

prior work we are aware of that tackles the full inverse rendering problem requires direct supervision
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Figure 2.2: Self-supervised inverse rendering network proposed by Janner et al. [54]. The first net-
work (on the left) performs inverse rendering on input image, and the second network (on the right)
computes shading map from lighting and normal estimate. Finally, a pixel-wise multiplication is per-
formed between shading and reflectance map to form self-reconstruction of the input image. Image
taken from [54].

[54, 88, 86]. Hence, it is not applicable to scene-level inverse rendering, only objects, and relies on

synthetic data for training, limiting the ability of the network to generalise to real images. Of these

object-level inverse rendering networks, the self-supervised inverse rendering work proposed by Jan-

ner et al. [54] shares similar ideas with us. They proposed to combine predicted reflectance map

and shading map in a multiplicative way, and used the outcome of this multiplicative combination

to formulate self-reconstruction error. Unlike our model-based shader, they trained a separate neural

shader to better capture shading effects. However, their model decomposes lighting by one extra sub-

network which is less efficient and stable while requiring more parameters compared with our model.

Their model is shown in Figure 2.2. Like discussed above, they would need synthetic data to train

the neural shader, and so it only works in object-level settings. Very recently, Sengupta et al. [131]

combined an inverse rendering network with a trainable, residual rendering network. By pre-training

both on synthetic data in a supervised fashion, they can subsequently finetune the inverse rendering

network on real data using self-supervision (with the residual rendering network kept fixed). The need

for synthetic training data limited their approach to indoor scenes.



2.4. Merging depth and normals 21

2.4 Merging depth and normals

Different shape estimation techniques deliver shape in different representations. For example, photo-

metric methods naturally estimate surface orientation and hence deliver a surface normal map. Stereo

methods directly compute scene depth and so deliver a depth map. Moreover, these techniques of-

ten have complimentary strengths and weaknesses, for example photometric methods often recover

fine-scale detail but contain low frequency bias whereas multiview techniques better capture gross

structure but contain high frequency noise. For this reason, there has been interest in techniques that

can merge position and surface normal information. Nehab et al. [112] proposed an efficient method

based on linear least squares that can work with both depth maps and meshes. They also proposed a

low pass correction procedure, similar to the work proposed by Zivanov et al. [176] who posed the

merging process as a nonlinear optimisation problem. These approaches were extended to multiple

viewpoints by Berkiten et al. [12] who also avoided the linearisation assumptions, though at the cost

of an optimisation problem of increased complexity. In deep depth prediction, the idea of separately

estimating both depth and normals within the same network has been considered [25]. Here, parts of

the network for predicting the two representations are shared but the geometric relationship between

them is never explicitly enforced.

2.5 Image relighting

Relighting a scene is a complex task. In order to perform physically accurate relighting, all compo-

nents of light-transport in the scene need to be measured and modified, in a process known as inverse

rendering [120]. Traditionally, this involved using special optical equipment to measure the geometry

[166, 92, 101], surface reflectance [20, 158, 98, 148] and environmental illumination [19, 51, 78, 141],

while also inverting the global illumination within the scene [165]. Image-based relighting techniques

have attempted to simplify the problem by using only 2D images for the task. But using only 2D im-

ages makes the problem highly under-constrained and ambiguous.

Due to the ambiguous nature of the problem, recently there has been a lot of interest in applying
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Figure 2.3: Outdoor scene relighting network proposed by Philip et al. [122]. Image taken from [122].

learning-based methods to solving it [172, 138, 34, 110]. We restrict our discussion to methods that

perform scene level relighting. Relighting of indoor scenes has received greater attention due to

the relatively easier acquisition of geometry and illumination data [101]. Due to the very different

nature of geometry and illumination in indoor and outdoor scenes, the two have often been treated as

separate classes of inverse rendering problems. Inverse rendering in outdoor scenes has usually dealt

with specific illumination models for natural illumination. [162] proposed a single-image approach

that accounts for environment lighting in outdoor scenes. Collections of photographs of a scene have

been used to provide better constraints for relighting [45, 133]. While we also use a dataset of casual

photography of particular scenes to learn to perform inverse rendering and relighting, at test time, we

only rely on a single image of a scene to perform photorealistic relighting. The method of Shih et

al. [136] performs lighting transfer by matching a single image to a large database of timelapses but

cannot treat cast shadows. Alternatively, online digital terrain and urban models registered to images

can be used for approximate relighting [71].

Several methods for multi-view image relighting have been developed, both for the case of multiple

images sharing single lighting conditions [24], and for images of the same location with multiple

lighting conditions (typically from internet photo collections) [75]. For the single lighting condition,

Duchêne et al. [24], first performed shadow classification and intrinsic decomposition using separate

optimisation steps. Despite impressive results, artifacts remain especially around shadow boundaries

and the relighting method fails beyond limited shadow motion.

More recently, several learning-based methods have been suggested to perform relighting for indoor



2.5. Image relighting 23

and outdoor scenarios [164, 122, 131]. A deep relighting neural network for object-level images was

proposed by Xu et al. [164]. The proposed model is driven by the idea from traditional image-based

relighting method, and the model only requires 5 input images to produce realistic relighting output

by using the powerful deep learning models. In this work, they proposed a relighting rendering net-

work, and an automatically way to learn a simple yet effective Sample-Net to define the sparse set of

input sample directions, which can drive the optimal performance of rendering network. Philip et al.

[122] proposed a cascaded network model to attack the relighting problem for outdoor scenes, and

it is shown in Figure 2.3. To generate realistic and sharp shadows, their relighting process necessi-

tates the accessibility of the 3D geometry information, based on which their shadow sub-networks

can accurately estimate the shadow presented in input and the shadow under novel lighting condition.

Their intricate shadow handling method involves a mechanism referred to as RGB shadow image,

which is a colour shadow map capturing extract information regarding the surrounding 3D geometry.

Instead of greyscale pixel value, the RGB value at each shadow pixel is acquired by tracing back from

the pixel to the source of the shadow which is the 3D object occluding the pixel from illuminations.

With this new type of shadow map, their model is able to produce high-quality shadow estimates,

leading to relighting results with realistic shadowing effects. Like our neural relighting network pro-

posed in Chapter 5, their network is also designed for outdoor scenes. But our method is not limited

to training on labelled synthetic data and performing inference based on known 3D geometry. Sen-

gupta et al. [131] attempted to tackle monocular inverse rendering problem for indoor scenes, which

could also be used for relighting purpose. The core idea of their work is to combine a Residual Ap-

pearance Renderer (RAR) capturing the non-Lambertian effects, and an Inverse Rendering Network

(IRN) decomposing the image based on Lambertian model, to better model the input indoor image

under Lambertian assumption. Then by fixing the RAR model being pre-trained on synthetic images,

their IRN is finetuned on real images to achieve improved performance for real scenes. The com-

mon limitation for these works is heavily requiring synthetic data in the training, which could lead to

generalisation issue.

Some relighting techniques have focused on specific types of objects such as human faces [121, 137,

142, 102, 172] and bodies [60]. Peers et al. [121] required two images of a training subject, one

shot at the illumination of the test image, and another shot at the target illumination. The lightness



24 Chapter 2. Related work

component is then estimated through a quotient image, which is the ratio between both exemplars.

The quotient is transfered to the test image to relight it. Shu et al. [137] proposed a mass-transport

formulation to generate a localized, geometry-aware relighting. For each pixel, an 8-dimensional vec-

tor is estimated containing the colour, 2D position, and 3D normal. Relighting is achieved through

histogram matching between the source and example in this augmented space. Meka et al. [102]

relighted faces in a light stage set-up using two images shot under spherical colour gradient illumi-

nations. Results show that such simplified illumination condition is capable to estimate the full 4D

reflectance field, including high frequency details and specular reflection. Sun et al. [142] presented

a neural network for relighting faces taken by a cellphone camera. The network is trained on light-

stage data of 18 subjects captured under several directional light sources. Kanamori and Endo [60]

presented a human body relighting technique with good handling of occluded regions e.g. crotches,

garment wrinkles, armpits and so on. A neural network infers the light transport map which encodes

occlusions in form of Spherical Harmonics coefficients per pixel. The network is trained using data

synthesized from scanned 3D human figures. Results show better relighting than occlusion-free for-

mulation methods. A simpler version of the relighting problem, is of integrating virtual objects into

real scenes in an illumination-consistent manner, have been solved by using proxy geometry and user

interaction [61, 162, 118, 103]. But these methods do not solve the problem of general relighting of

scenes. Webcam sequences have also been used for relighting [77, 143], although cast shadows often

require manual layering.

2.6 Conclusion

In this chapter, we have reviewed the related work on differentiable and neural rendering, BRDF

modelling, inverse rendering and its partial problems, depth and normal merging algorithm, and im-

age relighting techniques. Differentiable renderers as a typical class of model-based decoders have

been used to produce self-supervision and physical constraint on network outputs. However, such

differentiable renderers have downsides in terms of the photorealism and natural shading generation,

which is caused by the differentiable approximations to the underlying physics model and by the po-

tential problem in the involved physics-based model itself. For example, Lambertian model neglects



2.6. Conclusion 25

the specular reflections, and Blinn-Phong cannot handle shadowing and masking. This leads our fol-

lowing research into two directions: using differentiable renderer to make network training amenable

to self-supervised settings and fusing a neural decoder with a model-based decoder to achieve im-

proved performance.

Deep learning related work has made breakthroughs in these reviewed fields over classical approaches,

while it remains challenging to obtain sufficient ground truth data to supervise the network training.

In particular, BRDF modelling networks heavily rely on synthetic data in training, and inverse ren-

dering problem is often tackled by either using synthetic data or being formulated to a simplified

scenario. Following the idea of self-supervised training being introduced by model-based decoder,

the limitation of reliance on ground truth data can be lifted.

As for merging depth and normal by model-based decoder, it commonly assumes the accessibility

to coarsely plausible depth map and finely detailed normal map, both of which can be faithfully

estimated by specific deep networks. Without hybridising them, either neural networks or model-

based decoders alone cannot hallucinate good quality depth refinement results. When considering the

image relighting problem, hybridising model-based decoder and neural decoder again outperforms

using solely one instance. Because the existing deep image relighting frameworks tend to implicitly

model input image decomposition and relighting image composition processes, which neglects the

physical interpretability and so is unable to control relighting by physically meaningful parameters,

like the novel lighting condition. Embedding model-based decoders makes such image relighting

network open to such physically explicit controls. Thus, the performance of image relighting network

and deep depth refinement will benefit from taking the hybrid model of model-based and neural

decoder.



Chapter 3

Model-based decoder

3.1 Introduction

Model-based decoder inside a neural network is an untrainable module/layer, which acts as a physics-

based model taking as input the predictions given by the neural network and computes physically

meaningful outputs. For instance, the environment illumination in an input image can be predicted

by a Lambertian reflectance layer, which assumes a linear relationship of diffuse albedo, normal

map, illumination being represented by spherical harmonics coefficients and a colour image. The

Lambertian layer integrated in an inverse rendering network can take as inputs the normal and albedo

predictions and the input colour image, and linearly compute the best fitting result in a closed form for

the spherical harmonic lighting. Note that this is an untrainable layer, because the Lambertian layer

contains no trainable parameters and is not updated to reduce the loss during the training process.

Acting as a lighting decomposition decoder, the Lambertian model can simulate the image formation

process so as to produce physically legitimate illumination prediction that is also compatible with the

given input, normal and albedo.

In this chapter, we firstly discuss how to implement operations often used in photometric vision as

part of a neural network. The library of such photometric vision layers is called PVNN and developed

as a Theano [11] toolbox. We see this toolbox as a photometric analog of the geometric functionality

provided by the Geometric Vision with Neural Networks (gvnn) toolbox [47]. In a forward pass,

26
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combinations of our layers can act as a differentiable, physics-based renderer. In an encoder-decoder

architecture as described above, PVNN can be used to train CNNs to solve physics-based vision

problems in an unsupervised manner. In Section 3.2 we describe the layers that make up PVNN.

In Section 3.4.1, we show how these layers can be used for differentiable forward rendering. In

Section 3.4.2, we demonstrate an exemplar application by using unsupervised learning to train a

CNN to predict BRDF parameters from single images.

In the second part of this chapter, we will show another differentiable renderer based on Lambertian

reflectance model, which is much more simplified and flexible compared to the first differentiable ren-

derer. The model renders images by linearly combining predictions from the encoder. Compared with

PVNN, this linear renderer works more efficiently during training. At the same time, the linear model

can be used as a lighting inference layer allowing lighting predictions to be directly solvable within

this module, which is significantly more efficient as opposed to predicting the illuminations by train-

ing a separate neural decoder. In Section 3.3, we describe both types of decoders. In Section 3.4.3,

we present experiments demonstrating the renderer and the lighting inference module, which we refer

to as lighting inference decoder because this module decodes image encoding/decoding results like

albedo and normal estimation into lighting estimation.

3.2 PVNN: differentiable layers for BRDF evaluation

In this section, we will define the implementations of differentiable layers for photometric vision

models included in PVNN. The network layers are presented by three categories: geometric transfor-

mation layers, statistical BRDF modelling layers and reflectance evaluation layers. In this section, we

provide the gradient computation for each operation defined in geometric transformations to demon-

strate their differentiabilities. However, the gradient computations are not included in the rest of the

thesis, as we are working on the standard deep learning frameworks, e.g. Theano [11] and TensorFlow

[2], which can automate gradient computations during backpropagation.
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3.2.1 Geometric transformations

Most commonly, photometric vision is concerned with single viewpoint problems and so usually op-

erates in the depth or surface normal domains (as opposed to an object-space mesh representation).

We use such a viewer-centred depth map representation in PVNN. One advantage of this formulation

is that we need not model self-occlusions of the surface. Occlusion is a binary, and hence discontin-

uous, function. This means that it is not differentiable and therefore occlusion information cannot be

exploited for learning during backpropagation.

We assume here orthographic projection, though it would be straightforward to modify our layers to

account for perspective projection (taking into account the intrinsic parameters of the camera).

Surface height differentiation

This layer transforms a depth map into estimates of the surface gradient in the horizontal and vertical

directions. It takes as input a depth map, Z ∈ Rm×n, that is assumed to be smooth containing the

depth values for m× n pixels:

Gx = Dx ∗ Z,
∂Gi,j

x

∂Zu,v

=


Du−i+1,v−j+1
x , if 1 ≤ u− i+ 1 ≤ 3 and 1 ≤ v − j + 1 ≤ 3

0, otherwise
, (3.1)

Gx = Dx ∗ Z,
∂Gi,j

y

∂Zu,v

=


Du−i+1,v−j+1
y , if 1 ≤ u− i+ 1 ≤ 3 and 1 ≤ v − j + 1 ≤ 3

0, otherwise
, (3.2)

where ∗ is the matrix convolution. Gx and Gy are surface gradients in horizontal and vertical di-

rections. Dx ∈ R3×3 and Dy ∈ R3×3 evaluate the surface gradient in the horizontal and vertical

directions, respectively, using forward finite differences and convolution:

Dx =
1

12


−1 0 1

−4 0 4

−1 0 1

 , Dy =
1

12


1 4 1

0 0 0

−1 −4 −1

 . (3.3)
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Gradient to normal vector

This layers applies the function n : R2 7→ R3 which transforms the gradient vector into a vector

whose direction is normal to the surface. Here the gradient vector g is the concatenated gradients in

x and y directions for one pixel:

gi,j =

[
Di,j
x Di,j

y

]T
. (3.4)

The subsequent differentiable layers are defined as pixel-wise operations. For the sake of simplicity,

we will omit subscript i and j from now on. The function and its first derivatives (Jacobian) are given

by:

n̄(g) =

[
−gT 1

]T
, Jn(g) =


−1 0

0 −1

0 0

 . (3.5)

This function is applied to the gradient estimate at each pixel, yielding u surface normal vectors,

where u is length of flatten vector from m× n map.

Vector normalisation

It is often convenient to work with surface normal vectors of unit length. So, this layer applies the

function n̄ : R3 7→ R3 which normalises a vector to have unit length such that ‖n‖ = 1. This function

is simply:

n(n̄) = n̄/‖n̄‖ = [n1 n2 n3]
T , Jn(n̄) =

I

‖n̄‖ −
n̄n̄T

‖n̄‖3 . (3.6)

Unit vector to spherical coordinates

Sometimes, it is useful to transform the surface normal vector n̄ into spherical coordinates (φ, θ) in a

viewer-centred coordinate system. The azimuth angle is computed by the function φ : R3 7→ [0, 2π):

φ(n(n̄)) = atan2(n2, n1), ∇φ(n(n̄)) =

[
−n2

n2
1+n

2
2

n1

n2
1+n

2
2

0

]T
. (3.7)
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Figure 3.1: Comparison between Spherical coordinate system and Rusinkiewicz coordinate sys-
tem [128]. Halfway vector h defined by (θh, φh) and difference vector d defined by (θd, φd) represents
incident and viewing angles. Image taken from [128].

The zenith angle is computed by the function θ : R3 7→ [0, π]:

θ(n(n̄)) = arccos(n3), ∇θ(n(n̄)) =

[
0 0 −1√

1−n2
3

]T
. (3.8)

Conversion to Rusinkiewicz coordinates

We assume that the BRDFs are isotropic and hence can be expressed as three dimensional func-

tions. For convenience and compatibility with the statistical BRDF model used later, we parameterise

BRDFs in terms of the three angles proposed by Rusinkiewicz [128]. Concretely, the Rusinkiewicz

coordinates parameterise the local reflectance geometry in terms of three angles relative to the halfway

vector:

h(s,v) = n(s + v), (3.9)

where s and v are unit vectors in the light source and viewer directions respectively. The Rusinkiewicz

coordinates system is shown in Figure 3.1. In Rusinkiewicz coordinates, incident and viewing rays

are defined by halfway vector h and difference vector d. The angles θh(n, s,v) ∈ [0, π/2] and

φh(n, s,v) ∈ [0, π] are the angles rotating h to the surface normal n while θd(n, s,v) ∈ [0, π/2] and

φd(n, s,v) ∈ [0, π] are the spherical coordinates of s in a coordinate system in which h is at the north

pole. Using Rusinkiewicz coordinates allow us to parameterise isotropic BRDFs by only three angles

{θh(n, s,v), θd(n, s,v), φd(n, s, v)}.
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Hence, we define a layer that takes as input the per-pixel surface normals N ∈ Ru×3 for u pixels, light

directions S ∈ Rs×3 for s light sources and per-pixel viewer directions V ∈ Ru×3 which are all [0 0 1]

for an orthographic projection. The output is a tensor A ∈ Ru×s×3 containing the three reflectance

angles for each pixel/light source combination, such that Aij1 = θh(ni, sj,v), Aij2 = θd(ni, sj,v)

and Aij3 = φd(ni, sj,v).

The Rusinkiewicz conversion layer essentially performs two rotations on coordinates system, which

firstly rotates from camera coordinates to surface normal centred coordinates followed by the rotation

transferring halfway vector h to the north pole of coordinates. The rotations from initial coordinates

to target coordinates is defined by:

rot(σinit, σtar) =


cos (φ(σtar)) 0 sin (φ(σtar))

0 1 0

− sin (φ(σtar)) 0 cos (φ(σtar))



cos (θ(σtar)) − sin (θ(σtar)) 0

sin (θ(σtar)) cos (θ(σtar)) 0

0 0 1

 σinit,

∂rot(σinit, σtar)
∂σinit

=


cos (φ(σtar)) 0 sin (φ(σtar))

0 1 0

− sin (φ(σtar)) 0 cos (φ(σtar))



cos (θ(σtar)) − sin (θ(σtar)) 0

sin (θ(σtar)) cos (θ(σtar)) 0

0 0 1

 ,

∂rot(σinit, σtar)
∂θ(σtar)

=


− cos (φ(σtar)) ∗ sin (θ(σtar)) − cos (φ(σtar)) ∗ cos (θ(σtar)) 0

cos (θ(σtar)) − sin (θ(σtar)) 0

sin (φ(σtar)) ∗ sin (θ(σtar)) sin (φ(σtar)) ∗ cos (θ(σtar)) 0

 σinit,

∂rot(σinit, σtar)
∂φ(σtar)

=


− sin (φ(σtar)) ∗ cos (θ(σtar)) sin (φ(σtar)) ∗ sin (θ(σtar)) cos (φ(σtar))

0 0 0

− cos (φ(σtar)) ∗ cos (θ(σtar)) cos (φ(σtar)) ∗ sin (θ(σtar)) − sin (φ(σtar))

 σinit,
(3.10)

where σinit is the vector to be rotating and σtar is the north pole of the target coordinates. Therefore,

two keys vectors h and d for each pixel are computed by:

h = n(rot(s, n) + rot(v, n)), (3.11)
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Qp + µ
log-relative

mapping
Tri-linear

interpolation

p

X Y

A

B

Figure 3.2: A statistical BRDF model sub-network. This network can be plugged in place of a
parametric BRDF model in a reflectance evaluation network (i.e. in place of the “BRDF” node in
Figure 3.3). It takes statistical BRDF parameters p and per-pixel Rusinkiewicz coordinates A as
input and outputs BRDF values B.

d = rot(rot(s, n), h). (3.12)

3.2.2 Statistical BRDFs

Parametric BRDF models are popular and widely used in graphics and vision. However, no single

parametric model is capable of generalising to the wide range of reflectance properties observed in

the real world. For this reason, statistical [117] or dictionary-based [52] models built from measured

data are becoming increasingly popular.

BRDF reconstruction

As an alternative to parametric BRDFs, PVNN also supports statistical BRDF models; specifically,

the model of Nielsen et al. [117] that is trained by running Principal Components Analysis (PCA)

[160] on the MERL reflectance database [99]. This is implemented as a subnetwork (see Figure 3.2)

that evaluates the statistical model to generate an empirical BRDF, inverts the log-relative mapping

used in the Nielsen [117] model and finally performs differentiable interpolation into the empirical

BRDF.

The statistical BRDF model layer evaluates a linear statistical model of empirical BRDFs. An empir-

ical BRDF X ∈ R90×90×180 is a representation of a discretely measured BRDF at k = 90× 90× 180

samples over (θh, θd, φd) space. We compute a vectorised representation x = vec(X ) ∈ Rk as:

x = Qp + µ, (3.13)
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where Q ∈ Rk×p contains the p principal component vectors, µ ∈ Rk the mean and p ∈ Rp is a

vector of weights, which by appropriate scaling of the principal components, has elements that follow

the standard normal distribution. The layer takes p as input and outputs X . Note that this layer is

exactly equivalent to a fully connected layer in which Q plays the role of the weights andµ the biases.

Hence, it would be straightforward to make this layer trainable and, in principle, to learn statistical

BRDF models as part of the network training. We do not do this here though and keep the model

fixed to that of Nielsen et al. [117].

Note that the statistical model of Nielsen et al. [117] contains some missing values. In particular, they

excluded missing values and vectorised BRDFs from well-measured directions before computing

statistical model, so their BRDF model is a vector with only 1,105,588 entries out of fully defined

size of 1,458,000 (180× 90× 90) directions. For simplicity, we interpolated these missing values by

their nearest neighbours. We precompute the relative relationship between missing values and known

values, and directly perform mapping through precomputed mapping look-up table. Although a more

sophisticated missing data scheme could be used, we notice no visual artefacts through the use of

nearest neighbour.

Log-relative mapping

This statistical model is constructed from pre-processed data, which is mapped from raw BRDFs by

taking the logarithm of the ratio between the raw BRDFs and a reference BRDF. This mapping is

used to address the poor performance of PCA when it is directly applied to raw BRDFs which are

distributed in a high dynamic range, and it can be computed by:

ρmap = ln

(
ρ cosweight + ε

ρref cosweight +ε

)
, (3.14)

where

cosweight = max [cos(n · s) cos(n · v), ε] , (3.15)

is a weight applied to compensate for extreme grazing-angle values, ρref is a reference BRDF (set as

the median BRDF value for each sampled angles) and ε is the numerical stabilisation term, set equal
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to 10−3.

In our statistical BRDF network, we reconstruct a discretely sampled BRDF X and then invert (3.14)

using:

Y = (exp(X )� (Xref � cosweight + ε) − ε)� cosweight, (3.16)

where � is the Hadamard (element-wise) product and the division is also applied element-wise.

BRDF value sampling

Given an empirical BRDF,Y , with the log-relative mapping inverted and per-pixel/light source Rusinkiewicz

3D coordinates, A, we interpolate an exact BRDF value by tri-linear interpolation. The purpose of

this step is to find appropriate BRDF values from a discrete BRDF lookup table when the indices

(θh, θd, φd) are continuous. Differentiable tri-linear interpolation can be performed using:

ρ(θh, θd, φd) =
90∑
i=1

90∑
j=1

180∑
k=1

Yijk×max(0, 1−|θh
180

π
−i|)×max(0, 1−|θd

180

π
−j|)×max(0, 1−|φd

180

π
−k|).

(3.17)

Here, (θh, θd, φd) are forced to fall in the correct angular range using:

θh = min(max(0, θh),
π

2
),

θd = min(max(0, θd),
π

2
),

φd = min(max(0, φd), π). (3.18)

We perform such a look up for the Rusinkiewicz coordinates for each pixel/light source and output a

matrix of BRDF values, B.

3.2.3 Reflectance evaluation

A reflectance evaluation network is a sub-network that computes the radiance reflected towards the

viewer, for a given BRDF, surface normal direction (n), viewer direction (v) and lighting environ-

ment. A BRDF is a function ρ(θh, θd, φd) that returns the ratio of reflected radiance to the inci-
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cos θi ReLU
∑

lights
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Convert to

Rusinkiewicz
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N

Figure 3.3: A reflectance evaluation sub-network. It takes normals N, light source directions S, light
source colours L and BRDF parameters P as input and outputs radiance values per-pixel R.

dent irradiance for a pair of incoming and outgoing directions. We write ρ(n, s,v) as shorthand for

ρ(θh(n, s,v), θd(n, s,v), φd(n, s,v)), where s is the incident radiance direction.

For a continuous lighting environment, the reflected radiance, Lo, is given by Kajiya [59]:

Lo =

∫
S2

ρ(n,ωi,v)L(ωi) max(0,n · ωi)dωi, (3.19)

where L(ωi) is the incident radiance from direction ωi. In practice, we discretise over s point light

sources and evaluate:

r =
s∑
i=1

ρ(n, si,v)li max(0,n · si), (3.20)

where r ∈ R3 is the RGB colour radiance vector, li ∈ R3 the colour of the ith light source and

si ∈ R3, ‖si‖ = 1 the direction of the ith light source.

The individual layers that we use to implement a reflectance evaluation are shown in Figure 3.3. We

describe each of these layers in the following sections.

Cosine weight layer

This layer computes cosine weights, cos(θi) = n · s, for each pixel:

C = NST , (3.21)
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where N ∈ Ru×3 contains the surface normal vectors for u pixels and S ∈ Rs×3 contains the lighting

direction vectors for s light sources.

Clamping layer

This layer implements the max operator in (3.20) which simulates the effect of self-shadows (i.e.

incident angle greater than 90◦). It takes as input the output of the cosine layer and computes:

D = max(0,C). (3.22)

Note that this is exactly a Rectified Linear Unit (ReLU) layer and so can be implemented using a

standard ReLU layer implementation.

Colour scale and sum over light sources

This layer takes as input the clamped-cosine and BRDF values, element-wise multiplies them, uses

these to scale the light source radiances and finally sums over light sources:

Ri =
s∑
j=1

BijDijLj. (3.23)

This provides the final output of the reflectance evaluation network: per-pixel reflected radiance val-

ues.

3.3 Lambertian diffuse model

A model-based decoder can act as an image renderer that takes the same inputs as a conventional

renderer (which are perhaps themselves the output of a neural encoder). The model-based renderer is

useful for self-supervision in image decomposition. Unlike the image rendering method introduced

in Section 3.2.3, we will discuss a simplified renderer that takes more flexible inputs and consumes

less time while giving good quality results on low-resolution and outdoor images. While simple and
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efficient, the renderer can only work in screen space domain, which means that inputs are buffers like

normal and texture.

3.3.1 Image rendering

We assume that appearance can be approximated by a local reflectance model under environment

illumination. Specifically, we use a Lambertian diffuse model with order 2 spherical harmonic light-

ing [124]. This means that RGB intensity can be computed as

ilin(n,α,L) = diag(α)Lb(n), (3.24)

where L ∈ R3×9 contains the spherical harmonic colour illumination coefficients, α = [αr, αg, αb]
T

is the colour diffuse albedo and the order 2 basis is given by:

b(n) = [1, nx, ny, nz, 3n
2
z − 1, nxny, nxnz, nynz, n

2
x − n2

y]
T . (3.25)

Our appearance model means that we neglect high frequency illumination effects, cast shadows, in-

terreflections, and it only models matte materials that diffusely reflect incident lights but fails on

mirrored or dichromatic materials. However, we found that in practice this model works well for typ-

ical outdoor scenes. Finally, cameras apply a nonlinear gamma transformation to the rendered images

out of this renderer. We simulate this to produce our final predicted intensities:

ipred = i
1/γ
lin , (3.26)

where we assume a fixed γ = 2.2.

The Lambertian diffuse model can be used to render an image given illumination coefficients, normal

map and diffuse albedo map. The model can be used as an image rendering decoder in neural network

when we port the model as a rendering layer inside a neural network and inputs for the model are

encodings from neural encoders. The renderer itself is a gamma-transformed linear function of inputs,

so it is a differentiable layer. The renderings from this layer can be compared to input images, which
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forms self-supervision loss.

3.3.2 Spherical harmonic lighting inference

The Lambertian diffuse renderer model allows us to linearly relate an inverse-gamma-corrected RGB

image to decomposed normal and lighting, which also enables us to infer lighting estimate by finding

the best fitting of spherical harmonic lighting with given input image and normal. For this we only

need to reformulate the Equation. (3.24), where the linearity relationship between quantities is still

preserved. Compared with using a fully-connected layer to predict illumination vector from input

image, such a model-based decoder for lighting estimation allow us to reduce the number of network

parameters and condition the prediction results to follow the reflectance model.

Consider an input image comprisingK pixels. We invert the nonlinear gamma and stack the linearised

RGB values to form the matrix I ∈ R3×K . We similarly stack the estimated albedo map to form

A ∈ R3×K , the estimated surface normals to form N ∈ R3×K and define B(N) ∈ R9×K by applying

(3.25) to each normal vector. We can now rewrite (3.24) for the whole image as:

I = A� LB(N), (3.27)

We can now solve for the spherical harmonic illumination coefficients in a least squares sense, using

the whole image. This can be done using any method, so long as the computation is differentiable

such that losses dependent on the estimated illumination can have their gradients backpropagated into

the inverse rendering network. For example, the solution using the pseudoinverse is given by:

L = (I�A)B(N)+, (3.28)

where � denotes element-wise division and B(N)+ is the pseudoinverse of B(N). We compute the

pseudoinverse by singular value decomposition (SVD):

B(N) = USVT , (3.29)



3.4. Experiments 39

B(N)+ = VS−1UT , (3.30)

where S−1 is the 9× 9 diagonal matrix with the reciprocal of the non-zero elements in S:

S = diag(s1, . . . , s9), (3.31)

S−1 = diag(
1

s1
, . . . ,

1

s9
), (3.32)

This lighting inference module finds the lighting estimate leading to the best image reconstruction

with given albedo and normal. With the lighting inference result, we can define objective function to

minimise the reconstruction error with respect to albedo and normal, which is useful when training an

inverse rendering network (the model decomposes input colour image into albedo and normal map).

The overall pipeline is working like an optimisation approach which alternates between solving for

optimal lighting and optimising the neural network parameters for predicting albedo and normal. The

training will eventually converge as long as we start the training from a reasonable initialisation,

which is realised by our phased training scheme. We will discuss this in details in next chapter (see

Section 4.5.2).

3.4 Experiments

3.4.1 Realistic rendering

We now illustrate how the layers in PVNN can be combined to implement forward rendering. Such

a network takes as input a depth map, one or more light source directions and colours and the BRDF

parameters or an empirically measured BRDF and outputs a rendered image. To demonstrate the ren-

dering capability of this network, We render spheres with illuminations represented by environment

maps. Specifically, we perform geometric transformations defined above on depth map of a sphere,

and the illumination is applied as a group of point lighting sources each of which is taken from a pixel

in the environment map. The rendering image is computed by accumulating reflectance evaluations

from all point lightings. In Figure 3.4 we show results using well reconstructed BRDF presented by
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Nielsen et al. [117]. In Figure 3.5 we show results using a single set of statistical BRDF parameters

and three different illumination environments. We note that our renderings are comparable to the

output from conventional renderers as well as the statistical reconstructions shown by Nielsen et al.

[117].

To illustrate the simplicity with which PVNN layers can be combined to achieve physically-based

rendering, the following code snippet is all that is required to create images such as those in Figure

3.5:

1 # initialise renderer subnet

2 pvnn = pvnn_module.pvnn(shapes_var, mask_var)

3 # calculate surface normal map

4 normals = pvnn.depthToNormal(shapes_var)

5 # cosine weights for foreshortening

6 cosWeights = pvnn.cosWeight(normals, lights_var)

7 # filter out negatives

8 clampCosWeights = pvnn.clamping(cosWeights)

9 # reconstruct BRDF from predicted vector

10 brdfFn = pvnn.brdfFunction(prediction, ’./precomputedData’)

11 # interpolate missing values in reconstruction

12 brdfFn = pvnn.brdfFnInterp(brdfFn, ’mapping.npy’)

13 # indexing BRDF values for each pixel

14 brdfMatrix = pvnn.brdfValues(normals, lights_var, brdfFn)

15 # intensities formation

16 imgs = pvnn.brdfIntensity(brdfMatrix, clampCosWeights, lightColors_var, \

17 mask_var)

18 # transpose output to have same shape with input

19 imgs = imgs.transpose(0,3,1,2)

We now illustrate how the layers in PVNN can be combined to implement forward rendering. Such

a network takes as input a depth map, one or more light source directions and colours and the BRDF

parameters or an empirically measured BRDF and outputs a rendered image. To demonstrate the

rendering capability of this network, we render spheres with environment map illuminations being

decomposed as separate point light sources. In Figure 3.4 we show results using well reconstructed

BRDF presented by [117]. In Figure 3.5 we show results using a single set of statistical BRDF
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(a) Blue book (b) Green cloth (c) Paint metal

(d) Yellow paper (e) Glossy red paper (f) Cardboard

Figure 3.4: Images are rendered by our differentiable renderer. The inputs for the renderer are the
BRDF function of the known material and environment map and depth map of the object, the output
is the realistic rendered images.

(a) Grace Cathedral (b) Uffizi Gallery (c) Pisa

Figure 3.5: Three rendered examples from BRDF parameters under different HDR Environment
Maps. All of our results are using same 5D parameters.

parameters and three different illumination environments. We note that our renderings are comparable

to the output from conventional renderers as well as the statistical reconstructions shown by Nielsen

et al. [117].
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3.4.2 BRDF estimation

We now present an example of using PVNN in a vision application. We show how to train a CNN to

directly regress BRDF parameters from a single image of the object with uniform material. Moreover,

we train the network in an unsupervised fashion in the sense that BRDF parameters are not provided

at training time. Instead, we use an encoder-decoder architecture in which the loss function is the L2

error between a rendering using the predicted parameters and the input image.

Architecture

An overview of the network is shown in Figure 3.6 including both training and inference subnets.

The inference part inside the dashed box is a standard down-scaling ConvNet, taking input images

and producing BRDF vector as output. The other parts of the network are untrainable and designed

for unsupervised training. During training procedure, the weights in the ConvNet will be updated by

the Error layer given output from the Renderer layer. As described in Section 3.2, the Renderer layer

takes as input the depth maps, light sources and BRDF parameters and outputs realistic RGB images.

The Error layer, placed at the end of our network, calculates a loss function by the L2 norm between

the original input image and the rendered intensity map:

`intensity = ‖Iobs −Rpred‖2fro, (3.33)

where Iobs is the original input image and Rpred is the rendering image that reconstructs the input.

In addition to this intensity loss, the network parameter regularisation term `reg is another part of our

loss function. The coefficient of regularisation is 5× 10−4. The full training loss is:

` = `intensity + 0.0005`reg. (3.34)
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Figure 3.6: The overall architecture of our neural network. The dot-line box highlights the part for
used for BRDF parameter inference during testing. The boxes in purple are indirectly supervisory
annotations provided during the training to achieve unsupervised learning, and boxes in red are layers
to formulate training loss.

Convolutional Neural Network

The architecture of our ConvNet is realised by a stack of residual blocks consisting of a simplified

encoder-decoder architecture and a residual shortcut introduced by He et al. [49]. Since our problem

is to estimate BRDF parameters from only one single image, a deep network with powerful learning

ability is required. We construct our network with 50 layers following a ResNet layout. Also, follow-

ing the downscale rule proposed by Simonyan et al. [140] in their VGG net, our network performs

pooling operations followed by dimension increasing on the feature map. All the convolutional layers

are separated by 4 groups after which spatial pooling is performed, and dimensional increments are

achieved by the first layer of the next group. To concatenate 48 convolutional layers and 1 fully-
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(a) (b) (c) (d)

Figure 3.7: Network architecture. (a) Overall architecture; (b) Residual block stack, shown as orange
boxes placed in the middle of (a); (c) Convolutional layers inside residual block; (d) Convolutional
layers inside the first block of each group, which needs to increase the dimension of feature map and
decrease spatial resolution at same time.

connected layer and 1 actuation convolutional layer, each convolutional group contains 1 dimension

increment residual block and 3 normal blocks. The actuation layer in our network is placed next to

the input layer, converting RGB input images to initial feature maps with 64 channels. The fully-

connected layer at the end of the net maps output from convolutional layer to 15-D vectors, which

represents three 5 dimensional BRDF statistical model parameters for each colour channel respec-

tively. The visualisation of our network is shown in Figure 3.7. Note that the first residual block right

after the actuation layer does not increase the dimension but maintains its spatial size and dimension.
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Except for the first group, the pooling and dimension increment operations are proceeded by the first

block in each group. For simplicity the pooling is done by using stride of size (2, 2), whose efficiency

has been proven by He et al. [49]. The architecture of the residual blocks can be found in Figure 3.7

as well. For each operational box, the numbers written at the bottom indicate the dimension of the

output feature map. Figures 3.7d and 3.7c are examples of the first bottleneck block.

Inference

From the results in [117], here we use first 5 projected principal components in the statistical model,

which is sufficient for good BRDF reconstructions. Although it would be straightforward to estimate

more parameters, we use the same number as the original paper [117] to simplify the problem and

make calibration easy. To fully reconstruct the BRDF look up table using our result vector, as part

of PVNN we port their nonlinear reconstruction algorithm to Theano to output a standard .binary

file.

Training

We employed SGD algorithm with batch size of 20 in backpropagation and run training 300 epochs.

The learning schedule started by a relatively small value 0.001, which is good for network conver-

gence as illustrated in [49]. A larger learning rate 0.01 is then substituted to speed up training. Since

the learning process is unsupervised (via indirect comparison between prediction and ground truth),

we found the network is slower to stabilise than supervised training which directly encourage predic-

tion to approach ground truth. As a result, more epochs used in training are necessary. So, we keep

using 0.01 as the learning rate for 200 epochs, which is longer than typical learning schemes.

For training we use 7000 synthetic images, and 3000 synthetic images are used for validation and

testing respectively. Every image is rendered by using randomly drawn 15D BRDF parameters, 30

light sources with random direction and colour, and the depth map of an unit sphere. The BRDF

parameters are drawn from a normal distribution with the variance for each dimension coming from

the PCA model.
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Dataset BRDF model Params. Full BRDF
Training 0.01425 1.951
Testing 0.01437 1.958

Table 3.1: RMSE on training and testing set. Two evaluation metrics are reported: the error of
predicted coefficients of the BRDF PCA model, and the error of fully reconstructed BRDF from
predicted parameters.

Evaluations

The experiments are deployed on synthetic data described in last section. We quantitatively evaluate

the accuracy of the BRDF parameter estimates made by our inference network in two ways. First, we

compute the RMSE between the predicted and actual 5D BRDF parameters (Table 3.1, first column).

Second, we compute the RMSE between the BRDF reconstructed by our network and the actual

BRDF (Table 3.1, second column). This second error can be compared directly to the values reported

in [117], showing that we are achieving comparable accuracy without knowledge of the lighting

conditions and using only a single image. We show qualitative results in Figure 3.8. The first two

rows show actual input images (first row) and relightings using the estimated BRDF and ground truth

lighting (second row). In the bottom two rows we show reilluminations of the ground truth (third row)

and estimated (fourth row) BRDFs under environment lighting. In both cases the estimated BRDF

gives very close visual appearance to ground truth and captures the key features of the reflectance

properties.

3.4.3 Lambertian renderer and lighting estimation

In this section we show qualitative experiments of our Lambertian renderer and Lambertian-based

lighting estimator. For clarity, we will call both of them as decoders, because they are leveraged

to decode inputs like albedo and normal to specific outputs like image rendering or lighting. The

two types of model-based decoders are essential components for self-supervised learning for outdoor

inverse rendering network, which will be discussed specifically in next chapter, so the experimental

images used in the section are only outdoor natural scenes. Although the Lambertian rendering model

is known to perform badly on specularities, shadow casting and other non-Lambertian effects, we will

show that the quality for renderings are good enough when only considering outdoor scenes. The



3.4. Experiments 47

Figure 3.8: BRDF estimation results. The first row in each block is ground truth, and second row is
reconstruction. Each column is the relighting results on the same material. The first two rows show
the inputs for the network (row 1) and relighting using predicted BRDF (row 2). The second two
rows of images are renderings under new lighting for both ground truth (row 3) and predicted (row 4)
BRDF.

images used for experiments in this section are selected from MegaDepth [84], which contains a large

number of outdoor images crawled from Flickr. Other than input images, both of our Lambertian-

based renderer and lighting estimator require inputs from estimated intrinsic properties like normal

and albedo, which again related to inverse renderings. For simplicity, we skip the details of obtaining

those quantities while assuming their accessibility in evaluations.

Lambertian diffuse rendering

We present the rendering results from Lambertian renderer that takes as inputs the diffuse albedo

map, normal map and spherical harmonic lighting in Figure 3.9. Note that the illuminations fed into

the renderer should be a vector representing spherical harmonic parameters, but they are shown as

lit spheres in Figure 3.9 for better visualisation. The second, fourth and sixth rows show renderings

of the same scene under different illuminations. Although the rendering model is simple and failed

at modelling complex materials and shading effects, rendering results for outdoor scenes are visually

realistic. The inputs for image rendering decoder are simply albedo, normal and lighting, which means

the Lambertian-based decoder enables us to train an inverse rendering neural network to decompose

image into albedo, normal and lighting by comparing rendered images to the input image. As shown
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Albedo Illumination1 Illumination2 Illumination3

Normal Rendering1 Rendering2 Rendering3

Albedo Illumination1 Illumination2 Illumination3

Normal Rendering1 Rendering2 Rendering3

Albedo Illumination1 Illumination2 Illumination3

Normal Rendering1 Rendering2 Rendering3

Figure 3.9: Rendering results from Lambertian renderer. Every two consecutive rows demonstrate
one scene. The first column contains input albedo and normal map to the renderer. Each column after
presents the illuminations and corresponding renderings.

in Figure 3.9 our rendering results demonstrate plausible and consistent shading variations and great

level of realism.
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Image Albedo Inferred shading Normal Inferred illumination Shading recon.

Figure 3.10: Illumination inference results. The first and second column are original images and their
albedo map. The shading inferences computed by dividing images by albedos are shown in third
column. Given the normal maps, illuminations can be inferred and shown on fifth column. The last
column contains reconstructed shadings from inferred illuminations and normal maps.

Lighting inference

Now we show results from our illumination estimator. To evaluate the quality of our lighting infer-

ence decoder, we apply our decoder on an input image and its decomposed albedo map and normal

map. The visual results are shown in Figure 3.10. In addition, the comparison between shading recon-

struction and initial shading inference, column 3 and column 6 can be found in the figure, exhibiting

a better view of illumination estimation fidelity. Here the inferred shading is computed by pixel-wise

dividing image by albedo, and shading reconstruction is rendered by estimated lighting and normal.

This consistency reflects the accuracy of our lighting inference model. From the evaluations it is

evident that our simple lighting decoder can achieve plausible lighting estimates whilst performing

efficiently compared to a neural decoder.
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3.5 Conclusion

In this chapter we have presented a collection of novel differentiable layers and decoders that can be

injected into a neural network and acts as physical photometric image formation models. We also

illustrated how these layers can be used in a simple photometric vision application, though the setup

was quite simple (the images are always of spheres, so the inference network essentially “knows”

the shape of the object even though this is not explicit). However, there are a wide array of much

more ambitious applications where the model-based decoders could be used. We will explore the

application of these ideas to more general inverse rendering in the next chapter.

Regarding the model-based decoders themselves, we draw the following conclusions. First, it is

computationally cheap, effective and differentiable to perform rendering in screen space, even using

complex non-Lambertian reflectance models. Our models are simple enough that derivatives can be

explicitly derived by hand. This is useful for sanity checking and identifying potential instabilities in

gradients during backpropagation. Incorporating model-based decoder is also beneficial for pruning

the network architectures as the unknowns can be inferred by other known values by our models (e.g.

lighting inference model). More importantly, the model can relax the need of labels (e.g. ground

truth BRDFs) that are difficult to capture, therefore making infeasible training problems more ap-

proachable and accessible. However, the rendering models described in this chapter neglect non-local

effects such as shadowing and ambient occlusion. Any inverse renderer built on top of these layers

will inherit these limitations. Also, compared with neural decoders consisting of numerous learned

parameters, the model-based decoder is composed by only a limited number of parameters, so re-

stricting the expressiveness of the model, which in return makes outputs worse than that of neural

decoders. Although we have shown some valid differentiable models and their derivatives, it’s worth

notice the potential gradient flow issue commonly presented in differentiable model-based decoders.

The issue is often introduced by discrete operations in forward flow, for example z-buffering in the

process of rasterisation, which is a differentiable operation itself but leads to zero gradient flow during

backpropagation. This issue is usually tackled by formulating the discrete operation as a probabilistic

continuous operation, which in return involves extra computational efforts.
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Self-supervision and inverse rendering

4.1 Introduction

Deep learning has already shown good performance on components of the inverse rendering problem.

This includes monocular depth estimation [26], depth and normal estimation [25] and intrinsic image

decomposition [80]. However, these works use supervised learning. For tasks where ground truth

does not exist, such approaches must either train on synthetic data (in which case generalisation to the

real world is not guaranteed) or generate pseudo ground truth using an existing method (in which case

the network is just learning to replicate the performance of the existing method). Inverse rendering

of outdoor, complex scenes is itself an unsolved problem and so reliable ground truth is not avail-

able and supervised learning cannot be used. Following the idea of model-based decoder as well as

self-supervised framework proposed in the last chapter, we develop a self-supervised inverse render-

ing network based upon model-based decoders for Lambertian image reconstruction and MVS image

cross-projection. Our method defines this cross-projection as a MVS-based supervision, which uses

3D geometry and camera parameters to re-project inverse rendering results from one 2D image to 3D

points followed by forward-projecting these 3D points to another image plane. The cross-projection

mechanism relates network outputs from one image to that of other images, formulating the error of

inverse rendering results. Note that re-projection is essentially different from our cross-projection, be-

cause our cross-projection is used to measure the error in inverse rendering while assuming geometry

51
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Input Diffuse albedo Illumination NM prediction NM from MVS Frontal shading Shading

Figure 4.1: From a single image (col. 1), we propose InverseRenderNet estimating albedo and normal
maps and illumination (col. 2-4); comparison multiview stereo result from several hundred images
(col. 5); re-rendering of our shape with frontal/estimated lighting (col. 6-7).

is correct. But re-projection is used to measure geometry error in MVS optimisation.

In this context, we present two variants of the inverse rendering networks that help us seek insights

for the following points in this chapter. First, we exploit MVS supervision for learning inverse ren-

dering. Second, we tackle the most general version of the problem, considering arbitrary outdoor

scenes and learning from real data, as opposed to restricting to a single object class [146] or using

synthetic training data [170]. Third, we introduce a statistical model of spherical harmonic lighting in

natural scenes that we use as a prior. Fourth, the resulting network is aiming to inverse render all of

shape, reflectance, lighting and shadow in the wild, outdoors. Finally, we improve the labels obtained

from MVS geometry by explicitly detecting ground plane pixels (which have unreliable MVS depth

estimates) and replacing them with an estimated ground plane normal direction and use the new labels

for direct normal map supervision.

The remainder of this chapter will be organised as follows: the preliminary physical model will be

introduced by Section 4.2. Then the inverse rendering neural network referred as InverseRender-

Net will be presented in Section 4.3, 4.4 and 4.5, followed by experimental results in Section 4.6

An improved version of InverseRenderNet will be discussed in Section 4.7, which we refer to as

InverseRenderNet++. More experimental results including the comparison between InverseRender-

Net and InverseRenderNet++ will be demonstrated in Section 4.8. Finally, the conclusion about the
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chapter is presented in Section 4.9.

4.2 Preliminaries

In this section we define notation, introduce basic models and assumptions and describe the represen-

tation we use for shape.

We assume that a perspective camera observes a scene, such that the projection from 3D world coor-

dinates, (u, v, w), to 2D image coordinates, (x, y), is given by:

λ
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y

1

 = P
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w

1


, P = K

[
R t

]
, K =


f 0 cx

0 f cy

0 0 1

 , (4.1)

where λ is an arbitrary scale factor, R ∈ SO(3) a rotation matrix, t ∈ R3 a translation vector, f the

focal length and (cx, cy) the principal point.

The inverse rendered shape estimate could be represented in a number of ways. For example, many

previous methods estimate a viewer-centred depth map. However, local reflectance, and hence ap-

pearance, is determined by surface orientation, i.e. the local surface normal direction. So, to render

a depth map for self-supervision, we would need to compute the surface normal. From a perspective

depth map w(x, y), the surface normal direction in camera coordinates is given by Nehab et al. [112]:

n̄ =


−fwx(x, y)

−fwy(x, y)

(x− cx)wx(x, y) + (y − cy)wy(x, y) + w(x, y)

 , (4.2)

from which the unit length normal is given by: n = n̄/‖n̄‖. The derivatives of the depth map

in the image plane, wx(x, y) and wy(x, y), can be approximated by finite differences. However,

Equation (4.2) requires knowledge of the intrinsic camera parameters. This would severely restrict

the applicability of our method. For this reason, we choose to estimate a surface normal map directly.
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Figure 4.2: At inference time, our network regresses diffuse albedo and normal maps from a single,
uncontrolled image and then computes least squares optimal spherical harmonic lighting coefficients.
At training time, we introduce self-supervision via an appearance loss computed using a differentiable
renderer and the estimated quantities.

Although the surface normal can be represented by a 3D vector, since ‖n‖2 = 1 it has only two

degrees of freedom. So, our network estimates two quantities per-pixel: nx/nz and ny/nz. Since for

all visible pixels, nz ≥ 0, we can compute the surface normal direction from the estimated quantities

as:

n =
[nx/nz, ny/nz, 1]T

‖[nx/nz, ny/nz, 1]‖ . (4.3)

Note that the extreme surface orientations like ground plane having nz = 0 can be approximated by

very large predictions of nx/nz and ny/nz.

We assume that appearance can be approximated by a local reflectance model under environment

illumination, modulated by a scalar shadowing/ambient occlusion term. Specifically, we use a Lam-

bertian diffuse model with order 2 spherical harmonic lighting, which is fully explored on Section 3.3

from last chapter.

4.3 Architecture

Our inverse rendering network (see Figure 4.2) is an image-to-image network that regresses albedo

and normal maps from a single image and uses these to estimate lighting. We describe these inference

components in more detail here.



4.4. Supervision 55

4.3.1 Trainable encoder-decoder

We implement a deep fully-convolutional neural network with skip connections like the hourglass

architecture [115]. We use a single encoder and separate transposed convolution decoders for albedo

and normal prediction. Albedo maps have 3 channel RGB output, normal maps have two channels

for the surface gradient which is converted to a normal map as described above. Both convolutional

subnet and deconvolutional subnet contain 15 layers and the activation functions are ReLUs. Adam

Optimiser [70] is used in training, with learning rate of 0.05, β1 = 0.9, β2 = 0.999 and ε = 0.9.

4.3.2 Implicit lighting prediction

In order to estimate illumination parameters, one option would be to use a fully connected branch

from the output of our decoder and train our network to predict it directly. However, fully connected

layers require very large numbers of parameters and, in fact, lighting can be inferred from the input

image and estimated albedo and normal maps, making its explicit prediction redundant. An additional

advantage is that the architecture remains fully convolutional and so can process images of any size at

inference time. Therefore, the lighting prediction in our network is implicitly estimated by the linear

lighting inference model introduced in Section 3.3.

4.4 Supervision

As shown in Figure 4.2, we use a L2 data term (the error between predicted and observed appearance)

for self-supervision. However, inverse rendering using only a data term is ill-posed (an infinite set of

solutions can yield zero data error) and so we use additional sources of supervision, all of which are

essential for good performance. We describe all sources of supervision in this section.
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Environment map 1 Environment map 2 Environment map 3

Figure 4.3: Examples of environment maps used in illumination statistical model.

4.4.1 Self-supervision via differentiable rendering

Given estimated normal and albedo maps and spherical harmonic illumination coefficients, we com-

pute a predicted image Ipred using Equation (3.27) and (3.26):

Ipred(A,L,N) = (A� LB(N))1/γ , (4.4)

where A is the albedo map, L is the spherical harmonic illumination coefficients, N represents normal

map, and γ of 2.2 is used in this equation.

This local illumination model is straightforward to differentiate. Self-supervision is provided by the

error between the predicted, Ipred, and observed, Iobs, intensities. Inspired by [168], computing this

appearance loss directly in RGB space does not yield the best results since it is not the best measure

of the perceptual quality of the reconstruction. For this reason, we compute this error in LAB space

as this provides perceptually more convincing results:

`appearance = ‖LAB(Ipred)− LAB(Iobs)‖2fro, (4.5)

where LAB performs the colour space transformation.

4.4.2 Natural illumination model and prior

The spherical harmonic lighting model in Equation (3.24) enables efficient representation of complex

lighting. However, even within this low dimensional space, not all possible illumination environments



4.4. Supervision 57

(a) mean + 1st

(b) mean + 2nd

(c) mean - 3rd

(d) mean

(e) mean + 3rd

(f) mean - 2nd

(g) mean - 1st

Figure 4.4: Statistical illumination model. The central image shows the mean illumination. The two
diagonals and the vertical show the first 3 principal components.

Figure 4.5: Data distribution of the first 5 coefficients.
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Figure 4.6: Variance and cumulative variance of the principal components of the illumination model.

are natural. The space of natural illumination possesses statistical regularities [23]. We can use this

knowledge to constrain the space of possible illumination and enforce a prior on the illumination

parameters. To do this, we build a statistical illumination model (see Figure 4.4) using a dataset

of 79 HDR spherical panoramic images taken outdoors [74, 1]. As shown in Figure 4.4, the mean

value of the model shows a blue-ish lighting coming from sky. The first three principal components

introduces variations of illumination direction and colour. However, the colour only varies within

the range of blue, white, yellow and black, and the variation of directions is also limited to prevent

unnatural outdoor illuminations and so lightings always come from sky rather than ground. Thus,

applying this PCA model on the top of spherical harmonic lighting ensures our lighting prediction is

not arbitrary like green lighting emitted from ground plane. Such a lighting prior is very important

for self-supervised training for inverse rendering network, because the problem itself is ill-posed and

cannot be solved only with self-supervision. For examples, only self-supervision can drive network

to predict an unnatural outdoor illumination and a strange albedo to perfectly reconstruct the input

image.

Some examples of this set of illumination data are shown in Figure 4.3. Environment maps shown in

this figure have been mapped to light probes, from which we can easily compute spherical harmonic

coefficients. For each environment, we compute the spherical harmonic coefficients, Li ∈ R3×9.
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Since the overall intensity scale is arbitrary, we also normalise each lighting matrix to unit norm,

‖Li‖Fro = 1, to avoid ambiguity with the albedo scale. Our illumination model in Equation (3.27)

uses surface normals in a viewer-centred coordinate system. So, the dataset must be augmented to

account for possible rotations of the environment relative to the viewer. Since the rotation around

the vertical (v) axis is arbitrary, we rotate the lighting coefficients by angles between 0 and 2π in

increments of π/18. In addition, to account for camera pitch or roll, we additionally augment with

rotations about the u and w axes in the range (−π/6, π/6). This gives us a dataset of 139,356

environments. We then build a statistical model by running PCA, such that any illumination can be

approximated as:

vec(L) = Pdiag(σ1, . . . , σD)α+ vec(L̄). (4.6)

where P ∈ R27×D contains the principal components, σ2
1, . . . , σ

2
D are the corresponding eigenvalues,

L̄ ∈ R3×9 is the mean lighting coefficients and α ∈ RD is the parametric representation of L. We

empirically found using D = 18 dimensions allows the model to express enough variations with

limited noises like unnatural outdoor illumination colours. The proportion of variance explained by

including the 18th principal components is about 99%. The variance and cumulative variance of

extracted principal components are shown in Figure 4.6. We project the illumination data onto this

statistical model and found that the parameters are Gaussian distributed: α ∼ N (0,σ). Figure 4.5

visualises the distribution of the first 5 principal component coefficients. When we compute lighting,

we do so within the subspace of the statistical model, i.e. we substitute Equation (4.6) into Equation

(3.28) and solve linearly forα. In addition, we introduce a prior loss on the estimated lighting vector:

`lighting = ‖α‖22. (4.7)

This lighting prior loss penalises the large variation of lighting inference results and encourages the

predicted lightings to be close to the mean of our statistical model. As a result, the inverse render-

ing network can regress normals and albedos yielding lighting estimates with reasonable colour and

directional distribution.
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Figure 4.7: Siamese MVS supervision: albedo cross-projection consistency and cross-rendering
losses (shown in one direction for simplicity). Note: shading depends on input and albedo as in
Figure 4.2 but this dependency is excluded for simplicity.

4.4.3 Multiview stereo supervision

A pipeline comprising structure-from-motion followed by multiview stereo [129] (which we refer to

simply as MVS) enables both cameras poses and dense 3D scene models to be estimated from large,

uncontrolled image sets. Of particular importance to us, these pipelines are relatively insensitive to

illumination variation between images in the dataset since they rely on matching local image features

that are themselves illumination insensitive. We emphasise that MVS is run offline prior to training

and that at inference time our network uses only single images of novel scenes. We use the MVS

output for three sources of supervision.

Cross-projection

We use the MVS poses and depth maps to establish correspondence between views, allowing us to

cross-project quantities between overlapping images. Given an estimated depth map, w(x, y), in view

i and camera matrices for views i and j, a pixel (x, y) can be cross-projected to location (x′, y′) in
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view j via:
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In practice, we perform the cross-projection in the reverse direction, computing non-integer pixel

locations in the source view for each pixel in the target view. We can then use bilinear interpolation of

the source image to compute quantities for each pixel in the target image. Since the MVS depth maps

contain holes, any pixels that cross project to a missing pixel are not assigned a value. Similarly, any

target pixels that project outside the image bounds of the source are not assigned a value. We denote

the cross-projection of any quantity xi defined on the pixels of image i onto the pixels of image j as

proji→j(xi).

Direct normal map supervision

The per-view depth maps provided by MVS can be used to estimate normal maps, albeit that they are

typically coarse and incomplete (see Figure 4.1, column 5). We compute guide normal maps from

the depth maps and intrinsic camera parameters estimated by MVS using Equation (4.2). The guide

normal maps are used for direct supervision by computing a loss that measures the angular difference

between the guide, nguide, and estimated, nest, surface normals:

`NM = arccos(nguide · nest). (4.9)

Albedo consistency loss

Diffuse albedo is an intrinsic quantity. Hence, we expect that albedo estimates of the same scene

point from two overlapping images should be the same, even if the illumination varies between views.

Hence, we automatically select pairs of images that overlap (defined as having similar camera loca-

tions and similar centres of mass of their backprojected depth maps). We discard pairs that do not

contain illumination variation (where cross-projected appearance is too similar). Then, we train our
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Images Li [83] (R) Nestmeyer [113] (R) Ours (R) Li [83] (S) Nestmeyer [113] (S) Ours (S)

Figure 4.8: Qualitative results for IIW. Second column to forth column are reflectance predictions
from [83], [113] and ours. The last three columns are corresponding shading predictions.

network in a Siamese fashion on these pairs and use the cross projection described above to compute

an albedo consistency loss:

`albedo =
∥∥LAB(Ai)− LAB

(
projj→i(sAj)

)∥∥2
fro
, (4.10)

whereAi, Aj ∈ R3×K are the estimated albedo maps in the ith and jth images respectively. The scalar

s is the value that minimises the loss and accounts for the fact that there is an overall scale ambiguity

between images. This loss is masked both by the sky mask in image i and by the cross-projected

pixels for which image j has a defined MVS depth value. Again, we compute albedo consistency loss

in LAB space. The albedo consistency loss is visualised by the blue arrows in Figure 4.7.

Cross-rendering loss

For improved stability, we also use a mixed cross-projection/appearance loss, `cross-rend. We use the

cross-projected albedo above in conjunction with the estimated normals and illumination to render

a new image and measure the appearance error in the same way as Equation (4.5). Note that we

only cross-project albedo predictions from other views and fix normal and lighting prediction. Al-

though normal is another invariant intrinsic quantity, which can be cross-projected like albedo, cross-

projection is not applied on normal predictions. The reasons of this design choice are twofold: i) The

direct normal supervision based on MVS is effective and implicitly accounting for multi-view invari-

ant; ii) Mixing cross-projections of both albedo and normal could lead the network hard to converge

and expensive to compute. This loss is visualised by the green arrows in Figure 4.7, and it could be
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computed by:

`cross-rend =
∥∥LAB(Ii)− LAB

(
Ipred(projj→i(sAj),Li,Ni)

)∥∥2
fro
, (4.11)

where Ii is the ith input image, Li and Ni are lighting and normal predictions from ith input. It

follows the image formation model Ipred introduced by Equation (4.4).

4.4.4 Albedo priors

Finally, we also employ two additional prior losses on the albedo. This helps resolve ambiguities

between shading and albedo. First, we introduce an albedo smoothness prior, `albedo-smooth. Rather than

uniformly applying smoothness penalty, we apply a pixel-wise varying weighted penalty according to

chromaticities of the input image, which was originally proposed by Jeon et al. [56]. So, the stronger

smoothness penalties are only enforced on neighbouring pixels with closer chromaticities. The loss

itself is the L1 distance between adjacent pixels:

`albedo-smooth =
∑
p∈P

∑
q∈N (p)

βpq ‖A(p)−A(q)‖ , (4.12)

where Ap and Aq are albedo prediction at pixel p and q. P denotes all pixels in the image, and N (p)

defines the neighbouring pixels for pixel p. For simplify, we define this neighbourhood as a set of

two pixels that are horizontally and vertically next to the pixel p. βpq indicates the chromaticity-based

weight, which can be computed by:

βpq = exp(−1− (mp ·mq)
2

c
), (4.13)

in which c is the constant set as 0.0001, mp and mq are chromaticity values which are normalised 3D

colour values of pixel p and q.

Second, during the self-supervised phase of training, we also introduce a pseudo supervision loss to

prevent convergence to trivial solutions. After the pretraining process (see Section 4.5.2), our model

learns plausible albedo predictions using MVS normals. To prevent subsequent training diverging too
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far from this, we encourage albedo predictions to remain close to the pretrained albedo predictions:

`albedo-pseudoSup = ‖LAB(Apred)− LAB(Apretrained)‖2fro. (4.14)

In this pseudo supervision loss, our new albedo prediction, Apred is encouraged to stay close to albedo

predicted by pretrained model, Apretrained. Note that the pretrained model is used as an untrainable

network at this phase, such that our pseudo ground truth Apretrained can be obtained by performing

albedo inference on this pretrained model.

4.5 Training

We train our network to minimise:

` = w1`appearance + w2`NM + w3`albedo + w4`cross-rend + w5`albedo-smooth + w6`albedo-pseudoSup + w7`lighting.

(4.15)

Empirically, we set the weights as w1 = 0.1, w2 = 1, w3 = 0.05, w4 = 0.1, w5 = 50, w6 = 0.1 and w7 =

0.01.

4.5.1 Datasets

We train using the MegaDepth [84] dataset. This contains dense depth maps and camera calibration

parameters estimated from crawled Flickr images. The pre-processed images have arbitrary shapes

and orientations. For ease of training, we resize images such that the smaller side is of size 200 pixels,

then crop multiple 200× 200 square images. We choose our crops to maximise the number of pixels

with defined depth values. Where possible, we crop multiple images from each image, achieving

augmentation as well as standardisation. We adjust the camera parameters to account for the scale

and crop. We create mini-batches in which all pairs of images within the mini-batch overlap (defined

as having similar camera locations and similar centres of mass of their backprojected depth maps)

and with sufficient illumination variation (we discard pairs where cross-projected appearance is too
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Figure 4.9: Inverse Rendering Results. We show our results with comparison to MegaDept [84],
BigTime [83], Nestmeyer et al. [113] and SIRFS [7].

similar, defined as having correlation coefficient of intensity histograms close to 1). Finally, before

inputting an image to our network, we detect and mask the sky region using PSPNet [169]. This

is because the albedo map and normal map in sky area are meaningless and it severely influences

illumination estimation. In total, we use 117,030 images from MegaDepth. We group these images

by their scene reconstruction results, of which 193 outdoor scenes are selected for training and testing.

In this 193 outdoor scenes, we select 40 scenes for testing and the remaining scenes for training. The

training is stopped by either reaching 20 iterations or reaching a steady-state loss value.

4.5.2 Training strategy

We found that for convergence to a good solution it is important to include a pre-training phase.

During this phase, the surface normals used for illumination estimation and for the appearance-based

losses are the MVS normal maps. This means that the surface normal prediction decoder is only

learning from the direct supervision loss, i.e. it is learning to replicate the MVS normals. After this

initial phase, we switch to full self-supervision where the predicted appearance is computed entirely

from estimated quantities. Note that this pre-training step is not using pseudo albedo supervisions.

4.6 Evaluation for InverseRenderNet

There are no existing benchmarks for inverse rendering in the wild. So, we evaluate our method on

an intrinsic image benchmark and devise our own benchmark for inverse rendering. Finally, we show
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Methods Training data WHDR

Nestmeyer [113] (CNN) IIW 19.5
Zhou et al. [174] IIW 19.9

Fan et al. [27] IIW 14.5
DI [111] Sintel+MIT 37.3

Shi et al. [135] ShapeNet 59.4
Li et al. [83] BigTime 20.3

Ours MegaDepth 21.4

Table 4.1: Evaluation results on IIW benchmark using WHDR percentage (lower is better). The
second column shows which dataset on which the networks were trained.

a relighting application.

4.6.1 Evaluation on IIW

The standard benchmark for intrinsic image decomposition is Intrinsic Images in the Wild [9] (IIW)

which is almost exclusively indoor scenes. Since our training regime requires large multiview image

datasets, we are restricted to using scene-tagged images crawled from the web, which are usually

outdoors. In addition, our illumination model is learnt on outdoor, natural environments. For these

reasons, we cannot perform training or fine-tuning on indoor benchmarks. Moreover, our network

is not trained specifically for the task of intrinsic image estimation and our shading predictions are

limited by the fact that we use an explicit local illumination model (so cannot predict cast shadows).

Nevertheless, we test our network on this benchmark directly without fine-tuning. We follow the

suggestion in [113] and rescale albedo predictions to the range (0.5, 1) before evaluation. Quantitative

results are shown in Table 4.1 and some qualitative visual comparison in Figure 4.8. Despite the

limitations described above, we achieve the second best performance of the methods not trained on

the IIW data.

4.6.2 Evaluation on MegaDepth

We evaluate inverse rendering using unobserved scenes from the MegaDepth dataset [84]. We eval-

uate normal estimation performance directly using the MVS geometry. We evaluate albedo estima-

tion using a state-of-the-art multiview inverse rendering algorithm [68]. Given the output from their
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Reflectances Normals
Methods MSE LMSE DSSIM Mean Median

Li et al. [84] - - - 50.6 50.4
Godard et al. [38] - - - 79.2 79.6

Nestmeyer et al. [113] 0.0204 0.0735 0.241 - -
Li et al. [83] 0.0171 0.0637 0.208 - -
SIRFS [7] 0.0383 0.222 0.270 50.6 48.5

Ours 0.0170 0.0718 0.201 37.7 34.8

Table 4.2: Quantitative inverse rendering results. Reflectance (albedo) errors are measured against
multiview inverse rendering result [68] and normals against MVS results. Normal predictions are
evaluated by mean angular error and median angular error.

Input Relit 1 Relit 2

Figure 4.10: Relighting results from predicted albedo and normal maps (see Figure 4.1, row 3). The
novel lighting is a simple point light and shown in the upper left corner.

pipeline, we perform rasterisation to generate albedo ground truth for every input image. Note that

both sources of “ground truth” here are themselves only estimations, e.g. the albedo ground truth

contains ambient occlusion baked in. The colour balance of the estimated albedo is arbitrary, so we

compute per-channel optimal scaling prior to computing errors. We use three metrics - MSE, LMSE

and DSSIM, which are commonly used for evaluating albedo predictions. To evaluate normal pre-

dictions, we use angular errors. The correctness of illumination predictions could be inferred by the

other two, so we do not perform explicit evaluations on it. The quantitative evaluations are shown in

Table 4.2. For depth prediction methods, we first compute the optimal scaling onto the ground truth

geometry, then differentiate to compute surface normals. These methods can only be evaluated on

normal prediction. Intrinsic image methods can only be evaluated on albedo prediction. We can see

that our network performs best in normal prediction and also the best in MSE and DSSIM. Qualitative

example results can be seen in Figure 4.9.



68 Chapter 4. Self-supervision and inverse rendering

Input Shadow Diffuse albedo Normal map Illumination Frontal shading Shading

Figure 4.11: Sample output from InverserRenderNet++ (row 1,3), compared against ones from In-
verseRenderNet (row 2,4). From a single image (col. 1), InverseRenderNet++ can estimate shadow,
albedo and normal maps and illumination (col. 2-5); re-rendering of our shape with (col. 6) frontal,
white point source and with (col. 7) estimated spherical harmonic lighting.

4.6.3 Relighting

Finally, as an example application we show that our inverse rendering result is sufficiently stable for

realistic relighting. A scene from Figure 4.1 is relit in Figure 4.10 with two novel illuminations. Both

show realistic shading and overall colour balance.

4.7 Extensions in InverseRenderNet++

Although the InverseRenderNet can generate decent inverse rendering results, there are apparent lim-

itations inherent to leveraged physical models, for example shadows are neglected by Lambertian

model and albedo smoothness prior results in over-smoothed reconstructions. To address these issues,

in this chapter we will discuss the possible improvements in applied reflection models, data used for

network training and formulation for loss functions. Then we will show that InverseRenderNet++

trained with improved methods gains better performance compared with InverseRenderNet.
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Figure 4.12: At inference time, our network regresses shadow, diffuse albedo and normal maps from
a single, uncontrolled image. These are used to infer shadow free and shading only images from
which we compute least squares optimal spherical harmonic lighting coefficients. At training time,
we introduce self-supervision via an appearance loss computed using a differentiable renderer and the
estimated quantities.

4.7.1 Reflectance model

The Lambertian model used in InverseRenderNet is known to be efficient but incapable to cap-

ture non-Lambertian effect, such as cast shadows, spatially varying illumination and specularities.

For inverse rendering results of InverseRenderNet, the naive reflectance model results in those non-

Lambertian effects being baked into one or both of the albedo and normal maps. Of these phenomena,

the most severe are cast shadows. We introduce an additional term that acts multiplicatively on the

appearance predicted by the local spherical harmonics model. Without appropriate constraint, the

introduction of this additional channel could lead to trivial solutions. Hence, we constrain it in two

ways. First, we restrict it to the range [0, 1] so that it can only downscale appearance. Second, it

is a scalar quantity acting equally on all colour channels. Together, these restrictions encourage this

channel to explain cast shadows and we refer to it as a shadow map. However, note that we do not

expect it to be a physically valid shadow map nor that it contains only shadows.
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Under this model, RGB intensity can be computed as

i(x, y) =


ir(x, y)

ig(x, y)

ib(x, y)

 = α(x, y)� s(x, y)B(n(x, y))l, (4.16)

where � is the Hadamard (element-wise) product, l ∈ R27 contains the order 2, colour spherical har-

monic colour illumination coefficients, α(x, y) = [αr(x, y), αg(x, y), αb(x, y)]T is the colour diffuse

albedo, s(x, y) ∈ [0, 1] is the shadowing weight and the order 2 basis B(n) ∈ R3×27 is given by

B(n) = I3 ⊗ b(n) where ⊗ is the Kronecker product and b(n) is same with Equation 3.25. This ap-

pearance model neglects high frequency illumination effects and interreflections. However, we found

that in practice this model works well for typical outdoor scenes.

4.7.2 Lighting inference

For changes in the lighting inference module, we first adjust the linear model with an additional

shadow term. Then we reformulate the least squares solution for lighting parameters to avoid numer-

ical instability. For example, the extremely dark or bright albedo prediction could lead to extreme

shading inference result after element-wise division between image and albedo (I�A), which might

result in unstable lighting predictions. For an input image with K foreground pixels, we stack the K

RGB values to form the vector iobs ∈ R3K . We assume that nonlinear gamma has been applied with

a fixed γ = 2.2. Here we apply the inverse gamma to observation image to retain a linear relation-

ship between inverse-gamma-corrected observation and our estimations. This linear relationship is

the key to efficiently solve lighting inference problem. We invert the nonlinear gamma and equate the

observed intensities with our model from Equation (3.24) extended to the whole image:

iγobs = [i1r, . . . , i
K
r , i

1
g, . . . , i

K
g , i

1
b , . . . , i

K
b ]T

= α� (13×1 ⊗ s)�Bl (4.17)
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Input Ground Plane MVS Normal New Normal

Figure 4.13: The mask for ground plane is obtained by PSPNet [169]. We then define the normal for
masked ground plane by the normal of fitted camera plane.

where each row of B ∈ R3K×27 contains the spherical harmonic basis for the estimated surface normal

at one pixel and the foreground pixels from the estimated albedo and shadow maps are stacked to form

α ∈ R3K and s ∈ RK respectively. We can now rearrange Equation (4.17) into linear least squares

form with respect to the lighting vector:

iγobs = [1⊗ (α� (13×1 ⊗ s))�B] l = Al. (4.18)

We can now solve for the spherical harmonic illumination coefficients in a least squares sense over all

foreground pixels. This can be done using any method, so long as the computation is differentiable

such that losses dependent on the estimated illumination can have their gradients backpropagated into

the inverse rendering network. We solve using the pseudoinverse of A, i.e. l∗ = A+iγobs. Note that the

pseudoinverse A+ has a closed form derivative [42]. Figure 4.12 shows the inferred normal, albedo

and shadow maps, and a visualisation of the least squares estimated lighting. Just like InverseRender-

Net, we combine this new lighting inference model with the illumination statistical model to construct

the illumination model as shown in the Figure 4.12. Instead of using Equation 3.28, the new illumi-

nation model uses the combination of Equation 4.18 and our lighting model Equation 4.6.

4.7.3 Data preprocessing

Of losses used in training InverseRenderNet, direct normal prediction loss only relies on sparsely

reconstructed geometry, especially on ground plane areas. Because the MVS models always fail to

reconstruct the ground plane. We find that this significantly disrupts training such that our network

does not learn to predict good shape or albedo estimates in the ground plane region. For this reason,
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we propose to preprocess the MVS normal maps to replace ground plane normals with an assumed

ground plane normal direction. To this end, we detect ground plane pixels using PSPNet [169] and

inpaint normal direction to detected pixels in the normal map. Although the true ground plane di-

rection is unknown, a reasonable estimate can be made from the MVS reconstruction. We assume

that the camera positions are located approximately a fixed height above the ground and fit a plane

to their positions using principal components analysis (PCA). The normal to this plane defines the

ground plane normal which we rotate into camera coordinates and use for inpainting. A sample result

is shown in Figure 4.13.

Again, we perform network training primarily using MegaDepth [84] as training data. Apart from

this dataset, for parts of our evaluation, we finetune using additional datasets (described in Section

4.8). These are preprocessed in the same way as MegaDepth.

4.7.4 Self-supervision

With additional input channel of shadow, we compute the self-reconstruction image by Equation

(4.16). Under this new reflectance model, we found that performance was significantly improved by

computing appearance error in a shadow-free space. To do so, we divide out the estimated shadow

map from the linearised observed image and clamp to one (avoiding numerical instabilities caused by

very small shadow values):

iSF = min [1, iγobs � (13×1 ⊗ s)] , (4.19)

where � is Hadamard (element-wise) division. We compare this shadow free image to the image

predicted using only the local spherical harmonic model and our estimated illumination and albedo

and normal maps. In addition to the perceptual loss employed in InverseRenderNet (LAB appearance

loss), we provide another perceptually meaningful loss computed by L2 loss in VGG feature space.

`appearance = ε(α�Bl, iSF), (4.20)

where

ε(x,y) = wVGG ‖VGG(x)− VGG(y)‖2 + wLAB ‖LAB(x)− LAB(y)‖2 , (4.21)
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where VGG computes features from the first two convolution blocks of a pre-trained VGG network

[140] and LAB transforms to the LAB colour space. We include VGG loss into our perceptual loss

according to the findings proposed by Johnson et al. [58]. Following the conclusion drawn from

Johnson, VGG-based perceptual measurement could make significant contribution in image recon-

struction tasks. In addition, we choose to use the first two convolution blocks out of the full model,

which means only the low-level features are used to compare our reconstruction with the target. In

contrast to high-level semantic features, such low-level features capture structural patterns, which

typically lead the measurement of perceptual distance. We mask these losses pixel-wise using the sky

mask, using appropriate downsampling of the mask within the VGG layers. We set the weights as

wVGG = 2.5 and wLAB = 0.5 in all experiments.

4.7.5 Multiview stereo supervision

The training losses derived from multiview stereo cues are modified and applied in InverseRender-

Net++, which helps improve the albedo consistency quality and solve the limitation of over-smoothed

results. Whilst using the same direct normal loss, we update the formulations for albedo consistency

loss and cross-rendering loss as follow.

Albedo consistency loss

Similar to InverseRenderNet, albedo consistency loss is formed by the error between aligned albedo

predictions using cross-projection. Besides, we employ the same perceptual appearance resemblance

measurements, where the weights wVGG and wLAB are set the same as in (4.20). The albedo consis-

tency loss is visualised by the blue arrows in Figure 4.14.

Cross-rendering loss

Cross-rendering loss was proposed to remedy a deficiency in using albedo consistency alone in In-

verseRenderNet. However, cross-projecting albedos while computing cross-rendering loss and albedo
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Figure 4.14: The albedo consistency loss is formulated by cross projections. Given the depth map and
camera parameters from performing MVS over image collections, albedo prediction from one view
can be cross projected to another view. For each image, we compute the albedo consistency loss by
measuring the difference between albedo prediction and cross-projected albedo prediction from other
views within each batch.

consistency loss results in blurry albedo maps. This is because the consistency constraint encourages

blurred but consistent albedo maps. Here we propose a variant cross-rendering loss that avoids requir-

ing cross projection of albedo predictions, which can help the training stabilise albedo consistency

and alleviate blurry problem originated from cross-projecting albedo maps.

Instead, we cross project the images in the dataset at their original high resolution, using the high

resolution depth maps. We define the cross projection of image j into image i using the original high

resolution image, iHR
j , in view j as:

ij→i = downsample(projj→i(i
HR
j )), (4.22)

where the downsample function downsamples to network input resolution. Note that this cross pro-

jection need only be done once as preprocessing step on the training dataset.

We then mix the albedo and normal predictions from image i with the lighting and cross projected

shadow map from image j and compare it against the high resolution cross projection from image j.
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Figure 4.15: Example for cross rendering between two images. Cross rendering image is generated
from relighting albedo and normal predictions from one involved image and lighting prediction from
the other by Lambertian model. Before applying lighting, we rotate the lighting to align it with
new view given relative camera poses. The rendering is generated without shadow, so the shadow
is removed from ground truth relighting image. Both shadow and ground truth relighting image are
cross projected from the view where new lighting taken from.

Again, we do so in a shadow free space, so first define the cross-projected shadow free image:

iSF
j→i = min

[
1, ij→i �

(
13×1 ⊗ projj→i(sj)

)]
. (4.23)

We then compute the cross-rendering loss as:

`cross-rend = ε(iSF
j→i,αi �BiRj→ilj), (4.24)

where Bi is the spherical harmonic basis computed from the normal map estimated from image i, lj

is the spherical harmonic lighting coefficients estimated in image j and Rj→i rotates the coefficients

from the camera coordinate system in image j to image i. The cross-rendering loss is essential

for stability and alleviates issues of low resolution cross projection. We visualise the process of

computing this loss in Figure 4.15.
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Reflectances Normals
Method MSE LMSE Mean Median

MegaDepth [84] - - 43.6 43.0
Godard et al. [38] - - 82.4 82.1

Nestmeyer et al. [113] 0.0149 0.0169 - -
BigTime [83] 0.0116 0.0135 - -

SIRFS [7] 0.0070 0.0275 50.6 48.5
InverseRenderNet 0.0112 0.0128 40.0 38.0

InverseRenderNet++ 0.0093 0.0111 31.2 30.0

Table 4.3: Quantitative inverse rendering results. Reflectance (albedo) errors are measured against
multiview inverse rendering result [68] with optimal per-channel scaling applied and normals against
MVS results.

Method Reconstruction Consistency
MD [84] BT [83] MD [84] BT [83]

Nestmeyer et al. [113] 0.1003 0.0333 0.0140 0.0067
BigTime [83] 0.0372 - 0.0089 -

InverseRenderNet 0.0158 0.0124 0.0168 0.0118
InverseRenderNet++ 0.0082 0.0082 0.0082 0.0072

Table 4.4: Reconstruction error and reflectance consistency for BigTime dataset [83]. MSE is used
for computing reconstruction errors, and MSE with optimal scaling is used for computing albedo
consistency.

4.7.6 Training loss

We train InverseRenderNet++ to minimise:

` = w1`appearance + w2`NM + w3`albedo + w4`cross-rend + w5`lighting, (4.25)

where the weights are set as w1 = 0.1, w2 = 1.0, w3 = 0.1, w4 = 0.1 and w5 = 0.005. Compared

with loss function defined in InverseRenderNet (4.15), albedo priors `albedo-smooth and `albedo-pseudoSup

are relaxed from loss function. The albedo priors are important for shadow bake-in disambiguations

but results in albedo maps without enough sharpness. In InverseRenderNet++, we refrain from those

priors to capture texture details in albedo maps whilst shadow bake-in ambiguity is resolved by incor-

porating shadow maps.
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4.8 Evaluation for InverseRenderNet++

There are no existing benchmarks for inverse rendering of outdoor scenes, partly because there is

no existing method for satisfactorily estimating scene-level geometry, reflectance and lighting for in-

the-wild, outdoor scenes. For this reason, we developed our own outdoor benchmark based on the

MegaDepth dataset [84]. We augment this with three further benchmarks that evaluate performance

of a subset of the network outputs. First, we use the BigTime timelapse dataset [83] to evaluate

albedo consistency under varying illumination. Second, we evaluate on the related task of intrinsic

image decomposition using an indoor benchmark [9] which demonstrates the generalisation ability

of our network. Third, we better quantify our normal prediction using the DIODE benchmark [153],

which contains high quality outdoor depth and normal maps along with corresponding images. Then

we explicitly evaluate our illumination prediction using our own benchmark dataset, whose details

and specifications are demonstrated in the next chapter. This benchmark dataset captures multi-view,

multi-illumination and HDR images and their environment maps, thus allowing us to qualitatively and

quantitatively qualify our illumination estimation results. Finally, we show an ablation study across

different configurations of proposed losses.

4.8.1 Evaluation on MegaDepth

We split the MegaDepth dataset [84] into training and testing data, and evaluate our performance on

testing data. We evaluate the inverse rendering results through four aspects. Firstly, the normal esti-

mation performance can be directly compared against the MVS geometry. We quantify performance

using angular error in degrees. Second, like InverseRenderNet we evaluate albedo estimation against

the output a state-of-the-art multiview inverse rendering algorithm [68]. Here, we use two metrics -

MSE (mean squared error) and LMSE (local mean squared error). Here, LMSE is the performed by

repeatedly running MSE on local crops of the image. The key difference between MSE and LMSE

is that we compute and apply the optimal scale based on each crop when measuring LMSE, but an

uniform scale is used over the whole image when computing MSE. The quantitative evaluations are

shown in Table 4.3. As for depth prediction methods and Intrinsic image methods, we adapt the same
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Figure 4.16: Qualitative results for reconstruction. The first and fourth rows are albedo predictions,
and second and fifth rows are shading predictions from labelled methods. The reconstruction results
for each method is composed by albedo and shading and is shown on third and last rows.

evaluation metrics used in InverseRenderNet. We can see that our InverseRenderNet++ performs best

in both albedo and normal predictions. Qualitative results can be found in Figure 4.18. Note that,

relative to the inverse rendering methods, our result is able to explain cast shadows in the shadow

map, avoiding baking them into the albedo map.

Except the direct evaluations against the ground truth inverse rendering results, we propose two addi-

tional metrics which are reconstruction accuracy and albedo consistency. The introduced two metrics

reflects how well our inverse rendering results explain the input image, and whether the physical

invariants are consistent across the scene. They indirectly evaluate the correctness of our inverse

rendering result. Quantitative results are shown in Table 4.4 Here we measure albedo consistency
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BigTime [83] InverseRenderNet Nestmeyer et al. [113] InverseRenderNet++
Input Albedo Cross-project Albedo Cross-project Albedo Cross-project Albedo Cross-project

Figure 4.17: Qualitative results for albedo consistency. For each consecutive pair of rows, we show
results for two overlapping images of the same scene. Albedo predictions are shown in col. 2, 4, 6
and 8 which are then cross-projected to the viewpoint of the other image in the pair in col. 3, 5, 7 and
9. Results shown for col. 2-3: BigTime [83], col. 4-5: InverseRenderNet, col. 6-7: Nestmeyer et al.
[113], col. 8-9: InverseRenderNet++.

by cross-projecting albedo predictions to overlapping images, followed by calculating the difference

between the now-aligned albedo predictions. We show qualitative results in Figure 4.16 and 4.17.

Relative to InverseRenderNet, our new albedo maps preserve high frequency detail since we do not

use a smoothness prior. Note also that we are able to extract albedo maps with consistent colour from

images with very different illumination colour (Figure 4.17).

4.8.2 Evaluation on BigTime

Time-lapse data allows us to use the same reconstruction and consistency metrics without the need for

cross-projection. We do so on the BigTime time-lapse dataset [83]. The quantitative results are shown

in Table 4.4. Note that the BigTime [83] intrinsic image method is excluded from the comparison and

not reported in this table, because the method itself is entirely trained based on the dataset. All other

methods including our proposed work are trained without fine-tuning on this dataset. To fairly perform

the evaluations, we select 15 scenes out of nearly 200 scenes which contain large portion of indoor

scenes and some outdoor scenes from the dataset. Some example results are shown in Figure 4.19. In

the last example in particular, note our ability to avoid baking cast shadows into the albedo map.
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Figure 4.18: Qualitative results for our inverse rendering benchmark. We show comparison against
InverseRenderNet, BigTime [83] and SIRFS [7].
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InverseRenderNet Nestmeyer et al. [113] InverseRenderNet++
Input Albedo Shading Reconstruction Albedo Shading Reconstruction Albedo Shading Reconstruction

Figure 4.19: Qualitative results on BigTime data [83]. Each consecutive pair of rows shows results for
two different frames from a time-lapse sequence. Col. 1: input, col. 2-4: InverseRenderNet, col. 5-7:
Nestmeyer et al. [113], col. 8-10: ours. For each method we show albedo, shading and reconstruction.

4.8.3 Evaluation on IIW

We perform evaluations on IIW [9] for indoor scenes. As explained above, we cannot perform training

or fine-tuning on this indoor benchmark. However, we perform fine-tuning using two other datasets to

improve performance on the intrinsic image task on indoor scenes. Specifically, we first add the Big-

Time dataset [83] for which we can compute self-rendering, albedo consistency and cross-rendering

losses without the need for any cross projection. Second, we sidestep the lack of surface normal

labels in BigTime [83] by introducing the indoor normal supervisions from the NYU dataset [139].

To train our network with the mixture of all three sources of data, each training iteration is separated

into two sub-steps. Firstly, the network is trained by MegaDepth [84] and NYU [139] to learn indoor

self-reconstruction and normal prediction. Secondly, by freezing the normal prediction decoder, only

shadow and albedo prediction decoders are trained by BigTime [83]. We show qualitative results in

Figure 4.20 and quantitative results in Table 4.5. Note that our performance is very close to the state-

of-the-art for methods not fine-tuned on the IIW training set, despite the fact that our inverse rendering

solution is more constrained than intrinsic image methods (we must explain shading in terms of ge-
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Methods Training data WHDR

Nestmeyer [113] IIW 19.5
Li et al. [82] IIW 17.5

Sengupta et al. [131] IIW 16.7
Narihira et al. [111] Sintel+MIT 37.3

Shi et al. [135] ShapeNet 59.4
BigTime [83] BigTime 20.3

InverseRenderNet MegaDepth 21.4
InverseRenderNet++ MD+BT+NYU 21.1

Table 4.5: Quantitative results on IIW benchmark using WHDR percentage (lower is better). The
second column shows which dataset on which the networks were trained. The upper block is trained
on IIW training set.

Input Li [83] (R) Nestmeyer [113] (R) InverseRenderNet++ (R) Li [83] (S) Nestmeyer [113] (S) InverseRenderNet++ (S) InverseRenderNet++ (NM)

Figure 4.20: Qualitative intrinsic image results for IIW benchmark. Col. 2-4: reflectance predictions
from [83], [113] and ours. Col. 5-7: corresponding shading predictions. Col. 8: surface normal
prediction for our method.

ometry, lighting and shadows whereas intrinsic image methods are free to compute arbitrary shading

maps).

4.8.4 Evaluation on DIODE

DIODE [153] is a very recent geometry estimation benchmark comprising images and registered

depth/normal maps acquired with a Lidar scanner. The benchmark is divided into indoor and outdoor

scenes and we evaluate only on the outdoor scene test set. To date, the only published result for

normal map estimation is the method of Eigen et al. [25] against which we quantitatively compare in

Table 4.6. In addition, we evaluate the performance of MegaDepth [84] on this benchmark dataset as
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Methods Mean Median
Eigen et al. [25] 31.9 24.7

Li et al. [84] 41.7 32.9
ours 23.9 15.5

Table 4.6: Quantitative surface normal prediction errors on the DIODE dataset [153]. We show mean
and median angular errors in degrees for the outdoor test set.

Input GT Normal Estimated Normal

Figure 4.21: Qualitative results for surface normal prediction on DIODE dataset [153]. Left to right:
input, ground truth normal map, estimated normal map. The grey pixels in the normal map are
undefined values. In the second column, these grey pixels are missing data that sensors fail to capture,
and in the third column, such grey pixels are segmented as sky region.

another comparison method. Because it can only predict depth map with arbitrary scale, we compute

the normal estimate from depth prediction by applying camera intrinsics and the optimal scale which

is obtained by comparing the median of ground truth depth and median of depth prediction. We show

qualitative example results on this dataset in Figure 4.21.

4.8.5 Illumination estimation

To evaluate the accuracy of illumination estimation of our proposed methods, we show that our In-

verseRenderNet and InverseRenderNet++ generalise to the benchmark dataset proposed in the next

chapter (Chapter 5) without fine-tuning. The benchmark dataset consists of images capturing a monu-

ment under six different illumination conditions from multiple viewpoints. Along with this multi-view



84 Chapter 4. Self-supervision and inverse rendering

Input Environment map GT illu. SIRFS [7] InverseRenderNet InverseRenderNet++

Figure 4.22: Qualitative evaluation for illumination estimation. Captured environment maps are
shown in Column 2, which are projected to spherical harmonics and used for relighting hemisphere to
generate ground truth illumination estimations as demonstrated in Column 3. Illumination estimates
from SIRFS [7], InverseRenderNet and InverseRenderNet++ method are shown in Column 4-6. The
first two rows are per-colour scaled, and last two are global scaled.

and multi-illumination image collection, the six HDR illumination environment maps and necessary

alignments between image and environment map pairs are also provided. In order to evaluate our

performance on lighting estimation, we feed each image into our network and compare our lighting

prediction with ground truth. Since our network can only infer the lighting represented by spherical

harmonics, we project the ground truth environment map onto order 2 spherical harmonics. To ensure

a fair evaluation the comparison regarding backside lighting is omitted, so we compare only the front

side by measuring the distance between hemispheres lit by our lighting prediction and by ground truth

spherical harmonic lighting. We show quantitative evaluations in Table 4.7 and qualitative evaluations

in Figure 4.22. Since there is an overall scale ambiguity between albedo and lighting, in quantitative

evaluations, two scaling methods are applied. The global scaling metric is computed by applying an

optimal global intensity scale prior to measuring errors, and per-colour scaling method is conducted

by applying an optimal scaling to each colour channel. Accordingly, the qualitative results for these

two scaling methods are shown in Figure 4.22.
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Methods Global scale Per-colour scale
SIRFS [7] 0.100 0.089

InverseRenderNet 0.050 0.041
InverseRenderNet++ 0.038 0.033

Table 4.7: Quantitative results for illumination estimation. We show global-scale and per-colour-scale
MSE errors.

Methods
MD reflectance

IIW
Illumination

(MSE) (global scale)
Full 0.0093 21.1 0.038

w/o VGG 0.0095 21.6 0.053
w/o cross-projection loss 0.0153 21.6 0.052
w/o cross-rendering loss 0.0101 21.4 0.052

Table 4.8: Quantitative comparison for ablation study. Here, we select some representative metrics
used in Section 4.8.1, 4.8.3 and 4.8.5, which are MSE-based reflectance errors on MegaDepth test
data (Column 1), IIW benchmark score (Column 2), and global-scaled Illumination estimation errors
(Column 3).

4.8.6 Ablation study

In this section, we seek insight on some key design choices by comparing the performance of our

proposed network and ablated models on evaluation datasets used above. We report the comparison

between our full model and ablated model trained without VGG loss, without cross-projection loss

and without cross-rendering loss. The quantitative results are summarised in Table 4.8. Our proposed

model outperforms the ablated methods on all metrics across all datasets. Figure 4.23 visualises the

qualitative comparison on different training setups. Here, without cross-projection loss the network

cannot remove shadows from albedo prediction. Without cross-rendering loss the network can only

predict over-smoothed albedo. Without VGG loss, albedo prediction looks ‘bleached’, since shading

and shadow predictions capture too much darkness - shading predictions of this ablated variant shows

less brightness contrast and darker intensity than that of our full model. While training without VGG

loss results in larger errors, we found that finetuning the weights w1, w3 and w4 of losses for specific

tasks leads to better performance than our full model. However, it cannot providing consistently the

best performance across all metrics with a uniform weights setting.
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Input

Full model w/o VGG w/o cross-projection w/o cross-rendering

Input

Full model w/o VGG w/o cross-projection w/o cross-rendering

Figure 4.23: Qualitative comparison for ablation study. Row 2: albedo, Row 3: surface normals, Row
4: shading. Ablation conditions are shown column-wise.
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4.9 Conclusion

In this chapter, we showed how to use a model-based decoder to learn an inverse rendering network in

a self-supervised manner. The simple yet effective Lambertian model and multiview stereo model mo-

tivates us to supervise the inverse rendering network by self-reconstruction and multiview loss. Our

efficient linear Lambertian model also facilitates to perform the lighting estimates such that a separate

lighting estimation network is not needed in our pipeline. We have shown for the first time that the

task of inverse rendering can be learnt from real world images in uncontrolled conditions. Our results

show that “shape-from-shading” in the wild is possible, and our learnt InverseRenderNet/InverseRen-

derNet++ significantly outperforms classical methods. We are also competitive against state-of-the-art

methods trained specifically for related subtasks.

Following the experiments conducted above, we can conclude that the model-based decoder is es-

sential for achieving self-supervised training. The rendering model has the ability to regularise the

solution space for estimated unknowns, hence resulting better performance than purely supervised

training. While the network training can outperform other by integrating physical model, it also in-

herits the potential drawbacks from the model. First, the non-Lambertian effects, like specularity

and inter-reflection, are baked into inverse rendering results. The misalignment raised by MVS re-

construction gives rise to oversmoothed albedo estimates. The illumination representation employed

in the InverseRenderNet is spherical harmonic lighting, which can hardly capture high-frequency

components. The design of this trivial lighting representation choice is assigned by the employed

rendering model. In contrast to supervised training, our self-supervised training usually has a poor

optimisation surface. So directly training the network from scratch is not ensured to yield decent con-

vergence, for which staged training strategy should be applied. Finally, the inverse rendering results

cannot be seamlessly used by renderers to faithfully produce high-fidelity renderings, like relighting

or novel view synthesis, even if they exhibit plausible colour estimates and geometry details. In next

chapter, we will report how a hybrid model between model-base and neural decoder can be exploited

to solve these issues.



Chapter 5

Hybrids of model-based and neural decoders

5.1 Introduction

Over the last two chapters, we have a deeper exploration on model-based decoders and how they

contribute to training neural networks. Although such decoders are capable of simplifying the com-

putational complexity and constraining the solution space by the underlying physical rules, the per-

formance is limited by the nature of the physical model. In contrast, neural decoders are trained to re-

produce ground truth data by black-box networks representing non-explainable and complex models.

To address the limitations of both kinds of decoders, we propose a hybrid decoder that sequentially

fuse them as a single decoder such that the hybrid decoder is more expressive than a model-based de-

coder and more physically legitimate than a neural decoder. Specifically, we expand our discussions

about hybrid decoders by two applications. First, we study the hybrid decoder constituted by a neural

decoder followed by a model-based decoder. With this type of decoder, we propose a single image

novel view synthesis network, which is shown in Figure 5.1. Second, we instead construct the hybrid

decoder by concatenating a neural decoder subsequent to a model-based decoder. Deriving from this

decoder, we present a single image relighting network (see Figure 5.7).

88
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Input Depth est. Merged geometry New renderings

Figure 5.1: Given a single RGB image, we perform depth estimation using the MegaDepth Network
[84] and inverse rendering using InverseRenderNet. The geometry is then computed by merging depth
and normal estimations. Finally, we texture triangulated meshes with albedo estimates and re-render
the scene with novel lighting and viewpoint.

5.2 Hybrid decoders for monocular depth estimation and novel

view synthesis

Along this line of discussion, we seek to use a model-based decoder, which formulates the derivative

relationship between depth and normal to refine single image depth predictions by two neural decoder

networks [84] and InverseRenderNet. Note that both of InverseRenderNet and InverseRenderNet++

can serve to provide normal map in this section, we are showing results only based on InverseRen-

derNet, because the network is computationally lighter compared to InverseRenderNet++ due to the

differences on shadow decomposition and lighting information model. Here, normal estimation picks

up fine detail because it is trained to reproduce the input image and can exploit appearance/shading

information at every pixel. But it does not give absolute depth so cannot do view point edits, simulate

shadows etc. Depth estimates provide base of global estimate but rely on training data that misses

high frequency details. Hence, merging the two outputs can potentially provide the best of both. Fur-

ther, taking advantage of these two divergent strands of research we are able to synthesise novel views

for the captured image. Specifically, using state of the art deep CNNs for each task, we merge the

coarse depth map and high quality normal map yielding a high quality geometric model. Combined

with the estimated albedo map, this provides a textured, relightable 3D model that can be used for

novel view synthesis.

An overview of our approach is shown in Figure 5.2. We use a state-of-the-art neural decoder network

for single image depth estimation (MegaDepth [84]) and for inverse rendering (InverseRenderNet).

Our key insight is that merging the two shape estimates from these complimentary techniques, using
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a model-based decoder originated from a variant of the method proposed by Nehab et al. [112], yields

high quality geometry that can be re-lit using the albedo estimated by the inverse rendering network.

The new lighting and viewing direction can be controlled by users. In the remainder of this branch

of discussion, we begin by introducing necessary notation, review the depth estimation and inverse

rendering networks, describe the merging process and then present our results.

5.3 Perspective geometry

We begin by introducing required notations and concepts from single view perspective geometry.

We work in the coordinate system of the camera and parameterise the scene by the unknown depth

function Z(u), where u = (x, y) is a location in the image. The 3D coordinate at u is given by:

P (u) =


x−x0
f
Z(u)

y−y0
f
Z(u)

Z(u)

 , (5.1)

where f is the focal length of the camera and (x0, y0) is the principal point.

The tangent vectors to the surface are given by:

∂P (u)

∂x
=


1
f

(
(x− x0)∂Z(u)∂x

+ Z(u)
)

1
f
(y − y0)∂Z(u)∂x

∂Z(u)
∂x

 , (5.2)

∂P (u)

∂y
=


1
f
(x− x0)∂Z(u)∂y

1
f

(
(y − y0)∂Z(u)∂y

+ Z(u)
)

∂Z(u)
∂y

 . (5.3)

Note that these tangent vectors are linear functions of the surface depth.

The direction of the outward pointing surface normal is defined as the cross product of the tangent



5.4. Single image depth estimation and inverse rendering 91

Input

Lighting Normal Albedos

Depth

Merge
model

Result

Renderer

[R | t], Lightings User

Rendering

MegaDepth

InverseRenderNet

3

Figure 5.2: Overview of our proposed process for merging depth predictions and inverse rendering
results for novel view synthesis. The input image is decomposed into normal, albedo and lighting
by InverseRenderNet, and depth map by MegaDepth model [84]. Our proposed model merges depth
and normal estimates to regress a new depth map, which can be combined with albedo estimate, new
viewing direction and new lighting specified by user to render an image under the novel view and
illumination.

Input Depth Input Depth

Figure 5.3: Sample output from MegaDepth [84]. Dark is closer to viewer.

vectors, themselves the partial derivatives of the position function:

n(u) =
∂P (u)

∂x
× ∂P (u)

∂y
= k


−f ∂Z(u)

∂x

−f ∂Z(u)
∂y

(x− x0)∂Z(u)∂x
+ (y − y0)∂Z(u)∂y

+ Z(u)

 , (5.4)

where k is an unknown scale factor. Note that the magnitude of the surface normal vector is not

important, only its direction. Also note that linearly scaling the depth function does not change the

direction of the surface normal vector. We denote by n̄(u) = n(u)/‖n(u)‖, the unit length surface

normal.
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5.4 Single image depth estimation and inverse rendering

The goal of single image depth estimation is to compute a depth value, Z(u), for each pixel in the

image, collectively known as a depth map. Note that from Equation (5.1), this cannot be transformed

into positions in world units without knowing camera calibration information. In low accuracy ap-

plications, the principal point is usually assumed to be the centre of the image and we make this

assumption. The focal length however is typically unknown. However, often a good estimate can

be made from image metadata and a database of sensor sizes. We take this approach allowing us to

assume the focal length is known. However, estimating absolute depth from a monocular image is

highly ambiguous. For this reason, depth prediction networks usually estimate depth only up to an

unknown global scale s > 0 such that Z̃(u) = sZ(u). This does not affect the surface normals and

hence the merging process described later. However, for the purposes of computing scene geometry

for rendering an absolute scale must be chosen and we leave this as a parameter for the user to select.

We use the depth prediction network presented by Li and Noah [84] (known as MegaDepth). This

is trained in a supervised fashion using depth maps computed from scene geometry recovered using

multiview stereo applied to community photo collections. The supervised training loss function is

scale invariant so that the output scale of the depth map is arbitrary as discussed above. We show

sample output in Figure 5.3.

We use the inverse rendering network of InverseRenderNet, exactly as described in Chapter 4. As

shown in Figure 5.4, InverseRenderNet can factor input image into normal map with fine-grained

details that are hardly preserved in depth predictions of Figure 5.3, along with albedo map and illumi-

nation, allowing our framework to integrate such decomposed intrinsics, especially detailed normal

map into coarse depth map.

5.5 Merging depth and normals

Our model-based decoder for merging surface normal and depth map is based on the method proposed

by Nehab et al. [112]. However, we include the centre of projection in our derivation and provide an
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Input Albedo Normal Lighting Shading

Figure 5.4: Sample outputs from InverseRenderNet.

Input GT normal Indirect normal Direct normal

Figure 5.5: Comparison between direct normal estimates acquired by InverseRenderNet and indirect
normal estimates, which is computed from depth estimate.

explicit matrix formulation, decomposing the original formulation in terms of matrices for comput-

ing tangent vectors, numerical derivatives and dot products. This makes reproducing our approach

much more straightforward and we make a Matlab implementation publicly available (https:

//github.com/waps101/MergePositionNormals). Unlike the method proposed by Ne-

hab et al. [112], we do not begin by removing low frequency bias from the estimated surface normals.

In practice, we do not find that the surface normals delivered by InverseRenderNet are subject to low

frequency bias in the same way that normals from photometric methods could be. As shown in Figure

5.5, normal map computed from depth prediction, referred to as indirect normal cannot provide more

accurate low-frequency result than the direct normal estimate from InverseRenderNet. We believe

this is because of the direct normal map supervision during training.

The approach introduced by Nehab et al. [112] is to form a linear system of equations in the merged

depth that seeks to satisfy two constraints. The first seeks to preserve the gross structure of the

https://github.com/waps101/MergePositionNormals
https://github.com/waps101/MergePositionNormals
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original estimated depth map by penalising in a least squares sense any deviations. The second seeks

to encourage the surface normals of the refined depth map to align with the target normals. The key

observation is that this second error function can be formulated to be linear in the surface depth. This

is achieved by encouraging the tangent vectors of the refined surface to be perpendicular to the target

normals, i.e., have a zero dot product.

First, we extend Equation (5.2) and Equation (5.3) to the whole image. Consider an image with shape

M ×M and N foreground pixels whose unknown depth values are vectorised in z ∈ RN :

z =

[
Z(u1,1) Z(u2,1) . . . Z(uM,1) Z(u1,2) Z(u2,2) . . . Z(uM−1,M) Z(uM,M)

]T
, (5.5)

where ui,j indicates the index of pixel at ith row and jth column.

We define matrices:

Tx =


−1
f

X −1
f

I

−1
f

Y 0N×N

I 0N×N


Wx

I

 , Ty =


−1
f

X 0N×N

−1
f

Y −1
f

I

I 0N×N


Wy

I

 , (5.6)

such that tangent vectors for the whole image concatenated into a vector can be computed by post-

multiplication with the vector of depth values:

Txz = vec

([
∂P (u1)
∂x

. . . ∂P (uN )
∂x

]T)
, (5.7)

Tyz = vec

([
∂P (u1)
∂y

. . . ∂P (uN )
∂y

]T)
, (5.8)

where I is the N × N identity matrix and X = diag(x1 − x0, . . . , xN − x0) and Y = diag(y1 −

y0, . . . , yN−y0). Wx,Wy ∈ RN×N compute numerical approximations to the derivative of Z in the x

and y directions respectively. In practice, we use forward finite differences to lower the computational

cost. Hence Wx,Wy have two non-zero values per row:
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Wi,j
x (S) =


−1 if i = j

1 if Sj = Si + (0, 1)

0, otherwise

, Wi,j
y (S) =


−1 if i = j

1 if Sj = Si + (1, 0)

0, otherwise

, (5.9)

where S stands for another indexing vector with shape M that links index of depth vector z and

indices of image pixel u:

S = [(1, 1), (2, 1), . . . , (M, 1), (1, 2), (2, 2), . . . , (M − 1,M), (M,M)]. (5.10)

With this index vector S, we can find row and column indices for Z(u) with index in z:

zi = Z(uSi
). (5.11)

Note that we flatten depth map as a depth vector z and define derivative operators Wx and Wy

accordingly, so the computations define here only involve matrix multiplications without convolution.

We are now ready to write the linear system of equations:


λI

NTx

NTy

 z =

 zMD

02N×1

 , (5.12)

where zMD ∈ RN contains the coarse depth estimates delivered by MegaDepth and

N =


diag (nxIRN(u1), . . . , n

x
IRN(uN))

diag (nyIRN(u1), . . . , n
y
IRN(uN))

diag (nzIRN(u1), . . . , n
z
IRN(uN))


T

, (5.13)

is anN×3N matrix formed by concatenating diagonal matrices containing the x, y and z components

of the target normals delivered by InverseRenderNet. Hence, each row contains one of the target
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Input Albedo Normal Depth Refinement New renderings

Figure 5.6: Results of applying our method to images from the MegaDepth dataset [84]. Column 1:
input image. Column 2 and Column 3: albedo and surface normal maps estimated by InverseRen-
derNet. Column 4: rendering of the geometry provided by the depth prediction network. Column 5:
refined geometry after merging with the surface normals. Column 6 and Column 7: novel views under
two different lighting conditions.

surface normal vectors. The linear system of equations in Equation (5.12) is large but sparse over-

determined system, and can be solved efficiently. We do so using a QR solver as implemented in

Matlab’s mldivide function. Specifically, the pseudo-inverse matrix is formed by R−1QT and
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Depth Normals
Method MSE Mean Median

MegaDepth [84] 7.318 43.6 43.0
Ours 7.961 41.3 40.1

Table 5.1: Quantitative evaluation of depth refinement results. Depth errors are measured by MSE,
and normal predictions are qualified by mean and median angular errors.

multiplied to the RHS of this equation to find the least square solution of z:


λI

NTx

NTy

 = QR, z = R−1QT

 zMD

02N×1

 . (5.14)

The parameter λ balances the influence of the two constraints. When λ is large, the refined depth will

stay close to the original estimate. When it is small, the surface normals have greater influence.

5.6 Experiments on depth refinement and novel view synthesis

The overview in Figure 5.2 shows an example output from MegaDepth and InverseRenderNet. The

striking feature is how the depth prediction is significantly improved when merged with the surface

normal estimates. We show further results in Figure 5.6 for uncontrolled outdoor scenes. Here, we

render the geometry as a mesh (by triangulating the depth map). Again, it is evident that the geometry

is much improved, adding detail but also correcting gross structures. The textured models provide

plausible appearance under large illumination and viewpoint changes. The quantitative comparison

between our refined depth prediction and initial depth estimate from MegaDepth [84] is reported in

Table 5.1. It is shown that the refined depth map from our proposed method can obtain noticeably

improvements in normals prediction while retain competitive performance on depth prediction. Note

that here we compute normals by applying camera intrinsics and optimal scaling on depth map, like

evaluations in Chapter 4.
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Input Illum.1 Relighting1 Illum.2 Relighting2 Illum.3 Relighting3 Illum.4 Relighting4

Figure 5.7: We present a novel self-supervised technique to photorealistically relight an outdoor
scene from a single image to any given target illumination condition. Our method is able to generate
plausible shading, shadows, colour-cast and sky region in the output image, while preserving the
high-frequency details of the scene reflectance.

5.7 Self-supervised Outdoor Scene Relighting

The method described above applies a model-based decoder to outputs from neural decoders, for the

purpose of merging two geometry representations. One can envisage another form of hybrid decoder

that operates in the reverse manner, namely feeding outputs from a model-based decoder into a neural

decoder. Such an architecture can be used to enable the trainable neural decoder to learn to remedy

deficits in the model, enabling an overly simplistic model to be corrected allowing more real world

phenomena to be captured. We pursue this idea for the purpose of outdoor scene relighting, with

the neural decoder learning to transform basic Lambertian renderings into photorealistic images. We

combine such a hybrid decoder with InverseRenderNet++, show how to train it using a self-supervised

regime and generate photorealistic single image relighting results.

Recently, the advent of adversarial learning technique [43] has enabled neural networks to generate

photorealistic images. ‘Neural rendering’ techniques based on this principle have shown promising

results in various allied tasks such as novel-view synthesis [97], view-dependent effects rendering

[147] and appearance modification [105].

Along with the idea of neural rendering, we propose a fully self-supervised neural rendering frame-

work for performing photorealistic relighting of an outdoor scene from a single image with full light-

ing controllability (see Figure 5.7), through combining InverseRenderNet++ with a neural renderer.

By incorporating InverseRenderNet++, our method takes as input a single 2D image and estimates

the underlying appearance parameters such as albedo, shading, shadows, lighting and normals. Given
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these physical parameters along with the target lighting condition, a model-based renderer composes

the initial relighting rendering image, which will be then fed into a set of novel neural rendering

decoders for refinement and enhancement to generate photorealistic relighting of the scene and the

sky region. The sequential combination of model-based renderer and neural renderer enables us to

produce rendering images with high standard of realism and great generalisation and stabilisation.

By training our system in a completely self-supervised manner, it generalises to unseen novel scenes

and any target lighting condition of choice as provided by the user in the form of an environmental

light map. Finally, in order to qualify and quantify our relighting networks we introduce a new

high-resolution HDR multi-view & multi-illuminant evaluation dataset for outdoor relighting, and

our extensive test results on the dataset show the efficacy of our method.

In summary, the novel contributions of the proposed relighting network are:

• The first fully-automatic single-image based relighting technique for outdoor scenes with full

controllability of target lighting

• A novel self-supervised neural rendering framework that uses physical intrinsic decomposition

layers of the scene to generate photorealistic relighting results without using any ground-truth

data or synthetic 3D rendering

• A sky generation network that generates realistic sky image for the scene under a given target

lighting environment

5.7.1 Overview

Neural inverse rendering has been recently shown to enable convincing decomposition of both indoor

[131] and outdoor (InverseRenderNet/InverseRenderNet++) uncontrolled scenes into geometry (nor-

mal map), illumination and reflectance. These methods are self-supervised via a physics-based model

of image formation. Such models are typically based on simple assumptions such as perfect Lamber-

tian reflectance and ignore global illumination effects and shadowing. For this reason, re-illumination

of the geometry and reflectance with novel lighting does not lead to photorealistic images. In addition,

sky regions do not adhere to reflectance models, and so they are either missing from relighting results
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Figure 5.8: For a given Input image of an outdoor scene, our method first performs a physical decom-
position of the scene into various components. Using a pre-trained segmentation network (PSPNet
[169]), the scene is separated from the sky. The scene is then decomposed by the InverseRender-
Net++ into intrinsic image layers of Albedo, Normal, Shadow and Lighting . Given a target Novel
lighting condition, ShadowNet uses the regressed scene normals to generate a target Novel shadow
map for the scene. The scene albedo and normals, along with target lighting, shadow map, target
shading and residual input map (see Section 5.8) are then fed to the Neural renderer to generate
plausible Relighting of the scene. Given the output of the neural renderer, SkyGAN generates a con-
vincing Sky region, and by compositing these together, a complete photorealistically relit Rendering
is achieved. Discriminator 1 and Discriminator 2 are used to provide adversarial losses for training
Neural renderer and SkyGAN respectively. Specifically, Discriminator 1 takes as input skyless
relighting or real image and determines if they are real or fake. Discriminator 2 classifies the real
input and the fake image (Sky blending) blended by real scene and fake sky.

or the original sky is pasted back, making it inconsistent with the new lighting.

Our goal in this relighting rendering network is to learn in a fully self-supervised fashion to per-

form photorealistic relighting of outdoor scenes from a single image. Photorealism is achieved by

attaching a classical model-based renderer to a learnt neural renderer that can improve the inaccu-

rate model-based rendering results to plausible relighting results. The neural renderer particularly
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learns to synthesize global illumination effects such as plausible shadows, inter-reflections and view-

dependent effects that are required for photorealism, which are much more difficult to simulate with

model-based renderers. The neural renderer is trained using an adversarial loss to ensure that the

generated images lie within the distribution of real images. A novel cycle consistency loss and direct

supervision loss via cross projection of multi-view images is also used to ensure that the generated

images exhibit the desired target lighting. We also present a sky generation network that learns to syn-

thesize plausible skies that are consistent with the lighting within the rest of the image. An overview

of our approach is shown in Figure 5.8.

The detailed illustrations of our relighting network are organised as follows. Section 5.8 presents our

inverse rendering and novel neural rendering architecture, and how our hybrid decoder bridges the

gap between them in the relighting process. In Section 5.9 we introduce our novel benchmarking

dataset and perform detailed experimentation of our method to analyse our design choices and prove

the efficacy of our methods in new unseen scenarios. Besides, the ablation study regarding each

component included in our method is discussed in this section.

5.8 Inverse rendering and neural rendering

We take as our starting point the inverse rendering network of InverseRenderNet++. As described

in Chapter 4, this image-to-image network decomposes an image into diffuse albedo, normal map,

spherical harmonic illumination and shadow map, which yields source of input to relighting neural

rendering network.

5.8.1 Shadow prediction network

There could be two ways to handle shadows in our neural renderer. The first was to leave it to the

neural renderer to learn to add shadows to rendered images given only the unshadowed local shading.

However, this task was too challenging for the renderer and shadows were largely missing from

rendered output. The second approach was to explicitly attempt to estimate a new shadow map for
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the desired lighting. To estimate such changes in shadows, we train a separate shadow prediction

network. It takes as input a normal map and the spherical harmonic lighting vector and outputs a

shadow map. In order to input the lighting vector while retaining the image-to-image architecture of

the network, we replicate the 27D lighting vector (since L ∈ R3×9) pixel-wise and concatenate it to

the normal map such that the input is a 30D tensor. We train the shadow prediction network using

illumination, normal and shadow maps predicted by InverseRenderNet++.

The objective function for training this network is based on L2 distance:

`shadow = ‖ω(ni, li)− si‖2fro, (5.15)

where ShadowNet ω(ni, li) is the generated shadow map by taking as input normal ni and lighting

li. si is the shadow map prediction from InverseRenderNet++, and it serves as supervision in this

training. The normal ni, lighting li and shadow si predictions involved in this equation are all com-

puted by running InverseRenderNet++ on image ii. So, this ShadowNet learns to generate shadow

map based on how InverseRenderNet++ decomposes shadow, normal and lighting from the image.

5.8.2 Neural renderer

We now describe our neural rendering network. This can be viewed as a conditional GAN [107] in

which the conditioning input is the maps required for a Lambertian rendering and the latent space

is the spherical harmonic lighting parameter space. The objective of the network is to generate im-

ages indistinguishable from real ones while keeping the lighting consistent with the target lighting

parameters.

The input to the neural rendering network is constructed from the outputs of InverseRenderNet++ (see

Figure 5.8). The albedo and normals are taken as direct inputs from the output of InverseRendernet++,

because they are scene invariants. Additional inputs of a shading map and a shadow map consistent

with the target illumination are constructed. The shading channel is obtained using the Lambertian

spherical harmonic lighting model under the desired lighting with the estimated normal map. The

shadow map for a given novel lighting condition is predicted using a separate shadow prediction



5.8. Inverse rendering and neural rendering 103

network described in Section 5.8.1.

We concatenate the albedo prediction (3 channels), normal prediction (3 channels), shading (3 chan-

nels), shadow map (1 channel) and sky segmentation (1 channel) into an 11 dimensional tensor. In

addition to this tensor, we compute another 3-channel residual map that contains the lost fine-scale

details from original image after inverse rendering decomposition. The residual map is computed by

subtracting Lambertian rendering composed by inverse rendering results from original input image.

This residual map should contain texture details that InverseRendetNet++ fails to capture. As shown

in our ablation study (Section 5.9.4), performing neural relighting simply from inverse rendering re-

sults could produce blurry relighting results, which motivates us to introduce this additional channels

as input. We then stack this residual map at the end of concatenated 11 dimensional tensor and feed

it to the neural rendering network.

5.8.3 Losses

We use three classes of loss function in order to train the neural renderer. First, an adversarial loss

ensures the realism of the generated images. Second, direct supervision is provided in the form of

self-reconstruction and cross-projection rendering losses to ensure the images are accurate predictions

of the scene appearance under desired lighting conditions. Third, this direct supervision is aided by a

cycle consistency loss that uses InverseRenderNet++ to measure and penalise inconsistent decompo-

sitions of original and rendered images.

Adversarial loss

For adversarial loss we use the multiscale LSGAN [95] architecture. Real images are true images with

the sky masked out. Fake images are the neural renderings, again with all pixels in the sky region set

to black.

The adversarial loss and discriminator loss are:

`adv =
1

2
E
i∈A

[(DG(Gi)− 1)2], (5.16)
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`dis-g =
1

2
E
i∈A

[(DG(Gi))
2] +

1

2
E
j∈B

[(DG(ij)− 1)2], (5.17)

where DG is the discriminator, ii is the real image, and Gi is the fake image generated by neural

renderer. The discriminator being used to form `adv is shown as Discriminator 1 in Figure 5.8. Note

that this adversarial loss is only applied on relighting rendering results without considering the sky

region. A separate GAN (Discriminator 2 in Figure 5.8) for generating background sky image will

be described in Section 5.8.4. Such a dedicated sky generation GAN is easier to train and showing

improved results over a fused GAN.

Direct supervision

Our training set provides real example images under a variety of illumination conditions. We can

exploit these for direct supervision. When the chosen lighting condition for relighting is the same as

the original image, we expect the neural rendering to exactly match the original image. We refer to

this as self-reconstruction loss. In practice, this is computed as a sum of the VGG perceptual loss

[140] (difference in VGG features from the first two convolution blocks) and L2 distance in LAB

colour space, which is defined by Equation (4.21).

`self-reconstruction = ε(ii, G(αi, li, ω(ni, li), ni, ri)), (5.18)

where ii is the input image. The neural renderer G takes as input inverse rendering results from image

ii (albedo αi, lighting li and normal ni), computed residual map ri, and the new shadow generated

by ShadowNet ω(ni, li). Here, our neural renderer G is trained to perform self-reconstruction of the

input image which is decomposed by InverseRenderNet++ to form input of G.

However, self-reconstruction loss does not penalise baked-in effects. To overcome this, we use mul-

tiview supervision. A mini-batch consists of a set of overlapping images with different illumination

and which can be cross projected from one view to another using the multi-view stereo (MVS) re-

constructed geometry and camera parameters. We use this for additional direct supervision. Within a

mini-batch, we shuffle the lighting estimates from InverseRenderNet++ so that we relight the albedo

and normal predictions from one view with the lighting from another. We rotate the spherical har-
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monic lighting to account for the relative pose between views. Supervision is provided by comparing

the neural rendering against the cross projection of the view from which the lighting was taken, again

measured in terms of VGG perceptual loss and L2 distance in LAB space. The loss can be computed

by:

`′cross-projection = ε(ij→i, G(αi, Rj→ilj, ω(ni, Rj→ilj), ni, ri)), (5.19)

where ij→i is the cross-projected image from view j to view i, Rj→ilj rotates lighting prediction from

view j to view i. Please refer to Section 4.7.5 for the detailed definitions of this cross-projection and

lighting rotation functions. Essentially, this loss trains the neural renderer to minimise the distance

between the image ij and the relighting result of image ii under lighting in image ij .

However, errors in the MVS geometry and camera poses cause slight misalignments in the cross

projected images. We found that applying this loss at full resolution led to a blurry output. For

this reason, before computing the cross-projection loss, we downscale both the cross projected and

rendered images by a factor of 4:

`cross-projection = ε(i′j→i, G′(αi, Rj→ilj, ω(ni, Rj→ilj), ni, ri)), (5.20)

where:

i′j→i = downsample4(ij→i), (5.21)

G′(αi, Rj→ilj, ω(ni, Rj→ilj), ni, ri) = downsample4(G(αi, Rj→ilj, ω(ni, Rj→ilj), ni, ri)).

(5.22)

Cycle consistency

We found that direct supervision and adversarial loss alone are insufficient for good performance

and smooth relighting under smooth illumination parameter changes. This is partly due to the fact

that cross projected images are incomplete and can be quite sparse when the view change is large.

Therefore, to improve stability we propose to also include a cycle consistency loss. Here, we use

the InverseRenderNet++ trained as described in last chapter and measure the consistency between

the input maps to the neural renderer and those obtained by decomposing the neural rendered image.
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Specifically, we penalise the difference in the albedo, normal, lighting and shadow maps. Here, we

denote InverseRenderNet++ as V and it decomposes relighting rendering from neural renderer:

V(G(αi, li, ω(ni, li), ni, ri)) = αG, nG, sG, lG, (5.23)

where (αi, li, ω(ni, li), ni, ri) are used to generate relighting image, which is then decomposed by

InverseRenderNet++ to obtain inverse rendering results (αG, nG, sG, lG).

Lighting consistency is measured by the sum of VGG perceptual loss and L2 difference between the

Lambertian shading maps:

`lighting-cycle = ε(li b(ni), lG b(nG)), (5.24)

where lib(ni) computes Lambertian shading map from the inputted lighting, lG b(nG) computes

Lambertian shading map from the decomposed lighting, and the function b is defined by Equation

(3.25). As for the VGG loss, although the VGG network is trained on natural photos rather than

shading maps, we only use feature kernels in the shallow layers which are known to capture low-level

structural information. So it is useful as a structural perception loss in this training.

Normal map consistency is measured by the mean angular error between original and estimated nor-

mal maps.

`normal-cycle = arccos(ni · nG). (5.25)

For albedo consistency, we weight the error by the shading map like Meka et al. [104]. The idea

is that albedo estimates in darkly shaded regions are unlikely to be accurate and we do not wish to

overemphasise errors in these regions. Again, the albedo difference is measured in terms of VGG

perceptual loss and L2 distance in LAB space:

`albedo-cycle = ε(wiαi, wGαG)). (5.26)

wi and wG are weight maps:

wi =
lir b(ni) + lig b(ni) + lib b(ni)

3
, wG =

lGr b(nG) + lGg b(nG) + lGb b(nG)

3
. (5.27)
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These two weight maps are pixel-wise average across (r, g, b) channels of shading maps.

Shadow consistency loss is defined as L2 error between input shadow and decomposed shadow:

`shadow-cycle = ‖sG − ω(ni, li)‖2fro. (5.28)

5.8.4 Sky GAN

Our physical illumination model is only able to describe non-sky regions of the image. Sky cannot be

meaningfully represented in terms of geometry, reflectance and lighting. Moreover, sky appearance

is partially stochastic (the precise arrangement of clouds is not informative). For this reason, we train

a second network specifically to generate skies that are plausible given the rest of the image. For

example, if the image contains strong cast shadows and shading, one would expect a clear sky with

sunlight coming from an appropriate direction. If the image is highly diffuse with little discernible

shading one would expect a cloudy sky.

For this purpose, we use the GauGAN architecture [119] with two semantic classes: sky and fore-

ground. This network performs sky generation from random noise and conditional inputs of the sky

segmentation mask and the foreground image with black sky. The output is the sky image which

is blended with the foreground image using the binary sky mask. Such binary blended images are

inputs to the discriminator along with the sky mask as a conditional input. Hence, the discriminator

loss will help generate both more realistic skies but also skies that are plausible given the foreground

appearance. Note that this sky generation network is trained by a separate discriminator which is

different from the one used when training neural renderer. An visual illustration of this SkyGAN and

its discriminator is shown in Figure 5.8. In this figure, the discriminator used here is referred to as

Discriminator 2, while the discriminator supervising neural renderer is denoted as Discriminator 1.

To train the generator, we use the adversarial loss and the feature matching loss as in [119] but remove

other appearance losses. We train using real images in which sky has been masked to black. The

discriminator is trained using the same loss as the original GauGAN [119]. We find that, in practice,

this network generalises well to foregrounds generated using our neural rendering network.
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5.8.5 Training

Our network architecture and training were implemented in TensorFlow. The neural rendering net-

work and shadow prediction network are modelled as U-Net architectures [127] with skip-connections

in order to preserve high-frequency details in the output. The skyGAN network is modelled after

ResNet architecture [49] which avoids the problem of vanishing gradient in the initial stages of train-

ing and ensures a smooth convergence of the loss value. Adam optimiser [70] is used to optimize the

network parameters. A batch size of 5 is used for training. All training images were resized to a size

of 200× 200 pixels to keep the training tractable on single-GPU hardware. For training data, we run

our training and testing on the MegaDepth dataset [84]. The dataset contains multiview stereo images,

which enable us to directly train inverse rendering network and find relative rotations between image

views before shuffling illumination estimates. The dataset contains a variety of outdoor scenes. We

apply the same training and testing split of InverseRenderNet/InverseRenderNet++ (see Section 4.5)

for training these networks.

For our entire training, we use a fixed learning rate of 5× 10−4. Firstly, ShadowNet is trained simply

by using `shadow. For the various loss functions used in training the neural renderer, the relative weights

are chosen such that the value of the losses are in the same order of magnitude:

` = w1`albedo-cycle + w2`shadow-cycle + w3`normal-cycle+w4`lighting-cycle+

w5`self-reconstruction + w6`cross-projection + w7`adv,

(5.29)

where w1 = 3.0, w2 = 0.4, w3 = 1.0, w4 = 4.0, w5 = 1.0, w6 = 0.5, and w7 = 0.1.

For our sky generation network, we use the same architecture as that of GauGAN [119], while chang-

ing the original conditional input of their semantic layout to concatenation of the sky segmentation

map and the relit output from our neural renderer. To better learn this task with more network param-

eters, we also modify the number of residual blocks to 8 and change the length of the input random

noise vector to 256. The rest of the architecture remains the same.

The training of the networks is performed in several stages. The inverse rendering network is trained
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Figure 5.9: We present a new high-quality high-resolution outdoor relighting dataset. Our dataset con-
sists of high-resolution HDR images of a single monument captured under several different lighting
conditions from multiple views, along with the ground-truth HDR environment light maps.

independently as described in Section 4. The output of inverse rendering network is used to train the

shadow prediction network. Given the well-trained shadow prediction network and inverse rendering

network, the neural rendering network is trained. The training of the neural rendering network is

done in two phases. In the first phase only a self-reconstruction loss is employed, and this stage

is stopped when the loss reaches a steady-state value. In the second phase, the cycle-consistency

loss and adversarial loss are added. In the experiments, we found such pre-training step ensures fast

convergence and leads to renderings containing more fine details. Finally, we train our skyGAN as

described in Section 5.8.4.

5.9 Experiments on outdoor relighting networks

5.9.1 Outdoor Relighting Benchmarking Dataset

We present a new high-quality benchmarking dataset for the evaluation of outdoor relighting tech-

niques. The dataset consists of several sets of multi-view, multi-illumination high dynamic range

(HDR) images of a single monument, along with ground-truth HDR environment maps for each il-

lumination condition. We captured 6 different lighting conditions, including clear sky with bright
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sunlight, cloudy overcast sky and evening light. For each lighting condition, we capture 10 images

from views around the monuments and also a separate panoramic ground-truth environment light

map. Each image of the monument is of resolution 5184× 3456, captured with a Canon 5D Mark II

DSLR camera with an 18mm focal length lens. It consists of 6 multi-exposure raw captures, which

are fused in Adobe Photoshop to generate an HDR image. The lowest camera exposure time is chosen

to ensure that the captured image has minimal amount of pixel saturation from bright light sources

such as the sun. We use constant ISO and aperture settings in the capture. The environment light map

is captured using a 360-degree camera (LG360) with 6 multi-exposure shots fused to obtain the HDR

image.

While the original environment maps are captured from arbitrary viewpoints, in order to perform view

consistent relighting, the environment maps need to be rotated to align them to the same viewpoint as

the camera images. This is achieved by performing multi-view 3D reconstruction of the monument

from all the dataset images and estimating accurate camera pose for each camera view through bundle

adjustment, which is done by the multiview stereo tool [3]. The rotation between environment map

and the global co-ordinate system of the monument (taken as the camera co-ordinate system of the

first camera view image) is computed by performing a sparse feature match between the environment

map and the 3D model and optimizing for the camera rotation between the two. This process is

repeated for each of the 6 lighting conditions. In the dataset, we provide the camera pose for every

image and also the rotation for each of the 6 ground-truth environment maps to the first camera view

image. This provides ‘aligned environment maps’ for each lighting condition.

Multiview stereo

We apply an off-the-shelf uncalibrated structure-from-motion and multiview stereo tool [3] to all 56

images in our benchmark dataset. We initialise the focal length estimates using the known lens focal

length in mm and the pixel size on the sensor. The output is a mesh (cropped to the main buildings

in the scene) comprising 90k vertices and per-image camera parameters (both intrinsic, including

nonlinear distortion parameters, and extrinsic, i.e. a rotation matrix Rw2c ∈ R3×3 and translation

t ∈ R3 that transform world to camera coordinates).
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Figure 5.10: Reconstructed scene used in our benchmark. Estimated camera positions are shown as
crosses and the aligned environment maps rendered on spheres.

Environment map alignment

We manually label a set of features points on the 3D mesh {vi}ni=1 with vi ∈ R3 and corresponding

points on the 2D environment map {xi}ni=1 with xi ∈ R2. We transform the 2D environment map

points into spherical coordinates and then unit length direction vectors di ∈ R3 with ‖di‖ = 1. To

align the environment map to the world coordinates of the 3D mesh, we solve the following nonlinear

optimisation problem:

min
c,R

n∑
i=1

arccos

(
Re2wdi ·

vi − c

‖vi − c‖

)
. (5.30)

This measures the total angular error between the vector from the spherical camera centre to one of

the 3D feature points and the corresponding feature on the spherical image (the unit vector rotated

to world coordinates). Re2w ∈ R3×3 is a rotation matrix that rotates environment map coordinates

to world coordinates and c ∈ R3 is the centre of the spherical camera in world coordinates. We

optimise the rotation as a 3D axis-angle vector and a 3D translation meaning the optimisation is 6D

overall. We initialise the camera centre as the mean camera position over the multiview dataset. We

solve the optimisation problem using the BFGS Quasi-Newton method. In all cases, the mean angular

error upon convergence is less than 1◦. We show the reconstructed model, estimated camera positions

(marked as crosses) and aligned environment maps in Figure 5.10.
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Source Image Relighting under lighting 1 Relighting under lighting 2 Relighting under lighting 3

Ground-truth image under 
lighting 1

Ground-truth image under 
lighting 2

Ground-truth image under 
lighting 3

Env map for lighting 1 Env map for lighting 2 Env map for lighting 3

Relighting under lighting 4

Ground-truth image under 
lighting 4

Env map for lighting 4

Error map 1 Error map 2 Error map 3 Error map 4

Figure 5.11: Relighting result on our new high-quality outdoor relighting dataset. Note the plausible
shading effects obtained by our method on the surfaces of the monument compared to the ground-
truth. The last row shows heatmaps of L2 error between relighting and ground truth.

Input Novel Illu1 Our results [7] Novel Illu2 Our results InverseRenderNet

Figure 5.12: Relighting results from testing data. It shows the comparison between our methods with
InverseRenderNet and SIRFS [7].
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Input Lighting Albedo Normal Shadow Novel Illu. 1 Rendering 1 Novel Illu. 2 Rendering 2

Figure 5.13: Inverse rendering and relighting results from our neural rendering network pipeline.
Column 1 contains input images to the pipeline. Column 2-5 show inverse rendering results. Column
6 and Column 7 show two novel target illuminations. Column 8 and Column 9 show the relighting
results from our neural renderer under the two novel target illuminations.

5.9.2 Qualitative Evaluation

On the Benchmarking Dataset

Our benchmarking dataset is used for qualitative evaluation of our method. We perform cross-

relighting of the monument by taking an image for a particular lighting condition as input and per-
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Source image Target image GT illumination Our results [122] [7] InverseRenderNet

Figure 5.14: Relighting of benchmark dataset images and comparison with Philip et al. [122], In-
verseRenderNet and Barron and Malik [7].

Source image Target image Our results [7] InverseRenderNet

Figure 5.15: Relighting of BigTime images and comparison with InverseRenderNet and Barron and
Malik [7].

forming relighting to another target light condition using as input the 2nd order spherical harmonic

co-efficients of the ground-truth ‘aligned’ environment light map. The results for such relighting are

shown in Figure. 5.11, where an image captured under a source lighting is relighted to several target

lighting conditions. We also show error maps comparing relighting results and ground truth images

by measuring L2 norm across different colour channels on each pixel location. The environment light

map alignment is performed by rotating the target environment map into the coordinate system of

the source camera, i.e. we apply Rw2cRe2w to the environment map in spherical harmonic coefficient

space. We then relight using our method or one of the comparison methods. As can be seen, our

method is able to generate relighting result that closely resembles the ground-truth images for each

target lighting condition. Our method does a particularly good job of estimating plausible colour-cast

and shading across various surfaces of the monument including those with intricate geometry.

On test dataset

In Figure 5.12, we show relighting results on our test dataset and comparison with other single-image

relighting approaches. Our method results in realistic looking relighting results with shading and
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shadows that are very consistent with the target lighting condition, while maintaining the fine under-

lying reflectance details. We also generate sky regions which match the general colour tone of the

relit structure. InverseRenderNet generates non-photorealistic images due to its simple Lambertian

reflectance model. The method of Barron and Malik [7] struggles with the darker sides of the target

lighting conditions because it cannot account for global illumination.

We show more relighting results on the test dataset in Figure 5.13. Along with relit images, we also

include inverse rendering results. The first column shows the input image. Column 2 to 5 show the

inverse rendering results. The last four columns show two pairs of novel illuminations and relighting

results. These results demonstrate that our network generates plausible shading, shadows and colour

casts for a given novel target illumination.

On time-lapse dataset

We evaluate our neural rendering network on BigTime[86] dataset, which contains approximately

200 time-lapse image sequences of indoor and outdoor scenes. For each time lapse sequence, we

perform cross-rendering by relighting each frame with lighting estimates from all the other frames in

the sequence. To evaluate the relit results, we use multiple error metrics computed between the relit

result and corresponding real image. The quantitative comparison, averaged over 15 sequences, is

shown in Table 5.2, and qualitative comparison between our method and other methods is shown in

Figure 5.15. The quantitative results show that our network can generalise well to time-lapse image

sequences. Our method has the best performance on `1 error and the mean square error (mse) and

is comparable to the method of Barron and Malik [7] on metrics measuring structural information

like SSIM and DSSIM. Barron and Malik’s [7] method seems to perform slightly better on these

metrics because their method tends to estimate very smooth normal and shading image, which results

in albedo images that although globally incorrect, still preserve local high-frequency details, leading

to better structural similarity scores. This issue with their method is concealed when evaluating this

dataset since the relighting is based on their estimated lighting. From Figure 5.15, it is evident that

our method preserves the colour-cast and the brightness scale better and is able to generate accurate

relighting effects such as consistent shading and shadows.
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Method `1 mse SSIM DSSIM
Proposed 0.103 0.021 0.760 0.120

InverseRenderNet 0.117 0.26 0.722 0.139
[7] 0.115 0.24 0.770 0.115

Table 5.2: Quantitative evaluation on the BigTime [86] time-lapse dataset. The error values are
computed by averaging over 15 sequences.

5.9.3 Quantitative Evaluation

We also perform a quantitative evaluation on relighting results of our benchmarking dataset. Fig-

ure 5.14 shows example of the cross-relighting that we perform across all lighting conditions in the

dataset. In order to get the ground-truth image for our relighting, we project all the camera images

from a given target lighting condition onto the 3D geometry of the monument and average them. This

is then re-projected to the camera viewpoint of the source image to obtain the ground-truth relit im-

age. Although this leads to the loss of view-dependent effects, it still provides a plausible ground-truth

image with accurate shadows and shading. Our evaluation metric is the L1 error between reprojected

ground truth and relit image, averaged over colour channels and pixels, see Table 5.3. To remove

unknown scale factors, we compute the error after applying the optimal scaling to the relit image,

i.e. the scale that minimises squared error to the ground truth image. Our method generates plausible

relighting results close the ground-truth image and produces the least error in most cases, while the

other techniques struggle to preserve the high-frequency details, the colour-cast and the shading vari-

ations. For the method of Philip et. al. [122], we were able to obtain cross-relighting results only in

specific cases since their sun-lighting model cannot be applied to cloud or evening skies. Only in one

case, their method was able to outperform ours quantitatively. Please note that their method uses the

full multi-view dataset for relighting whereas our method relights a single image.

5.9.4 Ablation Study

We show an analysis of several key design choices we make in our relighting framework. Figure

5.16 shows results from our neural rendering trained with and without the cross-projection loss. As

evident from the figure, the cross-projection loss improves the colour expression and the photorealism

of the relit images by preserving the underlying albedo more faithfully, while generating realistic
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Method
Original lighting condition

1 2 3 4 5 6
`1 SSIM `1 SSIM `1 SSIM `1 SSIM `1 SSIM `1 SSIM

Proposed 0.077 0.871 0.078 0.850 0.074 0.876 0.075 0.872 0.076 0.842 0.073 0.839
InverseRenderNet 0.082 0.824 0.085 0.780 0.087 0.791 0.083 0.818 0.079 0.819 0.077 0.810

[7] 0.083 0.879 0.097 0.826 0.091 0.852 0.080 0.883 0.086 0.840 0.098 0.814
[122] 0.095† 0.871 0.083‡ 0.834

Table 5.3: Mean `1 colour error (lower is better) and SSIM index (higher is better) for relit images
against cross projected ground-truth. Results are averaged across all images and all target lighting
conditions. (†averaged over only target lighting condition 6 because the authors of method provided
their results for only one target lighting condition.)(‡averaged over only target lighting conditions 2
& 5 for the same reason.)

Method
Benchmarking BigTime
`1 SSIM MSE SSIM

Full 0.079 0.856 0.021 0.760
Without cross-project loss 0.082 0.836 0.023 0.744

Without cycle loss 0.097 0.853 0.026 0.729

Table 5.4: Quantitative evaluation of the ablated networks on the benchmarking data and the
BigTime[86] time-lapse dataset

shading. Figure 5.17 shows a relighting result of our method with and without the input of shadow

map generated by our shadow network to our neural renderer. Relighting result with the shadow

network is able to generate naturally darker shadows. Without the target shadow map, the shadows in

the relighting result tend to be lighter and hence appear fake. Figure 5.18 shows differences between

rendering network trained by cycle consistency loss and without the cycle consistency loss. The

rendering results from training with cycle loss show better shading effects and perform better on

preserving the original reflectance colours and removing shadow from original input image. Figure

5.19 shows a relighting result of our method with and without the input of residual input map to our

neural renderer. Our method is able to reconstruct sharper details than the network trained without

residual input map. Figure 5.20 shows the utility of our SkyGAN network. As a baseline, we train

the neural renderer to learn to generate the sky while relighting the scene, as opposed to having a

dedicated SkyGAN for the task. To supervise the sky generation, we apply the same appearance loss

over the sky pixels, as while training for the relighting task. Our SkyGAN results show better sky

generation with realistic clouds and sky colour variations while the baseline is only able to generate a

generic blue colour for the sky region.

To quantitatively validate our model against ablation methods, Table 5.4 shows that model trained
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Input Novel Illu w/ cross-proj loss w/o cross-proj loss

Figure 5.16: Performance between training with cross-projection loss and without cross-projection
loss.

with both cross-projection loss and cycle-consistency loss outperforms others on both benchmarking

data and time-lapse data.

5.10 Conclusion

In this chapter we have presented two scenarios of hybrid decoder and their advanced performance

in applications. From the study of these two settings of hybrid decoder, it is shown that using the

combination of model-based decoder and neural decoder can always produce superior results than

using either one alone. Using a simple decoder based on classical geometry model and optimisation

to merge the depth and normal maps, we obtain high quality geometry from a single image under

demanding conditions. Training a neural decoder over a simple Lambertian renderer and inverse ren-

dering networks, we relight a single image with target light condition to a novel rendering achieving

a high level of photorealism.

To conclude this chapter, we have shown that the right blend of modelling and learning can dra-

matically improve results. A closed form normal/depth merging step significantly improves depth
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Input Novel Illu Full input No shadow network

Figure 5.17: Performance comparison between training without shadow map given from shadow
network and our full input.

Input Novel Illu w/ cycle loss w/o cycle loss

Figure 5.18: Performance comparison between training with cycle consistency loss and without cycle
consistency loss.
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Input Novel Illu Full input No residual input

Figure 5.19: Performance comparison between training without residual input map and our full input.

Input Novel Illu w/ SkyGAN w/o SkyGAN

Figure 5.20: Performance comparison between training with SkyGAN and training directly learn sky
by appearance loss.

maps with no additional training data and no learnable parameters. Here the depth and normal es-

timation seem to learn different geometric properties that are complementary and improved when

combined. Following this assumption, estimating both depth and normal by shared networks that

implicitly learns the conditional relationship could produce better estimates. Next, a neural renderer

can do vastly better than a Lambertian fixed function renderer alone. It is shown that cross projection

and perform relighting by shuffling lighting estimates is a very useful source of supervision for learn-

ing relighting. The image relighting problem can be well tackled when formulated as sub-problems,

like inverse rendering, shadow estimation, relighting rendering and sky generation, and we resort to

a particular neural network for learning each sub-problem. However, like InverseRenderNet the re-

lighting neural renderer also suffers from limitations stemming from physical models involved, that

is, the illumination is restricted to be low-order spherical harmonics, and inaccurate correspondence

in MVS makes the learnt model cannot always produce sharp results. Besides, there exists a couple

of challenging scenarios. First, shadows handling issue persists in both estimation and removal stages

and re-synthesis processes, especially strong cast shadows. Second, dark images or night scenes re-

main a challenging problem. Finally, greatly specular surfaces like lakes or mirror walls are still an

ill-posed problem for our relighting network.
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Conclusion

6.1 Summaries and conclusions

In this thesis, we explore the model-based decoder and its usability and scalability in deep learning

methods. We propose different model-based decoders based on physical models. We study dif-

ferent applications including BRDF estimation, inverse rendering, fine depth prediction and image

relighting with the power of model-based decoders. A differentiable rendering model facilitates a

BRDF estimation network being trained by self-supervision on unlabelled data. A Lambertian model

and cross-projection multivew stereo model enable us to train inverse rendering networks by self-

supervision on unlabelled and unstructured data. A linear model relating depth and normal helps us

emboss details onto deep depth estimates from deep normal estimates. A neural renderer on top of a

Lambertian renderer can yield realistic relighting renderings that capture Lambertian reflectances as

well as non-Lambertian visual effects.

By analyses on different applications, we can draw the following conclusions on model-based de-

coders. Integrating model-based decoders into neural networks is a promising research direction

and could be the next step for the development of deep learning. Model-based decoders show great

promise by combining our prior knowledge from the classical approaches and strong modelling capa-

bility of neural networks. It circumvents the heavy demands on ground truth label data, whilst some

new constraints inherent to the employed models are included. For example, InverseRenderNet and

121



122 Chapter 6. Conclusion

neural relighting network built on MVS model need to use multiview stereo images in training, and

a fine depth prediction pipeline can only accept and produce depth map rather than other geometric

forms. Another key feature of our embedded physical model in neural networks is to encapsulate

physical interpretability in black-box model, by which InverseRenderNet can leverage self-rendering

signal to hallucinate plausible predictions without dense and fine supervision and relighting renderer

is empowered to control relighting results by explicit physical parameters. Despite showing promis-

ing usability, existing model-based decoders are only well-behaved under simple assumptions, which

hinders their performance on generic and realistic scenarios, since these models have been signifi-

cantly simplified to enable forward flow and backpropagation. As for more sophisticated physical

models, how to approximate their behaviours by differentiable operations is still an open question.

6.2 Future Work

We discuss future work based on the presented applications. This can help us conclude the future

work for the general topic of model-based decoders.

6.2.1 Deep BRDF estimate

In our BRDF estimation network, the renderer only models the interaction between the local illumi-

nation and the target surface, but there are no considerations on occlusion, global illumination and

inter-reflections etc. Extending our differentiable renderer to operate on these graphics phenomenons

enable us to handle more complex scenes. Also, we should extend the support for perspective pro-

jection to make our renderer usable in most common cases. A more interesting extension is to take

multiple images as input to provide more observations between different incident lighting and oriented

surfaces, such that the network can approach harder problems like SVBRDF estimation or doing es-

timation without geometry constraints. In terms of the BRDF statistical model employed, we could

learn a network to capture a new model from the dataset [99]. The efficiency of the renderer can also

be optimised by introducing other lighting representations rather than using point light sources.
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6.2.2 Deep inverse rendering

There are many promising ways in which this work can be extended. First, our modelling assumptions

could be relaxed, for example using more general reflectance models and estimating global illumina-

tion effects such as inter-reflection. Second, our network could benefit from losses used in training

intrinsic image decomposition networks [83]. Third, our lighting prior could be extended to better

handle indoor scenes. Fourth, our fixed reflectance and illumination model could be made partially

learnable in order to be able to better explain real world appearance [131]. Finally, the network can

be extended to learn inverse rendering on pedestrians in the foreground, which could improve inverse

rendering results by holistically modelling the full image including both transient pedestrians and

static objects.

6.2.3 Fine depth prediction and novel view synthesis

As for estimating depth maps containing details, the most obvious future work is to train the two net-

works simultaneously. Since the merging process involves only the solution of a linear least squares

system, this could be done within the network during training. Recently, Zamir et al. [167] presented

an insightful study of simultaneously training multi-task networks in a more generic scenario, where

the results from different networks are merged by learnt models rather than physics-based models

admitted by our prior knowledge. Such learnt models are able to find the hidden transition functions

between different domains, for example the relationship between depth and normal can be learnt by a

shallow neural network which could potentially perform better than our simplified linear model. Al-

ternatively, one could consider estimating only depth but using inverse rendering losses such that the

surface normals of the depth map better capture high frequency detail. This would require a method

for estimating calibration parameters, however. Another obvious direction, relating to novel view

synthesis, would be to introduce adversarial networks to enhance the quality of the synthesised views.

Clearly, our results lack background and sky which a GAN may be able to synthesise realistically,

while retaining semantic control over the pose and lighting of the scene.
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6.2.4 Neural relighting renderer

An interesting way of extending this work would be training the whole pipeline in an end-to-end

manner, which we expect to further optimise each constituting network so as to improve relighting

results, or make the network implicitly aware of the 3D scene geometry hence reasoning better shadow

casting effects. Alternatively, we could feed the depth map that conveys richer geometry information

than normals into the relighting pipeline. With regard to illumination, our spherical harmonic lighting

is sub-optimal for generating strong and sharp shadows, therefore one possible extension is to use

the illumination being a union of directional lighting and spherical harmonics lighting. More ideally,

our relighting pipeline should work on HDR environment maps either by directly taking it as input

or encoding it into a lighting embedding. This neural rendering framework based on self-supervision

from casual photography can also be extended in the future to lighting augmentation tasks such as

addition or removal of existing light sources in the scene, opening up interesting applications in

augmented and virtual reality domain.
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