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Abstract

In the last decades, the rapid increase of user traffic demand for better user experi-

ence has pushed the traditional macrocell-only networks being evolving to modern

heterogeneous networks(HetNets) with a multi-tier structure. The dense deployment

of small-cell base stations (BSs) implies short distances between BSs and users. It

is therefore likely that users will see line-of-sight (LoS) links from its serving BS and

even nearby interfering BSs, which has not been considered in performance analysis

for multi-tier HetNets yet.

In this thesis, the dense multi-tier HetNet with LoS and non-line-of-sight (NLoS)

transmissions based on a multi-slope path loss model is analyzed. The spatial lo-

cations of BSs of any given network tier and those of mobile users are modeled as

independent spatial Poisson point processes (PPPs). The expressions of downlink

coverage probability are divided for a multi-tier HetNet, based on that the calcu-

lations of the area spectral efficiency (ASE) and energy efficiency (EE) are further

proposed. The results demonstrate that in an extremely dense HetNet, both the

ASE and EE of the HetNet will drop quickly with further increase of the small-cell

density due to the dominance of LoS interfering small-cell links.

Following that, the investigation is moved to the probabilistic events of LoS and

NLoS transmissions. Four transmission scenarios are simulated with different path

loss models, including a linear LoS probability function, a suburban area, a millime-

tre wave transmission and a 3D path loss model. Accordingly, a user-centric BS

clustering strategy is proposed for a non-coherent joint transmissions (JTs) in dense

small-cell networks, based on the idea of grouping the BSs with their LoS probabili-

ties to such user above a predefined threshold. The proposed BS clustering strategy

is evaluated in the above four transmission environments. Our simulation results

show that the coverage probability and spectrum efficiency (SE) achieved by the

proposed user-centric BS clustering strategy achieve a rapid growth rate with the
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increasing BS density, and even at extremely high BS densities in all four considered

environments.

Lastly, following the proposed BS clustering strategy above, a further developed clus-

tering strategy called multi-BS multi-user-equipment (UE) clustering is proposed to

allow multiple BSs to serve multiple UEs simultaneously. The main idea of this

clustering strategy is to boost network performance in terms of coverage probability

and SE at high BS density without sacrificing the ASE. Utilizing stochastic geom-

etry, the closed form expressions of the network performance in terms of coverage

probability, SE, ASE and EE are derived in a downlink small-cell network. The re-

sults show that the proposed clustering strategy achieves high coverage probability

and linear increasing SE and ASE in ultra dense networks at same time.
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transmissions on base station clustering in dense small-cell networks,” in 2019

IEEE 90th Vehicular Technology Conference (VTC2019-Fall), 2019, pp. 1–6

v



vi



Contents

Abstract i

Acknowledgements iii

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Deploying HetNets . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 LoS and NLoS transmission . . . . . . . . . . . . . . . . . . . 3

1.2 Motivation of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Contributions of the Thesis . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Literature Review 9

2.1 Review of HetNets Performance Analysis . . . . . . . . . . . . . . . . 9

2.1.1 Performance Analysis in Cellular Networks . . . . . . . . . . . 9

2.1.2 HetNets Performance of Coverage Probability and SE . . . . . 11

2.1.3 HetNets performance of ASE . . . . . . . . . . . . . . . . . . 14

2.1.4 HetNets performance of EE . . . . . . . . . . . . . . . . . . . 15

2.1.5 Effect of Path Loss in Network Performance . . . . . . . . . . 16

2.2 Review of LoS and NLoS Transmissions . . . . . . . . . . . . . . . . . 17

vii



viii CONTENTS

2.2.1 Multi-slope path loss model . . . . . . . . . . . . . . . . . . . 18

2.3 BS Clustering Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.1 Review of Joint Transmissions . . . . . . . . . . . . . . . . . . 20

2.3.2 Coherent and Non-coherent Joint Transmissions . . . . . . . . 21

2.3.3 User-Centric BS clustering . . . . . . . . . . . . . . . . . . . . 23

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Stochastic Geometry in Cellular Networks 25

3.1 Concept of Stochastic Geometry . . . . . . . . . . . . . . . . . . . . . 25

3.2 Point Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.1 One-dimensional Poisson Process . . . . . . . . . . . . . . . . 26

3.2.2 Poisson Point Process . . . . . . . . . . . . . . . . . . . . . . 26

3.2.3 Mean of Sum in Point Process . . . . . . . . . . . . . . . . . . 27

3.2.4 Moment-Generating Function of Point Process . . . . . . . . . 28

3.2.5 Probability Generating Function of Point Process . . . . . . . 28

3.3 Point Process in Cellular Networks . . . . . . . . . . . . . . . . . . . 29

3.3.1 Interference in Point Process . . . . . . . . . . . . . . . . . . . 29

3.3.2 Coverage Probability in Poisson Network . . . . . . . . . . . . 30

3.3.3 Shannon throughput . . . . . . . . . . . . . . . . . . . . . . . 30

4 HetNets in LoS/NLoS Transmissions 33

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2 Multi-Slope Path Loss Model . . . . . . . . . . . . . . . . . . . . . . 35

4.3 User Association scheme . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.4 Theoretical Analysis in Multi-tier HetNets . . . . . . . . . . . . . . . 37

4.4.1 Coverage Probability . . . . . . . . . . . . . . . . . . . . . . . 38



CONTENTS ix

4.4.2 Area Spectral Efficiency and Energy Efficiency . . . . . . . . . 44

4.5 Two-Tier HetNets in LoS/NLoS Transmissions . . . . . . . . . . . . . 45

4.5.1 Discussion of parameter a . . . . . . . . . . . . . . . . . . . . 46

4.6 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.6.1 Coverage Probability . . . . . . . . . . . . . . . . . . . . . . . 49

4.6.2 ASE and EE . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5 BS Clustering under LoS/NLoS Transmissions 59

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2 Path Loss Model in Different Environments . . . . . . . . . . . . . . 61

5.2.1 Four Path Loss Models . . . . . . . . . . . . . . . . . . . . . . 62

5.2.2 Case 1: Linear LoS probability . . . . . . . . . . . . . . . . . 62

5.2.3 Case 2: Isolated Picocell in A Suburban Area . . . . . . . . . 63

5.2.4 Case 3: Millimetre Wave Outdoor Environment . . . . . . . . 63

5.2.5 Case 4: Urban Micro Cell in A 3D Scenario . . . . . . . . . . 64

5.2.6 Simulation Results of Four Path Loss Models . . . . . . . . . 67

5.3 User-Centric BS Clustering Strategy . . . . . . . . . . . . . . . . . . 71

5.4 Simulation Results of Clustering Strategy . . . . . . . . . . . . . . . . 73

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6 Multi-BS Multi-UE Clustering 85

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.2 System Model and Coverage Probability . . . . . . . . . . . . . . . . 86

6.2.1 Clustering Strategy in Small-cell Network . . . . . . . . . . . 86

6.2.2 Probabilistic BS Density . . . . . . . . . . . . . . . . . . . . . 88



6.3 Theoretical Analysis in Multi-BS Multi-UE Clustering . . . . . . . . 89

6.4 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7 Conclusions and Future Work 99

7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

8 Appendix 103

8.1 Discussion of parameter b and c . . . . . . . . . . . . . . . . . . . . . 103

References 105

x



List of Tables

4.1 Simulation Parameter in the two-tier HetNets . . . . . . . . . . . . . 49

5.1 LoS/NLoS channel models . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2 Simulation Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

xi



xii



List of Figures

1.1 Global mobile data traffic growth rate prediction from 2017 to 2022,

[Source: Cisco VNI Mobile, 2019] . . . . . . . . . . . . . . . . . . . . 2

1.2 5G small-cell BS on house roof [4] . . . . . . . . . . . . . . . . . . . . 4

2.1 Illustration of a three-tier heterogeneous cellular network [6] . . . . . 10

2.2 Example of downlink HetNet with three tiers of BSs: a high-power

macrocell BS (red square) is overlaid with successively denser and

lower power picocells (blue triangle) and femtocells (magenta circle) [20] 12

2.3 System outage probability versus the transmit SNR with different

path loss exponents [56] . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Illustration of CoMP [71] . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1 Coverage probability vs. SINR threshold in the two-tier HetNets . . . 50

4.2 Coverage probability vs. small-cell density for different macrocell

densities in the two-tier HetNets . . . . . . . . . . . . . . . . . . . . . 51

4.3 ASE and EE vs. SINR threshold . . . . . . . . . . . . . . . . . . . . 52

4.4 ASE and EE vs. transmit power of small cells in the two-tier HetNets 53

4.5 ASE of macrocell and small cell vs. small cell density in the two-tier

HetNets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

xiii



4.6 EE vs. small cell density at different path loss exponents . . . . . . . 55

5.1 LoS probability against distance between user and BS . . . . . . . . . 66

5.2 Coverage probability vs. BS density in four Cases . . . . . . . . . . . 68

5.3 Spectral efficiency vs. BS density in four Cases . . . . . . . . . . . . . 70

5.4 Illustration of a user-centric BS Cluster . . . . . . . . . . . . . . . . . 71

5.5 User association decision . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.5 Coverage probability vs. BS density of BS clustering in four Cases . . 75

5.6 Coverage probability vs. BS density of proposed BS clustering in four

Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.6 No. of BSs in the cluster against the LoS probability threshold for

BS clustering in four Cases . . . . . . . . . . . . . . . . . . . . . . . . 79

5.6 spectrum efficiency vs. BS density in four Cases . . . . . . . . . . . . 82

6.1 Illustration of a multi-BS multi-UE cluster . . . . . . . . . . . . . . . 87

6.2 The kth UE is connected with the nth BS . . . . . . . . . . . . . . . . 88

6.3 Coverage probability vs. BS density in multi-BS multi-UE clustering 93

6.4 Average data rate vs. BS density in multi-BS multi-UE clustering . . 94

6.5 ASE vs. BS density in multi-BS multi-UE clustering . . . . . . . . . 96

6.6 EE vs. BS density in multi-BS multi-UE clustering . . . . . . . . . . 97

xiv



List of Abbreviations

3D Three dimensional

ASE Area spectral efficiency

AWGN Additive white Gaussian noise

BS Base station

CCDF Complementary cumulative distribution function

CDF Cumulative distribution function

CoMP Coordinated multi-point

CSI Channel state information

EE Energy efficiency

HetNet Heterogeneous network

JT Joint transmission

LoS Line-of-sight

MIMO Multiple-input-multiple-output

NLoS Non-line-of-sight

PDF Probability density function

QoS Quality of service

RS Received signal

RSS Received signal strength

xv



SE Spectral efficiency

SINR Signal-to-interference-plus-noise ratio

SNR Signal-to-noise ratio

UE User equipment

xvi



Chapter 1

Introduction

In this chapter, the background of deployment of heterogeneous network (HetNets)

is presented. The future HetNets with dense deployment of the small-cell base

station (BS) is seem to be a promising approach to meet the fast increasing data de-

mand. However, the dense deployment of HetNets faces new challenges. This thesis

aims to investigate the limitation of current HetNets and looking for technology for

enhancement of the future cellular networks. The contributions and structures of

the thesis are then presented.

1.1 Background

In the last decades, the wireless communication has been pushed into a fast evolution

from 3G to 4G, and now coming into 5G era! The reason behind is due to the rapid

increase of user traffic demand for better user experience. According to the traffic

forecast in [3], the growth rate of mobile data traffic in 2017 was 12 exabytes per

month, which will have a seven-fold increase until 2022.
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Figure 1.1: Global mobile data traffic growth rate prediction from 2017 to 2022,
[Source: Cisco VNI Mobile, 2019]

1.1.1 Deploying HetNets

In order to meet the exponentially increasing traffic demands, the traditional macrocell-

only cellular networks are being evolving to modern HetNets which consists of a

large number of small cells which are in various types, e.g., microcells, metrocells,

picocells, or femtocells. Distinguish from their achievable functions and working

transmitting power levels, they are suitable for different local environments. More-

over they are designed to be simple structure with a low install and operating cost,

which is ideal for large amount of deployment. In this case, the dense deployment

of the small cells reuses the spectrum locally and provides most of the capacity at

mobile user equipments (UEs) while macrocells provide an umbrella coverage for

UEs.

Despite the benefits, the operators face the challenges to manage the interference
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from the dense BS deployment in HetNets, especially inter-cell interference from

small-cell BSs.

1.1.2 LoS and NLoS transmission

In traditional cellular networks, the Non-line-of-sight (NLoS) propagation is in

charged for most cases. The powerful macrocells are deployed in a sparse grid

of the cellular network to provide to cover more area. UEs are usually experiencing

a relatively large distance of transmission links to macrocell BS, which results obsta-

cles like, buildings, trees and uneven terrain occurs. The transmitting signal from

a macrocell BS may experience reflection, diffraction and absorption in some cases.

Therefore, the users are usually suffered from the low received power because of the

relatively large distance of transmission links. The techniques, such as multi-path

signal propagation and relays, are investigated to overcome such issues.

In contrast, the modern HetNets consists of a large number of small cells. The

transmitting distances between UEs and BSs are dramatically reduced. The UEs

may located a few meters to BSs. In this case, line-of-sight (LoS) propagation

in wireless communication is no longer considered for indoor Wi-Fi network only.

People are able to find the small cells BSs on street lamp posts, traffic lights, top of

house roof (as shown in Fig. 1.2), etc.

The LoS transmission refers to a transmitting signal travelling at direct path from

the transmitter at BS to the receiver at user. Without reflection, diffraction and

absorption through the propagation. The LoS transmission link is expected with

the high signal power at the receiver to improve the quality of service (QoS) for

users. Therefore, the more sophisticated and practical path loss models are worth

3



Figure 1.2: 5G small-cell BS on house roof [4]

to be considered in the analysis of cellular networks.

1.2 Motivation of the Thesis

In widely considered traditional cellular networks, the sparse deployment of macro-

cell BSs leads to the relatively large transmission distances. The transmission links

between BSs to UEs and interfering links between BSs to BSs in the outdoor en-

vironment are modelled as NLoS propagation only. By utilizing the mathematical

tractable tool of stochastic geometry, the network performance is able to theoreti-

cally evaluated. To meet the rapidly increasing user demand, the cellular networks

evolve from single tier networks to the HetNets with multi-tier structure containing
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macrocell BSs and a large number of small-cell BSs. The dense deployment of the

small cells in HetNets triggers occurrence of the LoS transmissions in the outdoor

environment.

It is challenging to theoretically model the HetNets with the re-defined complicated

path loss model. The previous research [5] has shown a path for considering the

probabilistic LoS and NLoS transmissions in a single tier cellular network. Base on

that, the first research focuses to facilitate a more complicated path loss in a multi-

tier HetNets to consider both LoS and NLoS transmissions. The performance of the

HetNets from the theoretical results in terms of coverage probability, ASE and EE

is expected to demonstrate the characteristic of the effects of LoS transmissions in

HetNets.

Following that, the further consideration of more outdoor transmission environments

are expected to in the LoS and NLoS path loss model. Since the high transmitting

power from LoS links causing the severe interference in densely deployed small-cell

BSs leads to negative effects on network performance. In order to mitigate the

LoS interference, the BS clustering strategy of joint transmissions (JTs) would be

introduced which has the significant effect on mitigating the cell edge interference.

Lastly, the more advanced BS clustering strategy is worth to study in order to

further enhance the performance of the cellular networks.

1.3 Contributions of the Thesis

The research contributions of this thesis are listed as follows:

• In Chapter 4, the path loss model with LoS and NLoS transmissions are de-
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fined for multi-tier HetNets. Accordingly, the tractable approach by utilizing

stochastic geometry is proposed to evaluate the network performance in terms

of coverage probability, ASE and EE.

• In Chapter 5, the further investigation are studied for LoS and NLoS path loss

model in different transmission environments. A user-centric BS clustering

strategy for non-coherent JT is proposed to mitigate inter-cell interference.

The proposed BS clustering strategy regarding to a LoS probability threshold

is compared to the existing RSS-based BS clustering in the network perfor-

mance.

• In the Chapter 6, following the research in Chapter 5, the further enhancement of

clustering strategy called multi-BS multi-UE clustering strategy is proposed in

dense small-cell networks. The tractable approach is developed for theoretical

analysis of the network performance in terms of average coverage probability,

SE, ASE and EE.

1.4 Structure of the Thesis

The structure of this thesis is presented as follows:

• Chapter 2: Literature Reivew

This chapter firstly reviews the performance analysis of current HetNets in

stochastic geometry, and then introduces the importance role of LoS and NLoS

model in network performance analysis. Following that, a technologies called

coordinated multi-point (CoMP) transmission is reviewed as a potential en-

hancement for cellular networks.

• Chapter 3: Stochastic Geometry in Cellular Networks
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In this chapter, stochastic geometry is reviewed as the methodology in the-

oretical analysis for cellular networks. The concept of stochastic geometry

is firstly stated for adaptation to randomness located BSs in networks. The

characteristics of point process are determined in a number of definitions.

Furthermore, the point process is adapted in wireless network environment for

general elaboration.

• Chapter 4: HetNets in LoS/NLoS Transmissions

In this chapter, the path loss model with LoS and NLoS is facilitated in a

HetNet. A tractable approach by using stochastic geometry is proposed for

theoretical analysis of a K-tier HetNet. The proposed analytical approach

is then considered in a simplified 2-tier (macro and small cells) network for

more practical simulation. The performance analysis of the HetNets is pre-

sented in terms of coverage probability, ASE and EE. The results discuss the

performance degradation at high BS density.

• Chapter 5: LoS/NLoS Transmissions in BS Clustering

In this chapter, the LoS and NLoS path loss model is considered in a number

of transmission environments, including linear LoS probability function in a

theoretical model, isolate picocells in a suburban area, millimetre wave in

outdoor environment and urban micro cells in a 3D scenario. The coverage

probability and spectral efficiency (SE) of the small-cell network are evaluated

in all mentioned cases. The performance degradation of LoS transmission

model at high BS density is further proved.

Correspondingly, a BS clustering strategy is proposed to mitigate the LoS in-

terference at high BS density in order to enhance the network performance.
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The analysis in terms of coverage probability and SE are repeated for compar-

ison without BS clustering. The complexity of proposed clustering strategy is

further discussed by the number of BSs in a proposed cluster for JTs.

• Chapter 6: Multi-BS Multi-UE Clustering

Following the above the BS clustering strategy research, a new clustering strat-

egy called multi-BS multi-UE clustering is then proposed to improve the uti-

lizing efficiency in spatial domain. The corresponding tractable approach is

developed in stochastic geometry in small-cell networks. The performance

analysis of a small-cell network is discussed in terms of coverage probability,

average data rate, ASE and EE.

• Chapter 7: Conclusions and Future Works

This chapter summarizes the thesis and discusses the future works.
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Chapter 2

Literature Review

In this chapter, the topics of current HetNets is introduced in terms of performance

features. Due to the channel model have a significant effect on network performance,

the critical role of LoS and NLoS transmissions in path loss model is then introduced.

Finally, the BS clustering strategy in co-operative transmission for enhancement of

network performance is reviewed.

2.1 Review of HetNets Performance Analysis

Dense deployments of small cells are widely considered as the most promising ap-

proach to provide high quality of service to mobile users. Thus, future cellular

networks are likely to have a multi-tier structure composed of macrocell base sta-

tions (BSs) and overlaid small-cell BSs, known as HetNets [7–9].

2.1.1 Performance Analysis in Cellular Networks

The cellular networks are widely evaluated by the characteristics in terms of coverage

probability, Spectral efficiency (SE), Area spectral efficiency (ASE) and Energy

9



Figure 2.1: Illustration of a three-tier heterogeneous cellular network [6]

efficiency [10–14].

• Coverage probability : It is defined as the probability that the signal-to-interference-

plus-noise ratio (SINR) at a given UE can achieve a target threshold. The

coverage probability can be viewed as the complementary of the outage prob-

ability [15, 16]. The coverage probability C can be given by a mathematical

definition as following,

C = P[SINR > T ] (2.1)

for a SINR threshold T .

• Spectral efficiency : It refers to the data rate that can be transmitted to a UE over

a given bandwidth in a specific cellular network with the unit of bits/sec/Hz

(or bps/Hz) [17]. When the UEs in the cellular network are assumed to share
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same spectrum, it is also know as average data rate. The SE denoted by R is

shown in the equation as,

R = E[ln(SINR + 1)]. (2.2)

• Area spectral efficiency : By considering the cellular network in a defined geo-

graphic area, the spatial domain is included. The SE is further introduced by

a given covered area with the unit of bits/sec/Hz/km2 (or bps/Hz/km2).

ASE =
R

Area
(2.3)

• Energy efficiency : It is defined as the ratio of the total network throughput over

the energy consumption, and the unit is in bits/Joule [18]. To analyze one

sub-channel, the EE can be also calculated by the following equation with its

unit bps/Hz/W [19].

EE =
ASE

P/Area
(2.4)

where P/Area is the average networks power consumption in unit area.

2.1.2 HetNets Performance of Coverage Probability and SE

In many works, HetNets have been modeled as Poisson point process (PPP) for

performance analysis by capturing the impact of path loss, composite shadowing

and fading, transmit power, traffic loads in multi-tier structure, partial and full

spectral reuse among different tiers (K > 1), arbitrary locations and deployment

densities of all types of BSs. Using the stochastic geometry, the coverage probability

11



Figure 2.2: Example of downlink HetNet with three tiers of BSs: a high-power
macrocell BS (red square) is overlaid with successively denser and lower power pic-
ocells (blue triangle) and femtocells (magenta circle) [20]

of the is able to theoretically analyzed through the equation [21–24].

C =
K∑
k=1

P[SINRk(r) > γ] (2.5)

In [20], the coverage of different BSs is shown in Fig. 2.2, where black lines show

the border of cell coverage. By taking advantage of the tractability offered by PPP
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modeling [24–26], the tractable framework is then established to model cellular

networks. In a multi-tier HetNets, the tractable approach for coverage probability

and achievable data rate, in which a flexible cell association is introduced in term

of received signal power and bias factor in different tiers [20, 27].

Furthermore, the authors in [28] show that a positive range expansion bias of the

small cells will encourage users to discard the macrocells and associate with lightly

loaded small cells. The HetNets will then be improved in coverage probability.

Moreover, this coverage can be further optimized by tuning the parameters of BS

densities and bias factor of small cells [29]. Offloading UEs towards small cells

is an effective way to meet the high data rate demand in two-tier HetNets, but

offloaded users suffer from strong inter-tier interference, which reduces the benefits

of offloading [30].

The small cells with various types of BSs can achieve large performance gain through

aggressive spectrum reuse [31–33]. By deploying more small cells in a HetNets, it

has a potential to improve SE by reducing inter-cell interference if the small cells

can partially open theirs channels for external UEs to access. In [31], the SE of a

multi-tier HetNet is analytically derived in both open and closed access schemes of

small cells.

R = E[ln(SINR + 1)] (2.6)

The PPP is modelled to prove its accuracy by comparing the coverage probability

in the traditional grid deployment and real-world random deployment.

In [32,34], the problem of optimizing the rate coverage is analyzed from the tier asso-

ciation probability and spectrum portioning is addressed in a multi-tier network. By

utilizing tools of stochastic geometry, the significantly improved coverage is shown
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in rate coverage of the system. In [33, 35], the data rate in both spectrum reuse

and shared spectrum access scenarios are modeled for uplink transmission in the

HetNet. The data rate in small cells degrades severely due to co-tier interference.

The optimal factor of partial spectrum reuse defined as the portion of spectrum

reused by small cells in two-tier HetNets is further analyzed in [36].

2.1.3 HetNets performance of ASE

Unlike the traditional cellular network with macro cells only, the dense deployment

of small cells in current HetNets brings the concern of efficiency evaluation in sptial

domain [37]. The SE of a network system is further introduced in a unit area as the

ASE as,

ASE =
R

Area
= λBSR (2.7)

where λBS is the BS density.

In [38, 39], the ASE is modeled in a multi-tier HetNet with macro and femto BSs,

where the deployment of low power femtocell BSs are around the edge of the macro-

cells. Then, the HetNets is suited in uplink transmission with location based power

control mechanism [40]. A analytical bounds on the uplink ASE of is derived for

the cell edge user by the approach of the moment generating function. In [41–43],

it has been shown that the ASE of a downlink HetNet increases with the additional

deployment of small-cell BSs. However, more small-cell BSs raise the energy cost

and limit network flexibility and performance.
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2.1.4 HetNets performance of EE

It is worth noting that a rapid increasing number of deployed small-cell BSs lead to

an increase in the total energy consumption of the HetNets, growing environmental

awareness and economic sustainability [44–48]. These foreseeing impacts of EE in

cellular networks is motivating the standardization authorities and network opera-

tors to continuously explore future technologies [46].Thus, the more comprehensive

performance analyses of HetNets gains the focus on energy efficiency. The analytical

equation of EE is then presented in [49,50] as,

EE =
ASE∑K
k=1 λkPk

. (2.8)

In [51,52], a framework of theoretical analysis is derived to evaluate EE in a two-tier

multiple-input-multiple-output(MIMO) HetNet while considering wireless backhaul

in both uplink and downlink transmissions. In [36], by analyzing partial spectrum

reuse in two-tier HetNets. the UE association choice of preferable BSs is suggested

in term of BS energy cost. In order to further improve the energy efficiency and

interference mitigation in HetNets, [53] proposed an iterative power allocation algo-

rithms between primary macrocells and small cells. It maximized the sum energy

efficiency of the small cells while respecting the interference limits at the macrocell

UEs. In [54], the authors investigate the method to enhance EE in cognitive uplink

wireless system. By considering the uncertainty of the channel state information

(CSI) between the primary and secondary UEs, the energy efficiency is maximized.

In [55], the authors proposed an energy efficiency model for Poisson-Voronoi tessel-
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lation cellular networks, in which the spatial distribution of traffic load and power

consumption are considered for a typical BS. The energy efficiency is evaluated in

both numerical and Monte Carlo simulations by taking into account traffic load,

channel effects and interference.

2.1.5 Effect of Path Loss in Network Performance

The path loss model with equation form as PathLoss = r−α is widely accepted

in analysis of cellular networks to model the decay of transmitted signal power.

In [56], the outage probability of the cellular network is demonstrate in Fig. 2.3

as a function of the path loss exponent β. The figure indicates that the system

Figure 2.3: System outage probability versus the transmit SNR with different path
loss exponents [56]

outage performance can be improved with the decrease of β. That’s because the

path loss increases with the decrease of β, and then the channel gain will increase
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correspondingly, which results a lower outage probability of the system. In [57–59],

The coverage probability, potential throughput and ASE are shown in path loss

models of various path loss exponents in dense cellular networks. The disappointed

results predict the limit of cellular network densification. Since, significant effects of

path loss model in analysis of cellular network, the more practical model for current

dense HetNets is in required.

2.2 Review of LoS and NLoS Transmissions

Traditionally, NLoS transmissions would usually occur in cellular communications.

By introducing dense deployment of the small cells in HetNets, the distance of

transmission link largely reduced bewteen the UEs and their serving BSs. It is

likely that UEs will see LoS links from serving BSs and even nearby interfering

BSs. Traditionally, NLoS transmissions with single slope would usually occur in

the cellular communications model [60]. Compared to NLoS interfering links, the

LoS interfering links with slow attenuation of the signal power can lead to severer

interference to the user.

In [61–63], the LoS and NLoS path loss models have gained significant interest in the

design of dense small-cell networks. In [61], the 3GPP suggested different outdoor

path loss models for urban, suburban, and rural environments. In [62], a linear

function for the LoS probability was considered as a special case for a tractable

analysis of small-cell network performance. In [63], 3 dimensional (3D) path loss

models covering both LoS and NLoS transmissions were proposed for both indoor

and outdoor environments, where the heights of BSs and users play an important

role.
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From stochastic geometry, the analytical framework for small cell networks was

proposed in [64], where the more accurate path loss model is taken into account for

both the LoS and NLoS transmissions as shown in equation.

l(r) =

 lL(r) = ALr−α
L

with PrL
1 (r)

lNL(r) = ANLr−α
NL

with 1− PrL
1 (r)

(2.9)

The results indicated the dense networks will suffer from high outage probability

under both LoS and NLoS transmissions. It brought the concern to justify the

benefit of future dense cellular networks. Furthermore, the ASE and on the energy

efficiency of dense small-cell networks were evaluated in the effect of LoS and NLoS

transmissions in [65]. It is interesting to notice that the ASE behave two linear

increase rates at low and high BS densities. The EE exhibits a a global maximum

value in LoS and NLoS transmissions, which in contrast of monotonically increasing

in the case of LoS or NLoS scenarios. In addition, the LoS and NLoS transmissions is

introduced in millimeter wave cellular networks [66]. The closed-form formulas from

stochastic geometry is addressed to compute coverage probability and the average

rate.

2.2.1 Multi-slope path loss model

In traditional single path loss model, the fixed path loss exponent can lead to mag-

nitude differences in received and interference powers against the true values in

practical. The uplink dense small cell networks under both LoS and NLoS trans-

missions is analyzed in the network performance of ASE [67], which conclude that

a significant improvement of the ASE can be realized by introducing a small power

compensation factor in uplink transmission. In [68], multi-slope path loss models are
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modelled by a piece-wise power law and continuous and accurately approximates,

where different distance ranges are subject to different path loss exponents within

each distance slope.

l(r) =



l1(r) = A1r
−α1 when 0 < r ≤ d1

l2(r) = A2r
−α2 when dn−1 < r ≤ dn

...

lN(r) = ANr
−αN when r > dN−1

(2.10)

A more comprehensive multi-slope path loss model was used to model LoS and NLoS

transmissions in a single-tier homogeneous small-cell network [5,69]. The analytical

results were obtained by utilizing stochastic geometry, which showed the existence of

an optimum BS density to maximise the achievable coverage probability. Once this

optimum point is reached, the coverage probability decreases fast with the small

cell density. This is because the LoS transmissions from nearby interfering BSs

collectively cause a tremendous amount of interference to the users. In this case,

the gains of techniques such as coordinated multi-point (CoMP) can be expected to

increase in dense networks.

2.3 BS Clustering Strategy

HetNets is seemed to be the key feature for future cellular networks, which is able to

meet the ever-increasing mobile user data demand. However, the the dense deploy-

ment of small cells are randomly located and operated in uncoordinated state. The

more organized coordinated operation is thus required for network enhancement.

User-centric BS co-operation can play a important role in managing interference in
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HetNets, which provide a guarantee for the improvement of user data rate [70].

2.3.1 Review of Joint Transmissions

Figure 2.4: Illustration of CoMP [71]

CoMP with JT is considered as one of the key technology enhancements for future

cellular networks to improve user data rate and SE. CoMP transmission as shown

in Fig. 2.4 is realized by exchanging coordination information between a set of

transmission BSs, forming a so-called CoMP cluster [71, 72]. Interference can be

mitigated by cooperation between different sites of BSs. Significant gains can be

rewarded for both the uplink and downlink transmissions [73].

In [43,74,75], the outage probability of a user is studied in CoMP to mitigate inter-

cell interference in dense cellular networks. The practical factors are included as the

irregular locations of Poisson distributed BSs, the resultant path loss, multi-antenna
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BSs for mitigating mutual interference in the same cluster and different sub-channel

for nearby BSs.

A closed-form expressions and accurate approximations of average data rate of

CoMP cluster with imperfect CSI is derived in [76], subjected to the small-scale

Rayleigh fading, path loss attenuation, and interference from outside CoMP cluster.

In order to improve performance of the coverage and data rate especially for cell edge

UEs, the cellular networks are considered in multi-tier structure. The network per-

formance of the coverage probability is enhanced by CoMP transmission techniques

in [77]. In [78,79], the overlaying macro BSs and small-cell BSs are deployed in co-

channel. The cross-tier interference have a significantly negative effects in network

performance due to multiple tiers of BSs operating shared spectrum. CoMP with

JT show the effectiveness in mitigating cross-tier interference in multi-tier networks.

Moreover, in [80], it considers the power optimization problem for downlink trans-

mission in CoMP systems, aims to minimum weighted EE with QoS constraint.

However, the performance of CoMP systems heavily depends on the feedback qual-

ity and channel imperfections.

2.3.2 Coherent and Non-coherent Joint Transmissions

For interference limited cellular networks, CoMP with JT has been widely considered

as a promising technique to increase the network performance [81]. Ideal backhaul

of the network is assumed, which allow randomly deployed BSs jointly transmit user

data. The signals from different BSs are well synthesized. The inter-cell interference

is thus mitigated and hence improve SINR at the UEs and resulting better coverage
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probability and SE of the whole network.

Coherent Joint Transmissions

In coherent JT, it is assumed that CSI of the serving links from the BSs in the

cooperation set is shared in the BSs in the cooperation set. Based on the CSI

shared among all cooperating BSs, the potential serving BSs for one typical UE is

a subset of all BSs. The transmitted signals from different BSs in the subset are

jointly pre-coded with prior phase alignment and tight synchronized to transmit the

same message to the target UE on the same time and frequency resource [82–86].

In [87], coherent JT in downlink heterogeneous cellular networks is further proposed

with a tight approximation and closed form of coverage probability by utilizing

stochastic geometry. The results indicate a significant positive gains in coverage

probability in coherent JT scenario. A further study of coherent JT is produced

in [83]. A Gamma distribution is introduced in PPP of stochastic geometry, which

provide an tight upper bound of network coverage probability and approximation is

tight in interference limited HetNets.

Non-coherent Joint Transmissions

One popular BS cooperation technology is non-coherent JT, where multiple BSs

collaboratively transmit to a user without prior phase-mismatch correction or tight

synchronization [70,88–90]. It presented in [88] that a tractable model from stochas-

tic geometry is approached by taking into account the BS density, channel fading,

average path loss, and interference in non-coherent JT. In [89], non-coherent JT was

then analyzed in HetNets, where any BS with the received signal strength (RSS)

above a pre-defined threshold is selected to perform user-centric BS clustering. It
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was shown that for small cooperative clusters of small-cell BSs, non-coherent JT

among small cells can provide SE gains without significantly increasing the traffic

load per cell. In [70], stochastic geometry tools were used to analyze non-coherent

JT models, where each user is served by either one or two BSs. In [90], the non-

coherent JT was combined with frequency reuse to improve the utilisation efficiency

of spectrum resources.

2.3.3 User-Centric BS clustering

According to the random location of all UEs, the BS set of JT is usually formed in

term of UE-BS association constraint, such as RSS threshold. Where any BS with

the RSS above a pre-defined threshold is selected to perform in JT [89]. In spatial

area of BS set, there is one typical UE located at the origin surround by BSs in JT,

which forms a disk area, so called user-centric BS clustering.

In [91], user-centric BS clustering is facilitated in a multi-cell HetNet a large number

of distributed small-cell BSs. By considering each UE is served a small number of po-

tentially overlapping BSs, this work investigated interference management problem.

A tractable model using Poisson cluster process (PCP) was presented for coverage

probability analysis in [92] to modeling the irregularities in the locations of cellular

BSs. In [93], the mean achievable rate per user is study in coordinated BS down-

link transmission as clustered cellular networks, with transmit power constraints

of the BSs. The interference within the cluster is blocked among users, while the

interference from other clusters still remains. The average achievable rate per user

is evaluate by the impact of the main parameters, such as the singal-to-noise ratio

(SNR), the antenna configuration and the path loss.
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We note that none of the above works on coherent or non-coherent JT has considered

the challenges and opportunities brought by the LoS links in dense cellular networks,

in which case the LoS links widely appears in outdoor transmission environment.

2.4 Summary

In this chapter, three main sections are reviewed as the performance analysis in

HetNets, the key role of LoS and NLoS transmissions and BS Clustering Strategy.

In the review of performance analysis in HetNets, the key features of a HetNets is

related to the performance of coverage probability, SE, ASE and EE. Various sce-

narios and technologies are derived in related closed form expressions by stochastic

geometry to enhance these features.

In the review of LoS and NLoS transmissions, the LoS transmission links are deter-

mined to usually occur in dense deployment of small-cell networks. In the analysis

of dense deployment of small cells, more practical multi-slope path loss model with

probabilistic LoS and NLoS transmissions is required. The HetNet coverage and

ASE hold in a more comprehensive path loss model

In the review of BS clustering strategy, the CoMP is first introduced as a primeval

co-operative transmission technology. Following that, the coherent and non-coherent

JTs are introduced for more recent researches. Lastly, the user-centric BS clustering

in JTs is considered as a effective way to mitigate a interference in cellular network.
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Chapter 3

Stochastic Geometry in Cellular

Networks

In this chapter, stochastic geometry is reviewed as the mathematic methodology in

theoretical analysis for cellular networks. The point process is introduced and fur-

ther adapted for wireless network environment by a series of definitions and deriva-

tions in [94,95].

3.1 Concept of Stochastic Geometry

Unlike the hexagonal deployment of traditional cellular networks, the modern Het-

Nets especially the dense deployment of small cells consists BSs in random locations.

The theoretical analysis of the cellular network raise the question that how can one

derive statistical properties of a collection of BS points? Stochastic geometry sub-

jected to point process provides the answer to explain the characteristics of the

random spatial patterns.
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3.2 Point Process

Consider the d-dimensional space Rd. There are several ways to describe A spatial

point process Φ which is the collection of points (x1, x2, ...)

• Direct characterization of the points xi.

• Using the intervals Si = xi + 1 − xi, i ∈ N . Here it is assumed that the points

are ordered in ascending index, i.e., x1 ≤ x2 ≤ .... The increments Si are

independent in this renewal processes.

• Counting the infinite points falling in a set B ⊂ R:

N(B) =
∞∑
i=1

1(x1 ∈ B). (3.1)

3.2.1 One-dimensional Poisson Process

Definition 3.1 A one-dimensional Poisson point process (PPP) is a point process

in R with constant intensity λ. N([a, b)) has the Poisson distribution with mean

λ(b− a) in each interval [a, b),

P(N([a, b)) = k) = exp(−λ(b− a))
(λ(b− a))k

k!
(3.2)

Due to the intensity is not a function of the location, so the process is called homo-

geneous or uniform.

3.2.2 Poisson Point Process

Definition 3.2 For a PPP in finite-dimension Rd with intensity measure Λ and

density λ, the Poisson distribution N(B) is defined by its means Λ(B) for every set
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B ⊂ Rd,

P(N(B) = k) = exp
(
−
∫
B

λ(x)dx
)(
∫
B
λ(x)dx)k

k!
(3.3)

If Λ(b) = λ|B| in R, we call Φ is a homogeneous PPP and λ is the intensity

parameter.

3.2.3 Mean of Sum in Point Process

Theorem 3.1 From Campbell’s theorem, for a point process Φ = x = x1, x2, ... ⊂

R
d and a measurable function f : Rd → R, the sum

S =
∑
x∈Φ

f(x) (3.4)

further calculate the expectations of sums of function f with ranges on the real line,

the mean of sum in function f over the point process is given as,

E(S) =

∫
Rd

f(x)Λ(dx) (3.5)

If the point process Phi has a density of λ, it becomes,

E(S) =

∫
Rd

f(x)λ(x)dx (3.6)

Furthermore, in a stationary point process Phi with uniform or constant intensity,

it can be written as,

E(S) = λ

∫
Rd

f(x)dx (3.7)
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3.2.4 Moment-Generating Function of Point Process

Theorem 3.2 From Campbell’s theorem, for homogeneous PPP with intensity λ in

R
d and a measurable function f : Rd → R, the sum

S =
∑
x∈Φ

f(x) (3.8)

is absolutely convergent, if and only if

∫ d

R

min(|f(x)|, 1)dx <∞. (3.9)

In this case, we have the moment-generating function as,

E(etS) = exp
( ∫

Rd

λ(etf(x) − 1)dx
)

(3.10)

The obtained equation is a function of f. If setting t = 1, the characteristic functional

of the PPP is obtained.

E(eS|f |) = exp
( ∫

Rd

λ(ef(x) − 1)dx
)

(3.11)

3.2.5 Probability Generating Function of Point Process

A PPP denoted by Φ has Φ = x = x1, x2, ... ⊂ Rd and a measurable function f :

R
d → R. The sum of f(x) over Φ is given as

∑
x∈Φ

f(x) =

∫
Rd

f(x)Φ(dx) =

∫
Rd

f(x)p(x)dx (3.12)
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where

p(x) =
∑
y∈Φ

δ(x− y) (3.13)

δ()̇ is the Dirac delta function. The mean value of the sum is derived in expectation

operation.

E
(∑
x∈Φ

f(x)
)

=

∫
N

∫
Rd

f(x)ϕ(dx)P (dϕ) (3.14)

where N counts the number of points in Phi.

Definition 3.3 Let V be the family of all measurable functions v, Rd → [0, 1]. For

v ∈ V, the probability generating functional (pgfl) of the point process Φ is defined

as

G [v] = E
(∑
x∈Φ

v(x)
)

=

∫
N
v(x)P (dϕ) (3.15)

From the derivation above, the result is shown as,

G [v] = E
[
exp
( ∫
Rd

log v(x)Φ(dx)
)]

(3.16)

3.3 Point Process in Cellular Networks

3.3.1 Interference in Point Process

The transmitter is modelled as a point process Phi ⊂ R
d with the intensity of

λ. Due to the fact that EI(y) = EI0), thus the origin is picked as the reference

point to calculate the expectation over the point process. Following the power law

l(x) = ||x||−α. the mean interference is given as

EI = E
(∑
x∈Φ

||x||−α
)

(3.17)
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From the Campbell’s formula,

EI = λ

∫
Rd

||x||−αdx (3.18)

3.3.2 Coverage Probability in Poisson Network

In this section, a receiver is assumed to be able to decode the message from the

a working transmitter, and located with the distance r to the transmitter. By

considering the power law and Rayleigh fading, the signal power arrived at the

receiver is exponential with mean r−α. The coverage probability of the considered

transmission link is determined in a PPP with interferers of intensity λ.

ps = P(SIR > θ) = P(S > Iθ) = EI(exp(−Iθ)) (3.19)

Further include the distance r in above equation, it gives,

ps(r) = P(SIR > θ|r) = EI(exp(−Irαθ)) (3.20)

3.3.3 Shannon throughput

The Shannon throughput is based on the coverage probability of the system, due to

the fact that only successful transmissions counts. Recall the coverage probability in

above equation and consider p is a function of threshold θ, the Shannon throughput

is then derived as,

E log(SINR + 1) = −
∫ ∞

0

log(1 + θ)dps(θ) (3.21)
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If the complementary cumulative distribution function (cdf) of the random variable

X = log(1 + SINR), we have,

P(X > x) = P(SINR > ex − 1) = ps(d
x − 1) (3.22)

Substitute the results in above equation, it gives,

E log(SINR + 1) = −
∫ ∞

0

ps(d
x − 1)dx (3.23)
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Chapter 4

HetNets in LoS/NLoS

Transmissions

In this chapter, the path loss is considered in a practical model with multi slops

considering both LoS and NLoS transmissions. A tractable approach is then devel-

oped in a mult-tier HetNets, in which the UE is associated to serving BS with a

maximum biased received power. A simplified two-tier HetNets is modelled in the

closed form equations for verification. The performance of the HetNets is analyzed

in terms of coverage probability, ASE and EE.

4.1 Introduction

Dense deployments of small cells are widely considered as the most promising ap-

proach to provide high quality of service to mobile users.

Thus, future cellular networks are likely to have a multi-tier structure with various

types of BSs. In many existing works, HetNets have been modeled as spatial PPPs
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for performance analysis. By taking advantage of the tractability offered by PPP

modeling, the authors show that a positive small-cell range expansion bias that

encourages users to associate with lightly loaded small cells can enhance the HetNet

coverage [20], and that this coverage can be optimized by tuning the density and bias

factor of small cells. It has been shown that the ASE of a HetNet increases with the

increase of small-cell density when a single-slope path loss model is considered [41].

However, the possibility of LoS transmissions has not be considered in HetNets yet.

Although NLoS transmissions would usually occur in cellular communications, with

the dense deployment of small-cell BSs and the resulting short distances between

BSs and users, it is likely that users will see LoS links from its serving BS and

even nearby interfering BSs. In [5], a multi-slope path loss model is used to model

LoS and NLoS transmissions in a single-tier homogeneous small-cell network. The

analytical results show both the existence of a maximum coverage probability and

the non-linear increase or even decrease of the ASE with the small cell density.

These probabilistic LoS transmissions have not been considered in the performance

analysis for multi-tier HetNets yet. Moreover, in light of the results in [5], it is not

clear whether or not the conclusions of HetNet coverage in [20] and ASE in [41] hold

for a more comprehensive path loss model.

It is also worth noting that most HetNet performance analysis does not focus on

energy efficiency (EE), and that a rapid increase in the number of deployed small-cell

BSs may lead to an increase in the total energy consumption of a HetNet, affecting

its environmental friendliness or economic sustainability [44]. Thus, there is a need

for comprehensive HetNet performance analyses, considering also HetNet EE.

In this chapter, we study the network performance of a dense multi-tier HetNet
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under a practical multi-slope path loss model that covers LoS and NLoS transmis-

sions. The spatial locations of BSs of any given network tier and those of mobile

users are modeled as independent PPPs. A user is associated to the BS that offers

the highest biased downlink received power, which is the downlink received power

multiplied by the bias factor of the corresponding network tier. Under this practi-

cal yet tractable system model, we analyze and derive the expression of downlink

coverage probability for a multi-tier HetNet, and then use it to calculate its ASE

and EE. Numerical results are provided for a two-tier HetNet to verify the obtained

analytical expressions and shed new light on the performance gains achievable by

dense deployment of small cells in a HetNet.

The rest of this chapter is organized as follows. In Section 4.2, the path loss model

is introduced, followed by defining user association in Section 4.3. In Section 4.4,

we analyze the coverage probability, ASE and EE for multi-tier HetNets under LoS

and NLoS transmissions. Then, we simplify the derived analytical equation to fit in

a two-tier HetNets in Section 4.5. In Section 4.6, we present the numerical results.

In Section V, the conclusions are drawn.

4.2 Multi-Slope Path Loss Model

In this section, we consider a K-tier (K > 2) HetNet with all the K tiers sharing

the same frequency spectrum. The spatial distribution of the kth tier BSs follows an

independent homogeneous PPP with intensity of λk, k ∈ 1, 2, ..., K. The indexes of

all the kth tier BSs are contained in the set Φk. The users are distributed over the

K-tier HetNet area following another independent PPP with intensity of λu, where

λu is large enough to ensure that each BS has at least one user.
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We use a multi-slope path loss model considering both LoS and NLoS transmissions

as probabilistic events, where the path loss of a link is segmented into N slopes

depending on the range of the link. Accordingly, the path loss between a kth tier

BS and a user at distance r is given by

lk(r) =



lk,1(r) =

 lLk,1(r) = AL
k,1r

−αL
k,1 with PrL

1 (r)

lNL
k,1(r) = ANL

k,1r
−αNL

k,1 with 1− PrL
1 (r)

0 < r ≤ d1

...

lk,n(r) =

 lLk,n(r) = AL
k,nr

−αL
k,n with PrL

n(r)

lNL
k,n(r) = ANL

k,nr
−αNL

k,n with 1− PrL
n(r)

dn−1 < r ≤ dn

...

lk,N(r) =

 lLk,N(r) = AL
k,Nr

−αL
k,N with PrL

N(r)

lNL
k,N(r) = ANL

k,Nr
−αNL

k,N with 1− PrL
N(r)

r > dN−1

(4.1)

where dn(n = 1, 2, . . . , N−1) are the segment breaking points, PrL
n(r)(n = 1, 2, . . . , N−

1) is the probability of LoS transmission of the nth slope, 1−PrL
n(r)is the probabil-

ity of NLoS transmission of the nth slope, and αL
k,n, αNL

k,n, AL
k,n and ANL

k,n are the LoS

and NLoS path loss exponents and path loss constants of the nth slope in the kth

tier, respectively. 3rd Generation Partnership Project (3GPP) has suggested some

expressions for PrL
n(r) [5, 61].
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4.3 User Association scheme

We consider a user association scheme based on the maximum biased received power

[20], i.e.,

(i∗, k∗) = arg max
k∈1,2,...,K,i∈Φk

PkBklk(ri) (4.2)

For brevity of notation, we omit ∗ from i∗ and k∗ hereafter. Pk is the transmit

power of a kth tier BS. ri is the distance from the ith BS in the kth tier to the user.

Bk is the bias factor of kth tier BS, which allows to manipulate the load balancing

between different tiers or cell range expansion.

Therefore, the user is associated to the i∗th BS in the kth tier , and the downlink

SINR is given by

SINRk(ri) =
Pkhrilk(ri)

Ik,i + σ2
(4.3)

where hri is the channel model of the fading power gain between the ith BS in the

kth tier and the user, which follows a unit-mean exponential distribution, Ik,i is the

interference power received from cross-tier and co-tier BSs and is expressed as

Ik,i = Icross + Ico =
K∑

j=1,j 6=k

∑
x∈Φj

Pjhrxlj(rx) +
∑

x∈Φk,x 6=i

Pkhrxlk(rx) (4.4)

and σ2 is the additive White Gaussian Noise (AWGN) power at the user.

4.4 Theoretical Analysis in Multi-tier HetNets

In this section, we analyze the coverage probability of a multi-tier HetNet under the

system model given in Section II, and then use the obtained coverage probability to
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calculate its ASE and EE.

4.4.1 Coverage Probability

The downlink coverage probability is defined as the probability that the downlink

SINR of a user is above a pre-defined threshold [22], i.e.,

C =
K∑
k=1

P[SINRk(ri) > γ, k = k∗]

=
K∑
k=1

Ck(λk, γ)ρk

(4.5)

where Ck(λk, γ) is the coverage probability offered by the kth tier [22], γ is the SINR

threshold, and ρk, which is equal to P[k = k∗], is the probability of a typical user

being associated with a kth tier BS, and the expression of ρk is given by (4.10).

According to the multi-slope path loss model in (4.1), the coverage probability of a

user associated with a kth tier BS can be further expressed as

Ck(λk, γ) =
N∑
n=1

(T L
k,n + TNL

k,n ) (4.6)

where the coverage probability of the nth slope in the kth tier is composed of the

following two parts [5],

T L
k,n =

∫ dn

dn−1

P[SINRL
k (r) > γ]fL

k,n(r)dr

TNL
k,n =

∫ dn

dn−1

P[SINRNL
k (r) > γ]fNL

k,n(r)dr

(4.7)

The probability of a downlink user with LoS transmission from the serving BS having
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SINR greater than the threshold γ is given by

P[SINRL
k (r) > γ] = P

[PkhrxlLk,n(r)

Ik,i + σ2
> γ

]
= EIk,i

{
P

[
hrx >

γ(Ik,i + σ2)

PklLk,n(r)

]}
(a)
= EIk,i

{
exp
(
− γ(Ik,i + σ2)

PklLk,n(r)

)}
= exp

(
− γσ2

PklLk,n(r)

)
EIcross

{
exp
(
− γIcross

PklLk,n(r)

)}
EIco

{
exp
(
− γIco

PklLk,n(r)

)}
(b)
= exp

(
− γσ2

PklLk,n(r)

)
LIco

( γrαL
k,n

PkAL
k,n

) K∏
j=1,j 6=k

LIcross
( γrαL

k,n

PkAL
k,n

)
= exp

(γσ2rα
L
k,n

PkAL
k,n

) K∏
j=1

LIk,i
( γrαL

k,n

PkAL
k,n

)

(4.8)

where (a) follows the independence of hrx , (b) follows the exponential distributed

hrx , and (c) follows from the probability generating functional of a PPP.

According to the computation in [5], SINRL and SINRNL are the coverage probability

offered by LoS and NLoS links, respectively, and are given by

P[SINRL
k (r) > γ] = exp

(
− γσ2r−α

L
k,n

PkAL
k,n

) K∏
j=1

LIk,i
(γr−αL

k,n

PkAL
k,n

)
P[SINRNL

k (r) > γ] = exp
(
− γσ2r−α

NL
k,n

PkANL
k,n

) K∏
j=1

LIk,i
(γr−αNL

k,n

PkANL
k,n

) (4.9)

where LIj(s) is the Laplace transform of interference Ij [20].

Moreover, fL
k,n(r) and fNL

k,n(r) are the probability density functions (PDFs) of the

link between a user and a kth tier BS being LoS and NLoS, respectively, conditioned

on the range r of the link satisfying dn−1 < r ≤ dn.
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[ht]

Corollary 4.1 Computation of ρk

The probability of a typical user being associated with a kth tier BS is the combination

of two events. Firstly, if the user is associated to a LoS BS, its biased received

power is greater than that in any other LoS and NLoS links, i.e., P[PkBkl
L
k,n(r) >

PjBjlj(x)]. Similarly, if the user is associated to a NLoS BS, its biased received

power is also greater than that in any other LoS and NLoS links in all tiers, i.e.,

P[PkBkl
NL
k,n(r) > PjBjlj(x)]. The calculation is further referenced from subsection of

”Computation of fL
k,n(r)” in 4.2.

ρk = P[k = k∗]

= E
[
P
[
PkBkl

L
k,n(r) > PjBjlj(x)

⋃
PkBkl

NL
k,n(r) > PjBjlj(x)

]]
=

∫ ∞
0


∏K

j=1,j 6=kP[PkBkl
L
k,n(r) > PjBjl

L
j (x)]

×
∏K

j=1P[PkBkl
L
k,n(r) > PjBjl

NL
j (x)]

 fRL
k (r)dr

+

∫ ∞
0


∏K

j=1,j 6=kP[PkBkl
NL
k,n(r) > PjBjl

NL
j (x)]

×
∏K

j=1P[PkBkl
NL
k,n(r) > PjBjl

L
j (x)]

 fRL
k (r)dr

= 2πλk

∫ ∞
0


rexp

(
−
∫ r

0
PrL

n(u)2πuλkdu
)

×
∏K

j=1,j 6=k exp
(
−
∫ a

0
PrL

n(u)2πuλjdu
)

×
∏K

j=1 exp
(
−
∫ b

0

[
1− PrL

n(u)
]
2πuλjdu

 dr}

+ 2πλk

∫ ∞
0


rexp

(
−
∫ r

0

[
1− PrL

n(u)
]
2πuλkdu

)
×
∏K

j=1,j 6=k exp
(
−
∫ c

0

[
1− PrL

n(u)
]
2πuλjdu

)
×
∏K

j=1 exp
(
−
∫ d

0
PrL

n(u)2πuλjdu

 dr}

(4.10)

where a =
(
PjBjA

L
j,n

PkBkA
L
k,n

)1/αL
j,n

rα
L
k,n/α

L
j,n, b =

(
PjBjA

NL
j,n

PkBkA
L
k,n

)1/αNL
j,n

rα
L
k,n/α

NL
j,n,

c =
(
PjBjA

NL
j,n

PkBkA
NL
k,n

)1/αNL
j,n

rα
NL
k,n/α

NL
j,n and d =

(
PjBjA

L
j,n

PkBkA
NL
k,n

)1/αL
j,n

rα
NL
k,n/α

L
j,n.
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Calculation of PDFs fL
k,n(r) and fNL

k,n(r)

The expression of fL
k,n(r) is given by

fL
k,n(r) =

PrLn(r)2πrλk
ρk

exp
(
−
∫ r

0

PrL
n(u)2πuλkdu

)
×

K∏
j=1,j 6=k

exp
(
−
∫ a

0

PrL
n(u)2πuλjdu

)
×

K∏
j=1

exp
(
−
∫ b

0

[
1− PrL

n(u)
]
2πuλjdu

)
(4.11)

where a =
(
PjBjA

L
j,n

PkBkA
L
k,n

)1/αL
j,n

rα
L
k,n/α

L
j,n and b =

(
PjBjA

NL
j,n

PkBkA
L
k,n

)1/αNL
j,n

rα
L
k,n/α

NL
j,n . The calcula-

tion of (4.11) is provided in following section 4.2.

The expression of fNL
k,n(r) is given by

fNL
k,n(r) =

[
1− PrL

n(r)
]
2πrλk

ρk
exp
(
−
∫ r

0

[
1− PrL

n(u)
]
2πuλkdu

)
×

K∏
j=1,j 6=k

exp
(
−
∫ c

0

[
1− PrL

n(u)
]
2πuλjdu

)
×

K∏
j=1

exp
(
−
∫ d

0

PrL
n(u)2πuλjdu

)
(4.12)

where c =
(
PjBjA

NL
j,n

PkBkA
NL
k,n

)1/αNL
j,n

rα
NL
k,n/α

NL
j,n and d =

(
PjBjA

L
j,n

PkBkA
NL
k,n

)1/αL
j,n

rα
NL
k,n/α

L
j,n . By plugging

(4.9), (4.11) and (4.12) into (4.7), we can calculate the coverage probability of LoS

and NLoS links for the nth slope in the kth tier. By substituting the calculated (4.7),

(4.6) and (4.10) into (4.5), we obtain the coverage probability of the K-tier.
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Corollary 4.2 Computation of fRk(r)

The probability of a user being Rk away from its serving BS with the LoS link is

regarded to r, which can be expressed by the combination of the probability of any

LoS BS located outside the distance RL
k and any NLoS BS located outside the distance

RNL
k conditioned on the probability of the LoS BS belonging to the kth tier [96]. The

probability is given by

P[Rk > r] = P[RL
k > r,RNL

k > r|k = k∗]

=
P[RL

k > r,RNL
k > r, k = k∗]

P[k = k∗]

=
P[RL

k > r,RNL
k > r, k = k∗]

ρk

(4.13)

ρk = P[k = k∗], and the numerator is expressed as

P[RL
k > r,RNL

k > r, k = k∗] =

∫ ∞
r

P[RL
k > r,RNL

k > r]fRk(r)

∫ ∞
r


∏K

j=1,j 6=kP[PkBkl
L
k,n(r) > PjBjl

L
j,n(x)]

×
∏K

j=1P[PkBkl
L
k,n(r) > PjBjl

NL
j,n (x)]

 dr}
(4.14)

Following the eq. (4.13), we first consider the Computation of fRk(r). The nearest

BS with a LoS path to the user is located at Rk away from the user. The comple-

mentary cumulative distribution function (CCDF) of Rk is

FRk(r) = exp(−
∫ r

0

PrL
n(u)2πuλkdu) (4.15)

The PDF of Rk is

fRk(r) = PrL
n(r)2πrλkexp(−

∫ r

0

PrL
n(u)2πuλkdu) (4.16)
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Corollary 4.3 Computation of P[PkBkl
L
k,n(r) > PjBjl

L
j,n(x)]

The probability of P[PkBkl
L
k,n(r) > PjBjl

L
j,n(x)] in (4.13) is calculated to be the

probability of no BS being closer to the user than a =
(
PjBjA

L
j,n

PkBkA
L
k,n

)1/αL
j,n

rα
L
k,n/α

L
j,n in

the jth tier,

P[PkBkl
L
k,n(r) > PjBjl

L
j,n(x)]

= P
[
AL
k,nr

−αL
k,n >

PjBj

PkBk

AL
j,nr

−αL
j,n

]
= P

[
x >

( PjBjA
L
j,n

PkBkAL
k,n

)1/αL
j,n

rα
L
k,n/α

L
j,n

]
= exp(−

∫ a

0

PrL
n(u)2πuλjdu)

(4.17)

where a =
(
PjBjA

L
j,n

PkBkA
L
k,n

)1/αL
j,n

rα
L
k,n/α

L
j,n.

Corollary 4.4 Computation of P[PkBkl
L
k,n(r) > PjBjl

NL
j,n (x)]

Following similar computation of (4.17), we have

P[PkBkl
L
k,n(r) > PjBjl

NL
j,n (x)] = exp(−

∫ b

0

[1− PrL
n(u)]2πuλjdu) (4.18)

where b =
(
PjBjA

NL
j,n

PkBkA
L
k,n

)1/αNL
j,n

rα
L
k,n/α

NL
j,n.

From (4.16), (4.17) and (4.18) the cumulative distribution function (CDF) of Rk is
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F L
k,n(r) = 1−P[Rk > r]. Thus, the PDF is shown as,

fL
k,n(r) =

d
(
1− F L

k,n(r)
)

dr

=
PrLn(r)2πrλk

ρk
exp
(
−
∫ r

0

PrL
n(u)2πuλkdu

)
×

K∏
j=1,j 6=k

exp
(
−
∫ a

0

PrL
n(u)2πuλjdu

)
×

K∏
j=1

exp
(
−
∫ b

0

[
1− PrL

n(u)
]
2πuλjdu

)
(4.19)

4.4.2 Area Spectral Efficiency and Energy Efficiency

From [11], the ASE (in bps/Hz/m2) of a K-tier HetNet is the summation of the

ASE offered by each tier, i.e.,

ASE of all tiers =
K∑
k=1

λk log2(1 + γ)ρkCk(λk, γ) (4.20)

Following [12], the EE (in bps/Hz/W) of the K-tier HetNet is defined as

EE =
ASE of all tiers∑K

k=1 λkPk
(4.21)

where
∑K

k=1 λkPk is the average spatial transmitting power consumption [44]. By

substituting (4.10) into (4.8), we have the EE of a K-tier as

EE =

∑K
k=1 λk log2(1 + γ)ρkCk(λk, γ)∑K

k=1 λkPk
(4.22)
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4.5 Two-Tier HetNets in LoS/NLoS Transmissions

In this section, a two-tier HetNet (k ∈ {1, 2}) composed of macrocells and small

cells is facilitated in above analytical model, K = 2. We use a path loss model with

the LoS probability given as [5]

PrL(r) =

 1− r
d1

when 0 < r ≤ d1

0 when r > d1

(4.23)

According to this function of LoS probability, we naturally consider a two slopes

path loss (N = 2, n ∈ {1, 2}) as 0 < r ≤ d1 and d1 < r < ∞. Moreover, the path

loss exponents and constants of each slope in each tier are assumed to be same for

simplification, i.e., αL
k,n = αL, αNL

k,n = αNL, AL
k,n = AL, ANL

k,n = ANL.

From eq. (4.6), in a two-tier HetNet with a two-slope path loss model, the coverage

probability of the kth is written as, σ2

C = C1 + C2

= T L
1,1 + TNL

1,1 + T L
1,2 + TNL

1,2 + T L
2,1 + TNL

2,1 + T L
2,2 + TNL

2,2

(a)
= T L

1,1 + TNL
1,1 + TNL

1,2 + T L
2,1 + TNL

2,1 + TNL
2,2

(4.24)

where (a) is due to that there is no LoS BS in the slope of r > d1, which means

T L
2,2 = 0. In order to calculate T L

1,1, we recall the eq. (4.7),

T L
1,1 =

∫ 0

d1

P[SINRL
1 (r) > γ]fL

1,1(r)dr

=

∫ 0

d1

exp(−sσ2)LIL1 (s)LIL2 (s)LINL
1

(s)LINL
2

(s)fL
1,1(r)

(4.25)
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where s = γr−α
L

P1AL . The LIL1 (s), LINL
1

(s), LIL2 (s) and LINL
2

(s) are interference from LoS

BSs in 1th tier and 2th tier and NLoS BSs in 1th tier and 2th tier, respectively.

In the eq. (4.25), we first solve the fL
1,1. Recalling the eq. (4.11) and facilitating in

current two-tier HetNet with two-slope path loss model.

fL
1,1 = (1− r

d1

)
2πλ1r

ρ1

exp
(
−
∫ r

0

(1− u

d1

)2πuλ1du
)

× exp
(
−
∫ a

0

(1− u

d1

)2πuλ2du
)

︸ ︷︷ ︸
ã

× exp
(
−
∫ b

0

u

d1

2πuλ1du
)

︸ ︷︷ ︸
b̃

× exp
(
−
∫ c

0

u

d1

2πuλ2du
)

︸ ︷︷ ︸
c̃

(4.26)

where a =
(
P2B2

P1B1

)1/αL

r, b =
(
ANL

AL

)
rα

L/αNL
and c =

(
P2B2αNL

P1B1αL

)1/αNL

rα
L/αNL

.

Since the numerical relationship between a and d1 affects the calculation of the first

multiplier in eq. (4.26), i.e. ã, we then discuss the cases of 0 < a ≤ d1 and a > d1.

4.5.1 Discussion of parameter a

According to the value of parameter a, the calculation of section ã in eq. 4.26 have

two scenarios.

Scenario 1: If 0 < a ≤ d1

If 0 < a ≤ d1, the first multiplier in eq. (4.26), i.e. section ã in eq. 4.26 remains the

same.

ã = exp
(
−
∫ a

0

(1− u

d1

)2πuλ2du
)

(4.27)
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The intuition behind is due to that no interfering BSs with LoS links in 2th tier

(k = 2) is possible to be located in the range of [0, a]. In this case, there is possible

interfering LoS BSs in 2th tier located in the range of a ≤ d1. Then, we have

LIL2 = exp
(
− 2πλ2

∫ d1

a

(
1− u

d1

) u

1 + (sP2AL)−1uαL du
)

= exp
(
− 2πλ2

{
ξ1

[
αL, 1, (

P2

P1

γrα
L

)−1, d1

]
− ξ1

[
αL, 1, (

P2

P1

γrα
L

)−1, a

]}
+

2πλ2

d1

{
ξ1

[
αL, 2, (

P2

P1

γrα
L

)−1, d1

]
− ξ1

[
αL, 2, (

P2

P1

γrα
L

)−1, a

]}) (4.28)

The detailed computation of the Laplace Transform is provided in following subsec-

tion of ”Computation of the Laplace Transform” and ”Hyper-geometric Functions”.

Theorem 4.1 Computation of the Laplace Transform

The calculation of Laplace Transform of interference is shown as

LIj(s) = EIj

[
exp
(
−
∑
x∈Φj

sPjl(rx)hj
)]

= El(rx),hj

[ ∏
x∈Φj

exp
(
− sPjl(rx)hj

)]
(a)
= El(rx)

[ ∏
x∈Φj

Ehjexp
(
− sPjl(rx)hj

)]
(b)
=
∏
x∈Φj

El(rx)

[ 1

1 + sPjl(rx)

]
(c)
= exp

(
− 2πλj

∫ ∞
r

(
1− 1

1 + sPjl(rx)

)
du
)

(4.29)

where (a) follows the independence of hj, (b) is from the exponential distributed hj

and (c) follows from the probability generating functional of PPP.
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Theorem 4.2 Hyper-geometric Functions

The integration can be then transformed in following forms,

ξ1(α, β, t, d) =
[d(β+1)

β + 1

]
2F1

[
1,
β + 1

α
; 1 +

β + 1

α
;−tdα

]
(4.30)

and

ξ2(α, β, t, d) =
[ d−(α−β−1)

t(α− β − 1)

]
2F1

[
1, 1− β + 1

α
; 2− β + 1

α
;− 1

tdα

]
(4.31)

where 2F1 [·, ·; ·; ·] is the hyper-geometric function.

Scenario 2: If a > d1

If a > d1, the possible interfering LoS BSs located in 2th tier can only fall in the

range of [d1,∞], we have

ã = exp
(
−
∫ d1

0

(1− u

d1

)2πuλ2du
)

(4.32)

Moreover, due to the linear function LoS probability reaches 0 when the r > d1,

LIL2 (s) = 1 thus vanishes in the equation. The similar discussions of parameter b

and c are attached in Appendix.

The rest of derivations in eq. (4.25) are omitted because of repeating process showing

above. Computation the coverage probability in the two-tier HetNet with LoS and

NLoS transmission is then completed, and last to ASE and EE by following eq.

(4.20 and 4.22).
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Table 4.1: Simulation Parameter in the two-tier HetNets

Parameter Values
AWGN power σ2 = −95 dBm

d1 300 m
Macro BS transmit power P1 = 53 dBm

Small-cell BS transmit power P2 = 23 dBm
Bias factor ratio B1/B2 = 1

Small scale fading gain h ∼ exp(1)
LoS path loss exponent αL = 2.09

NLoS path loss exponent αNL = 3.75
LoS path loss constant AL = 10−3.29

NLoS path loss constant ANL = 10−4.11

4.6 Numerical Results

In this section, we present numerical results to verify the obtained analytical formu-

las. To simplify the calculation, an unbiased network is considered, i.e., B1/B2 = 1.

The rest of parameter values used in the simulation is listed in Table 4.1.

4.6.1 Coverage Probability

Fig. 4.1 shows the coverage probability versus the SINR threshold for different small

cell densities (λ2), where the then density of macrocells λ1 = 1/(2502π). For a given

ratio between 2 and 1, the coverage probability decreases with the SINR threshold.

This is because the coverage definition becomes more challenging. For a given SINR

threshold, the coverage probability decreases with the ratio between λ2 and λ1. This

is because as the ratio between small cell density and macrocell density increases,

it is more likely that a user will see LoS transmissions from nearby small-cell BSs.

Since a LoS link causes much less attenuation of signal power than a NLoS link, the

cross-tier interference caused by small cells to macrocells and the co-tier interference

between small cells becomes more severe with the increase of λ2. Thus, the coverage
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Figure 4.1: Coverage probability vs. SINR threshold in the two-tier HetNets

probability decreases.

Fig. 4.2 shows the coverage probability versus the density of small cells for different

macrocell densities, where the SINR threshold is 0dB. For a given density of small

cells (less than 0.01 BSs per m2), the coverage probability increases with the density

of macrocells. This is because a higher density of macrocells leads to a shorter aver-

age distance from a macro BS to a user, thus a higher macrocell coverage probability.

For a given λ1, the coverage probability first increases with λ2 and then decreases

with it after reaching a maximum value. This is because at relatively low small-cell

densities, small-cell links are likely to be NLoS and the small-cell link quality (thus

coverage probability) increases with the small-cell density; while at relatively high
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Figure 4.2: Coverage probability vs. small-cell density for different macrocell den-
sities in the two-tier HetNets

small-cell densities, small-cell links are likely to be LoS and the interfering small-cell

links become more dominant, leading to reduced coverage probability. It is inter-

esting to note that for different values of λ1, the maximum coverage probability

occurs at approximately the same value of λ2, i.e., 2 × 10−5 BS per m2. At very

high densities of small cells (larger than 0.01 BSs per m2), the coverage probabilities

for different values of λ1 converge to the same low value, because all links are LoS

dominated.
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Figure 4.3: ASE and EE vs. SINR threshold

4.6.2 ASE and EE

In Fig. 4.3 and Fig. 4.4, we set λ1 = 1/(2502π)andλ2 = 2λ1.

Fig. 4.3 shows the ASE and the EE of the two-tier HetNet versus the SINR thresh-

old. As can be seen, the ASE of small cells first increases with the SINR threshold

and then decreases with it after reaching a maximum value. This is mainly due

to the NLoS-to-LoS transition of interference links as described in [5]. In contrast,

the ASE of macrocells increases almost linearly with the SINR threshold, since such

transition does not occur. Following (4.20), the ASE of the HetNet (as the summa-

tion of per-tier ASE) also first increases with the SINR threshold and then slowly

decreases after reaching a maximum value. Given the parameters in Table I and
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Figure 4.4: ASE and EE vs. transmit power of small cells in the two-tier HetNets

above, the spatial power consumption is approximately 1 W/m2, and the EE is thus

equal to the overall ASE.

Fig. 4.4 shows the ASE and the EE of the two-tier HetNet versus the transmit

power of small cells, where the SINR threshold is 0dB. The ASE of macrocells

increases slightly with the growth of small-cell BS transmit power, while the ASE

of small cells slightly decreases, because the cross-tier interference caused by small

cells increases with the small-cell transmit power. As a result, the overall ASE of

the HetNet is roughly constant over the different transmit power levels of small

cells. Moreover, we observe that the EE of the HetNet first slightly increases with

the small-cell transmit power and then drops quickly when the transmit power of

small cells is above 25dBm. Thus, high transmit powers should be avoid for densely
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deployed small cells, because it will not improve the ASE but will degrade the EE

significantly.
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Figure 4.5: ASE of macrocell and small cell vs. small cell density in the two-tier
HetNets

Fig. 4.4 compares the ASE of macrocells, small cells and all tiers calculated using

our formula with those calculated in [20] versus λ2, for λ1 = 1/(2502π). The SINR

threshold is 0dB. In [20], no possible LoS transmission is considered and the path

loss model follows r−α, where r is the link range and the path loss exponent α = 4.5.

As Fig. 4.5 shows, both our formula and that in [20] predict that the ASE of small

cells (macrocells) increases (decreases) with λ2 at a smaller (higher) rate when λ2

is larger than a certain value, but the value of λ2 predicted by our calculations at
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which the increase rate of small-cell ASE reduces is smaller than that predicted

by [20], while the value of λ2 predicted by our formula at which the decrease rate of

macrocell ASE increases is larger than that predicted by [20]. This is because for the

same low or moderate value of λ2, the inter-cell interference caused by small cells is

severer with possible LoS transmissions than without. When λ2 becomes extremely

large, in contrary to the result of [20], the ASE of all tiers calculated by our formula

decreases quickly with λ2, because the ASE of all tiers is now dominated by the

small-cell ASE, which decreases quickly with λ2. This is because the domination

of LoS transmissions in ultra-dense small-cell deployment results in extremely high

inter-cell interference from small cells, which blocks most desired transmission links.
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Figure 4.6: EE vs. small cell density at different path loss exponents
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Fig.4.6 shows the EE calculated by our formula and that calculated by [20] versus λ2

for λ1 = 1/(2502π), for a SINR threshold of 0dB and different path loss exponents.

We can see that the highest EE is achieved with the smaller αL and the larger αNL at

specific small cell densities. This is due to the fact that for such small cell densities,

most interfering links are likely to be NLoS and only downlinks from serving BSs

are possibly LoS, then for a small αL and a large αNL, the possibly LoS desired links

would be strong while most interfering links would be relatively weak, thus leading

to the highest EE.

For a small value of λ2 (< 3 × 10−4 BSs per m2), the lowest EE is obtained with

the larger L and the smaller NL. This is because at low density of small cells, most

interfering links are likely to be NLoS and only downlinks from serving BSs are

possibly LoS, then for a large αL and a small αNL, any possible LoS desired links

would be weak while most interfering links would be strong, resulting in the lowest

EE.

For a moderate or large value of λ2 (i.e., 3× 10−4 < λ2 < 1 BSs per m2), the lowest

EE is obtained with the small L and the small NL. This is because for a relatively

large density of small cells, most interfering small cell links are likely to be LoS

while interfering macrocell links are likely to be NLoS, then with small values of αL

and αNL, the interference caused by both small cells and macrocells becomes strong,

leading to the lowest EE.

At extremely large values of λ2, our formula predicts that the EE decreases with

the further increase of λ2, especially fast for the smaller value of αL. This is because

with densely deployed small cells, most small cell links are likely to be LoS, making

the cross-tier and co-tier interference caused by small cells very strong (especially
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for a small αL), and thus a higher λ2 leads to a lower EE. However, such decrease

of EE at extremely large λ2 is not captured by formulas in [20].

In each considered pair of αL and αNL or for the given , the EE increases very slightly

with λ2 at low or large values of λ2, but increases fast with λ2 at moderate values of

λ2. The reason is that as each small cell can serve only a small number of users, a

moderate density of small cells is required to noticeably improve the overall network

ASE (and thus EE).

4.7 Summary

Based on a multi-slope path loss model, we have derived the formulas of coverage

probability, ASE and EE for a K-tier HetNet considering LoS and NLoS trans-

missions. Our analytical and numerical results demonstrate that at relatively high

small-cell densities, the transition of small cell interference links from NLoS to LoS

will cause excessive inter-cell interference, which blocks almost all desired links.

When small-cell BSs are densely deployed, increasing small-cell transmit power will

not improve the ASE, but will degrade the EE significantly. Moreover, our results

predict that in an extremely dense HetNet, both the ASE and EE of the HetNet will

drop quickly with further increase of the small-cell density due to the dominance of

LoS interfering links.
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Chapter 5

BS Clustering under LoS/NLoS

Transmissions

In this chapter, we further investigate the effects of path loss with LoS and NLoS

transmission in four different cases, including linear LoS probability function in

analytical model, isolated picocells in a suburban area, millimetre wave propagation

in outdoor environment and urban micro cells in a 3D scenario. The degradation

of network performance at high BS density in above research is verified in all cases.

We propose a user-centric BS clustering strategy in order to mitigate severe LoS

interference and enhance the network performance at high BS density.

5.1 Introduction

To meet the explosive growth of mobile data traffic, the dense deployment of small

cells is widely considered as a promising approach to provide high QoS to mobile

users. However, the resulting dense short-range LoS links bring new challenges to

interference management in cellular networks [97]. Compared to NLoS interfering
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links, the LoS interfering links with slow attenuation of the signal power can lead

to severer interference to the user.

In [61–63], the LoS and NLoS path loss models have gained significant interest in the

design of dense small-cell networks. In [61], the 3GPP suggested different outdoor

path loss models for urban, suburban, and rural environments. In [62], a linear func-

tion for the LoS probability was considered as a special case for a tractable analysis

of small-cell network performance. In [63], 3D path loss models covering both LoS

and NLoS transmissions were proposed for both indoor and outdoor environments,

where the heights of BSs and users play an important role.

For interference limited cellular networks, BS cooperation has been widely consid-

ered as a promising technique to increase the SINR at the user. BS cooperation of

non-coherent JT is the one popular technology where multiple BSs collaboratively

transmit to a user without prior phase-mismatch correction or tight synchroniza-

tion [70, 89, 90]. Non-coherent JT was also analyzed in HetNets [89], where any

BS with the RSS above a pre-defined threshold is selected to perform user-centric

BS clustering. It was shown that for small cooperative clusters of small-cell BSs,

non-coherent JT among small cells can provide spectral efficiency gains without sig-

nificantly increasing the traffic load per cell. In [70], stochastic geometry tools were

used to analyze non-coherent JT models, where each user is served by either one or

two BSs. In [90],the non-coherent JT was combined with frequency reuse to improve

the utilisation efficiency of spectrum resources.

We note that none of the above works on non-coherent JT has brought the consid-

eration of LoS transmissions in dense small-cell networks. Through cooperative BS

transmissions, the LoS links from nearby BSs to a user can be combined. Ideally,
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all BSs within the cluster transmit to the user through LoS links, while any BS left

outside the cluster cause interference to the user though NLoS links.

In this chapter, we propose a new user-centric BS clustering strategy for non-

coherent JT in dense small-cell networks, where users may see both LoS and NLoS

transmissions from nearby BSs. In order to convert as many LoS links as possible

into useful transmissions to a user, our proposed user-centric BS clustering strategy

selects a small-cell BS into the BS cluster only if the LoS probability of its link to

the user is above a predefined threshold. Moreover, we consider four different path

loss models with different LoS/NLoS characteristics to evaluate the performance of

our proposed user-centric BS clustering strategy. The resulting coverage probability

and achievable spectrum efficiency are evaluated through system level simulations,

in comparison to the existing RSS-based BS clustering. User association schemes

without BS clustering, such as the nearest BS association and the maximum received

signal based user-BS association, are also considered.

5.2 Path Loss Model in Different Environments

We consider a homogeneous dense small-cell network, where each small-cell BS

transmits at the same power level. The spatial distribution of the small-cell BSs,

which are grouped in the BS set Φ, follows a spatial PPP with a spatial density

of λBS/km2. Users are distributed over the network area following another inde-

pendent homogeneous PPP. We use a path loss model that includes both LoS and

NLoS transmissions as probabilistic events, where PrL(r) and PrNL(r) denote the

probabilities of the link being LoS and NLoS, respectively. We assume that r is the

link range, and PrL(r) + PrNL(r) = 1.
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The path loss between a BS and a user at distance r (in meter) is given by

l(r) =

 lL(r) = AL + 10αLlog10(r) with PrL(r)

lNL(r) = ANL + 10αNLlog10(r) with 1− PrL(r)
(5.1)

where αL, αNL, AL and ANL are the LoS and NLoS path loss exponents and LoS

and NLoS path loss constants, respectively.

5.2.1 Four Path Loss Models

In the following, we discuss four different models for PrL(r) and the associated path

loss models that have been proposed in the literature.

5.2.2 Case 1: Linear LoS probability

The 3GPP has suggested the following expression for the LoS probability PrL(r)

PrL(r) =

 1− r
d1

when 0 < r < d1

0 when r > d1,
(5.2)

where d1 is the decreasing slope of the LoS probability function. The values of

αL, αNL, AL and ANL are 2.09, 3.75, 41.1 dB and 32.9 dB, respectively. This

linear function of LoS probability was used in [5] to analyse small-cell networks with

d1 = 300m.
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5.2.3 Case 2: Isolated Picocell in A Suburban Area

The 3GPP has also suggested the following LoS probability PrL(r) from a picocell

BS to a user for a suburban area [61]:

PrL(r) = 0.5−min(0.5, 3exp(−300/r))

+ min(0.5, 3exp(−r/95)),

(5.3)

where the corresponding path loss model is given by,

l(r) =

 lL(r) = 41.1 + 20.9log10(r)

lNL(r) = 32.9 + 37.5log10(r).
(5.4)

5.2.4 Case 3: Millimetre Wave Outdoor Environment

In [62], the millimetre wave propagation at a 73GHz carrier frequency was modelled

based on real-world measurements in an outdoor environment. The resulting LoS

probability PrL(r) is given by,

PrL(r) = [min(
dBP

r
, 1)(1− exp(−r

δ
)) + exp(−r

δ
)]2, (5.5)

where r is the distance between the BS and the user, dBP is the breaking distance

(i.e. 27m), and δ is the decay parameter (i.e. 71m). The LoS path loss model in [62]

uses the following free space propagation model:

lL(r) = 20log10(
4π

Λ
) + 20log10(r), (5.6)

where Λ is the carrier wavelength, where Λ = 4.1mm at carrier frequency fc =

73GHz. For the NLoS propagation, a floating intercept method is used to model
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the path loss in a given range of measured transmitter and receiver separations [62].

The resulting path loss model is given as:

l(r) =

 lL(r) = 69.7 + 20log10(r)

lNL(r) = 80.6 + 29log10(r).
(5.7)

5.2.5 Case 4: Urban Micro Cell in A 3D Scenario

A 3D channel model in the 2GHz frequency (fc) band was suggested by the 3GPP

in [63]. In this scenario, urban microcells are below the surrounding buildings with

their BS antenna height (hBS) at 10m and the UE’s antenna height (hUE) at 1.5m.

The LoS probability is a function of the 2D distance (d2D), which is the distance

between the BS and the user measured in the ground plane, i.e.,

PrL(d2D) =

 1, d2D < 18m

18
d2D

+ exp(−d2D
36

)(1− 18
d2D

), d2D > 18m.
(5.8)

The path loss model in [63] consists of LoS and NLoS propagation, depending on

the 3D distance (d3D) as follows,

lL(d3D) = 22log10(d3D) + 28 + 20log10(fc)

= 34.02 + 22log10(d3D),

(5.9)

lNL(d3D) = 36.7log10(d3D) + 22.7 + 26log10(fc)

− 0.3(hUE − 1.5)

= 30.53 + 36.7log10(d3D),

(5.10)
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where d3D is calculated by,

d3D =

√
d2D

2 + (hBS − hUE)2. (5.11)

Table 5.1: LoS/NLoS channel models

Case 1 Case 2 Case 3 Case 4
Models Linear LoS

probability
Isolated
pico cell in
a suburban
area

Millimetre
wave out-
door envi-
ronment

Urban mi-
cro cell in a
3D scenario

Working
frequency

2GHz 2GHz 73GHz,
28GHz

2GHz

2D/3D 2D 2D 2D 3D
BS antenna
type

Omni-directional antenna

BS/UE
antenna
height

No height
information

No height
information

No height
information

hBS = 10m
hUE = 1.5m

Inter-site
distance
(ISD) (rec-
ommended)

N/A 40m N/A 200m

Table 5.1 lists the information about the four channel models considered in terms

of frequency band, BS antenna type, BS/UE antenna height, and recommended BS

densification level.

Fig. 5.1 shows the LoS probability of the transmission link between a small-cell

BS and a user for a BS intensity of 150 BS/km2 under the four path loss models

discussed above. The linear function for the LoS probability in Case 1 facilitates

analytical tractability, as shown in [5]. The LoS probability of an outdoor suburban

environment in Case 2 gradually decreases with the increase of the distance between

the small-cell BS and the user.
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Figure 5.1: LoS probability against distance between user and BS

For a typical user served by a BSs with nearest distance or maximum received signal

(RS), the downlink SINR at the user is given by

SINR =
phil(ri)∑

j∈Φ,j 6=i phjl(rj) + σ2
(5.12)

where p is the small-cell BS transmit power, hi is the channel fading power gain

of the link between the ith BS and the user, which follows a unit-mean exponential

distribution, ri is the distance from the ith BS to the user (d3D in case 4), and σ2 is

the additive white Gaussian noise (AWGN) power at the receiver.
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5.2.6 Simulation Results of Four Path Loss Models

In this section, we present Monte Carlo simulation results to evaluate the coverage

probability (i.e., C = P[SINR > T ]) for a SINR threshold (T ) of 0dB and the

achievable spectrum efficiency (i.e., R = E[ln(SINR + 1)] in nats/sec/Hz) of the

small-cell network. In the simulation, the typical user is located at the origin,

maximum RS based BS association and the nearest BS association are compared in

all four cases. The rest of the parameters are listed in Talbe 5.2.

Table 5.2: Simulation Parameter

Parameter Values
AWGN power σ2 = −95 dBm

Small-cell BS transmit power P2 = 23 dBm
Small scale fading gain h ∼ exp(1)

SINR threshold (T ) 0 dB

Fig. 5.2 shows the coverage probability versus the small-cell BS density under

maximum-RS and nearest-BS user association in four cases. The coverage probabil-

ities for the maximum RS based BS association and the nearest BS association first

increase with the BS density, and then decrease with the BS density after reaching

their maximum values. This is because the increasing number of low-attenuation

LoS links at higher BS densities cause severe interference to the user, thus degrad-

ing the received SINR. The similar trend with the minor gap between case 1 and 2

are observed in both figures, which is due to the similar value of LoS probability as

shown in Fig. 5.1. The values in case 3 and 4 results in difference. In Fig. 5.2(a), the

peak value of coverage probability in case 3 achieves at higher BS density, compared

with case 1, 2 and 4. This is because the fast drop of LoS probability (as shown

in Fig. 5.1) combined with high attenuation path loss (as shown in eq. 7) causes
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Figure 5.2: Coverage probability vs. BS density in four Cases
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less LoS interference to the user. In Fig. 5.2(b), a worse performance in case 4 is

observed with its lower decreasing rate at at a relatively high BS density. This is

due to the 3D path loss model in Case 3 results in longer transmission links, which

results in worse received signal powers at the user, thus causes a worse performance

in terms of SINR and coverage probability. However, it overtakes the value in case

1 and 2 at higher BS density. It is because when LoS links become dominated at

high BS density, the longer 3D transmission links is crucial for much lower receiving

interference at user.

Fig. 5.3 shows the achievable spectral efficiency versus the small-cell BS density

under maximum-RS and nearest-BS user association in four cases. It is obvious

that the peak value in case 3 is much lower than in case 4, and even half of that in

case 1 and 2 in Fig. 5.3(a) This is because when the user is covered by the BS, the

RS power is crucial to determine the achievable spectral efficiency. The RS power

in case 3 experiences the worst scenario at a certain distance in all cases. In Fig.

5.3(a), the peak value in case 4 drop to the same level as in case 3. The practical

3D transmission link has longer distance than 2D distance used to determine the

LoS probability, which results lower SINR and thus worse spectral efficiency.
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Figure 5.3: Spectral efficiency vs. BS density in four Cases
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5.3 User-Centric BS Clustering Strategy

BS

UE

Figure 5.4: Illustration of a user-centric BS Cluster

Since LoS links are usually of a relatively good channel quality, we propose to form a

cooperative transmission BS cluster for a user based on the LoS probability of a BS

link to it, so that as many LoS links from nearby BSs as possible can be aggregated

into desirable transmissions to the user. More specifically, the ith BS is included in

the cooperative BS cluster ΦC for a typical user, if the LoS probability of its link to

the user being LoS is greater than a threshold τ , i.e.,

PrL(ri) > τ (5.13)

where ri is the distance from the user to the ith BS (i.e. d2D in case 4), and 0 6 τ < 1.

If there is no BS meeting the condition in (13), then the user will be served by

the nearest BS without BS clustering. The user-BS association decision process in
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support of the proposed user-centric BS clustering strategy is illustrated in Fig. 5.5.

User as-
sociation
decision

At least one
BS meet the
requirement

of the
clustering
strategy?

Apply BS
clustering
strategy

Apply the
nearest-

BS
associ-
ation

yes

no

Figure 5.5: User association decision

With the proposed user-centric BS clustering, each user is served by a cluster of

nearby BSs. The BSs outside the cluster are the potential interfering sources to the

user. For a typical user served by the cooperative cluster ΦC of BSs, the downlink

SINR at the user is rewrited by

SINR =

∑
i∈ΦC phil(ri)∑

j /∈ΦC phjl(rj) + σ2
. (5.14)
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5.4 Simulation Results of Clustering Strategy

In this section, we present Monte Carlo simulation results to evaluate the coverage

probability and achievable spectrum efficiency of the proposed user-centric BS clus-

tering strategy in a small-cell network. The simulation system is set up similarly

with section 5.2.6 where the typical user is located at the origin. In addition, the

proposed user-centric BS clustering strategy is compared with the RSS-based BS

clustering strategy [89], the maximum RS based BS association and the nearest BS

association.

Fig. 5.5 shows the coverage probability versus the small-cell BS density of all the BS

clustering or user association schemes under comparison in the four cases discussed

in Section II. In case 1, for the RSS-based BS clustering [89], the coverage probability

shows a sharp increase in the middle range of the BS density and finally reaches 1.

This is because at higher BS densities, more BSs can be clustered to give a higher

aggregated received signal power at the user, thus resulting in a higher SINR and

a better coverage probability. For our proposed user-centric BS clustering strategy,

with the high LoS probability threshold τ = 0.3 and 0.5, the coverage probabilities

maintain a fast increasing rate until reaching 1. This is because when the BS

density is increasing, nearby BSs are more likely to have a LoS probability higher

than the given threshold and are grouped into the BS cluster. We also observe

that for (τ = 0.7), the coverage probability first reaches a local maximum value at

about 0.6, then decreases, and then increases again with the higher BS densities.

This is because the high LoS probability threshold may limit the number of BSs

that can be selected for BS clustering, especially when the BS density is relatively

low. Consequently for moderate values of the BS density, the increased interference

from BSs outside the cooperative cluster counteracts the limited SINR improvement
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Figure 5.5: Coverage probability vs. BS density of BS clustering in four Cases
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offered by LoS BSs inside the cooperative cluster, thus slowing down the increase

of coverage probability with the BS density. In case 2, more smooth increase of

our proposed clustering strategy is observed compared to that in case 1. In Case

3, the RSS threshold based BS clustering shows the lowest coverage probability.

This is due to the fact that in millimetre wave transmissions, the fast attenuating

transmit signal power can not meet the RSS threshold for clustering. Thus, the pre-

defined RSS threshold should be dynamically adapted to the realistic transmission

scenario. In case 4, the RSS based BS clustering shows a much faster increasing

rate towards full coverage probability than our proposed LoS based BS clustering at

higher BS densities. This is because apart from the LoS BSs, the nearby NLoS BSs

are more likely to be selected by the RSS based BS cluster, which further enhance the

aggregated transmitting signal power, thus resulting a better coverage probability.

Fig. 5.6 shows the coverage probability versus the small-cell BS density of our

proposed user-centric BS clustering strategy, with τ = 0.3 and 0.7 in the four studied

cases. The coverage probabilities in all four cases increase to reach 1 with the raise

of the BS density. In Cases 1, 2 and 4, a drop in the increasing rate of the coverage

probability occurs in the middle range of the BS density (100.5 ∼ 101.5 BS/km2).

This is because the increase of the number of BSs leads to a fast increase of the

interference, which slows down the increasing rate or even degrades the coverage

probability. It is also noticed that there is an increasing gap between the curves of

Case 2 and 4 at relatively high BS densities, and an almost constant gap between the

curves of Cases 1 and 4. Compared with the coverage probability of Case 1 and 2,

the 3D path loss model in Case 4 results in longer transmission links, which results in

worse received signal powers at the user, which causes a worse performance in terms

of SINR and coverage probability. In Case 3, the millimetre wave transmissions

76



10
0

10
1

10
2

10
3

BS density (BSs/km
2
)

0

0.2

0.4

0.6

0.8

1

C
o

v
er

g
e 

p
ro

b
ab

il
it

y

τ=0.3 in Case1

τ=0.7 in Case1

τ=0.3 in Case2

τ=0.7 in Case2

τ=0.3 in Case3

τ=0.7 in Case3

τ=0.3 in Case4

τ=0.7 in Case4

Figure 5.6: Coverage probability vs. BS density of proposed BS clustering in four
Cases

at τ = 0.3 and 0.7 have the lowest coverage probability at low BS densities, but

increase fast when the BS density goes beyond 10 BS/km2. This is because the fast

attenuating millimetre wave signal power causes much less interference from nearby

BSs that are not in the cluster.

Fig. 5.6 shows the number of clustered BSs in the proposed clustering method versus

the LoS probability threshold under the four cases. From this figure, it can be seen

that the number of BSs in the cluster sharply decreases with the increase of the clus-

tering LoS probability threshold for cases 2, 3 and 4. This is due to the more abrupt

nature of the LoS probability function in these case (see Fig. 5.1), The the coverage

probability depends on the number of BSs in the serving cluster. The decrease is the
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Figure 5.6: No. of BSs in the cluster against the LoS probability threshold for BS
clustering in four Cases
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fastest for Case 3 and 4 due to the exponential decreases of LoS probability function

with the link distance. It is important to note that the more BSs selected for the

cluster, the better coverage probability can be achieved at the user. However, this

comes at a cost, the more BSs in the cluster, the higher implementation complexity

of the JTs. For example, the user’s required data must be available at all BSs in

the cluster. Moreover, the spatial reuse may be affected. Therefore, moderately

decreasing the LoS probability threshold to cluster the right number of BSs may

be helpful to reach a good trade off between network performance, implementation

complexity and spatial reuse.

Fig. 5.6 shows the spectrum efficiency of the proposed user-centric BS clustering and

the RSS-based BS clustering strategy with the BS density for the four studied cases.

As compared to the RSS-based BS clustering strategy, our proposed BS clustering

strategy achieves performance gains in Cases 1, 2 and 3. Especially in Case 3, the

RSS based BS clustering is not functioning. This is because in millimetre wave

transmissions, the fast attenuating signal power can hardly meet the RSS threshold.

In contrast, the RSS-based BS clustering achieves a better performance than our

proposed BS clustering at high BS densities in Case 4. This is due to the fact that

nearby NLoS BSs, which are not selected by our proposed BS clustering, produce

a large amount of interference, which slows down the increasing rate of spectrum

efficiency. In the proposed scheme, the spectrum efficiency generally first increases

to its local maximum value, followed by a slight drop, until it finally reaches a

constant increasing rate again. The slow down occurs because the fast-increasing

interference from NLoS BSs slows down the increasing rate of spectrum efficiency.

The drop is severe for for τ = 0.7.
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Figure 5.6: spectrum efficiency vs. BS density in four Cases
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5.5 Summary

In this chapter, we have analysed the probabilistic events of LoS/NLoS transmission

in four transmission scenarios with different path loss models, including a linear

LoS probability function, a suburban area, a millimetre wave transmission and a

3D path loss model. A new user-centric BS clustering strategy has been proposed

for non-coherent JT to overcome the severe inter-cell interference in dense small-

cell networks. The simulation results have shown that the coverage probability and

spectrum efficiency achieved by our proposed BS clustering strategy increase with

the BS density even at extremely high densities of BSs. In our future work, we

will consider explore the trade-off between BS clustering and area spectrum reuse

and extend the proposed user-centric BS clustering strategy to be combined with

multi-user JT so as to enhance ASE.
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Chapter 6

Multi-BS Multi-UE Clustering

Following from previous chapter, in order to enhance the ASE in a user-centric

BS clustering strategy, we further propose a multi-BS multi-UE clustering. The

tractable approach is derived by using stochastic geometry. The performance anal-

ysis is presented in terms of coverage probability and ASE.

6.1 Introduction

According to the traffic forecast in [3], the growth rate of mobile data traffic in 2017

is 12 exabytes per month, which will have a seven-fold increase until 2022. The trend

of increasing demand for high quality at the UE requires more advanced wireless

communication techniques to mitigate inter-cell interference [85].

For interference limited cellular networks, Coordinated multipoint (CoMP) with

joint transmission (JT) has been widely considered as a promising technique to in-

crease the SINR at the UE. One UE connects to multiple BSs that provide the

maximum average received power [98]. CoMP transmission is realized from ex-
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changing coordination information between a set of transmission nodes [71]. It can

therefore achieve higher SE by by exploiting cooperative diversity gains and mit-

igating inter-cell interference [99]. In [76], a closed-form expressions and accurate

approximations of average data rate of CoMP cluster with imperfect channel state

information (CSI) is derived. CoMP transmission techniques is proved to enhance

the network performance of the coverage probability in [77,100].

Continually researching on CoMP of non-coherent JT, in this chapter we propose a

new multi-BS multi-UE clustering strategy for non-coherent JT in dense small-cell

networks, where a number of UEs and BSs are grouped in a cluster. BSs in the

cluster are able to serve multiple UEs simultaneously. Each UE in the cluster can

receive an aggregated signal from all BSs in the cluster with non-coherent JT. We

develop a tractable approach to reach the closed form expression of the network per-

formance. The resulting coverage probability, achievable SE and ASE are evaluated

through system level simulations.

6.2 System Model and Coverage Probability

6.2.1 Clustering Strategy in Small-cell Network

We consider a homogeneous dense small-cell network, where each small-cell BS trans-

mits at the same power level. The spatial distribution of the small cells, which are

grouped in the BS set Φ, follows a PPP with a spatial density of λBS. UEs are

distributed over the network area following another independent homogeneous PPP

with the density of λUE.

In this paper, the cluster form a disk area with a radius of d to cover a random
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BS

UE

Figure 6.1: Illustration of a multi-BS multi-UE cluster

area as shown in Fig. 6.2. BSs inside cluster are denoted by n = 1, 2, 3, ..., N ,

are simultaneously serving multiple UEs. UEs inside the cluster are denoted by

k = 1, 2, 3, ..., K, experience the aggregated transmit signal power from all BSs in

the cluster with non-coherent JT. We define the SINR for one UE as,

SINR =

∑N
i=1 phil(ri)∑

j∈Φ,j 6=n phjl(rj) + σ2
(6.1)

where p is the small-cell BS transmit power, hi is the channel fading power gain

of the link between the ith BS and the UE, which follows a unit-mean exponential

distribution, ri is the distance from the ith BS to the UE, and σ2 is the additive

White Gaussian Noise (AWGN) power at the UE.
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BS1
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Figure 6.2: The kth UE is connected with the nth BS

6.2.2 Probabilistic BS Density

In this section, we propose probabilistic BS density from the view of a UE according

to the spatial distributions of UEs and BSs in the cluster. As shown in Fig. 6.2,

we define the distance between the center of the cluster and a UE in the cluster is

r1, and the distance between a random BS in the plane and the UE in the cluster

is r2. From the Fig. 6.2, a BS located away r2 from the UE can be either in or not

in the cluster. We therefore define a multi-slope probability of the BS to be in the

cluster as ε. The density of serving BSs in the cluster and interference BSs outside

the cluster is rewritten as ελBS and (1− ε)λBS respectively.

From the view of a UE in Fig. 6.2, a BS to be certainly the serving BSs in the

cluster only if this BS located within the range of [0, d − r1], i.e. r2 < d − r1. If

88



a BS located within the range of [d − r1,∞], the BS is belong to interference BSs

located outside the cluster. When a BS located in the range of [d− r1, d + r1], the

probability of the BS to be in the cluster (ε) is calculated by the proportion of the

arc (in the angle of 2θ) in the entire circle (of radius r2). The multi-slope probability

of ε is defined as,

ε =


1 when r2 < d− r1

θ
π

when d+ r1 < r2 < d+ r1

0 when r2 > d+ r1

(6.2)

The angle θ is calculated from trigonometric function.

θ = arccos
(r1

2 + r2
2 − d2

2r1r2

)
(6.3)

6.3 Theoretical Analysis in Multi-BS Multi-UE

Clustering

To evaluate the coverage probability of a small-cell network, we aims to calculate

the expectation of the coverage probability of all UEs in the cluster, i.e.

C = E[Ck|r1]

where Ck is the coverage probability experienced at the kth UE. From Campbell’s

theorem,

C =

∫ d

0

Ck(r1)δ dr1 (6.4)
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From the view of the center of the cluster, the probability of a UE located r1 away

is given as, ∆ = e−λUEπr1
2

Thus, the PDF is,

δ = 2πλUEr1e
−λUEπr1

2

(6.5)

From the difference of the BS density in range [0,∞] presented in last section, Ck is

then divided into two slopes.

Ck = C1
k + C2

k (6.6)

where the coverage probability of the kth UE in two slopes is composed of the

following two parts

C1
k =

∫ d−r1

0

P[SINRk > T ]f 1
R2

(r2) dr2

C2
k =

∫ d+r1

d−r1
P[SINRk > T ]f 2

R2
(r2) dr2

(6.7)

From the view of the kth UE, the PDF function of finding at least n points within

the range of r2 is given in [96].

f 1
R2

(r2) =
2(λBSπ)nr2n−1

(n− 1)!
exp(−λBSπr

2) (6.8)

f 2
R2

(r2) =
2(ελBSπ)nr2n−1

(n− 1)!
exp(−ελBSπr

2) (6.9)

The coverage probability is calculated from the SINR experienced at kth UE greater

than a pre-defined threshold T . The interference from the BSs outside the cluster

is denoted by I, and I =
∑

j∈Φ,j 6=n phjl(rj). By following Gamma approximation
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in [83], the probability of SINR greater than T is shown as

P[SINR > T ] = P

[ N∑
i=n

hi >
T (I + σ2)∑N pl(r2)

]
(a)
= 1−E

[
γ(n, µ)

Γ(n)

]
= 1−E

[ ∫ µ

0

tn−1e−t

Γ(n)
dt

]
(b)

≤ 1−E[(1− e−bµ)n]

=
n∑

m=1

(
n

m

)
(−1)m+1

E[e−mbµ]

(6.10)

(a) follows from the sum of mutually independent random variables having expo-

nential is a Gamma random variable [83], and µ = T (I+σ2)∑N pl(r2)
. Note that γ(n, µ)

is the lower incomplete gamma function. (b) follows the inequalities of Gamma

distribution introduced in [101].

Theorem 6.1 Inequalities of Gamma distribution

The inequalities of Gamma distribution introduced in [101],

(1− e−bx)p <
∫ x

0

tp−1e−t

Γ(p)
dt < (1− e−ax)p (6.11)

where

a = 1, b = (Γ(1 + p))−1/p, if 0 <
1

p
< 1 (6.12)
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By substitute µ in the expectation, we have

E[e−mbµ]

= exp

(
− mbTσ2∑

m<n pl(r2)

)
E

[
exp

(
− mbIT∑

m<n pl(r2)

)] (6.13)

The calculation of Laplace transform of the interference is shown as,

E

[
exp

(
− mbIT∑

n<N pl(r2)

)]
= exp

(
− 2πλBS

∫ d+r1

d−r1

x(1− ε(x))

1 + (spx−α)−1
dx

)

× exp

(
− 2πλBS

∫ ∞
d+r1

x

1 + (spx−α)−1
dx

) (6.14)

where s = mbT∑
m<n pl(r2)

The network performance of the proposed clustering strategy can be further analyzed

from the average data rate and ASE, which are given as,

R =

∫ ∞
0

log2(1 + T )
d(1− C(T ))

dT
dT (6.15)

and the ASE is calculated by the total data rate achieved by all UEs in the cluster

divided by the area of the cluster.

ASE =
Rtotal

Area
= λUER (6.16)
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6.4 Numerical Results

In this section, we present numerical results and further study the performance of

the proposed multi-BS multi-UE clustering strategy in a small-cell network. we

adopt the following parameters: the transmit power of the small cells is p = 23dBm,

AWGN power is σ2 = −95dBm and the path loss exponent is modelled as α = 3.09.

The density of the UE is defined as the multiple density of the BS.
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Figure 6.3: Coverage probability vs. BS density in multi-BS multi-UE clustering

Fig. 6.3 shows the coverage probability versus the BS density in the proposed

clustering strategy. The coverage increases fast to approach the maximum value

1 at high BS density. This is because the increase of the BS density cause more

number of BSs in the cluster. A typical UE in the cluster is able to be simultaneously

served by multiple BSs from the non-coherent JTs, and the received signal is the
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summation of transmitting signals from all BSs in the cluster. At same BS and UE

densities, the coverage probability increases as the cluster range expands. This is

simple due to that the cluster range from 100m to 300m, the more BSs are grouped

in the cluster. A UE in the cluster experiences a much higher received signal from

more serving BSs in the cluster.
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Figure 6.4: Average data rate vs. BS density in multi-BS multi-UE clustering

Fig. 6.4 shows the average data rate at UEs versus the BS density in the proposed

clustering strategy. The the average data rates in all cases achieve a high increasing

rate at low BS density, and gradually reach to a linear increase at high BS density.

This is because at low BS density (< 1000BSs/km2), the number of BS in the cluster

is usually less than 10. The increase of each BS in the cluster give a significant boost

of RSS at the UE, which results the fast increasing average data rate. When the BS
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density is relatively high, the aggregated received signal at the UE is proportional

to the number of BSs in the cluster, which thus results the linear increase of the

data rate at UEs.

Moreover, We study the average data rate by different cluster range in proposed

clustering strategy and proportion of UE and BS densities. Similar as the coverage

probability, the average data rate increases with the cluster range grows. The ex-

pansion of the cluster range groups more nearby BSs resulting extreme high total

received signal power at UEs, raises the SINR for UEs in the cluster, thus better

average data rate for better QoS. When the proportion of UE and BS densities

increases from 2 to 5, the data rate at UEs remains constant. The reason behind

is due to that all UEs in the cluster are assumed to be serving simultaneously at

same spectrum under non-coherent JTs. Each UE is isolated from other UEs with

no intra-interference in the cluster.

In Fig. 6.5, we study the linearly increasing ASE of the proposed clustering strategy

versus the BS density. Comparing the different proportion of UE and BS densities,

the higher UE density the better ASE can be achieved. This is because that when

the UE density increases, the number of UEs being served in the cluster is also in-

creasing. Recalling the eq. (6.16), the ASE the is calculated from the total achieving

data rate divided by cluster area. The more UEs can be served simultaneously, the

higher total data rate can be achieved, and thus the better ASE of the proposed

clustering. Moreover, the ASE increases as the cluster range expands, which is

because of the similar reason to serve more UEs in the cluster.

Fig. 6.6 shows the EE versus the BS density. Comparing the cluster radius under

same UE and BS ratio, we find the smaller of the BS cluster the higher EE can be
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Figure 6.5: ASE vs. BS density in multi-BS multi-UE clustering

reached. Moreover, comparing the different UE and BS ratio at same cluster radius,

it is obvious that the lower of the ratio is benefit for the EE. The reason is because

the smaller BS clusters or larger number of BSs allow a much lower working load

of required UE data for each BS, which thus cause less power to be consumed for

each BS. In general, the EE increases with the less number UEs, the more number

of BSs and smaller cluster radius, which is exactly opposite to the ASE shown in

Fig. 6.5. Thus, a reasonable balance between ASE and EE can be reached in the

proposed BS clustering.
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Figure 6.6: EE vs. BS density in multi-BS multi-UE clustering

6.5 Summary

In this chapter, we proposed a multi-BS multi-UE clustering. In the theorems

of probabilistic density theorem and gamma approximation of summation fading,

the tractable approach is derived in stochastic geometry. The results show the SE

increases fast at low BS density and reach a linear increase at relatively high BS

density. Meanwhile, the ASE can achieve a high increasing rate in higher UE density

and larger cluster range.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

This thesis has investigated the performance analysis of the current HetNets for

providing high quality of service to mobile users. The coverage probability, SE,

ASE and EE are treated as the key features to evaluate a cellular network. The

related closed form expressions are derived in various scenarios. In the meantime, the

background of deploying more small-cell BSs in HetNets to meet the exponential

increasing user data demand raise the concern of the LoS links in the path loss

model. The more practical path loss model is investigated to have multiple slopes

with both LoS and NLoS links. The high possible occurrence of the LoS links is

demonstrated to degrade the coverage probability in small cell network, but still

remains fast linear increase in ASE.

Inspire of that the complex path loss model with multiple slopes and probabilistic

LoS and NLoS path losses is facilitated in a HetNets. The PPP is introduced ac-

cording to the randomness of the BS location. Utilizing the stochastic geometry, the
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closed form expressions of K-tier HetNets are derived to the analyze the network

performance, such as coverage probability, ASE and EE. For feasible comparison in

network performance, The analytical model is further simplified in a two-tier Het-

Nets with simplified linear LoS and NLoS path loss model. The results demonstrate

that at relatively high small-cell densities, the excessive inter-cell interference caused

by LoS and NLoS blocked almost all desired links. The increasing small-cell trans-

mit power will not improve the ASE, but will degrade the EE significantly. Even in

an extremely dense HetNet both the ASE and EE of the HetNet will drop quickly.

Following the investigating of LoS transmissions, the the probabilistic events of

LoS and NLoS transmissions are studied in four transmission scenarios with dif-

ferent path loss models, including a linear LoS probability function, a suburban

area, a millimetre wave transmission and a 3D path loss model. The network per-

formance is numerically evaluated in a small-cell network. The simulation results

show the severe degradation of both coverage probability and SE appeared at high

BS density. Accordingly, A new user-centric BS clustering strategy is proposed for

non-coherent JT to overcome the severe inter-cell interference in dense small-cell

networks. The simulation results show that the coverage probability and spectrum

efficiency achieved by the proposed BS clustering strategy increases with the BS

density even at high densities of BSs.

Furthermore, the enhancement of the ASE in the clustering strategy called multi-BS

multi-UE clustering is then proposed. The tractable approach is derived in stochastic

geometry according to the probabilistic density theorem and gamma approximation

of summation fading. The performance analysis is presented in terms of coverage

probabiltiy, SE and ASE. The proposed clustering strategy achieves high coverage
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probability and linear increasing SE at high BS density without sacrificing the ASE.

7.2 Future Work

The future work of this thesis is discussed according to the remaining issues and

challenges in each chapter.

In chapter 4, a closed form expression for HetNets has been developed in the consid-

eration of LoS and NLoS transmissions. There are a number of potential improve-

ments requiring further investigations. Firstly, the bias factor mentioned in the user

association exists in closed form expressions in K-tier HetNets, which enable the

analysis of load balancing between different tiers. Moreover, the cell range expan-

sion technology can be realized by having larger bias in small cell. As the number

of small-cell BSs increases, it is reasonable to offload from macrocells to small cells.

Secondly, the LoS probability in the path loss is modeled as a linear function in

proposed theoretical expressions. The more realistic path loss model can be fitted

in the closed form expressions, such as the path loss models mentioned in chapter

5. In addition, the HetNets are assumed in the outdoor environment only. As LoS

transmissions are highly likely to appear in the indoor environment. The theoretical

analysis can be further extended to a mixed outdoor and indoor scenario.

In chapter 5, LoS and NLoS path loss models are simulated in four transmission

environments. The corresponding user-centric BS clustering strategy is proposed to

mitigate the inference at the user, which thus improve the network performance.

The potential work in the future will first to reach a tractable approach of closed

form expressions rather than the current analysis is based on simulation results

only. Secondly, the proposed BS clustering strategy assumes there is enough space
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between each cluster, so the problem of overlapping BS clusters has not address

and can be considered in future work [102]. Moreover, both BSs and UEs are

currently modeled with independent Poisson point process (PPP). However, with

defined cluster in point process, the Poisson cluster process (PCP) is more positive

to exhibit attractive point patterns [103]. Moreover, the comparison between PPP

and PCP in analysis of BS clustering strategy can be investigated.

In chapter 6, the multi-BS multi-UE clustering is proposed, and the closed form

expressions is derived for evaluating network performance in terms of coverage prob-

ability, SE, ASE and EE. The proposed strategy is currently facilitated in small-cell

network only. The closed form expressions can be further derived for HetNets with

multiple types of BSs. In current clustering strategy, the UEs and BSs are the

randomly located in the cluster, which will result the UEs at cluster center will

have better QoS than cluster-edge UEs, because the cluster-center UEs are likely

to have shorter distances to BSs. Therefore, the further analysis of cluster-center

and cluster-edge performance is needed. Lastly, the proposed strategy assume the

spectrum is shared by all UEs. In this case, the coherent JTs are expected to be

analyzed for signal coordination and synchronization between BSs in the cluster.
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Chapter 8

Appendix

8.1 Discussion of parameter b and c

Following the similar process in eq. 4.27 and eq. 4.32 in chapter 4, we discuss the

relationship between b and d1 and c and d1.

If 0 < b ≤ d1, the second multiplier in eq. (4.26), i.e. b̃ is given as

b̃ = exp
(
−
∫ b

0

u

d1

2πuλ1du
)

(8.1)

and the interference from NLoS BSs in 1th tier is shown as,

LINL
1

(s) = exp
(
− 2πλ1

∫ d1

b

( u
d1

) u

1 + (sP1ANL)−1uαNL du
)

× exp
(
− 2πλ1

∫ ∞
d1

( u
d1

) u

1 + (sP1ANL)−1uαNL du
)

= exp
(
− 2πλ1

d1

{
ξ1

[
αNL, 2, (

P2A
NL

P1AL
γrα

L

)−1, d1

]
− ξ1

[
αNL, 2, (

P2A
NL

P1AL
γrα

L

)−1, b

]}
− 2πλ1ξ2

[
αNL, 1, (

P2A
NL

P1AL
γrα

L

)−1, d1

])
(8.2)
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If b > d1, we have

b̃ = exp
(
−
∫ d1

0

u

d1

2πuλ1du−
∫ b

d1

2πuλ1du
)

(8.3)

and,

LINL
1

(s) = exp
(
− 2πλ1

∫ ∞
b

u

1 + (sP1ANL)−1uαNL du
)

= exp
(
− 2πλ1ξ2

[
αNL, 1, (

P2A
NL

P1AL
γrα

L

)−1, b

]) (8.4)

Moreover, if 0 < c ≤ d1, the third multiplier in eq. (4.26), i.e. c̃ is given as

c̃ = exp
(
−
∫ c

0

(
u

d1

)2πuλ2du
)

(8.5)

and the interference from NLoS BSs in 2th tier is,

LINL
2

(s) = exp
(
− 2πλ2

∫ d1

c

( u
d1

) u

1 + (sP2ANL)−1uαNL du
)

× exp
(
− 2πλ2

∫ ∞
d1

( u
d1

) u

1 + (sP2ANL)−1uαNL du
)

= exp
(
− 2πλ2

d1

{
ξ1

[
αNL, 2, (

P2A
NL

P1AL
γrα

L

)−1, d1

]
− ξ1

[
αNL, 2, (

P2A
NL

P1AL
γrα

L

)−1, c

]}
− 2πλ2ξ2

[
αNL, 1, (

P2A
NL

P1AL
γrα

L

)−1, d1

])
(8.6)

If c > d1, we have

c̃ = exp
(
−
∫ d1

0

u

d1

2πuλ2du−
∫ c

d1

2πuλ2du
)

(8.7)
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and,

LINL
2

(s) = exp
(
− 2πλ2

∫ ∞
c

u

1 + (sP2ANL)−1uαNL du
)

= exp
(
− 2πλ2ξ2

[
αNL, 1, (

P2A
NL

P1AL
γrα

L

)−1, c

]) (8.8)

By plugging eq. (4.27, 4.32, 8.1, 8.3, 8.5 and 8.7) into eq. (4.26), we have the fL
1,1.

Moreover, plugging eq. (4.28, 8.2, 8.4, 8.6 and 8.8) and eq. (4.26) into eq. (4.25),

we have the T L
1,1.
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