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Abstract

According to the World Health Organisation, cardiovascular diseases are the
most prevalent cause of death worldwide and taking nearly 18 million lives
each year. Identifying individuals at risk of cardiovascular diseases, and
ensuring they receive appropriate treatment in time can prevent premature
deaths. Early quantitative assessment of cardiac function, structure, and
motion support preventive care and early cardiovascular treatment. There-
fore, fully automated analysis and interpretation of large-scale population-
based cardiovascular magnetic resonance imaging studies become of high
importance. This analysis helps to identify patterns and trends across pop-
ulation groups, and accordingly, reveal insights into key risk factors before
diseases fully develop.

To date, few large-scale population-level cardiac imaging studies have
been conducted. UK Biobank (UKB) is currently the world’s most extensive
prospective population study, which in addition to various biological and
physical measurements, contain cardiovascular magnetic resonance (CMR)
images to establish cardiovascular imaging-derived phenotypes. CMR is an
essential element of multi-organ multi-modality imaging visits for patients
in multiple dedicated UK Biobank imaging centres that will acquire and
store imaging data from 100,000 participants by 2023.

This thesis introduces CMR image analysis methods that appropriately
scales up and can provide a fully automatic 3D analysis of the UKB CMR
studies. Without manual user interactions, our pipeline performs end-
to-end image analytics from multi-view cine CMR images all the way to
anatomical and functional quantification. Besides, our pipelines provide
3D anatomical models of cardiac structures which enable the extraction of
detailed information of the morphodynamics of the cardiac structures for
subsequent associations to genetic, omics, lifestyle habits, exposure inform-
ation, and other available information in population imaging studies. We
present the quantification results from 40,000 subjects of the UK Biobank
at 50 time-frames, i.e. two million image volumes.
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Chapter 1

Introduction: Background, Motivation and

Contribution

1.1 Heart Anatomy and Function

Heart as a crucial organ to our survival pumps blood through the circulatory system

to provide oxygen and nutrients to cells and carries away unwanted carbon dioxide and

metabolic waste products [1]. The heart which is located between the lungs, in the

middle compartment of the chest, has four chambers, as shown in Figure 1.1: two atria

and two ventricles, and they function as follows:

ˆ The right atrium (RA) receives deoxygenated blood from the body and pumps it

to the right ventricle.

ˆ The right ventricle (RV) pumps the deoxygenated blood to the lungs.

ˆ The left atrium (LA) receives oxygenated blood from the lungs and pumps it to

the left ventricle.

ˆ The left ventricle (LV) pumps the oxygenated blood to the body.

1



1. INTRODUCTION: BACKGROUND, MOTIVATION AND CONTRIBUTION

Figure 1.1: Chambers of the heart. The heart has four chambers: two atria and two
ventricles. (Modi�ed from source: © Healthwise, Incorporated)

The atria are smaller than the ventricles with thinner and less muscular walls and

act as blood receiving chambers while ventricles that are connected to the arteries act

as pumping chambers to send blood out of the heart. The ventricular wall has three

layers: epicardium (the external layer), myocardium (the central layer), which contains

the muscle for contraction, and endocardium (the internal layer). Considering adequate

blood pressure is needed to pump the oxygenated blood to various parts of the body,

the LV wall is thicker than the RV wall [2].

This cardiac function happens continuously through the full cardiac cycle, which

is a sequence of electrical and mechanical movements that happens throughout the

relaxation (diastole) and contraction (systole) phases of the heart. The ventricular

diastolic stage involves the blood transfer from atria to ventricles, and the ventricular

systole involves the blood transfer from ventricles to the pulmonary artery and aorta.

The heart pumps blood with a rhythm managed by a group of pacemaking cells in

the sinoatrial node generating a current to contract the heart and passes through the

atrioventricular node and the conduction system of the heart [1].
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1.2 Cardiovascular Disease

1.2 Cardiovascular Disease

Cardiovascular disease (CVD) also called heart and circulatory disease is a general term

for conditions that a�ect cardiac morphology and function. According to the World

Health Organisation (WHO) [3], CVD is the most prevalent cause of death worldwide,

accounting for nearly 18 million deaths each year.

CVD a�ects nearly seven million people in the UK and is a signi�cant cause of

disability and death [4]. The long term plan of the National Health Service (NHS)

classi�es CVD as a clinical priority and the most prominent condition where lives can

be saved by the NHS over the next ten years. The plan sets the goal for the NHS to

help prevent thousands CVD cases over the next ten years.

There are several risk factors for CVDs that each has moderate e�ects and interact

with each other in complex ways, such as smoking, stress, alcohol, high blood pressure,

high blood cholesterol, being physically inactive, being overweight, diabetes, family his-

tory of heart disease, ethnic background, sex, and age. Our current understanding of

these risk factors of CVDs is mainly due to prospective population-based research stud-

ies such as the Framingham Heart Study [5], the Monitoring trends and determinants in

Cardiovascular disease (MONICA) project [6], the INTERHEART study [7], the East

German population-based Study of Health in Pomerania (SHIP) [8], the Jackson Heart

Study [9], the Multi-Ethnic Study of Atherosclerosis (MESA) [10], the Dallas Heart

Study [11], and the Age, Gene/Environment Susceptibility-Reykjavik Study (AGES-

Reykjavik) [12], all of which have demonstrated the advantage of population-based

longitudinal studies for predicting and preventing CVDs.

In contrast to retrospective studies where the follow-up information is not available,

prospective cohort studies provide the principal requirements and information for a bet-

ter assessment of the risk factors and their individual and collective contribution in the

progression of diseases including CVDs. However, prospective cohort studies require

large-scale population-level studies because only a relatively small proportion with a

particular background will develop a particular condition. When it is known which in-

dividuals have developed some particular condition, then further detailed investigations

can be conducted [13].

Identifying individuals at risk of CVDs and ensuring they receive appropriate and

timely treatment can help prevent premature deaths. However, diagnosis of CVD is
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1. INTRODUCTION: BACKGROUND, MOTIVATION AND CONTRIBUTION

often made at late symptomatic stages, which leads to late interventions and decreased

e�cacy of medical care. Early quantitative assessment of the cardiac structure, motion,

and function support preventive care and early cardiovascular treatment. Therefore,

mechanisms for fully automated analysis and interpretation of large-scale population-

based imaging studies are of high importance. This analysis helps to identify patterns

and trends across population groups, and accordingly, provides insights into key risk

factors before CVDs fully develop.

1.3 Quantitative Cardiac Image Analysis

Assessment of cardiac function can be achieved through di�erent baseline tests such as

blood test or electrocardiogram (ECG), or di�erent imaging techniques that are avail-

able in clinical practice to generate images of the heart from di�erent views, such as

echocardiogram (echo), chest x-ray, computed tomography (CT), nuclear imaging, and

magnetic resonance imaging (MRI) which enable non-invasive qualitative and quant-

itative assessment of cardiac function and structure to provide support for diagnosis,

disease monitoring, treatment planning, and prognosis.

Among all, Cardiovascular Magnetic Resonance (CMR) imaging provides accurate

morphological information and good quality soft-tissue contrast of a human heart.

These images are an excellent source of visual information to monitor and analyse

cardiac function for early diagnosis of heart abnormalities. CMR has fundamental

advantages over other imaging techniques that encourage the community for its use in

clinical practice and research, where it has established itself as the non-invasive gold

standard for assessing cardiac chambers for a wide range of CVDs. CMR o�ers accurate

and reproducible tomographic, static, or cine images of high spatial and temporal

resolution in any desired plane without exposure to contrast agents or ionising radiation.

As such, long-axis and short-axis views can be acquired to allow a visual, qualitative

assessment of function [13, 14].

However, due to a large amount of visual information within the CMR images

(di�erent slices from di�erent views at di�erent time points), it is required to detect

and segment the target anatomical regions for the further steps of quanti�cation and

clinical assessment. However, clinicians have been using manual or semi-automatic
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approaches for CMR image analysis for years, which is time-consuming and prone to

subjective errors. It is a major clinical challenge to derive quantitative and clinically

relevant information from CMR images automatically. In this regard, fully automated

cardiac image segmentation is an essential �rst step to partition the image into sev-

eral anatomically meaningful regions, based on which quantitative measures can be

obtained. Typically, the anatomical regions of interest for CMR image segmentation

are the cardiac four chambers, i.e. LV, RV, LA, and RA.

There is an extensive literature of CMR segmentation methods (see reviews [15{

21]). However, most published methods have been developed and tested using datasets

of a few dozen images which in many cases are private databases that are not open ac-

cess. During the last few years, the dimensionality of datasets used in the CMR image

analysis has signi�cantly increased. This presents an unprecedented challenge in the

community since the existing algorithms do not necessarily perform equally accurate

and e�cient when dealing with these extraordinary high dimensions, i.e. a consider-

able number of subjects with spatial and temporal imaging data. New technologies,

frameworks and algorithms are thus needed to e�ciently process these large quantities

of data to derive useful information.

To date, few really large-scale population-level cardiac imaging studies have been

conducted. One such study stands out for its sheer size, careful implementation, and

availability of top quality expert annotation; the UK Biobank (UKB). The resulting

massive imaging datasets (targeting ca. 100,000 subjects) has put published approaches

for cardiac image quanti�cation to the test.

1.4 Large-scale Population-level Cardiac Image Analysis

Population imaging studies generate data for developing and implementing personal-

ised health strategies to prevent or more e�ectively treat diseases. Large prospective

epidemiological studies acquire imaging for pre-symptomatic populations. These stud-

ies enable the early discovery of alterations due to impending disease and enable early

identi�cation of individuals at risk.

Currently, patients with similar CVDs symptoms often receive the same treatments

at late symptomatic stages, which leads to late interventions and decreased e�cacy
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of medical care. In this context, healthcare needs new biomarkers from large-scale

databases of clinical and biological data [22, 23]. Biomarkers which correspond to

di�erent stages of disease progression have various functions. Biomarkers can support

patients who seem that have no disease, those who have the risk of having a disease,

those who are suspected of having disease, and those with clear pathology indicators

[24].

Computation of accurate and reproducible predictive biomarkers derived from car-

diac structural and functional measurements enable investigation of the disease pro-

gression and its association with those imaging-derived phenotypes. The combination

of non-invasive CMR imaging with clinical data o�ers a rich source of big cardiac

data, which opens up new issues of exploration to improve our understanding of the

progression of CVDs across di�erent population groups [13, 25]. This kind of study

contributes toward the global move to predictive, preventive, personalised, and parti-

cipatory medicine through big data analysis [26{28]. To study the possible associations

within genetic, lifestyle factors, imaging-derived phenotypes, and subsequent risk of

a wide range of diseases, it is essential to perform imaging in very large numbers of

individuals as only a relatively small proportion of them will develop any particular

condition during follow-up [29].

Large-scale population-based imaging studies of CVDs are becoming possible due

to the advent of standardised, robust non-invasive imaging methods and infrastructure

for big data analysis [30]. However, images constitute essentially of pixels and voxels,

resulting in extremely high-dimensional feature spaces of low semantic value. Funda-

mentally, the goals are to process, aggregate, and reduce these raw intensity image

signals to transform the images into higher-level representations (e.g., clusters, labels,

shapes, biomarkers, etc.). Thus, such studies pose new challenges requiring automatic

image analysis, an essential pre-requisite to automatically and robustly process the im-

age data and extract information about the cardiovascular morphology and function

using segmentation techniques [27, 31].

The UKB is a population-based prospective study, established to investigate the

determinants of disease in middle and old age [32]. UKB is the largest and most de-

tailed imaging study to date. The UKB imaging enhancement aims to perform brain,

cardiac and abdominal MRI, full body dual-energy X-ray absorptiometry and a carotid
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ultrasound scan on 100,000 of the existing 500,000 UKB participants before the end of

2023 [29]. In addition to the collection of extensive baseline questionnaire data, bio-

logical samples and physical measurements, CMR is utilised to provide cardiovascular

imaging-derived phenotypes [13]. Over 45,000 participants have undergone an assess-

ment, already making the UKB imaging enhancement by far the largest multi-modal

imaging study in the world. At this time, CMR scans of 40,000 subjects have been

released and are available for health-related research.

The amount of imaging data collected on such a large number of participants is truly

unique. Yet it is the combination of these data with the wealth of other phenotypic,

genetic and medical record information available in UKB that provides a powerful

resource to address previously unanswerable research questions. Consequently, it is of

high importance to have fully automated methods to quantify CMR-derived phenotypes

and biomarkers from this large-scale study to identify early markers of pathology and

their genetic and lifestyle determinants for preventive care and early cardiovascular

treatment.

1.5 Technical Background and Evaluation Criteria

This section aims at giving a brief introduction to the fundamental theory behind the

proposed segmentation approaches presented in the following chapters. We �rst explain

the baseline technique of Principal Component Analysis (PCA). Subsequently, we show

what evaluation metrics we use to assess the quality of our proposed methods presented

in the next chapters.

1.5.1 Background Theory

Statistical Models for image processing were introduced by Cootes et al. [33]. These

models can be used for di�erent applications, including image segmentation in various

domains. These models describe statistical variations as seen in a set of example im-

ages, in which corresponding landmark points are annotated. The shapes, which are

spanned by the landmarks, are aligned using the Procrustes analysis to compensate

for translation, rotation and scaling di�erences between the shape samples. The mean

shape of this set of aligned shapes is calculated, and modes of shape variation are
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computed using PCA. PCA reduces data by geometrically projecting them onto lower

dimensions called principal components, intending to �nd the best summary of the data

using a limited number of components.

To illustrate this, assume a training set of M shapes, each described byN points

in R3, i.e., x i
j = ( x i

j ; y i
j ; zi

j ) with i = 1 ; :::; M and j = 1 ; :::; N .

Further, let si = ( x i
1; y i

1; zi
1; :::; x i

N ; y i
N ; zi

N )T be the i -th vector representing the

shape of the i -th surfaces of cardiac chambers. Here, all nuisance pose parameters

(e.g., translation, rotation and scaling) have been removed from using generalised Pro-

crustes analysis. Considering this set covering a particular class of shapes, we will

always observe some degree of inter-point correlation. Thus there could exist a shape

representation accounting for correlation between points. If some point movements

were to be correlated, this could be exploited to reduce dimensionality.

In our case, we will explore a linear transformation of the data:

s0
i = L s i (1.1)

The shape class mean and covariance ofs and s0 are then as follows:

�s =
1

M

MX

i =1

si (1.2)

C =
1

M � 1

MX

i =1

(si � �s)(si � �s)T (1.3)

�s0 =
1

M

MX

i =1

s0
i =

1
M

MX

i =1

L s i = L�s (1.4)
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C0 =
1

M � 1

MX

i =1

�
s0

i � �s0� �
s0

i � �s0� T

=
1

M � 1

MX

i =1

(Ls i � L s) (Ls i � L s)T

=
1

M � 1

MX

i =1

L (si � s) (L (si � s))T

=
1

M � 1

MX

i =1

L (si � s) (si � s)T L T

= L

 
1

M � 1

MX

i =1

(si � s) (si � s)T

!

L T

= LCL T

(1.5)

Then, if we limit ourselves to orthogonal transformations (i.e. L � 1 = L T ) left-

multiplication by L T in Equation 1.5 yields:

L T C0 = CL T (1.6)

Substitution of L T by � yields:

C� = �C 0 (1.7)

From Equation 1.7 it is seen that if � is chosen as the (column) eigenvectors of the

symmetric matrix C, then the covariance of the transformed shapes,C0, becomes a

diagonal matrix of eigenvalues. In the case of correlated points the smallest eigenvalues

will be (close to) zero and the corresponding eigenvectors could be omitted from� ,

thus reducing the length of s0.

In conclusion, to establish a linear transform that de-correlate data vectors, the

transformation matrix must be the eigenvectors of the covariance matrix of the ori-

ginal data. In order to back transform from the new set of variables, s0, we invert

Equation 1.1, remembering that L is orthogonal:

s = L � 1s0 = L T s0 = �s 0 (1.8)

Typically one would apply PCA on variables with zero mean (notice that the � is
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unchanged):

s0 = L (s � �s) ; s = �s + �s (1.9)

In summary, the shape covariance is represented in a low-dimensional space or

PCA of the shape. That producesl eigenvectors� = [ ' 1' 2:::' l ], and corresponding

eigenvalues� = diag(� 1; � 2; :::; � l ) of the covariance matrix computed via Singular

Value Decomposition. Hence, assuming the shape class follows a multi-dimensional

Gaussian probability distribution, any shape in the shape class can be approximated

from the following linear generative model:

s � �s + �b (1.10)

where b are shape parameters restricted tojb i j � �
p

� i ; we typically set � = 3 to

capture 99:7% of shape variability. The shape parameters ofs can then be estimated

as follows:

b = � T
l (s � �s) (1.11)

Here, the entries ofb are the projection coe�cients of mean-centred shapes (s � �s)

along the columns of� .

1.5.2 Data and Evaluation Metrics

We collected the UKB data under access applications number 2964 and 11350. This

study complies with the Declaration of Helsinki. The study was covered by the ethical

approval for UKB studies from the National Health Service National Research Ethics

Service on 17th June 2011 (Ref 11/NW/0382) and extended on 10th May 2016 (Ref

16/NW/0274) with informed consent obtained from all participants. The full CMR

protocol in the UKB has been described in detail elsewhere [34]. Researchers can apply

to use the UKB resource for health-related research that is in the public interest1.

For quantitative assessment of our proposed methods, we evaluate the performance

of the automated method in two ways, respectively using commonly used metrics for

1https://www.ukbiobank.ac.uk/register-apply
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segmentation accuracy assessment and clinical measures derived from segmentations.

Figure 1.2: Illustration of the DSC, MCD and HD metrics. A and M are two sets
representing automated segmentation and manual segmentation contours. The DSC
metric is the ratio of the intersection over the average area of the two sets. The MCD
�rst calculates, for each point on one contour, its distance to the other contour, then
calculates the mean across all the points. The HD calculates the maximum distance
between the two contours.

We compute the segmentation accuracy using three key metrics: Dice Similarity

Coe�cient (DSC), Mean Contour Distance (MCD) and Hausdor� Distance (HD). Fig-

ure 1.2 illustrates the de�nitions of the three aforementioned metrics, each of which is

detailed below. First, the DSC evaluates the overlap between automated segmentation

A and manual segmentationM ; we de�ne DSC as follows:

DSC =
2jA \ M j
jA j + jM j

(1.12)

DSC is between 0 and 1, with a higher DSC indicating a better match between the

two segmentations. The MCD and HD measures evaluate the mean and maximum

distance, respectively, between segmentation contours@A and @M . These measures

are de�ned as follows:

MCD =
1

2j@A j

X

p2 @A

d(p; @M ) +
1

2j@M j

X

q2 @M

d(q; @A ) (1.13)

HD = max(max
p2 @A

d(p; @M ); max
q2 @M

d(q; @A )) (1.14)
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where d(p; @) denotes the minimal distance from point p to contour @. The lower the

distance metric, the better the agreement.

We also evaluate the accuracy of clinical measures, which are derived from image

segmentations. We report clinical cardiac functional indexes derived from manual and

automated segmentation such as atrial and ventricular end-diastolic and end-systolic

volume. To reproduce the reference ranges for cardiac structure and function, we �rst

extract contours corresponding to the intersection between our 3D triangular meshes

and CMR image slices. Then, for the ventricular indexes calculated on SAX slices, we

use Simpson's method of integration, whereby a cardiac 3D volume can be approxim-

ated by summing the areas within 2D segmentation contours and multiplying by the

inter-slice spacing. Similarly, for the atrial indexes, we calculate the volume according

to the area-length method on LAX slices. Having quanti�ed cardiac chamber volumes

across all the time points, we report the following sets of indexes, where applicable: the

LV end-diastolic volume (LVEDV) and end-systolic volume (LVESV), LV stroke volume

(LVSV), LV ejection fraction (LVEF), LV myocardial mass (LVM), RV end-diastolic

volume (RVEDV) and end-systolic volume (RVESV), RV stroke volume (RVSV), RV

ejection fraction (RVEF), LA end-diastolic volume (LAEDV) and end-systolic volume

(LAESV), LA stroke volume (LASV), LA ejection fraction (LAEF), RA end-diastolic

volume (RAEDV) and end-systolic volume (RAESV), RA stroke volume (RASV), and

RA ejection fraction (RAEF).

1.6 Thesis Contributions and Overview

The main goal of this thesis is to provide fully automated work
ows for large-scale

image analysis of cardiac MRI sequences at all time points across the cardiac cycle

and derive relevant clinical measures. We present and evaluate our proposed pipelines

that properly scale up and can provide a fully automatic analysis of the UKB CMR

study. Without any manual user interactions, our pipelines perform end-to-end image

analytics from multi-view cine CMR images all the way to anatomical and functional

quanti�cation. The accuracy of clinical measures is comparable to human expert per-

formance. These methods would assist clinicians in CMR image analysis and diagnosis

with an automated and objective way for deriving clinical measures, therefore reducing

12
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cost and improving work e�ciency. They would also facilitate large-population ima-

ging studies, such as the UKB, which aims to conduct CMR imaging scans of 100,000

subjects. Fully automated methods are crucial for analysing such a large amount of

images and extracting clinically relevant information for subsequent clinical studies.

This thesis has addressed the quantitative analysis of population CMR imaging

with the two following speci�c objectives:

ˆ A fully automatic image parsing work
ow with embedded quality control to per-

form end-to-end image analytics from multi-view cine CMR images all the way

to anatomical and functional quanti�cation, and evaluate its performance on a

large-scale CMR imaging study.

ˆ An accurate 3D modelling of cardiac chambers to enable the extraction of detailed

information of the morphodynamics of the cardiac chambers for further study of

its association to genetic, omics, lifestyle habits, exposure information, and other

information provided in population imaging studies.

The proposed solutions to the objectives as mentioned above, are presented in the

next chapters, which represent three speci�c contributions, with one chapter dedicated

to each of them:

ˆ Chapter 2 presents a fully automatic, high throughput image parsing work
ow

for the analysis of CMR images, and test its performance on the UKB cardiac

dataset. The proposed pipeline is capable of performing end-to-end image pro-

cessing, including data organisation, image quality assessment, shape model ini-

tialisation, segmentation, segmentation quality assessment, and functional para-

meter computation; all without any user interaction. This study is the �rst pub-

lished attempt tackling the fully automatic 3D analysis of the UKB population

study, providing reference ranges for all key cardiovascular functional indexes,

from both left and right ventricles of the heart.

ˆ Chapter 3 presents a new method for the accurate 3D modelling of cardiac

four chambers. In this chapter, we propose a novel deep neural network using

both CMR images and patient metadata to predict cardiac shape parameters

13
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directly. The proposed method uses the promising ability of statistical shape

models to simplify shape complexity and variability together with the advantages

of convolutional neural networks for the extraction of solid visual features.

ˆ Chapter 4 presents a new method for quanti�cation of epicardial fat tissue.

Having developed fully automated methods for cardiac ventricles segmentation,

we develop an extended quanti�cation method for the extraction and volumetric

quanti�cation of fat tissue around the epicardial boundary. This study is the �rst

attempt looking into the large-scale quanti�cation of the epicardial fat tissue and

its association with other information which reveal exciting �ndings.

Each of these three chapters is self-contained, and an adaptation of the articles that

are under review, or already published in a peer-reviewed conference/journal papers.

Finally, Chapter 5 concludes the thesis and discusses the outlook and future work.
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Chapter 2

Quantitative Population Analysis of Cardiac

Ventricles

Population imaging studies generate data for developing and implementing personalised

health strategies to prevent, or more e�ectively treat disease. Large prospective epi-

demiological studies acquire imaging for pre-symptomatic populations. These studies

enable the early discovery of alterations due to impending disease, and enable early iden-

ti�cation of individuals at risk. Such studies pose new challenges requiring automatic

image analysis. To date, few large-scale population-level cardiac imaging studies have

been conducted. One such study stands out for its sheer size, careful implementation,

and availability of top quality expert annotation; the UK Biobank (UKB). The resulting

massive imaging datasets (targeting ca. 100,000 subjects) has put published approaches

for cardiac image quanti�cation to the test. In this chapter, we present and evaluate a

cardiac magnetic resonance (CMR) image analysis pipeline that properly scales up and

can provide a fully automatic analysis of the UKB CMR study. Without manual user

interactions, our pipeline performs end-to-end image analytics from multi-view cine

CMR images all the way to anatomical and functional bi-ventricular quanti�cation.
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2. QUANTITATIVE POPULATION ANALYSIS OF CARDIAC VENTRICLES

All this, while maintaining relevant quality controls of the CMR input images, and

resulting image segmentations. To the best of our knowledge, this is the �rst published

attempt to fully automate the extraction of global and regional reference ranges of all

key functional cardiovascular indexes, from both left and right cardiac ventricles, for a

population of 40,000 subjects imaged at 50 time frames per subject, for a total of two

million CMR volumes. In addition, our pipeline provides 3D anatomical bi-ventricular

models of the heart. These models enable the extraction of detailed information of

the morphodynamics of the two ventricles for subsequent association to genetic, omics,

lifestyle habits, exposure information, and other information provided in population

imaging studies. We validated our proposed CMR analytics pipeline against manual

expert readings on a reference cohort of 4,620 subjects with contour delineations and

corresponding clinical indexes. Our results show broad signi�cant agreement between

the manually obtained reference indexes, and those automatically computed via our

framework. 80.67% of subjects were processed with mean contour distance of less than

1 pixel, and 17.50% with mean contour distance between 1 and 2 pixels. Finally, we

compare our pipeline with a recently published approach reporting on UKB data, and

based on deep learning. Our comparison shows similar performance in terms of seg-

mentation accuracy with respect to human experts.

2.1 Introduction

Cardiovascular disease (CVD) is the most prevalent cause of death worldwide [35]. Dia-

gnosis of CVDs is often made at late symptomatic stages, leading to late interventions

at high cost and with substantially decreased e�cacy of treatment. Early quantitative

assessment of cardiac function that allows for proper preventive care, and early cardi-

ovascular treatment is therefore paramount. To support such an approach, large-scale

population-based imaging studies of CVDs are increasingly possible given the advent

of standardised robust non-invasive imaging methods, and the infrastructure for big

data analysis [30]. These advancements open further opportunities for gaining new

information about the development and progression of CVDs across various population

groups [27, 31].

The analysis and interpretation of cardiac structural and functional indexes in large-
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scale population imaging data can help identify patterns and trends across popula-

tion groups, and accordingly, reveal insights into key risk factors before CVDs fully

develop. Established to investigate the determinants of a disease, the UK Biobank

(UKB) is one of the world's largest prospective population studies [34]. The UKB data

contain extensive baseline questionnaire data, biological samples, physical measure-

ments, and cardiovascular magnetic resonance (CMR) images to establish cardiovascu-

lar imaging-derived phenotypes [13]. CMR is an important component of multi-organ

multi-modality imaging visits for patients in multiple dedicated UKB imaging centres

that will acquire and store imaging data from 100,000 participants by 2023.

In terms of population sample size, experimental setup, and quality control, the

most reliable reference ranges for cardiovascular structure and function found in the

literature are those reported by Petersen et al. [36], in which CMR scans were manually

delineated and analysed by a team of eight expert observers using the commercially

available cvi42 post-processing software (Version 5.1.1, Circle Cardiovascular Imaging

Inc., Calgary, Canada). The expert team comprised of biomedical engineers, radiolo-

gists, image analysts and cardiologists, evaluated the quality of every image, and per-

formed delineations. In cases where the image quality was doubtful, the team jointly

decided upon exclusion. These reference values (delineations and volumes) comprise

4,620 subjects and are used in our present study to validate our proposed framework

and work
ow.

In this chapter, we present a novel fully automatic 3D image parsing work
ow with

embedded quality control, and evaluate its performance on the UKB. We validate our

results by comparing with published manual analysis and one state-of-the-art method.

Our proposed work
ow is capable of segmenting the cardiac ventricles and generating

global and regional clinical reference ranges comparable to those obtained by human

raters and 
agship methods.

In addition to comparing against manual measurements, we also compare our per-

formance against one state-of-the-art method, i.e., the recent work by Bai et al. [37]

in which the authors propose a 2D convolutional neural network (CNN)-based seg-

mentation method for analysis of the UKB CMR images. Though in our study, we

processed a much greater number of subjects (40; 000), we performed experiments with

smaller subsets of data to make direct comparisons with the existing literature. We

17



2. QUANTITATIVE POPULATION ANALYSIS OF CARDIAC VENTRICLES

are interested in showing the advantages of true 3D shape analysis, over 2D CNN-

based techniques, which, due to their per-slice disjoint nature, and absence of global

constraints, lack the ability to infer or extrapolate noisy or missing data. We believe

true 3D analysis is valuable, or even essential, for further structural analysis of regional

myocardial function. Our 3D generative-based approach ensures global coherence of the

cardiac anatomy and naturally lends itself to further analysis in which full 3D anatomy

is necessary; for example, in mechanical and 
ow simulations.

Finally, since the power of population studies lies in the ability to provide norm-

ative reference values for sub-populations, enabling more patient-speci�c evaluation,

we provide reference ranges for cardiac clinical indexes in sub-populations based on

age-group and gender.

The main contributions of this chapter are, �rst, reproducing the cardiac functional

index ranges derived from expert delineations reported in [34], and providing additional

3D-based ranges of local variation. Second, showcasing a fully scalable framework, cap-

able of processing arbitrarily large population imaging studies, in a completely auto-

matic manner. In this chapter we demonstrate this by processing 40,000 subjects from

the UKB study, each comprised of 50 time frames for a total of two million image

volumes, starting from raw input data, through data cleaning, quality assessment, 3D

segmentation, volume computation, and statistical analysis.

The remainder of this chapter is organised as follows. In Section 2.2, we present our

strategy for data processing scalability, and detail each of the modules comprising our

image quanti�cation pipeline. In Section 2.3, we present a thorough evaluation of our

pipeline, both from technical, and clinical perspectives, including detailed statistics

on global and local cardiovascular indexes. Finally, in Section 2.4, we present �nal

remarks.

2.2 Methodology

Illustrated in Figure 2.1, our CMR image parsing pipeline consists of the following four

phases: (1) pre-processing; (2) quality analysis; (3) segmentation; and (4) quanti�ca-

tion. In the subsections that follow, we describe the methods used within each step

and our design choices. In the next subsection, we highlight the framework used to
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integrate this pipeline and streamline its execution both in terms of scalability and

distributability.

Figure 2.1: Schematic showing our fully automatic image parsing framework for large-
scale analysis of cardiac ventricles. CMR images �rst go through the pre-processing
phase, then 
ow into both the quality analysis and segmentation phases, which in
turn communicate with one another, �nally producing output that the last phase of
quanti�cation handles.

2.2.1 Work
ow Integration and Execution

To scale both data access and computation, we propose a modular pipeline and de-

veloped an in-house cloud-based image analytics framework called MULTI-X1 [38].

MULTI-X enables both distributed access to data storage and distributed execution of

image analysis pipelines on the cloud. Further, MULTI-X facilitates secure access and

execution, component integration and interoperability (e.g., across di�erent program-

ming languages, frameworks, operating systems, and hardware), work
ow execution,

monitoring, and execution report generation. MULTI-X can also serve as middleware

between storage and computing cloud providers (e.g., Amazon Web Services, Google-

Cloud, and Microsoft Azure), work
ow managers (e.g., Taverna and Nipype), data

sources (e.g., UKB servers) and analytics tools providers. In our implementation, we

selected Nipype [39] as the work
ow manager. Further, we selected Amazon Web Ser-

1https://multi-x.org
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vices1 to provide high-performance storage and computing in a cloud-based environ-

ment. More speci�cally, an Amazon Simple Storage Service (S3) provided unstructured

data storage, Amazon Redshift provided data warehousing for petabyte-scale data ana-

lysis, and Amazon's Elastic Cloud Computing (EC2) enabled on-demand adaptive cloud

computing.

2.2.2 Data Pre-processing

Once data obtained from the UKB, they were transferred to a secure AWS S3 server

accessible from an experimental deployment of MULTI-X, the aforementioned cloud-

based infrastructure for our pipeline-oriented image analytics. When new CMR data

are available, this fully automated pipeline provides detailed image analytics. The UKB

Imaging Study undertakes detailed MRI scans of key vital organs of the human body

using specialised imaging protocols that extend CMR. For each volunteer, relevant

CMR subseries are extracted from the full imaging study, viz. short-axis (SAX) and

long-axis (LAX) two-, three- and four-chamber CMR images and analysed through the

next steps.

2.2.3 Quality Analysis

At least two quality analysis modules are required to ensure the reliability of the extrac-

ted cardiac indexes. The �rst module assesses the quality of the input images, whereas

the second module assesses the quality of the quanti�cation outputs, i.e., the generated

3D segmentations. Each of these is described in the subsections that follow.

Image Quality Assessment

Despite careful and strict imaging protocols, a signi�cant portion of the data collected

in population imaging studies, inevitably falls outside standard operating procedures.

To ensure the quality and correctness of the collected data, thereby optimising the

accuracy of the generated segmentation results, an image quality assessment (IQA)

module detects suboptimal images whose inclusion in subsequent analysis would impair

aggregated statistics over the entire cohort.

1https://aws.amazon.com
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More speci�cally, because the absence of basal and/or apical slices in SAX views

forms the most frequently occurring problem a�ecting the accuracy of volumetric meas-

urements and corresponding clinical indexes [40], our IQA module detects situations in

which these slices are missing. In our design, SAX slices are processed independently

through two CNN classi�ers that determine the presence/absence of basal and apical

slices, respectively. Details of the algorithm we used to achieve this e�ect can be found

in the work published by Zhang et al. [41].

Segmentation Quality Assessment

Regarding segmentation quality assessment (SQA), large anatomical variations found

across subject populations [42] and other forms of poor image quality beyond full

ventricular coverage can cause image segmentation failures. We therefore propose an

automated self-diagnosis mechanism for detecting unsatisfactory segmentation results.

Flagged images can then be either re-processed with revised parameters or discarded

from subsequent statistical analyses. We incorporate a segmentation quality assessment

approach presented by Alba et al. [43]. The SQA module uses a random forest classi-

�er trained to distinguish between successful and unsuccessful segmentations based on

intensity features around the blood pool and myocardial boundaries.

2.2.4 Segmentation

For the segmentation phase of our work
ow, we use SAX and LAX CMR images to

estimate the approximate position and orientation of the cardiac ventricles. We then

initialise the segmentation of the cardiac structure following a Sparse Active Shape

Model (SPASM) approach [44]. More speci�cally, SPASM is used to segment the full

cardiac cycle and retrospectively determine the end-diastolic (ED) and end-systolic

(ES) phases of the cycle based on the frames showing maximum and minimum volumes,

respectively. Before running our segmentation approach across all subjects, we applied

grid search optimisation to a subset of 50 subjects to identify the parameters having

the greatest impact on segmentation performance; we describe this further in Section

2.2.4.
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Model Initialisation

To automatically initialise the model, we use the method proposed by Alba et al. [43]

with a further step to improve bi-ventricular model initialisation. First, the location of

the LV is determined via a rough estimate of the intersection of slices from the SAX and

LAX views. Next, a random forest regressor trained with two complementary feature

descriptors (i.e., the Histogram of Oriented Gradients and Gabor Filters) predicts the

landmark positions for the LV. We extend this to take into account image features

corresponding to the RV, thereby improving the initial estimate for the location of

the bi-ventricular heart. We then use these landmarks to estimate pose parameters

that place a mean shape model near the heart. Finally, we use these pose parameters

to initialise the �rst image volume in the set of images for the cardiac cycle (i.e., 50

cardiac phases). Subsequent time frames are automatically initialised via the shape

model �tted to the immediately preceding cardiac phase.

Image Model Fitting

In this subsection, we consider how we �t the image model. First, the cardiac LV and RV

segmentations are obtained via the aforementioned SPASM segmentation method that

improves on the Active Shape Models (ASM) approach [33] by addressing the sparsity

found in imaging modalities such as CMR in which image information is sparsely dis-

tributed across the entirety of the image. The main components of the SPASM method

are the Point Distribution Model (PDM), the Intensity Appearance Model (IAM) and

a model matching algorithm.

The PDM encodes the mean and variance of the endocardial and epicardial shapes

of the LV and the endocardial shape of the RV. The PDM is constructed during training

using principal component analysis (PCA) on a set of generalised Procrustes-aligned

shapes that preserve a 98% variance, as explained in details in Section 1.5.1. Next,

we build an IAM based on intensity information across all corresponding landmarks in

all training shapes si . More speci�cally, IAMs capture the local intensity distribution

along cardiac boundaries. We proceed by sampling one-dimensional intensity pro�les

normal to the myocardial boundaries. Each pro�le has a length of m = 15 pixels.

For the i -th landmark, we estimate mean intensity pro�le �gi and corresponding image

intensity covariance Sgi .
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During image segmentation, the intersections of the current shape model instance

with all image planes collectively de�ne a stack of two-dimensional contours inR3. The

algorithm proceeds by searching for the intensity pro�le location along the normal to the

contours and over the imaging planes for each landmark. To derive the best-matching

position or candidate point y i for each landmark, we minimise the Mahalanobis distance

between a pro�le sampled at candidate positiony i , gi (y i ) and corresponding model

f �gi ; Sgi g as follows:

yo
i = arg min

y i

((g(y i ) � �gi )T S� 1
g i

(g(y i ) � �gi )) (2.1)

Given the sparse nature of CMR images, it is not uncommon during �tting to have

mesh triangles that do not intersect with any image slices in the stack. In this situation,

the points that comprise these triangles would not be updated or displaced by the IAM,

instead, these points would be passively updated by �tting of the PDM. A mechanism

that propagates displacements from points that are image-driven to nearby points that

are not, is therefore necessary. SPASM implements a displacement propagation strategy

modelled as a Gaussian kernel centred at any given image-driven pointq by propagating

its e�ect to a neighbouring point p based on Gaussian kernel

w(p; q) = expf�
kp � qk2

2� 2 g (2.2)

where � is the width of the kernel. Having a non-zero Gaussian kernel is not an

indispensable feature of the algorithm as non-image driven points would be indirectly

updated by the PDM, nevertheless, this feature adds smoothness to the evolution of

the surface mesh, and speeds up convergence of the algorithm.

Parameter Optimisation

SPASM segmentation is a�ected by four key parameters. We ran an exhaustive grid

optimisation scheme to determine the best combination of parameters. The individual

parameters and corresponding ranges that we tested were as follows:

1. Freedom of the PDM measured in standard deviations from the mean i.e.� =
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2; 2:5; 3.

2. Length of the image sampling pro�le gi used during image feature search, meas-

ured in pixels i.e. l = 5 ; 10; 15 pixels.

3. Standard deviation of the Gaussian kernel for the point displacement propagation

feature i.e. � = 5 ; 7; 9 mm.

4. Image orientations to use, i.e. using only SAX images or using both SAX and

LAX during segmentation i.e. v = SAX; ALL .

Table 2.1 shows each of the 54 (i.e. 3� 3� 3� 2 = 54) unique parameter combinations

we used with our algorithm to segment 50 randomly selected subjects that had already

been manually delineated by clinicians. Next, we computed the segmentation accuracy

using three key metrics: Dice Similarity Coe�cient (DSC), Mean Contour Distance

(MCD) and Hausdor� Distance (HD). These metrics were de�ned on Equations 1.12,

1.13 and 1.14, respectively, in Section 1.5.2.

Figure 2.2 shows three boxplots summarising the results based on the three metrics,

for each of the 54 test parameter sets. The x-axis on each of the boxplots (DSC, MCD,

HD) shows the test number, and the tests are sorted from best to worst performance.

On Figure 2.2 it can been seen that the best performing parameter test set is test

number 4, which appears at the left-most end of each of the plots. Speci�cally, the best

parameter values were:� = 2, l = 5, � = 7 and v = ALL . We used this parameter set

for segmentation thereon.

2.2.5 Quanti�cation

For the �nal phase of our work
ow, we computed a thorough set of functional paramet-

ers based on blood-pool and myocardial volumes. To reproduce the reference ranges

reported by Petersen et al. [36], our quanti�cation module performs volume compu-

tations using Simpson's method of integration, whereby a cardiac 3D volume can be

approximated by summing the areas within 2D segmentation contours, and multiplying

by the inter-slice spacing. Because the output of our segmentation are 3D triangular

meshes, before using Simpson's rule, we had to extract contours corresponding to the

intersection between our segmentation and CMR image slices. The 3D model we use
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Table 2.1: The list of 54 distinct sets of segmentation parameters used in our segment-
ation algorithm parameter optimisation. As noted in the text, test 4 was the best
choice.

Test � l � v Test � l � v
01 2 5 5 SAX 28 2.5 10 7 ALL
02 2 5 5 ALL 29 2.5 10 9 SAX
03 2 5 7 SAX 30 2.5 10 9 ALL
04 2 5 7 ALL 31 2.5 15 5 SAX
05 2 5 9 SAX 32 2.5 15 5 ALL
06 2 5 9 ALL 33 2.5 15 7 SAX
07 2 10 5 SAX 34 2.5 15 7 ALL
08 2 10 5 ALL 35 2.5 15 9 SAX
09 2 10 7 SAX 36 2.5 15 9 ALL
10 2 10 7 ALL 37 3 5 5 SAX
11 2 10 9 SAX 38 3 5 5 ALL
12 2 10 9 ALL 39 3 5 7 SAX
13 2 15 5 SAX 40 3 5 7 ALL
14 2 15 5 ALL 41 3 5 9 SAX
15 2 15 7 SAX 42 3 5 9 ALL
16 2 15 7 ALL 43 3 10 5 SAX
17 2 15 9 SAX 44 3 10 5 ALL
18 2 15 9 ALL 45 3 10 7 SAX
19 2.5 5 5 SAX 46 3 10 7 ALL
20 2.5 5 5 ALL 47 3 10 9 SAX
21 2.5 5 7 SAX 48 3 10 9 ALL
22 2.5 5 7 ALL 49 3 15 5 SAX
23 2.5 5 9 SAX 50 3 15 5 ALL
24 2.5 5 9 ALL 51 3 15 7 SAX
25 2.5 10 5 SAX 52 3 15 7 ALL
26 2.5 10 5 ALL 53 3 15 9 SAX
27 2.5 10 7 SAX 54 3 15 9 ALL

for segmentation is comprised of two structures; the LV and the RV. The LV is a closed

water-tight mesh comprising both endocardial and epicardial walls. The RV is an open

mesh representing only the RV endocardium. The RV has two openings, the atrio-

ventricular valve opening, and pulmonary valve opening. The LV and RV sit adjacent

to each other but are not connected.

We computed both global and regional morphological and functional indexes. Global

indices include chamber volumes, stroke volume, ejection fraction and myocardial mass.
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Regional or local indices include myocardial wall thickness, wall motion and thickening

computed for every segment in the AHA-17 cardiac subdivision scheme [45].

The global assessment of cardiac function is based on the following volumetric

measurements [46]:

ˆ End-Diastolic Volume (EDV) (ml): the volume of blood in the LV or RV before

contraction. This is the highest ventricular volume of blood in the cardiac cycle.

ˆ End-Systolic Volume (ESV) (ml): the volume of blood in the LV or RV at the

end of contraction. This is the lowest ventricular volume of blood in the cardiac

cycle.

ˆ Stroke Volume (SV) (ml): the volume of blood pumped from the ventricle per

beat obtained by subtracting the ESV from the EDV for a given ventricle. This

term can be applied to either of the two ventricles.

ˆ Ejection Fraction (EF) (%): the fraction of blood ejected from a ventricle of

the heart with each heartbeat. This measure shows the pumping e�ciency of

the heart and is calculated by dividing the SV by the EDV. Note that the left

ventricular EF (LVEF) is a measure of the e�ciency of pumping blood into the

body's systemic circulation, whereas the right ventricular EF (RVEF) is a measure

of the e�ciency of pumping blood into pulmonary circulation (i.e. the lungs).

ˆ Left Ventricular Mass (LVM) (g): to compute LVM, we assume that the volume

of the myocardium is equal to the total volume contained within the epicardial

borders of the ventricle minus the chamber volume. Given these standard as-

sumptions, LVM is calculated by multiplying the volume by the density of the

muscle tissue (1.05g=cm3).

The regional assessment of cardiac function is based on the following indexes ob-

tained from the LV myocardial shapes and computed locally based on the AHA 17-

segment model. In contrast to the global indexes, where comparison with manual

analysis was desired, and therefore 2D techniques were required (Simpson's rule), this

segmental analysis was performed directly on 3D shapes, and using 3D techniques.

Every measurement was computed on a per-point basis, and then averaged across all

subjects, for every AHA-17 segment.
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ˆ LV Wall Thickness (mm): the distance between the endocardial and epicardial

walls of the myocardium at ED and ES. Wall thickness may be used to quantify

regional dysfunction, e.g. in myocardial ischaemia or after myocardial infarction.

Myocardial thickness was measured as the average point-to-surface distance for

every AHA-17 segment across the population.

ˆ LV Wall Thickening (mm): the di�erence in the wall thickness measurement

between ED and ES. Our models do not include papillary muscle or trabecular

tissue, nor do the manual contours we compare our measurements with.

ˆ LV Wall Motion (mm): the root-mean-squared distance between the location of

mesh points at ED and ES averaged per AHA-17 region of the myocardium.

In the next section, we present and compare all the aforementioned global and

regional clinical indexes obtained through manual and automatic segmentation.

2.3 Experiments and Results

We evaluated the performance of our proposed automated work
ow by using common

metrics for segmentation accuracy assessment (i.e. the aforementioned DSC, MCD and

HD measures), comparing these measures against the ground-truth values obtained

through manual delineation by clinicians and using clinical cardiac bi-ventricular func-

tional indexes derived from manual and automated segmentations such as EDV, ESV

and LVM.

We also compared our results with those reported by Bai et al. [37]. In Table 2.2,

we present the data we used for training, testing and evaluating our work
ow. Of the

4,870 available subjects in the UKB with manual segmentations, 250 random subjects

were selected for PDM training, with 170 image volumes from a previous study by

Tobon-Gomez et al. [47] used for IAM training. The remaining 4,620 subjects in the

UKB with manual delineations were used as test datasets to evaluate the performance

of our proposed automatic approach, labelled AS in the table. To compare our res-

ults with those of Bai et al. [37], denoted B in the table, we used the same training

and testing datasets, reporting the results as AL in the table. As an additional as-

sessment, we conducted a quantitative evaluation of human performance by measuring
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the inter-observer variability among the segmentations performed manually by three

di�erent clinical experts. Here, we randomly selected 50 subjects; each subject was

independently analysed by three expert observers labelled O1, O2 and O3. We com-

pare segmentation results on the same set of subjects to show automated versus human

performance, as well as the performance of our work
ow on a larger dataset.

Input images and output segmentation contours were automatically quality con-

trolled to ensure that input image volumes had full coverage of the heart i.e. included

both basal and apical slices and to verify the quality of the output segmentations.

Because our aim here is to properly evaluate segmentation accuracy, all segmentation

results (including outliers) were included in the statistics in Section 2.3.1. In con-

trast, results presented in Section 2.3.2 are based only on good quality images and

segmentations, i.e., excluding those deemed suboptimal by SQA and/or not providing

full coverage by IQA.

2.3.1 Segmentation Accuracy

To quantify segmentation accuracy, we applied the three aforementioned metrics, each

of which is detailed in Section 1.5.2.

Table 2.3 presents DSC, MCD and HD measures that compare automated and

manual segmentation results; evaluations were performed on test sets consisting of 50,

600 and 4,620 subjects which have not been used to train the PDM or IAM. Here, the

group of 50 subjects is the same set used to evaluate inter-observer variability, whereas

the set of 600 subjects is the same set used as a test set by Bai et al. [37] in which a

deep learning approach was used for segmentation. The large set of 4,620 subjects is all

UKB cases with manual delineations that have not been used for shape and appearance

model training.

In Table 2.3, the mean and standard deviations of DSC for the LVendo, LV myo and

RVendo with n = 4 ; 620 were 0.93� 0.05, 0.87� 0.05, and 0.87� 0.07, respectively,

indicating excellent agreement between manual delineations and automated segment-

ations. We also observe that DSC measures for the LVmyo and RVendo cases were less

than that of the LV endo case. One possible reason DSC values for the LVmyo are lower

is that its annular shape has a larger perimeter (i.e. endo and epicardial edge) causing

equal overlap shifts to produce greater error compared to the LVendo and RVendo.
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2. QUANTITATIVE POPULATION ANALYSIS OF CARDIAC VENTRICLES

Further, the RV is a more challenging structure to segment compared to the LV.

This is due to the sub-pixel thickness of the RV myocardium, the larger presence of

trabeculations in the cavity with signal intensities similar to that of the myocardium,

the more complex crescent shape of the RV, which, varies from base to apex, and

considerable variability in shape and intensity of the chamber across subjects, notably

in pathological cases.

Next, we observe that the MCD is 1.18� 0.41 mm for the LVendo, 1.23 � 0.50 mm

for the LV myo , and 1.80 � 0.69 mm for the RVendo, all of which are smaller than the

in-plane pixel spacing range of 1.8 to 2.3 mm. The HD measures were 3.44� 1.08 mm,

3.98 � 1.49 mm and 7.84� 3.19 mm for the LVendo, LV myo and RVendo, respectively.

Although HD measures are larger than the in-plane pixel spacing, they are still within

acceptable range compared to inter-observer variability. For instance, the �rst three

columns of Table 2.3 show inter-observer variability, where the variability between

observers O1 and O2 for the HD metric is 7.56� 5.51 mm.

When comparing our method (i.e. AS and AL ) with B, there was a notable di�er-

ence in performance between the relatively small training set (i.e. AS) and the same

training set as that of B (i.e. A L ). In Table 2.3, we note a slight improvement of

the mean and standard deviation values, particularly for MCD measures. Neverthe-

less, improvements become more apparent in Figure 2.3, where the number of outlying

subjects was drastically reduced for AL as compared to both B and AS. Although the

overall mean and standard deviation values remained slightly better for B, we observe

in Figure 2.3 that A L was generally more robust as it reduced the number and deviation

of outlying results.

Also from Figure 2.3, we note that the performance of AS largely agrees with the

ground-truth and is comparable to the results of B. We also investigated the segmenta-

tion accuracy of the LV myocardium in detail based on the AHA 17-segment model of

Heller et al. [45] to report on local segmentation accuracy in terms of DSC, MCD and

HD measures between manual segmentation and automatic approaches, i.e. B and AS

on the test set of size 600. We report local segmentation accuracy in Table 2.4, which

shows that B and AS consistently performed better with mid-ventricular and apical

slices, respectively; however, for base slices, the performance of B and AS varies per

region.
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2.3 Experiments and Results

Note that when comparing the performance of AS versus B (n = 600) in Table 2.3,

B yielded slightly better global results than A S, but in breaking down the results into

speci�c cardiac regions (basal, mid and apical), as presented in Table 2.4 we observe

that our method, A S, consistently outperformed B for all metrics in the apical region

(AHA segments 13-17). A possible reason for this is an inability of the CNN method to

capture small features in the image, and the inherent ability of PDMs to infer missing

or noisy image data.

To provide a visual sense of the quality of our segmentations, we de�ned three

categories based on the mean contour distance from the gold standard, i.e., excellent

(MCD < 1 pixel), good (1 pixel < MCD < 2 pixels) and bad (MCD > 2 pixels). We

present examples of these categories in Figure 2.4, thereby showing that automated

segmentation agrees well with manual segmentation both at ED and ES; further, such

agreement occurs at di�erent slice locations (i.e. apical, mid and basal regions). Finally,

Table 2.5 shows the prevalence of the di�erent categories of segmentation quality for

the di�erent approaches presented in this chapter.

2.3.2 Estimation of Cardiac Function Indexes

In this subsection, we present our work in evaluating the accuracy of cardiac function

indexes derived from automated segmentation using gold standard reference ranges

derived from manual segmentations. Further, we report on analysis of all available

CMR images from the UKB, which to date is 40K subjects. More speci�cally, we

calculate the following two sets of indexes: (1)global indexesincluding LVEDV, LVESV,

LVSV, LVEF, LVM, RVEDV and RVESV, RVSV and RVEF; and (2) regional indexes

including the myocardium wall thickness, thickening and motion.

Note that we report the clinical indexes obtained from automated segmentation of

subjects that have successfully passed the IQA and SQA modules. Table 2.6 shows the

number of subjects that were included in our analysis. For example, of the given 4,620

subjects, 4,430 were deemed of good quality after IQA and SQA analyses were applied.

More speci�cally, IQA detected 145 subjects to exclude, whereas SQA detected 105

subjects to omit; note that 60 subjects were common to both lists. Therefore, a total

of 190 subjects were automatically removed before continuing with the analysis.
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2.3 Experiments and Results

Table 2.5: Categories of segmentation quality for the di�erent approaches presented in
this chapter.

B (n=600) AS (n=600) AL (n=600) AS (n=4620)
Excellent

MCD < 1 pixel
84.19 % 82.14 % 84.21 % 80.67 %

Good
1 pixel < MCD < 2 pixels

15.25 % 16.80 % 15.50 % 17.50 %

Bad
MCD > 2 pixels

0.55 % 1.05 % 0.30 % 1.82 %

Table 2.7 shows the main cardiac clinical indexes, with the two �rst columns rep-

resenting the ventricular parameters of the healthy population obtained through auto-

mated and manual segmentations. We observe here that there was strong agreement

between the two methods for computing the presented cardiac function indexes, also

reported in our previous work [48].

Similarly, the computed clinical indexes for the large cohort of 4,620 subjects cor-

related well with the corresponding ground-truth values, as shown in columns three

and four of the table; however, we note that although the mean and standard deviation

values of the RV indexes for the healthy population of 800 subjects were in good agree-

ment, for the population of 4,620 subjects, the mean and standard deviation values of

the RV indexes di�ered slightly compared with the ground-truth values. This correlates

with the larger inter-observer variability shown in Table 2.3, which is at least in part

due to thinness of the RV myocardium vis-a-vis the LV [49].

Table 2.8 presents the mean absolute and relative di�erences between the automated

and manual measurements, as well as between the automated and manual measure-

ments computed by di�erent expert human observers and by the built-in automated

segmentation software of the scanner device (i.e. inlineVF D13A). We observe here that

the absolute and relative di�erences for two subsets of 50 and 600 subjects matched

well and were within the error range of the three expert human observers. Similarly,

although the range of di�erences over the cohort of 4,620 subjects were not directly

comparable with a small test set of only 50 subjects, the di�erence range still was

either within that range or very close to the di�erence range obtained by the di�erent

expert observers. Overall, B, AS and AL performed substantially better than the auto-
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2.3 Experiments and Results

Table 2.7: Summarising the di�erences in clinical measures derived from our pro-
posed method and manual segmentation. Here, GT represents the ground-truth values
provided by manual segmentation. Values indicate mean� standard deviation.

GT Automated GT Automated Automated
(n=800) (n=800) (n=4,620) (n=4,620) (n=40,000)

LVEDV (ml) 144 � 34 146 � 31 144 � 34 144 � 33 142 � 26
LVESV (ml) 59 � 18 60 � 18 59 � 20 60 � 23 53 � 14
LVSV (ml) 85 � 20 86 � 18 84 � 18 84 � 19 89 � 18
LVEF (%) 60 � 6 60 � 7 60 � 6 59 � 7 63 � 6
LVM (g) 86 � 24 87 � 23 88 � 23 91 � 23 92 � 18
RVEDV (ml) 154 � 40 154 � 40 152 � 37 160 � 49 165 � 41
RVESV (ml) 69 � 24 71 � 26 67 � 22 77 � 26 61 � 24
RVSV (ml) 85 � 20 83 � 21 84 � 18 82 � 24 90 � 27
RVEF (%) 56 � 6 54 � 7 57 � 6 54 � 11 60 � 9

mated segmentation obtained from the inlineVF D13A software; note that these data

were retrieved for every subject from the main UKB database.

Next, in Figure 2.5, we present Bland-Altman plots (i.e. the top row of the �gure)

and correlation plots (i.e. the bottom row of the �gure) of the ventricular parameters

computed based on our proposed automated method and a manual reference covering

4,620 test subjects. The Bland-Altman plot is commonly used for analysing agreement

and bias between two measurements. In Figure 2.5, the Bland-Altman plots show strong

agreement and a mean di�erence line at nearly zero, suggesting that the clinical indexes

obtained through the automated approach have little bias. Conversely, the bias between

di�erent pairs of human observers as reported by Bai et al. [37] is considerable { i.e.

nearly 8 (ml) for LVEDV and LVESV, approximately 8 (g) for LVM, and approximately

15 (ml) for RVEDV and RVESV.

More speci�cally, Figure 2.5 presents correlation plots between the manual and

automated methods for the di�erent cardiac function indexes. The correlation coe�-

cient (corr) measures the strength of the relationship between two sets of observations.

The strength and direction of the relationship indicates the predictive power of our

framework. Coe�cients for all indexes ranged between 0.85 and 0.91, indicating a

strong relationship between the manual and automated approaches.

To illustrate whether the values of clinical indexes computed automatically share

the same distribution as those obtained via the manual approach, we visualised their
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2. QUANTITATIVE POPULATION ANALYSIS OF CARDIAC VENTRICLES

distributions. In Figure 2.6, we present probability distribution plots (i.e. the top row

of the �gure) and Q-Q plots (i.e. the bottom row of the �gure) for various cardiac func-

tional indexes computed both manually and automatically over the full cohort for which

manual segmentations were available. From the plots, we observe that the distribution

of the various indexes closely match those obtained from the manual segmentations{

More speci�cally, we observe a common distribution, common location and scale, sim-

ilar distributional shapes, and similar tail behaviour.

Because ground-truth manual regional (AHA-17) quanti�cation for the subjects in

this study was not available, all AHA-17 regional indexes reported in this chapter are

computed using 3D techniques, in contrast to the global quanti�cation indexes, where

direct comparison with manual assessment was desirable. Nevertheless, in order to

approximate a comparison with what would be a regional analysis derived from manual

delineations, we generated 3D shapes by non-rigid registration of a model to all manual

delineations. We used the resulting 3D shapes to perform regional quanti�cation, and

compared with our automatic results.

We computed the regional LV myocardial wall parameters in terms of thickness,

thickening, and motion. Visual results can be seen on Figure 2.7, and corresponding

numerical results on Table 2.9. Figure 2.7 shows the mean and standard deviation

values of the regional analysis of 4,620 subjects for both the automated and manual

approaches in a bulls-eye display based on the AHA 17-segment model. We observe

here that the (top and bottom) panels are similar in most regions in terms of the mean

and standard deviation values, thereby con�rming the quality of our fully automated

pipeline. Indeed, results already published in many clinical journals [50{57], primarily

based on the manual delineation of a few dozen images con�rm the values and ranges

we have obtained and present in our bulls-eye plots.

Figures 2.8 and 2.9 show the distribution of wall thickness, thickening and motion

for all AHA-17 segments in the LV myocardium. These histograms show measurements

obtained from the automated segmentation applied to two cohorts (i.e. n=4,620 and

n=40,000), as well as from manual delineations. The �gures show excellent agreement

between measurements obtained from automated segmentations from both cohorts and

those derived from manual delineations.

We also performed two-sample Kolmogorov-Smirnov (K-S) tests to verify that ventricu-
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2. QUANTITATIVE POPULATION ANALYSIS OF CARDIAC VENTRICLES

Figure 2.7: Segmental LV parameters of 4,620 subjects presented as bulls-eye displays.

lar parameters obtained through manual and automated approaches are drawn from

the same distribution, under the null hypothesis that the manual and automatic meth-

ods are from the same continuous distribution in terms of clinical indexes. From our
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2.3 Experiments and Results

Table 2.9: Segmental LV parameters of 4,620 subjects obtained from manual and auto-
matic approaches. Upper rows correspond to shapes generated from the manual seg-
mentation and lower rows to those obtained with the automatic approach.

ID
Wall Thickness

at ED (mm)
Wall Thickness

at ES (mm)
Wall Motion

(mm)
Wall Thickening

(mm)
12.05� 1.84 15.69� 1.83 -4.05 � 4.39 2.95 � 1.61

1
11.72� 1.92 15.59� 1.88 -3.46 � 4.94 2.67 � 1.66
13.81� 1.73 17.49� 2.07 -5.70 � 3.51 2.89 � 1.74

2
13.59� 1.85 17.49� 2.14 -4.91 � 3.97 2.69 � 1.81
11.63� 1.09 13.57� 1.26 -8.01 � 4.28 1.08 � 1.10

3
11.38� 1.20 13.47� 1.33 -7.06 � 4.63 0.87 � 1.19
9.17 � 0.97 11.87� 1.00 -7.20 � 5.68 1.76 � 1.08

4
8.87 � 1.06 11.65� 1.06 -6.20 � 6.03 1.55 � 1.18
10.76� 1.17 14.00� 1.67 -4.60 � 5.53 2.41 � 1.86

5
10.45� 1.27 13.96� 1.77 -3.80 � 5.96 2.29 � 1.95
10.02� 1.50 13.35� 1.81 -4.29 � 5.21 2.52 � 1.82

6
9.69 � 1.58 13.26� 1.89 -3.60 � 5.72 2.35 � 1.87
8.14 � 1.46 12.14� 1.44 -1.44 � 5.18 3.15 � 1.41

7
7.81 � 1.43 11.96� 1.48 -1.31 � 5.50 2.94 � 1.42
11.99� 1.21 15.03� 1.40 -2.33 � 4.06 2.25 � 1.18

8
11.68� 1.31 14.95� 1.46 -1.57 � 4.40 2.04 � 1.26
12.63� 1.04 14.51� 1.32 -2.35 � 4.37 1.01 � 1.12

9
12.37� 1.15 14.41� 1.40 -1.52 � 4.62 0.84 � 1.20
9.33 � 3.59 12.43� 1.17 -1.78 � 5.26 2.25 � 3.83

10
9.17 � 4.16 12.28� 1.24 -0.93 � 5.46 1.88 � 4.23
8.53 � 3.12 13.09� 1.82 -1.02 � 5.85 3.85 � 3.49

11
8.25 � 3.07 13.11� 1.91 -0.84 � 6.11 3.66 � 3.33
8.17 � 3.76 13.55� 1.94 -1.72 � 6.23 4.65 � 4.00

12
7.90 � 3.14 13.59� 2.03 -1.09 � 6.89 4.50 � 3.30
7.58 � 1.45 11.57� 1.37 -0.58 � 5.91 3.10 � 1.50

13
7.32 � 1.49 11.40� 1.42 -0.39 � 6.05 2.86 � 1.56
8.75 � 1.30 12.40� 1.19 1.56 � 3.91 2.75 � 1.22

14
8.46 � 1.33 12.21� 1.23 2.32 � 4.10 2.54 � 1.28
6.86 � 3.17 10.89� 1.17 2.07 � 4.59 3.20 � 3.36

15
6.59 � 2.02 10.70� 1.21 2.93 � 4.44 2.91 � 2.09
6.48 � 4.66 11.58� 1.63 0.69 � 6.22 4.29 � 4.83

16
6.37 � 4.44 11.46� 1.63 0.41 � 6.68 3.90 � 4.49
5.97 � 4.49 11.17� 1.57 1.62 � 3.21 4.28 � 5.11

17
5.71 � 3.63 10.94� 4.68 2.58 � 3.18 4.03 � 1.68

analysis, K-S test results on di�erent global and regional indexes do not reject the null

hypothesis of being from the same distribution at the 5% signi�cance level.
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2. QUANTITATIVE POPULATION ANALYSIS OF CARDIAC VENTRICLES

Figure 2.8: Regional analysis of LV shapes covering 40,000 subjects in terms of distri-
bution of wall thickness at ED and ES phases. Here, red, blue and green lines indicate
ground-truth values for 4,620 subjects, automated values for 4,620 subjects and auto-
mated values for 40,000 subjects, respectively. In all plots, the y-axis represents the
relative frequency.

An important �nal note is that although our image parsing implementation per-

forms fully in 3D, to ensure a fair comparison with both ground-truth data and the

methods we compare with in this chapter, we had to convert our segmentation results
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2.3 Experiments and Results

Figure 2.9: Regional analysis of LV shapes covering 40,000 subjects in terms of distribu-
tion of wall motion and thickening. Here, red, blue and green lines indicate ground-truth
values for 4,620 subjects, automated values for 4,620 subjects and automated values for
40,000 subjects, respectively. In all plots, the y-axis represents the relative frequency.

to 2D contours from 3D meshes; this does not pose a problem for objective quanti-

�cation of segmentation accuracy, however, given the sparse nature of CMR images,

where voxel resolution along thez axis is typically on the order of 10mm, gross miscal-

culations may occur when approximating volumetric measurements such as ventricular
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2. QUANTITATIVE POPULATION ANALYSIS OF CARDIAC VENTRICLES

volumes and myocardial masses via simple integration methods such as Simpson's rule.

We believe that although many CNN-based methods have recently received a lot of

attention, showing the capacity for image texture characterisation, most of them are

restricted to handling 2D data. This simpli�cation can introduce large biases in volume

computations, and be less resilient to image artefacts such as those caused by breathing

motion. In addition to our pipeline approach fully supporting 3D data, our method

provides other advantages when compared to 2D CNN-based implementations. More

speci�cally, the size of the training dataset required to achieve similar performance for

an equal task di�ers by at least one order of magnitude between CNNs and ASM-based

methods. Further, ASM implementations such as SPASM have the inherent ability

to handle multi-view image volume segmentation without the need to retrain. This

is particularly useful for functional CMR segmentation in which multiple views of the

heart are captured as part of standard analysis protocols.

In addition, because the output of our segmentation are 3D meshes, more apt math-

ematical formulations can be used for volumetric computation, i.e. Green's theorem

for surface integration, and any further higher level structural analyses of the cardiac

tissue. Some CNN-based methods such as those proposed by Zheng et al. [49] do

take into account inter-dependencies between short-axis slices potentially resulting in

more robust segmentations, even so, such CNN-based algorithms are still not globally

constrained, their output is typically two dimensional in nature, their training is very

costly both in time and sample size requirements, and they cannot handle dynamically

changing input image views without rede�nition of the architecture and re-training.

We present the key di�erences between our implementation and the 2D CNN-based

implementation method by Bai et al. [37] on Table 2.10.

2.3.3 Hardware and Computational Cost

In terms of computational cost of training and testing, method B takes approximately

10 hours to train the VGG-16 network on a Nvidia Tesla K80 GPU, and about 11

seconds to segment all 2D slices of a full cardiac cycle for one subject [37]. For our

method, it takes approximately 30 minutes to train both the PDM and IAM on a

Intel Xeon(R) CPU E5-1620 @3.60GHz with 32 GB of RAM, and about 15 minutes

to generate the 3D shapes of a full cardiac cycle for one subject. Finally, the total
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2. QUANTITATIVE POPULATION ANALYSIS OF CARDIAC VENTRICLES

end-to-end execution time for the 40,000 subjects using our MULTI-X platform was

performed using 50 Amazon Web Service (AWS) "m4.10xlarge" machines each with 40

2.4-GHz Intel Xeon ES-2676 v3 vCPUs, and 160 GB of RAM.

2.3.4 Sub-Cohort Analysis

Thus far in this chapter we have only shown a global population analysis of the UKB.

We have presented statistics on the most commonly used clinical indexes derived from

CMR exams. With the exception of the "healthy" group as de�ned by Petersen et

al. [36], introduced in this chapter on Table 2.6, and corresponding quanti�cation

results shown on the �rst two columns of Table 2.7, we have only presented global

population statistics. We believe however that the power of population studies lies in

the opportunity to de�ne and characterise human sub-populations.

Though in this chapter our principal aim is to present the �rst fully automatic

large-scale, global and segmental, 3D analysis of this magnitude we have included some

preliminary quanti�cation results on UKB sub-populations in this section. Based on

the 40,000 subjects available, we have used patient age at the time of imaging, and

patient gender (male, female), to present cardiovascular index reference ranges for

these cohorts. Table 2.11 presents the arithmetic mean, and upper/lower bounds of the

95% prediction interval for each clinical index, and each age group. Each of the three

age-groups span a 10-year interval, and the total age range includes patients 45 to 74

years old. Also, for each clinical index, and age-group we compute separate statistics

for males and females.

Figure 2.10 shows the mean value for each of the �ve clinical indexes, for the three

di�erent age groups, and for males and females. Perhaps the most evident, and in

some ways expected feature of these plots, is the consistent decline in cardiac volumes

and cardiac mass with ageing. For the �ve indexes LVEDV, LVESV, LVM, RVEDV

and RVESV, we see a decline of 9%, 15%, 7%, 8%, and 13% for males, and 11%, 17%,

5%, 6%, and 11% for females. As stated before, a deep analysis of sub-populations is

out of the scope of this chapter, nevertheless, we hope to have shown the potential of

the techniques presented in this chapter to gain insight from large population imaging

studies.
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2.4 Summary

2.4 Summary

In this chapter, we presented a fully automatic framework capable of performing high-

throughput end-to-end 3D cardiac image analysis of 40,000 subjects. We validated our

work
ow on a reference cohort of 4,620 subjects for which both manual delineations

and reference functional indexes exist. Our results show that di�erences between our

automatic work
ow and the manually obtained global and regional reference indexes

are within the expected variability observed in human raters. The method is fast and

scalable, overcoming limitations associated with current clinical CMR image analysis

routine, which is manual, time-consuming and prone to subjective errors. This pipeline

has remarkable potential for improving work e�ciency and assisting clinicians in dia-

gnosing and performing large-scale clinical research. Our proposed framework includes

quality analysis modules designed to detect possible erroneous results for review, allow-

ing fully automated analysis of CMR images. Additionally, this would help decrease

inter-and intra-observer variabilities, which are unavoidable when such analyses are

performed manually, thereby streamlining the overall process.

Furthermore, the 3D results can provide more comprehensive anatomical and func-

tional details because of the additional dimension compared with all the 2D segment-

ation methods. This proposed approach ensures the global coherence of the cardiac

anatomy and naturally provides detailed surface models for applications in which full

3D anatomy is necessary; for example, in mechanical and 
ow simulations, intervention

planning and subsequent image-guided interventions could bene�t signi�cantly from

the availability of high-quality 3D mesh models. The analysis and interpretation of

these spatio-temporal information from the cardiac structure and function in large-

scale population imaging data can help �nd and understand patterns and trends across

population groups, and consequently, reveal insights into key risk factors before CVDs

fully develop.

In the next chapter, we will present a novel deep neural network using both CMR

images and patient metadata to directly predict cardiac shape parameters. The pro-

posed method uses the promising ability of statistical shape models to simplify shape

complexity and variability together with the advantages of convolutional neural net-

works for the extraction of solid visual features.
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Chapter 3

Quantitative Population Analysis of Cardiac

Chambers

Accurate 3D modelling of cardiac chambers is essential for clinical assessment of cardiac

volume and function, including structural, and motion analysis. Furthermore, to study

the correlation between cardiac morphology and other patient information within a

large population, it is necessary to automatically generate cardiac mesh models of each

subject within the population. In this chapter, we introduce MCSI-Net (Multi-Cue

Shape Inference Network), where we embedded statistical shape models inside a fully

convolutional neural network to jointly learn phenotypic and demographic information

from the cohort. In this way, we leveraged the ability of the network to learn the

appearance of cardiac chambers in cine cardiac magnetic resonance (CMR) images,

and generate plausible 3D cardiac shapes, by constraining the prediction using a shape

prior, in the form of the statistical modes of shape variation learned a priori from a

subset of the population. This, in turn, enabled the network to generalise to samples

across the entire population. The motivations for utilising deep neural networks for

this application are three-fold: 1) it allows the method to extract much more solid
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visual features at each network layer and incorporate spatial context from neighbour-

ing regions by using all available image views. 2) it has superior accuracy to reference

shapes than the previous methods while being on average about 30 times faster during

inference, producing the nearly real-time output either directly used as the �nal result

or further input into other systems. 3) it allows multiple input types, e.g. imaging and

non-imaging; di�erent types of features out of di�erent types of data can be combined

for more informative distribution of parameters. We show that including this inform-

ation provides the network with a variable prior by learning the likely distributions of

shape parameters across di�erent populations. To the best of our knowledge, this is

the �rst work that uses such an approach for patient-speci�c cardiac shape generation.

MCSI-Net is capable of producing accurate 3D shapes using just a fraction (about 23%

to 46%) of the available image data, which is of signi�cant importance to the community

as it supports the acceleration of CMR scan acquisitions. We trained and evaluated

the MCSI-Net on a large-scale dataset of 3,925 and 600 subjects, respectively, from the

UK Biobank. We also present the results from analysing 40,000 subjects of the UK

Biobank at 50 time-frames, totalling two million image volumes. Our results broadly

show strong agreement with the reference annotations, achieving an average Dice score

of 92.5% across cardiac ventricles and atria.

3.1 Introduction

According to the World Health Organisation [3], cardiovascular disease (CVD) is the

most prevalent cause of death worldwide, accounting for nearly 18 million deaths each

year. Identifying individuals at risk of CVDs and ensuring they receive appropriate

and timely treatment can help prevent premature deaths.

Early quantitative assessment of cardiac structure, motion, and function support

preventive care and early cardiovascular treatment. Therefore, fully automated analysis

and interpretation of large-scale population-based cardiovascular magnetic resonance

(CMR) imaging studies is of high importance. This analysis helps to identify patterns

and trends across population groups, and accordingly, provides insights into key risk

factors before CVDs fully develop.

UK Biobank (UKB) is currently the world's most extensive prospective population
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study [34], which contains questionnaire data, biological samples, physical measure-

ments, CMR images, and so forth [13]. CMR is an essential element of multi-organ,

multi-modality imaging visits for patients in multiple dedicated UKB imaging centres

that will acquire and store imaging data from 100,000 participants by 2022. At this

time, CMR scans of 40,000 subjects have been released and are available for health-

related research.

We believe that 3D analysis is critical for the accurate clinical assessment of cardiac

function. In this chapter, we introduce a new approach that ensures the global co-

herence of cardiac anatomy and naturally lends itself to any further analysis requiring

the full 3D anatomy; for example, in interventional treatment planning requiring pre-

cise volumetric quanti�cation, mechanical and 
ow simulations, motion analysis, and

modelling the associations between cardiac structure and patient metadata (such as

socio-demographic, lifestyle and environmental factors, or family history, genetic, and

omics data). Though fully automatic 3D segmentation is required to facilitate such

analyses, the complexity of anatomical structures, intensity and morphology variation

across a population cohort, and the sparse information available from CMR images

(typically on average around 12 image slices covering the full heart) make this task

challenging.

In chapter 2, which already published as [48] and [58], we showed that 3D statistical

shape model-based approaches have the power and potential to automatically segment

cardiac structures, and generate associated cardiac function indexes. This success is

attributed to the inclusion of prior knowledge of cardiac shape, within the segmentation

method. These segmentation approaches typically use simple sets of features to �t a

shape model through an iterative process and the goal is to minimise the Mahalanobis

distance between an intensity pro�le sampled at a candidate position and its corres-

ponding intensity appearance model, by deforming the shape within its range of normal

variation to match the image data.

On the other hand, in the last decade, fully convolutional networks (FCN) have

shown great potential in image-based pattern recognition in a variety of tasks, including

cardiac segmentation. However, their output results are, by nature, 2D segmentation

masks for every short axis (SAX) and long-axis (LAX) CMR slice. Although these

2D masks are sometimes extended via a further step of non-rigid registration to a 3D

57



3. QUANTITATIVE POPULATION ANALYSIS OF CARDIAC CHAMBERS

atlas to produce a 3D cardiac shape [59], this is not e�cient for learning topological

shape information. Furthermore, this is based on the strong assumption that all the

2D segmentation masks are always correct and meaningful, however, in practice, there

are often errors in pixel-wise segmentation approaches due to spurious false positives.

For instance, Painchaud et al. [60] recently proposed a generative model based on a

variational autoencoder to identify anatomically implausible results following 2D seg-

mentation, and corrected these to �t the closest anatomically correct contours, based

on the learned latent space. This provides further evidence that, conducting CMR seg-

mentation in 2D requires a subsequent quality control step, in order to ensure that the

downstream quantitative analyses are accurate. Consequently, large-scale studies would

bene�t from an e�cient approach for reconstructing cardiac shapes in 3D, as it would

remove the need for multiple sequential steps involving pixel-wise 2D segmentation,

followed by quality control, and iterative registration-based 3D shape reconstruction,

which can be cumbersome and time-consuming.

In order to address these limitations, in a recent study [61] published at MICCAI

2019, we proposed an approach to exploit image features obtained using deep FCNs

trained on both SAX and LAX views, along with a rich shape prior learned using

a statistical shape model, to directly predict the shape-space parameters required to

reconstruct 3D cardiac shapes. Another signi�cant aspect of this study was the in-

tegration of patient metadata into the process of shape prediction using a Multilayer

Perceptron (MLP). This information, which is currently ignored by most cardiac seg-

mentation or shape generation techniques, has been shown in di�erent clinical studies

to have an impact on cardiac morphology and structure [62]. To evaluate our method,

in addition to comparing against manual measurements, we also compared our per-

formance against two state-of-the-art methods that have reported the highest accuracy

thus far, namely, the work by Bai et al. [37] in which the authors propose a 2D convo-

lutional neural network (CNN)-based segmentation method and our previous work [58]

presented in chapter 2 where, we analysed and reported cardiac functional indexes of

40,000 subjects of the UKB through a fully automatic quality-controlled image parsing

framework.

The main contributions of this chapter are as follows:

ˆ We extend the shape model from biventricular to four-chamber cardiac mesh
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model. We segment all four cardiac chambers; namely, left ventricle (LV), right

ventricle (RV), left atrium (LA), and right atrium (RA). For the LV, we segment

both the endocardium and epicardium surfaces; while for the other chambers, we

only segment the endocardium. This is because the myocardium is too thin to

reliably distinguish epicardium from the endocardium. Consequently, there is no

label available to use for the training. This was achieved by �rst generating a

reference cohort of four-chambered cardiac meshes through the non-rigid registra-

tion of a four-chambered cardiac atlas, to a set of 3D points obtained from manual

delineations. To ensure high accuracy when �tting the 3D shape to the stack of

manually delineated contours, we adopted an alternating global-local non-rigid

registration approach, using the Coherent Point Drift (CPD) method [63].

ˆ We propose an innovative end-to-end deep neural network that directly predicts

3D shape parameters derived from a Principal Component Analysis (PCA) space.

The network is optimised using a loss function de�ned in the domain of shape

space parameters which weights each PCA mode of variation independently, prior-

itising the more signi�cant modes and leading to more accurate shape prediction.

In addition to the shape parameters, the network also learns the similarity trans-

formation parameters required to transform the generated shape back from the

normalised PCA space, to the image space. We achieved this through a multi-

task learning approach, where the extracted features are used to jointly optimise

a second loss function de�ned over the desired transformation parameters.

ˆ We utilise a novel approach of exploiting all the CMR image views (short axis

and long axis two-, three- and four-chamber CMR images) and a comprehensive

range of patient metadata simultaneously, to predict 3D four-chambered cardiac

shapes. The introduction of the metadata yielded a substantial positive impact

on shape prediction with about 5% average improvement across all metrics. We

hope this idea inspires other researchers to exploit such informative priors in

their applications, to improve the performance of their models. We categorised

the available patient metadata into four main groups, i.e. demographics, blood

pressure, biological samples, and lifestyle. We carried out systematic experiments

to understand and report the impact of di�erent metadata categories on the
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predicted cardiac shape.

ˆ We investigate the importance of the available CMR slices towards the accuracy

of the �nal predicted shape and evaluate the performance of our approach in

scenarios where only a few SAX and/or LAX slices are available. These experi-

ments were conducted to validate the hypothesis that 3D cardiac shapes can be

predicted accurately, given sparse CMR acquisitions. This is particularly relevant

to applications requiring acceleration of CMR scan acquisitions, at minimal cost

to subsequent cardiac quanti�cation accuracy.

3.2 Method

In the sections that follow, we describe the data and methods used within each step of

our framework, and our corresponding design choices. These are ordered as follows |

�rst, we describe the generation of reliable 3D reference shapes from the stack of 2D

manual contours; next, the construction of the point distribution model; and �nally,

we provide details of the input data used to train and validate MCSI-Net, and describe

its architecture.

3.2.1 Reference 3D Cardiac Shapes

To generate the reference cohort of 3D cardiac shapes, we �rst construct the 3D stack

of 2D manual delineations by combining all the available contours from the three views

(i.e. SAX, two- and four-chamber LAX slices) while exploiting the recorded orientation

and position information available in the DICOM header to be aligned with their actual

corresponding CMR images, as shown in Figure 3.1. Subsequently, the mean shape of a

high-resolution atlas of the human heart available from a study by Hoogendoorn et al.

[64] is rigidly and then non-rigidly registered to the 3D stack of manual delineations,

to produce the patient-speci�c, four-chamber cardiac shape model. The resulting 3D

mesh model comprises �ve structures; the Left Ventricle (LV) endo- and epicardium,

Right Ventricle (RV), Left Atrium (LA) and Right Atrium (RA).

To generate the reference cardiac meshes, we used the standard Coherent Point

Drift (CPD) algorithm [63] for rigid and non-rigid registration of the two point-sets

i.e., vertices of the cardiac mesh and points in the 3D stack of manual delineations. For
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Figure 3.1: An example 3D stack of 2D manual contours on SAX, two- and four-chamber
LAX view slices.

each subject comprising manual delineations, we start with rigid registration to align

the two point sets and then perform non-rigid registration to deform the 3D cardiac

mesh to �t the set of 3D points obtained from manual delineations.

Here, we brie
y review the CPD algorithm and highlight our proposed approach

to improve its overall performance in this application. CPD treats the problem of

registering a source point setX 2 Rn� 3 to a target point set Y 2 Rn� 3 as one of

probability density estimation. X is considered to represent the centroids of a Gaussian

Mixture Model (GMM), from which a transformed set of observations Y are sampled.

Consequently, by �tting the GMM to Y , in a manner analogous to data clustering, the

underlying spatial transformations that map X to Y and maximise the likelihood of the

latter being sampled from the former, are estimated. This is achieved by maximising

the log-likelihood function using the expectation-maximisation (EM) algorithm, given

as follows:

p(Y jX ; T) =
MX

j =1

log
NX

i =1

� i N(y j jTx i ; � 2); (3.1)
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where x i =1 :::N 2 X denotes a mixture component,y j =1 :::M 2 Y are the observed data

points, T is spatial transformation parameters, � i is a mixture coe�cient and N is a

normal distribution function with variance � 2.

EM is necessary as no tractable solution exists for directly maximising Equation

3.1. The EM algorithm iteratively alternates between two steps. In the expectation

(E)-step, the posterior probabilities that describe the responsibility of each mixture

componentx i , in describing the observed data pointsy j , are estimated. In the maxim-

isation (M)-step, the posterior probabilities estimated in the preceding E-step are used

to maximise Equation 3.1 with respect to the unknown spatial transformation para-

meters T, mixture coe�cients � i , and the covariance� 2I associated with each mixture

component. CPD considers an isotropic and shared covariance across all components

in the GMM (i.e. covariance of the GMM is a single scalar parameter). Both rigid and

non-rigid registration are achieved by alternating between these two steps of EM, until

a suitable convergence criterion is reached.

In our case, the target point set (observed data)Y is given by the 3D stack of 2D

manual contours (refer to Figure 3.1), while the source point setX , representing the

GMM centroids, is de�ned by vertices of the mean atlas mesh [64]. Registration of

X to Y is achieved over three steps, starting with an initial rigid registration, where,

the global rotation and translation parameters required to align X to Y are estimated.

Subsequently, we conduct region-wise non-rigid registration, wherein, each chamber of

the heart in X , is registered independently to the corresponding region-speci�c contours

in Y (i.e. for example, vertices of the LV mesh inX , are only registered non-rigidly

to the LV contour points in Y ). This step is necessary as the standard non-rigid

registration approach proposed in CPD does not explicitly account for multi-region

point sets and enforces a global smoothing constraint on the estimated deformation �eld

through Tikhonov regularisation. While this is necessary to prevent gross topological

changes during registration, it also causes intersections between adjacent regions in the

registered mesh/point set. Furthermore, such a global smoothness constraint limits the

recovery of �ne structural details following registration of Y to X , resulting in issues

such as underestimation of myocardial thickness, among others. By conducting non-

rigid registration in a region-wise manner, we correct for these issues as it allows region-

speci�c parameters to be de�ned, to control the degree of smoothness of the deformation
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�eld estimated for each region. The non-rigid transformation in CPD is parameterised

as a linear combination of Gaussian radial basis functions. Two parameters control the

degree of smoothness of the deformation �eld, namely,� a weight which controls the

trade-o� between smoothness and registration accuracy, and� , which represents the

width of the Gaussian kernel, used to parameterise the deformation.

Following the region-wise non-rigid registration, we revert to the standard global

non-rigid registration formulation of CPD in order to ensure that the overall topology

of the full heart meshes, and the spatial relationships between its constituent chambers

are maintained. We empirically determined that registering X to Y in this manner,

and adopting n iterations for region-wise and global non-rigid registration, provided

better registration quality than using either approach alone. The values used for these

parameters, for all four chambers of the heart are summarised in Table 3.1, all of which

were determined empirically.

Table 3.1: Parameters used for region-wise and global registration in the CPD method.

LV endo LV epi RV LA RA global
� 2 2 2 2.5 2.5 3
� 2.5 2.5 2.5 3 3 5
n 100 100 100 50 50 25

Typical � values are in the range [1:5; 3]. Increasing this value increases interaction

between the points in the point cloud, and results in a coherent motion of larger neigh-

bourhoods of points in the point cloud (i.e. similar displacements are estimated for

larger proportions of points). Alternatively, decreasing this value reduces interaction

between the points in the point cloud and conduces localised displacement of points.

Similarly, typical � values are in the range [0.1,10]. Increasing this value produces more

coherent motion. More details of the algorithm we used to achieve this e�ect can be

found in work published by Myronenko et al. [63, 65].

Finally, all the reference shapes were quality controlled to maintain high accuracy in

the generated shapes. As a �rst check, we computed the point-to-point distance of the

generated shape to the 3D stack of 2D manual contours, and if the average error was less

than half of the in-plane pixel spacing, we used the shape for the PDM construction. We

then visually checked all the shapes overlaid on the stack of 2D contours to discard any

sub-optimal shapes from the dataset. Ultimately, 4,525 subjects were available after
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quality control and were randomly split into two sets of 3,925/600 for training/test,

i.e. 3,925 subjects for training the neural network, and 600 subjects for evaluating

performance.

In the next section, we describe how we use the generated 3D reference shapes to

construct the point distribution model, as illustrated in Figure 3.2.

Figure 3.2: The template is registered to each stack of 2D manual delineations to
produce high resolution and smooth triangular mesh models for each subject. Then all
the new generated reference shapes are used to create the point distribution model.

3.2.2 Point Distribution Model (PDM)

To encode the mean and variance of the 3D cardiac shapes, we use a PCA-based PDM.

We construct the PDM by applying PCA on a set of generalised Procrustes aligned
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shapes.

Following Procrustes analysis, for a training set ofM shapeszi , we get M new

shapessi (representing the i -th shape of the dataset) where all the nuisance pose

parameters, i.e., translation t = ( Tx ; Ty ; Tz), rotation r = ( R� ; R� ; R
 ) and scaling (C)

were removed. Hence using these 7 transformation parameters, we can transform back

the Procrustes-aligned shapes to their original (image) coordinates as follows:

zi = Ci � si � r i + t i ; (3.2)

where si 2 R3N represents thei -th shape as (x i
1; y i

1; zi
1; :::; x i

N ; y i
N ; zi

N )T vector. The

shape covariance is represented in a low-dimensional PCA space providingl < min(M; N )

eigenvectors� = [ ' 1' 2:::' l ], and corresponding eigenvalues� = diag( � 1; � 2; :::; � l )

computed through the Singular Value Decomposition of the covariance matrix. Thus,

assuming the group of shapes follows a multi-dimensional Gaussian distribution, we can

approximate any shape in the group using the shape class mean�s and the following

linear generative model:

s � �s + �b (3.3)

where, b 2 Rl are shape parameters restricted tojb i j � �
p

� i ; to capture 99:7% of

shape variability, we set � = 3. The shape parameters ofs can then be estimated as

follows:

b = � T
l (s � �s): (3.4)

where the entries of b are the projection coe�cients of mean-centred shapes (s � �s)

along the �rst l columns of � l . Figure 3.3 shows the mean� 3 standard deviation

(SD) of the �rst �ve PCA modes variation and illustrate the variations present in the

training dataset.

3.2.3 Network Architecture and Loss Function

The overall architecture of MCSI-Net is shown in Figure 3.4. The network has �ve in-

puts: SAX view images, two-, three and four-chamber LAX view images, and metadata.

The network has two sets of outputs: 1) the predicted shape parametersbP = f bP
j jj =

1; :::; kg that are obtained from the top branch of the network, and 2) the predicted
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Figure 3.3: Representation of the mean� 3 standard deviation (SD) of the �rst �ve
modes of variation in the 3D shape models of four-chambered cardiac.

transformation parameters t P = f Tx ; Ty ; Tz; R� ; R� ; R
 ; Cg which are obtained from

bottom branch of the network. The two tasks are learned through the two branches of

the network simultaneously. The proposed network is trained using the following loss

function:

E(� ) =  L b + (1 �  )L t (3.5)

where

L b =
kX

j =1

f (bP
j (� ); bR

j ) : w(j; k ) (3.6)

w(j; k ) =

s
k � j + 1

k
(3.7)

and,

L t =
7X

l=1

f (tP
l (� ); tR

l ) (3.8)
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