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Abstract

Droughts and flooding over East Africa produce large scale humanitarian disasters

such as famine. The recent 2010-11 drought led to an estimated 250,000 deaths in

the region, whilst flooding also causes deaths, population displacement, and damage to

infrastructure. A better understanding of East African rainfall variability, leading to

improved seasonal forecasts, could drastically reduce the impact of these events.

The most widely used operational seasonal forecast in the region is the consensus based

Greater Horn of Africa Climate Outlook Forum (GHACOF) forecast, produced using a

combination of dynamical and statistical model forecasts alongside local knowledge. In

this thesis, for the first time, East African rainfall forecasts from GHACOF are com-

pared directly to dynamical seasonal forecasts from the UK Met Office Unified Model,

and both are evaluated against observations. Both forecasts appear to show good skill

at forecasting the short rains (October-December), whilst poor skill in forecasting the

long rains (March-May) is found.

The drivers of variability in the long rains are studied, linking the long rains to zonal

winds over the Congo basin on both inter-annual and decadal timescales, with westerly

anomalies leading to more rainfall over East Africa. A source of variability in these zonal

winds is found to be the North Atlantic Oscillation (NAO). A Rossby wave response

in the mid-latitudes to pressure changes during NAO events propagates equatorward,

eventually reaching the Congo basin. The Met Office seasonal forecast model is able to

represent both the connection between zonal winds over the Congo and rainfall, as well

as the NAO Rossby wave mechanism, in its ensemble members. However, the NAO

amplitude in the ensemble mean is too small, and so the teleconnection linking the

NAO and the long rains in the ensemble mean is hidden by noise, but these results

offer hope for future skilful dynamical predictions of the long rains.
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Chapter 1.

Introduction

1.1. Motivation

East Africa is a region highly vulnerable to severe weather, climate change, and climate

variability. From the arid lowlands near the Indian Ocean coast, to the steep highlands

further inland, as well as several large lakes, the large contrasts in geography over

relatively short distances provides a challenge to forecasting on all time scales. The East

Africa region (shown in Figure 1.1a) consists of a number of developing countries, with

the region having one of the most rapid population growths on the entire planet. This

means that the impact of weather and climate extremes can often be exacerbated by

socio-economic and political factors, and also that the region is particularly vulnerable

due to a relative lack of technology and infrastructure. Many countries within the East

African region have been identified by the International Monetary Fund (IMF) World

Economic Outlook Database (International Monetary Fund 2020) as having some of the

fastest real gross domestic product (GDP) growth rates in the world; 4 out of the top

10 fastest GDP growth rates in the world in 2018 were located in East Africa (World

Bank 2020). However, they are also some of the countries with highest proportion of

GDP coming from the agricultural sector (CIA World Factbook 2020), for example, in

2017, in Kenya 34.5% of GDP was from the agricultural sector, compared to a world

average of 6.4%, whilst in Somalia in 2013, 60.2% of GDP comprised of agriculture.

This renders the economies of these countries particularly susceptible to extreme events.

Of the severe weather and climate events, the Global Facility for Disaster Reduction

and Recovery (GFDRR) has identified that droughts and floods are the most damaging

natural disasters in the region (GFDRR 2020). For example the 2011 drought, caused

by the failure of two consecutive rainfall seasons, resulted in widespread famine. It is
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Figure 1.1.: a) Map showing geographic features and topography of East Africa. Eleva-
tion data come from the Global Land One-kilometer Base Elevation (GLOBE) project
database (Hastings and Dunbar 1999). b) Annual cycle of rainfall over different re-
gions of East Africa, with colours matching up to the boxes in a. Dashed lines show
unimodal rainfall cycles, whilst solid lines show bimodal rainfall cycles with long rains
and short rains seasons. Rainfall data is taken from the Tropical Rainfall Measuring
Mission (TRMM; Huffman et al. 2007).

estimated that there were over 250,000 deaths as a result of lack of food availability

caused by the drought, with Somalia in particular experiencing widespread famine

(FAO and FEWS NET 2013). This crisis was also exacerbated by political factors,

such as the prevention of aid reaching the local population by militant groups that

controlled affected regions. Meanwhile, during the long rains (March-May) in 2018,

heavy rainfall caused widespread flooding (Kilavi et al. 2018). In Kenya 186 lives were

lost and 300,000 people were displaced (UN Office for the Coordination of Humanitarian

Affairs (OCHA) 2018). Further, drought and flood events can occur in quick succession

(Nicholson 2016b), for example much of East Africa having experienced widespread

droughts in 2017 before the flooding in 2018.

Due to the seasonal nature of rainfall in the region, these events can be driven by

the seasonal timescale, meaning that seasonal forecasts can be an invaluable tool for

mitigating and preventing humanitarian disasters related to the events. Seasonal fore-

casts have been used to reduce the potential impact of natural disasters, or to take

advantage of favourable conditions for crop growth to provide an economic boost to

the region. For example, in 2009, after forecasts issued by the Greater Horn of Africa

Climate Outlook Forum (GHACOF) predicted normal to above normal rainfall, the

Kenya Red Cross distributed seeds to 70,000 Kenyan farmers, resulting in a bumper

harvest (Graham et al. 2012). However, use of seasonal forecasts can still be improved.

2



Predictability and variability of East African rainfall seasons

A briefing paper by Oxfam and Save the Children (2012) looking at the 2010-11 famine

revealed that despite accurate predictions of below normal rainfall for the 2010 short

rains (October-December), that led to Kenya Red Cross issuing appeals in early 2011

(Graham et al. 2012), and FEWS NET warning of a crisis in the case of the failure of

the long rains, little response was taken until near the end of the long rains season in

May 2011, by which time the famine was well underway. A similar pattern was also

noted for the Kenyan drought of 2005-06 (Oxfam and Save the Children 2012).

Meanwhile, tropical regions have been identified by the Intergovernmental Panel on

Climate Change (IPCC 2018) as likely to experience some of the most disproportionate

consequences of anthropogenic climate change, with East Africa being one area likely

to first feel the impacts. In fact, several recent climate events have been identified

as having been caused or exacerbated by anthropogenic climate change. For example

Lott et al. (2013) performed event attribution on the rainfall seasons preceding the 2011

drought, finding that human influence increased the probability of the long rains being

as dry as in 2011, although there was no evidence of human influence on the 2010 short

rains. Meanwhile Uhe et al. (2018) identified that the likelihood of the La Niña event of

2016 that led to Kenyan drought was increased due to human-induced climate change.

Under climate change, it is widely expected that throughout the tropics rainfall will

become less frequent but more intense (Seneviratne et al. 2012). This will have negative

impacts, such as increased stress on agriculture, increased frequency of flooding and

landslides, more people displaced from their homes, and damage to transport links and

infrastructure. As well as increased water stress, rising sea levels also threaten many

in coastal areas.

East Africa is also currently facing a long term decline in its main rainfall season,

the long rains (e.g. Funk et al. 2005, 2008, Lyon and Dewitt 2012), which contrasts

with wetter conditions predicted by many climate projections (e.g. Shongwe et al. 2011,

Anyah and Qiu 2012). This has been termed the East African Climate Paradox (Rowell

et al. 2015), and this uncertainty poses problems for long-term planning and adaptation

to climate change as it is unclear whether to expect wetter or drier conditions in the

future, as well as undermining user confidence in the climate projections.

All of these factors mean that reliable, accurate, seasonal forecasts, underpinned by

knowledge and understanding of the mechanisms influencing variability of rainfall on

this timescale, are critical for the well-being and development of the region. Un-

derstanding of longer term variability of seasonal rainfall, particularly under climate

change, is also essential for the long term planning needed to mitigate large-scale dis-
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asters. Seasonal forecasting is key for planning, however, it remains a huge challenge

with little forecasting ability for many regions and seasons. This thesis looks to make

progress in improving the current state of understanding to improve seasonal forecasting

for East Africa.

1.2. East Africa

1.2.1. Climatology of East Africa

1.2.1.a. Annual cycles of rainfall

East Africa is located within the tropics and so experiences seasonal rainfall cycles as

a result of the motion of the Intertropical Convergence Zone (ITCZ). The ITCZ is a

band of enhanced convection, driven by trade winds from the southern and northern

hemispheres converging, leading to upwards motion. The water vapour in the air

forced upwards condenses, forming clouds. This upward motion is part of the Hadley

Cell, a circulation that involves low level air moving towards the equator and rising

through the troposphere, before travelling away from the equator. It then descends at

approximately 25◦ north or south. This descending branch of the Hadley Cell leads to

many of the major deserts being located at approximately these latitudes, including

the Sahara and Arabian deserts in the northern hemisphere (Webster 2020).

The ITCZ moves meridionally throughout the year, following the region of most intense

heating from the sun. It passes over the equator twice per year, leading to two distinct

rainfall seasons in equatorial regions, whilst further north and south close to the limits

of movement of the ITCZ, there is a singular rainfall season per year. In the equatorial

East Africa region (Kenya, northern Tanzania, southern/ coastal Somalia, southern

Ethiopia, eastern Uganda), the ITCZ passes over twice per year, giving two rainfall

seasons. These are commonly referred to as the long rains (also known as Gu in Somalia,

Belg in Ethiopia or Masika in Tanzania) and the short rains (Deyr in Somalia, Vuli in

Tanzania). The short rains season occurs roughly from October to December (OND),

whilst the long rains occur from March to May (MAM), seen in boxes d, e, and f in

Figure 1.1. Further north and south are unimodal wet seasons; in southern Tanzania

the Tanzania unimodal rains, occurring approximately from November through to April

(Figure 1.1 box a) in South Sudan the South Sudan rains from April to October (Figure

1.1 box b), and over the Ethiopian highlands the Kiremt rains, occurring from June to
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Figure 1.2.: Bimodal and unimodal rainfall regions calculated by considering the domi-
nant Fourier harmonic of the rainfall cycle, with c2 and c1 the amplitude coefficients of
the semi-annual and annual harmonics respectively. Values of log2 |c2/c1| > 0 (colours)
have two rainfall seasons per year, whilst log2 |c2/c1| < 0 have one rainfall season per
year. The 0 line is shown as a white contour. Figure adapted from Yang et al. (2015a)
FIG. 3. Rainfall data used to calculate the harmonics is taken from TRMM.

September (Figure 1.1 box c). Figure 1.2, adapted from FIG. 3 of Yang et al. (2015a),

uses Fourier harmonics of the precipitation annual cycle to determine where unimodal

or bimodal peaks in rainfall occur. The semi-annual, c2, and annual, c1, harmonics

are calculated, then the ratio of semi-annual to annual, c2/c1, is found. The base-2

logarithm, log2 |c2/c1|, is then taken. Areas where this is positive (or c2 > c1) suggest

the area experiences two rainfall seasons, whilst areas where this is negative (or c2 < c1)

have one rainfall season per year. This method does however exclude the possibility

of capturing regions with more than two rainfall peaks per year, and Seregina et al.

(2019), using a method of determining onset and cessation of rainfall seasons, showed

that there were small areas within the East Africa region that undergo three rainfall

seasons per year.
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1.2.1.b. Topography

A map of the topography of East Africa is seen in Figure 1.1a. The dominant features

of the region are related to the Great Rift Valley. Two main mountain ranges, the

Ethiopian highlands (located at 15◦N to 5◦N, 35◦E to 43◦E), in central Ethiopia, and

the East African highlands (located at 3◦N to 5◦S, 28◦E to 37◦E), covering western

Kenya, northern Tanzania, Uganda, Rwanda and Burundi, have a large influence on

the weather experienced within the region.

There are also several large lakes within the region, together referred to as the Rift

Valley Lakes. Of these the most significant is Lake Victoria, in the centre of the

East African highlands. Lake Victoria is the second largest freshwater lake in the

world by surface area, at approximately 68,800km2 (Bengtsson et al. 2012), and a

great number of the East African population (approximately 40 million, African Great

Lakes Information Platform 2020) reside upon its shores, whilst the lake itself provides

a livelihood for many, including approximately 200,000 fishermen. The lake is large

enough to have a great influence on the weather in the region immediately surrounding

it, with much recent research focused on understanding and predicting storms that

form over the lake (e.g. Chamberlain et al. 2014, Williams et al. 2015, Woodhams et al.

2018, 2019). These storms, and associated impact on the surface water conditions claim

approximately 5,000 lives per year (Atieno et al. 2017), and so being able to predict

and give warnings of these storms is of great importance. The majority of water within

Lake Victoria is provided by rainfall (Piper et al. 1986), whilst the lake outflows into the

River Nile. Due to this, the water level of Lake Victoria is highly sensitive to rainfall

totals. For example after record-breaking rainfall in 1961, the level of the lake jumped

by over a metre (Kite 1981, 1982), the largest jump on record, as well as the highest

recorded level of the lake. As the lake outflows into the Nile, the lake level is important

in providing water downstream, where many depend upon it as a water source. Aside

from Lake Victoria, several other lakes of note include Lake Malawi, Lake Tanganyika,

and Lake Turkana. Furthermore, the topography influences the climatology of the low

level circulation in the region.

1.2.1.c. Circulation features

Within the lower troposphere over East Africa there is a distinct annual cycle within

the circulation. Figure 1.3 shows monthly climatologies of winds at 850hPa. One of

the key features at 850hPa is a jet over the southern Indian Ocean, flowing in to East
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Africa from the south east, before curving towards India in a southeasterly direction.

This is known as the Somali Jet, and was first observed by Findlater (1966, 1969, 1977).

This jet occurs from approximately May to October, at which point it breaks down,

and the northern part of the jet reverses direction by December, travelling from over

India towards East Africa. The second reversal then occurs approximately in March.

As noted by Okoola (1999a), East Africa therefore lies under two monsoon systems,

the northeast (NE) and southeast (SE), the NE occurring during southern hemisphere

summer, and the SE during northern hemisphere summer. The twice annual reversals

of the Somali Jet coincide with the short and long rains seasons respectively. The

transition between the two monsoons lead to weak convergence over East Africa, with

air masses moving equatorward from both hemispheres, moving onshore and forced to

ascend by coastal friction and topography (Nicholson 1996).

A smaller scale, low-level jet that occurs throughout the year is also present in Figure

1.3, located in northwest Kenya. This jet forms in the valley between the East African

highlands and the Ethiopian highlands, known as the Turkana channel. This jet is called

the Turkana jet and was first observed by Kinuthia and Asnani (1982) and Kinuthia

(1992). The jet travels in a southeasterly direction through the Turkana channel. The

jet has been found to be responsible for the arid climate within the northwestern Kenya,

southwestern Ethiopia, and southern Somalia region, with strongly divergent flow over

this region at low levels as the wind enters the Turkana channel (Nicholson 2016a).

The upper and lower tropospheric zonal winds across the equator form the Walker

circulation (Bjerknes 1969), a series of closed circulation cells analogous to the Hadley

Cells oriented zonally around the equator. This leads to regions of low level conver-

gence/ divergence, with the reverse at upper level, and upward/ downward motion,

impacting on the levels of convection seen in these regions. In the climatology, East

Africa is frequently considered to be under a descending branch of the Walker circula-

tion. The Walker circulation is formed due to the pressure gradient force: there is a

high-pressure region over the eastern Pacific Ocean, near the coast of South America,

with a low-pressure region over Indonesia. This leads to low level easterly winds across

the Pacific Ocean. These easterly winds impact the ocean, causing upwelling of cool

water off the coast of South America. In contrast, low level westerly winds are present

across the Indian Ocean, drawing moisture away from East Africa. The combination of

circulation features over East Africa lead to the region experiencing divergence or weak

convergence throughout the year, contributing to the arid climate observed within the

region (Lyon 2014).
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Figure 1.3.: Monthly climatology of 850hPa winds (vectors) and wind speeds (colours).
Wind data are taken from the European Centre for Medium-range Weather Forecasts
(ECMWF) interim reanalysis (ERA-Interim; Dee et al. 2011).
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Figure 1.4.: Monthly sea surface temperature (SST) climatology in the tropics. SST
data taken from the Hadley Centre Sea Ice and Sea Surface Temperature (HadISST)
dataset (Rayner et al. 2003).
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1.2.2. Climate and rainfall characteristics

Much of East Africa is classified as being either arid or semi-arid under the Köppen-

Geiger climate classification (Köppen 1900, 1936, Peel et al. 2007). This is notable

as East Africa is equatorially located, and the majority of the rest of the land mass

around the equator is categorised as tropical. Several explanations have been proposed

for the aridity. As discussed above, there is generally divergent large-scale flow over

East Africa (Lyon 2014), preventing the formation of deep convection, whilst Nicholson

(1996) suggested that the orography also played a role, as it controls features of the

circulation. Nicholson (1996) suggested that the chain of mountains within the East

African and Ethiopian highlands effectively redirect the low level jet, leading it to run

approximately parallel with the coastline, minimising the flux of moisture into the

region. The frictional contrast between the shore and water also induces subsidence

(Bryson and Kuhn 1961). The chain of mountains also effectively blocks moist, unstable

air from the Congo airmass from entering into East Africa (Okoola 1999a,b). Nicholson

(1996) also suggests that the NE and SE monsoons are associated with thermally stable,

dry air, and that moist air streams are relatively shallow. Also likely to play a role are

the relatively low sea surface temperatures (SSTs) off the coast of Somalia, as shown

in Figure 1.4, in comparison to other tropical SSTs, further reducing rainfall amounts.

An alternative, thermodynamic explanation to East Africa’s aridity was proposed by

Yang et al. (2015a), describing a ventilation mechanism. The annual cycle of rainfall

over the region is dominated by the moist static energy (MSE): the atmosphere over

East Africa is found to be convectively stable due to the import of low MSE near-

surface air from over the Indian Ocean, from the winter hemisphere, whilst the rainfall

seasons occur during rises in the local SSTs (seen in Figure 1.4), causing the import of

less stable air. The ventilation (import of low MSE air) depresses local convection and

precipitation, leading to the dry climate.

1.2.3. Interannual variability of rainfall: short rains season

The short rains season, occurring from October to December, is the rainfall season

with the largest interannual variability (Hastenrath et al. 1993, Camberlin and Okoola

2003), and correspondingly correlates well with the annual rainfall total of the region

despite contributing less rainfall than the long rains (Nicholson 1996, Camberlin and

Wairoto 1997).
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Figure 1.5.: Locations of indices used to measure El Niño-Southern Oscillation and
the two poles of the Indian Ocean Dipole; western tropical Indian Ocean (WTIO) and
southeastern tropical Indian Ocean (SETIO).

1.2.3.a. El Niño-Southern Oscillation

The largest source of interannual variability in the tropics is El Niño-Southern Oscilla-

tion (ENSO; Rasmusson and Carpenter 1982). A coupled atmosphere-ocean mode of

variability, El Niño refers to the oceanic part, which consists of a warming off the Pacific

coast of equatorial Peru in boreal winter. The Southern Oscillation is the atmospheric

part, a periodic oscillation in the pressure gradient between the western and eastern

Pacific Ocean.

The Southern Oscillation was first observed in the 1920s (Walker 1928, Walker and

Bliss 1932), during research into how the pressure over the Pacific Ocean influenced

the Indian Monsoon. Walker (1925, 1928) noticed that the pressure “seesawed” be-

tween the western Pacific Ocean close to the Indian Ocean, and the eastern Pacific

Ocean. Specifically, the most common index for the Southern Oscillation, the Southern

Oscillation Index (SOI; Chen 1982) considers the pressure difference between weather

stations at Darwin, Australia, and on the island of Tahiti (locations shown on Figure

1.5). A negative (positive) SOI value implies higher (lower) than usual pressure over

Darwin and lower (higher) than usual pressure over Tahiti.

Meanwhile, the oceanic part of ENSO was first observed as warming of the waters off

the Pacific coast of South America every few years, negatively impacting fishing. It

was observed to occur in boreal winter, or around Christmas, leading to the name “El

Niño”, meaning the boy child. An inverse event, with cooler waters off the Pacific

coast was also observed to occur, and is called “La Niña”, meaning the girl child. In

particular, the SST anomaly of several regions of the Pacific Ocean have since been

determined to monitor and define the occurrence of ENSO events. Four Niño regions

were originally defined (labelled Niño 1+2, Niño3, and Niño 4 shown on Figure 1.5)

throughout the Pacific Ocean, reflecting the life cycle of an El Niño event, based on
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ship tracks studied by Rasmusson and Carpenter (1982), starting off the coast of Peru

and moving westwards into the central equatorial Pacific. Later, Barnston et al. (1997)

identified and defined the Niño3.4 region, lying halfway between the Niño3 and Niño4

regions, as being the most appropriate measure of strength of ENSO. This covers a

region of the Pacific Ocean from (170◦W to 120◦W, 5◦S to 5◦N).

It was later found by Bjerknes (1966, 1969) that El Niño and the Southern Oscillation

were a coupled system, with a negative SOI coinciding with El Niño, and positive SOI

coinciding with La Niña. A more complete picture of the physical processes of ENSO

is as follows. Under normal conditions, low level trade winds travel in an easterly

direction across the equatorial Pacific Ocean, pushing warm water westwards, causing

cool upwelling off the coast of Peru. Under the surface exists a thermocline, the location

of the maximum vertical gradient in temperature. In usual conditions, due to the cool

upwelling, the thermocline is shallow in the east, and deep in the west. A reduction

in the pressure gradient across the Pacific Ocean, with higher pressure further west,

slackens the low level winds. This reduces the cool upwelling off the coast of South

America, reducing the gradient of the thermocline, and leading to an increase in SSTs

off the coast of South America. The warmer SST then leads to a lower atmospheric

pressure directly above the ocean here, partly due to increased convection caused by the

warmer SSTs, further reducing the pressure gradient. This leads to a positive feedback

loop (known as a Bjerknes feedback), whereby the anomalies sustain and enhance each

other. Wyrtki (1975) further proposed that El Niño events are actually a response to

excessively strong easterly trade winds. These strengthen the westward current, causing

an east to west gradient in sea level by pushing water to the western Pacific. When the

wind stress relaxes, the sea level gradient then causes the warm surface water to move

eastwards, leading to the El Niño event. Figure 1.6 shows a composite of typical SST

and low level winds during an El Niño and La Niña.

Whilst El Niño was originally observed around Christmas, it has since been found that

the direction of the El Niño/ La Niña event will begin to develop in boreal summer

from around June onwards, peak near the beginning of winter, and decay late into

winter, usually January to February (Webster 2020). In very strong cases, the event

can persist into boreal spring (March to May). The blue line in Figure 1.7 shows the

standard deviation of the Niño3.4 index throughout the year, with a clear rise into

boreal summer, and decay from boreal winter into spring. The minimum in variance of

the Niño3.4 index occurs during the boreal spring, and this is generally considered the

transitional period for events. It has also been found that predictability of ENSO is

limited by this spring transitional period (Webster and Yang 1992), this is commonly
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Figure 1.6.: Composite plot of seasonal mean SST (colours) and 925hPa wind (arrows)
anomalies during September to December of El Niño and La Niña years. SST data
are from HadISST (Rayner et al. 2003), and winds are from ERA-Interim (Dee et al.
2011). The years used were selected by taking seasonal mean anomalies of the Niño 3.4
index greater than 1 or less than -1 for El Niño and La Niña respectively.

referred to as the spring predictability barrier (Torrence and Webster 1998). It means

that forecasts that rely on the predictability and time persistence of ENSO cannot pass

over this time of the year, ie forecasts for the peak of ENSO (in the winter) in a certain

year, cannot be made earlier than approximately May. This can be seen in Figure 1.7,

where the persistence of the Niño 3.4 region is low during spring months even at short

lead times. It is found that ENSO is quasi-periodic, with a period of roughly 3 to 7

years (Trenberth 1997). It has also since been determined that the impacts on weather

of this mode of climate variability are seen around the globe (Rasmusson and Carpenter

1982), e.g. India (Bhalme et al. 1983), Australia (McBride and Nicholls 1983), New

Zealand (Gordon 1986), South America (Aceituno 1988), and the Sahel (Folland et al.

1986).

ENSO has been found to have strong links to interannual variability of East African

rainfall, particularly the short rains season. El Niño events lead to increased seasonal

rainfall totals, whilst La Niña events cause decreased seasonal rainfall (Nicholson and
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Figure 1.7.: Persistence of the Niño 3.4 region, by month and lead time, measured by
calculating the correlation coefficient between the SST of each month and the following
11 months for lead times 1 to 12 (colours). A high correlation coefficient indicates high
persistence between months. Blue line shows standard deviation of Niño 3.4 region over
each month, with inverted y-axis. SST data taken from HadISST (Rayner et al. 2003).

Selato 2000). Early evidence of this was found by Rodhe and Virji (1976) and Ogallo

(1979), who identified periodicities in the short rains interannual variability that were

similar to those of ENSO. Rodhe and Virji (1976) suggested that determining the

physical processes responsible for the periodicities could be used to estimate years with

rainfall above or below certain limits, an early suggestion that forecasting on a seasonal

timescale may be possible. Ogallo (1988), based on this study, found that across many

rain gauges in East Africa there existed a significant zero-lag correlation between the

monthly SOI and the monthly rainfall total for the months coinciding with the short

rains, finding correlation values up to around 0.6 over the period 1923-1984, whilst

also noting that there also existed significant lagged correlations between monthly SOI

and rainfall during the short rains, extending as far back as July. Several studies since

have investigated and confirmed this relationship (e.g. Ogallo 1989, Hutchinson 1992,

Nicholson and Kim 1997, Indeje et al. 2000, Camberlin et al. 2001).
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Ogallo (1988) noted, however, that some extreme wet and dry episodes during the short

rains were not related to the Southern Oscillation, whilst Rodhe and Virji (1976) also

observed other periodicities than the one connected to ENSO, in particular, one with

a period of approximately 2 years.

1.2.3.b. Indian Ocean Dipole

Another, more recently discovered, mode of variability exists in the Indian Ocean.

This is most often termed the Indian Ocean Dipole (IOD), or in some cases the Indian

Ocean Zonal Mode (IOZM). It was first observed by Saji et al. (1999) and Webster et al.

(1999). Saji et al. (1999) identified a pattern of variability with above normal SSTs in

the western Indian Ocean off the coast of East Africa alongside below normal SSTs in

the eastern Indian Ocean around Indonesia, alongside wind and rainfall anomalies. In

particular, Saji et al. (1999) demonstrated a very strong link between surface equatorial

zonal winds across the Indian Ocean basin, and an index defined as the difference

in SST anomaly between the western tropical Indian Ocean (50◦E to 70◦E, 10◦S to

10◦N; WTIO) and the south-eastern tropical Indian Ocean (90◦E to 110◦E, 10◦S to 0◦;

SETIO), both shown on Figure 1.5. This index is referred to as the dipole mode index

(DMI). Several other studies since have investigated and confirmed this relationship

(e.g. Black et al. 2003, Owiti et al. 2008, Ummenhofer et al. 2009). Figure 1.8 shows

composites of typical SST and wind anomalies during IOD events.

Later work identified the mechanism through which the IOD influences rainfall. By

comparing events, Black et al. (2003) identified that the rainfall anomalies over East

Africa during the short rains are driven by the easterly wind anomalies, weakening the

climatological westerly flow that transports moisture away from the African continent.

This also leads to reduced rainfall over the central and eastern Indian Ocean. Black

et al. (2003) also suggested that this time of year is most susceptible to changes in

SST gradient as climatologically the west to east gradient is at its minimum, meaning

small changes can reverse the direction of the gradient and have large impacts on the

circulation. This mechanism also lines up well with the observation of Saji et al. (1999)

that the low level zonal wind strength is strongly tied to the rainfall, which was also

confirmed by Hastenrath (2007). Ummenhofer et al. (2009) found that in simulations,

the western pole of the IOD is more important in controlling rainfall during the East

African short rains.

These mechanisms are consistent with that observed by Hastenrath et al. (1993) prior
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Figure 1.8.: Composite plot of seasonal mean SST (colours) and 925hPa wind (arrows)
anomalies during September to December of positive and negative IOD years. SST
data are from HadISST (Rayner et al. 2003), and winds are from ERA-Interim (Dee
et al. 2011). The years used were selected by taking seasonal mean anomalies of the
dipole mode index (DMI) greater than 0.5 or less than 0.5 for positive and negative
IOD events respectively.

to the discovery of the IOD. They proposed a link with ENSO; in the case of a high

SOI (equivalent to La Niña), there is high pressure over the western Indian Ocean,

and low pressure over the eastern Indian Ocean, causing cool waters off the coast of

East Africa, and strong westerlies across the Indian Ocean. This produces a positive

feedback loop leading to increased divergence over East Africa. Hastenrath (2000) found

the opposite occurs when the zonal circulation is weak. This mechanism is related to

the Walker circulation cell over the Indian Ocean, and the alterations are analogous to

that of ENSO in the Pacific Ocean, with a Bjerknes-like upwelling in the eastern Indian

Ocean.
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1.2.3.c. Independence of IOD and ENSO

Both IOD and ENSO influence weather patterns through changes in the Walker circula-

tion. They occur at a similar time of year, and often the positive and negative phases of

IOD and ENSO occur simultaneously. This has led many authors to question whether

the IOD is indeed an independent mode of variability or whether it is an extension of

ENSO (Marchant et al. 2007, Meyers et al. 2007). Work prior to the identification of

the IOD attributed changes over the Indian Ocean basin to ENSO (Hastenrath et al.

1993).

Black et al. (2003) stated that IOD should not be viewed in isolation from ENSO, and

suggested that strong ENSO forcing sets up the IOD event that then impacts East

African rainfall. However, Saji et al. (1999) and Saji and Yamagata (2003) suggest

that IOD is indeed an independent mode of variability, as demonstrated by the fact

that there are years where a strong IOD occurs and impacts East African rainfall, in

absence of an ENSO event. The key example of this is the year 1961 (Saji et al. 1999),

which saw record-breaking rainfall, and a strong positive IOD, whilst ENSO conditions

were neutral. Yamagata et al. (2004) suggested that only approximately one third

of IOD events are associated with ENSO. Yamagata et al. (2004) and Behera et al.

(2005) produced composites of the short rains in years where IOD was positive but

ENSO neutral, and years where IOD was neutral but ENSO positive. From this it was

seen that IOD acting alone produced excess rainfall over East Africa. However, when

ENSO acted alone, no significant change in the short rains was observed. Bahaga et al.

(2015) and Wenhaji Ndomeni et al. (2018) also found similar results, and demonstrated

that both IOD and ENSO acting together produced a strong response in the rainfall.

Yamagata et al. (2004) and Behera et al. (2005) also showed that correlations between

ENSO and the short rains disappeared when the influence of IOD is removed, whilst in

the opposite case, correlations between IOD and the short rains were still strong after

the influence of ENSO is removed.

1.2.3.d. Nonstationarity in teleconnections

Whilst the mechanisms behind both the IOD and ENSO’s ability to control rainfall over

East Africa are relatively well understood, which means they are fairly reliable tools for

seasonal forecasting, several authors have proposed that the relationship between the

short rains and these teleconnections could be nonstationary over longer timescales.

This could present complications in using them for forecasting. For example, it has
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been suggested that the IOD control on the short rains has increased in strength in

recent decades (e.g. Clark et al. 2003, Manatsa et al. 2012, Manatsa and Behera 2013,

Nicholson 2015). There is also evidence of climate shifts, and low frequency oscillations

in strength of teleconnections.

However, there are issues with these studies. Firstly, both IOD and ENSO undergo

fluctuations in their activity on longer timescales: it is likely that if fewer strong ENSO

or IOD events occur in a certain time period, then the typical measures of strength of

relation used in these studies (such as correlation) between these and rainfall will appear

to weaken. This does not necessarily mean that how an individual IOD or ENSO event

impacts East African rainfall has changed. These measures also fail to account for other

processes that may be impacting rainfall totals, that also have their own fluctuations

in activity. Additionally, several papers report abrupt changes in correlation values

when applying a sliding window technique onto time series of data, however, these are

likely to occur naturally when an outlying year in the data enters into the window. For

example in Manatsa and Behera (2013), an abrupt change is reported in the year 1961,

however, this is simply adding an outlying point into the data: the year 1961 is one of

the wettest years on record, lying several standard deviations above the mean. This

causes a jump change in the correlation, but this change is mostly reversed when the

outlying point exits the window 30 years later. It is also unsurprising that these studies

report lower correlations when there are few active events in a period, as it is only when

the conditions in these climate phenomena shift away from normal conditions that they

have a control on the weather: in years where for example IOD or ENSO conditions are

near normal, there will still be variability in the short rains due to other factors, but

the signal coming from IOD/ENSO would be relatively smaller than usual, and so the

correlation between IOD/ENSO and rainfall would naturally be lower in these cases.

Despite these issues, longer term variability in teleconnections should not be ignored,

as they could be indicative of changes in lower frequency modes of variability, but care

should be taken in the methods used to determine such changes.

1.2.4. Interannual variability of rainfall: long rains season

The long rains, although generally considered less variable, and more consistent than

the short rains, still contain substantial year to year variability in total rainfall amounts.

This has wide impacts as the main crop-growing season, so being able to predict this

variability is of great importance. Whilst the short rains season has been found to
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be linked to global scale modes of variability such as ENSO and IOD, little evidence

for this has been found for the long rains (e.g. Ogallo 1988, Camberlin and Wairoto

1997, Pohl and Camberlin 2006b). This is partly linked to the time of year at which

the long rains occurs; during the transition period for ENSO, where the inter-annual

variance in the SSTs in this region of the Pacific is lowest (Torrence and Webster 1998).

Hastenrath et al. (1993) also demonstrated that in boreal spring surface pressure is low

across the Indian Ocean, ruling out the mechanism of the IOD and ENSO altering the

Walker circulation. Hastenrath et al. (2011) assigned the lack of a zonal circulation cell

over the Indian Ocean in boreal spring to winter cooling.

Several of the phenomena discussed in this section are also relevant for the short rains

season, however their influences are small compared to the previously discussed tele-

connections of ENSO and IOD.

1.2.4.a. Madden-Julian Oscillation

The Madden-Julian Oscillation (MJO) is an eastward propagating oscillation in the

tropical atmosphere, first observed and described by Madden and Julian (1971, 1972,

1994). Madden and Julian (1971) observed an opposing oscillation in zonal wind anoma-

lies in the lower and upper troposphere (around 850hPa and 150hPa respectively).

Madden and Julian (1972) further noted that a disturbance in the surface pressure fol-

lowed the zonal wind anomalies, and suggested that the MJO is linked to a concurrently

observed area of enhanced large-scale convection driven by low level convergence, fol-

lowed by an area of suppressed convection. This can be seen in the rainfall composites

in Figure 1.9, resembling a shift of the Walker circulation.

Wheeler and Hendon (2004) proposed a system for describing the activity and loca-

tion of the MJO. It uses a system of 8 phases, which determine the location, and an

amplitude for determining how active the event is. These are derived using empirical

orthogonal functions (EOFs). The two leading modes are referred to as Real-time Mul-

tivariate MJO series 1 and 2, or RMM1 and RMM2. Using the values of these in a polar

coordinate system, an amplitude and phase can be determined, where the amplitude

is the distance from 0 (
√

(RMM1)2 + (RMM2)2), and the phase related to the angle.

These are visualised in a Wheeler-Hendon diagram, as seen in Figure 1.10. The angles

are labelled as phases from 1 to 8, with phase 1 meaning that the enhanced convection

is over Africa, and the phases move eastwards around the equator, for example phases

2 and 3 mean the centre of enhanced convection is over the Indian Ocean. The MJO
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Figure 1.9.: Composite maps of rainfall anomaly compared to climatology, over 1998-
2018, by MJO phase. Rainfall data is from TRMM (Huffman et al. 2007), MJO data
is taken from Bureau of Meteorology (2020).
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Figure 1.10.: An example of the Wheeler-Hendon diagram (Wheeler and Hendon 2004).
The MJO amplitude is the square root of the distance from the centre. Amplitude less
than 1 is considered as a weak/ inactive MJO, marked by the centre circle with radius
of 1. The MJO phases and corresponding locations are labelled within the sections.

is considered active if the amplitude is greater than 1 (marked by the inner circle).

The MJO is the primary source of intraseasonal variability within the tropics (Mad-

den and Julian 1994). Pohl and Camberlin (2006a) studied the intraseasonal influence

of the MJO on East African rainfall during both rainfall seasons. They found that

intraseasonal wet events in East Africa occur alongside large-scale anomalies in zonal

circulation patterns around the equator. The wet events were found to preferentially

occur during certain phases of the MJO. A west/ east split in the behaviour was also

noted. Phases 1 to 3 of the RMM indices lead to wet spells over the western highlands

region of East Africa, with dry spells observed over the coastal region. Inversely, phases

5 to 7 corresponded to dry spells over the western highlands with wet spells over the

coast. This can be seen in Figure 1.9. Over the highlands the wet spells during these

phases were linked to deep convection, caused by low-level westerly anomalies, whilst

MJO induced wet spells over the coastal region were linked to suppressed convection

over East Africa and the western Indian Ocean. However, Pohl and Camberlin (2006a)

suggested that during these phases the suppressed convection induces increased mois-

ture advection from over the Indian Ocean. Berhane and Zaitchik (2014) also found

that the MJO affected wet and dry spells within both rainfall seasons, with results

generally consistent with the previous studies, however, they found different results

dependent on which month was being considered. They suggested a variety of different
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ways the MJO influences rainfall, including through modulating the Somali Jet early

and late in the rainfall seasons, as well as those suggested previously. Hogan et al.

(2015) investigated the MJO in the Met Office Unified Model (MetUM; Walters et al.

2011). They found in agreement with previous studies that in observations phases 2-4

lead to increased rainfall over the highlands with suppression over the coast, and the

inverse occurs during phases 6-8. They also found that the MetUM could replicate

these patterns with up to 5 days lead time.

Further to this, studies have been performed examining the inter-annual impact of

the MJO on the long rains season. Pohl and Camberlin (2006b) found that the MJO

amplitude alone, regardless of the phase of the MJO, can explain up to 44% of the

variance in seasonal totals of the long rains. They also found that higher MJO ampli-

tude leads to an early onset of the long rains, although, as demonstrated by Camberlin

et al. (2009), the onset date of the season and total rainfall are strongly correlated, and

could account for this. More recently Vellinga and Milton (2018) also demonstrated

the link between MJO amplitude and the long rains, and proposed an explanation for

this. Intuitively, one would expect that in a season with higher MJO amplitude, on

average, for the phases conducive to rain to be cancelled out by those that suppress

rain. However, Vellinga and Milton (2018) demonstrated that the anomalous ascent or

descent caused by active MJO of their respective phases, is asymmetric. Anomalous

ascending motion has a larger impact on the absolute total rainfall experienced than

anomalous descending motion. This is partially due to the fact that rainfall amounts

cannot sink below 0, so the relationship between rainfall amounts and MJO amplitude

is not linear.

1.2.4.b. Quasi-Biennial Oscillation

Another source of inter-annual variability is the Quasi-Biennial Oscillation (QBO).

This is a highly periodic change in stratospheric winds (approximately between 10 and

70hPa) from westerlies to easterlies, with a period of approximately 26-28 months, first

observed by Ebdon (1960) and Reed et al. (1961). The transition in wind direction

propagates downwards, meaning that the wind direction in the upper (10hPa) and

lower (70hPa) levels are regularly out of phase (Baldwin et al. 2001). The QBO has

a teleconnection to the North Atlantic Oscillation (NAO), which is of importance for

seasonal predictability within the extra-tropics (Scaife et al. 2014). A common measure

of the QBO, and often referred to as the QBO-index, is the zonally averaged zonal winds

over the equator at pressure levels around 50hPa.
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Few studies have considered how the QBO influences East African rainfall, however, a

study by Indeje and Semazzi (2000) demonstrated remarkably high correlations between

a the QBO-index at 30hPa and the long rains, including at up to 3 seasons ahead of

the rainfall season. A mechanism, however, is not clear, and the correlations were not

cross-validated. The long rains do appear to fluctuate with an approximately 2 year

period, however, given, the phasing of the QBO depends on the height considered,

selecting the correct height that happens to be in phase with the long rains may lead to

an inflated correlation. More recently Vellinga and Milton (2018) utilised a QBO-index

when constructing a multiple linear regression equation for producing forecasts of the

long rains, suggesting that it may modify the large-scale subsidence over East Africa,

however, they noted that the QBO alone provides only a small amount of the predictive

information. Recent studies have, however, demonstrated that the QBO may play a

role in modulating the MJO (Yoo and Son 2016, Son et al. 2017 , Klotzbach et al. 2019),

although this is currently understood to mainly occur during boreal winter (December

to February).

1.2.4.c. Congo airmass and zonal winds

To the west of East Africa lies the Congo basin, containing the second largest rainforest

in the world after the Amazon. In the lower troposphere above the rainforest sits the

so-called Congo airmass. This is an airmass with a very high moisture content, as

shown by considering relative humidity (RH) as in Figure 1.11, taken from Finney et al.

(2019). Its position adjacent to East Africa means that incursions of the airmass could

provide more moisture to enhance rainfall amounts. An early study by Nakamura (1968)

suggested that the western highlands region of East Africa in particular experiences

abundant rainfall when westerly winds were present. It was noted that when westerly

winds were observed the relative humidity within the lower troposphere was much

greater. However, Nakamura (1968) also noted that westerlies are observed most often

during the summer, and least often during the peak months of the two rainfall seasons

(November and April). Okoola (1999b) notes that stronger than average easterly winds

over East Africa coincide with dry spells, whilst Okoola (1999a) found that during the

long rains alternating westerly and easterly patterns were observed, with westerlies

leading to wet spells. However, they also noted that the frequency of westerly winds

were likely reduced due to the orography of the western side of East Africa. Pohl

and Camberlin (2006b,a) and Berhane and Zaitchik (2014) noted that phases of the

MJO coinciding with enhanced rainfall over East Africa also produce a westerly wind

anomaly to the west.
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Figure 1.11.: Maps of 925hPa relative humidity over Africa and the Indian Ocean,
for the seasons January-February, March-May, June-September and October-December
(colours). Grey shading shows regions where seasonal mean surface pressure is less than
925hPa. Taken from Finney et al. (2019) Figure 4.
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A comprehensive study of the Congo airmass and its influence on East African rainfall

was performed by Finney et al. (2019), motivated by the excessively wet long rains

of 2018 (Kilavi et al. 2018). It was first demonstrated that wet spells in the 2018

long rains coincided with westerly incursions from the Congo airmass. Finney et al.

(2019) then corroborated some of the results initially found by Nakamura (1968). By

considering westerly events to be a westerly column integrated moisture flux, it was

found that westerly days were linked to more abundant rainfall, although they were least

frequent during the two rainfall seasons. It was noted, however, that westerly days were

more frequent during the long rains than the short rains, highlighting their potential

importance for the long rains season. Further, Finney et al. (2019) demonstrated a

strong correlation between the number of westerly days in a long rains season and the

rainfall total for the season. It was proposed that on westerly days, moisture from

the Congo airmass was imported over East Africa, increasing the specific humidity

(SH) on these days, supplying additional moisture to enhance rainfall, demonstrated in

Figure 1.12, taken from Finney et al. (2019). Further, it was suggested that days with

weaker easterlies than usual also lay between easterly and westerly days in terms of its

response, suggesting that the overall strength of the wind profile matters, rather than

simply the overall direction.

Finally, it was suggested that the MJO may play a role in driving the westerly winds.

As noted before, the MJO in phases 2-4 leads to enhanced rainfall over East Africa (e.g.

Pohl and Camberlin 2006a), however, this is when the convective core of the MJO is

over the Indian Ocean rather than Africa, suggesting the rainfall enhancement is not a

direct effect of the MJO. It is likely that the observed westerlies are part of the Matsuno-

Gill response (Matsuno 1966, Gill 1980. Finney et al. (2019) also linked the MJO to

an increase in tropical cyclones, and noted that during the 2018 long rains season

several tropical cyclones occurred in the Indian Ocean to the east of Madagascar, and

were found to drive the westerly winds over East Africa that led to abundant rainfall.

Meanwhile in 2019, a tropical cyclone that tracked into the Mozambique channel, to

the west of Madagascar, caused a delay in the 2019 long rains, again due to its effect

on the large-scale flow over Africa.
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Figure 1.12.: Pressure-longitude cross-section composites of specific humidity (colours),
relative humidity (contours; black, grey, and white mark 85%, 80%, and 75% RH
respectively), and zonal wind (arrows), for a) easterly days, b) weak easterly days, c)
weak easterly minus easterly days d) westerly days, e) westerly minus easterly days.
Grey shading shows regions where seasonal mean surface pressure is less than 925hPa.
Taken from Finney et al. (2019) Figure 5.
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1.2.5. Recent and future trends in rainfall

1.2.5.a. Observed trends

A recent topic, as longer observational datasets are generated than were previously

available, is long term trends in seasonal rainfall totals. One of the most striking recent

trends is that of the long rains. Many authors (e.g. Funk et al. 2005, 2008, Lyon and

Dewitt 2012, Viste et al. 2013, Liebmann et al. 2014, Hoell and Funk 2014, Nicholson

2016b, Ongoma and Chen 2017) have identified a declining trend in the observed long

rains rainfall totals, from approximately the 1980s. Tierney et al. (2015), from studying

tree rings, suggest that the observed drying trend is unusual within the context of the

last 2,000 years, implying links to anthropogenic climate change. It has also recently

been identified by Wainwright et al. (2019) that it is possible that the long rains rainfall

totals may have begun to recover, from approximately 2011 onwards.

Several authors have sought explanations for the observed long rains drying trend,

with much focus being on the Pacific and Indian Oceans, the Indo-Pacific region, and

linking the two. Funk et al. (2008) suggested that a warming Indian Ocean is influencing

East Africa by setting up a Walker cell-like circulation anomaly. Meanwhile Williams

and Funk (2011) suggest that the rapid warming of the Indian Ocean has extended

the tropical warm pool, producing a westward extension of the ascending branch of

the Walker circulation, suppressing convection over East Africa. Lyon and Dewitt

(2012), Lyon et al. (2014), and Lyon (2014) identified the decline as an abrupt change

from approximately 1999 onwards, linked to the Pacific Decadal Oscillation (PDO;

Mantua et al. 1997). Yang et al. (2014) meanwhile suggests that the SST anomaly

pattern is La Niña like. Hoell and Funk (2014) identified Indo-Pacific SSTs as the

main driver, suggesting that warming over the Indo-Pacific region as well as decadal

variability are the causes of more frequent drought. Liebmann et al. (2014), by using

simulations, identified an increased zonal gradient in SST between Indonesia and the

central Pacific Ocean. Funk and Hoell (2015) furthered this by using EOF analysis to

identify a western Pacific “V” pattern, with the point of the “V” over the Maritime

continent, and the two legs stretching northeast and southeast into the Pacific Ocean.

Funk and Hoell (2015) suggested this was driven by radiative forcing and not natural

variability. Wainwright et al. (2019) meanwhile find that the long rains decline is down

to a reduction in the length of the season rather than a change in intensity of rainfall.

A secondary argument related to the long rains decline is the question of the relative

contribution of natural decadal variability versus anthropogenic climate change. Sev-
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eral authors argued for natural variability (e.g. Lyon and Dewitt 2012, Lyon et al.

2014, Lyon 2014, Yang et al. 2014, Bahaga et al. 2019), whilst others suggest human

factors (e.g. Funk et al. 2008, Williams and Funk 2011, Funk and Hoell 2015, Tier-

ney et al. 2015), or a combination of the two (Hoell and Funk 2014). Hoell et al.

(2017) tried to reconcile the two main theories: human induced climate change caus-

ing warming of Indo-Pacific region SSTs, and natural change due to ENSO-like Pacific

decadal variability, warming the western Pacific whilst cooling the central Pacific. By

comparing simulations both with and without human influences, they suggest that its

likely the interplay of global warming and decadal variability together could enhance

drying trends relative to natural variability alone. However, they note that these are

speculative results, and so the ultimate cause of the decline is uncertain.

Meanwhile, less work has considered trends in the short rains season, however, Lieb-

mann et al. (2014), Rowell et al. (2015), and Tierney et al. (2015) also identified an

increasing trend in rainfall in this season. This was linked to western Indian Ocean

warming (Liebmann et al. 2014), and a weakening of the Walker circulation (Tierney

et al. 2015).

1.2.5.b. Future climate projections

Shongwe et al. (2011), Otieno and Anyah (2013), Kent et al. (2015), and Ongoma

et al. (2018) all looked at East African rainfall in the Coupled Model Intercomparison

Project version 5 (CMIP5; Taylor et al. 2012). Shongwe et al. (2011) found a positive

shift across both rainfall seasons, indicating increase in mean precipitation and high

intensity rainfall, and less severe droughts. Ongoma et al. (2018) showed that both

rainfall seasons are projected to increase, but the short rains moreso than the long

rains, whilst Otieno and Anyah (2013) and Kent et al. (2015) note a high uncertainty

in the projections, particularly over the long rains. Anyah and Qiu (2012) reported

similar results in the Coupled Model Intercomparison Project version 3 (CMIP3; Meehl

et al. 2007). Yang et al. (2014) demonstrated that the CMIP5 historical experiments

fail to capture the observed downward trend in the long rains rainfall, meanwhile, the

CMIP5 Atmospheric Model Intercomparison Project (AMIP) experiment models using

SSTs forced by observations do capture the observed decline in rainfall over the 1979

to near present period.

Several studies have also used regional climate models (RCMs) to investigate future

climate projections. Vizy and Cook (2012) suggest that the number of wet days over
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East Africa is projected to decrease, primarily during the long rains, whilst Cook and

Vizy (2013) found that the long rains are reduced, related to an increase in rainfall over

the Congo basin, whilst the length of the short rains increases. Endris et al. (2018)

found that the long rains are projected to have a stronger ENSO teleconnection in the

future, although also see a decrease in rainfall during this season. Overall, there exists

a large uncertainty in the future direction of long rains rainfall totals.

1.2.5.c. The East African climate paradox

The fact that the long rains is observed to be drying, whilst coupled model projections

suggest that the long rains will experience more rainfall in the future has attracted

much attention. This is commonly termed the East African climate paradox (Rowell

et al. 2015). It leads to uncertainty over the future of East Africa, and questions

the reliability of climate models. Such contradictory information makes it much more

difficult for decision makers to take actions, as it is unclear whether preparations should

be made with the expectation that the long rains season will keep getting drier, with

the implication of more frequent drought and food insecurity, or whether to trust the

projections and prepare for a wetter future, which may lead to more efficient crop

growth, but also comes with risks such as increased flooding.

Rowell et al. (2015) proposed several hypotheses to reconcile this issue. The first is that

the observed trend is due to poor quality observations, however they discount this. A

second is simply that the projection cannot be trusted. Other proposed hypotheses

include: the past or future trends are linked to natural variability, a balance between

competing anthropogenic forces is changing (e.g. aerosol versus carbon emissions), or

the balance between mechanisms that determine the response to anthropogenic forcing

is changing. Several other authors also highlight the fact that coupled climate models

fail to correctly capture the annual cycle of rainfall over East Africa; having a wetter

short rains season than long rains (e.g. Yang et al. 2014, Tierney et al. 2015, Yang

et al. 2015b), and suggest therefore that caution should be used when considering these

projections.

1.3. Seasonal forecasting

This section provides a brief overview of the history of seasonal forecasting. Extensive

in-depth literature exists on this topic through the following book: Troccoli et al. (2008);
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and several review papers (Palmer and Anderson 1994, Troccoli 2010, and Doblas-Reyes

et al. 2013).

1.3.1. Early methods of seasonal forecasting

The first attempts at seasonal forecasting can be traced back to the Indian Meteo-

rological Department (IMD). In the 1870s, following drought related famines, studies

were undertaken to try to predict the Indian Monsoon, through surface pressure data

from countries around the Indian Ocean (Troccoli 2010). Through these studies it was

identified that droughts in India often aligned with droughts in Australia, the first

observation of a teleconnection. Blanford (1884), in a study linking snow over the Hi-

malayas and drought in India, identified that during a famine in India that took place

over 1876-77, an extensive region of abnormally high pressure was present. It has since

been found that this was connected to a particularly strong El Niño event. Further work

by Walker (1925, 1928), and Walker and Bliss (1932) identified links between seasonal

variations in centres of action of pressure oscillations, and found in particular a link

between the Southern Oscillation and the Indian Monsoon rainfall amounts. Walker

and Bliss (1932) developed forecasts for the Indian monsoon using regression models.

Following the dawn of aviation, from approximately the 1930s, a major shift of focus to

advancing forecasting on short timescales was made, leading to a stagnation in progress

on developing seasonal forecasts. Attention turned back towards seasonal forecasting

upon the identification of the coupling between El Niño and the Southern Oscillation

(Bjerknes 1966, 1969). In particular Charney and Shukla (1981) realised that tropical

predictability is related to surface boundary conditions such as SSTs and demonstrated

the potential for predictability on timescales of months, with a focus on the Indian

Monsoon.

1.3.2. Statistical predictions

Shortly after the study by Charney and Shukla (1981), a very strong El Niño took

place, during 1982-83, the effects of which, alongside lack of early warning (Kirtman

and Pirani 2008), brought the phenomenon into widespread media attention for the first

time (Caviedes 1984). It was also noted that many of the widespread global impacts

could be matched to similar impacts of previous El Niño events. The combination of new

understanding and newfound interest prompted the true dawn of seasonal forecasting
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in the form of statistical models.

Several early models were based primarily on measures of ENSO, using techniques

such as linear regression. For example Gray (1984) used ENSO and the QBO to pre-

dict Caribbean hurricane activity, and Farmer (1988) for the East African short rains

used the SOI. Folland et al. (1991) also used Atlantic and Indian Ocean anomalies to

predict Sahel rainfall, whilst Nicholls (1989) used both the Pacific and Indian Ocean

for predictions of Australian winter rainfall. Statistical forecasts are still regularly used

operationally today, alongside dynamical model forecasts, although in many cases have

since increased in complexity (Doblas-Reyes et al. 2013).

The general principle behind statistical prediction is to identify a set of predictors:

climate variables that are monitored and observed (for example SSTs or indices of

climate modes such as ENSO), that are known to have a relation to the predictand,

i.e. the thing to be predicted, often seasonal rainfall total. Past observations of the

predictors and predictand are then used to develop an equation or model linking the

two. The most simple, common method used for this is a linear regression model.

To make a forecast for an upcoming season the observed values of the predictors are

then placed into the model to give a prediction of the predictand. The most simple

methods may use only predictors for which the physical mechanism linking them to the

predictand are understood, such as using a metric for the IOD for predicting the short

rains in East Africa. However, more complex statistical tools can systematically search

for linkages between predictors and the predictand, such as checking global SST data

for connections to be used in the model.

The risk with using predictors without a physical basis is that the tools may find

correlations that occur by chance throughout the past observational data, and may not

actually improve predictions, but improve the closeness of fit of the model over the

past. This can lead to inflated estimates of the skill of the statistical model, known as

model overfitting. To avoid, or minimise this, past observational data can be split into

training and test data. Some portion of the past observations are used to generate the

model, these are the training data. The rest of the past observations are then fed into

the model, to test how well it predicts past observations of the predictand over a set

of observations that have not been used to generate it. These are the test data. This

method gives a much better estimate of how well the model performs, as the model is

not tested on information already used to define the model.

An advantage of using statistical forecasts is that in places where processes driving

predictability are well understood a relatively useful forecast can be made with little
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computational expense in comparison to using a dynamical model. New knowledge and

understanding can also be quickly applied to statistical models.

1.3.3. Dynamical seasonal forecast models

In the late 1980s and 1990s research began on filling the gap between the numeri-

cal weather prediction (NWP) models used operationally for forecasting weather on

timescales of a few days, and the long term climate models (Palmer and Anderson

1994). Initial focus of these dynamical models was to predict ENSO events (Doblas-

Reyes et al. 2013), the first of these to successfully forecast the onset of an ENSO

event was Cane et al. (1986). Progress was then made towards forecasting the global

atmosphere using the Pacific Ocean only (Ji, M. and Kumar, A. and Leetmaa, A. 1994,

Kirtman et al. 1997) before a first global coupled model forecasting precipitation was

developed in the late 1990s (Stockdale et al. 1998). Since this time, many of the Global

Producing Centres (GPCs) around the world have formulated and produce operational

dynamical seasonal forecast models.

The majority of modern dynamical seasonal forecast systems are run as coupled ocean-

atmosphere models. A more detailed description of the structure of a dynamical sea-

sonal forecast model will be given in Section 1.5.1, describing the dynamical model used

for the work within the thesis.

Dynamical seasonal forecast models attempt to forecast the conditions of the climate

system months ahead by using initial conditions from observations around the Earth to

computationally solve equations describing the evolution of the Earth’s climate system.

They perform this by splitting the ocean and atmosphere up into grids, and solving

these equations at each grid point. Consequently, dynamical models are computation-

ally very expensive to run. There are several causes of errors common within these

models. Three major ones are: 1) uncertainty in the observations used to initialise

the models. Due to the nonlinear form of the equations this can lead to large errors,

and drastically different results from small changes in the observations (Troccoli et al.

2008). 2) The finite resolution of models. Due to limits on computational power, each

grid cell can be of the scale of 100km, and there are many processes that occur on scales

smaller than this. 3) The tendency of models to drift away from reality. Models also

display biases, some of which are common amongst models, such as the double ITCZ

problem (e.g. Doblas-Reyes et al. 2013, Li and Xie 2014, Richter et al. 2016).

These errors could render dynamical forecasts as unusable, however, methods have
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been developed to tackle or reduce the impact on forecasting ability caused by these

problems. 1) An ensemble of models is run for each forecast, with a range of starting

conditions to capture some of the uncertainty in the observations and give a range of

probable outcomes. 2) Some of the key subgrid processes are parameterised, such as

convection (Troccoli et al. 2008). Additionally, with increased computational power,

models can be run with increasingly high resolution. 3) To tackle model biases, a set of

hindcasts is created for the model. These are forecasts using the same model, but run

over historical periods. This allows for a comparison of the model behaviour against

observations, and means that a model climatology is built. Forecasts can then be based

upon the difference from the model climatology rather than the observed climatology

e.g. if a model rainfall forecast has a wet bias in a certain location then by comparing

to observations a wetter than average season will be forecast too frequently, and often

incorrectly. However, if the forecast is compared against the model climatology for this

location, the bias can be removed, and it can be determined whether the forecast is

wetter or drier than usual. There are, however, other biases in addition to shifts from

mean (e.g. distributions with incorrect standard deviation or shape), which can also

be corrected for after the model is run (Troccoli et al. 2008).

Despite these errors, and the fact that statistical models can offer reasonably good

skill for predicting a field of interest with much less computational power, dynamical

models offer a wealth of additional information beyond simply the value of interest.

For example, a full spatial and temporal picture of global atmospheric conditions over

the period of interest, estimates of uncertainty, and the ability to study how certain

prevailing conditions may be causing changes in the field of interest (Troccoli 2010).

1.4. Seasonal prediction methods for East Africa

1.4.1. Statistical models

1.4.1.a. Short rains season

The earliest attempts at forecasting seasonal rainfall totals over East Africa involved

using simplistic statistical models. Farmer (1988), furthering the work from Behrend

(1987), and Ogallo (1988) who observed lagged correlations between the SOI and East

African rainfall, used the SOI averaged over the meteorological seasons, defined as De-

cember to February (DJF), March to May (MAM), June to August (JJA) and Septem-
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ber to November (SON), to forecast the short rains rainfall anomalies over the Kenyan

coast region over the period 1901-1984. The method used was a simple linear regres-

sion with the SOI with the lag of interest as the predictor and rainfall totals as the

predictand. It was found that whilst simultaneous correlation between rainfall and

SOI was the highest, there is a strong persistence in the SOI from the summer to the

autumn (JJA against SON) with a correlation between the two of 0.74, allowing for a

strong correlation between SOI at one season lag and short rains rainfall (0.51). By

splitting the period into two sub-periods (1901-42 and 1943-84) and generating a linear

regression based on the JJA SOI data from the first sub-period to predict East African

rainfall, a realistic expectation of the skill of a seasonal forecast using this method can

be estimated. Splitting the observations into a training set and a test set in this way

avoids the potential problem of overfitting a model. This method yielded correlations

up to 0.6 with the observations, implying the potential for being able to operationally

forecast rainfall totals during the short rains using only the SOI as a predictor.

A more complex statistical model for forecasting of the East African short rains was

developed by Mutai et al. (1998). They demonstrated that July to September SSTs

contain relationships to short rains seasonal rainfall totals. They used EOFs to find

SST patterns in the Pacific (related to ENSO), the Indian Ocean (detecting the IOD

before its formal definition), and also in the Atlantic Ocean. Two types of statistical

model were tested, multiple linear regression (MLR) and linear discriminant analysis.

For the MLR, the SST data was split into two periods 1945-1966 and 1967-1988, with

one used as a training period and the other a testing period, then repeating with

the periods switched, to avoid model overfitting. With the 1967-1988 test period a

correlation of 0.78 with the entire region was found, whilst with the periods reversed a

lower correlation of 0.56 was obtained. It was also found that forecast correlations at

individual locations were substantially lower than the correlation of the entire region.

Philippon et al. (2002) also developed a statistical model for the short rains. They

looked to develop the work of Mutai et al. (1998), and included atmospheric variables

as well as SSTs. Focusing on a region covering Kenya and Uganda, they produced

a similar MLR model, achieving a correlation of 0.8, using a cross-validation method

over the period 1968-1997. Their model used indices representing Indian monsoon

dynamics that are linked to the SSTs in the western Indian Ocean, 200hPa meridional

winds over Southern Africa which are linked to SST anomalies in the Atlantic Ocean,

and a principal component representing the Walker cell over the western Indian Ocean.

Several more recent studies have further investigated the idea of utilising atmospheric
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variables as well as SSTs, or used more complex approaches. These studies have mostly

focused on trying to predict the long rains season, and so are discussed in the next

section, although some have considered both the short and long rains (Nicholson 2014,

Chen and Georgakakos 2015). Nicholson (2017) notes that forecasts using atmospheric

variables can outperform those using purely SST based predictors, in both seasons.

1.4.1.b. Long rains season

Forecasting over the long rains season has been less well pursued, partially due to the

lack of historical links to major modes of SST variability allowing for predictions to be

made. However, motivated by the increase in recent droughts over East Africa, Funk

et al. (2014) considered the western Pacific Ocean gradient in the long rains found to be

partially responsible for the decline in the East African long rains (Williams and Funk

2011). They constructed a regression using SSTs from January over this western Pacific

region, finding that it explained approximately 50% of the variance of the first principle

component of rainfall over East Africa. Funk et al. (2014), however, notes that this

is only a recently emerging trend and so caution must be taken when such a forecast

is used. Chen and Georgakakos (2015) developed a method to detect dipoles in SST

anomalies in the global SST field to rainfall in East African regions divided into 5◦×5◦

boxes, over 1980-2011. Significant dipoles are used to develop linear regression models,

with the number of dipoles used determined by minimising the mean absolute error

of the forecast, although is generally around 20. Cross-validation is used, and highly

overlapping dipoles are removed from selection, to try and reduce overestimation of

skill. High skill is found in predicting most regions across East Africa for both seasons.

In particular high skill is found for the long rains, with correlations up to 0.72 with

the observations, in some cases with up to 11 months lead time. Dipoles identified

in the short rains largely coincide with the IOD regions, whilst for the long rains

poles are found in the southwest Indian Ocean, southern Atlantic, and the Arabian

Sea. A concern for this study is that despite the precautions, these forecasts may be

overestimating the level of real skill to be expected. Mechanisms linking the identified

poles in the long rains are not clear, although SSTs over the Arabian Sea have been

highlighted as a possible control on long rains rainfall in other studies (Vellinga and

Milton 2018, Wainwright et al. 2019).

As discussed in the previous section, the idea that atmospheric variables may be used to

produce statistical forecasts renewed some efforts to predict the long rains. Nicholson

(2014) developed multiple linear regression models to forecast both the short and long
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rains using both atmospheric fields and SSTs as predictors. For the long rains, predic-

tors from January and February were used, with correlations up to 0.76 for February,

but dropping to 0.63 when cross-validation was used. The predictors included zonal

and meridional wind boxes from north Africa, off the south coast of South Africa, the

northern tip of Madagascar, as well as SSTs in the Indian and Pacific Oceans. For the

short rains, sea level pressure (SLP) fields were also used, finding correlations of up

to 0.8 with observations. Again, linkages between these selected fields and rainfall are

not always clear and so may still demonstrate inflated skill levels. Nicholson (2015)

furthered this study by splitting the long rains into individual months (March, April,

May) and found that this generally increased prediction scores.

Vellinga and Milton (2018) developed a multiple linear regression model for the long

rains over March and April using three predictors: The MJO amplitude over February

and March, the 30hPa QBO index from the preceding September to November, and

SSTs from the northwest Indian Ocean. The regression was tested over a number of

observation and reanalysis datasets, with fairly consistent results, with correlations up

to 0.77. Vellinga and Milton (2018) suggests that all three predictors affect the long

rains through changes to the large-scale subsidence over East Africa.

1.4.2. Dynamical model capability

1.4.2.a. Short rains season

A small number of authors have previously assessed the capabilities of certain dynamical

models, that at the time of their assessment were cutting-edge, at predicting seasonal

rainfall over East Africa. The ENSEMBLES project multimodel ensemble seasonal

forecasts demonstrated good skill over East Africa during the short rains due to covari-

ance with the Pacific and Indian Oceans (Batté and Déqué 2011). Meanwhile Dutra

et al. (2013) showed that the European Centre for Medium-range Weather Forecasts

(ECMWF) System 3 and 4 seasonal forecasts also achieved high anomaly correlation

coefficients with 3 months lead time. Bahaga et al. (2016) investigated the ability of

a multimodel ensemble constructed from North American and Asian seasonal forecast

models. He found that the multimodel ensemble performed reasonably well in fore-

casting the short rains, but was outperformed by several individual models. However

selecting only skilful models led to much better results for the multimodel ensemble.

It was also demonstrated that these models skilfully predicted the IOD, and the mul-

timodel ensemble captured the teleconnection between the IOD and the short rains
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well.

1.4.2.b. Long rains season

In contrast to the short rains season, where dynamical models have demonstrated useful

prediction skill even at coarse resolutions, dynamical models have had a difficult time in

predicting variability in seasonal rainfall within the long rains. As discussed in previous

sections, this is largely down to a lack of any known connection to large-scale sources

of seasonal predictability such as ENSO (Ogallo 1988, Camberlin and Wairoto 1997).

The studies of previous generations of dynamical models such as the ENSEMBLES

project (Batté and Déqué 2011), and ECMWF System 3 and 4 (Dutra et al. 2013,

Mwangi et al. 2014) have little skill in predicting the long rains, although Dutra et al.

(2013) demonstrated that System 4 displayed some limited skill for forecasts initialised

in March.

Despite not being able to directly predict precipitation, there is still some promise for

being able to use dynamical models for forecasting over the long rains. For example,

the models still possess skill in predicting tropical SSTs, which, given the emerging

relationship with Niño3.4 and relationship with the Pacific gradient displayed by Funk

et al. (2014), could then be used to produce hybrid models, using forecast SSTs to

statistically predict rainfall as demonstrated by Shukla et al. (2014).

1.4.3. Greater Horn of Africa Climate Outlook Forum (GHACOF)

forecasts

An initiative led by the World Meteorological Organization (WMO) in the late 1990s

produced a method of generating and disseminating seasonal forecasts, known as Re-

gional Climate Outlook Forums (RCOFs), in several regions around the world, which

have since expanded to cover most of the globe (Ogallo et al. 2008, World Meteorolog-

ical Organization 2020). One of the first of its kind was the Greater Horn of Africa

Climate Outlook Forum (GHACOF), which began producing forecasts in 1998. GHA-

COF is organised by the Intergovernmental Authority on Development (IGAD) Climate

Prediction and Applications Centre (ICPAC).

GHACOF events takes place 3 times per year, preceding the long rains, short rains, and

summer rainfall season. The format has changed several times throughout the years,

however, the event generally takes place in two stages. Firstly a pre-COF workshop,
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where forecasters representing each country attend to generate the forecast, and to

receive training. The second stage is the forum itself. The seasonal forecast is presented

to users from around the region. Representatives from a wide variety of industries

attend, including health, agriculture, water resource management and disaster risk

management. The forum also includes breakout sessions encouraging users to consider

plans based on the forecast, and allows users to interact with regional forecasters and

climate experts from around the world.

The forecast is described as a consensus forecast. To construct the forecast, a wide va-

riety of sources are used, including statistical models, dynamical forecasts from various

WMO Global Producing Centres (GPCs), seasonal Weather Research and Forecast-

ing (WRF; Skamarock et al. 2008) model runs performed by ICPAC themselves, and

analogue years of similar conditions. Forecasters then use these various sources of infor-

mation to generate a single forecast based on their own knowledge, giving the consensus

aspect. The forecast is then presented as a map split into zones, for each zone probabil-

ities are issued for the likelihood of total rainfall being within tercile categories (above

normal, near normal, below normal) compared to the climatological rainfall total. An

example of a GHACOF forecast is shown in Figure 2.1.

1.5. Methods

1.5.1. Met Office Global Seasonal Forecast System Version 5

(GloSea5)

The primary dynamical seasonal forecast model used in this work is the UK Met Office

Global Seasonal Forecast System Version 5 (GloSea5, or GloSea, MacLachlan et al.

2015). GloSea5 is a global coupled ocean-atmosphere model. The core of GloSea5 is the

Hadley Centre Global Environmental Model version 3 (HadGEM3; Hewitt et al. 2011).

It consists of an atmospheric component (MetUM Global Atmosphere 3.0), land surface

component (Joint UK Land Environment Simulator (JULES) Global Land 3.0; Best

et al. 2011), ocean component (Nucleus for European Modelling of the Ocean (NEMO)

Global Ocean 3.0; Madec 2016), and sea-ice component (The Los Alamos Sea-Ice Model

(CICE) Global Sea-Ice 3.0; Hunke and Lipscomb 2010). The atmospheric horizontal

resolution is 0.833◦ × 0.556◦ with 85 vertical levels. The oceanic horizontal resolution

is 0.25◦ × 0.25◦ with 75 vertical levels.

The forecast system comprises of two parts, the forecast, and a set of hindcasts. The
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model is run for 210 days from initialisation. The forecast is run as an ensemble, with 2

members initialised each day, and members from the past 3 weeks used for the forecast,

generating an ensemble of 42 members.

The hindcast is run for the purpose of bias correcting and assessing the skill of the

model, and has been used for Chapters 2 and 4 of this thesis. For the results in

Chapter 2, 3 members were initialised on 4 fixed days per month (1st, 9th, 17th,

25th) and covered 23 years (1993-2015). For the results in Chapter 4, following an

upgrade to GloSea5, 7 hindcast members were initialised on each of the 4 fixed days,

giving an ensemble of 28 members in a month, and covered 24 years (1993-2016).

Ensemble members initialised on the same date differ by using a stochastic physics

scheme to perturb the initial conditions (Bowler et al. 2009), to capture some of the

uncertainty within the observations. These later hindcasts are made available through

the Copernicus Climate Change Service (C3S) Climate Data Store (C3S 2020).

1.5.2. Forecast verification techniques

The main purpose of a forecast is to provide information to a user to help them make

a decision. However, not all forecasts are useful, and a forecast should not be used

without some understanding of how well it performs. For example, if a forecast is no

better than guesswork, then there is no advantage to using the information from it in

order to make a decision.

There are a wide array of methods for verifying seasonal forecasts. Presented in this

section are those used within Chapters 2 to 4 of this thesis. These are by no means

an exhaustive list of verification measures, however, they provide a good overview of

how well the seasonal forecast performs, and provide complementary information to

each other, giving information of different aspects of the seasonal forecast performance,

without too much redundancy, or generating lists of repetitive numbers that provide

little extra information. The methods chosen here were also chosen due to their use in

the WMO Standard Verification System for Long Range Forecasts (SVSLRF; Mason

2013). Wilks (2011) provides information on all the verification methods discussed

in this section and many more besides. In particular, some methods for evaluating

probabilistic forecasts are presented in this section.

Evaluating probabilistic forecasts is more complex than evaluating the performance of

a yes or no forecast, also known as a deterministic forecast. For example, consider a

forecast predicting whether it will rain today or not. If the forecast says yes, and it
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Observed
Above Below

Forecast Above a b a+ b
Below c d c+ d

a+ c b+ d n = a+ b+ c+ d

Table 1.1.: Example 2×2 contingency table for above or below mean rainfall, a, b, c, d
represent the number of times each observation-forecast category pairing occurs, n is
the total number of observations and forecasts.

subsequently rains, we can say the forecast has done well. However, if a probabilistic

forecast predicts a 40% chance of rain on a certain day, and it subsequently rains on that

day, has the forecast done well or poorly? To get around this, probabilistic forecasts

are not considered individually, but are considered over a large sample of forecasts. In

this way, it is possible to determine to what extent a probabilistic forecast provides

useful information, which can help in understanding what decision to make based upon

its predictions.

Whilst it may intuitively seem that a deterministic forecast is better and easier to

use than a probabilistic forecast, a deterministic answer fails to capture the inherent

uncertainty in forecasting a complex system such as the atmosphere. No forecast is

perfect, as the atmosphere is simply too complex and chaotic to perfectly predict its

evolution. Therefore, there are often times when even the most skilful deterministic

forecast will be wrong, whilst a probabilistic forecast gives an idea of the confidence

that an event might happen, and represents the fact that even in cases where there is

a high confidence of the event occurring, there is still the probability that it does not.

1.5.2.a. Contingency tables

A contingency table shows the joint distribution of forecasts and observations by count-

ing the number of events in each category (Wilks 2011). An example of a 2 × 2 con-

tingency table is seen in Table 1.1, for above or below mean rainfall. The 4 cells in

the table have different meanings. Taking above normal rainfall as the “event”: a is

a “hit”, a correctly forecast event; b is a “false alarm”, a forecast event that did not

occur; c is a “miss”, an event that occurred but was not forecast; d is a “correct neg-

ative”, a non-event that was correctly forecast not to occur. Each forecast in the set

to be evaluated is placed into one of the cells in the table based on the prediction and

subsequent observation.
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There are a large number of statistics that can be calculated from these tables, giving

useful information about the forecasts. Those to be used in this work will be introduced.

The proportion correct (PC; Finley 1884) is given by:

PC =
a+ d

n
(1.1)

which is simply the proportion of forecasts that were in the same category as the ob-

servations. A perfect score is 1, suggesting all forecasts were in the correct category.

However this score can be misleading if an event or non-event is a very likely out-

come. For example in the forecasting of tornadoes by Finley (1884), never forecasting

a tornado to occur results in a very high PC as it is a rare occurrence.

The hit rate is given by:

H =
a

a+ c
(1.2)

which is the fraction of above events that occurred that were correctly forecast. This

can also be calculated for below events. A perfect score is 1, implying that all above

events were correctly forecast.

The false alarm rate is given by:

F =
b

b+ d
(1.3)

which is the fraction of non-events that were incorrectly forecast as events. A per-

fect score would be 0, suggesting that an above event forecast was never given for an

observed below event.

A common skill score used for contingency tables is the Heidke skill score (HSS; Heidke

1926). This is given by:

HSS =
2(ad− bc)

(a+ c)(c+ d) + (a+ b)(b+ d)
. (1.4)

This score measures the ratio between the fraction of correct forecasts minus the fraction

of correct forecasts obtained by chance, and, the fraction of correct forecasts obtained

by a perfect forecast minus the fraction of correct forecasts obtained by chance. A

perfect score is 1, whilst a score of 0 suggests that the forecast is no better than a

biased random prediction.

For multi-category forecasts, contingency tables can be extended to any size, for exam-

ple Table 1.2 shows a 3× 3 contingency table for a 3 category rainfall forecast. Many
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Observed
Above Near Below

Forecast Above a b c a+ b+ c
Near d e f d+ e+ f
Below g h i g + h+ i

a+ d+ g b+ e+ h c+ f + i n

Table 1.2.: Example 3×3 contingency table for 3 categories of rainfall, a to i represent
the number of times each observation-forecast category pairing occurs, n is the total
number of observations and forecasts.

of the statistics for 2 × 2 tables can be adapted for larger tables. For example the

proportion correct is given by:

PC =
a+ e+ i

n
. (1.5)

The hit rate and false alarm rate can be found for each category separately by forming

a 2 × 2 contingency table for that category, collapsing the 2 other categories into a

single non-event category.

For a k × k contingency table the Heidke skill score can be generalised to:

HSS =

k∑
i=1

pii −
k∑

i=1

 k∑
j=1

pij

 k∑
j=1

pji


1−

k∑
i=1

 k∑
j=1

pij

 k∑
j=1

pji

 , (1.6)

where pij is the probability of the i’th row and j’th column of the contingency table.

This can be rewritten as:

HSS =
PC − E
1− E

, (1.7)

where E is the expected proportion correct for a random forecast. E is calculated by

taking the sum of the probability of a forecast of event i multiplied by the probability

of observing event i, for each i.

1.5.2.b. Relative operating characteristic (ROC) curves

Relative operating characteristic (ROC) diagrams have been used in meteorology since

their first use by Mason (1982), however, the origins of the diagram come from signal
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detection theory, and is commonly used in medicine (Green and Swets 1988). They are

often used to determine a decision threshold for action, and show the hit rate against

false alarm rate for a number of decision thresholds.

To construct a ROC curve, first a set of decision thresholds must be decided. These

are a set of probability values at which, when a forecast predicts a greater likelihood of

the event occurring than the threshold value, the forecast is treated as predicting the

event. For example if a threshold for acting upon an above normal rainfall is 40%, and

the forecast predicts a 50% chance of above normal rainfall, then this is treated as the

forecast predicting the event to occur. For evaluating ensemble forecasts, where the

probability of an event is determined by the number of ensemble members forecasting

the event, these thresholds will be decided based upon ensemble size. If there are many

more thresholds than ensemble members then multiple thresholds will have the same

hit rate and false alarm rates. Meanwhile if too few are used then the resolution of the

ROC curve will be low, and estimates of the ROC score will be inaccurate.

By considering each threshold in turn, the probabilistic forecasts can be split into

forecasting an event or not, and therefore a 2×2 contingency table for the set of forecasts

can be made for each decision threshold. For each decision threshold, the hit rate and

false alarm rate can be calculated from the contingency table. The set of hit rates and

false alarm rates are then plotted against each other, with hit rate on the y-axis and

false alarm rate on the x-axis, as shown in Figure 1.13a. The curve is then made by

joining these points. When the decision threshold is low (e.g. 10%) then a large number

events are forecasts are classified as forecasting the event. This leads to a high hit rate

but correspondingly a high false alarm rate. Similarly a high decision threshold (e.g.

90%) means that only the most confident forecasts will be classified as forecasting the

event, leading to a low hit rate, but also a low false alarm rate. By definition thresholds

of 0% mean the event is always forecast, leading to a hit rate and false alarm rate of 1,

whilst a threshold of greater than 100% means the event is never forecast, leading to a

hit rate and false alarm rate of 0, forcing the ROC curve to be connected to the lower

left and upper right corners of the diagram.

From the ROC curve, the ROC score (ROCS) can be calculated. This is simply the

area under the curve (AUC). This ranges from 0 to 1. A diagonal line from (0,0) to

(1,1) is drawn on the ROC diagram. This marks the line of no skill, when the hit rate

and false alarm rate are equal. From this a ROC score of 0.5 then defines a forecast

with no skill compared to a random forecast. A ROC score of greater than 0.5 means

the forecast has positive skill, and less than 0.5 means the forecast has negative skill.
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Figure 1.13.: a) Example of a ROC diagram. Example ROC curves are plotted with
blue lines showing positive skill, and red lines showing negative skill, with darker lines
increasingly high levels of positive and negative skill. b) Example of a reliability di-
agram. The shaded region indicates forecasts that would positively contribute to the
Brier skill score of the forecast. Example lines are plotted showing characteristics of
forecasts with over-confidence (blue), under-confidence (orange), over-forecasting (pur-
ple), under-forecasting (red).

A ROC score of 1 is a perfect forecast, and a good forecast should stretch as close to

the top left corner of the diagram as possible. The ROC score can be converted to

a traditional skill score metric (ranging from -1 to 1), known as the ROC skill score

(ROCSS) by the simple equation ROCSS= 2ROCS−1.

For multiple category events (for example forecasts split into 3 equally likely categories,

or terciles, of above normal, near normal, below normal) an individual ROC curve is

made for each category: the probability of forecasting an event is the same as a 2

category (yes or no) forecast, whilst the probability of not forecasting an event is the

sum of the probabilities of forecasting any of the other categories.

1.5.2.c. Reliability diagrams

Reliability diagrams, introduced by Hartmann et al. (2002), are graphs displaying the

observed frequency of an event as a function of the forecast probability of the event. It

is a desirable attribute of a probabilistic forecast that if the predicted likelihood of an

event is issued, this matches up to the same observed likelihood. This is regularly not

the case meaning that the forecast probability of an event may need to be calibrated
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to obtain the true probability of the event occurring. To understand these biases in

probability, a reliability diagram is used.

To formulate this, a number of probability bins are defined. Each bin contains all

forecasts where the probability of the event occurring lies within the bin. For example

a forecast predicting a 35% chance of an event would be placed in the bin containing

forecasts between 30 and 40%. Contingency tables are made for each bin, by comparing

that set of forecasts against their relevant observations, and the hit rates of each bin

are then calculated. As the forecasts are separated by their predicted probability for

an event, the hit rate in this case tells us the observed frequency of an event, given a

forecast of a certain probability. The hit rate is then plotted on the y-axis against the

centre of the probability bins on the x-axis.

A forecast with perfect reliability would have a forecast probability equal to the ob-

served frequency. To represent this, a horizontal line is drawn from (0,0) to (1,1) on

the diagram. Horizontal and vertical lines representing the climatological frequency of

the event are also added. In the case of tercile category forecasts this will be 1/3, or

for forecasts of above or below a median, this would be 1/2. The vertical line repre-

sents a climatology forecast: for example if a forecast of climatology was used in the

case of terciles, the forecast probability would always be 1/3 regardless of the observed

frequency. Meanwhile the horizontal line represents a forecast with no resolution. This

means that regardless of the forecast that was issued, the observed outcome was equally

likely and the forecast provides no additional information. Finally, a line bisecting the

perfect resolution and no resolution lines is drawn. This bisecting line marks the line

of no skill. The area between the climatology and no skill lines is shaded. Points that

lie within the shaded area contribute positively to the Brier skill score (introduced in

Section 1.5.2.d) of the forecast, whilst lines outside contribute negatively. These lines

are labelled on an example reliability diagram in Figure 1.13b.

Several common terms are used when describing forecasts based on reliability dia-

grams (Mason 2013). These are over-confidence, under-confidence, over-forecasting,

and under-forecasting. Examples of each are provided in coloured lines on Figure

1.13b.

Over-confidence means that the forecast overestimates the likelihood of events more

common than climatological frequency occurring, and underestimates the likelihood of

events less common than climatological frequency occurring. On the reliability diagram

this appears as a line with a gradient less than 1. This can be seen as the blue line in

Figure 1.13b. Conversely, under-confidence means that the forecast underestimates the
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likelihood of events more common than climatological frequency occurring, and overes-

timates the likelihood of events less common than climatological frequency occurring.

On the reliability diagram this appears as a line with a gradient greater than 1. This

can be seen as the orange line in Figure 1.13b.

Over-forecasting means that the forecast consistently predicts an event to occur more

often than is observed. On the reliability diagram this appears as a line that on aver-

age sits below the diagonal line. this can be seen as the purple line in Figure 1.13b.

Conversely, under-forecasting means that the forecast consistently predicts an event to

occur less often than is observed. On the reliability diagram this appears as a line that

on average sits above the diagonal line. this can be seen as the red line in Figure 1.13b.

If a forecast displays any of these features it is desirable to calibrate the forecast,

or to use this information when making a decision: for example if an over-confident

forecast suggests an event is likely to occur, some caution may be needed as the actual

probability of occurrence will be on average lower than the forecast probability suggests,

and this should be factored into the decision making process.

1.5.2.d. Brier skill score

The Brier score, (BS), is a scalar accuracy measure of probabilistic forecasts (Wilks

2011). It is the mean squared error of the set of forecasts, if the observation o = 1 if

the event occurs, and o = 0 otherwise. For a binary event with n forecast instances,

the Brier score can be calculated as

BS =
1

n

n∑
i=1

(fi − oi)2, (1.8)

where fi and oi are the i’th forecast and observation respectively. As the Brier score

is analogous to mean squared error, a perfect forecast would have a value of BS = 0

indicating zero error, whilst the worst possible score is BS = 1.

The Brier score can also be extended to multi-category forecasts, as in the original

definition given by Brier (1950):

BS =
1

n

r∑
j=1

n∑
i=1

(fij − oij)2, (1.9)

where r is the number of categories for the forecast, and fij and oij are the i’th forecast
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and observation respectively, for the j’th forecast category. In the event of a 2 category

forecast, this formulation generates a score exactly twice that of Equation 1.8, and so

Equation 1.8 is sometimes referred to as the half-Brier score.

Alternatively for multi-category forecasts, Equation 1.8 can be calculated for each cat-

egory separately, treating each forecast category as a binary event. This provides

separate Brier score for each forecast category. In this case, the sum of the Brier scores

of every category will produce the the Brier score found from using Equation 1.9.

The Brier score can be used to calculate a skill score known as the Brier skill score

(BSS). This follows a conventional skill-score equation, giving:

BSS = 1− BS

BSref
, (1.10)

where BS is the Brier score for the set of forecasts, and BSref is the Brier score for a

set of reference forecasts, often climatological relative frequencies. As a skill score, the

BSS has a range from -1 to 1. A perfect forecast would achieve a score of BSS = 1,

whilst a forecast with no skill relative to the reference forecasts would achieve BSS = 0.

1.5.3. Other statistical techniques

A brief description of other statistical techniques used within this work is presented in

this section.

1.5.3.a. Pearson’s correlation coefficient

The Pearson correlation coefficient (Pearson 1920), r, or Pearson product-moment cor-

relation is a measure of the linear correlation between two variables. It is defined by:

r =

∑n
i=1 (xi − x̄)(yi − ȳ)√∑n

i=1 (xi − x̄)2
√∑n

i=1 (yi − ȳ)2
, (1.11)

where r is the Pearson correlation coefficient, xi, yi are the i’th value of the two vari-

ables, n is the number of values in each variable and x̄, ȳ are the mean values of the two

variables. This value ranges from 1 to -1, with 1 being a perfect positive correlation, -1

a perfect negative correlation, and 0 implying no correlation between the two variables.

To test the statistical significance of a correlation a p-value can be calculated. If this
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value is less than a pre-determined value for α (regularly α = 0.05, or significant at 5%

level), then the correlation is considered statistically significant and not a product of

random chance. The p-value is the two-tailed probability of finding a random variable

T ≥ t using Student’s t-distribution, where t is defined by:

t = r

√
n− 2

1− r2
(1.12)

and r and n are the Pearson’s correlation coefficient and the sample size respectively.

This process is known as a two-tailed Student’s t-test.

The correlation coefficient can be used to compare observational and model data with

each other, or themselves. A high correlation suggests that the two sets of data are

similar, and can be interpreted as a model representing well the variation that occurs in

observations, with the square of the correlation coefficient indicating the proportion of

variability described by the relation. However, there are limitations to the correlation

coefficient, for example if two sets of data agree on the shape of a data set, but have

different absolute values, the correlation coefficient does not decrease. It can also be

skewed by outlying points; a large discrepancy in one point can have a large effect on

the value of the coefficient.

1.5.3.b. Partial correlation

The partial correlation (Yule 1907, Lawrence 1976) is a measure of the relation between

two variables, with the effect of another controlling variable removed. This can be used

in cases where the relation between two variables is desired, but a third variable also

correlates with both. The partial correlation removes the effects of the third variable.

The equation for the partial correlation of variables 1 and 2, with the influence of

variable 3 removed, denoted r12,3, is as follows

r12,3 =
r12 − r13r23√

(1− r213)(1− r223)
, (1.13)

where rij is the Pearson’s correlation coefficient between variables i and j. Analogous

to the original correlation coefficient, the partial correlation has a value between -1

and 1, with, the value of 1 being a perfect positive correlation, -1 a perfect negative

correlation, and 0 implying no correlation between the two variables after the influence

of the third is removed. The partial correlation can be extended to any number of

variables (Yule 1907).
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1.5.3.c. Composite analysis

Composite analysis is a technique used to understand the structure or properties of a

weather or climate event of interest, for example understanding global impacts of El

Niño. To produce a composite, a large set of observations is required, and from this

set of observations a climatology, or the average conditions, is determined. For the El

Niño example this might be the mean global SST field over boreal winter. From this

set of observations, only those in which the event of interest occurs is then selected, and

the average conditions of this subset of data are then also determined. The difference

between the mean of the subset of data and the climatology (in this example SSTs

for El Niño occurrences minus the SST climatology) then produces an average of the

anomalies present during the event of interest. This is known as a composite, and can

determine features that are common to a certain event. In the example of El Niño a

pattern of positive SST anomalies in the eastern equatorial Pacific Ocean will stand

out.

Further complexity can be added to composite analyses, for example rather than sub-

tracting the climatological values from the event of interest, a separate event of interest,

or the inverse of the event of interest, can be subtracted. For example SST conditions

for El Niño events minus SST conditions for La Niña events.

1.5.3.d. Linear regression analysis

Linear regression analysis is the process of modelling the relationship between one de-

pendent variable, and a set of independent variables. The most simple linear regression

uses a single independent variable, and is known as simple linear regresssion.

For a simple linear regression, for a set of (x,y) points, where y is the dependent variable

and x the independent, the aim is to find a line of the form

y = α+ βx, (1.14)

where α and β are constants to be determined, that minimises the sum of the squares of

the vertical distances between the points and the line (a least-squares fit). A common

measure of the goodness-of-fit of the regression is the coefficient of determination, R2.

This is the proportion of variation of the independent variable that is described by the

regression. The square root of the coefficient of determination is the Pearson correlation

coefficient, r.
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The simple linear regression can be generalised for multiple independent variables, but

keeping a single dependent variable. This is known as a multiple linear regression

(MLR). The aim is then to find, for a set of n independent variables, a line of the form

y = β0 + β1x1 + β2x2 + ...+ βnxn, (1.15)

where xi is the i’th independent variable, and βi are a set of n + 1 constants to be

determined, known as regression parameters, again using a least-squares fit. The sta-

tistical robustness of the regression model can be tested by determining whether the set

of regression parameters are significantly different from zero, using an F-test (Draper

and Smith 1998).

1.6. Thesis aims and summary

A great deal of past work has focused on understanding and forecasting rainfall on

seasonal timescales over East Africa. Forecasts of East African rainfall are regularly

made, but the most common operational forecast, GHACOF, has not been evaluated

for some time. A result of the previous work has been the notable success in the

discovery of the close relation between the short rains and the large-scale modes of

variability of El Niño-Southern Oscillation and the Indian Ocean Dipole, which lead to

capability in producing skilful forecasts of this season. However, the situation for the

long rains is considerably less ideal. Understanding of the long rains is relatively poor,

and predictability for this season remains difficult, although there has been some recent

promising progress, primarily through its relation to the Madden-Julian Oscillation.

Meanwhile the long term decline of total rainfall amounts over East Africa during the

long rains and conflicting climate model projections of a wetter future are still not

completely understood and undermine attempts at long term planning.

This thesis aims to provide improvements to the current state of seasonal forecasting

for the East Africa region, and develop understanding of predictability and variability

within East Africa’s rainfall seasons on inter-annual and longer term timescales, taking

a logical three step approach. First, the current state of forecasts in the region is

evaluated with strengths and weaknesses identified. The thesis will then look to improve

current understanding of variability in the long rains season. It will then build on this

improved understanding to try to identify potential new sources of predictability that

could be used to improve seasonal forecasts for the long rains.
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The main objectives of the PhD are:

• Investigate the skill of a cutting edge dynamical seasonal forecast model in pre-

dicting seasonal rainfall over East Africa

– How does the skill vary between the two rainfall seasons?

– How does the skill compare between the dynamical model and the most

widely distributed operational consensus forecast in the region?

– Does the skill vary with factors such as the initial conditions of large-scale

drivers and lead time?

– Does the model display any biases, and what are the origins of these?

• Investigate processes controlling the long rains seasonal rainfall totals

– Are there large-scale atmospheric factors that are connected to the long rains

seasonal rainfall, and what is the apparent physical mechanism connecting

them?

– On what timescales do these processes act, such as seasonal or decadal?

– Could these processes explain the observed long rains drying trend?

• Investigate whether processes controlling the long rains are captured in the dy-

namical model, and whether there is potential for future predictability of these

– Does the dynamical model realistically capture the observed relationship

between processes controlling the long rains and rainfall?

– Are these linked to any known predictable large-scale modes of variability?

– Is there the potential for future skilful predictions of the long rains if specific

improvements are made to the dynamical model or post-processing?

Chapter 2 presents an evaluation of the skill of the UK Met Office dynamical seasonal

forecast system, GloSea5, in forecasting the long and short rains over East Africa, and

compares it to the GHACOF consensus forecasts. This is the first work comparing the

widely used operational forecasts of GHACOF to a dynamical model. The chapter aims

to find where each forecast performs well, or could be improved, identifying conditions

where forecasts are more likely to be correct, as well as identifying model biases that
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could hinder the forecasts, and understanding their origins. This chapter provides

information for both forecast generators and users that will aid use of the forecasts in

their current state, and provides suggestions for improvements to the forecasts.

Chapter 3 presents an investigation into the atmospheric conditions that lead to above

and below normal seasonal rainfall during the long rains. The aim of the chapter is

to improve understanding of what causes variability in the long rains both on seasonal

timescales and on longer decadal timescales, by considering variability in neighbouring

circulation features that are likely to directly impact the rainfall. It identifies zonal

winds over the nearby Congo region as key, and demonstrates that this influences

rainfall on both the seasonal and decadal timescale. This improved understanding

could help forecasters to produce better forecasts of the rainfall on seasonal timescales,

and provides further information on factors driving the recent drying observed during

the long rains, which could also provide an alternative viewpoint for the possible future

of the long rains, and the East African climate paradox.

Chapter 4 presents the potential ability of GloSea5 to better forecast the long rains

if improvements to key rainfall drivers, which the model is known to already have

some level of skill in forecasting, were made. The aim of the chapter is to determine

whether GloSea5 captures the physical processes driving variability in the long rains

in observations, and deduce whether more skilful forecasts of the long rains could be

made using dynamical models if key drivers were better predicted. The chapter also

provides a potential direction for future work in improving seasonal forecasts for model

developers, through consideration of the signal-to-noise paradox.

The results of Chapters 2-4 will be summarised, synthesised, and placed into wider

context in Chapter 5. Recommendations for future work based on these conclusions

will also be made.
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Batté, L. and Déqué, M. (2011). Seasonal predictions of precipitation over Africa using

53

https://www.africangreatlakesinform.org/page/lake-victoria
https://www.africangreatlakesinform.org/page/lake-victoria


Chapter 1: Introduction

coupled ocean-atmosphere general circulation models: Skill of the ENSEMBLES

project multimodel ensemble forecasts. Tellus, Series A: Dynamic Meteorology and

Oceanography, 63A(2):283–299.

Behera, S. K., Luo, J. J., Masson, S., Delecluse, P., Gualdi, S., Navarra, A., and

Yamagata, T. (2005). Paramount impact of the Indian ocean dipole on the East

African short rains: A CGCM study. Journal of Climate, 18(21):4514–4530.

Behrend, H. (1987). Teleconnections of rainfall anomalies and of the Southern Oscilla-

tion over the entire tropics and their seasonal dependence. Tellus A, 39 A(2):138–151.

Bengtsson, L., Herschy, R. W., and Fairbridge, R. W., editors (2012). Encyclopedia of

Lakes and Reservoirs. Springer, London.

Berhane, F. and Zaitchik, B. (2014). Modulation of daily precipitation over East Africa

by the Madden-Julian oscillation. Journal of Climate, 27(15):6016–6034.

Best, M. J., Pryor, M., Clark, D. B., Rooney, G. G., Essery, R. L. H., Ménard, C. B.,

Edwards, J. M., Hendry, M. A., Porson, A., Gedney, N., Mercado, L. M., Sitch, S.,

Blyth, E., Boucher, O., Cox, P. M., Grimmond, C. S. B., and Harding, R. J. (2011).

The Joint UK Land Environment Simulator (JULES), model description – Part 1:

Energy and water fluxes. Geoscientific Model Development, 4(3):677–699.

Bhalme, H. N., Mooley, D. A., and Jadhav, S. K. (1983). Fluctuation in the

drought/flood area over India and relationships with the Southern Oscillation.

Monthly Weather Review, 111(1):86–94.

Bjerknes, J. (1966). A possible response of the atmospheric Hadley circulation to

equatorial anomalies of ocean temperature. Tellus, 18(4):820–829.

Bjerknes, J. (1969). Atmospheric teleconnections from the equatorial Pacific. Monthly

Weather Review, 97(3):163–172.

Black, E., Slingo, J., and Sperber, K. R. (2003). An observational study of the relation-

ship between excessively strong short rains in coastal East Africa and Indian Ocean

SST. Monthly Weather Review, 131(1):74–94.

Blanford, H. F. (1884). On the connexion of the Himalaya snowfall with dry winds

and seasons of drought in India. Proceedings of the Royal Society of London, 37(232-

234):3–22.

54



Predictability and variability of East African rainfall seasons

Bowler, N. E., Arribas, A., Beare, S. E., Mylne, K. R., and Shutts, G. J. (2009). The

local ETKF and SKEB: Upgrades to the MOGREPS short-range ensemble prediction

system. Quarterly Journal of the Royal Meteorological Society, 135:767–776.

Brier, G. W. (1950). Verification of forecasts expressed in terms of probability. Monthly

Weather Review, 78(1):1–3.

Bryson, R. A. and Kuhn, P. M. (1961). Stress — Differential Induced Divergence with

Application to Littoral Precipitation. Erdkunde, 15:287–294.

Bureau of Meteorology (2020). Madden-Julian Oscillation. Available at: http://www.

bom.gov.au/climate/mjo/. Last accessed: 08 October 2020.

C3S (2020). Climate Data Store. Available at: https://cds.climate.copernicus.

eu/#!/home. Last accessed: 02 October 2020.

Camberlin, P., Janicot, S., and Poccard, I. (2001). Seasonality and atmospheric dy-

namics of the teleconnection between African rainfall and tropical sea-surface tem-

perature: Atlantic vs. ENSO. International Journal of Climatology, 21(8):973–1005.

Camberlin, P., Moron, V., Okoola, R., Philippon, N., and Gitau, W. (2009). Compo-

nents of rainy seasons’ variability in Equatorial East Africa: Onset, cessation, rainfall

frequency and intensity. Theoretical and Applied Climatology, 98(3-4):237–249.

Camberlin, P. and Okoola, R. E. (2003). The onset and cessation of the “ long rains ” in

eastern Africa and their interannual variability. Theoretical and Applied Climatology,

54(1-2):43–54.

Camberlin, P. and Wairoto, J. G. (1997). Intraseasonal wind anomalies related to wet

and dry spells during the “long” and “short” rainy seasons in Kenya. Theoretical

and Applied Climatology, 58(1-2):57–69.

Cane, M. A., Zebiak, S. E., and Dolan, S. C. (1986). Experimental forecasts of the El

Nino. Nature, 321:827–832.

Caviedes, C. N. (1984). El Nino 1982-83. Geographical Review, 74(3):267–290.

Chamberlain, J. M., Bain, C. L., Boyd, D. F. A., McCourt, K., Butcher, T., and

Palmer, S. (2014). Forecasting storms over Lake Victoria using a high resolution

model. Meteorological Applications, 21(2):419–430.

55

http://www.bom.gov.au/climate/mjo/
http://www.bom.gov.au/climate/mjo/
https://cds.climate.copernicus.eu/#!/home
https://cds.climate.copernicus.eu/#!/home


Chapter 1: Introduction

Charney, J. G. and Shukla, J. (1981). Predictability of monsoons. In Lighthill, J.

and Pearce, R. P., editors, Monsoon Dynamics, pages 99–110. Cambridge University

Press, Cambridge, UK.

Chen, C. J. and Georgakakos, A. P. (2015). Seasonal prediction of East African rainfall.

International Journal of Climatology, 35(10):2698–2723.

Chen, W. Y. (1982). Assessment of Southern Oscillation Sea-Level Pressure Indices.

Monthly Weather Review, 110(7):800–807.

CIA World Factbook (2020). Gross Domestic Product (GDP) composition by sector

of origin. Available at: https://www.cia.gov/library/publications/resources/

the-world-factbook/fields/214.html. Last accessed: 17 September 2020.

Clark, C. O., Webster, P. J., and Cole, J. E. (2003). Interdecadal variability of the

relationship between the Indian Ocean zonal mode and East African coastal rainfall

anomalies. Journal of Climate, 16(3):548–554.

Cook, K. H. and Vizy, E. K. (2013). Projected changes in east african rainy seasons.

Journal of Climate, 26(16):5931–5948.

Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., An-

drae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C.,

van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M.,

Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L.,
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Köppen, W. (1936). Das Geographische System der Klimate. In Köppen, W. and

Geiger, G. C., editors, Handbuch der Klimatologie.

Lawrence, A. J. (1976). On conditional and partial correlation. The American Statis-

tician, 30(3):146–149.

Li, G. and Xie, S. P. (2014). Tropical biases in CMIP5 multimodel ensemble: the exces-

sive equatorial pacific cold tongue and double ITCZ problems. Journal of Climate,

27(4):1765–1780.

Liebmann, B., Hoerling, M. P., Funk, C. C., Bladé, I., Dole, R. M., Allured, D., Quan,
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Abstract
Seasonal forecasts of rainfall are considered the priority timescale by many users in the tropics. In East Africa, the primary 
operational seasonal forecast for the region is produced by the Greater Horn of Africa Climate Outlook Forum (GHACOF), 
and issued ahead of each rainfall season. This study evaluates and compares the GHACOF consensus forecasts with dynami-
cal model forecasts from the UK Met Office GloSea5 seasonal prediction system for the two rainy seasons. GloSea dem-
onstrates positive skill (r = 0.69) for the short rains at 1 month lead. In contrast, skill is low for the long rains due to lack 
of predictability of driving factors. For both seasons GHACOF forecasts show generally lower levels of skill than GloSea. 
Several systematic errors within the GHACOF forecasts are identified; the largest being the tendency to over-estimate the 
likelihood of near normal rainfall, with over 70% (80%) of forecasts giving this category the highest probability in the short 
(long) rains. In a more detailed evaluation of GloSea, a large wet bias, increasing with forecast lead time, is identified in 
the short rains. This bias is attributed to a developing cold SST bias in the eastern Indian Ocean, driving an easterly wind 
bias across the equatorial Indian Ocean. These biases affect the mean state moisture availability, and could act to reduce the 
ability of the dynamical model in predicting interannual variability, which may also be relevant to predictions from coupled 
models on longer timescales.

Keywords  Seasonal climate forecasts · Consensus outlooks · East Africa · Precipitation · Probabilistic verification

1  Introduction

East Africa is a region that is highly vulnerable to rainfall 
variability, as consistent rainfall is vital for crops and live-
stock. Extreme events such as the 2010-11 year long drought 
have major effects on society, and flooding events can occur 
even in years of water scarcity, such as in 2018, when heavy 
boreal spring rains followed the severe drought conditions 
of late 2017 (http://fews.net/east-afric​a). Seasonal prediction 

of these events, if skilful, can therefore provide users with 
information to mitigate or avoid humanitarian disasters.

Equatorial East Africa experiences two rainfall seasons 
per year, commonly termed the long rains, occurring from 
March to May (MAM), and the short rains, occurring from 
October to December (OND). The long rains have higher 
total rainfall (Camberlin and Wairoto 1997), and are more 
reliable, and so coincide with the main growing season 
(Camberlin and Philippon 2002), whilst the short rains 
have a much larger interannual variability (Hastenrath et al. 
1993; Nicholson 1996). The two rainfall seasons lie within 
the seasonal reversals of the Somali Jet (Okoola 1999), are 
observed to be dynamically different (Camberlin and Wai-
roto 1997), and are classically attributed to the motion of the 
Intertropical Convergence Zone (e.g. Okoola 1998; Mutai 
and Ward 2000).

The correlation between the major modes of sea surface 
temperature (SST) variability and East African rainfall is 
different in the two rainfall seasons, and as such, the pre-
dictability of rainfall is different in the long and short rains 
(Camberlin and Philippon 2002). The short rains have been 
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linked to variability within the Pacific Ocean, with Rodhe 
and Virji (1976) observing similar periodicities in East 
African rainfall variability to those observed for El Niño-
Southern Oscillation (ENSO). Many studies since (e.g. 
Nicholson and Entekhabi 1986; Ogallo 1988; Nicholson 
1996; Nicholson and Kim 1997; Indeje et al. 2000), have 
investigated the role and mechanism of ENSO in influenc-
ing East African rainfall, through its effect on the Walker 
Circulation. More recently, a mode of variability within the 
Indian Ocean, termed the Indian Ocean Dipole (IOD), has 
been linked to East African rainfall variability (Saji et al. 
1999; Webster et al. 1999; Black et al. 2003; Marchant et al. 
2007; Ummenhofer et al. 2009). The positive phase of the 
IOD is often found to occur simultaneously with El Niño, 
and as such, several authors have investigated the depend-
ence of this mode on El Niño. The general consensus is that 
whilst El Niño modulates the IOD and is favourable for the 
evolution of an IOD event (Black et al. 2003), the IOD is 
an independent mode of variability from ENSO (Saji and 
Yamagata 2003; Yamagata et al. 2004; Behera et al. 2005; 
Bahaga et al. 2015). There are years where the IOD occurs 
under neutral ENSO conditions, such as in 1961 when a 
strong positive IOD event took place in absence of anoma-
lies in the Pacific Ocean, causing heavy rains in East Africa 
(Saji et al. 1999).

A major source of moisture variability for East African 
rainfall during the short rains originates from the flow over 
the Indian Ocean (Hastenrath et al. 2011). These zonal winds 
are described as being part of a Walker circulation cell (Has-
tenrath et al. 1993; Hastenrath 2000). Areas of ascent and 
descent lie over Indonesia and East Africa respectively, with 
a mean state of near-surface westerlies and upper level east-
erlies over the Indian Ocean. Years with near-surface east-
erly anomalies coincide with upper level westerly anomalies, 
increased ascent over East Africa and higher rainfall (Has-
tenrath et al. 1993; Yamagata et al. 2004; Hastenrath 2007). 
These anomalies are driven by a positive IOD, which drives 
high near-surface pressure in the eastern Indian Ocean and 
low pressure in the west.

Meanwhile, predictability during the long rains is 
less well understood (Camberlin and Philippon 2002), 
with several studies demonstrating that the season is not 
strongly constrained by SST variability (e.g. Ogallo 1988; 
Liebmann et al. 2014). Nicholson (2014) suggested that 
this is likely to be because El Niño is in transition during 
this time of year, a phenomenon referred to as the spring 
predictability barrier (Torrence and Webster 1998). Sev-
eral authors have suggested that atmospheric phenomena 
could control the interannual variability in this season 
(Philippon et al. 2002; Nicholson 2014, 2015), with Pohl 
and Camberlin (2006a, b) showing that the Madden-Julian 
Oscillation (MJO; Madden and Julian 1971, 1972) plays 
an important role, as well as Indeje and Semazzi (2000) 

identifying a possible contribution from the Quasi-Bien-
nial Oscillation (QBO; Ebdon 1960; Reed et al. 1961), 
although the underlying mechanism is not well described.

Real time forecasts of seasonal rainfall in East Africa 
have been made for several decades, with reasonable suc-
cess over the short rains, initially based upon statistical 
methods linking SST variability and rainfall (e.g. Farmer 
1988; Mutai et al. 1998). More recently, statistical fore-
casts of the long rains have also been produced. Nicholson 
(2014, 2015) used several variables including zonal and 
meridional wind fields at several pressure levels, as well 
as sea level pressure (SLP) values, to create models with 
strong correlations (up to 0.76) for February predictors, 
and also noted that using atmospheric fields improved 
statistical models of the short rains. Vellinga and Milton 
(2018) meanwhile created a multiple linear regression 
model for the long rains (defined in this study as March 
to April) using February to March MJO amplitude, QBO 
from September to November of the previous year, and an 
area of Indian Ocean SSTs close to the coast of Somalia in 
the Arabian Sea, finding a correlation with the first prin-
cipal component of the long rains of 0.77, with the largest 
contribution generally coming from the MJO amplitude.

In recent years, dynamical models have advanced 
greatly, and have become increasingly used to produce 
seasonal forecasts. Batté and Déqué (2011) evaluated the 
ENSEMBLES project multi-model ensemble of seasonal 
forecasts over Africa, finding mixed results over East 
Africa, with the model performing better during the short 
rains than the long rains. Bahaga et al. (2016) also evalu-
ated a multi-model ensemble with models sourced from 
North America and Asia over the short rains at 1 month 
lead. Models that could better forecast the Indian Ocean 
Dipole were found to have better skill, with the multi-
model ensemble achieving a correlation of 0.44 between 
observed and forecast rainfall, increasing to 0.67 when 
using only the models that had significant skill when 
evaluated individually. Although Nicholson (2017) noted 
that statistical forecasts generally outperform dynamical 
forecasts in this region, the latter are constantly improving, 
with ever increasing resolution, and improved representa-
tion of physical processes. The skill of statistical models 
in producing real time forecasts is also often overestimated 
due to the method of their construction, with common 
mistakes being overfitting the model, and using too many 
predictors or unphysical predictors. They also often fail 
to consider the nonstationary relationship between rain-
fall and the predictors. Such nonstationary relationships 
of teleconnections to East African rainfall in particular 
have been highlighted by Clark et al. (2003), Bahaga et al. 
(2019). To best meet user needs, a combination of sta-
tistical and dynamical methods is often most appropriate 
(Doblas-Reyes et al. 2013).
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Supported by the World Meteorological Organisation 
(WMO), consensus seasonal forecasts are produced by 
Regional Climate Outlook Forums (RCOFs) for many loca-
tions around the world (Ogallo et al. 2008). The Greater 
Horn of Africa Climate Outlook Forum (GHACOF), 
organised by the Intergovernmental Authority on Develop-
ment (IGAD) Climate Prediction and Applications Centre 
(ICPAC), has been issuing seasonal consensus forecasts 
for East Africa since 1998. GHACOFs are held three times 
per year, in the lead up to the long and short rains, and the 
summer rainfall season. For the long rains, GHACOFs 
are typically held in mid February (lead time less than 1 
month), whilst for the short rains, they are typically held 
late in August (lead time greater than 1 month). For the 
summer rainfall season, the GHACOF is typically held in 
the second half of May. The WMO has also fostered coor-
dination among centres running operational dynamical sea-
sonal forecast systems, so-called Global Producing Centres 
for Long-Range Forecasts (GPCs), with a specific objective 
to increase access and use of the model outputs in regional 
forecasting activities (Graham et al. 2011). Details of the 
GHACOF process will be presented in Sect. 2.3.

As well as producing the forecasts, RCOFs have been 
praised as an excellent opportunity for networking and 
information sharing between nations within the region, 
and within the different stakeholder groups (Ogallo et al. 
2008; Mwangi et al. 2014). Success stories of GHACOF 
forecasts having positive impact on the region have been 
recorded, such as a bumper harvest in 2009, where, based 
upon information from the GHACOF forecast, Kenya Red 
Cross distributed extra seeds to farmers across Kenya, lead-
ing to enhanced stores of grain (Graham et al. 2012), and in 
2002, where forecasts of below normal rainfall in Ethiopia 
were acted upon to relieve food insecurity (Patt et al. 2007; 
Hellmuth et al. 2007).

An evaluation of the GHACOF consensus forecasts was 
performed by Mason and Chidzambwa (2008) for 10 years 
of forecasts, as part of an RCOF review by the WMO. The 
forecasts were found to have positive skill but observed some 
notable biases that were also common to the West Africa and 
southern Africa RCOFS. In particular, forecast probabilities 
for the near average category were found to be systemati-
cally too high, indicating a tendency to “hedge” to average 
conditions. Current assessment of GHACOF includes an 
evaluation of each individual forecast’s performance using 
a form of hit score (http://rcc.icpac​.net/index​.php/long-range​
-forec​ast/verif​icati​on-produ​cts), and an analysis of the per-
formance of the previous forecast at the following GHACOF 
event.

Comparisons between consensus and dynamical fore-
casts are few and far between. Mwangi et al. (2014) investi-
gated whether European Centre for Medium-Range Weather 
Forecasts (ECMWF) seasonal forecasting system product 

4 (SYS-4) can provide additional information, however, no 
statistical side-by-side comparison has been produced. Addi-
tionally, biases within dynamical models are well known, and 
regularly documented, such as in the Coupled Model Intercom-
parison Project Phase 5 (CMIP5; Taylor et al. 2012) and Phase 
3 (CMIP3; Meehl et al. 2007) models (Yang et al. 2015; Li 
and Xie 2014; Richter et al. 2016), however, their origins, and 
their effects on the models ability to produce skilful forecasts 
is rarely considered. In operational models, mean state biases 
are linearly removed from the forecast models using hindcasts 
(Troccoli 2010). A recent study by Hirons and Turner (2018) 
demonstrated that biases in the CMIP5 models’ mean states 
can drastically influence their ability to correctly represent the 
atmospheric response to anomalies from the mean state, whilst 
a study by Delsole and Shukla (2010) suggested that models 
whose mean state are most similar to the observations have a 
tendency to demonstrate higher skill.

As part of its GPC output the UK Met Office issues 
monthly-updating seasonal forecasts with global coverage and 
with a focus on RCOF regions including the Greater Horn of 
Africa using the dynamical forecast system: Global Seasonal 
Forecasting System Version 5 (GloSea5; MacLachlan et al. 
2015). Skill maps to assist in use of the forecast are also pub-
lished (https​://www.metof​fi ce.gov.uk/resea​rch/clima​te/seaso​
nal-to-decad​al/gpc-outlo​oks). In this paper a detailed assess-
ment of the ability of GloSea in predicting the rainfall seasons 
over East Africa is presented and for the first time, a quantita-
tive comparison of skill between forecasts from a dynamical 
model and the GHACOF consensus forecasts is made. This 
analysis goes beyond that of Mason and Chidzambwa (2008), 
by using a larger period of assessment, and considering the 
impact of the skill conditional on a remote driver of rainfall. 
A secondary objective is to investigate the sources of rain-
fall biases within GloSea, to understand whether these biases 
could have a negative effect on the model’s prediction skill.

The structure of the rest of the paper will be as follows: 
Sect. 2 will introduce the data used for this study, and analysis 
methodologies. Section 3.1 will evaluate the climatology and 
interannual variability of GloSea. A statistical comparison of 
the forecast skill of GloSea and GHACOF forecasts will be 
presented in Sect. 3.2. Section 3.3 will consider the drivers of 
variability in the short rains, and their effects on skill within 
both GloSea and GHACOF, whilst Sect. 3.4 will discuss and 
investigate the origin of biases of rainfall within the short rains 
in GloSea. Section 4 summarises the key findings.

2 � Data and methodology

2.1 � Verification data

The observational rainfall data used in this study is Global 
Precipitation Climatology Project (GPCP) version 2.3 (Adler 
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et al. 2003), a monthly rainfall dataset from 1979 to present, 
that combines observations from rain gauges and several sat-
ellite datasets. This is gridded onto a 2.5◦ × 2.5◦ resolution 
grid. This commonly used dataset covers the study period 
and region with both land and ocean rainfall estimates.

Sea surface temperature (SST) observations are obtained 
from the Hadley Centre Sea Ice and Sea Surface Tempera-
ture (HadISST) dataset (Rayner et al. 2003). HadISST pro-
vides monthly mean data at 1◦ × 1◦ resolution. For com-
parison with wind climatologies, the European Centre for 
Medium-Range Weather Forecasts (ECMWF), interim rea-
nalysis (ERA-Interim; Dee et al. 2011) is used. Mean sea 
level pressure data use the National Centers for Environmen-
tal Prediction-National Center for Atmospheric Research 
(NCEP-NCAR) reanalysis (Kalnay et al. 1996).

2.2 � Seasonal forecast model

The forecast system used in this study is the UK Met Office 
Global Seasonal Forecast System 5 (GloSea5; MacLachlan 
et al. 2015). The core of GloSea5 is the Hadley Centre 
Global Environmental Model version 3 (HadGEM3; Hewitt 
et al. 2011), with atmosphere resolution 0.833◦ × 0.556◦ , 
with 85 atmospheric levels. The ocean resolution is 
0.25◦ × 0.25◦ . The higher ocean resolution improves pre-
dictions of sea surface temperature anomalies in the Tropical 
Pacific, as tropical instability waves can be better resolved, 
and improves mid-latitude ocean biases (Scaife et al. 2011). 
The seasonal forecast model runs for 210 days from initiali-
sation. An operational hindcast is produced in parallel and 
is used to bias correct the forecast. Further details of the 
GloSea5 system and the previous version (GloSea4) are dis-
cussed in MacLachlan et al. (2015) and Arribas et al. (2011) 
respectively.

This study makes use of operational hindcasts produced 
in parallel to the forecast, covering the period 1993–2015. 
Hindcasts are run 4 times per month (1st, 9th, 17th, 25th of 
each month) with three ensemble members initialised per 
start date. Members initialised on the same date differ by sto-
chastic physics (Bowler et al. 2009). Three months preceding 
each rainfall season are used: December, January, February 
for the long rains, and July, August, September for the short 
rains, giving a total of 36 ensemble members available for 
each season. When gridpoint to gridpoint comparison with 
observational data is needed, GloSea is interpolated onto a 
2.5◦ × 2.5◦ resolution grid. The word forecast will be used 
from here on to refer to the GloSea hindcasts in the evalu-
ation. This is because the evaluation treats the hindcasts as 
forecasts, and provides consistency when referring to both 
GloSea and GHACOF.

The full 36 members are used only in results investigating 
effects of ensemble size and lead time on model behaviour. 
For results investigating the forecast skill of the system, 

and in comparison with the GHACOF forecasts, a smaller 
ensemble is used to represent a forecast initialised with 1 
month lead time. To create this 1 month lead forecast, three 
start dates centred around the first of the month prior to the 
start of the season are used (25th January, 1st February, 9th 
February for the long rains, and 25th August, 1st September, 
9th September for the short rains). As 3 ensemble members 
are initialised per start date this produces an ensemble of 9 
members. The use of members from three different dates 
is to create a larger ensemble, representing the skill of the 
central date, as there is little difference in skill between hind-
casts from neighbouring weeks, and any advantage gained 
from the shorter lead time members will be balanced out by 
the longer lead time members.

2.3 � GHACOF forecasts and the GHACOF process

Currently, the GHACOF process is split into two parts: a 
pre-COF capacity building workshop with the purpose of 
both producing the consensus forecast and giving training 
to forecasters from the East Africa member states; and the 
GHACOF itself, where the forecast for the season is pre-
sented to the media and representatives from climate sensi-
tive sectors such as agriculture, energy, water resources, and 
health, and gives an opportunity for representatives of these 
sectors to interact with forecasters from East Africa as well 
as climate experts from around the world.

To produce the GHACOF forecast, predictions from many 
sources are used. ICPAC produce a seasonal forecast using 
the weather and research forecast (WRF; Skamarock et al. 
2008) model over the Greater Horn of Africa (GHA) region, 
covering 11 countries. The model is driven by the NCEP Cli-
mate Forecast System version 2 (CFSv2; Saha et al. 2014). 
This model has an horizontal resolution of 30km, with an 
ensemble of up to 15 members, many of which are initialized 
from different dates and, more recently, some members use 
different convective parameterization schemes for the same 
initial and boundary conditions. The model domain covers 
all of Africa and the adjoining water bodies, which incor-
porate the large-scale systems that drive the weather and 
climate of the region. In addition to rainfall and temperature, 
the dynamical forecast diagnostics available to the forecast-
ers include the onset of the rainfall season, its cessation, 
intervening dry and wet spells, and duration of the season, 
for the entire GHA region.

Predictions from global dynamical seasonal forecast 
models from the North American Multi Model Ensemble 
(NMME; Kirtman et al. 2014) are considered, as well as 
dynamical forecasts from the UK Met Office, Metéo-France 
and ECMWF. These are looked at both in their raw form, 
with simple mean bias correction, linear regression, and 
also as calibrated forecasts using the Climate Predictability 
Tool (CPT; Mason and Tippett 2016). A statistical model 
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approach is also used, using the Geospatial Climate Outlook 
Forecasting Tool (GeoCOF; Magadzire et al. 2016) and CPT 
to produce multiple linear regression forecasts using predic-
tors such as observed or GCM predicted SSTs and wind 
fields. Each country uses all of these data sources, as well as 
their own knowledge of their country’s climate, to produce 
a subjective forecast for their country, dividing it into zones 
where the forecast falls into the same probability catego-
ries. ICPAC then collate the country level forecasts together 
onto a map. At this point, inconsistencies at country borders 
are considered, with forecasters from each country giving 
their justification for the forecast category they have used, to 
come to an agreement on how to solve these inconsistencies. 
The forecast is presented on a map of the region (Fig. 1), 
displaying the probability of the seasonal rainfall tercile cat-
egories, above normal (upper tercile category), near normal 
(centre tercile category), and below normal (lower tercile 
category), in zones delineated by regions where the forecasts 
were the same.

2.4 � Gridding of GHACOF forecasts

The rainfall outlooks produced by the GHACOF were 
sourced from ICPAC (http://geopo​rtal.icpac​.net/), in the 
form of digital shapefiles containing the different forecast 
probability regions for each season, starting with the first 
GHACOF in 1998. These forecasts were then gridded using 
rasterization into a 2.5◦ × 2.5◦ grid matching the GPCP 
verification data. In this way, the GHACOF forecasts can 
be evaluated in the same manner as a probabilistic dynami-
cal model forecast, against a gridded comparison dataset. 
For direct comparison between GloSea and GHACOF the 
overlapping 18 year period of 1998 to 2015 is used. Regions 
where a climatological forecast was given due to the region 
being dry for that particular season were removed from the 
evaluation to avoid evaluating a forecast that by definition 
has zero skill in many of the metrics used.

2.5 � Limitations of the probabilistic evaluation 
method

In converting the GHACOF consensus forecast into a grid-
ded probabilistic forecast of the same format as a dynami-
cal model forecast, and making comparison to a dynamical 
model, some considerations need to be made. Firstly, the 
GHACOF consensus forecasts, although issued in a proba-
bilistic format, are not true probabilistic forecasts due to 
the subjectivity that is applied throughout their produc-
tion meaning the probabilities given may not necessarily 
be the true probability. However, for the purposes of this 
study these numbers will be assumed to represent the true 
probability.

Another limitation is due to the resolution of the observa-
tion data to be used. Although 2.5◦ × 2.5◦ observation data 
is the most commonly used for verification of seasonal fore-
casts (and hence why it is used in this study) this relatively 
low resolution can cause problems when converting the hand 
drawn lines of the consensus forecast into a grid, as several 
grid squares are likely to cover regions split between two or 
even more different forecast zones, and are simply treated as 
the zone which has the greatest area inside the grid square. 
This is not necessarily representative of the forecast issued 
for that location, however, the lines drawn within the forecast 
are themselves subjective.

Finally, there are limitations related to the timing of the 
forecasts. These forecasts are being treated as 1 month lead 
time forecasts, this is to represent the time when the forecast 
becomes available. Whilst this is a fair comparison for the 
long rains, which is often released at a less than 1 month lead 
time (ie later than 1st February) and utilises 1 month lead 
dynamical model predictions, this is less favourable for the 

Fig. 1   Example GHACOF consensus seasonal forecast for rainfall 
for OND 2015. The different coloured regions represent regions with 
different forecast probabilities. The column of three numbers in each 
region gives the probability of the total rainfall amount for the sea-
son being within the upper, middle, and lower tercile with respect 
to climatology. Colours indicate regions where the issued forecast 
is the same. As described in the GHACOF statement: grey indicates 
the region is usually dry during this season, yellow indicates regions 
likely to receive near normal to below normal rainfall, green indicates 
regions likely to receive above normal to near normal rainfall, blue 
indicates regions likely to receive near normal to above normal rain-
fall
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short rains forecast, which is released in late August (com-
pared to 1st September for the 1 month lead forecast of the 
dynamical model). Although the availability of these fore-
casts is therefore often only a few days apart, the GHACOF 
process for the short rains utilises dynamical forecasts from 
August, or 2 month lead time. Consideration should also be 
given to the fact that older GHACOF forecasts of the short 
rains were issued for September to December rather than 
October to December, and that when issuing probabilities 
based on terciles, the terciles are based on the climatological 
normal period at the time of issue (currently 1981–2010), 
rather than the period used here (1998–2015: the period over 
which the analysis is performed).

In order to address these limitations, it must be stated 
that the presented analysis only represents an estimate of the 
true skill of the consensus forecasts. Similarly the analysis 
of the dynamical forecasts are only an estimate of the true 
forecast skill due to the differing sizes of ensembles and dif-
ferent availability of initialisation data between forecasts and 
hindcasts, and as such, statistical significance tests have not 
been applied to any identified differences in skill between 
the two forecasts. Finally, there is a level of uncertainty 
within the observed data used that must be taken into con-
sideration when performing any comparison between models 
and observations.

Despite these limitations, the comparison between the 
two forecasts is an important aspect of this study, as it pro-
vides information of the ability the GHACOF forecast with 
respect to state of the art models, which can be used to judge 
the GHACOF forecasts against the predictability of the rain-
fall seasons that the forecasts are being issued for.

2.6 � Statistical techniques

To construct the relative operating characteristic (ROC) 
curve (Mason 1982), thresholds of predicted probabilities for 
each tercile category (above, near, and below average) were 
selected at every 10% for GloSea due to ensemble size, and 
every 5% for GHACOF chosen due to the practice of issu-
ing forecasts with probabilities rounded to the nearest 5% 
recommended by Mason (2013). For each threshold, if the 
forecast probability of a category is greater than the threshold 
value, it is classed as a forecast event, otherwise it is classed 
as a forecast non-event. The observation matching the fore-
cast is then considered, to determine which category occurred. 
This produces for each threshold value a 2 × 2 contingency 
table, whereby a forecast event that occurred in observations 
is a hit, a forecast non-event where the event subsequently 
occurred in observations is a miss, a forecast event that did 
not occur in the observations is a false alarm, and a forecast 
non-event that did not occur in the observations is a correct 
negative. For each contingency table the hit rate (HR), defined 
as hits/(hits + misses) and false alarm rate (FAR), defined as 

false alarms/ (false alarms + correct negatives) can then be 
calculated. These values are plotted with hit rate on the y-axis, 
and false alarm rate on the x-axis, for each threshold value. 
The curve passing through the points is referred to as the ROC 
curve, and the area under the ROC curve is the ROC score, 
which can be any value between 0 and 1. A line of gradient 1 
passing through the origin defines the line of no skill compared 
to a random forecast with a ROC score of 0.5. ROC scores 
greater than 0.5 are therefore considered to have positive pre-
dictive skill with respect to a random forecast. Threshold val-
ues of 0% (the event is always forecast) and greater than 100% 
(the event is never forecast) are used to fix the curves to (1,1) 
and (0,0), as these threshold values will always produce hit 
rates of 1 and 0, and false alarm rates of 1 and 0, respectively, 
regardless of the forecast being evaluated.

To construct the reliability diagram (Hartmann et al. 
2002), forecasts are split into bins dependent on the fore-
cast probability of an event. For each bin, the forecasts are 
matched up to their corresponding observations, and the 
observed frequency of the event occurring is calculated for 
each bin. The forecast probability is then plotted against the 
observed frequency for each bin. A perfectly reliable fore-
cast would have a forecast probability equal to the observed 
frequency in all bins, leading to a diagonal line of gradient 
1, shown on the diagrams. Horizontal and vertical lines are 
plotted through the climatological frequency of the event (in 
the case of terciles, 1/3). The horizontal line corresponds to 
no resolution (ie the outcome is the same regardless of what 
was forecast), whilst the vertical line is a forecast of clima-
tology. Another line is added bisecting the diagonal and no 
resolution lines, marking the line of no skill. Forecast points 
that lie in the region between this line and the vertical line 
contribute positively to the Brier skill score of the forecast.

When analysing reliability diagrams, several terms are 
regularly used, with their definitions as follows: over/under-
confidence, meaning the line has a gradient less/ greater than 
one, and over/under-forecasting, meaning that the line lies 
mostly below/ above the diagonal line, as defined in Mason 
(2013).

The Heidke Skill Score (HSS; Heidke 1926) is computed 
using the results from an n × n contingency table. HSS is 
defined as:

where pij is the probability of the i’th row and j’th column of 
the contingency table. This can be rewritten as:

(1)HSS =
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where PC is the proportion correct, or the sum of the val-
ues on the diagonal of the contingency table, and E is the 
expected proportion correct for a random forecast, found 
by taking the sum of the probability of a forecast of event i 
multiplied by the probability of observing event i, for each i. 
HSS is a standard skill score metric, with a minimum of −1, 
and a maximum of 1, with a score of 0 meaning the forecast 
is no better than a random chance forecast.

For further information on ROC curves, reliability dia-
grams, and skill scores or metrics used in this study, the 
reader is referred to Wilks (2006).

2.7 � Time series indices

For time series of area averaged rainfall over East Africa, 
the land area within the region ( 12◦N–10◦S , 30◦E–55◦E ) 
is used, and is also averaged over the 3 months of March, 
April, and May (MAM) referred to as the East African 
long rains, and the 3 months of October, November, and 
December (OND) for the East African short rains. To rep-
resent the state of ENSO, the Niño 3.4 index is used, with 
its usual definition of the average SST anomaly over the 
region ( 5◦N–5◦S , 170◦W–120◦W ; Barnston et al. 1997). In 
particular, the time averaged Niño 3.4 index is used, with 
the anomaly being the average SST anomaly over OND 
with respect to the 1993-2015 climatological SST average 
over OND within this region. Similarly, two indices within 
the Indian Ocean are used. The Western Tropical Indian 
Ocean (WTIO) is the average SST anomaly over the region 
( 10◦N–10◦S , 50◦E–70◦E ) and the South Eastern Tropical 
Indian Ocean (SETIO) is the average SST anomaly over the 
region ( 0◦N–10◦S , 90◦E–110◦E ), as defined by Saji et al. 
(1999), and calculated in the same manner as the Niño 3.4 
index. Finally the Indian Ocean Dipole (IOD) index is cal-
culated as the difference between the WTIO and SETIO 
indices, again as defined by Saji et al. (1999).

3 � Results

3.1 � East African climatology and interannual 
variability in GloSea

In this section, the performance of GloSea in forecasting 
the climatology and interannual variability is analysed over 
East Africa in both rainfall seasons. The rainfall and 850 
hPa wind climatology of the short rains for GloSea and 
observations, with relative biases, is shown in Fig. 2. Large 
scale patterns in both rainfall and wind vectors are captured 
well by GloSea, however the dominant feature is a clear wet 
bias, approximately 40% over land areas over OND, with 
an approximately 35% bias over the land areas in the region 
( 12◦N–10◦S , 30◦E–55◦E ) to be used in later analysis, with 

greatest bias over the regions with greatest rainfall. This 
is followed by a dry bias during the dry season, evident in 
December when a spatially coherent dry bias is present north 
of the equator, but a wet bias remains to the south. Consist-
ent with this, the change in wind direction in GloSea from a 
southerly to northerly flow appears to occur too early in the 
season, suggesting a possible mistiming in the progression 
of the ITCZ. The rainfall biases based on the distributions 
coincidingly show a larger bias in October and November 
than December.

In Fig. 3, the climatology for the long rains is shown. 
Large scale patterns are again captured well by GloSea, how-
ever in this season an overall dry bias over land is present. 
The reversal of the northerly flow appears to occur too late 
in the season, and whilst a dry bias is present over the land 
points in the region ( 12◦N–10◦S , 30◦E–55◦E ) in March, it 
has changed to a slight wet bias by May. The net effect is 
that the rainfall bias in this season is of relatively small mag-
nitude, as seen in Fig. 3d. A large wet bias persists over the 
Indian Ocean, although moves northwards throughout the 
season, following the peak in rainfall.

The wet bias in the short rains, coupled with a minor dry 
bias in the long rains leads to a pattern where the short rains 
in the model provide greater rainfall than the long rains. This 
same error in the annual cycle of rainfall over East Africa is 
present in other models, as has been documented in previous 
studies of the CMIP3 (Anyah and Qiu 2012) and CMIP5 
(Yang et al. 2015) climate models. Wet biases are found 
in most tropical regions in many seasonal forecast systems 
(Scaife et al. 2018).

The key feature of interest within a seasonal rainfall 
forecast is the prediction of a rainfall anomaly over the 
season in comparison to climatology. Figure 4 shows the 
predicted rainfall anomaly for each year of the forecast 
period for both GloSea and observations for both rainfall 
seasons. During the short rains, a correlation skill of 0.69 
is achieved. This result is insensitive to the exact defini-
tion of the region. The model predicts the sign of many of 
the extreme years correctly such as 1997 and 2006, how-
ever ensemble members do not reach the extreme values 
seen in observations. The ensemble mean has a standard 
deviation of 0.40mm day−1 , and the observations have a 
standard deviation of 0.85mm day−1 . Some lack of vari-
ance with respect to the observations is expected, as the 
ensemble mean represents the predictable part of the vari-
ance (Scaife and Smith 2018). However, the mean ensemble 
member standard deviation over all members and years is 
0.55mm day−1 , also lower than the observations. Ensemble 
members should have approximately the same variance on 
average as the observations, to represent a possible realisa-
tion of the observations. This lack of variance explains why 
the ensemble members struggle to forecast the extremity of 
the most extreme wet or dry years (e.g. 1997, 1998, 2005, 
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2006). In a well calibrated forecast where each ensemble 
member represents a possible realization, the observations 
would be expected to appear as one of the extreme outer 
realisations in 2 out of 10 years (if treated as a 10th ensem-
ble member then it would be expected to be the most wet 1 in 
10 times, or most dry 1 in 10 times), so somewhere between 

4 and 5 occurrences would be expected to happen over 23 
years. This is considerably less than the 10 occurrences over 
the 23 years found here.

During the long rains, a correlation of 0.07 is achieved, 
this is insignificant at the 5% level and demonstrates that 
the model is unable to predict the long rains interannual 

(a) (b) (c)

(e)

(i) (j) (k)

(f) (g)

(d)

(h)

(l)

(m) (n) (o) (p)

Fig. 2   East Africa rainfall (colours) and 850 hPa wind (vectors) cli-
matology during the short rains for an ensemble mean of 36 members 
for GloSea (left), GPCP rainfall and ERA-Interim winds (second col-
umn), GloSea minus GPCP/ ERA-Interim (third column), and violin 
plots of rainfall distributions of GloSea and GPCP, with white dots 

representing the mean, the thick black line the interquartile range, 
and the shaded areas showing the distribution, for each land gridpoint 
within the region ( 12◦N–10◦S , 30◦E–55◦E ), for each year (right). 
The rows show the climatologies for OND (a–d), then October (e–h), 
November (i–l), December (m–p), separately
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variability over land, consistent with previous results based 
on other models (e.g. Batté and Déqué 2011; Shukla et al. 
2016). There is also an apparent failure of the model in cap-
turing anomalies in the most extreme wet (e.g. 1996, 2013) 
and dry (e.g. 2000, 2009) years in this season. In all years 
the spread of the ensemble members exceeds the spread of 
the observations.

A common question within dynamical models is whether 
an increase in ensemble size could further improve the 

forecast. To examine this, the correlation coefficient of 
the ensemble mean with the observations as a function of 
ensemble size is shown in Fig. 5. To create this, for each 
ensemble size, ensemble members are randomly sampled 
to build an ensemble of the correct size, then correlated 
with the observations. This is repeated 10,000 times, and 
the mean result is taken for each ensemble size. In the short 
rains the curves using both all 36 members available and the 
12 member sub-samples demonstrate a curve approaching 

(a) (b) (c)

(e)

(i) (j) (k)

(f) (g)

(d)

(h)
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(m) (n) (o) (p)

Fig. 3   As in Fig. 2, but for the long rains (MAM)
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an asymptote, with the curves flattening between 10 and 15 
ensemble members. The small increase from 12 to 36 mem-
bers indicates that a further increase in ensemble size would 
provide limited additional benefit, given that the current 
operational forecasts use an ensemble size of 42. Also dem-
onstrated here is a monotonic increase in skill with decreas-
ing lead time. As well as studying potential improvements 
from increasing ensemble size, the potential skill; the ability 
of the model to predict itself (as in Kumar et al. 2014; Scaife 
et al. 2014), is also investigated. This is achieved by replac-
ing the observations with a single member of the ensem-
ble, and calculating the correlation between the ensemble 
mean of the rest of ensemble and the single member. This 
is repeated for each member in the ensemble, and the mean 
score is taken. It is also repeated for each ensemble size, 
leading to the dotted line in Fig. 5. The average correlation 
between a single member and the ensemble is shown to be 
consistently lower than the correlation between the ensemble 
and the observations, suggesting the model can better predict 
the observations than itself. This phenomenon has also been 
found elsewhere by Eade et al. (2014), and by Scaife and 
Smith (2018) who note its prevalence in the extratropical 
Atlantic, however this is one of few tropical examples of 
this behaviour as models generally overestimate the predict-
ability of tropical rainfall.

The long rains similarly demonstrate the pattern that 
an increase in ensemble size would have limited benefits, 
although for the 36 member line there is an increase in skill 
with ensemble size. The asymptote value for an infinitely 
large ensemble in this case is 0.26. In the long rains, the 
correlation does not increase monotonically with decreasing 
lead time, as was observed in the short rains. This is likely 
due to the limited skill at any lead time.

3.2 � Forecast skill in GloSea and GHACOF

In this section, a comparison is made between GloSea 
and GHACOF consensus forecasts. Both are regridded to 
2.5◦ × 2.5◦ , and the period 1998–2015 is used. A discus-
sion on this process and the limitations of the comparisons 
made in this section was given in Sects. 2.4 and 2.5. Fig-
ure 6 shows ROC curves and reliability diagrams for both 
forecasts during the short rains. Both forecasts demonstrate 
skill for the outer categories, with the above average rain-
fall category being highest. GloSea demonstrates some level 
of skill in predicting the middle category although lower 
than in the outer categories, as is often the case for categori-
cal forecasts (van den Dool and Toth 1991), and generally 
achieves higher scores in all categories than GHACOF at 
one month lead. ROC scores of two month lead forecasts 
of GloSea were also calculated, finding values of 0.621 and 
0.567 in the above and below normal categories respectively, 
remaining higher than the GHACOF forecast. In the GloSea 

(b)

(a)

Fig. 4   Time series of rainfall anomaly from climatology for the short 
rains (a) and long rains (b), for 1 month lead time forecasts from Glo-
Sea ensemble mean (solid line), ensemble members (dots, coloured 
by initialisation date), and GPCP (dashed line). Correlation coef-
ficient between ensemble mean and GPCP shown at bottom of each 
panel

(a) (b)

Fig. 5   Correlation skill of GloSea forecasts as a function of ensemble 
size for the short rains (a), and long rains (b), for randomised ensem-
bles using all 36 members available (blue crosses) and each initiali-
sation month consisting of 12 members (coloured crosses). Dashed 
lines show curve fitted to crosses of corresponding colour. Dotted 
line in a shows correlation of GloSea ensemble mean rainfall against 
a single removed ensemble member, demonstrating internal predict-
ability

84



4921Skill of dynamical and GHACOF consensus seasonal forecasts of East African rainfall﻿	

1 3

reliability diagam, there is clear evidence of forecast over-
confidence in all three categories: a gradient less than 1. This 
means that for categories forecast with increased/decreased 
probability of occurrence with respect to climatology, the 
increase/decrease in probability is larger in magnitude than 
is observed. Meanwhile, the GHACOF reliability diagrams 
appear to show under-confidence in the outer categories, 
with a gradient greater than one, implying shifts in prob-
ability from climatology are on average too small.

Figure 7 shows the ROC curves and reliability diagrams 
for the long rains. Both GloSea and GHACOF display lit-
tle skill during this season for any tercile, although ROC 
scores are generally greater than 0.5 by a marginal amount. 
The GloSea reliability diagram displays very little res-
olution for any category, the observed frequency being 
approximately the same regardless of the forecast prob-
ability. GHACOF appears to show slightly greater reli-
ability for this season. Both of the reliability diagrams for 
GHACOF demonstrate a lack of forecasts landing within 
the 30% category. Forecasts of 30% for any category are 
rarely issued. This is related to the method of construction 

of the probabilities. In general, 40% is often taken as the 
starting point for the probability of the near normal cat-
egory, meaning that a probability of 30% for either outer 
category would then result in a forecast of equal probabil-
ity for both outer categories. Situations in which forecasts 
for both outer categories are given equal probabilities are 
avoided, as they are seen by users as not being a useful 
forecast.

In Fig. 8, a spatial map of the ROC score for each cat-
egory is shown for GloSea and GHACOF for the short rains. 
In the outer categories there is a coherent region of higher 
skill over Kenya, coastal Somalia, southeast Ethiopia and 
northeast Tanzania, as well as over the Indian Ocean. This 
region is apparent in both GloSea and GHACOF, and in both 
outer categories. These diagrams show highest skill in the 
regions where the heaviest rainfall is present. ROC scores 
for the long rains (Fig. 9) are lower than for the short rains 
for both GloSea and GHACOF for all categories, and less 
coherently distributed in GloSea. Kenya however appears to 
show some evidence of positive skill in the above tercile for 
GloSea, and both outer categories of GHACOF. The GloSea 

Fig. 6   Tercile category ROC 
curves (a, b) and reliability 
diagrams (c, d) for GloSea 
(left) and GHACOF (right), 
for the short rains. Upper 
tercile category shown in blue, 
lower tercile category in red, 
centre tercile category in black. 
ROC scores inset onto curves, 
labelled points on ROC curves 
correspond to threshold value 
used for each point. Dashed 
line in a, b refers to line of no 
ROC skill. Dashed line in c, d 
refers to line of zero Brier skill, 
horizontal dotted line shows 
line of no resolution, vertical 
dotted line represents climato-
logical forecast. Points lying 
between climatological forecast 
and dashed line contribute posi-
tively to Brier skill score. Size 
of circles demonstrate relative 
frequency of occurrence of the 
probability being forecast

(a) (b)

(d)(c)
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ROC maps demonstrate that positive skill is achieved over 
the Indian Ocean off the coast of East Africa in both outer 
categories.

Although it is not good practice to interpret the probabil-
ity forecasts deterministically, it is still a widespread practice 
(Patt et al. 2007). To explore the performance of the fore-
casts interpreted in this way, the probabilistic forecasts were 
converted into deterministic categorical forecasts whereby 
the forecast is assigned as the category of the highest prob-
ability of occurrence. If an outer category and centre cat-
egory are equal highest (for example a split of 40,40,20 for 
above, near, below categories respectively), then the higher 
outer category is assigned. If both outer categories are equal 
highest then the forecast is not included in this evaluation, 
this removes climatological forecasts, and bimodal forecasts. 
Table 1 presents a contingency table evaluation of determin-
istic forecasts generated in this way for both GloSea and 
GHACOF, and for both the long and short rains. The most 
striking difference between the GHACOF and GloSea fore-
casts are the large number of forecasts in which GHACOF 

has the highest weighting assigned to the normal category, 
with 81% of forecasts being made for this category for the 
long rains, and 71% of forecasts being made for this category 
in the short rains. This is something common to the West 
African RCOF (Bliefernicht et al. 2018), and RCOFs else-
where in Africa (Mason and Chidzambwa 2008). It is clear 
from the middle row of Table 1 that within GHACOF, as 
often occurs in categorical forecasts (van den Dool and Toth 
1991), there is very low skill in forecasting this category: 
when the near normal category is forecast, observations 
are spread approximately equally across the three catego-
ries. The number of correct forecasts within this category 
falls at approximately one third (34% for both MAM and 
OND). GloSea has similarly equal spread across this cat-
egory, although has a lower number of forecasts falling into 
it. Approximately 35% of near normal forecasts are correct 
for MAM, 40% for OND, and a total of 30% of forecasts are 
issued into the near normal category for MAM, and 38% for 
OND. This high level of hedging in GHACOF drastically 
lowers the hit rates for the outer tercile categories, as seen 

Fig. 7   As in Fig. 6, but for the 
long rains

(a)

(c) (d)

(b)
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in Table 2, and thus the usefulness of the forecasts, and was 
identified by Mason and Chidzambwa (2008) as one of the 
key issues within RCOF forecasts.

Some favourable conclusions for GHACOF can how-
ever be drawn from this table. Table 2 shows that for all 
categories except for the above normal category in MAM, 
GHACOF has a higher hit rate than false alarm rate, a signal 
that there is positive skill coming from these forecasts. By 
looking at the Heidke Skill Score (HSS) for the forecasts, 
positive values are achieved in both seasons by both fore-
casts, however GloSea shows marginally higher scores in 
each season. It is likely that the GHACOF forecast has lower 

scores in this measure due to the large number of forecasts 
that contained highest weighting into the centre category, 
which could have had higher weighting towards the correct 
outer category than incorrect, but is instead interpreted as a 
forecast for the near normal category. It is again clear from 
Table 2, the difference in skill for forecasting between the 
two seasons, with higher HSS and generally greater differ-
ences between the hit rates and false alarm rates in each 
category for the short rains than for the long rains.

By considering within GHACOF, the forecasts of the 
outer categories, it is clear from Table 1 that the forecasts 
are in fact capable of identifying years in which an above or 

Fig. 8   Maps of ROC score for 
GloSea (left) and GHACOF 
(right) for tercile categories of 
rainfall, upper tercile category 
(a, b), centre tercile category (c, 
d), lower tercile category (e, f), 
for the short rains

(a) (b)

(c) (d)

(e) (f)
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below average year is most likely, with many more forecasts 
for the correct outer category than incorrect outer category, 
with the exception of above normal forecasts of the long 
rains. These forecasts then have a property which, when con-
sidering the relative risks of an incorrect forecast compared 
to the return for a correct forecast, may be considered highly 
desirable; a low rate of forecasts with two category errors, 
much lower than is seen in GloSea.

Combining both GloSea and GHACOF also appears to 
display some complementary information. Whilst GloSea 
generally performs better over the previously displayed sta-
tistical measures, it appears that GloSea shows a lack of skill 

in predicting below average rainfall in the long rains, whilst 
GHACOF performs best in this category, with a higher ROC 
score (Fig. 7), and positive scores from the contingency table 
(Table 2), with this skill appearing to originate from over 
Kenya (Fig. 9). This is possibly due to alternative sources of 
predictability utilised by the forecasters that are not currently 
represented in GloSea, but could be related to other factors. 
For example the higher skill in both forecasts observed over 
Kenya could be related to higher observed data quality in 
this region. This could be due to, for example, the less com-
plex orography over the coastal area, as satellite estimates 

Fig. 9   As in Fig. 8, but for the 
long rains

(a) (b)

(c) (d)

(e) (f)
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often struggle to estimate correctly rainfall rates over steeper 
orography (e.g. Cattani et al. 2016; Kimani et al. 2017).

3.3 � Drivers of interannual rainfall variability 
in the short rains

Many previous studies have shown the relationship between 
the East African short rains and SST anomalies in the equa-
torial Pacific, and more recently, Indian Ocean, as discussed 
in Sect. 1, in particular highlighting the importance of the 
El Niño-Southern Oscillation and Indian Ocean Dipole. 
For a model of the short rains to be successful it needs to 
predict correctly both the evolution of these modes of vari-
ability in the oceans, and also produce the correct atmos-
pheric response to the predicted SST anomalies. Figure 10 
shows the correlations of rainfall over East Africa within 
each grid point to the Niño 3.4 and IOD indices for GloSea 

and for observations. The spatial patterns of both indices 
correlations are well represented by GloSea; the model cor-
rectly represents the effect of these modes of variability 
on the rainfall, however some differences are noted. There 
is a sharp decrease in correlation running north to south 
through Kenya in the model in both indices, suggesting a 
sharp change in rainfall interannual variability here. This 
is not present in the observations (although some gradient 
does exist in the IOD map) and hints at a misplaced telecon-
nection, too far east in the model, as well as some possible 
incorrect orographic effects taking place in the model, as 
this north to south decrease runs down the eastern edge of 
the East African highlands. The region with the highest cor-
relation to IOD in the model coincides with the region of 
highest skill.

Figure 11 shows the correlation of SST anomalies at 
each grid point with the East African short rains, in the 

Table 1   3 × 3 contingency table 
for GHACOF (top) and GloSea 
(bottom) for the long rains 
(left) and short rains (right), for 
tercile probability categories, A: 
above normal, N: near normal, 
B: below normal

MAM OND

Forecast Observed Forecast Observed

A N B A N B

GHACOF
 A 16 22 24 A 91 56 20
 N 251 246 228 N 197 220 227
 B 32 31 46 B 8 25 57

GloSea
 A 119 75 104 A 145 69 63
 N 76 94 92 N 93 135 113
 B 98 127 106 B 62 99 126

Table 2   Hit rates (HR), false alarm rates (FAR) separated by forecast category, and Heidke Skill Score (HSS) for both forecasts and both seasons

Season Forecast HR FAR HSS

OND GHACOF
 Above 0.31 0.13
 Near 0.73 0.71 0.11
 Below 0.19 0.06

GloSea
 Above 0.48 0.22
 Near 0.45 0.34 0.17
 Below 0.42 0.27

MAM GHACOF
 Above 0.05 0.08
 Near 0.82 0.80 0.02
 Below 0.15 0.11

GloSea
 Above 0.41 0.30
 Near 0.32 0.28 0.04
 Below 0.35 0.38
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observations and in GloSea. In both panels the large scale 
pattern is clear, with the strongest, coherent correlations 
coming from the Pacific and Indian Oceans, representing 
the El Niño and IOD modes of variability. The correlations 
within GloSea are of a smaller magnitude than within the 
observations, suggesting that the coupling between the ocean 
and atmosphere may be too weak in the model. The posi-
tive correlation in the Pacific Ocean also stretches too far 
west, as does the negative correlation over the eastern Indian 
Ocean, matching with the rainfall response to ENSO noted 
by MacLachlan et al. (2015) within GloSea in December to 
February.

As well as capturing the correct teleconnections, the 
model also needs to capture the evolution of SSTs to be use-
ful as a forecast model. To examine whether the model cap-
tures the evolution of SSTs, SST indices within the Indian 
and Pacific Oceans over OND were forecast with 1 month 
lead time. These were then compared with observations, and 
a 1 month persistence forecast was used as a reference fore-
cast. This was done as high correlation scores are likely to 
occur even if the model doesn’t correctly model the evolu-
tion of the SSTs, due to the slowly evolving nature of SSTs. 
If the forecast can beat the correlation of the persistence 
forecast this implies that some useful information can be 
obtained from the forecast. The persistence forecast uses 

Fig. 10   Correlation of rainfall 
over East Africa during the 
short rains with Niño 3.4 (left), 
and IOD (right) over East 
Africa for GloSea mean correla-
tion over individual members 
(a, b), and GPCP/ HadISST 
(c, d). Grey line shows 1000 m 
contour

(a) (b)

(d)(c)

Fig. 11   Correlation of SST 
anomalies with East Afri-
can short rains land based 
points within ( 12◦N–10◦S , 
30◦E–55◦E ), for GPCP/ 
HadISST (a) and GloSea mean 
correlation over individual 
members (b)

(a)

(b)
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the average SST anomalies over the entire month of August, 
whilst the forecast is that which would be used for the 1st 
September, for a direct comparison. These were then com-
pared with the observed SST anomaly over OND, as shown 
in Fig. 12. GloSea consistently outperformed the persistence 
forecast in all indices, with the most promising results being 
over the western Indian Ocean (WTIO) where GloSea had a 
correlation of 0.93 with the observations, whilst the persis-
tence forecast had a value 0.71. GloSea also captured well 
the observed warming trend in the ocean in this region. This 
improvement over a persistence forecast also meant a nota-
bly better forecast IOD than persistence, with a correlation 
score for GloSea of 0.85, whilst persistence achieved 0.77. 
The eastern Indian Ocean and Niño 3.4 region both showed 
marginal improvements in comparison to persistence. 
Whilst there is already improved prediction compared to 
persistence at 1 month lead time, at longer lead times, bet-
ter performance of the dynamical model against persistence 

is expected for the Niño 3.4 region (Graham et al. 2012). 
For IOD it is less clear whether this is the case, as Graham 
et al. (2012) found that the previous version, GloSea4, was 
outperformed by persistence at forecasting IOD at both short 
and longer lead times.

A common feature of all the SST indices within Glo-
Sea was a variance larger than the observations, as can be 
seen in Fig. 12. This is in contrast to lower than observed 
variability in rainfall, and further suggests that the coupling 
between SSTs and the short rains is too weak. This large 
variance was particularly noticeable in the SETIO index, 
where the standard deviation was more than double that of 
the observed. This region also achieved the lowest correla-
tion score in GloSea (equal with the IOD, which is itself 
dependent on the SETIO forecast). Difficulty in forecasting 
SST evolution in this region has been highlighted previously 
by Lu et al. (2018).

As well as correctly predicting rainfall, GloSea has 
shown that it potentially can hold value over a purely sta-
tistical forecast of rainfall by skilful prediction of the evo-
lution of SST anomalies in the Pacific and Indian Ocean. 
To confirm this, multiple linear regression models were 
built using indices from the Pacific and Indian Ocean. A 
regression model was built using observed SST indices 
over OND to predict OND rainfall within the observations. 
The regression value achieved by the model utilising IOD 
and Niño 3.4 was 0.90, and demonstrates the dominance 
that these two modes of variability have over the region, 
during this period. Bahaga et al. (2019) demonstrated how-
ever that the correlation between these modes can fluctuate 
on decadal timescales, with the period used here found to 
have a particularly high correlation.

Building a regression model from the persisted values 
of IOD and Niño 3.4 achieved a regression value of 0.77. 
This value is actually larger than the rainfall forecast from 
GloSea (at 0.69), and although the difference is not sig-
nificant, demonstrates the strength of a statistical forecast 
in this region.

Since the persistence model value is lower than the 
regression model using the observed SSTs, correct pre-
dictions of SST evolution may give an improvement on 
the persistence model. To test this, a regression model 
was then built using GloSea forecast SST indices of IOD 
and Niño 3.4 for OND. This model achieved a regression 
value of 0.80, bettering the persistence forecast, although 
again the difference is not significant at this short lead 
time. The fact that the observed SST regression model 
achieved the same score regardless of whether the Niño 
3.4 index was included, whilst in the persistence model 
it improved the model, leads to the hypothesis that the 
high correlation observed between El Niño and East Afri-
can rainfall is primarily through modulation of the Indian 
Ocean, rather than independent influence, similar to the 

(a)

(b)

(c)

(d)

Fig. 12   Time series of OND values of SST indices; a IOD, b SETIO, 
c WTIO, d Niño 3.4. Solid lines show GloSea SST forecast anoma-
lies, dotted line shows persisted SST anomalies from August, dashed 
lines show observed SST anomalies
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conclusions of Behera et al. (2005), Bahaga et al. (2015). 
To examine whether this is the case, the partial correlation 
of two variables (subscript 1, 2) with the influence of a 
third variable (subscript 3) removed (Yule 1907; Lawrence 
1976), is calculated, defined as:

where �ij refers to the Pearson correlation coefficient of 
variables i and j. This value runs from − 1 to 1 as in the 

(3)
�12,3 =

�12 − �13�23
√

(1 − �2
13
)(1 − �2

23
)

Pearson correlation coefficient. In particular the partial 
correlation of East African rainfall with the IOD with the 
influence of ENSO removed, �ri,n , and the partial correla-
tion of East African rainfall with ENSO with the influence 
of IOD removed, �rn,i , are calculated, where the r, n, and i 
subscripts refer to the time series of East African rainfall, 
Niño 3.4, and IOD respectively. In the observations, a value 
of �ri,n = 0.82 is found, suggesting that when the effect of 
ENSO is excluded, the IOD still maintains a strong relation 
to East African rainfall. Meanwhile a value of �rn,i = 0.02 
was found in the observations, suggesting that when the 

Fig. 13   As in Fig. 8, but for 
years with a GloSea forecast 
active Indian Ocean Dipole 
event. Positive IOD years were 
identified as 1994, 1997, 2006, 
2007, 2011, 2012. Negative 
IOD years were identified as 
1996, 1998, 2001, 2008, 2010

(a) (b)

(c) (d)

(e) (f)
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effect of the IOD is excluded, ENSO has very little effect on 
East African rainfall, supporting the hypothesis above, also 
suggested by Behera et al. (2005), Bahaga et al. (2015). By 
performing the same calculations for GloSea’s forecast SST 
indices against rainfall, we find values of 0.83 and − 0.06 for 
�ri,n and �rn,i respectively, suggesting GloSea does very well 
at capturing the relationship between the IOD, ENSO, and 
East African rainfall. From this, it could be suggested that 
when an ENSO event is forecast, if anomalies in the Indian 
Ocean remain small, then a response in East African rainfall 
should not necessarily be expected.

Given the strength of connection between SST anomalies 
and the short rains, and the ability of GloSea at predicting 
SST evolution, it should be expected that during years where 
an IOD or ENSO event is forecast, the capability of the 
model should increase (Frías et al. 2010; Pegion and Kumar 
2013). To test this, both GloSea, and GHACOF forecasts 
were re-evaluated conditional on years where an IOD event 
(defined by an anomaly greater than 0.5◦ C) is forecast by the 
model. The model forecast IOD years are used rather than 
observed to demonstrate the skill based on making decisions 

using forecast SSTs. Figure 13 shows tercile category ROC 
maps (as in Fig. 8) for years where GloSea has forecast an 
IOD event, for both GloSea and GHACOF. In both forecasts 
the increase in skill is clear, with both having regions along 
coastal East Africa above 0.8 or 0.9, with this region coin-
ciding well with the regions of highest skill and highest cor-
relation with IOD shown in Figs. 8 and 10. Figure 14 shows 
the corresponding ROC curves, and reliability diagrams for 
this set of forecasts. Both GloSea and GHACOF show an 
increased ROC score, with the above normal category scor-
ing highest in both. GloSea again generally outperforms 
GHACOF in this score.

The reliability diagram for GloSea demonstrates that dur-
ing these years the forecast is highly reliable, with the outer 
categories lying consistently close to the perfect reliability 
line. Some evidence of under-forecasting is present in the 
below normal category, with the observed frequency con-
sistently higher than the forecast probability. There is also a 
hint of under-confidence in the above normal category, with 
a gradient greater than 1 apparent for this line. During these 
years the centre tercile category appears to be over-forecast.

Fig. 14   As in Fig. 6, but for 
years with a GloSea forecast 
active Indian Ocean Dipole 
event. Positive IOD years were 
identified as 1994, 1997, 2006, 
2007, 2011, 2012. Negative 
IOD years were identified as 
1996, 1998, 2001, 2008, 2010

(a) (b)

(d)(c)
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The reliability diagram for GHACOF, although noisy, 
demonstrates the under-confidence of forecasts during these 
years in the outer terciles, with a gradient greater than one 
apparent. This is more evident within the above average cat-
egory. The below average category demonstrates both some 
under-confidence, and some under-forecasting, below aver-
age years have occurred with greater probability than were 
forecast.

Similar results were found for years with an active ENSO 
event (not shown), however, in many of the years where IOD 
is active, ENSO was also found to be active. Years where 
SST anomalies in both the Niño 3.4 and the IOD index were 
small were also investigated. GloSea demonstrated positive 
skill in the outer categories in these neutral years, with a 
ROC score for the above (below) normal category being 0.61 
(0.54). GHACOF meanwhile shows less skill in the years 
where neutral conditions are forecast, with ROC score for 
the above (below) normal category being 0.52 (0.48).

3.4 � Drivers of GloSea rainfall bias in the short rains

The large wet bias in GloSea over East Africa during the 
short rains was highlighted in Fig. 2. Whilst it is known 
that coupled dynamical models regularly have too much 
rainfall in the tropics (Li and Xie 2014; Scaife et al. 2018), 
this wet bias is large in size when compared to the rest of 
the tropics within GloSea. Although it is clear that GloSea 
achieves high levels of skill despite this bias, understand-
ing the origin of this bias may be important for explaining 
the lack of variability in the model, and for future improve-
ments to forecasts for this region. To understand this, the 
bias evolution over time was studied over a stationary 
period of time (the 3 months of OND) for different forecast 
lead times. Figure 15a shows the evolution of the rainfall 
bias over East Africa as a function of lead time. At all lead 
times there is a wet bias. There is an approximately linear 
increasing trend in the wet bias as lead time increases; 
a model drift. To understand what may be causing this, 
the bias as a function of lead time was plotted for several 
other fields. Figure 15b shows the bias-lead time relation 
for the SST indices over the Pacific and Indian Oceans. A 
cold bias is present in both the Pacific and Indian Ocean; 
these biases remain approximately constant in the Pacific 
and western Indian Ocean, however the SETIO index dis-
plays a linear decrease in temperature with increasing lead 
time, this region was also highlighted as the most difficult 
to forecast in the previous section, as well as having an 
unrealistically large variance within GloSea [also seen in 
Lu et al. (2018)]. This increasing cold bias has an impact 
on the sea level pressure over the eastern Indian Ocean 
region, seen in Fig. 15c. The bias in pressure over the 
western Indian Ocean remains approximately constant, 
whilst the pressure over the eastern Indian Ocean increases 

with increasing lead time, consistent with the cooler SSTs 
at longer lead times, generating a west to east pressure 
gradient.

Figure 15d shows the equatorial zonal wind bias over 
the Indian Ocean ( 5◦N–5◦S , 60◦E–90◦E ) as a function of 
lead time. At all lead times there is an easterly wind bias 
of these zonal winds. Matching with the pressure biases, 
the zonal winds become more easterly (more negative in 
Fig. 15d) with increasing lead times, with the average wind 
direction within the model switching from the observed 
westerlies to become easterly between 40 and 50 days lead 
time. This wind anomaly is likely to draw more moisture 

(a)

(b)

(c)

(d)

Fig. 15   GloSea lead time-bias relations over short rains season fore-
casts for a rainfall (against GPCP), b SST indices (against HadISST), 
c sea level pressure (against NCEP-NCAR Reanalysis), d 850 hPa 
equatorial zonal wind over Indian Ocean (against ERA-Interim Rea-
nalysis). Dots on same day show ensemble members initialised at 
the same lead time. Vertical dashed lines mark the 1st September, 
August, July. Proxy IOD shows the index for model minus observa-
tions in the mean state. Mean sea level pressure west and east refer to 
same co-ordinates as west and east poles of IOD, whilst west minus 
east shows relative pressure gradient compared to observed. Zonal 
winds averaged over ( 5◦N–5◦S , 60◦E–90◦E ). Dotted line on bottom 
panel shows point at which zonal average wind in box is zero
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toward the African continent from the Indian Ocean, as 
well as having an effect on the Indian Ocean Walker circu-
lation, reproducing a positive IOD-like response within the 
mean state. This is likely to reduce the impact of further 
increases in these winds in providing moisture. Whilst this 
is not necessarily the case for GloSea, it could explain part 
of the weakened coupling between the Indian Ocean and 
the short rains, as well as the lack of variability in rainfall 
with respect to the observations.

Capturing the direction of these winds is known to 
be difficult for coupled models, with Hirons and Turner 
(2018) recently showing that the majority of CMIP5 mod-
els incorrectly capture the mean state of these winds, and 
the models with incorrect easterly zonal winds in the mean 
state struggle to capture correctly the influence of the IOD 
on rainfall in the short rains.

4 � Conclusions

Skilful seasonal forecasts of rainfall are vitally impor-
tant for many sectors in East Africa. In this study, the 
most widely issued operational seasonal forecast within 
the region, the GHACOF consensus forecast, has been 
evaluated against observations and compared to the UK 
Met Office dynamical seasonal forecast system, GloSea. 
In addition, physical rainfall-producing processes within 
the dynamical model related to the short rains season were 
investigated and an analysis of the origin of the model’s 
regional wet bias was performed.

The ability of Met Office GloSea system operational hind-
casts were evaluated on their ability to predict seasonal rain-
fall anomalies over East Africa at 1 month lead time before 
the start of the two rainy seasons. GloSea demonstrates an 
ability to represent the climatology of the rainfall seasons 
well, but with a large wet bias of approximately 40% during 
the short rains, and a lack of interannual variability. GloSea 
performs much better at predicting interannual variability 
during the short rains than the long rains due to its abil-
ity to capture teleconnections between SST anomalies and 
rainfall in the short rains season, as documented by Batté 
and Déqué (2011), Shukla et al. (2016), Nicholson (2017). 
However, GloSea’s short rains forecasts can be outperformed 
by a statistical forecast using persisted SST anomalies from 
August. A similar statistical model based on GloSea’s SST 
forecasts can, however, outperform both GloSea’s own rain-
fall prediction and the aforementioned statistical forecast 
using persistence. The ability to better predict rainfall using 
GloSea’s SST field suggests that further improvements to 
predictions of the short rains could be made by improving 
the atmospheric response to the ocean state.

GloSea displayed little ability in forecasting rainfall dur-
ing the long rains, with a correlation between GloSea and 

GPCP of 0.07, a result common to previous dynamical sea-
sonal forecast models in this season (e.g. Batté and Déqué 
2011; Shukla et al. 2016) with the potential for increases to 
approximately 0.25 in a larger ensemble than the ensemble 
of 9 members used. In both seasons it was demonstrated that 
an increase in ensemble size above the current operational 
size of 42 members would provide limited benefits, although 
could offer relatively larger improvements to the long rains 
than the short rains.

Probabilistic verification was performed on both GloSea 
and the GHACOF consensus forecasts. Both GloSea and 
GHACOF displayed positive skill in forecasting outer ter-
cile categories of rainfall over East Africa, and promisingly, 
both demonstrated similar spatial patterns of skill, with a 
coherent region of high skill coinciding with the area most 
highly correlated with Indian Ocean SST anomalies during 
the short rains. However, in general GHACOF was outper-
formed by GloSea over the two seasons, with the exception 
of the below normal category within the long rains. The 
predictability here could be related to GHACOF utilising 
information not represented within dynamical models, and 
demonstrates the value of using both statistical and dynami-
cal modelling techniques (Doblas-Reyes et al. 2013), as is 
done within the GHACOF forecasts.

Despite the positive skill, GHACOF demonstrated several 
features that are potentially harmful to the usefulness of the 
forecast. The stand out error is the tendency to over-forecast 
the near normal category of rainfall, common to RCOFs 
in other regions (Mason and Chidzambwa 2008; Bliefern-
icht et al. 2018). GHACOF regularly issue a probability of 
over 40% in the near normal category, and this category is 
issued as the highest probability category at over 70% of the 
forecast grid points over both seasons. Not only is it dem-
onstrated that forecasting this category is less skilful than 
forecasting for the outer categories, but this tendency also 
undermines the use of tercile categories, as, over the period 
of the forecasts, the three tercile categories have not been 
forecast to occur equally often. This could confuse interpre-
tation of the forecasts by user groups, who have regularly 
noted difficulties in understanding probabilistic forecasts. 
This lack of confidence also lowers the statistical resolu-
tion of the forecasts; forecasts predicting the most wet and 
most dry events often appear remarkably similar, with the 
probabilities in the outer categories often only shifting by 
5 or 10%.

Another common behaviour was the tendency to avoid 
forecasting 30% probability, this is due to the method with 
which probabilities are assigned. In general a probability of 
40% is used as an initial value for the near normal category, 
the 30% forecast is then avoided so as to ensure issuing a 
forecast with different probabilities for above and below 
normal years. In some cases however, a forecast for 30% 
may indeed be most appropriate. These tendencies identified 
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within the GHACOF forecast process are performed within a 
risk averse strategy, and this is reflected in the low number of 
times where the opposite outer category was forecast as the 
most probable, to what subsequently occurred. Whilst this 
strategy of reducing the number of complete misses may be 
a desirable property in building trust between forecasters and 
users, it also reduces the utility of the forecast.

A promising result from this study is the contrasting 
behaviour between the dynamical forecast, which often 
over-confidently forecasts a wet or dry year, and the com-
paratively risk averse consensus forecast. A way to reduce 
the under-confidence issues in the GHACOF forecasts would 
be to give an increased confidence weighting to the dynami-
cal forecast in scenarios where the dynamical models are 
known to be skilful. These results demonstrate the benefit 
of using a consistent comparison method for forecast evalua-
tion, something commonly produced for dynamical forecast 
verification, but rarely applied elsewhere.

It was shown that in years where a driver such as the 
IOD is forecast as active, prediction skill of both GloSea 
and GHACOF is increased, however GHACOF still show 
evidence of under-confidence within the forecasts. This sug-
gests that in years when a strong driver is forecast, the prob-
abilities of the relevant outer categories of the GHACOF 
forecast should be more confidently forecast to reflect the 
increased predictability. This can be aided by the fact that 
GloSea outperforms persistence SST forecasts even at a 1 
month lead time.

The large rainfall bias during the short rains was shown to 
primarily originate from the evolution of a cold SST anom-
aly in the eastern Indian Ocean and easterly wind anomalies 
across the equatorial Indian Ocean, a situation reminiscent 
of a positive IOD state (Saji et al. 1999). At short lead times, 
there is little SST bias, however an easterly wind bias forms 
very quickly, suggesting that the mechanism for the gen-
eration of the IOD-like state is caused by the wind bias: an 
easterly wind bias across the Indian Ocean causes upwelling 
and cooling of the eastern side of the Indian Ocean basin, 
reducing SSTs. This causes a higher pressure to form over 
the eastern IO, generating a west to east pressure gradient, 
further increasing the easterly wind. This positive Bjerknes 
feedback (Bjerknes 1969) then causes the increase in bias 
with increased lead time.

Recent results from Hirons and Turner (2018) dem-
onstrate that CMIP5 models with easterly zonal winds 
across the Indian Ocean in the mean state fail to capture 
the observed moisture advection in the short rains linked 
to Indian Ocean SSTs, and struggle to capture the observed 
teleconnection patterns. This bias should be further investi-
gated to understand what impact it has on predictions on a 
seasonal timescale, and whether improvements to the Indian 
Ocean and the Walker circulation can reduce the rainfall bias 
and improve predictions of the short rains.
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Abstract The East African long rains constitute the main crop-growing season in the region.
Interannual predictability of this season is low in comparison to the short rains, and recent decadal drying
contrasts with climate projections of a wetter future (the “East African climate paradox”). Here, we show
that long rains rainfall totals are strongly correlated with 700 hPa zonal winds across the Congo basin and
Gulf of Guinea (r = 0.73). Westerly anomalies align with more rainfall, with the same mechanism
controlling covariability on interannual and decadal time scales. On both time scales wind anomalies are
linked to geopotential anomalies over the Sahel and Sahara, and warming there. Rainfall and wind are
significantly correlated with the Madden-Julian Oscillation (MJO) amplitude, and around 18% of the
decadal drying can be explained by MJO amplitude variability. This work shows that predictions of East
African rainfall across time scales require robust prediction of both zonal winds and MJO activity.

Plain Language Summary East Africa has two rainfall seasons, the main season, the long rains,
runs from March to May. There is currently little understanding of what controls the amount of rainfall
during this season. Recent drying, causing many areas to suffer from droughts and food shortages, contrasts
with climate projections of a wetter future (the “East African climate paradox”). Rainfall is found to be
connected to the strength of easterly winds over the Congo basin and Gulf of Guinea, with the same
mechanism controlling variability on both interannual and decadal time scales. From 1998 to 2011 the
winds had been getting stronger, with reduced rainfall over East Africa. The cause of the stronger wind
is investigated and is partly explained by relatively fast warming in the Sahel than over the Congo, while
variation in Madden-Julian Oscillation (a large-scale tropical wave) activity, explains around 18% of the
decadal drying.

1. Introduction
Equatorial East Africa has two rainfall seasons per year, the long rains, occurring March-May (MAM), and
short rains, occurring October-December (OND). A large contrast in the predictability of the two seasons
has been observed (Batté & Déqué, 2011; Camberlin & Philippon, 2002; Dutra et al., 2013; Nicholson, 2017;
Walker et al., 2019). This has been attributed to the short rains being influenced by global-scale modes of
variability such as El Niño–Southern Oscillation (Indeje et al., 2000; Nicholson & Entekhabi, 1986), and the
Indian Ocean Dipole (Black et al., 2003; Saji et al., 1999), while such relationships are absent during the long
rains (Ogallo, 1988).

In most areas of equatorial East Africa, the long rains is the main crop growing season, generally providing
greater (Camberlin & Wairoto, 1997), and more reliable (Camberlin & Philippon, 2002), rainfall amounts.
However, in recent decades there has been an observed drying trend in this season (Funk et al., 2005, 2008;
Liebmann et al., 2014; Maidment et al., 2015), which sharply contrasts the wetting predicted by most climate
projections (Otieno & Anyah, 2013; Shongwe et al., 2011), often referred to as the “East African Climate
Paradox” (Rowell et al., 2015). Some authors have demonstrated that the long rains decline is linked with
natural decadal variability in the Pacific Ocean (Bahaga et al., 2019; Lyon, 2014; Yang et al., 2014), while
others suggest anthropogenic factors (Funk & Hoell, 2015; Rowell et al., 2015; Williams & Funk, 2011).
Meanwhile, recent work by Wainwright et al. (2019) has shown that over the Horn of Africa the observed
long rains drying trend is caused by a shortening of the rainfall season and that in more recent years,
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the long rains have begun to recover. Therefore, the future of the long rains is still highly uncertain. Improved
understanding and prediction of variability in this season on interannual and decadal time scales, leading
to improved rainfall forecasts, would be of great benefit to the local population.

Finney et al. (2019) recently demonstrated that although the climatological wind is easterly (Figure S1a
in the supporting information), days with westerly winds originating from over the Congo basin do occur
during the long rains season, and throughout the year. These events import moist air from over the Congo
basin, causing convergence within the Lake Victoria basin, thereby leading to enhanced rainfall, with the
record breaking 2018 long rains serving as a prime example (Kilavi et al., 2018). During MAM 2018 several
westerly days occurred, linked to tropical cyclones in the Indian Ocean. Finney et al. (2019) also highlighted
the role of the Madden-Julian Oscillation (MJO; Madden & Julian, 1971, 1972) influencing the formation of
these tropical cyclones.

A more direct effect of MJO influence on the long rains has been documented by Pohl and Camberlin
(2006a, 2006b). Pohl and Camberlin (2006a), using phases of the MJO defined by Wheeler and Hendon
(2004), identified that Phases 2 and 3 from the Wheeler-Hendon index, when the convective core is over
Africa and the Indian Ocean, were linked to increased rainfall over the East African highlands. Mean-
while, Vellinga and Milton (2018) demonstrated that a greater seasonal mean amplitude of the MJO as
defined by Wheeler and Hendon (2004), regardless of phase, contributed to more abundant rainfall, due to
an asymmetric response of the rainfall to the ascent/descent caused by specific phases.

While anomalous westerly wind influence over East Africa has been regularly described qualitatively in past
literature (Camberlin & Wairoto, 1997; Diem et al., 2019; Nkunzimana et al., 2019; Okoola, 1999a, 1999b),
little quantitative evidence for this had been presented until the work by Finney et al. (2019). Finney
et al. (2019) showed the role of absolute westerlies for East African rainfall; this work uses this understanding
to demonstrate the connection between zonal wind anomalies and East African rainfall on both interannual
and decadal time scales, demonstrating a link between long-term change in the zonal winds over the Congo
basin and the long rains drying trend (section 3.1), and also investigating explanations for variability of the
zonal winds (section 3.2).

2. Data and Methods
The rainfall data for this study are Global Precipitation Climatology Project Version 2.3 (GPCP; Adler
et al., 2003), while wind, geopotential height, and temperature data were obtained from European
Centre for Medium-Range Weather Forecasts (ECMWF) Interim Reanalysis (ERA-Interim; Dee et al., 2011).
MJO phase and amplitude data were obtained from the Bureau of Meteorology, where phase and ampli-
tude are calculated using the method outlined in Wheeler and Hendon (2004), using National Oceanic
and Atmospheric Administration (NOAA) outgoing long-wave radiation satellite observations (Liebmann
& Smith, 1996), and National Centers for Environmental Prediction-National Center for Atmospheric
Research (NCEP-NCAR; Kalnay et al., 1996) reanalysis winds. National Aeronautics and Space Adminis-
tration (NASA) Modern Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2;
Gelaro et al., 2017) winds and geopotential height data were used to verify relations between ERA-Interim
variables and other observations.

This study uses the period 1979–2018, matching the satellite era and earliest available data from
ERA-Interim and GPCP. Results were tested with the outlying year 2018 removed, with similar conclusions.
The region considered for rainfall is highlighted in blue in Figure 1a, and future references to East Africa
will refer to this region, while the zonal wind index is calculated as the mean 700 hPa zonal wind within
5◦N to 5◦S, 10◦W to 30◦E (brown box on Figures 1d and 1e).

Wet, dry, and recovery periods of the long rains, similar to those in Wainwright et al. (2019), are defined
from 1979–1997 (P1), 1998–2011 (P2), and 2012–2018 (P3), respectively. Composites of the drying trend
are considered using P2-P1. The wettest and driest years are calculated by fitting a cubic polynomial to
the raw time series data, and then removing this, to remove long-term trends. The wettest and driest years
within the long rains are defined as years where the rainfall total after trend removal is more than 0.8 stan-
dard deviations above and below the 1979–2018 seasonal mean, respectively. When discussing these sets of
years, DECADAL will refer to the altered Wainwright periods (P2-P1), and INTERANNUAL will refer to the
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Figure 1. Interannual and decadal rainfall changes in East Africa. (a) East Africa rainfall region shaded blue (land within 12.5◦N to 10◦S, 30◦E to 52.5◦E), East
Africa topography, colors, 500 and 1,000 m contours in light and dark gray. Composite of rainfall across the tropics during the long rains for (b) driest years
minus wettest years, (c) dry period minus wet period (P2-P1). Composite of 700 hPa winds and zonal wind (colors) across Africa during the long rains for
(d) driest years minus wettest years, (e) dry period minus wet period (P2-P1). Brown boxes show region used to calculate zonal wind index, hatching denotes
areas where the composite values are significantly different from 0.

driest minus wettest years. Significance of trends were tested using the Mann-Kendall test, (Kendall, 1975;
Mann, 1945), further details of which can be found in Wilks (2011).

The expected trend in mean rainfall between P1 and P2, Δr̄exp, due to the observed change in mean wind
from P1 to P2, ūP2 − ūP1, is given by

Δr̄exp = dr
du (ūP2 − ūP1) (1)

where dr
du is the gradient of the regression of rainfall against wind after removing the polynomial fit. Variables

r and u can be replaced by other variables. If Δr̄exp ≈ Δr̄obs, where Δr̄obs is the observed change in rainfall,
then this is evidence that the mechanism that links rainfall and winds on interannual time scales can also
explain the decadal variability in the rainfall.
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Figure 2. Temporal variations in East African rainfall and winds. (a) Time series of seasonal mean zonal wind anomaly (brown) and rainfall anomaly (blue) for
boxes defined in Figure 1, dashed lines show time series after removing polynomial fit. The wet and dry years used for the INTERANNUAL composites are
highlighted as triangles and crosses, respectively. Correlation values of zonal winds against rainfall, before and after detrending given in top right. (b) Scatter
of zonal wind anomaly against rainfall anomaly after detrending, colored by P1 (blue), P2 (red), and P3 (yellow) periods. Black line is regression line fitted
against the scatter, with regression equation and R2 value given. Colored stars show mean anomaly of each period, with respect to 1979–2018 mean, before
trend is removed.

3. Results
3.1. Interannual and Decadal Variability of the Long Rains
Figure 1 shows rainfall anomalies over the tropics and 700 hPa wind anomaly composites over Africa for
INTERANNUAL and DECADAL. The 700 hPa level was chosen as it is largely above the topography of
East Africa and was found to have the largest single-level moisture flux, and moisture flux anomaly in the
INTERANNUAL composite (Figure S1b). In Figures 1b and 1c a dry signal is apparent over East Africa as
expected, with wet anomalies over the Maritime Continent, and dry anomalies over the western Pacific, in
a pattern reminiscent of the Pacific “V” discussed in Funk and Hoell (2015), Funk et al. (2019), and Lyon
and Dewitt (2012). In Figures 1d and 1e a large easterly anomaly is present over the equatorial Atlantic
Ocean and Congo basin. In INTERANNUAL, this extends to the Horn of Africa where it meets a westerly
anomaly from the Indian Ocean, while in DECADAL this easterly anomaly is also present, but only reaches
as far as the orography separating the Congo basin from East Africa. In DECADAL, the easterly anomalies
appear to be linked to an anticyclonic anomaly over the Sahara desert; this level exhibits a midtropospheric
high pressure, over the location of the summertime Saharan Heat Low (SHL), suggesting a stronger SHL in
drier years (Evan et al., 2015). Heating and ascent in the SHL causes a low pressure near the surface and
high pressure aloft at 700 hPa (Lavaysse et al., 2009; Rácz & Smith, 1999) and the 925 to 700 hPa thickness
is directly proportional to the air temperature in the column. The 700 hPa anticyclone is therefore a useful
measure of the SHL. The zonal wind anomaly (outlined by the brown box) is largely consistent with the
findings of Finney et al. (2019), as an easterly anomaly in the seasonal mean is likely to contain less westerly,
or weak easterly days. These results are insensitive to the reanalysis used, with similar patterns observed in
equivalent MERRA-2 composites (Figures S2a and S2b).

Figure 2 shows the time series of the zonal wind index and long rains seasonal rainfall anomalies. A cor-
relation between the rainfall and zonal winds of 0.73 is found, 0.67 with polynomial fits removed (both
significant at the 1% level). This demonstrates the very strong connection between interannual variabil-
ity in zonal wind and rainfall. This is again consistent in MERRA-2, with correlations of 0.81 (0.71 when
detrended; Figure S2c). It is apparent from Figure 2a that both the rainfall and zonal wind demonstrate a
decreasing trend, both significant at the 5% level, when treated linearly, using the Mann-Kendall trend test.
Both variables show some signs of a recovery in P3, consistent with Wainwright et al. (2019). This is more
apparent in the rainfall than winds in Figure 2a, while for MERRA-2 (Figure S2c) a recovery in the zonal
winds is more visible.

Figure 2b shows the scatter of rainfall against zonal wind after detrending. The linear regression equation
between the two variables is r = 0.43u − 0.00. From this, and from the linear trend of each vari-
able, an expected trend of rainfall due to the observed trend in the zonal winds can be calculated
(Equation 1). The expected change in mean rainfall from observed change in mean zonal wind from
P1 to P2 is −0.43± 0.14 mm day−1, the observed change is −0.50± 0.16 mm day−1. These are statistically
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Figure 3. The MJO and East African rainfall. (a) Time series of zonal wind anomaly (brown) and rainfall anomaly (blue) as in Figure 2a, and February-March
mean MJO amplitude (purple), means and standard errors of the MJO amplitudes during P1, P2, and P3 are given at the top, with periods separated by red
dashed lines, and red shading over the dry period, P2. (b) Box plots of daily mean zonal wind separated by MJO phase, inactive days (MJO amplitude < 1)
grouped in left box, notches on boxes show 95% confidence interval calculated from bootstrap resampling of 1,000 values, numbers below minimum of each box
show percentage of days in that phase, blue shading shows interquartile range of inactive days, orange dashed line shows median of inactive days. Pink curve
shows sine wave fitted to active days assuming a mean value equal to the median of the inactive days.

indistinguishable, so it is concluded that the observed decadal drying in the long rains can be largely
explained by the same mechanism controlling the interannual relation between the zonal wind and rainfall.

While it is difficult to establish causality between the variability in the zonal winds and rainfall, and is likely
the two operate in a coupled system, (Finney et al., 2019) provides a potential mechanism. By examining
lagged relationships it is found that zonal winds early in the long rains (March) are more strongly correlated
with rainfall later in the season (April-May), than the inverse (0.61 compared to 0.37). By also considering
daily zonal winds against rainfall, it is found that the peak correlation occurs at 1 day lag (zonal wind of
one day against rainfall of the next), and is found to be significantly higher than a 1 day lead correlation.
Therefore, both monthly and daily analysis support wind anomalies leading to rainfall anomalies.

3.2. Drivers of Variability of the Zonal Winds
As the main conclusion of section 3.1 is that the zonal winds are strongly correlated with the long rains on
the interannual time scale and can explain the decadal drying trend, an important question is to understand
what is the controlling variability in these zonal winds on interannual and decadal time scales.

Recent work has shown the influence of the MJO amplitude on the long rains on interannual time scales
(Pohl & Camberlin, 2006b; Vellinga & Milton, 2018). Figure 3a shows the time series of rainfall and zonal
wind index alongside the February-March MJO amplitude used in Vellinga and Milton (2018). Correlation
between MJO amplitude and zonal winds is 0.31, and between MJO and rainfall is 0.36 (0.34 and 0.35,
respectively, when detrended). These fairly weak correlations are nevertheless significant at the 5% level,
and correlations between MJO and zonal wind are stronger in MERRA-2 (0.48, 0.54 when detrended).
In Figure 3a, there is significantly lower (at 5% level) mean MJO amplitude during P2 than P1 and P3. The
mean MJO amplitude of P2 is 1.31 ± 0.07 while P1 and P3 are 1.53 ± 0.11 and 1.70 ± 0.09, respectively.
The zonal wind index was regressed against the MJO amplitude (a), giving a regression equation of u =
0.58a − 0.86. The change in mean MJO amplitude from P1 to P2 is −0.21 ± 0.14, giving an expected change
in mean zonal wind of −0.13 ± 0.07 m s−1 from Equation 1. The observed change in the zonal wind from P1
to P2 is −0.99 ± 0.26 m s−1, meaning ∼13% of the change in zonal wind can be attributed to the decrease in
MJO amplitude. Similarly, regressing the rainfall against the MJO amplitude leads to an expected change of
−0.09± 0.10 mm day−1. The observed change in mean of the rainfall from P1 to P2 is−0.50± 0.14 mm day−1,
so ∼18% of the change in rainfall can be attributed to the decrease in MJO amplitude.

Pohl and Camberlin (2006a) highlighted how different phases of the MJO influence winds around East
Africa, some phases giving easterly anomalies, others westerly, so it is likely that by considering only ampli-
tude these opposite influences mostly cancel out, accounting for the low correlations when amplitude
alone is considered. However, if the wind response to phases is asymmetric, as for rainfall (Vellinga &
Milton, 2018), this could explain the significant correlation, providing evidence that the MJO influences
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Figure 4. Interannual and decadal geopotential patterns over Africa. (a) Composites of 700 hPa geopotential height and winds for (a) INTERANNUAL, and
(b), DECADAL. (c) Transect of mean geopotential height (purple) across each latitude for the purple box shown in (a), and gradient of the geopotential height
(blue) multiplied by −1, following blue arrow shown in (a), for P1 (dashed), P2 (dotted), all years (solid). Inset boxes show geopotential gradients zoomed in
to edges of zonal wind box (brown box). (d) 850 hPa temperature and 700 hPa winds for DECADAL, hatching denotes areas where the composite values
are significantly different from 0.

interannual and decadal variability of the zonal winds. Alternatively, it may be that the mechanism driving
variability in the zonal winds also impacts MJO amplitude. The effects of different phases of the MJO on the
zonal winds and rainfall are considered. Figure 3b shows box and whisker diagrams of the daily mean of
the zonal wind index, separated by MJO phase and separated into inactive days (amplitude < 1) and active
days (amplitude > 1), in MAM. If the zonal winds of the inactive days are more strongly easterly than the
active days, it can be concluded that the influence of the MJO on wind is asymmetric as discussed above. To
determine this, it is assumed that the converse is true: the mean winds of active and inactive days are the
same. A sinusoidal wave is fitted based on this assumption; however, the wind is overall less easterly than
predicted by the curve, implying that the mean winds of active and inactive days are different. In particular,
the phases reducing strength of easterlies (1–4) and also Phase 5, are less strongly easterly, while the phases
increasing strength of easterlies lie roughly on the curve. To confirm this, taking the mean zonal wind of
all active (−4.81 m s−1), and inactive days (−5.02 m s−1), and performing a one-sided t test, it is found that
the mean zonal winds of active days are less easterly, significant at the 1% level (a similar but weaker result
is found using MERRA-2, significant at the 5% level). Despite this asymmetry, it is still possible that rather
than the MJO influencing the zonal winds (or vice versa), the correlation could result from a third process
influencing both the MJO amplitude and zonal winds separately.

While the MJO can explain some of the interannual and decadal variability of the zonal winds, the fairly
weak correlation and low percentage of explained change in mean suggests that other factors must be
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involved. Figure 4 shows dry minus wet composites of geopotential height at 700 hPa (Z700), for INTER-
ANNUAL and DECADAL. In both the INTERANNUAL and DECADAL the 700 hPa wind anomalies follow
closely the gradients in anomaly in Z700, as expected. Figure 4c also shows the 850 hPa temperature for
DECADAL. By the hypsometric equation, the geopotential thickness between two layers is directly propor-
tional to the mean temperature within them, and this composite is therefore similar to the geopotential
thickness between 700 and 925 hPa (not shown).

In the INTERANNUAL composite (Figure 4a), there is a geopotential anomaly over the eastern Sahel,
extending over Arabia. This area is also where both geopotential thickness and Z700 are maximal in the cli-
matology (Figures S1c and S1d). Therefore, in dry years, the maxima in geopotential thickness and Z700 are
increased, causing a larger meridional geopotential gradient from the Sahel to the Congo, consistent with
increased strength of easterly winds.

In the DECADAL composites (Figures 4c and 4d), there are large similarities between the composites of
Z700 and 850 hPa temperature. An anomaly over the eastern Sahel, as in Figure 4a also stands out in both of
these, with positive anomalies, reducing in magnitude from 15◦N southward through the equator. This again
gives an increased geopotential gradient at 700 hPa, consistent with increased strength of easterly winds.
Two large anomalies stand out over the west Sahara and Arabian peninsula. These are the approximate
locations of the summertime SHL and Arabian Heat Low (AHL). The 700–925 hPa geopotential thickness
is a common measure of the strength of the SHL, as defined by Lavaysse et al. (2009), implying that both the
SHL and AHL have increased in strength.

Figure 4c shows the latitudinally averaged Z700 across the purple box in Figure 4a, and latitudinal gradient
of Z700 multiplied by −1 over this region, for P1, P2, and all years. An increase in Z700 across the region
in P2 compared with P1 is evident. There is also a maximum (trough) in the gradient at roughly 10◦N, with
P2 displaying a stronger maximum. This causes a stronger gradient on the north side of the zonal wind
box (5◦N: right inset of Figure 4c) while at the southern edge of the box (5◦S: left inset of Figure 4c) such a
pattern is absent. This shows that the increased meridional geopotential gradient across the zonal wind box
is related to the increased geopotential gradient to the north, from the increasingly strong maximum in the
Z700 in the eastern Sahel. This is also apparent in MERRA-2 (Figure S2d). In Figure 4d, from P1 to P2, the
increase in temperature (and geopotential thickness) is driven by a more rapidly warming eastern Sahel and
west Sahara, than over the Congo basin, increasing the meridional geopotential gradient at 700 hPa, with
increasingly strong easterly winds over the Congo region and drier East Africa.

Another possible mechanism could be analogous to equatorial superrotation (Dima et al., 2005; Kraucunas
& Hartmann, 2005; Yang et al., 2013). Rainfall is associated with organized convection which can excite
Rossby wave propagation and convergence of zonal momentum to the source of the disturbances. Further,
any regional wind change influences divergence; an easterly anomaly to the west, reducing in magnitude
eastward, produces a decrease in moisture flux convergence over East Africa. However this alone is not
enough to imply that the zonal winds drive rainfall, as anomalous heating from rainfall can also feed back
onto local convergence and circulation.

4. Discussion and Conclusions
This study has investigated the relationship between 700 hPa zonal winds across the Gulf of Guinea and
Congo basin, and rainfall during the East African long rains. It was found that the seasonal mean 700 hPa
zonal wind over this area is strongly correlated with long rains rainfall totals (r = 0.73). Considering periods
similar to Wainwright et al. (2019), with a wet (P1: 1979–1997), dry (P2: 1998–2011), and recovery period
(P3: 2012–2018), it was found that the same relationship is seen on decadal time scales (P2-P1), showing
the importance of the zonal winds to East African climate paradox drying. Meanwhile, a recovery during
P3, in agreement with Wainwright et al. (2019), is seen not only in rainfall but also in the zonal winds. The
mechanism linking the zonal winds to rainfall on interannual time scales is found to quantitatively explain
the long rains drying trend through the decreasing trend in the zonal winds.

The mechanism driving variability in the zonal winds was explored, with some contribution coming from
the MJO amplitude, both on interannual and decadal time scales, with wind response to MJO by phase
being subtly asymmetric, as seen for rainfall (Vellinga & Milton, 2018). There was a significantly weaker
MJO amplitude during P2, accounting for 18% and 13% of the decline in rainfall and wind, respectively.
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Meanwhile, another mechanism for the interannual and decadal variability was shown considering changes
in geopotential gradients. For interannual variability, these lead to stronger easterlies in drier years due to
higher geopotential height over the eastern Sahel, caused by increased warming here, strengthening the
geopotential gradient. For decadal variability, a similar mechanism is present but is also aligned to increased
heating around Arabia and Sahara regions.

What has not been explored is the source of differing rates of warming between the Sahel and the Congo
basin. During the study period, a decadal decline in rainfall over Arabia has been reported (Almazroui
et al., 2012), excess heating during this period could be linked to a decadal trend in dust activity over
the Arabian Peninsula (Yu et al., 2015), that is also causing a strengthening AHL (Solmon et al., 2015).
Wainwright et al. (2019) linked a deepening AHL to faster progression of the tropical rainband over East
Africa during the long rains, shortening the season, and Dunning et al. (2018) links a deepening SHL under
climate change to a delayed return of the rainband southward in boreal autumn. This motivates further
investigation into variations in seasonal Hadley Cell migration, and the associated impacts on zonal flow.
The eastern Sahel and Arabia region has experienced a rapid, almost step-like change in temperature around
the end of P1 (Almazroui et al., 2012; Attada et al., 2018; Hu et al., 2019; Taylor et al., 2018). The ampli-
fied Saharan change in temperature is linked to the observed deepening of the SHL, also responsible for
the partial recovery of the Sahelian drought (Evan et al., 2015). Thus the SHL plays two key roles: affect-
ing monsoon onset/ retreat and the latitudinal progression of the rain band (Dunning et al., 2018; Lavaysse
et al., 2009), and as shown here by affecting zonal winds across central Africa, which are important for water
vapor transport and East African rainfall (Finney et al., 2019). Further strengthening of the SHL is expected
under climate change (Biasutti et al., 2009; Dong & Sutton, 2015), which through the above mechanisms
could lead to further drying of the long rains.

Based on these results, further understanding of how relative warming rates might change in the future
could provide an alternative viewpoint into the future of the long rains through changes in regional dynam-
ics (also supported by Kent et al., 2015). For example, Giannini et al. (2018) demonstrated that in the Coupled
Model Intercomparison Project phase 5 (CMIP5; Taylor et al., 2012), a mechanism consistent with wetter
years shown here is present during MAM, with moisture advected away from the Congo toward East Africa,
linked to a slower overturning circulation under climate change.

While in the long rains, sea surface temperatures (SSTs) are less well connected to rainfall totals than in
the short rains, weaker, but significant, relations do exist on both interannual (Ogallo, 1988; Vellinga &
Milton, 2018), and longer-term (Bahaga et al., 2019; Liebmann et al., 2014; Williams & Funk, 2011) time
scales. Understanding how the processes discussed here are influenced by SSTs could determine their pre-
dictability. Given that these zonal winds are of great importance to variability within the long rains, it should
be a priority to investigate whether forecast models are able to capture this relationship. This could improve
seasonal forecasting and provide useful information on the potential future of the long rains.

Data Availability Statement
All data used in this study can be freely downloaded from the following locations: GPCP data were pro-
vided by NOAA/ESRL PSD (www.esrl.noaa.gov/psd/data/gridded/data.gpcp.html) ERA-Interim Reanalysis
data were provided by ECMWF (www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim).
MERRA-2 was provided by the Global Modeling and Assimilation Office, NASA (gmao.gsfc.nasa.gov/
reanalysis/MERRA-2/). Daily MJO Index data were provided by the Bureau of Meteorology, Melbourne,
Australia (www.bom.gov.au/climate/mjo).
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Figure S1. Long rains climatologies. (a) Climatol-
ogy of 700hPa winds and zonal winds (colours) during
MAM. (b) Climatology of single level moisture flux over
the brown box in a, during MAM, calculated as monthly
mean zonal wind, u, multiplied by monthly mean spe-
cific humidity, q, solid line. Shading bounds the mois-
ture flux of the mean of the INTERANNUAL wet years
and dry years. Dashed line shows the moisture flux
anomaly at each level for INTERANNUAL driest years
minus wettest years. (c) Climatology of 700hPa winds
and geopotential height (colours) during MAM. (d) Cli-
matology of 700hPa winds and geopotential thickness be-
tween 700hPa and 925hPa (colours) during MAM.
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Figure S2. MERRA-2 Reanalysis results. Repeated
plots of Figure 1d,e, 2a, 4c, using MERRA-2 instead
of ERA-Interim. Composite of 700hPa winds and zonal
wind (colours) across Africa during the long rains for (a)
driest years minus wettest years, (b) dry period minus
wet period (P2−P1). Brown boxes show region used to
calculate zonal wind index, hatching shows regions sig-
nificantly different from 0. (c) Time series of zonal wind
anomaly (brown) and rainfall anomaly (blue) for boxes
defined in Figure 1, dashed lines show time series after
removing linear trends. (d) transect of mean geopoten-
tial height (purple) across each latitude for the purple
box in Figure 4a, for P1 (dashed), P2 (dash-dotted) and
all years (solid). Inset boxes show geopotential gradients
zoomed in to edges of zonal wind box (brown box).
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Chapter 4

Abstract

The East African March-May long rains season is poorly forecast by dynamical

models in comparison to the short rains. Recent studies have demonstrated that

the strength of zonal winds over the Congo basin are tied to long rains rainfall

totals. Here this relationship is shown to be reproduced in the UK Met Office

dynamical seasonal forecast model, GloSea5. Seasonal predictability of these zonal

winds is investigated, with significant negative skill found (r=-0.41), meaning the

sign of anomalies are generally inverted. Forecasts correctly predicting the zonal

winds produce skilful forecasts of the long rains. The Congo zonal winds are

connected to the North Atlantic Oscillation (NAO) by an equatorward propagating

Rossby wave, linking the NAO to the long rains (r=0.50). GloSea5 is able to

capture this relationship in its ensemble members but not its mean due to a low

signal-to-noise ratio. However GloSea5 skilfully forecasts the NAO, offering hope

for skilful dynamical predictions of the long rains.

Plan Language Summary

The East African long rains season, from March to May is poorly forecast by

dynamical models, used to predict weather and climate. However, winds over

the Congo basin have been found to control rainfall over East Africa during this

season, with winds moving eastwards towards East Africa producing more rainfall.

Here, a dynamical model for seasonal forecasts is used. It is found that the model

correctly captures the relationship between eastward winds over the Congo and the

East African long rains. However, when the model tries to predict the strength

of these winds, it consistently gets the forecast in the opposite direction to the

observations. It is found that the winds over the Congo are partly controlled by

conditions over the North Atlantic, in particular the pressure gradient between the

Azores Islands and Iceland, known as the North Atlantic Oscillation (NAO). The

model also reproduces this link, and also can predict changes in the spring NAO,

however it underestimates the size of these changes. If the model can further get

the size of the changes correct, then it may be able to produce useful forecasts for

the East African long rains.
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4.1. Introduction

The East Africa region is highly vulnerable to the impacts of weather and climate ex-

tremes. In particular, due to the aridity of much of East Africa, droughts are a regular

occurrence, for example a year long drought over 2010-11 caused by the failure of two

successive rainfall seasons led to widespread famine costing approximately 250,000 lives

(FAO and FEWS NET 2013). From approximately the 1980s, rainfall totals during the

main rainfall season, the long rains occurring from March to May (MAM), have been

declining (Funk et al. 2005, 2008; Lyon and Dewitt 2012; Viste et al. 2013; Liebmann

et al. 2014; Hoell and Funk 2014; Rowell et al. 2015). Rainfall totals have somewhat

recovered in very recent years (Wainwright et al. 2019). Record breaking rainfall dur-

ing the 2018 long rains led to flooding and damage to infrastructure, and caused the

displacement of approximately 300,000 people (Kilavi et al. 2018). Meanwhile the wet

2020 long rains, following a wet end of 2019, led to record breaking Lake Victoria lake

levels, and extensive flooding (Wainwright et al. 2020).

Due to the seasonal nature of rainfall in this region, and the timescales of occurrence of

these events, seasonal forecasts can be an invaluable tool in preparing for, mitigating,

or even preventing, humanitarian disasters. Over the short rains season occurring

from October to December (OND), skilful seasonal forecasts have long been produced,

both using statistical (Farmer 1988; Mutai et al. 1998), and dynamical (Batté and

Déqué 2011; Bahaga et al. 2016; Walker et al. 2019) models. These largely rely on

the teleconnections between the short rains and large-scale modes of variability in sea

surface temperatures (SSTs), with links to El Niño-Southern Oscillation (ENSO) in the

Pacific Ocean (Ogallo 1988, 1989; Hutchinson 1992; Nicholson and Kim 1997; Indeje

et al. 2000; Camberlin et al. 2001) and the Indian Ocean Dipole (IOD), in the Indian

Ocean (Saji et al. 1999; Webster et al. 1999; Black et al. 2003; Yamagata et al. 2004;

Behera et al. 2005). Such correlations with large-scale modes of variability in SSTs

are, however, absent in the long rains (Ogallo 1988; Camberlin and Wairoto 1997;

Pohl and Camberlin 2006), and dynamical forecasts have demonstrated little forecast

skill (Batté and Déqué 2011; Dutra et al. 2013; Mwangi et al. 2014; Walker et al.

2019). Statistical models of rainfall totals during this season have had slightly more

success. Funk et al. (2014) demonstrated that an emerging connection between the long

rains and a developing gradient in SSTs in the west Pacific, linked to recent droughts

(Williams and Funk 2011), can be used to generate an empirical forecast.

Most other statistical predictions of the long rains have involved the use of atmospheric

variables as predictors, finding increased skill compared to using just SSTs (Nicholson
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2014, 2015, 2017; Vellinga and Milton 2018). Meanwhile, the technique of using dynami-

cal models to forecast predictable large-scale factors, followed by statistical downscaling

using observed or modelled relationships with rainfall, has also been used with some

success (Shukla et al. 2014; Colman et al. 2020).

Previous work has highlighted that westerly winds into East Africa originating from

over the Congo basin are particularly relevant to the long rains (Nakamura 1968; Okoola

1999a,b; Kilavi et al. 2018; Finney et al. 2019; Walker et al. 2020). Finney et al. (2019)

demonstrated that on westerly days during the long rains, there is above average rainfall

due to advection of moist air from the Congo. Meanwhile Walker et al. (2020) showed

that a strong relationship between 700hPa zonal winds over the Congo basin, and long

rains rainfall totals, occurs on both an inter-annual and decadal timescale, offering an

explanation for recent East African decadal drying trends.

Motivated by the previous results of statistical forecasts of the long rains using atmo-

spheric variables, the dire need for seasonal forecasts for the long rains season, and

the observed relation between westerly winds and the long rains, this work investigates

the potential for improved dynamical model predictions of the long rains. Section 4.2

introduces the data used for this study. Section 4.3.1 looks at the observed relation-

ship between westerly winds and East African rainfall in a dynamical seasonal forecast

model. Section 4.3.2 further examines the observed relation, and identifies a poten-

tial source of predictability in the mid-latitudes, the spring North Atlantic Oscillation

(NAO). Section 4.3.3 demonstrates that the NAO is responsible for some of the vari-

ability in the long rains, and that this is captured in the dynamical model. Finally

Section 4.4 provides a discussion and summary of the results.

4.2. Data and Methods

The dynamical seasonal forecast model used in this study is the UK Met Office Global

Seasonal Forecast System version 5 (GloSea5; MacLachlan et al. 2015). GloSea5 is a

coupled atmosphere-ocean forecast system. The core of GloSea5 is the Hadley Centre

Global Environmental Model version 3 (HadGEM3; Hewitt et al. 2011). It has an

horizontal atmospheric resolution of 0.833◦×0.556◦, with 85 vertical levels. The oceanic

component consists of the Nucleus for European Modelling of the Ocean (NEMO;

Madec 2016) version 3, with an ocean resolution of 0.25◦× 0.25◦ and 75 vertical levels.

For this study, operational hindcasts are used. These are run alongside the forecast for
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the purposes of bias correction and skill estimation. They cover the period 1993-2016.

For each initialisation month, 28 members are initialised, with 7 members initialised

on 4 fixed dates per month (1st, 9th, 17th, 25th). Members initialised on the same

date have their initial conditions perturbed using a stochastic physics scheme (Bowler

et al. 2009). Hindcasts run for 210 days from the initialisation date, meaning they cover

the 6 full months after the initialisation month. For this study, hindcasts initialised in

February are used.

The observational rainfall data for this study are Global Precipitation Climatology

Project Version 2.3 (GPCP; Adler et al. 2003), whilst wind and pressure data were

obtained from European Centre for Medium-Range Weather Forecasts (ECMWF) In-

terim Reanalysis (ERA-Interim; Dee et al. 2011). The region of East Africa used here is

defined as land areas between 12.5◦N to 10◦S, 30◦E to 52.5◦E. The Congo zonal winds

were calculated as the mean zonal wind at 700hPa over the region 5◦N to 5◦S, 10◦E to

30◦E. In the climatology the zonal winds over the Congo at 700hPa are easterlies, strong

enough that on the seasonal timescale they always appear easterly, although they can

be westerly on individual days. Positive anomalies from the mean in the zonal winds

are westerly anomalies. Composites based upon the zonal winds take the years with

the largest westerly anomalies (referred to as weakest easterlies), and subtract them

from the years with the largest easterly anomalies (referred to as strongest easterlies).

The North Atlantic Oscillation (NAO) index is defined as the pressure difference be-

tween the Azores islands and Iceland. In this study this is defined as the mean sea

level pressure difference between boxes located over 45◦N to 35◦N, 30◦W to 10◦W for

the Azores, and 67.5◦N to 57.5◦N, 30◦W to 10◦W for Iceland. In GloSea5, these are

shifted 5◦ northwards, although results are insensitive to slight shifts in the exact defi-

nitions of these locations. The pressure difference is then converted to a standardised

anomaly, with the mean pressure difference subtracted from the data, then divided by

the standard deviation.

All indices in this study are calculated as the seasonal mean over March to May. The

period considered for all results is 1993-2016, matching with the years of the GloSea5

hindcasts.

121



Chapter 4

4.3. Results

4.3.1. Seasonal forecasting of the long rains and Congo westerlies in

GloSea5

Walker et al. (2020) demonstrated an interannual correlation of approximately 0.7 be-

tween the East African long rains (MAM) rainfall totals and zonal wind anomalies at

700hPa over the Congo basin (5◦N to 5◦S, 10◦W to 30◦E) during MAM. Figure 4.1a

shows a scatter of seasonal mean East African rainfall against seasonal mean zonal

winds in a similar, smaller box located at 5◦N to 5◦S, 10◦E to 30◦E for both observa-

tions and individual ensemble members of GloSea5, over the period 1993-2016. The

correlation in observations over this smaller region and shorter period is consistent with

the findings of Walker et al. (2020), at 0.72, and is statistically indistinguishable from

that of GloSea5 over all ensemble members at 0.68. Considering individual ensemble

members separately, a box and whisker diagram of the range of correlations (Figure

4.1a inset) shows that this relationship is captured across all members, with a spread

from approximately 0.52 to 0.83, with the observed correlation lying within this range.

This all suggests that the ensemble members realistically capture the processes linking

the zonal winds and East African rainfall. This is physically reasonable due to the zonal

wind box being adjacent to East Africa. Additionally, due to the topography, the air at

700hPa is still relatively moist, and so the strengths of the zonal winds over the Congo

are likely tied to the moisture flux into the East Africa region, and through atmospheric

water budget constraints, also tied to the rainfall total. Note that the ensemble mean

correlation between the zonal winds and rainfall, however, is much weaker (although

still significant at the 5% level), at 0.48.

A previous study of the forecasting ability of GloSea5 by Walker et al. (2019) identified

that the model performs well at predicting rainfall totals during the short rains, with

a correlation of approximately 0.7 with the observations, and generally skilful relative

operating characteristic (ROC) scores, whilst forecast skill is lower for the long rains.

It is plausible that, due to the strength of connection between the zonal winds over

the Congo, and the rainfall, that a lack of skill in forecasting the winds may account

for a lack of skill in predicting rainfall. Figure 4.1b shows the correlation coefficient of

GloSea5 forecasts of the Congo zonal winds over MAM against observations as a func-

tion of ensemble size, where ensembles of each size are repeatedly randomly generated

from the available members to obtain a mean correlation. This process is repeated to

examine the ability of the model to predict itself, by replacing the observations with
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Figure 4.1.: East African rainfall and Congo winds. a) Scatter of March-May (MAM)
seasonal mean 700hPa zonal wind over the Congo against rainfall over East Africa, for
observations (black) and individual ensemble members of GloSea5 (purple) for 1993-
2016. The r-value at the bottom is the correlation of all model points. Inset box
and whisker plot of correlation coefficients of zonal wind against rainfall for individual
GloSea5 ensemble members. Small purple crosses show individual ensemble member
samples of equal size to the observed record, large purple cross shows ensemble mean
correlation, the black cross shows observed correlation. b) Correlation coefficient of
GloSea5 forecast Congo zonal wind against observations, as a function of ensemble size
(solid). Ensembles of each size are generated through selecting random members of the
ensemble, and repeating 1000 times. The dashed line is the correlation when replacing
observations with one member of the ensemble.
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a single random ensemble member each time. This can be considered as a measure

to estimate how well the forecast may be able to predict the observations, however,

recent studies have found a signal-to-noise paradox in seasonal forecasts, whereby the

forecasts are more capable of predicting the observations than themselves (Scaife et al.

2014; Eade et al. 2014; Scaife and Smith 2018). In Figure 4.1b the comparison against

observations demonstrates a striking negative correlation, that consistently increases in

magnitude with increased ensemble size, giving a significant negative correlation value

of -0.41 between the observations and model when the full ensemble is considered, which

indicates that the model tends to forecast variations in the wind to be in the opposite

direction to those observed. In contrast, comparing the model against itself leads to a

weakly positive correlation.

This significant negative correlation leads to the conclusion that there may indeed be

predictability for the long rains within dynamical models through correct prediction

of these zonal winds. As the model is capable of predicting the observed variability

in the zonal winds (albeit with a reversed sign), then, given the correct physics in the

model linking the zonal winds and the rainfall, forecasting of the rainfall is theoretically

possible.

To demonstrate the potential for predictability, for each year of the hindcast period,

only ensemble members who correctly forecast the sign of the anomaly of the zonal

winds relative to the mean were taken, and their rainfall predictions used to calculate

an adjusted ensemble mean. A time series of these predictions is shown in Figure

4.2. Corrected zonal winds in an adjusted ensemble are shown in Figure 4.2a, with

circles marking ensemble members that forecast the correct sign of the anomaly of

the zonal wind. Doing this unsurprisingly leads to a very high correlation between

the observed and predicted zonal wind, and this smaller ensemble now represents an

ensemble that correctly forecasts the zonal winds. By looking at the rainfall predictions

in this smaller ensemble, shown in 4.2b, the correlation between the adjusted ensemble

mean and observed rainfall is found to be 0.71, compared to the original ensemble

correlation of 0.16. This sensitivity test confirms that correct forecasts of the zonal

winds would vastly improve dynamical model forecasts of long rains rainfall.

4.3.2. Predictability of zonal wind variability

Practically, it is impossible to determine in advance which ensemble members will

correctly forecast the sign of the zonal wind anomaly. However, given the results of the
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Figure 4.2.: Time series of a) Congo 700hPa zonal wind, and b) East African rainfall, for
observations (GPCP/ERA-Interim; solid black lines), GloSea5 ensemble mean (dashed
coloured lines), and adjusted GloSea5 ensemble mean (solid coloured lines). Scatter
points show GloSea5 ensemble members for each year. The adjusted ensemble uses
only the ensemble members that correctly predicted the sign of the zonal wind anomaly
(shown with circles), whilst crosses show those members that incorrectly predicted the
sign of the zonal wind and so are excluded from the adjusted ensemble. Correlations
of the original and adjusted ensembles with observations are given in the bottom right
corner.
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previous section, if there exists potential for skilful prediction of the zonal winds over the

Congo, then it follows that dynamical model skill in predicting the long rains would also

improve. To understand the context of the zonal wind anomalies over the Congo within

the larger-scale atmospheric circulation, composites are created containing years of the

largest anomalies of the zonal winds, to investigate potential sources of the anomalies.

Figure 4.3 shows composites of the weakest easterly minus strongest easterly years of

mean zonal wind within the Congo box, for observations, and ensemble members of

GloSea5. In addition to the expected (due to the design of the composite) westerly

anomaly over the Congo, a pattern of alternating anomalous easterly and westerly

winds, oriented with a diagonal tilt from southwest to northeast, are apparent from the

Congo up to the north Atlantic. In particular, these zonal winds appear connected to

the northern hemisphere extratropical jet, with opposing wind anomalies over the north

Atlantic near Iceland, and the Azores islands, in a pattern reminiscent of the North

Atlantic Oscillation (NAO). This pattern is also present in the GloSea5 composite, and

stands out as the only one of any magnitude here. There are however some notable

biases between the two composites; in particular over northern Africa, extending over

the tropical Atlantic Ocean, where the sign of the anomaly in GloSea5 is reversed in

comparison to ERA-Interim. This may be related to previously observed biases over

the Atlantic Ocean, common in many dynamical models (e.g. Richter et al. 2012).

It has previously been shown that GloSea5 can skilfully predict the NAO during boreal

winter (Scaife et al. 2014). If skill extends into spring this leads to the possibility that

the long rains may in fact be predictable via the equatorward propagating Rossby wave

train in Figure 4.3.

4.3.3. The North Atlantic Oscillation and the long rains

Figure 4.4a-c show composites of zonal winds, similar to those seen in Figure 4.3 but

for negative NAO years minus positive NAO years, for observations, GloSea5 ensemble

members, and ensemble mean respectively. In Figure 4.4a,b, the previously observed

patterns of zonal wind anomalies starting over the North Atlantic and extending equa-

torward are still present. The correlations within observations between the MAM NAO

index and the MAM Congo zonal winds, and between the MAM NAO index and long

rains rainfall are -0.39 and -0.49 respectively, both significant at 5% level. This rela-

tionship is also well captured within the ensemble members, with mean correlations

of -0.37 and -0.42 respectively. The negative sign here means that the Congo winds

are more easterly during a positive NAO. However, in Figure 4.4c, the ensemble mean
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Figure 4.3.: Composite of 700hPa winds (arrows) and zonal winds (colours) over MAM,
using years of weakest easterlies over the Congo (brown box) minus years of strongest
easterlies over the Congo, for a) ERA-Interim, and b) GloSea5 ensemble members.
Years used in the composites are determined within their own datasets.

fails to capture this relationship. The amplitude of the zonal wind anomalies is much

smaller over the North Atlantic, and so the teleconnection fails to reach the zonal winds

over the Congo. This is reflected in the fact that the ensemble members capture the

correlation between the NAO and zonal winds seen in the observations, meanwhile the

ensemble mean does not (correlations of the ensemble mean NAO against rainfall and

zonal wind are found to not be significantly different from zero). As the ensemble

mean measures the predictable component of the variability, this lack of teleconnection

could mean the relationship is unpredictable, or that there is an error related to the

amplitude of the NAO signal.

The ability of the ensemble mean to predict the NAO during MAM is investigated. It

is found that the correlation skill between the ensemble mean NAO and the observed

NAO index is 0.51, significant at the 5% level. Figure 4.4d shows a repeat of Figure

4.1b for the NAO, with correlation of GloSea5 against observations, as a function of

ensemble size. The dashed line also shows the correlation against a single randomly

chosen ensemble member. From this, several things are apparent. Firstly, that GloSea5

is capable of predicting the spring NAO. Secondly, given the shape of the curve, a larger

ensemble could still add a reasonable improvement to the skill. Thirdly, the model’s

ability to predict itself is low. This is in agreement with Scaife et al. (2014), who found

good forecast skill in winter in predicting the NAO, but showed a similar error in winter

forecasts.
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Figure 4.4.: Composite of 700hPa winds (arrows) and zonal winds (colours) over MAM,
using years of negative NAO index minus years of positive NAO index, for a) ERA-
Interim, b) GloSea5 ensemble members, and c) GloSea5 ensemble mean. Years used in
the composites are determined within their own datasets. d) Correlation coefficient of
GloSea5 forecast MAM seasonal mean NAO index against observations, as a function
of ensemble size (solid). Ensembles of each size are generated through selecting random
members of the ensemble, and repeated 1000 times. Dashed line is correlation when
replacing observations with one member of the ensemble. Time series of e) NAO,
and f) East African rainfall, for observations (GPCP/ERA-Interim; solid black lines),
GloSea5 ensemble mean (dashed coloured lines), and adjusted GloSea5 ensemble mean
(solid coloured lines). Scatter points show GloSea5 ensemble members for each year.
The adjusted ensemble uses only the ensemble members that correctly predicted the
sign of the NAO index (shown with circles), whilst crosses show those members that
incorrectly predicted the sign of the NAO index and so are excluded from the adjusted
ensemble. Correlations of the original and adjusted ensembles with observations are
given in the bottom right corner.

128



Predictability and variability of East African rainfall seasons

The NAO in the ensemble mean, although well predicted, is too small, and so the

teleconnections relating it to East Africa are hidden by noise. However, if the technique

applied to the ensemble using zonal winds in Figure 4.2, is applied to the NAO, the

impact of better NAO forecasts can be measured. Selecting only the ensemble members

correctly forecasting the sign of the NAO, generates an ensemble with a larger amplitude

NAO (Figure 4.4e). Considering East African rainfall in this case (shown in Figure

4.4f), a correlation of 0.46 with the observations is found. This is statistically significant

at 5% level, and further demonstrates that the long rains are indeed predictable.

4.4. Discussion and Conclusions

There has long been a contrast in the seasonal forecasting skill of the long rains and

short rains over East Africa (Walker et al. 2019). Meanwhile recent work has demon-

strated the potential importance of westerly winds originating from over the Congo

basin in controlling inter-annual variability in the long rains (Finney et al. 2019; Walker

et al. 2020). This study has investigated whether such a relationship between the zonal

winds over the Congo and East African rainfall during the long rains exists in a dynam-

ical seasonal forecast model, GloSea5. It was found that not only did the dynamical

model capture this relationship, but that there was the potential for predictability of

the zonal winds within the model. However, the sign of the correlation of the fore-

cast zonal winds and the observed was negative. It was demonstrated that correct

predictions of the zonal winds would allow skilful seasonal forecasts for the long rains.

The study then investigated potential sources of predictability of the Congo zonal winds.

Considering composites of weak and strong zonal winds years, a Rossby wavetrain

was observed in both the model and the observations connecting the Congo winds to

the mid-latitudes, in particular, over the Atlantic Ocean. This suggested the possible

role of the North Atlantic Oscillation (NAO), which has previously been shown to be

predictable in GloSea5 in boreal winter.

Further investigation into the NAO using composites of zonal winds demonstrated

that the NAO does indeed contribute to zonal wind variability over the Congo basin.

This was seen in both the observations, and captured in GloSea5 ensemble members.

Significant correlations between the NAO and Congo zonal winds and East African

rainfall were found. The teleconnection was found to be absent in the ensemble mean

however, which also displayed a much reduced amplitude of the NAO. It was found that,

in agreement with previous studies looking at boreal winter NAO there is a weak signal-
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to-noise ratio in the spring NAO forecasts (Scaife et al. 2014; Eade et al. 2014; Scaife

and Smith 2018; Smith et al. 2020); the NAO is predictable, however it’s amplitude is

small given the high correlation, and so its teleconnections are overwhelmed by noise.

Considering an ensemble with an increased NAO amplitude demonstrates that a skilful

forecast of the East African long rains can be produced.

The question still remains over why GloSea5 demonstrates negative skill in forecasting

the Congo zonal winds in the ensemble mean: the forecast predicts stronger easter-

lies when weaker easterlies are observed and vice versa. Given the signal linking the

NAO to the Congo zonal winds disappears in the ensemble mean, other factors must

be controlling them. It is likely that biases within the model are partly responsible.

Previous studies have identified several SST biases, particularly over the Atlantic which

are likely to be relevant here, common to many dynamical models (Richter et al. 2012).

These biases are likely to have effects on the mean state of the circulation in this region,

that could affect predictability. The presence of such biases should be checked within

GloSea5, and sensitivity experiments (such as nudging experiments pushing found bi-

ases towards observations) could be performed to examine whether this improves the

zonal wind predictions. Further analysis could also be performed to investigate the

Rossby wave mechanism, such as using ray-tracing. Differences in the mean state cir-

culation between observations and the model could alter the Rossby wavetrain, leading

to a misplaced teleconnection which may also help explain the negative predictability

within GloSea5.
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GloSea5 seasonal forecasts were generated by the UK Met Office and provided by

the Copernicus Climate Change Service (C3S) Climate Data Store (https://cds.

climate.copernicus.eu/).
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Chapter 5.

Conclusions

5.1. Overview

The aim of this thesis was to improve the current state of understanding of the pre-

dictability and variability of the rainfall seasons in East Africa, in particular considering

seasonal forecasts. It aimed to do this through evaluating seasonal forecasts to identify

weaknesses before investigating physical processes controlling rainfall variability. This

work is important for improvements to seasonal forecasting, in order to develop early

warning systems for high impact events such as widespread droughts. A recent example

is the 2010-11 drought that cost as many as a quarter of a million lives through failed

harvests leading to famine (FAO and FEWS NET 2013). Additionally, due to the high

percentage contribution of agriculture to gross domestic product (GDP) in the region,

improvements to seasonal forecasts would allow increased productivity of crop growth,

boosting economic development.

In Chapter 2, the thesis evaluated the current status of the ability of seasonal forecasts

to predict East Africa’s rainfall seasons. The ability of the UK Met Office operational

dynamical seasonal forecasting model, GloSea5, was evaluated, and compared to the

most widely used forecasts within the region, the Greater Horn of Africa Climate Out-

look Forum (GHACOF) consensus forecasts. Previous work has performed evaluation of

other dynamical models predictions of East African rainfall (e.g. Batté and Déqué 2011;

Bahaga et al. 2016), and an evaluation of Regional Climate Outlook Forums (RCOFs)

across Africa, including GHACOF, was performed by Mason and Chidzambwa (2008)

after 10 years of forecasts had been produced. However, no study has previously pro-

vided a side-by-side comparison of these two types of forecasts to identify the relative

merits and drawbacks of each. Additionally, regular evaluation of GHACOF forecasts
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was previously only performed on a single forecast basis, rather than updating the

performance of the forecasts as a whole. Improved understanding of the ability of the

consensus forecasts allows for improvements and better usage and communication to

users of the potential uncertainties involved, which can aid in decision making.

It was found that in both GloSea5 and GHACOF, the ability to forecast the October-

December (OND) short rains was high. In particular, forecasting seasons with above

or below normal rainfall showed high skill, with these being important to forecast due

to their adverse impacts of flooding or droughts respectively. Skilful forecasts of above

normal rainfall could also offer economic benefits by taking advantage of increased

crop growth, such as in the case of the 2009 short rains, where additional seeds were

distributed to farmers in Kenya following an above normal rainfall forecast, with many

farmers producing an increased yield (Graham et al. 2012). The skill of forecasts for

near normal rainfall was found to be low, a common result of probabilistic forecasts split

into tercile categories (van den Dool and Toth 1991). Meanwhile in both forecasts, skill

for the long rains was low. In general GloSea5 outperformed GHACOF, with higher

relative operating characteristic (ROC) scores, and Heidke skill score (HSS) values

across both seasons, the exception to this being below normal forecasts of the long

rains, in which GHACOF performed better.

Spatial maps of the ROC score of the two forecasts highlighted similar regions in both

where the forecast was most skilful. In the short rains season it was found that this

coincided with the regions most strongly influenced by the Indian Ocean Dipole (IOD)

and El Niño-Southern Oscillation (ENSO). Limiting the forecasts to years where an

IOD event was forecast (positive or negative) in GloSea led to widespread increase in

skill in both the GHACOF and dynamical forecasts.

Several potential areas for improvement were identified within the GHACOF forecasts.

These were related to the method and strategy with which the forecasts are put to-

gether. Forecasts are made to be risk averse, and large numbers of the forecasts were

found to frequently over-estimate the probability of near normal rainfall, which has

been shown to have low skill, and is considered of less importance than prediction of

the extremes. This led to the knock on effect that forecast probabilities of the above

and below normal categories were often too low, and changed little between wet and

dry years, leading to under-confident forecasts of low resolution. This is in agreement

with the earlier findings of Mason and Chidzambwa (2008). Increasing the confidence

of these forecasts would likely produce benefits, especially in the short rains season,

when an IOD or ENSO event is forecast to take place. GloSea5 meanwhile displayed
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over-confidence, where it forecast too strongly in one direction or another. It was also

noted that the contrasting over-confidence in GloSea5, and the under-confidence in

GHACOF could mean that increased use of the dynamical model forecast probabilities

in the GHACOF forecast could generate a more balanced forecast.

Further investigation into the GloSea5 system revealed that during the short rains

there was a large wet bias in the model. This increased approximately linearly with

lead time, and was accompanied by biases over the Indian Ocean. In the eastern

Indian Ocean a cold sea surface temperature (SST) bias that increased with lead time

was observed. With the cold bias was an accompanying high surface pressure bias over

the eastern Indian Ocean, and a resulting easterly wind bias over the Indian Ocean in

the lower troposphere. This setup is similar to a positive IOD event as outlined by

(Saji et al. 1999). A similar bias has previously been found to exist in many of the

Coupled Model Intercomparison Project version 5 (CMIP5) models (Hirons and Turner

2018), and those with this bias struggle to fully capture the influence that year-to-year

variations in the IOD have on the short rains. This was also the case in GloSea5, where

it was found that coupling between the Indian Ocean and the short rains was too weak,

suggesting that improvements to this bias could further improve short rains forecasts.

The result from Chapter 2 highlighting the low skill of forecasts of the long rains

narrowed the focus of Chapters 3 and 4 towards improving the understanding of the

long rains, to ultimately provide information that may improve seasonal forecasts for

this season. A recent study by Finney et al. (2019) demonstrated that days where zonal

winds over East Africa, in particular over Lake Victoria, were westerly, more abundant

rainfall was observed, as moist air from over the Congo was imported into the region.

In Chapter 3, the study by Finney et al. (2019) was extended, and the influence of

winds over the Congo basin on the East African long rains was investigated. A strong

relationship was found between the zonal winds at 700hPa over the Congo basin, and

rainfall during the long rains on an inter-annual timescale. Wetter long rains seasons

were accompanied by zonal winds that had a westerly anomaly, agreeing with previous

studies (Nakamura 1968; Okoola 1999; Finney et al. 2019). It was also observed that

the decadal trends of the zonal winds matched that of the long rains. The widely

observed and documented drying of the long rains in recent decades (Funk et al. 2005,

2008; Lyon and Dewitt 2012; Liebmann et al. 2014; Hoell and Funk 2014; Rowell et al.

2015) coincided with generally more strongly easterly zonal winds over the Congo.

Additionally, Wainwright et al. (2019) suggested there is a possibility of a recovery in

the long rains is emerging, and there appeared to be a recovery in the zonal winds in
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agreement with this. It was further found that based on the inter-annual relationship

between the zonal winds and the rainfall, the decadal change observed in the zonal

winds would give a sufficient change in the rainfall to explain the observed drying

trend.

The study also demonstrated some possible sources of variations in the zonal winds. It

was found that the amplitude of the Madden-Julian Oscillation (MJO), known to link

to the East African long rains (Pohl and Camberlin 2006a,b; Vellinga and Milton 2018)

contained decadal variability, with a lower mean amplitude during the driest period of

the long rains.

A proposed mechanism for the decadal variability in the zonal winds was that in recent

years heating of low-level air over the eastern Sahel has occurred more quickly than

further south over the Congo region, which by the hypsometric equation is directly

proportional to the geopotential thickness of the layer of air. This has increased the

geopotential gradient between the Sahel and Congo, leading to stronger easterly winds.

Chapter 4 built on the results of Chapter 3, by investigating the Congo zonal winds

in GloSea5, and further determining whether the Congo zonal winds are predictable.

GloSea5 was found to correctly reproduce the observed link between the Congo zonal

winds and the rainfall in its ensemble members, and also in the ensemble mean, how-

ever this relationship was found to be weaker in the ensemble mean. Predictions of

variability of the Congo zonal wind were investigated in GloSea5, and it was found

that the correlation coefficient between GloSea5 and the observations was significant

but negative (i.e. forecasts for stronger easterly winds coincided with observations of

weaker easterly winds), suggesting that its possible that the zonal winds are predictable.

By selecting only ensemble members that correctly forecast the sign of the zonal wind

anomaly, skilful forecasts of the rainfall can be obtained. This cannot be performed on

a real-time operational forecast, as it requires prior knowledge of the observed state of

zonal winds during the season being forecast. However, it is an indication that if the

zonal winds could be forecast skilfully, then the resulting long rains rainfall forecasts

would also be skilful.

Composites of the large-scale circulation of years with the strongest and weakest east-

erlies across the Congo were considered. It was found that the anomalies over the

Congo were accompanied by anomalies of alternating sign northwards up towards the

northern Atlantic Ocean. It was proposed that these anomalies originate here, and

are linked to the North Atlantic Oscillation (NAO), propagating equatorward via a

Rossby wave. Composites of the circulation during the NAO were produced to verify
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the relationship, with anomalies of similar structure observed. This was also captured

in ensemble members of GloSea5, however, the NAO in the ensemble mean was found

to have a much smaller amplitude, and the magnitude of the zonal wind anomalies

was thus much smaller over the North Atlantic region, and therefore the propagation

of these anomalies down to the equator does not occur, or is simply overwhelmed by

noise.

The ability of GloSea5 to forecast the NAO in boreal winter was previously studied by

Scaife et al. (2014), who found high correlations of the model NAO with the observed

when using a sufficiently large ensemble. However, Scaife et al. (2014) also identified

a similar problem whereby the amplitude of the NAO is too small. Here, it was found

that predictions of the NAO in MAM also achieved high skill with larger ensemble

sizes. By comparing the ensemble to individual ensemble members, a lower correlation

is found; the model is better at predicting the observations than itself. This is part of

the signal-to-noise paradox recently discovered in seasonal forecast and climate models

(Eade et al. 2014; Scaife and Smith 2018; Smith et al. 2020). An ensemble of GloSea5

with a corrected NAO was built, by selecting members that forecast the same sign of

anomaly as the observations, and this was shown to produce skilful forecasts of the long

rains. In the future, if the signal-to-noise ratio of the NAO can be improved, along with

improved skill for forecasting the NAO, then skilful operational dynamical forecasts of

the long rains may be possible.

5.2. Wider impact of the work

An updated evaluation of the GHACOF forecasts will aid the Intergovernmental Au-

thority on Development (IGAD) Climate Prediction and Applications Centre (ICPAC)

both on producing their forecasts, and communicating them with the stakeholders.

ICPAC have since updated the format of their forecasts, working alongside the UK

Department for International Development (DFID) Weather and Climate Information

Services for Africa (WISER) Support to ICPAC Project (W2-SIP), as well as through

the Global Challenges Research Fund (GCRF) African Science for Weather Information

and Forecasting Techniques (SWIFT) and Science for Humanitarian Emergencies and

Resilience (SHEAR) Towards Forecast-based Preparedness Action (ForPAc) projects.

The forecasts have moved from the semi-objective, consensus approach discussed and

evaluated in Chapter 2, to an objective forecast directly utilising the outputs of the

different forecasting tools also described in Chapter 2 (WISER 2019). The outputs
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Figure 5.1.: Example of the new format of the GHACOF forecasts, in this case for OND
2020. Figure taken from ICPAC (2020).

are now also digitised and provided in a gridded format. An example of which is seen

in Figure 5.1. This approach means that future, more comprehensive evaluations of

the GHACOF forecasts can be performed. Several other issues highlighted within the

forecasts have also since been addressed, such as the tendency to avoid forecasting with

a probability of 30%. The forecasts are now also presented slightly differently; zones

are used as before, but now they label individually regions where each category is most

probable. Each zone has a scale providing different probabilities for the most probable

category. This enhanced detail should make it easier to differentiate between more and

less confident forecasts, and improve the under-confidence and resolution issues high-

lighted in Chapter 2. Further, work on performing evaluation of another RCOF has

since taken place for Western Africa (Pirret et al. 2020).

Meanwhile, the evaluation of GloSea5 in Chapter 2, and presentation of the origin

of biases could provide useful for model developers, especially due to the result that
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these biases appear consistent between GloSea5 and many other dynamical models such

as those in CMIP5 (Hirons and Turner 2018). Many dynamical models with similar

biases to those found in GloSea here also incorrectly capture the annual cycle of rainfall,

with more rainfall in the short rains than the long rains (Anyah and Qiu 2012; Yang

et al. 2014). Improvements reducing these biases could strengthen the models ability

to capture the link between the Indian Ocean and the short rains, which may further

improve the skill of forecasts for the short rains, with some work already in place to

investigate this further (MacLeod et al. 2020).

It has long been questioned whether the long rains are predictable, or whether a large

proportion of the variability within this season is down to unpredictable noise and in-

ternal factors. Recent studies, such as those by Funk et al. (2014); Vellinga and Milton

(2018) have suggested that predictability may be possible, and that the long rains do

have links to predictable, large-scale modes of variability such as the MJO and Pacific

and Indian Ocean SSTs and the results of Chapters 3 and 4 further demonstrate this.

Although dynamical forecasts of the long rains may not reach the current capabilities of

their short rains forecasts, any improvement of the understanding of variability, espe-

cially the possibility to correctly forecast extreme dry years leading to droughts, could

have large impacts on the region, by helping to prepare for such events, humanitarian

disasters seen in previous events such as the 2010-11 drought (FAO and FEWS NET

2013) could be reduced.

5.3. Limitations of the work

In Chapter 2, difficulties in evaluating the GHACOF consensus forecasts were discussed.

The first identified difficulty in performing an evaluation on the GHACOF forecasts was

the format of forecasts themselves. The regions containing different forecasts were split

with hand-drawn lines. To tackle this, the forecasts were converted into gridded format

using rasterization. This, combined with the coarse resolution of the observations

used, meant that many grid boxes of the GHACOF forecast could have been assigned

to two or even more than two, different probabilities. Further to this, it was noted

that due to the consensus nature of the forecasts, the issued probabilities were not

strictly the anticipated probability of each category, but more a representation of the

confidence of the forecasters based on the available information. Therefore, comparison

with the dynamical model, which the evaluation metrics have been designed for, could

be considered a little unfair. The evaluation was also performed on a relatively small
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dataset of 18 years, meaning there was likely a reasonable uncertainty in the skill score

estimates.

Meanwhile, the limited number of years and relatively small ensemble size of the

GloSea5 operational hindcasts was also an issue within Chapter 2. This lowered the

robustness of results. It should be noted that the ensemble size of the hindcasts has

since been increased from 12 per month to 28 per month. This was a particular problem

for results where active ENSO and IOD years were selected out from the data, as this

dataset then only contained a small number of years for the analysis.

Similarly, in Chapter 3 and 4, the relatively smaller number of years available (40 in

Chapter 3, and 24 in Chapter 4) means that the composite analysis technique only

utilises a small number of years in each case. This lowers the significance of results,

and raises the noise within the composites, making it more difficult to draw conclusions

about the relevant features.

A limitation across all results was the availability and quality of observational data.

The work mostly made use of observations from satellite products for rainfall, due

to sparsity of available rain gauge data, whilst for other fields, reanalyses were the

primary source of a comparison dataset, treated as observations. Satellite observations

are known to have biases due to often measuring rainfall indirectly through other fields,

this is particularly problematic over mountainous regions such as much of East Africa

(Dinku et al. 2007; Cattani et al. 2016). As mentioned above, using observations from

only the satellite era onwards also limits the length of available data, which may impact

on the robustness of results.

5.4. Recommendations for future work

5.4.1. Evaluation of GHACOF and other RCOFs

Several limitations have been highlighted within the evaluation of GHACOF performed

in Chapter 2. One method to improve the evaluation would be to repeat with a higher

resolution observational dataset. A low resolution observation dataset was used to cor-

respond to the World Meteorological Organisation guidelines for evaluating dynamical

seasonal forecasts, however, the evaluation of GHACOF would be more accurate with

a higher resolution, due to the method of their construction. Further, it is recom-

mended that regular evaluation of these forecasts should now take place. This should
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be made more straightforward with recent progress in digitising the forecasts. Even-

tually, the new, objective forecasts should be evaluated separately from the original

semi-subjective forecasts to give an idea of any added value from this new method.

Alternatively, for a faster result, a hindcast set of these objective forecasts could be

generated for the purposes of verification. This would, however, be computationally

expensive. Similar evaluation should also be considered across other RCOF forecasts,

as many other regions use these as their primary operational forecast, with little to no

regular evaluation. Additionally, GHACOF also issues temperature forecasts alongside

the rainfall forecasts, these should also be evaluated in a similar manner.

Other, more user centred metrics could also be considered for performing evaluation.

For example, the extended ROC score presented by Semazzi and Mera (2006), which

combines the original ROC score with the economic value method to evaluate the

forecasts based on a cost-loss ratio that can be defined by the user. This would be a

useful tool for explaining the potential value of taking actions based on the forecasts

to users, by putting for example the relative costs and losses of taking actions or not,

in different outcomes for forecasts. This would also provide another method to further

demonstrate the usage of probabilistic forecasts to users, which still remains a challenge

(Hansen et al. 2011).

With regards to the comparison of GHACOF with dynamical models, the new version

of the GHACOF forecast should also allow a fairer comparison. Additionally, fairer

comparison would be against a multimodel ensemble rather than against a single dy-

namical model, due to the variety of sources utilised within the GHACOF forecast.

A multimodel ensemble would simulate the GHACOF forecast process, as contrasting

results from models would likely lead to a forecast with more forecasts producing less

confident predictions. Previous evaluation of a multimodel ensemble over the short

rains (Bahaga et al. 2016) has also shown that many models may possess less forecast

skill for the short rains than GloSea5.

5.4.2. Congo zonal wind and East African rainfall

Chapter 3 identified the decadal variability of the Congo zonal winds and its influence

on the East African long rains. This relationship could be tested in climate models such

as within the CMIP models to first verify whether these models capture the relationship,

and secondly, examine how it is projected to change under climate change. Giannini

et al. (2018) suggested that weakening moisture convergence over the Congo basin takes
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place in the future climate projections, resulting in the weakening of near-surface winds

and increasing the moisture advected towards East Africa. Given this, it is likely that

the CMIP models do indeed capture the relationship, however, this should be verified.

Understanding the uncertainty on this could aid in understanding projections of the

long rains.

Results of Chapter 4 demonstrated that GloSea5 could capture the observed relation-

ship between zonal winds over the Congo basin and the East African long rains, as

well as being able to produce a skilful forecast of the zonal winds, with incorrect sign.

It should be investigated whether these features are unique to GloSea5, or common

amongst dynamical models. If this result is robust amongst dynamical models, it offers

further evidence that skilful dynamical model forecasts of the long rains are plausible in

the future with model improvements. The potential causes of the negative forecast skill

should be investigated, by investigating whether biases within the model, such as SST

biases in the Atlantic Ocean, are impacting the circulation. This could be performed

by using nudging experiments to alleviate any found biases that may be responsible,

and determining whether this alters the negative skill in forecasting the zonal winds.

The link between the NAO and the long rains should be investigated in more detail

in observations. Currently only a short time period of 24 years is being used. The

proposed Rossby wave response has also not yet been verified, and this is necessary to

truly confirm the result. Performing this would likely involve studying higher temporal

resolution data to identify the occurrence of the Rossby wave. Alternatively, if the

proposed Rossby wave mechanism is not correct, then understanding of how the NAO

might otherwise connect to East Africa needs to be determined before confident usage

of this new information can take place.

Additionally, if the above is verified, the possibility of utilising this new knowledge

to produce a statistical forecast of the long rains should be investigated, as applying

improvements to dynamical models is incredibly complex and can be time consuming.

Statistical forecasts meanwhile, are relatively cheap and fast to produce and make use of

new knowledge (Doblas-Reyes et al. 2013). Although statistical models have drawbacks

such as the potential for over-fitting, when using a well understood mechanism link-

ing the predictors to the predictand, with careful model construction and verification,

increased confidence can be placed in the forecast.
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5.4.3. Directions for model development

Two key areas for potential future investigation by model developers have been high-

lighted in the results of Chapters 2 and 4. Firstly, in Chapter 2, a large wet bias during

the short rains in GloSea5 was identified. Whilst GloSea5 still displayed good skill in

predicting the short rains, the coupling between the short rains and the IOD appeared

too weak, whilst Hirons and Turner (2018) identified that CMIP5 models with a sim-

ilar bias struggled to capture the moisture advection into East Africa during positive

IOD events. Given the results of Hirons and Turner (2018), it is likely that this bias

is not unique to GloSea5 within seasonal forecast models, so it should be investigated

in other seasonal models. For example, do models with smaller Indian Ocean biases

better forecast the IOD, and if so do they better forecast the short rains? Alternatively

is there a link between the bias and the coupling of the IOD and short rains?

The results of Chapter 4 further highlight the problem of the signal-to-noise paradox

in seasonal forecasts, previously found by Scaife et al. (2014); Eade et al. (2014); Scaife

and Smith (2018). It is also present in climate models (Smith et al. 2020). The ratio

of the standard deviation of the ensemble mean and the ensemble members is expected

to be greater than the correlation between the ensemble mean and observations. Alter-

natively, the ratio of the correlation between an ensemble mean and observations, and

the average correlation between an ensemble mean and a single ensemble member, is

expected to be less than 1; the model is expected to be better at predicting itself than

the observations (Eade et al. 2014; Scaife and Smith 2018), although a perfect system

should be equally good at predicting both. However, it has been found that in certain

regions, such as the North Atlantic, this is not the case, and the model is better at

predicting the real word than itself. This generally means that each ensemble member

contains a large amount of noise. Fixing this issue would strengthen model responses

to phenomena such as the NAO, which could unveil new predictability, and improve

the skill of seasonal forecasts.

5.5. Summary

The results presented in this thesis advance understanding of the predictability and

variability of the rainfall seasons of East Africa, particularly the long and short rains

seasons experienced in much of the region. This was achieved by first performing an

evaluation of the current state of seasonal forecasts, before building new understand-
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ing of some of the physical processes connecting large-scale atmospheric conditions to

seasonal rainfall. Finally, these relationships were investigated in the dynamical model

used within the initial evaluation to identify whether this new understanding could lead

to improved forecasts, and make recommendations for future improvements.

In the evaluation of seasonal forecasts, the UK Met Office dynamical model, GloSea5,

as well as the GHACOF forecasts both demonstrated good skill at forecasting the short

rains season, but generally did little better than guesswork at forecasting the long rains

season. This is due to the differing relationships between rainfall and large-scale modes

of variability in the two seasons; the short rains are strongly tied to SSTs, whereas the

long rains are not.

Studies then investigated the relationship between winds over the Congo basin and the

East African long rains, finding a strong connection between the long rains and zonal

winds at 700hPa on both inter-annual and decadal timescales. Finally, this relationship

was studied in the dynamical model, and it was found to be well captured, however, the

model incorrectly predicts the zonal winds. These zonal winds were found to be par-

tially controlled by the NAO, which is a known source of variability and predictability,

particularly for the extra-tropics, and is reasonably well forecast by GloSea5. It was

demonstrated that improvements to the model in capturing a more realistic amplitude

of NAO could then produce skilful seasonal rainfall forecasts for the long rains.

Taken together, the results of Chapters 2-4 provide an evaluation of the current state of

seasonal forecasting, provide new information on controls of the variability, in particular

for the poorly forecast long rains season, and demonstrate the potential for future

forecasting capability for the long rains based upon this new understanding. However,

it is also clear that more work needs to be done in addressing model issues, particularly

relating to the signal-to-noise paradox, in order for this potential to be fulfilled.
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