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ABSTRACT

This thesis consists of four parts. In the first part, we prove the following

conjecture [HL09].

Conjecture: Let ϕd : (C2d−2, 0) → (C2d−1, 0) be the minimal cross cap

of multiplicity d ≥ 2 and V be its image. Let Θ =
{
ξ1
j , ξ

2
j , ξ

3
j , ξe

}d−1

j=1
be the

module of vector fields liftable over ϕd. Then the vector fields ξ1
j , ξ

2
j , ξ

3
j for

1 ≤ j ≤ d− 1 generate Der0(−log(h)).

In the second part, we develop computational method suitable for perform-

ing the classification theory. A computer package called CAST is developed.

This is written in the Singular program and performs calculations such as

complete transversals, finite determinacy and triviality. We discuss the pack-

age in detail and give examples of calculations performed in this thesis.

In the third part, we classify map-germs (Cp, 0) → (Cq, 0) under VK-

equivalence: the restriction of K-equivalences to those preserving a particular

subset of the singularity’s domain. We consider the case where V is the image

of the minimal crosscap of multiplicity d ≥ 2.

In the final part, we give an application to classification problems. We

classify corank 1 Ae-codimension 2 map-germs (Cn, 0)→ (Cn+1, 0).
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Chapter 1

Introduction

One of the fundamental ideas of local singularity theory is the classification of map-

germs under various types of equivalence. In the early 1950’s, Whitney started the

classification of stable map-germs (small perturbations of the map do not change the

differential geometric properties of the singularities of the map) (R2, 0)→ (R2, 0) and

(Rn, 0) → (R2n+1, 0), see [Whi44] and [Whi55]. The foundational work of Mather in

the end of the 1960’s defined the new standard equivalence relations (namely R, L,

A, C and K) central to local singularity theory (see [Mat68] and [Mat69]). At around

the same time, Thom classified the stable map-germs in low codimensions through

the development of his catastrophe theory. In the 1970’s, Arnol’d gave his famous

list of function-germs under R-equivalence; a general reference is [AGV85].

Since the 1980’s, Bruce, Gaffney, Mond, Rieger, Ruas, Ratcliffe, Cooper, Houston,

Kirk and many others have made significant progress in the classification of map-

germs, especially in the classification of map-germs underA-equivalence. (See [BG82],

[Mon85], [Mon87], [Rie87], [RR91], [Rat90], [Rat95], [Coo93] and [HK99]).

In general, it is difficult to classify map-germs under A-equivalence. However,

Houston and Wik Atique are shown in [HW] that the A-classification of map-germs
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is intimately related to the VK-classification of some related map-germs. The latter

equivalence relation introduced by Damon in [Dam83] and it arises from the restric-

tion of K-equivalences to those preserving a particular subset of the domain of the

singularity.

In order to apply VK-equivalence, in practice one needs a set of vector fields

that, when integrated, preserve this subset. In [HL09] the vector fields liftable over a

normal form for corank 1 map-germs from (Cn, 0) to (Cn+1, 0) are described. These

liftables integrate to diffeomorphisms preserving the image of the normal form. By

classifying map-germs on the image up to VK-equivalence we get an A-classification.

In this thesis, we classify map-germs with VKe-codimension at most 2, where V

is the image of the minimal cross cap of multiplicity d ≥ 2 and from these normal

forms we get the classification of a corank 1 Ae-codimension 2 map-germ (Cn, 0) →

(Cn+1, 0). (We mention that we get some partial results which will be useful in

classifying Ae-codimension ≤ 4 map-germs).

This thesis is structured as follows.

In Chapter 2, we review the definitions and results of singularity theory which are

used in the thesis. These include A-equivalence, K-equivalence, VR-equivalence and

VK-equivalence, the module of vector fields tangent to a subset, the minimal cross

cap mapping of multiplicity d, the sharp pullback and simple map-germs.

In Chapter 3, we review the module of vector fields liftable over the minimal cross

cap mapping of multiplicity d ≥ 2. We find the defining equation for the image of

the minimal cross cap of multiplicity d ≥ 2 by using Mond-Pellikaan algorithm and

prove that the cross cap liftable vector fields without the Euler vector field annihilate

this defining equation. we then show that these vector fields generate Der0(−log(h)),

where h is the defining equation for the image of the minimal cross cap of multiplicity

d ≥ 2.
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In Chapter 4, we give the techniques of a classification method which we use to

find the classification of map-germ such as complete transversals, finite determinacy

and triviality. The classification method can be described as the following:

i) From a k-jet produce a list of possible (k + 1)-jets.

ii) Reduce the list by removing redundancies and by scaling.

iii) For each possible (k+1)-jet, check determinacy. If not (k+1)-determined, then

repeat the method for each (k + 1)-jet by finding the possible (k + 2)-jets.

In Chapter 5, we describe the CAST package. It is written in the Singular program

and consists of a number of procedures (Appendix A). The liftable vector fields over

the minimal cross cap mapping of multiplicity d ≥ 2 are programmed in this package.

A number of examples of calculations performed in this chapter are given.

In Chapter 6, we consider the classification of map-germs under ΘK-equivalence,

where Θ is the module of liftable vector fields over the minimal cross cap of multiplicity

d ≥ 2. We classify map-germs with ΘKe-codimension at most 2 and VKe-codimension

at most 2, where V is the image of the minimal cross cap of multiplicity d ≥ 2.

In Chapter 7, we classify corank 1Ae-codimension 2 map-germs (Cn, 0)→ (Cn+1, 0).

In Chapter 8, we give some ideas for future work such as the classification of

corank 1 Ae-codimension ≤ 4 map-germs (Cn, 0) → (Cn+1, 0), the geometry of the

map-germs on the generalized cross cap and the relationship between A and VK

determinacy.



Chapter 2

Notation and Preliminary Material

In this chapter we introduce some basic notation and preliminary results which will be

used throughout the whole thesis. As standard references we cite the survey articles

of Wall, ([Wal81], [Wal95] and [Wal09]). In addition we refer to [BW98], [Dam91],

[Dam06], [Gib79] and [Mar82]. Our notation will be based on these references.

2.1 Notation

Throughout this thesis, K usually refers to the real number field R or the complex

number field C. In the latter case the assumption in statements that a map is smooth

of course means that we have a complex analytic map.

Two subsets A and B of Kn are called equivalent at x ∈ Kn, if there is an open

neighbourhood U ⊂ Kn of x, such that A ∩ U = B ∩ U . It is easy to check that this

is indeed an equivalence relation. The class of all sets equivalent to A ⊂ Kn at x will

be denoted by (A, x) and is called the germ of A at x. A is called a representative

of the germ. If A ⊂ Kn we sometimes say that (A, x) is a subgerm of (Kn, x), which

we denote by (A, x) ⊂ (Kn, x).

4



2.1 Notation 5

Let S be a finite set in Kn. A multi-germ f : (Kn, S) → (Kp, f(S)) will mean

an equivalence class of pairs (U, f) where U is a neighbourhood of S in Kn and

f : Kn → Kp is a smooth map. Two such pairs (U1, f1) and (U2, f2) are equivalent if f1

and f2 agree on some neighbourhood of S contained in U1∩U2. In the special case S =

{x} ⊂ Kn and f(S) = {y} ⊂ Kp we call such germs mono-germs. If S = {x1, . . . , xr},

with xi 6= xj for i 6= j and f(S) = {0}, then a multi-germ f : (Kn, S) → (Kp, 0) is

called a r-multigerm and will be denoted (f1; . . . ; fr), where fi : (Kn, xi)→ (Kp, 0) is

a smooth function-germ. The integer r is called the multiplicity of the multi-germ,

and the fi its branches.

We let En be the set of all smooth function-germs (Kn, 0) → K. Clearly En is a

ring under the obvious operations of addition and multiplication. This ring contains

a unique maximal ideal, consisting of functions vanishing at the origin, denoted by

mn. The set of all smooth map-germs f : (Kn, 0)→ Kp is an En-module and will be

denoted E(n, p). (In case of K = C this is often denoted O(n, p)). We put E(n, 1)=En.

The corresponding module of map-germs f : (Kn, 0)→ (Kp, 0) is denoted mnE(n, p).

Let (TKp, 0) be the tangent bundle of Kp and πp : TKp → Kp be the natural

projection. A vector field along f is a map-germ ξ : (Kn, 0) → TKp such that the

following diagram commutes:

TKp

πp

��
(Kn, 0)

ξ
::

f // Kp

The set of all vector fields along f is written θ(f); it is a free En-module of rank p,

i.e. θ(f) ∼= E(n, p).

We define θn = θ(Idn) and θp = θ(Idp) where Idn and Idp denote the germs at 0

of the identity maps on Kn and Kp, respectively. Associated with these modules are

certain important homomorphisms: the En-homomorphism tf : θn → θ(f) defined by
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tf(ξ) = df ◦ ξ and the Ep-homomorphism(via f ∗ : θp → θn, α 7−→ α ◦ f for α ∈ θp),

ωf : θp → θ(f) defined by ωf(η) = η ◦ f . We define the local algebra of f to be

Q(f) :=
En

f ∗(mp)
=

En
〈f1, . . . , fp〉

.

If we truncate the power series expansion of f : (Kn, 0) → (Kp, 0) at the origin

by ignoring terms of degree greater than k, we obtain the k-jet of f , denoted by jkf .

The set of all k-jets forms a vector space Jk(n, p). For each k there is a canonical

projection πk : E(n, p)→ Jk(n, p) which assigns to each map-germ in E(n, p) its k-jet

at 0.

2.2 Unfoldings and Discriminants

Definition 2.2.1. An r-parameter unfolding of a map-germ f : (Kn, 0)→ (Kp, 0)

is a map-germ F : (Kn × Kr, 0) → (Kp × Kr, 0) of the form F (x, u) = (F̃ (x, u), u)

such that F̃ (x, 0) = f(x). Here x,u denotes local coordinates for (Kn, 0) and (Kr, 0)

respectively.

The notation fu(x) = F̃ (x, u) is often employed; fu can be thought of as a defor-

mation of f , parametrized smoothly by u ∈ Kr.

Definition 2.2.2. A trivial unfolding of a map-germ f : (Kn, 0) → (Kp, 0) is a

map-germ F : (Kn ×Kr, 0)→ (Kp ×Kr, 0) given by F (x, u) = (f(x), u).

Definition 2.2.3. Let f : (Kn, 0) → (Kp, 0) be a smooth map-germ. The critical

set of f , denote Σf , is the set of points x in Kn such that the rank of the Jacobian

matrix of f at x is less than p.

The discriminant of f , denote D(f), is defined to be the image of the critical

set, f(Σf). When n < p, then D(f) is the image of f .
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2.3 Equivalence relations of map-germs

We shall now look at the equivalence relations of interest. In fact, in singularity theory

there are a number of standard equivalence relations. For example, A-equivalence and

K-equivalence. These equivalence relations were defined by Mather (see [Mat68]).

Definition 2.3.1. Let f, g : (Kn, 0) → (Kp, 0) be two smooth map-germs. We say

that f and g are A-equivalent, denoted by f ∼A g , if there exist diffeomorphism

germs ψ and ϕ for which the following diagram commutes

(Kn, 0)
f−→ (Kp, 0)

ϕ ↓ ψ ↓

(Kn, 0)
g−→ (Kp, 0)

i.e. ψ ◦ f = g ◦ ϕ.

This is also known as Right-Left-equivalence. If the diffeomorphism germ in

the target is the identity in the definition above, then we say that f and g are

R-equivalent.

Definition 2.3.2. We say that a smooth map-germ f : (Kn, 0) → (Kp, 0) is k-A-

determined if f is A-equivalent to any other smooth map-germ g : (Kn, 0) → (Kp, 0)

such that jkf = jkg. If f is k-A-determined for some k, then f is said to be A finitely

determined.

Definition 2.3.3. Let f : (Kn, 0)→ (Kp, 0) be smooth map-germ.

i) The extended A-tangent space of f is defined by

TAe(f) = tf(θn) + ωf(θp).

ii) The Ae-codimension of f is defined by

Ae−cod(f) = dimK
θ(f)

TAe(f)
.
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Definition 2.3.4. Let f : (Kn, 0) → (Kp, 0) be a smooth map-germ. We say that f

is stable if θ(f) = TAe(f).

In fact, Mather in [Mat69], showed that a map-germ is stable in the above sense

if and only if there exists a neighbourhood in the space of smooth maps (with the

Whitney topology) such that all map-germs in the neighbourhood are A-equivalent.

Example 2.3.5. Let f : (K2, 0) → (K3, 0) be given by f(x, y) = (x, y2, xy). This is

known as the cross cap or the Whitney umbrella. This map is stable.

We shall use the coordinates (x, y) on the source and (X, Y, Z) on the target. Let

η ∈θ(f). We can write η as follows:

η = η1 e1 +η2 e2 +η3 e3,

where for all 1 ≤ i ≤ 3, ηi ∈ E2 and ei is the standard basis vector in K3, i.e., the

column vector with a 1 the i-th row and a 0 in all other rows.

Suppose that α =


1

0

y

 and β =


0

2y

x

.

Then we have

i) xayb e1 =


(XaY k e1) ◦ f, if b = 2k,

xay2k+1α− (XaY k+1 e3) ◦ f, if b = 2k + 1;

ii) xayb e2 =


(XaY k e2) ◦ f, if b = 2k,

1
2
xay2kβ − 1

2
(XaY k e3) ◦ f, if b = 2k + 1;

iii) xayb e3 =


(XaY b e3) ◦ f, if b = 2k,

xay2kα− (XaY k e1) ◦ f, if b = 2k + 1.
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It follows θ(f) = TAe(f). Hence f is stable.

The minimal cross cap mapping

We will now give a generalization of the cross cap. The resulting maps will be used

in this thesis. In fact, the main subject of this thesis is to find the classification of

map-germs on the image of these maps.

Definition 2.3.6. Let f : (Kn, 0)→ (Kp, 0) be a smooth map-germ. We say a map-

germ f is corank 1 if the rank of the Jacobian matrix at 0 is equal to min(n, p)− 1.

Example 2.3.7. The following map-germs are corank 1.

1. The cross cap,

2. The cusp, i.e., f : (K2, 0)→ (K2, 0) such that f(x, y) = (x, xy + y3).

Definition 2.3.8. For d ≥ 2 the minimal cross cap mapping of multiplicity d

is the map ϕd : (K2d−2, 0)→ (K2d−1, 0) given by

ϕd(u1, . . . , ud−2, v1, . . . , vd−1, y) =

(
u1, . . . , ud−2, v1, . . . , vd−1, y

d +
d−2∑
i=1

uiy
i,
d−1∑
i=1

viy
i

)
.

We shall label the coordinates of the target u1, . . . , ud−2, v1, . . . , vd−1, w1 and w2,

respectively. The sets of coordinates will be abbreviated to u, v and w respectively.

For d = 2 this is just the Whitney umbrella as in example 2.3.5. The minimal

cross cap mapping of multiplicity d is stable and corank 1 for all d ≥ 2.

Theorem 2.3.9 ([Mor65]). A map-germ F : (Kn, 0)→ (Kn+1, 0) is a stable corank 1

germ if and only if there exists a d such that F is A-equivalent to the trivial unfolding

of the minimal cross cap mapping of multiplicity d.
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A-equivalence seems to be the most natural equivalence relation because this say

that f coincides with g under suitable coordinate transformations of the source and

the target spaces. However, it is difficult to classify map-germs under this relation.

Mather introduced K-equivalence (or contact equivalence) as a technical tool to aid

with the classification of map-germs up to A-equivalence.

Definition 2.3.10. Suppose that h : (Kp, 0) → (Kq, 0) and h̃ : (Kp, 0) → (Kq, 0) are

smooth map-germs. We say that h and h̃ are K-equivalent if there is a diffeomorphism

germ ϕ : (Kp, 0)→ (Kp, 0) and a germ of an invertible matrix M : (Kp, 0)→ GL(Kq)

such that h̃(x) = M(x)h(ϕ(x)) for each x ∈ (Kp, 0).

There is another definition of K-equivalence, but is in fact equivalent to defi-

nition 2.3.10. We will give an alternative definition in the following theorem (see

[Gib79], chapter V).

Theorem 2.3.11. Let h, h̃ : (Kp, 0) → (Kq, 0) be two smooth map-germs. Then h

and h̃ are K-equivalent if there are a diffeomorphism germs Ψ of (Kp ×Kq, 0) and ψ

of (Kp, 0) such that

Ψ(x, h(x)) = Ψ(ψ(x), h̃(ψ(x))) for each x ∈ (Kp, 0).

Up to now we have only considered the standard equivalence relations R, A and

K. We now turn our attention to other equivalence relations of great interest in sin-

gularity theory, namely VR- and VK-equivalence. These were introduced by Damon

in [Dam83]. For more details see [Wal09].

Definition 2.3.12. Let (V, 0) be a subgerm of (Kp, 0). A diffeomorphism germ ϕ :

(Kp, 0)→ (Kp, 0) is said to preserve V if ϕ(V ) ⊆ V .

Definition 2.3.13. Suppose that h : (Kp, 0) → (Kq, 0) and h̃ : (Kp, 0) → (Kq, 0)

are smooth map-germs. Let (V, 0) be a subgerm of (Kp, 0). We say that h and h̃ are

VR-equivalent if there is a diffeomorphism germ ϕ : (Kp, 0)→ (Kp, 0) such that
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i) h̃ = h ◦ ϕ
(
i.e., h̃ ∼R h

)
,

ii) ϕ preserves V .

In [BR88] and [BW98] the notation for VR is R(X) (where our V is their X).

Like VR-equivalence a similar definition can be made for K-equivalences that

preserve some subset V .

Definition 2.3.14. Suppose that h : (Kp, 0) → (Kq, 0) and h̃ : (Kp, 0) → (Kq, 0)

are smooth map-germs. Let (V, 0) be a subgerm of (Kp, 0). We say that h and h̃ are

VK-equivalent if

i) h and h̃ are K-equivalent,

ii) the resulting diffeomorphism of the source preserves V .

Example 2.3.15. Let V be the complex Whitney umbrella, i.e., the image of ϕ2 :

(C2, 0) → (C3, 0) given by ϕ2(v1, y) = (v1, y
2, v1y). In fact, V = f−1(0), where

f(v1, w1, w2) = w2
2 − v2

1w1.

Let h, h̃ : (C3, 0)→ (C2, 0) be smooth map-germs defined by

h(v1, w1, w2) = (v1 − w2, w1) and

h̃(v1, w1, w2) = (v1, w1).

We want to show that h and h̃ are VK-equivalent. We take a diffeomorphism germ

ϕ(v1, w1, w2) = (v1 + w2, w1, w2 + v1w1)

and the matrix

M =

1 v1

0 1

 .
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First we need to show that ϕ preserves V . Let (v1, w1, w2) ∈ V , then we have

f ◦ ϕ(v1, w1, w2) = f(v1 + w2, w1, w2 + v1w1)

= (w2 + v1w1)2 − (v1 + w2)2w1

= w2
2 + 2v1w1w2 + v2

1w
2
1 − v2

1w1 − 2v1w1w2 − w1w
2
2

= v2
1w

2
1 − w1w

2
2 since w2

2 − v2
1w1 = 0

= −w1(w2
2 − v2

1w1)

= 0 since w2
2 − v2

1w1 = 0.

It follows ϕ(V ) ⊆ V .

Now, for any point (v1, w1, w2) ∈ (C3, 0) we have

M(v1, w1, w2)h(ϕ(v1, w1, w2)) =

1 v1

0 1


v1 − v1w1

w1


=

v1

w1


= h̃.

Remark 2.3.16. Damon introduced other types of equivalence relation, namely VR-

equivalence, VA-equivalence, AV -equivalence and KV -equivalence. For more details

see [Dam83], [Dam87], [Dam91] and [Dam06]. Since our results in this thesis can be

applied to KV -equivalence, we will give the definition of KV -equivalence only. We will

use the definition of K-equivalence as in Theorem 2.3.11.

Definition 2.3.17. Suppose that h : (Kp, 0) → (Kq, 0) and h̃ : (Kp, 0) → (Kq, 0)

are smooth map-germs. Let (V, 0) be a subgerm of (Kq, 0). We say that h and h̃ are

KV -equivalence if

(i) h and h̃ are K-equivalent, i.e., there are a diffeomorphism germs Ψ of (Kp× Kq, 0)
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and ψ of (Kp, 0) such that

Ψ(x, h(x)) = Ψ(ψ(x), h̃(ψ(x))) for each x ∈ (Kp, 0).

(ii) Ψ(Kp × V ) ⊆ Kp × V .

Remark 2.3.18. Suppose that G is an equivalence relation on the set of multi-germs

(Kn, S) to (Kp, 0), for example VR or VK. To each of these we can associate an

equivalence using jet spaces.

Let JsG be the s-jet space of G. The precise definition of this will depend on G. For

example, VR is generated by the diffeomorphisms on source that preserve the subset

V , and so in this case we take the s-jets of this diffeomorphism as JsG.

2.4 Vector fields on Discriminants

As usual in singularity theory, one integrates vector fields to produce diffeomorphisms

that preserve a subset. In fact, there are very important types of vector fields which

we can integrate to produce diffeomorphisms that preserve a subset.

Definition 2.4.1. Suppose that V is a K-analytic variety of (Kp, 0). We denote by

I(V ) the ideal of germs vanishing on V . A vector field ξ ∈ θp is said to be tangent

to V if

ξ (I (V )) ⊆ I (V ) .

The module of such vector fields is denoted Der(−logV).

When I(V ) = 〈h1, . . . , hq〉, we write

Der(−logV) =
{
ξ ∈ θp : ∃gij ∈ Ep such that ξ (hj) =

q∑
i=1

gijhi, j = 1, . . . , q
}
.

Let h : (Kp, 0)→ (K, 0) be any defining equation for V . Then we define

Der0(−log(h)) = {ξ ∈ θp : ξ (h) = 0} .
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Example 2.4.2. Let V be the discriminant of the cusp, i.e., the image of the critical

set of the map-germ in example 2.3.7(2). We use coordinates (u1, u2) on the target,

it can be easily checked that V = h−1(0), where h(u1, u2) = 4u3
1 + 27u2

2. Consider the

vector fields

η1 = 9u2
∂

∂u1

− 2u2
1

∂

∂u2

,

η2 = 2u1
∂

∂u1

+ 3u2
∂

∂u2

.

We check that

η1(h) = 9u2
∂h

∂u1

− 2u2
1

∂h

∂u2

= 9u2(12u2
1)− 2u2

1(54u2)

= 0.

Similarly,

η2(h) = 2u1
∂h

∂u1

+ 3u2
∂h

∂u2

= 2u1(12u2
1) + 3u2(54u2)

= 6h.

Hence, η1, η2 ∈ Der(−logV) whilst only η1 ∈ Der0(−log(h)). In fact, Der(−logV) =

〈η1, η2〉.

Example 2.4.3. Suppose that V is the complex Whitney umbrella as in Exam-

ple 2.3.15. From [Dam91] and [HL09] we have

Der(−logV) =

〈
w2

0

v1w1

 ,


−v1

2w1

0

 ,


0

2w2

v2
1

 ,


v1

2w1

2w2


〉
.
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These vector fields labelled ξ1
1, ξ2

1, ξ3
1 and ξe respectively. We will discuss more details

in chapter 3.

We will show that ξ1
1, ξ2

1 and ξ3
1 are members of Der0(−log(h)) whereas ξe is not.

A defining equation for V is f(v1, w1, w2) = w2
2 − v2

1w1.

Then,

ξ1
1(f) = w2

∂f

∂v1

+ (0)
∂f

∂w1

+ v1w1
∂f

∂w2

= w2(−2v1w1) + v1w1(2w2)

= 0.

It can be show in a similar way that ξ2
1(f) = 0 and ξ3

1(f) = 0. For ξe we have

ξe(f) = v1
∂f

∂v1

+ 2w1
∂f

∂w1

+ 2w2
∂f

∂w2

= v1(−2v1w1) + 2w1(−v2
1) + 2w2(2w2)

= −2v2
1w1 − 2v2

1w1 + 4w2
2

= 4(w2
2 − v2

1w1)

= 4f.

Definition 2.4.4. A map-germ f : (Kn, 0) → (Kp, 0) is said to be quasihomoge-

neous or weighted homogeneous of type (a1, . . . , an; d1, . . . , dp), with ai, dj ∈ N

if the relation

fj(t
a1x1, . . . , t

anxn) = tdjfj(x1, , xn)

holds for each coordinate function fj of f for all t ∈ (K, 0). The number ai is called

the weight of the variable xi and the number dj is the degree of the function fj.

Let X1, . . . , Xp denote the standard coordinates on Kp. Then the Euler vector
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field denoted by ξe is given by

ξe =


d1X1

...

dpXp

 .

Remark 2.4.5. Let V = h−1(0), where h : (Cp, 0)→ (C, 0) is weighted homogeneous.

It was shown by Damon and Mond in lemma 3.3 of [DM91] that

Der(−logV) = Der0(−log(h))⊕〈ξe〉 .

That is, we can conclude that one vector field is Euler and the other annihilate

the defining equation.

Remark 2.4.6. Suppose that V is a K-analytic variety of (Kp, 0). In [Dam87],

Damon shows that

i) Der(−logV) is a finitely generated Ep-module.

ii) If ξ ∈Der(−logV) and ϕt denotes the flow generated by ξ, then ϕt preserves V .

iii) If ξ ∈θp with local flow ϕt and ϕt(V ) ⊂ V , then ξ ∈Der(−logV).

These results above do not necessarily hold for the smooth case. Damon added

the coherent condition on V to get the same results (see [Dam87], p.698).

Remark 2.4.7. In ([BR88], Section 1), Bruce and Roberts show that in the complex

case if ξ ∈θp and vanishes at 0 then the flow ϕt generated by ξ preserves V .

We are interested in the vector fields that can be integrated to give diffeomor-

phisms preserving a subset. Therefore, we make the following definition.

Definition 2.4.8. Suppose that (V, 0) is a subgerm of (Kp, 0). We say that a smooth

vector field on (Kp, 0) preserves V if it can be integrated to give a diffeomorphism

that preserves V .



2.5 Tangent Spaces and Codimensions 17

Example 2.4.9. Suppose that V is the complex Whitney umbrella as in Exam-

ple 2.4.3. We consider the vector field ξ1
1. This vector field vanishes at 0 and it

can be integrated to get a diffeomorphism

ϕ(v1, w1, w2) = (v1 + w2, w1, w2 + v1w1).

We can see from Example 2.3.15 that this diffeomorphism preserves V .

Now, we need the following definition in our classification in Chapter 6.

Definition 2.4.10. Suppose that h : (Kp, 0) → (Kq, 0) and h̃ : (Kp, 0) → (Kq, 0)

are smooth map-germs. Let Θ be a module of smooth vector fields on (Kp, 0), i.e.,

a module over Ep of germs at 0 of smooth vector fields on Kp. We say that h and

h̃ are ΘK-equivalent if there is a vector field ξ ∈ Θ, that can be integrated to give a

diffeomorphism Φ so that h and h̃ are K-equivalent by Φ and a germ of an invertible

matrix M : (Kp, 0)→ GL(Kq).

2.5 Tangent Spaces and Codimensions

2.5.1 Tangent Spaces

For K-equivalence, the tangent space is an En-module, but this is not the case for

A-equivalence and it is this that leads to many problems since we attempt to classify

using algebraic methods.

We shall now describe our tangent spaces.

Definition 2.5.1. Let h : (Kp, 0) → (Kq, 0) be a smooth map-germ and let Θ be a

module of smooth vector fields on the domain, i.e., Θ ⊂ θp.

i) The extended R-tangent space with respect to Θ, denoted TΘRe(h), is



2.5 Tangent Spaces and Codimensions 18

the submodule of θ(h) given by

TΘRe(h) = 〈ξ(h) | ξ ∈ Θ〉.

We also call this the Jacobian of h with respect to Θ, denoted by JΘ(h).

ii) The R-tangent space with respect to Θ, denoted TΘR(h), is the submodule

of θ(h) given by

TΘR(h) = 〈ξ(h) | ξ ∈ Θ ∩mpθ(h)〉

where mp is the maximal ideal in Ep.

iii) The extended K-tangent space with respect to Θ, denoted TΘKe(h), is

the submodule of θ(h) given by

TΘKe(h) = TΘRe(h) + h∗(mq)θ(h).

iv) The K-tangent space with respect to Θ, denoted TΘK(h), is the submodule

of θ(h) given by

TΘK(h) = TΘR(h) + h∗(mq)θ(h).

Example 2.5.2. Consider Example 2.4.3. Let Θ be the set of vector fields tangent

to V and let h(v1, w1, w2) = v1 + wk+1
1 with k ≥ 1. We have

TΘKe(h) = JΘ(h) + 〈h〉

= 〈ξ1
1(h), ξ2

1(h), ξ3
1(h), ξe(h)〉+ 〈h〉

= 〈w2,−v1 + 2(k + 1)wk+1
1 , 2(k + 1)wk1w2, v1 + 2(k + 1)wk+1

1 〉

+〈v1 + wk+1
1 〉

= 〈v1, w
k+1
1 , w2〉.

Remark 2.5.3. If all the elements of Θ vanish at the origin, the TΘR(h) = TΘRe(h)

and TΘK(h) = TΘKe(h). The first equality follows from the definitions and the second

follows from the first.
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Remark 2.5.4. Suppose that Θ is the set of all vector fields on (Kp, 0). Then VK-

equivalence and VR-equivalence are just the standard K- and R-equivalences respec-

tively.

Example 2.5.5. Consider the D4 singularity h(x, y, z) = x2 + y2z + z3 with respect

to the vector field module Θ = 〈∂/∂x, ∂/∂y, ∂/∂z〉. We have

TΘKe(h) = 〈∂h
∂x
,
∂h

∂y
,
∂h

∂z
〉+ 〈h〉

= 〈2x, 2yz, y2 + 3z2〉+ 〈x2 + y2z + z3〉

= 〈x, y2, yz, z3〉.

Similarly we have

TΘK(h) = 〈x∂h
∂x
, x
∂h

∂y
, x
∂h

∂z
, y
∂h

∂x
, y
∂h

∂y
, y
∂h

∂z
, z
∂h

∂x
, z
∂h

∂y
, z
∂h

∂z
〉+ 〈h〉

= 〈2x2, 2xyz, xy2 + 3z2, 2xy, 2y2z, y3 + 3yz2, 2xz, 2yz2, y2z + 3z3〉

+〈x2 + y2z + z3〉

= 〈x2, xy, xz, y3, y2z, yz2, z3〉.

Remark 2.5.6. Let (V, 0) be a subgerm of (Kp, 0). If Θ is the module of vector fields

tangent to V , then TVR(h) = TΘR(h) where TVR(h) is the standard Singularity

Theory tangent space for the equivalence VR. Similar definitions can be made for

VK-equivalence and the extended versions of the tangent spaces. See for example

[Dam06] and [Wal09].

2.5.2 Codimensions

We can, in the standard way, define the codimension and extended codimension for

the equivalences by taking the dimension of the K-vector space given by the quotient

of θ(h) by the relevant tangent space as follows.
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Definition 2.5.7. Let h : (Kp, 0) → (Kq, 0) be a smooth map-germ and let Θ be a

module of smooth vector fields on (Kp, 0). Suppose G = K or R.

i) The ΘG(f)-codimension of h is

ΘG−cod(h) = dimK
θ(h)

TΘG(h)
.

ii) The extended ΘG(h)-codimension of f is

ΘGe−cod(h) = dimK
θ(h)

TΘGe(h)
.

Example 2.5.8. Suppose that V is the complex Whitney umbrella as in Exam-

ple 2.5.2, then we have

TΘKe(h) = 〈v1, w
k+1
1 , w2〉.

Then,

ΘKe−cod(h) = dimK
E3

TΘKe(h)

= dimK
E3

〈v1, w
k+1
1 , w2〉

= dimK〈1, w1, w
2
1, . . . , w

k
1〉

= k + 1.

Remark 2.5.9. We can make similar definitions as in Definition 2.5.7 for V G-

codimension and V Ge-codimension.

2.6 A-equivalence vs VK-equivalence

If one can describe the diffeomorphisms that preserve V one can work with VR- and

VK-equivalence. One can easily see that vector fields tangent to V can be integrated

to give diffeomorphisms preserving V .
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Now, as stated earlier, A-equivalence classifications are hard to do but, armed

with the liftable vector fields, classifications of maps on discriminants under VK-

equivalence are much easier as they are similar to K-classifications. More impor-

tantly, A-classifications and VK-classifications are intimately related. First we need

a definition.

Definition 2.6.1 ([HW]). Let S be a finite set. Suppose that F : (Kn, S) → (Kp, 0)

and h : (Kp, 0) → (Kq, 0) are smooth map-germs. We define the sharp pullback,

denoted h](F ), to be the multi-germ given by F |(h ◦ F )−1(0), S)→ (h−1(0), 0).

Example 2.6.2. Consider the minimal cross cap mapping of multiplicity d = 3, i.e.,

ϕ3(u1, v1, v2, y) =
(
u1, v1, v2, y

3 + u1y, v1y + v2y
2
)
.

Suppose that h(u1, v1, v2, w1, w2) = (v2 − w1, u1). Thus h ◦ ϕ3(u1, v1, v2, y) = 0 gives

u1 = 0 and v2 = y3.

Using coordinates X = v1 and Y = y on (h ◦ ϕ3)−1(0), we see that the map

ϕ3|(h ◦ ϕ3)−1(0), 0)→ (h−1(0), 0) becomes

(X, Y ) 7→ (X, Y 3, XY + Y 5).

This map-germ is the H2 singularity of Mond (see [Mon85], theorem 1.1). We will

give more details in Chapter 7.

The connection between A-equivalence and VK-equivalence is the following.

Theorem 2.6.3 ([HW]). Suppose that F : (Kn, S) → (Kp, 0), n < p, is a stable

map with discriminant V . Let h : (Kp, 0) → (Kq, 0) and h̃ : (Kp, 0) → (Kq, 0) be

submersions with h−1(0) and h̃−1(0) transverse to F . (These conditions ensure that

h](F ) and h̃](F ) are maps between manifolds). Let h](F ) and h̃](F ) be finitely A-

determined. Then

h](F ) ∼A h̃](F ) ⇐⇒ h ∼vK h̃.
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One advantage of Theorem 2.6.3 is that one can classify map-germs under VK-

equivalence and then do a sharp pullback to get an A-equivalence classification.

2.7 Simple Map-Germs and Moduli

In any classification of map-germs the simple singularities are extremely important.

This notion was introduced by Arnol’d for right equivalence in a series of papers.

More details on the modality under various circumstances can be found in [AGV85].

Definition 2.7.1 ([AGV85]). Let X be a manifold and G a Lie group acting on X.

The modality of a point x ∈ X under the action of G on X is the least number m

such that a sufficiently small neighbourhood of x may be covered by a finite number of

m-parameter families of orbits . The point x is said to be simple if its modality is 0,

that is, a sufficiently small neighbourhood intersects only a finite number of orbits.



Chapter 3

A basis for Der0(-log) of the

minimal cross cap

We are interested in the vector fields that can be integrated to give diffeomorphisms

preserving a subset. In this chapter we discuss the module of vector fields tangent to

V , where V is the image of the image of the minimal cross cap of multiplicity d ≥ 2.

In fact, we will give a basis for Der0(−log(h)).

3.1 Vector fields liftable over corank 1 stable maps

In this section we will give the explicit description of vector fields liftable over the

minimal cross cap of multiplicity d ≥ 2 [HL09].

Definition 3.1.1. Let f : (Kn, 0)→ (Kp, 0) be a smooth map-germ. A vector field ξ

on (Kp, 0) is liftable over f if there is a vector field η on (Kn, 0) such that df◦η = ξ◦f .

23
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That is, the following diagram commutes

T (Kn, 0)
df−−−→ T (Kp, 0)

η

x xξ
(Kn, 0)

f−−−→ (Kp, 0)

In these circumstances η is called lowerable. The set of vector field germs liftable

over f is denoted Lift(f) and is an Ep-module.

The notion of liftable and tangent vector fields on the discriminant are equivalent

for stable map-germs with K = C ([Dam91], Lemma 2.2). In [Arn76], Arnol’d shows

that there exist liftable vector fields that are not tangent when K = R.

In [HL09], Houston and Littlestone give three families of vector fields with the

Euler vector field that are liftable over the minimal cross cap mapping of multiplicity

d ≥ 2. In fact, they proved that these vector fields generate the module of liftable

vector fields over ϕd in the case of K = C. In the case of K = R, they show that the

module of polynomial vector fields liftable over ϕd is generated by these vector fields.

We shall now describe these families with the Euler vector field as in [HL09].

For 1 ≤ f ≤ 3 and 1 ≤ j ≤ d− 1, we denote the members of the families by

ξfj =
d−2∑
i=1

Afi,j
∂

∂ui
+

d−1∑
i=1

Bf
i,j

∂

∂vi
+

2∑
i=1

Cf
i,j

∂

∂wi
.

We can consider the members as

ξfj =



Af1,j
...

Afd−2,j

Bf
1,j

...

Bf
d−1,j

Cf1,j

Cf2,j
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We have ud−1 = vd = 0, ud = 1 and ur = vr = 0 for r ≤ 0 and for r > d.

i) First family: The components of each vector field in this family are given by

A1
i,j = (d− i)(d− j)uiuj, 1 ≤ i ≤ d− 2,

B1
i,j = d

i−1∑
r=1

ui+j−rvr − d
i∑

r=1

urvi+j−r − (i− 1)(d− j)ujvi

+ dvi+jw1 − dui+jw2, 1 ≤ i ≤ d− 1,

C1
1,j = d(d− j)ujw1,

C1
2,j = −dvjw1 + (d− j)ujw2.

ii) Second family: The components of each vector field in this family are given

by

A2
i,j = −d(d+ i− j + 1)ud+i−j+1w1 + d

i∑
r=1

(d+ i− j − 2r + 1)urud+i−j−r+1

−j(i+ 1)ui+1ud−j, 1 ≤ i ≤ d− 2,

B2
i,j = −d(k + i− j + 1)vd+i−j+1w1 + d

i∑
r=1

(d+ i− j − r + 1)urvd+i−j−r+1

−d
i∑

r=1

rud+i−j−r+1vr − j(i+ 1)ud−jvi+1, 1 ≤ i ≤ d− 1,

C2
1,j = d(d− j + 1)ud−j+1w1 + ju1ud−j,

C2
2,j = d(d− j + 1)vd−j+1w1 + jv1ud−j.
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iii) Third family: The components of each vector field in this family are given by

A3
i,j = −d(d+ i− j + 1)ud+i−j+1w2 + d

i∑
r=1

(d+ i− j − r + 1)ud+i−j−r+1vr

−d
i∑

r=1

rurvd+i−j−r+1 − d(i+ 1)ui+1vd−j, 1 ≤ i ≤ d− 2,

B3
i,j = −d(d+ i− j + 1)vd+i−j+1w2 + d

i∑
r=1

(d+ i− j − 2r + 1)vrvd+i−j−r+1

−d(i+ 1)vi+1vd−j, 1 ≤ i ≤ d− 1,

C3
1,j = d(d− j + 1)ud−j+1w2 + du1vd−j

C3
2,j = d(d− j + 1)vd−j+1w2 + dv1vd−j.

iv) The Euler vector field for the map ϕd:

ξe =
d−2∑
i=1

(d− i)ui
∂

∂ui
+

d−1∑
i=1

(d− i)vi
∂

∂vi
+ d

2∑
i=1

wi
∂

∂wi
.

Theorem 3.1.2 ([HL09]). Let ϕd : (C2d−2, 0) → (C2d−1, 0) be given by the normal

form for a corank 1 minimal stable map of multiplicity d ≥ 2 and V be its image.

Then,

Der(−logV) =
〈
ξ1
j , ξ

2
j , ξ

3
j , ξe

〉d−1

j=1
.

This result above does not necessarily hold for the real analytic or smooth vector

fields in the real case. However, Houston and Littlestone give the following theorem

for polynomial vector fields.

Theorem 3.1.3 ([HL09]). Let ϕd : (R2d−2, 0) → (R2d−1, 0) be given by the normal

form for a corank 1 minimal stable map of multiplicity d ≥ 2 and V be its image.

Then, the module of polynomial vector fields liftable over ϕd is generated by the

vector fields ξ1
j , ξ2

j , ξ3
j for 1 ≤ j ≤ d− 1, together with the Euler vector field ξe.

In [HL09], K. Houston and D. Littlestone made the following conjecture.



3.2 A defining equation for the image of the minimal cross cap 27

Conjecture 3.1.4. Let ϕd : (C2d−2, 0) → (C2d−1, 0) be the minimal cross cap of

multiplicity d ≥ 2 and V be its image. Then the vector fields ξ1
j , ξ2

j , ξ3
j for 1 ≤ j ≤

d− 1 generate Der0(−log(h)).

From Proposition 2.5 in [BW98], the first statement is true for d = 2. In this

chapter, we shall give an answer to the conjecture above. The essential idea of our

proof is to find the defining equation for the image of the minimal cross cap of

multiplicity d ≥ 2 and prove that the cross cap liftable vector fields annihilate this

defining equation.

3.2 A defining equation for the image of the min-

imal cross cap

In this section we shall compute the defining equation for the image of the minimal

cross cap of multiplicity d ≥ 2.

Definition 3.2.1. A map-germ F : (Cn, 0) → (Cp, 0) is finite if it is continuous,

closed and the fiber F−1(y) is finite for all y ∈ (Cp, 0).

Let X be a Cohen-Macaulay space of dimension n and F : (X, x)→ (Cn+1, 0) be

a finite map-germ. We can use the algorithm of Mond and Pellikaan to determine the

corresponding defining equation for the image (see [MP89], section 2). An algorithm

consists basically of the following steps:

1. Choose a projection π : (Cn+1, 0)→ (Cn, 0) such that F̃ = π ◦ F is finite.

2. After a coordinate change we may suppose that F (x) = (F̃ (x), Fn+1(x)). Let

Xn+1 denote the last component of the coordinate system on Cn+1 so that

Fn+1 = Xn+1 ◦ F .
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3. Let 1, g1, g2, . . . , gk be generators of Q(F̃ ), where Q(F̃ ) is the local algebra of

F̃ . Put g0 = 1 and find elements αi,j ∈ On, 0 ≤ i, j ≤ k, such that

gjFn+1 =
k∑
i=0

(
αi,j ◦ F̃

)
gi.

4. Define a matrix λ = (λi,j) by letting

• λi,j = αi,j ◦ π for i 6= j,

• λi,i = αi,i ◦ π −Xn+1.

5. A defining equation for the image of F is given by the determinant of the matrix

λ.

Example 3.2.2. Consider the cross cap mapping, i.e., ϕ2(v1, y) = (v1, y
2, v1y). We

choose a projection π : (C3, 0) → (C2, 0) such that π(v1, w1, w2) = (v1, w1). Then we

have

ϕ̃2(v1, y) = π ◦ ϕ2(v1, y)

= (v1, y
2).

We find that Q(ϕ̃2) is generated by 1 and y. By solving the following equations

v1y = α0,0(v1, y
2) + α1,0(v1, y

2)y and

v1y
2 = α0,1(v1, y

2) + α1,1(v1, y
2)y.

We find α0,0(v1, y
2) = 0, α1,0(v1, y

2) = v1, α0,1(v1, y
2) = v1y

2 and α1,1(v1, y
2) = 0.

Now,

λ0,0 = α0,0 ◦ π(v1, w1)− w2

= 0− w2

= −w2,
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λ1,1 = α1,1 ◦ π(v1, w1)− w2

= 0− w2

= −w2,

λ1,0 = α1,0 ◦ π(v1, w1)

= v1,

λ0,1 = α0,1 ◦ π(v1, w1)

= v1w1.

We obtain the matrix

λ =

−w2 v1

v1w1 −w2

 .

A defining equation for the image of ϕ2 is given by the determinant of the matrix

λ, i.e.,

H = det(λ)

= w2
2 − v2

1w1.

In general, we shall use the algorithm above to find a defining equation for the

image of the minimal cross cap of multiplicity d ≥ 2.

Theorem 3.2.3. Let ϕd : (C2d−2, 0) → (C2d−1, 0) be the minimal cross cap of mul-

tiplicity d ≥ 2 and V be its image. Then, a defining equation for V is given by

the determinant of the matrix λ = M − w2Id where Id is the identity matrix and

M = [mi,j]d×d is such that

1.

ml,d = vd−l −
l−2∑
k=1

mk,dud−l+k for 1 ≤ l ≤ d,
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2.

mi,j = vj−i +mi−j,dw1 −
i−1∑
l=1

ml,duj−i+l for 1 ≤ i, j ≤ d,

with mr,d = 0 for all r ≤ 0.

Proof. We shall use the algorithm of Mond and Pellikaan. Since ud−1 = 0 and

ud = 1, then we have

w1 =
d∑
s=1

usy
s, w2 =

d−1∑
t=1

vty
t.

We choose a projection π : (C2d−1, 0)→ (C2d−2, 0) such that

π(u, v, w1, w2) = (u, v, w1).

Then we have

ϕ̃d(u, v, y) = π ◦ ϕd(u, v, y)

= (u, v, w1)

=

(
u, v,

d∑
s=1

usy
s

)
.

We find that Q(ϕ̃d) is generated by 1, y, . . . , yd−1.

We can rewrite

ml,d = vd−l −
l−2∑
k=1

mk,dud−l+k for 1 ≤ l ≤ d,

As follows
l∑

k=1

mk,dud−l+k = vd−l for 1 ≤ l ≤ d.

Now we need to show that

d∑
j=1

mi,jy
j−1 = yi−1w2 for all 1 ≤ i ≤ d.

We have

d∑
j=1

mi,jy
j−1 =

d∑
j=1

(
vj−i +mi−j,dw1 −

i−1∑
l=1

ml,duj−i+l

)
yj−1
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=
d∑
j=1

vj−iy
j−1 +

d∑
j=1

mi−j,dw1y
j−1 −

d∑
j=1

( i−1∑
l=1

ml,duj−i+l

)
yj−1.

By substituting w1 =
d∑
s=1

usy
s in the second term on the RHS, we get

d∑
j=1

mi,jy
j−1 =

d∑
j=1

vj−iy
j−1 +

d∑
j=1

mi−j,d

( d∑
s=1

usy
s

)
yj−1 −

d∑
j=1

( i−1∑
l=1

ml,duj−i+l

)
yj−1

=
d∑
j=1

vj−iy
j−1 +

d∑
j=1

mi−j,d

( d∑
s=1

usy
s+j−1

)
−

d∑
j=1

( i−1∑
l=1

ml,duj−i+l

)
yj−1

=
d∑
j=1

vj−iy
j−1 +

i−1∑
l=1

ml,d

( d∑
s=1

usy
s+i−l+1

)
−

i−1∑
l=1

ml,d

( d∑
j=1

uj−i+ly
j−1

)

=
d∑
j=1

vj−iy
j−1 +

i−1∑
l=1

ml,d

( d∑
s=1

usy
s+i−l+1

)
−

i−1∑
l=1

ml,d

(d−i+l∑
s=1

usy
s+i−l−1

)

=
d∑
j=1

vj−iy
j−1 +

i−1∑
l=1

ml,d

(d−i+l∑
s=1

usy
s+i−l+1

)

+
i−1∑
l=1

ml,d

( d∑
s=d−i+l+1

usy
s+i−l+1

)
−

i−1∑
l=1

ml,d

(d−i+l∑
s=1

usy
s+i−l−1

)

=
d∑
j=1

vj−iy
j−1 +

i−1∑
l=1

ml,d

( d∑
s=d−i+l+1

usy
s+i−l+1

)

=
d∑
j=1

vj−iy
j−1 +

i−1∑
l=1

ml,d

( i−l∑
t=1

ud−i+l+ty
d+t−1

)

We rewrite the second term on the RHS above as follows:

i−1∑
l=1

ml,d

( i−l∑
t=1

ud−i+l+ty
d+t−1

)
= m1,d

( i−1∑
t=1

ud−i+t+1y
d+t−1

)
+m2,d

( i−2∑
t=1

ud−i+t+2y
d+t−1

)

+ · · ·+mi−1,d

( 1∑
t=1

ud+t−1y
d+t−1

)

=
i−1∑
t=1

(
m1,dud−i+t+1 +m2,dud−i+t+2 + · · ·+mi−2,dud+t−2

+mi−1,dud+t−1

)
yt+i−1
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=
i−1∑
t=1

( i−t∑
k=1

mk,dud−i+t+k

)
yt+i−1.

Therefore, we have

d∑
j=1

mi,jy
j−1 =

d∑
j=1

vj−iy
j−1 +

i−1∑
t=1

( i−t∑
k=1

mk,dud−i+t+k

)
yd+t−1

=
d∑
j=1

vj−iy
j−1 +

i−1∑
t=1

vd−i+ty
d+t−1

=
d−i∑
t=1

vty
s+i−1 +

i−1∑
t=1

vd−i+ty
d+t−1

=
d−1∑
t=1

vty
s+i−1

= yi−1w2.

�

Now, from Theorem 3.2.3, a defining equation for the image of the minimal cross cap

of multiplicity d ≥ 2 is given by

Hd = wd2 − T (M)wd−1
2 +G,

where T is the trace of M and G is a polynomial in u1, . . . , ud−2, v1, . . . , vd−1, w1 and

w2 whose degree in w2 is ≤ d− 2.

Corollary 3.2.4. We have

i.

T =
d−2∑
l=1

(d− l)ml,dul,

ii. T is not dependent on v1 and w1.
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Proof.

i. By definition,

T =
d∑
i=1

mi,i

=
d∑
i=1

(
−

i−1∑
l=1

ml,dul

)
, by Theorem 3.2.3(2),

= −
( 0∑
l=1

ml,dul +
1∑
l=1

ml,dul + · · ·+
d−1∑
l=1

ml,dul

)
= −m1,du1 − (m1,du1 +m2,du2)− (m1,du1 +m2,du2 +m3,du3)

− · · · − (m1,du1 +m2,du2 + · · ·+md−1,dud−1)

= −(d− 1)m1,du1 − (d− 2)m2,du2 − · · · − 2md−2,dud−2

= −
d−2∑
l=1

(d− l)ml,dul

=
d−2∑
l=1

(l − d)ml,dul.

ii. For d = 2 we have T = 0. For d ≥ 3, we will use induction. From Theo-

rem 3.2.3(1) we see that m1,d = vd−1, m2,d = vd−2 and m3,d = vd−3 − vd−1ud−2

are not dependent on v1 and w1. Then, we can suppose that mn,d is not depen-

dent on v1 and w1.

We have

mn+1,d = vd−n−1 −
n−1∑
k=1

mk,dud−n+k−1

with 1 ≤ n < n + 1 ≤ d − 2. We know that m1,d, m2,d, . . . , mn−1,d are not

dependent on v1 and w1. If d − n − 1 = 1, then n = d − 2 and this is a

contradiction. Therefore, mn+1,d is not dependent on v1 and w1. Hence T is not

dependent on v1 and w1.

�
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In the following example, we shall obtain a defining equation of the minimal cross

cap ϕ3 by using Theorem 3.2.3.

Example 3.2.5. Consider the minimal cross cap ϕ3 : (C4, 0) → (C5, 0). Then we

have

m1,3 = v3−1 −
1−2∑
k=1

mk,3u3−1+k

= v2,

m2,3 = v3−2 −
2−2∑
k=1

mk,3u3−2+k

= v1,

m3,3 = v3−3 −
3−2∑
k=1

mk,3u3−3+k

= v0 −m1,3u1

= −v2u1,

m1,1 = v1−1 +m1−1,3w1 −
1−1∑
l=1

ml,3u1−1+l

= v0 +m0,3w1 −
0∑
l=1

ml,3ul

= 0,

m1,2 = v2−1 +m1−2,3w1 −
1−1∑
l=1

ml,3u2−1+l

= v1 +m−1,3w1 −
0∑
l=1

ml,3u2

= v1,

m2,1 = v1−2 +m2−1,3w1 −
2−1∑
l=1

ml,3u1−2+l

= v−1 +m1,3w1 −
1∑
l=1

ml,3ul−1

= 0 + v2w1 − v2u0

= v2w1.
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In the same way we find m2,2 = −v2u1, m3,1 = v1w1 and m3,2 = v2w1 − v1u1.

It follows

λ =


−w2 v1 v2

v2w1 −w2 − u1v2 v1

v1w1 v2w1 − u1v1 −w2 − u1v2

 .

A defining equation for the image of ϕ3 is given by the determinant of the matrix

λ, i.e.,

H = det(λ)

= −w3
2 + v3

1w1 − u1v
2
1w2 + 3v1v2w1w2 − 2u1v2w

2
2 + u1v1v

2
2w1 + v3

2w
2
1 − u2

1v
2
2w2

= −w3
2 − 2u1v2w

2
2 + (3v1v2w1 − u1v

2
1 − u2

1v
2
2)w2 + (v3

1w1 + u1v1v
2
2w1 + v3

2w
2
1).

This equation agrees with the calculation in Example 5.2.18 of Chapter 5 by using

the CAST package.

3.3 Der0(-log) of the minimal cross cap

In this section we shall show Conjecture 3.1.4 is true.

Proposition 3.3.1. For 1 ≤ i ≤ d− 1 we have

1.
d−1∑
i=1

ui+j
∂T

∂vi
+ (d− j)uj = 0.

2.

d−2∑
i=1

(d+i−j+1)ud+i−j+1
∂T

∂ui
+
d−1∑
i=1

(d+i−j+1)vd+i−j+1
∂T

∂vi
+d(d−j+1)vd−j+1 = 0.

Proof. For 1 ≤ j ≤ d− 1 all vector fields in the second family are tangent to

V , i.e., ξ2
j (Hd) = g2

j (u, v, w)Hd for some polynomials g2
j .
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We can see that none of the coefficients of the vector fields in this family contain

w2. It follows we have that

ξ2
j (Hd) =

d−2∑
1

A2
i,j

∂Hd

∂ui
+

d−1∑
1

B2
i,j

∂Hd

∂vi
+ C2

1,j

∂Hd

∂w1

+ C2
2,j

∂Hd

∂w2

=
d−2∑

1

A2
i,j

(
− ∂T
∂ui

wd−1
2 +

∂G

∂ui

)
+

d−1∑
1

B2
i,j

(
−∂T
∂vi

wd−1
2 +

∂G

∂vi

)
+C2

1,j

(
∂G

∂w1

)
+ C2

2,j

(
dwd−1

2 − (d− 1)Twd−2
2 +

∂G

∂w2

)

From Corollary 3.2.4, we can see that T does not depend on w2. Therefore, we

get

ξ2
j (Hd) =

(
−

d−2∑
1

A2
i,j

∂T

∂ui
−

d−1∑
1

B2
i,j

∂T

∂vi
+ dC2

2,j

)
wd−1

2 +G∗,

where G∗ is a polynomial in several variables whose degree in w2 is ≤ d− 2.

It follows that we have ξ2
j (Hd) is a polynomial in u1, . . . , ud−2, v1, . . . , vd−1, w1 and

w2 whose degree in w2 is ≤ d− 1. However, γ2
j (u, v, w)Hd is a polynomial in several

variables whose degree in w2 is≥ d. Therefore, we have that g2
j = 0. Hence ξ2

j (Hd) = 0

for all 1 ≤ j ≤ d− 1.

It follows that

−
d−2∑

1

A2
i,j

∂T

∂ui
−

d−1∑
1

B2
i,j

∂T

∂vi
+ dC2

2,j = 0.

Then we have

−
( Ω1:=︷ ︸︸ ︷

d−2∑
i=1

(d+ i− j + 1)ud+i−j+1
∂T

∂ui
+

d−1∑
i=1

(d+ i− j + 1)vd+i−j+1
∂T

∂vi
+ d(d− j + 1)vd−j+1

)
w1

+d

( Ω2:=︷ ︸︸ ︷
d−1∑
i=1

ud+i−j
∂T

∂vi
+ jud−j

)
v1 −

Ω3:=︷ ︸︸ ︷(d−2∑
i=1

(
d

i∑
r=1

(d+ i− j − 2r + 1)urud+i−j−r+1 + j(i+ 1)ui+1ud−j

)) ∂T
∂ui

−

Ω4:=︷ ︸︸ ︷(d−1∑
i=1

(
d

i∑
r=1

(d+ i− j − r + 1)urvd+i−j−r+1 + d

i∑
r=2

rud+i−j−r+1vr + j(i+ 1)ud−jvi+1

)) ∂T
∂vi

= 0.
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From Corollary 3.2.4, T does not contain v1 and w1. Hence ∂T
∂ui

and ∂T
∂vi

do not

contain v1 and w1. Therefore Ω2, Ω3, Ω4 do not contain w1. Also we can see that

Ω1, Ω3, Ω4 do not contain v1 because 3 ≤ d+ i− j + 1 and if d + i− j − r + 1 = 1,

then r = d + i − j. Now, if 1 ≤ r ≤ i, then 1 ≤ d+ i− j ≤ i and this means

1− i ≤ d− j ≤ 0 and this is a contradiction.

Therefore, we have Ω1 = 0 and this proves part 2. Also Ω2 = 0, i.e.,

d−1∑
i=1

ud+i−j
∂T

∂vi
+ jud−j = 0.

Let l = d− j, then 1 ≤ l ≤ d− 1 and we get

d−1∑
i=1

ui+)
∂T

∂vi
+ (d− l)ul = 0.

This proves part 1. �

In the following theorem we shall give the answer of the first part of the Conjec-

ture 3.1.4.

Theorem 3.3.2. Let ϕd : (C2d−2, 0) → (C2d−1, 0) be given by the normal form for a

corank 1 minimal stable map of multiplicity d ≥ 2 and V be its image. Then,

Der0(−log(h)) =
〈
ξ1
j , ξ

2
j , ξ

3
j

〉d−1

j=1
.

Proof. From the proof of Proposition 3.3.1 we have ξ2
j (Hd) = 0 for all 1 ≤ j ≤

d− 1. We want to show that for all 1 ≤ j ≤ d− 1, ξ1
j (Hd) = 0 and ξ3

j (Hd) = 0.

We consider the liftable vector fields ξ1
j and ξ3

j . Then they are tangent vector

fields, that is for i = 1 or i = 3 we have

ξij(Hd) = gij(u, v, w)Hd for some polynomials gij.

Now,

ξ1
j (Hd) =

d−2∑
1

A1
i,j

∂Hd

∂ui
+

d−1∑
1

B1
i,j

∂Hd

∂vi
+ C1

1,j

∂Hd

∂w1

+ C1
2,j

∂Hd

∂w2

= d2

(d−1∑
i=1

ui+j
∂T

∂vi
+ (d− j)uj

)
wd2 +G∗∗,
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where G∗∗ is a polynomial in u1, . . . , ud−2, v1, . . . , vd−1, w1 and w2 whose degree in w2

is ≤ d− 1.

From Proposition 3.3.1(1) we have

ξ1
j (Hd) = d2(0)wd2 +G∗∗.

This means ξ1
j (Hd) is a polynomial in u1, . . . , ud−2, v1, . . . , vd−1, w1 and w2 whose de-

gree in w2 is ≤ d− 1. However, g1
j (u, v, w)Hd is a polynomial in several variables

whose degree in w2 is ≥ d.

It follows g1
j = 0. Hence ξ1

j (Hd) = 0.

Similarly, we have

ξ3
j (Hd) =

d−2∑
1

A3
i,j

∂Hd

∂ui
+

d−1∑
1

B3
i,j

∂Hd

∂vi
+ C3

1,j

∂Hd

∂w1

+ C3
2,j

∂Hd

∂w2

= d

(d−2∑
i=1

(d+ i− j + 1)ud+i−j+1
∂T

∂ui
+

d−1∑
i=1

(d+ i− j + 1)vd+i−j+1
∂T

∂vi

+d(d− j + 1)vd−j+1

)
wd2 +G∗∗∗,

where G∗∗∗ is a polynomial in several variables whose degree in w2 is ≤ d− 1.

From Proposition 3.3.1(2) we have

ξ3
j (Hd) = d(0)wd2 +G∗∗∗.

It follows g3
j = 0. Therefore, we have ξ3

j (Hd) = 0.

Now, let η ∈Der0(−log(h)) ⊂Der(−logV). Then from Theorem 3.1.2 we have

η = geξe +
3∑
i=1

d−1∑
j=1

gi,jξ
i
j for some polynomials ge, gi,j.

It follows that

η(Hd) = geξe(Hd) +
3∑
i=1

d−1∑
j=1

gi,jξ
i
j(Hd).
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Thus,

0 = d2geHd + 0.

Therefore ge = 0 and hence

η =
3∑
i=1

d−1∑
j=1

gi,jξ
i
j.

�



Chapter 4

Determinacy and The Complete

Transversal Method

In this chapter we will give the techniques of a classification method which we will use

in this thesis to find the classification of map-germ under ΘK-equivalence, when Θ is

the module of liftable vector fields over the minimal cross cap of multiplicity d ≥ 2.

This method depend on finite determinacy and the complete transversal method.

Finite determinacy is a very powerful and practical idea. It allows us to study

a smooth map-germ by replacing it with a polynomial which is G-equivalent to it

(where G is an equivalence relation.)

The complete transversal method is a very systematic and an efficient method of

classification. The method is due to Bruce, Kirk and du Plessis in [BKdP97] and is

a direct generalisation of the work of Dimca and Gibson for K-equivalence, [DG83].

Independently, a similar method has been developed by D. Ratcliffe using ‘triviality

theorems’ (Thom-Levine) as the main technical tool (see [Rat90] and [Rat95]). For

more details see ([Bru01], [BG92] , [Wal95] and [BW98]).

The general method of classification can be described as the following:

40
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i) From a k-jet produce a list of possible (k + 1)-jets.

ii) Reduce the list by removing redundancies and by scaling.

iii) For each possible (k+1)-jet, check determinacy. If not (k+1)-determined, then

repeat the method for each (k + 1)-jet by finding the possible (k + 2)-jets.

The theorems developed in this chapter have been used in the classification of

map-germs (K2d−1, 0)→ (Kq, 0) under ΘK-equivalence (see Definition 2.4.10), where

Θ is the module of the liftable vector fields over the minimal cross cap mapping of

multiplicity d ≥ 2.

4.1 Finite Determinacy of Map-Germs

The aim of this section is to find algebraic criteria for a map-germ to be determined

by its Taylor series expansion up to a sufficiently high order.

Definition 4.1.1. Let G be an equivalence relation. We say that a smooth map-germ

f : (Kn, 0) → (Kp, 0) is k-G-determined if f is G-equivalent to any other smooth

map-germ g : (Kn, 0)→ (Kp, 0) such that jkf = jkg. If f is k-G-determined for some

k, then f is said to be G finitely determined.

Once we know a map-germ is k-G-determined for some k, it is sufficient to work

in the k-jet-space to classify G-classes.

The following lemma is very important tool in singularity theory.

Lemma 4.1.2 (Nakayama’s lemma). Let R be a commutative ring, M an ideal such

that for x ∈M , 1 + x is a unit. Let C be an R-module, A and B R-submodules of C

with A finitely generated. If A ⊂ B +M.A then A ⊂ B.

Proof. See [Wal81], Lemma 1.4 or [Wal95], page 929. �
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4.1.1 Trivial unfoldings

Let ξ be a vector field on (Kp, 0). Then we can consider ξ as a vector field on

(Kp × K, 0 × 0) just by trivial extension. Similarly the maximal ideal mp can be

considered as the ideal which it generates in mp+1.

Definition 4.1.3. Let Θ be a finitely generated Ep-module of vector fields on (Kp, 0)

and H : (Kp × K, 0 × 0) → (Kq, 0) be a one-parameter family of smooth map-germs

with H(0, t) = 0 for small t.

1) We say that H is ΘR-trivial if there exists vector field ξ ∈ Θ that can be inte-

grated to give a one-parameter family of diffeomorphisms Φ : (Kp×K, 0× 0)→

(Kp, 0) with Φ(x, 0) = x (for all x), Φ(0, t) = 0 (for small t) and H(Φ(x, t), t) =

H(x, 0).

2) We say that H is ΘK-trivial if there exists vector field ξ ∈ Θ that can be

integrated to give a one-parameter family of diffeomorphisms Φ : (Kp × K, 0 ×

0)→ (Kp, 0) with Φ(x, 0) = x (for all x), Φ(0, t) = 0 (for small t) and a germ of

invertible matrix M : (Kp×K, 0×0)→ GL(Kq) such that M(x, t)H(Φ(x, t), t) =

H(x, 0).

We can now state a condition which ensures the triviality of a family. The state-

ments and proofs are very similar to standard results in singularity theory, but see in

particular Proposition 3.9 of [BW98] where a very similar VR-trivial result is stated

and proved.

Theorem 4.1.4. Let Θ be a finitely generated Ep-module of vector fields on (Kp, 0)

such that every vector field in Θ can be integrated to give a one-parameter family of

diffeomorphisms. Let H : (Kp × K, 0 × 0) → (Kq, 0) be a smooth map-germ with

H(0, t) = 0 for small t.
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1) The family H is ΘR-trivial if

∂H

∂t
∈ 〈ξ(H) | ξ ∈ Θ ∩mpθp〉.

2) The family H is ΘK-trivial if

∂H

∂t
∈ 〈ξ(H) | ξ ∈ Θ ∩mpθp〉+H∗(mq)θ(H).

Proof. We will give the proof of ΘK-triviality as it does not appear to be in the

literature in the form we describe. There is a version from a different perspective in

Proposition 2 of [GH85]. For the VR-triviality proof see Proposition 3.9(i) in [BW98].

We suppose that

∂H

∂t
∈ 〈ξ(H) | ξ ∈ Θ ∩mpθp〉+H∗(mq)θ(H).

In other words

∂H

∂t
=

r∑
i=1

αiξi(H) +

q∑
i=1

q∑
j=1

βijHiej.

where ξ1, ξ2, . . . , ξr are vector fields in Θ∩mpθp and for 1 ≤ i, j ≤ q we have βij ∈ Ep+1

and ej = (0, 0, . . . , 1, 0, . . . , 0)T ∈ Kq which has zeroes except at position j, where it

has a 1.

By the fundamental theorem on the existence of solutions to ordinary differential

equations (see [Hur64]) and integration of vector fields we have the following.

i) If

η =
r∑
i=1

αiξi =

p∑
i=1

ηi
∂

∂xi
,

then the differential equation

∂Φ

∂t
(x, t) = η(Φ(x, t), t), Φ(x, 0) = x,
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has a unique solution Φ as a family of diffeomorphisms of Kp. That is, we can

find Φt : (Kp, 0)→ (Kp, 0) for each small t. Note that

∂Φ

∂t
(0, t) = η(Φ(0, t), t)

has the unique solution Φ(0, t) ≡ 0, since the vector fields vanish at the origin.

ii) From
q∑
i=1

q∑
j=1

βijHiej, we define a q × q matrix A = [βij].

Then the differential equation

∂M

∂t
(x, t) = MA(Φ(x, t), t), M(x, 0) = Idq

has a unique solution M : (Kp × K, 0 × 0) → GL(Kq). (Here Idq is the q × q

identity matrix.)

Now we define a new family G : (Kp ×K, 0× 0)→ (Kq, 0) by

G(x, t) = M(x, t)H(Φ(x, t), t).

Differentiating with respect to t we obtain

∂G

∂t
(x, t) =

∂M

∂t
(x, t)H(Φ(x, t))

+M(x, t)

(
p∑
i=1

∂Φi

∂t
(x, t)

∂H

∂xi
(Φ(x, t), t) +

∂H

∂t
(Φ(x, t), t)

)
= (M(x, t)A(Φ(x, t), t))H(Φ(x, t))

+M

(
p∑
i=1

ηi(Φ(x, t), t)
∂H

∂xi
(Φ(x, t), t) +

∂H

∂t
(Φ(x, t), t)

)

= M(x, t)

(
A(x, t)H(x, t) +

p∑
i=1

ηi
∂H

∂xi
+
∂H

∂t

)
(Φ(x, t), t) ≡ 0.

Fixing x we see that G(x, t) is constant, i.e., G(x, t) = G(x, 0) for all x and t.

In other words M(x, t)H(Φ(x, t), t) = H(x, 0). Hence H is ΘK-trivial. �
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Example 4.1.5. Let V be the image of ϕ3 and Hλ is the 1-parameter family given

by Hλ(u1, v1, v2, w1, w2) = v2 + w1 + λu2
1.

Then we have

TΘK(Hλ) = 〈ξ1
j (Hλ), ξ

2
j (Hλ), ξ

3
j (Hλ), ξe(Hλ)〉2j=1 + 〈Hλ〉

= 〈8λu3
1 − 3w2 − 5u1v2 + 6u1w1, 3v1, 12λu2

1 − 6v2 + 9w1,

−18λu1w1 − 3v1 + 2u2
1 + 18λu1v1 + 9w2 + 3u1v2,−18λu1w2

−6λu2
1v2 + 3u1v1, 4λu

2
1 + v2 + 3w1〉+ 〈v2 + w1 + λu2

1〉

= 〈v1, v2, w1, w2, u
2
1〉.

Thus,

∂Hλ

∂λ
∈ TΘK(Hλ).

and Hλ is ΘK-trivial.

The converse of theorem 4.1.4 is not true in general. However, if Θ is the module

of all smooth vector fields on (Kp, 0) preserving a subset V , then the converse is true.

In fact, there is a version from a different perspective in ([BG92], Proposition 11.11)

and ([GH85], Proposition 2(a)).

Theorem 4.1.6. Let (V, 0) ⊆ (Kp, 0) and Θ be the module of all smooth vector fields

on (Kp, 0) preserving V . Let H : (Kp × K, 0 × 0) → (Kq, 0) be a smooth map-germ

with H(0, t) = 0 for small t.

1. If the family H is ΘR-trivial, then

∂H

∂t
∈ 〈ξ(H) | ξ ∈ Θ〉.

2. If the family H is ΘK-trivial, then

∂H

∂t
∈ 〈ξ(H) | ξ ∈ Θ〉+H∗(mq)θ(H).
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Proof. We will give the proof of ΘK-triviality. For the proof of ΘR-triviality we

just delete the term H∗(mq)θ(H).

We suppose that H is ΘK-trivial family, so that there is a one-parameter family

of diffeomorphisms Φ : (Kp × K, 0 × 0) → (Kp, 0) with Φ(x, 0) = x, Φ(0, t) = 0 (for

small t) and a germ of invertible matrix M : (Kp ×K, 0× 0)→ GL(Kq) such that

M(x, t)H(Φ(x, t), t) = H(x, 0).

Differentiating with respect to t we obtain

∂M

∂t
(x, t)H(Φ(x, t)) +M(x, t)

(
p∑
i=1

∂Φi

∂t
(x, t)

∂H

∂xi
(Φ(x, t), t) +

∂H

∂t
(Φ(x, t), t)

)
= 0.

Multiplication on the left by M−1 and composition on the right with Φ−1
t where

Φt(x) = Φ(x, t). Then we get

M−1∂M

∂t
(x, t)H(x, t) +

(
p∑
i=1

∂Φi

∂t
(Φ−1

t (x), t)
∂H

∂xi
(x, t) +

∂H

∂t
(x, t)

)
= 0.

We may take ξi(x, t) =
∂Φi

∂t
(Φ−1

t (x), t) for 1 ≤ i ≤ p.

Note that

ξi(0, t) =
∂Φi

∂t
(Φ−1

t (0), t)

=
∂Φi

∂t
(0, t) since Φ−1

t (0) = 0

= 0.

In other words, there is a vector field ξ : (Kp × K, 0 × 0) → (Kp, 0) defined by

ξ =
p∑
i=1

ξi
∂

∂xi
with ξ(0) = 0 such that

M−1∂M

∂t
(x, t)H(x, t) +

(
p∑
i=1

ξi(x, t)
∂H

∂xi
(x, t) +

∂H

∂t
(x, t)

)
= 0.

By integrating ξ we obtain a diffeomorphism which preserves V , i.e., ξ ∈ Θ.
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It follows

∂H

∂t
∈ 〈ξ(H) | ξ ∈ Θ〉+H∗(mq)θ(H).

�

Example 4.1.7. Let V be the image of the cross cap. Suppose that H(v1, w1, w2, ν) =

w2 + νw2
1.

Then we have

TΘK(H) = 〈ξ1
1(H), ξ2

1(H), ξ3
1(H), ξe(H)〉+ 〈h〉

= 〈v1w1, 4νw
2
1, 4νw1w2 + v2

1, 4νw
2
1 + 2w2〉+ 〈w2 + νw2

1〉

= 〈v1w1, νw
2
1, 4νw1w2 + v2

1, w2〉.

= 〈v1w1, νw
2
1, v

2
1, w2〉.

Thus,

∂H

∂ν
/∈ TΘK(H).

Hence H is non ΘK-trivial along ν.

Remark 4.1.8. Suppose that G = K or R. Let (V, 0) be a subgerm of (Kp, 0) and

H : (Kp × K, 0 × 0) → (Kq, 0) be a smooth map-germ with H(0, t) = 0 for small t.

Let Θ be a finitely generated Ep-module of tangent vector fields on (Kp, 0) to V . If all

members of Θ vanish at the origin, then from theorem 4.1.4 and theorem 4.1.6 we can

see that H is ΘG-trivial if and only if
∂H

∂t
∈ TΘG(H). In fact, this is very important

result in our classification because when we get non ΘK-triviality along a parameter

(or family of parameters) and we can not scale this parameter by any diffeomorphism

which preserves V , then this parameter is a modulus and in this case H is not a

simple map-germ.

Now as a corollary of Theorem 4.1.4, we obtain the following theorem.
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Theorem 4.1.9 (Finite determinacy theorem). Let h : (Kp, 0) → (Kq, 0) be smooth

map-germ. Suppose G = K or R. If Θ is a finitely generated module of vector fields

on (Kp, 0) such that every vector field in Θ can be integrated to give a one-parameter

family of diffeomorphisms and

mk
pθ(h) ⊆ TΘG(h),

then h is k-ΘG-determined.

Proof. We will give the proof for ΘK-equivalence. The idea of the proof is the

same as Gibson’s proof ([Gib79], page 117), based on the method of homotopy.

Let g : (Kp, S) → (Kq, 0) be a smooth map-germ with jk(g) = jk(h). We set

Ω(x) = g(x)− h(x) and

H(x, t) = Ht(x) = h(x) + tΩ(x).

Note that H0 = h and H1 = g. Obviously, it suffices to show that for every t ∈ [0, 1]

the family Ht is ΘK-trivial. Thus, we have to show that

∂Ht

∂t
= g − h ∈ TΘG(Ht).

We have Ω ∈mk+1
p θ(h), then

mpTΘG(Ω) = mp(〈ξ(Ω) | ξ ∈ Θ ∩mpθ(Ω)〉+ Ω∗(mq)θ(Ω))

⊆ mk+2
p θ(Ht).

Hence,

mpTΘG(Ht) + mk+2
p θ(Ht) = mpTΘG(h+ tΩ) + mk+2

p θ(Ht)

= mpTΘG(h) + mk+2
p θ(Ht).

The latter module contains mk+1
p θ(Ht), then

mk+1
p θ(Ht) ⊆mpTΘG(Ht) + mk+2

p θ(Ht).
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By using Nakayama’s lemma, we get

mk+1
p θ(Ht) ⊆mpTΘG(Ht)

Since

mpTΘG(Ht) ⊂ TΘG(Ht)

Then, we have

mk+1
p θ(Ht) ⊂ TΘG(Ht)

But mk+1
p θ(Ht) contains g−h. Therefore we have Ht is a ΘG-trivial for every t ∈[0, 1].

Since [0, 1] is compact, then we can choose a finite cover U1, . . . , Uτ for [0, 1]. Also

[0, 1] is connected, then we can find a finite sequence {t0 = 0, t1, . . . , tm = 1} ⊂ [0, 1]

such that for each i = 0, . . . ,m − 1 the intervals {ti, ti+1} is contained in one of Ui

and then

H0 ∼ΘK Ht1 ∼ΘK . . . ∼ΘK H1 ⇒ g ∼
ΘK h.

For the proof of ΘR-equivalence we just delete the terms h∗(mq)θ(h), H∗(mq)θ(H)

and Ω∗(mq)θ(Ω). �

Example 4.1.10. Let V be the image of cross cap and Θ be the set of vector fields

tangent to V . Let h(v1, w1, w2) = w2 + wk+1
1 with k ≥ 1. we have

TΘK(h) = 〈v1w1, 2(k + 1)wk+1
1 , 2(k + 1)w2w

k
1 + v2

1, 2(k + 1)wk+1
1 + 2w2〉

+〈w2 + wk+1
1 〉

= 〈v1w1, w
k+1
1 , 2(k + 1)w2w

k
1 + v2

1, w2〉

= 〈v1w1, w
k+1
1 , v2

1, w2〉.

Hence, for k ≥ 1, mk+1
3 ⊆ TΘK(h). That is w2 + wk+1

1 is (k + 1)-ΘK-determined.

Example 4.1.11. Let V be the image of ϕ3 and h : (C5, 0) → (C, 0) is given by

h(u1, v1, v2, w1, w2) = v2 + w1.
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Then we have

TΘK(h) = 〈ξ1
j (h), ξ2

j (h), ξ3
j (h), ξe(h)〉2j=1 + 〈h〉

= 〈−3w2 − 5u1v2 + 6u1w1, 3v1,−6v2 + 9w1,−3v1 + 2u2
1

9w2 + 3u1v2, 3u1v1, v2 + 3w1〉+ 〈v2 + w1〉

= 〈v1, v2, w1, w2, u
2
1〉.

Obviously, m2
5 ⊆ 〈v1, v2, w1, w2, u

2
1〉. Hence h is 2-ΘK-determined.

We can do the preceding at the jet level.

Definition 4.1.12. Let Θ be a finitely generated Ep-module of vector fields on (Kp, 0)

and H : (Kp ×K, 0× 0)→ (Kq, 0) be a smooth map-germ with H(0, t) = 0 for small

t. Let k ≥ 1 be an integer.

1) We say that H is k-ΘR-trivial if there exists vector field ξ ∈ Θ that can be inte-

grated to give a one-parameter family of diffeomorphisms Φ : (Kp×K, 0× 0)→

(Kp, 0) with Φ(x, 0) = x (for all x), Φ(0, t) = 0 (for small t) and H(Φ(x, t), t) =

H(x, 0) + ψ(x, t) for some ψ ∈mk+1
p θ(H).

2) We say that H is k-ΘK-trivial if there exists vector field ξ ∈ Θ that can be

integrated to give a one-parameter family of diffeomorphisms Φ : (Kp × K, 0 ×

0)→ (Kp, 0) with Φ(x, 0) = x (for all x), Φ(0, t) = 0 (for small t) and a germ of

invertible matrix M : (Kp×K, 0×0)→ GL(Kq) such that M(x, t)H(Φ(x, t), t) =

H(x, 0) + ψ(x, t) for some ψ ∈mk+1
p θ(H).

Obviously an ΘR-trivial (resp. ΘK-trivial) family is k-ΘR-trivial (resp. k-ΘK-

trivial) for any k.

Theorem 4.1.13. Let Θ be a finitely generated Ep-module of vector fields on (Kp, 0)

such that every vector field in Θ can be integrated to give a one-parameter family of
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diffeomorphisms. Let H : (Kp × K, 0 × 0) → (Kq, 0) be a smooth map-germ with

H(0, t) = 0 for small t.

i) The family H is k-ΘR-trivial if

∂H

∂t
∈ 〈ξ(H) | ξ ∈ Θ ∩mpθ(H)〉+ mk+1

p θ(H).

ii) The family H is k-ΘK-trivial if

∂H

∂t
∈ 〈ξ(H) | ξ ∈ Θ ∩mpθ(H)〉+H∗(mq)θ(H) + mk+1

p θ(H).

Proof. For the proof of k-ΘR-triviality see Proposition 3.9(ii) in [BW98]. For

k-ΘK-triviality is very similar.

Suppose that

∂H

∂t
∈ 〈ξ(H) | ξ ∈ Θ ∩mpθ(H)〉+H∗(mq)θ(H) + mk+1

p θ(H).

By using the same argument as that the proof of theorem 4.1.4, there is a one-

parameter family of diffeomorphisms Φ : (Kp ×K, 0× 0)→ (Kp, 0) with Φ(x, 0) = x,

Φ(0, t) = 0 (for small t) and a germ of invertible matrix M : (Kp×K, 0×0)→ GL(Kq).

Let G(x, t) = M(x, t)H(Φ(x, t), t). Differentiating with respect to t we obtain

∂G

∂t
(x, t) =

∂M

∂t
(x, t)H(Φ(x, t), t)

+M(x, t)
( p∑
i=1

∂Φi

∂t
(x, t)

∂H

∂xi
(Φ(x, t), t) +

∂H

∂t
(Φ(x, t), t)

)
=

(∂M
∂t

(x, t)H(x, t)

+M(x, t)
( p∑
i=1

∂Φi

∂t
(x, t)

∂H

∂xi
(x, t) +

∂H

∂t
(x, t)

))
(Φ(x, t), t)

The term

∂M

∂t
(x, t)H(x, t) +M(x, t)

( p∑
i=1

∂Φi

∂t
(x, t)

∂H

∂xi
(x, t) +

∂H

∂t
(x, t)

)
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lies in mk+1
p θ(H) and hence so does

∂G

∂t
(x, t). In particular we can write

∂G

∂t
(x, t) as

a sum
∑
GI(x, t)x

I , where I is a multi-index with |I| = k + 1. So

G(x, t)−G(x, 0) =

∫ t

0

∂G

∂u
(x, u)du =

∑(∫ t

0

∂GI

∂u
(x, u)du

)
xI ∈mk+1

p θ(H)

Since G(x, 0) = H(x, 0), note that M(x, t).H(Φ(x, t), t) = H(x, 0) + ψ(x, t) for some

ψ ∈mk+1
p θ(H). �

Example 4.1.14. Let V be the image of the cross cap ϕ2 : (C2, 0)→ (C3, 0) and Θ be

the set of vector fields tangent to V . Let H(v1, w1, w2, λ, µ) = w2 +λv2
1 +µv1w1 +νw2

1.

Then we have

ξ3
1(H) = v2

1 + φ where φ ∈m3.

Thus,

∂H

∂λ
= v2

1 ∈ TΘK(H) + m3

and H is 2-ΘK-trivial along λ. A similar calculation gives that H is 2-ΘK-trivial

along µ.

Now, we consider H as a 1-parameter family of function-germs with µ as the

parameter. Then from Example 4.1.7, H is non ΘK-trivial along ν and we can fix

ν = 1.

In general the converse of Theorem 4.1.13 is not true. However, if Θ is module of

all vector fields on (Kp, 0) preserving a subset V , then the converse is true. In fact,

there is a version from a different perspective in ([BG92], Proposition 11.28).

Theorem 4.1.15. Let (V, 0) ⊆ (Kp, 0) and Θ be the module of all smooth vector fields

on (Kp, 0) preserving V . Let H : (Kp × K, 0 × 0) → (Kq, 0) be a smooth map-germ

with H(0, t) = 0 for small t.

i) If the family H is k-ΘR-trivial, then

∂H

∂t
∈ 〈ξ(H) | ξ ∈ Θ ∩mpθ(H)〉+ mk+1

p θ(H)
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ii) If the family H is k-ΘK-trivial, then

∂H

∂t
∈ 〈ξ(H) | ξ ∈ Θ ∩mpθ(H)〉+H∗(mq)θ(H) + mk+1

p θ(H)

Proof. We will give the proof for ΘK-trivial. For the proof of ΘR-trivial we just

delete the term H∗(mq)θ(H).

We suppose that H is ΘK-trivial family, so that there is a one-parameter family

of diffeomorphisms Φ : (Kp × K, 0 × 0) → (Kp, 0) preserving V with Φ(x, 0) = x,

Φ(0, t) = 0 (for small t) and a germ of invertible matrix M : (Kp×K, 0×0)→ GL(Kq)

such that

M(x, t)H(Φ(x, t), t) = H(x, 0) + ψ(x, t) for some ψ ∈mk+1
p θ(H).

Differentiating with respect to t we obtain

∂M

∂t
(x, t)H(Φ(x, t)) +M(x, t)

(
p∑
i=1

∂Φi

∂t
(x, t)

∂H

∂xi
(Φ(x, t), t) +

∂H

∂t
(Φ(x, t), t)

)
=
∂ψ

∂t
(x, t).

Since ψ ∈mk+1
p θ(H), then we have

∂ψ

∂t
∈mk+1

p θ(H). Hence, we have

M−1∂ψ

∂t
(Φ−1(x, t), t) ∈mk+1

p θ(H).

By using the same argument as in the proof of Theorem 4.1.6 we can get the

result. �

4.2 Complete Transversal Method

In this section we will discuss the use of the complete transversal method. This

method has been used in several classifications in the past, see for example, [DG83],

[DG85], [Rat90], [BKdP97], [BW98], [HK99], [Kir00].

A complete transversal is a list of homogeneous maps (that satisfy a certain

condition). This list provides a complete list of the (k+ 1)-jets (associated to a k-jet)

that we need to investigate when looking for distinct singularities.
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The engine that drives the complete transversal method in our situation is the

following theorem

Theorem 4.2.1 (Complete transversal theorem). Suppose that h : (Kp, 0)→ (Kq, 0)

is a smooth map-germ with (V, 0) ⊆ (Kp, 0), that G is either K or R and Θ is a

finitely generated Ep-module of vector fields preserving V .

If G1, . . . , Gr are homogeneous polynomial maps of degree k + 1 such that

mk+1
p θ(h) ⊆mpTΘG(h) + span{G1, . . . , Gr}+ mk+2

n θ(h),

then every g with jk(h) = jk(g) is ΘG-equivalent to

jk(h) +
r∑
i=1

αiGi + φ,

for some φ ∈mk+2
p θ(h) and αi ∈ K.

Proof. We will use the method of homotopy, with an argument very similar to

the proof of Theorem 4.1.9.

Given a map-germ g : (Kp, S)→ (Kq, 0) with jk(g) = jk(h). We set

Ω1(x) =
r∑
i=1

αiGi(x),

Ω2(x) = g(x)− h(x)−
r∑
i=1

αiGi(x) and

Ht(x) = H(x, t) = h(x) + Ω1(x) + tΩ2(x).

Note that H0 = h +
r∑
i=1

αiGi and H1 = g. Our aim is to show that for every

t ∈ [0, 1] the family Ht is (k + 1)-ΘK-trivial. Thus, we have to show that

Ω2 ∈ TΘK(Ht) + mk+2
p θ(Ht).

We have Ω1 ∈mk+1
p θ(h), then

mpTΘK(Ω1) = mp(〈ξ(Ω1) | ξ ∈ Θ ∩mpθ(Ω1)〉+ Ω∗1(mq)θ(Ω1))

⊆ mk+2
p θ(Ht).
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Similarly Ω2 ∈mk+1
p θ(h), then we have mpTΘK(Ω2) ⊆mk+2

p θ(Ht).

Hence,

mpTΘK(Ht) + mk+2
p θ(Ht) = mpTΘK(h+ Ω1 + tΩ2) + mk+2

p θ(Ht)

= mpTΘK(h) + mk+2
p θ(Ht).

By assumption

Ω2 = g − h−
r∑
i=1

αiGi ∈mpTΘK(h) + mk+2
p θ(h).

It follows that

Ω2 ∈mpTΘK(Ht) + mk+2
p θ(Ht) ⊆ TΘK(Ht) + mk+2

p θ(Ht)

Therefore we have Ht is a (k+ 1)-ΘK-trivial for every t ∈[0, 1]. The result follows

by the compactness and connectedness of [0, 1].

H0 ∼ΘK Ht1 ∼ΘK . . . ∼ΘK H1 ⇒ g ∼
ΘK h+

r∑
i=1

αiGi.

For ΘR-equivalence we just delete the terms h∗(mq)θ(h), H∗(mq)θ(H), Ω∗1(mq)θ(Ω1)

and Ω∗2(mq)θ(Ω2). �

Remark 4.2.2. The diffeomorphism generated in the equivalence has 1-jet equal to

the identity.

Definition 4.2.3. The set {G1, G2, . . . , Gr} is called a complete transversal of

degree k + 1. Sometimes we call it a (k + 1)-transversal or (k + 1)-CT.

Corollary 4.2.4. If the (k+ 1)-transversal of h is empty, then h is k-ΘG-determined

(for G = K or R).
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Proof. As the (k + 1)-transversal is empty we have

mk+1θ(h) ⊆mTΘG(h) + mk+2θ(h).

By Nakayama’s lemma and an obvious inclusion we have

mk+1θ(h) ⊆mTΘG(h) ⊂ TΘG(h).

Hence h is (k + 1)-determined.

If jk(g) = jk(h), then by the complete transversal theorem g is ΘG-equivalent to

jk(h) + φ where φ ∈mk+2θ(h). Hence,

jk+1(g) = jk(h) = jk+1(h)

and so g and h are ΘG-equivalent. �

In particular, this means that when we reach an empty complete transversal, we

can terminate the classification at that branch.

Remark 4.2.5. A similar statement is not true in the A-equivalence case. In fact,

if the (k + 1)-transversal is empty, the (k + 2)-transversal may be non empty. In the

R- or K-equivalence cases this does not occur as we can apply Nakayama’s Lemma.

This explains why A-classifications, such as in [HK99], are so complicated and

explains why it is so important to change the A-classification to an equivalent VK-

classification.

Example 4.2.6. Let V be the image of the cross cap ϕ2 : (C2, 0) → (C3, 0) and Θ

be the set of vector fields tangent to V . Suppose that h : (C3, 0)→ (C, 0) is given by

h(v1, w1, w2) = v1.

Then the (k + 1)-transversal is calculated as follows: We have

m3TΘK(h) = m3JΘ(h) + 〈h〉

= m3 (〈w2,−v1, 0, v1〉+ 〈v1〉)

= m2
3\〈w2

1, w
3
1, w

4
1, . . . 〉.
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Thus {wk+1
1 } is a (k + 1)-transversal.

Hence any function g with k-jet equal to v1 is ΘK-equivalent to some F with

jk+1F = v1 +λwk+1
1 , where λ ∈ C and the diffeomorphism giving this equivalence has

1-jet equal to the identity.

Suppose that λ 6= 0 and H(v1, w1, w2, λ) = v1 + λwk+1
1 . Then we have

TΘK(H) = 〈ξ1
1(h), ξ2

1(h), ξ3
1(h), ξe(h)〉+ 〈h〉

= 〈w2,−v1 + 2(k + 1)λwk+1
1 , 2(k + 1)λwk1w2, v1 + 2(k + 1)λwk+1

1 〉

+〈v1 + wk+1
1 〉

= 〈v1, λw
k+1
1 , w2〉.

Thus,

∂H

∂λ
= wk+1

1 /∈ TΘK(H).

Hence H is non ΘK-trivial along λ with λ 6= 0. The vector field 1
2

(ξ2
1 + ξe) can be

integrated to give the diffeomorphism

(v1, w1, w2) 7→ (v1, e
2αw1, e

αw2),

for some α ∈ C. Thus λ can be scaled away and the map is ΘK-equivalent to a germ

with (k + 1)-jet equal to v1 + wk+1
1 .

Now we assume that h = v1 + wk+1
1 . Then from Example 2.5.2 we have

TΘK(h) = 〈v1, w
k+1
1 , w2〉.

Obviously,

mk+1
3 ⊆ TΘK(h).

Therefore, from Theorem 4.1.9 h is (k + 1)-ΘK-determined. Furthermore, from

Example 2.5.8 we have ΘKe−cod(h) = k + 1.
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It follows that any finite codimension function-germ with k-jet equal to v1 is ΘK-

equivalent to a function-germ of the form v1 +wk+1
1 and so is (k+ 1)-ΘK-determined

and has ΘKe-codimension k + 1.

Example 4.2.7. Let V and Θ be as in Example 4.2.6 and let h(v1, w1, w2) = w2.

Then we have

TΘK(h) = TΘKe(h)

= JΘ(h) + 〈h〉

= 〈v1w1, 0, v
2
1, 2w2〉+ 〈w2〉

= 〈v1w1, v
2
1, w2〉.

Hence,

m3TΘK(h) = m3〈v1w1, 0, v
2
1, 2w2〉

= 〈v2
1w1, v

3
1, v1w2, v1w

2
1, v

2
1w1, w1w2, v1w1w2, v

2
1w2, w

2
2〉.

The 2-transversal in this case has a different format to the general (k+ 1)-transversal

with k > 1. The 2-transversal is given by:

m3TΘK(h) + m3
3

= 〈v2
1w1, v

3
1, v1w2, v1w

2
1, v

2
1w1, w1w2, v1w1w2, v

2
1w2, w

2
2〉+ m3

= 〈v1w2, w1w2, w
2
2〉+ m3

3.

Thus, {v2
1, v1w1, w

2
1} is a 2-transversal.

A similar calculation shows that for k > 1 the function h has {wk+1
1 } as a (k+ 1)-

transversal.

Let H(v1, w1, w2, λ, µ) = w2 + λv2
1 + µv1w1 + νw2

1. Then from Example 4.1.14, we

have H is 2-ΘK-trivial along λ and µ and H non ΘK-triviality along ν. The vector
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field ξ2
1 can be integrated to give the diffeomorphism

(v1, w1, w2) 7→ (e−αv1, e
2αw1, w2),

for some α ∈ C. Thus ν can be scaled away and the map is ΘK-equivalent to a germ

with 2-jet equal to w2 + w2
1.

It can be show in a similar way that for all k ≥ 2 any map with k-jet equal to w2

is ΘK-equivalent to a germ with (k + 1)-jet equal to w2 + wk+1
1 .

We suppose that h = w2 +wk+1
1 . Then, from Example 4.1.10 we have h is (k+ 1)-

ΘK-determined. Hence, we conclude that any finite codimension function-germ with

k-jet equal to w2 is ΘK-equivalent to a function-germ of the form w2 + wk+1
1 .

Example 4.2.8. Let V be the image of the minimal cross cap ϕ3 : (C4, 0)→ (C5, 0)

and Θ be the set of vector fields tangent to V . Let h(u1, v1, v2, w1, w2) = v2 + w1.

Then we have

TΘK(h) = 〈ξ1
j (h), ξ2

j (h), ξ3
j (h), ξe(h)〉2j=1 + 〈h〉

= 〈−3w2 − 5u1v2 + 6u1w1, 3v1,−6v2 + 9w1, 3u1v1, v2 + 3w1,

−3v1 + 2u2
1 + 9w2 + 3u1v2〉+ 〈v2 + w1〉

= 〈v1, v2, w1, w2, u
2
1〉.

Then we have

m2
5 ⊆m5TΘK(h) + 〈u2

1〉.

And for k ≥ 2,

mk+1
5 ⊆m5TΘK(h).

This {u2
1} is a 2-transversal and for all k ≥ 2, the (k + 1)-transversal is empty.

Hence any function g with 1-jet equal to v2 +w1 is ΘK-equivalent to some H with

j2H = v2 + w1 + λu2
1, where λ ∈ C.
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If we consider j2H as a 1-parameter family Hλ, then from Example 4.1.5 we get

Hλ is a ΘK-trivial.

Therefore we deduce that H is ΘK-equivalent to h(u1, v1, v2, w1, w2) = v2 + w1.

From Example 4.1.11 we get h is 2-ΘK-determined. Also we have

ΘKe−cod(h) = dimK
E5

TVKe(h)

= dimK
E5

〈v1, v2, w1, w2, u2
1〉

= dimK〈1, u1〉

= 2.

It follows that any finite codimension function-germ with 1-jet equal to v2 +w1 is

ΘK-equivalent to v2 + w1 itself.



Chapter 5

CAST: A Singular Package for

Singularity Theory

In this chapter we shall describe our package (called CAST). It is written in the

Singular Program (see [DGPS10]) and consists of a number of procedures (see Ap-

pendix A). Note that this package is much simpler than the considerable programming

effort in Kirk’s Transversal package, [Kir00]. Transversal was written in Maple in

the 1990s and though readily available it cannot be run without modification due to

the instability over time of Maple commands. Similar work by Ratcliffe dealt with

use of computational methods in the A-classification of map-germ (C2, 0)→ (C3, 0),

significantly extending Mond’s results, [Rat90]. The original program was written in

Pascal and dealt with this particular classification. Singular has shown itself to be

much more stable over time and is ideally suited to the calculations we require.

CAST has a number of commands which are given as procedures in Singular. Let

Θ be a module of smooth vector fields and G either R or K-equivalence.

i) setphi this sets the ring for use with the minimal cross cap mapping of multi-

plicity d;

61
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ii) phivfs returns a module generated by liftable vector fields over the minimal

cross cap mapping of multiplicity d;

iii) phivfs0 returns a module generated by liftable vector fields over the minimal

cross cap mapping of multiplicity d without the Euler vector field;

iv) tthe calculates TΘGe, the extended ΘG-tangent space of a map;

v) tth calculates TΘG, the ΘG-tangent space of a map;

vi) nthe calculates NΘGe, the extended ΘG normal space of a map;

vii) codthe calculates the extended ΘGe-codimension of a map;

viii) ct calculates a complete k-transversal of a module;

ix) guessdet gives an estimate for the determinacy of a map;

x) trivunf checks whether an unfolding is trivial or not;

xi) def eq computes the defining function of the image of the minimal cross cap

mapping of multiplicity d.

5.1 Getting Started

The CAST package is written in the Singular program. The code for Singular allows

us to use the vector fields in a package designed for the investigation of singularities.

Using the procedures is very simple. Put the file CAST.lib in any folder that can be

accessed by Singular. Once Singular is running load the commands by executing

CAST file. I.e., use
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SINGULAR /

A Computer Algebra System for Polynomial Computations / version 3-1-1

0<

by: G.-M. Greuel, G. Pfister, H. Schoenemann \ Feb 2010

FB Mathematik der Universitaet, D-67653 Kaiserslautern \

> LIB"CAST.lib";

// ** loaded CAST.lib $Id$

// ** loaded ring.lib (1.31,2006/12/15)

// ** loaded primdec.lib (1.135,2007/04/20)

// ** loaded absfact.lib (1.6,2007/07/13)

// ** loaded triang.lib (1.11,2006/12/06)

// ** loaded matrix.lib (1.37,2007/04/20)

// ** loaded random.lib (1.17,2006/07/20)

// ** loaded poly.lib (1.46,2007/07/25)

// ** loaded elim.lib (1.21,2006/08/03)

// ** loaded general.lib (1.54,2007/01/08)

// ** loaded inout.lib (1.28,2006/07/20)

5.2 Description of Singular commands

We set the ring using the setphi command. The usage is setphi(d) where d is

an integer. This sets the ring, called phiring, to have the variables u1, . . . , ud−2,

v1, . . . , vd−1 and w1, w2, i.e., the variables used in the codomain of the minimal cross

cap mapping of multiplicity d ≥ 2, i.e., ϕd. We then use phivfs(d) to produce the

module generated by the vector fields described in Chapter 3 for ϕd. The elements of

the module are given in the order family 1, followed by family 2, family 3 and finally
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the Euler vector field.

Remark 5.2.1. In the examples involving ϕd the user should first load the procedures

in CAST.lib and set the ring and the vector fields.

For example, for ϕ3 enter the following commands:

> setphi(2);

> phivfs(2);

_[1]=w(2)*gen(1)+v(1)*w(1)*gen(3)

_[2]=-v(1)*gen(1)+2*w(1)*gen(2)

_[3]=2*w(2)*gen(2)+v(1)^2*gen(3)

_[4]=v(1)*gen(1)+2*w(1)*gen(2)+2*w(2)*gen(3)

> phivfs0(2);

_[1]=w(2)*gen(1)+v(1)*w(1)*gen(3)

_[2]=-v(1)*gen(1)+2*w(1)*gen(2)

_[3]=2*w(2)*gen(2)+v(1)^2*gen(3)

If we wish to use a different d, then we redefine the ring. The procedure phivfs

returns a module and so we can define a variable to be module returned.

> setphi(3);

// ** redefining phiring

> module derlog=phivfs(3);

> derlog;

derlog[1]=-3*w(2)*gen(3)+4*u(1)^2*gen(1)-3*u(1)*v(1)*gen(2)

-5*u(1)*v(2)*gen(3)+6*u(1)*w(1)*gen(4)-3*v(1)*w(1)*gen(5)

+3*v(2)*w(1)*gen(2)+2*u(1)*w(2)*gen(5)

derlog[2]=3*v(1)*gen(3)-3*w(2)*gen(2)-3*u(1)*v(2)*gen(2)
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-3*v(2)*w(1)*gen(5)

derlog[3]=6*u(1)*gen(1)-3*v(1)*gen(2)-6*v(2)*gen(3)+9*w(1)*gen(4)

derlog[4]=-3*v(1)*gen(3)-9*w(1)*gen(1)+2*u(1)^2*gen(4)

+2*u(1)*v(1)*gen(5)+2*u(1)*v(2)*gen(2)+6*v(2)*w(1)*gen(5)

derlog[5]=9*v(1)*gen(1)+9*w(2)*gen(4)+3*u(1)*v(2)*gen(4)

+3*v(1)*v(2)*gen(5)-6*v(2)^2*gen(2)

derlog[6]=-9*w(2)*gen(1)+3*u(1)*v(1)*gen(4)+3*v(1)^2*gen(5)

-3*u(1)*v(2)*gen(1)-3*v(1)*v(2)*gen(2)+6*v(2)*w(2)*gen(5)

derlog[7]=2*u(1)*gen(1)+2*v(1)*gen(2)+v(2)*gen(3)

+3*w(1)*gen(4)+3*w(2)*gen(5)

From Example 3.4 in [HL09] we can see that derlog[1] and derlog[2] are the two

elements of the first family. Similarly derlog[3] and derlog[4] are the elements of

the second family and derlog[5] and derlog[6] are the elements of the third family.

The Euler vector field is derlog[7].

5.2.1 The tthe command

The tthe command calculates the extended ΘGe tangent space for the map h. The

usage of tthe is tthe(module, ideal, string) where the module is Θ, the ideal is made

of the components of h and the string G either R or K. It returns a module, TΘGe(h).

If G = R, then The tthe command calculates JΘ(h), i.e., the Jacobian of f with

respect to Θ.

proc tthe (module theta, ideal h, string G)

"

USAGE: tthe( theta, h, string G); theta module, h ideal, G string

PURPOSE: Calculate the extended _Theta\GG-tangent space of h
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with respect to a module of vector fields

RETURN: Returns T_Theta\GG_{e}(h)

"

{

module dh = jacob (h);

module Ch = freemodule(ncols(h))*h;

module TVE;

def EQ=G[1];

if (EQ=="R")

{

TVE = dh*theta;

}

if (EQ=="K")

{

TVE = dh*theta+Ch;

}

return(TVE);

}

Example 5.2.2. Let us take calculate the Jacobian of the D5 singularity h(x, y) =

x2y + y4 with respect to the vector field module Θ = 〈∂/∂x, ∂/∂y〉.

> ring r = 0,(x,y),ds;

> module Theta = freemodule(2);

> ideal h = x^2*y+y^4;

> tthe(Theta,h,"R");

_[1]=2xy*gen(1)

_[2]=x2*gen(1)+4y3*gen(1)
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Example 5.2.3. Let us calculate the Jacobian of h(v1, w1, w2) = w2 and h(v1, w1, w2) =

(v1, w2) with respect to the module of vector fields tangent to the cross cap (see Ex-

ample 2.4.3).

> setphi(2);

> module dv = phivfs(2);

> ideal h = w(2);

> module Jv = tthe(Theta,h,"R");

> Jv;

Jv[1]=v(1)*w(1)*gen(1)

Jv[2]=0

Jv[3]=v(1)^2*gen(1)

Jv[4]=2*w(2)*gen(1)

> ideal h = v(1),w(2);

// ** redefining h **

> Jv=tthe(Theta,h,"R");

> Jv;

Jv[1]=w(2)*gen(1)+v(1)*w(1)*gen(2)

Jv[2]=-v(1)*gen(1)

Jv[3]=v(1)^2*gen(2)

Jv[4]=v(1)*gen(1)+2*w(2)*gen(2)

> std(Jv);

_[1]=v(1)*gen(1)+2*w(2)*gen(1)

_[2]=w(2)*gen(1)

> kbase(std(Jv));

_[1]=0

> vdim(std(Jv));
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-1

The last command calculates the codimension of JΘ(h) and hence as the C-

dimension of O2
3/JΘ(h) is infinite Singular returns −1. Note that the command

previous to this produces a rather misleading answer – we might deduce (incorrectly)

that JΘ(h) = O2
3.

Example 5.2.4. We shall calculate TΘKe(h) where Θ is the module of vector fields

liftable over ϕ3 and the same module generated without the Euler vector field.

> setphi(3);

> module derlog=phivfs(3);

> ideal h=w(2);

> tthe(derlog,h,"K");

_[1]=3*w(2)*gen(1)

_[2]=-3*v(1)*w(1)*gen(1)+2*u(1)*w(2)*gen(1)

_[3]=0

_[4]=3*v(1)*v(2)*gen(1)

_[5]=-3*v(2)*w(1)*gen(1)

_[6]=2*u(1)*v(1)*gen(1)+6*v(2)*w(1)*gen(1)

_[7]=3*v(1)^2*gen(1)+6*v(2)*w(2)*gen(1)

> module derlog0 = phivfs0(3);

> tthe(derlog0,h,"K");

_[1]=-3*v(1)*w(1)*gen(1)+2*u(1)*w(2)*gen(1)

_[2]=0

_[3]=3*v(1)*v(2)*gen(1)

_[4]=-3*v(2)*w(1)*gen(1)

_[5]=2*u(1)*v(1)*gen(1)+6*v(2)*w(1)*gen(1)
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_[6]=3*v(1)^2*gen(1)+6*v(2)*w(2)*gen(1)

Example 5.2.5. Let Θ be the module of vector fields liftable over ϕ3 and

h(u1, v1, v2, w1, w2) = u1 + v2.

> setphi(3);

> module derlog=phivfs(3);

> ideal h=u(1)+v(2);

> module tv=tthe(derlog,h,"K");

> tv;

tv[1]=-3*w(2)*gen(1)+4*u(1)^2*gen(1)-5*u(1)*v(2)*gen(1)

tv[2]=3*v(1)*gen(1)

tv[3]=6*u(1)*gen(1)-6*v(2)*gen(1)

tv[4]=-3*v(1)*gen(1)-9*w(1)*gen(1)

tv[5]=-9*w(2)*gen(1)-3*u(1)*v(2)*gen(1)

tv[6]=2*u(1)*gen(1)+v(2)*gen(1)

tv[7]=u(1)*gen(1)+v(2)*gen(1)

> std(tv);

_[1]=u(1)*gen(1)

_[2]=v(1)*gen(1)

_[3]=v(2)*gen(1)

_[4]=w(1)*gen(1)

_[5]=3*w(2)*gen(1)

From the calculation of the standard basis we see that TΘKe(h) = m5.
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5.2.2 The tth command

The tth command calculates the ΘG tangent space for the map h. The usage of tth is

tth(module, ideal, string) where the module is Θ, the ideal is made of the components

of h and the string G either R or K. It returns a module, TΘG(h).

proc tth (module theta, ideal h, string G)

"

USAGE: tth( theta, h, string G); theta module, h ideal, G string

PURPOSE: Calculate the _Theta\GG-tangent space of h with

respect to a module of vector fields

RETURN: Returns T_Theta\GG (h)

"

{

def EQ=G[1];

module theta1 = intersect(theta, maxideal(1)*freemodule(nrows(theta)));

module TV;

if (EQ=="R")

{

TV = tthe(theta1,h, "R");

}

if (EQ=="K")

{

TV= tthe(theta1,h, "K");

}

return(TV);

}
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Example 5.2.6. Consider the Morse singularity h(x, y, z) = x2 +y2 +z2 with respect

to the vector field module Θ = 〈∂/∂x, ∂/∂y, ∂/∂z〉. Then, TΘK(h) = TK(h) and

TΘK(h) = TK(h), i.e., the standard R-tangent space and K-tangent space.

> ring r=0,(x,y,z),ds;

> ideal h=x^2+y^2+z^2;

> module Theta=freemodule(3);

> tth(Theta,h,"R");

_[1]=2xz*gen(1)

_[2]=2xy*gen(1)

_[3]=2x2*gen(1)

_[4]=2yz*gen(1)

_[5]=2y2*gen(1)

_[6]=2xy*gen(1)

_[7]=2z2*gen(1)

_[8]=2yz*gen(1)

_[9]=2xz*gen(1)

> tthe(Theta,h,"R");

_[1]=2x*gen(1)

_[2]=2y*gen(1)

_[3]=2z*gen(1)

> tth(Theta,h,"K");

_[1]=2xz*gen(1)

_[2]=2xy*gen(1)

_[3]=2x2*gen(1)

_[4]=2yz*gen(1)

_[5]=2y2*gen(1)
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_[6]=2z2*gen(1)

_[7]=x2*gen(1)+y2*gen(1)+z2*gen(1)

> tthe(Theta,h,"K");

_[1]=2x*gen(1)

_[2]=2y*gen(1)

_[3]=2z*gen(1)

_[4]=x2*gen(1)+y2*gen(1)+z2*gen(1)

5.2.3 The nthe command

The nthe command is used in the same was as tthe and calculates the normal space

and as such returns the K-basis for the quotient θ(h)/TΘGe(h) with G either ΘR- or

ΘK-equivalence.

proc nthe (module theta, ideal h, string G)

"

USAGE: nthe( theta, h, G); theta module, h ideal, G string

PURPOSE: Calculate the extended _Theta\GG_e-normal space

of h with respect to a module of vector fields

RETURN: Returns N_Theta\GG_{e}(h)

"

{

def EQ=G[1];

module NTV;

if (EQ=="R")

{

NTV =kbase(std(tthe(theta,h, "R")));



5.2 Description of Singular commands 73

}

if (EQ=="K")

{

NTV =kbase(std(tthe(theta,h, "K")));

}

return(NTV);

}

Example 5.2.7. We calculate the ΘK-normal space for v1 + w3
1 with respect to the

vector fields tangent to the cross cap ϕ2.

> setphi(2);

> module dv=phivfs(2);

> ideal h=v(1)+w(1)^3;

> module NT=nthe(dv,h,"K");

> NT;

NT[1]=w(1)^2*gen(1)

NT[2]=w(1)*gen(1)

NT[3]=gen(1)

> std(NT);

_[1]=gen(1)

> kbase(std(NT));

_[1]=0

Note that just as in Example 5.2.3 nthe may produce a misleading answer. One

should be aware that an answer of 0 may mean that the normal space is infinite as a

K-vector space. In this example however we can see that the normal space really is

all of O3.
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Example 5.2.8. Consider h(u1, v1, v2, w1, w2) = u1 + v2 where Θ is the module of

vector fields liftable over ϕ3.

> setphi(3);

> module dv=phivfs(3);

> ideal h=u(1)+v(2);

> nthe(dv,h,"K");

_[1]=gen(1)

Thus h is a ΘKe-codimension 1 germ. Thus, h#(ϕ3) has Ae-codimension 1 as

shown in [HL09].

5.2.4 The codthe command

The codthe command is used in the same way as the two previous commands and

returns an integer, the dimension of the K-basis calculated by nthe.

proc codthe (module theta, ideal h, string G)

"

USAGE: codthe( theta, h, G); theta module, h ideal, G string

PURPOSE: Calculate the extended _Theta\GG_e-codimension of h

with respect to a module of vector fields

RETURN: Returns _Theta\GG_{e}\cod(h)

"

{

def EQ=G[1];

int COD;

if (EQ=="R")

{
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COD = vdim(std(tthe(theta,h, "R")));

}

if (EQ=="K")

{

COD = vdim(std(tthe(theta,h, "K")));

}

return(COD);

}

Example 5.2.9. Consider h(u1, v1, v2, w1, w2) = u1 + vk2 where Θ is the module of

vector fields liftable over ϕ3.

> ideal h=u(1)+v(2);

> codthe(dv,h,"K");

1

> ideal h=u(1)+v(2)^2;

// ** redefining h **

> codthe(dv,h,"K");

2

> ideal h=u(1)+v(2)^3;

// ** redefining h **

> codthe(dv,h,"K");

3

> ideal h=u(1)+v(2)^4;

// ** redefining h **

> codthe(dv,h,"K");

4



5.2 Description of Singular commands 76

Thus we would conjecture that the ΘKe-codimension of u1+vk2 is k. An elementary

(but tedious) calculation shows that this is the case.

5.2.5 The guessdet command

The guessdet command returns a possible value of the k−ΘG-determinacy of a map

with G either ΘR- or ΘK-equivalence. This may not be the best value (in theory

a lower k could suffice) but in practice this has given very good results. Like the

previous commands the guessdet command takes a module and a map (in the form

of an ideal)

proc guessdet (module theta, ideal h, string G)

"

USAGE: guessdet( theta, h, G); theta module, h ideal, G string

PURPOSE: Guess the k-_Theta\GG-determinacy of h with

respect to a module of vector fields

RETURN: Returns k-_Theta\GG-determinacy

"

{

def EQ=G[1];

vector hc;

if (EQ=="R")

{

hc = highcorner(std(tth(theta,h, "R")));

}

if (EQ=="K")

{
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hc = highcorner(std(tth(theta,h, "K")));

}

return(deg(hc)+1);

}

Example 5.2.10. Let Θ be the module of vector fields liftable over the cross cap .

We show that h(v1, w1, w2) = v1 + w2
1 is 2-ΘK-determined.

> setphi(2);

> module dv=phivfs(2);

> ideal h=v(1)+w(1)^2;

> guessdet(dv,h,"K");

2

Since v1 is not 1-determined and h is of degree 2 we conclude that h is 2-

determined.

5.2.6 The ct command

This command calculates a complete transversal of degree k. The usage is of the form

ct(module, integer). The integer is k. The output is a Singular kbase made up of

the terms of degree k. Note that the module is usually related to a tangent space, for

example, mTΘG with G either ΘR- or ΘK-equivalence, but this is not a requirement.

proc ct (module tangent, int k)

"

USAGE: ct( tangent, k); tangent module, k integer. The module is usually

related to a tangent space module, eg, \M T_\Theta \GG. However,

it can be any module, doesn’t have to be a tangent space
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PURPOSE: Compute a complete k-transversal

RETURN: Returns a set of monomials of degree k which

form the k-transversal

"

{

module Ch1 = freemodule(nrows(tangent))*maxideal(k+1);

module comp = std(tangent+Ch1);

return(kbase(comp,k));

}

Example 5.2.11. Let Θ be the module of vector fields liftable over ϕ3. Consider

h : (C5, 0)→ (C2, 0) given by h(u1, v1, v2, w1, w2) = (v2, u1).

> setphi(3);

> module derlog=phivfs(3);

> ideal h=v(2),u(1);

> module TK=maxideal(1)*tth(derlog,h,"K");

> ct(TK,2);

_[1]=w(1)^2*gen(1)

> ct(TK,3);

_[1]=w(1)^3*gen(1)

> ct(TK,4);

_[1]=w(1)^4*gen(1)

> ct(TK,5);

_[1]=w(1)^5*gen(1)

Thus we would conjecture in general that a complete k-transversal for h is {(wk1 , 0)}.

In fact, we will show that in Chapter 5 this is exactly the k-transversal.
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Example 5.2.12. For the module of vector fields liftable over ϕ5 we can see some

interesting behavior in the structure of families of singularities.

> setphi(5);

> module derlog=phivfs(5);

> ideal h=v(4)+u(2);

> module TK=maxideal(1)*tth(derlog,h,"K");

> ct(TK,2);

_[1]=u(3)^2*gen(1)

> ct(TK,3);

_[1]=u(3)^3*gen(1)

> ct(TK,4);

_[1]=0

> ct(TK,5);

_[1]=0

The first two transversals calculated might make one conjecture that there is a

family v4 + u2 + uk3. The 4-transversal however is empty (and hence so is the 5-

transversal as we have verified).

Example 5.2.13. We can verify the calculations of the transversals in Example 4.2.7

for low values of k. That is, we use the vector fields liftable over ϕ2 and the function

h(v1, w1, w2) = w2.

> setphi(2);

// ** redefining phiring

> module derlog=phivfs(2);

> ideal h=w(2);

> module TK=maxideal(1)*tth(derlog,h,"K");
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> ct(TK,2);

_[1]=w(1)^2*gen(1)

_[2]=v(1)*w(1)*gen(1)

_[3]=v(1)^2*gen(1)

> ct(TK,3);

_[1]=w(1)^3*gen(1)

> ct(TK,4);

_[1]=w(1)^4*gen(1)

Example 5.2.14. Let V as in Example 2.4.2.

> ring r=0,(u(1..2)),ds;

> module derlog=[9*u(2),-2*u(1)^2],[2*u(1),3*u(2)];

> ideal h=u(1);

> module TR=maxideal(1)*tth(derlog,h,"R");

> ct(TR,2);

_[1]=0

> ct(TR,3);

_[1]=0

> ct(TR,4);

_[1]=0

> h=u(1)^2;

> module TR=maxideal(1)*tth(derlog,h,"R");

// ** redefining TR **

> ct(TR,3);

_[1]=u(2)^3*gen(1)

> ct(TR,4);

_[1]=u(2)^4*gen(1)
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> ct(TR,5);

_[1]=u(2)^5*gen(1)

> h=u(1)*u(2);

> module TR=maxideal(1)*tth(derlog,h,"R");

// ** redefining TR **

> ct(TR,3);

_[1]=u(1)^3*gen(1)

> ct(TR,4);

_[1]=0

> ct(TR,5);

_[1]=0

Example 5.2.15. Let V be the swallowtail discriminant, then the module of vector

fields tangent to V is generated by

ξ1 = (16u3 − 4u2
1)

∂

∂u1

− 8u1u2
∂

∂u2

− 3u2
2

∂

∂u3

,

ξ2 = 6u2
∂

∂u1

+ (8u3 − 2u2
1)

∂

∂u2

− u1u2
∂

∂u3

,

ξ3 = 2u1
∂

∂u1

+ 3u2
∂

∂u2

+ 4u3
∂

∂u3

.

> ring r=0,(u(1..3)),ds;

> module dv=[16*u(3)-4*u(1)^2,-8*u(1)*u(2),-3*u(2)^2],[6*u(2),

8*u(3)-2*u(1)^2,-u(1)*u(2)],[2*u(1),3*u(2),4*u(3)];

> ideal h=u(1);

> module TR=maxideal(1)*tth(dv,h,"R");

// ** redefining TR **

> ct(TR,2);

_[1]=0

> ct(TR,3);
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_[1]=0

> ct(TR,4);

_[1]=0

> h=u(2);

> module TR=maxideal(1)*tth(dv,h,"R");

// ** redefining TR **

> ct(TR,2);

_[1]=u(1)^2*gen(1)

> ct(TR,3);

_[1]=u(1)^3*gen(1)

> ct(TR,4);

_[1]=u(1)^4*gen(1)

5.2.7 The trivunf command

This command uses Theorem 4.1.3(ii) to calculate when an unfolding is trivial. The

usage is trivunf(module ct, module tangent) where the module ct is the complete

transversal, the module tangent is the ΘG tangent space for the map h. The output

is an element equal to the input element in ct if the unfolding is not trivial and is

zero if the unfolding is trivial.

proc trivunf (module ct, module tangent)

"

USAGE: trivunf(ct, tangent); ct module, tangent module

PURPOSE: when an unfolding is trivial

RETURN: Returns an element equal to the input element in ct if

the unfolding is not trivial and is zero if the unfolding is trivial.

"
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{

module NTV=reduce(ct,std(tangent));

return(NTV);

}

Example 5.2.16. Consider again the situation in Example 5.2.13. We can apply

the trivunf command to show that v2
1 and v1w1 are trivial unfoldings whereas wk1 for

k = 2, 3, 4 are not.

> setphi(2);

> module dv=phivfs(2);

> ideal h=w(2);

> module tv=tth(dv,h,"K");

> module TK=maxideal(1)*tv;

> module t=ct(TK,2);

> t;

t[1]=w(1)^2*gen(1)

t[2]=v(1)*w(1)*gen(1)

t[3]=v(1)^2*gen(1)

> trivunf(t,std(tv));

_[1]=w(1)^2*gen(1)

_[2]=0

_[3]=0

> module t=ct(TK,3);

// ** redefining t **

> t;

t[1]=w(1)^3*gen(1)

> trivunf(t,std(tv));
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_[1]=w(1)^3*gen(1)

> module t=ct(TK,4);

// ** redefining t **

> t;

t[1]=w(1)^4*gen(1)

> trivunf(t,std(tv));

_[1]=w(1)^4*gen(1)

Example 5.2.17. Let us do an example for ϕ4.

> setphi(4);

> module derlog=phivfs(4);

> ideal h=u(1)+v(2);

> module tv=tth(derlog,h,"K");

> module TK=maxideal(1)*tv;

> module t=ct(TK,2);

> t;

t[1]=v(3)^2*gen(1)

t[2]=u(2)*v(3)*gen(1)

t[3]=u(2)^2*gen(1)

> trivunf(t,std(tv));

_[1]=v(3)^2*gen(1)

_[2]=3/2*v(3)^2*gen(1)

_[3]=u(2)^2*gen(1)

> std(trivunf(t,std(tv)));

_[1]=u(2)^2*gen(1)

_[2]=v(3)^2*gen(1)
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This shows that although u1 + v2 + µu2v3 is not a trivial unfolding of u1 + v2 it is

a trivial unfolding of u1 + v2 + λv2
3. Hence, we need only one of the unfoldings.

This demonstrates that the output from this command can be extremely useful

even when it is non-zero.

5.2.8 The def eq command

To calculate a defining function of the image of the minimal cross cap mapping of

multiplicity d ≥ 2 we use procedure def eq.

Example 5.2.18. We shall apply all the vector fields in the cases of ϕ2 and ϕ3 to

the relevant function defining the image.

> setphi(2);

> poly H = def_eq(2);

> H;

w(2)^2-v(1)^2*w(1)

> module derlog = phivfs(2);

> derlog;

derlog[1]=w(2)*gen(1)+v(1)*w(1)*gen(3)

derlog[2]=-v(1)*gen(1)+2*w(1)*gen(2)

derlog[3]=2*w(2)*gen(2)+v(1)^2*gen(3)

derlog[4]=v(1)*gen(1)+2*w(1)*gen(2)+2*w(2)*gen(3)

> jacobth(derlog,H);

_[1]=0

_[2]=0

_[3]=0

_[4]=4*w(2)^2*gen(1)-4*v(1)^2*w(1)*gen(1)
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> setphi(3);

// ** redefining phiring

> poly H = def_eq(3);

> H;

w(2)^3-v(1)^3*w(1)+u(1)*v(1)^2*w(2)-3*v(1)*v(2)*w(1)*w(2)

+2*u(1)*v(2)*w(2)^2-u(1)*v(1)*v(2)^2*w(1)-v(2)^3*w(1)^2

+u(1)^2*v(2)^2*w(2)

> module derlog = phivfs(3);

> jacobth(derlog,H);

_[1]=0

_[2]=0

_[3]=0

_[4]=0

_[5]=0

_[6]=0

_[7]=9*w(2)^3*gen(1)-9*v(1)^3*w(1)*gen(1)+9*u(1)*v(1)^2*w(2)*gen(1)

-27*v(1)*v(2)*w(1)*w(2)*gen(1)+18*u(1)*v(2)*w(2)^2*gen(1)

-9*u(1)*v(1)*v(2)^2*w(1)*gen(1)-9*v(2)^3*w(1)^2*gen(1)

+9*u(1)^2*v(2)^2*w(2)*gen(1)

Note that the final element in the answer is a constant times the defining function.

We can restrict ourselves to the three families by using phivfs0:

> setphi(5);

> poly H = def_eq(5);

> module derlog0 = phivfs0(5);

> jacobth(derlog0,H);

_[1]=0
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_[2]=0

_[3]=0

_[4]=0

_[5]=0

_[6]=0

_[7]=0

_[8]=0

_[9]=0

_[10]=0

_[11]=0

_[12]=0

Thus when the vector fields in the three families are applied to a defining function

they return 0.

In the following example we will show that the results in CAST package coincide

with the results of Theorem 4.9 in [BKdP97].

Example 5.2.19. Let V as in Example 2.4.2.

> ring r=0,(u(1..2)),ds;

> module derlog=[9*u(2),-2*u(1)^2],[2*u(1),3*u(2)];

> ideal h=u(1);

> module tv=tth(derlog,h,"R");

> module TR=maxideal(1)*tv;

> ct(TR,2);

_[1]=0

> ct(TR,3);

_[1]=0
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> codthe(derlog,h,"R");

1

> guessdet(derlog,h,"R");

1

> h=u(2);

> module tv=tth(derlog,h,"R");

// ** redefining tv **

> module TR=maxideal(1)*tv;

// ** redefining TR **

> module t=ct(TR,2);

> t;

t[1]=u(1)^2*gen(1)

> trivunf(t,std(tv));

_[1]=0

> module t=ct(TR,3);

// ** redefining t **

> t;

t[1]=0

> codthe(derlog,h,"R");

2

> guessdet(derlog,h,"R");

2

> h=u(1)*u(2);

> module tv=tth(derlog,h,"R");

// ** redefining tv **

> module TR=maxideal(1)*tv;
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// ** redefining TR **

> module t=ct(TR,3);

// ** redefining t **

> t;

t[1]=u(1)^3*gen(1)

> trivunf(t,std(tv));

_[1]=u(1)^3*gen(1)

> module t=ct(TR,4);

// ** redefining t **

> t;

t[1]=0

> h=u(1)*u(2)+u(1)^3;

> codthe(derlog,h,"R");

5

> guessdet(derlog,h,"R");

4

> h=u(1)^2;

> module tv=tth(derlog,h,"R");

// ** redefining tv **

> module TR=maxideal(1)*tv;

// ** redefining TR **

> ct(TR,3);

_[1]=u(2)^3*gen(1)

> ct(TR,4);

_[1]=u(2)^4*gen(1)



Chapter 6

Classification of Map-Germs on the

image of The Generalized Cross

cap

The classification of map-germs on discriminant varieties has been discussed in a

number of papers. Bruce, Kirk and du Plessis classified function-germs on the dis-

criminants of the simple singularities: Ak, Dk and Ek in [BKdP97]. In [BW98], Bruce

and J.M. West gave the classification of simple function-germs from 3-space to R up

to change of coordinates in the source preserving the image of a cross cap, i.e. under

VR-equivalence where V is the image of a cross cap.

In this chapter we present a list of all map-germs from (K2d−1, 0) to (Kq, 0) up to

codimension 2 under ΘK-equivalence, where Θ is the module of liftable vector fields

over the minimal cross cap of multiplicity d ≥ 2. Also, we give the classification of

map-germs (K2d−1, 0) to (Kq, 0) under VK-equivalence, where V is the image of the

minimal crosscap of multiplicity d ≥ 2. In ΘK-classification we use diffeomorphisms

induced from integrating the liftable vector fields while in VK-classification we use dif-
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feomorphisms induced from integrating the liftable vector fields and a diffeomorphism

which preserves V and not necessarily induced from integrating the vector field.

The following theorem summaries our main results:

Theorem 6.0.20. Let Θ be the module of liftable vector fields over the minimal cross

cap of multiplicity d ≥ 2 and h : (K2d−1, 0)→ (Kq, 0) be a submersion map-germ with

ΘKe-codimension at most 2. Then 1 ≤ q ≤ 2 and h is ΘK-equivalent to one of the

map-germs in the following:(εi = ±1 when K = R and ε = 1 when K = C.)

Label Normal form ΘKe-codimension ΘK-determinacy Conditions

I2,k+1 v1 + εwk+1
1 k + 1 k + 1 d = 2 and 0 ≤ k ≤ 1

II2,2 w1 + εv2
1 2 2 d = 2

IIId,k+1 ud−2 + εvk+1
d−1 k + 1 k + 1 d ≥ 3 and 0 ≤ k ≤ 1

IVd,2 ud−3 + vd−1 + εu2
d−2 2 2 d ≥ 4

V3,2 v2 + εw1 2 2 d = 3

VI2,1 (v1, w1) 2 1 d = 2

VII3,1 (u1, v2 + εw1) 2 1 d = 3

VIII4,1 (u2, u1 + ε1v3 + ε2w1) 2 1 d = 4

Each germ is labelled with a Roman numeral Xi,j such that the i is the multiplicity

d of the minimal cross cap and the j is equal to ΘKe-codimension. As a result of the

theorem above, we find the classification of map-germs (K2d−1, 0) to (Kq, 0) under

VK-equivalence, where V is the image of the minimal crosscap of multiplicity d ≥ 2.

The only difference between ΘK-equivalence and VK-equivalence is that the germs

of our lists that differ by some sign in ΘK-equivalence may form a single orbit in

VK-equivalence.
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Corollary 6.0.21. Let V be the image of the minimal crosscap of multiplicity d ≥ 2

and h : (K2d−1, 0) → (Kq, 0) be a submersion map-germ with VKe-codimension at

most 2. Then 1 ≤ q ≤ 2 and h is VK-equivalent to one of the map-germs in the

following:

Label Normal form VKe-codimension VK-determinacy Conditions

I2,k+1 v1 + wk+1
1 k + 1 k + 1 d = 2 and 0 ≤ k ≤ 1

II2,2 w1 + εv2
1 2 2 d = 2

IIId,1 ud−2 + vd−1 1 1 d ≥ 3

IIId,2 ud−2 + εv2
d−1 2 2 d ≥ 3

IVd,2 ud−3 + vd−1 + εu2
d−2 2 2 d ≥ 4

V3,2 v2 + w1 2 2 d = 3

VI2,1 (v1, w1) 2 1 d = 2

VII3,1 (u1, v2 + w1) 2 1 d = 3

VIII4,1 (u2, u1 + v3 + εw1) 2 1 d = 4

The rest of the chapter is devoted to the proof of theorem 6.0.20. In fact, we apply

the results of the previous chapters; that is the use of liftable vector fields, complete

transversal method, ΘK-determinacy and ΘK-triviality. When q = 2 the majority of

the calculations were done by the CAST package.

Before we start with the proof of theorem 6.0.20, we have to state and prove some

technical results.

6.1 The 1-jets of Coordinate Changes

To perform the classification under ΘK-equivalence, we need to determine some co-

ordinate changes, i.e., we need diffeomorphisms induced from integrating the vector
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fields and matrices. As we know from chapter 2 that the module of the liftable vector

fields over the minimal cross cap of multiplicity d ≥ 2 is generated by ξ1
j , ξ

2
j , ξ

3
j and

ξe for 1 ≤ j ≤ d− 1. All these vector fields vanish at the origin, and we can integrate

these vector fields to get diffeomorphisms. In fact, these diffeomorphisms preserve V ,

where V is the image of the minimal cross cap of multiplicity d ≥ 2.

We denote these diffeomorphisms by Φf
j , i.e., Φf

j means a diffeomorphism induced

by integrating the vector field ξfj . For ξe we denote this diffeomorphism by Φe. We

use coordinates (U1, . . . , Ud−2, V1, . . . , Vd−1,W1,W2) on the target of these diffeomor-

phisms. For ξe we denote this diffeomorphism by Φe.

In general, it not easy to find these diffeomorphisms. However, we can find the

1-jets of these diffeomorphisms by integrating the 1-jets of liftable vector fields (see

[Mar82]).

The 1-jets of the liftable vector fields in the first family are given in the following

table

Linear part ξ1
1 ξ1

2 ξ1
3 ξ1

4 . . . ξ1
d−3 ξ1

d−2 ξ1
d−1

A1
i,j 0 0 0 0 . . . 0 0 0

B1
1,j 0 0 0 0 . . . 0 0 −dw2

B1
2,j 0 0 0 0 . . . 0 −dw2 dv1

B1
3,j 0 0 0 0 . . . −dw2 dv1 dv2

...
...

...
...

...
...

...
...

...

B1
d−3,j 0 0 −dw2 dv1 . . . dvd−6 dvd−5 dvd−4

B1
d−2,j 0 −dw2 dv1 dv2 . . . dvd−5 dvd−4 dvd−3

B1
d−1,j −dw2 dv1 dv2 dv3 . . . dvd−4 dvd−3 dvd−2

C1
i,j 0 0 0 0 . . . 0 0 0

By integrating these 1-jets we get the 1-jets of the diffeomorphisms Φ1
j with coor-
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dinates

Ui = ui for all 1 ≤ i ≤ d− 2,

Vi = vi for all 1 ≤ i ≤ d− j − 1,

Vd−j = vd−j − dαw2,

Vi = vi + dαvi−d+j for all d− j + 1 ≤ i ≤ d− 1 and

Wi = wi for all 1 ≤ i ≤ 2,

where α ∈ K.

The 1-jets of the liftable vector fields in the second family are given in the following

table

Linear part ξ2
1 ξ2

2 ξ2
3 ξ2

4 . . . ξ2
d−3 ξ2

d−2 ξ2
d−1

A2
1,j d(d− 1)u1 −d2w1 0 0 . . . 0 0 0

A2
2,j d(d− 2)u2 d(d− 1)u1 −d2w1 0 . . . 0 0 0

...
...

...
...

...
...

...
...

...

A2
d−3,j 3dud−3 4dud−4 5dud−5 6dud−6 . . . d(d− 1)u1 −d2w1 0

A2
d−2,j 2dud−2 3dud−3 4dud−4 5dud−5 . . . d(d− 2)u2 d(d− 1)u1 −d2w1

B2
1,j −dv1 0 0 0 . . . 0 0 0

B2
2,j −2dv2 −dv1 0 0 . . . 0 0 0

...
...

...
...

...
...

...
...

...

B2
d−2,j −d(d− 2)vd−2 −d(d− 3)vd−3 −d(d− 4)vd−4 −d(d− 5)vd−5 . . . −2dv2 −dv1 0

B2
d−1,j −d(d− 1)vd−1 −d(d− 2)vd−2 −d(d− 3)vd−3 −d(d− 4)vd−4 . . . −3dv3 −2dv2 −dv1

C2
1,j d2w1 0 0 0 . . . 0 0 0

C2
2,j 0 0 0 0 . . . 0 0 0

By integrating these 1-jets we get the 1-jet of Φ2
1 with coordinates

Ui = ed(d−i)βui for all 1 ≤ i ≤ d− 2,

Vi = e−idβvi for all 1 ≤ i ≤ d− 1,

W1 = ed
2βw1 and

W2 = w2.
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The 1-jets of Φ2
j for 2 ≤ j ≤ d− 1 are given by

Ui = ui for all 1 ≤ i ≤ j − 2,

Uj−1 = uj−1 − d2βw1,

Ui = ui + d(d− i+ j − 1)βui−j+1 for all j ≤ i ≤ d− 2,

Vi = vi for all 1 ≤ i ≤ j − 1,

Vi = vi − d(i− j + 1)βvi−j+1 for all j ≤ i ≤ d− 1 and

Wi = wi for all 1 ≤ i ≤ 2,

where β ∈ K.

The 1-jets of the liftable vector fields in the third family are given in the following

table

Linear part ξ3
1 ξ3

2 ξ3
3 ξ3

4 . . . ξ3
d−3 ξ3

d−2 ξ3
d−1

A3
1,j d2v1 −d2w2 0 0 . . . 0 0 0

A3
2,j d2v2 d2v1 −d2w2 0 . . . 0 0 0

...
...

...
...

...
...

...
...

...

A3
d−3,j d2vd−3 d2vd−4 d2vd−5 d2vd−6 . . . d2v1 −d2w2 0

A3
d−2,j d2vd−2 d2vd−3 d2vd−4 d2vd−5 . . . d2v2 dv1 −d2w2

B3
i,j 0 0 0 0 . . . 0 0 0

C3
1,j d2w2 0 0 0 . . . 0 0 0

C3
2,j 0 0 0 0 . . . 0 0 0

By integrating these 1-jets we get the 1-jets of the diffeomorphisms Φ3
j . The 1-jet

of Φ3
1 is given by

Ui = ui + d2γvi for all 1 ≤ i ≤ d− 2,

Vi = vi for all 1 ≤ i ≤ d− 1,

W1 = w1 + d2γw2 and

W2 = w2.
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For 2 ≤ j ≤ d− 1, the 1-jets of Φ3
j are given by

Ui = ui for all 1 ≤ i ≤ j − 2,

Uj−1 = uj−1 − d2γw2,

Ui = ui + d2γvi−j+1 for all j ≤ i ≤ d− 2,

Vi = vi for all 1 ≤ i ≤ d− 1 and

Wi = wi for all 1 ≤ i ≤ 2,

where γ ∈ K.

Finally, by integrating the Euler vector field we get the diffeomorphism Φe with

coordinates

Ui = e(d−i)µui for all 1 ≤ i ≤ d− 2,

Vi = e(d−i)µvi for all 1 ≤ i ≤ d− 1 and

Wi = edµwi for all 1 ≤ i ≤ 2,

where µ ∈ K.

We can find other diffeomorphisms from these vector fields. In fact, we shall use

these diffeomorphisms in our classification.

Example 6.1.1. Let

ξ = ξe −
1

d
ξ2

1 = d

d−1∑
i=1

vi
∂

∂vi
+ dw2

∂

∂w2

.

Then by integrating this vector field we get the diffeomorphisms with coordinates

Ui = ui for all 1 ≤ i ≤ d− 2,

Vi = edαvi for all 1 ≤ i ≤ d− 1 and

W1 = w1 and

W2 = edαw2,
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where α ∈ K.

We shall use the diffeomorphism in the following proposition in the proof of Corol-

lary 6.0.21.

Proposition 6.1.2. Let V be the image of the minimal crosscap of multiplicity d ≥ 2.

The map-germ Φ : (K2d−1, 0)→ (K2d−1, 0) defined by

Φ(u, v1, . . . , vd−1, w1, w2) = (u,−v1, . . . ,−vd−1, w1,−w2)

preserves V .

Proof. We will show that Φ(V ) ⊆ V . We have

Φ ◦ ϕd (u, v, y) = Φ

(
u, v, yd +

d−2∑
i=1

uiy
i,
d−1∑
i=1

viy
i

)

=

(
u,−v1, . . . ,−vd−1, y

d +
d−2∑
i=1

uiy
i,−

d−1∑
i=1

viy
i

)
= ϕd (u,−v1, . . . ,−vd−1, y) .

In other words we have Φ(imϕd) ⊆ imϕd. �

6.2 Classification Techniques

Theorem 6.2.1. Let Θ be a module of smooth vector fields on (Kp, 0) such that all

the vector fields vanish at 0. Let h : (Kp, 0)→ (Kq, 0) be a map-germ. Suppose G = K

or R. Then ΘGe−cod(h) ≥ q.

Proof. Since every vector field in Θ vanishes at the origin, then TΘGe(h) can

not contain ej = (0, 0, . . . , 0, 1, 0, . . . , 0)T ∈ Kq which has zeros except at position j,

where it has a 1 for all 1 ≤ j ≤ q. Hence, ΘGe−cod(h) ≥ q. �
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Definition 6.2.2 ([Wal09]). Let Θ be a module of smooth vector fields on (Kp, 0)

and h : (Kp, 0) → (Kq, 0) be a smooth map-germ. We say that h is ΘG-stable if

θ(f) = TΘGe(h).

Corollary 6.2.3. Let Θ be a module of smooth vector fields on (Kp, 0) such that all

the vector fields in Θ vanish at 0. Let h : (Kp, 0)→ (Kq, 0) be a map-germ. Suppose

that G = K or R. Then there are no ΘG-stable map-germs.

Proof. Since every vector field in Θ vanishes at the origin, then from Theo-

rem 6.2.1 we have ΘGe−cod(h) > 0. �

Corollary 6.2.4. Let Θ be a module of smooth vector fields on (Kp, 0) generated by

{ξ1, ξ2, . . . , ξr} such that all these vector fields vanish at 0. Let h : (Kp, 0) → (Kq, 0)

be a map-germ. Suppose that G = K or R. If pq > r + q2, then ΘGe−cod(h) > q.

Proof. Since every vector field in Θ vanishes at the origin, then from Theo-

rem 6.2.1, we have ΘGe−cod(h) ≥ q. Suppose that ΘGe−cod(h) = q. Then, since

ej = (0, 0, . . . , 0, 1, 0, . . . , 0)T /∈ TΘG(h) for all j = 1, 2, . . . , q. We have

TΘG(h) = mp 〈e1, e2, . . . , eq〉 .

Then, from right hand side we have pq distinct generators and from left hand side

we have at most r + q2 generators. In other words, we have pq ≤ r + q2 and this is a

contradiction. �

Corollary 6.2.5. Let Θ be the module of liftable vector fields over the minimal cross

cap of multiplicity d. If d ≥ 5, then there is not a map-germ h : (K2d−1, 0)→ (K2, 0)

with ΘKe−cod(h) ≤ 2.

Proof. The dimension of the target of the minimal cross cap of multiplicity d is

2d− 1 and from Chapter 3 we know that Θ generated by 3d− 2 vector fields.
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Suppose that d = 4 + t with t ≥ 1, then we have

(2d− 1) q = 4d− 2

= 3d− 2 + d

= 3d− 2 + 4 + t, t ≥ 1

= 3d− 2 + q2 + t, t ≥ 1

> 3d− 2 + q2.

Therefore, from corollary 6.2.4, we have ΘK−cod(h) > 2. �

The following proposition is used as a technical tool in the classification of function-

germs from (K2d−1, 0) to (K, 0).

Proposition 6.2.6. Let Θ be the module of liftable vector fields over the minimal

cross cap of multiplicity d ≥ 2. Let h : (K2d−1, 0)→ (K, 0) be a function-germ defined

by

h =
2∑
i=1

αd−i−1ud−i−1 +
2∑
i=1

βd−ivd−i + γ1w1,

for some constants αi, βi and γ1 in K.

Then, for 1 ≤ j ≤ d− 1 we have

ξ1
j (h) =

2∑
i=1

(i+ 1)(d− j)αd−i−1ud−iuj +
2∑
i=1

βd−i

(
dvj−i − dud+j−iw2 + dvd+j−iw1

−
(
(d− i)(d− j)− j

)
ujvd−i − duj−1vd−i+1

)
+ d(d− j)γ1ujw1.

ξ2
j (h) =

2∑
i=1

αd−i−1

(
d(j + i)ud−j−i − d(2d− j − i)u2d−j−iw1 − 2(d− j)ud−iud−j

)
+

2∑
i=1

βd−i

(
−d(d− j − i+ 1)vd−j−i+1 + (d− 1)(d− j)ud−jvd−i+1

)
+ d(d− j + 1)γ1ud−j+1w1 + jγ1u1ud−j.
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ξ3
j (h) =

2∑
i=1

αd−i−1

(
d2vd−j−i − d(2d− j − i)u2d−j−iw2 − d(d− j)ud−jvd−i

)
+

2∑
i=1

d(d− j)βd−ivd−jvd−i+1 + d(d− j + 1)γ1ud−j+1w2 + dγ1u1vd−j.

ξe(h) =
2∑
i=1

(i+ 1)αd−i−1ud−i−1 +
2∑
i=1

iαd−i−1vd−i + dγ1w1.

Proof. For all 1 ≤ j ≤ d− 1 and 1 ≤ m ≤ 3 we have

ξmj (h) =
2∑
i=1

αd−i−1A
m
d−i−1,j +

2∑
i=1

βd−iB
m
d−i,j + γ1C

m
1,j

where Amd−i−1,j are the entries of ξmj that correspond to the coordinates ud−3, ud−2,

Bm
d−i,j are the entries of ξmj that correspond to the coordinates vd−2, vd−1 and Cm

1,j are

the the entries of ξmj that correspond to the coordinate w1.

From the first family of liftable vector fields we easily find

A1
d−2,j = 2(d− j)ud−2uj,

A1
d−3,j = 3(d− j)ud−3uj,

C1
1,j = d(d− j)ujw1.

For B1
d−1,j and B1

d−2,j we have that

B1
d−1,j = d

d−2∑
r=1

ud+j−r−1vr − d
d−1∑
r=1

urvd+j−r−1 − (d− 2)(d− j)ujvd−1

+ dvd+j−1w1 − dud+j−1w2.

Now, ud+j−r−1 = 0 if d + j − r − 1 > d, i.e., r < j − 1. Similarly vd+j−r−1 = 0 if

r < j and also vd+j−1 = 0 for all 1 ≤ j ≤ d− 1.

Therefore we have

B1
d−1,j = d

d−2∑
r=j−1

ud+j−r−1vr − d
d−1∑
r=j

urvd+j−r−1 − (d− 2)(d− j)ujvd−1 − dud+j−1w2.
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We want to change the lower limit and upper limit in
d−2∑
r=j−1

ud+j−r−1vr. We write

s = d+ j − r − 1. We find that

d−2∑
r=j−1

ud+j−r−1vr =

j+1∑
s=d

usvd+j−s−1

It follows that

B1
d−1,j = d

j+1∑
s=d

usvd+j−s−1 − d
d−1∑
r=j

urvd+j−r+1 − (d− 2)(d− j)ujvd−1 − dud+j−1w2.

Since ud = 1 and ud−1 = 0. We see that

B1
d−1,j = d

d−2∑
s=j+1

usvd+j−s−1 − d
d−2∑
r=j

urvd+j−r+1 − (d− 2)(d− j)ujvd−1 − dud+j−1w2.

= dvj−1 + d
d−2∑
s=j+1

usvd+j−s−1 − dujvd−1 − d
d−2∑
r=j

urvd+j−r+1

− (d− 2)(d− j)ujvd−1 − dud+j−1w2

= dvj−1 −
(
d+ (d− 2)(d− j)

)
ujvd−1 − dud+j−1w2.

It can be show in a similar way that

B1
d−2,j = dvj−2 −

(
d+ (d− 3)(d− j)

)
ujvd−2 − dud+j−2w2 − duj−1vd−1 + dvd+j−2w1.

From the second family we have

A2
d−2,j = −d(d+ d− 2− j + 1)ud+d−2−j+1w1

+d
d−2∑
r=1

(d+ d− 2− j − 2r + 1)urud+d−2−j−r+1 − j(d− 2 + 1)ud−2+1ud−j

= −d(2d− j − 1)u2d−j−1w1 + d

d−2∑
r=1

(2d− j − 2r − 1)uru2d−j−r−1

−j(d− 1)ud−1ud−j
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Now, u2d−j−r−1 = 0 if 2d− j − r− 1 > d, i.e., r < d− j − 1. Also, we have ud = 1

and ud−1 = 0. It follows that

A2
d−2,j = −d(2d− j − 1)u2d−j−1w1 + d

d−2∑
r=d−j−1

(2d− j − 2r − 1)uru2d−j−r−1

= −d(2d− j − 1)u2d−j−1w1 + d(2d− j − 2d+ 2j + 2− 1)ud−j−1u2d−j−d+j+1−1

+d(2d− j − 2d+ 2j − 1)ud−ju2d−j−d+j−1

+d
d−2∑

r=d−j+1

(2d− j − 2r − 1)uru2d−j−r−1

= −d(2d− j − 1)u2d−j−1w1 + d(j + 1)ud−j−1ud + d(j − 1)ud−jud−1

+d
d−2∑

r=d−j+1

(2d− j − 2r − 1)uru2d−j−r−1

= −d(2d− j − 1)u2d−j−1w1 + d(j + 1)ud−j−1

+d
d−2∑

r=d−j+1

(2d− j − 2r − 1)uru2d−j−r−1.

We need to show that

d−2∑
r=d−j+1

(2d− j − 2r − 1)uru2d−j−r−1 = 0.

Let s = j − d+ r. Therefore we have

d−2∑
r=d−j+1

(2d− j − 2r − 1)uru2d−j−r−1 =

j−2∑
s=1

(j − 2s− 1)ud+s−jud−s−1.

a) If j is even, then we have

j−2∑
s=1

(j − 2s− 1)ud+s−jud−s−1 =

j
2
−1∑
s=1

(j − 2s− 1)ud+s−jud−s−1

+

j−2∑
s= j

2

(j − 2s− 1)ud+s−jud−s−1.
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In the second summation, let t = j − s− 1. Therefore we have∑
s= j

2

(j − 2s− 1)ud+s−jud−s−1 =
1∑

t= j
2
−1

(j − 2t− 1)ud−t−jud+t−1

=

j
2
−1∑
t=1

(j − 2t− 1)ud+t−jud−t−1.

It follows that

j−2∑
s=1

(j − 2s− 1)ud+s−jud−s−1 =

j
2
−1∑
s=1

(j − 2s− 1)ud+s−jud−s−1

−

j
2
−1∑
t=1

(j − 2t− 1)ud+t−jud−t−1

= 0.

b) If j is odd, then as j − 2s− 1 = 0 for s = j−1
2

, we have

j−2∑
s=1

(j − 2s− 1)ud+s−jud−s−1 =

j−1
2
−1∑

s=1

(j − 2s− 1)ud+s−jud−s−1

+

j−2∑
s= j−1

2
+1

(j − 2s− 1)ud+s−jud−s−1.

Let t = j − s− 1 in the second summation, then we have

j−2∑
s= j−1

2
+1

(j − 2s− 1)ud+s−jud−s−1 = −
1∑

t= j−1
2
−1

(j − 2t− 1)ud+t−jud−t−1

= −

j−1
2
−1∑

t=1

(j − 2t− 1)ud−t−jud+t−1.

It follows that

j−2∑
s=1

(j − 2s− 1)ud+s−jud−s−1 =

j−1
2
−1∑

s=1

(j − 2s− 1)ud+s−jud−s−1

−

j−1
2
−1∑

t=1

(j − 2t− 1)ud−t−jud+t−1

= 0.
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Therefore, we proved our claim and hence we have

A2
d−2,j = −d(2d− j − 1)u2d−j−1w1 + d(j + 1)ud−j−1.

It can be show in a similar way that

A2
d−3,j = −d(2d− j − 2)u2d−j−2w1 + d(j + 2)ud−j−2 − 2(d− j)ud−2ud−j.

For B2
d−1,j and B2

d−2,j we have

B2
d−1,j = −d(d+ d− 1− j + 1)vd+d−1−j+1w1 + d

d−1∑
r=1

(d+ d− 1− j − r + 1)urvd+d−1−j−r+1

−d
d−1∑
r=1

rud+d−1−j−r+1vr − j(d− 1 + 1)ud−jvd−1+1

= −d(2d− j)v2d−jw1 + d

d−1∑
r=1

(2d− j − r)urv2d−j−r

−d
d−1∑
r=1

ru2d−j−rvr − djud−jvd.

= −d(2d− j − 1)u2d−j−1w1 + d(j + 1)ud−j−1.

We can see that for all 1 ≤ j ≤ d − 1, v2d−j = vd = 0. Also, v2d−j−r = 0 if

2d− j − r ≥ d, i.e., r ≤ d− j and similarly u2d−j−r = 0 if r ≤ d− j.

Therefore we have

B2
d−1,j = d

d−1∑
r=d−j+1

(2d− j − r)urv2d−j−r − d
d−1∑
r=d−j

ru2d−j−rvr

= d

d−1∑
r=d−j+1

(2d− j − r)urv2d−j−r − d(d− j)udvd−j

−d
d−1∑

r=d−j+1

ru2d−j−rvr

= d
d−1∑

r=d−j+1

(2d− j − r)urv2d−j−r − d(d− j)vd−j

−d
d−1∑

r=d−j+1

ru2d−j−rvr.
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Let s = 2d− j − r in the second summation, then we have

d−1∑
r=d−j+1

ru2d−j−rvr =
d−1∑

s=d−j+1

(2d− j − s)usv2d−j−s.

It follows that

B2
d−1,j = d

d−1∑
r=d−j+1

(2d− j − r)urv2d−j−r − d(d− j)vd−j

−d
d−1∑

r=d−j+1

ru2d−j−rvr

= −d(d− j)vd−j.

It can be show in a similar way that

B2
d−2,j = −d(d− j − 1)vd−j−1 + (d− 1)(d− j)ud−jvd−1.

Also, we have

C2
1,j = d(d− j + 1)ud−j+1w1 + ju1ud−j.

From the third family we have

A3
d−2,j = −d(d+ d− 2− j + 1)ud+d−2−j+1w2

+d
d−2∑
r=1

(d+ d− 2− j − r + 1)ud+d−2−j−r+1vr

−d
d−2∑
r=1

rurvd+d−2−j−r+1 − d(d− 2 + 1)ud−2+1vd−j

= −d(2d− j − 1)u2d−j−1w2 + d

d−2∑
r=1

(2d− j − r − 1)u2d−j−r−1vr

−d
d−2∑
r=1

rurv2d−j−r−1 − d(d− 1)ud−1vd−j.

Now, we can see that u2d−j−r−1 = 0 if 2d − j − r − 1 > d, i.e., r < d − j − 1.



6.2 Classification Techniques 106

Similarly v2d−j−r−1 = 0 if r < d− j. Therefore we have

A3
d−2,j = −d(2d− j − 1)u2d−j−1w2 + d

d−2∑
r=d−j−1

(2d− j − r − 1)u2d−j−r−1vr

−d
d−2∑
r=d−j

rurv2d−j−r−1 − d(d− 1)ud−1vd−j

= −d(2d− j − 1)u2d−j−1w2 + d2udvd−j−1 + d(d− 1)ud−1vd−j

+d
d−2∑

r=d−j+1

(2d− j − r − 1)u2d−j−r−1vr

−d
d−2∑
r=d−j

rurv2d−j−r−1 − d(d− 1)ud−1vd−j

= −d(2d− j − 1)u2d−j−1w2 + d2vd−j−1

+d
d−2∑

r=d−j+1

(2d− j − r − 1)u2d−j−r−1vr − d
d−2∑
r=d−j

rurv2d−j−r−1.

Let s = 2d− j − r − 1 in the second summation, then we have

A3
d−2,j = −d(2d− j − 1)u2d−j−1w2 + d2vd−j−1

+ d
d−2∑

r=d−j+1

(2d− j − r − 1)u2d−j−r−1vr

− d
d−j+1∑
s=d−1

(2d− j − s− 1)u2d−j−s−1vs

= −d(2d− j − 1)u2d−j−1w2 + d2vd−j−1

+ d

d−2∑
r=d−j+1

(2d− j − r − 1)u2d−j−r−1vr

− d
d−2∑

s=d−j+1

(2d− j − s− 1)u2d−j−s−1vs − d(d− j)ud−jvd−1

= −d(2d− j − 1)u2d−j−1w2 + d2vd−j−1 − d(d− j)ud−jvd−1.

Similarly, we have

A3
d−3,j = −d(2d− j − 2)u2d−j−2w2 + d2vd−j−2 − d(d− j)ud−jvd−2.
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For B3
d−1,j and B3

d−2,j we have

B3
d−1,j = −d(d+ d− 1− j + 1)vd+d−1−j+1w2

+d
d−1∑
r=1

(d+ d− 1− j − 2r + 1)vrvd+d−1−j−r+1 − d(d− 1 + 1)vd−1+1vd−j

= −d(2d− j)v2d−jw2 + d
d−1∑
r=1

(2d− j − 2r)vrv2d−j−r

−d2vdvd−j.

For all 1 ≤ j ≤ d− 1 we have v2d−j = 0 and also vd = 0. It follows

B3
d−1,j = d

d−1∑
r=1

(2d− j − 2r)vrv2d−j−r.

We will show that
d−1∑
r=1

(2d− j − 2r)vrv2d−j−r = 0.

Let s = j − d+ r. Therefore we have

d−1∑
r=1

(2d− j − 2r)vrv2d−j−r =

j−1∑
s=1

(j − 2s)vd−j+svd−s.

a) If j is even, then we have

j−1∑
s=1

(j − 2s)vd+s−jvd−s =

j
2∑

s=1

(j − 2s)vd−j+svd−s

+

j−1∑
s= j

2
+1

(j − 2s)vd−j+svd−s

=

j
2
−1∑
s=1

(j − 2s)vd−j+svd−s + (j − 2(
j

2
))vd+ j

2
−jvd− j

2

+

j−1∑
s= j

2
+1

(j − 2s)vd−j+svd−s

=

j
2
−1∑
s=1

(j − 2s)vd+s−jvd−s

+

j−1∑
s= j

2
+1

(j − 2s)vd−j+svd−s.
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In the second summation, let t = j − s. Therefore we have

j−1∑
s=1

(j − 2s)vd−j+vd−s =

j
2
−1∑
s=1

(j − 2s)vd−j+svd−s

+
1∑

t= j
2
−1

(j − 2t)vd+tvd−j+t

= 0.

b) If j is odd, then we have

j−1∑
s=1

(j − 2s)vd−j+svd−s =

j−1
2∑

s=1

(j − 2s)vd−j+svd−s

+

j−1∑
s= j−1

2
+1

(j − 2s)vd−j+vd−s.

Let t = j − s in the second summation, then we have

j−1∑
s=1

(j − 2s)vd−j+svd−s =

j−1
2∑

s=1

(j − 2s)vd+s−jvd−s

−
1∑

t= j−1
2

(j − 2t)vd−j+tvd−t

= 0.

It follows that

j−2∑
s=1

(j − 2s− 1)ud+s−jud−s−1 =

j−1
2
−1∑

s=1

(j − 2s− 1)ud+s−jud−s−1

−

j−1
2
−1∑

t=1

(j − 2t− 1)ud−t−jud+t−1

= 0.

Therefore, we have proved that

d−1∑
r=1

(2d− j − 2r)vrv2d−j−r = 0.
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Hence we have B3
d−1,j = 0 for all 1 ≤ j ≤ d− 1. For B3

d−2,j we have

B3
d−2,j = −d(d+ d− 2− j + 1)vd+d−2−j+1w2

+d
d−2∑
r=1

(d+ d− 2− j − 2r + 1)vrvd+d−2−j−r+1 − d(d− 2 + 1)vd−2+1vd−j

= −d(2d− j − 1)v2d−j−1w2 + d
d−2∑
r=1

(2d− j − 2r − 1)vrv2d−j−r−1

−d(d− 1)vd−1vd−j.

We can see that v2d−j−1 = 0 for all 1 ≤ j ≤ d − 1. Also, v2d−j−r−1 = 0 if

2d− j − r − 1 ≤ d, i.e., r ≤ d− j − 1. Therefore we have

B3
d−2,j = d

d−2∑
r=d−j

(2d− j − 2r − 1)vrv2d−j−r−1 − d(d− 1)vd−1vd−j

= d(j − 1)vd−jvd−1 + d
d−2∑

r=d−j+1

(2d− j − 2r − 1)vrv2d−j−r−1

−d(d− 1)vd−1vd−j

= −d(d− j)vd−jvd−1 + d
d−2∑

r=d−j+1

(2d− j − 2r − 1)vrv2d−j−r−1.

In a similar way to the B3
d−1,j we can show that

d−2∑
r=d−j+1

(2d− j − 2r − 1)vrv2d−j−r−1 = 0.

Therefore, we have

B3
d−2,j = −d(d− j)vd−jvd−1.

Also, from the third family we have

C3
1,j = d(d− j + 1)ud−j+1w2 + du1vd−j.

Therefore, we deduce the stated form of ξ3
j (h). �
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Proposition 6.2.7. i) Any finite codimension (k + 1)-jet with k-jet ud−2 + εvd−1

and k ≥ 1 is ΘK-equivalent to ud−2 + εvd−1. (ε = ±1 when K = R and ε = 1

when K = C.)

ii) The jet ud−2 + εvd−1 is 1-ΘK-determined and has ΘKe-codimension 1.

Proof.

i) Let h denote the k-jet ud−2 + εvd−1. Then from Proposition 6.2.6 we have for

all 1 ≤ j ≤ d− 1:

1) ξ1
j (h) = 2(d−j)ud−2uj+εdvj−1−ε

(
d+(d−2)(d−j)

)
ujvd−1−εdud+j−1w2,

2) ξ2
j (h) = d(j + 1)ud−j−1 − d(2d− j − 1)u2d−j−1w1 + εd(d− j)vd−j,

3) ξ3
j (h) = d2vd−j−1 − d(2d− j − 1)u2d−j−1w2 − d(d− j)ud−jvd−1,

4) ξe(h) = 2ud−2 + εvd−1.

Since h = ud−2 + εvd−1 and ξe(h) = 2ud−2 + εvd−1, then ud−2 and vd−1 are in

TΘK(h). From ξ1
1(h) and the above we get w2 ∈ TΘK(h). From ξ3

j (h) we have

v1, v2, . . . , vd−2 and w2 are in TΘK(h).

Now, from ξ1
j (h) we get u1, u2, . . . , ud−3 in TΘK(h).

Therefore, we have

TΘK(h) = m2d−1.

We can see that the (k + 1)-transversal is empty for all k ≥ 1.

ii) Let h denote the (k + 1)-jet ud−2 + εvd−1. Since TΘK(h) = m2d−1, then from

Theorem 4.1.9 h is 1-ΘK-determined and we can see that ΘKe−cod(h) = 1.

�
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From above if we have h = ud−2 + εvd−1, then h is a ΘKe-codimension 1 germ.

Thus, h](ϕ3) has Ae-codimension 1 as shown in [HL09].

Proposition 6.2.8. i) Any finite codimension (k+1)-jet with k-jet ud−2 and k ≥

1 is ΘK-equivalent to ud−2 + εvk+1
d−1 or ud−2. (ε = ±1 when K = R and ε = 1

when K = C.)

ii) The jet ud−2 + εvk+1
d−1 is (k+ 1)-ΘK-determined and has ΘKe-codimension k+ 1.

Proof.

i) Let h denote the k-jet ud−2. Then from Proposition 6.2.6 we have for all 1 ≤

j ≤ d− 1:

1) ξ1
j (h) = 2(d− j)ud−2uj,

2) ξ2
j (h) = d(j + 1)ud−j−1 − d(2d− j − 1)u2d−j−1w1,

3) ξ3
j (h) = d2vd−j−1 − d(2d− j − 1)u2d−j−1w2 − d(d− j)ud−jvd−1,

4) ξe(h) = 2ud−2.

Since h = ud−2, then we have ud−2 ∈ TΘK(h). From ξ2
j (h) we can see that

u1, u2, . . . , ud−3 and w1 are in TΘK(h). Also, from ξ3
j (h) we have v1, v2, . . . , vd−2

and w2 are in TΘK(h).

It follows that

TΘK(h) = 〈u1, u2, . . . , ud−2, v1, v2, . . . , vd−2, w1, w2〉.

Therefore, for all k ≥ 1 we have

mk+1
2d−1 ⊆m2d−1TΘK(h) + 〈vk+1

d−1〉.

Then from Theorem 4.2.1 we have a (k + 1)-transversal that is spanned by{
vk+1
d−1

}
. Hence, any (k + 1)-jet with k-jet h is ΘK-equivalent to ud−2 + λvk+1

d−1
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with λ ∈ K. If λ 6= 0, then from integrating the vector field ξ = ξe− 1
d
ξ1

2 we get

a diffeomorphism Φ which fixes λ = ±1.

ii) Let h denote the (k + 1)-jet ud−2 + εvk+1
d−1 .

Then from Proposition 6.2.6 we can see that that

1) ξ1
j (h) = 2(d− j)ud−2uj + ε(k + 1)

(
dvj−1 −

(
d+ (d− 2)(d− j)

)
ujvd−1

− dud+j−1w2

)
vkd−1,

2) ξ2
j (h) = d(j+ 1)ud−j−1−d(2d− j−1)u2d−j−1w1−εd(k+ 1)(d− j)vd−jvkd−1,

3) ξ3
j (h) = d2vd−j−1 − d(2d− j − 1)u2d−j−1w2 − d(d− j)ud−jvd−1,

4) ξe(h) = 2ud−2 + ε(k + 1)vkd−1.

It follows that

TΘK(h) = 〈u1, u2, . . . , ud−2, v1, v2, . . . , v
k+1
d−1 , w1, w2〉.

Thus

mk+1
2d−1 ⊆ TΘK(h).

Therefore, from Theorem 4.1.9 h is (k + 1)-ΘK-determined. Furthermore, from

the description of TΘK(h) we get ΘKe−cod(h) = k + 1.

�

Proposition 6.2.9. i) Any (k+1)-jet of a finite codimension function-germ with

k-jet ud−3 + vd−1 (d ≥ 4) and k ≥ 1 is ΘK-equivalent to one of the following.

(ε = ±1 when K = R and ε = 1 when K = C.)

a) ud−3 + vd−1 + εuk+1
d−2 with d is even and 1 ≤ k ≤ 3 or d = 5, 7, 9 and

1 ≤ k ≤ d+1
2

.
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b) ud−3 + εvd−1 with d = 5, 7 and k ≥ d+1
2
− 1.

ii) a) The jet ud−3+vd−1+εuk+1
d−2 is (k+1)-ΘK-determined and has ΘKe-codimension

k + 1.

b) The jet ud−3 +vd−1 is (d+1
2

)-ΘK-determined and has ΘKe-codimension d+1
2

.

Proof.

i) Let h denote the k-jet ud−3 + vd−1. Then from Proposition 6.2.6 we have for all

1 ≤ j ≤ d− 1:

1) ξ1
j (h) = 3(d− j)ud−3uj + dvj−1 −

(
d+ (d− 2)(d− j)

)
ujvd−1

− dud+j−1w2,

2) ξ2
j (h) = d(j+ 2)ud−j−2−d(2d− j−2)u2d−j−2w1−2(d− j)ud−2ud−j−d(d−

j)vd−j,

3) ξ3
j (h) = d2vd−j−2 − d(2d− j − 2)u2d−j−2w2 − d(d− j)ud−jvd−2,

4) ξe(h) = 3ud−3 + vd−1.

From h and ξe(h) we can get ud−3 and vd−1 in TΘK(h). From ξ1
j (h) we can get

v1, v2, . . . , vd−2 and w2 in TΘK(h).

(a) If d is even, then from ξ2
j for j is odd we get ud−3, ud−5, . . . , u1 and for j is

even we have

〈ud−4 + ψd−4, ud−6 + ψd−6, . . . , u2 + ψ2, w1 + ψ1〉 ⊆ TΘK(h) + m2
2d−1

with ψd−4, ψd−6, . . . , ψ2 and ψ1 in m2
2d−1.

Therefore, for all k ≥ 1 we have

mk+1
2d−1 ⊆m2d−1TΘK(h) + 〈uk+1

d−2〉+ mk+2
2d−1.
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Then from Theorem 4.2.1 we have a (k + 1)-transversal that is spanned

by
{
uk+1
d−2

}
. Hence, any (k + 1)-jet with k-jet h is ΘK-equivalent to ud−3 +

vd−1 + λuk+1
d−2 with λ ∈ K. If λ 6= 0, then from integrating the vector field

ξ = (d− 1)ξe + 1
d
ξ1

2 we get a diffeomorphism which fixes λ = ±1.

(b) If d is odd, then from ξ2
j for j is odd we get ud−3, ud−5, . . . , u2, w1 and for

j is even we have u
d+1

2
d−2 ∈ TΘK(h) and

〈ud−4 + ψd−4, ud−6 + ψd−6, . . . , u3 + ψ3, u1 + ψ1〉 ⊆ TΘK(h) + m2
2d−1

with ψd−4, ψd−6, . . . , ψ3 and ψ1 in m2
2d−1.

(b1) For all 1 ≤ k ≤ d+1
2
− 1 we have a (k + 1)-transversal that is spanned

by
{
uk+1
d−2

}
. In the same way in (a) we have any (k + 1)-jet with k-jet

h is ΘK-equivalent to ud−3 + vd−1 ± uk+1
d−2 with λ ∈ K.

(b2) For all k ≥ d+1
2

we can see that the (k + 1)-transversal is empty.

Therefore, any (k+ 1)-jet with k-jet h is ΘK-equivalent to ud−3 +vd−1.

ii) a) For d is even with k ≥ 1 or d is odd with 1 ≤ k ≤ d+1
2
− 1. Let h =

ud−3 + vd−1 ± uk+1
d−2, then we have

mk+1
2d−1 ⊆m2d−1TΘK(h) + mk+2

2d−1.

By Nakayama’s lemma we have

mk+1
2d−1 ⊆ TΘK(h).

Therefore, from Theorem 4.1.9 h is (k + 1)-ΘK-determined. Furthermore,

we have ΘKe−cod(h) = k + 1.

b) For d is odd with k ≥ d+1
2

. Let h = ud−3 + vd−1, then we have

m
d+1

2
2d−1 ⊆m2d−1TΘK(h).
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Therefore, from Theorem 4.1.9 h is (d+1
2

)-ΘK-determined and we can see

that ΘKe−cod(h) = d+1
2

. �

Proposition 6.2.10. i) Let d = 3. Then any (k+ 1)-jet with k-jet vd−1 +w1 and

k ≥ 1 is ΘK-equivalent to vd−1 + w1.

ii) The jet vd−1 + w1 is 2-ΘK-determined and has ΘKe-codimension 2.

Proof.

i) Let h(u1, v1, v2, w1, w2) = v2 + w1. Then we have

TΘK(h) = TΘKe(h)

= 〈ξ1
j (h), ξ2

j (h), ξ3
j (h), ξe(h)〉2j=1 + 〈h〉

= 〈−3w2 − 5u1v2 + 6u1w1, 3v1,−6v2 + 9w1, 3u1v1, v2 + 3w1,

−3v1 + 2u2
1 + 9w2 + 3u1v2〉+ 〈v2 + w1〉

= 〈v1, v2, w1, w2, u
2
1〉.

Then we have

m2
5 ⊆m5TΘK(h) + 〈u2

1〉.

And for k ≥ 2,

mk+1
5 ⊆m5TΘK(h).

This {u2
1} is a 2-transversal and for all k ≥ 2, the (k + 1)-transversal is empty.

Hence any function g with 1-jet equal to v2 + w1 is ΘK-equivalent to some H

with j2H = v2 + w1 + λu2
1, where λ ∈ K.



6.2 Classification Techniques 116

If we consider j2H as a 1-parameter family Hλ, then we have

TΘK(Hλ) = 〈ξ1
j (Hλ), ξ

2
j (Hλ), ξ

3
j (Hλ), ξe(Hλ)〉2j=1 + 〈Hλ〉

= 〈8λu3
1 − 3w2 − 5u1v2 + 6u1w1, 3v1, 12λu2

1 − 6v2 + 9w1,

−18λu1w1 − 3v1 + 2u2
1 + 18λu1v1 + 9w2 + 3u1v2,−18λu1w2

−6λu2
1v2 + 3u1v1, 4λu

2
1 + v2 + 3w1〉+ 〈v2 + w1 + λu2

1〉

= 〈v1, v2, w1, w2, u
2
1〉.

Thus,

∂Hλ

∂λ
∈ TΘK(Hλ).

Hence, we get Hλ is a ΘK-trivial.

ii) Obviously, m2
5 ⊆ m5TΘK(h). Hence h is 2-VK-determined and from the de-

scription of TΘKe(h) we get ΘKe−cod(h) = 2.

�

Definition 6.2.11. Let Θ be a module of smooth vector fields on (Kp, 0) such that

all these vector fields vanish at 0 and h : (Kp, 0) → (Kq, 0) be a map-germ. We

define Tj1ΘK(j1h) to be the vector space over K of the linear parts of the elements in

TΘK(h).

We need the following proposition in the proof of theorem 6.0.20.

Proposition 6.2.12. Let Θ be a module of smooth vector fields on (Kp, 0) such that

all these vector fields vanish at 0 and h : (Kp, 0) → (Kq, 0) be a smooth map-germ.

Let g be a linear. If g /∈ Tj1ΘK(j1h), then g /∈ TΘK(h).

Proof. Suppose that g ∈ TΘK(h). We have

TΘK(h) ⊆ Tj1ΘK(j1h) +G with G ⊆m2
pθ(h).



6.3 The proof of theorem 6.0.20 117

Therefore, we get that g ∈ Tj1ΘK(j1h) +G with G ⊆m2
pθ(h).

It follows g ∈ Tj1ΘK(j1h). �

6.3 The proof of theorem 6.0.20

In this section we give the proof of Theorem 6.0.20. Let h : (K2d−1, 0) → (Kq, 0) be

a submersion map-germ with ΘKe-codimension at most 2. We divide the proof into

the following steps:

First Step: From Chapter 3 we know that Θ is generated by the liftable vector

fields ξ1
j , ξ

2
j , ξ

3
j and ξe. All these vector fields vanish at the origin. Then from

Theorem 6.2.1 we have ΘKe−cod(h) > 0.

Suppose that q ≥ 3, then from Theorem 6.2.1, we get ΘKe−−cod(h) ≥ 3 and this

is a contradiction because ΘKe−cod(h) ≤ 2 . Therefore, we have 1 ≤ ΘKe−cod(h) ≤

2 and 1 ≤ q ≤ 2.

Second Step: Classification of function-germs from (K2d−1, 0) to (K, 0).

We consider the 1-jet of h, i.e., its linear part:

j1h =
d−2∑
i=1

αiui +
d−1∑
i=1

βivi + γ1w1 + γ2w2

for some constants αi, βi, γi ∈ K.

For d = 2, Bruce and West gave the classification of function-germs as in I2,k+1

and II2,2 ([BW98], theorem 3.13).

Now, we suppose that d ≥ 3,

j1h =
d−2∑
i=1

αiui +
d−1∑
i=1

βivi + γ1w1 + γ2w2.

(1) If ud−2 /∈ NΘKe(h), then we have αd−2 6= 0. Since if αd−2 = 0, then we can

not get ud−2 in TΘKe(h). By using the 1-jets of Φ3
j and Φ2

j we can remove
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u1, . . . , ud−3, v1, . . . , vd−2, w1 and w2.

It follows, we have

j1h = αud−2 + βd−1vd−1.

By using the matrix M =
[

1
αd−2

]
(in the definition of K-equivalence we need a

diffeomorphism and a matrix)), then we fix αd−2 = 1 and we get

j1h = ud−2 + βd−1vd−1.

• If βd−1 6= 0, then we fix βd−1 = ±1 by using the diffeomorphism in Exam-

ple 6.1.1 and we get

j1h = ud−2 ± vd−1.

Then, from Proposition 6.2.7, we have that h is ΘK-equivalent to ud−2 ±

vd−1 which is 1-ΘK-determined and has ΘKe-codimension 1.

• If βd−1 = 0, then we have j1h = ud−2. Therefore, from Proposition 6.2.8,

we have h is ΘK-equivalent to ud−2 ± v2
d−1 which is 2-ΘK-determined and

has ΘKe-codimension 2.

(2) If ud−2 ∈ NΘKe(h), then we have NΘKe(h) = 〈1, ud−2〉. We can see that βd−1 6=

0. (Since if βd−1 = 0, then vd−1 ∈ NΘKe(h)).

a) If d = 3, then we have

j1h = β2v2 + γ1w1.

By using the 1-jets of Φ1
j we can remove v1 and w2. Then, we get

j1h = β2v2 + γ1w1.

We fix β2 = 1 by using the matrix M = [ 1
β2

]. Then, we get j1h = v2 +γ1w1.

If γ1 = 0, then w1 ∈ NΘKe(h). Therefore, we have γ1 6= 0.



6.3 The proof of theorem 6.0.20 119

By integrating the vector field

ξ = 2ξe +
1

3
ξ2

1

= (6u1, 3v1, 0, 9w1, 6w2)T .

We get a diffeomorphism

Φ(u1, v1, v2, w1, w2) = (e6µu1, . . . , e
3µv1, v2, e

9µw1, e
9µw2), µ ∈ K.

From this diffeomorphism we fix γ1 = ±1 and we get

j1h = v2 ± w1.

Then, from Proposition 6.2.10, we have that h is ΘK-equivalent to v2±w1

which is 2-ΘK-determined and has ΘKe-codimension 2.

b) If d ≥ 4, then we have that αd−3 6= 0. (Since if αd−3 = 0, then ud−3 ∈

NΘKe(h)).

By using the 1-jets of Φ2
j and Φ1

j we can remove u1, . . . , ud−4, w1, v1, . . . , vd−2

and w2. Then, we get

j1h = αd−3ud−3 + βd−1vd−1.

We fix αd−3 = 1 by using the matrix M = [ 1
αd−3

]. Then, we get

j1h = ud−3 + βd−1vd−1.

By using the diffeomorphism in Example 6.1.1 then we fix βd−1 = ±1 and

we get

j1h = ud−3 ± vd−1.

From Proposition 6.2.9, we have that h is ΘK-equivalent to

ud−3 ± vd−1 ± u2
d−2

which is 2-ΘK-determined and has ΘKe-codimension 2.
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Third Step: Classification of map-germs from (K2d−1, 0) to (K2, 0).

Since q = 2, then from Theorem 6.2.1 there is not a map-germ with ΘKe−cod(h) =

1. Therefore, we assume that ΘKe−cod(h) = 2.

If d ≥ 5, then according to Corollary 6.2.5, we can see that there is not a map-germ

with ΘKe−cod(h) = 2. Hence, we consider d = 2, 3 and 4 only.

Suppose that e1 =

 1

0

 and e2 =

 0

1

. Since every vector field in Θ vanishes

at the origin, then we can see that e1 and e2 not in TΘKe(h). It follows e1 and e2 in

NΘKe(h). Since ΘKe−cod(h) = 2, then we have

NΘKe(h) = 〈e1, e2〉 (6.3.1)

We consider the 1-jet of h, i.e., its linear part:

j1h =

(
d−2∑
i=1

α1,iui +
d−1∑
i=1

β1,ivi +
2∑
i=1

γ1,iwi,
d−2∑
i=1

α2,iui +
d−1∑
i=1

β2,ivi +
2∑
i=1

γ2,iwi

)
,

for some constants αj,i, βj,i and γj,i in K.

(A) Suppose that d = 2. We have

j1h =

(
β1,1v1 +

2∑
i=1

γ1,iwi, β2,1v1 +
2∑
i=1

γ2,iwi

)
,

for some constants βj,1 and γj,i in K.

If βj,1 = 0 for all 1 ≤ j ≤ 2, then one finds

TΘK(j1h) =
〈2γ1,2w2

2γ2,2w2

 ,

2γ1,1w2 +1,2 v
2
1

2γ2,1w2 +2,2 v
2
1

 ,

2γ1,1w1

2γ2,1w1

 ,

2γ1,2v1w1

2γ1,2v1w1

 ,


2∑
i=1

γ1,iwi

0

 ,

 0
2∑
i=1

γ1,iwi

 ,


2∑
i=1

γ2,iwi

0

 ,

 0
2∑
i=1

γ2,iwi

〉.
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We can see that v1e1 and v1e2 not in Tj1ΘKe(j1h). It follows from Proposi-

tion 6.2.12 we have v1e1 and v1e2 not in TΘKe(h) and this is a contradiction

with equation (6.3.1).

Therefore, we have βj,1 6= 0 for some 1 ≤ j ≤ 2. We can assume that β1,1 6= 0

(if β1,1 = 0, then we can swap). Also if βj,1 6= 0 for j = 1, 2, then we can remove

v1 in the second coordinate by using the matrix M1 = diagonal(−β2,1/β1,1, 1).

Therefore, we have

j1h =

(
β1,1v1 +

2∑
i=1

γ1,iwi,
2∑
i=1

γ2,iwi

)
.

We fix β1,1 = 1 by using M2 = diagonal(1/β1,1, 1). It follows that

j1h =

(
v1 +

2∑
i=1

γ1,iwi,
2∑
i=1

γ2,iwi

)
.

If γ1,2 6= 0, then we can we can remove w2 from the first coordinate by using

the 1-jet of the diffeomorphism Φ1
1. Hence, we have

j1h =

(
v1 + γ1,1w1,

2∑
i=1

γ2,iwi

)
.

Now, we consider the following cases:

(1A) If γ1,1 6= 0, then from integrating the vector field ξ = ξe + ξ2
1 we get a

diffeomorphism Φ which fixes γ1,1 = ±1.

Therefore, we have

j1h =

(
v1 ± w1,

2∑
i=1

γ2,iwi

)
.

(1A.1) If γ2,1 6= 0, then we can fix γ2,1 = 1 by using the matrix M3 =

diagonal(1, 1/β2,1). Suppose that γ2,2 6= 0, then by using the 1-jet
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of the diffeomorphism Φ3
1 we can remove w2 from the second coordi-

nate and we get

j1h = (v1 ± w1 + αw(2), w1) with α ∈ K.

By using the 1-jet of the diffeomorphism Φ1
1 we can remove w2 from

the first coordinate and we get

j1h = (v1 ± w1, w1) .

Also by using the matrix

M∓
4 =

1 ∓1

0 1


We get

j1h = (v1, w1) .

Then from the CAST package we find that the 2-transversal is empty.

Hence for all k ≥ 1 we have an empty (k + 1)-transversal. There-

fore, any (k + 1)-jet with k-jet (v1, w1) and k ≥ 1 is ΘK-equivalent

to (v1, w1). Also, we deduce that (v1, w1) is 1-ΘK-determined with

ΘKe-codimension 2.

(1A.2) If γ2,1 = 0, then we have

j1h = (v1 ± w1, γ2,2w2) .

If γ2,2 = 0, then j1h = (v1 ± w1, 0). This gives a non-submersive

map-germ for h. Thus we can assume γ2,2 6= 0.

We can fix γ2,2 = 1 by using the matrix M5 = diagonal(1, 1/β2,2) and

we get

j1h = (v1 ± w1, w2) .
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From the CAST package we have w1e2 /∈ Tj1ΘK(j1h). It follows from

Proposition 6.2.12 that we have w1e2 /∈ TΘK(h) and this again con-

tradict with equation 5.3.1.

(2A) If γ1,1 = 0, then we have

j1h =

(
v1,

2∑
i=1

γ2,iwi

)
.

If γ2,1 = 0, then w1e1 and w1e2 are not in Tj1ΘK(j1h). It follows from

Proposition 6.2.12 we have w1e1 and w1e2 not in TΘKe(h) and this again

contradict with equation 5.3.1.

Thus we assume γ2,1 6= 0. Then we can fix γ2,1 = 1 by using the ma-

trix M5 = diagonal(1, 1/β2,1). If γ2,2 6= 0, then by using the 1-jet of the

diffeomorphism Φ3
1 we can remove w2 from the second coordinate and we

get

j1h = (v1, w1) .

This similar to the case 1A.1.

(B) Suppose that 3 ≤ d ≤ 4. We have

j1h =

(
d−2∑
i=1

α1,iui +
d−1∑
i=1

β1,ivi +
2∑
i=1

γ1,iwi,
d−2∑
i=1

α2,iui +
d−1∑
i=1

β2,ivi +
2∑
i=1

γ2,iwi

)
,

If α1,d−2 = α2,d−2 = 0, we can see that ud−2e1 and ud−2e2 are not in Tj1ΘK(j1h).

It follows from Proposition 6.2.12 we have ud−2e1 and ud−2e2 not in TΘKe(h)

and this is a contradiction with equation 5.3.1.

Therefore, we have either α1,d−2 6= 0 or α1,d−2 6= 0. We assume that α1,d−2 6= 0

(if α1,d−2 = 0, then we can swap.)
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We can fix α1,d−2 = 1 by using the matrix M6 = diagonal(1/α1,d−2, 1). Also if

α2,d−2 6= 0, then we can remove ud−2 form the second coordinate by using the

matrix

M∓
7 =

 1 0

−α2,d−2 1

 .

By using the 1-jets of Φ3
j and Φ2

j we can remove u1, . . . , ud−3, v1, . . . , vd−2, w1

and w2 from the first coordinate. Therefore, we have

j1h =

(
ud−2 + β1,d−1vd−1,

d−3∑
i=1

α2,iui +
d−1∑
i=1

β2,ivi +
2∑
i=1

γ2,iwi

)
,

If β2,d−1 = 0, then we can see that vd−1e2 /∈Tj1ΘK(j1h). It follows from Propo-

sition 6.2.12 we have vd−1e2 /∈TΘKe(h) and this is a contradiction with equa-

tion 5.3.1.

Therefore, we assume that β2,d−1 6= 0. We can fix β2,d−1 = 1 by using the matrix

M8 = diagonal(1, 1/β2,d−1). It follows

j1h =

(
ud−2 + β1,d−1vd−1,

d−3∑
i=1

α2,iui +
d−2∑
i=1

β2,ivi + vd−1 +
2∑
i=1

γ2,iwi

)
,

If β1,d−1 6= 0, then we consider j1h as a 1-parameter family Hβ1,d−1
, then we

have∑d−2
i=1 β2,ivi + vd−1 +

∑2
i=1 γ2,iwi

0

 =

vd−1

0

+ ϕ, ϕ ∈m2θ(Hβ1,d−1
).

It follows that
∂Hβ1,d−1

∂β1,d−1

∈ TΘK(Hβ1,d−1
) + m2θ(Hβ1,d−1

).

Thus, Hβ1,d−1
is 1-ΘK-trivial. Hence

j1h =

(
ud−2,

d−3∑
i=1

α2,iui +
d−2∑
i=1

β2,ivi + vd−1 +
2∑
i=1

γ2,iwi

)
.
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By using the 1-jets of Φ1
j we can remove v1, . . . , vd−2 and w2 from the second

coordinate. Therefore, we have

j1h =

(
ud−2,

d−3∑
i=1

α2,iui + vd−1 + γ2,1w1

)
.

Consider d = 3. Then, we have j1h = (u1, v2 + γ2,1w1).

a) If γ2,1 6= 0, then from integrating the vector field ξ = 2ξe + 1
3
ξ2

1 we get a

diffeomorphism Φ such that

Φ(u1, v1, v2, w1, w2) = (e4αu1, e
−αv1, v2, e

3αw1, e
6αw2), α ∈ K.

We fix γ2,1 = ±1 by using Φ. From the matrix M8 = diagonal(e−4α, 1) we

have j1h = (u1, v2 ± w1).

If we have jkh = (u1, v2 ± w1), then from the CAST package we find that

the 2-transversal is empty. Hence for all k ≥ 1 we have an empty (k + 1)-

transversal. Therefore, any (k + 1)-jet with k-jet (u1, v2 ± w1) and k ≥ 1

is ΘK-equivalent to (u1, v2 ± w1). Also, we deduce (u1, v2 ± w1) is 1-ΘK-

determined with ΘKe-codimension 2.

b) If γ2,1 = 0, then we have j1h = (u1, v2). Let g(u1, v1, v2, w1, w2) = (u1, v2).

Then we have

TΘK(g) =
〈u1

0

 ,

 0

u1

 ,

v1

0

 ,

 0

v1

 ,

v2

0

 ,

 0

v2

 ,

w1

0

 ,

w2

0

 ,

 0

w2

〉.
It follows that for all k ≥ 1, we have

mk+1
5 E2

5 ⊆ TΘK(g) +
〈 0

wk+1
1

〉.
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Thus, if we have a map-germ with k-jet equal to (u1, v2), then a (k + 1)-

transversal is

{  0

wk+1
2

 }
.

Let h = (u1, v2 +λwk+1
1 ) with λ 6= 0, we can fix λ = ±1 by using the diffeo-

morphism Φ as in step (i). Also, from the matrix M9 = diagonal(e−4α, 1)

we get h = (u1, v2 ± wk+1
1 ). For all k ≥ 1 we have

TΘK(h) =
〈u1

0

 ,

 0

u1

 ,

v1

0

 ,

 0

v1

 ,

v2

0

 ,

 0

v2

 ,

w1

0

 ,

 0

wk+1
1

 ,

w2

0

 ,

 0

w2

〉.
Thus

mk+1
5 E2

5 ⊆ TΘK(h).

Hence h is a (k+ 1)-ΘK-determined. Furthermore, from the description of

TΘK(h) we get ΘKe−cod(h) = k + 2.

Consider d = 4. Then, we have j1h = (u2, α2,1u1 + v3 + γ2,1w1). We find

TΘK(j1h) =
〈u1

0

 ,

u2

0

 ,

 0

u2

 ,

 0

v1

 ,

 0

v2

 ,

 0

v3

 ,

w1

0

 ,

 v2

γ2,1w2

 ,

 v1

−α2,1w2

 ,

−16w1

3α2,1u
2
1

 ,

−4w2 − u1v3

0

 ,

v3 + γ2,1w1

0

 ,

 0

−4w2 + 9γ2,1u
2
1 + 12γ2,1u1w1

 ,

 0

3α2,1u1 + 4γ2,1w1

 ,

 0

α2,1u1 + γ2,1w1

〉.
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If α2,1 = 0, then we can see that u1e2 /∈Tj1ΘK(j1h). It follows from Proposi-

tion 6.2.12 we have u1e2 /∈TΘKe(h) and this is a contradict (6.3.1). Similarly,

if γ2,1 = 0, then we can see that w1e2 /∈Tj1ΘK(j1h). It follows from Proposi-

tion 6.2.12 we have w1e2 /∈TΘKe(h) and this is a contradiction.

Therefore, we assume that α2,1 6= 0 and γ2,1 6= 0. We consider the vector fields

ξ1 = 3
4
ξe + 1

16
ξ2

1 and ξ2 = 1
4
ξe − 1

16
ξ2

1 .

By integrating these vector fields we get diffeomorphisms Φ1 and Φ2 respectively

such that

Φ1(u, v, w) = (e3λ1u1, e
2λ1u2, e

2λ1v1, e
λ1v2, v3, e

4λ1w1, e
3λ1w2) and

Φ2(u, v, w) = (u1, u2, e
λ2v1, e

λ2v2, e
λ2v3, w1, w2),

where λi ∈ K.

We fix α2,1 = 1 by using the matrix M10 = diagonal(1, 1/α2,1). Therefore we

have

j1h =

(
u2, u1 +

1

α2,1

v3 +
γ2,1

α2,1

w1

)
.

We can fix
γ2,1

α2,1

= ±1 by using Φ1 and the matrix M11 = diagonal(e−2λ1 , e−3λ1).

Therefore, we get

j1h =

(
u2, u1 +

1

α2,1

v3 ± w1

)
.

By using Φ2 we can fix
1

α2,1

= ±1 and hence we get

j1h = (u2, u1 ± v3 ± w1) .

Then from the CAST package we find that the 2-transversal is empty. Hence for

all k ≥ 1 we have an empty (k+ 1)-transversal. Therefore, any (k+ 1)-jet with

k-jet (u2, u1 ± v3 ± w1) and k ≥ 1 is ΘK-equivalent to (u2, u1 ± v3 ± w1). Also,

we deduce that (u2, u1 ± v3 ± w1) is 1-ΘK-determined with ΘKe-codimension 2.
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�

6.4 The proof of corollary 6.0.21

We shall use the diffeomorphism in Proposition 6.1.2 in the proof. This diffeomor-

phism defined by

Φ(u, v1, . . . , vd−1, w1, w2) = (u,−v1, . . . ,−vd−1, w1,−w2).

i) For I−d,k+1, III−d,1 and V−3,2. By using Φ and the matrix M = [−1] we have that

I−d,k+1 ∼VK I+
d,k+1, III−d,1 ∼VK III+

d,1 and V−3,2 ∼VK V+
3,2.

ii) For VII−3,1. By using Φ and the matrix M = diagonal(1,−1) we have that

VII−3,1 ∼VK VII+
3,1.

iii) For VIII−4,1. By using Φ we have that VIII−4,1 ∼VK VIII+
4,1.

�



Chapter 7

Application to right-left

classification

A fair number of A-classifications of map-germs (Kn, 0) → (Kp, 0) can be found

in the literature: namely (C, 0) → (C2, 0) ([BG82]), (K2, 0) → (K3, 0) ([Mon85]

and [Rat95]), (Kn, 0) → (K2, 0) ([Rie87] and [RR91]), (R3, 0) → (R3, 0) ([MT96]),

(R3, 0)→ (R4, 0) ([HK99]) and (Cn, 0)→ (Cn+1, 0) ([Coo93]).

The classification of map-germ under A-equivalence is hard to do. However, we

can classify map-germs under VK-equivalence and by using Theorem 2.6.3 in chapter 2

we can do a sharp pullback to get A-classification.

In the previous chapter we got the classification of map-germs under VK-equivalence,

where V is the image of the minimal cross cap mapping of multiplicity d ≥ 2. In

this chapter we shall use our classification under VK-equivalence to classify corank 1

Ae-codimension 2 map-germs (Cn, 0)→ (Cn+1, 0).

129
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7.1 Relationship between Ae and VKe-codimension

In this section we shall give the relationship between VKe codimension of a submersion

map-germ h : (Kp, 0)→ (Kq, 0) and Ae codimension of its a sharp pullback.

Definition 7.1.1. Let F : (Kn, 0)→ (Kp, 0) be a smooth map-germ and g : (Kr, 0)→

(Kp, 0) an immersion which is transverse to F , i.e.,

dF (T0(Kn, 0) + T0(g(Kr, 0)) = T0(Kp, 0)

where T0 means the tangent space at 0. The pullback of F by g, denoted g∗(F ), is

the natural map from

(Kr−(p−n), 0) ∼= {(x, y) ∈ (Kn, 0)× (Kr, 0) : F (x) = g(y)}

to (Kr, 0) given by projection on the second factor.

Example 7.1.2. Let F : (K3, 0) → (K4, 0) be the trivial extension of the Whitney

umbrella given by F (x, v1, y) = (x, v1, y
2, v1y) and h(x, v1, w1, w2) = v1 − p(x,w1) for

a function p.

Let g : (K3, 0)→ (K4, 0) be given by g(x,w1, w2) = (x, p(x,w1), w1, w2). Then the

image of g is equal to h−1(0) and g is transverse to F .

The pullback of F by g is a map-germ of the form f(x, y) = (x, y2, yp(x, y2)). Also,

we can see that the sharp pullback is a map-germ of the form f(x, y) = (x, y2, yp(x, y2)).

Remark 7.1.3. In [Mat69], Mather shows that if f : (Kn, 0)→ (Kp, 0) has finite Ae-

codimension then there is a stable map-germ F : (KN , 0)→ (KP , 0) and an immersion

map-germ g : (Kp, 0) → (KP , 0) with g transverse to F such that f is obtained as a

pullback in the following commutative diagram

(KN , 0)
F−→ (KP , 0)

i ↑ g ↑

(Kn, 0)
f−→ (Kp, 0)
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In ([Dam91] and [Dam06]), Damon found the relationship betweenAe-codimension

and VKe-codimension. In fact, he showed that for a finitely A-determined map-germ

f as the pullback g∗(F ),Ae−cod(f) = KV,e−cod(g) in [Dam91]. In [MM94], Mond

and Montaldi prove that f does not necessarily have to be finitely A-determined.

In [Dam06], Damon proves KV,e−cod(g) = VKe−cod(h) where h is a submersion

h : (Kp, 0)→ (Kp−r, 0) such that h−1(0) is the image of g.

Theorem 7.1.4 ([Dam91], [MM94] and [Dam06]). Suppose that F : (Kn, 0)→ (Kp, 0)

is a K-analytic stable map-germ and g : (Kr, 0)→ (Kp, 0) is an immersion transverse

to F . Then,

Ae−cod(g∗(F )) = VKe−cod(h)

where h is a submersion h : (Kp, 0) → (Kp−r, 0) such that h−1(0) is the image of g

and V is the K-part of the complexification of the discriminant of F .

Now, we shall find the relationship between VKe codimension of a map-germ and

Ae codimension of a sharp pullback.

Theorem 7.1.5. Suppose that F : (Kn, 0) → (Kp, 0) is a smooth map-germ. Let

h : (Kp, 0) → (Kq, 0) be a submersion transverse to F and g : (Kp−q, 0) → (Kp, 0) be

an immersion such that im(g) = h−1(0). Then,

g∗(F ) ∼A h](F ).

Proof. Let U = (h ◦ F )−1(0) and V = h−1(0). Then h](F ) is the map from U

to V given by F .

Since F is transverse to h−1(0) we know that U and V are manifolds.

Now, let g : (Kp−q, 0)→ (Kp, 0) be any immersion such that im(g) = h−1(0). Then

the pullback is defined as follows: Let Z = {(x, y) ∈ (Kn, 0)× (Kp−q, 0) : F (x) = g(y)}.

Since g is transverse to F , then Z is a manifold of dimension n− q.
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We define g∗(F ) as the map (Z, 0) → (Kp, 0) given by restriction to Z of the

projection pr2 : (Kn ×Kp−q, 0)→ (Kp−q, 0).

We produce a square diagram by using the other projection, pr1 : (Kn×Kp−q, 0)→

(Kn, 0).

(Kn, 0)
F−→ (Kp, 0)

pr1 ↑ g ↑

(Kn ×Kp−q, 0)
pr2−→ (Kp−q, 0)

The square is commutative: Let z ∈ Z, then z = (x, y) for some x and y with

F (x) = g(y) by definition. We have

F (pr1(z)) = F (pr1(x, y)) = F (x) = g(y) = g(pr2(x, y)) = g(pr2(z)).

Now to get g∗(F ) ∼A h](F ). We need Z to be mapped diffeomorphically to U by

pr1 and Kp−q to be mapped diffeomorphically to V by g. Since g is an immersion,

then it is a diffeomorphism onto its image. Hence, we have that Kp−q and V are

diffeomorphic.

We need to show that Z and U are diffeomorphic. We define ϕ : U → Z through

the following. Let x ∈ U , then F (x) ∈ V by definition. But then, there exists a

unique y in Kp−q such that F (x) = g(y). Thus let ϕ(x) = (x, y). Obviously, ϕ is the

inverse of the map pr1 : Z → im(pr1). Since the smoothness of map is also preserved

by restriction to subsets, then ϕ and pr1 : Z → im(pr1) are smooth. By looking at

the Jacobians of the two possible compositions of these (they will be the identity) we

get that they must be local diffeomorphisms. �

Corollary 7.1.6. Suppose that F : (Kn, 0)→ (Kp, 0) is a K-analytic stable map-germ

and h : (Kp, 0)→ (Kq, 0) is a submersion transverse to F . Then,

Ae−cod(h](F )) = VKe−cod(h)
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Proof. Follows from the theorem and Theorem 7.1.4. �

Now, we need to show that how one can determine the A-classification of map-

germs (Kn, 0)→ (Kn+1, 0) from VK-classification.

We begin with the direct sum of a smooth map-germs. This gives a process

producing new map-germs from old ones.

Definition 7.1.7. ([AGV88], [Wal82]) Let h : (Kp1 , 0)→ (Kq, 0) and g : (Kp2 , 0)→

(Kq, 0) be smooth map-germs. We define the direct sum h⊕g : (Kp1+p2 , 0)→ (Kq, 0)

by

h⊕ g(z, x) = h(z) + g(x).

Remark 7.1.8. Augmentations of map-germs have the property above, see [Hou98].

Definition 7.1.9. Let Θi be a set of smooth vector fields on (Kpi , 0) i = 1, 2. Θi =

{ξi,j}rij=1. Then the product of Θ1 and Θ2, denoted Θ1 × Θ2, is the set of vector

fields on (Kp1 ×Kp2 , 0× 0) defined by

Θ1 ×Θ2 = {ξ1,1, . . . , ξ1,r1 , ξ2,1, . . . , ξ2,r2} .

If we use the coordinates (Z1, . . . , Zp1) on (Kp1 , 0) and (X1, . . . , Xp2) on (Kp2 , 0),

then any vector field ξ =
p1∑
i=1

αi
∂

∂Zi
on (Kp1 , 0) can be extended naturally to ξ =

p1∑
i=1

αi
∂

∂Zi
+

p2∑
i=1

βi
∂

∂Xi

on (Kp1 ×Kp2 , 0× 0) where βi = 0 for all 1 ≤ i ≤ p2.

Theorem 7.1.10. Let h, h̃ : (Kp1 , 0) → (Kq, 0) and g, g̃ : (Kp2 , 0) → (Kq, 0) be

smooth map-germs. Let Θi be a finitely generated Ei-module of smooth vector fields

on (Kpi , 0) with i = 1, 2. If h is Θ1R-equivalent to h̃ and g is Θ2R-equivalent to g̃,

then h+ g is Θ1×Θ2R-equivalent to h̃+ g̃.

Proof. Since h and h̃ are Θ1R-equivalent, then there exists a vector field ξ1 ∈ Θ2

that can be integrated to give a diffeomorphism ϕ1 such that h̃(z) = h ◦ ϕ1(z).
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Similarly, since g and g̃ are Θ2R-equivalent, then there exists a vector field ξ2 ∈ Θ2

that can be integrated to give a diffeomorphism ϕ2 such that g̃(x) = g ◦ ϕ2(x).

We take the Cartesian product of the diffeomorphisms ϕ1 and ϕ2, i.e., ϕ = (ϕ1, ϕ1).

Then we have

h⊕ g (ϕ(z, x)) = h⊕ g (ϕ1(z), ϕ2(x))

= h (ϕ1(z)) + g (ϕ2(x))

= h̃(z) + g̃(x).

�

The direct sum in Theorem 7.1.10 is not compatible with ΘK-equivalence. For

example we have the following

Example 7.1.11. [Wal82] Let h(x, y) = (x2, y2) and g(x, y) = (x2 + y2, x2 − y2. We

can see that h and g differ only by a linear coordinate change in the target. However

h⊕ h is not finitely K-determined whereas h⊕ g is 2-K-determined.

Definition 7.1.12. Let g : (Kp, 0)→ (K, 0) be a smooth function-germ.

i) The Milnor algebra of g is given by

Mg =
Ep

〈 ∂g
∂X1

, . . . , ∂g
∂Xp
〉Ep

.

ii) The Tjurina algebra of g is given by

Tg =
Ep

〈g, ∂g
∂X1

, . . . , ∂g
∂Xp
〉Ep

.

iii) The numbers

µ(g) := dimKMg and τ(g) := dimK Tg

are called the Milnor and Tjurina number of g, respectively.
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The Milnor and the Tjurina number play an important role in the study of isolated

hypersurface singularities.

Theorem 7.1.13. Let h : (Kp1 , 0)→ (K, 0) and g : (Kp2 , 0)→ (K, 0) be smooth map-

germs. Let Θi be a finitely generated Epi-module of smooth vector fields on (Kpi , 0)

with i = 1, 2. Then

Θ1×Θ2Ke−cod(h⊕ g) ≥
(

Θ1Ke−cod(h)
)(

Θ2Ke−cod(g)
)
.

If Θ2 is the whole module of vector fields on (Kp2 , 0) and g is quasihomogeneous,

then

Θ1×Θ2Ke−cod(h⊕ g) = Θ1Ke−cod(h)τ(g).

Proof. We have,

Θ1×Θ2Ke−cod(h⊕ g) = dimK
Ep1+p2

TΘ1×Θ2Ke(h⊕ g)

= dimK
Ep1+p2

〈ξ(h⊕ g) | ξ ∈ Θ1 ×Θ2〉+ 〈h⊕ g〉Ep1+p2

= dimK
Ep1+p2

〈ξ1,1(h), . . . , ξ1,r1(h), ξ2,1(g), . . . , ξ2,r2(g)〉+ 〈h+ g〉Ep1+p2

≥ dimK
Ep1+p2

〈ξ1,i(h)〉r1i=1 + 〈h〉Ep1 + 〈ξ2,i(g)〉r2i=1 + 〈g〉Ep2

= dimK

(
Ep1

〈ξ1,i(h)〉r1i=1 + 〈h〉Ep1

⊗K
Ep2

〈ξ2,i(g)〉r2i=1 + 〈g〉Ep2

)
= dimK

Ep1

〈ξ1,i(h)〉r1i=1 + 〈h〉Ep1

× dimK
Ep2

〈ξ2,i(g)〉r2i=1 + 〈g〉Ep2

=
(

Θ1Ke−cod(h)
)(

Θ2Ke−cod(g)
)
.
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If g is quasihomogeneous, then g ∈
〈

∂g
∂X1

, . . . , ∂g
∂Xp2

〉
and so from above we have

Θ1×Θ2Ke−cod(h⊕ g) = dimK
Ep1+p2

〈ξ1,1(h), . . . , ξ1,r1(h), ξ2,1(g), . . . , ξ2,p2(g)〉+ 〈h+ g〉Ep1+p2

= dimK
Ep1+p2

〈ξ1,1(h), . . . , ξ1,r1(h), ξ2,1(g), . . . , ξ2,p2(g), h〉Ep1+p2

= dimK
Ep1

〈ξ1,i(h)〉r1i=1 + 〈h〉Ep1

× dimK
Ep2

〈 ∂g∂X1
, . . . , ∂g

∂Xp2
〉Ep2

= Θ1Ke−cod(h)τ(g).

�

We can find new classification from other classifications by using the following

theorem.

Theorem 7.1.14. Let Θ be a finitely generated Ep-module of smooth vector fields on

(Kp, 0) and h : (Kp, 0) → (K, 0) be a smooth function-germ with ΘK-codimension at

most 4. Suppose that dimK {ξ(0)|ξ ∈ Θ} = r. Then,

(A) there exist coordinates (Z1, . . . , Zp−r, X1, . . . , Xr) on (Kp, 0) such that

Θ ∼= Θ̃× 〈∂/∂X1, . . . , ∂/∂Xr〉

where 〈∂/∂X1, . . . , ∂/∂Xr〉 means the Ep-module generated by these vector fields

and all vector fields in Θ̃ vanish at 0.

(B) The function-germ h is ΘK-equivalent to one of the following function-germs:-

(εi = ±1 when K = R and ε = 1 when K = C)

(B1) Xl,

(B2) h̃(Z) + g(X), where h̃ : (Kp−r, 0)→ (K, 0) has Θ̃K-codimension at most 4

and g : (Kr, 0)→ (K, 0) is K-equivalent to a function-germ of τ ≤ 4.

(B3) h̃(Z) + αZαXl +Xm
l + Q with m = 3 or 4,

(B4) h̃(Z) + (α1Zα1 + α2Zα2)Xl +X3
l + Q,
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where

α1.α2 = 0

Q =
r∑
j=1
j 6=l

X2
j

and the function-germs in (B3) and (B4) have ΘK-codimension ≥ 3.

Proof. We need the following notation in the proof. Let α = (α1, . . . , αn) be an

n-tuple of non-negative integers and eij be an r-tuple with a 1 in the jth position and

zeros elsewhere. We use the coordinate (Z1, . . . , Zp−r, X1, . . . , Xr) on Kp = Kp−r×Kr.

We define

|α| :=

p−r∑
i=1

αi,

|β| :=
r∑
i=1

βi,

Zα := Zα1
1 .Zα2

2 . . . Z
αp−r

p−r ,

Xα := Xα1
1 .Xα2

2 . . . Xαr
r .

(A) We have dimK {ξ(0)|ξ ∈ Θ} = r, i.e., there exist vector fields ξ1, . . . , ξr in Θ

such that these vector fields do not vanish at 0 and the vectors ξ1(0), . . . , ξr(0)

are linearly independent. Therefore, a change of coordinates in (Kp, 0) allows

to assume ξ1 =
∂

∂X1

, . . . , ξr =
∂

∂Xr

. In this case we have Kp = Kp−r ×Kr such

that the coordinates (Z1, . . . , Zp−r) on (Kp−r, 0) and Θ̃ will denote the module

of vector fields on (Kp−r, 0) with all these vector fields vanishing at 0.

(B) Since h has ΘK-codimension at most 4. Then, we consider

j5h =
∑

|α|+|β|≤5

Cα,βZ
αXβ.
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If C0,e1j
6= 0 for some 1 ≤ j ≤ r (say for j = l), then by using the coordinate

changes Xj 7→ Xj + αiZi, Xj 7→ Xj + βiXi and the matrix M = [
1

C0,e1l

] such that

1 ≤ j ≤ r and 1 ≤ i ≤ p− r we get h is ΘK-equivalent to X1.

Now, we suppose that C0,e1j
= 0 for all 1 ≤ j ≤ r.

a) If C0,e2j
6= 0 for all 1 ≤ j ≤ r, then by using the coordinate changes Xj 7→

Xj +αiZi for 1 ≤ j ≤ r and 1 ≤ i ≤ p− r and Xj 7→ Xj + βiXi for 1 ≤ i, j ≤ r

and i 6= j we can remove ZiXj and XiXj from j5h.

Therefore, we have

j5h =
∑

|α|+|β|≤5
α 6=1
β 6=1

Cα,βZ
αXβ.

By using the diffeomorphism Φ(Z,X) = (Z,X1, . . . , e
λjXj, Xj+1, . . . , Xr) we fix

C0,e2j
= ±1 for all 1 ≤ j ≤ r. Also we have

∂j5h/∂Xj = ±2Xj +G, with G ∈m2
p.

If we consider j5h as a 1-parameter unfolding for all α, then the terms of the

form ZαXβ are 2-trivial.

It follows,

j5h = h̃(Z) +
r∑
j=1

εjX
2
j .

such that εi = ±1 when K = R and ε = 1 when K = C.

b) Suppose that there exists l such that C0,e2l
= 0 and C0,e2j

6= 0 for all 1 ≤ j ≤ r

with j 6= l.

(b1) If the coefficient of XlXj does not equal 0 for some 1 ≤ j ≤ r, then by

the same way above we have h is ΘK-equivalent to a function-germ of the

form h̃(Z) +
r∑
j=1

εjX
2
j .
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(b2) If the coefficient of XlXj equals 0 for all 1 ≤ j ≤ r, then we can see that

1 and xl are not in TΘKe(h) because all vector fields in Θ̃ vanish at 0.

We consider the following cases:

(1) If C0,e3l
6= 0, then we can fix C0,e3l

= 1 , then by the same way above we

have

j5h = h̃(Z)±X3
l +

r∑
j=1
j 6=l

εjX
2
j +

∑
|α|≤4

Cα,e1lZ
αXl.

i. If ΘK−cod(h) = 2, then we have NΘKe(h) = 〈1, Xl〉 and

mp − {Xl} ⊆mpTΘKe(h) ⊆ TΘK(h).

If we consider j5h as a 1-parameter unfolding for all Cα,e1l , then all

terms in
∑
|α|≤4

Cα,e1lZ
αXl are trivial and hence h is ΘK-equivalent to

h̃(Z)±X3
l +

r∑
j=1
j 6=l

εjX
2
j .

ii. If ΘK−cod(h) = 3. We suppose that NΘKe(h) = 〈1, Xl, U〉.

ii.1 If U 6= ZtXl for all 1 ≤ t ≤ p− r, then we have

mp − {Xl, U} ⊆mpTΘKe(h) ⊆ TΘK(h).

Similarly, we have h is ΘK-equivalent to

h̃(Z)±X3
l +

r∑
j=1
j 6=l

εjX
2
j .

ii.2 If U = ZtXl for single t, then we have h is ΘK-equivalent to

h̃(Z) + αtZtXl ±X3
l +

r∑
j=1
j 6=l

εjX
2
j .
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iii. If ΘK−cod(h) = 4. We suppose that NΘKe(h) = 〈1, Xl, U, V 〉. Simi-

larly,

iii.1 If U 6= Zt1Xl and V 6= Zt2Xl for all 1 ≤ t1, t2 ≤ p− r, then we

have Zt1Xl and Zt1Xl in TΘKe(h).

Therefore, we have h is ΘK-equivalent to

h̃(Z)±X3
l +

r∑
j=1
j 6=l

εjX
2
j .

iii.2 If U = Zt1Xl and V 6= Zt2Xl, then we have h is ΘK-equivalent to

h̃(Z) + αt1Zt1Xl ±X3
l +

r∑
j=1
j 6=l

εjX
2
j .

iii.3 If U 6= Zt1Xl and V = Zt2Xl, then we have h is ΘK-equivalent to

h̃(Z) + αt2Zt2Xl ±X3
l +

r∑
j=1
j 6=l

εjX
2
j .

iii.4 If U = Zt1Xl and V = Zt2Xl, then we have h is ΘK-equivalent to

h̃(Z) + αt1Zt1Xl + αt2Zt2Xl ±X3
l +

r∑
j=1
j 6=l

εjX
2
j .

(2) If C0,e3l
= 0 and C0,e4l

6= 0, then we have 1, Xl and X2
l are not in TΘK(h).

i. If ΘK−cod(h) = 3, then we have NΘKe(h) = 〈1, Xl, X
2
l 〉. We can see

that

mp −
{
Xl, X

2
l

}
⊆mpTΘKe(h) ⊆ TΘK(h).

Hence, h is ΘK-equivalent to

h̃(Z)±X4
l +

r∑
j=1
j 6=l

εjX
2
j .

ii. If ΘK−cod(h) = 4. We suppose that NΘKe(h) = 〈1, Xl, X
2
l , U〉.
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ii.1 If U 6= ZtXl for all 1 ≤ t ≤ p− r, then we have ZtXl ∈ TΘKe(h).

Therefore, we have h is ΘK-equivalent to

h̃(Z)±X4
l +

r∑
j=1
j 6=l

εjX
2
j .

ii.2 If U = ZtXl for single t, then we have h is ΘK-equivalent to

h̃(Z) + αtZtXl ±X4
l +

r∑
j=1
j 6=l

εjX
2
j .

(3) If C0,e3l
= C0,e4l

= 0, then we have NΘKe(h) = 〈1, Xl, X
2
l , X

3
l 〉. In this case

C0,e2l
6= 0. Therefore, we have h is ΘK-equivalent to

h̃(Z)±X5
l +

r∑
j=1
j 6=l

εjX
2
j .

(c) Suppose that there exist l1 and l2 such that C0,e2l1
= C0,e2l2

= 0 and C0,e2j
6= 0

for all 1 ≤ j ≤ r with j 6= l1 and j 6= l2. Since all vector fields in Θ̃ vanish at 0.

Then 1, Xl1 and Xl2 are not in TΘKe(h).

(c1) If the coefficient ofXl1Xl2 not equal 0, then by using the coordinate changes

Xj 7→ Xj + αiZi for 1 ≤ j ≤ r and 1 ≤ i ≤ p− r and Xj 7→ Xj + βiXi for

1 ≤ i, j ≤ r and i 6= j we have h is ΘK-equivalent to

h̃(Z) +
r∑
j=1

εjX
2
j .

(c2) If the coefficient of Xl1Xl2 is 0, then we have 1, Xl1 and Xl2 , Xl1Xl2 are not

in TΘK(h). We assume that NΘKe(h) = 〈1, Xl1 , Xl2 , Xl1Xl2〉. Therefore,

we have C0,e3l1
6= 0 and C0,e3l2

6= 0. Similarly of above we have h is ΘK-

equivalent to

h̃(Z)±X3
l1
±X3

l2
+

r∑
j=1

j 6=l1,l2

εjX
2
j .
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By using the coordinate changes Xl1 7→ Xl1 + Xl2 and Xl1 7→ Xl1 − Xl2 ,

we have h is ΘK-equivalent to

h̃(Z) +X2
l1
Xl2 ±X3

l2
+

r∑
j=1

j 6=l1,l2

εjX
2
j .

(d) Suppose that C0,e2li
= 0 for 1 ≤ i ≤ 3 and C0,e2j

6= 0 for all 1 ≤ j ≤ r with

j 6= l1, l2, l3.

(d1) If the coefficients of Xl1Xl2 , Xl1Xl3 and Xl2Xl3 are not equal 0, then by

using the coordinate changes Xi 7→ Xi +Xj and Xj 7→ Xj −Xi such that

l1 ≤ i, j ≤ l2 and i 6= we have h is ΘK-equivalent to

h̃(Z) +
r∑
j=1

εjX
2
j .

(d2) If there is at least one of the coefficients of Xl1Xl2 , Xl1Xl3 and Xl2Xl3 is 0

and other not, then we have similar of (c2).

(d3) If there are at least two of the coefficients of Xl1Xl2 , Xl1Xl3 and Xl2Xl3

are 0 and other not, then we have ΘKe−cod(h) ≥ 5.

�

In the following examples we shall show that how we can use the theorem above

in our classification and we shall see our results coincide with the results of Mond

on A-classification of map-germs (K2, 0) → (K3, 0) (see [Mon85], theorem 1.1) and

Houston and Kirk on A-classification of map-germs (K3, 0) → (K4, 0) (see [HK99],

theorem 1.1).

Example 7.1.15. Let V = Ṽ × C where Ṽ is the image of ϕ2 : (C2, 0) → (C3, 0)

given by ϕ2(v1, y) = (v1, y
2, v1y) and let F = ϕ2 × Id1. Let g(x) = x5, then we have

τ(g) = 4.
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i) From Corollary 6.0.21 we have h̃(v1, w1, w2) = v1 − w1 has ṼKe−cod(h̃) = 1.

If h = h̃ ⊕ g, then from Theorem 7.1.13 we have VKe−cod(h) = 4. Thus

h ◦F (v1, y, x) = 0 gives v1 = y2 +x5. Hence h](F )(x, y) = (v1, y
2, y3 +x5y) and

this is the S4 singularity of Mond.

ii) Suppose that h̃ = v1 − xw1 and h = h̃⊕ g, then from the CAST package we have

VKe−cod(h) = 5.

We can find h](F )(x, y) = (x, y2, xy3 + x5y) and this is the C5 singularity of

Mond.

Example 7.1.16. Let V = Ṽ × C2 where Ṽ is the image of ϕ2 : (C2, 0) → (C3, 0)

given by ϕ2(v1, y) = (v1, y
2, v1y) and let F = ϕ2 × Id2. Let g(x, y) = x2 + z3, then we

have τ(g) = 2.

i) From Corollary 6.0.21 we have h̃(v1, w1, w2) = v1 − w1 has ṼKe−cod(h̃) = 1.

If h = h̃ ⊕ g, then from Theorem 7.1.13 we have VKe−cod(h) = 4. Thus

h◦F (v1, y, x, z) = 0 gives v1 = y2 +x2 +z3. Hence h](F )(x, z, y) = (x, z, y2, y3 +

x2y + z3y) and this is the A2 singularity of Houston and Kirk.

ii) Suppose that h̃ = v1 − zw1 and h = h̃⊕ g, then from the CAST package we have

VKe−cod(h) = 3.

We can find h](F )(x, z, y) = (x, z, y2, zy3 + x2y+ z3y) and this is the C3 singu-

larity of Houston and Kirk.

7.2 Map-germs of Ae-codimension two

In this section, we shall give the classification of a corank 1 Ae-codimension 2 map-

germs (Cn, 0)→ (Cn+1, 0). Before that we need the following theorem.
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Theorem 7.2.1. Let Θ̃ be a finitely generated Ep-module of smooth vector fields on

(Kp, 0) and Θ = Θ̃×{∂/∂Xj}rj=1. Let h : (Kp×Kr, 0)→ (Kq, 0) be a submersion map-

germ with ΘKe-codimension 2 and q ≥ 2. Then h is ΘK-equivalent to the map-germ

of the form (X1, X2, . . . , Xr−1, H) where H is ΘK-equivalent to one of the following

function-germs

(1) h̃+
r∑
j=1

X2
j such that Θ̃Ke−cod(h̃) = 2,

(2) h̃+X3
l +

r∑
j=1
j 6=l

X2
j such that Θ̃Ke−cod(h̃) = 1.

Proof. Suppose that h = (h1, . . . , hq). We are looking for only terms on

X1, . . . , Xr in h.

If h has no linear terms in X1, . . . , Xr, then we have ej = (0, 0, . . . , 0, 1, 0, . . . , 0)T /∈

TΘK(h) for all j = 1, 2, . . . , q because every vector field in Θ̃ vanishes at the ori-

gin. It follows that ΘKe−cod(h) ≥ q. If q ≥ 3, then we get a contradiction since

ΘKe−cod(h) = 2.

Assume that q = 2. Then we have

TΘKe(h) = mp+r 〈e1, e2〉 .

Then, on the RHS of above we require 2r distinct generators (we are looking

for only X1, . . . , Xr) and on the LHS we have at most r generators and this is a

contradiction.

Therefore, we can assume h1 has a linear term and the coefficient of X1 is not zero

(if the coefficient of X1 is zero, then we can swap). We can remove all other terms in

h1 and we get h1 = X1, i.e., we have h = (X1, h2, . . . , hq).

Now, for all 2 ≤ i ≤ r and 2 ≤ j ≤ q if the coefficient αi,j of Xi in hj is not zero,

then we can remove Xi in hj by using the matrix M10 = diagonal(−αi,j, 1, . . . , 1).
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Therefore, we have h = (X1, h2, . . . , hq) such that hj has no x1 in its linear part

for all 2 ≤ j ≤ q.

By the same way above we can get h = (X1, X2, . . . , Xr−1, hq) such that the linear

part of hq has not X1, . . . , Xr−1. If the coefficient of Xr in hq is not zero, then we can

remove all terms in hq and we get h = (X1, X2, . . . , Xr−1, Xr), i.e., ΘKe−cod(h) = 0

and this is a contradiction since ΘKe−cod(h) = 2.

Therefore, we assume that the coefficient of Xr in hq is zero. Hence, hq has no

linear part.

Now, we can see that the sharp pullback of h is equal to the sharp pullback

of hq and hence they have the same Ae-codimension. From Corollary 7.1.6 we get

ΘKe−cod(hq) = 2 and Theorem 7.1.14 we can see that hq is one of the following

function-germs

(1) h̃+
r∑
j=1

X2
j such that Θ̃Ke−cod(h̃) = 2,

(2) h̃+X3
l +

r∑
j=1
j 6=l

X2
j such that Θ̃Ke−cod(h̃) = 1.

�

In the following theorem we give the classification of corank 1 Ae-codimension

2 map-germs (Cn, 0) → (Cn+1, 0). We shall use the coordinate (U, V ,X, Y ) on the

source.

Theorem 7.2.2. Suppose that f : (Cn, 0)→ (Cn+1, 0) is a corank 1 Ae-codimension

2 map-germ, then f is A-equivalent to one of the map-germs in the following:

(a1) (Y 2, Y 5),

(a2)

(
U, V , Y d +

d−3∑
i=1

UiY
i + V 2

d−1Y
d−2,

d−1∑
i=1

ViY
i

)
.

(a3)

(
U, V , Y d +

d−4∑
i=1

UiY
i +
(
Vd−1 + U2

d−2

)
Y d−3 + Ud−2Y

d−2,
d−1∑
i=1

ViY
i

)
.
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(a4) (U1, V1, Y
3 + U1Y, V1Y + U1Y

3 + Y 5).

(a5) (V1, Y
3, V1Y + Y 5).

(a6) (U1, V1, V2, Y
4 + U1Y, V1Y + V2Y

2 + U1Y
3 + U1Y

4 + Y 7).

(b1)

Y 2, Y 3 +X3
l Y +

( r∑
j=1
j 6=l

X2
j

)
Y,X1, . . . , Xr

.

(b2)

(
Y 2, Y 5 +

( r∑
j=1

X2
j

)
Y,X1, . . . , Xr

)
.

(b3)

U, V , Y d +
d−3∑
i=1

UiY
i +
(
Vd−1 +X3

l +
r∑
j=1
j 6=l

X2
j )
)
Y d−2,

d−1∑
i=1

ViY
i, X

,

(b4)

(
U, V , Y d +

d−3∑
i=1

UiY
i +
(
V 2
d−1 +

r∑
j=1

X2
j

)
Y d−2,

d−1∑
i=1

ViY
i, X

)
,

(b5)

(
U, V , Y d +

d−4∑
i=1

UiY
i +
(
Vd−1 + U2

d−2 +
r∑
j=1

X2
j

)
Y d−3 + Ud−2Y

d−2,
d−1∑
i=1

ViY
i, X

)
,

(b6)

(
U1, V1, Y

3 + U1Y, V1Y +
( r∑
j=1

X2
j

)
Y 2 + U1Y

3 + Y 5, X1, . . . , Xr

)
,

(b7)

(
V1, Y

3, V1Y +
( r∑
j=1

X2
j

)
Y 2 + Y 5, X1, . . . , Xr

)
,

(b8)

(
U1, V1, V2, Y

4 + U1Y, V1Y + V2Y
2 +

(
U1 +

r∑
j=1

X2
j

)
Y 3 + U1Y

4 + Y 7, X1, . . . , Xr

)
.

Proof. From Remark 7.1.3 and Theorem 2.3.9 we can get the following diagram

(C2d−2 × Cr, 0)
ϕd×Idr−→ (C2d−1 × Cr, 0)

h−→ (Cq, 0)

Φ ↑ Ψ ↑

(Cn′ , 0)
F−→ (Cn′+1, 0)

i ↑ g ↑

(Cn, 0)
f−→ (Cn+1, 0)
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such that ϕd is the minimal cross cap mapping of multiplicity d ≥ 2, i.e.,

ϕd(u, v, y) =

(
u, v, yd +

d−2∑
i=1

uiy
i,

d−1∑
i=1

viy
i

)
.

We consider the following cases

i) If r = 0, then from Corollary 6.0.21 we have h.

(a1) Suppose that h(v1, w1, w2) = v1−w2
1. Thus h ◦ϕ2(v1, y) = 0 gives v1 = y2.

Using coordinate Y = y on (h ◦ ϕ2)−1(0), we see that the map ϕ2|(h ◦

ϕ2)−1(0), 0)→ (h−1(0), 0) becomes

Y 7→ (Y 2, Y 5).

(a2) Suppose that h(u, v, w1, w2) = ud−2 − v2
d−1. Thus h ◦ ϕd(u, v, y) = 0 gives

ud−2 = v2
d−1.

Using coordinates U1 = u1, . . . , Ud−3 = ud−3, V1 = v1, . . . , Vd−1 = vd−1

and Y = y, we see that the map ϕd|(h◦ϕd)−1(0), 0)→ (h−1(0), 0) becomes

(U, V , Y ) 7→

(
U, V , Y d +

d−3∑
i=1

UiY
i + V 2

d−1Y
d−2,

d−1∑
i=1

ViY
i

)
.

(a3) Suppose that h(, w1, w2) = ud−3 − v2
d−1 − u2

d−2. Thus h ◦ ϕd(u, v, y) = 0

gives ud−3 = vd−1 + u2
d−2.

Using coordinates U1 = u1, . . . , Ud−4 = ud−4, Ud−3 = ud−2, V1 = v1,

. . . , Vd−1 = vd−1 and Y = y, we see that the map ϕd|(h ◦ ϕd)−1(0), 0) →

(h−1(0), 0) becomes

(U, V , Y ) 7→

(
U, V , Y d +

d−4∑
i=1

UiY
i +
(
Vd−1 + U2

d−2

)
Y d−3 + Ud−2Y

d−2,
d−1∑
i=1

ViY
i

)
.

(a4) Suppose that h(v1, w1, w2) = v2 − w1. Thus h ◦ ϕ3(u1, v1, v2, y) = 0 gives

v2 = y3 + u1y.
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Using coordinates U1 = u1, V1 = v1 and Y = y on (h ◦ ϕ3)−1(0), we see

that the map ϕ3|(h ◦ ϕ3)−1(0), 0)→ (h−1(0), 0) becomes

(U1, V1, Y ) 7→ (U1, V1, Y
3 + U1Y, V1Y + U1Y

3 + Y 5).

(a5) Suppose that h(u1, v1, v2, w1, w2) = (u1, v2−w1). Thus h◦ϕ3(u1, v1, v2, y) =

0 gives u1 = 0 and v2 = y3.

Using coordinates V1 = v1 and Y = y on (h ◦ ϕ3)−1(0), we see that the

map ϕ3|(h ◦ ϕ3)−1(0), 0)→ (h−1(0), 0) becomes

(V1, Y ) 7→ (V1, Y
3, V1Y + Y 5).

(a6) Suppose that h(u1, u2, v1, v2, v3, w1, w2) = (u2, u1 − v2 − w1). Thus h ◦

ϕ4(u1, v1, v2, y) = 0 gives u2 = 0 and v3 = u1 + u1y + y4.

Using coordinates U1 = u1, V1 = v1, V2 = v2 and Y = y on (h ◦ ϕ3)−1(0),

we see that the map ϕ4|(h ◦ ϕ4)−1(0), 0)→ (h−1(0), 0) becomes

(U1, V1, V2, Y ) 7→ (U1, V1, V2, Y
4 + U1Y, V1Y + V2Y

2 + U1Y
3 + U1Y

4 + Y 7).

If h = w1 − v2
1, then we have that (h ◦ ϕ2)−1(0) is a singular, i.e., ϕ2 does not

transversal to h−1(0). Hence we have not the sharp pullback in this case. In

the same way for h = (v1, w1).

ii) If r ≥ 1, then from Theorem 7.1.14, Theorem 7.2.1 and Corollary 6.0.21 we

have the results b1, . . . , b8 in the same way above.

�

We can see that there is some similarity between the germs labelled (ai) and the

germs labelled (bi) in Theorem 7.2.2. For example, in (a1) we have (Y 2, Y 5) and in

(b2) we have

(
Y 2, Y 5 +

( r∑
j=1

X2
j

)
Y,X1, . . . , Xr

)
. Similarly, between (a2) and (b4),

(a3) and (b5), (a4) and (b6), (a5) and (b7), (a6) and (b8).



Chapter 8

Ideas for Future Work

It is clear that the work with VK-equivalence is much easier than A-equivalence. For

example, A-equivalence classifications are hard to do but, armed with the liftable

vector fields, classifications of map-germs on discriminant under VK-equivalence are

much easier as they are similar to K-equivalence. More importantly, A-classification

and VK-classification are intimately related.

It would be interesting to study the geometry of the versal deformations of the

Ae-codimension 2 map-germs listed. In particular it would be good to know if the

Mond conjecture holds for them: that the Ae-codimension is less than or equal to the

image Milnor number, with equality in the quasihomogeneous cases. It should not

be too hard to check this, though it is striking that most of the germs in the list are

not quasihomogeneous, since in most classifications, quasihomogeneity predominates

in low codimension.

A related question is whether in fact one can find the image Milnor number easily

using the apparatus of ΘK-equivalence. Perhaps µI(f) is equal to the ΘK-codimension

of the map-germ h for which h](ϕd) = f , where Θ is the module of vector fields which

annihilate the equation of the image of ϕd.
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From Chapter 6 and Chapter 7 some more work could be done on the classifi-

cation of map-germs with codimension ≤ 4. In fact, we have primary results on

A-classification and VK-classification of map-germs with codimension at most 4. We

hope to find the final results of these classifications.

In Corollary 7.1.6 in Chapter 7 we have a relationship between Ae and VKe codi-

mension. We hope to find a relationship between Ae and VKe determinacy.

In ([BW98], section 3.3), Bruce and West discussed the geometry of the function-

germs on the cross cap. We could try to study the geometry of the map-germs on the

generalized cross cap.

Finally, there are attempts to write new packages by using new versions of Maple,

Matlab and C++ programming.



Appendix A

Singular Library ‘CAST.lib’

This appendix details the collection of the CAST codes.

/////////////////////////////////////////////////////////////////////

//////////

version="$Id$";

category="Singularities";

info="

LIBRARY: CAST.lib Computational Aspects of Singularity

Theory

OVERVIEW:

Computational Aspects of Singularity Theory

PROCEDURES:

setphi(d);

phivfs(d);

phivfs0(d);

def_eq(d);

derlogV(h);
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tthe(theta, h, G) calculates the extended $_\Theta \GG$-tangent space

of a map;

tth(theta, h, G) calculates the $_\Theta \GG$-tangent space

of a map;

nthe(theta, h, G) calculates the extended $_\Theta \GG$ normal space

of a map;

codthe(theta, h, G) calculates the extended $_\Theta \GG $-codimension

of a map;

guessdet (theta, h, G) gives an estimate for the determinacy of a map;

ct(tangent, k) calculates a complete transversal of a map;

trivunf(ct, tangent) checks whether an unfolding is trivial or

not;

";

LIB "ring.lib";

//////////////////////////////////////////////////////////////////////

//////////

proc setphi(int d)

{

if (d==2)

{

ring phiring = 0,(v(1),w(1),w(2)),ds;

keepring(phiring);

}

else
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{

ring phiring = (0,a(1..d-2),a1(1..d-2),b(1..d-1),b1(1..d-1),c(1..2),

c1(1..2)),(u(1..d-2),v(1..d-1),w(1),w(2)),ds;

keepring(phiring);

}

}

/////////////////////////////////////////////////////////////////////

//////////

/* This procedure computes the module of liftable vector fields over

the minimal cross cap mapping of multiplicity d

*/

proc phivfs(int d)

{

if (d==2)

{

module derlog=[w(2),0,v(1)*w(1)],[-v(1),2*w(1),0],[0,2*w(2),v(1)^2],

[v(1),2*w(1),2*w(2)];

return(derlog);

}

else

{

module derlog;

int i,j,m,m1,m2;

int n1=d-2;

int n2=d-1;
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int n3=2*d-1;

matrix A1[n1][n2];

matrix B1[n2][n2];

matrix C1[2][n2];

matrix F1[n3][n2];

matrix A2[n1][n2];

matrix B2[n2][n2];

matrix C2[2][n2];

matrix F2[n3][n2];

matrix A3[n1][n2];

matrix B3[n2][n2];

matrix C3[2][n2];

matrix F3[n3][n2];

matrix F[n3][n2+n3];

poly sum1,sum2,sum3;

def u(d-1)=0;

def v(d)=0;

def u(d)=1;

for(i=d+1;i<=2*d;i++)

{

def u(i)=0;

def v(i)=0;

}

for(i=-2*d;i<=0;i++)

{

def u(i)=0;
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def v(i)=0;

}

for(j=1;j<=d-1;j++)

{

for(i=1;i<=d-2;i++)

{

A1[i,j]=(d-i)*(d-j)*u(i)*u(j);

}

C1[1,j]=d*(d-j)*u(j)*w(1);

C1[2,j]=-d*v(j)*w(1)+(d-j)*u(j)*w(2);

}

for(j=1;j<=(d-1);j++)

{

for(i=1;i<=(d-1);i++)

{

sum1=0;

for(m1=1;m1<=(i-1);m1++)

{

sum1=sum1+u(i+j-m1)*v(m1);

}

sum2=0;

for(m2=1;m2<=i;m2++)

{

sum2=sum2+u(m2)*v(i+j-m2);

}

B1[i,j]=d*sum1-d*sum2-(i-1)*(d-j)*u(j)*v(i)+d*v(i+j)*w(1)-d*u(i+j)*w(2);
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}

}

for(j=1;j<=d-1;j++)

{

for(i=1;i<=2*d-3;i++)

{

if(i<=d-2)

{

F1[i,j]=A1[i,j];

}

if(i>d-2)

{

F1[i,j]=B1[i-d+2,j];

}

}

F1[2*d-2,j]=C1[1,j];

F1[2*d-1,j]=C1[2,j];

}

for(j=1;j<=d-1;j++)

{

for(i=1;i<=d-2;i++)

{

sum1=0;

for(m1=1;m1<=i;m1++)

{

sum1=sum1+(d+i-j-2*m1+1)*u(m1)*u(d+i-j-m1+1);
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}

A2[i,j]=-d*(d+i-j+1)*u(d+i-j+1)*w(1)+d*sum1-j*(i+1)*u(i+1)*u(d-j);

}

C2[1,j]=d*(d-j+1)*u(d-j+1)*w(1)+j*u(1)*u(d-j);

C2[2,j]=d*(d-j+1)*v(d-j+1)*w(1)+j*v(1)*u(d-j);

}

for(j=1;j<=d-1;j++)

{

for(i=1;i<=d-1;i++)

{

sum2=0;

sum3=0;

for(m=1;m<=i;m++)

{

sum2=sum2+(d+i-j-m+1)*u(m)*v(d+i-j-m+1);

sum3=sum3+m*u(d+i-j-m+1)*v(m);

}

B2[i,j]=-d*(d+i-j+1)*v(d+i-j+1)*w(1)+d*sum2-d*sum3-j*(i+1)*u(d-j)*v(i+1);

}

}

for(j=1;j<=d-1;j++)

{

for(i=1;i<=2*d-3;i++)

{

if(i<=d-2)

{
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F2[i,j]=A2[i,j];

}

if(i>d-2)

{

F2[i,j]=B2[i-d+2,j];

}

}

F2[2*d-2,j]=C2[1,j];

F2[2*d-1,j]=C2[2,j];

}

for(j=1;j<=d-1;j++)

{

for(i=1;i<=d-2;i++)

{

sum1=0;

sum2=0;

for(m=1;m<=i;m++)

{

sum1=sum1+(d+i-j-m+1)*u(d+i-j-m+1)*v(m);

sum2=sum2+m*u(m)*v(d+i-j-m+1);

}

A3[i,j]=-d*(d+i-j+1)*u(d+i-j+1)*w(2)+d*sum1-d*sum2-d*(i+1)*u(i+1)*v(d-j);

}

}

for(j=1;j<=d-1;j++)

{
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for(i=1;i<=d-1;i++)

{

sum3=0;

for(m1=1;m1<=i;m1++)

{

sum3=sum3+(d+i-j-2*m1+1)*v(m1)*v(d+i-j-m1+1);

}

B3[i,j]=-d*(d+i-j+1)*v(d+i-j+1)*w(2)+d*sum3-d*(i+1)*v(i+1)*v(d-j);

}

C3[1,j]=d*(d-j+1)*u(d-j+1)*w(2)+d*u(1)*v(d-j);

C3[2,j]=d*(d-j+1)*v(d-j+1)*w(2)+d*v(1)*v(d-j);

}

for(j=1;j<=d-1;j++)

{

for(i=1;i<=2*d-3;i++)

{

if(i<=d-2)

{

F3[i,j]=A3[i,j];

}

if(i>d-2)

{

F3[i,j]=B3[i-d+2,j];

}

}

F3[2*d-2,j]=C3[1,j];
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F3[2*d-1,j]=C3[2,j];

}

for(j=1;j<=d-1;j++)

{

for(i=1;i<=2*d-1;i++)

{

F[i,j]=F1[i,j];

}

}

for(j=d;j<=2*d-2;j++)

{

for(i=1;i<=2*d-1;i++)

{

F[i,j]=F2[i,j-d+1];

}

}

for(j=2*d-1;j<=3*d-3;j++)

{

for(i=1;i<=2*d-1;i++)

{

F[i,j]=F3[i,j-2*d+2];

}

}

for(i=1;i<d-1;i++)

{

F[i,3*d-2]=(d-i)*u(i);
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}

for(i=1;i<d;i++)

{

F[i+d-2,3*d-2]=(d-i)*v(i);

}

F[2*d-2,3*d-2]=d*w(1);

F[2*d-1,3*d-2]=d*w(2);

derlog=F;

return(derlog);

}

}

/////////////////////////////////////////////////////////////////////

//////////

/* This procedure computes the module of liftable vector fields over

the minimal cross cap mapping of multiplicity d without the Euler

vector field

*/

proc phivfs0(int d)

{

module derlog=phivfs(d);

module derlog0;

derlog0[1..3*d-3]=derlog[1..3*d-3];

return(derlog0);

}
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/////////////////////////////////////////////////////////////////////

//////////

/*This Procedure Computes the define equation of the image of

the minimal cross cap mapping of multiplicity d

*/

proc def_eq(int d)

{

if (d==2)

{

return(w(2)^2-v(1)^2*w(1));

}

else

{

def current = basering;

ring r = 0,(u(1..d-2),v(1..d-1),w(1),w(2),a(1..d-2),b(1..d-1),y),ds;

matrix A[1][d-2];

matrix B[1][d-1];

poly sum1,sum2,prod1,prod2;

prod1=1;

prod2=1;

int i;

for(i=1;i<=(d-2);i++)

{

sum1=sum1+u(i)*y^i;

prod1=prod1*a(i);

}
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for(i=1;i<=(d-1);i++)

{

sum2=sum2+v(i)*y^i;

prod2=prod2*b(i);

}

for(i=1;i<=d-2;i++)

{

A[1,i]=u(i)-a(i);

}

for(i=1;i<=d-1;i++)

{

B[1,i]=v(i)-b(i);

}

ideal J=A,B,w(1)-(y^d+sum1),w(2)-sum2;

ideal Q=eliminate(J,prod1*prod2*y);

poly H=Q[1];

setring(current);

poly H2 = fetch(r,H);

return(H2);

}

}

/////////////////////////////////////////////////////////////////////

/////////

/* Calculate the extended _Theta\GG-tangent space of map-germ with

respect to a module of vector fields
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*/

proc tthe (module theta, ideal h, string G)

"

USAGE: tthe( theta, h, string G); theta module, h ideal, G string

PURPOSE: Calculate the extended _Theta\GG-tangent space of h with

respect to a module of vector fields

RETURN: Returns T_Theta\GG_{e}(h)

"

{

module dh = jacob (h);

module Ch = freemodule(ncols(h))*h;

module TVE;

def EQ=G[1];

if (EQ=="R")

{

TVE = dh*theta;

}

if (EQ=="K")

{

TVE = dh*theta+Ch;

}

return(TVE);

}

/////////////////////////////////////////////////////////////////////

/////////
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/* Calculate the _Theta\GG-tangent space of map-germ with respect to

a module of vector fields

*/

proc tth (module theta, ideal h, string G)

"

USAGE: tth( theta, h, string G); theta module, h ideal, G string

PURPOSE: Calculate the _Theta\GG-tangent space of h with respect to

a module of vector fields

RETURN: Returns T_Theta\GG (h)

"

{

def EQ=G[1];

module theta1 = intersect(theta, maxideal(1)*freemodule(nrows(theta)));

module TV;

if (EQ=="R")

{

TV = tthe(theta1,h, "R");

}

if (EQ=="K")

{

TV= tthe(theta1,h, "K");

}

return(TV);

}

/////////////////////////////////////////////////////////////////////
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/////////

/* Calculate the extended _Theta\GG_e-normal space of map-germ with

respect to a module of vector fields

*/

proc nthe (module theta, ideal h, string G)

"

USAGE: nthe( theta, h, G); theta module, h ideal, G string

PURPOSE: Calculate the extended _Theta\GG_e-normal space of h with

respect to a module of vector fields

RETURN: Returns N_Theta\GG_{e}(h)

"

{

def EQ=G[1];

module NTV;

if (EQ=="R")

{

NTV =kbase(std(tthe(theta,h, "R")));

}

if (EQ=="K")

{

NTV =kbase(std(tthe(theta,h, "K")));

}

return(NTV);

} ///////////////////////////////////////////////////////////////////

/////////

/* Calculate the extended _Theta\GG_e-codimension of map-germ with



167

respect to a module of vector fields

*/

proc codthe (module theta, ideal h, string G)

"

USAGE: codthe( theta, h, G); theta module, h ideal, G string

PURPOSE: Calculate the extended _Theta\GG_e-codimension of h with

respect to a module of vector fields

RETURN: Returns _Theta\GG_{e}\cod(h)

"

{

def EQ=G[1];

int COD;

if (EQ=="R")

{

COD = vdim(std(tthe(theta,h, "R")));

}

if (EQ=="K")

{

COD = vdim(std(tthe(theta,h, "K")));

}

return(COD);

}

/////////////////////////////////////////////////////////////////////

///////

/* Guess the k-_Theta\GG-determinacy of map-germ with respect to
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a module of vector fields. For high corner see p530 of 2nd edition

of "A Singular introduction ..."

*/

proc guessdet (module theta, ideal h, string G)

"

USAGE: guessdet( theta, h, G); theta module, h ideal, G string

PURPOSE: Guess the k-_Theta\GG-determinacy of h with respect to

a module of vector fields

RETURN: Returns k-_Theta\GG-determinacy

"

{

def EQ=G[1];

vector hc;

if (EQ=="R")

{

hc = highcorner(std(tth(theta,h, "R")));

}

if (EQ=="K")

{

hc = highcorner(std(tth(theta,h, "K")));

}

return(deg(hc)+1);

}

////////////////////////////////////////////////////////////////////

//////////

/* Compute a complete k-transversal. The module is usually related to
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a tangent space module, eg, mT_VK. However, it can be any module,

doesn’t have to be a tangent space. Returns a set of monomials of

degree k which form the k-transversal

*/

proc ct (module tangent, int k)

"

USAGE: ct( tangent, k); tangent module, k integer. The module is

usually related to a tangent space module, eg, \M T_\Theta \GG.

However, it can be any module, doesn’t have to be a tangent space

PURPOSE: Compute a complete k-transversal

RETURN: Returns a set of monomials of degree k which

form the k-transversal

"

{

module Ch1 = freemodule(nrows(tangent))*maxideal(k+1);

module comp = std(tangent+Ch1);

return(kbase(comp,k));

}

/////////////////////////////////////////////////////////////////////

////////

/* Check to see if an unfolding is trivial

*/

proc trivunf (module ct, module tangent)

"

USAGE: trivunf(ct, tangent); ct module, tangent module

PURPOSE: when an unfolding is trivial
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RETURN: Returns an element equal to the input element in ct if

the unfolding is not trivial and is zero if the unfolding is trivial.

"

{

module NTV=reduce(ct,std(tangent));

return(NTV);

}
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Lecture Notes in Math., vol. 1414, Springer, Berlin, (1990), pp. 107-161.

[MT96] W. L. Marar and F. Tari, On the geometry of simple germs of corank 1

maps from R3 to R3, Math. Proc. Camb. Phil. Soc., 119 (1996), 469-481.

[Nis10] T. Nishimura, A-simple multigerms and L-simple multigerms, Yokohama

Mathematical Journal, 55 (2010), 93-103.

[Rat90] D. Ratcliffe, On the classification and geometry of finite map-germs,

PhD. thesis, University of Warwick, 1990.

[Rat95] D. Ratcliffe, Stems and series in A-classification, London Math. Soc.,

70 (1995), no. 3, 183-213.

[Rie87] J. Rieger, Families of maps from the plane to the plane, J. London Math.

Soc., 36 (1987), 351-369.

[RR91] J. Rieger and M. A. S. Ruas, Classification of A-simple germs from Kn

to K2, Compositio Math., 79 (1991), 99-108.

[Wal81] C.T.C. Wall, Finite determinacy of smooth map-germs, Bull. London

Math. Soc., 13 (1981), 481-539.

[Wal82] C.T.C. Wall, A Splitting Theorem for Maps Into R2, Math. Ann., 259

(1982), 443-453.

[Wal95] C.T.C. Wall, Classification and stability of singularities of smooth maps,
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