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ABSTRACT

This thesis consists of four parts. In the first part, we prove the following
conjecture [HLO9.

Conjecture: Let ¢, : (C*720) — (C?*¢71,0) be the minimal cross cap
of multiplicity d > 2 and V be its image. Let © = {&],&2, ?,fe}j;; be the
module of vector fields liftable over 4. Then the vector fields &;, &7, & for
1 < j <d—1 generate Derg(—log(h)).

In the second part, we develop computational method suitable for perform-
ing the classification theory. A computer package called CAST is developed.
This is written in the Singular program and performs calculations such as
complete transversals, finite determinacy and triviality. We discuss the pack-
age in detail and give examples of calculations performed in this thesis.

In the third part, we classify map-germs (CP,0) — (C%,0) under A-
equivalence: the restriction of K-equivalences to those preserving a particular
subset of the singularity’s domain. We consider the case where V' is the image
of the minimal crosscap of multiplicity d > 2.

In the final part, we give an application to classification problems. We

classify corank 1 A.-codimension 2 map-germs (C",0) — (C"*1,0).
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Chapter 1

Introduction

One of the fundamental ideas of local singularity theory is the classification of map-
germs under various types of equivalence. In the early 1950’s, Whitney started the
classification of stable map-germs (small perturbations of the map do not change the
differential geometric properties of the singularities of the map) (R?, 0) — (R?,0) and
(R™,0) — (R**10), see [Whid4] and [Whi55]. The foundational work of Mather in
the end of the 1960’s defined the new standard equivalence relations (namely R, L,
A, C and K) central to local singularity theory (see [Mat68] and [Mat69]). At around
the same time, Thom classified the stable map-germs in low codimensions through
the development of his catastrophe theory. In the 1970’s, Arnol’d gave his famous
list of function-germs under R-equivalence; a general reference is [AGV85].

Since the 1980’s, Bruce, Gaffney, Mond, Rieger, Ruas, Ratcliffe, Cooper, Houston,
Kirk and many others have made significant progress in the classification of map-
germs, especially in the classification of map-germs under A-equivalence. (See [BG82],
[Mon85], [Mon87], [Rie87], [RR91], [Rat90], [Rat95], [Co093] and [HK99]).

In general, it is difficult to classify map-germs under A-equivalence. However,

Houston and Wik Atique are shown in [HW] that the A-classification of map-germs



is intimately related to the y K-classification of some related map-germs. The latter
equivalence relation introduced by Damon in [Dam83| and it arises from the restric-
tion of K-equivalences to those preserving a particular subset of the domain of the
singularity.

In order to apply yK-equivalence, in practice one needs a set of vector fields
that, when integrated, preserve this subset. In [HLO09] the vector fields liftable over a
normal form for corank 1 map-germs from (C",0) to (C"**,0) are described. These
liftables integrate to diffeomorphisms preserving the image of the normal form. By
classifying map-germs on the image up to yK-equivalence we get an A-classification.

In this thesis, we classify map-germs with K.-codimension at most 2, where V
is the image of the minimal cross cap of multiplicity d > 2 and from these normal
forms we get the classification of a corank 1 A.-codimension 2 map-germ (C",0) —
(C™10). (We mention that we get some partial results which will be useful in
classifying A.-codimension < 4 map-germs).

This thesis is structured as follows.

In Chapter 2, we review the definitions and results of singularity theory which are
used in the thesis. These include A-equivalence, K-equivalence, yy R-equivalence and
vIC-equivalence, the module of vector fields tangent to a subset, the minimal cross
cap mapping of multiplicity d, the sharp pullback and simple map-germs.

In Chapter 3, we review the module of vector fields liftable over the minimal cross
cap mapping of multiplicity d > 2. We find the defining equation for the image of
the minimal cross cap of multiplicity d > 2 by using Mond-Pellikaan algorithm and
prove that the cross cap liftable vector fields without the Euler vector field annihilate
this defining equation. we then show that these vector fields generate Dery(—log(h)),
where h is the defining equation for the image of the minimal cross cap of multiplicity

d> 2.



In Chapter 4, we give the techniques of a classification method which we use to
find the classification of map-germ such as complete transversals, finite determinacy

and triviality. The classification method can be described as the following:
i) From a k-jet produce a list of possible (k + 1)-jets.
i1) Reduce the list by removing redundancies and by scaling.

i1i) For each possible (k+1)-jet, check determinacy. If not (k+ 1)-determined, then

repeat the method for each (k + 1)-jet by finding the possible (k + 2)-jets.

In Chapter 5, we describe the CAST package. It is written in the Singular program
and consists of a number of procedures (Appendix A). The liftable vector fields over
the minimal cross cap mapping of multiplicity d > 2 are programmed in this package.
A number of examples of calculations performed in this chapter are given.

In Chapter 6, we consider the classification of map-germs under g/XC-equivalence,
where © is the module of liftable vector fields over the minimal cross cap of multiplicity
d > 2. We classify map-germs with ¢/C.-codimension at most 2 and X .-codimension
at most 2, where V' is the image of the minimal cross cap of multiplicity d > 2.

In Chapter 7, we classify corank 1 A.-codimension 2 map-germs (C",0) — (C"*1,0).

In Chapter 8, we give some ideas for future work such as the classification of
corank 1 A.-codimension < 4 map-germs (C",0) — (C"*! 0), the geometry of the
map-germs on the generalized cross cap and the relationship between A and K

determinacy.



Chapter 2

Notation and Preliminary Material

In this chapter we introduce some basic notation and preliminary results which will be
used throughout the whole thesis. As standard references we cite the survey articles
of Wall, ([Wal81], [Wal95] and [Wal09]). In addition we refer to [BW98], [Dam91],

[DamO06], [Gib79] and [Mar82]. Our notation will be based on these references.

2.1 Notation

Throughout this thesis, K usually refers to the real number field R or the complex
number field C. In the latter case the assumption in statements that a map is smooth
of course means that we have a complex analytic map.

Two subsets A and B of K" are called equivalent at x € K", if there is an open
neighbourhood U C K" of z, such that ANU = BN U. It is easy to check that this
is indeed an equivalence relation. The class of all sets equivalent to A C K" at = will
be denoted by (A, z) and is called the germ of A at x. A is called a representative
of the germ. If A C K" we sometimes say that (A, x) is a subgerm of (K", x), which

we denote by (A,z) C (K™, x).
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Let S be a finite set in K". A multi-germ f : (K", S) — (K7, f(.5)) will mean
an equivalence class of pairs (U, f) where U is a neighbourhood of S in K" and
f: K" — KP? is a smooth map. Two such pairs (U, f1) and (Us, f2) are equivalent if f;
and f; agree on some neighbourhood of S contained in U1 NU,. In the special case S =
{z} C K" and f(S) = {y} C K? we call such germs mono-germs. If S = {zy,..., 2.},
with z; # z; for i # j and f(S) = {0}, then a multi-germ f : (K", S) — (K?,0) is
called a r-multigerm and will be denoted (fi;...; f.), where f; : (K", z;) — (K?,0) is
a smooth function-germ. The integer r is called the multiplicity of the multi-germ,
and the f; its branches.

We let &, be the set of all smooth function-germs (K" 0) — K. Clearly &, is a
ring under the obvious operations of addition and multiplication. This ring contains
a unique maximal ideal, consisting of functions vanishing at the origin, denoted by
m,,. The set of all smooth map-germs f : (K", 0) — K? is an &,-module and will be
denoted £(n, p). (In case of K = C this is often denoted O(n,p)). We put €(n, 1)=E,.
The corresponding module of map-germs f : (K", 0) — (K?,0) is denoted m,&(n, p).

Let (TK?,0) be the tangent bundle of K? and m, : TKP — KP? be the natural
projection. A vector field along f is a map-germ £ : (K", 0) — TKP? such that the

following diagram commutes:

(K", 0) —L~ K

The set of all vector fields along f is written 6(f); it is a free &,-module of rank p,
ie. 0(f) =& (n,p).

We define 60,, = 6(1d,,) and 6, = 6(Id,) where Id,, and Id, denote the germs at 0
of the identity maps on K" and KP?, respectively. Associated with these modules are

certain important homomorphisms: the &,-homomorphism ¢f : 6,, — 6(f) defined by
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tf(§) = df o £ and the &,-homomorphism(via f*: 6, — 6,, a — ao f for a € §,),

wf 6, = 0(f) defined by wf(n) =mno f. We define the local algebra of f to be

E &
Qf) = ) (- f)

If we truncate the power series expansion of f : (K" 0) — (K?,0) at the origin
by ignoring terms of degree greater than k, we obtain the k-jet of f, denoted by j*f.
The set of all k-jets forms a vector space J*(n,p). For each k there is a canonical
projection 7y, : £(n, p) — J*(n,p) which assigns to each map-germ in €(n, p) its k-jet

at 0.

2.2 Unfoldings and Discriminants

Definition 2.2.1. An r-parameter unfolding of a map-germ f : (K™, 0) — (K?,0)
is @ map-germ F : (K® x K",0) = (K? x K",0) of the form F(z,u) = (F(z,u),u)
such that F(z,0) = f(z). Here x,u denotes local coordinates for (K™, 0) and (K”,0)

respectively.

The notation f,(z) = F(z,u) is often employed; f, can be thought of as a defor-

mation of f, parametrized smoothly by u € K.

Definition 2.2.2. A trivial unfolding of a map-germ f : (K", 0) — (K? 0) is a
map-germ F : (K" x K", 0) — (K? x K", 0) given by F(x,u) = (f(z),u).

Definition 2.2.3. Let f : (K",0) — (K?,0) be a smooth map-germ. The critical
set of f, denote X f, is the set of points x in K" such that the rank of the Jacobian
matrix of f at x is less than p.

The discriminant of f, denote D(f), is defined to be the image of the critical
set, f(3Xf). When n < p, then D(f) is the image of f.
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2.3 Equivalence relations of map-germs

We shall now look at the equivalence relations of interest. In fact, in singularity theory
there are a number of standard equivalence relations. For example, A-equivalence and

K-equivalence. These equivalence relations were defined by Mather (see [Mat68§]).

Definition 2.3.1. Let f,g : (K", 0) — (KP,0) be two smooth map-germs. We say
that f and g are A-equivalent, denoted by f ~4 g , if there exist diffeomorphism

germs 1 and @ for which the following diagram commutes
(K",0) - (K?,0)

oy vl
(K",0) — (K”,0)
t.e. Yo f=gop.

This is also known as Right-Left-equivalence. If the diffeomorphism germ in
the target is the identity in the definition above, then we say that f and g are
R-equivalent.

Definition 2.3.2. We say that a smooth map-germ f : (K", 0) — (KP,0) is k-A-
determined if f is A-equivalent to any other smooth map-germ g : (K" 0) — (K?,0)
such that j* f = j*qg. If f is k-A-determined for some k, then f is said to be A finitely

determined.
Definition 2.3.3. Let f: (K", 0) — (K?,0) be smooth map-germ.

i) The extended A-tangent space of f is defined by
TA(f) =1f(0n) +w[(bp).
i1) The A.-codimension of f is defined by

A.—cod(f) = dimg Tig(?f)
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Definition 2.3.4. Let f : (K", 0) — (KP,0) be a smooth map-germ. We say that f
is stable if 0(f) = TA.(f).

In fact, Mather in [Mat69], showed that a map-germ is stable in the above sense
if and only if there exists a neighbourhood in the space of smooth maps (with the

Whitney topology) such that all map-germs in the neighbourhood are A-equivalent.

Example 2.3.5. Let f: (K?,0) — (K3,0) be given by f(x,y) = (xv,y* xy). This is
known as the cross cap or the Whitney umbrella. This map s stable.
We shall use the coordinates (z,y) on the source and (X,Y,Z) on the target. Let

n €0(f). We can write n as follows:
1 = 11€1+7)2 €2 +1)3 €3,

where for all 1 < i < 3, n; € & and e; is the standard basis vector in K3, i.e., the

column vector with a 1 the i-th row and a 0 wn all other rows.
1 0

Suppose that o = | 0 | and B = | 2y

Y x
Then we have
(XeYre,)o f, ifb =2k,
Z) I’ayb e, =
iy la — (XoYktleg)o f, ifb=2k +1;
(X“Yk e)o f, if b =2k,
i) 1%y’ ey =

Ty B — (XY rey) o f, ifb=2k+1;

\
,

(XY ey) o f, ifb = 2k,
iii) 2%y’ es =

ry**a — (XY e))o f, ifb=2k+1.
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It follows O(f) = T A.(f). Hence f is stable.

The minimal cross cap mapping

We will now give a generalization of the cross cap. The resulting maps will be used
in this thesis. In fact, the main subject of this thesis is to find the classification of

map-germs on the image of these maps.

Definition 2.3.6. Let f : (K™, 0) — (K?,0) be a smooth map-germ. We say a map-

germ f is corank 1 if the rank of the Jacobian matriz at 0 is equal to min(n,p) — 1.
Example 2.3.7. The following map-germs are corank 1.

1. The cross cap,

2. The cusp, i.c., f: (K% 0) — (K2,0) such that f(z,y) = (z,zy + 3?).

Definition 2.3.8. For d > 2 the minimal cross cap mapping of multiplicity d

is the map g : (K*720) — (K>~ 0) given by

d—2 d—1
d i i
©a(ty, . Ug—2,01, Vg1, Y) = | U1, .o Ug2, V1, Va1, Y +E uiy,g vy’ | .
i=1 i=1

We shall label the coordinates of the target wuq, ..., ug_o,v1,...,04-1, w7 and wo,
respectively. The sets of coordinates will be abbreviated to u, v and w respectively.
For d = 2 this is just the Whitney umbrella as in example 2.3.5. The minimal

cross cap mapping of multiplicity d is stable and corank 1 for all d > 2.

Theorem 2.3.9 ([Mor65]). A map-germ F : (K™, 0) — (K", 0) is a stable corank 1
germ if and only if there exists a d such that F is A-equivalent to the trivial unfolding

of the minimal cross cap mapping of multiplicity d.
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A-equivalence seems to be the most natural equivalence relation because this say
that f coincides with g under suitable coordinate transformations of the source and
the target spaces. However, it is difficult to classify map-germs under this relation.
Mather introduced K-equivalence (or contact equivalence) as a technical tool to aid

with the classification of map-germs up to A-equivalence.

Definition 2.3.10. Suppose that h : (K?,0) — (K%,0) and h : (K?,0) — (K%,0) are
smooth map-germs. We say that h and h are K-equivalent if there is a diffeomorphism
germ p : (KP 0) — (K?,0) and a germ of an invertible matriz M : (K?,0) — GL(KY)
such that h(z) = M(z)h(p(z)) for each = € (KP,0).

There is another definition of K-equivalence, but is in fact equivalent to defi-

nition 2.3.10. We will give an alternative definition in the following theorem (see

[Gib79], chapter V).

Theorem 2.3.11. Let h,TL : (KP,0) — (K9,0) be two smooth map-germs. Then h
and h are K-equivalent if there are a diffeomorphism germs ¥ of (KP x K%,0) and
of (KP,0) such that

U(z,h(x)) = V((x),h((x))) for each x € (KP,0).

Up to now we have only considered the standard equivalence relations R, A and
IC. We now turn our attention to other equivalence relations of great interest in sin-
gularity theory, namely R- and  K-equivalence. These were introduced by Damon

in [Dam83]. For more details see [Wal09].

Definition 2.3.12. Let (V,0) be a subgerm of (KP,0). A diffeomorphism germ ¢ :
(KP,0) — (KP,0) is said to preserve V if p(V) C V.

Definition 2.3.13. Suppose that h : (K?,0) — (K9,0) and h : (K?,0) — (K%,0)
are smooth map-germs. Let (V,0) be a subgerm of (K?,0). We say that h and h are

v R-equivalent if there is a diffeomorphism germ ¢ : (KP,0) — (KP,0) such that
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) h=hogy <z’.e.,% ~r h)
i1) @ preserves V.

In [BR88] and [BW98] the notation for R is R(X) (where our V' is their X).
Like yR-equivalence a similar definition can be made for K-equivalences that

preserve some subset V.

Definition 2.3.14. Suppose that h : (K?,0) — (K%0) and h : (KP,0) — (K%,0)
are smooth map-germs. Let (V,0) be a subgerm of (K?,0). We say that h and h are

vIC-equivalent if
i) h and h are K-equivalent,
i1) the resulting diffeomorphism of the source preserves V.

Example 2.3.15. Let V' be the complex Whitney umbrella, i.e., the image of s :

((CQ)O) — ((Cgvo) given by 902(U17y) = (Ula?JZle)- In fact, V = f_l(()); where

f(vy,wy,we) = w3 — viw;.

Let h,h : (C3,0) = (C2,0) be smooth map-germs defined by

h(vy, wy,we) = (v —wo,wy) and

h<U17 wi, w2) - (vlv wl)'
We want to show that h and h are vIC-equivalent. We take a diffeomorphism germ
@(v1, wi,wp) = (V1 + wa, wi, Wy + Viw)

and the matrix

1U1
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First we need to show that ¢ preserves V. Let (v, wy,ws) € V', then we have

foo(v,wi,wy) = f(vr + wa, wy,ws + viwn)
2 2
= (ZUQ + vlwl) — (Ul + wz) w1
= wg + 20wy wy + v%w% — Ufwl — 20w wy — wlwg
= viw? —ww;  since wi — viw, =0

= —wi(w; — viw)

= 0 since wy — viw; = 0.

It follows p(V) C V.

Now, for any point (vi,wy,ws) € (C3,0) we have

1 U1 V1 — 1wy
M(Ulvwth)h(gp(Ul)wl)w2)) -

0 1 w1

U1

w1y

Remark 2.3.16. Damon introduced other types of equivalence relation, namely R -
equivalence, v A-equivalence, Ay -equivalence and Ky -equivalence. For more details
see [Dam83], [Dam87], [Dam91] and [Dam06]. Since our results in this thesis can be
applied to ICy -equivalence, we will give the definition of ICy -equivalence only. We will

use the definition of KC-equivalence as in Theorem 2.3.11.

Definition 2.3.17. Suppose that h : (K?,0) — (K9,0) and h : (K?,0) — (K%,0)
are smooth map-germs. Let (V,0) be a subgerm of (K9,0). We say that h and h are

Ky -equivalence if

(i) h and h are K-equivalent, i.e., there are a diffeomorphism germs ¥ of (KPx K¢, 0)
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and ¥ of (KP 0) such that

U(z,h(x)) =V (p(z), h(¢(x))) for each x € (KP,0).
(1)) V(KPP x V) CKP x V.

Remark 2.3.18. Suppose that G is an equivalence relation on the set of multi-germs
(K™, S) to (KP,0), for example vR or vK. To each of these we can associate an
equivalence using jet spaces.

Let J*G be the s-jet space of G. The precise definition of this will depend on G. For
example, vR is generated by the diffeomorphisms on source that preserve the subset

V', and so in this case we take the s-jets of this diffeomorphism as J°G.

2.4 Vector fields on Discriminants

As usual in singularity theory, one integrates vector fields to produce diffeomorphisms
that preserve a subset. In fact, there are very important types of vector fields which

we can integrate to produce diffeomorphisms that preserve a subset.

Definition 2.4.1. Suppose that V is a K-analytic variety of (KP,0). We denote by
I(V') the ideal of germs vanishing on V. A vector field & € 6, is said to be tangent
toV if

(V) SI(V).

The module of such vector fields is denoted Der(—logV).
When I(V) = (hy, ..., hy), we write
Der(—logV) = {¢ € 6, : 3g;; € &, such that & (h;) = igijhi, i=1,...,q}.
i=1
Let h: (KP,0) — (K, 0) be any defining equation for V. Then we define

Derg(—log(h)) ={{ €0, :&(h) =0}.
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Example 2.4.2. Let V be the discriminant of the cusp, i.e., the image of the critical
set of the map-germ in example 2.5.7(2). We use coordinates (uy,us) on the target,
it can be easily checked that V = h='(0), where h(uy,us) = 4u3 + 27u3. Consider the

vector fields

0 0
= OUy—— — 22—
n 9UQ 8u1 “ 8u2 ’
0

0
= 22Uy — + 3ug—.
N2 U1au1 + u28u2

We check that

m(h) = upg— — 2uj—
= uy(12u?) — 2u?(54us)

= 0.

Similarly,

Oh Oh

h) = 2uj— —

772( ) “ 8u1 +3u28u2
= 2u1(12u]) + 3uy(5dus)

= 6h.
Hence, m,me € Der(—logV) whilst only n; € Derg(—log(h)). In fact, Der(—logV) =
(11, m2)-

Example 2.4.3. Suppose that V' is the complex Whitney umbrella as in Fxam-
ple 2.3.15. From [Dam91] and [HL09] we have

Wa —U1 0 U1
Der(—logV)=< 0 |,|2w |:|2ws |, ]| 2w >

VW, 0 v% 2o
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These vector fields labelled £1, €2, & and &, respectively. We will discuss more details
in chapter 3.
We will show that &1, £ and & are members of Derg(—log(h)) whereas &, is not.
2

A defining equation for V is f(vy,wy,wq) = wi — viw,.

Then,

1) = way ™+ (0) 5= + vywy -~
= wy(—2v1w) + viw (2w,)

= 0.

5@(.}0) = U1—+2w17+2w2—
= v(=2v1w1) + 2w, (—vd) 4 2wy (2ws)
= 202w, — 2viw; + 4w
2

= 4w — viwy)

— 4f.

Definition 2.4.4. A map-germ f : (K",0) — (K?,0) is said to be quasihomoge-
neous or weighted homogeneous of type (ay,...,an;dy,...,dy), with a;, d; € N
iof the relation

fj(tall‘l, .. ,ta"l’n) = tdjfj(xla wrn)

holds for each coordinate function f; of f for allt € (K,0). The number a; is called
the weight of the variable x; and the number d; is the degree of the function f;.

Let Xy, ..., X, denote the standard coordinates on KP. Then the Euler vector
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field denoted by &, is given by

d1 X4
e =
dp Xy
Remark 2.4.5. Let V = h™1(0), where h : (C?,0) — (C,0) is weighted homogeneous.

It was shown by Damon and Mond in lemma 3.3 of [DM91] that
Der(—logV) = Derg(—log(h)) & (&) -

That is, we can conclude that one vector field is Euler and the other annihilate

the defining equation.

Remark 2.4.6. Suppose that V is a K-analytic variety of (KP,0). In [Dam87],

Damon shows that

i) Der(—logV) is a finitely generated &,-module.
it) If & €Der(—logV) and ¢; denotes the flow generated by &, then ; preserves V.
i11) If & €6, with local flow ¢y and ¢, (V') C V., then & €Der(—logV).

These results above do not necessarily hold for the smooth case. Damon added

the coherent condition on V' to get the same results (see [Dam87], p.698).

Remark 2.4.7. In ([BR88], Section 1), Bruce and Roberts show that in the complex

case if & €0, and vanishes at 0 then the flow yp, generated by & preserves V.

We are interested in the vector fields that can be integrated to give diffeomor-

phisms preserving a subset. Therefore, we make the following definition.

Definition 2.4.8. Suppose that (V,0) is a subgerm of (KP,0). We say that a smooth
vector field on (K?,0) preserves V if it can be integrated to give a diffeomorphism

that preserves V.
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Example 2.4.9. Suppose that V' s the complex Whitney umbrella as in Eram-
ple 2.4.3. We consider the vector field &. This vector field vanishes at 0 and it

can be integrated to get a diffeomorphism
o(v1, wr, wp) = (V1 + wa, wi, Wy + vViwy).
We can see from Example 2.3.15 that this diffeomorphism preserves V.

Now, we need the following definition in our classification in Chapter 6.

Definition 2.4.10. Suppose that h : (KP,0) — (K9,0) and h : (K?,0) — (K%,0)
are smooth map-germs. Let © be a module of smooth vector fields on (KP,0), i.e.,
a module over &, of germs at 0 of smooth vector fields on KP. We say that h and
h are oC-equivalent if there is a vector field & € O, that can be integrated to give a

diffeomorphism ® so that h and h are K-equivalent by ® and a germ of an invertible
matriz M : (KP,0) — GL(K9).

2.5 Tangent Spaces and Codimensions

2.5.1 Tangent Spaces

For K-equivalence, the tangent space is an &,-module, but this is not the case for
A-equivalence and it is this that leads to many problems since we attempt to classify
using algebraic methods.

We shall now describe our tangent spaces.

Definition 2.5.1. Let h : (KP,0) — (K%,0) be a smooth map-germ and let © be a

module of smooth vector fields on the domain, i.e., © C 0,.

i) The extended R-tangent space with respect to O, denoted TgR.(h), is
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the submodule of O(h) given by
ToRe(h) = (€(h) | € € ©).
We also call this the Jacobian of h with respect to ©, denoted by Jo(h).
it) The R-tangent space with respect to O, denoted ToR(h), is the submodule

of O(h) given by
ToR(h) = (£(h) | € € © N myH(h)

where m,, is the mazimal ideal in &,.

iii) The extended K-tangent space with respect to O, denoted ToK.(h), is

the submodule of O(h) given by

ToK,(h) = ToRe(h) + h*(m,)0(h).

iv) The K-tangent space with respect to ©, denoted To/C(h), is the submodule
of O(h) given by
ToK(h) = ToR(h) + h*(my)0(h).
Example 2.5.2. Consider Fxample 2.4.3. Let © be the set of vector fields tangent
to V and let h(vy, wy, wy) = v1 + wh™ with k > 1. We have
Tok(h) = Jo(h) + (h)
= (& (h),&(h), & (h), &(h)) + (h)
= (wy, —v; + 2(k + Dwh™ 2(k + Dwlws, vy + 2(k + Dwh™)
+{v; + with)
k+1

= (v, w{" ", ws).

Remark 2.5.3. If all the elements of © vanish at the origin, the ToR(h) = ToR.(h)
and ToK(h) = ToK.(h). The first equality follows from the definitions and the second

follows from the first.
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Remark 2.5.4. Suppose that © is the set of all vector fields on (KP,0). Then K-
equivalence and v R-equivalence are just the standard IC- and R-equivalences respec-

tively.

Example 2.5.5. Consider the Dy singularity h(z,y, z) = 2 + y*2 + 23 with respect
to the vector field module © = (0/0x,0/0y,0/0z). We have

oh Oh Oh
<%7 oy’ &> +
= (2, 2yz,y° + 32%) + (2 + Pz + 2°)

T@]Ce<h) = h>

= (z,9%,yz,2°).

Similarly we have

oh $8h oh 8h 8h oh 3h 8h 3h>+< >
oz oy 02 Yor Yoy Yoz Tor Ty oz
= (227, 2wyz, wy* + 322, 22y, 2y%2, 9 + 3y2?, 222, 2y2?, yPr + 32%)

ToK(h) = (a2"

Ha® +yPz + 2%
= <$2,.Z'y,£L’Z,yg,y22,y22,2’3>.

Remark 2.5.6. Let (V,0) be a subgerm of (KP,0). If © is the module of vector fields
tangent to V', then TyR(h) = TeR(h) where TyR(h) is the standard Singularity
Theory tangent space for the equivalence yR. Similar definitions can be made for

vIC-equivalence and the extended versions of the tangent spaces. See for erample

[Dam06] and [Wal09].

2.5.2 Codimensions

We can, in the standard way, define the codimension and extended codimension for
the equivalences by taking the dimension of the K-vector space given by the quotient

of 8(h) by the relevant tangent space as follows.
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Definition 2.5.7. Let h : (KP,0) — (K%,0) be a smooth map-germ and let © be a

module of smooth vector fields on (KP,0). Suppose G = K or R.

i) The G(f)-codimension of h is

0(h
oG—cod(h) = dimg T@(Q()h)'
it) The extended ¢G(h)-codimension of f is
o(h
0G.—cod(h) = dimg T@ée()h)'

Example 2.5.8. Suppose that V' s the complex Whitney umbrella as in Eram-
ple 2.5.2, then we have
ToKe(h) = (v, wF™ w,).

Then,

_ &
ToK(h)
&

<U1> wf“; w2>

o.—cod(h) = dimg

— dlmK<]-7 Wy, w%, e ,wlf>

=k+1

Remark 2.5.9. We can make similar definitions as in Definition 2.5.7 for vG-

codimension and vG.-codimension.

2.6 A-equivalence vs yK-equivalence

If one can describe the diffeomorphisms that preserve V' one can work with yR- and
vK-equivalence. One can easily see that vector fields tangent to V' can be integrated

to give diffeomorphisms preserving V.
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Now, as stated earlier, A-equivalence classifications are hard to do but, armed
with the liftable vector fields, classifications of maps on discriminants under K-
equivalence are much easier as they are similar to K-classifications. More impor-
tantly, A-classifications and KC-classifications are intimately related. First we need

a definition.

Definition 2.6.1 ([HW]). Let S be a finite set. Suppose that F : (K", S) — (K?,0)
and h : (K?,0) — (K%,0) are smooth map-germs. We define the sharp pullback,
denoted h*(F), to be the multi-germ given by F|(h o F)~1(0),S) — (h=1(0),0).

Example 2.6.2. Consider the minimal cross cap mapping of multiplicity d = 3, i.e.,

©3(u1,v1,02,y) = (Ula 1, Vo, Y+ ULy, 1Y + U292) .

Suppose that h(uy, vy, vy, wy, wy) = (Vg — wy,uy). Thus h o p3(uy,v1,ve,y) = 0 gives
uy =0 and vy = 5.

Using coordinates X = v; and Y = y on (h o p3)~1(0), we see that the map
@3] (h o ©3)71(0),0) — (h~1(0),0) becomes

(X,Y) = (X,Y?, XY +Y7).

This map-germ is the Hy singularity of Mond (see [Mon85], theorem 1.1). We will

give more details in Chapter 7.
The connection between A-equivalence and  K-equivalence is the following.

Theorem 2.6.3 ([HW]). Suppose that F : (K", S) — (KP,0), n < p, is a stable
map with discriminant V. Let h : (K?,0) — (K9,0) and h : (K?,0) — (K%,0) be
submersions with h='(0) and h=(0) transverse to F. (These conditions ensure that
hi(F) and hi(F) are maps between manifolds). Let h*(F) and h*(F) be finitely A-
determined. Then

RU(F) ~y BH(F) <> h ~x h.
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One advantage of Theorem 2.6.3 is that one can classify map-germs under K-

equivalence and then do a sharp pullback to get an A-equivalence classification.

2.7 Simple Map-Germs and Moduli

In any classification of map-germs the simple singularities are extremely important.
This notion was introduced by Arnol’d for right equivalence in a series of papers.

More details on the modality under various circumstances can be found in [AGV85].

Definition 2.7.1 ([AGVS85]). Let X be a manifold and G a Lie group acting on X.
The modality of a point x € X wunder the action of G on X 1is the least number m
such that a sufficiently small neighbourhood of x may be covered by a finite number of
m-parameter families of orbits . The point z is said to be simple if its modality is 0,

that is, a sufficiently small neighbourhood intersects only a finite number of orbits.



Chapter 3

A basis for Derg(-log) of the

minimal cross cap

We are interested in the vector fields that can be integrated to give diffeomorphisms
preserving a subset. In this chapter we discuss the module of vector fields tangent to
V', where V' is the image of the image of the minimal cross cap of multiplicity d > 2.

In fact, we will give a basis for Dero(—log(h)).

3.1 Vector fields liftable over corank 1 stable maps

In this section we will give the explicit description of vector fields liftable over the

minimal cross cap of multiplicity d > 2 [HLO09].

Definition 3.1.1. Let f : (K", 0) — (K?,0) be a smooth map-germ. A wvector field &

on (K?,0) isliftable over f if there is a vector field n on (K™, 0) such that dfon = £of.

23
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That 1is, the following diagram commutes

T(K",0) -2 T(K?,0)

d Js
(K",0) —= (K”,0)
In these circumstances n is called lowerable. The set of vector field germs liftable

over f is denoted Lift(f) and is an E,-module.

The notion of liftable and tangent vector fields on the discriminant are equivalent
for stable map-germs with K = C (|[Dam91], Lemma 2.2). In [Arn76], Arnol’d shows
that there exist liftable vector fields that are not tangent when K = R.

In [HLO9], Houston and Littlestone give three families of vector fields with the
Euler vector field that are liftable over the minimal cross cap mapping of multiplicity
d > 2. In fact, they proved that these vector fields generate the module of liftable
vector fields over 4 in the case of K = C. In the case of K = R, they show that the
module of polynomial vector fields liftable over ¢, is generated by these vector fields.
We shall now describe these families with the Euler vector field as in [HLO09].

For1 < f<3and1<j<d-1, we denote the members of the families by

d—2 d—1

0 0
& =2 Az +Zng Z%a

=1

We can consider the members as
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We have ug_1 =v4=0, ug =1 and u,, = v, = 0 for » < 0 and for r > d.

i) First family: The components of each vector field in this family are given by

i—1 i
Bil’j = dZuiﬂ_rvr — dzurvi+j—r - (@ - 1)(d - j)“jvi
r=1 r=1
+dviyjwy — dugws, l<i<d-1,

CQIJ» = —dvjwl + (d - j)ijg.

i1) Second family: The components of each vector field in this family are given

by
A} = —d(d+i—j+ Dugri—jw + di:(d +i—J = 2r + Duptayijri1
—j(i + Duipruq—j, 1< < drj12,
sz = —dk+i—j+1)vgyijrw + di:(d +i—J =7+ DUVitriojri1
r=1
_dirudJrierrlvr — 70+ Dug_jviy1, 1<i1<d—1,
C’ij = d(dr—lj + Dug—jr1wy + jurg_j,

022 .= d(d —J+ 1)Ud7j+1w1 + jvludfj-
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i71) Third family: The components of each vector field in this family are given by

A = —d(d+i—j+ Duayijwa+d Y (d+i—j—r+Dugeijravy

r=1

—dz TUrVg4i—j—r4+1 — d(l + 1>ui+1vd—j7 1 S 1 S d— 27

r=1
B} = —d(d+i—j+ Doayijows+dY (d+i—j—2r+1)vasijri
r=1
—d(Z + 1)Ui+1vd7j7 1 S ) S d— 1,

Cij = d(d - .] + 1)ud—j+1w2 + dulvd_j

CS’J = d(d—j+ 1Dvg_jr1wz + dvivg_;.

iv) The Euler vector field for the map ¢ :

d—2 a d—1 a
ge = Z(d — Z)UZa—uz -+ Z(d — Z)Uia_vi + d;wza_U)Z

=1 1=

Theorem 3.1.2 ([HL09]). Let 4 : (C*¢=2,0) — (C%@710) be given by the normal
form for a corank 1 minimal stable map of multiplicity d > 2 and V' be its image.
Then,

df
Der(—logV) = <5]1a§j27 ?7€5>j:i'

This result above does not necessarily hold for the real analytic or smooth vector
fields in the real case. However, Houston and Littlestone give the following theorem

for polynomial vector fields.

Theorem 3.1.3 ([HLO09]). Let ¢4 : (R?*72,0) — (R**~10) be given by the normal
form for a corank 1 minimal stable map of multiplicity d > 2 and V' be its image.
Then, the module of polynomial vector fields liftable over ¢, is generated by the

vector fields §J1, .]2; 5;’ for 1 <5 <d—1, together with the Euler vector field &..

In [HLO09], K. Houston and D. Littlestone made the following conjecture.
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Conjecture 3.1.4. Let o4 : (C?*¥2,0) — (C*71,0) be the minimal cross cap of
multiplicity d > 2 and V' be its image. Then the vector fields 5}, ?, §]3 for1 <5<

d — 1 generate Derg(—log(h)).

From Proposition 2.5 in [BW98], the first statement is true for d = 2. In this
chapter, we shall give an answer to the conjecture above. The essential idea of our
proof is to find the defining equation for the image of the minimal cross cap of
multiplicity d > 2 and prove that the cross cap liftable vector fields annihilate this

defining equation.

3.2 A defining equation for the image of the min-
imal cross cap

In this section we shall compute the defining equation for the image of the minimal

cross cap of multiplicity d > 2.

Definition 3.2.1. A map-germ F : (C",0) — (CP,0) is finite if it is continuous,

closed and the fiber F~1(y) is finite for all y € (CP,0).

Let X be a Cohen-Macaulay space of dimension n and F : (X,z) — (C""1,0) be
a finite map-germ. We can use the algorithm of Mond and Pellikaan to determine the
corresponding defining equation for the image (see [MP89], section 2). An algorithm

consists basically of the following steps:

1. Choose a projection 7 : (C"™1,0) — (C",0) such that F = 7o F is finite.

2. After a coordinate change we may suppose that F(z) = (F(z), Fpi1(z)). Let
X,41 denote the last component of the coordinate system on C"*! so that

Fn+1:Xn+1OF-
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3. Let 1,91,9o,...,qr be generators of Q(f), where Q(ﬁ) is the local algebra of

F. Put go = 1 and find elements a; ; € O,,, 0 <4, j <k, such that

k
giFny1 = Z (ai,j o F> Gi-

=0

4. Define a matrix A = (\; ;) by letting

o \i;=q;,;0mfori#j,

L >\i,i =Q;; O — Xnt1-

5. A defining equation for the image of F' is given by the determinant of the matrix

A

Example 3.2.2. Consider the cross cap mapping, i.e., o2(vi,y) = (vi, 9%, v1y). We
choose a projection m : (C3,0) — (C%,0) such that 7(vy, wy,wy) = (v, wy). Then we

have

952(7117 Z/) = 7o <P2(’U17 ZJ)

= (Ula yz)
We find that Q(ps) is generated by 1 and y. By solving the following equations

ny = aojo(vl,y2)+a1,0<vlay2)y and

vyt = ao,l(vlyyz)+041,1<U1a92)y'

We find aO,O(Ulayz) =0, Oél,o(Ul,?ﬂ) = U1, aO,l(U1>y2) = Ulyz and al,l(UbyQ) = 0.

Now,
)\0,0 = @Opoo© 7T(U1, w1) — Ws
= 0— Wo

= —ws,
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>\1,1 = 0110 7T(U1, wl) — W2
= 0— Wo
= —Way,
)\1,0 = (0100° W(Uh w1)
= U,
>\0,1 = p10° W(Ub w1)
= DWi.

We obtain the matrix

—W2 U1
A=
1wy —Wso
A defining equation for the image of o is given by the determinant of the matrix

A, i.e.,

H = det(\)

_ 2 2

In general, we shall use the algorithm above to find a defining equation for the

image of the minimal cross cap of multiplicity d > 2.

Theorem 3.2.3. Let g : (C??72,0) — (C??-1,0) be the minimal cross cap of mul-
tiplicity d > 2 and V' be its image. Then, a defining equation for V 1is given by
the determinant of the matriz A = M — wqlq where 1q is the identity matriz and

M = [m; jlaxa is such that

-2

Myg = Vg1 — E Myaud—1+x  for 1 <1 <d,
k=1
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i—1
My = Vj_i + My_jqw; — g myauj iy for 1 <1i,5 <d,
-1

with myq =0 for all r < 0.
Proof. We shall use the algorithm of Mond and Pellikaan. Since u4_; = 0 and

ug = 1, then we have
d—1

d
_E: s _ t
wp = Usy w2—§Uty-
s=1

t=1

We choose a projection 7 : (C?*¢=1 0) — (C??72,0) such that
W(@, v, ws, w2) - (ga v, wl)'

Then we have

a(u,v,y) = 7o py(u,v,y)

= (u,v,w)
d

= (%LZ%?JS)-
s=1

We find that Q(@g) is generated by 1,y,...,y4L.

We can rewrite
-2

Mg = Vg—i — E Mp,qti—1+r for 1 <1 <d,
k=1

As follows
!

ka,dud—l—i-k =g for 1 <1< d.
k=1
Now we need to show that

d
Zmi’jyﬂ'*l = 4", forall 1 <i<d.
j=1

We have

d i—1
i—1 i—1
E miy’ T = E (Uj—i + My j Wi — g ml,duj—i—l—l) Yy’
i=1

j=1 =1



3.2 A defining equation for the image of the minimal cross cap 31

d d ,i-1
Z fzy] ! + Z mi—j, dwly — Z (Z ml7duji+l> yjil.
=1 j=1 j=1 “Ni=1
d
By substituting w; = > usy® in the second term on the RHS, we get
s=1
d d d d d i1
VIV DURVISED TR DU L Bl Drrtesn iy
j=1 7j=1 7=1 s=1 j=1 Mi=1
d d d d i1
D S (z y) 5 (z m) Y-
j=1 j=1 s=1 j=1 Ni=1
d i—1 d i—1 d
= D v Y g (Z usyw_m) =DM (Z “j—z‘+lyj_1)
j=1 =1 s=1 =1 j=1

d—i+l

d i—1 d '

= Z vy T+ Z miq (Z usySH_Hl) Z m d( Z ugy*
j=1 =1 s=1
d d—i+l

_ Zvj_zyj 1 + Zmld( Z usys—i-z l+1)

\/

7j=1
i—1 d d—i+l
s+i—l+1 s+i—l—1
+§ ml,d( g UsY ) E mld( E Usy )
=1 s=d—i+Il+1
d i—1 d
_ j—1 s+i—1+1
= E vy’ +§ ml,d( E Usy )
Jj=1 =1 s=d—i+1+1

i—1 i—1
_ i—1 d+t—1
= E vy’ T+ E ml,d(g Ud—i+1+tY )
j=1 =1 t=1

We rewrite the second term on the RHS above as follows:

i1 il i-1 i—2
d+t-1\ _ -1 d+t—1
E mz,d( E Ud—i+1+tY ) = m d( E Ug—ii1y"T ) + m2,d< E Ud—i+t+2Y )
=1 t=1 =1
d+t—1
4+ mi—l,d( E Udtt—1Y )

=1
i—1

= E (ml,dudi+t+1 + Mo qUqg—irer2 + -+ M2 qUd -2
t=1

t4i—1
+mi1,dud+t1) Y
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i—1 i—t
— t+i—1
= ( E mk,dudz+t+k> Y
t=1 “k=1
Therefore, we have
d d i—1 it
-1 _ i—1 d+t—1
Z miy' T = Z vy’ T+ Z (Z mk,dud—i+t+k) y
j=1 j=1 t=1 “k=1
d i—1
_ 2 : 1 Z d+t—1
— U]—zyj + Vd—i+tY
j=1 t=1
d—i i—1
_ sti—1 d+t—1
= E vy + E Va—i+tY
t=1 t=1
d—1
_ s+i—1
= E VY
t=1
i—1
=y wsy.
OJ

Now, from Theorem 3.2.3, a defining equation for the image of the minimal cross cap

of multiplicity d > 2 is given by

Hy=wd —T(M)wi'+aG,

where T is the trace of M and G is a polynomial in uq, ..., ug_ o, v, ..

wy whose degree in wy is < d — 2.

Corollary 3.2.4. We have

1. T is not dependent on vy and w;.

., Ug—1,wy and
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Proof.

i. By definition,

d
T = E m;;
=1
d

i—1
= Z (— Z ml’dul>, by Theorem 3.2.3(2),
=1

=1

0 1 d—1
= —( E myqu; + g myqu; + -+ g mz,duz)
=1 =1 =1

= —myqui — (Myqu1 + maqus) — (M1 qu1 + Mo qus + M3 qus)

. — (ml,dul + mg qug + -+ + md—l,dud—1>

= —(d—1myqus — (d —2)mgqug — -+ — 2Mg_2 qUg—2
d—2
= — Z(d — l)ml,dul
=1
d—2

= Z(l — d)ml,dul.

1=1
ii. For d = 2 we have T' = 0. For d > 3, we will use induction. From Theo-
rem 3.2.3(1) we see that my g = vg_1, Mg = V42 and mg g = V4_3 — Vg_1Ua—2
are not dependent on v; and w;. Then, we can suppose that m,, 4 is not depen-

dent on v; and w;.

We have
n—1
Mp+1,d = Vd—n—1 — E M dUd—n+k—1
k=1
with 1 <n <n+1<d-2 We know that m; 4, mag, ..., my_14 are not

dependent on v; and wy. If d —n—1 =1, then n = d — 2 and this is a
contradiction. Therefore, m,,41 4 is not dependent on v; and w;. Hence 7" is not

dependent on v; and ws.
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In the following example, we shall obtain a defining equation of the minimal cross

cap s by using Theorem 3.2.3.

Example 3.2.5. Consider the minimal cross cap @3 : (C*, 0) — (C>0). Then we

have
1-2
mys = US—l_E Mg 3U3-1+k
k=1
= Uy,
2-2
maos = U3—2—E Mp 3U3—2+k
k=1
= i,
3-2
msz3 = Usfs—g Mg 3U3—3+k
k=1
= Vg —M13U1
= —VUq,
1-1
mi1 = vl,1+m1,173w1—5 my 3147
=1
0
= Vg + Mmp3w; — E my 3U;
=1
— O’
1-1
M1 = Va1 + M1_23W — E my 3o 141
=1
0
= v1+m_i3w — E my 3Us
=1
= Uy,
2-1
Mo = U1—2+m2_1,3w1—g my3U1—241

=1
1

= V.1 +mi3wi — g my3U;—1
=1

= 0+ Va2W1 — V22U

= VWq.
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In the same way we find Mg = —vVau1, M3y = V1w and Mms o = VoW — V1.
It follows
—Wa2 U1 V2
A= | vw; —wy — vy (1

V1W1 VW1 — UV1 —W2 — U1V2

A defining equation for the image of w3 is given by the determinant of the matrix

H = det(\)
3 3 2 2 2 3,,2 2,2
= —wh5 + VW1 — UV W2 + 3V1V2W W — 2U1 VW5 + UV V5 W+ VW] — UTV;Wa

3 2 2 22 3 2 3, 2
= —wy — 2uivwj + (3v1vw; — uv] — uvy)ws + (Vw + U v VW + Vywy).

This equation agrees with the calculation in Example 5.2.18 of Chapter 5 by using

the CAST package.

3.3 Der(-log) of the minimal cross cap

In this section we shall show Conjecture 3.1.4 is true.

Proposition 3.3.1. For1 <i<d— 1 we have

1.
-1
oT .
;Ui_;,_ja—vi + (d —j)Uj = O
2.
d—2 i1 a7
(d+i—j+1)ud+i—j+1%+Z(d+’i—j+1)vd+iﬁ+1%+d(d—j+1)vdﬁ'+1 = 0.

=1 =1

Proof. For 1 < j < d—1 all vector fields in the second family are tangent to

V,ie., &(Hy) = g7(u,v, w)Hy for some polynomials g7.
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We can see that none of the coefficients of the vector fields in this family contain

wq. It follows we have that

OH, X . oH, OH, OH,
§Ha) = ZAQ’J ou, T2 By, T Clige, t gy,
1

d—2 d—
oT oG
2 o d— 1 d 1
Z A ( Ou; Wy 3 ) Z ( Vi wy " 8@-)

1

+Cij( >+C§( —(d—1)Twi?+ )

From Corollary 3.2.4, we can see that 7" does not depend on ws. Therefore, we

get
d—2 d—1

& (Ha) = (— > Aijg - Z B; Jg—T + dcg,j)wg—l +G",
T i
where G* is a polynomial in several Varlables whose degree in wy is < d — 2.
It follows that we have sz(Hd) is a polynomial in wuy,...,uq_2,v1,...,04_1,w; and
wy whose degree in wy is < d — 1. However, 7?(@, v,w)Hy is a polynomial in several
variables whose degree in wj is > d. Therefore, we have that g7 = 0. Hence £3(Hy) = 0

forall1 <j<d-1.

It follows that

—Z Jau ZBEJa—+dC§,j:o.

Then we have

Qp:=

d—2 or 41 oT
- (Z(d‘f' i—J+ 1)ud+i—j+1% + Z(d‘f' i—j+ Dvati—j415— +dld—j+ 1)Ud—j+1>w1

i=1 (O dvi
Qo= Qg:=
d—1 d—2 i
or o » or
(Z Ud+i—j g + jua— g>vl ( (dZ(d‘FZ*J*2T+1)“Tud+i7j—r+1 +J(2+1)U¢+1udﬂ'))%
=1 i=1 r=1 K

Qy:=

d—1 i i
. . oT
_ ( E (d E (d+i—7—r+Durviti—jrt1 +d E TUdti—j—rt1Vr + J(3 + 1)ud_jvi+1>> — = 0.

i=1  r=1 r—2 dv;
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From Corollary 3.2.4, T' does not contain v; and w;. Hence g—i and g—i do not

contain v; and w;. Therefore €y, 3, 4 do not contain w;. Also we can see that
Qq, Q3, Q4 do not contain v; because 3 <d+i—j+landifd+i1—7—r+1=1,
then r = d+1—j. Now, if 1 < r <4, then 1 < d+i—7 < ¢ and this means
1—12<d—-j <0 and this is a contradiction.

Therefore, we have 2; = 0 and this proves part 2. Also {2, =0, i.e.,
d—1

- d+i—j a’l}i JUd—j =Y.

Letl:d—j,then1§l<d—1andweget

Z uH — Du; = 0.

This proves part 1. 0
In the following theorem we shall give the answer of the first part of the Conjec-

ture 3.1.4.
Theorem 3.3.2. Let ¢4 : (C*720) — (C%?71,0) be given by the normal form for a
corank 1 minimal stable map of multiplicity d > 2 and V' be its image. Then,
Dery(—log(h)) = (¢],2,€0)_,
Proof. From the proof of Proposition 3.3.1 we have 5]2-(Hd) =0foralll <j <
d — 1. We want to show that for all 1 < j <d—1, (Hy) = 0 and £}(Hg) = 0.

We consider the liftable vector fields £; and £7. Then they are tangent vector

fields, that is for ¢ = 1 or ¢ = 3 we have
E;-(Hd) = g;- (u,v,w)H; for some polynomials g;

Now,

, OHy 0H,
fjl(Hd) = ZAz]a ZBzga 1]8 021]8 Wy
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where G** is a polynomial in uq,...,uq_2,01,...,04_1,w; and wy whose degree in w,
is <d-—1.
From Proposition 3.3.1(1) we have
& (Hy) = d*(0)ws + G*.
This means 5}- (Hy) is a polynomial in uq, ..., ug_o,v1,...,v4_1, w1 and wy whose de-

gree in wy is < d — 1. However, gjl-(y, v,w)H, is a polynomial in several variables

whose degree in ws is > d.
It follows g; = 0. Hence &j(Hy) = 0.

Similarly, we have

d—2
3 H — d B3 d 3 3
6]( d) ; ’L] au Z Z] 8 Clja CQJan
d—2 d—1
. oT o oT
= d(;(d +i1—7+ 1)Ud+i—j+la_ui + ;(d +i—7+ 1)Ud+i_j+18_w

—|—d(d —j + 1)vd_j+1>w§l + G***,

where G*** is a polynomial in several variables whose degree in wy is < d — 1.

From Proposition 3.3.1(2) we have
&(Hy) = d(0)w§ + G**.

It follows g? = 0. Therefore, we have £2(Hy) = 0.
Now, let n €Dery(—log(h)) CDer(—logV). Then from Theorem 3.1.2 we have

3 d-1
n = gele + Z Z ng§; for some polynomials g., g; ;.

i=1 j=1

It follows that
3 d-1

N(Ha) = geSe(Ha) + Y Y 6i ;€ (Ha).-

i=1 j=1
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Thus,
0=d?g.Hy;+0.

Therefore g. = 0 and hence
3 d-1

n=>_ g5

i=1 j=1



Chapter 4

Determinacy and The Complete
Transversal Method

In this chapter we will give the techniques of a classification method which we will use
in this thesis to find the classification of map-germ under ¢/X-equivalence, when © is
the module of liftable vector fields over the minimal cross cap of multiplicity d > 2.
This method depend on finite determinacy and the complete transversal method.

Finite determinacy is a very powerful and practical idea. It allows us to study
a smooth map-germ by replacing it with a polynomial which is G-equivalent to it
(where G is an equivalence relation.)

The complete transversal method is a very systematic and an efficient method of
classification. The method is due to Bruce, Kirk and du Plessis in [BKdP97] and is
a direct generalisation of the work of Dimca and Gibson for K-equivalence, [DG83].
Independently, a similar method has been developed by D. Ratcliffe using ‘triviality
theorems’ (Thom-Levine) as the main technical tool (see [Rat90] and [Rat95]). For
more details see ([Bru0l], [BG92] , [Wal95] and [BW9S]).

The general method of classification can be described as the following:

40



4.1 Finite Determinacy of Map-Germs 41

i) From a k-jet produce a list of possible (k + 1)-jets.
i1) Reduce the list by removing redundancies and by scaling.

iii) For each possible (k+1)-jet, check determinacy. If not (k+ 1)-determined, then

repeat the method for each (k 4 1)-jet by finding the possible (k + 2)-jets.

The theorems developed in this chapter have been used in the classification of
map-germs (K241 0) — (K9, 0) under gK-equivalence (see Definition 2.4.10), where
© is the module of the liftable vector fields over the minimal cross cap mapping of

multiplicity d > 2.

4.1 Finite Determinacy of Map-Germs

The aim of this section is to find algebraic criteria for a map-germ to be determined

by its Taylor series expansion up to a sufficiently high order.

Definition 4.1.1. Let G be an equivalence relation. We say that a smooth map-germ
f (K" 0) — (KP,0) is k-G-determined if f is G-equivalent to any other smooth
map-germ g : (K™, 0) — (KP,0) such that j*f = j*qg. If f is k-G-determined for some

k, then f is said to be G finitely determined.

Once we know a map-germ is k-G-determined for some k, it is sufficient to work
in the k-jet-space to classify G-classes.

The following lemma is very important tool in singularity theory.

Lemma 4.1.2 (Nakayama’s lemma). Let R be a commutative ring, M an ideal such
that for x € M, 1+ x is a unit. Let C be an R-module, A and B R-submodules of C'
with A finitely generated. If A C B+ M.A then A C B.

Proof. See [Wal81], Lemma 1.4 or [Wal95], page 929. O
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4.1.1 Trivial unfoldings

Let £ be a vector field on (KP, 0). Then we can consider ¢ as a vector field on
(KP x K,0 x 0) just by trivial extension. Similarly the maximal ideal m, can be

considered as the ideal which it generates in m,,;.

Definition 4.1.3. Let © be a finitely generated E,-module of vector fields on (KP,0)
and H : (KP x K;0 x 0) — (K%,0) be a one-parameter family of smooth map-germs
with H(0,t) =0 for small t.

1) We say that H is o R-trivial if there exists vector field £ € © that can be inte-
grated to give a one-parameter family of diffeomorphisms ® : (KP x K, 0 x 0) —
(KP,0) with ®(x,0) = x (for all ), ®(0,t) = 0 (for smallt) and H(P(x,t),t) =
H(z,0).

2) We say that H is ¢K-trivial if there exists vector field & € © that can be
integrated to give a one-parameter family of diffeomorphisms ® : (KP x K,0 x
0) — (K, 0) with ®(x,0) =z (for allz), ®(0,t) = 0 (for smallt) and a germ of
invertible matriz M : (KPxK,0x0) — GL(K?) such that M (x,t)H (P (z,t),t) =
H(z,0).

We can now state a condition which ensures the triviality of a family. The state-
ments and proofs are very similar to standard results in singularity theory, but see in
particular Proposition 3.9 of [BW98] where a very similar R-trivial result is stated

and proved.

Theorem 4.1.4. Let O be a finitely generated E,-module of vector fields on (KP,0)
such that every vector field in © can be integrated to give a one-parameter family of
diffeomorphisms. Let H : (K? x K,0 x 0) — (K%,0) be a smooth map-germ with

H(0,t) =0 for small t.
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1) The family H is g R-trivial if

0OH
S € (€€ € Onmy0,).

2) The family H is oK-trivial if

%_IZ € (E(H) | € € © Nmy0,) + H*(m,)0(H).

Proof. We will give the proof of g/C-triviality as it does not appear to be in the
literature in the form we describe. There is a version from a different perspective in
Proposition 2 of [GH85]. For the R-triviality proof see Proposition 3.9(i) in [BW9S].

We suppose that

%_Ij € (E(H) | € € © Nmy0,) + H*(m,)0(H).

In other words
T

a q q
a_]: =D _a&(H)+ > GyHie;
=1

i=1 j=1

where &1, &, . .., & are vector fields in ©Nm,0, and for 1 < i, j < g we have 8;; € Ep1q
and e; = (0,0,...,1,0,...,0)" € K? which has zeroes except at position j, where it
has a 1.

By the fundamental theorem on the existence of solutions to ordinary differential

equations (see [Hur64]) and integration of vector fields we have the following.

i) If
r P a
n= Zaifi = Zﬁi%a
i=1 i=1 ’

then the differential equation

Pt = n(®(w0),0),  Br,0) =z,
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has a unique solution ® as a family of diffeomorphisms of KP. That is, we can

find ®; : (K?,0) — (K?,0) for each small ¢. Note that

88_(?(07 t) - 77(‘1’(07 t)? t)

has the unique solution ®(0,¢) = 0, since the vector fields vanish at the origin.

7 4
it) From Y > fB;jH;ej, we define a ¢ x ¢ matrix A = [;5].

i=1j=1

Then the differential equation

aa_]\f(x,t) = MA(®(x,t),t),  M(x,0) = Id,

has a unique solution M : (K? x K,0 x 0) = GL(K?). (Here Id, is the q x ¢

identity matrix.)
Now we define a new family G : (K? x K, 0 x 0) — (K% 0) by
G(z,t) = M(z,t)H(P(x,1),1).

Differentiating with respect to ¢ we obtain

oG oM
Shwt) = S nH(®(,1)

Mz, 1) ( a;;i (x,t)g—hz(cb(:c £,1) + %—f(@(x,t),t))
= (M(z,t)A(D(, ) ) H(®(x,t))
M <Z (@ ‘;Z (®(z, ), 1) + %—f(@@,t),t))

=1

= M(z,t) (A( H(z,t +Z7716H 8H> (®(x,t),t) = 0.

Fixing x we see that G(z,t) is constant, i.e., G(z,t) = G(x,0) for all x and ¢.

In other words M (x,t)H (®(z,t),t) = H(x,0). Hence H is g/-trivial. O
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Example 4.1.5. Let V' be the image of @3 and H)y is the 1-parameter family given
by H)\(ula U1, U2, W1, '[UQ) = Uy + w1 + )\u%

Then we have

ToK(Hy) = (& (Hy), & (H), & (Hy), &(Hy))iZ, + (Hy)
= (8/\u§ — 3wy — duqvy + 6uwy, vy, 12)\1@ — 6vy + 9wy,
—18Aujwy, — 3vy + QU% + 18 uq vy + 9wy + 3uive, — 18 Aujwy
—6Autvy + 3uqvy, 4 ul + vg 4 3wi) + (vy + wy + Aul)
= (v1,v9, w1, Wwa, u3).

Thus,

OH
a—; € TolC(Hy).

and H)y is oIC-trivial.

The converse of theorem 4.1.4 is not true in general. However, if © is the module
of all smooth vector fields on (KP, 0) preserving a subset V', then the converse is true.
In fact, there is a version from a different perspective in ([BG92], Proposition 11.11)

and ([GH85], Proposition 2(a)).

Theorem 4.1.6. Let (V,0) C (KP,0) and © be the module of all smooth vector fields
on (KP,0) preserving V. Let H : (KP x K,0 x 0) — (K%,0) be a smooth map-germ

with H(0,t) =0 for small t.

1. If the family H is o R-trivial, then

o cemceo).

2. If the family H is g/C-trivial, then

O e € € ©) + H' (m,)6(H).
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Proof. We will give the proof of g/ C-triviality. For the proof of g R-triviality we
just delete the term H*(m,)60(H).

We suppose that H is g/C-trivial family, so that there is a one-parameter family
of diffeomorphisms @ : (K? x K,0 x 0) — (K?,0) with ®(z,0) = z, ®(0,¢) = 0 (for

small ¢) and a germ of invertible matrix M : (K x K,0 x 0) — GL(K?) such that
M(z, t)H(®(z,t),t) = H(z,0).

Differentiating with respect to ¢ we obtain

%—Af(x, OH(®(z,t)) + M(z,t) (Z %(L t)g—H(q)(a:, t),t) + %—f(@(x, t), t)) = 0.

l‘.
i=1 v

Multiplication on the left by M~! and composition on the right with ®;' where
O, (z) = ®(x,t). Then we get

oM " 09, OH OH
—1_ _Z -1 - RS —
= P e e + (Z @ @05 )+ 5 <x,t>> 0.
ov; | ,
We may take &;(x,t) = T (®, " (x),t) for 1 <i <p.
Note that
oP;
&i(0,t) = E(q)t H0),1)
= %(O,t) since ®; 1(0) = 0
= 0.

In other words, there is a vector field ¢ : (KP x K;0 x 0) — (KP?,0) defined by
P
§=> fiai with £(0) = 0 such that
i=1 O

10M - 0H OH B
M W(x,t)]—[(x, t) + <ZZI &(m,t)a—xi(x, t) + E(CL‘, t)) = 0.

By integrating & we obtain a diffeomorphism which preserves V, i.e., £ € O.
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It follows

O & (el € € ©) + H (m)o(H).

U

Example 4.1.7. Let V be the image of the cross cap. Suppose that H(vy,wy,wq, v) =
wy + vwi.

Then we have

ToK(H) = (&(H),&(H), & (H), &(H)) + (h)
= (vywy, dvwl, dvwiwy + vl dvwd + 2ws) + (wy + vw?)
= (vywy, vwi, dvwywy + v, we).
= (vywy, vw?, vl wy).

Thus,

OH
= & ToK(H).

Hence H is non ¢IC-trivial along v.

Remark 4.1.8. Suppose that G = K or R. Let (V,0) be a subgerm of (KP,0) and
H : (K x K,0 x0) = (K?%0) be a smooth map-germ with H(0,t) = 0 for small t.
Let © be a finitely generated E,-module of tangent vector fields on (KP,0) to V. If all
members of © vanish at the origin, then from theorem 4.1.4 and theorem 4.1.6 we can
see that H is oG-trivial if and only if aa—i] € ToG(H). In fact, this is very important
result in our classification because when we get non oKC-triviality along a parameter
(or family of parameters) and we can not scale this parameter by any diffeomorphism
which preserves V', then this parameter is a modulus and in this case H is not a

simple map-germ.

Now as a corollary of Theorem 4.1.4, we obtain the following theorem.
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Theorem 4.1.9 (Finite determinacy theorem). Let h : (KP,0) — (K%,0) be smooth
map-germ. Suppose G = K or R. If © is a finitely generated module of vector fields
on (K 0) such that every vector field in © can be integrated to give a one-parameter

family of diffeomorphisms and
m;0(h) C TeG(h),
then h is k-gG-determined.

Proof. We will give the proof for g/C-equivalence. The idea of the proof is the
same as Gibson’s proof ([Gib79], page 117), based on the method of homotopy.

Let g : (K7, S) — (K% 0) be a smooth map-germ with j*(g) = j*(h). We set
Q(z) = g(z) — h(x) and

H(z,t) = Hi(z) = h(x) +tQ(x).

Note that Hy = h and Hy = g. Obviously, it suffices to show that for every t € [0, 1]
the family H; is g/C-trivial. Thus, we have to show that

0H,
O h e ToG(H,).
5 =Y h € TeG(H;)

We have © € m}*'60(h), then

m,TeG () = m,((¢(Q)[§ € ©Nm,i(Q2)) + 2" (m,)6($2))

g m§+29<Ht).
Hence,

m,TeG(Hy) + miP?0(H,) = m,TeG(h+ Q) + m; " 20(H,)

= m,ToG(h) +m}*0(H,).
The latter module contains mf™6(H,), then

m/"'0(H,) C m,ToG(H,) + m}"*0(H,).
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By using Nakayama’s lemma, we get
m; " 9(H,) C m,ToG(H,)

Since

mpT@g(Ht) C T@Q(Ht)

Then, we have

m; " 0(H,) C ToG(H,)

But m’;+19(Ht) contains g — h. Therefore we have H; is a gG-trivial for every ¢ €]0, 1].
Since [0, 1] is compact, then we can choose a finite cover Uy, ..., U, for [0,1]. Also
[0, 1] is connected, then we can find a finite sequence {ty = 0,t,...,t,, =1} C [0, 1]
such that for each ¢ = 0,...,m — 1 the intervals {¢;,t;,,1} is contained in one of U;
and then

Hy ~ox Hyy ~c - ~ox Hy = g ~ox h.
For the proof of gR-equivalence we just delete the terms h*(m,)0(h), H*(m,)0(H)

and Q*(m,)0(Q2). O

Example 4.1.10. Let V' be the image of cross cap and © be the set of vector fields

tangent to V. Let h(vy,wy, ws) = we + wlfﬂ with k > 1. we have

Tok(h) = {(viwy,2(k + Dwi™ 2(k 4+ Dwowl + 07, 2(k 4+ 1)wi™ + 2ws)
+(w2 + w'f“)
= (vywy, Wi 2(k + Dwyw + 02, ws)

= (vwy, wf“, v%, Wa).

Hence, for k> 1, mi™ C Tok(h). That is wy + wi™ is (k + 1)-e/KC-determined.

Example 4.1.11. Let V be the image of w3 and h : (C°,0) — (C,0) is given by

h(U1,U1,U2,w17UJ2) = V2 + wi.
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Then we have

ToK(h) = (& (h),&5(h), & (h), &(R))i—y + ()
= (=3wy — Buyvy + 6uywy, 3v1, —6vs + Jwy, —3v; + 2u?
9wy + 3uq vy, 3ugv, Vo + 3wy) + (vy + wy)

— </U17/U2,'LU1,U)27U%>.
Obviously, m2 C (vy, ve, wy, wo,u?). Hence h is 2-oK-determined.
We can do the preceding at the jet level.

Definition 4.1.12. Let © be a finitely generated E,-module of vector fields on (KP,0)
and H : (KP x K,0 x 0) — (K9,0) be a smooth map-germ with H(0,t) =0 for small

t. Let k> 1 be an integer.

1) We say that H is k-oR-trivial if there exists vector field & € © that can be inte-
grated to give a one-parameter family of diffeomorphisms ® : (KP x K, 0 x 0) —
(K, 0) with ®(z,0) = x (for all z), ®(0,t) = 0 (for smallt) and H(P(x,t),t) =
H(z,0) +¢(x,t) for some ¢ € mi™0(H).

2) We say that H is k-oKC-trivial if there exists vector field & € © that can be
integrated to give a one-parameter family of diffeomorphisms ® : (KP x K, 0 x
0) — (K?,0) with ®(x,0) =z (for allz), ®(0,t) = 0 (for smallt) and a germ of
invertible matriz M : (KPxK,0x0) — GL(K?) such that M (x,t)H (P (z,t),t) =

H(x,0) +¢(x,t) for some ¢ € mi™0(H).

Obviously an gR-trivial (resp. oK -trivial) family is k-gR-trivial (resp. k-oK-
trivial) for any k.

Theorem 4.1.13. Let © be a finitely generated &,-module of vector fields on (K?,0)

such that every vector field in © can be integrated to give a one-parameter family of
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diffeomorphisms. Let H : (KP x K,0 x 0) — (K%,0) be a smooth map-germ with
H(0,t) =0 for small t.

i) The family H is k-oR-trivial if

%—[f € (E(H) € € © Nmy0(H)) +my™6(H).

it) The family H is k-oKC-trivial if

aa_[j c(¢(H)|EeOMmMO(H))+ H (m,)0(H) + mﬁ“@(H).

Proof. For the proof of k-gR-triviality see Proposition 3.9(ii) in [BW98|. For
k-oKC-triviality is very similar.
Suppose that

aa—]j c(¢(H)|EeO©MmMO(H))+ H (m,)0(H) + m’;HG(H).

By using the same argument as that the proof of theorem 4.1.4, there is a one-
parameter family of diffeomorphisms ® : (K? x K,0 x 0) — (K?,0) with ®(x,0) = z,
®(0,t) = 0 (for small ¢) and a germ of invertible matrix M : (KPxK,0x0) — GL(KY).

Let G(z,t) = M(x,t)H(®P(x,t),t). Differentiating with respect to ¢ we obtain

oG oM

W@’t) = E(m,t)H((I)(:c,t),t)
—l—M(x,t)(Zp; %(:c,t)g—i@(x,t), t) + %—Ij(q)(x,t),t))
— (%—j\f(m,t)H(x,t)
+M(x,t)(i%(x,t)g—i(x,t)+%—Ij(a:,t))>(<1>(x,t),t)
The term
oM 00, OH oH

() H (1) + M, t) () o (@D~ (@) + E(x,t))

i=1 i
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oG G
lies in m*'0(H) and hence so does ——(x,t). In particular we can write —(z,1t) as

ot ot
asum > Gr(z,t)z!, where I is a multi-index with |I| =k + 1. So

Gz, t) — G(z,0) = /t %(w,u)du => (/Ot %(m,u)du) z' € mFg(H)

0
Since G(z,0) = H(z,0), note that M (x,t).H(®(x,t),t) = H(x,0) + ¢(x,t) for some

Y e miO(H). O

Example 4.1.14. Let V be the image of the cross cap pa : (C%,0) — (C3,0) and © be
the set of vector fields tangent to V. Let H(vy,wy, wa, A, ft) = Wy + A3 + pvjw; +vw?.
Then we have
E(H) = v + ¢ where ¢ € m®>.
Thus,
oH

m :U% S T@IC(H) +m3

and H is 2-gKC-trivial along . A similar calculation gives that H is 2-gKC-trivial
along .

Now, we consider H as a 1-parameter family of function-germs with 1 as the
parameter. Then from Example 4.1.7, H is non o/C-trivial along v and we can fix

v=1.

In general the converse of Theorem 4.1.13 is not true. However, if © is module of
all vector fields on (KP,0) preserving a subset V, then the converse is true. In fact,

there is a version from a different perspective in ([BG92], Proposition 11.28).

Theorem 4.1.15. Let (V,0) C (KP,0) and © be the module of all smooth vector fields
on (KP,0) preserving V. Let H : (KP x K,0 x 0) — (K9%,0) be a smooth map-germ
with H(0,t) =0 for small t.

i) If the family H is k-gR-trivial, then

0H

o € (¢(H)|EeOnNmMb(H)) + m’;HH(H)
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i1) If the family H is k-oKC-trivial, then

%_CI € (E(H) € € ©Nmyf(H)) + H*(my)0(H) + my ' 0(H)

Proof. We will give the proof for g/C-trivial. For the proof of gR-trivial we just
delete the term H*(m,)0(H).

We suppose that H is g/C-trivial family, so that there is a one-parameter family
of diffeomorphisms @ : (K?” x K,0 x 0) — (KP?,0) preserving V' with ®(z,0) = =,
®(0,t) = 0 (for small ¢) and a germ of invertible matrix M : (KP xK,0x0) — GL(K?)

such that
M (z,t)H(®(z,t),t) = H(z,0) + ¢ (z,t) for some ¢ € m; ™ 0(H).

Differentiating with respect to ¢ we obtain

OM LT OH OH oy

E("B’ t)H((I)(.’L‘,t)) + M(ZL‘,t) (; ﬁ(x>t)87xl(q)(xa t)7t) + m(q>(x>t)vt)> - E(ZE’ t)'
: k41 9y k41

Since ¢ € my"'0(H ), then we have 5 € m; "' 0(H). Hence, we have

Mlz—f(qﬂ(a:,t),t) €m;"9(H).

By using the same argument as in the proof of Theorem 4.1.6 we can get the

result. O

4.2 Complete Transversal Method

In this section we will discuss the use of the complete transversal method. This
method has been used in several classifications in the past, see for example, [DG83],
[DG85], [Rat90], [BKAP97], [BW9S|, [HK99], [Kir00].

A complete transversal is a list of homogeneous maps (that satisfy a certain
condition). This list provides a complete list of the (k4 1)-jets (associated to a k-jet)

that we need to investigate when looking for distinct singularities.
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The engine that drives the complete transversal method in our situation is the

following theorem

Theorem 4.2.1 (Complete transversal theorem). Suppose that h : (KP,0) — (K?,0)
is a smooth map-germ with (V,0) C (K?,0), that G is either K or R and © is a
finitely generated E,-module of vector fields preserving V.

If Gy, ..., G, are homogeneous polynomial maps of degree k + 1 such that
m;"0(h) € m,TeG(h) + span{G1,...,G,} + m>6(h),
then every g with j*(h) = j%(g) is eG-equivalent to
7 (h) + Z @,Gi + ¢,
i=1
for some ¢ € mF20(h) and a; € K.

Proof. We will use the method of homotopy, with an argument very similar to
the proof of Theorem 4.1.9.

Given a map-germ g : (K7, S) — (K¢,0) with j%(g) = j%(h). We set
Q(x) = Z a;G;i(x),
Qo(z) = g(z)— h(x) — Z a;G;(z) and
Hi(x) = H(z,t) =h(x)+ Q(x) + tQs(x).

Note that Hy = h + > a;G; and H; = g. Our aim is to show that for every
i=1
t € [0, 1] the family H, is (k + 1)-gK-trivial. Thus, we have to show that

Qy € ToK(Hy) + my0(H,).
We have Q; € mf*0(h), then

m, TeK(21) = my,((£() € € ©Nmyd () + Q1 (my)0($))

g m];+2«9(Ht).
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Similarly Qy € m}*'0(h), then we have m,Tok(Qz) C mf20(H,).

Hence,

m,ToK(H;) + ml™?0(H,) = m,TeK(h+ Q + 1) + mi0(H,)

= m,ToK(h) +m}0(H,).

By assumption
Dy =g—h—Y oG; € mToK(h)+m:6(h).

i=1

It follows that
O € mToK(H,) +my20(H,) C ToK(H;) + mE60(H,)

Therefore we have H; is a (k + 1)-o/C-trivial for every ¢ €[0, 1]. The result follows
by the compactness and connectedness of [0, 1].
Ho ~ok Ht1 Nk e MoK H1 = g ~oK h + Zasz
i=1
For g R-equivalence we just delete the terms h*(m,)0(h), H*(m,)0(H), 2} (m,)0(£2)
and Q5 (m,)0(€s). O

Remark 4.2.2. The diffeomorphism generated in the equivalence has 1-jet equal to
the identity.

Definition 4.2.3. The set {G1,Gs,...,G,} is called a complete transversal of

degree k + 1. Sometimes we call it a (k + 1)-transversal or (k+ 1)-CT.

Corollary 4.2.4. If the (k+ 1)-transversal of h is empty, then h is k-oG-determined
(for G =K orR).
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Proof. As the (k + 1)-transversal is empty we have
m"(h) C mTeG(h) + m"20(h).
By Nakayama’s lemma and an obvious inclusion we have
m*t9(h) C mTeG(h) C ToG(h).

Hence h is (k + 1)-determined.
If j*(g) = j*(h), then by the complete transversal theorem g is ¢G-equivalent to
7*(h) + ¢ where ¢ € m**20(h). Hence,

7 g) = 5" (h) = 5" (h)
and so g and h are gG-equivalent. O

In particular, this means that when we reach an empty complete transversal, we

can terminate the classification at that branch.

Remark 4.2.5. A similar statement is not true in the A-equivalence case. In fact,
if the (k4 1)-transversal is empty, the (k4 2)-transversal may be non empty. In the
R- or K-equivalence cases this does not occur as we can apply Nakayama’s Lemma.

This explains why A-classifications, such as in [HK99], are so complicated and
explains why it is so important to change the A-classification to an equivalent K-

classification.

Example 4.2.6. Let V' be the image of the cross cap ¢ : (C?,0) — (C3,0) and ©
be the set of vector fields tangent to V. Suppose that h : (C3,0) — (C,0) is given by
h(vy, wy, we) = vy.
Then the (k 4 1)-transversal is calculated as follows: We have
m3Te/C(h) = mzJo(h)+ (h)
= mj3 ((wg, —v1,0,v1) + (v1))

= m3\(w],wi wi,...).
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Thus {w***} is a (k + 1)-transversal.

Hence any function g with k-jet equal to vy is oK-equivalent to some F with
GFF = vy +  \wlt where X € C and the diffeomorphism giving this equivalence has
1-jet equal to the identity.

Suppose that X # 0 and H(vy,wy, we, \) = v1 + )\wlfH. Then we have

ToK(H) = (& (h),&(h), & (h), & (h)) + (h)
= (wy, —vy + 2(k + DAwi™, 2(k + D) Awhws, vy 4+ 2(k + 1) wh ™)
‘|‘<’U1 + w'f“)
= (v, Mo ws).
Thus,

o
o\

Hence H is non gK-trivial along A\ with X # 0. The vector field % (& + &) can be

= wht ¢ ToKC(H).

integrated to give the diffeomorphism

2

(v1, wy, we) > (v1, €5%wy, € wy),

for some aw € C. Thus A can be scaled away and the map is ¢KC-equivalent to a germ
with (k + 1)-jet equal to vy +wi*,

k+1

Now we assume that h = vy +wi" . Then from Example 2.5.2 we have

ToK(h) = (v, w’f“, Wa).

Obuviously,
mitt C ToK(h).

Therefore, from Theorem 4.1.9 h is (k + 1)-gK-determined. Furthermore, from
Ezxample 2.5.8 we have oK.—cod(h) = k + 1.
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It follows that any finite codimension function-germ with k-jet equal to vy is K-

equivalent to a function-germ of the form vy +wi™ and so is (k + 1)-oK-determined

and has gK.-codimension k + 1.

Example 4.2.7. Let V' and © be as in Example 4.2.6 and let h(vy,wy,wy) = ws.

Then we have

ToK(h) = TeK.(h)
= Jo(h)+ (h)
= (viwy, 0,07, 2wy) + (ws)

= (viwy, v, wy).
Hence,

m3T@IC<h) = m3<'U1w1707IU%72w2>

2 3 2 2 2 2
= <Ulw17'017U1w27vlw1yv1wlaw1w2avlw1w271}1w2aw2>'

The 2-transversal in this case has a different format to the general (k+ 1)-transversal

with k > 1. The 2-transversal is given by:

m3Te/kC(h) + mj

2 3 2 .2 2 2 3
= (Ulwl,vl,vlwg,vlwl,vlwl,wlwg,vlwlwg,vlwg,w2>+m

= (viwa, wiwa, w3) + mg.

Thus, {vi, viwy,w?} is a 2-transversal.

A similar calculation shows that for k > 1 the function h has {w¥™} as a (k+1)-
transversal.

Let H(vy,wy, wa, X\, ) = wy + M? + pvywy + vw?. Then from Example 4.1.14, we

have H is 2-gKC-trivial along A and p and H non oK-triviality along v. The vector
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e can be integrated to give the diffeomorphism
field &3 be integrated to give the diff hi
(Ula Wy, w2) — (e_a/Uh €2aw17 w2)7

for some o € C. Thus v can be scaled away and the map is o K-equivalent to a germ
with 2-jet equal to wy + w?.

It can be show in a similar way that for all k > 2 any map with k-jet equal to wsy
is oK -equivalent to a germ with (k + 1)-jet equal to wy 4+ wh™.

We suppose that h = wy+wt™. Then, from Example 4.1.10 we have h is (k+1)-
olC-determined. Hence, we conclude that any finite codimension function-germ with

k-jet equal to wy is oKC-equivalent to a function-germ of the form wy + wi™,

Example 4.2.8. Let V be the image of the minimal cross cap o3 : (C*,0) — (C5,0)
and © be the set of vector fields tangent to V. Let h(uy, vy, vg, Wy, ws) = Vg + wy.

Then we have

ToK(h) = (& (h),&(h), & (h),&(h))jy + ()
= <—3U)2 — 5U1'UQ + 6u1w17 3’01, —6'112 + 9’(1]1, 3U1U1, Vg + 3'11}1,
—3v; + 2uf + Yws + 3uyvy) + (vy + wy)

= <U1,’U2,'U}1,UJ2,U%>.

Then we have
m2 C msTek(h) + (ul).
And for k > 2,

mitt C mTokC(h).

This {u?} is a 2-transversal and for all k > 2, the (k + 1)-transversal is empty.
Hence any function g with 1-jet equal to ve + wy is o/C-equivalent to some H with

J2H = vy + wy + Au?, where X € C.
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If we consider j2H as a 1-parameter family Hy, then from Ezample 4.1.5 we get
H, is a g K-trivial.
Therefore we deduce that H is oKC-equivalent to h(uy, vy, ve, wy, we) = vy + wy.

From Example 4.1.11 we get h is 2-gK-determined. Also we have

, &
@]Ce—COd(h) = dlmK RK—i(m

Es

= dimg
2
<U17 Vo, Wi, W2, U1>

= dimg (1, uq)

=2.

It follows that any finite codimension function-germ with 1-jet equal to vy + wy is

olC-equivalent to vy + wy itself.



Chapter 5

CAST: A Singular Package for

Singularity Theory

In this chapter we shall describe our package (called CAST). It is written in the
Singular Program (see [DGPS10]) and consists of a number of procedures (see Ap-
pendix A). Note that this package is much simpler than the considerable programming
effort in Kirk’s Transversal package, [Kir00]. Transversal was written in Maple in
the 1990s and though readily available it cannot be run without modification due to
the instability over time of Maple commands. Similar work by Ratcliffe dealt with
use of computational methods in the A-classification of map-germ (C?,0) — (C3,0),
significantly extending Mond’s results, [Rat90]. The original program was written in
Pascal and dealt with this particular classification. Singular has shown itself to be
much more stable over time and is ideally suited to the calculations we require.
CAST has a number of commands which are given as procedures in Singular. Let

© be a module of smooth vector fields and G either R or K-equivalence.

i) setphi this sets the ring for use with the minimal cross cap mapping of multi-

plicity d;
61
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i1) phivfs returns a module generated by liftable vector fields over the minimal

cross cap mapping of multiplicity d;

i7i) phivfsO returns a module generated by liftable vector fields over the minimal

cross cap mapping of multiplicity d without the Euler vector field;

iv) tthe calculates TgGe,, the extended gG-tangent space of a map;

v) tth calculates TG, the gG-tangent space of a map;

vi) nthe calculates NgG,, the extended G normal space of a map;
vii) codthe calculates the extended gG.-codimension of a map;
viii) ct calculates a complete k-transversal of a module;

ir) guessdet gives an estimate for the determinacy of a map;

x) trivunf checks whether an unfolding is trivial or not;

xi) def_eq computes the defining function of the image of the minimal cross cap

mapping of multiplicity d.

5.1 Getting Started

The CAST package is written in the Singular program. The code for Singular allows
us to use the vector fields in a package designed for the investigation of singularities.
Using the procedures is very simple. Put the file CAST.11ib in any folder that can be
accessed by Singular. Once Singular is running load the commands by executing

CAST file. L.e., use
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SINGULAR

A Computer Algebra System for Polynomial Computations

by: G.-M. Greuel, G. Pfister, H. Schoenemann

FB Mathematik der Universitaet, D-67653 Kaiserslautern

> LIB"CAST.1ib";

// **% loaded CAST.lib $Id$

//
//
//
//
//
//
//
//
//
//

5.2 Description of Singular commands

* %k

* %k

* %k

* %k

* %

* %k

*k

k%

k%

k%

loaded

loaded

loaded

loaded

loaded

loaded

loaded

loaded

loaded

loaded

ring.lib (1.31,2006/12/15)
primdec.lib (1.135,2007/04/20)
absfact.lib (1.6,2007/07/13)
triang.lib (1.11,2006/12/06)
matrix.lib (1.37,2007/04/20)
random.lib (1.17,2006/07/20)
poly.lib (1.46,2007/07/25)
elim.lib (1.21,2006/08/03)
general.lib (1.54,2007/01/08)

inout.lib (1.28,2006/07/20)

/

/ version 3-1-1

\ Feb 2010

\

We set the ring using the setphi command. The usage is setphi(d) where d is

an integer.

This sets the ring, called phiring, to have the variables wuq,..., uqs_2,

v1,...,0q—1 and wq, weq, i.e., the variables used in the codomain of the minimal cross

cap mapping of multiplicity d > 2, i.e., 4. We then use phivfs(d) to produce the

module generated by the vector fields described in Chapter 3 for ¢4. The elements of

the module are given in the order family 1, followed by family 2, family 3 and finally
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the Euler vector field.

Remark 5.2.1. In the examples involving @4 the user should first load the procedures

in CAST.14b and set the ring and the vector fields.
For example, for 3 enter the following commands:

> setphi(2);

> phivfs(2);

_[11=w(2)*gen (1) +v (1) *w (1) *gen(3)

_[2]=-v(1) *gen(1)+2*w (1) *gen(2)

_[31=2*w(2) *gen(2)+v (1) "2*gen(3)

_[4]=v (1) *gen (1) +2*w (1) *gen (2) +2xw (2) *gen (3)
> phivfs0(2);
_[11=w(2)*gen(1)+v (1) *w (1) *gen(3)
_[2]=-v(1)xgen(1)+2*w (1) *gen(2)

_[3]=2*w(2) *gen(2)+v (1) "2*gen(3)

If we wish to use a different d, then we redefine the ring. The procedure phivfs

returns a module and so we can define a variable to be module returned.

> setphi(3);

// **% redefining phiring

> module derlog=phivfs(3);

> derlog;

derlog[1]=-3*w(2)*gen(3)+4*u(1) "2*xgen(1)-3*xu(1)*v(1)*gen(2)
=5*xu(1)*v(2) *gen (3) +6*u (1) *w(1) *gen (4) -3*v (1) *w (1) *gen(5)
+3%v (2) *w (1) *gen (2) +2*xu (1) *w(2) *gen(5)

derlog[2]=3*v (1) *gen(3)-3*w(2) *gen(2) -3*u(1)*v(2) *gen (2)
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-3*v(2)*w(1)*gen(5)
derlog[3]=6%u(1)*gen(1)-3*v(1)*gen(2)-6%v(2)*gen(3)+9*w(1)*gen(4)
derlog[4]=-3%v (1) *gen(3)-9*w (1) *gen (1)+2*u (1) "2xgen(4)

+2%u (1) *v (1) *gen (5) +2*u (1) *v(2) *gen (2) +6*v (2) *w (1) *gen (5)
derlog[5]=9%v(1)*gen(1)+9*w(2)*gen (4)+3*u (1) *v(2)*gen(4)

+3%v (1) *v (2) *gen (5) -6xv (2) "2*gen (2)

derlog[6]=-9*w(2)*gen (1)+3xu (1) *v (1) *gen (4)+3xv (1) “2*gen(5)
=3*xu(1)*v(2) *gen (1) -3*%v (1) *v(2) *gen (2) +6*v (2) *w(2) *gen (5)
derlog[7]=2%u(1)*gen(1)+2%v (1) *gen(2)+v(2) *gen (3)

+3%w (1) *gen (4) +3*w (2) *xgen(5)

From Example 3.4 in [HL09] we can see that derlog[1] and derlog[2] are the two
elements of the first family. Similarly derlog[3] and derlog[4] are the elements of
the second family and derlog[5] and derlog[6] are the elements of the third family.

The Euler vector field is derlog[7].

5.2.1 The tthe command

The tthe command calculates the extended G, tangent space for the map h. The
usage of tthe is tthe(module, ideal, string) where the module is O, the ideal is made
of the components of h and the string G either R or K. It returns a module, TgG.(h).

If G =R, then The tthe command calculates Jg(h), i.e., the Jacobian of f with

respect to ©.

proc tthe (module theta, ideal h, string G)
n
USAGE: tthe( theta, h, string G); theta module, h ideal, G string

PURPOSE: Calculate the extended _Theta\GG-tangent space of h
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with respect to a module of vector fields
RETURN: Returns T_Theta\GG_{e}(h)

n

{

module dh

jacob (h);

module Ch = freemodule(ncols(h))x*h;
module TVE;

def EQ=GI[1];

if (EQ=="R")

{

TVE = dh*theta;

}

if (EQ=="K")

{

TVE = dhx*theta+Ch;
}

return(TVE) ;

}

Example 5.2.2. Let us take calculate the Jacobian of the Dy singularity h(x,y) =

2%y + y* with respect to the vector field module © = (9/dz,0/dy).

> ring r = 0,(x,y),ds;

> module Theta = freemodule(2);
> ideal h = x"2%y+y~4;

> tthe(Theta,h,"R");
_[1]=2xy*gen(1)

_[2]=x2*xgen(1)+4y3*gen(1)
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Example 5.2.3. Let us calculate the Jacobian of h(vy, w1, ws) = wy and h(vy, wy, we) =
(v1,ws) with respect to the module of vector fields tangent to the cross cap (see Fx-

ample 2.4.3).

> setphi(2);

> module dv = phivfs(2);

> ideal h = w(2);

> module Jv = tthe(Theta,h,"R");
> Jv;

Jv[1]=v(1)*w(1)*gen(1)

Jv[2]=0

Jv[3]=v(1) "2*gen(1)
Jv[4]=2%w(2)*gen (1)

> ideal h = v(1),w(2);

// *x redefining h *x*

> Jv=tthe(Theta,h,"R");

> Jv;
Jv[1]1=w(2)*gen(1)+v (1) *w (1) *gen(2)
Jv[2]=-v(1)*gen(1)
Jv[3]=v (1) "2*gen(2)

Jv [4]=v(1)*gen(1)+2*w(2) *gen(2)
> std(Jv);
_[11=v(1)*gen(1)+2*w(2) *gen (1)
_[2]=w(2)*gen(1)

> kbase(std(Jv));

_[11=0

> vdim(std(Jv));
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-1

The last command calculates the codimension of Jg(h) and hence as the C-
dimension of O3/Jg(h) is infinite Singular returns —1. Note that the command
previous to this produces a rather misleading answer — we might deduce (incorrectly)

that Jg(h) = O32.

Example 5.2.4. We shall calculate ToKC.(h) where © is the module of vector fields

liftable over @3 and the same module generated without the Euler vector field.

> setphi(3);

> module derlog=phivfs(3);

> ideal h=w(2);

> tthe(derlog,h,"K");

_[1]1=3*w(2) *gen (1)

_[2]=-3*%v (1) *w(1)*gen (1) +2*u (1) *w(2) *gen (1)
_[3]=0

_[41=3*v (1) *v(2)*gen(1)
_[51=-3*v(2)*w(1)*gen (1)

_[6]=2%u(1)*v (1) *gen(1)+6%v(2)*w(1)*gen(1)
_[71=3%v (1) "2*gen (1) +6*v (2) *w (2) *gen (1)

> module derlog0 = phivfs0(3);

> tthe(derlog0,h,"K");

_[1]1=-3*v (1) *w (1) *gen (1) +2*u (1) *w(2) *xgen (1)
_[2]1=0

_[3]1=3%v (1) *v(2)*gen(1)
_[41=-3*v(2)*w (1) *gen (1)

_[5]=2%u (1) *v (1) *gen(1)+6*v(2)*w(1)*gen(1)
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_[6]=3*v (1) "2*gen (1) +6xv (2) *w (2) *gen (1)
Example 5.2.5. Let © be the module of vector fields liftable over s and
h(ub U1, U2, Wy, w?) = U1 + V3.

> setphi(3);

> module derlog=phivfs(3);

> ideal h=u(1)+v(2);

> module tv=tthe(derlog,h,"K");

> tv;

tv [1]=-3*w(2) *gen (1) +4*u (1) "2*gen (1) -5xu(1)*v(2)*gen(1)
tv[2]=3xv(1)*gen(1)
tv[3]=6xu(1)*gen(1)-6%v(2)*gen(1)
tv[4]=-3*v(1)*gen(1)-9*w (1) *gen(1)

tv [6]=-9%w(2)*gen(1)-3*u(1)*v(2)*gen(1)
tv[6]=2%u(1)*gen(1)+v(2)*gen(1)

tv [7]1=u(1)*gen(1)+v(2)*gen(1)

> std(tv);

_[1]=u(1)*gen(1)

_[2]=v(1)*gen(1)

_[31=v(2)*gen(1)

_[4]=w(1)*gen(1)

_[5]=3%w(2) *gen (1)

From the calculation of the standard basis we see that Tg/C.(h) = ms.
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5.2.2 The tth command

The tth command calculates the gG tangent space for the map h. The usage of tth is
tth(module, ideal, string) where the module is O, the ideal is made of the components

of h and the string G either R or K. It returns a module, TgG(h).

proc tth (module theta, ideal h, string G)

USAGE: tth( theta, h, string G); theta module, h ideal, G string
PURPOSE: Calculate the _Theta\GG-tangent space of h with

respect to a module of vector fields

RETURN: Returns T_Theta\GG (h)

n

{

def EQ=G[1];

module thetal = intersect(theta, maxideal (1)*freemodule(nrows(theta)));

module TV;

if (EQ=="R")

{

TV = tthe(thetal,h, "R");
}

if (EQ=="K")

{

TV= tthe(thetal,h, "K");
}
return(TV) ;

}
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Example 5.2.6. Consider the Morse singularity h(z,y, z) = x* +y* + 2% with respect
to the vector field module © = (0/0x,0/0y,0/0z). Then, ToK(h) = TK(h) and

TokK(h) =TK(h), i.e., the standard R-tangent space and KC-tangent space.

> ring r=0, (x,y,z),ds;
> ideal h=x"2+y~2+z"2;
> module Theta=freemodule(3);
> tth(Theta,h,"R");
_[1]1=2xz*gen(1)
_[2]=2xy*gen(1)
_[3]1=2x2*gen(1)
_[4]=2yz*gen(1)
_[5]1=2y2*gen(1)
_[6]=2xy*gen(1)
_[7]1=2z2%gen(1)
_[8]=2yz*gen(1)
_[9]=2xz*gen (1)

> tthe(Theta,h,"R");
_[1]=2x*gen(1)
_[2]=2y*gen(1)
_[3]1=2z*gen(1)

> tth(Theta,h,"K");
_[11=2xz*gen (1)
_[2]=2xy*gen(1)
_[3]1=2x2*gen(1)
_[4]=2yz*gen(1)

_[5]1=2y2*gen(1)
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_[6]1=2z2*gen(1)
_[7]=x2xgen (1) +y2*gen (1) +z2*gen (1)
> tthe(Theta,h,"K");
_[1]1=2x*gen(1)

_[2]=2y*gen(1)

_[31=2z*gen(1)

_[4]=x2xgen (1) +y2xgen(1)+z2xgen(1)

5.2.3 The nthe command

The nthe command is used in the same was as tthe and calculates the normal space
and as such returns the K-basis for the quotient 8(h)/TeG.(h) with G either ¢R- or

o/C-equivalence.

proc nthe (module theta, ideal h, string G)

n

USAGE: nthe( theta, h, G); theta module, h ideal, G string
PURPOSE: Calculate the extended _Theta\GG_e-normal space

of h with respect to a module of vector fields

RETURN: Returns N_Theta\GG_{e}(h)

{

def EQ=G[1];
module NTV;
if (EQ=="R")
{

NTV =kbase(std(tthe(theta,h, "R")));
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}

if (EQ=="K")

{

NTV =kbase(std(tthe(theta,h, "K")));
}

return(NTV) ;

}

Example 5.2.7. We calculate the oK-normal space for vy + w? with respect to the

vector fields tangent to the cross cap @s.

> setphi(2);

> module dv=phivfs(2);
> ideal h=v(1)+w(1)"3;
> module NT=nthe(dv,h,"K");
> NT;

NT[1]=w(1) "2*gen(1)
NT[2]=w(1)*gen(1)
NT[3]=gen(1)

> std(NT) ;

_[1]=gen(1)

> kbase(std(NT));

_[1]=0

Note that just as in Example 5.2.3 nthe may produce a misleading answer. One
should be aware that an answer of 0 may mean that the normal space is infinite as a
K-vector space. In this example however we can see that the normal space really is

all of Os.
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Example 5.2.8. Consider h(uy, vy, v, wy,ws) = uy + ve where © is the module of

vector fields liftable over 3.

> setphi(3);

> module dv=phivfs(3);
> ideal h=u(1)+v(2);
> nthe(dv,h,"K");

_[1]=gen(1)

Thus h is a gK.-codimension 1 germ. Thus, h#(p3) has A.-codimension 1 as

shown in [HLO09.

5.2.4 The codthe command

The codthe command is used in the same way as the two previous commands and

returns an integer, the dimension of the K-basis calculated by nthe.

proc codthe (module theta, ideal h, string G)

USAGE: codthe( theta, h, G); theta module, h ideal, G string
PURPOSE: Calculate the extended _Theta\GG_e-codimension of h
with respect to a module of vector fields

RETURN: Returns _Theta\GG_{e}\cod(h)

{

def EQ=G[1];
int COD;

if (EQ=="R")

{



5.2 Description of Singular commands 75

COD = vdim(std(tthe(theta,h, "R")));
}

if (EQ=="K")

{

COD = vdim(std(tthe(theta,h, "K")));
}

return(COD) ;

b

Example 5.2.9. Consider h(uy, vy, vs, wy, we) = uy + 2/2“ where © s the module of

vector fields liftable over 3.

> ideal h=u(1)+v(2);

> codthe(dv,h,"K");

1

> ideal h=u(1)+v(2)"2;
// **% redefining h *x*
> codthe(dv,h,"K");

2

> ideal h=u(1)+v(2)"3;
// ** redefining h *x*
> codthe(dv,h,"K");

3

> ideal h=u(1)+v(2)"4;
// ** redefining h *x*
> codthe(dv,h,"K");

4
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Thus we would conjecture that the K -codimension of u;+v5% is k. An elementary

(but tedious) calculation shows that this is the case.

5.2.5 The guessdet command

The guessdet command returns a possible value of the k —g G-determinacy of a map
with G either gR- or gK-equivalence. This may not be the best value (in theory
a lower k could suffice) but in practice this has given very good results. Like the
previous commands the guessdet command takes a module and a map (in the form

of an ideal)

proc guessdet (module theta, ideal h, string G)

n

USAGE: guessdet( theta, h, G); theta module, h ideal, G string
PURPOSE: Guess the k-_Theta\GG-determinacy of h with

respect to a module of vector fields

RETURN: Returns k-_Theta\GG-determinacy

n

{

def EQ=G[1];

vector hc;

if (EQ=="R")

{

hc = highcorner(std(tth(theta,h, "R")));
}

if (EQ=="K")

{
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hc = highcorner(std(tth(theta,h, "K")));
}

return(deg(hc)+1);

}

Example 5.2.10. Let © be the module of vector fields liftable over the cross cap .

We show that h(vy, wy, ws) = vy + w? is 2-oK-determined.

\4

setphi(2);

\4

module dv=phivfs(2);

\4

ideal h=v(1)+w(1)"2;

\4

guessdet (dv,h,"K");

Since vy is not 1-determined and h is of degree 2 we conclude that h is 2-

determined.

5.2.6 The ct command

This command calculates a complete transversal of degree k. The usage is of the form
ct(module, integer). The integer is k. The output is a Singular kbase made up of
the terms of degree k. Note that the module is usually related to a tangent space, for

example, mTpG with G either gR- or gK-equivalence, but this is not a requirement.

proc ct (module tangent, int k)

USAGE: ct( tangent, k); tangent module, k integer. The module is usually
related to a tangent space module, eg, \M T_\Theta \GG. However,

it can be any module, doesn’t have to be a tangent space
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PURPOSE: Compute a complete k-transversal
RETURN: Returns a set of monomials of degree k which

form the k-transversal

{

module Chl = freemodule(nrows(tangent))*maxideal (k+1);
module comp = std(tangent+Chl);

return (kbase (comp,k) ) ;

}

Example 5.2.11. Let © be the module of vector fields liftable over 3. Consider

h: (C?,0) — (C%,0) given by h(uy, v, ve, wy, ws) = (va,uy).

> setphi(3);
> module derlog=phivfs(3);
> ideal h=v(2),u(1);

> module TK=maxideal(1)*tth(derlog,h,"K");

\

ct(TK,2);
_[1]=w(1) "2*gen(1)
> ct(TK,3);
_[1]=w(1)"3*gen(1)
> ct(TK,4);
_[1]=w(1)"4*gen(1)
> ct(TK,5);

_[11=w(1)"5*gen(1)

Thus we would conjecture in general that a complete k-transversal for h is {(w?},0)}.

In fact, we will show that in Chapter 5 this is exactly the k-transversal.
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Example 5.2.12. For the module of vector fields liftable over @5 we can see some

interesting behavior in the structure of families of singularities.

> setphi(5);

> module derlog=phivfs(5);
> ideal h=v(4)+u(2);

> module TK=maxideal(1)*tth(derlog,h,"K");
> ct(TK,2);

_[11=u(3) "2*gen(1)

> ct(TK,3);

_[1]1=u(3) "3*gen(1)

> ct(TK,4);

_[1]1=0

> ct(TK,5);

_[1]=0

The first two transversals calculated might make one conjecture that there is a
family vy + up + u§. The 4-transversal however is empty (and hence so is the 5-

transversal as we have verified).

Example 5.2.13. We can verify the calculations of the transversals in Fxample 4.2.7
for low values of k. That is, we use the vector fields liftable over py and the function

h(Ul, Wy, ’LUQ) = W2.

> setphi(2);

// x* redefining phiring
> module derlog=phivfs(2);
> ideal h=w(2);

> module TK=maxideal(1)*tth(derlog,h,"K");
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> ¢t (TK,2);
_[1]=w(1)"2*gen(1)
_[2]=v(1)*w (1) *gen(1)
_[3]=v(1)"2*gen(1)

> ct(TK,3);

_[11=w(1) "3*gen(1)

> ct(TK,4);

_[11=w(1) "4xgen(1)
Example 5.2.14. Let V as in Example 2.4.2.

> ring r=0, (u(1..2)),ds;

> module derlog=[9*u(2),-2*u(1)"2], [2*u(1),3*u(2)];
> ideal h=u(1);

> module TR=maxideal(1)*tth(derlog,h,"R");
> ¢t (TR,2);

_[1]1=0

> ct(TR,3);

_[1]=0

> ct(TR,4);

_[1]1=0

> h=u(1)"2;

> module TR=maxideal(1)*tth(derlog,h,"R");
// ** redefining TR *x

> ct(TR,3);

_[11=u(2) "3*gen(1)

> ¢t (TR,4);

_[11=u(2)~"4x*gen(1)
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> ct(TR,5);

_[11=u(2)"5*gen(1)

> h=u(1)*u(2);

> module TR=maxideal(1)*tth(derlog,h,"R");
// ** redefining TR *x

> ct(TR,3);

_[11=u(1)"3*gen(1)

> ct(TR,4);

_[1]=0

> ¢t (TR,5);

_[1]1=0

Example 5.2.15. Let V' be the swallowtail discriminant, then the module of vector

fields tangent to V' is generated by

0 0 0
51 = (]_6U3 — 4U%)a—u1 — 8U1U2 8u2 — 3u 2811,3
& = 6ui+(8u —2u})=— — wu 0
2 28"&1 3 ! (9 U9 ! 28U3
0 0
53 = 2U18—u1 + 31628 + 4U3 aug

> ring r=0,(u(1..3)),ds;

> module dv=[16*u(3)-4*u(1)"2,-8*u(1)*u(2),-3*xu(2)"2], [6*u(2),
8*u(3)-2%u(1)"2,-u(1)*u(2)], [2*xu(1),3*u(2) ,4*u(3)];

> ideal h=u(1);

> module TR=maxideal(1)*tth(dv,h,"R");

// ** redefining TR *x

> ¢t (TR,2);

_[1]1=0

> ct(TR,3);
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_[1]1=0

> ct(TR,4);

_[11=0

> h=u(2);

> module TR=maxideal(1)*tth(dv,h,"R");
// **% redefining TR *x
> ct(TR,2);
_[1]=u(1)"2*gen(1)

> ct(TR,3);
_[11=u(1)"3*gen(1)

> ct(TR,4);

_[1]=u(1) ~4*gen(1)

5.2.7 The trivunf command

This command uses Theorem 4.1.3(ii) to calculate when an unfolding is trivial. The
usage is trivunf(module ct, module tangent) where the module ct is the complete
transversal, the module tangent is the ¢G tangent space for the map h. The output
is an element equal to the input element in ct if the unfolding is not trivial and is
zero if the unfolding is trivial.

proc trivunf (module ct, module tangent)

"

USAGE: trivunf(ct, tangent); ct module, tangent module

PURPOSE: when an unfolding is trivial

RETURN: Returns an element equal to the input element in ct if

the unfolding is not trivial and is zero if the unfolding is trivial.

n
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{
module NTV=reduce(ct,std(tangent));

return(NTV) ;

b

Example 5.2.16. Consider again the situation in Fxample 5.2.13. We can apply
the trivunf command to show that v? and viw, are trivial unfoldings whereas w¥ for

k=2,3,4 are not.

> setphi(2);

> module dv=phivfs(2);

> ideal h=w(2);

> module tv=tth(dv,h,"K");
> module TK=maxideal (1)*tv;
> module t=ct(TK,2);

> t;

t[1]=w(1) "2*gen(1)
t[2]=v(1)*w(1)*gen(1)

t [3]=v(1) "2*gen(1)

> trivunf (t,std(tv));
_[11=w(1)"2x*gen(1)

_[2]=0

_[31=0

> module t=ct(TK,3);

// ** redefining t *x*

> t;

t[1]=w(1) "3*gen(1)

> trivunf (t,std(tv));
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_[11=w(1)"3*gen(1)

> module t=ct(TK,4);
// ** redefining t *x*
> t;

t[1]=w(1) “4x*gen(1)

> trivunf (t,std(tv));

_[11=w(1) "4x*gen(1)
Example 5.2.17. Let us do an example for p,.

> setphi(4);

> module derlog=phivfs(4);
> ideal h=u(1)+v(2);

> module tv=tth(derlog,h,"K");
> module TK=maxideal (1)*tv;
> module t=ct(TK,2);

> t;

t[1]=v(3) "2*gen(1)
t[2]=u(2)*v(3)*gen(1)
t[3]1=u(2) ~"2*gen(1)

> trivunf (t,std(tv));
_[11=v(3) "2*gen(1)
_[2]1=3/2%v(3) "2*gen(1)
_[31=u(2)"2x*gen(1)

> std(trivunf (t,std(tv)));
_[11=u(2) "2*gen(1)

_[21=v(3)"2xgen(1)
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This shows that although u; + v + pugvs is not a trivial unfolding of u; + vy it is
a trivial unfolding of u; + v, + Av3. Hence, we need only one of the unfoldings.
This demonstrates that the output from this command can be extremely useful

even when it is non-zero.

5.2.8 The def_eq command

To calculate a defining function of the image of the minimal cross cap mapping of

multiplicity d > 2 we use procedure def_eq.

Example 5.2.18. We shall apply all the vector fields in the cases of @y and 3 to

the relevant function defining the image.

> setphi(2);

> poly H = def_eq(2);

> H;

w(2)"2-v (1) "2*xw (1)

> module derlog = phivfs(2);

> derlog;
derlog[1]=w(2)*gen(1)+v(1)*w(1)*gen(3)
derlog[2]=-v(1)*gen(1)+2*w(1)*gen(2)
derlog[3]=2%w(2) *gen(2)+v(1) “2*gen(3)
derlog[4]=v(1)*gen(1)+2*w(1)*gen(2)+2*w(2)*gen(3)
> jacobth(derlog,H);

_[1]1=0

_[2]=0

_[31=0

_[4]=4xw(2) ~2*gen (1) -4*v (1) "2*w(1)*gen(1)
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> setphi(3);

// ** redefining phiring

> poly H = def_eq(3);

> H;

w(2)73-v (1) "3*xw (1) +u (1) *v (1) "2+w (2) -3*v (1) *v (2) *w (1) *w (2)
+2%u (1) *v(2) *w(2) “2-u (1) *v (1) *v (2) "2*w (1) -v(2) "3*w (1) "2
+u(1) "2%v(2) "2xw(2)

> module derlog = phivfs(3);

> jacobth(derlog,H);

_[1]1=0

_[2]=0

_[31=0

_[4]1=0

_[51=0

_[6]=0

_[71=9%w (2) ~3*gen (1) -9%v (1) “3*w (1) *gen (1) +9*u (1) *v (1) “2*w (2) *gen (1)
=27xv (1) *v (2) *w (1) *w (2) xgen (1) +18*u (1) *v (2) *w(2) "2*gen (1)
—9xu (1) *v (1) *v(2) "2%w (1) *gen (1) -9%v (2) “3*w (1) "2xgen (1)

+9*xu (1) "2*v(2) “2*w(2) *gen (1)

Note that the final element in the answer is a constant times the defining function.

We can restrict ourselves to the three families by using phivfsO:

> setphi(5);

> poly H = def_eq(5);

> module derlog0 = phivfs0(5);
> jacobth(derlogO,H) ;

_[1]1=0
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_[2]=0
_[31=0
_[4]1=0
_[51=0
_[61=0
_[71=0
_[81=0
_[91=0
_[10]=0
_[11]1=0

_[12]=0

Thus when the vector fields in the three families are applied to a defining function
they return 0.
In the following example we will show that the results in CAST package coincide

with the results of Theorem 4.9 in [BKdP97].
Example 5.2.19. Let V' as in Example 2.4.2.

> ring r=0,(u(1..2)),ds;

> module derlog=[9*u(2),-2*u(1)"2], [2*xu(1),3*u(2)];
> ideal h=u(1);

> module tv=tth(derlog,h,"R");

> module TR=maxideal(1)x*tv;

> ¢t (TR,2);

_[1]=0

> ¢t (TR, 3);

_[1]1=0
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> codthe(derlog,h,"R");

1

> guessdet(derlog,h,"R");

1

> h=u(2);

> module tv=tth(derlog,h,"R");

// **% redefining tv *x

> module TR=maxideal (1) *tv;
// **% redefining TR *x

> module t=ct(TR,2);

> t;

t[1]=u(1) "2*gen(1)

> trivunf (t,std(tv));
_[11=0

> module t=ct(TR,3);

// ** redefining t *x*

> t;

t[1]=0

> codthe(derlog,h,"R");

2

> guessdet(derlog,h,"R");
2

> h=u(1)*u(2);

> module tv=tth(derlog,h,"R");
// ** redefining tv **

> module TR=maxideal(1)x*tv;
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// ** redefining TR x**
> module t=ct(TR,3);
// ** redefining t *x*
> t;

t[1]=u(1) "3*gen(1)

> trivunf (t,std(tv));
_[1]=u(1) "3*gen(1)

> module t=ct(TR,4);

// **% redefining t *x*

> t;
t[1]=0
> h=u(1)*u(2)+u(1)"3;

> codthe(derlog,h,"R");

5

> guessdet(derlog,h,"R");

4

> h=u(1)"2;

> module tv=tth(derlog,h,"R");

// ** redefining tv *x

> module TR=maxideal(1)*tv;
// ** redefining TR *x

> ¢t (TR, 3);
_[1]=u(2)"3*gen(1)

> ct(TR,4);

_[1]=u(2) ~4x*gen(1)



Chapter 6

Classification of Map-(Germs on the
image of The (Generalized Cross

cap

The classification of map-germs on discriminant varieties has been discussed in a
number of papers. Bruce, Kirk and du Plessis classified function-germs on the dis-
criminants of the simple singularities: Ay, Dy and Ej in [BKdP97]. In [BW98], Bruce
and J.M. West gave the classification of simple function-germs from 3-space to R up
to change of coordinates in the source preserving the image of a cross cap, i.e. under
v’ R-equivalence where V is the image of a cross cap.

In this chapter we present a list of all map-germs from (K2?~%,0) to (K%,0) up to
codimension 2 under g/K-equivalence, where © is the module of liftable vector fields
over the minimal cross cap of multiplicity d > 2. Also, we give the classification of
map-germs (K??=1 0) to (K%,0) under K-equivalence, where V is the image of the
minimal crosscap of multiplicity d > 2. In g/K-classification we use diffeomorphisms

induced from integrating the liftable vector fields while in  K-classification we use dif-
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feomorphisms induced from integrating the liftable vector fields and a diffeomorphism
which preserves V' and not necessarily induced from integrating the vector field.

The following theorem summaries our main results:

Theorem 6.0.20. Let © be the module of liftable vector fields over the minimal cross
cap of multiplicity d > 2 and h : (K271 0) — (K9,0) be a submersion map-germ with
olCe-codimension at most 2. Then 1 < q < 2 and h is gK-equivalent to one of the

map-germs in the following:(e; = £1 when K =R and e =1 when K=C.)

Label Normal form oK.~codimension | gK-determinacy Conditions
Tojit v+ ewft! kE+1 kE+1 d=2and0<k<1
Iy wy + ev} 2 2 d="2
51 Ug_o + Vit k+1 k+1 d>3and0< k<1
IWWao | ug3+vg_1+eui_, 2 2 d>4
Vi Up + EWy 2 2 d=3
Vi, (v1,w1) 2 1 d=2
VII; (u1,ve + ewn) 2 1 d=3
VIILyy | (ug,uy + €105 + €2wn) 2 1 d=14

Each germ is labelled with a Roman numeral X; ; such that the ¢ is the multiplicity
d of the minimal cross cap and the j is equal to g/K.-codimension. As a result of the
theorem above, we find the classification of map-germs (K241 0) to (K%, 0) under
vIC-equivalence, where V' is the image of the minimal crosscap of multiplicity d > 2.
The only difference between gK-equivalence and y KC-equivalence is that the germs
of our lists that differ by some sign in g/C-equivalence may form a single orbit in

v IC-equivalence.
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Corollary 6.0.21. Let V' be the image of the minimal crosscap of multiplicity d > 2
and h : (K?*¥710) — (K%,0) be a submersion map-germ with vK.-codimension at

most 2. Then 1 < q < 2 and h s yK-equivalent to one of the map-germs in the

following:

Label Normal form v Ke-codimension | K-determinacy Conditions
Tojit v+ wit k+1 k+1 d=2and 0<k<1
Iy wy + ev? 2 2 d=2
I, Ug—o + Vg—1 1 1 d>3
1L, 5 Ug_o + 5“?1—1 2 2 d>3
IVao | tg—s + va—y +eui_y 2 2 d>4
Vs vy + wy 2 2 d=3
Vi (v1, w1) 2 1 d=2
VI3 (u1,ve + wq) 2 1 d=3

VIILyy | (ug,uy + vs 4 cw) 2 1 d=14

The rest of the chapter is devoted to the proof of theorem 6.0.20. In fact, we apply
the results of the previous chapters; that is the use of liftable vector fields, complete
transversal method, gK-determinacy and gK-triviality. When ¢ = 2 the majority of
the calculations were done by the CAST package.

Before we start with the proof of theorem 6.0.20, we have to state and prove some

technical results.

6.1 The 1-jets of Coordinate Changes

To perform the classification under g/C-equivalence, we need to determine some co-

ordinate changes, i.e., we need diffeomorphisms induced from integrating the vector
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fields and matrices. As we know from chapter 2 that the module of the liftable vector
fields over the minimal cross cap of multiplicity d > 2 is generated by 5;, JQ», @3 and
& for 1 < j < d—1. All these vector fields vanish at the origin, and we can integrate
these vector fields to get diffeomorphisms. In fact, these diffeomorphisms preserve V|
where V' is the image of the minimal cross cap of multiplicity d > 2.

We denote these diffeomorphisms by @; , i.e., @f means a diffeomorphism induced
by integrating the vector field §Jf . For & we denote this diffeomorphism by ®.. We
use coordinates (Uy,...,Ug o, Vi,..., Va1, Wi, Ws) on the target of these diffeomor-
phisms. For &, we denote this diffeomorphism by ®..

In general, it not easy to find these diffeomorphisms. However, we can find the
1-jets of these diffeomorphisms by integrating the 1-jets of liftable vector fields (see
[Mar82]).

The 1-jets of the liftable vector fields in the first family are given in the following

table
Lincarpart | & | & | & |&|..| &, | &, | e,
Ail}j 0 0 0 o |... 0 0 0
Bi; 0 0 0 0 |... 0 0 —dws
B%,j 0 0 0 0 |... 0 —dwsy | duvy
B;j 0 0 0 0 |...| —dwy | dvq dvs
B}F&j 0 0 —dws | dvy | ... | dvg_g | dvg_s | dvg_y
B, i 0 —dwy | dv; | dvy | ... | dvg_s | dvg_s | dvg_s
B}FL ; —dwsy | dug dvy | dvus | ... | dvg_s | dvg_s | dvg_o
C;j 0 0 0 0o |... 0 0 0

By integrating these 1-jets we get the 1-jets of the diffeomorphisms <I>} with coor-
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dinates
U, =
V. =
Vi, =
V. =
W, =
where o € K.

u; foralll <:<d-—2,

v; foralll <i<d-—j—1,

Vg—j — dows,

v; + dawi_qy

w; for all

1<i<2,

foralld—7+1<i<d-—1and

The 1-jets of the liftable vector fields in the second family are given in the following

table

Linear part & & & & 2, 2 2
Af’j d(d —1)u, —d?w, 0 0 0 0 0
A3, d(d — 2)us d(d — 1w —d?w, 0 0 0 0

Ag—&j 3dug_s 4dug_y 5dug_s 6dug_g d(d — 1u, —d?w, 0
Aiw 2dug_o 3dug_s 4ddug_q 5dug_s d(d —2)uy | d(d — Duy | —d*w,
B2, —du, 0 0 0 0 0 0
B;j —2dvy —du, 0 0 0 0 0
B372.j —d(d - 2)'0,1,2 —d(d - 3)1)(1,3 —d(d - 4)’0{1,4 —d(d - 5)1}(1,5 —2d’l)2 —d’Ul 0
Bi ., —d(d —1)vg_1 | —d(d —2)vg_s | —d(d — 3)v4_s | —d(d — 4)v4_4 —3duvs —2dv, —dv;
Cf’j d?w, 0 0 0 0 0 0
Cg.j 0 0 0 0 0 0 0

By integrating these 1-jets we get the 1-jet of ®? with coordinates

U, = edld=i)8,,.
Vi =e "y,

W1 = edQﬁ

W2 = Wsy.

w; and

forall 1 <:<d-—2,

forall 1 <:<d-—1,
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The 1-jets of (IDJQ- for 2 < j <d—1 are given by
U=u; foralll <i<j—2,
Uj—l =Uj—1 — dQBwla
U=u+dd—i+j—1)fui_jy1 forall j<i<d-—2,
Vi=wv; foralll <i<j—1,
Vi=v,—d(i—j+1)pvi_j1 forall j <i<d—1and
Wi =w; foralll<i<2,

where [ € K.

The 1-jets of the liftable vector fields in the third family are given in the following

table
Linear part | & & & & |- Gis | G | Gia

A%, d*v, | —d*w 0 0 .10 0 0
A‘;’,J- d?vs vy | —d?w, 0 . 0 0 0

Al g i Pvg_s | Pvg_g | Pvg_s | Pvg_g | ... | v | —dPws 0

Ag_% Pvg_o | Pvg_s | Pvg_y | Pvg_s | ... | d*vq dvy —d%w,
B, 0 0 0 0 |...| 0] o 0
3 dPwy |0 0 0 |...] 0] o 0
C3; 0 0 0 0 .10 0 0

By integrating these 1-jets we get the 1-jets of the diffeomorphisms <I)§?. The 1-jet
of @3 is given by
U,-:ui—i-dzyvi foralll1 <:<d-2,
Vi=wv foralll <i<d-—1,
Wi =w; + dQ’wa and

WQ = W2.
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For 2 < j <d— 1, the 1-jets of ®? are given by

U =u; foralll <i<j—2,

Uj—l = Uj—1 — d27w2,

Ui:ui+d2'yv,-_j+1 forall j <i<d-2,
Vi=w, foralll <i<d-—1and

Wi =w; foralll<i<2,

where v € K.

Finally, by integrating the Euler vector field we get the diffeomorphism &, with

coordinates
Uy =e 4Dy, foralll1<i<d-— 2,
V. = e(d_i)“vi forall1<i<d-—1and
W; = ew; foralll<i<2,

where p € K.

We can find other diffeomorphisms from these vector fields. In fact, we shall use
these diffeomorphisms in our classification.
Example 6.1.1. Let

d—1
1, 9 9
g_ge Egl_d;mavi_’_dll&au@'

Then by integrating this vector field we get the diffeomorphisms with coordinates

U =u; foralll<i1<d-—2,
Vi = ey, foralll <i<d-—1 and
Wy =w; and

Wy = edawg,
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where o € K.

We shall use the diffeomorphism in the following proposition in the proof of Corol-

lary 6.0.21.

Proposition 6.1.2. Let V' be the image of the minimal crosscap of multiplicity d > 2.
The map-germ ® : (K*~1 0) — (K1 0) defined by

q)(% U1,y ... 7Ud71>w17w2) = (% —V1,..., —Uq—1, W1, —’wz)

preserves V.

Proof. We will show that ®(V') C V. We have

d—2 d—1
Dopy(uv,y) = O (u oyt > uy’ ) vﬁf)

In other words we have ®(im ¢4) C im . O

6.2 Classification Techniques

Theorem 6.2.1. Let © be a module of smooth vector fields on (KP,0) such that all
the vector fields vanish at 0. Let h : (KP 0) — (K%, 0) be a map-germ. Suppose G = K
or R. Then ¢G.—cod(h) > q.

Proof. Since every vector field in © vanishes at the origin, then ToG.(h) can
not contain e; = (0,0,...,0,1,0,... ,O)T € K9 which has zeros except at position j,

where it has a 1 for all 1 < j < ¢. Hence, gG.—cod(h) > q. O
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Definition 6.2.2 ([Wal09]). Let © be a module of smooth vector fields on (KP,0)

and h : (KP,0) — (K90) be a smooth map-germ. We say that h is ¢G-stable if
Q(f) = Tege(h)'

Corollary 6.2.3. Let © be a module of smooth vector fields on (KP,0) such that all
the vector fields in © vanish at 0. Let h : (KP,0) — (K9,0) be a map-germ. Suppose

that G = K or R. Then there are no oG-stable map-germs.

Proof. Since every vector field in © vanishes at the origin, then from Theo-

rem 6.2.1 we have gG.—cod(h) > 0. O

Corollary 6.2.4. Let © be a module of smooth vector fields on (KP,0) generated by
{&1,&, ..., &} such that all these vector fields vanish at 0. Let h : (KP,0) — (K9,0)

be a map-germ. Suppose that G =K or R. If pq > r + ¢*, then oG.—cod(h) > q.

Proof. Since every vector field in © vanishes at the origin, then from Theo-
rem 6.2.1, we have ¢G, —cod(h) > ¢. Suppose that gG.—cod(h) = ¢q. Then, since
e; = (0,0,...,0,1,0,...,0)" ¢ ToG(h) for all j =1,2,...,q. We have

ToG(h) =m, (e1,€2,...,€q) -

Then, from right hand side we have pq distinct generators and from left hand side
we have at most r + ¢? generators. In other words, we have pqg < r + ¢* and this is a

contradiction. O

Corollary 6.2.5. Let © be the module of liftable vector fields over the minimal cross
cap of multiplicity d. If d > 5, then there is not a map-germ h : (K*1 0) — (K2,0)

with oKC.—cod(h) < 2.

Proof. The dimension of the target of the minimal cross cap of multiplicity d is

2d — 1 and from Chapter 3 we know that © generated by 3d — 2 vector fields.
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Suppose that d =4 +t with t > 1, then we have

(2d—1)q = 4d—2
= 3d—2+d
= 3d—244+t, t>1
= 3d-2+¢+t, t>1

> 3d—2+ ¢

Therefore, from corollary 6.2.4, we have g/ C—cod(h) > 2. d
The following proposition is used as a technical tool in the classification of function-

germs from (K271 0) to (K, 0).

Proposition 6.2.6. Let © be the module of liftable vector fields over the minimal
cross cap of multiplicity d > 2. Let h : (K*~1 0) — (K, 0) be a function-germ defined

by
2 2
h=> g isttia—izt + Y Ba—iva—i + 1w,
i=1 i=1

for some constants «;, B; and v in K.

Then, for 1 < j <d—1 we have

2 2

f;(h) = Z(Z + 1)(d - j)adfifludfiuj + Z Ba—i (dvjfi - dud+j7iw2 + dUd+jfiw1

i=1 =1

— ((d — Z)(d — j) — j)ujvd—i — duj'_lvd_i+1> + d(d - j)’Ylijl.

2
532(]1) = Z Ag—i—1 <d(] + i)ud_j_i - d(?d —j - i)UQd_j_iwl — 2(d — j)ud_iud_j>
=1

2
+ Z ﬁd—i <—d(d —j — 1 + 1>Ud—j—i+1 + (d — 1)(d — j)ud_jvd_iﬂ)
=1

+d(d = j+ D)yug—jr1wr + jyu g,
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2
gjg(h) = Z Ag—i—1 (dQUd_j_i — d(Qd — j — ’i)UQd_j_iwg — d(d — j)ud_jvd_i>
i=1
2

+ Z d(d — j)Bi—ivi—jVa—it1 + d(d — j + 1)y1uq—jr1ws + dy1urva_;.
=1

2

2
&(h) = Z(Z + D)ovg—i—1Ug—i—1 + Z 10 —i—1Vg—; + dy1wy.

i=1 i=1

Proof. Foralll1<j<d-—1and1<m <3 we have

2 2
EMh) =Y i Ay, + Y BaiBy  +nCYY
=1 =1

where A7', , ; are the entries of {I" that correspond to the coordinates ug-3, uq-2,
By, ; are the entries of £ that correspond to the coordinates v4—2, v4-1 and C7'; are
the the entries of ;" that correspond to the coordinate w;.

From the first family of liftable vector fields we easily find
Al oy = 2(d = j)ua-2u;,
Ay s = 3(d — jlug-suy,
Cl,; = d(d — j)ujw.

For By, ; and Bj_, ; we have that

d—2 d—1
1 .
By ,;=4d E Ugyj—r—1Vr — d g UpVipj—r—1 — (d = 2)(d — j)u;v4-1
r=1 r=1
+ dUd+j_1U}1 - dud+j_1w2.

Now, ugijp1 =0ifd+j—r—1>d, ie,r <j—1 Similarly vgy;_,—1 = 0 if
r < jand also v44;_1 =0forall 1 <j<d-1.

Therefore we have

d—2 d—1

Bcllfl,j =d Z Ud4j—r—1VUr — dZUTUdJrj,T,1 - (d - 2)(d — j)UjUd,1 — dudJrj,le.

r=j5—1 r=j
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d—2
We want to change the lower limit and upper limit in = ) w4 j_r—1v,. We write
r=j—1

s=d+j—r—1. We find that

d—2 j+1
§ Uy j—r—1Ur = g UsVd4j—s—1
r=j—1 s=d
It follows that
j+1 d—1
1 .
Bd—l,j =d E UsVdtj—s—1 — d E UpUdtj—r+1 — (d — 2)(d - j)UjUd_l - dud+j_1w2.
s=d r=j
Since ug = 1 and ug_; = 0. We see that
d—2 d—2
1 .
By ,;=d E UsVitj—s—1 — d E UpVdtj—r+1 — (d — 2)(d — j)uvg_1 — dugyj_1ws.
s=j+1 r=j
d—2 d—2
=dvj_; +d E UsViqj—s—1 — dUjvg_1 — d E UrVtj—r+1
s=j+1 r=j

— (d — 2)(d — j)UjUd,1 — dudﬂ-,le

= de_l — (d + (d - 2)(d — j))ujvd—l - dud+j_1w2.

It can be show in a similar way that
3572734 = d’Uj,Q - (d + (d - 3)(d - j))UjUd,Q - dud+j,2”LU2 - d'LLj,ﬂdel + dUdJrj,Q'wl.

From the second family we have

A¢21—2,j = —d(d + d—2 —j + 1)ud+d_2_j+1w1
d—2
+d2(d +d—2—j—2r+ Dutgrg—o—jri1 — j(d — 2+ 1)ug_op1Ua—;
r=1
d—2
= —d(2d —j — 1)u2d_j_1w1 + dz<2d —] —2r — 1>uru2d—j—r—1
r=1

—j(d - 1)Ud—1ud—j
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Now, ugg—j—r—1 =0if2d—j—r—1>d,ie.,r <d—j—1. Also, we have ug =1
and ug_; = 0. It follows that

d—2
A,y = —d2d—j—Duggjowi+d Y (2d—j — 2r — Duuga—jp1
r=d—j—1
= —d(Zd —j — 1)UQd,j,1’lU1 + d(2d —j —2d + 2] +2— 1)ud,j,1u2d,j,d+j+1,1

+d(2d - ] —2d + 2] - 1)ud_ju2d_j_d+j_1

d—2
+d Z <2d —j —2r — 1>UTUJ2d,j,r,1
r=d—j+1
= —d(2d — j — Duga—j1wi + d(j + Dug—j-1uq + d(j — D)ug—jua—
d—2
+d Z <2d —j —2r — 1>UTUJ2d_]’_r_1
r=d—j+1
= —d(2d —j — Dugg—j1w1 +d(j + Dug_j1
d—2
+d Z <2d —j —2r — 1)UTUJ2d_]’_r_1.
r=d—j+1

We need to show that

d—2

> (2d—j—2r — Dustig_j—r— =0.
r=d—j+1

Let s = 7 — d 4 r. Therefore we have

d—2 -2
Z (2d — 5 —2r — Du,ugg—j—r—1 = Z(j — 25 — 1)Ugys—jUd—s—1-
r=d—j+1 s=1

a) If j is even, then we have

J

i—2 21
Z J— 25— Dugys— jUd—s—1 = Z(] —2s — 1)ud+sfjudfsfl
s=1 s=1

-2
+ (j — 25 — 1)Ud+57jud,s,1.

S

.

I
NS,
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In the second summation, let t = j — s — 1. Therefore we have

> (=25 = Dugra—jtia—s—1 =

S=

(J =2t = Dug—y—juaps—1
1

[
~

I
N —
|

1

NS,
I

(j — 2t — 1)ud+t_jud_t_1.

It follows that

N
[
|

—

j_

(j = 25 = Dttagps—jtia—s—1 = > _(j = 28 — Dgyejtig_s1

s=1

s=1
-1
_ Z(] — ot — 1)ud+t_jud—t—1
t=1
=0.

b) Ifjisodd,thenasj—Qs—l:0fors:j%1,wehave

i—2 S
> (=25 = Dtapsjtia—as = Y (§ = 25 — Dtgyajtig—s
s=1 s=1
j—2
+ Z (] — 25— 1)Ud+5,jud,5,1.
s=iz1l4q

Let t = 5 — s — 1 in the second summation, then we have

j—2 1
Z (J =25 — uags— jUd—s—1 = — Z (j—2t— 1>ud+tfjud7t71
s=1z1 41 t=21511
=1
== > (=2t — Dugor_jtigri.
t=1
It follows that
j—2 -
> (=25 — Dugrejtta—ss = Y (j =28 = Dtlggerjtia—s
s=1 s=1
1o
- Z (J =2t = Dug—s—juari—
t=1
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Therefore, we proved our claim and hence we have
A gy = —d(2d = j = Dugg—j—rwr +d(j + Vua—j1.
It can be show in a similar way that
Al sy = —d(2d = j = 2)uzg—jpwi + d(j + 2)ua—j—z — 2(d — j)ug—ztta;.

2 2
For Bj_, ; and By ,; we have

d—1
Bi; = —dd+d—1—j+1)vga1-jr1wi + dZ(d +d—1—j—7r+D)uvarda—1—j—r+1
r=1
d—1
—dzmd+d—1—j—r+1vr —Jjd =14+ Nug—jva-141
r=1
d—1
= —d(2d — j)vaq—jw1 + dZ(Qd —J = T)urvag_j
r=1
d—1
—eruzd_j_rvr — djug—;vq.
r=1

= —d(?d -7 — 1)u2d,]’,1w1 + d(] + l)ud,j,l.

We can see that for all 1 < j < d —1, voq—; = v4 = 0. Also, vgq_j—, = 0 if
2d—j—r>d,ie,r <d-—jand similarly ugq_;—, =0if r < d —j.

Therefore we have

d—1 d—1

Bﬁ—u = d (2d — j — r)u,v9q—j—r — d Z TUd—j—rUr
r=d—j+1 r=d—j
d-1
= d (2d — j — r)u,vaq—j—r — d(d — J)UqVa—;
r=d—j+1
d-1
—d Z TUd—j—rUr
r=d—j+1
d—1
= d (2d — j — r)upv2q—j—r — d(d — j)va—;
r=d—j+1

d—1
—d g TU2d—j—r Uy

r=d—j+1
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Let s = 2d — 7 — r in the second summation, then we have

d—1 d—1
Z TUd—j—rUr = Z (2d - ] - S)USUQd—j—s-
r=d—j+1 s=d—j+1
It follows that
d—1
By ; = d Y (2d—j—r)uvsj_r —d(d—j)va;
r=d—j+1
d—1
—d Z TU2d—j—r Uy
r=d—j+1
= —d(d - j)va—;-

It can be show in a similar way that
B, =—d(d—j—1vg_j1+ (d—1)(d — j)uajva1.

Also, we have

012,1' =d(d — j+ 1ug_j1w1 + juitg;.

From the third family we have

A?le,j = —d(d+d—2—j+1uarda 2 j1ws
d—2
+d Z(d +d—=2—j—7r+1Duard2jri1Vr
r=1
d—2

—dz TU Vit d—2—j—r41 — A(d — 2+ 1)Ug_04104_;

r=1
d—2

= _d(2d —J— 1)u2d—j—1w2 + dZ(Qd o e 1)u2d—j—r—1vr

r=1

d—2
—dz TUrVod—j—r—1 — d(d — 1)ud_1vd_j.
r=1

Now, we can see that ugg_j 1 =0if 2d —j—r—1>d, ie,r <d—j—1
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Similarly vaq—j_r—1 = 0 if r < d — j. Therefore we have

d—2
A3—2,j = —d(2d — j — 1)u2d_]~_1w2 + d Z <2d —] - T — 1)u2d—j—r—lvr

r=d—j—1

d—2
—d Z TUrVod—j—r—1 — d(d — 1)ud_1vd_j

r=d—j
= —d(2d — j — 1)u2d_j_1w2 + d2udvd_j_1 + d(d - 1)ud_lvd_j
d—2
+d Z (2d _j -r-= 1)’1112(1,]',7,11)7.
r=d—j+1

d—2
—d Z TrUrV2d—j—r—1 — d(d — 1>Ud—lvd—j

r=d—j
= —d(2d —j — Duggj 1wz + d2vdfj71
d—2 d—2
+d Z (2d — j - T — 1)U2d,j,r,1’l)r —d Z TUrV2d—j—r—1-
r=d—j+1 r=d—j

Let s =2d — 7 —r — 1 in the second summation, then we have

qu,j = —d(2d — j — 1)ugq—j1w2 + d2vd—j—1

d—2
+d Z (2d _j —-r-—= 1)u2d—j—r—lvr
r=d—j+1
d—j+1
—d Z (2d—j—s— 1)Ugq—j—s—1Vs
s=d—1

= —d(2d — j — 1)ugq—j1wa + dQUdfjfl

d—2
+d Z (2d —j - T — 1)U2d,]’,r,11}r
r=d—j+1
d—2
—d Z (2d —j — S — 1)u2d,j,s,1vs — d(d — j)ud,jvd,l
s=d—j+1

= —d(2d — j — Dugg—j—1wz + d*v4_j—1 — d(d — j)ug—jv4_1.
Similarly, we have

Ag_g’j = —d(2d —j — 2)qu_j_2w2 + d2vd_j_2 — d(d — j)ud_jvd_g.
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3 3
For By, ; and Bj_,; we have

Bg—m‘ = —dd+d—1—j+1)varg-1-j4102
d—1
+d Z(d + d—1 —j —2r + 1)Urvd+d_1_j_r+1 — d(d -1+ 1)Ud—1+1vd—j
r=1
d—1

= —d(2d — j)vgd_ng + dz<2d —j — QT)UTUQd_j_T

r=1

2
—d VdUd—j-

For all 1 < j < d —1 we have v5q_; = 0 and also vq = 0. It follows

d—1

Bg—m = dZ(Qd — J — 2r)U,V9q—j—p-
r=1

We will show that

d—1
> (2d - j = 2r)v,000_—, = 0.

r=1

Let s = j — d + r. Therefore we have

d-1 j—1
Z(2d —J = 2r)Uveg_j—y = Z(] — 28)Vg—j+5Vd—s-
r=1 s=1

a) If j is even, then we have

j—1

3

2

D (=28 varsjvas = > _(J = 28)VajsVas

s=1

s=1
j-1
+ Y (= 25)va jistas
s:%—i—l
o1 |
) . J
= > (J—28)VajrsVa—s+ (J — 2(5))%%7]-%,%
s=1
j-1
+ Y (= 28)va jistas
s:%Jrl
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In the second summation, let t = j — s. Therefore we have
11

(= 28)0a-j4va—s = D _(J = 25)0aj1aVd—s
1 s=1

1
+ Z (J — 2t)Vay1Va—jtt

—J
t=1-1

—_

j_

S

= 0.
b) If j is odd, then we have
-1 5
Z(] - 25)Udfj+svdfs = Z(] - 23)Ud7j+svdfs
s=1 s=1
j—1
+ )~ 28) Vi
s:%Jrl

Let t = 7 — s in the second summation, then we have

Jj—1
2

(J — 28)Vd—jtsVi—s = Z(] — 25)Vd4s—;Vd—s
1 s=1

—_

j_

S

1
(j - 2t>vdfj+tvd7t

_Jj=1
t="5

It follows that

[\
y

j_
(j =25 = Dtgya—jttas—1 = 3 (j = 25 — Dugrejtla—s—1

s=1 s=1

j—l_l

2

- Z (7 — 2t = 1)Ug—s—jUgis—1

t=1

Therefore, we have proved that

Q

-1
(2d — j — 2r)v,v94—j—r = 0.
1

ﬂ
Il
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Hence we have Bj | ; =0 for all 1 < j <d —1. For B} , ; we have

BS—QJ = —d(d + d—2— j + 1)vd+d_2_j+1w2
d—2
+d Z(d + d—2— ] —2r + 1)Urvd—|—d—2—j—r+1 — d(d — 24 1)Ud—2+1vd—j
r=1
d—2
= —d(2d — j = V)vsq_j_qwa +d Y _(2d — j — 2r — 1)0,024_j_r1

r=1

—d(d — 1)’Ud,1'l}d,j.

We can see that vyq_j_; = 0 for all 1 < 57 < d—1. Also, vgg_j—r—1 = 0 if

2d—j—r—1<d,ie,r <d—j— 1. Therefore we have

IS
[\

B;’_Q,j = d <2d —j —2r — 1)’07'02517]'71”71 — d(d — 1)'Udflvd7j

T

Il
=9

—J

d—2
= d(j — Dvg_jva—1+d Z (2d — 5 —2r — 1)v,v99—j—r—1
r=d—j+1
—d(d — 1>Udflvd7j
d—2
= —d(d— fvajuaa+d Y (@2d—j -2 — 1)o0m0 5.
r=d—j+1

In a similar way to the Bj_, ; we can show that

d—2

> d—j—2r—1)v,090 41 =0.

r=d—j+1

Therefore, we have
Bjj 5; = —d(d — j)v4_jva-1.
Also, from the third family we have
Cij - d(d —J+ l)ud—j-i-lwz + dulvd_j.

Therefore, we deduce the stated form of &3(h). O
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Proposition 6.2.7. i) Any finite codimension (k + 1)-jet with k-jet ug_o + cv4_1
and k > 1 is gK-equivalent to ug_s + cvg_q1. (¢ = £1 when K =R and e =1

when K =C.)
it) The jet ug_o + evg_q is 1-gK-determined and has oK.-codimension 1.
Proof.

i) Let h denote the k-jet ug_o + ev4_1. Then from Proposition 6.2.6 we have for

all<j<d-—1:

1) & (h) = 2(d— j)ua—ou;+edv;_, —€<d+ (d— 2)(d—j)>ujvd,1 —edugyj_1w2,
2) &(h) =d(j + Dug—j—1 — d(2d — j — Dusg—j—1w: + ed(d — j)va-;,
3) & (h) = d*va_j1 — d(2d — j — 1)ugq—j 1wy — d(d — j)ug_jva_1,
4) &(h) = 2ug—o + €vg_1.
Since h = ug_9 + evg_1 and & (h) = 2ug_s + €vg_1, then uy o and vg_q are in
TeK(h). From & (h) and the above we get wy € Tok(h). From £ (h) we have

V1, Vs, ..., Vg—o and wy are in Tok(h).
Now, from &j(h) we get uy, us, ..., ug_3 in Tok(h).
Therefore, we have

ToK(h) = may_.

We can see that the (k + 1)-transversal is empty for all k£ > 1.

i1) Let h denote the (k + 1)-jet ug_o + cvg_q. Since ToK(h) = myy_;, then from

Theorem 4.1.9 h is 1-gK-determined and we can see that ¢/C.—cod(h) = 1.
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From above if we have h = ug_o + €vg4_1, then h is a gK.-codimension 1 germ.

Thus, h*(p3) has A.-codimension 1 as shown in [HL09].

Proposition 6.2.8. i) Any finite codimension (k+1)-jet with k-jet ug_o and k >
1 1s oK-equivalent to ug_o + 5v§f11 or ug_s. (¢ ==x1 when K =R and e =1

when K =C.)
i1) The jet ug_o +evitl is (k+1)-KC-determined and has oK.-codimension k + 1.
Proof.

i) Let h denote the k-jet uy 5. Then from Proposition 6.2.6 we have for all 1 <
j<d-1:
1) & (h) = 2(d — j)ua—suy,
2) &(h) =d(j + Dug—j—1 — d(2d — j — Dugg—j—1w,
3) §(h) = d*vg—j1 = d(2d = j = Dttag—j 1w — d(d = j)ug—jva-,

1) €.(h) = 2ug_s.

Since h = ug_y, then we have ug_y € ToK(h). From &7(h) we can see that
Uy, Usg, . . ., Ug—3 and wy are in TokC(h). Also, from f;’(h) we have v1,v9,...,04_9

and wq are in Te/C(h).

It follows that
Tol(h) = (uy,ug, ..., Ug—2,V1,V2, ..., Vg_9, W], Ws).
Therefore, for all £ > 1 we have
mj; ) C myy  ToK(h) + (vf]).

Then from Theorem 4.2.1 we have a (k + 1)-transversal that is spanned by

{vit1}. Hence, any (k + 1)-jet with k-jet h is gK-equivalent to ug_o + A"}
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with A € K. If A # 0, then from integrating the vector field £ = £, — }16 we get
a diffeomorphism ® which fixes A = +1.

ii) Let h denote the (k + 1)-jet ug_o + evitl.
Then from Proposition 6.2.6 we can see that that
1) €(h) = 2(d — j)ua_su; +e(k + 1) (dyj,l — (d+ (d—2)(d — j))ujvi1
— dudﬂ,lwg)vfj_l,
2) &(h) =d(j+1)ug—j—1 —d(2d—j — D)uza—j—1wr —ed(k+1)(d — j)va—jv4_s,
3) €3(h) = dPvg_j 1 — d(2d — j — Vung_j 1wy — d(d — J)ua_;var.
4) &e(h) = 2uq_g +e(k + 1)vf_,.

It follows that

T@K(h) = <U17U27 <oy, Ud—2,V1,V2,. .. 7U§j117w1,w2>-

Thus

mj; Y C ToK(h).

Therefore, from Theorem 4.1.9 h is (k + 1)-g/K-determined. Furthermore, from

the description of Te/KC(h) we get o/Cc—cod(h) = k + 1.
U

Proposition 6.2.9. i) Any (k+1)-jet of a finite codimension function-germ with
k-jet ug_3 + vg_1 (d > 4) and k > 1 is gK-equivalent to one of the following.
(e==x1 whenK=R ande =1 when K=C.)

a) ug-s + v4_1 + eusfé with d is even and 1 < k < 3 ord = 5,7,9 and

1 <k<4t
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b) ug_3 +eva_1 withd=5,7 and k > <2 — 1.

i) a) The jet ud_3+vd_1+5u§fé is (k+1)-¢KC-determined and has oK. -codimension

kE+1.

b) The jet ug_3+vg_1 is (%)—@K—determined and has g K.-codimension %.

Proof.

i) Let h denote the k-jet ug_3 4+ v4_1. Then from Proposition 6.2.6 we have for all
1<5<d—1:

1) & (h) = 3(d — j)ug—su; + dvj—y — (d + (d — 2)(d — j))ujv4_,
— dugyj_1wo,

2) ff(h) = d(] + 2)ud,j,2 — d(2d —j — 2)u2d,j,2w1 — 2<d —j)ud,gud,j — d(d—

j)vdfja
3) f?(h) = dQUd_j_g - d(2d —j - 2)u2d_j_2w2 — d(d — j)ud_jvd_g,

4) fe(h) = 3ud_3 + Vg_1-

From h and & (h) we can get ug_s and vg_1 in Te/C(h). From &;(h) we can get

V1, Vg, ..., Vg—o and wy in Tek(h).

(a) If d is even, then from f? for j is odd we get ug_3,uq_s,...,u; and for j is

even we have

(Ug—a + Vag_a,Uq—6 + Va_s, - - -, Uz + o, w1 + 1) C TeK(h) +m3,

with ¥g_4,%a ¢, ..., %2 and ¢ in m3, .

Therefore, for all £ > 1 we have

mi T C myy 1 ToK(h) + (ujy) + mbi?.
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i)

Then from Theorem 4.2.1 we have a (k + 1)-transversal that is spanned
by {uflf%} Hence, any (k + 1)-jet with k-jet h is g/C-equivalent to ug_s +
VUg—1 + )\ugfé with A € K. If X # 0, then from integrating the vector field

E=(d—-1)&+ %55 we get a diffeomorphism which fixes A = +1.

(b) If d is odd, then from 5]2 for j is odd we get ug_3,ug_s,. .., us, w; and for

d+1
j is even we have u,2, € ToK(h) and

(Ug—a + Vi1, Ud—6 + Va—p, - - ., Uz + V3, u; + 1) C Tl(h) + mgd—l

with ¥g_4,%4 6, --,%3 and ¢y in m3, .

(by) For all 1 <k < % —1 we have a (k + 1)-transversal that is spanned
by {ust;}. In the same way in (a) we have any (k + 1)-jet with k-jet
h is eK-equivalent to ug 3 +vg_1 £ ukt) with A € K.

(by) For all k& > % we can see that the (k + 1)-transversal is empty.

Therefore, any (k+ 1)-jet with k-jet h is g KC-equivalent to ug_3+vg_1.

a) For d is even with k > 1 or d is odd with 1 < k < %—1. Let h =

Ug_3 + v4_1 FulTy, then we have

ket k2
ms. " C myg 1 TeK(h) +my 7~

By Nakayama’s lemma we have
k+1
my,—, € TeK(h).
Therefore, from Theorem 4.1.9 h is (k + 1)-o/K-determined. Furthermore,

we have g/fC.—cod(h) =k + 1.

b) For d is odd with k > d—;rl. Let h = u4_3 + v4_1, then we have

da+1

msz_l Q mgd_lT@K(h).
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Therefore, from Theorem 4.1.9 h is (£2)-gK-determined and we can see
that K. —cod(h) = 4L, O
Proposition 6.2.10. i) Let d = 3. Then any (k+ 1)-jet with k-jet vg_1 +w; and
k> 1 is gK-equivalent to vg_1 + wy.
ii) The jet vg_1 + wy is 2-gKC-determined and has ¢K.-codimension 2.
Proof.

i) Let h(uy, vy, ve, w1, ws) = vy + wy1. Then we have

Tok(h) = Tok.(h)
= (& (1), & (h), & (h), &(h))j=y + (h)
= (=3wy — Buqvy + 6ujwy, 3v1, —6vy + Ywy, 3uqvq, vy + 3wy,
—3v; + 2u] + 9wy + 3uyvy) + (vy + wy)

— <U1,U2,/LU1,'LU2,U?>.

Then we have

mZ C msTo/kC(h) + (uf).
And for k£ > 2,
mit C msTokC(h).
This {u?} is a 2-transversal and for all k > 2, the (k + 1)-transversal is empty.

Hence any function g with 1-jet equal to vy + w; is gK-equivalent to some H

with j2H = vy + wy + Au?, where \ € K.
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If we consider j2H as a 1-parameter family H,, then we have

ToK(Hy) = (&(Hy), & (H), & (Hy), &(Hy))o, + (Hy)
= (8\u? — 3wy — Buyvy + 6uswy, 3vr, 12 u? — 6vy + Jwy,
— 18 \uqwy — 3vy + 2u§ + 18Auq vy + 9wy + 3uive, —18Auqws
—6Aulvy + 3ugvy, 4dud + vg 4 3wy) + (vy + wy + Aud)

= </Ul,’U2,’LU1,’U)2,U%>.

Thus,

oH
a—; € ToK(H,).

Hence, we get H) is a gK-trivial.

ii) Obviously, m? C msTgK(h). Hence h is 2-yK-determined and from the de-

scription of Te/C.(h) we get oK.—cod(h) = 2.
U

Definition 6.2.11. Let © be a module of smooth vector fields on (KP,0) such that
all these wvector fields vanish at 0 and h : (KP,0) — (K%0) be a map-germ. We

define TpeK (j'h) to be the vector space over K of the linear parts of the elements in
ToK(h).

We need the following proposition in the proof of theorem 6.0.20.

Proposition 6.2.12. Let © be a module of smooth vector fields on (KP,0) such that
all these vector fields vanish at 0 and h : (KP,0) — (K%,0) be a smooth map-germ.
Let g be a linear. If g & TjpoK(j'h), then g & ToK(h).

Proof. Suppose that g € Tok(h). We have

ToK(h) C TpoK(j'h) + G with G C m2(h).
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Therefore, we get that g € Tj1oK(j'h) + G with G € m26(h).
It follows g € Ty (51 h). O

6.3 The proof of theorem 6.0.20

In this section we give the proof of Theorem 6.0.20. Let h : (K*~1 0) — (K9,0) be
a submersion map-germ with gK.-codimension at most 2. We divide the proof into
the following steps:

First Step: From Chapter 3 we know that © is generated by the liftable vector
fields fjl, ]2., fj?’ and &. All these vector fields vanish at the origin. Then from
Theorem 6.2.1 we have gKC.—cod(h) > 0.

Suppose that ¢ > 3, then from Theorem 6.2.1, we get K. — —cod(h) > 3 and this
is a contradiction because g/, —cod(h) < 2. Therefore, we have 1 < gK.—cod(h) <
2and 1 < ¢ < 2.

Second Step: Classification of function-germs from (K?¢~1,0) to (K, 0).

We consider the 1-jet of h, i.e., its linear part:

d—2 d—1
jth = Z QiU + Z Bivi + mw1 + Yaws

1=1 i=1

for some constants «;, 5;, v; € K.

For d = 2, Bruce and West gave the classification of function-germs as in Iy x4
and IIy5 ([BW9S], theorem 3.13).

Now, we suppose that d > 3,

d—2 d—1
Fh=) "o+ Y B+ ywn + Yaws.
=1

i=1
(1) If ug_o ¢ NoK.(h), then we have ay_9 # 0. Since if ag_o = 0, then we can

not get uq_s in TeKc(h). By using the 1-jets of ®3 and ®? we can remove
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Uy ooy Ug3, U1y« v, Vg, Wy and ws.
It follows, we have
.
Jh=aug o+ Ba1va1.

By using the matrix M = [ﬁ} (in the definition of K-equivalence we need a

diffeomorphism and a matrix)), then we fix oy = 1 and we get
Jth = ta s + Ba-1va-1.

o If 5, 1 # 0, then we fix §;_; = 1 by using the diffeomorphism in Exam-

ple 6.1.1 and we get

Gth = tg_s £ vg_1.
Then, from Proposition 6.2.7, we have that h is gK-equivalent to ug_o +
v4—1 which is 1-gK-determined and has g/K.-codimension 1.

o If 3,1 = 0, then we have j'h = ug_s. Therefore, from Proposition 6.2.8,
we have h is gK-equivalent to ug_s + v3 | which is 2-gK-determined and

has g/C.-codimension 2.

(2) If ug_s € NoK(h), then we have NgK.(h) = (1,uq_2). We can see that 5;_1 #
0. (Since if 551 = 0, then vy_1 € NoK(h)).

a) If d = 3, then we have

Jth = Bavs + pw.
By using the 1-jets of (IDJl» we can remove v; and wy. Then, we get
jth = Bavg + 1wy

We fix 5, = 1 by using the matrix M = [é} Then, we get j1h = vy +y1w1.
If 44 = 0, then wy; € NgK.(h). Therefore, we have v, # 0.
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By integrating the vector field
1
§ =26+ 38
= (6uy, 3v1,0, 9wy, 6wsy)T.
We get a diffeomorphism
O (uy, vy, v, Wy, wo) = (66“u1, e vy, €My, eg“wg), e K.
From this diffeomorphism we fix 7; = +1 and we get
jlh = Uy + w1 .

Then, from Proposition 6.2.10, we have that h is g KC-equivalent to vy 4wy
which is 2-gK-determined and has gK.-codimension 2.

If d > 4, then we have that ay_3 # 0. (Since if g3 = 0, then uy_3 €
NoK.(h)).

By using the 1-jets of @? and CID} We can remove Uy, . .., Ug—q, Wi, U1, ..., Vg—2

and wy. Then, we get

-1
Jh=0oq-3u4-3+ Ba_1Vq-1.

1
Qd—3

We fix ag_3 = 1 by using the matrix M = [——]. Then, we get
J'h = tg—s + Ba-1va-1.

By using the diffeomorphism in Example 6.1.1 then we fix 8;_; = +1 and
we get

G'h = g3 £ va1.
From Proposition 6.2.9, we have that h is gK-equivalent to
Ug—3 L vg_1 £ uflf2

which is 2-gK-determined and has gK.-codimension 2.
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Third Step: Classification of map-germs from (K271, 0) to (K2,0).

Since ¢ = 2, then from Theorem 6.2.1 there is not a map-germ with g/C.—cod(h) =
1. Therefore, we assume that g/C.—cod(h) = 2.

Ifd > 5, then according to Corollary 6.2.5, we can see that there is not a map-germ

with /. —cod(h) = 2. Hence, we consider d = 2,3 and 4 only.

1
Suppose that e; = and e; = . Since every vector field in © vanishes

0 1

at the origin, then we can see that e; and ey not in Tg/C.(h). It follows e; and ey in

NoK.(h). Since gK.—cod(h) = 2, then we have
NoK.(h) = (e1, ea) (6.3.1)
We consider the 1-jet of h, i.e., its linear part:
d—2 d—1 2 d—2 d—1 2
jlh = (Z QU + Z B1,ivi + Z V1, Wi, Z Qg ;U; + Z Ba,iv; + Z ’72,iwi> )
i=1 i=1 i=1 i=1 i=1 i=1
for some constants «;;, f;,; and v, in K.
(A) Suppose that d = 2. We have

2 2
jth = (51,101 + Z’Yl,fwi, Bav1 + Z%,ﬂ%’) ;
i—1 i=1

for some constants ;; and v;; in K.

If Bj1 =0 for all 1 < j <2, then one finds

) 271 2W2 27v1,1w2 +12 U% 2711w 271 201wy
T@’C(th) = < ) ) ) )
272 2W2 272,1W2 +2.2 U% 2721w 271 201wy
2
Z V1, Wi 0 Z V2,iW; 0
=1 2 , =1 , 2

0 > LW 0 > V2

i=1 i=1
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We can see that vie; and vies not in le@ICe(jlh). It follows from Proposi-
tion 6.2.12 we have vie; and vies not in TgK.(h) and this is a contradiction

with equation (6.3.1).

Therefore, we have 3;; # 0 for some 1 < j < 2. We can assume that 8;; # 0
(if B11 = 0, then we can swap). Also if 5;; # 0 for j = 1,2, then we can remove

vy in the second coordinate by using the matrix M; = diagonal(—f21/611, 1).

Therefore, we have
2 2
jth = (51,101 + Z%,ﬁwm Z%,ﬂ%’) :
i=1 i=1

We fix 811 = 1 by using M, = diagonal(1/5; 1,1). It follows that

If 10 # 0, then we can we can remove ws from the first coordinate by using

the 1-jet of the diffeomorphism ®1. Hence, we have
2
jlh = (Ul + 71,11, Z’Yuwi) .
i=1

Now, we consider the following cases:

(1A) If v # 0, then from integrating the vector field & = & + & we get a
diffeomorphism ® which fixes v, ; = £1.
Therefore, we have
2
jlh — (1}1 4+ w1, Z")/Q’Z‘U)i> .
i=1
(IA1) If 97 # 0, then we can fix 757 = 1 by using the matrix M; =

diagonal(1,1/551). Suppose that 755 # 0, then by using the 1-jet
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of the diffeomorphism ®3 we can remove wy from the second coordi-

nate and we get
jth = (v1 £w; + aw(2),w;) with a € K.

By using the 1-jet of the diffeomorphism ®1 we can remove wy from

the first coordinate and we get
jlh = (Ul + wl,wl) .

Also by using the matrix

1 F1
M =
0 1
We get
Gth = (v, wy) .

Then from the CAST package we find that the 2-transversal is empty.
Hence for all & > 1 we have an empty (k + 1)-transversal. There-
fore, any (k + 1)-jet with k-jet (v;,w;) and k > 1 is gK-equivalent
to (v, w). Also, we deduce that (vy,w;) is 1-gK-determined with

o/e-codimension 2.

(1A.2) If 751 = 0, then we have
Gth = (v) £ wy, ya0wy) .

If 90 = 0, then j'h = (v; £wy,0). This gives a non-submersive
map-germ for h. Thus we can assume 7,9 # 0.
We can fix 725 = 1 by using the matrix Ms = diagonal(1,1/5,5) and

we get

jlh = (Ul + w1, wg) .
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From the CAST package we have wiey ¢ TheK(j'h). It follows from
Proposition 6.2.12 that we have wies ¢ To/k(h) and this again con-

tradict with equation 5.3.1.

(2A) If ;1 = 0, then we have

2
jlh = ("szw,iwi) .
i=1

If 491 = 0, then wie; and wiey are not in Thek(j1h). It follows from
Proposition 6.2.12 we have wje; and wyey not in Tokl.(h) and this again

contradict with equation 5.3.1.

Thus we assume 7,7 # 0. Then we can fix 727 = 1 by using the ma-
trix M5 = diagonal(1,1/021). If 722 # 0, then by using the 1-jet of the
diffeomorphism ®? we can remove wy from the second coordinate and we

get
jlh = (vl,wl) .
This similar to the case 1A.1.

(B) Suppose that 3 < d < 4. We have
d—2 d—1 2 d—2 d—1 2
jlh = (Z QUi + Z B1,ivi + Z Y1, Wi, Z Qg ;Ui + Z Ba,ivi + Z 72,1‘101‘) )
i=1 i=1 i=1 i=1 i=1 i=1

If a1 g9 = a9 42 = 0, we can see that ug_se; and ug_oses are not in le@IC(jlh).
It follows from Proposition 6.2.12 we have ug_se; and ug_se; not in Tekle(h)

and this is a contradiction with equation 5.3.1.

Therefore, we have either oy 49 # 0 or ay 42 # 0. We assume that oy 4o # 0

(if aq g—2 = 0, then we can swap.)
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We can fix oy g—o = 1 by using the matrix Mg = diagonal(1/coq 4—2,1). Also if

Qg 4-2 # 0, then we can remove u4_o form the second coordinate by using the

matrix
- 1 0
M7 —
—ag4-2 1
By using the 1-jets of (I>§? and (Df we can remove Ui, ..., Ug—3, U1, ..., U4_9, W1

and ws from the first coordinate. Therefore, we have

d—3 d—1 2

.

Jh=1{1ui2+ Bra-1v4-1, E Qo ;U; + E Ba,iv; + E Yo,iW; |,
i—1 i=1 i=1

If B2.4-1 = 0, then we can see that vy_ies §ZTj1@IC(j1h). It follows from Propo-
sition 6.2.12 we have vy_1e2 ¢ToK,.(h) and this is a contradiction with equa-

tion 5.3.1.

Therefore, we assume that 3541 # 0. We can fix 55 4_1 = 1 by using the matrix

Mg = diagonal(1,1/52 4-1). It follows

d—3 d—2 2

1

Jh=|ui—2 + Bi4-1Va-1, E Qg ;Ui + E Ba,iV; 4+ Vg1 + E Yo iW; |,
i=1 i=1 i=1

If B14-1 # 0, then we consider j'h as a 1-parameter family Hpg, , ,, then we

have
Z?;f B2,ivi + Vg1 + Zle V2,iWi Vd—1
= +§0, e mZQ(HﬂMH).
0 0
It follows that
8H51,d71

—n € TQIC(H51 d—l) + mQQ(H/BLd—l)‘
(951,(171 ’ '

Thus, Hg, , , is 1-gK-trivial. Hence

d-3 d—2 2
jth = (Ud—27 Z Qo ;U; + Z B2,ivi + Vg1 + Z 72,iwi> .
i=1 i=1 i=1
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By using the 1-jets of (ID} we can remove vi, ..., 04— and we from the second
coordinate. Therefore, we have
d—3
jth = (Udm Z Qg ;U + Vg—1 + ’72,1’601) :
i=1

Consider d = 3. Then, we have j'h = (uy, vy + Yo 1w1).

a) If v91 # 0, then from integrating the vector field £ = 2¢, + %ff we get a

diffeomorphism ¢ such that
d _ %Y —« 3a (Yo K
(u17U17027w1aw2) — (6 Uy, € U1,V2,€ W, € w2)7 a < .

We fix 751 = +1 by using ®. From the matrix Mg = diagonal(e**, 1) we
have j'h = (uy, ve £+ wy).

If we have j*h = (u;,vy & w,), then from the CAST package we find that
the 2-transversal is empty. Hence for all £ > 1 we have an empty (k + 1)-
transversal. Therefore, any (k + 1)-jet with k-jet (uj, vy £w;) and k& > 1
is /C-equivalent to (ui,ve £ wy). Also, we deduce (uy, vy £ wy) is 1-gK-

determined with /X .-codimension 2.

b) If 751 = 0, then we have j'h = (uy,v2). Let g(uy, vy, vo, wy, wa) = (ug,v).

Then we have

(51 O (%1 0 (%) O w1
T@IC (g) = < ) ) 3 ) ’ ) )
0 Uy 0 o 0 Uy 0
wa 0 >
0 w9

It follows that for all £ > 1, we have

k+1 o2 0
w2 C Tok(g) + ( " )
wy
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Thus, if we have a map-germ with k-jet equal to (u1,vs), then a (k + 1)-

0
transversal is { .
w12€+1

Let b = (uy, vy + Awh™) with X # 0, we can fix A = 41 by using the diffeo-
morphism ® as in step (z). Also, from the matrix My = diagonal(e™*, 1)

we get b = (uy,vy £ wi™). For all k > 1 we have

U 0 v 0 v 0 w
T@IC(h) _ < 1 7 | 1 2 1

Thus
m'g+1852 C ToK(h).

Hence h is a (k + 1)-g/K-determined. Furthermore, from the description of

ToK(h) we get gKe—cod(h) = k + 2.

Consider d = 4. Then, we have j'h = (ug, ag1u; + v3 + Yy21w;). We find

. Uy Usg 0 0 0 0 w1
TGIC(jlh) = < ) ) ) ) ) ) )
0 0 U2 U1 Vo U3 0
(%) (%1 —16w1 —4w2 — U1V3
Y2,1W2 — Q2 1W2 3042,1”% 0
U3 + Y2,1W1 0
0 —4w2 + 9’)/2’111/% + 12’}/271111’(1)1
0 0

3og 1y + 4y 1w Q21U + Y2,1W1
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If ap1 = 0, then we can see that ujes ¢TjoK(j'h). It follows from Proposi-
tion 6.2.12 we have ujes ¢TeK.(h) and this is a contradict (6.3.1). Similarly,
if 991 = 0, then we can see that wies ¢TjeK(j'h). It follows from Proposi-

tion 6.2.12 we have wies € ToK,(h) and this is a contradiction.

Therefore, we assume that asq # 0 and y21 # 0. We consider the vector fields
él = %fe + 1_165% and 52 = Lllée - 1_165%

By integrating these vector fields we get diffeomorphisms ®; and ®, respectively

such that
Oy (u,v,w) = (3Muy, e uy, ey, eMuy, vg, eMwy, e3Mw,)  and
Dy(u, v,w) = (ur,us, €201, €09, M3, w1, w2),

where \; € K.

We fix a1 = 1 by using the matrix M;y = diagonal(1,1/as;). Therefore we
have

. 1
jlh: (U27U1+—U3+Ew1> .
91 Q91

We can fix 221 = 41 by using ®; and the matrix M;; = diagonal(e=2*1, e=3M).

Q21
Therefore, we get

1
jlh = <u2,u1 + —3 + wl) .

g1

1
By using ®5 we can fix — = +1 and hence we get
Q921

jlh = (u2,u1 + V3 + wl) .

Then from the CAST package we find that the 2-transversal is empty. Hence for
all k > 1 we have an empty (k + 1)-transversal. Therefore, any (k + 1)-jet with
k-jet (ug,u; £ vz +wy) and k > 1 is gK-equivalent to (ug, ug + vz £ wy). Also,

we deduce that (ug,u; £ vz + wy) is 1-gK-determined with g/&.-codimension 2.
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6.4 The proof of corollary 6.0.21

We shall use the diffeomorphism in Proposition 6.1.2 in the proof. This diffeomor-

phism defined by
(I)(% U1y ...y Vg—1, W1, w2) = (% —U1,--+, =Ud—1, W1, —wz).

i) For Iy, I3, and Vy,. By using ® and the matrix M = [~1] we have that

- + - + - +
Id,k+1 ~vk Id,k+17 HId,l ~vK IHd,l and V3,2 ~vK V3,2-

ii) For VII;;. By using ® and the matrix M = diagonal(1,—1) we have that

iii) For VIII; ;. By using ® we have that VIII;; ~ x VIHII.



Chapter 7

Application to right-left

classification

A fair number of A-classifications of map-germs (K", 0) — (KP,0) can be found
in the literature: namely (C,0) — (C2,0) ([BG82]), (K2,0) — (K3,0) ([Mon85]
and [Rat95]), (K™, 0) — (K2, 0) ([Rie87] and [RR91]), (R3,0) — (R3,0) ([MT96]),
(R3,0) — (R*,0) ([HK99]) and (C™,0) — (C"*,0) ([Co093)).

The classification of map-germ under A-equivalence is hard to do. However, we
can classify map-germs under y KC-equivalence and by using Theorem 2.6.3 in chapter 2
we can do a sharp pullback to get A-classification.

In the previous chapter we got the classification of map-germs under  K-equivalence,
where V' is the image of the minimal cross cap mapping of multiplicity d > 2. In
this chapter we shall use our classification under K-equivalence to classify corank 1

A.-codimension 2 map-germs (C",0) — (C"*1,0).

129
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7.1 Relationship between A, and K .-codimension

In this section we shall give the relationship between K, codimension of a submersion

map-germ h : (K? 0) — (K% 0) and A, codimension of its a sharp pullback.

Definition 7.1.1. Let F': (K",0) — (K?,0) be a smooth map-germ and g : (K",0) —

(KP,0) an immersion which is transverse to F, i.e.,
dF(TOGKnv O) + TO(g(Kr7 0)) = TO(Kpa O)

where Ty means the tangent space at 0. The pullback of F' by g, denoted g*(F), is

the natural map from
(K==, 0) = {(z,y) € (K",0) x (K, 0) : F(z) = g(y)}
to (K",0) given by projection on the second factor.

Example 7.1.2. Let F : (K3 0) — (K* 0) be the trivial extension of the Whitney
umbrella given by F(z,v1,y) = (z,v1,y% v1y) and h(z, v, wy, ws) = v1 — p(x,wy) for
a function p.

Let g : (K3,0) — (K*,0) be given by g(x, wy,ws) = (z,p(x, wy), wi,ws). Then the
image of g is equal to h='(0) and g is transverse to F.

The pullback of F by g is a map-germ of the form f(x,y) = (x,y* yp(z,y?)). Also,

we can see that the sharp pullback is a map-germ of the form f(x,y) = (x,y* yp(z, y?)).

Remark 7.1.3. In [Mat69], Mather shows that if f : (K", 0) — (KP,0) has finite A.-
codimension then there is a stable map-germ F : (KY,0) — (K ,0) and an immersion
map-germ g : (KP,0) — (KP,0) with g transverse to F such that f is obtained as a

pullback in the following commutative diagram

(KV,0) -5 (KP,0)

it g7

(K",0) -1 (K,0)
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In ([Dam91] and [Dam06]), Damon found the relationship between A.-codimension
and yK.-codimension. In fact, he showed that for a finitely A-determined map-germ
[ as the pullback g*(F'), A.—cod(f) = Ky—cod(g) in [Dam91]. In [MM94], Mond
and Montaldi prove that f does not necessarily have to be finitely A-determined.
In [Dam06], Damon proves Ky .—cod(g) = yK.—cod(h) where h is a submersion

h: (KP,0) — (KP~",0) such that h=!(0) is the image of g.

Theorem 7.1.4 ([Dam91|, [MM94] and [Dam06]). Suppose that ' : (K", 0) — (K?,0)
is a K-analytic stable map-germ and g : (K", 0) — (KP,0) is an immersion transverse

to F'. Then,
A.—cod(g*(F)) = vKe—cod(h)

where h is a submersion h : (KP,0) — (KP~",0) such that h=*(0) is the image of g

and V is the K-part of the complezification of the discriminant of F.

Now, we shall find the relationship between K, codimension of a map-germ and

A, codimension of a sharp pullback.

Theorem 7.1.5. Suppose that F : (K",0) — (KP,0) is a smooth map-germ. Let
h: (KP,0) — (K9,0) be a submersion transverse to F and g : (KP~9,0) — (KP,0) be

an immersion such that im(g) = h='(0). Then,
g (F) ~a E(F).

Proof. Let U = (ho F)71(0) and V = h=%(0). Then h*(F) is the map from U
to V given by F.

Since F is transverse to h™!(0) we know that U and V are manifolds.

Now, let g : (KP~%,0) — (KP,0) be any immersion such that im(g) = h~'(0). Then
the pullback is defined as follows: Let Z = {(z,y) € (K", 0) x (KP~9,0) : F(z) = g(y)}.

Since g is transverse to F', then Z is a manifold of dimension n — ¢.
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We define ¢g*(F') as the map (Z,0) — (KP,0) given by restriction to Z of the
projection pry : (K" x KP~7 0) — (KP~9,0).
We produce a square diagram by using the other projection, pry : (K" xKP~9,0) —
(K™, 0).
(K",0) 5 (K»,0)
pri T g7
(K" x Kr=9,0) 22 (KP9,0)
The square is commutative: Let z € Z, then z = (x,y) for some x and y with

F(z) = g(y) by definition. We have

F(pri(z)) = F(pri(z,y)) = F(z) = g(y) = g(pra(z,y)) = g(pra(z)).

Now to get g*(F) ~4 h*(F). We need Z to be mapped diffeomorphically to U by
pr1 and KP~? to be mapped diffeomorphically to V' by g. Since g is an immersion,
then it is a diffeomorphism onto its image. Hence, we have that KP~? and V are
diffeomorphic.

We need to show that Z and U are diffeomorphic. We define ¢ : U — Z through
the following. Let x € U, then F(z) € V by definition. But then, there exists a
unique y in K?~9 such that F(z) = g(y). Thus let p(z) = (x,y). Obviously, ¢ is the
inverse of the map pry : Z — im(prq). Since the smoothness of map is also preserved
by restriction to subsets, then ¢ and pry : Z — im(pr;) are smooth. By looking at
the Jacobians of the two possible compositions of these (they will be the identity) we

get that they must be local diffeomorphisms. O

Corollary 7.1.6. Suppose that F': (K", 0) — (K?,0) is a K-analytic stable map-germ

and h : (KP,0) — (K%,0) is a submersion transverse to F'. Then,

Ac.—cod(h*(F)) = vK.—cod(h)
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Proof. Follows from the theorem and Theorem 7.1.4. U

Now, we need to show that how one can determine the A-classification of map-
germs (K", 0) — (K", 0) from yK-classification.

We begin with the direct sum of a smooth map-germs. This gives a process

producing new map-germs from old ones.

Definition 7.1.7. ([AGVSS], [Wal82]) Let h : (KP*,0) — (K%,0) and g : (KP?,0) —
(K2,0) be smooth map-germs. We define the direct sum hé g : (KPrHP2 () — (K2, 0)
by

heg(z,x) = h(z) + g(x).

Remark 7.1.8. Augmentations of map-germs have the property above, see [Hou98].

Definition 7.1.9. Let ©; be a set of smooth vector fields on (KP',0) i =1,2. ©; =
{5”}?:1 Then the product of ©1 and ©,, denoted ©1 x O,, is the set of vector
fields on (KP* x KP2 0 x 0) defined by

@1 X @2 = {51,17 cee 751,7‘1752,17 cee 752,1"2} .

If we use the coordinates (Z1,...,Z,,) on (KP*,0) and (X;,...,X,,) on (K??,0),

P1 0
then any vector field £ = Y aia—Z on (KP' 0) can be extended naturally to & =
i=1 i
0

P1 P2 0
Zaia—z + 2@87 on (KPr x KP2 0 x 0) where 3; =0 for all 1 < i < ps.
i=1 i =1 i

Theorem 7.1.10. Let h,h : (KP',0) — (K%0) and g,§ : (KP2,0) — (K%,0) be
smooth map-germs. Let ©; be a finitely generated £;-module of smooth vector fields
on (KPi 0) with i = 1,2. If h is o, R-equivalent to h and g 1S o, R-equivalent to g,

then h + g is o, x0, R-equivalent to h+3.

Proof. Since h and h are o1R-equivalent, then there exists a vector field & € O,

that can be integrated to give a diffeomorphism ¢; such that %(z) = h o pi(2).
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Similarly, since g and g are goR-equivalent, then there exists a vector field & € O,
that can be integrated to give a diffeomorphism ¢y such that g(x) = g o pa(x).
We take the Cartesian product of the diffeomorphisms p; and 9, i.e., ¢ = (@1, ©1).

Then we have

hog(p(zz)) = hdg(pi(z),p2(r))
= h(p1(2)) + g (pa(z))

= h(z) +g(x).

O
The direct sum in Theorem 7.1.10 is not compatible with g/C-equivalence. For

example we have the following

Example 7.1.11. [Wal82] Let h(z,y) = (22,9*) and g(z,y) = (2® + y*, 2* — y*. We
can see that h and g differ only by a linear coordinate change in the target. However

h @& h is not finitely K-determined whereas h & g is 2-KC-determined.
Definition 7.1.12. Let g : (K?,0) — (K,0) be a smooth function-germ.

i) The Milnor algebra of g is given by

gp
BT,
X1 9X, /P
i1) The Tjurina algebra of g is given by
Sp
Ty = 99 99 \e
<g> 6X1""’8Xp> P

iii) The numbers

p(g) :==dimg My, and 7(g):=dimg7,

are called the Milnor and Tjurina number of g, respectively.
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The Milnor and the Tjurina number play an important role in the study of isolated

hypersurface singularities.

Theorem 7.1.13. Let h: (KP* 0) — (K,0) and g : (KP2,0) — (K, 0) be smooth map-
germs. Let ©; be a finitely generated E,,-module of smooth vector fields on (KP¢,0)

with i = 1,2. Then

0,x0,Ke—cod(h @ g) > (e)llCe—cod(h)) <@2Ke—cod(g)>.

If ©4 is the whole module of vector fields on (KP2,0) and g is quasihomogeneous,
then

@1X@21Ce—cod(h D g) = elKe—COd(h)T(g).
Proof. We have,

gp1+P2
To,x0,Kc(h @ g)
5P1+p2
(E(h@g) € €01 xO2) +(h®g)Ep +p,
gp1+P2
(€1(h), - €11 (h),621(9), - -1 €25(9)) + (M + 9)Epy4ps
gp1+P2
(€ra(h))ily + (W& + (§2:(9))i21 + (9)Epe
= dimg ( ‘n ®K £, >
(€ri(h))ity + (WM& (&2,i(9))i21 + (9)Eps

Ep Eps

(€1i(h))ily + (W&, (€2,i(9))i21 + (9)Eps

= <@1K6—cod(h)> (ezKe—COd@)) .

01x0,Ke—cod(h @ g) = dimg

= dimg

= dimg

2 dimK

X dimK

= dimg
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dg dg
BRgr aXp2> and so from above we have

If g is quasihomogeneous, then g € <

gpﬁ-m
(€1,0(h), - &1y (R),€2,1(9)s - -, E2,p2(9)) + (B + 9)Ep1+ps
5p1+p2
(€11(h), - &1 (h),621(9)s - -, §2,p2(9), W) Epy+ps
Epl X dimK 5p2
(€M)t + (W& (5> 9% Era
@1’C6_C0d(h‘)7_(g)'

01x0,Ke—cod(h @ g) = dimg

= dimK

dimK

O
We can find new classification from other classifications by using the following

theorem.

Theorem 7.1.14. Let © be a finitely generated £,-module of smooth vector fields on
(KP,0) and h : (KP,0) — (K,0) be a smooth function-germ with ¢K-codimension at

most 4. Suppose that dimg {£(0)|§ € ©} =r. Then,
(A) there exist coordinates (Zy, ..., Zy—y, X1,...,X;) on (KP,0) such that
00 x(9/0X,,...,0/0X,)

where (0/0X1,...,0/0X,) means the E,-module generated by these vector fields

and all vector fields in © wvanish at 0.

(B) The function-germ h is oK-equivalent to one of the following function-germs:-
(i =+1 when K=R and e =1 when K=C)
(Bl) Xl;

(Bs) h(Z) + g(X), where h : (KP~",0) — (K,0) has &KC-codimension at most 4

and g : (K", 0) — (K,0) is KC-equivalent to a function-germ of 7 < 4.
(Bs) MZ) + aZo X, + X™ + Q withm = 3 or 4,

(B1) WZ) + (a1 Z0, + 02 Z0y) X1 + X} + Q,
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where

1.0l = 0
Q- Y

j=1

il

and the function-germs in (Bs) and (B,) have ¢K-codimension > 3.

Proof. We need the following notation in the proof. Let a = («y, ..., ;) be an
n-tuple of non-negative integers and e;'- be an r-tuple with a 1 in the jth position and
zeros elsewhere. We use the coordinate (Z,...,2Z, ., X1,...,X,) on KP = KP~" x K.

We define

|5| = Zﬁm

=1

Z% = ZI]MZ 20T
X* = XM X X0

(A) We have dimg {£(0)|£ € ©} = r, i.e., there exist vector fields &,...,¢, in ©
such that these vector fields do not vanish at 0 and the vectors & (0),...,&.(0)

are linearly independent. Therefore, a change of coordinates in (K?,0) allows
0 0

a—Xl,...,gr_ X,

that the coordinates (Zy, ..., Z,_,) on (KP~".0) and © will denote the module

. In this case we have KP = KP~" x K" such

to assume &; =

of vector fields on (KP~" 0) with all these vector fields vanishing at 0.

(B) Since h has gK-codimension at most 4. Then, we consider

Ph= > Capz°X’.
o] +|81<5
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If 0076]1_ # 0 for some 1 < j < r (say for j = [), then by using the coordinate
changes X; — X; + a;Z;, X; — X, + £;X; and the matrix M = |

such that
CO,ell]
1<j<rand1<i<p—r wegethisgK-equivalent to X;.

Now, we suppose that Co’ejl_ =0forall<y<r.

a) If Co,eg # 0 for all 1 < j < r, then by using the coordinate changes X; —
Xj+aZiforl<j<randl<i<p-—rand X; — X;+ 53X, for1 <i¢,5<r

and ¢ # j we can remove Z;X; and X;X; from j°h.

Therefore, we have

Ph= > Capz°X’.

lo|+8]<5
a#l

B#1
By using the diffeomorphism ®(Z, X) = (Z, X1, ...,eY X;, Xj41, ..., X,) we fix

Co,e§ =41 forall 1 <j <r. Also we have

9j°h/0X; = +2X;+ G, with G € m.

If we consider j°h as a l-parameter unfolding for all «, then the terms of the

form Z*X? are 2-trivial.
It follows,
Ph=hZ)+Y &X?.
j=1
such that e, = +£1 when K =R and ¢ = 1 when K = C.

b) Suppose that there exists [ such that 007612 =0 and Co,e;% #0forall1<j<r

with j # L.

(by) If the coefficient of X;X; does not equal 0 for some 1 < j < r, then by
the same way above we have h is g/K-equivalent to a function-germ of the

form h(Z) + 3. ;X7
=1
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(bg) If the coeflicient of X;X; equals 0 for all 1 < j < r, then we can see that

1 and z; are not in Tok.(h) because all vector fields in © vanish at 0.

We consider the following cases:

(1) If Gy # 0, then we can fix Cy s = 1, then by the same way above we

have

7°h = h(Z) + X} +25]X2+ Y CouZ®X.
|| <4
J?él

i. If /C—cod(h) = 2, then we have Ng/K.(h) = (1, X)) and
— {Xl} g mpT@ICe(h) g T@/C(h)

If we consider j°h as a l-parameter unfolding for all C, !> then all

terms in ) Ca,ell Z*X; are trivial and hence h is g/C-equivalent to
o] <4

Z)+ X} + Z@XQ
J#l
ii. If e/C—cod(h) = 3. We suppose that NgK.(h) = (1, X, U).

ii.l If U # Z, X, for all 1 <t <p—r, then we have
—{X, U} Cm,TeK.(h) C TeK(h).
Similarly, we have h is ¢/KC-equivalent to

MZ) £ X7+ X
j=1
J#l
ii.2 If U = Z, X, for single t, then we have h is g/K-equivalent to

MZ) + o Ze Xy £ X7+ e X2

i=1
il



7.1 Relationship between A, and yK.-codimension 140

iii. If gKC—cod(h) = 4. We suppose that Ngk.(h) = (1, X;,U, V). Simi-

larly,

il fU # Z;, X; and V # Z,X; for all 1 < ¢y, < p—r, then we
have Z;, X; and Z;, X; in TgK.(h).

Therefore, we have h is gK-equivalent to

VAR GRS ¢
=1
G

iii.2 f U =2, X; and V # Z,, X, then we have h is gK-equivalent to

MZ) + o, Zo, X £ X[+ ;X2
=1
A

iii.3 If U # Z,, X; and V = Z;, X, then we have h is gK-equivalent to

MZ) + oy Zi, Xy = XP +> g, X2
—
jj#l

iii4 If U =7, X; and V = Z;, X;, then we have h is gK-equivalent to

MZ) + an Zo, Xi + 0, 2, Xy £ XP+ e X2
g
(2) If Cye3 = 0 and Cy s # 0, then we have 1, X; and X? are not in Tek(h).
i. If gK—cod(h) = 3, then we have Nok.(h) = (1, X;, X}?). We can see
that

m, — {X;, X7} Cm,TeK.(h) C ToK(h).

Hence, h is gK-equivalent to

hZ) £ X!+ X2
—
i

ii. If gK—cod(h) = 4. We suppose that NeK.(h) = (1, X;, X7, U).
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.1 fU # Z, X, for all 1 <t < p—r, then we have Z, X; € ToK.(h).
Therefore, we have h is gK-equivalent to
nZ) £ X!+ X2
=1
=
ii.2 If U = Z, X, for single t, then we have h is g/C-equivalent to
MZ) + o Zi Xy £ X} 4+ e X2
=1
=
(3) If Cyes = Cyer = 0, then we have NoK.(h) = (1, X;, X7, X7). In this case

6'07612 # 0. Therefore, we have h is gK-equivalent to

VAR GRS e
j=1
J#l
(¢) Suppose that there exist 1 and l; such that Cy.2 = Co2 = 0 and Cye2 # 0
1 2 J
for all 1 < j <r with j # [; and j # l5. Since all vector fields in © vanish at 0.

Then 1, X;, and X, are not in TokK.(h).

(c1) If the coefficient of X;, X;, not equal 0, then by using the coordinate changes
Xj—=Xj+aZiforl<j<rand1<i:<p-—rand X; — X, + X, for

1 <14,j <randi#j we have h is g/K-equivalent to
j=1

(co) If the coefficient of X;, X, is 0, then we have 1, X, and X;,, X;, X, are not
in To/C(h). We assume that NoK.(h) = (1, X}, X),, X;, X},). Therefore,
we have C’O,e?1 # 0 and Co,el32 # 0. Similarly of above we have h is /K-
equivalent to
WZ)+ X+ X} + Z ;X2

7=1
J#lle
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By using the coordinate changes X;, — X;, + Xj, and X;, — X;, — X},
we have h is g/KC-equivalent to
hZ)+ XP Xy, £ X0+ Y X
=1
jgﬁllh
(d) Suppose that Cyz = 0 for 1 <4 < 3 and Co,e§ # 0 for all 1 < 5 < r with

j 7£ l17l27l3'

(dy) If the coefficients of Xj, X;,, X, Xi, and X, X, are not equal 0, then by
using the coordinate changes X; — X; + X; and X; — X, — X, such that

Iy <1i,7 <ly and 7 # we have h is gK-equivalent to
j=1

(dg) If there is at least one of the coefficients of X;, X;,, X, X;, and X, X, is 0

and other not, then we have similar of (¢g).

(d3) If there are at least two of the coefficients of X, X;,, X;, X;, and X;, X,

are 0 and other not, then we have g/C,—cod(h) > 5.

O

In the following examples we shall show that how we can use the theorem above

in our classification and we shall see our results coincide with the results of Mond
on A-classification of map-germs (K?,0) — (K3 0) (see [Mon85], theorem 1.1) and
Houston and Kirk on A-classification of map-germs (K?,0) — (K%, 0) (see [HK99],

theorem 1.1).

Example 7.1.15. Let V = V x C where V is the image of @5 : (C2,0) — (C3,0)
given by po(vi,y) = (v1,y?, v1y) and let F = @y x Idy. Let g(x) = x°, then we have

7(g9) = 4.
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i)

i)

From Corollary 6.0.21 we have h(vy,wy, ws) = vy — w; has vl@—cod(ﬁ) =1.
If h = h & g, then from Theorem 7.1.13 we have yK.—cod(h) = 4. Thus
ho F(vi,y,x) = 0 gives vy = y>+a°. Hence h*(F)(x,y) = (v1,y?, v +25y) and

this 1s the Sy singularity of Mond.

Suppose that h=uv —aw and h = h& g, then from the CAST package we have
vI.—cod(h) = 5.

We can find h*(F)(z,y) = (z,y% xy> + 2°y) and this is the Cs singularity of
Mond.

Example 7.1.16. Let V = V x C2 where V is the image of @5 : (C2,0) — (C3,0)

given by @o(v1,y) = (v1, y%,v1y) and let F = oy x Idy. Let g(x,y) = 22 + 23, then we

have T(g) = 2.

i)

it)

From Corollary 6.0.21 we have E(vl, Wy, we) = vy — wy has ﬁKe—cod(ﬁ) = 1.
If h = h & g, then from Theorem 7.1.13 we have yK.—cod(h) = 4. Thus
hoF(vi,y,x,2) =0 gives v, = y*+a>+2°. Hence h*(F)(x,z,y) = (z, 2, >, y>+

22y + 23y) and this is the Ay singularity of Houston and Kirk.

Suppose that h= v, — zwy and h = h g, then from the CAST package we have
vKe—cod(h) = 3.
We can find h*(F)(z, z,y) = (z, z,y?, 2y° + 2y + 23y) and this is the Cs singu-

larity of Houston and Kirk.

7.2 Map-germs of A.-codimension two

In this section, we shall give the classification of a corank 1 A.-codimension 2 map-

germs (C",0) — (C™™1,0). Before that we need the following theorem.
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Theorem 7.2.1. Let © be a finitely generated £,-module of smooth vector fields on
(KP,0) and © = © x {0/0X;},_,. Leth: (KPxK",0) — (K?,0) be a submersion map-
germ with oK .-codimension 2 and q > 2. Then h is gK-equivalent to the map-germ
of the form (X1, Xs,..., X,_1, H) where H is gK-equivalent to one of the following

function-germs

(1) h+ Z:lXJQ such that éKe—cod(E) =2,
]:

(2) h+ X} —l—ZX2 such that 5K.—cod(h) = 1.
J?él

Proof. Suppose that h = (hy,...,h,). We are looking for only terms on
X1,..., X, in h.

If h has no linear terms in X7, ..., X,, then we have ¢; = (0,0,...,0,1,0,...,0)" ¢
ToK(h) for all j = 1,2,...,q because every vector field in © vanishes at the ori-
gin. It follows that gk, —cod(h) > ¢. If ¢ > 3, then we get a contradiction since
oe.—cod(h) =

Assume that ¢ = 2. Then we have
T@]Ce<h) = Myp4y <61, €2> .

Then, on the RHS of above we require 2r distinct generators (we are looking
for only Xi,...,X,) and on the LHS we have at most r generators and this is a
contradiction.

Therefore, we can assume h; has a linear term and the coefficient of X is not zero
(if the coefficient of X is zero, then we can swap). We can remove all other terms in
hy and we get hy = Xi, i.e., we have h = (X1, ho, ..., hy).

Now, for all 2 <7 <r and 2 < j < ¢ if the coefficient «; ; of X; in h; is not zero,

then we can remove X; in h; by using the matrix M;, = diagonal(—«;;,1,...,1).
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Therefore, we have h = (Xj, hg, ..., hy) such that h; has no z; in its linear part
for all 2 < 75 <gq.

By the same way above we can get h = (X, Xs, ..., X,_1, hy) such that the linear
part of h, has not Xy,..., X,_;. If the coefficient of X, in h, is not zero, then we can
remove all terms in h, and we get h = (X1, X, ..., X, 1, X,), Le., oKc—cod(h) =0
and this is a contradiction since gK.—cod(h) = 2.

Therefore, we assume that the coefficient of X, in h, is zero. Hence, h, has no
linear part.

Now, we can see that the sharp pullback of h is equal to the sharp pullback
of h, and hence they have the same A.-codimension. From Corollary 7.1.6 we get
ole—cod(h,) = 2 and Theorem 7.1.14 we can see that h, is one of the following

function-germs

(1) h+ ;X; such that éKC—cod(E) =2

J

(2) h+ X3+ ;Xf such that g/, —cod(h) = 1.
i
O
In the following theorem we give the classification of corank 1 A.-codimension

2 map-germs (C",0) — (C"™',0). We shall use the coordinate (U,V, X,Y) on the

source.

Theorem 7.2.2. Suppose that f: (C",0) — (C"*1,0) is a corank 1 A.-codimension

2 map-germ, then f is A-equivalent to one of the map-germs in the following:
(a) (Y2Y?),

d—3 d—1
(az) (Q, V. YO+ S UY + V2 Yi2 3 vm’).
=1 i=1

d—4 d—1
(a3) (Q, VY 4 S UY + (Vaoy + UF,) Y93 + Uy Y42, Viw).
1

=1 =
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(ar) (U, Vi,Y? + Y, VIY + U Y? +Y7).
(as) (V1,Y3 VIV +Y59).

(a5) (U1, V1, Vo, Y+ U, VIY + Y2+ U Y2 + U )Y +YT).

) | V2 ve 4 Xy + (J;Xf)y, X, ...X,
J#l

(b) <Y2,Y5 + (Z X3V X, X)

Jj=1

d—3 r d—1
(bs) [V Y 4 SO0+ (Vo + X+ 3 X2V T Vv X |
=1 i=1

=1 j= %
J#l

d—3 r d—1
(b) QLW+ZMW+@&+ZX$W%ZWWX>
=1

=1 i=1

d—4 T d—1
(bs) |U,V, Y+ ST UY + <vd_1 + U2 ,+ > XJ?)Yd‘?’ + Uy 2Y42, S ViYe, 5),
i=1 j=1 i=1

(%)lh%ﬂ“+%K%Y+(EXQY“%Mﬁ+YW&waO,

J=1

() (viye vy + (%

Jj=1

X]?>Y2+Y5,X1,...,Xr>,

(bs) <U1,V1,V2,Y4 YUY, VY + VYt (U1 s Xf)YB YUY YT, X X)
=1

J

Proof. From Remark 7.1.3 and Theorem 2.3.9 we can get the following diagram

(C2-2 x C7,0) 25" (€21 x Cr,0) - (C9,0)
o1 U4
(™, 0) N €'+, 0)
i T g7

(C,0) J, (€1, 0)
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such that ¢4 is the minimal cross cap mapping of multiplicity d > 2, i.e.,

d—2 d—1
palu, v,y) = (g, oyt way’y vy) :

We consider the following cases

i) If r = 0, then from Corollary 6.0.21 we have h.

(ay) Suppose that h(vi,w;, wy) = vy —w?. Thus hopy(vy,y) = 0 gives v; = y>.

Using coordinate Y = y on (h o ¢2)7'(0), we see that the map s|(h o
©2)71(0),0) = (h71(0),0) becomes

Y = (Y2 YP).

(ag) Suppose that h(u,v,w;,wy) = ug_o —v3_ ;. Thus ho pa(u,v,y) = 0 gives
Ug_o = V3 _;.
Using coordinates Uy = uy, ..., Ug_3 = uq_3, Vi = vy, ..., Vi1 = v4_1

and Y = y, we see that the map ¢4|(howg)~1(0),0) — (h71(0),0) becomes

d—3 d—1
U,V,Y)~ (Q, VY > Uy v vy V,Y") .
i=1 i=1
(ag) Suppose that h(,wy,ws) = ug_3 — v3 | —ui . Thus ho p4(u,v,y) =0
gives ug_3 = vg_1 + u3_,.
Using coordinates Uy = uy, ..., Ugy = ug_yq, Ug3 = uqg o, Vi = vy,
oo, Vii =wv4.1 and Y = y, we see that the map g4|(h o pg)71(0),0) —
(h=1(0),0) becomes
d—4 ' d—1 '
U, V,Y) ~ (U, VY '+ UY' + (Vaer + Uf ) Y2 4+ UyaY 2> VY) .
i=1 i=1

(a4) Suppose that h(vi,wy, ws) = vy — wy. Thus h o ps(uy, vy, ve,y) = 0 gives

Vg = y3 + ury.



7.2 Map-germs of A.-codimension two 148

Using coordinates U; = uy, V3 = v; and Y = y on (h o ¢3)71(0), we see
that the map ¢3|(h o v3)71(0),0) — (h~1(0),0) becomes

(U17 ‘/17}/) = (Ula ‘/hYS + U1Y7 ‘/1Y + Ul}/3 + Y5)

(a5) Suppose that h(u, vy, ve, wy, we) = (ug, vo—wi). Thus hops(uy, vy, ve,y) =
0 gives u; = 0 and v, = 3.
Using coordinates Vi = v; and Y = y on (h o p3)~1(0), we see that the
map 3|(h o ¢3)71(0),0) — (L71(0),0) becomes

(Vi,Y) = (V, Y3 1Y +YP).

(ag) Suppose that h(uy,us, vy, v, V3, w1, wa) = (ug,u; — vo — wy). Thus h o
w4y, v1,v9,9) = 0 gives ug = 0 and v3 = uy + uyy + y*.
Using coordinates U; = uy, Vi = vy, Vo = vy and Y = y on (h o 3)71(0),

we see that the map p4](h o ¢4)71(0),0) — (h~1(0),0) becomes

(U, V1, Vo, Y) = (Ur, Vi, Vi, Y+ DY, VY + VY2 4+ U YP + U Y+ YT),

If h = w; — v?, then we have that (h o ,)~%(0) is a singular, i.e., @y does not
transversal to h71(0). Hence we have not the sharp pullback in this case. In

the same way for h = (vy, wy).

it) If r > 1, then from Theorem 7.1.14, Theorem 7.2.1 and Corollary 6.0.21 we

have the results by, ..., bg in the same way above.

O

We can see that there is some similarity between the germs labelled (a;) and the
germs labelled (b;) in Theorem 7.2.2. For example, in (a;) we have (Y2, Y?) and in
(by) we have | Y2 Y5 + (i: Xf)Y, Xi,..., X, |. Similarly, between (as) and (by),

j=1

(a3) and (bs), (ag) and (bg), (as) and (b7), (ag) and (bg).



Chapter 8

Ideas for Future Work

It is clear that the work with  K-equivalence is much easier than A-equivalence. For
example, A-equivalence classifications are hard to do but, armed with the liftable
vector fields, classifications of map-germs on discriminant under y KC-equivalence are
much easier as they are similar to K-equivalence. More importantly, A-classification
and y KC-classification are intimately related.

It would be interesting to study the geometry of the versal deformations of the
A.-codimension 2 map-germs listed. In particular it would be good to know if the
Mond conjecture holds for them: that the A.-codimension is less than or equal to the
image Milnor number, with equality in the quasihomogeneous cases. It should not
be too hard to check this, though it is striking that most of the germs in the list are
not quasihomogeneous, since in most classifications, quasihomogeneity predominates
in low codimension.

A related question is whether in fact one can find the image Milnor number easily
using the apparatus of g/ C-equivalence. Perhaps p;(f) is equal to the g/C-codimension
of the map-germ h for which hf(¢4) = f, where © is the module of vector fields which

annihilate the equation of the image of ¢ .

149
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From Chapter 6 and Chapter 7 some more work could be done on the classifi-
cation of map-germs with codimension < 4. In fact, we have primary results on
A-classification and yK-classification of map-germs with codimension at most 4. We
hope to find the final results of these classifications.

In Corollary 7.1.6 in Chapter 7 we have a relationship between A, and K. codi-
mension. We hope to find a relationship between A, and K. determinacy.

In ([BW98], section 3.3), Bruce and West discussed the geometry of the function-
germs on the cross cap. We could try to study the geometry of the map-germs on the
generalized cross cap.

Finally, there are attempts to write new packages by using new versions of Maple,

Matlab and C'++ programming.



Appendix A

Singular Library ‘CAST.lib’

This appendix details the collection of the CAST codes.

[1171777717777177771777717777177771777711777717771117771777117777117/
/111177717
version="$Id$";

category="Singularities";

info="
LIBRARY: CAST.lib Computational Aspects of Singularity

Theory
OVERVIEW:
Computational Aspects of Singularity Theory

PROCEDURES :

setphi(d);

phivfs(d);

phivfs0(d);

def_eq(d);

derlogV(h);
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tthe(theta, h, G) calculates the extended $_\Theta \GG$-tangent space
of a map;

tth(theta, h, G) calculates the $_\Theta \GG$-tangent space

of a map;

nthe(theta, h, G) calculates the extended $_\Theta \GG$ normal space
of a map;

codthe(theta, h, G) calculates the extended $_\Theta \GG $-codimension
of a map;

guessdet (theta, h, G) gives an estimate for the determinacy of a map;
ct(tangent, k) calculates a complete transversal of a map;

trivunf (ct, tangent) checks whether an unfolding is trivial or

not;

n.
b

LIB "ring.lib";

[I1777117777771777777771777777777777777177777771177777711177777111777/
/111111117

proc setphi(int d)

{

if (d==2)

{

ring phiring = 0, (v(1),w(1),w(2)),ds;

keepring(phiring) ;

+

else
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{

ring phiring = (0,a(1..d-2),a1(1..d-2),b(1..d-1),b1(1..d-1),c(1..2),
c1(1..2)),(u(1..d-2),v(1..d-1),w(1),w(2)),ds;

keepring(phiring) ;

}

}

[117177777777777777777777777777777777777777777777777777777777777/77777
/111117717

/* This procedure computes the module of liftable vector fields over
the minimal cross cap mapping of multiplicity d

*/

proc phivfs(int d)

{

if (d==2)

{

module derlog=[w(2),0,v(1)*w(1)], [-v(1),2*w(1),0], [0,2*xw(2),v(1)"2],
[v(1),2%w(1),2%w(2)];

return(derlog) ;

}

else

{

module derlog;

int i,j,m,ml,m2;

int n1=d-2;

int n2=d-1;
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int n3=

matrix

matrix

matrix

matrix

matrix

matrix

matrix

matrix

matrix

matrix

matrix

matrix

matrix

2%d-1;
A1[n1] [n2];
B1[n2] [n2];
C1[2] [n2];
F1[n3] [n2];
A2[n1] [n2];
B2[n2] [n2];
c2[2] [n2];
F2[n3] [n2] ;
A3[n1] [n2];
B3 [n2] [n2];
C3[2] [n2];
F3[n3] [n2];

F[n3] [n2+n3] ;

poly suml,sum2,sum3;

def u(d-1)=0;

def v(d)=0;

def u(d)=1;

for(i=d+1;i<=2%d;i++)

{

def u(i)=0;

def v(i)=0;

}
for(i=

{

-2%d;i<=0;i++)

def u(i)=0;
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def v(i)=0;

b

for(j=1;j<=d-1;j++)

{

for(i=1;i<=d-2;i++)

{
A1[i,jl=(d-1)*(d-j)*u(i)*u(j);
b
C1[1,jl=d*(d-j)*u(j)*w(1);
C1[2,j]=—d*v (§)*u(1)+(d-j)*u () *w(2);
}

for(j=1;j<=(d-1);j++)

{

for(i=1;i<=(d-1);i++)

{

sum1=0;
for(mil=1;m1<=(i-1) ;ml++)

{
suml=suml+u(i+j-m1)*v(ml);
b

sum2=0;

for (m2=1;m2<=i ; m2++)

{
sum2=sum2+u (m2) *v (i+j-m2) ;
b

B1[i,jl=d*suml-d*sum2-(i-1)*(d-j)*u(j)*v(i)+d*v(i+j)*w(1)-d*u(i+j)*w(2);
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}

b
for(j=1;j<=d-1;j++)
{
for(i=1;i<=2%d-3;i++)
{

if (i<=d-2)

{

F1[i,jl=A1[1,j];

}

if (i>d-2)

{
F1[i,jl=B1[i-d+2,j];
}

}
F1[2xd-2,j]1=C1[1,j];
F1[2*d-1,j]1=C1[2,j];
}
for(j=1;j<=d-1;j++)
{
for(i=1;i<=d-2;i++)
{

suml1=0;
for(ml=1;ml<=i;mi++)

{

suml=suml+(d+i-j-2*mi+1)*u(ml)*u(d+i-j-mi+1);
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}
A2[i,jl=-d*(d+i-j+1)*u(d+i-j+1)*w (1) +d*suml-j* (i+1)*xu(i+1)*u(d-j);
}

C2[1,jl=d*(d-j+1)*xu(d-j+1) *w(1)+j*u(1)*uld-j);
C2[2,j1=d*(d-j+1)*v(d-j+1) *w (1) +j*v (1) *u(d-j);
}

for(j=1;j<=d-1;j++)

{

for(i=1;i<=d-1;i++)

{

sum2=0;

sum3=0;

for (m=1;m<=1;m++)

{

sum2=sum2+ (d+i-j-m+1)*u(m) *v(d+i-j-m+1) ;
sum3=sum3+m*u (d+i-j-m+1)*v(m) ;

}
B2[1i,j]=-d*(d+i-j+1)*v(d+i-j+1)*w (1) +d*sum2-d*sum3-j* (i+1)*u(d-j)*v(i+1);
}

}

for(j=1;j<=d-1;j++)

{

for(i=1;i<=2*d-3;i++)

{

if (i<=d-2)

{
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F2[i,jl1=A2[1,j];

}

if (1>d-2)

{

F2[i,jl=B2[i-d+2,j];

}

}

F2[2*d-2,j]1=C2[1,j];
F2[2*d-1,j]1=C2[2,j];

}

for(j=1;j<=d-1;j++)

{

for(i=1;i<=d-2;i++)

{

suml=0;

sum2=0;

for (m=1;m<=i;m++)

{
suml=suml+(d+i-j-m+1)*u(d+i-j-m+1)*v(m);
sum2=sum2+m*u (m) *v (d+i-j-m+1) ;
}
A3[i,jl=—d*(d+i-j+1)*u(d+i-j+1)*w(2)+d*suml-d*sum2-d* (i+1)*u(i+1)*v(d-j);
}

}

for(j=1;j<=d-1;j++)

{
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for(i=1;i<=d-1;i++)

{

sum3=0;

for(ml=1;mi<=i;mi++)

{
sum3=sum3+(d+i-j-2*ml1+1)*v(ml)*v(d+i-j-mi+1);
}
B3[i,jl=-d*(d+i-j+1)*v(d+i-j+1)*w(2)+d*sum3-d* (i+1)*v(i+1)*v(d-j);
}
C3[1,j]=d*(d-j+1) *u(d-j+1) *w(2)+d*u(1) *v(d-j);
C3[2,jl=d*(d-j+1) *v(d-j+1)*w(2)+d*v (1) *v(d-]);
}

for(j=1;j<=d-1;j++)

{

for(i=1;i<=2%d-3;i++)

{

if (i<=d-2)

{

F3[i,j]1=A3[1,j];

}

if (i>d-2)

{

F3[1i,j]1=B3[i-d+2,j];

}

}

F3[2xd-2,j]1=C3[1,j];
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F3[2xd-1,j1=C3[2,j];
}

for(j=1;j<=d-1;j++)

{
for(i=1;i<=2%d-1;i++)
{

F[i,jl=F1[i,j];

}

}
for(j=d;j<=2%d-2;j++)
{
for(i=1;i<=2%d-1;i++)
{

F[i,j]=F2[i,j-d+1];

}

}

for (j=2%d-1;j<=3%d-3; j++)

{
for(i=1;i<=2*d-1;i++)
{
F[i,j]=F3[i,j-2*%d+2];
}

}

for(i=1;i<d-1;i++)

{

F[i,3*d-2]=(d-i)*u(i);
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}

for(i=1;i<d;i++)

{
F[i+d-2,3*d-2]=(d-1)*v(i);
}
F[2xd-2,3*d-2]=d*w (1) ;
F[2*xd-1,3*d-2]=d*w(2) ;
derlog=F;
return(derlog) ;

}

}

[I1777777777777777777777777777777777777777777777777777777777777777777
/117711717

/* This procedure computes the module of liftable vector fields over
the minimal cross cap mapping of multiplicity d without the Euler
vector field

*/

proc phivfsO(int d)

{

module derlog=phivfs(d);

module derlog0;

derlogO[1..3xd-3]=derlog[1..3%d-3];

return(derlog0) ;

}
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[11777117777771177777771777777777777777717777777117777777117777771177
/111111117

/*This Procedure Computes the define equation of the image of
the minimal cross cap mapping of multiplicity d

*/

proc def_eq(int d)

{

if (d==2)

{

return(w(2) "2-v(1) "2*xw(1));

}

else

{

def current = basering;

ring r = 0, (u(1..d-2),v(1..d-1),w(1),w(2),a(1..d-2),b(1..d-1),y) ,ds;
matrix A[1][d-2];

matrix B[1][d-1];

poly suml,sum2,prodl,prod2;

prodi=1;

prod2=1;

int i;

for(i=1;i<=(d-2);i++)

{

suml=suml+u(i)*y~i;

prodl=prodi*a(i);

+
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for(i=1;i<=(d-1);i++)
{

sum2=sum2+v (i) *y~i;
prod2=prod2*b (i) ;

}

for(i=1;i<=d-2;i++)

{

Al1,i]=u(i)-a(i);

}
for(i=1;i<=d-1;i++)
{

B[1,i]l=v(i)-b(i);

b

ideal J=A,B,w(1)-(y~d+suml) ,w(2)-sum2;

ideal Q=eliminate(J,prodl*prod2xy) ;

poly H=Q[1];
setring(current) ;
poly H2 = fetch(r,H);
return(H2) ;

}

}

L1177 77777777777777777777777777777777777777777777777777777777/7777777

/117117177

/* Calculate the extended _Theta\GG-tangent space of map-germ with

respect to a module of vector fields
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*/

proc tthe (module theta, ideal h, string G)

n

USAGE: tthe( theta, h, string G); theta module, h ideal, G string
PURPOSE: Calculate the extended _Theta\GG-tangent space of h with
respect to a module of vector fields

RETURN: Returns T_Theta\GG_{e}(h)

{

module dh

jacob (h);

module Ch

freemodule(ncols(h))*h;
module TVE;
def EQ=G[1];
if (EQ=="R")
{
TVE = dh*theta;
+
if (EQ=="K")
{
TVE = dh*theta+Ch;
}
return(TVE) ;

}

[I1177777777777777777777777777777777777777777777777777777777777777777
/11117177
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/* Calculate the _Theta\GG-tangent space of map-germ with respect to
a module of vector fields

*/

proc tth (module theta, ideal h, string G)

USAGE: tth( theta, h, string G); theta module, h ideal, G string
PURPOSE: Calculate the _Theta\GG-tangent space of h with respect to
a module of vector fields

RETURN: Returns T_Theta\GG (h)

"

{

def EQ=G[1];

module thetal = intersect(theta, maxideal (1)x*freemodule(nrows(theta)));

module TV;
if (EQ=="R")
{
TV = tthe(thetal,h, "R");
}
if (EQ=="K")
{
TV= tthe(thetal,h, "K");
}
return(TV) ;
}

[I1177777777777777777777777777777777777777777777777777777777777777777
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/11111111
/* Calculate the extended _Theta\GG_e-normal space of map-germ with
respect to a module of vector fields
*/
proc nthe (module theta, ideal h, string G)
USAGE: nthe( theta, h, G); theta module, h ideal, G string
PURPOSE: Calculate the extended _Theta\GG_e-normal space of h with
respect to a module of vector fields
RETURN: Returns N_Theta\GG_{e}(h)
{
def EQ=G[1];
module NTV;
if (EQ=="R")
{
NTV =kbase(std(tthe(theta,h, "R")));
b
if (EQ=="K")
{
NTV =kbase(std(tthe(theta,h, "K")));
}
return(NTV) ;
Y /11707777777777777777777777777777777777777777777777777777777777777
/11111117

/* Calculate the extended _Theta\GG_e-codimension of map-germ with
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respect to a module of vector fields

*/

proc codthe (module theta, ideal h, string G)

USAGE: codthe( theta, h, G); theta module, h ideal, G string
PURPOSE: Calculate the extended _Theta\GG_e-codimension of h with
respect to a module of vector fields

RETURN: Returns _Theta\GG_{e}\cod(h)

{

def EQ=G[1];

int COD;

if (EQ=="R")

{

COD = vdim(std(tthe(theta,h, "R")));
b

if (EQ=="K")

{

COD = vdim(std(tthe(theta,h, "K")));
b

return(COD) ;

}

L1177 777777777777777777777777777777777777777777777777777777777777777
/1117717

/* Guess the k-_Theta\GG-determinacy of map-germ with respect to
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a module of vector fields. For high corner see pb30 of 2nd edition

of "A Singular introduction ..."

*/
proc guessdet (module theta, ideal h, string G)
USAGE: guessdet( theta, h, G); theta module, h ideal, G string
PURPOSE: Guess the k-_Theta\GG-determinacy of h with respect to
a module of vector fields

RETURN: Returns k-_Theta\GG-determinacy

{

def EQ=G[1];

vector hc;

if (EQ=="R")

{

hc = highcorner(std(tth(theta,h, "R")));
}

if (EQ=="K")

{

hc = highcorner(std(tth(theta,h, "K")));
}

return(deg(hc)+1);

}

II117777777777777777777777777777777777777777777777777777777777777777

1111717777

/* Compute a complete k-transversal. The module is usually related to



169

a tangent space module, eg, mT_VK. However, it can be any module,
doesn’t have to be a tangent space. Returns a set of monomials of
degree k which form the k-transversal

*/

proc ct (module tangent, int k)

USAGE: ct( tangent, k); tangent module, k integer. The module is
usually related to a tangent space module, eg, \M T_\Theta \GG.
However, it can be any module, doesn’t have to be a tangent space
PURPOSE: Compute a complete k-transversal

RETURN: Returns a set of monomials of degree k which

form the k-transversal

{

module Chl = freemodule(nrows(tangent))*maxideal (k+1);
module comp = std(tangent+Chl);

return (kbase (comp,k) ) ;

}

[I1177777777777777777777777777777777777777777777777777777777777777777

/1177717
/* Check to see if an unfolding is trivial
*/

proc trivunf (module ct, module tangent)

USAGE: trivunf(ct, tangent); ct module, tangent module

PURPOSE: when an unfolding is trivial
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RETURN: Returns an element equal to the input element in ct if

the unfolding is not trivial and is zero if the unfolding is trivial.

{
module NTV=reduce(ct,std(tangent));
return(NTV) ;

b
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