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Abstract

Curriculum learning in reinforcement learning is a rapidly growing research field used
to shape exploration by presenting the agent with increasingly complex tasks. The idea
of curriculum learning has been largely applied in both animal training and pedagogy.
In reinforcement learning, most of the previous task sequencing methods have shaped
exploration with the objective of reducing the time to reach a given performance level.

In this work, we start by proposing novel uses of curriculum learning, which arise
from choosing different objective functions. We define a general optimization framework
for task sequencing based on combinatorial optimization. The framework is composed
of several performance metrics for the evaluation of a curriculum and three different
task scenarios. Furthermore we study the shape of the curricula search space in order to
understand what are the salient features characterizing it.

We adapt popular metaheuristic search methods to the task sequencing problem in
curriculum learning to find curricula optimizing any of the given performance metrics.
Critical tasks, in which suboptimal exploratory actions must be minimized, can benefit
from curriculum learning, and its ability to shape exploration through transfer. We propose
a task sequencing algorithm maximizing the cumulative return, that is, the return obtained
by the agent across all the learning episodes. By maximizing the cumulative return, the
agent not only aims at achieving high rewards as fast as possible, but also at doing so while
limiting suboptimal actions.

Finally we evaluate the performance of the metaheuristic search methods on several
tasks. We show that curriculum learning can be successfully used to: improve the ini-
tial performance, take fewer suboptimal actions during exploration, and discover better
policies. We also experimentally compare them to our task sequencing algorithm, and
show that it achieves significantly better performance on the problem of cumulative return
maximization. Furthermore, we validate our algorithm on a critical task, optimizing a
home controller for a micro energy grid.
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Chapter 1

Introduction

"As the result of careful scheduling, pigeons, rats, and monkeys have done
things during the past five years which members of their species have never
done before. It is not that their forebears were incapable of such behavior;
nature had simply never arranged effective sequences of schedules"

- B. F. Skinner 1959

1.1 Motivation

Recent advances in reinforcement learning allowed us to develop algorithms able to solve
problems that, just a few years ago, were unimaginable to approach. The reason behind
the great success of these state-of-the-art techniques can be largely attributed to the advent
of Deep Reinforcement Learning (DRL) methods [50]. Although it is not the first time
that a reinforcement learning agent surpasses human performance on artificial domains
[89], DRL agents are the first to directly learn from high-dimensional sensory inputs
using end-to-end reinforcement learning. This achievement was rapidly overtaken by
even more outstanding results in incredibly complex domains such as in the game of
Go where AlphaGo, the artificial agent developed by Google DeepMind, won against
the grandmaster player Lee Sedol [74]. The number of domains where DRL agents can
outperform professional human players keeps growing, challenging always more complex
environments as in the case of popular online strategy games such as Starcraft [92] and
Dota 2 [9] or even real-world robotics training [97].

The results achieved in these domains show the benefits of deep reinforcement learning
algorithms although they still present a big weakness in terms of sample efficiency. Because
of this reason, all these solutions require an enormous number of training iterations before
being able to perform well over the designated task, and therefore only new powerful
generations of hardware and parallel computing could really allow DRL to overtake human
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performances in these tasks. For instance, OpenAI developed a Dota 2 AI named OpenAI
Five which accomplished expert-level performance by playing over 10,000 years worth
of games. One of the reasons justifying this fact is that most of these agents are trained
without leveraging any prior knowledge, hence, differently from any biological learner,
they learn how to solve any task from scratch.

As we compare the final performance of these astonishing artificial agents to those
of human experts in the task domain, we believe it still remains of crucial importance to
also notice the differences between the two learners at a training level in order to better
understand how to develop the next generation of artificial agents.

In this Ph.D. thesis we identify the previously mentioned knowledge transferability is-
sue as an opportunity to improve the performance of state-of-the-art reinforcement learning
algorithms. We argue how a promising solution taking advantage of these techniques while
improving generalization capabilities is represented by curriculum learning. This field
is inspired by the way biological learners approach problems during the course of their
lives and develop methods solving particularly complex tasks by learning through a set of
increasingly more difficult challenges, exploiting previously accumulated experience.

1.2 Curriculum Learning in Reinforcement Learning

Let us consider a reinforcement learning problem with a very large number of states. Even
in the case of simple domains, any RL agent would take a long time before converging
to an optimal solution if no prior knowledge about the problem is available to the learner.
Nevertheless, in many cases it can be easy to identify the most interesting areas of the
state space if the agent already performed training over different problems in the same
domain. Following this principle, given an RL task, it is possible to specifically design
new problems to train the agent on in such a way that it learns increasingly more difficult
domain features useful to solve the final reinforcement leaning task.

In machine learning, curriculum learning is the field that studies algorithms for sorting
the experience over which the artificial agent is trained, in order to improve its learning
performance. These types of techniques were first studied in the context of supervised
learning where the focus was mainly on ordering the training set [8]. Curriculum learning
was adapted to the reinforcement learning setting only more recently and, as we will later
analyze in Chapter 3, it rapidly branched out into a number of approaches substantially
different from each other.

This work studies algorithms sequencing different reinforcement learning tasks for
transferring the knowledge coming from each of them through the sequence (curriculum) in
order to provide a robust initialization for agents approaching a particularly complex final



1.3 Curriculum Learning in Humans 3

task. The methods researched in this thesis strongly rely on transfer learning algorithms
efficiently passing experience from one task to another. We are particularly interested in
studying the category of reinforcement learning tasks where curriculum learning applica-
tions can have a great impact. This is the case of problems where it is possible to spend a
long time offline searching for an optimal curriculum in order to minimize the number of
expensive actions taken by the agent during online learning.

1.3 Curriculum Learning in Humans

Research in the field of machine learning aims at developing artificial agents able to learn
to solve problems in a given environment with performance equal or even superior to
those observable in nature. Because of this reason, the relationship between this area and
others such as neuroscience, psychology and biology is historically very strong. The first
steps towards a theory of reinforcement learning date back to the puzzle box experiments
conducted by the american psychologist Edward Thorndike, where cats successfully
learned how to escape a cage learning by trial and error [90]. Animal experiments
continuously played a crucial role in the development of what we nowadays consider the
foundation of reinforcement learning. For instance, the term conditioning was first adopted
to describe animal reactions to natural stimuli and how they could be trained to respond
with a similar behaviour to different artificial stimuli [59], and behaviourism dates back to
Skinner’s animal behaviour experiments, where the psychologist engineered the reward
signal provided to animals so that they could learn extremely complex sequences of actions
[75].

Curriculum learning is also directly inspired by the previously mentioned fields with
particular focus on human training. A great example is represented by the training strategies
used by teachers in school. It has never been the case, indeed, that students begin learning a
new subject starting from its most complicated and particular features, but rather the teacher
carefully designs classes in order to initially show only the easiest concepts increasingly
teaching more complicated ones over the course of the years. Education is not the only
area where we can find examples of curriculum learning as this technique is used to train
over the most of the tasks we learn how to solve in our lives, from speaking, writing or
reading to playing a sport, driving a car or cooking. The strategy in these cases is always to
divide a complex and important task into subproblems that are more practical to learn for
the student but also easier to explain for the teacher. Often times we can also observe how
different skills are required in order to solve a task and therefore each of them is trained
separately so to improve the performance on the whole task.
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Fig. 1.1 An example of curriculum in the artificial domain Gridworld

As we will discuss in more detail in Chapter 3, these are some of the major training
strategies that curriculum learning exploits in order to develop more efficient learning
strategies for artificial agents.

1.4 Challenges and Contributions

In spite of the inspiration that we can draw from nature in order to shape curriculum
learning algorithms, artificial learners differ from biological ones in many different aspects.
This dissimilarity, in our opinion, represents an important challenge for this field. For
example, in Figure 1.1 we show a possible curriculum for learning a complex task (the
rightmost in figure) in a Gridworld domain. This curriculum challenges the agent with
iteratively more complex tasks, introducing for each new intermediate problem a different
element present in the final task that we desire the agent to learn. Intuitively, this is a
good learning strategy but, without any further specification of the actual reinforcement
learning algorithm used to learn each single task, or details regarding the transfer learning
technique for passing knowledge from one task to the next one, it is actually impossible to
determine whether or not the curriculum will be beneficial to our agent. We humans are
naturally able to acknowledge the importance and potential impact of a curriculum for a
learner but we also tend to apply human intuition into the creation of the curriculum itself
which, as we will later see, in some cases can be desirable but could also bring unexpected
consequences.

In this work we investigate algorithms able to find optimal curricula for a given final
task searching among the many sequences of intermediate tasks that can be generated
starting from a finite set of source tasks. More specifically:

• we propose a framework for curriculum learning in reinforcement learning with
several performance metrics and task scenarios
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• we collect a dataset of curriculum learning experiments and perform a preliminary
analysis over the salient features characterizing the task sequencing problem

• we adapt popular metaheuristic algorithms for combinatorial optimization to search
optimal curricula for any given performance metric

• we propose our heuristic search method to perform task sequencing for cumulative
return maximization

• we evaluate all the proposed algorithms in multiple experiments over different
artificial domains

• we discuss a methodology for applying our heuristic search to real-world problems
and experimentally evaluate its effectiveness

1.5 Thesis Overview

In this chapter we introduced the motivations behind this Ph.D. thesis and briefly discussed
the strong connections between curriculum learning and early behavioural studies for
animal training. Furthermore, we also elaborated on the challenges of the field and how
our study attempts to consider and exploit them to attain a better comprehension of the
problem we are trying to solve.

In Chapter 2 we briefly introduce basic terminology and concepts regarding reinforce-
ment learning, transfer learning and combinatorial optimization in order to allow for a
better comprehension of our study.

In Chapter 3 we discuss all the relevant literature in the field of curriculum learning
with particular focus on those works that are the closest to our research. We elaborate on
the exploration-exploitation problem in reinforcement learning and show how curriculum
learning is a proposition to solve this issue and we also investigate the origins of this area
of research from its early applications in cognitive science.

In Chapter 4 we introduce a curriculum learning framework where we identify three
different task scenarios and four performance metrics as possible optimization objectives.
We formulate the task sequencing problem in curriculum learning as a combinatorial
optimization search and analyze the main features characterizing it.

In Chapter 5 we discuss different algorithms for performing a search in the space of all
the possible curricula generated by a set of intermediate source tasks. We also introduce our
own heuristic method able to sequence tasks at the purpose of maximizing the cumulative
return performance.
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In Chapter 6 we perform an experimental evaluation of all the proposed algorithms and
show the performance of our heuristic method on a real-world application to demonstrate
the practical implication of curriculum learning.

We finally conclude with Chapter 7 where we illustrate the contributions brought by
this thesis but also the limitations and possible future expansions for this research work.



Chapter 2

Background

In this Chapter we provide a general introduction of the main subject areas and techniques
discussed and utilized in this work. We present basic terminology and concepts of rein-
forcement learning, transfer learning and combinatorial optimization in order to offer the
reader the appropriate background knowledge to understand the research in this thesis.

2.1 Reinforcement Learning

We model tasks as episodic Markov Decision Processes. An MDP is a tuple ⟨S,A, p,r,γ⟩,
where S is the set of states, A is the set of actions, p : S×A×S→ [0,1] is the transition
function, r : S×A→ R is the reward function and γ ∈ [0,1] is the discount factor. If a
state is represented as a vector s = ⟨v1, . . . ,vd⟩ of d variables the representation of the state
space is said to be factored. Episodic tasks have absorbing states, that are states that can
never be left, and from which the agent only receives a reward of 0.

Fig. 2.1 The classic reinforcement learning diagram representing the interaction between
agent and environment in an MDP [81]
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For each time step t, the agent receives an observation of the state and takes an action
according to a policy π : S×A→ [0,1]. The aim of the agent is to find the optimal policy
π∗ that maximizes the expected discounted return G0 = ∑

tM
t=0 γ tr(St ,At), where tM is the

maximum length of the episode.
In this work we perform two sets of experiments with different learning algorithms

and function approximators in order to test our solutions under different settings. To this
purpose we select two of the most popular reinforcement learning algorithms that differ
one another on many different aspects.

Sarsa(λ ) is a learning algorithm that takes advantage of an estimate of the value function
qπ(s,a) = Eπ [Gt | St = s,At = a]. We represent the value function with a linear function
approximator, so that the learning algorithm computes an estimate q̂(s,a) = θθθ

T
φφφ(s,a) of

qπ(s,a) as a liner combination of features φφφ .
Proximal Policy Optimization (PPO) [71] is a policy gradient algorithm that optimizes

the loss function defined as LCLIP(θ) = Et [min(pt(θ)Ât ,clip(pt(θ),1−e,1+e)Â)], where
pt(θ) = πθ (at |st)/πθold(at |st) and Â is the advantage function. In this case, θ are the
parameters of a neural network used as function approximator for this learning algorithm.

2.2 Transfer Learning

Curriculum learning leverages transfer learning to transfer knowledge through the curricu-
lum, in order to benefit a final task. In transfer learning, an agent performs training over
a task, at the end of which the resultant knowledge is moved to another task in order to
improve the learning capabilities of the agent. The transfer takes place between pairs of
tasks, referred to as the source and the target of the transfer.

In this work we use two different TL methodologies, one per type of function ap-
proximator. For Tile Coding we use a transfer learning method based on value function
transfer [88], which uses the learned source q-values, representing the knowledge acquired
in the source task, to initialize the value function of the target task. A detailed explanation
of this method can be found in Chapter 4. In the case of artificial neural networks we used
a similar transfer learning technique specifically designed for this type of architectures:
progressive networks [66]. This method instantiates a new neural network for each new
task the agent encounters during learning and links its layers to those coming from the
previously trained networks by building lateral connections. These two techniques share
the idea of transferring the whole source function approximator to the target task. This
fact is desirable in curriculum learning as any part of the knowledge gathered through the
interaction with a source task can be useful for learning any of the following tasks in the
curriculum.
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Fig. 2.2 Graphical representation of learning improvements on transfer learning metrics
[88]

Several metrics have been designed to evaluate the performance improvement intro-
duced by the adoption of a transfer learning algorithm for training over a target task [88]:

• Jumpstart measures the performance of the agent during the initial learning steps in
the target task;

• Time-to-threshold is the time needed by the agent for reaching a pre-specified
performance value;

• Asymptotic Performance corresponds to the value of the policy learned by the agent
at the end of the training;

• Total Reward is the total amount of reward accumulated by the agent during the
training in the target task (in other words, the area under the learning curve)

• Transfer Ratio measures the ration between the total reward of the agent learning the
target task with and without transfer

We study and discuss the first four explaining how to adapt them to curriculum learning.
In Figure 2.2 we give a graphical representation of the improvement that positive transfer
can bring to an agent learning from scratch. Three of the five previously listed metrics
are directly indicated in the figure but it is also possible to appreciate the performance
difference in terms of total reward and transfer ratio.
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2.3 Combinatorial Optimization

Combinatorial Optimization (CO) problems are characterized by the goal of finding the
optimal configuration of a set of discrete variables. The most popular approaches in this
field, called metaheuristics, are approximate algorithms, that do not attempt to search
the solution space completely, but give up global optimality in favor of finding a good
solution more quickly. Metaheuristics are applicable to a large class of optimization
problems, and are the most appropriate methods for black-box combinatorial optimization,
when a particular structure of the objective function (for instance, convexity) cannot be
exploited. Task sequencing is one such black-box problem and, since the time required
for learning through a sequence of RL tasks is usually large, an exhaustive testing of all
possible curricula is generally unfeasible. Therefore we selected four of the most popular
metaheuristics algorithms for comparison with our search method: Beam Search [45, 58],
Tabu Search [29], Genetic Algorithms [31], and Ant Colony Optimization [17].

Beam Search and Tabu Search are trajectory-based algorithms, which starting from a
single instance, search through the neighborhood of the current solution for an improvement.
More specifically, Beam Search is a greedy algorithm that, at each iteration, generates new
candidate solutions by expanding the previous w best ones. In order to be implemented,
this metaheuristic only needs the definition of the expansion action and the value of the
beam width w. Tabu Search, instead, performs a local search of the currently best solution
in order to iteratively move to a new one with improved performance. Because of this
reason, for this algorithm it is necessary to define the neighborhood of a solution so to
determine the next set of candidate solutions to evaluate. Furthermore Tabu Search requires
the definition of a fitness function Ft for performing the evaluation step, and the parameter
T representing the size of the tabu list where previously visited solutions are stored.

Genetic Algorithms and Ant Colony Optimization are population-based algorithms,
that start from a set of candidate solutions, and improve them iteratively towards successive
areas of interest. A Genetic Algorithm is an evolutionary algorithm that begins from an
initial population of candidate solutions and repeatedly evolves them towards better ones.
This is possible by implementing nature-inspired processes such as the crossover and
mutation operations. Similarly to Tabu Search, this metaheuristic needs the definition of
its fitness function Fg and the value U of the size of the new population. Ant Colony
Optimization is inspired by the behaviour of real foraging ants leaving pheromone on
successful trails so that other ants can follow it. It leverages multiple agents, that at
each iteration attempt to move closer to the goal of the problem by modifying their trails
(solutions). The possible modifications and the relative probability of being applied on a
trail need to be specified in order to implement this algorithm. Furthermore, Ant Colony
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Optimization also requires the definition of the pheromone update rule so that promising
solutions are visited and modified by different ants several times.





Chapter 3

Related Work

Curriculum learning (CL) in reinforcement learning (RL) is a recent field of research
which aims at improving the exploratory behaviours of RL agents by leveraging knowledge
coming from previous experience of the agent on a number of different tasks. Curriculum
learning exploits this knowledge for improving the learner performance over one or
multiple particular RL tasks called the final tasks. Although the optimization objectives
can vary substantially for different settings, curriculum learning always acts directly on the
exploration strategy employed by the learning agent, adapting it accordingly to the final
task scenario. CL methods can also be seen as a natural expansion of transfer learning
(TL) algorithms which mainly focus on moving knowledge from one only intermediate
task to the final one.

In this chapter we begin by surveying the most relevant exploration techniques in rein-
forcement learning and discuss the challenge of applying them to modern RL algorithms.
We then move our focus to the origins of curriculum learning as a theory in language
studies experimentally applied to simple supervised learning problems. Later we perform
an in-depth analysis of state-of-the-art curriculum learning research with a particular focus
on task sequencing algorithms which represent the core of this Ph.D. thesis. Finally we
discuss literature relative to closely related fields, the source task creation problem and
transfer learning algorithms specifically designed for curriculum learning.

3.1 Exploration in Reinforcement Learning

In reinforcement learning the agent learns how to solve problems in a given environment
throughout an iterative interaction within it. In classic RL problems, the learner starts
without any prior knowledge about the best policy to be applied for solving a specific
task. Therefore, during the beginning of the training phase, the agent, in each state, takes
decisions that are strongly biased towards its initial estimate of the quality of each action.
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This can be a problem of major concern as, in this way, the agent in each learning episode
could select and update always the same combination of actions, thus quickly converging
to a sub-optimal solution. Because of this reason, at each time step, a good learner must
also take actions that look less promising, in other words it must explore. Finding the right
balance between, visiting new actions and states not explored yet, and following again the
ones already visited in past iterations for learning more about them, is famously known
as the exploration-exploitation problem [81, 84]. The design of effective exploratory
strategies is of crucial importance in reinforcement learning in order to guarantee the
discovery of optimal solutions. In this section we survey the most popular such strategies
and discuss their limitations.

3.1.1 Classic Exploratory Strategies

The most popular exploration policy in reinforcement learning is ε-greedy due to its
simplicity. This technique defines a probability ε > 0 for which the learning agent, instead
of taking the action currently estimated as best, randomly selects another one, hence
explores. By definition, ε-greedy uniformly samples all the sub-optimal actions assigning
them the same probability. Alternatively it is possible to compute different probability
values for each sub-optimal action based on their current estimate. Such a technique is
called Boltzmann exploration. These two strategies are widely used in many different
reinforcement learning applications because of the simplicity of their implementation.
Nonetheless it is possible to design more advanced exploration techniques depending on
the particular RL setting.

In the context of bandit problems, where the MDP has one state only, more sophisticated
exploratory policies were proposed. In some cases, it is indeed possible to calculate the
upper confidence bound (UCB) for each action. An algorithm leveraging such information
is UCB1 [4] which, at each time step, selects the action with the best upper confidence
bound. This technique can be further improved by including the variance of the reward
associated with each action in order to improve the UCB calculation [3]. Moreover,
whenever it is also possible to compute the lower confidence bound, we can use even more
drastic biases for selecting the best action at each time step [20, 48, 51].

All of the previously listed works are applied to bandit problems where we only have
one state, therefore the exploration problem is limited to efficiently sample all the possible
actions. This Ph.D. thesis focuses on reinforcement learning agents training in MDPs
with multiple states and more specific exploration policies were previously studied for
solving this type of problem. Ideally we would want our agent to visit all the possible
state-action combinations in the given MDP in order to fully explore it. It is possible to
achieve such a result for deterministic MDPs [57] although this is intractable for very large
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tasks. In case of stochastic MDPs, instead, there exist no exploratory behaviours with the
same guarantees, even for small problems [84]. It is indeed impossible to define a finite
amount of time to systematically visit all state-action combinations in this particular case
as any exploration strategy is still subject to the stochastic nature of state transitions for
this category of MDPs. As a result, the most effective exploration strategies for general
MDPs, E3 [16, 40] and its improvement R-max [10], aim at exploring the given MDP by
dynamically changing the focus of exploration towards states and actions whose estimate
is the most uncertain.

The exploration problem can also be translated into two different problem definitions.
The first one is regret minimization, where the agent needs to reduce the number of
expensive actions it takes while still training in the environment. The algorithm UCRL2
[36], which uses upper confidence bounds to choose a new exploration policy at the
beginning of each new learning episode, is a possible approach to this problem, although
it cannot be applied to all the classes of MDPs such as those with transient states, i.e.
states that are not accessible from some other states. Alternatively, another objective
can be that of minimizing the time required to reach a pre-defined performance value.
Particularly interesting for this case are PAC-MDP algorithms (Probably Approximately
Correct in Markov Decision Processes), where this time is bounded with high probability
as a polynomial function in the MDP parameters. Such algorithms are the previously
mentioned R-Max [10, 37] and many others as well [78, 79, 85, 86]. The main issue with
these approaches is that they are best applied to small MDPs and fail to scale efficiently.

The exploration techniques we discussed so far are all single-task type of exploration,
as they are directly applied on the only task the agent has to learn, thus they are not
designed to use any prior knowledge. Next we are going to discuss algorithms that instead
are based on training the agent on other tasks before approaching the target one.

3.1.2 Transfer Learning

The majority of modern reinforcement learning problems are characterized by a very
large number of state features. This generates MDPs that are intractable by tabular RL
methods and the previously discussed exploratory strategies are not efficient enough to be
applied in these cases. A classic approach to this issue is using function approximators
and, nowadays, non-linear ones, especially Artificial Neural Networks (ANNs) are widely
applied in reinforcement learning due to their effectiveness which comes at the cost
of losing the guarantee of global optimality. Because of this reason the most popular
exploration policies today are simple algorithms like ε-greedy, or in policy gradient
methods exploration can be directly included in the definition of the learning algorithm.
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An alternative approach to the exploration-exploitation problem can be found in transfer
learning (TL) algorithms [43, 88]. These methods are based on the idea of exploiting
previous knowledge gathered on an auxiliary task, source task, in order to improve the
performance of the learner over the target task. In this way it is possible to avoid exploring
less promising areas of the target task state space following the knowledge gathered over
the source task. Despite the fact that the explicit objective of this field is not studying
innovative exploration strategies, this is still an implicit result of the research in this area.
Nonetheless it is possible to specifically design TL algorithms to systematically explore
target tasks [47].

Transfer learning methods can be divided following the type of knowledge that the agent
can exploit for learning the target task [88]. This can be in the form of low-level knowledge
such as value functions [87], policies [23] or task model [21], or high-level knowledge
like options [76] or reward shaping [56]. The former case gives a complete initialization
for the initial policy of the agent, while the latter provides additional information to the
learner which will be used to guide its learning process [88]. Particularly interesting is
the reward shaping case where the learner is provided with additional rewards, other than
those supplied by the underlying MDP, in order to guide its exploration towards the most
interesting areas of the state space.

Curriculum learning expands the core idea of transfer learning into a setting where the
previous knowledge is coming from a number of different source tasks instead of just one.
As we will later discuss in this thesis, transfer learning is directly employed in curriculum
learning for implementing the passage of knowledge for any pair of tasks and it also plays
a crucial role in the definition of CL performance metrics.

3.2 Curriculum Learning

In machine learning, curriculum learning is the area that studies training strategies for
iteratively introducing a number of gradually more complicated problems to an agent
learning how to solve a complex task. The idea is that, by doing so, the agent is able to
improve its performance over the given final task, which can result in a faster learning
process or, more generally, in achieving more robust knowledge.

3.2.1 Origins of Curriculum Learning

Questioning the different importance of samples composing a training dataset and studying
these concepts for machine learning agents was initially introduced in the context of
cognitive science while studying learning capabilities in children approaching the problem
of learning a language. Many studies, indeed, were arguing how the number of given
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training samples was not the only important feature to be taken into consideration for
accomplishing effective language learning, but the presence of positive and negative
examples [11, 61] or their relative complexity [18] were also important topics.

The importance of starting small for efficiently learning particularly difficult tasks was
firstly applied to artificial agents in language studies [18]. This theory argues that, learning
through increasingly more complex examples can improve the performance of an agent
training over a complex problem. In this study, a simple recurrent connectionist network
was used to learn an artificial grammar. The system was tested both when learning from
the whole training set without a particular ordering and when instead, incrementally more
difficult training examples were introduced to it. The results showed how the selected task
was virtually impossible to learn without sorting the samples.

Later works applied similar concepts in different domains such as robotics [68]. In
this context Trajectory Extension Learning was proposed, a method involving gradual
parameter modifications to allow quicker convergence for learning control in robot manip-
ulation tasks. The underlying idea is that knowledge is bootstrapped from regions of easy
solvability into regions that require more difficult dynamic behaviours.

Later robotics applications followed up on this strategy to learn control strategies for
a 2-link robotic manipulator with four single-joint muscles and two double-joint ones
[39]. This was possible by gradually adjusting parameters such as the speed of the arm
movements and the viscoelastic property of the arm during the learning process.

Interestingly, task decomposition for tackling complex robotic domains requiring online
learning was introduced in the same period [14]. Curriculum learning in reinforcement
learning was used for the first time in those years, still in the robotics domain [2]. In
this case the problem consisted of a robotic agent learning how to shoot a ball into a
goal, based on visual inputs. The learning took place in simulation in order to be later
transferred into the real world so to test the learned policy. This was not sufficient to learn
useful policies in a sensible time because of the extreme reward sparsity characterizing the
problem. As a solution the authors proposed Learning from Easy Missions, an algorithm
for controlling the robot and ball position in the environment to create tasks of increasing
difficulty in order to help the agent progress faster in learning the desired policy. The
concept of starting small was also strongly criticized [65] although showing the importance
to learn starting with simpler models (agent architectures) or to initialize the system with
pre-trained weights.

In machine learning, the increasing popularity of non-linear function approximators
such as neural networks for solving tasks in always more complicated environments,
introduced new challenges in the field as these architectures started growing deeper and
more complex. Different studies investigated techniques for using training data in the
most efficient way. Starting small became a less popular idea at this purpose, but it is
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interesting noticing how, new specifically designed techniques were based on the same
key ideas emerging from the previously described studies such as incrementally training
different parts of a neural network [33] or pre-initializing it for better learning from the
given samples [19].

3.2.2 Experience Replay Applications

Despite its origins from applications in the field of cognitive science, curriculum learning
gained popularity and became an important technique for optimizing the training of
supervised learning agents [8] by ordering the experience samples from the easiest to the
hardest before using them to train the learner. The result of such a process is extremely
beneficial to the agent because, in this way, it can learn faster and improve its generalization
capabilities.

It is easy to adapt this technique of sample ordering also to a reinforcement learning set-
up with experience replay [44]. In this type of setting, the learner stores state-action-reward
tuples in a replay buffer in order to reuse them multiple times, and improve so its learning
performance. This is a popular choice for some of the most advanced RL algorithms such
as Deep-Q-Networks [50]; nevertheless, in this case, the tuples are randomly sampled from
the replay buffer.

The first technique to introduce an ordering for the samples in the replay buffer is
Prioritized Experience Replay (PER) [69], where more importance is given to those tuples
whose expected learning progress is high. This can be measured through the temporal
difference (TD) error. In this way the most useful transition samples are used more often,
and therefore the agent learns how to solve a specific task faster. Other types of ordering
are also possible by taking into account richer information about the transition samples, for
instance the number of times each of them is selected, or the degree of difficulty in using a
particular tuple in the current learning step [63]. The main issue with these approaches is
that they need to be tuned and designed specifically for each environment, and therefore
they do not generalize well over different domains. Furthermore, in both these methods,
the importance of the training samples is calculated off-line, after the replay buffer contains
enough of them. However, this relevance value can also be calculated with an artificial
neural network specifically designed to solve this prediction problem [42].

The previous methods might result ineffective for problems characterized by sparse
reward. In this setting a reinforcement learning agent can take an extended period of
time before collecting tuples containing reward, especially during the initial part of the
learning process. Hindsight Experience Replay (HER) [1], instead of sorting the training
sample following a pre-defined metric, focuses on restructuring the tuples in order to be
able to exploit as much as possible the experience coming from unsuccessful episodes.
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This can be done by replaying the experience fixing as a goal the state that was actually
achieved during the episode rather than the one that the agent was aiming to achieve. This
trajectory is then used by an off-policy RL algorithm allowing the agent to exploit an
implicit curriculum arising from the fact that, in early episodes an agent is likely to reach
easy states more often than difficult ones. In spite of this, better curricula can be created
over such re-elaborated trajectories by giving replay priority to goals that have not been
used yet (curiosity) and goals that are similar to the actual goal the agent aims at achieving
(proximity) [22]. These two criteria are combined so as to order the training samples in an
adaptive way to the progress of the learner training over the given task.

The clear advantage of curriculum learning techniques for experience replay is the
exploitation of the most useful transitions encountered during the learning phase of the
agent. Thanks to off-policy RL algorithms, this process can be repeated multiple times
during the training, sensibly improving the learner performance. At the same time, these
methods alone introduce a hard constraint to the general formulation of the curriculum
learning problem. The transition samples, indeed, must be directly collected over the target
task to be optimized. We will later analyze techniques that relax this restriction in various
ways in order to generate curricula of entirely different tasks. This is the type of curriculum
studied in this Ph.D. thesis. Nevertheless, all curriculum learning algorithms in any setting
can still be traced back to ordering experience samples, being these from the same task or
many different ones. Thus, CL in experience replay represents an important way to deduce
broad research directions for curriculum learning in any type of setting.

3.2.3 Changes on Initial and Terminal state distribution

In order to create strong curricula, a curriculum learning algorithm needs to be able to
directly influence the experience that the learner accumulates while training over a given
task. Although the methods in this section are still limited to knowledge gathered during
episodes on the target task, they represent an expansion to curriculum learning techniques
for experience replay. These algorithms, indeed, induce a partial ordering on the states to
be visited during each episode progressively sampling the state space.

The first work adopting this strategy, learning from easy missions, was applied to a
robotic agent learning to shoot a ball into a goal [2]. This is possible by progressively
moving the agent away from the goal inducing in this way a curriculum. The learning agent
receives a visual input which is both used for learning how to solve the given problem and
defining the heuristic method determining the next task the agent needs to train on. Each
of these tasks is created manually and the adopted heuristic is domain specific and based
on the assumption that it is possible to identify a dimension over which the difficulty of
the task varies.
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A more general method expanding on this idea proposes to generate, at each algorithm
iteration, a distribution of possible starting states [26]. During the first training iterations,
these are selected by taking a random walk around the goal state only, while later also
previous starting states are included. In this way the agent effectively manages to learn
over a curriculum of progressively more complex tasks that can easily exploit previously
gathered knowledge, as part of the state space is always shared among these tasks. The
starting states are selected for an expansion depending on the value of their expected return.
In this way it is possible to create tasks that are neither too difficult nor too simple for the
agent to progress on.

A similar method performs expansion steps not from the goal state but from the given
starting one [25]. This allows for the discovery and exploration of new goal states at
each episode. In this context, the curriculum generation is managed by an Generative
Adversarial Network (GAN) [32]. The GAN generator proposes a new goal region (task)
to the learning agent, while the GAN discriminator evaluates if the given goal region
represents a good task for the agent to train next. Even in this case, this can be determined
by checking the return value of a starting state and as a result, at each iteration the algorithm
generates goal states always farther from the starting state.

An alternative solution for iterative goal generation is SAGG-RIAC (Self-Adaptive Goal
Generation — Robust Intelligent Adaptive Curiosity) [6]. This algorithm automatically
generates and samples new goal states defining in this way tasks of increasing difficulty for
learning inverse models in high-dimensional redundant robots. The method is based on the
definition of competence, a measure of the distance between the final state reached by the
agent and the actual goal state for the given task, and interest, the change of competence
for a set of goals during the course of training. These two parameters are then used to
divide the state space into different areas from which goals are automatically selected
naturally generating a curriculum.

All the methods described in this section create different curricula by only modifying
the initial or terminal state distribution in the target task MDP. These techniques are
extremely important in the curriculum learning literature because of their relative simplicity
which makes them easy to apply to different environments. Nevertheless, these algorithms
still imply some strong limitations in the definition of the intermediate tasks.

3.2.4 Changes on the Reward function

Another category of curriculum learning methods defines new source tasks by only acting
on the reward function of the final task MDP similarly to reward shaping [56]. This allows
for the design of algorithms able to suggest to the learner where to focus its exploration.
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Sparse reward reinforcement learning problems are particularly sensitive to the explo-
ration problem. Curriculum learning can be applied in this kind of setting by defining new
intermediate tasks within the final task MDP by only changing the reward function to train
a real world robotic agent to solve manipulation tasks [64]. An external scheduler selects
which sub-tasks (intentions) need to be executed in order to improve the performance of the
agent over the final task. The agent learns simultaneously how to solve these intermediate
tasks via off-policy reinforcement learning in order to efficiently explore the environment.

In the context of first-person shooter games, curriculum learning has been applied
by creating a more informative reward function in order to lead exploration in a reward
shaping manner [96]. Here, for the purpose of obtaining efficacious curricula, the whole
final task MDP is modified to create a new intermediate task. Several curricula are
thereafter defined by using these two different MDPs and varying domain parameters
controlling the advantage of the learner against the enemies it training to fight (for instance
changing its health points and movement speed). Finally an adaptive curriculum learning
algorithm shifts the learning agent towards more complex tasks in order to progress faster
for completing the full final task.

The just described techniques are able to approach and solve extremely difficult rein-
forcement learning problems generating new source tasks by acting on multiple features of
the final task. Nevertheless the creation of these intermediate tasks is still restricted to few
possible modifications of the final task MDP.

3.2.5 Changes on the whole MDP

So far we have been describing curriculum learning methods that define new tasks by
varying some environment features such as the initial/final state or the reward function,
while keeping constant the rest of the final task MDP. On the one hand, these algorithms
have the advantage of allowing the user to rapidly design several intermediate tasks, on
the other hand, they usually solve a fairly specific problem or require some domain expert
knowledge, failing so to scale and generalize well. In this section we introduce those
algorithms that are the closest to the work discussed in this Ph.D. thesis. These methods
relax the bottleneck given by the freedom of modifying only some parts of the final task
MDP, letting the user create totally different MDPs and problems over which the agent
can train before facing the final task. This clearly opens up to the creation of very diverse
curricula within the same domain although loosing the ease of automatically creating new
intermediate tasks.
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Curriculum as a Graph

The most general way to represent a curriculum in this context is by using directed acyclic
graphs. Differently from the previously introduced techniques, we are here able to draw
experience from different source tasks in parallel which can be desirable for some particular
reinforcement learning problems.

Each node in the graph can be set to represent one of the available intermediate
tasks, and the graph edges can be automatically built in order to define a source - target
relationship for transferring knowledge [82]. The graph organization strongly relies on
the definition of a feature vector, which is a binary approximated description available
for each task in the set of sources. This allows the intermediate tasks to be divided into
sub-groups which are then reorganized into sub-graphs following a new heuristic, the
transfer potential. This metric balances the usefulness/relevance of a task against how
complex it is to learn it (approximated with the dimension of the state space).

An expansion of the previous work represents the domain as an object-oriented MDP
where states consist of a set of objects [15]. In this way a task can leverage a more powerful
feature descriptor that is not limited to a binary representation but is characterized by the
objects in the task as well as the states, actions, reward and transition functions. In this way
the curriculum graph can be built by only considering the objects characterizing each single
intermediate task and new sources can be created by directly modifying these objects.

Despite the extreme flexibility of these techniques in being able to represent the most
diverse curricula, organizing all the intermediate tasks in a graph introduces some important
computational challenges and strongly relies on the design of an heuristic method to group
all the source tasks into sub-graphs. In particular, these algorithms not only investigate
how useful a specific intermediate task is for learning the final one, but also express
its usefulness in being a source task for another source task. Therefore this type of
representation can be undesirable in some specific settings where instead the curriculum
learning problem can be constrained to designing a sequence of tasks.

Curriculum as an MDP

The algorithms in this section develop solutions to the sequencing problem in curriculum
learning by formalizing it as an MDP. Because of this reason, in these cases it is possible
to define a new artificial agent solving the problem of finding powerful sequences of tasks.

A curriculum MDP can be defined for a set of states representing all the possible
policies that the agent can assume while training its weights [54]. On such an MDP, an
action is defined as the next task over which the underlying learning agent has to train next,
and the reward corresponds to the time spent learning such task. Using this technique it
is possible to find a curriculum optimizing the time that it takes for the agent to converge
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over the final task. It is also possible to prove how the curriculum found by this algorithm
is strongly bounded to the specific learning agent and its sensing skills.

Similarly, a POMDP can be defined for these same state and actions while considering
the agent internal weights inaccessible [49]. Here the reward is implemented as the increase
of return value given by solving the currently selected task compared to the last time the
agent approached it. Because of this reason, the objective of the curriculum agent is to
train the underlying learner to efficiently solve all the given tasks rather that just the final
one.

In neither of these works does the curriculum agent actually perform learning, but
rather it uses a heuristic in order to select the next task to be sequenced. Despite this fact,
it is possible to perform learning for the curriculum agent when the curriculum MDP states
are directly represented by the function approximator weight vector of the reinforcement
learning agent [55]. Interestingly this approach selects the next task for the learning agent
depending on its current learning capabilities without necessarily needing to learn each
task in the curriculum to convergence.

Representing the task sequencing problem as an MDP is a compact and elegant way
to find powerful curricula for reinforcement learning agents which ease the curriculum
learning problem from the complex graph representation previously described. The main
drawback with this kind of approach is the computational time required to train the
curriculum agent and how fast this time grows if we require it to be able to optimize for
different agents in different domains.

Continuous Curricula

All the curriculum learning approaches we have considered so far in this chapter focus on
how to sequence intermediate tasks after modeling the problem in different ways. Only
recently, the research in this field showed how particular attention should also be given to
how to best exploit the knowledge coming from each single task in a curriculum. Indeed,
while most of the sequencing algorithms learn each task until convergence, it was proven
that this is not always desirable, and more efficient methods can be found [55].

An interesting curriculum learning approach that takes this important aspect into
account introduces the concept of decay function [7]. The purpose of this function is to
control the degree of difficulty of the current task that the agent is training on, in order
to change it in a continuous manner, allowing in this way the agent to progress on the
most appropriate task for the right amount of time. This technique relies on the definition
of a feature vector similar to the ones introduced by the research of Section 3.2.5. The
decay function needs to be mapped to the feature vector in order to accordingly change the
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degree of difficulty. This implies that it is possible to define a feature vector dimension for
varying a task complexity.

Interestingly this approach can be applied in the most of the curriculum learning
settings discussed in this chapter. On the one hand, it can be used in order to find better
sequences of tasks than the ones proposed by the automatic algorithms of Section 3.2.3,
and on the other hand this method can be applied in order to optimize the time spent over
each task in a sequence found by another curriculum learning algorithm.

3.3 Other Curriculum Learning Paradigms

In this section we review curriculum learning studies that take a considerably different
approach to the problem compared to the ones surveyed in the previous sections. Neverthe-
less, results and conclusions in these areas are of great influence in the whole curriculum
learning field.

3.3.1 Teacher-Student Curriculum Learning

In Section 3.2.5 we studied algorithms that model the task sequencing problem in curricu-
lum learning as an MDP. In this way, it is possible to introduce a curriculum agent whose
purpose is to find curricula by solving this newly designed MDP. This can be obtained by
either following a heuristic or directly learning how to solve the task sequencing problem.

Instead of modeling the sequencing problem as an MDP, this new agent (teacher)
can be directly implemented within the same environment of the underlying learning
agent (student) [80]. The teacher is assigned a specific reward function which trains it for
adaptively proposing new problems to the student, which learns how to solve generic tasks
in the given environment. In this way, the teacher iteratively proposes increasingly more
difficult tasks to the student thus inducing a curriculum for exploration.

3.3.2 Human-in-the-loop Curriculum Learning

Machine learning is strongly related to fields like cognitive science and psychology. In
Section 3.2.1 we discussed how curriculum learning was firstly applied in research related
to language studies, in order to prove the validity of popular learning theories. So far
we have analyzed algorithms that create and search for curricula either automatically or
with the help of an external artificial agent. Here we discuss curriculum learning research
studying the importance of human intuition in creating curricula for artificial agents.

Human domain expertise can be used for developing curricula for applications in
artificial domains. NeuroEvolving Robotic Operatives (NERO) is one such example [77],
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where a group of artificial agents evolve and adapt real-time in a strategy game setting, by
following curricula of tasks specifically created by expert users.

Another interesting example of leveraging domain expertise for the design of curricula
is applied in solving problems for a simulated robot soccer game [46]. This domain is par-
ticularly complex and the learner can benefit from learning different skills independently.

Instead of directly employing domain experts for the development of efficient curricula,
naive human strategies can be used for studying new techniques for the automatic genera-
tion of curricula. This was the case for teaching object graspability to an artificial agent
[41] or even in more complex sequential decision-making tasks [60].

Finally, direct naive human experience can also be used to improve performance of
learning agents training in complex sparse reward Atari games [34].

3.3.3 Self-play

Self-play is a popular methodology that aims at improving the learning process in complex
environments throughout the interaction of multiple learning agents. This technique has
been widely explored for competitive multi-agent problems like in the case of TD-Gammon
[89], AlphaGo [74] and AlphaStar [92].

From this field, the works most related to curriculum learning involve the design of
an agent playing against the primary one. For instance, self-play was used to improve
the generalization capabilities of a robotic system learning in simulation [62]. Here the
adversary optimizes the return of its own reward function that fosters it to apply different
disturbances to the given model in order to identify the hardest conditions under which the
real-world agent might have to work.

In a multi-agent setting, instead, self-play was used to train two opposing teams of
learning agents [5]. In this case the two teams were competing against each other on a
game of hide and seek. Because of their interaction each team developed always stronger
strategies to counteract the one of the opponents.

In many multi-agent settings it is crucial to develop an agent able to access a library
of policies in order to learn different types of strategy to counteract different opponents.
This is also a popular solution for multi-task reinforcement learning where the agent needs
to memorize a number of policies for solving a set of final tasks and avoid catastrophic
forgetting. In curriculum learning, instead, we are interested in optimizing the performance
of the agent over only one final task.
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3.3.4 Closely Related Fields

Curriculum learning represents one of many possible techniques that nowadays are used
for improving the performance of state-of-the-art reinforcement learning agents. In this
section we briefly discuss research fields that share with curriculum learning the problem
of transferring knowledge coming from multiple tasks.

In meta learning [24], the objective of the learning agent is to rapidly adapt to a given
new task by exploiting training over a number of source tasks. The main difference with
curriculum learning here is given by the fact that there exist multiple final tasks instead of
only one, and the objective is to learn how to solve each of them as fast as possible.

Multi-task reinforcement learning [95] studies algorithms for optimizing the learner
performance over multiple reinforcement learning tasks. Also here, the main difference
with curriculum learning is the absence of a single final task. The algorithms in this field
train the learning agent for improving its generalization capabilities.

Lifelong learning [67] is a machine learning paradigm where an agent is continuously
presented with new tasks. Similarly to multi-task learning, in lifelong learning it is crucial
that the agent masters all the tasks it encounters, and therefore no particular importance
is given to any task. Furthermore, in this case, the learner has no control of either the
ordering of the tasks it needs to learn or their design.

3.4 Decomposition of the Curriculum Learning Problem

This Ph.D. thesis focuses on the task sequencing problem in curriculum learning. In
this area of research there exist other two important problems that we discuss in this
section and play a crucial role in the design of effective curricula: source task creation
and transfer learning for curriculum learning problems. Algorithms performing automatic
task creation, selection and transfer learning together will be able to offer us extremely
powerful curricula. Nevertheless, it is important to notice how task sequencing represents
a critical first step towards the creation of complete curriculum learning algorithms. An
efficient task selection method can indeed work on a large set of intermediate tasks where
only few of them are actually beneficial for a curriculum.

3.4.1 Source Tasks Creation

In our work we model task sequencing as a combinatorial optimization problem. This
shows how the space of all the possible curricula rapidly grows with the number of available
source tasks. In the most of the environments it is possible to randomly generate a big
set of sources, so to ensure the presence of useful intermediate tasks without focusing on
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the design of each single one. Nevertheless, even with the best sequencing algorithm, we
would have no guarantee to find strong curricula in a practical time. Because of this reason,
the most of the works discussed in this chapter rely on human domain expertise to create
the set of source tasks. It is of crucial importance providing the sequencing algorithm with
a set of intermediate tasks where each of them can positively impact the performance of
the learner over the final task, in order to quickly find powerful curricula.

Some of the sequencing algorithms in Section 3.2 present an automated method for the
source tasks creation, which is directly implemented in the definition of the sequencing
technique. For instance, task sequencing algorithms that create curricula by changing the
initial or terminal state distribution in the final task, can generate the next possible source
tasks dynamically by iteratively performing a random walk on the previously generated
initial states [26]. In alternative, it is possible to employ a GAN (Generative Adversarial
Network) to design the next intermediate tasks by setting new goal states at each algorithm
iteration [25]. Similarly, the state space can be automatically divided in different areas
characterized by new possible terminal states of different utility for the learning agent [6].

On the one hand, these algorithms are compact solutions solving the sequencing and
task creation problem together, on the other hand, this same characteristic prevents decou-
pling the two processes which therefore cannot generalize well over different environments
curriculum learning settings. Source task creation is directly discussed in only a few
research works. The earliest example is in a multi-task learning scenario, thus the objective
is to optimize the performance of the agent over a number of different tasks [70]. In
curriculum learning, source task creation follows specifically designed heuristics. When
the given domain can be parametrized with a set of features for describing differences
among a group of tasks, then new intermediate tasks can be automatically generated by
changing these features values following different techniques [53]. A similar approach can
be applied if, instead, each task is described following an object-oriented representation.
Also in this case, new tasks can be created by modifying the attributes contained in the
class descriptor by following heuristic methods [15].

All the just introduced methods still strongly rely on human domain expertise for
defining the dimensions over which a task can be modified and the heuristics for automating
the source creation process. More work on this particular problem can sensibly improve
the performance of state-of-the-art task sequencing algorithms which would then be able
to find strong curricula faster.

3.4.2 Transfer Learning for Curriculum Learning

A fundamental building block of any curriculum learning algorithm is the underlying
transfer learning technique. This is the method responsible for effectively transferring
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knowledge gathered over a source task to the next one in the curriculum. It is important
to notice how a reinforcement learning agent training through an entire curriculum, is
challenged not only by the difficulty of learning each single task in the sequence. The
learner, indeed, needs to transfer its incrementally more complex knowledge to the next
task in order to improve it even further. In this section we aim at reviewing the most popular
transfer learning strategies used in curriculum learning in order to later contextualize the
one chosen for this study.

In some particular cases, no transfer methodology is strictly required for implementing
a curriculum learning algorithm. This is usually true for the algorithms described in Section
3.2.2, where a curriculum is defined as a a particular ordering of the experience samples
collected during training. No transfer can also be an option for all those methodologies
where the source tasks are defined in the same environment of the final task, although in
those cases some transfer learning technique is usually implemented.

A popular transfer learning methodology is to transfer the policy learned at the end of
the training over a source task. This is applied across different domains in different cur-
riculum learning settings, like algorithms modifying the initial and final states distribution
[25, 26], the reward function [64] or the whole MDP [7, 49] but even in the absence of
autonomous sequencing [13].

An alternative transfer method in the curriculum learning literature, that is only used in
the case of sequencing of source tasks created by modifying the whole final task MDP, is
potential-based reward shaping [55, 82]. In general, reward shaping is a transfer learning
algorithm previously used for transferring policies from a source to a target task [12] and
can be used between any pair of tasks in a curriculum. This technique was previously
proved to be equivalent to value function transfer [94] which in the context of curriculum
learning is widely used for curricula with no particular restrictions on the intermediate
tasks design [15, 35, 54, 55]. This latter is the methodology we decided to adopt for our
experiments as they all fall in this category of curriculum learning. In Chapter 4 we will
introduce the transfer learning technique we specifically designed for our experiments
when using linear function approximators, while for artificial neural networks we employed
Progressive Neural Nets [66], a method following similar principles.

A particularly powerful idea is also transferring high level knowledge such as options or
skills. Despite its promising implications there exist only few autonomous task sequencing
algorithms that implement this method [6, 38, 91, 98]. Transferring high level knowledge
can be very effective in particularly complex domains, but it also requires extra computation
time and human expertise.

Finally, it is also possible to transfer entire task models [60, 72, 96] but this is the least
explored transfer learning methodology in curriculum learning.
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3.5 Summary

In this chapter we started by analyzing the exploration-exploitation problem in reinforce-
ment learning. Firstly we introduced exploration algorithms to be directly applied on the
task we need to learn, before then moving the focus to transfer learning techniques that are
able to exploit experience coming from another task in order to shape exploration.

Curriculum learning is an expansion of this concept, allowing a reinforcement learning
agent to leverage experience accumulated over multiple intermediate tasks. We saw how
there exist different curriculum learning settings that allow these source tasks to be created
following different constraints and model the problem in various ways. Among these
methods, those that let the source tasks be created without any limitation are the closest to
our work, in particular the ones modeling the sequencing problem as an MDP.

None of the methods surveyed in this chapter formalizes the curriculum learning
problem in such a way that it is possible to identify the optimal curriculum given the set of
source tasks. This is due to the fact that we are generally interested in developing practical
search methods to find curricula improving the performance of the agent over the final task
rather than employing potentially extremely expensive methods to find the best possible
curriculum. It is therefore difficult to understand how well a specific curriculum really is
performing or what the real potential of a set of source tasks is.

Because of this reason, this Ph.D. thesis models task sequencing in curriculum learning
as a combinatorial optimization problem performing an analysis of the overall complexity
of finding an optimal curriculum in the space of all the possible curricula.

An earlier solution to the curriculum learning problem as combinatorial optimization,
introduced four different heuristic searches based on different intuitions [35]. Even in this
case, the curricula found following the proposed heuristic searches, are not compared with
the global optima but solely with the performance of the agent directly learning the final
task.

In the next chapter we introduce our curriculum learning framework composed of
different performance metrics and task scenarios. We also perform a preliminary analysis
of the curricula space generated by all the possible sequences of intermediate tasks for four
different experiments focusing on the salient features of such space and the performance
attained by the best curriculum.





Chapter 4

A Curriculum Learning Framework

As previously discussed in Chapter 3, there exist two main problems within curriculum
learning research which directly derive from the field of transfer learning: source (interme-
diate) tasks creation and task sequencing. This work focuses on the latter without making
any assumption on how the given source tasks set is created. This makes the algorithms
and results of this research easy to integrate with source task creation techniques, which
will allow for finding even more powerful curricula in future research.

There exist multiple approaches to the problem of task sequencing, and in this regard
we introduce one only constraint to its formulation, which is limiting the definition of a
curriculum to a sequence of source tasks without repetitions. As we will discuss in this
chapter, as a result of this restriction it is possible to better study and visualize the problem
of finding the optimal curriculum of source tasks in the space of all the possible curricula
to be generated from the source tasks set.

In this chapter we start by introducing a framework for curriculum learning based on
combinatorial optimization. Later we propose novel uses of this technique, which arise
from choosing different objective functions. We then discuss and motivate the choice of the
transfer learning algorithms adopted in our experiments along with the artificial domains
used in this study. Furthermore, we show that curriculum learning can be successfully used
to: improve the initial performance, take fewer suboptimal actions during exploration, and
discover better policies. Lastly we perform a preliminary analysis of the problem on four
different experiments drawing some initial conclusions justifying the detailed study of the
next chapters.

4.1 Problem Definition

Let M be a set of MDPs, composed of T ⊂M , a finite set of candidate tasks for the
curriculum, and F ⊂M , a finite set of final tasks. Furthermore, M is solely composed
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of elements from either T or F and no candidate task can be a final task and vice versa,
therefore T ∪F = M and T ∩F = /0. The final tasks are the tasks the designer wants
the agent to learn more efficiently through the curriculum. We assume that the agent
learns each task until convergence, and that each task serves the purpose of learning one
additional skill, therefore we define a curriculum as a sequence of tasks in T without
repetitions:

Definition. [Curriculum] Given a set of tasks T , a curriculum over T of length l is a
sequence of tasks c = ⟨m1,m2, . . . , ml⟩ where each mi ∈T , and ∀i, j ∈ [1, l] i ̸= j⇒mi ̸=
m j.

Let C T
l be the set of all curricula over T of length l. In the rest of the chapter we will

drop the superscript wherever the set of candidate tasks is implicit in the context.
We define C≤L :=

⋃L
l=0 Cl as the set of all curricula of length at most L. We represent

with C0 the set containing the empty curriculum of length 0, denoted with ⟨⟩. The empty
curriculum corresponds to learning the final tasks directly.

Given a performance metric P : C≤L×F →R, which evaluates curricula for a specific
set of final tasks, we consider the problem of finding an optimal curriculum c∗, such that:

P(c∗,F )≥P(c,F ) ∀c ∈ C≤L.

4.2 Task Scenarios

In MDPs, if the value function can be represented exactly, and the exploration strategy
guarantees that every action is executed in every state enough many times, the value
function converges to the value of the optimal policy, regardless of its initialization. In
tasks of practical interest, however, both the use of function approximators, and the need
for a more limited exploration, determine convergence to a local optimum at best, which
depends on the initial value. The role of the curriculum is to identify the optimal initial
value, that is, to prepare the agent to the final tasks as best as possible. In the rest of this
section we describe three scenarios with their requirements, and in the rest of the chapter
we show how to apply the curriculum learning framework to them.

4.2.1 Critical Tasks

The first scenario is provided by critical tasks, where exploration is costly and suboptimal
actions must be limited as much as possible while learning online. Examples of this case
are abundant in robotics, where limiting exploration is one of the main concerns. We
assume the existence of a simulator, also a common occurrence for such domains, since
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Fig. 4.1 A graphical representation of desirable (green) and undesirable (red) learning
curves for each of the three proposed task scenarios.

learning cannot be performed in the real critical task directly. A set of final tasks, modeling
the real task, can be set up in simulation, and the optimal curriculum computed without the
need to act in the real task. We are primarily interested in optimizing the behaviour of the
agent for the real final task, and we consider the time spent generating the curriculum in
simulation as a sunk cost. This setting is common to many real-world applications, where
simulators are available, and real-world exploration is costly. At the time of deployment,
the knowledge achieved by the end of the last task of the curriculum is used to initialize
the agent in the real task, since, by construction, this is the best possible initialization
to the model of the real task used for training. In Figure 4.1a we show two learning
curves achieving the same return in the same amount of learning time on an hypothetical
real-world task. The use of curriculum learning in critical tasks aims at minimizing as
much as possible expensive and dangerous exploratory behaviours (red line). This can be
obtained by maximizing the area under the learning curve by improving the initial policy
and/or rapidly moving towards more optimal areas of the search space (green line).

4.2.2 Complex Tasks

The second scenario corresponds to complex tasks. In tasks complex enough, the optimal
policy is unknown, and the agent cannot be guaranteed to achieve it in any feasible amount
of time. One example of such a case is the game StarCraft [73]. In this scenario, exploration
is not a concern, as long as the agent achieves a policy of high value. Furthermore, training
time is secondary, since the agent would take an enormous amount of time if not learning
through the curriculum anyway. In this case, we are interested in the initial knowledge
that can make the agent discover the best possible policy in the final task. In Figure 4.1b
we graphically represent two learning curves of agents training to solve a complex task.
The first one, in red, is quickly converging to a sub-optimal policy while adopting a safe
exploratory strategy, while the second one, in blue, takes a longer time to converge and
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behaves expensively for the most of the learning phase, but converges to a much higher
quality policy. This is preferable in this task scenario as the performance of the agent will
be computed by solely considering the behaviour obtained at the end of the training.

4.2.3 Time Sensitive Tasks

The third scenario is the one previously considered in the literature, and therefore we will
only introduce it briefly. A large task is broken down into smaller subproblems, so that
the agent can learn the optimal policy faster by learning the subproblems in sequence. For
this type of task the only concern for the user is the time that it takes the agent to converge
to the solution. In some cases we can also introduce a performance threshold to indicate
the return value to be achieved by the agent in order to guarantee that the discovery of a
satisfactory policy. In this setting, the performance threshold needs to be reached as soon
as possible, regardless of the quality of the policy at convergence. We represent in Figure
4.1c two agents using different exploratory behaviours converging at to the same return
value, though the one in green, does it faster than the red one.

4.3 Performance Metrics

In this section we describe the objective functions we propose to use in our framework,
and assign them to the three newly introduced task scenarios for novel applications of
curriculum learning.

The following metrics are adaptations of the most popular transfer learning methods
for performance comparison to the problem of curriculum learning. We selected these in
consequence of the strong correlation between the two fields although other specifically
designed metrics could also be used, but this is not the focus of our study.

To the best of our knowledge, this work is the first considering all these metrics together,
allowing for a more complete understanding of the field of curriculum learning itself and
opening novel and important uses of it.

For simplicity, in this section we consider only one final task m f , therefore each
performance P(c,m f ) is calculated exclusively over it. The more general performance
formulation can be computed for instance as P(c,F ) = E[P(c,m f )] for each m f ∈F .

Cumulative return (CR) is one of the metrics used to optimally balance exploration
and exploitation in single-task learning, whereby the agent maximizing cumulative return
attempts to converge to the optimal policy while acting suboptimally as little as possible.
It is defined as:

Pcr(c,m f ) :=
N

∑
i=1

E[Gi
f ], (4.1)
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where Gi
f is the return obtained by the agent in the final task m f at episode i, and N is the

maximum number of episodes executed in the final task. Analogous objectives have been
considered in the literature in the case of single-task exploration (regret [36]), and transfer
learning (area under the curve [88], and area ratio [43]).

The following objective functions have been defined in the context of single-task
transfer learning [88, 43], and can be imported into curriculum learning.

Jumpstart (JS) evaluates the average reward of the agent within the first D episodes:

P j(c,m f ) :=
1
D

D

∑
i=1

E[Gi
f ],

where Gi
f is the return obtained during episode i in task m f . Jumpstart can be used if

it is crucial that the agent is deployed in the final task with the highest possible initial
performance, and is a version of cumulative return that focuses only on a few initial
episodes.

Jumpstart and cumulative return are objectives over the quality of the exploration
(how it starts, and how it proceeds respectively) in the final task. Because of this direct
correlation with the exploratory behaviour, they are evaluated on every training episode
while still performing exploration and result perfectly suited for the critical task scenario.

In the following two metrics, we focus on the value of the learned policy rather than
on exploration. The value of the actions taken during learning is not the objective of the
optimization, and the agent aims at either getting to a certain performance level faster,
or reaching a higher level. For this reason, every K learning episodes, we introduce an
evaluation phase, in which the current policy is executed Q times with no exploratory
actions, to estimate its expected return. During this phase, no updates are performed to the
value function (or the policy). In the rest of this section, we denote with E the set of the
evaluation steps.

The objective max-return (MR) focuses on the value of the policy learned within a
given horizon:

Pm(c,m f ) := max
I∈E

E[GI
f ],

where GI
f =

1
Q ∑

Q
i=1 Gi

f is the average return over the Q episodes in the evaluation step I
on the final task. This is conceptually equivalent to asymptotic performance introduced
for transfer learning [88], whereby the agent maximizes its performance by the end of
learning. Max-return takes into account the non-monotonic nature of learning with function
approximation, so that the best discovered behaviour may not be at the end of a trial, but
anywhere during it. Max-return naturally fits the requirements and constraints imposed by
a complex task thus being the optimal performance metric, among the ones proposed in
this section, to optimize in this scenario.
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Lastly, we consider the objective function that is currently the most used by the
curriculum leaning algorithms described in Section 3.2.5, which are the ones closest to our
work: time-to-threshold (TTT). It evaluates the number of actions executed throughout the
curriculum in order to achieve a given threshold performance g during an evaluation step
in the final task. Let a(mi) be the number of actions the agent executed in task mi before
moving on to the next task in the curriculum, and ag(m f ) be the number of actions the
agent executed in the final task until the evaluation step in which the policy achieves an
average return of g. The time-to-threshold metric is defined as follows:

Pt(c,m f ) :=−(ag(m f )+ ∑
mi∈c

a(mi)),

where we intend to minimize the time to threshold, therefore the total time is multiplied
by −1. Time-to-threshold is the only metric in which each task contributes to the total
performance explicitly. In the other metrics the intermediate tasks affect the performance
exclusively through transfer learning, and its effect on the behaviour in the final task. This
situation is similar to having a reward in an MDP along the way, rather than only in the
final state, and as such it is easier to build heuristics for it, which has been done in previous
work [54, 15]. Nonetheless, it is in principle possible to define a weaker time-to-threshold
as Pt(c,m f ) :=−ag(m f ), where the training time during the curriculum is not taken into
account. It is clear how, by adapting its description to the specific problem we need to
solve, time to threshold is by definition best applied on time sensitive tasks.

4.4 Transfer of Knowledge

As we have previously discussed in Chapter 3, transfer learning is a powerful solution
for shaping exploration in modern RL problems, by leveraging experience coming from
another task. This same idea is used and extended in different ways in other research
fields such as multi-task reinforcement learning, meta reinforcement learning or lifelong
learning.

In curriculum learning an agent approaches a complex final task after training over a
number of intermediate tasks. The learner needs to be provided with a transfer learning
algorithm in order to effectively pass the experience coming from each source task through
the whole curriculum. The particular knowledge to be transferred along the sequence
varies depending on the specific implementation. The most popular choices at this regard
are to either transfer policies or value functions, but the latter is often preferred for cases
similar to the ones studied in this thesis [52]. Whenever the intermediate tasks are created
by modifying any part of the final task MDP, indeed, the preferred knowledge to transfer is
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the whole value or q-function attained at the end of the training over the task. Since this is
exactly our setting we decided to use a transfer learning algorithm transferring q-functions.

For the experimental domains in this work, the q-function of each task is represented
with a function approximator either linear or non-linear. In this chapter all the agents
use Tile Coding which is a linear function approximator for which we have developed a
specific transfer learning algorithm.

First of all, in order to favor transfer, we used an egocentric representation (using
distances with respect to the agent) and local variables, as described separately for the two
domains. We also normalized the variables in [0,1], so that the input is invariant to the
scale of the domain.

Furthermore, we used a particular value-function transfer [88] inspired by Concurrent
Layered Learning [93]. In Concurrent Layered Learning, an agent learns a complex be-
haviour by incrementally learning sub-behaviours (layers). The more complex behaviours
(higher layers) directly depend on the easier ones (lower layers), and during training all the
layers are updated simultaneously.

This concept was implemented by carrying over the features of the source task into
the target task, along with its parameters. Let Vi be the set of variables defined for the
source task, and Vj the variables defined for the target task, in a source-target pair along the
curriculum. Let qi(s,a) = θθθ

T
i φφφ i(s,a) be the value function of the source task. The value

function for the target task, q j, is defined as:

q j(s,a) :=

θθθ
T
i φφφ i(s,a)+θθθ

T
j φφφ j(s,a), if Vi ⊆Vj.

θθθ
T
j φφφ j(s,a), otherwise.

where φφφ j is the feature vector of the target task. Therefore, if the variables of the target are
compatible with the variables of the source, so that the features of the source are defined in
the target, the features and their parameters are carried over. Otherwise the agent simply
learns the new task without leveraging any transferred knowledge. The new parameters,
introduced in the target, are set to 0 so that the imported features initially dominate the
behaviour. In our experiments we do not remove features, and the number of features and
parameters grows with every transfer. However, it is possible to perform feature selection,
and remove the features that do not affect the value function significantly.

This transfer learning algorithm is designed to allow for effective knowledge transfer-
ability between pairs of similar tasks in order to ensure the creation of powerful curricula.
Often, this resulted in extremely interesting exploratory behaviours where the agent could
focus on its weaknesses rapidly moving towards the most interesting regions of the state
space. In other words, in these cases the agent starts learning in the target task with a high
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(a) Block Dude
(b) Gridworld

Fig. 4.2 Sample tasks for the two domains: Block Dude and Gridworld. In the first, the
agent has to use movable boxes to navigate the map and get the exit block as fast as
possible. Similarly, in Gridworld, the agent has to reach the treasure tile with the least
number of actions while avoiding pits and fires.

quality policy that, during the exploration phase, only needs to be optimized for few states
in order to converge to the optimal one.

4.5 Domains for Curriculum Learning

We performed a thorough experimental evaluation on two domains, with two sets of
experiments each. We intended to show that curriculum learning is indeed a valid method
to improve cumulative return, jumpstart, and max-return over learning from scratch, which
makes it applicable to the new scenarios we consider.

The two domains, BlockDude and Gridworld, were implemented within the software
library Burlap1. We used the implementation of Sarsa(λ ) available in Burlap with λ = 0.9,
learning rate α = 0.1 and discount factor γ = 0.999. We represented the action-value
function through the Burlap Tile Coding function approximator, initializing the Q-values
to q(s,a) = 0 for all state-action pairs. The agents explore with an ε-greedy policy, with
ε = 0.1 and decreasing linearly from 0.1 to 0 in the last 25% of the episodes.

4.5.1 GridWorld

GridWorld, Figure 4.2b, is an implementation of an episodic grid-world domain used in
the evaluation of existing curriculum learning methods [83, 15]. Each cell can be free, or
occupied by a fire, pit, or treasure. The agent can move in the four cardinal directions, and

1http://burlap.cs.brown.edu
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the actions are deterministic. The reward is −2500 for entering a pit, −500 for entering a
fire, −250 for entering the cell next to a fire, and 200 for entering a cell with the treasure.
The reward is −1 in all other cases. The episodes terminate under one of these three
conditions: the agent falls into a pit, reaches the treasure, or executes a maximum number
of actions (50). The variables fed to tile coding are the distance from the treasure (which is
global and fulfills the Markov property), and distance from any pit or fire within a radius
of 2 cells from the agent (which are local variables and alone do not fulfill the Markov
property but allow the agent to learn how to deal with these objects when they are close,
and transfer this knowledge).

4.5.2 BlockDude

BlockDude, Figure 4.2a is another domain available in Burlap, which has also been used
for curriculum learning [83]. It is a puzzle game where the agent has to stack boxes in
order to climb over walls and reach the exit. The available actions are moving left, right,
up, pick up a box and put down a box. The agent receives a reward of −1 for each action
taken. The variables used as input to tile coding are distance from the exit, distance from
each box, distance from each edge of the map, direction of the agent (binary) and whether
or not it is holding a box (also binary).

4.6 Preliminary Analysis

In this section we perform a preliminary analysis of the curriculum learning problem based
on the dataset collected over the four experiments in the two just introduced artificial
domains. We intend to deduce some initial conclusions and directions in order to follow up
on these in later chapters. More specifically, here, we aim at identifying the most promising
subproblems within the curriculum learning field. The idea is to develop a sequencing
algorithm for the optimization of one or more performance metrics based on the results of
these four experiments in BlockDude and Gridworld.

4.6.1 Experiments

We chose two relatively small domains so that we could perform a thorough evaluation, by
computing and analyzing all curricula within the given maximum length.

In our experiments, we perform an evaluation phase each K = 10 episodes in order
to estimate the quality of the learned policy. As the environments are deterministic, we
can perform each evaluation step Q = 1 times. Each curriculum has been executed 10
times, and its value for each metrics estimated as the average over those trials. It is
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Fig. 4.3 Intermediate (in yellow) and final task (in blue) of the second experiment in the
BlockDude domain. The global optimum is the curriculum 7-1-5.

necessary to execute each curriculum multiple times since the learner needs to perform
exploration in each single task composing the curriculum. All these exploration phases
implied in learning a curriculum can lead to considerably different policies for each task
in the sequence. Moreover, the effect of these exploration phases has a greater impact
on those tasks that are learned late in the curriculum as their execution will depend on
multiple previous random explorations.

We ran two sets of experiments per domain, one in which the number of tasks is high
and the maximum length is low, and one in which, on the contrary, the number of tasks
is low, but the maximum length is high. For Gridworld, the first set of experiments has
parameters n := |T |= 12 and L = 4, while the second n = 7, and L = 7. For BlockDude,
the first set of experiments has parameters n = 18 and L = 3, while the second n = 9 and
L = 5. These parameters were chosen so that the total number of curricula does not exceed
20000. For both domains, the intermediate tasks have been generated manually, by varying
the size of the environment, adding and removing elements (pits and fires in GridWorld,
and columns and movable blocks in BlockDude). Figure 4.3 shows all the intermediate
tasks, and the final task (marked with F) for one of the two BlockDude experiments. All
experiments have a different final task, and set of intermediate tasks. All tasks are run for a
number of episodes that ensures that the agent has converged to the optimal policy, and
were determined at the time of task generation.
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4.6.2 Optimization Complexity for Performance Metrics

We start our analysis by studying the difficulty of optimizing each of the performance
metrics introduced in Section 4.3 with curriculum learning. Figure 4.4 shows four perfor-
mance plots, one per experiment, where the trend of each performance is represented by a
line of a different color.

In all the plots, the x-axis spans the curricula rank from the best, in position 0, to the
worst, in the last position correspondent to the total number of curricula run in the given
experiment. On the y-axis, instead, we have the performance value for each curriculum.

Since the aim of these plots is to allow for a comparison among the optimization
problems associated to the reported metrics, it is important to notice how each performance
is plotted independently from the others. This means that the value on the x-axis actually
represents four different curricula on the same experiment, sharing the same rank on
different performance. In other words, the ith best curriculum in terms of cumulative
return is different from the ith best curriculum for the time-to-threshold performance in the
same experiment. In order to ease the visual comparison of these performances, all the
metrics are also normalized in [0,1], with 0 representing the lowest score, and 1 the highest.
Because of this reason, in each plot the four functions are semi-monotonic non-increasing
and span the same values both on the x and y-axis.

In this context, a curve with an initial steep slope represents a difficult performance
which is interesting for optimization. This is because, in such cases, only few curricula are
able to attain nearly optimal values for that specific metric. Moreover, curricula in such a
region of the curve have quite different values with the next and previous in rank, in which
case advancing of even a few rank positions results in a large performance improvement.
In our case, this is particularly evident for jumpstart (in blue), especially in the Block
Dude experiments, followed by cumulative return (in green) and time-to-threshold (in red).
On the contrary, max-return (in yellow), always shows extended flat performance regions
above the 70% of the maximum score. This feature characterizes a performance metric
whose optimization problem is easier to solve. It is indeed possible to see how, apart for
few curricula located at the extremes of these curves, the most of them have a relatively
high max return value. In such a case, developing an efficient sequencing algorithm for
curriculum learning is of minor concern since a randomly selected curriculum is likely to
score more than 70% of the maximum value. This is because the domains and final tasks
used for these experiments are relatively easy to train on, thus the agent can eventually learn
the optimal policy with nearly all the given curricula. It is possible to notice that, instead, a
randomly selected curriculum would perform poorly for the other performance metrics in
the most of the cases, and consequently the search of an advantageous curriculum for their
maximization would benefit from an automated task sequencing algorithm. Furthermore,
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(c) Experiment 3, Gridworld
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(d) Experiment 4, Gridworld

Fig. 4.4 Performance plots for the four experiments in the block Dude and Gridworld
domains. The x-axis represents the curriculum rank, sorted from the first position to the
last (from the highest performance to lowest), while the y-axis reports the correspondent
normalized performance value. For comparison purposes, for each experiment, the four
metrics are hereby drawn together (yellow max-return (MR), green cumulative return
(CR), red time-to-threshold (TTT), blue jumpstart (JS)). The curriculum correspondent to
a specific rank on the x-axis is different for each of the performance metrics.

these performance curves in these experiments are smooth, therefore it is possible to
develop algorithms optimizing them.

It is important to underline how these conclusions are relative only to the experiments
conducted in this study, therefore the shape of these functions can be extremely different
in other domains. Nonetheless, we can say that selecting a random curriculum can be
inappropriate for certain domains and it is important to study sequencing algorithms able to
efficiently search the space of all the possible curricula in order to avoid counterproductive
ones while quickly move towards the most promising areas of these performance.



4.6 Preliminary Analysis 43

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Cumulative Return

-50

-48

-46

-44

Ju
m

p 
S

ta
rt

(a) Experiment 1, Block Dude

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
Cumulative Return

-50

-49.8

-49.6

-49.4

-49.2

-49

Ju
m

p 
S

ta
rt

(b) Experiment 2, Block Dude

Fig. 4.5 Curricula plot in the CR/JS plane for the Block Dude experiments. Each point in
the plot is a different curriculum. The green and red dots respectively represent the best
curricula in terms of cumulative return and jumpstart performance, while the yellow one is
the empty curriculum C0.

4.6.3 Decoupling Performance Optimization

In this section we want to continue our performance analysis by focusing on the critical
task scenario, which is the case considered the least in literature. We aim at studying
whether it is possible to maximize both the dedicated performance metrics and how these
compare with the popular time-to-threshold.

We start by considering the two performance metrics we selected for the critical task
scenario: jumpstart and cumulative return. Their definition shows how they are strongly
connected to each other as JS is the result of the same calculations involved for CR with
the only difference that the former is performed on a subset of the episodes of the latter.
Nevertheless we cannot assume that these two metrics can be optimized together since
starting the training with a high quality policy does not give any guarantee on the overall
behaviour of the agent. Similarly, cumulative return maximization is the result of a safe
exploration policy that acts during the whole learning phase without any particular focus on
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Fig. 4.6 Curricula plot in the CR/JS plane for the Gridworld experiments. Each point in
the plot is a different curriculum. The green and red dots respectively represent the best
curricula in terms of cumulative return and jumpstart performance, while the yellow one is
the empty curriculum C0.

any episode. We can observe this in Figure 4.5 and 4.6 where, for each experiment, all the
possible curricula are plotted together on the cumulative return / jumpstart plane. Here, the
x-axis and y-axis respectively span the cumulative return and jump start values assumed by
all the curricula in the experiment. The cumulative return metric is hereby normalized again
in [0,1], although this time, 0 corresponds to the worst possible policy never improving
the agent performance during the training, while 1 stands for directly starting with the
optimal policy. The green and red dots respectively represent the best curricula in terms of
cumulative return and jumpstart performance, while the yellow one is the empty curriculum
C0. We can notice how finding the right curriculum is an important problem as, in these
experiments, C0 does not achieve high values on either performance metric although
there exist curricula achieving worse performance than learning from scratch (see A for
more information at this regard). The best curriculum for each performance also tends
to score poorly on thee other one, especially in the Gridworld experiments. Furthermore,
in these plots a curriculum achieving a high value on both performance is located in the
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(a) Experiment 1, Block Dude
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(b) Experiment 2, Block Dude

Fig. 4.7 Curricula plot in the CR/TTT plane for the Block Dude experiments. Each point
in the plot is a different curriculum. The green and red dots respectively represent the
best curricula in terms of cumulative return and time-to-threshold performance, while the
yellow one is the empty curriculum C0.

top-right corner of the given plane. As we can see, this region of the space does not present
any curricula for the Gridwold domain. The situation is different for the Block Dude
experiments where we have some elements sparsely populating this optimal performance
area. Therefore we can conclude that in general we cannot assume that cumulative return
and jumpstart can be maximized together, so for solving a problem in the critical task
scenario we need to focus on one of them.

Since cumulative return captures the overall quality of the learning curve we decide to
expand further on this one by confronting it with the most popular performance metric in
curriculum learning: time-to-threshold. Figure 4.7 and 4.8 show plots similar to the ones
previously described. Here each curriculum is represented by a dot in the cumulative return
/ time-to-threshold plane and, differently from before the red dot is the curriculum scoring
the highest time-to-threshold value. Once again we can observe how, apart for experiment
3, only a minority of curricula populates the top-right corner of the plane representing
the optimal region for both the performance metrics. Therefore we cannot assume that
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Fig. 4.8 Curricula plot in the CR/TTT plane for the Gridworld experiments. Each point
in the plot is a different curriculum. The green and red dots respectively represent the
best curricula in terms of cumulative return and time-to-threshold performance, while the
yellow one is the empty curriculum C0.

cumulative return and time-to-threshold can be optimized together in any given problem,
but we are usually obliged to select only one of them. Furthermore, C0 always obtains a
time-to-threshold value extremely close to the optimal one. This is due to the fact that
in these experiments we do not optimize the number of actions spent over each task in
the curriculum, consequently the most of the curricula perform worse than learning from
scratch. Time-to-threshold optimization is best suited for cases where the sequencing
algorithm also adapts the time dedicated to each task accordingly with the curriculum.

4.7 Summary

In this chapter we introduced and formulated the problem of tasks sequencing in curriculum
learning for reinforcement learning applications. We then discussed three possible task
scenarios for novel uses of curriculum learning, and we showed how it is possible to adapt
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popular transfer learning performance metrics to formulate the correspondent optimization
problem in CL. Lastly we described the experiment setting used to collect the dataset used
in this thesis and performed a preliminary analysis.

In our experiments, a randomly selected curriculum would obtain an high performance
value on max-return because of the domains and final tasks simplicity. In spite of this fact,
it is in general extremely important to develop sequencing algorithms for the optimization
of any of the given performance metrics in order to discover powerful curricula.

We observed how, optimizing multiple performance metrics with a single curriculum,
represents an extremely complex challenge, and therefore we intend to further develop our
study in the next chapters on curriculum learning for tasks in the critical task scenario only,
as this is the least studied CR application.

In spite of this fact, it is also important to notice how while optimizing one metric
it is still possible to put boundaries on the others. This would allow to discover optimal
curricula for a certain performance with specific guarantees on one or more of the other
metrics. We believe this to be of particular interest for real-world applications where the
reinforcement learning task under study does not strictly fall into one of the described task
scenarios.

Time-to-threshold is the most popular performance metric for sequencing algorithms
that, like in our study, consider curricula composed of source tasks generated without
putting any restrictions on their MDPs. This metric inherits two different problems from
its formulation. The first one is about the definition of the performance threshold to be
reached by the agent. This is usually domain dependent, and needs to be set differently for
each single reinforcement learning task. The second issue is the formal definition of the
associated optimization problem. Its aim is indeed to minimize the time spent training over
the final task, after learning the chosen curriculum, before reaching the aforementioned
threshold. None of the sequencing algorithms solving the TTT optimization problem,
though, takes into account the time spent over the search of the optimal curriculum itself,
which would clearly worsen the performance of these approaches. Time-to-threshold
needs to include this issue in its formulation, or alternatively can be used for curriculum
learning applications where no curricula search is performed. Moreover we noticed how a
sequencing method that does not optimize the time spent on each task in the curriculum
tends to generate only few beneficial curricula for the given final task.

Jumpstart and cumulative return present similar formulations and the latter can actually
be expanded to include the former if needed. Both these metrics are perfectly applied to
the critical task scenario and do not require to consider the time spent searching for the
best curriculum. Furthermore, jumpstart shapes the behaviour of the learner only in the
initial steps. This can lead to extreme scenarios where the agent starts the training with
a good policy that is rapidly forgotten obliging the agent to start the learning phase from
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scratch. Optimizing cumulative return provides the agent with stronger guarantees over
the learning behaviour for the whole duration of the training.

In the next chapters, we first focus on general task sequencing algorithms to be applied
on any of the introduced performance metrics and then we decide to develop our study
further only on those most appropriate for cumulative return maximization.



Chapter 5

Algorithms for Task Sequencing

In the previous chapter we introduced four different performance metrics derived from
the field of transfer learning. We performed a preliminary analysis based on the collected
dataset on two artificial reinforcement learning domains and this allowed for appreciating
the complexity and importance of the associated optimization problems. We concluded
that it is not possible for a curriculum learning agent to sequence tasks optimizing more
than one performance metric at a time and, for the sake of our study, we are particularly
interested with cumulative return and its practical implications.

Nonetheless, each optimization problem for each of these metrics is defined in an
equivalent way and only varies on the calculation of the performance of the learner in
the final task. Because of this reason we can apply the same search algorithms for the
optimization of any of these metrics as we will later see in the next sections.

In this chapter we introduce popular metaheuristic algorithms for solving the general
curriculum learning optimization problem. Later, we further discuss the formulation of
cumulative return and define a sequencing algorithm specifically designed for finding the
best curricula for its optimization.

5.1 Metaheuristic Algorithms Adaptation

The objective functions defined in Chapter 4 do not have an explicit closed-form definition,
since the actual return obtained by the agent can only be measured during learning. Indeed,
the return Gi

f obtained by the agent in each episode for a given final task is a random
variable, which depends on the dynamics of the task, the initial knowledge of the agent,
and the exploration algorithms employed. The expectation cannot be computed exactly,
and must be estimated from a number of trials. The resulting objective function does
not have an explicit definition, therefore the resulting optimization problem is black-box,
and it is in general nonsmooth, nonconvex, and even discontinuous. Furthermore, the
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Algorithm 1 GenerateCandidates
Input: seeds, T
Output: candidate set C

1: C← /0
2: for c ∈ seeds do
3: E←{mi ∈T |mi /∈ c}
4: for m ∈ E do
5: append m to c
6: C←C

⋃
c

7: end for
8: end for
9: return C

optimization problem is constrained to a combinatorial feasible set. These characteristics
do not allow us to resort to methods for general Mixed-Integer NonLinear Programs, or
standard Derivative-Free methods. The most appropriate class of optimization algorithms
for this type of problem is the class of metaheuristc algorithms, introduced in Chapter 2.

We selected four popular and representative algorithms from this class, two of which
are trajectory-based, while the other two are population-based. In this section we describe
the customization we performed to these otherwise general algorithms, to apply them for
task sequencing. We set out to evaluate them experimentally, in order to determine which
ones are the most appropriate for curriculum learning.

5.1.1 Trajectory-based methods

As a simple baseline, we use a purely greedy algorithm. This is meant to be an easy and fast
solution which could be the only available option for particularly complex environments.
The greedy search starts from a set of candidate curricula composed by all the curricula
of length 1. These are then evaluated for selecting the best candidate. The best candidate
is then given as input to GenerateCandidates, to obtain the next set of candidates.
The algorithm terminates when the best candidate does not improve on the current best
curriculum (hence its greedy nature). The function GenerateCandidates is shown
in Algorithm 1. The new set of candidates is computed by appending, to each of the
seed curricula, all tasks that do not already belong to that curriculum. For example,
if T = {m1,m2,m3}, and GenerateCandidates is invoked on {⟨m1⟩,⟨m2⟩}, it returns
{⟨m1,m2⟩,⟨m1,m3⟩,⟨m2,m1⟩⟨m2,m3⟩}. Greedy Search is the simplest deterministic local
search algorithm, and is therefore easily prone to stop at a local maximum. Next we
consider stochastic algorithms able to deal with more flexible definitions of locality.

In Beam Search [45, 58] we start from an empty sequence of source tasks. At each
step we select the most promising solutions based on their performance P and we further
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develop them by using GenerateCandidates. In this way, at each step, the algorithm
evaluates solutions of the same length. The number of solutions to be expanded at each
step is the beam width w, and the algorithm terminates once the maximum allowed length
is reached. In our experiments w = |T |, the total number of intermediate tasks in the
source set.

For Tabu Search (TS) [29, 30], we define the fitness function Ft for a candidate
curriculum to be equal to P . We start the search by randomly selecting a curriculum in
C≤L. At each iteration we perform local changes to the current best solution to generate the
relative neighborhood. We first generate a list of curricula R composed of all the curricula
obtained by adding or removing a task from/to the last task in the current best curriculum.
Then we generate all the curricula resulting from any pairwise swap of any two tasks of
any curriculum in R. The size of our tabu list is T , and, when full, we empty it following a
FIFO strategy. If during the search all the curricula in the neighborhood are in the tabu list
the new current best solution is randomly selected. The algorithm terminates after a fixed
number of iterations. In our experiments T = 30.

5.1.2 Population-based methods

In a Genetic Algorithm (GA) [31], we set the initial population as U randomly sampled
curricula from C≤L and, similarly to Tabu Search, we set the fitness function Fg for
a candidate curriculum to be equal to P . At each iteration of the Genetic Algorithm
we select two parents from the current population Ng with a roulette wheel selection.
Given a candidate curriculum ci, its probability of being selected as a parent is pi =

Fg(ci)/∑c∈Ng Fg(c). Given two parent curricula we generate a new population of U
candidate curricula by applying a standard single point cross over at randomized lengths
along each parent gene (sequence of tasks). Each cross over step produces two children
curricula, and the process is repeated until U children curricula are created. We also
included a form of elitism in order to improve the performance of the algorithm by adding
the parents to the population they generated. Genetic Algorithms also include the definition
of a mutation operator. In our implementation this acts on each candidate curriculum in
the newly generated population with probability pm. The mutation can be of two equally
probable types: task-wise mutation, which given a candidate curriculum of length l changes
each of its intermediate tasks with probability equal to 1/l; length-wise mutation, where
equal probability is given to either dropping or adding a new task at a randomly selected
position of a candidate curriculum. In the case of candidate curricula composed of one
task only, the dropping option for the length-wise mutation does not apply. The algorithm
terminates after a fixed number of iterations. In our experiments U = 50 and pm = 0.5.
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Ant Colony Optimization (ACO) [17] is a CO metaheuristic which consists of deploying
multiple agents (ants), in the given search space for depositing artificial pheromone along
the most successful trails in that space, thus guiding the search towards more and more
successful solutions. Each agent starts from an empty sequence of tasks. At each step an
agent moves towards the goal by adding a new task to the current candidate curriculum
c which represents the trail walked by the ant. Given a task mi, its probability of being
selected is P(mi) = [(τmi +K)α + Iβ

mi]/[∑E [(τm j +K)α + Iβ
m j ]] with E = {m j ∈ T |m j /∈

c}.The visibility Imi is calculated as the performance improvement obtained by adding
task mi to the current candidate curriculum when positive, and zero otherwise. Parameters
α and β control the influence of the pheromone versus the improvement while K is a
threshold to control from what pheromone value the search starts to take it into account.
Once the maximum curriculum length is reached, artificial pheromone is deposited on all
curricula explored in this way, from the first to the best along the last trail, concluding in
this way an iteration. The pheromone evaporation rate is specified with the parameter ρ

while the maximum level of pheromone to be accumulated over a candidate solution is set
to fmax. The algorithm terminates after a fixed number of iterations. In our experiments
α = 1,β = 1.2,K = 5, fmax = 50,ρ = 0.2 and the number of ants is 20. The parameters
of all algorithms have been fine-tuned manually across all experiments.

5.2 Cumulative Return Maximization

In Chapter 4 we introduced four different performance metrics and identified three task
scenarios explaining which metric would apply best in each of them. In the preliminary
analysis we have also observed how the cumulative return performance metric is the most
interesting one in the context of this thesis because of its real-world applications.

In this section we develop a heuristic algorithm for efficiently performing curricula
search for cumulative return maximization. In order to do so we need to start by reformu-
lating part of the optimization problem.

We have previously defined cumulative return in Equation 4.1 but its optimization
would likely lead to poor performance and discover suboptimal curricula for real-world
problems in the critical task scenario. This is mainly due to the fact that its definition is
purely theoretical and does not take into account the challenge introduced by its application
on an actual real-world task.

Cumulative return is indeed computed directly on the final tasks F ⊂M , and this,
in artificial domains, would both lead the search and represent the actual performance
improvement introduced by the curriculum under analysis. As we will later show in this
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section, for real-world domains we need to decouple these two aspects of the curriculum
search.

We target the following scenario: one or more critical tasks of interest must be learned
online, by limiting suboptimal actions as much as possible. The aim of the curriculum is
to provide the best possible initial knowledge so as to shape exploration in the final tasks.
We assume that a simulator is available to train the agent while generating the curriculum.
Remember F ⊂M the finite set of MDPs constituting the final tasks. These are the tasks
of interest, and for a curriculum to be valuable, it must provide an advantage over learning
the final tasks directly.

We consider the problem of finding an optimal curriculum c∗ of a given maximum
length L, maximizing the cumulative return over all final tasks:

P(c,F ) = ∑
m f∈F

Pcr(c,m f )

max P(c,F )

s.t. c ∈ C≤L
(5.1)

This optimization problem is entirely solved in simulation, that is, all tasks, including
the final ones, are simulated tasks. Simulated final tasks are models of the expected real
tasks, and, as previously mentioned, having more than one prevents the curriculum from
overfitting to a particular simulated task.

5.2.1 An Heuristic Algorithm for Task Sequencing

While metaheuristc algorithms are quite general and broadly applicable, it is possible
to devise specific heuristic methods targeted at particular problems. In this section, we
introduce Heuristic Task Sequencing for Cumulative Return (HTS-CR).

Intuition

In this context the curriculum learning problem is defined as finding a powerful sequence
of source tasks in order to improve the cumulative return performance over the given final
task. This particular restriction on the optimization problem lets us study the shape of
the most effective curricula created at this purpose. It is indeed now possible to find and
analyze common features among the optimal sequences of tasks across the experiments in
the two artificial domains used for our dataset.

We have previously discussed how curriculum learning is a research field derived from
transfer learning. In particular, curriculum learning uses multiple transfer processes to
effectively move experience along a whole curriculum, up to the final task. For each source
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in a curriculum, the learning phase is initialized with the knowledge coming from the
previous task in the sequence and, at the end of the training, the agent transfers the resultant
experience to the next task in the curriculum.

Because of this dynamics, in curriculum learning it is extremely complicated to deter-
mine whether or not an intermediate task could actually be beneficial for the final task. In
classic transfer learning, indeed, the effect of a source task can be directly measured on
the target task on which it is applied. Conversely, in curriculum learning the impact of
an intermediate task on the final task can take place in different ways, and in most of the
cases its effect is indirect. For instance, this is the case for all those tasks in a curriculum
preceding the last task in the sequence, which is the only one whose knowledge is then
directly applied on the final task.

Each source composing any curriculum in this study is preceded and followed by
another task in the source set, with the exception of the first and last intermediate tasks in
the curriculum, which represent special cases. It is possible to deduce that, the contribution
of these two particular tasks in the curriculum, can be easier to assess compared to the
others. The idea is that, for example, the first task, head of a curriculum, is always learned
without exploiting any prior knowledge, therefore it generally needs to be small and easy
to learn. Conversely, the last task in the sequence, tail of the curriculum, has to be similar
to the final task as its knowledge is directly transferred on it.

The HTS-CR Algorithm

We take advantage of the previously introduced insight: the quality of a particular task
sequence is strongly affected by the efficacy of knowledge transfer, and transfer between
certain pairs of tasks is much more effective than others. Therefore, our algorithm starts by
considering all pairs of tasks, in order to assess which ones are good sources for which
targets. It also determines which tasks are the best candidates to be head of the curriculum,
or tail, that is, the last task before the final tasks. The method is shown in Algorithm 2.

This first phase, expanded in Algorithm 3, consists in evaluating all curricula of length
2 (Line 4), and sort them (Line 5), with the best curriculum first. At Line 9 and 10 the
algorithm assigns a score to each task: the better the length-2 curriculum it belongs to, the
lower the score. These scores are returned by the function EvaluatePairs.

After this initial phase, Algorithm 2 uses the computed scores to determine the order
in which curricula are evaluated. The underlying intuition is the following: the most
promising head and tail tasks are tried first, and shorter curricula are evaluated before
longer ones. At each round r (Line 3), one more task is added to the set of candidate
heads (Line 9) or tails (Line 10) alternatively. For each length up to the maximum length
(Line 11), and for all pairs of tasks, one from the head set H, h̄, and one from the tail set
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Algorithm 2 HTS-CR
Input: T , F , and L
Output: curriculum c∗ and its value v∗

1: I← 1, J← 1
2: ⟨heads, tails,V ⟩ ← EvaluatePairs(T ,F )
3: for r from 1 to 2(|T |−1) do
4: if (r mod 2) = 1 then
5: I = I +1
6: else
7: J = J+1
8: end if
9: H← Best(heads,I) // I tasks with lowest score

10: T ← Best(tails,J) // J tasks with lowest score
11: for l from 3 to L do
12: for h̄ ∈ H and t̄ ∈ T s.t. h̄ ̸= t̄ do
13: B← H ∪T \{h̄, t̄}
14: B← Permutations(B, l−2)
15: for b ∈ B do
16: c← ⟨h̄,b, t̄⟩
17: if c /∈V then
18: v←P(c,F )
19: V ← P∪{⟨c,v⟩}
20: end if
21: end for
22: end for
23: end for
24: end for
25: return ⟨c∗,v∗⟩ ∈V s.t. ∀⟨c,v⟩ ∈ P,v≤ v∗

T , t̄, the algorithm generates all the permutations of the remaining tasks in H ∪T (Line
14). It then appends h̄ at the beginning, and t̄ at the end, creating a full curriculum, which,
if not considered before (Line 17) is evaluated by running the corresponding simulation,
estimating the cumulative return (Line 18).

HTS-CR has no parameters other than the maximum length of the curricula to be
searched, which can be exchanged for a different stopping criterion, such as a maximum
budget of curricula evaluations. We intentionally left out all curricula of length 1, since
our heuristic would not have any meaningful order among them. They could be evaluated
in a preliminary phase in any order. Moreover length 1 curricula never achieve the highest
cumulative return performance in our experiments (see Appendix A for more information
at this regard). We will show experimentally in the next chapter that, after the initial cost
of evaluating all curricula of length 2, the solutions found are quickly close to optimal.
Finally, HTS-CR requires direct access to the final tasks in order to assess the performance
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Algorithm 3 EvaluatePairs
Input: T and F
Output: ⟨heads, tails⟩

1: D,V ← /0
2: heads = tails = [{m1,0}, . . . ,{m|T |,0}] // dictionary // from tasks to integers
3: D← AllPairs(T )
4: V ←{⟨d,v⟩|d ∈ D∧ v = P(d,F )} // evaluate all pairs
5: V ← Sort(V ) // sort wrt cumulative return, best first.
6: for i from 1 to |V | do
7: ⟨d,v⟩ ←Vi // i-th best curriculum in V
8: ⟨h, t⟩ ← d // head and tail of d
9: heads[h]← heads[h]+ i

10: tails[t]← tails[t]+ i
11: end for
12: return ⟨heads, tails,V ⟩

of a curriculum but this assumption is relaxed in the next section with the introduction of a
novel methodology.

5.2.2 Methodology

Our heuristic algorithm, as other solutions in literature to task sequencing problems,
requires sampling over the target task whose learning phase we are aiming to optimize. For
real-world applications this is not always possible as it could be extremely time consuming
or dangerous to the extent that it is more advantageous to use those samples directly on the
target task. For cumulative return optimization we here demonstrate how we can direct our
heuristic search towards optimal curricula for a real target task by only interacting with
different simulations of it.

We envision cumulative return maximization with curriculum learning to be best ap-
plied in situations where a manufacturer needs to provide its product to different costumers
with different needs. In such a scenario we would normally aim at developing a general
solution able to perform well in all the different given cases, nonetheless the resultant
performance would not be optimal in any of them. If the set of problem instances is very
large and characterized by high variance, a general solution would be likely to perform
poorly at least in some of them. On the other hand, it is impractical to develop a specific
solution for each situation.

Alternatively we could approach this problem from a machine learning perspective, for
instance applying state-of-the-art reinforcement learning algorithms to learn online the best
solution for each given case. It is clear though, that learning such a solution can be slow
and implies extensive exploration which is undesirable for real-world environments. This
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Fig. 5.1 The methodology proposed for solving real-world tasks with curriculum learning
for cumulative return maximization. 0) Search a curriculum; 1) Learn the curriculum; 2)
Evaluate the curriculum; 3) Transfer the knowledge into the real-world domain.

problem is not new to the field and we have previously discussed how transfer learning
introduces a partial solution to this type of scenario by exploiting experience coming from
intermediate tasks that can be simulated or real-world.

Figure 5.1 shows the methodology we propose to overcome the problem just described
by using curriculum learning. The main idea relies on the fact that since more than one
simulation for the final task is available, the larger the number of simulations the better
will be the curriculum performance on the real-world task. This is because, with a big
enough set of simulations, we would have a precise esteem of the expected performance
of the agent learning the final task with the curriculum, therefore the chosen curriculum
would be more appropriate for solving the task in the real world. Our method starts by
employing any sequencing algorithm in order to propose which curriculum needs to be
tested next (step 0). Once we have a candidate curriculum, the RL agent learns through it,
transferring the obtained knowledge one task at a time (step 1). At this point we use the
knowledge gathered at the end of the curriculum to initialize the learning of each of the
simulated final tasks and test in this way the quality of the given curriculum (step 2). If
the performance of the curriculum in the simulations is high enough, we can transfer its
knowledge to lead exploration in the real-world (step 3). We expect the tested performance
to be close to the one we will actually observe in the real-world final task as long as the set
of simulations is large enough.

5.3 Summary

In this chapter we introduced a number of metaheuristic algorithms for solving combina-
torial optimization problems. We then described their adaptation to the task sequencing
problem in curriculum learning in order to apply them to any of the performance metrics
discussed in Chapter 4. The selected methods span a variety of different approaches
to combinatorial optimization and in the next chapter we aim at evaluating them so as
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to identify the salient characteristics of general sequencing algorithms for curriculum
learning.

We then discussed how it is possible to design promising heuristic algorithms able to
rapidly search optimal solutions in the space of all the possible curricula by following
curriculum learning expert knowledge and by focusing on only one specific performance
metric.

Finally we introduced our particular heuristic search HTS-CR for cumulative return
maximization and explained its design. Moreover we explained the proposed methodology
for applying heuristic search methods for cumulative return maximization to real-world
domains.

In the next chapter we will discuss the performance of HTS-CR and compare them to
those of the general metaheuristic methods.



Chapter 6

Experimental Evaluation

In the previous chapters we proposed a combinatorial optimization framework for cur-
riculum learning and discussed which algorithms are best suited for approaching the task
sequencing problem in this context. We studied different performance metrics and task
scenarios, explaining the reasons behind the choice of focusing on cumulative return
maximization for agents in critical tasks.

In this chapter we start by performing a comparison of all the proposed metaheuristic
algorithms in order to understand which of these approaches works best for curriculum
learning. Later we examine their performance against the one of the heuristic algorithms
we developed for the task sequencing problem for cumulative return maximization. Finally
we introduce a critical task domain showing the potential effectiveness of our approach for
real-world applications.

6.1 Meaheuristic Algorithms Performance

In order to compare and analyze the performance of our implementation of the four
metaheuristic algorithms for combinatorial optimization introduced in the previous chapter,
we test them over the dataset described in Section 4.6.1. We want to understand in this
way, which features of popular metaheuristic methods are the strongest to solve the general
curriculum learning optimization problem.

It is important to notice how, within the set of source tasks, we intentionally created
both tasks that provide positive and negative transfer towards the final task. In this way, for
each experiment in the dataset there are always extremely strong sequences of tasks but
also curricula whose impact is negative on the final task performance. This allows testing
the ability of the various sequencing algorithms to choose the most appropriate curricula
while avoiding counterproductive ones.
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n = 12; L = 4; tot = 13345
GW C0 Greedy GA Tabu ACO Beam Opt

CR
- 24 378.58 364.54 378 373 -

0.64 0.74 0.77 0.79 0.76 0.78 0.81
- - [0.76:0.77] [0.79:0.79] [0.76:0.76] - -

JS
- 34 378.7 380.94 378 373 -

-2283.8 -860.03 -1223.24 -842.68 -779.82 -738.29 -601.74
- - [-1309.87:-1136.61] [-900.18:-785.17] [-795.44:-764.21] - -

TTT
- 24 380.3 381.86 39 373 -

-1351.6 -315.6 -545.73 -315.6 -466.12 -315.6 -315.6
- - [-388.93:-702.53] [-315.6:-315.6] [-345.80:-586.44] - -

MR
- 24 377.16 463.28 378 373 -

-50 -26.6 -15.5 -5.716 -5.33 -3 19.9
- - [-18.55:-12.45] [-9.87:1.56] [-6.90:-3.76] - -

Table 6.1 Results of all the algorithms on the first experiment in the GridWorld domain.
Green cells enhance the result of the best algorithm for a specific performance and experi-
ment.

n = 7; L = 7; tot = 13700
GW C0 Greedy GA Tabu ACO Beam Opt

CR
- 16 155.84 165.4 168 155 -

0.51 0.57 0.59 0.62 0.61 0.61 0.72
- - [0.58:0.61] [0.62:0.63] [0.6:0.62] - -

JS
- 16 156.22 169.9 154 155 -

-2624 -827.68 -896.17 -855.99 -725.65 -773.71 -360.9
- - [-966.24:-826.11] [-920.08:-791.97] [-759.65:-691.65] - -

TTT
- 12 156.52 166.3 168 155 -

-2788.1 -1643.7 -2300.41 -19880.42 -1716.13 -1643.87 -1643.87
- - [-1967.20:-2633.63] [-17369.97:-22390.87] [-1680.85:-1751.42] - -

MR
- 19 155.98 165.92 168 155 -

-50 21.1 6.96 26.78 18.36 21.1 68.5
- - [0.95:12.98] [22.84:30.71] [14.52:22.21] - -

Table 6.2 Results of all the algorithms on the second experiment in the GridWorld do-
main. Green cells enhance the result of the best algorithm for a specific performance and
experiment.

n = 9; L = 5; tot = 18730
BD C0 Greedy GA Tabu ACO Beam Opt

CR
- 25 266.78 286.02 245 244 -

0.19 0.55 0.55 0.55 0.54 0.6 0.65
- - [0.53:0.57] [0.53:0.57] [0.51:0.57] - -

JS
- 25 267.44 315.34 245 244 -

-49.9 -49.04 -49.08 -48.17 -48.42 -47.32 -47.77
- [-49.18:-48.98] [-48.58:-47.77] [-48.75:-48.09] - -

TTT
- 18 267.92 262.86 245 244 -

-2981.7 -2749.3 -2879.87 -3086.52 -2793.00 -2749.3 -2749.3
- [-2825.41:-2934.32] [-2998.12:-3174.92] [-2768.23:-2817.78] - -

MR
- 31 266.66 333.76 245 244 -

-10 -10 -10 -10 -10 -10 -10
- - [-10:-10] [-10:-10] [-10:-10] - -

Table 6.3 Results of all the algorithms on the first experiment in the BlockDude domain.
Green cells enhance the result of the best algorithm for a specific performance and experi-
ment.
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n = 18; L = 3; tot = 5221
BD C0 Greedy GA Tabu ACO Beam Opt

CR
- 52 622.66 750.5 663 613

0.2 0.48 0.5 0.55 0.47 0.57 0.58
- - [0.48:0.51] [0.55:0.56] [0.46:0.49] - -

JS
- 52 623.66 695.16 663 613

-50 -49.4 -49.66 -49.36 -49.76 -49.38 -49
- - [-49.70:-49.62] [-49.41: -49.32] [-49.79:-49.73] - -

TTT
- 36 625.28 665.2 663 613

-4986 -3828 -3868.10 -3828 -3834.80 -3828 -3828
- - [-3852.95:-3883.25] [-3828:-3828] [-3831.12:-3838.47] - -

MR
- 67 621.34 752.1 663 613 -

-14 -14 -14 -14 -14 -14 -14
- - [-14:-14] [-14:-14] [-14:-14] - -

Table 6.4 Results of all the algorithms on the second experiment in the BlockDude do-
main. Green cells enhance the result of the best algorithm for a specific performance and
experiment.

In Table 6.1, 6.2, 6.3 and 6.4 we show the results of the experiments on GridWorld and
Block Dude respectively. The header row shows the number of candidate tasks, maximum
length, and the total number of curricula of each experiment. Each cell contains the
average number of curricula evaluated, the value of the objective function, and the 95%
confidence interval of that value, for the corresponding metric. We also included the
optimal curriculum (last column of each experiment) and learning with no curriculum
(denoted as C0). The cumulative return metric is hereby normalized in [0,1] where 0
corresponds to the worst possible policy never improving the agent performance during
the training, while 1 stands for directly starting with the optimal policy.

Our implementation of Tabu Search, Genetic Algorithms and Ant Colony Optimization
are stochastic and non-terminating, so that in the limit they always find the optimal
solution. For a fair comparison, and for the cases of practical interest, we interrupted them
at the first iteration (for instance, generation in GA) in which they evaluated a number of
curricula equal to or greater than Beam Search at its optimal value, since Beam Search is
deterministic.

From the tables it is clear how curriculum learning can be employed for optimizing
different performance metrics for learning the final task. From our study, Beam Search
outperforms all the metaheuristics in almost all the experiments, and when it does not, the
solution is often close to the best one. Tabu Search, notably the other trajectory-based
algorithm, is better in some cases. However, since Beam Search is deterministic, it may
be preferable as there is no variation between runs. It is also important to notice that the
performance of Beam Search degrades faster as the maximum length increases, rather than
as the number of candidate tasks increases. Beam Search is also not global, therefore it
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finds solutions only in a small part of the search space that often excludes the globally
optimal solution.

We can conclude here that trajectory-based algorithms work better than population-
based ones for searching sequences of tasks in curriculum learning. Beam Search is the
algorithm achieving the best performance over our dataset and it is preferable both for its
stability (being a deterministic solution) and for the ease of implementation. Nonetheless,
Tabu Search is a powerful alternative and with a deeper understanding of curriculum
learning it can be possible to develop even stronger implementations of this algorithm to
leverage its features.

We can also draw some further conclusions about the performance metrics. Time-to-
threshold, the objective used the most in the literature, appears to be the easiest to optimize
in our experiments. This can be noticed by observing how Greedy Search is always able to
find optimal solutions for this very metric. We decided not to indicate this algorithm as the
best one for this performance because of the fact that its success is due to the particular
shape of the optimization problem, that always sees the best curriculum to be composed by
one only intermediate task. Because of this reason Greedy Search always finds the optimal
solution during the first curricula evaluations it performs which includes all the curricula of
length l = 1 (this is also the case for Beam Search). As we previously discussed in Chapter
4, time-to-threshold is best used with sequencing algorithms that optimize the time spent
on each task in the curriculum. As we do not perform such actions in these experiments,
the formulation of time-to-threshold naturally promotes short curricula (refer to Appendix
A for further information). Lastly, BlockDude appears to be too simple for max-return
to be a viable objective, since all curricula, including no curriculum, eventually learn the
optimal policy. On the contrary, GridWorld is a more complex domain and it is therefore
more complicated for any agent to find the optimal policy. For this domain, different
curricula result in the discovery of different policies, with a significant improvement over
learning from scratch.

6.2 HTS-CR Evaluation

The previous results strengthen the choices behind the design of our heuristic algorithm.
On the one hand it is deterministic and simple to implement as Beam Search, on the
other hand it is also global similarly to Tabu Search, combining in this way the virtues of
these two trajectory based methods. In this section we perform a deeper analysis of the
task sequencing problem associated with cumulative return maximization and discuss the
overall behaviour of the previously introduced metaheuristic methods and our specifically
designed heuristic algorithm.
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(a) Experiment 1, Block Dude

(b) Experiment 2, Block Dude

Fig. 6.1 Comparison of HTS-CR against the combinatorial optimization methaeuristic
algorithms on the Block Dude domain. On the x-axis we show the number of curricula
evaluated by each algorithm and on the y-axis the correspondent best cumulative return
value encountered by each algorithm after the specified number of evaluations.
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(a) Experiment 3, Gridworld

(b) Experiment 4, Gridworld

Fig. 6.2 Comparison of HTS-CR against the combinatorial optimization methaeuristic
algorithms on the Gridworld domain. On the x-axis we show the number of curricula
evaluated by each algorithm and on the y-axis the correspondent best cumulative return
value encountered by each algorithm after the specified number of evaluations.
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In Figure 6.1 and 6.2 we compare HTS-CR against the metaheuristic methods described
in Section 5.1. The four plots, one for each experiment, show the value of the best
curriculum over the number of curricula evaluated by each algorithm. Curricula were
evaluated by having the agent learn each one multiple times, and averaging the results
to estimate the objective in Equation 4.1. The cumulative return was normalized in [0,1]
for ease of comparison across the experiments, where 1 is the return accumulated by the
optimal policy at every episode. As Tabu Search, Genetic Algorithms and Ant Colony
Optimization are stochastic methods, their performance were averaged over 70 runs and
plotted showing the 95% confidence interval. In all the experiments HTS-CR has an
initial offset of n(n−1) evaluations spent to consider all the possible pairs, whereas all the
metaheuristics immediately start finding possible solutions. Nevertheless, HTS-CR quickly
outperformed all the other algorithms, and always found the globally optimal curriculum
the fastest, showing the benefit of the initial pair evaluations.

Both Beam Search and Tabu Search show better performance than the population-based
algorithms especially during the initial evaluations where they rapidly discover curricula
of always higher performance. With these plots it is also clear that Beam Search often gets
stuck in a sub-optimal solution and therefore its performance worsens with the growing
of the number of iterations, while all the other methods keep improving the quality of the
solution they found.

6.3 Real World Domain

We discussed different possible applications of curriculum learning, and showed how it is
possible to employ curricula for the optimization of different features of the training of
an agent learning the final and most important task. Among the three task scenarios we
introduced in Section 4.2, we decided to focus on critical tasks since in our dataset, the
metric associated with this case, cumulative return, results challenging and with promising
practical results.

Problems in the critical task scenario are usually real-world and in the most of the cases
a simulation of the target environment is available. This allows for the creation and design
of curricula in simulation for then applying them to the real-world problem. In this section
we describe the new domain we used for performing real-world experiments and show a
practical application of curriculum learning in such domain.

6.3.1 MGEnv Domain

MGEnv is a simulated micro-grid domain modeled out of real data from the PecanStreet
Inc. database. The domain includes historical data about hourly energy consumption and
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Fig. 6.3 A graphical representation of our micro-grid domain, MGEnv

solar energy generation of different buildings from January 2016 to December 2018. A
task in this domain is defined by the combination of three elements: the model of the
electrical device to optimize; the user’s monthly schedule, specifying the days in which
the user wishes to run the device; the month of simulation, with the energy generation and
base consumption of the given building. The device we used behaves as a time-shifting
load: once started it runs for several time steps and cannot be interrupted before the end
of its routine. This is the most challenging type of device present in the database. The
goal is to find the best time of the day to run the given device, optimizing direct use of the
generated energy, while respecting the user’s device schedule. The agent receives a reward
of 30 when the device energy consumption is fully covered by the energy generated by the
building, −10 when energy not generated by the building is used and −200 if the device is
not run accordingly to the user schedule.

6.3.2 Experiments

We developed a DeepRL agent for the MGEnv domain with an Actor-Critic architecture,
using Proximal Policy Optimization (PPO) [71], and Progressive Neural Networks [66],
for value function transfer. Since this is a curriculum learning implementation of PPO,
before the learning agent starts training on a new task in the curriculum, its replay buffer is
emptied from all the old experience samples.

In Appendix A we provide a detailed description of all the tasks designed for the
experiments in the MGEnv domain in order to ease their reproducibility, whereas in this
section we only discuss their high level design for then focusing on the results. All the
tasks in this domain are for the control of the same electric device. We created 10 final
tasks using the same month and user schedule, but different buildings. We divided them
into a training (validation) and test set of 5 tasks each. Without curriculum learning, a
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Fig. 6.4 Average return over the test tasks in the MGEnv domain. The blue line corresponds
to initializing learning in the final tasks with the curriculum, while all the others represent
the performance of initializing it with a single training (validation) task

natural approach would be to learn the optimal policy for one of the source tasks in the
training set, and transfer the optimal value function to a target task in the test set.

We created n = 5 intermediate tasks, by selecting a combination of schedule, month
and building from a set of 3 schedules, 5 months and 3 buildings. Some of these tasks
are easier to learn than others, providing the basis for the curriculum. We optimized the
curriculum with HTS-CR over the training set with a maximum length L = 4, repeating
each evaluation 5 times to estimate the cumulative return. The best curriculum was found
after 37 curriculum evaluations. We then took the value function after the tail of the
curriculum, before the final tasks, and transferred it to each of the 5 tasks in the test set.
We evaluated the performance of the agent initialized from the curriculum, and compared
it to the behaviour of the agent initialized from single-task transfer.

Figure 6.4 shows the results of this experiment.1 The curriculum was generated using
all the training tasks together, and evaluated over each one of the 5 test tasks separately.
Therefore, the plotted results are the average over 5 runs with 95% confidence intervals.
Single-task transfer, on the other hand, was trained on each one of the training tasks
and evaluated on each test task separately. Consequently we have 5 different curves for
single-task transfer, one for each training task used for initializing the agent learning
in the final task. Each learning curve is the average over 5 runs with 95% confidence

1The results showed in figure 6.4 differ from those originally included in our publication [28]. Here,
indeed, we represent each single-task transfer curve separately, but, most importantly, the duration of a
learning episode corresponds to one day instead of an entire month. We believe that this different design
better represents a real-world scenario.
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Fig. 6.5 Average return over the test tasks in the MGEnv domain. The blue line corresponds
to initializing learning in the final tasks with the curriculum, while the others represent the
agent learning the final tasks with the discovered curriculum modified by adding one of
the training tasks to its tail

intervals. We show that, on average, initializing learning from the curriculum achieves a
higher cumulative return than initializing from the optimal value function of any of the
training tasks. The results show that a curriculum generated from simulated tasks can
indeed generalize to similar real tasks (recall that all the data in these simulations is from
real buildings) and provide a significant improvement of the behaviour during learning.
Furthermore, we previously discussed how cumulative return and jumpstart are the two
best suited performance metrics for tasks belonging to the critical task scenario, although
optimizing one of them does not necessarily mean improving both the performance values.
Nevertheless, it is possible to notice in figure how, for this domain, cumulative return
maximization also brings a clear advantage on jumpstart.

Instead of using the training tasks only for searching the curriculum to initialize the
agent training in the final tasks, it is also possible to include them as last task (tail) of
the curriculum found in this way. Potentially, this choice could enhance the cumulative
return improvement brought by the curriculum even further. Figure 6.5 shows the different
performance of the agent learning the final tasks with the curriculum modified by adding
one of the training tasks to its tail. All the curricula generated in this way present an
extremely fluctuating behaviour towards the end of the learning phase, therefore the
original curriculum still results to be the best initialization for the agent learning in the
final task. This phenomenon is due to the fact that training and final tasks are specifically
designed to be similar one another. Including training tasks in the curriculum generates a
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Fig. 6.6 Average return over the test tasks in the MGEnv domain. The blue line corresponds
to initializing learning in the final tasks with the curriculum while the red line represents
the performance of an agent learning the final task from scratch

value function that is overfit to the selected training task, hence it is harder for the agent to
update it during the learning phase in the final tasks. This result proves the effectiveness of
the methodology proposed in Chapter 5.

For completeness, in Figure 6.6 we also show the results of learning the final tasks
with the discovered curriculum against not using any available previous knowledge to
initialize the agent (learning from scratch). As expected, the knowledge coming from the
curriculum gives a strong advantage to the learning agent compared to training in the final
tasks without exploiting any previous experience.

Finally, we also discuss the performance of curricula composed by only one intermedi-
ate task. These curricula are not explored by HTS-CR as in our experiments the curricula
achieving the best cumulative return performance are always composed by multiple tasks.
Figure 6.7 shows how HTS-CR finds a curriculum that substantially outperforms all the
curricula composed by only one intermediate task.

6.4 Summary

In this chapter we evaluated the previously introduced metaheuristic algorithms for combi-
natorial optimization on the task sequencing problem in curriculum learning. We observed
how in general, for any of the CL performance metrics of Chapter 4, trajectory-based
methods like Beam Search or Tabu Search are the most efficient in finding beneficial
curricula.
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Fig. 6.7 Average return over the test tasks in the MGEnv domain. Initializing the learn-
ing agent with a curriculum (in blue) is compared against initializing it with only one
intermediate task from the available ones

We then compared our heuristic algorithm HTS-CR against all the metaheuristic
methods for cumulative return maximization with curriculum learning. In our experiments,
HTS-CR rapidly moves the focus of the search towards promising curricula converging to
the globally optimal solution the fastest.

Finally we tested HTS-CR on a real-world domain exploiting the methodology de-
scribed in Chapter 5 searching for a curriculum offline by using the available simulations
of the given final task. We showed how curriculum learning can lead to safe and robust
exploration policies when online reinforcement learning is needed.



Chapter 7

Conclusions

7.1 Contribution

In this work we introduced a new framework for curriculum learning in reinforcement
learning. We identified three different task scenarios for novel uses of curriculum learning
and discussed which performance metrics are best suited for each of them. In complex
tasks we are interested at discovering the highest valued policy at any time during training
in order to use it for solving the problem defined in the final task. Time sensitive tasks
are the most studied in literature, and in this setting, in order to find strong curricula, task
sequencing algorithms need to optimize the time spent over each source task composing
the curriculum. We focus on critical tasks where online reinforcement learning is necessary
in order to optimize the solution provided by the curriculum to the actual final task to solve.
In this context a curriculum is used to shape the exploration of the agent in such a way that
it minimizes the number of expensive actions it takes during the learning phase.

We adapted several metaheuristic methods for combinatorial optimization to the task
sequencing problem in curriculum learning in order to search for curricula given any
performance metric. We also developed our heuristic search algorithms HTS-CR to find
curricula for the critical task scenario. HTS-CR searches for sequences of tasks maximizing
the cumulative return performance over the final task as this is the metric selected for this
type of task scenario.

We performed an evaluation of all the metaheuristic techniques in order to understand
which features of these algorithms are the strongest at searching curricula optimizing any of
the given performance metrics. In our experiments, trajectory-based methods outperform
population-based methods finding better curricula in a reasonable number of algorithm
iterations. We also compared the performance of HTS-CR against all the metaheuristic
methods solving the task sequencing problem for cumulative return maximization and
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observed how our heuristic search converges to optimal solutions faster than any other
algorithm under analysis.

Finally, we proposed a methodology for applying task sequencing algorithms for
cumulative return maximization to real-world problems. In our experimental domain, a
microgrid environment, we noticed how employing curriculum learning can have a great
impact on the agent performance over the final task, which, in our case, starts the training
with a high valued policy and avoids expensive and potentially unsafe actions throughout
the whole learning phase.

7.2 Limitations

We started our study performing an analysis of the proposed performance metrics for
curriculum learning. For this purpose we created a dataset composed of four experiments
in two different domains. These experiments represent only some aspects of the overall
complexity of the problem of task sequencing in curriculum learning, and therefore it is not
possible to draw general conclusions over the shape of the optimization problem associated
with each performance metric. A more diverse experimental domain set would be of
great importance for this purpose and could help designing extremely dynamic curriculum
learning algorithms.

We discussed how the effectiveness of a curriculum is directly correlated with the
function approximator used for learning each task and the transfer learning method chosen
for passing experience from one task to another. In this work we used two types of
function approximators and two transfer learning algorithms for value function transfer.
We combined them in two different ways and proved how the performance of HTS-CR are
consistent over them. Nevertheless, there might be some other function approximator and
transfer learning algorithm that together worsen the efficiency of the sequencing algorithms
studied in this work.

Lastly, for extremely complex critical tasks, creating a set of source tasks potentially
beneficial for a curriculum and having an accurate simulation of the final task can be
difficult. In such a case a good designer choice can be to increase the dimension of the
source set and the number of simulations in the test set. In this way the sequencing
algorithm would take a longer time before finding any beneficial curriculum which can
still be impractical for some real-world applications.
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7.3 Future Work

Curriculum learning in reinforcement learning is still at its early stage of development and
there are many aspects of this field that need to be investigated before being able to employ
it in the design of learning agents for future technologies. In this work we analyzed the
task sequencing problem in curriculum learning trying to understand what characteristics
of this problem show the biggest potential for improvement in order to focus our research
on one of them.

As we previously mentioned, a global understanding of the salient features character-
izing a positive curriculum for learning a final task would be of crucial importance for
this field. This means creating a large dataset of multiple experiments on many different
domains evaluating each curriculum at varying of the type of function approximator used
for learning each task in the curriculum and the transfer learning algorithm for transferring
knowledge along the sequence of tasks.

In this study a curriculum is strictly defined as a sequence of tasks with no repetitions. In
Chapter 3 we discussed how there exist other definitions of curricula with fewer restrictions
on how to combine the intermediate tasks to generate a curriculum. For instance, it is
particularly important to consider algorithms defining curricula as graphs. In this way
transfer of knowledge could happen concurrently from different source tasks letting in this
way possible to design extremely more complex curricula.

In order to be able to fully exploit the knowledge coming from each source task in a
curriculum, CL algorithms would benefit from research focused on function approximators
and transfer learning algorithms specifically designed for curriculum learning applications.
In this way, each intermediate task could have a great impact on the final task. For this
purpose, continuous curriculum learning [7] is a promising research direction because of
its formulation which allows to consider in only one algorithm both the time the agent
needs to spend over each task it encounters, and a method for sequencing source tasks.

Lastly, in future works, it will be important to evaluate curriculum learning algorithms,
especially in the context of cumulative return maximization, on real-world domains such
as robotics where the impact of this field can help overcome challenges such as bridging
the reality gap.
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Appendix A

Tasks Details

In this appendix we provide a thorough description of all the experiments performed in
the context of this work. We hereby detail the different domains and all the reinforcement
learning tasks. Finally we discuss features characterizing positive and negative curricula in
order to better understand the shape of the task sequencing problem in curriculum learning.

A.1 Domains

In this section we describe the three domains used in the experiments of this thesis
discussing the main elements defining the complexity of a learning problem within them.
Since we always used function approximators for computing the value function of each
task, some of the domain features are referred to as inputs of the function approximator
used in the domain under analysis.

A.1.1 Block Dude

Block Dude is a puzzle game where the agent has to stack boxes in order to climb over
walls and reach the exit. The available actions are moving left, right, up, pick up a box and
put down a box. The agent receives a reward of −1 for each action taken.

The variables used as input to tile coding are distance from the exit, distance from each
box, distance from each edge of the map, direction of the agent (binary) and whether or
not it is holding a box (also binary). It is important to notice how, in order to improve
transferability, this state representation is agent-centric therefore all distances are computed
with respect to the agent.
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A.1.2 Gridworld

GridWorld is an implementation of an episodic grid-world domain. Each cell can be free,
or occupied by a fire, pit, or treasure. The agent can move in the four cardinal directions,
and the actions are deterministic. The reward is−2500 for entering a pit,−500 for entering
a fire, −250 for entering the cell next to a fire, and 200 for entering a cell with the treasure.
The reward is −1 in all other cases. The episodes terminate under one of these three
conditions: the agent falls into a pit, reaches the treasure, or executes a maximum number
of actions (50).

The variables fed to tile coding are the distance from the treasure (which is global and
fulfills the Markov property), and distance from any pit or fire within a radius of 2 cells
from the agent (which are local variables and alone do not fulfill the Markov property but
allow the agent to learn how to deal with these objects when they are close, and transfer
this knowledge). Also in Gridworld we used an agent-centric representation in order to
improve transferability, therefore all distances are computed with respect to the agent.

A.1.3 MGEnv

MGEnv is a simulated micro-grid domain modeled out of real data from the PecanStreet
Inc. database. The domain includes historical data about hourly energy consumption and
solar energy generation of different buildings from January 2016 to December 2018.

A task in this domain is defined by the combination of three elements: the model of the
electrical device to optimize; the user’s monthly schedule, specifying the days in which
the user wishes to run the device; the month of simulation, with the energy generation and
base consumption of the given building. The device we used behaves as a time-shifting
load: once started it runs for several time steps and cannot be interrupted before the end
of its routine. This is the most challenging type of device present in the database. The
goal is to find the best time of the day to run the given device, optimizing direct use of the
generated energy, while respecting the user’s device schedule.

The agent receives a reward of 30 when the device energy consumption is fully covered
by the energy generated by the building, −10 when energy not generated by the building
is used and −200 if the device is not run accordingly to the user schedule.

A.2 Tasks

In this section we provide a detailed description of each reinforcement learning task
designed for each domain in our experiments. More specifically, we give a graphical
representation and relative number of episodes for all the tasks in the artificial domains,
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while we discuss the different features characterizing the MGEnv tasks to show the intuition
behind their design.

A.2.1 Artificial Domains

Each task in Block Dude and Gridworld was manually designed in order to create a diverse
set of tasks for each of the two domains.

It is possible to group these tasks by the type of strategy that the agent is expected
to learn by solving the particular problem associated with the given task. For instance,
tasks in the Block Dude domain can be grouped by the number of movable boxes in the
environment or by the initial relative position of the agent and the exit block, while in
Gridworld it is possible to use the number of fires and pits. These type of problem features
foster the learner to discover specific strategies to solve a task which can later be useful to
approach a different task in a curriculum or even the final task directly.

The tasks and relative strategies are of various complexities, and it is often the case
that a particular task is the direct development of another one. For example, in Block
Dude a task with three movable boxes for overcoming a tall obstacle is the evolution of a
task with just one movable box for overcoming a shorter obstacle, or in Gridworld a task
with multiple fires is a more complex version of a task with only one fire. Furthermore
tasks teaching the same strategy vary in the actual environment dimension therefore in the
number of possible states to visit.

By creating tasks in this way it is possible to investigate which features of the interme-
diate tasks are the most useful ones for solving a specific final task.

Some of the designed tasks are particularly complex to solve for a pure reinforcement
learning agent without using any prior knowledge. These tasks were designed to be the
final tasks of the different experiments, but it is also the case that one or multiple of
them were included in the set of intermediate tasks in order to investigate their effect in a
curriculum. The experiments in Block Dude and Gridworld were used for exploring all
the possible curricula given a set of intermediate tasks, the final task and the maximum
allowed length of a curriculum in the experiment under consideration. This fact implies
that, in many curricula, the most complex tasks are followed by completely unrelated
easier tasks, or they can even be the head of a curriculum. In these cases, the agent learning
the given task can take a very large number of episodes before converging or get stuck
in a local minimum because of bad initialization. In order to avoid wasting time testing
extremely bad curricula, the number of episodes to spend on each intermediate task is
determined in such a way that guarantees the learner convergence to the optimal policy
when learning the given task from scratch. The number of episodes was calculated running
several instances of each task and fixing it to a value that ensures that the agent could solve
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the task more than 80% of the times. Because of this reason it is not always the case that
the agent converges to the optimal policy for the task it is facing in the curriculum, and the
transferable knowledge coming from the task under analysis can drastically change across
different curricula.

Block Dude tasks

Figure A.1 shows a graphical representation of all the reinforcement learning tasks designed
for the curriculum learning experiments in the Block Dude domain. The maximum number
of actions for solving a problem in this domain is 50 for each task. This value corresponds
to the maximum episode length in terms of learning steps. If during training the agent
learns to solve a given task, it will be able to conclude an episode in a shorter amount of
time. As we previously discussed, the number of episodes, instead, was determined for
each task separately in order to guarantee convergence of an agent learning to solve the
given task from scratch:

• 20 episodes: 1

• 30 episodes: 2 - 3 - 4

• 40 episodes: 5 - 7 - 8 - 13

• 50 episodes: 6 - 9 - 10 - 16 - 22

• 60 episodes: 17

• 80 episodes: 20

• 100 episodes: 11 - 14 - 15 - 21

• 150 episodes: 12 - 18 - 19

Gridworld tasks

Figure A.1 shows a graphical representation of all the reinforcement learning tasks designed
for the curriculum learning experiments in the Gridworld domain. Also in this domain, the
maximum number of actions in a learning episode is fixed to 50 for all tasks. Differently
from Block Dude, in Gridworld an agent can take a shorter amount of time to conclude a
learning episode in two cases: success by reaching the position of the treasure, failure by
falling into a pit. The number of episodes was determined separately for each task:

• 30 episodes: 1 - 2 - 3

• 50 episodes: 17
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4) 5) 6)

7) 8) 9)

10) 11) 12)
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16) 17) 18) 19)

20) 21) 22)

Fig. A.1 All the tasks designed and used for the experiments in the Block Dude domain
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8) 9) 10) 11)

12) 13) 14)

15) 16) 17)

Fig. A.2 All the tasks designed and used for the experiments in the Gridworld domain
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Intermediate Tasks Training/Validation Tasks Test Tasks
Task ID House ID Month Task ID House ID Month Task ID House ID Month

1 9942 01/2016 6 9631 01/2017 11 9737 01/2017
2 9982 01/2016 7 9939 01/2017 12 9729 01/2017
3 9939 01/2016 8 9982 03/2017 13 9741 01/2017
4 9982 03/2016 9 9931 05/2017 14 9982 09/2017
5 9942 02/2016 10 9982 02/2017 15 9737 02/2017

Table A.1 Task description for the MGEnv domain

• 80 episodes: 4 - 5 - 6

• 100 episodes: 7

• 150 episodes: 8 - 9 - 10

• 300 episodes: 11 - 12 - 13 - 15 - 16

• 400 episodes: 14

A.2.2 MGEnv tasks

The MGEnv domain does not allow us to give a graphical representation of the different
tasks used in our real-world experiments. Table A.1 provides all the details regarding
the reinforcement learning problems designed for the MGEnv domain divided into three
different sets (intermediate, training and test) following the formulation of the methodology
described in Chapter 5.

It is possible to notice how the tasks in this domain do not vary in the type of user
schedule or device to be run as we decided to fix them in order to improve knowledge
transferability among the different tasks. Therefore, reinforcement learning problems in
this domain differ only on the type of building (house) and the month during which the
experiment is performed. Each different building in this domain has a different base energy
consumption. Houses whose base consumption is high represent a more challenging
problem for the agent to find a suitable time slot to run the required device. Also the
month directly influences the complexity of a task as, for instance, winter months are more
difficult than summer months.

In order to design a realistic experiment, tasks in the training and test sets are all from
year 2017 as they need to come from the same distribution, while all the intermediate tasks
are from one year earlier, 2016. This choice aims at modeling a scenario where we have
access to historical data available for training our agent on, and define a curriculum to
initialize the learner for future problems.
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A.3 Experiments

In this section, for each experiment, we provide the final task and set of intermediate tasks
defining the task sequencing problem in our experiments. No additional detail is provided
for tasks in the MGEnv domain as the previously discussed Table A.1 already gives all the
information needed for reproducing the experiments.
Experiment 1 in the Block Dude domain has a number of source tasks n = 9 and a
maximum curriculum length L = 5:

• Intermediate Tasks: 3, 7, 9, 10, 13, 16, 19, 20, 22

• Final Task: 21

Experiment 2 in the Block Dude domain has a number of source tasks n = 18 and a
maximum curriculum length L = 3:

• Intermediate Tasks: 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16, 17, 19, 20, 21

• Final Task: 18

Experiment 3 in the Gridworld domain has a number of source tasks n= 12 and a maximum
curriculum length L = 4:

• Intermediate Tasks: 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16

• Final Task: 13

Experiment 4 in the Gridworld domain has a number of source tasks n = 7 and a maximum
curriculum length L = 7:

• Intermediate Tasks: 1, 6, 7, 9, 11, 13, 17

• Final Task: 14

A.3.1 Curricula

The experiments in the artificial domains explore all the curricula that can be generated
by sequencing any of the available intermediate tasks for a maximum of L tasks in a
curriculum. Because of this reason we can easily identify the best and worst curricula for a
given experiment. Table A.2 report the list of the best and worst five curricula for each
performance metric and experiment. Each curriculum is hereby represented by the IDs
of the intermediate tasks composing it. Each list is sorted from the best curriculum to the
worst one, therefore the first curriculum in the list is always the best one and the last is
always the worst. Nevertheless, in some experiments, multiple curricula result to be the
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Best Curricula Worst Curricula
CR JS TTT MR CR JS TTT MR

Exp 1

[7,3,20] [7,3,9,20] [7] [3,9,10,20,19] [22,19,10,13,9] [22,13,7,19,9] [19,10,22,20,9] [7,19,13,16,3]
[16,3,20] [16,3,7,9,20] [16] [9,13,7,10,16] [13,16,7,20,3]

[16,3,9,20] [7,3,20] [] [10,7,20,19,13] [10,9,16,19,3]
[16,9,20] [7,3,16,9,20] [13,7] [13,22,9,20,7] [22,16,13,10,3]

[16,3,7,20] [3,16,7,20] [13,16] [20,10,19,22,13] [13,20,10,9,3]

Exp 2

[5,17,15] [4,17,11] [1] [1,2,7] [19,11,14] [1,2,15] [1,2,20] [17,2,20]
[8,17,12] [16,12,17] [8] [19,12,14] [1,21,6]

[10,17,15] [8,17,15] [4] [2,21,6] [3,21,6]
[1,17,15] [16,15,17] [16] [19,12,11] [2,21,6]
[5,17,12] [3,21,11] [1,4] [11,19,14] [11,6,21]

Exp 3

[6,15,5,1] [6,3,2,8] [1] [10,4,5,6] [2,5,3,10] [12,8,6,16] [4,5,16,1] [15,2,3,10]
[12,4,3,2] [5,1,12,8] [3] [8,3,5,10] [3,5,4,6] [5,6,10] [1,16,10,3]
[10,3,2,9] [9,1,6,8] [] [8,15,3,12] [2,12,3,10] [6,3,10,9] [16,1,4,10]
[3,16,6,1] [4,2,3,8] [4] [8,9,3,10] [4,2,12,10] [5,9,16,8] [12,1,10,4]
[9,4,3,1] [1,9,8] [1,2] [5,15,12,3] [2,16,4,10] [6,3,10,5] [1,5,10,3]

Exp 4

[1,13,9,17,7] [13,17,1,7,9,6,11] [17] [1,11,9,17,13,7] [13,9,6,11,7,1] [17,6,1,13,9,11,7] [1,6,7,9,13,17,11] [11,7,6,13,9,1]
[11,9,17,13] [7,17,9,11] [9,1] [17,13,1,7,6,9] [6,7,13,9,11,17,1] [6,1,13,9,7] [17,13,9,7,11,6,1]

[1,6,17,13,9,7] [13,17,7,1,6,9,11] [6,1] [17,13,9,1,6,7] [6,1,11,13,7,9,17] [11,1,17,13,9,7,6] [7,9,17,11,6,13,1]
[1,11,17,13,7,6] [13,17,1,6,7,9,11] [1,7] [9,13,6,17,11,7] [6,13,11,9,7,1] [1,13,7] [7,6,13,11,9,1]
[9,17,1,13,11,7] [13,1,17,6,11] [9] [13,1,11] [11,6,13,7,9,1] [1,13,9,7] [9,6,13,11,1]

Table A.2 List of best (on the left) and worst five curricula (on the right) for each perfor-
mance metric and experiment in the artificial domains.

best or worst for a specific metric as they obtain the same performance value. For these
cases we provide only one sample curriculum among all the available ones.

This table can help us identifying some general trait characterizing the curriculum
learning problem. For instance, we can easily notice how long curricula are not necessarily
achieving high performance values, but rather a careful sequencing of just part of the
intermediate tasks can define extremely powerful curricula.

By focusing only on one performance metric we can notice even more interesting
features. For optimizing time-to-threshold, shorter curricula are preferable since the higher
the number of intermediate tasks in the curriculum, the greater the time the agent will
take to learn all of them, to the extent that in experiments 1 and 3, the empty curriculum
(learning from scratch) is the third best one. For both cumulative return and jumpstart
the relative position of intermediate tasks identifies the best curricula. For example some
tasks are often either the head or the tail of one of the best curricula for these performance
metrics (this observation was at the origin of the design of HTS-CR). For what regards max
return, instead, there are no major features defining a positive or negative curriculum and a
more in depth analysis is required to draw stronger conclusions about curricula optimizing
this metric.
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