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Abstract

We evaluated the proposed feature extraction algorithm and the classifier, and we showed
that the performance surpassed the state of the art algorithms in error detection. Advances in
technology are required to improve the quality of life of a person with a severe disability who
has lost their independence of movement in their daily life. Brain-computer interface (BCI)
is a possible technology to re-establish a sense of independence for the person with a severe
disability through direct communication between the brain and an electronic device. To en-
hance the symbiotic interface between the person and BCI its accuracy and robustness should
be improved across all age groups. This thesis aims to address the above-mentioned issue by
developing a novel feature extraction algorithm and a novel classification algorithm for the
detection of erroneous actions made by either human or BCI. The research approach evaluated
the state of the art error detection classifier using data from two different age groups, young
and elderly. The performance showed a statistical difference between the aforementioned age
groups; therefore, there needs to be an improvement in error detection and classification. The
results showed that my proposed relative peak feature (RPF) and adaptive decision surface
(ADS) classifier outperformed the state of the art algorithms in detecting errors using EEG for
both elderly and young groups. In addition, the novel classification algorithm has been applied
to motor imagery to improve the detection of when a person imagines moving a limb. Finally,
this thesis takes a brief look at object recognition for a shared control task of identifying utensils
in cooperation with a prosthetic robotic hand.
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Chapter 1

Introduction and Motivation

1.1 Background

There is a need to improve the quality of life for a person with a disability who has lost their
independence of movement in their daily life. Their debilitating condition maybe a severe mo-
tor disability or limb amputation. The loss of independence has consequential effects on the
person’s health and social well-being in their community. Imagine for one moment the trans-
formation from being able-bodied fit and healthy to a person with disability due to a serious
illness such as stroke or paralysis after a serious accident. For example, you once were able
to pick up an object in front of you and place it back on the table a simple basic task for the
able-bodied. A person with paralysis or loss of a limb can only look at the object on the table
with no ability to move the object. The brain-computer interface (BCI) is a well-known method
to re-established a sense of independence for a person with disability.

This research will have an incremental impact on the scientific community by developing
a novel feature extraction algorithm, and developing a novel classification algorithm for error
detection and classification using EEG signals. The research approach evaluated the state of the
art error detection classifier using data from two different age groups young and elderly. The
performance showed a statistical difference between the aforementioned age groups therefore
there needs to be an improvement in error detection and classification. A novel relative peak
feature selection method was developed which removed the statistical difference between the
two groups, subsequently improve the performance of the error detection classifier.

A disability can occur to any person at any stage in life or even born with a disability or
following a serious illness. Debilitating conditions such as amyotrophic lateral sclerosis, spinal
cord injury, brain-stem strokes will inhibit a person from interacting with their environment
around them [2],[3], Fig 1.1. Brain-computer interface (BCI) enables a direct interaction of the
human brain with the external environment [4]. To enable this interaction the BCI will record
brain signals from inside the persons’ brain.

BCI will analyse the brainwave signals and interpret them to determine the desired actions
of an external device such as a prosthetic hand [5], or moving a cursor on a computer screen [6].
Most of the BCI systems use electroencephalograph (EEG) to acquire brain signals [7]. During
the analysis of EEG signals there may be an occurrence of an error-related potential (ErrP) [8]
[9],[6] which is a reaction response to an erroneous event. Moreover, there is also a performance
monitoring and adaptive behaviour exhibited with the person brain [10] in addition to the ErrP.
Usually, these ErrP events, are evoked when the desired actions of the person have not been
fulfilled [9, 11]. It would provide a significant advantage to develop BCI that detects evoked
ErrP accurately, and corrects the error and update the system accordingly. In addition, a BCI
could be further improved by adapting the parameters of the system such that the likelihood of
the same error in the future is reduced. A person with a disability will have a more empowering

8



experience with a BCI that responds and adapts to the person such that the interactions are
more intuitive [12].

Figure 1.1: A schematic diagram of an EEG based BCI System

1.2 Motivation

The motivation behind this thesis is to improve the quality of life for a person who has lost the
ability to interact with their environment [13] due to severe motor disability. Imagine for one
moment to be a person with no upper arm movement. What kind of assistance could make
their life more enabling and restore a sense of hope and independence[14]? The proposed
BCI is non-invasive and previous research [15, 9, 16, 3] has show the possibility of developing
methodologies for an assistive robotic device by this modality[17, 18]. In addition, BCI using
EEG is affordable and portable to envisage practical applications.

Firstly how do we know their choice and adapt BCI to the person to improve accuracy?
Secondly, who is going to be there to understand their choice? Moreover, how can an assistive
robotic device interact with the person in a cooperative shared task[19]?

The anticipated research will hopefully have an impact on the scientific community by de-
veloping novel algorithms and methods for error detection and classification. Such that new
methods of error-driven learning will establish new strategies for adapting the feature selec-
tion and classification. The research investigated the shared control strategy such as, at what
point should a semi-autonomous robotic device switch to a fully autonomous and back? What
would be the strategy, and the implications?

1.3 Aims and objectives

This research aimed to improve the classification accuracy of BCI in the elderly and young
participants. The aims and objectives of this research work presented in this MPhil thesis were
to improve the accuracy in terms of the following objectives:

1) Improving the accuracy of EEG-based error detection Please see 1.3.1
2) Improving the accuracy of EEG-based motor imagery BCI. Please see 1.3.3
3) Shared control strategy such that the prosthetic robotic hand may recognise kitchen uten-

sils? In order to support user interaction with less workload. Please see 1.3.4

To address error detection, we propose improving EEG-based error detection using a novel
feature extraction method. Thus in chapter 4, we propose a novel feature extraction method
called the relative peak features (RPF). Further, we combine the aforementioned proposed fea-
ture extraction method with a proposed novel classification algorithm in chapter 5 called the
adaptive decision surface ADS Classifier.

To address the accuracy in motor imagery, we propose to use common spatial filters com-
bined with the adaptive decision surface (ADS) Classifier. Spatial filters are used to reduce
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unnecessary spatial EEG electrical activity and highlight a particular location of interest. In ad-
dition, the spatial filter will maximize the signal to noise ratio such that accuracy of EEG-based
communication will be improved shown in [20]. The classification process will benefit from the
improved EEG signal with a more accurate classification. Please see chapter 6.6 a novel three
dimensional probability-based classifier for improving motor imagery-based BCI

To address the objective of recognising kitchen utensils; I developed a method discovered
by Hubel Wiesel as shown in [21]. Please see chapter 7 Shared control image decoding and
tactile LiDAR of kitchen utensils for an assistive prosthetic hand.

1.3.1 EEG-based error detection in adults and elderly

As we get older brain signals attenuate; therefore, the BCI needs to accommodate for these
brain signal changes. It has been proposed to develop a novel algorithms to improve the ac-
curacy and speed of detecting an error signal on-line using EEG. An evaluation of the error
detection accuracy in the elderly and adult participants was carried out using the state of the
art error detection algorithm. The results of the algorithm were evaluated using statistical
methods such as the analysis of variants (ANOVA). The results showed a need for error detec-
tion accuracy improvements particularly in the elderly since they have an attenuated ErrP as
widely shown in neuroscience papers [22, 23].

1.3.2 Error Driven Learning

When a BCI can learn from its misclassification’s, it will inevitably be more accurate in the
future classifying events; therefore, It has been proposed to use the detected errors, as an adap-
tive signal to improve the performance of the error-driven learning system. Thus it will require
developing a novel methodology for enhancing a future BCI system using the detected error
signals. It is anticipated that there will be a requirement to accomplish this adaptation in real
time with significant computational agility. Error-driven learning maybe comprising of the
following steps;

1) Error correction
A method of BCI error correction such that an error can be reversed and corrected therefore
resolving a bad adaptation.
2) Adaptation
Adaptive decision surface (ADS) classifier is proposed in Chapter 5. For the implementation of
the ADS, it has been hypothesized that the BCI system has the ability to decide independently
the evolution strategy to correct the previous error, such that after adaptation the BCI system
is less likely to repeat the same mistake given the same scenario of inputs [18, 24, 24, 16, 18].

3) Shared control strategy
A shared control strategy, such that reinforcement-learning methods should be incorporated
into the BCI system and the robotic assistive device. Furthermore, combining the developed
algorithms from the above objectives into a single BCI system [24, 16] will enable a more accu-
rate system. Error detection could be integrated into the shared control strategy as part of the
reinforcement learning such that when an error is detected, the learning algorithm is updated.
Please see the proposed novel adaptive decision surface (ADS) classifier in chapter 5

1.3.3 A novel classifier for improving motor imagery

Motor imagery is a type of EEG-based BCI that detects a person imagining moving their limbs.
A motor imagery BCI based assistive robotics solution has the potential to empower the up-
per mobility independence of a person with a disability. The objective will be to compare the
classification performance of well-established classifiers with a novel prototype classifier. I
develop an adaptive decision surface ADS classifier with the future objective to augment an

10



assistive robotic prosthetic hand to open and close to grasp an object in cooperation with LI-
DAR sensors. Please see chapter 6.6 A novel three dimensional probability-based classifier for
improving motor imagery-based BCI

1.3.4 Object recognition for Kitchen utensil identification

In order to reduce the workload on the person with a disability, it would be advantageous for an
assistive robotic device such as a prosthetic hand to recognise the kitchen utensil. Furthermore,
it would be an even greater advantage when the prosthetic hand could recognise the utensil
and have knowledge of how to use it in terms of the functionality of the objects.

A disability can occur to any person at any stage in life. The debilitating conditions such as
spinal cord injury, brain-stem strokes, accidents or illness resulting in upper limb amputation
will inhibit a person from interacting with their environment.
Brain-computer interface (BCI) enables a direct interaction of the human brain with the exter-
nal environment. Moreover, an assistive robotic device with the capability to interact with the
person’s environment by recognising kitchen utensils using image processing and Light De-
tection and Ranging (LiDAR) has been implemented. Moreover, this additional shared control
capability with further reduce the workload on the user. ( For more information please see
chapter 7 )

The assistive robotic device has the ability to retrieve an object for the person with a disabil-
ity. Moreover, the prosthetic hand will be aware of how to handle the objects. Fig 1.2 shows a
selection of kitchen utensils.

Figure 1.2: Cutlery
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Figure 1.3: A schematic diagram of the envisaged adaptive brain-computer interface system

An overview of the proposed adaptive computer interface process flow is presented in
Fig 1.3 schematic diagram. The process flow stages are not limited to the following stages:

• Electroencephalograph EEG: Electrodes connect to specific channels acquire specific brain-
wave activity

•Motor imagery algorithm: Acquires the persons imagined movements

• Error detection algorithm: Captures errors when the person is aware of the error

• Error driven learning: Evolve a strategy to adapt the feature selection and classification
parameter

• BCI Controller: Coordinate the shared control strategy between the BCI and the assistive
robot

• Controller interface: Provide the managed connection between the BCI and the assistive
device

• Shared control strategy: Manage the autonomous and semi-autonomous modes of opera-
tion

• Assistive robotic device: Cooperative robotic prosthetic hand, Fig 1.4
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Figure 1.4: Robotic prosthetic hand (RPH) ©1986 Mr A L Ashley

1.4 Impact to the scientific community and wider society

This research will impact on the scientific community by providing a novel method of feature
extraction in chapter 4 and error detection classification in chapter5. I envisaged that the wider
impact on society should enhance independence for a better quality of life for people with
disabilities?

1.5 Publications from this work

The results of this thesis has been published in two IEEE conference papers:

The first IEEE accepted conference paper publication authors: Adrian Ashley, Mahnaz Ar-
vaneh, Lyudmila Mihaylova, with the title of “A Novel Three Dimensional Probability-based
Classifier for Improving Motor Imagery-based BCI” published in: ICASSP 2019 - 2019 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP) date of Confer-
ence: 12-17 May 2019 Date Added to IEEE Xplore: 17 April 2019 INSPEC accession Number:
18813183 DOI: 10.1109/ICASSP.2019.8683136

The second IEEE accepted conference paper publication authors: Adrian Ashley, Mahnaz Ar-
vaneh, with the title of “Improving EEG-Based Error Detection Using Relative Peak Fea-
tures” 2020 42nd Annual International Conference of the IEEE Engineering in Medicine and
Biology Society (EMBC) in conjunction with the 43rd Annual Conference of the Canadian Med-
ical and Biological Engineering Society Montréal, Canada, July 20-24, 2020
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Chapter 2

Literature Review

2.1 Introduction

The literature review will establish the state of the art in the area of brain-computer interface in
terms of an “Adaptive learning in brain-robot interaction”. There is a substantial literature
in the subject area of BCI; therefore the literature review will primarily address relevant com-
ponents such as error detection algorithm and error-driven learning. Firstly the review begins
with investigating the different processes used in the error detection algorithm. Secondly, the
review will proceed to identify some of the current solutions in the literature. Finally, the re-
view will further investigate error-driven learning and the shared control strategy used in the
current literature.

Classifiers, in general, require a significant amount of training data in order for the classi-
fier to differentiate between the different classes. As a result of detecting the aforementioned
error-related potential provided the brain-computer interface, with an opportunity to learn and
adapt. Therefore following the adaptation of the brain-computer interface the error-related po-
tential is less likely to occur in the future. The consequences of using insufficient training data
will result in classification errors. [15].

There are practical considerations to consider during the acquisition of the EEG signals.
The EEG signals are in the magnitude of microvolts and subsequently are operating and sub-
jected to muscle artefacts, irrelevant but concurrent neural activity and non-stationarity of EEG
signals [25]. In addition, the electrodes are subjected to a physically changing environment.
Firstly the physical movement of the head may result in electrodes moving by sliding on the
scalp, hence affecting the signal properties. Secondly, artefacts are generated from muscles may
overpower or produce interference with the EEG signals. Moreover, the person’s physiological
signals may change.

The amplitude of an EEG signal is specifically reduced in the elderly [23], [22] The strength
of certain EEG signals is different when compared between age groups. For example, the ampli-
tude of an ErrP is reduced as the person ages [22]. As a consequence of this reduced amplitude
detecting the occurrence of certain EEG signals such as an ErrP is more challenging, firstly in
terms of training a classifier, secondly maintaining the accuracy of the brain-computer inter-
face.

2.2 Brain-computer interfaces (BCI)

A person is given the scenario of losing all forms of conventional human interaction such as
movement and speech. What possible system can extend the limitations of their boundaries to
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which they find their existence confined? The person’s brain activity can be detected and inter-
preted to establish some basic form of limited interaction. The detectable brainwave electrical
patterns can be associated with specific actions that the person used to do in the past. Opening
and closing their right or left hand will be associated with a particular electrical activity pattern
detectable with electrodes over the top surface of the scalp. These discernible patterns can be
associated with a cognitive process in terms of thought or physical movement, such as think-
ing about left or right arm movements. In real-time the BCI must capture the brains electrical
activity and accurately classify the discernible patterns and associate that pattern with a cogni-
tive process. BCI has the potential for a person to interact with their environment and feel less
isolated. BCI will enable a new method for that person to communicate by classifying theses
discernible patterns which may be associated with a cognitive process [26, 27, 28, 29]. Other
applications of BCI, such as game interface, BCI speller and mobility controlling a wheelchair.

2.2.1 Recording brain activity using EEG

Electrodes are placed on the scalp at a specified position to record brain signals from the person.
The signals from the electrodes on the scalp are connected to the EEG recording machines. A
trained operator may determine the brain activity from the EEG recordings.

2.2.2 EEG electrode positions

EEG uses electrodes positioned on the top scalp such that electrical activity can be detected at
certain locations on the person’s scalp. Fig 2.1 shows the different areas of the brain, such as
the ’Primary motor cortex’ associated with physical movement. The same area shows changes
in electrical activity when a person imagines a movement.

Moreover brain oscillations in specific frequency bands are categorised as delta: δ (0.5 - 4
Hz), theta: θ (4 - 8 Hz ), mu: µ (7.5 - 12.5) voluntary movement such as purposefully picking
up a cup of tea and all the motor actions instigated by the person ,alpha: α (8 - 12Hz), beta: β
(12 - 30 Hz), gamma : γ ( > 30 Hz) [30], [31]

There is an international standard for positioning the electrodes called the 10-20 system. For
example, in order to detect an error-related potential(ErrP), the following electrode location are
the most informative Fz, FCz, Cz, CPz, Pz, POz.

Figure 2.1: Brain Motor Sensory [32]
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Figure 2.2: International 10-20 system for EEG [33]

2.2.3 Different types of BCI

BCI has three main configurations, such as Invasive brain-computer interface which involves
implanting a device into the brain. The signal strength will be very high; however, there is
a potential build-up of scar tissue [26]. Moreover, there is a high risk of infection and the
bodies immune system reacting to the inserted device. In a partially invasive brain-computer
interface, the device is implanted under the skull but on the surface of the brain. The signals
have a reduced amplitude and a risk of infection. Non-invasive brain-computer interface does
not involve surgery, so this method has the least risk of infection [26]. This project will focus on
the non-invasive brain-computer interface using an EEG to acquire the brain signals because
there is less risk of infection and the equipment is mobile.

2.2.3.1 P300

Communication is possible by using a device called the P300 speller by generating text that
a computer may use the command instructions. Thus establishing a communications path
between a person with a disability and the wider environment and other people. There is an
event-related potential (ERP) known as the P300 (P3) wave [34] occurring in parieto-central
of a person’s skull. The P300 event occurs 300 ms after the presentation of an infrequent but
relevant stimuli. There are two components of P3 which are P3a and P3b. The P3a associated
with a persons attention generating a positive potential located in the frontal-central area of
the scalp occurring 250-280 ms. The P3b is also a positive potential occurs about 300 ms. The
Oddball paradigms have been used to elicit the P3a and P3b of the P300 whereby a sequence
of visual stimuli for example letters are presented to the person. The person was required to
target letter ’T’ the oddball stimuli. The P3b is detectable 300 ms after the anticipated target ’T’
oddball stimuli; however, the P3b may occur in the range between 250ms to 500ms.

Li et al [35] presented a paper for an EEG based BCI system cursor control which combined
a Mu/Beta rhythm and P300 potentials. Dinteren et al [36] reviewed the development of the
P300 over a lifespan. The paper hypothesized that the latency and amplitude such that the
P300 possible indicated brain efficiency. Dal Seno et al [37] proposed and online detection of
P300 and error potentials in a BCI speller.

2.2.3.2 Steady State Evoked Potential (SSEP)

Mischner et al [38] proposed using multi-modal frequency tagging for a BCI.The person is
presented with stimuli which have a predefined frequency which evokes a response with the
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brain that matches the same frequency as the stimuli. The stimuli could be either of the fol-
lowing. Steady-state somatosensory evoked potential (SSSEP) evoked by vibration on the skin
of the person the frequency of the vibration can be detected in the EEG signals [39]. Auditory
steady-state response (ASSR) detectable in the auditory cortex when presented with an audio
signal [40] . Steady-state visual evoked potential (SSVEP) detectable in the persons’ visual cor-
tex when stimulated with a flashing display a predefined frequency from different targets. Yin
et al [41] proposed a combined SSVEP and P300 BCI system for a more accurate BCI speller.
Please see section 2.2.3.1 for more information about P300.

2.2.3.3 Motor Imagery-BCI (MI-BCI)

When a person imagines moving their left or right hand or opening and closing their hand
without actually physically moving their hand, the brain’s electrical activity can be detected by
EEG signals and thus use motor imagery BCI to capture the person’s desire to open or close
their hands. The possibilities therein provide the practical solution for a prosthetics hand to
fulfil the persons desire to physically open and close a prosthetic hand using motor imagery
BCI. In this thesis we will use a novel algorithm to enhance a motor imagery brain-computer
interface MI-BCI [35], [42]

2.2.4 BCI Components

Please see figure 1.1 for and overview of the BCI components comprising of; data acquisition,
brain signals, pre-processing, feature extraction, classifier.

2.2.4.1 BCI pre-processing

We need to do pre-processing because EEG is very noisy, and many artefacts need to be re-
moved to improve the signal to noise ratio; this will improve the classification process. Sam-
pling the EEG brain waves from the set of electrodes configured using the 10-20 system 2.2.2.
Selecting EEG channels such as ’Cz’ depend on the information required. Re-sampling adjusts
the level of detail from the original signal. Bandpass filters are used to select the frequency
band of interest, for example, band-pass zero phase filter 1 to 10Hz. EEG segment extraction
selects the capture window or frame such as the start and stop time in (ms). Artefact rejection
removes unwanted signals such as muscle movement or eye blinking, for example, reject any
value greater than 30 microvolts [43]. Baseline correction captures the EEG data 200 (ms) before
the capture window to adjust the amplitude to a new baseline for the EEG channel of interest.
Motor imagery preprocessing, for example, may have the following steps. The EEG is band-
passed filtered from 8Hz to 13Hz to extract the µ band which is detected over the motor cortex
[44]

2.2.4.2 BCI feature extraction

The ability to identify patterns within the EEG signals will require a decision about which
features will represent an error. The specific pattern can be associated with certain events such
as motor imagery or detecting errors. It is beneficial to improve the speed and accuracy of
motor imagery or detecting errors for a BCI system. Feature extraction is a substantial part of
the motor imagery and error detection algorithms [45].

There are different types of features that can be used in BCI systems such as using:
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Figure 2.3: ErrP Fz Cz

Amplitude: The amplitude of the EEG signals Fig 2.3, has been used as a feature in BCI
[46]. However, in [22, 23] showed the age of a participant has an effect on the amplitude of the
EEG signals during an error. Subsequently detecting this feature during an error will be more
challenging. In [22] suggest the error negativity (Ne) and error positivity (Pe) is consistently
smaller in terms of the amplitude in the elderly participants.

Wavelets: Wavelet transforms used in signal processing are in the frequency-time domain
was first proposed by Haar in 1909 [47]. Haar Wavelet was applied to Iris recognition of image
features [48]. Wavelets are related to harmonic analysis and have been applied in BCI, for ex-
ample, Morlet wavelet was applied to the data set [23], please see Fig 6.6 in the frequency-time
domain.

Figure 2.4: Morlet wavelet ErrP Fz Cz by A Ashley

In addition, the following has also been used as a feature, power bands (PB)
Autoregressive (AR) and adaptive autoregressive (AAR) features used in statistics and signal
processing it is a representation of a random process such that the output or the AR model de-
pends on previous values generated. AR model is a random probability distribution or stochas-
tic difference equation that can be analysed statistically. In [28] used AR features from the EEG
data and then used a Bayesian logistic regression model to classify them in a motor imagery
BCI.

Common Spacial Patterns (CSP):
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Common spatial pattern (CSP) used in signal processing to transform multivariate sig-
nals to subcomponents for adding, such that a maximum variance between two windows is
achieved. In the application of BCI, the CSP linear transform is a projected multi-channel EEG
data into a low-dimensional spatial-subspace with a projection matrix. The prime objective is
to increase the variance in one class and minimising the variance in the other class achieved by
spatial filters. Ghaheri et al [49] showed a method using a temporal windowing CSP for motor
imagery classification such as LDA to discriminated between classes. [42]

2.2.4.3 Feature characteristics and properties

The following should be considered when selecting a feature for a classification algorithm:

EEG Channel selection: Deciding which channels to use for feature selection?
Feature integrity: How to avoid information loss from the features
Time-locked windows: The specifications of the time locked window
Time-stamp : The time event associated with the feature to match the occurrence of the brain

pattern
Multiple features: Can the feature be combined with other features from other EEG Chan-

nels?
Feature reliability: Is the feature reliable between different subjects?
Algorithm selection: Is the feature compatible with classification algorithm
Quantity of features: How many features are needed for accurate classification?
Signals to noise ratio: EEG signals are noisy and it will affect the captured features
Outliers: During feature acquisition outliers maybe captured
Training data : The training data may be small which will affect the quantity and quality of

the features, Subsequently effecting the classifier
Increased dimensionality: Usually, more that EEG channels are used with multiple time seg-

ments are concatenated [45]
non-stationarity: The feature is non-stationary and vary within the session and between ses-

sions data [45]

2.2.5 BCI Classifiers

One of the main components for BCI is the ability to recognise a particular cognitive process
associated with an electrical patterns within the EEG waveforms. There are various machine
learning classifiers widely used in BCI. A brief description of some of the main classification
methods will follow [19, 50].

Lotte et al [45] reviewed classification algorithms for EEG BCI and suggest two different
types of classifiers such as regression [51] a statistical process to analyse the relationships of
variables or classification [28] used a neural network for categorising new vectors and making
a decision about which class this new vector belongs during a motor imagery task.

Lotte et al [45] suggest that classification performance depends upon the feature extraction
2.2.4.2 and the classification algorithm.

2.2.5.1 K-means clustering algorithm (K-MC) and Multi-layered perceptrons

Orhan et al [52] presents a method for the classification of EEG signals by using K-means clus-
tering together with a multi-layer perceptron(MLP). The authors investigated the impact of the
k-means clustering algorithm on the multilayer perceptron neural network accuracy for de-
tecting epileptic events. The MLP will be further described below in 2.2.5.5. The process of
k-means clustering is given a set of input vectors. Place random centroids around the input
data. With each input data find the nearest euclidian distance to the centroid. Associate the
data point to the nearest centroid. Determine the new positioning of the centroid based on the
means of the cluster of data point associated to the centroid. This process is repeated until the
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movement of the centroid is constant. The k-means clustering algorithm is fast but sensitive to
noise and outliers in the data and uses numeric values only [53]

2.2.5.2 K-Nearest Neighbour algorithm (k-NN)

The k-NN is used in pattern recognition it is non-parametric with applications for classification
and regression i.e estimating the variables in terms of dependent and independent variable re-
lationships. If the k-NN is used for classification the output will be the class membership.
Generally the processes is as follows. Given an unknown object its classification will be deter-
mined by the vote generated by the neighbours please see Fig 2.5

Figure 2.5: k-NN Example

With k=3 the algorithm will look at the 3 nearest neighbours to ’x’ to determine which class
to assign ’c’ Fig 2.5The value of k must be odd and not a multiple of class numbers such that
the resulting vote is decisive.[54, 55, 19] In the case of k-NN where k=1 a ’Voronoi’ partition is
used to divided regions. The size of the regions is a function of the distance between the vector
features. [56] Suggests methods of fast coverage for a Centroidal Voronoi tessellation (CVT).

In [57] a motor imagery classifier performed a maximum classification accuracy of 72%
using k-NN.

2.2.5.3 Bayesian Network (BN)

A probabilistic graphical model can be used to represent a set conditional dependencies which
can be represented by a directed acyclic graph (DAG) see Fig 2.6 and their random variables
are the nodes of the DAG. Such that a probabilistic relationship in a given event can be estab-
lished in a probabilistic graphical model. This probabilistic model is also known as the joint
distribution. The application of the Bayesian network was used in a study for machine learn-
ing [54]. For example, a Bayesian network can be used to determine the relationships between
cognitive processes or EEG features. Such an event or stimuli the Bayesian network will com-
pute the probability of a specific EEG feature. The probabilistic model is also known as Bayes
network, belief network, Bayesian model, and probabilistic directed acyclic graphical modal.
[54] suggests that the Bayesian network is useful for combining prior knowledge. Moreover,
[58] presented a paper about precise probabilistic revisions of beliefs used in an expert sys-
tem. Further [59] showed a novel multi-variate discretization approach for a Bayesian network
structured learning in robot grasping. Bayesian networks have been used to recognise emo-
tions using EEG signals proposed in [60], by comparing the calculations from standard values
in the Bayesian network. [61] Presented a paper about the concept of affordance which is used
in robotics for making decisions about objects. Moreover, the paper used recent advances in
probabilistic programming using an iCub robot.
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Figure 2.6: Directed acyclic graph DAG

2.2.5.4 Artificial Neural Network (ANN)

Classification of EEG signals has been presented in [62] using wavelet transforms (WT), a classi-
fication method using ANNs and logistic regression(LR). ANNs require training data to set the
weights of the individual artificial neurons [63]. ANNs are able to classify non-linear transfor-
mations in order to classify the data [19]. The multi-layered perceptron is an ANN comprising
of many layers of ANNs. [64]

2.2.5.5 Multi-layered perceptron (MLP)

The configuration of the MPL is as follows: an input layer then one or more hidden layers
then an output layer. The output of each layer forms the input to the next layer. The input
feature vector is applied to the input layer and the classification of the input feature vector is
determined by the output layer. [64]. MLP can classify any number of classes and have been
applied to BCI classification such as binary [65] ,multi-class [66] MLP, synchronous [67] and
asynchronous BCI [68],[45].

2.2.5.6 Back Propagation Neural Network (BPNN)

BPNN Propagation forward to acquire the output values, compute the difference error. Prop-
agate the activation back using the training pattern target to establish the difference between
the output and the hidden neurons. The adjustment of the weight is updated in the following
back pass process. Compute the weights for the hidden layer to the output layer. Compute
the weights for the input layer to the hidden layer. Motor imagery classifier performance [57]
maximum classification accuracy obtained using BPNN is 80%.

2.2.5.7 Convolution Neural Network(CNN) Deep Learning (DL)

The CNN is comprising of a number of layers such as Convolutions layers, Pooling layers and
fully connected layers on the multilayer neural network. The input data to the CNN is usually
2D for example speech patterns or images. In [69] applied CSP using CNN, another example
of CNN application is modelling grasp motor imagery. In [70] investigated the application
of deep learning to transform motor imagery to robotic grasping. In addition, the paper also
looked at a probabilist framework.

2.2.5.8 Support Vector Machine (SVM)

Vapnik et al [71] was the first to propose the Support Vector Machines (SVM) which finds the
maximum separation between classes. A radial basis function can be used to generate a non-
linear class separation. In [57] a motor imagery classifier performance a maximum classification
accuracy of 78.57% using SVM.
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2.2.5.9 Linear Discriminant Analysis (LDA)

Ronald A. Fisher formulated the Linear Discriminant in 1936. LDA is similar to PCA, in ad-
dition, the data is assumed to be normally ’Gaussian’ distributed [72] explained five steps of
processing with LDA. ERP Classification Blankertz, et al [73] presented clear tutorial steps for
ERP classification. The main requirement for using LDA is that the data is divided into two
groups or classes subset of each class is labelled training data and the remainder will be used
for testing the trained LDA

2.2.5.10 Interval Type-2 Fuzzy Logic System (IT2FLS)

IT2FLS for Handling Uncertainty Effects in Brain-Computer Interface Classification of Motor
Imagery Induced EEG Patterns [74] showed an increase in performance by comparing with
other types of classifiers. Such that IT2FLS had an improved performance compared to T1FFLS,
LDA, KFD with Gaussian Kernel, linear SVM and non-linear SVM with a homoscedastic Gaus-
sian Kernel.

2.2.5.11 Conclusion classifiers

There is a multitude of classifiers with each having their own advantages and disadvantages.
Moreover, all the classifiers may perform differently when data is presented from different age
groups. For example, detecting error-related potentials in the young and the elderly. Lotte et al
[45] showed that linear classifiers can work as good as a non-linear classifier in BCI.

2.2.5.12 Challenges of BCI classifiers

In the process of selecting features 2.2.4.2 and training classifiers there are a number of prob-
lems to consider which effect pattern recognition [45].
Outliers: This can occur during acquisitions in terms of electrical noise EEG has a low signal
to noise ratio. Consequently, spurious data could be captured as a feature.
Over-training: The classifier will become less generalised when presented with a narrow di-
versity of data. Moreover using a small training data set can also limit the classifiers ability to
generalise.

curse-of-dimensionality: The quantity of data used to describe the different classes will
increase exponentially with dimensionality of feature vectors [45, 75, 76]

bias-variance trade-off: Lotte et al [45] suggests that the lowest classification error can be
attained when the variance and bias is low.

2.2.6 Non-stationary EEG signals

The definition of ’non-stationarity’ is that the characteristics of the time series such as mean,
variance and spectral properties change with time [25]. The electroencephalogram as a time
series [25] has a number of characteristics that must be considered. More over using non-
linear dynamic systems has made it possible to analyse brain activity [25]. EEG signals are
non-stationary and present a high dimensionality concluded by Layne et al [77]. Consequently,
any classifiers must be able to accommodate the non-stationarity EEG signals such that the
classification accuracy is maintained.

2.2.7 Other problems using EEG, BCI and ErrP

• Connection leads breaking
From the user’s point of view different people may find it difficult to wear the EEG equipment from
a cosmetic point of view. Can it be designed to blend into a hat for example?
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• Classification accuracy
Accurately classifying an error-related potential ErrP is not robust, and misclassification can oc-
cur. Generating a cascade of erroneous commands.

• Indeterminate state of decision deadlock
The scenario when the control system is unable to decide which path to take for a mobile robot and
the users, input from the BMI is not available. Will a hypothetical mobile robot wait indefinitely
in a system decision deadlock?

• System induced false error-related potential ErrP
The brain-computer interface may induce a false ErrP in the user. The scenario is best described in
a navigation grid. The computer system may navigate a mobile robot on a path that the users are
observing and perceiving the moves of the mobile robot as an error and hence evoke an ErrP. The
movements of the mobile robot may be misinterpreted as an error in movement and the user may
not be aware of a different paths that the computer has chosen based on a different object such as
using a more efficient route.

2.3 Error detection using brain signals

The design of a more accurate error detection algorithm must take into account the details of
the characteristics of the error. A brief explanation of the error-related signals will follow to
define these characteristics.

2.3.1 Error-related brain signals

To develop an error detection algorithm the literature such as [78, 79] have shown some of the
firsts EEG event-related potentials (ERP) during an experiment designed to evoke and (ERP)
such as a speed response task.

The error-related potential has been characterised as a negative potential deflection called
an error-related negative (ERN) in the frontal-central location electrodes within 100ms [22] of
the participant’s erroneous response. After the error-related negative (ERN) in the frontal-
central location electrode, there may follow an error-related positive event (Pe). The partici-
pants’ awareness of an error has been associated with this positive deflection (Pe) located in
the central-parietal region of the scalp.

The authors highlight a correlation between error-related negative (ERN) events and be-
havioural adjustments [80, 81, 82].The authors further suggested above that the error-related
negative (ERN) signal is associated with participant monitoring an activity and hence reacting
to an erroneous situation, this assertion is supported by [83].The authors suggest that the con-
text of the task moreover what it means to the participants in terms of the importance has the
effect of modulating the amplitude of the ERN ([81, 84]).

A future BCI will have to be adaptive to dynamics in terms of the amplitude of the ErrP
signals such that sensitivity of the detection system is independent of the emotional significance
to the participant of the task. However, the amplitude could be part of the control policy of the
future BCI in-terms of the rapid response time of adjusting the adaptability of the learning
algorithm of the future BCI. For example a high amplitude ERN would indicate the error event
is of a high emotional significance to the participant and hence a rapid adaptability for the
future BCI.

The authors have determined the following according to the literature:

• Event-relational potentials (ErrP) signals are consistent over time [85]

• Event-relational potentials (ErrP) signals are reliable over different tasks [86]
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2.3.2 Error-related brain signals elicited by observation

Ferrez [9] investigated the possibility that ErrPs being elicited by a person observing an inter-
face, such that when the interface generates an error in terms of opposing the users’ intentions.
The authors used a statistical classifier based on the Gaussian classifier which must be trained.
The output from the classifier is a statistical estimation based on the probability distribution
of the classes. The authors suggest that using information about the cognitive states is bene-
ficial in terms of robot interaction specifically awareness of an erroneous response. Moreover
by using the ErrP elicited from the person observing an error in movement by a robot will
significantly improve the performance of a brain-computer interface.

2.3.3 Error detection process

The following is a brief overview of the components used during the error detection process.
The research activity has sought to improve the accuracy. More details will be provided in
proceeding chapters which includes some initial progressive results of this novel concept pro-
totype and feature selection method.

Figure 2.7: A schematic diagram of the state of the art EEG-based error detection algorithm

The generic procedure for extracting features from EEG waveforms is shown in Fig 2.7.
Acquire EEG potentials using an EEG Cap with electrodes located by the 10/20 international
system. The sampling rate a selected range. Time intervals window starting with a start time
after the feedback and ending time after the feedback. A band past zero phase filter of 1 to
10 Hz to isolate the frequencies of interest. The baseline correction interval. The criteria for
artefact rejection . Specific features from the EEG waveforms are acquired for the classifier. The
features are organised into two sets, such as training and testing data sets for the classifiers.
Fig 2.7 A schematic diagram of the state of the art EEG-based error detection algorithm. Fig 5.4
Shows a schematic of prototype adaptive decision surface classifier.

2.3.4 Error detection using time and frequency domain features

Boubchir et al [87] achieved ErrP detection in an SSVEP-based BCI using features from time and
and frequency domain and classification using a support vector machine. The objective was to
use the ErrP to halt the robot going in the wrong direction and recover a situation. Moreover in-
formation in the time and frequency domain of the EEG signals incorporate, Instantaneous Fre-
quency (IF), time and frequency information complexity, Singular Value Decomposition (SVD)
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information, energy concentration and sub-bands’ energies. The author reported an overall a
classification accuracy up to 97% for 50 EEG segments using 2-class support vector machine
(SVM) classifier.

2.3.5 Error detection for P300 BCI using real-time Bayesian dynamic stopping frame-
work

Zeyl et al [88] proposed a method of obtaining a P300-confidence with real-time Bayesian dy-
namic stopping framework. In addition, the authors used stimuli which occurred as a result of
epoch and filter delays. The author further used an ensemble of decision trees to combine ErrP
and P300-confidence features. The authors explained how the different types of feedback effect
the ErrP physiology. The authors reported an average sensitivity of 86.67 % and specificity of
96.59 % and automatic correcting improved the selection accuracy by 13.67 %. The authors
suggest the improved performance was as a result of including the P300 confidence in error
detection. The P300-based BCI has been successfully used in a BCI Speller [37]. Furthermore
the P300-confidence level is used in setting the classification threshold.

2.3.6 Error detection with a double error-related potential (ErrP) detection

Cruz et al [89] proposed a double error-related potential (ErrP) detection to automatically cor-
rect erroneous decisions was applied to an ERP-Based BCI Speller. Such that if the wrong
automatic correction is applied the ErrP will be subsequently detected. The author report the
online average accuracy of the first ErrP was 88.4 % and the second ErrP 84.8 %. Moreover, the
automatic correction method improved the system by 5 %.

2.3.7 Anticipating an error

It would be advantageous for a future brain-machine interface to have further insight into a
error-related potential. Furthermore, it would reduce the latency by preparing the system for
an error-related potential event. The literature suggests a majority brain-machine interfaces are
not pre-anticipating such an event.

Steinhauser et al [90] investigated error awareness during an error choice task in terms of
the decisions process. Moreover, developing an understanding of how evidence of an error is
ascertained. The human event-related potential (ERPs) comprising of a well-established profile
specifically known as the error-related negativity (Ne/ERN) and the error positivity (Pe). [90]
Hypothesized that part of the decision process involved the Pe. Furthermore, the strength and
latency of the suggested accumulated evidence related to the amplitude of Pe. The speed-
accuracy trade-off (SAT) was modified during tasks which involved the participant indicating
an error. [90] Predicted that a lower amplitude in Pe would occur given a low-speed task
compared to a high-speed task. In addition, further analyses in a trial-by-trial approach using
a logistic regression approach robustly predicted the occurrence of signalling responses. The
authors confirm and support the notion that Pe is involved with the accumulation of evidence
for an error prior to error awareness.

Thus, it would be advantageous for the further development of acquiring this build up
signal to provide more of an insight into a future BCI system.

2.4 Error Driven Learning

2.4.1 Introduction

An ErrP is evoked when the participant perceives an error made by themselves or by observing
an error on a display or by an external device such as a robot.[91] If the ErrP is detected and
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decoded then this could potentially allow the BCI to resolve the cause of the ErrP. It would be
advantageous to prevent the propagation of an error cascading from the BCI to the assistive
device and resolving the cause of the initial error, in addition to learning from the event [92, 91,
37]. Chavarriaga et al [18] investigated the use of error-related potentials in the brain-machine
interface by identifying previous research in the past decade. The authors [18] indicated that
an ability to identify an error or a mistake is part of adapting a behaviour in nature observed
in biological systems such as humans shown in [93]. Decoding an ErrP in a single trial EEG by
BCI is a direct opportunity to improve the interface accuracy and performance.

2.4.2 Recognising an ’Interaction ErrP’ to improve a Brian computer interface

Ferrez et al [15] investigated the potential of recognising an ”Interaction ErrP” such that a Brian
computer interface performance can be improved. The authors conducted the experiment to
simulate a human-robot interaction with participants who were required to imagine moving a
symbol represented by a cursor, to a predetermined target along the shortest path. [15] confirm
these ”Interaction ErrP” indicated by other research such as [9]. [15] suggest in order to take ad-
vantage of these aforementioned ”Interaction ErrP” they must be detected in every single trial
and using the feedback from a classifier in a BCI [15]. Report on achieving a recognition rate
of 81.8 % for correct and 76.2 %, for erroneous single trials. [15] show the results of acquiring
mental control in order to operate a brain-actuated device in addition to acquiring cognitive
states such as error potentials for the brain-computer interaction. [4] used an inverse model
(sLORETA), highlighting the main focus of activity at the occurrence of aforementioned ErrP
are, as anticipated in the pre-supplementary motor area and in the anterior cingulate cortex.

2.4.3 Methods of corrective actions

Using the EEG signals the BCI will detect and decode an ErrP which indirectly identifies the
participants’ intention from and activity. Furthermore, if the BCI has information about the
context of the activity. An inference can be made about the activity in addition to selecting the
adaptation of the BCI and the assistive robot.

2.4.4 Methods of learning form mistakes

An ErrP once detected has the ability to adapt the ADS 5.2.3.5 in a type of self adjustment.
Furthermore, other subsystems may adapt the operation of the BCI and external assistive robot
and ”learn from its mistakes” [94, 95].

A hybrid BMI / HCI using EEG brain signals such as motor imagery or stimulus recognition
in addition used error-related potential as a means of correcting and an error [5, 43, 96, 97, 98,
99] the author [18] suggest that ErrP evoked during the interaction with the machine and the
acquisition is implicit.

However, the authors [18] indicated the fact that ErrPs have been influenced by the partici-
pant’s motivation in the activity [100].

2.4.5 Reinforcement learning

Iturrate et al [24] used EEG recorded brain activity as a reward signal obtained by observing a
robot during a task. The authors suggest that an explicit model is not required for the reward
signal and that it was possible to acquire subjective aspect for the individual. The authors
designed a new protocol using the brain activity associated with the right or wrong action of
the task by detecting the error signal which showed a statistical difference. Further, the authors
applied reinforcement learning algorithms which used rewards from the brain activity. The
authors choose AdaBoost classification algorithms [101] Moreover, the reinforcement learning
was applied to a robot to learn about by using the detected ErrP. The robot used the signal from
the ErrP to reward or penalise the behaviour of the robots. The authors suggest the framework

26



for reinforcement learning is Markov decision Process. The authors suggest that in the practice
the classifier cannot be trained because each task has to be label. Furthermore, it would make
the EEG signal ineffective.

2.4.6 Learning algorithms

Supervised learning The training processed will use a certain portion of the data for training
and the other portion for testing the model or classifier moreover the training data is labelled.
The model is configured with training data such that the model is able to make the correct clas-
sification. When the models’ classification accuracy has reached a certain level after sufficient
training. Example of supervised learning algorithms are logistic regression and backpropaga-
tion neural networks.[102]

Unsupervised learning: In the unsupervised learning the data is not labelled and there are
no results. The model is configured by identifying patterns of structures in data. An example
algorithm is the K-means.[102]

Semi-supervised learning: The input data is comprising of a mixture of labelled and unla-
belled data. The model will organise the data to enable predictions. [102]

Regression algorithm: It is iterative by using the error in the prediction between variables
to improve the models’ prediction. Examples of a regression algorithm is linear regression.[102]

Instance-based algorithm: also known as winner take all methods adjust the model accord-
ing to new training data this is determined to be significant such that the model is adjusted to
accommodate the new training data. Example of this type of algorithm are K-Nearest Neigh-
bour (KNN) and Self organising feature maps (SOM).[102]

Regularization algorithms This method is also known as Tikhonov a method of regularis-
ing ill-posed problems and reduces the problem of overfitting it has been developed in many
different areas. In Integral equation, this method was developed by Andrey Tikhonov and
David L. Phillips hence Tikhonov–Phillips regularization. In statistics regularization is known
as ridge regression.[102]

Decision tree algorithms This method is used mainly for classification and regression the
construction is of the tree is determined by the attributed in the training data.[102]

Baysian algorithms These methods apply the Bayes theorem to data classification. Exam-
ples are Naive Bays, Gaussian Naive Bayes, Bayesian Belief Networks(BBN), Bayesian Net-
works(BN) [102]

Clustering algorithms These methods are generally used a modelling a process that uses
a centroid to organise the data into groups or clusters. Examples are K-means, k-Median and
Hierarchical clustering. [102]

Artificial neural networks algorithms These algorithms are inspired by the general basic
function of a biological neuron such as each input is modified by a weighted value. The collec-
tion of inputs are summed such that the artificial neuron will generate and output depends on
the input values. The actual biological neuron is far more complicated. Example of networks
are , Perceptron, Back-propagation, Hopfield network, Radial Basis Function Network (RBFN)
[102]
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Deep learning algorithm These algorithms are a progression from the artificial neural net-
work. The deep learning network has several layers and is generally more extensive, examples
of deep learning algorithms are Deep Boltzmann Machine (DBM), Deep Belief Networks (DBN)
and Convolution Neural Networks(CNN) [102]

Dimensionality reduction algorithm These methods are based on the data structure en-
ables a process of identifying a separation of the data onto a number of classes. A method of
using Eigenvalues and Eigenvectors can be used to identify the maximum separation within
the data. Example of dimensionality reduction algorithms are Principle Component Analysis
this method used unlabelled training data and Linear Discriminant Analysis this method uses
labelled training data.[102]

2.5 Shared control strategy

2.5.1 Introduction

A shared control strategy is a high-level control to manage the interaction between the users
and the assistive robotic device. A survey [7] was conducted which summarised the recent
robot control using a BCI. The survey also identified the brain signals used and the classifiers.

The interactions could be between a very advanced robotics system will operate in a semi-
autonomous and fully autonomous mode of operation or it could be a cursor on a computer
screen. Montesano et al [103] proposed a shared control BCI such that the device decodes the
commands and executes the shared-control BCI task of moving a cursor over a two-dimensional
discrete grid of possible target destinations for the cursor the algorithms parameters are up-
dated after detecting an ErrP.

Shared control BCI using error-related potentials the ErrP were used as a feedback or a su-
pervision signal as the cursor is moved to the target destination by the device. The authors
have indicated that the error-related potentials have been used to train a device in terms of
reinforcement learning [24]. [96]

Shared control BCI correct potential decoding errors the results showed that the partici-
pants reached both a predefined and self-selected target destinations in 23 movements on the
discrete grid in approximately 19 seconds of EEG signal data. The main objective of the user
was to observe the movement of the device such that the users can assess the movement of the
device as being correct or wrong. [103]

The authors suggest that within a shared control strategy it is possible to use other brain sig-
nals to correct any decoding errors in order to recover the navigation error by the device.[103]

2.5.2 Interactive control strategies BCI

Li et al [104] proposed a ’human-machine shared control strategy’ for the application of con-
trolling a wheelchair device. The authors used three different modes of operation:

Brain-computer interface control mode: Comprising of a brain-machine interface which
uses a steady-state visual evoked potentials. The authors used two brain signals in order to
identify a polar trajectory maintain a continuous curvature within the steering limits of the
wheelchair.[104] Autonomous control mode: The authors proposed a ’synthesis of angle-based
potential field and vision-based simultaneous localization and mapping technique’, such that
collision avoidance is maintained. The authors conducted experiments to evaluate a shard
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control wheelchair.[104] The results verified the effectiveness of the authors proposed method-
ology of a shared control a scheme.[104]

2.5.3 Prosthetic hand restoring the sense of touch

Oddo et al [105] restored a sense of touch as an improvement over conventional upper arm
prosthetics. They showed that textural discrimination can be implemented by neuromorphic
real-time mechano-neuro-transduction (MNT). In addition MNT-evoked EEG activity showed
physiologically plausible responses.

2.5.4 Prosthetic hand deep learning image recognition

Ghazaei [106] in Newcastle University used Deep learning-based artificial vision for grasp clas-
sification such that object could be automatically grabbed by configuring the hand to match the
shape and size of the object.

2.5.5 Adaptive hierarchical brain-computer interface

Bryan et al[16] suggested that previous brain-computer interface systems that provided con-
trol for a humanoid robot required a higher-level control with non-adaptive pre-determine be-
haviour. The authors have suggested an adaptive hierarchical brain-computer interface, such
that new skills are acquired by the BCI. In order that high-level commands may be invoked
later. This approach reduces the workload of controlling the device. The authors explore hier-
archical BCI to certain tasks. In addition, the authors investigate explicitly-defined command
sequences for more complex tasks which will require ’multiple state spaces’. shared control
[107]

2.6 Summary

In this literature review, we looked at the consequences of insufficient training data for the
classifiers [15]. In addition the Limitations of BCI the amplitude of the EEG signals and the
effects of age [22]. The non-stationary properties of the EEG signal were highlighted [25] was
presented. A brief explanation of the areas of the brain [32] and the EEG electrode positions
were shown [33].

The discussion proceeded with a definition of the BCI in section 2.2, followed by a definition
of the different types of BCI 2.2.3 such as P300, Steady-state evoked potential, Motor Imagery
BCI which will be the main focus. The discussion investigates the BCI components in section
2.2.4 such as BCI pre-processing, feature extraction, Common Spatial Patterns (CSP), the differ-
ent types of BCI Classifiers. There are three main components Firstly discussing about ’Error
detection using brain signals’.2.3 Secondly ’Error Driven Learning’ 2.4 and finally a ’shared
control strategy’ 2.5
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Chapter 3

Deficiencies of state of the art error
detection algorithms between young
and elderly

3.1 Introduction

The brain will evoke an ErrP in the EEG waveform recordings, which we could associate with
the person’s awareness of the situation or ’error’, caused by themselves or by observation
which is detectable in an EEG recordings. The ability to detect theses ErrPs would enhance
a future brain-computer interface.

Many research studies have investigated BCI with assistive robotics [7]. The effect of age
in terms of working memory, attention, research has shown the changes during ageing [108].
Further the P300 development in a lifespan [36] has shown the effect of age. Therefore it would
be prudent and beneficial to design a BCI that accommodate the abilities, of the different ages
groups and in addition to adapting, to the individuals needs.

The present BCI systems do not necessarily take into account the differences in brain signals
between the age groups young and elderly, therefore inadvertently diminishing the potential
performance gains. As we age, specific brain signals inevitably become attenuated. It is, there-
fore, necessary to develop a BCI to maintain the performance of the BCI independent of the
user’s age.

To evaluate the performance of detecting error-related potentials (ErrP) using a Linear Dis-
criminant Analysis LDA-based algorithm, please see appendix J for more information. The
analysis of the ErrP in EEG recordings has shown the present performance in the young Fig 3.7
and elderly Fig 3.9 in terms of ErrP detection.

The ErrP occurred during an ’Error Awareness Task’ experiment in which the participant
will make a mistake and subsequently evoke the ErrP. Consequently, it would be a significant
advantage, for a future brain-computer interface, to be able to detect the occurrence of these Er-
rPs in different age groups. In this chapter, the results have shown differences in performance
between young Fig 3.6 and elderly participants Fig 3.8.

The experiments have shown the need to improve error detection in the elderly. Moreover,
I anticipated that the primary users of the BCI would be the elderly. Improving error detec-
tion performance of a classifier would enable an assistive robotic device to function efficiently
by improving the accuracy of detecting errors and subsequently correcting any mistakes or
misinterpretations online.
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Figure 3.1: Participants age distribution

3.2 Methodology

The EEG feature extraction method has the following stages:

3.2.1 Sampling

EEG signals were acquired using a 64 channel cap with the electrodes located by the 10/20
international system. The sampling rate was in the range of between 512 to 1024 Hz.

3.2.2 Pre-processing

Time intervals were 350 ms window starting 50 ms after the correct/erroneous response (click)
and ending 400 ms after. A band past zero-phase filter of 1 to 10 Hz was applied to isolate
the frequencies of interest. The baseline correction interval was -200 ms to 0. The criteria for
artefact rejection was approximately 30 microvolts.

Table 3.1: Experiment preprocessing configuration

Parameter Settings
Channel Test 1 Fz,Cz Test 2 CPz,Fz,Cz
Re-sampling: 64 Hz
Electrode location: 10/20 international system
Sampling rate: 512 - 1024 Hz
Time intervals: 350 ms window
Starting: 50 ms after onset response
Ending: 400 ms after onset response
Baseline interval: -200 to 0
Referencing: Common average
Band pass filtering: 1 to 10 Hz
Criteria for artefact rejection: 30 micro volts

3.2.3 Feature extraction and classifications

Specific features are acquired from the EEG data and labelled with specific events and sent
to the classifiers. During the session with the each subject, generally 8 blocks of data were
captured. Generally blocks 1 to 4 were sent to the classifier for training and the other blocks of
data from 5 to 8 were be sent to the classifiers for testing.

The evaluation is checked in terms of ’Error Accuracy’ EA and ’Correct Accuracy’ CA. The
Brain Computer Interface BCI limitations are the potential for an incorrect classification of the
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users intentions. The classifier method used was based on the Linear discriminant analysis
(LDA) originating from the Fisher’s linear discriminant.

Ronald A. Fisher formulated the Linear Discriminant in 1936. Linear Discriminant Analysis
(LDA) is most commonly used as dimensionality reduction technique in the pre-processing
step for pattern-classification and machine learning applications. The objective is to project a
dataset onto a lower-dimensional space with good class-separability in order to avoid over-
fitting ’curse of dimensionality’ and also reduce computational costs. [72]

3.3 Experiment

3.3.1 Participants

The data [23] used was from fifty-three participants volunteered to participate in the study. 53
participants; 29 young (19 female) and 24 older (15 female). The younger participants had a
mean age of 24.14 years (SD = 5.4), and the older participants mean age was 70.67 years (SD =
4.9). Please see Fig 3.1 for the age distributing.

All participants were healthy individuals. Procedures were approved by the Trinity College
Dublin ethics committee and in accordance with the Declaration of Helsinki [109].

3.3.2 Experiment Protocol

3.3.2.1 Methodology

Each participant was presented with a series of visual information displayed in a certain se-
quence in order to capture the subjects awareness of an error.

The experiment protocol was develop by Lacey and his colleagues [23] in Trinity College
Institute of Neuroscience based on a novel variant of Hester et al ’Error awareness task [110].
The participants carried out a practice session in order to establish the suitability for taking
part in the experiments:

An outline of the experiment is provided as follows: The visual stimulus has a grey back-
ground upon which a centrally positioned white fixation. This fixation cross remains in place
while the colour dots change during the experiment sessions.

(A) The systems generates a random sequence of coloured dots from a given predefined set.
Fig 3.5.

Figure 3.2: One colour is displayed at any given time.

(B) The Participant receives the visual stimuli to their visual cortex

(C) The systems waits for the participants response

(D) The participant should withhold from responding in the following two cases:

• Colour condition. If the colour of the dot is blue.

• Repeat condition. If colour of the dot was identical to the previous dot

(E) The participant will actuate their response from their motor cortex to click a button in the
following way:
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(E.1) A “go target” indicated by ’Event 3’ in the EEG recordings requires the participant press
the left mouse button with their right hand. This indicate an “Acknowledgement” indi-
cated by Event 1 from the participant.

(E.2) A “no go target” indicated by the following:

4 Colour condition, indicated by ’Event 4’

4 Repeat condition, indicated by ’Event 5’

(F) • An ’Event 1’ after by ’Event 4’ or ’Event 5’ is an error made by the participant

(G) •An Error Correction Response ECR indicated by ’Event 2’ in EEG recording is generated
by participant pressing the right mouse button using their index finger of their right hand.
This indicates that the participant is “aware”’ of the error.

Please see the schematic diagram Fig 3.3 and flowchart Fig 3.4
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Figure 3.3: Error Awareness Task [23]
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Figure 3.4: Error Awareness Task [23]
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Figure 3.5: Sequence of events [23]

36



3.4 Results

3.4.1 Results of the statistical analysis

Experiment 1: Post-hoc comparisons using Tukey HSD test indicated the mean score for young
subjects:18-34; was significantly different from elderly subjects: 65-80 years;
ρ = .021
Descriptive statistics: Error Accuracy 60.8 % in comparison to the Correct Accuracy of 81.6 %

Experiment 2: Post-hoc comparisons using Tukey HSD test indicated the mean score for
young subject:18-34; was significantly different from elderly subjects: 65-80 years;
ρ = .003
Descriptive statistics: Error Accuracy 59.2 % in comparison to the Correct Accuracy of 82.9 %

3.4.2 Young / Old participants, Experiment 1

The repeated measure ANOVA revealed that the main effect on detection accuracies p-value is
less than 0.001 F(1,48) = 93.282. It means that the accuracies obtained for detecting errors are
significantly different from accuracies obtained for detecting correct trials

Table 3.2: Tests of Within-Subjects Contrasts Experiment 1

Source Experiment 1 df F Sig.
Test_1 Err Acc. vs Corr Acc. 1 93.282 .000
Test_1 * Age Group Err Acc. vs Corr Acc. 1 5.725 .021
Error(Test_1) Err Acc. vs Corr Acc. 48

Figure 3.6: Participants age distribution

The interpretation of Tables 3.2 is that the error accuracy and the correct accuracy are signif-
icantly different regardless of their groups. The descriptive statistics shows that Error Accuracy
60.8 % in comparison to the Correct Accuracy of 81.6 % regardless of their groups are signifi-
cantly different. Please see Fig 3.7
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Figure 3.7: Error Awareness Dot Task(EADT) Experiment 1

3.4.3 Young / Elderly participants, Experiment 2

The repeated measure ANOVA revealed that the main effect on detection accuracies p-value is
less than 0.001 F(1,48) = 95.083.

Table 3.3: Tests of Within-Subjects Contrasts Test Experiment 2

Source Experiment 2 df F Sig.
Test_2 Err Acc. vs Corr Acc. 1 95.083 .000
Test_2 * Age Group Err Acc. vs Corr Acc. 1 9.706 .003
Error(Test_1_3) Err Acc. vs Corr Acc. 48

Figure 3.8: Participants age distribution

The descriptive statistics shows that Error Accuracy 59.2 % in comparison to the Correct
Accuracy of 82.9 % Please see Fig 3.9
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Figure 3.9: Error Awareness Dot Task(EADT) Experiment 2

3.5 Summary

This chapter shows that there is a significant difference between the young and old partic-
ipants. The implication are that new BCI systems could take this finding into account and
hence improve their performance by taking into account the age group of the user.

3.6 Discussion

There is a significant difference between the young and old participants in terms of error accu-
racy. Previous research has mainly used BCI with young adults and not with the elderly [15]
The implication is that any new BCI systems could take these findings into account and hence
improve their performance by taking into account the age group of the user. Moreover, there is
the potential for a future BCI system to infer the age group of the user by means of the initial
interactions such that self-tuning or adaptability of the BCI settings could be a distinct advan-
tage in terms of BCI performance. The limitation of the results is caused by using a limited
number of participants.
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Chapter 4

Improving EEG-based error detection
using proposed novel relative peak
features (RPF)

A brain-computer interface (BCI) potentially enables a person with a severe disability to communicate
using brain signals. Automatic detection of error-related potentials (ErrPs) in electroencephalograph
(EEG) could improve BCI performance by allowing to correct the erroneous action made by the machine.
However, the current low accuracy in detecting ErrPs, particularly in some users, can reduce its po-
tential benefits. This chapter addresses this problem by proposing a novel relative peak feature (RPF)
selection method to improve performance and accuracy for recognising an ErrP in the EEG. Using data
collected from 29 participants with a mean age of 24.14 years the relative peak features yielded an aver-
age across all classifiers of 81.63% accuracy in detecting the erroneous events and an average 78.87 %
accuracy in detecting the correct events, using KNN, SVM and LDA classifiers. In comparison to the
temporal feature selection, there was a gain in performance in all classifiers of 17.85% for error accuracy
and a reduction of -6.16% for correct accuracy. Specifically, our proposed RPF significantly reduced the
number of features by 91.7% when compared with the state of the art temporal features. In the future,
this work will improve the human-robot interactions by improving the accuracy of detecting errors that
enable the BCI to correct any mistakes.

4.1 Introduction

The brain will evoke an ErrP in the EEG waveform recordings, which we could associate with
the person’s awareness of an ’error’, caused by themselves or by observation.

The ErrP has been characterised as a negative potential deflection called an error-related
negative (ERN) in the frontal-central location electrodes within 100ms [22] of the participant’s
erroneous response. After the ERN in the frontal-central location electrodes, there may follow
an error-related positive event (Pe). The participants’ awareness of an error is associated with
this positive deflection (Pe) located in the centro-parietal region of the scalp. The authors in
[80, 81, 82] highlight a correlation between ERN events and behavioural adjustments. The
authors further suggested that the ERN signal is associated with participant monitoring activity
and hence reacting to an erroneous situation, this assertion supported by [83]. The authors
suggest that the context of the task moreover what it means to the participants in terms of the
importance has the effect of modulating the amplitude of the ERN ([81, 84]).

EEG data recordings have shown a rapid transient during an error-related potential. Gen-
erally, the Central (’Cz’) Electrode detects a high transient dynamic in comparison to the other
EEG electrodes. Error detection algorithms [78, 79] have shown some of the first EEG event-
related potentials (ERP) during an experiment designed to evoke an (ERP) in a speed response
task.
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Previous research studies showed that ErrPs could be detectable in EEG on a single-trial
basis [9],[91] The ability to detect theses ErrPs would enhance a future BCI [9]. Many research
studies have investigated BCI with assistive robotics presented in the following survey [7].
[9] has shown the presence of ErrP and investigated a simple human-robot interaction which
satisfactorily recognised single trials using a Gaussian classifier.

This research aims to improve single-trial ErrP detection by proposing a new set of features,
called relative peak features (RPF). The principle behind relative peak features is the selection
of the essential characteristics of an ErrP event, specifically the latency between ERN and Pe
and also the amplitude between ERN and Pe. We believe these sorts of important information
are missing in the state of the art temporal features where only amplitude of the EEG sam-
ples are used as features. Moreover, compared to the state of the art temporal features, our
proposed RPF considerably reduce the features to only two per channel. Using EEG data col-
lected from 29 participants performing a decision making task, we evaluated the performance
of the proposed features and compared with the temporal features across a range of different
classifiers.

4.2 Methodology

4.2.1 Participants and the task

The 29 young participants (19 female) had a mean age of 24.14 years. All participants were
healthy individuals. The study has been approved by the Trinity College Dublin ethics commit-
tee by following the Declaration of Helsinki [109]. All participants provided informed written
consent to attend this study.

EEG data has been collected in Trinity College Institute of Neuroscience, Ireland [23] where
participants performed a novel variant of Hester et al.’ Error awareness task [110]. A 64 channel
EEG Biosemi device was used for data collection. The data generated from the awareness of
’sustained attention’ tasks. Generally, the cause of the ’Error related potential’ ErrP is that the
subject is aware of their mistake during the sustained attention task. The configuration of the
experiment is such that the subjects will evoke ErrP events during the experiment.

Thus a performance comparison in terms of accuracy can be established between the fea-
tures selection methods and the well-established KNN, SVM, LDA classifiers.

4.2.2 Preprocessing

A comparison between temporal feature selection and the proposed relative peak feature se-
lection methods were investigated. In order to achieve this, we propose using well-established
classifiers in Matlab®.

The preprocessing configuration details presented in, Table 4.1 indicating the setting for
EEG segmenting, downsampling and filtering.
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Table 4.1: Experiment preprocessing configuration

Parameter Settings
Channel Cz
Re-sampling: 64 Hz
Electrode location: 10/20 international system
Sampling rate: 512 - 1024 Hz
Time intervals: 350 ms window
Starting: 50 ms after onset response
Ending: 400 ms after onset response
Baseline interval: -200 to 0
Referencing: Common average
Band pass filtering: 1 to 10 Hz
Criteria for artefact rejection: 30 micro volts

4.2.3 Feature extraction and classifications

Specific features are acquired from the EEG data and labelled with specific events and sent
to the classifiers. During the session with each subject; generally, eight blocks of data were
captured. Moreover blocks 1 to 4 were sent to the classifier for training and the other blocks of
data from 5 to 8 were sent later to the classifiers for testing.

The classifier’s performance assessed in terms of ’Error Accuracy’ (EA) and ’Correct Accu-
racy’ (CA).

4.3 Relative peak features (RPF)

The objective of the relative peak feature is to improve the performance of a classifier. The
advantages of the proposed RPF are neurophysiological characteristics of the signals that are
captured. Information data loss can occur depending on exactly when the data is sampled from
the EEG data recording. The time usually is locked; however, to improve the capture of the Cz
signal the capture windows is dynamically adjusted to synchronise to the minimum value of
Cz. Hence this will capture the dynamics of the Cz signal as Fig 5.9 shows.

Observing the error-related potentials appear to have a high amplitude between the (ERN)
graph trough and (Pe) graph peaks. It was particularly noticeable in the ’Cz’ EEG channel
recordings.

Figure 4.1: Synchronising the ErrP to Cz minimum

Cz is the EEG channel

X = x(t0), x(t1), x(t2), ..., x(tn) (4.1)

42



where
t is the sample time as Fig 5.9 shows

x(tmin) = min
0≤i≤n

x(ti) (4.2)

x(tmax) = max
0≤i≤n

x(ti) (4.3)

~a = (tmin, x(tmin)) (4.4)

~b = (tmax, x(tmax)) (4.5)

~v =
1
2
(~b−~a) (4.6)

VTrain = {~v1, ~v2, .., ~vn} (4.7)

Please see the following diagrams: Fig 5.9 shows EEG electrode signals and Fig 4.2 shows
the signal from the Cz electrode from the EEG in a data matrix. The vertical axis shows the
amplitude in microvolts; the horizontal axis shows the EEG samples 25 to 48. We are interested
in the amplitude height and the latency width between Pe and Ne to plot the relative peak the
height and width are divided by 2 in order to generate the new mapping. The relative peak
training data is presented in Fig 4.3 which shows the relative peak training data plot of relative
amplitudes and latencies which significantly reduced the number of features by 91.7% when
compared with using temporal features using all the 24 data points in equation 4.1 compared
to only 2 data points used by RPF.

Figure 4.2: Extracting propose RPF from EEG waveform Cz.
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Figure 4.3: Distribution of RPF, Cz electrode ErrP red ’*’ , blue ’+’ non-ErrP

4.4 Results

4.4.1 Classifier comparison results using temporal features

The table of classifiers in fig 4.5 shows using temporal features exhibited a relatively good
performance from the SVM Linear and Linear discriminant analysis classifiers compared to the
other classifiers. The temporal feature performance is further presented on the left side of the
bar chart Fig 4.6 to visually clarify the comparison between the different classifiers using the
temporal feature method.

4.4.2 Classifier comparison results using relative peak features

The fig 4.5 shows the relative peak feature performance presented on the right side Fig 4.6 visu-
ally clarifies the comparison between the different classifiers using the relative peak features,
in addition to presenting the comparison between the different feature extraction methods.
The relative peak features yielded an average across all classifiers of 81.63% accuracy in de-
tecting the erroneous events and an average 78.87 % accuracy in detecting the correct events.
In comparison to the relative peak feature selection method, there was an average increase in
performance in all classifiers of 17.85% for error accuracy and a reduction of -6.16% for correct
accuracy.

4.5 Summary

This chapter shows a method of feature selection that can improve the classification perfor-
mance of well-established classifiers. It is beneficial to improve the accuracy of detecting errors
for a BCI system. In the future, this work will improve the human-robot interaction by improv-
ing the accuracy of detecting errors, for example, when the prosthetic hand operates contrary
to the users’ intentions as shown in Fig 4.4
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Figure 4.4: Assistive robotic prosthetic hand stacking blocks.

Figure 4.5: Classifier comparison results using temporal features and relative peak features
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Figure 4.6: Classifier comparison results

4.6 Results of classifier comparisons using a novel feature extraction
method

4.7 Introduction

4.7.1 Statistical Analysis Comparisons

In this research, a series of statistical tests were applied to the data from a selection of well-
established classifiers. Firstly, a grand average comparison between a set of classifiers using
temporal features and a set of classifiers using relative peak features. Secondly, the grand
average comparison was further compared between different age groups young and elderly.
Thirdly, a statistical comparison was completed to determine the statistical significance be-
tween the different extraction methods temporal features extraction and relative peak feature
extraction. Finally, a summary of the completed statistical analysis will conclude this chapter.
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4.7.2 Elderly participants classifier comparison results using temporal features

The table of classifiers 4.7 using temporal features and elderly participants showed an even
performance for error accuracy 67.21% and correct accuracy 66.63 % with the subspace discrim-
inant classifier. The classifier comparison is listed in order from lowest to highest performance
in terms of error accuracy.

Figure 4.7: Elderly participants classifier comparison results using temporal features

The table of classifiers 4.7 using temporal features were further presented in the following
horizontal bar chart 4.8 to visually clarify the comparison between the different classifiers using
the temporal feature extraction method with elderly participants.

Figure 4.8: Elderly participants classifier comparison results using temporal features
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4.7.3 Elderly participants classifier comparison results using relative peak features

The table of classifiers 4.9 using relative peak features and elderly participants showed a higher
performance generally for both error accuracy and correct accuracy for a wider range of classi-
fiers compared to table 4.7. The classifier comparison is listed in order from lowest to highest
performance in terms of error accuracy.

Figure 4.9: Elderly participants classifier comparison results using relative peak features

The table of classifiers 4.9 using temporal features with elderly participants were further
presented in the following horizontal bar chart 4.10

Figure 4.10: Elderly participants classifier comparison results using relative peak features
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4.7.4 Young participants classifier comparison results using temporal features

The table of classifiers 4.11 using temporal features and young participants showed a relatively
good performance from the subspace discriminant, SVM Linear and Linear discriminant (LDA)
classifiers compared to the other classifiers. The classifier comparison is listed in order from
lowest to highest performance in terms of error accuracy.

Figure 4.11: Young participants classifier comparison results using temporal features

The table of classifiers 4.11 using temporal features is further presented in the following
horizontal bar chart 4.12 to visually clarify the comparison between the different classifiers
using the temporal feature extraction method with young participants.

Figure 4.12: Young participants classifier comparison results using temporal features
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4.7.5 Young participants classifier comparison results using relative peak features

The table of classifiers 4.11 using temporal features and young participants showed all clas-
sifier generally above 80% for error accuracy and generally above 78% for correct accuracy
noticeably there was a good performance from the proposed novel ADS Prototype classifier
compared to the other classifiers. The classifier comparison is listed in order from lowest to
highest performance in terms of error accuracy. Please see the classifier performance bar chart
Fig 4.14 for a visual comparison of the classifier performance.

Figure 4.13: Young participants classifier comparison results using relative peak features

Figure 4.14: Young participants classifier comparison results using relative peak features
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4.8 Results of classifier comparisons using a novel feature extraction
method

The results of classifier comparisons using a novel feature extraction method are presented in
Appendix F .

4.9 Conclusion

The results show that the relative peak feature selection provides a higher performance with a
wider range of established classification methods including the adaptive decision surface ADS
prototype classifier. The paired T-Test independent samples tests show that using the relative
peak feature selection removes the statistically significant difference between young and el-
derly compared to temporal features method which shows a significant difference in the error
accuracy between young and elderly groups. The summary of the T-Test further shows that
the following classifiers: SVM, LDA, Logistic regression and subspace discriminant using a
relative peak feature extraction remove the statistically significant difference between young
and elderly however the KNN coarse classifier using the relative peak feature extraction does
not remove the significant difference for correct accuracy. The results show a distinct advan-
tage in using the relative peak feature extraction method please see table 4.15 Verification and
support guidance for using the SPSS software, in particular, ANOVA the paired T-test analysis
[1] advice was provided by Dr. Basile Marquier and Ellen Marshall, Mathematics and statistic
tutor at Maths and Statistics Help (MASH).
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Figure 4.15: Compare significances of different classifiers and different features extraction
methods using independent T-Test

4.10 Results of the performance gains summary

The results of the performance gains summary are presented in Appendix G .

4.11 Summary

The novel relative peak feature (RPF) extraction method improved the error detection perfor-
mance and removed the statistical difference between the age groups young and elderly for a
number of established classifiers. In addition, the relative peak feature is part of a novel er-
ror detection algorithm adaptive decision surface (ADS). This improvement in performance
was proven with repeated ANOVA and T-Tests for using the following classifiers SVM Linear,
LDA, Logistic Regression and Subspace discriminant. Improving the error detection and clas-
sification has implication for assistive supportive care robotics and human-robot interactions
in the future. LDA classifier, compared to the state of the art temporal features the proposed
relative peak features increase the accuracy of detection of an error by an average of 26.75% and
13.62% in young and elderly respectively and a -1.87% and -2.5% decrease in performance for
young and elderly for correct accuracy. Logistic Regression classifier, compared to the state
of the art temporal features the proposed relative peak features increase the accuracy of de-
tection of error by an average of 26.75% and 13.62% in young and elderly respectively and a
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-1.53% and -1.43% decrease in performance for young and elderly for correct accuracy. SVM
Linear classifier compared to the state of the art temporal features the proposed relative peak
features increase the accuracy of detection of an error by an average of 11.41% and 21.44% in
young and elderly respectively and a -1.42% and -2.30% decrease in performance for young
and elderly for correct accuracy. Subspace discriminant classifier compared to the state of the
art temporal features the proposed relative peak features increase the accuracy of detection of
an error by an average of 5.65% and 10.20% in young and elderly respectively. In addition,
there was an increase in the accuracy of detection of correct by an average of 7.87% and 8.39%
in young and elderly respectively for correct accuracy. The average performance of the novel
adaptive decision surface ADS was 81.85% and 83.88 % for the error accuracy and correct accu-
racy for the young and 63 % and 82% for the error accuracy and correct accuracy for the elderly.
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Chapter 5

Proposed novel adaptive decision
surface (ADS) classifier

5.1 Introduction

The aims and objectives of the proposed ADS classifier will be to enhance the performance and
efficiency of detection error-related potentials (ErrP) in the human brain. An ErrP may occur in
the brain when the person experiences an unanticipated event. The ErrP has a negative poten-
tial deflection known as an error-related negative (ERN) within 100ms [22] of the unanticipated
event usually followed an error-related positive event (Pe). The location of the ErrP is in the
frontal-central position.

This contribution has improved the performance of detection ErrP events in addition to
reducing the data required by 91.7% compared to the linear discriminant classifier LDA fur-
thermore, this efficiency is advantageous to an embedded system such as the brain-computer
interface BCI which may be wearable and operating with less power consumption.

EEG will capture a significant amount of data please see Fig 5.15, which can be analysed in
the following domains: EEG Time-Frequency

• EEG Temporal Analysis.

• EEG Frequency Analysis.

What is the most reliable, fast and accurate methodology for recognising a particular brain-
wave feature and accurately classifying this feature for the brain-computer interface to evaluate
real time?

Electroencephalograph EEG data recordings have shown a rapid transient during an error-
related potential. Specific electrodes, such as the ’Cz’ located on top of the participants head.
Generally, the ’Cz’,’CPz’,’FCz’ electrodes have detected a high transient dynamic in compari-
son to the other EEG electrodes. Please see Fig 5.1.

Moreover, by using observations in the frequency domain and applying ’Morlet Wavelets’
to the EEG data has highlighted these transients during an ErrP occurrence. Please see Fig 5.2
the graph shows an ErrP event characterised by the trough and peak of the Fz and Cz electrode
EEG signals. The ’Morelet Wavelet’ and the Power Spectral Density(PSD) Welch Hamming was
evaluated.

However, the initial observation would require further investigation of the data across all
the participants to support the evidence that there is a difference in ErrP response which is
influenced by:

• The type of error stimuli presented to the participant affect the amplitude

• The literature suggests the effect of modulating the amplitude of the ERN ([81, 84])
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Moreover, it could be the person’s emotional perception of the stimuli which influence the
error-related potential response.

Figure 5.1: EEG Electrode positions Fz FCz Cz CPz

Figure 5.2: EEG waveforms Fz Cz Morlet Wavelet

Many research studies have investigated BCI with assistive robotics presented in the fol-
lowing survey [7]. [9] have shown the presence of ErrP

One of the challenges in feature extraction and classification can be identified as information
data loss which can occur depending on exactly when the data is sampled from the EEG data
recording. The time is normally locked there is an emergence of a characteristic waveform
developing being clipped and hence the error-related potential waveform could be missed or
clipped resulting in information loss. Please see Fig 5.3
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Figure 5.3: Error Awareness Dot Task(EADT) ERP waveform information loss

5.2 Methodology

The experiment procedural steps carried out during this experiment follow the previous inves-
tigations and are presented in the diagram Fig 5.4

The procedural processes are as follows:
Sampling the EEG brain waveforms from the selected EEG channels. Please see 3.2.1
Pre-processing re-sampling, Band-pass zero phase filter 1 to 10 Hz. Please see 3.2.2
EEG ERP extraction baseline correction, Artefact rejection.
Feature extraction using the relative peak features as shown in chapter 4
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5.2.1 Electroencephalograph EEG feature classification process

Figure 5.4: A schematic diagram of the envisaged adaptive decision surface ADS classifier data
flow

5.2.2 Adaptive decision surface (ADS) mathematical definition

Using the relative peak features shown in chapter 4 whereby the Training set of vertices

VTrain = {Ea, Ca} (5.1)

VTrain = {~v1, ~v2, .., ~vn} (5.2)

The adaptive decision surface ADS represented by a 3 dimensional space

S ⊆ R3[1] (5.3)

where,
S = [xmin, xmax] x [ymin, ymax] x [zmin, zmax] (5.4)

V ∈ S (5.5)

A Bivariate Gaussian distribution data structure is projected on to S around each training
vector ~v ∈ VTrain .
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Classification 1 Error Accuracy EA

~v ∈ Ea (5.6)

~v =

(
f1
f2

)
(5.7)

where,
f1 = µX, feature 1
f2 = µY, feature 2

f (x, y) =
1

2πσxσy
√

1− ρ2
exp
(
− 1

2(1−ρ2)

[
(x−µX)

2

σ2
x

+ (x−µY)
2

σ2
y
− 2ρ(x−µx)(y−µY)

σXσY

] )
(5.8)

where

µ is the mean in each dimension, µ =

(
µX
µY

)
σ2
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Please see the approximate representation Figure 5.5
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Figure 5.5: Shows the effect on the adaptive decision surface ADS after a training data point
has been applied. The Gaussian distribution is with upwardly or inverted in its construction is
determined by the class of the training data. The Gaussian distribution 3D view on the adaptive
decision surface ADS approximation. ADS x,y,z axes 6.12

Figure 5.6: Shows the effect on the adaptive decision surface ADS after all training data points
has been applied. The Gaussian distributions is are upwardly or inverted in its construction
this is determined by the class of the training data. The ADS is now represents a data model
of the training data in three dimensions. Top view of the adaptive decision surface ADS. x,y,z
axes 6.12
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Figure 5.7: Shows the effect on the adaptive decision surface ADS after all training data points
has been applied. The Gaussian distributions is are upwardly or inverted in its construction
this is determined by the class of the training data. The ADS is now represents a data model
of the training data in three dimensions. Top perspective view of the adaptive decision surface
ADS. x,y,z axes 6.12
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Figure 5.8: Shows the testing and evaluation phase of the ADS classifier. ADS x,y,z axes 6.12

5.2.2.1 Preprocessing

The proposed relative peak feature (RPF) selection method and an adaptive decision surface
(ADS) classifier used research data from Ireland [23] generated from an awareness in a ’sus-
tained attention’ task. An LDA classifier has been applied to the aforementioned data to detect
ErrP events. Thus a performance comparison can be established between the LDA and the
proposed RPF selection method and the ADS classifier.

Generally, the cause of the ’Error related potential’ ErrP is that the subject is aware of their
mistake during the sustained attention task. The configuration of the experiment is such that
the subjects will evoke ErrP events during the experiment. The test configuration details are as
follows:

Table 5.1: Experiment Configuration

Parameter Settings
Channel Cz
Re-sampling: 64 Hz
Electrode location: 10/20 international system
Sampling rate: 512 - 1024 Hz
Time intervals: 350 ms window
Starting: 50 ms after feedback
Ending: 400 ms after feedback
Baseline interval: -200 to 0
Referencing: Common average
Band pass filtering: 1 to 10 Hz
Criteria for artefact rejection: 30 micro volts
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5.2.2.2 Feature extraction and classifications

Information data loss can occur depending on exactly when the data is sampled from the EEG
data recording. The time is normally time locked however to improve the capture of the Cz
signal the capture windows is dynamically adjusted to synchronise to the minimum value of
Cz. Hence this will capture the dynamics of the Cz signal Fig 5.9 , Please see algorithm 1.
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Algorithm 1 Adaptive Decision Surface (ADS) algorithm

1: A set of coefficients were estimated heuristically
C1ass 1 Gaussian Scalar = c1GS
C1ass 2 inverted Gaussian Scalar = c2GS
Surface x Scale = xS
Surface y Scale = yS
time shift = tS

2: Select the EEG Cz channel
3: Select the 4 blocks of training data
for 1 : 4 do

Import the EEG data from file
Interpolate the bad channels
Re-sampling
Band-pass filtering
Extract the time events
Initialise variables
for 1 : No go trials do

if User is aware o f an incorrect responce then
Adjust to the time shift tS
Extract the Cz waveform at time tS
find the minimum in the Cz waveform
Synchronise t at the minimum Cz
Extract the adjusted Cz waveform
Save the Cz ’ErrP’ data

for 1 : Go trials do
if User responded correctly then

Extract the Cz waveform
Save the Cz ’None ErrP’ data

4: Import the all the Cz waveforms
for 1 : All Cz wave f orms do

Find the maximum and minimum of Cz waveform
Find the midpoint of Cz waveform
Save the Cz ’relative peaks’ data, Fig 5.10

5: Construct the Adaptive Decision Surface
6: Bias the Adaptive Decision Surface, Fig 5.12
for 1 : All Cz wave f orms do

if ErrP event then
select the ’ErrP’ feature coordinate
Plot a Gaussian scaled by c1GS
please see, Fig 5.11

if None ErrP event then
select the ’None ErrP’ feature coordinate
Plot an inverted Gaussian scaled by c2GS
please see, Fig 5.11

6: Find the optimised level ADS classifier performance, Fig 5.14,Fig 5.13
7: Save the optimised Adaptive Decision Surface
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Figure 5.9: Shows an ErrP event in the temporal domain and indicates the process of synchro-
nising the ErrP to Cz minimum.

5.2.3 Adaptive Decision Surface(ADS) Classifier

Observing the error-related potentials appear to have a high amplitude between the graph
trough and graph peaks. It was particularly noticeable in the ’Cz’ EEG channel recordings.
Hence there will be a significant advantage in remapping the peaks of the graphs relative to
each other. Moreover by remapping the peaks will not be affected by the lateral shifts of the
EEG recording.

Within the capture window, the peak ’Pe’ and the trough ’Ne’ is located using a rectangle as
a frame the central point is located. The data points are re-mapped to a new graph positioning
the previous central points to the origin of the new graph.

This process is repeated for any subsequent event hence remapping the peaks relatively to
each other waveforms. Please see Fig 5.10 for Cz Relative peak plot.

Figure 5.10: EEG waveform Cz Relative Peak Plot
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5.2.3.1 Building the adaptive decision surface classifier

The adaptive decision surface is constructed in a three dimensional space equation 6.12. Infor-
mation from the relative peak plot Fig 5.10, is transformed to the surface of the ADS. Such that
the training data representing an ErrP event classified as class 1 ’ErrP’ positive and a Gaussian
distribution is centralised on the transformed coordinate in the ADS Fig 5.11. Moreover the
non-ErrP events are classified as class 2 ’none ErrP’ negative Fig 5.11 and an inverted Gaussian
distribution are centralised on the transformed coordinate in the ADS.

S ⊆ R3 (5.14)

where in the adaptive decision surface ADS [1].

S = [xmin, xmax] x [ymin, ymax] x [zmin, zmax] (5.15)

Figure 5.11: Adaptive Decision Surface ADS with three vector points. ADS x,y,z axes 6.12

5.2.3.2 Building ’Likelihood’ bias into the adaptive decision surface ADS

The biased ’adaptive decision surface ADS’ will support a likelihood for an event-related po-
tential it will bias a region on the ADS where there is a higher likelihood of an ErrP Fig 5.12.
The bias will be adaptable in a future decision processing system.

Figure 5.12: Adaptive Decision Surface ADS, incorporating a ’Likelihood’ bias
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5.2.3.3 Building the adaptive decision surface ADS

Using the real training data from data Block 1 to 4 from the relative peak plot Fig 5.10 and the
likelihood bias Fig 5.12, it was possible to construct an initial ’adaptive decision surface’ ADS.
The following shows a cross-section through the structure to reveal the structure after the real
data is applied to the surface. please see Fig 5.13

Figure 5.13: Adaptive Decision Surface ADS, cross-section training blocks 1 to 4 with 22 ErrP
points. ADS x,y,z axes 6.12

5.2.3.4 Optimising and calibrating the ADS decision level

The ADS classifier decision level can be adjusted to achieve different performance characteris-
tics Fig 5.14. The decision level is the cross-section horizontally through the ADS.
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Figure 5.14: Calibrating the Adaptive Decision Surface

5.2.3.5 Adapting the surface of the ADS

The ADS classifier has the option to adapt the surface during classification. After the acquisi-
tion of the input vector feature, the ADS will classify the unknown vector. The adaptation will
occur if the surface reading is above a certain threshold for the class. Please see algorithm 3

Algorithm 2 Adaptive Decision Surface (ADS) Adapter algorithm

1: A set of coefficients were estimated heuristically
C1ass 1 threshold = th1
C1ass 2 threshold = th2

2: Acquire the unknown relative peak plot feature coordinate
if AdaptiveDecisionsSur f ace > 0 then

Classify as an ErrP
if AdaptiveDecisionsSur f ace > thresholdth1 then

input feature coordinate
Plot a Gaussian scaled by c1GS,Fig 5.11

if AdaptiveDecisionsSur f ace < 0 then
Classify as an none ErrP
if AdaptiveDecisionsSur f ace < thresholdth2 then

input feature coordinate
Plot an inverted Gaussian scaled by c2GS ,Fig 5.11

5.3 Experiment data

5.3.1 Participants

The data originated from experiments conducted by Dr. Eric Lacey [23]. All participants were
healthy individuals comprising of the following: Fifty-three participants volunteered to partic-
ipate in the study. 53 participants; 29 young (19 female) and 24 older (15 female). The younger
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participants had a mean age of 24.14 years (SD = 5.4), and the older participants mean age was
70.67 years (SD = 4.9). During the study, procedures were approved by the Trinity College
Dublin ethics committee and in accordance with the Declaration of Helsinki [109].

5.4 Results

5.4.1 Results from the adaptive decision surface ADS

The ADS classifier uses 25 times less training features. ADS used the relative peaks of the Cz
electrode channel as a feature input. Interns of features quantities, Person 1 the ADS classifier
used 606 Training features compared to LDA using 15,150 training features.
The average results for the classifiers for all the participants are presented in the following
table.

Table 5.2: Young and elderly classifier results

Classifier Participants
Error

Accuracy
[%]

Correct
Accuracy

[%]
ADS 27 Young 81.85 84.17

24 Elderly 63.68 82.63
LDA 27 Young 69.13 81.46

24 Elderly 55.18 76.95

The threshold setting for the ’Adaptive Decision System’ ADS was: Any data reading off
the surface of the ADS greater than 0 is defined as class 1. Conversely, any data reading off the
surface of the ADS less than 0 is defined a class 2

68



Table 5.3: ADS Classifier with relative peak features performance

Table 5.4: Young Participants

Young
Person

Error
Accuracy

[%]

Correct
Accuracy

[%]
1 100.00 94.51
2 91.67 78.20
3 79.49 81.10
4 89.29 97.34
5 76.92 80.86
6 64.00 82.66
7 78.95 90.51
8 78.13 75.70
9 84.78 82.16
10 66.67 73.52
11 70.00 85.69
12 87.5 92.95
13 90 91.30
14 83.33 80.15
15 77.42 91.73
16 78.95 80.82
17 73.91 82.75
18 89.66 74.39
19 95.24 86.79
20 84.62 72.93
21 73.33 82.95
22 76.19 85.32
23 83.33 86.38
24 85.71 74.37
25 90 92.02
26 80 88.83
27 80.77 86.67

mean 81.85 84.17

Table 5.5: Elderly Participants

Elderly
Person

Error
Accuracy

[%]

Correct
Accuracy

[%]
1 60 79.93
2 68.75 67.9
3 38.46 82.68
4 50 84.33
5 40 88.61
6 34.29 85.58
7 71.43 82.35
8 62.5 86
9 42.86 84.95

10 56.25 81.54
11 60 86.67
12 71.88 80.55
13 64.71 82.98
14 89.29 73.81
15 56.25 81.73
16 70.37 85.92
17 100 87.96
18 80.95 86.01
19 58.82 81.96
20 66.67 79.26
21 70.59 74.68
22 100 85.02
23 62.96 87.27
24 50 85.43

mean 63.68 82.63

5.5 Summary

Using the Cz electrode and a relative peaks features selection with a trained adaptive decision
surface provided an increase in performance for both young and elderly participants and opens
the possibility for a new type of feature selection and classifier which uses fewer features.

5.6 Discussion future investigations

It may be beneficial to investigate image recognition using ’Morlet’ Wavelet to the EEG research
data please see Fig 5.15 there could be some advantages and possible innovative steps in pat-
tern recognition in the time-frequency domain.

The pattern recognition could operate in parallel with theses other subsystems please see
section 5.2 to enhance accurate detection of patterns in the EEG data such as error-related
potentials or motor imagery. The pattern recognition could be achieved by using a ’deep learn-
ing’ neural networks such as a CNN. We propose to further investigate pattern recognition
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with CNN.

Figure 5.15: Shows the Fz and Cz EEG waveforms during an ErrP event and the associated
Morlet Wavelets.
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Chapter 6

Motor imagery based BCI and
performance comparison of 23
classifiers

The purpose of motor imagery is to re-establish meaningful communications in terms of ascertaining the
desired choice from a person with a disability. The methodology requires the persons to imagine moving
parts of their body such that a motor imagery brain computer interface can determine the imagined
movement hence it supports the needs of the person with a disability.

6.1 Introduction

A person with a disability unable to move their limbs such as their arms, hands, feet like they
use to do in the past must be a debilitating condition. Previously the person may have been
fully able bodied such that the person will have learned during the early stages of their life
how to move their limbs. Having the prior skills of physical movement the person with a
disability has the knowledge in their brains. Supporting the persons disability can be achieved
in the following steps. Firstly, with this prior knowledge a person with a disability can imagine
moving their left hand or right hand. Secondly a brain-computer interface using motor imagery
will be able to determine the imagined movement. Finally an assistive device may support the
person with a severe disability objectives.

6.1.1 Re-establish a sense of empowerment

How would a brain-computer interface controlling an assistive supportive device know about
the person’s desire to move their hands? This could be a scenario helping the person with a
disability pick up any object such as a drinking cup. What sort of everyday daily tasks could be
re-enabled for a person with a disability? What kind of assistance could make a positive sup-
portive difference in that persons life, moreover it would be enabling hope and independence.
There is a type of brain computer interface that can be placed over certain regions of the human
brain (see Fig 7.1). Moreover when electrodes are placed at specific locations such as the motor
cortex the person with a disability imagined movements can be detected (see Fig 6.2).

6.1.1.1 Functional regions of the human brain

The human brain can be divided into a number of regions according to the brain functionality.
Frontal lobe: behaviours coordinated information from other area movement concentration ,
thinking , personality
Parietal lobe: sensory skin information, muscle-skeletal system, taste buds, language , pres-
sure, pain, temperature
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Occipital lobe: vision, perception
Brain stem: consciousness breathing , heart rate
Cerebellum: posture balance coordination of movements
Temporal lobe: hearing , language memory

Figure 6.1: Regions of the human brain

6.1.1.2 Locations for motor imagery in the human brain

The human brains functional regions can be further subdivided into specific functions for ex-
ample the primary motor cortex (see Fig 6.2).
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Figure 6.2: Regions of the human brain
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Figure 6.3: Human brain motor imagery labelled

6.1.2 Motor Imagery Brain Computer Interface (MI-BCI) Components

As an overview for motor imagery brain-computer interface comprises of a number of compo-
nents used to establish the MI-BCI. Firstly there should be a method of acquiring information
about the brains activity. One of the methods of acquisition is by using EEG which is relatively
low cost and portable. Secondly, EEG signal processing which consists of at least three com-
ponents which are preprocessing features extraction and classification. Finally the feedback to
the user which can be any number of stimuli in terms of audio, visual or tactile. Moreover,
the feedback is provided by systems, for example, the feedback could be the user observing
a graphical user interface from a portable computer or the feedback could be as an assistive
robotic device such as a prosthetic hand or a robotic arm or mobile robot. Furthermore, the
feedback which is driven by the output from the MI-BCI classification. Please see Fig 6.4 for an
overview of a MI-BCI system
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Figure 6.4: A schematic diagram of an EEG based MI-BCI System

6.1.2.1 MI-BCI Electrode channel location

The basic EEG channels are located at certain locations on top of the scalp in the area near to the
motor cortex under electrodes C3 and C4, Fig 6.5 The right hand motor imagery can be detected
by electrode C3 and left hand motor imagery can be detected by electrode C4. Electrode Cz is
associated the foot motor imagery.

Figure 6.5: EEG Channel C3 and C4 location on top of the scalp

6.1.2.2 Feature extraction using band power

In the previous section we explained about the components of BCI 2.2.4 and methods of fea-
ture extraction 2.2.4.2 the Power spectral density (PSD): PSD in fig 6.6 has been applied to
the a data set [23] in the PSD using the Welch method with Hamming in order extract features.
Jatupaiboon et al [111] proposed a real-time happiness detection BCI system was researched

75



using PSD. In [112] used PSD over 250 milliseconds of data with a temporal shift of 32.1 mil-
liseconds in the bandpass of 4 to 40 Hz using 19 electrodes. The authors used the Hidden
Markov Models (HMM) to discriminated between different motor imageries In [113] used the
Welch periodogram algorithm to estimate the power spectrum density of each surface Lapla-
cian transformed channel. Further, a neural classifiers were used in this asynchronous BCI.

Figure 6.6: Morlet wavelet ErrP Fz Cz by A Ashley

6.1.2.3 MI-BCI left and right hand detection performance

To establish the very basic motor imagery BCI will require the following components Calculate
the band power features P in the specific frequency bands µ (7.5 - 12.5) and β (12 - 30 Hz). We
are looking a specific EEG Channels such as C3 for right hand motor imagery and C4 for left
hand motor imagery. A feature vector can be constructed from the power such as:

V = [Pc3−µ, Pc4−µ, Pc3−β, Pc4−β] (6.1)

A classifier such as linear discriminant analysis LDA can be used to determine the classi-
fication based upon the input feature vector V equation 6.1 comprising of the power from the
specifies electrodes and frequency range.

This basic configuration for motor imagery does not generate a high performance and it is
not really optimal for the following reasons. EEG information maybe missing because only C3
and C4 channels are used. There is a risk of being subject dependent by using only C3 and C4
channels and also using fixed frequency bands frequency bands µ (7.5 - 12.5) and β (12 - 30 Hz).
The above may work for certain people but becomes less universal for a MI-BCI.

The basic MI-BCI performance with the following configuration has been shown to have
and accuracy of about 61% [114]

� BCI competition IV [115] data set 2a
� 9 subjects in a motor imagery task using left and right hand motor imagery
� 72 trials per class for both training and testing
� LDA classification algorithm [116] [117]

What can be done to improves the performance beyond the 61% for detecting motor im-
agery events? Perhaps using more features from other EEG channels near to C3 and C4? The
possible solution of using more channels will inevitably require more training and testing data.
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One possible solution would be to use a well established method called spatial filtering [114]
[69] [20].

In a method called linear spatial filtering a number of additional channels are defined as
a linear combination (see Equation 6.2)of other electrodes such as C3 and C4 as explained in
Lottes lectures [114]. The EEG signals emanating exactly from the expected location, the effect
of the brain and the skull bone affects the exact location of the EEG signals the method of linear
spatial filtering enables the ability to acquire the signals of interest such as C3 and C4.

X′ = ∑
i

wixi = wX (6.2)

6.1.2.4 MI-BCI Improving performance with Spatial filters

The purpose of spatial filters is to reduce unnecessary spatial EEG electrical activity and high-
light a particular location of interest. In addition, the spatial filter will maximize the signal to
noise ratio such that accuracy of EEG-based communication will be improved shown in [20].
The classification process will benefit from the improved EEG signal with a more accurate clas-
sification. There are a number of well know spatial filters such as the basic ’Bipolar’ filters and
the ’Laplacian’ filters. In addition, there is a supervised spatial filter and the common spatial
filter (CSP) which provides an increase in performance as shown in [118].

6.1.2.5 MI-BCI basic spatial filters

Bipolar filters use the EEG information from a pair of electrodes for example if we are inter-
ested in capturing the EEG signal from C3 and C4 were acquired by the following:

C3 = FC3 - CP3
C4 = FC4 - CP4

Laplacian filters use more EEG information essentially the filters enhance the local electrical
activity detected by the EEG system and reduce defuse spatial activity as explained in [114].

C3 = 4*C3 - FC3 - C5 -C1 -CP3

There is also other variations ’Laplacian’ filter such as ’Large Laplacian’ which use electrodes
from further away as shown in [20].
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6.1.2.6 MI-BCI supervised spatial filters

Training a classifier will require the training data that is labelled. The labelled training data is
used during the supervised training phase to adjust the weights of the common spatial filter.
This process finds the spatial filter weights W which provided a maximum for class 1 and a
minimum for class 2 of a two class system in order to achieve a maximum class separation.
For example A CSP filter using band-power features will use the variance of the band passed
signal such the spatial filters are adjusted as the CSP changes the weights W so that there is
an optimised discrimination between the classes based on band-power features as explained in
[20].

Let X1 be of size (n, t1) of a sample window frame of multivariate signals comprising of n
EEG channels in parallel for a duration of t1 discrete samples.

Let X2 be of size (n, t2) of a sample window frame of multivariate signals comprising of n
EEG channels in parallel for a duration of t2 discrete samples.

The objective of the common spatial pattern(CSP) algorithm will be to find the weights
represented by wT such that the variance of X1 and X2 is at the maximum separation between
the two classes
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Figure 6.7: Common Spatial Patterns

6.1.2.7 MI-BCI When classification goes wrong

In 6.1.2 shows a MI-BCI with the assumption that motor imagery classification operates ac-
curately and never generating the wrong classification. Due to the none stationarity and the
myriad of problems that can occur during EEG acquisition, there is a risk of a misclassification.
The consequences of the systems executing a misclassification will be the wrong feedback in
the form of an audio, visual or tactile is presented to the user. For example, the wrong choice
is displayed to the user or the assistive robotic device moves in the wrong direction moreover
it maybe an assistive prosthetic hand which opens the robotic hand and drops the beverage on
the table spilling the drink. There is a possible solution to the problem of MI-BCI misclassifica-
tion which will use the error signal from the user’s brain as a means of abating the error and
hence mitigating the mistake and reduce the consequences of the error cascading across the
system. Furthermore, it would be prudent to adapt the MI-BCI classifiers to reduce the likeli-
hood of a future misclassification. Such that the MI-BCI will be more robust and less frustrating
for the users.
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6.2 Methodology

The possibility of detecting the changes in brain activity following muscle movements such as
moving an arm or leg is well known in research as shown in [3]. Changes in the cortex area
of the brain occur when a person moves their limbs can be detected with EEG [30]. Sensori-
motor rhythms associated with oscillations in brain activity involving both sensory and motor
functions comprises:

µ (7.5 - 12.5) Located over the motor cortex of the brain are synchronized pattens of electrical
activity associated with a persons voluntary movement such as opening a closing your
right hand.

β Range in frequency from (12 - 30 Hz) discovered bye Hans Berger he also invented EEG in
1924. During early experiments it was noticed that when a persons eyes were closed the
alpha waves with neural oscillation in 7.5 - 12.5 Hz reduced with movement or imagined
movement and open eyes. Moreover the alpha wave is replaced by the beta wave with
a reduced amplitude and higher frequency was observed when the person opened their
eyes. Beta waves are associated with muscle movement furthermore beta waves increase
when a person is voluntarily suppressing or resisting movement

β Low Beta Waves (12.5–16 Hz) associated with various levels of conciseness.
β Beta Waves (16.5–20 Hz) associated with various levels of conciseness.
β High Beta Waves (20.5–28 Hz) associated with various levels of conciseness.

Figure 6.8: Motor Imagery Sensorimotor rhythm

These Sensorimotor rhythms can be detected in the EEG during physical movement or
imagined movement [119]. Before a person moves there is a decrease in µ (7.5 - 12.5) and β
(12 - 30 Hz) rhythms in the cortical area Fig 2.1 show the cortical region. The decrease is la-
belled as event-related desynchronization (ERD). After the movement followed by relaxation
the rhythm increases and is known as event-related synchronization (ERS) [119]. In addition,
ERD and ERS can occur by imagining the physical movement [3], [120]. Hence an application
in BCI can enable the detection of a person intentions and therefore restore physical movement
via the BCI and assistive robotic device. Furthermore, a BCI is able to detect an ErrP when
those intentions are not interpreted.

Ang et al [42] showed method for using a filter bank common spatial patterns (FBCSP) al-
gorithm using 4 progressive stages that incorporated signal processing and machine learning
using EEG data from the BCI competition 2008 Datasets 2a and 2b Fig 6.9 and Fig 6.10. The
filter bank [42] comprising Chebyshev Type II bandpass filters, spatial filtering used a CSP al-
gorithm, CSP feature selection. A CSP projection matrix for each filter band, the discriminative

80



CSP features and the classifier model labelling the training data according to the motor im-
agery. The acquired parameters during the training phase and used the evaluation phase [42].
There are other motor imagery data sets available, however, the Graz dataset A is well known
in the BCI research community.

Figure 6.9: BCI competition 2008 Graz dataset A

The subject imagines moving parts of their body such as their; left-hand class1, right-hand
class 2, both feet class 3 or tongue class 4. The movements are synchronised according to a
predetermined timing scheme paradigm per trial per body movement class Fig 6.10

Figure 6.10: BCI competition 2008 Graz dataset A

6.3 Classifier performance experiments using 23 motor imagery clas-
sifiers

During the research into the performance of motor imagery classifiers, an experiment was car-
ried out using MATLAB ® classifiers to determine the performance of each classifier. The data
used is from the ’BCI competition 2008 Graz dataset (A) Motor imagery’.

81



6.4 Results from the 23 motor imagery classifiers

The results from the 23 motor imagery classifiers are presented in Appendix E .

6.5 Summary of the 23 motor imagery classifier comparisons

Results show SVM Linear and SVM Quadratic are approximately balanced between the Class
1 and Class 2 at approximately 80% performance for both classes. In section 6.6, a novel three
dimensional probability-based classifier is proposed for improving motor imagery-based BCI.

6.6 A novel three dimensional probability-based classifier for im-
proving motor imagery-based BCI

Motor imagery BCI based assistive robotics solution has the potential to empower the upper
mobility independence of a person with a disability. The objective of this work was to compare
the classification performance of well-established classifiers with a novel prototype classifier.
An adaptive decision surface ADS classifier with the future objective to augment an assistive
robotic prosthetic hand to open and close to grasp an object in cooperation with LIDAR sensors
is proposed. The ADS was trained with a training data set from the BCI competition IV dataset
2a from Graz University of Technology.Main results: The classification accuracy in the offline
tests reached 76.06 % class 1 and 81.50 % class 2 using a non-adaptive ADS and 79.55 % class 1
and 99.69 % class 2 using an adaptive ADS classifiers. We show a prototype adaptive decision
classifier used with motor imagery datasets.

6.7 Introduction

A person with a disability unable to move their limbs such as their arms, hands, feet like they
used to do in the past must be a debilitating condition. Previously the person may have been
fully able-bodied such that the person will have learned during the early stages of their life
how to move their limbs. Having the prior skills of physical movement the person with a
disability has the knowledge in their brains. Supporting a person’s disability can be achieved
in the following steps. Firstly, with this prior knowledge, a person with a disability can imagine
opening or closing their left or right hand. Secondly, a brain-computer interface using motor
imagery will be able to determine the imagined movement. Finally, an assistive device may
support the person’s objectives.

6.8 Methodology

6.8.1 MI-BCI Improving performance with Spatial filters

The purpose of spatial filters is to reduce unnecessary spatial EEG electrical activity and high-
light a particular location of interest. In addition, the spatial filter will maximize the signal to
noise ratio such that accuracy of EEG-based communication will be improved shown in [20].
The classification process will benefit from the improved EEG signal with a more accurate clas-
sification.

6.8.2 Motor Imagery Adaptive decision surface(MI-ADS) mathematical definition

Training set of vertices
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Figure 6.11: Training data Class 1 and Class 2

VTrain = {C1, C2} (6.3)

where,
C1 = Class 1, Right hand motor imagery
C2 = Class 2, Left hand motor imagery

C1 = {~v1, ~v2, .., ~vn} (6.4)

C2 = {~v1, ~v2, .., ~vn} (6.5)

Classification 1, Right hand motor imagery

~µC1 ∈ C1 (6.6)

~µC1 =

(
f1
f2

)
(6.7)

where,
f1 = µ f eature1
f2 = µ f eature2

~µC1 =
1
n

n

∑
i=n

~vi (6.8)

Classification 2, Left hand motor imagery

~µC2 ∈ C2 (6.9)

~µC2 =

(
f1
f2

)
(6.10)
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where,
f1 = µ f eature1
f2 = µ f eature2

~µC2 =
1
n

n

∑
i=n

~vi (6.11)

The adaptive decision surface ADS represented by a 3 dimensional space

S ⊆ R3[1] (6.12)

where,
S = [xmin, xmax] x [ymin, ymax] x [zmin, zmax] (6.13)

V ∈ S (6.14)

A Bivariate Gaussian distribution data structure is projected on to S around ~µC1 ∈ C1 and
~µC2 ∈ C2

6.8.3 Building ’Likelihood’ bias into the ADS model for motor imagery

When the ADS is used for motor imagery the likelihood is shown in Fig 6.12 The bias will be
adaptable in a future decision processing system.

Figure 6.12: ADS Likelihood Bias
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6.8.4 A constructed motor imagery adaptive decision surface model

Figure 6.13: Trained motor-imagery adaptive decision surface

6.8.5 Motor imagery test data

Figure 6.14: ADS Test data
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Figure 6.15: Trained motor-imagery adaptive decision surface with test data

6.8.6 Adapting the surface of the ADS

The ADS classifier has the option to adapt the surface during classification. After the acquisi-
tion of the input vector feature, the ADS will classify the unknown vector. The adaptation will
occur if the surface reading is above a certain threshold for the particular class.

Algorithm 3 Adaptive Decision Surface (ADS) Adapter algorithm

1: A set of coefficients were estimated heuristically
C1ass 1 threshold = th1
C1ass 2 threshold = th2

2: Acquire the unknown feature coordinate
if AdaptiveDecisionsSur f ace > 0 then

Classify as class 1
if AdaptiveDecisionsSur f ace > thresholdth1 then

input feature coordinate
Plot a Gaussian scaled by c1GS on the ADS ,Fig 6.13

if AdaptiveDecisionsSur f ace < 0 then
Classify as class 2
if AdaptiveDecisionsSur f ace < thresholdth2 then

input feature coordinate
Plot an inverted Gaussian scaled by c2GS on the ADS ,Fig 6.13
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6.9 Summary

6.9.1 Results from the motor imagery adaptive decision surface MI ADS

The classification accuracy in the offline tests reached 76.06 % class 1 and 81.50 % using a non
adaptive ADS and 79.55 % class 1 and 99.69 % using an adaptive ADS classifiers.

Figure 6.16: BCI competition IV dataset 2a from Graz University of Technology

Figure 6.17: BCI competition IV dataset 2a from Graz University of Technology
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Figure 6.18: 25 Classifier MI performance comparison BCI competition IV dataset 2a from Graz
University of Technology

6.10 Discussion

The chapter showed a probability-based classifier for improving motor imagery based BCI
performance compared with other classifiers. The classification accuracy in the offline tests
reached 76.06 % class 1 and 81.50 % class 2 using a non-adaptive ADS and 79.55 % class 1 and
99.69 % class 2 using an adaptive ADS classifier. Finally, a direction for future development an
artificial intelligent controller and this classifier is shown in Fig 6.20. This AI controller could
decide to combine proximity sensor data to augment certain features to close the prosthetic
hand on a nearby object Fig 6.19. Other inputs such as electromyogram could be part of a
multi-modal input used by an AI controller. In addition AI control may update the trained
ADS classifier in the event of error correction during usage.
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Figure 6.19: Prosthetic hand with a LIDAR sensor.

Figure 6.20: BCI intelligent controller system.
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6.11 MI ADS Classifier Results

Figure 6.21: ADS Test data

Figure 6.22: ADS Test data
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Chapter 7

Shared control image decoding and
tactile LiDAR of kitchen utensils
for an assistive prosthetic hand

This chapter describes image decoding for object identification, position and orientation based on the
discovery made by David Hubel and Torsten Wiesel who research the primary visual cortex and receiving
the Nobel prize for their work. This work is distinguished by three key contributions. The first is image
feature selection called synthesise image decoding layers which enables a stylus pattern to select features
with a predefined threshold for the image. The second is a vertical stylus pattern to select vertically
orientated features enabling the functional process of orientation cells inspired by the contribution of [].
Third signals from LiDAR sensors to enable the identification and verification of the utensil such the
visual system is presented with a real physical three-dimensional object.

7.1 Introduction

Disability can occur to any person at any stage in life. Debilitating conditions spinal cord injury,
brain-stem strokes, accidents or illness resulting in upper limb amputation will inhibit a per-
son from interacting with their environment. Brain-computer interface (BCI) enables a direct
interaction of the human brain with the external environment. Moreover an assistive robotic
device with the capability to interact with the persons environment by recognising utensils
using image processing and LiDAR Fig 7.4

Furthermore reduce the workload of manipulating the objects on behalf of the person with
a disability will empower and support the people in the future.

Many research studies have investigated BCI with assistive robotics presented in the fol-
lowing survey [7]. Microsoft ® Kinect ® has the ability to acquire data and track the motion of
objects and has been applied to many applications based on user physical interactions [121].

Figure 7.1: Regions of the human brain
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Figure 7.2: Regions of the human brain

Object detection and classification is well established moreover convolution neural network
has the ability to recognise objects in images and has been used in many research fields and in
industrial patents [122] in [123]. Matrix pattern recognition, decision making and adaptive
learning process has also been applied to identify objects and dynamically update its own
model concepts are updated with previously unknown input.

The stages of visual processing has been researched for many years. Visual processing con-
sists of the following: Light entering the eye through the lens is focus on the back of the eye
on the retina. Visible light is part of the electromagnetic spectrum and generally the human
eye can detects wavelengths between 480 to 740 nanometres. Photoreceptor cells in the retina
convert visible electromagnet radiation into signals such as action potentials for the biological
system. Action potential signals go down axons of the optic nerve to the lateral genicular nu-
cleolus (LGN) of the thalamus. The axons from the thalamus are connected to different areas
of the primary visual cortex which are known as the occipital lobe of the brain the primary
visual cortex is comprising of different regions known as v1 primary input , v2, v3, v4 Fig 7.2
collectively known as the functional subdivisions of the visual cortex, Hubel Wiesel made a
discovery of cells in the visual cortex is sensitive to edges and the orientation of a visual stim-
ulation shown in [21]

Figure 7.3: Regions of the human brain, Hubel Wiesel [21]
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Figure 7.4: Assistive prosthetic hand palm camera

The remainder of this paper is organized as follows. Section II describes the method. Sec-
tion III discussion Section IV. finally Section V concludes this paper

7.2 Methodology

7.2.1 Initial image processing stage

Initial image processing will remove the shadows to reduce the detrimental effect on subse-
quent image processing stages, such as determine the boundary of the object. The kitchen
utensil is below the prosthetic hands camera to identify the object and ascertain the orientation
relative to the hand. Fig 7.6 (a). The range of the grey scale is adjusted and a threshold deter-
mined Fig 7.6 (b). Contrast adjustment removed shadows in the image sample Fig 7.6 (c). A
basic image segmentation by setting a threshold between a certain range in comparison to the
background Fig 7.6 (d)
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(a) Colour (b) Grey (c) Shadows

(d) Infra-red Image

(e) Infra-red manually remove reflections

Figure 7.5

(a) interference (b) Image analysis
(c) improve-
ment

Figure 7.6

94



Algorithm 4 Adjust the image contrast phase 1

Bitmap Picture = BitMap
Boolean switch = sw1
pixel x position = x
pixel y position = y
1: A set of coefficients were estimated heuristically
contrast Threshold = Theshold
2:Adjust the contrast horizontally from left to right.
for y = 1 : BitMap.Height-1 increment y by 1 do

sw1 = true
for x = 1 : BitMap.Width increment x by 2 do

BitMap get pixel value P0(x− 1,y)
BitMap get pixel value P1(x,y)
n = P0 − P1
if (n < 0) then

n = n multiplied by (-1)
if (n > Theshold) then

if (sw1 = true) then
BitMap set the pixel(x, y) P1 to white

sw1 = false
else

if (sw1 = true) then
BitMap set pixel(x− 1, y ) P0 white
BitMap set pixel(x, y) P1 white

2:Adjust the contrast horizontally from right to left.
for y = 1 : BitMap.Height-1 increment y by 1 do

sw1 = true
for x = BitMap.Width− 1 : 1 decrement x by(-2) do

BitMap get pixel value P0(x− 1,y)
BitMap get pixel value P1(x,y)
n = P0 − P1
if (n < 0) then

n = n multiplied by (-1)
if (n > Theshold) then

if (sw1 = true) then
BitMap set the pixel(x, y) P1 to white

sw1 = false
else

if (sw1 = true) then
BitMap set pixel(x− 1, y ) P0 white
BitMap set pixel(x, y) P1 white

Figure 7.7: Patch 3x3 array
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Algorithm 5 Adjust the image contrast by scaling phase 2

Bitmap picture = BitMap
Bitmap picture Height = BMapH
Bitmap picture Width = BMapW
Maximum contrast value = Cmax set to 0
Minimum contrast value = Cmin set to 255
Span contrast = Cspan
Scale contrast = Cscale
New contrast value = vn
Evaluation patch size = Ps set to 3 pixels
1:Find the average patch maximum and minimum.
for y = ps : BMapH − Ps increment y by Ps do

for x = ps : BMapW − Ps increment x by Ps do
BitMap get pixel value P1(x− 1,y− 1)
BitMap get pixel value P2 (x, y− 1)
BitMap get pixel value P3(x + 1, y− 1)
BitMap get pixel value P4(x− 1, y)
BitMap get pixel value P5(x, y);
BitMap get pixel value P6(x + 1, y)
BitMap get pixel value P7(x− 1, y + 1)
BitMap get pixel value P8(x, y + 1)
BitMap get pixel value P9(x + 1, y + 1)
patch average = (P1 + P2 + P3 + P4 + P5 + P6 + P7 + P8 + P9 )/9
if (Cmax < patch average ) then

Cmax = patch average
if (Cmin > patch average ) then

Cmin = patch average
2: Calculate the span and scale.
Cspan = Cmax - Cmin
Cscale = 255 / Cspan
3: Adjust the contrast.
for y = ps : BMapH increment y by 1 do

for x = ps : BMapW increment x by 1 do
BitMap get pixel value P1(x, y);
P1 = P1 - Cmin
vn = P1 multiply by Cscale
if ((vn > 0) AND (vn < 255)) then

BitMap set pixel value P1(x, y) = vn

(a) Grey image before enhancement. (b) After contrast enhancement.

Figure 7.8: Contrast adjustment
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Algorithm 6 Image feature selection by orientation lines.

Bitmap picture = BitMap
Bitmap picture Height = BMapH
Bitmap picture Width = BMapW
pixel x position = x
pixel y position = y
Bitmap picture L1 = BitMapL1
Bitmap picture L2 = BitMapL2
Bitmap picture L3 = BitMapL3
Bitmap picture L4 = BitMapL4
Bitmap picture Ls = BitMapLs
Bitmap picture SynthNet = BitMapSynthNet
Boolean switch sw1 = false
Boolean switch sw2 = false
Boolean switch sw3 = false
Boolean switch sw4 = false
Evaluation patch size = Ps set to 3 pixels
Upper limit threshold P5u
Lower limit threshold P5l
1: Find the pixel values in the 3x3 patch.
for y = 1 : BMapH − Ps increment y by 1 do

for x = 1 : BMapW − Ps increment x by 1 do
BitMap get pixel value P1(x− 1,y− 1)
BitMap get pixel value P2 (x, y− 1)
BitMap get pixel value P3(x + 1, y− 1)
BitMap get pixel value P4(x− 1, y)
BitMap get pixel value P5(x, y);
BitMap get pixel value P6(x + 1, y)
BitMap get pixel value P7(x− 1, y + 1)
BitMap get pixel value P8(x, y + 1)
BitMap get pixel value P9(x + 1, y + 1)
2: Thresholds for feature detection.
P5u = P5 + (P5 x 0.3)
P5l = P5 - (P5 x 0.3)
3: Horizontal evaluation
if ((P4 <> P5) AND (P5 <> P6)) then

if (((P4 < P5u) AND (P4 > P5l)) AND ((P6 < P5u) AND (P6 > P5l))) then
BitMapL1 Set Pixel(x - 1, y) P4 Black
BitMapL1 Set Pixel(x, y) P5 Black
BitMapL1 Set Pixel(x + 1, y) P6 Black
swL1 = true
n1 = (n1 + 1)

4: Vertical evaluation
if ((P2 <> P5) AND (P5 <> P8)) then

if (((P2 < P5u) AND (P2 > P5l)) AND ((P8 < P5u) AND (P8 > P5l))) then
BitMapL2 Set Pixel(x, y-1) P2 Black
BitMapL2 Set Pixel(x, y) P5 Black
BitMapL2 Set Pixel(x, y+1) P8 Black
swL2 = true
n2 = (n2 + 1)
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5: Cross top right, bottom left
if ((P3 <> P5) AND (P5 <> P7)) then

if (((P3 < P5u) AND (P3 > P5l)) AND ((P7 < P5u) AND (P7 > P5l))) then
BitMapL3 Set Pixel(x+1, y-1) P3 Black
BitMapL3 Set Pixel(x, y) P5 Black
BitMapL3 Set Pixel(x-1, y+1) P7 Black
swL3 = true
n3 = (n3 + 1)

6: Cross top left, bottom right
if ((P1 <> P5) AND (P5 <> P9)) then

if (((P1 < P5u) AND (P1 > P5l)) AND ((P9 < P5u) AND (P9 > P5l))) then
BitMapL4 Set Pixel(x-1, y-1) P1 Black
BitMapL4 Set Pixel(x, y) P5 Black
BitMapL4 Set Pixel(x+1, y+1) P9 Black
swL4 = true
n4 = (n4 + 1)

if (sw1 = true) then
BitMapLs Set Pixel(x, y) Black

if (sw2 = true) then
BitMapLs Set Pixel(x, y) Black

if (sw3 = true) then
BitMapLs Set Pixel(x, y) Black

if (sw4 = true) then
BitMapLs Set Pixel(x, y) Black

sw1 = false
sw2 = false
sw3 = false
sw4 = false

7: Evaluate bitmap BitMapLs 3x3 patch.
for y = 1 : BMapH − Ps increment y by Ps do

for x = 1 : BMapW − Ps increment x by Ps do
BitMapLs get pixel value P1(x− 1,y− 1)
BitMapLs get pixel value P2 (x, y− 1)
BitMapLs get pixel value P3(x + 1, y− 1)
BitMapLs get pixel value P4(x− 1, y)
BitMapLs get pixel value P5(x, y);
BitMapLs get pixel value P6(x + 1, y)
BitMapLs get pixel value P7(x− 1, y + 1)
BitMapLs get pixel value P8(x, y + 1)
BitMapLs get pixel value P9(x + 1, y + 1)
if ((p1 = 255) AND (p5 = 255)) then

c1 = c1 + 1
BitMapSynthNet Set Pixel(x, y) Black

if ((p2 = 255) AND (p5 = 255)) then
c2 = c2 + 1
BitMapSythNet Set Pixel(x, y) Black

if ((p3 = 255) AND (p5 = 255)) then
c2 = c2 + 1
BitMapSythNet Set Pixel(x, y) Black

if ((p4 = 255) AND (p5 = 255)) then
c4 = c4 + 1
BitMapSythNet Set Pixel(x, y) Black
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if ((p5 = 255) AND (p5 = 255)) then
c5 = c5 + 1
BitMapSythNet Set Pixel(x, y) Reference

if ((p6 = 255) AND (p5 = 255)) then
c6 = c6 + 1
BitMapSythNet Set Pixel(x, y) Black

if ((p7 = 255) AND (p5 = 255)) then
c7 = c7 + 1
BitMapSythNet Set Pixel(x, y) Black

if ((p8 = 255) AND (p5 = 255)) then
c8 = c8 + 1
BitMapSythNet Set Pixel(x, y) Black

if ((p9 = 255) AND (p5 = 255)) then
c9 = c9 + 1
BitMapSythNet Set Pixel(x, y) Black

Figure 7.9: fork feature metrics
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(a) L1 (b) L2 (c) L2 (d) L2

(e) Line L1 (f) Line L2 (g) Line L3 (h) Line L4

(i) Synthesized combination from layer L2,L2,L3,L4

(j) Synthesized combination from layer L2,L2,L3,L4

Figure 7.10: Filter orientation line processing
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Algorithm 7 Image processing

Bitmap picture = BitMapsynth
Bitmap picture Height = BMapH
Bitmap picture Width = BMapW
pixel x position = x
pixel y position = y
Patch size = Ps
1: Horizontal scan
n = 0
last0 = 0

for y = 1 : BitMapsynth.Height-Ps increment y by 1 do
sw1 = false
for x = 1 : BitMapsynth.Width-Ps increment x by 1 do

BitMapsynth get pixel value Vscan(x,y)
if (Vscan = 255) then

n = n + 1
sw1 = true
lastx = x

else
if (sw1 = true) then

nmid = (n / 2)
if ((nmid > 1) AND ((lastx - nmid) > 1)) then

BitMapsynth set pixel Psynth((lastx - nmid) ,y)=Black

n = 0
sw1 = false

1: Vertical scan
n = 0
lasty = 0

for x = 1 : BitMapsynth.Height-Ps increment x by 1 do
sw1 = false
for y = 1 : BitMapsynth.Width-Ps increment y by 1 do

BitMapsynth get pixel value Vscan(x,y)
if (Vscan = 255) then

n = n + 1
sw1 = true
lasty = y

else
if (sw1 = true) then

nmid = (n / 2)
if ((nmid > 1) AND ((lasty - nmid) > 1)) then

BitMapsynth set pixel Psynth(x,(lasty - nmid))=Black

n = 0
sw1 = false

1: Vertical cells orientation lines indicator
for x = 1 : pnlProcess.Height increment x by 2 do

Draw vertical lines to represent the orientation cells
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2: Vertical orientation cells. Fig 7.11
n = 0
last0 = 0
Vertical orientation cells activity = nln[x]
for y = 1 : BitMapsynth.Width-10 inc.. y by 4 do

for x = 1 : BitMapsynth.Height-2 inc.. x by 1 do
BitMapsynth get pixel value C0(x,y)
BitMapsynth get pixel value C1(x,y + 1)
BitMapsynth get pixel value C2(x,y + 2)
BitMapsynth get pixel value C3(x,y + 3)
BitMapsynth get pixel value C4(x + 1,y)
BitMapsynth get pixel value C5(x + 1,y + 1)
BitMapsynth get pixel value C6(x + 1,y + 2)
BitMapsynth get pixel value C7(x + 1,y + 3)
if ( ((C0 = 0 ) OR (C4 = 0 ) AND ((C1 = 0 ) OR (C5 = 0 ) AND ((C2 = 0 ) OR (C6 = 0 )

AND ((C3 = 0 ) OR (C7 = 0 ) then
3: Indicator Marker
if ((x > lastx - 3) AND (x < lastx + 3)) then

Indicate vertical orientation cell firing
Activity nlv[x] = nlv[x] + 1

lastx = x
Find the position of the maximum firing cells
Maximum vertical cell quantity = maxlvqty = 0
Location maximum firing cells = mxLocate = 0
for x = 1 : BitMapsynth.Width increment x by 1 do

if (maxlvqty < lastx - 3) then
maximum value maxlvqty = nln[x]
location mxLocate = x
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Figure 7.11: Vertical orientation cells

Figure 7.12: Vertical cells indicator

7.2.2 Tactile LiDAR signals

A signal profiles are acquired from the LIDAR sensor on the index finger tip Fig 7.13 transmit-
ting he laser beam on to the object. The prosthetic hand will execute lateral movement such as
longitudinally and laterally to acquire the surface profile properties of the kitchen utensil.

Figure 7.13: Tactile LIDAR from the finger tip

7.3 Summary

The assistive robotic device has the ability to retrieve an object for the disables person. More-
over the prosthetic hand will be aware of how to handle the objects. Fig 7.14 shows a selection
of kitchen utensils.
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Figure 7.14: Cutlery

Figure 7.15: Vertical orientation cells firing with the cutlery image

7.3.1 Kitchen utensil tactile LiDAR scanning

A selection of kitchen utensils was scanned by a micro LiDAR. The signal could be used in the
future development to support the identification of the utensil in cooperation with the visual
recognition system to support the evidence that the object is an actual three-dimensional object
and not just a picture of an object.

Fig 7.16 Shows the LiDAR output from spoon passing under the LiDAR three times it is
characterised with twin peak link by a ’U’ shape. Other characteristics may be obtained from
other utensils.
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Figure 7.16: Tactile LiDAR from knife lateral scan
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

The aim of this research was to improve the classification accuracy with the minimum features
from EEG data for error detection in the elderly and young participants using the established
classifiers in addition to developing a novel adaptive decision surface classifier(ADS). The aims
and objectives of this research work presented in this MPhil thesis were to improve the accuracy
in terms of the following objectives:

1) Improving the accuracy of EEG-based error detection Please see 1.3.1
2) Improving the accuracy of motor imagery BCI. Please see 1.3.3
3) Shared control strategy such that the prosthetic robotic hand may recognise kitchen utensils

to support the user interaction with less workload. Please see 1.3.4

To address error detection, we propose improving EEG-based error detection using the pro-
posed novel feature extraction method. Thus in chapter 4, we propose a novel method called
the relative peak features (RPF). Further, we combine the aforementioned proposed feature ex-
traction method with a proposed novel classification algorithm in chapter 5 called the adaptive
decision surface ADS Classifier.

To address the accuracy in motor imagery, we propose to use common spatial filters com-
bined with the adaptive decision surface ADS Classifier. Spatial filters are used to reduce un-
necessary spatial EEG electrical activity and highlight a particular location of interest. In addi-
tion, the spatial filter will maximize the signal to noise ratio such that accuracy of EEG-based
communication will be improved shown in [20]. The classification process will benefit from the
improved EEG signal with a more accurate classification. Please see chapter 6.6 a novel three
dimensional probability-based classifier for improving motor imagery-based BCI.

Chapter 2 presented different types of BCI systems to determine the merits of each type.
An investigation into the state of art literature is further provided by chapter 2 was highlighted
by the report’s aims and objectives 1.3 such that the literature review will identify any gaps in
features extraction methods and error detection classification algorithms.

In chapter3, we evaluated the deficiencies of state of the art error detection algorithms
between young and elderly. The process of evaluating the performance of detecting error-
related potentials (ErrP) using an ’Linear Discriminant Analysis’ LDA-based algorithm to de-
tect the ErrP in EEG recordings has shown the present performance in young Fig 3.7 and
elderly Fig 3.9 in terms ErrP detection. The results showed that there is a significant difference
between the young and old participants. The implications are that new BCI systems could take
this finding into account and hence improve their performance by taking into account the age
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group of the user.

We proposed in chapter4 a novel features selection method for Improving EEG-based error
detection using proposed novel relative peak features (RPF). The table of classifiers Fig 8.1
below and in Fig 4.5 shows the relative peak feature performance presented on the right side
of the bar chart below in Fig 8.2 and in Fig 4.6 to visually clarify the comparison between the
different classifiers using the relative peak features, in addition to presenting the comparison
between the different feature extraction methods. The relative peak features yielded an average
across all classifiers of 81.63% accuracy in detecting the erroneous events and an average 78.87
% accuracy in detecting the correct events. In comparison to the relative peak feature selection
method, there was an average increase in performance in all classifiers of 17.85% for error
accuracy and a reduction of -6.16% for correct accuracy.

Figure 8.1: Classifier comparison results using temporal features and relative peak features

Figure 8.2: Classifier comparison results

This research is the second IEEE accepted conference paper publication with the title of
“Improving EEG-Based Error Detection Using Relative Peak Features” 2020 42nd Annual
International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) in
conjunction with the 43rd Annual Conference of the Canadian Medical and Biological Engi-
neering Society Montréal, Canada, July 20-24, 2020
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In chapter5 we proposed a novel error detection algorithm called an adaptive decision
surface (ADS) classifier. The ADS classifier uses 25 times less training features. ADS used
the relative peaks in chapter4 of the Cz electrode channel as a feature input. Interms of fea-
tures quantities, Person 1 the ADS classifier used 606 Training features compared to LDA using
15,150 training features.
The average results for the classifiers for all the participants are presented in the following
table.

Table 8.1: Young and elderly classifier results

Classifier Participants
Error

Accuracy
[%]

Correct
Accuracy

[%]
ADS 27 Young 81.85 84.17

24 Elderly 63.68 82.63
LDA 27 Young 69.13 81.46

24 Elderly 55.18 76.95

In chapter6.6 we proposed a novel motor combination of CSP and a motor imagery classifier
algorithm called an A novel three dimensional probability-based ADS classifier for improv-
ing motor imagery-based BCI. The results from the motor imagery adaptive decision surface
ADS classification accuracy in the off-line tests reached 76.06 % class 1 and 81.50 % using non
adaptive ADS and 79.55 % class 1 and 99.69 % using an adaptive ADS classifiers. Please see the
results in the following Fig 8.3, Fig 8.4, Fig 8.5.
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Figure 8.3: BCI competition IV dataset 2a from Graz University of Technology

Figure 8.4: BCI competition IV dataset 2a from Graz University of Technology

109



Figure 8.5: 25 Classifier MI performance comparison BCI competition IV dataset 2a from Graz
University of Technology

This research is the first IEEE accepted conference paper publication with the title of “A
Novel Three Dimensional Probability-based Classifier for Improving Motor Imagery-based
BCI” published in: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP) date of Conference: 12-17 May 2019 Date Added to IEEE
Xplore: 17 April 2019 INSPEC accession Number: 18813183 DOI: 10.1109/ICASSP.2019.8683136
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8.2 Future work

8.2.1 Future development the absorption adaptability function of the (ADS)

The adaptive decision surface(ADS) classifier could be improved by modifying the adaptability
by using the ADS surface readings and depending on the threshold accommodate a wider dis-
tance from previously known data. Such that once the threshold is reached so that learning step
is applied and the ADS surface is modified to accommodate the new ErrP data relative peak
plot. This process of adaptation can be regarded as adsorption to a new state. The adaptive
process has been in applied and tested resulting in a small percentage increase in performance
however, there is a risk of having an out of control adaptation of the surface which may corrupt
the integrity of the surface. This adaptability function would need to be carefully applied and
tested after each adaptation for surface integrity.

8.2.2 Future development reverse adaptation function of the (ADS)

The adaptive decision surface(ADS) classifier could be further improved to record the adapta-
tion process in section 8.2.1 for self-auditing and maintenance such that a reversal of the adap-
tation is possible if the subsequent adaptation was later found to be erroneous. There must be a
controlled process of reversing the learning process in order to preserve and maintain the ADS.
This could be an envisage function of the previously mentioned ’Adaptive Decision Surface
Management’, please see Section 8.2.5 .

8.2.3 Future development a computational inference reasoning CIR

In the situation where unknown data is acquired and, the system has no prior training data.
Such that an ’Adaptive Decision Surface’ ADS has no data, and the surface is flat with no prior
values to support a decision system. An equivalent scenario is a blank neural network with
all the weights set to zero. We propose additional functions to support the decision system
either using the information from the ’likelihood bias’, please see 5.2.3.2 or building a type
of mathematical system model about the error-related potentials ErrPs dynamics in a peak
plot. With the model, a full range of data tests can be evaluated so the outer limits can be
explored, and some form of reasoning can be applied. However, developing a model and then
applying every possible combination would eventually lead to a surface which would be the
same as the aforementioned ’likelihood bias’ which is every permutation of feasible location
for an anticipated relative peak plot. The main objective is to remove the possibility of gaps or
zero readings from the adaptive decision surface ADS such that the classification is unknown
data as highlighted in a sparse adaptive decision surface SADS.

8.2.4 Future development of a method for prior computational inference

Develop a method for prior knowledge with computational inference using a model with every
possible permutation or using a ’likelihood bias’ would lead to the same surface. The classi-
fication of an unknown input should acquire a classification and not fall between the gaps
however, there is no indication of certainty based on prior experience?

The advantage of using the ’Adaptive Decision Surface’ ADS is having been exposed to a
set of training data the surface is shaped and distorted according to the prior training data.
Moreover, the decision system may indicate the certainty according to the prior training data,
which shapes the surface.
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8.2.5 Future work self-organising surface management

The proposed algorithm must incorporate a type of management process to maintain the sur-
face of the ’Adaptive Decision Surface’ ADS to remove the risk of zeros ’the indeterminate state’
in terms of classification. Previously mentioned using the ’likelihood bias’ please see Fig 5.12.
would bias a particular region. However, the adaptive decision surface is subject to adapta-
tion in the learning process, and changes during the initial application of the training data zero
values may be on the surface due to the changes in the surface data. Please see Fig-8.6 for an
example.

The risk of a zero on the surface would mean this is an ambiguous or indeterminate state in
terms of classification. The decision system would have to determine the classification of the
data by an alternative method.

Figure 8.6: Adaptive Decision Surface ADS, risk of zeros on the surface

8.2.6 Future development an adaptive decision surface data threshold

ErrP classifier zone depends on a threshold on cross-section horizontal, please see section
5.2.3.4. The threshold level could be adaptable on the horizontal plane and tilted. Please see
Fig:8.7 before the intersection. Please see an example of a planar threshold intersection. Fig 8.8

Figure 8.7: zone proximity structure threshold before intersection. ADS x,y,z axes 6.12
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Figure 8.8: zone proximity structure threshold after intersection. ADS x,y,z axes 6.12

The threshold intersection can be either a planar or hyperbola surface. The intersecting
surface can be pitched in any x,y,z rotation in addition to lateral repositioning in the x,y,z coor-
dinated direction. Moreover, the intersection could be adjusted during an adaptation phase in
addition to changes in the environment such as the persons condition such as temperature or
hydration state which may affect the decision threshold.

Furthermore there could be a systematic parameter optimisation for the adaptive decision
surface(ADS). In addition an error-driven learning such that previous errors are less likely to
occur by adjust parameters adjusting the classification algorithm or feature extraction methods.

8.2.7 Future work on error driven learning algorithm

Herman et al [74] used a learning algorithm as part of their solution to handle uncertainty
effects in BCI classification. Moreover, the authors used a type-2 fuzzy logic (T2FL) method-
ology for dealing with uncertainty. The uncertainties in the variability of brain dynamics are
due to the non-stationary of brain signals. The authors’ examined the applicability of the T2FL
approach for EEG pattern recognition. The authors worked on a design methodology for the
interval T2FL system (IT2FLS) to handle intersession in addition to within-session manifesta-
tions of non-stationary spectral EEG correlates of motor imagery. The authors examined the
proposed fuzzy classifier in both off-line and on-line EEG classification case studies.

We propose to develop a learning algorithm such that when an error-related potential oc-
curs the following parameters; feature extraction, feature selection, motor imagery classifica-
tion parameters could be adjusted in order that the error is less likely occur in the future oper-
ation by learning from the previous mistakes.

8.2.8 Future work on a novel shared control strategy algorithm

Develop a shared control strategy algorithm such that reinforcement-learning methods should
be incorporated into the BCI system and the robotic assistive device. In addition, the robotic
interactions will support the person with a disability using the BCI system.

Moreover, the robotic device operating in the shared environment must have an array of
sensors to maintain safety and security in the shared environment. Sensors may be of several
forms such as vision, sound, inferred vision, ultrasound, LiDAR, thermal temperature sensing.
Please see Chapter 7 for more information.

Collectively these sensors with a shared controlled strategy will enable a safe interaction
with the robotic device. Furthermore, the operating environment will be a changing environ-
ment, therefore, a dynamic risk register could be a part of the control policy of the robotic
device to ensure a safe interaction.

In a shared control strategy, there must be some type of communications protocol between
the BCI and the assistive robotic device or prosthetic hand. For example, the participant may
desire to pick up an object. The prosthetic hand will be able to assist the person in reducing the
workload in retrieving the object. Several studies have explored the possibilities of different
types of sensors attached to the supportive device such as the sense of touch in [105] or object
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recognition as in [106].

A communications protocol that could function as follows: Step 1) Detect an object and
recognise a particular object such as a box or cup Fig 8.10, Fig 8.11,Fig 8.12. Step 2) Wait for
the BCI to signal an action such as open the hand following a successful motor imagery event
Fig 8.9. Step 3) Then using local sensors such as proximity and vision to control the prosthetic
hand to grasp the object. [106]Step 4) The prosthetic hand waits for a successful motor imagery
event to release the object. Please see Chapter 7 for more information details regarding vision.

Figure 8.9: Prosthetic Hand

Figure 8.10: Ultra sonic range detection
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Figure 8.11: Physical box, edge detection, line interactions

Figure 8.12: Physical Drinking cup, edge detection, line interactions
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Appendix A

Participants Dataset

Table 1 A.1 : Young participants dataset
Table 2 A.2 : Elderly participants dataset
Bar chart A.3 : Participants age

A.1 Participants

A.1.1 Young participants data table

Figure A.1: Young participants dataset table
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A.1.2 Elderly participants data table

Figure A.2: Young participants dataset table

A.1.3 Participants age bar chart

Figure A.3: Participants age bar chart
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Appendix B

Participants relative peak feature(RPF)
datasets

B.1 Dataset elderly participants relative peak features(RPF)

.
Dataset 1, 2 B.1 : Elderly participants 1 and 2, showing their relative peak features(RPF)
Dataset 3, 4 B.2 : Elderly participants 3 and 4, showing their relative peak features(RPF)
Dataset 5, 6 B.3 : Elderly participants 5 and 6, showing their relative peak features(RPF)
Dataset 7, 8 B.4 : Elderly participants 7 and 8, showing their relative peak features(RPF)
Dataset 9, 10 B.5 : Elderly participants 9 and 10, showing their relative peak features(RPF)
Dataset 11, 12 B.6 : Elderly participants 11 and 12, showing their relative peak features(RPF)
Dataset 13, 14 B.7 : Elderly participants 13 and 14, showing their relative peak features(RPF)
Dataset 15, 16 B.8 : Elderly participants 15 and 16, showing their relative peak features(RPF)
Dataset 17, 18 B.9 : Elderly participants 17 and 18, showing their relative peak features(RPF)
Dataset 19, 20 B.10 : Elderly participants 19 and 20, showing their relative peak features(RPF)
Dataset 21, 22 B.11 : Elderly participants 21 and 22, showing their relative peak features(RPF)
Dataset 23, 24 B.12 : Elderly participants 23 and 24, showing their relative peak features(RPF)
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B.1.1 Elderly participants 1 and 2, showing their relative peak features(RPF)

Figure B.1: Dataset elderly participants relative peak features ID 1,2
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B.1.2 Elderly participants 3 and 4, showing their relative peak features(RPF)

Figure B.2: Dataset elderly participants relative peak features ID 3,4
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B.1.3 Elderly participants 5 and 6, showing their relative peak features(RPF)

Figure B.3: Dataset elderly participants relative peak features ID 5,6
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B.1.4 Elderly participants 7 and 8, showing their relative peak features(RPF)

Figure B.4: Dataset elderly participants relative peak features ID 7,8
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B.1.5 Elderly participants 9 and 10, showing their relative peak features(RPF)

Figure B.5: Dataset elderly participants relative peak features ID 9,10
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B.1.6 Elderly participants 11 and 12, showing their relative peak features(RPF)

Figure B.6: Dataset elderly participants relative peak features ID 11,12
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B.1.7 Elderly participants 13 and 14, showing their relative peak features(RPF)

Figure B.7: Dataset elderly participants relative peak features ID 13,14
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B.1.8 Elderly participants 15 and 16, showing their relative peak features(RPF)

Figure B.8: Dataset elderly participants relative peak features ID 15,16
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B.1.9 Elderly participants 9 and 10, showing their relative peak features(RPF)

Figure B.9: Dataset elderly participants relative peak features ID 17,18
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B.1.10 Elderly participants 11 and 12, showing their relative peak features(RPF)

Figure B.10: Dataset elderly participants relative peak features ID 19,20
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B.1.11 Elderly participants 13 and 14, showing their relative peak features(RPF)

Figure B.11: Dataset elderly participants relative peak features ID 21,22
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B.1.12 Elderly participants 15 and 16, showing their relative peak features(RPF)

Figure B.12: Dataset elderly participants relative peak features ID 23,24
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B.2 Dataset young participants relative peak features(RPF)

.
Dataset 1, 2 B.13 : Young participants 1 and 2, showing their relative peak features(RPF)
Dataset 3, 4 B.14 : Young participants 3 and 4, showing their relative peak features(RPF)
Dataset 5, 6 B.15 : Young participants 5 and 6, showing their relative peak features(RPF)
Dataset 7, 8 B.16 : Young participants 7 and 8, showing their relative peak features(RPF)
Dataset 9, 10 B.17 : Young participants 9 and 10, showing their relative peak features(RPF)
Dataset 11, 12 B.18 : Young participants 11 and 12, showing their relative peak features(RPF)
Dataset 13, 14 B.19 : Young participants 13 and 14, showing their relative peak features(RPF)
Dataset 15, 16 B.20 : Young participants 15 and 16, showing their relative peak features(RPF)
Dataset 17, 18 B.21 : Young participants 17 and 18, showing their relative peak features(RPF)
Dataset 19, 20 B.22 : Young participants 19 and 20, showing their relative peak features(RPF)
Dataset 21, 22 B.23 : Young participants 21 and 22, showing their relative peak features(RPF)
Dataset 23, 24 B.24 : Young participants 23 and 24, showing their relative peak features(RPF)
Dataset 25, 26 B.25 : Young participants 25 and 26, showing their relative peak features(RPF)
Dataset 27 ?? : Young participant 27, showing their relative peak features(RPF)

131



B.2.1 Young participants 1 and 2, showing their relative peak features(RPF)

Figure B.13: Dataset young participants relative peak features ID 1,2
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B.2.2 Young participants 3 and 4, showing their relative peak features(RPF)

Figure B.14: Dataset young participants relative peak features ID 3,4
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B.2.3 Young participants 5 and 6, showing their relative peak features(RPF)

Figure B.15: Dataset young participants relative peak features ID 5,6
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B.2.4 Young participants 7 and 8, showing their relative peak features(RPF)

Figure B.16: Dataset young participants relative peak features ID 7,8
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B.2.5 Young participants 9 and 10, showing their relative peak features(RPF)

Figure B.17: Dataset young participants relative peak features ID 9,10
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B.2.6 Young participants 11 and 12, showing their relative peak features(RPF)

Figure B.18: Dataset young participants relative peak features ID 11,12
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B.2.7 Young participants 13 and 14, showing their relative peak features(RPF)

Figure B.19: Dataset young participants relative peak features ID 13,14
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B.2.8 Young participants 15 and 16, showing their relative peak features(RPF)

Figure B.20: Dataset young participants relative peak features ID 15,16
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B.2.9 Young participants 17 and 18, showing their relative peak features(RPF)

Figure B.21: Dataset young participants relative peak features ID 17,18
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B.2.10 Young participants 19 and 20, showing their relative peak features(RPF)

Figure B.22: Dataset young participants relative peak features ID 19,20
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B.2.11 Young participants 21 and 22, showing their relative peak features(RPF)

Figure B.23: Dataset young participants relative peak features ID 21,22
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B.2.12 Young participants 23 and 24, showing their relative peak features(RPF)

Figure B.24: Dataset young participants relative peak features ID 23,24
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B.2.13 Young participants 25 and 26, showing their relative peak features(RPF)

Figure B.25: Dataset young participants relative peak features ID 25,26
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B.2.14 Young participant 27, showing their relative peak features(RPF)

Figure B.26: Dataset young participants relative peak features ID 27
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Appendix C

Standard deviation and variance

Standard deviation and variances
Table 1 Elderly participants standard deviation and variance : C.1
Table 2 Young participants Standard deviation and variance : C.2
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C.1 Standard deviation and variances

C.1.1 Elderly participants Standard deviation and variance

Figure C.1: Elderly participants Standard deviation and variance
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C.1.2 Young participants Standard deviation and variance

Figure C.2: Young participants Standard deviation and variance
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Appendix D

Results Tables

Table 1 D.1 : Elderly participants classifier using temporal features results tables
Table 2 D.2 : Elderly participants classifier using relative features results tables

Young participants and temporal features
Table 3 D.3 : Young participants classifier using temporal features results tables P2-1
Table 4 D.4 : Young participants classifier using temporal features results tables P2-2

Young participants and relative peak features(RPF)
Table 5 D.5 : Young participants classifier using relative peak features results tables P2-1
Table 6 D.6 : Young participants classifier using relative peak features results tables P2-2
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D.1 Participants

D.1.1 Elderly participants classifier using temporal features results tables

Figure D.1: Elderly participants classifier comparison results tables using temporal features
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D.1.2 Elderly participants classifier using relative features results tables

Figure D.2: Elderly participants classifier comparison results tables using relative features
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D.1.3 Young participants classifier using temporal features results tables P2-1

Figure D.3: Young participants classifier comparison results tables using temporal features
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D.1.4 Young participants classifier using temporal features results tables P2-2

Figure D.4: Young participants classifier comparison results tables using temporal features
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D.1.5 Young participants classifier using relative peak features results tables P2-1

Figure D.5: Young participants classifier comparison results tables using relative peak features
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D.1.6 Young participants classifier using relative peak features results tables P2-2

Figure D.6: Young participants classifier comparison results tables using relative peak features
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Appendix E

Results of 23 motor imagery classifier

Figure E.1: BCI competition 2008 Graz dataset (A) Motor imagery classifier performance com-
parison for person 1

156



Figure E.2: BCI competition 2008 Graz dataset (A) Motor imagery classifier performance com-
parison for person 2
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Figure E.3: BCI competition 2008 Graz dataset (A) Motor imagery classifier performance com-
parison for person 3

158



Figure E.4: BCI competition 2008 Graz dataset (A) Motor imagery classifier performance com-
parison for person 4
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Figure E.5: BCI competition 2008 Graz dataset (A) Motor imagery classifier performance com-
parison for person 5
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Figure E.6: BCI competition 2008 Graz dataset (A) Motor imagery classifier performance com-
parison for person 6
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Figure E.7: BCI competition 2008 Graz dataset (A) Motor imagery classifier performance com-
parison for person 7
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Figure E.8: BCI competition 2008 Graz dataset (A) Motor imagery classifier performance com-
parison for person 8
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Figure E.9: BCI competition 2008 Graz dataset (A) Motor imagery classifier performance com-
parison for person 9
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Figure E.10: BCI competition 2008 Graz dataset (A) Motor imagery classifier performance com-
parison table
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Figure E.11: BCI competition 2008 Graz dataset (A) Motor imagery classifier performance com-
parison
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Appendix F

Results of classifier comparisons using
a novel feature extraction method
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F.0.1 Results of the statistical analysis using a subspace discriminant classifier us-
ing young participants

A 2(features) X 2(Actions: error action vs correct) repeated ANOVA was performed on the
classification results of young participants.The statistical results showed a statistically signif-
icant difference between the different methods of feature extraction, temporal features com-
pared to relative peak features. In this statistical analysis we used ANOVA with repeated
measures using software called Statistical Package for the Social Sciences (SPSS) from the IBM
®Corporation, a subspace discriminant classifier and the dataset from young participants.
(Please see column subspace discriminant classifier in:
Table 3 D.4 : Young participants classifier using temporal features results tables P2-2
Table 5 D.6 : Young participants classifier using relative peak features results tables P2-2

F.0.2 Tests of Within-Subjects Effects

The tests of Within-Subjects Effects indicate if there was an overall significant difference be-
tween the means oft the different feature extraction methods.

Table F.1: Tests of Within-Subjects Effects

Source
Type III Sum
of Squares

df
Mean
Square

F Sig.

Subspace_Discriminant
Sphericity
Assumed

1233.092 1 1233.092 20.482 <0.0001

Greenhouse-
Geisser

1233.092 1.000 1233.092 20.482 <0.0001

From above table F.1 we are able to discover the F value for the “feature extraction method”
factor, and its significance level

We observe the values in the “Greenhouse-Geisser” row because the Mauchly’s Test of
Sphericity to evaluated the assumption of sphericity. The test of Sphericity indicated the as-
sumption of sphericity has been violated. The violation of sphericity occurs because of the
unequal variance in the different permutation of the groups shown in [124].

Table F.2: Mauchly’s Test of Sphericity

Within
Subjects Effect

Mauchly’s W Approx. Chi-Square df Sig.

Subspace_Discriminant 1.000 .000 0 .

We report that when using an ANOVA with repeated measures with a Greenhouse-Geisser
correction, the mean scores for a subspace discriminant classifier using the different feature
extraction methods were statistically significantly different.

(F(1.0, 20.482) = 19.482, ρ < 0.0005

(Please see Table Tests of Within-Subjects Effects F.1 and Table,Tests of Within-Subjects Con-
trasts F.6)

Table F.3: Tests of Within-Subjects Contrasts

Source Subspace_Discriminant
Type III Sum
of Squares

df
Mean
Square

F Sig.

Subspace
Discriminant

Temporal Features vs
Relative Peak Features

1233.092 1 1233.092 20.482 <0.0001
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We further report that when using an ANOVA with repeated measures “Tests of Within-
Subject Contrasts” using a subspace discriminant classifier using “Temporal features vs Rela-
tive Peak features” were statistically significantly different.

(F(1.0, 20.482) = 19.482, ρ < 0.0005

Figure F.1: Statistical analysis using a subspace discriminant classifier
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F.0.3 Results of the statistical analysis using a subspace discriminant classifier us-
ing elderly participants

A 2(features) X 2(Actions: error action vs correct) repeated ANOVA was performed on the clas-
sification results of young participants.The statistical results showed a statistically significant
difference between the different methods of feature extraction, temporal features compared to
relative peak features. The data was processed with a subspace discriminant classifier and the
dataset from elderly participants. (Please see column subspace discriminant classifier in:
Table 1 D.1 : Elderly participants classifier using temporal features results tables
Table 2 D.2 : Elderly participants classifier using relative features results tables

F.0.4 Tests of Within-Subjects Effects

The tests of Within-Subjects Effects indicate if there was an overall significant difference be-
tween the means oft the different feature extraction methods.

Table F.4: Tests of Within-Subjects Effects

Source
Type III Sum
of Squares

df
Mean
Square

F Sig.

Subspace_Discriminant
Sphericity
Assumed

2217.412 1 2217.412 23.144 <0.0001

Greenhouse-
Geisser

2217.412 1.000 2217.412 23.144 <0.0001

From above table F.4 we are able to discover the F value for the “feature extraction method”
factor, and its significance level

We observe the values in the “Greenhouse-Geisser” row because the Mauchly’s Test of
Sphericity to evaluated the assumption of sphericity. The test of Sphericity indicated the as-
sumption of sphericity has been violated. The violation of sphericity occurs because of the
unequal variance in the different permutation of the groups shown in [124].

Table F.5: Mauchly’s Test of Sphericity

Within
Subjects Effect

Mauchly’s W Approx. Chi-Square df Sig.

Subspace_Discriminant 1.000 .000 0 .

We report that when using an ANOVA with repeated measures with a Greenhouse-Geisser
correction, the mean scores for a subspace discriminant classifier using the different feature
extraction methods were statistically significantly different.

(F(1.0, 23.144) = 22.144, ρ < 0.0001

(Please see Table Tests of Within-Subjects Effects F.1 and Table,Tests of Within-Subjects Con-
trasts F.6)

Table F.6: Tests of Within-Subjects Contrasts

Source Subspace_Discriminant
Type III Sum
of Squares

df
Mean
Square

F Sig.

Subspace
Discriminant

Temporal Features vs
Relative Peak Features

2217.412 1 2217.412 23.144 <0.0001
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We further report that when using an ANOVA with repeated measures “Tests of Within-
Subject Contrasts” using a subspace discriminant classifier using “Temporal features vs Rela-
tive Peak features” were statistically significantly different.

(F(1.0, 23.144) = 22.144, ρ < 0.0001

Figure F.2: Statistical analysis using a subspace discriminant classifier using elderly partici-
pants
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F.0.5 Results of the statistical analysis using LDA classifier using elderly partici-
pants

A 2(features) X 2(Actions: error action vs correct) repeated ANOVA was performed on the clas-
sification results of young participants.The statistical results showed a statistically significant
difference between the different methods of feature extraction, temporal features compared to
relative peak features. The data was processed with a Linear Discriminant Analysis(LDA)
classifier and the dataset from elderly participants.
(Please see column Linear Discriminant Analysis(LDA) in:
Table 1 D.1 : Elderly participants classifier using temporal features results tables
Table 2 D.2 : Elderly participants classifier using relative features results tables

F.0.6 Tests of Within-Subjects Effects and tests Within-Subjects Contrasts

The tests of Within-Subjects Effects indicate if there was an overall significant difference be-
tween the means of the different feature extraction methods.

Table F.7: Tests of Within-Subjects Effects and tests Within-Subjects Contrasts

Tests of Within-Subjects Effects

Source
Type III Sum
of Squares

df
Mean
Square

F Sig.

Linear
Discriminant
Analysis (LDA)

Greenhouse-Geisser 3528.618 1 3528.618 25.061 <0.0001

Tests of Within-Subjects Contrasts

Source
Linear Discriminant
Analysis (LDA)

Type III Sum
of Squares

df
Mean
Square

F Sig

Linear
Discriminant
Analysis (LDA)

Temporal Features vs
Relative Peak Features

3528.618 1 3528.618 25.061 <0.0001

From above tableF.7 we are able to discover the F value for the “feature extraction method”
factor, and its significance value.

We report that when using an ANOVA with repeated measures with a Greenhouse-Geisser
correction, the mean scores for an LDA classifier using the different feature extraction methods
were statistically significantly different.

(F(1.0, 25.061) = 24.061, ρ < 0.0001

We further report in table F.7 that when using an ANOVA with repeated measures “Tests of
Within-Subject Contrasts” using a Linear Discriminant Analysis(LDA) using “Temporal fea-
tures vs Relative Peak features” were statistically significantly different.

(F(1.0, 25.061) = 24.061, ρ < 0.0001

Please see the estimated marginal means plot for the different feature extraction methods shown
in Fig F.3

172



Figure F.3: Statistical analysis using an LDA classifier using elderly participants
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F.0.7 Results of the statistical analysis using LDA classifier using young partici-
pants

A 2(features) X 2(Actions: error action vs correct) repeated ANOVA was performed on the clas-
sification results of young participants.The statistical results showed a statistically significant
difference between the different methods of feature extraction, temporal features compared to
relative peak features. The data was processed with a Linear Discriminant Analysis(LDA)
classifier and the dataset from elderly participants.
(Please see column Linear Discriminant Analysis(LDA) in:
Young participants and temporal features
Table 3 D.3 : Young participants classifier using temporal features results tables P2-1
Young participants and relative peak features(RPF)
Table 5 D.5 : Young participants classifier using relative peak features results tables P2-1

F.0.8 Tests of Within-Subjects Effects and tests Within-Subjects Contrasts

The tests of Within-Subjects Effects indicate if there was an overall significant difference be-
tween the means of the different feature extraction methods.

Table F.8: Tests of Within-Subjects Effects and tests Within-Subjects Contrasts

Tests of Within-Subjects Effects

Source
Type III Sum
of Squares

df
Mean
Square

F Sig.

Linear
Discriminant
Analysis (LDA)

Greenhouse-Geisser 930.982 1 930.982 12.220 0.002

Tests of Within-Subjects Contrasts

Source
Linear Discriminant
Analysis (LDA)

Type III Sum
of Squares

df
Mean
Square

F Sig

Linear
Discriminant
Analysis (LDA)

Temporal Features vs
Relative Peak Features

930.982 1 930.982 12.220 0.002

From above tableF.8 we are able to discover the F value for the “feature extraction method”
factor, and its significance value.

We report that when using an ANOVA with repeated measures with a Greenhouse-Geisser
correction, the mean scores for an LDA classifier using the different feature extraction methods
were statistically significantly different.

(F(1.0, 12.220) = 11.220, ρ = 0.002

We further report in table F.8 that when using an ANOVA with repeated measures “Tests of
Within-Subject Contrasts” using a Linear Discriminant Analysis(LDA) using “Temporal fea-
tures vs Relative Peak features” were statistically significantly different.

(F(1.0, 12.220) = 11.220, ρ = 0.002

Please see the estimated marginal means plot for the different feature extraction methods shown
in Fig F.4
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Figure F.4: Statistical analysis using an LDA classifier using different feature extraction meth-
ods
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F.0.9 Results of the statistical analysis using SVM Linear classifier using young
participants

A 2(features) X 2(Actions: error action vs correct) repeated ANOVA was performed on the clas-
sification results of young participants.The statistical results showed a statistically significant
difference between the different methods of feature extraction, temporal features compared to
relative peak features. The data was processed with a SVM Linear classifier and the dataset
from elderly participants.
(Please see column SVM Linear classifier in:
Young participants and temporal features
Table 3 D.3 : Young participants classifier using temporal features results tables P2-1
Young participants and relative peak features(RPF)
Table 5 D.5 : Young participants classifier using relative peak features results tables P2-1

F.0.10 Tests of Within-Subjects Effects and tests Within-Subjects Contrasts

The tests of Within-Subjects Effects indicate if there was an overall significant difference be-
tween the means of the different feature extraction methods.

Table F.9: Tests of Within-Subjects Effects and tests Within-Subjects Contrasts

Tests of Within-Subjects Effects

Source
Type III Sum
of Squares

df
Mean
Square

F Sig.

SVM
Linear

Greenhouse-Geisser 673.201 1 673.201 8.488 0.007

Tests of Within-Subjects Contrasts

Source Feature Extraction Method
Type III Sum
of Squares

df
Mean
Square

F Sig

SVM
Linear

Temporal Features vs
Relative Peak Features

1346.402 1 1346.402 8.488 0.007

From above tableF.8 we are able to discover the F value for the “feature extraction method”
factor, and its significance level

We report that when using an ANOVA with repeated measures with a Greenhouse-Geisser
correction, the mean scores for an SVM Linear classifier using the different feature extraction
methods were statistically significantly different.

(F(1.0, 8.488) = 7.488, ρ = 0.007

We further report in table F.9 that when using an ANOVA with repeated measures “Tests of
Within-Subject Contrasts” using a SVM Linear using “Temporal features vs Relative Peak fea-
tures” were statistically significantly different.

(F(1.0, 8.488) = 7.488, ρ = 0.007

Please see the estimated marginal means plot for the different feature extraction methods shown
in Fig F.5
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Figure F.5: Statistical analysis using an SVM Linear classifier using different feature extraction
methods
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F.0.11 Results of the statistical analysis using SVM Linear classifier using elderly
participants

A 2(features) X 2(Actions: error action vs correct) repeated ANOVA was performed on the clas-
sification results of elderly participants.The statistical results showed a statistically significant
difference between the different methods of feature extraction, temporal features compared to
relative peak features. The data was processed with a SVM Linear classifier and the dataset
from elderly participants.
(Please see column SVM Linear classifier in:
Table 1 D.1 : Elderly participants classifier using temporal features results tables
Table 2 D.2 : Elderly participants classifier using relative features results tables

F.0.12 Tests of Within-Subjects Effects and tests Within-Subjects Contrasts

The tests of Within-Subjects Effects indicate if there was an overall significant difference be-
tween the means of the different feature extraction methods.

Table F.10: Tests of Within-Subjects Effects and tests Within-Subjects Contrasts

Tests of Within-Subjects Effects

Source
Type III Sum
of Squares

df
Mean
Square

F Sig.

SVM
Linear

Greenhouse-Geisser 2197.942 1 2197.942 21.398 < 0.0001

Tests of Within-Subjects Contrasts

Source Feature Extraction Method
Type III Sum
of Squares

df
Mean
Square

F Sig

SVM
Linear

Temporal Features vs
Relative Peak Features

4395.884 1 4395.884 21.398 < 0.0001

From above tableF.10 we are able to discover the F value for the “feature extraction method”
factor, and its significance level

We report that when using an ANOVA with repeated measures with a Greenhouse-Geisser
correction, the mean scores for an SVM Linear classifier using the different feature extraction
methods were statistically significantly different.

(F(1.0, 21.398) = 20.398, ρ = < 0.0001

We further report in table F.10 that when using an ANOVA with repeated measures “Tests
of Within-Subject Contrasts” using a SVM Linear using “Temporal features vs Relative Peak
features” were statistically significantly different.

(F(1.0, 21.398) = 20.398, ρ = < 0.0001

Please see the estimated marginal means plot for the different feature extraction methods shown
in Fig F.6
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Figure F.6: Statistical analysis using an SVM Linear classifier using different feature extraction
methods
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F.0.13 Paired T-test Results of the statistical analysis using SVM Linear classifier
with young and elderly participants

Figure F.7: Statistical analysis T-Test results using SPSS

F.0.13.1 Independent samples test summary

Error accuracy with an SVM Linear classifier using temporal features:
Equal variance not assumed is statistically significant ρ = 0.011
Correct accuracy with an SVM Linear classifier using temporal features:
Equal variance assumed is not statistically significant ρ = 0.143

Error accuracy with an SVM Linear classifier using relative peak features:
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Equal variance not assumed is statistically not significant ρ = 0.366
Correct accuracy with an SVM Linear classifier using relative peak features:
Equal variance assumed is not statistically significant ρ = 0.080

F.0.13.2 T-Test Box Plot

Figure F.8: Statistical analysis T-Test results using SPSS
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F.0.13.3 T-Test Profile Plot

Figure F.9: SPSS data used for statistical analysis using an SVM Linear classifier using different
feature extraction methods
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F.0.14 LDA Classifiers Independent samples test summary

Figure F.10: Statistical analysis LDA T-Test results using SPSS

F.0.14.1 LDA T-Test results

Error accuracy with an LDA classifier using temporal features:
Equal variance not assumed is statistically significant ρ = 0.001
Correct accuracy with an LDA classifier using temporal features:
Equal variance assumed is not statistically significant ρ = 0.258

Error accuracy with an LDA classifier using relative peak features:
Equal variance not assumed is statistically not significant ρ = 0.158
Correct accuracy with an LDA classifier using relative peak features:
Equal variance assumed is not statistically significant ρ = 0.146
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F.0.15 Logistic regression classifiers Independent samples test summary

Figure F.11: Statistical analysis T-Test results using SPSS and a Logistic regression classifier

F.0.15.1 Logistic regression classifiers T-Test significance results

Error accuracy with a Logistic regression classifier using temporal features:
Equal variance not assumed is statistically significant ρ = 0.009
Correct accuracy with a Logistic regression classifier using temporal features:
Equal variance assumed is not statistically significant ρ = 0.126

Error accuracy with a Logistic regression classifier using relative peak features:
Equal variance not assumed is statistically not significant ρ = 0.194
Correct accuracy with a Logistic regression classifier using relative peak features:
Equal variance assumed is not statistically significant ρ = 0.100
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F.0.16 KNN Coarse classifiers Independent samples test summary

Figure F.12: Statistical analysis T-Test results using SPSS and a KNN Coarse classifier

F.0.16.1 KNN Coarse classifiers T-Test significance results

Error accuracy with a KNN coarse classifier using temporal features:
Equal variance not assumed is not statistically significant ρ = 0.0954
Correct accuracy with a KNN coarse classifier using temporal features:
Equal variance assumed is statistically significant ρ = 0.017

Error accuracy with a KNN coarse classifier using relative peak features:
Equal variance not assumed is statistically not significant ρ = 0.332
Correct accuracy with a KNN coarse classifier using relative peak features:
Equal variance assumed is statistically significant ρ = 0.012
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F.0.17 Subspace discriminant classifier Independent samples test summary

Figure F.13: Statistical analysis T-Test results using SPSS and a Subspace discriminant classifier

F.0.17.1 Subspace discriminant classifiers T-Test significance results

Error accuracy with a Subspace discriminant classifier using temporal features:
Equal variance not assumed is statistically significant ρ = 0.014
Correct accuracy with a Subspace discriminant classifier using temporal features:
Equal variance assumed is not statistically significant ρ = 0.377

Error accuracy with a Subspace discriminant classifier using relative peak features:
Equal variance not assumed is not statistically significant ρ = 0.101
Correct accuracy with a Subspace discriminant classifier using relative peak features:
Equal variance assumed is not statistically significant ρ = 0.152
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Appendix G

Results of the performance gains
summary

G.0.1 Results of the performance gains summary

Figure G.1: Compare performance gains
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Figure G.2: Compare performance gains
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Figure G.3: Compare performance gains
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Figure G.4: Compare performance gains
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Figure G.5: Compare performance gains
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G.0.2 Comparing the standard deviation and variance

The standard deviation and variance was calculated from the training data for each person
from each group. The summary table are shown in Table 1 Elderly participants standard de-
viation and variance : C.1 and Table 2 Young participants Standard deviation and variance : C.2

The variance on feature 1 or the amplitude for the VarY ErrP or the y-axis of the relative
peak plot showed a greater variance for the younger participants. In addition, the variance
on feature 1 or the amplitude for the VarY No ErrP or the y-axis of the relative peak plot also
showed a larger variation. Further standard deviation of feature 1 or the amplitude for the
Stdy No ErrP or the y-axis of the relative peak plot showed a greater standard deviation for the
younger participants.

This insight into the training data’s standard deviation and variance may be used to con-
figure a classifier to enhance performance. Please see the following diagrams G.6, G.8 and
G.7

Figure G.6: Compare young elderly variance varY ErrP , shown in C.1 and C.2
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Figure G.7: Compare young elderly variance Log varY ErrP , shown in C.1 and C.2

Figure G.8: Compare young elderly variance varY No ErrP , shown in C.1 and C.2
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Figure G.9: Classifier performance comparison
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Appendix H

Mobility and empowerment

H.1 Re-establish a sense of empowerment

What sort of everyday daily tasks could be re-enabled for that person? What kind of assistance
could make a positive supportive difference in that persons life? Moreover it would be enabling
hope and independence.

H.1.1 Disabled persons daily life

Able bodied people would find the following, (see table H.1) daily life action easy and literally
take any physical movement for granted in addition to securing the property at night in-terms
or making the sure water taps are not left running and the gas is not on and doors, windows
are locked and the fire alarms is fully operational with the batteries working.

In contrast a disabled person will encounter every physical task impractical to achieve. This
could be solved by a very sophisticated ’smart’ home full of automation however technology is
not available to them when they are outside of their home going to work or shopping in town,
what level of assistive support can be provided? How can a brain-computer interface know
the needs of the disabled person? Moreover how can these needs be supported by an assistive
robotic device.

Table H.1: Sample of daily life functions

open / close control Basic functional control Complex functional control
Doors,Windows Heating system Collecting the post
Fridge door,cupboards TV / Radio channel selection Making a phone call
kitchen bin Cooking food
kitchen drawers Cleaning up after eating
Bottle tops Handling Food packaging
on / off control Eating , Drinking
Room lights Retrieving a utensils
Water taps Personal hygiene

H.1.2 Understanding the problem and the difficulties

To understand the difficulties I will describe a scenario: A person is seated around a table with
two cups of a beverage cup A has orange juice cup B has water. For a person with no movement
difficulties they may take the following steps

•STEP 1: Visually observe the choices in front of them:

4 Option A, cup of orange juice.
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Figure H.1: LAB Assistive Robotic Arm (ARA)

4 Option B, cup of water.

• STEP 2: A decision is made, the person makes their selection

• STEP 3: The person commands their movements to their arm(s)

4 The person controls the movements of the cup to their mouth and take a drink.

4 The person returns the cup to the table

All the above steps take place seamlessly and almost with no effort or thinking about it just
a natural movement to take a drink from a cup.

However for a person with movement limitations such as no upper arm movement disabil-
ity. How might those same steps be achieved?

•STEP 1: Visually observe the choices in front of them:

( Assumption that the person can see the options? )

4 Option A, cup of orange juice.

4 Option B, cup of water.

• STEP 2: A decision is made, the person makes their selection

( How do we know their choice? Who is going to be there to understand their choice?. )

( Moreover, how can an assistive robotic device be aware of their selection? )

• STEP 3: The person is unable to take a drink!

( How can an assistive robotic device support this step safely )
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Appendix I

Statistical Analysis of Variance
(ANOVA)

I.0.1 Statistical Analysis ANOVA Test 1, 13/01/2017

Acknowledgement Mathematics and Statistics Help (MASH) STEPS for ANOVA by Adrian Ashley
Teaching instructor Miss Jo Rothwell MASH Staff 13/01/2017 Experiment Data , Dr Mahnaz Arvaneh
28/02/2017

Figure I.1: SPSS menus Analyze - General Linear Model - Repeated Measures
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Figure I.2: SPSS Repeated Measures settings screen shot 1

Figure I.3: SPSS Repeated Measures settings screen shot 2
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Figure I.4: SPSS Repeated Measures settings screen shot 3 and screen shot 4

I.0.2 SPSS Software Settings for statistical analysis of feature extraction methods

Part of my the data quality checks process will be to verify the SPSS Settings and the output
with supervisors and MASH support . My project risk register will track the risks to the project.

The data used has been check
<>—–< Risk register >———-

Risk register example
Risk 1 , ( suggest risks )

Data is generated from SPSS is faulty
Virus
Software faulty
skill and experience of the user in statistics

Risk 1 Mitigation ( Solutions to reduce the risk )
1.Received SPSS training and attended workshops 2016/2017
2. Check the setting and outputs with supervisions
3 Cross check the process with statistics staff at the MASH .
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4 update windows
5 update to the lasts version of SPSS
6 update the computers anti virus software

<>—-< Risk register >————-

Figure I.5: Statistical analysis using SPSS for different feature extraction methods
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Appendix J

LDA Methodology

J.1 LDA Methodology

Raschka [72] explained 5 steps of processing the data to achieve a linear
ERP Classification Blankertz, et al [73] presented a clear tutorial steps for ERP classification

(J.1)

k Trials
n Number of EEG Channels
T Samples time

Subset of EEG Channels
X = {x1, ..., xn} (J.2)

Compute Phase 1: Computer the mean vectors µi of each class i = 1, 2

µi =
1
n

n

∑
i−1

Xi (J.3)

Compute Phase 2: Compute the Scatter Matrices [72]
Compute the within-class scatter matrix SW

SW =
c

∑
i−1

Si (J.4)

Si is the scatter matrix for every class [72] where

Si =
n

∑
x∈Di

(x− µi) (x− µi)
T (J.5)

and µi is the mean vector [72]

µi =
1
ni

n

∑
x∈Di

Xk (J.6)

Compute the between-class [72] scatter matrix SB using the equation:

SB =
c

∑
i=1

Ni (µi − µ) (µi − µ)T (J.7)

where
µ is the overall mean
µi is the sample means of each of the classes
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Ni is the size of the classes

Compute Phase 3: Compute the linear discriminants by solving generalised eigenvalue
problem for matrix below : [72]

S−1
W SB (J.8)

Calculation objectives: The eigenvalues and eigenvectors can tell us about the linear trans-
formations:

• Eigenvectors indicate the direction the effect.

• Eigenvalues indicate the magnitude of the effect.

The linear discriminant analysis LDA enables a dimensionality reduction by using the
eigenvectors to indicate the new axis for the feature space. The eigenvalues enables a com-
parison of the eigenvectors.

J.1.0.1 Verification of the eigenvector-eigenvalues calculations

Aυ = λυ (J.9)

where
A = S−1

W SB
υ = Eigenvectors
λ = Eigenvalues

Compute Phase 4: Selecting the linear discriminants
The reason for obtaining the eigenvectors and eigenvalues was to find a new subspace to project
the data on, in order to increase the class separation in addition to reducing the dimensionality
of the feature space.
Select highest eigenvalue and associated eigenvector. The eigenvectors form the axes of the
new feature space. Select the highest eigenvalue and associated eigenvector.

The set of eigenvectors and eigenvalues can be arranged into descending order assemble
and W matrix comprising of k x d dimensions

Compute Phase 5: Transformation Use the following equation to transform the data to the
new sub space :

Y = XxW (J.10)

where
X = n x d dimensional matrix representing n data samples
Y = transformed n x k dimensional samples in the new subspace [72]
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Appendix K

Error Awareness Sustained Attention
Task

K.1 Error Awareness Sustained Attention Task

Is secondary data from experiments from Ireland

K.1.1 Experiment Objectives

Investigate how the ErrP maybe different in amplitude according to the subjects age groups

K.1.1.1 Experiment Configuration

The objective of the data analysis was to investigate the awareness in a ’sustained attention’
task. Statistical analysis shows that there is a significant difference in between the young and
old participants.

Generally, the cause of the ’Error related potential’ ErrP is that the subject is aware of their
mistake during the sustained attention task. The configuration of the experiment is such that
the subjects will evoke ErrP events during the experiment.

The experiment methodology for Test 1 and Test 1-3 had the following common configu-
rations: EEG potentials using a 64 Channel Cap using the electrode location specified by the
’10/20 international system. The equipment used was by ’Biosemi’ with a sampling rate be-
tween 512 – 1024 Hz. Time intervals were 350 ms window starting 50 ms after the feedback
and ending 400 ms after the feedback, The baseline interval was -200 to 0.

The criteria for artefact rejection was 30 microvolts. The referencing method used was the
common average. A band past of 1 to 10 Hz filtering was used as part of the pre-processing.
Specific features are acquired from the EEG data and labelled with specific events and sent to
the classifiers. During the session with each subject, generally 8 blocks of data were captured.
Generally, blocks 1 to 4 were sent to the classifier for training and the other blocks of data from
5 to 8 were sent to the classifiers for testing.

The evaluation is checked in terms of ’Error Accuracy’ EA and ’Correct Accuracy’ CA. The
Brain-Computer Interface BCI limitations are the potential for an incorrect classification of the
user’s intentions. The classifier method used was based on the Linear discriminant analysis
(LDA) originating from the Fisher’s linear discriminant. The differences between the tests were
as follows;

K.1.1.2 Methodology

The subject is presented with a series of visual information presented in a certain sequence in
order to capture the subjects awareness of an error
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Table K.1: Experiment Configuration

Experiment Configuration Test 1 Test 1_3
Different configurations
Channels:
Resampling:

Fz, Cz
64 Hz

Fz,Cz,CPz
32 Hz

Common configurations
Electrode location:
Sampling rate:
Time intervals:
Starting:
Ending:
Baseline interval:
Referencing:
Band pass filtering:
Criteria for artefact rejection:

10/20 international system
512 - 1024 Hz
350 ms window
50 ms after feedback
400 ms after feedback
[-200 0]
Common average
1 to 10 Hz
30 micro volts

The experiment protocol was develop by as part of a research group [23] in Ireland based
on a novel variant of Hester et al ’Error awareness task [110] The participants carried out a
practice session in order to establish the suitability for taking part in the experiments:

An outline of the experiment is provide as follows: The visual stimuli has a grey back-
ground upon which a centrally positioned white fixation. This fixation cross remains in place
while the colour dots change during the experiment sessions.

(A) The systems generates a random sequence of coloured dots from a given predefined set.
[23]

Figure K.1: See above for an example. Only one is displayed at any given time.

(B) The Participant receives the visual stimuli to their visual cortex

(C) The systems waits for the participants response

(D) The participant should withhold from responding in the following two cases:

• Colour condition. If the colour of the dot is blue.

• Repeat condition. If colour of the dot was identical to the previous dot

(E) The participant will actuate their response from their motor cortex to click a button in the
following way:

• A “go target” indicated by ’Event 3’ in the EEG recordings requires the participant
press the left mouse button with their right hand. This indicate an “Acknowledge-
ment” indicated by Event 1 from the participant.

• A “no go target” indicated by the following:

4 Colour condition, indicated by ’Event 4’
4 Repeat condition, indicated by ’Event 5’

205



•An ’Event 1’ after by ’Event 4’ or ’Event 5’ is an error made by the participant
• An Error Correction Response ECR indicated by ’Event 2’ in EEG recording

is generated by participant pressing the right mouse button using their in-
dex finger of their right hand. This indicates that the participant is “aware”’
of the error the ’Event 2’ is after ’Event 1’.
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Appendix L

Error Selection Menu

Figure L.1: ErrP menu selection process’
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Figure L.2: ErrP menu selection process
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Figure L.3: Prosthetic upper limb
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Figure L.4: Assistive Robotics Applications
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