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Abstract

This thesis investigates how the technologies of machine listening and spatial audio

can be utilised and combined to develop new methods of environmental sound mon-

itoring for the soundscape approach. The majority of prior work on the soundscape

approach has necessitated time-consuming, costly, and non-repeatable subjective

listening tests, and one of the aims of this work was to produce robust systems

reducing this need.

The EigenScape database of Ambisonic acoustic scene recordings, containing

eight classes encompassing a variety of urban and natural locations, is presented

and used as a basis for this research. Using this data it was found that it is possible

to classify acoustic scenes with a high level of accuracy based solely on features de-

scribing the spatial distribution of sounds within them. Further improvements were

made when combining spatial and spectral features for a more complete characteri-

sation of each scene class.

A system is also presented using spherical harmonic beamforming and unsuper-

vised clustering to estimate the onsets, offsets, and direction-of-arrival of sounds in

synthesised scenes with up to three overlapping sources. It is shown that perfor-

mance is enhanced using higher-order Ambisonics, but whilst there is a large increase

in performance between first and second-order, increases at subsequent orders are

more modest.

Finally, a mobile application developed using the EigenScape data is presented,

and is shown to produce plausible estimates for the relative prevalence of natural

and mechanical sound in the various locations at which it was tested.
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“There was always the distant bustle of the city, a deep and throbbing space-

filling rumble of ironclad wagon wheels on cobbled streets and the grind of

streetcars. It was almost like the sound of the ocean or the wind in the

forest, yet deep with the brutality that only a city can offer in fact and

spirit, no matter how glamorous the environment or euphoric the social

veneer. This was a resonance we cannot experience today; rubber tires on

smooth paved streets have muted the old, rough sounds of iron on stone and

the clopping of thousands of horses’ hooves, timing the slow progression of

ponderous wagons and more sprightly buggies. It was a sound not to be

forgotten: a pulse of life in vigorous physical contact with earth.”

– Ansel Adams
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1 | Introduction

It is one of the defining characteristics of humanity to alter the environments in

which we live [1]. Over the past two-hundred years, industrialisation has impacted

the geological makeup of the planet to the point that many geologists now term

our current epoch the Anthropocene - the ‘age of humans’ [1, 2]. The impact of

industrialisation on the sounds of our environments has been profound, with the

most apparent manifestation being the increase of the background noise level in

which people in developed countries live their lives. The internal combustion engine

is, after all, much more cacophonous than windmills or water wheels. It is difficult

to accurately track the changes in sound level that have occurred over time, as sound

measurement equipment was not invented until the industrial revolution was well

underway. One way is to measure the output of sound-making devices that have

been preserved. An American police siren from 1912, for instance, measures at 88

dB(A) at a distance of 3.5 metres. A siren from 1974, on the other hand, measures

at 114 dB(A) at this same distance [3], giving some indication of the increase in

background sound level in cities between these two dates. There are well-documented

health risks, including lack of sleep and increase in irritability, leading to more severe

health effects, that have been related to background noise levels [4]. Thus the vast

majority of laws regarding environmental sound focus on ‘noise abatement’. There

has been comparatively little consideration of how industrialisation has affected not

only the level of background sound, but also its character. This, in fact, is key to

the perception of sound.

A clear demonstration is made by Raimboult and Dubois’ example of music in a
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1. INTRODUCTION

nightclub compared with aircraft sound from an airport [5]. The first is considered

entertainment and will largely please listeners (though perhaps not neighbours),

whereas the other is generally regarded as an annoying pollutant. This is despite

the fact that both have very similar noise levels, and in fact the consequences of

voluntary prolonged exposure to loud music can be much more severe, in terms of

hearing loss, than more occasional exposure to loud aircraft. Whilst a fairly extreme

case, this shows the key roles that content and context play in the perception of

sound.

Recently, there has been some movement towards viewing environmental sound

as ‘a resource rather than a waste’ [6], with the focus shifted towards the perception

of environmental sound rather than absolute noise levels. This is has come to be

known as the ‘soundscape approach’ [4]. There is, as yet, no standardised model

for the subjective environmental sound assessment necessary for the soundscape

approach, and adoption of its tenets in legislation has been limited. Such assessment

methods as have been used so far have the key disadvantage of being typically more

time-consuming, hence more expensive, than noise level measurement. It is perhaps

no surprise, then, that these methods have not gained much traction beyond the

academic research community, though there are projects underway aiming to change

this [7].

Meanwhile, the discipline of machine learning for audio, or ‘machine listening’,

including Computational Auditory Scene Analysis (CASA), has arisen as an area

of interest amongst researchers looking to replicate mechanically the human apti-

tude for decoding acoustic scenes [8]. As implied in its name, CASA research has

focused on modelling aspects of how the human hearing system processes sound,

particularly for Automatic Speech Recognition (ASR), which aims to generate text

from spoken language (as opposed to speech processing as a whole, which includes

the reverse of this - synthesis of audible speech from text), and to some extent for

Music Information Retrieval (MIR). There has been comparatively little investiga-

tion into systems that do not necessarily explicitly aim to model human hearing,

14



1.1. MOTIVATION AND THESIS OUTLINE

or into more generalised analysis of everyday acoustic scenes beyond speech and

music. This newer approach has been termed Computational Analysis of Sound

Scenes and Events (CASSE) [9]. Interest in CASSE has increased in recent years,

with a notable milestone being the Detection and Classification of Acoustic Scenes

and Events (DCASE) challenge established in 2013 [10], and now running yearly.

1.1 Motivation and Thesis Outline

This thesis describes efforts to utilise machine listening technologies as a method for

the study of the properties of acoustic environments in and of themselves. Spatial

audio, that is, multi-microphone recordings capturing the spatial distributions of

sound sources in an environment, has not been significantly explored in machine

listening research until recently. A key area of investigation in this thesis is therefore

the investigation of the utility of spatial audio and the importance, or otherwise, of

the spatial properties of sound scenes to their effective classification. A sufficiently

robust machine listening system could ultimately be used to generate parametric

representations of acoustic environments, including information about the spectral

and spatial properties of the kinds of sounds constituting each scene. This has

the potential to vastly reduce the costs of sophisticated soundscape assessment and

could go some way towards bringing this approach into the mainstream, where

it could start having influence on the laws surrounding urban planning and noise

management. The work in this thesis seeks to explore several avenues in this regard.

A large proportion of this thesis is dedicated to the development of approaches

for environmental sound monitoring using spatial audio recordings. This ranges

from the high-level classification of entire acoustic environments to the partial de-

velopment and testing of a method to track individual sound sources. Practical

considerations, as well as reflection on the required level of detail for relevant sound-

scape information, led to the additional development of a mobile application as a

tool for on-site sound monitoring. All of these experiments and sub-projects were fa-
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1. INTRODUCTION

cilitated by the recording and organisation of EigenScape, a database of 64 acoustic

scene recordings in the high resolution fourth-order Ambisonic spatial audio format.

This research is presented in detail in the following chapters as follows:

Chapter 2 introduces such fundamentals of acoustics and spatial audio as are

required for understanding the work presented later in the thesis. An intuitive

picture of a sound field is built up from first principles, from the nature of a sound

wave, to the properties of sound propagation in space, and the representation of

a sound field as a superposition of several travelling waves. There is discussion

of the acoustic phenomena most relevant to the types of acoustic environments

considered in this work, and those features of the human hearing system relevant to

the human-centric features extracted from recordings later in the work. The chapter

concludes with a thorough review of the theory of spherical harmonics underpinning

the Ambisonic format, central to much of the subsequent work in the thesis.

Chapter 3 provides background regarding environmental sound monitoring re-

lated to the main motivation of this work. A thorough review of the soundscape

approach is presented and contrasted with standard approaches taken to tackling

environmental noise. There is discussion on the terminology used in the field, as

distinctions between the underlying physics of acoustic environments and their per-

ception as soundscapes is a subtle but important factor in understanding the diver-

gence between the environmental noise and soundscape approaches. There is also

an overview of various systems of categorisation that have been proposed for envi-

ronmental sounds, along with how these relate to these two approaches and may

inform attitudes therein. The chapter concludes with a summary of the prevalent

methods for subjective soundscape assessment including on-location soundwalks and

laboratory-based testing using various means of acoustic environment reproduction.

A detailed background of the machine learning frameworks, algorithms, and

techniques that are utilised in this work is presented in Chapter 4. This includes a

high-level overview of the specifics of acoustic scene classification and sound event

detection, along with detail on the long-standardised mel-frequency cepstral coeffi-
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1.1. MOTIVATION AND THESIS OUTLINE

cient (MFCC) features and Gaussian mixture models (GMM). These were used as

a baseline in the original DCASE challenge and are used in a similar capacity in

later chapters. The other algorithms covered are support vector machines (SVM),

density-based spatial clustering of applications with noise (DBSCAN), and a short

summary of the ideas behind convolutional neural networks (CNNs). Some examples

of early acoustic scene classification work are presented, illustrating potential diffi-

culties to be avoided, followed finally by more recent systems which utilise spatial

audio in their operation.

The EigenScape database is introduced in Chapter 5, beginning by outlining

several previously-available datasets. This highlights reasons why none of these

were appropriate for the work conducted in this thesis, but also emphasises the

organisational elements and content of these datasets that inspired the specifica-

tion for EigenScape. The equipment used to record the database, in particular the

mh Acoustics Eigenmike, is then detailed, along with technical description of the

specific recording settings and Ambisonic file format. The chapter continues with

a description of the eight location classes contained in the database and maps are

included showing specific recording locations. A description of the cross-validation

technique used to increase the utility of small databases, and how this can be applied

to EigenScape, concludes the chapter.

Chapter 6 covers the first investigation using the EigenScape data, which in-

vestigated the usefulness of spatial audio features for acoustic scene classification.

The work had the motivation of determining whether acoustic environments could

be classified based solely on their spatial features, and, through this, validating the

EigenScape data. The processes by which spatial features are extracted from both

first-order and higher-order Ambisonics are explained, and results from classifiers

trained using both sets of features are compared to those from classifiers trained

using standard MFCCs. The chapter concludes with a summary of work conducted

in collaboration with colleagues at Tampere University, Finland, using CNNs to

classify environments using these same features, which led to additional insights.
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1. INTRODUCTION

The logical next step for the work was the development of methods to identify

individual sound sources based on spatial features. This is the subject of Chapter

7, which begins by describing how features extracted using similar techniques to the

previous chapter were analysed to estimate sound source directions and trajectories

of movement. The performance of this system was, for practical reasons, assessed

using synthesised data, rather than EigenScape.

The final piece of original work in this thesis, presented in Chapter 8, is the

development of a mobile application featuring a machine learning model trained

using EigenScape data. This model produces metrics describing sound environments

in terms inspired by the soundscape approach. The app also makes use of the

Sennheiser AMBEO smart headset and Apple ARKit, enabling the user to place

virtual sound objects to test the effects of potential modifications to actual acoustic

scenes. This represents an attempt to implement some of the findings and techniques

explored previously in an application for practical use.

1.2 Statement of Hypothesis

In this thesis, a portfolio of work is presented, integrating a variety of aspects of

machine listening, spatial audio, and the soundscape approach. These works are all

enabled by the EigenScape data, which was originally recorded to provide a basis

on which to investigate the following hypothesis:

The monitoring of acoustic environments, with a view to deriving infor-

mation useful to the soundscape approach, can be assisted using spatial

audio analysis.

Details of the work that has been undertaken in this regard are covered in the

rest of the thesis as outlined in this introductory chapter. The results of these

investigations will support or refute this hypothesis, whilst likely providing new

insights and uncovering new questions to investigate. In conducting this research,

novel contributions to the field have been noted as follows:
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1.2. STATEMENT OF HYPOTHESIS

• The EigenScape database of fourth-order Ambisonic acoustic environment

recordings.

• Proof that acoustic environments can be characterised by their spatial prop-

erties alone.

• The combination of spherical harmonics beamforming and DBSCAN clustering

for source tracking.

• Investigation of trade-off between Ambisonic order and source tracking per-

formance.

• The estimation of soundecology metrics using scene classification techniques.

These contributions will be explored in depth in the subsequent chapters as

outlined above. Chapter 9 will conclude the thesis with a summary and short

reflection on the findings of the work, and will return to the hypothesis in light

of these. Finally, recommendations will be proposed for various ways in which this

work might be continued in the future.
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2 | Fundamentals of Sound in Space

2.1 Introduction

In order to constructively discuss how a sound field might be measured and char-

acterised by a human listener or a machine learning system, it is first necessary to

set out the nature of sound waves and how they combine in a space to produce a

sound field that can be perceived and recorded spatially. In this chapter, we will

explore the basic concepts of sound, from the characteristics of sound waves and

room acoustics, to the measurement of sound using microphones, and how spherical

harmonic signals obtained from microphone arrays are able to record the variation

of sound in space as well as time. The chapter will conclude with information on

how the human hearing system perceives spatial sound.

2.2 Basic Properties of Sound

2.2.1 Sound Waves

In essence, sound is the transmission of vibration from a source object through a

medium, such as air, as a series of compressions and rarefactions of said medium.

A useful representation often used is the ‘ball-and-spring’ model, in which the balls

are analogous to the masses of the molecules in the transmission medium and the

springs are the inter-molecular forces between them [11]. Sound waves are, therefore,

longitudinal; the direction of propagation is parallel to the direction of disturbance.
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2. FUNDAMENTALS OF SOUND IN SPACE

Figure 2.1: An illustration of the ball-and-spring model of sound transmission, to-

gether with its transverse visualisation (from [11]).

This is in contrast to transverse waves, in which the disturbance is orthogonal to

the direction of propagation. Figure 2.1 shows a ball-and-spring visualisation of a

sine wave, together with transverse visualisations of the displacement and veloc-

ity/pressure components of the wave.

The pressure component is the force needed to accelerate the air molecules, and

is the scalar quantity that is measured when sound is recorded at a point in space.

This will be explored in more detail in Section 2.3.1. Velocity is in phase with

pressure, but is a vector which defines the direction of travel for the sound wave.

The ratio of the pressure component amplitude p and velocity component amplitude

U is the acoustic impedance Z0:

Z0 =
p

U
(2.1)

This value is analogous to resistance in an electrical circuit and is a constant for

any given medium. Z0 is determined by the mean density ρ of the medium together

with the velocity of sound in the medium c:
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2.2. BASIC PROPERTIES OF SOUND

Z0 = ρc (2.2)

The velocity of sound in a gas cgas can be calculated by [11]:

cgas =

√
γRT

M
(2.3)

where γ is the heat capacity ratio of the gas, M is the molecular mass, R is the gas

constant (8.31 J K−1 mol−1) and T is the temperature in Kelvin. Estimating M for

air at 2.89× 10−2 kg mol−1 [12], the speed of sound at the nominal temperature of

20°C (293.15K) is 343.5 ms−1. Estimating ρ0 of air at 1.205 kg m−3 [12], Z0 for air

is 413 kg m−2 s−1. Since R is a constant and γ and M will not change excepting

very small local differences in the ratios of the constituent gases making up air,

temperature is the most important variable influencing the speed of sound.

Apart from very short pulses, the majority of sound waves are periodic in nature,

that is, they consist of regularly repeating patterns. The simplest periodic vibration

is the sine wave, of which the wave depicted in Figure 2.1 is an example. Sine waves

are defined based on three parameters:

• Amplitude A, which in terms of a sound wave can be thought of as the dif-

ference in pressure between the peak of a compression or rarefaction and the

middle-point of the cycle. The amplitude of a wave is experienced as its loud-

ness.

• Frequency f , which is the number of complete cycles the wave completes in one

second. This is the most salient property of the wave relating to the perception

of pitch.

• Phase φ, which is the ‘starting position’ of the wave. This has very little

perceptual bearing in isolation, but does affect how waves interfere.

Sine waves can therefore be defined as:

23



2. FUNDAMENTALS OF SOUND IN SPACE

y(t) = A sin(2πft+ φ) (2.4)

The frequency of a sine wave is related to its wavelength λ, which is the distance

between two points in the wave that are at the same phase. This is perhaps easiest

to visualise as the distance between two peaks or troughs. Wavelength is related to

frequency by [11]:

c = fλ (2.5)

2.2.2 The Frequency Domain

Most sounds are, of course, much more complex than sine waves. It has long been

known, however, that any given periodic waveform can be modelled as a combination

of sines of various amplitudes, frequencies and phases. This is Fourier’s theorem,

mathematically [11]:

f(t) = a0 +
∞∑
n=1

an cos(nω0t) + bn sin(nω0t) (2.6)

where ω is the angular frequency (2πf), a0 is the offset of the entire signal from 0,

known as the bias or d.c. component, and an and bn are the contributions of the

nth sine and cosine components, respectively. It’s important to note that according

to the trigonometric addition formulae, the linear sum of a sine and a cosine is

equivalent to a single weighted and phase-shifted sine [13]. Euler’s formula [14]

also states that any combination of sine and cosine can be expressed as a complex

exponential:

ejθ = cos θ + j sin θ (2.7)

where j =
√
−1, the imaginary unit. This allows the re-expression of the Fourier

series as:
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2.2. BASIC PROPERTIES OF SOUND

f(t) =
∞∑

n=−∞
Cne

jnω0t (2.8)

where Cn are complex coefficients describing the contributions of each sinusoid. The

absolute value (modulus) of Cn represents the magnitude of contributing sinusoid

n, whilst the angle (argument) represents the phase. The set of sinusoids that make

up a periodic signal are known as a Fourier series. The frequency ω0 is the fun-

damental frequency of the signal, and it can be seen that the frequencies of the

other sinusoids are integer multiples of this fundamental. As is stated in Equation

2.8, an infinite number of sinusoids may be needed to properly construct the sig-

nal. Figure 2.2 shows the first four sine waves (or partials) required to synthesise

a square wave, together with the signal that results from adding only these first

four partials. The signal that results from adding 50 partials is also shown, followed

by the idealised wave that would result from the addition of an infinite number of

partials. Square waves are characterised by the inclusion only of odd partials at the

relative amplitudes of 1/n. Note that the synthesised waves exceed the bounds of

the ideal square wave. This phenomenon is known as the Gibbs overshoot, and is

apparent when synthesising any waveform with discontinuities, including the square

wave. As the number of partials used to synthesise the waveform increases, this

overshoot decreases, as is apparent when comparing the N = 4 and N = 50 wave-

forms. Theoretically, when an infinite number of partials are used, this overshoot

becomes infinitely small and disappears.

The frequency content of any given signal F (ω) can be obtained using the Fourier

transform. Although in reality not all signals are periodic, aperiodic signals can be

treated as periodic signals with an infinite period [11]:

F (ω) =

∫ ∞
−∞

f(t)e−jωtdt (2.9)

The above equation is the continuous form of the Fourier transform, however since

digital audio is comprised of samples of a continuous sound signal, more often used

in practise is the discrete form:
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n = 1

n = 3

n = 5

n = 7

Resultant
Waveform

(N = 4)

Resultant
Waveform
(N = 50)

Idealised
Square Wave

Figure 2.2: Fourier synthesis of a square wave, showing the first four partials, the

waveform resultant from combining these, the waveform obtained from 50 partials,

and the idealised wave.

X[k] =
N−1∑
n=0

x[n]e
−j2πnk/N (2.10)

The continuous signal f(t) is replaced by a sampled signal x[n], with the infinite

integral replaced by a finite summation over the available samples. The discrete

Fourier transform (DFT) returns N equally-spaced frequency samples X[k] with

bandwidths and centre frequencies determined by the sampling frequency of the

signal. X[k] is known as the frequency domain representation of the signal. The

original time domain representation of a signal is completely recoverable from the
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2.3. SOUND PROPAGATION IN SPACE

frequency domain representation using the inverse Fourier transform:

x[n] =
1

N

N−1∑
k=0

X[k]e
j2πnk/N (2.11)

Figure 2.3 shows the frequency domain representation of a square wave obtained us-

ing the DFT, truncated at the 14th frequency bin. The DFT is often used on short

frames of audio, so changes in frequency content over time can be monitored, pro-

ducing a time-frequency representation. Whilst the frequency spectrum of harmonic

signals such as the square wave will always consist of evenly-spaced harmonics, ap-

plying the DFT to noisy signals will give a frequency spectrum showing wider bands

of contributing frequencies. The DFT of white noise theoretically shows equal power

at all frequencies. Naturally-occurring sounds generally consist of combinations of

harmonic and noisy components.

2.3 Sound Propagation in Space

2.3.1 Sound Level

Now we have established the basic makeup of sound signals, we can begin to consider

how these signals propagate through space and combine to produce a sound field.

The first consideration is how the amplitude of a sound is quantified. There are many

different measurable quantities that can be used, but since the human ear is sensitive

to pressure, the predominant measure is sound pressure level (SPL), defined as the

root mean square (RMS) pressure at a given point [11]. Real-world SPLs range over

several orders of magnitude, from less than 2× 10−5 Pa (the threshold of hearing)

to more than 20 Pa (the threshold of pain). Given this enormous range, SPL is

typically reported on the logarithmic decibel (dB) scale, defined as:

dB SPL = 20 log10

(
RMS Sound Pressure

2× 10−5Pa

)
(2.12)
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Figure 2.3: The frequency domain representation of a square wave.
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2.3. SOUND PROPAGATION IN SPACE

Sound Sources at Distance dB SPL RMS Pressure

Jet Aircraft at 50 m 140 dB 200 Pa

Threshold of pain 120 dB 20 Pa

Disco at 1 m from loudspeaker 100 dB 2 Pa

Busy road at 5 m 80 dB 0.2 Pa

Conversational speech at 1 m 60 dB 2× 10−2 Pa

Quiet library 40 dB 2× 10−3 Pa

Background of recording studio 20 dB 2× 10−4 Pa

Threshold of hearing 0 dB 2× 10−5 Pa

Table 2.1: Some examples of typical environmental sound levels (after [15]).

Table 2.1 shows typical SPL levels for some example sound sources. The distance

from the sound source is an important factor on the sound level at the measurement

position. Whilst Figure 2.1 shows a model for sound propagating in one dimension,

in reality sound propagates through air in three dimensions. In order to consider the

effect of this on sound level, we must consider an alternative measurement which

takes into account the area affected by the sound waves, namely sound intensity

level (SIL), which is measured in watts per square meter (W m−2). Since free-field

radiation from a point source in 3D space will necessarily be spherical, the sound

power at the source P will be spread over a spherical surface of ever-increasing radius

r, thus the sound intensity at a distance r can be calculated as [11]:

I =
P

4πr2
(2.13)

A measurement of SPL at a point at distance r will show a reduction in level corre-

sponding to that of the SIL, as a rule of thumb a 6 dB reduction with each doubling of

r. This formulation comes with a few caveats, as it assumes an infinitesimally small

source radiating unimpeded omnidirectionally. Real sources are always of finite size

and rarely perfectly omnidirectional, and real environments are never actually ‘free
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field’ but have several features that affect propagation, as will be discussed. Never-

theless this equation generally provides a good estimate and is a useful intuition for

basic sound propagation.

2.3.2 Room Acoustics

In this section, factors affecting the real-world propagation of sound, namely interac-

tion with surfaces or boundaries, will be introduced. It should be noted that a large

part of the work in this thesis is concerned with outdoor sound, in which such bound-

aries are much more sparse than in a room. Apart from the ever-present ground

reflection, large open spaces are about the closest to free-field propagation one can

find [16]. Although several of the concepts from room acoustics do not strictly apply

outdoors, in built-up urban environments there can be much interaction with the

surrounding architectural infrastructure, leading to unique sonic imprints at given

locations. It is therefore beneficial to briefly review the basics of room acoustics.

In general, a recording at a point in a room of a sound signal emitted in another

part of the room will consist of three parts [11]:

• Direct sound - The sound as it has travelled along the shortest possible

path between source and receiver. Thus far, this can be considered a free-field

propagation apart from a small amount of absorption by the air, and as such

the level of the sound will be attenuated according to the inverse square law

as defined in Equation 2.13.

• Early reflections - The first few reflections to arrive at the receiver, having

been reflected from one or more surfaces in the room. These reflections are

specular, that is they appear to come from a definite point, and are generally

lower in level than the direct sound, having travelled a greater distance through

air and been subject to some absorption by the reflecting surfaces. Early

reflections give a listener a sense of the size and character of the space. If

early reflections arrive within about 30 milliseconds, they will be perceptually
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2.3. SOUND PROPAGATION IN SPACE

fused with the direct sound, altering its timbral ‘colour’ [17]. Often in open

outdoor spaces, reflecting surfaces other than the ground are much farther

away than in a typical room, so many early reflections will take a relatively

long time to arrive and be perceived as distinct ‘echoes’.

• Reverberation - Also known as late reflections, this is the field that builds up

as the sound continues reflecting from multiple surfaces. Whilst the reflections

are still physically distinct, over time the set of reflections becomes dense

both temporally and spatially. This means individual reflections cannot be

perceived and the reverberant field is diffuse, appearing to envelop the listener.

Over time, the reverberation is attenuated to the point where it is no longer

audible. Open outdoor spaces do not build up late reverberant fields.

The reverberation characteristic of a room can be recorded as its room impulse

response (RIR). The RIR contains complete information about the reflections in

a space for the source and receiver positions from which it was recorded. The

excitation impulse is the Dirac δ-function:

δ(t) =


∞ t = 0

0 t 6= 0

(2.14)

The Fourier transform of the δ-function is flat across the frequency spectrum. This

ensures that the RIR records the response of the room to all frequencies. It is

physically impossible to produce a perfect impulse, so often rooms are excited using

a swept sine wave signal which covers all frequencies of interest [18, 19]. The RIR

is recovered from this by deconvolution of the recorded sweep, effectively collapsing

the sine sweep to a single instant in time. Figure 2.4 shows a simplified RIR, and

how the three components of a typical room acoustic are represented therein.

There are several parameters that can be used to describe the characteristic of a

room acoustic. Predominant among these is the reverberation time RT60, defined as

the amount of time taken for a 60 dB decrease in sound energy upon the cessation
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Figure 2.13: A simplified IR, indicating the three main sections: the direct sound, the
initial distinct echoes of this sound in the form of early reflections, and the late tail of

echoes forming the reverberation section. After [18].

factors, including the thickness of the material and its porousness [26]. Table 2.2 gives

some example ↵ values. These values are bounded between 0 and 1, where 0 represents no

absorption, and 1 represents total absorption.

Materials
Acoustic Absorption Coe�cient (↵)

125 Hz 250 Hz 500 Hz 1 kHz 2 kHz 4kHz

Brick - Unglazed 0.03 0.03 0.03 0.04 0.05 0.07
Ordinary Window Glass 0.35 0.25 0.18 0.12 0.07 0.04
Plaster on Lath (rough finish) 0.14 0.10 0.06 0.05 0.04 0.03
Plaster on Lath (smooth finish) 0.14 0.10 0.06 0.04 0.04 0.03
Carpet on Concrete 0.02 0.06 0.14 0.37 0.60 0.65
Open Doors and Windows 1 1 1 1 1 1

Table 2.2: The acoustic absorption coe�cients (↵) of some example materials at di↵erent
frequencies, after [49].

2.3.2 Room Modes

Where an environment is excited by an acoustic source, the physical dimensions of that

environment will result in resonances at particular frequencies which have wavelengths

corresponding to those dimensions. These resonances, at least when considering indoor

(seconds)

(d
B
)

Figure 2.4: A simplified representation of a typical RIR structure (from [20]).

of the source sound. The technique to estimate RT60 from the RIR is to calculate

the energy decay curve (EDC) by taking the reverse integral of the squared RIR

[19, 21]:

EDC(t) ,
∫ ∞
t

h2(τ)dτ (2.15)

where τ is the time constant and h is the impulse response. Generally the noise

floor of the RIR is high enough that the EDC does not linearly reach −60 dB, so

typically the RT60 is estimated from two points on the linear decay portion of the

EDC. Often −5 dB and −35 dB are used as these points, yielding the T30 estimate

for RT60. Figure 2.5 shows this method graphically. The plot depicts a log squared

RIR, with the EDC shown in orange. The two red crosses show the points on the

decay curve at −5 and −35 dB, with dotted lines showing the linear extrapolation to

the energy at −60 dB. In this case, the RT60 is estimated to be around 1.65 seconds.
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Figure 2.5: Calculating the T30 estimate of the RT60 from a recorded RIR.

2.3.3 Diffraction

Another important property of sound propagation in real spaces is diffraction. This

is the bending of sound waves as they encounter openings (apertures) or obstacles

where the sound is free to propagate on one or both sides. Diffraction is an especially

important consideration for built outdoor environments and sound barriers [22]. The

angle of diffraction bending θspread depends on the relationship between the size of

the aperture or obstacle (L) and the wavelength of the sound [11]. If the wavelength

is much smaller than the object (λ� L), only a small amount of diffraction occurs,

whereas if the wavelength is comparable to the object size, or larger (λ ≥ L), the

amount of diffraction is large. This can be estimated by [23]:

θspread ≈
λ

L
(2.16)

As such, the farther off-axis a listening position to an opening or edge of a barrier,

the greater the attenuation of high-frequency sound.
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2.4 Recording Sound Fields

A basic model of a sound field is that of a set of travelling wavefronts in three

dimensions. Although waves emitted from point sources are spherically curved,

it simplifies the mathematics involved considerably to consider the wavefronts as

planar. This assumption does not incur too much error if the measurement of

the sound field is made at a reasonable distance from any sources of sound. A

point in spherical co-ordinates r includes radius r, elevation θ ∈ [0, π] and azimuth

φ ∈ [0, 2π], related to cartesian co-ordinates as [24]:

x = r sin θ cosφ

y = r sin θ sinφ

z = r cos θ

(2.17)

Sound pressure p from a single travelling plane wave as measured at a point r can

be defined as [24]:

p(k, r) = e−jk·r (2.18)

k = [ k θk φk ] is the wave vector, denoting the wave’s direction of travel where k is

the angular wavenumber (spatial frequency), in radians per meter (k = ω/c = 2πf/c).

The exponent is negative as the measured direction of arrival (DOA) of the wave is

opposite to its direction of travel. A more complex sound field featuring a continuum

of plane waves can be described as:

p(k, r) =

∫ 2π

0

∫ π

0

a(k)e−jk·r sin θkdθkdφk (2.19)

where a(k) is the directional amplitude density, which quantifies the amplitude for

wave vector k, thus capturing the variations in amplitude for both frequency and

DOA. Figure 2.6 shows a simplified sound field with two active sound sources.

34



2.4. RECORDING SOUND FIELDS

S1

S2

R

Figure 2.6: Diagram of a sound field based on basic model, featuring two point

sources.

A recording of a sound field made with a single microphone capsule represents the

integration of sound incident on the microphone capsule into a single signal with the

contributions of sound from a given direction proportional to the microphone’s polar

pattern. A polar pattern defines the relative sensitivity of a microphone to sound

incoming from any given direction. Figure 2.7 shows some common polar patterns

found in a wide variety of microphones. Note that these are two-dimensional cross-

sections of three-dimensional patterns. The red shading in the bidirectional pattern

indicates a region of reversed polarity - the contribution of sounds incoming from

this direction will be phase-inverted.

Consider an omnidirectional microphone employed to record the sound field

shown in Figure 2.6 at position R. Since sources S1 and S2 are roughly equidis-

tant from the microphone, assuming equal power for each source, each would be

equally prominent in the recording regardless of microphone orientation. If, on the

other hand, a cardioid microphone was used and oriented towards the top of the

diagram, then source S1 would sound more prominent in the recording than S2.

This leads to the intuitions that:
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Figure 2.7: Two-dimensional cross-sections of three common microphone polar pat-

terns (after [25]). Red portions indicate negative polarity.

1. A single-microphone recording encodes no spatial information about the scene.

2. If one were able to rotate a directional microphone to sample multiple direc-

tions simultaneously, a map of sound power varying over angle of incidence

could be recorded.

2.4.1 Spherical Microphone Arrays

Whilst it is clear that the procedure of simultaneous directional sampling outlined

above cannot be achieved in practical reality, it is possible to record the impact

of a sound field surrounding a point in space using a spherical microphone array

(SMA). SMAs sample the sound field with Q sensors arranged in a sphere. Though

open spheres can be used, allowing free sound propagation between the microphones,

more typical is the rigid sphere, with sensors mounted on a solid surface. The set of

microphones samples the sound field at intervals, with the resolution of the spatial

information determined by the number and arrangement of the sensors, together

with the radius of the sphere. Typically, the raw microphone signals are encoded to

give spherical harmonic (SH) signals. This encoding of a soundfield using spherical

harmonics is known as Ambisonic format [26, 27, 28].

Spherical harmonics can be used to represent functions that are defined on the
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Figure 2.8: The spherical harmonics up to fourth-order (after [24]).

surface of a sphere. Figure 2.8 shows the spherical harmonic functions up to fourth-

order, with reversed polarity lobes shaded red. They are the spherical basis func-

tions, equivalent to the sinusoids used as basis for one-dimensional functions, as

covered in Section 2.2.2. The spherical Fourier series is [24]:

f(θ, φ) =
∞∑
n=0

n∑
m=−n

fmn Y
m
n (θ, φ) (2.20)

where θ and φ are spherical co-ordinates as defined in Section 2.4 and fmn are the

weights for the spherical harmonic functions Y m
n , defined as:

Y m
n (θ, φ) ≡

√
2n+ 1

4π

(n−m)!

(n+m)!
Pm
n (cos θ)ejmφ (2.21)

Variables n andm are the SH order and degree, respectively, and Pm
n is the associated

Legendre function [29]. Compare Equation 2.20 to the standard Fourier series in

Equation 2.8. Just as higher-frequency sinusoids are required for higher-resolution
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representations of 1-D functions (i.e. the square wave example in Figure 2.2), higher-

order spherical harmonics are required for higher spatial resolution. Continuous

spherical space-frequency domain functions can be mapped to the spherical harmonic

domain using the spherical harmonic transform (SHT):

fmn (k) =

∫ 2π

0

∫ π

0

f(k, θ, φ)
[
Y m
n (θ, φ)

]?
sin θdθdφ (2.22)

where ? represents the complex conjugate. Since microphone arrays provide samples

of the continuous spherical function, the discrete form must be used [30, 31]:

fmn (k) =

Q∑
q=1

αqf(k, θq, φq)

[
Y m
n (θq, φq)

]?
bn(kr)

(2.23)

where αq are the quadrature weights governing the relative contribution of micro-

phone q, and bn(kr) is the mode strength, describing the scattering of the sound field

by the measurement sphere itself, which is dependant on the interaction between

wavenumber k and the sphere radius r. For a given SH order N , it is required that

Q > (N + 1)2.

The microphone array used in this work is the mh-Acoustics Eigenmike array

[32], which employs a nearly-uniform arrangement of 32 microphone capsules flush-

mounted on a rigid sphere, and can output SH signals up to fourth-order. Given

uniform or nearly-uniform sampling, the quadrature weights become constant:

αq =
4π

Q
(2.24)

and for a rigid sphere:

bn(kr) = 4πjn

[
jn(kr)− j′n(kr)

h
(2)′
n (kr)

h(2)
n (kr)

]
(2.25)

with jn being the spherical Bessel function, h(2)
n the spherical Hankel function of

the second kind, and ′ denoting their derivatives [24, 29]. Figure 2.9 shows the

magnitude of the mode strength for spherical harmonic patterns, or ‘beams’, up

to sixth-order. The upper x-axis labels show frequencies derived from kr for the
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Figure 2.9: The magnitude of bn(kr) for orders up to n = 6. The upper frequency

scale shows equivalent frequencies for an array radius of 4.2 cm (e.g. the Eigenmike).

Eigenmike radius r = 4.2 cm. It is apparent that the magnitudes of all orders n > 0

become very small as kr becomes significantly smaller than n. This has implications

for the operational frequency range of the microphone array. Dividing out bn(kr)

in Equation 2.23 to compensate for the array scattering causes large magnifications

of the low frequencies in higher-order channels, which will also magnify any sensor

noise present. The higher the order, the larger the increase in noise [24, 30]. This

causes the lower frequencies in high order beams to degrade performance, and so

these must be filtered out. The exact frequencies at which performance degradation

becomes too great vary between arrays. Table 2.2 shows the lower cutoff frequencies

for each order for the Eigenmike array [33].

The upper frequency limit for the reconstruction of the spherical function is

restricted by spatial aliasing. Spatial aliasing occurs when a given SH order n

cannot adequately describe high-frequency changes over space. Looking again at

Figure 2.9 we can see that for kr > n the contribution of the next highest SH
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SH order n Lower cutoff frequency

0, 1 30 Hz

2 400 Hz

3 1000 Hz

4 1800 Hz

Table 2.2: Lowest operating frequencies for Eigenmike per order [33].

order n + 1 is around 10 dB lower than that of n, with higher orders than this

lower still. We can therefore consider the error incurred by the omission of these

higher-order channels to be negligible at lower frequencies [24, 30]. For kr > n, on

the other hand, the error becomes significant and the information contained in the

higher-order channels is required to properly reconstruct the spherical function. The

upper cutoff frequency should therefore satisfy kr ≤ N in order to avoid significant

aliasing. For the Eigenmike, with N = 4, this makes the upper cutoff frequency 5.2

kHz, though mh Acoustics employ a proprietary ‘high-frequency extension’ stage in

an attempt to maintain directivity above this limit [34].

2.4.2 Spherical Harmonic Beamforming

Recording the sound field as a series of spherical harmonics gives all the information

required to make the hypothetical instantaneously-rotating directional microphone

referred to in Section 2.4 a reality. It is one of the strengths of the spherical harmonic

format that by simple weighting of the available SH channels, one can synthesise a

polar pattern in any direction of interest and with a given directivity, within the

limits of the maximum available SH order. This is known as beamforming.

The method by which a beam is synthesised is:

Z(θ, φ) =
∑
k

N∑
n=0

n∑
m=−n

wnf
m
n (k)Y m

n (θ, φ) (2.26)

Note that this equation is essentially identical to the description of the spherical
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Fourier series in Equation 2.20, with added wavenumber dependence for fmn (as SH

beamforming is typically done in the SH-wavenumber domain) and added weights

wn. In a sense, the SH-domain signals fmn are already weights for the spherical

harmonics, and wn are additional weights applied to modify the resultant beampat-

tern. As such, the simplest approach is to set these weights at a constant value, so

all spherical harmonics for a given look direction contribute equally. This has the

effect of synthesising an axis-symmetric beam that approximates a Dirac δ function

pointed in the look direction. Since plane waves incident upon the measurement

array are in spherical harmonic representation equivalent to δ-functions at angles

indicating their DOA, this technique can be thought of as decomposition of the

sound field into a set of plane waves (as described in Equation 2.19) and therefore

is typically termed plane wave decomposition (PWD) [35]. The constant weights

yielding unity-gain PWD beams are derived in [24] as:

wPWD =
4π

(N + 1)2
(2.27)

PWD yields the maximally-directive beam for any given order [36], at the expense

of the presence of sidelobes arising from order-limited beampattern synthesis, anal-

ogous to the Gibbs overshoot phenomenon shown in Figure 2.2. The higher the

spherical harmonic order used, the narrower the beam and the smaller the sidelobes.

A theoretical beam synthesised using infinite orders would be infinitely narrow with

no sidelobes. Figure 2.10 shows the beampatterns synthesised using PWD from 1st

to 4th-order.

An alternative to PWD that is often used when decoding a SH signal to a loud-

speaker array for playback (Ambisonic decoding) is the max-rE weighting [37]. This

weighting is designed to maximise energy in the look direction, producing minimal

sidelobes at the expense of a wider main lobe [38]. The weights are calculated by:

wmax-rE
n = Pn(E) (2.28)

where Pn is the Legendre polynomial for order n and E is the largest root of PN+1,
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Figure 2.10: Cross-sections of PWD beampatterns from 1st to 4th-order.
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Figure 2.11: Cross-sections of max-rE beampatterns from 1st to 4th-order.

approximately [39]:

E ≈ cos

(
137.9°

N + 1.51

)
(2.29)

Figure 2.11 shows beampatterns synthesised using max-rE weights.

2.4.3 Cross-Pattern Coherence

A recently-developed technique enabling much narrower beams than would be achiev-

able using either the PWD or max-rE weightings at any given order N ≥ 2 is cross-

pattern coherence (CroPaC) [31, 40]. At the expense of increased computational

complexity, this technique utilises coherence between beams synthesised from multi-

ple SH orders, combined with axis-symmetric rotations, to achieve complete sidelobe

suppression. To generate CroPaC beampatterns, two beams are synthesised for or-

ders N and N − 1 with initial weights wn set to select individual SH channels where
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m = n, e.g.:

w1 =

[
0 0 0 1 0 0 0 0 0 . . .

]
w2 =

[
0 0 0 0 0 0 0 0 1 . . .

] (2.30)

Since these weights select individual spherical harmonic patterns, which are not

symmetric in all axes, Wigner-D rotation (described in Section 2.4.4) is used to steer

these beams to the look direction. Outputs ZN and ZN−1 are calculated according

to Equation 2.26 with the summation over k omitted, retaining the wavenumber

dependence at this stage. Next, the cross-spectrum of these two beampatterns is

calculated:

Zcross-spectrum(θ, φ, k) = R
[
ZN(θ, φ, k)?ZN−1(θ, φ, k)

]
(2.31)

As is shown in Figure 2.12, this results in a dipolar beampattern with a negative

pole on the opposite side to the desired look direction. A half-wave rectification is

used to suppress sounds incoming from this negative side:

ZCroPaC = max
[
0, Zcross-spectrum

]
(2.32)

Figure 2.13 shows the results of this stage. Although the main-lobe of each pattern is

noticeably narrower than the PWD or max-rE equivalents shown in Figures 2.10 and

2.11, there are very prominent sidelobes which would cause unwanted contribution

from off-axis sounds. Therefore, in order to suppress these sidelobes, an additional

series of rotations are performed about an axis defined by the look direction (θ, φ).

Taking the product of these rotations results in a final beampattern free of sidelobes,

as only the parts of the beampattern common to all rotated versions (i.e. the

mainlobe in the look direction) are retained:

ZSuppressed(θ, φ, k) =
N∏
n−1

∆n

(
ZCroPaC(θ, φ, k)

)
(2.33)
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Figure 2.12: Calculation of cross-pattern coherence patterns for N = {2, 3, 4}. Note
that the set of patterns used to calculate the cross-spectrum shown here are 2D

cross-sections of the same 3D SH functions shown in Figure 2.8.

where ∆n represents a rotation of nπ
N

radians. In practise, these rotations are in-

cluded as part of the process of steering the beampattern weights. Equations 2.31

and 2.32 must effectively be used N times to calculate the rotated versions of the

beampattern for sidelobe suppression using Equation 2.33. The final CroPaC beam-

patterns are shown in Figure 2.14.
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Figure 2.13: Half-wave rectified cross-pattern coherence patterns for N = {2, 3, 4}.
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Figure 2.14: CroPaC beampatterns for N = {2, 3, 4}.

2.4.4 Rotation of Spherical Harmonic Functions

For axis-symmetric beampatterns such as PWD and max-rE, all that is required to

steer the beams is the summation of the weighted SHs for a given look direction.

CroPaC, on the other hand, utilises non axis-symmetric beamforming, and as such it

is necessary to describe here the process by which any arbitrary spherical harmonic

function can be rotated.

A rotation ∆ of a complex spherical harmonic function for a given n and m can

be defined as a weighted sum of complex spherical harmonics of the same order n

and that order’s full range of degrees, m′, e.g.:

∆(α, β, γ)Y m
n (θ, φ) =

n∑
m′=−n

Dm′m
n (α, β, γ)Y m′

n (θ, φ) (2.34)

where α, β and γ are the Euler rotation angles. The rotation weights are given by

the Wigner-D function [24]:
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Dm′m
n (α, β, γ) = e−jm

′αdm
′m

n (β)e−jmγ (2.35)

where dm′mn (β) is the Wigner-d function:

dm
′m

n (β) = ζm
′m

√
s!(s+ µ+ ν)!

(s+ µ)!(s+ ν)!
sin(β/2)µ cos(β/2)νP (µ,ν)

s (cos β),

µ = |m′ −m|, ν = |m′ +m|, s = n− µ+ν/2,

ζm
′m =


(−1)m−m

′
, if m < m′.

1, otherwise.

(2.36)

and P is the Jacobi polynomial [41]. Since functions on a sphere can be represented

by different weightings of spherical harmonics (Equation 2.20) it follows that rota-

tions of functions represented in this way effectively require a redistribution of these

weights to describe the same pattern in a different orientation [24]. This means a

function represented by spherical harmonics from a single order n will not require

SHs of any other order to represent its rotation. Usually, however, a function will

require rotation across multiple orders:

f̂mn =
N∑
n=0

n∑
m′=−n

n∑
m=−n

fmn D
m′m
n (2.37)

The directional dependency of Dm′m
n has been omitted here for clarity. This can be

expressed as a matrix operation:

f̂ = Df (2.38)

f is a vector containing the spherical harmonic weights describing the function:

[
f00 f1(−1) f10 f11 . . . fNN

]T
(2.39)

where T is the array transpose operation. D is a block diagonal matrix:
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

D0 0 0 . . . 0

0 D1 0 . . . 0

0 0 D2 . . . 0
...

...
... . . . ...

0 0 0 . . . DN


(2.40)

The matrices Dn comprise of entries covering Dm′m
n , e.g., for N = 1:


D

(−1)(−1)
1 D

(−1)0
1 D

(−1)1
1

D
0(−1)
1 D00

1 D01
1

D
1(−1)
1 D10

1 D11
1

 (2.41)

The above equations describe rotation matrices for complex spherical harmonic

functions. For real-valued spherical harmonics, a method is required to transform

these functions to real values. The real-valued rotation matrices DR can be calcu-

lated as follows [42]:

DR = C?DCT (2.42)

where C is a block diagonal matrix (similar to that shown in Equation 2.40) con-

sisting of elements Cn. These are matrices constructed similarly to that shown in

Equation 2.41, comprising entries covering Cm′m
n , which is defined as:

Cm′m
n =

1√
2



0 |m′| 6= |m|
√

2 m′ = m = 0.

(−1)m m′ = m > 0.

1 m′ > 0 > m.

−j(−1)m m′ < 0 < m.

j m′ = m < 0.

(2.43)
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Figure 2.5: The anatomy of the ear indicating the outer ear, middle ear, and inner ear,
after [25].

are then delivered to the base of the cochlea with increased e↵ective pressure, which is

required due to the higher resistance of cochlear fluid relative to air.

The cochlea is a coiled structure that receives mechanical vibrations from the stapes at

its base and converts them into nerve firings identifying the frequency components in the

incoming sound. Running along the length of the cochlea is the basilar membrane. As

shown in Figure 2.6, the basilar membrane resonates along its length at frequencies ranging

from 20 Hz (at the apex) to 20 kHz at its base (a phenomenon first identified by Von

Békésy [26]). In this way the basilar membrane can be thought of as a tonotopic map

[27], where resonance with di↵erent frequencies (or tones) is spread across the surface

topography of the membrane. These resonances then stimulate the Organ of Corti, a set

of hair cells (cilia) distributed along the length of the basilar membrane. As the cilia are

stimulated they trigger a nerve bundle known as the vestibulocochlear nerve, which send

this frequency and timing information to the brain.

Where the resonances of the basilar membrane define the frequency range of the hearing

system, the physiology of the outer and middle ear dictates the hearing system’s sensitivity

to di↵erent frequencies. This changing sensitivity with frequency can be seen in the

equal loudness contours (Figure 2.7) first measured by Fletcher and Munson [28]. Clearly

Concha
Pinna

Figure 2.15: The anatomy of the human ear (from [20]).

2.5 Human Hearing

So far, the underlying physics of sound waves and sound fields have been explored,

yet equally important to understand in any study involving sound perception is the

way in which a sound field interacts with the human hearing system, making its

various facets perceptible to a listener.

2.5.1 The Ear

Central to the human hearing system is, of course, the ear. Figure 2.15 is a cross-

section of a human ear, indicating its three main sections; outer, middle and inner

[11]. The outer ear consists of the pinna, concha, auditory canal, and tympanic

membrane, or eardrum. The pinna is the large fold of tissue visible on the head,

and serves to direct sound down to the concha, which is the entrance to the auditory

canal. The pinna and concha also have the effect of enhancing particular frequencies

depending on the DOA of incoming sound. This is a key component of the human

ability to localise sounds, explored further in Section 2.5.2. Sound travels along

the auditory canal and induces vibrations in the tympanic membrane, which is
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Figure 2.16: Simplified diagram of the uncoiled basilar membrane, indicating its

resonances across the range of human hearing (from [11]).

the threshold of the middle ear. The middle ear consists of three small bones, the

ossicles, that transmit the movements of the tympanic membrane to the oval window,

entrance to the cochlea and inner ear [11]. The cochlea is a coiled tube, with oval and

round windows at its base. Contained within the cochlea is the basilar membrane,

a simplified diagram of which is shown in Figure 2.16. This membrane resonates at

frequencies ranging from 20 Hz at its apex to 20 kHz at its base, stimulating tiny hair

cells contained in the organ of Corti, distributed along the length of the membrane.

These hair cells trigger the vestibulocochlear nerve to transmit information to the

brain [11, 20].

This system by which the place of vibration on the cochlea is key to differentiation

of frequencies gives rise to the phenomenon of critical bands, effectively determin-

ing the frequency resolution of human hearing. If the frequency components of an

incoming sound are relatively well-spaced, the vibrations on the basilar membrane

will be distinct. If, however, frequencies are closely spaced, vibrations on the mem-

brane will not be definitely separated, giving rise to a perceptual ‘roughness’ [11].

The required frequency difference for perceptual separation is known as the ‘critical

bandwidth’. This phenomenon is key the design of many perceptually-motivated

machine listening features, some of which will be covered in Chapter 4.
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resulting in an unambiguous phase di↵erence and no acoustic shadow (see Figure 2.22). However,
for very low frequencies (typically < 80 Hz) where sounds exhibit a proportionally very small
phase delay between ears relative to the total wavelength, it may be very di�cult or impossible to
discern the direction of the sound [38].

(a) Large wavelengths are di↵racted
around the head, hence localisation is more
dependent on inter-aural phase di↵erences.

(b) Small wavelengths are shadowed by the
head and torso, hence localisation is more
reliant on inter-aural level di↵erences.

Figure 2.22: Source localisation due to inter-aural di↵erences is dependent on the wavelength of sound
relative to the head diameter.

In addition to inter-aural time and level di↵erences, localisation on the horizontal plane is also
aided by the spectral transformation of signals due to the di↵raction, absorption and reflection
properties of the outer ears (pinnae), head and torso. These particular filtering e↵ects are char-
acterised by complex frequency response functions known as Head-Related Transfer Functions
(HRTFs). The corresponding impulse response function (IRF) or time-domain representation of
an HFTF is referred to as a Head-Related Impulse Response (HRIR) [39]. HRTFs are particularly
important for ensuring accurate localisation of near-field sources where ILDs and ITDs may be
minimal, and generally contribute to the extracranialisation of sound reproduced through head-
phones - i.e. the sensation of sound being ‘all around’ the listener, as opposed to inside the head.

Figure 2.23: A pair of Head-Related Impulse Responses (HRIRs), hL(t) and hR(t), can be measured
experimentally. The HRTFs may then be derived from the HRIRs via the process of Fourier transfor-
mation.

28

Figure 2.17: Acoustic shadowing by the head causing ILD at higher frequencies

(from [43]).

2.5.2 Spatial Hearing

As noted in Section 2.4, a single receiver encodes no spatial information on sounds

in an environment. Thus, two ears are required for the perception of spatial sound.

Now that the basic functioning of a single ear has been established, the manner

by which the signals from both ears are used in tandem to perceive these spatial

properties can be explored.

The two main cues that can be derived from binaural hearing are the interaural

level difference (ILD) and interaural time difference (ITD) [11]. ILDs arise when

the head creates an acoustic shadow for incoming sound waves, which causes the

sound arriving at the ear in shadow to be attenuated. Following the principles of

diffraction described in Section 2.3.3, this effect is greater at frequencies where the

wavelength of the sound is smaller than the head, as shown in Figure 2.17, and

virtually nonexistent for low-frequency sounds where the wavelength is larger than

the head. At low frequencies, therefore, ITD is a vital cue for localisation [11].

Figure 2.18 shows a simplified model of ITD. From this, estimates can be derived

as [11]:

ITD =
r
(
θ + sin(θ)

)
c

(2.44)

This can be used to derive a maximum possible ITD value (for sounds arriving

at θ = 90°) of 6.6× 10−4 s. This will result in ITD ambiguities for frequencies
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frequencies then, binaural localisation relies on Interaural Time Di↵erences (ITDs). Figure

2.10 shows a simplified model of the path di↵erence introduced by the head that lead to

these timing di↵erences, where the path di↵erence is dependent on the size of the head,

and the angle of incidence of the sound source.

✓

✓

✓

r

r

L2

L1

Sound source
Azimuth = ✓

Figure 2.10: A simplified model of Interaural Time Di↵erence (ITD) showing how the
angle of incidence of the sound source and the size of the head introduces a path di↵erence

between sound arriving at each ear, after [18].

The diagram in Figure 2.10 can be used to derive Woodworth’s formula [31] which can be

used to estimate ITD for a head of a given size:

L1 = r sin(✓) (2.17)

L2 = r✓ (2.18)

Path di↵erence, P = L1 + L2 (2.19)

P = r sin(✓) + r✓ (2.20)

ITD =
P

c
=

r

c
(sin(✓) + ✓) (2.21)

Figure 2.18: Simplified model of ITD (from [20]).

completing more than one vibration in this period of time; approximately 1.5 kHz

and above. In practise, then, ITD cues are more important for low frequencies, and

ILD for high frequencies.

Whilst ILD and ITD contain a great deal of spatial information, they can only

account for perception of direction on the horizontal plane, and even then do not

account for the human ability to tell whether sounds are coming from in front or

behind. The direction-dependent filtering of the pinna mentioned in Section 2.5.1

is key in both these regards. Subtle head movements are also used to disambiguate

front from rear [11].

All of the spatial cues described in this section can be encoded as a head-related

transfer function (HRTF) [44]. These are recorded along the lines of the method

used for RIRs described in Section 2.3.2, using a pair of small microphones placed at

the entrance to each ear canal, typically in an anechoic chamber. Separate HRTFs

must be recorded for every DOA of interest. A high spatial resolution is required

for realistic binaural synthesis, so this can be a very time-consuming process.
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2.6 Summary

This chapter has provided the foundation for the technical aspects of the work pre-

sented in this thesis, starting with the basic makeup of sound waves and describing

the nature of their propagation through space, and how this builds up a sound field.

It was shown that just as a one-dimensional signal can be represented and analysed

using a Fourier series based on sinusoids, a spherical signal can be represented using

spherical harmonics, and as such these make an ideal basis with which to record

a sound field spatially. The chapter concluded with a short summary of the hear-

ing system, the means by which spatial sound is perceived. The next chapter will

explore the more human-centric concerns of soundscape and environmental noise,

which provide the motivation for the work presented in this thesis.
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3 | Environmental Noise and the

Soundscape Approach

3.1 Introduction

It is a fact so obvious that it is not often stated that we are constantly immersed

in sound. Whilst vision can be shut off simply by closing one’s eyes, sound is not

so easily shut off. Even modern noise-cancelling headphones, whilst very effective,

do not ever completely block all sound. Given such constant stimulus, it should be

clear that sound can have a profound effect on both physical and mental wellbeing,

though in fact it is this very ubiquity that often leaves sound taken for granted and

regarded as a secondary concern.

In the previous chapter, the scientific grounding of sound fields was explored. It

was shown that in basic terms sounds vary only in amplitude and frequency, with

spatial interactions and variations thereof. It was also shown that it is relatively

straightforward given modern technology to measure sound across these dimensions.

To quantify human response to these apparently simple variations is much more

difficult. There are physiological dimensions, such as noise-induced hearing loss,

that are easy to define using standard SPL measurement [11]. Psychological effects

(which can in the long term lead to physiological effects) are much harder to evaluate.

How can the fact that the sounds of a bustling city with cars, honking horns, chatter

and music can energise and enthuse one person, yet enrage the next, be quantified?
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3.2. TERMINOLOGY

Can a simple number be put to the calming effect of a babbling brook, that even

the distant intrusion of a single passing vehicle [45] could shatter?

This chapter will explore the concept of the soundscape approach, which arose

partially as an attempt to answer these kinds of questions. The prevailing envi-

ronmental noise approach will also be summarised, with the two compared and

contrasted by way of an exploration of the terminology and language used in each.

Various taxonomies for sound categorisations will be investigated and assessed in

relation to their applicability to machine listening and human perception, and the

chapter will conclude with some methods by which the soundscape approach has

been implemented in practise.

3.2 Terminology

To consider the concept of soundscape, especially as related to the field of machine

listening, one must first return to the source of many of the ideas that pervade the

literature, and tackle the surprisingly challenging issue of the terminology used in

this field of study. The notion of ‘The Soundscape’ was crystallised by R. Murray

Schafer in his seminal book of the same name [3]. Though the exploration of the

subject in this work in exhaustive, a single formal definition of the term is elusive.

Schafer presents a number of potential definitions in quick succession:

“The soundscape is any acoustic field of study. We may speak of a musical

composition as a soundscape, or a radio program as a soundscape or an

acoustic environment as a soundscape” [3].

Whilst it makes sense to be inclusive in terms of the kinds of sounds encom-

passed by the term, the main focus of soundscape studies has been on the sounds

present in urban environments [5, 46, 47], and in wilderness environments, where

often the terms ‘acoustic ecology’ or ‘soundecology’ are used alongside ‘soundscape’

[48, 49, 50]. Schafer’s text converges on the metaphor of the soundscape as the
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3. ENVIRONMENTAL NOISE AND THE SOUNDSCAPE APPROACH

auditory equivalent to the visual concept of the landscape, with an emphasis on the

soundscape as a product of human perception [3]. The formal definition of sound-

scape, published as an international standard in ISO 12913-1 [51], extrapolates from

the European Landscape Convention Agreement’s definition of landscape, thus ar-

riving at:

“the acoustic environment of a place, as perceived by people, whose char-

acter is the result of the action and interaction of natural and/or human

factors” [6].

Although this definition was not universally agreed upon [52], it is prevalent in the

literature and since it is now enshrined as an international standard, this thesis will

use the term based on this definition.

Since a soundscape depends on perception, it is unique to each individual ex-

periencing a particular place. The raw input to a machine listening system will

not have been filtered by any such perceptual mechanism, and will instead be an

audio stream dependent on an environment and altered only by the properties and

location of the microphones used to capture the sound. It can therefore not be con-

sidered a soundscape according to the above definition, so alternative terminology

is needed. One option is to use the term ‘auditory scene’, borrowing from computa-

tional auditory scene analysis (CASA). However, by using the word ‘auditory’, that

is “Relating to the sense of hearing” [53], ‘auditory scene’ still implies a certain focus

on the perception of sound.

Many alternative terms have been used in the literature, most prevalently ‘acous-

tic scene’ [54], and sometimes ‘sound scene’ [9, 55] in relation to recent machine

listening work. In some respects, the term ‘sound scene’ might be considered less

ambiguous than ‘acoustic scene’, as the latter might perhaps be taken as a reference

to room acoustics. On the other hand, the concept of ‘sound’ could be taken as

perceptual. Together with the semantic similarity, this could make the term ‘sound

scene’ more easily confusable with ‘soundscape’, so it will not be used in this thesis.
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3.3. ENVIRONMENTAL NOISE

Noise Approach Soundscape Approach

Sound managed as a waste Sound perceived as a resource

Focus is on sounds of discomfort Focus is on sounds of preference

Integrates all sounds at a receptor Differentiates between sound sources

Managed by reducing levels Works towards wanted sounds not being

masked by unwanted sounds

Table 3.1: Environmental Noise Approach vs Soundscape Approach (after [4]).

Instead, this thesis will generally use the term ‘acoustic environment’, defined by

Brown as “the sound from all sources that could be heard by someone in that place”

[6]. An acoustic environment is characterised by the kinds of sound sources present,

together with the reshaping and colouration that are given to those sources by re-

flections, absorption, diffractive bending of sound waves, or any other modifications

happening within the vicinity. Hence, ‘acoustic scene’ will be used when referring to

ASC, but ‘acoustic environment’ is generally preferred due to its explicit referencing

within the ISO definition of ‘soundscape’.

3.3 Environmental Noise

Whilst the choice of terminology to describe this subject might seem a somewhat

trivial starting point for this discussion, the particulars of the language used can

have an effect on the wider framing of the issue. This is exemplified in the writing

of Brown, who categorises the prevailing approach to managing the acoustic environ-

ment as the ‘environmental noise’ approach, calling this the “traditional, objective

energy-based model of the acoustic environment”, as opposed to the more nuanced

‘soundscape’ approach, a “subjective listener-centred model” [4]. Table 3.1 presents

some key differentiators between these two approaches.

From the point of view of an audio researcher, noise is a specific type of signal,
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Figure 3.1: The ‘A’ weighting for SPL measurement.

but to members of the general public the terms noise and sound may be much

more synonymous. ‘Environmental Noise’ - a term that is used in much of the

legislation on this matter [56, 57] - feels very reductive in both senses, conflating

all environmental sound into an ‘unwanted’ mental space. This is borne out by the

standard metric for environmental noise, the LAeq measurement, which integrates

all sounds present in a scene into a single one-dimensional reading.

3.3.1 LAeq

LAeq, T denotes the equivalent continuous SPL ‘dose’ required to give the same total

amount of sound pressure received over a designated period of time T at the mea-

surement point, essentially the average SPL [11, 43]. The ‘A’ indicates A-weighting,

which is an international standard scale designed to compensate for the fact that

human perception of loudness is not flat across all frequencies, especially at lower

amplitudes [58]. A-weighting is defined to normalise the perceived loudness of tones

relative to the perception of a 1 kHz tone at a given SPL, as shown in Figure 3.1.
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3.3. ENVIRONMENTAL NOISE

Most SPL meters take A-weighting into account by default, and A-weighted readings

are denoted by the unit dB(A).

LAeq is an important measurement for protection of hearing, as the amount of

hearing damage incurred is a function of both SPL and exposure time. Exposure to

loud sounds upwards of 100 dB(A) can cause permanent hearing damage in a matter

of minutes, or even seconds as the SPL increases. Lower level sounds on the order of

85 dB(A) can be tolerated for several hours before hearing is permanently affected

[11]. This is reflected in UK legislation covering workplace noise exposure, which

states that, if the daily workplace noise dose (LAeq, 8h) exceeds 85 dB(A), employees

must be provided with hearing protection, and that if the dose exceeds 80 dB(A)

they are entitled to request it [11, 59].

Ambient noise in urban environments is often measured over a 24-hour period

(LAeq, 24h). The level considered by legislation to cause annoyance is considerably

lower, at 50-55 dB(A), than that which can cause increased risk of physiological

health effects, which for a 24-hour period is 70 dB(A) [60]. The 24-hour SPL mea-

surement is sometimes weighted to reflect temporal variations in annoyance and

disturbance levels based on typically lower activity levels in evening and night pe-

riods. This measurement is denoted Lden (day-evening-night) and is calculated as

[61]:

Lden = 10 log
1

24

(
12 · 10

Lday
10 + 4 · 10

Levening+5

10 + 8 · 10
Lnight+10

10

)
(3.1)

This applies a 5 dB penalty to noise occurring in the evening hours (7 pm to 11

pm) and a 10 dB penalty to the night hours (11 pm to 7 am), in relation to noise

occurring during the day.

There is no doubt in the usefulness of measuring LAeq, especially in terms of

the prevention of hearing loss and as a broad indicator of annoyance. The desire

to measure sound in an objective manner such as this is understandable when one

considers the motivation of devising universally-applicable laws that are relatively

simple to implement. The problem with the approach is that, as shall be explored
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3. ENVIRONMENTAL NOISE AND THE SOUNDSCAPE APPROACH

in Section 3.4.3, and as outlined in the introduction to this thesis, the emotional

and physiological responses to sound stimuli cannot be completely quantified by

the sound level alone. Lden represents an acknowledgement that perception of sound

levels is context-sensitive, but this is still a level-based metric that treats all sound as

inherently of equal potential disturbance. For a more nuanced understanding, LAeq

could be considered one component of a broader multi-variate contextual analysis.

Brown’s definition of the soundscape approach frames the technique as inher-

ently subjective, and indeed perceptions of a given soundscape can vary greatly

from person to person. There are, however, several broad patterns in soundscape

perception whereby advanced measurement and machine learning technology could

be brought to bear in more discerning measures than LAeq. Of particular interest is

the aspect of the soundscape approach that “requires differentiation between sound

sources” [4]. This is an area where a machine listening system could be very useful.

3.4 Soundscape Taxonomies

3.4.1 Schafer’s Features of the Soundscape

Whilst soundscapes tend to be considered as a single entity, they are always built

up from distinct sonic events. There have been numerous systems proposed for the

categorisation of the kinds of sounds that contribute to a soundscape, beginning

with Schafer’s original work on the subject, which proposed a four-category system:

• Keynotes - The ever-present sounds that define the character of the sound-

scape to which they belong.

• Signals - Sounds that are actively listened to and convey meaning or messages.

• Soundmarks - The auditory equivalent to landmarks - sounds specific to the

location in which they are heard.
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3.4. SOUNDSCAPE TAXONOMIES

• Archetypal sounds - “mysterious ancient sounds, often possessing felicitous

symbolism” [3].

Keynote is a term borrowed from music, identifying the tone that gives the key

signature of a composition. One might also call to mind the keynote talk at a

conference, intended to ‘set the tone’ for the rest of the proceedings. According to

Schafer, keynote sounds are not typically listened to consciously, but serve as the

background [3, 62], underpinning, colouring, and contextualising all other sounds in

a scene. These are the kinds of sounds one might not notice until they are gone.

Schafer identifies keynote sounds as typically “created by geography and climate”,

though the sounds of machinery, in particular the motor car, now fulfil this role in

many modern urban soundscapes [63, 64].

In describing signals Schafer invokes Gestalt visual perception theories, posi-

tioning signals as the ‘figure’ to the keynote’s ‘ground’ [3]. Schafer posits that any

sound source can be a signal if a listener consciously chooses to direct their atten-

tion towards it, though some sounds typically draw attention more than others. In

a modern urban soundscape, police sirens or the alert sounds made by pedestrian

crossings are examples of signals.

Keynotes and signals could be thought of as the main categories, with sound-

marks and archetypal sounds being special cases of either. In the city of York this

is typified by the famous Minster bells. These are a soundmark, a sound charac-

teristic to the city which cannot be found anywhere else, whilst also exemplifying

an archetypal sound of antiquity, a church having been on the site of the Minster

for more than a thousand years. In a city with such depth of history, this is a sure

qualification of “felicitous symbolism”. Further, Schafer specifies bells as a type of

signal as they convey warning or information (perhaps the time, or a call to prayer),

whereas their ubiquity in York could even see them considered part of the city’s

keynote sound. Schafer notes that keynote sounds “may have imprinted themselves

so deeply on the people hearing them that life without them would be sensed as a

distinct impoverishment”. This was exemplified by the widespread outrage at the
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2016 dismissal of the Minster bell ringers, causing the bells to fall silent [65].

3.4.2 Acoustic Environment Classification

Whilst there is clear benefit to Schafer’s categorisations when considering sound-

scapes, they are inherently subjective and therefore unsuitable as labels that could be

objectively applied to sounds by a machine listening system. There is no guarantee

that two people will perceive the same things when hearing an acoustic environment.

One person’s signal could be another person’s keynote, and in fact these perceptions

could change from moment to moment depending on which sound is given special

attention. It is clear that the objective analysis of acoustic environments requires a

less subjective taxonomy.

One categorisation system, originally proposed for research into biodiversity [66],

consists of three categories into which all sounds can be fitted:

• Anthrophony - Sound created by human activity.

E.g. Vehicle noises, machinery, music...

• Biophony - Sounds produced by biological activity (non-human).

E.g. Birdsong, animal calls...

• Geophony - Sounds originating in non-biological natural processes.

E.g. Running water, wind, ocean waves...

These groupings reflect their origins in soundecology research. In wilderness envi-

ronments it is usually a fair assumption that the majority of sound sources will be

non-human in origin. Since much research in soundecology is concerned with quan-

tifying the degree of human encroachment upon these environments, it is entirely

reasonable in this context to take a low-resolution view of human sound as a single

agglomeration. In soundscape research, however, the focus is on human percep-

tion of sound, which, as shall be explored in Section 3.4.3, tends not to be uniform

across all the sounds included under the umbrella of anthrophony. Furthermore,
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since the sound sources in urban environments are overwhelmingly anthrophonic, a

finer resolution is needed for these, with perhaps less detail required for biophonic

and geophonic sounds.

Additional shortcomings of directly mapping soundecology techniques onto urban

soundscape analysis can be seen in the recent work of Devos [50], in which sounde-

cology indicators (summarised in [67]) are applied to urban soundscape recordings.

Of particular interest is the Normalised Difference Soundscape Index (NDSI), cal-

culated using

NDSI = (β − α)/(β + α) (3.2)

where β and α represent estimations of the biophonic and anthrophonic sound power

respectively, averaged over a complete recorded signal. The output is a number rang-

ing between -1 to 1, where negative numbers indicate more prevalent anthrophony

and positive numbers indicate more prevalent biophony. To gain estimates for β and

α, a system is used whereby the frequency spectrum is split into two bands. In [67]

these are 200 Hz - 2 kHz, assumed to contain mainly anthrophonic sound, and 2 kHz

- 8 kHz, assumed to consist mainly of biophonic sound. It is clear that this method

of separating sound sources is extremely crude, with a great deal of anthrophonic

sound being much more wide-band and many animals producing sound well below

2 kHz. This drawback is noted in much of the literature that uses the metric, but

NDSI has nevertheless been shown to give usable results in analysis of wilderness

environments [49, 67].

Devos’ work shows that this technique fails when attempting to measure NDSI

in urban environments [50]. Several isolated anthrophonic sounds, including hedge

trimmers and mopeds, give incorrect output from the NDSI metric. The paper

states that the technique fails in urban environments due to the large number of

sound sources present. Despite the failure of the soundecology indicator in this

case, the research does at least represent an attempt to glean more meaningful

objective measures from an acoustic environment recording than LAeq. This raises
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the question of whether a machine listening system could be used to improve the

accuracy of the NDSI or similar metric. Devos’ paper does in fact mention using a

“computational model of auditory attention” as a potential area for future work.

Arguing that there is “insufficient resolution” [6] for urban acoustic environments

using the soundecology categories, Brown et al. developed an acoustic environment

schema, shown in Figure 3.2, that divides anthrophony into various subcategories

[6, 68]. Brown’s schema could make a good hierarchical categorisation system for an

automated acoustic environment analysis system. The air traffic class, for instance,

would be a subclass of ‘Motorised Transport’, itself a subclass of Anthrophonic

sound. Such a system could give figures for the contribution of individual sound

sources or categories [69]. This would facilitate the calculation of metrics such

as a more reliable NDSI ratio, and hierarchical classification could also work to the

advantage of an imperfect system. Certain sounds that might be more difficult to tell

apart and more prone to misclassification - perhaps different types of motor vehicles

- would likely still be classed within ‘motorised transport’, allowing metrics involving

this superclass to be calculated without issue. This approach is proposed in [70] for

the Instrument for Soundscape Recognition, Identification and Evaluation (ISRIE)

system, though in that work a slightly expanded version of the basic soundecology

categories is used, rather than Brown’s schema, which was published later.

3.4.3 Perceptual Dimensions

Having investigated Schafer’s soundscape features, which are perceptually relevant

but difficult to objectively quantify, the question arises of the perceptual relevance

of the quantifiable soundecology categories. In some studies, after experiencing an

acoustic environment by some means (see Section 3.5), participants are interviewed

on their perception of these as soundscapes [71]. Whilst the depth of insight into in-

dividual experiences gained this way can be valuable, it is difficult to map this kind

of data to numerical values that can be analysed statistically. For this reason, most

recent studies use semantic differentials, characterised by numerical scales positioned
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by the use of real-time transducers in, for example, whale-watch-
ing activities. One can thus refer, for example, to the acoustic envi-
ronment of a wilderness place, or the acoustic environment of an
urban place. Having broadly characterized type of place, the taxon-
omy then categorizes all sources of sound that could be present.
We have developed this set of sound sources on two criteria.
Firstly, it can be applied in all types of acoustic environments
and places. Secondly, the nomenclature of sound sources has been
carefully chosen to avoid value judgments, or connotations,
regarding these sound sources, irrespective of the type of place.
The terms for sources shown in Fig. 1 all fit appropriately within
the sentence; ‘‘In this place, one hears the sound(s) of . . . [source]’’,
further qualified by the category of sound source as necessary.
The taxonomy, intended for use by researchers in objective report-
ing of sources present in any place, builds on previous categoriza-
tions, such as that of the urban soundscape [6] but is designed to
be universal in its application.

For example, a wilderness acoustic environment will consist
largely of sounds not generated by human activity—the sounds of
nature—but there could also be some human-generated sounds:
aircraft, the speech or laughter of recreationists, and perhaps the
amplified speech from the radios used by rangers. In the courtyard
of a housing estate, sounds generated by nature may be incidental,
and those generated by human activity will be present. In some
places, various sounds of human activity, say footsteps, may be
present, with only infrequent sound from roadway traffic, but in
another, roadway traffic may constitute the only sound source
heard. In each of these examples, the universal taxonomy of
sources is applicable, and encourages description of sources using
a common terminology.

Of course the distinctiveness of particular acoustic environ-
ments lies, amongst other things, in the presence or absence of
these different sources and their relative intensities. However, a
universal framework for sound source identification should assist
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Fig. 1. A taxonomy of the acoustic environment for soundscape studies showing categories of places (bold boxes), categories of sound sources (dashed boxes), and sound
sources (italics). 1The urban/rural distinction will not always be readily defined, but remains useful. 2The wilderness category includes national parks, undeveloped natural
and coastal zones, large recreation areas etc., and the wilderness/rural divide will not always be clear cut. 3While ‘‘nature’’ and ‘‘domesticated animals’’ sources are shown as
being ‘‘not generated by human activity’’ there are many areas of overlap—for example the sounds of running water in constructed water features or the sounds of wind on
buildings. Domesticated animal sounds will generally be from animals associated with a human activity/facility. 4Recording, replay, and amplification may occur for any type
of sound—as for example in installations playing nature/wildlife sounds. 5Because of the different acoustic impedances in air and water, many of the terrestrial sound sources
within the shaded area of the figure would not normally be observed under water, but overall the same classification system is still applicable. 6Coughing, for example.

390 A.L. Brown et al. / Applied Acoustics 72 (2011) 387–392

Anthrophonic Geophonic}
Biophonic

Figure 3.2: Brown’s acoustic environment schema. Dashed boxes indicate sound

source categories, whereas sound sources themselves are denoted by italic text and

non-dashed boxes (Modified from [68] after [6]).
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between pairs of opposing adjectives [71, 72, 73, 74]. Whilst there is no standard-

ised set of scales, some commonly-used adjective pairs are Comfort/Discomfort,

Smooth/Rough and Quiet/Loud [72, 75].

In [76], Axelsson et al. present work in which five binaural acoustic environment

recordings were rated by subjects using 116 different semantic differential pairs.

Principle Component Analysis revealed two components that explained 66% of the

variation. Figure 3.3 shows the loading plot of these two components. Since the first

component is “best explained by the five adjectives Uncomfortable, Comfortable,

Appealing, Disagreeable, and Inviting”, the authors labelled it pleasantness, with the

second component labelled eventfulness as it is “best explained by Eventful, Lively,

Uneventful, Full of life, and Mobile” [76]. A third component, dubbed familiarity

in this initial study, was shown to account for a further 8% of the variation in

responses. This familiarity component has since been superseded by the notion of

appropriateness [71, 74], perhaps missed in this initial study as only recordings from

large city environments were used.

Though there has been some concern over the use of linguistic labels given their

potential to be interpreted differently by people from different cultural backgrounds

[43], a great deal of research is converging on this 2D pleasantness/eventfulness per-

ceptual space, sometimes augmented by the additional appropriateness dimension

[71, 74, 77, 78]. These scales are of particular interest to this research as they pro-

vide key insights into soundscape perception. Pleasantness, for instance, has been

shown to positively correlate with geophonic and biophonic sound, such as running

water and birdsong, and negatively correlate with the sounds of machinery, includ-

ing traffic and construction sound [76]. Eventfulness, on the other hand, is shown

to be positively correlated to human sounds, yet largely unaffected by technological

sounds [73, 74].

This is a key point of differentiation between human soundscape perception and

the standard soundecology categories. Axelsson et al.’s research indicates that hu-

man perception is better reflected by splitting anthrophony into sound directly made
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principal components, for the acoustic measures and for the
three dichotomous dominant-sound-category variables !i.e.,
Technological, Natural, and Human Sounds". The Pleasant-
ness scores were negatively correlated with acoustic mea-
sures of overall level !LAeq,30s ,N10" and variability
!LA10-LA90,N10-N90", as well as, with Technological Sounds,
but unrelated to the relative proportion of low-frequency
sound !LC-A" in the soundscape excerpts. Thus, as expected,
soundscape excerpts free of dominant technological sounds
were more pleasant than soundscape excerpts dominated by
technological sounds. Pleasantness was positively but
weakly correlated with Human Sounds and Natural Sounds.

Eventfulness scores were positively correlated with
overall level !LAeq,30s ,N10" and variability !LA10-LA90,
N10-N90" of the soundscape excerpts, and negatively corre-
lated with the relative proportion of low-frequency sound
!LC-A". Notably, Eventfulness of the soundscape excerpts was
positively correlated with Human Sounds, only weakly cor-
related with Natural Sounds and practically uncorrelated
with Technological Sounds. That is, the participants tended
to perceive the soundscape excerpts dominated by human

sounds as more eventful than soundscape excerpts without
dominant human sounds !cf. Viollon and Lavandier, 2000".
Probably because of the low variance in the third component,
the correlations between Familiarity and the acoustic and
dominant-sound-category variables were weak.

The acoustic measures, in particular the overall loud-
ness, appeared to confound the relationships between the
three dominant-sound-category variables and Pleasantness
and Eventfulness, especially the relationship between Tech-
nological Sounds and Pleasantness !Table II". This is illus-
trated in Fig. 3, where the relationships are compared be-
tween N10 and Pleasantness !left", as well as, N10 and
Eventfulness !right", for soundscape excerpts dominated by
technological sounds !filled circles", natural sounds !open
squares" and human sounds !filled squares". Open circles in-
dicate soundscape excerpts without pronounced sound-
categories, that is, background sounds. The left panel of Fig.
3 shows that soundscape excerpts dominated by technologi-
cal sounds had higher values of N10 than sounds dominated
by human or natural sounds. The relationship between Pleas-
antness and N10 was considerably weaker within dominant
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Figure 3.3: Component loading plot of Axelsson et al.’s 116 tested semantic dif-

ferential scales. Component 1 has been labelled pleasantness, with Component 2

labelled eventfulness (from [76]).
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by humans (speech, music, footsteps) and sound made by machines. Likewise,

whereas in soundecology it is relevant to distinguish between geophony and bio-

phony, these can, perceptually, be grouped together under the umbrella of natural

sounds. This leads to the following perceptually-motivated sound categories:

• Human: Non-mechanical sounds indicative of the presence of humans. This

primarily consists of speech, but also footsteps, music and laughter.

• Natural: The sounds of all manner of fauna except humans, together with

sound created by weather and geological forces including rainfall, wind and

flowing water.

• Mechanical: Sounds from machinery, including transport and construction.

These categories are reflected in the research of Watts et al. [79], who found them

emerging from questionnaire answers completed by visitors to various green urban

locations. They are also used by Stevens et al. in their research into soundscape

perception and categorisation based on auralisation and visualisation of recorded

acoustic environments [45, 80]. Recent work by Kroos et al. [81] used hierarchical

cluster analysis to generate a taxonomy based upon participants’ sorting of sounds

corresponding to the top 60 search terms on freesound.org. This resulted in five

top-level labels, including ‘human’, ‘nature’ and ‘urban’, closely corresponding to

the three perceptually-motivated categries detailed above, and adding ‘music’ and

‘effects’ categories. Since these categories emerged from sorting of mostly isolated

sound events, it is unsurprising that musical sounds have been split from human

sounds. As discussed previously, context plays a large part in perception, and it is

not unreasonable to suggest that musical sounds in an urban acoustic environment

setting would be best described as, and elicit similar emotional response to, human

sounds. Likewise the ‘effects’ category consists of isolated events (perhaps indeed

recorded as sound effects) with labels such as ‘thud’ and ‘swoosh’. Again, in the

context of an acoustic environment, sounds such as these are likely to be perceptually
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grouped as belonging to any of the three categories, based on context. A CNN

classifier was able to group sounds into these five proposed categories with 80.8%

accuracy, a result suggesting the viability of this method for deriving soundscape

affect metrics.

Looking back at Figure 3.3 with these categories in mind, it can be seen that

pleasantness equates to the balance between mechanical sounds and natural sounds,

whereas eventfulness represents the degree of human sound present. As Lundén et al.

put it: “Pleasantness is positively associated with the sound of nature and negatively

associated with the sound of technology, and . . . Eventfulness is positively associated

with the sound of people” [78]. This leads to the idea of using these two dimensions

as perceptually-motivated metrics alternative to the ecologically-motivated NDSI.

A system capable of accurately quantifying the contributions of human, natural and

mechanical sounds to an acoustic environment could provide the data required to

calculate accurate estimates of the perceptual attributes of a soundscape.

3.4.4 Considering ‘Value Judgements’

Despite the neat mapping of objective sound classes to a subjective perceptual space,

there remains the question of how the third perceptual dimension - appropriateness

- interacts with and colours the first two. In Chapter 1 the examples of aeroplane

sound and music in a nightclub were used to illustrate how sound level alone does

not capture human responses to sound stimuli. In that example, the aeroplane was

used as an example of unpleasant sound, whereas the nightclub music was used

as a pleasant sound. But what about those neighbours to the nightclub? It’s the

appropriateness dimension that takes the music from pleasant for the people in the

club, to unpleasant for the neighbours. Compare and contrast the adjectives in the

upper-right quadrant of Figure 3.3 (‘dynamic’, ‘exciting’, ‘expressive’), to those in

the upper-left (‘chaotic’, ‘disharmonious’).

Likewise, mechanical sounds are not universally unpleasant. To elaborate on the

aeroplane example, consider enthusiasts attending an air show. In this case, the loud

69



3. ENVIRONMENTAL NOISE AND THE SOUNDSCAPE APPROACH

aircraft sound could be a large part of the attraction, especially in cases such as the

famous ‘howl’ of the Avro Vulcan bomber [82]. The upper-right quadrant adjectives

seem as apt to describe the experience here as to nightclub revellers. It is clear that

whilst appropriateness might be a lesser component, its ability to influence the main

two dimensions is considerable.

It is therefore important to avoid the trap of much of the literature in describing

certain sources as ‘intrusive’ and others as ‘pleasant’ seemingly by default. Bunting

et al [70], for instance, make mention of “intrusive sources of noise, e.g. mechanical,

or non-intrusive, e.g. birdsong...” without any qualification. In contrast, Brown’s

schema (Figure 3.2) was expressly developed in such a way as to “avoid inputting

value judgements” of sound sources in any given context. Harriet posits that such

value judgements made on natural and urban soundscapes could be due to the effects

of enculturation. The idea is presented that a “collective shift in attitudes” towards

soundscapes might be something to be encouraged, citing the human tendency to

change tastes over time in regards to art and fashion [43].

There is an interesting dichotomy here in that taking perception into account

when producing acoustic environment descriptions could result in a reduction to the

black-and-white ‘noise’ approach, especially if all mechanical sound is considered

‘bad’ by default. Alternatively, the total removal of the pleasantness/eventfulness

subjective descriptors runs the risk of losing sight of the perceptual aspects of this

field, when these are the main motivation for development of the soundscape ap-

proach. There is clearly a balance to be found between considering the appropri-

ateness of an acoustic environment, which is dependent on culture and context,

and much less easily quantifiable as it is not directly equatable with purely acoustic

content of the sound sources, and the pleasantness and eventfulness of that envi-

ronment, which are much simpler to predict in terms of acoustic content for most

people most of the time.
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3.5 Subjective Soundscape Assessment

The biggest challenges surrounding the subjective assessment of soundscapes have

been how to collect useful data and how to quantify that data in a standardised

fashion. Broadly speaking, most of the work on subjective soundscape assessment

is conducted using one of two techniques:

• Soundwalks - Subjects experience an acoustic environment on location.

• Laboratory Reproduction - The acoustic environment is reproduced in a

controlled listening environment.

3.5.1 Soundwalks

In a typical soundwalk, a group of participants are led by a researcher along a

prescribed route through an area of interest. Subjects are usually encouraged to

concentrate on their perception of the acoustic environment. At designated locations

along the walk, participants are asked to stop and answer questions, either in the

form of a questionnaire or an interview [71, 72]. Soundwalks can last as long as

ninety minutes. Figure 3.4 shows a typical soundwalk route through a “green space”

park area, with the numbered points indicating the locations where participants

were asked questions.

Soundwalks have the advantage of presenting subjects with the most realistic

stimulus possible, direct from the environment itself. This means that results gained

from this technique will be as representative as can be achieved of their reactions

to the real-world acoustic environment, a factor known as ‘ecological validity’ [75].

A key disadvantage of this technique, however, is the lack of experimental control.

Whilst the researcher can set the route of the walk, the actual sounds presented

cannot be controlled and so the test is not reproducible. This has led to criticism

that soundwalks “only represent the case in question, and will not contribute to

general knowledge” [71].
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Figure 3.4: Example soundwalk route conducted in Woodhouse Moor, Leeds by

Harriet & Murphy. Stopping locations are numbered 1 to 5 (From [72]).

3.5.2 Laboratory Reproduction

In laboratory-based soundscape assessments, subjects are presented with recordings

of acoustic environments, which might also be presented binaurally [76], or using

Ambisonics [72, 74, 78]. The recordings presented are usually of much shorter du-

ration than a typical soundwalk, making it more convenient to collect extensive

results.

Lab experiments have the advantage of allowing more experimental control. The

researcher can present subjects with consistent sound recordings, so experiments are

reproducible. It is also possible to test the potential perceptual impact of sound-

scape interventions before implementing any physical changes to the infrastructure

on-location. The work presented in [72], for instance, tests the impact of the in-

troduction of a noise barrier via simulation and laboratory playback. The clear

disadvantage of this approach is the potential for reduced ecological validity, which

leads to the criticism that lab results “ought to be validated in situ” [71]. Such a fun-
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damental limitation to the technique would seem to defeat the object of lab-based

testing, so there has been some work recently on establishing the ecological validity

of these tests.

Boren et al. note that, “Providing quick A/B comparisons between auditory

scenes make differences in loudness, texture, or clarity stand out to listeners more

distinctly than if they visited each site in person” [83]. It is interesting to consider

this assertion from the point of view of ecological validity. Whilst representing

an advantage in some contexts, it could be inherently ecologically invalid to be

able to switch rapidly between acoustic environments in a manner that could not

happen in the natural world. Similarly, lab-based reproduction allows the listener

to focus on sounds, absent from the reality of having to deal with a chaotic city

environment, or exposure to the sights, smells and other sensations that make up

a real-world experience. Schafer contended that soundscapes cannot and should

not be considered separately from their environments [3]. Perhaps, however, the

question in terms of practical assessment is how realistic lab-based reproduction

needs to be to produce results representative of those that would be obtainable in a

real environment, rather than the more philosophical concern of what is considered

to be a real experience.

Davies et al. have presented work that gives some evidence that Ambisonic

reproduction may give ecologically valid results [75]. In their test, a set of thirty-

second long clips were recorded of urban city locations and presented to subjects

over an Ambisonic loudspeaker array. Results showed some correlation with in-situ

soundwalk experiments conducted earlier by Kang [84]. These recordings were made

seven years after Kang’s initial study and in a different city, however, so this can

hardly be considered a fair comparison.

Harriet and Murphy give some more robust evidence for the ecological validity

of Ambisonic rendering [72]. In this research, results from the soundwalk outlined in

Figure 3.4 are compared with results from a ‘Virtual Sound Walk’ using Ambisonic

recordings made in locations 3 and 5, with a third recording made next to the
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road. Although these recordings were not made during the real sound walk, they

were made under “similar” conditions and represent a more valid comparison than

the work of Davies et al. Results from this test show strong correlation between

responses to the Ambisonic reproduction and location 2 on the real soundwalk.

This provides evidence that laboratory testing can be ecologically valid, though it is

unclear why there is such a strong correlation to location 2, given that the recordings

were actually made in other locations.

One potential explanation might be found in the preparation of the Virtual Sound

Walk test clip. A concern is raised in [72] regarding how to “compress the soundscape

in time, yet without compromising its authenticity”. This is a key issue with regards

to ecological validity. In the context of Harriet and Murphy’s paper, a one-hour

soundwalk experience had to be condensed into a seven-minute clip. Harriet and

Murphy essentially condense the soundscape ‘by ear’, carefully annotating recordings

with sound events and reconstructing a new acoustic environment as a “composition”

that “tries to give a balanced impression” by including alternating sections of busy

and calm [72]. By contrast, in Davies et al.’s paper there is little consideration of

this factor, with no detail given on how the thirty-second clips were chosen [75].

Whilst Harriet and Murphy’s method is probably more robust than presentation

of a random short clip, theirs is not a foolproof process. The recomposition of the

acoustic environment by the researcher introduces a source of bias that could be re-

flected in the results. Results from tests described in [75, 85], in which subjects are

asked to design an Ambisonic reproduction of an acoustic environment using prere-

corded sound samples, show that participants tend to design the soundscape based

more on their expectation of what it should sound like than any objective reality.

This could have been the case in Harriet and Murphy’s soundscape composition.

The ability to effectively sidestep this issue is one of the key application areas of

an automatic acoustic environment classification system. The information gathered

by such a system could be used to assist with the synthesis of shorter acoustic

environment clips that remained statistically representative of the longer experiences
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of real acoustic environments, thus helping to increase the ecological validity of lab-

based soundscape work.

3.5.3 Mixed Reality

Modern virtual and augmented reality (VR/AR) technologies, capable of creating

immersive visual and auditory worlds or adding virtual objects to real environments

through head-mounted displays and smartphones, are increasingly being used as

tools in soundscape research.

Motivated by research indicating the influence of visual factors on soundscape

perception [86, 87], Ruotolo et al. [88] used VR to assess the response of participants

to a rural location in southern Italy. A virtual model of a real area where motorway

construction was planned was created and paired with binaural recordings made

at locations near existing motorways. Participants were tested on versions of the

model with and without the proposed motorway and asked to complete a series of

cognitive tasks whilst immersed in the simulation. It was found that performance

in a task involving verbal memory decreased with increasing proximity to the mo-

torway. VR was used in this case in order to “reproduce the perceptual richness of

the environment whilst keeping experimental control”, a claim that clearly links the

use of VR with ecological validity, termed “behavioural realism” in this study [88].

The same research team later explicitly tested the ecological validity of VR re-

productions in tests at Via Partenope in Naples and a virtual reconstruction of the

location [89, 90]. A six-part questionnaire was used to compare the experience of

passersby at the real city location with participants experiencing the virtual version,

with results showing “congruence” of experience between the two conditions. This

gives some evidence for the ecological validity of the method, though it should be

noted that the questionnaire was far less extensive than many used in soundwalk

studies.

One of the few examples of AR use in soundscape research is a system created

by Kınayoğlu to test the perceptions of subjects to altered acoustic environments at

75



3. ENVIRONMENTAL NOISE AND THE SOUNDSCAPE APPROACH

four locations around the University of California Berkely campus [91]. Participants

carried a bag containing a laptop computer with a program which rendered spatial

binaural acoustic environments composed by researchers for each area based on geo-

location and head rotation. This had the effect of completely replacing the natural

acoustic environment. The study is especially interesting as a targeted enquiry into

how the appropriateness of the acoustic scene to its location affects perception, as

the alternative acoustic environments presented at each location varied in their con-

gruence with the real physical locations. Participants completed a survey including

ratings for categories including pleasantness, eventfulness, and appropriateness ana-

logues. Replacing the sounds at a public square with sound from a similar location

in Morocco did not result in a reduction in appropriateness and actually resulted in

increased pleasantness and eventfulness ratings. This suggests that subtle cultural

differences in sound sources (e.g. the most prevalent spoken language) may not re-

sult in a reduction of the feeling of appropriateness as long as the holistic effect of

the soundscape is broadly consistent with the location. When busy urban sounds

were presented at a park location, appropriateness ratings did decrease. Some lis-

teners reported the sense that things must be happening “beyond the trees” [91], an

effect that the authors compare to off-screen diegetic film sound. This suggests that

the brain will attempt to construct a plausible model of the environment even when

visual and sonic information is mismatched.

Since Kınayoğlu’s study, Apple’s ARKit [92] has emerged as a cutting edge AR

technology. Running on an iPhone, it is capable of tracking features in the device’s

surroundings to enable a smooth AR experience, and so far has been applied to

interior design and measurement [93, 94] as well as gaming. More recently, devices

specifically developed for true AR audio applications have been introduced to the

market. The Sennheiser AMBEO Smart Headset [95] is an iOS accessory that com-

bines high-quality binaural microphones and earbuds with a smartphone interface

to enable mobile augmented audio in conjunction with ARKit. The ‘transparent

hearing’ mode relays incoming audio to the in-ear speakers with very low latency.
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This allows virtual audio sources to be convincingly superimposed onto real acoustic

environments and experienced on-location in real time. The Apple AirPods Pro [96]

have brought this capability to a more mainstream consumer product, though use

of this technology in academic soundscape research remains limited so far and is one

of the areas of novelty in this thesis, discussed further in Chapter 8.

It is possible, if AR technology becomes as widespread as smartphones have

become over the past decade, that the nature of what is considered ‘reality’ could

change. This has profound implications for, amongst many other things, the concept

of ecological validity. What is ecologically valid for people who spend most of their

time in an augmented world where the line between what is virtual and what is

real becomes harder to define? Perhaps AR technology will offer an opportunity to

consider what kind of a sound world we want to live in, and real soundscapes can

be designed with potential augmentations in mind in a way that can be healthy and

fulfilling for the most possible people.

3.6 Summary

This chapter has explored the concepts of soundscape and environmental noise, and

how each of these approaches view sounds in the environment as they relate to human

perception. The simplicity of the environmental noise approach has been established

as a shortcoming as well as a strength, in contrast to the more nuanced, yet also

potentially more complicated, soundscape approach. Particular attention was paid

to the various systems of sound categorisation presented in the literature, their utility

across different scenarios, and how they might be integrated into an alternative

soundscape metric. This was followed by an exploration of some methods by which

the soundscape approach has been implemented in listening tests, the potential

shortcomings thereof, and the ways in which machine listening systems might be

able to mitigate these. The next chapter will therefore present an exploration of

machine listening and the various paradigms that have emerged in the field, together
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with detailed descriptions of the various algorithms that have been utilised as part

of the work presented in this thesis.
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4 | Machine Learning for

Acoustic Environment Analysis

4.1 Introduction

Research into machine learning for audio applications, or ‘machine listening’, from

the early 1990s up to the mid 2000s mainly focussed on automatic speech recogni-

tion (ASR) [8] and music information retrieval (MIR) [97]. These are now mature

fields, with robust speech recognition featured in all modern smartphones and smart

speakers, and MIR technologies integral to the intelligent playlist algorithms used in

many music streaming services [98]. When considering broader sound scenes, Com-

putational Auditory Scene Analysis (CASA) seeks to devise computational solutions

to the ‘cocktail party problem’ - the “ability to listen to and follow one speaker in the

presence of others” [99]. Since the focus is the intelligibility of the desired speech

signal, other sounds are treated as ‘background’, to be suppressed and discarded

from the analysis. This approach is clearly at odds with the holistic acoustic en-

vironment analysis system proposed for this research, in which all the sounds that

make up the scene are of interest.

ASR research historically approached the problem within the paradigm of emula-

tion of the human hearing system and perception of sound. This included emulating

the cochlear response to sound and ‘auditory Gestalt’ perceptual grouping princi-

ples including proximity in frequency and time, and coincidence of onsets and offsets
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[8, 100]. One self-imposed limitation of this approach is the restriction of the input

to monaural or binaural audio in order to make the work more “biologically relevant”

[8]. This ethos is reflected in Wang and Brown’s definition of CASA: “the field of

computational study that aims to achieve human performance in ASA by using one

or two microphone recordings of the acoustic scene” [8].

More recently, the Detection and Classification of Acoustic Scenes and Events

(DCASE) challenge and workshop has been established as a forum for machine

listening research considering “algorithms that can describe, catalogue and interpret

all manner of sounds” [10]. In their paper summarising the results of the first

DCASE challenge, Stowell et al. state that the “human-centric aims [of CASA] do

not directly reflect our goal...which is to develop systems that can extract semantic

information about the environment around them from audio data” [10]. This reflects

the shift in focus of this work in that the acoustic environment itself is the primary

object of attention, rather than speech in particular or any perceptual processes.

It might be useful to think of CASA as opposed to CASSE in similar terms as the

divide between the soundscape and acoustic environment terminologies discussed

in section 3.2. This is not to say that systems concerned with CASSE cannot use

perceptually-inspired processing, more to note that “the two research fields do not

completely overlap” [54]. Though the most recent DCASE challenges have branched

out to more niche application-focussed subtasks including monitoring of domestic

activities and detection of birdsong [101], the core aims of CASSE remain acoustic

scene classification (ASC) and sound event detection (SED).

CASSE research could be considered in its aims closer to MIR. The DCASE

challenge format was inspired by the MIREX (music information retrieval evaluation

exchange) challenge [102], which has been running annually since 2005. Some of the

MIREX subtasks can be seen as close analogues to DCASE subtasks, ‘audio genre

classification’, for instance being similar in concept to acoustic scene classification,

with note tracking roughly similar to event detection, in that, like an event detector,

a note tracking system produces onset and offset times along with a label, in this
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case indicating pitch and/or instrument source. A key difference arises in the fact

that MIR work is often able to make use of extensive metadata, including MIDI

sequences, musical score and, in somewhat of a crossover with ASR, lyrics [103].

Although it is possible to use metadata in CASSE research, this will seldom be as

specific to the audio stream as in MIR.

4.2 A General Sound Classification Framework

The vast majority of the work done to date in ASC has approached the problem

in machine-learning terms as a single-label classification task in which a system

has to choose one label from a provided set with which to classify a given input

[10, 54, 104]. There have been a plethora of proposals for systems to achieve this

for acoustic scene and event recordings, with many variations, but the vast majority

use the same general set of steps. A framework formalising these steps has been

developed by Barchiesi et al. [54], and can be summarised as follows:

A set of audio clips sm that has been assigned descriptive labels cm taken from

a pool of all possible category labels γq is used to train some form of machine

learning system, which is subsequently tested on new unlabelled clips stest. In order

to provide usable input for machine learning algorithms, input signals are split into

frames usually of the order of 20 - 60 ms in length and with consecutive frames

typically overlapping between 25% and 75% [105]. The frames then undergo some

process T which produces a sequence of features xn,m (frame n of input m), i.e.

T (sn,m) = xn,m. T can be anything from a simple count-based process to a complex

set of transforms, but the key is the processing of raw time-domain frames to obtain

a more coarse representation of the sound. This coarsening of the data is an essential

step in any machine learning process - the features need to be detailed enough that

sounds of different types can be separated and identified (discrimination), yet coarse

enough that similar sounds will give similar features (generalisation). Historically,

this has been a manual process, but the prevailing ethos behind the current state-of-
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the-art convolutional neural network (CNN) models is that the network itself should

perform the coarsening of the data, learning appropriate simplifications over time

[106] (see Section 4.3.6).

Since acoustic environments are characterised by how they change over time,

features extracted over many frames should be analysed together. For this reason,

the series of features extracted from a certain class of clip are used to build up

statistical models of that class. A machine learning algorithm S learns a statistical

model M of the training data, i.e. S(xn,Λq) = M, where Λq is the set of clips of

class q. After training, new input audio clips stest are used to test the performance

of the models. The same process T used in training is applied to the new signals to

gain the features xtest. The features are tested against the statistical modelM using

a function G to get a class label for the new clip ctest, i.e. G(xtest,M) = ctest ∈ γq.

4.2.1 Sound Event Detection

Barchiesi et al.’s framework was originally written only with regards to ASC, but

classifying sound events is a very similar problem computationally, albeit over a

different timescale. The aim of a SED system is, however, not only to output labels

for isolated audio clips, but to produce a series of labels annotating an input audio

recording containing a sequence of audio events. Each annotation gives the start

and end points for a given event, along with a name for the event in question [10].

Such systems therefore combine a classification task with a detection task. The

original DCASE baseline for this task performed detection by frame-wise classifica-

tion, then using a threshold on the class likelihoods to create a binary activation

sequence for each class [10]. Later systems have used CRNN models to generate this

binary activation matrix directly [107]. This is a polyphonic detection paradigm,

whereby the output can include annotation of multiple simultaneous sound sources

in one time-frame. Many earlier systems provide monophonic output - annotation

of a single event per time-frame using sequencing techniques derived from speech

recognition [108, 109, 110]. The two approaches are shown in Figure 4.1.
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Figure 3 Example of sound event detection output for two approaches: monophonic system output and polyphonic system output.

notes. After one iteration, the decoded path through the
model network is marked and the next iteration is pro-
hibited from entering any states belonging to the sound
event decoded at that frame in the previous iteration. The
UBM is allowed in each iteration. This method will pro-
vide iterative decoding of the next-best path containing
events that are at each time different than in the previously
decoded one. This is difficult to achieve with conventional
N-best decoding, which provides too many paths that
have only minor state changes between them. These state
changes do not produce the desired outcome. The pro-
posed approach is illustrated in Figure 4. The number of
iterations is chosen depending on the expected polyphony
of the acoustic material.

4 Context-dependent event detection
Many sound events are acoustically dissimilar across con-
texts, and in these cases usage of context-specific acoustic
models should provide better modelling accuracy. Sound
events also have context-dependent prior probabilities,
and using more accurate prior probabilities should also
increase detection accuracy. Thus, we propose a sound

event detection system utilizing the context information.
The proposed system has two stages. In the first stage,
the recording is tested for audio context classification.
The second stage is the event detection. Based on the
recognized context label, a specific set of sound event
models is selected and acoustics models trained with the
context-dependent material are selected to be used in the
detection stage. In addition to this, context-dependent
event priors are applied in the event detection. The sys-
tem overview is presented in Figure 5. The details of each
stage will be presented in the following sections.

4.1 Context recognition
As discussed in Section 2, an audio context can be recog-
nized robustly among a small and restricted set of context
classes. For our system, we chose a simple state-of-the-art
context recognition approach [30] based on MFCCs and
Gaussian mixture models (GMMs).
In the recognition stage, the audio is segmented into 4-

second segments which are classified individually using
the context models. Log-likelihoods are accumulated over
all the segments and the model with the highest total

Figure 4 Concept of multiple path decoding using three consecutive passes of Viterbi algorithm.

Figure 4.1: The two paradigms for acoustic event detection - monophonic and poly-

phonic output (from [109]).

The performance of event detection systems is typically lower than that of clas-

sification systems. This is likely due to the need to accurately discriminate sounds

that may overlap or be partially masked, whilst labelling in such systems can be

affected by erroneous estimates for event boundaries. Detection-by-classification

systems can also be limited by the fact that the detection segments are unlikely to

be matched to the length of audio events, making the problem akin to classification

of incomplete samples, further increasing the difficulty [108].

4.3 Features and Classifiers

4.3.1 Mel-spectrogram and MFCCs

A very common process used for T , is calculation of the mel-spectrogram. Mel-

Frequency Cepstral Coefficients (MFCCs) are derived by additional processing of

the mel-spectrogram. These are also common features, especially in ASR [111]. The

mel-spectrogram and MFCCs use the mel scale, which was originally developed to

relate physical frequency to the perception of pitch, and is defined as [112]:

84



4.3. FEATURES AND CLASSIFIERS

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000 8500 9000 9500 10000
Frequency [Hz]

0

500

1000

1500

2000

2500

3000

M
el

Figure 4.2: The mel frequency scale.

mel(f) = 2595 log10(1 + f/700) (4.1)

The resultant curve, shown in Figure 4.2, is an exponential decay of increasing form,

which approximates linear mapping below 1000 Hz, but levels off logarithmically

beyond that point [113].

A mel-filter bank is a series of overlapping triangular filtersHm(k) with frequency

spacing determined by the mel scale. A bank ofM filters is designed as follows [111]:

Hm(k) =



0 k < f(m− 1)

k−f(m−1)/f(m)−f(m−1) f(m− 1) ≤ k ≤ f(m)

f(m+1)−k/f(m+1)−f(m) f(m) ≤ k ≤ f(m+ 1)

0 k > f(m+ 1)

(4.2)

where f() is a list ofM+2 mel-spaced onset and offset frequencies. Figure 4.3 shows

the overlapping frequency responses in a mel-filter bank. For clarity the figure shows

a filter bank for M = 10, but M = 128 is a much more common value in practice
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Figure 4.3: Mel-filter bank for M = 10 and f(M + 1) = 8000 Hz.

for mel-spectrograms and M = 20 for MFCCs.

To calculate the mel-spectrogram, the complex frequency spectrum x(k) of each

frame of audio is first obtained using a standard short-term Fourier transform

(STFT) and the periodogram P (k) obtained as:

P (k) =
|x(k)|2
N

(4.3)

where N is the length of the audio frame in samples. The mel-filter bank is applied

to this, the energies in each frequency band are summed, and the logarithm taken:

Em = log

∑
k

Hm(k) · P (k)

 (4.4)

This results in a vector containing logarithmic filter bank energies for a given frame

of audio. Across a whole clip these energies make up the mel-spectrogram, and this

is commonly used as input to audio recognition systems using CNNs (see Section

4.3.6). Mel-spectrograms make particularly useful input to CNNs as they contain
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descriptive information about the whole sound signal, with the mel-scaling coars-

ening the frequency resolution whilst emphasising those components that are most

important to human perception of the sound. Without this coarsening, the CNN

would have to be more complex, resulting in increases in required computing power.

Altering the number of mel filters also offers a simple way to change the frequency

resolution for different applications.

To calculate cepstral coefficients MFCCl, a discrete cosine transform (DCT) [114]

is applied to each frame in the mel-spectrogram:

MFCCl =
M−1∑
m=0

Em cos

(
πl

M

(
m+ 1/2

))
, l = 0, . . . ,M − 1 (4.5)

MFCCs are a coarse representation of the frequency spectrum that is somewhat

analogous to the response of the cochlea, reflecting the origins of this technique in

speech recognition. MFCCs offer the advantage over mel-spectrograms of being a

more compact representation of the sound signal, saving on computing power at the

expense of detail.

4.3.2 Low-Level Features

As should be clear, the mel-spectrogram and MFCCs are high-level features requiring

complex processes to extract. Lower-level features include the zero-crossing rate in

the time domain [115], calculation of RMS values per frame of audio, and various

statistical descriptions of spectral properties [116].

Garrido et al. [117] presented a system that uses simple Leq readings across mul-

tiple octave bands in order to classify between traffic and leisure sound specifically.

The technique was shown to work well in distinguishing these two categories. This

system could be viewed as a somewhat expanded version of the approach taken in

calculation of the NDSI, described in Section 3.4.2, with ratios between frequency

bands not calculated directly, but perhaps inferred by the Support Vector Machine

(SVM) model (see Section 4.3.4) used in this work. The lack of consideration for
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temporal information in this system also makes it similar to the bag-of-frames ap-

proach, which will be described in Section 4.4.1.

4.3.3 Gaussian Mixture Models

There are numerous models suitable for classifying sounds. One statistical model

prevalent in many ASR systems and early ASC work is the Gaussian Mixture Model

(GMM). A Gaussian distribution N models the probable density of d dimensional

data x with a single peak at mean µ and covariance Σ [118, 119]:

N (x|µ,Σ) =
exp

(
−1/2(x− µ)′Σ−1(x− µ)

)√
(2π)d|Σ|

(4.6)

A GMM is simply a mixture of K Gaussians, which can be used to model more

complex distributions of arbitrary shape with multiple peaks:

p(x) =
K∑
n=1

wnN (x|µn,Σn) (4.7)

wn are the weights for each Gaussian component. GMMs are initialised with their

means µ set at random values from the training data [120]. Figure 4.4(a) shows an

example of a GMM for K = 4 and d = 2 at this stage. In optimising a GMM, the

expectation-maximisation (EM) algorithm is used to iteratively alter the parameters

of the model to maximise the likelihood that a sample of data generated at random

from the mixture of Gaussians could have originated from the data presented to the

model [120]. In the expectation stage, the posterior probabilities P (n|xi) of each

datapoint xi belonging to a particular Gaussian component n, also known as the

responsibilities r are calculated [118, 121, 122]:

rin ← P (n|xi) =
πnN (xi|µn,Σn)∑
n′ πn′ N (xi|µn′ ,Σn′)

(4.8)

Themaximisation stage consists of updating the model parameters by estimating

the maximum likelihood for each datapoint, weighted by the previously calculated

responsibilities, as follows:
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πn ←
∑I

i=1 r
i
n

I
(4.9)

µn ←
∑I

i=1 r
i
nxi∑I

i=1 r
i
n

(4.10)

Σn ←
∑I

i=1 r
i
n(xi − µn)2∑I
i=1 r

i
n

(4.11)

where I is the total number of data points. These two stages are repeated until

the parameters converge on optimal values. Figure 4.4(b) shows the example GMM

after 100 iterations of the EM algorithm.

In a multi-label classification scenario, there are two methods for using GMMs

to classify data. If the distributions of the input features from each class are known

in advance to be Gaussian, a single GMM can be used to generate probabilities

that incoming test data came from each Gaussian within that model, with the data

classified based on the Gaussian giving the highest probability score [120]. In this

case, n is set to equal the number of classes expected in the data.

The second method, more common in audio classification work, is to optimise a

complete GMM for each class in the training data, so each class is modelled with

multiple Gaussians independently. The set of GMMs are used to produce probability

scores indicating the likelihood that the input testing data came from each mixture.

This is the method used by Aucouturier et al. in their bag-of-frames approach (see

Section 4.4.1), and the baseline systems used in early DCASE challenges [124, 125].

In this case, n is more difficult to set and often trial-and-error is used. Stowell’s

smacpy system uses n = 10, where the DCASE 2016 baseline system, created as a

benchmark by which to test challenge submissions, uses n = 32 [125].

4.3.4 Support Vector Machines

Support vector machines (SVMs) are a family of algorithms that can be used for

classification or regression. Support vector classifiers (SVCs) work by calculating
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(a) Initial state. Four Gaussian components

have been initialised with randomised param-

eters.

(b) The parameters of the four Gaussian com-

ponents have, over 100 iterations of the E-M

algorithm, been optimised to fit areas of den-

sity in the data.

Figure 4.4: A four-component GMM before and after optimisation (from [123]).
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a hyperplane that separates feature vectors obtained from different classes in the

training data [54, 120], whereas support vector regressors (SVRs) calculate a plane

to model the function generating a dataset [126].

For an SVC, the dividing hyperplane is defined as the set of vectors x satisfying

w · x+ b = 0 (4.12)

where w is the normal of the hyperplane and b is the bias, which defines the offset

of the plane from the origin of the space along w. Predictions ypred
i are made by

taking the dot product of the feature vectors against the weights as follows:

ypred
i =


1 w · xi + b ≥M

−1 w · xi + b ≤ −M
(4.13)

where M is the distance margin between the hyperplane and the nearest vectors

from each class, which satisfy:

w · xsupport + b = |M | (4.14)

These are the ‘support vectors’. The hyperplane maximising M is known as the

“maximum-margin hyperplane” and should give the best generalisation to unseen

data that is possible given the available training data. Assuming equal distance

between the dividing plane and the support vectors from each class, it can be shown

that [127]:

M =
2

‖w‖ (4.15)

The problem of maximising M therefore becomes a case of minimising ‖w‖, whilst
still separating the classes. In the likely event that the classes are not linearly separa-

ble, a plane can still be calculated taking into account the influence of misclassified

points, set by a parameter C. The problem of optimising the plane is formally

defined as [128]:
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Minimise ‖w‖+ C

n∑
i=1

ξi

subject to


ytrue
i · ypred

i = ytrue
i (w · xi + b) ≥ 1− ξi

ξi ≥ 0

(4.16)

where ytrue
i are the ground-truth class values (±1) and ξi is the distance of misclas-

sified point i from the boundary of the margin. A large value of C highly penalises

errors, and will therefore favour a smaller margin and fewer errors. Conversely,

small values of C will allow a larger amount of errors as a trade-off for a larger mar-

gin. Figure 4.5 shows two SVCs computed for some dummy data consisting of two

randomly-generated clusters. The solid line shows the decision boundary, with the

margins shown as dotted lines. The small value of C in Figure 4.5(a) has resulted

in a large margin but with a considerable amount of errors, two examples of which

are illustrated as ξi and ξj. The SVC in Figure 4.5(b) uses a larger value for C,

and the margin is much narrower as a result. The optimal value of C for a given

problem ultimately depends on the unseen test data. By reformulating the margin

optimisation problem as the Lagrangian dual it is solvable using standard quadratic

problem-solving algorithms [120].

Each SVM can only calculate one hyperplane, so multiple SVCs are needed when

discrimination between more than two categories is needed. This is achieved using

either a ‘one-versus-all’ approach, in which each SVC is trained to discriminate

between one class and all other classes, or a ‘one-versus-one’ approach, in which

SVCs are needed for every possible combination of two classes.

SVRs work very similarly to SVCs, but with a continuous output rather than a

binary classification. Equation 4.13 therefore becomes [126]:

ypred
i = wi · xi + b (4.17)

and the optimisation problem defined in Equation 4.16 is modified for continuous
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(a) C = 0.1. This small value has resulted in a larger

margin, with more points classified in error.
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(b) C = 10. The larger value has resulted in a much

narrower margin, which has reduced errors, but may

not be as effective for unseen data.

Figure 4.5: Example linear SVCs for different values of C.
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output accordingly [126, 129, 130]:

Minimise ‖w‖+ C
n∑
i=1

(ξ−i + ξ+
i )

subject to


ytrue
i −wi · xi − b ≤ ε+ ξ−i

wi · xi + b− ytrue
i ≤ ε+ ξ+

i

ξ−i , ξ
+
i ≥ 0

(4.18)

where ξ−i and ξ+
i indicate the distance of points below the lower margin boundary

and above the upper margin boundary respectively, with each being zero on the other

side of those planes. ε is a tolerance parameter indicating the allowable margin width

within which errors are not counted, ultimately affecting the number of support

vectors used to define the plane. Lower values of ε lead to a higher number of

support vectors, and very low values can lead to overfitting. The value of C has

a similar effect here as in the SVC, but weighting only the influence of deviations

greater than ε (ξ±i > 0).

For both SVCs and SVRs, a better fit for data where classes are not linearly

separable can often be found by mapping the data into higher dimensions using

kernel functions k:

n∑
i=1

λiy
true
i k(xi,xnew) + b (4.19)

The work in this thesis uses the radial kernel:

k(xi,xnew) = e−γ (xi−xnew)2 (4.20)

The radial kernel weights the output for xnew based on the influence of the training

examples xi, with γ a scaling factor determining the distance over which the influ-

ence of each training examples operate. High values of γ result in a small radius of

influence and vice versa [131]. This kernel effectively maps the data into an infinite

number of dimensions, possible in linear time by use of the ‘kernel trick’, in which
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Figure 4.6: An SVC using the radial kernel. The non-linear separation boundary

and margins shown are two-dimensional projections of linear separators calculated

in higher dimensions.

relationships between data points in higher dimensions are calculated in the original-

dimensional space [120]. Figure 4.6 shows an SVC computed using the radial kernel

for the same data used in Figure 4.5. Although the decision boundary and margins

shown are non-linear in two dimensions, they are in fact a projection of a linear

plane calculated for a higher-dimensional mapping of the data by the radial kernel.

In this example the data is for the most part linearly separable in its original two-

dimensional form, but for more complex datasets, mapping to higher dimensions can

improve performance a great deal. When using kernels, high ε values cause SVRs

to calculate flatter planes when projected back to the original dimensionality.

4.3.5 DBSCAN

Density-based spatial clustering of applications with noise (DBSCAN) [132] is an

unsupervised clustering algorithm that has been applied to data mining and market

research [133], but is not typically used for audio applications. Since the algorithm

is used in the source-tracking system detailed in Chapter 7, it will be discussed in
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some detail here.

DBSCAN assigns data to clusters based on areas of density in the data. These

clusters might correspond to particular classes, though since the algorithm is un-

supervised, class labels are not taken into account during training and, if required,

must be manually assigned by the user after clusters have been formed. DBSCAN

differentiates itself from most other clustering algorithms in that it can identify clus-

ters of any arbitrary shape without making assumptions about the general shape of

the data. The GMM, for instance, assumes clusters will be Gaussian.

A given point xi is said to belong to cluster c if there are a certain minimum

number of points MinPts within a given radius Eps. These parameters interact to

determine the density of points the algorithm requires to form clusters. The Eps -

neighbourhood NEps of a point xi within a dataset D is a set of points defined as:

NEps(xi) , {xj ∈ D such that
∥∥xi − xj∥∥ ≤ Eps} (4.21)

A pair of points is defined as ‘directly density-reachable’ ddir as follows:

ddir(xi,xj,Eps ,MinPts) =


1


xi+1 ∈ NEps(xi)∣∣NEps(xi)

∣∣ ≥ MinPts

0 otherwise

(4.22)

Points that satisfy the second condition of direct density-reachability are core points.

For the formation of a cluster there must be at least one core point, and therefore the

minimum cluster size is MinPts. Points further than Eps from each other may be in-

directly density-reachable via a chain of directly density-reachable points xi, . . . ,xl:

dind(xi,xl) =


1
∑l−1

i ddir(xi,xi+1) = l

0 otherwise
(4.23)

Dependence on Eps and MinPts has been omitted for clarity. Clusters are formed

based on chains of directly density-reachable points, such that every point in a
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cluster is indirectly density-reachable from every core point. Border points are

the end points of these chains of density-reachability, and therefore represent the

edges of clusters. Direct density-reachability is therefore symmetric between neigh-

bouring core points, but asymmetric between neighbouring core and border points.

Though border points may not be density-reachable from each other, there will al-

ways be connecting points that are density-reachable from both, a condition known

as ‘density-connectivity’ [132]:

dconn(xl,xm) =


1 dindirect(xl,xo) = dindirect(xo,xm)

0 otherwise
(4.24)

Clusters are therefore defined in the following terms:

∀xi,xj : xi ∈ cn ∧ dind(xi,xj,Eps ,MinPts) = 1 =⇒ xj ∈ cn
∀xi,xj ∈ cn : dconn(xi,xj,Eps ,MinPts) = 1 (4.25)

where c1, . . . , cn are the clusters formed with respect to Eps and MinPts. Any points

that do not fall into any clusters are designated as noise and are defined as:

xi ∈ D | ∀n : xi /∈ cn (4.26)

Figure 4.7 shows a visualisation of the operation of the DBSCAN algorithm on

some randomly-generated data using Eps = 0.8 and MinPts = 4. It can be seen that

using these parameters, the algorithm has identified three clusters (denoted by the

colours brown, red and purple), with several points designated as outliers, as shown

by the crosses. The larger circles in each group represent points the algorithm has

designated as core points, with the smaller circles indicating border points. As can

be seen from the purple group, it is possible for dense clusters to consist entirely of

core points, whereas in the brown group there is only one core point. The diagram

indicates one of the continuous paths of density-reachability in the red cluster, from
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Figure 4.7: Visualising the DBSCAN algorithm. Three clusters have been identified

in this data. Red lines indicate one density-reachable path within the red cluster.

Dotted circles indicate the Eps-neighbourhood of the points at their centres.

an arbitrary core point x0 to the cluster’s only border point x2. It can be seen from

the dotted circles indicating the Eps - neighbourhood for each point in the path that

points x0 and x1 satisfy
∣∣N0.8(xi)

∣∣ ≥ 4, whereas point x2 does not and has been

designated a border point accordingly.

4.3.6 Neural Networks

In recent years, neural networks have increasingly become the dominant models used

for many machine learning tasks, including audio applications. The vast majority

of the top-performing systems in the DCASE challenge in recent years have utilised
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Figure 4.8: A perceptron - the simplest neural network.

convolutional neural networks (CNNs) in various configurations [101, 134]. A short

is overview is presented here. A thorough mathematical description is beyond the

scope of this thesis and the interested reader is referred to [135] for more detail.

A single-neuron network, or perceptron, consists of four components [135]:

1. A set of weights w.

2. A summation stage to add the inputs x as weighted by w.

3. An activation function φ(·) to map the summation to an output y.

4. A bias b which raises or lowers the sum to the activation function.

Figure 4.8 shows the signal flow of a perceptron, where the bias has been formulated

as a weight w0 for a fixed input of +1. Typically, the activation function is the Heav-

iside step function, which essentially thresholds the summation of the perceptron,

producing a binary output:

φ(·) =


1 w · x+ b > 0

0 w · x+ b ≤ 0

(4.27)
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It should be reasonably clear that the perceptron functions in a way that is essentially

identical to the linear SVC described in Section 4.3.4. The difference here is that,

unlike the SVC, a perceptron is not concerned with maximising a margin, but is

instead optimised by iteratively updating the weights based on comparison of the

network outputs with target values [120, 135]:

wnew = wold + exi (4.28)

where e = (ytrue
i − ypred

i ). Typically, the weights are initialised to random values,

and, provided that the inputs are linearly separable, each iteration of this equa-

tion (known as an ‘epoch’) will converge on values that yield correct outputs. A

perceptron may have multiple neurons to perform multiclass classification, each

neuron calculating a separate linear hyperplane to distinguish between classes in a

one-versus-all fashion. In this case the weights become a matrix and the update

algorithm is:

W new = W old + exT (4.29)

Ultimately, single-layer perceptrons are limited in that they are only effective

classifiers when classes are separable by a linear function. This fundamental limita-

tion caused research to stall for many years [120]. Where an SVM overcomes this

problem using kernels, with neural networks the solution is to add additional layers

of neurons, creating a multi-layer perceptron (MLP). Figure 4.9 shows a basic MLP

with two fully-connected ‘hidden’ layers, layers that are not directly visible to the

inputs and outputs. Each solid line is associated with a weight, whilst each circular

‘node’ in the diagram represents a combination of the summation and activation

stages which are shown separately in Figure 4.8. A variety of activation functions

can be used in place of the Heaviside function, including sigmoid curves such as

tanh, and notably the rectifier, which is zero for any value below zero and linear

for positive outputs e.g. f(x) = max(0, x) [106, 135]. MLPs can have any arbitrary

topography, with the depth of the network defined as the number of layers and the

width defined as the maximum number of nodes in any of its layers.
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Input Hidden Layers Output

Figure 4.9: Multi-layer perceptron with two hidden layers. Circles are nodes repre-

senting a combined summation and activation function, and connecting lines each

have an associated weight.

Updating the weights of the MLP and more complex neural networks is done by

computing the error at the output layer of the network using a loss function, and

adjusting the weights back through the network based on the derivative of this loss

in order to iteratively find the minimum error, in a process known as backpropagation

[135]. Often an update of the weights will be undertaken after presenting a number

of examples (a batch) and averaging the error. This is known as batch learning.

Theoretically, MLPs of varying topographies can learn any given function [135],

though this property also means larger networks have a tendency to overfit, becom-

ing very highly adapted to the input data, including any noise it contains, with

detrimental effects when tested on unseen data. For this reason, MLP architectures

must be tuned to the given problem. MLPs can also be augmented with ‘recurrent’

layers. In a recurrent neural network (RNN) the output from the previous feature

vector is fed back and combined with the current vector. This allows the network to

take into account data received prior to the current input, making RNNs especially

well suited to time-series data [135].

As either feedforward or recurrent networks become larger, however, the number
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Input Convolutional layers

Fully-connected layer

Output

Figure 4.10: Diagram of a simple CNN, featuring three convolutional layers followed

by a final fully-connected layer. The convolutional layers automate feature extrac-

tion, whilst the fully connected layer has an architecture similar to the MLP shown

in Figure 4.9.

of connections, and hence weights that must be computed, grows exponentially. This

causes the computation time required to train a network to increase significantly.

To solve this problem, the dimensionality of the input features can be manually

reduced, perhaps modifying a feature extraction stage to emphasise more salient

features [106]. Depending on the problem, this might be very time-consuming. An-

other alternative is to use convolutional neural networks (CNNs). CNNs consist of

a number of convolutional layers followed by one or more fully-connected layers that

compute the final output of the network. Typically, CNNs operate on input data

represented as a two-dimensional matrix, such as images or time-frequency repre-

sentations of audio, though any N -dimensional matrix can be used with convolution

kernels of corresponding dimensionality. Figure 4.10 depicts a simple CNN with

three convolutional layers followed by a single fully-connected layer that computes

the output.

A two-dimensional discrete convolution is defined as [136]:

x ∗ ∗h =
∞∑

m1=−∞

∞∑
m2=−∞

h[m1,m2]x[n1 −m1, n2 −m2] (4.30)

where ni are the dimensions of the data matrix x and mi are the dimensions of the

kernel (impulse response) h. This is equivalent to iteratively moving the kernel h
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Figure 4.11: Illustration of a basic 2D convolution kernel. The convolution of the

kernel h with the input x yields an output matrix which has higher values where

the kernel and the input more closely match.

across x, performing elementwise multiplication (Hadamard product) at each stage

and taking the grand sum of each result. Figure 4.11 shows a example of a convo-

lution using a basic kernel that could be thought of as a detector of small squares.

As can be seen, the output of the convolution is large where the square is present

and smaller further away.

Part of the power of CNNs is that the values of the kernels are weights that can be

iteratively trained to yield better output accuracy in the same way that the weights

of fully-connected layers are trained using backpropagation. There can be multiple

‘channels’ at the input, perhaps corresponding to different microphone inputs or

colour channels in an image. Channels in convolutional layers each represent the

output of a different kernel, so multiple salient features can be detected at each stage.

The network shown in Figure 4.10 has two input channels (perhaps corresponding to

stereo audio), and each convolutional layer has four channels. Convolutional layers

often have many more channels than this in practise. Each successive convolutional

layer creates increasingly abstract representations of the input data, with the output

from the final convolutional layer ‘flattened out’ and passed to the fully-connected

layers. In reducing the dimensionality of the input before presenting it to these fully-

connected layers, CNNs are effectively able to automate the extraction of salient
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features.

CNNs are the current state-of-the-art in most fields in which machine learning

models are employed, and one need only look at recent CASSE research [101, 134]

for a testament to their capability and dominance in the field. For audio appli-

cations a mel-spectrogram is typically used as input to the network. Many of the

network architectures initially tested for audio applications were adapted from the

field of image recognition, in particular VGG (Visual Geometry Group) [137]. More

recently, however, it has been observed that improvements in performance by newer

architectures in the image domain such as ResNet [138] and DenseNet [139] do not

necessarily transfer to the audio domain. This is potentially due to the comparative

scarcity of data typically available for audio tasks relative to image tasks, and the

tendency of deep networks to overfit to smaller datasets. Recent studies have indi-

cated that reducing the size of the convolution kernels, especially in the frequency

dimension, can lead to improved performance in ASC [140]. These findings indicate

that the temporal structure of sounds are more important for CNN performance

than the associated frequency information.

Whilst CNNs provide state-of-the-art performance, their ultimate downside is

that it is often difficult to infer exactly which properties of the input data the

network is using to draw its conclusions, meaning that the utility of the models is

limited if the objective is a detailed exploration of the data itself rather than simply

achieving accurate predictive output.

4.4 Some Example Systems

4.4.1 The Bag-of-frames Approach

A very common method for audio classification is using MFCC features with GMM

classifiers. Aucouturier et al. describe a technique using this combination, known

as the ‘Bag-of-frames’ approach (BOF) [141]. With BOF, the order of events has
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no bearing on the model that is ultimately calculated.

The work presented in [141] is a direct adaptation of earlier work using the

MFCC+GMM technique in an MIR application for assessing the timbral similarity

of different pieces of music [142]. Whilst for the MIR task the authors found that

accuracy saturates at around 65% regardless of the different variations on the algo-

rithm used, for ASC the authors claim “near-perfect precision” in identification (over

90% in this study). Given three seconds of sound using this technique, the system

was able identify the correct label 91% of the time, whereas humans only managed

35%, needing around 20 seconds of sound for high accuracy. In music, however, this

is reversed, with humans shown to give accurate music recognition with as little as

200 ms of audio, whereas the algorithm needed upwards of 60 seconds for similar

performance. This leads to an interesting conclusion regarding the BOF method,

namely that the “perceptive saliency of sound events is modelled as their statistical

typicality” [141]. This is arguably the exact opposite of human perception, which

tends to be attracted to novelty. Humans pay attention to unusual sounds whilst on-

going background sounds tend to be filtered out, facts that inform Schafer’s concept

of signal and keynote sounds.

The performance of the algorithm with music signals was tested against its per-

formance using three-minute monophonic recordings made at locations across Paris,

including street and market scenes. It was shown that temporally homogenising the

input recordings by replacing large portions of the original recordings with repeated

subsections (‘folding’) had much less of an impact on classification of the acoustic

environments than the music files. With 50-folding (the first 1/50th of the recording

is repeated 50 times), the loss of accuracy in music files is more than 60%, whereas

for acoustic environment recordings the reduction in accuracy is only 20% [141].

These findings reveal that the MFCCs extracted from the urban soundscape

recordings used here have high statistical homogeneity - most MFCC frames are very

similar and so are informationally redundant relative to music signals, which have

much more varied MFCC frames. This would no doubt be unsurprising to Schafer,
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who termed urban soundscapes “lo-fi”, in that broadband mechanical sounds tend to

mask the signal sounds that carry information [3]. Schafer contrasts this with the

“hi-fi” soundscapes of the natural world, which lack significant mechanical sound

and offer a greater sense of “perspective”. This sentiment is echoed by Wiseman

and Wilson [143], who identify the natural world as “information-rich”. It should be

noted that Aucouturier et al. did not evaluate natural or rural soundscapes.

Although these results were promising, almost to the point of indicating that

acoustic scene classification was a solved problem, there has subsequently been much

criticism of their findings. Lagrange et al. [144], re-ran the study using the original

dataset and were able to replicate their results, but could not do the same with

alternative recordings. Table 4.1 shows Lagrange et al.’s results with the original

and three alternative datasets. It can be seen that the very high accuracy using the

original dataset is not replicated in any other case. Lagrange et al. posit that the

unusually high accuracy of Aucouturier et al.’s original results could be caused by

the “overly permissive” structure of their dataset, whereby most of the test audio

consisted of different segments of the same longer recordings as the training audio.

This is likened to similar misleading accuracies reported in early MIR studies where

the testing sets used songs from the same artist or album as the training sets, the

so-called ‘album effect’ [125, 145]. As a result of this, subsequent datasets created

for ASC studies have made sure to include “many different locations and situations

for each scene class” [10, 47, 125].

4.4.2 Machine Listening Using Spatial Features

The vast majority of machine listening research focuses on monaural recordings, with

a few using binaural recordings [8, 55] and fewer using higher numbers of channels

[70, 146]. This is potentially due to much of the research inheriting techniques from

ASR/CASA, but also influenced by the common focus on applications including

use in wearable tech, smartphones and robotics, [54] where use of large microphone

arrays would not be feasible. It should be noted, however, that recent developments
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Database Chance BOF

Aucouturier (Original) 44± 20 97± 12

Gustavino 28± 10 40± 10

Tardieu 33± 18 48± 20

QMUL 28± 13 48± 21

Table 4.1: Percentage mean and standard deviation of acoustic environment identi-

fication performance (precision-at-rank-5) (After [144]).

in mobile technology may make this less of a limitation in the future.

Multiple-microphone recordings contain spatial information that presents an-

other potential source of features that has been, so far, relatively overlooked. Nogu-

eira et al. [55] extract data from stereo recordings using a model of binaural hearing

to estimate features including the Interaural Time Difference (ITD) and Interaural

Level Difference (ILD), which they add to the standard MFCC feature set. The

stated aim of this is to assist in disambiguation between similar scenes, for instance

the possible ambiguity between a train station and a train interior. Whereas train

sound will be present in both scenarios, at the station the sound might be expected

to be more directional in nature. This use of spatial information as essentially a

secondary feature is consistent with its theoretical weighting in human ASA [100].

The work of Bunting et al. [70, 146, 147] on the ISRIE project utilised directional

audio coding (DirAC) analysis (covered in Section 6.2.2) to assist in source sepa-

ration for B-format acoustic environment recordings, though ultimately the sound

separation used only the mono omnidirectional channel. They found that it was

much more difficult to separate mechanical sources from one another as their broad-

band frequency content and continuity over time meant that, even when utilising

a time-frequency transform, ω-disjoint orthogonality (a measure of how separated

two signals are in frequency and time) was low as the mechanical sources contained
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largely overlapping components. Bunting’s system was able to separate birdsong

from mechanical sound, as the sound level of the birdsong was able to overcome the

broadband mechanical noise in the narrow bands in which it was present.

DCASE challenges since 2016 have provided binaural audio datasets for their

ASC and SED tasks. The top-performing ASC systems in 2016 and 2018 made use

of the extra data by simply extracting more MFCCs from the available channels and

combinations thereof, without investigating the potential for new features specific

to the spatial format [148, 149]. The majority of systems submitted did not exploit

the binaural information at all [150]. The leading SED systems in the DCASE 2016

challenge, presented by Adavanne et al. [151] utilise mel-band energies, with time

difference of arrival (TDOA, equivalent in this case to ITD) of sound between the

pair of microphones calculated for five different mel bands using the generalised

cross correlation-phase transformation (GCC-PHAT) method [152]. The authors

note TDOA values calculated from short frames tend to be noisy, and so extract

TDOA values from three frame lengths, taking the median of these for a single-

value estimate. A RNN is used as classifier. Their submission for the following

year’s challenge [107] once again used the mel-band energies, but phased out the

TDOA features, with calculation of spatial properties being offloaded to a CNN.

The input to the network was the complex STFT from each frame, following similar

work by Chakrabarty and Habets [153], who used phase spectra as input to a CNN

for the purpose of broadband DOA estimation in multichannel audio. This method

outperformed its predecessor, but the specific spatial properties that contributed to

this are not clear.

Despite the assertion at its foundation regarding reduced focus on “human-centric

aims”, it was only in the 5th edition of the DCASE challenge (2019) that the chal-

lenge expanded from the binaural format and a sub-task was set up explicitly investi-

gating the potential for the Ambisonic spatial audio format in SED [134]. Adding the

additional requirement for submissions to estimate the direction of arrival (DOA) of

sounds, the sound event localisation and detection (SELD) task provided synthetic
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(b) SELDnet output

Fig. 1. a) The proposed SELDnet and b) the frame-wise output for frame
t in Figure a). A sound event is said to be localized and detected when the
confidence of the SED output exceeds the threshold.

this receptive field of dimension 3 ⇥ 3 (From [26]) learns
information for an individual channel of the input feature, thus
the 2D CNN acts as an intra-channel feature extractor. After
each layer of CNN, the output activations are normalized using
batch normalization [53], and the dimensionality is reduced
using max-pooling (MPi) along the frequency axis, thereby
keeping the sequence length T unchanged. The output after the
final CNN layer with P filters is of dimension T ⇥2⇥P . This
output is further reshaped to a T frame sequence of 2P feature
length (T⇥2P ) and fed to bidirectional RNN layers which are
used to learn the temporal context information from the CNN
output activations. Since the CNN activations consist of intra-
channel information from each channel of the multichannel

audio, the RNN layers in the proposed method learn both
inter- and intra-channel information. Specifically, Q nodes of
gated recurrent units (GRU) are used in each layer with tanh
activations. This is followed by two branches of FC layers in
parallel, one each for SED and DOA estimation. The employed
FC layers share weights across time steps. The first FC layer in
both the branches contains R nodes each with linear activation.
The last FC layer in the SED branch consists of N nodes
with sigmoid activation, each representing the N sound event
classes to be detected. The sigmoid activation enables the
network to learn multi-class multi-label information. While
the last FC layer in the DOA branch consists of 3N nodes
with tanh activation, where each of the N sound event classes
is represented by 3 nodes estimating the distance along x,
y, and z axes respectively. For a DOA estimate on a unit
sphere centered at the origin, the range of distance along
each axes is [�1, 1], thus we use the tanh activation for these
regressors to keep the output of the network in a similar
range. We refer to this architecture as SELDnet in future, and
the hyperparameters are optimized based on cross-validation
(CV) as explained in Section III-D1. The SED output is in
the continuous range of [0, 1] for each class, while the DOA
output is in the continuous range of [�1, 1] for each axes of
the sound class location. A sound event is said to be active,
and its respective DOA estimate is chosen if the SED output
exceeds the threshold of 0.5 as shown in Figure 1b.

C. Training procedure

The target sound labels for each of the active sound events
are denoted by one while the inactive events are denoted by
zero. Similarly, for the DOA labels, the reference DOA is
used as the label for the active sound events and x = 0,
y = 0, and z = 0 is used for inactive events. A binary
cross-entropy loss is calculated between the SED predictions
of SELDnet and reference sound class activities, while a
mean square error (MSE) loss is calculated for the DOA
estimates of the SELDnet with respect to the reference DOA
estimates. By using the MSE loss for DOA estimation in
3D Cartesian coordinates we truly represent the distance
between two points in space. The distance between two points
(x1, y1, z1) and (x2, y2, z2) in 3D space is given by

p
SE,

where SE = (x1 � x2)
2 + (y1 � y2)

2 + (z1 � z2)
2, while

the MSE between the same points is given by SE/3. Thus
the MSE loss is simply a scaled version of the true distance
in 3D space, and reducing the MSE loss means reducing the
distance and invariably the angular distance between the two
points.

Theoretically, the advantage of using Cartesian coordinates
instead of azimuth and elevation for regression can be ob-
served when predicting DOA in full azimuth and/or full
elevation. The angles are discontinuous at the wrap-around
boundary (for example the �180�, 180� boundary), while the
Cartesian coordinates are continuous. This continuity allows
the network to learn better. Further experiments on this are
discussed in Section III-D.

We train the SELDnet with a weighted combination of
MSE and binary cross-entropy loss for 1000 epochs using

Figure 4.12: SELDnet network architecture (from [154]).

training data in first-order Ambisonic (FOA) B-format and ‘four-channel directional

microphone’ A-format. The baseline system and the majority of submissions for

this task use CNNs of various configurations, “thereby avoiding any method- and

array-specific feature extraction” [154], though this potentially overlooks any bene-

fits peculiar to the spherical harmonics-based Ambisonic format.

The task built upon SELDnet by Adavanne et al. [154], which has an architecture

derived from their previous binaural method. SELDnet predicts sound class and

activity concurrently with DOA from multichannel audio using magnitude and phase
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spectrograms extracted from all four first-order Ambisonic channels as input. The

network is designed so all convolutional and recurrent layers are shared between

the two tasks, with a final pair of fully-connected layers set to output sound event

estimates and another to output DOA estimates. This configuration, shown in

Figure 4.12, could be conceptualised as two MLPs performing different tasks using

the same features which have been extracted by convolution and recursion. Given

that backpropagation will take into account the loss from both outputs, however,

the network is theoretically able to learn the DOAs and movements associated with

given sound classes. Performance is very good in both SED and DOA estimation

when there is only one active source, but becomes more erratic when there are

multiple concurrent sources. Mesaros et al. note that this is also a problem in

human event recognition, “when the acoustic power of the environmental noise is

too high compared to individual events, we simply do not hear or recognise them

anymore” [110].

Notably, the network is outperformed in terms of DOA error by the MUSIC

algorithm [155] in the case of anechoic Ambisonic audio, whilst the earlier DOAnet

[156], by the same research team, outperforms SELDnet in all reverberant scenarios.

DOAnet performs DOA estimations only and includes an intermediary stage esti-

mating a MUSIC-like spatial pseudo-spectrum (SPS), which is a map of sound power

varying with direction. This suggests that estimating a power map might be bene-

ficial for this task. In terms of SED, the earlier MSEDnet [157] tends to outperform

SELDnet. This network is essentially similar to the team’s DCASE 2016 method,

adding convolutional layers but retaining the earlier method’s TDOA feature extrac-

tion stage. These results suggest that retaining separate models to perform SED

and DOA estimation might be more optimal than attempting to combine the two

tasks, however beneficial relating DOAs to sound classes might intuitively seem.

Investigation of the potential of crafted (e.g. not inferred by a CNN) spatial

features for ASC and SED tasks is one of the main novel contributions of this thesis,

as detailed in Chapters 6 and 7. Whilst the end-to-end automated CNN approach
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has its benefits and can perform well, the workings of CNNs tend to be rather

opaque, so it is preferred to keep the feature extraction manual in order to be better

able to assess the merits of various features.

4.5 Summary

In this chapter, the origins of machine listening in speech recognition and music in-

formation retrieval have been introduced and related to the application of machine

listening in this thesis, namely the identification of everyday sounds. The two main

tasks of the DCASE challenge, acoustic scene classification and sound event detec-

tion, have been introduced alongside the theoretical framework that underpins these

and other single-label classification and detection tasks in machine learning. The

bulk of the chapter has been a detailed exploration of features and classifiers, con-

centrating on those prevalent in ASC and SED approaches from the literature and

those which have been used in the work which will be presented in this thesis. The

chapter concludes with a summary of some key example machine listening methods

from prior work. With the background underpinning this thesis now established, the

next chapter will explore the first stage of the original work presented here, namely

the creation of the EigenScape database of spatial acoustic environment recordings.
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Associated Publications

• M. C. Green and D. T. Murphy, “EigenScape: A Database of Spatial Acoustic

Scene Recordings”, Applied Sciences vol. 7, no. 11:1024, November 2017, doi:

10.3390/app7111204

Contributions

• The EigenScape database, which is the largest publicly available set of acoustic

scene recordings in the standardised fourth-order Ambisonic format.

• Data partition setup and software tools to complement the dataset.
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5.1 Introduction

In Chapter 3 the key concepts of the soundscape approach, as distinct from the

prevailing ‘environmental noise’ approach, were detailed. Although the soundscape

approach has many benefits in terms of its focus on human perception, the rel-

ative difficulty of quantification and measurement of acoustic environments using

this approach was identified as a major drawback. The ecological validity of lab-

based acoustic environment reproduction, and in particular how the experience of

an acoustic environment over a long soundwalk might be condensed into a shorter

recorded version, was proposed as a potential area for advancement.

Chapter 4 explored the field of machine listening, from low-level detail of certain

algorithms to high-level applications including ASR, MIR and latterly, CASSE. The

objective of CASSE, namely holistic analysis of acoustic environments in and of

themselves, aligns closely with the goals of the soundscape approach. If a reliable

system for the automatic annotation of acoustic environments could be created, this

would have applications including assisting in generating ecologically-valid acous-

tic environment condensations. A less-detailed model could, perhaps, improve the

derivation of soundecology metrics such as the NDSI, where the current frequency-

band based calculation makes it ineffective for use in urban environments, as detailed

in Section 3.4.2.

Part of the ethos of CASSE is a move away from the motivation of biological

relevance (found particularly in ASR), and to re-focus entirely on analysing audio

data with no artificially-imposed limits on the means of doing so. Despite this,

partly because of the legacy of techniques inherited from ASR and MIR, and partly

because of oft-stated applications in robotics [158], smart devices, and wearable

technology, where the mounting of large microphone arrays may not be practical

[54, 154], the various tasks in the DCASE challenges have used only monaural or

binaural recordings until very recently.

Spatial audio offers many benefits from the point of view of both CASSE and
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soundscape:

• As described in Chapter 2, spatial variation is a fundamental feature of sound

fields. Acoustic environments might vary spatially in ways that are location-

characteristic and distinct from how they vary spectrally.

• Ambisonic recordings can be presented over a loudspeaker array, which could

offer increased immersion and ecological validity over a mono or stereophonic

presentation. Binaural presentations taking into account a listener’s head ro-

tation are often derived from Ambisonic recordings [45, 159].

• Multichannel recordings make source tracking and source separation more fea-

sible, for instance by using beamforming, as described in Section 2.4.2.

This chapter will cover the recording of the EigenScape database of acoustic envi-

ronment recordings. The database was created as a foundation for the investigations

undertaken in this thesis into the utility of spatial information for CASSE, moti-

vated by the soundscape approach. First, there will be a review of existing datasets.

This will show points of inspiration for EigenScape, and justify the recording of

new data. There will follow a detailed description of the EigenScape recording pro-

cess, including equipment used, locations visited, publication information, and the

subsequent partitioning of the data to facilitate investigation.

5.2 Existing Datasets

To begin an investigation into whether spatial information in acoustic environments

can be used to enhance the understanding gained using a machine listening system,

it makes sense to start with a relatively high-level analysis. As noted by Torija et

al.; “categorisation of a soundscape is the first step to evaluate it” [160]. It was

therefore decided that the initial exploration in the research that forms this thesis

would be an investigation into use of spatial features for acoustic scene classification.
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If it could not be shown that spatial features were a useful discriminator for entire

acoustic environment classes, their utility for individual acoustic events might be

questionable.

5.2.1 DCASE Datasets

For their ASC tasks, the regular DCASE challenges since 2016 have used various

iterations of the Tampere University (TUT/TAU) database [125, 161, 162]. The

original version of this database consists of binaural recordings of 15 different envi-

ronment classes: lakeside beach, bus, cafe/restaurant, car, city centre, forest path,

grocery store, home, library, metro station, office, urban park, residential area, train,

and tram. Multiple examples of each were recorded at locations in Finland using

the Soundman OKM II Klassik/studio A3 electret in-ear microphones and Roland

Edirol R09 wave recorder. All original recordings were between 3-5 minutes in length

and were segmented into 30-second clips for a total of 104 segments, making up 52

minutes of audio per class. A development set up was provided assigning 75 % of

the data to a development set and the remaining 25 % to an evaluation set, making

sure that there was no overlap in recording location between each set, in order to

avoid the ‘album effect’ [144] covered in Section 4.4.1. Later versions of the database

reduced the number of classes to 10 but expanded recording locations across Europe,

increasing the amount of data for each class available to 144 minutes in 2018 [163]

and 240 minutes in 2019 [164]. The TUT/TAU database is rigorously produced and

provides an ideal model for ASC tasks, but is limited to binaural channels, making

derivation of full-3D spatial features somewhat difficult.

The original DCASE challenge in 2013 used a set of 11 first-order Ambisonic

(FOA) recordings for its SED task [10]. These were, however, limited to scripted

recordings made in office environments, reflecting its intended purpose for SED,

rather than the broad range of location classes required for ASC. Furthermore,

only stereo versions of these recordings were released publicly. More recent DCASE

challenges have used synthesised FOA scenes for their sound event localisation and
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detection (SELD) tasks [165, 166, 167]. Though these datasets were synthesised

using impulse responses from real rooms, with later versions using many source-

receiver positions to simulate smooth source movement, the number of simultaneous

sound sources is limited to two, meaning these scenes have only a fraction of the

complexity of most real-world environments. Additionally, source sounds were taken

randomly from the DCASE 2016 isolated sound events [168] and NIGENS general

sound events [169] datasets, and spatialised using random DOA positions and tra-

jectories, meaning that no potentially characteristic spatial features of events in

real-world acoustic environments were modelled. For a spatial ASC task, then, a

synthesised set such as this is not appropriate.

5.2.2 Spatial Audio Datasets

There are existing datasets featuring spatial recordings of real-world locations. The

Diverse Environments Multi-channel Acoustic Noise Database (DEMAND) database

was presented in 2013 [170], with the purpose of aiding development of noise reduc-

tion algorithms for source separation. DEMAND is presented as a freely available al-

ternative to paid datasets such as the AURORA [171] and NOISEX [172] databases.

Six different location classes are included: Domestic, Office, Public, Transportation,

Nature, and Street, with three different examples of each. Recordings are five min-

utes in length, giving 15 minutes total per class. This is a substantial amount of

data, but potentially too small a dataset to provide effective classifier training and

testing, especially compared with the amount of data available for each class in the

TUT/TAU datasets. Further, the setup used to record DEMAND was a custom-

built planar array featuring 16 microphones arranged in a grid. This offers a great

deal of potential for spatial information, but elevation data might be more difficult

to derive than azimuth, and techniques developed using data from this array might

not be generalisable to other recordings in the way that the standardised Ambisonic

format allows.

Perhaps the closest precedent to the type of dataset required for spatial ASC is
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the work of Stevens et al. [20, 45, 80], who used the STM450 SoundField micro-

phone array [173] to make 10-minute first-order Ambisonic recordings of acoustic

environments at eight locations in and around Leeds and the North York Moors

National Park, England. Locations were selected to give a broad range of urban

and natural environments for the purpose of lab-based listening tests investigating

soundscape perception. Assessing this data with a regard to use in ASC, the loca-

tions are broadly grouped into three classes: rural, suburban and urban. There are

two recordings of rural locations and three each for suburban and urban, yielding

20-30 minutes of audio per class. This could be enough for a small pilot study into

spatial ASC, but the uneven amount of data per class could make creating balanced

test setups somewhat difficult. A much larger database in this format would be

ideal. EigenScape was therefore conceived as essentially an amalgamation of the

recording approach of Stevens et al. and the breadth of locations and data available

in TUT/TAU.

5.3 Specification

In reviewing the existing available data, it became clear that a new set of recordings

was needed to facilitate a comprehensive investigation into spatial features for ASC.

The new dataset was created on the following criteria:

• Samples of a broad range of urban and natural environments.

• On the order of 50 - 100 minutes of audio for each class for comparability with

at least the initial 2016 version of the TUT/TAU dataset.

• Equal amounts of audio for each class for balanced train/test partitioning.

• Ambisonic format to facilitate spherical harmonic processing and for transfer-

ability of results in a common format.
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Figure 5.1: The Eigenmike spherical microphone array.

5.3.1 Equipment

The array chosen to record the new database was the mh Acoustics Eigenmike

[32, 33], some detail of which has already been covered in Section 2.4.1. Figure 5.1

shows the array, capable of recording up to fourth-order Ambisonic format.

In a two-part investigation, Bates et al. compared the performance of various

Ambisonic microphone arrays, including the Eigenmike and SoundField MKV, as-

sessing both perceptual audio quality and directional accuracy [174, 175]. In these

tests, the Eigenmike fared poorly in terms of perceptual audio quality and was rated

as “dull” compared to other microphones. It is surmised this may be related to the

large number of microphone capsules in the array contributing a greater amount of

noise in the output signals than lower-order arrays with fewer capsules. In direc-

tional tests, however, the Eigenmike significantly outperforms the other arrays. This

is despite the fact that, for parity, only the first-order channels from the Eigenmike

were considered in these tests. These results indicate that whilst the SoundField

microphone is probably a better choice for recordings to be used in listening tests

such as in [20], the Eigenmike is a good choice for the work in this thesis, given

119



5. THE EIGENSCAPE DATABASE

that the primary concern is machine (rather than human) listening. The Eigenmike

is capable of recording far more detailed spatial information than any first-order

array, whilst remaining practical to transport and use on-location. Given the choice

of array, the new database was named EigenScape.

Recordings were made using the Eigenmike interface box [34] and EigenStu-

dio recording software [176] running on an Apple MacBook pro [177] at 24-bit/48

kHz resolution. Audio was recorded simultaneously as raw signals from the 32 mi-

crophones and in Ambisonic format, encoded by EigenStudio using ACN channel

ordering [178] and SN3D normalisation [28]. EigenStudio also automatically applies

the high-pass filters required to compensate for array self-noise in the higher-order

channels, as outlined in Section 2.4.1. The recording gain was set in the EigenStudio

software to +25 dB. This high gain was necessary as the majority of recording loca-

tions did not yield a strong recording level using lower gains. The only exception to

this was one train station location where very high level engine noise caused severe

clipping at +25 dB, so a gain of only +5 dB was used, as noted in the database

metadata, included in Appendix A. Whilst a systematic gain discrepancy, for in-

stance if all examples of one class were recorded at a consistently different gain level,

would represent a significant source of bias in the dataset, as there is in fact only

an isolated discrepancy in a single recording, any bias should be minimal.

For the majority of the recordings, the Eigenmike was placed within a Rycote

modular windshield [179]. Although the windshield was not designed for micro-

phone arrays with such a large diameter as the Eigenmike, care was taken to mount

the array securely and the shield was effective in reducing wind noise. An initial

number of recordings used a custom-made windshield, but this was replaced with

the Rycote as setup time proved too long. One indoor recording used no windshield.

It is thought that the recording discrepancies incurred in windshield use should be

negligible in comparison to the wide range of sound sources and acoustics present in

the recorded environments. This should especially be the case when coarse features

are extracted from the audio for use in a machine listening system. For such a sys-
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Figure 5.2: The EigenScape recording setup at Redcar Beach, North Yorkshire

(recording of Beach-04).

tem to be at all effective, it should be robust to the small spectral changes incurred

by the use of different windshields, as well as in ambient sound level between scenes.

Indeed, another database created before EigenScape, DARES-G1 [180] used com-

pletely different recording equipment for indoor and outdoor locations, and this was

judged to have “minimal influence on the quality of the database”. Nevertheless, all

small recording discrepancies are noted in the EigenScape metadata (Appendix A).

To make the recordings, the Eigenmike was mounted on a standard microphone

stand set to around head height. A Samsung Gear 360 camera [181] was mounted

to the same tripod beneath the microphone to record video data, with a view to

assistance in annotation of sound events where the source might be ambiguous, or

potentially to use in future immersive listening tests using VR. Ultimately the video

data was not used in the work presented in this thesis. Figure 5.2 shows the full

recording apparatus.
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Class Typical Sounds

Beach Ocean waves, wind

Busy Street Heavy traffic, pedestrian crossings, speech

Park Birdsong, speech, children playing

Pedestrian Zone Speech, footsteps, street music

Quiet Street Light traffic, birdsong

Shopping Centre Speech, background music, reverberation

Train Station Train engines, announcements, speech

Woodland Birdsong, occasional footsteps

Table 5.1: EigenScape Classes

5.3.2 Locations

Location classes in EigenScape were based upon the classes featured in the TUT/TAU

database, with a focus on open public spaces. The eight classes included in Eigen-

Scape are listed together with some typical sounds in Table 5.1. These classes were

chosen to give a good variety of acoustic environments found in or near urban ar-

eas and range between those dominated by mechanical sound (Busy Street, Train

Station), to those featuring largely natural sound (Woodland) and some in between

(Park, Quiet Street). Figure 5.2 shows a typical example of a Beach location. Images

of further locations are available in Appendix A.2.

Eight different examples of each class were recorded, for a total of 64 recordings.

All recordings are exactly 10 minutes in length, giving 80 minutes per class - just

under 11 hours in total for the whole database. In practise, a little over 10 minutes

was recorded at each location, with the very beginning and end trimmed to remove

the noise incurred by the activation and deactivation of the recording equipment.

This facilitated segmentation of the recordings into clips of equal length, giving many

options for the length that do not leave any audio left over (e.g. 20 × 30s segments,
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60× 10s segments, etc.), so the recordings can be easily split into training and testing

sets. Recordings were made across the north of England in May 2017 at locations

somewhat determined by ease of access from the AudioLab at the University of York.

Figure 5.3 shows the location of all the recordings with a legend of icons indicating

the classes, whilst Figure 5.4 shows a closer view of an area in the city centre of

York where a higher concentration of recordings were made. Appendix A.2 contains

maps of the other city centre recording locations, whilst Appendix A.1 contains a

complete list of EigenScape recording locations. This includes information on the

date and time of each recording together with notes on any discrepancies. Consent

from individuals is not required when making recordings in public spaces in the UK

[182], but permissions from all relevant local authorities and premises management

were sought and obtained where possible. Some locations would not allow tripod-

based recordings, so the microphone stand was collapsed and held as a monopod.

All relevant documentation, including risk assessment, letter of support (including

a method statement), and a written permission obtained from Scarborough Council

are included in Appendix A.3.

Apart from one single scene (Beach-08), all recordings were made between the

standard working hours of 9 am - 5 pm. This was partly for practicality, but also to

reduce discrepancies to the acoustic environments that might be caused by varying

activity levels according to the day/night cycle. Every effort was made to avoid

introducing sound sources to the scene by either the equipment or the experimenter.

In some of the locations with heavy footfall, conversations between the experimenter

and curious passersby have been recorded. This was quite unavoidable in some of the

busier locations, but since conversation tended to be a typical part of such environ-

ments, this is not too anomalous and should certainly not affect feature extraction.

Discretion is recommended if these recordings are to be used in a listening test.
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Quiet Street Shopping Centre Train Station Woodland

Figure 5.3: EigenScape recording locations across the north of England.

5.3.3 Publication

Apart from being an essential foundation for the work in this thesis, EigenScape

was also envisioned as a platform for other researchers interested in the topics of

spatial audio and soundscapes. The complete dataset has therefore been made freely

available in Ambisonic format for download online via the CERN-administered Zen-

odo platform [183], under the Creative Commons Attribution 4.0 license [184]. The

data is presented as WAV files grouped in a series of compressed ZIP files, organised

by class. Since each recording is 10 minutes of 25 audio channels at 24-bit/48kHz

resolution, EigenScape contains almost 140 GB of data in total. As this could poten-

tially be taxing on disk space and take an extended period of time to download on
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5.3. SPECIFICATIONEigenScape Recording Map Public

Map detailing proposed locations for recording of the EigenScape dataset.

Locations

Bridlington Beach

Filey Beach

Cayton Bay

Redcar Beach

Saltburn Beach

Sandsend

Whitby West Cliff

Robin Hood's Bay

Chatfield Road

Thomas Street

Rising Moon, Matley Lane

Church Lane

Main Street

St. Benedict Road

Windmill Rise Corner

Holmefield Lane

Clayton Square

Church Street

Shambles Square

Market Street

Church Street, Whitby

St. Helen's Square

Minster Yard

Stonegate

St. John's Market

Beach Busy Street Park Pedestrian Zone

Quiet Street Shopping Centre Train Station Woodland

Figure 5.4: EigenScape recording locations in York.

slower internet connections, a second version of the dataset was compiled for easier

access. The cut-down version contains all the full-length recordings, but limited to

the FOA components (the first four tracks) and using the free lossless audio codec

(FLAC) compression format. This second version of EigenScape is only 12.6 GB of

data, but still allows for spatial audio analysis and reproduction, albeit in reduced

spatial resolution. FLAC is also the UK Data Service recommended audio data

format [185]. The raw 32-channel microphone data has not been released.
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Figure 5.5: Fourfold cross-validation setup in EigenScape.

5.4 Cross-Validation

Although EigenScape contains 80 minutes of audio per class, it is still a small dataset

by modern machine learning standards. Computer vision datasets in particular can

contain many thousands of examples of each class [186], ensuring reduced variance

and less likelihood of a model overfitting. Smaller datasets may not capture a broad

enough range of statistical properties for each class, so outliers have an outsized

influence and models have a greater tendency to overfit.

One method that can be employed in increasing the validity of results from

a model trained on a smaller data sample is cross-validation [121]. With cross-

validation, the model is trained and tested multiple times on different subsets of

the available data. The data is partitioned such that each data point is included

in the test set only once. With very small datasets, sometimes leave-one-out cross-

validation is used. This is a special case where the test set consists of only a single

datapoint each time, with the training set being the entirety of the rest of the

data. This would not be appropriate to use with EigenScape, as it would violate

the requirement that clips from the same longer recordings should not cross over

between the training and test sets. Instead, k-fold cross-validation, in which the full

dataset is partitioned into k equally-sized subsets, was used. k−1 of the subsets are

used for training, with the remaining subset used for testing. Training and testing is

repeated k times with each subset used for testing in turn. The mean performance

of the model across all folds is calculated as the final result.

Ordinarily, partitioning of the available data is done entirely at random. How-
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ever, to maintain the separation of longer recordings between sets in EigenScape,

entire 10-minute clips should be assigned to either the training or testing set. These

can subsequently be partitioned into smaller segments as required. EigenScape was

specifically designed to allow two, four, or eightfold cross-validation in this man-

ner. Figure 5.5 shows an example of 4-fold cross validation, as could be done using

the EigenScape data. The choice to include eight examples of each scene class was

made to facilitate these cross-validation setups whilst putting a practical and rea-

sonable limit on the amount of data to be collected by a single researcher. Whilst

inclusion of more data would increase the diversity of the dataset, this would cause

the amount of work involved to increase significantly. The dataset was, however,

recorded across six different cities and large towns and at many locations between.

This offers a range of diverse locations comparable to the “six large European cities”

across which recordings were made for the TUT 2018 dataset [163].

A set of software tools were published alongside EigenScape to facilitate easy

creation of test setups including partitioning of the data into folds, and segmentation

of the longer audio clips [187].

5.5 Summary

This chapter has detailed the collection of the EigenScape database of spatial acous-

tic scenes. A review of already-existing databases was presented, and whilst none of

these databases were completely appropriate for the work presented in this thesis,

elements from them have influenced the direction of EigenScape. The resultant new

database is essentially a fusion between the approach taken with the TUT/TAU

databases [125, 161, 162, 163, 164] and the spatial audio recordings of Stevens et al.

[20, 45, 106], motivated by the soundscape approach.

A detailed specification of EigenScape was presented, including information on

the recording equipment, location classes and specific locations shown on a map,

together with details on the public release of the data online. Finally, information
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on cross-validation was presented, including how EigenScape was planned to consider

this, with a view to avoiding the ‘album effect’ inflation of results as reported by

Lagrange et al. [144].

Now that this chapter has established the groundwork, the following chapters

will detail the original research facilitated using the EigenScape data, beginning

with an investigation into the characterisation of acoustic scenes by their spatial

properties.
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Using Spatial Features

Associated Publications

• M. C. Green and D. T. Murphy, “Acoustic Scene Classification Using Spa-

tial Features,”, in Detection and Classification of Acoustic Scenes and Events

Workshop, Munich, Germany, 2017

• M. C. Green and D. T. Murphy, “EigenScape: A Database of Spatial Acoustic

Scene Recordings”, Applied Sciences vol. 7, no. 11:1024, November 2017, doi:

10.3390/app7111204

• M. C. Green, D. T. Murphy, S. Adavanne, T. Virtanen, “Acoustic Scene Classi-

fication Using Higher-Order Ambisonic Features”, inWorkshop on Applications

of Signal Processing to Audio and Acoustics, New Paltz, USA, 2019

– Contributions of co-authors limited to development of CNN classifiers.

All analysis performed by the author of this thesis.
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Contributions

• Results indicating that acoustic environments can be characterised by their

spatial properties independently of their spectral properties.

• Evidence that similarity of scenes’ spatial properties do not always coincide

with similarity in their spectral properties.

• Several classification models developed using features derived from Ambisonic

audio.
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6.1 Introduction

EigenScape is the first database of its breadth to have been recorded in high-order

Ambisonic format, and was specifically designed to facilitate investigation into spa-

tial features for acoustic scene classification, as a precursor to more detailed study

of acoustic environment properties. This chapter will present the results of several

classification systems trained using features extracted from the EigenScape data.

Initially, features were derived from only the first-order Ambisonic channels, with

classification accuracies using a GMM trained on these features compared to those

achieved using the standard MFCC features. Later, spatial features were derived

from the complete fourth-order Ambisonic information available in the dataset, with

these results compared to those achieved using the first-order features only. These

tests were repeated in an additional study that was a collaboration between the au-

thor of this thesis and researchers at TUT [188]. The role of the TUT researchers was

the creation and training of CNN classifiers in place of GMMs, whilst the analysis

of the results was conducted by the author of this thesis.

6.2 Spectral and First-Order Ambisonic Features

6.2.1 MFCC Implementation

To establish a baseline classification performance against which spatial features can

be compared, the first set of features to be extracted from EigenScape are MFCCs.

The MFCC function from the librosa library [116], is used to extract these features,

retaining the first MFCC as in [125], from the 0th-order omnidirectional channel of

each EigenScape recording. The standard behaviour of the librosa MFCC function

is to resample the input audio to 22.05 kHz, followed by extraction of MFCCs from

frames of 2048 samples with 25 % overlap across 20 frequency bands. All of these

parameters are retained apart from the resampling frequency, which is altered to
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24 kHz. This reflects a 50% reduction in the 48 kHz sampling frequency used for

EigenScape, whereas the librosa standard is a 50% reduction from CD-quality audio

at 44.1 kHz. The MFCCs therefore represent frequencies up to 12 kHz.

6.2.2 Directional Audio Coding

For the first stage of the spatial ASC investigation, it was decided to use fea-

tures derived from only the FOA channels, with more complex higher-order fea-

tures investigated as a second stage. The directional audio coding (DirAC) tech-

nique [189, 190, 191] is used to derive coarsened spatial features from the raw audio

data. Developed based on the spatial impulse response rendering (SIRR) algorithm

[17, 192], DirAC was intended to facilitate reconstruction of a 3D sound field from

monaural audio based upon extracted spatial parameters. In, for instance, a telecon-

ferencing system, this would allow only a single channel of audio to be transmitted

with the spatialisation defined by metadata, a much reduced data rate compared to

transmitting a complete four-channel FOA signal.

To limit the metadata to a manageable data rate, several assumptions regarding

human perception were made. The most important of these is “humans decode at

one time only single cues per each critical band from the ear canal signals” [190],

evidence for which is presented in [193]. DirAC therefore makes use of perceptually-

motivated features, and this makes a comparison with MFCCs especially interesting.

The frequency-dependent perceptual basis of DirAC provides an appropriate coars-

ening of the data for machine listening purposes. This, combined with the relative

simplicity of the method, as detailed below, makes DirAC an ideal candidate for

FOA spatial features.

Before feature extraction, the EigenScape audio clips are resampled to 24 kHz,

limiting the maximum recorded frequency to 12 kHz in parity with the process

used to extract MFCCs. This resampled audio is then filtered into 20 mel-spaced

frequency bands calculated to match exactly the 20 frequency bands used by the li-

brosa MFCC function, using a bank of finite impulse response (FIR) filters. Intensity
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vectors I are calculated from this filtered Ambisonic signal as:

I = PU (6.1)

where P contains the 20 mel-filtered versions of the zeroth-order Ambisonic channel

equivalent to the pressure component of the sound, and U is a three-dimensional

matrix containing the filtered versions of the three first-order channels, representing

the velocity component. The resultant matrix I contains instantaneous intensity

vector estimates for each frequency band. DOA estimate vectors run in the opposite

direction to these intensity vectors. Azimuth φ and elevation θ angles can be derived

from this trigonometrically:

φ = arctan

(
I3

I1

)
(6.2)

θ = arccos

(−I2

||I||

)
(6.3)

where I1, I2 and I3 are the filtered first-order channel matrices contained within I.

Values for diffuseness ψ are calculated as [190]:

ψ = 1− ||I||
cE

(6.4)

where E is the instantaneous energy density [190]:

E =
ρ

2

(
P2

Z2
0

+ ||U||2
)

(6.5)

and Z0 and ρ are the acoustic impedance and mean density of air, as explored in

Section 2.2.1.

Features are extracted based on rolling mean values for P and U calculated in

frames of 2048 samples, with 25% frame overlap, again matching the MFCCs. This

gives a set of DirAC parameter estimates for every 64 ms. The output from each

frame of the DirAC analysis is a set of azimuth, elevation and diffuseness estimates
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for each of the 20 frequency bands, resulting in a 60-dimensional feature vector of

FOA spatial information.

6.3 Higher-Order Ambisonic Features

The second stage of this study explores whether features utilising information in

the higher-order Ambisonic (HOA) channels might improve upon the classification

performance of systems using the FOA features. Given the inherent trade-off in

machine learning between discrimination and generalisation, it is not clear that

this will be the case. The increased spatial precision of HOA could mean that the

extracted features represent details more specific to individual scenes than those

general to the scene class.

One of the aims in the selection of HOA features is some equivalence with the

FOA features in order to make comparisons between the two more meaningful. In

practise, this means finding methods for estimating frequency-dependent DOA and

diffuseness incorporating the HOA channels. The most immediately obvious candi-

date for this task is the HOA extension to DirAC, which calculates parameters in

sub-sectors of the complete spherical space [194]. This technique, however, outputs

separate DOA and diffuseness estimates for each individual sector, so these values

are not directly comparable with those obtained from FOA DirAC.

Instead, DOA estimates are derived from a steered-response power (SRP) map

created using spherical harmonic beamforming. SRP is a technique of sampling the

sound field power in all directions, analogous to the “instantaneously-rotating direc-

tional microphone” discussed in Section 2.4. Diffuseness features are extracted us-

ing the covariance matrix eigenvalue diffuseness estimation (COMEDIE) algorithm

[195]. The next two sections will detail these techniques.
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6.3.1 Distributing Sample Points on a Sphere

In order to obtain a representative sample of the sound power as it varies across

space when creating an SRP map, it is necessary to define a set of sampling points.

Despite the spherical geometry of the search space, choosing an appropriate scheme

for this task is not as simple as it might seem. Figure 6.1 shows a selection of

sample distributions in a flat space and wrapped to spheres. Perhaps the most

initially obvious choice, a regular grid, will in fact cause the ‘poles’ to be sampled

with much higher resolution than equatorial areas when wrapped to the sphere. This

increased detail would cause a great deal of computation time to be spent processing

largely redundant data, as sound is much less likely to originate near polar regions

in most scenes. The increased density of sample points at the poles will also bias the

sound power readings towards them - it will look like sources near the poles contain

more power simply as they are sampled more densely. This problem can be solved

using an appropriate quadrature weighting [196], but if this step can be avoided,

computing power can be saved.

It is a fundamental law of geometry that there are a finite number of ways to

evenly distribute points on the surface of a sphere, corresponding to the vertices of

the platonic solids [197]. The regular dodecahedron, with 20 vertices, provides the

greatest number of points. Clearly, 20 points will not provide sufficient resolution

for a representative SRP map. A common way to circumvent this theoretical limit

is to interpolate between the vertices of a regular icosahedron, equivalent to the

central points on the faces of the dodecahedron [146, 147, 196]. Figure 6.1(c) shows

the pattern produced at an interpolation factor of 8. When projected to the surface

of a sphere (Figure 6.1(d)), these points provide far more uniform sampling than the

regular grid, with only slight irregularities around the original icosahedron vertices.

The main disadvantage of this approach is that the number of available points P

are at fixed intervals depending on the interpolation factor i:
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Figure 6.1: Various schemes for sampling spherical co-ordinates.
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Figure 6.2: 500-point ‘sunflower’ distribution generated using Equation 6.7.

P = 10i2 + 2 (6.6)

The pattern shown in Figures 6.1(c) and 6.1(d) has 642 points, whilst the nearest

levels of interpolation above and below this give over 100 points greater and fewer

respectively. This limits options when aiming for a particular angular resolution.

The popular Lebedev quadratures [198] are also limited to certain values, though

it should be noted that the distance between these is generally much smaller than

using icosahedron interpolation.

Another alternative is the Fibonacci sphere [199]. This takes the distribution

proposed by Vogel to simulate the arrangement of sunflower seeds [200] and spreads

the pattern across the spherical surface. The original two-dimensional formulation

is defined in polar co-ordinates as follows:

φp =
2πp

ϕ

rp =
√
p

(6.7)

where ϕ is the golden ratio 1+
√

5
2

and p is an integer index for each point. Figure

6.2 shows a spiral pattern generated using Equation 6.7. For spherical sampling,

the expression to calculate radial distance r is replaced by the following, which

determines elevation:

137



6. ACOUSTIC SCENE CLASSIFICATION USING SPATIAL FEATURES

θp = cos−1

( −2p

P − 1

)
(6.8)

Figures 6.1(e) and 6.1(f) show a 600-point Fibonacci spiral. This sampling

scheme has the advantage of having a very uniform distribution except for slight

under-sampling at the poles [196], and, unlike icosahedron interpolation or the Lebe-

dev quadratures, allows for any arbitrary number of points, which is very beneficial

when defining the resolution of the search grid. For these reasons, in this study the

SRP map was created using a 300-point Fibonacci spherical sampling scheme. The

other distributions detailed here were not tested as part of this work. It was consid-

ered that the discrepancies in point density using regular sampling would likely affect

DOA estimates in an adverse manner, whilst the aforementioned control offered over

the specific number of sampling points made the Fibonacci spiral preferred over the

geodesic grid.

The SRP map was created using CroPaC beams (see Section 2.4.3), and weights

were applied to the k dimension of the beamformer output (Equation 2.26) to obtain

azimuth and elevation estimates from the same 20 mel-spaced frequency bands as

the FOA features. The maximum-amplitude point of the power map from each band

was taken at the DOA estimate.

6.3.2 COMEDIE Diffuseness

Diffuseness in the HOA channels was estimated using the covariance matrix eigen-

value diffuseness estimation (COMEDIE) algorithm [195]. The method was devel-

oped by Epain and Jin following an investigation of the covariance matrices of the

spherical harmonic signals for several synthesised sound fields. It was found that

in a perfectly diffuse sound field, all eigenvalues of the matrix are equal, whereas

in a sound field featuring only a single plane wave, only one eigenvalue is nonzero.

More complex sound fields yield more irregular spectra that lie between these two

extremes. Figure 6.3 shows covariance matrices and their respective eigenvalues for

simulated diffuse and single plane wave sound fields, and a combination of the two.
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(a) Diffuse field
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(b) Plane wave
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(c) Plane wave plus diffuse background

Figure 6.3: Spherical harmonic signal covariance matrices and their eigenvalues for

various synthesised sound fields (after [195]).
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COMEDIE makes use of this phenomenon to calculate figures for diffuseness based

on the mean deviation γ of eigenvalues ν from their mean value ν̄ [195]:

γ =
1

ν̄

(N+1)2∑
i=1

|νi − ν̄| (6.9)

This is used to calculate diffuseness by:

ψ = 1− γ

γ0

(6.10)

where γ0 is the value of γ for the perfect single plane-wave soundfield, derived in

[195] as:

γ0 = 2
[
(N + 1)2 − 1

]
(6.11)

Epain and Jin also introduce the concept of diffuseness profiles. In testing the

COMEDIE diffuseness calculation, it was observed that, owing to the varying spa-

tial resolution across SH orders, diffuseness estimates for the same sound field could

vary depending on the orders used. For sound fields where one source dominates, or

that are very diffuse, diffuseness estimates across orders tend to be similar, resulting

in a flat profile. On the other hand, diffuseness values that decrease with increasing

SH order are an indication of a sound field consisting of several uncorrelated sources

incident from different directions. This scenario tends to read as more diffuse at

lower orders, owing to the reduced spatial resolution. There is, therefore, useful in-

formation regarding the true nature of the soundfield to be obtained by calculating

diffuseness across all available orders. Using diffuseness profiles helps to disam-

biguate “whether diffuseness arises from the presence of a diffuse noise background

or from the presence of multiple yet countable uncorrelated sources distributed in

space” [195].

Diffuseness profiles including values for all four available orders were calculated

as part of the set of HOA spatial features. As with the FOA DirAC diffuseness

values, these were calculated across 20 mel-bands, resulting in 80 diffuseness values
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in total. The complete HOA feature vector includes 20-dimensional vectors for both

the azimuth and elevation estimates with this 80-dimensional diffuseness vector,

giving 120 dimensions in total.

6.4 Method

The EigenScape database is split into four folds for cross-validation following the

scheme outlined in Section 5.4. Features extracted from the training audio are

used to train a bank of GMMs (one for each scene class) using the E-M algorithm

(see Section 4.3.3). Each GMM used ten Gaussian components, matching those

used in the original DCASE basline classifier [124]. It was decided to initially use

these simple GMM models in order to keep the focus on the broad discriminative

information contained within the features rather than the power of the model. It is

reasoned that if a GMM could produce good classification accuracy using the spatial

features, this would provide strong evidence for the effectiveness of the features

themselves.

Test recordings are cut into 30s segments, giving 40 segments in total per class,

per fold. Features from the clips are presented to the GMM bank, with each GMM

outputting a probability score indicating the estimated likelihood that new frames

came from the same class as the training frames for that model. Scores are summed

across frames from the entire 30s segment, with each segment classified according

to the model giving the highest total probability score across all frames. The per-

formance metric used is a simple percentage accuracy (e.g. proportion of correctly-

assigned labels), with the mean value taken across all four folds.

To act as a baseline level against which performance with the new spatial features

can be compared, a separate set of GMMs are trained using the MFCC features.

Separate GMM banks are also trained using individual FOA features and combina-

tions thereof, with one set trained using a concatenation of both the MFCCs and the

complete set of FOA features, and another trained on the MFCCs and diffuseness
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features alone. The approach with the HOA features mirrored that taken with the

FOA features.

FOA and HOA classifiers are kept completely separate, with no classifiers trained

with combinations of FOA and HOA features. This is because it was felt that since

HOA features require the use of information contained in the FOA channels, mix-

ing the two sets of features would in a sense represent duplication of data. This

is most evident when considering the COMEDIE diffuseness profiles, which are ex-

plicitly multi-order features - adding FOA DirAC diffuseness to these is unlikely

to add any extra discriminative information. On the other hand, the concept of

‘diffuseness profiles’ raises the possibility of ‘DOA profiles’ compiled in a similar

manner. However, whilst calculating diffuseness across different Ambisonic orders

can yield additional information about the scene, as discussed in Section 6.3.2, it is

less clear what would be gained from including multi-order DOA estimates. Whilst

it is conceivable that the first-order DOA estimations obtained using DirAC could

contain information complementary to higher-order SRP-derived estimates, lower-

order estimates calculated using SRP are likely to be simply noisier versions of the

higher-order estimates.

6.5 Results and Discussion

6.5.1 FOA

Figure 6.4 shows the mean classification accuracies attained across all scenes using

various subsets of the FOA features. The complete set of DirAC features yield

an accuracy of 64%. MFCC features, on the other hand, yield a 58% accuracy, a

figure in line with MFCC-GMM performance reported in the literature [10, 144].

The only spatial feature to perform worse than MFCCs are the azimuth estimates,

giving a 43% average accuracy. Performance using elevation features is very similar

to that achieved using MFCCs. Using diffuseness features improves on this slightly.

142



6.5. RESULTS AND DISCUSSION

The poor performance when using azimuth features is possibly due to the fact that

azimuth estimates are affected by the microphone array’s orientation relative to

typical elements of the recorded scene. If, for instance, the scene in question is the

BusyStreet class, in one recording the road could be passing directly in front of

the array, and in another the road might be on the left hand side. This was not

controlled for at the recording stage and the recorded soundfields were not rotated

post hoc. Elevation and diffuseness estimates should, by contrast, be invariant to

horizontal array rotations.

The complete DirAC features outperformed the MFCC baseline by a larger mar-

gin than either the elevation or diffuseness features alone, despite including azimuth

features that were shown to perform poorly. An additional bank of GMMs trained

excluding the azimuth features achieved 69% overall accuracy, which is the best per-

formance using FOA spatial features. The 7% standard deviation indicates that the

features extracted from the dataset are fairly consistent across folds. The accuracies

achieved using these elevation/diffuseness (E/D) features are shown broken down

by scene class in Figure 6.5. Every class is identified with a mean accuracy above

60%, except Beach, which has a mean accuracy of only 8%. The poor classification

of the Beach scenes is such an outlier that discounting these particular results would

raise the overall mean accuracy by 9%. One reason for this could be the dominant

ocean wave sound at Beach locations. This is by nature an enveloping sound that is

both broadband and diffuse, and could yield indistinct features difficult to separate

from other scenes.

Three of the classes were identified with averages above 80%, with one, Pedes-

trianZone, classified at 97% accuracy with a standard deviation of only 4%. The

standard deviation values represent the fluctuation in performance between folds,

giving some indication of the variability of data within a given class. As such, the

low standard deviation of the PedestrianZone accuracy implies that the Pedestri-

anZone recordings have very similar sonic characteristics, yielding very consistent

features. By this metric, QuietStreet, ShoppingCentre and Woodland show the most
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Figure 6.4: Mean and standard deviation classification accuracies for different FOA

feature subsets.
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Figure 6.5: Mean and standard deviation classification accuracies for each scene

class using the elevation/diffuseness feature combination.
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(b) E/D Classifier

Figure 6.6: Confusion matrices for GMM bank classifiers trained using MFCC

and FOA elevation/diffuseness features. Figures indicate classification percentages

across all folds.

variability, with the remainder of the scenes being moderately variable.

Further insight can be gained by studying confusion matrices shown in Figure

6.6. The rows of these matrices indicate the true classes, and the columns show the

labels returned by the GMM bank classifier. It is immediately clear that the E/D

matrix has a much more prominent leading diagonal, whereas confusion is more

widespread in the MFCC classifier. This indicates that the spatial E/D features

outperform the spectral MFCC features in the majority of cases. The only scene

class where the performance of the MFCC classifier significantly improves on the

E/D classifier is Beach, though the 36% accuracy is hardly satisfactory.

It is especially interesting to look at the specific misclassifications between scenes.

Whilst the misclassifications of Beach scenes by the MFCC classifier are spread fairly

evenly across several other classes, the E/D classifier most commonly misclassifies

Beach scenes as either BusyStreet or QuietStreet. It is possible that this is due

to broadband noise from passing vehicles creating patterns in the spatial features

similar to those of ocean waves. Corroboration for this interpretation is visible

in Figure 6.7, which shows elevation data extracted from Beach, QuietStreet and

TrainStation recordings. It can be seen that the Beach and QuietStreet scenes have

large areas where elevation estimates are broadly uniform at around 90° across both
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time and frequency, whereas the elevation data from the TrainStation clip is far

more erratic.

It is also interesting to consider cases where the E/D classifier has considerably

outperformed the MFCC classifier. PedestrianZone, classified 97% accurately by

the E/D classifier, but only 52% accurately by the MFCC classifier, is particularly

noteworthy. These results suggest that the spatial properties of pedestrian zones

are much more unique to them than their spectral properties, which seem to have

a degree of overlap with the spectral properties of both quiet streets and train

stations. This observation can be explored further by considering those classes which

are significantly confused by both classifiers. Sometimes specific misclassifications

coincide, such as with the Park class, which is most commonly misclassified as

QuietStreet by both spatial and spectral classifiers. This is possibly due to both of

these locations being open areas of relative quiet in the midst of urban areas, mostly

consisting of natural sound with occasional human sound, and characterised by the

presence of a low-level background urban ‘hum’ keynote notably absent from the

Woodland recordings.

Perhaps more interesting are the instances where specific misclassifications do

not correspond. The ShoppingCentre class, for instance, is most commonly misclas-

sified by the MFCC classifier as a PedestrianZone. This is most likely caused by

the prominent human sounds present in both of these location classes. The E/D

classifier, on the other hand, most commonly misclassifies ShoppingCentre clips as

TrainStation, and does not misclassify any clips as PedestrianZone. This could be

due to the similarity in acoustics at these locations. Both classes are often large

indoor spaces with lots of reverberant surfaces, which could generate a common

signature in terms of elevation and diffuseness values. The divergences in these mis-

classification patterns lead to the interesting observation that the spectral similarity

and spatial similarity of scenes do not necessarily coincide. This is a key finding that

provides an indication that the spatial properties of acoustic scenes can be used for

classification in a way that is complementary to their spectral properties.
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(a) Beach
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(b) QuietStreet
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(c) TrainStation

Figure 6.7: Elevation estimates extracted from 30s segments of Beach, QuietStreet

and TrainStation recordings.
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Figure 6.8: Mean and standard deviation classification accuracies for HOA features.

These ASC performances using FOA features are important for a number of

reasons, most significantly that they are the first results to conclusively show that

the spatial properties of sound scenes can be used as discriminative features in an

acoustic scene classification system. They also provide validation for the EigenScape

dataset in terms of its suitability for ASC and soundscape work. The good, but not

perfect, overall accuracy shows that the database provides a satisfactory variety

of recordings and has successfully overcome the potential issue of the ‘album effect’

[125, 145] described in Section 4.4.1. These results provide a good benchmark against

which the performance of the HOA features can be compared.

6.5.2 HOA

Figure 6.8 shows the mean and standard deviation classification accuracies across

all folds for different subsets of the HOA features. Comparing these results to those

from the FOA features shown in Figure 6.4, it can be seen that performance when

using the complete set of HOA features is somewhat reduced compared to the DirAC

features, down from 64% to 55%. Breaking this down into feature subsets, the az-

imuth performance has improved slightly from 43% up to 48%. This is, surprisingly,
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a slightly better overall performance than was achieved using the elevation features

in HOA, which have a markedly worse accuracy, at 47%, than their FOA counter-

parts at 59%. This is a reversal of the pattern seen using FOA direction-of-arrival

features. Given that the standard deviation of the azimuth accuracies is somewhat

larger than that of the elevation accuracies, this is not a conclusive indication of

HOA azimuth features outperforming elevation features.

Diffuseness profiles, on the other hand, give a performance increase of around

10% relative to DirAC diffuseness, with the low standard deviation also indicating

consistently good results across folds. This provides evidence that there is infor-

mation in the HOA channels that can be more discriminative than is available in

FOA, and supports the assertion in [195] that diffuseness profiles can disambiguate

between sound fields that could look very similar at lower orders.

The large reduction in accuracy when using the HOA direction-of-arrival features

relative to FOA is surprising. One reason for this might be that the SRP method

used to calculate the HOA azimuth and elevation estimates uses a quantised grid of

directions (as specified in Section 6.3.1), whereas the intensity-vector technique used

in DirAC means that the FOA estimates are not limited in this way. Also possible,

but perhaps less likely in light of the improved performance using diffuseness profiles,

is that the increased spatial resolution in the HOA data could be adversely affecting

the generalisability of the features between scenes of the same class. It is also

possible that since the azimuth and elevation estimates derived from the SRP maps

essentially assume a dominant point source in each frequency band, they do not

capture the complete character of these real-world sound fields particularly well.

The extremely narrow beams achieved by CroPaC would exacerbate all of these

issues.

Figure 6.9(a) shows the confusion matrix for the classifier trained on diffuseness

profile features. Perhaps the most striking aspect of these results is the drastic

improvement in the classification of Beach scenes relative to the FOA E/D classifier,

up from 8% to 80%. This is further evidence of the greatly increased discriminative
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(b) MFCC + Diff. Profile Features

Figure 6.9: Confusion matrices for GMM bank classifiers trained using HOA dif-

fuseness profile features, and those same features together with MFCCs. Figures

indicate classification percentages across all folds.

power of the diffuseness profile features, which disambiguate between Beach and

Street scenes using the additional information available in HOA.

Following the finding with the FOA results that the discriminative information

contained in spatial and spectral information could be complementary, it was decided

to train an additional GMM bank using a combination of the MFCC and diffuseness

profile features. This classifier achieved an average accuracy of 79%, and the result

is shown for comparison in Figure 6.8. This is the best accuracy achieved using

GMMs. Figure 6.9(b) shows the confusion matrix for this classifier. Relative to

the GMMs trained using diffuseness profiles only, there are improvements across

all classes apart from Beach, which is reduced to 59% accuracy. Whilst still an

improvement on the very poor FOA Beach classification, this result shows that

inclusion of MFCC features as well as the diffuseness features does not necessarily

result in improvements in performance in every case.

It should also be noted that the accuracies for the ShoppingCentre and TrainSta-

tion classes are slightly reduced relative to the FOA E/D classifier, both with and

without the inclusion of the MFCC features. Looking at the specific misclassifica-

tions in both matrices shown in Figure 6.9 it can be seen that a great many mirror

those observed when using the FOA E/D features (Figure 6.6(b)), indicating that
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the characterisation of the scenes remains fairly consistent across features despite

the different extraction methods used. These include the confusion of QuietStreet

with BusyStreet, Park and PedestrianZone, and the mutual confusion between Shop-

pingCentre and TrainStation. The TrainStation class is, however, misclassified as

PedestrianZone 19% of the time in HOA, whereas in FOA E/D this figure was only

4%. This suggests that the DirAC elevation information was key for the FOA clas-

sifier in disambiguating these two scenes. It might improve performance even more

to have included these alongside the HOA features.

6.5.3 CNN Classification

Subsequent to the work with GMM classifiers, the investigations described so far

in this chapter were repeated using a CNN [188]. The CNN architecture is tuned

as a set of hyperparameters including the number of layers ∈ {1, 2, 3, 4, 5}, the

number of filters per layer ∈ {16, 32, 64, 128, 256} and dropout [201] in all layers

∈ {0, 0.15, 0.3, 0.5}. It was found that the optimum number of filters for all features

was 64 per layer, with an optimal dropout of 15% for all layers. Most feature sets

required 5 convolutional layers for optimal results, whereas subset combinations us-

ing diffuseness features only required 3 layers. This in and of itself suggests that the

diffuseness features characterise the classes better than the other features, requiring

less manipulation from the convolutions to achieve good results. The CNNs are

trained for 500 epochs using the Adam optimisation algorithm [202], with training

set to stop early if performance does not improve for 50 epochs.

Figure 6.10 shows a comparison of the mean classification accuracies using GMM

and CNN classifiers using both FOA and HOA feature subsets. Note that the slight

discrepancies in the GMM accuracies shown here compared to those in Figures

6.4 and 6.5 are due to these results being derived from another training run of

the GMMs, which will have used different random initial values. It can clearly be

seen that the CNN outperforms the GMM for all feature subsets across both FOA

and HOA. This is hardly surprising given the relative complexity of the models
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Figure 6.10: Mean classification accuracies for GMM and CNN classifiers using

various subsets of FOA and HOA features.

and the proven record of CNN classifiers in DCASE ASC challenge tasks [203].

With the CNN, use of HOA channels increases accuracies in all subsets except

elevation. For the feature subsets giving the very best results, however, the difference

in performance is negligible, with the HOA elevation + diffuseness yielding only a

0.2% increase over their FOA counterparts and MFCC + diffuseness yielding an

extra 0.8%. This suggests that the CNNs are able to derive additional discriminative

information from the FOA features that the GMMs cannot.

In line with the GMM results, the very best accuracy is achieved using MFCC

+ diffuseness features. This gives extra weight to the observation that spectral

and spatial features are complementary. In fact, where the CNN outperforms the

GMM by a mean of approximately 14% across the other feature subsets, the CNN

accuracy using MFCC + diffuseness features, 82%, is only 3% higher than the 79%

accuracy achieved using the GMM. This suggests that this particular combination

of features captures the scene information particularly well and can be used for

effective classification without complex processing. Since a simpler 3-layer CNN

was used to produce these results, it seems unlikely that a more complex classifier

could improve on this performance to any great degree, perhaps suggesting that
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Figure 6.11: Confusion matrix for best-performing CNN classifier using MFCC +

diffuseness profile features, with GMM matrix for comparison.

these results represent a saturation point for these features from the EigenScape

database. It is possible, however, that if more data were available than better

results could be achieved. The best-performing ASC system in the 2019 DCASE

challenge used data augmentation to artificially create additional training data from

spectral features, achieving a classification accuracy of 86.7% [204]. It would perhaps

be an interesting next step to investigate incorporation of that technique with the

combination of spatial and spectral features presented here.

Figure 6.11 shows the confusion matrix for the top-performing CNN classifier,

with the GMM confusion matrix from Figure 6.9(b) repeated for easy comparison.

The specific patterns of confusion are again broadly similar. The GMM outperforms

the CNN considerably for the BusyStreet, Park, and QuietStreet classes and also

slightly for the PedestrianZone class. In fact, if the Beach accuracy is discounted, the

GMM would slightly outperform the CNN overall. Whereas the GMM bank trained

solely on diffuseness profiles was able to classsify Beach scenes with 80% accuracy

(see Figure 6.9(a)), adding the MFCC features causes a reduction to 59%. The fact

that the CNN accuracy is not affected in this way is an indication of the ability of

the CNN to disgard specific features that impede accuracy, where the GMM does

not.

Future work could involve a closer investigation into the Beach scene features
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to determine exactly which aspects of these features make them more difficult to

classify relative to the other scenes. It would also be beneficial to develop rigorous

statistical tests to confirm the significance of these results.

6.6 Summary

This chapter has detailed the process of investigating the potential of spatial features

for acoustic scene classification using recordings from the EigenScape database. This

had the dual purposes of ascertaining the viability of spatial features for characteris-

ing acoustic scenes, and validating the database in terms of providing a good variety

of recordings whilst avoiding the album effect. DirAC techniques for parameteris-

ing first-order Ambisonic recordings were described as an initial method of spatial

feature extraction. Following this, CroPaC SRP maps (including detail on spherical

sampling schemes) and COMEDIE diffuseness profiles were described as methods

for obtaining features utilising higher-order Ambisonics.

Results were first presented from a GMM classifier using FOA spatial features.

Accuracies using the combined elevation and diffuseness features improved on those

obtained using MFCCs. This provided the first evidence that spatial features are a

viable way to characterise and classify acoustic scenes. Training the same classifier

on HOA features yielded an improvement in performance when using diffuseness

profiles, though not the direction-of-arrival features. The best-performing GMM

classifier used a combination of the MFCCs and the diffuseness profiles. Results from

a CNN classifier improved on those from the GMM for all feature subsets, though

this was not always the case for individual class accuracies. The most pronounced

improvements were when using FOA features, suggesting that the convolutional

process is able to derive more information from these features than the GMM. Once

again the best performance was achieved using the MFCC and diffuseness features

combined, though in this case the CNN only outperformed the GMM by a small

amount. This suggests that this combination of features captures the properties
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of the scenes particularly well, and does not require sophisticated processing for

effective classification.

In practical terms, these results indicate that the incorporation of spatial fea-

tures together with spectral features has the potential to greatly enhance ASC

performance. A potential area of future investigation is whether features captur-

ing diffuseness properties can be derived from recordings made using equipment

more portable than the Eigenmike array, perhaps from binaural microphones or the

horizontal plane Ambisonic recordings achievable using affordable consumer-facing

recorders such as the Zoom H2N [205].

Relating this back to the wider goals of the soundscape approach, the results

presented here are the first confirmation that acoustic scenes can be categorised

according to their spatial properties as well as their spectral properties. This is

a crucial finding in building towards the understanding that is needed to produce

ecologically valid lab reproductions of acoustic environments. If the spatial and

spectral properties of a simulated scene could be shown to closely match those

extracted from real examples, this similarity could be used as an indication of a level

of validity. The results also indicate that building detailed statistical models of the

spatial distributions of sources in different acoustic scene classes is a valid approach

to take to provide parameters for acoustic environment simulation. In light of this,

the next chapter will explore a system for individual source tracking in Ambisonic

audio, building upon the SRP technique used for HOA direction-of-arrival estimates

in this chapter.
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• Investigation of trade-off between maximum spherical harmonic order and per-

formance, with results indicating second-order Ambisonics represents a good

point of compromise.
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7.1 Introduction

The work presented in the previous chapter showed that acoustic environments can

be characterised by their spatial properties, and that these features can be used

to accurately predict the class of acoustic environment in a recording. This was a

crucial milestone in the project and was the first published evidence that spatial

properties could be a fruitful area of investigation for acoustic environment analy-

sis. As the models of sound scenes created by an ASC system contain high-level

statistics regarding the spatial and spectral distributions of sounds in different envi-

ronments, such models could be useful as part of a system designed to ecologically

validate synthesised acoustic scenes, perhaps producing metrics on the similarity of

synthesised scenes to their real-world counterparts.

The features used in the previous chapter provide general information about

sounds in space at different frequency ranges, but there is no information on specific

sound sources. For many applications of this research, it will be very useful to have

a description of the soundscape, including semantic labels for sound sources, typical

directions of arrival, and trajectories of motion. Other applications of a system

providing this information include audio surveillance [206], tracking targets in the

military [207], and robotics [208].

The work in this chapter therefore builds upon the previous chapter by inves-

tigating how spatial audio techniques can be used to go beyond classification of

an entire scene and begin to detect and identify individual sound sources from the

mixture.

7.2 System Specification

As discussed in Section 4.4.2, the process of detecting the onsets and offsets of sound

sources in Ambisonic recordings, together with their Direction of Arrival (DOA)

and trajectory of movement is known as Sound Event Localisation and Detection
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(SELD). SELD is defined to include three stages [154]:

1. Identifying onset and offsets of active sound sources.

2. Direction-of-arrival estimation during each active frame.

3. Labelling the sound with descriptive text to identify the source.

The potential of combining localisation and detection into a single model is

that information on the spatial location of a sound could help disambiguate la-

belling, and vice versa. For instance, an ambiguous mechanical sound might be

more easily labelled ‘aeroplane’ given localisation at high elevation. Alternatively

an unambiguously-labelled aeroplane sound might assist localisation in the case of a

strong ground reflection that would otherwise confuse the system. A model trained

on this joint problem could theoretically learn these types of relationships. However,

as outlined in Section 4.4.2, models trained on this joint problem, such as [154], tend

not to perform quite so well as those designed for each problem separately, or, in the

case of localisation, as well as traditional signal processing approaches. More recent

work has indicated that performing ‘sequence matching’ on the outputs from sep-

arate SED and DOA predictors can yield increased performance relative to models

trained on the joint problem [209], and as such may be a better way to utilise the

DOA-label relationships outlined above.

The approach presented in this chapter performs the first two stages of SELD

using steered-response power beamforming combined with some relatively simple

ML models. Given this approach, adding labelling would necessitate the addition

of essentially an entirely separate classification model. It was therefore considered

that at this stage it would be more illuminating to focus solely on localisation and

tracking, perhaps with a view to the eventual inclusion of this method as part of a

complete SELD system using sequence matching.

Similar to the approach in the ASC work, the performance of the system using

different Ambisonic orders will be compared. Classical machine learning algorithms
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Figure 7.1: The stages of the sound event trajectory prediction system, with the

ground-truth reference. The peak array diagrams shows only predicted Azimuth

positions for clarity.

were again used in order to focus on the information in the data rather than the

power of the classifier. Figure 7.1 shows the four main stages of the proposed sound

event trajectory prediction system. The following sections will explore these in

detail.

7.2.1 Steered-Response Power Maps

The first stage is the creation of SRP maps calculated in the same way as described

in Section 6.3. Owing to the generally reduced ASC performance when using said

features, however, several changes were made. Given that one of the reasons for

the reduction in performance for ASC might have been the directional quantisation,
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the SRP maps for this system used 600-point Fibonacci spherical sampling for in-

creased resolution, rather than the 300-point scheme used previously. The work in

this chapter uses both PWD and CroPaC beams across all four available spherical

harmonic orders, rather than jumping from first order to fourth order as previously.

SRP maps were calculated according to equation 2.26 using frames of 256 samples

with no overlap. Note that, unlike in the ASC work, for this application the sum-

mation across k is retained so the SRP maps are representative of the full available

frequency spectrum. In the example shown in Figure 7.1, PWD beamforming has

been used to create SRP maps for a synthesised example file with at most two

overlapping sound sources.

7.2.2 Peak-Finding

The next step towards source identification within the SRP maps is peak-finding. In

the ASC work, this was achieved very simply by taking the highest-amplitude point

from the SRP map in each frequency band. This method is fine when the interest

is the general spatial and spectral distributions of sound sources, however it is not

suitable when the aim is tracking multiple simultaneously-occurring sound sources

which may have similar frequency content. It is not certain that a sound source that

is dominant at a certain frequency in one frame of audio will also be dominant in

subsequent frames. This could result in wildly erratic arrays of peaks, which would

negatively affect the subsequent clustering stage.

True peak-finding in a sampled spherical function represents a challenge in that

the wraparound of the sphere at the edges of the data (i.e. f(θ, 2π) = f(θ, 0))

must be accounted for, along with the fact that the sphere has not been sampled

using a regular grid. Peak-finding was therefore performed using the dipy library

[210], which was originally developed for the analysis of medical MRI data, also

sampled spherically. This library overcomes the aforementioned issues by requiring

the sampling directions as input data as well as the power map. Two parameters

determine the behaviour of dipy. The first is rel_pk, which is used to calculate a
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threshold below which peaks are discarded:

threshold = ∧+ rel_pk ·R

∧ = max
[
0,min

[
Z(θ, φ)

]]
R = max

[
Z(θ, φ)

]
−min

[
Z(θ, φ)

] (7.1)

with Z(θ, φ) again calculated according to Equation 2.26. The second parameter

is min_sep, the minimum angular distance allowed between peaks. If two or more

peaks are found within this distance of one another, only the largest is retained.

This helps to avoid groups of peaks being identified where a sound might be incom-

ing from a broad area, but will also cause peaks to be discarded where narrower

sources may pass close together, and as such represents a trade-off between these

two considerations.

There is no parameter included in the algorithm which specifies a maximum

number of peaks that may be returned, but in creating this system, memory was

allocated for a maximum of 20 peaks per frame. This could easily be extended if

required for a certain application, but in practise the limit was rarely approached.

The output of this stage is an array containing the angles of detected peaks along

with a time specified in seconds. The SRP map pictured in Figure 7.1(a) features

a single sound source with a black cross indicating the detected peak. The output

array of peaks is shown in Figure 7.1(b).

7.2.3 Clustering

The array of peaks is then processed in order to estimate which peaks belong to

the same sound sources. The DBSCAN algorithm (see Section 4.3.5) is used to

intelligently create clusters of peaks based on proximity in space and time. Onsets

and offsets for each sound source are predicted based on the timings of the earliest

and latest-occurring peaks that have been grouped into each cluster. DBSCAN was

chosen as it is formulated to create clusters of any arbitrary shape within noisy data,

with a provision for excluding noisy data points from belonging to any cluster. As
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indicated in Equation 7.1, the peak-finding algorithm uses a threshold that changes

relative to the range of power levels present in each frame of the data. Consequently,

for frames where there is no active sound source, many peaks will be found in the

background noise, a behaviour apparent in Figure 7.1(b) where the peaks found in

the background noise can be seen as vertical ‘stripes’. The effectiveness of DBSCAN

at excluding these peaks from consideration is seen in Figure 7.1(c), where those

peaks that have not been assigned to clusters are rendered in grey. Whilst DBSCAN

does not explicitly take into account temporal structures, there is precedent for its

use as an anomaly detector in time-series data [211, 212]. Its application here

essentially represents the opposite of this aim for each sound source cluster.

The wraparound of the spherical data once again presents an issue in that, should

a particular sound move across the wraparound point, there would be a discontinuity

in the spherical co-ordinates that would likely cause DBSCAN to place the peaks

before and after the crossing into different groups. To circumvent this, prior to

clustering, the spherical co-ordinate of each peak is mapped to a Cartesian co-

ordinate on the unit sphere, transforming the clustering space from 3D [ t θ φ ] to

4D [ t x y z ], a technique also used in [154]. The spatial dimensions of the data

were normalised to zero mean and unit variance, as is standard in machine learning.

The time dimension was not normalised, as this results in a collapse of the time

dimension which causes DBSCAN to cluster peaks occurring at similar spatial co-

ordinates but originally separated by large amounts of time. The result of DBSCAN

clustering is shown in Figure 7.1(c). The colour-coding indicates peaks that have

been judged by the algorithm to belong to the same cluster, with the greyed-out

peaks judged to be noise.

7.2.4 Regression

Each cluster that has been identified by DBSCAN is used to fit a set of SVRs,

which model trajectories based upon the available data. Individual two-dimensional

regressors are used for each spatial dimension, modelling x, y, and z separately
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against t. This was necessary as the scikit-learn SVR implementation used does not

support multi-variate regression [130]. The outputs of each of these regressors were

concatenated to give three-dimensional positions for each time step. This process has

the effect of both smoothing the data to reduce the ‘jitter’ that can occur as adjacent

sample points are instantaneously identified as the peak in neighbouring frames, and

to fill in missing points as the cluster may not include peaks for every frame. The

output from these regressors is calculated for each time step between the first and

last-occurring points in each cluster. Since the regressors are fitted to to normalised

data, their predictions must be re-scaled back to the original spatial ranges. Finally,

the Cartesian co-ordinates are converted back to spherical co-ordinates, and this is

the final output of the system. Figure 7.1(d) shows the final azimuth angles output

from the SVRs.

Fixed values for C and ε (see Section 4.3.4) of 1× 10−3 and 0.4, respectively were

used to fit the SVRs, with a value of 10 for the radial kernel’s γ parameter. These

values were determined by trial-and-error to return sufficiently smooth trajectory

predictions, reducing jitter whilst not completely flattening out source movement.

The setting of these values does, however, represent a key limitation in the use of

SVRs for this stage, as values that work well for one setting might not necessarily

be appropriate for all scenarios. Whilst in this study this did not present a problem

(see the description of the dataset in Section 7.3.1), in a complex sound scene, a

rate of movement representing noisy jitter in one type of source might reflect actual

movement in another. Thus, parameters ensuring accurate smoothing for one source

might obscure fine detail in another. Careful tuning of the C and ε parameters would

therefore be required for each scenario.
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7.3 Method

7.3.1 Dataset

This system was originally envisaged with the intention of further investigating

the recordings in the EigenScape database. Using real data presents a problem,

however, when the performance of the system is to be evaluated. In order to assess

performance, ground-truth data is required with which to compare the output of

the system. For real recordings such as those in EigenScape, the ground truth

would have to be created by manual labelling of the sound sources in the recording

with onset and offset times and direction-of-arrival angles. It has been shown that

for onset/offset labels, at least five separate annotators are required for an average

annotation approximating actual ground truth [213]. Whilst feasible, this work

would be very time consuming and as yet has not been undertaken for EigenScape.

Annotation of DOA angles presents a further challenge. Indeed it is not clear how

one would approach annotation of DOA in a real recording of a scene of normal

complexity.

For these reasons, the system was instead tested using an expanded version of

the TUT sound events 2018 Ambisonic dataset [214]. This is a set of synthesised

Ambisonic scenes, each of up to 30 seconds in length, with sounds placed at static

locations at intervals of 10° in the full range of azimuth angles, with elevation angles

limited to ±60°. Scenes are synthesised with three levels of polyphony, denoted OV1,

OV2 or OV3 for a maximum of one, two, or three simultaneous sounds, respectively.

Using synthesised data means that the onsets, offsets, and positions of the sound

sources are precisely known without requiring annotation. The clear disadvantage of

using this data is that it is not representative of real world scenes. On the other hand,

the precise quantisation of the synthetic data means that variables can be controlled

and so the performance of the system given varying numbers of overlapping sources

can be reliably assessed. Validating the effectiveness of any source tracking system
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using synthetic data is necessary before any conclusions can be drawn following the

application of the system to real recordings where ground truth DOA values are not

readily known.

The TUT dataset is available in both anechoic and reverberant versions. In this

work, the anechoic version was used as it was reasoned that it would be useful to

gather data on the performance of the proposed approach in idealised conditions

before adding confounding factors such as reverberation. In this way, any limita-

tions in performance can be considered to be inherent in the approach itself, rather

than a result of environmental conditions. Furthermore, the reverberant version of

the dataset was created using RIRs from only one small room [215], and this was

considered to be unrepresentative of either the open outdoor or large indoor spaces

typical of urban soundscapes and recorded in the EigenScape dataset.

Since the original version of the TUT dataset was synthesised in first-order Am-

bisonic format only, this work uses a new version re-synthesised to fourth-order

Ambisonics as a set of overlapping plane waves according to Equation 2.19. The

original variety of everyday sounds from the DCASE 2016 Task 2 dataset [168] are

used. The TUT dataset consists of 240 training clips and 60 testing clips for each

level of polyphony. The new approach proposed in this chapter does not require

training data, so only the test clips are re-synthesised and used for assessment.

All examples are resampled to 16 kHz, as would be necessary with real Eigenmike

recordings. It should be noted that for beamforming using this synthetic data, the

value of the bn(kr) term in Equation 2.23 is 1, as there is no microphone array

scattering in synthesised scenes.

7.3.2 Metrics

Performance was assessed using two frame-wise DOA metrics employed in judging

the SELD systems submitted to DCASE 2019 task 3 [216]. Firstly, DOA error,

which indicates the average error between predicted and actual DOA angles, defined

as [217]:
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DOA error =
1∑T

t=1 D
t
E

T∑
t=1

H(DOAt
R,DOAt

E) (7.2)

where DOAt
R and DOAt

E are lists of reference and estimate DOAs for frame t,

and Dt
E is number of estimates in DOAt

E. H denotes the Hungarian algorithm

[218], which is used to match predicted angles to reference angles by assessing and

optimising pairwise costs based on angular distance. A system which predicted the

DOAs of all identified sources exactly would have a DOA error of 0. This metric,

however, does not give any information regarding the identification of sound activity.

The second metric is therefore an indication of the proportion of frames where

the estimated number of active sounds matches the actual number of active sounds

described in the reference. This is named frame recall (FR), and is defined as:

FR =
1

T

T∑
t=1

1(Dt
R = Dt

E) (7.3)

where Dt
R is the number of estimates contained in DOAt

R (i.e. the ground truth

number of active sources present in frame t) and 1 is a binary indicator function

returning 1 if the condition is met, otherwise returning 0. A system which perfectly

predicted the number of sources in every frame would therefore have an FR of 1.

This metric could be considered too strict, as it does not make any distinction

between small or large errors in polyphony. If, for instance, a prediction was made

of two active sources when in fact there were three, this would be penalised to the

same degree as an estimate of one active source. On the other hand, this means

that a high FR score indicates very good performance indeed.

Good performance according to one of these metrics will not necessarily translate

to good performance according to the other. A system achieving 0° DOA error could

in fact be a system producing no output. A successful system should therefore aim

to maximise frame recall whilst minimising DOA error.
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7.3.3 Optimisation

The approach taken with this system is similar in essence to that proposed by

Bunting [147], in which the plastic self-organising map (PSOM) [219], a neural

network technique, is used to cluster peaks estimated using DirAC. As Bunting de-

scribes, “this grouping can be considered analogous to clustering input data accord-

ing to physical locations”. Whereas in the work presented in this chapter, peaks are

transferred from spherical to Cartesian co-ordinates, in Bunting’s work the PSOM al-

gorithm is instead reformulated to work in spherical co-ordinates. Bunting’s system

works conditional on ω-disjoint orthogonality, which stipulates that simultaneous

sound sources must not overlap in frequency and time in order to remain separately

identifiable by the clustering algorithm. Given that in the system presented here,

sound power is summed over the frequency domain, the requirement of ω-disjoint

orthogonality cannot be applied. Nevertheless, a similar condition that does apply

in this case is the fact that in order for two simultaneous sources to be separable by

this new approach, at any given point in time those sources must not pass within a

certain spatial distance of one another. This distance is in practise conditional on

the DBSCAN Eps and MinPts parameters interacting with the rel_pk and min_sep

parameters of the peak-finding algorithm, together with the resolution of the spher-

ical sampling.

The hyperopt library [220] was used to run 1000 iterations to find optimal values

for these four parameters. This was done using all 60 test files for each available

Ambisonic order and level of polyphony. Hyperopt employs the tree parzen estimator

(TPE) algorithm [221] to find optimal value combinations over time. This is a more

focussed optimisation process than a random search and allows greater fine-tuning

of performance for a given number of iterations. The algorithm was set to optimise

for Frame Recall. Following preliminary tests to find appropriate ranges, the search

space was set as follows:

• {Eps ∈ R | 0.1 ≤ Eps ≤ 1.25}
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• {MinPts ∈ Z | 3 ≤ MinPts ≤ 10}

• {rel_pk ∈ R | 0.0 ≤ rel_pk ≤ 1.0}

• {min_sep ∈ Z | 0 < min_sep < 90}

The effect of changing the grid resolution was not investigated, as it would have

taken a lot more time to calculate multiple SRP maps for every scene.

A key question to be answered by this investigation is how critical the setting

of the hyperparameters is to achieving optimal results. If wildly different values

are required for different levels of polyphony, this would be of limited utility in real

world scenarios, as in practise the level of polyphony in real environments is unlikely

to be known.

7.4 Results and Discussion

7.4.1 Overall Performance

Figure 7.2 shows the DOA Error and FR of the optimised iterations across all

Ambisonic orders and levels of polyphony, with previously-published results from

SELDnet [154] (discussed in Section 4.4.2) included for comparison. It can clearly

be seen that performance on the OV1 clips is excellent regardless of N or the

beampatterns used, with almost perfect FR and DOA errors in the range of 2.5 -

3°. This is unsurprising as single sources with absolutely no interference of any kind

should not be difficult to locate, even using beams with low spatial resolution. For

the OV2 clips there is a clear pattern of improving performance with increasing N

for both PWD and CroPaC iterations. CroPaC performance is slightly better than

PWD performance for all orders in terms of DOA error, but in terms of FR only

improves on PWD for N2, with slightly reduced FR relative to PWD in N3 and

N4. There is a much larger gap between the OV2/N1 and OV2/N2 PWD results

than between the higher orders. FR for OV2/N4 is 0.85 with a DOA error of 2.9°,
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Figure 7.2: DOA Error and Frame Recall scores for iterations optimising FR. Filled

markers indicate iterations using PWD beamforming and unfilled indicate CroPaC.

Results from the SELDnet system [154] are included for comparison.

whereas for OV2/N2 FR is 0.81 with a DOA error of 4.2°. These are remarkably

similar compared to the OV2/N1 FR of 0.75 and DOA error of 9.7°. This pattern

recurs more prominently in the OV3 results. The DOA error for OV3/N1 is 19.7°,

whilst increasing the order to N2 reduces the DOA error to 5.7°, an improvement

of 14°. The difference between N2 and N4 is only 2.5°. The increase in FR between

orders at OV3 is more linear, though still shows diminishing returns as N increases.

At OV3, use of CroPaC beams only improves on the PWD results for N2. CroPaC

performance for N3 and N4 is worse than PWD for both metrics. In general, when

these results are compared to results from SELDnet, DOA error is smaller with this

new approach except for OV3/N1. SELDnet generally outperforms the new system

in FR, except using PWD at N4.

Figure 7.3 shows the distribution of results returned by the 1000 iterations of

the system for each OV and N using various hyperparameter combinations. It

should be noted that due to hyperopt ’s use of the TPE algorithm, these are skewed

towards results using hyperparameters set near to optimal values. This is reflected

in the large number of visible outliers, though they are a small minority of the
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Figure 7.3: Box plots showing distributions of (a) DOA error and (b) Frame Recall

for both PWD and CroPaC-based iterations across all 1000 hyperopt iterations.
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Figure 7.4: Violin plots showing distributions of (a) DOA error and (b) Frame Recall

for both PWD and CroPaC-based iterations across all 1000 hyperopt iterations.
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1000 iterations. Figure 7.4 shows violin plots of this same data, demonstrating

that, despite the aforementioned skew, in most cases the distributions approximate

normality in the region around modal values. Based on this, it is reasoned that

the effect of the outlier data should be small enough that it remains meaningful to

discuss the median and interquartile range (IQR) values displayed on the boxplots

in Figure 7.3. The mean values are excluded from this discussion, however, as these

will be more affected by the skew.

Looking first at the PWD results in Figure 7.3, it can clearly be seen that in-

creasing the Ambisonic order causes a marked decrease in the median and IQR of

the DOA error for OV2, with even larger differences at OV3. Similar to the pat-

terns indicated in Figure 7.2, the effect is most pronounced between N1 and N2,

with smaller gains at higher orders. This general pattern of improvement at higher

orders is also visible in the FR results, though again it is not so marked as for DOA

error. FR declines consistently given increasing polyphony. The IQR for PWD at

OV1 decreases between N1 and N2, but is consistent at all orders for OV2. It in-

creases between N1 and N2 for OV3, remaining consistent with N2 for all higher

orders.

Comparing PWD with CroPaC, it can clearly be seen that, in general, CroPaC

results have an improved median score and lower IQR for both metrics. This indi-

cates that for an iteration using some combination of hyperparameters within the

ranges specified in Section 7.3.3, one can typically expect better results from an

iteration using CroPaC beams than one using PWD. This is reflected in the violin

plots shown in Figure 7.4, in which it can clearly be seen that the distribution peaks

are generally narrower for CroPaC than PWD. However, as indicated in Figure 7.2

and the top whiskers in Figure 7.3(b), the very best performances attained using

PWD exceed those achieved using CroPaC.

In terms of both best and median scores, results indicate that there is a larger

performance gap between iterations using first and second-order Ambisonics than

those using higher orders. For DOA error, there is also a large reduction in the
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IQR between first and second-order, which again is not so pronounced for higher

orders. Increasing N incurs various penalties in terms of cost. The higher the order

used, the greater the amount of storage required for the recorded data, and the

more computationally complex the beamforming stage becomes. For instance, the

filesize of a ten-minute clip from the EigenScape database in fourth-order is 2.16

GB, whereas for the first-order version this is 345.6 MB. The number of microphone

capsules required for adequate sampling of real-world spatial audio also increases.

For these reasons, there is a clear incentive to keep the value of N as low as possible

for systems to be deployed at scale. The large increase in performance between N1

and N2 indicates that using second-order audio may be worth the increased cost,

with the limited performance gains at higher order suggesting that second-order

represents a good point of compromise for this application. Use of second-order

Ambisonics also enables the calculation of CroPaC beams.

The fact that FR seems to decrease linearly with increasing polyphony is in-

teresting, especially in light of the fact that the test audio was anechoic. Coupled

with the diminishing returns in terms of performance improvements with increasing

Ambisonic order, which indicate an asymptotic trend towards a maximum perfor-

mance level which is less than perfect, these results could show the existence of an

upper limit imposed either by the dataset or more fundamentally with this type of

approach. The close alignment of the best FR results achieved here with the results

from SELDnet provide additional weight to this observation. Further improvements

to FR might require an alternative method for producing the power map than the

SRP method used here or the spatial pseudo-spectra generated by the neural net-

works in [154, 156].

The lowest DOA errors achieved at each OV for the optimised iterations shown

in Figure 7.2 are all very similar, lying between 2.5 and 3°, an observation that

is mirrored in the lowest median values shown in Figure 7.3, which are near these

values. This corresponds closely with the average angular distance between pairs

of points in the 600-point Fibonacci spiral, which is 2.72°, and may indicate that
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the system could achieve even lower DOA errors if a finer grid pattern was used.

On the other hand, the fact that results up to fourth-order continue to improve

provides some evidence that, in fact, the sampling scheme used is capturing increased

detail from fourth-order Ambisonics, so is in some sense out-resolving third-order

Ambisonic signals at least. It would be interesting in a future study to test using

sampling schemes of varying resolution to find the minimum required density to

achieve maximal results at each order, thus minimising the required computing

power.

Looking closely at Figure 7.3(a), it can be seen that there are several outlier

iterations achieving very low DOA error values, especially using PWD beams. For

instance, the lowest DOA error achieved by a PWD iteration for OV2/N4 was 0.26°.

The FR of this iteration was, however, at 0.14, very low. This pattern of very low

DOA error at the expense of FR was observed across all of the low-end outlier

PWD-based iterations. Upon closer investigation, it was found that these iterations

used low values for the rel_pk parameter discussed in Section 7.2.2. Using very low

values for rel_pk likely results in clusters of peaks being identified in the general

directions of active sound sources, as opposed to the single peaks returned when the

parameter is set more appropriately. The subsequent regression stage may be able

to take advantage of these clusters, interpolating to find a truer DOA for the source

lying in the central region of these peaks. Unfortunately, using low values for these

hyperparameters also results in an increase in spurious peak identification, which

causes the reduction in FR.

7.4.2 Parameter Tuning

Figure 7.5 shows scatter charts of performance metrics for PWD iterations, varying

with rel_pk values for all N and OV. The spread of results at each value of rel_pk

is caused by variations in the other variables, nevertheless, there are some clearly

visible trends. DOA error for lower rel_pk values (Figure 7.5(a)) tends to be more

variable, with some iterations having very low DOA error. As rel_pk is increased,

174



7.4. RESULTS AND DISCUSSION

0.0 0.5 1.0
0

20

40 OV1 / N1

0.0 0.5 1.0
0

20

40 OV1 / N2

0.0 0.5 1.0
0

20

40 OV1 / N3

0.0 0.5 1.0
0

20

40 OV1 / N4

0.0 0.5 1.0
0

20

40 OV2 / N1

0.0 0.5 1.0
0

20

40 OV2 / N2

0.0 0.5 1.0
0

20

40 OV2 / N3

0.0 0.5 1.0
0

20

40 OV2 / N4

0.0 0.5 1.0
0

20

40 OV3 / N1

0.0 0.5 1.0
0

20

40 OV3 / N2

0.0 0.5 1.0
0

20

40 OV3 / N3

0.0 0.5 1.0
0

20

40 OV3 / N4

rel_pk

D
O

A 
E

rr
or

 [d
eg

re
es

]

(a) DOA error values for all PWD instances, varying with rel_pk.
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(b) Frame Recall for all PWD instances, varying with rel_pk.

Figure 7.5: Performance metrics for instances using PWD beams, varying with the

rel_pk parameter of the peak-finding stage.
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the spread reduces and error tends to level out to around the 3° value observed in

the best iterations. This pattern is most visible when N and OV are both 2 or

above, whereas for OV1 the low values tend to give more uniformly low DOA error

at all orders without the increased spread of results, and for OV2/N1 and OV3/N1

the spread remains relatively high throughout the range of values.

The FR results shown in Figure 7.5(b) are similar in that when N and OV are

both 2 or above, results follow a consistent pattern, all showing a distinct ‘knee’

where maximum performances are achieved at rel_pk values of around 0.1, with

a shallow decline as the value increases beyond this point. These charts also have

implications for the question of the criticality of hyperparameter settings given dif-

ferent levels of polyphony. It is evident from Figure 7.5 that a reasonable setting for

rel_pk is a value between 0.1 and 0.2. This value appears to be somewhat consistent

where OV and N are 2 or greater. Since real acoustic scenes are almost guaranteed

to have some polyphony it seems prudent to consider these somewhat more repre-

sentative of real scenes than OV1. These findings add weight to the conclusion that

second-order Ambisonics represents a good compromise in spatial resolution.

Investigating how performance metrics are affected by Eps again reveals definite

trends. Figure 7.6 shows performance metrics for instances using PWD, varying

with Eps. It can again be seen that trends are fairly similar for N ≥ 2 iterations

with OV2 or OV3. Figure 7.6(b) shown arched patterns in FR values, with a peak at

Eps values between approximately 0.3 and 0.5. These maxima correspond, however,

to points of largest spread of results, with some very poor FR scores forming an

opposite minima. It is likely these results are from iterations using the low rel_pk

values explored previously, as upon comparison with Figure 7.6(a) it seems that

these regions tend to coincide with some iterations with very low DOA error. Apart

from this, the DOA error tends to increase slightly with increasing Eps above a

value of around 0.5.

Appendix B.1 contains scatter charts similarly relating the other two variables,

MinPts and min_sep, to the performance metrics for PWD instances. Studying
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(a) DOA error values for all PWD instances, varying with Eps.
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(b) Frame Recall for all PWD instances, varying with Eps.

Figure 7.6: Performance metrics for instances using PWD beams, varying with the

Eps parameter of the clustering stage.
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Figures B.1 and B.2 it is clear that changing the values of these variables has very

little influence on the results. FR and DOA error values and variability remain

consistent across the ranges of both variables, apart from perhaps a slight down-

ward trend in FR with the larger values of min_sep. Since FR and DOA error

are frame-wise metrics, it is perhaps not surprising that these are not affected by

MinPts as they do not take into account information from beyond their immediate

frame of reference. Lower values of MinPts increase the likelihood of the algorithm

returning a series of small clusters rather than one large cluster representing a com-

plete sound source from beginning to end. These metrics will not penalise this, as

for an individual frame it makes no difference whether an identified point has been

assigned to a group with reasonable onset/offset times or not. Using an alternative

event-wise metric might provide further insight. In the present study no such metric

was used, so it is difficult from these results to come to any conclusions with regards

to optimal values for these variables.

Appendix B.2 contains scatter charts with the performance metrics varying with

all parameters for the instances using CroPaC. It is apparent when comparing Fig-

ures B.3 and B.4 with Figures 7.5 and 7.6 that the trends visible when varying Eps

and rel_pk are essentially the same as for the PWD system, though are grouped

somewhat more closely, reflecting the lower IQRs observed using CroPaC. Based on

these results and those discussed previously, use of CroPaC in systems deployed in

the field can be recommended if the requisite computing power is available. Lower

IQR indicates a higher degree of consistency in results with less dependence on

hyperparameter tuning, which are both desirable features.

7.4.3 Eps and Physical Distance

In this approach, Eps values represent a distance in the four-dimensional space in

which the spatial Cartesian co-ordinates have been normalised to zero mean and

unit variance. Since the time dimension was not normalised and is represented as a

value in seconds, the distance between two adjacent time steps is 0.016s. This is an
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order of magnitude lower than the peak Eps values, so it can be inferred that for

temporally nearby frames the spatial distance dominates. Reversing the normali-

sation process, it can be calculated that Eps values between 0.3 and 0.5 represent,

in adjacent frames, physical angular distances between 6.4° and 10.1°. This cor-

responds very closely with the minimum angular separation of 10° specified in the

dataset used. It is therefore unsurprising that values above 0.5 result in gradual

performance reductions, as these will allow clusters to be formed consisting of two

or more separate sound sources, in turn causing the regression stage to incorrectly

interpolate between peaks belonging to multiple sources.

Considering further the relationship between Eps and the time dimension, it is

clear that the contribution of time to the distance between peak points is exactly

equal to the time difference measured in seconds. Over larger amounts of time than a

few frames, the time distance begins to dominate the calculation. This has the effect

of reducing the maximum angular distance within which points will be included in

a cluster. With an Eps value of 0.5, for instance, spatial points up to around 10°

apart in adjacent time frames will be grouped. As the time distance increases this

angle will reduce until, at a temporal distance of 0.5s, only points with exactly the

same spatial co-ordinates will be grouped. Beyond this time separation, even peak

values at the same spatial locations will be assigned to different clusters.

As previously mentioned in Section 7.2.3, normalising the time dimension re-

sulted in large reductions in performance as peaks at similar spatial locations were

grouped despite being separated by large amounts of time. In fact, normalising the

time dimensions results in a reduction of temporal step size by an order of mag-

nitude. Hence, in this case the contribution of the time dimension to the distance

between points remains small even over large periods of time, which results in the

aforementioned erroneous clustering. These considerations raise the possibility that

the degree of expansion or contraction of the time dimension could be a useful pa-

rameter in this approach to be tuned further depending on the application context,

and in particular the expected temporal intervals between source activities.
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7.5 Summary

This chapter has proposed and investigated a new approach to source localisation

and tracking using spherical harmonic beamforming, DBSCAN clustering and sup-

port vector regression to identify sound sources in Ambisonic recordings. Instances

using both PWD and CroPaC beamforming were tested using audio synthesised up

to fourth-order Ambisonics and featuring three levels of polyphony. The hyperopt

library was used to test 1000 iterations for each beampattern, Ambisonic order,

and level of polyphony, in order to find optimal values for various hyperparameters.

It was shown that for PWD instances, use of second-order Ambisonics improved

performance significantly over first-order. Using higher-order channels improved

performance over that of second-order, but to a much smaller degree, leading to the

conclusion that second-order Ambisonics might represent a good point of compro-

mise between performance, in terms of localisation accuracy, required computing

power, and the cost of hardware. Given this result, it could be interesting for a fu-

ture project to return to the spatial ASC work of Chapter 6 to see whether a similar

pattern is evident in ASC accuracies, as that work only compares results from first

and fourth-order Ambisonics, without considering the intermediate orders.

It was found that whilst the very best-performing PWD instances tended to give

better results than equivalent CroPaC instances, the median performance using

CroPaC was better and IQR consistently lower than using PWD. Since a lower IQR

indicates a degree of robustness to the variation of hyperparameters, it would be

a good idea to use CroPaC beamforming in real-world systems, computing power

permitting.

Results also showed that, for the most part, where variations in parameter values

were shown to affect significant trends in the performance metrics, optimal values

were relatively consistent for iterations using second-order Ambisonics and above

for two or three simultaneous sound sources. These settings could therefore be

recommended as good starting points should a system such as this be deployed in
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the field. The clear next stage of development would be the incorporation of a source

labelling stage, which would make this a fully-fledged SELD system.

Whilst this chapter built on the findings of Chapter 6 by construction of a system

for analysing acoustic scenes in greater detail, the next chapter will build upon the

EigenScape dataset in a different way by building it into an application designed for

real-time monitoring in the field, incorporating ideas from both soundecology and

augmented reality audio which were explored in Chapter 3.
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8.1 Introduction

In the previous two chapters, different approaches have been proposed and tested

for the characterisation of Ambisonic recordings of acoustic scenes, first in terms

of classifying the whole scene and then tracking of individual sources. Whilst both

of these studies yielded interesting results, neither were systems that are practical

for deployment in the field at present. The work in this chapter takes another

approach, creating an iPhone application that utilises the EigenScape data and

builds on the acoustic scene classification work from Chapter 6. The app conducts

real-time monitoring of acoustic environments in the field, incorporating ideas from

the soundscape approach that have informed much of the work in this thesis.

The primary goal was the assessment of whether an intuitive measurement sys-

tem could be created for environmental sound monitoring on a mobile device, using

machine learning to produce meaningful readings beyond LAeq. A secondary objec-

tive was the exploration of whether augmented reality (AR) technology could be

used in conjunction with ML to assess interventions to real environments that could

alter their soundscapes. The app was therefore developed according to two criteria:

1. Provide an intuitive interface for the measurement of acoustic environment

properties inspired by the soundscape approach.

2. Use AR technology to allow users to test the effects of environmental alter-

ations on said soundscape measurements.

To this end, an app was created allowing users to place and move virtual ob-

jects with both visual and auditory components. The resultant augmented acoustic

scene can be heard by the user and is also passed to a machine learning compo-

nent for analysis. This was made possible by using the Sennheiser AMBEO smart

headset (ASH) [95], shown in Figure 8.1. As outlined in Section 3.5.3, the ASH

combines high-quality binaural mcirophones and earbuds into one headset to enable
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Figure 8.1: The Sennheiser AMBEO Smart Headset

augmented audio. The rest of this chapter details the construction of the app, named

Soundscape AR, followed by its testing at several locations in York city centre.

8.2 App Development

8.2.1 Core ML Model Creation

To keep the app development practical, it was decided to focus on classifying acoustic

scenes according to the high-level perceptually-motivated sound categories detailed

in Section 3.4.3, namely human, natural and mechanical sound. The ML model

employed in the app is created along the lines of ASC as explored in Chapter 6

rather than SELD, as in Chapter 7. Although the usual aim of an ASC system

is to assign class labels to incoming audio clips, the scene classifiers used here are

repurposed to provide estimates for the prevalence of sounds from each perceptual

category.

The Core ML library [222] is used to incorporate a model into the app to analyse

the audio incoming from the ASH. Models are again trained using the EigenScape

data for all eight available scene classes in a manner similar to that described in
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Figure 8.2: Confusion matrix for SVC-MFCC classifier (aubio-extracted MFCCs).

Chapter 6, but with several important differences owing to compatibility with the

mobile hardware and software. Whilst the previous work in this thesis makes ex-

tensive use of Ambisonics, only binaural audio was available from the ASH, so the

model was created using MFCC features. MFCCs in the baseline system used in

Chapter 6 were extracted using the librosa library, but since librosa will not run

in real-time on iOS (the operating system used on Apple iPhone devices [223]) this

was substituted for the aubio library [224]. The GMMs used in Chapter 6 are in-

compatible with CoreML, so were substituted for SVCs. Since in this work the

real-time on-location sound is effectively the test audio, the SVCs are trained using

all the available EigenScape data, rather than partitioned folds as previously. Given

that Ambisonic audio was not available from the ASH, it would have been possible

to augment the EigenScape data with additional recordings from other databases,

most notably the extensive binaural recordings available in the TUT datasets used

in DCASE [161, 162, 163, 164]. These binaural recordings were not included so the

results presented here could be more easily related to those in Chapter 6.

Figure 8.2 shows the confusion matrix for the SVC classifiers. Whilst BusyStreet

and Woodland scenes are classified well, accuracy across all scenes is substantially
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lower than that achieved by the GMM-MFCC baseline classifier in Chapter 6. Al-

though better accuracy would be desirable, since precise scene classifications are

not the primary concern for this model, this did not present a significant problem.

Based on these results, the BusyStreet classifier was repurposed to rate sounds for

mechanical content, with the Woodland classifier chosen for natural ratings. It is

assumed that these scenes will largely consist of sounds from the perceptual cate-

gories their classifiers have been chosen to represent, an assertion which is reinforced

by the results of listening tests reported in [80].

Perhaps the most obvious scene model for human sound would be Pedestri-

anZone. PedestrianZone scenes, however, were largely misclassified, with 60% of

Beach clips labelled as PedestrianZone despite these recordings being typically ab-

sent of human sound. Another scene class with a large human sound component is

ShoppingCentre, which is identified 50% correctly. Since the majority of clips misla-

belled as ShoppingCentre are TrainStation and PedestrianZone scenes, which both

have relatively prominent human sound, it was decided to use the ShoppingCentre

classifier for human sound ratings. As with the GMMs in Chapter 6, each of these

SVCs outputs a value indicating the estimated probability that incoming features

from each frame of audio come from a scene of the same class they were trained on.

It might have been a valid approach to combine the recordings from several scenes

assumed to consist of mainly a single perceptual category, for instance adding the

TrainStation data to the BusyStreet data with a new label of ‘mechanical’. It was

felt, however, that this would rely on too many assumptions that would ideally need

to be investigated in listening tests to validate the method, and that the single-class

approach taken here was sufficient for this initial study.

For the ASC system in Chapter 6, the GMM returning the highest cumulative

probability for all frames across a 30-second clip is used to generate a label for

that clip. In this application, Platt scaling [225] is used to generate probability

estimates from SVC decision values, a function provided by scikit-learn [226]. These

probabilities are used as ratings for each perceptual category and are presented to

187



8. MACHINE LEARNING FOR SOUNDSCAPES IN PRACTISE

the user. In other words, estimates for human, natural, and mechanical components

are obtained by measuring the similarity of audio in the user’s environment to the

ShoppingCentre, Woodland, and BusyStreet recordings, respectively.

8.2.2 User Interface

Figure 8.3 shows the main views of the app. The main view (Figure 8.3(a)) shows

the device’s live camera feed and any active virtual objects in view. The app features

three sub-windows which perform various functions that can be accessed using three

small buttons in the lower right of the interface. The first of these is the AR status

window. Before ARKit is able to properly track the environment, which is necessary

to ensure consistent placement of virtual objects, detection of the floor or other flat

horizontal surface is required. The AR status window indicates the detection of this

plane by way of a text indicator turning green. Once this occurs, the window is

redundant and when it is closed the user can proceed to place virtual objects.

Figure 8.3(b) shows the AR objects window. Four virtual objects are available

for placement, a bird, car, water fountain, and acoustic barrier. 3D visual models for

each object were taken from the open source repository free3d.com [227], with sounds

taken from freesound.org [228] (see Figure 8.4 for spectrograms). The AR objects

window represents these as icons in red or green depending on whether each object

is active. By tapping on the icons, objects are activated and placed in the scene at

a location on the floor plane which the user can specify by aiming crosshairs that

are also visible in this view. Placed objects can be tapped and dragged to change

their position, and can optionally be moved to hover above the floor plane, a feature

useful for realistic positioning of the bird object, as shown in Figure 8.3(b). Tapping

on the icon for an active object removes the object from the scene, and the icon will

turn red to indicate this.

The key view for environmental sound monitoring is the audio analysis window,

shown in Figure 8.3(c). This window features three indicators showing probabilities

from the machine listening system. The Core ML object outputs probabilities for
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(a) Main app view showing virtual fountain, barrier

and bird objects, with interface buttons on lower right.

(b) Object selection window showing target crosshairs

and active bird object.

(c) Audio analysis window showing one-minute aver-

aging in progress.

Figure 8.3: Various views of the Soundscape AR interface.
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(a) Bird object.
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(b) Fountain object.

2 4 6 8
Time [s]

0

2000

4000

6000

8000

10000

12000

100

80

60

40

20

0
In

te
ns

ity
 [d

B
]

(c) Car object.

Figure 8.4: Spectrograms showing ten-second segments of the sounds associated

with the virtual bird, fountain, and car objects.
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every frame of audio, but such instantaneous values can fluctuate rapidly and are

very difficult to interpret. These values are therefore smoothed for display using

a one-second rolling mean, and this is the default shown to the user. A second

mode available in this window is a one-minute mean recording mode, which saves

one minute of framewise ratings with the display held at the end to show the mean

value for this period of time. Both of these modes are designed to be similar to those

used in SPL meters to survey LAeq, as it is felt that some familiarity with existing

approaches might be beneficial if alternative metrics such as these are to find more

widespread adoption.

8.2.3 AR Audio Sources

To synchronise AR audio with visuals, custom objects were created in Apple SceneKit

[229] to couple 3D graphics with audio sources spatialised binaurally using HRTFs.

Default SceneKit objects feature a built-in audio player with “3D audio” [230], which

tracks the device rotation to pan an object’s audio appropriately. In testing, how-

ever, it was found that this used standard stereo panning only. Apple’s iOS audio

framework [96], on the other hand, contains an object called the AVAudioEnviron-

ment node, which includes the option of using high-quality HRTF rendering. The

custom object created for this app therefore adds an extra audio player to the stan-

dard SceneKit object. With the ‘position’ of the audio player set to equal the visual

position of the node, the output audio is spatialised appropriately. Audio amplitude

is attenuated based on distance according to the inverse square law. The AVAu-

dioEnvironment default is to begin the amplitude rolloff only at distances greater

than one metre. This was altered so rolloff is continuous across the whole distance

range.
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8.2.4 AR Acoustic Barrier

As well as AR audio sources that add sounds to a real scene, a virtual acoustic

barrier object was created to simulate the effect of adding a barrier to the scene.

The object attempts to selectively filter the real-world sound picked up by the ASH

before this is relayed to the listener as part of the complete augmented audio mix.

Given the limitation of binaural microphones relative to the flexibility offered by

HOA recording and the limited processing power available on a smartphone, this

was achieved somewhat crudely using dual low-pass filters (LPFs) from the standard

bank of effects included in AudioKit. The output from these is blended with the

dry ASH signals and panned with respect to the angle between the listener and

the virtual barrier object. As sound impacting a barrier is diffracted around it, the

level of attenuation is contingent on the path length difference between the direct

sound and the route over the barrier. Whilst the distance between the smartphone

and the virtual object is precisely known, there is presently no practical way to

measure the distance between the barrier object and the various real-world sound

sources, or even to tell whether these sources originate from in front or behind

the virtual barrier. The cutoff of the two-channel LPF, representing the amount

of high-frequency attenuation incurred by the barrier, is therefore calculated based

only on the device-barrier distance. If this distance is 0, the cutoff is set at 20 Hz,

effectively blocking all sound in the direction of the barrier. The cutoff is gradually

increased logarithmically with distance, set to reach 20 kHz at 10 metres, effectively

neutralising the effect and approximating the negligible impact of real sound barriers

when the path length difference is very small. The complete effect of this is to give a

reasonable impression of the attenuation of high-frequency sound in the direction of

the virtual barrier as the user moves through the scene and re-orientates the device.
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L R
ASH Input

Barrier (LPF) Car Bird Fountain

Main Mixer

L R
ASH Output

aubio (feature extraction)

CoreML

Human Natural Mechanical

Figure 8.5: Diagram showing the complete audio flow in Soundscape AR from real-

time ASH input, via AR audio objects, to binaural ASH output. Dotted lines

indicate numeric (non-audio) data.
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8.2.5 Audio Flow

The structure of the app’s audio engine is shown in Figure 8.5. The main mixer

combines audio from any active virtual sources with the binaural audio feed from

the ASH. If the barrier object is active, the live audio is filtered through the dual

LPF before reaching the mixer. The mix is then passed to the ASH earpieces with

minimal latency between input and output. The MFCC features are extracted by

aubio from a tap on the main mixer output. In this way, the features reflect the

complete audio mix including virtual sounds, real sounds, and barrier filtering. The

Core ML object receives the MFCCs and returns probabilities for the presence of

human, natural, and mechanical audio content in near real-time. By disabling all

virtual objects the user can monitor only the real sound scene. The scene can

subsequently be re-analysed with added virtual objects to observe the effect on the

ratings that the added objects may have.

8.3 Testing

8.3.1 Methodology

The app was tested with two objectives in mind:

1. Assess the effectiveness of the Core ML model in returning meaningful and

representative sound metrics.

2. Determine the effect of each virtual object on said metrics (or lack thereof).

The app was loaded onto an Apple iPhone 7 and taken to six locations around the

city of York as shown in Figure 8.6. These were chosen to represent a good variety

of typical urban acoustic environments, including busy streets (Bishopthorpe Road,

Exhibition Square), pedestrianised areas (Shambles Market), green space (Rowntree

Park) and locations that combined these features (York Piccadilly, Tower Gardens).
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Test Locations for SoundscapAR

Locations

Exhibition Square

Shambles Market

Piccadilly

Tower Gardens

Bishopthorpe Road

Rowntree Park

Figure 8.6: Map showing the locations in the city of York where the app was tested.

The one-minute audio analysis feature was used to record ratings at each location,

firstly as a clean reading with no objects added, then with the activation of various

virtual objects as follows:

• Barrier

• Bird

• Car

• Fountain

• Barrier/Bird/Fountain

All of these virtual objects were placed a distance between 2 and 4 metres in front of

the listener location. In the final multi-object condition, the barrier and the fountain

were placed to the left and right of the listening position, respectively, with the bird

placed roughly 3 metres above the listener.

195



8. MACHINE LEARNING FOR SOUNDSCAPES IN PRACTISE

8.3.2 NDSI/Pleasantness Rating

Section 3.4.2 introduced the normalised difference soundscape index (NDSI), which

provides a single number showing the relative contributions of biophonic and an-

throphonic sound. Since the current frequency band power method for estimating

the contributions of each sound category has been shown to be unreliable in urban

environments [50], it was noted that a more reliable method for calculation of this

metric would be a desirable research aim. Therefore, as well as analysing the raw

ratings returned by the app for each sound category, the natural and mechanical

ratings were used to calculate NDSI according to Equation 3.2, as substitutes for

β and α, respectively, as it was reasoned that these most closely aligned with their

original definitions as the biophony and anthrophony estimates. As noted in Section

3.4, however, the natural and mechanical categories are perceptually motivated and

do not exactly align with biophony and anthrophony, so this new version of the NDSI

could be considered in perceptual terms to provide ratings indicating a soundscape’s

pleasantness (i.e. its position along the horizontal axis in Figure 3.3).

8.4 Results and Discussion

8.4.1 Core ML Model Performance

The NDSI/pleasantness values calculated for each location are shown in Figure 8.7.

These box plots represent the spread of values returned for all the test conditions,

with and without virtual objects active. Rowntree Park has the highest pleasantness

score, followed by Shambles Market and Tower Gardens. The single outlier value

shown for each of these locations is the measurement recorded with the virtual car

object active. These values show the effectiveness of the classifier, as the park and

market are the locations with the lowest proportion of mechanical sounds, although

there was some low-level machinery evident in the background at the market. Tower

Gardens is very near the River Ouse, but also borders two of York’s main roads, and
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Figure 8.7: NDSI/pleasantness values for each recording location.

as such contains a mix of natural and mechanical sounds. Its lower value relative

to the park and market locations reflects this. The lowest values returned were for

Bishopthorpe Road and Exhibition Square, which are both locations with heavy

traffic. York Piccadilly has somewhat lighter traffic than these locations, and this

is reflected in its slightly higher pleasantness rating.

These results go some way to confirming the effectiveness of the Core ML model,

though there seems to be a bias towards the upper end of the scale, with locations

where mechanical sound dominates rated more towards the middle than might be

expected. Exploring the individual probability readings (included in Appendix C)

in detail reveals that the mean mechanical score overall was 8.93, whereas the mean

natural rating was 12.87. Given the mixture of locations chosen, one would expect

these to be more similar, which suggests the Core ML model output requires some

calibration.

Figure 8.8 shows the three one-minute average human/natural/mechanical rat-

ings given by the Core ML model for each tested location, with no virtual objects
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Figure 8.8: Radar plots showing the ratings (percentage probability) returned for

each location with no active virtual objects.
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added, as a radar plot. Though smaller than the variations in natural or mechanical

ratings, there are visible variations in the human ratings which show that it does

give additional information beyond the two poles of the NDSI/pleasantness met-

ric. For instance, Exhibition Square (Figure 8.8(b)) has a very similar rating for

human sound to Shambles Market (Figure 8.8(d)), whereas their other ratings are

very different. The variance in human ratings is markedly smaller, at 6.99, than

that of mechanical ratings (15.35) or natural ratings (24.79). It is not clear whether

this reflects a real phenomenon whereby the variation in levels of human sound are

actually small at the locations tested, or whether this is a flaw in the classifier that

requires alternative training. It should be noted that the classifier used to provide

human ratings represented more of a compromise than those used for natural or

mechanical sounds, as detailed in Section 8.2.1.

These results show that generating NDSI/pleasantness values using ML-based

estimates for the relative contributions of natural and mechanical sounds can pro-

duce plausible results. Although in need of calibration, the trend of figures produced

by the model matches the characteristics of the locations. This suggests that a ML

approach to the problem of calculating meaningful soundscape indices could be ef-

fective and this app shows this can be incorporated into a handheld device that is

as simple to use as an SPL meter. It should be noted that results in this regard will

likely be somewhat contingent on the hardware/software platform used, as reflected

in the study of SPL metering apps presented in [231].

These results also show that the BusyStreet and Woodland classifiers trained

on EigenScape data are generalisable to audio not contained within the EigenScape

dataset. The classifiers in this study are working with audio recorded using the ASH

microphones rather than an Eigenmike, a mismatched input condition.

8.4.2 Effect of Virtual Objects

The distributions of the three sound category ratings for all locations under each

virtual object activation condition are shown in Figure 8.9. A D’Agostino’s K2 test
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Figure 8.9: Distributions of ratings (percentage probability) across all locations for

each virtual object condition.
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[232] indicates normal distributions for all three sets of ratings.

It can be seen from Figure 8.9(a) that the median human ratings are all around

15% and the addition of any virtual objects has very little effect. Repeated measures

analysis of variance (ANOVA) [233] confirms no significant effect of adding any

object F (4, 20) = 1.49, p = 0.24. Figure 8.9(b) shows that the natural ratings

are more spread than the human ratings generally, with the addition of the car

object resulting in a reduction both in IQR and of median rating. Adding the

fountain object increases the median natural rating, but there is no reduction in IQR,

indicating that the effect of adding the fountain is not uniform, having more of an

effect in some scenes than others. Repeated measures ANOVA indicates that adding

objects has a significant effect on the natural ratings F (4, 20) = 5.06, p < 0.05. The

effect of each individual condition was tested post-hoc using bonferroni-corrected

paired t-tests [234], but these showed no individually significant contributors.

The largest effect by an individual object was that of the car on the mechanical

ratings, as shown in Figure 8.9(c). The median rating increases from 8.93 with no

objects added to 13.69 when the virtual car object is active. Repeated measures

ANOVA shows this effect is significant F (4, 20) = 10.79, p < 0.05, and post-hoc

testing shows that the car object individually has a significant effect on the ratings

t(5) = 4.24, p < 0.0125, but there are no significant effects from any other object.

Despite the limited amount of data obtained, there is a strong indication that,

whilst adding a virtual car causes an increase in mechanical ratings with a corre-

sponding decrease in natural ratings, the effect of the fountain object is much more

modest, and neither the bird nor barrier objects seem to have much effect at all.

The pronounced effect of the car reflects the findings presented by Stevens [80],

where subjects in a listening test rated a sound scene recorded by a lake as much

more mechanical given the added presence of only a single car. This gives some

evidence that the Core ML object is returning ratings that are to a degree aligned

with human perception, though more study would be needed to corroborate this.

It is possible the lack of effect from the bird object is a result of the fact that
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birdsong is intermittent as opposed to the consistent noise from the car and wa-

ter fountain objects (see Figure 8.4). The lack of impact from the barrier object

suggests that the barrier, either in principle, or in the rudimentary implementation

used here, is ineffective. It is possible that this is due to the fact that the barrier

attenuates mainly higher frequencies, but since MFCCs have reduced resolution at

higher frequencies (see Figure 4.3) it is likely that these are less discriminative to

the models than low frequencies, which are largely unaffected by the barrier. The

effect of the barrier might therefore be more apparent using an alternative classifier,

or in human listening tests.

The lack of any effect on the human ratings by any virtual object is possibly due

to the fact that none of the virtual objects could be categorised as human sound

sources. A virtual ‘conversation’ object could have been a good addition to the app

in this regard.

8.5 Summary

This chapter has presented a practical real-time implementation of an acoustic en-

vironment monitoring system, drawing together ideas and techniques explored in

the previous chapters of this thesis. It was shown that the app produces plausible

estimates for the relative prevalence of mechanical and natural sounds, which can

be used to calculate a pleasantness rating based on the NDSI soundecology metric.

NDSI/pleasantness values calculated for the six locations tested matched well with

the relative contributions of each sound category at those locations, though there

was some bias towards the upper end of the scale, indicating that further calibra-

tion of the model is required. The classifier used to return ratings for human sound

provided much less useful insight. To reliably calculate an eventfulness metric to

complement pleasantness (based on the chart in Figure 3.3), a better model would

be required. It is possible that better training of classifiers, perhaps by inclusion of

more diverse training data, would help a great deal in this regard.
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With the exception of the car object, the effect of adding virtual sound sources

appeared negligible. There is some evidence that adding the fountain object im-

proved natural ratings at some locations, but this was not a significant effect. The

car object did significantly increase the mechanical ratings at most locations. In

general it is thought that these objects might have more of an effect on ratings

given more sophisticated sound spatialisation than the present implementation.

The next chapter will conclude this thesis, drawing together and summarising

the work from all previous chapters and the contributions of this work to the wider

field.
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9 | Conclusion

This thesis has presented a body of work with the overarching goal of deriving novel

methods of environmental sound monitoring inspired by the soundscape approach.

The EigenScape database of spatial acoustic scene recordings was created as a basis

for this research, and approaches to working with this data have combined aspects

from various machine listening and spatial audio technologies. Results from these

experiments have produced insights not only into the methods themselves, but also

the nature of the recorded sound fields used and the patterns of similarity between

these. This final chapter will summarise the work within the previous chapters,

before restating the initial hypothesis given in Chapter 1, and reflecting on the

results obtained in light of that hypothesis. This will be followed by some ideas for

the possible next stages of research for each of the sub-projects contained in this

work, and finally some concluding thoughts.

9.1 Summary

This thesis began in Chapter 2 with an exploration of the fundamentals of acoustics.

There was a particular emphasis on the propagation of sounds in space. This subject

is very relevant to the concept of sound fields central to the work in this thesis, both

in terms of acoustic environments, and also the spherical harmonic-based Ambisonic

audio format used to record them. This was followed in Chapter 3 by detail on the

soundscape approach to environmental sound monitoring, and how ideas developed

in this field regarding the perceptual shortcomings of the prevailing environmental
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noise approach provided the primary motivation for this thesis. Chapter 4 began

by covering in detail the algorithms behind the machine learning technologies that

were used in this work, and concluded with descriptions of some of the previous

machine listening approaches that inspired those developed as part of the research

in this thesis.

Chapter 5 marked the beginning of the original work, describing the methods

used for collecting the EigenScape database that provides the foundation for the re-

search that follows. This included detail on the recording equipment and a descrip-

tion of the scene classes chosen, with reference to the already-available databases

that provided inspiration in this regard. Specific recording locations were detailed,

with further information, maps, and imagery included in Appendix A.

The EigenScape data was first used for an investigation into acoustic scene clas-

sification using spatial features, described in Chapter 6. Features capturing spatial

properties of the EigenScape recordings were extracted from first-order Ambisonic

channels using DirAC, and from the higher-order channels using spherical harmonic

beamforming and COMEDIE diffuseness estimation. These features were used to

train separate GMM classifiers. Accuracy obtained using various subsets of spatial

features compared favourably to those obtained using traditional MFCC features.

This was the first confirmation that acoustic scene recordings can be characterised by

the spatial distribution of the sounds within them as well as their spectral content.

Differences in specific misclassifications between the spectral and spatial classifiers

also provided some indication that the two sets of features could in fact be com-

plementary, a finding reinforced by further work using these features with CNN

classifiers, conducted in collaboration with colleagues at Tampere University.

Given these positive initial results, the next step of the work, presented in Chap-

ter 7, investigated using spatial features to estimate the directions and movement

trajectories of individual sound sources within an acoustic scene. Where the work

in Chapter 6 used features extracted from only the first and fourth-order Ambisonic

channels, the source-tracking work in Chapter 7 used features extracted at all four
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available orders. Results from this work indicated that second-order Ambisonics is a

good level of compromise between sophistication, cost of equipment, and system per-

formance. Whilst third and fourth-order Ambisonics did yield further improvements

in performance, these were small relative to that seen between first and second-order.

The final research, presented in Chapter 8, represented a more applied approach

than the preceding chapters. Whereas Chapter 7 was concerned with development

of a method whereby the minutiae of individual sounds in an acoustic environment

could be monitored, the work in Chapter 8 returned to the principles of soundscape

perception and soundecology outlined in Chapter 3. A mobile application was de-

veloped utilising machine learning to generate high-level sound scene descriptors

based on the soundscape approach. The application also incorporated AR technol-

ogy to allow users to place virtual sound objects into their environments. It was

shown that the model incorporated into this app was capable of producing plausible

metrics based on estimates for the relative proportions of natural and mechanical

sounds making up a scene. Estimates produced for the proportion of human sound

were somewhat less reliable, and, aside from the AR car object, the effects of added

virtual sound sources were small.

As a whole, the work in this thesis presents a coherent portfolio of methodologies

for reliably monitoring acoustic environments, following ideas from the soundscape

approach. Chapters 6 and 7 showed how spatial audio techniques may be used to

enhance our understanding of acoustic environments, and point to techniques that

might be developed for future environmental sound monitoring practice. Whilst

the results of Chapter 7 indicated that second-order Ambisonics might provide a

sufficient spatial resolution to use for these purposes, this would still require highly

specialised and potentially costly equipment relative to that used for traditional

noise level monitoring. To this end, Chapter 8 presented an example of a practical

system for deriving perceptual soundscape metrics that runs on standard smart-

phone hardware.
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9.2 Contributions to the Field

The unique contributions to the fields of machine listening and soundscape research

made by this thesis are as follows:

• The EigenScape database, presented in Chapter 5, which is the largest publicly

available collection of spatial acoustic scene recordings. Previous databases of

this size were limited to mono or stereo audio only. The available spatial

databases were all small in scope, with some using non-standard microphone

array formats, limiting their utility beyond very specific applications. The

format of eight examples of eight classes, each of exactly the same recording

length, was designed specifically to make balanced partitioning and segmenta-

tion of the data straightforward. Use of the Ambisonic format for EigenScape

provides a standard basis, so algorithms developed using this audio can be

used on any future recordings encoded to Ambisonic format, which does not

require a specific microphone array layout. The fourth-order Ambisonic spatial

resolution also far exceeds that of any previously-published dataset.

• The results from the work in Chapter 6 were the first to prove that it is possi-

ble to characterise acoustic environments based on their spatial properties in

addition to their spectral properties. Most interestingly, it was indicated that

spatial similarity and spectral similarity do not always coincide, which suggests

that both spatial and spectral information are needed for a full understanding

of acoustic environments. No previous ASC systems had been developed using

Ambisonic features, and no previous systems used spatial features exclusively.

• Chapter 7 presented the first system to combine peak-finding in SRP maps

with unsupervised clustering using DBSCAN. The approach of testing via

optimisation using the tree parzen estimator, as a way to assess the robustness

of the system to changing environmental conditions, was also novel.
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• Results from the approach taken in Chapter 7, indicating that second-order

Ambisonics represents a good point of compromise when it comes to the per-

formance of a sound source tracking system, is an important finding in the

investigation of spatial audio for acoustic environment monitoring.

• The method used in the Soundscape AR app to generate estimates for the con-

tribution of human, natural and mechanical sounds based on ASC techniques

is unique to this project, as is the use of these estimates to generate NDSI

scores. The idea of re-contextualising the NDSI soundecology metric for the

soundscape approach as pleasantness is also unique to the work presented in

this thesis.

9.3 Restatement of Hypothesis

The hypothesis guiding this work, as originally stated in Chapter 1, was:

The monitoring of acoustic environments, with a view to deriving infor-

mation useful to the soundscape approach, can be assisted using spatial

audio analysis.

The research presented in Chapters 6, 7 and 8 supports this hypothesis, as these

chapters detail unique approaches to acoustic environment analysis that could not

have been achieved without the use of spatial audio. Results from the ASC work

in Chapter 6 show that the spatial properties of acoustic scenes are complementary

to their spectral properties, and that a combination of both yields accurate classi-

fication of acoustic scenes even when using a simple GMM classifier. This chapter

also gave some evidence that higher spatial resolution can yield better results, an

observation confirmed and expanded upon by Chapter 7.

These confirmations of the original hypothesis demonstrate the value of this re-

search project to the wider field, and the contributions outlined previously highlight

the many areas in which this research has also been valuable beyond the specific
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focus of this hypothesis. The findings of the various sub-projects making up this

work have indicated potential ways in which this research may be continued in the

future, and these ideas will be outlined in the following section.

9.4 Future Work

Perhaps the simplest way in which this project could be continued is in the expansion

of the EigenScape database. Whilst containing a great deal of data, it is still small

relative to the databases available in the field of image recognition. One of the

strengths of the database is its use of the standardised Ambisonic format. This

could help to enable a crowd-sourcing approach to its expansion, with researchers

from around the world contributing using whatever microphone arrays are at their

disposal, subject to a minimum spatial resolution. Given the results of Chapter 7, it

is proposed that second-order Ambisonics could be the minimum recommendation

for audio to be used in SELD research. An expanded database could lead to improved

spatial ASC results.

The work in Chapter 6 focused on only first and fourth-order features as it was

speculated that using all of the available higher-order information would make the

point most clearly as to whether or not use of HOA features was beneficial. It was

reasoned that any increase in performance using features derived from, for instance,

the second-order channels, might be more modest than that achievable using all

available channels, thus making any conclusions less definitive. It was also thought

that discussing results across all four orders would make the work more confusing in

presentation. In light of the sound event localisation results of Chapter 7, however,

it would seem a prudent next step to investigate ASC performance for second and

third-order Ambisonic features.

Another clear avenue for investigation would be to investigate the use of classi-

fiers explicitly taking into account the temporal ordering of the spatial and spectral

features, thus effectively completing the picture when it comes to the dimensions
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along which sound fields vary. There have already been a number of systems suc-

cessfully developed using recurrent neural networks [235, 236] and hidden Markov

models [237, 238] for this purpose, and it would be interesting to observe how well

these methods might integrate with the spatial audio features used in this thesis.

One of the key points of failure for the ASC system described here is the very poor

performance in classification of Beach scenes. As previously mentioned, this could

be due to their spectral and spatial similarity to street scenes. Taking into account

the temporality of scenes could help to disambiguate between scenes such as these.

Although it has now been shown that spatial features can be very useful in ASC,

it remains the case that microphone arrays capable of recording in full 3D Ambisonic

format are more cumbersome than those typically available on a handheld device.

It would therefore be a worthwhile area of research to determine methods by which

features similar to those used here could be derived from, for instance, binaural

audio.

The obvious next step for the sound event localisation work in Chapter 7 would

be the addition of a source labelling component, enabling the system to perform

fully-fledged SELD according to the DCASE definition. It would, perhaps, be more

interesting to test the system further in its current state and modify it so as to

enhance its trajectory prediction functions before adding such a labelling component.

Firstly, the system should be tested using more complex audio, as the synthesised

anechoic scenes used to test it so far are not representative of a real-world sound

field. As a start, new test audio could incorporate some reverberation or add more

overlapping audio sources. Further to this, some limited movement of sound sources

could be introduced and gradually increased to assess tolerance to increasing scene

complexity. As detailed in Section 7.3.3, a potential point of failure in the system

as it currently stands is in clustering when the movement of two sound sources

causes them to overlap spatially. In this situation, it is likely that peaks from the

two sources would be assigned to the same cluster, and the fact that the DBSCAN

algorithm is not constrained to clusters of any particular shape could result in large
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sprawling clusters where several sources overlap. This could perhaps be mitigated

somewhat by retaining the frequency-dependence of the SRP maps (i.e. omitting

the summation across k in Equation 2.26), and performing peak-finding separately

in each frequency band. In this way, sound sources that overlapped spatially but

not spectrally would remain separable.

There are several ways in which the Soundscape AR application introduced in

Chapter 8 could be improved. First among these is the creation of a more bespoke

model for estimation of human, natural, and mechanical sound prevalence than the

repurposed ASC models used so far. Such a model could continue to use MFCC

features or perhaps spatial features derived from binaural audio, but be trained

using human ratings of the sound scenes obtained from listening tests as targets.

This would also broaden the scope for including a much larger set of data in a way

that would not require so many assumptions as were necessitated for this initial

study. For instance, there may be many classes of acoustic scene that are rated

as very highly natural by humans that are nevertheless quite sonically distinct. An

example of this are the beach scenes, which sound very different to woodland scenes,

but might be thought of as mostly natural. Human ratings for training data would

properly validate or exclude the use of these recordings as combined training data

for the ‘natural’ class.

Since calculating pleasantness based on natural/mechanical ratings was shown

to work well, a new version of this system could aim to augment this with an event-

fulness metric based on reliable ratings for human sounds, after the two-dimensional

scheme identified by Axelsson et al. [76]. Rather than showing the raw ratings, a

future version of the app could use a graphic visualisation similar to the circular

pleasantness/eventfulness chart shown in Figure 3.3 so that the user could see the

perceptual placement of a scene in this space at a glance. Given the limited results

when considering the effects of virtual objects on these ratings, it is felt that the

analysis side of the app might be best served in the future by decoupling it from

the AR component. Separately, however, the AR component presents an exciting
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opportunity for future work. Recent updates to ARKit [92] enable the placement of

AR objects to be made persistent between sessions, and ‘location anchors’ allow the

placement of objects at specific geographic locations to be shared between users of

different devices. These features combine to offer the opportunity for a researcher

to design and conduct an AR soundwalk featuring a number of AR objects, con-

sistently displayed to multiple subjects over an extended area. This could be done

simultaneously with a control group experiencing the area as it is in reality with no

AR components. Such a study could produce valuable insights into human responses

to proposed environmental alterations in-situ.

9.5 Closing Comments

This thesis has presented a number of novel methods using modern machine learn-

ing techniques and spatial audio to derive information useful for the soundscape

approach. At the very least, this work has made clear the great wealth of informa-

tion present in acoustic environments that does not survive the bottleneck that is

LAeq measurement.

Most of the methods presented are reliant on highly specialised spatial record-

ing equipment, the expense of which makes widespread adoption of these specific

algorithms unlikely as they stand presently. It is hoped, however, that this research

points to practical ways in which spatial audio and the soundscape approach might

be incorporated into wider practise moving forward, and that ideas from this thesis

might be incorporated into the practical sound monitoring systems of the future.

Further study along these lines could lead to a complete methodology incorporat-

ing the spectral, spatial and temporal dimensions of a sound scene into a thorough

holistic understanding. Such deep knowledge of acoustic environments could lead

initially to highly targeted acoustic interventions. Instead of building large unsightly

noise barriers or imposing blanket noise reduction policies, specific annoying noise

sources could be addressed alongside programmes to encourage positive sounds.
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Rather than viewing all human sound as essentially negative, as has too often been

the case, it could be acknowledged that the sounds of certain human activities can do

a great deal to enhance wellbeing, with a certain amount of music-making and lively

conversation positively encouraged. Methods such as the AR sound walk could be

the last stage in an urban planning chain incorporating acoustic environment mon-

itoring, modelling, and interpretation according to soundscape approach principles,

at every step of the process. This could remake our urban environments over time

into more pleasant places to be, and would be much better than the present approach

that often amounts to little more than damage limitation.

Indiscriminate suppression of that which we disapprove is an attitude that per-

meates far beyond the realm of environmental sound. It is hoped that the idea of

sound as a resource, rather than a waste, might help to create a change in attitude

that could eventually filter down into the psyche of the general population. If this

could result in an increased awareness of the pulse of life, perhaps people might be

encouraged to slow down and listen more, a practice of incalculable value.
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A | EigenScape Metadata

A.1 File Details

The EigenScape database is available online at https://zenodo.org/record/1284156#

.XxBZcJO2n0c and is organised as follows:

Filename Size

Beach.zip 14.3 GB

BusyStreet.zip 14.9 GB

Park.zip 15.0 GB

PedestrianZone.zip 14.3 GB

QuietStreet.zip 13.8 GB

ShoppingCentre.zip 14.7 GB

TrainStation.zip 14.7 GB

Woodland.zip 13.2 GB

Lite-EigenScape.zip 12.6 GB

Metadata-EigenScape.csv 4.9 kB
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The first 8 ZIP files contain the full fourth-order Ambisonic WAV audio for the

classes as named, whilst Lite-EigenScape.zip contains the complete dataset in first-

order FLAC format. The metadata csv file contains a full list of recordings, and is

here reproduced in full:

Filename Location Time Date Additional Information

Beach-01.wav Bridlington Beach 10:42 am 9 May 2017

Beach-02.wav Filey Beach 11:48 am 9 May 2017

Beach-03.wav Cayton Bay 12:46 pm 9 May 2017

Beach-04.wav Redcar Beach 11:23 am 10 May 2017

Beach-05.wav Saltburn Beach 12:19 pm 10 May 2017

Beach-06.wav Sandsend 2:00 pm 10 May 2017

Beach-07.wav Whitby West Cliff 3:59 pm 10 May 2017

Beach-08.wav Robin Hood’s Bay 5:08 pm 10 May 2017

BusyStreet-01.wav Wilbraham Road Manchester 9:28 am 5 May 2017

BusyStreet-02.wav Oxford Road Manchester 11:09 am 5 May 2017

BusyStreet-03.wav London Road Manchester 4:24 pm 5 May 2017

BusyStreet-04.wav Bishopthorpe Road York 1:39 pm 11 May 2017 Slight clipping from very loud car.

BusyStreet-05.wav Micklegate Bar York 2:03 pm 16 May 2017

BusyStreet-06.wav Southgate Huddersfield 12:48 pm 18 May 2017

BusyStreet-07.wav Trinity Street Huddersfield 2:17 pm 18 May 2017

BusyStreet-08.wav St. Leonard’s Place York 11:44 am 23 May 2017

Park-01.wav Rowntree Park York 2:00 pm 11 May 2017

Park-02.wav Greenhead Park Huddersfield 1:55 pm 18 May 2017

Park-03.wav Yorkshire Museum Gardens 3:52 pm 18 May 2017

Park-04.wav Scarcroft Road Park York 4:39 pm 18 May 2017

Park-05.wav West Bank Park York 9:44 am 23 May 2017

Park-06.wav Homestead Park York 11:05 am 23 May 2017

Park-07.wav Hull Road Park York 12:46 pm 23 May 2017

Park-08.wav Heslington Church Green York 3:13 pm 23 May 2017

PedestrianZone-01.wav Clayton Square Liverpool 11:40 am 1 May 2017 Original DIY windjammer.

PedestrianZone-02.wav Church Street Liverpool 3:04 pm 1 May 2017 Original DIY windjammer.

PedestrianZone-03.wav Shambles Square Manchester 1:23 pm 5 May 2017

PedestrianZone-04.wav Market Street Manchester 1:44 pm 5 May 2017

PedestrianZone-05.wav Church Street Whitby 3:17 pm 10 May 2017

PedestrianZone-06.wav St. Helen’s Square York 3:28 pm 11 May 2017

PedestrianZone-07.wav Minster Yard York 4:05 pm 11 May 2017 Heavy wind.

PedestrianZone-08.wav Stonegate York 4:40 pm 11 May 2017

QuietStreet-01.wav Chatfield Road Manchester 9:06 am 5 May 2017

QuietStreet-02.wav Thomas Street Manchester 3:54 pm 5 May 2017

QuietStreet-03.wav Matley Lane Hyde 2:24 pm 7 May 2017

QuietStreet-04.wav Church Lane York 11:07 am 11 May 2017

QuietStreet-05.wav Main Street York 11:28 am 11 May 2017

QuietStreet-06.wav St. Benedict Road York 2:26 pm 16 May 2017

QuietStreet-07.wav Windmill Rise Corner York 10:09 am 23 May 2017

QuietStreet-08.wav Holmefield Lane York 2:42 pm 23 May 2017

ShoppingCentre-01.wav St. John’s Market Liverpool 11:15 am 1 May 2017 No windjammer (indoor).

ShoppingCentre-02.wav Arndale Centre Manchester 12:56 pm 5 May 2017

ShoppingCentre-03.wav York Designer Outlet 4:26 pm 8 May 2017

ShoppingCentre-04.wav Victoria Gate Leeds 12:04 pm 15 May 2017 Microphone stand held.

ShoppingCentre-05.wav Victoria Quarter Leeds 12:25 pm 15 May 2017 Microphone stand held.

ShoppingCentre-06.wav Leeds Kirkgate Market 12:56 pm 15 May 2017

ShoppingCentre-07.wav Trinity Leeds 2:09 pm 15 May 2017

ShoppingCentre-08.wav Packhorse Centre Huddersfield 1:11 pm 18 May 2017

TrainStation-01.wav Liverpool Lime Street Station 10:34 am 1 May 2017 Original DIY windjammer.

TrainStation-02.wav Manchester Oxford Road Station 10:46 am 5 May 2017 Microphone stand held.
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TrainStation-03.wav Manchester Victoria Station 2:15 pm 5 May 2017

TrainStation-04.wav Leeds Station 10:50 am 15 May 2017

TrainStation-05.wav Manchester Piccadilly Station 10:31 am 16 May 2017

TrainStation-06.wav York Station 10:54 am 18 May 2017

TrainStation-07.wav Huddersfield Station 12:13 pm 18 May 2017

TrainStation-08.wav Scarborough Station 9:50 am 19 May 2017 +5 dB gain.

Woodland-01.wav Knavesmire Wood York 11:41 am 8 May 2017

Woodland-02.wav Acomb Wood York 12:26 pm 8 May 2017

Woodland-03.wav Westfield Wood York 1:30 pm 8 May 2017

Woodland-04.wav Hagg Wood York 2:59 pm 8 May 2017

Woodland-05.wav Dalby Forest 2:36 pm 9 May 2017

Woodland-06.wav Dalby Forest Lake 3:09 pm 9 May 2017

Woodland-07.wav Pickering Castle Woods 4:10 pm 9 May 2017 Steam train whistle.

Woodland-08.wav Rowntree Park Woods 2:22 pm 11 May 2017
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A.2 Additional Maps and Images

219



APPENDIX A. EIGENSCAPE METADATA

EigenScape Recording Map Public

Map detailing proposed locations for recording of the EigenScape dataset.

Locations

Bridlington Beach

Filey Beach

Cayton Bay

Redcar Beach

Saltburn Beach

Sandsend

Whitby West Cliff

Robin Hood's Bay

Chatfield Road

Thomas Street

Rising Moon, Matley Lane

Church Lane

Main Street

St. Benedict Road

Windmill Rise Corner

Holmefield Lane

Clayton Square

Church Street

Shambles Square

Market Street

Church Street, Whitby

St. Helen's Square

Minster Yard

Stonegate

St. John's Market

(a) Huddersfield

EigenScape Recording Map Public

Map detailing proposed locations for recording of the EigenScape dataset.
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(b) Leeds
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(d) Manchester

Figure A.1: Detail of EigenScape recording locations in various city centres.
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(a) BusyStreet-04 (b) QuietStreet-07

(c) ShoppingCentre-02 (d) Woodland-01

Figure A.2: EigenScape recording setup in various location classes.
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A.3 Documentation

This appendix contains documentation relevant to the planning of, and permissions

obtained for, the recording of the EigenScape database. These are:

• Letter of support, including method statement.

• Risk assessment.

• Permission for Filming in Scarborough.
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To Whom It May Concern, 

EigenScape Field Recording Research Project- Method Statement;  

Researcher: Marc C. Green 

The EigenScape field recording equipment list is as follows: 

• EigenMike microphone 

• Samsung Gear 360 camera 

• Apple MacBook laptop 

• EigenMike interface & battery 

• 1x Microphone stand 

• Hard case 

The recording will take place as follows: 

First, the equipment will be set up (5 mins). The microphone stand will be set up to head-height and the microphone 
and camera will both be mounted to it. The recording equipment will be placed nearby next to this. This consists of a 
recording interface, laptop and small battery. Everything will be connected together using short cables. Care has been 
taken to design this setup to be as compact as possible and there will be no trailing cables or mains power required. 

Recording will then take place (15 minutes). The microphone and camera will be activated and the researcher will 
state location and clap for synchronisation. The researcher will then stand nearby, allowing the equipment to get a 
good recording without interference. The equipment will record continuously for around 11 minutes to ensure at 
least 10 minutes of clean ambient audio is recorded. The researcher will confirm that audio has recorded properly 
before continuing. 

Then the equipment will be packed away (5 minutes). This is a very quick process. 

The whole process should take no longer than 30 minutes although recording may be interrupted by passers-by or an 
equipment error. There have been no equipment errors so far in testing and it is reasoned that a certain degree of 
conversation from passers-by would not be a completely unusual component of an urban soundscape, so this is 
acceptable. 

As Marc’s PhD supervisor I am happy to confirm that this work has been discussed and refined internally and 
approved by our Departmental Ethics Committee.   

Yours sincerely 

 
Dr Damian Murphy 
University Research Theme Champion for Creativity 
Reader in Audio and Music Technology 
 

 

 

4th May 2017  

 

DEPARTMENT OF 
ELECTRONICS 
Heslington, York YO10  5DD 
Telephone +44 (0) 1904  322320 
Telex 57933 YORKUL 
Fax +44 (0) 1904  322335 
 
Dr Damian Murphy 
Direct Line 01904 323221 
Email damian.murphy@york.ac.uk 
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Department of Electronics 
University of York 

 
 

Risk Assessment for UK Fieldwork Activities 
 
 

The degree of risk associated with most UK fieldtrips is normally considerably less than those 
overseas, where the environment is often less predictable and our knowledge of that environment 
poor.  However, it is still important that an assessment is completed for all departmental fieldwork 
trips.  By recording the assessment, you will be able to demonstrate that you have considered the 
safety of your field work activity in a serious and systematic manner. 
 
The headings provided in the template below are provided for guidance, although their relevance 
may vary from activity to activity. 

 
 

Proposed destination: 

 
Liverpool city centre (1/5/17), Manchester city centre (4/5/17 – 
5/5/17), Scarborough (2/5/17), Scarbourough borough (8/5/17 – 
9/5/17), York city centre, Huddersfield, Leeds city centre, misc. 
other locations across North of England. 
 

Description of  
fieldwork activity: 

 
Field recording of soundscapes at various types of urban and 
natural locations around the north of England. Equipment consists 
of a microphone and camera mounted to a single microphone 
stand with a laptop positioned on a box next to the base of the 
stand for recording. 
 
 
 
 
 
 
 

 
Specific Assessment for Single Fieldwork Trip   No 
 
Generic Assessment Covering Similar Fieldwork Trips   Yes              

Risk Statement: 
Tick as appropriate  
 

LOW RISK:  
The fieldwork activity presents a low risk, adequately 
controlled by following the code of good fieldwork 
practice.  The assessment table (below) will be used to 
highlight: 
• the most significant  hazards associated with the work  
• measures needed to reduce risks to an acceptable level 

   
 
Yes 

HIGHER RISK:  
The fieldwork activity presents higher risks (e.g. fieldwork 
expeditions in remote places) requiring specific, more 
detailed planning & assessment.  The assessment table 
(below) will be used to a) highlight key hazards associated 
with the work &, b) measures needed to reduce risks to an 
acceptable level.   

   
  No 

Assessor: Marc C. Green 

Group / Course Leader: Dr. Damian Murphy 
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Supervised student fieldwork:  
Describe arrangements (‘safe system of work’) for supervision of students during fieldwork 

activities: 

 

 
 
Lone Working / Unsupervised fieldwork: 
• Describe arrangements for maintaining contact between worker(s) and Group Leader / 

Supervisor 

• Describe other arrangements that will be applied to safeguard fieldworkers (consider what 

means of communication will be used and who will be made aware of fieldwork itinerary in case 

of emergency (see Appendix 3 ‘Field Safety Emergency Contact Details’) 
 

 

 
Describe the First Aid Arrangements: 
 
 
Training / Instruction / Information: 
All individuals involved in fieldwork trips must receive appropriate instruction / information on significant 
hazards and appropriate precautions necessary to reduce risk to a low and acceptable level.  Appendix 2 
should be used to record that appropriate information & instruction has been provided to all fieldworkers. 
 
 
Group / Course Leader’s Declaration: 
 

• I will provide full safety instruction and information (including written safety protocols 
where required) for all those involved in the fieldwork activity (see Appendix 2 for record) 

•  I will provide appropriate supervision to enable work to be conducted within acceptable 

safety standards 
 

 

Name 
 

 

Signature 
 

Date 
Damian Murphy 

 

20/04/2017 

 
Assessment Review 

Review and update the assessment when either a significant change to the work activity occurs, or 

when there is evidence that a review is necessary e.g. following an incident or accident 
 



 

6 

Appendix 2:  Fieldwork Training Record 
 
Sign off sheet for all participants (include emergency contact information?) 
 
All those people taking part in the field work must sign below to indicate that they: 

 
• have read the risk assessment and relevant sections of the departmental code of good 

fieldwork practice 

• have been given adequate safety information & instruction relevant to their fieldwork 

• have been provided with written safety instructions/documentation where relevant 

• agree to abide by any restrictions identified 

• will report any concerns they have as to the safety provision, training to the Group Leader or 

directly to the Departmental Safety Advisor 

 
Name 

 

 
Signature 

 

 
Date 

 
Marc Green  20/04/2017 
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Appendix 3:  Field Safety Emergency Contact Details  
 
To the fieldworker: 
Please complete this form and hand the details to a responsible person of your choice. This person 

must be available to carry out the emergency contact procedure in the event that you do not return 

at the time stipulated below. NB: Please remember to telephone if you are likely to be delayed 
to prevent the emergency contact procedure from being initiated. 
 

To the holder of the contact details: 
If the fieldworker has not returned after 2 hours from the estimated time of arrival then the following 

procedure must be followed: 

 

1. Call the emergency services giving the fieldworker’s itinerary, type of habitat to be visited and 

the University contact telephone numbers.  

2. Call the University contacts to alert that there may be a problem. 

3. If there has been an accident, call the fieldworker’s next of kin. 

 

 

Name/s of fieldworker/s:  Marc C. Green 
 

 

 

 

 

 

Itinerary: Travel to various locations to conduct field recording. 
 
 
 
 
 
 
 
 
 
 
 

Estimated time of return:   
 

 
 
Contact Details: Mr Marc C. Green / 5A Bishopthorpe Road, York. YO23 1NA 
 
Fieldworker’s mobile phone number: 07849 559662 
 
University contact (e.g. Group Leader / HoD): Dr. Damian Murphy (supervisor). 
 
Next of Kin (name / address / phone number): Mr. Stuart Green / 184 Victoria Street, 
Hyde. SK14 4DH / 07719 585840 
 
 



 1 

Permission for Filming in Scarborough 
 
Print this permission form and keep it with you whilst filming as evidence should you be 
asked to show proof of filming permission. 
 
I confirm that the production company named below has applied for permission to film in 
the Borough of Scarborough. 
 
Public liability received  

 
Rowena Marsden 
Scarborough Borough Council/Film Co-ordinator.  01723 383 615 / 07967 465 327 
 
 
Contact Name:   Marc Green 
 
Position:  PhD Student 
 

Tel No: 01904 324227 
 
Mobile No: 07849 559662 

Email: marc.c.green@york.ac.uk 
 Application Date: 07/04/2017 

Office Address: Genesis 6, Innovation Way, 
Heslington, York, YO10 5DQ 
 

Production Company:  University of York 
Audio Lab 

 
Name of Production:  EigenScape Dataset Number of Crew: 1 

Type of Operation 
 

(Please tick as appropriate)              Feature         Documentary       Reality / Observation 
 
 
TV Drama         TV Other     Commercial     Music Video     Photoshoot 
 
 
Student film     Short Film       Corporate          Other (please specify e.g. Wildlife…….) 
 

 
 

Locations To Be Used                                                                           Date 
 
Italian Gardens                                                                                         02/05/17 
Valley Park 
Valley Road (near roundabout) 
Westborough pedestrian zone 
South Bay Beach 
Peasholme Park 
North Bay Beach 
                                                                                                    
 Filey Beach                                                                                              08/05/17 
Cayton Bay 
Cayton Woods 
Oliver’s Mount Woodlands 
 
 
 

   

    

   

 

Research Field Recording 



 2 

Robin Hood’s Bay                                                                                     09/05/14 
Pannett Park, Whitby 
Bridge Street, Whitby 
Whitby Beach 
Runswick Bay 
 
 
 
 

 
Town Hall, St Nicholas Street, Scarborough, North Yorkshire YO11 2HG 

 

 



B | Source Tracking Parameter Charts

This appendix contains charts relating to Chapter 7, showing DOA Error and Frame

Recall results for iterations of the new source tracking approach, varying with various

input hyperparameters.

B.1 PWD
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B.1. PWD
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(a) DOA error values for all PWD iterations, varying with MinPts.
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(b) Frame Recall for all PWD iterations, varying with MinPts.

Figure B.1: Performance metrics for iterations using PWD beams, varying with

MinPts.
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APPENDIX B. SOURCE TRACKING PARAMETER CHARTS
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(a) DOA error values for all PWD iterations, varying with min_sep.
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(b) Frame Recall for all PWD iterations, varying with min_sep.

Figure B.2: Performance metrics for iterations using PWD beams, varying with

min_sep.
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B.2. CROPAC

B.2 CroPaC
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APPENDIX B. SOURCE TRACKING PARAMETER CHARTS
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(a) DOA error values for all CroPaC iterations, varying with Eps.
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(b) Frame Recall for all CroPaC iterations, varying with Eps.

Figure B.3: Performance metrics for iterations using CroPaC beams, varying with

Eps.
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B.2. CROPAC
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(a) DOA error values for all CroPaC iterations, varying with rel_pk.

0.0 0.5 1.0
0.0

0.5

1.0 OV1 / N2

0.0 0.5 1.0
0.0

0.5

1.0 OV1 / N3

0.0 0.5 1.0
0.0

0.5

1.0 OV1 / N4

0.00 0.25 0.50 0.75 1.00
0.0

0.5

1.0

0.0 0.5 1.0
0.0

0.5

1.0 OV2 / N2

0.0 0.5 1.0
0.0

0.5

1.0 OV2 / N3

0.0 0.5 1.0
0.0

0.5

1.0 OV2 / N4

0.00 0.25 0.50 0.75 1.00
0.0

0.5

1.0

0.0 0.5 1.0
0.0

0.5

1.0 OV3 / N2

0.0 0.5 1.0
0.0

0.5

1.0 OV3 / N3

0.0 0.5 1.0
0.0

0.5

1.0 OV3 / N4

0.00 0.25 0.50 0.75 1.00
0.0

0.5

1.0

rel_pk

Fr
am

e 
R

ec
al

l

(b) Frame Recall for all CroPaC iterations, varying with rel_pk.

Figure B.4: Performance metrics for iterations using CroPaC beams, varying with

rel_pk.
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(a) DOA error values for all CroPaC iterations, varying with MinPts.
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(b) Frame Recall for all CroPaC iterations, varying with MinPts.

Figure B.5: Performance metrics for iterations using CroPaC beams, varying with

MinPts.
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(a) DOA error values for all CroPaC iterations, varying with

min_sep.
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Figure B.6: Performance metrics for iterations using CroPaC beams, varying with

min_sep.
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C | Soundscape AR Detailed Results

This appendix contains the complete one-minute average percentage probability

ratings returned by the Soundscape AR app at each tested location under each

virtual object condition.

Location Condition Human Natural Mechanical

Art Gallery Clean 16.07 10.31 14.16

Barrier 15.97 9.04 14.26

Bird 16.48 9.75 14.87

Fountain

Car 15.74 9.58 15.75

Barrier/Bird/Fountain 15.45 11.35 14.18

Shambles Market Clean 16.09 16.04 4.78

Barrier 15.59 15.47 4.92

Bird 16.14 16.94 5.98

Fountain 15.80 16.81 7.80

Car 15.19 11.77 10.64

Barrier/Bird/Fountain 15.57 17.73 7.22

York Picadilly Clean 18.20 8.73 9.88

Barrier 17.67 7.97 10.71

Bird 14.09 11.60 9.50

Fountain 16.99 10.36 11.42

Car 15.38 8.47 13.34

Barrier/Bird/Fountain 15.07 10.00 10.47
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Tower Gardens Clean 10.81 12.67 8.62

Barrier 9.97 13.27 8.32

Bird 9.99 13.46 12.05

Fountain 14.61 15.67 11.39

Car 11.96 9.83 14.90

Barrier/Bird/Fountain 14.20 15.39 10.26

Bishopthorpe Road Clean 16.73 8.15 11.91

Barrier 16.12 9.59 9.84

Bird 15.96 10.03 11.75

Fountain 16.92 9.71 12.77

Car 15.48 8.08 14.38

Barrier/Bird/Fountain 16.17 6.84 15.97

Rowntree Park Clean 13.53 21.11 4.21

Barrier 12.36 21.85 3.79

Bird 10.15 21.93 6.32

Fountain 12.77 22.24 7.60

Car 11.75 13.48 13.12

Barrier/Bird/Fountain 14.01 22.23 9.32
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