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Abstract 

This thesis investigates the electromagnetic performance of the fractional-slot interior 

permanent magnet (IPM) and salient-pole synchronous reluctance (SynR) brushless AC 

machines having non-overlapping concentrated windings, the SynR machines being excited 

by bipolar AC sinusoidal currents with and without DC bias. The analyses are validated by 

finite element calculations and measurements. 

The PM machines with modular stators are often employed to improve the electromagnetic 

performance and ease the manufacture process, particularly stator winding. The influence of 

uniform and non-uniform additional gaps between the stator teeth and back-iron segments on 

the electromagnetic performance of fractional-slot IPM machines having either un-skewed or 

step-skewed rotors and different slot openings, viz. open slot, closed slot and hybrid slot 

(sandwiched open and closed slots), is investigated. The influence of load conditions on 

cogging torque and back-emf waveforms and the effectiveness of rotor skew on the 

minimization of the cogging torque, thus the torque ripple, are also examined. It is found that 

the additional gaps have a negligible influence on the average output torque, but significantly 

increase the cogging torque magnitude, while their non-uniformity can cause a large increase 

in both the peak and periodicity of cogging torque waveform, which in turn makes the skew 

method ineffective. The magnetic cross-coupling level and the sensitivity of cogging torque 

to manufacturing limitations and tolerances strongly depend on the slot opening materials. 

The cogging torque magnitude is significantly increased by load, while its periodicity also 

changes with load which makes the rotor skew less effective unless the machine is skewed 

by one cogging torque period on load. 

The electromagnetic performance of the SynR machines under AC sinusoidal bipolar 

excitation with and without DC bias is investigated and compared for three different winding 

connections, such as asymmetric, symmetric and hybrid. In general, the SynR brushless AC 

machines with DC bias excitation exhibit significantly higher torque density than those 

without DC bias. Comparing with the asymmetric and symmetric winding connections, their 

hybrid counterpart results in significantly larger mutual inductance variations. Consequently, 

it results in significantly larger output torque, since such torque is produced by the variation 

of both the self and mutual inductances. In terms of torque ripple, the symmetric winding 

connection leads to the best performance. On the other hand, at significantly larger current 

densities, the hybrid winding connection become more suitable, since it exhibits large 

average output torque and relatively low torque ripple.   
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Chapter 1: Introduction 

1.1. General Introduction 

Due to the concerns of global warming and energy crisis, the requirements of reducing the 

energy consumption and CO2 emission become more significant. Therefore, there is a strong 

trend to replace the conventional mechanical components by more efficient electrical 

counterparts, e.g. more electric aircrafts [1] and hybrid electric or pure electric vehicles [2]. 

Meanwhile, the wind power generation, which produces the renewable energy, is being 

rapidly utilised [3, 4]. The key enabling technologies of the mentioned systems are electrical 

machines, either motors or generators. The main criteria of employing such machines 

include:  

 High torque/power density; 

 High efficiency ; 

 High reliability; 

 Low cost. 

Furthermore, significant investigations and researches have been carried out to further 

increase the efficiency and power capability of conventional electrical machines and to 

develop new machine topologies, which exhibit an improved electromagnetic performance. 

The following are examples of typical electrical machines that may be used in the foregoing 

mentioned applications: 

a). Permanent magnet (PM) machines;  

b). Switched reluctance (SR) machines; 

c). Induction machines. 

In this thesis, the first two machine topologies are discussed, investigated and analysed: 

a). PM machines, which will be further highlighted in section 1.2, will be analysed 

for power steering systems.  

b). SR machines, which will be discussed in more details in section 1.3, will be 

operated and investigated as salient-pole synchronous reluctance (SynR) for 

hybrid electrical vehicles. 
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1.2. Permanent Magnet Machines 

The history of  PM machines can be traced back to mid of last century [5]. However, the 

interest and utilising of such machines dramatically increased in early 70's and 80’s when the 

rare earth magnet materials, i.e. SmCo and NdFeB magnets, which have high energy 

product, e.g. remanence flux density (Br) ≈ 1.1-1.2 T, were invented. Comparing with the 

conventional electrical machines, the PM counterparts exhibit inherently high torque density 

and efficiency, since the magnets are utilised as exciters. Currently, the PM machines are 

widely utilised in industrial and commercial applications and for all power ranges [6-14]. 

The main benefits of such machines can be summarised by: 
 

 High torque and power density; 

 High efficiency; 

 High reliability; low maintenance (no brushes); 

 Ability to exhibit a wide speed range; 

 Ability to operate in direct drive systems. 

 

On the other hand, their main disadvantages include: 
 

 Cogging torque; 

 Torque ripple; 

 Possibility of irreversible demagnetization; 

 High cost of magnet materials. 

 

In general, the PM machines are designed to have either a sinusoidal or trapezoidal back-emf 

waveform [15-18]. To maximise the average output torque and minimise the torque ripple, 

the machines having sinusoidal back-emf waveform are desirable to be driven by sinusoidal 

currents, e.g. the brushless AC (BLAC) drive mode as illustrated in Fig. 1.1(a). On the other 

hand, the rectangular phase currents should be injected when the back-emf is trapezoidal, 

e.g. the brushless DC (BLDC) drive mode, as shown in Fig. 1.1(b). However, in theory, any 

PM machine can be operated in either the BLAC or BLDC drive mode. Furthermore, the 

torque-speed performance of the PM machines having sinusoidal back-emf waveform can be 

improved by utilising a hybrid drive mode, i.e. the BLAC mode in constant-torque region 

and BLDC mode in the flux weakening operation region, as discussed in [16]. 
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(a) BLAC drive mode. 

 

(b) BLDC drive mode. 

Fig. 1.1 Ideal back-emf and phase current waveforms of PM machines having different 

operation modes. 

1.2.1. PM Machine Topologies 

In addition to more conventional surface-mounted and interior PM machines, many novel 

PM machine topologies have been proposed and investigated in literature, such as multi-

layer interior, double salient, switched flux, and transverse-flux PM machines [19-24]. The 

suitability and benefits of each topology depend on the application where the machine is 

employed. For example, the external rotor radial field PM machine is a good choice for the 

direct drive wind power generator, since the blades can be fixed directly on the rotor [3]. On 

the other hand, the axial field PM machines are a good solution for the in wheel traction 

applications because they are very compact, thus can be fitted within the wheel [25]. In 

0 60 120 180 240 300 360

back-emf

phase current

Rotor Position (deg)

0 60 120 180 240 300 360

back-emf

phase current

Rotor Position (deg)



4 
 

general, the PM machines can be categorized in many different groups, for example 

according to: 

 Rotating part: internal/external rotor;  

 Magnetic field direction: radial/axial or  

 Location of magnets: on/in rotor or stator......etc.  

 

In this section, two common machine topologies are highlighted. The surface mounted PM 

(SPM) machine topology, which is the most common topology [26], and the interior PM 

(IPM) machines since it is also a very common topology [6] and is the research subject of 

chapters 2, 3, 4 and 5.  

1.2.1.1. Surface Mounted PM machines 

This topology is usually classified as radial magnetic field PM machines having their 

magnets on the rotor surface, as illustrated in Fig. 1.2. Although the topology shown in Fig. 

1.2 is internal rotor, the SPM machines with external rotor or axial field are also possible and 

have also been widely investigated [27, 28]. In addition to the common benefits of PM 

machines, such topology also has relatively low flux leakage, thus relatively larger torque 

density, and low rotor iron loss since the influence of armature reaction is relatively low due 

to the large effective air gap. For the same reason, the d-axis inductance of the SPM 

machines is relatively small, thus the flux weakening capability is also relatively low, which 

is considered as a disadvantage for this topology [29]. Furthermore, this topology does not 

exhibit any reluctance torque since the d- and q-axis reluctances are nearly the same, i.e. its 

saliency ratio is nearly one. Therefore, in order to increase this ratio thus to enlarge the 

generated reluctance torque, a special SPM machine topology has been introduced. In this 

topology, the magnets are inserted in the rotor with iron bridges between them, as shown in 

Fig. 1.3, [30]. However, whatever the magnets are on the surface or inserted in the rotor 

body, in general the SPM topology exhibits a relatively low demagnetisation withstanding 

because the magnets are directly exposed to the armature reaction field. This is a serious 

weakness point of such topology and could limit its uses, especially in the applications that 

have relatively large electric loading. 
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Fig. 1.2 Surface-mounted PM machines 

 

Fig. 1.3 Inset PM machines 
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1.2.1.2. Interior PM machines 

In this topology the magnets are placed inside the rotor iron body. Therefore, according to 

the burial way, the IPM machines can have different categories:  
 

 Circumferential I-shape IPM machines, Fig. 1.4(a).  

 Radial I-shape IPM machines, Fig. 1.4(b). 

 Flux focusing V-shaped IPM machines, Fig. 1.4(c). 

 

Due to the geometry, the IPM machines have relatively large reluctance torque, since q-axis 

reluctance is lower than the d-axis reluctance, thus q-axis inductance is larger than its d-axis 

counterpart. In addition, comparing with the SPM machines, the IPM topology offers better 

demagnetisation withstanding and less magnet loss since its magnets are shielded by the 

rotor iron. Further, it exhibits wider flux weakening operation region since its d-axis 

inductance is larger. On the other hand, the IPM machine presents relatively high flux 

leakage and more air gap flux density harmonics. Comparing with the SPM machines, this 

results in relatively low PM torque and larger iron loss [31]. Moreover, the multi-layer V-

shape design, e.g. usually 2 or 3 magnet layers, can be utilised to further improve the 

reluctance torque and flux weakening capability [20, 32]. An extreme case of the multi-layer 

design is the axially laminated IPM machines, where the magnet sheet layers are axially 

sandwiched between rotor laminations. Such design can produce a significantly wide flux 

weakening operation region and high reluctance torque [33, 34], but it is relatively hard and 

costly to manufacture. 

 

(a) Circumferential I-shape 
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(b) Radial I-shape 

 

(c) Single layer V-shaped  
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(d) Two layer V-shaped  

Fig. 1.4 Interior PM machines having different topologies. 

1.2.2. Electromagnetic Performance and Characteristics 

The cogging torque and output torque of the PM machines as well as their flux weakening 

operation characteristics and dq-axis inductances are reviewed in this section since they are 

the major subjects for investigation in this thesis. In addition, this section also highlights the 

frozen permeability (FP) technique, which is utilised to segregate the influence of PMs and 

armature reaction field with fully accounting for the magnetic saturation. 

1.2.2.1. Cogging Torque 

The cogging torque, which is produced by the interaction between the permanent magnets 

(PMs) and stator slotting, is considered as a major disadvantage in the PM machines, 

especially at low load and speed. It is one of the major sources of torque ripple, which causes 

acoustic noise and vibration.  

Many different design techniques have been proposed to minimise the cogging torque, e.g. to 

choose the appropriate pole-slot combination, to skew either the stator or rotor and/or to 

optimise the machine parameters, such as the pole arc to pole pitch ratio, magnet shaping 

and slot opening [35-41]. The authors in [35] have introduced the cogging torque goodness 
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factor, which reflects the goodness of pole-slot combination, e.g. the higher the goodness 

factor is the larger the cogging torque. This factor is analytically given by: 

PS

S
T

Q

pN
C

2
       (1.1) 

where PSQ is the least common multiple between the pole number p2  and slot number SN .  

In addition, it is a common and effective technique to skew the machine by one cogging 

torque period, which is given by: 

Cogging torque period = 
PSQ

2
     (1.2)  

Furthermore, the optimal pole arc to pole pitch ratio, can be calculated by [35]: 













 1
2

...........2,1

2

2

p

Q
k

p

Q

k
p

Q

PS

PS

PS

P    (1.3) 

In the previous techniques, the influence of the manufacturing tolerance, errors and defects 

are not considered, i.e. the design is assumed to be ideal. However, in reality, such issues 

could have a significant influence on the cogging torque [42, 43]. For example, the stator 

asymmetry, which results from the manufacturing tolerances, can cause a significant 

increase in the cogging torque magnitude and generate low order cogging torque components 

[43]. Also, the assembly tolerance as well as the PMs imperfection can cause additional 

cogging torque components [44-46]. Furthermore, in practice, the effectiveness of cogging 

torque reduction techniques could be limited or diminished due to the manufacturing defects 

[47]. A combined analytical and numerical technique to account for the manufacturing 

tolerance during the machine design process has been proposed in [48]. In this thesis, the 

influences of the manufacturing tolerances and limitations on the cogging torque as well as 

the effectiveness of the skewing technique are highlighted and examined in details in 

chapters 3 and 4. In addition, the influence of the electric loading and magnetic saturation on 

such torque is also investigated and analysed in chapter 5.  
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1.2.2.2. Output Torque 

The dq-axis machine model, thus the dq-axis parameters are often utilized to analyze, e.g. 

predicted torque-speed characteristics, as well as to control the PM machines [49, 50]. Based 

on this theory the output torque of the PM machines can be calculated by: 

])([(
2

3
qdqdqmd IILLIpT        (1.4) 

where dqdmd ILLp ,,,,
 
and 

qI
 
are the pole pair number, PM flux linkage, d-axis and q-axis 

inductances and currents, respectively.
 

qmI  is the electromagnetic torque, which is due to 

the interaction between the PMs and armature current, while 
qdqd IILL )(   is the reluctance 

torque, which is due to the difference between d- and q-axis inductances. The dq-axis 

currents are determined by the phase current magnitude, phI , and its angle,  , as follows: 

)sin(phd II       (1.5) 

)cos(phq II       (1.6) 

As mentioned before, the reluctance torque of the SPM machines is zero. Thus, the 

maximum torque is obtained by injecting the phase current in q-axis, i.e. at  =0, while in 

the IPM machines the dq-axis reluctances are different. Thus, the optimal current angle 

should be determined to operate the machine at its maximum output torque. Fig. 1.5 

illustrates and compares the torque-current angle characteristics of both SPM and IPM 

machines. Furthermore, in order to guarantee the maximum performance out of the machine, 

the dq-axis parameters should be accurately determined [51]. Normally, the PM machines 

are operated under high electric loading, thus the magnetic saturation level is relatively high. 

Therefore, the d- and q-axis parameters could be correlated due to the magnetic cross-

coupling between both axes [50-52]. This phenomenon is well recognized and has been 

deeply investigated in literature [53-57]. However, it is further investigated and different 

techniques are proposed and discussed to account for it in chapters 2 and 4. 
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Fig. 1.5 Comparison of torque-current angle characteristics of SPM and IPM machines. 

1.2.2.3. Flux Weakening Operation 

In general, the operation range for any PM machine can be divided into two regions [58], as 

shown in Fig. 1.6:  

 

a). Constant-torque: it extends between zero and the rated speed. Within this region, 

the machine can deliver a constant torque and the maximum torque per ampere 

control is often employed, while the power gradually increases from zero to reach the 

rated power at the rated speed.  

 

b). Flux weakening operation: it is the region beyond the rated speed up to the 

maximum feasible speed of the machine within the rated phase current and voltage. 

This region could possibly contain both a constant power region at relatively medium 

speeds and decreased power range at relatively high speeds or it could be just one of 

them, as illustrated in Fig. 1.6. This strongly depends on the phase current rated 

value, d-axis inductance and PM flux linkage.  
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Theoretically, the maximum speed is infinite when: 

1
 dph

md

LI


      (1.7) 

 

Thus, the higher the d-axis inductance the wider the flux weakening operation region [13, 

14]. In general, comparing with the SPM machines, their IPM counterparts have the ability 

to exhibit much wider flux weakening operation region because they have larger d-axis 

inductance, which in turn is due to the small air gap in such topology [59]. However, 

according to [60], at specific designs and operation parameters any PM machine, no matter 

whether it is SPM or IPM, could be able to exhibit an infinite flux weakening operation 

region. 

 

 

Fig. 1.6 Torque-speed characteristics of PM machines. 

Moreover, since the PM excitation flux is constant, the negative d-axis current is normally 

utilised to weaken such flux to make the machine voltage satisfy the supply voltage 

limitation [61]. Therefore, at relatively high speeds the flux weakening needs to be stronger 

thus higher d-axis current is required. When the electric loading of the machine is significant 

an irreversible demagnetisation could be experienced. This illustrates the reason for better 

demagnetisation withstanding in the IPM machines, since the armature reaction has an 

alternative path to flow, i.e. the rotor iron block outside the magnet. However, in the SPM 

machine, the PMs are directly exposed to the armature reaction [60]. 
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1.2.2.4. Torque- and Power-Speed Characteristics 

Ideally, it is desirable to operate the machine at the maximum torque per ampere, thus the 

maximum capability of the machine is utilized. However, at relatively high speeds, i.e. 

higher than the base speed, the machine operation is restricted by the voltage limitation. 

Thus, part of the phase current is utilized to weaken the PM flux rather than generate output 

torque. Based on the dq-axis parameters, the machine phase voltage is given by: 

2222 ]([][ mdddqphqqdphqdph ILIRILIRVVV     (1.8) 

where phR
 
and 

 
are the phase resistance and electrical rotating speed.  

The finite element (FE) tools have become very accurate and reliable. Therefore, in order to 

predict the torque- and power-speed characteristics, a FE tool can be directly used to 

calculate the output torque and check the machine phase voltage limitation, this is called the 

direct FE calculation method. It fully accounts for the magnetic cross-coupling and magnetic 

saturation, but it is also very time consuming, especially when both current magnitude and 

angle need to be adjusted [49]. Alternatively, the output torque equation (1.4) and the 

machine phase voltage equation (1.8) can be utilised together to analytically predict these 

characteristics, but the PM flux linkage and dq-axis inductances should be pre-calculated by 

the FE tool [49]. This is called the indirect FE calculation method, which can be much faster 

comparing with the direct FE counterpart. On the other hand, its accuracy is determined 

according to the level accounting for the magnetic cross-coupling and saturation during the 

calculation of the dq-axis parameters. Different computing techniques have been proposed 

and employed in [49, 51-55]. Furthermore, the dq-axis parameters can be also accurately 

calculated, i.e. with totally accounting for the magnetic cross-coupling and saturation, using 

the frozen permeability (FP) technique. This technique will be more highlighted and 

employed in section 1.2.2.6 and chapter 2. Moreover, the prediction methods of the torque-

speed characteristics of the PM machine will be further illustrated, discussed, utilised and 

analysed in chapters 2 and 4. 

1.2.2.5. Dq-axis Inductance 

The dq-axis inductances significantly influence both the steady-state and dynamic 

performances of PM machines since, as illustrated before, they directly define the output 
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torque and flux weakening operation capability. Furthermore, these inductances also 

determine the fault tolerance ability of such machines [62]. Therefore, it is desirable to 

accurate determine such inductances. Due to the high magnetic saturation as well as the 

geometry structure of some PM machines, e.g. IPM topology [63], the magnetic cross-

coupling between the d- and q-axes could be significant. This influence can be represented 

by the mutual dq-axis inductance, e.g. Ldq and lqd, [54]. Alternatively, the magnetic cross-

coupling can be accounted for within the self d- and q-axis inductances. In [49], the 

following equations have been proposed to estimate the dq-axis inductances: 
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where, ),( qdd II  and ),( qdq II  and are the total dq-axis flux linkages as functions of both 

d- and q-axis currents, respectively. 

It is worth mentioning that in the previous equations the influence of the d-axis current on 

the PM flux linkage as well as the PM flux linkage of q-axis are not accounted for, thus they 

are approximated values. However, according to [49], the utilisation of such inductances 

together with equation (1.4) results in an accurate torque-speed characteristics, which are 

identical to the direct FE method. On the other hand, the dq-axis inductances can be 

accurately calculated, i.e. with 100% account for the magnetic cross-coupling and saturation, 

by using: 
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where, ),( qdcd II  and ),( qdcq II  are the dq-axis armature flux linkages as functions of both 

d- and q-axis currents and PM flux linkage as function of q-axis, respectively. However, 
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these flux linkages should be calculated using the FP technique. Such calculations are 

employed and will be further discussed in the second chapter. 

These flux linkages, thus the dq-axis inductances can be calculated using the 2D FE model. 

However, when the PM machine is skewed the 3D FE analyses are required. Such analyses 

are very time consuming and it could not be realistic in some designs. Therefore, the authors 

in [64] have alternatively proposed a simple and accurate hybrid technique, i.e. FE and 

analytical, to calculate the dq-axis inductances of the skewed PM machines using the 2D FE 

analyses. This method can be summarised as follows: the dq-axis inductances of the un-

skewed machine counterpart are firstly calculated, e.g. using one set of the previous 

equations, then such inductances are employed together with the skew factor (
skk ) to predict 

their skewed equivalents using (1.13) and (1.14). It is worth mentioning that the obtained 

inductances can be then utilised to predict the torque-speed characteristics of the skewed 

machine using the same output torque and line voltage equations, i.e. (1.4) and (1.8), 

respectively.  
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where qd LL ,  and SK  are the dq-axis inductances of the un-skewed machine and skew 

angle, respectively. 

On the other hand, the skewed machine can be also analyzed by dividing its axial length into 

several uniform slices, then the 2D FE modelling can be used to analyse each slice separately 

with due consideration of each slice’s position. Consequently, the total solution is the sum of 

all slice results [65]. This technique is more practical and accurate when the machine is step 

skewed rather than fully skewed. Therefore, it will be employed to analyse the step skewed 

machines in this thesis. 
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1.2.2.6. Frozen Permeability Technique 

The main purpose for employing the FP technique is to allow for a linear analysis of the PM 

machines with fully accounting for the magnetic saturation, thus the superposition theory 

becomes applicable between the two PM machine excitation sources, i.e. PMs and phase 

currents [66]. In this case the influence of the full saturation, e.g. with both PMs and phase 

currents excitations, can be taken into account when the parameters of one excitation source 

are analysed. For example, the influence of the magnetic saturation can be fully considered 

when the winding inductances, which are due to the phase currents only, or PM flux linkage, 

which is due to PMs only, are calculated. For further illustration, the theory of this technique 

is to be highlighted. Fig. 1.7 shows the BH characteristics of the machine iron core material, 

due to the nonlinearity of such material the flux density due to PM plus its counterpart due to 

phase currents are not equal to the total flux density at the working point (BWP). However, if 

the permeability, which is the slope of the line between zero and the working point on the 

BH curve, is frozen then the superposition between the PMs and phase currents excitations 

becomes correct. In other words, the flux density due to magnet (BPM) plus its counterpart 

due to current (BPC) are equal to the total flux density at working point (BWP), [20, 67]. 

non-linear characteristics: PCPCPMPMWP HHB      (1.16) 

linear characteristics (FP): WPFPCFPMFWP HHHB     (1.17) 

where PCPMPCPMWPWP HHHB  ,,,,, and F are working point flux density and 

field strength, PMs and phase currents field strengths, nonlinear permeability due to PMs 

and phase currents, frozen permeability of working point, respectively. 

During the machine analysis, the utilising of such technique can be summarised as follow: 

the machine is firstly solved nonlinearly in the FE tool under full load conditions, then the 

permeability of each element is saved and used to resolve the model linearly without either 

the electric loading, i.e. open-circuit, or without PMs, i.e. phase currents excitation only [55]. 

In this case, the open-circuit and the armature field characteristics can be calculated with 

totally accounting for the influence of full loading conditions, i.e. the full magnetic 

saturation is accounted for. The FP technique has been illustrated and utilised to account for 

the magnetic cross-coupling saturation between the d- and q-axis parameters as well as to 
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segregate the PM and reluctance torque components in [20, 54, 55, 66, 67]. In this thesis, the 

FP technique is utilised to simplify the prediction of the torque-speed characteristics of the 

fractional slot PM machines having concentrated winding. It is also employed to investigate 

the influence of the electric loading and magnetic saturation on the open-circuit 

characteristics, i.e. the cogging torque and back-emf. 

 

Fig. 1.7 BH characteristics of PM machines with frozen permeability technique, PM and PC 

refer to the PMs and phase currents excitations. 

1.2.3. Pole-Slot Number Combinations  

According to the number of slot per pole per phase, the PM machines can be mainly 

classified into two groups [68-72]: 

a). Integral-slot: when the number of slot per phase per pole is integral, e.g. 3 phase 

machines having 4 poles-12 slots or 8 poles-48 slots.  
 

b). Fractional-slot: when such number is fraction, for example 3 phase machines 

with 8-pole/12-slot or 6-pole/9-slot. 

Comparing with the integral-slot, the fractional-slot combination exhibits inherently low 

cogging torque as well as short end-winding, less copper loss and high efficiency when the 

stator is equipped with concentrated windings. However, on the other hand, such 
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combination could result in unbalanced magnetic forces (UMFs) if the phase windings are 

asymmetrically located in the stator slots [73]. The maximum flux linkage per coil, thus the 

maximum output torque density of the fractional-slot PM machines is obtained when the 

pole and slot numbers are differed by one, e.g. 10-pole/9-slot or 8-pole/9-slot. In addition, 

such combination can exhibit significantly low cogging torque since the least common 

multiple between pole and slot numbers is relatively large, as shown in Fig. 1.8. However, 

on the other hand, these combinations generate relatively large UMFs [74], as shown in Fig. 

1.9. These forces are not desirable, especially when high electrical loading is applied since 

they reduce the bearing life time and also result in relatively high acoustic noise and 

vibration. Alternatively, if a slight reduction in the flux linkage per coils is tolerated, the 

UMFs can be significantly eliminated when the pole number and slot number are differed by 

two, e.g. 10-pole/12-slot or 10-pole/8-slot: 

22 pNS        (1.18) 

 
Fig. 1.8 Comparison of cogging torque of fractional-slot PM machine having same external 

dimensions and magnet volume, but different pole-slot number combinations. 
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Fig. 1.9 Comparison of unbalanced magnetic forces of PM machine having same external 

dimensions and magnet volume, but different pole-slot number combinations. 

1.2.4. Phase Winding Configurations  

The phase winding configurations are normally determined according to pole-slot number 

combinations. Thus, the maximum flux linkage and consequently the maximum output 

torque are obtained. In general, such configurations in the 3 phase PM machines can be 

classified into [75-81]: 

a). Distributed-overlapping winding: the number of slot per pole per phase is an 

integral number and larger than one, e.g. 8-pole/48-slot combination. This 

combination can be occupied by either single or double layer per slot, as 

illustrated in Fig. 1.10. On the other hand, such winding configuration can be also 

employed when the number of slot per pole per phase is fractional and larger than 

one, e.g. 8-pole/42-slot number combination. However only the double layer 

winding is possible as shown in Fig. 1.11. 
 

b). Concentrated-overlapping winding: the number of slot per pole per phase is one, 

e.g. 8-poles/24-slot combination, as shown in Fig. 1.12. 
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c). Concentrated-non overlapping winding: the number of slot per pole per phase is 

fractional and less than one, e.g. 8-poles/12-slot combination. Furthermore, this 

winding configuration can be further divided into: 

 

i. double layer winding: one coil is wound around each stator tooth, as 

illustrated in Fig. 1.13 (a). 
 

ii. single layer winding: the coils are alternatively wound around the stator 

teeth, as shown in Fig. 1.13 (b). 

 

In this thesis, the investigation is focused on the fractional-slot PM machines having 

concentrated winding. Thus, the advantages of such machines will be further highlighted and 

compared with the integral-slot counterpart machines in section 1.2.5. 

 

 

 
 

(a) Overlapping distributed winding, single layer per slot 
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(b) Overlapping distributed winding, double coil side per one slot 

Fig. 1.10 Overlapping distributed winding configuration of PM machines having integral 

number of slot per pole per phase and larger than one. 

 

 

 

Fig. 1.11 Overlapping distributed winding configuration of PM machines having fractional 

number of slot per pole per phase and larger than one. 



22 
 

 
 

Fig. 1.12 Overlapping concentrated winding configuration of PM machines having one slot 

per pole per phase. 

 

 
 

(a) Double layer winding 
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(b) Single layer winding 
 

Fig. 1.13 Non-overlapping concentrated winding configuration of PM machines having 

fractional number of slot per pole per phase and smaller than one. 
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1.2.5. Fractional-Slot PM Machines with Concentrated Winding 

Comparing with the integral-slot PM machines having distributed winding, their fractional-

slot counterparts with non-overlapping concentrated winding offer the following benefits 

[82-89]: 

 Higher torque/power density; 

 Shorter end winding, thus lower copper loss;  
 

 Shorter total axial length, smaller overall volume;  
 

 Larger d-axis inductance, thus wider flux weakening operation region; 
  

 Lower cogging torque, thus smoother output torque; 
 

 Inherent fault tolerance capability; 
  

  Potentially for low manufacturing cost, e.g. modular stator. 

 

On the other hand, such machines have also some drawbacks and disadvantages, which can 

be summarized as follows: 

 

 More flux harmonics, thus larger iron and magnet losses; 

 

 Significantly low reluctance torque even when IPM topology is employed. 

However, when the number of slot per phase per pole is 0.5 the reluctance 

torque still exists; 

 

 Potential high UMFs, depending on the pole slot number combination.  

The fractional-slot PM machines with concentrated winding are very suitable for high torque 

and low to medium speed applications, where the copper loss is dominant [84, 87]. However, 

at high speed, when the iron loss becomes significantly large, such machines could be not 

desirable due to their large iron loss as well as magnet loss, which could result in irreversibly 

demagnetisation, [90, 91], since the output torque of the fractional-slot PM machines is 

produced by the interaction of the stator winding first harmonics and the p
th

 harmonic of the 

open-circuit air gap flux density. The low and high order air gap flux density harmonics are 

the reasons behind the relatively large iron and magnet losses. It is also worth mentioning 

that the magnet loss can be significantly decreased by either circumferential or radial magnet 

segmentation [83, 91, 92].  
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Furthermore, comparing with the fractional-slot PM machines having the double layer 

winding, their counterparts with the single layer winding results in larger d-axis inductance. 

This is due to the extra flux leakage in such configuration. Consequently, the fractional-slot 

PM machines exhibit a wider flux weakening operation region. In addition, a higher filling 

factor can be achieved, thus the copper loss can be smaller [6, 93]. Moreover, the inherent 

fault tolerance capability of such machine is larger, since the phase windings become 

magnetically and physically isolated and self inductances are relatively large [31, 81].  

The electromagnet performance and characteristics of the fractional-slot IPM machines with 

concentrated winding will be further investigated and analysed in chapter 2, 3, 4 and 5, with 

particular reference to the torque-speed characteristics, output torque, torque ripple and 

cogging torque. 
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1.3. Switched Reluctance Machines 

The reluctance variation, which is the operation principle of the switched reluctance (SR) 

machines, has been well known for a long time. However, the recent development of power 

electronics, thus drive systems has increased the usage ability of such machines in the 

practical applications [94-96]. Due to their structure advantages, e.g. no PMs and robust 

rotor, these machines are suitable to be operated at high speeds and in harsh environments, 

such as high temperature and pressure. Furthermore, due to the significant increase in the 

cost of the PM materials, there is a strong trend to utilise the SR machines in the electric and 

hybrid electric vehicles. However, the drawbacks of such machines should be first improved 

or even overcome to enable such application. For this purpose, the SR machines and their 

drives are currently very common research topics. 

  

In general, the merits of the SR machines can be summarized by [97-99]: 
 

 Simple and robust rotor structure; 

 There are no PMs, thus can be operated at relatively high current density; 

 Operated at saturation level, temperature and pressure; 

 Inherent ability for fault tolerance; 

 Brushless operation, thus relatively low maintenance level; 

 Comparing with PM machines, the cooling is more effective in the SR 

machines [100]; 

 Although high manufacturing tolerances are required, due to relatively small 

air gap. However, the low manufacturing cost is still possible since the 

magnet materials prices and supply are not stable. 

 

On the other hand, the most challenging drawbacks of such machines include [101-105]:  
 

 Inherently large torque ripple; 

 High acoustic noise and vibration; 

 Complex phase current profiles are required to achieve smooth output torque, 

especially at low speeds; 

 A unique drive system is required to drive such machines, i.e. asymmetric half 

bridge inverter; 

 Large DC-link capacitor is required to filter the large voltage ripple.  
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1.3.1. Operation Principles 

The working theory of the SR machines is simply due to the magnetic reluctance variation 

when the relative position between the rotor and stator changes, i.e. the rotor poles move 

from the aligned to unaligned position. Therefore, the feasible stator/rotor pole combinations 

of the SR machines are limited, for example the 6/4 and 8/6 and their multiples are the most 

common stator/rotor combinations. Such machines are equipped with concentrated phase 

windings, which should be sequentially energized or commutated to produce the output 

torque or power [106-108]. The cross-section and phase winding layout of 3 phase 6 stator/4 

rotor poles SR machines having different rotor/stator poles align positions are illustrated in 

Fig. 1.14. On the other hand, the drive circuit of such machine under the conventional 

unipolar excitation is given in Fig. 1.15. Due to phase winding position and excitation, the 

magnetic coupling between the phase winding is nearly eliminated. Consequently, the 

produced output torque or power is mainly due to the variation of the phase self inductances. 

Thus, the electromagnetic torque of the SR machines can be analytically calculated by:  






L
iT 25.0       (1.19) 

where Li,  and   are phase current, self inductance and rotor relative position. 

According to (1.19), it can be concluded that the operation mode of the SR machine depends 

on the relative phase current position according to variation of the phase self inductances. 

When the rotor and stator poles are fully unaligned, then the magnetic reluctance is 

maximum, thus the self inductance is minimum. Consequently, if the winding around the 

stator pole is excited, the rotor pole will tend to align with such stator pole. Thus, in 

motoring operation mode, a continuous rotating electromagnetic torque can be generated by 

powering the phase windings in sequence when the rotor poles move from unaligned to 

aligned position with the corresponding phase stator poles, i.e. each phase winding is 

energised when the corresponding inductance increases from the minimum to maximum 

value, as shown in Fig. 1.16. On the other hand, in generating mode the phase currents 

should be commutated when the rotor and stator poles are moved from the fully aligned to 

unaligned position, in other words when the phase self inductance decreases from the 

maximum to minimum value, as illustrated in Fig. 1.17.  
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(a) Rotor is fully aligned with phase A stator poles, for motoring operation injecting current 

in phase B or C, or for generating operation commutate current from phase A 

 

(b) Rotor is fully aligned with phase B stator poles, for motoring operation injecting current 

in phase A or C, or for generating operation commutate current from phase B 
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(c) Rotor is fully aligned with phase C stator poles, for motoring operation injecting current 

in phase A or B, or for generating operation commutate current from phase C 

Fig. 1.14 Cross-section and phase winding layout of 3 phase 6 stator/4 rotor poles SR 

machine has symmetric winding connection and different rotor/stator poles align positions. 

 

Fig. 1.15 Asymmetric unipolar driver inverter for SR machines. 
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Fig. 1.16 Variation of self phase inductances and injected phase currents when SR machine 

is operated as a motor, under conventional unipolar excitation. 
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Fig. 1.17 Variation of self phase inductances and commutated phase currents when SR 

machine is operated as a generator, under conventional unipolar excitation. 
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1.3.2. Mutual Inductance Torque  

As mentioned earlier, the magnetic coupling between phases is negligibly small when the 

phase windings of the SR machine are wound around the stator teeth. As a result, the phase 

mutual inductances are also neglected. Consequently, the output torque is totally produced 

by the variation of the phase self inductances [109]. This results in a poor electric circuit 

utilising, since the contribution of each phase is limited to the self inductance rising or 

decreasing period only, i.e. rising in motoring operation and decreasing in generating 

operation. This means each phase provides torque/power during only one half of its period. 

However, if the SR machines are occupied with full pitched coils, there will be relatively 

large mutual coupling between phase fluxes. Thus, the torque/power will be produced by the 

variation of the mutual inductances rather than the self counterparts. Fig. 1.18 shows the full 

pitched winding configuration of 6 stator/4 rotor poles SR machine. In order to produce 

torque with the full pitched winding connection, at each rotor position two phases should be 

excited together [110]. The conduction sequence of phase currents with the variation of the 

mutual phase inductances of full pitched winding configuration is clearly illustrated in Fig. 

1.19. In this case, each phase contributes for more than one half of its period, thus the 

electric circuit can be utilised better [111]. As a result, the generated output torque/power 

can be larger [112]. However, as disadvantages, such winding connection results in longer 

end-winding and higher copper loss, in addition it reduces the fault tolerance capability 

comparing with the convention concentrated winding [113].  

 

Fig. 1.18 6 stator/4 rotor poles SR machine has full pitched winding configuration. 
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Fig. 1.19 Variation of mutual phase inductances and injected phase currents of SR machine 

has full pitched winding configuration. 



34 
 

In this thesis, the conventional concentrated winding is still utilised but with different coil 

polarity and under the AC sinusoidal phase current excitation, i.e. AC sinusoidal bipolar 

current excitation. Thus, the output torque is produced by variations of both the self and 

mutual phase inductances. Consequently, the benefits of the concentrated winding is kept 

and at the same time larger output torque can be achieved, as will be further illustrated and 

analysed in Chapter 6. 

1.3.3. Bipolar Excitation  

Under the conventional unipolar excitation, the SR machines exhibit relatively large torque 

ripple, which in turn causes significant acoustic noise and vibration. These are serious 

disadvantages, which could limit the use of the SR machines in many applications [114]. 

The reason behind such larger torque ripple is the rapid change of radial magnetic force, 

which in its turn is due to the sudden extinguishing of the phase currents during the 

commutation process. Many techniques and means have been proposed to reduce the torque 

ripple of the conventional SR machines [115-118], for example, by: 

 Control strategies, e.g. produce and inject a suitable phase current profile; 
 

 Rotor structure optimization, e.g. pole-shaping and flux barrier. 

However, due to the nature of the torque production, the minimisation of torque ripple using 

such techniques is still limited. Alternatively, the torque ripple and thus the noise and 

vibration can be effectively reduced if the excitation phase currents are more overlapped. 

This can be satisfied by employing AC phase currents, i.e. bipolar excitation. The variation 

of the phase currents under both the unipolar and bipolar excitations are compared in Fig. 

1.20. Moreover, comparing with the conventional unipolar excitation, the bipolar counterpart 

can result in the same average output torque as well as lower losses and higher efficiency, 

[119]. Furthermore, if the bipolar excitation is achieved by AC sinusoidal phase currents, the 

SR machine can be operated as a synchronous reluctance (SynR) machine with concentrated 

winding. Therefore, the following additional benefits can be also gained [120-123]: 

 Further reduction in torque ripple comparing with the conventional bipolar 

excitation, since each phase current is continuously excited, i.e. there is no 

commutation; 
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 Commercial drive systems can be utilised, thus lower drive cost; 

 Lower iron loss; 
 

 Smaller DC-link capacitor, which is required to filter the voltage ripple; 
 

 Less magnetic saturation sensitivity, since the flux paths are shorter, as will be 

illustrated in chapter 6. 

 

On the other hand, the AC sinusoidal bipolar excitation leads to lower average output torque, 

this is the main disadvantage of such excitation [120]. However, it is still desirable since it 

allows the utilisation of the SR machines for many applications, such domestic and traction, 

where the noise and vibration are critical issues.  

In this thesis, the SR machine having AC sinusoidal bipolar excitation, i.e. salient-pole 

synchronous reluctance (SynR) machine, is examined and discussed in details and compared 

for different winding connections, such as symmetric and asymmetric, and two different 

stator/rotor pole combinations which are the 6 stator/4 rotor poles, i.e. non-overlapping 

concentrated winding connection, and 12 stator/4 rotor poles, i.e. overlapping concentrated 

winding connection that is illustrated in Fig. 1.21. Furthermore, the hybrid bipolar excitation, 

i.e. AC sinusoidal phase current with DC bias, is proposed, investigated and analysed. 

Finally, the electromagnetic performance of the SynR machine is compared for these two 

excitations as well as the SR conventional unipolar counterpart. 

 
 

(a) Conventional excitation, i.e. unipolar excitation 
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(b) Bipolar excitation 

Fig. 1.20 Comparison of phase current variations of both unipolar and bipolar excitations of 

the SR machine. 

 

Fig. 1.21 Cross-section lamination and winding layout of 12 stator/4 rotor poles SynR 

machine. 
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1.3.4. Winding Configurations under AC Bipolar Excitation  

Under the AC bipolar excitation and according to the connection technique of phase coils, 

the winding connection in the SynR machines, which employ concentrated wound coils, can 

be categorized into [113, 124]: 

a). Asymmetric winding connection has uneven coil polarity in the stator slots, thus 

asymmetric flux directions, as shown in Fig. 1.22(a);  
 

b). Symmetric winding connection has symmetric flux directions since its phase coil 

polarities are the same in each stator slot, as illustrated in Fig. 1.22(b). In these 

two connections, the output torque is mainly produced by the variations of phase 

self inductances, since the mutual inductances are negligibly small; 
 

c). Hybrid winding connection has the same coil polarity and flux direction for all 

coils, as shown in Fig. 1.22(c). It is worth mentioning that in this connection the 

winding polarity is similar to the full pitch wounded. The reason behind this name, 

i.e. hybrid winding connection, is the nature of the generated output torque, which 

is due to the variations of both the self and mutual inductances. Further 

illustrations, discussions and analyses will be presented in chapter 6.  

 

(a) Asymmetric winding connection 



38 
 

 

(b) Symmetric winding connection 

 

(c) Hybrid winding connection 

Fig. 1.22 Comparison of three different winding connections of 6 stator/4 rotor poles SynR 

machine.  
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1.4. Scope and Contributions of Research 

1.4.1. Scope of Research 

The topologies and operation characteristics of the PM machines have been reviewed. A 

particular attention has been paid to the fractional-slot machines, which have concentrated 

winding. In this thesis, the techniques accounting for the influence of the magnetic cross-

coupling and manufacturing tolerances on the electromagnetic performance of such 

machines are systematically investigated. In addition, the operation principles of the SR 

machines under different excitation techniques, i.e. unipolar and bipolar, have been also 

highlighted. The electromagnetic performance of the SR machine under the AC bipolar 

excitation, i.e. salient-pole SynR machine, is extensively investigated considering different 

winding connections. Furthermore, the AC bipolar with DC bias excitation is proposed, 

investigated and analysed. Finally, the SR machine electromagnetic performance is 

compared for three different excitation techniques. The subsequent chapters in the thesis are 

summarized below: 

Chapter 2 

In this chapter, the frozen permeability (FP), which is an accurate method to account for the 

magnetic cross-coupling influence, is employed to separately examine such influence on the 

dq-axis parameters of the fractional-slot PM machines having concentrated winding. The 

idea behind such investigation is to determine the level of the magnetic cross-coupling effect 

on each parameter and to find the simple yet accurate model to predict the torque-speed 

characteristics of fractional-slot PM machines having concentrated windings. 

Chapter 3 

In order to improve the electromagnetic performance and ease the manufacture process, 

particularly the stator winding, it is often preferable to employ a modular stator, e.g. 

individual stator tooth/back-iron segments, or separate stator tooth segments and back-iron 

segments. However, due to manufacture limits, there are always additional air gaps between 

the stator teeth and back-iron segments. In practice, such gaps are likely to be non-uniform 

due to manufacture tolerances. This chapter investigates the influence of uniform and non-

uniform additional gaps on the electromagnetic performance of PM machines, with 

particular emphasis on the cogging torque.  
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Chapter 4 

This chapter presents a comparative study of torque-speed characteristics and cogging torque 

of the fractional-slot interior PM (IPM) machines having different slot openings, viz. open 

slot, closed slot and hybrid slot (sandwiched open and closed slots), and un-skewed and step 

skewed rotors. The influence of such alternate slot openings on the magnetic cross-coupling 

and cogging torque are particularly emphasized. Furthermore, the repercussion of the 

manufacturing limitations and tolerances on the cogging torque of machines having these 

alternate slot openings is also investigated.  

Chapter 5 

In this chapter, the frozen permeability technique is utilised to investigate the influence of 

the electric loading and magnetic saturation on the cogging torque, magnitude and period, 

and back-emf waveforms of PM machines having un-skewed and step skewed rotors. 

Furthermore, the effectiveness or limitation of the rotor step skew on the minimization of the 

cogging torque, thus the torque ripple, is also examined. 

Chapter 6 

This chapter presents a comparative study for the electromagnetic performance of three 6 

stator/4 rotor poles SynR machines having non-overlapping concentrated winding with 

different connections, i.e. asymmetric, symmetric and hybrid, and excited by AC sinusoidal 

currents, i.e. salient-pole SynR machines. In general, the output torque of SynR machine is 

generated due to the variation of the self and mutual inductances. Therefore, such 

inductances are particular highlighted. In addition, the machine line voltage, torque- and 

power-speed characteristics and efficiency are also considered. In order to further extend the 

investigation of this chapter, the electromagnetic performance of 12 stator/4 rotor poles 

SynR machine, which has overlapping and full pitched winding, is also analyzed and 

compared with its counterpart of the 6 stator/4 rotor poles machines.  

Chapter 7 

The operation principle, capability and electromagnetic performance of the 6 stator/4 rotor 

poles SR machines under the AC sinusoidal bipolar, i.e. salient-pole SynR, with DC bias 

excitation are examined and analyzed in this chapter. Both the asymmetric and symmetric 

winding connections are taken into account during the investigations. In addition, the 
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electromagnetic performance of this machine under such excitation is compared with its 

counterparts under the conventional unipolar and AC sinusoidal bipolar excitations 

Chapter 8 

This chapter contains the general conclusions of this thesis as well as the potential future 

work. 

1.4.1. Contributions of Research 

The contributions of this thesis can be summarized as follows: 

 Study of influence of the manufacturing limits and tolerances on the cogging torque 

and skew technique effectiveness in the PM machines having modular stators. 

 

 Analysis of influence of alternate slot openings, i.e. open slot, closed slot and hybrid 

slot, on the torque-speed characteristics and cogging torque of the fractional-slot IPM 

machines. 

 

 Systematic investigation of the influence of the magnetic saturation on the cogging 

torque, back-emf waveforms of the PM machines on load. 

 

 Development of the AC sinusoidal bipolar with DC bias excitation technique to drive 

the SR machines. 

 

 Comparative study of the electromagnetic performance of SR machines under different 

excitations, i.e. conventional unipolar and AC sinusoidal bipolar without/with DC bias. 
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Chapter 2: Torque-Speed Performance Analysis of 

Fractional Slot PM Machines Having Concentrated 

Windings Using Alternate Methods 

2.1 Introduction  

Fractional-slot PM machines having concentrated windings have the synergies of inherent 

low cogging torque and copper loss, which in turn can further improve their efficiency [84, 

89]. Furthermore, although the fractional-slot IPM machines with concentrated winding 

generate significantly small reluctance torque [125], they are still desirable to be employed, 

since they exhibit a wide flux weakening operation capability and strong demagnetization 

withstand capability, as well as a good mechanical retaining of the magnets [6]. In general, 

the PM machine operation is categorized into two regions, i.e. constant-torque and flux 

weakening operation. The dq-axis theory is often utilized to predict such characteristics and 

also to drive the PM machines [61]. When the electric loading is relatively high, thus a 

significant magnetic cross-coupling is most likely to exist between the d- and q-axis 

parameters. It becomes even more significant in the IPM machines [50]. Thus, the accurate 

analysis and control of the PM machines, especially the IPM topology, require well 

accounting for the influence of the magnetic cross-coupling [126]. This influence has been 

well recognized, examined and taken into account during machine design, analysis and drive 

in [49, 51, 57, 127, 128].  

In this chapter, the frozen permeability (FP), which is an accurate method to account for the 

magnetic cross-coupling influence [20, 54, 55, 66, 67], is employed to separately examine 

such influence on the dq-axis parameters of the fractional-slot IPM machines having 

concentrated winding. The idea behind such investigation is to determine the level of the 

magnetic cross-coupling effect on each parameter and to find the simple yet accurate model 

to predict the torque-speed characteristics of fractional-slot PM machines having 

concentrated windings. The investigation shows that the partial cross-coupling model, which 

considers the PM flux as a function of the q-axis current and the d- and q-axis inductances as 

functions of the d- and q- axis currents, respectively, is a simple and accurate technique for 

predicting the torque-speed characteristics of such PM machines. This technique is compared 

with the direct finite element (FE) and dq-axis flux linkages prediction methods, which fully 

account for the magnetic cross-coupling, and are verified by the experimental results. The 
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analyses are carried out on a 10 poles-12 slots, i.e. fractional-slot, IPM machines having 

shaped and either un-skewed or step skewed rotors. These techniques are applied to 

minimize the output torque ripple of the prototype machine, which will be utilized in a 

power steering system. The lamination cross-section and winding layout of the prototype 

machine are shown in Fig. 2.1, while its main design parameters are given in Table 2.1. 

 

Fig. 2.1 Lamination cross section and phase winding layout of 10-pole/12-slot prototype 

machine. 

Table 2.1 Main design parameters of prototype machine. 

Parameter Dimension Parameter Dimension 

Stator outer diameter 90 mm Stator inner diameter 53 mm 

Rotor maximum diameter 52 mm Rotor minimum diameter 50 mm 

Minimum air gap length 0.5 mm Maximum air gap length 1.5 mm 

Stator yoke width 3 mm Tooth width 7.4 mm 

Magnet thickness 3.4 mm Magnet width 12.2 mm 

Shaft diameter 36 mm Slot opening 2 mm 

Rib width 0.7 mm Tooth tip edge 0.5 mm 

Rotor step skew angle 4×1.5 mech.deg Magnet remanence 1.2 T 

DC-link Voltage 6 V Rated Current 150 Apeak 
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2.2. Frozen Permeability Method 

The main purpose for freezing the permeability in the PM machines is to allow for a linear 

analysis with full accounting for the magnetic saturation. This means that the superposition 

theory for two excitation sources, i.e. PMs and phase current, becomes applicable [20]. The 

B-H curve of the lamination material is shown in Fig. 2.2. Because of the nonlinear property 

of such material, the flux density due to the PMs only plus that due to the stator winding 

currents only is not equal to the total flux density at the working point (BWP). However, if the 

permeability at full load conditions is frozen, the superposition of the two excitation sources 

becomes applicable. In other words, the flux density due to the PMs only (BPM) plus that due 

to the winding currents only (BPC) is then equal to the total flux density (BWP), [67, 126]. 

During the machine analyses, the utilizing of such method can be summarized as follows: 

the machine is firstly solved nonlinearly in the FE tool under full load conditions; the 

permeability of each element is fixed and used to resolve the model linearly with either the 

electric loading or PMs only [54]. In this case, the open-circuit and phase current 

characteristics can be calculated separately with exactly accounting for the influence of the 

saturation level under full loading conditions.  

 

Fig. 2.2 B-H curve of lamination with frozen permeability method, PM and PC refer to the 

PMs and phase current excitations (the same as Fig. 1.7, duplicated here to ease discussion). 
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2.3. Electromagnetic Performance 

This section presents the electromagnetic performance analyses of the 10 poles-12 slots 

prototype machines without and with rotor step skew. It is worth mentioning that the skew is 

accounted for in the 2D FE tool as follows: the machine axial length is divided into four 

equal parts, since the machine rotor is step skewed by 4 steps; each part is analysed 

independently; then the solutions are added together to obtain the total results. The accuracy 

of this technique is validated by the measurement results, which are presented in section 2.5. 

As mentioned earlier, the studied machine has a shaped rotor, thus its magnetic field flux 

lines are very concentrated over the PMs, as illustrated in Fig. 2.3. This results in a relatively 

sinusoidal open-circuit air gap flux density waveform, as shown in Fig. 2.4. It should be 

mentioned that the spikes in such waveform are caused by the slot opening. As a result of the 

rotor shaping, the open-circuit flux linkage, thus the back-emf waveforms of the prototype 

machine are very sinusoidal, as respectively shown in Fig. 2.5 and Fig. 2.6. Therefore, the 

torque ripple due to the back-emf harmonics should be significantly small. In addition, Fig. 

2.6 also shows that the influence of the step skew on the back-emf magnitude is negligibly 

small. Consequently, the average output torque will not be significantly affected by the 

skew, as will be shown later. However, the skew further improves the sinusoidal shape of the 

back-emf waveform, Fig. 2.6, thus even lower torque ripple is expected. Furthermore, the 

cogging torque of the prototype machine is relatively small, as shown in Fig. 2.7, since it is a 

fractional-slot machine and has a shaped rotor. Theoretically, the cogging torque is totally 

diminished when the machine is step skewed, as illustrated in Fig. 2.7. It should be 

mentioned that the influence of the manufacturing limits and defects, electric loading and 

magnetic saturation on the cogging torque and effectiveness of the skew technique are 

tolerated, but they are further investigated in next chapters. As a conclusion of the sinusoidal 

back-emf and the significantly small cogging torque, the output toque waveform of the 

prototype machine is relatively smooth, as shown in Fig. 2.8. It also confirms that the skew, 

which effectively eliminates the cogging torque, Fig. 2.7, and nearly halved the output 

torque ripple, as shown in Fig. 2.9, exhibits an ignorable influence on the output torque. In 

other words, the average output torque is almost not influenced by the skew technique, as 

can be also noticed in Fig. 2.10.  
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(a) Open-circuit 

 

(b) Load, at 150Apeak phase current 

Fig. 2.3 Open-circuit and load equal potential distributions of 10-poles/12-slot prototype 

machine. 
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Fig. 2.4 Variation of open-circuit air gap flux density waveform of 10-pole/12-slot prototype 

machine when d-axis aligned with Phase A-axis. 

 

Fig. 2.5 Comparison of open-circuit flux linkage waveforms of of 10-pole/12-slot prototype 

machines having un-skewed and step skewed rotors. 
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(a) Waveforms 

 

(b) Harmonics 

Fig. 2.6 Comparison of back-emf waveforms and harmonics of of 10-pole/12-slot prototype 

machines having un-skewed and step skewed rotors, at 400 rpm rotating speed. 
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Fig. 2.7 Comparison of cogging torque waveforms of of 10-pole/12-slot prototype machines 

having un-skewed and step skewed rotors. 

 

Fig. 2.8 Comparison of output torque waveforms of 10-pole/12-slot prototype machines 

having un-skewed and step skewed rotors, at Iq=150A, Id=0A. 
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Fig. 2.9 Comparison of torque ripple waveforms of 10-pole/12-slot prototype machines 

having un-skewed and step skewed rotors. 

 

Fig. 2.10 Comparison of average output torque against peak phase current of 10-pole/12-slot 

prototype machines having un-skewed and step skewed rotors, at Iq=150A, Id=0A. 
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2.4. Analysis Methods of Torque-Speed Characteristics 

In this section, three different techniques to predict the torque-speed characteristics of 

fractional-slot PM machines, i.e. the partial cross-coupling, direct FE and dq-axis flux 

linkages, are presented and compared from the accuracy, simplicity and time consumption 

points of views. The FP method is utilized to simplify the full cross-coupling model with a 

negligible influence on the accuracy. Although the obtained simplified model only partially 

considers the cross-coupling effect, it still shows a high accuracy for the fractional-slot PM 

machines having concentrated windings. 

2.4.1. Proposed Technique 

The output torque of PM machines can be calculated by: 

][5.1 dqqd IIpT        (2. 1) 

where dqd Ip ,,,  and qI  are the pole pair number, the dq-axis flux linkages and currents, 

respectively.  

Each flux linkage is formed by two components: one is due to the PMs and the other is due 

to the phase currents. Therefore, the output torque with fully accounting for the magnetic 

cross-coupling and saturation can be expressed as: 

})],(),([)],(),({[5.1 dqdcqqdmqqqdcdqdmd IIIIIIIIIIpT    (2. 2) 

where ),( qdmd II  and ),( qdmq II  are dq-axis flux linkages due to the PM, respectively, and

),( qdcd II  and ),( qdcq II  are the dq-axis flux linkages due to winding currents, respectively. 

They are all functions of both d- and q-axis currents. 

The dq-axis flux linkages due to the winding currents can be given by their corresponding 

inductances and currents as follows: 

d

qdcd

qdd
I

II
IIL

),(
),(


      (2. 3) 

q

qdcq

qdq
I

II
IIL

),(
),(


      (2. 4) 
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By substituting (2. 3) and (2. 4) in (2. 2), the expression of the output torque becomes: 

})],(),([]),(),({[5.1 qdqdqqdddqdmqqqdmd IIIILIILIIIIIIpT     (2. 5) 

The first part of the right side of (2. 5) is the electromagnetic torque, i.e. the torque due to 

interaction between the PMs and current, while the second part is the reluctance torque, i.e. 

the torque results from the difference between the dq-axis magnetic reluctances, i.e. dq-axis 

inductances. This equation can be analytically utilized together with the phase voltage 

equation (2. 6) to predict the torque-speed characteristics of any PM machine with full 

accounting for the magnetic cross-coupling and saturation. But the dq-axis PM flux linkages 

and inductances as functions of the dq-axis currents should be predicted in advance using the 

FP method. However, such calculations can be very complicated and time consuming. 

Therefore, the influence of the saturation due to the PMs and winding currents on the dq-axis 

parameters is analysed in depth by the FP method in order to further simplify the 

calculations of the torque-speed characteristics of the fractional-slot PM machines with 

concentrated winding equation, without the compromise of the accuracy. 

22

qdph VVV        (2. 6) 

)],(),([ qdmqqqdqphdd IIIIILRIV      (2. 7) 

)],(),([ qdmddqddphqq IIIIILRIV      (2. 8) 

where phR  and   are the phase winding resistance and electrical rotating speed, 

respectively. 

The variations of the dq-axis PM flux linkages against the dq-axis currents are calculated 

using the FP method, and given in Fig. 2.11. Due to the magnetic cross-coupling and 

saturation, the d-axis PM flux linkage decreases with the q-axis current. However, it slightly 

increases with the increasing of the negative d-axis current since the saturation level 

becomes lower, as illustrated in Fig. 2.11 (a). Since the influence of the d-axis current on the 

d-axis PM flux linkage is negligible, it can be neglected in the torque expression (2. 5) while 

the influence of the q-axis current on the d-axis PM flux linkage needs be maintained. As 
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shown in Fig. 2.11(b), the magnitude of the q-axis PM flux linkage increases with the q-axis 

current, but it is decreased by the negative d-axis current. However, most importantly, the q-

axis PM flux linkage is significantly small. Hence, the output torque expression can be 

further simplified by completely neglecting the q-axis PM flux linkage. Thus, the 

electromagnetic torque due to the interaction between PM and current can be calculated by: 

])([5.1 qqmdPM IIpT       (2. 9) 

where )( qmd I  is the d-axis PM flux linkage as function of q-axis current while the d-axis 

current is zero. 

In order to illustrate the influence of the undertaken simplifications on the calculation 

accuracy, the electromagnetic torque due to the interaction between PM and current of the 

prototype machine is calculated according to the first part of the right side of (2. 5). The 

results are shown in Fig. 2.12(a). The influence of the d-axis current on this part of torque is 

small. In addition, the electromagnetic torque due to the interaction between PM and current 

is also calculated by (2. 9). In order to ease the comparison, each set of torque values of 

different d-axis currents but the same q-axis current shown in Fig. 2.12 (a) is averaged. The 

average torque is compared with the prediction by (2. 9) in Fig. 2.12 (b). Good agreement is 

achieved. This confirms that the electromagnetic torque due to interaction between PM and 

current can be accurately calculated by considering the influence of the q-axis current on d-

axis PM flux linkage only, (2. 9). It is worth mentioning that the influence of the q-axis 

current on the d-axis PM flux linkage cannot be neglected, because it is significantly large, 

as can be noticed in Fig. 2.12(b). 

Furthermore, the FP method is also employed to calculate the variations of dq-axis 

inductances against the dq-axis currents, as given in Fig. 2.13. It shows that the dq-axis 

inductances are nearly the same, since the machine employs the fractional-slot concentrated 

windings [125]. Hence, the reluctance torque of the analyzed machine is relatively small. 

Consequently, the influence of the magnetic cross-coupling between d- and q-axis 

inductances on the total output torque is significantly small. Thus, this magnetic cross-

coupling can be neglected, i.e. each inductance can be calculated as a function of its 

corresponding current only, during the prediction of the reluctance torque.  
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Hence, the output torque of fractional-slot PM machines can be further simplified to be as 

follows: 

})]()([)({5.1 qdqqddqqmd IIILILIIpT      (2. 10) 

where 
d

dd
d

I

I
L

)(
  and 

q

qq

q
I

I
L

)(
  are the dq-axis inductances, each of them is a function 

of its corresponding current only. 

In the same way, the dq-axis voltages can be calculated by: 

qqqphdd IILRIV )(      (2. 11) 

)]()([ qmddddphqq IIILRIV       (2. 12) 

Consequently, the torque-speed characteristics of the fractional-slot PM machines having 

concentrated winding can be analytically predicted using the simplified torque and voltage 

equations, i.e. (2. 10), (2. 11) and (2. 12), respectively. This requires the pre-calculating of 

the d-axis PM flux linkage as function of q-axis current, Fig. 2.14, and dq-axis inductances 

against their corresponding current only, i.e. Ld when Iq=0 in Fig. 2.13 (a) and Lq when Id=0 

in Fig. 2.13 (b). The calculation of these parameters is significantly easier and faster than 

that of the parameters in (2. 5), i.e. dq-axis PM flux linkages and inductances as functions of 

both the dq-axis currents. The electromagnetic and reluctance torque equations at different 

levels of cross-coupling accounting for are given in Table 2.2 for  

In order to examine the influence of simplifications, the torque-speed characteristics are 

predicted and compared using both the full and partial magnetic cross-coupling techniques. 

Both techniques results in nearly the same results, as shown in Fig. 2.15. This confirms the 

accuracy of the simplified technique for the prototype machine, which significantly reduces 

the computational time and complexity. 
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(a) D-axis PM flux linkage 

 

(b) Q-axis PM flux linkage 

Fig. 2.11 Variations of dq-axis PM flux linkages against dq-axis currents of 10-pole/12-slot 

prototype machine. 
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(a) Electromagnet torque against dq-axis current 

 

(b) Electromagnetic torque against q-axis current 

Fig. 2.12 Variations of electromagnet torque of 10-pole/12-slot prototype machine due to 

interaction betwen PM and current against dq-axis currents. 
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(a) D-axis inductance 

 

(b) Q-axis inductance 

Fig. 2.13 Variations of dq-axis inductances aganist dq-axis currents of 10-pole/12-slot 

prototype machine. 
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Fig. 2.14 Variations of d-axis PM flux linkage against q-axis current of 10-pole/12-slot 

prototype machine. 

 

Fig. 2.15 Comparison of torque-speed characterstics of 10-pole/12-slot prototype machine 

predicted by full and partial cross-coupling models. 
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Table. 2.2 Calculation equations of electromagnetic and reluctance torque at different corss-

coupling accounting for level 

Level of  

Cross-Coupling 
Electromagnetic Torque Reluctance Torque 

Full ]),(),([5.1 dqdmqqqdmd IIIIIIp    qdqdqqdd IIIILIILp )],(),([5.1 

 

Partial qqmd IIp )(5.1   qdqqdd IIILILp )]()([5.1 
 

Without qmd Ip5.1  qdqd IILLp ][5.1 
 

 

2.4.2. Direct Finite Element Technique 

In this technique, the machine phase voltage against current angle for different speeds, as 

given in Fig. 2.16, and output torque-current angle characteristics, as shown in Fig. 2.17, are 

directly calculated from the FE tool. These results are together utilized to predict the torque-

speed characteristics as follows: at each speed the output torque is determined by the current 

angle that satisfies the phase voltage limitation. When the machine phase voltage is lower 

than the voltage limitation, the machine is operated at the optimal current angle, which leads 

to the maximum possible output torque. However, at high speeds when the machine phase 

voltage is larger than the limitation, the current angle is adjusted to operate the machine at its 

maximum output torque within the voltage limitation. In order to clearly illustrate the 

prediction procedure, the output torque is determined in details at 800 rpm. At this speed the 

voltage limitation is satisfied when the current angle is 58 deg, as shown in Fig. 2.16. 

According to Fig. 2.17, the corresponding output torque of this angle is 11.4 Nm, which is 

considered as the maximum possible torque at 800 rpm, as illustrated in Fig. 2.18. By 

repeating such process for all speeds, the whole torque-speed characteristics, which are 

shown in Fig. 2.18, are obtained. These characteristics are for a specific electric loading 

value, i.e. current phase is 150 Apeak. However, the whole calculation process should be 

repeated if such characteristics are required at different electric loadings. In conclusion, this 

method is very accurate and fully accounts for the magnetic cross-coupling and saturation. 

However, on the other hand, it is significantly time consuming, especially if both the current 

angle and magnitude need to be varied together to satisfy the maximum output torque within 

the voltage limitation, as discussed in [129]. 
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Fig. 2.16 Variations of phase voltage against current angle of 10-pole/12-slot prototype 

machine for different rotating speeds, at 150 Apeak phase current. 

 

Fig. 2.17 Variations of prototype machine output torque against current angle, at 150 Apeak 

phase current. 



61 
 

 

Fig. 2.18 Variatins of torque-speed characteristics of 10-pole/12-slot prototype machine 

using the direct FE technique, at 150 Apeak phase current. 

2.4.3. Dq-axis Flux Linkage Technique 

This is a hybrid technique. The dq-axis flux linkages are calculated by the FE tool, then they 

are analytically utilized to predict the torque-speed characteristics using (2. 1) and the 

following phase voltage equation:  

22 )()( dphqqphdph RIRIV       (2. 13) 

However, in order to account for the magnetic cross-coupling and saturation, the dq-axis flux 

linkages should be calculated as functions of both dq-axis currents, as illustrated in Fig. 2.19. 

This technique has the same accuracy as the direct FE method. However, in term of 

calculation time, it is relatively faster.  

Fig. 2.20 compares the torque- and power-speed characteristics of the prototype machine 

predicted by three different prediction techniques, i.e. direct FE, partial cross-coupling and 

dq-axis flux linkages. All techniques exhibit almost the same accuracy even when the 

prototype machine rotor is step skewed. However, the partial cross-coupling technique is 

much faster and less complicated.  
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(a) D-axis flux linkage 

 

(b) Q-axis flux linkage 

Fig. 2.19 Variations of dq-axis flux linkages against d- and q-axis currents of 10-pole/12-slot 

prototype machine. 
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(a) Torque-speed characterstics, un-skewed rotor 

 

(b) Power-speed characterstics, un-skewed rotor 
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(c) Torque-speed characterstics, step skewed rotor 

 

(d) Power-speed characterstics, step skewed rotor  

Fig. 2.20 Comparison of torque- and power-speed characterstics of 10-pole/12-slot prototype 

machine having unskewed and step skewed rotor predicted by three different techniques. 
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2.5. Experimental Validation 

For the purpose of validating the FE analyses and obtained conclusions, the analysed 10-

pole/12-slots prototype machine with step skew rotor is built and tested, the test rigs are 

shown in Fig. 2.21 and the measuring procedures have been utilised and clearly explained in 

[130]. An excellent matching is shown between the measured and calculated back-emf 

waveforms and variations of the torque against the peak phase current and current angle, as 

illustrated in Fig. 2.22, Fig. 2.23 and Fig. 2.24, respectively. This proves the correctness of 

the utilised method to account for the skewing using the 2D FE tool.  

Fig. 2.25 compares the measured torque-speed characteristics of the constructed prototype 

machine with their predicted counterparts, which are calculated according to the partial 

cross-coupling technique. The good agreement between the measured and predicted 

characteristics strongly confirms the accuracy of the simplified technique. 

 

(a) Torque-current magnitude and torque-current angle characteristics 
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(b) Torque-speed characteristics 

Fig. 2.21 Test rig measuring of torque-current magnitude, torque-current angle and torque-

speed characteristics. 

 

Fig. 2.22 Comparsion of measured and predicted back-emf waveform of 10-pole/12-slot 

prototype machine, at 400 rpm. 
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Fig. 2.23 Comparison of measured and predicted average torque against phase current of 10-

pole/12-slot prototype machine, at 0 degree current angle. 

 

Fig. 2.24 Comparison of measured and predicted torque against current angle of 10-pole/12-

slot prototype machine, at 150Apeak. 
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Fig. 2.25 Comparison of measured and predicted torque-speed characterstics of 10-pole/12-

slot prototype machine. 
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2.6. Conclusions 

The frozen permeability method has been used to analyse the influence of magnetic 

saturation due to the PMs and d- and q-axis currents on the machine main parameters, such 

as the PM flux linkage and dq-axis inductances, of fractional-slot PM machines having 

concentrated windings. The analyses show that the q-axis PM flux linkage, the influence of 

d-axis current on the d-axis PM flux linkage, and the cross-coupling effect on the dq-axis 

inductances can be neglected in the calculation of the torque-speed characteristics of such 

machines. The partial cross-coupling model is compared with the direct FE and dq-axis flux 

linkage methods. A good agreement has been achieved. The analysis has also been verified 

by the experimental results. Comparing with the full cross-coupling technique, the partial 

cross-coupling model is much faster and less complicated, while it also exhibits high 

accuracy for this kind of machines.  
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Chapter 3: Influence of Additional Air Gaps between 

Stator Segments on Cogging Torque of Permanent 

Magnet Machines Having Modular Stators 

3.1. Introduction  

Highly efficient electrical machines are desirable in many industrial and commercial 

applications. Permanent magnet (PM) machines are the most suitable candidates, since they 

inherently exhibit high efficiency as well as high power density [131]. They have been 

intensively investigated to further improve their performance and overcome their 

disadvantages. For example, many effective techniques, i.e. rotor and magnet shaping and 

skewing, have been investigated and proposed to minimise the cogging torque, which is one 

of the main sources of torque ripple in the PM machines [35, 37, 38, 40, 41, 132, 133]. On 

the other hand, from the cost point of view, it is required to simplify the manufacturing 

process, especially in mass production. The modular stator, e.g. individual stator tooth/back-

iron segments, Fig. 3.1(a), or separated stator tooth and back-iron segments, Fig. 3.1(b), is a 

key solution to easing the manufacturing process, particularly stator winding process. 

However, due to the manufacture limitations and tolerances, additional air gaps exist 

between the stator teeth and yoke, Fig. 3.1. Moreover, such gaps could be non-uniform.  

In general, the influence of the manufacturing tolerances, errors and defects on the 

electromagnetic performance can be negligible, but it is more significant on the cogging 

torque [42, 43]. For example, the stator asymmetry, which results from the manufacturing 

tolerances, can cause a significant increase in the cogging torque magnitude and generate 

low order cogging torque components [43]. Also, the assembly tolerance as well as the PM 

imperfections can cause additional cogging torque components [44-46, 134, 135]. 

Furthermore, in practice, the effectiveness of cogging torque reduction techniques could be 

limited or diminished by the manufacturing defects [47]. A combined analytical and 

numerical technique to account for the manufacturing tolerance during the machine design 

process has been proposed in [48]. However, the influence of the described additional stator 

gaps in the machine that has a modular stator, Fig. 3.1, has never been examined. Therefore, 

a detailed theoretical and experimental study is carried out in this chapter to investigate the 

influence of such gaps and their non-uniformity on the cogging torque and effectiveness of 
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the rotor step skew in a PM machine, which has a modular stator with separated stator teeth 

and back-iron segments, together with the back-emf waveform and output torque. 

 

(a) Individual stator tooth/back-iron 

 

(b) Separated stator tooth and back-iron (prototype machine) 

Fig. 3.1 Alternate modular stator lamination structures. 
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3.2. Prototype Machine  

The analysed prototype machine, which is shown in Fig. 3.2 and Table 3.1, is similar to the 

fractional-slot 10-pole/12-slot IPM machine that has been investigated in chapter 2. 

However, in order to ease the winding process, since this machine will be produced in mass, 

the machine, which is analysed in this chapter, is designed with a modular stator. For 

mechanical purposes and also to further decrease the cogging torque, the closed slot design 

is employed, as shown in Fig. 3.1(b), although such design results in a small reduction in the 

electromagnetic performance of the machine, as will be shown in next chapters.  

As mentioned in chapter 2, this prototype machine will be operated in a smooth electric 

power steering system. Therefore, in order to satisfy the output torque requirements for such 

application, the step-skewed rotor with shaped pole face are maintained. As mentioned 

before due to the manufacturing limits, there are additional stator gaps between stator teeth 

and yoke. During the manufacturing, a considerable effort was made to significantly reduce 

the length of such gaps to practically possible minimal value. Furthermore, an inter-locking 

technique is employed axially between the laminations in the stator teeth and yoke to 

improve the mechanical strength and integrity of stator laminations, thus to minimize the 

possibility of mechanical deformation and tolerance. Theoretically, the cogging torque of 

this machine should be well suppressed by using the mentioned techniques. However, an 

unexpected large cogging torque still exists in the prototype machine, which is one of the 

mass produced machines. In fact, this has motivated the investigations of this chapter.  

Many manufacturing defects and errors could be behind such unexpected measured cogging 

torque, [42-47, 134, 135], for example it can be due to: 

a). Stator and/or rotor asymmetry; 
 

b). Mechanical deformation during manufacturing or assembly; 
 

c). PM imperfection, e.g. placement, magnetisation and/or strength.  

 

In addition, the large cogging torque could be also due to the presence of the additional 

stator gaps or their non-uniformity, which has a large probability to occur due to the 

manufacturing tolerances. Therefore, the influence of such possible defect on the cogging 

torque of the prototype machine is investigated. Consequently, the reason for the unexpected 

measured cogging torque is clearly explained. In addition, the back-emf waveform and 

output torque of the machine will be also examined. For this propose, the finite element (FE) 
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analyses are utilised and validated by the experimental measurements. It is worth mentioning 

that the addition stator gaps of the prototype machine are approximately 0.05 mm. However, 

different lengths will be investigated in this chapter. 

  

(a) Lamination cross-section 

 

(b) Stator and rotor 
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(c) Open-circuit equal potential distributions 

 

(d) Load equal potential distributions, at 150Apeak phase current 

Fig. 3.2 Lamination cross-section, stator and rotor and equal potential distributions of 

prototype machine. 
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3.3. Influence of Closed Slot and Rotor Step Skew 

In order to highlight the influence of the closed slot and rotor step skew on the 

electromagnetic performance, particularly the cogging torque, of the analysed machine. The 

predicted cogging torque, back-emf and output torque waveforms of the machines having 

un-skewed rotor/open slot stator, un-skewed rotor/closed-slot stator and step-skewed 

rotor/closed-slot stator are compared in Fig. 3.3. It should be mentioned that the influence of 

the additional stator gaps has not been accounted for yet in these calculations, i.e. such gaps 

are assumed to be zero. Fig. 3.3(a) shows that the machine without skew and with open slot 

has a relatively small cogging torque, since it has shaped rotor and a relatively large least 

common multiple between the pole and slot numbers [35]. However, the cogging torque can 

be further reduced by 66% by designing the stator with closed-slot. Theoretically, step 

skewing the rotor by 4 steps of 1.5 mechanical degrees for every step can totally eliminate 

the cogging torque. However, it will be shown later that the additional gaps between stator 

teeth and yoke segments can cause a significant difference. On the other hand, the closed slot 

design reduces the electromagnetic performance of the machine, i.e. it is about 4% down in 

the output torque, as shown in Fig. 3.3(c). This is due to the air gap flux density reduction, 

which in its turn is due to the extra flux leakage through the slot opening iron bridges. This 

effect is further discussed and illustrated in the next section. Furthermore, as mentioned 

before, the influence of the rotor step skew on such performance is negligibly small. 

 

(a) Cogging torque waveform 
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(b) Back-emf waveform, at 400 rpm 

 

(c) Output torque waveform, at Iq=150A, Id=0A 

Fig. 3.3 Comparison of cogging torque, back-emf and output torque waveforms of analysed 

machines with un-skewed rotor/open slot stator, un-skewed rotor/closed-slot stator and step-

skewed rotor/closed-slot stator. 
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Table 3.1 Major Parameters of Prototype Machine 

Parameter Dimension Parameter Dimension 

Stator outer diameter 90 mm Stator inner diameter 53 mm 

Rotor maximum diameter 52 mm Rotor minimum diameter 50 mm 

Minimum air gap length 0.5 mm Maximum air gap length 1.5 mm 

Stator yoke width 3 mm Tooth width 7.4 mm 

Magnet thickness 3.4 mm Magnet length 12.2 mm 

Magnet remanence 1.2 T 
Magnet relative 

permeability 
1.05 

Shaft diameter 36 mm Rotor step skew angle 4×1.5 mech.deg 

3.4. Influence of Uniform Additional Stator Gaps 

The cogging torque of the un-skewed machine has been predicted for different additional 

uniform stator gap lengths and compared in Fig. 3.4. For relatively small additional stator 

gaps, i.e. 0.05 mm, the cogging torque slightly decreases due to increased effective air gap 

and thus reduced air gap flux density. However, when the additional stator gaps are larger, 

more flux leakage will go through the tooth tips and slot opening iron bridges. Such bridges 

gradually become saturated. Therefore, the cogging torque becomes larger for relatively 

large gaps, i.e. 0.1 mm or larger.  

 

Fig. 3.4 Variation of predicted cogging torque waveforms of analysed machines having 

different uniform additional stator gaps.  
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In order to clearly illustrate this phenomenon, both the normal and tangential open-circuit air 

gap flux density waveforms and their harmonics when machines are ideal (no additional 

stator gaps) or having 0.1mm uniform additional stator gaps are shown in Figs. 3.5-8. The 

presence of the additional stator gaps leads to a slight reduction in the normal air gap flux 

density, Fig. 3.5 and Fig. 3.6, since the total effective air gap length including both real air 

gap and additional stator air gap is increased. On the other hand, the tangential air gap flux 

density is larger in the machine with additional stator gaps, Fig. 3.7 and Fig. 3.8. This is 

because the presence of the additional stator gaps increases the magnetic reluctance through 

stator teeth and yokes, which causes extra flux leakage across the slot opening, in turn this 

increases the cogging torque. As a percentage, the relative reduction of the normal flux 

density due to the additional stator gap is smaller than the relative increase of the tangential 

flux density due to the same reason. In other words, the product of the normal and tangential 

harmonics having the same order is larger when additional stator gaps exist, as illustrated in 

Fig. 3.9. This explains the reason behind the larger cogging torque in the machine with 

additional stator gaps, since the cogging torque is strongly related to the product of the 

normal and tangential air gap flux density components [136]. For the same reason, the larger 

the stator gaps the larger the cogging torque, as shown in Fig. 3.4.  

It should be mentioned that the rotor step skewing can still effectively eliminate the cogging 

torque, no matter whatever the length of the additional stator gaps, as confirmed in Fig. 3.10, 

which compares the predicted cogging torque waveforms of machines having 0.1 mm 

additional stator gaps and un-skewed and step skewed rotors, because the uniform additional 

stator gaps have no effect on the period of cogging torque. However, on the other hand, the 

additional stator gaps cause reduction in the back-emf, thus in the output torque, as shown in 

Fig. 3.11. This is due to lower normal air gap flux density, Fig. 3.5, which in turn is due to 

the relatively larger effective air gap. However, as shown in Fig. 3.11(b), the influence on 

the output torque is reasonably small when such gaps are relatively small, e.g. the same as 

the prototype machine, 0.05 mm. 
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Fig. 3.5 Radial open-circuit air gap flux density waveforms of machines, with and without 

0.1mm additional stator gaps. 

 

Fig. 3.6 Radial open-circuit air gap flux density harmonics of machines, with and without 

0.1mm additional stator gaps. 
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Fig. 3.7 Tangential open-circuit air gap flux density waveforms of machines, with and 

without 0.1mm additional stator gaps. 

 

Fig. 3.8 Tangential open-circuit air gap flux density harmonics of machines, with and 

without 0.1mm additional stator gaps. 
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Fig. 3.9 Multiplication of radial and tangential harmonics of open-circuit air gap flux density 

of machines, with and without 0.1mm additional stator gaps. 

 

Fig. 3.10 Comparison of cogging torques of un-skewed and rotor-step skewed machines 

having uniform stator gaps of 0.1mm. 
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(a) Back-emf waveform, at 400 rpm 

 

(b) Output torque waveform, at Iq=150A, Id=0A 

Fig. 3.11 Comparison of phase back-emf and output torque waveforms of machines, without, 

with 0.05mm and with 0.15mm additional stator gaps.  
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3.5. Influence of Non-uniform Additional Stator Gaps 

In the foregoing analysis, the additional stator gaps are assumed to be all uniform. However, 

due to the manufacturing tolerances such gaps are most likely to be non-uniform in practice. 

The possible scenarios of non-uniformity are unlimited. One outstanding gap of different 

lengths, viz. 20%, 50%, 100% or 200% larger than other additional gaps of 0.05mm length, 

has been studied first. 

Fig. 3.12 compares the cogging torque of un-skewed machines having uniform additional 

stator gaps of 0.05mm and non-uniform additional stator gaps, e.g. non-uniform gaps 

(0.06/0.05mm) means that one gap is 0.06mm and the rest are 0.05mm. Comparing with the 

ideal case (all gaps are 0.05mm), the cogging torque magnitude of non-uniform case is 

significantly larger. In addition, its periodicity is also increased. For large tolerances, the 

cogging torque increase becomes even more significant, as illustrated in Fig. 3.13.  

The cogging torque period is equal to 360p/QPS electrical degree [35], where p and QPS are 

the pole pair number and the least common multiple between pole and slot numbers, 

respectively. For the 10 pole-12 slot combination, the least common multiple is 60, thus the 

cogging torque period is 30 electrical degrees. The presence of uniform stator gaps has no 

effect on the cogging torque periodicity as shown in Fig. 3.4, since the cogging toque is still 

produced by the interaction between 10 poles and 12 stator slots. However, when the stator 

has one outstanding stator gap, the stator lamination loses its original geometrical symmetry, 

i.e. the stator lamination geometrically repeats once over the whole circumference, which 

can be deemed as one slot. This slot interacts with the pole number and results in a least 

common multiple of 10 instead of 60. Thus, the cogging torque period changes from 30 to 

180 electrical degrees. The increase of cogging torque magnitude due to the non-uniform 

additional gaps can be also explained from the change of the air gap flux density point of 

view. For this purpose, the normal and tangential components of open-circuit air gap flux 

density for both the uniform additional stator gaps (0.05mm) and non-uniform additional 

stator gaps (0.06mm/0.05mm) have been calculated and compared in Fig. 3.14. The normal 

open-circuit air gap flux densities for both cases are nearly the same. However, the tangential 

open-circuit air gap flux density of the machine with non-uniform additional stator gaps is 

much larger. Thus, the product of the normal and tangential air gap flux density harmonics 

of the machine with non-uniform additional stator gaps is larger, Fig. 3.15, in turn this leads 

to a larger cogging torque. 
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Fig. 3.12 Comparison of cogging torque waveforms of un-skewed machines having uniform 

and non-uniform additional stator gaps, one gap is larger/the rest are uniform. 

 

Fig. 3.13 Variation of peak cogging torque with the length of one outstanding additional 

stator gap. 
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(a) Radial component waveform 

 

(b) Radial component harmonics 
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(c) Tangential component waveform 

 

(d) Tangential component harmonics 

Fig. 3.14 Comparison of open-circuit air gap flux density waveforms and harmonics of 

machines having uniform stator gaps of 0.05 mm and non-uniform stator gaps (one gap is 

0.06mm/the rest are 0.05 mm). 
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Fig. 3.15 Multiplication of radial and tangential harmonics of open-circuit air gap flux 

density of machines having uniform stator gaps of 0.05 mm and non-uniform stator gaps 

(one gap is 0.06mm/the rest are 0.05 mm). 

The most detrimental effect of the non-uniform additional stator gaps on the cogging torque 

is the increase of cogging torque periodicity. It makes the well-known skewing method loses 

its expected strong capability of cogging torque reduction. By comparing Fig. 3.16 and Fig. 

3.12, it can be seen that the skewing technique only suppresses the high order cogging torque 

harmonics but has negligible effect on the dominant component, the lower order cogging 

torque resulting from the non-uniform stator gaps, while this skewing technique shows 

significant reduction effect for the machines with uniform stator gaps as shown in Fig. 3.10. 

Therefore, the cogging torque of machine has non-uniform additional stator gaps is nearly 

the same no matter whether the rotor is skewed or not, as confirmed in Fig. 3.13. In addition, 

the presence of the non-uniform additional stator gaps has a negligible influence on the back-

emf waveform and thus on the average output torque, as shown in Fig. 3.17(a) and (b), 

respectively. This is because the influence of such gaps on the normal air gap flux density is 

also negligible, as illustrated in Fig. 3.14(a). However, on the other hand, the non-uniformity 

of such gaps results in larger torque ripple, i.e. the larger the non-uniform additional gaps are 

the larger the peak to peak torque ripple, as shown in Fig. 3.17(c). The torque ripple increase 

is mainly due to the larger cogging torque, Fig. 3.16 and Fig. 3.12, since the influence of 

such non-uniformity on back-emf waveform is significantly small, as shown in Fig. 3.17(a). 
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Furthermore, it is worth mentioning that in addition to larger peak to peak torque ripple, the 

non-uniformity causes also change in the torque ripple period, i.e. it becomes 180 electrical 

degrees, as shown in Fig. 3.18. This is again because the stator lamination will lose its 

original geometrical symmetry when the additional stator gaps are non-uniform. 

 

Fig. 3.16 Comparison of cogging torque waveforms of step-skewed rotor machines having 

uniform and non-uniform additional stator gaps, one gap is larger/the rest are uniform. 

 
(a) Back-emf waveforms, at 400 rpm 
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(b) Average output torque, at Iq=150A, Id=0A 

 

(c) Peak to peak torque ripple, at Iq=150A, Id=0A 

Fig. 3.17 Comparison of back-emf, average output torque and torque ripple of machines 

having uniform and non-uniform additional stator gaps, one gap is larger/the rest are 

uniform. 
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Fig. 3.18 Comparison of torque ripple waveform of machines having uniform stator gaps of 

0.05 mm and non-uniform stator gaps (one gap is 0.15mm/the rest are 0.05 mm).  

In order to further study the influence of the non-uniformity of such gaps on the cogging 

torque, more non-uniform scenarios will be investigated. The variation of cogging torque 
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neighbouring the cogging torque magnitude is the same and slightly lower than its 
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since the maximum extra flux leakage of one outstanding gap takes place simultaneously  

with its minimum counterpart of the other outstanding gap, Fig. 3.21. Furthermore, in order 

to investigate the influence of a more random non-uniform scenario, the cogging torque is 

calculated when the machine has 12 outstanding additional stator gaps, i.e. 0.05, 0.06, 0.07, 

0.08, 0.9 and 0.1 mm and each two neighbour gaps have the same length. Due to more flux 

leakage through the tooth tips and since the original geometrical symmetry of the stator 

lamination is lost. The cogging torque due to such non-uniformity is significantly larger and 

its period also becomes 180 electrical degrees, thus the effectiveness of skew diminishes, as 

illustrated in Fig. 3.22. 

 

Fig. 3.19 Variation of cogging torque magnitude against number of neighbouring 

outstanding additional stator gaps, outstanding gap length is 0.1mm, others are 0.05mm 

change the non-uniform in figure (uniform). 
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Fig. 3.20 Cogging torque magnitude against location of two outstanding additional stator 

gaps, outstanding gap length is 0.1mm, others are 0.05mm. 

 

Fig. 3.21 Cross-section of prototype machine with location of additional stator gaps. 
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(a) Without skew 

 

(b) With rotor step skew 

Fig. 3.22 Comparison of cogging torque waveforms of machines having 0.05 mm uniform 

and non-uniform additional stator gaps, non-uniform gaps are: 0.05, 0.06, 0.07, 0.08, 0.9 and 

0.1 mm and each two neighbour gaps have the same length. 
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3.6. Experimental Validation 

In order to measure the cogging torque waveform, the test rig, which is shown in Fig. 3.23 

and described in details in [137], is utilised. The jaws of the lathe machine hold the stator of 

the motor, while the rotor is connected to the beam which is rested on the digital scale with a 

pre-load to ensure that the torque to be measured is uni-directional. By rotating the stator, the 

torque acting on the rotor is measured at different relative positions between the stator and 

the rotor. The prototype machine, which is picked up from the mass production line, has a 

step-skewed rotor and a nominal additional stator gap length of 0.05mm. Theoretically, its 

cogging torque should be eliminated by the skewing technique if all additional stator gaps 

are exactly 0.05mm in length, Fig. 3.24(a). However, the measured cogging torque is 

significantly larger than the predicted one. The period of the measured cogging torque is 180 

electrical degrees, which seems resulting from the interaction between 1 slot and 10 poles. A 

good agreement between the measured and the predicted cogging torque of the machine 

having one additional stator gap of 0.06mm length and 11 additional stator gaps of 0.05mm 

length is achieved in both the magnitude and periodicity. It indicates that the relative large 

measured cogging torque is most likely due to the non-uniform additional stator gaps, 

although the non-uniformity can be much more complicated in practice. It is worth 

mentioning that the presented analysis method can be further extended to investigate any 

possible non-uniform case of such additional gaps. On the other hand, the presence of the 

non-uniform additional stator gaps has negligible effect on the electromagnetic performance, 

i.e. the back-emf waveform and average output torque, as confirmed by both the prediction 

and measurement, Fig. 3.24(b). 

 

Fig. 3.23 Test rig of measuring cogging torque (the same as Fig. 2.21(a), duplicated here to 

ease discussion). 
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(a) Cogging torque waveforms 

 

(b) Back-emf waveforms, at 400 rpm 
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(c) Average output against phase current, at 0 degree current angle 

Fig. 3.24 Comparison of measured and predicted cogging torque and back-emf waveforms 

and average output against phase current of machines having step-skewed rotor and uniform 

stator gaps of 0.05mm and non-uniform stator gaps (one gap length is 0.06 mm/the rest are 

0.05 mm). 
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3.7. Conclusions 

The influence of the additional stator gaps between segmented stator teeth and yoke, which 

exist due to manufacturing limits, on the electromagnetic performance, particularly the 

cogging torque, of PM machines having modular stators has been analysed. Both uniform 

and non-uniform additional stator gaps are studied. However, in practice, the latter is the 

most likely to occur due to the manufacture tolerances. It has been found that the uniform 

additional stator gaps increase the cogging torque amplitude but has no effect on its 

periodicity, while the non-uniform stator gaps significantly increase both the amplitude and 

periodicity of the cogging torque. Therefore, the skewing technique, which is a very 

effective cogging torque reduction method, becomes ineffective when the non-uniform 

additional stator gaps exist. On the other hand, the non-uniform additional stator gaps have a 

negligible influence on the normal air gap flux density, thus on the average output torque of 

the machine.  

In the next chapter, the hybrid slot design, i.e. sandwiched open and closed slots, will be 

employed and investigated to further improve the electromagnetic performance of the 

analysed machine, which will be compared for three different slot opening designs, i.e. open, 

closed and hybrid slots. 
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Chapter 4: Investigation of Torque-Speed 

Characteristics and Cogging Torque of Fractional 

Slot IPM Brushless AC Machines Having Alternate 

Slot Openings 

4.1. Introduction  

Due to their attractive inherent merits, such as high torque density and efficiency, the 

permanent magnet (PM) machines are strong candidates for applications where the space, 

weight and fuel consumption are critical criteria, e.g. automobile and aerospace. The 

fractional-slot PM machines, which employ concentrated winding, additionally exhibit 

inherently low cogging torque and copper loss [6, 84]. Moreover, as mentioned earlier, the 

IPM machines can offer relative wide flux weakening capability and strong demagnetization 

withstanding [8, 14, 32, 34, 61]. Therefore, the PM machines have been widely investigated 

and analyzed in literature, [6, 8, 14, 20, 32, 34, 35, 38, 40, 42, 43, 47, 49-52, 54-57, 61, 64, 

65, 84, 125, 132, 138-140]. However, such machines are still under intensive investigation, 

since some issues can be further improved and some phenomena require more understanding 

in depth, such as the torque-speed characteristics, magnetic cross-coupling and cogging 

torque, which are the research topics of this chapter. 

The dq-axis machine models, thus the dq-axis parameters, are often utilized to predict the 

torque-speed characteristics, also to control the PM machines [49, 50]. Therefore, in order to 

guarantee the maximum performance out of the machine, the dq-axis parameters should be 

accurately determined [51]. Normally, the PM machines are operated under high electric 

loading, thus the magnetic saturation level is high. Therefore, the dq-axis parameters could 

be correlated due to the magnetic cross-coupling between both axes [50-52]. This 

phenomenon has been deeply investigated in literature. In addition, different techniques to 

calculate the dq-axis parameters with due accounting for the cross-coupling have been 

presented and utilised, [20, 54-57, 139].  

On the other hand, some techniques, such as the total or partial closed slot opening designs 

as well as the rotor step skewing, can significantly decrease the cogging torque, as shown in 

chapter 3 and according to [35, 38, 40]. However, the effectiveness of such techniques may 

be limited or even diminished due to the manufacturing tolerances, [47, 132]. Furthermore, 
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the manufacturing errors could significantly increase the cogging torque [42]. For example, 

the stator asymmetry, which may be resulted by the manufacturing process, could cause high 

local saturation, which in turn enlarges the cogging torque and generates additional low 

order cogging torque components [43]. 

The skew can be accounted for by the 3D analysis. However, this method is very time 

consuming and could be not practical for some machines. Therefore, alternatively, the 

skewed machine can be analyzed by dividing its axial length into several uniform slices, then 

the 2D FE modeling can be used to analyse each slice separately. Consequently, the total 

solution is the sum of all slice results by taking into account of the slice positions [65]. This 

technique is more practical and accurate, particularly when the machine is step skewed rather 

than fully skewed. Furthermore, the skew can also be accounted for by using a hybrid 

technique, i.e. 2D FE and analytical, as proposed in [64], or by introducing a skewing factor 

as suggested in [140]. 

This chapter investigates the influence of alternate slot openings, viz. open slot, Fig. 4.1(a), 

closed slot, Fig. 4.1(b), and hybrid slot (sandwiched open and closed slots), on the torque-

speed characteristics and cogging torque of 10 pole-12 slot IPM machines having un-skewed 

and step skewed rotors. The cross-coupling magnetic saturation effect and sensitivity of 

cogging torque to the slot openings and manufacturing tolerances are particularly 

highlighted. Furthermore, a 2D FE modeling technique is proposed to analyse the 

performance of the machine with hybrid slot. 

Table 4.1 Prototype Machine Parameters 

Parameter Dimension Parameter Dimension 

Stator Outer Diameter 90 mm Tooth Width 7.4 mm 

Stator Inner Diameter 53 mm Stator Yoke Width 3 mm 

Rotor Maximum Diameter 52 mm Minimum Air Gap Length 0.5 mm 

Rotor Minimum Diameter 50 mm Maximum Air Gap Length 1.5 mm 

Shaft Diameter 36 mm Slot Opening 2 mm 

Magnet Thickness 3.4 mm Magnet Width 12.2 mm 

Magnet Rib Width [Fig. 4.1(b)] 0.7 mm Slot Opening Bridge Thickness 0.5 mm 

Active Axial Length 108 mm Phase Current 150Apeak 

Number of Turns per Phase 36 turn Phase Resistance 0.013 Ω 
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4.2. Analysed Machines and Modeling Techniques 

4.2.1. Analysed Machines 

The analyses will be carried out on the same 10 pole-12 slot IPM machines, which have been 

analysed in the second chapter. However, three different slot openings, viz. open slot, closed 

slot and hybrid slot (sandwiched open and closed slots, as will be described later), are taken 

into account during the investigation. In addition, the rotor step skewed (4 steps axially) is 

also considered. The major parameters of the prototypes are given in Table 4.1. As 

mentioned before, in order to ease winding, the stator teeth and the stator yoke are separated. 

In this case, the stator teeth are stacked together, the coils are pre-wound then placed on the 

teeth stack, which is finally assembled together with the stator yoke, Fig. 4.1(c). An inter-

locking technique is employed axially between the laminations for the stator teeth and yoke 

to improve the mechanical strength and integrity of stator laminations, thus to minimize the 

possibility of mechanical deformation and tolerance. Again, due to the manufacturing limits, 

there may be additional air gaps between the stator teeth and yoke, as illustrated in Fig. 4.1. 

For the prototype machines under investigation, these gaps are approximately 0.05 mm and 

their influence on the machine performance is investigated. 

 

(a) Open slot 

 

(b) Closed slot 
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(c) Prototype rotor and stator, together with wound stator teeth stack before insert into stator 

yoke 

Fig. 4.1 Stator and rotor laminations of prototype machine with different slot openings and 

approximately 0.05 mm additional stator gaps. 

4.2.2. Modeling of Hybrid Slot 

In order to accurately predict the performance of the machine with hybrid slot, the 3D FE 

model should be employed. However, the 3D analysis is very time consuming and 

unrealistic for such machine. Therefore, an alternative 2D FE approximation technique is 

proposed to analyse such machine. In the machine under investigation every two laminations 

having open slot are followed by one closed slot lamination, i.e. over the slot opening the 

ratio of the overall iron axial length to the whole axial length is only 1/3. A 2D 

approximation model can be used to analyse such machine by employing a different 

equivalent material B-H characteristic in the slot opening area. This material should have the 

same field strength (H) as the stator iron but the flux density (B) should be reduced by three 

times compared to the original stator iron flux density, as illustrated in (4. 1) and (4. 2) and 

shown in Fig. 4.2. 

stehyb HH        (4. 1) 

3

ste
hyb

B
B        (4. 2) 

where Hhyb and Hste are the field strength of the hybrid material and lamination steel, Bhyb and 

Bste are the flux density of the hybrid material and lamination steel. 
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Using this method, the back-emf waveform and torque-current angle characteristics of the 

machine with hybrid slot are predicated and compared with their measured counterparts in 

Fig. 4.3. A very good agreement is obtained. Therefore, such method will be utilised in the 

following analyses and investigations.  

 

Fig. 4.2 B-H curves of stator and equivalent slot opening material of the machine with 

hybrid slot. 

 

(a) Back-emf waveform at 400rpm 
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(b) Torque current angle characteistic 

Fig. 4.3 Comparison of 2D FE predicted and measured back-emf waveforme and torque-

current angle characteristic of machine having hybrid slot. 

4.2.3. Modeling of Rotor Skew 

Similar to that described in chapter 3, the skewed machines are analyzed by dividing the 

active length into four equal parts, since the prototype machine rotors have 4 steps of skew, 

each part is analysed independently, then the predicted results are combined for all parts 

together. In order to examine this technique, the back-emf and torque-current angle 

characteristics of machine having closed slot and step skewed rotor are calculated and 

compared with their measured counterparts in Fig. 4.4. It shows that high prediction 

accuracy can be obtained by employing such technique. Therefore, it is utilized in the 

analyses of the skewed machine in this paper. 
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(a) Back-emf waveform, at 400 rpm 

 

(b) Torque-current angle characteristics 

Fig. 4.4 Comparison of 2D FE predicted and measured back-emf waveforme and torque-

current angle characteristic of machine having closed slot and step skewed rotor. 
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4.2.4. Calculating of Torque Speed Characteristics 

As shown before, using the dq-axis parameters, the output torque of PM machines can be 

calculated by: 

])([5.1 qdqdqmd IILLIpT       (4. 3) 

where Id, Iq, md , Ld, Lq and p are dq-axis currents, PM flux linkage, dq-axis inductances and 

pole pair numbers, respectively.  

The cross-coupling level in the torque calculation depends on the estimation method of the 

dq-axis inductances and PM flux linkage. If the dq-axis inductances are predicted as function 

of its corresponding current, (4. 4) and (4. 5), and the PM flux linkage as a constant value at 

zero currents, (4. 6), the cross coupling is not considered, i.e. no cross-coupling. 
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        (4.5) 

)0(mdmd          (4. 6) 

where )( dd I , )( qq I  and )0(md  are the dq-axis flux linkages each as function of its 

corresponding current only and PM flux linkage at zero dq-axis currents, respectively. 

To fully account for the magnetic cross-coupling, i.e. full cross-coupling, the dq-axis 

inductances should be calculated as function of both dq-axis currents, (4. 7) and (4. 8), while 

the influence of the q-axis current on the PM flux linkage should be accounted for, (4. 9). 
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)( qmdmd I        (4.9) 

22 )]([)( mdddphqqqphdph ILRIILRIV     (4. 10) 

where ),( qdd II , ),( qdq II , )( qmd I ,  , and phR
 
are the dq-axis flux linkages each as 

function of both d- and q-axis currents, PM flux linkage as function of q-axis current while 

the d-axis current is zero, rotating speed and phase winding resistance, respectively. 

The predicted inductances and PM flux linkage together with the torque equation, (4. 3) and 

with the restriction of the voltage equation, (4. 10), can then be used to analytically calculate 

the torque-speed characteristics, the method is described in details in [49]. In order to 

examine the accuracy of such method together with the hybrid slot and step skewed rotor 

analysis techniques, the dq-axis inductances, Fig. 4.5, and PM flux linkage, Fig. 4.6, of the 

machine with hybrid slot and step skewed rotor have been predicted and used to analytically 

calculate the torque-speed characteristics, which are compared with their measured 

counterparts in Fig. 4.7. It shows a good agreement. Therefore, these method and techniques 

are utilized to predict the torque-speed characteristics and cogging torque of the three 

prototype machines with additional stator gaps of 0.05mm, with/without considering the 

cross-coupling and rotor step skew. It is worth mentioning that the machine is operated at its 

maximum torque per ampere up to 400 rpm, i.e. the constant torque region, then the dq-axis 

currents are adjusted to satisfy the voltage limitation, i.e. the flux weakening operation 

region. The variations of the corresponding dq-axis currents are illustrated in Fig. 4.8.  
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Fig. 4.5 Variation of dq-axis inductances against dq-axis currents of machine having hybrid 

slot and step skewed rotor. 

 

Fig. 4.6 Variation of PM flux linkage against q-axis current of machine having hybrid slot 

and step skewed rotor. 
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Fig. 4.7 Comparison of measured and predicted torque-speed characteristics of machines 

having hybrid slot and step skewed rotor. 

 

Fig. 4.8 Variation of dq-axis currents during torque-speed characteristics prediction of 

machine having hybrid slot and step skewed rotor. 
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4.3. Influence of Slot Opening 

4.3.1. Electromagnetic Performance 

The closed slot design is normally utilized to minimize the cogging torque, since this torque 

is mainly caused by the interaction between the PMs and the stator slotting [35]. However, 

such design also causes a relatively large reduction in the PM flux linkage, as shown in 

Table 4.2. This is due to the extra flux leakage through the slot iron bridges, as has been 

illustrated in last chapter. Consequently, the closed slot design results in lower 

electromagnetic performance, as confirmed in Fig. 4.9(a). Alternatively, the machine can be 

designed with axially hybrid slot openings (air + iron). This leads to a relatively small PM 

flux linkage reduction, as shown in Table 4.2, since the alternate slot iron bridges become 

highly saturated. Thus, the machine with hybrid slot exhibits nearly the same 

electromagnetic torque as the machine with open slot (the original machine), as shown in 

Fig. 4.9(a), while its cogging torque reduction is very similar to the totally closed-slot 

opening (closed slot) design, as confirmed in Fig. 4.9(b).  

 

(a) Electromagnetic torque 

0

2

4

6

8

10

12

14

16

18

20

0 5 10 15 20 25 30 35 40 45

open slot
closed-slot
hybrid slot 

O
u

tp
u

t 
T

o
rq

u
e

(N
.m

)

Rotor Position (deg)



110 
 

 

(b) Cogging torque 

Fig. 4.9 Comparison of predicted electromagnetic torque and cogging torque of machines 

having three alternate slot openings. 

Table 4.2 PM Flux Linkage at Id=0, Iq=150 Apeak 
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open slot, since the PM flux linkage reduction is relatively negligible, as shown in Table 4.2. 

The rotor step skewing causes a negligible reduction in the characteristics for all machines, 

and the behaviour is still exactly the same as the un-skewed machines. 

 

(a) Torque-speed characterstics, without skew 

 

(b) Torque-speed characteristics, with rotor step skew 

Fig. 4.10 Comparison of torque-speed characteristics of analysed machine under alternate 

slot openings, without/with rotor step skew. 
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4.3.3. Magnetic Cross Coupling 

In order to investigate the influence of different slot openings on the magnetic cross-

coupling level, the torque-speed characteristics of machines having different slot openings 

have been predicted with and without cross-coupling consideration, as illustrated in Fig. 

4.11. The machine with closed slot exhibits a significant cross-coupling level in the constant-

torque region, while in the flux weakening region the cross-coupling influence gradually 

diminishes, Fig. 4.11(b). On the other hand, in the machine with hybrid slot the influence of 

the cross-coupling is negligible all over the operation range, as shown in Fig. 4.11(c). The 

same behaviour is found in the machine with open slot, Fig. 4.11(a). This is due to different 

PM flux linkage variations in the slot openings, as shown in Fig. 4.12. For machines having 

open slot and hybrid slot, the influence of the q-axis current on the PM flux linkage is 

relatively small since there is no extra flux leakage in the open slot design and it is relatively 

small in the hybrid slot design as the alternate slot iron bridges become saturated, especially 

at high q-axis current. On the other hand, the PM flux linkage varies significantly with q-axis 

current in the closed slot design, it is relatively low when the q-axis current is small since the 

flux leakage is relatively larger. However, the slot iron bridges become gradually saturated 

when the current increases. This leads to less flux leakage, thus larger PM flux linkage, as 

can be clearly noticed in Fig. 4.12. Furthermore, although the influence of the cross-coupling 

on dq-axis inductances depends on the slot opening type, as illustrated in Fig. 4.13, the 

contribution of such inductances to the output torque is negligibly small, i.e. ~3%. Therefore, 

it can be concluded that in the fractional-slot PM machines the consideration of the cross-

coupling on the PM flux linkage is the most important. Moreover, as mentioned before the 

additional stator gaps in the prototype machines are ~0.05mm. However, in order to 

highlight the influence of larger gaps, the variations of PM flux linkage against the 

additional stator gap length of machines having different slot openings is shown in Fig. 4.14. 

As expected, for all machines larger additional gaps result in larger PM flux linkage 

reduction, since the effective air gap becomes larger. But such decrease varies according to 

the slot opening material, which in turn determines the saturation level in the slot opening 

bridges and tooth tips.  
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(a) Open slot 

 

(b) Closed slot 
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(c) Hybrid slot 

Fig. 4.11 Comparison of predicted torque speed characteristics of machines having aternate 

slot openings. 

 

Fig. 4.12 Variation of PM flux linkage against q-axis current (cross-coupling effect) of 

machines having alternate slot openings. 
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(a) Open slot 

 

(b) Closed slot 
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(c) Hybrid slot 

Fig. 4.13 Variation of dq-axis inductances of machines having alternate slot openings. 

 

Fig. 4.14 Variation of PM flux linkage of machines having alternate slot openings and 

different uniform additional stator gaps at Iq=150Apeak. 
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4.3.4. Cogging Torque 

As mentioned earlier, due to the manufacturing tolerances and limits there are additional 

stator gaps between the stator teeth and yoke. Therefore, the influence of such gaps on the 

cogging torque of machines having different slot openings is investigated in this section. As 

shown in Fig. 4.15, the sensitivity of the cogging torque against the additional gaps depends 

very much on the slot opening type. This is due to the different saturation levels in the tooth 

tips and different slot opening bridges, i.e. air, iron or hybrid (air + iron). In the machine 

with open slot, the cogging torque significantly increases for small additional stator gaps 

since larger additional gaps enlarge the effective air gap length, this results in extra flux 

leakage at the tooth tips. However, when the additional stator gaps are relatively large, e.g. 

0.15 mm or larger, the increase in cogging torque becomes less significant, Fig. 4.15(a). This 

is because the tooth tips become gradually saturated, leading to a relatively lower extra flux 

leakage through these tips. This behaviour is different in the machine with closed slot, the 

cogging torque at 0.05 mm additional stator gaps is lower than its counterpart without gaps. 

However, it gradually increases for larger additional gaps, as shown in Fig. 4.15(b). Because 

the small increase in the effective air gap length causes more flux leakage through the slot 

iron bridges, this reduces the cogging torque. However, when the additional gaps are larger 

such bridges gradually become saturated, leading to more flux leakage through the tooth tips 

and thus larger cogging torque. The machine with hybrid slot combines the behaviours of the 

two foregoing machines, the cogging torque remains nearly the same when the additional 

stator gaps are increased to 0.05 mm, because the alternate slot iron bridges start to saturate. 

On the other hand, the cogging torque gradually increases when the additional gaps are 

larger, Fig. 4.15(c), since these bridges become saturated. 
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(a) Open slot 

 

(b) Closed slot 
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(c) Hybrid slot 

Fig. 4.15 Variation of cogging torque of machines having alternate slot openings and 

different uniform additional stator gaps. 
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(a) Open slot 

 

(b) Closed slot 
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(c) Hybrid slot 

Fig. 4.16 Comparison of predicted cogging torque of machines having uniform stator gaps of 

0.05 mm, and non-uniform stator gaps (one gap is 0.1mm/the rest are 0.05 mm). 
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4.4. Experimental Validation 

4.4.1. Torque-Speed Characteristics 

The torque-speed characteristics of three prototypes, i.e. machine with closed slot and step 

skewed rotor, machine with hybrid slot and without skew and machine with hybrid slot and 

step skewed rotor, are measured and compared with the predicted counterparts with and 

without cross-coupling consideration in Fig. 4.17. It further confirms that the influence of 

cross-coupling largely depends on the slot opening type and it is more significant in the 

machine with closed slot. Furthermore, it also shows that the closed slot design results in a 

relatively large performance reduction. In addition, the influence of the rotor step skewing 

on the torque-speed characteristics is negligible. 

 

(a) Closed slot with step skewed rotor 
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(b) Hybrid slot without skew 

 

(c) Hybrid slot with step skewed rotor 

Fig. 4.17 Comparison of measured and predicted torque-speed characteristics of machines 

having alternate slot openings. 
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4.4.2. Cogging Torque 

The cogging torque of the prototype machines has been measured and compared with the 

predicted cogging torque when the additional stator gaps are uniform, i.e. all gaps are 0.05 

mm, in Fig. 4.18. For all prototype machines the measured cogging torque is significantly 

larger and also its periodicity has become 180 deg rather than 30 deg. This phenomenon is 

the same as the machine with non-uniform additional stator gaps, Fig. 4.16. Therefore, the 

large measured cogging torque is most likely due to the presence of non-uniform additional 

stator gaps. For further illustrations, the cogging torque of the prototype machines with non-

uniform additional stator gaps, i.e. one gap is 0.06 mm and the rest are 0.05 mm, have been 

predicted and also plotted in Fig. 4.18. For all prototype machines, there is a good agreement 

between the measured cogging torque and its predicted counterpart when the additional 

stator gaps are non-uniform. Thus, the significantly large measured cogging torque is most 

likely due to the additional stator gaps non-uniformity, which in turn is due to the 

manufacturing tolerance, although the non-uniformity can be much more complicated in 

practice. However, this non-uniformity has no noticeable influence on the torque-speed 

characteristics, as confirmed in Fig. 4.17.  
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(b) Hybrid slot without skew 

 

(c) Hybrid slot with rotor step skew 

Fig. 4.18 Comparison of measured and predicted cogging torque of machines having 

uniform stator gaps of 0.05 mm, and non-uniform stator gaps (one gap is 0.06 mm/the rest 

are 0.05 mm). 
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4.5. Conclusions 

This paper has investigated the influence of alternate slot openings, i.e. open, closed and 

hybrid slot, on the torque-speed characteristics and cogging torque of the fractional-slot IPM 

machines. The investigations have accounted for the influence of such slot openings on the 

cross-coupling level and manufacturing limitations and tolerance. In addition, a 2D FE 

technique to analyse the machine with hybrid slot has been proposed and examined. The 

machine with closed slot, which exhibits the lowest electromagnetic performance due to the 

relatively larger flux leakage through the slot iron bridges, exhibits also a significantly large 

magnetic cross-coupling level comparing with the other two machines. However, for all 

machines the consideration of the magnetic cross-coupling influence is more important on 

the PM flux linkage rather than the dq-axis inductances. The machine with hybrid slot 

generates nearly the same torque as the machine with open slot, while its cogging torque is 

very similar to the machine with closed slot. On the other hand, the cogging torque 

sensitivity against the additional stator gaps strongly depends on the slot opening materials. 

Furthermore, for all machines, the non-uniformity of such gaps causes a significant increase 

in the cogging torque and also diminishes the effectiveness of rotor skewing. However, this 

influence is comparatively more significant in the closed slot and hybrid slot designs.  
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Chapter 5: Influence of Electric Loading and 

Magnetic Saturation on Cogging Torque, Back-

EMF and Torque Ripple of PM Machines 

5.1. Introduction 

As mentioned before, due to high torque density and efficiency, the permanent magnet (PM) 

machines are increasingly used in industrial and commercial applications for all power 

ranges. However, PM machines also exhibit some drawbacks, such as cogging torque and 

torque ripple, which have been extensively analyzed and investigated in literature, while 

many techniques either via machine design or drive control have been proposed to suppress 

them [35, 38, 40, 41, 132, 141-149]. This reflects that the output torque smoothness is an 

important criterion for some applications, such as power steering systems. Assuming the 

drive current waveform is pure sinusoidal and the machine is perfectly manufactured, i.e. no 

rotor or stator eccentricity and no manufacturing defects, the output torque ripple of PM 

machines is due to: 

a) cogging torque; 

b) electromagnetic ripple due to back-emf waveform harmonics; 

c) reluctance ripple due to inductance variations. 

 

Furthermore, it has been stated that the magnetic saturation is also a source of torque ripple 

[141, 142]. In fact, the torque ripple is larger when the magnet circuit is saturated, as the 

magnetic saturation enlarges the original sources of torque ripple, as will be further proved 

in this chapter. 

The rotor or stator skew is a common technique and widely utilised to minimise the cogging 

torque and also to reduce the back-emf waveform harmonics, thus to decrease the torque 

ripple [35, 143-145]. Theoretically, due to the repetition and nature of the cogging torque 

waveform, it can be completely eliminated if the machine is skewed by one cogging torque 

period [41]. This rule is still effective even when the magnetic saturation influence is fully 

considered, i.e. including the influence of electric loading. However, the optimal skew angle 

should be the cogging torque period under the load conditions (rather than one slot pitch), as 

will be also further illustrated in this chapter.  
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In the previous researches, the cogging torque, back-emf harmonics and the effectiveness of 

skew technique have been analyzed and studied under open-circuit conditions. However, 

although both the cogging torque and back-emf waveform are usually considered as open-

circuit characteristics, the associated torque ripples are affected by the electric load. 

Therefore, this will be the research subject of this chapter, which contains the calculations 

and analyses of the cogging torque and back-emf waveforms and harmonics as well as the 

torque ripple of PM machines having un-skewed and step skewed rotors accounting for the 

load conditions. In order to carry out such calculations, the FP technique is employed. As 

mentioned in the first and second chapters, this technique has been illustrated and utilised to 

account for the magnetic cross-coupling saturation between d- and q-axis parameters as well 

as to segregate the PM and reluctance torque components in [20, 54, 55, 66, 67]. It can be 

summarised as follows, the machine is firstly solved for the FE model under load conditions, 

and then the permeability of each element is fixed and used to resolve the model linearly 

without electric loading, similar to the conventional open-circuit. In this case, the “open-

circuit” characteristics can be calculated accounting for the influence of electric loading, i.e. 

magnetic saturation on load. The analysis method and obtained results are confirmed and 

validated by the experimental results of the prototype machine, which is illustrated in Fig. 

5.1 and Table 2.1. 

 

Fig. 5.1 Lamination cross section and phase winding layout of 10-pole/12 slot prototype 

machine (this is the same as Fig. 2.1). 
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5.2. Cogging Torque 

5.2.1. Open-Circuit 

The analyzed prototype machine, which is designed to be used in a power steering system, 

has relatively small cogging torque, Fig. 2, because it has a 10-pole/12-slot combination 

(fractional-slot), optimal pole-arc to pole-pitch ratio and a shaped rotor, [35, 38, 41, 132, 

143-147, 150]. However, its rotor is still step skewed by 4 steps of 7.5 electrical degrees, i.e. 

one slot pitch, to guarantee that the output torque smoothness requirements are still satisfied 

even with the influence of manufacturing tolerances. Theoretically, the cogging torque of the 

step skewed machine is completely eliminated, as shown in Fig. 5.2.  

 

Fig. 5.2 Cogging torque waveforms of analysed 10-pole/12-slot machine without and with 

rotor step skew. 

5.2.2. Influence of Load and Magnetic Saturation 

Conventionally, the cogging torque is considered to be electric loading independent. 

However, if the machine iron is saturated, then the cogging torque is most likely to be 

influenced. In order to account for this condition, the machine model is solved by a FP FE 

model under load conditions, and then the permeability of each element is stored and used to 

resolve the model linearly without electric loading, i.e. PMs only. In this case the obtained 

cogging torque includes the influence of the magnetic saturation due to electric loading 
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(which is designated as full magnetic saturation in this paper). Fig. 5.3 compares the cogging 

torque of 10 pole-12 slot machines having un-skewed rotors without/with electric loading 

influence. It shows that the actual cogging torque magnitude, i.e. with electric loading 

influence, is significantly larger than the open-circuit cogging torque, i.e. without electric 

loading influence. In the prototype machine, the electric loading increases the magnetic 

saturation level in the stator teeth, which results in more flux leakage through the tooth tips, 

which in turn leads to larger cogging torque. In addition, when the magnetic saturation 

influence is fully considered the cogging torque periodicity becomes 60 electrical degrees, 

i.e. the same as the total load torque ripple. In order to further demonstrate such behaviour, 

the normal and tangential open-circuit air gap flux density components are investigated. Due 

to the electric loading, the machine magnetic circuit becomes more saturated, thus the 

machine magnetic reluctance becomes larger. This results in less flux linkage through stator 

tooth bodies and more flux leakage through stator tooth tips. Consequently, the actual radial 

component of open-circuit air gap flux density becomes slightly lower and more distorted, 

Fig. 5.4 (a) and Fig. 5.4 (b). For the same reason, the actual tangential component of open-

circuit air gap flux density increases and also becomes more distorted, Fig. 5.4 (c) and Fig. 

5.4 (d). As a percentage, the increasing of the actual tangential component of air gap flux 

density is larger than the decreasing of the actual radial component of air gap flux density. 

Thus, the multiplication of the radial and tangential open-circuit air gap flux density 

harmonics when the magnetic saturation is fully taken into account is larger than its 

counterpart when the electric loading influence is neglected, Fig. 5.5. This illustrates the 

reason for larger actual cogging torque, which is directly proportional to the radial and 

tangential harmonics multiplication [136]. Furthermore, the increase of actual cogging 

torque magnitude depends on the magnetic saturation level, which in turn is determined by 

the electric loading value, Fig. 5.6 (a). However, the actual cogging torque periodicity 

becomes 60 electrical degrees no matter whatever the electric loading value. The prototype 

machine is skewed by 30 electrical degrees, which is the optimal skew angle since it is the 

open-circuit cogging torque period [41]. However, the periodicity variation reduces the 

effectiveness of skew technique on the actual cogging torque, Fig. 5.6 (b). On the other hand, 

if the skew angle is adjusted to be the same as the actual cogging torque period, i.e. 60 

electrical degrees, the effectiveness of skew technique is maintained, as illustrated in Fig. 5.6 

(c). It can be concluded that the optimal skew angle should be one period of the actual 

cogging torque with the influence of electric loading (load) rather than the open-circuit 

counterpart. 
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(a) Waveforms 

 

(b) Harmonics 

Fig. 5.3 Comparison of cogging torque wavforms and harmonics without/ with accounting 

for electric loading influence, at 150 Apeak phase current. 
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(a) Radial flux density waveforms 

 

(b) Radial flux density harmonics 
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(c) Tangential flux density waveforms 

 

(d) Tangential flux density harmonics 

Fig. 5.4 Comparison of radial and tangential open-circuit air gap flux density waveforms and 

harmonics without/with electric loading influence, at 150 Apeak phase current.  
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Fig. 5.5 Multiplication of radial and tangential harmonics of open-circuit air gap flux density 

without/with electric loading influence, at 150 Apeak phase current. 
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(b) With 30 electrical degree rotor step skew angle 

 

(c) With 60 electrical degree rotor step skew angle 

Fig. 5.6 Cogging torque wavforms of machines having unskewed and step skewed rotors 

without/with accounting for electric loading influence, at different phase currents.  

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0 20 40 60 80 100 120

without electric loading influence

with electric loading influence (I=50A)

with electric loading influence (I=100A)

with electric loading influence (I=150A)

Rotor Position (deg)

C
o

g
g

in
g

T
o

r
q

u
e

(N
.m

)

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0 20 40 60 80 100 120

without electric loading influence

with electric loading influence (I=50A)

with electric loading influence (I=100A)

with electric loading influence (I=150A)

Rotor Position (deg)

C
o

g
g

in
g

T
o

r
q

u
e

(N
.m

)



136 
 

5.3. Back-EMF Waveform 

The open-circuit back-emf waveform of the un-skewed machine is almost sinusoidal, Fig. 

5.7 (a), thus it contains very small harmonics, Fig. 5.8 (a). Therefore, the electromagnetic 

torque ripple, which is due to the multiplication of sinusoidal current waveform with the 

back-emf harmonics, is relatively small, as shown in Fig. 5.9 (a). However, due to the 

influence of the electric loading on the “open-circuit” air gap flux density, Fig. 5.4 (a), the 

actual back-emf waveform becomes more distorted comparing with its open-circuit 

counterpart. Such extra distortion results in more back-emf harmonics, thus larger 

electromagnetic torque ripple. In order to illustrate this and also to investigate the influence 

of different rotor step skew angles on back-emf distortions. The back-emf waveforms, 

harmonics and electromagnetic torque ripple have been calculated for different machines 

having un-skewed and 30 and 60 electrical degree step skewed rotors without/with electric 

loading influence. As expected, when the magnetic saturation is fully considered, the back-

emf waveform contains more harmonics, Fig. 5.7 (a), and Fig. 5.8 (a), thus larger 

electromagnetic torque ripple is produced, Fig. 9(a). The 30 degree skew angle, which is the 

same as the open-circuit cogging torque period, results in relatively more sinusoidal back-

emf waveform, Fig. 5.7 (b), and less harmonics, Fig. 5.8 (b), thus lower electromagnetic 

torque ripple, Fig. 5.9 (b). However, for 60 degree skew angle, which is the actual cogging 

torque period on load, the back-emf waveform is significantly improved, Fig. 5.7 (c) and 

Fig. 5.8 (c), consequently this leads to a significant reduction in the electromagnetic torque 

ripple, Fig. 5.9 (c).  

It is well known that the electromagnetic torque of the PM machine is the multiplication of 

the PM flux linkage and q-axis current. Therefore, by equivalence, the electromagnetic 

torque ripple can be also represented by the multiplication of the PM flux linkage variations 

and q-axis current. The influence of electric loading and rotor skew on the PM flux linkage 

is illustrated in Fig. 5.10. It shows that the actual PM flux linkage variations, i.e. with full 

magnetic saturation, are relatively larger comparing with their open-circuit counterpart, as 

shown in Fig. 5.10 (a) and Fig. 5.10 (b). These variations are reduced to nearly half when the 

machine is skewed by 30 electrical degrees, as illustrated in Fig. 5.10 (c) and Fig. 5.10 (d), 

but it is significantly minimized when the skew angle is 60 electrical degrees, Fig. 5.10 (e) 

and Fig. 5.10 (f). This further illustrates the influence of skew angle on the electromagnetic 

torque ripple reduction. It is worth mentioning that the skew technique can result in a slight 

performance reduction. In addition, a larger skew angle leads to a larger reduction. In the 
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analyzed prototype machine, the 30 degree skew angle causes around 2% reduction in the 

back-emf waveform (PM flux linkage), but the 60 degree angle increases the reduction to 

about 4 %, as illustrated in Fig. 5.11. However, this skew is still desirable, since it eliminates 

the actual cogging torque and reduces the actual electromagnetic torque ripple by more than 

75%. Consequently, the torque ripple will be significantly minimized. 

 

(a) Without rotor step skew 

 

(b) With 30 electrical degree rotor step skew angle 
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(c) With 60 electrical degree rotor step skew angle 

Fig. 5.7 Comparison of back-emf wavforms of machines having un-skewed and step skewed 

rotors without/with electric loading influence, at 150 Apeak phase current. 
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(b) With 30 electrical degree rotor step skew angle 

 

(c) With 60 electrical degree rotor step skew angle 

Fig. 5.8 Comparison of back-emf harmonics of machines having un-skewed and step skewed 

rotors without/with electric loading influence, at 150 Apeak phase current. 
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(a) Without rotor step skew 

 

(b) With 30 electrical degree rotor step skew angle 
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(c) With 60 electrical degree rotor step skew angle 

Fig. 5.9 Comparison of electromagnitic torque ripples of machines having unskewed and 

step skewed rotors without/with electric loading influence, at 150 Apeak phase current. 
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(b) Harmonics, without rotor step skew 

 

(c) Waveforms, with 30 electrical degree rotor step skew angle 
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(d) Harmonics, with 30 electrical degree rotor step skew angle 

 

(e) Waveforms, with 60 electrical degree rotor step skew angle 
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(f) Harmonics, with 60 electrical degree rotor step skew angle 

Fig. 5.10 Comparison of d-axis PM flux linkage wavforms and their variation harmonics 

(fundemental harmonics not included) of machines having un-skewed and step skewed 

rotors without/with electric loading influence, at 150 Apeak phase current. 

 

Fig. 5.11 Comparison of back-emf fundamental harmonics of machines having un-skewed 

and step skewed rotors, at 400 rpm. 
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5.4. Torque Ripple 

The output torque of the PM machine can be defined by:  

])([5.1 qdqdqmd IILLIpT       (5. 1) 

where Id, Iq, md , Ld, Lq and p are dq-axis currents, d-axis PM flux linkage, dq-axis 

inductances and pole pair numbers, respectively. 

Based on (5. 1), the output torque ripple waveform of the PM machine when the current is 

ideally sinusoidal can be given as follow: 

)(])()([5.1  cogqddqqmd TIILIpT     (5. 2) 

where )(),(  dqmd L  and )(cogT  are variation of the d-axis PM flux linkage, dq-axis 

inductance differentiation and cogging torque as function of rotor position, respectively. On 

the other hand, qmd Ip )(5.1   and qddq IIL )(  are the electromagnetic and reluctance 

torque ripples, respectively. 

In the prototype fractional-slot PM machines with concentrated winding, the saliency ratio is 

almost one, i.e. d- and q-axis inductances are nearly the same, as shown in Fig. 5.12. 

Therefore, such machines are normally operated at nearly zero current angle, i.e. Iq ≈ Iphase 

and Id ≈ 0. In addition, the variation of dq-axis inductances and their differentiation are 

significantly small, as illustrated in Fig. 5.12 and Fig. 5.13, respectively. Moreover, such 

differentiation is even smaller when the machine is skewed, it is reduced by more than 65% 

when the machine is skewed by 60 electrical degrees, Fig. 5.13. Consequently, the 

contribution of the reluctance torque ripple into the total output torque ripple is negligible in 

the prototype machine. It is worth mentioning that during the flux weakening the d-axis 

current is increased to control the machine voltage. Therefore, the contribution of the 

reluctance torque ripple could become more significant. However, this is not the subject of 

this chapter.  

In order to prove this conclusion as well as the analyses and discussions in section 5.2 and 

5.3, the cogging torque and electromagnetic torque ripple without and with electric loading 

influence are respectively added together and compared with the calculated FE load torque 
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ripple, e.g. Maxwell stress, of the prototype machine without and with 30 and 60 electrical 

degree step skewed rotors, Fig. 5.14. A good agreement exists between them when the full 

magnetic saturation, i.e. with electric loading influence, is considered. In addition, the 30 

electrical degrees skew angle reduces the load torque ripple, as shown in Fig. 5.14(b). 

However, a significant minimization can be obtained when the rotor is skewed by 60 

electrical degrees, Fig. 5.14(c). In conclusion, the 60 degrees skew angle can minimize the 

load torque ripple by more than 90%, but causes only around 4% reduction in the 

electromagnetic performance.  

 

Fig. 5.12 Variation of dq-axis inductance against rotor position, at 150 Apeak load current. 
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Fig. 5.13 Variation of dq-axis inductance differentiation against rotor position for different 

rotor skew angles. 

 

(a) Without rotor step skew 

-1.2

-0.9

-0.6

-0.3

0

0.3

0.6

0.9

1.2

0 15 30 45 60 75 90 105 120

without skew

30 deg skew angle

60 deg skew angle

Rotor Position (deg)

In
d

u
ct

a
n

ce
s 

D
if

fe
re

n
ti

a
ti

o
n

 (
μ

H
) 

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0 20 40 60 80 100 120

predicted without electric loading influence

predicted with electric loading influence

FE load torque ripple (Maxwell stress)

T
o

r
q

u
e
 R

ip
p

le
(N

.m
)

Rotor Position (deg)



148 
 

 

(b) With 30 electrical degree rotor step skew 

 

(c) With 60 electrical degree rotor step skew 

Fig. 5.14 Comparison of predicted (cogging torque + electromagnetic torque ripple) and FE 

calculated load torque ripples of machines machines having un-skewed and step skewed 

rotors without/with electric loading influence, at 150 Apeak load current. 
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5.5. Number of Skew Steps 

In order to achieve an effective torque ripple reduction, the rotors of the studied machines 

during the foregoing investigations, i.e. sections 5.2, 5.3 and 5.4, are skewed by 4 steps for 

both 30 and 60 electrical degree angles. However, in this section the possibility of utilizing 

lower skew steps, i.e. 3 or 2, are investigated. The reason behind such investigation is to 

examine the possibility of decrease the manufacturing cost and complexity of more skew 

steps, without influencing the load torque ripple minimizing. The open-circuit cogging 

torque can be, theoretically, eliminated if the machine is step skewed by 2 steps of 15 

electrical degrees or 3 steps of 10 electrical degrees, as shown in Fig. 5.15. However, the 

effectiveness of such skews on the actual cogging torque is much lower, Fig. 5.16 (a). 

Alternatively, the actual cogging torque can be significantly minimized when the machine is 

step skewed by 3 steps of 20 electrical degrees, the same as the 4 steps of 15 electrical 

degrees, as illustrated in Fig. 5.16(b). In addition, when the machine is skewed by 2 steps of 

30 electrical degrees the actual cogging torque is also relatively small, Fig. 5.16(b). In order 

to investigate the influence of the mentioned skew angle and step combinations on the 

smoothing of the output torque, the load torque ripple of machines having these different 

skew combinations are calculated and compared together with their counterpart of machine 

has un-skewed rotor in Fig. 5.17. When the machine is skewed according to open-circuit 

cogging torque period, the load torque ripple reduction is nearly the same for any skew angle 

and step combination, this reduction is about 40%, Fig. 5.17(a). However, as mentioned 

before, the torque ripple reduction is more significant when the machine is skewed according 

to the actual cogging torque period, no matter whatever the number of skew steps, Fig. 

5.17(b). On the other hand, larger skew angle and more skew steps result in a larger 

electromagnetic performance reduction, as shown Fig. 5.18. This figure compares the output 

torque reduction due to different skew angle and step combinations as a percentage of the 

average output torque of the un-skewed machine. For example, skewing the machine 

according to the actual cogging torque angle significantly suppresses the load torque ripple, 

but it also causes about 3-4% reduction in the electromagnetic performance. Moreover, the 

machine with 2 skew steps of 30 electrical degree skew angle and generates nearly the same 

load torque ripple as its counterpart with 4 steps of 15 electrical degree skew angle, Fig. 

5.17(b), but it has lower electromagnetic performance reduction, as shown in Fig. 5.18. 

However, it should be mentioned that the skew causes an extra flux leakage on the z-axis 

direction. This could cause an adverse effect on the bearing life time, due to the induced 

voltages. 
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Fig. 5.15 Comparison of open-circuit cogging torque of machines having different skew step 

and angle combiations. 
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(b) Skew according to actual cogging torque period 

Fig. 5.16 Comparison of actual cogging torque of machines having different skew step and 

angle combiations, at 150 Apeak load current. 
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(b) Skew according to actual cogging torque period 

Fig. 5.17 Comparison of load torque ripple of machines having different skew step and angle 

combiations, at 150 Apeak load current. 

 

Fig. 5.18 Comparison of average output torque reduction due to skew of machines having 

different skew step and angle combiations, at 150 Apeak load current. 
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5.6. Experimental Validation 

It is extremely difficult to measure the cogging torque or back-emf accounting for the load 

conditions. However, alternatively all these results can be confirmed by measuring and 

comparing the torque ripples. The measured load torque ripple of the prototype machine, 

which has 30 electrical degrees and 4 steps skewed rotor, is compared with its predicted 

counterpart, i.e. cogging torque + electromagnetic torque ripple, with/without accounting for 

the influence of the electric loading in Fig. 5.19. It shows a good agreement between the 

measured (via in-line torque transducer) and the predicted torque ripples when the magnet 

saturation influence is fully accounted for, while the predicted torque ripple is significantly 

lower if the electric loading influence is not considered. This validates and proves the 

analysis method and results. It is worth noting that the contribution of the reluctance torque 

ripple in the prototype machine is relatively small, as discussed in section 5.4, and has been 

neglected in the predicted results. 

 

Fig. 5.19 Comparison of measured and predicted (cogging torque + electromagnetic torque 

ripple) torque ripples of prototype machine, at 150 Apeak load current. 
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5.7. Conclusions 

The cogging torque, back-emf and associated torque ripples in PM machines having un-

skewed and step skewed rotors have been investigated taking into account the influence of 

load conditions by employing a FP FE technique. The magnitude of the actual cogging 

torque, i.e. with electric load influence, is significantly larger than its open-circuit 

counterpart. This is due to the extra flux leakage through tooth tips and in turn higher 

saturation level in the stator teeth in the prototype machine. For the same reason, the actual 

back-emf waveform is also distorted, thus it contains larger harmonics and results in larger 

electromagnetic torque ripple. Furthermore, the increase of actual cogging torque depends on 

the magnetic saturation level, which is determined by the electric loading value. In addition, 

due to the electric loading influence, the actual cogging torque periodicity also varies to 

become the same as the total load torque ripple periodicity. Therefore, the skew technique, 

which is based on the open-circuit cogging torque period, becomes less effective. However, 

it has been shown that the actual cogging torque can be effectively eliminated if the machine 

is skewed by one actual cogging period on load. In addition, such skew can also significantly 

minimize the electromagnetic torque ripple. A comparison of load torque ripple and 

electromagnet performance reduction has been carried out for different skew angle and step 

combinations. The analysis results are partially confirmed by experiment. 
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Chapter 6: Electromagnetic Performance 

Analysis of Synchronous Reluctance Machines 

Having Non-overlapping Concentrated Windings 

and AC Sinusoidal Bipolar Excitation 

6.1. Introduction 

The switched reluctance (SR) machines are an attractive solution for many applications, 

which are operated at high speeds and in harsh environments, e.g. high temperature and 

pressure, since they have a robust rotor structure without PMs or coils, [108, 151]. 

Furthermore, such machines are equipped with concentrated windings, thus the shorter end-

winding and low copper loss are also advantages for such machines. In addition, due to the 

significant increase of the PM material price, the SR machines are becoming more desirable 

to employ in the electric/hybrid electric vehicles [106, 152-154]. Therefore, they have been 

significantly investigated to minimize or even to overcome their disadvantage, such as high 

torque ripple, noise and vibrations [155, 156]. The main cause behind the larger torque ripple 

is the sudden extinguish of the phase currents when the rotor moves from the unaligned to 

the aligned positions [157]. This issue can be diminished if the phases are continuously 

excited, i.e. using the AC sinusoidal bipolar excitation [121]. Under such excitation the SR 

machine becomes a salient-pole synchronous reluctance (SynR) machine with concentrated 

winding [158]. Thus, it can be operated using the ordinary 3-phase inverter [120], which is 

shown in Fig. 6.1. This chapter presents a comparative study for the electromagnetic 

performance of three 6 stator/4 rotor poles SynR machines having different non-overlapping 

concentrated winding connections, which are further illustrated in section 6.2. In general, the 

output torque of the SynR machines is due to the variations of the self and mutual 

inductances when the relative position between the stator and rotor teeth varies from the 

unaligned to aligned. Therefore, such inductances will be particularly highlighted. In 

addition, the machine line voltage, torque- and power-speed characteristics and efficiency 

are also analyzed, to examine the ability of utilizing such machines in the electric/hybrid 

electric vehicles. Moreover, the electromagnetic performance of 12 stator/4 rotor poles SynR 

machine, which has overlapping concentrated winding, is also analyzed and compared with 

its counterparts of the 6 stator/4 rotor SynR machines.  
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The major dimensions and parameters of the analyzed 6 stator/4 rotor and 12 stator/4 rotor 

poles machines, which have been optimized for the maximum average output torque under 

the same current density, are given in Table 6.1. The optimization result of the 6 stator/4 

rotor poles machine are illustrated in Fig. 6.2. On the other hand, the optimization results of 

12 stator/4 rotor poles machine will be shown in section 6.7. Furthermore, in order to 

validate the analyses the 6 stator/4 rotor poles machine is prototyped and tested. 

 

Fig. 6.1 Standard bipolar driver inverter for SR machines under AC bipolar excitation, i.e. 

salient-pole SynR machine. 

Table 6.1 Major Dimensions and Parameters. 

Parameters 6 Stator/4 Rotor poles 12 Stator/4 Rotor poles 

Stator Outer Diameter 110 mm 

Stator Inner Diameter 58 mm 59.8 mm 

Rotor Outer Diameter 57.2 mm 59 mm 

Rotor Yoke Thickness 10.1 10.7 

Shaft Diameter 20 mm 

Axial Length 175 mm 

Stator Pole Width 15.5 mm 8.5 mm 

Stator Yoke Thickness 8.25 mm 8.5 mm 

Rotor Pole Width 17.5 mm 14.5 mm 

Air Gap Length 0.4 mm 

Maximum Current Density 34 Arms/mm
2
 

Packing Factor 52 % 

Number of coils per Phase 2 coils 4 coils 

Number of turns per coil 21 turns 10 turns 
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(a) Split ratio 

 

(b) Rotor pole width 
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(c) Stator pole width 

 

(a) Stator yoke thickness 

Fig. 6.2 Variation of average output torque of 6 stator/4 rotor poles machine against split 

ratio, rotor and stator pole widths and stator yoke thickness, at 34 Arms/mm
2
 current density. 
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6.2. Different Winding Connections 

All studied 6 stator/4 rotor poles machines are equipped with concentrated windings, 

consisting of two coils per phase and 3 phases are star connected. According to the 

connecting way of each phase coils, i.e. the coil polarity, thus the flux direction, there are 

three possible winding connections, which in this chapter are classified into [113, 124]:  

a) asymmetric connection: has uneven coil polarity in the stator slots, thus asymmetric 

flux directions, as shown in Fig. 6.3(a); 

b) symmetric connection: has symmetric flux directions since its phase coil polarities 

are the same in each stator slot, as illustrated in Fig. 6.3(b); 

c) hybrid connection: has the same coil polarity and flux direction for all coils, as 

shown in Fig. 6.3(c). In this connection the winding polarity is similar to the full 

pitch wound machine, which will be investigated in section 6.7. 

In the first two connections, i.e. asymmetric and symmetric, the torque is mainly produced 

by the variations of the phase self inductances, since their mutual inductances are negligibly 

small, as will be shown later. However, in the hybrid winding connection there are more 

interaction between phase fluxes, thus the variations of the mutual inductances become more 

significant, as will be demonstrated in the next section. Consequently, in the last connection, 

the output torque becomes due to the variations of both the self and mutual inductances, this 

is the reason behind such connection name. Further discussions, analyses and comparison 

will be carried out to further illustrate the output torque generation as well as to highlight the 

benefits and drawbacks of each connection. 

 
(a) Asymmetric winding 
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(b) Symmetric winding 

 

(c) Hybrid winding 

Fig. 6.3 Comparison of three different concentrated winding connections of 6 stator/4 rotor 

poles machine. 
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6.3. Electromagnetic Performance 

It is well known that the SynR machines are normally operated at large current density, thus 

high torque/power density can be achieved [113, 159]. In this chapter, the investigations are 

carried out for a maximum current density of 34 Arms/mm
2
. However, the machines are also 

examined for different lower current density values. The excitation phase current waveforms 

against the rotor position are shown in Fig. 6.4. It is worth mentioning that in this chapter the 

rotor position will be defined by the mechanical degree, i.e. mech. deg.  

 

Fig. 6.4 Excitation phase current waveforms, at 34 Arms/mm
2 

current density. 

6.3.1. Flux linkages 

The phase flux linkage of the 6 stator/4 rotor poles SynR machines having different winding 

connections are compared in Fig. 6.5. The phase flux linkage waveforms are asymmetric 

when the phase coils are unevenly distributed, Fig. 6.5 (a). Such asymmetry becomes more 

significant at larger current density, i.e. high magnetic saturation, Fig. 6.5 (b). As will be 

shown later, this phenomenon increases the required DC-link voltage to drive the machine. 

On the other hand, even at significantly large current density, i.e. 34 A/mm
2
, the phase flux 

linkage of the symmetric and hybrid winding connections are uniform as shown in Fig. 6.5 

(c) and Fig. 6.5 (d), respectively. Moreover, the flux density magnitudes of three connections 

are nearly the same, since they have the same electric loadings and turn numbers. However, 
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they exhibit totally different waveform shapes. In its turn, this will result in different 

inductance variations, thus different output torques. These characteristics will be investigated 

in sequence in the following sections. 

 

(a) Asymmetric connection at 6Arms/mm
2
 current density 

 

(b) Asymmetric connection at 34Arms/mm
2
 current density 
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(c) Symmetric connection at 34Arms/mm
2
 current density 

 

(d) Hybrid connection at 34Arms/mm
2
 current density 

Fig. 6.5 Variation of flux linkage waveforms of 6 stator/4 rotor poles machines having 

different winding connections at 45 deg current angle. 
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6.3.2. Phase Self Inductances 

The self inductances of the analyzed 6 stator/4 rotor poles SynR machines having different 

winding connections are calculated for different current densities and compared in Fig. 6.6. 

Different current densities result in different magnetic saturation levels. The comparison 

clearly shows that the sensitivity of the SynR machine self inductance to magnetic saturation 

very much depends on the way of winding connection. Such sensitivity is relatively 

significant in the asymmetric and symmetric connections, Fig. 6.6 (a) and Fig. 6.6 (b), 

respectively. However, on the other hand, it is comparatively lower when the hybrid winding 

connection is utilized, Fig. 6.6 (c). This is due to different flux distributions and paths of 

each winding connection, i.e. the machine with hybrid winding has relatively shorter flux 

paths, as clearly noticed in Fig. 6.7. Furthermore, the phase self inductances of machines 

having different winding connections at 34 Arms/mm
2
 current density are compared together 

in Fig. 6.8. The SR machines with asymmetric and symmetric connections exhibit nearly the 

same self inductance variations, which are much larger than their counterparts of the 

machine with hybrid connection. Therefore, the first two machines are expected to exhibit 

the same output torque, which from the self inductance variation point of view only should 

be larger than its counterpart of the machine with hybrid connection.  

 

(a) Asymmetric winding connection 
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(b) Symmetric winding connection 

 

(c) Hybrid winding connection 

Fig. 6.6 Comparison of phase self inductances of 6 stator/4 rotor poles machines having 

different winding connections for different current densities. 
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(a) Asymmetric winding connection 

 

(b) Symmetric winding connection 

 

(c) Hybrid winding connection 

Fig. 6.7 Comparsion of load flux distributions of 6 stator/4 rotor poles machines having 

different winding connections, at 34 Arms/mm
2
 current density. 
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Fig. 6.8 Comparsion of variations of phase self inductances of 6 stator/4 rotor poles machine 

for different winding connections, at 34 Arms/mm
2 
current density. 

6.3.3. Mutual Inductances 

The electromagnetic interaction between the phase fluxes is significantly small in the 

machines having asymmetric and symmetric winding connections, Fig. 6.7. Thus, the mutual 

inductances of such machines are also relatively small, as shown in Fig. 6.9(a) and Fig. 

6.9(b), respectively. On the other hand, the machine with the hybrid winding connection 

exhibits relatively large mutual inductance variations, Fig. 6.9(c). Consequently, the 

contribution of the mutual torque, i.e. due to mutual inductance variation, to the total output 

torque of such machine is relatively significant. This confirms that the output torque of the 

machine with hybrid connection is due to the variations of both the self and mutual 

inductances. Therefore, the machine with hybrid winding connection is expected to deliver 

larger output torque comparing with the asymmetric and symmetric connections. Further 

analyses and illustration are presented in section 6.3.5. 
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(a) Asymmetric winding connection 

 

(b) Symmetric winding connection 
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(c) Hybrid winding connection 

Fig. 6.9 Comparison of mutual inductances of 6 stator/4 rotor poles machines having 

different winding connections for different current densities. 

6.3.4. Phase Voltage 

Using the phase current phI , resistance phR  and flux linkage ph  the phase and line voltages 

of the SynR machines can be calculated by (6.1) and (6.2), respectively, [160]. 

t
RI

dt

d
RIV

ph

phph

ph

phphph






    (6.1) 

phBphAline VVV        (6.2) 

where  t  is the time step of phase flux linkage variations.  

Equation (6.1) is utilized to predict the three phase voltage waveforms of the three 6 stator/ 4 

rotor poles SynR machines under investigation, Fig. 6.10. Due to non-symmetrical flux 

linkage waveforms of the machine with asymmetric winding connection, Fig. 6.5(b), its 

phase voltage waveforms are also non-uniform and they have sharp spikes, Fig. 6.10 (a). In 

turn, these spikes enlarge the required DC-link voltage to operate the machine since the DC 

link voltage should be higher than the maximum values, i.e. spikes, of the machine line 
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voltage, this issue will be further discussed in section 6.5. On the other hand, the machines 

having symmetric and hybrid winding connections have uniform phase voltage waveforms, 

Fig. 6.10(b) and Fig. 6.10(c), since their flux linkage waveforms are symmetric, Fig. 6.5 (c) 

and Fig. 6.5 (d).  

Furthermore, the machine line voltages under the three winding connections are compared in 

Fig. 6.11. It shows that the peak line voltage of the machine with the asymmetric winding 

connection is nearly double of its counterpart of the machine with symmetric winding 

connection. This is due to the non-uniform phase voltage waveforms, Fig. 6.10(a). 

Furthermore, the phase voltage waveforms of machine with hybrid winding connection are 

uniform, Fig. 6.10(c). However, the line voltage of such machine is also relatively larger, 

Fig. 6.11. This means the utilization of symmetric winding connection should reduce the DC 

link voltage requirements. Furthermore, in order to examine the influence of the magnetic 

saturation on the line voltage behavior of the three considered winding connections. The 

variations of the machine peak line voltage with such connections are calculated and 

compared in Fig. 6.12. At low current density, i.e. low magnetic saturation level, the 

asymmetric and symmetric winding connections result in nearly the same peak line voltage 

since the asymmetry of the flux linkage waveform of the machine with asymmetric winding 

connection is relatively low, Fig. 6.5(a). Thus, the line voltage distortions and peaks are 

relatively small. However, at higher magnetic saturation level, i.e. larger current density, the 

asymmetric winding connection leads to much larger peak line voltage. On the other hand, 

the line voltage of the machine with hybrid winding connection is the largest at low current 

density. But it becomes lower than its counterpart of the machine with asymmetric winding 

connection when the current density is relatively large. This is because at high magnetic 

saturation the non-uniformity of the flux density waveforms of such machine becomes more 

significant, Fig. 6.5(a) and Fig. 6.5(b). Thus, the phase and line voltage distortions and peaks 

become larger. 

It should be mentioned that in the following calculations, investigations and comparisons the 

maximum, i.e. peak line voltage, will be considered as a reference. However, more analyses 

are required to determine the required DC-link voltage. 
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(a) Asymmetric winding connection 

 

(b) Symmetric winding connection 
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(c) Hybrid winding connection 

Fig. 6.10 Comparison of phase voltage waveforms of 6 stator/4 rotor poles machines having 

different winding connections, at 34 Arms/mm
2
 current density and 2500 rpm. 

 

Fig. 6.11 Comparison of line voltage waveforms of 6 stator/4 rotor poles machines having 

different winding connections, at 34 Arms/mm
2
 current density and 2500 rpm. 
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Fig. 6.12 Comparison of peak line voltage against current density of 6 stator/4 rotor poles 

machines having different winding connections at 2500 rpm. 

6.3.5. Output Torque 

The output torque waveforms of the analyzed 6 stator/4 rotor pole SynR machine are 

predicted for the three different winding connections and compared in Fig. 6.13. The output 

torque of the machine with the hybrid winding connection is much larger comparing with its 

counterparts of the machines with asymmetric and symmetric connections. As mentioned 
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with three considered winding connections are calculated and compared in Fig. 6.15. It 

demonstrates that at relatively low current densities, i.e. relatively low saturation level, all 

connections results in nearly the same average output torque. For the asymmetric and 

symmetric winding connections, this phenomenon is always the same for any current density 

value. However, the average output torque of the machine with the hybrid winding 

connection becomes significantly larger when the current density increases. This is due to 

the influence of the magnetic saturation in such connection is relatively small comparing 

with other two connections as discussed before. Furthermore, in order to evaluate the quality 

of the output torque, the torque ripple as a percentage of the average torque against the 

current density of the three winding connections is compared in Fig. 6.16. At relatively low 

current density, both asymmetric and symmetric connections results in nearly the same 

torque ripple percentage, which is significantly lower than its counterpart of the machine 

with hybrid connection. The torque ripple percentage due to such connection sharply 

decreases when the current density increases since the average output torque becomes larger. 

Comparing with the asymmetric connection, both the symmetric and hybrid winding 

connections result in lower torque ripple percentage when the current density is significant. 

Thus, it can be concluded that the symmetric winding connection results in the most 

excellent output torque quality. In addition, at high current density the hybrid connection 

becomes more desirable since it has nearly the same torque percentage as the symmetric 

winding connection, but its average output torque is significantly larger. 

In the previous calculations, the current has been injected at current angle of 45 electrical 

degrees, thus the d- and q-axis currents are equal since, in theory, such angle should leads to 

the maximum output torque. However, due to the magnetic saturation, the maximum 

possible output torque of the motor could be at different angle. Therefore, the motor output 

torque against the current angle of the analysed 6 stator/4 rotor poles machines with three 

considered winding connections are calculated for different current densities in the range of 

0 to 90 electrical degrees. As shown in Fig. 6.17, the maximum output torque for all winding 

connections can be achieved at the current angle of 50 electrical degrees. Therefore, in order 

to operate such machines at their maximum torque per ampere capability, such angle should 

be employed. 
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(a) Asymmetric winding connection 

 

(b) Symmetric winding connection 
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(c) Hybrid winding connection 

Fig. 6.13 Variation of output torque waveforms of 6 stator/4 rotor poles machines having 

different winding connections at different current density. 

 

Fig. 6.14 Comparison of output torque waveforms of 6 stator/4 rotor poles machines having 

different winding connections at 34 Arms/mm
2
 current density. 
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Fig. 6.15 Comparison of average output torque of 6 stator/4 rotor poles machines having 

different winding connections at different current densities. 

 

Fig. 6.16 Comparison of torque ripples of 6 stator/4 rotor poles machines having different 

winding connections at different current densities. 
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(a) Asymmetric winding connection 

 

(b) Symmetric winding connection 
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(c) Hybrid winding connection 

Fig. 6.17 Variaiton of average output torque against current angle of 6 stator/4 rotor poles 

machines having different winding connections at different current density. 

  

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70 80 90

CD=34 A/mm^2 CD=30 A/mm^2
CD=24 A/mm^2 CD=18 A/mm^2
CD=12 A/mm^2 CD=6 A/mm^2

A
v
er

a
g
e 

T
o
rq

u
e 

(N
.m

)

Current Angle (deg)



180 
 

6.4. Torque-Speed Characteristics 

In order to investigate the influence of the current angle on the line voltages of the studied 6 

stator/4 rotor poles machines, thus to examine the possibility of utilising such angle to satisfy 

the voltage limitation during the flux weakening operation. The peak line voltage against the 

current angle is calculated for the three different winding connections. During machine 

operation, the voltage limitation, i.e. DC-link voltage (UDC), should be ideally higher than 

the peak value of the machine line voltage. Therefore, in the following calculation, e.g. 

torque-speed characteristics prediction, the peak value of the line voltage will be considered, 

as shown in Fig. 6.18. It shows that for all winding connections, the influence of the current 

angle on the line voltage is negligible at low current density. However, at relatively high 

current densities the line voltage gradually increases against the current angle, i.e. such 

increase becomes shaper when the current angle is larger than 60 electrical degrees. 

Therefore, in the calculation of the torque-speed characteristics the current angle will be 

fixed at optimal current angle while it also results in nearly in the same line voltage as the 45 

degree current angle, Fig. 6.18. However, the reason for such voltage behaviour is 

thoroughly investigated in section 6.5.  

In order to predict the torque-speed curve of the analyzed machines, the variations of their 

peak line voltage against the current density are calculated for different rotation speeds, as 

shown in Fig. 6.19. These results together with the variations of output torque against the 

current density, Fig. 6.15, are utilized to predict the torque-speed curve for voltage limitation 

of 600V. It should be mentioned that the voltage drop on the inverter drive switches is 

ignored during these analyses. In order to clearly illustrate such procedure, the determination 

of the optimal output torque at 6000 rpm is explained in details for the machine with the 

asymmetric winding connection. At such speed, the voltage limit can be satisfied at current 

density of 19 A/mm
2
, as shown in Fig. 6.19(a). The corresponding output torque of this 

current density is 21.5 Nm, as illustrated in Fig. 6.20. This process needs to be carried out 

over whole speed range, thus the whole torque-speed characteristics are obtained. The 

predicted torque- and power-speed characteristics of the studied 6 stator/4 rotor poles SynR 

machines having different winding connections are compared in Fig. 6.21, while the 

corresponding peak phase currents and line voltages are given in Fig. 6.22 and Fig. 6.23, 

respectively. Although the machine with hybrid winding connection gives a significantly 

larger maximum output torque comparing with other two winding connections, e.g. it is 

about 70% larger when the current density is 34A/mm
2
, such winding connection exhibits 
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the lowest flux weakening operation performance for all the current densities since during 

the flux weakening operation, the machines are operated at relatively low current densities, 

i.e. low phase currents, as shown in Fig. 6.22. However, comparing with the other two 

winding connections, the hybrid winding connection produces a larger line voltage at 

relatively low current density, as shown in Fig. 6.12. The behaviour of the line voltage of the 

studied machines will be investigated in more details in the next section. In addition, in 

terms of maximum output power, the difference between the symmetric and hybrid winding 

connections becomes relatively small, i.e. it is about 10% at 34A/mm
2
 current density as 

illustrated in Fig. 6.21(b) since the machine with the symmetric winding connection exhibits 

wider constant torque region, Fig. 6.21(a), thus larger output power at higher speed. Such 

difference becomes even smaller when the maximum current density is lower, Fig. 6.21(f). 

Furthermore, at relatively larger current density, e.g. 34 A/mm
2
, the constant-torque region 

of the machine with the symmetric winding connection is wider than its counterpart of the 

machine with the asymmetric winding connection, Fig. 6.21 (a). However, the utilizing of 

the asymmetric winding connection results in slightly larger output torque at lower current 

densities, Fig. 6.21(b), and Fig. 6.21(c), since the benefit of the symmetric winding 

connection over its asymmetric counterpart in terms of line voltage reduction is significant at 

relatively large current densities. However, it is nearly diminished at low current density, 

low magnetic saturation level, as illustrated in Fig. 6.12 as well as Fig. 6.18. In conclusion, 

the benefits and disadvantages, thus the suitability of such winding connections is 

determined according to application requirement as well as voltage and current limitations. 

In order to present a more comprehensive comparison, the losses and efficiency of the 

studied machines are also analysed and compared in section 6.6. 
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(a) Asymmetric winding connection 

 

(b) Symmetric winding connection 
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(c) Hybrid winding connection 

Fig. 6.18 Comparison of variaitons of peak line voltage against current angle of 6 stator/4 

rotor poles machines having different winding connections at different current densities 

 

(a) Asymmetric winding connection 
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(b) Symmetric winding connection 

 

(c) Hybrid winding connection 

Fig. 6.19 Comparison of variaitons of peak line voltage against current density of 6 stator/4 

rotor poles machines having different winding connections at different rotating speeds. 
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Fig. 6.20 Variation of average output torque of 6 stator/4 rotor poles machine with 

asymmetric winding connection at different current densities. 

 

(a) Torque-speed curves at 34 Arms/mm
2 

maximum current density 
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(b) Power-speed curves at 34 Arms/mm
2 
maximum current density 

 

(c) Torque-speed curves at 20 Arms/mm
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(d) Power-speed curves at 20 Arms/mm
2 
maximum current density 

 

(e) Torque-speed curves at 10 Arms/mm
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(f) Power-speed curves at 10 Arms/mm
2 
maximum current density 

Fig. 6.21 Comparison of torque- and power-speed characterstics of 6 stator/4 rotor poles 

machines having different winding connections at different current densities. 

 

(a) Maximum current density is 34 Arms/mm
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(b) Maximum current density is 20 Arms/mm
2
 

 

(c) Maximum current density is 10 Arms/mm
2
 

Fig. 6.22 Variation of corresponding peak phase current of 6 stator/4 rotor poles machines 

having different winding connections at different current densities. 
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(a) Maximum current density is 34 Arms/mm
2
 

 

(b) Maximum current density is 20 Arms/mm
2
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(c) Maximum current density is 10 Arms/mm
2
 

Fig. 6.23 Variation of required peak line voltage of 6 stator/4 rotor poles machines having 

different winding connections at different current densities. 
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6.5. Investigation of Machine Line Voltage 

In order to further illustrate the unexpected asymmetric and spike behaviours of the line 

voltage, it is thoroughly investigated, analysed and discussed in this section. As shown 

before, the flux linkage waveforms of the machine with asymmetric winding connection are 

non-uniform, Fig. 6.5(a), since its coils are asymmetrically located in the stator. However, at 

larger current density, i.e. higher magnetic saturation, the non-uniformity of such waveforms 

is more significant, Fig. 6.5(b). In addition, the flux linkage waveforms under the other two 

winding connections are uniform, as respectively shown in Fig. 6.5(c) and Fig. 6.5(d). 

However, at relatively large current density, their line voltage behaviour against the current 

angle is very much similar to their counterpart of the asymmetric winding connection, Fig. 

6.18. Thus, the most likely reason for the experienced line voltage performance is due to the 

magnetic saturation, which will be confirmed in the following analyses and discussions.  

The flux linkage waveforms of 6 stator/4 rotor poles SynR machines having different 

winding connections at 34 A/mm
2
 current density and 90 degree current angle are shown in 

Fig. 6.24. Comparing with their counterparts under current angle of 45 degree, Fig. 6.5, the 

non-uniformity of the flux linkage waveform of the machine with the asymmetric connection 

still exists. In addition, for all winding connections, the flux linkage magnitude is lower 

when the current angle is 90 degree, but the reduction is more signifcant for the machine 

with the symmetric connection. However, the peak line voltage is still larger when the 

current angle is larger as shwon in Fig. 6.18. For further illustration, the variations of the 

maximum flux linkages and line voltage under the three winding connections against the 

current angle at 34 Arms/mm
2
 current density are calculated and compared in Fig. 6.25 and 

Fig. 6.26, respectively. For all winding connections, the flux linkage reduces when the 

current angle is larger, as shown in Fig. 6.25. This is due to the larger magnetic reluctance 

since larger current angle means that the phase currents are injected when the rotor and stator 

teeth are less aligned. Conversely, the line voltages increase when the current angle is larger, 

as illustrated in Fig. 6.26 since at such current density, the magnetic circuit of the machine is 

heavily saturated regardless the current angle, as can be clearly noticed in Fig. 6.27(a), Fig. 

6.28(a) and Fig. 6.29(a). Under high magnetic saturation, larger current angles will increase 

the distortion of the line voltages, i.e. they start to exhibit even larger voltage spikes, as 

confirmed in Fig. 6.30. More investigations will be carried out to confirm such discussion. 

The flux linkage waveforms of the analysed machines with the three winding connections 

are calculated again at 6 A/mm
2
 current density and 45 and 90 electrical degree current 
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angles, Fig. 6.31 and Fig. 6.32, respectively. The flux linkage waveforms of the machine 

with the asymmetric winding connection at 6 A/mm
2
 and 45 degree current, Fig. 6.31(a), are 

nearly identical and they become lower and more uniform when the current angle becomes 

90 degree, since the magnetic saturation is significantly lower at 6 A/mm
2
 current density 

and becomes even lower when the current angle is 90 degree, as can be clearly noticed in 

Fig. 6.27. Furthermore, for all winding connections, comparing with the flux linkage 

reduction due to larger current angle at 34 A/mm
2 

current density, Fig. 6.24, such reduction 

is more significant when the current density is 6 A/mm
2
. This is again due to lower magnetic 

saturation, as confirmed in Fig. 6.27, Fig. 6.28 and Fig. 6.29. Moreover, these figures show 

that at low current density, i.e. 6A/mm
2
, the magnetic saturation level becomes even lower 

when the current angle is larger, i.e. 90 degree. As a result, the line voltage at 6 A/mm
2
 and 

90 degree has no spike and is lower than its counterpart at 45 deg current angle, Fig. 6.33. 

This further proves the previous discussions and conclusions that the unexpected voltage 

behaviour is due to the high magnetic saturation. However, such influence is more 

significant when the asymmetric winding connection is employed. Therefore, the symmetric 

winding connection could be more suitable, especially at relatively high speed operation. 

 

(a) Asymmetric connection 
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(b) Symmetric connection 

 

(c) Hybrid connection 

Fig. 6.24 Variation of flux linkage waveforms of 6 stator/4 rotor poles machines having 

different winding connections at 34 A/mm
2
 current density and 90 deg current angle. 
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Fig. 6.25 Variation of maximum flux linkage against current angle of 6 stator/4 rotor poles 

machines having different winding connections at 34 Arms/mm
2
 current density. 

 

Fig. 6.26 Variation of maximum line voltage against current angle of 6 stator/4 rotor poles 

machines having different winding connections at 34 A/mm
2
 current density. 
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(I) Current angle is 45 deg (II) Current angle is 90 deg 

  

(a) Maximum current density is 34 A/mm
2 

(100%) 

  

(b) Current density is 6 A/mm
2 

(17.5%) 

 

(c) Flux density scale (T) 

Fig. 6.27 Flux density distribution of machines having asymmetric winding connection for 

different current densities and different current angles. 
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(I) Current angle is 45 deg (II) Current angle is 90 deg 

 
 

(a) Maximum current density is 34 A/mm
2
 

  

(b) Current density is 6 A/mm
2
 

 

(c) Flux density scale (T) 

Fig. 6.28 Flux density distribution of machines having symmetric winding connection for 

different current densities and different current angles. 
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(I) Current angle is 45 deg (II) Current angle is 90 deg 

  

(a) Maximum current density is 34 A/mm
2
 

  

(b) Current density is 6 A/mm
2
 

 

(c) Flux density scale (T) 

Fig. 6.29 Flux density distribution of machines having hybrid winding connection for 

different current densities and different current angles. 
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(a) Current angle is 45 degree 

 

(b) Current angle is 90 degree 

Fig. 6.30 Variations of line voltage waveform of 6 stator/4 rotor poles machines having 

different winding connections, at 34 A/mm
2
 current density and different current angles. 
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(a) Asymmetric winding connection 

 

(b) Symmetric winding connection 
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(c) Hybrid winding connection 

Fig. 6.31 Variations of flux linkage waveforms of 6 stator/4 rotor poles machines having 

different winding connections at 6 A/mm
2
 current density and 45 deg current angle. 

 

(a) Asymmetric winding connection 
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(b) Symmetric winding connection 

 

(c) Hybrid winding connection 

Fig. 6.32 Variations of flux linkage waveforms of 6 stator/4 rotor poles machines having 

different winding connections at 6 A/mm
2
 current density and 90 deg current angle. 
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(a) Current angle is 45 degree 

 

(b) Current angle is 90 degree 

Fig. 6.33 Variations of line voltage waveforms of 6 stator/4 rotor poles machines having 

different winding connections at 6 A/mm
2
 current density and different current angles. 
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6.6. Efficiency 

In order to present a comprehensive comparison, the machine efficiency under the three 

winding connections is calculated and compared in this section. In general, the SR machine 

efficiency can be calculated by: 

100





copperem

Ironem

input

output

PP

PP

P

P


    

(6.3) 

where 
ironem PP , and

copperP are the electromagnetic power, iron and copper losses, 

respectively. 

In order to calculate the iron losses, the flux density distributions in the machine iron is 

obtained by the time stepped FE and then the losses including hysteresis loss (Phys), eddy 

current (Peddy), and excess (Pexc) losses are analytically calculated using (6.4) and 

experimentally determined iron loss coefficients, which are given in Table 6.2. The 

calculation method has been well illustrated and implemented in [161-163]. In addition, the 

copper loss can be estimated by (6.5).  
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where Bm,
mBf , Tcyc,

 
mBK , Irms and Ipeak are flux density amplitude, frequency and cycle time, 

minor loop coefficient and phase current rms and peak values, respectively.  

The variations of iron and copper losses, which correspond to the torque-speed 

characteristics at 34A/mm
2
 maximum current density, Fig. 6.21(a), are predicted and 

compared for the three winding connections, Fig. 6.34 and Fig. 6.35, respectively. It can be 

noticed that for all the winding connections the main iron loss is generated in the stators 
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since comparing with the rotor, the stator flux path is longer, Fig. 6.7, the material volume is 

larger and the magnetic saturation level is higher, Fig. 6.29. Furthermore, at relatively high 

speeds, i.e. larger than 4000 rpm, the iron loss of the machine with the hybrid winding 

connection becomes lower comparing with the other two winding connection. This is 

because the phase current of such machine is also lower, as shown in Fig. 6.22(a), which is 

decreased in order to satisfy the voltage limitation, as already explained in section 6.4. On 

the other hand, the asymmetric and symmetric winding connections result in nearly the same 

level of iron loss, since they have similar flux paths, Fig. 6.7. Furthermore, the iron loss is 

proportional to the speed, while the higher the flux density which is a function of electric 

loading, the higher the iron loss. Therefore, the iron losses of all machines increase sharply 

with the speed up to ~ 8000 rpm. However, they gradually decrease for higher speeds. This 

is due to the significant decreasing of the phase current, i.e. the electric loading, at higher 

speeds, as illustrated in Fig. 6.22(a). The variations of the copper loss are exactly the same as 

their counterparts of the phase current, Fig. 6.22(a), they are large at relatively low speeds 

and sharply decrease at relatively high speeds. The obtained losses are utilised to calculate 

the efficiency-speed characteristics, which is given Fig. 6.36. It shows that at low speed the 

efficiencies of all machines are relatively low, since their output powers are still relatively 

low while their copper losses are relatively large. However, these efficiencies gradually 

increase to achieve a relatively larger value for such type of machine, i.e. the maximum is 

about 93%. Furthermore, the machine with the hybrid winding connection exhibits the 

highest efficiency all over the speed range, since its output power is the largest and its iron 

loss is significantly low. However, at relatively high speeds, all winding connections results 

in nearly the same efficiency. 

Table 6.2 Iron Loss Coefficients for Prototype Machine. 

Parameter Value 

Lamination Thickness (d) 0.35 mm 

Material Density 7850 Kg/m
3
 

Material Conductivity ( iron ) 2220000 Ω
-1

.m
-1

 

Excess Loss Constant (Kexc) 0.0002 

Hysteresis Loss Constant (Kh) 0.0179 

a 0.841 

b 1.023 
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(a) Asymmetric winding connection 

 

(b) Symmetric winding connection 
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(c) Hybrid winding connection 

Fig. 6.34 Comparison of iron loss variations of 6 stator/4 rotor poles machines having 

different winding connections, at 34 A/mm
2
 maximum current density. 

 

Fig. 6.35 Comparison of copper loss variations of 6 stator/4 rotor poles machines having 

different winding connections, at 34 A/mm
2
 maximum current density. 
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Fig. 6.36 Comparison of efficiency of 6 stator/4 rotor poles machines having different 

winding connections, at 34 A/mm
2
 maximum current density. 
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6.7. Comparison of Non-overlapping and Overlapping 

Concentrated Windings  

The preceding investigations are based on the SynR machines having non-overlapping 

concentrated winding. However, in order to further extend the analyses carried out in this 

chapter, the electromagnetic performance of SynR machine having overlapping concentrated 

winding will be also investigated and compared with its counterpart of the non-overlapping 

concentrated winding. The investigations will be carried out on a 12 stator/4 rotor poles 

SynR machine, whose air gap length and external dimensions, i.e. stator outer diameter and 

axial length, are exactly the same as their counterparts of the investigated 6 stator/4 rotor 

poles machine. On the other hand, the 12 stator/4 rotor poles machine has been optimised to 

determine the optimal split ratio, rotor and stator pole widths and stator back iron thickness, 

as shown in Fig. 6.37. The optimization has been performed to achieve the maximum 

average output torque at same current density, i.e. 34 Arms/mm
2
. The optimal dimensions of 

the machine are shown in Table 6.1.  

The comparison will be performed between the overlapping winding SynR machine and 

their non-overlapping symmetric and hybrid winding connection counterparts since the non-

overlapping concentrated symmetric winding connection exhibits the better torque quality, 

i.e. the lower torque ripple, generates the lower line voltage, the wider torque-speed 

characteristics and has nearly the same output torque as the non-overlapping concentrated 

asymmetric winding connection. On the other hand, the non-overlapping concentrated hybrid 

winding connection leads to the largest average output torque and efficiency.  

The cross-section lamination and phase winding layout of the SR machine with overlapping 

winding are given in Fig. 6.38. It is worth mentioning that the number of turns per phase of 

the compared machines is nearly the same, i.e. it is differed by two. Thus, to carry out the 

comparison under the same peak current density, i.e. 34 Arms/mm
2
, the maximum phase 

current of the overlapping winding machine is decreased from 180 Arms to 170 Arms.  
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(a) Split ratio 

 

(b) Rotor pole width 
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(b) Stator pole width 

 

(c) Stator yoke thickness 

Fig. 6.37 Variation of average output torque against split ratio, rotor and stator pole widths 

and stator yoke thickness, at 34 Arms/mm
2
 current density. 
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Fig. 6.38 Cross-section lamination and winding layout of 12 stator/4 rotor poles SynR 

machine. 

6.7.1. Electromagnetic Performance 

In this section, the electromagnetic performance, i.e. the flux linkage, self and mutual 

inductances and output torque, of the 12 stator/4 rotor poles SynR machine is predicted using 

the FE tool and compared with its counterpart of the 6 stator/4 rotor poles SynR machine 

with different winding connections, i.e. symmetric and hybrid. The variation of three phase 

flux linkage waveforms of the overlapping winding machine at 34 Arms/mm
2
 current density 

is shown in Fig. 6.39. Due to the symmetry of the phase winding distribution, Fig. 6.38, the 

flux linkage waveforms are identical for 3 phases, but comparing with the non-overlapping 

concentrated hybrid winding connection the waveform is slightly distorted, as shown in Fig. 

6.40. Thus, the overlapping winding connection is expected to result in larger torque ripple. 

Furthermore, in terms of flux linkage magnitude both the overlapping winding and non-

overlapping hybrid winding connections have nearly the same magnitude, which is slightly 

larger than its counterpart of non-overlapping symmetric winding connection, Fig. 6.40. 

Moreover, the first two connections have similar self inductance variations, which are 

smaller than their counterpart of the non-overlapping symmetric winding connection, as 

illustrated in Fig. 6.41. The mutual inductance variations of the analysed machines are 
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compared in Fig. 6.42. Although the 12 stator/4 rotor poles SynR overlapping winding 

machine has relatively larger mutual inductance variation, it is much smaller than its 

counterpart of the 6 stator/4 rotor poles non-overlapping winding machine with hybrid 

winding connection, which has more interlink between phase fluxes, as can be clearly 

noticed in Fig. 6.7 (c) and Fig. 6.43. In order to examine the influence of the magnetic 

saturation on the self and mutual inductances of the overlapping winding machine, the 

variation of such inductances against the current density is calculated and shown in Fig. 6.44 

and Fig. 6.45, respectively. Due to the flux distribution that is exhibited by the 12 stator/4 

rotor machine, Fig. 6.43, the influence of the magnetic saturation on the inductances is 

relatively significant.  

Furthermore, the phase and line voltage waveforms of the SynR machine with overlapping 

winding are compared with their counterparts of the non-overlapping symmetric and hybrid 

winding connections in Fig. 6.46 and Fig. 6.47, respectively. The voltage waveforms of the 

machine with overlapping winding are more distorted and contain larger voltage spikes, 

which in turn enlarge DC link voltage requirement. Therefore, for the same voltage 

limitation, the 12 stator/ 4 rotor poles machine will exhibit lower flux weakening capability, 

as will be shown in section 6.7.2. Furthermore, the variation of the maximum line voltage 

against the current density of the three machines are compared in Fig. 6.48. It shows that at 

relatively low current density, i.e. low magnetic saturation, both overlapping winding and the 

non-overlapping hybrid winding machines generate the same maximum line voltage, which 

is larger than their counterpart of the non-overlapping symmetric winding machine. 

However, the overlapping winding machine generates much larger peak line voltage when 

the current density is relatively large. This means the influence of the magnetic saturation on 

the line voltage distortion, voltage spike, is more significant in such machine, as also 

confirmed in Fig. 6.47.  

The output torque waveforms of the three investigated machines are compared in Fig. 6.49. 

Comparing the 6 stator/4 rotor poles machine with non-overlapping symmetric winding 

connection, its 12 stator/4 rotor poles counterpart generates much larger output torque, since 

the torque in 12 stator/4 rotor poles machine is produced by the variations of both self and 

mutual inductances, Fig. 6.44 and Fig. 6.42, respectively. On the other hand, such machine 

exhibits slightly lower output torque than the 6 stator/4 rotor poles counterpart with hybrid 

winding connection since its self inductance variation is also slightly smaller, as shown in 

Fig. 6.41. Furthermore, the machine with overlapping winding exhibit the largest torque 
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ripple, since the influence of the magnetic saturation is more significant in such machine. 

The variation of the average output torque against the current density of the three machines 

are calculated and compared in Fig. 6.50. A similar average output torque exhibits at 

relatively low current density, but the difference starts to increase when the current density 

becomes larger. It also shows that the 6 stator/ 4 rotor poles machine with hybrid winding 

connection exhibits the best performance in terms of average output torque. In order to study 

the output torque quality, the torque ripple, i.e. percentage of the torque ripple to the average 

output torque, against the current density of the three machines are calculated and plotted in 

Fig. 6.51. The 12 stator/4 rotor poles machine exhibits relatively larger torque ripple.  

In the previous calculations, the phase current is injected at 45 electrical angle, i.e. the d- and 

q-axis currents are equal. However, due to the magnetic saturation the optimal current angle 

could be different. Therefore, the variation of the average output torque against the current 

angle of the 12 stator/4 rotor poles machine is calculated for different current densities and 

shown in Fig. 6.52. It shows that the optimal current is 50 degree at low current density. 

However, it becomes 55 degree when the current density thus the magnetic saturation is 

high. Consequently, to operate such machine at its maximum output torque the current 

should be injected at current angle of 55 electrical degrees. 

 

Fig. 6.39 Variation of flux linkage waveforms of 12 stator/4 rotor poles machine, at 34 

Arms/mm
2
 current density. 

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0 30 60 90 120 150 180

phase A phase B phase C

F
lu

x
 L

in
k

a
g
e 

(W
b

)

Rotor Position (mech. deg)



215 
 

 

Fig. 6.40 Comparison of flux linkage waveforms of 12 stator/4 rotor poles and 6 stator/4 

rotor poles machines having different winding connections, at 34 Arms/mm
2
 current density. 

 

Fig. 6.41 Comparison of self inductance variations of 12 stator/4 rotor poles and 6 stator/4 

rotor poles machines having different winding connections, at 34 A/mm
2
 current density. 
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Fig. 6.42 Comparison of mutual inductance of 12 stator/4 rotor poles and 6 stator/4 rotor 

poles machines having different winding connections, at 34 Arms/mm
2
 current density. 

 

Fig. 6.43 Equal potential distributions of 12 stator/4 rotor poles machine, at 34 Arms/mm
2
 

current density. 
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Fig. 6.44 Variation of self inductances of 12 stator/4 rotor poles machine for different current 

densities. 

 

Fig. 6.45 Variation of mutual inductances of 12 stator/4 rotor poles machine for different 

current densities. 
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Fig. 6.46 Comparison of phase voltage waveforms of 12 stator/4 rotor poles and 6 stator/4 

rotor poles machines having different winding connections, at 34 Arms/mm
2
 current density. 

 

Fig. 6.47 Comparison of line voltage waveforms of 12 stator/4 rotor poles and 6 stator/4 

rotor poles machines having different winding connections, at 34 Arms/mm
2
 current density. 
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Fig. 6.48 Comparison of maximum line voltage against current density of 12 stator/4 rotor 

poles and 6 stator/4 rotor poles machines having different winding connections, at 34 

Arms/mm
2
 current density. 

 

Fig. 6.49 Comparison of output torque waveforms of 12 stator/4 rotor poles and 6 stator/4 

rotor poles machines having different winding connections, at 34 Arms/mm
2
 current density. 
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Fig. 6.50 Comparison of average output torque against current density of 12 stator/4 rotor 

poles and 6 stator/4 rotor poles machines having different winding connections. 

 

Fig. 6.51 Comparison of torque ripple percentage against current density of 12 stator/4 rotor 

poles and 6 stator/4 rotor poles machines having different winding connections. 
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Fig. 6.52 Variaiton of average output torque against current angle of 12 stator/4 rotor poles 

machine for different current densities. 

6.7.2. Torque and Power Speed Characteristics 
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machine with symmetric winding connection, its maximum output power is lower, Fig. 6.56 

(b). Furthermore, at relatively high speed, the 12 stator/4 rotor poles machine and its 6 

stator/4 rotor poles counterpart with the hybrid winding connection show a similar 

performance since at relatively low current density, such two machines generate nearly the 

same average output torque, Fig. 6.50, and line voltage, Fig. 6.48.  

 

Fig. 6.53 Variation of peak line voltage against current angle of 12 stator/4 rotor poles 

machine for different current densities, at 2500 rpm. 
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Fig. 6.54 Variaitons of line voltage against current density of 12 stator/4 rotor poles machine 

for different rotating speeds. 

 

Fig. 6.55 Variation of average output torque against current density of 12 stator/4 rotor poles 

machine. 
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(a) Torque-speed curves at 34 A/mm
2
 maximum current density 

 

(b) Power-speed curves at 34 A/mm
2
 maximum current density 
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(c) Torque-speed curves at 20 A/mm
2
 maximum current density 

 

(d) Power-speed curves at 20 A/mm
2
 maximum current density 
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(e) Torque-speed curves at 10 A/mm
2
 maximum current density 

 

(f) Power-speed curves at 10 A/mm
2
 maximum current density 

Fig. 6.56 Comparison of torque and power-speed characterstics of 12 stator/4 rotor poles and 

6 stator/4 rotor poles machines having different winding connections. 
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(a) Maximum current density is 34 Arms/mm
2
 

 

(b) Maximum current density is 20 Arms/mm
2
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(c) Maximum current density is 10 Arms/mm
2
 

Fig. 6.57 Variation of peak phase current of 12 stator/4 rotor poles and 6 stator/4 rotor poles 

machines having different winding connections for different current densities. 
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(b) Maximum current density is 20 A/mm
2
 

 

(c) Maximum current density is 10 A/mm
2
 

Fig. 6.58 Variation of peak line voltage of 12 stator/4 rotor poles and 6 stator/4 rotor poles 

machines having different winding connections for different current densities. 
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6.7.3. Efficiency 

In order to present a comprehensive comparison, the efficiencies of the three considered 

machines will be compared in this section. For this purpose, the corresponding iron and 

copper losses associated with the torque-speed characteristics at 34 A/mm
2
 maximum 

current density of the 12 stator/4 rotor poles machine are calculated and shown in Fig. 6.59 

and Fig. 6.60, respectively. Comparing with their counterparts of the 6 stator/4 rotor poles 

machine with symmetric and hybrid winding connection, Fig. 6.34 and Fig. 6.35, the iron 

loss of the 12 stator/4 rotor poles machine is lower at relatively low speeds since the phase 

current of this machine is also lower, as shown in Fig. 6.57(a). However, at relatively high 

speeds both machines with overlapping and non-overlapping hybrid winding connections 

generate nearly the same iron loss, which is lower than its counterpart of the machine with 

the non-overlapping symmetric winding connection. This is because the first two machines 

have lower phase current, Fig. 6.57(a).  

Moreover, the copper loss of the 12 stator/4 rotor poles machine is the largest in constant 

torque region since it has larger phase resistance, i.e. due to longer end-winding. This loss 

becomes relatively low in the flux wakening operation region, due to the reduction of the 

phase current variation, Fig. 6.57(a). The efficiency of the three machines is compared in 

Fig. 6.61. It shows that at low speeds the 12 stator/4 rotor poles machine and its 6 stator/4 

rotor poles counterpart with hybrid winding connection exhibit nearly the same efficiency, 

which is much larger than their counterpart of the 6 stator/4 rotor poles machine with 

symmetric winding connection. On other hand, at high speeds, all machines exhibit nearly 

the same efficiency, which is relatively large, i.e. maximum of 93%. Therefore, the SR 

machines in general demonstrate better performance when operated at high speeds.  
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Fig. 6.59 Variation of iron loss of 12 stator/4 rotor poles machine, at 34 A/mm
2
 maximum 

current density. 

 

Fig. 6.60 Variation of copper loss of 12 stator/4 rotor poles machine, at 34 A/mm
2
 maximum 

current density. 
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Fig. 6.61 Comparison of efficiency of 12 stator/4 rotor poles and 6 stator/4 rotor poles 

machines having different winding connections for 34 A/mm
2
 maximum current density. 

Table 6.3 Comparison of characteristics of 12 stator/4 rotor poles and 6 stator/4 rotor 

poles machines having different winding connections, at 34 A/mm
2
 current density and 2500 

rpm. 

Characteristics Overlapping 
Non-overlapping  

Symmetric Hybrid 

Average torque (N.m) 53.9 32 56 

Torque ripple (N.m) 49.3 16 31 

Torque ripple Percentage (%) 91.4 50 55 

Output Power (KW) 14.1 8 15 

Iron loss (W) 94 140 143 

Copper loss (W) 6347 5843 5843 

Efficiency (%) 69.6 59 71 
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6.8. Experimental Measurements 

In order to validate the analyses and investigations of this chapter, the 6 stator 4 rotor SynR 

machine has been prototyped, Fig. 6.62. In the next chapter, i.e. Chapter 7, the same 

prototype machine will be investigated again under the AC sinusoidal bipolar with DC bias 

excitation, which requires two coils on each stator tooth, i.e. one for the AC sinusoidal 

excitation while the other for the DC bias. Therefore, in order to experimentally validate 

both excitations using the same prototype machine, each stator tooth has been wound with 

two coils, the first is 8 turns while the another is 13 turns. The four ends of each coil have 

been taken outside the motor, as illustrated in Fig. 6.62 (b). Under the AC excitation, these 

two coils are connected together in series to form a 21 turns coil per stator tooth, the six coils 

are linked together to create the three phase winding, as shown in Fig. 6.63. On the other 

hand, under the AC+DC excitation, the 13 turn coils will be excited by three phase AC 

sinusoidal currents, while the 8 turns coils will be connected to a DC excitation source, as 

will be further illustrated in Chapter 7. It should be mentioned that the packing factor of the 

prototype machine is 0.4.  

The measurements include the variation of the output torque against the current angle and 

maximum output torque against phase current, i.e. current density. The test rig including the 

prototype machine is illustrated in Fig. 6.64. The measured and predicted variations of the 

output torque against the current angle of the three studied winding connections under 10 

and 15 A/mm
2
 current densities are compared in Fig. 6.65. On the other hand, the measured 

and predicted maximum output torque against the current density under these connections is 

compared in Fig. 6.66. The good agreement strongly confirms and the analyses and 

conclusions of this chapter.  
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(a) Stator and rotor 

 

(b) Stator with coil connection 

Fig. 6.62 6 stator/4 rotor prototype machine. 
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Fig. 6.63 Winding connection of 6 stator/4 rotor prototype machine under AC excitation. 

 

Fig. 6.64 Test rig for measuring torque-phase current angle and magnitude characteristics. 
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(a) Asymmetric winding connection 

 

(b) Symmetric winding connection 
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(c) Hybrid winding connection 

Fig. 6.65 Comparison of measured and predicted output torque variations against current 

angle of 6 stator/ 4 rotor poles prototype machine for different winding connections, at 10 

and 15 A/mm
2
 current densities. 

 

(a) Asymmetric winding connection 
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(b) Asymmetric winding connection 

 

(c) Hybrid winding connection 

Fig. 6.66 Comparison of measured and predicted maximum output torque variations against 

phase current magnitude of 6 stator/ 4 rotor poles prototype machine for different winding 

connections. 
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6.9. Conclusions 

The electromagnetic performance of 6 stator/4 rotor poles SynR machines having different 

non-overlapping concentrated winding connections, i.e. asymmetric, symmetric and hybrid, 

and AC sinusoidal bipolar excitation have been investigated, analysed and compared in this 

chapter. It is found that, in addition to the self inductance variations, the machine with hybrid 

winding connection has relatively larger mutual inductance variations and shorter phase flux 

paths. Thus, such machine exhibits relatively larger average output torque and efficiency and 

lower iron loss comparing with the other two winding connections. Comparing with the 

machine having symmetric winding connection, its counterpart that employs asymmetric 

winding connection generates slightly larger average output torque, but much larger torque 

ripple. In addition, due to the non-uniform 3-phase flux linkage waveforms of the 

asymmetric winding connection machine, its 3-phase voltage waveforms are also not 

uniform. Thus, the required DC-link voltage to operate such machine is larger than other two 

counterparts. In term of output torque ripple, the symmetric winding connection leads to the 

best performance. In addition, such connection results in the widest flux weakening 

operation region as well as relatively higher efficiency at high speeds. On the other hand, at 

significantly large current densities, i.e. high magnetic saturation level, the hybrid 

connection can be also an attractive choice, since it combines the significantly large output 

torque and relatively low torque ripple with the relatively high efficiency.  

Furthermore, the 6 stator/4 rotor poles machines having non-overlapping symmetric and 

hybrid winding connections have been compared with their 12 stator/4 rotor poles 

counterpart with overlapping winding in terms of output torque, torque ripple, torque-speed 

characteristics and efficiency. It can be concluded that comparing with the 6 stator/4 rotor 

machine has non-overlapping symmetric winding connection, the 12 stator/4 rotor poles 

machine exhibits relatively larger mutual inductance variation, thus produces significantly 

larger average output torque. However, this torque is lower than its counterpart of the 6 

stator/4 rotor machine with non-overlapping hybrid winding connection, which has larger 

mutual inductance variation. The 12 stator/4 rotor poles machine generates the largest torque 

ripple. In addition, the line voltage of such machine is relatively large, thus it exhibits the 

narrowest flux weakening operation region. In general, the SynR machines under AC 

sinusoidal bipolar excitation could be a good choice for the electric/hybrid electric vehicles 

since they exhibit relatively large output torque, power and efficiency. However, the torque 

ripple, DC-link voltage, noise and vibration issues should be first further investigated.  
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Chapter 7: Electromagnetic Performance Analysis of 

Synchronous Reluctance Machines Having Non-

overlapping Concentrated Windings and AC 

Sinusoidal Bipolar with DC Bias Excitation 

7.1. Introduction  

It is well known that the PM machines, which have two excitation sources, i.e. PMs and 

phase currents, exhibits larger torque density comparing with the other type of machines. 

However, due to the limitation of resources and significant increase in price of the PM 

materials, the magnetless machine topologies become more and more desirable as an 

alternative. The magnets in the PM machines are equivalent to constant DC excitation 

sources. Therefore, the AC sinusoidal bipolar excited SynR machines, which are investigated 

in Chapter 6, have the potential to exhibit larger torque density if two excitation sources are 

employed. The first one is the DC bias which is equivalent to the PMs excitation, while the 

second one is the standard AC sinusoidal excitation. Such machines will be designed as a 

SynR machine having AC sinusoidal bipolar with DC bias excitation. The operation 

principle and electromagnetic performance of the machines under such excitation are 

thoroughly investigated in this chapter using FE analysis tool. In addition, its 

electromagnetic performance is compared with its counterpart without DC bias excitation 

and conventional unipolar SR machine. Finally, experimental results are provided to support 

the investigation. 

7.2. Operation Principles  

The investigations are carried out on the 6 stator/4 rotor poles machine, whose major 

dimensions are given in Table 6.1. In order to operate the SynR machine under AC 

sinusoidal bipolar with DC bias excitation, each stator tooth is wound with two coils, the 

first belongs to the AC sinusoidal excitation, while the other is connected to the DC current 

source. The AC current coils are linked together to form the standard three phase winding 

connection, which is connected to a standard 3-phase inverter. On the other hand, the DC 

current coils are connected together in series, with polarity consideration, to a separate DC 

source. An example of the coil connections is illustrated in Fig. 7.1. The operation principles 

of such excitation can be simply summarized as follows: under DC excitation only, i.e. AC 
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coils are not excited (open-circuit), the DC flux, which is equivalent to magnet flux in PM 

machines, interlinks with the AC coils of each phase and induces phase voltages, which 

equivalently will be called the back-emf. Consequently, similar to PM machines, an output 

torque will be generated if the AC coils are excited by AC sinusoidal currents. Furthermore, 

due to the interaction between the DC flux and stator slotting, an open-circuit torque ripple 

or cogging torque will be generated. Further illustrations and investigations are given in the 

following sections.  

Moreover, similar to the AC sinusoidal bipolar excitation, the coils under AC sinusoidal 

bipolar with DC bias excitation have the possibility to be connected either asymmetrically, 

Fig. 7.2(a), or symmetrically, Fig. 7.2(b). However, it should be illustrated that in the case of 

asymmetric winding connection only 4 DC coils become required, i.e. no need for DC coils 

on phase B teeth (no DC coils on teeth 2 and 5 in Fig. 7.1). This is because such coils do not 

contribute to the output torque, but they only generate an extra copper loss. The machine 

electromagnetic performance under such two winding connections will be investigated and 

compared in this chapter. It is also worth mentioning that the hybrid winding connection, 

which is investigated in Chapter 6, is not suitable when the machine is excited by AC 

sinusoidal currents with DC bias since it exhibits a significantly small open-circuit flux 

linkage waveform, as illustrated in Fig. 7.3. Consequently, such connection results in an 

extremely small output torque, thus is not considered in this chapter. Furthermore, under 

such excitation the current frequency is determined by the rotor pole number, i.e. similar to 

the switched flux PM (SFPM) machines. In other words, the current frequency should be 

doubled comparing with the AC sinusoidal bipolar excitation since one electric cycle is 

completed when the rotor mechanically rotates one rotor pole pitch, as shown in Fig. 7.3. 

 
Fig. 7.1 Winding connection under AC sinusoidal bipolar with DC bias excitation. 
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(a) Asymmetric winding connection 

 

(b) Symmetric winding connection 

Fig. 7.2 Comparison of asymmetric and symmetric winding connections of 6 stator/4 rotor 

poles machine under AC sinusoidal bipolar with DC bias excitation, (+DC) and (-DC) refer 

to positive and negative polarity of DC excitation. 
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Fig. 7.3 Comparison of open-circuit flux linkage variations of 6 stator/4 rotor poles machines 

having different winding connections under DC bias excitation only, at 34 A/mm
2
 current 

density. 

7.3. Electromagnetic performance  

As mentioned earlier, the operation principle of the AC sinusoidal bipolar with DC bias 

excitation is similar to its counterpart of the PM magnet machines, i.e. both have two 

excitations. Thus, this section firstly analyses the open-circuit characteristics, e.g. with DC 

excitation only, then it investigates the load performance, e.g. under both AC and DC 

excitations. It should be also mentioned that the maximum considered current density during 

the investigations is limited to 34 A/mm
2
. However, both the open-circuit and load 

characteristics are examined and compared for different DC and AC current densities. 

7.3.1. Open-Circuit 

In order to carry out such investigations, the three phase AC coils are open-circuited while 

the DC coils are connected to the DC source according to Fig. 7.1. Both the normal and 

tangential open-circuit air gap flux density components at 34 A/mm
2
 are given in Fig. 7.4. 

Comparing with the asymmetric winding connection, its symmetric counterpart results in a 

larger normal open-circuit air gap flux density, which is identical every 180 mechanical 

degree, while the asymmetric winding connection waveform repeats once over the 360 
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mechanical degree, as shown in Fig. 7.4(a). This is due to the different flux distribution in 

each connection, as can be clearly seen in Fig. 7.5. For the same reason, the tangential 

components of both connections exhibit the same behaviour, Fig. 7.4(b). The open-circuit 

torque, i.e. cogging torque, of the two connections are predicted at 34 A/mm
2
 DC current 

density and compared in Fig. 7.6(a). Under the asymmetric winding connection, the DC 

stator polarity repeats twice, as can be clearly seen in Fig. 7.2(a). This is equivalent to two 

stator slots from the cogging torque producing point of view. Thus, the cogging torque is 

produced by the interaction of the 4 rotor poles with these two slots. This means the cogging 

torque waveform will be repeated once every 90 mechanical degree, as confirmed in Fig. 

7.6(a). On the other hand, the DC stator polarity under the symmetric winding connection 

repeats once every 60 mechanical degree, as can be clearly seen in Fig. 7.2(a), Thus, the 

cogging torque period of the symmetric winding connection is 30 mechanical degree, since 

the least common multiple between the rotor poles and equivalent stator slots is 12, thus the 

cogging torque period is 360÷12=30. In order to examine the influence of the magnetic 

saturation, the cogging torque is predicted for different current densities and the peak values 

due to the two winding connections are compared in Fig. 7.6(b). It shows that the influence 

of the magnetic saturation is different according to the winding connection. Under the 

asymmetric winding connection, the flux density distribution is not affected by the current 

density, i.e. the magnetic saturation level, as can be noticed by comparing Fig. 7.5(a) and (b) 

with Fig. 7.7(a) and (b), respectively. Therefore, the cogging torque of such connection is 

directly proportional to the current density. On the other hand, the cogging torque of the 

symmetric winding connection sharply increases for relatively small current densities, then it 

gradually decreases when the current density becomes more significant since the flux density 

distribution under such connection varies according to the current density value, i.e. the 

magnetic saturation level, as can be clearly noticed by comparing Fig. 7.5(c) and (d) with 

Fig. 7.7(c) and (d), respectively. The comparison illustrates that for significantly large 

current densities, Fig. 7.5(c) and (d), the flux density distribution becomes relatively more 

balanced, thus the change of cogging torque with rotor position is relatively small. However, 

at relatively low current density, Fig. 7.7(c) and (d), such distribution becomes less balanced, 

thus the cogging torque becomes relatively large.  

Furthermore, the three phase open-circuit flux linkages, which are seen by the AC coils, are 

calculated for 34A/mm
2
 current density and compared for the two winding connections in 

Fig. 7.8. It shows that the flux linkage waveforms of the asymmetric winding connection are 

non-uniform, Fig. 7.8(a), since the winding distribution of such connection are also non-
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uniform, Fig. 7.2(a). On the other hand, the symmetric winding connection results in 

uniform flux linkage waveforms, which are larger than their counterparts of the asymmetric 

connection, since such connection has larger air gap flux density, Fig. 7.4. However, the 

maximum to minimum variation of such waveforms is smaller since for the symmetric 

winding connection, the difference between the flux distribution at the maximum flux 

linkage position of phase A, i.e. when the rotor poles are full aligned with the phase A stator 

poles, Fig. 7.5(c), and its minimum flux linkage position, i.e. the rotor pole and the phase A 

stator poles are un-aligned, Fig. 7.5(d), is relatively small comparing with the counterpart of 

the asymmetric winding connection, Fig. 7.5(a) and Fig. 7.5(b), respectively. Consequently, 

the induced open-circuit phase voltage waveforms, i.e. the back-emf waveforms, of the 

asymmetric winding connection is non-uniform and larger comparing with the counterparts 

of the symmetric winding connection, as shown in Fig. 7.9. Moreover, in order to investigate 

the influence of the magnetic saturation on such characteristics, the variations of phase A 

flux linkage and back-emf waveforms for different current densities are compared in Fig. 

7.10 and Fig. 7.11, respectively. For the asymmetric winding connection, larger DC current 

densities increase the flux linkage waveforms and their variation, Fig. 7.10(a). As a result, 

the back-emf waveforms also increase, but such increasing becomes significantly small at 

relatively large DC current density, as illustrated in Fig. 7.11(a). This is an expected and 

normal behaviour since the magnetic circuit becomes more saturated. However, on the other 

hand, the magnetic saturation influence is more significant when the machine is equipped 

with the symmetric winding connection since, the variations of flux linkage waveforms are 

larger when the DC current density is relatively larger, but they become gradually less when 

such current densities are significantly large, as illustrated in Fig. 7.10(b). Consequently, the 

back-emf waveforms of the symmetric winding connection are larger when the current 

density is relativity large and they are much smaller when the current density is significantly 

large, as shown in Fig. 7.11(b). Comparing with the asymmetric winding connection, the 

back-emf waveform of the symmetric winding connection is larger at relatively larger 

current density, i.e. 12 A/mm
2
. Therefore, for such current density the studied machine is 

expected to produce larger output torque if it is equipped by symmetric winding connection. 

On the other hand, for significantly large current densities, the larger output torque is 

expected to be obtained from the machine with asymmetric winding connection. Further 

analyses and discussions regarding the output torque generation will be provided in the next 

section. 



246 
 

 

(a) Normal 

 

(b) Tangential 

Fig. 7.4 Comparison of normal and tangential open-circuit air gap flux density distributions 

of 6 stator/4 rotor poles machines having different winding connections under DC bias 

excitation only, at 34 A/mm
2
 DC current density. 
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(a) Asymmetric winding connection at maximum flux linkage position for phase A 

 

(b) Asymmetric winding connection at minimum flux linkage position for phase A 

 

(c) Symmetric winding connection at maximum flux linkage position for phase A 
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(d) Symmetric winding connection at minimum flux linkage position for phase A 

Fig. 7.5 Equal potential distributions of 6 stator/4 rotor poles machines having different 

winding connections and different rotor positions, at 34 A/mm
2
 DC current density. 

 

(a) Waveforms, at 34 A/mm
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(b) Peak values at different DC current densities 

Fig. 7.6 Comparison of cogging torque of 6 stator/4 rotor poles machines having different 

winding connections under DC bias excitation only. 

 

(a) Asymmetric winding connection at maximum flux linkage position for phase A 
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(b) Asymmetric winding connection at minimum flux linkage position for phase A 

 

(c) Symmetric winding connection at maximum flux linkage position for phase A 
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(d) Symmetric winding connection at minimum flux linkage position for phase 

Fig. 7.7 Equal potential distributions of 6 stator/4 rotor poles machines having different 

winding connections and different rotor positions, at 12 A/mm
2
 DC current density. 
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(b) Symmetric winding connection 

Fig. 7.8 Comparison of three phase open-circuit flux linkage waveforms of 6 stator/4 rotor 

poles machines having different winding connections, at 34 A/mm
2
 DC current density. 
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(b) Symmetric winding connection 

Fig. 7.9 Comparison of three phase back-emf waveforms of 6 stator/4 rotor poles machines 

having different winding connections, at 34 A/mm
2
 DC current density and 2500 rpm speed. 
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(b) Symmetric winding connection 

Fig. 7.10 Comparison of open-circuit flux linkage waveforms of 6 stator/4 rotor poles 

machines having different winding connections for different DC current densities. 
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(b) Symmetric winding connection 

Fig. 7.11 Comparison of back-emf waveforms of 6 stator/4 rotor poles machines having 

different winding connections under different DC current densities and 2500 rpm speed. 

7.3.2. Load 

7.3.2.1. Output Torque 

As already illustrated, due to the DC excitation, voltages are induced in the AC coils, i.e. 

back-emfs. Therefore, the studied machine should generate output torque if the three phase 
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switched flux PM machines, the maximum output torque should be achieved if these currents 

are injected in phase with the back-emf waveforms, i.e. Iq=IPhase, Id=0. In addition, initially 
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However, the optimal injected current angle as well as the optimal ratio of AC to DC current 

densities will be further investigated. The AC coils of the studied machine are energized by 

the AC currents at 34 Arms/mm
2
 total current density. The obtained output torque waveforms 

for the both winding connections are compared in Fig. 7.12. It proves the ability of 

producing output torque when the machine is excited by AC sinusoidal bipolar with DC bias. 

In order to examine the machine torque capability under such excitation, its electromagnetic 
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sinusoidal bipolar excitations in section 7.6. Comparing with the symmetric winding 

connection and under the same AC and DC current densities and zero AC current angle, the 

asymmetric winding connection results in a larger output torque, since its back-emf 

waveforms are larger, Fig. 7.9. However, the symmetric winding connection leads to lower 

torque ripple, because it has lower cogging torque and more uniform back-emf waveforms. 

Furthermore, in order to investigate the influence of magnetic circuit on the output torque 

capability and torque ripple of each winding connection, the output torque of the machine 

with both winding connections is calculated for different current densities. The average 

output torque and maximum torque ripple, i.e. peak to peak value, are compared in Fig. 7.13. 

Up to 12 A/mm
2
 current density, the symmetric winding connection leads to relatively larger 

average output torque output. However, for larger current densities, the output torque 

increase of such winding connection starts to be saturated. Thus, the asymmetric winding 

connection exhibits larger average torque, Fig. 7.13(a). Such performance has been expected, 

since it is exactly the same as the back-emf behaviour of the two winding connections, as 

shown in Fig. 7.11. Furthermore, the symmetric winding connection results in significantly 

lower torque ripple at relatively larger current densities since the cogging torque becomes 

lower, Fig. 7.6, and back-emf is less distorted, Fig. 7.11.  

Moreover, in order to determine the optimal current angle, the output torque of the analysed 

machine is calculated for different current angles, i.e. between -90 to +90 electrical degrees, 

and for different current densities. The average output torque against the current angle of the 

machines having two winding connections is given in Fig. 7.14. It shows that for all current 

densities the machine with the symmetric winding connection delivers its maximum output 

torque at 15 electrical degrees current angle. On the other hand, the optimal current angle is 

0 degree when the machine has symmetric winding connection. In addition, Fig. 7.14 again 

shows that the influence of the magnetic saturation with asymmetric winding connection is 

relatively low comparing with the symmetric counterpart. As mentioned before, during the 

earlier investigations the AC and DC current densities are assumed to be equal, i.e. the 

AC/DC current density ratio is one. However, in the upcoming analyses the optimal ratio, 

which results in the maximum average output torque, will be determined for each winding 

connection. For this purpose, the average output torque against the AC/DC current density 

ratio is calculated for both connections at 34 A/mm
2
 average current density and the results 

are compared in Fig. 7.15(a). It shows that the optimal ratio is one when the machine has the 

asymmetric winding connection. However, such ratio is two for the symmetric winding 

connection, which results in a larger maximum average output torque comparing with the 
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asymmetric winding connection. On the other hand, comparing with the asymmetric winding 

connection the symmetric winding connection results in significantly lower torque ripple, 

especially when the ratio is lower than two. However, it becomes the same when the ratio is 

larger, as illustrated in Fig. 7.15(b). The exhibited behavior of the output torque is due to the 

variations of the back-emf under different winding connections and different current 

densities. The asymmetric winding connection results in a larger back-emf when the DC 

current density is larger, but the increasing is saturated when the current density is larger 

than 24 A/mm
2
, as shown in Fig. 7.11(a). Thus, when the AC/DC ratio is smaller than one, 

i.e. DC current density is larger than 34 A/mm
2
, the back-emf slightly increases. However, in 

this case the AC current density is lower, thus the output torque will be also lower. On the 

other hand, when the ratio is larger than one, the back-emf becomes lower. Although the AC 

current density is larger, but the average output torque actually becomes smaller. In addition, 

the increase of the AC current density contributes more to the torque ripple, as shown in Fig. 

7.16(a). However, the back-emf of the machine has symmetric winding connection is larger 

when the DC current density is relativity large and it is much smaller when such current 

density is significantly large, as shown in Fig. 7.11(b). Therefore, when the AC/DC current 

density ratio is relatively small, e.g. 0.6, the DC current density is significantly larger, thus 

the back-emf is small and in addition the AC current density is also small. Therefore, the 

output torque is very small, as shown in Fig. 7.16(b). When the AC/DC current density ratio 

gradually increases, the back-emf becomes larger since the DC current density becomes 

relatively large. In addition, the AC current density becomes larger, thus both the average 

torque and torque ripple become larger, as shown in Fig. 7.16(b). Furthermore, when the 

ratio is relatively larger, e.g. larger than two, the back-emf starts decreasing since the DC 

current density is relatively low. Consequently, the average torque becomes lower, while the 

torque ripple becomes significantly large since the AC current density is also very large, as 

shown in Fig. 7.15 and Fig. 7.16(b). Further analyses, including the machine line voltage, 

will be carried out in the next section and then the most appropriate winding connection can 

be determined in terms of the torque- and power-speed characteristics.  
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Fig. 7.12 Comparison of output torque waveforms of 6 stator/4 rotor poles machines having 

different winding connections, at 34 A/mm
2
 average current density and JDC=JAC rms. 
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(b) Maximum torque ripple 

Fig. 7.13 Comparison of average output torque and torque ripple of 6 stator/4 rotor poles 

machines having different winding connections for different current densities, JDC=JAC rms. 
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(b) Symmetric winding connection 

Fig. 7.14 Comparison of average output torque against current angle of 6 stator/4 rotor poles 

machines having different connections for different current densities, at JDC=JAC rms. 
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(b) Torque ripple 

Fig. 7.15 Comparison of average output torque and torque ripple against AC/DC current 

density ratio of 6 stator/4 rotor poles machines having different winding connections, at 34 

A/mm
2
 average current density. 
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(b) Symmetric winding connection 

Fig. 7.16 Comparison of output torque waveforms of 6 stator/4 rotor poles machines having 

different winding connections for different AC/DC current density ratios, at 34 A/mm
2
 

average current density. 
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in Fig. 7.17. It should be mentioned that the current angle is varied in the range between 0 

0

10

20

30

40

50

60

70

0 15 30 45 60 75 90

AC/DC = 0.5
AC/DC = 1
AC/DC = 2
AC/DC = 4

Rotor Position (mech. deg)

T
o

r
q

u
e
 (

N
.m

)



263 
 

and 90 electrical degrees since in this range the d-axis current becomes negative, thus it is 

the flux weakening operation region. In general, larger AC current angle should weaken the 

machine line voltage. However, the influence of such angle on the line voltage of the 

machine with the asymmetric winding connection is relatively small when the current 

density is relatively larger, as shown in Fig. 7.17(a). This is because the magnetic saturation 

due to such connection is significantly larger even when the current angle is 90 degree, as 

illustrated in Fig. 7.18(a) and (b). In turn, this leads to larger non-uniformity and distortion in 

the phase voltage waveform, as shown in Fig. 7.19(a) and (b). This results in larger voltage 

spike in the line voltage waveform, as illustrated in Fig. 7.21(a). In order to match the 

voltage requirement of the machine the voltage limitation should be larger than the 

maximum line voltage value, Fig. 7.21. On the other hand, larger current angle leads to a 

relatively larger reduction in the line voltage when the symmetric winding connection is 

employed, Fig. 7.17(a) and Fig. 7.21(c). This is because the symmetrical distribution of 

phase windings results in uniform phase voltage waveforms, as shown in Fig. 7.20, thus they 

have no voltage spikes at larger current angle. Consequently, the line voltage of the machine 

with symmetric winding connection is relatively more uniform and lower when the current 

angle increases. Therefore, it can be concluded that the weak influence of the AC current 

angle on the line voltage of the machine with asymmetric winding connection at relatively 

larger current densities is due to the asymmetry distribution of phase windings and high 

magnetic saturation.  

In order to further clarify this phenomenon, the phase and line voltage waveforms of the 

machine with asymmetric winding connection are calculated at 6 A/mm
2
 current density and 

0 and 90 electrical degree AC current angle, the results are given in Fig. 7.19(c), Fig. 

7.19(d), and Fig. 7.21(b), respectively. The phase voltage waveforms, Fig. 7.19(c), are 

relatively more uniform and less distorted, since the magnetic saturation level is relatively 

small, as shown in Fig. 7.18(c). Furthermore, when the AC current angle increases, i.e. 90 

degree, the magnetic saturation becomes even lower, Fig. 7.18(d). Consequently, the phase 

voltage waveforms are more similar, Fig. 7.19(d). Thus, the line voltage waveform at larger 

current angle is lower than its counterpart and 0 current angle, as confirmed in Fig. 7.21(b). 

Thus, the increase of the AC current angle will decrease the line voltage at relatively small 

current angle as expected. This confirms that the unexpected behavior at relatively larger 

current angle is due to the significant magnetic saturation as well as the non-uniformity of 

the phase winding connected since the line voltage of the machine with symmetric winding 

connection decreases when the current angle increases even at significant current densities, 



264 
 

as shown in Fig. 7.17(b). However, on the other hand, the line voltage of symmetric winding 

connection is larger when the current density is relatively larger, but it is lower when the 

current density is very large. This behavior is the same as the back-emf-current density 

variation, Fig. 7.11(b), which has been explained in section 7.3.1. Furthermore, according to 

Fig. 7.17, it can be concluded that comparing with the asymmetric winding connection, the 

machine line voltage due to the symmetric winding connection is significantly lower and 

influence of the AC current angle is larger.  

In addition, as shown in the previous section, the machine with symmetric winding 

connection produces its maximum average output torque when the AC/DC current density 

ratio is 2. Such torque is about 7% larger than its counterpart of the machine with 

asymmetric winding connection, as illustrated in Fig. 7.14(a). However, at such ratio, the 

machine line voltage becomes larger than its counterpart due to the asymmetric winding 

connection, as shown in Fig. 7.22. This is because the larger AC current results in larger 

voltage distortion and spikes, as shown in Fig. 7.23. On the other hand, when the AC/DC 

ratio is 1.75, the machine with symmetric winding connection generates nearly the same 

maximum average output torque and significantly lower torque ripple, Fig. 7.24. In addition, 

the machine line voltage at such ratio is lower, as shown in Fig. 7.22 since the AC current 

becomes relativity lower, thus the voltage spike in the line voltage waveform is also lower, 

Fig. 7.23.  

According to the previous discussions, it can be concluded that the symmetric winding 

connection is the more appropriate option to be employed when the SynR machines are 

operated under the AC sinusoidal bipolar with DC bias excitation, especially when wide flux 

weakening operation is required since the larger average output torque can be obtained while 

the torque ripple and line voltage are significantly lower. Therefore, such connection will be 

utilized during the investigation of the torque- and power-speed characteristics in section 7.4. 
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(a) Asymmetric winding connection 

 

(b) Symmetric winding connection 

Fig. 7.17 Comparison of maximum line voltage against current angle of 6 stator/4 rotor poles 

machines having different winding connections for different total current densities, at 

JDC=JAC rms and 2500 rpm speed. 
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(I) Asymmetric winding connection (II) Symmetric winding connection 

  

(a) 34 A/mm
2
 average current density and 0 electrical degree AC current angle 

  

(b) 34 A/mm
2
 average current density and 90 electrical degree AC current angle 
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(c) 6 A/mm
2
 average current density and 0 electrical degree AC current angle 

 

  

(d) 6 A/mm
2
 average current density and 90 electrical degree AC current angle 

 

(e) Flux density scale (T) 

Fig. 7.18 Flux density distributions of 6 stator/4 rotor poles machine having asymmetric and 

symmetric winding connections for different average current densities and current angles. 
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(a) 34 A/mm
2
 average current density and 0 electrical degree AC current angle 

 

(b) 34 A/mm
2
 average current density and 90 electrical degree AC current angle 
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(c) 6 A/mm
2
 average current density and 0 electrical degree AC current angle 

 

(d) 6 A/mm
2
 average current density and 90 electrical degree AC current angle 

Fig. 7.19 Comparison of phase voltage waveforms of 6 stator/4 rotor poles machine having 

asymmetric winding connection for different average current densities and current angles, at 

2500 rpm. 
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(a) 34 A/mm
2
 average current density and 0 electrical degree AC current angle 

 

(b) 34 A/mm
2
 average current density and 90 electrical degree AC current angle 
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(c) 6 A/mm
2
 average current density and 0 electrical degree AC current angle 

 

(d) 6 A/mm
2
 average current density and 90 electrical degree AC current angle 

Fig. 7.20 Comparison of phase voltage waveforms of 6 stator/4 rotor poles machine having 

symmetric winding connection for different average current densities and current angles, at 

2500 rpm. 
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(a) Asymmetric, at 34 A/mm
2
 average current density 

 

(b) Asymmetric, at 6 A/mm
2
 average current density 
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(c) Symmetric, at 34 A/mm
2
 average current density 

 

(d) Symmetric, at 6 A/mm
2
 average current density 

Fig. 7.21 Comparison of line voltage waveforms of 6 stator/4 rotor poles machines having 

asymmetric and symmetric winding connections for different average current densities and 

current angles, at 2500. 
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Fig. 7.22 Comparison of line voltage against current angle of 6 stator/4 rotor poles machines 

having different winding connections and AC/DC current density ratios, at 34 A/mm
2
 

average current density and 2500 rpm. 

 

Fig. 7.23 Comparison of line voltage waveforms of 6 stator/4 rotor poles machines having 

different winding connections and AC/DC current density ratios, at 34 A/mm
2
 average 

current density and 2500 rpm. 
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Fig. 7.24 Comparison of average output torque and torque ripple of 6 stator/4 rotor poles 

machines having different winding connections and AC/DC current density ratios, at 34 

A/mm
2
 total current density 

7.4. Torque and Power Speed Characteristics  

As mentioned before, the purpose of AC sinusoidal with DC bias excitation is to improve the 

electromagnetic performance of SynR machine, such as large average torque, low torque 

ripple, wide flux weakening region, low DC-link voltage requirement and high efficiency. In 

the previous sections, the torque capability and line voltage have been investigated and the 

symmetric winding connection has been chosen as the more appropriate winding connection. 

Therefore, in this section, the torque- and power-speed characteristics of the SynR machine 

under symmetric winding connection will be investigated. However, for reference, the 

torque-speed characteristics of the machine with the asymmetric winding connection are 

calculated and compared with their counterparts of the machine with symmetric winding 

connection in Appendix B.  

As mentioned in the previous section, the machine is operated to deliver the maximum 

output torque at 2 AC/DC ratio. Therefore, the torque- and power-speed characteristics will 

be predicted by varying both the AC/DC ratio and the AC current angle. For this purpose, 

the output torque and the line voltage against AC current angle are calculated for different 

AC/DC ratio, as shown in Fig. 7.25 and Fig. 7.26, respectively. These data can be then 
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utilised to predict the torque- and power-speed characteristics for any specified conditions 

and voltage limitation, i.e. the 200V is given as an example in this section. It should be 

mentioned that the voltage drop on the power electronics drive is not considered in these 

investigations. In general, the larger the AC/DC ratio is the larger the line voltage since a 

larger AC/DC ratio means the AC current is larger, thus more voltage distortion and larger 

voltage spike, Fig. 7.23. In addition, the DC excitation is lower, thus the back-emf is larger, 

as shown in Fig. 7.11(a). For the same reasons, the larger the ratio the larger the output 

torque, but it should be mentioned that the torque ripple will also be larger. Therefore, in 

order to obtain the maximum possible torque-speed performance at the specified line voltage 

limitation, at each speed the optimal AC/DC ratio and AC current angle combination, which 

results in the maximum output torque within the voltage limitation, is utilised. The obtained 

torque- and power-speed characteristics are shown in Fig. 7.27, while Fig. 7.28 shows the 

variation of the corresponding AC and DC current densities. In general, the machine exhibits 

relatively larger output torque and wide flux weakening operation region. However, in order 

to make a more systematic judgment, such characteristics will be compared with their 

counterpart of the conventional unipolar and AC sinusoidal bipolar excitation in section 7.6. 

The torque- and power-speed characteristics are also predicted by employing an alternate 

technique, i.e. constant DC/varing AC. Then, the results of the two techniques are compared, 

thus the better performance can be detrmined. In the constant DC/varying AC technique, the 

DC current density is kept constant while both the AC current density and angle are varied to 

operate the machine at the best performance within the specified limits. In this case, the 

SynR machine becomes even more similer to PM machine. For this purpose, the variations 

of the output torque and machine line voltage against the AC current angle are calculated at 

23 A/mm
2
 DC current density and for different AC current density, as respectively shown in 

Fig. 7.29 and Fig. 7.30. In the constant-torque region, the AC/DC ratio and AC current angle 

are kept constant, i.e. at 2 and 0 degree, but in the flux weakening region both the AC current 

density and angle are adjusted to operate the machine at its maximum performance with the 

voltage limitation. The predicted torque- and power-speed characterstics by using such 

technique are compared with their counterparts of the varying AC/DC ratio technique in Fig. 

7.27. In addition, the corresponding DC and AC current densities are compared with their 

counterparts of the other two techniques in Fig. 7.28. In general, both techiques result in the 

same performance in the constant-torque region. However, comparing with the varying 

AC/DC ratio technique, the constant DC/varying AC counterpart produces lower 

performance during the flux weakening.  
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Fig. 7.25 Variation of average output torque against AC current angle of 6 stator/4 rotor 

poles machines having symmetric winding connection for different AC/DC current density 

ratios, at 34 A/mm
2
 average current density. 
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(b) 4000 rpm 

 

(c) 8000 rpm 
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(d) 14000 rpm 

Fig. 7.26 Variation of line voltage against AC current angle of 6 stator/4 rotor poles 

machines having symmetric winding connection for different AC/DC current density ratios 

and speeds, at 34 A/mm
2
 average current density. 
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(b) Power-speed characteristics 

Fig. 7.27 Variation of torque- and power-speed characteristics of 6 stator/4 rotor poles 

machines having symmetric winding connection due to different prediction techniques, at 34 

A/mm
2
 average current density and 200 V voltage limitation. 
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(b) AC current density 

Fig. 7.28 Variation of AC and DC current densities and AC current of 6 stator/4 rotor poles 

machines having symmetric winding connection due to different prediction techniques, at 34 

A/mm
2
 average current density and 200 V voltage limitation. 

 

Fig. 7.29 Variation of average output torque against AC current angle of 6 stator/4 rotor 

poles machines having symmetric winding connection for different AC current densities, at 

23 A/mm
2
 constant DC current density. 
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(a) 2000 rpm 

 

(b) 4000 rpm 
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(c) 8000 rpm 

 

(d) 14000 rpm 

Fig. 7.30 Variation of line voltage against AC current angle of 6 stator/4 rotor poles 

machines having symmetric winding connection for different AC current densities and 

rotating speeds, at 23 A/mm
2
 constant DC current density. 

0

100

200

300

400

500

600

700

800

900

0 10 20 30 40 50 60 70 80 90

AC = 45 A/mm^2 AC = 40 A/mm^2
AC = 35 A/mm^2 AC = 30 A/mm^2
AC = 20 A/mm^2 AC = 10 A/mm^2
Voltage Limitation

Current Angle (deg)

L
in

e
V

o
lt

a
g
e

(V
)

0

200

400

600

800

1000

1200

1400

1600

0 10 20 30 40 50 60 70 80 90

AC = 45 A/mm^2 AC = 40 A/mm^2
AC = 35 A/mm^2 AC = 30 A/mm^2
AC = 20 A/mm^2 AC = 10 A/mm^2
Voltage Limitation

Current Angle (deg)

L
in

e
V

o
lt

a
g
e

(V
)



284 
 

7.5. Losses and Efficiency  

Both the iron and copper losses as well as the machine efficiency will be predicted and 

calculated using the same method that is used in Section 6.6. The losses against speed are 

calculated according to the corresponding DC and AC current densities of the varying 

AC/DC ratio and constant DC/varying AC prediction techniques, Fig. 7.28(a) and Fig. 

7.28(b), respectively. The iron and copper losses results are respectively shown in Fig. 7.31 

and Fig. 7.32. The constant DC/varying AC technique results in significantly lower iron and 

copper losses comparing with the varying AC/DC counterpart. This is because the first 

technique utilizes lower AC current density during the flux weakening region, as can be 

noticed in Fig. 7.28. Therefore, although the varying AC/DC technique results in slightly 

larger output power, Fig. 7.27, but the efficiency is larger when the constant DC/varying AC 

technique is used, as illustrated in Fig. 7.33. Clearly, for the varying AC/DC ratio, there 

remains some optimization to be done regarding the optimal total current density in terms of 

maximum efficiency. However, due to time limit, this will be done in the future. 
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(b) Constant DC/varying AC 

Fig. 7.31 Comparison of iron loss of 6 stator/4 rotor poles machines having symmetric 

winding connection. 
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(b) Constant DC/varying AC 

Fig. 7.32 Comparison of copper loss of 6 stator/4 rotor poles machines having symmetric 

winding connection. 

 

Fig. 7.33 Comparison of efficiency of 6 stator/4 rotor poles machines having symmetric 

winding connection. 
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7.6. Comparison of Alternate Excitation Techniques 

The electromagnetic performance of the SynR machine under AC sinusoidal bipolar 

excitation has been thoroughly investigated in Chapter 6. In this Chapter, the DC bias has 

been added to the AC sinusoidal excitation. This section illustrates the benefits and 

disadvantages of these two excitation techniques over the conventional SR unipolar 

excitation counterpart, which is analyzed in Appendix C. The electromagnetic performance 

of the analyzed SynR machine under the foregoing three specified excitation techniques is 

compared in this section. The comparison includes the average output torque, torque ripple, 

losses and efficiency. Under the AC sinusoidal bipolar excitation, both the symmetric and 

hybrid winding connections are considered. It is also worth mentioning that the 1.75 AC/DC 

ratio is used for the AC sinusoidal bipolar with DC bias excitation since such ratio results in 

nearly the same average torque as the optimal counterpart, but the produced torque ripple is 

significantly lower, as illustrated in Fig. 7.24. The output torque waveforms under different 

excitations at 34 A/mm
2
 are shown in Fig. 7.34, while the corresponding average output 

torques and torque ripples are compared in Fig. 7.35 and Fig. 7.36. Moreover, the variations 

of the average torque, torque ripple and torque ripple percentage of the machine against the 

current density are compared for the three different excitations in, Fig. 7.37. In order to 

further extend the comparison, the output power, iron and copper losses and efficiency of the 

motor under the three different excitations are calculated and compared in Fig. 7.38 and Fig. 

7.39 and Fig. 7.40, respectively. For further illustration the characteristics of all machines are 

also presented in Table 7.1. 

In summary, both AC bipolar excitations can significantly reduce the torque ripple of the SR 

machine. The AC bipolar with the DC bias excitation offers relatively large average output 

torque and low losses, thus higher efficiency. However, at relatively larger current densities, 

the AC bipolar with hybrid winding connection offers the largest average torque and 

relatively low torque ripple percentage and high efficiency.  
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Fig. 7.34 Comparison of output torque waveforms of 6 stator/4 rotor poles machines under 

different excitation techniques, at 34 A/mm
2
 current density. 

 

Fig. 7.35 Comparison of average torque and torque ripple of 6 stator/4 rotor poles machines 

under different excitation techniques, at 34 A/mm
2
 current density. 
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Fig. 7.36 Comparison of torque ripple percentage of 6 stator/4 rotor poles machines under 

different excitation techniques, at 34 A/mm
2
 current density. 
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(b) Torque ripple 

 

(c) Torque ripple percentage 

Fig. 7.37 Comparison of average torque, torque ripple and torque ripple percentage against 

current density of 6 stator/4 rotor poles machine under different excitation techniques. 
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Fig. 7.38 Comparison of output power of 6 stator/4 rotor poles machines under different 

excitation techniques, at 34 A/mm
2
 current density and 2500 rpm. 
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(b) Copper loss 

Fig. 7.39 Comparison of iron and copper losses of 6 stator/4 rotor poles machines under 

different excitation techniques, at 34 A/mm
2
 current density and 2500 rpm. 

 

Fig. 7.40 Comparison of efficiency of 6 stator/4 rotor poles machines under different 

excitation techniques, at 34 A/mm
2
 current density and 2500 rpm. 
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Table 7.1 Comparison of characteristics of 6 stator/4 rotor poles machines having 

different excitation techniques, at 34 A/mm
2
 current density and 2500 rpm. 

Characteristics 
Unipolar 

(conventional SR) 

AC bipolar 

(Symmetric) 

AC bipolar 

(Hybrid) 

AC bipolar 

with DC bias 

Average torque (N.m) 46 32 56 44.5 

Torque ripple (N.m) 65 16 31 19.5 

Torque ripple 

Percentage (%) 
141 50 55 44 

Output Power (KW) 12 8 15 11.5 

Iron loss (W) 210 140 143 134 

Copper loss (W) 7888 5843 5843 5650 

Efficiency (%) 59.5 59 71 68 

7.7. Experimental Measurements 

In order to validate the analyses of this chapter, the back-emf, cogging torque and output 

torque against AC phase current magnitude and angle, also the output torque against the 

AC/DC current density ratio are measured and compared with the predicted results for the 

same prototype machine, which have been used in Chapter 6. As mentioned in Chapter 6, 

each stator tooth of the 6 stator/4 rotor poles prototype machine is equipped with two coils. 

In order to operate such machine under the AC bipolar with DC bias excitation, the 13 turn 

coils are connected together to form the three phase winding, while the 8 turn coils are 

connected in series to the DC current source, as illustrated in Fig. 7.41. It is worth 

mentioning that the current polarity, i.e. in or out direction, is determined according to the 

connection to be employed, i.e. asymmetric or symmetric. In addition, as mentioned earlier, 

for the asymmetric winding connection only 4 DC coils have been connected, according to 

Fig. 7.2(a). The prototype machine is tested using the same test rig that is shown in Fig. 6.64. 

The measured and predicted back-emf waveforms of the prototype machine for different 

winding connections and current densities are compared in Fig. 7.42. It confirms the 

producing of the back-emf, which can be controlled by adjusting the DC bias value. It is 

worth mentioning that it is practically hard to measure the back-emf for relatively larger DC 

bias value since the cogging torque becomes relatively large, as confirmed in Fig. 7.43. For 
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both winding connections, there is a good agreement between the measured and predicted 

cogging torque periodicity. However, in terms of the magnitude, the disagreement is most 

likely due to the manufacturing tolerances and errors. The output torque against the AC 

phase current angle and magnitude and the AC/DC current density ratio are measured and 

compared with their predicted counterparts in Fig. 7.44, Fig. 7.45 and Fig. 7.46, respectively. 

The exhibited good agreement of these characteristics strongly confirms the discussions and 

conclusions of this chapter. 

 

Fig. 7.41 Winding connection of 6 stator/4 rotor prototype machine under AC bipolar with 

DC bias excitation. 
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(a) Asymmetric winding connection 

 

(b) Symmetric winding connection 

Fig. 7.42 Comparison of measured and predicted back-emf waveforms of 6 stator/4 rotor 

prototype machine under different winding connections, at 2.5 and 5 A/mm
2
 DC current 

densities and 2500 rpm. 
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(a) Asymmetric winding connection, at 10 A/mm
2
 current density 

 

(b) Asymmetric winding connection, at 15 A/mm
2
 current density 
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(c) Symmetric winding connection, at 10 A/mm
2
 current density 

 

(d) Symmetric winding connection, at 15 A/mm
2
 current density 

Fig. 7.43 Comparison of measured and predicted cogging torque waveforms of 6 stator/4 

rotor prototype machine under different winding connections and for different DC current 

densities. 
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(a) Asymmetric winding connection 

 

(b) Symmetric winding connection 

Fig. 7.44 Comparison of measured and predicted output torque against AC phase current 

angle of 6 stator/4 rotor prototype machine under different winding connections, at 10 and 

15 A/mm
2
 total current densities and when AC and DC current densities are equal. 
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(a) Asymmetric winding connection 

 

(b) Symmetric winding connection 

Fig. 7.45 Comparison of measured and predicted output torque against current density of 6 

stator/4 rotor prototype machine under different winding connections and for different 

current densities, when Iq=IPhase, Id=0 and AC and DC current densities are equal. 
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(a) Asymmetric winding connection 

 

(b) Symmetric winding connection 

Fig. 7.46 Comparison of measured and predicted output torque against AC/DC current 

density ratio of 6 stator/4 rotor prototype machine under different winding connections and 

for different total current densities.  
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7.8. Conclusions 

The operation principles and electromagnetic performance of a 6 stator/4 rotor poles SynR 

machines having AC sinusoidal bipolar with DC bias excitation have been examined and 

analyzed. Both the asymmetric and symmetric winding connections have been taken into 

account during the investigations. Under such excitation, the machine becomes very similar 

to the PM counterparts. Thus, the DC bias, which is similar to the PM excitation, results in 

cogging torque and back-emf. In general, the cogging torque magnitude and period as well 

as back-emf waveforms strongly depend on the winding connection type. For example, at 

relatively large current densities the cogging torque magnitude due to asymmetric winding 

connection is much larger than its counterpart caused by the symmetric winding connection. 

However, this connection results in significantly larger cogging torque when the current 

density is relatively low. Furthermore, the asymmetric winding connection leads to larger 

back-emf when the DC bias is the larger. When the machine is occupied with symmetric 

winding connection such phenomenon is the same up to a specific DC bias value, i.e. 18 

A/mm
2
 in the studied machine. However, the back-emf starts gradually decreasing if the DC 

bias is further increased. This is due to different flux density distribution, thus different 

magnetic saturation sensitivity of each winding connection.  

More importantly, the ability of the SynR machine to produce output torque under the 

proposed excitation has been proved. Furthermore, the generated output torque has been 

extensively investigated and the following conclusions have been obtained.  

The optimal AC phase current angle depends on the winding connections, i.e. zero for the 

symmetric connection and 15 electrical degrees for its asymmetric counterpart. The 

symmetric winding connection results in much lower torque ripple. The maximum possible 

output torque can be delivered when the AC/DC ratio is 2 and the winding are symmetrically 

connected. However, a 1.75 AC/DC ratio could be more desirable, since it leads to nearly the 

same average torque as the optimal counterpart, i.e. 2, but significantly lower torque ripple 

and line voltage. Moreover, a relatively large torque-, power- and efficiency-speed 

characteristics can be obtained by operating the machine at 1.75 AC/DC ratio in the 

constant-torque region and at constant DC bias and adjusted AC current magnitude and 

angle in the flux weakening operation region. 

The electromagnetic performance of the SR machine under AC bipolar with DC bias 

excitation has been compared with its counterparts under the conventional unipolar and AC 
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sinusoidal bipolar excitation. Comparing with the conventional unipolar excitation, the AC 

sinusoidal bipolar excitations, i.e. both without and with DC bias, result in significantly low 

torque ripple. The AC bipolar with DC bias excitation exhibits a relatively large average 

output torque and low losses, thus high efficiency. On the other hand, at relatively large 

current densities, the AC bipolar with hybrid winding connection offer the largest average 

torque and relatively low torque ripple percentage as well as high efficiency.  

  



303 
 

Chapter 8: General Conclusions 

The electromagnetic performance of fractional-slot IPM machines having non-overlapping 

concentrated winding has been analysed and investigated in this thesis. The influence of the 

magnetic cross-coupling and saturation as well as manufacturing limitations and tolerances 

have been particularly examined. 

Furthermore, the electromagnetic characteristics of the SR machine have been also analysed 

and compared under different excitations, i.e. 

a). Conventional unipolar. 

b). AC sinusoidal bipolar, i.e. salient-pole SynR machine. 

c). AC sinusoidal bipolar with DC bias, i.e. salient-pole SynR machine with DC bias.  

 

This chapter summarizes the conclusions obtained from the carried out research. In addition, 

it underlines the future works, which can be potentially undertaken to further expand the 

research area of this thesis.  

8.1. PM Machines  

8.1.1. Torque-Speed Characteristics  

The FP method has been employed to separately examine the influence of the magnetic 

saturation and cross-coupling on the dq-axis parameters of the fractional-slot IPM machines 

having non-overlapping concentrated winding. The idea behind such investigation is to 

determine the level of the magnetic cross-coupling effect on each parameter and to find the 

simple yet accurate model to predict the torque-speed characteristics of such machines. The 

investigations have shown that the partial cross-coupling model, which considers that the 

PM flux is a function of q-axis current and the d- and q-axis inductances are each as a 

function of its corresponding current only, is a relatively simple yet accurate technique for 

predicting the torque-speed characteristics of such PM machines. This technique is compared 

with the direct finite element (FE) and dq-axis flux linkages prediction methods and verified 

by the experimental results. 
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8.1.2. Influence of Additional Stator Air Gaps  

The influence of the additional stator gaps between segmented stator teeth and yoke, which 

exist due to manufacturing limits, on the electromagnetic performance, particularly the 

cogging torque, of PM machines having modular stators has been analysed. Both uniform 

and non-uniform additional stator gaps are studied. It has been found that:  

a). The uniform additional stator gaps increase the cogging torque amplitude but have no 

effect on its periodicity. 
 

b). The non-uniform stator gaps significantly increase both the amplitude and periodicity 

of the cogging torque. 
 

c). The skewing technique, which is usually very effective in reducing cogging torque, 

becomes ineffective when the non-uniform additional stator gaps exist. 
 

d). As confirmed by measurements, the non-uniformity of the additional stator gaps has a 

negligible influence on the back-emf waveform and the torque-speed characteristics. 

8.1.3. Influence of Alternate Slot Openings 

The influence of alternate slot openings, i.e. open slot, closed slot and hybrid slot, on the 

electromagnetic performance, mainly the torque-speed characteristics and cogging torque, of 

the fractional-slot IPM machines are investigated accounting for the influence of such slot 

openings on the cross-coupling level and manufacturing limitation and tolerance. It is 

concluded that: 

a). The machine with the closed slot design, which significantly decreases the cogging 

torque, exhibits the lowest electromagnetic performance and also has a significantly 

large cross-coupling level comparing with the other two types of slot openings.  
 

b). The machine with hybrid slot openings generates nearly the same torque as the 

machine with open slot, while its cogging torque is significantly smaller and is very 

similar to the machine with closed slots.  
 

c). The influence of the cross-coupling on the PM flux linkage and dq-axis inductances 

depends on the slot opening type. However, the consideration of cross-coupling is 

more important on the PM flux linkage rather than the dq-axis inductances. 
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d). The cogging torque sensitivity against the additional stator gaps is strongly 

determined by the slot opening materials.  
 

e). For all machines, the non-uniformity of such gaps causes a significant increase in the 

cogging torque and also diminishes the effectiveness of rotor skewing. However, this 

influence is comparatively more significant in the closed slot and hybrid slot designs.  

8.1.4. Influence of Electric Loading and Magnetic Saturation 

The cogging torque, back-emf and torque ripple of PM machines have been examined taking 

into account the influence of load conditions. The following conclusions can be drawn from 

the investigations:  

a). The magnitude of the actual cogging torque, i.e. with the influence of the load 

conditions, is significantly larger than its open-circuit counterpart. This is due to the 

extra flux leakage through tooth tips due to higher saturation level in the stator teeth.  
 

b). For the same reason, the actual back-emf waveform is comparatively more distorted, 

thus it contains larger harmonics and results in larger electromagnetic torque ripple.  
 

c). The increase of actual cogging torque depends on the magnetic saturation level, 

which is determined by the value of the electric loading.  
 

d). Due to the influence of electric loading, the actual cogging torque periodicity also 

varies to become the same as the torque ripple. Therefore, the skew technique, which 

is based on the open-circuit cogging torque period, becomes less effective.  
 

e). The actual cogging torque thus the torque ripple can be effectively eliminated if the 

machine is skewed by one actual cogging period.  
 

Furthermore, a comparison between different skew angle and step combinations has been 

carried out from the load torque ripple and electromagnet performance reduction points of 

view. It has been shown that for the prototype machine when the machine is skewed by 30 

electrical degree and 2 skew steps, the load torque ripple is significantly suppressed while 

the electromagnet torque reduction is relatively small.  



306 
 

8.2. SynR Machines  

8.2.1. AC Sinusoidal Bipolar Excitation 

The electromagnetic performance of 6 stator/4 rotor poles SR machines having AC 

sinusoidal bipolar excitation, i.e. salient-pole SynR machine, and different non-overlapping 

concentrated winding connections, i.e. asymmetric, symmetric and hybrid, have been 

investigated. The following conclusions can be made: 

a). In addition to the self inductance variation, the machine with hybrid winding 

connection has relatively larger mutual inductance variation. Thus, such machine 

exhibits relatively larger average output torque, low iron loss and high efficiency and 

comparing with the symmetric and asymmetric winding connections.  
 

b). Comparing with the symmetric winding connection, its asymmetric winding 

counterpart has nearly the same average torque, but significantly larger torque ripple.  
 

c). Due to the non-uniform flux linkage waveforms of machine which has an asymmetric 

winding connection, the phase voltage waveforms are also not uniform. Thus, the 

required DC-link voltage is much larger than the symmetric and hybrid winding 

connections.  
 

d). The symmetric winding connection exhibits the lowest torque ripple and the widest 

flux weakening operation region as well as relatively larger efficiency at high speeds.  
 

e). On the other hand, at significantly large current densities, i.e. high magnetic 

saturation level, the hybrid connection can also be an attractive choice, since it 

combines the significantly large output torque and relatively low torque ripple 

percentage with the relatively high efficiency. 

Furthermore, the performances of the 6 stator/4 rotor poles machines having non-

overlapping concentrated symmetric and hybrid winding connections have been compared 

with their 12 stator/4 rotor poles counterpart that has overlapping concentrated winding. It 

can be concluded that: 

a). Comparing with the 6 stator/4 rotor poles machine, which has non-overlapping 

symmetric winding connection, the 12 stator/4 rotor poles machine produces 

significantly larger average output torque. However, this torque is lower than the 
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counterpart of the 6 stator/4 rotor machine with non-overlapping hybrid winding 

connection.  

b). The 12 stator/4 rotor poles machine generates the largest output torque ripple since its 

flux linkage waveforms are comparatively more distorted.  
 

c). For the same reason, the line voltage of the 12 stator/4 rotor poles machine is 

relatively large, thus it exhibits relatively narrow flux weakening operation region.  

8.2.2. AC Sinusoidal Bipolar with DC Bias Excitation 

The operation principle and electromagnetic performance of a 6 stator/4 rotor poles SR 

machines having AC sinusoidal bipolar excitation with DC bias excitation, i.e. SynR 

machines with DC bias excitation, have been analyzed. Both the asymmetric and symmetric 

winding connections have been taken into account during the investigations. Under such 

excitation: 

a). The SynR machine becomes very similar to the PM counterparts. Thus, the DC bias, 

which is similar to the PMs excitation, results in cogging torque and back-emf, which 

strongly depend on the winding connection type.  
 

b). At relatively large current densities, the machine cogging torque magnitude under the 

asymmetric winding connection is much larger than that with the symmetric winding 

connection, vice versa when the current density is relatively low.  
 

c). The asymmetric winding connection leads to larger back-emf when the DC bias is the 

larger. When the machine is equipped with symmetric winding connection such 

phenomenon is the same up to a specific DC bias value, i.e. 18 A/mm
2
 in the studied 

machine. However, the back-emf starts gradually decreasing if the DC bias is further 

increased. This is due to different magnetic saturation sensitivity for each winding 

connection. 
 

More importantly, the ability of the SR machine to produce output torque under the proposed 

excitation has been proved. Furthermore, the generated output torque has been extensively 

investigated and the following conclusions have been obtained: 

a). The optimal AC phase current angle depends on the winding connections, i.e. zero for 

the symmetric connection and 15 electrical degree for its asymmetric counterpart. 
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b). The maximum possible output torque of the machine can be delivered when the 

AC/DC ratio is 2 and the winding are symmetrically connected. 
 

c). Comparing with the asymmetric wind connection, its symmetric counterpart results in 

much lower torque ripple. Therefore, such connection is more suitable to be utilized 

when the SR machine is excited by the AC sinusoidal bipolar with DC bias 

excitation. 
 

d). The 1.75 AC/DC ratio is more desirable, since it leads to nearly the same average 

torque as its optimal counterpart, i.e. 2, but significantly lower torque ripple and line 

voltages.  
 

e). A relatively large torque-, power- and efficiency-speed characteristics can be 

obtained by operating the machine at 1.75 AC/DC ratio. 

8.2.3. Comparison of Different Excitation Techniques 

The electromagnetic performance of the 6 stator/4 rotor poles SR machine has been 

compared under three different excitation techniques, i.e. conventional unipolar, AC 

sinusoidal bipolar, i.e. salient-pole SynR machines, without and with DC bias excitation. The 

following conclusions can be drawn out of this evaluation: 
 

a). Comparing with the conventional unipolar excitation, the AC sinusoidal bipolar 

excitations, i.e. both without and with DC bias, result in significantly low torque 

ripple.  

b). The machine, which is excited by the AC bipolar with the DC bias, exhibits a 

relatively large average output torque and power, and low losses, thus large 

efficiency.  
 

c). At relatively large current densities, the AC sinusoidal bipolar excitation together 

with the hybrid winding connection offer the largest average torque and relatively 

low torque ripple percentage as well as a relatively large efficiency.  
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8.3. Future Work  

The followings are some examples of the future possible work areas: 

I. The influence of magnetic saturation and cross-coupling can be similarly investigated 

in the integral-slot IPM and other PM machine topologies. 
 

II. The influence of the additional stator gaps in the PM machine having individual stator 

tooth/back-iron segments can be investigated and compared with those having the 

separated stator tooth and back-iron segments. 
 

III. The influence of the non-uniform additional stator gaps together with the rotor 

eccentricity on the cogging torque and unbalanced magnetic forces can be examined. 
 

IV. More investigations can be carried out to reduce the torque ripple of the SynR 

machine without and with DC bias excitation  
 

V. The line voltage of the SR machine under the AC sinusoidal bipolar excitation can be 

further investigated toward reducing the required DC-link voltage, i.e. reducing the 

sharp voltage spike. 

VI. Further investigations can be carried out to examine the ability of applying the dq-

axis theory on the salient-pole SynR machine without and with DC bias excitation.  

VII. The dynamic control performance of machine under alternate excitations. 

 

The foregoing items IV to VII are currently being investigated by other PhD students in 

the Electrical Machines and Drives Research Group at The University of Sheffield. 
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Appendixes 

Appendix A: Influence of End-Effect and Cross-Coupling 

on Torque-Speed Characteristics of Switched Flux 

Permanent Magnet Machines 

A.1. Introduction  

Permanent magnet (PM) brushless machines become more and more attractive for 

commercial and industrial applications, due to their inherent high torque density and high 

efficiency. In conventional PM machines the PMs are located on the rotor. However, in 

switched flux permanent magnet (SFPM) machines, the magnets, together with the 

windings, are placed on the stator, while the salient pole rotor is very simple without any 

windings or magnets, thus such machines are strong candidates for high speed applications 

[A.1, A.2]. This structure allows for higher electric loading, which is limited by the PM 

temperature rise and irreversible demagnetisation, since cooling magnets is more efficient 

when they are located in the stator. Therefore, such machines can exhibit relatively large 

torque density [A.3, A.4]. 

The SFPM machines were firstly proposed and designed as a single-phase machine about 6 

decades ago [A.5]. However, later they were developed to be three-phase and even multi-

phase machines [A.6-A.8]. The fault tolerant SFPM machines were developed in [A.9]. 

Furthermore, external rotor SFPM machines are suitable for the wheel electric propulsion 

system, since they combine the benefits of both the conventional PM and SR machines 

[A.10]. Moreover, a new SFPM machine topology, which utilizes both PM and field winding 

excitation, i.e. hybrid excited SFPM machine, was presented and investigated in [A.11-

A.13]. Such topology allows for easier flux control [A.12], and can generate lower iron loss 

than the conventional SFPM machine [A.13]. 

The presence of magnets in the stator causes relatively large flux leakage at the stator end 

and outer surface [A.14], which can cause significant reduction in the electromagnetic 

performance of the machine. For example, it was reported in [A.3] that it can cause around 

10% reduction in the back-emf waveform of a SFPM machine, which has 12 stator teeth and 

10 rotor poles. An analytical technique to account for this effect in the SFPM machines was 
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proposed in [A.15]. However, it can also be accounted for by using 3D finite element (FE) 

analysis [A.16], which is also employed in this study. 

The torque density of conventional SFPM machines can be similar to that of the fractional-

slot PM machines. However, for the newly developed SFPM machine topologies, the torque 

capability can be further improved while the magnet volume can be reduced [A.1, A.2] and 

[A.17]. For example, the developed E-core and C-core and multi-tooth SFPM machines use 

almost half magnet volume compared with the conventional SFPM machines, while exhibit 

higher electromagnetic torque [A.18].  

 

Fig.A.1. Cross-section of multi-tooth 6–4 stator pole/tooth, 19-rotor pole SFPM machine. 

The electromagnetic performance of a multi-tooth 6–4 stator pole/tooth, 19-rotor pole SFPM 

machine, whose parameters are given in Table A.1 and the cross-section in Fig.A.1, has been 

investigated in [A.1] and [A.19]. However, the investigation has not considered the torque- 

and power-speed characteristics. Therefore, this study analyses these characteristics by using 

models accounting for different cross-coupling levels, viz. full cross-coupling on both PM 

flux linkage and dq-axis inductances, partial cross-coupling on the PM flux linkage only and 

without cross-coupling. In addition, the influence of the end-effect on the machine 

parameters and performance during both the constant-torque and flux weakening operation 

regions is also investigated. Both 2D and 3D FE models have been employed to carry out the 

investigation on the platform of Flux 2D/3D, and confirmed by the measurements. Fig. A.2 

shows the open-circuit and load equal potential distributions of the prototype machine at the 

maximum PM flux position for phase A.  
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(a) Open-circuit 

 

(b) Load 

Fig. A.2. Equal potential distributions of multi-tooth 6–4 stator pole/tooth, 19-rotor pole 

SFPM machine. 

Table A.1 Prototype Machine Parameters 

Parameter Value Parameter Value 

Active axial length 25 mm Magnet thickness 3.6 mm 

Stator outer diameter 90 mm Air gap length 0.5 mm 

Stator inner diameter 55 mm Rotor tooth width 3.6 mm 

Stator tooth width 6.25 mm Magnetic remanence 1.2 T 

Stator yoke thickness 4 mm Phase number of turn 72 

Stator small slot depth 3 mm Peak rated current 15 A 
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A.2. Prediction of Torque Speed Characteristics 

The output torque of the SFPM machines can be calculated by [A.19]: 

])([
2

3
][

2

3
qdqdqmdRdqqdR IILLINIINT      (A.1) 

where dqdqdmdR ILLN ,,,,,,  and qI are the rotor pole number, PM flux linkage and dq-axis 

flux linkages, inductances and currents, respectively, 
qmd I  is the electromagnetic torque, 

and qdqd IILL )(   is the reluctance torque, which is due to the difference between d- and q-

axis inductances. 

Thus, the output torque can be directly calculated by the FE method (the virtual work in the 

software which is used) and checking the voltage limitation (direct FE method) or from 

(A.1) by using the FE predicted PM flux linkage and dq-axis inductances (indirect FE 

method).  

A.2.1. Direct FE Method 

Ideally, it is desirable to operate the machine at the maximum torque per ampere, thus the 

maximum capability of the machine is utilized. However, the phase voltage is proportional 

to the rotating speed, since it is given by: 

22 )()( dqaqdaph IRIRV  
 
    (A.2) 

where aR
 
and 

 
are the phase resistance and electrical rotating speed.  

For higher speeds above the base speed at which the phase voltage exceeds the limit, the 

current angle needs to be adjusted to weaken the PM flux in order to satisfy the voltage 

limitation, i.e. the flux weakening operation [A.20, A.21]. For some machines, including this 

prototype SFPM machine which has relatively large winding inductance, even the current 

magnitude needs to be reduced to satisfy the specified voltage limit. In the FE calculation, 

the output torque and phase voltage are calculated for different current magnitudes (from 0 

till maximum phase current) and phases (between 0 and 90 deg.), as illustrated in Fig.A.3 

and Fig.A.4, respectively. These data can be used to work out the machine torque-speed 
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characteristics. In order to clearly illustrate such procedure, the determination of the optimal 

output torque at 600 rpm rotating speed is explained in details. At such speed, the voltage 

limit can be satisfied by different combinations of current magnitude and phase, e.g. 15A / 

51deg., 14A / 39 deg., 13A / 33deg. and 12A / 18deg., as shown in Fig. A.4(a)-(d), 

respectively. For each current magnitude and phase combination, the corresponding output 

torque can be obtained from Fig. A.3. The output torque values for the possible 

combinations of current magnitude and phase, which satisfy the voltage limitation at 

600rpm, are shown in Fig. A.5. Hence, the optimal output torque and corresponding optimal 

current magnitude and phase combination for such speed can be obtained. This process 

needs to be carried out for different speed in order to predict the whole torque-speed 

characteristics, Fig. A.6(a) and the corresponding variation of the current magnitude and 

phase, Fig. A.6(b), over the range of three times the base speed. 

In this FE method the torque is obtained directly. Thus, the cross-coupling and saturation are 

fully accounted for. Therefore, it is an accurate technique to analyze the highly saturated 

machines, such as the SFPM machines. However, this method is very time consuming. 

 

Fig. A.3. FE predicted variation of output torque with current angle for different phase 

current. 
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(a) Peak phase current is 15A 

 

(b) Peak phase current is 14A 
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(c) Peak phase current is 13A 

 

(d) Peak phase current is 12A 

Fig. A.4. FE predicted variation of phase voltage with current angle for different rotating 

speed and different phase current. 
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Fig. A.5 Output torque for different current magnitude and phase combinations, at 600 rpm. 

A.2.2. Indirect FE Method 

In this method, the PM flux linkage and dq-axis inductances, which are used to calculate the 

torque-speed characteristics, need to be pre-predicted in advance. The level of cross-

coupling consideration during such calculation depends on the prediction method of the PM 

flux linkage and dq-axis inductances. To fully account for the cross-coupling and saturation, 

these parameters should be calculated as function of both d- and q-axis currents. For this 

purpose, the PM flux linkage of the prototype machine is calculated as function of q-axis 

current, Fig. A.7, while the dq-axis inductances, Fig. A.8, are calculated using (4. 7) and (4. 

8). Basing on these results, the optimal constant torque and flux weakening performance of 

the prototype machine has been analytically calculated by using (A.1) and (A.2) and 

compared with results obtained by the direct FE method in Fig. A.6(a). In addition, the phase 

current magnitude and current angle of the two FE methods are compared in Fig. A.6(b). 

Both methods offer nearly the same accuracy, since there is a very good agreement between 

them. However, the indirect FE method takes much less time. It can be even faster when the 

cross-coupling is partially considered. 
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(a) Torque- and power-speed characteristics 

 

(b) Corresponding phase current magnitude and angle 

Fig. A.6. Comparison of torque- and power-speed characteristics and corresponding phase 

current magnitude and angle of the multi-tooth machine using different prediction methods. 
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A.3. Influence of Cross-Coupling 

In order to investigate the influence of cross-coupling on the performance of the multi-tooth 

FSPM machine, its torque-speed characteristics have been predicted again using the indirect 

FE method with partial cross-coupling consideration. In this case, the PM flux linkage is 

considered as a function of the q-axis current, Fig. A.7, while the dq-axis inductances are 

considered as functions of their corresponding current only, i.e. Ld(Id, Iq=0), Fig. A.8(a), and 

Lq(Id=0, Iq), Fig. A.8(b). The obtained results are shown in Fig. A.9. The full and partial 

cross-coupling models produce almost the same torque-speed curves. This indicates that the 

influence of cross-coupling on the dq-axis inductances is relativity small, as can also be 

noticed from Fig. A.8, but it is more significant on the PM flux linkage, Fig. A.7. In order to 

further demonstrate the relative large influence of cross-coupling on the PM flux linkage, the 

torque-speed characteristics are calculated for two cases without cross-coupling 

consideration. In both cases, each of the dq-axis inductances is a function of its 

corresponding current only, i.e. Ld(Id, Iq=0), Fig. A.8(a), and Lq(Id=0, Iq), Fig. A.8(b). 

However, the PM flux linkage is considered as a constant value, at either Id=0A, Iq=0A 

(point A in Fig. A.7) or Id=0A, Iq=15A (point B in Fig. A.7). The calculated results are also 

plotted in Fig. A.9. Comparing with the full cross-coupling model, both no cross-coupling 

models predict significantly different torque-speed characteristics. Therefore, the partial 

cross-coupling model, which is much easier and faster to calculate compared with the full 

cross-coupling model, can be utilized to accurately calculate the torque-speed characteristics 

of the multi-tooth SFPM machines. 

Fig. A.10 compares the current magnitudes and phases of the four cross-coupling models. It 

shows that the phase current amplitudes are almost the same for all models. In addition, the 

current angles are zero for all models in the constant-torque region since the reluctance 

torque in such machine is negligible, as its dq-axis inductances are nearly the same, Fig. A.8. 

On the other hand, the current angles are different in the flux weakening region, the current 

magnitude and angle are adjusted to satisfy the phase voltage limit, which depends on the 

machine parameters. 
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Fig. A.7 FE predicted variation of PM flux linkage against q-axis current. 
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(b) q-axis inductance 

Fig. A.8 FE predicted variation of dq-axis inductances as function with dq-axis currents. 
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(b) Power-speed characteristics 

Fig. A.9 Comparison of torque- and power-speed characteristics predicted by different cross-

coupling accounting for models. 
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(b) Current angle 

Fig. A.10 Comparison of corresponding current magnitudes and angles for different cross-

coupling accounting for models.  
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A.4. Influence of End-Effect 

Due to the presence of PMs in the stator, the end-effect in FSPM machines is relatively large 

[A.3]. The influence of the end-effect on the electromagnetic performance of the multi-tooth 

FSPM machine was highlighted in [A.19]. However, this paper investigates its influence on 

the dq-axis inductances and torque-speed characteristics, especially in the flux weakening 

region since it has not been considered before. In order to account for the end-effect, a 3D 

FE analysis has been employed. Fig. A.11 shows the 3D model of the prototype multi-tooth 

FSPM machine. The indirect FE method with partial cross-coupling consideration is 

employed to calculate the torque-speed characteristics, since, as illustrated earlier, it takes 

less time and gives similar accuracy as the full cross-coupling model.  

The 3D FE predicted PM flux linkage as function of q-axis current is calculated and 

compared with that predicted by 2D FE in Fig. A.12. It shows that the 3D FE analysis 

predicts significantly lower PM flux linkage than the 2D FE analysis. This is due to the 

stator end effect, which cannot be accounted in the 2D model. It also shows that the larger 

the current is, the larger the influence of end-effect. The reduction is about 9% at zero 

current but becomes about 17% at the maximum current because larger currents cause higher 

saturation in the stator iron, leading to larger stator end flux leakage. On the other hand, the 

3D FE analysis predicts larger dq-axis inductances than the 2D FE analysis, as shown in Fig. 

A.13. This is due to the stator end leakage inductance, which can be only accounted in the 

3D model. For the same reason, the 3D FE predicted dq-axis flux linkages exhibit the same 

phenomenon, as illustrated in Fig. A.14. The 3D FE predicted PM flux linkage, Fig. A.12, 

and dq-axis inductances, Fig. A.13, are utilized to analytically calculate the torque- and 

power-speed characteristics, which are plotted in Fig. A.15. Comparing with the 2D model 

predicted results, the 3D model predicted characteristics are about 17% lower in the 

constant-torque region. However, this difference increases to more than 30% in the flux 

weakening region, as can be also noticed in Fig. A.16. This is due to the fact that in the 

constant-torque region the machine is operated at the maximum current magnitude and zero 

current angle, since the phase voltage is below the limitation and there is nearly no 

reluctance torque. Therefore, according to (A.1) the torque difference in this region is due to 

the difference in PM flux linkage, which is also 17%. However, in the flux weakening 

operation region, the current magnitude and phase need to be adjusted to match the voltage 

limitation. The 3D model predicted dq-axis flux linkages are larger, Fig. A.14, thus 

according to (A.2) they lead to larger phase voltage. This means the reduction of the current 
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magnitude need to be larger in the 3D model, as shown in Fig. A.17. Therefore, the larger 

torque difference in the flux wakening operation region is due to the decreasing in both the 

PM flux linkage, Fig. A.12, and phase current magnitude, Fig. A.17. 

 

Fig. A.11. 3D meshed model of multi-tooth 6–4 stator pole/tooth, 19-rotor pole SFPM 

machine. 

 

Fig. A.12 Comparison of 3D and 2D FE predicted variation of PM flux linkage with q-axis 

current. 

0

1

2

3

4

5

6

7

8

0 3 6 9 12 15

3D model

2D model

P
M

F
lu

x
 L

in
k

a
g

e
(m

W
b

)

Q-axis current (A)



339 
 

 

(a) d-axis inductance 

 

(b) q-axis inductance 

Fig. A.13 Comparison of 3D and 2D FE predicted variation of dq-axis inductances against 

dq-axis currents. 
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(a) d-axis flux linkage 

   

(b) q-axis flux linkage 

Fig. A.14 Comparison of 3D and 2D model predicted variation of dq-axis flux linkages with 

dq-axis currents. 
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(a) Torque-speed Characteristics 

 

(b) Power-speed characteristics 

Fig. A.15 Comparison of measured and 2D and 3D predicted torque- and power-speed 

characteristics. 
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A.5. Experimental Validation 

In order to validate the FE calculations and findings, the prototype multi-tooth SFPM 

machine is built and its torque- and power-speed characteristics is measured and compared 

with their 2D and 3D FE predicted curves in Fig. A.15. During the measurement, the phase 

resistance, cable resistance, voltage drop and dead time on the inverter are compensated in 

the control algorithm. It shows that there is a significant difference between the 2D predicted 

and measured performances in both the constant-torque and flux weakening operation 

regions. This is due to the end-effect, since the agreement between the measured and 3D FE 

predicted results is good throughout the whole operation range. In addition, the measured 

phase current magnitudes are also plotted and compared with 2D and 3D model predicted 

current amplitudes in Fig. A.17. It shows that in the constant-torque region all current 

magnitudes are the same. However, in flux weakening region the measured and 3D model 

predicted phase current magnitudes become lower than the 2D model predicted due to the 

stator end leakage inductance, which cannot be considered in the 2D model. Therefore, 

smaller phase current is required to satisfy the voltage limitation. This clearly illustrates the 

significant reduction in the 3D model predicted and measured torque -speed characteristics, 

Fig. A.15. 

 

Fig. A.16 Torque reduction percentage between 2D and 3D FE predicted torque. 
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Fig. A.17 Comparison of measured and 2D and 3D FE predicted phase current magnitudes. 

A.6. Conclusions 

The torque- and power-speed characteristics of a multi-tooth (6-4 stator pole/tooth, 19-rotor 

pole) SFPM machine have been investigated by different prediction methods, accounting for 

different cross-coupling levels, vis. full, partial and without cross-coupling consideration. 

The influence of the cross-coupling on dq-axis inductances of the studied machine is 

relatively small. However, it is more significant on the PM flux linkage. Therefore, the 

partial cross-coupling model, which gives almost the same accuracy as the full cross-

coupling model, is likely preferable to be employed in the analysis of the multi-tooth SFPM 

machine, since it is less complicated and less time consuming. 

The influence of the end effect on the parameters and performance of the machine has also 

been studied. Similar to the electromagnetic performance, the end-effect causes a large 

reduction in torque-speed characteristics. However, such reduction is more significant in the 

flux weakening operation region due to the stator end leakage, which enlarges the dq-axis 

inductances and reduces the PM flux linkage. The discussions and analyses presented in this 

paper are applicable to the analysis of E-core and C-core SFPM machines [A.18]. 
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Appendix B: Torque Speed Characteristics of Synchronous 

Reluctance Machines Having AC Sinusoidal with DC Bias 

Excitation and Asymmetric winding Connection 

The output torque and line voltage of the SynR 6 stator/4 rotor poles machines having 

different winding connections, i.e. asymmetric and symmetric, and AC sinusoidal with DC 

bias excitation have been investigated in section 7.3. As an outcome of these investigations, 

the symmetric winding connection has been determined to be used during the torque-speed 

characteristics prediction and analysis, section 7.4. However, for reference, the torque-speed 

characteristics of the 6 stator/4 rotor poles machine having AC sinusoidal with DC bias 

excitation and asymmetric winding connection are also predicted and compared with their 

counterparts of the machine with symmetric winding connection in this appendix. For this 

purpose, the average output torque and the maximum line voltage against AC current angle 

of such machine are calculated for different total current densities, as shown in Fig. B.1 and 

Fig. B.2, respectively. It is worth mentioning that both the AC and DC coils have the same 

current density since with the asymmetric winding connection the machine exhibits the 

maximum output torque at a unity AC/DC ratio, Fig. 7.15(a). These data have been then 

utilised to predict the torque- and power-speed characteristics at 200V voltage limitation. In 

order to obtain the maximum possible torque-speed performance at the specified voltage 

limitation, at each speed the optimal total current density and AC current angle combination, 

which results in the maximum output torque within the voltage limitation, is utilised. The 

obtained torque- and power-speed characteristics are plotted in Fig. B.3, i.e. asymmetric 

(varying total current density). For more comparison, the torque- and power-speed 

characteristics under asymmetric winding connetion have been also predicted using the 

constant DC/varing AC technique. For this purpose, the variations of the average output 

torque and machine maximum line voltage against the AC current angle are calculated at 34 

A/mm
2
 DC current density and for different AC current density, as respectively shown in 

Fig. B.4 and Fig. B.5. In the constant-torque region, the AC/DC ratio and AC current angle 

are kept constant, i.e. at 1 and 10 degree, but in the flux weakening operation region both the 

AC current density and angle are adjused to operate the machine at its maximum 

performance within the voltage limitation. The prediction results of the two techniques are 

compared with their counterparts of the symmetric winding connection in Fig. B.3. In 

general, the machine with symmetric winding connetion exhibits larger performance all over 
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the speed range. However, in the flux weakening operation region the differene becomes 

relatively larger. This is because the machine with the symmetric winding connetion exhibits 

larger average output torque as illusteated in Fig. 7.15(a). In addition, the machine with 

asymmetric winding connetion generates larger line voltage, as discussed in section 7.3.2.2. 

Furthermore, the machine with asymmetric winding connection produces beter performance 

when the constant DC/varing AC technique is used. This is because this technique results in 

larger output torque, as can be noted by comparing Fig. B.1 and Fig. B.4, since the DC 

current density is kept constant. 

 
Fig. B.1 Variation of average output torque against AC current angle of 6 stator/4 rotor poles 

machine having asymmetric winding connection for different total current densities, at 

JDC=JAC rms. 
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(a) 2000 rpm 

 

(b) 4000 rpm 
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(c) 8000 rpm 

 

(d) 14000 rpm 

Fig. B.2 Variation of maximum line voltage against AC current angle of 6 stator/4 rotor 

poles machines having asymmetric winding connection for different total current densities 

and speeds, at JDC=JAC rms. 
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(a) Torque-speed characteristics  

 

(b) Power-speed characteristics 

Fig. B.3 Comparison of torque- and power-speed characteristics of 6 stator/4 rotor poles 

machines having asymmetric and symmetric winding connections under different prediction 

techniques, at 34 Arms/mm
2
 average current density and 200 V voltage limitation. 
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Fig. B.4 Variation of average output torque against AC current angle of 6 stator/4 rotor poles 

machines having asymmetric winding connection for different AC current densities, at 34 

A/mm
2
 DC constant current density. 
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(b) 4000 rpm 

 

(c) 8000 rpm 
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(d) 14000 rpm 

Fig. B.5 Variation of line voltage against AC current angle of 6 stator/4 rotor poles machines 

having asymmetric winding connection for different AC current densities and speeds, at 34 

A/mm
2
 constant DC current density 
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Appendix C: Performance Analysis of SR Machine Under 

Unipolar Excitation-Conventional Operation 

For the purpose of examining the capability of the SR machine under the bipolar excitation. 

The electromagnetic performance of such machine under the conventional unipolar 

excitation is predicted in this appendix and compared with its bipolar counterparts in Chapter 

7. The analyses are carried out on exactly the same 6 stator/4 rotor pole machine, which is 

illustrated in Chapter 6 and Chapter 7, using the asymmetric half H-bridge converters, Fig. 

C.1, and under 100 V DC link voltage and 34 A/mm
2
 maximum current density. The current 

density against the number of turns per coil at 2500 rpm is given in Fig. C.2. Such 

calculations are carried out for 30 mechanical degree commutation angle (conduction angle), 

which is the normal stroke angular displacement for the 3 phase 6 stator/4 rotor poles SR 

machine [C.1]. The normal on and off angle positions, i.e. the normal stork angle, are 

illustrated in Fig. C3 However, the commutation angle will be further optimized during the 

torque-speed characteristics prediction. 

Normal stroke angle 
rNm.

360
      (C. 1) 

where m and rN  are the number of phases and rotor poles, respectively.  

Fig. C.2 shows that lower number of turns results in larger average torque due to the larger 

current density, since the phase resistance and voltage become lower thus more current can 

flow in the phase coil. The maximum current density is satisfied when the number of turns 

per coil is 14, as shown in Fig. C.2. Thus, such number will be utilised in the following 

analyses. At 34 A/mm
2
 current density, the machine can deliver 46 Nm average output 

torque. The output torque waveform is given in Fig. C.4. However, for further illustrations, 

the variation of average output torque and torque ripple against current density is shown in 

Fig. C.5.  

The torque- and power-speed characteristics of the analysed machine under such excitation 

can be simply predicted by varying the rotating speed and calculate their corresponding 

output torques and powers. However, in order to obtain the maximum possible 

characteristics. The optimal on and off angles at each speed should be determined [C.1]. For 

this purpose, at each speed the commutation angle, i.e. the period between the on and off 
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angles, is varied between zero and 90 mechanical degree. In other words, the off angle is 

kept always 0 when the rotor is at the end of normal stroke position, Fig. C.3(b). However, 

the on angle is scanned between 0 and -90 mechanical degree with respect to the end of 

normal stroke position. At each angle the corresponding average torque and current density 

are calculated. The obtained results are illustrated in Fig. C.6. It shows that at any speed the 

torque gradually increases when the commutation angle increases, since a larger current can 

flows in the phase windings. Therefore, at relatively low speeds, e.g. 2000 rpm or lower, the 

commutation angle is even smaller than the normal stroke, thus the current density does not 

exceed the maximum allowed value, as shown in Fig. C.6 (a). On the other hand, further 

increasing in the commutation angle results in output torque reduction since a negative phase 

output torque is produced, as illustrated in Fig. C.7. When the negative phase part is 

relatively small, i.e. at relatively small commutation angle, the total average output torque of 

the motor is larger, in addition the torque ripple becomes smaller. However, at relatively 

larger commutation angle, the phase negative torque becomes larger, thus it will reduce the 

total average output torque of the machine. Such discussion is clearly illustrated in Fig. C.8. 

Furthermore, at relatively low speeds the maximum possible output torque is achieved at 

relatively small commutation angle. However, such angle becomes gradually larger when the 

speed increases since at low speeds the phase current rise is faster, since the commutation 

time for the same commutation angle is longer and the phase voltage is lower. The results of 

Fig. C.6 are utilised to predict the torque- and power-speed characteristics of the analysed 

machine which are plotted in Fig. C.9. In order to highlight the benefit of adjusting the 

commutation angle, such characteristics are calculated again for a fixed commutation angle, 

i.e. 30 mechanical degree. The obtained results are also plotted in Fig. C.9, while the 

corresponding variations of the current density and commutation angle are respectively 

compared in Fig. C.10(a) and Fig. C.10(b). Comparing with the fixed commutation angle 

method, the varying commutation angle counterpart results in much larger output torque and 

power, but at the same time larger current density is required. It should be also mentioned 

that even when the fixed commutation angle prediction method is utilised, the commutation 

angle is reduced at significantly low speeds, Fig. C.10(b) since if the normal stroke is 

maintained the current density will be significantly large. Furthermore, the variations of the 

related iron and copper losses against speed under the varying commutation angle prediction 

method are also estimated and given in Fig. C.11. Based on these data, the efficiency of the 

analysed machine under the conventional unipolar excitation is calculated and shown in Fig. 

C.12.  
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Fig. C.1 Asymmetric unipolar driver inverter for conventional SR machines. 

 

Fig. C.2 Variation of average output torque and current density against number of turns per 

coil of 6 stator/4 rotor poles SR motor, at 0 and 30 mechanical degree on and off angles and 

2500 rpm 
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(a) Fully unaligned position with phase A, on angle 

 

(b) End of normal stroke position, off angle 

Fig. C.3 Different rotor positions of 6 stator/4 rotor poles machine, on and off angles for 30 

mechanical degree normal stroke angular displacement. 
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Fig. C.4 Output torque waveform of 6 stator/4 rotor poles SR machine, at 0 and 30 

mechanical degree on and off angles, 34 A/mm
2
 current density and 2500 rpm. 

 

Fig. C.5 Variation of average torque and torque ripple against current density of 6 stator/4 

rotor poles SR machine, at 0 and 30 mechanical degree on and off angles and 2500 rpm. 

0

10

20

30

40

50

60

70

80

0 15 30 45 60 75 90

O
u

tp
u

t 
T

o
rq

u
e 

(N
.m

)

Rotor postion (mech. deg)

0

10

20

30

40

50

60

70

0 5 10 15 20 25 30 35

Average torque

Toque ripple

O
u

tp
u

t 
T

o
rq

u
e 

(N
.m

)

Current Density (A/mm^2)



359 
 

 

(a) 2000 rpm 

 

(b) 4000 rpm 
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(c) 6000 rpm 

 

(d) Speed is 8000 
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(e) 10000 rpm 

 

(f) 12000 rpm 

Fig. C.6 Variation of average output torque and current density against commutation angle 

of 6 stator/4 rotor poles SR machine for different rotating speeds. 
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Fig. C.7 Variations of output torque of phase A of 6 stator/4 rotor poles SR machine for 

different commutation angles, at 2000 rpm. 

 

Fig. C.8 Variations of total output torque of 6 stator/4 rotor poles SR machine for different 

commutation angles, at 2000 rpm. 
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(a) Torque-speed characteristics 

 

(b) Power-speed characteristics 

Fig. C.9 Comparison of torque- and power-speed characteristics of 6 stator/4 rotor poles SR 

machine for different prediction methods. 
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(a) Corresponding current density 

 

(b) Corresponding commutation angle 

Fig. C.10 Comparison of corresponding variations of current density and commutation 

angles of 6 stator/4 rotor poles SR machine for different prediction methods. 
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(a) Iron loss 

 

(b) Copper loss 

Fig. C.11 Variations of corresponding iron and copper losses of 6 stator/4 rotor poles SR 

machine using varying commutation angle prediction method. 
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Fig. C.12 Corresponding efficiency of 6 stator/4 rotor poles SR motor using varying 

commutation angle prediction method. 
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Appendix E: Mechanical Drawings of Analysed Machines 

Dimensions and drawings of the prototype machines are removed due to confidentiality. 


