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Abstract

The work in this thesis provides a refinement in the classification of nilpotent orbits in classical

algebras. Given an affine algebraic group and attached Lie algebra over an algebraically closed field

κ with good characteristic, we explore the relationship between the nilpotent orbits given by taking

limits along cocharacters of the group. This can be used to determine the so-called accessibility

order of the nilpotent orbits in the Lie algebra. In this thesis, the accessibility of nilpotent orbits

in the general linear, symplectic and orthogonal algebras are completely determined, as well as

possible differences that occur when κ is no longer closed. Leaving the restriction of algebraic

closure provides a topic for further research.
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Introduction

The work in this thesis is based on the work in the area of Lie theory, a subject dating back to

the late 19th century. From the origins in “transformation groups” by Sophus Lie, the subject

has developed in various directions and influenced different areas of mathematics, such as repre-

sentation theory, algebraic and differential geometry, and mathematical physics. Before the 20th

century, semisimple complex Lie algebras were introduced, and this was quickly followed by their

classification. In the 1940s, the eponymous Dynkin diagrams provided a big refinement in this

classification.

The affine (and linear) algebraic groups in this thesis arise as groups which are also affine

algebraic varieties. From the beginning Lie algebras and algebraic groups were closely linked. By a

construction of Chevalley, an algebraic group can be constructed over any algebraically closed field

from a complex semisimple Lie Algebra. This connection is made closer as every affine algebraic

group has a Lie algebra attached over the same field as the group. This attachment can be

considered as a linearisation of the group. The group acts naturally on its Lie algebra, which will

be discussed in Chapter 1. From this action arise the so-called nilpotent orbits, which are the main

focus of this thesis.

Understanding how an algebraic group acts on its Lie algebra helps the understanding of the

group itself, this is explained in (for instance) the books about linear algebraic groups by Borel

[2], Humphreys [6], and Springer [9], but it also relates to other fields of study. The notes [7] by

Jantzen discuss several connections between the study of nilpotent orbits and other subjects, such

as the links with representation theory.

Since the introduction of the classification of nilpotent orbits for algebraic groups, it has been

refined many times. In this thesis, we will make another step in refining the classification. The

original classification of Dynkin-Kostant [3] in characteristic 0, using sl2-triples, is a classic result

in the theory, which is still being revisited in the present day, for instance see [11]. In positive

characteristic, we refer to the paper of Holt-Spaltenstein (see [5]) and the sources given there. In

this thesis, the so-called dominance order for nilpotent orbits in classical groups is of particular

relevance. The dominance order was first established by Gerstenhaber [4].

The idea for using cocharacters (or 1−parameter subgroups) to study orbits and whether or

not they are closed (which is a different approach to the Zariski-closure) finds its origin in the work

of Hilbert (where the focus was on the general linear group). The Hilbert-Mumford theorem (see

theorem 1.8.1) is an application, which says that if an orbit is not Zariski-closed, taking the limit

of a suitable cocharacter will yield an element in a different orbit.

The first chapter of this thesis will explore the known information regarding linear algebraic

groups, nilpotent elements, Lie algebras, cocharacters and the related approach of closed and open

orbits, and the orthogonal and symplectic groups. The second chapter explains the results of the

research in the general linear group. In the third and fourth chapter, the symplectic and orthogonal

groups are covered. The final chapter summarises the developments made and gives suggestions

for further research.
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Chapter 1

Algebraic groups, lie algebras and

nilpotent orbits

In this chapter, we will discuss general information on algebraic groups, Lie algebras and nilpotent

orbits. We start with some notation and definitions. Throughout the thesis, κ denotes an alge-

braically closed field with good characteristic. Given a set X and a κ−valued function f : X → κ

we denote evaluation at a point x ∈ X by εx; that is εx(f) := f(x). An affine variety over κ

consists of:

1. a set X of points,

2. a finitely generated κ−algebra κ[X] of κ−valued functions on X,

such that the evaluation map x 7→ εx gives a bijection X → Homκ−alg(κ[X], κ). A morphism of

affine varieties is a map φ : X → Y of sets of points such that f ◦ φ ∈ κ[X] for all f ∈ κ[Y ]. This

gives rise to the comorphism φ] : κ[Y ]→ κ[X] defined by φ](f) = f ◦ φ.

Affine varieties carry a topology coming from the coordinate algebra: for any subset S ⊆ κ[X],

we define V (S) ⊆ X to be the set {x ∈ X | f(x) = 0 for all f ∈ S}. These sets form the closed

sets in the Zariski topology on X.

The main focus of this thesis are affine algebraic groups and their actions on affine varieties.

An affine algebraic group G is an affine variety, with κ[G] its coordinate algebra, and the following

are morphisms of varieties:

multiplication µ : G×G→ G,

inversion ι : G→ G.

Example. Let G = GLn(κ). Then the coordinate algebra is

κ[G] = κ[X11, X12, . . . , Xij , . . . , Xnn, 1/ det],

where the Xij are the matrix coordinate functions and det is the matrix determinant.

The multiplicative group Gm can be defined as GL1. As an abstract group it consists of the

nonzero points of κ under multiplication, and its coordinate algebra can be identified with the ring

of Laurent polynomials κ[T, T−1] in a single indeterminate T . To show that µ is a morphism of

varieties, we need to check that the comorphism µ# takes an element in κ[GLn] to κ[GLn×GLn]:
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µ#(Xij(g, h)) = Xij(µ(g, h))

= Xij(gh)

=

n∑
l=1

gilhlj

=

(
n∑
l=1

Xil ⊗Xlj

)
(g, h).

So µ#(Xij) =
∑n
l=1Xil ⊗Xlj . For the inverse the argument is similar.

1.1 Algebraic groups, actions and linearisation

For further background reading, see [6], [2] and [9]. Let G be an algebraic group, and recall that the

irreducible and connected components of G coincide. We let G◦ denote the connected component

of G containing the identity; it is a normal subgroup of G of finite index, and the other components

are its cosets. The group G is called connected if G◦ = G. For the majority of this thesis, we will be

concerned with the general linear group GLn(κ), symplectic group Sp2n(κ) and orthogonal group

On(κ). The groups GLn(κ) and Sp2n(κ) are connected, and On(κ) has two connected components.

The aim of this thesis is to study certain actions of algebraic groups on affine varieties. We

begin with some generalities. In general, let X be a set and let G be an abstract group. G acts on

X if there is a map

α : G×X → X

α(g, x) = g · x

such that

x1 · (x2 · y) = (x1x2) · y for xi ∈ G, y ∈ X

e · y = y for all y ∈ X

If an algebraic group G acts on an affine variety X in such a way that the associated map

α : G×X → X,

(g, x) 7→ g · x

is a morphism of varieties, then we sayG acts morphically onX. In this situation, we get an induced

linear action on the coordinate algebra κ[X]: given f ∈ κ[X] and g ∈ G, define τg(f) ∈ κ[X] by

τg(f)(x) := f(g−1 · x).

The comorphism α] takes κ[X] to κ[G×X], so for any f ∈ κ[X] we can write: α](f) =
∑r
i=1 ai⊗bi,

for some ai ∈ κ[G], bi ∈ κ[X]. But then for any g ∈ G and x ∈ X we have:
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τg(f)(x) = f(g−1 · x)

= f(α(g−1, x))

= α](f)(g−1, x)

=

r∑
i=1

ai(g
−1)bi(x).

Since this holds for all x ∈ X, we conclude that τg(f) =
∑r
i=1 ai(g

−1)bi, which is an element of

κ[X], so τg : κ[X]→ κ[X].

To see that this does define an action, let g, h ∈ G, f ∈ κ[X], x ∈ X, and we calculate:

(τg ◦ τh)(f)(x) = τg(τh(f))(x)

= τh(f)(g−1 · x)

= f(h−1 · (g−1 · x))

= f((h−1g−1) · x)

= f((gh)−1 · x)

= τgh(f)(x),

so τg ◦ τh = τgh, hence τg defines an action.

Let G act on X. Then G · x is called the orbit of x. When the group acting is an algebraic

group and the set is a variety, it is natural to ask topological questions about the orbits. In this

setting, difficulties arise because not all orbits are closed, in the topological sense. Then forming a

quotient (for example) is difficult.

In this setting, we have the following result (see [6, Section 8.5-8.6]), which shows that algebraic

groups act “locally finitely”:

Proposition 1.1.1. Let G act morphically on an affine variety X, and let F be any finite-

dimensional subspace of κ[X]. Then there exists a finite-dimensional subspace E of κ[X] such that

F ⊆ E and τg(E) ⊆ E for all g ∈ G.

This allows us to “linearise” any such action. For us, there is one particular interest of this

result when we apply it to the action of an algebraic group G on itself by right multiplication, as

follows:

Theorem 1.1.1. Let G be an affine algebraic group. Then G is isomorphic to a closed subgroup

of GLn(κ) for some n.

The proof of this theorem can be found in [6][Section 8.6].

1.2 Nilpotent, unipotent and semisimple elements, the Jor-

dan decomposition

Since any affine algebraic group G can be embedded in some GLn(κ), by Theorem 1.1.1, we will

extend some familiar notions from linear algebra to algebraic groups in this section.

A particularly useful instance of this comes from nilpotent, unipotent and diagonalizable ma-

trices. Recall that a square matrix A is called nilpotent if some power Ar = 0. A square matrix

A is called unipotent if A − I is nilpotent, where I is the identity matrix of the same size as A –

equivalently, all eigenvalues are 1. A square matrix is called diagonalizable if there is an invertible
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P such that PAP−1 is diagonal. Working over an algebraically closed field, one can see from

the Jordan normal form for matrices (for example) that any invertible matrix A has a unique

expression: A = AsAu, where As and Au commute, As is diagonalizable and Au is unipotent.

Now we can extend these notions to elements of an arbitrary affine algebraic group G. We

call g ∈ G unipotent if the image of g is a unipotent matrix in some linearisation of G; we call g

semisimple if its image is diagonalizable in some linearisation of G. It turns out (see [6, Section

15.3]) that these notions are independent of the chosen linearisation. Further, there is a unique

Jordan decomposition of elements of G – any g ∈ G can be uniquely written g = gsgu where gs

and gu commute, gs is semisimple and gu is unipotent.

1.3 Borel subgroups and reductive groups

In this section, we will describe the properties of several groups that appear in the thesis, using

the notation from the description in Humphreys, see [6]. Let G be an affine algebraic group and

let a, b ∈ G. Recall that the commutator is defined as (a, b) = aba−1b−1, where a, b are elements of

a group G. Similarly for subgroups A,B of G, then the group generated by all (a, b), a ∈ A, b ∈ B
will be denoted by (A,B).

G is solvable if its derived series terminates in the identity: G = G(0) B (G,G) = G(1) B

(G(1), G1)) = G(2) B . . . B e.

Example. Take the group of upper triangular matrices Bn(κ) ⊂ GLn(κ). Let x, y ∈ Bn, then

xyx−1y−1 =


x11y11x

−1
11 y

−1
11 ? ?

0
. . . ?

0 0 xnnynnx
−1
nny

−1
nn

 =


1 ? ?

0
. . . ?

0 0 1

 ,

which is a unipotent matrix, so (Bn, Bn) = Un, the group of upper triangular unipotent matrices.

Continuing, one gets that (Un, Un) = {X ∈ Un | (xi,i+1) = 0}, the unipotent group with zero

entries on the first upper diagonal. By induction, (U
(m)
n , U

(m)
n ) = In, as In can be described as a

unipotent matrix with zero entries on every upper diagonal. We conclude that the unipotent and

upper triangular groups are solvable.

Definition 1.3.1. Let R(G) denote the radical, which is defined to be the largest closed connected

normal solvable subgroup of G, and let Ru(G) denote the unipotent radical, which is the largest

closed connected normal unipotent subgroup of G. Then we say that G is semisimple if R(G) = 1

and reductive if Ru(G) = 1.

Example. The matrix groups GLn(κ) and SLn(κ) are both reductive. GLn(κ) is not semisimple

because the scalar matrices form a nontrivial connected normal solvable subgroup. However,

SLn(κ) is semisimple.

A Borel subgroup B ⊂ G is a maximal connected (G = G0) solvable subgroup. The subgroup

of upper triangular matrices is called the upper, or standard, Borel inside GLn(κ). It is denoted

by Bn(κ).

A subgroup P is defined as parabolic if it contains a Borel subgroup B. By [6, p.134], a subgroup

P is parabolic if and only if G/P is projective (a subspace of projective n−space, see [6][Section

1.6]). The group P is called a standard parabolic if it contains a standard Borel. In GLn then,

any parabolic is conjugate to a subgroup in upper triangular block form. For example, in GL4, the

parabolic subgroups that arise, other than G and B4 are:
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
? ?

0

0 ?

0

 ,


? ?

0 0 ?

0 0

 ,

 ? ?

0 0 0 ?

 .

One of the key points in the basic theory of affine algebraic groups is the following theorem of

Borel. This theorem together with the material on Lie algebras in the next section, is the starting

point for the classification of simple algebraic groups, see Section 5.

Theorem 1.3.1 (Borel’s Fixed Point Theorem). Let G be a connected solvable algebraic group,

and let X be a (nonempty) complete variety on which G acts. Then G has a fixed point in X.

Remark (see [6][Section 6.1]): a variety X is complete if for all varieties Y , the projective map

X × Y → Y is a closed map (i.e. the map sends closed sets to closed sets).

1.4 Lie algebras

Given an affine variety X, one can form the tangent space to X at any point x ∈ X. The easiest way

to define this is as the set of κ-linear derivations Tx(X) := Derκ(κ[X], κ) – that is, linear maps from

the coordinate algebra κ[X] to κ satisfying the extra property that D(ab) = a(x)D(b) +D(a)b(x)

for all a, b ∈ κ[X] (this is the analogue of the product rule for derivatives in this setting). It is

clear that Tx(X) is a vector space, and it enjoys some nice functorial properties: for example, if

φ : X → Y is a morphism of affine varieties, then there is an induced map dxφ : Tx(X)→ Tφ(x)(Y )

given by D 7→ D ◦ φ], where φ] : κ[Y ]→ κ[X] is the comorphism.

The following calculation shows that D ◦ φ] is a derivation.

(D ◦ φ])(ab) = D(φ](ab))

= D(φ](a)φ](b))

= φ](a)(x)D(φ](b)) +D(φ])(a)φ](b)(x)

= a(y)(D ◦ φ])(b) + (D ◦ φ])(a)b(y),

for any a, b ∈ κ[Y ].

Example. The easiest tangent space to write down gives a good idea of how this construction

works in practice. If X = An is affine n-space, with coordinate algebra κ[X1, . . . , Xn], then the

tangent space at a point x = (a1, . . . , an) ∈ X is simply the linear span of the partial derivatives

(∂/∂Xi)|x: that is,
∂

∂Xi

∣∣∣∣
x

(f) :=
∂f

∂Xi
(x)

for each f ∈ κ[X].

In the case of an affine algebraic group G with identity element 1 ∈ G, the comultiplication on

the coordinate algebra κ[G] can be used to give the tangent space T1(G) the additional structure

of a Lie algebra. This is not straightforward to show – one approach is to identify T1(G) with the

space of left-invariant derivations from κ[G]→ κ[G], and then equip this space with the usual Lie

bracket [D1, D2] = D1 ◦D2 −D2 ◦D1. The Lie algebra so defined is called the Lie algebra of G,

which we will denote by g (see [6, p.65])

The functoriality noted above now has some particularly nice properties: any action of G on

itself which fixes the identity will differentiate to give an action on the Lie algebra. In particular,
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the action of G on itself by an inner automorphism differentiates to give the so-called adjoint action

of G on g.

Definition 1.4.1. Let G be a linear algebraic group with Lie algebra g. For each g ∈ G we have

the inner automorphism

Inn(g) : G→ G

x 7→ gxg−1.

Then the differential d1(Inn(g)) : g→ g is denoted by Ad(g). This gives rise to the adjoint action

of G on g: for g ∈ G, x ∈ g, define g · x = Ad(g)(x).

Fortunately, for our purposes, all of this is quite easy to write down. The general linear group

is an open subset in the set of all n× n matrices, which is just affine n2-space as a variety. Thus

the tangent space at the identity of GLn(κ) can be identified with the vector space of all n × n
matrices, and it turns out that under this identification, the Lie algebra structure is the usual one

for matrices: we have the Lie bracket [x, y] = xy− yx for n×n matrices x and y. We write gln(κ)

for this Lie algebra. The adjoint action of GLn(κ) on gln(κ) is simply given by matrix conjugation.

Furthermore, if H is a closed subgroup of GLn(κ), then the Lie algebra of H can be identified as

a closed subalgebra of gln(κ). We describe how to do this in two specific examples in Section 1.11

below.

The above discussions give a strong motivation for a further study of the conjugation action of

GLn(κ) on the set Mn(κ) of all n× n matrices, since this is precisely the adjoint action of GLn(κ)

on its Lie algebra. We can see easily that this action is a morphism, by considering the conjugation

action of GLn on all matrices:

GLn ×Mn →Mn,

(g,A) 7→ gAg−1.

The mapping is a composition of the following morphisms: µ ◦ µ ◦ ι,

ι : g 7→ g−1,

µ : (A, g−1) 7→ Ag−1,

µ : (g,Ag−1) 7→ gAg−1,

so conjugation is a morphism.

Note that in this case, the stabilizer of x ∈ X is defined as Gx = {x ∈ X | g · x = x}. In the

case that the action of G on X is conjugation, the stabilizer and centralizer CG(x) = {g ∈ G |
gx = xg} = {g ∈ G | gxg−1 = x} are the same.

1.5 A motivating example

One of the main motivations for the work in this thesis is the paper [1], concerning the notion

of cocharacter-closed orbits for algebraic groups acting on affine varieties. The technical language

will be introduced later in the thesis, but this early example shows what kind of ideas appear. This

is based on the example in [1, p.11].
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Working over the complex numbers C, consider the affine line X = A1 (which we can identify

with C as a set) and the multiplicative group G = Gm (which we can identify with C∗ = C \ {0}).
The algebraic group G acts on the variety X by squares:

Gm × A1 → A1,

(x, g) 7→ g · x := g2x, g ∈ G, x ∈ X.

This action has two orbits – the orbits X \ {0} of nonzero points and the orbit {0}. This latter

orbit is closed in the Zariski topology, and we can reach 0 from any other point in A1 by taking a

limit – for any x 6= 0 ∈ X, we have 0 = lima→0 a · x. Here each of the points a · x lies in the first

orbit, and the limit point 0 lies in the closed orbit.

Now consider the subfield R ⊂ C. We have the group of R-points Gm(R) acting on the set of

R-points X(R), but now there are three orbits – the orbit of positive real numbers R+, the orbit of

negative real numbers R−, and the orbit {0}. The set X(R) inherits a topology from the Zariski

topology on X, but this topology cannot tell apart the two orbits R+ and R− of Gm(R) because

both of them are infinite, and hence dense in X (recall that a proper Zariski closed set in A1 is the

set of zeroes of a collection of polynomials, and hence is finite).

The notion of cocharacter-closed orbits was designed in part to get round this problem: it

provides a tool to topologise so-called “relative orbits” for an algebraic group which allows for a

more detailed analysis than the Zariski topology inherited from the absolute (i.e., algebraically

closed) setting. In this example, for the action of the real points, the closed orbit {0} can still be

obtained as a limit from either of the two other orbits, but it is not possible to jump between them

using limits, so in this sense we can tell the orbits apart.

1.6 Tori and cocharacters

First, we give the definition of a torus:

Definition 1.6.1. T is called a torus if it is isomorphic to some diagonal group Dn(κ) ⊂ GLn(κ).

From Section 1.2, recall that an element is semisimple if it is diagonalizable when represented

in GLn, so a torus T is a commutative group consisting of semisimple elements. In fact, the action

of a torus in any representation is diagonalizable, since a set of pairwise commuting diagonalizable

matrices can always be simultaneously diagonalized.

With the properties of tori, we move on to characters and weight spaces:

Definition 1.6.2. Let G be an affine algebraic group, then a character of G is defined to be a

morphism of algebraic groups:

α : G→ Gm.

If α1, α2 are two characters, the product is defined as (α1α2)(g) = α1(g)α2(g), which gives the

structure of a commutative group to the set of all characters X(G). In GLn, the determinant of a

matrix is a natural example of a character.

Let T ⊆ GL(V ) be a torus, so it is diagonalizable in GL(V ). For each α ∈ X(T ), define the

weight space Vα as follows:

Vα = {v ∈ V | τ · v = α(τ)v ∀τ ∈ T}, (1.1)

then α is called a weight if Vα 6= 0.
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Example. Let G = GL2(κ) and let T be the standard diagonal torus in G. Then we can let

V = span

{(
1

0

)
,

(
0

1

)}
, let T ⊂ GL2,

The characters of T correspond to pairs of integers α = (α1, α2) as follows: if

t =

(
t1 0

0 t2

)
, then α(t) = tα1

1 tα2
2 .

Furthermore:

τ · e1 =

(
t1

0

)
, and α(τ)e1 =

(
tα1
1 tα2

2

0

)
.

It follows that if α = (1, 0), Equation 1.1 is satisfied. Therefore

V(1,0) = span

{(
1

0

)}
,

and similarly

V(0,1) = span

{(
0

1

)}
.

In this case, it follows that V = V(1,0) ⊕ V(0,1). Now V can be denoted as the direct sum of its

weight spaces: V = ⊕αVα. This is an instance of the general situation: for any vector space V upon

which a torus acts linearly, we have that V can be decomposed as the direct sum of its T -weight

spaces:

V =
⊕
α

Vα.

Dual to the notion of a character is the notion of a cocharacter, which is central to the work in

this thesis.

Definition 1.6.3. A cocharacter of G is an algebraic group homomorphism λ : Gm → G.

Let

λ(t) : Gm → GL(V ).

Let T be the standard diagonal torus in GLn(κ). Then any cocharacter has the form:

λ : t 7→


tm1

. . .

tmn

 ,

where the mi are integers. For reductive G acting on affine X over κ, we define Yκ(G) =

{cocharacters of G over κ} (see [1, p2]).

Now suppose G acts on an affine variety X, then given any λ and x ∈ X, we can define:

ψ = ψx,λ : Gm → X

a 7→ λ(a) · x.

Then Im(ψ) ⊆ G ·x. So there is a point on the line for every a 6= 0, and x = λ(1) ·x. We can make

the following observations:
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1. If ψ extends to ψ̄ : A1 → X (i.e. ψ̄ is a morphism and ψ̄ = ψ ∀a ∈ Gm), then the limit

lima→0 λ(a) · x exists.

2. If ψ̄ exists then we write lima→0 λ(a) · x = ψ̄(0).

We identify Gm ⊆ A1 in the obvious way, which places the coordinate algebra of A1 as κ[T ]

inside κ[T, T−1]. Since

ψ : Gm → X,

ψ# : κ[X]→ κ[Gm] = κ[T, T−1],

it follows that ψ̄ exists if and only if Im(ψ#) ⊆ κ[T ], and we can get ψ̄# : κ[X] → κ[T ] by

restricting the codomain, so ψ̄ is given automatically. This gives a third observation:

3. If ψ̄ exists then it is unique.

Since we will often be using cocharacters, we introduce the following definition.

Definition 1.6.4. Let x ∈ X be a matrix, and let λ ∈ G be a cocharacter. Then conjugating x

with a cocharacter and taking the limit limt→0 λ(t) ·x is called taking the limit along a cocharacter.

We also introduce a simplified notation for taking the limit along a cocharacter. When

lima→0 λ(t) · x exists, we denote it by limλ x.

Example. We return to the vector space from the previous example, and now apply a cocharacter

λ:

V = span

{(
1

0

)
,

(
0

1

)}
,

and let λ(t) : κ∗ → GL2:

λ : t 7→

(
t2

t

)
.

Next, let G = GL2 act by conjugation on X = M2, the matrices of size 2. Suppose

x =

(
p q

r s

)
,

is an arbitrary matrix in M2. Then:

λ(t) · x =

(
p tq

t−1r s

)
,

and we observe that

1. limλ x = x if λ(t) · x = x, so when λ centralizes x.

2. limλ x exists if r = 0, this is when x is upper triangular.

So, for this choice of cocharacter, the limit exists for a matrix x if and only if x is upper triangular,

and then the limit is a diagonal matrix.

This is a special case of the Hilbert-Mumford Theorem below.

Next, we determine the comorphism for ψ = ψx,λ for a fixed choice of x as above. Recall that

κ[Gm] = k[T, T−1] and we can write κ[M2] = κ[x11, x12, x21, x22], where the xij are the coordinate

14



functions on matrices. Then ψ] should be a map from κ[M2] → κ[T, T−1]. Working with the

coordinate functions on M2, we get:

ψ](x11) = (x11 ◦ ψ)(t) = x11(ψ(t)) = p.

So ψ](x11) = p is constant. Similarly we can calculate:

ψ](x12) = qT,

ψ](x21) = rT−1,

ψ](x22) = s.

This shows that the image of ψ] lies in k[T ] if and only if r = 0, and since limλ x exists if and

only if r = 0, we conclude that limλ x exists if and only if Im(ψ#) lies in k[T ].

1.7 Further results on limits

In this section we will discuss further results on taking taking limits, specifically with the parabolic

subgroup, Levi subgroup and unipotent radical in mind. Suppose G is a reductive group acting on

an affine variety X.

Lemma 1.7.1. There exists a vector space V and embedding

ρ : G→ GL(V ),

φ : X → V,

for all g ∈ G and x ∈ X. In other words, the action of G on X can be linearised.

Proof. For a full proof, see [8, Section 1]. This follows in a similar fashion to the proof that any

algebraic group can be linearised (see theorem 1.1.1). The action of G on X induces an action

on the coordinate algebra κ[X]. We can find a G−stable finite dimensional subspace E of κ[X]

containing a generating set for κ[X], and then we can identify the symmetric algebra on E with

the coordinate ring of a vector space V . The inclusion E ⊂ κ[X] and the action of G on E induces

the required maps φ and ρ.

Note that if G · x is a closed orbit, then limλ x ∈ G · x, whenever it exists. This follows since

the limit is given by a morphism, and morphisms are continuous.

For a cocharacter λ ∈ Y (G) and an element g ∈ G, the cocharacter g ·λ is defined by (g ·λ)(a) =

gλ(a)g−1 for each a ∈ Gm. We begin with a general result.

Lemma 1.7.2. Let x ∈ X and λ ∈ Y (G). Suppose y = limλ x exists. Then:

(i) (The image of) λ centralizes y.

(ii) For all g ∈ G, limg·λ g · x = g · y.

Proof. (i) By Lemma 1.7.1 we may assume that X is a vector space and G is acting linearly. As

y = limλ x, we can denote x = y + x0, where x0 is the part that gets killed off: limλ x0 = 0. Then

y = limλ x = limλ(y + x0) = limλ y + limλ x0 = limt→0 λ · y.

Hence it follows that λ must centralize y.
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(ii) Note that for all t ∈ Gm we have:

(g · λ)(t) · (g · x) = (gλ(t)g−1) · (g · x) = g · (λ(t) · x).

Taking the limit as t→ 0 now gives the result.

Remark: if λ is trivial, it centralizes x, that is limλ x = x.

The material above on limits has particularly interesting consequences when applied to the

conjugation action of G on itself. It turns out, by [9] that if we take any cocharacter λ ∈ Y (G),

then:

Pλ := {g ∈ G | limλ g exists},

is a parabolic subgroup of G. Moreover the unipotent radical Ru(Pλ) can be recovered as the set

of elements which are sent to 1 in the limit:

Ru(Pλ) = {g ∈ G | limλ g = 1},

and if we define

Lλ := {g ∈ G | limλ g = g} = CG(Im(λ)),

then Lλ is a reductive subgroup of Pλ and Pλ = LλnRu(Pλ) gives a so-called Levi decomposition

of Pλ. Moreover, for every pair (P,L) consisting of a parabolic subgroup P of G and Levi subgroup

L of P , there is some λ ∈ Y (G) with P = Pλ and L = Lλ.

1.8 The Hilbert-Mumford theorem

The Hilbert-Mumford Theorem allows us to define closedness with respect to cocharacters. In [8,

Section 1], the theorem is described as follows:

Theorem. Let X be an affine G−variety over an algebraically closed field κ. Let x ∈ X and let S

be a closed G−subvariety of X which meets the closure of the orbit G · x. Then there is a λ such

that limλ x exists and is contained in S.

For this thesis, we consider S = G · x \G · x. So we get:

Theorem 1.8.1. [Hilbert-Mumford Theorem] If G ·x is not closed in X, then ∃λ such that limλ x

exists and limλ x /∈ G · x.

A proof can be found in [8, Section 1]. This fundamental theorem leads us to consider the

following definition, see [1]:

Definition 1.8.1. Let X be a set over κ, then S ⊂ X is cocharacter-closed (over κ) if for all x ∈ S
and ∀λ ∈ Y (G) such that limλ x exists, it follows that limλ x ∈ S.

The cocharacter-closure of an orbit G · x is denoted by G · xc, this gives two main ideas:

1. Use cocharacters to define a new topology on X, using the G−orbits in X. Letting cochar-

acters act on a G−orbit that is not closed allow us to go to another G−orbit.

2. With the suitable modifications, this works over any field. However, if G acts on X over a

field that is not algebraically closed, there will be restrictions.
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The case of interest is when S = G · x, the orbit of x ∈ X. This is because the limλ x exists

(and is G−conjugate to x). To show this, take any a ∈ κ, then:

(g · λ)(a) · (g · x) = (gλ(a)g−1) · (g · x) = g · (λ(a) · x).

Moreover, if κ = κ̄, then the Hilbert-Mumford theorem tells us that cocharacter-closedness and

Zariski-closedness are equivalent.

Definition 1.8.2. Suppose x, y ∈ X. Say that G · y is 1-accessible from G · x if there exists a

λ ∈ Y (G) such that limλ x ∈ G ·y. Say that G ·y is n−accessible if there is a chain x = x0 → x1 →
. . . → xn = y such that G · xi is 1-accessible from G · xi−1 for 1 ≤ i ≤ n. If G · y is n−accessible

for some n, we say it is accessible.

It is immediately clear that accessibility gives a preorder on orbits; it is transitive by definition,

and to show that it is reflexive, note that limλ x = x when λ is trivial. Now a formal definition of

the cocharacter-closure can be given:

Definition 1.8.3. The cocharacter-closure

G · xc =
⋃
G · y,

where the union is over the orbits G · y that are accessible from G · x, is the smallest cocharacter-

closed set containing G · x.

Remark: We can now use a new notation for accessibility. If G · y is accessible from G · x, then

we write G · yc ≤ G · xc. The following questions arise the definitions:

1. Is the preorder on orbits given by cocharacter-closure a partial order?

2. Even when κ = κ, are there cases when G · xc 6= G · x?

3. Does accessibility imply 1-accessibility, e.g. if G · y is 1-accessible from G · x and G · z is

1-accessible from G · y, does it folllow that G · z is 1-accessible from G · x? To put it in

diagram form:

G · x //

? ##

G · y

��
G · z.

We can answer the first question, whenever κ is algebraically closed.

Lemma 1.8.1. Accessibility gives a partial order on nilpotent orbits over an algebraically closed

field.

Proof. Since the accessibility order is defined by taking limits along cocharacters, it is clear that

if G · yc ≤ G · xc, then the orbit G · y must lie in the Zariski-closure of the orbit G · x. This means

that taking limits cannot take us up the dominance order on partitions, and hence if G · yc < G · xc

but G · yc 6= G · xc, the orbit of y must be lower in the dominance order than the orbit of x.

Remark: note that this proof relies on the dominance order, so it relies on the Zariski-closure.

So with this proof, we cannot say that the preorder on orbits given by cocharacter-closure is a

partial order when the restriction of algebraically closed fields is lifted. Note also that we can say

that if G · yc ≤ G · xc, we also have that G · y ≤ G · x, but the reverse is not necessarily true.

Hence, we do not have an answer to question 2 yet.
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1.9 Nilpotent elements

Recall that a square matrix x is called nilpotent if xn = 0 for some n ∈ N. For each integer n ≥ 1,

denote by Jn the (n × n) matrix where the (i, i + 1) entry equals 1, for 1 ≤ i < n, and all other

entries equal 0. Jn is called a Jordan block. If x is nilpotent then there is a basis B such that x

has a Jordan normal form: a diagonal block matrix of Jordan blocks. In this thesis we will denote

Jordan normal forms with a direct sum:

x = J (r1)
n1
⊕ · · · ⊕ J (rp)

np
, (1.2)

where the (ri) denote the multiplicity of each Jni
. The matrix has a partition π, defined as follows:

Definition 1.9.1. A partition π of a natural number m is an expression m = n1 + · · ·+nm where

the ni are positive integers. Partitions are typically denoted by listing the numbers ni, . . . , np in

decreasing order of size inside square brackets, with powers to indicate the number of occurrences

of each number listed in the partition. So the partition π of n = n1 + n1 + · · ·+ n1 + n2 + · · ·+ np

is denoted as:

π = [n
(r1)
1 , . . . , n(rp)

p ].

There is a partial order on partitions, as described in [4]:

Definition 1.9.2. Let π1 = [n1, . . . , np] (not all ni necessarily distinct) and let π2 = [m1, . . . ,mq]

be two partitions of some n. π1 is said to dominate π2 if:

j∑
i=1

ni ≥
j∑
i=1

mi for 1 ≤ j ≤ p. (1.3)

The partial ordering of nilpotent partitions is called the dominance order, which can be vi-

sualised in a diagram. As example, Figure 1.1 shows the dominance order for the partitions of

6:

[6]

[5, 1]

[4, 2]

[4, 1, 1] [3, 3]

[3, 2, 1]

[3, 1, 1, 1] [2, 2, 2]

[2, 2, 1, 1]

[2, 1(4)]

[1(6)]

Figure 1.1: Dominance of partititions in gl6.

As we show below, the orbits of interest in this thesis can be labelled by partitions, and hence

the accessibility between these orbits can be described by changes between partitions, which we

define as moves. It is useful to have some terminology to describe such moves. In a partition
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π1 = [n1, n2], n1 and n2 are called the parts, and in a move to partition π2 = [n1 − a, n2 + a], a is

the piece that is moved from part n1 to n2.

Let G be a reductive group and g its Lie Algebra. An element x ∈ g is called nilpotent if it

acts nilpotently in every representation of g. The set of all nilpotent elements in g is called the

nilpotent cone in g. As seen above, G acts on g via the adjoint action, and the nilpotent cone is a

closed G-stable subset for this action.

The main subject of this thesis is an analysis of the orbits in the nilpotent cone for linear,

symplectic and orthogonal groups, concentrating on the notion of accessibility we have defined

above.

Example. For G = GLn(κ), the Lie Algebra is the algebra of all matrices and the nilpotent

elements are the nilpotent matrices described above. Hence the G-orbits in the nilpotent cone

correspond to partitions.

The Jordan normal form gives a labelling of the G−orbits of g, because G acts on g by con-

jugation. In fact, when we consider an n× n nilpotent matrix x, it has eigenvectors {v1, . . . , vn}.
Then conjugating with a matrix V , constructed of these eigenvactors, yields the Jordan form of

the orbit O(x) ∈ g. We want to see if these orbits are topologically closed. By conjugating with

the cocharacter λ = diag(tn, t−1, . . . , 1) and then taking the limit as t → 0, any nilpotent matrix

in Jordan form can be killed off. So 0 is in the closure of every orbit, and it is also the only closed

orbit in the Zariski topology.

We now define distinguished partitions, which will show to be not accessible from any other

partition:

Definition 1.9.3. A nilpotent element x ∈ g is called distinguished if each torus contained in the

stabilizer CG(x) = {g ∈ G | g · x = x} is contained in the center of G.

The following lemma is simple to prove, but it turns out to be a central tool in our work below

as it gives a criterion for “non-accessibility”.

Lemma 1.9.1. If x, y are nilpotent elements with y distinguished, then y = limλ x occurs only if

x = y and λ is central in G.

Proof. If limλ x = y, then the image of λ is a torus which centralizes y. But any torus which

centralizes y lies in the centre of G, by definition. Hence λ is central and this means that y =

limλ x = x.

For nilpotents in gln, first consider that Z(GLn) = aIn, with a ∈ κ∗. Then x is distinguished

if the aIn are the only matrices in StabG(x). In gln, let x1 have partition π1 = [n1], then it is of

the form:

x1 = Jn1
,

and let t1 = diag(a1, . . . , an1
) ∈ CG(x), then for the equation

Jn1 = t1 · Jn1 =


0 a1

a2
. . .

. . .

. . . an1−1

an1

0


to hold, we require ai = ai+1 for 1 ≤ i ≤ n1 − 1. So t1 = aIn1 and x1 is distinguished.

Next, let x2 have partition π2 = [n1, n2], so
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x2 = Jn1 ⊕ Jn2 ,

and let

t2 = diag(a1, . . . , an1 , an1+1, . . . , an1+n2),

with ai = ai+1 for i ≤ n1, an1 6= an1+1, and again ai = ai+1 for n1 + 1 ≤ i ≤ n1 + n2. Then

t2 · x2 = x2, but t2 is not in the center of G, so x is not distinguished. The lemma follows:

Lemma 1.9.2. x ∈ gln is distinguished if and only if x has partition π = [n].

1.10 A key technical result

Suppose that G is a general linear, symplectic or orthogonal group, and X is the Lie algebra. By

conjugating if necessary, we may put a cocharacter λ in any standard form we like – that is we

can make λ evaluate in the standard diagonal torus, and we can ensure that the powers in λ are

decreasing in size as we go down the diagonal. This means that the parabolic subgroup Pλ will be

of standard upper block triangular form. Furthermore, if x is a nilpotent element such that the

limit exists, we have that x is in the Lie algebra of the parabolic subgroup Pλ. Let y = limλ x,

then since λ fixes y, we have that y is in the Lie algebra of the Levi subgroup Lλ (which is the

block diagonal subgroup).

If we take any g ∈ Lλ and replace x with g ·x, replace y by g ·y and λ by g ·λ, then if limλ x = y,

it follows that limg·λ g · x = g · y, by Lemma 1.7.2. By this conjugation we may further assume

that y is in standard form for the Levi subgroup Lλ. But conjugating λ by an element from Lλ

doesn’t change λ, which means that we can put y in standard form for the Levi subgroup without

changing λ.

Hence we have:

Lemma 1.10.1. When considering limits y = limλ x in the general linear, symplectic or orthogonal

Lie algbras, we may assume that λ is diagonal, y is in a standard form, and x is in a corresponding

upper block triangular form.

1.11 The symplectic and the orthogonal groups

When we deal with symplectic and orthogonal groups, we make the extra assumption that char(κ) 6=
2. This is because the theory of bilinear forms in characteristic 2 deviates quite significantly from

that in other characteristics. Let V be a finite dimensional vector space over κ and let φ : V ×V → κ

be a bilinear form that is non-degenerate (so for all v ∈ V , there is a w ∈ V such that φ(v, w) 6= 0).

Assume φ is either alternating or symmetric, in other words, there is an ε = {±1} with

φ(v, w) = εφ(w, v) for v, w ∈ V.

If φ is symmetric, then ε = 1 and if φ is alternating, then ε = −1. Set

G = {g ∈ GL(V ) | φ(g(v), g(w)) = φ(v, w) for all v, w ∈ V }.

This is an algebraic subgroup of GL(V ), called the orthogonal group O(V, φ) if ε = 1 (so φ is

symmetric), and the symplectic group Sp(V, φ) if φ = −1 (φ is alternating). In this thesis, we will

mostly be working with matrix forms of these groups, which amounts to choosing a suitable basis

of the vector space V. Since all bilinear forms are conjugate, our work is independent of the choice

of φ, so the theorems we use and prove for the symplectic and orthogonal groups and algebras hold

for any bilinear form φ and basis B.
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If B = {e1, . . . , en} is a basis and the bilinear form φ is alternating, then the matrix of φ with

respect to this basis is of the form ΩB = (φ(ei, ej)). Let v, w ∈ V , then there are column vectors:

v =


a1
...

an

 , w =


b1
...

bn

 ,

and with respect to the basis B :

v = a1e1 + · · ·+ anen,

w = b1e1 + · · ·+ bnen.

Then φ(v, w) = vTΩBw. We want to choose a suitable basis so that ΩB has an nice structure. Pick

a v ∈ V , then find a w ∈ V , with φ(v, w) 6= 0. Note that w 6= cv for any c ∈ κ because φ(v, v) = 0.

Suppose φ(v, w) = a, then if w′ = 1
aw is substituted, then φ(v, w′) = 1 and φ(w′, v) = −1. Next,

let e1 = v, and f1 = w′, and consider:

〈e1, f1〉⊥ = {v ∈ V | φ(e1, v) = φ(f1, v) = 0}.

There are two observations: dim(〈e1, f1〉⊥) = dimV − 2 and V = 〈e1, f1〉 ⊕ 〈e1, f1〉⊥. By taking

W = 〈e1, f1〉⊥, we get a pair e2, f2 such that φ(e2, f2) = 1 = −φ(e2, f2), and by iteration, we

obtain a basis for V :

B = {e1, . . . , er, fr, . . . , f1}, (1.4)

so dim(V ) = 2r, an even dimension for alternating φ. With respect to this basis, the form has

matrix:

ΩS =



1

. .
.

1

−1

. .
.

−1


.

So

Sp(V, φ) ∼= Sp2n(κ) = {g ∈ GL2n(κ) | gTΩSg = ΩS}.

Next, if φ is symmetric, the process of determining a matrix ΩO, with respect to B is the same,

but as φ(v, w) = φ(w, v), we can have that φ(v, v) = 1. So dim(V ) = n can be odd or even:

B = {e1, . . . , er, v, fr, . . . , f1} if dim(V ) is odd,

B = {e1, . . . , er, fr, . . . , f1} if dim(V ) is even.

In both cases:

ΩO =


1

. .
.

1

 ,

then

O(V, φ) ∼= On(κ) = {g ∈ GLn(κ) | gTΩOg = ΩO}.
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Next, we can determine their Lie algebras, as by [6, Chapter 9]. Given Ω as above, there is an

isomorphism

φ : GLn → GLn,

given by g 7→ Ω−1(gT )−1Ω.

The subgroup G (orthogonal or symplectic) is defined by φ(g) = g. If we take the differential of

this map at the identity, we get an isomorphism of the Lie Algebra. First, we decompose φ as a

sequence of maps:

g 7→ g−1 7→ (gT )−1 7→ Ω−1(gT )Ω,

then when differentiated, we get the following map on the Lie Algebra:

x 7→ −x 7→ −xT 7→ −Ω−1xTΩ,

so the Lie Algebra of G is the subalgebra of the fixed points of this map. Now we see that:

xT = −Ω−1xTΩ

if and only if:

xTΩ + Ωx = 0.

Hence the Lie algebras have the following condition:

sp2n = {x ∈ gl2n | xTΩS + ΩSx = 0},

on = {x ∈ gln | xTΩO + ΩOx = 0}.

To determine (1-)accessibility in the symplectic and orthogonal algebras, one first has to determine

which partitions label nilpotent orbits in sp2n and on, respectively. The following theorem, which

we take from [7, Section 1.6], provides the answer.

Theorem 1.11.1. Let π = [n
(r1)
1 , . . . , n

(rp)
p ] be a partition of dim(V ).

1. Assume φ is alternating (the symplectic algebra). Then there exists a nilpotent element in g

with this partition if and only if ri is even for all odd ni.

2. Assume φ is symmetric (the orthogonal algebra). Then there exists a nilpotent element in g

with this partition if and only if ri is even for all even ni.

Since all matrices in an orbit are conjugate, we can determine a standard form for nilpotent

symplectic and orthogonal matrices, which we can use in this thesis to determine examples of

accessibility between orbits (see Chapters 3 and 4). By conjugating, we can always assume that the

cocharacter is diagonal, and that y = limλ x is in standard form, so when we check the accessibility

relation of x and y, most work will be in checking the orbit of x. In the following subsections, we

will determine the standard forms of the symplectic and orthogonal nilpotent matrices, so we can

prove Theorem 1.11.1, and determine when a nilpotent matrix is distinguished. From now on, we

fix the standard bases and bilinear forms as described in these sections.
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1.11.1 The symplectic algebras

In this section we will determine the standard forms of symplectic elements, and by doing so, we

will prove the first part of theorem 1.11.1. First, recall the notation of Jordan forms: let x = J2n

be a Jordan matrix form of size 2n× 2n, so:

x = J2n =



0 1

0
. . .

. . .
. . .

0 1

0


.

We can also denote this as a diagonal Jordan block matrix, with an extra 1-entry in position

(n, n+ 1), which is in the upper right block of x. For notation purposes, we will use a shorthand

notation of the subscript in the matrix, and then indicate the location. So

x =



Jn

1(a)

Jn


,

with (a) = (n, n+ 1). We will use this notation of block matrices often, as most upper right blocks

have zeroes almost everywhere.

To explicitly determine the standard form of a symplectic matrix x with partition π, we start

with a partition of one part, then we add new parts and determine the requirements for the bigger

partition to be symplectic. First, let x1 have partition π1 = [2n], then if we let x1 be of the strictly

upper triangular form:

x1 =



Jn

1(a)

−Jn


,

with (a) = (n, n + 1). Then x1 is symplectic as xT1 ΩS + ΩSx1 = 0, and we call this the standard

form of x1. For what follows it will be useful to describe the action of a nilpotent matrix on a basis

by writing down a vector sequence, which helps read off the corresponding parts in the partition

for the matrix, as well as other useful information. We denote the result of successively applying

the matrix to vectors by joining the vectors with arrows. So in this example the matrix x1 induces

the following vector chain:

f1 → −f2 → · · · → (−1)n−1fn → (−1)nen → · · · → (−1)n−1e1 → 0.

And the vectors of the [2n] part form pairs ei, fi such that φ(ei, fi) = −1, so x1 is symplectic.

Next, let x2 have partition π2 = [2n, 2m], then x2 has to induce the chains:
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f1 → −f2 → · · · → (−1)m−1fm →(−1)mem → · · · → (−1)m−1e1 → 0,

h1 → −h2 → · · · → (−1)n−1hn →(−1)ngn → · · · → (−1)n−1g1 → 0,

with vector pairings φ(ei, fi) = −1 and φ(gi, hi) = −1 such that both parts are symplectic. If we

take:

h1 = fm+1, . . . ,hn = fm+n,

g1 = em+1, . . . ,gn = em+n.

Then we obtain the required pairings, and x2 is of the form:

x2 =



Jm

1(b)

Jn

1(a)

−Jn

−Jm



=



Jm

1(b)

x1

−Jm


,

with (a) = (m+n,m+n+1) and (b) = (m,m+2n+1). As the partition π2 = [2n, 2m] contains the

partition of x1, we denote the partition of x2 with a direct sum: π2 = π1⊕ [2m]. By induction, any

matrix xp with partition πp = [2n1, . . . , 2np] = πp−1⊕ [2np], of p distinct even parts, is symplectic

in the following form:

xp =



Jnp

1(a)

xp−1

−Jnp


,

with (a) = (np, np +
∑p−1
i=1 (2ni) + 1). We call this the standard form of xp. Next, suppose that xp

has a partition of p distinct parts, and xp+1 has a partition with a repeated part:

πp ⊕ [n
(2)
p+1].

Then xp+1 induces the vector chains that xp induces, and in addition it induces the vector chains:
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h1 → −h2 → . . .→ (−1)np+1−1hnp+1
→ 0,

gnp+1 → gnp+1−1 → . . .→ g1 → 0,

With pairings gi, hi such that φ(gi, hi) = −1, hence the two [np+1] parts are a symplectic pair;

observe that np+1 can be any positive integer. Then xp+1 is of the form:

xp+1 =



Jnp+1

xp

−Jnp+1


.

By induction, xp+q with partition πp+q = πp⊕πq = [2n1, . . . , 2np]⊕ [n
(2)
p+1, . . . , n

(2)
p+q] is of the form:

xp+q =



Jnp+q

. . .

Jnp+1

xp

−Jnp+1

. . .

−Jnp+q


. (1.5)

We call this the standard form of xp+q. We can now show that a nilpotent element x with a

partition π does appear in the symplectic Lie algebra, if π has the form given in Theorem 1.11.1.

For such a partition we can denote any odd part [. . . , 2n+ 12r, . . .] occurring 2r times, as pairs of

size 2n + 1, occurring r times: [. . . , 2n + 12, . . . 2n + 12, . . .]. Hence x appears in the symplectic

algebra.

We now need to show that every nilpotent element in the symplectic Lie algebra has a partition

of the given form. We begin by noting that since all alternating bilinear forms are conjugate, we

are free to change our basis if it helps the proof.

Now, we will can prove the following lemma:

Lemma 1.11.1. Let x ∈ sp2n have an arbitrary partition π = [p1, . . . , p3]. Then any odd parts in

π pair up.

The calculations in this proof are standard, but it is still worth to work them out because it

shows how the pairings of odd parts occur.

Proof. Let x ∈ sp2n with partition π = [p1, . . . , pr]. Then for each part pi, we have a vector

sequence induced by x:

e→ xe→ · · · → xpi−1e.

We may take the vectors in this chain to be basis vectors, so we obtain a decomposition of the

space V = M1 ⊕ · · · ⊕Mr, where each Mi is spanned by the vector chain of the ith part in the
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partition. We have a non-degenerate form φ on the space V , and we can take the complement of

each Mi with respect to the form. Then we have the following spaces:

M⊥i := {v ∈ V | φ(v, w) = 0 for all w ∈Mi}.

Since φ is non-degenerate, we have that dimMi + dimM⊥i = dimV , and since Mi is stable under

x, so is M⊥i . We start by considering M1, which we may assume is the largest part of the partition

π. Since Mi and M⊥i are x-stable, so is Mi ∩M⊥i . There are now two possibilities.

1. M1∩M⊥1 = {0}, this means the restriction of the form to the space M1 is also non-degenerate.

So M1 is a space carrying a non-degenerate symplectic form, hence it must be of even di-

mension, and the corresponding part p1 is even.

2. M1 ∩M⊥1 is non-trivial. Then there is a nonzero vector z ∈ M1 ∩M⊥1 . The basis for M1

is {e, xe, . . . , xp1−1}, as above. We can then write z as z =
∑p1−1
j=1 ajx

je, with at least one

nonzero aj . The intersection M1 ∩M⊥1 is x-stable, so if we let x act on z enough times,

we obtain a vector axp1−1, with a 6= 0, so we conclude that xp1−1 ∈ M1 ∩M⊥1 . As x is

symplectic, we can now find a vector e′ such that φ(xp1−1e, e′) = −1, and we can let M ′1 be

spanned by {e′, . . . , xp1−1e′}. By the choice of φ, we have that φ(xp1−i−1e, xie′) = −1. In

particular, xp1−1 is nonzero, and all xie′ are independent. Hence dimM ′1 ≥ 1, and since p1 is

the largest block size, the dimension of M ′1 is exactly p1. Since we have φ(xp1−i−1e, xie′) = 1

for each i, the restriction of φ to the direct sum M1 ⊕M ′1 is non-degenerate.

Writing V = M1 ⊕M⊥1 in the first case or V = (M1 ⊕M ′1)⊕ (M1 ⊕M ′1)⊥ in the second case,

we can reduce dimV by an even number by going to the perpendicular space in either case, so we

can break V into pieces up by induction such that φ is non-degenerate on a piece (case 1) or pair

of pieces (case 2). We have seen that in case 1, the single piece cannot be odd, so all odd parts

must pair up in pieces Mi and M ′i , hence odd parts in sp2n have even multiplicity.

We now determine the maximal tori and center of Sp2n(κ). We have chosen the matrix ΩS so

that there is a diagonal maximal torus in each case, with restriction gTΩSg = ΩS. Then a diagonal

matrix g = diag(g1, g2, . . . , g2n) must satisfy the following property for its entries:

xi = x−12n+1−i ∀i ≤ 2n. (1.6)

The center of GLn is aI, with a ∈ κ∗, so the extra restriction in Sp2n shows that Z(Sp2n) = ±I.

With this information we can now determine which nilpotent symplectic elements are distinguished.

Let x ∈ sp2n and recall that it is distinguished if the only tori in CSp2n(x) are central. So x is

distinguished if there is no non-trivial torus contained in the stabilizer. In standard form, there

are two types of matrices:

1. Matrix x has distinct Jordan blocks of even size and has a partition π = [2n1, . . . , 2np].

Without loss, we may assume that of generality π = [2n, 2m].

2. Matrix x has at least one repeated Jordan block, and has partition π = [2n1, . . . , 2np, n
(2)
p+1, . . . , n

(2)
p+q].

Without loss of generality, we may assume that π = [2n,m(2)].

A matrix x with only distinct Jordan blocks is of the form:
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x =



Jm

1(b)

Jn

1(a)

−Jn

−Jm



,

with (a) = (m+ n,m+ n+ 1) and (b) = (m,m+ 2n+ 1). Next, let g ∈ T ⊂ Sp2n, so

g = diag(g1, . . . , gm, gm+1, . . . , gm+n, g
−1
m+n . . . , g

−1
m+1, g

−1
m , g−11 ),

and not that for gxg−1 = x, we need to preserve all Jordan blocks, so we require gi = g−1i+1 for

1 ≤ i ≤ m − 1 and for m + 1 ≤ i ≤ m + n. We also need to preserve the entries 1(a) (so

gm+n = g−1m+n = 1) and 1(b) (so gm = g−1m = 1). This means we require all gi = ±1, hence

g = ±I2m+2n. We conclude that x is distinguished.

Next, let x have a repeated part, so it is of the form:

x =



Jm

Jn

1(a)

−Jn

−Jm



,

with (a) = (m+ n,m+ n+ 1). We again want gxg−1 = x, so all Jordan blocks need to preserved

(we require gi = g−1i+1 for 1 ≤ i ≤ m − 1 and m + 1 ≤ i ≤ m + n), and the 1(a) entry needs to be

preserved (so gm+n = g−1m+n), but there are no other entries, so gm does not have to equal 1. Then

g can be of the form g = diag(tIm, I2n, t
−1Im) 6= I2m+2n, for t ∈ κ∗. So x is not distinguished. We

conclude with the following lemma:

Lemma 1.11.2. Let x ∈ sp2n, then x is distinguished if and only if its partition π has distinct

even parts (and no odd parts).

1.11.2 The orthogonal algebras

Similar to the process in the symplectic algebra, we will determine the standard Jordan normal

form of a nilpotent element in on. Starting with a partition of one part, let x1 have partition

π1 = [n], then x1 is of the form:
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x1 =



0 1

. . .
. . .

. . . 1

. . . −1

. . .
. . .

. . . −1

0


.

x1 satisfies the orthogonal equation: xT1 ΩO + ΩOx1 = 0 and it induces the vector chain

f1 → −f2 · · · → (−1)n−1fn → (−1)n−1v → (−1)n−1en → · · · → (−1)n−1e1 → 0,

with orthogonal pairings: (ei, fi) = 1 for all i, and (v, v) = 1.

Next, let x2 have partition π2 = [2n+ 1, 2m+ 1]. Then x2 has to induce vector chains:

f1 → −f2 → · · · → (−1)m−1fm → (−1)m−1v → (−1)m−1em · · · → (−1)m−1e1 → 0.

h1 → −h2 → · · · → (−1)n−1hn → (−1)n−1w → (−1)n−1gn · · · → (−1)n−1e1 → 0.

with orthogonal vector pairings φ(ei, fi) = 1, φ(gi, hi) = 1, and φ(v, v) = φ(w,w) = 1, while

φ(v, w) = 0. If we take

h1 = fm+1, . . . , hn = fm+n,

g1 = em+1, . . . , gn = fm+n,

then by taking:

v =
1√
2

(em+n+1 + fm+n+1),

w =
i√
2

(−em+n+1 + fm+n+1),

we get φ(v, v) = φ(w,w) = 1 and φ(v, w) = 0, as required. Here, as usual, we let i denote a square

root of −1 in κ. Then x2 is of the form:
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x2 =



Jm
1√
2 (a)

1√
2 (b)

Jn
i√
2 (c)

− i√
2 (d)

i√
2 (e)

− 1√
2 (f)

− i√
2 (g)

− 1√
2 (h)

−Jn

−Jm



, (1.7)

with
(a) = (m,m+ n+ 1) (b) = (m,m+ n+ 2)

(c) = (m+ n,m+ n+ 1) (d) = (m+ n,m+ n+ 2)

(e) = (m+ n+ 1,m+ n+ 3) (f) = (m+ n+ 1,m+ 2n+ 3)

(g) = (m+ n+ 2,m+ n+ 3) (h) = (m+ n+ 2,m+ 2n+ 3)

Note that the coefficients of v and w here involve square roots of 2 and −1 which are not always

defined if κ is not closed. So this process may fail if we are not working over an algebraically closed

field (e.g., if we work over R instead of C), Hence it can occur that nilpotent elements of partition

[2n+ 1, 2m+ 1] in on over κ cannot always be put into this form if κ is not algebraically closed.

By induction, let xp have partition πp = [2n1 + 1, . . . , 2np + 1], of all distinct parts. Then xp

is of the form:

xp =



Jnp

1√
2 (a)

1√
2 (b)

Jnp−1
i√
2 (c)

− i√
2 (d)

i√
2 (e)

1√
2 (f)

xp−2

− i√
2 (g)

1√
2 (h)

−Jnp−1

−Jnp



,
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with
(a) = (np−1 + 1)

(b) = (np, np + np−1 +
∑p−2
i=1 (2ni + 1) + 2)

(c) = (np + np−1, np + np−1 + 1)

(d) = (np + np−1, np + np−1 +
∑p−2
i=1 (2ni + 1) + 2)

(e) = (np + np−1 + 1, np + np−1 +
∑p−2
i=1 (2ni + 1) + 3)

(f) = (np + np−1 + 1, np +
∑p−2
i=1 (2ni + 1) + 2np−1 + 3)

(g) = (np + np−1 +
∑p−2
i=1 (2ni + 1) + 2, np + np−1 +

∑p−2
i=1 (2ni + 1) + 3)

(h) = (np + np−1 +
∑p−2
i=1 (2ni + 1) + 2, np +

∑p−2
i=1 (2ni + 1) + 2np−1 + 3)

Then xp induces the vector chains that xp−2 induces, in addition to the chains:

f1 → −f2 → · · · → (−1)np−1fnp
→ (−1)np−1vp

→ (−1)np−1enp
→ · · · → (−1)np−1e1 → 0,

fnp−1+1 → −fnp−1+2 → · · · → (−1)np−1−1fnp+np−1 → (−1)np−1−1vp−1

→ (−1)np−1−1enp+np−1
→ · · · → (−1)np−1−1e1 → 0.

Where:

vp =
1√
2

(fnp+np−1+1 + enp+np−1+1),

vp−1 =
i√
2

(−fnp+np−1+1 + enp+np−1+1).

Then we get φ(vp, vp) = φ(vp−1, vp−1) = 1, while φ(vp, vp−1) = 0, we get the standard orthogonal

pairings for the ei and fi, with i < np + np−1 + 1 and i 6= np. Next, let xp+1 have partition

πp+1 = [2n1 + 1, . . . , 2np + 1, n2p+1], then xp+1 induces the vector chains of xp, in addition to the

chains:

f1 → −f2 → · · · → fnp+1 → 0,

enp+1
→ enp+1−1 → · · · → e1 → 0.

With vector pairings φ(ei, fi) = 1 for all i < np+1. Then xp+1 is of the form:

xp+1 =



Jnp+1

xp

−Jnp+1


.

By induction, the standard form of xp+q with partition πp+q = [2n1+1, . . . , 2np+1]⊕[n2p+1, . . . , n
2
p+q]

is as follows:
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xp+q =



Jnp+q

. . .

Jnp+1

xp

−Jnp+1

. . .

−Jnp+q


.

Now that we have determined what a standard Jordan form for orthogonal nilpotent matrices, we

will prove part 2 of Theorem 1.11.1:

Theorem. Assume φ is symmetric (so we consider elements in the orthogonal algebra). Then

there exists a nilpotent element in g with a partition [nr11 , . . . , n
rp
p ] if and only if ri is even for all

even ni.

First, it is worth noting that a basis of even dimension 2n can be orthogonal, as for any pair

ei and fi, we get φ(ei, fi) = 1 for all i ≤ n. We will prove a matrix cannot be orthogonal if it

contains an even part an odd number of times.

Proof. First, let x have partition πr = [2nr], then x is of the form:

x =



Jnr

1(a)

−Jnr


,

with (a) = (nr + 1, nr + 1). Then we calculate that xTΩO + ΩO 6= 0 (it has an entry 2 in position

(nr + 1, nr + 1)), so x is not orthogonal. We conclude that a partition consisting of a single

even part cannot occur in o2n. Next, take an arbitrary partition πp+q+r = [2n1 + 1, . . . , 2np +

1, n
(2)
p+1, . . . , n

(2)
p+q, 2n

(
r2k + 1)]. First, note that we can rewrite [2n

(2k+1)
r ] as [2n

(2k)
r ]⊕ [2nr]. Then

a matrix with this partition has Jordan normal form:

x = J2n1+1 ⊕ · · · ⊕ J2np+1 ⊕ J (2)
np+1

⊕ · · · J (2)
np+q

⊕ J (2k)
2nr
⊕ J2nr

.

Let m be the size of matrix x. We can describe x as x̃ ⊕ J2nr , with x̃ = J2n1+1 ⊕ · · · ⊕ J2np+1 ⊕
J
(2)
np+1 ⊕ · · · ⊕ J

(2)
np+q . Then:

x =



Jnr

1(a)

x̃

−Jnr


,

with (a) = (r,m + 1 − r). Then we can calculate that the entry (m + 1 − r,m + 1 − r) of
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xTΩO + ΩOx 6= 0, so x is not orthogonal. The entry (j, j) in xTΩO + ΩOx is calculated as follows:

(xTΩO + ΩOx)(j,j) =

m∑
i=1

(xT )(j,i)ΩO(i,j) + ΩO(j,i)x(i,j)

=

m∑
i=1

x(i,j)ΩO(i,j) + ΩO(j,i)x(i,j).

In our case, j = (m + 1 − r), so we get (xTΩO + ΩOx)(j,j) =
∑m
i=1 x(i,m+1−r)ΩO(i,m+1−r) +

ΩO(m+1−r,i)x(i,m+1−r). The matrix Ω has 1-entries on the anti-diagonal, and 0-entries everywhere

else, so ΩO(i,m+1−r) = 1 if and only if i + m + 1 − r = m + 1, so if and only if i = r. Otherwise

ΩO(i,m+1−r) = 0. Then:

(xTΩO + ΩOx)(m+1−r,m+1−r) = x(r,m+1−r)ΩO(r,m+1−r) + ΩO(m+1−r,r)x(r,m+1−r)

= 2x(r,m+1−r)

= 2.

So xTΩO + ΩOx 6= 0, hence x is not orthogonal. We conclude that a matrix cannot be orthogonal

if an even part occurs an odd number of times.

Finally, we determine when an orthogonal partition is distinguished. As we have chosen ΩO so

that there is a diagonal maximal torus in each case, again with restriction gTΩOg = ΩO (restricting

from GLn). Hence a diagonal matrix g = diag(g1, g2, . . . , gn) must satisfy the equation:

xi = x−1n−i for all i ≤ n,

similar to Equation 1.6 for the symplectic algebra. Then it is immediate that Z(On) = ±I. Now

we let x ∈ on, and recall that it is distinguished if each torus in StabOn
= {g ·x = x} is contained in

Z(On). So x is distinguished if only ±I are contained in the stabilizer. The two types of matrices

in standard form are:

1. Matrix x has distinct Jordan blocks of even size and has a partition π = [2n1+1, . . . , 2np+1].

Without loss of generality, we may assume that π = [2n+ 1, 2m+ 1].

2. Matrix x has at least one repeated Jordan block, and has partition π = [2n1, . . . , 2np +

1, n
(2)
p+1, . . . , n

(2)
p+q]. Without loss of generality, we may assume that π = [2n+ 1,m(2)].

Recall the standard form of a matrix with partition π = [2n + 1, 2m + 1] from Equation 1.7,

then it is clear that only ±I stabilize x2, so x2 is distinguished. By induction, any matrix with

only distinct odd parts is distinguished. Conversely, a matrix with partition π = [2n+ 1,m(2)] can

be stabilized with a matrix of the form:

g = diag(tIm, I2n+1, t
−1Im), t ∈ κ∗,

so a matrix with partition [2n+ 1,m(2)] is not distinguished. Hence the lemma follows:

Lemma 1.11.3. Let x ∈ on, then x is distinguished if and only if its partition π has distinct odd

parts (and no even parts).

1.12 Symplectic and orthogonal orbits

In this section, we finish the description of the nilpotent orbits for symplectic and orthogonal

groups by showing that the orbits are still labelled by partitions. Let G = Sp2n or G = On, and
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we look at the orbits of elements x in g, where g is the symplectic or orthogonal algebra. The

following theorem from [7, Section 1.4], helps out in the classification of nilpotent G−orbits in g:

Theorem 1.12.1. Two elements in g belong to the same G−orbit if and only if they belong to

the same GL(V )-orbit.

So if x, y are symplectic (the same will hold for orthogonal elements) and are in the same

Sp2n-orbit, then they are in the same GL2n-orbit, so for x and y we can find a g1 ∈ GL2n such

that y = g1xg
−1
1 , while g1 is not symplectic. Then by the reverse process, there exists a g ∈ Sp2n

such that y = gxg−1. The following process, which describes the proof of the theorem given in [7,

Section 1.4, 1.5], will be used below to find the explicit change of basis matrices in some of our

calculations.

First, we recall that:

Sp2n = {g ∈ GL2n | gTΩSg = ΩS}

= {g ∈ GL2n | Ω−1S gTΩS = g−1}.

With this in mind, we define for any g ∈ GL2n(κ) a new element g∗ = Ω−1S gTΩS. Then g is in the

symplectic group if and only if g∗ = g−1. Then as

sp2n = {x ∈ gl2n | xTΩS + ΩSx = 0}

= {x ∈ gl2n | Ω−1S xTΩS = −x},

we can see that for an arbitrary matrix x, it is in the symplectic algebra if and only if x∗ = −x.

As x and y belong to the same orbit in GL2n, we have that y = g1xg
−1
1 for some g1 ∈ GL2n(κ).

Set g∗1 = Ω−1S gT1 ΩS, then:

y∗ = (g1xg
−1
1 )∗

= Ω−1S (g1xg
−1
1 )TΩS

= Ω−1S (g−11 )TxT gT1 ΩS

= Ω−1S (g−11 )TΩSΩ−1S xTΩSΩ−1S gT1 ΩS

= (g∗1)−1x∗g∗1

= −(g∗1)−1xg∗1 = −y.

So g1xg
−1
1 = (g∗1)−1xg∗1 , or g∗1g1x = xg∗1g1. We define g2 = g∗1g1, then g2 commutes with x. Next,

we take the following Lemma (see [7, section 1.5]):

Lemma. [7, Section 1.5] Let g ∈ GL(V ). There exists a polynomial f(t) ∈ κ[t] such that f(g)2 = g.

We will denote h = f(g)2, and apply the Lemma to g2. Then:

f(t) =

r∑
i=0

ait
i,

such that h =

r∑
i=0

aig
r
2.

We choose h because of three reasons:

1. Since h2 = g2 ∈ GL(V ), and as det(h2) = det(g2) 6= 0, it follows that det(h) 6= 0, hence

h ∈ GL(V ).
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2. Because xg2 = g2x, it follows that:

xh = x(a0I + a1g2 + . . .+ arg
r)

= (a0I + a1g2 + . . .+ arg
r)x

= hx.

So h commutes with x.

3.

h∗ = (a0I + . . .+ arg
r
2)∗

= a0I
∗ + . . .+ ar(g

∗
2)r

= h

Then if we take g = g1h
−1, we get

g∗ = (g1h
−1)∗ = (h∗)−1g∗1

= h−1g∗1g1g
−1
1

= h−1g2g
−1
1

= h−1h2g−11

= hg−11 = g−1.

So as g∗ = g−1, we conclude that g is symplectic. Next,

gXg−1 = g1h
−1Xhg−11

= g1h
−1hXg−11

= g1Xg
−1
1

= y.

Thus we have found g ∈ Sp2n(κ) such that gxg−1 = y, as required. We will be using this process

in two examples in the symplectic (Section 3.1.1) and orthogonal (Section 4.1.1) results.
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Chapter 2

Results in the general linear

algebra

In this chapter, the accessibility between orbits of nilpotent elements in the general linear algebra

will be discussed. We start with an illustrative example, before moving on to the general case. We

first show how to move between two orbits where the partitions differ by a single move between two

parts. After this, we show how to combine these moves to prove accessibility between arbitrary

orbits.

2.1 An example

We start with an example with matrices in gl4, showing that the nilpotent orbit of partition [2, 2]

is one-accessible from the orbit of partition [3, 1]. This example illustrates some of the important

ideas which are needed in the general case. In particular, we see that in order to show accessibility,

it is necessary to first conjugate one of the elements away from its standard form. Let x′ ∈ gl4 be

x′ =


0 1 1 0

0 0 0 0

0 0 0 1

0 0 0 0

 ,

then x′ is in the nilpotent orbit of the partition [3, 1], which we will denote as x′ ∈ O([3, 1]). This

will be shown in two ways. For a direct argument, one can check that (x′)2 6= 0, but (x′)3 = 0,

so the Jordan normal form has a block of size 3, and the other block can only be of size 1. So

x′ ∈ O([3, 1]). For the general case, it will be more useful to think in terms of basis elements. Let

the standard basis be {e1, e2, e3, e4}. Then the kernel of x′ is spanned by e1 and e2−e3. Moreover,

x′e4 = e3 and x′e3 = e1, so if we change basis to {e1, e3, e4, e2 − e3}, we get that

x′ ∼


0 1 0 0

0 0 1 0

0 0 0 0

0 0 0 0

 = x.

Furthermore, the basis change corresponds to conjugating x with g ∈ GL4, with

35



g = (e1|e3|e4|e2 − e3) =


1 0 0 0

0 0 0 1

0 1 0 −1

0 0 1 0

 ,

so

x′ = g · x = gxg−1,

which finishes the proof. Next, define a cocharacter λ by λ(t) = diag(t, t, 1, 1) for t ∈ κ∗. Then

lim
t→0

λ(t) · x′ = lim
λ
x′ =


0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0

 ,

which is the standard form of matrices in the orbit O([2, 2]), so O([2, 2]) is 1-accessible from

O([3, 1]).

2.2 Matrices of any size

In this section, we will show that any matrix with a partition of the form π = [r, s] is 1-accessible

from a matrix with a partition of the form π2 = [r + k, s− k], for k ∈ Z≥0. Recall that we denote

matrices with their Jordan blocks, that is, if x is a Jordan matrix of size (n×n), then x = Jn, and

if it is a Jordan normal form of multiple Jordan blocks, we denote x = Jn1 ⊕ Jn2 ⊕ · · · ⊕ Jnp .

Next, suppose that x′ consists of two Jordan blocks on the diagonal (e.g two Jordan blocks of

size 3), and an upper right block with one nonzero entry (e.g. in the second row and the fourth

column). Then we denote x′ as follows, e.g:

x′ =



J3 t(a)

J3


=



0 1 0 0 0 0

0 0 1 t 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0


,

where the subscript at the nonzero entry in the upper right block, in this case (a) = (2, 4).

Theorem 2.2.1. Let π1 = [. . . , r + k, s − k, . . .] and π2 = [. . . , r, s, . . .] be two partitions, which

only differ in the positions of the entries shown, so π1 dominates π2. Then O(π2) is 1-accessible

from O(π1).

Proof. First, note that r ≥ s. If k = 1, we show that the orbit O([r, s]), is one-accessible from the

orbit O([r + 1, s − 1]) (recall that [r + 1, s − 1] dominates [r, s], see equation 1.3). Let n = r + s,

and let x ∈ O([r + 1, s− 1]) be the matrix in standard form, so:

x = Jr+1 ⊕ Js−1.
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Next, let

x′ =



1(a)

Js

Jr


,

with (a) = (1, s+ 1). Recall that we can describe the action of a nilpotent matrix by writing down

a vector sequence, which helps read off the corresponding parts in the partition of the matrix. We

compare vector sequences of x and x′, so we check how the actions of x and x′ compare, and that

they are in the same orbit. We want to check that x and x′ are in the orbit O([r + 1, s − 1]), so

there are two vector sequences to compare. The sequence of x and x′, of size s − 1 is as follows

(starting with the first vector of the sequence):

xer+s = er+s−1 x′(es − es+s−1) = es−1 − es+s−2,

xer+s−1 = er+s−2 x′(es−1 − es+s−2) = es−2 − es+s−3,
...

...

xer+2 = 0 x′(es−(s−2) − es+s−1−(s−2)) = 0.

Next, the sequence of size r + 1 is as follows:

xer+1 = er x′er+s = er+s−1,

xer = er−1 x′er+s−1 = er+s−2,

...
...

xe2 = e1 x′es+1 = e1,

xe1 = 0 x′e1 = 0.

This suggests using a base change as follows:

er+s 7→ es − es+s−1,

er+s−1 7→ es−1 − es+s−2,
...

er+2 7→ es−(s−2) − es+s−1−(s−2) = e2 − es+1.

er+1 7→ er+s,

er 7→ er+s−1,

...

e2 7→ es+1,

e1 7→ e1.

We describe the matrix g associated with this base change by its column vectors:

g = (e1, es+1, . . . , es+r, e2 − es+1, . . . , es − es+s−1)

And g · x = gxg−1 = x′, so x′ is in the orbit of x ∈ O([r + 1, s− 1]). Finally, let λ be defined by
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λ = diag(tIs, Ir), for t ∈ κ∗.

Then limλ x
′ ∈ O([r, s]), so O([r, s]) is 1-accessible from O([r + 1, s − 1]). Iterating this process

shows that O([r, s]) is accessible from O([r + k, s − k]). We now proceed with the proof of the

stronger result, that O([r, s]) is 1-accessible from O([r + k, s− k]). Let x ∈ O([r + k, s− k]) be in

the standard form, that is x = Jr+k ⊕ Js−k, and let

x′ =



Js 1(a)

Jr


,

with (a) = (k, s+ 1). Then if

λ = diag(tIs, Ir), for t ∈ κ∗

it follows that limλ ·x′ ∈ O([r, s]). Now we will prove that x and x′ are conjugate: as with the case

of x, x′ ∈ O([r+ 1, s−1]), we compare vector sequences. There will again be two vector sequences,

one of size s− k:

xer+s = er+s−1 x′(es − es+s−k) = es−1 − es+s−k−1,

xer+s−1 = er+s−2 x′(es−1 − es+s−k−1) = es−2 − es+s−k−2,
...

...

xer+k+1 = 0 x′(es−(s−k)+1) − es+s−k−(s−k)+1) = x′(ek+1 − es+1) = 0.

And a sequence of size r + k.

xer+k = er+k−1 x′er+s = er+s−1,

xer+k−1 = er−k−2 x′er+s−1 = er+s−2,

...
...

xek+1 = ek x′es+1 = ek,

xek = ek−1 x′ek = ek−1,

...
...

xe2 = e1 x′e2 = e1,

xe1 = 0 x′e1 = 0.

Then the base change is:
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er+s 7→ es − es+s−k,

er+s−1 7→ es−1 − es+s−k−1,
...

er+k+1 7→ ek+1 − es+1,

er+k 7→ er+s,

xer+k−1 7→ er+s−1,

...

ek+1 7→ es+1,

ek 7→ ek,

ek−1 7→ ek−1,

...

e1 7→ e1.

We describe the matrix g associated with this base change by writing down its column vectors:

g = (e1, . . . , ek, es+1, . . . , es+r, ek+1 − es+1, . . . , es − es+s−k) .

Then, it can be checked that g · x = x′, as intended. Finally, let

λ = diag(tIs, Ir),

so that limλ λ · x′ ∈ O([r, s]), finishing the proof.

With Theorem 2.2.1, we have shown that if x′ is of the form

x′ =



Js 1(a)

Jr


,

with (a) = (k, s+ 1), and k ≤ s, then x′ induces a vector sequence:

x : er+s 7→ er+s−1 7→ . . . 7→ es+1 7→ ek 7→ . . . 7→ e1 7→ 0.

So x ∈ O([r + k, r − k]). In this matrix, there are two Jordan blocks (of size Js and Jr, in

that order, with s ≤ r) on the diagonal, an there is a nonzero entry in the upper-right block. We

will now prove two lemmas that determine the orbit of x′ if it has multiple nonzero entries in an

arbitrary jth column, with j > s.

Lemma 2.2.1. Let x′ be of the form:
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x′ =



1(1,s+1)

Js
...

1(k,s+1)

Jr


.

such that it has two Jordan blocks of sizes s and r, with r ≥ s, and that multiple 1-entries in the

first s rows of the (s+ 1)th column. Then x′ is in the orbit of O([r+ k, s− k]), where k is the row

of the last nonzero entry in the (s+ 1)th column.

Proof. Suppose that x′ has two Jordan blocks, of size Js and Jr on the diagonal (s ≤ r), and two

1−entries, in positions (k, s+ 1) and (k + i, s+ 1). Then x′ induces a vector sequence:

x′ : er+s 7→ er+s+1 7→ . . . 7→ es+1 7→ ek+i + ek 7→ . . . ei + e1 7→ ei−1 + 0 7→ ei−2 7→ e1 7→ 0.

At step r, the entries 1(k,s+1) and 1(k+i,s+1) are picked. The entry 1(k,s+1) is killed off k steps later,

but the entry 1(k+i,s+1) is killed off k+ i steps later. So the vector sequence has a length r+ k+ i

and the sequence ek 7→ . . . 7→ e1 7→ 0 is entirely contained in it. So we conclude that the last

nonzero entry in the (s+1)th column determines the orbit of x′, hence x′ ∈ O([r+k+ i, s−k− i]).

Lemma 2.2.2. Let x′1 be of the form:

x′1 =



Js a(k,s+1)

Jr


,

such that it has two Jordan blocks of sizes s and r, with r ≥ s, and that it has one nonzero entry

in the top right block, in position (k, s+ 1), and let x′2 be of the form

x′2 =



v(1,j)

Js
...

v(s,j)

Jr


,

such that it has Jordan blocks of sizes s and r, with r ≥ s, and nonzero entries v(1,j), . . . , v(s,j), in

the first s rows of the jth column. Let v(t,j), with t ≤ s be the last nonzero entry in the first s rows

of the jth column. Then x′1 and x′2 are in the same orbit if (k, s+ 1) = (t−m, j −m) for some m.

Proof. First, we note that x′1 and x′2 are strictly upper triangular, and that x′1 has one nonzero

entry in the s+ 1th column. If x′1 has more nonzero entries in this column, we apply lemma 2.2.1

and look at the last nonzero entry. Next, in matrix x′2, we look closely at the first s rows of the

jth column of x′2, which we will denote by a vector v. Then v is of the form:

40



v =



v1,j
...

vt,j

0
...


.

v(t,j) is the last nonzero entry in the first s rows of the jth column. As j ≥ s + 1, there another

nonzero entry, in the Jr block, say in row i with i = j − 1.

Let u be the unipotent matrix with 1s down the diagonal and −vt in position (t, i), so u ∈
Ru(Pλ) and limλ u = 1 (see Section 1.7). Then:

u(ep) =

ep − vtet if p = i,

ep otherwise.
(2.1)

u−1(ep) =

ep + vtet if p = i,

ep otherwise.
(2.2)

Then

ux′2u
−1(ei) = ux′2(ei + vtet) = ux′2(ei) + u(vtet−1),

by the equations and the properties of x′2 (we know x′2 : ea → ea−1 for 2 ≤ a ≤ s, in particular

x′2(et) = et−1). Without having to detail the actions of x′2 for eb when b > s, note that it is upper

triangular, so ux′2(ei) = x′2(ei). Therefore conjugating x′2 with u adds vt in position (t− 1, j − 1):

ux′2u
−1(ei) = X(ei) + vtet−1,

and

ux′2u(ej) = ux(ej +

t∑
l=1

vlel) = u(ei − vtet +

t∑
l=1

vlel) = ei +

t−1∑
l=1

vlel,

so the jth column of ux′2u
−1 is the jth column of x′2 with the vt entry removed (the other entries

are left the same). Hence conjugating with u takes vt from position (t, j) and puts it in position

(t − 1, j − 1), i.e. it moves up its superdiagonal. By repeating the process of conjugating with

unipotent matrices, we get that for some m ∈ N:

um · · · · · u1 · x′2

has vt in position (t−m, j−m) = (k, s+ 1). With the same process of conjugating with unipotent

matrices, we can also take other all vs,j-entries (with s < t) out of the jth column, an add their

values to certain (l, s + 1) entries in the (s + 1)th column. Since s < t, we also have that l < k,

and we can apply Lemma 2.2.1 to see that so x′2 is in the same orbit as x′1 : O([r + k, s− k]).

We can now describe in detail what orbit a matrix x′ is in. Let:
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x′ =



x(1,1+s) x(1,2+s) · · · x(1,r+s)

Js x(2,1+s)
. . .

...
...

...

x(s,1+s) · · · · · · x(s,r+s)

Jr


,

and suppose that xi,j is the last nonzero entry in the first s rows of column j. Then x′ is in the

orbit O([r + k, s− k]), with the value of k denoted in the (i, j)-spot:

s+ 1 s+ 2 . . . 2s 2s+ 1 . . . r

1 1 0 . . . 0 0 . . . 0

2 2 1
...

...
...

...
. . .

...

s s s− 1 . . . 1 0 . . . 0

We note that block order does matter with the following corollary.

Lemma 2.2.3. Let y be of the form:

y′ =



Jr

y(r,r+s+1−k)

Js


for some k ≤ s. Then y ∈ O([r + k, s− k]).

Proof. The matrix y′ has two Jordan blocks of size r and s on the diagonal, and a nonzero entry

in the rth row of the upper right block, so it starts a vector sequence of length [r+ k] by acting on

er+s :

y′ : er+s 7→ er+s−1 7→ · · · 7→ er+s+1−k

7→ er+s−k + er 7→ · · · 7→ er+1 + er−(s−k)+1

7→ er−(s−k) 7→ · · · 7→ e1 7→ 0,

hence y′ ∈ O([r + k, s− k]).

Remark: Similar to the case of multiple nonzero values in the r + 1th column in x′, if there

are two nonzero entries in the rth row of y′, y′r,r+s+1−k1 and y′r,r+s+1−k2 with k1 > k2, then

y′ ∈ O([r + k1, s− k1]).

To determine the orbit when the y′ is in an arbitrary position, we adapt lemma 2.2.2.

Lemma 2.2.4. Let y′1 be of the form:
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y′1 =



Jr

y(r,r+s+1−k)

Js


,

and let y′2 be of the form

y′ =



Jr y(t,j)

Js


,

with t ≤ r, and j > r. Then y′2 is in O([r+ k, s− k]) if (t+m, j +m) = (r, r+ s+ 1− k) for some

m ∈ Z ≥ 0.

Proof. Again, denote by v the first r rows of column j, then vt = yt,j is the last nonzero entry of

v, and in column j there is exactly one nonzero entry yi,j with i > t (here i = j − 1). As before,

unipotent matrices can remove the entry in position (t, j) in exchange for gaining one in position

(t−1, j−1). Here the process is reversed: let u be a unipotent matrix which is the identity with vt

in position (t+ 1, j+ 1), then u−1 is the identity with −vt in the (t+ 1, j+ 1) position and uy′u−1

is y′, but with vt in position (t, j) replaced to position (t+ 1, j + 1). By repeating the process, we

get that:

u1 · u2 · · · · · um · y′

has vt in position (t + m, j + m) = (r, r + s + 1 − k) for some m. We conclude that y′ is in the

orbit of O([r + k, s− k]).

2.3 Multiple parts

In this section, we will determine when moves of multiple parts are possible using cocharacters. In

the dominance order, we can identify two moves:

1. Multiple parts give pieces to one part, e.g. [r1 + k1, r2 + k2, s− k1 − k2]→ [r1, r2, s].

2. Multiple parts take pieces from one part, e.g. [r + k1 + k2, s1 − k1, s2 − k2]→ [r, s1, s2].

Theorem 2.3.1. Let π1 = [. . . , r1+k1, . . . , rp+kp, s−
∑p
i=1 ki, . . .] and π2 = [. . . , r1, . . . , rp, s2, . . .].

Then O(π2) is 1-accessible from O(π1).

Proof. Since the general proof for this result is technically quite involved and might be difficult

to follow, we begin with the special case that p = 2. That is, we show that O([r1, r2, s]) is

one-accessible from O([r1 + k1, r2 + k2, s− k1 − k2]).

Let:

x = Jr1+k1 ⊕ Jr2+k2 ⊕ Js−k1−k2 ,
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and let

x′ =



1(a1)

Js 1(b1)

Jr1 −1(b2)

Jr2



,

with (a1) = (k1, s + 1), (b1) = (k1 + k2, s + r1 + 1), (b2) = (s + k2, s + r1 + 1). Then the vector

sequences are as follows, starting with the part of size r1 + k1:

xer1+k1 = er1+k1−1 x′er1+s = er1+s−1,

xer1+k1−1 = er1−k1−2 x′er1+s−1 = er1+s−2,

...
...

xek1+1 = ek1 x′es1+1 = ek1 ,

xek1 = ek1−1 x′ek1 = ek1−1,

...
...

xe2 = e1 x′e2 = e1,

xe1 = 0 x′e1 = 0.

Next, the part of size r2 + k2:

xer1+k1+r2+k2 = er1+k1+r2+k2−1 x′er1+r2+s = er1+r2+s−1,

xer1+r2+s−1 = er1+r2+s−2 x′er1+r2−s−1 = er1+r2+s−2,

...
...

xer1+k1+r2+1 = er1+k1+r2 x′er1+s+1 = ek1+k2 − es+k2 ,

xer1+k1+r2 = er1+k1+r2−1 x′(ek1+k2 − es+k2) = ek1+k2−1 − es+k2−1,
...

...

xer1+k1+1 = 0 x′(ek1+1 − es+1) = 0.
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Finally, the part of size s− k1 − k2:

xer1+r2+s = er1+r2+s−1 x′(es − es+k1 − es+r1+k2) = es−1 − es−k1−1 − es+r1+k2−1,
...

...

xer+1+k1+r2+k2+1 = 0 x′(es−s+k1+k2+1 − es+k1−s+k1+k2+1 − es+r1+k2−s+k1+k2+1)

= x′(ek1+k2+1 − e2k1+k2+1 − er1+k1+2k2+1) = 0.

So we have the following base change, for the r1 + k1 part:

e1 7→ e1,

e2 7→ e2,

...

ek1 7→ ek1 ,

ek1+1 7→ es+1,

...

er1+k1 7→ er1+s.

For the r2 + k2 part:

er1+k1+1 7→ ek1+1 − es+1,

er1+k1+2 7→ ek1+2 − es+2,

...

er1+k1+k2 7→ ek1+k2 − es+k2 ,

er1+k1+k2+1 7→ er1+s+1,

...

er+1+k+1+r2+k2 7→ er1+r2+s.

For the s− k1 − k2 part:

er+1+k1+r2+k2+1 7→ ek1+k2+1 − e2k1+k2+1 − er1+k1+2k2+1,

...

er1+r2+s 7→ es − es+k1 − es+r1+k2 .

So we have shown that x′ is in the orbit of x. With the appropriate λ it follows that limλ x = y

with y ∈ O([r1, r2, s]), and in the standard form. So O([r1, r2, s]) is 1-accessible from O([r1 +

k1, r2 + k2, s− k1 − k2]).

By induction, we can now prove that O([r1, r2, . . . , rp, s]) is 1-accessible from O([r1 + k1, r2 +

k2, . . . , rp + kp, s−
∑p
i=1 ki]).

Let

x = Jr1+k1 ⊕ Jr2+k2 ⊕ · · · ⊕ Jrp+kp ⊕ Js−∑p
i=1 ki

.
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And let

x′ =



1(a1)

Js 1(b1) 1(c1)

1(d1)

−1(b2)

Jr1 −1(c2)

−1(d2)

Jr2
...

−1(d3)

. . .
...

Jrp



,

where

(a1) = (k1, s+ 1) (d1) = ((
∑p
i=1 ki), s+ (

∑p−1
i=1 ri) + 1)

(b1) = (k1 + k2, s+ r1 + 1) (d2) = (s+ (
∑p
i=2 ki), s+ (

∑p−1
i=1 ri) + 1)

(b2) = (s+ k2, s+ r1 + 1) (d3) = (s+ r1 + (
∑p
i=3 ki), s+ (

∑p−1
i=1 ri) + 1)

(c1) = ((
∑3
i=1 ki), s+ (

∑2
i=1 ri) + 1)

(c2) = (s+ r1 + k3, s+ r1 + r2 + 1)

Then the base change is (blocks are separated by a ′|′):

{e1, . . . , ek1 , es+1, . . . , es+r1 |

ek1+1 − es+1, . . . , ek1+k2 − es+k2 , es+r1+1, . . . , es+r1+r2 |

ek1+k2+1 − es+k2+1 − es+r1+1, . . . , ek1+k2+k3 − es+k2+k3 − es+r1+k3 , es+r1+r2+1, . . . , es+r1+r2+r3 |
...

e(
∑p−1

i=1 ki)+1 − es+(
∑p−1

i=2 ki)+1 − . . .− es+(
∑m−1

i=1 ri)+(
∑p−1

i=m+1 ki)+1 − . . .− es+(
∑p−2

i=1 ri)+1, . . . ,

e(
∑p

i=1 ki)
− es+(

∑p
i=2 ki)

− . . .− es+(
∑m−1

i=1 ri)+(
∑p

i=m+1 ki)
− . . .− es+(

∑p−2
i=1 ri)+kp

,

es+(
∑p−1

i=1 ri)+1, . . . , es+(
∑p

i=1 ri)
|

e(
∑p

i=1 ki)+1 − es+(
∑p

i=2 ki)+1 − . . .− es+(
∑m−1

i=1 ri)+(
∑p

i=m+1 ki)+1 − . . .− es+(
∑p−1

i=1 ri)+1, . . . ,

es − es+(
∑p

i=2 ki)+s−(
∑p

i=1 ki)
− es+(

∑m−1
i=1 ri)+(

∑p
i=m+1 ki)+s−(

∑p
i=1 ki)

− . . .

. . .− es+(
∑p−1

i=1 ri)+s−(
∑p

i=1 ki)
}

(2.3)

And, as before the matrix g consists of exactly the above base change vectors, in that order. Then

g · x = x′. Next, let

λ = diag(tpIs, t
p−1Ir1 , . . . , Irp),

so that limλ ·x′ ∈ O([r1, r2, . . . , rp, s]), finishing the proof.

Theorem 2.3.2. Let π1 = [. . . , r+
∑q
i=1 ki, s1−k1, . . . , sq−kq, . . .] and let π2 = [. . . , r, s1, . . . , sq, . . .].

Then O(π2) is 1-accessible from O(π1).

46



Proof. Again, we first analyse the case q = 2, in order to illustrate the general case with a more

traceable one. Let π1 = [r + k1 + k2, s1 − k1, s2 − k2] and let π2 = [r, s1, s2]. Then

x = Jr+k1+k2 ⊕ Js1−k1 ⊕ Js2−k2 ,

and

x′ =



Js1 1(a)

Js2 1(b)

Jr


,

with (a) = (k1, s1 + 1) and (b) = (s1 + k2, s1 + s2 + 1). Again, we compare vector sequences, first

the block of size r + k1 + k2.

xer+k1+k2 = er+k1+k2−1 x′es1+s2+r = es1+s2+r−1

xer+k1+k2−1 = er+k1+k2−2 x′es1+s2+r−1 = es1+s2+r−2

...
...

xek1+k2+1 = ek1+k2 x′es1+s2+1 = es1+k2

xek1+k2 = ek1+k2−1 x′es1+k2 = es1+k2−1

...
...

xek1+1 = ek1 x′es1+1 = ek1

xek1 = ek1−1 x′ek1−1 = ek−2

...
...

xe1 = 0 x′e1 = 0.

Next, there is a block of size s2 − k2.

xer+s1+s2 = er+s1+s2−1 x′(es1+s2 − es1+s2+s2−k2) = es1+s2−1 − es1+s2+s2−k2−1,

xer+s1+s2−1 = er+s1+s2−2 x′(es1+s2−1 − es1+s2+s2−k2−1) = es1+s2−2 − es1+s2+s2−k2−2,
...

...

xer+s1+k2+1 = 0 x′(es1+s2−(s2−k2)+1 − es1+s2+s2−k2−(s2−k2)+1),

= x′(es1+k2+1 − es1+s2+1) = 0.

And finally there is a block of size s1 − k1.
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xer+s1 = er+s1−1 x′(es1 − es1+s1−k1) = es1−1 − es1+s1−k1−1
xer+s1−1 = er+s1−2 x′(es1−1 − es1+s1−k1−1) = es1−2 − es1+s1−k1−2

...
...

x = er+k1+1 = 0 x′(es1−(s1−k1)+1 − es1+s1−k1−(s1−k1)+1)

= x′(ek1+1 − es1+1).

Which gives the following base change for the r + k1 + k2 part:

er+k1+k2 7→ es1+s2+r,

...

ek1+k2+1 7→ es1+s2+1,

ek1+k2 7→ es1+k2 ,

...

ek1+1 7→ es1+1,

ek1 7→ es1 ,

...

e1 7→ e1.

And for the s2 − k2 part:

er+s1+s2 7→ es1+s2 − es1+s2+s2−k2 ,
...

er+s1+k2+1 7→ es1+k2+1 − es1+s2+1.

And for the s1 − k1 part:

er+s1 7→ es1 − es1+s1−k1 ,
...

er+k1+1 7→ ek1+1 − es1+1.

Then the base change is:

{e1, . . . , ek1 , es1+1, . . . , es1+k2 , es1+s2+1, . . . , es1+s2+r |

ek1+1 − es1+1, . . . , es1 − es1+s1−k1
es1+k2+1 − es1+s2−k1 , . . . , es1+s2 − es1+s2+s2−k2}.

Let g be the matrix with the vectors of the base change, in that order, then g · x = x′, and let:

λ = diag(t2Is1 , tIs2 , Ir).
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Finally

lim
λ
λ · x′ = Js1 ⊕ Js2 ⊕ Jr.

So O([r, s1, s2]) is 1-accessible from O([r + k1 + k2, s1 − k1, s2 − k2]).

Next, we can prove that O([r, s1, s2, . . . , sq]) is 1-accessible from O([r+
∑q
i=1, s1, . . . , s1]). First,

let

x = Jr+
∑q

i=1 ki
⊕ Js1−k1 ⊕ · · · ⊕ Jsq−kq ,

and let

x′ =



Js1 1(a)

Js2

. . .

Jsq 1(b)

Jr



,

with (a) = (k, s1 + 1) and (b) = (
∑q−1
i=1 si + k,

∑q
i=1 si + 1). Then the base change is:

{e1, . . . , ek1 , es1+1, . . . , es1+k2 , . . . , e(
∑q−1

i=1 si)+1, . . . , e(
∑q−1

i=1 si)+kq
, e(

∑q
i=1 +si)+1, . . . , e(

∑q
i=1 si)+r

|

ek1+1 − es1+1, . . . , es1 − es1+s1−k1 |

es1+k2+1 − es1+s2+1, . . . , es1+s2 − es1+s2+s2−k2 |

. . . ,

e∑q−1
i=1 (si+kq)+1 − e∑q−1

i=1 (si+sq)+1, . . . , e
∑q

i=1 si
− e(∑q

i=1 si)+sq−kq}

Let g be the matrix with the vectors of the base change, in that order, then g · x = x′, and let:

λ = diag(tqIs1 , t
q−1Is2 , . . . , tIsq , Ir).

Then limλ λ · x ∈ O[r, s1, s2, . . . s2], finishing the proof that O[r, s1, . . . sk] is one-accessible from

O[r +
∑q
i=1 ki, s1 − k1, . . . , sq − kq].

We have now shown that a move is valid if it involves moving pieces from one part, to any

number of smaller parts, or if it involves moving pieces from any number of larger parts to one

smaller part. Note that no larger part can receive a piece from a smaller part (see 1.8.1). Here we

will show that if a move involves a part receiving pieces from a larger part, and giving pieces to a

smaller part, we can instead denote it as either of the two moves described above.

Lemma 2.3.1. Let π1 = [r + k, s + l − k, t − l], with k > l, and let π2 = [r, s, t]. Then π2 is

1-accessible from π1.
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Proof. Denote k = l+ k′, then k− l = k′, so [r+ k, s+ l− k, t− l] = [r+ l+ k′, s− k′, t− l], which

is of the form [r + k1, s1 − k1, s2 − k2], so clearly [r, s, t] is 1-accessible from [r + k, s+ l− k, t− l].
Conversely, suppose there is a partition of the form [r+k, s+l−k, t−l] with k < l, and one wants

to show that [r, s, t] is 1-accessible. Denote k = l−l′, then [r+k, s+l−k, t−l] = [r+l−l′, s+l′, r−l],
which is of the form [r1 + k1, r2 + k2, s− k1 − k2].

Finally, if k = l, it immediately follows that [s+k− l] = [s], so the problem reduces to showing

[r, . . . , t] is 1-accessible from [r + k, . . . , t− k], as shown in Section 2.2.

2.4 Conclusion for gln

In this section we will use Theorems 2.3.1 and 2.3.2 to prove the following theorem:

Theorem 2.4.1. Let π1 and π2 be any two partitions such that π1 dominates π2. Then O(π2)

is one-accessible from O(π1). Hence, for GLn, accessibility and 1-accessibility coincide, and the

partial order on orbits given by accessibility is the same as the dominance order.

Proof. π1 dominates π2, so letting π1 = [a1, . . . , an], π2 = [b1, . . . , bm], we have
∑n
i=1 ai ≥

∑m
i=1 bi

for 1 ≤ i ≤ m (note also that n ≤ m, or equivalently, all an+1, . . . , am parts are of size zero).

We can rewrite π2 = [. . . , ri, . . . , sj , . . . , tl, . . .] and π1 = [. . . , ri +Pi, . . . , sj −Qj , . . . , tl, . . .], so

ri +Pi parts lose pieces, and sj −Qj parts gain pieces (tl parts are unchanged). There are a finite

number of ri + Pi parts, say p, and a finite number of sj −Qj parts, say q.

Then we can denote each ri + Pi as ri +
∑q
j=1 pi,j , where pi,j are the pieces transferred to all

sj −Qj , for 1 ≤ j ≤ q, and some pi,j may be zero. Hence we can describe the move π1 → π2 as p

number of moves of type 1; all ri parts lose pieces simultaneously. Similarly, all sj −Qj parts can

be denoted as sj −
∑p
i=1 qi,j , hence the move can be described as q moves of type 2; all sj parts

gain pieces simultaneously. Then we have described all changes to the ri and the sj parts in one

move, so π2 is 1-accessible from π1.

As the dominance order and the partial order given by accessibility coincide, the example for

accessibility in gl6 is the same as figure 1.1. Recall that the general linear group contains as a sub-

group the special linear group SLn(κ) consisting of matrices of determinant 1. The corresponding

Lie algebra sln(κ) consists of trace zero matrices in gln(κ). Since the trace of nilpotent matrices is

zero, all nilpotent matrices in gln are also in sln.

The accessibility of nilpotent orbits in the general linear group is helpful for determining the

accessibility in the special linear group. In fact, the following two lemmas will show that the

accessibility for sln is the same as that for gln.

Lemma 2.4.1. The GLn(κ)-orbits and SLn(κ)-orbits of nilpotent matrices are identical.

Proof. Let x be a nilpotent matrix in standard form, in any orbit. Then x is strictly upper

triangular, so it is immediate that all diagonal entries are zero, hence Trx = 0. We conclude that

x ∈ sln. Since any g ∈ GLn(κ) can be written g = zh with z a scalar matrix and h ∈ SLn(κ),

we see that two nilpotent elements are conjugate by GLn(κ) if and only if they are conjugate by

SLn(κ).

Furthermore, the accessibility of orbits in sln is the same as that for the orbits in gln.

Lemma 2.4.2. Let x1, x2 ∈ gln be nilpotent matrices corresponding to partitions π1 and π2,

respectively. If x2 is accessible from x1 in gln, then it is accessible in sln.

Proof. Let x2 be accessible from x1 in gln, then there is a g ∈ GLn and a cocharacter λ of GLn(κ)

such that limλ(g · x1) = x2. We can find an h ∈ SLn and µ ∈ κ∗(t) with det(µ) = 1, such that
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limt→0 µ · (h · x1) = x2. Specifically, if det g = c, then we take h =
n
√

1
cg, and it follows that

det(h) = det
n
√

1
cg = 1

c det g = 1.

The approach to find a suitable form of λ is similar. Let x2 have partition [r1, . . . , rp] of p

parts, each of size ri. Then λ is of the form:

λ =


tp−1Ir1

tp−2Ir2
. . .

Irp

 ,

where each Iri is an identity block of size ri. Then

det(λ) = Πp
i=1Πri

j=1t
p−i

= Πp
i=1t

ri(p−i)

= t
∑p

i=1 ri(p−i).

The effect of the cocharacter λ when limits are taken does not depend on the values of the powers

of t, only on the fact that these powers form a decreasing sequence. Hence, if we like, we can

replace the powers with a decreasing sequence of integers summing to 0 – that is, we replace each

tp−i (including when i = p) with powers tai with ai ∈ Z chosen so that
∑p
i=1 riai = 0. Then the

new cocharacter has the same effect in the limit, but now evaluates in SLn(κ).

By Lemma 2.4.2, x1 and x2 are present in the special linear group, so with µ and h, we have

found a move such that limµ x1 = limt→0 µ · (h · x1) = x2. We conclude that x2 is accessible from

x1 in the special linear group.
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Chapter 3

Results in the symplectic algebras

In this chapter, we describe the results in the symplectic algebras. We consider the five possible

moves in the dominance order of the symplectic algebras, and analyse four which are also possible

with cocharacters. The last move, which doesn’t occur with cocharacters, will be analysed in detail.

First, recall from Equation 1.4 that the symplectic basis we choose is as follows:

B = {e1, . . . , en, fn, . . . , f1},

and that the matrix of the bilinear form φ with respect to this basis is:

ΩS =



1

. .
.

1

−1

. .
.

−1


.

Then the symplectic group is

Sp2n = {g ∈ GL2n | gTΩSg = ΩS},

and the symplectic algebra is:

sp2n = {x ∈ gl2n | xTΩS + ΩSx = 0}.

Recall that bilinear forms are conjugate, so the our analysis of the moves in this chapter are

independent of the choice of the bilinear form and symplectic basis. Recall that the group and

algebra are over an algebraically closed field κ = κ̄. In the Section 5.1, we describe why the proofs

do not always hold if the restriction of algebraically closed fields is lifted.

3.1 Partitions and moves

To determine (1-)accessibility in the symplectic algebra, we first recall the possible symplectic

partitions, and which orbits in sp2n are distinguished. The symplectic partitions are given by part

1 of Theorem 1.11.1:

Theorem. Let x be a nilpotent element with partition [r
(n1)
1 , . . . , r

(np)
p ]. Then x appears in sp2n

if and only if ni is even for all odd ri.
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And by Lemma 1.11.2, we can determine when a partition is distinguished:

Lemma. Let x ∈ sp2n, then x is distinguished if and only if its partition π has distinct even parts

(and no odd parts).

By considering minimal through the dominance order of the partitions corresponding to sym-

plectic nilpotent orbits, we can identify the following moves (note that m = 0 can occur):

1. O([2m, 2m− 2])→ O([2m− 1, 2m− 1]).

2. O([2n,m,m])→ O([2n− 2,m+ 1,m+ 1]).

3. O([n, n, 2m])→ O([n− 1, n− 1, 2m+ 2]).

4. O([n, n,m,m])→ O([n− 1, n− 1,m+ 1,m+ 1]).

5. O([2n, 2m])→ O([2n− 2, 2m+ 2]).

It is clear that move 5 cannot occur with cocharacters if m = 0, and in section 3.2 we will

analyse why it fails in general. First, we will analyse moves 1-4 with examples, and the generalized

moves as given above. The base changes between matrices x and x′ will be omitted, but can be

determined with the same method as in chapter 2. While these base changes will not necessarily

be symplectic, theorem 1.12.1 tells us that if x and x′ are in the same GL(V )-orbit, they will also

be in the same g-orbit, in this case g = sp2n. In chapter 5, we will give an example in which

start with a base change that is not symplectic, and then determine one that is symplectic. This

gives an interesting topic for further research, as the process involves elements that are not always

defined in fields that are not algebraically closed.

3.1.1 The cocharacter realizing move 1

We begin with an example, the move, O([6, 4])→ O([5, 5]) in dimension 10.

Recall that the goal is to find an x′ ∈ O([6, 4]) and a cocharacter λ such that limλ x
′ ∈ O([5, 5]),

and a symplectic base change g, such that gxg−1 = x′, where x is the standard form of a symplectic

matrix with partition [6, 4]. That is:

x =



0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 −1 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 0 0 −1

0 0 0 0 0 0 0 0 0 0



.
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Let

x′ =



0 1 0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 −1 0 0 0

0 0 0 0 0 0 0 −1 0 0

0 0 0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 0 0 −1

0 0 0 0 0 0 0 0 0 0



,

λ(t) = diag(t, t, t, t, t, t−1, t−1, t−1, t−1, t−1).

So y = limλ x
′ ∈ O([5, 5]), and row-elimination shows that dim(ker(x′)) = 2, while (x′)5 6= 0 and

(x′)6 = 0, therefore x′ ∈ O([6, 4]). Alternatively, the information about the nonzero entries on the

sth superdiagonal can be used to clarify the form of x′, see Lemma 2.2.2 on page 40. We conclude

that O([5, 5]) is 1-accessible from O([6, 4]).

We now generalize to the move O([2m, 2m−2])→ O([2m−1, 2m−1]). For notation purposes,

let

J̃2n =



Jn

1(a)

−Jn


,

with (a) = (n, n+ 1). Then, the standard forms of x and the form of x′ are as follows:

x =



Jm

1(a)

J̃2m−2

−Jm


,

where (a) = (m, 3m− 1). Next,

x′ =



1(a)

J2m−1

1(b)

−J2m−1


,
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with (a) = (1, 2m) and (b) = (2m− 1, 4m− 2). Then x induces the vector chains:

f1 → −f2 → . . .→ (−1)m−1fm → (−1)mem → (−1)mem−1 → . . .→ (−1)me1 → 0.

fm+1 → −fm+2 → . . .→ (−1)m−2f2m−1 → (−1)m−1e2m−1 → . . .→ (−1)m−1em+1 → 0.

And x′ induces the vector chains:

f1 → −f2 − en → f3 − en−1 → . . .→ (−1)2m−2f2m−1 − e2 → −2e2 → 0,

f2 − en → −f3 − en−1 → . . .→ (−1)2m−3f2m−1 − e2 → 0,

so x′ does indeed have partition [2m, 2m− 2]. Let

λ =

(
tI2m−1

−t−1I2m−2

)
, then y = lim

λ
x′ =

(
tJ2m−1

−t−1J2m−1

)
,

which has partition [2m−1, 2m−1], hence O([2m−1, 2m−1]) is 1-accessible from O([2m, 2m−2]).

3.1.2 The cocharacter realizing move 2

The second move is: O([2n,m,m])→ O([2n−2,m+1,m+1]). We start with exampleO([6, 2, 2])→
O([4, 3, 3]). The standard symplectic form is:

x = J2 ⊕ J̃6 ⊕ J2.

Let

x′ =



0 1 0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 −1 0 0 0

0 0 0 0 0 0 0 0 0 −1

0 0 0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 0 0 −1

0 0 0 0 0 0 0 0 0 0



,

λ(t) = diag(t, t, t, 1, 1, 1, 1, t−1, t−1, t−1).

So y = limλ x
′ ∈ O([6, 2, 2]).

Generalizing to the move O([2n,m,m])→ O([2n− 2,m+ 1,m+ 1]), let

x = Jm ⊕ J̃2n ⊕ (−Jm)

and let
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x′ =



1(a)

Jm+1

J̃2n−2

−1(b)

−Jm+1


,

with (a) = (1,m+ 2) and (m+ 2n− 1, 2m+ 2n). Then x induces the vector chains:

f1 → −f2 →· · · → (−1)m−1fm → 0,

fm+1 → −fm+2 →· · · → (−1)n−1fm+n → (−1)nen+m → · · · → (−1)ne1 → 0,

em →· · · → e1 → 0.

and x′ induces the vector chains, of length 2n,m,m, respectively:

f1 → −(f2 + f2+m)→· · · → (−1)m(f1+m + f1+2m)→ (−1)m+1f2+2m →

· · · → (−1)n−3+mfn+m → (−1)n−3+men+m →

· · · → (−1)n−3+me2+m → (−1)n−3+me1 → 0,

f2 → −f3 →· · · → (−1)m−1fm+1 → 0,

en − en+m →· · · → en+1−m − en+1 → 0.

So x′ does indeed have partition [2n,m,m]. Let

λ =

 tIm+1

Ĩ2n−2

t−1Im+1

 , then lim
λ
x′ =

 Jm+1

−J̃2n−2
−Jm+1

 ,

which has partition [2n − 2,m + 1,m + 1], hence O[2n − 2,m + 1,m + 1] is 1-accessible from

O[2n,m,m].

3.1.3 The cocharacter realizing move 3

The third move is: O([n, n, 2m])→ O([n− 1, n− 1, 2m+ 2]). We start with example O([5, 5, 2])→
O([4, 4, 4]). The standard symplectic form is:

x = J5 ⊕ J2 ⊕ (−J5).
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Let

x′ =



0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 −1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 −1 0 0

0 0 0 0 0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 0 0 0 0 −1

0 0 0 0 0 0 0 0 0 0 0 0



,

λ(t) = diag(t, t, t, t, 1, 1, 1, 1, t−1, t−1, t−1, t−1).

So y = limλ x
′ ∈ O([4, 4, 4]), therefore O([4, 4, 4]) is 1-accessible from O([5, 5, 2]). Note the position

of the ones in x′ compared to the position in x′ in the example for move 2.

Generalizing to the move O([n, n, 2m])→ O([n− 1, n− 1, 2m+ 2]), let

x = Jn ⊕ J̃2m ⊕ (−Jn),

and let

x′ =



Jn−1

1(a)

1(b)

J̃2m+2

−Jn−1


,

with (a) = (n − 1, n + 2m + 1) and (b) = (n, n + 2m + 2). Then x induces the following vector

chains:

f1 → −f2 →· · · → (−1)n−1fn → 0,

en → en−1 →· · · → e1 → 0,

fn+1 → −fn+2 →· · · → (−1)m−1fn → (−1)mem → · · · → (−1)me1 → 0.

And x′ induces the following chains of length n, n, 2m respectively:

f1 → −f2 →· · · → (−1)n−2fn−1 → (−1)n−1en → 0,

fn → −fn+1 − en−1 →· · · → (−1)mfn+m − en−m → (−1)m+1en+m − en−m−1 →

· · · → (−1)m+1en − en−2m−1 → −en−2m−1 →

· · · → −e1 → 0,

fn+1 + fn−2m →· · · → (−1)m−1(fn+m + fn−m−1)→ (−1)men+m + (−1)mfn−m →

· · · → (−1)men+1 + (−1)2m−1fn−1 → 0.
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So x′ does indeed have partition [n, n, 2m]. Let

λ =

 tIn−1

Ĩ2m+2

−t−1In−1

 , then y = lim
λ
x′ =

 Jn−1

J̃2m+2

−Jn−1

 ,

which has partition [n − 1, n − 1, 2m + 2], hence O([n − 1, n − 1, 2m + 2]) is 1-accessible from

O([n, n, 2m]).

3.1.4 The cocharacter realizing move 4

The fourth move is: O([n, n,m,m])→ O([n− 1, n− 1,m+ 1,m+ 1]). We start with an example:

O([5, 5, 2, 2])→ O([4, 4, 3, 3]). In standard form

x = J2 ⊕ J5 ⊕ (−J5)⊕ (−J2),

let

x′ =



0 1 0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 −1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 −1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 −1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 −1

0 0 0 0 0 0 0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 −1

0 0 0 0 0 0 0 0 0 0 0 0 0 0



,

λ = diag(t, t, t, 1, 1, 1, 1, 1, 1, 1, 1, t−1, t−1, t−1).

So y = limλ x
′ ∈ O([4, 4, 3, 3]), therefore O([4, 4, 3, 3]) is 1-accessible from O([5, 5, 2, 2]).

Generalizing to the move O([n, n,m,m])→ O([n− 1, n− 1,m+ 1,m+ 1]), let

x = Jm ⊕ Jn ⊕ (−Jn)⊕ (−Jm),
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and let

x′ =



1(a)

Jm+1

Jn−1

−Jn−1
1(b)

−Jm+1



,

with (a) = (1,m+ 2) and (b) = (m+ 2n− 1, 2m+ 2n). Then x induces the following vector chains,

of sizes m,n, n,m respectively:

f1 →· · · → (−1)m−1fm,

fm+1 →· · · → (−1)n−1fm+n,

en+m →· · · → em+1,

em →· · · → e1.

And x′ induces the following chains, of sizes m,n, n,m respectively:

f2 → −f3 →· · · → (−1)m−1f1+m → 0,

f1 → −(f2 + f2+m)→· · · → (−1)m(f1+m + f1+2m)→ (−1)m+1(f2+2m)→ · · · → (−1)n(fn+m)→ 0,

en+m → en+m−1 →· · · → e2+m → e1 → 0,

e1+m − e1+2m →· · · → e2 − e2+m → 0.

So x′ has partition [n, n,m,m]. Finally, let λ = diag(tIm+1, In−1, In−1, t
−1Im+1), then

y = lim
λ
x′ =


Jm+1

Jn−1

−Jn−1
−Jm+1

 ,

which has partition [n− 1, n− 1,m+ 1,m+ 1], hence O([n− 1, n− 1,m+ 1,m+ 1]) is 1-accessible

from O([n, n,m,m]).

3.2 A non-move

This section will analyse Move 5: O([2n, 2m]) → O([2n − 2, 2m + 2]). First, consider that if

2n− 2 = 2m+ 2, then this move is actually a generalized move 1, of the form O([2m, 2m− 2k])→
O([2m− k, 2m− k]), with k = 2. We should now consider the case where 2n− 2 6= 2m+ 2.

As example, consider the move O([6]) → O([4, 2]) (so m = 0). Let x ∈ O([6]) be in standard

form, then
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x =



0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 −1 0

0 0 0 0 0 −1

0 0 0 0 0 0


.

Next, we want to find a matrix x′ such that y = limλ x
′ ∈ O([4, 2]), for a suitable λ. Then λ has

to be in the centralizer of y, so we start by determining the forms of y and λ.

y =



0 0 0 0 0 1

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 −1 0

0 0 0 0 0 0

0 0 0 0 0 0


,

and λ = diag(t1, t2, t3, t4, t5, t6). As limλ x
′ = y, we require limt→0 t1x

′
(1,6)t

−1
6 = 1, so t1 = t6,

therefore all ti must be equal, so the only λ in StabG(y) is ±I, which is in the centre of y. So

y is distinguished. By Lemma 1.9.1, x′ = y, hence y is not accessible from x. This is a special

case of a general phenomenom: if the target element y is distinguished, then there cannot be any

non-trivial cocharacter with limλ x
′ = y.

Now that it is shown thatO([2n, 2m])→ O([2n−2, 2m+2]) is not a valid move if 2n−2 6= 2m+2,

we can consider the implications to the general accessibility of orbits. The following diagram is

the diagram of 1-accessibility in sp6, to compare to the diagram for gl6 (see Figure 1.1).

[6] [4, 2]

[3, 3] [4, 1, 1]

[2, 2, 2]

[2, 2, 1, 1]

[2, 1(4)]

[1(6)]

Figure 3.1: Accessibility in sp6.

The observation that O([4, 2]) is not accessible from O([6]) gives an answer to the second

question in 1.8: When κ = κ, are there cases when G(κ) · x
c
6= G(κ) · x? Yes, as O([4, 2]) is

not in the cocharacter-closure of O([6]). In general, however, this observation does not give us

the complete answer, since the presence of other parts in the partition can complicate matters.

For example, even though O([4, 2]) is not accessible from O([6]), we can show that O([4, 2, 2]) is

accessible from O([6, 2]). The presence of the extra 2 in the partition makes a material difference

to the outcome, which is not obvious immediately. Note in this case that the two partitions are

no longer adjacent in the dominance order – the accessibility diagram for this case can be split as

follows:
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[6, 2] //

$$

[6, 1, 1]

��
[4, 2, 2].

Consecutively applying move 1 to the [2] part of [6, 2] ([2m, 2m− 2]→ [2m− 1, 2m− 1] for m = 1)

and move 2 to the partition [6, 1, 1] ([2n,m,m]→ [2n− 2,m+ 1,m+ 1] for n = 3, m = 1), shows

that O([4, 2, 2]) is accessible from O([6, 2]). The following matrix shows that O([4, 2, 2]) is also

1-accessible. Let x′ be of the form:

x′ =



0 1 1 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 −1 0 0

0 0 0 0 0 0 0 −1

0 0 0 0 0 0 0 −1

0 0 0 0 0 0 0 0


,

we can compute that (x′)5 6= 0, and row-elimination shows that rank(x′) = 6, so x′ must have two

parts to the partition, and hence x′ is in the orbit of O([6, 2]). Taking

λ = diag(t, t, 1, 1, 1, 1, t−1, t−1),

then we get:

λ · x′ =



0 1 t2 0 0 0 0 0

0 0 0 0 0 0 t4 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 −1 0 0

0 0 0 0 0 0 0 −t2

0 0 0 0 0 0 0 −1

0 0 0 0 0 0 0 0


,

so limλ x
′ ∈ O([4, 2, 2]), so O([4, 2, 2]) is 1-accessible from O([6, 2]). We now proceed to show

precisely when the move of type 5 cannot occur.

3.2.1 The shrinking operation

We define the shrinking operation as follows: given a 2n × 2n matrix A, matrix S(A) is the

(2n− 2)× (2n− 2) matrix formed by deleting rows and columns on the outside of matrix A.

For example, let A =


a(1,1) a(1,2) a(1,3) a(1,4)

a(2,1) a(2,2) a(2,3) a(2,4)

a(3,1) a(3,2) a(3,3) a(3,4)

a(4,1) a(4,2) a(4,3) a(4,4)

 , then S(A) =

(
a(2,2) a(2,3)

a(3,2) a(3,3)

)
.

Denote by Sd(A) the (2n−2d)×(2n−2d) matrix formed repeating the shrinking operation d times.

The shrinking operation is well-behaved with respect to the transpose Sd(AT ) = (Sd(A))T . To

show that S is also well-behaved with respect to being in the symplectic Lie algebra, observe that

when ΩS is the defining matrix for the form in dimension 2n, then Sd(ΩS) is the defining matrix in
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dimension 2n− 2d. Then if ATΩS + ΩSA = 0, it follows that Sd(AT )Sd(ΩS) + Sd(ΩS)Sd(A) = 0.

Next, suppose y is in standard form and dim(y) = 2n. If x is such that limλ x = y and λ is in

standard form (as in 1.6), then limSd(λ) S
d(x) = Sd(y). There are now two possibilities:

1. Sd(x) is conjugate to Sd(y), i.e. no orbit change is made.

2. Sd(x) is strictly higher than Sd(y) in the dominance order.

With these observations in hand, we now make some further reductions.

3.2.2 The setup

We have observed that distinguished partitions are not accessible from any partition higher in the

dominance order. The question is: are non-distinguished partitions accessible through a ‘move’ of

type 5? This is the case of interest, so we may assume that the following hold:

(i) y is in standard form with a repeated part [. . . , d, d, . . .] appearing on the outside of y (so y

is not distinguished).

(ii) x is another nilpotent element.

(iii) λ is a cocharacter in standard form such that limλ x = y.

Under these hypotheses, we can denote x as x = y+x0, with limλ x0 = 0. Since λ is in standard

form, x0 is strictly upper triangular. Furthermore, λ must centralize y, so λ has constant weight

a on the first d basis vectors, and constant weight −a on the last d vectors, i.e. for 1 ≤ i ≤ d, we

get λ(t)ei = taei, λ(t)fi = t−afi. Let λ0 be the cocharacter formed by having weight a on the first

d vectors, −a on the last d vectors, and weight zero elsewhere. Then λ0 and λ are identical on the

outside d vectors, and λ0 fixes the other vectors.

Then limλ0 y = y and x′ := limλ0 x exists. Since limλ x = y, limλ x
′ = y also, hence x′ lies

between x and y in the order of dominance. Hence, if x and y are adjacent in the order, there are

two possibilities:

1. x′ = y,

2. x′ is conjugate to x.

In the case that x′ = y, the only difference between x and y lies in the outside d rows and

columns, i.e. Sd(x) = Sd(y). In the case that x′ is conjugate with x, we may replace x with x′

and assume x has the same repeated [d, d] blocks as y on the outside.

3.2.3 The move of type 5

In the previous subsections, we have setup the requirements to analyse move 5, the move

O([. . . , 2r, 2s, . . .])→ O([. . . , 2r − 2, 2s+ 2]).

We can now prove the following lemma:

Lemma 3.2.1. Let x ∈ O([. . . , 2r, 2s, . . .]) and let y ∈ O([. . . , 2r − 2, 2s + 2, . . .]). Then y is not

accessible from x.

Proof. We proceed by induction on n, where 2n is the matrix size. If n = 1, there are no r, s with

2r ≥ 6. For the inductive step, suppose that for all matrix sizes smaller than 2n the claim holds,

we now finish the proof with a combination of contradiction and some direct calculation.
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Suppose there is a λ ∈ Y (G) such that limλ x = y. First note that y is not distinguished, by

Lemma 1.9.1. So y must contain a repeated part [. . . , d, d, . . .]. With the assumption that y and λ

are in standard form, we may assume that this repeated part appears on the outside of the matrix

for y, so Section 3.2.2 can be used. Since x and y are adjacent, the two cases of that section apply.

First, suppose that x′ is conjugate to x, then x and y share the repeated [. . . , d, d . . .] part. With

a suitable conjugation, we may assume that the repeated d−parts in x are on the outside as well.

Then the shrinking operation applied d times removes that part from both x and y. The move

between Sd(x) and Sd(y) is of the same form as the move between x and y, i.e. it consists of the

move [. . . , 2r, 2s, . . .] to [. . . , 2r− 2, 2s+ 2, . . .] between adjacent parts, with 2r ≥ 2s+ 6. Since the

matrix sizes have been decreased, this is impossible, by induction. So we get a contradiction and

conclude that the second case cannot occur.

So we may assume we are in case 1 of Section 3.2.2. Replacing x with x′ and λ with λ0, we

are left with the case of Sd(x) = Sd(y). Note that the first d rows and last d columns of x are

related because x is symplectic; if there is an entry a in position (i, j) then x also has an entry

−a in position (2n + 1 − j, 2n + 1 − i). The main idea is to conjugate x by a suitable symplectic

unipotent matrix to kill off most entries in the first d rows which have a further nonzero entry in

the column below them, say in row i for i > d.

So we suppose that x has at least one nonzero entry in column j, with d ≤ j ≤ 2n− d, and we

suppose further that in this column there is another nonzero entry in position (i, j) for some i > d.

Then, since x looks the same as y away from the first d rows and last d columns, we can conclude

that:

(i) This other entry is the only other nonzero entry in the jth column, because Sd(x) = Sd(y)

is in standard form.

(ii) We have d < i < j because x is strictly upper triangular.

(iii) The entry is a 1 if i ≤ n and a −1 if i > n.

(iv) It is the only nonzero entry in the ith row, except possibly in the last d columns - in particular

all entries in row i before the jth column are 0.

In this situation, let v denote the first d rows in the jth column, viewed as a column vector of

length d. Let vs denote every position s of vector v. We now split into the following subcases to

cover all possibilities:

1. j ≤ n, and i ≤ n,

2. j > n, and i ≤ n,

3. j > n, and i > n.

Matrices y and x are of the following form:
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y =



Jd

. . .

Jr−1

1(a)

J̃2s+2

−Jr−1

. . .

−Jd



,

x =



? ? ? ? ? ? ? ? ?

Jd ? ? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ? ?

. . .

? ? ?

Jr−1 ? ? ?

1(a) ? ? ?

? ? ?

J̃2s+2 ? ? ?

? ? ?

? ? ?

−Jr−1 ? ? ?

? ? ?

. . .

−Jd



.

Here the entry 1(a) is the entry in the bottom-left location of its respective block, and the stars

indicate arbitrary entries at any location in their blocks.

Subcase 1: if j ≤ n, and i ≤ n, then the case is almost identical to determining the orbit of a

nilpotent matrix in gln, see Lemma 2.2.2 in Section 2.2. Let vt be the last nonzero entry in the

jth − column, more precisely in position (t, j), and the symplectic property requires that −vt is in

position (2n+1− j, 2n+1− t). Let u be a unipotent symplectic matrix with 1s down the diagonal,

−vt in position (t, i), and (since u is symplectic) vt in position (2n+ 1− i, 2n+ 1− t). Recall the

action of the unipotent matrix on the basis vectors (Equation 2.1):
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u(ep) =

ep − vtet if p = i,

ep otherwise.

u−1(ep) =

ep + vtet if p = i,

ep otherwise.

Then

uxu−1(ei) = ux(ei + vtet) = ux(ei) + u(vtet−1),

so a vt-value is added to the entry in position (t− 1, i), but no other entries before the jth column

are altered. And

uxu(ej) = ux(ej +

t∑
l=1

vlel) = u(ei − vtet +

t∑
l=1

vlel) = ei +

t−1∑
l=1

vlel.

So the vt-entry in position (t, j) is killed off. Hence by conjugation with u, the vt-value in position

(t, j) moves up and to the left.

Subcase 2: if j > n, and i ≤ n then the other nonzero entry in the jth column is found on

the anti-diagonal. As before, we will determine a unipotent matrix to conjugate x with, but we

calculate what entries can be found in uxu−1 for each column, with an example for further clarity.

Recall that the second half of the symplectic basis is indexed backwards, f1 is the last basis vector,

f2 the second to last, etc, with fn being the n+ 1th basis vector, fn−1 being the n+ 2th, etc. As

an example, let n = 7, j = 9, i = 6, t = 3, so:

x =



0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 v3 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 v3 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 −1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 −1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 −1

0 0 0 0 0 0 0 0 0 0 0 0 0 0



.

Note that x(fi) = −ei − vtet, and x(ft) = −ft+1 − vtei. In this example, x(f6) = −e6 − vte3, and

x(f3) = f4 − v3e6.

Let u be the unipotent matrix with −vt in position (t, i) and vt in position (2n+1−i, 2n+1−t),
then by Equation 2.1, we know that the first n columns of uxu−1 are the same as those in x, with

a vt removed from position (t, j) and added in position (t − 1, i). The calculation of interest is:

uxu−1(ei) = ei−1 + vtet−1. By the symplectic property, we also get that the vt entry in position

(2n + 1 − j, 2n + 1 − t) is removed, and a −vt-value in position (2n + 1 − i, 2n + 2 − t) is added.

To check this, we calculate the conjugation u · x for the last n columns:
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u(fp) =

fp + vtfi if p = t,

fp otherwise.

u−1(fp) =

fp − vtei if p = t,

fp otherwise.

Checking for the columns p with n < p < j, we note that this corresponds to the basis vectors

f2n+1−n, f2n+1−(n−1), . . . , f2n+1−(j−1). As n < j < 2n − d, we get f2n+1−n > f2n+1−p > f2n+1−j

and with t ≤ d, we get f2n+1−j > ft, so f2n+1−p 6= ft for n < p < j. For these f2n+1−p it must

follow that uxu−1(f2n+1−p) = ux(f2n+1−p). Furthermore, as x is upper triangular, x(f2n−1+p)

does not involve ft, so ux(f2n+1−p) = x(f2n+1−p). Next, for p = j, we repeat the calculation:

uxu−1(f2n+1−j) = ux(f2n+1−j) = u(−ei +

t∑
s=1

vses) = −ei − vtet +

t∑
s=1

vses = −ei +

t−1∑
s=1

vses.

In the example,

uxu−1(f6) = ux(f6) = u(−e6 +

3∑
s=1

vses) = −e6 − v3e3 +

3∑
s=1

vses = −ei +

2∑
s=1

vses = −e6.

For p > j, p 6= t − 1 and p 6= t − 1, we again get uxu−1(fp) = x(fp). For p = t − 1, we have

that uxu−1(ft−1) = −ft − vtfi, hence uxu−1 has a −vt-entry in position (2n+ 1− i, 2n+ 2− t),
as u is symplectic. Finally, if p = t, we get that uxu−1(ft) = ux(ft − vtfi) = u(−ft+1 + v2t et) =

−ft+1 + v2t et, so the vt-entry in position (2n+ 1− j, 2n+ 1− t) is removed (the v2t -entry added in

uxu1, in position (t, 2n+ 1− t) is not of interest).

To summarize, conjugation by u kills off the vt-entry in position (t, j) at the expense of adding

a vt-value to the entry in position (t−1, i), possibly making it nonzero. The other entries of uxu−1

before column j are unchanged, hence the vt-value in position (t, j) is moved up and to the left.

In particular for Subcase 2, because t− 1 ≤ d < n, and i ≤ n, the entry where a vt-value is added,

is in position (t− 1, i). If the entry in this position needs to be removed, subcase 1 can be applied

to do so.

Subcase 3: in the last subcase, i, j > n. As before, the first d rows of column j form vector v,

with vt its last nonzero entry in position (t, j). The only nonzero entry in column j, after v, is −1

in position (i, j). With vt in position (t, j), there is an entry vt in position (2n+ 1− j, 2n+ 1− t).
Let u be the unipotent matrix with ones on the diagonal, and a vt entry in positions (t, i) and

(2n+ 1− i, 2n+ 1− t).
Then for any ep, we get u(ep) = ep and u−1(ep) = ep, so u and u−1 do nothing to the first half of

the basis, hence the first n columns of x and uxu−1 are the same. Next, with n+1 ≤ i < j ≤ 2n−d,

we let p range as follows (n+ 1 ≤ p ≤ 2n):

{n+ 1, . . . , i− 1, i, i+ 1, . . . , 2n+ 1− t, 2n− t, . . . , 2n}.

Then we get the following sequence of basis vectors f2n+1−p:

{fn, . . . , f2n+1−(i−1), f2n+1−i, f2n+1−(i+1), . . . , ft+1, ft, ft−1, . . . f1},

and the action of u yields:
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u(f2n+1−p) =


f2n+1−p − vtet if p = i,

f2n+1−p − vte2n+1−i if p = 2n+ 1− t,

f2n+1−p otherwise.

u−1(f2n+1−p) =


f2n+1−p + vtet if p = i,

f2n+1−p + vte2n+1−i if p = 2n+ 1− t,

f2n+1−p otherwise.

The sequence of u(f2n+1−p) is as follows:

{fn, . . . , f2n+1−(i−1), f2n+1−i − vtet, f2n+1−(i+1), . . . , ft+1, ft − vte2n+1−i, ft−1, . . . f1},

by our assumptions, we have that t ≤ d and j ≤ 2n − d. So when we look at what happens with

the vectors f2n+1−p for n+ 1 ≤ p < j, with p 6= i, this never includes vector ft.

First, for n+ 1 ≤ p < j, and p 6= i, we get uxu−1(f2n+1−p) = ux(f2n+1−p). The only nonzero

entries in row i occur in column j (as Sd(x) is in standard form) or later (the last d columns). So

applying x to f2n+1−p does not yield basis vector f2n+1−i, and since x is strictly upper triangular,

applying x to f2n+1−p does not yield ft. So ux(f2n+1−p) = x(f2n+1−p) when n + 1 ≤ p < j, and

p 6= i. Hence for n + 1 ≤ p < j, and p 6= i, we have that the pth column of uxu−1 is the same as

the pth column of x.

Second, if p = i, then uxu−1(f2n+1−i) = ux(f2n+1−i + vtet) = ux(f2n+1−i) + ux(vtet). Since

x is upper triangular, x(f2n+1−i) yields basis vectors fp, with p > 2n + 1− i and vectors ep with

1 ≤ p ≤ n, which are all fixed under u. Furthermore ux(vtet) = u(vtet−1) = vtet−1, since we know

the action of x on vtet explicitly, and all ep vectors are fixed under u (1 ≤ p ≤ n).

So the ith column of uxu−1 is the same as the ith column of x, except a vt-value is added to

the entry in position (t− 1, i).

Next, let p = j, then:

uxu−1(f2n+1−j) = u(f2n+1−i +

t∑
s=1

vses)

= f2n+1−i − vtet +

t∑
s=1

vses

= f2n+1−i +

t−1∑
s=1

vses.

So conjugating with u removes the vt value in position (t, j).

Considering the action on the ith column and the jth column, conjugation by u kills off the

vt-entry in position (t, j), at the expense of adding a vt-value to the entry in position (t − 1, i),

which may make it nonzero. Except for the change of this value in position (t − 1, i), no other

entry before column j is altered by the conjugation.

With these subcases in hand, we can remove nonzero entries vt in position (t, j) in columns

where a further nonzero entry in row i is present. Specifically, by conjugating, the vt-value of the

entry in position (t, j) moves up and to the left. By systematically iterating these conjugations, we

can kill off all the vt-entries in the first d rows (starting with the entry in position (d, 2n+ 1− d);

the last row of the rightmost column), in the columns where a further nonzero entry is present,
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until the only nonzero entries left in the first d rows are in the columns which have zero entries

everywhere else. Since each of the conjugating elements is sent to the identity in the limit, we have

that the limit along the “new” x is still equal to y. So we may assume that x is of the following

form:

x =



? ?

Jd ? ?

? ?

. . .

Jr−1

1(a)

J̃2s+2

? ? ?

−Jr−1
? ? ?

. . .

−Jd



,

where 1(a) is the entry in the bottom-left of its respective block, and the stars indicate arbitrary

entries in the first column or last row of their respective blocks (zero entries are omitted as usual).

First, we consider the behaviour and orbit of x in an abstract way, then we analyse in detail what

change of orbits occurs. While y induces vector chains of size 2r−2, 2s+2 and two chains of size d,

matrix x induces different vector chains. Consider the effect of x on a basis vector fi for 1 ≤ i ≤ d.

If x(fi) 6= 0, then fi is in the vector sequence starting with f1, and the value of fi is added to a

vector from another vector sequence in the center of the matrix. In other words, a vector sequence

initiated in the [d] part at the bottom of the matrix will be continued by the J2r−2 Jordan blocks

or the J2s+2 Jordan block in the central portion of the matrix, where in the matrix y the vector

chains of parts [2r− 2] and [2s+ 2] are initiated. By the symplectic property, the vector chains of

lengths 2r− 2 and 2s+ 2 that are terminated in y are picked up by the Jd Jordan block at the top

left of the matrix. In detail, the following moves occur, in two cases:

Case 1: if s > d, then x induces vector chains of size s + 2a, r + 2b and two chains of size

d − a − b, with at least one of a and b nonzero. So taking limλ x is a move of type 2, in fact two

moves of type 2 occur simultaneously:

O([r + 2a, s+ 2b, d− a− b, d− a− b])→ O([r, s, d, d]),

is a combination of

O([r + 2a, s+ 2b, d− a− b, d− a− b])→ O([r, s+ 2b, d− b, d− b]),

O([r, s+ 2b, d− b, d− b])→ O([r, s, d, d]).

Case 2: if d > r, then we analyse the matrix x separately for even d and for odd d. Without
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loss of generality, we can assume that the nonzero entry is in the first column after the [d] block,

so in the otherwise zero column of the J2r−2 block. If d is even, let d = 2d′, and denote top left

2d′ × (2d′ + 1) block of matrix x as follows:

x1,2d′+1

...

xk,2d′+1

xk+1,2d′+1

Jd
...

xk+i+,2d′+1

xk+i+1,2d′+1

...

xk+i+j,2d′+1



,

here we let k, i and j take their maximum value, and we now relate the orbit of x to the position

of the nonzero entry, and determine in what values k, i and j range.

If we consider a single nonzero entry, in a row k+i+j, we start by considering the last row; row

d = 2d′ Then x has a Jordan block of size 2d′+2d′+2r−2 (and a Jordan block of size 2s+2, which

is not involved). Then, if we consider the nonzero entry to be in one row higher, this part loses two

pieces to two different parts, so x has parts of size 2d′+2d′+2r−4, and there are now two parts of

size 1. For every row higher, the largest part loses two additional pieces to the two smaller parts,

until these are of size 2r − 2, hence x is in the orbit of [2d′ + 2d′ − (2r − 2), 2r − 2, 2r − 2, 2s+ 2].

Hence, if the nonzero entry is in one of these last 2r − 2 rows, taking the limit limλ x yields the

move:

O([2d′ + 2d′ + (2r − 2)− 2j, j, j, 2s+ 2])→ O([2d′, 2d′, 2r − 2, 2s+ 2]),

which is a move of type 2. Furthermore, we have determined that 1 ≤ j ≤ 2r − 2.

Next, if we consider the nonzero entry to be another row higher, the first part loses two pieces

and the second part gains two pieces, hence taking limλ x gives the following move: O([2d′ +

2d′ − (2r − 2) − 2, 2r − 2 + 2, 2r − 2, 2s + 2]) → O([2d′, 2d′, 2r − 2, 2s + 2]). Then, for every row

we go up, the first part will be two additional pieces smaller, and the second part will be two

additional pieces bigger, hence if the nonzero entry is in row 2d′ − (2r− 2)− i, x is in the orbit of

[2d′ + 2d′ − (2r − 2)− 2i, 2r − 2 + 2i, 2r − 2, 2s+ 2], and taking the limit limλ x yields the move:

O([2d′ + 2d′ − (2r − 2)− 2i, 2r − 2 + 2i, 2r − 2, 2s+ 2])→ O([2d′, 2d′, 2r − 2, 2s+ 2]),

which is a move of type 1. This is possible until 2i = 2d′ − (2r − 2), because when this equality

holds, x is in the orbit of [2d′, 2d′, 2r − 2, 2s + 2], which is the same orbit as y = limλ x, and no

move occurs. Hence we have determined that 1 ≤ i ≤ d′ − (r − 1), and then for the maximum

values of i and j, we determine that the range of k is as follows: 1 ≤ k ≤ 2d′− i− j = d′− (r− 1).

We can now make the following conclusion:

(i) If the nonzero entry is in position k, for 1 ≤ k ≤ 2d′ − i− j = d′ − (r − 1), then x is in the

orbit of [2d′, 2d′, 2r − 2, 2s+ 2]. Taking limλ x will not change the orbit.

(ii) If the nonzero entry is in position k+ i for the maximum value of k and 1 ≤ i ≤ d− (r− 1),

then x is in the orbit of [2d′ + 2i, 2d′ − 2i, 2r − 2, 2s+ 2]. Taking limλ x is a move of type 1,

where the [2r − 2] and [2s+ 2] pieces are unchanged.

(iii) If the nonzero entry is in position k + i+ j for maximum values of k, i, and 1 ≤ j ≤ 2r − 2,

then x is in the orbit of [2d′+2i+2j, 2d′−di−j, 2r−2−j]. Taking limλ x is a combination of
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move 1 and move 2: O([2d′+2i+2j, 2d′−di−j, 2r−2−j])→ O([2d′+2i, 2d′−di, 2r−2])→
O([2d, 2d, 2r − 2, 2s+ 2]).

If d is odd, we denote d = 2d′ + 1, and this introduces a row where the nonzero entry places x

in the orbit of [2d′ + 1, 2d′ − 1, r − 2, s + 2]. Then the conclusion changes only by the size of the

blocks:

(i) If the nonzero entry is in position k, for k ≤ d′ − (r − 1), then x is in the orbit of [2d′ +

1, 2d′ + 1, 2r − 2, 2s+ 2]. Taking limλ x will not change the orbit.

(ii) If the nonzero entry is in position k+i for the maximum value of k and 1 ≤ i ≤ d−(r−1)+1,

then x is in the orbit of [2d′ + 1 + (2(i− 1) + 1), 2d′ − (2(i− 1)− 1), 2r − 2, 2s+ 2]. Taking

limλ x is a move of type 1, where the [2r − 2] and [2s+ 2] blocks are unchanged.

(iii) If the nonzero entry is in position k+i+j for maximum values of k, i, and 1 ≤ j ≤ 2r−2, then

x is in the orbit of [2d′+(2(i−1)+1)+2j, 2d′−(2(i−1)+1)−j, 2r−2−j]. Taking limλ x is a

combination of move 1 and move 2: O([2d′+(2(i−1)+1)+2j, 2d′−(2(i−1)+1)−j, 2r−2−j])→
O([2d′ + 2i, 2d′ − di, 2r − 2])→ O([2d, 2d, 2r − 2, 2s+ 2]).

We now have determined the move for a nonzero entrey in the d+ 1th column: a nonzero entry in

the first d rows of the first column above the Jr−1 Jordan block gives rise to a move involving the

parts that are of size [d] and [2r − 2] after taking the limit, and we have also established that it

does not involve the part of size [2s+ 2]. Similarly, a nonzero entry in the first column above the

J̃2s+2 Jordan block gives rise to a move involving the parts that are of size [d] and [2s + 2] after

taking the limit, but it doesn’t involve the part of size [2r − 2].

In the case there are nonzero entries in the first columns above both Jordan blocks, taking the

limit will give rise to two moves, that separately involve the parts which (after taking the limit)

are of size [2s+ 2] and [d], and the parts which are of size [2r − 2] and [d]. However, the nonzero

entries do not allow for a move between the parts that are of size [2r− 2] and [2s+ 2], after taking

the limit. Hence in this special case, the required move does not occur.

So for both case 1 and case 2, the nonzero entries described are only in the first d rows of the

matrix so the move only involves the [2r− 2] and [d] parts when the nonzero entries are above the

Jr−1 bock. In case the nonzero entries are above the J2s+2 block, the move involves the [2s + 2]

and [d] blocks.

We will now generalize as we go down the diagonal, where the Jdi blocks are present, for

1 ≤ i ≤ m. The nonzero entries in the first column above the Jr−1 blocks are next to the Jdi

blocks, so we obtain a move involving the [2r−2] and [di] parts (after taking the limit). Regardless

of the details of the move, the [2s+ 2] part is not involved.

Vice versa, the nonzero entries in the first column above the J2s+2 Jordan block, in any row of

one of the Jd or Jdi Jordan blocks give rise to a move involving the parts [2s+ 2], [d], [d1], . . . , [dm]

(after taking the limit), but the [2r − 2] part is not involved.

Hence, regardless of the location of the nonzero entries above the Jr−1 and J̃2s+2 Jordan block,

a move of type [2r, 2s]→ [2r − 2, s2 + 2] does not occur.

This shows that the move O([. . . , r, s, . . .]) → O([. . . , r − 2, s + 2, . . .]) does not occur. We

conclude that the orbit O([. . . , r−2, s+2, . . .]) is not accessible from the orbit O([. . . , r, s, . . .]).

3.3 Conclusion for sp2n

In this chapter, we considered the five minimal moves in the dominance order of partitions cor-

responding to symplectic nilpotent orbits (see 3.1), and determined that four are valid moves for
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accessibility of these orbits. We can now describe the order of the orbits in the symplectic alge-

bras. In Section 2.4, we drew a conclusion for accessibility of nilpotent orbits in the general linear

group: the partial order on orbits is the same as the dominance order. This is not the case for the

symplectic algebra, as we have found in Section 3.2 that distinguished partitions are not accessible

from partitions higher up in the dominance order (e.g. in sp8, π1 = [6, 2] is not accessible from

π2 = [8]). Moreover, if we consider two partitions π1 = [. . . , r, s, . . .] and π2 = [. . . , r− 2, s+ 2, . . .],

with r ≥ s+6, then π1 dominates π2, but π2 is not accessible from π1. In Section 3.1, we have seen

the moves that are valid in the symplectic algebra, so we can determine an accessibility diagram

with the following theorem:

Theorem 3.3.1. The partial order on nilpotent symplectic orbits given by the accessibility relation

is determined by a combination of the moves of type 1 – 4.

In sections 3.1 and 3.2, we have seen that O(y) is accessible from O(x) if its partition change

is a move of type 1 – 4. But O(y) is not accessible from O(x) if the partition change can only

be obtained through a move of type 5. With the proof of Lemma 1.8.1 (which tells us that

the accessibility order is a partial order over algebraically closed κ), we can also determine the

accessibility order with respect to the dominance order:

Lemma 3.3.1. Let x, y be two nilpotent symplectic matrices. Then O(y)
c
≤ O(y)

c
if O(y) ≤

O(x), unless the move from O(x) to O(x) is of type 5.

With this theorem we can answer Questions 1 and 2 in Section 1.8.

1 The preorder on orbits given by cocharacter closure is a partial order.

2 Over a closed field κ, the cocharacter-closure G · xc does not coincide with the Zariski-closure

if the Zariski-closure contains a distinguished orbit, or if the Zariski-closure contains an orbit

G · y, where the move between O(x) and O(y) is of type 5.

We can now describe the difference between the dominance order, and the accessibility order,

of orbits. Let O1 and O2 be two partitions with π1 = [. . . , r1, s1, . . .] and π2 = [. . . , r2, s2, . . .].

Then O1 ≥ O2, while O2 is not accessible from O1 if [. . . , r1, s1, . . .] = [. . . , r2 + 2k, s2− 2k, . . .] for

k ∈ Z>0, and with r1 ≥ s1 + 6 and r2 − 2k 6= s2 + 2k.

Example. The following figure shows the accessibility diagram and the dominance order of nilpo-

tent orbits in sp8.
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[8] [6, 2]

[4, 4] [6, 1, 1]

[4, 2, 2]

[3, 3, 2] [4, 2, 1(2)]

[3, 3, 1, 1]

[2(4)] [4, 1(4)]

[2(3), 1(2)]

[2(2), 1(6)]

[1(8)]

[8]

[6, 2]

[4, 4] [6, 1, 1]

[4, 2, 2]

[3, 3, 2] [4, 2, 1(2)]

[3, 3, 1, 1]

[2(4)] [4, 1(4)]

[2(3), 1(2)]

[2(2), 1(6)]

[1(8)]

Figure 3.2: Accessibility and Dominance diagrams of the nilpotent orbits in sp8

Example. The following figure shows the accessibility diagraom of the nilpotent orbits in sp12.

Note that O([6, 4, 12]) is not accessible from O([8, 2, 12]), because the move of type 5 does not

occur in the symplectic algebra.
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[12] [10, 2] [8, 4]

[10, 12] [6(2)] [6, 4, 2]

[8, 2(2)]

[8, 2, 1(2)]

[5(2), 2] [6, 3(2)] [6, 4, 1(2)]

[8, 1(4)] [6, 2(3)]

[5(2), 1(2)] [4(3)]

[4(2), 2(2)] [6, 2(2), 1(2)]

[4, 3(2), 2] [4(2), 2, 1(2)]

[4, 3(2), 1(2)] [34] [6, 2, 1(4)]

[4, 2(4)] [4, 4, 1(4)]

[3(2), 2(3)] [4, 2(3), 1(2)] [6, 1(6)]

[32, 22, 12] [4, 2(2), 1(4)]

[2(6)] [32, 2, 14] [4, 2, 1(6)]

[2(5), 1(2)] [32, 16] [4, 1(8)]

[2(4), 1(4)]

[23, 16]

[2(2), 1(8)]

[2, 1(10)]

[1(12)]

Figure 3.3: Accessibility and diagram of the nilpotent orbits in sp12
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Chapter 4

Results in the orthogonal algebra

4.1 Partitions and moves

In this section, we describe some results in the orthogonal algebra. It will show that the matrix

forms of nilpotent elements are similar to those in the symplectic algebra, and that the orthogonal

moves share similarities with the symplectic moves.

We recall from Section 1.11.2 that the basis of on is as follows:

B = {e1, . . . , en, fn, . . . , f1} if Dim(B) = 2n,

B = {e1, . . . , en, v, fn, . . . , f1} if Dim(B) = 2n+ 1,

and the matrix of the bilinear form with respect to B is:

ΩO =


1

. .
.

1

 .

Then:

On = {g ∈ GLn | gTΩOg = ΩO},

on = {x ∈ gln | xTΩO + ΩOx = 0}.

Recall the orthogonal case of Theorem 1.11.1:

Theorem. Assume φ is symmetric (the orthogonal algebra). Then there exists a nilpotent element

in g with this partition if and only if ri is even for all even ni.

Then from Lemma 1.11.3, we know that:

Lemma. Let x ∈ on, then x is distinguished if and only if its partition π has distinct odd parts

(and no even parts).

Like we did in section 3.1, we consider the minimal moves through the dominance order of the

partitions corresponding to orthogonal nilpotent orbits. Then we have the following moves:

1. O([2m+ 1, 2m− 1])→ O([2m, 2m]).

2. O([2n+ 1,m,m])→ O([2n− 1,m+ 1,m+ 1]).
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3. O([n, n, 2m− 1])→ O([n− 1, n− 1, 2m+ 1]).

4. O([n, n,m,m])→ O([n− 1, n− 1,m+ 1,m+ 1]).

5. O([2n+ 1, 2m+ 1])→ O([2n− 1, 2m+ 3]).

Comparing with the moves in Section 3.1, it shows that the moves in the orthogonal algebra

are similar to those in the symplectic algebra; only the sizes of the partitions that occur once are

of different size. In moves 2, 3, and 4 there is at most one distinct partition, so there are very

similar matrix forms (see Sections 1.11.1 and 1.11.2 where we determined the standard forms of

matrices). Therefore we will omit Moves 2, 3, and 4. In the next section, we will analyse Move

1 in more detail, because the standard form of a matrix with partition [2m + 1, 2m − 1] is quite

different from the standard form of a matrix with partition [2m, 2m− 2], and it is worth viewing

the differences in more detail. Move 5 is impossible to realise with cocharacters, which we will

analyse in section 4.2.

4.1.1 The cocharacter realizing move 1

In first move for the orthogonal algebras is: O([2m + 1, 2m − 1]) → O([2m, 2m]). We start with

example O([7, 5]) → O([6, 6]). As established in Section 1.11.2, the standard form of an element

in O([7, 5]) is:

x =



0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1√
2

1√
2

0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 i√
2
− i√

2
0 0 0 0 0

0 0 0 0 0 0 0 i√
2

0 − 1√
2

0 0

0 0 0 0 0 0 0 − i√
2

0 − 1√
2

0 0

0 0 0 0 0 0 0 0 −1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 0 0 0 0 −1

0 0 0 0 0 0 0 0 0 0 0 0



,

and we have also determined that this type of nilpotent matrix may not occur in on over κ if

κ is not algebraically closed, since
√
−1 and

√
2 may not be defined. The matrix x induces the

following vector chains (for the vector chains of the general case, see Section 1.11.2):

f1 → −f2 → f3 →
1√
2

(−f6 − e6)→ −e3 → −e2 → −e1 → 0,

f4 → −f5 →
i√
2

(f6 − e6)→ e5 → e4 → 0.

Next, let x′ be of the form:
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x′ =



0 1 0 0 0 0 1 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 −1

0 0 0 0 0 0 0 −1 0 0 0 0

0 0 0 0 0 0 0 0 −1 0 0 0

0 0 0 0 0 0 0 0 0 −1 0 0

0 0 0 0 0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 0 0 0 0 −1

0 0 0 0 0 0 0 0 0 0 0 0



,

then it induces the vector chains:

f1 → −f2 − e6 → f3 − e5 → −f4 − e4 → f5 − e3 → −f6 − e2 → −2e1 → 0.

f2 − e6 → −f3 − e5 → f4 − e4 → f5 − e3 → f6 − e2 → 0.

As some entries in x involve i =
√
−1, we can expect the base change to show parts containing i

as well, and indeed we obtain the following base change matrix:

g1 =



2 0 0 0 0 0 0 0 0 0 0 0

0 1 0 −1 0 0 0 0 0 0 0 0

0 0 1 0 −1 0 0 0 0 0 0 0

0 0 0 0 0 1−i√
2

1+i√
2

0 0 0 0 0

0 0 0 0 0 0 0 1 0 −1 0 0

0 0 0 0 0 0 0 0 −1 0 1 0

0 1 0 1 0 0 0 0 0 0 0 0

0 0 −1 0 −1 0 0 0 0 0 0 0

0 0 0 0 0 1+i√
2

1−i√
2

0 0 0 0 0

0 0 0 0 0 0 0 1 0 1 0 0

0 0 0 0 0 0 0 0 1 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1



.

As some of the entries in g1 contain i as well, it is clear that this base change does not work over

any field κ, since
√
−1 may not be defined in some fields that are not algebraically closed. Matrix

g1 is not orthogonal, as gT1 ΩOg1 6= ΩO. Further calculation, as described in Section 1.12, gives the

following base change matrix:
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g =



√
2 0 0 0 0 0 0 0 0 0 0 0

0 1√
2

0 i√
2

0 0 0 0 0 0 0 0

0 0 1√
2

0 i√
2

0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 − i√
2

0 − 1√
2

0 0

0 0 0 0 0 0 0 0 i√
2

0 1√
2

0

0 1√
2

0 − i√
2

0 0 0 0 0 0 0 0

0 0 − 1√
2

0 i√
2

0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 − i√
2

0 1√
2

0 0

0 0 0 0 0 0 0 0 − i√
2

0 1√
2

0

0 0 0 0 0 0 0 0 0 0 0 1√
2



,

which is orthogonal.

Here we see that the orthogonal base change g to obtain x′, when x is given, may not occur

over any field κ, since
√
−1 and

√
2 are not always defined. Earlier, we have also seen that x is not

always defined when the restriction of algebraically closed fields is lifted, since x also has entries

containing
√
−1 and

√
2. Hence, for the orthogonal algebras, both the orbits of nilpotent elements

and the accessibility diagrams may change when the field κ is not closed.

4.2 A non-move for on

We have seen with Lemma 1.9.1 that distinguished partitions are not accessible. In gln, the only

distinguished partition is π = [n]. In the symplectic algebra, distinguished partitions are of the

form [2r1, . . . , 2rp], where each ri is distinct. In Section 3.2, we have seen that the orbit of the

non-distinguished partition O([. . . , 2r − 2, 2s+ 2, . . .]) is not accessible from O([. . . , 2r, 2s, . . .]), if

2r ≥ 2s+ 6, and 2r and 2s are adjacent parts in the partition.

It is now a natural question to ask if a similar case occurs in the orthogonal algebra, for two

odd parts in a partition. We recall the method to prove that the move of type 5 cannot occur in

the symplectic algebra, and use it for the move in the orthogonal algebra.

4.2.1 The setup

First, suppose that y - of size 2n - is in standard form, and x is of a form such that limλ x = y,

with λ also in standard form. Then limSd(λ)Sd(x) = Sd(y) and we have two possibilities:

(i) Sd(x) is conjugate to Sd(y) so no orbit change occurs.

(ii) Sd(x) is strictly higher than Sd(y) in the dominance order.

As in 3.2.2, we may assume that:

(i) y is in standard form with a repeated [. . . , d, d, . . .] part on the outside.

(ii) x is another nilpotent element.

(iii) λ is a standard-form cocharacter such that limλ x = y.

Next, we denote x = y = x0, then there is a λ0 such that limλ0
x0 = 0. x0 is strictly upper

triangular because λ is in standard form. Then limλ0
y = y and x′ := limλ0

x exists. Since

limλ x = y, limλ x
′ = y as well, hence x′ lies between x and y in the dominance order. Then if x

and y are adjacent, we get that one of the following two possibilities occurs:
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1. x′ = y.

2. x′ is conjugate to x.

In the case that x′ = y, the only difference between x and y lies in the outside d rows and

columns; Sd(x) = Sd(y). If x′ is conjugate with x, we may replace x with x′ and assume that x

has the same repeated [d, d] part on the outside.

4.2.2 The orthogonal non-move

The move of type 5 is of the form [. . . , 2r+1, 2s+1, . . .]→ [. . . , 2r−1, 2s+3, . . .] between adjacent

parts, with 2r− 1 > 2s+ 3. As both parts need to be odd (since they occur once in the partition),

it follows that 2r− 1 ≥ 2s+ 3 + 2, or 2r ≥ 2s+ 6, as is the case in the symplectic move of type 5.

Now we apply Section 3.2.3 to this orthogonal case. If x′ is conjugate to x, then x, y share

a [. . . , d, d, . . .] part which we may assume is on the outside. Then we may apply the shrinking

operation to remove the d−parts. So here too the move between Sd(x) and Sd(y) is the same as

between x and y, for the two adjacent [. . . , 2r+ 1, 2s+ 1, . . .] parts. By induction on the shrinking

operation, this is equivalent to the move [2r + 1, 2s + 1] → [2r − 1, 2s + 3] between distinguished

partitions, which cannot occur.

So we are left with the first case: x′ = y. By replacing x with x′, and λ with λ0, this is the

situation of Sd(x) = Sd(y). The first d rows and last d columns are related in on. By using the

suitable conjugations we will again kill off nonzero entries in the first d rows (after the first d

columns) and last the d columns (before the last d rows). We let v denote the first d rows of the

jth column, viewed as a column vector of length d. Let vs denote the sth entry of v, and let vt

denote the last nonzero entry of v. The difference between the proof in the orthogonal case and

the symplectic case, is that in the orthogonal case several columns have two nonzero entries in two

rows below row d, which we will denote by iα, iβ . We can then make the following observations:

1. There is one other nonzero entry, or there are two in the jth column, as Sd(x) = Sd(y) is in

standard form.

2. x is strictly upper triangular, so d < i < j.

3a. If there is one other nonzero entry, this entry is a 1 if i ≤ n, and −1 if i > n.

3b. If there are two other nonzeroes, we denote these by α, β for the entries in position (iα, j)

and (iβ , j) respectively. The values α and β take are 1√
2
, − 1√

2
, i√

2
, or − i√

2
.

4a. If one other nonzero entry is present in column j, then this is the only nonzero entry in row

i, with i > d.

4b. If two other nonzero entries are present in column j, then there are two nonzero entries in

row iα, and two nonzero entries in row iβ , in accordance with the “block” in the centre of

the matrix.

So x is of the following standard form (see Section 1.11.2), with repeated blocks between Jd and

Jr−1 left out for symplicity:
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x =



Jd ? ? ? ? ? ? ? ? ? ? ? ? ? ?

?

Jr−1 ?
1√
2 (a)

1√
2 (b)

?

?

Js+1 ?
i√
2 (c)

− i√
2 (d)

?

i√
2 (e)

− 1√
2 (f)

?

− i√
2 (g)

− 1√
2 (h)

?

?

−Js+1 ?

?

?

−Jr−1 ?

?

−Jd



,

where the stars indicate nonzero entries at any location in their respective blocks, and:

(a) = (d+ r − 1, d+ r + s+ 1) (b) = (d+ r − 1, d+ r + s+ 2)

(c) = (d+ r + s, d+ r + s+ 1) (d) = (d+ r + s, d+ r + s+ 2)

(e) = (d+ r + s+ 1, d+ r + s+ 3) (f) = (d+ r + s+ 1, d+ r + 2s+ 4)

(g) = (d+ r + s+ 2, d+ r + s+ 3) (h) = (d+ r + s+ 2, d+ r + 2s+ 4)

We now split into the following subcases, where subcases 1 and 3 are identical to subcases 1 and 3

in the symplectic case, see Section 3.2.3. Subcase 2 is different, and we split that up further, into

four parts.

1. j ≤ n, and i ≤ n,

2a. j = n− 1, and iα, iβ ≤ n,

2b. j = n, and iα, iβ ≤ n,

2c. j = n+ 1, with iα = n, and iβ = n+ 1.

2d. j > n+ 1, with iα = n, and iβ = n+ 1

3. j > n, and i > n.

First, as subcases 1 and 3 in the orthogonal case are the same as subcases 1 and 3 in the

symplectic case, a suitable unipotent matrix u will move the nonzero entry vt in position (t, j) up

and to the left, matched by a −vt entry in position (2n+ 1− j, 2n+ 1− t) that moves down and

to the right. By repeatedly conjugating with the desired unipotent matrices u, all entries in these

cases will either be killed off, at the cost of changing the entries in the first d rows of otherwise

zero columns in x, or changing the entries in the first d rows in columns j that have two nonzero

entries further down the column; we kill those off by applying any of the second subcases.

In the subcases 2a through 2d, the entry vt is in position (t, j), with t ≤ d, and there are

two other nonzero entries further down column j: α in position (iα, j), β in position (iβ , j),

with both iα, iβ > d. Then let u be a unipotent matrix with 1s down the diagonal, and entries
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α̂ in position (t, iα), β̂ in position (t, iβ), and (as the matrices are orthogonal) −α̂ in position

(2n+ 1− iα, 2n+ 1− t), −β̂ in position (2n+ 1− iβ , 2n+ 1− t). In the following table, the values

of α̂ and β̂ are set out for each part of subcase 2.

α̂vt β̂vt

2a −αvt = − 1√
2
vt −βvt = − i√

2
vt

2b −αvt = − 1√
2
vt βvt = − i√

2
vt

2c αvt = i√
2
vt βvt = − i√

2
vt

2d −αvt = 1√
2
vt −βvt = − 1√

2
vt

Then uxu−1 kills off the vt-entry in position (t, j), at the expense of adding −α̂vt and −β̂vt values

to the entries in positions (t− 1, iα) and (t− 1, β), respectively. The conjugation also kills off the

−vt-entry in position (2n + 1 − j, 2n + 1 − t), while adding α̂vt and β̂vt values to the entries in

positions (2n+ 1− iβ , 2n+ 1− (t− 1)) and (2n+ 1− iα, 2n+ 1− (t− 1)).

Hence we can conclude that in these subcases, we can conjugate by a suitable unipotent matrix

to move a nonzero entry vt in column j, in the first d rows of x, up and to the left while there

are two nonzero entries further down in column j. Then by conjugating with suitable unipotent

matrices for all subcases 1 through 3, we can obtain a new matrix x with the nonzero entries in

the first d rows only in the columns which are zero columns in Sd(x):

x =



Jd ? ?

Jr−1
1√
2 (a)

1√
2 (b)

Js+1

i√
2 (c)

− i√
2 (d)

i√
2 (e)

− 1√
2 (f)

− i√
2 (g)

− 1√
2 (h)

−Js+1

?

−Jr−1
?

−Jd



,

where the stars indicate nonzero entries in the first column or last row of their respective blocks,

and:

(a) = (d+ r − 1, d+ r + s+ 1) (b) = (d+ r − 1, d+ r + s+ 2)

(c) = (d+ r + s, d+ r + s+ 1) (d) = (d+ r + s, d+ r + s+ 2)

(e) = (d+ r + s+ 1, d+ r + s+ 3) (f) = (d+ r + s+ 1, d+ r + 2s+ 4)

(g) = (d+ r + s+ 2, d+ r + s+ 3) (h) = (d+ r + s+ 2, d+ r + 2s+ 4)

Now we again analyse the vector chains induced by x, and compare it to our assumption. Recall

that y induces vector chains of size 2r−1, 2s+3, and two of size d. To determine the vector chains

of x, we can apply the analysis from Section 3.2.3, to conclude that the vector chains are not of
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size 2r + 1, 2s + 1, and d (with multiplicity 2). Hence the move made by taking the limit limλ x

to obtain y is not of the form [. . . , 2r+ 1, 2s+ 1, . . .]→ [. . . , 2r− 1, 2s+ 3, . . .]. Hence the move of

type 5 doesn’t occur in the orthogonal algebra.

4.3 Conclusion for on

As we have observed the many similarities between accessibility of nilpotent orbits in the symplectic

algebra, and the accessibility of nilpotent orbits in the orthogonal algebra, we can draw the same

conclusion. Theorem 3.3.1 in Section 3.3 applies to the orthogonal algebra as well:

Theorem 4.3.1. The partial order on nilpotent orthogonal orbits given by the accessibility relation

is determined by a combination of the moves of type 1 – 4.

Proof. To show that moves 1−4 apply, while Move 5 doesn’t, we have explicitly shown that move 1

is a valid move between orthogonal nilpotent orbits. The moves 2, 3, 4 are constructed in the same

way as they are for the symplectic algebra, in Sections 3.1.2, 3.1.3, 3.1.4. To determine that move

5 is invalid, the theory of move 5 in the symplectic case can be applied again (see 3.2.3), though

with the addition for the subcases where a nonzero entry vt in the first d rows is in a column with

2 nonzeroes in rows iα, iβ for iα, iβ > d. That the ordering in the orthogonal algebra is reflexive,

transitive and antisymmetric is covered by the proof of Theorem 3.3.1. Hence the accessibility

relation gives a partial order on nilpotent orbits in the orthogonal groups.

Then the answers to Questions 1 and 2 in Section 1.8 are the same for the orthogonal algebra

and the symplectic algebra:

1 The preorder on orbits given by cocharacter closure is a partial order.

2 Over a closed field κ, the cocharacter-closure G · xc does not coincide with the Zariski-closure

if the Zariski-closure contains a distinguished orbit, or if the Zariski-closure contains an orbit

G · y, where the move between O(x) and O(y) is of type 5.

Example. The following figure shows the accessibility diagram and the dominance order of nilpo-

tent orbits in o8.

[7, 1] [5, 3]

[4, 4] [5, 1, 1, 1]

[3, 3, 1, 1]

[3, 2, 2, 1]

[2(4)]

[3, 1(5)]

[2(2), 1(4)]

[1(8)]

[7, 1]

[5, 3]

[4, 4] [5, 1, 1, 1]

[3, 3, 1, 1]

[3, 2, 2, 1]

[2(4)]

[3, 1(5)]

[2(2), 1(4)]

[1(8)]

Figure 4.1: Accessibility and Dominance diagrams of the nilpotent orbits in o8.
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Chapter 5

Further research

5.1 Non-algebraically closed fields

In this thesis we have focused on the case where the group G acting on a set X, is over an

algebraically closed field κ. In this chapter, we will explore reasons for that, and to what extent

it might be possible to relax the assumption of an algebraically closed field. This is important,

since one of the motivations for the introduction of cocharacter closure is to provide a formalism to

work over an arbitrary field: recall that studying Zariski-closed sets may fail to pick up interesting

behaviour, see also in the example of Section 1.5. We begin with a positive result: let κ be any

field, then although the Jordan normal form for matrices may not work over κ, it is still the case

that nilpotent n × n matrices have a standard form. This is because for nilpotent matrices the

eigenvalues are all zero, and the calculations needed to put a matrix in standard form can all be

done over κ.

Thus GLn(κ)-orbits of nilpotent matrices over κ still correspond to partitions as described in

Chapter 2. We then have the following theorem:

Theorem 5.1.1. The accessibility for nilpotent orbits of GLn(κ) is identical to the accessibility

for nilpotent orbits of GLn(κ).

Proof. Suppose that x1 and x2 are nilpotent matrices in gln(κ), with partitions π1 = [r1 +

k1, . . . , rp + kp, s1 − l1, . . . , sq − lq] and π2 = [r1, . . . , rp, s1, . . . , sq] respectively, such that O(π2)

is accessible from O(π1). In Section 2.4, we showed that the accessibility O(π1) → O(π2) is a

combination of two moves:

O([r +

p∑
i=1

ki, s1 − k1, . . . , sp − kp])→ O([r, s1, . . . , sp]),

O([r1 + k1, . . . , rq + kq, s−
q∑
i=1

ki])→ ([r1, . . . , rq, s]).

So it suffices to show that these orbits and moves are defined over any field κ.

Starting with the orbits, recall that any nilpotent matrix in gln is a Jordan normal form in its

standard form:
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x1 =



Jr1
. . .

Jrp

Js1
. . .

Jsq


,

where each Ji has ones on the upper diagonal, and zeroes everywhere else. So the Jordan blocks

are defined over any field, hence the nilpotent matrices are also defined over any field κ.

Next, we check that the base changes are valid. Recall that a base change gives rise to a matrix

g such that x′1 = g ·x. In Section 2.3, we determined the base changes for the two moves described

above. In Equation 2.3, the base change for the move O([r1 + k1, . . . , rq + kq, s −
∑q
i=1 ki]) →

O([r1, . . . , rq, s]) has no coefficients other than 1, so it is defined over any field κ, as is the base

change matrix g. Then x′1 is also defined over κ, as it is the conjugation of x1 with g. Similarly,

the base change for the move O([r +
∑p
i=1 ki, s1 − k1, . . . , sp − kp]) → O([r, s1, . . . , sp]) is defined

over κ. We can then combine the base changes, to obtain a ‘final’ base change that is still defined

over any field κ. Hence the nilpotent gln-orbits are also defined over any field κ.

Finally, the cocharacters λ are diagonal matrices in their standard form, and the nonzero entries

are all powers of t, that are non-increasing as they go down the diagonal. These powers of t are

defined over κ(t), for any field κ, hence the cocharacter is defined for any κ(t). In 1.6, conjugating

with a cocharacter with non-increasing powers of t showed that the limit limλ g · x is defined over

κ for suitable x and g. Since x, g and λ are defined over any field κ, the limit is still valid if we

remove the restriction of algebraically closed fields.

Corollary 5.1.1. The dominance order on nilpotent orbits for GLn(κ) describes the order from

cocharacter closure over an arbitrary field.

We now discuss the symplectic and orthogonal groups, where the situation is less transparent.

The main problem for our approach is that one of the key results - Theorem 1.12.1 - fails over

fields that are not algebraically closed. In Section 3.1.1, we considered the orbits O([5, 5]) and

O([6, 4]) in the symplectic algebra, and found a matrix x ∈ sp10 in the orbit O([6, 4]), and x′ in

the same orbit that had its limit y = limλ x
′ ∈ O([5, 5]) for a suitable cocharacter λ. Here, we will

determine the base change by first finding a base change g1 ∈ GL10, and then making it symplectic

by applying Theorem 1.12.1.

For the move O([6, 4])→ O([5, 5]), recall that:

x =



0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 −1 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 0 0 −1

0 0 0 0 0 0 0 0 0 0



, x′ =



0 1 0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 −1 0 0 0

0 0 0 0 0 0 0 −1 0 0

0 0 0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 0 0 −1

0 0 0 0 0 0 0 0 0 0



.

Then we obtain a base change matrix g1 of the form:
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g1 =



2 0 0 0 0 0 0 0 0 0

0 1 0 −1 0 0 0 0 0 0

0 0 1 0 −1 0 0 0 0 0

0 0 0 0 0 −1 0 1 0 0

0 0 0 0 0 0 1 0 −1 0

0 1 0 1 0 0 0 0 0 0

0 0 −1 0 −1 0 0 0 0 0

0 0 0 0 0 1 0 1 0 0

0 0 0 0 0 0 1 0 1 0

0 0 0 0 0 0 0 0 0 1



,

which is not symplectic, as gT1 ΩSg 6= ΩS. By the process described in Section 1.12, we obtain a

symplectic base change g, of the following form:

g =



−i
√

2 0 0 0 0 0 0 0 0 0

0 − i√
2

0 − 1√
2

0 0 0 0 0 0

0 0 − i√
2

0 − 1√
2

0 0 0 0 0

0 0 0 0 0 − 1√
2

0 − i√
2

0 0

0 0 0 0 0 0 1√
2

0 i√
2

0

0 − i√
2

0 1√
2

0 0 0 0 0 0

0 0 i√
2

0 − 1√
2

0 0 0 0 0

0 0 0 0 0 1√
2

0 − i√
2

0 0

0 0 0 0 0 0 1√
2

0 − i√
2

0

0 0 0 0 0 0 0 0 0 − i√
2



,

which has entries containing
√
−1 and

√
2, so a symplectic base change is not possible over fields

in which these values are not defined. Hence we can say that x and x′ are Sp2n(κ̄)−conjugate, but

not necessarily Sp2n(κ)−conjugate.

This means that we cannot analyse nilpotent orbits over an arbitrary field without additional

tools at our disposal. However, there are some options if we restrict our attention to certain classes

of fields.

As an example, further research could be fruitful in the direction of finite fields. Let G be the

symplectic or orthogonal group defined over κ = Fq, the closure of the finite field with q elements.

Then Fq can be realised as the fixed points of the Frobenius endomorphism x 7→ xq, which extends

to a homomorphism σ which raises each matrix entry to the qth power:

σ : G→ G,

given by aij 7→ aqij .

It is clear that the subgroup Gσ of σ-fixed points in G is the finite symplectic or orthogonal

group consisting of matrices satisfying the defining conditions for G, but with all entries in Fq. We

can now extend the Frobenius endomorphism to a map on the Lie algebra g of G and consider how

the G−orbits of g relate to the Gσ−orbits of gσ.

In particular, if x ∈ g is such that σ(x) = x, how does (G · x)σ := G · x ∩ gσ decompose into

Gσ−orbits? The theorem of Springer-Steinberg (see [10, p.172-173]) gives the answer:

Theorem. Let C = CG(x) be the centralizer of x in G. Then the Gσ−orbits in (G · x)σ are

parametrised by the elements of the cohomology group H1(σ,C). In the special case that C is
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connected, there is a single orbit.

Here H1(σ,C) denotes C modulo the equivalence relation a ∼ b if and only if there exists c ∈ C
with a = cbσ(c)−1. These are the orbits under ‘twisted’ conjugation. With this result and the

knowledge of the centralizers of nilpotent elements from [7, Section 3], in principle we can work out

the nilpotent orbits for these finite groups and then begin to analyse accessibility relations between

them. In practice, this is likely to be a complex process, but it is possible that we could find a

general theorem analogous to theorem 3.3.1 , which deals with accessibility of nilpotent symplectic

orbits over a closed field (or the likely similar theorem for nilpotent orthogonal orbits).

5.2 Non-classical groups

Simple algebraic groups over an algebraically closed field have a classification by root data (see [6,

p.229]), as in common in Lie Theory. This means that for a fixed algebraically closed field κ there

are four infinite families of simple algebraic group – types A, B, C and D – and five exceptional

families – types E6, E7, E8, F4 and G2. There is in general more than one simple group of each

type, but they are all closely related by isogeny – there is a so-called simply connected group of

each type and an adjoint group of each type, and all the others lie somewhere in between. In any

case, the structure of the nilpotent orbits is insensitive to this change of group within each type,

so we are free to choose a representative of each type and study that. The groups in this thesis

cover the four infinite families: type A simple groups are represented by the special linear groups

SLn, and this is covered by our work in Chapter 2, type C is symplectic groups (Chapter 3), and

types B and D are orthogonal groups (Chapter 4). This leaves the exceptional groups, which we

now briefly discuss.

Typically, when dealing with the exceptional groups it is rather difficult to produce uniform

arguments, like we have been able to provide above for the classical groups, and one has to proceed

in a more ad hoc manner, case by case. Type G2 was explored in some depth in [1]. The next case

to consisder would be F4. In attacking these groups, there is some hope that a method similar to

the method’s laid out in [1] might bear fruit.

The nilpotent orbits in exceptional groups can be classified by combinatorial data, based on

the Dynkin diagram of the root system, and the G2 calculations in [1] suggest that for many of

the orbits the accessibility question is relatively easy to settle by writing down cocharacters based

on the coroots. As above, what is likely to be more difficult is to settle cases where orbits are

not accessible from higher up. By Lemmas 1.9.2, 1.11.2, 1.11.3, we know that there will be non-

accessible orbits, corresponding to distinguished nilpotent elements. However, it is quite likely that

within the larger exceptional groups, there are more complicated relationships between the orbits,

as discovered in the symplectic and orthogonal groups in Chapters 3 and 4.
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matics vol.228, Birkhäuser Boston, Boston, MA, 2004.

[8] G. R. Kempf Instability in Invariant Theory. Annals of Mathematics, vol.108(2). (1978), p.299-

316. Mathematics Department, Princeton University.

[9] T.A. Springer Linear Algebraic Groups. Progress in Mathematics. Boston: Birkhäuser 2nd ed,
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