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Veritatem inquirenti, semel in vita de omnibus,
quantum fieri potest, esse dubitandu:

In order to seek truth, it is necessary once in the course of our life, to
doubt, as far as possible, of all things.

- Descartes, Rene, Principles of Philosophy



iv



Abstract

Atmospheric chemistry mechanisms play a pivotal role in our understanding
of societal problems such as air pollution, climate change and stratospheric
ozone loss. This thesis explores the benefits of representing these mecha-
nisms in terms of a mathematical graph (or network) which connects species
(nodes) through reactions (edges). We use the Dynamically Simple Model of
Atmospheric Chemical Complexity and the Master Chemical Mechanism to
explore the number of real-world scenarios - using graph theory and machine
learning to visualise, understand and analyse the underlying chemistry of
the lower atmosphere.

We begin by exploring different visualisation techniques to depict chemistry
within the atmosphere. It is found that the sociograph framework provides
the most (visually) intuitive delineation of the species and their reactions.
For large, complex systems, this type of quasi-qualitative analysis has its
limitations - physical and cognitive. Instead, the relationships between
species in the network are quantified using graph centrality metrics and then
compared against well-established methods such as the Jacobian and Rate
Of Production Analysis. Further development of graph theory allows us to
couple natural language processing, network decomposition, and clustering
to identify species with similar lifetimes, reaction styles, or temporal profiles.

Having explored aspects of mechanism analysis, visualisation and reduction,
we examine how varying representations of species structure can affect the
patterns highlighted by unsupervised machine learning models. This is done
by visualising them in 2D space and serves as a precursor to potential future
work involving Graph Convoluted Neural Networks - thus consolidating the
contents of this thesis.

Ultimately it is found that using a graph-theory approach can prove highly
beneficial in the understanding and explanation of chemical mechanisms,
but should not (as of yet) be used in substitution of existing investigation
and reduction methods.
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“In the beginning the Universe was created. This has made a lot
of people very angry and been widely regarded as a bad move”

- Douglas Adams, The Restaurant at the End of the Universe



4 1.1. Background

1.1 Background

1.1.1 A Preface On Humanity And The Climate

The development of humanity is not unlike the chirography of an Aristotelian tragedy. It starts with

a simple/primitive species cradling a noble cause - to improve their chances of survival. Here the

protagonist (humankind) develops a fatal flaw: insecurity and latent destruction of their home due to

a sudden rise to power. Having acknowledged this flaw, we now strive to improve our understanding

of the universe, correct past mistakes and stem the tide of inevitable change.

With tragedy being an imitation not of humanity, but of action and life, happiness and misery, it is

only expected that such a comparison to our current affairs should stir feelings of catharsis when

exploring our need for research and scientific advancement. It is with that I begin this thesis with the

beginning of the planet, its atmosphere and consequently the start of humankind.

1.1.2 Formation Of The Atmosphere

4.5 billion years ago the Earth began as a disk of dust and gas orbiting our sun. The movement

of such gasses produces a resonant drag instability, which causes them to clump together [Hopkins

and Squire, 2018; Woo, 2018]. As these ‘clumps’ become denser, other forces come in to play and

further increase their size. These eventually produced the hot mix of gas and solid, which was to

become Earth. As the Earth cooled, the volatile components of the primordial gas cloud surrounding

it begins to form an atmosphere. At this point, oxygen was not only absent in the atmosphere but

also had many sinks within the Earths anoxidised crust. It was not until oxygenic photosynthesis

([Peretó, 2011]) that the concentrations of oxygen in the atmosphere started to increase. Eventually

the development of multicellular cyanobacteria1 resulted in biologically induced oxygen accumulating

in the atmosphere, [University of Zurich, 2013]. This led to the most significant climate event in the

history of the planet: the Great Oxygenation Event (2.5 billion years ago), [Planavsky et al., 2014].

This increase in oxygen allowed organisms to become larger and more active, eventually resulting in

the human race.

1.1.3 Rise Of The Homo Sapiens (‘Wise Man’)

2-6 million years ago there were many varieties of the ‘homo’ genus (Figure 4.1,Wood [2014]). 70,000

years ago homo sapiens came into existence and started the cognitive revolution. Here again in brain

1The phylum of photosynthetic prokaryotic (cells not containing a distinct nucleus) bacteria - e.g. blue-green algae
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size increased communication, tool development and analysis capabilities. However, the evolutionary

brain enlargement required an increase in net energy intake [Navarrete et al., 2011] (the brain makes

up for 2-3% of human body mass but consumes 25% of the body’s energy at rest [Harari, 2015]).

A change of diet [Aiello and Wheeler, 1995] soon addressed this energy imbalance, provisioning and

sharing (cooperative breeding) and tool-assisted processing such as cooking [Wrangham, 2009] - the

first known case of anthropogenic indoor air pollution. The increase of cerebral power eventually

led to the agricultural revolution2 (12,000 years ago) and the scientific revolution3 (500 years ago),

[Harari, 2015].

Air pollution and climate have always been a concern for the human race. Such disquietude was first

documented 6000 years ago with the ancient greeks (lead in the air) [Lomborg et al., 2001] and the

Romans (Rome was reported to have a ‘stink of soot and heavy air’) [Miller, 2010]. In 1285 the smell

of burning jet4 drove the Queen of England to leave Nottingham and 22 years later King Edward

released the first air pollution act [Brimblecombe, 1977]. In the 18th century, the United Kingdom

entered the Industrial age, here combustion was used to power machines and replace hand tools with

mechanical ones. With this started the age of technology and automation - a process requiring energy,

and thus increasing emissions to the atmosphere. In the present day, technology is ever increasing in

efficiency - however, the rate of this is not yet sufficient to mitigate any damage already caused.

1.2 Motivation (How The Atmosphere Affects Us)

The atmosphere constitutes an integral part of the Earth system. It is responsible for shielding

the planetary surface from harmful radiation; allowing the transport of energy (weather and climate

forcing), and interacting with the biosphere. This section explores the many roles of the atmosphere,

and consequently, the interests and motivation of climate and atmospheric science. We start with the

composition of the atmosphere and air quality (Subsection 1.2.1), and then relate this to the different

roles of ozone (Subsection 1.2.2), concluding on changing climate and radiative forcing, for with OH

plays a vital role (Subsection 1.2.3).

2Domestication of plants and animals.

3humankind admits ignorance and gain unprecedented control

4The lowest rank of coal and very common at the time.
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1.2.1 Air Quality - It Is The Air We Breathe

The atmosphere consists mainly of nitrogen (N2) and oxygen (O2)5, in addition to a vast range of

other species [Pryor et al., 2015]. Human beings rely on oxygen to convert sugars and fatty acids into

energy. The procurement of this lies through the breathing of the air surrounding us - the composition

of which can have dire effects on our respiration system. Pollutants such as particulate matter (PM),

ozone (O3), nitrogen dioxide (NO2) and sulphur (SO2) dioxide can cause respiratory problems, heart

disease, strokes, cancer and chronic obstructive pulmonary disease WHO [2018]. Over 80% of people

who live in urban environmets6 are exposed to poor air quality levels exceeding the recommended

limits by World Health Organisation, air quality poses a significant risk to human life - It is estimated

that 4.2 million premature deaths globally are linked to ambient air pollution7 (Figure 1.1).

Figure 1.1: Reported deaths attributed to air pollution by country (2016)A cartogram (and
cloropleth) showing the number of premature deaths attributed to ambient air pollution per 100,000.
The colour bar range is from 9 in Canada (light blue) to 170 in eastern Europe (navy) people. Data
Source:[WHO, 2016]

5These form 99% of its dry-air total mass

6Which measure the levels of air pollution.

7A similar number can also be attributed to indoor air pollution - which also falls under the umbrella term of
Air-Quality.



1 - Introduction 7

1.2.2 Stratospheric Ozone - The Protective Barrier

Ozone plays a vital role in the stratosphere. This was seen in the 1980s where the use of Cloro Fluro

Carbon (CFC) aerosols resulted in the thinning of the atmospheric ozone [Farman et al., 1985]8. This

resulted in an increase in UV-B radiation, and in consequence skin cancers, immune suppression and

disorders of the eye [Bais et al., 2018]. Due to this, the Montreal Protocol on Substances that Deplete

the Ozone Layer was put into place to reduce the adverse effects experienced by humans and the

Earths surface [UNEP, 1987]. As part of this, CFCs are still being phased out resulting in a gradual

decrease in the damage of the ozone hole.

1.2.3 Changing Climate

Over the last 30 years, a large body of scientists has established that humans have a warming effect

on the planet [Houghton et al., 1996b,a; IPCC, 2007, 2013; IPBES, 2019]. Here it has been shown

that changes in temperature can lead to the melting of glaciers, rise of sea levels, extreme weather

events and the extinction of many species.

The impact of this resulted in the nations of the world to develop a ‘legally binding’ agreement to

combat climate change (the Paris agreement) [Phillips, 2015; UNFCCC, 2015]. However, a recent

analysis on the current state of the world outlines that the failure to set, implement and without

adequate targets and procedures within the last decade mean that we now need to do ‘four times the

work, or [do it in] one-third of the time’ [Höhne et al., 2020].

1.3 Tropospheric Chemistry

The lowest part of the atmosphere (<18km)9 is called the troposphere. This contains 75% of the mass

of the atmosphere, and comes from the greek τρoπoς which means ‘way’ or ‘turn towards change’.

This describes the turbulent mixing that happens due to friction in the lower 2km of the atmosphere

(the boundary layer). As the troposphere is the closest part of the ground, this where most of the

complex chemistry which affects us at the surface happens. This section describes the underlying

chemical processes which exist in the atmosphere.

8Here the chlorine attacks the double bond and ‘steals’ an oxygen atom from the O3 molecule.

918km at the tropics, 17km in the mid-latitudes and 6km at the poles.
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1.3.1 Ozone Production/Loss

In the troposphere, the mixing ratio of ozone is controlled by the photostationary state relationship

(Equation 1.1-1.3). Since the concentrations of ozone (20-60 ppbv)10 are often much higher than that

of the nitrogen oxides, NO (1-60 pptv)11 and NO2 (5-70 pptv), the rapid rate of reaction between

Equation 1.1 does lead to a net change in O3 concentration 12 [Jacobson, 2005].

NO + O3
k1−−→ NO2 + O2 (1.1)

NO2
hv (J)−−−→ NO + O (λ < 420nm) (1.2)

O + O2 + M
k2−−→ O3 + M (1.3)

Using Equation 1.1 and Equation 1.2 it is possible to describe the change in NO2 as:

d[NO2]

dt
= k1[NO][O3]− J [NO2] (1.4)

If the relative change of NO2 is small, it can be thought of as being in a steady-state. This means that

Equation 1.4 can be simplified to produced a relationship between O3, NO and NO2 in steady-state

(Equation 1.5). Here if any two concentrations are known, the third can be calculated.

[O3] =
J [NO2]

k1[NO]
(1.5)

As ozone is a secondary pollutant (made not emitted), and its primary reaction produces the null cycle,

the production of ozone in the atmosphere requires an increase in nitrogen dioxide concentrations.

1.3.2 The NOx Cycle

Ozone production/loss in the troposphere is directly dependant on the concentration of available

Nitrogen Oxides (NOx) (Subsection 1.3.1). These are predominantly emitted by motor vehicles and

power stations and can are known to cause respiratory problems in children and asthmatics as well as

disrupting terrestrial and aquatic ecosystems [EEA, 2018]. Although NOx may be released naturally,

the anthropogenic influence on their emissions was highlighted in early 2020 where the COVID-

10ppbv: parts per billion volume

11pptv: parts per trillion volume

12In urban areas NO concentrations may rise to be be greater than those of O3 during the night. This leads to a
decrease in from Equation 1.1
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19 coronavirus disrupted travel across mainland China, causing a significant drop in anthropogenic

emissions - Figure 1.2.

Figure 1.2: Changes in NOx concentrations due to anthropogenic emissions. A reduction
in activity and trasport produces a notable decrease of Nitrogen dioxide concentrations in the tropo-
sphere. Source: [Stevens, 2020]

During the day nitrate (NO3) radicals can be formed through the reaction with O3: Equation 1.4 and

Equation 1.6, however this is quickly destroyed through rapid photolysis (Equation 1.7) [Ng et al.,

2017]. At night photolysis reactions such as Equation 1.7 and Equation 1.2 are no longer possible and

the ozone production process shuts down.

NO2 + O3
k3−−→ NO3 + O2 (1.6)

NO3
hv−−→ NO2 + O(3P ) (1.7)

The increased amount of NO3 can now react with NO2 to produce dinitric pentoxide (N2O5) and (in

solution) nitric acid (HNO3) - Equation 1.8 and Equation 1.9. Equation 1.8 is a three-body forwards

pressure dependant reaction and a reverse temperature dependant reaction. During the day at the

lower troposphere, it is warm, and the reverse reaction can occur within seconds, however, at night

or high altitudes it can take anywhere from hours to months [Jacobson, 2005].

NO3 + NO2
M−−⇀↽−− N2O5 + O (1.8)
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N2O5 + H2O
k4−−→ 2 HNO3 (1.9)

1.3.3 HOx Cycle

The hydroxyl (OH) radical is central to tropospheric chemistry and a major sink for many of the

greenhouse gasses (including ozone - see Equation 1.12) [Olson et al., 1997]. Its primary source of

production is through the action of UV in sunlight to photolyse ozone [Jacobson, 2005]:

O3
hv−−→ O1D (1.10)

O1D + H2O −−→ 2 OH (1.11)

OH + O3 −−→ HO2 + O2 (1.12)

As OH is highly reactive, with a lifetime of < 1 seconds - Figure 1.3, it is not transported a long

distance and only exists during daytime (when it is still being produced). In reacting with a VOC,

the hydroxyl radical scavenges hydrogen to form a radical species and water (H2O). This produced

radical species can then move on to react with O2 to produce a RO2 species Equation 1.14.

OH +RH −−→ R.+ H2O (1.13)

R.+ O2 −−→ RO2 (1.14)

RO2 +NO −−→ RO + NO2 (1.15)

The created RO2 can then convert NO to NO2 producing an RO (Equation 1.16) which also does the

same via the hydroperoxide radical HO2 (Equation 1.17 - 1.18). This NOx conversion is able to drive

Ozone formation in the conventional way: Equation 1.1-1.3.

RO2 +NO −−→ RO + NO2 (1.16)

RO + O2 −−→ HO2 (1.17)

HO2 +NO −−→ NO2 +OH (1.18)
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1.3.3.1 The Hydroperoxide Radical

Unlike OH, HO2 can exist both during daytime and night. It can further react with ozone to reproduce

the hydroxyl radical and create two O2 molecules - Equation 1.19.

HO2 + O3 −−→ OH + O2 + O2 (1.19)

The loss of ozone loss depends on the NO mixing ratio, where if NO > 10 pptv, HO2 will react

predominantly with the NOx species. At lower concentrations (3-10 pptv) HO2 reacts mainly with

ozone, and at deficient concentrations, it reacts mostly with itself [Finlayson-Pitts and Pitts, 2000].

Combined OH and HO2 form the HOx species and the cycle in Figure 1.4.

Figure 1.3: Spatial and temporal scales of variability of atmospheric species. This shows
that the longer lived a species, the further it is likely transported through the atmosphere. Source:
[Seinfeld and Pandis, 2016]
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Figure 1.4: The HOx cycle. The OH aids in the oxidation of VOCs, which makes them more water
soluble - this allowing for their removal from the atmosphere. In a high NOx evironment the RO2
radicals can then reactive with NO to produce NO2, and consequenty more ozone.

1.4 Modelling The Earth

In the previous section, the air quality and its detrimental effects on human health were seen to

influence policy for cities and industry. For a policy to be passed there needs to not only evidence of

the problem but a strong suggestion that any proposed changes will have the desired effect. As it is

not possible to perform experiments on complex, and often unknown, chemistry at every location on

the planet, we are forced to rely on the numerical simulation of the Earth System, and the constituent

parts within it.

1.4.1 Earth System Models (ESM)

ESMs are models capable of predicting past or future interactions of the planetary system. They

represent our foremost understanding of the complex interplay between land-surface (geosphere),

ocean (hydrosphere), ice (cryosphere) and the air (atmosphere), and act as a surrogate to manual

experimentation - which is just not possible on the global scale. ESMs can be split into individual parts.

One example of this is the Chemistry section of the Goddard Earth Observing System (an integrated

ESM and data assimilation model hosted by NASA’s Goddard space flight centre [Community, 2020])

- GEOS Chem. GEOS-Chem is a global 3D model of atmospheric chemistry which is driven by the

meteorology provided by NASA [GEOS-Chem, 2020]. Here the Earth is split up into cubic cells
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Figure 1.5: A diagram showing the longitudinal, lateral and vertical decomposition of a
3D global model. (Diagram not of GeosChem.) Source: [Henderson-Sellers, 2015]

longitudinally, latitudinally, and vertically (Figure 1.5)13. Each one of these cells performs several

perturbations of the chemistry within them before any long-lived species are transported, and the

process is repeated. If extracted separately, a single one of these cells may be used to explore the

sensitivity of different species for a range of input conditions. This is the bases of the atmospheric

box model.

1.5 The 0D Chemical Box Model

In exploring the sensitivities of individual species within a simulation, it is possible to use a zero-

dimensional box model. This is, in essence, a single cell within the global structure which has been

constrained in location and height (pressure). A box model allows for better in-depth analysis of the

chemistry within a model, without any of the overhead of having to run it for the entire planet. Such

studies make zero-dimensional models perfectly suited for studying the sensitivity of chemical schemes

under a range of conditions, for example, [Emmerson and Evans, 2009].

In general, a box model consists of two main parts - a mathematical representation of the reactions in

the atmosphere and the rate they occur (this is known as a mechanism); and a method to propagate

this chemistry forwards in time (the integrator).

13This image is not from GEOS-Chem.
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1.5.1 Chemical Mechanisms

Mechanisms are at the heart of every chemistry simulation. They are a mathematical representation

of the possible reactions ( and the rates at which these may occur ) which describe the evolution

of the atmosphere within a numerical model. Different models contain varying levels of chemical

complexity depending on their foci. However, there is a need for a ‘gold standard’ or ‘benchmark

mechanism’ which contains a comprehensive representation of the current ‘state of the science’. For

the last decade, the benchmarking mechanism for both the UK and internationally has been the Master

Chemical Mechanism [Rickard, 2020] (this shall be described throughout the rest of this thesis).

1.5.2 Numerical Integration

Using a mechanism it is possible to determine how quickly each species in a reaction is changing at a

certain set of conditions using its a slope or derivative. In this way, integration allows us to find the

change in concentration over time as well as the rate at which this is happening. Taking the reaction

of N2O5 (Equation 1.20), we can write the rate of change for each species over time (Equation 1.21)14.

In integrating this equation, we can calculate the actual change in concentration (Equation 1.22) -

this is the foundation of atmospheric models.

N2O5 −−→ NO2 + NO3 (1.20)

− d[N2O5]/dt = d[NO2]/dt + d[NO3]/dt (1.21)

−
∫

d[N2O5]/dt =

∫
d[NO2]/dt +

∫
d[NO3]/dt (1.22)

1.5.2.1 Non-Stiff Equations

Non-stiff ordinary differential equations are made up components which all evolve at similar timescales.

They can easuly be solved by explicit (calculate the next step using the current time only) numerical

methods which can be solved with the forward Euler15, Runge Kutta 16 or Verlet methods17 [C.J.Budd,

2019; Wild, 2015].

14This is also known as the flux.

15Euler:Evaluate gradient at the time point, move forward in time and repeat.

16RK4:The next value is determined by the present value combigned with the weighted avarage of 4 increments across
an interval h.

17Verlet:A central difference method to find the gradient using the avarage of a forwards and backwards timestep.
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1.5.2.2 Numerically Stiff Equations (Atmospheric Chemistry)

Unfortunately, chemical lifetimes within the atmosphere range several orders of magnitude (Fig-

ure 1.3). This creates a numerically stiff system that requires the step size to be chosen based on the

most rapid component, which can lead to inefficiency in the computation of the entire system. Solvers

for stiff equations usually create and evaluate the Jacobian matrix (a matrix of second-order partial

derivatives describing the effect species have on each other).

Standard solvers include Backward Differentiation Formulas (known as the ‘gear’ method and imple-

mented as the LSODE solver in [Sandu and Sander, 2006]), implicit Runge Kutta and the Rosenbrock

methods. Gear methods are multistep methods with high stability and have been applied to a range of

atmospheric chemistry models [Hairer et al., 2002; GEOS-Chem, 2020; Jacobson, 2005]. The Rosen-

brock method can be likened to a linearly-implicit Runge Kutta method which uses the Jacobian

matrix directly within the integration formula (solved at each stage) to avoid solving for a non-linear

system [Zhang et al., 2011]. This provides an efficient solver with modest accuracy (less than 10−5)

which is more than suitable for use within atmospheric chemistry calculations [Zhang et al., 2011;

Sandu et al., 1997].

1.5.3 The Model Development Cycle

Scientific understanding is the product of many cycles of trial and error, Figure 1.6. In atmospheric

chemistry, we start with a hypothesis or a question, e.g. will change X has a negative response on Y.

We then construct a theoretical model to represent the chemistry within. This chemistry is updated

to reflect the rates and reactions that have been recorded in laboratory/chamber experiments. This

cycle is then repeated until the model, and real-world observations produce a comparable result. It is

essential to point out that improving the predictive capabilities of a model are iterative tasks which

both feedback and respond to changes in our understanding of atmospheric reactions.

Figure 1.6: The scientific development cycle.This shows the iterative nature between modelling,
observation and laboratory experimentation
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1.5.4 The Dynamically Simple Model Of Atmospheric Chemical Complex-

ity

Within this thesis, the Dynamically Simple Model of Atmospheric Chemical Complexity (DSMACC)

was used to run model simulations. This a simple box model designed for the comparison of a range of

gas-phase chemical schemes under different conditions [Emmerson and Evans, 2009]. The DSMACC

model uses the Kinetic PreProcessor (KPP) to convert a chemical mechanism into the set of ordinary

differential equations which can be solved using a suite of FORTRAN numerical integrators it provides

[Sandu and Sander, 2006]. The Tropospheric and Ultraviolet (TUV) model from Bräuer [2020] is used

to calculate the strengths of different photolysis reactions for the mechanism. These are determined

at the start of a simulation and then predicted using cubic splines [Ellis, 2020]. This is the model

setup that will be used to propagate the chemistry forwards in time using the Rosebrock integrator.

1.6 Thesis Layout

This thesis will explore a series of methods for describing and understanding the complex chemistry

which may exist as part of an atmospheric chemistry mechanism. The mechanism used is a near-

explicit representation of our foremost understanding of how gas-phase chemistry in the troposphere

reacts - the Master Chemical Mechanism, [Rickard, 2020]. We begin by exploring the use of visu-

alisation to convey complex scientific data (Chapter 2). Next, we apply this to the representation

of species in a mechanism and the relationships between them. It is found that the node-link style

graph format is the most beneficial, the use of which is then explored further (Chapter 3). However,

in doing so, sizeable complex networks are shown to reach the limits of human cognition and visual

representation. A series of mathematic metrics are used to leverage our understanding of the species in

a chemical network using graph theory (Chapter 4). The use of computation to aid in graph analysis

is further extended when graph clustering methods are applied as a method to similar group species

within a chemical network (Chapter 5). Finally in a bid towards the use of neural graph networks

(see future work, Section 7.4), a range of different chemical representations for machine learning are

explored using several dimensionality reduction algorithms (Chapter 6).
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“If you really want to understand something, the best way is to

try and explain it to someone else. That forces you to sort it out

in your mind. ... By the time you’ve sorted out a complicated idea

into little steps that even a stupid machine can deal with, you’ve

learned something about it yourself.1”

- Douglas Adams, Dirk Gently’s Holistic Detective Agency

1Omitted at ellipsis : “And the more slow and dim-witted your pupil, the more you have to break things down into
more and more simple ideas. And that’s really the essence of programming.”
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2.1 Introduction

When representing complex scientific data, we concern ourselves with finding a method which allows

the reader to gain maximum insight into the information presented. This chapter begins with the

evolution of humanity and explores how the development of the human brain increased our ability

to communicate and store information. Next, we look at the use of storytelling (Subsection 2.2.1)

and metaphor selection (Subsection 2.2.2) enable us to convey complex tasks and information in a

user-intuitive way. In establishing a series of considerations for visualisation design, we apply these

to the representation of atmospheric chemistry (a set of species with a production/loss relationship

between them) in the form of several relational sociographs (Section 2.3). From this, it is found that

the node-link graph framework is the best suited for the task - a concept which will be discussed in

Chapter 3.

2.1.1 Communicatory Practices Of Early Humans

In nature, animals rely on the propagation of DNA to encode information critical to their survival.

Examples of these are found in hives (where an insects role is defined by its genetic composition), or in

Oscines (songbirds) which have an inherent predisposition to learn species-specific songs, [De Smedt,

2013; Hunt and Gadau, 2017; Ackerman, 2016; Wada, 2010; Harari, 2015]. For humans; however, this

process is highly impractical due to the vast and varied nature of the information need to process.

Instead, we have developed a predisposition to learning language at an early age. In essence, a skill

allowing for the effective communication of ideas, conditions and dangers between a large number of

people2.

The downside to learnt behaviours, such as language, is that communicatory patterns are limited to

only the people they have been taught to. Here problems of differing language and dialect significantly

reduce the amount of information which may be passed between groups/tribes. Such issues were

quickly overcome through the use of visualisation in the form of pictographs (cave paintings - e.g.

Figure 2.1). Such methods complement our ability to both detect shapes and spot patterns within

nature3 as well as providing an intuitive method of communication between separate groups.

As communities continue to increase in size, problems of accounting and resource management start to

emerge. Here the ability to store large amounts of data had not been previously required by a hunter-

2Several studies, exploring the ratio of the neocortex to the rest of the brain, suggest that the number of relationships
a human can successfully monitor is limited to 150. It is suggested that ideas of gossip and common metaphysical
beliefs are the reason for this [Harari, 2015; Aiello and Dunbar, 1993; Dunbar et al., 1997]. This limit is still seen in
social networks today [Hill and Dunbar, 2003].

3It has been found that 10,000 year-old pictographs show hints of a shared cultural background between spatially
different groups of humans [M. Chazine, 2005].
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gatherer species. This problem was again solved by the Samaritans (3̃500BC) with the creation of

writing - a system for coordinating affairs and storing information external to a humans brain [Nissen

et al., 1993; Schmandt-Besserat, 1992]. Using this quantities and items are depicted using a system of

signs and shapes (cuneiform4) - a practical and intuitive way for us to apply the pattern recognition

and analytical parts of our brain while reducing the cognitive load by breaking up the problem into

manageable parts. Throughout history, we have continued to apply this system of intertwining data

information with visual artefacts to enable people to cope with the complexities of the information

provided, [Tufte, 1983]. It is for this reason that visualisation can be used as a means of enhancing

the reader’s ability to understand the large-scale complexities of scientific data.

Figure 2.1: An example pictograph: a 2000 year old petroglyth in Utah titled ‘Tse Hane’ (rock
that tells a story). Source: [ugc, 2019]

2.1.2 The Origin Of Big Data

The term ‘Big Data’ originated in the mid-1990s, appearing in several job adverts and a slide deck

by Jon Mashey, the chief scientist at Silicon Graphics (SGI), [Mashey, 1998; Diebold, 2012]. This

term is used as a way to describe the ever-increasing amount of data we can generate each day. Such

phenomenons are seen in anything from the growing number of websites to the number of reactions

within an explicit gas-phase chemistry mechanism, Figure 2.2. Coupled with the ability to collect

large amounts of data is our requirement to analyse and understand it. This has commonly be done

through the use of visualisation, a topic in which careful consideration must be made to ensure the

correct information is conveyed [Kirk, 2016]. In a paper on mining big data, [Fan and Bifet, 2013]

explains that the main task of Big Data analysis is on deciding how to visualise the results- simply its

size introduces complexity in uncovering a user-friendly method to represent the information required.

Although graphical representation has been an integral part of the data comprehension process, it is

only relatively recently (1990’s) that it is recognised as a research field [Wybrow et al., 2014]. Even

though we are not explicitly dealing with ‘big’ data, the number of species and reactions occurring

within the troposphere is still sufficiently large and complex that many of the same problems still exist.

4This is often mistaken for hieroglyphics. Although both are forms of logographic script, hieroglyphs are restricted
to the ancient Egyptian sociolinguistic context.
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It is for this reason that this section5 we will explore the considerations that need to be made before

selecting a visualisation design (Section 2.2) and the methods we can use to represent the complex

relationships within the atmospheric chemistry domain (Section 2.3).

Figure 2.2: Data size and complexity increases with time due to (availability or improve-
ments in scientific understanding). The red line shows the change in the number of websites
(log10 normalised) within the world wide web domain for years 1996-2015. Similarly, we compare the
various releases of the master chemical mechanism (a discrete process), where more and more complex
reaction schemes are iteratively appended over time. These are introduced later on.
NOTE: The two lines are here to illustrate the growing trends between the subjects and are not incom-
parable due to their different scales and continuous/discrete natures.
Source: [InternetLiveStats, 2020; Jenkins, 2002]

2.2 Visualisation Design

New ideas are developed and refined through an iterative process of cognition and discussion with

other researchers [Roberts et al., 2014]. As individuals, we are constrained by our experience and

knowledge; novel ideas often consist of an amalgamation of many existing concepts [Descartes et al.,

1996; Johnson, 2010]. [Ziemkiewicz and Kosara, 2008] explains that the process of understanding a

visualisation depends heavily on the interaction between the user’s internal knowledge and the ideas

depicted within a visualisation. This means that the careful selection of content and medium (of

presentation) can directly influence what a reader takes away from the graphic. In its design, a

visualisation must be both relatable (in metaphor) and intuitive (or explained through the use of

storytelling).

5and consequently much of this thesis
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2.2.1 Storytelling

Storytelling is commonly used to highlight the process of cause and effect. It has applications in the

education for both the explanation of scientific concepts ([Martin and Miller, 1988]) and the dangers

of the world (fables such as Little Red Riding Hood and Goldilocks teach the dangers of speaking

to strangers and the importance of respecting personal property). As human life is subject to the

conditions of the ‘arrow of time’, the inherent familiarity of linearly consequential events make the

narrative a great way to inform the reader of new (unseen) concepts. Such methods are not limited

to the education of young children, but also allow for the understanding of real-world events through

the use of dreams, media and the news [Gottschall, 2012; Freud and Cronin, 2013].

In entwining narrative and visualisation, it is possible to provide the user with a higher level of

understanding and enable them to draw their own (guided) conclusions from the data. Michal and

Franconeri [2017] explains that within the visual analysis of a graph, users often create a narrative

through the use of visual routine. Here the emphasis is placed on storytelling to ‘guide’ and educate

the reader of any events which led to a conclusion - this uses a question-answer cause-effect structure.

It is this process that makes ‘storytelling’ an effective method of communication to a non-expert

audience [Dahlstrom, 2014].

2.2.2 Metaphor Selection

Storytelling often involves metaphors to create content which is relatable and intuitive to the user.

Such metaphors have infiltrated many parts of our everyday lives ranging from descriptions in fables

to the concept of money and belief that govern everyday life through the inter-subjective6 [Harari,

2015]. In general there exist three categories of metaphors which may be used - natural (Subsubsec-

tion 2.2.2.1), man-made (Subsubsection 2.2.2.2) and composite (Subsubsection 2.2.2.3).

2.2.2.1 Nature-Inspired

Inspiration for metaphors often comes from objects or events encountered from everyday life - the most

effective of which have an inherent familiarity for all readers. As nature is universal to everyone on the

planet, a nature-inspired metaphor not only guarantees a basic level of item comprehension but also

contain an aesthetically pleasing familiarity to them. Common examples of these can include the use

of ice to represent glacial melting or trees to show branches in decisions (decision tree: Figure 2.3a) or

temporal changes in conditions with a trunk cross-section style plot (Figure 2.3b). Natural metaphors

6The inter-subjective is something that exists within the communication network. It allows a fictional idea, such as
a limited-liability company, to exist as a real physical entity with a bank account and subject to laws.
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are often useful in conveying complex ideas due to their low learning curve.

(a) Single Tree (coloured leaves) (b) Complete tree trunk

Figure 2.3: Two tree-inspired visualisations.
(a) shows the decisions made on a single decision tree within a random Forrest. Hear each branch split
corresponds to a decision and the node/leaf colour represents the category of the decision. Stronger
and more important decisions correspond to larger leaves and thicker branches.
(b) shows a radial plot in the shape of a tree trunk. Here time is shown radiating outwards from
the centre. This allows us to spot any changes in events - much like the rings of a tree can be used
to identify when natural disasters (such as tsunamis or avalanches) have struck them. This specific
visualisation shows the net flux of species from a chemical simulation. These are coloured from low
fluxes (blue) to high fluxes (red). The abrupt changes here show the diurnal cycle where photochemical
reactions stop and then start up again.

2.2.2.2 Man-Made

Similar to nature, another similarity between many readers would be their familiarity with the ur-

ban environment. Metaphor inspiration from human-made objects such as buildings often contain

characteristics of symmetry and manual/mechanical design. These allow the user to interpret any

features presented using their pre-existing knowledge about an object. The most famous example

of this is (Figure 2.4), where stations are positioned at 0,90 and 45-degree angles. This provides a

clearer representation, much like a road map than the current space-specific location of each station.

Although other designs, such as a concentric one, [Fisher, 2013], have been attempted, adaptations of

Beck’s design are still being used in the present day owing to their intuitive nature.
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Figure 2.4: The 1933 tube map design for London. Source: [Beck, 2017]

2.2.2.3 Composite

Finally, it is possible to combine ideas into a composite metaphor, a concept common in much of

greek mythology. An example of this is Pegasus, where the combination of two familiar items (wings

and a horse) results in something novel and unseen (a winged horse) which has implications from its

existence associated with it. Overcoming the problems presented by these composite designs involves

a level of lateral thinking, prototyping (sketching) and redefining to produce a confluent user-visual

metaphor interaction [Ziemkiewicz and Kosara, 2008; Roberts, 2011].

The development of new items can also be applied to the creation of xenographics - here the combi-

nation of visualisations allows for the representation of complex relationships with a smaller learning

curve. An example of this is the amalgamation of a ‘pizza/pie chart’7 with a bar chart to create a

radial plot in Figure 2.5 - A novel representation style which helped explain and establish the methods

of modern-day nursing by Florence Nightingale.

7There is a good amount of literature that suggests these are far from optimal methods of representing data.
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Figure 2.5: A (stacked) Radial bar-chart showing the causes of mortality in the British
army8, [Nightingale, 1820].

2.2.2.4 Domain Specific

Composite designs are not constrained to the combination of different metaphors. In specialised roles,

it is common to find visualisations which draw on pre-existing knowledge either about the content of

the figure. Although this involves a new learning curve before information about the topic can be

extracted, once this is obtained, the wealth and complexity that is portrayed by a single visualisation

drastically increases. Two of the more common examples where prior knowledge is required to read a

plot are connected plots9 and Tephigrams.

T-φ-grams (Tephigrams) are defined from their axis of temperature (T ), entropy(φ) are used in

the field of meteorology and weather forecasting. The combine grid lines for constant temperature

(isothermic) and pressure (isobaric), as well as allowing the user to calculate the equivalent potential

temperature for saturated air parcels and the saturation mixing ratio concerning plane water surface,

Figure 2.6b. This provides a good example where both scientific knowledge and ability to read the

diagram are required to obtain meaningful information from it.

8Also known as the Nightingale Rose or Coxcomb plot.

9Occasionally known as snail trail chart (R users seem to like re-inventing the wheel).
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(a) A tephi diagram (b) Description of each axis on the tephi diagram.

Figure 2.6: Two T-φ-gram plots. An example of the T-φ-gram data (a), and instructions on how
to interperate it (b). The full scale figures are found within the source. Source: [Brooks, 2019]

Connected scatter-plots are useful in representing the temporal changes of correlation between

to items. These are particularly useful in the field of economics due to their ability to highlight

the different trends that can occur over time. Figure 2.7 shows how the number of vehicle-related

fatalities changes with the number miles driven. In this situation, a simple x− y plot may highlight a

decreasing inverse relationship between the number of fatalities and the miles driven per capita over

time, but lose some of the many features presented by the additional dimension. Figure 2.7 b is an

extract from [Haroz et al., 2016], which shows how the changes between two variables (blue and green)

over time are represented within the connected scatterplot (yellow). Examples include unchanging

variables (Figure 2.7b.A) which are represented as a single point. Like correlations are shown by a 45

degree angle line (Figure 2.7b.C) and inverse correlations are shown by a like orthogonal to the like

concentration one (-45 degree)- (Figure 2.7b.D).
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Figure 2.7: Examples of connected scatterplots (a) A connected scatterplot comparing the num-
ber of vehicle-related fatalities with the number miles driven per capita [Fairfield, 2012]
(b) a plot showing how the correlation of two spatial variables are transformed from a classical scat-
ter/line plot into a connected scatterplot [Haroz et al., 2016]. Here the blue and green lines represent
different values changing over time (orange) across the x-axis. The figures to the right show how
different correlations are transformed into a connected scatter plot, where the variables (blue and
green) are plotted across each axis, and time (orange) is shown as a line joining each datapoint. The
data points are plotted in equal lengths of time, meaning that the distance between consecutive points
informs us of the amount each variable has changed.
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2.3 Visualising Relationships

Visualisation is important in conveying the impact of science and data to both the expert (e.g. complex

figures in [IPCC, 2007]) and non-expert (gross over-simplifications, e.g. the climate stripes [Hawkins,

2019]). This section builds on the considerations discussed in the previous chapter and explores the

different ways in which the relationship between species in the troposphere can be represented. We

start by defining the dataset (Subsection 2.3.1) and then discuss several different visualisation methods

(Subsection 2.3.2).

2.3.1 The Dataset

Within an atmospheric chemical model, the chemistry of the troposphere is described using a chemical

mechanism. The chemical mechanism used in this thesis is known as the Master Chemical Mechanism

(MCM) v3.3.1, which contains 5809 species and 17224 reactions [Rickard, 2020]. The MCM is a near

explicit representation of our understanding of the gas-phase chemistry within the troposphere. In its

mathematical form, it describes how species are related and at what rate they react.

As the aim of this section is to identify essential features within the chemical mechanism we begin

by looking at the mechanisms construction protocol (Figure 2.8 and [Figure 2.9 which is the protocol

for MCMGecko, but is highly similar to that of the main MCM and provides a better representation

of the computational decisions used in mechanism construction]). This construction methodology

mimics the reasoning and procedures performed by an analytic chemist and allows for the simultaneous

construction of a consistent and compatible chemical mechanism between several areas of research. The

procedure is becoming semi-automated and follows several iterations starting from a set of primary

emitted VOCs. These are run from the protocol to build a set of degradation reactions in which

the selected species may undergo. Any new products are then introduced to the procedure until

everything has been oxidised to produced carbon dioxide and water. This produces the set of near

explicit equations which are then used to describe the evolution of chemistry within an atmospheric

model.
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Figure 2.8: The generation flowchart used within the MCM. This shows the process undergone
by a new species to generate its products. Any unseen products are then fed back into the flowchart
until the entire mechanism has been produced. Source:[Saunders et al., 2003]

2.3.2 The Sociograph

Social network analysis is a type of sociological work (sociometry) that aims to reveal the interweaving

and interlocking relations between items or individuals, [Scott, 1988]. [Dunbar et al., 1997] argues

that the evolution of language as a result of social grooming (gossip), and therefore its adaption for

storytelling. It follows that using the social network construct to represent the underlying patterns

between objects makes use of both our inherent ability to discern complex patterns through the use

of storytelling. In trying to depict the relationships between a social network, we employ the use of

sociograms. These are a class of visualisations which reveal certain properties of a social network.

The following section will look at the extraction of useful information from the relationships within

the MCM through the use of several sociograms.

2.3.2.1 The Chord Diagram

A chord diagram is a visual sociogram known for its use in summarising the overarching relations

within a dense social network [Jalali, 2016]. Here arcs are used to represent groups (or a node from a

social network graph), and their length corresponds to the percentage of items they contain. Within

Figure 2.10 we represent the different routes a species may react within the MCM protocol flowchart

shown in Figure 2.9. The figure contains two sets of arcs. These represent the different level of
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Figure 2.9: The generation flowchart used within Gecko. This is very similar to the MCM
protocol (Figure 2.8), but provides a clearer representation of the machine read desicions for the
mechanism generation. Source:[Aumont et al., 2005]
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classification of the chemistry - The first (outer) arc represents the split in channels between radical

(red) and non-radical (orange) species which further separated into the finer categories within each

branch (the labelled inner arcs). The inner arcs again show the probability a randomly chosen reaction

on a species will fall under a particular category - if we convert an arc into a segment we have a pie

chart of probability.

It is worth noting that segment sizes do not represent the number of species undergoing a specific

reaction pathway, but rather the percentage of all possible pathways which follow that route. This is

because species often undergo a range of reactions, each of which counts as an individual weighting.

It is for this reason that even though almost all10 contain a C-H bond, hydrogen abstraction does not

consume the whole graph. Many species have multiple possible pathways in which they may react,

and the chord diagram presents the likeliness of a rection for all possible methods of reaction for all

species.

From this, we see that hydroxy reactions are the most common with C-H bonds being in abundance11.

Additionally, we find that when applying the MCM protocol, a third of species contain at least one

carbonyl group. Next, we look at the co-occurrence of branches for different species. These are

represented using the area of a circle connecting two arcs (a chord). Each chord has two edges

connecting two arcs12. It is possible to discern the percentage of items going between these and other

branches by comparing the width of each chord to its parent arc. Here, for example, we see a roughly

even split between species with a C-H bond (i.e. all species) and every other group. This suggests an

even distribution of reaction types between species. This means that in comparing the arc length of

each chord, we can visually determine the percentage of group A which relates to its partner group

B. Finally it is also possible to determine the number of items in a group which contain themselves.

Chemically these are species with multiples of one functional group that undergo a specific reaction

pathway more than one time. Although these reactions will usually be combined within a mechanism

(to avoid duplication), their rate would be increased accordingly.

10Except for any inorganic species.

11This is seen within the graph layout Figure 3.10

12except for self-loops, although these are addressed below.
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PeroxyAlkyl ( RO2 )
PeroxyAcid ( RCO3 )
Alkoxy ( RO )

PAN ( -C(O)OONO2 )

       Carbon Hydrogen 
             Bond ( C-H )

Unsaturated ( >C=C< )
Aldehyde ( -CHO ) 

Ketone( >C=O )

Nitrate ( -ONO2 )
HydroPeroxide ( -OOH )

Figure 2.10: A chord diagram of the protocol structure. This shows the proportional probability
a species from the MCM will follow one or more of the paths presented in Figure 2.9. The outside
ring represents the radical (red), and non-radical (gold) split between groups. The inside ring splits
these into individual groups, providing a finer level of detail.

The chord layout provides an easy way to calculate the percentage of items which contain multiple

properties. It requires a relatively low learning curve and is intuitive to those with experience using

pie charts (namely the Microsoft Office generation), however, this radial format can sometimes also

make it more challenging to read. Special attention needs to be paid to the order arcs are drawn, as

with some datasets, specific configurations may obfuscate trends. Finally, the chord diagram requires

a certain amount of data munging before its employment. It is due to this that finer details about the

system may be lost, especially if there is a course scale between chord sizes.
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2.3.2.2 Direct Representation Of The Relational Matrix

Relational matrices, also known as the adjacency matrix, are a n× n square matrix highlighting the

relationships between items. These can be constructed (or used to construct) a graph and provide the

easy identification of patterns between nodes. Figure 2.11 shows an MCM subset of propane sorted

by the number of carbons. Here we see that for this limited sample species tend to have slightly more

reactions with other species with the same number of carbons than with different numbers.

The main downside of visualising the adjacency matrix is the sparsity of many real-world graphs

(Chapter 4). If we take the complete MCM v3.3.1 network [Saunders et al., 2003] and visualise it in

this manner, it will have a density of 5.9−4. This means that for an average 600 × 600 pixel figure,

only 0.362 of a pixel would be coloured in. Moreover, since we are not able to colour only parts of

pixels, our final plot will remain blank. Methods to circumvent this involve looking at subgraphs,

or individual sections interactively or applying composite graph/adjacency techniques such as those

presented in NodeTrix, a method for visualising sparse small world networks13 [Agarwal et al., 2017]

Figure 2.11: The adjacency or relational matrix is showing species from a propane subset of
the MCM. Here species are sorted by the number of carbons they contain (red= 3, orange= 1). Black
cells represent reactions between species containing different numbers of carbons. If looking at clusters
in a network (Chapter 5) sorting elements in an adjacency matrix aid in the visual identification of
these. Squares features along the diagonal indicate a larger number of links between grouped items
colocated in the axis, and less to those in other locations (clusters).

13Small world networks are discussed in the following chapter.
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2.3.2.3 Arc Diagrams

Arc diagrams are a subset of sociographs where items are represented as nodes along the horizontal.

Relationships between nodes are then shown through the use of curved links (arcs). It is this that

makes them particularly suited for the highlighting of repetition between music or DNA sequences,

[Wattenberg, 2002]. Using the MCM database, we can construct an arc diagram to explore how

species containing the same combination of functional groups react. This is done by first determining

all branch permutations from the protocol flowchart (Figure 2.9). This produces 179 groups which

are positioned across the x axis in ascending group size (the more branches matched, the further to

the right a group is positioned).

Figure 2.12: An arc diagram from the MCM database derived by the protocol (Figure 2.9).
All possible pathways for each species are extracted. These are then grouped and sorted by the number
of functional group/pathways available. Species are shown along the blue line and sorted by increasing
number groups to the right. Reaction pairs (reactant-product) are then depicted through the use of
arcs. If a species reacts to produce a species with more functional groups, it is represented by a
forwards facing arc. If the product contains a smaller number of functional groups, the drawn arc
moves downwards and backwards.

The width of each group is determined from the number of species within it. Following links are added

between the species based on what groups the product species from each reaction contain. Figure 2.12
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discretises reactions which produce products with an increased number of reaction pathways (positive

arcs - top), from those which result in species with less (positive arcs - below). Here the cyclic nature

of tropospheric chemistry can be seen, with many species producing larger, less stable, products,

which then go on to react and decompose back into smaller ones. In some cases, a complete circle

between two nodes can be indicative of a catalytic reaction. Using interaction and selective shading,

it is possible to isolate specific types of reactions and determine which of the functional groups are

responsible for the change experienced within a reaction.

Although such a layout may seem daunting at first, with many lines, in all directions, filtering by type

of reactions can draw attention to several features from the chemistry. In Chapter 1, the importance

of HOx cycle for the removal of VOCs and greenhouse gasses was discussed. For this reason, we begin

by using arc diagrams to explore the relationship between OH and HO2 (Figure 2.13a).

Figure 2.13c and Figure 2.13d show arc diagrams where the reactions of interest (photolysis and OH

reactions respectively) highlighted in both colour and opacity. These enable us to see patterns between

the radical cylcing of OH −−→ HO2 chemistry (Figure 2.13b). Here the cyclic reaction shown between

the dashed lines corresponds to the reaction of RO2
HO2←−−→
O2

ROOH (Figure 2.13b).

Applying the same methodology to photolysis and hydroxy reactions, the production of species con-

taining fewer functional groups is seen in Figure 2.14a. Within the highlighted reactions, it is seen

that a ROOH species undergoes a reaction with OH or photolyses (Figure 2.14b). In the OH reaction,

Hydrogen abstraction is performed to produce an RO2 species and water, ROOH OH−−→ RO2 + H2O.

Photolysis reactions, however, photolyse, ROOH HV−−→ RO2 +HO2, reducing the number of functional

groups - producing a larger arc.

Finally, Peroxy Acetyl Nitrates (PANs), play a vital role in the modelling of photochemical smog

(ozone events), [Singh, 2015]. PANs an effective reservoir species with significant importance within

the production of ozone in atmospheric chemistry models (especially if transportation is involved)

[Finlayson-Pitts and Pitts, 2000]. Although they are very stable at cold temperatures, these can

quickly decompose (thermally) to release NOx if warmed. In the MCM the thermal decomposition

of PANS is determined by the KBPAN rate constant. In comparing reactions of Figure 2.15d, with

those of Figure 2.15c (at rate KFPAN), we see a cycle between two arcs forming (Figure 2.15a). This

can be explained by the reactions in Figure 2.15b which show that RC(O)OONO2
KBPAN−−−−−→ RC(O)O2

(+NO2)
NO2−−−→ RC(O)OONO2.

NOTE: A downside to the arc diagrams format that has been chosen is that for reactions between

species of the same number of functional groups, there is no set direction.
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Figure 2.13: Arc diagram features for the Hydroperoxyl and Hydroxide radicals. The HOx
cycle chemistry (b) can ge seen within certain groups in the network. The main ones of these are
hilighted in (a).
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Figure 2.14: Arc diagram features for photolysis and hydroxide reactions. Photolysis
results in species with a reduced number of functional groups, and therefore longer arcs. OH reactions
for the same species do not produce such a drastic change on group number, and therefore have a
smaller arc length.
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(a) The most prominent branches.
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Figure 2.15: Arc diagram features for the PAN reactions.
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2.3.2.4 The Traditional Network Graph

Finally, we have the traditional network representation in the form of a mathematical graph. Here

species are represented as nodes (circles) and reactions as the links (lines) between them. This analogy

has its roots in social representation and can be described using the metaphor of people holding hands

- a concept familiar to most people. Graph representations allow for an overview of the structural

relationships within the MCM network, and even to compare it against other reduced mechanisms,

Figure 2.16 Here we show the growth of the MCM (left) against two versions (three variations) of

the reduced Common Representative Intermediates (CRI) [Jenkin et al., 2008] mechanism in the

same space. By fixing species which exist in mechanisms groups (generally the primary emitted

VOCs) we produce a ‘fingerprint’-like structure we can use to visually identify changes in their size,

interconnectedness (density) and structure.

Building on this, an interactive visualisation (Figure 2.17) was constructed to better reveal the dif-

ferences between of each mechanism in (Figure 2.16). The code for this can be found in [Ellis, 2020].

Figure 2.17a shows the expansion from MCM version 3.1 to 3.2 which included new schemes for cro-

tonaldehyde, ethylene oxide and vinyl chloride, the introduction of methacolein and the integration

of dimethyl sulphide (DMS), beta-caryophyllene and limonene [Rickard, 2020] - the latter of which is

responsible for the additional South-West pointing branch seen within the graph representations. Sim-

ilarly, Figure 2.17b shows the upgrade from MCM v3.2 to v3.3.1, the main change is the mechanism

update to include the complete degradation mechanism for isoprene [Jenkin et al., 2015]. This change

results in the addition of 100 species, many of which are mainly related to OH initiated chemistry.

However, since the ratio of species to links (reactions) has now increased, these lie closer to the main

body of the network - the reason for which is discussed in Chapter 4.

We can use Figure 2.17 to emphasise the amount that has been added (or lost) in reduction or

development. Figure 2.17c shows the difference between the MCM v3.2 and its reduced CRI v2.0

form, which focuses on preserving the overall ozone-forming potential of the mechanism. Figure 2.17d

shows a comparison of the CRI v2.0 after a further 5 reductions (CRI v2.0 r1). Using these two

plots we can identify regions or branches of chemistry which have been removed (namely biogenic and

anthropogenic aromatic branches - bottom left and bottom right) and generate an overview of how

well the reduced mechanism structure represents all parts of the contained chemistry. We can see that

on average the CRI mechanism does a good job at retaining the core network structure, often lumping

the more esoteric (or extreme) branches into a single species at their base.

This type of network representation is found not only the simplest and most intuitive but also the

most informative about what effects changing the underlying chemistry may have on a simulation.

Chapter 3 expands on the sociograph idea and explores the different ways in which we may tune it to
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maximise its potential for useful knowledge transfer.

Figure 2.16: Comparing a range of MCM and CRI mechanims using their graph shape
and structure. Source: Ellis [2020]
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(a) MCM v3.1 vs MCM v3.2 (b) MCM v3.2 vs MCM v3.3.1

(c) MCM v3.2 vs CRI v2.0(r1) (d) CRI v2.0(r1) vs CRI v2.0(r5)

Figure 2.17: Voronoi cells of each node from the graph layout - used to identify changes
in mechanisms. A difference plot between the different graphs in Figure 2.16. These use colours to
show us species that are added or taken away between different versions. Subplots (a) and (b) show
the increasesin mechanism size of the MCM whilst (c) and (d) show the reduction from MCM v3.2
to CRI v2.0(r1), and followed by the fith reduction to CRI v2.0(r5). Figure colouring: purple cells
only exist within the first mechanism, pink only exist within the second, and blue are present in both.
Source: Ellis [2020]
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2.4 Conclusion

Human cognitive capacity is limited in its skill to comprehend complex information. The use of

visualisation can alleviate some of this difficulty by employing our inherent pattern recognition ability

and exporting the problem to exist outside our brains. Using storytelling and narrative can not only

help us understand a problem but also enables us to explain it to other people. This is particularly

important when trying to convey an essential subject to a non-expert audience, such as policymakers

or the public.

If the data is relational, a node-link style sociograph provides the best visual representation of the data.

We have explored several different sociographs (chord, arc and graph) and found that the graph format

provides the most straightforward and most practical approach for the representation of the MCM

chemical mechanism. This approach appears to highlight the features of the network structure while

allowing us to compare and contrast different atmospheric chemical mechanisms. It is for this reason

that Chapter 3 will further explore the use of graph-based representation in representing different

chemical schemes of the atmosphere.
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“ I have a notion that when the mind is thinking, it is simply

talking to itself, asking questions and answering them. ”

- Socrates, The collected dialogues of Plato
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3.1 Introduction

Chapter 2 viewed the importance of a carefully selected visualisation/metaphor in the representation

of scientific data. One such category is that of relational data, where we have a set of items, joined

by a chosen relationship. Historically this type of problem was solved using sociographs to present a

set of items and the links between them. This chapter begins by looking at the use of sociograms in

chemistry (Subsection 3.1.2) and the different ways in which these can help convey information to the

reader (Section 3.2, Section 3.4). These sections find the force-directed graph to be the most suited

for representing the chemical reactions within a mechanism, and therefore this shall be applied to the

network of reactions representing the chemistry within an urban environment - Beijing (Section 3.5).

3.1.1 Networks And Their Role In Visual Analytics

Networks are present everywhere - this ranges from interactions within social media to bank trans-

actions, internet routing, genetics to epidemiology [Martin Grandjean, 2016; Staples et al., 2013;

Needham and Hodler, 2019; Baronchelli et al., 2013; Sangers et al., 2019; Kohlbacher et al., 2014;

Archambault et al., 2014; Schreiber et al., 2014]. The sociogram (or graph) structure can be applied

to any set of items which contain one or more relationships between them. In visualisation, these

‘items’ are referred to as nodes/vertices, and their relationships as edges/links [Kerren et al., 2014] -

terms that will be used interchangeably throughout this thesis.

3.1.2 Graphs In Chemistry

Node-link representations have been at the core of chemistry for many years. They have been used to

show the bonds between atoms and are integral to the representation of molecules - both physically

(with the aid of molecular model kits) or pictorially to show various structural properties (Figure 3.1).

These graph-like analogies provide a pseudo-physical representation of the molecules and their reac-

tions in a way that is intuitive to the user. Subsubsection 3.1.2.1 shows the use of a sociograph

structure to represent reactions within the troposphere; however, this method of representation is not

limited to atmospheric science - for example, Figure 3.3 depicts the biochemical metabolic pathways

of the human body. This is an example of another complex chemical network that benefits from this

method of representation.
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(a) 2D ‘classic’ (b) 3D

Figure 3.1: The molecule C141CO3 (MCM name) shown in both 2D and 3D node-link
structures. This is a the result of a series of inorganic species reactions and a desocciation from
BCARY - the only sesqueterpine in the MCM. 3D visualisation by [Bergwerf, 2019].

3.1.2.1 Using Sociograms To Describe Reactions

A collection of reactions representing the chemistry of a region is called a mechanism. The Master

Chemical Mechanism [Rickard, 2020] provides a collection of equations describing the gas-phase chem-

istry which exists within the troposphere (Subsection 2.3.1). In its use in policy, and the evaluation of

Air Quality Models ([Dick Derwent, Andrea Fraser, John Abbott and Mike Jenkin , 2010]), it is often

useful to understand the degradation process different VOCs undergo. In general, this can be achieved

through a series of interconnected reactions in the form of a reaction cycle (Figure 3.2). This type of

sociograph shows the directional nature of chemical reactions and the relationships between different

species. This has many similarities to a conventional directed graph, except that species (nodes) are

sometimes duplicated (for example OH,HO2, O2 in Figure 3.2) to aid in the clarity of the figure.

This provides an excellent example of how the flow-like nature of a sociogram aids in the understanding

of a potentially complex chemical system of 171 organic species and 600 reactions. Evolutionary traits,

including the genetic predisposition to interpret shapes faster than text ([Harari, 2015]) make the graph

structure a much better method for representing such a system.

3.1.3 Modeling Chemistry As A Directed Graph.

Historically it is shown that the graph format has proven to be an efficient means of understanding

the reactions within a mechanism. Traditionally these are constructed manually, with the designer

making a series of choices on how best to place, and simplify the chemistry based on their application.

As our understanding of chemistry improves and we have started to progress into automated and

semi-automated mechanism construction. This makes the construction of mechanisms with tens of

millions of species and billions of reaction possible ([Aumont et al., 2005]) and is the point where the

manual design/simplification of reaction networks becomes infeasible.
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Figure 3.2: A systematic representation of the degregation of butane. Using this we are able
to see the process C4H10 undergoes before its ultimate demise as carbon dioxide and water. Source:
[Jenkin et al., 1997]
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Figure 3.3: The Roche Metabolic Pathways of the human body. This example demonstrates the ability to manually represent the complex chemistry of
the body using a graph structure. (Original A0 version is available at the source). Source: [Michal, 1965]
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Today automatic graph layouts allow us to generate multivariate and complex graphs quickly [Muelder

et al., 2014]. This means that, much like in the construction of a mechanism, we can rely on computer-

aided design to generate a directed graph representation of the chemistry. Montañez [2016] states that

"The beauty of a good information graphic is that it can tell a whole story in a single unit of visual

content". This is particularly true for the use of directed graphs in chemistry where we can compare

different mechanism structures.

However, several problems emerge from the complete automation of a task. Firstly real-world data

very rarely reacts how it is expected to. Here networks of high edge density often obfuscate the

graph data and produce what is only described as a ‘birds nest’, ‘hairball’ or ‘ball of yarn’ within the

literature [Roberts et al., 2014]. Although such problems can be shown as moments of turbulence, they

encourage a greater understanding of the graphic design process and can catalyze to merge unique

ideas into an effective visualisation [Johnson, 2010] - much like the composite metaphors in Chapter 2.

Having established that a graph network ties in both modern and historical methods for representing

relational data, we now look at how to present the graph, both in syntax (Section 3.2) and semantics

(Section 3.4).

3.2 Graph Syntactics

Syntactic representation considers how best to distribute information on a page for maximum im-

pact. This can be seen between the force-directed graph (top) and geographical location (bottom)

layouts in Figure 3.4. Although the geographical layout gives a more accurate representation of the

distances between unconnected nodes (airports), a force-directed graph provides greater insight into

the relationships (flights) between each airport. This highlights the importance of choosing a suitable

syntactic representation to highlight the features of interest. The remainder of this section discusses

the syntactic choices required for the visualisation of a complex chemical mechanism.
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Figure 3.4: Comparison of different representations of flight data by [Martin Grandjean,
2016]. The top figure shows the data represented by a force-directed graph layout (described below)
and a Geo-layout showing each point at its location on the Earth.

3.2.1 Selecting The Correct Evaluation Criteria.

As chemical networks provide a wealth of information on the reactions within a system, this can

prove challenging to user cognition and computational resources [Kerren et al., 2014]. In selecting the

best possible graph layout, there are many metrics designed around the improving of visualisations

aesthetics [Purchase, 2002]; however, these have often only been evaluated with a handful of criteria

in mind. Such metrics can make it difficult to accurately quantify the changes in user-readability,
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especially if they are not treated as originally intended [Pohl et al., 2009].

3.2.1.1 Edge Crossing

One of the greatest limitations to understanding a graph is the number of overlapping (crossing) edges

[Purchase, 1997], especially since users often spend most of their time looking at the edges of a graph

to understand it [Pohl et al., 2009].

There exist several types of graph layout algorithms which aim to reduce the number of overlapping

edges in a graph. The two most common ones are force-directed and orthogonal. Orthogonal designs

are those of straight edges at 90-degree angles, such as in architectural or circuit schematics (Fig-

ure 3.5). Force-directed graphs (Subsubsection 3.2.2.3) are a graph layout is designed to simulate a

physical system, where node positions are the result of the push and pull of the edges between them.

In the task selecting nodes from a specific path, users were twice as more accurate using this layout

than the orthogonal one [Pohl et al., 2009].

Figure 3.5: An orthogonal circuit schematic of the Model 3 240 portable cathode ray tube
television. The circuit schematic of the television (top left) shows a much simpler representation of
how different components within the television are connected. Source: [JVC, 2020]
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3.2.1.2 Node Distribution and Overlap

The distribution of nodes across the page can both hinder or increase the readability of a graph -

especially since larger nodes may obscure smaller ones at the same location. Purchase et al. [2003]

found that graphs with an equal node distribution across space, at a medium edge length, greatly

improved graph readability - with node distribution and graph-symmetry ranking second in a study

on user preference on graphs.

In addition to selecting the best graph layout, there are several methods in which overlapping nodes

may be removed - an issue that is sometimes difficult by the treating of nodes as ‘point masses’ within

an algorithm [Dwyer et al., 2006c]. Dwyer et al. [2006b] explains that there are usually two methods

for reducing the number of overlapping nodes in a graph; these are:

1. Create a layout design capable of taking node size (e.g. [Friedrich and Schreiber, 2004]) into

consideration. These designs tend to be layout specific and not absolute in removing all overlap

between nodes.

2. This requires a level of post-processing in the form of a ‘layout adjustment’. Here we reposition

nodes after a chosen layout has finished computing. The drawback of this method is that

information contained in the graph’s shape may be degraded. This can be done through the use

of collision detection, or moving nodes to the centre of the vornouli cells [Lyons, 1992].

3.2.2 Automated Graph Drawing Layouts

In their design and evaluation, automatic graph drawing algorithms are created to minimise a specific

criterion. This subsection will compare several graph layouts and make a verdict on which one is most

suited for the representation of tropospheric chemistry. This task shall use the mechanism extracted

in Table 4.4 to represent the VOC’s within the Beijing city - a real-world case study using the MCM.

To do this we begin by exploring hand-drawn / map inspired graph layouts

(Subsubsection 3.2.2.1,Subsubsection 3.2.2.2), eventualy ending at a number of automated force-

directed graphs (Subsubsection 3.2.2.3).

3.2.2.1 Replication Of Hand-Drawing Methods

With the rise of computation, many traditional visualisations adapted for the computer-aided gener-

ation. Fields of architecture and circuit design adopted computational software to alleviate some of

the difficulties presented by large or complex designs. Similar ideas such as the use of automatically

generated transit maps can be used to link chronological or topological items such as ideas [Foo,
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2019]. Figure 3.6 shows all the possible paths for the oxidation of methane to produce carbon dioxide

(and water), using the MemoryMap algorithm Foo [2019]. Although such methods can be useful in

showing isolated pathways, they provide a convoluted representation of large interconnected systems

and require some manual intervention.

Figure 3.6: A transit map showing all the possible routes from methane to carbon dioxide.
This was drawn using MemoryMap [Foo, 2019] and uses a version of the MCM methane subset, where
carbon dioxide has been introduced.

3.2.2.2 Projection Based

One of the oldest fields of data visualisation fall in the realm of cartography. Here the shapes and

distances between points on the surface of the earth (an oblate spheroid) are mathematically mapped

onto a 1D plane for graphing purposes [Thomas, 1952]. Since the process of dimensionality reduction

will produce inherent distortions within the final product, we end up with a range of map projections,

with each striving to achieve a different aim (Figure 3.7). The Pierce Quincuncial, for example, is

a conformal mapping technique mapping the surface of a sphere to a square with minimal deviation

in scale and the ability to be tessellated in all directions. The Mercator, on the other hand, is

a cylindrical projection which grew in popularity due to its unique ability to represent any course

of constant bearing1 as a linear segment within the shipping and navigation industry. Finally, the

waterman butterfly presents the globe as a truncated octahedron. This allows for the reconstruction

of a three-dimensional world from a 2D plane (i.e. a printed sheet).

1Also known as a ‘rhumb’, or ‘loxodrome’, and consists of an arc crossing all meridians of longitude at the same
angle.
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(a) Pierce Quincucial (b) Waterman Butterfly (c) Mercator

Figure 3.7: A selection of map projections. These have been created using DataDrivenDocuments
[Bostock, 2012] and show a range of methods for mapping the spheroid shape of the Earth onto a 2D
plane.

(a) The Mercator graph. (b) Mercator species distribution

Figure 3.8: The Mercator Projection. (a) represents the output from the Mercator graph layout
algorithm. (b) provides a kernel density analysis of the node distribution within this. Here (a) shows
graph structure by revealing the density of connections between different nodes, while (b) reveals the
density of nodes at a specific location.

More recently, the mathematics of mapping a large dimension onto a simpler one has been applied to

the problem of graph representation. [García-Pérez et al., 2019] uses the latent hyperbolic geometry

of the Mercator layout to provide a 2D embedding for complex real-world networks. This produces

a polar representation (r and θ) of the system, where relationships of related species are of the same

angle (θ), with nodes of a high degree are closer to the centre (low r value, where r is the radius from

the centre). Using the chemical mechanism from the APHH Beijing campaign (described above),

this produces a layout, (Figure 3.8) where (a) shows the graph-based representation including links,

and (b) shows the density distribution for all nodes. Figure 3.8b shows that primary emitted species

(orange dots) are uniformly (radially) distributed for angles and Figure 3.8a reveals that influential
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nodes with a high degree (highly connected) are located close to the centre of the graph. Although the

Mercator embedding does reduce the ‘hairball’ problem experienced by other layouts, it does not take

edge weight/direction or self-loops. This means that it works well for the representation of the general

network layout, but cannot be used for advanced data exploration concerning simulation results.

3.2.2.3 Force-Directed

Force-directed graph layouts are the results of the Spring-Electrical model. This was first introduced

by [Eades, 1984] and further improved by [Fruchterman and Reingold, 1991]. Force-directed layouts

are, in essence, a simple physics simulation of like-charged particles representing the nodes. These

particles act similarly to protons which experience Coulomb repulsion and try to get away from each

other. If there is a relationship between two nodes, an attractive spring-like force is introduced,

drawing the nodes back together.

In the case of a weighted graph, where each link (or relationship) has a value associated with it, we

can adjust the spring coefficient of the attractive force to reflect this. This results in a layout where

strongly connected objects are drawn together, and weakly connected ones further away. Uses for

this type of representation have been shown biology, social networks, and with this thesis atmospheric

chemistry [Muelder et al., 2014; Kohlbacher et al., 2014].

Next, we describe the Barnes-Hut algorithm, a mapping algorithm which builds a hierarchical tree of

the data by splitting a plane into quartiles. This is used within the many force-directed graph layouts,

including those of Force Atlas 2 and Yifan Hu, described shortly. Once this has been done a selection

of four different layout algorithms shall be discussed.

Barnes Hut Algorithm

Since calculating the attractive/repulsive forces for each node of a large graph can be computationally

intensive, many force-directed layouts rely on the Barnes-Hut approximation. This solves the N-

body problem of pairwise reactions between nodes, O(n2), by approximating long-range reactions by

grouping such nodes and applying a single action on their centre of mass- reducing the computational

time to n log n.

To do this, first, a spatial index of each node is constructed (see below). This can either be done

using a quadtree (2D) or octree (3D). Following this we calculate the centre(s) of mass, allowing us

to approximate the repulsive forces of a force-directed graph.

Quadtree Construction: A quadtree is the recursive partitioning of two-dimensional space into a

set of quadrants (a set of 4 squares). This process is repeated, with each square then being divided into



3 - Applying Visual Analytics to the Atmospheric Chemistry Network 67

four itself, until there is only a single point within a cell. This converts a network, into a hierarchical

tree representation of the nested quadrants in which each point resides (a quadtree), Figure 3.9.

(a) Methane Graph (b) Quadtree constructed from Figure 3.9a

Figure 3.9: Demonstration of the formation for a quadtree from a force directed graph of
Methane (including inorganics). (a) shows the force directed graph of Methane from which the
quadtree has been constructed- edge colours represent the flux between species. Here we partition the
area into 4 and start at the top-leftmost cell. This is then partitioned into 4 itself in a recursive process
until there is only one point per cell. We repeat the process to any remaining cells in a clockwise
manner (b). The hierarchical tree (b right) shows the containing structure for each node. Here the
colours represent the order in which nodes have selected (starting at pink and ending in blue).

Having defined this, we move on to looking at the graph layouts.

Force Atlas 2

The force atlas two [Jacomy et al., 2014] algorithms is a force-directed layout designed primarily for

scale-free2 network spatialization. It is primarily designed for the use of networks consisting of 10

to 10,000 nodes and uses barns-hut approximation for the calculation of forces. Attractive forces are

derived from the spring-electric model (Fa = −k.d), where k is the spring constant and d is the distance

between the two nodes. Optional features for the graph include dissuasion by degree (separating

nodes with a high number of total links/reactions), logarithmic attraction forces, adjustable gravity

(attraction the centre of mass of the system to prevent disconnected components from drifting away)

and collision detection to prevent overlapping nodes. Finally, an adaptive cooling scheme is applied,

where the overall energy of a system is gradually decreased, allowing the nodes to settle into a low

energy state.

2A network whose degree distribution follows a power law (7 degrees of separation). This is described in Chapter 4.
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Yifan Hu

The Yifan Hu graph layout [Hu, 2004] is a multi-level graph drawing algorithm which uses the Barnes-

hut algorithm with an octree layout. As with the force atlas algorithm, Yifan Hu also has an adaptive

cooling aspect to it - meaning that as the algorithm is run its energy is progressively reduced, allowing

the system to settle within a low energy state. The Yifan Hu algorithm uses a multilevel approach,

running on first a course algorithm, and then refining the results - an efficient process which is

unfortunately constrained to only working on undirected networks.

OpenOrd

A force-directed graph algorithm capable of scaling to large graphs [Martin et al., 2011]. OpenOrd

uses simulated annealing (see below), which has five distinct phases. These are each run for a fraction

of the total number of iterations and mimic the different states experienced when heating/cooling

a physical object (liquid, expansion, cool-down, crunch and simmer) - hear each state describes the

amount of energy assigned to the nodes within the force simulation. In addition to this, the OpenOrd

algorithm applies a degree of edge-cutting to remove a percentage of edges experiencing the most stress

within the physical system. This allows the network to open out into a more aesthetically pleasing

layout.

Simulated Annealing

Most iterative layouts are updated interactively from some initial configuration in an attempt to reach

the lowest energy state of the system. In most cases this results in a minimum configuration; however,

this is generally a local minimum rather than the desired global minimum (the optimum low energy

state of the entire system) [Davidson and Harel, 1996]. To overcome this, the work of Metropolis et al.

[1953], which was later formulated in general terms by [Kirkpatrick et al., 1983], was used to lay the

foundation for simulated annealing algorithms.

Annealing is usually used to describe the slow cooling applied to liquids for them to reach a crystalline

(totally ordered, minimum energy) form. It can be shown that if the atoms(nodes) are cooled too

rapidly (losing energy quickly and coming to a quick stop), they will form amorphous structures

representing the local minima, as opposed to the desired global one. If cooled slowly, our graph is

allowed to find a thermal equilibrium at every temperature. A slow cooling constant is applied, whilst

occasionally supplying the system with short bursts of energy, that may allow it to overcome local

minima.
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tsNET

t-Distributed Stochastic Neighbor Embedding (t-SNE) is a dimensionality reduction technique which

mimics the style of a force-directed graph (this is discussed in Subsection 6.3.3). tsNET3 is a graph

drawing algorithm which leverages the non-linear dimensionality reduction capabilities of the t-SNE

algorithm [Maaten and Hinton, 2008a]. This works by first computing the shortest-path distances

between all nodes to produce a distance matrix. This distance matrix is then used to construct a cost

matrix which consists of the sum of three terms:

1. A measure of the divergence between picking pairs of low- and high-dimensional data points.

2. A compression factor, known to reduce the t-SNE optimisation time, taken from [Maaten and

Hinton, 2008b].

3. A repulsion term to prevent nodes clumping together.

Node positions are then determined by the minimisation of the cost matrix using gradient descent -

an optimisation algorithm used to minimise a function by iteratively moving in the direction of the

steepest descent.

Note: Although tsNET makes for an excellent alternative to classical graph layouts, it does not take

link direction into account.

3.3 Selecting The Best Graph Drawing Layout.

Subsubsection 3.2.1.1 explained the importance of removing overlapping edges and Subsubsection 3.2.1.2,

the desire of having a well-distributed graph layout. This subsubsection builds on those criteria, assess-

ing all the graph layouts described within this section (Mercator, Force Atlas 2, Yifan Hu, OpenOrd

and tsNET). These all use the chemical mechanism representing species within the APHH campaign

in Beijing [Fleming et al., 2017]. Here we look at the distribution (Subsection 3.3.1) and density

(Subsubsection 3.3.1.3) as they affect a users ability to isolate the shortest path (fastest flux).

Force-directed graphs place a greater emphasis on node positions,

Criteria, such as the ability to isolate the shortest path (in this case the fastest flux), are essential in

determining the usefulness of a graph. Comparing different layouts [Pohl et al., 2009] found 68% of

user-chosen routes to reflect the shortest path between them.

3A play on t-SNE and network.
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This is due to the force-directed layout placing a greater emphasis on node positions and distance

than other layouts. For comparison, the same study found this to be 40% for hierarchical layouts

and only 2% for orthogonal ones. This section compares some graph layouts and their effect on user

readability.

3.3.1 Graph-Node Distribution

Subsubsection 3.2.1.2 explained the importance of node distribution within a graph visualisation.

Additionally, Purchase et al. [2003] explains that if we partition the viewing medium into quartiles,

and populate each quadrant with an equal number of nodes (homogeneity), this drastically improved

the usability and symmetry of a graph.

The problem is that for complex real-world graphs is that they often contain nodes with many reactions

between them (Figure 3.10). Such regions of dense, indecipherable links (often referred to as hairballs

[Ma and Muelder, 2013]), obscure nodes and edges within a region, making it impossible to read.

Methods such as edge pruning [Dianati, 2016] (removing unimportant links) can be used to reduce

complexity. This process may be done either post computation (syntactic representation) - resulting

in a loss of information, or during the algorithmic approximation (e.g. within the OpenOrd algorithm)

- where any removed edges are then re-introduced in after the final layout has been generated.

Figure 3.10: A graph of the full MCM - a hairball. The high number of nodes and edges (espe-
cially those to inorganic species), causes a high degree of obfuscation, rendering the graph unusable.
Species with a large number of reactions (links) are labelled.
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3.3.1.1 Evaluating Node Distribution For The Beijing Mechanism

In deciding which layout algorithm produces the best graph-node homogeneity, a kernel density ap-

proach is used to compare node distributions across 2D space in Figure 3.11, and the Mercator density

plot from earlier (Figure 3.8b).

(a) Yifan Hu (b) Force Atlas 2

(c) OpenOrd (d) tsNET

Figure 3.11: Contour and kernel density plots showing the node distribution for different
graph layouts. Line charts show the distribution of nodes in the x and y directions, while the
contours represent density with respect to the location of each node (the crosses). Primary emitted
species are coloured orange, and the darker contour polygons show areas of higher density.

This style of plotting allows for the easy location of areas containing a large number of nodes (high

density) through the use of the contour-colour gradient. In an ideal graph, we would have groups

(clusters) of high density, all of which would be evenly dispersed around the 2D plane. Additionally, the



72 3.3. Selecting The Best Graph Drawing Layout.

use of x/y kernel density can show us the homogeneity of a graph - a perfectly homogeneous (lattice)

graph will have a uniform distribution across both axes. For a modular graph of evenly dispersed

groups, we would expect an oscillatory distribution of similar amplitudes. Using this criterion, the

Mercator (Figure 3.8b), tsNet (Figure 3.11d) and Force Atlas (Figure 3.11b) score the highest, where

the OpenOrd and Yifan Hu graphs containing a gaussian-esque distribution across both axes - a

distribution conducive to the production of a hairball.

3.3.1.2 Distribution Of Primary Emitted VOCs

Within the construction of an atmospheric chemical mechanism, a chemist first begins with a primary

emitted species. This is then broken down to produce other species, depending on its structure and

functional groups (Figure 2.9). This process suggests that in constructing a network from such a

mechanism, this structure will be prominent. Knowledge dictates that a chemical graph should start

from a large emitted species, and aim towards carbon monoxide (and ultimately CO2 although this

is not included in the MCM). To show such a structure, we expect any primary emitted species to be

evenly distributed and the chemistry to tend towards the location of CO (the centre). In searching

for a layout that satisfies this requirement, the tsNET graph (Figure 3.11d) is found to be the best,

followed by the OpenOrd and ForceAtlas2. Yifan Hu (Figure 3.11a) and Mercator (Figure 3.8b) both

contain areas where many of the primary emitted (orange) species are grouped and are therefore

unsuitable for the representation of the MCM structure.

3.3.1.3 Calculation Of Spatial Clustering

Subsubsection 3.3.1.1 explains that the ideal (modular) graph consists of many groupings of like

chemistry evenly scattered across the graph. This requires a degree of regular anisotropy to produce

‘clusters’ of densely connected nodes, sparsely separated in space. To calculate this, we can rely on

Voronoi tesselation.

Voronoi Tesselation

Voronoi Tesselation is the process of finding the largest area closest to a specific point. It can be

thought of as a container with a bubble at the location of each node, where each bubble collapses to

fill the largest area possible.

Here we begin by partitioning the graph plane into the same number of cells as our nodes. Next,

each cell polygon boundary is calculated such that all the points on it lie closer to its seed (origin)

node than any other. Mathematically these are referred to as the perpendicular bisectors of the lines
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between all points.

Finally, we calculate the areas of each polygon and use it to represent the density distribution between

neighbouring nodes of our graph. To simplify the visual analysis of each graph, these are also coloured

in Figure 3.12.

Visual study of node clustering

The method of using Vornouli tessellation for the calculation of density has been used in the study

of neurones [Duyckaerts and Godefroy, 2000] and areas of fixation when viewing images [Over et al.,

2006]. We apply it to the nodes of a set of force-directed graphs to determine the graph layout,

which provided the best high-low density ratio for the atmospheric chemical mechanism of a Beijing

environment.

Using Vornouli tessellation in Figure 3.12 we find that the OpenOrd and tsNET (Figure 3.12d,Figure 3.12c)

layouts have the highest isotropy - containing cells of similar sizes and consequently a small colour

gradient. This suggests that these are spatially efficient layouts as they do not reveal any additional

information about nodes of similar chemistry.

In contrast, the Mercator layout, despite having a high x−y node distribution, contains large areas of

unoccupied space due to its non-linear density distribution. Using this measure of spatial modularity,

we find that the ForceAtlas2 and YifanHu (Figure 3.12b,Figure 3.12a) graphs have distinct modules of

high density distributed across the entire graph, which is what we expected from the MCM network.
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(a) Yifan Hu (b) Force Atlas 2

(c) tsNet (d) OpenOrd

(e) Mercator

Figure 3.12: A visual analysis of node-cluster density using Voronoi tesselation. Each
polygon is centred on a node - its area represents the space between the node and its nearest neighbours.
Colours follow the normalised size of the Voronoi cells/polygons.
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Mathematical Analysis And Layout Selection

In contrast to the qualitative analysis of the visualisation, it is also possible to calculate the distribution

of polygon areas (and this node dispersion) of each graph through the use of a boxplot (Figure 3.13),

in addition to the minimum, maximum and outlier properties, a boxplot allows for the comparison for

the interquartile range (IQR) between graphs. If these values are large, they signify a more significant

distribution between sparsely and densely grouped nodes (a commodity that is desired). The medians

location within the IQR can also be used to indicate the dominant size of the polygon within the

graph. Here a higher number of smaller polygons is desired and can be seen by a median approaching

the lower box boundary (25th quartile).

Figure 3.13: Voronoi log10(Area) BoxPlot for all plots in Figure 3.12. This provides a math-
ematical analysis for the areas around each node within a graph.

Figure 3.13 shows Mercator to provide the best result. However, it is noted that although the boxplot

contains the best ratio, its radial shape is not conducive to the representation of modularity within

a chemical network. tsNET contains the largest IQR, and since it is not able to handle the directed

edges of an atmospheric chemistry graph, this again has to be ignored. Finally, although OpenOrd

can reduce the number of hairballs within a graph by using simulated annealing and edge-cutting,

its homogeneous isotropic node distribution (small IQR with a sizeable median value) make it not

most effective at highlighting the structure of the MCM. Yfan Hu layout fares better with regards

to the box plot, yielding an overall lower box, with a similar IQR and median ratio. Here its lower

median suggests more high-density nodes, with a similar distribution to the ForceAtlas2. This makes
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sense since the two algorithms share many similarities; however, the inability to handle directed edges

makes it unsuitable for our application.

By process of elimination, this leaves the ForceAtlas2 algorithm as the best candidate for representing

a chemical mechanism. Its directed nature, coupled with intuitive design make it applicable and easy

to explain while maintaining the ability to produce a clear representation of any underlying structure.

In addition to this, its uniform spatial distribution (Subsection 3.3.1) makes it a better candidate than

the Yifan Hu graph (which fared slightly better in the boxplot).

3.4 Graph Semantics

Deciding the correct semantic (relating to meaning) representation for visualisation is often just as

important as selecting the correct syntactic (structure) style. Semantic features are often applied

post generation [Bennett et al., 2007] and are used to encode additional information and clarify the

data. As a means of achieving both an aesthetically pleasing outcome, and an easy to understand

visualisation, we must first consider what features we, or the reader, are most interested. Once this

has been decided, we begin to explore various methods for representing them.

3.4.1 Limitations

Before selecting any semantic features, we must inform ourselves of the visual, cognitive and techno-

logical limitations of the visualisation, medium or user.

Visual

In visual analytics, the most significant bottleneck falls on the resolving power of the eye - this is

known as an acuity (sharpness or clarity of vision at a distance). Acuities are a measure of the angle

of an observed object with the viewer’s eye using arcs (one arc minute equates to 1
60

th of a degree).

This provides a unit of measurement for the total amount of information density we can feasibly

perceive [Ware, 2013c].

In ophthalmology, there exist four types of acuities:

- detection: The smallest size an object can be whilst still being shown

- recognition: The smallest size an object can be to be recognised

- resolution: The smallest distance between two objects before they begin to merge
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- localization: The smallest amount of visual change that can be measured between two objects

These provide a set of considerations which may be used to assess a visualisation. Depending on

what encoding we use, it is possible to improve/hinder the reader’s ability to perceive information,

(Figure 3.14). An example of this would be that for a Macbook Pro retina screen4, where at 87

pixels/cm we can resolve at most 2 million resolvable nodes (at 57 cm from the screen). If we wished

to add links between nodes, the total items identified is reduced to one million [Jankun-Kelly et al.,

2014].

Figure 3.14: Important acuities in visualisation. Here a double prime " represents an arc minute
which equates to an angle of 1/60 of a degree. A single prime ’ is that of an arc second with is 1/60th
of an arc minute (or 1/120 of a degree). For comparison the maximum angular resulution of the
human eye is stated as 28 arc seconds [Deering, 1998] - this means we can only ever see up to 28 nodes
or 2 verneers (disjoint lines) at any one time. Source: [Jankun-Kelly et al., 2014; Ware, 2013c]

Cognitive

Although it may be possible to distinguish 1 million nodes and links visually, interpreting and un-

derstanding these presents another problem. The visual thinking laboratories [VTL, 2019], have a

range of publications exploring how presentation can improve though, cognition and communication

between info-graphic and reader. Steven Franconeri [2018], explains that the time required to interpret

a visualisation is directly related to the encoding used to highlight the data within it. Also ‘inten-

tional blindness’5 and misinterpretation are problems which are often occurred with poorly thought

out encodings.

In considering the cognitive load of a visualisation Norman [2005] provides a list of three categories

which should be explored:

1. Firstly, we have the visceral level, a subconscious process where decisions are made rapidly based

on sensory inputs to the body. This is usually due to our inherent ability to locate patterns and

4A retina screen, is half the maximum possible resolution of the human eye at a 30cm distance. Additionally, the
operating system interpolates in sets of 4 pixels, such that the image displayed may not be at full resolution.

5The failure of a user or audience to notice a fully visible feature because their attention was engaged by something
else - e.g. misdirection in magic tricks.
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changes due to semantic properties which shift the focus of the user.

2. Next follows the behavioural level (mostly subconscious). These are often learned reaction to

changes noted as part of the visceral level. Here reactions may be honed on and influenced by

past experiences and events.

3. Finally, we reach the reflective level. Here the user collates all sensory input from the previous

two levels and makes an informed conclusion about the underlying data. Conclusions drawn

here can be used to bias the methods used within the behavioural level in future events.

Technological

In addition to human limitations, there may be restrictions due to the medium a visualisation is cre-

ated/presented. To monitor resolution, much scientific research is constrained by the size, resolution

and colour quality of the presentation mediums used for talks, printing or posters. Ware [2013c] ex-

plains that a printer capable of producing 1200 dots per inch squared, can only do this for black/white

binary images. If for instance, 256-greyscale is used, the resulting resolution is then at-least ten times

smaller. This is because printers a Monet (dot matrix) style approach to create shading and colour.

It follows that at full colour6, the output resolution will be worse.

It is also essential to have a graph fitting the same overall shape of the canvas on which it is presented

[Taylor and Rodgers, 2005]. This not only makes optimal use of any space available but also reduces

the visual complexity as it minimises the number of distinct shapes available to the user.

3.4.2 Node Encoding

Within a graph, the nodes or vertexes are a representation for the set of items we have an interest. In

addition to the relationships between them, items often contain a multitude of features which describe

them. Examples of these may be useful information for a person, categories of characters or the

chemical composition/concentration for a species in the MCM.

Each of these additional properties can contain valuable information for the interpretation of the graph,

and the interactions between nodes. It is, for this reason, that graph convoluted neural networks

[Klicpera et al., 2018] require a ‘feature matrix’ describing each node, in addition to the network

structure and edge weightings.

This subsection addresses several ways in which additional information can be encoded in the repre-

sentation of a node, Figure 3.15. Each different category colour matches the title description in the

6CYMK (Cyan Magenta Yellow Black)
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text.

HMML      CO

RU14O2
C2H4

C5H8

IC3H7O2

CH3COCH3 IC3H7NO3

IC3H7OOH

Name:  BPINENE

Smiles: C=C1CCC2CC1C2(C)C

Figure 3.15: A graph showing 5 different node encoding methods. These are Circle Atrributes
(red), Chemical structure (blue), Species Name (green), External Labels (maroon) and interactive
selection (orange). The network shows the Common Representative Intermediate species [Jenkin
et al., 2008] mechanism. Node colours represent primary emitted VOCs (red), MCM species (orange)
and lumped CRI-only species (blue).

Circle Attributes

The simplest of these range from the use of colour and stroke (outline) to shape/size as a way of

indicating a group. Here it is possible to provide information such as a species concentration based

on its size, its importance with its colour, its degree with its opacity and its category with its stroke

colour [Ware, 2013a,b]. Such decisions depend on what properties the user is trying to show. For

instance, red species in Figure 3.15 are primary emitted VOCs, orange species exist between both the

MCM and the CRI (see figure caption) mechanism, and blue ones are lumped species which do not

appear as part of the MCM.
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Chemical Structure

Traditional chemical diagrams use the chemical structure to depict the node (Figure 3.2). This makes

it intuitive to extract information about the functional group and potential bond changes within

species. Such a method of representation, is indeed useful, however when visualising hundreds, or

thousands of nodes on a page, it results in occlusion or labels being too small to resolve visually.

Species Name

Much like the chemical structure, a species name is proven useful in explaining to the user its chemical

structure or properties (often due to prior knowledge, or the ability to look this up). Unfortunately,

since names have differing lengths, this can cause problems, especially with large numbers of closely

located nodes. A solution to this may be to adjust the font size to fit in within the circle radius of

the node. However this does come with its problems - for instance, tiny nodes may have text smaller

than a pixel, or the misleading notion that longer names are less important since they are represented

by a smaller font.

Interactivity

Ben Shneiderman, one of the first, and most prominent, researchers in human-computer interaction

coined the phrase ‘ overview first, zoom and filter, details on demand’ [Shneiderman, 1996]. This is

the philosophy behind most data orientated interaction design and can be applied to graphs. One

example is the selection only of reactions relative to a node of interest, as is shown in Figure 3.16.

For complicated systems, interactivity plays a vital role in unravelling complexity and reducing clutter

[Shneiderman, 1997]. This is a method which lessens the cognitive load (Figure 3.4.1) on the user,

allowing them to query only items of interest, while still displaying all the information in a single

location [Görg et al., 2007]. This fits in Ben Shneiderman [1985]s 8th rule of interface design, which

explains that people only ever remember ‘seven plus or minus two chunks’ of information.

A comprehensive list of all available interaction types and styles are provided by Wybrow et al. [2014].

Some examples of interaction are:
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Hi-lighting

• Hovering

• Brushing and Linking

• Magic Lenses (see hidden objects)

Visual Structure-Level Interaction

• Selection

• Changing layout/mapping attributes

• Changing representation

Navigation

• Pan / Zoom

• View Distortion (fisheye)

Data Level Interactions

• Adding / Filtering

• Search / Query

Figure 3.16: Using mouseover edge-selection to highlight all links related to a node. This
figure shows how in using interactivity it is possible to reduce clutter and filter the information
presented by a densely populated graph. In this case, the Mercator projection (Subsubsection 3.2.2.2)
is used, with reactions relating to Carbon Monoxide (centre) highlighted. Orange lines represent
reactions producing CO whist the red (some of which may be hidden) are of reactions with CO.

External Labeling

In cases where interactivity is not possible, such as papers, books and this thesis, an alternative

approach to data selection has to be employed. Here nodes which are central to the explanation of a

certain point are filtered by the author and displayed through the use of external labels. It is found

that having links at 45 and 90-degree angles (such as in transport maps) lead to a clearer layout and

better distinction from the links already within the graph. Automatically generated labels within the

thesis are made using Lu [2019].
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3.4.3 Edge Properties

Defining the purpose of force-directed (graph-energy) models as a means for creating a visualisation

from which the viewer can infer properties of the data [Noack, 2004], it can be shown that this criterion

is easily met in small and sparse graphs. However, non-planar examples with high edge density (lots of

links) can easily result in tangled results with impractical running times [Kumar and Garland, 2006].

In most cases attaining an optimal solution here seems to be computationally infeasible [Davidson

and Harel, 1996]. This is generally because graphs primarily focus on hi-lighting a specific purpose or

following a set of aesthetic heuristics [Pohl et al., 2009].

3.4.3.1 Muti-Variate Edges

Since there are multiple relationships between species, it is important to decide if simplifying the

network would be of benefit. Although it is possible, multiple edges may cause unnecessary clutter

for larger networks. Instead, it is often useful to simplify the number of edges in the network and

encode the edge properties within the vector object. This allows the user to retrieve any additional

information by hovering over the edge or connecting nodes, as required. Should the topic of interest

require a specific property, then it would also be possible to remove, or hide, all edges which do not

contain it. This produces an interactive graphic containing all the required information, as and when

needed, without the unnecessary clutter of having every reaction shown.

3.4.3.2 Edge Direction

When using a directional graph, it is the convention to use arrowheads to represent the direction

of flow. However, in high-density regions, it is often found that arrowheads take up precious real

estate in the drawing area [Dwyer et al., 2006a]. As an alternative, colour and line-type can be

used to represent the direction instead - this was seen in Figure 3.9a (the quadtree example). This

example can be shown in the routing networks presented by [Di Battista et al., 2004]. One example

applicable for chemistry would be the use of dashed lines to represent mono-directional relationships

and continuous lines for bi-directional ones.

3.4.3.3 Edge Shape

Edge shape is essential, as it is the medium we use to represent relationships within a graph. For

orthogonal graphs (Subsubsection 3.2.1.1), multiple lines are used to simplify the complexity of a

graph and reduce edge crossings [Di Battista et al., 1994]. In increasing the number of lines within an

edge, this multi (poly)-line graphs can be modified to give drawing with nicely curved edges. Similarly,
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it is possible to replace the edges in a straight-line graph with Lombardi-style curves or cubic beziers

[Chernobelskiy et al., 2012; Goodrich and Wagner, 1998].

Using a mechanism describing the reactions of Butane in the MCM, we compare many edge shapes

(Figure 3.17). In this graph, each node has multiple edges between nodes (multi-link). Each edge

represents a different reaction between the species. Figure 3.17 shows the straight-line representation

of each graph. Since each edge represents the shortest distance between two nodes, any additional

reactions pairs between similar nodes are hidden from view. If using this type of representation,

it is advised to take the net edge direction and weight between the values. An improvement to

the straight-line graph comes from the use of quadratic curves (Figure 3.17b). This allows for the

symmetric distribution of edges within the graph. If instead an asymmetric representation for each

edge is required, it is possible to use a bezier curve (described below) instead of a quadratic edge

(Figure 3.17c). These can provide additional information through the use of control points, which can

alter the shape, steepness and asymmetry of each link.

Bezier Curves

Bezier curves are named after Pierre Bezier who used them in the bodywork design of Renault cars in

the 1960s [Hazewinkel, 1997]. Since then they have been widely used in graphs, computer graphics,

font design and animation/interactivity response [Goodrich and Wagner, 1998; Hazewinkel, 1997;

Mortenson, 1999]. Bezier curves come in a range of possible dimensions; cubic beziers are the most

commonly used within network visualisation. These contain four control points, respectively, which

can be used to determine the shallowness of the curve through design. In general, relatively shallow

curves are prefered, as these do not introduce unnecessary edge crossing or abrupt changes, which

have been shown to hinder a users ability to isolate items of interest [Purchase et al., 2003].



84 3.4. Graph Semantics

(a) Linear (single-edge)

(b) Quadratic (multi-edge)

(c) Bezier (multi-edge)

Figure 3.17: A selection of edge shapes for the butane network. These show linear (a),
quadratic (b) and bezier (c) edge shapes for the same network. In general, the bezier curves appear
to provide the shapes of the most aesthetically pleasing graphs.
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3.4.3.4 Edge Bundling

Pioneered by Holten [2006], edge bundling techniques are an effective way to reduce visual clutter.

Much like a force graph, edges are represented as a string of lined points. This allows for edges to be

pulled together (attracted to one another) and produces a visualisation akin to moving water droplets

on a hydrophobic surface. Figure 3.18 shows how in changing the amount of attraction between edges,

it is possible to reduce clutter in a visualisation.

(a) θ = 1 (b) θ = .85

(c) θ = .75 (d) θ = .65

Figure 3.18: How the compatibility threshold affects edge bundling using the Mercator
graph from Subsubsection 3.2.2.2. In increasing the amount, edges are attracted (θ) it is possible
to improve the clarity of a graph. However, there reaches a point where this distortion can worsen the
result, confusing the reader, or creating a false positive. For this reason, I generally use only a slight
bundling value > 0.7.
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3.4.3.5 Power, Routing And Confluence.

Confluent graphs use a graph drawing method in which edges are not drawn as individual distinguish-

able geometric objects, but rather as a crossing free system of arcs and junctions. [Förster et al., 2019].

Their design is similar to that of the edge bundling algorithm, except that rather than bundling edges

spatially (a design which may introduce ambiguity), the bundling is done based on connectivity and

can help reduce clutter by grouping multiple edges where the all target nodes are also connected to

all the source nodes (Figure 3.19) [Bach, 2020].

Figure 3.19: An example of confluent bundling. A traditional network (a), Edge bundling (b),
Power Graph (c) and Confluent graph (d) representations. Source: [Bach, 2020]

Using the oxidation of butane as an example, we shall explore the construction process of a confluent.

Starting with the network presented in Figure 3.17, we create a power graph - power graphs are a

representation of complex networks where sets of items identical source and target links are lumped

or grouped within a single item. Next multiple edges which follow the same path are bundled through

a ‘routing’ node to create the routing graph in Figure 3.20. The newly created routing nodes are now

used as control points for the mapping of the graph using basis-splines7 (Figure 3.21). Finally, any

crossing links are removed, leaving the confluent graph in Figure 3.22.

Confluent drawings have been found to have many applications (e.g. the ego-centric author network

7These are similar to bezier curves but require a degree (p), n + 1 control points, and a knot vector of m + 1 points.
Knots are the things that make the curve continuous
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and social interaction graph), they generally perform best in sparse networks with locally dense clusters

of a tree-like structure [Bach et al., 2017]. Although sparse, the cyclic nature of atmospheric chemistry

does not allow for a sufficient reduction in complexity to make them a suitable improvement over

traditional graphs. The use of very close-fitting basis-splines in addition to a routing graph (confluent

graph with crossing artefacts), may, however, help to simplify specific layouts or mechanism subsets

with a certain amount of tweaking.

Figure 3.20: The routing graph of the butane mechanism. Here paths which contain two or
more bundles have an extra ‘routing’ node introduced (orange stroke)
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Figure 3.21: Confluent graph with crossing artifacts. The routing graph with the addition of
basis-splines using the orange routing nodes in Figure 3.20 as control points.
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Figure 3.22: Confluent graphs without crossing artifacts. The remaining confluent graph with
crossing edges removed.

3.4.3.6 Angle / Continuity

Visual representation utilises our conscious and unconscious pattern recognition and intuition abilities

[Dixon, 2012]. To avoid apophenia (finding patterns where they do not exist), careful consideration

has to be placed in the design of a graph layout. Although edge crossing is often thought of as the

most import aesthetic metric, finding continuity between incoming and outbound edges of a node was

found to be if equal importance [Ware et al., 2002].

Reducing the angle between related edges increases readability and allows the behavioural process to

infer information about a graph correctly. This process can be compared to predicting the direction

of turbulent vs laminar flow. In addition to this edges should be spaced evenly around the node,

maximising the minimum-edge-angle between all edges of a node [Bennett et al., 2007].
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3.4.4 Temporal Projection

Story-telling has been an effective method to convey information, experience and cultural values for

almost as long as people have been around. Many real-life physical processes occur over time and thus

allow the use of a story-telling analogy. Gershon and Page [2001] provides a generic structure which

begins with creating a general overview of the subject. Events are then animated in order of occurrence

and defined as we go along. Finally, any remaining conflicts and uncertainty are addressed, and these

are rectified. Using this as a template for our graphs, we find that the content is usually given in the

form of a title or figure description, the evolution as the visualisation, and finally the reflection and

resolution through the use of user interaction (e.g., node hi-lighting, zoom or animation).

Since very few graph layouts support dynamic time-varying graphs [Kumar and Garland, 2006], sev-

eral methods of visualising temporal events have been developed. Although storylines can be useful

for drawing the evolution of simple systems, these break down when dealing with large numbers of de-

pendant variables. Force-directed layouts may be adapted, to suit these better, after which the initial

positions of the previous node endpoints are used as the initial positions for consequential simulations.

Three methods of representing these are shown in [Ellis, 2018] - screenshots of which are shown in

Figure 3.23.
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(a) (b)

(c) (d)

Figure 3.23: Film style representation of temporal changes in a network. Showing the
temporal changes from a model simulation of the Beijing atmosphere. (a) shows a weighted graph
at midnight. With the addition of daylight, the chemistry speeds up, causing the force graph to
contract, changing the overall network shape (the faster reactions have a stronger attractive force). The
animation of this can be found at https://github.com/wolfiex/DanEllisThesis/blob/master/daynight_
26mb.gif

Finally, user-interaction such as hi-lighting key nodes/links, zoom and animation8 may be used to

clarify information at the reflection stage.

8[Archambault et al., 2014] notes that animation poses high demands on the user’s visual memory and that snapshots
are likely to miss underlying patterns. For this reason, interactive techniques that can allow retrospective selection of
timesteps allows for a good compromise between these.

https://github.com/wolfiex/DanEllisThesis/blob/master/daynight_26mb.gif
https://github.com/wolfiex/DanEllisThesis/blob/master/daynight_26mb.gif


92 3.4. Graph Semantics

3.4.5 Additional Dimensions

Additional dimensions can be used to emphasise certain aspects of our graphs. For instance, multiple

layers may be used in a directional graph to separate the importance of the nodes [Dwyer et al.,

2006b]. Figure 3.24 shows the first, second and third-generation species of a mechanism containing

isoprene in three dimensions, where each layer in the third direction represents a different generation of

species. Such visualisation may be explored interactively, with the aid of a computational input device

(a mouse, keyboard or device gyroscope), or with the aid of red-cyan 3D glasses (for non-interactive

mediums such as print).

Different layers can be used to separate primary VOCs, from species which result in their production

(+1 layers) and loss (-1 layers). Temporal data (e.g. Figure 3.23) can also be presented in this

format. The only drawback is the high possibility of obfuscation which may result from many layers

of overlapping information.

Figure 3.24: A 3D representation of a graph to hilight certain features. The first, second and
third generation species of isoprene shown as an interactive 3D anaglyph.

3.4.6 Summary Of Semantic Representation

In this section, the different semantic methods have been explored. It is found that additional infor-

mation such as concentration or functional groups may be represented as node size/colour and that

there are a range of edge plotting styles that may be used to reduce clutter.

In the next section, we combine both semantic and syntactic representation and apply it to an at-

mospheric chemical mechanism. Using the graph visualisation tools described above, we access the

quality of information which may be inferred through representing a mechanism in this way.
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3.5 A Chemistry Case Study

To conclude, we apply many of the tools described above to a single case study. We select an MCM

subset representing the VOCs measured as part of the APHH campaign in Beijing [Fleming et al.,

2017]. The chemistry of the mechanism is initiated using the conditions in Table 4.4, and propagated

by the Dynamically simple model of atmospheric chemical complexity (DSMACC) [Emmerson and

Evans, 2009; Ellis, 2020]. We run this forwards to steady-state and extract the flux between species

on noon. The edge weight is the net flux (product of the species concentration multiplied by the rate

of reaction for all reactions between those species and products), normalised to a value between 1 and

zero.

3.5.1 Semantic And Syntatic Considerations.

3.5.1.1 Syntatic Representation

Since we shall be using simulation data, we require a layout which deals with both direction and

edge weights. The spring-like description of the ForceAtlas2 is chosen from Section 3.2. This feature

highlights fast reactions by bringing nodes together. Such a property has been observed to help users

select the shortest path within a network [Pohl et al., 2009]. Here users picked the shortest path

an average of 68% for force-directed graphs, compared to 40% for hierarchical and 2% for orthogonal

layouts. Such properties can help us locate any trends in fast reactions which may control the chemistry

within a system.

3.5.1.2 Example Semantic Representation Using A Methane Mechanism.

Since the graph generated by the methane mechanism contains only a handful of species, our screen

real-estate allows the listing of names for each node. Node sizes are scaled to represent the concen-

tration of each species at that time point, and edges are coloured to represent the strength of each

relationship between them. Here pink edges represent a fast-flux and blue ones a slow one. In compar-

ing the change in graph shape between a weighted Figure 3.25b and unweighted Figure 3.25a graph,

we can see that nodes connected by a high edge weight (fast-flux) are drawn closer to each other than

those with a slow flux.
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C 2

(a) Connected unweighted

C 2

(b) Connected weighted (flux)

Figure 3.25: A weighted and unweighted force diagram of the methane mechanism. Here
it is seen that upon weighting, edges with a larger flux (pink) are drawn closer than those of a weaker
one (blue).

3.5.2 A Model Of Beijing

To perform a sensitivity study on the initial positions of nodes within the force atlas algorithm a graph

consisting of links and weightings is constructed using a box model simulation of the Beijing summer

environment (mid-day) and feed it the gephi software [Bastian et al., 2009] - an open-source software

designed for the exploration of networks. We then script the java code to perform the functions in

Figure 3.26. As part of this, nodes are initiated with a random position; the ForceAtlas2 layout is then

run and then the graph is rotated and translated such that it is centred around carbon monoxide and

has a 45-degree angle between this and formaldehyde. This step constrains the general orientation of

the graph, allowing us to analyse the generated graphs for global and local minima. The final step is

to save a copy of the generated graph layout and repeat to generate a data set, a subset of which is

shown in Figure 3.27. These are discussed further in Subsubsection 3.5.2.1.
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Figure 3.26: A flow chart of the process performed by the custom gephi script used to generate the
data set
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Figure 3.27: A sample of 224 (out of the 2000) graphs generated using the ForceAtlas2
algorithm. These represent the conditions of a spun up simulation of Beijing at noon. The shapes
of each graph, and general shapes are discussed in Subsubsection 3.5.2.1 and Subsubsection 3.5.2.2.

3.5.2.1 Similarity Between Graph Shape

Although through the use of manual intervention, it is possible to perform a superficial level of shape

analysis, our cognitive capabilities do not allow us to perform this task for all the simulations of

Figure 3.27- less so the entire 2000 graphs in the dataset. To overcome this problem, we rely on a

method of machine learning called t-Distributed Stochastic Neighbor Embedding (t-SNE) - described

in Subsection 6.3.3 and is the foundation of the tsNET layout algorithm. This is a dimensionality

reduction technique used in the automatic categorisation of images or photographs [Stefaner, 2020;

Sangkloy et al., 2016].

The input for the t-SNE for each dataset is a flattened (1 dimensional) representation of the pixels

in the image - we start and by taking a binary matrix representing each image, split it up into rows,

and glue these together. The pixelmap for each image is then fed into the t-SNE algorithm from the
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Scikit Learn package [Pedregosa et al., 2011]. This reduces the logical list of pixels for each image

into a two-dimensional representation of their similarity. We plot each file, for its (x, y) coordinate,

and isolate clusters of similarity using density contours in Figure 4.9.

Figure 3.28: A normalised scatter plot of 2D space produced by the t-SNE algorithm.
Each triangle represents a different arrangement of the MCM nodes shown in Figure 3.27, and the
colours/density contours show the regions in which we find similar images/graphs. Cluster numbers
correspond to the groups in Figure 3.29.

Using interactivity and/or vector cluster detection techniques, it is possible to examine which files

contribute to an area of high density. Figure 3.29 shows a sample of four graphs from each of the four

corresponding clusters. Although individual node locations may vary, patterns on the macro scale

start to emerge, with similar groups exhibiting symmetrical symmetry, e.g. groups 1/2 and 3/4. A

constraint in the overall degree of freedom of the network can be attributed solely to its structure, and

consequently the chemistry which forms this. The non-random nature of the produced graph layouts

means that it would be possible to juxtapose a variety of mechanisms using the ForceAtlas2 layout.
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(a) Group 1 (b) Group 2 (c) Group 3 (d) Group 4

Figure 3.29: A selection of graphs for each of the labeled groubs in Figure 3.28. These
reveal that symmetric similarity between like-positioned points within the t-SNE output.

3.5.2.2 Network Branch Classification

In Subsubsection 3.5.2.1 it was seen that there exist a certain branch pattern that emerges from the

structure of the MCM (Figure 3.29). Upon manual inspection of the simulations (Figure 3.27) many

graphs appear to contain three branches for each graph - using this it may be hypothesized that these

are a result of the mechanism, and by consequence the chemistry it describes.

To test for this, we categorise all primary emitted species into Alkanes, Alkenes, Aromatics and

Terpenes. All nodes and links in close proximity are regarded as products of these species and are

placed within the same group. Using a randomly selected graph from the dataset, the network is

separated spatially, and nodes within the Voronoi cell (These are described in Subsubsection 3.3.1.3)
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of a primary emitted species are coloured similarly.

Figure 3.30 shows a split in the MCM chemistry for the Beijing mechanism. Here it is found that it

is possible to separate the MCM network into an aromatic branch, a terpene branch, an alkane and

straight-chain alkene branches. Such branches not only help us identify changes in chemistry due to

biogenic or anthropogenic sources but also emphasise the path taken to carbon dioxide and water.

As the MCM does not contain CO2, we see all the different groups converge on Carbon Monoxide at

the centre of the figure (the white dot). Coupled with the last section, this suggests that following

rotational and symmetric transformations, it is possible to compare different mechanisms.

Figure 3.30: Highlighting the groups of species, and their products within one of the
MCM network graphs from Figure 3.27 These are Aromatics (gold) , Terpenes (turquoise) and
Alkane/Alkene carbon chains (red/blue)
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3.6 Conclusion

Chapter 2 explained that the visual representation of data could make use of the pattern recognition

side of the human brain. Similarly to the invention of cuneiform, we can use graphics to alleviate some

of the cognitive strain from numerical data. It was noted that metaphor selection and storytelling

are an essential part of conveying complex information to the reader and that the choice of encoding

plays an integral part in this.

This chapter begins on building on those concepts of visualisation. We defined our system as a

collection of relational interactions between species and chose the graph/sociograph design to represent

these.

Next, we explored the different methods of graph design. These were semantic (meaning/design)

and syntactic (structure). In the syntactic category, we found that the use of a force-directed graph

provides a system most familiar to the reader. In addition to this, the ForceAtlas algorithm helped to

produce a mathematical representation (practicality) of the relationships between the MCM network,

while reducing the amount of clutter within the graph (visual aesthetics). In semantic design, it

was noted that information about concentration, or functional groups might be represented within

the network. Interactivity was found to be useful where additional information did not need to be

provided but may be enquired by at a later point in the analysis. Edge shape and design was also

explored. Here a confluent graph was seen to produce the easiest to understand the structure but was

the most difficult to implement. The next most useful method was edge bundling, which was used in

Figure 3.30, and future work.

Although graph layouts have a range of local minima, the overall network structure of the MCM is

constrained by its construction protocol (due to the allowed chemical reactions) and thus can be used to

produce comparable graphs. This method of visualisation, in combination with interactive querying

techniques, can aid in the comparison and understanding of large/complex chemistry simulations.

This can be particularly useful in the explanation of specific interactions within a mechanism, or the

exploration of temporal changes within a box-model simulation.

The next chapter builds on the use of graphs in situations where visualisation may not be possible

- for example, automatically generated graphs consisting of billions of species and reactions. To do

this, we apply a series of graph metrics that allow the classification and ranking of graphs, and the

nodes (species) within them.
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“The complexities of cause and effect defy analysis.”

- Douglas Adams, Dirk Gently’s Holistic Detective Agency
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4.1 Introduction

The node-link (ball-stick) style structure has long been used to represent real-world relationships

between items (Subsection 3.1.2). Such a structure is complementary to our cognitive disposition

towards pattern recognition, and it is for this reason that the node-link visualisation format has been

used for anything ranging from transportation maps [Beck, 2017] to the differentiation of ancestorial

lineages of the human race (Figure 4.1). However, the abundance and complexity of real-world data

often present us with difficulties in manually representing it in a useful form. In Section 3.2, it was

suggested this may be overcome with the use of computational analysis and automated visualisation

tools. Such methods usually require a level of data manipulation to transform the data into a machine

parseable form.

Figure 4.1: The human family tree. This is a visual depiction of the human lineage, starting with
our common ancestorial roots. In Chapter 2 it was shown that trees / graphs1are useful in showing
relationships between items. Source: [Wood, 2014]

In the field of mathematics a graph, G(ν, ε, ω), is defined as a function of items (vertices2), ν which are

connected through a series of connections (or edges1) representing any relationships between them, ε.

1A tree is a special case of a graph

2The term node, item or vertex shall be used interchangeably for the remainder of this chapter. This also applies to
links/relationships/edges and edge-weight/strength
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Since relationships in the real world are rarely equivalent, we then encode the importance of each link

in the form of an edge weight, or strength, ω. Such formats allow both numerical and computational

algorithms to understand and interpret the graph structure, providing us with information about the

data or make use of automated layout programs for visualisation.

This chapter builds on the work shown in Chapter 3 - where the ability to represent complex data in the

form of a graph was used to (visually) draw information regarding network structure and temporal

changes. Here situations, where the visual representation of many, large or complex networks is

impractical, will be explored. We start by introducing a series of mathematical approaches which are

capable of quantifying the graph (and nodes within it) and apply them to the co-author network for

papers using the Master Chemical Mechanism (Section 4.2). Following these global metrics are used

to categorise the chemistry within different atmospheric chemistry mechanism subsets, and provide

us with an insight to the chemistry structure (Section 4.4) and finally apply these to real-world

simulations representing a range of environments (marine, rainforest and urban) in Section 4.6.

4.2 Graph Metrics

The increase in the ability to gather useful data has resulted in difficulty when trying to interpret

it (Section 2.1). The production of large, multivariate networks of inexplicable complexity hinders

our ability to draw out meaningful conclusions based on visualisation alone. This means that much

like the generation of mechanism [Aumont et al., 2005], or creating semi-automated graph drawing

layouts, we must rely on the field of mathematics coupled with computational aid (Chapter 3).

Numerical algorithms derived from the field of Graph Theory can be used to circumvent the need

for individual graph analysis and provide us with information about the network. One such subset

of numerical algorithms are regarded as "centrality metrics", and may be used to rank the role and

importance (centrality) of a node [Ferguson, 2018]. In the following sub-section, the four most common

centrality metrics are discussed and applied to the MCM citation network.

4.2.1 Centrality Metrics And Academic Publishing.

One common application for graph analysis and visualisation is the representation and prediction of

citation counts within academic journals [Small, 1973; Page et al., 1999; Monastersky and Van Noor-

den, 2019; Molontay and Nagy, 2020]. Here network-visualisation techniques may be used to highlight

the origins of a paper. For instance, Figure 4.2 shows the multi-disciplinary research which underpins

six prominent discoveries in the last 150 years.

The next section looks at the four most common centrality metrics and explores their properties
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with the use of an (approximate) citation graph showing the papers which cite the Master Chemical

Mechanism (Subsection 4.2.2).

4.2.2 The Master Chemical Mechanism (MCM)

The MCM, [Rickard, 2020], is a near explicit representation of our foremost understanding of gas-

phase tropospheric chemistry. The mechanism describes the oxidation of 143 primary emitted VOCs

and the respective rates at which this occurs. It has been tested on over 300 chamber experiments

and used as a benchmarking mechanism to assist the development of reduced mechanism, providing a

useful means for the evaluation of air quality models [Dick Derwent, Andrea Fraser, John Abbott and

Mike Jenkin , 2010]. The current version (3.3.1) contains 5809 chemical species and 17224 reactions

to describe them [Jenkin et al., 2015]. However there there are still a number of weaknesses that

need to be considered. Firstly there very little Cl chemistry and no other halogens in the mechanism.

Reactions with O2 are implicit as are RO2-RO2 reactions, which are shown through the reaction with

an RO2 pool.

4.2.3 Data Collection

To generate a dataset on papers related to the MCM. The academic search engine (Google Scholar

[Google, 2019]) is queried for all articles containing the words { "Master", "Chemical", "Mechanism"

and "MCM" }. For each match, the first 100 pages of results are selected. Each of these contains ten

articles, from which the first 100 pages of related articles are chosen. In taking the top 1000 citations

for each page, a network of 15744 papers and 30178 citations3 is created. This process made use of

an edited version of the etudier Github repository, [Edsu and Ellis, 2019].

3Note: this had the potential of returning up to 1000,000 nodes
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Figure 4.2: 150 years of letters to Nature. A visualisation showing how previous research is
used to inspire future studies. Important discoveries (DNA, Cloning(frogs), Bio-Currents, Ozone
Hole, Molecular Sieves and Exoplanets) are split into research which contributed to their formation
(below), and the consequent papers produced from each discovery. Use of colour is used to emphasise
the multi-disciplinary nature of prolific scientific discovery. Source: [Barabási, 2019]
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4.2.4 Visualising The Data.

The initial visualisation of the dataset is accomplished through the use of THREE.js [Cabello, 2019].

This makes use of WebGL bindings and allows for the efficient viewing, querying and interacting of

the data in 3 dimensions. This helped identify the temporal changes within the network by mapping

a papers publication year to the z direction, Figure 4.3, as discussed in Subsection 4.2.5.

4.2.5 Filtering The Data

In the method used to web scrape data, there are several features which need to be corrected/removed.

The reasons for this are discussed below.

A note on unintentional filtering

The script used for web scraping extracts author names directly from the google scholar page, and

not the articles themselves. This means some author names can be omitted and replaced by ellipses

- producing an inaccurate graph. Therefore the results in this section are not explicit, but rather a

demonstration of graph theory on a real-world dataset.

Pre-1996

There exist several papers predating the conception of the MCM (1996). A number of these are

incorrect and contain publication dates <1900 which may be the result of missing information or a

fault in googles web scraping algorithm. Any such papers are removed from the dataset.

Articles published before 1996 are deemed necessary in the creation of the MCM, but not its influence

on the field of atmospheric science ( see cone shape in Figure 4.3b) - it, therefore, makes sense to filter

these from the dataset.

N-th degree research

Not all research articles in a field reference other articles with the same field. Figure 4.2 showed us

that many of the great discoveries in science have a multi-disciplinary nature. It is for this reason

that it is expected that articles from non-atmospheric areas of research may reference or build upon

specific areas of research touched by the MCM. Such papers, and in consequence the papers which cite

them, have little or no links to many of the core MCM papers. Such papers manifest themselves as a

halo of satellite clusters which are connected by themselves but not with the main body of the graph,

Figure 4.3a. In using a 3D perspective viewpoint (Figure 4.3c) it is possible to identify the paper

which references the MCM and then the consequent papers which cite it by observing the satellite
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(a) A 2D force directed representation of the network
using the gephi software [Bastian et al., 2009] (b) 3D orthographic camera (sideview). This shows

a sideways view of the graph in (a) where time is
across the x axis

(c) 3D perspective camera

Figure 4.3: Initial 3D graph representation of the scraped MCM citation graph. (a) shows
the ‘classic’ graph representation of the network. (b) shows a size representation using an ortho-
graphic perspective. Here time is shown across the x axis, with yellow being the most recent. (c) uses
a perspective camera, which emphasises the time component of the data. Still captures of 2D and 3D
visualisations of the dataset.
Node size corresponds to the number of citations, and colour (and z-axis) corresponds to the publi-
cation year for each paper.
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clusters, and the gradually lightening spiral of papers which emanate out of it. These groups of papers

are now discussed.

Analysis of the network connections for each cluster can allow us to identify the indirect relationships

between some of these diverse topics (Table 4.1) contained within the satellite nodes. Here it can

be seen that the use of photochemical ozone creation potentials [Derwent et al., 1998; Jenkin and

Hayman, 1999] are used for the Life cycle assessment of Italian high-quality milk production [Fantin

et al., 2012]. Similarly, indirect paths such as the paper: "Temporal controls on dissolved organic

matter and lignin biogeochemistry in a pristine tropical river" ([Spencer et al., 2010]) can be used to

link to [Stubbins et al., 2008] and ultimately the MCM protocol paper [Saunders et al., 2003].

If we desired to remove such papers, the simplest method would be to recreate the graph into one

where links are drawn between papers that are cited together (Subsection 4.2.6) and then removing

any nodes without any external connections (isolates).

Fabrication of Bioinspired Actuated Nanostructures with Ar-
bitrary Geometry and Stiffness

[Pokroy et al., 2009]

Temporal controls on dissolved organic matter and lignin bio-
geochemistry in a pristine tropical river

[Spencer et al., 2010]

Neuroproteomics in Neurotrauma [Ottens et al., 2006]

Fast start-up of a pilot-scale deammonification sequencing
batch reactor from an activated sludge inoculum

[Jeanningros et al., 2010]

Red blood cell oxidative stress impairs oxygen delivery and
induces red blood cell aging

[Mohanty et al., 2014]

Life cycle assessment of Italian high quality milk production. [Fantin et al., 2012]

Table 4.1: A selection of research papers not directly connected to the field of atmospheric modelling.

Unprobable occurances

Finally, the extracted network also contains many disconnected component subgraphs - graphs with

no connection to atmospheric science. An example of this is seen in an article about neuroproteomics

in neurotrauma [Ottens et al., 2006]. In analysing the paths which connect this, it is seen to cite

the paper on "Large scale gene expression profiling of metabolic shift of mammalian cells in culture",

[Korke et al., 2004]. This is an anomaly which within its structure contains the words "Master",

"Chemical" and "Mechanism" (separately) and has ‘MCM’ as an abbreviation for one of the author

names. Disconnected sub-components are omitted from the analysis to remove such papers.
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4.2.6 The Co-Citation Network

The document coupling techniques of co-citation was introduced in the 1970s as an alternative ap-

proach for quantifying the results within the science citation index [Small, 1973]. Rather than rep-

resenting a graph using backpropagation (through the use of referencing and citation counts), a co-

citation network introduces a link between papers if, and only if, they have been cited together.

Although this loses the directionality of a graph, it allows us to show forward propagating trends

between papers within the same field.

Applying the above method allows us to reduce the citation graph of 451 papers and 5402 edges to

an undirected co-citation graph of 2758 edges - halving the number of original links between papers.

4.2.7 The Co-Authorship Network

An alternative to exploring which papers which are cited together are to look at their authors. Here

undirected links are drawn between authors on the same paper. This style of analysis was used to show

that the number of papers per author, and the total number of authors per paper can vary between

research fields, [Newman, 2004]. In combining this with a series of network centrality metrics, [Fujita

et al., 2017] revealed that it is possible to discern promising researchers from both iter and Intra

disciplinary groups.

In building a co-authorship network for the MCM, we can identify authors who publish together4

and highlight research groups who work with the MCM, Figure 4.4. This shows how authors with a

similar geographic location/institution are more likely to publish together. The largest cluster here

falls under the MCM developer team, which resides between the University of Leeds and York. Next

two German institutions which are heavily involved in the atmospheric chemistry field (FZ-Julich and

Max Planck for Chemistry, Mainz), followed by an assortment of Chinese authors, mainly centred

around the Beijing or Hong Kong region.

4Disclaimer: as mentioned earlier, not all authors for every paper were recorded by the web scraping algorithm
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Figure 4.4: The co-author network. In representing the authorship network as a force-directed
graph, we see cliques or clusters of people who publish together. It is noted that this often occurs
when they have a similar geographical location. Node sizes and colour represent author rankings using
the PageRank algorithm (Subsection 4.3.5)

Labeled Graph of Figure 4.4

See Section C.1 for a heavily labelled version of the graph above graph showing the co-author network

on work relating the Master Chemical Mechanism.

4.3 Metric Analysis

The co-author network (Figure 4.4) can be used to demonstrate the functions of each centrality

metric. This subsection will access the efficiency of graph centrality metrics in their ability to identify

influential nodes within a network.



4 - Chemical model diagnostics using graph theory and metrics. 121

4.3.1 Degree Centrality

The simplest, and most intuitive, metric is degree centrality [Freeman, 1978]. In counting the number

of edges incident on a node (in and out), we calculate the degree of a node. In this instance, this

corresponds to the number of papers co-authored by an individual. This gives us an idea of the

importance of a node and has been used to calculate influence within social media or the probability

of a profile committing online auction fraud [Gemma, 2019; Freeman, 1978].

Example analogy: If we take the UK rail network as an example, As individual sta-

tions, Warrington, Birmingham, Manchester and Doncaster all have a high degree (a large

number of different rail networks passing through them. Similarly for the London network,

Victoria and Kings Cross will have the highest degree value.). Examples are shown in

Section C.2

The author network in Figure 4.5 shows many of the names with a high degree are contributors (or

colleagues to the contributors) of the MCM at Leeds. The authors with the most collaborations,

or links, are very likely to appear within the most cited or citing papers (Table 4.2 and Table 4.3

discussed below). This is likely because both development (well-cited) and the evaluation/usage (well

citing) of a mechanism requires knowledge from a range of different fields, making it an interactively

collaborative process.
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M Jenkin 39
S Saunders 25
M Pilling 25
H Guo 24
L Whalley 23
L Xue 22
D Heard 19
X Wang 19
Z Ling 18
A Lewis 17

Figure 4.5: Degree Centrality. In applying the degree centrality to the co-authorship network, it is
possible to pick the authors with the greatest number of papers, of which the top 10 have been listed.

Directed Degree

For graphs where link direction holds an inherent meaning regarding their representation (for example

in the citation graph an outward link symbolises that paper citing the one that the link points to), it is

possible to further divide the degree centrality metric into inwards and outward links. This can allow

us to separate authors who are highly cited (in-degree) from those who use lots of papers (out-degree).

In applying these metrics to the directed citation graph, it is possible to get an insight into the core
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MCM development papers (Table 4.2) and separate them from those who make use of the mechanism

as part of a greater study (Table 4.3).

Protocol for the development of the Master Chemical Mech-
anism, MCM v3 Part A tropospheric degradation of nonaro-
matic volatile organic compounds

Saunders et al. [2003]

Protocol for the development of the Master Chemical Mecha-
nism, MCM v3 Part B tropospheric degradation of aromatic
volatile organic compounds

Jenkin et al. [2003]

Development of a detailed chemical mechanism MCMv3. 1
for the atmospheric oxidation of aromatic hydrocarbons

Bloss et al. [2005]

Table 4.2: In-Degree of the citation network: The top 3 most cited papers.

The MCM v3.3.1 degradation scheme for isoprene Jenkin et al. [2015]

Atmospheric photochemical reactivity and ozone production
at two sites in Hong Kong Application of a master chemical
mechanismphotochemical box model

Ling et al. [2014]

HOx budgets during HOxComp A case study of HOx chem-
istry under NOxlimited conditions

Elshorbany et al. [2012]

Table 4.3: Out-Degree of the citation network: The top 3 most citing papers.

4.3.2 Closeness Centrality

Often within a network, we are interested in how easy it is to to get information from one node to

every other node. This is what the closeness centrality tells us. To calculate a nodes closeness, we

begin by taking the reciprocal sum of all the Dijkstra paths5 to every other node [Poliaktiv, 2011;

Sabidussi, 1966]. This gives a representation of how far information from a particular person (node)

will need to travel to reach every other node. Such a metric has applications in intelligence gathering,

telecommunications and word importance within key-phrase extraction [Krebs, 2002; Borgatti, 2005;

Boudin, 2013].

Example analogy: If we take the UK rail network as an example, York station will have

a high closeness value as it is well connected and central in location. This means it is easy

to reach every other location when compared to other stations, Section C.2

5The shortest available path.
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For the co-authorship network, Figure 4.6, nodes have been coloured by their closeness value. Here a

heat-map-like effect may be observed, showing that information between the dense Leeds-York cluster

makes it easier to disseminate information across all parts of the graph. The results of the closeness

centrality suggest that if a problem (bug), or improvement (update) occurs, Michael Pilling would be

the best served to pass that information to all other groups using the MCM.

M Pilling 0.149995
M Jenkin 0.146532
R Sommariva 0.145251
W Bloss 0.144052
S Brown 0.142059
S Saunders 0.140176
V Wagner 0.139281
R Derwent 0.136450
R Volkamer 0.136184
R Washenfelder 0.135918

Figure 4.6: Closeness centrality within the co-Author network. Here a colour/size gradient is
seen, with the nodes that are more central (in location) and better connected having a higher closeness
than those in the peripheries - which are harder to get to.
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4.3.3 Betweenness

In social networks, it is often important not only to know who has the greatest reach (closeness

centrality) but also where bottlenecks or ‘broker’ positions occur. Nodes with a high betweenness

control, or limit, the amount of information that can be transferred across the network. If a node lies

on a geodesic (the shortest path between two other nodes), we may consider it a ‘pivotal’ node, due

to its role within the network [Needham and Hodler, 2019]. Should such a node then be removed, the

overall flow of information incurs either a deviation, the information will either need to travel a longer

(alternative) route or may not be able to reach its destination at all [Freeman et al., 1991; Freeman,

1977; Brandes, 2001; Borgatti, 2005]. Betweenness centrality is a count of the number of geodesics

which pass through a node. If multiple ‘shortest’ paths are possible, these can be accounted for using

division in the algorithm mathematics.

Example analogy: Expanding on the UK rail network analogy, Shrewsbury station serves

the critical role of connecting many lines from England to Wales. In removing this station,

routes from the Liverpool or Manchester to Cardiff will be greatly increased. Additionally,

the Aberystwyth section of the line will then become isolated from the rest of the country.

Authors with a high betweenness in Figure 4.7 are seen to lie along the joints between clusters. Here we

can imagine that removing Li, Griffin or Liu can disrupt the overall flow of collaboration, potentially

isolating the work of the Max Planck for Chemistry from that of everyone else. Similarly, Jenkin

and Pilling can be seen as holding much of the Leeds cluster together. In removing them from the

network (if for example, the refused to collaborate) it is possible to see how many of groups within

the Leeds environment may not have worked together, with the cluster potentially separating into

several smaller groups. Finally, we see that Saunders (Australia) is highlightes as an important node

- an action which can be attibuted her introducing the Chinese atmospheric community to the MCM.

In removing her from the network, it can be seen that much of the collaboration which exists would

have been significantly less likely.
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J Li 0.180998
R Griffin 0.162558
R Washenfelder 0.153024
Y Liu 0.142194
M Jenkin 0.139818
S Brown 0.110188
M Pilling 0.102816
B Yuan 0.099914
S Saunders 0.097255
R Sommariva 0.094757

Figure 4.7: Betweenness centrality within the co-Author network. Nodes which lie on a
pivotal position (connecting/bottleneck) tend to have a high betweenness value due to their crutial
role within the network. The colour represents the betweenness centrality

4.3.4 Spectral Methods And Matrix Analysis

Graphs can often be represented in the form of relationship (adjacency) matrixes (ref Chapter 1). This

allows us to apply the theory of linear maps, such as eigenvectors and values, to stochiometric data in

matrix form. Such methods have been around since the 1950s, [R. Seeley, 1949], but mainly became

popular with the release of Larry Page’s page-rank algorithm [Page et al., 1999] - the algorithm that

began google. These methods, in addition to the HITS algorithm (Table 4.3.4), make use of a graphs
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native matrix representation to calculate node importance. Spectral algorithms can be broken down

into four categories [Vigna, 2016]:

No Normalisation Row Normalisation
No Damping Eigenvector [Bonacich, 1987, 2007] Markov Chain Steady State

[R. Seeley, 1949]
Damping Katz [Goh et al., 2001] Total Effect Centrality PageRank

[Page et al., 1999]

Here damping terms represent the probability of moving to the new random starting position, allowing

for the user to ‘randomly select a new webpage’ or leave an isolated cluster. The normalisation of the

matrix does not affect the node ranking, but merely adjusts the numerical output of the algorithm.

It is for this reason that its overall practicality may be debated [Vigna, 2016]. Since page rank is

the most common of these methods and allows for a tune-able degree of randomness within network

propagation, this is discussed in more detail in the next subsection.

Hypertext Induced Topic Search (HITS)

A common eigenvector algorithm used for classifying webpages is the HITS algorithm. This helps

categorise the role of a node as either a Hub or an Authority, [Kleinberg, 1999; Langville and Meyer,

2005; Kumar and Upfal, 2000]. Similar to the in and out-degree metrics, this algorithm separates

nodes with many outgoing links (an authority) from those with many ingoing ones (an information

hub). Overall this provides similar results to the in/out-degree, although since it looks more on how

information propagates across the network as a whole, it often provides more accurate, and different,

rankings to simple degree analysis.

4.3.5 Page Rank

Arguably the best-known centrality algorithm is PageRank. This is a spectral method for measuring

the transitive influence of a node, by taking the effect of neighbours and by their neighbours into

account [Needham and Hodler, 2019]. The page rank algorithm was initially developed to provide a

better way of ranking web pages [Page et al., 1999]. Here an important page is not only one of many

links, but links to other important sources. In the context of academic papers, that same paper also

found that in predicting future citations, the page rank algorithm fared better than using the current

citation count of a paper. To explain how this works, we will look at the mathematics behind the

algorithm, and then eventually apply it to the co-authorship graph in Subsubsection 4.3.5.3
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4.3.5.1 The Google Matrix

To solve for page rank, a ‘google matrix’ must first be constructed. Once done this is iterated until

convergence is reached.

To build a google matrix, we must first generate a dyadic link map of the graph6 - its adjacency matrix

Ai,j (i, j are the source target indexes). This is then converted into a Markov matrix Mi.j by dividing

each column j by the sum of the total outgoing links of node j, Algorithm 1. Items with no outgoing

links (sinks), are adjusted with either a personalised7 list of values or the constant 1/n, (where n is the

number of nodes) to replace the zero-sum columns. This produces a normalised8 matrix of Markov

chains representing the fractional production for node j from all other nodes.

Algorithm 1 Adjacency to Markov matrix.
1: Obtain graph adjacency matrix, Ai,j .
2: repeat
3: for each j ∈ columns do
4: M(:, j)← A(:, j)/Σi=1,nA(j, i)
5: end for
6: until Σi=1,nM(i, j) = 1

The google matrix Gi,j can now be defined using Equation 4.1. Cyclic reactions and nodes that only

point towards each other within a group can ‘trap’ the user, increasing their ranks. To account for

this, a damping factor, typically β = 0.85 is used. This defines the probability that the user follows

a link, and that for which they randomly select another page: (1 − β) 9. The damping factor used

varies significantly with the application, with values such as β = 0.694 having been found optimal for

the use of biological data [Hobson et al., 2018].

Gi,j = βM +
1− β
n

(4.1)

β - Probability the user follows a link

(1− β) - Probability the user does not follow a link (teleportation)

n - Number of items / species

M - Normalised markov matrix

6In sociology a dyad is a group of two people - the smallest possible social group.

7The use of user chosen (beginning) values for each node are used.

8 Σi=1,nM(i, j) = unity

9Also known as teleportation.
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4.3.5.2 Solving The Algebra

Once defined, the google matrix is solved by propagating a one’s vector, r of length n, where n is the

number of papers (or items) using Algorithm 2.

Algorithm 2 Solving the google matrix linear algebra
1: Define value vectors r̄t and r̄t+1:
2: r̄t = [11, 12, ..., 1n], r̄t+1 = [01, 02, ..., 0n]
3:
4: while ||r̄t+1 − r̄t|| > ε do
5: r̄t+1 ←M.r̄t
6: r̄t = r̄t+1

7: end while

This is repeated until a pre-defined tolerance, ε is reached. For best results, this can be set to just

under the numerical precision of the programming language/hardware.

For smaller systems, it is possible to use the LAPACK [LAPACK, 2019] library, as used by Oliphant

[2006]. For a vast network, however, the computation of a n×n matrix can be very memory inefficient

for small machines. It is then possible to apply the methods as described above using a sparse matrix

on per-node bases as can be seen within the Python SciPy implementation of the Networkx source

code [Jones et al., 01 ; Hagberg et al., 2008].

4.3.5.3 Prediction

As the PageRank algorithm loos at how quantities ‘flow’ within a network, it can be used to identify not

only the bottlenecks (betweenness centrality) but also any nodes which are connected well within the

network. As the flows between a node are somewhat governed by the number of links it contains, the

PageRank algorithms tend to correlate, but not dependence, on the betweenness of a node. Figure 4.8

uses the PageRank algorithm to identify important authors within each ‘cluster’ or research group.

Due to its propagating nature, authors connected to these important nodes are often also of greater

importance. An application of this can again be the determination of how to best spread new results

or information with the least number of people. Note: if we only had one person we would probably

use the node with the highest closeness centrality.
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M Jenkin 0.010435
L Whalley 0.006589
M Pilling 0.006488
S Saunders 0.005591
D Heard 0.005192
N Carslaw 0.004833
H Guo 0.004594
G Wolfe 0.004523
A Lewis 0.004508
R Griffin 0.004500

Figure 4.8: Page Rank centrality within the co-Author network. Node size and colour represent
the ranking of each node from the page rank algorithm. Larger, lighter coloured nodes are more
important.

4.3.6 Conclusions

In this section, we have explored the use of centrality metrics to provide us with information on an

unweighted co-authorship network of the MCM. Having used these to demonstrate the different roles

that may be extracted from a node, we can move on to applying them to a chemical mechanism. In the

next section, a global (applying to the network as a whole) set of metrics will be used to determine the

network type/structure of the MCM. Once this has been done, graph construction using simulation
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results (a weighted graph) will be looked into in Subsection 4.5.1.

4.4 Classifying The Master Chemical Mechanism Network

Having shown that graph metrics can help the roles of individual nodes within the network, these

are now applied to an atmospheric chemical system. Since computational efficiency and resources

are often a limiting factor, many applications of the MCM only require a small subset of the entire

mechanism. For this reason, it may be of interest to compare these against each other, in an attempt

to classify the type of network the MCM chemistry falls under. In this section, we apply graph theory

to the entire MCM network to determine its defining characteristics. This is achieved through the

analysis of several hundred Monte Carlo selected subsets of the MCM. Each of these is a different

combination of the primary emitted VOCs within the MCM v3.3.1.

4.4.1 Network Density

Network density is the easiest metric to understand. Visually this can induce complexity and obscure

aspects in a graph; mathematically, it can greatly increase the computation time for metrics or al-

gorithms. By definition, we can define network density as a measure of how well connected a node

is to every other node. Mathematically it is the ratio of edges against the total number of possible

edges for a complete graph10 of the same size. In chemical terms, we can use this to determine the

sparsity of the graph (which has applications on model integrator selection) and give us insights on the

chemical structure. In Figure 4.9, higher numbers of species (nodes) results in an overall decrease in

the node-edge ratio - its density. This suggests a modular or hierarchical structure, where new species

directly react only with a set number of species, and not the entire mechanism. An explanation for

this is that the addition of larger species introduce new branches within the chemistry, which then

need to be oxidised before they are small enough to react with the species from a different branch.

Since these branches are somewhat isolated from the rest of the chemistry, they decrease the network

density, even though their addition may increase the amount of chemistry that occurs within it.

10A complete graph is one where every node is connected to every other node.
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Figure 4.9: How the MCM graph density scales with number of species. A figure showing
that an increasing number of species within a mechanism subset results in an increased model sparsity
(decreasing density).

4.4.2 Small World Phenomena

Within the biological or social sciences the small world phenomenon, colloquially known as ‘six degrees

of separation’, is a common occurrence within network structure [Watts and Strogatz, 1998]. Such

networks have a large number of localised clusters (cliques) all with a short path length between their

elements [Humphries and Gurney, 2008]. This makes it easy to reach all parts of a network with only

a couple of hops/reactions. In the initial interactive explorations of graph visualisation, it was found

that in selecting the reactions of a node, and consequently the reactions of all the nodes which react

with them, very quickly a large proportion of the network was highlighted. This suggests that the

network may follow the small world phenomena, especially as it is a sparse network, Subsection 4.4.1.

One of the possible methods for establishing the small world-ness of a graph by calculating the omega

(ω) coefficient [Hagberg et al., 2008]:

ω = Lr/L− C/Cl (4.2)

Here C is the average clustering coefficient and L, the shortest path length of the graph. Comparing

these with the average shortest path length, LR, and clustering coefficient Cl (as calculated using an

equivalent random and lattice graph) gives the above equation. The output is a result between positive

and negative one {-1,1}, where a value of 0 suggests the graph exhibits perfect small world-ness.

In assessing the network structure of the MCM, a Monte Carlo (random) approach was taken to
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extract several hundred subsets from the entire mechanism. For each of these, the omega coefficient

was calculated and plotted in Figure 4.10. Here it is seen that subsets with a small number of species

(for example those derived only from methane or ethane) exhibit a more lattice-style (grid) graph, with

the majority of the networks showing a more random network structure Figure 4.11. All the results,

however, show a prevalence of small-world features over any of the alternative network structures -

they are closer to 0 than 1 or -1. This reflects the idea that large species react locally, forming branches

(Chapter 3), before oxidising to smaller species with more reactions. This result is also seen within

the Reaxys chemical database [Jacob and Lapkin, 2018].
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Figure 4.10: A figure showing the small worldness for many Monte-Carlo selected MCM
subsets. The network structure of these is then assessed using the omega coefficient, with [-1,0,1]
corresponding to the perfect lattice, small-world and random network structure. Here Node size and
colour represents the number of reactions in the mechanism subset and the number of primary VOCs
(blue=small, green=large).

4.4.3 Power Law And Scale-Free Graphs

In real-world applications, it is common to have a hierarchical structure. These are often seen in the

increase of citation counts in academic papers [de Solla Price, 1965], email threads [Ebel et al., 2002]

and the world wide web [Needham and Hodler, 2019]. Unlike random or small-world graphs, scale-free

graphs take a hub-and-spoke structure (Figure 4.11), which follows a power-law distribution - that is

that scaling probability p(x) ∝ x−α, where α is a constant and known as the scaling parameter.

Broido and Clauset [2019] suggests that scale-free networks are rare, and often misdiagnosed with

incorrect tests, or the misinterpretation of power-law features in a network. Similarly, Clauset et al.

[2009] suggests that even if the data distribution of a graph is well represented by the power-law

distribution, in many cases a logarithmic or exponential distribution may have a better fit.
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Figure 4.11: The different network structures. A visual depiction of the different graph structures.
Source: Needham and Hodler [2019]

To assess the best distribution for describing the Monte Carlo subsets of the MCM, the Kolomogorov-

Smirnov statistic [Press et al., 1992] was used to analyse the goodness of fit of the ω coefficient in

Figure 4.10 to a number of distributions. This calculates the maximum distance D between the

selected cumelative distribution function S(x) (In our case the Logarithmic, Exponential and Power

Law) of the data and the fitted model P (x):

D = max
x≥xmin

|S(x)− P (x)| (4.3)

Using the MCM subsets from Figure 4.10, Figure 4.12 shows that out of the three tested distributions,

the MCM is best represented as a power-law distribution (smaller KS distances are better). Although

this is not entirely within the chosen 5% significance, it is highly indicative that some aspects of the

network are indeed scale-free.
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Figure 4.12: Comparing the MCM subsets against a power law, logarithmic and exponen-
tial distribution. The fit for different cumulative probability distributions of nodes in the MCM
network is compared to determine the type of network hierarchy the chemistry follows. This is done
by comparing the distance of the calculated distribution of data against a perfect one using the
Kolmogorov-Smirnov test. The closer the two distributions, the lower the KS distance, and the better
the fit.

4.4.4 Describing The MCM Network

To conclude, the MCM network exhibits both small world and scale-free (power-law) characteristics.

This agrees with previous knowledge about the apparent network structure (Chapter 3). Here large

primary emitted hydrocarbons produce branches of a hierarchical nature, as they are progressively

broken down into smaller species. Since smaller species are then able to react with a much higher

range of species, they then begin to form a tightly connected core, which exhibits many small-world

features.

Having classified the MCM network type, the next section will look at how MCM based simulation

results can be converted into the graph structure for a more in-depth analysis, Section 4.6.

4.5 Graph Construction Methodology

Thus far, we have only applied a qualitative analysis of the relationships between species in a mecha-

nism. Although this can educate us about the chemistry within a specific system, often a quantitative

value for the rate of reaction between different species is required when undergoing scientific evaluation

or policy advice. A chemical mechanism is placed within an atmospheric model, initial concentrations

are supplied, and the chemistry is propagated forwards11 in time. Currently, there exist three primary

11Or backwards if the adjoint is used.
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model diagnostics which we may use to analyse the importance or role of a species from a simulation

(model) output, concentration time-series, rates of loss and the Jacobian.

4.5.0.1 Concentration Time Series

The simplest of these methods look at the abundance of a species at a specific point in the atmosphere

(its concentration ad a specific time). As time moves forwards, chemicals within the atmosphere

undergo a range of reactions which result in the making and breaking of bonds - thus the changing

from one species to another.

Using the species concentration as a metric, we can map how it changes over time, and how in changing

the initial concentrations of a simulation can produce different results. This can be useful for looking

at a range of possible scenarios and evaluating the potential outcome after a pre-determined amount

of time. An example would be through the use of policy-based simulations to predict changes in air

composition over cities.

Using a simple example from a methane only subset of the MCM (Figure 4.13), it is possible to observe

the inverse relationship between NO2 and NO using only their concentration profiles. Here nitrogen

monoxide reacts with a RO2 species to produce an RO and nitrogen dioxide. This then photolyses

back to nitrogen oxide, releasing oxygen which may go on to form ozone (Subsection 1.3.1). The latter

part of this reaction is dependant on photons and therefore can only occur during daytime (mostly).

NO
RO2, O3, HO2−−−−−−−−−→←−−−−−−−−−

hv
NO2.

Figure 4.13: A concentration (mixing ratios) time series from a simple methane-only
simulation. This is the simplest method for identifying changes in species within a model simulation.
This multi-plot shows the changes in concentration profiles for all initialised species (NOx:10ppb;
CH4:20ppb; O3:30ppb) following an initial 3 day spin-up to steady state.
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4.5.0.2 Rate Of Production And Loss

Analysing the concentration-time profiles allows the comparison of how a series of scenarios or runs

change concerning their initial conditions and simulation length. Although these can tell us how, and

how much, each species changes over time, it does not rank or quantifies the specific reactions to which

this may be attributed. Rate of Production Analysis (ROPA)12 provides a method for establishing

the total contribution from each reaction by calculating the change of concentration (concerning time)

for the produced species - the instantaneous reaction flux.

r1 = A+B
κ1

−−−→ ηC Reaction 1 (4.4)

f(C) =
δC

δt
= ηκ1[A][B] Instantanious Flux (Γ) (4.5)

Here A, B and C are example species; [A],[B] and [C] are species concentrations; η and ω are rate

coefficients, and κ is the rate of the reaction.

Using a sample simulation representative of the conditions within Beijing (an urban environment),

we explore the reactions contributing to the production and loss of CH3CO3 (Figure 4.14) [at noon].

The main reason for this specific example is that it can demonstrate how isolating a specific cause for

the change within a species concentration may prove difficult in the context of atmospheric chemistry.

Here we have many similarly weighted production and loss reaction, including that of peroxyacetyl

nitrate (PAN) and nitrogen dioxide: CH3CO3 + NO2 −−→←−− CH3C(O)ONO2 (PAN). The reversible

nature, coupled with its near-identical production and loss fluxes produce a tiny net change within

our species of interest (CH3CO3). Although this may be seen by calculating the cumulative flux

between individual species, it is evident that simply looking at the concentrations or highest-ranking

reaction fluxes may not be the best method of determining influence. To account for this, we can look

at how a change in one species can affect another using the Jacobian method.

12and loss
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Figure 4.14: Rate of production and loss analysis plot for CH3CO3 exhibiting a net loss
(daytime). An example ROPA plot from a simulation representing the chemistry within Beijing.
This is used to identify the usefulness and weaknesses of using such a method. DUMMY represents
the deposition term for any species.
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4.5.0.3 The Jacobian

"The Jacobian [matrix] generalises the notion of gradient to describe the sensitivity to a vector" -

Brasseur and Jacob [2017]. That this means is that in taking the partial derivatives of each reaction

flux (e.g. from Equation 4.5), we can construct a representation of the influence each species has on

itself - for example, the influence of species A on C and B on C (Equation 4.6-4.7).

∂

∂A
· ∂Cr1
∂t

= ηωBκ1 Γ influence from A (4.6)

∂

∂B
· ∂Cr1
∂t

= ηωAκ1 Γ influence from B (4.7)

These partial equations can then be aggregated for all reactions that contain the two species - taking

the effect of species B on species C, for example, produces Equation 4.8. Using these aggregate sums,

it is now possible to construct a pairwise relational matrix describing the influence each species has on

every other species- Equation 4.9. This is known as the Jacobian matrix and is to solve the ordinary

differential equations which describe the chemistry of the system (and propagate it forwards in time).

JC,B =
∂f(C)

∂B
=

∂

∂B
·
(
∂Σr1
∂t

+
∂Σr2
∂t

+ · · ·+ ∂Σrn
∂t

)
(4.8)

Ji,j =



∂f1
∂v1

∂f1
∂v2

· · · ∂f1
∂vn

∂f2
∂v1

∂f2
∂v2

· · · ∂f2
∂vn

...
...

. . .
...

∂fn
∂v1

∂fn
∂v2

· · · ∂fn
∂vn



n,n

i,j=1

(4.9)
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4.5.1 Graph Construction Methodology For Simulated Data

Having covered the general definition of a Jacobian matrix and how it is constructed, we can now

apply it to the context of mechanism analysis and comprehension. The first analogy that needs to be

made is that for the flux is the change of a species concentration in time (the first differential with

respect to time, d/dt). If we consider the change in a species concentration as a ‘displacement’, we

can think of the flux as its ‘velocity’. Similarly, the Jacobian provides us with a description of how the

individual flux of a species changes concerning the concentration (or displacement) or another species

(the second-order partial differential). This is analogous to the acceleration of the object or particle

we first displaced. In using the Jacobian, we have constructed a relational matrix which outlines the

effect a nominal change of a species has on all other species - a concept which is the foundation of the

connectivity method (a mechanism reduction technique where all but essential species are removed)

[Turányi and Tomlin, 2014].

Since the format of a Jacobian is already in the form of a relational matrix, it can easily be converted

to a weighted adjacency matrix, and then directly into the graph format. Since it only considers the

aggregated influence between species, much of the work that would otherwise be needed to convert

a mechanism into a graph format has already been done. To make use of the Jacobian matrix,

several extraction algorithms were written for an updated version of the Dynamically Simple Model of

Atmospheric Chemical Complexity (DSMACC) [Emmerson and Evans, 2009; Ellis, 2020], as discussed

in Chapter 1. Here we edit the kinetic pre-processor output, [Sandu and Sander, 2006] to release the

values of the Jacobian Matrix and return them at each model timestep for analysis. The process for

how this is done is described in Subsection 4.5.2.

A Note On Using The Flux Instead Of The Jacobian

Depending on the model setup or the users’ capabilities, extraction of the Jacobian matrix for each

timestep may not be possible. In many cases, the reaction rates and concentration may still be avail-

able, allowing for the calculation of reaction fluxes throughout the simulation. If this is the case, the

total flux can be calculated using the method described in Equation 4.5. From this, an edge-weighted

by a reaction flux can be created from every reactant to each product. This generates a multi-graph (A

graph with multiple edges between nodes) which may be simplified by taking the net flux value for all

edges between two nodes.

However, the potential for human/coding error, additional simplification and a non-explicit defini-

tion of the contribution of each species make the use of a Jacobian much more efficient in network

generation from a chemical mechanism.
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4.5.2 A Practical Example Using The MCM

Taking a single equation from the MCM, we may calculate the Jacobian relationships between species

and convert them into a graph. A randomly chosen ethane reaction (Equation 4.10) from a simple

mechanism was chosen. In general, the reaction consists of the following two steps: C2H6 +OH κ1−−→

C2H5 · +H2O and C2H5 · +O2
κ2−−→ CH5O2.

C2H6 +OH κ3−−→ C2H5O2 (4.10)

For simplicity, in this example, this will be the only equation for our mechanism. The resultant Flux

Equation 4.11 and resultant Jacobian Equation 4.12 may be calculated.

Γ = [C2H6][OH]κ1 (4.11)

Ji,j =



∂f[C2H6]

∂t ∂[C2H6]

∂f[C2H6]

∂t[OH]

∂f[C2H6]

∂t[C2H5O2]

∂f[OH]

∂t ∂[C2H6]

∂f[OH]

∂t ∂[OH]

∂f[OH]

∂t ∂[C2H5O2]

∂f[C2H5O2]

∂t ∂[C2H6]

∂f[C2H5O2]

∂t ∂[OH]

∂f[C2H5O2]

∂t ∂[C2H5O2]



3,3

i,j=1

(4.12)

Since not all species react with all other species, (C2H6 does not react with C2H5O2) we can remove

reactions that do not exist. To calculate the second differential, we begin by taking the flux of our

equation:

dC2H5O2

dt
= κ3[C2H6][OH] (4.13)

Using this we can calculate the partial differential equations for OH and C2H6:
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∂2 C2H5O2

∂t ∂OH
= κ3[C2H6] (4.14)

∂2 C2H5O2

∂t ∂C2H6
= κ3[OH] (4.15)

This forms a ‘sparse’ Jacobian. Substituting numbers from subset mechanisms containing the methane

and ethane precursors, we get Equation 4.17.

Ji,j =



∂f[C2H6]

∂t ∂[C2H6]
−κ3[C3H6] κ3[C3H6]

−κ3[OH]
∂f[OH]

∂t ∂[OH]
κ3[OH]

∂f[C2H5O2]

∂t ∂[C2H5O2]



3,3

i,j=1

(4.16)

Ji,j =



∂f[C2H6]

∂t ∂[C2H6]
−2× 10−7 2× 10−7

−0.1
∂f[OH]

∂t ∂[OH]
0.1

∂f[C2H5O2]

∂t ∂[C2H5O2]



3,3

i,j=1

(4.17)

This creates the Jacobian - a matrix representing the reactions of a mechanism. Here we can calculate

the production of a species, by summing of its column (except the diagonal), or its loss (from reacting

to produce other species) by summing the row. This relational matrix can be used to generate a

weighted graph of the chemistry (Figure 4.15).
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OH

C2H6

C2H5O2

2× 10−7

0.1

−2× 10−7−0.1

Figure 4.15: A graphical representation of Equation 4.17 derrived from the Equation 4.10

Since any loss edges contain a negative value (orange numbers), it is possible to reverse the direction

of the links to produce a positive edge of the same value (Figure 4.16).

OH

C2H6

C2H5O2

2× 10−7

2× 10−7 0.1

0.1

Figure 4.16: Reversing the directions on negatively weighted edges from Figure 4.15

After reversing the links, we see that concentration for the reaction between C2H6 and OH follow the

paths:

OH
C2H6−−−→
0.1

C2H5O2 (4.18)

C2H6
OH−−−−−→

2×10
−7

C2H5O2 (4.19)

As links in the graph are of the same units, we can simplify the equations by propagating the values

of each edge. This results in a graph with only one link between each product reactant pair (Fig-

ure 4.17). It is worth noting that although this method of simplification produces a more intuitive

graph, eigenvector metrics such as PageRank automatically transfer the ‘flow’ of information through
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the system to produce the same result.

OH

C2H6

C2H5O2

2× 10−7

0.1

Figure 4.17: Simplifying Figure 4.16

4.6 Case Study

In this section, the centrality metrics discussed in Section 4.3 are applied to a range of scenarios. These

range from polluted urban environments such as London [Bandy et al., 2012] and Beijing Fleming et al.

[2017], to marine and terrestrial forest- Cape Verde [Read, 2010] and Borneo [Hewitt and Edwards,

2009]. We determine the main drivers for the chemistry and compare the species which are important

across each simulation.

4.6.1 Establishing Initial Conditions From Observational Data

Within experimental data assimilation, it is not uncommon to face problems which result in unreliable

or missing data. These can range from anything as little as measuring below the instrument sensitivity

to powercuts and equipment damage/theft from the local wildlife. This can result in problems when

analysing the results and combining them to create a simulation of the chemistry for that environment.

To overcome this, traditionally a combination of data filtration, smoothing and interpolation is re-

quired. Although it is possible to fit a diurnal profile, through iterative methods of comparison, and

cubic splines, it is more straightforward to implement the method (especially if more data will be

added at a later date) is through the use of a Multi-Layer Perceptron Regressor model (MLPRe-

gressor) as provided by the Python package Scikit-Learn, [Pedregosa et al., 2011]. This is described

below.
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4.6.1.1 The Origin Of Artificial Neural Networks

The concept of a neural network originated within the field of neuroscience. In biological neurons,

signals are sent through the use of electrical impulses using their synapses. When a sufficient number

of signals are received within a short timeframe, a neurone will respond, often firing a range of its

signals. Using this as a foundation, McCulloch and Pitts [1943] presented a computational model of

the biological neuron - the artificial neuron. This has a series of binary inputs and produces a single

binary output. This idea was later improved with the invention of the perceptron - a linear classifier

which classifies categories by separating them with a straight line. Invented by Rosenblatt [1958], this

was popularised as a device representative of a modern-day shallow neural network - [John Hay, 1960],

Figure 4.18. Unlike the artificial neuron, however, the perceptron can take non-binary (numerical)

inputs of an associated weight which allows for the computation of simple linear binary classification.

Much like Logistic regression, the perceptron produces a positive or negative classification based on a

certain threshold13.

Figure 4.18: The Mark 1 perceptron Both software and hardware are different manifestations of a
flow chart. The perceptron hardware accomplished what is now done using software. Source: Cornell
[2020]

4.6.1.2 The Multi-Layer Perceptron

Limitations of the perceptron include the classification of complex patterns such as the XOR problem

(where a category appears between two other categories, e.g. 1|0|1 - this cannot be classified by a

13It is worth noting that while a Logistic Regression classifier can output a class probability, the use of a hard threshold
means that this is not done within the perceptron algorithm [Géron, 2017]
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single linear split). In taking inspiration from nature (Figure 4.19) it is possible to overcome this with

the use of multiple layers. This creates a deep (> 2 two hidden (non-input) layers of perceptrons14)

artificial neural network (ANN)

The multi-layer perceptron (MLP) model now represents a simple feed-forward network, much like a

decision tree. However, unlike a decision tree, the MLP ANN can describe the probability a branch is

taken using non-linear activation (threshold) functions. These are discussed in detail as part of Sub-

section 6.3.5. The weighting thresholds for each neuron are then calculated by backwards propagation

of results through the network until a suitably good result is produced.

Example analogy: Backpropagation can be likened to the iterative calibration of scien-

tific instrumentation. In the field of atmospheric chemistry, laser-induced fluorescence is

used to measure species concentrations and reaction rates within the troposphere, [Dillon

et al., 2006; Bloss et al., 2004]. Here the frequency of a laser can be tuned to a resonant

frequency of a known target (e.g. OH, NO2 and SO2) to produce a response curve.

Similarly, a neural network can be ‘trained’ (calibrated). This is done through the use of

a ‘training dataset’ - a set of input-output pairings which represent a random selection of

2/3rds of the total dataset. Next, the neurons within each layer (similar to the potentiome-

ter dials on an instrument) are adjusted in sequence through the layers to match the known

result (a standard of known concentration) to the input values provided. This process is

repeated until for many iterations, or until a sufficiently ‘good’ prediction is attained for

the entire training dataset (early termination). The power of ANNs comes from the ability

to adjust neuron thresholds whilst moving both forwards and backwards through the network

(Note: predictions of an MLP are still only passed forwards). Finally, model performance

is evaluated against the remaining 1/3rd of the total dataset.

14These are sometimes referred to as Linear Threshold Units.
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Figure 4.19: The Human Cortex - A biological neural network.. A vertical cross section of
the human cortex between an adult (top) and 1.5 month old infant (bottom) showing a layer like
structure with a change in depth (left to right). Source: Cajal [2020]

4.6.1.3 Applying The Mlpregressor To Observational Data

In the application of any type of machine aided algorithms, it is important to evaluate the results

provided. In this section data collected from Cape Verde ([Read, 2010]) containing 12 years of ob-

servations are shown. A MLPRegressor of 10 hidden layers, and a hyperbolic tan (tanh) activation

function is used Section B.4. Additionally, the limited-memory Broyden–Fletcher–Goldfarb–Shanno

(l-BFGS) solver (a quasi-newton method which minimises the inverse of the Hessian matrix15 to steer

through space and obtain a solution) and an adaptive learning rate16 is used.

The input of the regressor is in the form of a month and an hour, to represent each measurement.

This allows it to find not only daily trends but also seasonal trends within the data. Once trained,

the regressor is then used to predict a diurnal profile for each month based on the observational data

provided. For simplicity log10 values of the concentrations obtained have been used. The predicted

MLPRegressor line is compared to a transparent scatterplot for all the results. In addition to this, a

boxplot showing the Inter Quartile Range (The range between the 25th and 75th percentile), median

and mean (green line) plotted alongside to evaluate the predictor output. In this study, we only take

the values for the month of June (or closest available depending on the dataset).

In providing the MLPRegressor with both month and hour inputs, the data is not only fitted hourly

15The hessian is a square matrix of second-order partial derivatives of a scalar-valued function/field describing the
local curvature of a function (of many variables).

16Each time the model improvement fails to decrease the learning loss, the learning rate is reduced by 1/5. This
means smaller jumps are made towards the curve peak.
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(a diurnal average) but also across the seasonal/monthly cycles. This accounts for the variation

between years and datasets. Since log10 values of the concentrations are used, species such as ozone

(Figure 4.20) which for the Cape Verde dataset (clean air) do not change more than one order of

magnitude, the effects of neighbouring months, which shift the diurnal away from the mean (the green

line on the boxplot), can be seen. However, since this is overall a small change, and the diurnals lie

within the interquartile range, they still provide an adequate approximation. NO (Figure 4.21) on the

other hand, has a concentration change of several orders of magnitude. Here a distinct daytime peak is

seen and is centred around a seasonally consistent mean value of the data. Here the multi-magnitude

change in concentration also provides a striking silhouette of the data to which we may compare the

fitted line. Finally the plots of NO2 and iso-Pentane (Figure 4.22-4.23) vary both in diurnal magnitude

and seasonally. Within these plots, changes in the data in the January and December months produce

deceptively misleading results. Here although the diurnals are not symmetric, they fit well within the

median, mean and interquartile range values, as well as the general data silhouette behind them. This

suggests that it is a property of the data that we are fitting, and not that the regressor is producing

incorrect results. It is however noted that for a more accurate seasonal prediction, periodic boundary

conditions should be employed in the training dataset, where an additional two months are added

before January and after December. As only a single value estimate from the summer region will be

taken, this does not affect the result accuracy.
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Figure 4.20: Cape Verde MLP predicted and observational data of Ozone (mixing ratio).
Each segment represents data from a different month. Within each month segment exists 24 hour
segments to create a diurnal. Observational concentrations are plotted in the form of a translucent
scatterplot and summarised using the boxplot on the right of the month segment. MLP predicted
results are shown using the solid lines. Concentration in mixing ratio.
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Figure 4.21: Cape Verde MLP predicted and observational data of NO (mixing ratio).
Each segment represents data from a different month. Within each month segment exists 24 hour
segments to create a diurnal. Observational concentrations are plotted in the form of a translucent
scatterplot and summarised using the boxplot on the right of the month segment. MLP predicted
results are shown using the solid lines. Concentration in mixing ratio.
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Figure 4.22: Cape Verde MLP predicted and observational data of NO2 (mixing ratio).
Each segment represents data from a different month. Within each month segment exists 24 hour
segments to create a diurnal. Observational concentrations are plotted in the form of a translucent
scatterplot and summarised using the boxplot on the right of the month segment. MLP predicted
results are shown using the solid lines. Concentration in mixing ratio.
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Figure 4.23: Cape Verde MLP predicted and observational data of iso-Pentane. Each
segment represents data from a different month. Within each month segment exists 24 hour segments
to create a diurnal. Observational concentrations are plotted in the form of a translucent scatterplot
and summarised using the boxplot on the right of the month segment. MLP predicted results are
shown using the solid lines. Concentration in mixing ratio.
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4.6.1.4 Model Initialisation Procedure

The aim is to generate a set of initiation conditions which are representative of the species found

for different environments around the world. In this section, we are not interested in the exact

concentration modelling for specific times or scenarios. Instead, we seek to generate representative of

the processed chemistry under a range of conditions.

Species concentrations are extracted from an MLP regressor trained on observational data for each

scenario. Each concentration is that of noon local time from the generated diurnal from summer

observations at each location. This produces a monthly error of ±2months from June. As both

nitrogen oxide and dioxide are supplied, the total NOx for each simulation are not constrained. The

initial conditions are shown in Table 4.4.

In general observational measurements are not able to detect all the species presented within the

MCM. This means that to be able to compare model scenarios, the chemistry must first be spun up.

In propagating the chemistry forwards in time, primarily emitted and measured species are broken up

forming the intermediate species which exist within a mechanism. To reach a steady-state, the model

is initiated at noon, and the observational concentrations are rest every 24 hours. For each diurnal, the

fractional difference between the concentrations at each day are compared. If the difference between

these is less than 0.001, the model is left to run unconstrained for five days (right of the dashed line in

Figure 4.25). Model results are then taken after three days of unconstrained runs. The reason for this

is that the total RO2 concentration takes longer to stabilise in the polluted environments (London

and Beijing). This falls into a periodic cycle beginning noon on the third day and can provide a

representation of the processed chemistry within each environment.

NOTE: It should be noted that some of the concentration plots may appear to lose their diurnal

dependability. This may be attributed to the changing order of magnitude of the concentrations, and

that the species are still responding as expected.

4.6.1.5 Extracting The Required Results

Model diagnostics such as concentration and the net flux passing through a species may be extracted

directly from the DSMACC box model. These provide the baseline comparison and can be directly

compared to the graph metrics. Species concentration tells us the abundance of different species, and

the net-flux tells us how fast this is changing in time.

As some species may have a fast inwards and outwards flux (low net-flux), the absolute flux is also in-

cluded. Finally, the sensitivity of each species for other species is also extracted (the Jacobian matrix).

This serves to not only generate the graph used to represent the chemistry, (Subsection 4.5.1) but
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also to identify the overall influence a species has on others in the network. This can be calculated by

taking the net sum of the influence a species has on every other from the Jacobian. This is analogous

to calculating the out-degree of a node in the Jacobian network.

Species Beijing(APHH) Borneo(OP3) London(ClearFlo) CapeVerde

LAT 39.9 0.96 51.0 16.5
LON 116.3 114.5 0.00 23.4

CO 3.829e-06 3.321e-07 7.780e-09 0.0*
O3 6.883e-08 8.939e-09 3.819e-08 2.629e-11*
NO 1.660e-09 2.668e-14* 2.350e-09 2.358e-12
NO2 1.226e-08 1.081e-13* 7.445e-09 8.447e-12
HCHO 4.472e-09 1.119e-08
C2H6 3.163e-09 7.315e-10 2.133e-09 4.539e-10
C2H4 1.004e-09 1.152e-10 4.893e-10 2.481e-11
C3H8 3.019e-09 1.924e-10 1.128e-09 1.728e-11
C3H6 1.335e-10 1.333e-11 1.784e-10 9.343e-12
IC4H10 6.412e-10 8.742e-11 5.142e-10 2.486e-12
NC4H10 1.593e-09 5.698e-11 1.058e-09 4.481e-12
C2H2 1.058e-09 1.825e-10 3.018e-10 1.848e-11
TBUT2ENE 4.198e-11 1.815e-11
CBUT2ENE 4.454e-11 1.305e-11
IC5H12 1.047e-09 2.883e-11 7.424e-10 3.470e-12
NC5H12 4.650e-10 2.090e-11 2.792e-10 2.513e-12
TPENT2ENE 3.939e-11
CPENT2ENE 3.982e-11
NC6H14 2.057e-10 6.437e-12 6.357e-11
C5H8 7.134e-10 1.957e-09 1.640e-10
NC7H16 7.905e-11 5.222e-11
BENZENE 4.045e-10 1.137e-10 7.682e-12
NC8H18 3.091e-11 1.442e-11
TOLUENE 6.767e-10 3.205e-10 3.121e-12
EBENZ 3.115e-10 6.017e-11
OXYL 1.677e-10 5.049e-11
CH3CHO 4.783e-10 4.095e-09
C2H5OH 4.655e-09 3.125e-09
CH3COCH3 3.328e-09 2.924e-09
NC9H20 1.336e-11 7.922e-11
NC10H22 1.062e-12 1.602e-10
α-PINENE17 7.341e-11 15e-11 1.105e-10
LIMONENE 5.836e-11 1.351e-10 3.566e-11
PXYL+MXYL18 4.943e-10
IPBENZ 4.567e-10
PBENZ 3.996e-10
HONO 6.479e-10 4.109e-10
MACR 6.948e-11 1.862e-11
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Species Beijing(APHH) Borneo(OP3) London(ClearFlo) CapeVerde

PENT1ENE 2.383e-11
MVK 2.091e-11
NPROPOL 2.883e-10
NBUTOL 4.535e-10
STYRENE 2.241e-11
MEK 5.494e-11
C3H7CHO 9.534e-12
C4H9CHO 1.865e-11
C5H11CHO 1.201e-11
CYHEXONE 9.790e-12
BENZAL 1.510e-11
PAN 1.791e-10

Table 4.4: (2-page split) The initial conditions created from the MLPRegressor prediction of observa-
tional data. Although not specified the mixing ratios for methane is set by the model at 1770ppb, the
temperature is 298K, and water vapour is at 2%. * Starred values are of the wrong units and
should be multiplied by 1000. As there was no time to rerun these, their results have
been omitted from this chapter.

18This is (incorrectly) written as ‘?-pinene’ in the merged CEDA dataset for the Borneo OP3 campaign. This is due
to character conversion errors.

18The mixing ratios for these is split evenly between both species
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Figure 4.24: The mixing ratio profile for London.This shows a the change in mixing ratio over
time for HOx,NOx, HCHO,Ozone and RO2 species for a simulation run generated by the mlpregressor.
Left of the dashed line shows the last 6 days of spinup, where the values are reset at noon each day
until the species fractional difference is less than 0.001 .
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Figure 4.25: The mixing ratio profile for Beijing.This shows the change in mixing ratio over time
for HOx, NOx, HCHO, Ozone and RO2 species for a simulation run generated by the MLPRegressor.
Left of the dashed line shows the last six days of spinup, where the initial values are reset at noon
each day until the species fractional difference is less than 0.001 .



158 4.6. Case Study

4.6.1.6 Unifying The Results

Each metric provides a different range in which it ranks the importance of a node. All results are

scaled to the range {0,1}, where one is the highest. Entries, where the results span several orders

of magnitude (e.g. concentration, flux, influence), are flattened using the log10 scale before being

normalised.

4.6.2 Comparing Results

This subsection juxtaposes the use of traditional model diagnostic methods against a selection of graph

metrics. As there are several thousand species within each simulation run, the keyword extraction

algorithm Term Frequency - Inverse Document Frequency (TF-IDF), is used to identify the top most

prominent species for each metric (traditional and graph). From this, the ten highest-ranking species

from each category are collated into a single diagram for comparison.

4.6.2.1 What Is TF-IDF

TF-IDF is a numerical statistic used in text natural language processing and text mining. It is designed

to identify the importance of a word concerning its context.

It provides a value for the frequency a word appears within a document, offset by the number of times

it appears in other documents within the corpus - It is for this reason that 83% of text recommender

systems in digital libraries use TF-IDF, [Beel et al., 2016].

In [Ellis, 2019] this was applied this to the chapters of Frankenstein and found the keywords extracted

almost exactly replicated those from the synoptic description of the novel. Although TF-IDF is a

text mining procedure, the algorithm itself is mathematical, meaning that it may be applied to our

diagnostic dataset. The working of the algorithm is discussed below.

Term frequency

The TF from the algorithm name stands for term frequency. This is an analysis of the number of

times a word exists within a dataset. There are several ways in which this can be done; these are:

- Raw Count - The number of times a word exists within the document.

- Boolean/Logistic - True if the word exists, false otherwise.

- Adjusted for Document Length - word frequency/total number of words
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- Log Scaled - log(1 + frequency)

As the scaled values for each item are taken, we can liken our results to the ‘Adjusted for Document

length’ equation and use the scaled ranking value for each group.

Inverse Document Frequency

Inverse document frequency tells us how much information a word provides concerning a specific

context. While a word may be used extensively throughout a set of documents (a corpus) - (i.e.

term frequency), often that we are interested in the words which frequently appear only within an

individual document. This is one of the reasons TF-IDF is useful in the extraction of keywords from

a document.

The inverse frequency of a word is usually calculated as the log of the number of documents (N)

divided by the number of documents the word appears in (Df ), Equation 4.20.

IDF = log(
N

Df
) (4.20)

If required, changes can be made to produce results which show a better representation of words which

are important in all documents (probabilistic, Equation 4.21) or individually (smooth, Equation 4.22).

However in looking at Figure 4.26, it can be seen that the basic IDF formula mentioned has a limit

of zero the higher the document frequency (Df ), which makes it easy to normalise against (divide by

2) as this is the value tended to if the document frequency tends to 0.

IDFprob = log(
N −Df

Df
) (4.21)

IDFsmooth = log(
N

1 +Df
) + 1 (4.22)

To complete the TF-IDF equation, the frequency terms and inverse document frequency terms are

multiplied together.

Applying TF-IDF to chemical metrics

To identify metrics selection criteria, we seek only species (words) which are important only for that

metric. The TF-IDF algorithm can be adapted for use with the graph metric output. Here ‘Term

Frequency’ corresponds to the number of times a value appears within the body of a document and
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can be seen as the scaled {0,1} metric output. This is then divided by the log of the ‘Inverse Document

Frequency’. Df is the sum of values across all the metrics. This makes the TF-IDF equation:

TF.IDF = metric_value . log(
No documents

Σ∀ metric_values
) (4.23)

Figure 4.26: The different IDF outputs. A plot showing Inverse Document Frequency profiles
against Document Frequency. This shows that the probabilistic IDF highlights words that are more
important across all items, while the smooth IDF shows files which are more important individually.
The general IDF (which is used) produces a result starting at two and tending to zero. This provides
the best response and can easily be scaled between the range of [0,1] by dividing the output by 2.
Source: [Mquantin, 2020]

4.6.2.2 Metric Comparison

This section aims to compare the efficiency of graph metrics against a list of traditional methods in

determining species which play an important role within the network. To do this a bivariate colourmap

(Figure 4.27) is used. Each figure consists of a red-hued image/heatmap representing the scaled values

{0,1}:{white, red} for each of the individual metrics (graph columns). As each simulation contains

thousands of species, only the top 10 species from each column/category are selected. These are

then sorted by the average sum of their closeness, betweenness and page-rank values (blue column).

Superimposed on this reds-only heatmap is a blue heatmap representing the average sum of the three

metrics for comparison. Such a method allows for the comparison of individual values against an

approximation of species importance, by the sum of graph metrics - allowing an easy categorisation

of the data:
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- Purple - This value is high in both the individual category and the metric sum.

- Red - This value is high for the individual category but not the metric sum.

- Blue - This value is high for the metric sum but not the individual category.

- White - This value is low for all categories.

TF.IDF Metric Sum

Individual R
anking

Figure 4.27: The bivariate colourplot key.

4.6.2.3 Individual Categories

Individual categories are split between traditional metrics and graph centrality metrics. To represent

the importance of a species, the following values may be extracted through the use of a simple box

model:

- Concentration - this describes the abundance of a species within the atmosphere.

- Net flux - this describes the rate of net (absolute) change of concentration over time for a

species.

- Absolute flux - some species may have a large flux going through them (production and loss),

resulting in a small net flux. This sums the production and loss fluxes.

- influence - influence is the total magnitude of an effect that changing a species concentration

by 1% would have on other species within the network. Since the graph is generated using

the Jacobian matrix, an alternative method for calculating this can be by calculating the total

out-degree of a node.
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The importance of a species is then compared through the use of three of the most common centrality

metrics. These are:

- Closeness - This describes how easily information from one node can be disseminated to all

other nodes (see Subsection 4.3.2).

- betweenness - This describes the number of shortest paths (fastest fluxes/greatest influences)

that are routed between nodes adjacent to our chosen node. Species with a high betweenness

hold a brokering position and can act as a bottleneck between different groups of chemistry (see

Subsection 4.3.3).

- PageRank - PageRank looks at the flow in a system. It ranks nodes not only on the num-

ber of species it reacts with but also the importance of the species it has reacted with (see

Subsection 4.3.5).

Finally, the ‘Metric Sum’ is the sum of all the metric values scaled between 1 and zero (the mean).

4.6.3 Scenario Analysis

In selecting the top 10 ranking species for each category, it is possible to examine if the importance

of a species with centrality metrics varies from the results suggested by traditional metrics. In this

subsection, we explore the TF-IDF rankings of each metric and use this to decide if species importance

is local to a specific metric. We look at what species are highlighted by each scenario (Figures 4.30

- 4.31) and compare them against the primary emitted species shown in Table 4.4. Finally, we

compare the total metric sum against the traditional metrics of concentration and flux and compare

the correlation.

London

The London dataset (Figure 4.28) contains a mix of anthropogenic and biogenic aromatics and long-

chain alkanes. We have a section of alkanes which have a low overall metric sum and a small value

for closeness and page rank. Combined with their high net flux, absolute flux and influence values,

this suggests that they have a moderate directional flux, most likely influencing the production of

many other species at a consistent rate. In addition to these, we have species with a moderate

closeness but a high betweenness. These are often species such as formaldehyde (HCHO), glyoxal

and acetaldehyde which can serve as tracers for fast photolytic reactions. This is because on the

graph structure (Figure 6.4) they sit between the dense centre of the network (high closeness) and the

branches formed from each primary emitted species (a low closeness value). Their high connection



4 - Chemical model diagnostics using graph theory and metrics. 163

density and importance in the network is also picked up by the page rank algorithm. Other species

with high betweenness and a low centrality are the monoterpenes limonene and α pinene, as well

as hexane (NC6H14) and butane products. These are (or are close to) primary emitted species and

therefore have a low closeness. Since much of the chemistry originates with such species, the outward

‘flow’ of information also results in a lower page rank value.

Figure 4.28: An example force graph showing the complex chemistry of London. (Weightings
not from initial conditions described.) Source: [Lewis, 2018]

Beijing

Similar to London, the fast photochemical tracers are identified, although some have a slightly lower

flux between them (Betweenness) and page rank values for Beijing (Figure 4.29). This suggests that

the network structure or weightings may have shifted slightly from London, creating more links, or

importance in a specific branch of chemistry. Additionally, their overall metric sum is lower. Glyoxal,

Methyl Vinyl Ketone (MVK) and their associated criegee configurations all feature heavily in the

middle of Figure 4.31. These are important as they represent the fast chemistry formed by both
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the anthropogenic and biogenic chemistry that is within the simulation. These tend to have a high

closeness and page rank centrality, a pattern that is also seen with the long-chain alkane products

from Octane (n-C8H18), Hexane (n-C6H14) and Isoprene.

BUT1ENE

NC9H20
NC8H18

M2PE
TPENT2ENE

BENZENE

NC11H24

DIME35EB

OETHTOL

IC4H10

BPINENE

MXYL

NC4H10

MEPROPENE

IPBENZ

LIMONENE

NC12H26

NC5H12

TM135B

CPENT2ENE
EBENZ

NC10H22

TM123B

C4H6

NC7H16

PETHTOL

TM124B

NC6H14

C5H8

C3H6

C3H8
C2H6

C2H4
C2H2

CBUT2ENE
TBUT2ENE

APINENE

PBENZ

TOLUENE

CO

BUT1ENE

NC9H20
NC8H18

M2PE
TPENT2ENE

BENZENE

NC11H24

DIME35EB

OETHTOL

IC4H10

BPINENE

MXYL

NC4H10

MEPROPENE

IPBENZ

LIMONENE

NC12H26

NC5H12

TM135B

CPENT2ENE
EBENZ

NC10H22

TM123B

C4H6

NC7H16

PETHTOL

TM124B

NC6H14

C5H8

C3H6

C3H8
C2H6

C2H4
C2H2

CBUT2ENE
TBUT2ENE

APINENE

PBENZ

TOLUENE

CO

Arom
atics

/Benzene

TriM
ethylBenzene

Te
rp

en

es

Alkanes/Alke

ne
s

Figure 4.29: An example force graph showing the complex chemistry of Beijing. (Weightings
not from initial conditions described.)
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Figure 4.30: A bivariate heatmap comparison of London.
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Figure 4.31: A bivariate heatmap comparison of Beijing.
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4.6.4 Providing An Overall Overview Using The TF-IDF And The Metric

Sum.

In the previous section, it was shown that centrality metrics could be used to complement the use

of traditional metrics in the analysis of the chemical network. As each metric represents a different

aspect of importance, should a single ranking value for a node be required, it is possible to take the

average sum of all three metric values. Looking at Figure 4.31 it is possible to see similar trends in

colour gradient between the purples of the traditional metrics of flux and concentration with the total

metric sum (the blue column). This suggests that it is possible to compare each scenario with the use

of the metric sum.

In selecting the ten highest-ranking species from the mean centrality metric table for each simulation,

Table 4.5 can be created. Unlike the previous method, we are now looking at species which are

essential across all metrics in a simulation. Beijing consists mainly of Quinones and Dialdehydes,

which are both derivatives of Benzene. London again has Benzene related compounds, mixed with the

fast photochemical indicators, which were also ranked highly in Figure 4.30. Looking at the highest-

ranking sum (NaN-mean), it is seen that Isoprene, hept/hexane and glyoxal products highlighted as

the most consistently important across all four simulations.

London Beijing

HCHO PTLQONE
CH3CHO PBZQONE
C5CO14OOH HOHOC4DIAL
PBZQOOH MNNCATCOOH
MALANHY C6H5CO3H
CH3CO3 EPXDLPAN
C57OH C5DIALO
C624CHO NBZFUOOH
GLYOX TLBIPEROOH
HCOCOHCO3 NCRESOOH

Table 4.5: A table of the top 10 ranked species for each simulation. Only species that exist
within at least 3 out of the four simulations are used. The Nan-Mean takes the mean of all available
data, ignoring runs where a species is not present. Species presented within the table follow the MCM
naming convention.

A note on finding the precursors

Graphs are also useful in the back navigation of a network. It is possible to discover the most probable

primary emitted species (nodes with no in-degree) by comparing the shortest path lengths for all primary

emitted species (not including inorganic species). Here the primary emitted species with the smallest

number of connections are often the most likely source.
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4.7 Causality Analysis using the Jacobian and Pagerank

Due to the complex inter-dependency on species within an atmospheric network, it is often hard to

calculate how much of an effect perturbing one species will have on another. Classically we can find

the instantaneous change at a specific point in time by close examination of the Jacobian matrix -

also known as the connectivity method. Here Turányi and Tomlin [2014] states that the value JA,B of

a log-normalised Jacobian represents the effect changing a species A will have on species B - allowing

us to determine a set of important species with an aim (e.g. mechanism reduction).

If we take the sum of all items in the B column (
∑
i 6=B J [i, B]) we can calculate the total production

of species B. Expanding this method we can calculate the percentage importance of B’s precursors.

Here the species with the highest values present the most significance to the formation of B. If we

were to look at the rows instead of columns, a similar analysis may be executed for a species loss. It

is for this reason that in preparing the Jacobian for use within a graph, we take the net difference

between production and loss contributions to determine edge direction and weight.

4.7.1 Source Analysis using PageRank

The PageRank value of a species can be calculated through the solving of eigenvalues and eigenvectors

of a google matrix, or propagating a vector of unity through the network in small increments (Equation

2). These solutions are both very similar to the integrator we use to propagate the chemistry within

our box model - where instead of concentration we move ‘information’ between nodes in our network.

This means that for a network of nodes {A, B, C, D, E} (Figure 4.32a) we can use page rank to

determine where the flow of information ends up (ultimately E). However, if we are interested to find

out how much each of these nodes contributes to the total amount of information gained by E, we

need to look at the whole sequence in reverse. For a directed-graph, we may reverse the direction of

the links (so that source → target becomes source ← target) and then assign an arbitrary amount of

information to our queryable node (E) and then propagate it forwards using page rank on our reversed

network using the same edge weighting as before, Figure 4.32b.

4.7.2 Mathematical Equivalent of Edge Reversal

The physical ‘flipping’ of an edge direction is the most visually intuitive method reversing the direction,

however, in Chapter 3 we discussed that the 2D relational data of a network may also be represented

through the use of an adjacency matrix. Since this is a matrix of links where row elements → column

elements, the reversal of these edges is mathematically identical to taking the transpose of the matrix.
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In terms of our chemistry, our network is derived using the net values of our second order, partial

derivative, relational matrix - the Jacobian. This makes the link reversal procedure equivalent to

transposing the Jacobian, and thus analogous to the creation of the adjoint. The adjoint matrix is

often used within the modelling world, to run backwards in time and make historic predictions based

on current data [Henze et al., 2007]. This has its application in determining the geolocational source

of pollution, or in our case the source of concentration change in a species of interest.
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Figure 4.32: Link reversal of the Jacobian Sensitivity matrix graph results in a graph
of the adjoint. Showing changing the direction of links in a graph is equivalent to applying the
transpose to an adjacency matrix (right). In the case of a Jacobian based graph, this is analogous to
using the adjoint to propagate the model back in time - something that can be used to identify the
influence upon a species with a model.

4.7.3 A Calculated Case Study

To illustrate the points made within this section we select a species (MCM name: NC101CO) from

a sample simulation of the MCM (Borneo initial conditions are given in Table 4.4). A brief mecha-

nism analysis allows us to determine the precursors of NC101CO by isolating its local sub-graph and

reversing it. This is done by looking at outwards arrows in Figure 4.33.
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! Sources of NC101CO
NAPINBO-->NC101CO+HO2
NAPINBO2-->NC101CO
NAPINBOOH+OH-->NC101CO+OH

--- 2nd generation precursors ---
! precursors of NAPINBOOH

NAPINBO2+HO2-->NAPINBOOH

! precursors of NAPINBO
NAPINBO2+NO-->NAPINBO+NO2
NAPINBO2+NO3-->NAPINBO+NO2
NAPINBO2-->NAPINBO
NAPINBOOH-->NAPINBO+OH

! precursors of NAPINBO2
NAPINBOOH+OH-->NAPINBO2
APINENE+NO3-->NAPINBO2

--- 3rd generation precursors ---
! APINENE is a primary emitted species

Figure 4.33: The reversed subgraph between α-pinene, and NC101CO.
This is a subgraph showing the production of NC101CO. Arrows point towards a species precursor.

4.7.3.1 Personalised PageRank

Using the reversed network we apply a ‘personalised’ version of PageRank. This means that we initiate

NC101CO with a ranking vector of 1000000 and -1 for all other species. A damping factor of 0.01

is also used within the algorithm to produce the results in Table 4.6. As is often seen within the

algorithm, top-scoring values often have a notable split from mid and lower scoring values. We find

that NC101CO has the strongest influence on itself (it is where we start our information), followed
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that of α-pinene - its primary emitted precursor. Other influences such as NAPINBOOH, NAPINBO,

NAPINBO2 are seen, where NAPINBO has twice the influence from the others. This is most likely

as this has the highest net-flux from the model (Table 4.7).

Species PageRank Ranking

NC101CO 9.920000e-01
APINENE 9.210000e-06
NAPINBO 4.540000e-03
NAPINBO2 2.770000e-03
NAPINBOOH 2.690000e-03

C511OOH -9.990000e-07
C527NO3 -9.990000e-07

Table 4.6: A reversed graph Page Rank test with NC101CO

Species v̇ (net flux)

NAPINBOOH -0.458271
NAPINBO -1840.391917
NAPINBO2 -0.037366

Table 4.7: The net flux of the three species: NAPINBOOH, NAPINBO, NAPINBO2,
taken from a simulation of Borneo at 2020-06-24 12:09:56

4.7.3.2 Iterative Analysis of the Jacobian

The total production of a species was also calculated by taking the sum of all items in the corresponding

column (not including the diagonal), Table 4.8. As we are ignoring the diagonal19 the first generation

influence matches that of the reversed page rank algorithm. To get the total influence however we now

have to repeat the process for each of the species producing NC101CO, and so forth. This process is

identical to the iterative sum of in-degree links going backwards through our jacobian derived network

- a process visually illustrated within Figure 4.34.

Jprecursor−>NC101CO Value

NAPINBO −−→ NC101CO 47123.629418
NAPINBO2 −−→ NC101CO 0.000014
NAPINBOOH −−→ NC101CO 0.000001

Table 4.8: The influence on NC101CO from other species,
taken from a simulation of Borneo at 2020-06-24 12:09:56

19The diagonal of a Jacobian tells us the net change of a species, which can also be calculated as the difference of the
column and row sums.
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4.7.4 Verdict

As the PageRank algorithm is applied to the whole network and contains teleportation, it provides

small values for species without a direct link to the species in question. This requires some sort of

changepoint analysis to filter.

A better method would be the calculation of the shortest simple path between a species in question

and all other species, and then subtract the value obtained within each step to get its contribution.

For the example A 4−−→ B 6−−→ C the shortest path from A to C would be ten and B to c would be

6. The influence of A on C is calculated by the influence of A on B divided by the total influence on

B. This is similar to the process required if we were to use the Jacobian Matrix directly.

Overall, as we use the Jacobian matrix to create the graph, writing a script to process this may be the

most computationally efficient (and comparable to other results). The graph representation and page

rank methods may at first glance be quicker to implement, but do not necessarily produce numerical

output that is immediately interpretable. They do however illustrate what the more traditional

(mathematical) methods are doing in the background. Therefore both methods are equally difficult

to implement, as well as being useful, and therefore it is up to the reader to select the one most

appropriate to their aims.

4.8 Conclusions

Chapter 2 and Chapter 3 explained the importance of visualisation and graph structure in commu-

nicating the complexity of an atmospheric chemical system. This chapter explores using a graph

framework in cases where a network is too large or complex to represent visually.

We start by looking at several centrality metrics, which categorise nodes of importance within the

network. Despite showing great promise in other fields, these do not seem to supply significant new

insights into the chemical mechanisms of a model simulation when compared to traditional methods.

Next, we look at the classification of the MCM as a network. Here it is shown that this contains

both small world and power-law features. This means that the network has both a local and global

structure. The MCM network consists of a series of small ‘communities’ of species which react with

each other, connected by a hierarchical structure - a structure which can be utilised in the use of

mechanism reduction (as seen in Figure 2.16).
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Figure 4.34: Showing total the influence from each species on HCHO for a sample MCM
subset of Butane. Species importance (node size) is determined using the reverse PageRank algo-
rithm starting at HCHO (middle). It is calculated by taking a snapshot of a chemical simulation and
rendered using the transpose of the Jacobian relational matrix. Link width is representative of the
cumulative sum of the weights contributing to a concentration change of HCHO.

Finally, it is possible to apply graph theory for the use of source analysis. Although this is analogous

to manual matrix methods on the Jacobian, the use of a graph structure makes the explanation and

understanding of the procedure more intuitive. Again there is no gain over the traditional Jacobian

analysis methods.

To conclude, the graph-based analysis offers much of the same results as current methods. Since we

do not obtain any new significant insight in applying these the new learning curve in embedding them

into current practices of model analysis does not appear worthwhile. Instead, we further explore the

modular structure of the MCM in Chapter 5, where graph clustering techniques are applied to group

species with a fast-flux between them.
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“Entities should not be multiplied beyond necessity.”

- William of Ockham, Summa Logicae
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5.1 Introduction

In the previous chapters, we have discussed visualisation and its role in bridging the gap between

data and understanding. We have applied centrality metrics to a chemical network to tell us what

species are of importance and experimented in getting machine learning models to learn the chemical

structure of the species in a mechanism. This final research chapter provides a (brief) overview of

current mechanism reduction techniques while providing two novel alternatives to aid the process.

Science often deals with the problem of understanding complexity. Such a task may be accomplished

through organisation and partitioning (e.g. chunking a problem into smaller problems) and processing

these at the same time using many workers (parallelism). In cases where such methods fail, we are

forced to ‘disregard’ complexity. To do this physical processes may be simplified1, or described using

mathematics. Theorems and ideas may be applied to emulate ‘real-world’ outcomes based on the

Platonian concept of an abstract ‘Ideal’ world [Welton et al., 2002; Ostrovsky, 2005].

The process of lumping has long been used to replace a complex, changing process (e.g. Quantum

Mechanics or Boundary Layer Fluid Dynamics) with a more straightforward constant process, [Maha-

jan, 2008]. In such cases, an approximation may be far more useful than a lengthy exact solution, or

none at all provided the primary criteria/outcome is identified and optimised for (evaluated against a

benchmark or standard).

Similar problems of complexity are seen within the chemistry of the atmosphere. An example is

seen within the Master Chemical Mechanism (MCM v3.3.1), [Rickard, 2020], this contains 1228 RO2

reactions. If written explicitly, all RO2 –RO2 (gross and self) interactions would result in a total of

1,507,984 reactions. Instead, the MCM overcomes this problem by creating a RO2 pool, with which

all RO2 species react. This results in a mechanism which preserves the quality of science (the primary

goal of the MCM is to preserve O3 prediction) with only 0.000814 of the total possible RO2 - RO2

reactions.

However, even with such simplifications, atmospheric chemical mechanisms have been increasing in

size over the last ten years ([Dick Derwent, Andrea Fraser, John Abbott and Mike Jenkin , 2010],Fig-

ure 2.2). With the ability to automate their construction, mechanisms with species numbers of the

millions become possible. Although the existence of more-explicit mechanisms may improve the qual-

ity of science produced, they can cause problems for efficient computation, diagnosis and analysis.

This chapter shall look at two methods in which we may simplify a mechanism by grouping species

with similar reaction patterns together. These are through the use of species lifetime (Section 5.7)

1It is common to approximate a year as 365 days, an atom as a sphere and replace the Van der Walls equation with
the ideal gas law (for normal pressures).
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and graph-based clustering (Section 5.4).

5.2 Mechanism Reduction

Although this chapter discusses work which can contribute to a chemists toolkit for mechanism reduc-

tion, it does not concern itself with this task specifically - and will not contain any work directly related

to this nor analyse the results of a mechanism where the species suggested may be lumped together.

Although the framework for such a task exists, this shall be left as a task for future work.

Currently, there exist two main reasons for trying to find species of similar chemical properties. These

are searching for pysciochemical analogues within the field of cheminformatics (see Chapter 6) and

mechanism reduction. This chapter concerns itself with using the graph structure to group species

with reactions on fast timescales, or similar connectivity patterns - a problem commonly presented in

the production of a reduced (simplified) chemical mechanism. For this reason, the following section

provides a short literature review on several different reduction techniques.

5.2.1 Species Categories

As with any problem, the first step to simplifying a complex task involves the partitioning data into

categories. For a mechanism, we begin by observing the foci of an experiment and defining some

critical (necessary) species for the task. Following these needed species (species which are required

by the essential species for the chemistry to work) are identified and added. Finally, species which

provide a negligible input to the aims of an experiment are labelled as redundant and often removed.

The outline of each category is given below.

• Important - reactions or species directly related to the topic/outcome we are interested in (for

the MCM this is ozone)

• Needed - reactions/species required by the important species/pathways, such that they may

perform their desired function

• Redundant - those we may remove with little or no consequence to the outcome of the model.

These are determined through the use of sensitivity analysis.

5.2.2 Reaction Removal

Since atmospheric chemical mechanism forms a numerically stiff system (Chapter 1), a reduction in the

number of reactions within a mechanism leads to a reduction in the computational burden experienced
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by a model each iteration forwards in time. Classically the identification of important reactions may

be accomplished through the use or rate of production and loss analysis (Subsubsection 4.5.0.2). This

allows us to filter reactions contributing less than 5% (in the MCM reaction pathways < 5% are

disregarded) to the formation of any species we are interested in. Other methods using principal

component analysis of the sensitivity of species (PCAS) also exist and are discussed in [Vajda et al.,

1985; Wyche et al., 2015].

5.2.3 Species Removal

Similar to reaction removal, the removal of species is useful because the removing or combining of

species inherently reduces or simplifies the reactions within a mechanism. This method also has added

benefit of reducing the size of the Jacobian matrix used to propagate the chemical system forwards.

For large systems which do not use a sparse framework, storing a n2 matrix in memory can prove

difficult.

Many methods of species reduction are possible. The simplest of these is through the use of trial

and error [Turanyi, 1990] (Method 1). Here the consuming reactions for a species are removed, and

if the resulting deviation in results between the full and reduced mechanism is small within a certain

threshold, their results are retained. The main downside to this is that it only works on a per-species

level, which may be very resource-consuming for large mechanisms.

With the use of sensitivity analysis, it is possible to remove species whose reaction are much slower

than the rate-determining steps of a mechanism, [Oran and Boris, 1991]. However, even after remov-

ing all slow-reacting species, those on a fast timescale remain. Here the use of Quasi-Steady-State

Approximation (QSSA), [Whitehouse et al., 2004a], can be used to identify species associated with

fast timescale reactions. QSSA works on the assumption that such species have little to no change in

concentration over time - i.e. the net flux (v̇i) is zero. Such an assumption causes an error ∆ci of :

∆ci =
v̇i
Jii

(5.1)

where Jii is the diagonal of the Jacobian matrix. Here if the error for a species is small, the species

may be removed from the mechanism.

Finally, investigation of the system Jacobian can be used to identify redundant species, which is a

‘capable’ and ‘efficient’ method for removing most redundant reactions and species from the MCM,

[Whitehouse et al., 2004a]. Use of a log-normalised Jacobian to determine which species can be

removed is found in the connectivity method [Turányi and Tomlin, 2014; Turányi, 1990]. Here the

influence a 1% change in a species concentration has on the concentration of ‘important’ species can
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be determined by

Bi =
∑
j

((yi/fi)(∂fi/∂yi))
2 (5.2)

where (yi/fi)(∂fi/∂yi) is element i of the normalised Jacobian (see Chapter 4 for information about

the construction of the Jacobian matrix). Through an iterative process species with a low contribution

to our important species can be found and removed.

5.2.4 Lumping

Rather than removing species or reactions from a mechanism, we may combine them to form a new

composite species. This is referred to as species lumping. To do this, we must first consider how we

define species that are to be joined together, and then how their grouped reactions will contribute

to every other species, it reacts with. Some of the more general types of lumping styles are outlined

below.

5.2.4.1 Chemical Lumping

Mechanisms follow protocols in their generation. This produces reaction styles that many like-

structured species follow in their degradation. In determining such classes, we may be able to generalise

like-species reactions and group them as one. An example of this is the Common Representative Inter-

mediates (CRI) Mechanism (described in Subsection 5.3.1). Here the ‘ozone production potential’ of

the species within the MCM is used to simplify and reduce it. This is a function of the C–C and C–H

bond ratio of a species (its CRI index). Species with the same CRI index are lumped (grouped) into

a proxy species. Alternatively, time scale analysis for species lumping has been successfully applied

by [Whitehouse et al., 2004b]. Here it is seen that many groups of species have rate coefficients that

are identical or sufficiently similar due to the generic rules/protocols of the MCM. This results in a

similar overall lifetime for species in the same group, allowing them to be lumped together with little

overall consequence to the experimentation criterion.

5.3 Data Setup

Unlike manual reduction, this chapter does not concern itself with the intricacies of the chemistry

behind a mechanism. Instead, we search for an automated method of simplifying the mathematical

structure behind a mechanism while preserving the quality of science it represents. Although this

may not directly replicate real-world scenarios, it can provide an accurate test of the robustness of a
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mechanism and the equations within it. Work is carried out on the assumption that the equations

within the MCM benchmark mechanisms are representative of experimental results, and in simplifying

these, their usefulness in modelling the real data is preserved. This section describes the experimental

setup for the experiment.

5.3.1 The Mechanism

The mechanism used is the Common Representative Intermediates (CRI) Mechanism v2.2 [Jenkin,

2019]. This is an already reduced version of the MCM v 3.3.1, where species are grouped based on

their ozone formation potential - i.e. the C–C and C–H ratio of bonds. Reductions have been made

on a compound-by-compound basis and compared to the MCM using a series of 5-day box-model

simulations, [Jenkin et al., 2008].

Why further simplify the CRI network?

CRI v2.2 [Jenkin et al., 2008] is a mechanism of 422 species and 1261 reactions - that is 7% of the full

MCM (5809 species and 17224 reactions). Although this is significantly smaller than the full MCM, it

may still prove problematic if used within a global model - for comparison, the GEOS-Chem2 standard

chemistry is approximately half the size of this, [Community, 2020].

5.3.2 The Box-Model

The box model is an adapted version of the Dynamically Simple Model of Atmospheric Chemical

Complexity (DSMACC) [Emmerson and Evans, 2009; Ellis, 2020]. Recent updates allow for multiple

parallel runs, easy extraction of rates, fluxes and the Jacobian matrix as well as a simple Ncurses (a

command like semi-graphic interface) interface for loading and parsing new files.

The DSMACC model works by using the Kinetic PreProcessor (KPP), [Sandu and Sander, 2006], to

generate Fortran code, which can then be used to integrate the provided mechanism. As there were

some issues presented a pre-pre parser code is used before running KPP. Occasionally a post parser

may be required on some of the files to produce the desired output.

5.3.3 Model Inputs

The aim of this experiment is not to replicate a specific case study or scenario. Instead, we extract

all non-lumped species which appear in both CRI and the MCM and provide an assortment of initial

2A global 3D model of atmospheric chemistry driven by meteorology from NASA’s Goddard Earth Observing System
(GEOS), [GEOS-Chem, 2020].
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condition concentrations to cover the entirety of the input space.

To select the initial conditions there exist several sampling styles [McKay et al., 2000]. The most

common style is the random or ‘Monte Carlo’ approach. However, this does not guarantee a homoge-

neous distribution of points. A lattice or grid approach is also possible, but that can result in a large

number of sample points to produce a complete distribution of the input space. To overcome this, a

Latin hypercube can be used. This is a generalisation of the Latin square - a square matrix containing

n items, arranged in such a way that they only appear once in each row and column (akin to a sudoku

puzzle) [Dodge, 2008]. The experimental setup uses a Latin hypercube to define the initial condition

range for 148 primary emitted species, and 300 simulations follow the formula below:

concentration


min = 100ppbv max = 1pptv, ifNO,NO2, O3

min = 10ppbv max = 0.1pptv, otherwise
(5.3)

5.4 Graph Based Reduction

It has been shown that a graph-based representation of the atmospheric chemical network proves useful

in both the visual and mathematical analysis of simulation results (Chapters ??-??. It, therefore,

follows that the network representation of mechanism may also have its uses in the simplification,

and thus reduction, of chemical complexity. This section will outline the basic methods of modularity

(cluster) detection with the graph framework, the different methods in which this may be done and

eventually apply it to a case example representative of the chemistry within the London environment.

5.4.1 Graph Parallels

Graph structure can be used to analyse changes of reactions or relationships between species - providing

an alternative representation and method to access such data. Additionally, clustering techniques

may be used to locate groups of highly connected, fast reacting/strongly related species. This has

applications in both understanding the data, but more importantly, chemical lumping. In creating a

graph from a model simulation, we encode not only information about the chemical structure, but also

the influence between species in the mechanism. By grouping species which have a strong dependence

upon each other, we can simplify the provided network or mechanism.
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5.4.2 Types Of Graph Clustering

Unlike vector clustering algorithms (such as DBSCAN, UMAP and K-means - see Subsection 6.5.1),

graph clustering metrics do not rely on the spatial orientation of the data to determine groups or ‘clus-

ters’. Instead, these may partition the network into segments, group nodes by structural equivalence

or explore the ‘flow’ dynamics of the network.

Algorithms such as Label Propagation [Raghavan et al., 2007] and spin-glass [Newman and Girvan,

2004] work by randomly assigning nodes with a property or label. This property is then transferred to

its neighbours. Other algorithms such as the nested block model can decompose a graph into clusters

of similar properties, [Fortunato, 2010]. These are often grouped in the form of topological equivalence

which can be either:

- structual equivalence - vertices are similar if they have like neighbours, [Zhou, 2003].

- regular eqivalence - retrieves nodes with similar connection patterns (e.g. parent - child node

hierarchicl structures), [Everett and Borgatti, 1994].

This works similarly to an AutoEncoder (discussed in Subsection 6.3.5), where topological similarities

are used to simplify (or encode) the network structure, in a way which it may be decoded again.

Finally, there exist a set of ‘flow’ based models which use the network dynamics to determine the

modularity of a network. These are discussed below.

5.4.3 Walk/Flow-Based Clustering

Temporal networks result in a change in the relationships between items (magnitude/type). Such

changes in the network dynamics are encoded within the edges of a graph. The primary function of a

random walk or ‘flow’ algorithms is to capture the changes between the real-world systems represented

by the network.

In Subsubsection 6.5.1.1, the silhouette coefficient was used to compares the vector position of clusters

with regards to the distance of data points between them. Translating this to the graph framework,

topological (graph) clustering defines a cluster, or module, as a region with a higher inter-cluster

degree or density3 compared to their intra-cluster density4. This results in a system, that is sorted

by group, has more links between elements of the same group than with those in other groups - such

patterns can be seen within the sorted adjacency matrix in (Chapter 2).

3The number of links or edges between items in the same group.

4The number of edges to other clusters
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Since flow-based methods are more interested in the network dynamics, than structure, the number of

links or density is replaced with the time a random ‘walker’ spends ‘trapped’ between a set of nodes.

A real-world analogy would be to view the flow of water in a slowly filling river, Figure 5.1. Here

a walker (or water molecule) traverses the entirety of the river/graph network, occasionally getting

trapped between a set of nodes. Here although the water is still moving, it ends up spending more

time going back and forth between a set of nodes, than exploring the rest of the network. It is these

regions of stalled progress that form network clusters.

Figure 5.1: The proposed plans for the change of the UK National Watersports Centre
Whitewater Course (Holme Pierrepont). Walk based clustering is analogous to the movement
of a river. Clusters (or modules) are identified as areas where the ‘flow’ becomes trapped, much like
water in the pools immediately following a hydraulic jump. Source: [Cornes, 2008]

5.4.4 Louvain Clustering

The Louvain clustering algorithm is one of the most popular of the clustering algorithms due to

its algorithmic and qualitative robustness, [Blondel et al., 2008; Lu et al., 2015]. On the simplest

level, this works by maximising the modularity for each configuration. Modularity is a value between

positive and negative unity which measures the density of edge between inter and intra communities

and compares it to an equivalent random network. The Louvain is a hierarchical clustering algorithm;

this means that after each iteration, all nodes which belong to the same cluster are consolidated to

form a new ‘grouped’ item. Inter-cluster links are converted into self-links, and intra-cluster links are

updated accordingly.
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5.4.5 Infomap Clustering

The Infomap clustering algorithm is a flow-based method which operates on system dynamics rather

than structure [Rosvall et al., 2009]. It works by trying to minimise the Huffman code [Huffman,

1952] - a type of optimal prefix code used for lossless compression in computer science and information

theory. Here the frequency of items is grouped to produce a binary decision tree (Figure 5.2 left).

Here the letters a,d,r,g and b appear much more frequently than! and c. Navigation this binary tree

can then be used to produce a Huffman code for each letter (Figure 5.2 right) where letters with

a higher frequency have a shorter code length. This method is used within the infomap algorithm

to compresses information about the probability of a random walker transitioning between pairs of

nodes in a network. Here the prefix of a Huffman code works much like a postcode (City+Areacode,

StreetCode ) to identify regions where the walker gets trapped (clusters of high density with a low

probability that the walker leaves).

As the number of partitions grows exponentially with the number of nodes5 it is not possible to apply

a brute force approach to find the best number of partitions. Instead, a variation of the Louvain

method applies ‘submodule exploration’ which verifies that large modules should not be broken down

into smaller ones and ‘single-node movements‘ which allow individual nodes to move between modules.

These optimisations avoid the situation of too large modules (where each node has a category to itself)

or too small where the number of prefix codes is great.

Figure 5.2: A Huffman tree, and the Huffman code generated from it. A Huffman tree is
created using the frequency of occurrence of an item. The more often it appears in the source, the
shorter the path to it. Source:[Sad CRUD Developer, 2016]

5See ‘Bell Numbers’ - these count the possibles partitions in a set and have root going back to medieval Japan.
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5.5 Selection Criteria For Graph Clustering

The main two criteria in selecting an algorithm for grouping atmospheric reactions are:

1. The algorithm can deal with a directed network - chemistry is directional.

2. The algorithm can handle temporal data - The chemistry within a system changes depending

on the time of day. This is mainly due to the change in the amount of radiation available from

photolytic reactions of oxidants and photolysis reactions.

As the InfoMap algorithm implements a directed approach coupled with a multi-level clustering ap-

proach able to capture node-layer interaction in temporal networks,[Aslak et al., 2018], it makes the

right candidate for the task of mechanism reduction.

5.6 Evaluation Of Infomap On A Real Simulation.

Using the initial conditions for London from (Table 4.4), a spun up a model simulation with the CRI

v2.2 mechanism was run. Since this does not contain C5H11CHO, MVK, MACR or Limonene as

primary species, these are omitted from the initialisation. Following a spinup to radical steady-state,

a graph is generated for noon after one day of an unconstrained run. The InfoMap algorithm is then

applied to the generated graph.

The coarsest level of clustering is shown in Figure 5.3. Here nodes are coloured by their cluster,

and approximate polygon hulls (a shape of multiple corners which enclose a set of points) surround

the nodes closest to the median cluster centre. Much like the findings in (Chapter 3), it is seen

that different sections of the graph network represent different types of chemistry - for example, hull

4 contains aromatic species, hull 2 contains the products of linear alkanes and hull 3 contains the

terpenes.
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Figure 5.3: A graph of CRI v2.2 showing the hulls of the first level of hierarchical cluster-
ing. Nodes are coloured by the splits in branches, and the hulls enclose the nodes which lie within
95% of the (median) centre of the cluster.

As the InfoMap algorithm provides a finer level of clustering, it is essential to evaluate its performance.

Using a graph-hull approach, as in Figure 5.3, becomes cluttered and unusable. Instead, a bubble plot

may be used. Although this sacrifices the ability to view links, it allows for the complete overview of

the hierarchical structure. In Figure 5.4 shows the nested structure of each clustered group. In an

electronic mail correspondence with Mike Jenkin (Section D.1), the origin of the naming convention

of reduced species was explained. Individual nodes are coloured by their prefixes. This allows the

further categorisation of the species structure within each category.
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Figure 5.4: Species structure within each cluster. A nested bubble chart is used to show the full
hierarchical structure of the mechanism. This allows us to evaluate the species structure/type that
has been extracted in each level of the hierarchical split. Node sizes are representative of the log10

number of walkers that have become trapped by the flow algorithm at a location.

5.6.1 Species Type And Clustering

The bubble chart provides an intuitive way to represent groups for interactive or small systems but

is less useful for larger numbers of species and print (Figure 5.4). Instead, a tree approach is better

suited to revealing the hierarchical structure of the network, as shown in Figure 5.5. Here branches

within Figure 5.5 are numerically labelled for each level. This allows us to navigate the hierarchy

using a sequence of numbers (e.g. to get to C4H6 we take the branch 1 from the centre, followed by

branch 5 - resulting in the notation 1.5.C4H6).

This split notation allows a general overview of the mechanism structure, as well as the reason-

ing/process of the clustering algorithm. The first level split in Figure 5.3 shows branches 1,2 and 5 to
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Figure 5.5: A radial treemap showing the hierarchical clustering of the CRI mechanism.
The simulation results used are representative of the chemistry within London at Noon local time and
generated using DSMACC and the InfoMap algorithm.
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have origins in the linear (n-) alkane species. This can be seen through both the emitted species (bold)

and the RN prefix of the species. Here the linear alkanes can react with OH to extract hydrogen and

then from a RO2, or produce a carbonyl CARBxx, which can then go on to produce the RNxxO2

peroxy radical.

Except for benzene in 2.14, branches 3 and 4 contain the aromatic species in the network. Branches

4.{2,5,9,11} all consist of RAxxO2 species, which are the product of the addition of OH to toluene/benzene

ringed species. 4.{1,7,8} and 1.5 contain peroxy radicals formed from the degradation of conjugated

dienes RUxxO2. For the CRI v2.2 mechanism these are only isoprene and 1,3-butadiene. Such peroxy

radicals often go on to form unsaturated carbonyls, as denoted by UCARBxx.

Branch 3 contains the monoterpenes. This can be seen in 3.{2,5} (α−pinene) and 3.6 (β−pinene).

Here peroxy radicals formed from the reaction with the endocyclinc6 and exdocyclinc7 double bonds

of α− and β− pinene are denoted with the prefix RTN and RTX.

The RIxxO2 prefix was used initially for the peroxy radicals iso (‘i-’) alkanes and their carbonyl

products - branches 3.{1,4}, however, they tend to mainly be used for smaller branched precursors

which produce acetone (CH3COCH3) as a significant product in their oxidation chain (branch 3.1).

Acetone is a relatively unreactive carbonyl, the fact that it is water-soluble means that they may be

washed out of the atmosphere by precipitation, [Andersson-Sköld et al., 1992]. This may have been

seen to interrupt the ozone formation process under regional-scale photochemical smog conditions in

north-western Europe.

Finally, since the CRI index is representative of the oxidation potential, it is common to see species

containing the CRI value within a cluster. Cluster typically contain a combination of carbonyl

(R(––O)R’,CARBxx ), hydroperoxy (R–OOH,RxxOOH ), peroxy (ROO · , RxxO2) and nitrate (R–ONO2,NO3)

groups. For the lumped species, it can be common for a RO2 species to react with NO or NO3 to pro-

duce a carbonyl with a CRI index of two values lower. This can be attributed to the loss of hydrogen

in the oxidation process. Similarly, a reaction with NO or HO2 can produce a hydroperoxy or nitrate

species, which in turn react with OH to produce the equivalent carbonyl.

5.6.2 Number Of Clusters

Sometimes it may be required to have a preset (target) number of clusters. The InfoMap algorithm

contains a preffered number of modules parameter which can either terminate the algorithm early,

should the number be reached (or continue splitting if it has not). Since we are interested in merging

6Inside the pinene ring.

7Outside the pinene ring.
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smaller numbers of nodes, this can be seen as a useful parameter to have. However, in selecting a

number too large, (e.g. 200 clusters, which should result in groups of 2-3 nodes), it is seen that much

of the hierarchical information from the network is lost, Figure 5.6. It is for this reason that forcing

the number of nodes without reason will not be attempted.
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Figure 5.6: A radial tree of the InfoMap algorithm with a forced number of groups. Here
a loss of hierarchical structure can be seen when compared to Figure 5.5. By setting a high number
of required clusters, many species are grouped by themselves, which does not provide a useful output
for mechanism lumping.

5.7 Reduction Through Lifetime

In Subsubsection 5.2.4.1 is was mentioned that a species lifetime could be used to decide on which

species may be lumped together. Here Whitehouse et al. [2004b] found that large groups of species

within the MCM had similar or identical lifetimes and that in many cases this could be attributed to

similar/identical rate coefficients for the same type of reaction. This was then used as a methodology
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for automatic mechanism reduction.

This section describes a method in which this may be performed without prior knowledge of the

mechanism. Natural language processing tools are applied first to determine species of a similar

lifetime across a range of timesteps (Subsubsection 5.7.1.1), and then their standardised temporal

profiles are compared (Subsubsection 5.7.1.2). However, we first begin by defining the lifetime of a

species.

5.7.0.1 Calculating The Lifetime

The chemical lifetime is of a species is defined by calculating the lifetime of a species against the loss

of individual reactions:

τA =
1

Σi=1,n 1/τAi

(5.4)

where τA is the overall lifetime of species A and τAi are the lifetimes of a die to a loss from reaction

1 to n [Jacobson, 2005]. It can be noted that this equation is calculated as part of the diagonal (Jii)

of the Jacobian matrix [Turanyi and Tomlin, 2015; Whitehouse et al., 2004b]:

τA = − 1

Jii
(5.5)

Where i corresponds to the index of species A in the matrix, since this is a loss, the value of Jii will

be negative unless a species does not contain a consuming reaction (then it will be zero).

5.7.1 Comparing Magnitude And Direction

The most significant changes of a reaction rate within a simulation are due to photolytic reactions.

Here the solar zenith angle determines the amount of radiation which can reach (and excite) a molecule.

Since the chemical lifetime of a species takes into account its loss due to other reaction, such temporal

changes in reaction rates need to be taken into account. The simplest method is to construct a

vector for each species, showing how their lifetimes change over time. In doing so, we can apply

natural language processing techniques, such as euclidean (magnitude) and cosine (angle) distance,

co compare them.
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5.7.1.1 Euclidian Distance

This is the simplest method of vector comparison and works by calculating the distance between all

points in two vectors. For the vectors

v1 = [a, b, c, . . . n]

v2 = [i, j, k, . . . z] (5.6)

This can be done using Pythagoras’ theorem in Equation 5.7:

edist =
√

(a− i)2 + (b− j)2 + (c− k)2 + · · ·+ (n− z)2 (5.7)

This transformation converts the straight line distance between each vector into metric space, allowing

us to represent the difference in their magnitudes as a single scalar. Unfortunately, as this requires

the difference between all permutations of rows, it cannot be done as a single operation.

5.7.1.2 Cosine Distance

Similar to euclidean distance, if we wish to calculate the angle between two vectors, we may use the

cosine difference. In starting with the definition of the dot product

v1 · v2 = ‖v1‖‖v2‖ cos θ

this may be arranged

cos θ =
v1 · v2

‖v1‖‖v2‖
(5.8)

The problem is that for a meaningful representation for the cosine inequality, the Cauchy-Schwarz

(triangle) inequality needs to be satisfied. This states that for all sequences of real numbers ai and bi:

(Σa2i )(Σb
2
i ) ≥ (Σaibi)

2 (5.9)

Each vector needs to be normalised before the calculation of the angle. This eliminates information

about the magnitude of the vectors but also allows for a better comparison of the distribution (or

shape). This normalisation factor makes it particularly useful in the analysis of text documents, where

a word may appear multiple times in different length segments.
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5.7.2 Temporal Lifetime Vector Comparison

To compare a species diurnal profile with its absolute lifetime, we can plot the cosine and euclidian

distance against each other on a x − y scatterplot, Figure 5.7b. In this subsection, we compute the

Euclidean and cosine distances for all remaining reaction pairs (88410 pairs) for a single simulation

from the setup described in Subsection 5.3.3. We start by looking at the species density profiles,

Figure 5.8.

(a) Original (b) No-overlap

Figure 5.7: Cosine distance against Euclidian Distance. Normalised version of the two distance
metrics are plotted in an x − y scatterplot. Each dot represents a different species pair plotted at
the location of their value for each metrics. Species pairs with similar values and profiles have small
values for each metric and are located towards the upper left hand corner. (b) shows the same results
as (a) but has a no-overlapping (collision detection) algorithm applied show all points, and therefore
aid interactive selection.

NOTE: the kernel density plot x axis shows 1-(the value shown in the scatter plot). This is because

output values from each distance closer to 1 are similar. In the scatter plot inverting this however

proved more straightforward to plot and explain

Similar to Whitehouse et al. [2004b], we find there are several groups of species with similar lifetimes.

In general, we have two main peaks where the temporal profile and concentration differences are

similar. Here the first peak (Figure 5.8 from the right) shows a significant agreement between both

similarities. This suggests that most of the species within this section react similarly, and will very

likely have the same inorganic reactions at a similar rate. The second peak, however, shows species

which have a similar diurnal response, with different magnitude differences. These species are likely

affected by photolysis reactions directly or indirectly but have a differing set of reactions controlling

them. In a concentration line-plot we would expect them to have peaks in the same location, but to
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change at a different rate/magnitude to each other.

Figure 5.8: Gaussian Kernel Density Estimate plot showing the distributions present for
the {0,1} scaled euclidean and cosine distances. This graph shows the density profiles for
each metric in Figure 5.7a - these show 1-(normalised metric distance), and therefore the peak at
1 corresponds to that in the top left of Figure 5.7a. Peaks here correspond to the regions of high
densitry within the scatterplot Figure 5.7b.

A comparison of both similarities on the x − y plot is shown in Figure 5.7a. As many species have

similar lifetimes, these are often situated within the same temporal space, which can make it hard to

visually or interactively separate them. It is possible to convert the scatter plot into a force-simulation,

Figure 5.7b. Here nodes repulse each other and are attracted to their original location. This expands

the graph and prevents overlapping nodes. In doing so, it is possible to interactively query the pairs

of nodes which are represented by each point if required. This information can be better shown in a

Kernel density plot comparing the distribution of cosine and euclidean distances.

The agreement of both metrics suggests a similarity between the lifetime values and their change in

time for simulation. This is in agreement of with the x − y plot of the species. In selecting species

that are part of the same initial cluster and have a high agreement between both similarities, it is

possible to gauge the suitability for two species to be lumped together.

5.7.3 A Quick Comparison

Having described how the similarity distances work, Figure 5.7b showed the locations of the best and

worst matched pairs. This subsection looks a the differences between these using a log10 ensemble of

the mixing ratios for the 300 simulations used in the results section. Figure 5.9(a,b) show that the

best matching pairs contain an easy to match flat decay curve, with the worst Figure 5.9(c,d) often
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containing a combination of a species which decays with one which undergoes a photolytic reaction.
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Figure 5.9: Comparing the best (a-b) and worst (c-d) species combinations using the
combined similarity metrics. Here species which only undergo a simple decay seem to be the
easiest to group together. Species pairs between an photolytic and non photolytic species produce
different profiles at differing magnitudes and are therefore difficult to match.

5.8 Results

To get a representation of the mechanism, we run 300 randomly initiated scenarios (Subsection 5.3.3).

The experimental setup is one such that it is possible to add more data points at a later date. From

each simulation, the no diagonal elements of the Jacobian are used to construct a graph representative

of the aggregated hourly means of the simulation output. Each of these graphs is then run through the

infomap algorithm, and a grouping/clustering produced. Each infomap is run 100 times, where the

result with the best fit (shortest code length) is taken - this is an optional parameter on the algorithm.
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5.8.1 The Co-Grouping Network

To aggregate the groupings produced by each algorithm an n×n matrix is created for each of the (n)

species in the mechanism. This is treated as a relational graph matrix. If species A is in the same

group as species B, then a link (or value +1) is added to the [A,B] (A −−→ B) and [B,A] (B −−→ A)

column. Using this matrix format, it is possible to generate a graph showing the relationship between

species that were clustered in the same group.

This relational matrix can then easily be converted into the network format: Figure 5.10a. Starting

with this it is then possible to filter edges below a certain weight, Figure 5.10b-d. Finally, isolates

(nodes with no links) are removed, leaving only those clusters where each species has a strong rela-

tionship between every other.

In the context of this section, we select only relationships that appear in over 45% of all the clustered

simulation runs. The reasoning is that there may exist a pairing which only appears during day or

night time.

(a) Full Graph (b) >10% of graphs

(c) >20% of graphs (d) >40% of graphs

Figure 5.10: Filtering the infomap clustering relationship matrix/graph How the clustering
relationship network changes as weak links (links between species which do not appear in many of the
infomap groupings) are removed.
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5.8.2 Comparing Daytime And Nighttime Groups

In determining a group of species which are commonly clustered together in most simulation results,

we are next interested in seeing if these groups change with day or night.

To do this, we use an alluvial diagram [Rosvall and Bergstrom, 2010]. This is a cross between a

parallel-line plot and a Sankey diagram and is particularly suitable for showing the changes in clusters

within a temporal network.

In taking the common clusters formed at midnight (Figure 5.11 left) and midday (Figure 5.11 right)

we are able to compare these to the overall selection (all hours - middle). Here, as is expected, any

parings which persist in over 45% of all the timesteps, exist in all three categories. We see a selection

of species which are grouped at 12:00 and 0:00 hours. This suggests that they may not be grouped

with some of the intermediate hours and that if the threshold of selection is lowered below 45, they

may appear in the overall result—finally a selection of species which are only grouped in daytime or

night time only results.

5.8.3 Determining Cluster Suitabiltiy

Having selected clusters that appear for most graphs in the network, it is now important to assess

the suitability of each node for being lumped together. Using a normalised similarity matrix, we

extract the values for each of the lumped groups, Table 5.1. Here the best values are provided by the

PECOH and DIEK species, Figure 5.12a. These both have linear decaying concentrations within the

same order of magnitude. This is probably due to PECOH being the only precursor to DIEK, where

DIEK accounts for 0.436% of its total products. This makes them a suitable candidate for lumping.

HOCH2CO3H and HOCH2CO3 make the worst possible lumping combinations. This is because the

radical HOCH2CO3 can react with many of the inorganics, while HOCH2CO3H can only dissociate into

formaldehyde or react with OH to reproduce HOCH2CO3. Although these species both have differing

profiles, of several orders of magnitude difference, their cyclic nature HOCH2CO3H
OH−−−⇀↽−−−
HO2

HOCH2CO3

most likely proved to trap the ‘flow’ of the network, producing the cluster. Additionally there are

also several clusters consisting of (N)RIxxOOH and (N)RIxxO2 species. These are generally species

formed from iso-alkanes (Section D.1), and both produce acetaldehyde (CH3CHO) as a product. Here

the peroxy radical (R–O2) produces a diurnal profile. Regardless of this, the cosine similarity is still

relatively small. This may be attributed to the ‘flat’ periods of slow decay that is experienced at

nighttime (due to the reduction of available HO2 and NO) which follow the loss trend of the peroxide

(R–OOH) species. Since OH addition and H-abstraction are both fast reactions these often form

species with similar CRI numbers, the clustering algorithm often identifies peroxides and their peroxy
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Figure 5.11: An alluvial diagram showing the changes in clusters between noon and mid-
night. On the left are all groups that appear in >45% of the midnight simulation results. On the
right are groups which appear >45% of the midday results. In the middle exist the clusters extracted
which appear in >45% of all runs. Here it is seen that there exist a series of species which may exist
in the daytime or nighttime chemistry, but do not persist between both. Sizes represent the number
of species and colours (greys) has no purpose other than to differentiate different items.
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radical equivalent as a group, RO2
HO2←−−→
OH

ROOH.

Sepecies Pair Euclidean Cosine
NRI15OOH NRI15O2 0.4624 0.2885
NRI12OOH NRI12O2 0.4617 0.2986
PHAN HOCH2CO3 0.5103 0.9998
HOCH2CO3H HOCH2CO3 0.8350 0.9892
RI14OOH RI14O2 0.4922 0.2275
NRN9O2 NRN9OOH 0.4620 0.2818
PECOH DIEK 0.0172 0.0011

Table 5.1: A table of the normalised similarity values for the lumped species. Numbers closest to 1
show the worst possible paring in the mechanism, and numbers approaching 0 show the best.
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Figure 5.12: Comparing the best (a-b) and worst (c-d) species pairs from Table 5.1. Species
which make a good candidate for reduction have a similar diurnal profile and production/loss patterns
as well as ranges of magnitude in which the concentration lies. This is seen in subplots (a) and (b).
Bad pairings either cover very different magnitude ranges (d) or have dice different temporal profiles
(c and d). Time is in the format DD-MM HH
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5.9 Conclusions

Chapter 3 discussed graphs as a useful method for representing the chemistry within a mechanism.

Building on that Chapter 4 showed that graph centrality metrics could be used to mathematically

locate nodes (species) of importance from the chemical network from a chemical simulation. This

chapter explores the chemical structure of the MCM network and uses graph clustering methods to

locate groups of similar chemistry (Figure 5.5).

This process was trialled, using 300 randomly initiated simulations, on the CRI v2.2 mechanism [Jenkin

et al., 2008]. In addition to graph clustering, we use cosine and Euclidean distances to compare the

concentration magnitude and profile for species which may be lumped together. These are natural

language processing techniques which allow the comparisons of two (temporal) arrays comparing their

geometric distance and the angle between them.

For example, only six pairs of species were identified to be potentially lumped together. This has shown

that in using the methodology presented, it is possible to located potential candidates - although both

the parameters and the sensitivity of grouping these within a chemical simulation need to be further

explored. Future work should involve the use of real-world chemical scenarios, and clear optimisation

criteria to which to benchmark the results against - if using CRI and the MCM this will likely be

ozone-forming potential. Since CRI v2.0 has an additional five reduced states, it would be useful to

attempt to reduce that and compare the results against the pre-existing mechanisms.

This chapter has shown a novel way for querying and representing a mechanism. This methodology

needs to be further developed and applied to real-world chemistry before any conclusive comments on

its applicability to atmospheric chemistry are made.
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“So, in the interests of survival, they trained themselves to be

agreeing machines instead of thinking machines. All their minds

had to do was to discover what other people were thinking, and then

they thought that, too.”

- Kurt Vonnegut, Breakfast of Champions
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6.1 Introduction

6.1.1 Historical Significance

The established process of trial and error has always underpinned our survival [Noble, 1957]. Babies

are born to rely on a set of sensory reflexes and a framework for physical reasoning [Baillargeon and

Carey, 2012], and with these, we develop methods to navigate the influence of change within a physical,

and auditory space [Lynch, 2011]. This method of decision making is reflected in our adult lives with

ideas and actions being limited in choice by our intuition and experience [Descartes and Lafleur, 1960].

In science, we apply a methodological framework consisting of a continuous assessment of scepticism,

educated guessing (hypothesising) and rigorous practical testing. Specialists accrue years of practical

and theoretical knowledge within a narrow field and can identify areas of potential gain and futility.

Nevertheless, even with all prior experience, the discovery of new and untested techniques involve the

tortuous traipsing through a sea of uncertainty.

Such methods sometimes prove fruitful, through accidental discoveries of items such as polyetheylene,

penicillin, x-rays, nylon, teflon, velcro etc. [Roberts, 1989]; finding novel applications for existing

methods such as optical tweezers for chemistry or the abstract field of maths utilised by Einstein, but

more often than not end in the constant evolution of a pre-existing project with no apparent result.

6.1.2 Theory And Simulation In Science

Until recently much of the experimentation possible was limited by resources, levels of knowledge and

available technology. With the increase of computation power, we have been able to not only increase

our understanding but also run theoretical simulations to guide exploratory efforts with an impact

on real-world applications [Oliveira et al., 2006; T. Leube et al., 2018; Morozov, 2016; Yu-ChenLo,

2018]. However, as our ability to record and produce data increases, the need for the scientific

method diminishes [Anderson, 2008]. Here the application of ‘big data’ tools and algorithms can

provide insights and correlations much more compelling than the predictive capabilities of constantly

changing models - “Since all models are wrong the scientist cannot obtain a "correct" one by excessive

elaboration” - Box [1976]. As our level of attainable technology increases, so does the complexity of

the data collected. New datasets tend to be very large, complex and highly multivariate. Although

this dramatically improves the quality of science, the difficulty lies in trying to represent it in such

a way that we may efficiently access the reliability of the results. Since simple bar and line graphs

are no longer applicable, one solution falls within a class of unsupervised machine learning techniques

called dimensionality reduction (DR).
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6.1.3 Chapter Aims

In Chapter 2, we looked at visual representation as a way of better understanding of complex systems.

Chapter 3 showed that the chemical properties could be inferred (visually) from the node-link graph

structure of a mechanism. Similarly, Chapter 4 and Chapter 5 located the presence of important

species and clusters of similar properties by applying mathematical algorithms to the graph network.

As opposed to attempting to visualise complex data, this chapter looks at learning the structure of a

chemical species and simplifying it into two dimensions. Here it is possible to extract key features of

like-groups through the use of vector clustering, which unlike the graph clustering in Chapter 5 works

by determining the density between points on a plane.

The chapter begins with the introduction of the chemical system, and the various methods for rep-

resenting species structure within it (Section 6.2). Next, we define the dimensionality reduction

methods, which are to be used to simplify the inputs above (Section 6.3). This is followed by a brief

overview of the visualisation methodology (Section 6.4). Finally, all three sections are combined to

produce a set of result and conclusions about the use of DR to identify species structure. This chapter

aims to access the efficiency of a machine learnt (dimensionality reduced) models in simplifying the

chemical structure, and decide upon the best input for future deep learning tasks (e.g. for mechanism

construction and emulation).

6.2 Species Of The MCM And Ways To Represent Them.

The master chemical mechanism (as defined in all previous chapters), represents our foremost knowl-

edge of gas-phase chemistry within the troposphere. Chapter 3 shows that information about a species

structure is encoded within its reactions, much of which can be attributed to the well-defined con-

struction protocols.

This section explores the different methods of representing a species structure, intending to provide a

machine built algorithm with the highest amount of information about each species and its function-

ality. A range of input types will be evaluated against several dimensionality reduction algorithms to

isolate which chemical properties are most extractable.

6.2.1 Input Generation

The MCM database provides species information in the form of a species ‘SMILES’ (Subsubsec-

tion 6.2.3.2) and the IUPAC InChi string [Heller et al., 2013]. Within this chapter, we use only

the SMILES string, which is either manually processed using regular expressions or with the aid of
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pythons RDKIT package [Landrum et al., 2019]. There are seven different methods for representing

the chemistry; these are outlined below.

6.2.2 Manual Categorisation

Reactions within the MCM are determined by a set of rules (Figure 2.9). These mimic the process a

chemist may use to build a species degradation mechanism and often rely on understanding the bond

availability and functionalisation of a species. Since the present functional groups are the benchmark

of whether a DR algorithm has successfully separated species structure, it makes sense to run a unit

test using the known functional groups of a species as the input.

To generate the functional groups the regular expressions in Table 6.1 are used1 on the SMILES

strings (described in Subsubsection 6.2.3.2) for each species. In extracting the functional groups, we

can plot the likeliness a species with a certain group is likely to have another using a chord diagram -

Figure 6.1. Since most species contain a multitude of functional groups, the separation of these into

‘tidy’ clustered groups seems unlikely.

PAN C\\(=O\\)OON\\(=O\\)=O$|^\\[O-{0,1}\\]\\[N\\+{0,1}\\]\\(=O\\)OOC|
O=N\\(=O\\)OOC\\(=O\\)|C\\(=O\\)OO\\[N\\+{0,1}\\]\\(=O\\)\\[O-{0,1}\\]

Carb. Acid [^O](C\\(=O\\)O$|^OC\\(=O\\))

Ester [\^O](C\(=O\)O\b|OC\(=O\))C

Ether (\([\^O=]+\))*C(\([\^O=]+\))*O(\([\^O=]+\))*C(\([\^O=]+\))*

Per. Acid c\\(=O\\)OO$|^OO\\(=O\\)C

Nitrate O(NO2\b|NOO\b|N\(=O\)=O|\[N\+\](?:\[O-\\]|\(=O\)){2})

Aldehyde C=O$|^O=C

Ketone C\(=O\)C

Alcohol CO\\b|(?=^\\b)(?!^\\[)CO.|(?=^\\b)(?!^\\[)OC.|\\(O\\)|C\\)O(\\b|[^O]

Criegee \[O-\]\[O\+\]

Alkoxy rad \[[\/]{0,1}CH{0,1}\]|\b[\^O]\[O\.{0,1}\]

Peroxyacyl rad \\ w\(=O\)O\[O\.{0,1}\]

Table 6.1: A set of regular expressions that are used to determine the number of occurrences of a
functional group within a SMILES string. These were written to scan the SMILES string a match
specific patterns corresponding to each functional group. A similar process is used within [rdkit, 2019]
to construct MACCS keys (discussed later).

1To see the structure of each functional group type, go to Section D.2.
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2

Figure 6.1: The multifunctionality of the MCM. A chord diagram showing the functionalisation
of all species within the MCM v3.3.1. Arc sizes represent what percentage of all functional groups in
the MCM mechanism a group contains. Translucent areas of no outwards links represent species with
multiples of a certain functional group, of which Alcohols and Ketones have the most. Source: [Ellis,
2019]

6.2.3 Tokenization

As computer algorithms are unable to understand words or their meaning, we have first to categorise

the data into groups. Tokenisation is the conversion of a string into characters and representing them

with a numerical equivalent. In doing so, a string of characters can be converted into a numerical

vector, allowing for its representation in a latent vector space. Within our input selection, we have two

2Check the correct table has been used.
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sets of inputs we can convert. These are the species names, and their SMILES string representation.

6.2.3.1 Species Names

In Chapter 5 it was shown that the dedicated species names for species in the CRI mechanism were

often representative of their structural properties. This also applies for the MCM, where an intuitive

naming convention following the FACSIMILE format is used. This is often derived as part of the

construction protocol, where a species names reflect its own, or its precursor’s structure (which it

will have at least in-part inherited). Although this is not the most robust method of defining the

structure, it allows for a straightforward test of the algorithms, for which the user can quickly compare

the human-readable output.

6.2.3.2 SMILES Strings

SMILES (‘Simplified Molecular-Input Line-Entry System’) provide a human-readable representation

of the molecular structure, [Weininger, 1988]. They offer a linear human-readable description of

the chemical composition within a molecule - making it easy to visually check the construction of a

species without any additional work. Besides, their role in generating the molecular fingerprints in

Subsection 6.2.5, SMILES strings provide a useful tool for quickly comparing species structure.

Construction Methodology of SMILES strings

The construction of a SMILES string happens in three parts:

1. The SMILES string is built by creating the longest possible chain to form a molecule backbone.

Figure 6.2b

2. This may within itself contain aromatic rings denoted by the lowercase carbons and a number

corresponding to the location of each break cycle. Figure 6.2c

3. Finally all the functional groups and branches attached to the main backbone are added. These

are nested within the parenthesis to show that they are not part of the skeletal backbone.

Figure 6.2d
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(a) Structure of Melatonin (b) Step 1 : Building the C chain backbone.

(c) Step 2 : Aromatic Rings (d) Step 3 : Functional Groups

Figure 6.2: Construction process of a SMILES string. The example compound is Melatonin.
Although this does not exist within the atmosphere, it provides a clear example of the SMILES string
methodology. Figure 6.2a is made using SMILES drawer: [Probst and Reymond, 2018]

6.2.4 Graph Inspired

Chapter 3 - 5 have shown the role of graphs in revealing network properties and structure. Graphs

in themselves can simplify relational data into two/three dimensions for visualisation and algorithmic

clustering. Continuing this trend, we can represent a species structure in the form of a graph (Sub-

subsection 6.2.4.1), as well as converting the structure of a mechanism for dimensionality reduction

(Subsubsection 6.2.4.2)

6.2.4.1 The Species Graph (Fingerprint)

The structure of a species has long represented using a graph-like layout, Chapter 3. It, therefore,

follows that other methods for representing the graph structure would also apply. One such way is

the use of an adjacency (or relational) matrix to describe the relationships between atoms and bonds

in a species. Such a methodology is already used in the construction of bond and z-matrixes [Aumont

et al., 2005; Parsons et al., 2005].

The construction of a structure matrix/graph begins with a chemical species. Here the relationships

between atoms (Figure 6.3b) is converted into an adjacency matrix (Figure 6.3c). However, since

species have different numbers of each atom, a template allowing us to compare different graphs is

required. To do this a maximum occurrence table (Figure 6.3a) is created. Here, for example, β-

caryophyllene (BCARY) C15H24, contains the most carbon atoms of any species within the MCM.

This universal matrix is now able to contain any possible combination of atoms in a species.
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As machine learning algorithms only use vectors as an input, it is possible to decompose the 372

element adjacency matrix into rows, which can then be joined together, Using this method we create

a one-dimensional array (vector) of 259 elements (518 bytes) to represent our species.

Atom Max

C 15
Cl 4
O 12
N 3
S 1
BR 2

(a)

O

O

O

ON+

O-

O

OH

O

N+

O-

O

(b) (c)

Figure 6.3: Constructing a graph from species structure. (a) shows the maximum number of
times an atom occurs for any single species in the MCM. (b) depicts the graph-like chemical structure
of INB1NBCO3(a product from isoprene). This is a highly processed species stemming from Isoprene,
and this makes for a good example of the bond matrix. Finally, a matrix representing the bonds in
INB1NBCO3 is created from the maximum possible occurrence matrix from (a). For simplicity, empty
row/column pairs have been removed to produce (c). This matrix will always be symmetrical as the
bonds do not have a direction.

6.2.4.2 Node Embeddings (Node2Vec)

Chapter 3 and Chapter 4 showed that the underlying structure of a chemistry mechanism graph

contains information about the species and reactions within it. Here as a species is oxidised the

O-C ratio increases. Long-chain VOCs are likely to fragment into two radicals, producing smaller

more oxidised species. Eventually, this process leads to the production of carbon dioxide and water.

Figure 6.4 shows a subset of the MCM representing the chemistry in Beijing. Node colour and size

show the increase of oxidation as species head towards CO at the centre) - lighter colour and larger

node.

This type of structural information can be extracted through the use of a natural language processing

package capable of transforming a graph into a vector - Node2Vec [Grover and Leskovec, 2019].

Since this may also be used for dimensionality reduction, it is described within the next section

(Subsection 6.3.6).
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Figure 6.4: A graph of an MCM subset representing the chemistry within Beijing. Here
colours show the increase of O–C ratio as species are oxidised (lighter). All emitted species ultimately
tend towards carbon monoxide, which is at the centre of the graph. Node clusters symbolise groups
of species which react more between themselves and less with others (This graph only represents the
mechanism structure).

6.2.5 Molecular Fingerprints

In the field of chemical informatics, molecular fingerprints (or structural keys) are used to encode

and query structural properties of species. Their binary representation makes them suitable for

dimensionality reduction and the exploration of chemical space (a type of property space constructed

using pre-determined features and boundary conditions).

Here species properties are often split into structural and psyico-chemical groups - which has used such

as the discovery of natural analogues (which circumvent problems such as intolerances in medicine3

3Certain molecules can cause allergies in people, but whist their natural analogues do not.
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[Spahn et al., 2017]). Although there exist many different types of molecular fingerprints, the two

main ones that will be explored are molecular quantum numbers (MQN) and the molecular access

system (MACCS).

6.2.5.1 Molecular Quantum Numbers (MQN)

In chemistry the shape, phase and electron occupancy of an atom may be described through the use

of four quantum numbers: the n principle quantum number, I angular momentum quantum number,

Mi magnetic quantum number and Ms spin quantum number. The rationalisation of elements based

on their structure, and by consequence reactivity, has led to the most iconic tool of the modern-

day chemist - the periodic table, where increasing atomic numbers follow the principal quantum

number [Wang and Schwarz, 2009]. In representing a molecule as a set of 42 quantum numbers, MQN

fingerprints produce a multi-dimensional mapping of an atom, bond, polarity and topology count

[Nguyen et al., 2009].

6.2.5.2 Molecular Access System (MACCS)

MACCS keys are a 1644 bit structural keys formulated through answering a series of structure-related

questions. Developed by MDL Information Systems [MDL, 1984], their main purpose lies in being a

SMILES Arbitrary Target Specification (SMARTS) system for substructure searching. However, their

distinct structure key format makes them highly suitable for similarity detection. In many cases, the

optimised version of MACCS keys is cited ([Durant et al., 2002]), although most use cases exploit a

variation of the undocumented 166bit keys. We use the implementation presented by [Landrum et al.,

2019; rdkit, 2019] for all molecular fingerprints in our work.

6.3 Dimensionality Reduction Methods

In the last section, we described several methods in which the chemical structure of a species could

be encoded for direct comparison. However, since each input consists of a multitude of elements, it is

still not a simple task to determine the differences and similarity between all species in mechanisms.

Dimensionality reduction is the process of reducing the number of random variables and only presented

a set of principal values, by mapping a high-dimensional space into a low-dimensional one [Roweis

and Saul, 2000]. This allows us to flatten a multivariate input into the two dimensions required for a

simple scatter plot.

4They are 166-bit keys, although there is no real agreement to what the 44th keys’ purpose is, and therefore it is
often omitted. Within RDKIT this is denoted by a ? [rdkit, 2019].



6 - Computational Learning of Species Structure using Visualisation and Vector Clustering 229

In this section, we begin by explaining the data preparation required for dimensionality reduction

(Subsection 6.3.1) before describing the different possible methods of reducing the dimensions of a

dataset through Principle Component Analysis, Auto Encoders and t-Distributed Stochastic Neighbor

Embedding.

6.3.1 Preparation Of The Data

Real-world data is rarely preformatted in such a way that it can be used directly within a compu-

tational model. Often values need to be cleaned and corrected to be fit for purpose. In the interest

of completeness, the two main methods of data adjustment for machine learning are outlined below.

These are (i) normalisation and (ii) standardisation.

(I) Normalisation

In the data is without (dimensionless) or of a single unit, it is possible to rescale the data between a

range - most commonly 0,1. In doing so, it is possible to interpret the importance of value in contrast

to the largest recorded value. This gives us a percentage scale spanning the range of the data. Such a

range is useful in the definition of colourmaps and describing the importance of value relative to the

dataset. To rescale a dataset, we shift the minimum value to zero, then divide by the new maximum

of the dataset (Note this is equivalent to the range of the unshifted dataset.)

n(xi) =
xi −minx

maxx−minx
(6.1)

(Ii) Standardisation

If the components we wish to compare are of different units or are expressed with a different scale,

normalising them can not produce meaningful data. Instead, it is possible to standardise the data

by looking at each points deviation from the mean. Here the variation of the mean for a dataset is

divided by the standard deviation to produce a value between {-1,1}, Equation 6.2. In statistics this

is known as the ‘z-score’5

z(xi) =
xi − µx
S

(6.2)

5Possibly because of the American spelling of standardiZation?
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6.3.2 Principle Component Analysis (PCA)

One of the most well-known dimensionality reduction methods is the determination of the principal

components through the use of Principal Component Analysis (PCA). PCA increases the readability

of a dataset by creating a set of new uncorrelated variables which maximise the variance [Jolliffe and

Cadima, 2016].

PCA works on the assumption that components within a dataset are linear combinations of each

other. By simplifying these linear combinations, it is possible to identify the elements which explain

the most variability in a dataset - these are the principal components.

A more straightforward interpretation of this would be to adjust the direction of each axis of the data,

such that its projection has the most prominent variability. In doing so, it is possible to determine

which components contribute the most to changes in the dataset [F.R.S., 1901; Hotelling, 1933]. An

example of this is seen in Figure 6.5, where the second component of the original data can be removed

with little effect on the overall result of the data. Such methods have applications in compression and

signal filtering [Hernandez and Mendez, 2018; Hamadache and Lee, 2017].

Figure 6.5: Determining the Principal Compnent of a sample dataset. It can be seen that in
a change in axis to follow the first principal component (right), it is possible to explain most of the
variation in the samle dataset (left). Source: [Powell, 2020]
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6.3.2.1 Mathematical Explanation Of PCA

Note: The basic statistics/mathematics required to understand this section is shown in Section A.1.

Please read this if you are not familiar with any of the terms below.

The mathematics behind PCA consists of first calculating the covariance matrix - a n × n matrix

outlining how strongly each variable changes with every other. Using this we can calculate both the

eigenvalues and eigenvectors of the matrix 6. This can be done using a computational package such

as numpy or scipy [Oliphant, 2006; Jones et al., 01 ].

We can now sort the eigenvector columns by influence using their eigenvalues—this way a feature

dataset can be produced by removing vectors of low importance. The final feature dataset can now be

transposed and multiplied by the transpose of the original dataset. This results in an output dataset

containing each principal component of the desired dimension.

6.3.3 t-Distributed Stochastic Neighbor Embedding (t-SNE)

t-SNE is an algorithm designed with visualisation in mind [Maaten and Hinton, 2008]. Rather than

representing the data through a series of linear transformations, t-SNE uses local relationships to

create a low-dimensional mapping, much in the same way as a fully connected force graph, as shown

in Figure 6.6. This allows the ability to capture non-linear structures in the data which cannot be

accomplished through linear mapping methods (e.g. PCA).

Figure 6.6: Representing the t-SNE algorithm as a fully connected force graph. Here each
node is attached to every other node. Nodes with a strong relationship are pulled closer together than
those with a weaker one.

6These need to be unit vectors, although most packages already do this out of the box.
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The algorithm itself can be simplified into two parts, (see A and B below), and is described in

Subsubsection 6.3.3.1.

A. Create a probability distribution which dictates relationships between neighbouring points

B. Recreate a lower-dimensional space following the probability distribution established in A.

The main reason t-SNE produces good results is that it can handle the ‘crowding problem’ very

well. The crowding problem is a product of the ‘curse of dimensionality’ [Indyk and Motwani, 1998].

In a high dimensional space, the surface of a sphere will grow much quicker than one in a lower

dimension space. This means that the higher dimension spaces will have more points at a medium

distance from a certain point, Figure 6.7. When we map our data into a lower dimension, data will

try to gather at its medium distance, resulting in a more ‘squashed’, and thus crowded, output.

r
r

r

r

Figure 6.7: An example of how the curse of dimensionality affects the mapping of points
a certian distance from eachother.

6.3.3.1 Mathematical Explanation Of t-SNE

In the original paper [Maaten and Hinton, 2008], the algorithm is described using the etymologic

dissection of its name (described below).

(i) Step 1

First we begin with Stochastic Neigbour Embedding (SNE) - the distribution across neignbouring

datapoints in our high dimension space. This is done by converting the high dimensional Euclidian

distances between points into conditional probabilities representing their similarity:

pij =
exp(−‖xi − xj‖2 /2σ2

i )∑
k 6=l exp(−‖xk − xl‖2 /2σ2

i )
(6.3)

Here pi|j is the conditional probability that xi may pick xj as a neigbour. This is proportional to the

probability density of a Gaussian σi centered at xi.

Perplexity

Since we want the number of neighbours of each point to be similar in number and prevent a single
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point from having a disproportionate influence on the entire system we introduce a hyperparameter

named perplexity. Perplexity works by ensuring that σi is small for points in densely populated areas

and large for spare ones and can be thought of as a scale of the number of neighbours considered for

any one point in the system. Generally, values between 5 and 50 are considered to give good results,

with larger perplexities taking global features into account, and by consequence smaller ones, local

features [Maaten and Hinton, 2008].

(ii) Step 2

Now a probability distribution describing the relationship between points has been formulated, we

wish to express this as a low dimensional mapping of our inputs X in terms of our output dimensions

Y . Naturally, we would want to make the low dimensional mapping represent a similar (Gaussian)

distribution as in Step 1. However, it often causes issues presented by the ‘overcrowding problem’,

Subsection 6.3.3, as the gaussian has a ‘short tail’, and thus nearby points are likely to be pushed

together. A solution to this is the student t-distribution which has a longer tail 7:

qi|j =
(1 + ‖yi − yj‖2)−1∑
k 6=l(1 + ‖yk − yl‖2)−1

(6.4)

Note: The definition and explination of the Student t-distribution is given in Section A.2.

The optimisation of this equation is achieved through the use of gradient decent8 on the Kullback-

Leibler divergence ?? between distributions p and q. Here the gradient is used to apply an attractive

and repulsive force on the items9.

6.3.4 PCA vs t-SNE, A Quick Comparison.

PCA has been around for much longer than t-SNE, and its uses are well established within the scientific

community. In essence, an example of this gives by Wyche et al. [2015] where mechanisms can be

separated into different pathways (on account of the underlying chemistry) and Turanyi and Tomlin

[2015] where sensitivity analysis is used within mechanism reduction. It is fast, simple and easy to

use and very intuitive. The PCA algorithm works by creating a lower-dimensional embedding which

7The distribution employed is a t-distribution with only one degree of freedom and is identical to the Cauchy
distribution

8Gradient Decent - an optimisation algorithm used to minimise a function by iteratively moving in the direction
of the steepest descent. Gradient descent is used to find local minima and is defined by the negative of the gradient of
the system. Its primary usage in machine learning is the updating of parameters (coefficients in linear regression and
weight in neural networks).

9A positive gradient signifies attraction, while a negative one corresponds to repulsion.
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best preserves the overall variance of the dataset. Clusters created from the algorithm are grouped in

ways, such that they retain the highest variance of the data.

The main drawback of PCA is that it is a linear projection. If our data happened to be in a ‘swiss roll’

(spiral) pattern, we would not be able to ‘unroll’ it. The reason for this is that the PCA algorithm

works by viewing the data from different perspectives, much like casting a shadow from various

directions. With such an example, there is no one way we can do this that unfurls the spiral.

t-SNE, on the other hand, is a relatively new method [Maaten and Hinton, 2008]. Its greatest asset

is that linear projections do not limit it. Although more computationally intensive for large datasets,

t-SNE produces visibly cleaner results. Unlike in PCA, t-SNE cannot be trained on additional data

at a later point; however, the output clusters are more visually distinct (they have less of an overlap).

Much like in a force graph, the output from t-SNE is scale-invariant. This means that while the

location of clusters in a PCA reduced representation has an attributable quality, those produced by

t-SNE will not necessarily contain the same information.

A box model run representative of the chemistry within Beijing was used to compare the differences

between PCA and t-SNE. The aim is to classify the diurnal profiles of each species concentration

(much like the cosine similarity in Subsubsection 5.7.1.2). Diurnal profiles were extracted on the third

day of a spun up model initialised with initial conditions representative of the chemistry within the

Beijing environment (Table 4.4). These were then standardised and converted into temporal vectors

for use in the algorithms.

Figure 6.8 shows the output of both dimensionality reduction algorithms on the dataset. Different

colours represent the location of clusters of similar diurnal profiles. A higher dispersion between

clusters and species overlap is seen within the PCA output, Figure 6.8a. This makes it harder to

distinguish species from each other or other groups around them. Since the distance between clusters

within t-SNE does not hold the same mathematical meaning as PCA, the algorithm can provide a

better distribution of points, creating better-defined clusters, Figure 6.8b. The concentration profile

shapes for each coloured group is shown in Figure 6.8c.
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(a) PCA (b) t-SNE

(c) t-SNE with cluster outlines.

Figure 6.8: Showing the difference between PCA and t-SNE clustering. These figures show
the clustering of a set of standardized species concentration profiles (c) across two styles of dimen-
sionality reduction: PCA (a) and t-SNE (b).

6.3.5 The Auto-Encoder (AE)

Auto-encoders are a subclass of neural networks with primary use in compressing data (dimensionality

reduction). Rather than predicting a numerical output, AutoEncoders focus on the construction and

deconstruction of data through the use of an encoder and decoder pair. The encoder takes an n-

dimensional input and applies a compression, reducing it to the number of dimensions in the bottleneck

layer. The reduced dataset is then reconstructed within the decoder. Such a process not only allows

for an easy understanding of the error of the reduced data but can also be used in the filtration of
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noisy or pixelated data [Leite et al., 2018; Dataman, 2019] and as an input to more complex machine

learning models.

Input Layer � �¹6 Hidden Layer � �8 Hidden Layer � �4 BottleNeck Layer � �² Hidden Layer � �4 Hidden Layer � �8 Output Layer � �¹6

Encoder Decoder

Figure 6.9: An example autoencoder structure which reduces a 16 dimentional input to 2. Draw with
the aid of [Krizhevsky et al., 2012]

There are two features of an autoencoder that make it a particularly powerful tool. The first is the

ability to sample the latent space using the decoder. The implications of this are that we can establish

features that correspond to gaps between our data points - which can have its application if the data

used is sparse or incomplete. Next comes the inherent non-linearity of the model. As an autoencoder is

just a neural network, the amount of information passed through each link between layers is governed

by an activation function. Should this activation function be linear, the reduced dimension will be

much akin to a PCA decomposition. Where PCA reduces the dimensions of a dataset by discarding

those with little effect on the variance, an autoencoder opts to combine it. Here the entirety of the

dataset remains encoded within the links of the AE network. To decide how data flows along the

edges of the network, a series of threshold (activation) functions are used for each layer. These are

described in B.

6.3.5.1 Demonstration Of Non-Linear Activation Functions

To demonstrate the effect of these features, we take a sample isopleth of Methane, NOx and Ozone from

300 box model simulations and reduce it to two dimensions. This is then reconstructed back into three

dimensions using the DR algorithms. Figure 6.10 shows the difference between the original dataset

(Figure 6.10a) and that of the PCA (Figure 6.10b) and AutoEncoder (Figure 6.10c) reconstructions.
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Here we see a loss in the non-linearity of the original data for the PCA reconstruction. However,

the use of a non-linear (tanh) activation function within AutoEncoder produces a result much closer

to the original. Use of a linear activation function, however, produces a similar result to the PCA

algorithm.

(a) Original (b) PCA (c) AE (Tanh)

Figure 6.10: Comparing the result of the 2D encoding and decoding of an Ozone-NOx-
Methane isopleth. The original data (a) is reduced to two dimensions and then reconstructed
back into 3D. This is done with Principal Component Analysis (b) and an AutoEncoder (c). The
original isopleth is created using 300 simulations of different intial conditions: NOx (variable), Methane
(variable) and Ozone (constant). These were designed using a latin hypercube and converted into a
surface plot using Delaunay triangulation.

6.3.6 Node2Vec

Finally, Node2Vec is an embedding algorithm designed to generate vector representations of the nodes

in a undirected and unweighted network. Although it can be used to reduce a complex network into

a 2D vector (dimensionality reduction), for this work we shall only use it to generate a fingerprint

for a species’ position within a mechanism network graph - and then apply this as an input to the

DR methods above. This method of input creation has been found more computationally efficient, by

circumventing the need for expensive composition, in producing better predictions on network-related

tasks compared to more classical methods such as PCA [Grover and Leskovec, 2019].

Figure 6.11: The process of converting a graph into a vector using Node2Vec. Source:[Cohen, 2018]
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The process of converting the graph structure (Figure 6.11) into a numerical vector node embedding

starts by taking a series of 2nd order random walks. These describe the neighbourhood of a node in the

form of a set of random walk paths, much in the same way words are dependant on their neighbours

within a sentence- for example in the OH initiated degradation of isoprene in the MCM result in the

following path along with the mechanism graph.:

ISOPRENE → OH → TISOPA→ ISOPBO2 → TISOPA→ ... (6.5)

This methodology allowed for the use of word2vec algorithm, converting the walk into a vector (Sub-

subsection 6.3.6.2)

6.3.6.1 Sentence Construction By Sampling Of A Network

The probability and path (as described above) depend both on a set of arguments, and a random

seed10 provided to the model.

Figure 6.12: Calculation of the random walk path. Source:[Grover and Leskovec, 2019]

Figure 6.12 shows the return and input parameters (p & q) determine how fast we explore the network

and our probability to leave the neighbourhood. In a system, where the previous path is from t to v,

we may calculate the probability of returning to t as 1/p, going to a mutual node connected between

t and v as 1, and viewing a new node as 1/q. If q > 1 we have a high probability to end up at nodes

close to t, and with q < 1 we are likely to explore other nodes. Additionally if we chose p > max q, 1

we are less likely to return to an already visited node (p < min q, 1 is likely to generate a backwards

step). Since we wish to generate a ‘local’ view, but do not wish to return to t we select q ≥ 1 and

p > q our parameters as p = 2.0, q = 1.1. In the case of a weighted graph (something that we are not

10Computers can never generate truly random numbers. If we want reproducibility within models, the random number
generator can be initiated with the same seed.
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exploring within this chapter) the resultant alpha value calculated is further multiplied by the edge

weight.

To generate the Node2Vec embeddings for each species, we use the python2 code provided by the

original paper by Grover and Leskovec [2019] with a set of 50000 random walks, each of length 9

product/reaction generations. The reasoning behind this is that we have a large graph, with a power-

law like structure (where species are often heavily connected, Chapter 4).

NOTE: This process takes over a week to compute (in serial), and then the binary file containing all

walks in character form approaches 10 GB, for the complete MCM.

6.3.6.2 Word2Vec

Once we have constructed our random path ‘sentences’ (e.g. Equation 6.5), we can make use of

Googles word2vec algorithm [Mikolov et al., 2013]. This is similar to an auto-encoder in many regards;

however, the algorithm looks at neighbouring words (or species) in the corpus rather than learning

word embeddings using reconstruction. This form of representation has found many uses beyond the

realm of natural language processing. Some of these are objects, people, code, tiles,genes and graphs

[Lynch, 2011; People2Vec, 2019; Alon et al., 2019; Jean et al., 2018; Du et al., 2019; Narayanan et al.,

2017].

6.3.7 Summary Of Dimensionality Reduction Methods

There exist several methods of reducing a complex dataset into a smaller one. PCA is the simplest

method to understand but is constrained to linear decompositions. AutoEncoders can have both a

linear and non-linear response, based on the activation functions that they use, and t-SNE applies a

non-linear grouping which mimics a complete force-directed graph.

Having defined each method, we next explain how they will be evaluated (Section 6.4), before applying

them to the MCM in Equation 6.5.

6.4 Visualisation Of Clustering

In assessing the validity of clustered space, we require a level of exploratory data analysis. To reveal

features of interest, we plot the reduced 2D dataset and apply interactivity coupled with a selection

of visualisation techniques described below. This section outlines the different visualisation methods

used.
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6.4.1 Viewing The 2D Species Embeddings

Since the different DR algorithms return data on various scales, comparison between the outputs is

not straightforward. To overcome this outputs in x and y are normalised (scaled between {0,1}),

Subsection 6.3.1, before being plotted as a scatterplot.

6.4.2 Exposing Overlapping Data

If the nodes within a tight-knit cluster overlap, this can cause obfuscate the results and limit the user’s

ability to select them. As an initial test, node sizes can be reduced. However, this may often result

in points too small to pick. Another solution is to create a force-directed graph where each point is

strongly attracted to its initial position. Here we can apply collision detection, while still preserving

the overall grouping of nodes within a cluster - a technique that was seen in Chapter 5.

6.4.3 Gooey Effect (Gaussian Blur)

Taking a quote from Reinhardt [1975]: “The more stuff in it, the busier the work of art, the worse

it is. More is less. Less is more. ” and combining it with the work from Chapter 2, we realise

that showing each species, when observing overall clusters just add unnecessary clutter to the images.

Instead, since we are only interested in the clusters as a unit, a ‘gooey effect’ filter can be applied.

This works by merging nearby points into a single water-like blob using a gaussian blur11. Here since

each point is allocated a colour, if a colour gradient exists, then there are multiple clusters occupying

the same place. The aim of this is to reduce the cognitive load on the end-user by reducing the number

of distinct objects that they need to take in.

6.4.4 Four Colours Theorem

When plotted, the number of clusters detected often exceeds the number of categorical colours avail-

able. In cartography, it has been noted that the colouring of neighbouring polygons should at most

take four colours. This is the origin of the four colours theorem [Appel and Haken, 1976], of which a

greedy implementation is applied.

The aim of this is to show item boundaries (for instance countries, or in our case clusters) while

reducing ambiguity (if, say, two neighbours have the same colour). The algorithm uses the Delau-

nay tesselation from DataDrivenDocuments.js (d3js) [Bostock, 2012]. This partitions our plane into

polygon-regions, each of which includes boundaries at the furthest distance from each point (Voronoi

11Here a gaussian blur of standard deviation 3.7 and a colour matrix [1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 37 -5] is used.
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cells) [Watson, 1981]. First, we chose a random cell and assigned it a colour. Next, all its neighbours

are recursively iterated, giving them the lowest possible colour in a list, which does not match any of

their neighbours. Although such a greedy approach does not produce an optimum result, it allows for

the colouring of data with ≤ 5 distinct colours, as is shown in Figure 6.13.

Figure 6.13: An example 4 colour matching This uses the first implementation of the algorithm
mentioned in Subsection 6.4.4. The greedy approach does not often find the optimum solution, which
may result in 5 colours instead. Observable Notebook : Daniel Ellis [2019]

Having defined all the visualisation techniques we can now move on to explain the clustering algorithms

which are used, and how ‘goodness of fit’ may be measured in the clustering context.

6.5 Cluster Evaluation

The previous section discussed methods of visualising the reduced data for use with interactive ex-

ploratory data analysis. In this section, we look at the use of vector clustering algorithms12 (Subsec-

tion 6.5.1) to highlight groups in a 2D dataset, as well an automated method of assessing the quality

of the clusters selected (Subsubsection 6.5.1.1) and feature extraction (Subsection 6.5.2).

6.5.1 Automated Selection Of Clusters

When it comes to clustering data points in a dataset, there exists a range of methods which may

accomplish a task, Figure 6.14. Most often, the k-means [MacQueen, 1967] is used as it is fast and

straightforward to understand. However, its linear method of partitioning cannot capture the splits

12Vector clustering is the grouping of data based on their proximity or density to other nearby points



242 6.5. Cluster Evaluation

between non-linear relationships of real data. The other problem is that an estimate for the number

of expected clusters is required - something that is often unknown without prior understanding of the

data. When this is the case, often it is easier to select the nodes with interactivity manually.

In contrast, density-based clustering techniques such as GMM ([Pedregosa et al., 2011a]) or DBSCAN

([Ester et al., 1996]) tend to be better at locating non-linear trends in the data. The DBSCAN

algorithm assesses the distribution of data across a specific location. This allows clusters with a high

density of datapoints to be located without the need for a predefined number as an input. Another

method: OPTICS (Ordering Points To Identify the Clustering Structure) [Ankerst et al., 1999], shall

be used13. This is an adaptation of the DBSCAN algorithm which does not require the specification

of a minimum distance between points (for the density estimate)- instead, we specify a gradient for

the distribution and the minimum number of points for a cluster to be classified.

Figure 6.14: A comparison of different clustering methods on a toy dataset. The plot
shows the performance of several vector clustering algorithms in Scikit-Learn. Cluster algorithms are
represented across the horizontal axis, and several types of datasets are across the vertical. Clustered
groups are coloured. Source: [sklearn, 2019]

When deciding which algorithms to use, each algorithms’ ability to partition non-linear data is consid-

ered. The first two rows of Figure 6.14 show data which cannot be partitioned linearly, here spectral,

DBSCAN and optics are the only clustering algorithms to identify both correctly. It is for this reason

that we shall look at these for the remainder of the chapter.

13If using Python 2, the library for this needs to be extracted from the sci-kit-learn library for python3 package and
altered to run with the previous version. (See copy in attached code.)
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In selecting a value for the results section, several clustering algorithms, with a wide range of input

parameters, are run. From these, the simulation with the best silhouette coefficient (Subsubsec-

tion 6.5.1.1) is taken.

6.5.1.1 Clustering (Silhouette) Coefficient

The silhouette measure is a tool used for acessing the validity of a set of clusters. Here each cluster

is represented as a silhouette, based on the comparison of its tightness and separation. To calculate

the silhoette coefficient we look at the intra-cluster a and the mean inter-cluster14 distance b. The

silhouette cluster can then be described using [Rousseeuw, 1987; Pedregosa et al., 2011b]:

s(i) =
b(i)− a(i)

max a(i), b(i)
(6.6)

This gives a value −1 ≤ s(i) ≤ 1. Values near zero suggest overlapping clusters, 1 - dense, well-

separated clusters and negative values indicate that a sample may have been incorrectly classified.

In using this method, we can get an overview of how well individual objects lie within their assigned

cluster.

6.5.2 Feature Extraction

Upon establishing a set of DR datasets, and their groups (the clusters of species they contain), it is

important to evaluate what input features they represent. Rather than doing this manually, we make

use of Random Forests - described below.

6.5.2.1 Random Forests

Random forests [Breiman, 2001], are a subset of ML algorithms called ensemble learning. This means

that they train a large number of decision trees, each on a random subset of the original features. A

decision tree is a tree formed from a series of conditionals15, much like a perceptron network (Sub-

subsection 4.6.1.2) with binary activation functions. Random forests introduce a level of additional

randomness by selecting only a subset on which to create each decision tree. This may introduce a

higher bias, but lowers the overall model variance, which creates a better (more robust) model. Such

methods have been applied to replacing the computationally expensive process of chemistry integra-

tion of GEOS-Chem (a global 3D model of tropospheric chemistry) [Keller and Evans, 2019] and the

14Inside and between different clusters.

15Questions with a True/False answer
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prediction of global sea-surface iodine based on observations coupled with sea-surface temperature,

depth, and salinity [Sherwen et al., 2019].

6.5.2.2 Calculating Importance Using Random Forests

Since random forests are in essence a collection of decision trees, it is possible to generate a ‘decision

tree aggregate’ to visualise the ensemble structure of the random forest [Ellis and Sherwen, 2019]

(Figure 6.15). Alternatively, if all that is required is the relative importance of each feature, the

RandomForestClassifier from [Pedregosa et al., 2011b] provides a quick and easy way of understanding

which features matter, [Géron, 2017]. This works by aggregating the weighted nodes which use a

particular feature using the number of samples and then scales the result to 1. We use this method to

access the overall importance of features within each DR output and identify the differences between

clusters.

> 21

> 14 > -26

> -101 > -1584 > 0 > -17

-- -- -- -- -- -- -- --

Figure 6.15: A decision tree aggregate from a random forest plotted with the Epiphyte
version of the TreeSurgeon program [Ellis and Sherwen, 2019]. The data originates from
Sherwen et al. [2019] and the importance of Temperature (blue), Depth (orange) and Chlorophyll
a (green). It is shown that all models create their first split based on the temperature (is it >21
degrees). In the case it is (right branch) the sea depth is seen as the most important variable to test
(is it deeper than 26m). This sort of split allows us to get a feel for which (if any) properties are
dominant in partitioning the data.
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NOTE: The only downside is that Random Forests are in themselves ML techniques which also need

to be evaluated. To do this, as they are simply being used as indicators of cluster properties which we

are to explore further, we can initiate a collection of 300 random Forest classifiers, from which we

take the median. A sort of ensemble learning from an ensemble.

6.6 Results

There exist many methods of defining the chemical structure of species within the MCM. This section

evaluates the different structural representations (Section 6.2) and the ability of DR algorithms to

separate the chemical space within which these lie into a two-dimensional scatterplot.

6.6.1 Visual Overview

Explorative data analysis involves a degree of figure interactivity. Chapter 2 described the importance

of visualisation in employing the cognitive pattern functions of the human brain, and Chapter 3

explained the importance of having an evenly distributed data points to aid the understanding of

graphs. This subsection combines the two ideas in the usage of dimensionality reduction to exploit

patterns within a dataset.

Using the techniques in Section 6.4, we explore the visual distribution of different dimensionality

reduction methods across all input types. This subsection explores the spatial distribution of groups

(blobs) in the 2D dimensionally reduced dataset. The colours represent the automatically calculated

clusters (which are further explored analytically in Subsection 6.6.2). This is then built upon using

three case studies, where individual cluster distributions are compared (Subsection 6.6.3).

An autoencoder will produce near-identical results to the PCA algorithm, using linear activation func-

tions. Them ain difference is that rather than discarding components which represent little variance,

the neural network (autoencoder) combines their values when deciding on the output. Although or-

dinal data (Figure 6.17 b,f) still produce regular patterns, the non-linear (tanh) activation functions

result in a greater separation between data points for the SMILES dataset (Figure 6.17g).

Unlike PCA and AE, t-SNE does not contain any inherent meaning behind the spatial positioning of

points. Instead, it provides a non-linear grouping of points through a graph-like force-directed model

(all items are connected with the weights of the links decided by their relationship values). This results

in the most visually pleasing output die to clusters increased separation. This property also makes it

the easiest to visually isolate clusters from their neighbours (Figure 6.18), making it a useful tool for

interactive data exploration or explaining groups within a figure.
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(a) fingerprints (b) fngroups (c) maccs (d) mqn

(e) node2vec (f) protocol (g) smiles (h) spec

Figure 6.16: Comparing clusters for all inputs after a reduction to 2 dimensions using Principal Component analysis. Each graph has undergone
several clustering algorithms under a range of parameters. The result with the best silhouette coefficient has been chosen. Colours follow the greedy four colour
theorem and are there only to indicate the contrast between cluster boundaries.
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(a) fingerprints (b) fngroups (c) maccs (d) mqn

(e) node2vec (f) protocol (g) smiles (h) spec

Figure 6.17: Comparing clusters for all inputs after a reduction to 2 dimensions using an AutoEncoder. Each graph has undergone several clustering
algorithms under a range of parameters. The result with the best silhouette coefficient has been chosen. Colours follow the greedy four colour theorem and are
there only to indicate the contrast between cluster boundaries.
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(a) fingerprints (b) fngroups (c) maccs (d) mqn

(e) node2vec (f) protocol (g) smiles (h) spec

Figure 6.18: Comparing clusters for all inputs after a reduction to 2 dimensions using t-SNE. Each graph has undergone several clustering algorithms
under a range of parameters. The result with the best silhouette coefficient has been chosen. Colours follow the greedy four colour theorem and are there only
to indicate the contrast between cluster boundaries.
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6.6.2 Mathematical Cluster Analysis

Subsection 6.6.1 explored the visual appeal of the plotted clusters. For large systems, the selection of

many clustering algorithm outputs is impractical, so the analysis of DR methods has been automated

(Subsection 6.5.1). Similarly, we can once again apply the silhouette coefficient (Subsubsection 6.5.1.1)

to compare the best output for each input and DR algorithm.

Outputs for the number of groups the DR output has been clustered in and its corresponding silhouette

coefficient are shown in Tables 6.2 - 6.4. These shall be discussed by name rather than being referenced

each time for ease in reading. Inputs for each algorithm are ranked in order of their silhouette

coefficient (the closer to 1 the value, the better the clustering).

Ordinal inputs such as functional groups or the protocol categories consistently rank the highest

within each algorithm. This is because the algorithms only have to identify the permutations of each

category and classify the species into these. It is noted that the t-SNE silhouette coefficient for these

is 30% lower than for PCA and AE algorithms. However, the number of groups located is also greatly

reduced from 140 to 106. This suggests that the vector clustering algorithms have tried to combine

data points into a group, which has come at a cost to the silhouette value.

Next, the SMILES strings are ranked highly for both AE and t-SNE algorithms. Visually this agrees

with Figure 6.17(g) and Figure 6.18(g), where these are much better separated than Figure 6.16(g).

The PCA ranking is almost half of other algorithms, but contains a much smaller number of ‘clusters’.

This can be attributed to its periodic lattice-like spacing of points which are not conducive to producing

good vector clustering groups in an unsupervised algorithm.

MACCS keys, although providing a modest silhouette score across most DR algorithms, often only

have two or three clusters. The reason for this is that dimensionality reduction of these often sep-

arate species into two groups, those with Nitrogen elements and those without (Figure 6.19). This

is because many of the questions on which the MACCS fingerprint is based concern themselves with

Nitrogen species [rdkit, 2019]. Group composition and cluster analysis is discussed in Subsection 6.6.3

and Subsection 6.6.4.
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Figure 6.19: The individual decomposition of clusters in Figure 6.16(c)This shows that the
main difference between the two clusters is the existence of Nitrogen elements within Nitrate and
Peroxyacetyl Nitrate (PAN) groups. The table on the right acts as a key for the colours and shows the
overall importance of each feature in separating an item into the various clusters (using an ensemble
of decision trees).

Similar to SMILES strings molecular quantum numbers result in plots consisting of regular rows

of data with like-properties (Figure 6.16-6.18(d)) - making it difficult for the clustering algorithms

to select each group correctly. This property makes it suitable for usage in the field of chemical

informatics where molecules with similar properties are desired [Arús-Pous et al., 2019], but less so

for establishing an overarching categorisation of species within a mechanism.

Finally, the graph-based fingerprint input is consistently the lowest scoring in the silhouette coefficient.

Visually this can be attributed to the mismatching of cluster number to the number of visually separate

clusters (Figure 6.16-6.18(a)). The random distribution of these visual ‘specs’ suggests that the custom

graph-fingerprint is not the most informative input for use with DR and clustering algorithms.

Overall combining the visual representation of selected clusters (Subsection 6.6.1) with the silhouette

scores, show that the clustering algorithms struggle with the prediction of correct groups. Although

the silhouette coefficient is a useful metric for determining the density of points around a cluster, it

should be used with the aid of other metrics if selecting the best results from an automated clustering

process. Additionally, the automatic clustering process can include feedback from the goodness of fit

metrics, which can allow for the finer tuning of clustering algorithm parameters in future.
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DR input silhouette groups

PCA fngroups 0.9122 141
PCA protocol 0.8761 149
PCA node2vec 0.8569 3
PCA maccs 0.6563 2
PCA mqn 0.4041 8
PCA smiles 0.3648 6
PCA fingerprints 0.3529 6
PCA spec 0.3364 6

Table 6.2: The inputs to the PCA dimensionality reduction algorithm sorted by the best obtained
silhoette coefficient.

DR input silhouette groups

AE fngroups 0.9251 140
AE protocol 0.9095 28
AE maccs 0.6671 3
AE smiles 0.6313 6
AE node2vec 0.6253 2
AE mqn 0.6096 2
AE spec 0.6062 3
AE fingerprints 0.4145 4

Table 6.3: The inputs to the AutoEncoder dimensionality reduction algorithm sorted by the best
obtained silhoette coefficient.

DR input silhouette groups

t-SNE fngroups 0.7524 105
t-SNE protocol 0.6012 74
t-SNE smiles 0.5360 16
t-SNE maccs 0.4418 3
t-SNE node2vec 0.4359 6
t-SNE spec 0.3781 35
t-SNE mqn 0.3684 8
t-SNE fingerprints 0.3539 6

Table 6.4: The inputs to the t-SNE dimensionality reduction algorithm sorted by the best obtained
silhoette coefficient.

6.6.3 Feature Selection Comparison

The previous subsection assessed how well DR algorithms were able to separate the chemistry of a

mechanism into distinct, well-defined clusters. Now the content of each of those groups is looked at,

comparing them to the functional groups most responsible for the variation within the 2D compression

of a chemical mechanism. Importance of each functional group in explaining cluster composition is

obtained using a random forest classifier (Figures 6.20-6.22).

Comparing all three DR algorithms, we see that the shape (and this group importance) is persistent

between each input across all algorithms. This means that although values may differ, the same
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functional groups are important between each DR algorithm - indicating that this is a property of the

input style and not the type of dimensionality reduction technique selected.

In establishing that the input format is responsible for the splitting of clusters into groups, we look at

what the relationship of these is. In this section, the characters (a-h) refer to all the corresponding

subplots in Figures 6.20-6.22.

In the Common Representative Intermediates (CRI) mechanism, the ratio of C-H and C-O bonds are

used to lump species with the same oxidation capacity [Jenkin et al., 2008]. This makes the ratio

of carbons to oxygens an essential defining characteristic between them. The number of Oxygens

and Carbons is a consistently important feature for all input styles (with the exception of the gecko

protocol categories (f) ). Here the number of carbons or oxygens does not fit any of the reaction

branches meaning that there is no way for the dimensionality reduction algorithm to know these.

Instead, Alcohol and Carbonyl groups are seen as the most important in separating the chemistry,

which may be due to the number of species undergoing each type of reaction.

Species names (h) have prefixes (e.g. Cxx) and suffices (e.g., -OOH, -NO3, -O2, -OL) which allow an

easy way for a user to distinguish the types of species, but also the DR algorithms. These show the

second-best separation of aromatic species, most likely attributed to the standard naming convention,

e.g. (‘BENZ’, ‘PIN’, ‘TMB’). Similarly, the SMILES string (g) shows a human-readable representation

of the structure of the molecule. Since this is explicitly defined, the SMILES input provides the

highest uniformity in group types when analysing cluster composition. As aromatic compounds are

represented using a lower case ‘c’, this makes them easy to distinguish (especially in the case of AE

Figure 6.21g).

As was touched on in Subsection 6.6.2 the MACCS input consists of a series of logical questions about

a species structure. Since many of those questions regard the existence of a Nitrogen atom, data was

separated species with a Nitrate or PAN group, and those without. In making a series of decisions on

which cluster a species falls under, this largest most recurring branch for the RandomForestClassifier

(imagine of temperature in Figure 6.15) falls under the existence of a Nitrate group.

The main inconsistency between clusters and DR algorithms comes from the Node2Vec embedding

(e) - much of which can be explained by the poor performance of the DR and clustering algorithms

of separating the chemistry into groups (see plots in Subsection 6.6.1). Subsection 6.6.4 continues

this analysis by comparing output with < 3 clusters each against the graph plots presented in this

subsection. The content of individual groupings is explored for an output with multiple clusters.
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(a) fingerprints (b) fngroups

(c) maccs (d) mqn

(e) node2vec (f) protocol

(g) smiles (h) spec

Figure 6.20: Comparing feature importance for PCA clusters. Importance ranges are trimmed
at 40% for comparison. Some categories may contain values greater than this. All bars sum to 100%.
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(a) fingerprints (b) fngroups

(c) maccs (d) mqn

(e) node2vec (f) protocol

(g) smiles (h) spec

Figure 6.21: Comparing feature importance for AE clusters. Importance ranges are trimmed
at 40% for comparison. Some categories may contain values greater than this. All bars sum to 100%.
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(a) fingerprints (b) fngroups

(c) maccs (d) mqn

(e) node2vec (f) protocol

(g) smiles (h) spec

Figure 6.22: Comparing feature importance for t-SNE clusters. Importance ranges are
trimmed at 40% for comparison. Some categories may contain values greater than this. All bars
sum to 100%.
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6.6.4 Cluster Comparison

In this final subsection, we look at the composition of different clusters within the dimensionally

reduced dataset. We begin by looking at the simplest cells from Subsection 6.6.1 - ones which only

contain two or three cluster groups (Subsection 6.6.5) and then move on to explore three examples

showing multiple clusters (Subsubsection 6.6.5.1).

6.6.5 Bi / Tri Cluster Groups

Using the DR output where only two/three groups are located by the clustering algorithms we have

(Figure 6.23 and Figure 6.24). In exploring the MACCS key input for the PCA and t-SNE DR

algorithms (Figure 6.23) we find that for the cumulative importance bar charts we know that the

existence of Nitrates is vital in the split determining which group a species falls into. This manifests

itself as having a single cluster containing PAN and Nitrate species, with others not. In the t-SNE

plot (Figure 6.23b) we see that there exists a third group which is missing both Aldehyde and PAN

functionalisation for each species. This is shown by the teal colour in Figure 6.18c and resides between

the Nitrogen-containing and Nitrogen-deficient groups.

Figure 6.24 shows the comparison of the Node2Vec embedding using PCA and the AE DR algorithms.

In Figure 6.16e and Figure 6.17e, it is seen that these are generally not separated into well-partitioned

clusters. Both groups consist of one large cluster (shown by the second bar chart of each row which

contains all functional groups) and one or two fragment ones. In exploring the AE plot (Figure 6.24b),

it is seen that as part of the cumulative plot (right), the -OOH functional group is an important

separatory factor since the smaller of the two groups does not contain any species which contain

a hydroperoxy functional group. In the PCA plot, although providing different cumulative results,

again shows species within the smaller groups not containing any RO,RCO3, OOH,ONO2 or OOH

functional groups. This can potentially be due to the graph structure, where the random walker

(which generates the Node2Vec embedding) has become trapped by a group of non-oxidised species.
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(a) PCA

(b) t-SNE

Figure 6.23: Comparing individual clusters between MACCS for PCA and t-SNE algorithm output. The bar chart to the right is the cumelative
chart which represents the splits in deciding the cluster a species falls into from Subsection 6.6.3. Unlabeled bar charts to the left represent the partitioning of
species within an individual cluster.
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(a) PCA

(b) AE

Figure 6.24: Comparing individual clusters between Node2Vec for PCA and t-SNE algorithm output. The bar chart to the right is the cumulative
chart which represents the splits in deciding the cluster a species falls into from Subsection 6.6.3. Unlabeled bar charts to the left represent the partitioning of
species within an individual cluster.
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6.6.5.1 Multicluster Groups

Next, we observe several multi clustered examples from all DR algorithms. We start with Figure 6.25

where the PCA algorithm has generated an extensive collection of points in an area. Unsurprisingly

the clustering algorithm has failed to identify separate groups (as there is only one), and instead

partitioned the data into six groups. Although not ideal, this still has its use in determining how

species have been partitioned temporally. Here we find that nitrogen-containing species are positioned

on the right side of the graph, and aromatic species are in the bottom half. RO2 containing species

span the entirety of Figure 6.25, but increase towards the left direction. This shows that although

PCA was unable to separate the chemical species of the MCM into groups from the fingerprint input, it

still presents patterns within the data such that the arrangement of groups can be seen when querying

specific areas.

Figure 6.25: Case Study 1: PCA graph-fingerprintWe compare the functional group distribution
for individual clusters within the PCA 2D representation of the graph-fingerprint input.
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Next, we explore the AE algorithm. Here the smiles input separates the data into more defined

groups. This becomes apparent with specific functional groups only appearing within individual

clusters (Figure 6.26) - as opposed to the gradients seen in Figure 6.25. Here all the aromatic species

are contained within the central (pink cluster). Similarly, the green and brown clusters do not contain

any nitrates, and most of the PAN species are within the grey cluster in the top right. The better

separation of clusters aids in the identification of groups (by the automated vector clustering algorithm)

as well as highlighting the process undergone within the DR algorithm to partition the data.

Figure 6.26: Case Study 1: AE SMILES We compare the functional group distribution for indi-
vidual clusters within the AE 2D representation of the SMILES input.
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Finally, we explore the t-SNE DR algorithm using the MQN inputs (Figure 6.27). Previously it is

found that the t-SNE produces the most well-defined clusters, the cost of which comes from losing

information about group similarity encoded in the distance separating them. Here RCO3 containing

species are located in the central turquoise cluster, PAN species in the top right (lime) cluster and

the aromatic species are all in the pink cluster at the bottom. The brown and purple clusters (top

left) contain no carbonyl groups, and the purple, grey (top left) and orange (mid-right) contain not

Nitrates. The t-SNE provides the best spatial distribution of groups. However, inspecting cluster

colours visually suggests that the automatical vector clustering algorithm has not necessarily located

the best combination of groups. As was suggested in Subsection 6.6.2 a more dynamic method of

tuning the clustering algorithm hyperparameters may result in better cluster selection - which may

better separate each cluster’s species category.

Figure 6.27: Case Study 1: t-SNE MQN. We compare the functional group distribution for
individual clusters within the t-SNE 2D representation of the Mollecular Quantum Number fingerprint.
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6.7 Conclusions

This chapter aims to tie up the research presented in Chapter 2-5 in preparation for future using

Graph Convoluted Neural Networks [Kipf and Welling, 2016] to classify and even predict (generate)

mechanisms (or at least attempt to). In Chapter 3 we showed that networks are a useful representation

for the relational nature of species within the atmosphere, and then applied several mathematical

techniques to it Chapter 4-5. This chapter looked at simplifying chemical structure used by many

dimensionality reduction algorithms and using visualisation and computational algorithms to assess

their ability at partitioning species into similar groups.

It was found that t-Distributed Stochastic Neighbor Embedding (a graph-based DR technique) pro-

vided the best results for species separation and visualisation. This provides a non-linear mapping of

the relationships between items and does not omit any data (PCA) or require the selection of layers

and activation functions (AE). It does, however, lose information about cluster similarity based on

distance and cannot be used to compress (encode/decode) information - although neither of those

features is required for our use.

Additionally, several possible inputs for each dimensionality reduction algorithm were used. Since ma-

chines cannot understand the meaning of words, these are different representations of species structure

we can put into a machine-learning algorithm to inform it of a species. Out of the non-ordinal inputs,

it was found that tokenised SMILES strings and the Molecular Quantum Number fingerprint produced

2D visualisations with the best separation between clusters. Other inputs either caused large groups

of overlapping nodes or had a strong dependency on a single species or functional group (e.g. MACCS

and Nitrates).

It is suggested that within future work, the t-SNE dimensionality reduction algorithm is used if trying

to visualise the different groups of a complex dataset. In the case of any machine learning algorithms,

the MQN fingerprint should be used for generic examples, unless a specific feature is required from

the input. If instead a more complex/larger input is required, it is also possible to apply any of the

DR algorithms discussed to simplify it. Here the use of an AutoEncoder is suggested as the encoder-

decoder pair allows for the testing of a trained model (as well as the ability to explore the embedded

space). Although this can be achieved through the use of principal component analysis, this does not

handle non-linear relationships and cannot be trained on a further dataset if one becomes available.
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7.1 Conclusions

The topic of changing climate has been a prominent talking point in the last decade [IPCC, 2013].
Anthropogenic activities starting with the industrial revolution have served to increase the amount of
heat retained by the earth (radiative forcing). Similarly, the use of CFCs has damaged the protective
layer of ozone in the atmosphere [Bais et al., 2018], and dangerous levels of air quality have produced
an increase in respiratory distress of living organisms. Although we have guidelines and policies to
determine the acceptable levels of pollutants, it is not uncommon for these to be unregulated or broken
- for example, more than 95% of the EU urban population were exposed to concentrations higher than
the WHO regulations in [EEA, 2018].

To prevent further irreversible harm, both physical and environmental, we must mitigate any further
damage. The problem is, however, that this is not as small of a feat in itself. Taking the production of
ground-level ozone as an example, the complex interplay between emissions and production within the
earth system may produce two scenarios where the identical concentrations of a chemical species can
result in the production or the loss of the secondary pollutant based entirely on the chemical regime it
is in. For example, Fitzky et al. [2019] discusses the role of urban vegetation, and how trees can both
reduce [Hardin and Jensen, 2007] and greatly contribute to the formation [Jenkin et al., 2015] of ozone
- all while the shading provided from tree canopies could also influence the amount of radiation and
its production [Yli-Pelkonen et al., 2018]. As we try to better represent the processes that govern the
physical world, the larger and more complex our models become. This means an important balance
must be struck, whereupon the ‘selected’1 tool must be both robust, accurate within reason and
computationally efficient.

With the development of construction protocols, the automatic generation of very large and com-
prehensive chemical mechanisms is now a possibility, [Aumont et al., 2014]. This, however, presents
problems which are both cognitive and computational. This thesis has explored the use of mod-
ern techniques in visualisation, reduction and machine learning in an attempt to address the above
problem.

7.2 Results

In attempting to optimise the information transfer between computational models and the reader,
we start by understanding human evolution and how an increase in neocortex size led to the ability
(and necessity) to communicate large numbers between many people. The inial method for doing
this was through the use of language, storytelling and pitograms. This sort of external information
‘sharing’ proved pivotal for the propagation of ideas, and ultimately the creation of technology and
scientific advancement. Similarly, it is seen that even in the present-day setting, the use of narrative
and selected metaphors can enrich the user’s ability to navigate data, and instil a personal aspect to
which they can relate to. When applied to atmospheric chemical mechanisms, the resultant output is
a node-link representation of reactions, where species are analogous to people or items, and reactions
(relationships) the links holding them together.

1In atmospheric chemistry and climate change it is common to compare the results of several different models and
mechanisms when studying something new. This style of ‘ensemble’ modelling provides a good way to check that things
are working whilst eliminating some of the errors presented by individual simulations.
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We then encode additional information into the visualisation, first syntactically using element design
and colour, then semantically by setting the node positions and line lengths based on an additional
property. The latter of which was achieved by a simple physical system similar to treating nodes as like
charged magnets (they repulse) and links as springs pulling them back together. This force-directed
graph structure (a subset of the sociograph class) alleviates many of the traditional difficulties of
manually outlining a species degradation pathways. The push-pull physics nature of force-directed
graphs makes them effortless to understand while allowing for additional information (such as the
rate of reaction) to be embedded within the network shape all whilst being able to juxtapose different
subsets or mechanisms within the same visual space (e.g. Figure 2.16).

At the limits of perceivable (visual acuity) and physical resolution, we were able to translate the
graphical network structure into a purely computational one. Here we are able to perform temporal
analysis of the state of a mechanism within a simulation by taking a series of static ‘snapshots’ or
aggregating the data. This mathematical approach not only gives us information on the number of
reactions of a species but also its importance within the system. Similarly in looking at where the flow
of information within the network we can determine bottlenecks and controlling points, whereupon a
small change to a one chemical species can have a significant effect on a large number of others. This
type of analysis helps us to identify important areas to study, especially in the context of policy and
air quality studies.

The computational graph can be further leveraged to categorise the type of network a mechanism
represents, For example, we see that the Master Chemical Mechanism presents a sparse structure
with the many highly connected (small-world) and hierarchical features. This is a pattern commonly
found in real-world graphs and other chemical mechanisms, [Watts and Strogatz, 1998; Jacob and
Lapkin, 2018].

The classification and ranking of species their modular structure allow us to apply several graph-based
clustering techniques. Rather looking at the proximity and distribution of data within space, these
techniques often navigate the links of a network, locating areas of high connectivity between species -
thus forming a clique, module or cluster (depending on the field of study). This form of analysis not
only highlights structural patterns from the network shape (e.g. Figure 5.5) but can also be used to
access the suitability of combined species within mechanism lumping.

Finally, in preparation for future research, the use of different species structure representations was
run through a selection of dimensionality reduction algorithms. Here different representations were
reduced to two dimensions and shown in a x − y scatterplot. The analysis showed t-SNE reduced
data was the most aesthetically pleasing, as it provides better separation between clustered groups.
Additionally, the type of representation had a significant effect on the type of features which were
outlined by each DR algorithm. This highlights the importance of careful selection regarding input
data when training a computational model. Out of the methods assessed it is suggested that the
molecular quantum number or tokenised SMILES stings are used in any future works.
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7.3 General Overview

Although no definitive improvements over existing methods have been found, the wide reaches of the
study suggest that graphs, visual representations and machine learning have their place in the field of
atmospheric chemistry. Although they may not replace current ‘tried and tested’ solutions, they have
been shown to produce similar and agreeable results and demonstrated the pattern-finding abilities
of computational models (for data analysis).

Where these methods come into their own is by demonstrating a more user-friendly approach to
model diagnostics, mechanism comparison and change perturbation within a large complex system.
Presenting chemistry in such a way enables us to successfully communicate what is going on in a way
that policymakers and the general public can understand. This in itself can go a long way into the
prevention and mitigation of the global problems described at the start of this thesis.

7.4 Future Work

When discussing future projects relating to this work, there are two apparent avenues which should
be explored. The first lies in applying this work to better communicate issues of air quality, whilst
the second focuses more on the use of graph neural networks to generate dynamic mechanisms based
on user requirements. These are outlined below.

7.4.1 Policy and Communication

As was described previously, one of the more successful parts of this project has been the communica-
tion of atmospheric chemistry in a visually intuitive way. Building on this, it would be highly bene to
create an ‘immersive’ user-controllable box model GUI which policymakers and students can adjust,
whilst watching the chemical graph dynamically change based on the user regime the chemistry falls
into at that point in time. This will go a long way into educating people about the complexities of
the atmosphere and how a small change may have a large effect based on circumstances/conditions.

7.4.2 Dynamic Box Model Emulation

Except for long-range transport, much of the chemistry which occurs within different regions of the
earth is constrained by the surrounding environment. It would be useful to develop an automatically
adapting mechanism based on its position within the earth system - whereupon the number of species
and calculations is adjusted in accordance to location, elevation and time of day (photolysis). This will
allow global and regional models to provide higher quality results - e.g. by computing high (chemical)
resolution runs within urban and surrounding areas whilst removing the same computational overhead
for isolated and rural grid boxes.

With the newly emerging age of ‘big data’, the fields of data analysis and graph theory are ever-
improving. An example of this is the release of graph convolutional neural networks in 2016 - this is a
neural network which takes into consideration not only its inputs but also the relationships between
them. If we could get a neural network to learn the protocols for mechanism construction, and then
simulate a box model output based on this, the idea of an adaptive mechanism may have potential.
This would nicely tie in the visual, mathematical and ML aspects of this thesis.
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Reproducability

The code used within this thesis is provided ‘as is’ within the relevant repositories. There will be an
attempt to make it more presentable and fully documented within the near future, but this has not
yet happened. For many of the tasks, it is possible to download a clean repository and implement any
relevant changes yourself.

The Box Model

Most of the work in this thesis relies on the use of the DSMACC Box model [Emmerson and Evans,
2009]. To reproduce it the specific code I have used can be found in [Ellis, 2020], however, any box
model which allows you to extract both the fluxes and Jacobian matrix may be used.

Photolysis Calculations

Photolysis rates are calculated with version 5.2 of the Tropospheric and Ultraviolet and Visible code-
base. Photolysis rates are calculated once at the start of each box model run and then interpolated
with the use of cubic splines to provide the values required throughout the day. This can be located at
[Bräuer, 2020], Photolysis rates within the J array correspond to the lines outlined in ./INPUTS/MCMTUV
and are hard-wired within the ./MCMvXX.inc include files.

The Master Chemical Mechanism

For the work, we have made use of various versions of the master chemical mechanism [Rickard, 2020].
Different versions of this and its reduced component (CRI) can be obtained from the MCM website:
mcm.york.ac.uk. Alternatively, the KPP presentation of all the mechanisms I have used is located
within the ./mechanisms folder in the DSMACC repository.

Kinetic Pre-Processor

To transpose the chemical mechanism into a usable format, the Kinetic Pre-Processor rewrites the
human-readable first-order ordinary differential equations into FORTRAN95 code. The version of this
originates from FlexChem - the KPP rewrite used in GEOSChem (KPP 2.3.01). This is located at
https://github.com/wolfiex/kpp_2.3.01_gc/

ML libraries

Simple processing tasks as clustering, PCA and t-SNE generally make use of the Scikit-Learn package
[Pedregosa et al., 2011]. Graph Layouts such as TSNET and Mercator can be found in https://github.
com/wolfiex/tsNET and https://github.com/networkgeometry/mercator.

The AutoEncoder code can be found within the DSMACC repository at https://github.com/wolfiex/
DSMACC-testing/blob/master/dsmacc/examples/rate_ae.py and the Graph AutoEncoder at https:
//github.com/tkipf/gae.

Although not documented, this thesis aimed to work up to the use of a graph convolutional network
such as the one in https://github.com/wolfiex/gcn.

mcm.york.ac.uk
https://github.com/wolfiex/kpp_2.3.01_gc/
https://github.com/wolfiex/tsNET
https://github.com/wolfiex/tsNET
https://github.com/networkgeometry/mercator
https://github.com/wolfiex/DSMACC-testing/blob/master/dsmacc/examples/rate_ae.py
https://github.com/wolfiex/DSMACC-testing/blob/master/dsmacc/examples/rate_ae.py
https://github.com/tkipf/gae
https://github.com/tkipf/gae
https://github.com/wolfiex/gcn
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Chemial representation and Molecular Keys

Chemical species representation for SMILES and INCHI strings are taken directly from the MCM. Ad-
ditional conversions into MACCS and MQN keys make use of the RDKIT python package: [Landrum
et al., 2019].

Observation and model run reproducibility

To reproduce the results made from field campaigns it is possible to extract the data directly from
the Centre for Environmental Data Analysis. The four field campaigns used are provided below.

• https://catalogue.ceda.ac.uk/uuid/648246d2bdc7460b8159a8f9daee7844

• https://catalogue.ceda.ac.uk/uuid/81892deb2dd5e7f0d26b9c587af45f3d

• https://catalogue.ceda.ac.uk/uuid/a457d9715f3c4bc295ef975932e491d9

• https://catalogue.ceda.ac.uk/uuid/cee49a1f044b79d5413b7a0282467508

Once downloaded, these are wrangled into the initial conditions CSV format for the use in model runs
- some of which are spun up to a steady state based on the user’s preference and aim of the study.

Non-observational runs are initiated through the use of a Latin hypercube format to provide a random
assortment of initial concentrations within a pre-defined limit. An example of the output of the initial
condition for one run of these can be found in https://github.com/wolfiex/DSMACC-testing/blob/
master/InitCons/lhs_spinup.csv.
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Appendix A

Supplementary Mathematics

A.1 PCA

A.1.1 Statistics

Firstly we define the variance:

σ =

N∑
i=1

(X − µX)(X − µX)

n− 1
(A.1)

where X is the dataset, µ the mean and n the number of data points.

If we wish to then compare dataset X with dataset Y we may use the covariance:

cov(X,Y ) =

N∑
i=1

(X − µX)(Y − µY )

n− 1
(A.2)

For n distinct variables we may construct an n× n matrix containing n!/(n− 2)!× 2 different combi-
nations of covariences:

C =



σX cov(X,Y ) cov(X,Z) · · · cov(X,n)

cov(Y,X) σY cov(Y,Z) · · · cov(Y, n)

cov(Z,X) cov(Z, Y ) σZ · · · cov(Z, n)
...

...
...

. . .
...

cov(n,X) cov(n, Y ) cov(n,Z) · · · σn



A.1.2 Matrices and Eigenvectors

An eigenvector is a vector v, that when operated on by a given operator produces a scalar multiple of
itself (Equation A.3) - this scalar multiple is called the eigenvalue λ. Eigenvectors can only be found
for square matrices and are perpendicular to the matrix regardless of their dimension. A n×n matrix
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will produce n eigenvectors. Conventionally these are scaled to unity, which may be done by dividing
the eigenvector by the Pythagorean distance of each element.

Cv = λv (A.3)

An example of an eigenvector/value pair is shown in the following equations:

(
2 3

2 1

)
×

(
3

2

)
= 4

(
3

2

)
(A.4)

One property of the eigenvalue/eigenvector pair is that the square matrix acts as a transformation on
the eigenvector. This means that we may treat the eigenvector as a direction from the origin, whose
magnitude we can scale. The eigenvalue remains to scale independent and is the same value as before:

(
2 3

2 1

)
×

(
6

4

)
= 4

(
6

4

)
(A.5)

A.2 t-SNE

A.2.1 Student t distribution

Created by William Gosset and published under the pseudonym student 1 ?.

The distribution consists of a family of continuous probability distributions which may be used when
the sample size is small, and the standard deviation is unknown. The curve itself resembles that of a
normal distribution, just with a shorter amplitude and greater full width at half maximum (FWHM).

A.2.1.1 t-Score

Much like the z-score mentioned earlier [ref standardiz], t-scores also convert individual values to a
standard form. This is generally used when you do not know the population standard deviation (often
due to having too few data points). At greater than 30 datapoints this resembles the equation of the
z-score, and will often give you the same result.

t(xi) =
xi − µx

Ssample/
√
n

(A.6)

1At the time Gosset was employed by Guinness Breweries in Dublin. This meant that chemists were forbidden
from publishing their findings. After explaining that his mathematical and philosophical conclusions were of no use
to competing breweries, he was finally allowed to publish under the pseudonym ‘student’. This was mainly to avoid
difficulties with the rest of the staff.



Appendix B

Neural Network Activation
Functions

B.1 Binary Step

.
This is a simple threshold function. If the input is above the threshold, the message is passed on. This
makes it efficient, but unable to classify a single input into multiple categories. This can be likened
to a yes|no decision tree.

f(x) =

1, if x < threshold

0, otherwise
(B.1)

Figure B.1: Binary Step activation function.

B.2 Linear

.

This produces a signal proportional to the input multiplied by the weight of each neuron. It is an
improvement over the step function as it allows for multiple outputs. It does, however, mean that we
are unable to use backpropagation (gradient descent) to train the model. In adition to not being able
to improve a model, all the layers in the neural network collapse into a single layer. This means that
the final layer will always be a linear function of the first layer. This eliminates all the merits which
may be gained from deep learning. A neural network with a linear activation function is simply a
linear regression model.
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f(x) = m(x) (B.2)

Figure B.2: Linear activation function.

B.3 Sigmoid / Logistic

.

The first of the non-linear activation functions, the sigmoid activation function has a smooth gradient
providing smooth output values which are bound between 1 and 0, normalising the output of each
neuron. The main disadvantage is that falls foul the vanishing gradient problem - for extreme values
of x there is close to no change in the prediction. This may result in either early termination of the
training or a slow training cycle in obtaining adequate precision. The activations are computationally
expensive, and the outputs are not zero centred.

f(x) = 1/1 + ex (B.3)

Figure B.3: Sigmoid activation function.

B.4 Hyperbolic Tangent

.
Much like the sigmoid function in both advantages and disadvantages. The hyperbolic tangent function
provides a smooth curve which is zero centred. It is, however, computationally expensive and suffers
from the vanishing gradient problem.

f(x) =
ex − e−x

ex + e−x
(B.4)



284 B.5. Rectified Linear Unit

Figure B.4: Tanh activation function.

B.5 Rectified Linear Unit

.
A commonly used activation for large deep neural networks, due to its computational efficiency and
quick convergence. It is non-linear although it appears like a linear function, and allows for backprop-
agation. It does, however, suffer from the dying ReLU problem - when inputs tend to zero or below,
the gradient of the function becomes zero and the network cannot perform backpropagation to learn.

f(x) =

0, if x < threshold

x, otherwise
(B.5)

Figure B.5: ReLU activation function.

B.6 Swish

.
The Swish Activation is a self-gated activation function discovered by google (https://arxiv.org/abs/
1710.05941v1). Is has been shown to perform better than ReLU at a similar level of computational
effidiency and generates results just under 1% more accurate.

f(x) = x/1− e−x (B.6)

Figure B.6: Swish activation function.

https://arxiv.org/abs/1710.05941v1
https://arxiv.org/abs/1710.05941v1
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B.7 A note on backpropagation

As it has not been explicitly explained before backpropagation is an algorithm used to train neural
networks. The derivative (or gradient) of an activation function is important in the use of backpropa-
gation. Here the model weights are adjusted, and improved, by tracing back all the connections in the
network, suggesting an optimal weight of each neuron.
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Graphs and Networks

C.1 Heavily Labeled Citation Graph

Figure C.1: The labelled co-author network - as referenced in Chapter 4
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C.2 Centrality on the UK rail network.

The data in the following section was extracted from OpenStreetData using overpass turbo https:
//overpass-turbo.eu. Here ways within the geographic information system mapping (GIS) format are
represented as paths between locations (i.e. a graph). Following some simple processing, the distance
of each section was calculated, and a weighted graph represented the UK rail network was generated.
This was then used to form a rudimentary analysis of the graph structure using centrality metrics
(shown below).

NOTE:
Since the network is extracted from a GIS data file, nodes within the rail network include not only
stations but also switches, routing nodes and crossings. Although this can be filtered, the iterative
reconstruction of a graph for the entire UK is a lengthy process - one which I am unable to do at the
time of writing (there are 90011 nodes which make up the entirety of the UK rail network, most of
which need to be removed, and their links rerouted).

https://overpass-turbo.eu
https://overpass-turbo.eu


288 C.2. Centrality on the UK rail network.

(a) Degree Centrality. (b) Closeness Centrality.

(c) Betweenness Centrality. (d) PageRank Centrality. Colours are groups from
the modularity clustering algorithm which partitions
the network into highly connected areas or ‘cliques’.



Appendix D

Miscellaneous

D.1 Correspondence with Mike Jenkin

Mike Jenkin 11th September 2019

Note on naming conventions in the CRI mechanism

The lumped or “common” species in the CRI mechanism are, by definition, used to

represent a set of real species with different structures and properties. The

criterion for lumping is the maximum number of NO-to-NO2 conversions (i.e. maximum

number of ozone molecules) that the subsequent degradation can produce - and lumped

species can, therefore, represent a large number of real species with different

structures and properties.

In later expansions of the mechanism, the chemistry for species such as isoprene and

terpenes defined intermediates that are representative of more restricted sets of

real species. For these, it is possible to relate them to more restricted sets of

MCM species that are the main contributors.

Although I tried to be logical in naming, the mechanism was developed over many

years with little or no funding and may therefore not be fully transparent and

foolproof throughout. However, I think quite a lot of the naming is logical, as

expanded on below.

1) The numbers in most of the species names (the “CRI index”) are the number of

NO-to-NO2 conversions that can result from the subsequent OH-initiated NO-propagated

chemistry. For radical termination products (e.g. hydroperoxides formed from RO2

+ HO2 and nitrates formed from RO2 + NO), this is a grey area, and the number is,

therefore, the same as that for the precursor RO2 radical. In these cases, it is

simply a convenient label.
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2) There are a number of series of peroxy radicals, which are denoted RNxxO2,

RIxxO2, RAxxO2, RExxO2, RUxxO2, RTNxxO2, RTXxxO2. These represent peroxy radicals

with different structural features or formed from different types of precursor,

as indicated below. Occasionally, extra peroxy radicals with the same CRI index

are included by inserting a letter after the index (e.g. RNxxAO2) to increase

flexibility of the mechanism. Peroxy radicals formed specifically from addition

of NO3 to an alkene/diene are prefixed by “N”.

RNxxO2: These were originally representative of peroxy radicals formed from linear

or “n-“ alkanes and their carbonyl products. They are also used for peroxy radicals

formed from slightly-branched precursors (e.g. 2-methylhexane), and are formed as a

convenient default intermediate with the correct CRI index in the latter stages of

degradation of other precursor classes.

RIxxO2: These were originally representative of peroxy radicals formed from

branched or “i-“ alkanes and their carbonyl products, but tend to be used only

for smaller branched precursors that can produce acetone as a major product from

their subsequent degradation. This is because acetone is a particularly unreactive

carbonyl, the formation of which can interrupt the ozone formation processes under

typical regional-scale photochemical episode conditions in north-west Europe.

RAxxO2: These peroxy radicals are formed from the addition of OH to aromatic

compounds, and are complex bicyclic structures containing a peroxide bridge (e.g.

like BZBIPERO2 in the MCM).

RExxO2: These peroxy radicals are formed from ether degradation, and allow the

formation of unreactive formate ester products to be represented.

RUxxO2: These peroxy radicals are formed from degradation of conjugated dienes

(currently only isoprene and 1,3-butadiene). Those formed initially (e.g. RU14O2)

contain allyl functionalities (i.e. a specific unsaturated linkage), although the

terminology is also used for some peroxy radicals formed from subsequently-formed

unsaturated products.

Related to this, the species CRU14O2 and TRU14O2 in the EMEP variant of CRI v2.2

(described in https://doi.org/10.1016/j.atmosenv.2019.05.055) were specifically

introduced to represent the cis- and trans- isomers required for the Peeters (LIM)

reaction framework. CRU14O2 represents CISOPAO2 and CISOPCO2 in MCM v3.3.1 and

TRU14O2 represents ISOPAO2 and ISOPCO2 in MCM v3.3.1. However, CRI v2.2 itself uses

a different approach where the chemistry is represented by a conditions-dependent

rate coefficient for the single peroxy radical, RU14O2.

RTNxxO2: This terminology is used for peroxy radicals formed from monoterpenes

containing an endocyclic double bond. This is currently limited to α-pinene in

CRI, although the original idea was that the mechanism could be used as a surrogate

for other endocyclic monoterpenes by simply adding new sets of initiation reactions.

https://doi.org/10.1016/j.atmosenv.2019.05.055
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RTXxxO2: This terminology is used for peroxy radicals formed from monoterpenes

containing an exocyclic double bond. This is currently limited to β-pinene in CRI,

although the original idea was that the mechanism could be used as a surrogate for

other exocyclic monoterpenes by simply adding new sets of initiation reactions.

Finally, the species DHPR12O2 in CRI v2.2 is a peroxy radical containing two

hydroperoxy groups. Again, it is required for representation of the Peeters

(LIM) mechanism, and is representative of the species C536O2 and C537O2 in MCM

v3.3.1 (these species being referred to as “di-HPCARPs” by Peeters et al., 2014:

https://doi.org/10.1021/jp5033146).

3) Hydroperoxides formed the reactions of HO2 with the above peroxy radicals have

“OOH” in place of “O2”. Nitrates formed the reactions of NO with the above peroxy

radicals have “NO3” in place of “O2”.

4) There are a number of series of carbonyl compounds, which are denoted CARBxx,

UCARBxx, UDCARBxx, TNCARBxx and TXCARBxx.

CARBxx: These are used to represent carbonyls and hydroxycarbonyls. Occasionally,

extra carbonyls/hydroxycarbonyls with the same CRI index are included by inserting a

letter after the index (e.g. CARBxxA) to increase the flexibility of the mechanism.

Related to this, the species DHPCARB9 in CRI v2.2 is a carbonyl containing two

hydroperoxy groups. Again, it is required for representation of the Peeters (LIM)

mechanism, and is representative of the species DHPMEK and DHPMPAL in MCM v3.3.1 in

MCM v3.3.1.

UCARBxx: This terminology is used for unsaturated carbonyls/hydroxycarbonyls,

formed for example from isoprene (although one of the main ones, UCARB10, has been

“unlumped” into MVK and MACR in the EMEP CRI v2.2 variant).

Related to this, the species HPUCARB12 in CRI v2.2 is an unsaturated carbonyl

containing a hydroperoxy group. Again, it is required for representation of the

Peeters (LIM) mechanism, and is representative of the species C5HPALD1 and C5HPALD2

in MCM v3.3.1.

UDCARBxx: This terminology is used for unsaturated dicarbonyls, formed from

aromatics.

TNCARBxx and TXCARBxx: This terminology is used for carbonyl compounds, formed from

monoterpenes with endocyclic and exocyclic double bonds, respectively.

https://doi.org/10.1021/jp5033146
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Appendix E

Chapter Keywords

This section uses the Term Frequency Inverse Document Frequency to determine the keywords of each
chapter - a technique which has been described in Chapter 4. Text size corresponds to the importance
of each word.

E.1 Introduction

OZONE MODEL RO ATMOSPHERE CHEMISTRY SPECIES
AGO NUMERICAL ATMOSPHERIC AIR EARTH HO CHEMICAL DT CLIMATE
CONCENTRATIONS OH HOX NNO PLANET OXYGEN RADICAL NOX MECHANISM CYCLE YEARS

CHANGE POLLUTION TIMESCALES KM SOLVERS HNO GCM TIME NITROGEN SYSTEM REACTION RANGE INCREASE

RESULTED FUNDAMENTALS EMISSIONS ENERGY RISE LEAD NIGHT TROPOSPHERE KNOWN THESIS DEVELOPMENT HUMANKIND SINK

DEVCYCLE HYDROXYL PARIS RAPID GEAR CHINANOX RUNGE GEOS KUTTA HOMO BILLION ROSENBROCK TRANSPORTED HOWEVER METHODS POSSIBLE

UNDERSTANDING BOX IPCC PARTS MODELS REPRESENTATION MANY REACTIONS METHOD DIFFERENT SCIENCE DECREASE STARTED HUMANITY STIFF GAS PPTV REVOLUTION

POWER SOLVED EVENTUALLY EQUATIONS SCIENTIFIC RATE SOURCE REACT CURRENT CELLS DSMACC FORWARDS GLOBAL ANTHROPOGENIC

E.2 Visualisation and its use in understanding Complex Data

ARC SPECIES FIGURES MCM REACTIONS
CHORD OH NUMBER ARCS GROUPS DATA MECHANISM PROTOCOL
STORYTELLING METAPHOR DIFFERENT HO INFORMATION NETWORK SOCIAL FUNCTIONAL

CHEMISTRY VISUALISATION CRI GRAPH REPRESENTATION REACTION TWO SHOWS DIAGRAM TRUNK KBPAN

NIGHTINGALE SHOW PLOT BRANCHES DESIGN ITEMS GROUP PANS CR FLOWCHART FEATURES CHEMICAL MAY TIME

PROCESS TREE CONTAIN ABILITY SOURCE METAPHORS COMPOSITE EVENTS RED MANY REPRESENT COMPLEX DIAGRAMS THICK BECK SOCIOGRAPHS

CAVE TEPHI GOSSIP FAMILIARITY ENABLE HYDROXIDE IDEAS KNOWLEDGE NEW REPRESENTED OFTEN US RELATIONSHIPS POSSIBLE SEVERAL LINES HV BIG LIMITED CHANGES

SEEN ALTHOUGH SHOWN STRUCTURE METHODS LIKE INTUITIVE CONNECTED EXIST REASON HUMANS ROOH CARBONS NARRATIVE EFFECTIVE BLUE MAIN AXIS
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E.3 Applying Visual Analytics to the Atmospheric Chemistry

Network

GRAPH LAYOUT NODES FIGURES EDGE
NODE SPECIES EDGES GRAPHS REPRESENTATION CONFLUENT LAYOUTS
MERC DESIGN FORCEDIRECTED MERCATOR DENSITY ALGORITHM INFORMATION SEMANTIC

NETWORK DISTRIBUTION MECHANISM MAY REACTIONS OPENORD HU CHEMISTRY ANGLE FORCE CROSSING

ROUTING BEZIER YIFAN STRUCTURE VISUALISATION APHH POSSIBLE DATA CHEMICAL MCM BUNDLING TSNET SHOWS

AREA CM DIFFERENT BUTANE DRAWING QUADTREE FORCEATLAS ATLAS DEGREE LINKS BEIJING ENERGY PROCESS SYNTACTIC CURVES ONE

REPRESENT USER ITEMIZE REPRESENTING CLUTTER ADDITION EXAMPLE VISUAL TSNE CONF BEIJINGTEST ALTHOUGH MANY SHOWN NUMBER SYSTEM SINCE RESOLUTION BEST

SHAPES METHANE DIRECTED OFTEN HIGH NETWORKS SHAPE CARBON CURVEDEDGE ALLSAMPLES FILL EYETRACK METHODS ORTHOGONAL INTERACTIVITY POINTS INTERACTION ORANGE FOUND LARGE DIRECTION

E.4 Chemical model diagnostics using graph theory and met-

rics.

SPECIES NETWORK GRAPH NODE
CENTRALITY PAPERS NAPINBO PAGERANK JACOBIAN CLOSENESS
MCM FIGURES EQNARRAY SUM METRICS ALGORITHM DATA MATRIX METRIC
MLPREGRESSOR BETWEENNESS RESULTS FREQUENCY MAY MONTH CITATION DOCUMENT

CONCENTRATION GOOGLE FLUX NODES VALUE NUMBER CHEMISTRY OH MECHANISM TOTAL CO

OBSERVATIONAL PAGE RANK INFLUENCE VALUES AUTHORS IDF MODEL PERCEPTRON ANALYSIS MLP INFORMATION

STRUCTURE TFIDF TIME SIMULATION POSSIBLE EDGE LINKS IMPORTANCE NAPINBOOH BEND DATASET US DIFFERENT TAB CONCENTRATIONS LINK

BEIJING ONE EXAMPLE SEEN CHEMICAL IMPORTANT EVERY PAPER SEGMENT LONDON CHANGE METHOD AUTHOR CENTER MAIN SHOWING RANGE TRADITIONAL BMATRIX ARTICLES

MANY SMALL OFTEN WORD SINCE SOURCE DEGREE NET METHODS PRODUCTION PREDICTED PRECURSORS FONT INVERSE

E.5 Using Graph Clustering And Natural Language Process-

ing To Aid Mechanism Reduction.

SPECIES MECHANISM LIFETIME
INFOMAP MAY CLUSTERING HOCH NETWORK GRAPH COSINE CRI
ALGORITHM REACTIONS NODES SIMILAR CO CLUSTERS LUMPED CHEMICAL MAGNITUDE

DENSITY STRUCTURE NUMBER METRIC RESULTS GROUPS LUMPING HUFFMAN NRI ALLUVIAL EUCLIDEAN REDUCTION

DISTANCE PEROXY PLOT ENSEMBLE REACTION MCM MATRIX POSSIBLE GROUP PAIRS DYNAMICS PREFIX WORST RO CLUSTER

APPEAR HIERARCHICAL JACOBIAN SIMULATION METHOD TOGETHER CHEMISTRY PRODUCE SEEN LUMPPAIR RI DIEK PROFILES OOH TIME TEMPORAL DIFFERENT TWO

REPRESENTATIVE LEVEL BEST WORKS GROUPED TASK FLOW VECTOR NUMBERS SINCE CODE PROCESS LINKS USEFUL CARBONYL DATA IMAP TRAPPED MODULES WALKER II

LIFETIMES PINENE PHOTOLYTIC QSSA PECOH MORIG IML HUFF EUCLID LOUVAIN REDUNDANT EXPERIMENT VALUES REACT
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E.6 Computational Learning of Species Structure using Vi-

sualisation and Vector Clustering

PCA SPECIES CLUSTERS TSNE DATA
SMILES GROUPS DR ALGORITHM VEC CLUSTER ALGORITHMS
DATASET DIMENSIONALITY FUNCTIONAL CLUSTERING INPUT STRUCTURE GRAPH

GROUP NODE NUMBER REDUCTION MACCS SILHOUETTE POINTS RANDOM METHODS AE PRINCIPAL OUTPUT

ACTIVATION STRING OUTPUTS AUTOENCODER COLOURS VECTOR COEFFICIENT FEATURE DIFFERENT TWO IMPORTANCE FINGERPRINTS

LINEAR SINCE QUANTUM TABLES LANDSCAPE INPUTS BEST DISTRIBUTION DIMENSIONS ST ALTHOUGH FEATURES CHEMICAL KEYS TEX NONLINEAR

MOLECULAR ORIGINAL OFTEN MAY POSSIBLE RESULT EMBEDDING COMPARING FORESTS MCM MECHANISM ONE MUCH PROCESS FINGERPRINT MQN PARAMETERS REPRESENTING

CHEMISTRY COLOUR SET RESULTS SHOWS THREE PCAVIS TSNEVIS VARIANCE GREEDY CASE ANALYSIS METHOD STRINGS CONTAIN FUNCTIONS MAPPING COMPONENT PROBABILITY MATRIX DESCRIBED SPACE

REPRESENT

E.7 Conclusions and Future Work

CHEMICAL MECHANISM SPECIES MODEL DATA WOLFIEX
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