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Abstract 

Glioblastoma (GBM) is an incurable cancer with a median survival of 15 months. Despite debulking surgery, 

cancer cells are inevitably left behind in the surrounding brain, with a minority able to resist subsequent 

chemoradiotherapy and eventually form a recurrent tumour. This resistance is likely influenced by the cells’ 

genotypes, which show high variability (intratumour heterogeneity), as a result of tumour evolution. 

Characterising changes in the genetic architecture of tumours through therapy, may allow us to understand 

the effect that different mutations and pathways have on cell survival, and potentially identify novel targets 

for counteracting resistance in GBM. Such analyses involve detection of mutations from bulk tumour 

samples, and then delineating them into individual genetically distinct ‘subclones’, through subclonal 

deconvolution. This is a complex process, with no reliable guidelines for the best pipelines to use. I 

therefore developed methods to allow simulation and in silico sequencing of genomes from realistically 

complex, artificial tumour samples, so that I could benchmark such pipelines. This revealed that no tested 

pipelines, using single bulk samples, showed a high level of accuracy, though mutation calling with Mutect2 

and FACETS, followed by subclonal deconvolution with Ccube, showed the best results. I then used 

alternative approaches with the largest longitudinal GBM dataset investigated to date. I found that 

evidence of strong subclonal selection is absent in many samples, and not associated with therapy. 

Nonetheless, this does not negate the possibility of smaller, or less frequent, pockets of altered fitness. 

Using pathway analysis combined with variants that are informative of tumour progression, I identified 

processes that may confer increased resistance, or sensitisation to therapy, and which warrant further 

investigation. Lastly, I apply subclonal deconvolution to investigate mouse-specific evolution in GBM 

patient-derived orthotopic xenografts and found no clear evidence to suggest these models are unsuitable 

for investigations relevant to humans. 
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Chapter 1 – Introduction 

1.1 Overview 

Cancer is a progressive and adaptable disease, and as a result, one of the biggest challenges in treating it is 

due to the ability of tumours to become resistant to therapies. An important goal in developing more 

effective therapies is, therefore, to understand the mechanisms that drive therapy resistance so that they 

can be avoided, or specifically targeted. Our group is focussed on understanding how glioblastomas (GBMs) 

survive treatment. GBM is a particularly aggressive cancer that, despite chemoradiotherapy, almost 

invariably recurs, resulting in a median patient survival of just ~15 months (Johnson and O’Neill, 2012; 

Stupp et al., 2017).  

Tumours may become intrinsically resistant to therapy in one of three ways, illustrated in Figure 1. All are a 

consequence of cell-to-cell variation within a tumour, known as intratumour heterogeneity (ITH), which 

may stem from either genetic or epigenetic effects. Adaptive resistance results from epigenetic change of 

cell state into an inherently more resistant cell type, whereas, innate and acquired resistance come from 

genetic mutations that first occurred prior to or after the onset of therapy, initially in a small minority of 

cells (Sharma et al., 2017).  

One way to identify these resistance mechanisms is through comparing matched primary and recurrent 

samples, using omics datasets that inform on their genomes or transcriptomes. Our group has access to 

such samples for GBM, from which I aim to investigate resistance mechanisms using genome sequencing 

datasets. This involves characterising genetic mutations and their influence on the genomic architectures of 

the samples through therapy, thereby informing us of cellular processes that affect GBM’s response to 

therapy. Part of this work also includes assessing the accuracy of certain steps involved in analysing 

genomic datasets, providing us and other researchers with a guide for the most suitable methods to use, 

and illustrating their limitations.  
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A  Genetic ITH 

 

B Epigenetic ITH 

 

Figure 1. A representation of ITH within a primary and recurrent tumour, and how these enable 

treatment resistance. A) Differently coloured cells represent those in different genetic subclones, 

as a result of tumour evolution. Resistance to treatment may occur from a genetic mutation that 

was present before (innate) or after (acquired) the onset of treatment. B) Differently coloured cells 

represent those in different cell states, as a result of epigenetic plasticity. Resistance to therapy 

may occur from an adaptive epigenetic change in cell states (adaptive). 

TR
EA

TM
EN

T
Normal 

cell
Cells from distinct 
genetic subclones

Recurrent tumourPre-treatment tumour

Acquired
resistance

Innate 
resistance

TR
EA

TM
EN

T

Normal 
cell

Cells in distinct cell 
lineage states

Recurrent tumourPre-treatment tumour

Adaptive 
resistance



 12 

1.2 Tumour Evolution 

Tumours are dynamic systems that evolve over time, enabling them to become more aggressive or adapt to 

changes in their environment, through both genetic and epigenetic mechanisms. At the genetic level, 

evolution occurs as a result of inherited genome variation from parent to daughter cells. Somatic mutations 

early on in a tumour’s development lead to increased cell division and reduced activity of DNA repair 

pathways or apoptosis checkpoints. This fuels continuous development and accumulation of subsequent 

mutations throughout the tumour, causing a phylogenetic tree structure of related cell populations. Each 

contains distinct sets of mutations that results in further variation in phenotypes. The terms ‘subclone’ or 

‘clone’, are used to refer to these genetically distinct cell populations. They can be used flexibly, and 

technically refer to any group of cells that differ to others at any position in their genome, which may 

describe each individual cell in a tumour. More commonly, they’re used to refer to a group of genetically 

similar cells that share a common ancestor with a mutation conferring a distinct phenotype (Sottoriva et 

al., 2017) (Figure 1A).  

A variety of categories of genetic mutations exist in a cancer genome, illustrated in Table 1 (ICGC/TCGA 

Pan-Cancer Analysis of Whole Genomes, 2020; Li et al., 2020; Zack et al., 2013; Rode et al., 2016). These are 

either germline mutations present in every cell in the body, or somatic mutations specific to cancer cells. 

Additionally, somatic mutations may be present in either every cell in a tumour, and described as ‘clonal’, 

or alternatively, present in only a subset of cells, and described as ‘subclonal’. 

Cancer cells are under constant pressure, from both competition against each other for space and 

resources, as well as attempting to avoid destruction by the body’s immune system. The variation in 

genotypes in a tumour results in some subclones having an advantage that allows them to outcompete 

others and grow at a faster rate. Eventually, a subclone may expand to such an extent that it dominates the 

whole tumour, thereby allowing the tumours to become more aggressive over time, or adapt in response 

to changes in pressures, such as the initiation of drugs. This selection of specific sublones is analogous to 

the Darwinian evolution of populations of organisms, where germlines acquire new mutations and the 

fittest members eventually outcompete, or diverge from, others in their species. As such, many of the 

terms and approaches to studying population evolution dynamics have become common in studies of 

tumour evolution (Cross et al., 2016; Davis et al., 2017; McGranahan and Swanton, 2017; Sottoriva et al., 

2017). 
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Table 1. Genetic mutations common in cancer genomes. 

Mutation type Description Potential effects on the cell 

Point 
variants 

Single nucleotide 
polymorphisms 

(SNPs) 
Germline single base substitutions. 

    Altered or shortened protein sequences. 
Dysregulation of genes. 

Single nucleotide 
variants (SNVs) 

Somatic single base substitutions. 

Insertions and 
deletions (InDels) 

Germline or somatic short losses or gains, 
generally ≤50bp.     

Structural 
mutations 

Translocations and 
mobile-element 
transpositions 

Sections of genome that have moved to 
different positions     

Disruption of genes over break points. 
Creation of gene fusions. 

Inversions Regions that been inverted in place.     

Copy number 
variations (CNVs) 

Regions that have been replicated or 
deleted in the germline genome, 

generally >50bp.     
 

     

Disruption of genes over break points. 
Increased expression of amplified genes. 
Decreased expression of deleted genes. Copy number 

aberrations (CNAs) 

Regions that have been replicated or 
deleted in a somatic genome, generally 

>50bp. 

Chromothrypsis 

A chromosomal shattering event that 
occurs in a minority of samples across 
cancer types, resulting in widespread 
genome rearrangements and CNAs. 

    
Combined effects of above structural 

mutations. 

Extrachromosomal 
DNA (ecDNA) 

A specific type of amplification when a 
region of DNA forms a circular structure 

outside of the chromosomes. 
    

Very high expression of genes. 
Uneven segregation and distribution of 

ecDNA allows for rapid changes in 
tumour genotypes. 

X
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The dynamics of tumour evolution can be categorised into four modes; neutral, linear, branched, and 

punctuated evolution (Figure 2) (Davis et al., 2017). The timing and level of selective advantage that new 

mutations confer to cells, over others, as well as spatial constraints of cell populations, are the major 

factors in determining which mode is present in each tumour, and the degree of genetic ITH observed: 

Neutral evolution: New mutations confer no selective advantage to cells, which 

continue to grow and develop further mutations at a constant rate. 

Such scenarios are possible for prolonged periods if an adaptive peak 

has been reached (Eldredge et al., 2005). Importantly, while neutral 

evolution lacks any active selection of individual subclones, ‘neutral 

drift’ may still cause subclones to passively expand over others due to 

stochastic processes (Sottoriva et al., 2017). Nonetheless, this mode 

results in the highest level of ITH seen in tumours. 

Linear evolution: New driver mutations provide strong selective advantages to cells, 

causing them to dominate the tumour as a result of selective sweeps. 

This results in a low level of ITH. 

Branched evolution: Similar to linear evolution, but where full clonal sweeps are 

prevented due to i) advantageous mutations developing in multiple 

competing cells simultaneously and continuously, ii) subclone 

cooperation, or iii) spatial separation of subclones (de Bruin et al., 

2014; West et al., 2019; Noble et al., 2019). ITH is moderately high in 

this mode.  

Punctuated evolution: A ‘big-bang’ of many mutations and subsequent selection of one or a 

few subclones, followed by prolonged stasis with few new mutations 

or further selection (Cross et al., 2016). This results in a low level of 

ITH. 
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Figure 2. Representations of tumour evolution modes, with each colour corresponding to a 

different subclone. The top panel shows a tumour that started evolving linearly, but then switched 

to neutral evolution in the absence of further clonal sweeps. Though not represented in the 

diagram, each subclone in the branched and linear evolution panels is subject to continuous within-

clone neutral evolution over time, whereas punctuated evolution tends to describe only copy 

number evolution, which may remain stable for prolonged periods without additional mutations. 

These are not distinct scenarios, and tumours go through multiple evolutionary modes in their lifetime 

(West et al., 2019). Furthermore, different mutation types have a propensity for different evolutionary 

modes; evidence supporting linear and branched evolution is mainly derived from point variants, whereas, 

evidence for punctuated evolution has generally come from copy number analyses (Newburger et al., 2013; 

Wang et al., 2014; Gerstung et al., 2020). An additional factor that influences tumour evolution is the fact 

that subclones interact with each other through secretion of molecules and changes to the 

microenvironment. This allows for non-autonomous selection, where non-dominant genetic subclones 

drive overall tumour growth and maintain clonal diversity (Marusyk et al., 2014), and, in some cases, 

enables metastases to develop (Sanborn et al., 2015). 
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1.3 Intratumour heterogeneity 

Intratumour heterogeneity (ITH) is a fundamental feature of all cancers, and provides tumours with the 

ability to adapt and develop resistance to therapies. 

Genetic ITH results in a large pool of distinct genomes for resistance conferring mutations to exist by 

chance. The mutations may have a neutral, or even deleterious effect on cells prior to treatment, but result 

in a beneficial effect after its onset, leading to selection and clonal expansion of those cells. As previously 

mentioned, the mode of evolution influences the level of genetic ITH seen in a tumour, with strong 

selective forces reducing ITH, and weak selection or neutral evolution allowing a build-up of ITH, and 

therefore an increased chance of resisting therapy through genetic mechanisms (Davis et al., 2017).  

A further factor that influences the level of genetic ITH is the presence of ecDNA. These molecules undergo 

uneven segregation during cell division, due to their lack of centromeres, leading to an uneven distribution 

in otherwise genetically similar populations. This causes a major increase in ITH, and additionally, allows for 

rapid changes in genotypes in response to changes in environment, such as the initiation of drugs 

(Nathanson et al., 2014; Decarvalho et al., 2018; Turner et al., 2017; Xu et al., 2019; Verhaak et al., 2019; 

Kim et al., 2020). 

At the transcriptomic level, ITH of cancer cell profiles may occur due to regional differences in the 

microenvironment, such as the extracellular matrix, availability of blood supply, secreted molecules from 

nearby cells, or interaction with immune cells, all of which affect the regulation of cancer cells (Yu et al., 

2020; Nelson and Bissell, 2006; Darmanis et al., 2017). More importantly, cell plasticity enables cancer cells 

to undergo epigenetic reprogramming and revert back to developmental-like stem cell states, with others 

differentiated into more proliferative cell types that correspond, to some extent, with varying stages along 

lineage pathways, dependant on the cell of origin for that tumour (Lathia et al., 2015; Liau et al., 2017; 

Neftel et al., 2019; Couturier et al., 2020). This plasticity in cell states allows tumours to transition to more 

resistant states in response to therapy, as discussed below. 

1.4 Treatment Resistance in Cancer 

Cancer therapies come in many forms: Cytotoxic therapies, including radiotherapy and many 

chemotherapies, aim to damage cells by interfering with essential cellular processes or inducing DNA 

damage, effects which are less tolerated or unable to be repaired specifically in cancer cells; targeted 

therapies aim to disrupt specific proteins or cellular processes that are dysregulated in cancer cells; 

monoclonal antibodies and vaccines aim to direct a patient’s natural immune system to specific antigens; 

and adoptive T cell therapy, immune checkpoint inhibitors, immune system modulators, and oncolytic 
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viruses aim to cause a general increase of the immune response to tumours (Kruger et al., 2019; Farkona et 

al., 2016).  

These therapies are all susceptible to tumours developing resistance to them, via innate or acquired 

genetic changes, or an adaptive transcriptomic change in cell states. Such mechanisms allow cancer cells to 

develop resistance to a particular therapy, or to develop multidrug resistance, as outlined below (Cree and 

Charlton, 2017).  

Alteration of drug target 

Cancer cells can become resistant to the effects of a drug if they acquire mutations that prevent it 

binding with its target. This can be achieved through altering the localization of the target, changing 

its conformation so that it no longer binds to the drug, or reducing levels of the target in the cell. 

For example, nutlins are a class of pre-clinical small molecule activators of the tumour suppressor 

protein p53. They enhance p53 mediated apoptosis by preventing it’s binding to the ubiquitin 

ligase Mdm2, which otherwise block’s p53 transcriptional activity and induces its degradation 

(Pflaum et al., 2014). Resistance to nutlins has been shown in multiple cancer cell lines as a result 

of acquired missense mutations in the DNA binding domain of the p53 gene, thereby preventing its 

activation (Aziz et al., 2011; Michaelis et al., 2011). 

Increased resistance to apoptosis 

Most cancer therapies aim to trigger apoptosis in cancer cells. Therefore, an important mechanism 

of therapy resistance is for cells to increase their tolerance to such signalling pathways 

(Mohammad et al., 2015). In order for a cell to avoid apoptosis, antiapoptotic proteins must 

sequester proapoptotic activator proteins. The small-molecule drug ABT-737, is an antagonist of 

Bcl-2 antiapoptotic protein that underwent evaluation in clinical trials for several cancers. In non-

Hodgkin lymphoma cell lines, long-term exposure of this drug was found to initiate resistance 

through transcriptional upregulation of alternative antiapoptotic proteins BFL-1 or Mcl-1, thereby 

allowing the cells to sufficiently sequester the activator proteins and avoid apoptosis (Yecies et al., 

2010).  

Increased DNA repair 

Many cancer drugs aim to take advantage of cancer cells’ reduced ability to repair DNA. However, 

these cells often subsequently increase DNA damage in response. Such effects have been 

demonstrated in ovarian cancer patients receiving platinum-based therapy, where cells taken from 

patients prior to and after the onset of therapy were subjected to the drug ex vivo for 1h. The 

proportion of the resulting DNA crosslinking was measured over time, with similar peak levels in 
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the two groups. After 24 hours the previously drug naïve cells had repaired 2.85% of the damage, 

whereas cells from patients who had previously received the drug, had repaired 71.23% of the 

damage, demonstrating a significantly increased DNA damage repair response following drug 

exposure (Wynne et al., 2007). 

Drug inactivation 

Glutathione S-transferases (GSTs) are a family of enzymes involved in detoxication reactions, and 

found to be associated with therapy resistance across multiple cancers. GSTs enable cancer cells to 

better resist treatments through both conjugating with drugs, and reducing reactive oxygen 

radicals caused by chemo and radiotherapy (Singh, 2015; Allocati et al., 2018). For example, GSTP1 

was found to be upregulated in osteosarcoma cell lines following platinum-based chemotherapy 

(Huang et al., 2007), and increased expression of GSTP1 in osteosarcomas from patients receiving 

the same therapy was associated with a significantly higher relapse rate and a worse prognosis 

(Pasello et al., 2008). 

Increased drug efflux 

One method to reduce the negative effects of a drug on a cell is to reduce its concentration by 

increasing the drug’s efflux from the cell (Yu et al., 2013). ATP binding cassette (ABC) transporters 

are a family of transporters involved in this process (Domenichini et al., 2019). In multiple-myeloma 

patients, 40 genes have been identified as being prognostic of progression-free survival. 7 of these 

are from the ABC transporter family, suggesting their involvement in primary drug resistance 

(Hassen et al., 2015). 

Epithelial-to-mesenchymal transition  

Cancer stem cells (CSCs) are a subpopulation of neoplastic cells with self-renewing properties, 

thought to give rise to more differentiated cell types and drive tumour progression. These cells are 

also thought to be largely responsible for driving therapy resistance and relapse, owing to a lack of 

proliferation and survival checkpoints (Yamada and Nakano, 2012; Prager et al., 2020; Lathia et al., 

2015). This ‘stemness’ phenotype has been found to be largely attributable to epigenetic changes 

resulting from an epithelial-to-mesenchymal transition (EMT) programme, initiated via pathways 

including transforming growth factor beta (TGFβ) – SMAD and Wnt signalling. Cells undergoing EMT 

lose their epithelial cell junctions and apical–basal polarity, and instead acquire mesenchymal like 

features such as an elongated fibroblast-like morphology, with increased capacity for migration and 

invasion (Shibue and Weinberg, 2017). EMT’s involvement in prognosis is illustrated in a study 

where resistance of both non-small-cell lung cancer (NSCLC) cell lines and patient tumours to 
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phosphoinositide 3-kinases (PI3K)/protein kinase B (Akt) or epidermal growth factor receptor 

(EGFR) inhibitors was higher for those with a mesenchymal EMT gene expression signature. 

Additionally, inhibition of the EMT marker Axl receptor tyrosine kinase, sensitised mesenchymal 

NSCLC cell lines and xenograft tumours to EGFR inhibitors. The same effects were not seen for 

common cytotoxic chemotherapy drugs, suggesting EMT confers resistance only to certain types of 

therapies (Byers et al., 2013). 

Reduced cell proliferation 

Studies are finding accumulating evidence of subpopulations of cells in tumours that evade the 

effects of therapy by entering into a reversible, quiescent persister cell state, capable of only 

transient partial differentiation. Similar to the phenomenon seen in bacterial populations (Dawson 

et al., 2011), cell quiescence prevents drugs from having the same level of corruption in the cells.  

This has been demonstrated in lung cancer cells treated with the tyrosine kinase inhibitor (TKI) 

erlotinib, from which, resistant populations arose with negligible growth. Many of these 

populations, across different replicates, were found to have a variety of classic erlotinib specific 

resistance mechanisms, such as mutations in the mitogen-activated protein kinase (MAPK) 

pathway. This led to speculation that persister cells act as a reservoir for subsequent acquired 

resistance mechanisms (Ramirez et al., 2016; Dawson et al., 2011). 

Another mode of therapy resistance has been recently identified in melanoma cells. These were found to 

have extensive transcriptional variability, with semi-coordinated transcription of high levels of multiple 

resistance markers, such as receptor tyrosine kinases, in a very small number of cells prior to therapy. 

Addition of a B-Raf inhibitor resulted in fixation of resistance markers and epigenetic reprogramming of 

those cells, following loss of SOX10-mediated differentiation. Interestingly, the cells that went on to 

become stably resistant through this process, had high rates of proliferation both prior to, and during, drug 

onset, suggesting this is a different mechanism to those resulting in persister cell states (Shaffer et al., 

2017). 

1.5 Glioblastoma 

Glioblastoma (GBM) is the most common and aggressive malignant primary brain cancer in adults, 

responsible for around half of all cases. Despite surgical intervention and chemoradiotherapy, the tumours 

almost invariably become treatment resistant and recur, causing mortality with a median survival of just 15 

months (Johnson and O’Neill, 2012; Stupp et al., 2017). GBMs are grade IV diffuse gliomas, which are 

characterised by their ability for cancer cells to infiltrate into surrounding brain parenchyma, with lower 

grade diffuse gliomas typically being grade II/III diffuse astrocytoma and oligodendroglioma. The 5-year 

survival rate for GBM is around 5% (Stupp et al., 2009; Marenco-Hillembrand et al., 2020; Ostrom et al., 
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2016), far lower than any other malignant brain or CNS cancer, which together have an average 5-year 

survival rate of 34.9% (Ostrom et al., 2016). Grade II/III diffuse astrocytoma and oligodendroglioma have a 

much better prognosis, with 5-year survival rates of 49.7% and 80.9% (Ostrom et al., 2016). GBM affects 

2.05 per 100,000 annually in the UK, with estimates in other countries varying from 0.59 (Korea) to 3.40 

(Australia) per 100,000 (Tamimi and Juweid, 2017). Cases increase with age, peaking at 75–84 years 

(Tamimi and Juweid, 2017). Other risk factors include being male (around 3:2 ratio to females), white 

ethnicity, previous radiation exposure, and carrying germline mutations in apoptotic or DNA repair 

pathways, such as TP53 mutation (Li Fraumeni syndrome) or NF1 (Neurofibromatosis type 1) (Rice et al., 

2016; Ostrom et al., 2016; Thakkar et al., 2014). 

GBM, diffuse astrocytoma, and oligodendroglioma are further categorised into 3 World Health 

Organisation (WHO) classifications based on the presence of co-occurring deletion of the chromosomes 

arms 1p and 19q (1p/19q-codeletion) and the mutation status of isocitrate dehydrogenase 1 and 2 

(IDH1/IDH2) (Figure 3). In healthy cells, IDH1 and IDH2 enzymes function primarily in the reversible 

conversion between isocitrate (ICT) and α-ketoglutarate (α-KG), within the citric acid cycle. In many glioma 

tumours, however, mutations within the ICT binding site allow IDH to perform an additional reaction 

whereby α-KG is converted into 2-hydroxyglutarate (2HG) (Wise et al., 2011), which causes genome-wide 

histone alterations and DNA hypermethylation (Xu et al., 2011; Ye et al., 2018). IDH-mutant gliomas are 

most commonly slower-growing grade II or III oligodendrogliomas (1p/19q-codeletion) or astrocytomas 

(1p/19q-wildtype (wt)), but may later progress to a fast-growing grade IV GBM. IDHwt gliomas are most 

commonly grade IV (GBMs), with a smaller fraction being a lower grade astrocytoma, and are associated 

with worse survival and therapy response compared to IDH mutant tumours (Louis et al., 2016; Sepúlveda-

Sánchez et al., 2018; Wesseling and Capper, 2018; Perry and Wesseling, 2016; Christians et al., 2019).  

Gliomas can be further categorised into three subgroups (proneural, mesenchymal, and classical), 

identified through clustering of tumour transcriptomes. Within each tumour, all three subgroups are 

supported by varying proportions of individual cells, the most prevalent of which reflects the overall bulk 

tumour subtype, and is influenced by the genetic alterations present (Wang et al., 2017; Verhaak et al., 

2010).  
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Figure 3. Flow diagram of the processes involved in classifying diffuse gliomas. (ATRX: alpha 

thalassemia/mental retardation syndrome X-linked.) 

GBM, and other diffuse gliomas, have several characteristic features that make them particularly 

challenging to treat (Aldape et al., 2019). Firstly, surgeons are unable to resect a wide margin around the 

tumour, as they do with other cancers, owing to the damaging consequences of removing heathy brain 

cells. The infiltrative nature of GBM and other diffuse glioma cells to migrate and grow deep into 

surrounding brain parenchyma, further exacerbates the issue and, as a result, many cancer cells are left 

remaining (Lee et al., 2018). Secondly, the blood brain barrier that surrounds the brain and spinal cord, 

severely reduces the delivery of drugs to the brain, limiting the choice of effective treatments (Riganti et 

al., 2014). Lastly, GBMs in particular have extensive ITH. This is seen at both the genetic level, through 

spatially distinct multisampling genome sequencing studies (Sottoriva et al., 2013), as well as at the 

transcriptomic level, through histology (Perry and Wesseling, 2016) and single-cell RNA sequencing. The 

latter has undergone extensive investigation lately, with GBM cells found to cluster into a spectrum of 

distinct cell states that recapitulate different neural developmental pathways (Neftel et al., 2019; Couturier 

et al., 2020). 

As with all cancers, GBMs are individually highly variable in their genetic makeup, but show general trends 

in their progression (Körber et al., 2019; Gerstung et al., 2020; Barthel et al., 2018). Loss of chromosomes 

10 (covering phosphatase and tensin homolog (PTEN)) and 9p (covering cyclin-dependent kinase inhibitors 

2A and 2B (CDKN2A and CDKN2B)), homozygous loss specifically of CDKN2A and CDKN2B, and gain of 

chromosome 7 (covering EGFR) are common early events, with at least two of these found as clonal in 81% 

of IDHwt GBMs. Other common early events include coding variants in EGFR and TP53, and promotor 

variants in telomerase reverse transcriptase (TERT). Point variants in PTEN, and aneuploid changes such as 
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gain of chromosomes 19q and 20q, and loss of chromosome 22q are common intermediate or later events. 

(Körber et al., 2019; Barthel et al., 2018; Brastianos et al., 2017).  

These, and other common mutations in GBM, lead to the dysregulation of pathways including receptor 

tyrosine kinase (RTK), PI3K, MAPK, Wnt, and Akt signalling, as well as the p53 DNA damage repair pathway. 

Additionally, activating variants in the promotor of TERT, involved in the rate limiting step in elongation of 

telomeres, immortalises GBM cells early on in development (Ceccarelli et al., 2016). Loss of CDKN2A/B, 

which are involved in regulating the cell cycle, further enables GBM cells to proliferate uncontrollably (Ellis 

et al., 2019; Barthel et al., 2018; Sottoriva et al., 2013; The Cancer Genome Atlas (TCGA) Research Network, 

2008).  

A common feature of GBM is ecDNA, where genes are found in high copy numbers on circular DNA outside 

of centromere containing chromosomes. As a result of the uneven segregation and distribution of these 

molecules, ecDNA has shown to be an important contributing factor to GBM’s high levels of genetic ITH and 

allows for rapid changes in genotypes (Nathanson et al., 2014; Decarvalho et al., 2018; Turner et al., 2017; 

Xu et al., 2019; Verhaak et al., 2019; Kim et al., 2020). EGFR is one example of a gene that is commonly 

present on ecDNA in GBM, and codes for a transmembrane receptor tyrosine kinase in the ERBB family, 

with numerous signalling ligands that activate the PI3K/Akt, MAPK/extracellular signal-related kinase (ERK), 

and Janus kinases (JAK)/signal transducer and activator of transcription (STAT) pathways (An et al., 2018). 

In addition to amplifications, structural variants of EGFR are common in GBM, particularly specific loss of 

exons 2-7, resulting in the protein variant EGFRvIII, present in around a third of GBMs (Yang et al., 2017). 

EGFRvIII is a constitutively activated form of the receptor, resulting in signalling independent of ligand, 

causing increased DNA mismatch repair, proliferation, invasiveness and angiogenesis, and reduced 

apoptosis. Additionally, it induces chromosomal instability and is, alone, sufficient to initiate gliomagenesis 

after a long latency (Noorani et al., 2020; Struve et al., 2020). 

Standard treatment for GBM includes surgical resection, followed by radiotherapy and temozolomide 

(TMZ) chemotherapy. These are both cytotoxic therapies that aim to kill cancer cells through damaging 

their DNA. Unlike healthy cells, which can recover from cytotoxicity, cancer cells often lack the DNA 

damage repair mechanisms. Radiotherapy, delivered via an external beam to gliomas, directly damages 

cells’ DNA, primarily through double-strand breaks (Huang and Zhou, 2020). TMZ is one of the few 

chemotherapy drugs able to cross the blood brain barrier, owing to its ability to downregulate mechanisms 

responsible for its efflux back into the blood stream, and has been part of standard treatment since 2005 

(Stupp et al., 2005; Riganti et al., 2014). It induces damage through methylation of DNA, including the 

formation of O6-methylguanine lesions. These are highly cytotoxic in cells unable to repair them, resulting 

in mismatched guanine to thymine bases after replication which, if also not repaired, ultimately result in a 

double-strand breaks (Drabløs et al., 2004). Importantly, expression of the DNA repair protein gene O6-
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methylguanine-DNA methyl-transferase (MGMT) greatly reduces the efficacy of TMZ by removing the 

methyl groups it deposits. In about half of GBMs the MGMT promotor is methylated, silencing its 

expression and typically conferring treatment sensitivity (Hegi et al., 2005).  

1.6 Treatment resistance in glioblastoma 

While treatment resistance is a potential issue in almost all cancers, it is of particular significance in GBM, 

where it contributes to the almost 100% mortality in patients. In the past year, longitudinal genomic 

studies of matched primary and recurrent GBMs from patients having undergone standard therapy, have 

aimed to identify genetic mechanisms responsible for resistance (Kraboth and Kalman, 2020; Barthel et al., 

2019; Körber et al., 2019; Wang et al., 2016). However, they’ve shown a general lack of evidence 

supporting such mechanisms in GBM. Few genes are found commonly altered specifically in recurrent 

tumours, and the subclonal genetic ITH of the primary tumours are at least partially maintained through to 

recurrent. Together, these studies suggest that, instead, transcriptomic adaptive mechanisms are likely the 

primary driving force behind standard therapy resistance in GBM.  

However, evidence for some mutations conferring genetic resistance has been identified in a minority of 

patients. Mutations in genes encoding DNA mismatch-repair proteins are commonly seen in recurrent 

gliomas in response to TMZ (Wang et al., 2016). In GBM specifically, the mismatch-repair protein gene 

MSH6 was found altered in 3 out of 14 post standard therapy recurrent tumours, but in none of 40 primary 

tumours examined. Furthermore, its expression was lost in 7 of 17 recurrent tumours, but in none of 17 

primary tumours examined (Cahill et al., 2007). Gain of function mutations in latent TGF-beta binding 

protein 4 (LTBP4) were identified in 10/93 patients, and in none of the matched primary recurrent tumours 

(Wang et al., 2016). This gene activates TGF-β signalling, thereby inducing EMT and increasing proliferation 

(Comaills et al., 2016).  

Studies investigating resistance mechanisms at the transcriptomic level have identified numerous genes 

and pathways that are differentially regulated in recurrent tumours, and implicated in increased therapy 

resistance (Ali et al., 2020; Chien et al., 2019; Lee, 2016; Yi et al., 2019). However, the most important 

observations are likely those that show widespread epigenetic remodelling of cell states (Oliver et al., 

2020). The traditional view of GBM, and other cancers, is that a population of pre-existing CSCs within a 

unidirectional hierarchical system of cell states are largely responsible for driving adaptive therapy 

resistance (Yamada and Nakano, 2012; Prager et al., 2020; Lathia et al., 2015; Lan et al., 2017). Some recent 

studies, however, contradict this, with GBM cells instead found to cluster into four or five distinct states, 

each of which is able transition to another (Neftel et al., 2019; Couturier et al., 2020). Part of this 

discrepancy in observations may result from a lack of reliable CSC markers, or confounding influences of 

unrealistic media conditions in which GBM cell lines are traditionally cultured, causing extensive phenotypic 
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differences between patient derived and cultured cell line derived stem cells (Lee et al., 2006). Further 

studies instead suggest GBM cells resist therapy by transitioning to slow cycling persister states. A study 

using single-cell lineage tracing in stem-like GBM cells, with an amplification of platelet-derived growth 

factor receptor (PDGFR), found that after application of a TKI targeting PDGFR, the cells reversibly 

transitioned to resistant slow-cycling persister cell states. These were dependent on Notch signalling and 

characterised by widespread chromatin remodelling with upregulation of developmental programs. 

Furthermore, this occurred in combination with expansions of genetically resistant subclones containing 

focal amplifications of either insulin receptor substrate 1 or 2 (IRS-1 or IRS-2), both of which conferred 

resistance to the PDGFR inhibitor when overexpressed. This therefore demonstrates sequential adaptive 

and innate or acquired resistance mechanisms in the same GBM cells (Eyler et al., 2020; Liau et al., 2017). 

Similarly, rapid and reversible transition to slow-cycling persisister cell states has been observed in 

response to TMZ. These persister cells had increased expression of histone lysine demethylase genes 

relative to the primary tumours, and transiently acquired characteristics of more differentiated neuronal 

glial cell types (Banelli et al., 2015). Additionally, when a cell line was exposed to TMZ, a small number of 

drug tolerant cells from across different genetic subpopulations survived, with dysregulation of most basal 

metabolism processes and reduced proliferation. These then expanded following epigenetic remodelling to 

acquire full resistance. In contrast to previous studies, this resistance was not reversible (Rabé et al., 2020). 

In an attempt to overcome the poor efficacy of standard therapy, studies have investigated alternative and 

more targeted treatment approaches, but with limited success. (An et al., 2018; Touat et al., 2017; Platten, 

2017). EGFRvIII, in particular, has received a lot of attention (Yang et al., 2017). The EGFRvIII vaccine 

rindopepimut failed recurrent GBM phase III clinical trials (Platten, 2017; Zussman and Engh, 2015), 

although it has shown promising survival benefits more recently in a phase II trial when used in 

combination with the vascular endothelial growth factor (VEGF) inhibitor bevacizumab in recurrent 

EGFRvIII-positive GBM (Reardon et al., 2020). The EGFR antibody therapy cetuximab was used in 

combination with bevacizumab and irinotecan, a cytotoxic alkyloid, in a phase II trial of recurrent GBM, but 

was found to have no benefit compared to the use of bevacizumab and irinotecan alone (Hasselbalch et al., 

2010). Chimeric antigen receptor (CAR) T cells targeting EGFRvIII showed anti-tumour activity in recurrent 

GBM patients in a phase I trial. However, they also induced adaptive resistance to the drug through 

significantly reduced expression of EGFRvIII in the tumours, along with increased expression of 

compensatory immunosuppressive molecule genes, including IDO1, PD-L1, and IL-10 (O’Rourke et al., 

2017). Other drugs have included TKIs targeting EGFR. Only a minority of patients gain a significant benefit 

from these, with response found to be associated with co-expression of PTEN and EGFRvIII (Mellinghoff et 

al., 2005). In a phase II clinical trial, the TKI dacomitinib generally showed poor results against recurrent 

glioblastoma, although with a significant benefit in 4 of the 49 patients, who remained progression free for 

at least 6 months. Various genetic resistance mechanisms have been identified for TKIs in GBM. One study 
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found that after receiving dacomitinib, a patient’s recurrent GBM acquired a six base in-frame deletion in 

EGFR, resulting in their death just two months after therapy onset (Brastianos et al., 2017). A different 

patient who received a TKI targeting MET due to their recurrent GBM containing over 70 copies of the MET 

gene, died 6 weeks later with no evidence of the amplification in the autopsy tumour sample (Brastianos et 

al., 2017). Similarly, in mice, GBMs became resistant to the TKI erlotinib through elimination of EGFRvIII 

ecDNA, which then re-emerged clonally once treatment was stopped (Nathanson et al., 2014). These 

examples illustrate the rapid changes that can occur in the tumour subclonal architecture in response to 

targeted therapies in GBM, and highlight the need for alternative approaches that are less susceptible to 

therapy resistance. 

Owing to the limited successes of existing therapies, it is important to further characterise mechanisms 

associated with resistance in GBM, particularly against the standard cytotoxic chemoradiotherapy, where 

studies have shown a lack of a genetic bottleneck. Accumulating evidence suggests that adaptive epigenetic 

reprogramming of cell states is an important factor in driving such resistance. Nonetheless, genetic factors 

are still likely to play a role. Even if a strong genetic bottleneck is not seen, some subclones may show 

smaller selective advantages over others, or confer resistance in a minority of patients, as has been found 

previously (Wang et al., 2016; Cahill et al., 2007). It is also shown that specific gene alterations predispose 

cells to transition into particular cellular states seen in GBMs (Neftel et al., 2019), and therefore they may 

influence the ability of cells to undergo adaptive resistance. There might also be pathways that are 

essential for the reprogramming process and detrimental when altered, thereby preventing cells with such 

mutations from surviving through to the recurrent. It’s therefore important to characterise the effect of 

standard therapy on the presence and cellular frequencies of mutations in GBM. While studies have 

already identified individual genes that are more commonly altered in recurrent tumours in GBM (Kraboth 

and Kalman, 2020; Wang et al., 2016), they have not applied extensive methods to investigate alterations 

across cellular pathways, and which take into account changes in cellular frequencies. Such analyses may 

inform on the processes that influence GBM cells’ ability to survive though therapy, and potentially identify 

new therapeutic targets. 

1.7 Models of GBM 

In order for researchers to carry out functional analyses or assessment of drug efficacies in cancers, in vitro 

and in vivo models that sufficiently recapitulate patient tumour biology are required. However, obtaining 

such models is a challenge.  

Traditional in vitro models of GBM, where cells are cultured in 2D, fail to account for the influences of 

microenvironmental features, such as the brain’s extracellular matrix and circulatory structures, or 

interactions with non-cancer cells. More state-of-the-art innovative approaches are being developed to 
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overcome these limitations (Caragher et al., 2019). Organotypic spheroids, where tissue taken directly from 

patient biopsies is grown in 3D culture, are able to preserve intact blood vessels and the tumour-associated 

extracellular matrix, as well as the presence of patient macrophages. Alternatively, scaffolds that artificially 

replicate the extracellular matrix of the brain are being developed for culturing cells in 3D. More advanced 

approaches include the creation of cerebral organised from pluripotent stem cells, grown and 

differentiated under specific sequential media conditions to create what are being referred to as ‘mini-

brains’. These newer methods of culturing GBM cells better recreate the original tumour biology, and have 

resulted in improved accuracies of in vitro drug screening (Caragher et al., 2019).  

In vivo cancer models are commonly used to avoid some of the limitations of traditional in vitro models. 

Use of such animal models is a controversial topic, not least because of the significant ethical issues with 

inflicting pain and suffering on animals (Joffe et al., 2016; Ferdowsian and Beck, 2011). Additional concerns 

relate to the fact that the models often do not recapitulate human biology. Mouse models for cancers are 

commonly developed by injecting cancer cells from a patient biopsy into the same location in an animal, 

creating a patient-derived orthotopic xenograft (PDOX). Treatment of cells prior to injection, such as cell 

dissociation and passaging in culture, results in them drifting from the biology of the original biopsy. As well 

as undergoing transcriptomic and epigenomic changes, the cells may also undergo clonal evolution with 

selection of subclones, in a way that differs from that of the patient’s tumour (Ben-David et al., 2017; 

Yoshida, 2020). As a result, these models show poor accuracy in predicting therapeutic responses in 

humans (Aldape et al., 2019). Researchers are therefore aiming to improve how GBM PDOX’s are created, 

through minimising cell processing steps from biopsy to PDOX, with the goal of preserving more of the 

biology of the patient tumour (Golebiewska et al., 2020; Yoshida, 2020).  

In order for any in vitro or in vivo models to provide accurate predictions of GBM biology, they must be able 

to maintain the subclonal architecture of the originating patient biopsy. It is therefore necessary to 

characterise the ITH of matched models and biopsies, and investigate any changes between them. Such 

analysis can be achieved using the same computational methods as those for investigating GBM 

progression through therapy.  

1.8 Computational investigation of ITH 

The importance of ITH in tumour progression and response to therapies, makes characterising it a priority 

for researchers and clinicians. Reconstruction of the clonal architecture and evolutionary dynamics of 

tumours allows for predictions of their clinical course, as well as hypotheses on the consequences of 

individual mutations within them, and the role of cellular processes they affect. Many researchers aim to 

achieve this using genome sequencing of samples taken from patient tumours. Ideally this would include 

many samples per tumour so that all spatially distinct areas can be sufficiently represented. Longitudinal 
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plasma biopsies are also useful in tracking DNA from circulating cancer cells, and inferring changes in 

subclonal populations in response to therapies over time, including those from metastatic cells not 

detectable at the original tumour site (Dagogo-Jack and Shaw, 2018). Often, however, only a single bulk 

sample is available from a tumour, owing to financial constraints or tissue availability. As a result, a major 

limitation of any analysis into genetic ITH from these samples is subject to the confounding effects of 

sampling bias. This raises a number of issues, such as i) parts of a tumour’s phylogenetic tree not being 

captured, hindering phylogenetic reconstruction, ii) inaccurate estimation of a mutation’s prevalence in a 

tumour, particularly when subclonal mutations falsely appear clonal or completely absent, or iii) 

underestimation of the level of ITH. Such effects from single samples have been extensively assessed 

through spatial simulations of tumour evolution (Sun et al., 2017; Chkhaidze et al., 2019), or through multi-

region sequencing (Bhandari et al., 2018; Siegmund and Shibata, 2016; Watkins and Schwarz, 2018; 

Mahlokozera et al., 2018). 

Nonetheless, a large field of research has been undertaken to study ITH from both single and multi-sample 

datasets. One approach has been to quantify the extent of ITH in tumours in a simple metric, or from the 

numbers of detectable subclones (Mroz et al., 2015). This allows observations to be made, such as the 

survival prognostic value of ITH or number of detectable subclones. Reports from these studies can be 

confusing, as many refer to a high or low number of detectable subclones as being the same as high or low 

ITH, which is not always the case; ITH is highest in neutral evolution, but due to the lack of selection and 

clonal expansions, subclones are often not detected (Figure 2). In general, increased numbers of detectable 

subclones have been associated with poor survival across a range of cancers, possibly reflecting an 

increased aggressiveness of the cells under selection (Morris et al., 2016; Turajlic et al., 2018; Davis et al., 

2017; Espiritu et al., 2018). Conversely, very high numbers, beyond four subclones, is associated with 

increased survival, possibly as a result of the negative effect of genomic instability on tumour cell survival 

(Andor et al., 2016). Other studies aim to investigate the specific events underlying ITH, through 

characterising individual subclones in a tumour by identifying the sets of mutations that define them, and 

their cellular frequencies in each sample. The ideal approach to achieve this would be through sequencing a 

representative proportion of individual cells in a tumour, so that unbiased quantification of distinct 

genotypes can be calculated. However, current high-throughput single-cell sequencing methods are 

expensive and suffer from extensive technical noise, including gene drop-outs (Kuipers et al., 2017). Such 

datasets are therefore not readily available for most tumour samples. An alternative, and commonly 

performed approach, is to identify mutations from bulk tumour sequencing (either whole-exome (WES) or 

whole-genome (WGS), often with a matched normal sample), and then attempt to infer the underlying 

subclones from these through a process known as subclonal deconvolution. Phylogenetic reconstruction is 

then also often performed, in order to infer the evolutionary history of these subclones within the tumour.  
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Several large-scale projects have been undertaken to investigate tumour ITH and evolution. The TRACERx 

(TRAcking Cancer Evolution through therapy (Rx)) study has collected tumour specimens over multiple time 

points from hundreds of patients across lung, melanoma, prostate, and renal cancers, allowing 

unprecedented details into tumour evolution to be studied (Turajlic et al., 2018; Mitchell, 2018; 

McGranahan et al., 2016; Jamal-Hanjani, 2017). More recently, the ICGC-TCGA Pan-Cancer Analysis of 

Whole Genomes Project (PCAWG) has investigated ITH in 2,778 cancer samples from 2,658 patients, 

allowing comparisons between 38 cancer types, and identified cancer specific trends in tumour 

evolutionary trajectories (Gerstung et al., 2020; Dentro et al., 2020). This study largely confirmed previous 

reports of the ordering of common genetic alterations in primary GBMs, described in section 1.5. 

Subclonal deconvolution has been a key feature in these projects to allow predictions of the clonal make up 

of tumours. Such an analysis can be achieved for a number of different types of mutations. The most 

common methods, and the type focussed on in this study, perform deconvolution of point variants. These 

utilise variant allele frequencies (VAFs) calculated from the ratios of reference to variant supporting reads, 

in order to estimate the proportions of cells containing each variant, known as their cancer cell fraction 

(CCF) (Figure 4). This inference of CCFs from VAFs is a challenging process due to a number of factors that 

distort a direct correlation between them, including tumour purity, technical noise, and overlapping CNAs, 

all for which require normalisation. Then, variants are grouped into distinct subclones, either by clustering 

CCFs or through mathematical phylogenetic modelling approaches. In themselves, CCFs are valuable to 

researchers, as they allow for inferences on the relative fitness conferred by variants through changes in 

CCFs between longitudinal samples (Barthel et al., 2019). However, once deconvoluted into distinct 

subclones, these can be more reliably tracked between samples, or fitted into a phylogenetic tree, and 

observations can be made about co-occurring mutations within the same subclone. 

Many methods are available for performing subclonal deconvolution of point variants (Eg. PyClone (Roth et 

al., 2014), Ccube (Yuan et al., 2018), Sclust (Cun et al., 2018), MOBSTER (Caravagna et al., 2020)), and for 

generating the mutation call set inputs (Eg. Mutect2 (Benjamin et al., 2019), VarScan2 (Koboldt et al., 

2012), Strelka2 (Kim et al., 2018), Lancet (Narzisi et al., 2018), TITAN (Ha et al., 2014), FACETS (Shen and 

Seshan, 2016), Sequenza (Favero et al., 2015)), but all of which give highly varied results (Abécassis et al., 

2019; Andor et al., 2016; Salcedo et al., 2020; Bhandari et al., 2018). Such methods therefore require 

benchmarking where the results obtained from each are compared to known ground-truths. This allows 

researchers to assess how reliable these analyses are, as well as which methods provide the most accurate 

predictions. While most mutation calling and subclonal deconvolution methods have undergone some level 

of previous benchmarking, many such studies have limitations, largely due to the difficulty in obtaining 

suitably realistic test data sets with known ground truths of the underlying mutation profiles. This requires 

computationally simulated datasets. However, available methods for creating these are limited in their 

ability to model the complexity of real tumour sequencing datasets, which include overlapping and flexibly 
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ordered point and structural mutations from multiple related subclones, with sequencing reads reflecting 

noise from both sequencing errors and alignment errors, and in the case of WES, variations in exon capture 

along the genome. These are all likely to impact the performance of subclonal deconvolution pipelines and 

therefore need to be modelled. Additionally, investigations into the suitability and effects of different 

mutation calling methods used to generate the inputted call sets, particularly allele-specific CNA callers, are 

often overlooked. Such limitations of previous subclonal deconvolution benchmarking studies are discussed 

in detail in Chapter 2.  

 

Figure 4. Illustration of the processes involved in subclonal deconvolution. Bulk sample: Circles 

represent normal (green) and cancerous (red) cells within the sample. The lines represent copies of 

a chromosome, which may differ from two copies in the cancer cells. Variants (cross and triangle) 

may be present on one, multiple, or no copies of a chromosome within a cell depending on the 

order of alterations and phylogenetic history of the cell. Mutation calling: The bulk sample is 
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sequenced and variant allele frequencies (VAFs) are identified from the proportions of sequencing 

reads that support each variant allele, compared to the total reads across those positions. CCF 

estimation: Cancer cell fractions (CCFs) are estimated from VAFs by normalising for sample purity, 

copy number and multiplicity. Subclonal deconvolution: CCFs are clustered into groups, thereby 

inferring variants that are present in the same subclones. The neutral tail cluster results from 

ongoing neutral evolution across all subclones. Phylogenetic reconstruction: CCF clusters are 

arranged onto a phylogenetic tree in order to infer the evolutionary history of a tumour. This 

history is reflected in the cells present in the bulk tumour.  

1.9 Hypothesis 

GBMs inevitably become resistant to standard chemoradiotherapy, and accumulating evidence suggests 

this is mediated largely through adaptive epigenetic reprogramming. Innate or acquired genetic factors are 

also likely to contribute to therapy resistance, either through influencing the ability of cells to undergo 

adaptive epigenetic reprogramming, or through distinct mechanisms. 

Characterising ITH in paired primary and recurrent GBMs allows identification of changes in the presence, 

or cellular frequencies, of variants through therapy, and may indicate those that either increase or 

decrease the ability of cells to survive. Investigating such variants using pathway analysis could uncover 

cellular processes underlying resistance or sensitisation mechanisms, and which may provide novel targets 

for treating GBM.  

Similar methods also allow for an assessment of the extent that cancer models maintain the subclonal 

architecture, and therefore biology, of the originating patient biopsies. Our collaborators at the NorLux 

Neuro-oncology laboratory based at the Luxembourg Institute of health, have developed glioma PDOX 

models using 3D organoids created without cell dissociation or passage. Characterising the ITH of these 

PDOXs, and assessing the level of correlation with the originating biopsies, will aid in determining their 

suitability as models. 

1.10 Aims and objectives 

I aim to investigate the effect of therapy on intratumour heterogeneity in GBM in order to uncover new 

targets for overcoming therapy resistance, using genome sequencing datasets for a set of matched primary 

and recurrent GBM samples. This approach involves mutation calling and subclonal deconvolution to 

characterise subclones within the tumours. However, it’s not clear what the most suitable methods are for 

performing these processes, so I therefore first aim to carry out benchmarking to assess their accuracy. This 

requires developing novel methods to simulate artificial tumour sequencing reads with known ground 

truths, and which improve on existing methods in recapitulating the complexity of real tumours. I will then 
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use the simulated datasets with different analysis pipelines, and compare their outputs to the known 

ground truths. The best performing pipeline will then be applied to the real tumour datasets. I next aim to 

use the results from this to investigate how therapy affects subclone frequencies. This will include the use 

of a model for predicting whether subclones are undergoing selection in the tumours and whether this is 

associated with undergoing therapy, as well as performing pathway analysis to uncover specific cellular 

mechanisms that may be driving an increased or decreased resistance to therapy. Lastly, I aim to use 

subclonal deconvolution to determine whether PDOXs, created without cell dissociation or passage, 

maintain the intratumour heterogeneity of the originating patient biopsies. 

The specific aims and objectives of each chapter are outlined below and illustrated in Figure 5. 

 

Chapter 2 - Simulation of Heterogeneous Tumour genomes and in silico WES Data Sets 

Aim: Develop methods for simulating realistically complex artificial WES datasets for heterogeneous 

tumours. 

Objectives: 

- Develop a novel method for simulating heterogeneous tumour genomes, with mutations that 
recreate the complexity seen in real tumours. 
 

- Improve an existing method for in silico WES, to allow creation of artificial sequencing datasets 
from simulated genomes, with realistic read distributions. 

 

Chapter 3 – Benchmarking of mutation calling and subclonal deconvolution methods 

Aim: Determine the accuracies of different pipelines for mutation calling and subclonal deconvolution. 

Objectives: 

- Create test datasets with known ground truths using the methods developed in Chapter 2. 
 

- Run somatic variant calling and CNA calling methods on the test datasets and assess the accuracy 
of these methods by comparing their outputs to the known ground truths. 
 

- Provide the called variants and CNAs as input into subclonal deconvolution methods, and assess 
the accuracy of these methods by comparing their outputs to known ground truths.  
 

Chapter 4 – Identification of pathways relevant to GBM progression through therapy 

Aim: Use subclonal deconvolution, or alternative methods, to characterise GBM progression through 

therapy, and identify variants and pathways that may confer increased resistance or sensitivity. 
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Objectives: 

- Use the SubClonalSelection model with VAFs from paired primary and recurrent GBMs, to predict 
whether the tumours are evolving neutrally or under selection through therapy. 
 

- Identify variants that show evidence of being in subclones that increase or decrease in frequency 
through therapy. 
 

- Perform pathway gene set enrichment analysis (GSEA) on the identified variants, to highlight 
pathways that are candidates for conferring increased resistance or sensitivity to therapy.  
 

Chapter 5 – Comparison of intratumour heterogeneity between GBM patient biopsies and patient-

derived orthotopic xenografts 

Aim: Use subclonal deconvolution to examine the extent to which GBM PDOXs, created without cell 

dissociation or passage, are able to maintain the clonal architecture of the originating patient biopsies. 

Objectives: 

- Develop and apply pipelines for calling variants and CNAs from targeted sequencing and array 
Comparative Genomic Hybridisation (aCGH) datasets, from paired biopsy and PDOX GBM samples. 
 

- Perform subclonal deconvolution using the called variants and CNAs, to generate variant CCFs. 
 

- Determine the correlations of variant CCFs between biopsies and PDOXs, and investigate those that 
differ.  
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Figure 5. A diagram of the objectives involved in each of the chapters in this study, as well as future 

planned analyses that will follow on from, and are made possible, by this work. 
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Chapter 2 – Simulation of Heterogeneous Tumour 
genomes and in silico WES Data Sets 
The majority of the work presented in this chapter was originally published by Oxford University Press in 

Bioinformatics (Tanner et al., 2019). The material is reproduced under the Creative Commons CC BY license. 

2.1 Introduction 

2.1.1 Overview 

Analysis of intratumour heterogeneity is commonly achieved through mutation calling and subclonal 

deconvolution from whole-exome sequencing (WES). The different methods and pipelines for performing 

such analyses have been found to give highly conflicting results (Abécassis et al., 2019; Andor et al., 2016; 

Salcedo et al., 2020; Bhandari et al., 2018). Reliable benchmarking, using datasets with known ground 

truths, is therefore required to determine which are the most accurate. However, such studies have not 

been extensively carried out for these analyses. As discussed below, previous benchmarking of both 

mutation calling and subclonal deconvolution has suffered from various limitations, not least due to 

difficulties in generating realistic artificial sequencing datasets with known ground truths, on which to test 

the methods. I therefore aimed to carry out more reliable benchmarking, requiring the development of two 

new computational methods to generate artificial datasets. This chapter describes these methods, which 

simulate tumour genomes and create artificial WES datasets from them, both of which significantly 

improve on existing methods. 

In the literature, different terms are used to distinguish mutations that occur in an individual’s inherited 

germline genome and mutations that develop in somatic tissue throughout life, owing to their differing 

relevance in biology. Germline point and copy number mutations are generally referred to as ‘single 

nucleotide polymorphisms’ (SNPs) and ‘copy number variants’ (CNVs), whereas the equivalent somatic 

mutations are referred to as ‘single nucleotide variants’ (SNVs) and ‘copy number alterations’ (CNAs). In 

order to simplify explanations of the simulation methods I developed, in this chapter only, I refer to both 

germline and somatic point and copy number mutations as ‘single nucleotide variants’ (SNVs) and ‘copy 

number variants’ (CNVs), and specifically state when referring to only germline or somatic mutations. 

Similarly, I refer to either germline or somatic small insertions and deletions, less than 50 bases in length, as 

InDels. In addition, I refer to mutations whereby a whole chromosome or genome has been replicated, as 

aneuploid events.   
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2.1.2 Limitations of existing benchmarking studies 

The reliability of subclonal deconvolution is dependent on both accurate mutation profiles, consisting of 

variant allele frequencies (VAFs) of SNVs/InDels, and copy numbers at those positions, as well as accurate 

algorithms to process these without significantly limiting assumptions (Abécassis et al., 2019; Noorbakhsh 

et al., 2018; Bhandari et al., 2018; Andor et al., 2016). Therefore, in addition to subclonal deconvolution 

methods, it is also important to benchmark the methods used to call somatic SNVs/InDels and CNVs for 

input into the analyses. Numerous such studies have previously been carried out for all three processes but 

all have certain limitations. Benchmarking requires a dataset for which the ground truth is known, or 

estimated. This is generally achieved through one of two ways; 1) Using real datasets for which mutation 

calls or cancer cell fractions (CCFs) have been validated through one of a number of approaches, but that 

do not provide certainty of the ground truths, or 2) using artificial simulated datasets that represent given 

known ground truths, but which require simplifying assumptions to make generating them feasible.  

Studies assessing the performance of somatic SNV/InDel calling algorithms have demonstrated a 

substantial lack of consensus between them. A comparison of eight different algorithms found that, of 

29634 total SNVs called from WES of five breast cancer tumours, only 1348 were called by five or more 

algorithms, with 22032 called by only one (Krøigård et al., 2016). Another study found that, of 2035 total 

SNVs called by four callers from WES of a chronic myeloid leukaemia tumour, only 36 were called by all 

algorithms and 1757 were called by only one, with many of these being assigned a high probability score. In 

the same study, when comparing matched germline-germline data generated by randomly splitting a single 

BAM file into two (as opposed to matched germline-tumour data as used in a real analysis), all four 

algorithms reported between 5-11 false positive SNVs, most of which had probability scores of greater than 

0.90 (Roberts et al., 2013).  

Benchmarking of SNV/InDel calling methods using simulated data has generally involved spiking in variants 

at varying frequencies into aligned real sequencing reads (Hansen et al., 2013; Cibulskis et al., 2013; Xu et 

al., 2014; Lai et al., 2016; Christoforides et al., 2013; Bian et al., 2018; Detering et al., 2019; Narzisi et al., 

2018). This, however, negates the effect of alignment errors and scores, as mutations are always inserted 

at the correct corresponding position of the reference genome. Other studies have avoided this issue 

through in silico sequencing of simulated genomes, though these are reliant on accurate error models for 

replicating realistic sequencing artefact distributions (Bohnert et al., 2017; Stead et al., 2013; Detering et 

al., 2019). Alternatively, benchmarking approaches using real data, do so by validating variants either 

through resequencing, combining variant calling methods to create high confidence calls, or manual visual 

curation (Cibulskis et al., 2013; Hansen et al., 2013; Spinella et al., 2016; Xu et al., 2014; Krøigård et al., 

2016; ICGC/TCGA Pan-Cancer Analysis of Whole Genomes, 2020; Narzisi et al., 2018), but these approaches 

do not provide certainty of the ground truths, particularly in determining missed variants. The above 
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approaches, involving simulated and real data, were both used in one of the largest variant calling 

benchmarking studies, the TCGA-ICGC DREAM-3 Somatic Mutation Calling Challenge, which employs 

crowdsourcing to compare callers, and has been used by developers to test and fine tune their own 

methods (Ewing et al., 2015). Other approaches involve mixing two germline sequencing datasets in varying 

proportions, where one represents the tumour fraction, and the other represents normal germline 

contamination (Chen et al., 2020; Kim et al., 2018; Bohnert et al., 2017), with some making use of datasets 

from projects where germline variants have been characterised through pedigree analysis (Eberle et al., 

2017). This could bias against some variant callers, such as MuTect2 (Benjamin et al., 2019), that take into 

account known positions of germline polymorphisms when distinguishing between somatic and germline 

variants. Another limitation of most of these studies, is that they use the hg19 human reference genome, 

which was last patched in 2013 and results in less accurate read alignment with around 5% fewer SNVs 

called than when using the same pipeline with the more recent hg38 genome (Pan et al., 2019). 

Furthermore, the use of differing parameters or application of filters makes judging the performance of 

variant calling algorithms from existing studies difficult. For example, VarScan’s default minimum VAF 

required to call a variant is 0.2 (v2.2.2 and earlier) (Koboldt et al., 2012), resulting in very poor performance 

in detecting low frequency variants in studies that benchmarked callers with default parameters. As a result 

of these numerous sources of biases, SNV/InDel benchmarking studies provide highly conflicting results, 

leaving researchers with uncertainty as to the most suitable methods to use. 

Previous studies on somatic CNV calling methods have shown drastically varying results, both between 

different callers and between different studies. Benchmarking has often been carried out using real data 

with CNVs validated through more reliable methods than WES, such as WGS or SNP arrays (Shen and 

Seshan, 2016; Nam et al., 2016; Zare et al., 2017; Favero et al., 2015), though these are still susceptible to 

significant errors (Zhang et al., 2019; Pitea et al., 2018; Pinto et al., 2011; Telenti et al., 2016). Alternatively, 

studies have used simulated datasets, although these suffer from either issues with incorporating 

mutations into aligned real reads, as mentioned above, or from unrealistic in silico WES sequencing of 

simulated genome sequences. This latter issue results from the fact that the only available method that 

aims to model WES in a more sophisticated way than simply limiting in silico WGS to exome regions, 

Wessim (Kim et al., 2013), still has significant limitations. Most importantly, through testing I found that it is 

unable to model the effect of amplification CNVs, creating the same number of reads in these regions as 

those in diploid regions. It is, however, able to model deletions. This is apparent from going through the 

program’s code, but it is not stated in the documentation. Wessim has therefore been used in CNV calling 

benchmarking studies. An example of such a study tested somatic CNV calling methods on Wessim 

simulated datasets, and real TCGA endometrial carcinoma data validated with SNP array (Rieber et al., 

2017). This showed poor to good sensitivity for most methods in detecting deletions from both datasets, 

and good sensitivities for detecting amplifications from the TCGA data, but found sensitivities of 
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(practically) 0 for detecting amplifications from the Wessim dataset. This led the authors to speculate that 

the difference in sensitivities for amplifications was due to the real data containing more high-copy number 

amplifications which are easier to detect, whereas instead, I believe it just reflects Wessim not modelling 

amplifications. Another benchmarking study used VarSimLab (Hosny, 2017) to simulate data, which 

incorporates mutations into a reference genome, followed by in silico sequencing using a BED file (adapted 

to take into account CNVs shifting positions) to limit this to exome regions. As discussed in section 2.2.2, 

this approach to in silico WES does not realistically model real WES data. An additional limitation of existing 

CNV benchmarking studies is that few have focussed on methods that estimate allele-specific CNVs, where 

major and minor copy number states are given and which are often required for subclonal deconvolution. 

Also, few have focussed on those that detect subclonal CNVs, also required for some subclonal detection 

methods. Benchmarking that specifically assesses the accuracy of these processes, and with simulated 

datasets that realistically model WES, is therefore necessary.   

Benchmarking of subclonal deconvolution methods has been carried out through a number of different 

approaches. Those using real data have usually involved single-cell sequencing to determine a ground truth 

(Jiang et al., 2016; Roth et al., 2014; Abécassis et al., 2019), although this has not been applied on a large 

scale and may be affected by sampling bias or single-cell sequencing inaccuracies (Lähnemann et al., 2020). 

An alternative approach has been to simulate mutation call sets that fit given ground truths, with errors 

added from simple distributions to represent imperfect mutation calling (Dentro et al., 2020; El-Kebir et al., 

2016; Jiang et al., 2016; Li and Li, 2014; Cun et al., 2018; Körber et al., 2019). This is unlikely to realistically 

capture the inaccuracies seen in real mutation call sets, which are influenced by both the mutation callers 

and aligner used (Alioto et al., 2015). In addition, assumptions are made to simplify the simulation of call 

sets, meaning the complexity of real tumours is not fully modelled. Such assumptions include not modelling 

CNVs at all (Miura et al., 2018), subclonal mutations only able to lie on one copy of a chromosome (Dentro 

et al., 2020), or no more than two copy number states per region. These simplifications may be especially 

problematic given that most of the benchmarking using this approach has been carried out by the authors 

of the subclonal deconvolution methods, who therefore risk inadvertently fitting the data to their methods.  

A third approach, and the one that I carry out in the next chapter, is to use mutation call sets from running 

mutation calling on simulated sequencing datasets that represent tumours with known ground truths. This 

has the benefit that it is closer to the real process than simply simulating mutation calls, and likely better 

captures the mutation calling errors specific to each caller. A major study applying such benchmarking is 

the “ICGC-TCGA DREAM Somatic Mutation Calling - Tumour Heterogeneity Challenge” (Salcedo et al., 

2020). This employs crowd sourcing to benchmark subclonal deconvolution methods from a set of 

simulated sequencing datasets. However, as yet, only the results of the in-house benchmarking has been 

published, consisting of only two subclonal deconvolution methods (PhyloWGS (Deshwar et al., 2015) and 

DPClust (Nik-Zainal et al., 2012)), with one CNV caller (Battenburg (Nik-Zainal et al., 2012)) and four SNV 



 44 

callers, which do not include the most commonly used method, MuTect2 (Benjamin et al., 2019). In 

addition, the simulated dataset is of WGS, which has different challenges for analysis in comparison to 

WES, and therefore the accuracies of the benchmarked methods are likely not transferable when used for 

WES data. As I demonstrate in section 2.2.2, existing in silico sequencing methods for WES, of which I am 

aware, are unable to generate realistic datasets suitable for bechmarking subclonal deconvolution 

methods. Furthermore, the method used to simulate the sequencing datasets in the DREAM challenge 

study, as well as all other somatic genome simulation methods that I identified, have drawbacks that limit 

their suitability for use in benchmarking subclonal deconvolution methods. The following section describes 

these in more detail. 

2.1.3 Limitations of existing somatic genome simulation programs 

Numerous somatic genome simulation programs exist, and these generally fall into two categories; 1) 

Those that take an input genome sequence (generally a reference genome) and incorporate mutations into 

it for each subclone in a tumour, which then require in silico sequencing to generate artificial sequencing 

reads from them, and 2) those that take an alignment of real sequencing reads, with mutations 

incorporated either as point variants into the read sequences, or as copy number variants by adjusting local 

read coverages along the genome through downsampling.  

Somatic genomes show high intratumour heterogeneity, and contain extensive variation and 

rearrangement. In order to benchmark methods that aim to uncover these events, it’s important to include 

this complexity in the test datasets. I identified 5 scenarios found in real tumours, that challenge mutation 

calling and subclonal deconvolution methods, but which existing somatic genome simulation programs lack 

the ability to model fully. These include: 

i. Multi-level subclone phylogenies: (Figure 6A) Subclones in tumours have complex phylogenetic 

architectures (Sottoriva et al., 2013; McPherson et al., 2016; Watkins and Schwarz, 2018). Current 

simulation tools create: no subclones (Hosny, 2017; Mu et al., 2015), single layer phylogenies (Qin et 

al., 2015; Xia et al., 2017), or hierarchical structures but with no access to intermediate level genomes 

(Ivakhno et al., 2017). More complex phylogenies can be created through iterative running of these 

tools, however this creates issues with keeping track of variant positions with respect to a stable 

reference. Xome-Blender (Semeraro et al., 2018), SVEngine (Xia et al., 2018) and the ICGC-TCGA 

DREAM BAMSurgeon wrap around script (Salcedo et al., 2020) are exceptions to this, being able to 

create complex phylogenies, but instead succumb to other points mentioned below. 

 

ii. Individual chromosome and whole-genome aneuploidy: Both individual chromosome and whole-

genome aneuploid events are common in cancer (Baysan et al., 2017; Ben-David and Amon, 2020) but 

are not included in some existing tumour genome simulators. It’s possible to get around this with some 
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programs by adding in CNVs that span entire chromosomes, although, depending on the program, this 

could then cause issues with having other overlapping CNVs on the same chromosome. 

 

iii. Overlapping copy number variants (CNVs): (Figure 6B) Given that tumours contain numerous CNVs, 

often reaching 10s of megabases in length (Krijgsman et al., 2014; Tan et al., 2014) it is likely that many 

will overlap, either i) nested within the same copy of a chromosome, ii) partially or fully on different 

copies within the same cell, or iii) partially or fully on copies in separate subclones. Many existing 

simulation tools do not allow for this.  

 

iv. Mutations occurring in a flexible order: (Figure 6C) Real somatic genomes acquire different types of 

variants in a flexible and varied order. As a result, a single nucleotide variant (SNV) may appear in only 

one, or in multiple copies of a replicated region, depending on whether it occurred before or after a 

copy number variant (CNV) or aneuploid event. This is referred to as the multiplicity of a variant and 

estimating it correctly for each variant is key to the accuracy of subclonal deconvolution methods. 

However, many existing simulation programs incorporate different types of variants in separate stages. 

For example, Pysim-sv (Xia et al., 2017) generates all aneuploid events prior to SNVs, and all 

SNVs/InDels prior to CNVs. Therefore, aneuploid copies of a chromosome in a clone won’t share any 

common variants, and SNVs will always be present in every copy of an overlapping CNV region on a 

chromosome.  

 

v. Distinct germline and somatic variants: The majority of SNVs and InDels in human germline genomes 

are at known polymorphic loci (1000 Genomes Project Consortium et al., 2015; Shen et al., 2013), 

recorded in dbSNP (Sherry et al., 2001). Some somatic SNV/InDel callers make use of this information in 

determining the confidence with which an apparently tumour specific variant is assigned as somatic 

(Fan et al., 2016; Cibulskis et al., 2013). Such callers will be biased against when applied to simulated 

germline genomes without a proportion of variants at polymorphic loci. Likewise, the approach used by 

Xome-Blender (Semeraro et al., 2018), which simulates tumour genome sequencing reads by re-

assigning true germline variants as somatic, would result in biased metrics for SNV/InDel calling. Other 

simulation tools do not include somatic SNVs/InDels at all (Qin et al., 2015; Xia et al., 2018). 
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Figure 6. Illustration of certain features lacking from many somatic genome simulation programs. 

A) The ability to create multilevel phylogenies with complex relationships between subclones, 

instead of just a single level of subclones. B) Overlapping CNVs, occurring on either separate copies 

of the same chromosome (in the same or different cells), or on the same copy, with partial or full 

overlaps. C) Variants occurring in a flexible order, so that an SNV or InDel may be present on either 

one or multiple copies of a region, depending on whether it came before or after a CNV or 

aneuploid event. 

Some somatic genome simulators incorporate somatic variants directly into real sequencing data, as 

opposed to generating genome sequences (Semeraro et al., 2018; Ivakhno et al., 2017; Ewing et al., 2015; 

Salcedo et al., 2020). One such method is BAMSurgeon (Ewing et al., 2015). The ICGC-TCGA-DREAM team 

have used a wrapper script for this method to create datasets for crowd-sourced benchmarking of 

subclonal deconvolution methods in their ‘Somatic Mutation Calling Challenge --Tumor Heterogeneity and 

Evolution’. The wrapper script adds features such as variant phasing, subclonality, and CNVs (Salcedo et al., 

2020). While this avoids the need for in silico sequencing, inaccuracies in read alignment are not reflected 

in the incorporated mutations. Additionally, the effect that variants have on WES library preparation during 

probe hybridisation, is not taken into account. Further problems are introduced by being limited in the 

copy number of simulated CNVs by the coverage depth of the inputted data.  

Table 2. Features modelled by existing somatic simulation tools. ‘X?’ indicates that the feature is 

not mentioned in the accompanying documentation and I could find no evidence of it within the 

program, so is likely not to be included. The ability to simulate aneuploid events has not been 

indicated here as it is not easy to identify to what extent this is possible in many programs. 

VarSimLab, which was previously mentioned, is not included as it does not create distinct germline 

and somatic genomes.  
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Feature 

SCNVSim 

 (Qin et 
al., 2015) 

VarSim 

(Mu et 
al., 2015) 

tHapMix 

(Ivakhno et 
al., 2017) 

Pysim-sv 

 (Xia et al., 
2017) 

Xome-
Blender  

(Semeraro 
et al., 2018) 

SVEngine 

(Xia et 
al., 2018) 

BAM Surgeon 
wrapper 

(Salcedo et 
al., 2020) 

Multi-level 

phylogenies 

X X X X ✓ ✓ ✓ 

Flexible 

variant order 

X X? X? X X? X? ✓ 

Overlapping 

CNVs 

X? X? X? X? X? X? X? 

Distinct 

germline and 

somatic 

SNVs/InDels 

X ✓ ✓ ✓ X X? ✓ 

Generates 

genome 

sequences 

✓ ✓ X ✓ X ✓ X 

 

None of the existing somatic genome simulators identified are able to model all the scenarios required to 

reliably benchmark subclonal deconvolution pipelines (Table 2). I therefore aimed to create a new program 

for somatic genome simulation, and also improve in silico WES, so that a suitable dataset can be created for 

more reliable benchmarking of mutation calling and subclonal deconvolution pipelines. 

2.2 Methods and Results 

2.2.1 Creation of a program for simulating realistically complex tumour genomes 

2.2.1.1 HeteroGenesis Overview 

In order to simulate genomes for sufficiently complex tumours for use in benchmarking, I required a new 

somatic genome simulator. I therefore developed HeteroGenesis, a program for generating heterogeneous 

tumour genomes, that overcomes the above limitations of previous methods. 

HeteroGenesis is written in Python3, and is publicly available at 

https://github.com/GeorgetteTanner/HeteroGenesis. 
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2.2.1.2 HeteroGenesis Workflow 

HeteroGenesis consists of three consecutive modules (Figure 7): 

 

Figure 7. The workflow of HeteroGenesis. heterogenesis_vargen first generates lists of mutations for 

the germline and each somatic clone in the tumour. heterogenesis_varincorp then incorporates these 

mutations into a reference genome and calculates variant frequencies and copy numbers along the 

genome for a given clone. freqcalc can then be used to calculate overall bulk tumour mutation profiles.  

2.2.1.2.1 heterogenesis_vargen 

heterogenesis_vargen generates lists of mutations (SNVs, InDels, CNVs and aneuploid events) to be 

incorporated into the genomes for each clone in a tumour, along with a matched germline. It takes as 

input: i) a reference FASTA genome sequence, ii) an optional variant call format (VCF) file containing known 

germline SNV and InDel locations and their minor allele frequencies (MAFs) from dbSNP, and iii) a JSON file 

containing a set of parameters. It outputs a JSON file with lists of mutations for each clone in the simulated 
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tumour (herein also referring to the matched germline, which is considered the germline ‘clone’), as well as 

files containing the order that mutations occurred. The user is able to define: i) the subclonal structure, ii) 

the number of somatic aneuploid events, iii) rates of SNVs and InDels, iv) the length distributions of InDels, 

and v) the number and length distributions of CNVs. Separate parameter values are set for germline and 

total somatic variants. Users can also choose whether, and to what extent, to incorporate known germline 

SNVs/InDels into the simulated germline genome, weighted by MAF, or to sample all, or a proportion of 

germline or somatic mutations from user provided predefined list.  

The clone structure of a tumour is defined by giving, for each clone (!"), its direct parent clone and a value 

representing the evolutionary distance from it ($"). These values are used to determine the set of 

mutations that a clone initially inherits, as well as the proportions of the total somatic mutations, (T), that 

are assigned as new mutations in a clone, reflecting how far it has evolved from its parent. Therefore the 

number of new somatic mutations in a clone, !", is defined by T &'
∑ &')*

	. This allows the user full control over 

the subclone phylogenetic architecture of a tumour (Figure 15).  

CNV (>50 bp) and InDel (≤50 bp) lengths follow scaled log normal distributions, which have been observed 

in real data from both our and other groups (Droop et al., 2018; Krijgsman et al., 2014), with user defined 

parameters for the mean and variance of the underlying normal distribution, and a scaling factor. Each 

copy of DNA in a CNV has an equal chance of being inserted in the forward or reverse direction. All default 

values for mutation parameters are chosen to reflect estimates from real human germline (Mills et al., 

2006; 1000 Genomes Project Consortium et al., 2015; Durbin et al., 2010; Shen et al., 2013) and tumour 

genomes (specifically from glioblastoma) (Baysan et al., 2017; Hu et al., 2013; Kandoth et al., 2013; 

Krijgsman et al., 2014; Xi et al., 2011; Mills et al., 2006; Mullaney et al., 2010; Droop et al., 2018). Re-

arrangements are not simulated, although CNVs (in either forward and reverse order) replicate a similar 

challenge for analyses aiming to detect structural rearrangements and break points. 

The program first determines the total numbers of each type of somatic mutations required in the final 

tumour and randomly splits these between somatic clones, based on the evolutionary distances between 

them from the provided parameters. Mutations are then generated for each clone, starting with the 

germline clone. Each clone is initiated with all the mutations inherited from its parent clone (with the root 

clone inheriting mutations from the germline clone) and new mutations are then added in a random order 

with respect to mutation type.  Only the following are disallowed for pragmatic reasons: i) SNVs and InDels 

cannot occur more than once at a base on the same copy of a chromosome in a clone, ii) CNVs or InDel 

deletions cannot partially overlap on the same copy of a chromosome in a clone (fully overlapping on the 

same chromosome, or partially/fully overlapping on different copies of a chromosome, can occur), and iii) 

no mutation can occur within a deleted region, even if there are additional copies of the region on the 

chromosome (from a CNV) that haven’t been deleted (though these may contain mutations that precede 
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the deletion). Chromosomes are selected at random for placing mutations, taking length into account, 

except for aneuploid events where all chromosomes are selected with equal probability. Mutations are 

initially placed on either of two sets of chromosomes, thereby simulating a diploid genome. However, after 

an aneuploid replication event has occurred, additional copies of that chromosome, containing the same 

set of existing mutations, are then available for further mutations to be incorporated. Similarly, when a 

deletion aneuploid event has occurred, the deleted chromosome is no longer available for mutation 

placement and is not written to the outputs. 

heterogenesis_vargen takes 6hrs and 5GB RAM on a single thread to run under default parameters, which 

includes a germline and 2 somatic clones.  

2.2.1.2.2 heterogenesis_varincorp  

heterogenesis_varincorp is run separately for each clone. It takes the lists of mutations generated by 

heterogenesis_vargen and incorporates them into a reference genome sequence, as well as calculating 

copy numbers and mutation frequencies along the genome. This is done by sequentially using the 

mutations in the list to update three items:  
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i. cnblocks: (Figure 8) Lists of chromosomal regions (herein referred to as blocks) for each copy of a 

chromosome, used to calculate copy numbers. Each list is initiated with a single block equal to the 

length of the chromosome. Blocks are updated each time a new CNV is incorporated by splitting 

them if they cross the CNV breakpoints and either replicating all blocks between the breakpoints 

(CNV replication) or removing them (CNV deletion). As direction is not relevant to copy number 

calculations, inversion information is ignored. After all CNVs have been incorporated, the number 

of blocks in all copies of a chromosome that correspond to each region are combined. This gives 

the overall copy number status along each chromosome, which is then written to a tab-delimited 

file. Deletion InDels (<50bp) are not taken into account. 
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Figure 8. An illustration of how cnblocks is updated and used to calculate copy number 

along a genome given a list of mutations. This example represents a diploid genome with a 

single chromosome, 100bp in length. Initially, chromosomes are represented as a single 

block corresponding to the full length of the chromosome. The B chromosome copy 

undergoes a duplication aneuploid event at one point and is therefore represented by two 

blocks at the start. The blocks then undergo sequential modifications to reflect inputted 

CNVs and aneuploid events, with bold boxes and lines indicating the latest CNVs 

incorporated. All other mutations are ignored in this process. Mutations affecting the B 

chromosome prior to the aneuploid event are applied to both sets of the blocks, whereas, 

mutations occurring after the aneuploid event are applied only one set of blocks. Once all 

CNVs are incorporated, identical copies of each region are added up to indicate copy 

numbers along the genome. 
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ii. allblocks: (Figure 9) Analogous to cnblocks, but also includes blocks representing SNVs and InDels, 

and flags for starts and ends of inverted regions are recorded. The allblocks list is used to generate 

the simulated genome sequence by acting as a blueprint. For each block, the genome sequence is 

extended with either the corresponding reference sequence between the block’s start and end 

positions, or the alternate allele sequence. When an inversion start flag appears, the succeeding 

sequence is held separately until an end flag appears, at which point the held sequence is inverted, 

translated into the complimentary sequence, and added onto the main sequence, or to a previously 

held sequence if there is an overlapping inverted sequence. After all blocks for a chromosome have 

been passed, the sequence is written to a FASTA file.  
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Figure 9. An illustration of how allblocks is updated and used to generate a FASTA sequence 

given a list of mutations. This example represents a diploid genome with a single 

chromosome, 100bp in length. Initially, chromosomes are represented as a single block 

corresponding to the full length of the chromosome. The B chromosome copy undergoes a 

duplication aneuploid event at one point and is therefore represented by two blocks at the 

start. The blocks then undergo sequential modifications to reflect all inputted mutations, 

with bold boxes and lines indicating the latest mutation. ‘start’ and ‘end’ flags indicate 

where inversions occur. Mutations affecting the B chromosome prior to the aneuploid 

event are applied to both sets of the blocks, whereas, mutations occurring after the 

aneuploid event are applied only one set of blocks. After all mutations are incorporated, 

the DNA sequences for the simulated chromosomes are generated from the reference 

genome using the blocks as a blueprint; ‘ref’/’r’ indicates to get the sequence between the 

block’s start and end positions from the reference sequence, and eg. ‘TGTAC’ indicates to 

incorporate those bases into the simulated sequence. Underlined bold regions indicate 

those that have been inverted and where the complementary base sequence will instead 
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be incorporated into the simulated sequence. Regions that have been inverted twice, from 

overlapping inversions, are incorporated as normal in the forward direction.  

 

iii. vcfcounts: (Figure 10) Lists of incorporated SNVs and InDels for each copy of a chromosome, with 

the number of occurrences recorded for each. Each SNV/InDel also has information recorded on 

the position of CNVs that overlap them. This enables calculation of how many occurrences of an 

SNV/InDel to replicate/remove based on whether a new CNV falls within or around a previous CNV. 

Once all mutations have been incorporated, the vcfcounts list for all copies of a chromosome are 

combined, with numbers of occurrences for shared SNV/InDels added together. The overall copy 

number at each SNV/InDel position is taken from the combined cnblocks list and used with the 

total number of occurrences to calculate VAFs. These are then written to a VCF file. 
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Figure 10. An illustration of how vcfcounts is updated and used to calculate VAFs given a list 

of mutations. The tree diagrams represent the information that is contained in the 

‘branches’ slot for each variant listed in vcfcounts. Downward lines represent a copy of the 

region, with values giving the start and end positions. Each succeeding level shows either 

the presence of one variant (‘var’), an absence of a variant from a deletion (‘[ ]’), or the 

CNVs contained within the above region. 

SNV:	copy=B	pos=39	

base=C>A

CNV:	copy=B	pos=31	

length=20	number=3	

inverted=[N,Y,N]

vcfcounts:[A:[],	B-1:[],	B-2:[]]

vcfcounts:	[A:[],	B-1:[[39,C,A,{branches},’counts’]],	B-2:[[39,C,A,{branches},’counts’]]]

vcfcounts:	[A:[],	B-1:[[39,C,A,{branches},’counts’]],	B-2:[[39,C,A,{branches},’counts’]]]

vcfcounts:	[A:[],	B-1:[[39,C,A,{branches},’counts’]],	B-2:[[39,C,A,{branches},’counts’]]]

CNV:	copy=B	pos=35	

length=8	number=2	

inverted=[Y,N]

vcfcounts:	[A:[],	B-1:[[39,C,A,{branches},’counts’]],	B-2:[[39,C,A,{branches},’counts’]]]

CNV:	copy=B	pos=38	

length=3	number=0	

inverted=[]

CNV:	copy=B-1	pos=33	

length=12	number=2	

inverted=[Y,Y]

39			39

‘var’

39			39

‘var’

31			50

39			39

‘var’

35			42

39			39

‘var’

Add	up	final	

‘var’	counts

vcfcounts:	[A:[],	B-1:[[39,C,A,{branches},’counts’],[36,T,TGTAC,{branches},’counts’]],	B-2:[[39,C,A,{branches},’counts’]]]

Aneuploid:	copy=B	

number=2

39			39

‘var’

39			39

‘var’

39			39

‘var’

39			39

‘var’

39			39

‘var’

31			50

39			39

‘var’

39			39

‘var’

39			39

‘var’

31			50

39			39

‘var’

39			39

‘var’

31			50

39			39

‘var’

35			42

39			39

‘var’

39			39

‘var’

39			39

‘var’

31			50

39			39

‘var’

35			42

39			39

[	]

39			39

‘var’

39			39

‘var’

31			50

39			39

‘var’

35			42

39			39

[	]

InDel:	copy=B-1	pos=36	

ref=T	alt=TGTAC

No	need	to	do	anything	as	aneuploid events	are	taken	into	account	by	starting	with	

the	final	number	of	copies	of	each	chromosome.	But	after	this	point,	variants	occur	

on	a	specific	copy	of	the	replicated	chromosome.

39			39

‘var’

39			39

‘var’

31			50

39			39

‘var’

35			42

39			39

[	]

39			39

‘var’

39			39

‘var’

31			50

39			39

‘var’

35			42

39			39

[	]

36			36

‘var’

vcfcounts:	[A:[],	B-1:[[39,C,A,{branches},’counts’],[36,T,TGTAC,{branches},’counts’]],	B-2:[[39,C,A,{branches},’counts’]]]

39			39

‘var’

39			39

‘var’

31			50

39			39

‘var’

35			42

39			39

[	]

35			42

‘var’

36			36

‘var’

36			3639			39

‘var’

39			39

‘var’

31			50

35			42

33			44

35			42

‘var’

39			39

[	]

39			39

‘var’

39			39

[	]

39			39

vcfcounts:	[A:[],	B-1:[[39,C,A,{branches},4],[36,T,TGTAC,{branches},2]],	B-2:[[39,C,A,{branches},3]]]



 57 

heterogenesis_varincorp takes 6hr and 8GB RAM on a single thread to run ’clone1’ of the output from 

heterogenesis_vargen ran under default parameters. Clones and chromosomes may be run separately  

across different threads. 

2.2.1.2.3 freqcalc 

freqcalc is provided as an accessory tool within HeteroGenesis and is used to calculate overall bulk tumour 

variant profiles that reflect user defined proportions of each clone in a sample. Furthermore, this allows 

users to assess how different sampling approaches affect analysis methods, as it can generate 1) samples 

with normal cell contamination, and 2) multiple different longitudinal, multi-region, or metastatic samples 

with varying proportions of clones in each. The ability to create such samples is important, as both tumour 

purity and the number of samples available from a tumour, are both factors that have a strong influence on 

the accuracy of methods for analysing intratumour heterogeneity (Bhandari et al., 2018; Siegmund and 

Shibata, 2016; Watkins and Schwarz, 2018; Mahlokozera et al., 2018). 

freqcalc takes the VCF and copy number outputs for each clone from heterogenesis_varincorp, along with a 

file specifying proportions of each somatic clone and the germline in a sample. It then calculates and 

outputs equivalent information for a bulk sample that contains the given clone proportions. 

2.2.1.3 How HeteroGenesis models scenarios to recreate tumour complexity. 

I. Multi-level subclone phylogenies: With HeteroGenesis, the user has full control over the subclonal 

architecture of tumours by defining two parameters per clone: parent clone and the evolutionary 

distance from it. Varied and complex evolutionary trajectories can therefore be modelled.  

 

II. Individual chromosome and whole-genome aneuploidy: HeteroGenesis simulates a user defined 

number of aneuploid events, with a user defined probability that each will be for a single 

chromosome or the whole genome. New copies of chromosomes inherit the existing variants on 

the parent chromosome, and then acquire further variants unique to each copy.  

 

III. Overlapping copy number variants (CNVs): Overlapping CNVs are made possible in HeteroGenesis 

by splitting the genome at every breakpoint into blocks that can be sequentially replicated or 

removed with each CNV.  

 

IV. Mutations occurring in a flexible order: In order to accommodate flexible orders of mutations by 

HeteroGenesis, the number of occurrences of each SNV and InDel in a genome are calculated from 

the CNVs and aneuploid events that occur subsequently over each variant. This requires keeping 
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track of CNV break points to determine whether a new CNV falls within or around an existing CNV, 

and therefore how many existing copies should be multiplied by the new CNV copy number. 

 

V. Distinct germline and somatic variants: With HeteroGenesis, the user has the option to take a 

proportion of the germline SNVs and InDels from known variants in dbSNP and, unlike any previous 

method, weights them by their frequency in the population. 

2.2.1.4 Modifications since publication 

Following a request from other researchers interested in using HeteroGenesis, in a more recent version of 

HeteroGenesis since the publication describing its use (Tanner et al., 2019), I updated the code to allow 

users to provide lists of given mutations for heterogenesis_vargen to sample from. This allows a specified 

proportion of each type of mutation to be incorporate into the simulation, meaning that, for example, a 

proportion of CNVs or SNVs/InDels can be taken from the COSMIC database of known cancer mutations 

(Tate et al., 2019). 

2.2.2 Optimisation of In silico whole-exome sequencing  

2.2.2.1 Wessim 

In order to create WES datasets for use in benchmarking, reads need to be generated from the simulated 

genomes through in silico sequencing. This is a process that aims to simulate real DNA sequencing on a 

computer by sampling sections of a genome sequence and incorporating errors at rates estimated to occur 

from real DNA sequencers. 

Many tools have been developed to simulate WGS (Zhao et al., 2016), and while it is possible to simply 

perform in silico WGS and limit it to exome regions with a BED file, this requires tracking alterations to exon 

positions from CNVs and indels, which can be especially challenging when CNVs overlap, and it also does 

not realistically model the exon capture process. Alternatively, Wessim (Kim et al., 2013), has been 

specifically developed for WES. This method was developed from GemSim (McElroy et al., 2012), an in silico 

WGS simulator that creates a sequencing error model of insertions, deletions and transitions through 

training on real data. Wessim built on this by creating reads in user defined regions for WES. These regions 

can be defined in one of two ways; i) a BED file containing exome capture target regions (ideal target 

mode), as described above, or ii) a Blat (Kent, 2002) alignment of exome capture probes to a genome 

(probe hybridization mode), giving a more realistic distribution of reads along exome regions compared to 

the first method. The ideal target mode approach would not work with a genome where exon regions have 

moved positions, as is the case in one with CNA. It also wouldn’t be able to model higher read numbers in 

amplified regions. Therefore, I chose to explore the probe hybridisation mode.   
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2.2.2.2 GemSIM error model 

2.2.2.2.1 Error model creation 

In order to reliably assess the performance of variant calling, in silico sequencing reads need to have 

realistic base quality scores for both true and false base calls. This requires an accurate error model of 

sequencing performance in order to guide error incorporation.  

Wessim uses error models created by GemSIM. The pre-made models available with the GemSIM package 

were for older sequencing machines, so I created a new model of a more up to date sequencing machine. 

For this, I trained GemSIM on publicly available Illumina HiSeq 2000, 101bp, paired-end, WGS data of 

NA12877 (SRA accession no. ERR194146), an individual in the Illumina Platinum Genomes project (Eberle et 

al., 2017), which I had cleaned with Cutadapt (Martin, 2011), aligned to the hg19 reference genome with 

BWA-MEM (Li, 2013), realigned with GATK v3.8 (Van der Auwera et al., 2013), downsampled, and limited to 

chromosome 1 reads only. A list of genomic sites to exclude in the model was taken from high confidence 

variant calls for NA12877, also provided by the Illumina Platinum Genomes project (Eberle et al., 2017), 

that had been determined through a combination of methods including taking into account a 17 member 

pedigree.  

I edited the code of GemSIM to accept a file for excluded sites, instead of comma separated list in the 

command line, and also to use a python dictionary instead of a list to store them, in order to reduce run 

time. In hindsight, these modifications may have been required because GemSIM was likely designed to be 

trained on sequencing of small genomes, such as viral ones, which have fewer polymorphic sites. However, 

as genomes from different organisms have unique characteristics, for example GC content, it was 

important to model the specific sequencing error profiles of human datasets.  

2.2.2.2.2 Error model validation 

The resulting error model had substitution, insertion and deletion rates of 4.1x10-3, 6.9x10-5 and 8.1x10-5 

errors/base, respectively. While previous reports on the error rates of Illumina HiSeq 2000, and other 

Illumina methods, vary substantially (Laehnemann et al., 2016; Li et al., 2009; Aguirre de Cárcer et al., 2014; 

Pfeiffer et al., 2018; Schirmer et al., 2015), the error model I created with GemSIM fell within this range. I 

further investigated the validity of the model by analysing the base quality score distributions for true and 

false called bases from Wessim. To determine what a realistic distribution would be for each, I used three 

sources of evidence: 1) Specifications of HiSeq2500 machines state that >80% of bases should have quality 

scores of above 30 for paired-end 100bp datasets. 2) When looking at the quality scores of bases in overlap 

regions of paired reads that differ in the base call, and assuming the base that matches the reference 

genome is a true call and the base that disagrees is a sequencing error (and not a polymerase chain 
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reaction (PCR) error), I was able to plot distributions for true, false and total quality score distributions 

(Figure 11). 3) The sequencing dataset that I trained the GemSIM error model on has pedigree information 

on SNP positions. By ignoring these positions I could assume that any other base that disagrees with the 

reference genome is likely a false call and any that agrees is a true call (Figure 12). These three sources 

were in agreement with each other.  

 

Base quality score 

Figure 11. Quality score distributions of bases in overlap regions of paired reads. Red) bases that 

differed between forward and reverse reads, and which had the lower qscore of the pair, ie. likely 

to be errors. Green) the higher of the pair. Blue) all bases in overlap regions. 

The quality scores for Wessim data followed a very similar distribution to the real data for true calls. 

However, whilst a similar pattern to real data is also observed for false calls, there is a higher proportion of 

quality scores above 30 for false calls in Wessim data; ~20% > 30 in real data, ~60% > 30 in Wessim (Figure 

12). This indicates that the error model does not fully represent the base quality score distributions of real 

data, however the Wessim data still shows the same overall patterns, particularly for true bases.  
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Figure 12. Distributions of base quality scores for sequencing reads from A+C) real WES data, and 

B+D) w-Wessim simulated data. The datasets were filtered for a minimum read mapping quality of 

20. C+D show the distributions with a cumulative scale. 

Re
al

 W
ES

W
es

sim
Re

al
 W

ES
 -

cu
m

ul
at

iv
e

A

B

C

D

True bases False bases All bases

W
es

sim
-c

um
ul

at
iv

e



 62 

2.2.2.3 Wessim in probe hybridisation mode 

In probe hybridisation mode, Wessim aims to mimic the exome capture step during sequencing library 

preparation. This is achieved through the use of Blat (Kent, 2002) alignments of hybridisation probes to a 

genome in order to define regions for sequencing. This means that sequenced regions will be in phase with 

target regions, regardless of any changes in length that occur in the genome from variants.  

To test Wessim, I first created a Blat alignment of the probe sequences for the Agilent SureSelect Human All 

Exon V4+UTRs kit, the most recent Agilent kit for which probe sequences have been released, to a modified 

version of the hg38 reference genome which I had inserted a CNV with a copy number of 3 at position 

chr22:24,917,701-24,926,065. I then ran Wessim with this Blat alignment and cleaned the resulting reads, 

followed by aligning them to the hg38 genome with BWA-MEM (Li, 2013). However, when visualising the 

aligned reads in IGV (Thorvaldsdóttir et al., 2013) I discovered that Wessim was not able to model the 

effect of the CNV I had inserted into the reference genome (Figure 13B and F). This is because the program 

selects probes at random for in silico hybridisation each time it creates a read, regardless of how many 

times they’re listed to align to the genome by Blat. Therefore, the same number of reads is generated for a 

region regardless of copy number (other than for regions where the copy number is 0). In addition, the 

read distribution was visibly different to real sequencing reads, particularly with regards to off target reads 

(Figure 13B and F).  

2.2.2.4 w-Wessim 

To address the above limitations, I modified Wessim to create weighted-Wessim (w-Wessim) and combined 

it with an altered protocol. Together this allows 4 advantages over the original Wessim method: 

i. CNVs Modeled. In order to overcome the issue of Wessim not modeling CNVs in genomes, I 

modified the program’s code to weight probe selection by the number of times each probe aligns 

to a genome. This resulted in read numbers across bases reflecting the copy number of the region 

(Figure 13C and G).  

 

ii. Realistic read distributions. The standard protocol for Wessim results in unrealistic read coverages, 

both across target regions and also due to a lack of off-target reads. In real sequencing data a large 

proportion of reads align to off-target regions. The Agilent SureSelect Human All Exon V5+UTRs kit 

is estimated by the manufactures to capture reads with only approximately 65% aligning to target 

regions and 77% aligning ± 100bp from targets. Additionally, I found that three WES datasets from 

the NCBI Sequence Read Archive, created independently with this kit and sequenced by an Illumina 

HiSeq 2500, had 56.5%-61.0% of bases aligning on, and 67.9%-77.3% bases aligning on or near 

target regions (Figure 14). Furthermore, background levels of off target reads are seen between the 
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larger (and generally on target) peaks when visualising alignments of these real reads (Figure 13A 

and E). However, when using a Blat alignment of probes from the Agilent SureSelect Human All 

Exon V4+UTRs kit (the most recent kit for which the sequences have been made available), w-

Wessim and Wessim resulted in very high proportions of bases aligning near to, or on, target 

regions; 90.6% and 90.0% on target and 99.6% and 98.1% on or near target for w-Wessim and 

Wessim respectively. In addition, the mode coverages for the three real WES datasets, when 

subsampled down to 70 million reads, were 8x, 28x and 29x, whereas the mode coverages for the 

same number of reads generated by w-Wessim and Wessim, was 66x and 80x, respectively (Figure 

14). 

I initially attempted to overcome the lack of off target reads by altering the Blat parameters for 

much less stringent alignment so that regions of the genome that have a less perfect match to the 

probes would still be captured, allowing a more relaxed distribution of reads. However, this 

resulted in an even less realistic distribution with very high coverage across parts of some exomes.  

I attempted another approach by utilising real WES reads to guide a more realistic distribution. For 

this, a Blat alignment of real WES reads from the Sequence Read Archive (SRR2103613 - frozen 

normal adult male lung, 99bp paired-end, 61.0% and 75.8% of bases on and on or near target 

respectively) was used instead of capture kit probe sequences. This dataset had the median 

percentage of on target reads of the three datasets I identified that were created with the Agilent 

V5+UTRs kit and Illumina HiSeq 2500. ~1x108 real reads were used, which allows for sufficient 

variation in regions for read generation by w-Wessim for at least 250x coverage, whilst still being 

practically possible computationally. Initially, too many off target reads were created by w-Wessim 

using this method, so I filtered the real reads used in the Blat alignment for those with a mapping 

score of ³60 when aligned by BWA-MEM(Li, 2013) to the hg38 reference genome. I then further 

optimised the approach by sequentially testing a range of values for Blat parameters to increase 

alignment stringencies. I selected minidentity=95 and minscore=95 as this combination allowed for 

the most realistic distribution of reads created by w-Wessim; 61.1% on target and 79.7% on or near 

target, and with a mode coverage of 28x for 70 million reads (Figure 14). These settings are also 

likely to reflect the stringency of real exon capture hybridisation in the lab, thereby resulting in 

more realistic modelling of the affect that variants have on exon capture. 
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Figure 13. Distributions of real and simulated WES reads along a region of chromosome 22, 

with linear scales of coverage depth (A to D, enabling copy numbers to become apparent) 

and log scales (E to H, enabling off target coverage to become apparent). Simulated data 

was generated from the hg38 human reference genome that had a CNV with a copy 

number of 3 inserted at position chr22:24,917,701-24,926,065. A+E) Real reads from the 

SRR2103613 data set. B+F) Reads generated by the original Wessim program using the 

recommended protocol with a BLAT alignment of Agilent SureSelect Human All Exon 

V4+UTRs kit probe sequences. C+G) Reads generated by w-Wessim using the original 

Wessim recommended protocol with a BLAT alignment of Agilent SureSelect Human All 

Exon V4+UTRs kit probe sequences. D+H) Reads generated by w-Wessim using our 

modified protocol with a BLAT alignment of real reads from the SRR2103613 data set. I) 

Position of exon and intron locations, shown as boxes and lines respectively.  
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Figure 14. Coverage metrics for three publically available real WES datasets (named by 

their SRA accession number) created with the Agilent SureSelect Human All Exon V5+UTRs 

kit, and three simulation methods that use either the Agilent SureSelect Human All Exon V4 

kit probe sequences or real reads from the SRR2103613 dataset as probes. All datasets 

contained 70 million reads. (WES metrics were calculated using Picard HsMetrics (Broad 

Institute) with the ‘Covered.bed’ target files downloaded from the Agilent website 

(https://earray.chem.agilent.com/suredesign/index.htm). The percentages of bases 

aligning to target regions was calculated by dividing the number of aligned bases (with a 
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mapping quality > 0) in bait regions, by the total number of aligned bases (also with a 

mapping quality > 0). “Bait”, not “target”, values from HsMetrics were used for on/off 

target calculations as these do not exclude low quality reads. “Target” values were used for 

coverage metrics as “bait” values were not available.) 

iii. Realistic read length distribution. Wessim allows the user to choose a fixed length of reads to be 

created. However, when processing real sequencing data it’s common to trim a variable number of 

bases from the ends of reads to remove sequencing errors, which occur at higher frequencies at 

ends of reads, and also adapter sequences. This means the reads used for further analysis are of 

varying lengths, which could affect alignment performance. I therefore wanted to create artificial 

reads that have the same length distributions as trimmed datasets. Whilst it may have been 

feasible to create full length reads and then trim them in the same way as real data, this would 

have involved training an error model on aligned full length reads, which would have been more 

likely to be misaligned and therefore result in an overestimation of sequencing errors in the model 

created. Instead I allowed w-Wessim to take read lengths from the distribution in the GemSIM 

error model, thereby simulating pre-trimmed reads. This was achieved using code taken from 

GemSIM.  

 

iv. Generation of sequencing fragments with a length distribution that can fall below read lengths. I 

wanted to use w-Wessim to model formaldehyde-fixed, paraffin embedded samples, and these 

generally contain short fragment lengths. These fragment lengths can sometimes fall below the 

read lengths in the GemSIM error model distribution. Whilst Wessim generally handles such 

situations by limiting the fragment length, I found that it fails specifically when a fragment length is 

shorter than the read length and a deletion occurs at the last position of the read. I adjusted the 

code in w-Wessim to handle such scenarios.  

With the full set of 1x108 real read probes used in the example, this would take ~700h/threads for the BLAT 

alignment (which can be ran across multiple nodes in separate runs by splitting the read number, probes or 

genome sequence) and require around 9h and 72GB RAM to generate 1 × 107 pairs of reads on a single 

thread by w-Wessim.   

2.2.3 Demonstration of the combined use of HeteroGenesis with w-Wessim 

HeteroGenesis and w-Wessim can be used in combination to create multi-sample bulk WES data for an 

artificial tumour with multiple subclones. Figure 15 provides an overview of the steps involved in achieving 

this. 
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To demonstrate the use of both HeteroGenesis and w-Wessim, I used HeteroGenesis to simulate an 

example tumour with 8 clones and then sequenced it with w-Wessim, creating 1x108 read pairs per clone. I 

aligned these to the hg38 reference genome with BWA-MEM (Li, 2013) and visualised the alignments in IGV 

(Thorvaldsdóttir et al., 2013).  

I first showed that the CNV modelling was appropriate and reflected what HeteroGenesis indicated was 

incorporated into the tumour genomes. For example, Figure 16 lists three CNV events that are recorded by 

HeteroGenesis to have occurred within the region ch3:183260000-184110000. The read counts in six 

regions, separated by CNV break points (as stated by HeteroGenesis), is given for both the germline and 

clone1 of the tumour. These counts, when normalised by the stated copy number for each region, were 

very similar between the germline and clone1 in all six regions, thereby indicating that the resulting read 

counts appropriately reflect the CNV events stated to have occurred by HeteroGenesis.  

 

Figure 16. Sequencing datasets for the germline and clone1 of a tumour simulated by 

HeteroGenesis and in silico sequenced by w-Wessim, viewed on IGV. Read counts for each region 

are divided by the expected copy number and then divided by the number of reads in the first 

region to get the ratio of reads between regions. Equal ratios across regions, between the germline 

and clone1 samples indicate appropriate modelling of copy numbers.  

Position	on	chr3 183260000-
183297264

183297265-
183320356

183320357-
183340000

184030000-
184039445

184039446-
184084390

184084391-
184110000

Expected	
copy	

number

Germline 2 7 2 2 2 2

Clone1 3 13 3 3 5 3

Read	count
Germline 11064 12315 5433 5776 9105 9892

Clone1 18391 24772 8782 9664 25664 16481

Read	
count/copy	

number

Germline 5532 1759 2717 2888 4552 4946

Clone1 6130 1906 2927 3221 5133 5494

Ratio	
across	
regions

Germline 1 0.318 0.491 1 1.57 1.71

Clone1 1 0.311 0.477 1 1.59 1.71

Germline

Clone1

Exon	positions

CNV events	in	region	chr3:183260000-184110000

Germline copy=B, position=	183297265-183320357,	number=6,	order=20256

Clone1
(In	addition	to	germline	variants)

copy=A, position=	184039447-184084390,	number=3,	order=509940

whole-chromosome	aneuploid	event,	copy=B, number=2,	order=563034
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I next demonstrated that point mutation locations and VAFs reflected what was stated to be incorporated 

by HeteroGenesis. Figure 17 lists all point mutations and CNVs that occurred within the region 

ch3:183260000-184110000. For each of the four point mutations, the expected and observed VAFs are 

given and found to be similar, thereby indicating appropriate modelling of both point mutations and CNVs. 

 

Figure 17. Variants in sequencing datasets for the germline and clone1 of a tumour simulated by 

HeteroGenesis and in silico sequenced by w-Wessim. A) Examples of variants and CNVs occurring in 

the ch3:183260000-184110000 region, listed in the order they occur. B) Details of observed and 

expected allele counts in the sequencing reads for each variant. Similar observed and expected 

frequencies indicate appropriate modelling. The read alignment panel is created from viewing 

reads in IGV.  

Position	on	chr3 183311543 183311639 183310515 183762321

Variant C>A C>A C>T TGTTG>T

Germline

Expected	

frequency
0.14286 0 0.85714 0.5

Allele	

counts
C=347,	A=54 C=924,	T=1 C=9,	T=42

T=7,	TT=3(mis-

mapped	deletions),

TGTTG=15-16	

Observed	

frequency
0.135 0 0.824 0.4

Clone	1

Expected	

frequency
0.15385 0.07692 0.92308 0.66667

Allele	

counts
C=664,	A=102 C=1673,	A=96,	G=1 C=11,	T=82

T=25,	TT=2(mis-

mapped	deletions),

TGTTG=22-23	

Observed	

frequency
0.134 0.0542 0.882 0.54

Germline
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Examples	of	variants	in	region	chr3:183260000-184110000

Germline

copy=B,	position=183310515,	variant=C>T, order=19218
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copy=B, position=183762321,	variant=TGTTG>T,	order=108654
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copy=A, position=184039447-184084390,	number=3,	order=509940
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copy=B-2,	position=183311639,	variant=C>A, order=565763
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2.3 Discussion 

In this study, I aimed to develop methods that would allow me to simulate realistically complex WES 

datasets for heterogeneous tumours that are suitable for benchmarking mutation calling and subclonal 

deconvolution methods. I achieved this by creating two programs, HeteroGenesis and w-Wessim. 

HeteroGenesis simulates genome sequences for each clone in a tumour and calculates mutation profiles for 

individual clones as well as user defined bulk samples. SNVs, InDels, CNVs, and aneuploid events are 

incorporated with few restrictions into clones with fully customisable phylogenetic relationships, leading to 

highly complex tumours. This overcomes numerous limitations of previous somatic genome simulation 

methods that makes them unsuitable for benchmarking methods for analysing sequencing data from 

heterogenous tumours. 

HeteroGenesis does have some minor limitations; Firstly, it cannot model partially overlapping CNVs on the 

same chromosome (but does model fully overlapping on the same copy, or partially overlapping in a 

different copy). Including this feature would increase the complexity of the program substantially, but with 

little to no gain for its application in benchmarking subclonal deconvolution pipelines. Secondly, structural 

variants that don’t alter copy numbers, such as translocations, are not modelled, as these are not relevant 

to subclonal deconvolution. Still, the program can be used for testing methods for detecting break points 

since break points occur at CNV locations. In cases where researchers wish to benchmark methods for 

detecting translocations, other simulators that focus on these variants are available (Qin et al., 2015; Xia et 

al., 2018, 2017).  

I created HeteroGenesis with a top down approach, where the resulting tumour is fully characterised by 

input parameters. An alternative approach, which HeteroGenesis could be adapted to achieve, is to allow 

the tumour to randomly evolve overtime in a way that takes into account the effects of each simulated 

mutation. For example, if a mutation affects a DNA repair gene, the subsequent mutation rate in that 

clone, and all daughter clones, could be increased. Such a model may allow insights into the mathematics 

of factors that influence tumour progression.  

w-Wessim features important improvements to the only existing in silico sequencing method specifically 

for WES. The modifications, combined with an altered protocol that uses real WES reads, allow w-Wessim 

to model the effect of CNVs and to create more realistic WES data than the original Wessim method. A 

shortcoming of w-Wessim is that the reads I generated from it using the GemSIM error model, had base 

quality scores that, for error positions, were higher on average than in real WES data. Additionally, w-

Wessim is unable to model some sources of strand-bias, such as those arising from PCR errors during library 

preparation (although other sources such as alignment and post-alignment processing will still be included 

in the resulting datasets) (Guo et al., 2012). These limitations could be overcome in the future by 
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combining the WES specific features of w-Wessim with an alternative and up to date in silico WGS method, 

such as InSilicoSeq (Gourlé et al., 2019) or ReSeq (Schmeing and Robinson, 2020), and making use of their 

error modelling ability. Alternatively, w-Wessim could be modified to override the error model distribution 

for error bases, and instead force a given distribution, parametrised to bring it in-line with that of real data. 

I also plan to investigate whether downsampling the real WES reads, used as probes for w-Wessim, 

significantly impacts the distribution of simulated reads, in order to find a way to reduce the computational 

resources required.  

Nonetheless, the current w-Wessim approach still allows for datasets that are suitable for achieving my 

aims. The differences in quality score distributions should have no effect on CNV calling, particularly as the 

alignment step is not dependant on base quality scores. True positive calls in SNV calling are also unlikely to 

be affected, as the quality score distribution for true sequenced bases was highly realistic. Furthermore, 

assessment of certain features of SNV calling, such as VAF estimation and sensitivity at lower frequencies, 

which are relevant to subclonal deconvolution, is unlikely to be affected. Potential effects on numbers of 

false positive calls will be investigated in the benchmarking. 

By combining HeteroGensis with w-Wessim, I have shown how realistically complex WES datasets can be 

created. Whilst the primary aim of developing these programs was to allow me to create datasets that 

were suitable for benchmarking mutation calling and subclonal deconvolution methods, they will also likely 

be of use to other researchers for developing new analysis methods and carrying out future benchmarking 

studies. 
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Chapter 3 – Benchmarking of mutation calling and 
subclonal deconvolution methods 
3.1 Introduction 

3.1.1 Overview 

Characterising intratumour heterogeneity (ITH) is important for investigations into tumour evolution and 

response to treatment. A common approach is to estimate cancer cell fractions (CCFs) of mutations from 

bulk sequencing data, or to go further and attempt to delineate the subclonal architectures by assigning 

mutations into distinct clones. However, as discussed in Chapter 2, there has been a lack of reliable studies 

benchmarking methods for performing such analyses, particularly involving full pipelines. Therefore, in this 

chapter, I carry out benchmarking of such analyses that use whole exome sequencing (WES) of a single bulk 

tumour sample with a matched normal, to allow me to identify the most suitable approach for analysing 

our real in house GBM datasets. This involves testing full pipelines, from in silico WES datasets created with 

w-Wessim and HeteroGenesis, through to subclonal deconvolution methods, and also includes assessment 

of somatic variant calling and copy number aberration (CNA) calling methods used to provide inputs for CCF 

estimation. 

Genome sequencing is an increasingly common approach for investigating genetic mutations. In particular, 

whole-genome sequencing (WGS) has the advantage that it can detect variants located anywhere in the 

genome. Although, due to the high cost involved at greater sequencing depths, whole-exome sequencing 

(WES) is widely used as an alternative by focusing on the 1-2% of the genome that codes for proteins 

(Sakharkar et al., 2004). This enables higher sequencing depths to be reached, within a given budget, of the 

regions usually of most interest to researchers; due to their ability to alter the sequence, and potentially 

function of proteins, mutations in coding regions are more likely (though not exclusively) to drive selection 

than non-coding mutations (Rheinbay et al., 2020). This makes WES a popular choice for investigating ITH. 

Another consideration for researchers and clinicians is how many samples to sequence from a tumour. 

Whilst a higher number of multi-region samples greatly improves the accuracy of analyses (Bhandari et al., 

2018; Siegmund and Shibata, 2016; Watkins and Schwarz, 2018; Sun et al., 2017; Chkhaidze et al., 2019), 

financial constraints or a limited amount of material mean that often only one sample per tumour is 

sequenced. Therefore, in this study I focus on subclonal deconvolution pipelines suitable for this scenario, 

where a single tumour sample, and matched normal, are whole-exome sequenced to typical depths of 60x-

250x (Figure 18). 
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Figure 18. Flow diagram of the benchmarking process. 

3.1.2 Variant calling 

Variant calling, as referred to in this study, is the process of identifying both somatic SNVs and short InDels 

from sequencing data. Calling such variants involves identifying differences in the alleles between genomes 

in a tumour sample and matched normal sample, whilst attempting to ignore artefacts that result from 

DNA damage, polymerase chain reaction (PCR) errors, sequencing errors, or misalignment of reads. Many 

machine learning and probabilistic approaches exist for this, and are often equally applicable to both WGS 

and WES data (Xu, 2018). In order to detect low frequency clones via subclonal deconvolution, it’s 

necessary to be able to detect variants that have very low variant allele frequencies (VAFs). This can make 

the distinction between true mutations and artefacts difficult. False positive calls may arise from base 

mismatches due to sequencing errors, PCR errors during library preparation, DNA damage (Chen et al., 

2017) or due to read misalignment, with the latter potentially resulting in multiple reads with mismatches 

at the same location. In addition, many tumour samples have been formalin-fixed and paraffin-embedded 
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(FFPE), causing extensive DNA damage throughout the genome, as well as limiting the availability of viable 

DNA for sequencing (Sikorsky et al., 2007; Wong et al., 2014; Wang et al., 2015).  

Variant callers aim to avoid these artefacts by applying one of a number of probabilistic methods in 

combination with sets of adjustable criteria that aim to distinguish true from false signals. This often 

involves features of the data such as, i) base quality score, indicating the confidence of signal from the 

sequencing machine, ii) read mapping score, indicating how likely a read is likely to be correctly aligned, iii) 

coverage across a variant, which determines the amount of evidence for a variant, iv) VAF, v) number of 

alternate allele supporting reads, and vi) strand-bias. Strand-bias describes scenarios where alternate allele 

supporting reads are significantly more prevalent on one strand. These can result from artefacts during 

library preparation, sequencing, alignment, or post alignment processing steps (Guo, Li, et al., 2012), and 

therefore often lead to false positive calls that need to be removed. However, strand bias can also be a 

result of natural sampling variation or an effect of targeted capture where both reference and variant 

supporting reads map only to one strand, and in these cases variants should not be filtered out (Guo, Long, 

et al., 2012). Filtering variants based on fixed thresholds of strand-bias removes many true positives, and 

many callers instead rely on more complex strand-bias filtering methods (Mutect2, Strelka2, VarScan2), or 

recommend not filtering based on strand-bias (Strelka2,VarScan2), particularly as newer sequencing 

preparations have less pronounced strand-bias effects. Incorrect read alignment is another source of error. 

Even when reads are mapped to the correct general location, some bases in the read may be aligned to 

incorrect positions, particularly if a variant is near the start or end of a read. To overcome this, many 

variant callers perform local assembly and realignment using information across all reads in the area so that 

potential variants are taken into account. Alternatively, this process can be carried out prior to variant 

calling using additional methods (Van der Auwera et al., 2013; Mose et al., 2019). 

I aim to benchmark variant callers by assessing their performance in terms of features that are important to 

subclonal deconvolution. These include the sensitivities of callers across different VAFs, as well as the 

accuracies of VAF estimates. For this, I select four variant callers that are either commonly used, performed 

well in previous benchmarking, or are novel: 

• Mutect2 (Benjamin et al., 2019). Mutect2 is part of the genome analysis tool kit (GATK) and is 

possibly the most commonly used somatic variant caller. It first generates candidate haplotypes by 

performing local assembly using de Bruijn-like graphs out of kmerized reads, with an adaptive 

pruning model to prioritise the most likely candidates while accounting for local depth and observed 

sequencing error rates. Reads are then locally realigned and a pair hidden Markov model assigns a 

likelihood for each read being derived from candidate haplotypes, as opposed to a result of a 

sequencing error. A log odds ratio (LOD) is then defined for each variant by comparing evidence for 

the model with and without the variant haplotype. FilterMutectCalls is a recommended filter for 
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Mutect2 call sets, which filters variants with the aim of removing artefacts resulting from errors such 

as those during sample preparation and alignment. Using annotations provided by the Mutect2 

output, and several different error models, it filters on a threshold estimated to maximise the 

harmonic mean of recall and precision. 

• VarScan2 (Koboldt et al., 2012): VarScan2 takes a less complex approach than the other included 

methods, using a heuristic process. First, candidate positions are called from both the tumour and 

normal samples. If these two match then they’re compared to the reference to identify germline 

variants. If they don’t match, then a Fisher’s Exact test determines the significance of the 

difference, with those passing the probability threshold being classed as somatic variants. fpfilter 

then employs numerous hard filters to reduce false positives resulting from artefacts. 

 

• Lancet (Narzisi et al., 2018). A relatively new method for variant calling, using localised coloured de 

Bruijn graphs for local assembly of reads. Unlike other methods that use local assembly, Lancet 

jointly analyses tumour and normal reads together, thereby increasing sensitivity, particularly for 

indels. A Fisher’s Exact test is used to score and filter variants. 

 

• Strelka2 (Kim et al., 2018): Also a relatively novel method, and builds on the commonly used original 

version, Strelka (Saunders et al., 2012). Strelka2 aims to reduce runtime compared with other variant 

callers, through a number of modified approaches. It first estimates model parameters using only a 

small number of reads, saving time compared to using the whole dataset. It then employs a tiered 

method for calling variants, whereby a simple model based on input read alignments is used for less 

challenging positions, and local assembly and realignment is reserved for those more challenging. 

Finally, Strelka2 calculates a single empirical variant score to allow more informative prioritisation, 

using a pre-trained random forest model to aggregate information from numerous call-quality 

features. 

3.1.3 CNA calling 

Somatic CNA calling aims to identify regions that differ in copy number between genomes from a tumour 

sample and a matched normal sample, to determine alterations specific to the tumour. A number of 

different approaches have been developed to achieve this from genome sequencing data (Zhao et al., 

2013). Read depth methods compare numbers of aligned reads in a region between tumour and normal 

samples, with higher copy numbers resulting in increased read depth. Paired end, split read and de novo 

assembly-based methods aim to more precisely determine where break points are in a genome from reads, 

or inserts located across them, allowing copy numbers to be inferred at base level precision. Combinatorial 

methods incorporate multiple of the above approaches to improve accuracy. A limitation of WES is that 
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often break points are not sequenced, with only those that fall in exon regions able to be precisely 

detected. Therefore, read depth methods are the standard approach when calling CNAs from WES. 

CNA detection can be impaired by numerous factors and, when performed on WES, is particularly 

susceptible to noise and systematic error. This largely results from variations in probe hybridisation 

affinities along the genome during the exon capture step (Zhao et al., 2013). Other sources, common to 

both WGS and WES, include misalignment of reads, particularly in repeat genomic regions, and variation of 

GC content within a genomic region. Guanine base pairs to cytosine more strongly than adenine pairs with 

thymine, resulting in less fragmentation in GC rich regions and, therefore, may appear less in the pool of 

fragment sizes needed for sequencing (Benjamini and Speed, 2012). However, these can be largely 

accounted for during a normalisation step, and by comparing tumour samples against a matched normal, 

which will have similar patterns of bias (Figure 19). 

 

 
Figure 19. Diagram of WES with allele specific CNA calling. The different colours represent different 

regions of normal and somatic genomes, which may contain X, Y, or Z SNPs on one or both alleles. 

During exon capture hybridisation, the probes enrich the pool of sheared sequences for exon 

regions, though some probes (green) will be less efficient than others. By comparing matched 

normal and somatic samples, this bias is accounted for, and only regions with true CNAs identified, 

which can be assigned to a specific allele based on the proportions of SNP vs wildtype supporting 

reads. 

 

Somatic genome

X

X

Z

Y

Normal genome

X Z

X Y
X Y

X

X

Z

Y XZ

Shear

Sequence 

and align

Hybrid
ise

Exon capture probes
Lower 

affinity

X

Z

X

YZ

Y

X

X

X

X

Y

Z
YX

X

X

Z

X

Y

Z

Y

X

X

Normal

Somatic

2 reads show Y SNP

6 reads show wildtype

vs

2 reads show Y SNP

3 reads show wildtype

= CNA of 2 on wildtype

allele

Equal proportion of blue 

and green depths between 

somatic and normal.

= No CNA 

X,Y,Z = SNPs

Normal

X

X

Y

Z
YX

X

Somatic



 80 

Most read-depth based CNA calling methods follow a similar workflow. Firstly, read depths are normalised 

to account for variations such as mapability and GC-content, as well as differences between the overall 

sequencing depths of the tumour and normal samples. Next, the log-2 ratio (logR) between the normal and 

tumour total read depth is calculated for windows, with deviations from 1 suggesting a CNA. Segmentation 

is then carried out by one of a number of approaches that aim to remove noise in the copy number 

predictions along the genome though grouping similar logR regions into bins, thereby identifying 

breakpoint locations. Modelling then enables estimation of purity, ploidy and copy number values from the 

segmented logR bins. Some methods extend this to include modelling of subclonal CNAs, occurring in only a 

portion of the sample, and which can be incorporated into many subclonal deconvolution methods. 

In addition to total copy numbers estimates, many subclonal deconvolution methods require allele specific 

copy number information, whereby estimates are provided for maternal and paternal, or major and minor, 

alleles separately. For this, B-allele frequencies (BAFs), which describe the fraction of reads covering a 

heterozygous SNP position that support the alternate allele, are used to appropriately split total read 

depths into allele-specific read depths. This allows estimation of allele specific copy numbers and detection 

of regions with loss of heterozygosity (Figure 19).  

The method used to call CNAs can have a large influence on the accuracy of subclonal deconvolution 

(Bhandari et al., 2018; Andor et al., 2016). Therefore, I investigate the performance of four somatic CNA 

callers, and their impact on CCF estimation from subclonal deconvolution methods. These were chosen 

either due to being widely used, or because they were newer methods with the potential to improve on 

previous ones. 

• Sequenza (Favero et al., 2015): This method is one of the most popular for somatic CNA calling. 

Segmentation of allele-specific logRs at heterozygous SNP positions is achieved using a penalized 

least squares regression approach through the copynumber package (Nilsen et al., 2012). A 

probabilistic model is then used to predict purity and ploidy though a grid-based search over 

reasonable values. The model parameters are estimated using a maximum a posteriori approach, 

with prior probabilities that prefer diploid states over others. Subclonal CNA events are not predicted 

using this method. 

 
• Sclust (Cun et al., 2018). Sclust performs both subclonal somatic CNA calling and subclonal 

deconvolution. First, a coarse segmentation method, similar to circular binary segmentation 

(Venkatraman and Olshen, 2007), is applied to allele-specific logRs, allowing initial estimates of 

purity and ploidy to be computed via a conditional maximum likelihood approach. A more sensitive 

segmentation and smoothing step is then performed, using a method similar to that of SegSeq 

(Chiang et al., 2009). This provides segments for estimating CNA calls and updating purity and 
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ploidy values. The sensitive segmentation and CNA estimation steps are then repeated. An 

advantage of Sclust combining CNA calling with subclonal deconvolution is that tumour purity can 

instead be estimated from variant clusters when samples have insufficient numbers of CNAs. 

 
• TITAN (Ha et al., 2014): This method is another very popular somatic CNA caller. A two-factor hidden 

Markov model is used to cluster heterozygous SNP positions with similar frequencies, using total 

read depths, allele-specific read depths, and logRs. This jointly enables segmentation, identification 

of subclonal populations, and estimation of purity and ploidy. The model is run multiple times with 

varying numbers of clones, and then identifies the optimal number of clones via the best fitting 

model. 

 
• FACETS (Shen and Seshan, 2016): Unlike most allele-specific CNA calling methods that perform 

segmentation using only heterozygous SNP positions, FACETS combines this with segmentation of 

total read count logRs at pseudo-SNP positions, thereby avoiding lack of signal in regions with few 

true heterozygous SNPs. This segmentation is achieved using a joint non-parametric approach based 

on a Hotelling T2 statistic, which has improved power over segmenting total and allele-specific logRs 

separately. Segments are then clustered into groups with the same copy number, and CNA calls are 

calculated from these using a Gaussian-non-central χ2 mixture model, while factoring in estimates 

for purity and ploidy. Another unique aspect introduced by FACETS is the use of log-odds ratios 

between tumour and normal variant read counts at heterozygous SNP positions, instead of B allele 

frequencies, which are biased due to differences in mapping affinity for variant and reference reads.  

3.1.4 Subclonal deconvolution 

Subclonal deconvolution is the process of delineating sub-populations of cells by their distinct genotypes, 

from within bulk tumour samples, (Figure 4). It first requires estimation of the proportions of cancer cells 

carrying different somatic mutation, with a cancer cell fraction (CCF) estimated for each. A variety of 

mutation types can be used for this, however, CCF estimation is most commonly, and often most 

powerfully, performed on somatic point variants. Such an approach utilises VAFs, whilst accounting for 

CNAs across variant positions, normal cell contamination, and technical noise. While most recent methods 

do account for CNAs, many do not, and instead require either prior correction for CNAs or masking of 

variants in these regions. The latter risks removing important driver variants such as EGFR mutations in 

glioblastoma (GBM), which occur in a commonly amplified region of chromosome 7  (Miura et al., 2018). 

Such methods are therefore not included in this study. 
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CCF estimation from VAFs is a challenging process, and is affected by the accuracy of both variant and CNA 

calling methods used to generate inputs, the accuracy of purity estimates from either CNA callers or 

histology, and the number of samples per tumour (Noorbakhsh et al., 2018; Abécassis et al., 2019; Bhandari 

et al., 2018; Andor et al., 2016). The approach requires predicting the number of copies of DNA in a cell 

that each variant lies on, termed the multiplicity. However, cancers have a tendency to undergo extensive 

structural rearrangements, causing numerous gains and losses that, depending on both timing and which 

alleles are affected, may or may not affect variants in those regions. Therefore, predicting the multiplicity 

and CCF from each variant from its VAF, even before considering the inaccuracies of CNA calling methods, 

involves a high level of uncertainty and requires potentially unrealistic limiting assumptions.  

Once CCFs are estimated, the next step is to deconvolute the variants into distinct subclones, allowing 

refinement of individual variant frequencies and informing on co-occurring variants within the same 

subclones.This is often achieved via clustering, which relies on subclones having undergone some level of 

selection, so that their CCFs increase and become distinct from background mutations having accumulated 

as a result of neutral evolution. It is worth noting that clusters do not always define subclones, as some 

variants will be found in multiple subclones and therefore appear in a different cluster to those unique to 

one subclone (Figure 4). Other subclones may share the same frequency and therefore variants unique to 

each will appear in the same cluster. Such scenarios may be resolved by multi-sample analyses, so that 

changes in CCFs between samples are taken into consideration to allow better separation of distinct 

clusters. Other methods aim to improve identification of subclones and resolution of their boundaries, 

through clustering variants based on their mutational signatures in combination with CCFs, whilst also 

informing on evolutionary trajectories of mutational signature activity (Rubanova et al., 2020).  

Many subclonal deconvolution methods include a further step to infer the evolutionary relationships 

between subclones by fitting a phylogenetic tree to the CCFs (Kuipers et al., 2017; Schwartz and Schäffer, 

2017). Alternatively, some infer trees directly from VAFs and CNAs, thereby providing an alternative 

approach to CCF estimation. These require the use of limiting assumptions to make the state-space of 

possible phylogenetic trees manageable, though risk introducing errors. Many methods include the 

“infinite-sites” assumption, that states only one variant may occur at any one site and that variants do not 

revert (El-Kebir et al., 2016; Jiang et al., 2016). CNAs are handled in similar ways, though, due to the fact 

that CNAs over a region are likely to develop independently in separate cells, the assumptions are more 

relaxed; SPRUCE, for example, assumes variants may change state, or multiplicity, numerous times as a 

result of amplifications or deletions, but never to the same state more than once (El-Kebir et al., 2016). 

However, this overlooks common scenarios, such as when a position gains a CNA that is later reverted by 

another. Canopy avoids this by considering CNA break points, allowing any state changes resulting from 

CNAs with differing break points or copy number, but those with the same occur only once (Jiang et al., 
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2016). In this benchmarking study, I focus only on clustering approaches, as phylogenetic approaches often 

require multiple samples, result in numerous solutions, or emphasise manual curation of inputs. 

• PyClone (Roth et al., 2014). Possibly the most commonly used method for performing subclonal 

deconvolution, PyClone uses a hierarchical Bayes statistical model to estimate variant multiplicities 

and then cluster CCFs into an unfixed number of clones. The method is potentially limited compared 

to others included, by the assumption that all cells containing a variant have the same CNA 

genotypes. Additionally, it does not accept estimates of the cellular frequencies of subclonal CNAs 

as input, and instead considers all inputted CNAs as total copy numbers across all subclones. Due to 

this, I only include clonal CNAs when using it with calls from FACETS and TITAN.  

 
• Ccube (Yuan et al., 2018). This method was found to perform best in a recent benchmarking study 

using simulated call sets from distributions (Dentro et al., 2020), and it’s therefore of interest to 

determine if it performs similarly well on the more complex datasets used in this study. Unlike 

methods that prefix multiplicities prior to clustering, Ccube estimates them during, under the 

assumption that multiple variants will share the same CCF. Clustering is achieved via a Bayesian 

mixture model approach, with the number of clones defined by a a truncated Dirichlet Process. The 

method is able to take into account subclonal CNAs from two copy number populations. 

 

• Sclust (Cun et al., 2018). This method performs both CNA calling and subclonal deconvolution. After 

CNAs are identified for both clonal and subclonal populations (as described above), the most likely 

variant multiplicities are identified, given the available copy number states. Clusters are next 

determined by deconvoluting intrinsic sampling noise from the unknown distribution of subclonal 

populations, using smoothing splines. Variants are then assigned to the most likely cluster. 

3.2 Results 

3.2.1 Creation of datasets for use in benchmarking 

3.2.1.1 Genome simulation 

Using HeteroGenesis, I simulated genome sequences for clones and matched germlines for each of nine 

tumours. These consisted of three replicates (R1, R2, R3) from each of three parameter sets (S1, S2, S3), 

that varied in numbers of somatic mutations (Figure 20). Mutation frequencies, along with those for 

parameters consistent between all sets, were chosen to reflect values estimated in real germline and GBM 

tumours (Table 3). In particular, the highest density variant set is included to represent tumours having 

undergone i) hypermutation, which can result from chemotherapeutic agents such as temozolomide, and ii) 

chromothrypsis, a term describing chromosomal shattering, resulting in tens to thousands of chromosomal 
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rearrangements and CNAs in a minority of samples across tumour types (Zack et al., 2013; Rode et al., 

2016). The clonal architecture, consisting of 8 related clones (Figure 20), is representative of the complexity 

of scenarios seen in GBM previously (Körber et al., 2019; Johnson et al., 2014). 

 

 

Figure 20. Tumour clonal architecture designs created by HeteroGenesis. Clones are named C1…C8. 

All relative distances of clones from their parent clone (or from the germline for C1) were set at 1, 

with the exception of C3 which had a relative distance of 3. Light grey circles indicate clones with 

tetraploid genomes, and dark grey indicates clones with octoploid genomes. Single chromosome 

aneuploid events are indicated next to the clone in which they first appear, but are also present in 

all daughter clones. Three different parameter sets were used to define total somatic mutation 

numbers in each tumour, with three replicates created for each set.  
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Table 3. Parameter values used with HeteroGenesis in simulating tumour genomes. 

Parameter Values Reference 

Germline SNV rate 1.4x10-3 errors/base 
(1000 Genomes Project 

Consortium et al., 2015; Shen 
et al., 2013) 

Germline InDel rate 1.4x10-4 errors/base 
(Mills et al., 2006; Shen et al., 

2013) 

Germline CNVs per genome 360 
(1000 Genomes Project 
Consortium et al., 2015) 

Somatic SNV rate 1x10-4, 1x10-5, 1x10-6 
errors/base 

(Kandoth et al., 2013) 

Somatic InDel rate 2x10-5, 2x10-6, 2x10-7 
errors/base 

(Mills et al., 2006; Mullaney et 
al., 2010) 

Proportion of germline SNVs 
taken from dbSNP 0.9 

(Durbin et al., 2010; Shen et 
al., 2013) 

Proportion of germline indels 
taken from dbSNP 0.5 

(Durbin et al., 2010; Shen et 
al., 2013) 

Somatic CNAs per tumour 
(equal replications to 

deletions ratio) 
100, 500, 1000 

(Xi et al., 2011; Droop et al., 
2018) 

Aneuploid events per tumour 4 
(Hu et al., 2013; Baysan et al., 

2017) 

Probability that an aneuploid 
event is a whole genome 

duplication 
0.333 - 

Germline CNV lengths 
distribution 

Log-normal distribution with 
mu = -10 and σ = 3 multiplied 

by 1x106, ≥50b. 
(Krijgsman et al., 2014) 

Somatic CNA lengths 
distribution 

Log-normal distribution with 
mu = -1 and σ = 3 multiplied 

by 1x106, ≥50b. 

(Krijgsman et al., 2014; Droop 
et al., 2018) 

Germline and somatic indel 
lengths 

Log-normal distribution with 
mu = -2 and σ = 2, ≤50b. 

(Mills et al., 2006) 

CNV/CNA copy number 
Log-normal distribution with 
mu = 1 and σ = 0.5, rounded 

down to an integer, ≠1. 
(Droop et al., 2018) 
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3.2.1.2 In silico sequencing and creation of BAM files.  

To create WES datasets that represent bulk samples from each of the tumours, I first in silico sequenced 

each clone and germline in the tumours to a depth of 134x using w-Wessim, with the error model and real 

WES reads used as probes, as described in chapter 2. After aligning the reads to the hg38 reference 

genome, I subsampled and merged the resulting BAM files at varying proportions to create tumour samples 

with a mixture of clones, as indicated in Figure 21, and with varying sequencing depths and purities. GBM 

tumours typically have high purity, with an estimated median of 85% purity from samples in the Cancer 

Genome Atlas (Aran et al., 2015). I therefore created samples with 100% and 75% purity, which represent 

easy and more challenging cases, respectively, for analysis methods to handle, and encompass the majority 

of GBM samples. Normal samples were created with 60x sequencing depths, whereas tumour samples 

were created with 60x, 100x, and 250x sequencing depths, thereby covering ranges commonly seen in 

WES. 

 

Figure 21. Clone proportions in 100% and 75% purity samples for each tumour. Circles correspond 

to clones represented in Figure 20, with numbers indicating the percentage of total bulk reads 

taken from a clone. 

The freqcalc module of HeteroGenesis then allowed me to consolidate and recalculate variant profiles 

generated for the individual pure clones, into those that describe the heterogeneous tumour samples, 

thereby providing the ground truths for benchmarking. 

InDel realignment was performed in pairs of tumour and corresponding normal samples with GATK (Van 

der Auwera et al., 2013). This is likely to improve results for methods without their own inbuilt local 

realignment steps, such as VarScan2.  

3.2.2 Benchmarking of mutation calling and CCF estimation methods 

3.2.2.1 Variant calling 

I first assessed the performance of variant calling methods. For this, I took a set3 tumour (S3R1_75%) so as 

to have a large number of variants included, and at three sequencing depths (60x, 100x, and 250x). When 

choosing parameters to set for each method tested, it is not always possible or appropriate to match these 

between callers, nor would it be a fair comparison to use only default settings, which are sometimes 
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unsuitable for detecting variants with low VAFs. I therefore adjusted parameters only when necessary to 

allow detection of low frequency variants and to standardise the minimum required coverage across callers 

(Appendix Table 1). Some variant calling methods include a secondary filtering step, and so to determine 

the effectiveness of these, I compared call sets both pre and post filtering. Mutect2 was also ran with a 

third set up where the clustered_events flag was ignored during filtering, due to an observation that it was 

removing many true positives. 

Receiver operator curves (ROCs), which illustrate the trade-off between true positive rate against false 

positive rate, were plotted using each callers’ outputted probability or score thresholds as parameters 

(Figure 23). To allow full ROCs to be generated, I needed to prevent the variant callers from throwing out 

candidate variants that do not reach the default score threshold. For Varcan2 and Lancet, I simply set the 

score threshold values to the minimum stringency. Strelka2 already outputs the full range of candidate 

variants, and instead flags those that pass the minimum threshold score. With Mutect2, variants are not 

called independently of each other, particularly with regards to filtering clusters of variants. Also, the 

additional filtering step estimates the optimum threshold based on modelling of the data, and therefore, 

lowering the threshold in the initial calling to create full ROCs is not appropriate and substantially affects 

the results. Therefore, I ran Mutect2 with default thresholds, resulting in partial ROCs (Appendix Table 1).  

The runtimes of the different callers showed significant variation. VarScan2 had the shortest run time, 

followed by Strelka2 and then Mutect2. Lancet had the longest run time by far, 500 times greater than 

VarScan2 (Figure 22). Its should be pointed out that, while VarScan2 had a very short run time, it is the only 

method that does not have its own local realignment step and therefore requires a relatively time 

consuming prior indel realignment step. 
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Figure 22. Runtimes of variant calling pipelines when used on the S3R1_75%_250x sample. Values 

include the time required to run additional programs necessary for each method, as indicated in 

Table 4. Runtimes for Lancet and Strelka2, which were run multi-threaded across 24 cores due to 

architecture time restraints, are multiplied by this number to indicate runtimes for a single core. 

Mutect2 and Lancet, were run on individual chromosomes separately, with runtimes summed for 

each. All pipelines were run on the same architecture. 

Most variant callers showed very high false positive rates (Figure 23) and low precisions 

(,-./	0123,34/2 (,-./	0123,34/2 + 6782/	0123,34/2))⁄  and recall 

(,-./	0123,34/2 (,-./	0123,34/2 + 6782/	;/<7,34/2))⁄  (Table 4). 

 Table 4. Precision and recall of the tested variant callers. 

Method 
60x 100x 250x 

Precision Recall Precision Recall Precision Recall 

Strelka2 0.10 0.22 0.07 0.25 0.04 0.31 

Lancet_1 0.39 0.16 0.39 0.18 0.58 0.21 

Lancet_2 0.02 0.23 0.03 0.24 0.05 0.27 

VarScan2 0.32 0.19 0.45 0.19 0.56 0.21 

VarScan2_filtered 0.67 0.16 0.71 0.17 0.79 0.18 

Mutect2 0.02 0.23 0.02 0.27 0.01 0.36 

Mutect2_filtered 0.25 0.18 0.36 0.20 0.19 0.20 

Mutect2_filtered_ic 0.24 0.20 0.23 0.23 0.14 0.29 
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Figure 23. ROCs for each variant calling method, showing true positive rate (recall) against false positive rate, as a function of probability or score thresholds. Variant callers 

were used with sequencing datasets of S3R1 _B at 60x, 100x and 250x sequencing depths. Positions were limited to those with ³8 reads in both the tumour and normal 

samples. Circles indicate the performance at the default threshold for each caller, or in the case of Strelka2, indicate the performance when variants are filtered (which is 

almost entirely based on a score threshold). Default values are; Strelka - aggregate variant score : SNVs=7, InDels=6; Lancet_1/Lancet_2 - Fisher’s exact test score =5; 

Mutect2/Mutect2_filtered(_ic) – LOD=3; VarScan2 – P value=0.05. The performance when taking the union or intersect of calls from Strelka2 and Mutect2_filterd_ic is also 

plotted. Mutect2_filtered_ic: Mutect2_filtered with the clustered_events flag ignored. S2_fil-M2_fil_ic: Union and intersect of Strelka2 and Mutect2_filtered_ic. 

60x 100x 250x
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Figure 24. A) Numbers of true variants, on a log scale, called by each variant calling method at different true VAFs, from S3R1_75% at 60x, 100x and 250x sequencing 

depths. The numbers of true variants are shown shaded in grey. B) Mean absolute difference of predicted VAFs from true VAFs, across different true VAFs, for each of the 

variant calling methods. 

100x60x 250xA
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A proportion of false positives is expected due to the challenging task of distinguishing between true base 

changes occurring in only a small proportion of cells, and those resulting from artefacts or misalignments. 

However, this may have been exacerbated by the higher than expected quality scores for error bases in this 

dataset, introduced during in silico sequencing (as discussed in chapter 2). Varscan2_filtered achieved good 

precision, up to 0.79, likely as a result of its hard cut-off for minimum VAFs. In contrast, Strelka2 and 

Mutect2_filtered, which instead rely more on base quality scores instead of hard filtering of VAFs, had low 

precisions varying from 0.03-0.24. Estimates from other recent studies suggest precisions for Strelka2 and 

Mutect2 in the range of 0.4-1.00 (Benjamin et al., 2019; Chen et al., 2020; Bohnert et al., 2017; Narzisi et 

al., 2018; Detering et al., 2019). It’s possible that some of these studies overestimate precisions, due to the 

methods they use. For example, Detering et al. spike-in variants into BAM files to generate a test dataset 

with known ground truths. This does not reflect false positives that result from misalignment of variant 

supporting reads, as variants are inserted into the ‘correct’ position in the aligned BAM files; Benjamin et 

al. uses WGS sequencing for validation of variant calls from WES, whilst ignoring those where the WGS is 

underpowered to determine the variant allele presence, potentially missing false positives. Additionally 

true calls may be misclassified as true positives where misalignment cause the same false positives in both 

WES and WGS datasets; Bohnert et al. utilised mixtures of samples from the Genome in a Bottle 

consortium, which provide high confidence mutation calls using multiple technologies and pedigree 

information, but these still have a level of uncertainty. Nonetheless, true precisions are likely 

underestimated in the current study.  

To address the likelihood of unrealistically high false positive proportions in the call sets, which may affect 

the performance of subclonal deconvolution methods, I subsample them to more commonly estimated 

proportions, reflecting precisions of 1.00, 0.9, and 0.5. This range of values allows for an assessment of how 

the precision of call sets affects the accuracy of subclonal deconvolution. 

The recall (true positive rate) of all callers was low (Table 4, Figure 23), as expected due to the highly 

heterogeneous make-up of the samples (Figure 21). Most true variants were not detected by any caller, but 

this was heavily dependent on VAF (Figure 24A). Overall, Mutect2 called the most true variants, but there 

was a substantial decrease when FilterMutectCalls was applied. After looking into the reasons for this, I 

found that the clustered_events flag was responsible for the highest number of filtered true positives, and 

also the highest proportion of filtered true positives relative to filtered false positives. When the filter was 

modified to ignore the flag, the true positive rate was drastically improved with relatively little increase in 

false positive rate (Figure 23). The flag responsible for removing the next highest relative proportion of true 

variants was “strand_bias”. As w-Wessim is unable to model some major sources of strand-bias affecting 

real data, such as PCR errors, it is not possible to fully assess the beneficial effect from the filter, but it is 

still interesting to note that it removes a substantial number of true positives.  
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After unfiltered Mutect2, Strelka2 had the next highest recall (Table4, Figure 23). In contrast, Lancet_1, 

VarScan2, and VarScan2_filtered had low recall and were less able to detect low frequency variants (Figure 

24A). Lancet_2 achieved better recall, but this came at a cost of much lower precision, particularly at higher 

sequencing depths (Figure 23). Two additional call-sets are analysed, consisting of the union and intersect 

of calls from Mutect2_filtered_ic and Strelka2, in order to investigate the benefits of ensemble variant 

calling approaches. Whilst the union calls did improve the true positive rate compared to either 

Mutect2_filtered_ic or Strelka2 alone, this came at a cost of an increased false positive rate. On the other 

hand, taking the intersect reduced both the true and false positive rates (Figure 23, Table 4). 

In order to achieve accurate VAF and CCF estimates, variant callers must provide accurate numbers of 

variant and reference supporting reads, while discounting those that are likely incorrect base calls or 

mapped to the wrong position. I therefore assessed the accuracy of the read counts reported by each 

caller, through calculating VAFs from them (!"#$"%&	()**+#&$%,	#-".( &+&"/	#-".()⁄  and comparing 

these to true VAFs. The callers generally showed similar accuracies, though Lancet showed comparatively 

poorer accuracy at higher VAFs (Figure 24B). 

3.2.2.2 Copy number calling 

Many previous benchmarking studies have assessed CNA calling through the proportion of CNAs called 

correctly as gain or loss, with a certain proportion of overlap between true and called CNAs (Nam et al., 

2016; Shen and Seshan, 2016; Zare et al., 2017). This, however, is not appropriate in this study given the 

complexity of the simulated genomes, with overlapping CNAs at varying cellular frequencies, some of which 

may be grouped between or split into separate CNA calls. In addition, it’s important for subclonal 

deconvolution that CNAs have accurate predictions of copy numbers (as opposed to just gain vs. loss), 

though some large scale errors, such as those resulting from false whole genome duplication ploidy 

predictions, are less problematic than other errors. I therefore assess CNA calling performance in three 

ways: 

1) Purity and ploidy estimates from each CNA calling method, which must be accurate for reliable CNA 

calls, are directly assessed through correlation to true values. 

2) Heatmaps of predicted and true total copy numbers along the genome are generated to allow a 

visual assessment of the relative performance of methods and the factors affecting each of them. 

3) CNA call sets from the different callers are used with subclonal deconvolution methods, and the 

accuracy of the resulting CCF estimates are compared. 

Compared to point variant calling, CNA calling performance is more likely to vary between samples due to 

the effects of purity and ploidy. Therefore, for CNA benchmarking, I used all nine simulated tumours, at 
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both 100% and 75% purity, and at three sequencing depths. Four callers were assessed, using default 

parameters in most cases. 

I first assessed the accuracy of tumour ploidy and purity estimates from the callers, by quantifying the 

mean absolute difference (MADif) from true values (Figure 25, Table 5). Estimates were highly accurate for 

FACETS, TITAN, and Sclust. Sequenza’s estimate were also accurate in most cases, however it drastically 

underestimated purity and overestimated ploidy for many samples. As expected, none of the callers were 

able to detect whole genome duplications, and instead estimated them as being diploid. Sequencing depth 

was not found to affect ploidy or purity estimates (Figure 25, Table 5).  

  

Figure 25. Accuracy of purity and ploidy estimates from the tested CNA callers. Dashed lines 

represent accurate ploidy and purity estimates, and dotted lines indicate ploidy estimates where 

the caller misclassed samples as tetraploid instead of diploid, or vice versa, but were otherwise 

accurate. 

Table 5. Mean absolute difference of purity and ploidy estimates from true values, for each CNA 

caller and with different sequencing depths. 

 

 

 

 

 

 

Feature Depth Sequenza FACETS TITAN Sclust 

Purity 

60x 0.141 0.048 0.083 0.018 
100x 0.225 0.097 0.015 0.013 
250x 0.011 0.044 0.014 0.087 

Combined 0.126 0.063 0.037 0.039 

Ploidy 

60x 0.946 0.59 0.579 0.614 
100x 2.123 0.592 0.581 0.613 
250x 0.646 0.595 0.612 0.672 

Combined 1.238 0.592 0.591 0.633 
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Next, I generated heatmaps of amplifications and deletions along the genomes for predicted and true copy 

numbers for each CNA caller (Appendix Figure 1). These again showed that sequencing depth had little 

effect on performance. An exception to this was with Sequenza, which called many very short false CNAs in 

only the 250x samples, as a result of over-segmentation. Tumour purity also had little effect, with only a 

few examples of CNAs detected in the 100% sample but missed in the 75%. Conversely, Sclust detected 

more true CNAs in S2R1_75% than in S2R1_100%. As expected, all methods, and particularly Sclust, failed 

to detect CNAs present in very low frequency clones, where the total copy number remains close to two. 

Both TITAN and Sequenza falsely called large regions of heterozygosity on S1 samples, and some S2 

samples in the case of Sequenza. None of the methods were able to detect subclonal whole genome 

duplications, with the exception of Sequenza which called them as clonal. Sequenza also frequently falsely 

predicted whole genome duplications or higher whole genome copy numbers. 

3.2.2.3 Subclonal deconvolution 

Using the Mutect2_filtered_ic variant calls, with controlled false positives, in combination with the CNA 

calls and purity estimates from Sequenza, FACETS or TITAN, I prepared inputs for subclonal deconvolution. I 

used these with two subclonal deconvolution methods; Ccube and Pyclone. A third method, Sclust, was 

also included, using the same Mutect2 calls, but with its own CNA and purity predictions. All methods were 

run with default values, with the exception of Sclust, which required a slightly larger smoothing parameter 

to allow completion for some runs, as indicated by the authors (Cun et al., 2018). 

Accuracy of subclonal deconvolution pipelines, and factors that affect them, was assessed by comparing 

the estimated variant CCFs with known true CCFs from the HeteroGenesis outputs. Whilst this doesn’t 

assess how accurately the methods deconvolute variants into distinct clones, it instead focuses on the likely 

more critical and informative step of CCF estimation that provides the input into clone assignment. 

Furthermore, CCFs themselves are often used by researchers for investigating changes in cellular 

frequencies across time points (Barthel et al., 2019). 

True CCFs for the simulated tumours take a large number of values, partly due to the high number of clones 

(n=8), but also from deletions that result in daughter clones not having the full set of variants of the parent. 

To assess the effect that different factors have on CCF estimation, comparisons between estimated and 

true CCFs are plotted for groups of combined samples from different scenarios. As a reference, an 

additional plot is shown where CCFs are estimated by simply doubling VAFs (to assume a purely 

heterozygous diploid genome) and dividing by true purity (which is often accurately estimated by CNA 

calling methods, and therefore not much of a biased advantage), and limiting to £1. This represents a 

baseline for which CCF estimation should improve on. To achieve a suitable metric for comparison, I 

calculated the mean absolute difference (MADif) of true vs. estimated CCFs, across variants in all samples in 
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a group. Each sample was weighted equally so that those with the highest variant numbers did not 

dominate the results: 

234$5 = 	
1
%
8

∑ |;<=>−@<=>|
A
BCD

E

F

GCD

 

where n is the number of samples (S) in a group, m is the number of called true variants, and T and E are 

the true and estimated CCF values for a variant. 

I first determined the effect that tumour purity has on the accuracy of CCF estimates. Compared with 100% 

pure tumours, those with 75% purity resulted in slightly higher MADif values for all pipelines (Figure 26). 

However, there was also an increase in MADif for the 75% samples when using doubled VAFs divided by 

true purity, and as purity, ploidy and CNA calls did not appear to be negatively affected by lower purity, the 

increase may just reflect lower numbers of somatic reads in the 75% purity samples.  
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Next, I looked at the effect call set precision had on the CCF estimates of true positives. Across all pipelines, 

there was no increase in MADif with increasing false positive proportion (Figure 27), suggesting that it’s not 

important to stringently filter out false positives for CCF estimation, though it can’t be ruled out that false 

positives have a more negative effect on the deconvolution clustering step. 
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Figure 26. Estimated vs. true CCF 

values for all true positive 

Mutect2_filtered_ic called 

variants across 100% or 75% 

purity samples from seven 

different pipelines. The bottom 

panel shows estimated CCFs that 

are instead calculated by 

doubling VAFs and dividing by 

true purity, up to a maximum 

value of 1. Estimated CCFs in the 

Ccube pipelines are also limited 

to 1, as these can otherwise be 

higher due to modelling error. 
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I then assessed whether higher mutation densities affected the accuracy of CCF estimates, by comparing 

results between the three mutation parameter sets. No obvious differences were seen between the 

different parameter sets (Figure 28). It’s likely that there exist opposing effects between higher numbers of 

CNAs leading to larger portions of the genomes with incorrect copy number calls, and higher CNA numbers 

providing more data points for estimating purity and ploidy, with pipelines being affected differently for 

each sample.  
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Figure 27. Estimated vs. true 

CCF values for all true positive 

Mutect2_filtered_ic called 

variants across all samples, 

from seven different pipelines, 

with precisions of 1.00, 0.9, 

and 0.5. The bottom panel 

shows estimated CCFs that are 

instead calculated by doubling 

VAFs and dividing by true 

purity, up to a maximum value 

of 1. Estimated CCFs in the 

Ccube pipelines are also 

limited to 1, as these can 

otherwise be higher due to 

modelling error. 
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Lastly, I investigated whether sequencing depth affected CCF accuracy. As expected, and likely due to the 

better resolution of VAFs, higher depth was found to substantially reduce MADif for all Ccube and PyClone 

pipelines, and to a lesser extent, for Sclust (Figure 29).  
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Figure 28. Estimated vs. true 

CCF values for all true positive 

Mutect2_filtered_ic called 

variants across samples with 

three different mutation 

frequencies, from seven 

different pipelines. The 

bottom panel shows 

estimated CCFs that are 

instead calculated by doubling 

VAFs and dividing by true 

purity, up to a maximum value 

of 1. Estimated CCFs in the 

Ccube pipelines are also 

limited to 1, as these can 

otherwise be higher due to 

modelling error. 
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Overall, MADif values were high for all pipelines, with CCF estimates being, on average, between 0.115 and 

0.282 away from true values, and often not significantly better than just doubling VAFs and accounting for 

purity. The FACETS_Ccube pipeline performed the best, reaching a MADif of 0.115 in the 250x samples, 

though this is only marginally better than when using doubled VAFs (MADif=0.131) (Figure 29). The 

FACETS_Pyclone pipeline also achieved similar results, though PyClone was not able to produce results for 

TI
TA

N
_

Cc
ub

e 
FA

CE
TS

_C
cu

be
 

Se
qu

en
za

_C
cu

be
 

TI
TA

N
_ 

Py
Cl

on
e 

FA
CE

TS
_ 

Py
Cl

on
e 

Se
qu

en
za

_P
yC

lo
ne

 
Sc

lu
st
 

Es
tim

at
ed

 C
CF

 

True CCF 

60x 100x 250x 
2 

x 
VA

Fs
, 

≤
1 

Figure 29. Estimated vs. true 

CCF values for all true positive 

Mutect2_filtered_ic called 

variants across all samples at 

60x, 100x, or 250x sequencing 

depth, from seven different 

pipelines. The bottom panel 

shows estimated CCFs that are 

instead calculated by doubling 

VAFs and dividing by true 

purity, up to a maximum value 

of 1. Estimated CCFs in the 

Ccube pipelines are also 

limited to 1, as these can 

otherwise be higher due to 

modelling error. 
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the samples with the highest number of point variants (Figure 28). TITAN_Ccube, TITAN_PyClone and Sclust 

performed similarly to each other on 100x samples but, whereas Sclust was not affected much by 

differences in sequencing depth, the MADif for the two TITAN pipelines increased and decreased 

significantly with the 60x and 250x samples, respectively, particularly with PyClone. These pipelines were all 

comparable to when using doubled VAFs. The two Sequenza pipelines achieved the poorest accuracies, 

particularly Sequenza_PyClone with 60x and 100x samples, which achieved MADifs of 0.226 and 0.282, far 

worse than the MADifs when using doubled VAFs, of 0.169 and 0.155 (Figure 29).   

3.3 Discussion 

3.3.1 Overview 

In this study, I benchmarked the performance of subclonal deconvolution pipelines for investigating ITH 

from single tumour and matched normal samples, using the novel simulation methods that I developed 

specifically for this purpose. This is an important goal, as subclonal deconvolution has not been extensively 

benchmarked previously, and the few studies that have include drawbacks. The “ICGC-TCGA DREAM 

Somatic Mutation Calling - Tumour Heterogeneity Challenge” study employs crowd sourcing to benchmark 

subclonal deconvolution pipelines, but this only includes data for WGS, not WES, simulates mutations by 

adding them to reads post alignment, and as yet has only published the in-house results, which do not 

include newer analysis methods (Salcedo et al., 2020). Another important benchmarking study did so by 

generating mutation calls from simple distributions, and with simplifications such as subclonal variants 

must be carried by exactly 1 chromosome copy (Dentro et al., 2020). To improve such benchmarking 

studies, we need to be able to model the extensive complexity of tumour genomes and generate realistic 

sequencing reads from them. In Chapter 2, I addressed this issue with the creation of HeteroGenesis and w-

Wessim. These programs have allowed me to create test datasets that more closely represent the noise 

encountered in real analyses, allowing a better evaluation of the accuracy of subclonal deconvolution 

methods. This process also included benchmarking of somatic CNA calling, an analysis that has previously 

suffered from test datasets either lacking complexity or with incomplete known ground truths. The current 

study will therefore also be of use to researchers specifically interested in detecting somatic CNAs, 

particularly from highly heterogeneous tumours. While this study focusses only on WES analysis methods, 

the results of the subclonal deconvolution benchmarking will likely also be applicable to when using whole-

genome sequencing data. 

The key features of the WES datasets used in this study are i) the complexity of the underlying genomes 

and tumour subclonal architecture that the reads represent, and ii) the distributions of WES reads along 

the genome, which closely mirrors the noise and systemic bias of real WES data. These features are 

important for allowing a reliable representation of how CNA calling and subclonal deconvolution methods 

perform with real data. An aspect of the simulated datasets that doesn’t so closely reflect real data, is the 
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higher than expected base quality score distribution, specifically for error bases. This likely resulted in the 

low precisions seen for variant callers. However, this is unlikely to substantially affect the benchmarking of 

CNA calling or subclonal deconvolution, for three reasons; 1) CNA calling is dependent only on read 

positions, which are unaffected by base quality scores as the alignment algorithm does not take these into 

account (Li, 2013). 2) The true sequenced bases in the simulated datasets do have a base quality score 

distribution that is an accurate representation of that in real data. Therefore, true positive variant calls are 

unlikely to be affected, and should be a good representation of the true variants called from real data. 3) 

The false positive variant calls, which increased in number as a result of the base quality scores for error 

bases being too high, was adjusted for by subsampling them to more realistic proportions. This resulted in 

call sets with precisions that covered those seen in previous studies. Overall, this means I can be confident 

that the inputs to the subclonal deconvolution methods are a good representation of those from real data.  

3.3.2 Variant calling 

The high base quality score distributions for error bases prevent accurate estimates of precisions for variant 

callers. Nonetheless, other observations can be drawn from the analysis. The filtering step for Mutect2 

removes a very high number of true positives due to the ‘clustered_events’ flag. Others have also noted 

removal of true positives with this flag, with some choosing to ignore the flag, as I did, or to combine a 

second caller to check the variants filtered by it (Letouzé et al., 2017; Giroux Leprieur et al., 2020; Tauriello 

et al., 2018). It should be noted that in this study, it’s possible that the flag’s impact was exacerbated by 

higher rates of false positives being called. Strelka2 had a small increase in true positive rate compared to 

Mutect2_filtered_ic. It also had an approximately four-fold shorter run time per core, can be run 

multithreaded, and requires fewer steps. However, Strelka2 was also found to have a lower precision, 

compared to Mutect2. Furthermore, Mutect2 has additional features not utilised in this study, such as a 

read orientation artefacts filter and multi-sample mode, which will likely provide it with an advantage over 

other methods when used with FFPE data or multiple samples from the same tumour (Detering et al., 

2019). VarScan2 showed poor recall at lower VAFs, likely due to its hard filter for minimum VAF, at 0.05. It 

should be pointed out that, while Lancet did not perform as well in detecting combined SNVs and InDels as 

Mutect2 and Strelka2, its strengths are specifically focussed on InDels, and may perform comparatively 

better when assessed on these alone.  

Ensemble callers (Rashid et al., 2013; DePristo et al., 2011; Wang et al., 2020; Anzar et al., 2019; ICGC/TCGA 

Pan-Cancer Analysis of Whole Genomes Consortium, 2020), which combine the results of multiple SNV 

callers, are of potential use in generating a high confidence call set. I demonstrated in this study, through 

taking the union and intersect of the two best performing callers, that such methods risk increasing errors 

or decreasing the number true positives compared to when using single methods alone. This would be 

particularly problematic when poorer performing callers are included. Ensemble callers aim to overcome 
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these issues, either by using machine learning to create a classifier for filtering out false positives (DePristo 

et al., 2011; Anzar et al., 2019), or through a consensus approach (Wang et al., 2020; Rashid et al., 2013; 

ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium, 2020). However, this adds to an already 

lengthy process, and nonetheless, the best results will be achieved when only including callers that have 

been shown individually to perform well in benchmarking studies.  

3.3.3 CNA calling and subclonal deconvolution 

To investigate the performance of subclonal deconvolution methods, I assessed their ability to accurately 

estimate variant CCFs, from the Mutect2_filtered_ic call sets. Whilst the choice of subclonal deconvolution 

method had an effect on this, the results in this study suggest the choice of CNA caller is likely a larger 

factor, with the MADif metric varying more between CNA callers than between PyClone vs. Ccube with the 

same CNA caller. FACETS was found to be more sensitive in detecting CNAs than the other methods, 

resulting in improved accuracy for CCF estimation. This is likely due to its use of pseudo-SNPs during 

segmentation, which allows it to pick up on changes in regions not necessarily covering high numbers of 

SNPs. Additionally, thanks to a convenient wrap-around script (cnv_facets (Beraldi)) from 

https://github.com/dariober/cnv_facets, FACETS was also the easiest of the tested CNA calling methods to 

install and run, with TITAN being the most complex. Ccube was shown to be the most accurate method at 

estimating CCFs, with PyClone performing the worst. PyClone was run using the clonal copy numbers from 

TITAN and FACETS, as it is unable to accept estimates of the cellular frequencies for subclonal CNAs, and 

instead treats all inputted copy numbers as the overall values across all subclones in the tumour. It’s 

possible that PyClone’s performance may improve by instead providing it with all CNAs estimated to be in 

greater than 50% of cells, or recalculating subclonal copy numbers to reflect the overall sample (assuming 

an otherwise diploid genome in the remaining cells). Nonetheless, Ccube also outperformed PyClone when 

using identical CNA calls from Sequenza, which does not provide subclonal CNAs. It should also be noted 

that parameters exist for some subclonal deconvolution methods that may improve their performance. For 

example, PyClone has parameters for increasing iterations or reducing runtime, which may be useful when 

only using a single tumour sample or when hundreds of variants are detected. However it is not practical to 

benchmark multiple parameter setups. 

Recently, a large study by Dentro et al. developed a set of consensus approaches to performing both WGS 

CNA calling and subclonal deconvolution, and applied them to a set of 2,658 tumours (Dentro et al., 2020). 

These approaches combined estimates from 6 CNA callers and 11 subclonal deconvolution methods. 

Individually, the CNA callers, which were for WGS and not WES tested in the current study, showed a good 

confidence consensus on 93% of tumours, whereas the subclonal deconvolution methods showed highly 

varied results. When benchmarking these, Dentro et al. found that the consensus approaches performed 

comparably to the best performing individual method, Ccube. Due to the way in which this benchmarking 
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was achieved, through using mutations generated from distributions and with assumptions that limit the 

complexity of the underlying ground truth, it was not known whether Ccube’s higher accuracy would hold 

when used with more complex datasets in the current study. However, I found that Ccube did indeed 

outperform PyClone and Sclust, two methods also included by Dentro et al., although none showed a high 

level of accuracy. The current study therefore confirms some of the results from Dentro et al. although, due 

to the more complex and realistic datasets, it is likely better able to assess the limitations of subclonal 

deconvolution methods. 

The minimum mean difference of estimated CCFs from true values was 0.115, for FACETS_Ccube with 250x 

samples, only marginally better than just doubling purity adjusted VAFs, with a MADif of 0.131. This is 

before considering the fact that only a small portion of the overall tumour is likely to be represented within 

a single sample (Bhandari et al., 2018; Siegmund and Shibata, 2016; Watkins and Schwarz, 2018; Sun et al., 

2017; Chkhaidze et al., 2019), and therefore, results from subclonal deconvolution of single samples should 

be interpreted cautiously. For example, a variant with a low VAF in a single primary tumour sample and 

high VAF in a single recurrent sample, does not necessarily imply that the cells containing the variant 

expanded in frequency over time. Instead, this could reflect the substantial inaccuracies in estimating CCFs 

from VAFs in one or both of the samples, or may reflect different proportions of variant containing cells 

being captured in the sampling from each tumour. Multi-sampling approaches are able to address these 

issues by looking across multiple regions of a tumour, thereby reducing the effects of sampling bias as well 

as likely improving CCF estimates. When such datasets are not available, looking for recurring patterns 

across large cohorts of patients may instead help to overcome the challenges of using single samples.  

3.3.4 Future directions and conclusions 

The benchmarking of subclonal deconvolution methods was carried out using inputs with subsampled false 

positives variant calls. This largely overcomes the issues resulting from the higher distribution for error base 

quality scores. Nonetheless, this analysis would benefit from adjusting the test datasets to bring the scores 

more in-line with those of real data, to increase confidence in the results. This could be achieved through 

modifications to the in silico sequencing method, as discussed in Chapter 2. 

An important feature of tumour clones is that they continue to develop new mutations as the cells divide 

and grow. This results in a neutral tail of low VAFs, where the cumulative number of variants has a linear 

relationship with the inverse of their allele frequency (Williams et al., 2016). The neutral tail is distinct from 

the major peak of VAFs present in every cell of the clone, and with most subclonal deconvolution methods, 

it may wrongly be identified as primary peaks from additional clones. A novel subclonal deconvolution 

method, MOBSTER, instead applies evolutionary modelling to identify and remove neutral tails from the 

data, allowing true clones to be determined more accurately (Caravagna et al., 2020). A drawback of the 

MOBSTER method is that the required input is in the form of VAFs that have been normalised for purity, 
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and it does not take CNAs into account. It is possible to instead provide CCFs divided by two, meaning that 

other methods, such as those included in this study, could first be used to adjust for CNAs, although the 

authors stress the importance of accurate CCF input data. Neutral tails are not modelled in the datasets 

created in this study. In the future it may be possible to create genomes for each cell in a tumour and to in 

silico sequence each one using HeteroGenesis and w-Wessim, but this is currently not feasible given the 

high computational resources required. A more practical alternative for achieving neutral tails in the 

dataset, would be to spike variants into the reads from each clone, prior to mixing, in a way that models 

continued neutral evolution. Nonetheless, even without neutral tails, the datasets in this study allow for a 

more realistic assessment and comparison of subclonal deconvolution methods than previous studies.  

Our group plans to expand the benchmarking in this study to test multi-sample subclonal deconvolution 

methods, including those that reconstruct phylogenetic trees of the relationships between subclones, such 

as Canopy (Jiang et al., 2016), SPRUCE (El-Kebir et al., 2016) and PhylogicNDT (Leshchiner et al., 2018). This 

is a much needed analysis, and would fully utilise the unique capabilities of HeteroGenesis and its freqcalc 

module. The program supports the creation of multi-sample datasets by providing copy number and point 

variant profiles to reflect different bulk samples from the same tumour, each containing varying 

proportions of clones. Bulk sequencing datasets can then be created to reflect these profiles by merging 

reads from each clone in the correct proportions.  

Regardless of the computational tools used, somatic variant and CNA calling, and therefore subclonal 

deconvolution, is ultimately limited by current sequencing technology and depth (Shi et al., 2018). In the 

future it is likely that single cell analyses will overcome many of the issues with investigating ITH, allowing 

for more accurate estimation of variant frequencies and subclonal deconvolution of tumours. Currently 

these methods are expensive, low throughput (though increasing), and produce a substantial amount of 

noise due to drop-outs (Gawad et al., 2016). Furthermore, archived material does not easily lend itself to 

single-cell analysis due to the damaging effects of freezing or FFPE (Guillaumet-Adkins et al., 2017; 

Martelotto et al., 2017). The benchmarking of subclonal deconvolution pipelines, carried out in this study, 

is therefore important to inform researchers on the most suitable, as well as the limitations of, available 

methods.  

3.4 Methods 

3.4.1 Creating datasets for use in benchmarking 

HeteroGenesis was used to simulate nine sets of tumour genomes from three parameter sets, with values 

listed in Table 3. The hg38 human reference genome was used as the baseline sequence for simulating 

genomes from. Known SNPs and InDels were taken from dbsnp_146.hg38.vcf. The 22 major autosomal 

chromosomes were included in the simulation, but the sex chromosomes were excluded to avoid issues 
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from using real WES reads from a male during sequencing with w-Wessim. HeteroGenesis’s freqcalc 

command was used to calculate overall bulk mutation profiles from individual clone profiles, for samples 

described in Figure 21. Genome sequences from HeteroGenesis were in silico sequenced with w-Wessim, as 

described in Chapter 2. Fragment lengths were set at a mean of 170b ±35 sd, which reflects those in real 

WES data for a set of mixed formalin-fixed paraffin embedded (FFPE)/fresh frozen GBM samples and 

matched blood samples (Droop et al., 2018). Read lengths were taken from the distribution in the error 

model to account for the trimmed low quality bases and clipped reads in the training data set. The 

simulated reads were then aligned to the hg38 reference genome with BWA-MEM (Li, 2013). 

Per sample BAM files were created from the per clone files, as indicated in Figure 21, through 

downsampling and merging. Downsampling of BAM files was achieved using both SAMtools (Li et al., 2009) 

and a custom script (https://github.com/GeorgetteTanner/randomsplitbam) that randomly splits reads in 

BAM files into two, with user defined proportions in each and with paired reads together. This ensures no 

overlap between the outputs, so as to avoid normal samples and corresponding tumour samples with 

normal contamination, containing identical reads. Such a scenario is unavoidable using SAMtools alone. 

3.4.2 Variant calling  

Commands and methods used to run the variant calling methods are described in the appendix. 

Variants and background base positions were limited to those with ³8 reads in both the tumour and normal 

samples. This was achieved using SAMtools mpileup (Li et al., 2009) in combination with a custom script for 

the ground truth variants, and either via variant caller parameters (VarScan2 and Lancet) or custom filtering 

(Mutect2 and Strlka2) for the call sets. 

A custom Python3 script was used to analyse the call sets, including the Scikit-learn package (Pedregosa et 

al., 2011) for creating the ROCs.  

3.4.3 CNA calling 

Sequenza (bitbucket commit 059325a, sequenza-utils v3.0.0) was run with the provided pype pipeline. All 

default settings were used, including a binning size of 50, with a gc_wiggle file also with bin size of 50.  

TITAN was run using the provided snakemake workflow with default parameters, with the following 

exceptions: Parameters were set for use with the hg38 human reference genome. A BED file of regions 

covered by the S04380219 Agilent SureSelect All Exon v5+UTR probes was provided to define target regions 

(ichorCNA_exons,TitanCNA_chrs). Chromosome X was removed from the list of chromosomes to include 

(ichorCNA_chrs). Initial normal contamination values was set to “c(0,0.1,0.2,0.3,0.4,0.5,0.6)” 
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(ichorCNA_normal). The maximum number of clusters was set to 8 (TitanCNA_maxNumClonalClusters). A 

statistical parameter was adjusted to accommodate WES datasets (TitanCNA_alphaK:  2500). 

FACETS (v0.5.14) was run with default parameters using the wrap around script, cnv_facets (v0.15.0) 

(Beraldi) from https://github.com/dariober/cnv_facets. A bed file specifying target exon regions was 

provided. 

Sclust (v1.1) was run under default parameters and as described in (Cun et al., 2018), with the exception of 

four samples (s1r3-A_250x_lim0.1, s2r1-A_250x_lim0.1, s1r2-B_100x_lim0.5, s2r1-A_100x_lim0.5) for 

which a slightly larger smoothing parameter (-lambda 1e-6.9) was required for completion of the cluster 

module, as recommended by the authors. “-part 1” was added to the bamprocess module command to 

indicate whole exome sequencing. 

Heatmaps were generated using CNVkit (Talevich et al., 2016), customised in order to create the required 

plots. Ground truth somatic copy number profiles were calculated by taking the ratios of somatic copy 

numbers to germline copy numbers, thereby normalising for the effect of germline CNVs. 

3.4.4 Subclonal deconvolution 

Purity estimates for all CCF estimation methods were taken from the same CNA caller used to provide copy 

number inputs. All were run with the assumption of an entirely heterozygous diploid germline sample.  

PyClone (v0.13.1) was run under default parameters, through the ‘run_analysis_pipeline’ command to run 

the full workflow. As this method only considers total average copy number estimates, when used with 

outputs from FACETS and TITAN, only clonal CNAs were incorporated.  

Ccube (v1.0) was run with the command, ‘RunCcubePipeline(ssm = data, numOfClusterPool = 1:10, 

numOfRepeat = 1, runAnalysis = T, runQC = T, multiCore = F)’, and providing either clonal copy number 

estimates from Sequenza or clonal/subclonal estimates from TITAN/FACETS. 

Sclust (v1.1) – See section 3.4.3.1. 

A custom Python3 script was used to analyse results. 
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3.5 Appendix 

3.5.1 Variant calling commands 

The following commands were used to run the somatic variant calling methods. 

Lancet (v1.1): 

• lancet --min-strand-bias 1 --min-map-qual 15 --min-phred-fisher 0 --min-coverage-tumor 8 --min-

coverage-normal 8 --min-alt-count-tumor 3 --ref hg38.fasta --reg {CHRO} --num-threads 24 --tumor 

{SAMPLE}.bam --normal normal_{SAMPLE}.bam > {SAMPLE}_{CHRO}_lancet_1.vcf 

• lancet --min-strand-bias 0 --min-phred-fisher 0 --min-coverage-tumor 8 --min-coverage-normal 8 --

min-vaf-tumor 0.01 --min-alt-count-tumor 2 --ref hg38.fasta --reg {CHRO} --num-threads 24 --tumor 

{SAMPLE}.bam --normal normal_{SAMPLE}.bam > {SAMPLE}_{CHRO}_lancet_2.vcf 

• cat {SAMPLE}_chr*_lancet_1.vcf > {SAMPLE}_lancet_1.vcf  

• cat {SAMPLE}_chr*_lancet_2.vcf > {SAMPLE}_lancet_2.vcf  

Mutect2 (GATK v4.1.2.0): 

• gatk Mutect2 --native-pair-hmm-threads 5 -R hg38.fasta -L {CHRO} -I {SAMPLE}.bam -tumor 

{SAMPLE} -I normal_{SAMPLE}.bam -normal normal_{SAMPLE} --germline-resource af-only-

gnomad.hg38.vcf.gz -O {SAMPLE}_mutect2_{CHRO}.vcf.gz 

• gunzip {SAMPLE}_mutect2_chr*.vcf.gz ; cat {SAMPLE}_mutect2_chr*.vcf > {SAMPLE}_mutect2.vcf ; 

bgzip {SAMPLE}_mutect2.vcf 

• gatk MergeMutectStats -stats {SAMPLE}_mutect2_chr1.vcf.gz.stats -stats … -stats 

{SAMPLE}_mutect2_chr22.vcf.gz.stats -O {SAMPLE}_mutect2.vcf.gz.stats 

• gatk IndexFeatureFile -I {SAMPLE}_mutect2.vcf.gz 

• gatk FilterMutectCalls -V {SAMPLE}_mutect2.vcf.gz -O {SAMPLE}_mutect2_filtered.vcf.gz -R 

hg38.fasta 

Strelka2 (v2.9.10):  

• configureStrelkaSomaticWorkflow.py --normalBam normal_{SAMPLE}.bam --tumorBam 

{SAMPLE}.bam --referenceFasta hg38.fasta --runDir ./ --callRegions callable.bed.gz --exome 

(callable.bed.gz contains the whole lengths of chromosomes 1-22, X, Y, and M) 

(configureStrelkaSomaticWorkflow.py.ini was unchanged) 

• runWorkflow.py -m local -j 24 

VarScan2 (v2.4.4, samtools mpileup v1.9, htslib v1.9, bam-readcount v0.8.0): 

• samtools view -b -h -q 15 -o {SAMPLE}_q15.bam {SAMPLE}.bam ; samtools view -b -h -q 15 -o 

normal_{SAMPLE}_q15.bam normal_{SAMPLE}.bam 

• samtools mpileup -B -f hg38.fasta normal_{SAMPLE}_q15.bam {SAMPLE}_q15.bam > 

{SAMPLE}_dual.mpileup 
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• java -jar VarScan.v2.4.4.jar somatic {SAMPLE}_dual.mpileup {SAMPLE}_varscan2 --mpileup 1 --p-

value 0.10 --strand-filter 0 --min-coverage-tumor 8 --min-coverage-normal 8 --min-var-freq 0.01 --

somatic-p-value 1.0 

• cat {SAMPLE}_varscan2.snp {SAMPLE}_varscan2.indel > {SAMPLE}_varscan2.txt 

• awk '{print $1,$2-1,$2+1}' {SAMPLE}_varscan2.txt > {SAMPLE}_varscan2_pos.txt 

• bam-readcount -w1 -f hg38.fasta -l {SAMPLE}_varscan2_pos.txt {SAMPLE}_varscan2.bam > 

{SAMPLE}_varscan2.txt.readcounts 

• java -jar VarScan.v2.4.4.jar fpfilter {SAMPLE}_varscan2.txt {SAMPLE}_varscan2.txt.readcounts --

dream3-settings --keep-failures --output-file {SAMPLE}_varscan2_filtered.txt 

A description of the parameters and filters used for variant calling are provided in Appendix Table 1. 
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Appendix Table 1. Parameters and filters for running variant calling. Default values are stated where non-default values are used. Thresholds were set to a 

minimum stringency where appropriate, to output every considered position to allow creation of full ROC curves. All other parameters that are not 

indicated in the table were left as defaults. *VarScan2’s P-value threshold to call a heterozygote was lowered from default, as recommended by the 

VarScan2 author’s as a result of fine-tuning for the TCGA-ICGC DREAM-3 SNV Challenge (Ewing et al., 2015) (discussed in Chapter 2). Other additional fine 

tuning parameters for minimum VAF and coverage were not followed, so as to allow calling of lower VAF variants down to 0.05 (which were not included 

in the DREAM challenge training dataset) and to standardise minimum coverage between pipelines. **VarScan2’s strand bias filter is indicated as being off 

by default, but it appears that the default setting is actually on. Therefore, as the authors recommend it being off as a result of their DREAM challenge 

fine-tuning, a parameter was included to specifically turn it off. ***Strelka2’s configuration file states higher aggregate variant score values for filtering, 

but it is apparent from the outputs that those values are ignored and the scores stated here are what is actually used. 

SNV calling 
pipeline VarScan2 VarScan2 + fpfilter Mutect2 Mutect2 + 

FilterMutectCalls Lancet_1 Lancet_2 Strelka2 

Description VarScan2 
(+ samtools mpileup) 

VarScan2 with fpfilter. 
fpfilter parameters 

were set based on the 
author’s fine-tuning for 

the TCGA-ICGC 
DREAM-3 SNV 

Challenge, using the --
dream3-settings flag. 

(+ bam-readcount) 

Mutect2 with 
default 

parameters 

Mutect2 with 
FilterMutectCalls 

under default 
parameters. 

Lancet with 
minor 

adjustments 
to 

parameters. 

Lancet with 
less stringent 
parameters. 

Strelka2 with 
default parameters. 

Versions and 
references 

samtools mpileup v1.9, 
htslib v1.9 (Li et al., 

2009),VarScan2 v2.4.4 
(Koboldt et al., 2012) 

bam-readcount v0.8.0 
(https://github.com/ge
nome/bam-readcount) 

GATK v4.1.2.0 
(Benjamin et 

al., 2019) 
- 

Lancet v1.1 
(Narzisi et al., 
2018) 

- Strelka2 v2.9.10 
(Kim et al., 2018) 

Threshold 
Somatic P-value=1 

(default=0.05) 
(dream3=0.05) 

Somatic P-value=1 
(default=0.05) 
(dream3=0.05) 

LOD=3 LOD=3 
Fisher’s exact 
test score=0 
(default=5) 

Fisher’s exact 
test score=0 
(default=5) 

Aggregate variant 
score***: 
SNVs=7 
InDels=6 
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Heterozygous P-value 
= 0.10 (default=0.99)* 

(dream3=0.10) 

Heterozygous P-value 
= 0.10 (default=0.99)* 

(dream3=0.10) 

 

Minimum 
coverage in 

tumour/normal 

8/8  
(default=6/8) 
(dream=3/3) 

8/8  
(default=6/8) 
(dream=3/3) 

NA - Manually 
filtered for 8/8 

after calling 

NA - Manually 
filtered for 8/8 

after calling 

8/8  
(default= 

4/10) 

8/8  
(default= 

4/10) 

NA - Manually 
filtered for 8/8 

after calling 

Minimum read 
mapping quality 

15 (from previous 
filtering of reads with 

samtools, as 
recommended by the 

VarScan2 authors.) 

30 alt/20 ref 
(default=15/15) 
(dream3=30/20) 

Median³50 

Median alt³30 
(with an 

exception for 
longer indels) 

15 15 20 

Minimum base 
quality 

13 
(from mpileup default 

parameters) 

30 alt/15 ref 
(default=15/15) 
(dream3=30/15) 

10 alt/10 ref 10 alt/10 ref, 
Median alt³20 17 17 NA 

Minimum VAF 0.01 (default=0.20) 
(dream3=0.08) 

0.05 
(default=0.20) 
(dream3=0.08) 

0 0 0.04 
0.01 

(default= 
0.04) 

0 

Minimum alt 
supporting reads NA 

3, 1 in low coverage 
regions) 

(default=4,2) 
(dream3=3, 1) 

NA 0 3 2 
(default=3) NA 

Strand bias filter 

Off** 
(default=on - removes 

variants with >90% 
strand bias) 

Off 
(default=minimum of 

1% alt reads from each 
strand) 

(dream3=off) 

NA 
On – Performs 
strand artefact 

modelling 

On – requires 
³1 alt reads 

on both 
strands 

Off 
(default=on) Off 

 
3.5.2 CNA heatmaps 

Appendix Figure 1. (Below) Heatmaps of true and predicted overall copy numbers. FACETS, TITAN, and Sclust copy numbers are multiplied by the 

predicted cellular fractions containing them, thereby making them directly comparable to overall true copy number values. 
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Chapter 4 – Identification of pathways relevant to 
GBM progression through therapy 
The results in section 4.2.1, involving the SubClonalSection model, were previously published in Nature 

(Barthel et al., 2019). The material is reproduced here with the lead author’s permission. 

4.1 Introduction 

4.1.1 Overview 

The overall aim of this study is to identify cellular processes that influence glioblastoma (GBM) cells’ ability  

to resist therapy. While the previous two chapters were focussed on identifying the most accurate 

pipelines for investigating such effects through subclonal deconvolution, using simulated datasets, this 

chapter reports on the analysis of real GBM datasets through additional and alternative approaches. 

I had initially intended to extend the benchmarking of Chapter 3 to include multi-sample subclonal 

deconvolution methods, and then apply the most accurate pipeline to our group’s in-house samples. 

However, whilst working on the benchmarking, my group’s involvement in the Glioma Longitudinal 

AnalySiS (GLASS) consortium meant we gained access to a considerable dataset, containing genome 

sequencing data for 257 matched primary and recurrent glioma samples (GLASS Consortium, 2018). This 

dataset is an important and unprecedented resource for GBMs and other gliomas, so I therefore wanted to 

utilise it in my analyses. The raw sequencing reads were not accessible for the dataset, and instead I only 

had access to the mutation call sets. These had already been run through a subclonal deconvolution 

method in order to characterise the intratumour heterogeneity (ITH) in the samples, and so I decided to 

proceed with investigating the biology underlying the tumours’ progression through therapy, using this 

available data. 

4.1.2 The GLASS dataset 

GLASS is a worldwide community-driven resource of pooled datasets containing longitudinal sequencing 

and clinical data from glioma patients. It currently contains 257 adult glioma patients, with somatic variant 

and copy number calls from a mix of whole-genome sequencing (WGS) and whole-exome sequencing 

(WES), as well as other omics datasets. Among the patients are 94 that had isocitrate dehydrogenase wild-

type (IDHwt) GBMs at both primary and recurrent time points, had received standard therapy with both 

temozolomide (TMZ) and radiotherapy, and had high quality sequencing for both primary and recurrent 

tumours. These samples therefore allowed me to focus on processes that affect specifically GBMs (as 

opposed to other gliomas which may show different resistance mechanisms in response to therapy), in 
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response to standard treatment (as opposed to the minority of cases that may, for example, only receive 

radiotherapy or trial drugs) in part of the analyses.  

Raw sequencing reads are not provided in the GLASS dataset, and I therefore use the provided mutation 

call sets. Specifically, somatic copy number alterations (CNAs), purity, and ploidy estimates are provided by 

TITAN (Ha et al., 2014), and somatic point variants (single nucleotide variants (SNVs) and short insertions 

and deletions (InDels)) are provided by Mutect2 in multi-sample mode (Benjamin et al., 2019). Both of 

these methods showed good results in the benchmarking in chapter 3. Cancer cell fractions (CCFs) are also 

provided in the dataset, estimated by PyClone (Roth et al., 2014). While the benchmarking found that 

PyClone was less accurate than Ccube in estimating CCFs, I opted not to rerun the analysis with Ccube as 

the difference was relatively small. It’s also likely that the CCF estimates in the GLASS dataset are more 

accurate than those in the benchmarking, as all samples for a patient (typically one primary and one 

recurrent) were jointly analysed in a multi-sample set-up. Furthermore, whereas the benchmarking only 

used clonal CNAs with PyClone, both clonal and subclonal CNAs were used in the GLASS analysis. While the 

latter may cause issues for PyClone’s algorithm, which treats all CNAs as the overall copy number across all 

subclones, it might achieve better results.  

As well as investigating variant changes in CCFs in response to therapy, this chapter also employs analyses 

using other information, such as VAFs, or the binary presence or absence of variants, which avoid any 

inevitable inaccuracies of CCF estimation. 

4.1.3 Investigating the mode of tumour evolution 

Looking for variants that confer therapy resistance assumes that there is a level of selection for subclones 

containing these alterations in response to treatment. This, however, is not guaranteed to be the case, and 

instead all subclones may survive equally well and the tumour continues to evolve neutrally. It’s therefore 

of interest to determine how prevalent selection is in recurrent GBMs, and whether it is associated with 

therapy.  

A novel method available for identifying selection in a tumour is the SubClonalSelection model (Williams et 

al., 2018). Its underlying rationale is the observation that in neutrally evolving tumours, subclonal variant 

allele frequencies (VAFs) (in diploid regions, without distortions from copy number alterations) follow a 

power-law distribution (with a factor of -2), creating a neutral tail where the cumulative number of 

mutations has a linear relationship with the inverse of their allele frequency. This occurs as cells constantly 

gain new mutations and all continue to divide at a similar rate. Alternatively, any deviation from the linear 

relationship suggests variations in the growth rates between cells and, therefore, that there is selection of 

some subclones over others (Figure 30). However, a distortion will also be seen if the mutation rate of cells 

within a subclone is altered, even in the absence of selection (Williams et al., 2016). 
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Figure 30. Representations of tumours evolving under either neutral or selection evolutionary 

modes. A+D) Phylogenetic trees representing cells coloured according to subclone. In A, all 

subclones grow and divide at the same rate, whereas in D, cells in the purple subclone have a 

selective advantage and divide more rapidly. The dashed boxes indicate sampled cells. B+E) 

Distributions of VAFs in the samples, coloured by subclone. In (E), the purple subclone distorts the 

overall distribution due to an increased number of variants that are ‘clonal’ to the sampled region 

of the purple subclone. C+F) Cumulative distributions of inverse VAFs. The neutrally evolving 

tumour (C) shows a linear relationship, whereas the tumour with selection of the purple clone (F) 

does not. 

SubClonalSelection combines modelling of this with Bayesian model selection and parameter inference to 

determine the probability of either a neutrally evolving tumour or one with selection present. Furthermore, 

the model can predict the relative fitness advantage of up to 2 detected subclones compared to other cells 

in a tumour. Using this method with the GLASS dataset, I determine the prevalence of selection in GBM and 

other gliomas, and the affect that standard therapy has on tumour evolution.  

4.1.4 Identification of biological pathways relevant in GBM progression through therapy 

This second part of this chapter is focused on identifying what specific cellular processes may be relevant to 

GBM progression through therapy. Although it has previously been shown that there is generally no genetic 

bottleneck for GBM through therapy (Körber et al., 2019), even small selective advantages to cells can help 

us to understand what processes are behind therapy resistance, or may allow us to develop drugs that 
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prolong patient’s lives by minimising the selective advantage of those cells. Furthermore, variants in cells 

that disappear from primary to recurrent, may inform us on cellular processes that confer sensitivity to 

therapy. 

While the SubClonalSelection model is able to detect when selection is likely present in a tumour, allowing 

us to understand trends in selective pressures across a cohort, it is not able to predict which variants, and 

therefore which cellular processes, are driving selection, or even which variants are in the clonally 

expanding cells (though this can be estimated through the predicted cellular frequency of the expanding 

clone). It also cannot determine in which tumours the selection is in response to therapy. Furthermore, 

many tumours in the dataset have insufficient data for use with the model, and in others, selection may 

have been missed due to a number of reasons, which are discussed later. Therefore, I next aim to 

investigate which variants may confer therapy resistance or sensitivity, through patterns of their 

frequencies between primary and recurrent tumours. 

Most variants in tumours are neutral passengers that have no significant effect on a subclone’s progression 

(ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium, 2020). Differentiating these from driver 

variants, that increase a subclone’s fitness and are under positive selection, is a large field of cancer 

bioinformatics (Bailey et al., 2018; Martínez-Jiménez et al., 2020). A common approach is to look for 

frequently mutated genes in cancers, or those that are mutated more often than expected by chance. 

Extensions of this include looking for variants that cluster to specific regions of a gene sequence, or that 

cause amino acid changes that cluster in three-dimensional space in a protein structure. Other approaches 

use machine learning with databases of cancer associated genes to predict the functional consequence of 

variants. Large pan-cancer studies have employed consensus approaches to investigate driver genes across 

cancers, by combining methods that use the above approaches (Bailey et al., 2018; Martínez-Jiménez et al., 

2020). These studies identified 299-568 driver genes in total across cancers, most of which were cancer 

specific. Another commonly used approach to identifying driver genes is to compare the numbers of non-

synonymous and synonymous variants within them, under the assumption that if alterations to a gene 

result in clonal sweeps of cells containing the variant, or even just expansions to detectable proportions, 

then a higher number of non-synonymous relative to synonymous variants is likely to be observed 

(Martincorena et al., 2017).  

The above approaches all focus on individual genes, many of which may lack significance when identifying 

individual drivers, particularly in smaller cohorts. To overcome this, researchers can instead look at the 

frequency of variants across multiple related genes in a pathway, thereby leveraging increased statistical 

power and gaining additional insights into the cellular mechanisms that result in the selection. In this study, 

I use such an approach with the GLASS dataset to identify variants that may drive therapy resistance or 

sensitivity in GBM. In doing so, altered driver genes that individually may not recur sufficiently to reach 
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significance on their own, have the potential to stand out. This is particularly important given that previous 

studies have found only scarce evidence of repeated genetic alterations in recurrent GBM tumours 

(Kraboth and Kalman, 2020; Barthel et al., 2019; Körber et al., 2019; Wang et al., 2016; Cahill et al., 2007). 

Many methods are available for investigating the driver potential of genes based on their shared effect on 

pathways, and generally fall into three categories; pathway analysis through gene set enrichment analysis 

(GSEA), network analysis, and de novo methods. These can be applied to any dataset from which a list of 

altered genes can be obtained, such as, differentially expressed genes from RNAseq (although additional 

methods specific to this type of data that take into account the extent of differential expression in every 

gene without hard cut-offs, may be more suitable (García-Campos et al., 2015)), genes with epigenetic 

modifications, or, in the case of this study, mutated genes from DNA sequencing.  

GSEA pathway analysis methods look for over-representation of altered genes in predefined distinct 

biological pathways, each represented by a list of genes that all function to carry out a process (García-

Campos et al., 2015). Pathways are assigned enrichment scores based on the extent that the number of 

altered genes occurring in a set exceeds the number that would be expected by chance, often using a 

hypergeometric distribution to determine this. P-values for the enrichment scores for each pathway are 

then calculated. This is the underlying approach in all GSEA methods, though many more sophisticated 

adaptations have been developed. For example, PathScore calculates pathway enrichment separately per 

patient, allowing consideration of individual mutation rates, as well as accounting for gene lengths and 

gene specific background mutation rates (Gaffney and Townsend, 2016). Hundreds of databases of 

pathways are available for use in pathway analysis, with popular choices discussed in (García-Campos et al., 

2015) and a comprehensive list provided in the Pathguide website (Bader et al., 2006). 

The downside of GSEA pathway analysis is that information about cellular processes is split into distinct, 

and sometimes large and imprecise, individual pathways that discard crosstalk information between them. 

Network analysis methods avoid this by using whole networks such as protein-protein interaction networks 

to identify driver modules or subnetworks (Creixell et al., 2015; Zhang and Zhang, 2018). For example, 

HotNet2 uses an approach of network propagation and heat diffusion from altered gene nodes along 

network edges to identify ‘hot’ recurrently mutated subnetworks (Leiserson et al., 2015; Vandin et al., 

2011). Another method, MEMo (Ciriello et al., 2012) combines prior network information with assessment 

of mutual exclusivity between genes (discussed below) to identify driver subnetworks. Whilst network 

methods are able to incorporate all the information in a predefined network, this is unlikely to fully or 

accurately represent all cellular processes, particularly in cells with altered physiology such as in tumours. 

To overcome this, de novo pathway methods, such as Dendrix (Vandin et al., 2012), Multi-Dendrix 

(Leiserson et al., 2013), and GAMToC (Melamed et al., 2015), instead identify driver processes through 

patterns of altered genes (Creixell et al., 2015; Zhang and Zhang, 2018; Vandin, 2017). Common approaches 
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include identifying co-occurring altered genes, which may indicate an additive or synergistic effect between 

two separate pathways. Examples of co-occurring altered genes have been found in pathways known to be 

altered in GBM, such as retinoblastoma protein (RB) and receptor tyrosine kinase (RTK) signalling, DNA 

damage, mitogenic, and cell cycle pathways (Gu et al., 2013; Melamed et al., 2015). Alternatively, patterns 

of mutual exclusivity between genes, where only one of the genes is typically altered per tumour, can 

instead be used to identify driver pathways containing both of these genes. In GBM, genes in known driver 

pathways, phosphoinositide 3-kinases (PI3K), p53, and RB, have been shown to have mutual exclusivity, as 

well as those in multiple novel gene sets involving several transcription factors (Ciriello et al., 2012; 

McLendon et al., 2008; Vandin et al., 2012). It has been suggested, however, that many of these pairs of 

genes showing mutually exclusivity, do so due to alterations being subtype specific, and not because they 

are interchangeable in causing the same effect. A recent method, Subtype-specific Pathway Linear 

Progression Model (SPM), combines identification of driver pathways through mutual exclusivity, with 

predictions for relative timings of pathway alterations using CCFs, whilst aiming to classify patients into 

different subtypes. In GBM, this identified four sub-types, using inputs of 15 predefined known driver genes 

(Khakabimamaghani et al., 2019).  

My aim in this chapter is to use pathway analysis on the GLASS dataset, in a way that informs on processes 

that are specifically relevant to GBM progression through therapy. To achieve this, I subset variants based 

on changes in their cellular frequencies from primary to recurrent tumours, or whether variants are unique 

to primary tumours, unique to recurrent tumours, or shared between both. These distinct gene sets are 

then used to define the altered genes inputted into the pathway analysis. This may allow detection of 

pathways that are specifically relevant to tumour progression through therapy, as opposed to GBM 

tumours in general, as have been the focus of the above previous studies. For this purpose I chose to use a 

GSEA pathway analysis method, PathScore, as this allows easy direct comparison of identical pathways 

between results from different inputs. Furthermore, unlike de novo methods, GSEA is suitable for use with 

subsets of altered genes in a tumour, and able to detect driver pathways that may only be present in a 

small number of patients. 

PathScore takes as input a list of patient-gene pairs, and for each pathway in a database, provides 1) the 

actual pathway size, based on the number of DNA bases across all genes in the set, 2) the effective pathway 

size, indicating the maximum likelihood estimate of pathway size given the per-patient alteration rates, 

pre-defined gene-specific background mutation rates, and gene transcript lengths, and 3) a P-value for the 

disparity between actual and effective pathway size from a likelihood ratio test. The effect size can then be 

determined from the ratios between the actual and effective pathway sizes, indicating the degree of 

overburden of pathways with alterations. 
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4.2 Results 

4.2.1 Investigating the mode of tumour evolution 

To identify the mode of evolution in GBM and other gliomas, I started with a set of 222 patients from the 

GLASS dataset that had been previously filtered for high quality sequencing and copy number data for 

matched primary and recurrent tumours (the gold set in (Barthel et al., 2019)). I further filtered tumours for 

those with a minimum purity of 0.5, and that had ³25 subclonal variants in copy neutral regions (ie. a copy 

number of 2 in diploid tumours, or 3 in triploid tumours), with a coverage of ³30x. This was based on the 

pre-processing thresholds recommended by the SubClonalSelection authors (Williams et al., 2018), though 

they emphasise that the program’s performance increases with increasing numbers of input subclonal 

variants. Excluding tumours for which the SubClonalSelection model was unable to complete successfully 

(those which could not converge upon a suitable result), the total number of included patients was 183, 

with 104 including estimates for both primary and recurrent tumours. Tumours were classified as evolving 

either neutrally or under selection based on the most probable scenario (i.e. whether the probability of 

neutral selection was greater or lower than 0.5). Similar proportions of neutral and selection classifications 

were seen when limiting results to only those with probabilities of greater than 0.7 for either neutral or 

selection (though this reduced our sample size by approximately a quarter, meaning less data for 

downstream analyses), thereby validating the 0.5 cut-off. 

Neutral evolution was the most common evolutionary mode in both primary and recurrent tumours. In 

recurrent tumours across all subtypes (IDHmutant,1p/19q_codeletion:n=19, IDHmutant_non-

codeletion:n=43, IDHwt:n=83), only 37% were classed as showing selection, although this increased to 47% 

in IDHwt recurrent tumours (of which the majority are GBMs) (Figure 31A). A Cox proportional hazards 

model, including age at first diagnosis, glioma subtype (IDHwt, IDHmut-noncodel, IDHmut-codel), and 

evolution mode in the recurrent tumour, demonstrated a significant association between shorter survival 

and selection at recurrence in all subtypes (Hazard ratio = 1.53, 95% confidence interval 1.00–

2.41, P=0.048). This survival difference is seen in a Kaplan–Meier curve for IDHwt gliomas (P=0.027, log-

rank statistic) (Figure 31B). This suggests that recurrent tumours with subclonal selection are generally 

more aggressive. However, there was no significant associations between either chemotherapy (P=0.74, 

Fisher’s exact test) or radiotherapy (P=0.68, Fisher’s exact test) with selection in the recurrence. This may 

have been due to insufficient numbers of recurrent tumours from patients who did not receive therapy, to 

achieve a significant result. However, there was also no significant associations between chemotherapy 

(P=0.85, Fisher’s exact test) or radiotherapy (P=0.72, Fisher’s exact test) with selection in the recurrence 

when instead using primary tumours to infer the prevalence of selection in untreated tumours. These 

results suggest that therapy is not a prevelant factor in inducing strong selection of clones in recurrent 

tumours. 
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Figure 31. A) Sankey plot indicating the breakdown of SubClonalSelection evolutionary modes by 

subtype and therapy (n = 104 for patients with model results at both primary and recurrent time 

points). The sizes of the bands reflect sample sizes and band colours highlight the glioma subtype. 

Grey colouring reflects instances when treatment information was not available. B) Kaplan–Meier 

curve showing survival differences between IDH-wild-type recurrent tumours demonstrating 

selection (n = 39) compared with neutrally evolving tumours (n = 44). P value determined by log-

rank test.  

4.2.3 Pathway analysis 

Though the SubClonalSelection results suggest that selection in recurrent tumours is not significantly 

associated with therapy, it is still of interest to investigate how genetic alterations affect tumours’ response 

to therapy. Identifying even small fitness advantages to therapy that may not have been detectable in the 

previous analysis, or which were present in only a small number of patients, could allow us to better 

understand the processes involved in GBM’s ability to resist therapy. The same is true for alterations that 
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sensitise cells to therapy, which are not considered in the above method. I therefore looked for evidence of 

such scenarios by performing pathway analysis with PathScore, using subsets of variants that will inform on 

specific patterns of progression through therapy. 

4.2.4 Running PathScore 

I started with a larger group of patients than in the SubClonalSelection analysis, to include samples 

previously filtered out due to poorer quality copy number data (the silver set in (Barthel et al., 2019)), 

which is not so important in this analysis as variant copy numbers are ignored for most parts, and those 

parts that do take copy number into account are likely able to cope with a large amount of noise without 

negative effects on results. Increasing sample number, however, will increase the power of the analysis. 

This analysis included 117 patients with IDHwt GBM at both primary and recurrent. 

To minimise noise from variants that have no effect on the function of the gene they’re in, I include only 

those that are predicted to physiologically alter the protein, and filter out others where an effect is less 

likely. To achieve this, I annotated variants from the GLASS dataset with the Ensembl Variant Effect 

Predictor (McLaren et al., 2016) (VEP) which characterises the effect that variants have on genomes. This 

includes providing scores from SIFT (Vaser et al., 2015) and PolyPhen-2 (Adzhubei et al., 2010) which 

predict the affect that amino acid modifying variants have on protein function based on sequence 

homology through evolution and the physical properties of amino acids. I then used this to filter the 

variants to create two sets of different stringencies; the high stringency set contained protein modifying 

variants predicted by either SIFT or PolyPhen to affect the function of a protein, and the low stringency set 

contains any protein modifying variant, as well as variants that may alter the regulation of the protein. 

Affected genes from both the high stringency and low stringency variant sets were run separately through 

PathScore. The results from each of the two sets generally agreed with each other, and therefore only 

those from the high stringency set are reported and discussed here.  

Next, I assigned variants from each set into groups: 1) all primary tumour mutations, 2) all recurrent 

tumour variants, 3) variants private to the primary tumour, 4) variants private to the recurrent tumour, 5) 

shared variants, 6) shared variants that increase in VAF, and 7) shared variants that increase in CCF (Figure 

32). Using both VAFs and CCFs to determine variants that increase through treatment has two benefits over 

using CCFs alone; i) Only around two thirds of variants in the GLASS dataset have a CCF estimate available, 

due to failed runs of PyClone, or coverage <30x, so using VAFs includes more variants, and ii) CCF estimates 

are not always accurate; While estimates from PyClone in the GLASS dataset are likely to be more accurate 

than those seen in the benchmarking from Chapter 3, as a result of differences between set-up, there is still 

a significant level of doubt in their accuracy. 
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Figure 32. A) Evolutionary progression of genetic subclones in GBM through therapy, and the cell 

fractions this study aims to characterise in order to identify pathway candidates for conferring 

therapy resistance, clonal expansion, and therapy sensitivity. B) Variant groups used in the pathway 

analysis comparisons to characterise the relevant cell fractions. Venn diagrams indicate fractions of 

variants across primary (P) and recurrent (R) tumours. 
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Of the 117 patients with IDHwt GBM tumours, only those who received standard therapy with both TMZ 

and radiotherapy (n=94/117) were included in the analysis, with the exception of when looking at ‘all 

primary’ (ie. private to the primary or shared) variants, where patients with any therapy were included as it 

has no effect on this group. Patients with hypermutated primary tumours (n=4/117), defined as having 

greater than 10 variants per megabase, were excluded for primary and shared variants, and those with 

hypermutated recurrent tumours (n=16/117) were excluded for recurrent variants to reduce the level of 

noise (Figure 32B). The number of patients in each group were as follows: All primary:113, all recurrent:79, 

all shared:91, increased VAF:66, increased CCF:41, private to primary:91. 

I ran PathScore using pathway genesets from the Molecular Signatures Database (MSigDB) (Liberzon et al., 

2011) which combines pathways from a number of sources, including KEGG, Biocarta, Reactome and 

Nature-NCI databases. Each group of variants is input separately, allowing a comparison of results between 

them. By ranking pathways on the fold change of number of patients altered in it between groups, this 

allows identification of pathways that are most differentially altered and, depending on which groups are 

being compared, are candidates for conferring therapy resistance, driving clonal expansion, or causing 

sensitivity to therapy (Figure 32).  

Due to the small number of samples available in the GLASS dataset, the statistical significance able to be 

achieved in this analysis is limited. The goal is to only visualise the data in a meaningful biological context, 

with the aim of identifying pathways and hypotheses for further investigation, and without formally 

attributing statistical significance to changes in the pathways. Multiple-testing corrections are therefore not 

performed. 

4.2.5 Pathways differentially enriched between primary and recurrent tumours 

To identify pathways that may confer therapy resistance, I looked for those that were altered in higher 

numbers of patients from all recurrent variants than from all primary variants, thereby identifying 

pathways that appear altered more frequently after therapy, and indicating an increased likelihood of the 

ability to confer resistance to therapy. Whilst many of the recurrent variants not seen in the primary will 

have developed post-therapy, be inconsequential, or were missed in the primary due to sampling bias,  

others may come from variants that were of too low frequency in the primary tumours to be detected, 

owing to their lack of a selective advantage in the absence of therapy, and which subsequently expanded to 

detectable frequencies in the recurrents. Such expansions, if small and with variants still at low frequency, 

may not have been identified by the SubClonalSelection model. 

The most enriched pathways in both primary and recurrent tumours generally contained known driver 

genes (MTOR, TP53, PTEN, EGFR, IDH1, IDH2, PIK3CA, PIK3R1, PIK3CG, RB1,NF1) (Bailey et al., 2018; 
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Krishnan et al., 2020). In the recurrent variants, the most enriched pathway that didn’t involve a commonly 

known driver gene was REACTOME_SYNTHESIS_OF_BILE_ACIDS_AND_BILE_SALTS_VIA_7ALPHA_ 

HYDROXYCHOLESTEROL (155th out of 1329 pathways). More importantly, this was also the pathway 

altered in the highest number of recurrent tumours, out of the top 20 pathways that increased most in 

alterations from primary to recurrent (Table 6); 6/7492 variants across 5/113 patients (4.4%) occurred in 

the pathway in primary variants, and 9/5141 variants across 8/79 patients (10.1%) occurred in the pathway 

in all recurrent variants. (These numbers differ slightly to those in Table 6 as some genes were rejected by 

Pathscore in its calculations, due to a lack of valid gene identifiers. The values stated here reflect the true 

numbers of variants in the pathway.) This is a 2.19 fold enrichment of alterations to the pathway in the 

recurrent variants compared to the primary (P=0.06, 1-tailed Chi-squared). The PathScore enrichment score 

in all primary variants was 0.86, suggesting no driver effects (it being close to 1), whereas the enrichment 

score in all recurrent variants was 2.54, which does suggest a driver effect. When only looking at primary 

and recurrent variants from an identical set of patients, who had no hypermutation in either the primary or 

recurrent and received standard therapy, the numbers of variants in the pathway from primary and 

recurrent tumours was 2/4162 and 9/5056. This is an even larger enrichment of 3.70 in the recurrent 

tumours (P=0.06, 1-tailed Fisher’s exact test (lower numbers required a different statistical test than 

above)). These results suggest that disrupted synthesis of bile acids and bile salts may confer a survival 

advantage to GBM cells undergoing standard treatment. I therefore looked into the variants in this 

pathway further. I could not find any evidence of gain of function variants although there was generally a 

lack of evidence to confirm either way (Table 7). A diagram of the REACTOME_SYNTHESIS_OF_BILE_ACIDS_ 

AND_BILE_SALTS pathway (which is an extension of REACTOME_SYNTHESIS_OF_BILE_ACIDS_AND_BILE_ 

SALTS_VIA_7ALPHA_HYDROXYCHOLESTEROL) indicated that altered genes all lay along a linear pathway 

(Figure 33). 5/9 of the variants in the recurrent tumours are in genes in which a loss of function causes 

significant reductions in bile acid synthesis (AKR1D1, HSD3B7 and HSD17B4)  (Shea et al., 2007; Lemonde et 

al., 2003; Huyghe et al., 2006; Fuchs et al., 2001). A further 2 variants, in ABCB11, are likely to result in a 

decrease in export of bile acids and accumulation of intracellular bile acids.  

 

 

 

 

Table 6. Top 20 pathways ranked by recurrent % patients / primary % patients, showing those 

potentially involved in causing therapy resistance. Pathways were filtered for those with ≥3 

patients being altered by recurrent variants. 
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Pathway 

All primary  
variants 

All recurrent variants 
% patients 

fold change 
Effect size 

% 
patients 
n=113 

Effect size 
% 

patients 
n=79 

REACTOME_SIGNAL_REGULATORY_PROT
EIN_SIRP_FAMILY_INTERACTIONS 

0.244 0.9 1.441 5.1 5.67 

REACTOME_POL_SWITCHING 0.201 0.9 1.203 5.1 5.67 

REACTOME_THROMBOXANE_SIGNALLIN
G_THROUGH_TP_RECEPTOR 

0.33 0.9 1.425 3.8 4.22 

BIOCARTA_TH1TH2_PATHWAY 0.244 0.9 1.059 3.8 4.22 

KEGG_GALACTOSE_METABOLISM 0.272 2.7 0.931 8.9 3.30 

REACTOME_SYNTHESIS_OF_BILE_ACIDS_
AND_BILE_SALTS_VIA_7ALPHA_HYDROXY
CHOLESTEROL 

0.855 3.5 2.544 10.1 2.89 

REACTOME_SYNTHESIS_OF_BILE_ACIDS_
AND_BILE_SALTS 

0.653 3.5 1.945 10.1 2.89 

REACTOME_TRYPTOPHAN_CATABOLISM 0.557 1.8 1.626 5.1 2.83 

REACTOME_IONOTROPIC_ACTIVITY_OF_
KAINATE_RECEPTORS 

0.37 1.8 1.087 5.1 2.83 

REACTOME_ACTIVATED_TAK1_MEDIATES
_P38_MAPK_ACTIVATION 

0.312 1.8 0.927 5.1 2.83 

REACTOME_LAGGING_STRAND_SYNTHES
IS 

0.307 1.8 0.894 5.1 2.83 

REACTOME_DIGESTION_OF_DIETARY_CA
RBOHYDRATE 

0.196 1.8 0.563 5.1 2.83 

PID_TCR_JNK_PATHWAY 0.616 2.7 1.862 7.6 2.81 

KEGG_PRIMARY_BILE_ACID_BIOSYNTHESI
S 

0.559 2.7 1.636 7.6 2.81 

REACTOME_DARPP_32_EVENTS 0.52 2.7 1.561 7.6 2.81 

PID_SMAD2_3PATHWAY 0.448 2.7 1.344 7.6 2.81 

REACTOME_N_GLYCAN_ANTENNAE_ELO
NGATION 

0.915 3.5 2.421 8.9 2.54 

REACTOME_N_GLYCAN_ANTENNAE_ELO
NGATION_IN_THE_MEDIAL_TRANS_GOL
GI 

0.644 3.5 1.703 8.9 2.54 

BIOCARTA_PGC1A_PATHWAY 0.616 3.5 1.619 8.9 2.54 

KEGG_MISMATCH_REPAIR 0.444 3.5 1.159 8.9 2.54 
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Table 7. Variants in the REACTOME_SYNTHESIS_OF_BILE_ACIDS_AND_BILE_SALTS_VIA_7ALPHA_ 

HYDROXYCHOLESTEROL in patients with no hypermutation in either the primary or recurrent, and 

who received standard therapy. 

Patient Variant 
status Gene Chr Position Allele Vaf Additional 

information 

GLSS-MD-
0023 

shared 
primary 

ABCB11 2 169783809 C->A 0.504 
Within a Q-loop 

which are involved in 
ATP-binding. 

GLSS-MD-
0023 

shared 
recurrent 

ABCB11 2 169783809 C->A 0.25 " 

GLSS-CU-
R006 

private 
recurrent 

ABCB11 2 169788951 C->T 0.46 
Previously found in a 

large intestine 
tumour. 

GLSS-MD-
0026 

private 
recurrent 

AKR1C4 10 5242224 C->A 0.448 
Stop gained in exon 

4/11. 
GLSS-SM-

R060 
private 

recurrent 
AKR1D1 7 137798468 G->A 0.234 - 

GLSS-MD-
0025 

private 
recurrent 

AKR1D1 7 137790074 G->A 0.059 

CTCF binding site - 
may disrupt gene 

regulation. Previously 
found in one prostate 

and multiple liver 
tumours. 

GLSS-19-
0271 

private 
recurrent 

HSD17B4 5 118810154 A->G 0.122 
Previously found in 

an 
oligodendroglioma. 

TCGA-06-
0190 

private 
recurrent 

HSD17B4 5 118877604 _->C 0.109 

Frameshift - missing 
end of the protein, 

which facilitates the 
transfer of molecules 
between membranes, 

and contains the 
peroxisomal targeting 

signal. 
GLSS-SM-

R058 
private 

recurrent 
HSD3B7 16 30999380 C->G 0.182 

Within a constrained 
element region. 

GLSS-MD-
0025 

private 
recurrent 

SLC27A5 19 59010520 G->T 0.166 
Within a promoter 

and constrained 
elements region. 

GLSS-LU-
00C2 

private 
primary 

SCP2 1 53427247 C->T 0.149 - 
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Figure 33. A diagram of the variants in the REACTOME_SYNTHESIS_OF_BILE_ACIDS_AND_ 

BILE_SALTS pathway in patients with no hypermutation in either the primary or recurrent, and who 

received standard therapy. Circles indicate all proteins in the gene set, with filled in circles 

indicating genes that contain variants private to the primary (green), private to the recurrent (red), 

or in both primary and recurrent (blue), and the number of variants in each gene written on each. 

Additional pathways involving these genes occur in the liver and other tissues, but here pathways 

are only shown when relevant to the brain or if a gene does not function in the brain. Altered genes 

with bold circles indicates that loss of function in these genes has previously been found to 

significantly reduce bile acid levels. 

4.2.6 Pathways enriched in clonally expanding cells 

I next looked at whether there was any evidence of pathways driving clonal expansion. For this, I provided 

PathScore with only variants that were shared between both the primary and recurrent tumours, which 

provides a background pathway alteration rate for all variants that survived through therapy (Figure 34). I 

then provided PathScore with only the shared variants that significantly increased in VAF from the primary 

to the recurrent, thus representing variants in subclones that clonally expanded through therapy (Figure 

34A). I repeated this with the shared variants that increased in CCF from the primary to the recurrent 

(Figure 34B). Both of these, when compared to the results from using all shared variants, allow 

identification of pathways that are more enriched in clonally expanding subclones and therefore likely to be 

driving the increased fitness.  
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Figure 34. Variants shared between both the primary and recurrent tumours, plotted with A) VAF in 

the primary against VAF in the recurrent, and B) CCF in the primary against CCF in the recurrent. 

Red markers indicate variants that were considered to be significantly increased from primary to 

recurrent. 

Pathways were generally altered in fewer patients in the increased CCF variants than the increased VAF 

variants as around a third of shared variants (1490/4496) did not have a CCF available from the GLASS 

dataset.  Many pathways altered by shared variants were found to be enriched in variants that increase in 

either VAF (Table 8) or CCF (Table 9).  

Table 8. Top 20 pathways ranked by increasing VAF number of patients / shared number of 

patients, showing those potentially causing clonal expansion. Pathways were filtered for those with 

≥3 patients being altered by increasing VAF variants.  

Pathway 

Shared variants 
Increasing VAF 

variants 
% patients 

fold change 
Effect size 

% 
patients 

n=91 
Effect size 

% 
patients 

n=91 
KEGG_VALINE_LEUCINE_AND_ISOLEUCINE_
DEGRADATION 

0.47 4.4 2.85 3.3 0.75 

KEGG_N_GLYCAN_BIOSYNTHESIS 0.5 5.5 2.26 3.3 0.60 

REACTOME_ABORTIVE_ELONGATION_OF_H
IV1_TRANSCRIPT_IN_THE_ABSENCE_OF_TA
T 

1.27 5.5 5.54 3.3 0.60 

PID_HIF2PATHWAY 0.7 5.5 3.09 3.3 0.60 

Primary VAF

Re
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en
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Primary CCF
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REACTOME_FORMATION_OF_THE_HIV1_EA
RLY_ELONGATION_COMPLEX 

0.94 5.5 4.1 3.3 0.60 

PID_ALK2_PATHWAY 2.66 5.5 12.31 3.3 0.60 

KEGG_BUTANOATE_METABOLISM 1.19 8.8 4.78 4.4 0.50 

REACTOME_HS_GAG_BIOSYNTHESIS 0.73 6.6 2.59 3.3 0.50 

REACTOME_FORMATION_OF_RNA_POL_II_
ELONGATION_COMPLEX_ 

0.83 6.6 3 3.3 0.50 

KEGG_ALANINE_ASPARTATE_AND_GLUTA
MATE_METABOLISM 

0.82 6.6 3.01 3.3 0.50 

PID_AJDISS_2PATHWAY 2.08 26.4 6.02 12.1 0.46 

PID_BMP_PATHWAY 0.87 7.7 2.86 3.3 0.43 

REACTOME_MRNA_CAPPING 1.56 7.7 4.8 3.3 0.43 

REACTOME_TRANSCRIPTIONAL_ACTIVITY_
OF_SMAD2_SMAD3_SMAD4_HETEROTRIM
ER 

0.88 7.7 2.72 3.3 0.43 

PID_WNT_SIGNALING_PATHWAY 1.18 7.7 3.66 3.3 0.43 

REACTOME_GLUCOSE_METABOLISM 0.57 7.7 1.79 3.3 0.43 

PID_FOXO_PATHWAY 0.85 7.7 2.67 3.3 0.43 

REACTOME_SIGNALING_BY_TGF_BETA_REC
EPTOR_COMPLEX 

1.01 13.2 3.15 5.5 0.42 

BIOCARTA_ERK_PATHWAY 5.95 29.7 14.96 12.1 0.41 

KEGG_ADHERENS_JUNCTION 1.97 35.2 4.88 14.3 0.41 

 

Table 9. Top 20 pathways ranked by increasing CCF number of patients / shared number of 

patients, showing those potentially causing clonal expansion. Pathways were filtered for those with 

≥3 patients being altered by increasing CCF variants. CCF numbers of patients are not directly 

comparable to those of shared variants due to approximately a third of variants not having an 

available CCF estimate. 

Pathway 

Shared variants 
Increasing CCF 

variants 
% patients 

fold change Effect 
size 

% 
patients 

n=91 

Effect 
size 

% 
patients 

n=91 

PID_ALK2_PATHWAY 2.66 5.5 18.03 3.3 0.60 
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REACTOME_SMOOTH_MUSCLE_CONTRACTIO
N 

1.83 9.9 9.8 4.4 0.44 

PID_BMP_PATHWAY 0.87 7.7 4.18 3.3 0.43 

REACTOME_MRNA_CAPPING 1.56 7.7 7.05 3.3 0.43 

REACTOME_LATE_PHASE_OF_HIV_LIFE_CYCL
E 

0.59 14.3 2.52 5.5 0.38 

KEGG_BUTANOATE_METABOLISM 1.19 8.8 5.32 3.3 0.38 

SIG_REGULATION_OF_THE_ACTIN_CYTOSKEL
ETON_BY_RHO_GTPASES 

0.91 8.8 3.94 3.3 0.38 

REACTOME_TRIGLYCERIDE_BIOSYNTHESIS 1.08 8.8 4.12 3.3 0.38 

REACTOME_HIV_LIFE_CYCLE 0.61 15.4 2.29 5.5 0.36 

REACTOME_TRANSPORT_TO_THE_GOLGI_AN
D_SUBSEQUENT_MODIFICATION 

1.31 9.9 4.39 3.3 0.33 

PID_AURORA_B_PATHWAY 0.96 9.9 3.65 3.3 0.33 

KEGG_MELANOGENESIS 1.05 20.9 3.27 6.6 0.32 

KEGG_ADHERENS_JUNCTION 1.97 35.2 5.29 11.0 0.31 

PID_CMYB_PATHWAY 0.96 17.6 3.18 5.5 0.31 

BIOCARTA_CHREBP2_PATHWAY 1.31 11.0 3.92 3.3 0.30 

BIOCARTA_AMI_PATHWAY 1.42 11.0 4.59 3.3 0.30 

REACTOME_RNA_POL_II_TRANSCRIPTION 0.89 15.4 2.65 4.4 0.29 

KEGG_TGF_BETA_SIGNALING_PATHWAY 0.87 15.4 2.64 4.4 0.29 

REACTOME_PKB_MEDIATED_EVENTS 1.73 12.1 5.12 3.3 0.27 

REACTOME_ASPARAGINE_N_LINKED_GLYCOS
YLATION 

0.99 16.5 2.64 4.4 0.27 

 

The top result when ranking pathways by number of patients altered by increased VAF variants divided by 

number of patients altered by all shared variants, was KEGG_VALINE_LEUCINE_AND_ISOLEUCINE_ 

DEGRADATION. This was altered by 6/4496 shared variants across 4/91 patients (4.4%), of which 4/613 

variants across 3/91 patients (3.3%) had a significantly increased VAF, and 3/423 variants across 2/91 

patients (2.2%) had a significantly increased CCF. (These numbers differ slightly to those in Table 8 and 9 as 

some genes were rejected by Pathscore in its calculations, due to a lack of valid gene identifiers. The values 

stated here reflect the true numbers of variants in the pathway.) This is a 4.9 fold enrichment in variants 
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that increase in VAF (P=0.0238, 1-tailed Fisher’s exact test), and a 3.6 fold enrichment in variants that 

increase in CCF (P=0.0888, 1-tailed Fisher’s exact test). Shared altered genes in this pathway are listed in 

Table 10. 

Table 10. Genes altered in the KEGG_VALINE_LEUCINE_AND_ISOLEUCINE_DEGRADATION pathway 

in variants shared between primary and recurrent tumours. Those that significantly increased in 

VAF are shaded. 

Gene VAF change CCF change 
BCAT1 0.096->0.281 0.154->0.634 
OXCT1 0.081->0.267 0.154->0.634 

HMGCS2 0.015->0.347 0.0002->1.00 
OXCT2 0.086->0.218 0.310->0.422 
ACAT2 0.654->0.431 0.966->0.587 
ECHS1 0.061->0.057 0.040->0.069 

 

Another pathway with enrichment in increasing VAF variants is KEGG_BUTANOATE_METABOLISM. This 

pathway overlaps with KEGG_VALINE_LEUCINE_AND_ISOLEUCINE_DEGRADATION and contains the same 

set of variants as that pathway, other than BCAT1, plus additional variants. This consists of 9/4496 shared 

variants across 9/91 patients (9.9%), of which 4/613 variants across 4/91 patients (4.4%) had a significantly 

increased VAF and 3/423 variants across 3/91 patients (3.3%) had a significantly increased CCF. Due to the 

far higher numbers of background variants that did not significantly increase in frequency, this is a 3.3 fold 

enrichment in variants that increase in VAF (P=0.0606, 1-tailed Fisher’s exact test), and a 2.7 fold 

enrichment in variants that increase in CCF (P=0.1451, 1-tailed Fisher’s exact test). Shared altered genes in 

this pathway are listed in Table 11. 

Table 11. Genes altered in the KEGG_BUTANOATE_METABOLISM pathway in variants shared 

between primary and recurrent tumours. Those that significantly increased in VAF are shaded. 

Gene VAF change CCF change 
GAD2 0.164->0.701 0.387->0.984 
OXCT1 0.081->0.267 0.154->0.634 

HMGCS2 0.015->0.347 0.0002->1.00 
OXCT2 0.086->0.218 0.310->0.422 
ACAT2 0.654->0.431 0.966->0.587 
ECHS1 0.061->0.057 0.040->0.069 
PDHA1 0.814->0.280 0.862->0.197 
ACSM3 0.407->0.267 0.702->0.882 
ACSM5 0.454->0.234 NA 

 

The top result when ranking pathways by number of patients altered by increased CCF variants divided by 

number of patients altered by all shared variants was PID_ALK2_PATHWAY. This pathway was altered by 
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5/4496 shared variants across 5/91 patients (5.5%), and by 3/613 and 3/423 significantly increasing VAF 

and CCF variants across 3/91 patients (3.3%). This is a 4.4 fold enrichment in variants that increase in VAF 

(P=0.0606, 1-tailed Fisher’s exact test), and a 5.3 fold enrichment in variants that increase in CCF (P=0.0446, 

1-tailed Fisher’s exact test). Shared altered genes in this pathway are listed in Table 12.  

Table 12. Genes altered in the PID_ALK2_PATHWAY pathway in variants shared between primary 

and recurrent tumours. Those that significantly increased in CCF are shaded. 

Gene VAF change CCF change 
SMAD5 0.012->0.285 0.005->0.439 
BMPR2 0.010->0.408 0.0002->1.00 
AMHR2 0.118->0.321 0.259->0.657 
AMHR2 0.333->0.330 0.619->0.992 
AMHR2 0.716->0.584 NA 

 

4.2.7 Pathways under-enriched in cells surviving through therapy 

I next wanted to see if there was evidence of pathways potentially causing therapy sensitivity. We expect to 

see a subclone wiped out through therapy if it contained an alteration to a pathway that, when altered, 

confers sensitivity. I therefore looked for pathways that decreased significantly from ‘private primary’ 

variants to those shared between primary and recurrent. Many pathways did show this pattern (Table 14), 

with the majority being altered by IDH1 or IDH2 variants. Whilst all included tumours in the analysis were 

classed as IDHwt in the GLASS dataset, despite this, many of them have low frequency IDH1 and IDH2 

variants; 33/1492 (14 IDH1, 19 IDH2) private to primary variants across 28/91 patients (30.8%), and 2/4496 

shared variants across 2/91 patients (2.2%). Interestingly, there were 50 IDH1 or IDH2 variants private to 

the recurrent across 28/79 patients (35.4%), with 7/79 (8.9%) having at least 2-4 separate variants in the 

same tumour, showing that new variants in these genes commonly develop once therapy has stopped. All 

but 1 of these IDH variants, across primary and recurrents, were at the canonical R132 (IDH1) and R172 

(IDH2) positions causing gain of function (Dang et al., 2009). The majority of these were only supported by 

1 read and all had VAFs under 0.1. It’s therefore possible that some of them are sequencing errors, 

although the fact that they’re mostly at canonical positions and no other genes were altered to such an 

extent, would suggest otherwise. Therefore, these results show that GBM tumours classed as IDHwt 

regularly have subclonal canonical IDH variants and that those clones rarely survive through therapy.  

 

Table 14. Top 20 pathways ranked by private to primary % patients / shared % patients, showing 

those potentially involved in causing therapy sensitivity. Pathways were filtered for those with ≥3 

patients being altered by private to primary variants. Pathways involving IDH1 or IDH2 are shaded. 
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Pathway 

Private to primary 
variants 

Shared variants 
% patients 

fold change 
Effect size 

% 
patients 

n=91 
Effect size 

% 
patients 

n=91 

BIOCARTA_TOB1_PATHWAY 3.86 3.3 0 0 0.00 

REACTOME_TIGHT_JUNCTION_INTERACTIO
NS 

2.27 3.3 0 0 0.00 

REACTOME_PEROXISOMAL_LIPID_METABO
LISM 

9 13.2 0.24 1.1 0.08 

KEGG_CITRATE_CYCLE_TCA_CYCLE 15.24 31.9 0.93 6.6 0.21 

KEGG_GLUTATHIONE_METABOLISM 15.8 31.9 0.97 6.6 0.21 

BIOCARTA_KREB_PATHWAY 27.59 19.8 1.89 4.4 0.22 

REACTOME_PYRUVATE_METABOLISM_AND
_CITRIC_ACID_TCA_CYCLE 

12.77 31.9 0.92 7.7 0.24 

KEGG_PEROXISOME 7.8 33 0.63 8.8 0.27 

REACTOME_CITRIC_ACID_CYCLE_TCA_CYCL
E 

13.85 19.8 1.19 5.5 0.28 

REACTOME_INHIBITION_OF_INSULIN_SECR
ETION_BY_ADRENALINE_NORADRENALINE 

2.99 3.3 0.34 1.1 0.33 

REACTOME_ACYL_CHAIN_REMODELLING_O
F_PG 

3.97 3.3 0.45 1.1 0.33 

REACTOME_OXYGEN_DEPENDENT_PROLIN
E_HYDROXYLATION_OF_HYPOXIA_INDUCIB
LE_FACTOR_ALPHA 

5.03 3.3 0.58 1.1 0.33 

REACTOME_TCA_CYCLE_AND_RESPIRATOR
Y_ELECTRON_TRANSPORT 

6.47 31.9 0.93 14.3 0.45 

BIOCARTA_FMLP_PATHWAY 1.7 4.4 0.28 2.2 0.50 

KEGG_SELENOAMINO_ACID_METABOLISM 2.69 4.4 0.45 2.2 0.50 

REACTOME_BILE_SALT_AND_ORGANIC_ANI
ON_SLC_TRANSPORTERS 

5.91 4.4 0.99 2.2 0.50 

REACTOME_PYRIMIDINE_METABOLISM 3.56 5.5 0.69 3.3 0.60 

REACTOME_COMPLEMENT_CASCADE 1.69 5.5 0.34 3.3 0.60 

REACTOME_DOPAMINE_NEUROTRANSMITT
ER_RELEASE_CYCLE 

3.4 3.3 0.74 2.2 0.67 

REACTOME_NOREPINEPHRINE_NEUROTRA
NSMITTER_RELEASE_CYCLE 

3.76 3.3 0.82 2.2 0.67 
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Interestingly, patients with IDH alterations in recurrent tumours (P=0.054, log-rank statistic), but not those 

with IDH alterations in primary tumours (P=0.56, log-rank statistic), had a shorter survival. The difference in 

survival was also seen when increasing the sample size by 2 (P=0.037, log-rank statistic), by including 

patients who had an IDHwt oligodendroglioma or astrocytoma as a primary that changed to a GBM in the 

recurrent after receiving standard therapy (Figure 35). 

 

Figure 35. Kaplein-Meyer plot showing the difference in survival between patients with and 

without subclonal IDH1 or IDH2 alterations (though those ‘with’ alterations had them at insufficient 

levels to be classified as IDHwt), in the recurrent GBM tumour for patients whose primary tumour 

was A) a GBM (n=76), or B) any IDHwt high grade glioma (n=78). 

IDH mutant tumours are shown to respond better to TMZ and radiotherapy (Christians et al., 2019). 

Therefore, a possible explanation for the shorter survival in patients with recurrent subclonal IDH 

alterations is that they represent those who had less therapy due to being too unwell and therefore able to 

accumulate the alterations. To test this, I performed a Cox proportional hazards model, taking into account 

whether a patient had an IDH variant in their recurrent tumour, and also number of TMZ chemotherapy 

cycles they underwent between the primary and recurrent surgeries (for 64 patients that had this 

information available). This revealed that the presence of an IDH mutation was not associated with a 

shorter survival when, and only when taking into account number of TMZ cycles (Hazard ratio = 0.94, 95% 

confidence interval 0.53-1.66, P=0.82). Additionally, the presence of IDH variants in the recurrent tumour 

was negatively correlated with the number of TMZ cycles (ordinary least squares statistic, coefficient 

= 4.56, 95% confidence interval 2.236-6.884, P = 2.2x10-4). 

Two other pathways not involving IDH stood out. Both BIOCARTA_TOB1_PATHWAY and 

REACTOME_TIGHT_JUNCTION_INTERACTIONS were altered in 3/1492 genes across 3/91 primary tumours 

(3.3%), but none were shared with the recurrent. These differences in the numbers of altered genes 

between primary and shared variants had an uncorrected P-value of 0.0154 (1-tailed Fisher’s exact test) for 

both pathways. BIOCARTA_TOB1_PATHWAY was altered in genes involved specifically in transforming 

P=0.37P=0.54

A B

GBM
P=0.054

IDHwt
P=0.037 
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growth factor beta (TGFβ) signalling; TGFβ1 (VAF=0.234), TGFβR2 (VAF=0.218), TGFβR3 (VAF=0.288). 

REACTOME_TIGHT_JUNCTION_INTERACTIONS was altered in 3 variants private to the primary. This 

increased to 4/14752 genes across 4/94 patients (4.3%) when also looking at hypermutated primary 

tumours, with no genes altered in the shared variants. The primary altered genes included: CLDN8 

(VAF=0.143), PARD3 (VAF=0.089) and 2 in MPP5 (VAF=0.156, 0.02). In patients that did not receive both 

radiotherapy and TMZ, 1/23 (4.3%) patient had a private to primary variant in this pathway, and 2/23 

(8.7%) had a shared variant. This is a significant difference in number of patients with shared variants in the 

pathway, between patients who had and hadn’t received standard treatment (P=0.0373, 1-tailed Fisher’s 

exact test), and which does not require multiple testing correction. 

4.3 Discussion 

4.3.1 Summary 

In this chapter, I used longitudinal GBM samples to show that strong selection is present in a minority of 

recurrent GBMs and other gliomas, but that it is not significantly associated with therapy. Despite this, by 

carrying out pathway analysis using subsets of variants that are informative of GBM progression, I found 

evidence of many pathways that may confer therapy resistance or sensitivity, and which are candidates for 

further investigation. 

4.3.2 Investigating the mode of tumour evolution 

The SubClonalSelection model predicted that 37% of all recurrent gliomas, and 47% of IDHwt recurrent 

gliomas, are evolving with strong selection of some subclones over others. This is a higher proportion of 

selection than was found in colon cancers from The Cancer Genome Atlas (21%) and gastric cancers (29%), 

lower than in non-small-cell lung cancer from the TRACERx cohort (97%), and comparable to mixed 

metastatic tumours in the MET500 cohort (51%) (Williams et al., 2018).  

This selection detected in this analysis was not associated with patients receiving therapy and is therefore 

likely to be due to other factors in the majority of cases. However, it is possible that scenarios where 

genetic mutations do confer increased therapy resistance, were not detected by the SubClonalSelection 

model for several reasons:  

i) When there is insufficient evidence to reliably predict the mode of evolution due to low 

sequencing depth, insufficient numbers of subclonal variants, or when the relative fitness of a clone 

is not large, the model defaults towards neutral.  

ii) Evidence of selection could become lost over time between cessation of therapy and biopsy of 

the recurrence, which is plausible given that resistance mechanisms will likely hinder subclone 
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growth in the absence of therapy compared to other clones (Yamamoto, Tomiyama, et al., 2018; 

Enriquez-Navas et al., 2015). 

iii) Genetic alterations can confer resistance to surrounding clones through non-autonomous 

effects (Inda et al., 2010), thereby maintaining the current subclonal architecture without selection 

of specific clones. 

iv) Tumours undergoing a clonal sweep whereby a clone expanded to the extent that it appears 

clonal, and then proceeded to evolve neutrally, would not be detected as selection by the model 

(Bozic et al., 2019). Evidence for this latter scenario is apparent in multiple patients when 

comparing VAFs and CCFs between primary and recurrent tumours. The recurrent samples from 

those patients with the clearest evidence of this occurring were either classed as showing selection 

anyway (likely from subsequent additional expansions) or had insufficient data for use with the 

model. 

v) Sampling bias can have a large effect on the detection of subclones, resulting in reduced power 

to detect selection in single samples (Sun et al., 2017; Siegmund and Shibata, 2016; Chkhaidze et 

al.).  

Nonetheless, the results do support previous observations that factors other than genetic mechanisms are 

involved in driving the therapy resistance seen in gliomas (Eyler et al., 2020; Körber et al., 2019). This is also 

supported by the observation that the majority of shared variants are subclonal in both the primary and 

recurrent tumours, a scenario that is only possible in oligoclonal progression where multiple subclones 

survive through therapy, with a tendency to remain at a similar frequency. Evidence of oligoclonal 

progression in most GBM patients has been previously reported (Körber et al., 2019). Further support for a 

general lack of variants driving selection through therapy in glioma has been shown via the dN/dS method, 

where the global ratio of non-synonomous to synonomous variants, does not show an increase for those 

private to the recurrence, particularly in IDHwt gliomas (Barthel et al., 2019). Although, given that this ratio 

is averaged across all variants private to the recurrent tumours, it’s still possible that a small minority of 

these variants are driving selection, but that the signal is diluted by many more that are not. 

4.3.3 Pathway analysis 

The emerging evidence supporting adaptive epigenetic reprogramming of cell states as driving GBM 

therapy resistance, is also accompanied by evidence that highlights the influence of genetic factors. Recent 

studies using single-cell RNAseq in GBM show that some somatic profiles predispose cells to certain cellular 

states, of which some survive therapy better than others (Neftel et al., 2019). Others show that epigenetic 

changes through therapy can be accompanied by genetic factors that further increase the cell’s resistance, 

either before or after the initial onset of therapy (Eyler et al., 2020). It is therefore important to investigate 
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which specific gene or pathway alterations may be influencing cell survival through therapy, by 

investigating patterns of genetic alterations across longitudinal GBM samples. Even if genetic factors 

influence resistance in only a small minority of patients, or just cause pockets of treatment resistance or 

sensitivity that are missed when looking for evidence of strong selection across a full tumour profile, they 

may allow us to learn about processes that affect therapeutic response. 

By using subsets of variants and comparing results between them, I was able to use pathway analysis to 

identify genes and pathways that may influence therapy resistance in GBM. This builds on previous studies 

that found a limited number of recurrence specific single gene (Kraboth and Kalman, 2020; Barthel et al., 

2019; Körber et al., 2019; Wang et al., 2016; Cahill et al., 2007), and highlights the benefit of using a 

systems biology approach to pool information across multiple genes a pathway. 

4.3.4 Pathways differentially enriched between primary and recurrent tumours 

Pathways that are significantly more enriched in the recurrent than primary tumours are candidates for 

conferring therapy resistance. The pathway that stood out most in this study as showing this pattern was 

REACTOME_SYNTHESIS_OF_BILE_ACIDS_AND_BILE_SALTS_VIA_7ALPHA_HYDROXYCHOLESTEROL. Bile 

synthesis occurs through several overlapping pathways, each via differing oxysterols (McMillin and 

DeMorrow, 2016). In the brain, these include 24S-hydroxycholesterol (24OH-CHOL), which is synthesised de 

novo from cholesterol, and 27-hydroxycholesterol (27OH-CHOL), which is mostly imported from outside the 

central nervous system (Heverin et al., 2005). Synthesis via 7alpha-hydroxycholesterol (7αOH-CHOL) is not 

thought to occur in the brain, however the altered genes found in this pathway in the recurrent tumours 

are also involved in synthesis of bile acids and salts from 24OH-CHOL and 27OH-CHOL. Previous studies 

provide multiple lines of evidence as to how this alters GBM biology; 1) Bile acids affect neurotransmission 

and regulate neurological function (McMillin and DeMorrow, 2016; Kiriyama and Nochi, 2019). GBM cells 

have been found to form synapses and integrate into neuronal circuits to promote proliferation, and will  

therefore likely be affected by changes in neuron functioning (Venkatesh et al., 2019; Venkataramani et al., 

2019). 2) Bile acids activate numerous nuclear receptors, including farnesoid X, pregnane X, vitamin D, 

constitutive androstane, glucocorticoid, M2 and M3 muscarinic, formyl-peptide, sphingosine-1-phosphate 

receptor 2, Takeda G-protein 5 receptors, and also activate several ion channels (McMillin and DeMorrow, 

2016; Kiriyama and Nochi, 2019), which could bring about changes in gene expression or reprogramming of 

cell states, to allow GBM cells to better resist therapy. 3) Bile acids increase cellular cholesterol levels in the 

brain (McMillin et al., 2018) : 

Cholesterol is highly implicated in many types of cancer, including in GBM where feedback mechanisms are 

altered to increase intracellular cholesterol levels to fuel the cells’ growth (Ahmad et al., 2019). Bile is 

synthesised from cholesterol via the oxysterols, 24OH-CHOL and 27OH-CHOL. In healthy brain cells, 
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conversion of cholesterol to oxysterols, primarily to 24OH-CHOL  by cytochrome P450 family 46 subfamily A 

member 1 (Cyp46A1) (Russell et al., 2009), is the main route of clearing excess cholesterol from the brain 

(Figure 33), and is regulated by a negative feedback loop (Figure 36); the produced oxysterols i) inhibit 

sterol regulatory element-binding protein 1 (SREBP1) activity, causing a reduction in expression of low 

density lipoprotein receptor (LDLR) which imports exogeneous cholesterol into cells, and ii) activate liver X 

receptor (LXR) to increase expression of genes responsible for cholesterol efflux and degradation of LDLR 

(Han et al., 2020). In GBM cells, Cyp46A1 is downregulated leading to a ten-fold reduction in 24OH-CHOL 

(Villa et al., 2016) compared to normal brain. This results in increased cholesterol import, reduced efflux 

from cells, and a reduced clearance through conversion to 24OH-CHOL (Villa et al., 2016; Han et al., 2020). 

In addition, GBM cells increase cholesterol intake via epidermal growth factor receptor (EGFR) activated, 

PI3K/SREBP-1-dependent upregulation of LDLR (Guo et al., 2011). There are conflicting reports on whether 

GBM cells upregulate or downregulate de novo cholesterol synthesis through the melvanoate pathway 

(Villa et al., 2016; Patel et al., 2019; Kambach et al., 2017). The 24OH-CHOL that does get produced in GBM 

cells can be converted into bile acids. Bile acids have a positive feedback mechanism to increase 

intracellular cholesterol further by downregulating Cyp46A1 via farnesoid X receptor (FXR) activation 

(McMillin et al., 2018) and upregulating LDLR via activation of mitogen-activated protein kinase cascades 

(Nakahara et al., 2002) (Figure 36).  

 

Figure 36. Key processes that regulate intracellular cholesterol in healthy cells. Green lines indicate 

processes that positively regulate cholesterol levels, and red lines indicate processes that 

negatively regulate cholesterol levels. 

Targeting cholesterol metabolism in GBM has proven to be a promising area for potential new treatments. 

An LXR agonist resulted in decreased cholesterol and death in GBM cells, while leaving healthy brain cells 

unharmed (Villa et al., 2016). An anti-HIV drug, Efavirenz, that activates CYP46A1 leading to an increase in 

24OH-CHOL and decrease in cholesterol, inhibited GBM growth in vivo (Han et al., 2020). However, whilst 
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lowering cholesterol promotes GBM cell death, a study found that intracellular cholesterol levels are lower 

in TMZ resistant GBM cells and higher in sensitive cells, and that treating either sensitive or resistant cells 

to modulate cellular cholesterol levels resulted in changes in TMZ induced apoptosis in a similar manner. 

This was shown to be due to both cholesterol and TMZ upregulating death receptor 5 (DR5), potentially 

from endoplasmic reticulum stress. Furthermore, a single treatment with TMZ increased intracellular 

cholesterol, thereby increasing pressure from cholesterol on cells that have reduced ability to clear the 

excess (Yamamoto, Tomiyama, et al., 2018). Interestingly, many studies have shown that statins, which 

block de novo cholesterol synthesis along with many other anti-tumour effects (Pisanti et al., 2014), applied 

at very high doses increase GBM cell death in combination with TMZ (Yamamoto, Sasaki, et al., 2018), 

however when used at only physiological doses, statins decreased the effect of TMZ (Yamamoto, 

Tomiyama, et al., 2018). Together, this suggests that, while important to GBM survival, cholesterol 

positively regulates TMZ response, and decreasing cholesterol levels through a reduction of bile acids may 

enable the cells to better resist therapy. Therefore, further investigations into the effects of bile acids on 

intracellular cholesterol and survival in GBM cells is warranted. 

4.3.5 Pathways enriched in clonally expanding cells 

Many pathways are implicated when focussing only on those shared mutations that increase in frequency 

after treatment and which are likely in clonally expanding cells, though these pathways were altered in only 

a small fraction of patients. In general the numbers of increased VAF variants in pathways agreed with the 

numbers of increased CCF variants, therefore suggesting that using VAFs to indicate clonally expanding 

subclones is appropriate, whilst including more variants than using CCFs (which are absent for around a 

third of variants).  

One pathway that showed evidence of causing clonal expansion was KEGG_VALINE_LEUCINE_AND_ 

ISOLEUCINE_DEGRADATION, which is involved in the breakdown of branched chain amino acids. Altered 

metabolism of branched chain amino acids has been found in many cancers and plays a key role in 

proliferation and aggressiveness, including in GBM (Prabhu et al., 2019; Suh et al., 2019). One altered gene 

in this pathway, 3-oxoacid CoA-transferase 1 (OXCT1), has previously been found to be downregulated in 

GBM (Chang et al., 2013; Vallejo et al., 2019), thereby supporting the possible significance of this pathway. 

However, upregulation of another altered gene in the pathway, branched chain amino acid transaminase 1 

(BCAT1), promotes GBM proliferation, and suppression of the gene blocked secretion of toxic glutamate 

from cells leading to inhibited GBM growth (Tönjes et al., 2013). It’s possible that the variant in this gene is 

a gain of function, though I could not find any evidence to determine this. Alternatively, the reason for 

variants in this pathway being enriched amongst clonally expanded cell populations may be due to its 

overlap with KEGG_BUTANOATE_METABOLISM, another significantly altered pathway in cell populations 

expanded after treatment, which contains all the altered variants of KEGG_VALINE_LEUCINE_AND_ 
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ISOLEUCINE_DEGRADATION, other than BCAT1, plus additional ones. Sodium butanoate has previously 

been shown to induce senescence and inhibit invasion of GBM cells (Nakagawa et al., 2018), thereby 

supporting the hypothesis that altering butanoate metabolism can lead to subclonal expansion, and further 

indicates that the methods in this analysis are identifying pathways truly relevant to GBM progression and 

which may be worth further investigating.  

Another pathway found to be enriched in clonally expanded clones is PID_ALK2_PATHWAY. This is involved 

in regulating transforming growth factor beta (TGFβ)/bone morphogenetic protein (BMP) signalling, and is 

made up of a subset of genes, specifically involving BMP, in a larger interconnected network of TGFβ 

signalling. These processes are tightly balanced and highly tumour specific, with numerous and opposing 

roles in cell cycle regulation, differentiation, motility, autophagy, T cell activation, therapy resistance, and 

activation of the apoptotic pathway (Ikushima and Miyazono, 2010; Massagué et al., 2000; Caja et al., 

2015). BMP signalling in particular induces epithelial-mesenchymal transition (EMT) in tumours (Tan et al., 

2015; Beck et al., 2016), which leads to more stem like cell types, with increased therapy resistance and 

suppression of cancer cell proliferation (Zheng et al., 2015; Fischer et al., 2015; Shibue and Weinberg, 

2017), and is associated with a worsened prognosis in GBM patients (Phillips et al., 2006). In glioma stem 

cells, treatment with BMP, or activation of the BMP signalling pathway, inhibits cell proliferation and 

invasiveness, induces differentiation and apoptosis, increases DNA repair processes, and confers resistance 

to radiotherapy and TMZ chemotherapy (Sachdeva et al., 2019; Xi et al., 2017; Raja et al., 2017; Nayak et 

al., 2020). Of the three variants that increased in frequency, 2 of them (in SMAD5 and bone morphogenetic 

protein receptor type 2 (BMPR2)) are likely to reduce EMT, reduce therapy resistance, and increase 

proliferation, whereas the other (in anti-Mullerian hormone receptor Type 2 (AMHR2), which was also the 

gene affected by the 2 variants in the pathway that did not increase in frequency) is likely to increase EMT, 

increase therapy resistance, and decrease proliferation (Beck et al., 2016), and therefore may just reflect 

noise in the analysis.  

I choose to investigate which pathways are enriched specifically in clonally expanding cells from primary to 

recurrent tumours, under the hypothesis that these represent cells that were able to better resist therapy 

than other subclones and therefore a larger proportion survived through to the recurrent. However, the 

results suggest that this may not be the case. Alterations to the above two pathways are most likely to 

result in increased proliferation, explaining their enrichment in clonally expanding cells, but this reduced 

senescence is also associated with reduced therapy resistance (Tomicic and Christmann, 2018). Therefore, 

in contrary to the previous assumption that variants in clonally expanding cells indicate candidates for 

those driving therapy resistance, these variants may actually be increasing in frequency solely because they 

increase proliferation, perhaps more so in the recurrent tumour than the primary as there is less 

competition from surrounding clones after surgical resection. Whilst this reduces therapy resistance, and 

therefore these clones would otherwise be expected to reduce in frequency, the results suggest that the 
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selective effect of increased proliferation overpowers the negative selection from therapy, once therapy is 

stopped and the tumour regrows. It may also, therefore, be that variants that confer therapy resistance are 

in clonally reduced cells, as a result of reduced proliferation, (Suvà and Tirosh, 2020; Liau et al., 2017), 

though it will likely be challenging to distinguish those from variants that decrease in frequency simply due 

to deleterious effects on cells. 

Though unlikely to be conferring therapy resistance, the pathways identified as enriched in clonally 

expanding cells may still be of interest in developing novel treatments for GBM patients. While TMZ and 

radiotherapy aim to kill cancer cells, drugs that instead prevent the tumour from growing back so quickly 

may provide a way to extend survival in patients, particularly if it could offer a less unpleasant treatment 

for patients to switch to when TMZ or radiotherapy can no longer be tolerated. 

4.3.6 Pathways under-enriched in cells surviving through therapy 

When looking for pathways potentially causing therapy sensitivity, evidenced by an under enrichment of 

genes with shared variants compared to private to primary variants, many pathways initially stood out. 

However, after investigating these further I found that they were mostly due to just two genes; IDH1 and 

IDH2. Around a third of both primary and recurrent tumours contained subclonal canonical gain of function 

alterations in these genes. Such variants are commonly found in several types of cancers, including in 70% 

of World Health Organisation (WHO) grade II and III astrocytomas and oligodendrogliomas, and in GBMs 

that developed from these (Yan et al., 2009; Hartmann et al., 2009; Watanabe et al., 2009; Parsons et al., 

2008). However, they are generally thought to be near absent in de novo GBMs (that did not originate from 

lower grade gliomas). This may be the case for clonal IDH variants, however this study shows that this is not 

true for low frequency subclonal IDH variants. These results also contrast previous studies that found no 

evidence of repeatedly altered genes in recurrent GBMs (Körber et al., 2019), possibly because others did 

not include such low frequency variants. 

IDH1 and IDH2 genes code for isocitrate dehydrogenase 1 and 2 enzymes, present in the cytoplasm and 

mitochondria respectively, that function in the citric acid cycle as well as maintaining the cellular redox 

state. Their primary function in healthy cells is the oxidative decarboxylation of isocitrate (ICT) with 

nicotinamide adenine dinucleotide phosphate (NADP+), into α-ketoglutarate (α-KG), CO2 and the reduced 

from of NADP+, NADPH. In hypoxic conditions this process is reversed due to a lack of inhibition by ICT 

(Wise et al., 2011). The lack of ICT also allows an additional reductive reaction by IDH1 and IDH2 to convert 

α-KG and NADPH into 2-hydroxyglutarate (2HG) and NADP+ (Wise et al., 2011). Alteration of certain 

positions in the proteins cause a loss of inhibition by ICT due to a change in their binding sites (Bascur et al., 

2019). These positions typically include R132 and R140 in IDH1, and R172 in IDH1, although other positions 

are also capable of causing the same gain of function affect (Ward et al., 2012). The loss of inhibition by ICT 

causes an increase in the reductive reactions of IDH, resulting in a 10-100 fold increase in cellular 2HG 
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(Ward et al., 2012, 2010; Dang et al., 2009). 2HG inhibits the activity of α-KG-dependent dioxygenases, 

resulting in multiple cellular effects (Ye et al., 2018), most noticeably, the introduction of genome-wide 

histone alterations and DNA hypermethylation (Xu et al., 2011) thereby preventing cellular differentiation 

(Lu et al., 2012). While the IDH alterations were of low frequency, there is some suggestion that IDH 

variants may enable nonautonomous increases of 2HG in surrounding cells (Wouters, 2017; Amary et al., 

2011) and therefore have a stronger influence on the overall tumour growth.  

IDH variants have also been found to increase sensitivity to both TMZ and radiotherapy, through NADPH 

depletion, and NAD+ depletion from 2HG independent downregulation of nicotinate 

phosphoribosyltransferase (NAPRT1) expression and inhibition of nicotinamide phosphoribosyltransferase 

(NAMPT) (Tateishi et al., 2015, 2017; Gujar et al., 2016; Molenaar et al., 2018; Bleeker et al., 2010; Wahl et 

al., 2017). ‘IDH mutant’ gliomas are also known to result in significantly better patient prognosis, especially 

in patients receiving radiotherapy or TMZ (Christians et al., 2019; SongTao et al., 2012; Houillier et al., 

2010; Taal et al., 2011; Okita et al., 2012). This explains the repeated loss of IDH variant containing 

subclones through therapy seen in this study, as well as the association between IDH variants and fewer 

TMZ cycles. 

The BIOCARTA_TOB1_PATHWAY is a pathway not involving IDH1 or IDH2, that showed potential sensitising 

effects when altered. The pathway covers the role of transducer of ERBB2 (Tob) in T-cell activation. 

However, the affected genes in the primary (TGFβ1, TGFβR2, TGFβR3) were specifically involved in TGFβ 

signalling. As mentioned above, TGFβ signalling has numerous roles in cancer, covering a large and complex 

network of processes. In the part of the network relevant to the altered genes identified here, TGFβ 

ligands, TGFβ1, TGFβ2 and TGFβ3, bind to the receptor TGFβR1, causing it to heterodimerise with TGFβR2 

(Cheifetz et al., 1987; Massagué et al., 2000). The formed complex then initiates cellular changes through 

phosphorylation of SMAD2 and SMAD3 transcription factors (Massagué, 1998; Massagué et al., 2000). 

TGFβR3 augments binding of TGFβ ligands to TGFβR1 and TGFβR2, but is also involved in an additional non-

canonical and non-redundant signalling pathway through interaction with the GIPC1 scaffolding protein 

(Sánchez et al., 2011). TGF-β is known to induce EMT (Hao et al., 2019), and disruption of signalling through 

TGFβ receptor inhibitors has been shown to increase GBM sensitisation to radiotherapy (Liu et al., 2016) 

and improve survival in vivo (Zhang et al., 2011). This supports the observation in this study that inhibition 

of the TGFβ signaling pathway prevents cells from surviving through therapy, and again provides 

confidence in the method’s ability to yield findings worth further investigation. However, a phase 2 clinical 

trial of the TGFβR1 inhibitor galunisertib in combination with TMZ and radiotherapy, did not show any 

increase in survival compared to standard therapy alone (Wick et al., 2020). Additionally, in glioma stem 

cells, pre-treatment with TGF-β significantly increased the amount of cell death that occurred with TMZ and 

radiotherapy, as well as an increase in cell proliferation (Sachdeva et al., 2019). 
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Another pathway that stood out was REACTOME_TIGHT_JUNCTION_INTERACTIONS. Tight junctions are 

protein complexes involved in cell–cell adhesion and cell polarity, two features that are lost during EMT  

(Shibue and Weinberg, 2017; Wodarz and Näthke, 2007). Two of the altered genes in the primary variants, 

par-3 family cell polarity regulator (PARD3) and membrane palmitoylated protein 5 (MPP5), in particular 

are highly conserved proteins in two complexes that interact in tight junction formation and required for 

normal cell polarity (Straight et al., 2004; Hurd et al., 2003; Chen et al., 2017). Specifically, knockdown of 

PARD3 in glioma cells has been found to promote proliferation and migration by regulating ras homolog 

family member A (RhoA) through atypical protein kinase C/nuclear factor kappa-light-chain-enhancer of 

activated B cells (NF-κB) signalling (Li et al., 2019). These effects provide a potential explanation for the 

increased effect size of REACTOME_TIGHT_JUNCTION_INTERACTIONS in primary tumours. However, 

another consequence of altering tight junctions formation is that it impairs the blood brain barrier (BBB). In 

GBM and other gliomas, the BBB is already impaired through VEGF mediated downregulation of the tight 

junction protein ceroid-lipofuscinosis neuronal protein 5 (CLN-5) (Argaw et al., 2009). It seems possible that 

the addition of genetic alterations to other tight junction proteins further increases the permeability of the 

BBB, thereby allowing increased TMZ delivery to tumour cells and preventing those subclones to survive 

through therapy. Furthermore, PARD3 also functions as a subunit of the DNA-dependent protein kinase 

complex and therefore plays an essential role in repairing double-strand DNA breaks (Fang et al., 2007), 

providing an additional reason why that variant did not survive through therapy which functions through 

damaging DNA. Whilst breakdown of the BBB leading to cerebral oedema is the main cause of mortality in 

GBM patients, targeting a protein such as PARD3 to both increase TMZ delivery whilst simultaneously 

impairing DNA repair, before the recurrent tumour grows back, may be worth further investigation. 

4.3.7 Conclusions and future directions 

In this chapter, I provide evidence that genetic ITH is not the primary driving force behind therapy 

resistance in GBM. However, by performing pathway analysis, using genesets defined by patterns of 

variants across primary and recurrent tumours, I identified pathways that are candidates for increasing or 

decreasing therapy resistance in GBM. Many of these have already been investigated in the lab and in the 

clinic, thereby supporting that the approach used is identifying truly relevant pathways, and that others not 

yet investigated, with regards to GBM and therapy resistance, may be worth looking into further.  

The findings of the current study could be validated in future work using larger non-longitudinal publicly 

available GBM datasets, such as those in The Cancer Genome Atlas, by confirming that proportions of non-

matched primary or recurrent tumours altered in the candidate pathways are consistent with those in this 

study. It is also of interest to investigate whether these, or other pathways, stand out in expression data, 

under the hypothesis that cells will have altered expression of genes in pathways relevant to surviving 

through therapy. 
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There are several ways in which the pathway analysis could be furthered to better assess the effect of 

genetic alterations on GBM progression through therapy. I focussed on using only genes affected by point 

mutations and not CNAs. Whilst this leaves out a lot of relevant information about how GBM cells are 

affected, the fact that CNAs can each affect thousands of genes, many of which wouldn’t have a significant 

effect on the cell’s function, means that including these would likely introduce a lot of noise into the 

analysis. This may however be worth exploring in the future. Also, although I filtered out tumours that were 

hypermutated to reduce noise in the analysis, as PathScore accounts for differing mutation rates per 

sample, it may instead be better to include these in further analyses.  

While the use of a GSEA pathway analysis method allowed for direct comparison between the effect of 

mutations from different groups of mutations (eg. primary vs. recurrent), they have a disadvantage to 

network based methods which aren’t constrained to rigid pathways and can consider effects that span 

across multiple pathways or only affect part of a pathway. Therefore, future work may benefit from taking 

variants from the most relevant PathScore pathways (in terms of increased enrichment from primary to 

recurrent etc.) and overlaying these onto protein-protein interaction networks (Coker et al., 2019; Kanehisa 

et al., 2012; Croft et al., 2011). Alternatively, using a method that creates networks of individual pathways 

from GSEA results, such as Enrichment Map (Merico et al., 2010), would also overcome this issue.  

Future work in our group will be to apply the pathway analysis approaches in this chapter to our new in-

house samples. Having access to the raw data means that we can perform our own mutation calling and 

subclonal deconvolution, through an optimised pipeline, which may result in reduced noise in the dataset 

when looking at changes in variant frequencies. This might provide further support for the relevance of 

pathways identified in this study, as would rerunning the analysis on future, larger releases of the GLASS 

dataset, to better separate random noise from pathways having a real effect on GBM progression through 

therapy. Additionally, it would be interesting to apply this pathway analysis approach to methylation 

datasets available within our group, with the aim of identifying if changes in CCFs characterised by changes 

in methylation signal intensities, and not genetic VAFs, are able to highlight pathways relevant to GBM 

progression through therapy. 

4.4 Methods 

4.4.1 SubClonalSelection methods 

Variants from the GLASS dataset were included only if they had ³2 supporting reads, ³30x coverage, and 

were in copy neutral regions, identified where "#$%&("()*#%	,#-.	%$/0(" − 2$/#$"	-3#*&.) = 0. 

Those that passed these filters were then randomly downsampled to a maximum of 5000 in order to limit 

run time.  
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The SubClonalSelection model (https://github.com/marcjwilliams1/SubClonalSelection.jl) (Williams et al., 

2018) was run with the recommended 106 iterations, and 1,000 particles, double the recommended 

minimum in order to reduce failed runs. ‘ploidy’ values were set to rounded ploidy estimates from TITAN in 

the GLASS dataset. ‘min_cellularity’ and ‘max_cellularity’ values were set to TITAN purity estimates, ±10%. 

‘min_vaf’ and ‘f_min’ were set to the maximum point of the leftmost peak in a histogram of VAFs with bin 

sizes of 0.01, for each sample. ‘read_depth’ was set to the average coverage across included variants. 

Clinical data for the samples used in the analyses are accessible via Synapse (http://synapse.org/glass). 
 
4.4.2 Pathway analysis methods 

Variants from the GLASS dataset were included with as low as 1 supporting read in a tumour. This is lower 

than in the SubClonalSelection analysis as the accuracy of VAFs is not as important for the pathway 

analysis, and added noise from false positive is unlikely to be an issue, especially as most would be filtered 

out in the next step. To determine those that had a physiological effect on cells, variants were ran through 

Ensembl VEP (McLaren et al., 2016) and then filtered into high and low stringency sets (Table 15). 

Table 15. Annotations filtered for from VEP to create the high and low stringency sets of variants. 

Set Included annotations 
High stringency IMPACT=HIGH 

SIFT=deleterious 
SIFT=tolerated_low_confidence 
SIFT=deleterious_low_confidence 
PolyPhen=possibly_damaging 
PolyPhen=probably_damaging 
PolyPhen=unknown 

Low stringency splice_donor_variant 
splice_acceptor_variant 
stop_gained 
frameshift_variant 
stop_lost 
start_lost 
inframe_insertion 
inframe_deletion 
protein_altering_variant 
missense_variant 
splice_region_variant 
incomplete_terminal_codon_variant 
stop_retained_variant 
coding_sequence_variant 
mature_miRNA_variant 
5_prime_UTR_variant 
3_prime_UTR_variant 
non_coding_transcript_exon_variant 
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PathScore was run through the web-app implementation of the model at 

http://pathscore.publichealth.yale.edu, using the ‘Gene length, BMR-scaled’ method with default 

background mutation rates. Only variants that could be annotated with a valid Hugo/HGNC Symbol and 

Entrez ID, as required by PathScore, were included in the analysis. Enrichment scores for pathways were 

calculated by dividing the ‘ll_effective’ by ‘ll_actual’ pathway sizes. 
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Chapter 5 - Comparison of intratumour 
heterogeneity between GBM patient biopsies and 
patient-derived orthotopic xenografts 
The majority of the work presented in this chapter was originally published by Acta Neuropathologica in 

(Golebiewska et al., 2020). The material is reproduced here under the Creative Commons Attribution 4.0 

International License.  

5.1 Introduction 

In vivo cancer models are a frequently used resource for investigating cancer biology and assessing 

therapeutic effects. It is important that they adequately recapitulate relevant aspects of patient tumours so 

that they can reliably inform us on how real tumours react to interventions. The previous chapters have 

focussed on understanding how genetic intratumour heterogeneity and the clonal architectures of 

glioblastoma (GBM) tumours evolves over time, but the same techniques can also be used to address the 

question of whether these clonal architectures are conserved between patient biopsies and the models 

derived from them. Such an approach is carried out in this chapter to investigate the conservation of clonal 

architecture in a novel model system.  

Patient-derived xenografts (PDX) are commonly used models, where tumour cells are implanted into an 

immunodeficient animal, typically mice. Traditionally, this is achieved by injecting patient-derived tumour 

cell lines subcutaneously into a mouse. After multiple rounds of passages in culture, these cells undergo 

genetic drift and no longer recapitulate the full biology of the original biopsy. Alternatively, tumour 

fragments taken directly from a patient biopsy can be implanted subcutaneously, which better maintain 

the phenotype of the original parent tumour and correlate more closely in therapeutic responses (Yoshida, 

2020). Despite this, studies have shown that mouse PDXs undergo mouse-specific tumour evolution, where 

rapid gains and losses of copy number alterations (CNAs) from selection of pre-existing minor clones occurs 

during PDX passaging in a manner that differs to those acquired during progression in patients (Ben-David 

et al., 2017). A possible reason for this is due to differences in the tumour microenvironment. For brain 

tumours specifically, this differing selection may result from PDXs lacking the effects imposed by the blood-

brain-barrier and cerebrospinal fluid.  

To mitigate the above issues with PDXs, studies have alternatively used patient-derived orthotopic 

xenograft (PDOX) models, where the patient-derived tumour cells are inserted into the same corresponding 

location the tumour was derived from. Direct transplantation of bulk tissue into mouse brains is 

challenging, and therefore GBM PDOXs typically rely on injection of enzyme dissociated cells (Lai et al., 

2017), often cultured for unspecified times and passages. This results in the loss of the tumour tissue 



 166 

architecture, leading to chromosomal instability and potential loss of tumour heterogeneity (Bolhaqueiro et 

al., 2019; Knouse et al., 2018). Researches have addressed some of these issues by creating GBM PDOXs 

from dissociated cells that were cultured through only a low passage number. This resulted in PDOX 

tumours that accurately recapitulated genetic features, histopathological properties, and treatment 

response of the original patient tumour (Joo et al., 2013). However, this method still relied on passaging in 

vitro, and loses the tissue architecture of the original biopsy.   

To overcome these limitations, our collaborators at the NorLux Neuro-oncology laboratory based at the 

Luxembourg Institute of health, have developed glioma PDOX models using 3D organoids derived from 

mechanically minced tumour tissue, without enzyme dissociation, that was only briefly maintained in 

culture without any in vitro passaging (Golebiewska et al., 2020). To investigate whether these models 

more closely recapitulated human GBM tumour biology, they assessed several aspects and compared them 

to both patient biopsies and existing models. Common driver variants were maintained from biopsy to 

PDOXs, and copy numbers (CNs) were mostly very similar, with only minor and glioma specific differences 

that may result from sampling bias. Unsupervised hierarchical clustering of transcriptomic profiles showed 

that normal human brain, biopsies, PDOXs, and cell lines all clustered in groups depending on the sample 

type, however PDOXs clustered more closely to biopsies and normal brain, than to cell lines. Inter-patient 

differences and heterogeneous expression of stem cell markers were retained in PDOXs, and similar cellular 

subpopulations were found in mouse-derived tumour microenvironments as in patients. Some changes in 

methylation profiles were seen between biopsies and PDOXs, though on the whole they correlated well, 

clustering primarily by isocitrate dehydrogenase (IDH) status. Furthermore, O6-methylguanine-DNA 

methyl-transferase (MGMT) promoter methylation status was conserved in all but 2 out of 28 PDOXs. 

It was not known, however, to what extent the genetic subclonal architecture was maintained between 

biopsies and PDOXs. I therefore collaborated with the group to estimate cancer cell fractions (CCFs) of 

variants in the tumours, and assess whether these changed between biopsies and resulting PDOX models, 

from three patients with GBMs. This involved first point variant calling and determination of variant allele 

frequencies (VAFs), and estimation of absolute CNs at each variant position. From these, CCFs for each 

variant can then be estimated and clustered to determine changes in subclone frequencies. 

5.2 Results 

5.2.1 Sample details 

Three patients were included in the analysis, with all samples from them indicating IDHwt GBMs (Table 16). 

LIH0192 and LIH0347 had longitudinal samples for one and two recurrences, respectively, having received 

radio and chemotherapy since the primary surgery. 
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Table 16. Samples from the three patients included in the analysis.  

Patient Sample type Primary 1st Recurrence 2nd Recurrence 

LIH0192 
Biopsy T192_Biopsy T233_Biopsy T251_Biopsy 

PDOX T192_PDX T233_PDX T251_PDX 

LIH0347 
Biopsy T347_Biopsy T470_Biopsy - 

PDOX T347_PDX T470_PDX - 

LIH0158 
Biopsy T158_Biopsy - - 

PDOX T158_PDX - - 

 

5.2.2 Variant calling 

Sequencing data for targeted panels of either 150 or 234 genes were available for biopsy and PDOX 

samples. No matched normal samples were available so standard somatic variant calling, where variants 

are checked against a normal to determine either germline or somatic status, was not an option. Instead, I 

performed variant calling using VarScan2’s germline method and then filtered out variants at common 

polymorphic sites (Sherry et al., 1999) which is likely to remove over 90% of germline variants (Shen et al., 

2013; Auton et al., 2015). I then further filtered the variants for those in regions targeted by the 150 gene 

panel, which is almost entirely a subset of the larger 234 gene panel regions, in order to make matched 

primary and recurrent samples comparable.  

5.2.3 Copy number calling 

Subclonal deconvolution requires estimation of CNs at each variant position. Whilst allele-specific CNs are 

preferable for higher accuracy, these are not possible to calculate without germline variant B-allele 

frequencies, for which the sequencing data available was not sufficient due to small target size and lack of a 

normal reference. I therefore instead estimated absolute total CNs from array Comparative Genomic 

Hybridisation (aCGH), using the DNAcopy R package (Seshan E. and Olshen, 2019). This found chr7 

amplification and chr10 loss in all samples, both of which are present in the majority of IDHwt GBMs 

(Barthel et al., 2019; McNulty et al., 2019; Körber et al., 2019; Gerstung et al., 2020). Coincidently, all 

analysed samples across the three patients also all showed a gain of chr19 and chr20. While these are not 

as common as alterations to chr7 and chr10, they are associated with GBMs containing focal epidermal 

growth factor receptor (EGFR) amplifications (McNulty et al., 2019), which is present in all of the tumours in 

this study, other than T158_PDOX. I developed a custom script to calculate purities and absolute CNs from 

segmented normalised log2 ratios, based on the assumption that chr7 likely had a clonal single copy gain in 

all the samples included. This was due to the observation that all samples had a similar increased log2 ratio 
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for chr7, chr19 and chr20, meaning that all three chromosomes have the same total number of copies in 

each sample. If these weren’t split evenly between cells as clonal events, then some fluctuation in the 

relative log2 ratios between these chromosomes in different samples would be expected, due to variations 

in subclonal frequencies. The exception to this is if the gains were all in the same subclone, though this is 

less likely, particularly as chr7 gain is thought to be a tumour initiating event (Körber et al., 2019; Gerstung 

et al., 2020). Assuming there are an equal number of clonal gains in chr7, chr19 and chr20, the most likely 

scenario is that they all have a gain of one copy, as has been seen in 90% of GBMs for at least one of these 

chromosomes (Gerstung et al., 2020). Furthermore, the gains are equal in magnitude to the loss of chr10 in 

most of the samples, which is limited to the loss of just 1 copy, and also thought to be a clonal tumour 

initiating event in GBMs (Körber et al., 2019; Gerstung et al., 2020), providing additional support for the 

gains being of just 1 copy. Therefore, taking into account the known log2 value for a ratio of 3 copies to 2 

reference copies, the formula I used to calculate purity is:  

-$"*2. =
,ℎ"7999999

3#):(
3
2)

 

where ,ℎ"7999999 is the mean log2 ratio value across chr7 (excluding values ³1 or £ 0.2, in order to avoid the 

effects of focal amplifications on the calculation). These estimates are likely to be accurate owing to the 

fact that they take into account known prior information about GBMs, as well as observations spanning 

multiple samples. CNs (cn) were calculated for each segmented region using the formula: 

,% = 2(2
=

>?
@A?BCDE) 

where lr is the log2 ratio for a segment. I then rounded CNs to absolute values (abs_cn) using the code:  

*F	,%	³	(,ℎ"1099999999 + 0.2), 2ℎ(%	K0L_,%	 = 	"#$%&(,%) 

*F	,% < (,ℎ"1099999999 + 0.2), 2ℎ(%	K0L_,% = /KO("#$%&(,% − (,ℎ"1099999999 − 1)),0) 

where ,ℎ"1099999999 is the mean log2 value across chr10 (excluding values ³-0.02 or £-1). This complex form of 

rounding was required to prevent chr10 and other regions showing clear losses, being rounded up to 2 in 

some samples. 

The normalised log2 ratios I was provided with had many probes missing (ranging from ~5-80% of total 

probes), which had been filtered out during the normalisation step due to poor quality. This meant CNs 

could not be estimated for large portions of the genome, and other regions, with low number of probes, 

having biased and very inaccurate segmented log2 values (Figure 37A). However, I also had access to the 

non-normalised log2 ratios for the full set of probes. I therefore overcame the issue by first removing 

probes for any chromosome that had less than 600 included, and then assuming these chromosomes and 
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all other regions not covered by a segmented log2 ratio, had a log2 ratio of 0. By inspecting the non-

normalised log2 ratios, by eye, I concluded that this approach was largely accurate and did not remove any 

obvious CNAs seen in the non-normalised dataset (Figure 37). Some inaccurate CN estimates still remained, 

where the CN was estimated at 0 despite many variants found in those regions, and with read depths that 

were representative of the whole sample and therefore unlikely to be present only subclonally.  This mostly 

affected just T192-PDX, T233-PDX, and T251-Biopsy. 

Overall, CN estimates were very similar between biopsy and PDOX samples, with generally only small focal 

regions showing differences, many of which are likely due to noise.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 37. (Below) Processing of array-CGH data. A) Segmented non-normalised log2 ratios. B) 

Segmented and normalised log2 ratios. C) Unrounded CN estimates, calculated from log2 ratios 

using purity estimates. D) Rounded absolute CN estimates, calculated using a custom algorithm. 
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I also had access to methylation array data, from which it’s also possible to obtain CN and purity 

information. I did this using the cnAnalysis450k (Knoll et al., 2017) and minfi (Aryee et al., 2014) R 

packages, however the data resulted in very noisy log2 ratios (Figure 38) and so I continued with the aCGH 

method. 

 
Figure 38. Segmented relative CNs estimated from methylation array for samples from LIH0192. 

5.2.4 Correlation of CCFs 

To estimate CCFs for the called variants, I used PyClone which, unlike other methods, does not require 

allele specific CNs. While I found PyClone to be of limited accuracy in my benchmarking analysis, jointly 

analysing multiple samples together is likely to improve results. When run in multi-sample mode, PyClone 

can utilise information across samples, allowing improved estimation and clustering of CCFs, with clonal 

frequencies of variants able to be tracked between samples. As a comparison, I used both the multi-sample 

method, using only variants common to all samples, in combination with the single-sample method, 

considering all variants in a sample. Another way to determine conservation of clone frequencies is through 

directly comparing VAFs between biopsy and PDOXs. As CNs were generally well preserved between biopsy 

and PDOX samples, VAFs should be similar between the two, with any changes in VAFs most likely 

reflecting differences in clone frequencies. This avoids potential errors introduced by PyClone or CNA 
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calling. Furthermore, reliably comparing biopsy and PDOX samples is not too dependent on accurate CCF 

estimates, as long as both samples are analysed with the same pipeline. 

I investigated the correlations of these metrics between biopsy and PDOX samples from the three patients 

separately. In patient LIH0192, the multi-sample method generally showed a good correlation in CCFs 

between biopsies and PDOXs, with only the second recurrent PDOX (T251) indicating selection of clones 

from 2 variants that increased in CCF in the PDOX compared to the originating biopsy (Figure 39C). This was 

also demonstrated by the single-sample method for this sample. However, the single-sample method also 

suggested selection was present in the first recurrent PDOX (T233), where only a few of the variants had 

similar CCFs between the originating biopsy and that PDOX (Figure 39B).  

 

Figure 39. Correlations between corresponding biopsy and PDOX samples from patient LIH0192, in 

A) VAFs, B) CCFs estimated with single-sample PyClone, and C) CCFs estimated with multi-sample 



 175 

PyClone. The different colours indicate PyClone’s deconvolution of variants into distinct subclone 

clusters. 

To investigate the discrepancy between the single and multi-sample method in this sample, I looked into 

the sequencing data more closely for any variant that had a CCF difference of >0.1 between T233-Biopsy 

and T233-PDOX, for either method. This found that numerous variants, using the single-sample method, 

likely had inaccurate CCF estimates by PyClone (Table 17). For example, the variant in HDAC9 was predicted 

to have CCFs of 0.41 and 0.02 in the biopsy and PDOX, respectively, showing a 20-fold difference. This 

variant had the same CN in both samples, and VAFs that support a 2-3 fold difference given the same CN 

and order of events, as was predicted using the multi-sample method (Table 17). In addition, there was a 

strong correlation of shared VAFs between the two samples, providing further support for the multi-sample 

method for T233. Nonetheless, there was still evidence of 2 variants with high CCFs in the PDOX that were 

absent from the biopsy, with no indication that these were due to errors in variants calling. One of these 

was predicted to be deleterious to the MUC17, though this is not thought to be expressed in the brain 

(Uhlén et al., 2015). The other was in EZH2, though is not expected to be deleterious. These increases in 

CCFs suggests there may have been strong selection in the PDOX for clones containing these variants. The 

majority of variants that appeared lost in the PDOX, with relatively high CCFs in the biopsy, were in the 

region chr19:53990556-53991104. This is the intergenic region between CACNG8 and CACNG6, and yet was 

covered by the sequencing target regions. It’s likely that the unusually high mutation rate in this region is 

due to misalignments, as there are a lot of repetitive sequences within it. Many of these variants did have 

evidence of being present in the PDOX (from similar misalignment) but, due to a dramatic drop in coverage 

of the region (903 reads in the biopsy, 58 reads in the PDOX), possibly as a result of a PDOX specific CNA 

that was missed in the aCGH data, they did not reach the 2 supporting read minimum required by Varscan2 

to be called. The primary tumour for the same patient (T192) showed a good correlation between VAFs and 

CCFs from both methods between biopsy and PDOX. The exception to this was a variant in EGFR which had 

an estimated CCF of 0.41 in the PDOX but was undetected in the biopsy. I therefore further investigated 

EGFR in more detail below.  

 

 

 

 

Table 17. Details for variants that differed by >0.1 CCF between biopsy and PDOX for T233, from 

either single or multi-sample PyClone estimates.  
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T233 Multi-sample 

Gene Position Allele Biopsy 
CCF PDX CCF Predicted 

deleterious Cluster Evidence for inaccurate CCF 
estimate or missed variants. 

HDAC9 chr7:18585269 C->T 0.22 0.10 No 3  

T233 Single-sample 

Gene Position Allele Biopsy 
CCF PDX CCF Predicted 

deleterious Cluster Evidence for inaccurate CCF 
estimate or missed variants. 

PTEN chr10:87965536 TG->T 0.15 0.03 No 
- 

Similar VAF and CN in both 

samples. 

KMT2A chr11:118499857 A->G 0.71 0.90 No -  

KLK1 chr19:50820511 T->G 0.49 0 No 
- 

1 in 4 supporting reads in 

PDX. 

TRIM28 chr19:58542588 C->A 0.20 0 No 
- 

Reduced coverage in PDX: 6 vs 

166. 

ARID1A chr1:26696753 T->C 0.34 0 No 
- 

Reduced coverage in PDX; 1 vs 

83. 

GNAS chr20:58900071 A->G 0.47 0.77 No -  

SETD2 chr3:47017539 GA->G 0.19 0.02 No -  

FGFR3 chr4:1802955 C->G 0.72 0 No 
- 

2 in 4 supporting reads in 

PDX. 

HDAC9 chr7:18585269 C->T 0.41 0.02 No 
- 

VAFs and CNs suggests a 2 or 

3 fold decrease.  

CHEK2 chr22:28687871 T->C 0.11 0 No -  

MUC17 chr7:101033231 T->G 0 0.83 Yes -  

EZH2 chr7:148819030 T->C 0 0.75 No -  

There were an additional 19 variants in CACNG6 between chr19:53990556-53991104 where the CCF 

decreases significantly from the Biopsy to the PDX (from 0.11-0.72 to 0 in 18 variants and from 0.16 to 0.05 

in the other variant). None of these were predicted to be deleterious. 

 

Using the multi-sample method with all six biopsy and PDOX samples from patient LIH0192 together, eight 

variants were included that were common to all. These clustered into three groups; near clonal variants, 

that remained consistently high across samples, and two subclones, that both fluctuated slightly in 

frequency between samples (Figure 40).  
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Figure 40. VAFs (A) and CCFs (B) of the 8 variants shared across all samples in patient LIH0347, 

using the multi-sample PyClone method. The different colours indicate PyClone’s deconvolution of 

variants into distinct subclone clusters. 

The primary tumour in patient LIH0347 (T347) showed good correlation of CCFs between the biopsy and 

PDOX, especially in the multi-sample method. However, the recurrence (T470) had a poorer correlation 

(Figure 41), and I therefore looked into those variants further in the sequencing data. This again showed 

evidence of some inaccuracies with the single-sample method (Table 18), but overall, both the single and 

multi-sample support the presence of altered clonal frequencies in the PDOX compared to the biopsy.  

 

A B 

B C A 



 178 

Figure 41. Correlations between corresponding biopsy and PDOX samples from patient LIH0347, in 

A) VAFs, B) CCFs estimated with single-sample PyClone, and C) CCFs estimated with multi-sample 

PyClone. The different colours indicate PyClone’s deconvolution of variants into distinct subclone 

clusters. 

Table 17. Details for variants that differed by >0.1 CCF between biopsy and PDOX for T470, from 

either single or multi-sample PyClone estimates.  

T470 Multi-sample 

Gene Position Allele Biopsy 
CCF PDX CCF Predicted 

deleterious Cluster Evidence for inaccurate CCF 
estimate or missed variants. 

PTEN chr10:87961002 TG->T 0.68 0.32 Yes 0  

GSE1 chr16:85654423 T->G 0.36 0.51 Yes 3  

T470 Single-sample 

Gene Position Allele Biopsy 
CCF PDX CCF Predicted 

deleterious Cluster Evidence for inaccurate CCF 
estimate or missed variants. 

PTEN chr10:87961002 TG->T 0.69 0.28 Yes -  

SNORD8 chr14:21397813 T->C 0.18 0 No -  

GSE1 chr16:85654423 T->G 0.45 0.30 Yes -  

GNAS chr20:58900071 A->G 0.25 0 No - 
1 in 4 supporting reads in the 

PDX 

FOXO3 chr6:108561803 G->A 0.04 0.27 Yes - 
Similar VAF and CN in both 

samples 

NOTCH2 chr1:119915219 C->T 0.03 0.21 No - 
VAFs and CNs suggests a 2 fold 

increase. 

AKT2 chr19:40236049 A->C 0 0.30 Yes - 
1 in 18 supporting reads in the 

Biopsy 

 

When using all four samples from patient LIH0347 together in the multi-sample method, four shared 

variants were clustered into three groups, which altered in frequency between the primary and recurrent 

tumour, though were mostly conserved between biopsies and corresponding PDOXs (Figure 42). 
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Figure 42. VAFs (A) and CCFs (B) of variants across samples in patient LIH0192, using the multi-

sample Pyclone method with only variants common to all samples. The different colours indicate 

PyClone’s deconvolution of variants into distinct subclone clusters.  

Patient LIH0158 showed very low CCF correlation between the primary (T158) biopsy and PDOX across both 

methods (Figure 43). Again, the single-sample method had many probable inaccuracies in CCF estimates, 

but with none found using the multi-sample method (Table 18). Therefore, altered clonal frequencies 

between biopsy and PDOX is indicated. 

 
Figure 43. Correlations between corresponding biopsy and PDOX samples from patient LIH0347, in 

A) VAFs, B) CCFs estimated with single-sample PyClone, and C) CCFs estimated with multi-sample 

PyClone. The different colours indicate PyClone’s deconvolution of variants into distinct subclone 

clusters. 

Table 18. Details for variants that differed by >0.1 CCF between biopsy and PDOX for T158, from 

either single or multi-sample PyClone estimates.  
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T158 Multi-sample 

Gene Position Allele Biopsy 
CCF PDX CCF Predicted 

deleterious Cluster Evidence for inaccurate CCF 
estimate or missed variants. 

ZBTB45 chr19:58542517 A->G 0.43 0.26 No 3  

ZBTB45 chr19:58542521 T->C 0.45 0.22 No 1  

FOXO3 chr6:108561803 G->A 0.54 0.11 Yes 2  

AKAP9 chr7:92000991 A->T 0.74 0.58 Yes 5  

NOTCH1 chr9:136505644 C->T 0.20 0.35 No 0  

T158 Single-sample 

Gene Position Allele Biopsy 
CCF PDX CCF Predicted 

deleterious Cluster Evidence for inaccurate CCF 
estimate or missed variants. 

PTEN chr10:87965536 CT->C 0.48 0 No - 
Reduced coverage in PDX; 9 vs 

156 

CIC chr19:42287787 G->A 0.51 0 No -  

CACNG6 chr19:53990626 A->G 0.23 0 No -  

CACNG6 chr19:53990870 C->T 0 0.12 No - 
Reduced coverage in Biopsy; 4 

vs 37 

CACNG6 chr19:53990969 T->C 0 0.11 No - 
Reduced coverage in Biopsy; 9 

vs 38 

PLCG1 chr20:41166758 CTTG->C 0.26 0.40 No -  

GNAS chr20:58900071 A->G 0.19 0 No - 
1 in 8 supporting reads in the 

PDX 

NF2 chr22:29604032 A->T 0.50 0 Yes - 
Reduced coverage in PDX; 27 

vs 136 

ZBTB20 chr3:114339432 G->A 0.49 0 No - 
Reduced coverage in PDX; 16 

vs 72 

PIK3R1 chr5:68293310 G->A 0.51 0 Yes -  

FOXO3 chr6:108561803 G->A 0.50 0.06 Yes -  

HDAC9 chr7:18585269 C->T 0.12 0 No - 
1 in 25 supporting reads in 

PDX 

AKAP9 chr7:92000991 A->T 0.54 0.43 Yes -  

BCOR chrX:40050038 T->G 0.35 0 No - 
Reduced coverage in PDX; 18 

vs 94 

CHD8 chr14:21437061 C->G 0 0.13 No -  

COL6A3 chr2:237387842 A->G 0 0.15 Yes -  

FGFR3 chr4:1805767 G->T 0 0.27 Yes -  
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5.2.5 Further investigation of EGFR 

Due to the unusual pattern seen for EGFR in T192, where it had a CCF of 0.41 in the PDOX but was 

undetected in the patient biopsy, contrasting all other variants which showed a very strong correlation 

between the two samples, I investigated this gene further. 

The above copy number analysis shows that focal amplification of EGFR in chr7 is present in all samples, 

apart from T158_PDX. Sequencing data confirmed that coverage across EGFR (chr7:55,017,021-55,210,080) 

was nearly 5 fold lower in the PDOX (46151 reads) compared to the biopsy (220245), thereby confirming 

the lack, or reduction, of amplification of EGFR in the PDOX. 

It was shown by our collaborators, through Western blot and aCGH, that LIH0192 and LIH0347 have 

structural EGFR variants that were retained in the respective PDOXs. The LIH0192 primary (T192) expressed 

vII (∆14-15), whereas the second recurrence (T251) instead expressed vIII, with both expressing low levels 

of wildtype (wt). LIH0347 expressed ∆2-15 in both the primary (T347) and first recurrence (T470), although 

wt expression was the most prevalent in both.   

I first sought to provide further evidence of these variants, and confirm the correlation between biopsy and 

PDOX samples, by comparing sequencing depths across exons in EGFR (Figure 44). LIH0192 showed a high 

frequency deletion of exons 14-15 in the biopsy and PDOX from the primary, confirming the expression of a 

high frequency vII variant. Reduced coverage of exons 2-7 was apparent in the first and second 

recurrences, supporting the presence of vIII  (Figure 44A). In LIH0347, evidence of EGFR structural variants 

in any sample was not obvious from the sequencing reads, presumably due to their low frequencies 

compared to wt expression (Figure 44B). This analysis supports previous observations that these PDOX 

models retain the EGFR structural variants present in the biopsies. 

I next looked at point variants in EGFR in samples from LIH0192. As expected from the aCGH results, EGFR 

had a very high coverage in all samples (Table 19), which may suggest the presence of extrachromosomal 

DNA (ecDNA). I therefore compared the allele frequencies of both germline and somatic variants in this 

region to investigate patterns of conservation of these potential ecDNAs, both longitudinally and from 

biopsy to PDOX, in patient LIH0192. In general, EGFR variants fluctuated in VAF considerably between 

samples (Table 19). Two variants in particular stood out; chr7:55168634 G>C had 3/984 reads supporting 

the alternative allele in the primary biopsy, which increased to 988/1169 in the primary PDOX. No 

supporting reads were found in the recurrent samples. Another variant, chr7: 55154017 C->T, had a similar 

VAF in the primary biopsy (330/5596) and PDOX (375/6287) samples, but was absent, or near absent, in the 

recurrent samples (Table 19). This variant was filtered out of the final list of somatic variants included in 

further analysis, as it was incorrectly (evidenced by the lack of supporting reads in some samples) classed 

as a germline variant due to being at a known polymorphic site.  
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Figure 44. Sequencing coverages across exons in EGFR, demonstrating the relative frequencies of 

vII (deletion of exons 14-15), vIII (deletions of exons 2-7) and ∆2-15 (deletion of exons 2-15) 

variants, in samples from patients A) LIH0192 and B) LIH0347.  

Table 19. Total read depth and number of alternate reads for two variants in EGFR with high VAF 

fluctuations in samples from LIH0192.  

Variant EGFR chr7:55168634 G>C chr7: 55154017 C->T 
Sample Read depth Alt reads Read depth Alt reads 

T192_Biopsy 984 3 5966 330 
T192_PDOX 1169 988 6287 375 

T233_patient 401 0 705 0 
T233_PDOX 625 0 1346 0 

T251_patient 2245 0 4422 2 
T251_PDOX 1826 0 1865 1 

 

5.3 Discussion  

PDOX tumour models are used by researchers as a way to experiment on representations of patient 

tumours, without such limitations of tissue availability. Their use, however, is dependent on the 

assumption that the models sufficiently recapitulate relevant aspects of patient tumour biology, a factor 

that has proven problematic with previous models (Bolhaqueiro et al., 2019; Knouse et al., 2018; Ben-David 

et al., 2017). To address this issue, our collaborators have developed PDOX models derived from short term 
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culture of mechanically minced GBM tumour tissue, and found that they do conserve much of the biology 

of the originating patient biopsies. In this study, I provided further evidence of maintained biology between 

most, but not all, patient GBM biopsies and corresponding mouse PDOXs, through analysis of copy number 

alterations and variant frequencies. 

I used PyClone to perform subclonal deconvolution and assess the maintenance of CCFs from biopsies to 

corresponding PDOXs. Through benchmarking in Chapter 3, I show that PyClone has limited accuracy when 

run on single samples, but it’s likely that this improves when including multiple samples. To investigate this, 

I ran it on both single and multiple samples, and compared the results. Unlike the single-sample method, 

the multi-sample method showed a good correlation of CCFs between biopsies and PDOXs for most 

samples, as did a direct comparison of VAFs.  Therefore, despite the poor performance of PyClone in 

Chapter 3, it’s likely that the multi-sample method allows for a reliable assessment of CCF correlations 

between samples due to being able to pool information across them. 

Such an analysis indicated that clonal frequencies were well preserved between biopsy and PDOX for two 

primary tumours (T192 and T233) and one recurrent tumour (T347). There was reasonable correlation in 

another recurrence (T251), though with possible selection indicated by two variants, and poor correlation 

in a primary and recurrence (T470 and T158), indicating significant changes in clonal frequencies. However, 

it is not known whether these deviations result from differential selection of clones in the PDOXs, or 

instead an effect of sampling bias. The latter is possible if the sequencing was from a distinct part of the 

biopsy than was used to create the PDOX, resulting in a different make up of clones due to spatial 

intratumour heterogeneity (Sun et al., 2017; Siegmund and Shibata, 2016). If sampling bias is the cause of 

the poor correlation between some biopsies and PDOXs, it would not be a large concern, as the same issue 

would be encountered with any application of the biopsy. On the other hand, if the cause were instead due 

to differential selection of subclones, this would be more problematic as it reflects an alteration due to the 

mouse micro-environment. It would be interesting to apply the SubClonalSelection model (Williams et al., 

2018), described in Chapter 4, to the variants from these samples, in order to assess their mode of 

evolution. This would allow us to determine if selection is more prevalent in the PDOX samples than their 

corresponding biopsies, which would indicate if differences in clonal frequencies are a result of selection 

due to xenografting, or instead due to sampling bias. Unfortunately, there are insufficient numbers of 

variants from the targeted sequencing (with an appropriate number of supporting reads) to generate a 

reliable result from the model. While samples from the GLASS dataset used in Chapter 4 were also not ideal 

for its use either (though they generally had a more appropriate number and distribution of VAFs than 

samples in this chapter), the aim of investigating the overall pattern of selection across samples in a large 

cohort meant that noise in the model’s results were less of an issue in that analysis. However, when looking 

at individual cases, it is important to be confident that each result is reliable, and so I was not able to use 

the model to compare the mode of evolution in biopsies and PDOXs. 



 184 

T192 showed a very high correlation of CCFs between biopsy and PDOX, though with the exception of EGFR 

that increased dramatically in the PDOX, prompting me to investigate this further. Coverages across EGFR 

exons showed the presence of structural variants in the biopsies from LIH0192, and these were conserved 

in the corresponding PDOXs. In contrast, and despite showing very high correlation of CCFs for other genes, 

allele frequencies of point variants in EGFR demonstrated very different proportions of copies of EGFR 

between the T192 biopsy and PDOX. Such high coverage, combined with high variation in frequencies of 

point variants across EGFR, suggests the presence of ecDNA, which is particularly common in aggressive 

tumours such as GBM (Kim et al., 2020; Turner et al., 2017) and known to commonly include additional 

copies of EGFR (Vogt et al., 2004; Decarvalho et al., 2018). Divergent inheritance of ecDNA, in spite of 

conservation of chromosomal genetic clonal frequencies, has been previously seen in GBM (Decarvalho et 

al., 2018), and represents an additional level of heterogeneity. The results in this study, assuming that the 

EGFR amplification in T192 is due to ecDNA, support this observation, and show that numbers of ecDNA are 

not always recapitulated in corresponding PDOX models, even when all other variants show a strong 

conservation of clonal frequencies. This could have implications on how accurately PDOXs reflect the 

originating biopsies, given that oncogenes on ecDNA are associated with increased aggressiveness of 

tumours (Kim et al., 2020), though this again may be explained by sampling bias.  

This study had several limitations that may have affected its accuracy. The lack of a germline reference 

meant that I was not able to reliably distinguish between somatic and germline point variants, instead 

relying on whether positions were previously known to have germline polymorphisms. Whilst this should 

have resulted in the removal of the majority of germline variants from the called set, some may still have 

been left, which could impact PyClone’s calculations due to conflicts with the purity estimates. Additionally, 

some somatic variants may have been incorrectly classed as germline and therefore missed, as was likely 

the case with chr7: 55154017 C->T, evidenced by a lack of supporting reads in the T233 and T251 samples. 

PyClone requires absolute bulk CN estimates for variants. As discussed in previous chapters, this is an 

unrealistic scenario when GBM is known to have subclonal CNAs. While this isn’t much of an issue when 

pairs of biopsy and PDOXs are analysed with equally inaccurate CNs, rounding to the most likely absolute 

value allows the introduction of error that could differ between samples and lead to inconsistent results. 

Another potential limitation of the study is that the aCGH data had substantial noise from both frequent 

signal dropouts and probes filtered out due to poor quality. Signal dropouts, likely resulting from 

insufficient probe hybridisation in regions where the patient doesn’t match the reference perfectly, result 

in an apparent CN of 0 for those probes. If surrounding probes are not present to help counteract that lack 

of signal then the segmentation step results in much larger regions with apparent CNs of 0. While this was 

largely overcome with a more stringent segmentation step combined with an override of CN=2 in the worst 

affected chromosomes, many regions with a CN of 0 still remained in some samples.  
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Purity estimates were calculated using a custom method. Whilst this relied on uncertain assumptions based 

only on prior knowledge of GBM CNAs and visual inspection of data across samples, it seemed the most 

reliable method in these cases. Although not feasible in larger cohorts, this manual curation of results is 

appropriate when only analysing a small number of samples, especially given that all samples are analysed 

with the same script, thereby minimising bias. The strong correlation seen between some biopsy and 

corresponding PDOXs suggests that any noise or error introduced when processing the data were not 

sufficient to heavily impact the analysis. 

In conclusion, these results provide evidence that the PDOX models, created without cell dissociation or in 

vitro passage, largely preserve the clonal structure of the originating GBM patient biopsies in some 

tumours. Others showed significant differences in clonal frequencies, which might be explained by either 

sampling bias or from PDOX specific clonal selection.  

5.4 Methods 

5.4.1 Variant calling 

Samples were previously sequenced using targeted panels of 181-234 genes, adapted from the Heidelberg 

brain tumour panel (Sahm et al., 2016), with 75bp read lengths and average sequencing depth between 

100x-250x. These reads were previously depleted of mouse specific reads and aligned to the hg38 human 

reference genome (Golebiewska et al., 2020).  I then processed these with Picard MarkDuplicates (Broad 

Institute), and GATK (v3.8) indel realignment and base recalibration (Van der Auwera et al., 2013). Variants 

were called using Samtools’ (v1.9) mpileup (Li et al., 2009) and Varscan 2’s (v2.4.4) pileup2snp and 

mpileup2indel commands (Koboldt et al., 2012), using a p-value threshold of 1, and otherwise default 

parameters (although I specifically set these as I’ve found other Varscan functions’ defaults sometimes 

differ from what is stated in the manual): --strand-filter 0 --min-freq-for-hom 0.75 --min-coverage 8 --min-

reads2 2 --min-avg-qual 15 --min-var-freq 0.01 –p-value 1. A custom script was used to filter out variants 

listed in the dbSNP database of known polymorphic sites (Sherry et al., 1999). Bedtools (v2.29.2) (Quinlan 

and Hall, 2010) was then used to reduce variants to only those covered by the 150 gene panel target 

regions, which was converted from hg19 to hg38 using hgLiftOver (UCSC hgLiftOver). Coverage graphs were 

created with the use of the Interactive Genome Viewer (Thorvaldsdóttir et al., 2013). 

Deleterious variants were identified using the Ensembl Variant Effect Predictor (McLaren et al., 2016), by 

those annotated with “IMPACT=HIGH”, or where SIFT (Vaser et al., 2015) or PolyPhen-2 (Adzhubei et al., 

2010) predicted a variant was “deleterious”, “deleterious_low_confidence”, “probably_damaging”, or 

“possibly_damaging”. 
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5.4.2 Copy number calling 

Log2 ratios from aCGH probes were segmented using DNAcopy (v1.52.0) (Seshan E. and Olshen, 2019) 

using default parameters, with the exception of the addition of ‘undo.splits="sdundo",undo.SD=4’ to the 

segment command, which was required to reduce a high level of noise from frequent signal dropouts. 

Absolute CNs were then estimated from these using the methods described in the results. Probe positions 

were converted from hg19 to hg38 using hgLiftOver (UCSC hgLiftOver).  

Methylation array data was processed using cnAnalysis450k (Knoll et al., 2017) (v0.99.26) and minfi (Aryee 

et al., 2014) (v1.24.0), with 119 publicly available normal brain samples (Capper et al., 2018) used as 

controls for normalisation. The genomic coordinates of CpG probes were taken from the GPL13534 

reference in the NCBI Gene Ontology Omnibus database (Barrett et al., 2013). 

5.4.3 Correlation of CCFs 

PyClone (v0.13.1) was run under default parameters, with the addition of ‘--prior total_copy_number’, 

through the ‘run_analysis_pipeline’ command to run the full workflow. Purities were taken from the aCGH 

custom estimates for the biopsies, and set to 1 for the PDOX samples as these are not likely to contain 

normal human cells, and sequencing reads from mouse normal cells had previously been removed. 
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Chapter 6 - Discussion 
Glioblastoma (GBM) is one of the deadliest of all cancers (Johnson and O’Neill, 2012; Stupp et al., 2017). 

This is largely due to the almost inevitable recurrence of tumours as a result of therapy resistance. In this 

study, I aimed to use genomic datasets from matched primary and recurrent tumours, to identify cellular 

processes that may influence this resistance in GBM, and potentially provide us with new targets for 

treating it. 

Such a goal requires delineating the genetic intratumour heterogeneity (ITH) of tumours, that results from 

their continuous gain of new mutations and evolution over time. As it was unclear what the most suitable 

pipelines were for achieving this, I sought to benchmark a range of methods involved in the process, to 

identify those most accurate. This required developing the programs HeteroGenesis and w-Wessim, to 

allow simulation of realistically complex artificial whole exome sequencing (WES) datasets, with known 

ground truths. HeteroGenesis is a much more flexible and advanced somatic genome simulator than 

previously available options. It should therefore prove useful to other researchers wanting to simulate 

somatic genomes. The in silico WES sequencer w-Wessim has important improvements from its 

predecessor, Wessim (Kim et al., 2013), that enable it to model CNVs as well as providing more realistic 

read distributions. This, also, is likely to be useful to other researchers. Additionally, I plan to make 

datasets, generated with these methods, available for researchers to download and use for their own 

purposes. To my knowledge, no other genomes or WES datasets for such realistically complex artificial bulk 

tumour samples have been created elsewhere. 

The simulated reads generated by w-Wessim have a limitation in that the quality scores assigned to error 

bases are higher than those of real data. It’s possible this resulted in the higher than expected false positive 

variant calls. While this was largely accounted for by subsampling the false positives in the call sets before 

using them with subclonal deconvolution methods, it would be beneficial to improve the simulated 

datasets to address this issue. This could be achieved either by manually adjusting the trained error model 

that I used with w-Wessim, or through collaborations with authors of newer in silico sequencers, which 

could be adapted to include the WES specific features of w-Wessim. I also plan to minimise w-Wessim’s 

resource requirements by trialling it with reduced probe input numbers.  

In Chapter 3, I carry out benchmarking of subclonal deconvolution methods, as well as mutation calling 

methods required to generate their inputs. This identified Mutect2 as the most suitable point variant caller, 

FACETS as the most accurate copy number aberration (CNA) caller, and Ccube as the most accurate 

subclonal deconvolution method, when using a single tumour sample with a matched normal. However, 

even the best subclonal deconvolution method showed poor accuracy in estimating variant cancer cell 

fractions (CCFs). Combined with the fact that single tumour samples are unlikely to be representative of the 
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whole tumour, this suggests that use of single samples for subclonal deconvolution is not to be 

recommended (Bhandari et al., 2018; Siegmund and Shibata, 2016; Watkins and Schwarz, 2018; Sun et al., 

2017; Chkhaidze et al., 2019).  

Further benchmarking to assess to what extent multi-sample set-ups improve the accuracy of subclonal 

deconvolution, is required. Such analysis would be able to use the datasets created in this study, with 

simple adjustments; Reads from each subclone within a tumour can be merged in varying proportions to 

form samples representing multiple distinct regions of a tumour. Additionally, HeteroGenesis allows for 

easy re-calculation of the mutation profiles of individual subclones, to reflect samples with differing 

subclone frequencies.  

One of the challenges with identifying treatment resistance mechanisms in GBM, is the scarcity of 

sequencing datasets of matched primary and recurrent tumours. This results from the fact that only 25% of 

recurrent GBMs are eligible for a second surgery, and those that are often contain extensive necrosis, 

rendering them unsuitable for sequencing (Kraboth and Kalman, 2020). Our group had accumulated paired 

GBM data for 18 in-house patient samples, combined with a further 42 patients from other cohorts, for 

which WES data was available. I planned to analyse these once I had determined the most suitable 

pipelines. However, whilst I was working on the benchmarking analysis, a novel and much larger dataset 

became available, consisting of 94 high quality IDHwt GBM patients who underwent standard therapy 

(GLASS Consortium, 2018). This was a valuable resource and, despite the lack of raw data availability, I 

adapted my plans in order to utilise it in this study.    

By applying the SubClonalSelection model (Williams et al., 2018), I showed that selection in GBM is not 

associated with therapy across the GLASS cohort. However, I was able to identify variants that may be 

driving increased resistance to therapy in a minority of patients. Such observations are still possible 

alongside the findings of the model, which is unable to detect all instances of subclonal expansions, and 

may also have suffered from poor accuracy owing to sub-optimal data quality in many of the included 

samples.   

The power of the pathway analysis was limited by the sample size, but nonetheless, it highlighted some 

promising areas for further investigation. In particular, alteration of the bile acid synthesis was identified as 

a promising candidate for conferring therapy resistance, whereas alteration to the tight junction 

interactions pathway was identified as a candidate for sensitising GBM cells to therapy. Computational 

investigations with additional omics datasets, followed by functional assays, are warranted to further 

investigate the highlighted pathways for their role in GBM survival through therapy. The pathway analysis 

also provides the foundation for future work planned for our group, whereby our in-house paired samples 

will be fed through the same pipeline. This will include the original collection of WES samples, combined 

with ~40 new pairs, for which whole-genome sequencing has recently been provided to us by MD Anderson 
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as part of their cancer moon shot programme. By having access to the raw data for these samples, we are 

able to apply optimised, and likely more accurate pipelines for inferring changes in CCFs. This may either 

include a multi-sample subclonal deconvolution method, if one is identified as being highly accurate in the 

planned future benchmarking, or alternatively, not applying subclonal deconvolution and instead 1) 

applying FACETS (identified as the best CNA caller in Chapter 3) to call CNAs on the recurrent samples, 

whilst using primary samples as matched normal samples, 2) masking variants in regions where CNA 

differences exist, and 3) directly inferring CCFs from purity adjusted VAFs. This is likely an effective 

approach given that recurrent GBMs rarely show extensive new structural changes since the primary 

(Barthel et al., 2019), and may provide further support for the pathways that stood out in the current 

study, as potentially influencing GBM progression through therapy. 

A further important use for characterising genetic ITH in tumours, is in assessing whether tumour models 

used in the lab accurately recapitulate the subclonal architecture of patient biopsies. In Chapter 5, I 

performed variant subclonal deconvolution to show that subclone frequencies are largely similar between 

biopsies and patient-derived orthotopic xenograft mouse models (PDOXs), created without cell dissociation 

or in vitro passage. Previous evidence supports that these models also maintain much of the non-genetic 

biology of the patient biopsies. However, as the transcriptional profiles of PDOXs clustered separately to 

those of patient biopsies, there should still be a level of caution in interpreting results from the use of the 

models. Nonetheless, they represent a significant improvement from those previously available, and have 

been shown to reflect the treatment response of the original patient tumour. 

Ultimately, it is possible that no single target will be found by researchers that can be moderated by drugs 

to prevent GBM recurrence. In such a scenario, we must turn to other approaches to improve prognosis for 

patients. Novel tumour evolution-based strategies have been proposed for the multiple cancer types that 

inevitably recur, with a focus on maintaining control of resistant cell populations (Walther et al., 2015). The 

traditional treatment approach of aiming to eliminate as many cancerous cells as possible, specifically 

remove treatment-sensitive cells, leaving behind resistant cells with reduced competition for space and 

resources. This “competitive release” enables resistant cells to rapidly proliferate and dominate the 

tumour. In contrast, evolution-based strategies aim to keep resistant cell numbers down whilst preventing 

growth of the overall tumour. One such approach is termed ‘adaptive therapy’ and involves continuous 

cycles of low-dose therapy so that proliferation alternates between resistant and sensitive cells; when the 

drug is on, sensitive cells slowly reduce in number and allow resistant cells to slowly increase, and when the 

drug is off, the sensitive cells outcompete the resistant cells which have a lower fitness in the absence of 

therapy (Yamamoto et al., 2018; Enriquez-Navas et al., 2015; West et al., 2020; Gatenby et al., 2009). This 

reduced fitness comes from the fact that drug resistance is often a costly process to the cell and so, in the 

absence of therapy, reduces cell proliferation. In continuously targeting these different cell populations, 

adaptive therapy maintains tumour size. Furthermore, the reduced therapy dosage means patients 
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experience less toxicity and side effects. Adaptive therapy has been successful in phase 2 clinical trials of 

abiraterone management of metastatic castration-resistant prostate cancer, where median progression 

free survival increased from 16.2 months under standard treatment, to at least 30 months, and with less 

than half the drug usage (Zhang et al., 2019, 2017). Another evolution-based strategy is ‘evolutionary 

herding’, and involves using one drug to induce the tumour into developing resistance to it, but in doing so, 

results in hypersensitivity to another; a scenario known as ‘antagonistic pleiotropy’ (Zhao et al., 2016; 

Noorani et al., 2020; Acar et al., 2019). For example, in acute myeloid leukaemia, resistance to the 

bromodomain inhibitors through polycomb repressive complex 2-NSD2/3-mediated MYC regulation, induce 

sensitivity to BCL2 inhibitors (Lin et al., 2020; Fiskus et al., 2019). Such evolution based treatment 

approaches further highlight the need to be able to accurately characterise genetic ITH in tumours. 

Overall, this study provides: 1) Resources for simulating artificial tumour genomes and WES sequencing 

datasets. These will be of use to other researchers wanting to test any of a number of different types of 

genome analysis methods, thereby facilitating method improvements and allowing researchers to 

determine the best pipelines to use. 2) A guide for researchers on the accuracy of mutation calling and 

subclonal deconvolution methods for characterising genetic ITH in single tumour samples with matched 

normals. This will aid researchers in planning their experiments, not only in identifying the most suitable 

analysis methods to apply, but also in highlighting the potential importance of prioritising multi-sampling 

approaches when possible. 3) A list of pathways that are candidates for conferring increased resistance or 

sensitivity to treatment in GBM. These warrant further computational investigation followed by validation 

in the lab of their role in therapy resistance in GBM. As current approaches in treating GBM show little 

survival benefit and result in rapid tumour adaptation, it is vital that the issue of therapy resistance is 

addressed in future treatment approaches. The mechanisms identified in this study, that are candidates for 

driving or reducing such therapy resistance, may therefore lead to the much needed breakthrough in 

treatment of GBM. 
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